TY - GEN
T1 - Existence of unstable minimal surfaces of annulus type in manifolds
A1 - Kim,Hwajeong
Y1 - 2012/01/16
N2 - Unstable minimal surfaces are the unstable stationary points of the Dirichlet-Integral. In order to obtain unstable solutions, the method of the gradient flow together with the minimax-principle is generally used. The application of this method for minimal surfaces in the Euclidean spacce was presented in [St1]. We extend this theory for obtaining unstable minimal surfaces in Riemannian manifolds. In particular, we handle minimal surfaces of annulus type, i.e. we prescribe two Jordan curves of class C^{3} in a Riemannian manifold and prove the existence of unstable minimal surfaces of annulus type bounded by these curves.
CY - Saarbrücken
PB - Saarländische Universitäts- und Landesbibliothek
AD - Postfach 151141, 66041 Saarbrücken
UR - http://scidok.sulb.uni-saarland.de/volltexte/2012/4484
ER -