TY - GEN
T1 - Stickelberger ideals and divisor class numbers
A1 - Yin,Linsheng
Y1 - 2011/11/18
N2 - Let K/k be a finite abelian extension of function fields with Galois group G. Using the Stickelberger elements associated to K/k studied by J.Tate, P.Deligne and D.Hayes, we construct an ideal I in the integral group ring \mathbb{Z}[G] relative to the extension K/k, whose elements annihilate the group of divisor classes of degree zero of K and whose rank is equal to the degree of the extension. When K/k is a (wide or narrow) ray class extension, we compute the index of I in \mathbb{Z}[G], which is equal to the divisor class number of K up to a trivial factor.
CY - Saarbrücken
PB - Saarländische Universitäts- und Landesbibliothek
AD - Postfach 151141, 66041 Saarbrücken
UR - http://scidok.sulb.uni-saarland.de/volltexte/2011/4298
ER -