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1  GENERAL PART 

1.1 INTRODUCTION 

Poisonings with plants or plant ingredients as well as their abuse are widespread and 

play an important role in clinical and forensic toxicology. According to the annual report 

of 2005 of the poison information center of northern Germany, 12 % of the medicinal 

consultations and advice related to plants or plant ingredients (Fig. 1.1.). Although many 

plants contain pharmacologically active ingredients, severe poisonings with plants are 

relatively rare and limited to a few toxic plant species.1  

 

 
Fig. 1.1. Distribution of medical consultions of the Poison Information Center of Northern Germany 

 

Besides plant poisonings, a lot of these consultations concern the abuse of plants and 

plant ingredients. The main reasons of such an abuse are the wish to experience 

stimulative or hallucinogenic effects, to induce or support loosing weight, or simply 

habitual misuse. In contrast to classical drugs of abuse such as tetrahydrocannabinol 

(THC), opiates, cocaine, and amphetamines, the so-called “herbal” or “natural” drugs 

are often thought to be relatively harmless and propagated as "safe". For these reasons 

and because of a well-organized publicity in the internet, they have become increasingly 

popular among drug abusers in recent years. However, as in case of classical drugs of 

abuse, abuse of plants or plant ingredients may cause psychiatric problems like 

addiction or chronic illnesses. Depending on the pharmacological activity of the 

1 
 

 

1  GENERAL PART 

1.1 INTRODUCTION 

Poisonings with plants or plant ingredients as well as their abuse are widespread and 

play an important role in clinical and forensic toxicology. According to the annual report 

of 2005 of the poison information center of northern Germany, 12 % of the medicinal 

consultations and advice related to plants or plant ingredients (Fig. 1.1.). Although many 

plants contain pharmacologically active ingredients, severe poisonings with plants are 

relatively rare and limited to a few toxic plant species.1  

 

 
Fig. 1.1. Distribution of medical consultions of the Poison Information Center of Northern Germany 

 

Besides plant poisonings, a lot of these consultations concern the abuse of plants and 

plant ingredients. The main reasons of such an abuse are the wish to experience 

stimulative or hallucinogenic effects, to induce or support loosing weight, or simply 

habitual misuse. In contrast to classical drugs of abuse such as tetrahydrocannabinol 

(THC), opiates, cocaine, and amphetamines, the so-called “herbal” or “natural” drugs 

are often thought to be relatively harmless and propagated as "safe". For these reasons 

and because of a well-organized publicity in the internet, they have become increasingly 

popular among drug abusers in recent years. However, as in case of classical drugs of 

abuse, abuse of plants or plant ingredients may cause psychiatric problems like 

addiction or chronic illnesses. Depending on the pharmacological activity of the 

1 
 

 

1  GENERAL PART 

1.1 INTRODUCTION 

Poisonings with plants or plant ingredients as well as their abuse are widespread and 

play an important role in clinical and forensic toxicology. According to the annual report 

of 2005 of the poison information center of northern Germany, 12 % of the medicinal 

consultations and advice related to plants or plant ingredients (Fig. 1.1.). Although many 

plants contain pharmacologically active ingredients, severe poisonings with plants are 

relatively rare and limited to a few toxic plant species.1  

 

 
Fig. 1.1. Distribution of medical consultions of the Poison Information Center of Northern Germany 

 

Besides plant poisonings, a lot of these consultations concern the abuse of plants and 

plant ingredients. The main reasons of such an abuse are the wish to experience 

stimulative or hallucinogenic effects, to induce or support loosing weight, or simply 

habitual misuse. In contrast to classical drugs of abuse such as tetrahydrocannabinol 

(THC), opiates, cocaine, and amphetamines, the so-called “herbal” or “natural” drugs 

are often thought to be relatively harmless and propagated as "safe". For these reasons 

and because of a well-organized publicity in the internet, they have become increasingly 

popular among drug abusers in recent years. However, as in case of classical drugs of 

abuse, abuse of plants or plant ingredients may cause psychiatric problems like 

addiction or chronic illnesses. Depending on the pharmacological activity of the 

1 
 

 

1  GENERAL PART 

1.1 INTRODUCTION 

Poisonings with plants or plant ingredients as well as their abuse are widespread and 

play an important role in clinical and forensic toxicology. According to the annual report 

of 2005 of the poison information center of northern Germany, 12 % of the medicinal 

consultations and advice related to plants or plant ingredients (Fig. 1.1.). Although many 

plants contain pharmacologically active ingredients, severe poisonings with plants are 

relatively rare and limited to a few toxic plant species.1  

 

 
Fig. 1.1. Distribution of medical consultions of the Poison Information Center of Northern Germany 

 

Besides plant poisonings, a lot of these consultations concern the abuse of plants and 

plant ingredients. The main reasons of such an abuse are the wish to experience 

stimulative or hallucinogenic effects, to induce or support loosing weight, or simply 

habitual misuse. In contrast to classical drugs of abuse such as tetrahydrocannabinol 

(THC), opiates, cocaine, and amphetamines, the so-called “herbal” or “natural” drugs 

are often thought to be relatively harmless and propagated as "safe". For these reasons 

and because of a well-organized publicity in the internet, they have become increasingly 

popular among drug abusers in recent years. However, as in case of classical drugs of 

abuse, abuse of plants or plant ingredients may cause psychiatric problems like 

addiction or chronic illnesses. Depending on the pharmacological activity of the 



2 1 General Part 
 
 

contained active ingredients, they may even cause serious acute intoxications and 

poisonings, especially in overdose situations. In the following, an overview of herbal 

drugs leading to an abuse and/or intoxication is given.  

 

1.1.1 Laxatives 

The stimulant laxatives of the anthraquinone type (e.g. rhein) contained in plant extracts 

of cascara, senna, rhubarb, frangula, and aloe as well as of the diphenol-type 

phenolphthalein, bisacodyl, and sodium picosulfate are widely used and abused drugs. 

They are freely available over-the-counter drugs which are well tolerated for self 

medication and generally viewed as harmless, because their occasional use is 

associated with only few unwanted side effects.2 The chemical structures of the 

above-mentioned laxatives are given in Fig. 1.2. 
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Fig. 1.2. Chemical structures of bisacodyl, picosulfate, rhein, and pheolphthalein. 

2 1 General Part 
 
 

contained active ingredients, they may even cause serious acute intoxications and 

poisonings, especially in overdose situations. In the following, an overview of herbal 

drugs leading to an abuse and/or intoxication is given.  

 

1.1.1 Laxatives 

The stimulant laxatives of the anthraquinone type (e.g. rhein) contained in plant extracts 

of cascara, senna, rhubarb, frangula, and aloe as well as of the diphenol-type 

phenolphthalein, bisacodyl, and sodium picosulfate are widely used and abused drugs. 

They are freely available over-the-counter drugs which are well tolerated for self 

medication and generally viewed as harmless, because their occasional use is 

associated with only few unwanted side effects.2 The chemical structures of the 

above-mentioned laxatives are given in Fig. 1.2. 

 

O

O

OHOH

OH

O

O

OH OH

O

N

O

O

O

O

N

O
HO4S

O
SO4H

Bisacodyl Picosulfate

Phenolphthalein Rhein  
Fig. 1.2. Chemical structures of bisacodyl, picosulfate, rhein, and pheolphthalein. 

2 1 General Part 
 
 

contained active ingredients, they may even cause serious acute intoxications and 

poisonings, especially in overdose situations. In the following, an overview of herbal 

drugs leading to an abuse and/or intoxication is given.  

 

1.1.1 Laxatives 

The stimulant laxatives of the anthraquinone type (e.g. rhein) contained in plant extracts 

of cascara, senna, rhubarb, frangula, and aloe as well as of the diphenol-type 

phenolphthalein, bisacodyl, and sodium picosulfate are widely used and abused drugs. 

They are freely available over-the-counter drugs which are well tolerated for self 

medication and generally viewed as harmless, because their occasional use is 

associated with only few unwanted side effects.2 The chemical structures of the 

above-mentioned laxatives are given in Fig. 1.2. 

 

O

O

OHOH

OH

O

O

OH OH

O

N

O

O

O

O

N

O
HO4S

O
SO4H

Bisacodyl Picosulfate

Phenolphthalein Rhein  
Fig. 1.2. Chemical structures of bisacodyl, picosulfate, rhein, and pheolphthalein. 

2 1 General Part 
 
 

contained active ingredients, they may even cause serious acute intoxications and 

poisonings, especially in overdose situations. In the following, an overview of herbal 

drugs leading to an abuse and/or intoxication is given.  

 

1.1.1 Laxatives 

The stimulant laxatives of the anthraquinone type (e.g. rhein) contained in plant extracts 

of cascara, senna, rhubarb, frangula, and aloe as well as of the diphenol-type 

phenolphthalein, bisacodyl, and sodium picosulfate are widely used and abused drugs. 

They are freely available over-the-counter drugs which are well tolerated for self 

medication and generally viewed as harmless, because their occasional use is 

associated with only few unwanted side effects.2 The chemical structures of the 

above-mentioned laxatives are given in Fig. 1.2. 

 

O

O

OHOH

OH

O

O

OH OH

O

N

O

O

O

O

N

O
HO4S

O
SO4H

Bisacodyl Picosulfate

Phenolphthalein Rhein  
Fig. 1.2. Chemical structures of bisacodyl, picosulfate, rhein, and pheolphthalein. 



1.1 Introduction 3 
 
 

However, the above-mentioned drugs are also widely abused for various reasons. On 

the one hand, there are surreptitious laxative abusers, whose abuse is often associated 

with an eating disorder like bulimia nervosa or anorexia3-10 or with Munchhausen 

syndrome.11 In case of eating disorders, a study of Pryor et al. showed that more than 

50 % of patients had abused laxatives at some point.12 On the other hand, there are 

habitual abusers, which are usually middle-aged and start using these drugs for 

treatment of constipation due to poor diet, decreased mobility or concomitant drug 

therapy. Such a chronic use or abuse can induce hypokalemia, which in turn leads to 

constipation, thus leading to a vicious circle of laxative abuse and constipation. 

Laxative-induced hypokalemia may even lead to life threatening disorders like torsade 

de pointes.10 Other unwanted side effects of chronic laxative abuse are abdominal pain, 

chronic diarrhea, dehydration, disturbance of acid-base balance, and reversible or 

irreversible damages as well as inflammatory changes of the colonic mucosa.2,7,9,13-15 

Because of the heterogeneity of these side effects and their similarity to symptoms of 

gastrointestinal disorders, a toxicological screening for laxatives should be part of the 

differential diagnosis of such disorders.3,4 This may also help to avoid extensive and 

expensive diagnostic work. 

 

1.1.2 Nutmeg 

Nutmegs, the seeds of the evergreen tropical tree Myristica fragrans Houtt., are mainly 

used as a spice. They are described to be psychoactive when administered in high 

doses.16 Psychoactive properties were already described by Hildegard von Bingen in 

the Middle Ages.17 More recently, different psychotropic effects have been described in 

case reports after suspected intake of high doses of nutmegs.17-21 The main ingredients 

of the volative oil of nutmeg are the alkenebenzene derivatives elemicin (1-(3’,4’,5’-

trimethoxyphenyl)-prop-2-ene), myristicin (1-(3’,4’-methylenedioxy-5’-methoxyphenyl)-

prop-2-ene), and safrole (1-(3’,4’-methylenedioxyphenyl)-prop-2-ene).22 The structures 

of these ingredients are given in Fig. 1.3. 
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In 1966, Shulgin hypothesized that the possible psychotropic effects of myristicin may 

be caused by metabolic addition of ammonia to the allyl side chain leading to the 

amphetamine derivative 3,4-methylenedioxy-5-methoxyamphetamine (MMDA)23 and 

that of elemicin by conversion to 3,4,5-trimethoxyamphetamine (TMA).24 These 

proposed metabolic steps are given in Fig. 1.4, but have not been proven so far. 
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1.1.3 Herbal Phenalkylamines 

Herbal drugs of Ephedra species have been abused as stimulants for centuries. 

Ephedra is a shrub-like evergreen plant found in arid regions of Europe, central Asia, 

and other parts of the world. Major species of Ephedra include Ephedra sinica Stapf., E. 

equisetina Bunge, E. intermedia, and E. distachya.25 The traditional Chinese medicine 

Ma Huang, derived from aerial parts of Ephedra, and has been used for the treatment of 

asthma, bronchial spasms, and as stimulant or diaphoretic.26  
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Fig. 1.5. Chemical structures of norephedrine, norpseudoephedrine (cathine), ephedrine, 

pseudoephedrine, methylephedrine, methylpseudoephedrine, and synephrine. 

 

1.1 Introduction 5 
 
 

1.1.3 Herbal Phenalkylamines 

Herbal drugs of Ephedra species have been abused as stimulants for centuries. 

Ephedra is a shrub-like evergreen plant found in arid regions of Europe, central Asia, 

and other parts of the world. Major species of Ephedra include Ephedra sinica Stapf., E. 

equisetina Bunge, E. intermedia, and E. distachya.25 The traditional Chinese medicine 

Ma Huang, derived from aerial parts of Ephedra, and has been used for the treatment of 

asthma, bronchial spasms, and as stimulant or diaphoretic.26  

 

NH2

OH
NH2

OH

N
H

OH
N
H

OH

N
OH

N
OH

N
H

OH

OH

Norephedrine Norpseudoephedrine 

Ephedrine Pseudoephedrine 

Methylephedrine Methylpseudoephedrine 

Synephrine  
 

Fig. 1.5. Chemical structures of norephedrine, norpseudoephedrine (cathine), ephedrine, 

pseudoephedrine, methylephedrine, methylpseudoephedrine, and synephrine. 

 

1.1 Introduction 5 
 
 

1.1.3 Herbal Phenalkylamines 

Herbal drugs of Ephedra species have been abused as stimulants for centuries. 

Ephedra is a shrub-like evergreen plant found in arid regions of Europe, central Asia, 

and other parts of the world. Major species of Ephedra include Ephedra sinica Stapf., E. 

equisetina Bunge, E. intermedia, and E. distachya.25 The traditional Chinese medicine 

Ma Huang, derived from aerial parts of Ephedra, and has been used for the treatment of 

asthma, bronchial spasms, and as stimulant or diaphoretic.26  

 

NH2

OH
NH2

OH

N
H

OH
N
H

OH

N
OH

N
OH

N
H

OH

OH

Norephedrine Norpseudoephedrine 

Ephedrine Pseudoephedrine 

Methylephedrine Methylpseudoephedrine 

Synephrine  
 

Fig. 1.5. Chemical structures of norephedrine, norpseudoephedrine (cathine), ephedrine, 

pseudoephedrine, methylephedrine, methylpseudoephedrine, and synephrine. 

 

1.1 Introduction 5 
 
 

1.1.3 Herbal Phenalkylamines 

Herbal drugs of Ephedra species have been abused as stimulants for centuries. 

Ephedra is a shrub-like evergreen plant found in arid regions of Europe, central Asia, 

and other parts of the world. Major species of Ephedra include Ephedra sinica Stapf., E. 

equisetina Bunge, E. intermedia, and E. distachya.25 The traditional Chinese medicine 

Ma Huang, derived from aerial parts of Ephedra, and has been used for the treatment of 

asthma, bronchial spasms, and as stimulant or diaphoretic.26  

 

NH2

OH
NH2

OH

N
H

OH
N
H

OH

N
OH

N
OH

N
H

OH

OH

Norephedrine Norpseudoephedrine 

Ephedrine Pseudoephedrine 

Methylephedrine Methylpseudoephedrine 

Synephrine  
 

Fig. 1.5. Chemical structures of norephedrine, norpseudoephedrine (cathine), ephedrine, 

pseudoephedrine, methylephedrine, methylpseudoephedrine, and synephrine. 

 



6 1 General Part 
 
 

The main pharmacologically active ingredients of Ephedra species are the alkaloids 

ephedrine and pseudoephedrine as well as norephedrine, norpseudoephedrine 

(cathine), methylephedrine, and methylpseudoephedrine.27-30 These compounds are 

potent central nervous system (CNS) stimulants and also have sympathomimetic effects 

in the peripheral nervous system. Ephedrine, norpseudoephedrine and methylephedrine 

were banned as doping agents by the International Olympic Committee. Because of the 

peripheral effects, ephedrine, pseudoephedrine, or norephedrine are often contained in 

cold medications. Norephedrine and norpseudoephedrine are often contained in 

anorectic medications. Such medicaments are often abused as well as supplements 

containing the anorectic compound synephrine (oxedrine).31,32 The chemical structures 

of all mentioned ephedrines and synephrine are depicted in Fig. 1.5. 

 

The psychostimulant herbal drug khat (Catha edulis Forsk.) is also abused. Khat is 

cultivated and abused mainly in East Africa and the Arab Peninsula. Emigrants from 

these countries try to maintain this habit, and large quantities of fresh khat are imported 

into other areas in the world. For example, >2300 kg of khat were confiscated at the 

Frankfurt airport (Germany) in 1998.33 The main alkaloids of khat are the 

psychostimulants cathinone, norpseudoephedrine and norephedrine.33-35 Cathinone is 

also a CNS stimulant and has sympathomimetic effects in the peripheral nervous 

system. Cathinone and norpseudoephedrine are controlled substances in many 

countries due to the khat abuse. A structurally related drug of relevance in this context 

is the synthetic designer drug methcathinone.36-42 The chemical structures of cathinone 

and methcathinone are depicted in Fig. 1.6. 
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Fig. 1.6. Chemical structures of cathinone and methcathinone. 
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Finally, one of the oldest known and best studied herbal drugs of abuse containing 

phenalkylamines is Lophophora williamsii Coult. (peyote). It contains the hallucinogenic 

alkaloid mescaline.43,44 Mescaline acts as partial agonist at 5-HT2A and other 5-HT2 

receptors in the central nervous system. The noradrenergic locus coeruleus and the 

cerebral cortex are among the regions where hallucinogens have prominent effects 

through their actions upon 5-HT2A receptors.44-48 The chemical structure of mescaline is 

depicted in Fig. 1.7. 
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Fig. 1.7. Chemical structure of mescaline. 

 

1.1.4 Toxic Alkaloids 

The most common herbal drug of abuse is Nicotiana tabacum L. A description of all the 

severe side effects of smoking is found in many handbooks. Intoxications do usually not 

occur after smoking of tobacco products, but may occur after oral ingestion of tobacco, 

e.g. by small children eating cigarettes. Nicotine acts by stimulation of the 

N-cholinoreceptors and is quickly metabolized to cotinine. The Strucures of nicotine and 

its metabolite cotinine are depicted in Fig. 1.8. 
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Fig. 1.8. Chemical structures of nicotine and cotinine. 
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8 1 General Part 
 
 

Apart from the above-mentioned drugs of abuse, very popular herbal drugs abused for 

psychoactive reasons are plants of the nightshade family like Atropa belladonna L. 

(deadly nightshade), Datura stramonium L. (Jimson weed), or Datura arborea L. (angles 

trumpet). These plants contain as main active ingredients scopolamine and 

hyoscyamine which easily racemizes to atropine during storage, isolation and/or gastro-

intestinal passage. These substances are potent anticholinergic substances, blocking 

the M-subtypes of acetylcholine receptors.49,50 Due to the common abuse, these 

substances were banned in many countries. The structures of atropine and 

scopolamine are given in Fig. 1.9. 
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Fig. 1.9. Chemical structures of atropine and scopolamine. 

 

Such plants may also cause severe or even fatal poisonings for example after 

unintentional ingestion. An unintentional ingestion of plants is most common among 

young children who often eat plants which seem attractive to them. Atropa belladonna 

L. is attractive for children due to its colorful and even sweet berries.  
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the M-subtypes of acetylcholine receptors.49,50 Due to the common abuse, these 
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Fig. 1.9. Chemical structures of atropine and scopolamine. 

 

Such plants may also cause severe or even fatal poisonings for example after 

unintentional ingestion. An unintentional ingestion of plants is most common among 

young children who often eat plants which seem attractive to them. Atropa belladonna 

L. is attractive for children due to its colorful and even sweet berries.  
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Another plant, attractive for children is Laburnum anagyroides L. with fruits similar to 

beans or peas. The plant contains the alkaloid Cytisine as main active compound. 

Cytisine acts like nicotine by stimulation of N-cholinoceptors and a resulting 

overstimulation as a blocking agent on the CNS.49,51 The chemical structure of cytisine 

is given in Fig. 1.10. 
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Fig. 1.10. Chemical structure of cytisine 

 

An unintentional or accidental ingestion can also be caused by mix-up of toxic plants 

with medicinal or nutritional plants. In Germany people often mix-up Colchicum 

autumnale L. containing colchicine with Allium ursinum known as Ramsons. Such 

accidental ingestion due to a mix-up is described in many case reports.52-59 Colchicum 

autumnale is a very toxic plant due to its main alkaloid colchicine. Colchicine acts via 

disruption of microtubules.49,51,60 The chemical structure of colchicine is given in Fig. 

1.11. 
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Another plant sometimes mixed-up is Conium maculatum L. The seeds of Conium 

maculatum L. resembel those of anis or fennel. This plant is also mixed-up with the root 

of horseradish. Conium contains the alkaloid Coniine. The exact mechanism of action of 

coniine is not known.51 The chemical structure of coniine is given in Fig. 1.12. 
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Fig. 1.12. Chemical structure of coniine 

 

Sometimes, plants or their parts are also mixed up in alternative medicines. Aconitium 

napellus may be part of Chinese herbal medicines, and contains the alkaloid Aconitine. 

Intoxications are frequent after consumption of Aconitum, due to mix-up with other 

plants or wrong preparation. It has been suggested that aconitine acts as a potassium 

channel blocking agent. The complex chemical structure of aconitine is given in 

Fig. 1.13. 

 

O O
OH

O
O

OH

N

O

O

OH

O

O

Aconitine  
 

Fig. 1.13. Chemical structure of aconitine. 
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1.2 OVERVIEW OF PUBLISHED PROCEDURES AND AIMS FOR NEW STUDIES 

In the following, an overview is given on analytical methods published for the different 

studied herbal drugs. 

1.2.1 Laxatives 

Previously published procedures for screening for laxatives in urine samples used thin-

layer chromatography (TLC),61-64 high performance liquid chromatography (HPLC) with 

diode array65,66 or ultraviolet (UV)67 detection, or gas chromatography-mass 

spectrometry (GC-MS) after acetylation68 or trimethylsilylation.69 Part of these 

procedures61,63-66 allowed simultaneous screening for all the above-mentioned analytes, 

but required large volumes of urine,63,64 involved time consuming sample 

preparation,61,66 or lacked sensitivity,63,65 which limits their applicability in routine work. 

Therefore, there is still need for a comprehensive and sensitive screening procedure for 

simultaneous detection of an ingestion of diphenol- and anthraquinone-type laxatives in 

urine samples. The aim of the presented study was to adapt the previously published 

screening procedure for acidic drugs70-73 in urine for this purpose. This procedure 

employed GC-MS, the gold standard for toxicological screening analysis, after 

extractive methylation of urine samples. The target analytes for screening for laxatives 

were bisacodyl diphenol, the common metabolite of bisacodyl and sodium picosulfate, 

and phenolphthalein for the diphenol-type laxatives and rhein for the anthraquinone-

type laxatives.  

 

1.2.2 Nutmeg 

The main ingredients of the volative oil of nutmeg are the alkenebenzene derivatives 

elemicin, myristicin, and safrole.22 As already mentioned, Shulgin had hypothesized that 

the possible psychotropic effects of myristicin may be caused by metabolic addition of 

ammonia to the allyl side chain leading to the amphetamine derivative MMDA23 and that 

of elemicin by conversion to TMA.24 Years later, some authors reported the detection of 

MMDA in liver homogenisate after incubation with myristicin using TLC and 

fluorescence detection after dansylation.74,75 In case of safrole and myristicin, detection 

of different 3-amino-1-(3’,4’-methylenedioxyphenyl)-1-propanone derivatives in urine of 

rat and guinea pig was reported. TLC, mass spectrometry (MS), and nuclear magnetic 
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resonance spectroscopy (NMR) were used after sample treatment with sodium 

borohydride.76,77 However, in metabolism studies of the structurally related estragole (1-

(4’-methoxyphenyl)-prop-2-ene), the corresponding 4’-methoxyamphetamine (PMA) 

could not be detected by GC-MS.78  

In a case of suspected nutmeg abuse, urine samples submitted to our laboratory for 

toxicological analysis were analyzed using our systematic toxicological analysis (STA) 

procedure,79-84 but neither the above-mentioned amphetamine derivatives (detection 

limit 5-50 ng/ml85,86), nor the main nutmeg ingredients could be detected in urine, but a 

number of unknown mass spectra suspected to result from metabolites of the nutmeg 

ingredients. Urine screening for amphetamines by the Abbott TDx fluorescence 

polarization immunoassay amphetamine/methamphetamine II was negative (below the 

detection limit of 100 ng/ml). 

Therefore, the aim of the study here presented was to identify the metabolites of 

elemicin, myristicin, and safrole in rat urine and to confirm their presence in human 

urine of the nutmeg abuser using GC-MS in the electron ionization (EI) mode. In 

addition, the detectability of nutmeg ingredients and/or their metabolites within our STA 

procedure79-84 in urine by full-scan EI GC-MS will be described in order to confirm a 

nutmeg abuse or intoxication. 

 

1.2.3 Herbal Phenalkyamines 

In case of abuse or intoxication of herbal phenalkylamines, their detection and 

quantification in plasma is necessary in clinical and forensic toxicology.87 Furthermore, it 

can be important in the assessment of a probable abuse to differentiate an intake of 

Ephedra or  khat from an intake of corresponding cold or anorectic medications. Cold 

medications contain either ephedrine or its diastereomer pseudoephedrine and 

anorectics either norephedrine or its diastereomer norpseudoephedrine, while Ephedra 

species always contain all four diastereomers and additionally small amounts 

methylephedrine and methylpseudoephedrine. Hence, differentiation should be possible 

either by detection of methylephedrine or methylpseudoephedrine or by differentiation of 

the corresponding diastereomers ephedrine/pseudoephedrine or 

norephedrine/norpseudoephedrine. Differentiation of a khat or methcathinone abuse 

from intake of the mentioned medications should be possible by detection of cathinone 

or methcathinone. For the above-mentioned reasons, an analytical procedure to be 
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used in this context should allow selective detection of all analytes including 

differentiation of the diastereomers as well as their reliable quantification.  

So far, procedures for separation, detection and quantification of all the 

above-mentioned phenalkylamines in blood plasma have not been published in contrast 

to methods for quantification of single substances of this group or combinations of a few 

of them. For analysis of ephedrine and related compounds in biological fluids, various 

procedures were published using HPLC,26,88-90 liquid chromatography coupled with a 

single-stage mass spectrometer (LC-MS)91,92 or tandem mass spectrometer (LC-

MS/MS),31,93-95 or GC-MS.28,94 For the detection and quantification of mescaline, several 

procedures were published96-98 as well as for monitoring khat abuse.33,35,99  

The aim of the presented study was to develop a multi-analyte procedure for separation, 

detection and quantification of all the above-mentioned phenalkylamines in blood 

plasma using LC-MS/MS in the electrospray ionization (ESI) mode. The quantification 

procedure had to be validated and tested for applicability in clinical and forensic 

toxicology.  

 

1.2.4 Toxic Alkaloids 

Based on the statistics of the 2005 annual report of poison information center of 

northern Germany,1 besides cardiac glycosides, the following alkaloids were most 

frequently involved in plant poisonings: aconitine, atropine, colchicine, coniine, cytisine, 

nicotine, physostigmine, scopolamine.  

For diagnosis and prognosis of such poisonings, analytical methods for detection and 

quantification of the respective toxic alkaloids are required in clinical and forensic 

toxicology.87 As blood plasma concentrations correlate best with the 

pharmacologic/toxicologic effects, this sample matrix should be used for determination 

whenever possible. While many methods have been described for plasma analysis of 

cardiac glycosides,100-104 only few are available for the above-mentioned alkaloids. For 

plasma analysis of aconitine, procedures were published using GC-MS105,106 or LC-

MS/MS,107 for atropine and/or scopolamine using GC-MS105,106,108 or LC-MS(/MS),109-111 

for physostigmine (also used as antidote in treatment of atropine and/or scopolamine 

poisoning) using HPLC with fluorescence112,113 or electrochemical114,115 detection, for 

nicotine and its main metabolite cotinine using GC-MS116-118 or LC-MS(/MS),119-125 and 

finally for colchicine using GC-MS126 or LC-MS(/MS).57,127-129 However, none of these 

methods covered more than two of the above-mentioned alkaloids and methods for 
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plasma analysis of coniine and cytisine are not available in the literature at all. 

Therefore, the first aim of the presented study was to develop a multi-analyte procedure 

for detection and validated quantification of aconitine, atropine, colchicine, coniine, 

cytisine, nicotine and its metabolite cotinine, physostigmine, and scopolamine in blood 

plasma. Development of an LC-MS-based assay seemed most promising due to soft 

ionization, and high selectivity and sensitivity. Tandem MS apparatus are more sensitive 

and selective, but much more expensive than single stage MS. This raised the question 

whether tandem MS is actually necessary for detection and quantification of these 

alkaloids. Therefore, the second aim of the study was to compare a single stage vs. a 

tandem MS instrument with respect to selectivity, sensitivity, accuracy and precision 

after identical sample preparation.  

 

1.3 SUMMARY OF THE AIMS OF THE PRESENTED STUDIES 

In summary, it can be stated that for some of the presented single substances and 

substance classes a variety of analytical procedures has been developed over the 

years, but universal procedures covering more than a few toxic herbal drugs remain to 

be elaborated due to the different physiochemical properties of the active ingredients of 

herbal drugs. One systematic toxicological procedure will not cover all compounds of 

interest. Therefore, development or adaption of different procedures is necessary.  

The aim of the presented thesis was to develop methods for detection and validated 

quantification. The following drugs or drug clases were included in this method 

development: 

• Laxatives 

• Ingredients of Nutmeg 

• Herbal Phenalkylamines 

• Toxic alkaloids 
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2 EXPERIMENTAL PROCEDURES 

2.1 CHEMICALS AND REAGENTS 

2.1.1 Laxatives 

Bisacodyl diphenol was obtained from Sigma, Taufkirchen (Germany). Rhein, 

phenolphthalein, diethyl ether, ethyl acetate, methanol and methyl iodide were obtained 

from Merck, Darmstadt (Germany). Tetrahexylammonium hydrogen sulfate and toluene 

were obtained from Fluka, Neu-Ulm (Germany). All chemicals except methyl iodide (for 

synthesis) were of analytical grade. The solid-phase extraction (SPE) columns (Isolute 

Diol, 500 mg, 10 ml XL) were obtained from Separtis, Grenzach-Wylen (Germany). 

For the synthesis of dimethylated bisacodyl diphenol (bisacodyl diphenol-2ME) and 

dimethylated phenolphthalein (phenolphthalein-2ME), 1 ml of a methanolic 1 mg/ml 

solution of each analyte was transferred to a 10 ml glass tube, each. After addition of 

2 ml of freshly prepared diazomethane solution in diethyl ether, the glass tube was 

closed and the solution was incubated for 48 hours at room temperature in the dark. 

Diazomethane was synthesized according to the procedure of McKay et al. using 

1-methyl-3-nitro-1-nitroso-3-nitroguanidine, KOH and diethyl ether.130 After incubation, 

the solution was evaporated to dryness under a stream of nitrogen at room temperature. 

The residue was dissolved in 1 ml of methanol. The purity of the methyl derivatives was 

checked by GC-MS. 

Trimethylated rhein (rhein-3ME) was synthesized by extractive methylation. Two ml of 

an aqueous solution containing 50 mg/ml of rhein were extracted as described below 

(see 2.3.1). After evaporation, the residue was redissolved in water and extractive 

methylation was repeated. After the second evaporation, the residue was weighed and 

dissolved in methanol. The purity of the derivative was checked by GC-MS. 
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2.1.2 Ingredients of Nutmeg 

Elemicin was provided by cc chemical consulting (Berlin, Germany) for research 

purposes. Myristicin and safrole were obtained from Sigma (Taufkirchen, Germany) and 

all other chemicals and biochemicals (analytical grade) were obtained from Merck 

(Darmstadt, Germany).  

 

2.1.3 Herbal Phenalkylamines 

Ammonium formate (analytical grade), free bases of ephedrine, methylephedrine, 

methylpseudoephedrine, norephedrine, norpseudoephedrine, pseudoephedrine, and 

synephrine were obtained from Fluka (Neu-Ulm, Germany). Methanolic solutions of 

cathinone, methcathinone, mescaline and of the internal standards (IS) ephedrine-d3, 

norephdrine-d3 and mescaline-d9 were obtained from Promochem (Wesel, Germany). 

Acetonitrile and water (both HPLC grade) and all other chemicals (analytical grade) 

were obtained from E. Merck (Darmstadt, Germany). Varian Bond Elute Certify 

cartridges (130 mg; 3 ml) were obtained from Varian (Darmstadt, Germany). 

 

2.1.4 Toxic Alkaloids 

Aconitine, atropine, colchicine, and scopolamine were obtained from Fluka (Neu-Ulm, 

Germany), cytisine from ChromaDex (St. Ana, USA), and physostigmine from Koehler 

Chemie (Alsbach-Haehnlein, Germany). Coniine was a kind gift of the Institute of 

Pharmaceutical Biology (Saarbruecken, Germany). Methanolic solutions of cotinine and 

nicotine, as well as the IS cotinine-d3, benzoylecgonine-d3, and trimipramine-d3 were 

obtained from Promochem (Wesel, Germany). Acetonitrile and water (both HPLC 

grade) and all other chemicals (analytical grade) were obtained from E. Merck 

(Darmstadt, Germany). Varian Bond Elute Certify cartridges (130 mg; 3 ml) were 

obtained from Varian (Darmstadt, Germany). 
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2.2 BIOSAMPLES 

2.2.1 Urine Samples for the Study on Analysis of Laxatives 

Blank urine samples used for method development as well as for stability, recovery, and 

limit of detection (LOD) experiments were obtained from healthy drug-free volunteers. 

Duration of detectability experiments were carried out using urine samples from healthy 

volunteers who received one lowest therapeutic dose of senna extract containing 7 mg 

sennoside B or of one lowest therapeutic dose of sodium picosulfate (5 mg) after 

informed consent according the declaration of Helsinki. Urine samples from authentic 

cases had been submitted to our laboratory for toxicological analysis.  

 

2.2.2 Urine Samples for the Study on Analysis of Ingredients of Nutmeg 

The investigations were performed using urine of male rats (Wistar, Ch. River, 

Sulzfleck, Germany) for toxicological diagnostic reasons according to the corresponding 

German Animal Protecting law. The rats were administered a single 100 mg/kg body 

mass (BM) dose of elemicin, myristicin, and safrole for metabolism studies or a single 

500 mg/kg BM dose of grounded nutmeg from two different batches for the STA study in 

aqueous suspension (final volume 1 ml each) by gastric intubation (n = 2 for each 

substance and dose). Urine was collected separately from the faeces over a 24 h 

period. All samples were directly analyzed. Blank rat urine samples were collected 

before drug administration to check whether they were free of interfering compounds.  

Human urine samples were submitted to our laboratory for toxicological analysis. They 

were collected from an inpatient of a psychiatric hospital who stated after being 

informed on the result of the urine screening that he had taken powder of about five 

nutmegs. The only registered symptom was vomiting.  

 

2.2.3 Plasma Samples for the Study on Analysis of Herbal Phenalkylamines 

Pooled human blank plasma samples were used for development and validation of the 

procedure and were obtained from a local blood bank. Blood samples for selectivity 

experiments were from therapeutic drug monitoring (TDM) cases or intoxication cases 

and had been submitted to our laboratory by various hospitals.  
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Applicability experiments were carried out using plasma samples from healthy 

volunteers taken one hour after application of 30 mg of pseudoephedrine (contained in 

Aspirin complex®), 6.2 mg of ephedrine (contained in Wick MediNait®), or 10 g of an 

aqueous extract of Herba Ephedra after informed consent according to the declaration 

of Helsinki. Herba Ephedra was obtained from a local pharmacy and decocted for 5 min 

with boiled water. The dose was selected according to recommendations of using Herba 

Ephedra as stimulant.25 

 

2.2.4 Plasma Samples for the Study on Analysis of Toxic Alkaloids 

Human blank plasma samples and blood samples from drug free volunteers were used 

for development of selectivity experiments and validation of the procedure. They were 

obtained from a local blood bank. Applicability experiments were carried out using 

plasma samples from poisoning cases sent to our laboratory for toxicological analysis.  
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2.3 SAMPLE PREPARATIONS 

2.3.1 Sample Preparation for Analysis of Laxatives 

A 2-ml portion of urine was adjusted to pH 5.2 with acetic acid (1 mol/L) and incubated 

in a water bath at 52°C for 90 min with 100 µl of a mixture (100 000 Fishman units 

per ml) of glucuronidase (EC no. 3.2.1.31) and arylsulfatase (EC no. 3.1.6.1) from Helix 

pomatia then mixed in a centrifugation tube with 2 ml of the phase-transfer reagent 

consisting of 0.02 M tetrahexylammonium (THA) hydrogensulfate in 1 M sodium 

phosphate solution (pH 12). After addition of 6 ml of 1 M methyl iodide in toluene, the 

closed tube was shaken in a heating block at 50°C for 30 min. After phase separation 

by centrifugation at 1500 × g for 3 min, the organic phase containing the analytes and 

THA salts was transferred to the SPE column conditioned as follows: 5 ml of methanol 

at a flow rate of 10 ml/min, drying the column under vacuum for 15 seconds, 5 ml of 

toluene at a flow rate of 10 ml/min. The organic phase was rinsed through the sorbent 

bed at a flow rate of 3 ml/min to remove the THA salts from the organic phase and the 

eluate was collected. The part of the analytes also adsorbed on the sorbent was 

selectively eluted with 5 ml of diethyl ether/ethyl acetate (95: 5, v/v) at a flow rate of 

3 ml/min and the eluate was collected. The combined eluates were carefully evaporated 

to dryness at 60°C (reduced pressure, 30-50 kPa). The residue was dissolved in 50 µl 

of ethyl acetate and a 1 µl-aliquot of this extract was injected into the GC-MS system. 

 

2.3.2 Sample Preparation for Analysis of Ingredients of Nutmeg  

2.3.2.1 Sample Preparation for Identification of Metabolites by GC-MS 

A 5-ml portion of rat or human urine was adjusted to pH 5.2 with acetic acid (1 mol/l) 

and incubated at 37°C for 12 h with 100 µl of a mixture (100 000 Fishman units per ml) 

of glucuronidase (EC no. 3.2.1.31) and arylsulfatase (EC no. 3.1.6.1) from Helix 

pomatia, then adjusted to pH 8-9 and extracted with 5 ml of a dichloromethane-

isopropanol-ethyl acetate mixture (1:1:3; v/v/v). After phase separation by 

centrifugation, the organic layer was transferred into glass flasks and carefully 

evaporated to dryness at 75°C under vacuum. The residue was derivatized by 

acetylation or left underivatized and dissolved in 100 µl of methanol. Acetylation was 
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conducted with 100 µl of an acetic anhydride-pyridine mixture (3:2; v/v) for 5 min under 

microwave irradiation at about 440 W. After careful evaporation, the residue was 

dissolved in 100 µl of methanol and 2 µl of this solution were injected into the GC-MS. 

The same procedure with the exception of enzymatic hydrolysis was used to study 

whether metabolites of nutmeg ingredients were excreted as glucuronide and/or sulfate 

conjugates. 

A second urine sample was worked up as described above, but pH was adjusted to 4-5 

and the corresponding extract was methylated and subsequently acetylated. After 

reconstitution of the extraction residue in 100 µl of methanol, methylation was 

conducted with 200 µl of a solution of diazomethane in diethyl ether, synthesized 

according to the procedure of McKay et al.130 The reaction vials were sealed and left at 

room temperature for 15 min. Thereafter, the mixture was once again carefully 

evaporated to dryness under a stream of nitrogen, the residue acetylated as described 

above, and finally the evaporated residue redissolved in 100 µl of methanol and 2 µl of 

this sample was injected into the GC-MS.84  

 

2.3.2.2 Sample Preparation for Systematic Toxicological Analysis by GC-MS 

The urine samples (5 ml) were divided into two aliquots. One aliquot was refluxed with 

1 ml of 37% hydrochloric acid for 15 min. Following hydrolysis, the sample was mixed 

with 2 ml of 2.3 mol/l aqueous ammonium sulfate and 1.5 ml of 10 mol/l aqueous 

sodium hydroxide to obtain a pH value of 8-9. Before extraction, the other aliquot of 

unhydrolyzed urine was added and this solution was extracted with 5 ml of a 

dichloromethane-isopropanol-ethyl acetate mixture (1:1:3; v/v/v). After phase separation 

by centrifugation, the organic layer was transferred into glass flasks and carefully 

evaporated to dryness at 75°C under vacuum. The residue was derivatized by 

acetylation with 100 µl of an acetic anhydride-pyridine mixture (3:2; v/v) for 5 min under 

microwave irradiation at about 440 W. After careful evaporation of the derivatization 

mixture, the residue was dissolved in 100 µl of methanol and 2 µl of this sample were 
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2.3.3 Sample Preparartion for Analysis of Herbal Phenalkylamines 

Plasma samples (1 ml) were diluted with 2 ml of 5 mM aqueous ammonium formate 

solution adjusted to pH 3 with formic acid. After addition of 0.1 ml of a methanolic 

solution of the IS containing 1000 ng/ml of ephedrine-d3, norephedrine-d3, and 

mescaline-d9 each, the samples were briefly mixed (15 s) on a rotary shaker, 

centrifuged for 3 min at 1000 g and loaded on mixed-mode SPE cartridges previously 

conditioned with 1 ml of methanol and 1 ml of purified water. After extraction, the 

cartridges were washed with 1 ml of purified water, 1 ml of 0.01 M aqueous hydrochloric 

acid and 2 ml of methanol. Reduced pressure was applied until the cartridges were dry, 

and the analytes were eluted with 1 ml of methanol–aqueous ammonia (98:2, v/v) into 

1.5 ml polypropylene reaction vials. The eluates were evaporated to dryness under a 

stream of nitrogen at 56 °C. Then, 0.1 ml of 5 mM aqueous ammonium formate solution 

(pH 3) was added and the vials were shaken on a rotary shaker for 3 min. After 

centrifugation for 2 min at 10 000 g, the solution was transferred to autosampler vials 

and 5 µl were injected into the LC-MS/MS system. 

 

2.3.4 Sample Preparartion for Analysis of Toxic Alkaloids 

Plasma samples (1 ml) were diluted with 2 ml of 5 mM aqueous ammonium formate 

solution adjusted to pH 3 with formic acid. After addition of 0.1 ml of a methanolic 

solution of the IS containing 1000 ng/ml of cotinine-d3, 100 ng/ml of benzoylecgonine-

d3, and 10000 ng/ml trimipramine-d3, the samples were mixed for 15 s on a rotary 

shaker, centrifuged for 3 min at 1000 g and loaded on mixed-mode SPE cartridges 

previously conditioned with 1 ml of methanol and 1 ml of purified water. After extraction, 

the cartridges were washed with 1 ml of purified water, 1 ml of 0.01 M aqueous 

hydrochloric acid and 2 ml of methanol. Reduced pressure was applied until the 

cartridges were dry, and the analytes were eluted with 1 ml of methanol–aqueous 

ammonia (98:2, v/v) into 1.5 ml polypropylene reaction vials. The eluates were 

evaporated to dryness under a stream of nitrogen at 56 °C. Then, 0.1 ml of 5 mM 

aqueous ammonium formate solution (pH 3) was added and the vials were shaken on a 

rotary shaker for 3 min. After centrifugation for 2 min at 10.000 g, the solution was 

transferred to autosampler vials and 10 µl each were injected into the LC-MS and LC-

MS/MS systems. 
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2.4 APPARATUS AND CONDITIONS 

2.4.1 Screening and Identification of Laxatives 

2.4.1.1 Apparatus 

The samples were incubated in a heating block fixed to a multifix shaker S 300 

(Schwinherr, Schwäbisch Gmünd, Germany). A Vac-Master V-10 (ICT, Bad Homburg, 

Germany) was used for manual SPE. The samples were analyzed using a Hewlett 

Packard (Agilent, Waldbronn, Germany) HP 6890 Series GC system combined with an 

HP 5972 Series mass selective detector, an HP 6890 Series injector and an HP Chem 

Station G1701AA version A.03.00. 

 

2.4.1.2 GC Conditions 

The GC conditions were as follows: split-less injection mode; column, HP-1 capillary (12 

m x 0.2 mm I.D.), cross-linked methyl silicone, 330 nm film thickness; injection port 

temperature, 280°C; carrier gas, helium; flow-rate 1 ml/min; column temperature, 

programmed from 100-310°C at 30°/min, initial time 3 min, final time 8 min. 

 

2.4.1.3 MS Conditions for Screening Procedure 

The MS conditions for the screening procedure were as follows: full scan mode, mass to 

charge ratio (m/z) 50-550 u; EI mode: ionization energy, 70 eV; ion source temperature, 

280°C. 

 

2.4.1.4 MS Conditions for Recovery Experiments 

Mass fragmentography in selected-ion monitoring (SIM) mode was used with the 

following program: solvent delay, 3 min; time window A, 3.00-9.00 min, m/z 305 (target 

ion, t), 290 for bisacodyl diphenol-2ME; time window B, 9.01-18.00 min m/z 311 (t), 326 

for rhein-3ME and m/z 271 (t), 346 for phenolphthalein-2ME. 
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2.4.1.5 GC-MS Screening Procedure 

The laxatives and/or their metabolites were screened for by mass chromatography 

extracting characteristic fragment ions from the total ion current. The following ions were 

used for this purpose: m/z 305, 290, 335, 320, 365, 350, 311, 326, 271 and 346. For 

matters of convenience, this operation was carried out by a user-defined macro. 

Positive peaks were identified by visual or computerized comparison of the peaks 

underlying mass spectra with reference spectra.  

 

 

2.4.2 Screening and Identification of Ingredients of Nutmeg 

2.4.2.1 Apparatus 

The extracts were analyzed using a Hewlett Packard (Agilent, Waldbronn, Germany) 

5890 Series II gas chromatograph combined with a HP 5972A MSD mass spectrometer 

and a HP MS ChemStation (DOS series) with HP G1034C software version C03.00. 

Analyte separation was achieved on a fused silica capillary column (HP-1MS, 12 m x 

0.2 mm i.d., film thickness 0.33 µm). The GC conditions were as follows: split-less 

injection mode; column, injection port temperature, 280°C; carrier gas, helium; flow-rate 

1 ml/min; column temperature, programmed from 100-310°C at 30°/min, initial time 

3 min, final time 8 min. The MS conditions were as follows: full-scan mode, m/z 50-

550 u; EI mode, ionization energy, 70 eV; ion source temperature, 220°C; capillary 

direct interface, heated at 280°C.  

 

2.4.2.2 GC-MS Procedure for Identification of Metabolites 

The urinary metabolites of elemicin, myristicin, and safrole were separated by GC and 

identified by EI MS after enzymatic hydrolysis, extraction, acetylation, 

trifluoroacetylation, methylation plus acetylation or without derivatization. The postulated 

structures of the metabolites were deduced from the fragments detected in the EI mode 

which were interpreted in correlation to those of the parent compound according to the 

rules described by e.g. McLafferty and Turecek 131 and Smith and Busch 132. 
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2.4.2.3 GC-MS Procedure for Systematic Toxicological Analysis 

The extracted and derivatized metabolites of elemicin, myristicin, and safrole were 

separated by GC. They were screened for and identified as follows: mass 

chromatography with the selected ions m/z 150, 164, 165, 180, 194, 252, and 266 was 

used for screening. These ions were selected from the mass spectra recorded during 

this study. Generation of the mass chromatograms could be started by clicking the 

corresponding pull down menu which executes the user defined macros.79,133 The 

identity of the peaks in the mass chromatograms was confirmed by computerized 

comparison134 of the mass spectra underlying the peaks (after background subtraction) 

with reference spectra recorded during this study.  
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2.4.3 Screening and Identification of Herbal Phenalkylamines 

2.4.3.1 Apparatus 

The studied analytes were separated using a Shimadzu integrated HPLC system which 

consisted of a Shimadzu CBM 20 A controller, two Shimadzu LC 20 AD pumps 

including a degasser, a Shimadzu SIL 20 AC autosampler, and a Shimadzu CTO 20 AC 

column oven. The analytes were detected using an Applied Biosystems 3200 Q TRAP 

Linear Ion Trap Quadrupole Mass Spectrometer with Analyst Software (Version 1.4.1) 

equipped with a Turbo V™ Ion Source operated in the ESI mode. 

 

2.4.3.2  LC Conditions 

Gradient elution was performed on an Agilent Zorbax® strong cation exchange (SCX) 

column (5 µm, 150 x 2.1 mm) as stationary phase and a Wicom SCX guard column 

(Heppenheim, Germany). The mobile phase consisted of 5 mM aqueous ammonium 

formate adjusted to pH 3 with formic acid (eluent A) and acetonitrile (eluent B). Before 

use, the mobile phases were degassed for 30 min in an ultrasonic bath. During use, the 

mobile phase was degassed by the integrated Shimadzu Prominence degasser. Before 

starting analysis, the HPLC system was equilibrated for 10 min with a mixture of 95 % of 

eluent A and 5 % of eluent B. The flow rate and gradient were programmed as follows: 

flow rate: 1.5 ml/min; 0.00-7.00 min: 5% eluent B, 7.01-10.00 min: gradient increase to 

30% eluent B, 10.01-11.00 min: 30% eluent B, 11.01-17.00 min: 5% eluent B for re-

equilibration of the HPLC column. The column oven was set at 55°C, the autosampler 

was cooled at 15°C and operated without rinsing. 

 

2.4.3.3 MS/MS Conditions 

For detection and quantification, the following ESI inlet conditions were applied: gas 1, 

nitrogen (45 psi; 310.3 kPa); gas 2, nitrogen (90 psi; 620.5 kPa); ion spray voltage, 

5500 V; ion source temperature, 630°C; curtain gas, nitrogen (30 psi; 206.8 kPa).  

The mass spectrometer was operated in multiple-reaction monitoring (MRM) mode with 

the following settings: collision gas was set at medium, the collision cell exit potential 

was 4.00 V, the dwell time was set at 50 ms. All other settings were analyte specific and 

were determined using Analyst® software in Quantitative Optimization mode. The 
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settings are summarized in Table 2.1. The method was checked for cross-talk by 

injection of the single analytes. Q1 and Q3 were operated in Unit resolution. 

 

Table 2.1. Analytes, MRM transitions and parameter settings including declustering potential (DP), 
entrance potential (ENP), collision cell entrance potential (CEP), and collision energy (CE). Target 
transitions are marked with (t), qualifier transitions marked with (q). 
 
Analyte Q 1 Mass, u Q 3 Mass, u DP, V ENP, V CEP, V CE, eV

107.10 (t) 36.00 10.00 14.43 35.00

91.20 (q) 36.00 10.00 14.43 25.00

Cathinone 150.06

77.00 (q) 36.00 10.00 14.43 49.00

117.10 (t) 10.00 5.00 14.88 27.00

91.00 (q) 10.00 5.00 14.88 43.00

Ephedrine 166.07

133.10 (q) 10.00 5.00 14.88 27.00

130.90 (t) 10.00 4.00 14.82 27.00

130.10 (q) 10.00 4.00 14.82 43.00

Methcathinone 164.08

77.00 (q) 10.00 4.00 14.82 59.00

117.10 (t) 10.00 4.50 15.27 27.00

147.10 (q) 10.00 4.50 15.27 27.00

Methylephedrine 180.12

91.10 (q) 10.00 4.50 15.27 41.00

195.10 (t) 10.00 6.00 16.17 23.00

180.20 (q) 10.00 6.00 16.17 23.00

Mescaline 212.09

77.10 (q) 10.00 6.00 16.17 59.00

147.20 (t) 10.00 3.00 15.27 27.00

91.10 (q) 10.00 3.00 15.27 47.00

Methylpseudoephedrine 180.10

146.00 (q) 10.00 3.00 15.27 33.00

117.00 (t) 10.00 4.00 14.49 23.00

115.00 (q) 10.00 4.00 14.49 29.00

Norephedrine 152.08

91.00 (q) 10.00 4.00 14.49 39.00

117.10 (t) 10.00 4.50 14.49 23.00

115.00 (q) 10.00 4.50 14.49 23.00

Norpseudoephedrine 

 

Norpseudoephedrine 

152.08

152.08 91.00 (q) 10.00 4.50 14.49 37.00
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91.00 (t) 10.00 4.00 14.88 45.00

133.00 (q) 10.00 4.00 14.88 27.00

Pseudoephedrine 166.10

115.00 (q) 10.00 4.00 14.88 35.00

117.00 (t) 10.00 3.00 14.43 29.00

105.10 (q) 10.00 3.00 14.43 25.00

Synephrine 150.08

77.10 (q) 10.00 3.00 14.43 47.00

117.10 (t) 21.00 10.50 14.96 27.00

115.10 (q) 21.00 10.50 14.96 37.00

Ephedrine-d3 169.18

91.10 (q) 21.00 10.50 14.96 45.00

204.20 (t) 21.00 9.00 16.42 15.00

186.20 (q) 21.00 9.00 16.42 25.00

Mescaline-d9 221.26

170.20 (q) 21.00 9.00 16.42 31.00

119.10 (t) 16.00 9.00 14.57 25.00

120.10 (q) 16.00 9.00 14.57 25.00

Norephedrine-d3 155.19

117.10 (q) 16.00 9.00 14.57 33.00

 

2.4.4 Screening and Identification of Toxic Alkaloids 

2.4.4.1 Apparatus 

The LC-MS system was as follows: Agilent Technologies (AT, Waldbronn, Germany) 

AT 1100 Series HPLC system which consisted of a degasser, a binary pump and an 

autosampler. As detector an AT 1100 MSD Mass Spectrometer equipped with an 

atmospheric pressure chemical ionization (APCI) source was used. In the following, for 

this system the term single stage MS is used.  

The LC-MS/MS system was as follows: Shimadzu integrated HPLC system which 

consisted of a Shimadzu CBM 20 A controller, two Shimadzu LC 20 AD pumps 

including a degasser, a Shimadzu SIL 20 AC autosampler, and a Shimadzu CTO 20 AC 

column oven. As detector an Applied Biosystems 3200 Q TRAP Linear Ion Trap 

Quadrupole Mass Spectrometer with Analyst Software (Version 1.4.1) equipped with a 

Turbo V™ Ion Source operated in the ESI mode was used. In the following, for this 

system the term tandem MS is used. 
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133.00 (q) 10.00 4.00 14.88 27.00
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2.4.4 Screening and Identification of Toxic Alkaloids 

2.4.4.1 Apparatus 
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AT 1100 Series HPLC system which consisted of a degasser, a binary pump and an 
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consisted of a Shimadzu CBM 20 A controller, two Shimadzu LC 20 AD pumps 

including a degasser, a Shimadzu SIL 20 AC autosampler, and a Shimadzu CTO 20 AC 

column oven. As detector an Applied Biosystems 3200 Q TRAP Linear Ion Trap 

Quadrupole Mass Spectrometer with Analyst Software (Version 1.4.1) equipped with a 

Turbo V™ Ion Source operated in the ESI mode was used. In the following, for this 

system the term tandem MS is used. 
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2.4.4.2 LC Conditions  

The following LC conditions were identical in both systems. Gradient elution was 

performed on a Merck LiChroCART column (125 x 2 mm internal diameter) with 

Superspher60 RP Select B as stationary phase and a LiChroCART 10-2 Superspher 

60 RP Select B guard column. The mobile phase consisted of 50 mM aqueous 

ammonium formate adjusted to pH 3.5 with formic acid (eluent A) and acetonitrile 

(eluent B). Before use, the mobile phases were degassed for 30 min in an ultrasonic 

bath. During use, the mobile phase was degassed by the corresponding integrated 

degasser. Before starting analysis, the HPLC systems were equilibrated for 10 min with 

a mixture of 90 % of eluent A and 10 % of eluent B. The gradient and the flow rate were 

programmed as follows: 0.00-2.00 min 10% B (flow: 0.4 ml/min), 2.01-5.00 min gradient 

increase to 80% B (flow: 0.6 ml/min), 5.01-7.00 min 80% B (flow: 0.60 ml/min) 7.01-

10.00 min 10% B (flow: 0.4 ml/min) for re-equilibration of the HPLC column. The column 

oven was set at 25°C.  

 

2.4.4.3 Single stage and Tandem MS Conditions  

For single stage MS, the following APCI inlet conditions were selected: drying gas, 

nitrogen (12 l/min, 350°C) and nebulizer gas, nitrogen (25 psi; 172.5 kPa); capillary 

voltage, 4000 V; vaporizer temperature, 400°C; corona current, 5.0 µA. The MS was 

operated in positive scan mode with a scan range from m/z 50 to 800 on MSD 1 for 

screening and identification, and in SIM mode on MSD 2 for quantification. For 

quantification, the SIM mode at 100 and 200 V fragmentor voltage with different gain 

values was used. The settings are given in Table 2.2. Tuning of the MS was performed 

with the help of the autotune feature of the LC-MS ChemStation software (rev. A.08.03) 

using the APCI acetonitrile solution tuning mix supplied by the manufacturer. 
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Table 2.2. Analytes, monitored ions and parameter settings used in LC-APCI-MS 
 

Mass 

Range, 

m/z 

Fragmentor  

Voltage, V 

Gain  MSD 1 

(Full Scan) 

50-800 100 50  

Analyte Ion, m/z Fragmentor  

Voltage, V 

Gain Dwell time, 

ms 

Aconitine 646 100 5.0 28 

Atropine 290 100 5.0 28 

Colchicine 400 100 5.0 28 

Coniine 128 100 1.0 39 

Cotinine 177 100 1.0 39 

Cytisine 191 100 1.0 39 

Nicotine 163 100 1.0 39 

Physostigmine 276 100 5.0 28 

Scopolamine 304 100 5.0 28 

Cotine-d3 180 100 1.0 39 

Benzoylecgonine-d3 293 200 5.0 28 

MSD 2  

(SIM) 

Trimipramine-d3 298 200 5.0 28 

 

For tandem MS, the following ESI inlet conditions were selected: gas 1, nitrogen (45 psi; 

310.3 kPa); gas 2, nitrogen (90 psi; 620.5 kPa); ion spray voltage, 5500 V; ion source 

temperature, 630°C; curtain gas, nitrogen (30 psi; 206.8 kPa). The MS was operated in 

MRM mode with the following settings: collision gas was set at medium, the dwell time 

was set at 50 ms. All other settings were analyte specific and were determined using 

Analyst® software in Quantitative Optimization mode. The transitions used are given in 

Table 2.3. The method was checked for cross-talk by injection of the single analytes. Q1 

and Q3 were operated in Unit resolution. 
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Table 2.3. Analytes, MRM transitions and parameter settings including declustering potential (DP), 
entrance potential (ENP), collision cell entrance potential (CEP), collision energy (CE), and collision cell 
exit potential (CXP) used in LC-ESI-MS/MS. Target transitions are marked with (t), qualifier transitions 
marked with (q). 
 

Analyte Q 1 Mass, u Q 3 Mass, u DP, V ENP, V CEP, V CE, eV CXP, V

105.1 (t) 66 9.5 26 93 4 

586.4 (q) 66 9.5 26 45 4 

Aconitine 646.52 

368.2 (q) 66 9.5 26 55 6 

124.4 (t) 51 5.5 14 33 4 

93.1 (q) 51 5.5 14 43 4 

Atropine 290.31 

91.1 (q) 51 5.5 14 55 4 

152.2 (t) 51 8.5 24 129 4 

358.2 (q) 51 8.5 24 29 4 

Colchicine 400.31 

165.2 (q) 51 8.5 24 103 4 

69.1 (t) 31 9.0 10 23 2 

55.1 (q) 31 9.0 10 31 4 

Coniine 128.19 

83.1 (q) 31 9.0 10 21 4 

80.2 (t) 41 5.0 12 35 4 

98.1 (q) 41 5.0 12 33 4 

Cotinine 177.19 

53.0 (q) 41 5.0 12 67 4 

148.2 (t) 51 5.0 14 27 4 

80.1 (q) 51 5.0 14 51 2 

Cytisine 191.21 

91.3 (q) 51 5.0 14 55 2 

132.1 (t) 31 3.5 12 21 4 

117.2 (q) 31 3.5 12 35 4 

Nicotine 163.19 

130.2 (q) 31 3.5 12 25 4 

162.3 (t) 26 4.0 28 29 4 

219.3 (q) 26 4.0 28 17 4 

Physostigmine 276.27 

147.2 (q) 26 4.0 28 47 4 

138.3 (t) 46 5.0 16 27 4 Scopolamine 

 

304.27 

 103.2 (q) 46 5.0 16 53 4 
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Scopolamine 304.27 156.3 (q) 46 5.0 16 23 4 

171.2 (t) 46 4.5 18 29 4 

105.0 (q) 46 4.5 18 47 4 

Benzoylecgonine-d3 293.29 

76.8 (q) 46 4.5 18 65 4 

80.0 (t) 51 6.5 12 39 4 

101.0 (q) 51 6.5 12 35 4 

Cotinine-d3 180.19 

53.0 (q) 51 6.5 12 31 4 

61.1 (t) 41 5.5 19 53 6 

103.1 (q) 41 5.5 19 27 4 

Trimipramine-d3 298.28 

 

193.1 (q) 41 5.5 19 59 4 
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2.5 VALIDATION OF THE DESCRIBED METHODS 

2.5.1 Laxatives 

 
2.5.1.1 Limit of Detection Experiments 

Urine samples (2 ml) were spiked with decreasing concentrations of analytes and 

analyzed as described above. The lowest concentrations at which the analytes could 

still be successfully identified by library search and for which S/N ≥ 3 were obtained for 

at least three characteristic fragment ions per analyte were the estimated LODs of the 
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2.5.2 Herbal Phenalkylamines 

 
2.5.2.1 Preparation of Stock Solutions, Calibration Standards, and Control Samples 

Stock solutions of each analyte were prepared at a concentration of 1 mg/ml by 

separate weighings using eluent A as solvent. Working solutions of each analyte were 

prepared by independent dilution from each stock solution at the following 

concentrations: 0.001, 0.01, and 0.1 mg/ml. The calibration standards were prepared 

using pooled blank plasma and spiking solutions prepared from the working solutions as 

mixtures of the ten analytes in eluent A at concentrations ten times higher than the 

corresponding calibration standards. The quality control samples (concentrations as 

given in chapter 2.5.2.4) were prepared using pooled blank plasma and independently 

prepared mixtures of the ten analytes at concentrations hundred times higher than the 

concentrations of the corresponding quality control samples. All solutions were stored at 

4°C. 

 

2.5.2.2 Selectivity 

Ten blank plasma samples from different sources were analyzed and checked for peaks 

interfering with the detection of the analytes or the IS. In addition, to check for possible 

interferences from other common drugs and/or their metabolites, plasma samples 

routinely submitted to our laboratory for TDM or toxicological analysis were analyzed by 

the described procedure. The plasma samples did not contain any of the analytes as 

checked by comprehensive screening of the corresponding urine samples. 

 

2.5.2.3 Linearity 

Aliquots of blank plasma (1 ml) were spiked with 0.1 ml of the corresponding spiking 

solutions and 0.1 ml of IS solution to obtain calibration standards with concentrations of 

10, 20, 100, 250, 500, 750, 1000 ng/ml. Replicates (n = 6) at each concentration level 

were analyzed as described above. The regression line was calculated using a 

weighted [1/(concentration)2] least-squares regression model. A weighted second-order 

model with the same weighting factors was also calculated. Daily calibration curves 
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using the same concentrations (single measurements per level) were prepared with 

each batch of validation and authentic samples. 

 

2.5.2.4 Accuracy and Precision 

Qualitiy control (QC) samples were prepared at five concentration levels, namely near 

the lower limit of quantification (LLOQ) at 10 ng/ml (LQC), 20 ng/ml (LOW), 500 ng/ml 

(MED), 800 ng/ml (HIGH), and above the calibration range at 4000 ng/ml (ACR). They 

were analyzed according to the procedure described above in duplicate on each of eight 

days. The concentrations of the analytes in the quality control samples were calculated 

via the daily calibration curves. Accuracy was calculated for each analyte in terms of 

bias as the percent deviation of the mean of all calculated concentration values at a 

specific level from the respective nominal concentration. Precision data (given as 

relative standard deviations) for within-day (repeatability), and time-different 

intermediate precision (combination of within and between day effects) of the method 

were calculated according to references135,136 using one-way analysis of variance 

(ANOVA) with the grouping-variable "day". The acceptance intervals of within-day 

(repeatability) and intermediate precision were ≤ 15% RSD (≤ 20% RSD at LLOQ) and 

for bias ± 15% (± 20% at the LLOQ) of the nominal values.137 

 

2.5.2.5 Processed Sample Stability 

For estimation of stability of processed samples under the conditions of LC-MS/MS 

analysis, LOW and HIGH quality control samples (n = 10 each) were extracted as 

described above. The resulting extracts at each concentration level were pooled. 

Aliquots of these pooled extracts at each concentration level were transferred to 

autosampler vials and injected under the conditions of a regular analytical run at time 

intervals of 2 h. Stability of the extracted analytes was tested by regression analysis 

plotting absolute peak areas of each analyte at each concentration versus injection 

time. Instability of processed samples would be indicated by a negative slope 

significantly different from zero (p ≤ 0.05).138 

 

 

 

 

2.5 Validation of the Described Methods 35 
 
 

using the same concentrations (single measurements per level) were prepared with 

each batch of validation and authentic samples. 

 

2.5.2.4 Accuracy and Precision 

Qualitiy control (QC) samples were prepared at five concentration levels, namely near 

the lower limit of quantification (LLOQ) at 10 ng/ml (LQC), 20 ng/ml (LOW), 500 ng/ml 

(MED), 800 ng/ml (HIGH), and above the calibration range at 4000 ng/ml (ACR). They 

were analyzed according to the procedure described above in duplicate on each of eight 

days. The concentrations of the analytes in the quality control samples were calculated 

via the daily calibration curves. Accuracy was calculated for each analyte in terms of 

bias as the percent deviation of the mean of all calculated concentration values at a 

specific level from the respective nominal concentration. Precision data (given as 

relative standard deviations) for within-day (repeatability), and time-different 

intermediate precision (combination of within and between day effects) of the method 

were calculated according to references135,136 using one-way analysis of variance 

(ANOVA) with the grouping-variable "day". The acceptance intervals of within-day 

(repeatability) and intermediate precision were ≤ 15% RSD (≤ 20% RSD at LLOQ) and 

for bias ± 15% (± 20% at the LLOQ) of the nominal values.137 

 

2.5.2.5 Processed Sample Stability 

For estimation of stability of processed samples under the conditions of LC-MS/MS 

analysis, LOW and HIGH quality control samples (n = 10 each) were extracted as 

described above. The resulting extracts at each concentration level were pooled. 

Aliquots of these pooled extracts at each concentration level were transferred to 

autosampler vials and injected under the conditions of a regular analytical run at time 

intervals of 2 h. Stability of the extracted analytes was tested by regression analysis 

plotting absolute peak areas of each analyte at each concentration versus injection 

time. Instability of processed samples would be indicated by a negative slope 

significantly different from zero (p ≤ 0.05).138 

 

 

 

 

2.5 Validation of the Described Methods 35 
 
 

using the same concentrations (single measurements per level) were prepared with 

each batch of validation and authentic samples. 

 

2.5.2.4 Accuracy and Precision 

Qualitiy control (QC) samples were prepared at five concentration levels, namely near 

the lower limit of quantification (LLOQ) at 10 ng/ml (LQC), 20 ng/ml (LOW), 500 ng/ml 

(MED), 800 ng/ml (HIGH), and above the calibration range at 4000 ng/ml (ACR). They 

were analyzed according to the procedure described above in duplicate on each of eight 

days. The concentrations of the analytes in the quality control samples were calculated 

via the daily calibration curves. Accuracy was calculated for each analyte in terms of 

bias as the percent deviation of the mean of all calculated concentration values at a 

specific level from the respective nominal concentration. Precision data (given as 

relative standard deviations) for within-day (repeatability), and time-different 

intermediate precision (combination of within and between day effects) of the method 

were calculated according to references135,136 using one-way analysis of variance 

(ANOVA) with the grouping-variable "day". The acceptance intervals of within-day 

(repeatability) and intermediate precision were ≤ 15% RSD (≤ 20% RSD at LLOQ) and 

for bias ± 15% (± 20% at the LLOQ) of the nominal values.137 

 

2.5.2.5 Processed Sample Stability 

For estimation of stability of processed samples under the conditions of LC-MS/MS 

analysis, LOW and HIGH quality control samples (n = 10 each) were extracted as 

described above. The resulting extracts at each concentration level were pooled. 

Aliquots of these pooled extracts at each concentration level were transferred to 

autosampler vials and injected under the conditions of a regular analytical run at time 

intervals of 2 h. Stability of the extracted analytes was tested by regression analysis 

plotting absolute peak areas of each analyte at each concentration versus injection 

time. Instability of processed samples would be indicated by a negative slope 

significantly different from zero (p ≤ 0.05).138 

 

 

 

 

2.5 Validation of the Described Methods 35 
 
 

using the same concentrations (single measurements per level) were prepared with 

each batch of validation and authentic samples. 

 

2.5.2.4 Accuracy and Precision 

Qualitiy control (QC) samples were prepared at five concentration levels, namely near 

the lower limit of quantification (LLOQ) at 10 ng/ml (LQC), 20 ng/ml (LOW), 500 ng/ml 

(MED), 800 ng/ml (HIGH), and above the calibration range at 4000 ng/ml (ACR). They 

were analyzed according to the procedure described above in duplicate on each of eight 

days. The concentrations of the analytes in the quality control samples were calculated 

via the daily calibration curves. Accuracy was calculated for each analyte in terms of 

bias as the percent deviation of the mean of all calculated concentration values at a 

specific level from the respective nominal concentration. Precision data (given as 

relative standard deviations) for within-day (repeatability), and time-different 

intermediate precision (combination of within and between day effects) of the method 

were calculated according to references135,136 using one-way analysis of variance 

(ANOVA) with the grouping-variable "day". The acceptance intervals of within-day 

(repeatability) and intermediate precision were ≤ 15% RSD (≤ 20% RSD at LLOQ) and 

for bias ± 15% (± 20% at the LLOQ) of the nominal values.137 

 

2.5.2.5 Processed Sample Stability 

For estimation of stability of processed samples under the conditions of LC-MS/MS 

analysis, LOW and HIGH quality control samples (n = 10 each) were extracted as 

described above. The resulting extracts at each concentration level were pooled. 

Aliquots of these pooled extracts at each concentration level were transferred to 

autosampler vials and injected under the conditions of a regular analytical run at time 

intervals of 2 h. Stability of the extracted analytes was tested by regression analysis 

plotting absolute peak areas of each analyte at each concentration versus injection 

time. Instability of processed samples would be indicated by a negative slope 

significantly different from zero (p ≤ 0.05).138 

 

 

 

 



36 2 Experimental procedures 
 
 

2.5.2.6 Freeze/Thaw Stability and Bench Top Stability 

For evaluation of freeze/thaw stability, quality control samples (LOW and HIGH) were 

analyzed prior to (control samples, n = 6 each) and after three freeze/thaw cycles 

(stability samples, n = 6 each). For each freeze/thaw cycle, the samples were frozen at 

-20°C for 21 h, thawed and kept at ambient temperature for 3 h. The experiments were 

carried out together with the accuracy and precision experiments and the 

concentrations of the control and stability samples were calculated via daily calibration 

curves. Stability was tested against an acceptance interval of 90-110% for the ratio of 

the means (stability samples vs. control samples) and an acceptance interval of 80-

120% from the control samples’ mean for the 90% confidence interval (CI) of stability 

samples.138 

 

2.5.2.7 Long-term Stability 

The experimental design and procedure for evaluation of long term stability were similar 

to those used for freeze/thaw stability. Analyte stability for long-term storage was tested 

by analyzing spiked samples at two concentrations of the analytes (LOW/HIGH) before 

(control samples, n = 6 each) and after storage for one month at -20 °C (stability 

samples, n = 6 each).  

 

2.5.2.8 Lower Limits of Quantification 

The LLOQ in the MRM mode was defined as the lowest point of the calibration curve 

(concentration 10 ng/ml) and fulfilled the requirement of LLOQ, signal to noise ratio of 

10:1. The noise data from the assay of blank matrices was taken from the selectivity 

experiments. Furthermore, the accuracy and precision data of the LQC sample were 

compared with the criteria for the parameters at the LLOQ established by Shah et al.137 

(accuracy within ≤ 20% of the nominal value and a RSD < 20%). The LOD was not 

systematically evaluated. 

 

2.5.2.9 Extraction Efficiencies, Matrix Effects, and Process Efficiencies 

Extraction efficiencies, matrix effect, and process efficiencies were estimated in a post-

extraction addition approach as proposed in references.139,140 Three sets of samples 

were prepared at low and high concentrations. Samples in set 1 consisted of neat 
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standards containing the analytes at concentrations of 200 ng/ml and 8000 ng/ml in 

eluent A, respectively. For preparation of the samples in set 2, blank plasma samples 

from five different sources (1 ml, each) were first extracted as described above. Then, 

the dry residues were reconstituted in 100 µl of eluent A containing the analytes at 

concentrations of 200 ng/ml and 8000 ng/ml, respectively. For preparation of the 

samples in set 3, blank plasma samples (1 ml) from the same sources as those in set 2 

were spiked with 100 µl of eluent A containing the analytes at concentrations of 200 
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2.5.3.1 Preparation of Stock Solutions, Calibration Standards, and Control Samples 

Stock solutions of each analyte were prepared at a concentration of 1 mg/ml by 

separate weighings using eluent A as solvent. Working solutions of each analyte were 

prepared by independent dilution from each stock solution at the following 

concentrations: 0.001, 0.01, and 0.1 mg/ml. The calibration standards were prepared 

using pooled blank plasma and spiking solutions prepared from the working solutions as 

mixtures of the nine analytes in eluent A at concentrations ten times higher than the 

corresponding calibration standards. The quality control samples (concentrations as 

given in chapter 2.5.3.4) were prepared using pooled blank plasma and independently 

prepared mixtures of the nine analytes at concentrations hundred times higher than the 

concentrations of the corresponding quality control samples. All solutions were stored at 

4°C.  

 

2.5.3.2 Selectivity 

Ten blank plasma samples from different sources were analyzed using both apparatus 

and checked for peaks interfering with the detection of the analytes or the IS. A zero 

sample (blank sample + IS) was analyzed to check for absence of analyte ions in the 

respective peaks of the IS.  

 

2.5.3.3 Linearity 

Aliquots of blank plasma (1 ml) were spiked with 0.1 ml of the corresponding spiking 

solutions and 0.1 ml of IS solution to obtain calibration standards with concentrations of 

1, 50, 100, 250, 500, 750, 1000 ng/ml of cotinine, coniine, cytisine and nicotine, and 

concentrations of 0.1, 5, 10, 25, 50, 75, 100 ng/ml of aconitine, atropine, colchicine, 

scopolamine, and physostigmine. Replicates (n = 6) at each concentration level were 

analyzed as described above. Using single stage MS, the lowest concentration level 

could not be determined due to lower sensitivity of the apparatus. The regression line 

was calculated using a weighted [1/(concentration)2] least-squares regression model. A 

weighted second-order model with the same weighting factors was also calculated to 

check for possible non-linearity. Daily linear calibration curves using the same 

concentrations (single measurements per level) were prepared with each batch of 

validation and authentic samples. 
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2.5.3.4 Accuracy and Precision 

QC samples were prepared at three concentration levels. The concentrations were as 

follows: 100 ng/ml (LOW), 500 ng/ml (MED), and 800 ng/ml (HIGH) for coniine, cotinine, 

cytisine, and nicotine and 10 ng/ml (LOW), 50 ng/ml (MED), and 80 ng/ml (HIGH) for 

aconitine, atropine, colchicine, physostigmine, and scopolamine. They were analyzed 

using both apparatus according to the procedure described above in duplicate on each 

of eight days. The concentrations of the analytes in the quality control samples were 

calculated via the daily calibration curves. Accuracy was calculated for each analyte in 

terms of bias as the percent deviation of the mean of all calculated concentration values 

at a specific level from the respective nominal concentration. Precision data (given as 

relative standard deviations) for within-day (repeatability), and time-different 

intermediate precision (combination of within and between day effects) of the method 

were calculated according to references135,136 using one-way ANOVA with the grouping-

variable "day". The acceptance intervals of within-day (repeatability) and intermediate 

precision were ≤ 15% RSD and for bias ± 15% of the nominal values.137 

 

2.5.3.5 Processed Sample Stability 

For estimation of stability of processed samples under the conditions of single stage MS 

or tandem MS analysis, LOW and HIGH quality control samples (n = 10 each) were 

extracted as described above. The resulting extracts at each concentration level were 

pooled. Aliquots of these pooled extracts at each concentration level were transferred to 

autosampler vials and injected under the conditions of a regular analytical run of the 

corresponding apparatus at time intervals of 2 h. Stability of the extracted analytes was 

tested by regression analysis plotting absolute peak areas of each analyte at each 

concentration versus injection time. Instability of processed samples would be indicated 

by a negative slope significantly different from zero (p ≤ 0.05).138 

 

2.5.3.6 Freeze/Thaw and Bench Top Stability 

For evaluation of freeze/thaw stability, quality control samples (LOW and HIGH) were 

analyzed using both apparatus prior to (control samples, n = 6 each) and after three 

freeze/thaw cycles (stability samples, n = 6 each). For each freeze/thaw cycle, the 

samples were frozen at -20°C for 21 h, thawed and kept at ambient temperature for 3 h. 

The experiments were carried out together with the accuracy and precision experiments 

2.5 Validation of the Described Methods 39 
 
 

2.5.3.4 Accuracy and Precision 

QC samples were prepared at three concentration levels. The concentrations were as 

follows: 100 ng/ml (LOW), 500 ng/ml (MED), and 800 ng/ml (HIGH) for coniine, cotinine, 

cytisine, and nicotine and 10 ng/ml (LOW), 50 ng/ml (MED), and 80 ng/ml (HIGH) for 

aconitine, atropine, colchicine, physostigmine, and scopolamine. They were analyzed 

using both apparatus according to the procedure described above in duplicate on each 

of eight days. The concentrations of the analytes in the quality control samples were 

calculated via the daily calibration curves. Accuracy was calculated for each analyte in 

terms of bias as the percent deviation of the mean of all calculated concentration values 

at a specific level from the respective nominal concentration. Precision data (given as 

relative standard deviations) for within-day (repeatability), and time-different 

intermediate precision (combination of within and between day effects) of the method 

were calculated according to references135,136 using one-way ANOVA with the grouping-

variable "day". The acceptance intervals of within-day (repeatability) and intermediate 

precision were ≤ 15% RSD and for bias ± 15% of the nominal values.137 

 

2.5.3.5 Processed Sample Stability 

For estimation of stability of processed samples under the conditions of single stage MS 

or tandem MS analysis, LOW and HIGH quality control samples (n = 10 each) were 

extracted as described above. The resulting extracts at each concentration level were 

pooled. Aliquots of these pooled extracts at each concentration level were transferred to 

autosampler vials and injected under the conditions of a regular analytical run of the 

corresponding apparatus at time intervals of 2 h. Stability of the extracted analytes was 

tested by regression analysis plotting absolute peak areas of each analyte at each 

concentration versus injection time. Instability of processed samples would be indicated 

by a negative slope significantly different from zero (p ≤ 0.05).138 

 

2.5.3.6 Freeze/Thaw and Bench Top Stability 

For evaluation of freeze/thaw stability, quality control samples (LOW and HIGH) were 

analyzed using both apparatus prior to (control samples, n = 6 each) and after three 

freeze/thaw cycles (stability samples, n = 6 each). For each freeze/thaw cycle, the 

samples were frozen at -20°C for 21 h, thawed and kept at ambient temperature for 3 h. 

The experiments were carried out together with the accuracy and precision experiments 

2.5 Validation of the Described Methods 39 
 
 

2.5.3.4 Accuracy and Precision 

QC samples were prepared at three concentration levels. The concentrations were as 

follows: 100 ng/ml (LOW), 500 ng/ml (MED), and 800 ng/ml (HIGH) for coniine, cotinine, 

cytisine, and nicotine and 10 ng/ml (LOW), 50 ng/ml (MED), and 80 ng/ml (HIGH) for 

aconitine, atropine, colchicine, physostigmine, and scopolamine. They were analyzed 

using both apparatus according to the procedure described above in duplicate on each 

of eight days. The concentrations of the analytes in the quality control samples were 

calculated via the daily calibration curves. Accuracy was calculated for each analyte in 

terms of bias as the percent deviation of the mean of all calculated concentration values 

at a specific level from the respective nominal concentration. Precision data (given as 

relative standard deviations) for within-day (repeatability), and time-different 

intermediate precision (combination of within and between day effects) of the method 

were calculated according to references135,136 using one-way ANOVA with the grouping-

variable "day". The acceptance intervals of within-day (repeatability) and intermediate 

precision were ≤ 15% RSD and for bias ± 15% of the nominal values.137 

 

2.5.3.5 Processed Sample Stability 

For estimation of stability of processed samples under the conditions of single stage MS 

or tandem MS analysis, LOW and HIGH quality control samples (n = 10 each) were 

extracted as described above. The resulting extracts at each concentration level were 

pooled. Aliquots of these pooled extracts at each concentration level were transferred to 

autosampler vials and injected under the conditions of a regular analytical run of the 

corresponding apparatus at time intervals of 2 h. Stability of the extracted analytes was 

tested by regression analysis plotting absolute peak areas of each analyte at each 

concentration versus injection time. Instability of processed samples would be indicated 

by a negative slope significantly different from zero (p ≤ 0.05).138 

 

2.5.3.6 Freeze/Thaw and Bench Top Stability 

For evaluation of freeze/thaw stability, quality control samples (LOW and HIGH) were 

analyzed using both apparatus prior to (control samples, n = 6 each) and after three 

freeze/thaw cycles (stability samples, n = 6 each). For each freeze/thaw cycle, the 

samples were frozen at -20°C for 21 h, thawed and kept at ambient temperature for 3 h. 

The experiments were carried out together with the accuracy and precision experiments 

2.5 Validation of the Described Methods 39 
 
 

2.5.3.4 Accuracy and Precision 

QC samples were prepared at three concentration levels. The concentrations were as 

follows: 100 ng/ml (LOW), 500 ng/ml (MED), and 800 ng/ml (HIGH) for coniine, cotinine, 

cytisine, and nicotine and 10 ng/ml (LOW), 50 ng/ml (MED), and 80 ng/ml (HIGH) for 

aconitine, atropine, colchicine, physostigmine, and scopolamine. They were analyzed 

using both apparatus according to the procedure described above in duplicate on each 

of eight days. The concentrations of the analytes in the quality control samples were 

calculated via the daily calibration curves. Accuracy was calculated for each analyte in 

terms of bias as the percent deviation of the mean of all calculated concentration values 

at a specific level from the respective nominal concentration. Precision data (given as 

relative standard deviations) for within-day (repeatability), and time-different 

intermediate precision (combination of within and between day effects) of the method 

were calculated according to references135,136 using one-way ANOVA with the grouping-

variable "day". The acceptance intervals of within-day (repeatability) and intermediate 

precision were ≤ 15% RSD and for bias ± 15% of the nominal values.137 

 

2.5.3.5 Processed Sample Stability 

For estimation of stability of processed samples under the conditions of single stage MS 

or tandem MS analysis, LOW and HIGH quality control samples (n = 10 each) were 

extracted as described above. The resulting extracts at each concentration level were 

pooled. Aliquots of these pooled extracts at each concentration level were transferred to 

autosampler vials and injected under the conditions of a regular analytical run of the 

corresponding apparatus at time intervals of 2 h. Stability of the extracted analytes was 

tested by regression analysis plotting absolute peak areas of each analyte at each 

concentration versus injection time. Instability of processed samples would be indicated 

by a negative slope significantly different from zero (p ≤ 0.05).138 

 

2.5.3.6 Freeze/Thaw and Bench Top Stability 

For evaluation of freeze/thaw stability, quality control samples (LOW and HIGH) were 

analyzed using both apparatus prior to (control samples, n = 6 each) and after three 

freeze/thaw cycles (stability samples, n = 6 each). For each freeze/thaw cycle, the 

samples were frozen at -20°C for 21 h, thawed and kept at ambient temperature for 3 h. 

The experiments were carried out together with the accuracy and precision experiments 



40 2 Experimental procedures 
 
 

and the concentrations of the control and stability samples were calculated via daily 

calibration curves. Stability was tested against an acceptance interval of 90-110% for 

the ratio of the means (stability samples vs. control samples) and an acceptance 

interval of 80-120% from the control samples’ mean for the 90% CI of stability 

samples.138 

 

2.5.3.7 Long-term Stability 

The experimental design and procedure for evaluation of long term stability were similar 

to those used for freeze/thaw stability. Analyte stability for long-term storage was tested 

by analyzing spiked samples at two concentrations of the analytes (LOW/HIGH) before 

(control samples, n = 6 each) and after storage for one month at -20 °C (stability 

samples, n = 6 each).  

 

2.5.3.8 Lower Limits of Quanification and Limit of Detection 

The LLOQ in the SIM mode for single stage MS or the MRM mode for tandem MS was 

defined as the lowest point of the calibration curve (concentrations of 50 ng/ml, and 5 

ng/ml respectively for single stage MS and concentrations of 1 ng/ml, and 0.1 ng/ml 

respectively for tandem MS) and fulfilled the requirement of LLOQ, signal to noise ratio 

of 10:1. The noise data from the assays of blank matrices were taken from the 

selectivity experiments. Plasma samples (1 ml) were spiked with decreasing 

concentrations of analytes and analyzed as described above. The LODs of the 

corresponding procedures were defined as the lowest concentrations at which 

identification was still possible by library search for single stage MS or S/N ≥ 3 were 

obtained for all monitored ions in the MRM mode.  

 
2.5.3.9 Extraction Efficiencies, Matrix Effects, and Process Effieciencies 

Extraction efficiencies, matrix effects, and process efficiencies were estimated in a post-

extraction addition approach as proposed in references.139,140 Three sets of samples 

were prepared at LOW and HIGH concentrations. Samples in set 1 consisted of neat 

standards containing the analytes at concentrations of 1000 ng/ml and 8000 ng/ml for 

coniine, cotinine, cytisine, and nicotine, as well as 100 ng/ml and 800 ng/ml for 

aconitine, atropine, colchicine, physostigmine, and scopolamine in eluent A, 

respectively. For preparation of the samples in set 2, blank plasma samples from five 
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different sources (1 ml, each) were first extracted as described above. Then, the dry 

residues were reconstituted in 100 µl of eluent A containing the analytes at 

concentrations of 1000 ng/ml and 8000 ng/ml for coniine, cotinine, cytisine, and 

nicotine, as well as 100 ng/ml and 800 ng/ml for aconitine, atropine, colchicine, 

physostigmine, and scopolamine in eluent A, respectively. For preparation of the 

samples in set 3, blank plasma samples (1 ml) from the same sources as those in set 2 

were spiked with 100 µl of eluent A containing the analytes at concentrations of 200 

ng/ml and 8000 ng/ml, respectively. Thereafter, they were extracted as described above 

and the dry residues were reconstituted in 100 µl of eluent A. 

Extraction efficiencies were estimated by comparison of the peak areas from the 

samples from set 3 to those from the corresponding samples of set 2 and reported in %. 

Matrix effects were estimated by comparison of the peak areas from the samples from 

set 2 to those from the corresponding samples of set 1 and reported in %. Hence, 

values below 100% indicate ion suppression while values above 100% indicate ion 

enhancement. Finally, process efficiencies (combination of extraction efficiencies and 

matrix effects) were estimated by comparison of the peak areas from the samples from 

set 3 to those from the corresponding samples of set 1 and also reported in %.  

 
2.5.3.10 Proof of Applicability 

Applicability experiments were carried out using plasma samples from poisoning cases 

sent to our laboratory for toxicological analysis. Patient one accidentally ingested leaves 

of Colchicum autumnale (Meadow saffron) containing colchicine due to a mix-up with 

vegetable Allium ursinum, known as Ramsons. Patient two abused Datura stramonium 

containing atropine and scopolamine.  
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3 RESULTS AND DISCUSSION 

3.1 LAXATIVES 

3.1.1 Sample Preparation 

During preliminary studies, bisacodyl diphenol, phenolphthalein and rhein and/or their 

metabolites were found to be excreted in urine partly in conjugated form. Comparison of 

the peak areas of these analytes in authentic urine samples prepared with and without 

enzymatic conjugate cleavage showed that the extent of conjugation was about 50% for 

rhein and about 90% for bisacodyl diphenol and phenolphthalein. A further 

differentiation in glucuronides and sulfates was not possible from these data because a 

mixture of glucuronidase and arylsulfatase had been used for enzymatic hydrolysis. 

These results showed that cleavage of conjugates was necessary before extraction to 

increase sensitivity. In previously published procedures, acid hydrolysis had been used 

for this purpose.62,68 The cleavage rate of both hydrolysis procedures was similar. 

However, it is known that certain compounds may be altered or completely destroyed 

during acid hydrolysis. Among these are some which can also be analyzed using 

extractive methylation, e.g. diclofenac,73 buprenorphine,141 and some diuretics.142 

Because such compounds may also be present in authentic samples and because the 

described procedure should also be useful for STA, more time consuming but gentle 

enzymatic hydrolysis was preferred.  

Extractive alkylation (methylation) has proved to be suitable for analysis of different 

classes of more or less acidic compounds.70-73,141,143,144 It is based on the principle of 

phase transfer catalysis. The analytes were extracted as ion pairs, with the phase-

transfer catalyst at pH 12, into the organic phase. Reaching the organic phase the 

phase-transfer catalyst could easily be solvated because of its lipophilic hexyl groups. 

The poor solvatization of the anionic analytes leads to high reactivity against the 

methylation reagent methyl iodide. Part of the phase-transfer catalyst could also reach 

the organic phase as an ion pair with the iodide anion formed during the methylation 

reaction or with anions of the urine matrix. Part of these THA salts remained in the 

organic phase, so they had to be removed for maintaining the GC column´s separation 

power and to exclude interactions with analytes in the GC injection port. SPE with diol 

sorbent had successfully been used to remove THA salts from the organic phase,70-73 
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whereas the major part of the analytes passed through the column without being 

adsorbed. The part of the analytes which had also been adsorbed on the diol sorbent 

were selectively eluted with diethyl ether/ethyl acetate (95:5, v/v) to increase recovery, 

while THA salts remained adsorbed on the diol sorbent under these conditions.73 Major 

advantages of the diol columns over those described by Lisi et al.143 are their 

commercial availability and easy handling.70-73 

3.1.2 GC-MS Analysis 

The laxatives and/or their metabolites were separated by GC and identified by EI MS 

after enzymatic hydrolysis and extractive methylation. Fig. 3.1 shows the EI mass 

spectra, the proposed structures and the retention indices (RIs) of the methylated 

compounds or their metabolites. The RIs provide preliminary indications and may be 

useful to gas chromatographers without a GC-MS facility. They were recorded during 

the GC-MS procedure and calculated in correlation with the Kovats' indices145 of the 

components of a standard solution of typical drugs which is measured daily for testing 

the GC-MS performance.146 The reproducibility of retention indices measured on 

capillary columns was better using a mixture of drugs than that of the homologous 

hydrocarbons recommended by Kovats.145  

The presence of the laxatives and/or their metabolites was screened for via 

characteristic fragment ions. User defined macros extracting these fragment ions from 

the total ion current were used to facilitate this procedure. For all analytes, the base 

peak and an additional qualifier ion were used for screening: m/z 305, 290 for bisacodyl 

diphenol-2ME (mass spectrum no. 1 in Fig. 3.1), m/z 335 and 320 for bismethylated 

methoxy-bisacodyl diphenol (mass spectrum no. 2 in Fig. 3.1), m/z 365 and 350 for 

bismethylated bis-methoxy-bisacodyl diphenol (mass spectrum no. 3 in Fig. 3.1), and 

m/z 271 and 346 for phenolphthalein-2ME (mass spectrum no. 4 in Fig. 3.1), m/z 311 

and 326 for rhein-3ME (mass spectrum no. 5 in Fig. 3.1).  
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Fig. 3.1. EI mass spectra, gas chromatographic retention indices (RI), structures and predominant 
fragmentation patterns of stimulant laxatives and/or their metabolites after methylation. The ions used for 
mass chromatography are underlined.  
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Fig. 3.2 shows typical reconstructed mass chromatograms of an authentic urine sample 

after extractive methylation, which had been sent to our laboratory for toxicological 

analysis. Peak 1 indicates the presence of bisacodyl diphenol, peaks 2 and 3 indicate 

the presence of methoxy-bisacodyl diphenol and bis-methoxy-bisacodyl diphenol in the 

sample. For the latter two, differentiation of metabolic and extractive methylation was 

not possible with the described procedure. 

 
Fig. 3.2. Typical reconstructed mass chromatograms with the ions m/z 305, 290, 335, 320, 365, 350, 311, 
326, 271, and 346 of a urine extract after extractive methylation of a patient who has taken an unknown 
amount of bisacodyl or picosulfate and an anthraquinone containing plant extract. 
 

However, analysis of the same urine sample according to ref.68 showed that these two 

metabolites were indeed excreted in urine as conjugates of methoxy-bisacodyl diphenol 

and bis-methoxy-bisacodyl diphenol. Peak 5 indicates the presence of rhein. 

As illustrated in Fig. 3.3, the identity of positive peaks in corresponding mass 

chromatograms was confirmed by visual and computerized comparison of the 

underlying spectrum (here of peak 5 in Fig. 3.2) with reference spectra, which were 

already contained in the used reference library or had been recorded during the 

presented study. In order to avoid misinterpretation of the mass spectral analysis, 

proper use of the Pfleger/Maurer/Weber library147 is indispensable. The “@” sign 
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Fig. 3.2 shows typical reconstructed mass chromatograms of an authentic urine sample 

after extractive methylation, which had been sent to our laboratory for toxicological 

analysis. Peak 1 indicates the presence of bisacodyl diphenol, peaks 2 and 3 indicate 

the presence of methoxy-bisacodyl diphenol and bis-methoxy-bisacodyl diphenol in the 

sample. For the latter two, differentiation of metabolic and extractive methylation was 

not possible with the described procedure. 
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46 3 Results and Discussion 
 
 

indicates that the compound can also be found after intake of other compounds given in 

the corresponding handbooks.148,149 This is of special importance for the presented 

study, because bisacodyl diphenol, methoxy-bisacodyl diphenol, and bismethoxy-

bisacodyl diphenol are common metabolites of bisacodyl and picosulfate, whereas rhein 

is a common metabolite of a series of active compounds in anthraquinone containing 

plant extracts. Therefore, detection of one or more of the common metabolites of 

bisacodyl and picosulfate does not allow to differentiate which of these two drugs have 

been ingested by the patient. The same is true for rhein detection and ingestion of 

anthraquinone-type laxatives. However, such a differentiation is of little relevance from a 

clinical point of view. 

 

Fig. 3.3. Mass spectrum underlying peak 5 in Figure 3.2, the reference spectrum, the structure, and the 
hit list found by computer library search. 
 

Interference by biomolecules or further drugs indicated in the reconstructed mass 

chromatograms could be excluded, because these compounds have different gas 

chromatographic and/or mass spectrometric properties. The corresponding RIs and 

reference spectra are included in the used reference library. 
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3.1.3 Assay Validation 

Recoveries, analyte stability, and LODs were only determined for the analytes with the 

longest duration of detectability after ingestion of the above-mentioned laxatives. These 

are bisacodyl diphenol (main metabolite of bisacodyl and picosulfate), rhein (main 

metabolite of various active compounds in anthraquinone containing plant extracts) and 

phenolphthalein.62,68 Recovery experiments were carried out using SIM mode to allow 

more precise determination of peak areas. LOD experiments were carried out using full-

scan mode to allow estimation of LODs under routine conditions. The results for both 

parameters are given in Table 3.1. All three analytes showed reproducible recoveries as 

indicated by the low standard deviations. The lower recovery of rhein in comparison to 

the two other analytes could in part be explained by the instability of this analyte in 

buffer solution, even at room temperature.  

Table 3.1. Overall Recoveries with Coefficient of Variation and LOD (S/N= 3), 
determined in the SIM Mode 
 

Target Analyte Recovery LOD 

Bisacodyl diphenol 62.2 ± 7.35 % 10 ng/ml 

Phenolphthalein 89.5 ± 14.64 % 10 ng/ml 

Rhein 33.0 ± 4.22 % 25 ng/ml 

 

Fig. 3.4. shows the extent of degradation of the analytes in a urine sample incubated 

with buffer solution at room temperature. For all three analytes a significant decrease of 

peak areas could be observed for aliquots taken and worked up after increasing 

intervals of time. Degradation of rhein was especially pronounced and followed a 

mathematical model of monoexponential decay. These results show that samples have 

to be worked up immediately after addition of buffer solution to prevent considerable 

losses of analytes. At the elevated temperature of extractive methylation (50 °C) 

degradation can be expected to be even faster. Therefore, one might consider a 

reduction of shaking time during sample preparation. However, since recoveries were 

reproducible and LODs were satisfactory even for rhein, there was no reason to change 

the described procedure which is also routinely used for screening analysis of acidic 
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48 3 Results and Discussion 
 
 

compounds in our laboratory.70-73 Finally, with the described procedure, rhein was still 

detectable in a urine sample of a healthy young volunteer taken 24 h after ingestion of 

the lowest therapeutic dose of senna extract. bisacodyl diphenol was still detectable in a 

urine sample of a volunteer collected 52 h after ingestion of the lowest therapeutic dose 

of sodium picosulfate.  

 

 

Fig. 3.4. Degradation of the analytes, expressed as peak areas in relation to the initial values, over time 
in a urine sample incubated with buffer solution at room temperature.  
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3.2 INGREDIENTS OF NUTMEG 

3.2.1 Identification of Metabolites of Elemicin, Myristicin and Safrole in Rat Urine 

The urinary metabolites of the nutmeg ingredients were separated by GC and identified 

by EI MS after enzymatic hydrolysis, extraction and acetylation. Fig. 3.5 A-C shows 

reconstructed mass chromatograms of acetylated rat urine extracts after administration 

of 100 mg/kg BM each of safrole (A), myristicin (B), or elemicin (C). The peak numbers 

correspond to the numbering in Fig. 3.6. The mass spectra underlying the numbered 

peaks were interpreted in correlation to those of the parent compound according to the 

rules described by e.g. McLafferty and Turecek131 and Smith and Busch.132 The 

corresponding EI mass spectra, the gas chromatographic RI, the concluded structures 

and postulated predominant fragmentation patterns of safrole, myristicin, elemicin, and 

their acetylated metabolites are shown in Fig. 3.6. After administration of safrole (mass 

spectrum no. 1), the following acetylated metabolites could be identified (the mass 

spectra numbers in Fig. 3.6 are given in brackets): 1-(3’-methoxy-4’-hydroxyphenyl)-

prop-2-ene (2), 1-(3’,4’-methylenedioxy-5’-hydroxyphenyl)-prop-2-ene (3), 1-(3’,4’-

dihydroxyphenyl)-prop-2-ene (4), 1-hydroxy-1-(3’,4’-methylenedioxyphenyl)-prop-2-ene 

(5), 1-(3’,4’-dihydroxy-5’-methoxyphenyl)-prop-2-ene (6), and 2,3-dihydroxy-1-(3’,4’-

methylenedioxyphenyl)-propane (7). After administration of myristicin (8), the following 

metabolites could be identified: 1-(3’,4’-methylenedioxy-5’-hydroxyphenyl)-prop-2-ene 

(3), 1-(3’,4’-dihydroxy-5’-methoxyphenyl)-prop-2-ene (6), 1-(3’,5’-dimethoxy-4’-

hydroxyphenyl)-prop-2-ene (9), 1-hydroxy-1-(3’,4’-methylenedioxy-5’-methoxy-phenyl)-

prop-2-ene (10), and 2,3-dihydroxy-1-(3’,4’-methylenedioxy-5’-methoxyphenyl)-propane 

(11). After administration of elemicin (12), the following metabolites could be identified: 

1-(3’,4’-dihydroxy-5’-methoxyphenyl)-prop-2-ene (6), 1-(3’,5’-dimethoxy-4’-

hydroxyphenyl)-prop-2-ene (9), 1-(3’,4’-dimethoxy-5’-hydroxyphenyl)-prop-2-ene (13), 1-

hydroxy-1-(3’,4’,5’-trimethoxyphenyl)-prop-2-ene (14), 2,3-dihydroxy-1-(3’,4’,5’-tri-

methoxyphenyl)-propane (15), and two isomers of 2,3-dihydroxy-1-(dimethoxy-

hydroxyphenyl)-propane (16 and 17). In none of the urine extracts, the corresponding 

amphetamine derivatives MMDA, TMA, or 3,4-methylenedioxyamphetamine (MDA), 

could be detected. No further metabolites of safrole, myristicin or elemicin could be 

detected in the acidic extracts after methylation and acetylation.  
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50 3 Results and Discussion 
 
 

 

Fig. 3.5. Typical reconstructed mass chromatograms with the given ions of acetylated extracts of 
enzymatically hydrolyzed rat urine samples after administration of 100 mg/kg BM of safrole (A), myristicin 
(B), and elemicin (C). Part D: reconstructed mass chromatograms of an acetylated human urine extract 
after administration of an unknown dose of nutmeg. The peak numbers correspond to those used in Fig. 
3.6, Fig. 3.7, and Fig. 3.8. The merged chromatograms can be differentiated by their colors on a color 
screen.  
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Fig. 3.6. EI mass spectra, the gas chromatographic retention indices (RI), structures and predominant 
fragmentation patterns of safrole, myristicin, elemicin, and their metabolites after acetylation. The 
numbers of the spectra correspond to those in Fig. 3.5, Fig. 3.7, and Fig. 3.8.  
 

The position of the hydroxy or methoxy group in metabolites 2 and 9 could not be 

determined by means of GC-MS, but the given positions were assumed from the 

metabolic point of view since the methylation step is most probably catalyzed by the 

enzyme catechol-O-methyl transferase (COMT) which predominantly methylates in 3’ 

position. The position of the free hydroxy group in metabolite 13 was assumed because 

this metabolite had a retention time different form the isomeric metabolite 9, and 

because metabolite 13 was only found in the urine after administration of elemicin. In 

the two isomeric metabolites 16 and 17, the position of the ring hydroxy group could not 

further be elucidated because they were detected only after administration of elemicin. 

3.2.2 Identification of Metabolites of Elemicin, Myristicin and Safrole in Rat Urine 

Fig. 3.5 (D) shows reconstructed mass chromatograms of an acetylated human urine 

extract after administration of an unknown dose of nutmeg. The peak numbers 

correspond to the numbering in Fig. 3.6. Unnumbered peaks represent endogenous 

biomolecules. As can be seen, metabolites 4, 6, 9, 11, 16, and 17 could be identified 

also in human urine. While metabolite 4 could only be formed from safrole, metabolite 

11 only by myristicin, and metabolites 16 and 17 only by elemicin, metabolite 9 could be 
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formed from myristicin and elemicin and metabolite 6 from all studied nutmeg 

ingredients.  

 

3.2.3 Postulated Metabolic Pathways of Elemicin, Myristicin and Safrole in Rats 
and Humans 

Based on the metabolites identified as described above, the following metabolic 

pathways of safrole, myristicin and elemicin could be postulated as shown in Fig. 3.7 

(metabolites found in human urine are marked by "h"): for safrole, myristicin and 

elemicin, hydroxylation of the side chain to the corresponding 1-hydroxy metabolites 5, 

10, and 14, bis-hydroxylation of the side chain to the corresponding 2,3-

dihydroxy-metabolites 7, 11, and 15; for safrole and myristicin, demethylenation to the 

metabolites 4 and 6 followed by methylation to the metabolites 2 and 9; for elemicin, O-

demethylation at position 3’ and 4’ to metabolites 9 and 13 followed by side chain 

hydroxylation to the two isomers 16 and 17. Comparing the peak areas in Fig. 3.5 (A-C), 

demethylenation seems to be the main metabolic step for safrole and myristicin and 

side chain hydroxylation for elemicin. All metabolites were partly excreted as 

glucuronides and/or sulfates, since the peak areas were greater after enzymatic 

hydrolysis. 

 
Fig. 3.7. Proposed scheme for the metabolism of safrole (1), myristicin (8), and elemicin (12) in rat and 
humans. The metabolites marked with h were also detected in a human urine sample after nutmeg abuse. 
The numbers of compounds correspond to those in Fig. 3.5, Fig. 3.6, and Fig 3.8. 
 

3.2 Ingredients of Nutmeg 55 
 
 

formed from myristicin and elemicin and metabolite 6 from all studied nutmeg 

ingredients.  

 

3.2.3 Postulated Metabolic Pathways of Elemicin, Myristicin and Safrole in Rats 
and Humans 

Based on the metabolites identified as described above, the following metabolic 

pathways of safrole, myristicin and elemicin could be postulated as shown in Fig. 3.7 

(metabolites found in human urine are marked by "h"): for safrole, myristicin and 

elemicin, hydroxylation of the side chain to the corresponding 1-hydroxy metabolites 5, 

10, and 14, bis-hydroxylation of the side chain to the corresponding 2,3-

dihydroxy-metabolites 7, 11, and 15; for safrole and myristicin, demethylenation to the 

metabolites 4 and 6 followed by methylation to the metabolites 2 and 9; for elemicin, O-

demethylation at position 3’ and 4’ to metabolites 9 and 13 followed by side chain 

hydroxylation to the two isomers 16 and 17. Comparing the peak areas in Fig. 3.5 (A-C), 

demethylenation seems to be the main metabolic step for safrole and myristicin and 

side chain hydroxylation for elemicin. All metabolites were partly excreted as 

glucuronides and/or sulfates, since the peak areas were greater after enzymatic 

hydrolysis. 

 
Fig. 3.7. Proposed scheme for the metabolism of safrole (1), myristicin (8), and elemicin (12) in rat and 
humans. The metabolites marked with h were also detected in a human urine sample after nutmeg abuse. 
The numbers of compounds correspond to those in Fig. 3.5, Fig. 3.6, and Fig 3.8. 
 

3.2 Ingredients of Nutmeg 55 
 
 

formed from myristicin and elemicin and metabolite 6 from all studied nutmeg 

ingredients.  

 

3.2.3 Postulated Metabolic Pathways of Elemicin, Myristicin and Safrole in Rats 
and Humans 

Based on the metabolites identified as described above, the following metabolic 

pathways of safrole, myristicin and elemicin could be postulated as shown in Fig. 3.7 

(metabolites found in human urine are marked by "h"): for safrole, myristicin and 

elemicin, hydroxylation of the side chain to the corresponding 1-hydroxy metabolites 5, 

10, and 14, bis-hydroxylation of the side chain to the corresponding 2,3-

dihydroxy-metabolites 7, 11, and 15; for safrole and myristicin, demethylenation to the 

metabolites 4 and 6 followed by methylation to the metabolites 2 and 9; for elemicin, O-

demethylation at position 3’ and 4’ to metabolites 9 and 13 followed by side chain 

hydroxylation to the two isomers 16 and 17. Comparing the peak areas in Fig. 3.5 (A-C), 

demethylenation seems to be the main metabolic step for safrole and myristicin and 

side chain hydroxylation for elemicin. All metabolites were partly excreted as 

glucuronides and/or sulfates, since the peak areas were greater after enzymatic 

hydrolysis. 

 
Fig. 3.7. Proposed scheme for the metabolism of safrole (1), myristicin (8), and elemicin (12) in rat and 
humans. The metabolites marked with h were also detected in a human urine sample after nutmeg abuse. 
The numbers of compounds correspond to those in Fig. 3.5, Fig. 3.6, and Fig 3.8. 
 

3.2 Ingredients of Nutmeg 55 
 
 

formed from myristicin and elemicin and metabolite 6 from all studied nutmeg 

ingredients.  

 

3.2.3 Postulated Metabolic Pathways of Elemicin, Myristicin and Safrole in Rats 
and Humans 

Based on the metabolites identified as described above, the following metabolic 

pathways of safrole, myristicin and elemicin could be postulated as shown in Fig. 3.7 

(metabolites found in human urine are marked by "h"): for safrole, myristicin and 

elemicin, hydroxylation of the side chain to the corresponding 1-hydroxy metabolites 5, 

10, and 14, bis-hydroxylation of the side chain to the corresponding 2,3-

dihydroxy-metabolites 7, 11, and 15; for safrole and myristicin, demethylenation to the 

metabolites 4 and 6 followed by methylation to the metabolites 2 and 9; for elemicin, O-

demethylation at position 3’ and 4’ to metabolites 9 and 13 followed by side chain 

hydroxylation to the two isomers 16 and 17. Comparing the peak areas in Fig. 3.5 (A-C), 

demethylenation seems to be the main metabolic step for safrole and myristicin and 

side chain hydroxylation for elemicin. All metabolites were partly excreted as 

glucuronides and/or sulfates, since the peak areas were greater after enzymatic 

hydrolysis. 

 
Fig. 3.7. Proposed scheme for the metabolism of safrole (1), myristicin (8), and elemicin (12) in rat and 
humans. The metabolites marked with h were also detected in a human urine sample after nutmeg abuse. 
The numbers of compounds correspond to those in Fig. 3.5, Fig. 3.6, and Fig 3.8. 
 



56 3 Results and Discussion 
 
 

3.2.4 Monitoring of a Nutmeg Abuse or Intoxication using Systematic 
Toxicological Analysis 

The STA procedure is based on acid hydrolysis for very efficient and fast cleavage of 

conjugates.150 However, some compounds were altered or destroyed during 

hydrolysis.151,152 Therefore, one part of unhydrolyzed urine was added to the hydrolyzed 

aliquot before extraction. This modified sample preparation was a compromise between 

the necessity of a quick cleavage of conjugates and the detectability of compounds 

destroyed during acid hydrolysis. Although the modification of the STA procedure led to 

lower extract concentrations of compounds excreted in conjugated form, this modified 

procedure was sufficient, because of the high sensitivity of modern GC-MS 

apparatus.151,152  

  
Fig. 3.8. Typical reconstructed mass chromatograms with the given ions of acidic hydrolyzed and 
acetylated extracts of rat urine sample after administration of 500 mg/kg BM of nutmeg (A and B), and a 
human urine sample after nutmeg abuse (C). The peak numbers correspond to those used in Fig. 3.5-3.7. 
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The metabolites of safrole, myristicin, and elemicin were separated by GC and identified 

by EI MS after acid hydrolysis, extraction and acetylation within the STA.79-84 Mass 

chromatography with the following ions m/z 150, 165, 180, 194, 252, and 266 was used 

to indicate the presence of the metabolites of the main ingredients of the volative oil of 

nutmeg. Generation of the mass chromatograms could be started by clicking the 

corresponding pull down menu which executes the user defined macros. Fig. 3.8 (A and 

B) shows typical reconstructed mass chromatograms with the above-mentioned ions of 

an acetylated rat urine extract after application of nutmeg (500 mg/kg each) from 

different geographical sources. In part A, the peak area of metabolite 6, the main 

metabolite of myristicin, but also formed by safrole and elemicin, was about ten times 

higher than that of the others, while in part B, it was only about twice as high. This can 

be explained by the fact, that the content of myristicin may vary from source to source.22  

Part C shows typical reconstructed mass chromatograms with the above-mentioned 

ions of an acetylated human urine extract after suspected nutmeg abuse. The peak 

numbers correspond to the numbering in Fig. 3.5, Fig. 3.6, and Fig. 3.7. Unnumbered 

peaks represent endogenous biomolecules. The identity of peaks in the mass 

chromatograms was confirmed by computerized comparison of the underlying mass 

spectrum with reference spectra recorded during this study.134 The ions m/z 150 and 

164 were used for indication of the presence of the safrole metabolites 2 and 4, the ions 

m/z 165, 180 and 194 for the metabolites of myristicin 6, 9 and 11, and the ions m/z 252 

and 266 for the elemicin metabolites 15-17. In our experience, the RIs provide 

preliminary indications and may be useful to gas chromatographers without a GC-MS 

facility. In addition, they allow distinguishing between the different isomers.  

Therefore, they are also given in Fig. 3.6. The RIs were recorded during the GC-MS 

procedure and calculated in correlation with the Kovats' indices145 of the components of 

a standard solution of typical drugs which is measured daily for testing the GC-MS 

performance.146 The reproducibility of RIs measured on capillary columns was better 

using a mixture of drugs than that of the homologous hydrocarbons recommended by 

Kovats. Although interferences by biomolecules or further drugs cannot be entirely 

excluded, they are rather unlikely, because their mass spectra and/or their RIs should 

be different and included in the reference library134 used.  

Screening for safrole, myristicin, and elemicin themselves was not successful, because 

the substances could neither be detected in urine after administration of nutmeg nor 

after high doses of the three substances themselves. The STA procedure allowed 

3.2 Ingredients of Nutmeg 57 
 
 

The metabolites of safrole, myristicin, and elemicin were separated by GC and identified 

by EI MS after acid hydrolysis, extraction and acetylation within the STA.79-84 Mass 

chromatography with the following ions m/z 150, 165, 180, 194, 252, and 266 was used 

to indicate the presence of the metabolites of the main ingredients of the volative oil of 

nutmeg. Generation of the mass chromatograms could be started by clicking the 

corresponding pull down menu which executes the user defined macros. Fig. 3.8 (A and 

B) shows typical reconstructed mass chromatograms with the above-mentioned ions of 

an acetylated rat urine extract after application of nutmeg (500 mg/kg each) from 

different geographical sources. In part A, the peak area of metabolite 6, the main 

metabolite of myristicin, but also formed by safrole and elemicin, was about ten times 

higher than that of the others, while in part B, it was only about twice as high. This can 

be explained by the fact, that the content of myristicin may vary from source to source.22  

Part C shows typical reconstructed mass chromatograms with the above-mentioned 

ions of an acetylated human urine extract after suspected nutmeg abuse. The peak 

numbers correspond to the numbering in Fig. 3.5, Fig. 3.6, and Fig. 3.7. Unnumbered 

peaks represent endogenous biomolecules. The identity of peaks in the mass 

chromatograms was confirmed by computerized comparison of the underlying mass 

spectrum with reference spectra recorded during this study.134 The ions m/z 150 and 

164 were used for indication of the presence of the safrole metabolites 2 and 4, the ions 

m/z 165, 180 and 194 for the metabolites of myristicin 6, 9 and 11, and the ions m/z 252 

and 266 for the elemicin metabolites 15-17. In our experience, the RIs provide 

preliminary indications and may be useful to gas chromatographers without a GC-MS 

facility. In addition, they allow distinguishing between the different isomers.  

Therefore, they are also given in Fig. 3.6. The RIs were recorded during the GC-MS 

procedure and calculated in correlation with the Kovats' indices145 of the components of 

a standard solution of typical drugs which is measured daily for testing the GC-MS 

performance.146 The reproducibility of RIs measured on capillary columns was better 

using a mixture of drugs than that of the homologous hydrocarbons recommended by 

Kovats. Although interferences by biomolecules or further drugs cannot be entirely 

excluded, they are rather unlikely, because their mass spectra and/or their RIs should 

be different and included in the reference library134 used.  

Screening for safrole, myristicin, and elemicin themselves was not successful, because 

the substances could neither be detected in urine after administration of nutmeg nor 

after high doses of the three substances themselves. The STA procedure allowed 

3.2 Ingredients of Nutmeg 57 
 
 

The metabolites of safrole, myristicin, and elemicin were separated by GC and identified 

by EI MS after acid hydrolysis, extraction and acetylation within the STA.79-84 Mass 

chromatography with the following ions m/z 150, 165, 180, 194, 252, and 266 was used 

to indicate the presence of the metabolites of the main ingredients of the volative oil of 

nutmeg. Generation of the mass chromatograms could be started by clicking the 

corresponding pull down menu which executes the user defined macros. Fig. 3.8 (A and 

B) shows typical reconstructed mass chromatograms with the above-mentioned ions of 

an acetylated rat urine extract after application of nutmeg (500 mg/kg each) from 

different geographical sources. In part A, the peak area of metabolite 6, the main 

metabolite of myristicin, but also formed by safrole and elemicin, was about ten times 

higher than that of the others, while in part B, it was only about twice as high. This can 

be explained by the fact, that the content of myristicin may vary from source to source.22  

Part C shows typical reconstructed mass chromatograms with the above-mentioned 

ions of an acetylated human urine extract after suspected nutmeg abuse. The peak 

numbers correspond to the numbering in Fig. 3.5, Fig. 3.6, and Fig. 3.7. Unnumbered 

peaks represent endogenous biomolecules. The identity of peaks in the mass 

chromatograms was confirmed by computerized comparison of the underlying mass 

spectrum with reference spectra recorded during this study.134 The ions m/z 150 and 

164 were used for indication of the presence of the safrole metabolites 2 and 4, the ions 

m/z 165, 180 and 194 for the metabolites of myristicin 6, 9 and 11, and the ions m/z 252 

and 266 for the elemicin metabolites 15-17. In our experience, the RIs provide 

preliminary indications and may be useful to gas chromatographers without a GC-MS 

facility. In addition, they allow distinguishing between the different isomers.  

Therefore, they are also given in Fig. 3.6. The RIs were recorded during the GC-MS 

procedure and calculated in correlation with the Kovats' indices145 of the components of 

a standard solution of typical drugs which is measured daily for testing the GC-MS 

performance.146 The reproducibility of RIs measured on capillary columns was better 

using a mixture of drugs than that of the homologous hydrocarbons recommended by 

Kovats. Although interferences by biomolecules or further drugs cannot be entirely 

excluded, they are rather unlikely, because their mass spectra and/or their RIs should 
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58 3 Results and Discussion 
 
 

identification of the main metabolites of the nutmeg ingredients safrole, myristicin, and 

elemicin in rat and human urine after administration of a commonly abused dose thus 

allowing to monitor a nutmeg abuse and/or intoxication. These findings have been 

confirmed by Staack and Paul from the Institute of Forensic Toxicology, LMU Munich, 

Germany (personal communication, to be published elsewhere), who could also detect 

the described metabolites in urine of a nutmeg abuser using our STA procedure and the 

reference spectra shown in Fig3.6. The limit of detection could not be determined for 

these metabolites, because reference substances were not available. As already 

mentioned above, the postulated amphetamine derivatives MMDA, TMA, and MDA, 

could not be detected neither in rat, nor in human urine, although, as already mentioned 

above, amphetamine-derived designer drugs could be detected by STA with a detection 

limit of 5-50 ng/ml.85,86  

 

3.3 HERBAL PHENALKYLAMINES 

An LC-ESI-MS/MS assay was developed for selective detection as well as for accurate 

and precise quantification of nine herbal phenalkylamines and methcathinone in human 

plasma. It allows monitoring of an abuse or intoxication as well as differentiation of an 

intake of cold medications from herbal drug or methcathinone abuse in contrast to all 

procedures cited in the Introduction. In addition, the LLOQs were ten times lower than 

those of the other multi-analyte plasma procedures.26,94 The assay was validated 

according international guidelines.137,140,153,154 

 

3.3.1 Extraction Procedure 

In early development stages of the presented assay, it was intended to extract the ten 

analytes by our standard plasma mixed-mode SPE procedure,96,136,155,156 in which the 

analytes were isolated from 1 ml of plasma after dilution with 2 ml of water. This 

procedure had been reported to be versatile for the extraction of designer drugs, 

neuroleptics, and beta-blockers from plasma.96,136,155,156 However, during method 

development, it was recognized that the pH of spiked control samples increased by up 

to 0.75 after freezing and thawing. This caused a decrease in the extraction efficiency of 

all analytes but mescaline. At higher pH values, the relatively polar ephedrines are not 

retained by the reversed-phase part of the SPE sorbent and lacking protonation neither 
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by the ion exchange part. While mescaline also lacks protonation, it was retained well 

by the reversed-phase sorbent most probably due to its higher lipophilicity. Therefore, 

the plasma samples were diluted with acidic buffer instead of water. As shown in 

Table 3.2, the extraction efficiency values ranged from 45 to 93 %. In comparison of 

previously studied compounds, the extraction efficiencies are relatively low, but due to 

their reproducibility and the sufficient sensitivity of the LC-MS/MS assay, they were 

considered acceptable.  

Table 3.2. Extraction efficiency, matrix effect, and process efficiency of the LC-MS/MS assay for the 
studied analytes determined at concentrations of 20 ng/ml (LOW) and 800 ng/ml (HIGH) 
 

Extraction efficiency 

(mean ± SD, %) 

Matrix effect 

(mean ± SD, %) 

Process efficiency 

(mean ± SD, %) 

Analyte 

LOW  

(n = 5) 

HIGH  

(n = 5) 

LOW  

(n = 5) 

HIGH  

(n = 5) 

LOW  

(n = 5) 

HIGH  

(n = 5) 

Cathinone 92 ± 6.4 85 ± 7.9 93 ± 6.7 96 ± 4.5 85 ± 5.9 82 ± 7.6 

Ephedrine 85 ± 4.6 82 ± 5.4 87 ± 4.4 91 ± 3.5 74 ± 4.0 75 ± 5.0 

Methcathinone 84 ± 7.2 75 ± 8.5 102 ± 4.3 96 ± 4.4 85 ± 7.4 72 ± 8.2 

Methylephedrine 93 ± 5.9 80 ± 8.7 95 ± 4.9 96 ± 2.0 88 ± 5.6 76 ± 8.3 

Mescaline 84 ± 5.7 72 ± 9.6 103 ± 3.7 96 ± 4.0 86 ± 5.9 69 ± 9.2 

Methylpseudo-

ephedrine 
92 ± 5.8 72 ± 4.3 93 ± 7.0 100 ± 4.0 86 ± 5.4 72 ± 4.1 

Norephedrine 81 ± 9.1 81 ± 6.6 73 ± 3.4 88 ± 5.4 59 ± 6.7 72 ± 5.8 

Norpseudo-

ephedrine 
64 ± 10.3 78 ± 6.8 82 ± 13.3 73 ± 4.8 53 ± 8.5 57 ± 5.0 

Pseudoephedrine 80 ± 6.5 71 ± 6.7 93 ± 5.9 96 ± 5.7 75 ± 6.0 68 ± 6.5 

Synephrine 45 ± 5.0 55 ± 4.0 92 ± 9.5 94 ± 9.0 41 ± 4.6 52 ± 3.8 
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3.3.2 Detection and Quantification 

The ESI mode was preferred over the APCI mode, because it was found to be more 

sensitive in preliminary experiments and because no relevant matrix effects were 

observed as shown in Table 3.2. The highest matrix effect was observed for 

norephedrine, but this was sufficiently compensated by its deuterated IS, because 

accuracy and precision were acceptable.  

The presence of the drugs was successfully detected in the MRM mode by mass 

fragmentography using three MRM transitions for each substance. Transitions were 

selected and their settings were determined using a 1000 ng/ml solution of each analyte 

in eluent A injected by the integrated syringe pump and using Analyst® Software in 

Quantitative Optimization mode. The three resulting transitions per analyte and 

respective settings are given in Table 2.1. Cross-talk was not observed. As shown in 

Fig. 3.9, not only the parent and product ion masses are important for selective and 

sensitive detection and quantification, but also the analytes-specific instrument settings. 

Fig. 3.9 shows chromatograms of MRM transition 150 -> 77 with parameter settings 

optimized for synephrine (upper part) and for cathinone (lower part). Both 150 -> 77 

transitions have nearly the same collision cell energy, but differ in their declustering and 

entrance potentials. Being located before the collision cell, both potentials are analyte-

specific and not fragment-specific. Thus, choosing analyte-specific settings for the MRM 

transitions was critical for the sensitivity of the assay. Having quite similar mass 

spectrometric properties, sufficient chromatographic separation of the diastereomer 

pairs ephedrine/pseudoephedrine, methylephedrine/methylpseudoephedrine, and 

norephedrine/norpseudoephedrine was necessary for their differentiation. This could be 

achieved in less than 10 min using an SCX separation column and the described 

chromatographic conditions.  
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Fig. 3.9. Chromatograms of MRM transition 150 -> 77 with parameter settings optimized for synephrine 
(SY, upper part) and for cathinone (CA, lower part) using the given declustering potential (DP), entrance 
potential (ENP), collision cell entrance potential (CEP), and collision energy (CE).  

 

For illustration of the detection and identification procedure, smoothed, normalized, and 

merged MRM chromatograms of all target transitions of a LQC sample after SPE are 

shown Fig. 3.10. The peaks were sufficiently separated even in the highest calibrator. 
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62 3 Results and Discussion 
 
 

 

Fig. 3.10. Smoothed, normalized, and merged MRM chromatograms of all target transitions of an extract 
of a LQC sample containing 10 ng/ml synephrine (SY, oxedrine), norephedrine (NE), 
norpseudoephedrine (NPE, cathine), ephedrine (EP), pseudoephedrine (PEP), cathinone (CA), mescaline 
(MES), methcathinone (MC), methylephedrine (ME), methylpseudoephedrine (MPE), 
norephedrine-d3 (NE-d3), ephedrine-d3 (EP-d3), and mescaline-d9 (MES-d9). 

 

3.3.3 Assay Validation 

The described procedure was validated according to internationally accepted 

recommendations.137,140,153,154 The validation data are summarized in Tables 3.2 and 

3.3. As exemplified in Fig. 3.11 (left), no interfering peaks were observed in the extracts 

of the different blank plasma samples. Interferences with common drugs of abuse which 

might be expected to be taken in combination with the analytes were tested and could 

be excluded.  
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Fig. 3.11. Smoothed, normalized, and merged MRM chromatograms of the given transitions of extracts of 
a blank plasma (left) and a LQC sample containing 10 ng/ml synephrine (SY, oxedrine), norephedrine 
(NE), norpseudoephedrine (NPE, cathine), ephedrine (EP), pseudoephedrine (PEP), cathinone (CA), 
mescaline (MES), methcathinone (MC), methylephedrine (ME), methylpseudoephedrine (MPE), 
norephedrine-d3 (NE-d3), ephedrine-d3 (EP-d3), and mescaline-d9 (MES-d9). (right). 
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64 3 Results and Discussion 
 
 

The assay was found to be selective for all tested compounds. A weighted second-order 

model was also evaluated to check for a curvature in the data. For all analytes, a linear 

weighted (1/c2) least squares model was found to be the best and therefore used for 

calculation of calibration curves. It was linear from 10 to 1000 ng/ml of each compound. 

The coefficients of determination (R²) ranged from 0.9948 to 0.9996. 

The LLOQs corresponded to the lowest concentrations used for the calibration curves 

with a signal-to-noise ratio of at least 10. The validation data concerning extraction 

efficiency, matrix effects, and process efficiency are shown in Table 3.2 and those 

concerning accuracy and precision in Table 3.3. Accuracy data were determined and all 

lay within the acceptance interval of ±15% (±20% at the LLOQ) of the nominal values at 

all concentrations. Within-day (repeatability) and intermediate precision were also 

determined and lay within the required limits of 15% RSD (20% RSD at LLOQ), at all 

studied concentration levels.  

In extracts, the analytes were stable at low and high concentrations for a period of more 

than 24 h at 15° C. In the freeze/thaw and long-term stability experiments, the ratio of 

means (stability vs. control samples) were within 90-110%, whereas the 90% CIs for 

stability samples were within 80-120% of the respective control means, such fulfilling 

the acceptance criteria for all analytes at both concentrations. 
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66 3 Results and Discussion 
 

 

3.3.4 Proof of Applicability 

Applicability experiments were carried out using plasma samples taken from healthy 

volunteers one hour after application of common doses of Herba Ephedra, 

pseudoephedrine, or ephedrine. Fig. 3.12 shows smoothed, normalized, and merged 

MRM chromatograms of extracts of authentic plasma samples after ingestion of Herba 

Ephedra (part 1), of pseudoephedrine (part 2), and of ephedrine (part 3). After ingestion 

of Herba Ephedra the ephedrines norephedrine, norpseudoephedrine, ephedrine, 

pseudoephedrine, methylephedrine, and methylpseudoephedrine were detected, 

whereas after ingestion of pseudoephedrine or ephedrine, contained in cold 

medications, only the applied substances were detected. The quantitative results are 

summarized in Table 3.4. 

 

Table 3.4. Plasma concentrations (ng/ml) of norephedrine (NE), norpseudoephedrine (NPE), ephedrine 
(EP), pseudoephedrine (PEP), methylephedrine (ME), and methylpseudoephedrine (MPE) after 
administration of the given drugs (LLOQ: lower limit of quantification). 

Administered drug (dose) NE NPE EP PEP ME MPE 

Herba Ephedra < LLOQ 14.9 20.0 16.0 < LLOQ - 

Herba Ephedra < LLOQ 20.3 25.5 15.8 < LLOQ < LLOQ

Pseudoephedrine (30 mg) - - - 107 - - 

Pseudoephedrine (30 mg) - - - 114 - - 

Ephedrine (6.2 mg) - - 21.5 - - - 

Ephedrine (6.2 mg) - - 21.6 - - - 
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3.3 Herbal Phenalkylamines 67 
 
 

 

Fig. 3.12. Smoothed, normalized, and merged MRM chromatograms of all target transitions of extracts of 
authentic plasma samples after ingestion of Herba Ephedra (part 1), of pseudoephedrine (part 2), and of 
ephedrine (part 3) indicating norephedrine (NE), norpseudoephedrine (NPE, cathine), ephedrine (EP), 
pseudoephedrine (PEP), methylephedrine (ME), and/or methylpseudoephedrine (MPE), and the internal 
standards NE-d3, EP-d3, and MES-d9. 
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68 3 Results and Discussion 
 
 

3.4 TOXIC ALKALOIDS 

A single stage MS and a tandem MS assay were developed for selective detection as 

well as for accurate and precise quantification of toxic alkaloids in human plasma and 

compared with respect to selectivity, linearity, accuracy, precision, and matrix effects. 

Both assays were validated according to international guidelines.137,140,153,154  

 

3.4.1 Extraction Procedure 

In early development stages of the presented assay, it was intended to extract the 

analytes either by the plasma mixed-mode SPE procedure described for herbal 

phenalkylamines,157 or by their standard liquid-liquid extraction (LLE) procedure.158-160 

While colchicine showed better extraction efficiency using LLE, all other studied 

analytes showed better results using SPE. Therefore, the SPE procedure was preferred 

over LLE for extraction of these analytes from plasma. As shown in Tables 3.5 and 3.6, 

the extraction efficiency values ranged from 10 to 90 %. For colchicine the extraction 

efficiency was relatively low, which can be explained by its chemical properties. 

Whereas the used mixed-mode SPE procedure is optimized for basic compounds, 

colchicine shows no basic properties. Nevertheless, the described extraction procedure 

was considered acceptable due reproducible extraction and the sufficient sensitivity 

even for this analyte. 

 

3.4.2 Detection and Quantification 

For single stage MS, the APCI source was found to be more sensitive than the 

corresponding ESI source in preliminary experiments. In case of tandem MS coupled 

with the Turbo V® Source, the ESI mode was preferred over the APCI mode, because it 

was found to be more sensitive. Consequently, the different apparatus were compared 

using the respective most sensitive ionization mode. 
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with the Turbo V® Source, the ESI mode was preferred over the APCI mode, because it 

was found to be more sensitive. Consequently, the different apparatus were compared 

using the respective most sensitive ionization mode. 
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In single stage MS, the presence of the analytes was screened for in the full scan mode 

by mass chromatography in the MSD 1 trace of the same run with the above given 

parameters. The following ions were used for screening (m/z, in order of appearance in 

the chromatogram): 191, 177, 180 (IS), 163, 128, 304, 293 (IS), 276, 290, 400, 298 (IS), 

and 646. Positive peaks in the recorded traces were identified by library search 

comparing the underlying APCI mass spectra with the reference spectra of our LC-MS 

library of drugs, poisons, pesticides and their metabolites created for the NIST98 search 

algorithm. The corresponding reference spectra recorded during this study are shown 

on the left side of Fig 3.13. In this Figure, the ions used for screening are underlined. 

In tandem MS, the presence of the drugs was successfully detected in the MRM mode 

using three MRM transitions for each substance. Transitions were selected and their 

settings were determined using a 1000 ng/ml solution of each analyte in eluent A 

injected by the integrated syringe pump and using Analyst® Software in Quantitative 

Optimization mode. The three resulting transitions per analyte and respective settings 

are given in Table 2.2. In the right part of Fig. 3.13, the product ion scan spectra, 

recorded during this study, are shown. The ions chosen as product ions are underlined. 

Cross-talk was not observed.  

For illustration of the detection and identification using the different apparatus, Fig. 3.14 

shows the respective chromatograms of a MED sample after SPE. Part A of Fig. 3.14 

shows smoothed and merged mass chromatograms of the ions 191, 177, 180 (IS), 163, 

128, 304, 293 (IS), 276, 290, 400, 298 (IS), and 646 using single stage MS, part B of 

Fig. 3.15 shows smoothed, and merged MRM chromatograms of all recorded transitions 

using tandem MS.  
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Fig. 3.13. Mass spectra of all studied analytes recorded in the full scan mode using single stage APCI MS 
(left), and corresponding product ion spectra recorded in the product ion scan mode using tandem ESI 
MS (right). 
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74 3 Results and Discussion 
 
 

For quantification using single stage MS, SIM mode was used at 100 and 200 V 

fragmentor voltage with different gain values. For the quantification process, the 

analytes were divided into two different groups according to their expected 

concentration ranges and each group was assigned to one of three separately recorded 

traces with specific gain values as given in Table 2.2. 

For quantification using tandem MS, MRM mode was used. One of the three transitions 

of each substance was used for quantification. This target transition is marked with an 

(t) in Table 2.3. 

The peak area ratios of the target ions or the target transition of the drugs vs. those of 

the corresponding IS were compared with weighted least squares (1/c2) calibration 

curves in which the peak area ratios (analytes vs. IS) of the calibration standards were 

plotted versus their concentrations. The different IS were assigned to the different 

analytes as shown in tables 3.7 and 3.8. The Structures of the IS used for quantification 

are depicted in Fig. 3.14. 
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Fig. 3.14. Chemical structures of the IS used for quantification. 
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Fig. 3.15. Smoothed and merged chromatograms of the ions 191, 177, 180 (IS), 163, 128, 304, 293 (IS), 
276, 290, 400, 298 (IS), and 646, recorded in the full scan mode, of a MED sample containing cytisine 
(peak 1), nicotine (2), cotinine-d3 (3), cotinine (4), coniine (5), scopolamine (6), benzoylecgonine-d3 (7), 
physostigmine (8), atropine (9), colchicine (10), trimipramine-d3 (11), and aconitine (12) after SPE using 
the single stage MS (A). Smoothed and merged MRM chromatograms of all recorded transitions of same 
MED sample after SPE using the tandem MS (B). 
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76 3 Results and Discussion 
 
 

3.4.3 Assay Validation 

The described procedures were validated according to internationally accepted 

recommendations.137,140,153,154 The validation data are summarized in Tables 3.5-3.8. 

The assay was found to be selective for all tested compounds using either single stage 

MS or tandem MS. No interfering peaks were observed in the extracts of the different 

blank plasma samples using both detectors. When using the APCI mode, the tested IS 

nicotine-d4 showed a loss of 4 atomic mass units most probably due to aromatization of 

the pyrrolidine ring. The resulting fragment ion m/z 163 was isobaric to the protonated 

molecular ion of nicotine and hence interfered with the quantification of the latter. 

Therefore, nicotine-d4 could not be used as IS.  

As shown in Tables 3.5 and 3.6, no relevant matrix effects were observed for both types 

of ionization. The highest matrix effect was observed for physostigmine in the APCI 

mode and for scopolamine in the ESI mode, but considered acceptable due to good 

reproducibility. 

In linearity experiments, a weighted second-order model was also evaluated to check 

for a curvature in the data. For all analytes, a linear weighted (1/c2) least squares model 

was found to be the best and therefore used for calculation of calibration curves. Using 

single stage MS, the assay was linear from 50 to 1000 ng/ml for coniine, cotinine, 

cytisine, and nicotine, as well as from 5 ng/ml to 100 ng/ml for aconitine, atropine, 

colchicine, physostigmine, and scopolamine, respectively. The coefficients of 

determination (R²) ranged from 0.9894 to 0.9997. Using tandem MS, the assay was 

linear from 1 to 1000 ng/ml for coniine, cotinine, cytisine, and nicotine, as well as from 

0.1 ng/ml to 100 ng/ml for aconitine, atropine, colchicine, physostigmine, and 

scopolamine, respectively. The coefficients of determination (R²) ranged from 0.9912 to 

0.9994. The linearity was comparable either using single stage MS or tandem MS. In 

both assays, the worst coefficient of determination was found for nicotine, most 

probably due to its volatility, whereas the best results were found for cotinine, probably 

due to the use of its deuterated analogue as IS. 
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The LLOQs were fixed to the lowest concentrations used for the calibration curves with 

a signal-to-noise ratio of at least 10. All LOD values were lower or at least equal to half 

of those of the corresponding LLOQ, either using single stage MS or tandem MS. 

The validation data for both apparatus concerning extraction efficiency, matrix effects, 

and process efficiency are shown in Table 3.5 (single stage MS), and 3.6 (tandem MS) 

as well as those concerning accuracy and precision in Table 3.7 (single stage MS) and 

3.8 (tandem MS). Accuracy data lay within the acceptance interval of ±15% of the 

nominal values at all concentrations with the exception of those of nicotine most 

probably due to its volatility. Using nicotine-d4 as internal standard would probably solve 

these problems, but as mentioned above, this was not possible. Within-day 

(repeatability) and intermediate precision lay within the required limits of 15% RSD for 

both apparatus at all studied concentration levels.  

In extracts, the analytes were stable at low and high concentrations for a period of more 

than 24 h. In the freeze/thaw and long-term stability experiments, the ratio of means 

(stability vs. control samples) were within 90-110%, whereas the 90% CIs for stability 
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80 3 Results and Discussion 
 

 

3.4.4 Proof of Applicability 

Applicability experiments were carried out using plasma samples from poisoning cases 

sent to our laboratory for toxicological analysis. Patient one accidentally ingested leaves 

of Colchicum autumnale (Meadow saffron) containing colchicine due to a mix-up with 

the vegetable Allium ursinum, known as Ramsons. In the upper part of Fig 3.16, the 

corresponding ion fragmentogram with the given ions of the plasma sample extract after 

SPE using LC-MS (A), as well as the MRM chromatograms with the given transitions 

using LC-MS/MS (B) are shown. Using single stage MS, a toxic concentration of 24 

ng/ml of colchicine was determined and using tandem MS 25 ng/ml. 

Patient two abused Datura stramonium containing atropine and scopolamine. In the 

lower part of Fig 3.16 the corresponding ion fragmentogram with the given ions of the 

plasma sample extract after SPE using LC-MS (C), as well as the MRM chromatograms 

with the given transitions using LC-MS/MS (D) are shown. Using single stage MS, a 

therapeutic concentration of 6.4 ng/ml of atropine, a toxic concentration of 5.6 ng/ml of 

scopolamine, and a common smoker’s concentration of 321 ng/ml of cotinine were 

determined and using tandem MS, 6.1 ng/ml of atropine, 5.9 ng/ml of scopolamine and 

319 ng/ml of cotinine. 

 

3.4.5 Comparison of Methods 

In all validation experiments of the two procedures, the identical plasma extracts were 

used. Therefore a comparison was possible of both apparatus operated in the 

respective most sensitive ionization mode. Both assays (single stage as well as tandem 

MS) were selective for the tested compounds. Comparing the spectra shown in 

Fig. 3.13, it can be seen that in tandem MS the identification power was higher due to 

the higher fragmentation of the precursor ions. Monitoring the transitions allowed limits 

of detection of about ten times lower in tandem MS than in single stage MS. As shown 

in Figs. 3.15 and 3.16, tandem MS yielded better signal-to-noise ratios in the identical 

extracts. In contrast to that advantage of tandem MS, the accuracy and precision data 

for both apparatus were comparable. No relevant matrix effects were observed in both 

assays. 
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Fig. 3.16. Smoothed, normalized and merged chromatograms with the given ions of a plasma extract 
after SPE indicating a toxic concentration of 24 ng/ml of colchicine (peak 10) determined using single 
stage MS (A). Smoothed, normalized and merged chromatograms of the given transitions of the same 
extract indicating a toxic concentration of 25 ng/ml of colchicine (peak 10) determined using tandem MS 
(B). Smoothed, normalized and merged chromatograms with the given ions of a plasma extract after SPE 
indicating a therapeutic concentration of 6.4 ng/ml of atropine (peak 9), a toxic concentration of 5.6 ng/ml 
of scopolamine (peak 6), and a common smoker’s concentration of 321 ng/ml of cotinine (peak 4) 
determined using single stage MS (C). Smoothed, normalized and merged chromatograms of the given 
transitions of the same extract indicating a therapeutic concentration of 6.1 ng/ml of atropine (peak 9), a 
toxic concentration of 5.9 ng/ml of scopolamine (peak 6), and a common smoker’s concentration of 319 
ng/ml of cotinine (peak 4) determined using tandem MS (D). The peak numbering of the IS is according to 
that of Fig. 3.15.  

 

3.4 Toxic Alkaloids 81 
 
 

 

Fig. 3.16. Smoothed, normalized and merged chromatograms with the given ions of a plasma extract 
after SPE indicating a toxic concentration of 24 ng/ml of colchicine (peak 10) determined using single 
stage MS (A). Smoothed, normalized and merged chromatograms of the given transitions of the same 
extract indicating a toxic concentration of 25 ng/ml of colchicine (peak 10) determined using tandem MS 
(B). Smoothed, normalized and merged chromatograms with the given ions of a plasma extract after SPE 
indicating a therapeutic concentration of 6.4 ng/ml of atropine (peak 9), a toxic concentration of 5.6 ng/ml 
of scopolamine (peak 6), and a common smoker’s concentration of 321 ng/ml of cotinine (peak 4) 
determined using single stage MS (C). Smoothed, normalized and merged chromatograms of the given 
transitions of the same extract indicating a therapeutic concentration of 6.1 ng/ml of atropine (peak 9), a 
toxic concentration of 5.9 ng/ml of scopolamine (peak 6), and a common smoker’s concentration of 319 
ng/ml of cotinine (peak 4) determined using tandem MS (D). The peak numbering of the IS is according to 
that of Fig. 3.15.  

 

3.4 Toxic Alkaloids 81 
 
 

 

Fig. 3.16. Smoothed, normalized and merged chromatograms with the given ions of a plasma extract 
after SPE indicating a toxic concentration of 24 ng/ml of colchicine (peak 10) determined using single 
stage MS (A). Smoothed, normalized and merged chromatograms of the given transitions of the same 
extract indicating a toxic concentration of 25 ng/ml of colchicine (peak 10) determined using tandem MS 
(B). Smoothed, normalized and merged chromatograms with the given ions of a plasma extract after SPE 
indicating a therapeutic concentration of 6.4 ng/ml of atropine (peak 9), a toxic concentration of 5.6 ng/ml 
of scopolamine (peak 6), and a common smoker’s concentration of 321 ng/ml of cotinine (peak 4) 
determined using single stage MS (C). Smoothed, normalized and merged chromatograms of the given 
transitions of the same extract indicating a therapeutic concentration of 6.1 ng/ml of atropine (peak 9), a 
toxic concentration of 5.9 ng/ml of scopolamine (peak 6), and a common smoker’s concentration of 319 
ng/ml of cotinine (peak 4) determined using tandem MS (D). The peak numbering of the IS is according to 
that of Fig. 3.15.  

 

3.4 Toxic Alkaloids 81 
 
 

 

Fig. 3.16. Smoothed, normalized and merged chromatograms with the given ions of a plasma extract 
after SPE indicating a toxic concentration of 24 ng/ml of colchicine (peak 10) determined using single 
stage MS (A). Smoothed, normalized and merged chromatograms of the given transitions of the same 
extract indicating a toxic concentration of 25 ng/ml of colchicine (peak 10) determined using tandem MS 
(B). Smoothed, normalized and merged chromatograms with the given ions of a plasma extract after SPE 
indicating a therapeutic concentration of 6.4 ng/ml of atropine (peak 9), a toxic concentration of 5.6 ng/ml 
of scopolamine (peak 6), and a common smoker’s concentration of 321 ng/ml of cotinine (peak 4) 
determined using single stage MS (C). Smoothed, normalized and merged chromatograms of the given 
transitions of the same extract indicating a therapeutic concentration of 6.1 ng/ml of atropine (peak 9), a 
toxic concentration of 5.9 ng/ml of scopolamine (peak 6), and a common smoker’s concentration of 319 
ng/ml of cotinine (peak 4) determined using tandem MS (D). The peak numbering of the IS is according to 
that of Fig. 3.15.  

 



82 
 
 

 

4 CONCLUSIONS 

The presented GC-MS procedures for the detection of laxatives allowed the 

identification and differentiation of stimulant laxatives and/or their metabolites in urine 

after ingestion of therapeutic doses. Therefore, this screening can be used for 

confirmation of an intake of these drugs during diagnosis or differential diagnosis of 

various intestinal disorders. Furthermore, introducing enzymatic cleavage of conjugates 

allowed to integrate successfully the described method into the previously described 

screening procedures for simultaneous detection of other drugs like first generation 

anticoagulants,71 ACE inhibitors and angiotensin II receptor antagonists,70 

dihydropyridine calcium channel blockers,72 diuretics,142,143 and NSAIDs.73  
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5 SUMMARY 

In the presented thesis, procedures are described for screening for, identification and/or 

validated quantification of herbal drugs in blood or urine using GC-MS, LC-MS or LC-

MS/MS. They are needed in in clinical and forensic toxicology, because poisonings with 

plants or plant ingredients as well as their abuse are widespread. The aims of such an 

abuse are stimulation, hallucinations, or even for weight loss or habitual use. In both 

cases, toxicological analysis is the prerequisite for reliable diagnosis, prognosis and 

monitoring. The following drugs or drugs classes were included in this method 

development: laxatives, ingredients of nutmeg, herbal phenalkylamines, and toxic 

alkaloids. 

For detection of the acidic laxatives bisacodyldiphenol, phenolphthalein, and rhein in 

urine, extractive methylation was used. The analytes were derivatized and 

simultaneously extracted using methyl iodide in toluene and the phase transfer catalyst 

tetrahexylammonium hydrogen sulfate. The phase transfer catalyst was removed from 

the organic phase by solid phase extraction. The extracts were analyzed by GC-MS. 

The developed method allowed the identification and differentiation of stimulant 

laxatives and/or their metabolites in urine after ingestion of therapeutic doses.161 

In the study covering the nutmeg ingredients, metabolism and toxicological analysis in 

urine of elemicin, myristicin, and safrole were investigated. The qualitative metabolism 

was studied in Wistar rats, that were administered a high dose of the corresponding 

nutmeg ingredient. The metabolites were identified by GC-MS. The study showed that 

the nutmeg ingredients were extensively metabolized, and that the parent compounds 

were not detectable in urine. For toxicological analysis, an established method including 

acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation was used. 

The derivatized metabolites were separated and detected using GC-MS in the full scan 

mode. Using this procedure, a nutmeg abuse or intoxication can be monitored via 

detection of the metabolites.162 

Detection and validated quantification of herbal phenalkylamines ephedrine, 

pseudoephedrine, norephedrine, norpseudoephedrine, methylephedrine, 

methylpseudoephedrine, cathinone, mescaline, synephrine (oxedrine), and 

methcathinone in human plasma were based on a standard solid-phase extraction 

procedure using mixed-mode SPE columns. The analytes were seperated using a liquid 
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chromatography with a strong cation exchange seperation column as stationary phase, 

and a gradient elution with 5 mM ammonium formate buffer/acetonitril as mobile phase. 

The analytes were detected with an LC-ESI-MS/MS operated in the MRM mode. The 

method allowed the detection of ephedrines after ingestion of therapeutic doses, 

selective, linear, accurate and precise quantification, as well as the differentiation of an 

herbal drugs abuse from ingestion of cold remedies.157 

Detection and validated quantification of the toxic alkaloids aconitine, atropine, 

colchicine, coniine, cotinine, cytisine, nicotine, physostigmine, scopolamine in human 

plasma were based on the identical extraction procedure used for the extraction of the 

herbal phenalkylamines. The analytes were seperated using a liquid chromatography 

with a C8 base select seperation column as stationary phase, and a gradient elution 

with 50 mM ammonium formate buffer/acetonitril as mobile phase. The analytes were 

detected either with an LC-APCI-MS operated in full scan and SIM mode or an LC-ESI-

MS/MS operated in the MRM mode. In this study, the use of LC-APCI-MS vs LC-ESI-

MS/MS was directly compared. As expected, the tandem MS was more selective and 

sensitive than the single stage MS. The accuracy and precision data for both apparatus 

were comparable. In case of poisoning, both apparatus can be used for detection and 

quantification. Only if low concentration must be monitored tandem MS is needed due to 

its higher sensitivity.163 

 

In summary, all presented methods have proven to be reliable and accurate and are 

now a valuable tool in clinical and forensic toxicology. 
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Liquid chromatography-tandem mass spectrometry 

7 ABBREVIATIONS 

ACR Above calibraton range 

ANOVA Analysis of Variance 

APCI Atmospheric pressure chemical ionization 

CE Collision energy 

CEP Collision cell entrance potential 

CNS Central nervous system 

CXP Collision cell exit potential 

DP Declustering potential 

EI electron ionization 

ENP Entrance potential 

ESI Electrospray ionization 

FT Forensic toxicology 

GC-MS Gas chromatography-mass spectrometry 

HPLC High performance liquid chromatography 

IS Internal standard 

LC-MS Liquid chromatography-mass spectrometry 

LC-MS/MS 

LLOQ Lower limit of quantification 

LOD Limit of detection 

LQC Low quality control 

m/z Mass to charge ratio 

MDA 3,4-Methylendioxyamphetamine 

MMDA 3,4-Methylendioxy-5-methoxyamphetamine 

MRM Multiple reaction monitoring 

MS Mass spectrometry 
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102 7 Abbreviations 
 
 

 
NMR nuclear megnetic resonance 

PMA 4´-Methoxyamphetamine 

QC Quality control 

RSD Relative standard deviation 

S/N Signal to noise ratio 

SCX Strong Cation exchange 

SIM Selected-ion monitoring 

SPE Solid-phase extraction 

STA Systematic toxicological analysis 

TDM Therapeutic drug monitoring 

THA Tetrahexylammonium 

THC Tetrahydrocannabinol 

TLC Thin layer chromatography 

TMA 3,4,5-Trimethoxyamphetamine 

UV Ultraviolett 
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8 ZUSAMMENFASSUNG 

Die vorliegende Dissertation beschreibt Methoden zur Suchanalyse, Identifizierung 

und/oder validierten Quantifizierung von pflanzlichen Arzneistoffen in Blut oder Urin 

unter der Verwendung GC-MS, LC-MS oder LC-MS/MS. Diese Methoden werden 

sowohl in der klinischen wie auch der forensischen Toxikologie aufgrund der 

Verbreitung von Pflanzenvergiftungen bzw. Vergiftungen mit Pflanzenwirkstoffen sowie 

deren Missbrauch benötigt. Die Beweggründe eines solchen Missbrauchs sind 

Stimulation, Halluzinationen, aber auch Gewichtsverlust oder Gewöhnung. Sowohl zur 
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den Nachweis einer Vergiftung sowie Nachweis eines Missbrauchs von Muskatnuss 

durch Detektion der Metaboliten der Muskatnussinhaltsstoffe.162 

Die Detektion sowie die validierte Quantifizierung der pflanzlichen Phenalkylamine 

Ephedrin, Pseudoephedrin, Norephedrin, Norpseudoephedrin, Methylephedrin, 

Methylpseudoephedrin, Cathinon, Mescalin, Synephrin (Oxedrin) und Methcathinon im 

Blut basierte auf einer standardmäßig verwendeten Festphasenextraktion unter 

Zuhilfenahme von Mixed-mode Festphasensäulen. Die Analyten wurden mittels 

Flüssigchromatographie mit einer starken Kationentauscher-Säule als stationäre Phase 

und einem Gradientengemisch aus 5 mM Ammoniumformiatpuffer/Acetonitril getrennt. 

Zur Detektion diente ein LC-ESI-MS/MS, welches im MRM Modus betrieben wurde. Die 

Methode erlaubt die Detektion der Ephedrine nach Einnahme therapeutischer 

Dosierungen, die selektive, lineare, richtige und präzise Quantifizierung der genannten 

Substanzen sowie die Unterscheidung eines Missbrauchs von Pflanzen von der 

Einahme eines Erkältungsmittels.157 

Die Detektion sowie die validierte Quantifizierung der giftigen Alkaloide Aconitin, 

Atropin, Colchicin, Coniin, Cotinin, Cytisin, Nicotin, Physostigmin und Scopolamine im 

Blut basierten auf der identischen Extraktion wie für die pflanzlichen Phenalkylamine. 

Die Analyten wurden mittels Flüssigchromatographie mit einer C8 base select-Säule als 

stationäre Phase und einem Gradientengemisch aus 50 mM Ammoniumformiat-

puffer/Acetonitril getrennt. Zur Detektion diente entweder ein LC-APCI-MS, welches im 

full-scan bzw. im SIM Modus betrieben wurde, oder ein LC-ESI-MS/MS, welches im 

MRM Modus betrieben wurde. Im Rahmen dieser Untersuchung wurden der 

verwendete LC-APCI-MS sowie der LC-ESI-MS/MS direkt miteinander verglichen. Wie 

zu erwarten war der Tandem MS selektiver und empfindlicher als der Single Stage MS. 

Die Richtigkeits und Präzisionswerte hingegen waren vergleichbar. Zum Nachweis und 

zur Quantifizierung einer Vergiftung sind beide Geräte geeignet. Wenn allerdings 

niedrigste Konzentrationen der Stoffe überwacht werden müssen, bedarf es der 

Benutzung eines Tandem MS aufgrund dessen höherer Sensitivität.163 

Zusammenfassend lässt sich sagen, daß alle hier präsentierten Methoden zuverlässig 

und genau sind. Diese Methoden sind ein wertvolles Werkzeug sowohl in der klinischen 

als auch der forensichen Toxikologie. 
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