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Summary / Abstract 

The general purpose of the present neuroimaging work was to investigate the neural 

mechanisms of cognitive control that are recruited in situations of cognitive interference or 

competition. To address this issue, an oddball variant of the Stroop paradigm was created and 

applied. Thereby, participants responded to the font size of presented word stimuli by either a 

left or right button press. Nine neurologically healthy young subjects underwent functional 

magnetic resonance imaging (fMRI) while they performed the task. Besides the neuroimaging 

data, reaction time as behavioral measure was registered and analyzed. Basically, the current 

work pursued three goals: 

(1) First, it was planned to investigate and compare the neural mechanisms of cognitive 

control that are recruited during two distinct situations (i.e. experimental conditions) of 

interference or competition between task-relevant and task-irrelevant information: (a) Stroop-

incongruity (i.e. when subjects are presented with incongruent word information assumed to 

produce Stroop-interference) and (b) oddballs (i.e. when subjects are presented with task-

irrelevant but attention-capturing low-frequency events). Thereby, in order to ensure high 

comparability, incongruity effects (i.e. Stroop-interferece) and oddball effects (i.e. oddball 

interference) should be investigated within the same processing domain, that means 

incongruent and low-frequent task-irrelevant information should occur in the same stimulus 

dimension. Accordingly, besides Stroop-incongruent trials, a ‘Word-oddball’ condition was 

created that comprised rarely occurring words, so that in both compared conditions 

interference emanated from the word dimension, including incongruent information in the one 

case and rarely occurring information in the other. Based on prior studies’ findings, the 

related hypothesis was that the neural mechanisms that underlie the resolution of Stroop-

interference (i.e. the overriding of a prepotent response tendency, in the present case to read 

and react to word meaning) are, at least in part, the same as those that underlie the processing 

of task-irrelevant low-frequency events (i.e. the overriding of an involuntary attentional 

orienting response). 

(2) Second, it was planned to elucidate domain-specific effects in interference processing. For 

this purpose, oddball events that occurred in different stimulus dimensions – corresponding to 

different processing domains – were compared to each other. Specifically, in addition to 

Word-oddballs, a Color-oddball condition comprising of rarely occurring red colored stimuli 

was created, and subsequently the two low-frequency conditions were compared to each 

other. Either oddball condition was expected to evoke an involuntary orienting response to the 
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respective dimension, either word or color, in which the oddball event occurs, which 

consequently would require subjects to reconfigure the current attentional set. 

(3) Third and finally, the current work sought to trace back Stroop-interference to the 

influence of circumscribed properties of task-irrelevant word information that can be 

conceived as “conflict factors”. In particular, it was planned to delineate the neural substrates 

of three conflict factors: (A) response-incompatibility (i.e. word identity indicates an opposed 

response), (B) semantic incongruency (i.e. word identity is semantically incongruent, i.e. 

conceptually contradictory, independent of its response-mapping), and (C) task-reference (i.e. 

word identity is semantically related to the task-set, independent of its semantic match with 

the relevant dimension). 

Generally, all interference conditions (i.e. incongruity or oddballs trials) exhibited 

substantially prolonged reaction times as compared to non-interference conditions (i.e. 

baseline trials), demonstrating that the experimental manipulation of the adopted task 

paradigm was indeed effective. Accordingly, the neuroimaging data revealed definitive 

patterns of results allowing for meaningful conclusions regarding the presented issues of this 

work. 

Ad (1) The comparison of Stroop-interference and interference emanating from Word-

oddballs revealed two distinct patterns of neural activation that exhibited only sparse overlap. 

Therefore, the data did not corroborate the expectation that the two interference effects exhibit 

a marked activation overlap that could be construed to reflect or represent a core neural 

mechanism in cognitive control. Rather, the two different activation patterns can be 

conclusively interpreted to represent two distinct and complementary (sub-)components (i.e. 

aspects or levels) of cognitive interference that refer to distinct control functions. First, the 

analyses revealed a motor component of interference that is related to Stroop incongruity or 

Stroop-interference, and that reflects the occurrence of (response-)conflict emanating from 

incongruent word meaning. Second, an attentional component was isolated that reflects the 

ability of low-frequent, task-irrelevant information to efficiently distract attentional resources 

(i.e. to evoke an involuntary orienting response to which one may refer as ‘oddball 

interference’). While the first component was associated with activity mainly in regions that 

are implicated in motor control and response preparation (comprising e.g. premotor cortices, 

the basal ganglia and cerebellum), the second component was represented by a frontoparietal 

“attention network” that most probably reflects top-down attentional control to focus on task-

relevant information (i.e. to select task-relevant over task-irrelevant information), as 

suggested by numerous studies of the cognitive neuroscience literature. 
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Ad (2) Word- and Color-oddballs exhibited a broad overlap of activations, mainly in 

prefrontal areas but also in posterior processing regions. Findings are consistent with the 

assumption that attentional selection mainly works through manipulating, i.e. boosting, 

processing of task-relevant information in posterior processing areas. Color-oddballs 

compared to Word-oddballs exhibited the stronger behavioral effect as well as stronger and 

more widespread neural activation. This latter finding may be attributed to the task context 

and to a greater inherent saliency of color compared to word information. Furthermore, in line 

with prior studies’ findings, the current data emphasized a prominent role of a region in the 

posterior lateral PFC – referred to as inferior frontal junction area (IFJA) – in implementing 

top-down attentional control. In this context, both oddball conditions of the current study 

exhibited the bilateral IFJA as one main site of activation. 

Ad (3) Finally, the ‘factorial decomposition analysis’ revealed definitive activation patterns 

related to the defined conflict factors that allowed for meaningful conclusions. Response-

incompatibility was related to activation in the left ventral premotor cortex which can be 

reasonably interpreted as indicator for or neural substrate of response conflict (i.e. motor 

competition). Semantic incongruency exhibited specific activation in the posterior 

frontomedian cortex, the bilateral insula, the basal ganglia and thalamus, as well as in the left 

postcentral gyrus corresponding to the somatosensory cortex. These activations presumably 

underlie strengthened motor control efforts to prevent false responding. Finally, task-

reference exhibited activation in the left inferior prefrontal cortex, right superior prefrontal 

cortex, and left temporo-polar cortex. Due to prior studies’ findings that relate these regions to 

semantic processing of lexical tokens, one may conclusively assume that this neural activation 

pattern underlies increased lexico-semantic processing of task-irrelevant (but task-associated) 

word information. 

The most notable feature of the current work is that it isolates subcomponents of neural 

mechanisms that underlie interference processing (i.e. interference resolution) which 

supposably have been intermingled in analyses of prior Stroop or interference studies. In 

particular, the distinction between a motor and an attentional component may contribute to a 

refined comprehension of cognitive interference and related control mechanisms. Similarly, 

the conducted factorial decomposition analysis may provide a more fine-grained 

conceptualization of Stroop-interference as it pointed to the existence of different cognitive 

sub-processes during interference processing which have their distinct neural substrates (i.e. 

activation patterns). 
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Zusammenfassung (deutsche Fassung) 

 

Untersuchung der neuronalen Mechanismen exekutiver Kontrolle in 

Situationen von kognitivem Konflikt und Kompetition unter Verwendung 

funktioneller Hirnbildgebung 
Ziel der vorliegenden Untersuchung war es, mittels funktioneller Hirnbildgebung die 

neuronalen Mechanismen kognitiver Kontrolle in verschiedenen Situationen kognitiver 

Interferenz bzw. Kompetition zwischen aufgabenrelevanter und aufgabenirrelevanter 

Information zu untersuchen. Zu diesem Zweck wurde ein spezielles Aufgabenparadigma, eine 

„Oddball-Variante“ der klassischen Stroop-Aufgabe, entwickelt und eingesetzt. Hierbei war 

es Aufgabe der Probanden, präsentierte Wortstimuli anhand deren Schriftgröße per (linken 

oder rechten) Tastendruck (als „groß“ oder „klein“) zu klassifizieren. Neun neurologisch 

gesunde Probanden nahmen an der Studie teil und unterzogen sich funktioneller 

Kernspintomographie (fMRT), während sie die beschriebene Aufgabe bearbeiteten. Neben 

den generierten Bildgebungsdaten, wurden die Reaktionszeiten der Probanden auf die Stimuli 

registriert und analysiert. Im Wesentlichen verfolgte die Studie folgende drei Ziele: 

(1) In erster Linie war es das Ziel, die neuronalen Mechanismen kognitiver Kontrolle in zwei 

distinkten Situationen (d.h. unter zwei distinkten experimentellen Bedingungen) kognitiver 

Interferenz zu untersuchen und miteinander zu vergleichen: (a) wenn Stroop-Inkongruenz – 

d.h. inkongruente Wortinformation von welcher angenommen wird, dass sie sog. Stroop-

Interferenz auslöst – auftritt, und (b) wenn „Oddballs“ – d.h. aufgabenirrelevante, jedoch 

saliente und daher aufmerksamkeitsablenkende Seltenheitsereignisse – auftreten. Um eine 

gute Vergleichbarkeit zu gewährleisten, sollten Inkongruenz- und Oddball-Effekte in der 

gleichen Verarbeitungsdomäne untersucht werden, d.h. inkongruente und seltene 

aufgabenirrelevante Information sollten in der gleichen Stimulusdimension dargeboten 

werden. Entsprechend wurde neben Stroop-inkongruenten Durchgängen eine sog. „Word-

Oddball“ Bedingung gebildet, die aus selten präsentierten Worten bestand. Folglich ging in 

beiden zu vergleichenden Bedingungen Interferenz von der Wort-Dimension der 

dargebotenen Stimuli aus, die im einen Fall inkongruente Information und im anderen Fall 

seltene Information beinhaltete. Aufgrund der Ergebnisse vorausgehender Studien bestand die 

Hypothese, dass die neuronalen Mechanismen, die der Lösung von Stroop-Interferenz 

(bestehend in der Überschreibung der vorherrschenden Reaktionstendenz, irrelevante 

Wortinformation zu lesen) und Oddball-Interferenz (bestehend in der Überschreibung einer 
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unwillkürlichen attentionalen Orientierungsreaktion) zugrunde liegen, (zumindest teilweise) 

sich entsprechen. 

(2) Zweitens war es geplant, den Einfluss der Verarbeitungsdomäne, in welcher Interferenz 

auftritt, zu untersuchen, d.h. es sollten mögliche domänenspezifische Effekte der 

Interferenzverarbeitung bestimmt werden. Zu diesem Zweck wurden Oddball-Ereignisse (d.h. 

Seltenheitsereignisse), die in verschiedenen Stimulusdimensionen – und entsprechend in 

verschiednen Verarbeitungsdomänen – auftreten, miteinander verglichen. Speziell wurde 

zusätzlich zu den beschriebenen „Word-Oddballs“ eine sog. „Color-Oddball“ Bedingung, 

bestehend aus selten auftretenden rotfarbigen Stimuli, realisiert, um anschließend die beiden 

Seltenheitsereignisse miteinander zu vergleichen. Von beiden Oddball-Bedingungen wurde 

erwartet, dass sie eine attentionale Orientierungsreaktion, hin zu der jeweiligen 

Stimulusdimension, in der das Seltenheitsereignis auftrat, auslösen, was eine Rekonfiguration 

der Aufmerksamkeit notwendig machen würde. 

(3) Schließlich war es das Ziel der vorliegenden Arbeit, Stroop-Interferenz auf den Einfluss 

umschriebener Merkmale aufgabenirrelevanter Wortinformation, die als „Konfliktfaktoren“ 

(„conflict factors“) betrachtet werden können, zurückzuführen. Speziell sollte das neuronale 

Substrat bzw. Korrelat der folgenden drei Konfliktfaktoren bestimmt werden: (A) 

Antwortinkompatibilität („response incompatibility“; heißt, dass Wortinformation eine nicht 

vereinbare oder entgegengesetzte motorische Reaktion indiziert), (B) semantische 

Inkongruenz („semantic incongruency“; heißt, dass Wortinformation in semantischem bzw. 

konzeptuellem Widerspruch steht, unabhängig von deren Reaktions-/Antwortbezug) und (C) 

Aufgabenbezug („task-reference“; heißt dass Wortinformation mit der aktuell zu 

bearbeitenden Aufgabe in semantischem Bezug steht, unabhängig von deren semantischen 

Übereinstimmung mit der aufgabenrelevanten Information). 

Allgemein zeigten alle realisierten Interferenz-Bedingungen (d.h. Inkongruenz- und Oddball-

Durchgänge) im Vergleich zu den Kontrollbedingungen erhöhte Reaktionszeiten, was die 

Wirksamkeit der experimentellen Manipulation in dem verwendeten Aufgabenparadigma 

belegt, bzw. dieses als „Interferenz-“ oder „Konflikt-Paradigma“ validiert. Entsprechend 

zeigten auch die Bildgebungsdaten plausible und aussagekräftige Ergebnisse in Bezug auf die 

vorgestellten Fragestellungen und Ziele der Untersuchung. 

Ad (1) Der Vergleich zwischen Stroop-Interferenz und Interferenz, die von Word-Oddballs 

ausgeht, zeigte zwei distinkte Aktivierungsmuster, die nur geringfügig überlappten. 

Entsprechend wurde die Hypothese, dass die beiden Interferenzeffekte eine deutliche 

Aktivierungsüberlappung aufweisen, die im Sinne eines gemeinsamen neuronalen 
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Mechanismus kognitiver Kontrolle zur Interferenzlösung interpretiert werden kann, nicht 

bestätigt. Vielmehr kann plausibel angenommen werden, dass die Aktivierungsmuster zwei 

distinkte und komplementäre Subkomponenten bzw. Aspekte kognitiver Interferenz 

widerspiegeln, die auf verschiedene neuronale Mechanismen kognitiver Kontrolle (d.h. 

Mechanismen der Interferenzlösung) rekurrieren. Erstens zeigten die Analysen eine 

„motorische Subkomponente“ von kognitiver Interferenz, die sich auf Stroop-Interferenz 

bezieht und im Wesentlichen das Auftreten von Antwortkonflikt, ausgehend von 

inkongruenter Wortinformation, widerspiegelt. Zweitens zeigten die Analysen eine primär 

„attentionale Subkomponente“ von Interferenz, die die Fähigkeit aufgabenirrelevanter 

Information, effektiv Aufmerksamkeit auf sich zu ziehen (d.h. eine attentionale 

Orientierungsreaktion auszulösen), widerspiegelt. Während die erste Subkomponente 

hauptsächlich durch Aktivierungen in Hirnarealen, die mit motorischer Kontrolle und 

Vorbereitung in Verbindung stehen (z.B. dem prämotorischen Kortex, den Basalganglien und 

dem Kleinhirn), charakterisiert war, zeigte die attentionale Subkomponente Aktivierung in 

einem fronto-parietalen „Aufmerksamkeits-Netzwerk“, das in der kognitiv-

neurowissenschaftlichen Literatur konsistent mit top-down Steuerung von Aufmerksamkeit, 

und speziell mit der Selektion aufgabenrelevanter Information, in Verbindung gebracht wird. 

Ad (2) Die Aktivierungsmuster von Word-Oddballs und Color-Oddballs zeigten eine starke 

Überlappung, die vornehmlich in präfrontalen Arealen, jedoch auch in posterioren Regionen 

der visuellen Verarbeitung auftrat. Dieser Befund ist sehr gut mit der Annahme vereinbar, 

dass Aufmerksamkeitsselektion grundlegend über Manipulation, d.h. Verstärkung, der 

Verarbeitung aufgabenrelevanter Information in posterioren Verarbeitungsregionen neuronal 

funktioniert. Color-Oddballs zeigten im Vergleich zu Word-Oddballs den deutlicheren 

behavioralen Effekt sowie eine stärkere und umfangreichere neuronale Aktivierung. Dieser 

Befund kann zum einen mit dem Aufgabenkontext und zum anderen mit einer größeren 

Salienz (d.h. Prägnanz oder Auffälligkeit) von Farbinformation im Vergleich zu 

Wortinformation erklärt werden. Ein Hauptfokus der Aktivierungen war in beiden Oddball-

Bedingungen eine Region im posterioren präfrontalen Kortex, die in früheren Arbeiten 

„inferior frontal junction“ genannt wurde. In Einklang mit früheren Studien sprechen die 

vorliegenden Ergebnisse dafür, dass diese Region eine zentrale Rolle bei der „top-down“ 

Steuerung der Aufmerksamkeit spielt. 

Ad (3) Schließlich zeigte die Analyse zur “faktoriellen Zerlegung” von Stroop-Interferenz 

Aktivierungsmuster, die aussagekräftige Schlussfolgerungen in Bezug auf die definierten 

„Konfliktfaktoren“ erlaubten. Antwortinkompatibilität war mit Aktivierung im ventralen 
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prämotorischen Kortex (linkshemisphärisch) verbunden, welche in diesem Zusammenhang als 

Indikator für bzw. als neuronales Substrat von Antwortkonflikt interpretiert werden kann. 

Semantische Inkongruenz zeigte spezifische Aktivierung im posterioren frontomedianen 

Kortex, im bilateralen insulären Kortex, in den Basalganglien und Thalamus sowie im linken 

postzentralen, d.h. somatosensorischen, Kortex. Es ist sehr plausibel, dass diese 

Aktivierungen mit verstärkter motorischer Kontrolle zur Vorbeugung falscher manueller 

Antworten in Verbindung stehen. Schließlich zeigte Aufgabenbezug signifikante Aktivierung 

im linken inferior-frontalen Kortex, im rechten superioren präfrontalen Kortex sowie im 

linken temporo-polaren Kortex (Temporalpol). Aufgrund zahlreicher Studien, die diese 

Hirnregionen mit lexikalisch-semantischer Verarbeitung in Verbindung gebracht haben, kann 

plausibel angenommen werden, dass dieses Aktivierungsmuster inkrementeller (d.h. 

verstärkter) semantischer Verarbeitung der aufgabenirrelevanten (jedoch aufgabenbezogenen) 

Wortinformation zugrunde liegt. 

Wesentliches Merkmal der vorliegenden Arbeit ist, dass diese verschiedene Subkomponenten 

neuronaler Mechanismen, die der Verarbeitung (d.h. der Lösung) von Interferenz zugrunde 

liegen und mutmaßlich in früheren Interferenzstudien miteinander konfundiert wurden, 

isoliert. Speziell die Unterscheidung zwischen einer motorischen und einer attentionalen 

Komponente kann zu einem verbesserten Verständnis kognitiver Interferenz und darauf 

bezogener Kontrollmechanismen beitragen. Entsprechend kann auch die durchgeführte 

Analyse zur faktoriellen Zerlegung zu einer detaillierteren und präziseren Konzeptualisierung 

von Stroop-Interferenz beitragen, da diese Evidenz für das Vorhandensein verschiedener 

Subprozesse während der Interferenzverarbeitung, die ihre distinkten neuronalen Substrate 

(d.h. neuronalen Aktivierungsmuster) aufweisen, erbrachte. 
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1 Introduction 
 

1.1 The subject area: executive function(s) and cognitive control 

 

1.1.1 The construct: terms and descriptions 

The term ’executive function(s)’ subsumes a class of mental activities (i.e. higher cognitive 

processes) that allow for goal-directed, intentional and flexible actions as opposed to 

reflexive, impulsive reactions to sensory information. In that, executive functions enable 

individuals to engage in independent, purposeful, and self-serving behaviors (see e.g. Barkley, 

1996, 1997; Pennington et al., 1996). The mental regulation and coordination of behavior in 

accordance with goals or intentions is also unified under the term ’cognitive control’ or 

‘executive control’ which has been conceptualized as emanating from an executive system as 

a basic neurocognitive control device or instance (e.g. Baddeley, 1986, 1990; Norman & 

Shallice, 1980). Executive control has been associated with multiple and dissociable cognitive 

processes, among the major ones are response inhibition permitting impulse control, 

attentional selection which is essential for resistance to distraction, verbal and non-verbal 

working-memory, mental calculation, and delay of gratification. 

Deficits in executive control have been classically associated with acquired damage to the 

prefrontal cortex. Baddeley (1986) coined the term ‘dysexecutive syndrome’ (DES) to 

describe dysfunctions of the central executive in patients who suffered prefrontal lesions. The 

classic frontal syndrome is characterized by attentional and comprehensional deficits, 

increased distractibility, and problems to master new types of task, i.e. to pursue goal-directed 

action in new or unexperienced situations (Rylander, 1939). In other words, patients suffering 

from DES lack flexibility and the ability to control their processing resources which becomes 

obvious in disorganized actions and strategies for everyday tasks. Important to note, more 

recent findings strongly suggest that executive dysfunctions are not specific to frontal lobe 

damage, as it may likewise arise from damage to interconnected cortical and subcortical brain 

structures or from more diffuse brain damage. 

Closely related to the concept of cognitive or executive control is the frequently used term 

“task-set”. The appropriate accomplishment of a task – i.e. the pursuit of a given behavioral 

goal – requires an adequate configuration of mental resources. The adequate mental 

configuration state has been called “task-set” or “procedural schema” (Monsell, 1996). In a 
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similar sense, the term “attentional set” comprises all cognitive representations involved in 

the attentional selection of task-relevant stimuli and/or responses (Corbetta & Shulman, 

2002). 

 

1.1.2 Top-down vs. bottom-up processing 

“Top-down” and “bottom-up” have become widespread expressions for two basic and 

antagonistic levels of cognition. While top-down processing comprises higher levels of 

cognitive functioning mainly corresponding to executive control (see 1.1.1), bottom-up 

processing primarily reflects lower levels of cognitive functioning mainly related to sensation 

and perception. Top-down cognitive processes are commonly described as goal- or 

conceptually driven and accordingly mainly depend on cognitive representations. Bottom-up 

cognitive processes, on the other hand, are conceived as sensory- or data-driven and 

accordingly to primarily depend on incoming perceptual information.  

Important to note, adaptive human behavior in a changing environment requires both kinds of 

cognitive processing, “top-down” and “bottom-up”, and therefore imposes antagonistic 

requirements on agents’ control system. While conceptually-driven top-down processes 

should promote attentional selection and behavioral stability, bottom-up processing should 

provide agents with behavioral flexibility and responsivity to significant changes in the 

environment that occur outside the current focus of attention. Hence, top-down and bottom-up 

processes fulfill complementary roles in the control of adaptive behavior. Taken together, 

effective cognition requires a context-sensitive “just-enough” calibration of endogenous 

control that is sufficient to protect an ongoing goal-directed action from distraction (e.g. not 

looking up at every little noise in the environment), that however does not compromise the 

flexibility allowing the rapid execution of another behavior when appropriate (e.g. when the 

sound appears to be a cry for help or a warning) (see Monsell, 2003).  

 

1.1.3 Dilemmas in cognitive control 

Thomas Goschke (e.g. Goschke, 2003) described the antagonistic requirements on action 

control – i.e. the complementary roles of top-down and bottom-up processes – during goal-

directed action in terms of two control dilemmas. 

(1) The selection-monitoring dilemma. When pursuing a certain behavioral goal, agents have 

to select task-relevant information and inhibit distracting task-irrelevant information in order 

to prevent crosstalk and interference (Allport, 1989). On the other hand, however, it would 
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not be adaptive if attentional selection operated so rigorously as to suppress irrelevant 

information completely. Rather, it is equally important to monitor the environment for 

potentially significant information, even if this information is not relevant for an ongoing 

action. This “background monitoring” attentional function is highly adaptive as it enables an 

organism to process irrelevant information to a degree that allows to recognize threats or 

opportunities outside the current focus of attention that are related to its goals and needs.  

(2) The maintenance-switching dilemma. Goals and goal-directed actions have to be 

maintained and shielded from competing responses, so as to promote behavioral stability and 

the pursuit of long-term goals (Kuhl, 1985). On the other hand, however, an organisms has to 

stay able to interrupt an ongoing action in the case of significant changes in the environment. 

For instance, people have to be capable to respond to the unexpected appearance of smell of 

burning with a fast switch from an ongoing behavior (e.g. doing crossword puzzles) to a 

totally different behavior (e.g. using a fire drencher or flight). 

 

1.2 Interference in cognitive processing: cognitive conflict and attentional 

competition 

 

1.2.1 The construct: descriptions and working definitions 

One central purpose of the executive control system is to overcome crosstalk or interference 

in cognitive processing and thereby to enable the agent to maintain adequate performance in 

the face of effective distraction (see e.g. van Veen & Carter, 2005). Accordingly, in order to 

investigate control processes, it is a major strategy to collect behavioral and neurobiological 

measures of cognitive performance during situations of interference that are construed to 

evoke the processes (i.e. the neurocognitive mechanisms) of interest. Regarding the 

experimental implementation (i.e. operationalization) of cognitive interference, different task 

paradigms have been developed (see 1.2.2). The following working definition should provide 

a theoretical conception of cognitive interference and thereby outline commonalities of 

different tasks or operationalizations of cognitive interference.  

 

Working definition: cognitive interference consists of interference from task-irrelevant 

information occurring in the attentional background on the processing of task-relevant 

information that occurs in the current focus of attention. 
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According to the given definition, to select task-relevant over task-irrelevant information – as 

an essential aspect of attentional functioning – may be thought of as core process in the 

resolution of cognitive interference. Specifically, during the resolution of cognitive 

interference or conflict, top-down attentional control provides a bias favoring the processing 

of task-relevant information over that of task-irrelevant information (see MacDonald et al., 

2000; Weissman et al., 2005). 

According to the processing level at which cognitive interference occurs, one can distinguish 

three basic kinds of cognitive interference: 

(1) Response-conflict. Response-conflict – also referred to as motor conflict – denotes 

interference at the motor level of cognitive processing, and is defined as the co-activation 

of incompatible response tendencies, or similarly, as competition between a correct and an 

incorrect response (e.g. Botvinick et al., 2001; Brown & Braver, 2005). In other words, 

during response-conflict task-irrelevant information induces incongruent, conflicting 

motor tendencies. For instance, response conflict may comprise interference between a 

required and a prepotent but inadequate response (i.e. motor action), or a stop-go conflict. 

(2) Semantic conflict. Semantic conflict, as inherent in the term itself, occurs at the 

semantic level of cognitive processing and comprises interference or crosstalk between 

simultaneously occurring diverging or incongruent (i.e. contradictory) mental 

representations. In other words, during semantic conflict task-irrelevant information 

induces incongruent, conflicting semantic representations. Important to note, conflicting 

semantic representations are not necessarily associated with incompatible motor actions so 

that semantic conflict can occur independently of motor conflict. For instance, semantic 

conflict may comprise conflict between different color representations, different shapes, 

different terms, different numbers, or other contradictory semantic units. 

(3) Competition. The term competition denotes an “early” interference effect that occurs 

at the attentional level of cognitive processing. Thereby, task-irrelevant information draws 

attentional resources away from task-relevant information, and thus competes with task-

relevant information for priority in processing (e.g. Milham et al., 2003a). As discussed by 

others (e.g. Frith, 2001; Milham et al., 2003a), the perceptual features of a task-irrelevant 

stimulus or stimulus aspect (e.g. its brightness or color) can increase its salience relative to 

a task-relevant stimulus or stimulus aspect, thereby favoring its processing and allowing 

associated representations to effectively compete for priority in processing. Noteworthy, 

during competition, task-irrelevant information interferes without necessarily being 
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incongruent at either the semantic or motor level, so that competition can occur 

independently of conflict. 

[For an experimental distinction between response-conflict and semantic conflict see e.g. van 

Veen & Carter (2005), and for a distinction between conflict and competition see e.g. Milham 

et al. (2002) and Milham & Banich (2005)]. 

The presented kinds of interference may be arranged in an hierarchical order – with response-

conflict on first place, semantic conflict on second, and competition on third/last – wherein 

“higher” interference effects comprise “lower” ones. Specifically, task-irrelevant information 

that is associated with an incompatible motor action (i.e. that induces an incompatible 

response-tendency), as a rule, is also or primarily associated with (i.e. induces) an incongruent 

semantic representation. Hence, response-conflict can be conclusively conceptualized as to 

imply semantic conflict. Similarly, to induce incongruent semantic representations, task-

irrelevant information, in the first place, has to effectively draw attention (i.e. has to interfere 

at the attentional level), so that conflict conclusively premises competition. In other (simple) 

words, if task-irrelevant information remains unnoticed, it won’t be able induce conflict. 

Whether task-irrelevant information induces (any kind of) interference or not, may be 

conclusively attributed to circumscribed properties of task-irrelevant information. 

Accordingly, in the present work, properties of task-irrelevant information that potentially 

lead to cognitive interference are conceived as so-called ‘conflict factors’. 

 

Working definition: conflict factors are properties of task-irrelevant information that 

potentially lead to cognitive interference. 

 

With the latter definition, two further assumptions are associated: 

(1) different conflict factors may lead to different interference effects, and 

(2) different conflict factors can occur simultaneously and hence may lead to different 

interference effects simultaneously. 

The current work focuses on three conflict factors: (A) response-incompatibility (denotes that 

task-irrelevant information indicates an incompatible or opposed motor response), (B) 

semantic incongruency (denotes that task-irrelevant information is semantically incongruent, 

i.e. conceptually contradictory, independent of its response-eligibility), and (C) task-reference 

(denotes that task-irrelevant information is semantically related to the task-set, independent of 

its semantic concordance with the relevant information). These conflict factors can be 

conclusively related to different interference effects. Response-incompatibility can be thought 
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to induce response-conflict whereas semantic incongruency can be construed to produce 

semantic conflict. Finally, as task-irrelevant information that is semantically related to the 

task at hand assumably draws attention to a higher degree, task-reference as conflict factor 

can be conceived to lead to attentional competition between task-relevant and task-irrelevant 

information. 

Generally, as a theoretical construct, cognitive interference is no observable entity. In the 

study of interference, two behavioral performance measures are generally conceived as 

hallmark or indicator for the occurrence of cognitive interference: 

(a) prolonged reaction times (RTs), construed to reflect the time costs associated with 

the implementation of additional control processes as remediate action, and 

(b) enhanced error rates (ERs), construed to reflect incomplete or deficient control 

processes that failed to resolve interference. 

The following subsections present experimental task paradigms that allow for an 

operationalization (i.e. experimental implementation) of the presented theoretical constructs, 

and therefore to investigate the behavioral and neurobiological correlates of interference so as 

to characterize and understand cognitive control . 

 

1.2.2 Experimental-psychological paradigms of cognitive control and 

interference: the tasks, their basic findings and theoretical concepts 

 

1.2.2.1 Task-switching paradigm: interference due conflicting task-sets 

Task-switching paradigms are applied to experimentally model the frequent shifts between 

different (cognitive) tasks as they are required in every day life. Accordingly, task-switching 

paradigms are well suited to investigate (the behavioral and neurobiological correlates of) 

cognitive processes that underlie the configuration and reconfiguration of task-sets. In a task-

switching experiment, subjects perform two (or more) alternating tasks. Each of the 

implemented tasks requires subjects to focus attention on one certain aspect or attribute (i.e. 

dimension) of the presented target stimuli (e.g. color, size, or shape of geometric objects), 

while values of the dimensions are mapped with different responses, mostly button presses. 

Basically, with respect to the response that has to be given on a trial at hand, the currently 

irrelevant dimension can be congruent (i.e. mapped to the same response), incongruent (i.e. 

mapped to the opposite response) or neutral (i.e. non-mapped) which yields three basic 

experimental conditions: congruent, incongruent and neutral trials. Importantly, the two (or 
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more) tasks of a task-switching paradigm impose antagonistic requirements on participants’ 

attention as the attribute or aspect that has to be focused in the one task has to be inhibited in 

the other task, and vice versa. Consequently, attentional sets (i.e. task-sets) get into conflict or 

competition and have to be shielded against each other which forces subjects to retain a 

consecutive high level of cognitive control. For instance, Monsell and collaborators (Monsell 

et al., 2003) presented subjects with single digits while they had to classify the targets by a 

left or right button press as odd or even in the one task (odd-even task), and as greater or 

smaller than five in the other (high-low task). Gruber and collaborators (e.g. Gruber & 

Goschke, 2004; Gruber et al., 2006) adopted a task-switching paradigm in which subjects are 

presented with colored tube figures while they have to focus on either color or shape of the 

target stimuli in order to select the correct response (left or right button press). There are 

several methods to indicate a subject which task has to be performed on the current or 

upcoming stimulus (see e.g. Rogers and Monsell, 1995; Monsell, 2003). In the alternating-

runs paradigm, tasks alternate every N trials, where N is constant and predictable so that the 

trial sequence tells the subjects when to switch to the other task. In cued task-switching 

paradigms, tasks (i.e. task switches) are unpredictable, and a task cue that appears either 

immediately before or simultaneously with the target indicates the relevant stimulus 

dimension. This paradigm allows for manipulating the cue-target interval (CTI) – also 

referred to as stimulus-onset asynchrony (SOA) – and thus to investigate preparation effects 

in task switching (e.g. Gruber et al., 2006). 

The major behavioral finding in task-switching paradigms are switch costs, also called task 

repetition benefit (e.g. Wylie & Allport, 2000; Schneider & Logan, 2005). Generally, 

responses after a task switch (i.e. responses on so-called “switch trials”) take longer and are 

more error-prone as compared to responses after a task repetition (i.e. responses on so-called 

“repeat trials”). Interestingly enough, switch costs after incongruent trials appeared to be 

prolonged as compared to switch trials after congruent trials (e.g. Goschke, 2003). This 

finding can be explained by the conflict-triggered control hypothesis of Botvinick and 

colleagues which assumes that response conflict leads to enhanced inhibition of the 

distracting stimulus dimension and the corresponding task-set, referred to as “conflict-

triggered goal-shielding” (Botvinick et al., 2001). The inhibition of the competing task-set 

might still persist on the subsequent trial, and accordingly following task-switches should be 

additionally challenging in that they require to overcome the persisting inhibition (see also 

Goschke, 2003). 
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Generally, task repetitions are considered to benefit from the fact that the relevant task-set is 

already in place. Specifically, switch costs in terms of RT prolongation (i.e. the difference in 

RT between task repetitions and task alternations) are commonly construed as direct measure 

of the duration of the executive control process to implement the appropriate (and to disable 

the “other”) task-set (Monsell, 1996; Monsell, 2003). In a comprehensive series of studies, 

Allport and colleagues (e.g. Allport et al., 1994; Allport & Wylie, 1999; Wylie & Allport, 

2000) provided strong evidence for switch costs being essentially influenced by proactive 

interference or priming effects, and thereby contradicted, at least in part, the common 

interpretation of switch costs as representing task-set reconfiguration (see also Schneider & 

Logan, 2005). Main findings suggestive of a significant contribution of priming effects to 

switch costs comprise enhanced and instable RTs on repetition trials (which gradually decay 

back to baseline in sequences of consecutive repetition trials), (increased) “reverse Stroop 

interference” (i.e. interference from incongruent color on word reading) after task switches, 

“residual switch costs” (i.e. switch costs that still occur after a extensively long preparation 

interval), asymmetrical switch costs in the Stroop paradigm (in terms of higher switch costs 

for the word task, which is the “easier” task, compared to the color task; see 1.2.2.2), and 

enhanced switch costs when the preceding task uses incongruent stimuli or the same stimuli 

as the task to which participants have to switch. The listed findings have in common that they 

strongly suggest that proactive interference (i.e. persisting activation) in terms of priming of 

the inadequate task-set (also called ‘task-set inertia’) or inadequate responses (due to 

established short-term stimulus-response bindings) essentially contributes to the emergence of 

switch costs. 

 

1.2.2.2 The Stroop paradigm: interference due to incongruent lexical word information 

The color-word Stroop task (Stroop, 1935/1992; MacLeod, 1991a) is a landmark experimental 

paradigm in cognitive psychology and cognitive neuroscience and arguably the most widely 

used and cited demonstration of interference in cognitive processing (MacLeod, 1991b; 

Roelofs, 2003). Basically, during Stroop task performance, subjects are presented with color-

word stimuli that are printed in varying ink color, while their task is to name (or respond to) 

the color and thereby to ignore the word’s lexical identity. In Stroop’s original task version 

(Stroop, 1992/1935), subjects dealt with two different cards, an experimental and a control 

cart (representing an experimental and a control condition), each containing 100 target items. 

The experimental cart depicted color words in an incongruent color (e.g. the word BLUE in 

red ink color) while the control cart contained rectangles printed in the same varying ink 
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colors as the word stimuli. The task instruction was for both conditions the same: to respond 

as quickly as possible naming the ink color of every item thereby leaving no error 

uncorrected. The critical measure was the time it took subjects to go through the items of one 

card. The difference between the condition means – with longer processing times for 

incongruent words compared to rectangles – was reckoned to be a measure of interference, 

referred to as Stroop effect or Stroop interference. The found incremental effect was 

uncommonly substantial ranging about 70% and has appeared to be highly replicable in terms 

of both pattern and, interestingly enough, absolute times (MacLeod, 1991a). Basically, 

Stroop-interference can be adequately described as in the following working definition. 

 

Working definition: Stroop-interference comprises interference from task-irrelevant and 

incongruent semantico-lexical information on the processing of some other task-relevant 

information – mostly color – so that agents have to override the predominant response 

tendency to read and respond to word meaning in order to maintain adequate performance. 

 

From Stroop’s initial work to our days, the primary task version has been extended and 

modified in several respects. First, the presentation modus is now mostly computerized which 

allows for a measured consecutive presentation of single items. The major advantage hereby 

is that reaction times can be taken item-wise, timed from the onset of the stimulus to the 

subject’s response, and that false responses can be easily excluded. In the card version, in 

contrast, processing time is taken across all items of one condition (i.e. one card) and 

therefore represents an ambiguous “all in” measure as correct and false responses thereby get 

intermingled. Furthermore, single-item stimulation avoids distraction from previous or 

following stimuli that are simultaneously visible in the card version. 

Second, in modern task adaptations the response modality is mostly manual rather than 

verbal, using key presses instead of overt verbal responses. Concretely, in manual tasks 

different response fingers are defined and each assigned to a certain color, requiring, for 

instance, a right-hand middle finger key press in response to red stimuli and a right-hand 

index finger key press in response to blue stimuli. Manual response modality is especially 

favored in functional neuroimaging studies, because verbal response may yield unfavorable 

movement artifacts in the imaging data. Moreover, the colored rectangle control stimuli of 

Stroop’s initial task version generally has been replaced by control stimuli made up of 

keyboard characters, for example rows of colored Xs. Also, in more recent works, scientists 

did not content themselves with only two experimental conditions as Stroop did, but rather 
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created further trial types. Klein (1964) was among the first who compared multiple 

conditions and thereby unleashed the potential of the paradigm. He compared naming the 

colors of rows of asterisks, meaningless non-words, color-related words (e.g. grass or sky), 

incongruent color words not among the ink colors to be named (incongruent response-

ineligible trials) and incompatible color words in the response set (incongruent response-

eligible trials). Dalrymple-Alford & Budayr (1966) introduced congruent trials in which ink 

color and word meaning correspond to each other. It has been argued that Stroop avoided this 

condition taking into account that subjects may switch to word reading when presented with a 

series of congruent stimuli which would make this condition incomparable to the others 

(MacLeod, 2005). The Stroop task has also been adopted as task-switching paradigm in which 

subjects alternate between color naming and word reading in response to the targets (e.g. 

MacDonald et al., 2000). 

Behavioral findings on the Stroop paradigm and corresponding explanation accounts (for 

neuroimaging findings see subsection 1.3). Basically, the Stroop interference effect denotes 

the phenomenon that color naming is much slower for incongruent trials as compared to 

control trials (see above). This effect still persists even after thousands of trials (MacLeod, 

1998). Stroop interference is generally thought to be a hallmark of competition or conflict 

between cognitive processes in which the (highly facilitated) default tendency to read and 

react to a presented word must be overridden in order to respond to ink color. Most important, 

interference within the paradigm appears to be asymmetrical with interference from an 

incongruent color in the word task being negligible or even absent, that means that there is no 

(or only a small) “reverse Stroop effect”. A widespread account, the relative-speed-of-

processing explanation, attributes this finding to the fact that word information is proceeded 

at higher velocity than color information. This account, however, is challenged by several 

empirical findings. For instance, Glaser and Glaser (1982) compensated for the time 

advantage of word reading by introducing stimulus onset asynchronies (SOAs) in their 

experimental design. They observed that even if an incongruent color patch is presented 

sufficiently before a to be read color word, still no reverse Stroop effect occurs. Dunbar and 

MacLeod (1984) took an inverse approach and delayed word reading by presenting subjects 

with word stimuli in upside down position or in backward order. Stroop interference, 

however, was unmodified by these manipulations. Taken together, the reported findings 

suggest that processing velocity is not the crucial factor in the emergence of interference 

asymmetry during Stroop task performance. 
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Another account, the differential practice explanation, attributes interference asymmetry 

during Stroop-performance to the extensive training of reading skills during socialization. 

However, several studies showed that extensive training on color naming does not yield a 

reverse Stroop effect. Furthermore, young children and older adults exhibit the largest 

interference scores (e.g. Schiller, 1966), suggesting that control ability rather than reading 

automation plays a major role. Besides interference, several studies also observed facilitation 

due to congruent words within the color task, while facilitation in general does not reach the 

extent of interference (e.g. MacLeod, 1998; Glaser & Glaser, 1982). Of note, color-related 

words (e.g. sky or grass) also yield interference, but not as much as real color words (e.g. blue 

or green), commonly referred to as semantic gradient (Dalrymple-Alford, 1972). Studies 

which used the manual task version showed a response or task set effect in that response-

eligible color words (i.e. words that denote response-mapped colors) yielded stronger 

interference (a stronger effect on RT) compared to response-ineligible color words (e.g. 

Proctor, 1978; van Veen & Carter, 2005).  

 

1.2.2.3 Oddball tasks: interference due to low-frequency events 

During oddball tasks, cognitive interference emanates from unexpected low-frequency events, 

so called oddballs. Specifically, oddballs – as investigated in the current work – consist of 

infrequent task-irrelevant deviations that occur outside the current focus of attention, that 

therefore may be referred to as ‘task-irrelevant oddballs’. 

 

Note: The use of the term ‘oddball’ in the context of cognitive interference might be somehow 

ambiguous, as originally low-frequency events have been investigated as targets rather than 

distractors in vigilance or so-called target detection tasks. Low-frequency events in target 

detection tasks might be adequately termed ‘task-relevant oddballs’ as opposed to ‘task-

irrelevant oddballs’ to which the present work refers. For an unambiguous, clear distinction 

between task-relevant and task-irrelevant oddballs, target detection experiments and their 

findings will be presented below in this subsection. 

 

If salient enough, unexpected low-frequency events capture attention and lead to an orienting 

response that results in an unintended attentional switch. It has been repeatedly shown that 

when task-irrelevant information occurs infrequently it attracts attentional resources to a 

greater extent and thereby impairs the processing of task-relevant stimulus information (e.g. 

Schröger & Wolf, 1998; Berti & Schröger, 2001). Important to note, oddball events yield 
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interference (in terms of performance deterioration) without necessarily being incongruent or 

incompatible with task-relevant information at either the semantic or motor level. Thus, 

oddball interference can be expected to occur at a pure attentional level and hence may be 

conceived a particular kind of attentional competition (see 1.2.1). It has been repeatedly 

suggested that low-frequency events lead to an involuntary orienting-response which serves to 

direct attention to potentially important changes in the environment (e.g. Goschke, 2003; 

Gruber & Goschke 2004). This process may be thought of as part of a highly adaptive 

function of background monitoring that takes into account possible threats or opportunities 

occurring outside the current focus of attention (see 1.1.2). On the other hand, however, 

orienting responses to novel stimuli may interrupt a currently required attentional set, and 

consequently the agent may have to override the automatic attentional switch in order to 

maintain goal-directed action. 

Orienting responses and the mismatch negativity. Involuntary attention shifts have been 

originally described and explained by the orienting-reflex (OR) theory (Sokolov, 1963). This 

theory assumes that repetitive sensory features of the environment get represented in a 

neuronal model while sensory deviations from this model yield the OR. Thus, the theory 

postulates a neural stimulus-change detection mechanisms. Näätänen with collaborators (e.g. 

Näätänen, et al., 1978; Näätänen, 1990/1992) investigated stimulus-change detection for the 

auditory domain. He found a frontocentral negative event-related potential (ERP) component 

N2 that is reliably elicited by any discernible change in the physical features of a repetitive 

sound. In accordance with the OR theory, Näätänen interpreted this so-called mismatch 

negativity (MMN) as the neuronal substrate of an automatic cortical change-detection process 

in which a difference is found between the current input and a memory trace representation of 

a regularity. Moreover, Näätänen (1990) postulated that the MMN is involved in triggering a 

signal for attention switching after the perceptual detection. In line with Näätänen’s 

assumption, there is converging evidence that the neuronal process eliciting the MMN is 

associated with involuntary attentional switching (Escera et al., 1998). For instance, Schröger 

(1996) found substantial performance deterioration after MMN-eliciting task-irrelevant tones, 

while this effect was strengthened for decreasing frequency of occurrence of the deviant 

auditory stimuli. 

While the MMN is well defined in the auditory domain, the question arose whether it also 

exists in the visual modality. Pazo-Alvarez and colleagues (Pazo-Alvarez et al., 2003) 

reviewed relevant studies and provided convincing evidence for a visual MMN homologue. 
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Task-relevant oddballs. Important to note, the term “oddball” has been initially developed in 

the study of attentional vigilance, in so-called target-detection paradigms (e.g. Sutton et al., 

1965). Here, subjects detect and respond to infrequent target events that are embedded in a 

series of repetitive distractor events. On the one hand, task-relevant oddballs are not covered 

by the working definition of cognitive interference given above that basically presumes that 

interference necessarily emanates from task-irrelevant, unattended events or information (see 

1.2.1). Therefore, task-relevant oddballs are actually not part of the current work’s subject 

matter. On the other hand, however, processing of task-relevant oddballs (targets) and task-

irrelevant oddballs (distractors) may plausibly engage common neural mechanisms, as both 

include the detection of rare events (Bledowski et al., 2004). The detection of infrequent 

targets consistently appeared to evoke a prominent ERP component – following the target 

onset after 300-600ms and with its maximum over the parietal scalp – refereed to as P300 or 

P3b (Smith et al., 1970). The P3b is preceded by another small positive component that peaks 

over the frontal lobe and that has been called the P3a or “novelty P3” (Courchesne et al., 

1975; Knight, 1996). P3a has also been found in studies using task-irrelevant oddballs and has 

been interpreted to reflect an initial automatic orienting response to rare and salient events, 

independent of their behavioral relevance. Hence, the P3a plausibly reflects the neural 

substrate of the ‘processional overlap’ of task-relevant and task-irrelevant oddballs, 

assumably consisting of an attentional orienting response. 

Nevertheless, the main interest of the current work are task-irrelevant oddballs that 

substantially impair task-relevant stimulus processing as indexed by RT prolongation. Studies 

showed that interference by task-irrelevant oddballs evokes the MMN and the P3a as well as a 

subsequent negative component in the 400-600ms range, called re-orienting negativity (RON; 

see Schröger & Wolf, 1998). In this context, MMN, P3a and RON may be assumed to reflect 

a processional succession comprising change detection, attentional switching and subsequent 

re-orienting to task-relevant information. Thus, in conjunction, the presented ERP 

components yield an theoretical conceptualization of oddball interference that can be 

summarized as in the following working definition. 

 

Working definition: Oddball interference denotes an involuntary orienting response 

(attentional switch) to rare and task-irrelevant events that requires subjects to perform a 

subsequent re-orienting of attentional resources (to task-relevant information) in order to 

meet current task requirements and to maintain adequate performance. 
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Milham and colleagues (Milham et al., 2003a) were among the first who investigated oddball 

interference and incongruity effects (i.e. cognitive conflict) in the same experimental 

paradigm, while they focused in particular on prefrontal cortex’s (PFC’s) involvement. 

Specifically, they employed an oddball variant of the Stroop paradigm (see 1.2.3.2) that 

justified a direct comparison of the influence of low-frequently occurring task-irrelevant word 

information (i.e. oddball interference) on the one hand, and the influence of response-

incongruent task-irrelevant word information (i.e. Stroop-interference) on the other. They 

report both, an activation overlap as well as an activation dissociation in prefrontal cortices 

which led them to propose a regional subdivision along the anterior-posterior axes of PFC’s 

attentional control function. According to Milham and colleagues (see also Brass & von 

Cramon, 2004), the posterior inferior PFC in the vicinity of premotor cortex – which was 

activated for both oddball and incongruity trials – is primarily involved in manipulating 

posterior regions to ensure selection of task-relevant information, whereas more anteriorly 

located regions within inferior PFC – which were exclusively activated for incongruent trials 

– are primarily responsible for biasing maintenance and selection of task-relevant information 

in working-memory. [As this study is of special relevance for the current work, it will be 

presented in more detail in a following subsection (see 1.3.5).] 

 

1.2.2.4 Other interference paradigms 

The Flanker-task is another quite common cognitive task that involves responding to a 

centered stimulus that is surrounded by peripheral distracting stimuli, so-called flankers. The 

original task was introduced by Eriksen and Eriksen (1974) and involved the presentation of a 

string of five letters while the middle letter served as target and the four lateral letters as 

irrelevant, distracting flankers. In a suchlike task, subjects might be instructed, for instance, to 

press a left key if the central letter is a T and a right key if the central letter is an M. Basically, 

the paradigm allows to operationalize two experimental conditions: during 

compatible/congruent trials, the four flankers map to the same response as the target (e.g. 

MMMMM), while during incompatible/incongruent trials the flankers map to a different 

response (e.g. TTMTT). In another prevalently used version of the paradigm, the centered 

target stimulus consists of an arrow which is flanked by distracting arrows that point in either 

the same (i.e. congruent) or other (i.e. incongruent) direction (e.g. Botvinick et al., 2001; Fan 

et al., 2002). 

In the spatial conflict or Simon task, target stimuli are presented in different locations of the 

visual field. Thereby, the location of the target could be compatible or incompatible with the 
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response to be given (i.e. on the same or opposite side as the mapped key press), and also 

could be neutral (i.e. presented in a center position). The Simon effect involves conflict 

between target location and the direction of the matching response as it becomes obvious in 

prolonged RTs on incompatible trials of spatial tasks (Simon & Berbaum, 1990; Gerardi-

Caulton, 2000).  

 

1.3 Neuroimaging studies on attentional control and cognitive interference: 

major findings and related theoretical assumptions 

The investigation of the neural correlates of cognitive control and attentional selection has 

become a major research focus in cognitive neuroscience. Numerous fMRI studies using 

various paradigms have been carried out to delineate the brain regions that govern the 

detection and resolution of cognitive conflict and interference. In the following subsections, 

neuroimaging studies’ results and related theoretical assumptions that are relevant for the 

current work’s purposes will be presented. 

 

1.3.1 Conflict resolution and neural mechanisms to impose an attentional set for 

task-relevant information 

It is a quite common assumption that neural structures involved in attentional selection form 

two distinct systems, one anterior and one posterior (Posner & DeHaene, 1994). Thereby, the 

anterior system is considered to be responsible for executive processes (i.e. the exertion of 

cognitive control) while the posterior system is primarily involved in the selection of target 

information according to the anterior system’s top-down influence. In the same sense, 

LaBerge (2005) distinguished the control of attention in frontal areas from the expression of 

attention in posterior cortical areas, especially parietal cortices. Accordingly, many studies 

have suggested that attentional selection basically depends on neural activity in a fronto-

parietal network wherein frontal operations of executive control are directed at parietal areas 

where activity can influence the early processing of incoming sensory stimulation (e.g. 

Hopfinger et al., 2000; Corbetta et al., 2002; for reviews see Corbetta & Shulmann, 2002; 

LaBerge, 2005). 

It has been repeatedly proposed that attentional selection in general and resolving cognitive 

conflict or interference in particular works through manipulating, i.e. boosting, activity in 

those brain areas which are specialized for processing the sensory information which has to be 
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attended (e.g. Cohen et al., 1990; Desimone & Duncan, 1995; Cohen et al., 1996; Wojciulik et 

al., 1998; Banich et al., 2001; Weissman et al., 2005; Egner & Hirsch, 2005). In this context, 

it is generally assumed that prefrontal regions “alert” those posterior processing areas that are 

involved in processing the task-relevant feature. In a classic study using positron emission 

tomography (PET), Corbetta collaborators (Corbetta et al., 1991) provide strong support for 

the existence of a suchlike neuro-attentional mechanism. They consecutively presented 

subjects with abstract objects that could be distinguished by three visual attributes (i.e. 

stimulus dimensions): shape, color, and size. Subjects performed three different object 

matching tasks while in each task they had to refer to one specified dimension and to ignore 

the two remaining ones. As central finding, neural activity was modulated in different 

posterior processing regions depending on the visual attribute that has to be attended. For 

instance, when subjects had to make the matching decision based on color, enhanced brain 

activation was observed in lingual fusiform regions that previously have been implicated in 

color perception (e.g. Zeki & Marini, 1998). 

While amplification of neuronal responses seems to play an important role in attentional 

selection, there is likewise evidence for inhibitory suppressive mechanisms that substantially 

contribute to attention regulation (Kastner et al., 1998; Kastner & Ungerleider, 2000). Thus, 

both target amplification and distractor inhibition appear to be feasible neural mechanisms of 

attentional functioning, and the question arose whether neural mechanisms of processing 

cognitive interference (i.e. conflict resolution) comprise both or solely one of them. Recently, 

Egner and Hirsch (2005) reported findings of an fMRI study that substantiate the notion of 

target amplification as primary mechanism in conflict resolution. Specifically, they employed 

a modified Stroop task using face stimuli as targets and thereby manipulated trial-by-trial 

levels of conflict and cognitive control. The analyses of the fMRI data showed enhanced 

activity in the fusiform face area (FFA) – an extrastriate visual region specialized for face 

processing (Kanwisher et al., 1997) – under high control conditions when faces served as 

task-relevant information, but not when they served as task-irrelevant distractors. 

Furthermore, Egner and Hirsch conducted connectivity analyses using the 

psychophysiological interaction (PPI) approach (Friston et al., 1997; see 4.5.3). The results 

showed enhanced coupling between FFA and the dorsolateral prefrontal cortex (DLPFC) – a 

candidate region for the implementation of cognitive control thought to provide neural signals 

biasing extrastriate visual processing (MacDonald et al., 2000; Kerns et al., 2004; see 1.3.3) – 

under high control conditions, again only when faces served as targets, but not when they 

served as distractors. Taken together, the findings strongly suggest that attentional 
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amplification of target features serves as primary mechanism in conflict resolution, and 

findings provide no evidence for a mechanism that suppresses interference-inducing 

distractors. 

 

1.3.2 Segregated but interacting frontoparietal attentional systems for 
top-down and bottom-up processing 

In previous subsections two principle and antagonistic levels of cognitive processing are 

described which are thought to provide complementary attentional functions: top-down (i.e. 

conceptually-driven) processing and bottom-up (i.e. sensory-driven) processing (see 1.1.2 and 

1.1.3). Corbetta & Shulman (2002) reviewed a vast body of neuroimaging studies and thereby 

came up with a neuroanatomical model that relate these cognitive functions with two 

segregated but interacting neural systems, represented by a dorsal and a ventral frontoparietal 

network. 

(a) Dorsal frontoparietal network for top-down control 

The first system is represented by a largely bilateral dorsal frontoparietal network that 

includes parts of the intraparietal cortex and superior frontal cortex, specifically the frontal 

eye fields (FEF). Corporate activation in intraparietal and superior frontal cortices in relation 

to voluntary attentional orienting have been reported for both spatial attention – i.e. attention 

to different locations in the visual field (e.g. Gitelman et al., 1999; Kastner et al., 1999) – and 

feature attention – i.e. attention to different object features like color, shape or motion (e.g. 

Shulman et al., 1999; Shulman et al., 2001) – and beyond that have been related to motor 

preparation and motor attention (e.g. Snyder et al., 1997; Kawashima et al., 1995; Rowe et al., 

2000). Based on the reviewed findings, Corbetta and Shulman conjecture that top-down (i.e. 

goal-directed) selection of both stimuli and motor actions is implemented by a dorsal 

frontopariertal attention network. In particular, this neural system could be construed to 

implement whole task-sets by relating relevant sensory representations to relevant motor 

representations. 

(b) Ventral frontoparietal network for bottom-up processing 

As functional counterpart to the dorsal frontoparietal network, Corbetta and Shulman propose 

a ventral frontoparietal network, strongly lateralized to the right hemisphere, that mainly 

comprises the temporoparietal cortex referred to as ‘temporoparietal junction’ (TPJ) and the 

inferior frontolateral cortex. This system is thought to provide an alerting mechanism that 

detects and orients attention to sensory changes in the environment that are of potential 
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behavioral relevance. Therefore, the system works as a ’circuit breaker’ for the dorsal system, 

directing attention to salient events. Accordingly, studies showed activation in the TPJ and 

inferior PFC in response to unexpected sensory changes across different modalities, while 

activation was additionally strengthened when sensory changes were task-relevant (e.g. 

Downar et al., 2000; Downar et al., 2001).  

Taken together, Corbetta and Shulman (see Corbetta & Shulman, 2002) carried out a 

neuroanatomical model of attentional control that relate the complementary mechanisms of 

top-down and bottom-up processing to circumscribed cortical structures that are organized in 

segregated but interacting neural networks. In their complementary function, these neural 

systems may afford to meet the antagonistic requirements on attention as they are imposed 

during goal-directed action in a changing environment (see sections 1.1.2 and 1.1.3). 

 

1.3.3 The anterior cingulate cortex’s function in cognitive control: selection-for-

action versus conflict detection 

The anterior cingulate cortex (ACC), situated on the medial surface of the frontal lobes, is 

commonly believed to be critically involved in cognitive control and the regulation of 

attention (Posner & Peterson, 1990; D’Esposito et al., 1995; Posner & DiGirolamo, 1998). 

Numerous neuroimaging and electrophysiological studies revealed ACC activation during the 

performance of a variety of cognitive tasks that require selection between stimulus attributes 

and/or response alternatives. In particular, the ACC appears consistently activated in studies 

using the Stroop task when incongruent trials are contrasted against neutral or congruent trials 

(e.g. Pardo et al., 1990; Carter et al., 1995; MacDonald et al., 2000; Fan et al., 2003; Mitchell, 

2005). Based on this vast body of evidence, it is widely accepted that the ACC plays a 

prominent role in cognitive control, however, beyond this consensus, it still remains a matter 

of discussion how the ACC exactly contributes to conflict processing. Basically, one can 

distinguish two competing theoretical accounts of ACC’s function in conflict processing, the 

‘selection-for-action’ account and the ‘conflict monitoring‘ account. 

(1) The selection-for-action account 

The ‘selection-for-action‘ account (Posner & DiGirolamo, 1998; Petersen et al., 1999) 

postulates that the ACC directly exerts top-down attentional control by selecting information 

or objects in the environment as triggers for action. Thus, according to this account, the ACC 

is thought to represent an executive neural instance which imposes or implements a required 

attentional set. In particular, the account presumes that ACC helps to resolve cognitive 
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conflict or interference by increasing processing resources towards task-relevant information 

so as to limit interference from task-irrelevant information. In a recent fMRI study, Weissman 

and collaborators (Weissman et al., 2005) sought to examine the role of the dorsal/caudal 

ACC in conflict processing, and thereby they wanted to test whether this neural structure 

actually contributes to conflict resolution in a direct manner by boosting attentional resources 

towards relevant events. For this purpose, they adopted a cued task-switching paradigm 

wherein participants had to attend either the local or the global aspect of hierarchical letter 

stimuli (e.g. a big letter S composed of smaller letters H), referred to as ‘global/local task‘. 

The authors report that greater ACC activity during distraction was associated with reduced 

behavioral measures of interference. Furthermore, greater ACC activity was associated with 

cues to attend local features compared to cues to attend local features, while attentional 

demands are enhanced when subjects have to attend local features (Weissman et al., 2003). 

Weissman and colleagues interpreted their results in line with the selection-for-action account 

as indicating that ACC is basically involved in focusing attention on behaviorally relevant 

stimuli, especially when behavioral goals are threatened by interfering distractors. 

(2) The conflict monitoring account 

Against the selection-for-action account, other authors have put forward the ‘action-

monitoring theory‘ or ‘conflict-monitoring account‘ (Botvinick et al., 1998; Carter et al., 

1998). This theory is based on the general assumption that cognitive control has not only a 

regulative dimension by which top-down influence is exerted, but also to comprise an 

evaluative function that monitors information processing for current control demands and that 

thus allows for appropriate, context-sensitive control adjustments (Botvinick et al., 2001). The 

theoretical assumption of a complementary evaluative mechanisms in cognitive control 

appears to be necessary because without it, control conceptions remain “humuncular” 

assuming a independent, self-guided instance to implement control (Botvinick et al., 2001; 

van Veen & Carter, 2002). Importantly, the regulative function and the evaluative function are 

thought to be represented by distinct but interacting neural structures. Specifically in the 

conflict monitoring account, neural activity in the ACC is construed as neural substrate of the 

evaluative function. Hence, according to this account, the ACC does not exert top-down 

control but instead detects and signals the occurrence of conflict in information processing. 

Importantly, the ACC response to conflict is thought to trigger subsequent shifts in cognitive 

control (i.e. to trigger enhanced control efforts), which serve to reduce conflict in subsequent 

performance. Thereby, the adaptation of control efforts as proper executive control activity is 

attributed to other neural systems, primarily located in the frontolateral cortex, that refer to 
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ACC’s signal. MacDonald and colleagues (MacDonald et al., 2000) provided key evidence 

for the conflict monitoring account. Using a task-switching version of the Stroop task, 

MacDonalds and colleagues observed a double dissociation of activity in ACC and 

dorsolateral prefrontal cortex (DLPFC). While ACC was selectively engaged by conflict 

emanating from incongruent stimuli, DLPFC was selectively engaged in task-preparation, 

especially in response to color cues indicating the more demanding color task. Importantly, 

there was no enhanced instruction-related activity in ACC for color cues and no enhanced 

response-related activity in DLPFC for incongruent stimuli. Based on their findings, the 

authors argue that DLPFC translates ACC’s signal into the implementation of executive 

control. 

The study, however, was strongly criticized for the extremely long (12.5 sec) cue-target 

interval – included to clearly separate preparation-related from response-related processes – 

that precludes a straightforward interpretation of the reported results. Weissman and 

colleagues (see Weissman et al., 2004; Weissman et al., 2005) convincingly argued that the 

long cue-target interval putatively reduced the likelihood that participants oriented their 

attention at the time of cue presentation and, in turn, the probability of observing activity in 

ACC which was related to focusing attention during the cue presentation. Hence, from this 

perspective, the conflict-related ACC activity in the MacDonald study may still reflect 

processes that focus attention on task-relevant stimuli. Generally, long trial durations arguably 

lower the overall task difficulty and the level of conflict which, in turn, reduces the degree to 

which control execution is necessary to achieve an adequate level of performance. Hence, the 

long cue-target interval (i.e. long trial duration) in the MacDonald study might have 

significantly diminished the probability of observing greater (control-related) ACC activity 

for color cues (that indicate the putatively more difficult task) as compared to word cues. 

The conflict monitoring hypothesis builds up on an earlier ’performance monitoring’ account 

that assumes that ACC activation represents the neural substrate of an error detection system 

or mechanism. It is a well-established finding that ACC transiently activates in association 

with the commission of errors. Error-related ACC activation has been investigated initially in 

ERP studies where it takes the form of a transient negative potential referred to as ‘error-

related negativity’ (ERN) (e.g. Falkenstein et al., 2000). Later, fMRI studies corroborate 

neurophysiological findings and likewise reported error-related ACC engagement (e.g. Kiehl 

et al., 2000; Menon et al., 2001). Studies led to the postulation of a neural error-detection 

system that gets activated when a comparison between representations of the appropriate (i.e. 

correct, intended) and the actual response yields a mismatch. This system has been localized 
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in the frontomedian wall leading to the error detection hypothesis of the ACC. The error 

detection model was challenged by an fMRI study which demonstrated ACC activation 

during error trials as well as during correct trials involving high response competition (Carter 

et al., 1998), while this study marks the origin of the conflict monitoring account. 

As an integrative account, Brown & Braver (2005) put forward the ‘error-likelihood 

hypothesis’ which accounts conflict and error detection as special cases of a more general 

performance monitoring mechanism. In this model, the ACC does not detect errors or conflict 

per se but more generally provides a prediction signal of error probability as an anticipation of 

a reduction in reward. In a quite similar sense, it has been proposed that the ACC monitors for 

the earliest indication for increased attentional demands in order to prompt additional control 

efforts to prevent negative future outcomes (Holroyd & Coles, 2002). 

 

1.3.4 Common neural activations across different situations of cognitive 

interference 

Prior to the current investigation, Oliver Gruber and collaborators conducted a study running 

under the working title “Perseus” (see Gruber & Goschke, 2004; Melcher et al., 2004) that has 

been created within the scope of the same research program as the current investigation 

(priority program “executive functions” of the German Research Foundation (DFG); project 

title: “Dynamic interactions between complementary components of executive control”). 

Important to note, the findings of this fMRI study substantially inspired and influenced the 

development of the current investigation that in part builds up on the results and associated 

interpretations that will be reported in this subsection. 

Essentially, the study was set out to investigate the neural mechanisms that enable humans to 

meet the antagonistic requirements on attentional control as imposed during goal-directed 

action in a changing environment (see 1.1.3). For this purpose, Gruber and collaborators 

adopted a cued task-switching paradigm using colored geometrical objects (tube figures) as 

target stimuli. Thereby, subjects were to classify targets according to either color or shape 

(providing a color task and a shape task) by either a left or right manual response consisting of 

button presses with the right index and middle finger, respectively. The experimental design 

included three basic conditions – congruent, incongruent, and neutral trials – that equally 

appeared in the color and the shape task. On congruent trials, color and shape were mapped to 

the same manual response while on incongruent trials color and shape indicated opposed 

responses. On neutral trials, the currently irrelevant dimension was not mapped to either 
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response. The behavioral data showed reliable switch costs (i.e. significantly longer RTs on 

switch-trials compared to repeat-trials) and a substantial effect of incongruency (i.e. 

significantly prolonged RTs on incongruent trials compared to neutral trials). Both behavioral 

effects are quite common findings in the investigation of task switching performance (see 

1.2.2.1) and therefore were perfectly in line with the study’s prior expectations. Beyond this, 

however, congruent trials exhibited significantly longer RTs compared to neutral trials in the 

shape-task, whereas congruent trials have been expected to produce facilitation rather than 

interference. Retrospectively, the prolonged RTs have been conclusively interpreted to 

represent a mismatch-like or oddball effect, as congruent trials occurred rarely in the 

experimental stimulation (i.e. represented low-frequency events) as compared to the prevalent 

neutral trials. This difference in frequency of trial types resulted from a special design feature 

that had been implemented for fMRI-methodological reasons. Specifically, trials that entered 

into the statistical analyses – referred to as ‘critical trials’ – should be preceded by a baseline 

period in order to minimize the protracted effects of preceding trials on the fMRI signal, 

taking into account the inertia of the BOLD response. The baseline period over which the 

fMRI signal should recover was created by a sequence of three consecutive neutral trials that 

did not enter in the statistical analyses. As a side effect, this arrangement of trials caused a 

disproportionateness between congruent and incongruent trials on the one hand and neutral 

trials on the other, while the latter represented the vast majority (five-sixths of the trials were 

neutral and only one sixth congruent or incongruent). With regard to the shape-task, the 

described disproportionateness took form in a superior number of white colored stimuli, as 

white represented the neutral color value. Due to this, response-mapped red or blue colors on 

congruent or incongruent trials in the shape-task represented low-frequency events in the 

currently task-irrelevant dimension and therefore may be conceived as ‘task-irrelevant 

oddballs’ (see 1.2.2.3). Accordingly, with regard to the behavioral findings, Gruber and 

collaborators argued that the rare occurrence of a rarely congruent color within the shape-task 

involuntarily captured participants’ attention and led to an orienting response (i.e. attentional 

switch) towards the currently irrelevant color dimension. Consequently, the currently 

appropriate attentional set (or task set) was disrupted and had to be reestablished in order to 

meet the task requirements. 

The analysis of the neuroimaging data revealed likewise a rather interesting finding: both the 

described mismatch-like effect due to rarely occurring congruent colors (represented by the 

contrast ‘congruent vs. neutral’) and response-conflict due to incongruent colors (represented 

by the contrast ‘incongruent vs. neutral’) enhanced brain activity in virtually the same cortical 
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network. The corresponding left-hemispherically accentuated activation pattern comprised the 

lateral PFC, especially loci along the inferior frontal sulcus (IFS) and precentral sulcus, the 

pre-supplementary motor area (pre-SMA), cortices along the intraparietal sulcus (IPS), as well 

as occipito-temporal cortices (see Figure 1 and Figure 2). Differences between incongruent 

trials and congruent trials were only quantitative in nature, with incongruent trials exhibiting 

stronger activations but no additional foci. 

 

 

 

 

 

 

Figure 1: Neuroimaging results of the fMRI study “Perseus”. Activations evoked by rarely 
occurring irrelevant, incongruent colors (response-conflict). Contrast: incongruent vs. neutral. 
 
 

 

 

 

 

 

Figure 2: Neuroimaging results of the fMRI study “Perseus”. Activations evoked by rarely 
occurring irrelevant, congruent colors (oddball effect). Contrast: congruent vs. neutral. 
 

In conclusion, in the study’s data, response conflict (i.e. interference at the motor level) and 

interference from task-irrelevant oddballs (i.e. interference at the attentional level / 

competition) appeared to engage the same neural activation pattern or network. A preliminary 

interpretation of the finding was that the neuro-attentional system may possess a background 

monitoring mechanisms for the occurrence of potential behavioral conflict (see Melcher et al., 

2004). Because oddballs may indicate a potential behavioral conflict, the putative monitoring 

mechanisms may recruit the same control mechanisms (i.e. neural activations) in response to 

low-frequency events as can be observed in relation to response-incongruent trials thought to 
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evoke proper response conflict. However, this interpretation is somewhat compromised by the 

fact that the incongruent trials were equally rare as congruent trials. Consequently, 

incongruent trials may also have led to oddball interference in addition to response conflict, 

while this putative ‘procedural overlap’ between incongruent and congruent trials may have 

contributed to some degree to the observed activation overlap. In any case, independent of the 

latter objection, its important to emphasize that response conflict during incongruent trials in 

the presented study did not recruit additional neural activation compared to rarely occurring 

congruent trials, representing ‘color oddballs’. This finding strongly suggests the existence of 

a general or core neural mechanism of interference processing (i.e. resolution) that is recruited 

across different kinds of interference occurring at various levels of cognitive processing. 

Consistent with this conclusion, Zysset and colleagues reported neural activation related to 

Stroop-interference in a cortical network that broadly overlap with the one that was found 

related to interference due to color oddballs in the above presented task-switching study. 

Specifically, Zysset and colleagues (Zysset et al., 2000) adopted a special version of the 

Stroop paradigm, the ‘Matching Stroop Task’, that was introduced by Treisman and Fearnley 

(Treisman & Fearnley, 1969). In this paradigm, on each trial subjects are presented with two 

color word stimuli simultaneously while they have to match the ink color of the first (i.e. 

above-standing) word – who’s lexical meaning could be incongruent, congruent, or neutral 

with respect to the attended color, providing three experimental conditions – to the lexical 

meaning of the second (i.e. below-standing) word. This second word is always printed in 

neutral black. Accordingly, Stroop-interference takes place during the processing of the first 

item and is separated from response-related processes taking place during the subsequent 

matching decision. Therefore, response-related processes can be kept constant across all 

experimental conditions and hence Stroop-interference in this paradigm is investigated at a 

purely semantic level. Specifically, the Stroop interference contrasts (i.e. “incongruent against 

congruent” or “incongruent against neutral”) in this paradigm do not intermingle semantic 

conflict and response/motor conflict as it might be the case in more traditional task versions 

[for a distinction between (i.e. a separation of) response conflict and semantic conflict in the 

Stroop paradigm, see van Veen & Carter, 2005]. Essentially, Zysset and colleagues reported 

neural activation related to Stroop-interference (revealed by the contrast “incongruent vs. 

neutral”) in a (fronto-parietal) cortical network (comprising of the pre-SMA, posterior IFS, 

IPS, and occipitotemporal cortices) that largely corresponded to the one that was found in 

relation to color oddballs in the task-switching study of Gruber and colleagues. Thus, 

considering the two presented studies in conjunction, Stroop-interference and oddball 
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interference – as two distinct operationalizations of interference implemented in two different 

studies – appear to produce essentially the same patterns of neural activation. The observed 

broad activation overlap conclusively suggests that both kinds of interference – Stroop-

interference and oddball-interference – engage the same neurocognitive control mechanism of 

interference resolution. This assertion motivated the current investigation that, in part, 

represents a synthetic combination of the fMRI study “Perseus” and the study of Zysset and 

colleagues, as it examines both Stroop-interference and oddball interference simultaneously. 

In particular, one aim of the current work was to directly compare Stroop-interference and 

oddball-interference, this time operationalized within the same experimental paradigm and 

including the same subjects, so as to ensure high comparability (see 1.4.1). 

 

1.3.5 The inferior frontal junction area: a prominent activation focus in cognitive 

control 

One prominent focus of the described shared activation pattern was situated in the posterior 

inferior frontolateral cortex, in the vicinity of the junction of the inferior frontal sulcus and 

precentral sulcus. Due to its anatomical location within the transition zone of premotor and 

prefrontal cortex, this region has been previously termed the ‘inferior frontal junction area’ 

(IFJA) (Brass & von Cramon, 2004). A recent series of brain imaging studies converge to 

strongly suggest that the IFJA plays a pivotal role in cognitive control (for review, see 

Derrfuss et al., 2005). Thereby, it is important to note that the IFJA, given its posterior 

location within frontolateral cortex, is not part of the mid-dorsolateral PFC (mid-DLPFC) to 

which the previous literature pointed most consistently as the crucial fronto-lateral area in 

cognitive control (e.g. Petrides, 2000; MacDonald et al., 2000). One may assume that the 

special interest in the mid-DLPFC during the last few years may have led to a neglect of the 

IFJA and even sometimes to an inappropriate labeling of the IFJA as DLPFC. In other words, 

the primary role attributed to the mid-DLFPC in cognitive control may be due to the fact that 

consistent activation in the IFJA has been ignored (see Brass et al., 2005). 

The neuroanatomical location of the IFJA has been well defined both in terms of its 

coordinates in the standard stereotactic space (Derrfuss et al., 2004) as well as in terms of its 

cytoarchitectural structure (Amunts et al., 2004). In contrast, the use of the term DLPFC 

appears ambiguous and inhomogeneous and hence can not be referred to a distinct neural 

structure (Gruber, 2005). 
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Neural activity in the IFJA has been reported for a wide range of attentionally demanding 

cognitive tasks and conditions (for review, see Derrfuss et al., 2005). For instance, the inferior 

lateral PFC has been related to task-set preparation (Brass and von Cramon, 2004; Gruber et 

al., 2006), cognitive set shifting (e.g. Konishi et al., 1998; Dove et al., 2000; Pollmann et al., 

2000; Braver et al., 2003; Brass and von Cramon, 2004), and response inhibition (Konishi et 

al., 1999; Konishi et al., 2003). Furthermore, and most interestingly for the current 

investigation, the IFJA has been related in particular to the processing of Stroop interference 

(e.g. Leung et al., 2000; Banich et al., 2000/2001; Zysset et al., 2000; Milham et al., 2003a) 

and task-irrelevant oddballs (e.g. Milham et al., 2003a; Gruber & Goschke, 2004). 

Taken together, studies provide strong evidence that the IFJA plays a crucial role in cognitive 

control involving task-set management, i.e. the activation of task-representations (see 

Derrfuss et al., 2004/2005) and the selection of task-relevant over task-irrelevant information 

(see Milham et al., 2003a), the putative core process in the resolution of cognitive conflict and 

interference (see 1.2.1). Moreover, studies not only help to describe the IFJA’s putative 

cognitive function, but also show that the IFJA can be functionally separated from other 

frontolateral areas, specifically from mid-DLPFC. For instance, Milham and collaborators 

(Milham et al., 2003a) provided evidence for a functional dissociation along the anterior-

posterior axis in attentional functioning of the lateral PFC. In particular, they conducted an 

event-related fMRI study in which they sought to delineate the influence of rare and task-

irrelevant word information – i.e. task-irrelevant word oddballs – on prefrontal cortex’s 

involvement in cognitive control. Furthermore, they wanted to determine whether response-

incongruent word meaning (i.e. Stroop-interference) produces activation in areas similar or 

distinct from those sensitive to word oddballs (i.e. oddball interference). As a main result, 

both word oddball trials and Stroop-incongruent trials enhanced brain activity in the posterior 

frontolateral cortex corresponding to the IFJA. More anterior areas referring to the mid-

DLPFC, on the other hand, were selectively activated by Stroop-incongruent stimuli, and not 

by oddballs. Based on these results, Milham and colleagues concluded that the posterior 

inferior PFC (i.e. the IFJA) is primarily involved in manipulating posterior regions to ensure 

the selection of task-relevant information. The latter assertion is additionally supported by the 

fact that the posterior lateral PFC is anatomically strongly interconnected with posterior 

processing regions (Barbas & Mesulam, 1981; Petrides & Pandya, 1984; Petrides & Pandya, 

1999). In contrast, more anterior regions within inferior lateral PFC are thought to be 

primarily responsible for biasing maintenance and selection of task-relevant information in 

working-memory. Brass and von Cramon (Brass & von Cramon, 2004) proposed a functional 
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dissociation along the anterior-posterior axis within lateral PFC that is quite similar to the one 

of Milham colleagues that has been presented above. Brass and von Cramon conducted an 

fMRI study on task-set preparation and based on their findings conjectured that while more 

anterior prefrontal regions might be mainly involved in maintaining and manipulating 

working memory content, the posterior frontolateral cortex, i.e. the IFJA, would provide 

context-related updating of task representations, i.e. the implementation of relevant task-sets. 

 

1.4 Aims and hypotheses of the current investigation 

Generally, the current work sought to investigate behavioral and neurobiological correlates of 

cognitive performance during conditions of interference and conflict in order to elucidate 

neural mechanisms of cognitive control. Thereby, the main interest was in two situations of 

interference, Stroop-interference and oddball interference, which should be examined as 

operationalized within the same task paradigm. The following subsections present related 

aims and expectations in more detail. 

 

1.4.1 Behavioral effects of interference 

Primarily, it was expected that conditions of cognitive interference produce substantial 

behavioral effects, i.e. that interference trials exhibit prolonged reaction times (RTs) as 

compared to non-interference or baseline trials. Specifically, RTs should serve as validation 

criterion to demonstrate that the implemented experimental manipulation was indeed effective 

in inducing the processes of interest, Stroop-interference and oddball interference. Thereby, 

during trials of Stroop-interference, participants would have to overcome the predominant 

tendency to respond to incongruent word meaning as response-eligible but task-irrelevant 

dimension (see 1.2.3.2). On the other hand, oddball conditions were expected to evoke an 

attentional orienting response which participants would have to override in order maintain 

adequate performance (see 1.2.3.3). Both types of interference were expected to incur time 

costs that become obvious in prolonged RTs of the respective trial types. 

 

1.4.2 Neural effects of interference 

Generally, regarding the neuroimaging data, it was expected that experimental conditions of 

interference evoke activations in neural structures that have been previously related to 
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cognitive conflict and interference (see 1.3). Moreover, it was explicitly expected that 

different interference conditions exhibit a striking activation overlap as hallmark or indicator 

of a common or core neural mechanism in cognitive control to resolve interference (see 

1.3.4). Activation overlap was expected for both anterior, prefrontal areas (thought to underlie 

‘attentional control’) and posterior, parietal and temporo-occipital areas (thought to underlie 

‘attentional expression’), forming an anterior and posterior attentional system, respectively 

(see 1.3.1). In particular, the inferior frontal junction area was expected to exhibit prominent 

activation across all interference conditions, as this structure has been shown to play a pivotal 

role in the implementation of task-sets as well as in the selection of task-relevant over task-

irrelevant information (see 1.3.5). Expectations may be summarized as in the following 

general hypothesis:  

 

General hypothesis: While different kinds of cognitive interference can be well distinguished 

– both conceptually as well as operationally – they may share a common neural mechanism 

(i.e. core process) of interference resolution and accordingly may share common neural 

substrates. 

 

This assumption was motivated by prior studies’ findings showing the same pattern of 

frontoparietal activation to occur across different paradigms and conditions of interference 

involving Stroop-interference, oddball interference and response incongruency during task-

switching (see 1.3.4). This observation of common activation suggests the existence of a core 

neural process in interference processing that is recruited across multiple conflict situations or 

levels of interference. Generally, during interference processing top-down attentional control 

provides a bias favoring the processing of task-relevant information over that of task-

irrelevant information. Hence, to select task-relevant over task-irrelevant information – as a 

central aspect of attentional functioning – may be thought of as core process in the resolution 

of cognitive conflict (Weissman et al., 2005; see 1.2.1).  

Considered in more detail, the current investigation pursued three circumscribed goals that 

will be presented in the following subsections. Thereby, associated predictions in terms of 

experimental hypotheses will be stated. 

 

 



Introduction  29 

1.4.2.1 Direct comparison of Stroop-interference and oddball-interference 

First, the current investigation was set out to directly compare Stroop-interference (see 

1.2.3.2) and oddball interference (see 1.2.3.3). Thereby, the following hypothesis was 

specified: 

 

Hypothesis: The neural mechanisms that underlie the overriding of a sensory orienting 

response to low-frequency events (i.e. oddballs) are – at least in part – the same as the neural 

mechanisms that allow to resolve Stroop-interference, i.e. to override a prepotent behavioral 

response. 

 

In particular, Stroop-incongruent trials, thought to evoke Stroop-interference, should be 

compared with word oddball trials comprising rarely occurring word-meaning. The 

comparison between Stroop-interference and interference from word oddballs was assumed to 

ensure good comparability as in both cases interference emanates from the same stimulus 

attribute (word meaning, including incongruent information in the one case and rarely 

occurring information in the other) and therefore occurs within the same processing domain. 

 

1.4.2.2 Investigation of the influence of the processing domain from which interference 

emanates: color vs. word meaning 

Second, the current investigation was planned to elucidate domain-specific effects in 

interference processing, i.e. the influence of the processing domain of the task-irrelevant 

information from which interference emanates. Thereby, the following hypothesis was 

specified: 

 

Hypothesis: Different interference effects although occurring in distinct processing domains 

engage overlapping neural activation that reflects a common neural mechanism of 

interference resolution. 

 

To test this hypothesis, oddball events in two different attribute dimensions referring to 

distinct processing domains – color and word meaning – should be created. The comparison 

between word oddballs and color oddballs was also assumed to ensure good comparability as 

the compared conditions would only differ in the dimension from which interference 

emanates (word vs. color) but not in the actual kind of interference (oddball interference in 

both cases). According to the comparison between Stroop-interference and interference from 
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word oddballs, it was expected that a putative common executive core process in interference 

processing would take form in an overlapping activation pattern. 

It is a wide-spread assumption that in interference processing prefrontal areas – forming an 

anterior executive system – alert those posterior cortical regions that are specialized for 

processing the task-relevant information (see 1.3.1). Accordingly, it was expected to find 

common activations in posterior processing areas across the compared oddball conditions 

reflecting the (amplified or boosted) processing of the common task-relevant attribute. 

However, oddball interference is conceived as orienting response to the task-irrelevant 

attribute in which the low-frequent event occurs (see 1.2.3.3). Therefore, dissociations in 

posterior regions between different oddball conditions, if present, were expected to reflect the 

orienting response to and incremental processing of the respective irrelevant oddball 

dimension. 

 

1.4.2.3 Decomposing interference during Stroop performance into different conflict 

factors 

Finally, the current work was set out to trace back Stroop interference to circumscribed 

properties of task-irrelevant information that can be conceived as ‘conflict factors’ that trigger 

different interference effects (for an explanation and working definition of the term ‘conflict 

factor’, see 1.2.1). In particular, the investigation sought to delineate the neural substrates of 

three conflict factors that refer to circumscribed properties of (task-irrelevant) lexical word 

meaning during Stroop performance: (A) response-incompatibility (i.e. word identity 

indicates an opposed response), (B) semantic incongruency (i.e. word identity is 

incongruent/contradictory, independent of its response-eligibility), and (C) task-reference 

(i.e. word identity is semantically related to the task-set, independent of its semantic 

concordance with the relevant dimension). These properties can be conclusively related to 

distinct kinds of interference that have been previously distinguished, specifically for Stroop-

performance (see 1.2.1): response-incompatibility may induce response-conflict while 

semantic incongruency may lead to semantic conflict, and finally task-reference may lead to 

competition between task-relevant and task-irrelevant information. It was expected that the 

neural correlates of the conflict factors reflect the occurrence of the related kinds of 

interference. Important to note, different conflict factors can occur simultaneously in an 

experimental condition, and thus single experimental conditions may intermingle different 

kinds of interference. For instance, it has been argued that Stroop interference contrasts, in 

particular the contrast “incongruent against congruent”, may intermingle conflict or 
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interference at the semantic level and at the motor level. In other words, as word meaning on 

incongruent trials is both semantic incongruent and response-incompatible, the contrast 

“incongruent against congruent” involve two incremental components and thus may 

intermingle semantic conflict and response conflict (see e.g. Zysset et al., 2001; van Veen & 

Carter, 2005). Following this notion, the current study sought to split activations of the Stroop 

contrast “incongruent against congruent” into two subgroups: (a) activations due to response-

incompatibility (reflecting response conflict) and (b) activations emanating from semantic 

incongruency (reflecting semantic conflict). For this, it was planned to adopt the statistical 

principle of ‘cognitive conjunction’ in order to disentangle intermingled factors. 

Some authors have discussed that attentional demands might be already enhanced whenever 

task-irrelevant information is semantically related to the current task-set due to competition 

between task-relevant and task-irrelevant information for priority in processing (e.g. Milham 

et al., 2002; see 1.2.1). The current study also set out to delineate the neural substrate of this 

third conflict factor – here referred to as task-reference – which is inherent in both 

incongruent and congruent Stroop trials and might essentially contribute to the overall Stroop 

interference effect. 
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2 Methods 

 

2.1 Data acquisition 

 

2.1.1 Subjects / Participants 

Twelve healthy and right-handed young adults have been recruited. The participant group 

comprised six men and six women with a mean age of 25,67 years (standard deviation: 1.88). 

They received a monetary payment for participating. All subjects were pre-trained a day 

before they underwent fMRI so as to ensure high accuracy levels in the task performance. 

After the preprocessing of the fMRI data three participants had to be excluded from the 

statistical analyses due to uncorrectable motion artifacts. 

 

2.1.2 Neuroimaging: Functional Magnetic Resonance Imaging (fMRI) 

To meet the current work’s purposes, functional brain imaging should be applied. The term 

‘functional brain imaging’ embraces the full range of techniques by which physiological 

changes that accompany brain activity are ascertained or measured. Specifically, the current 

investigation used ‘functional magnetic resonance imaging’ (fMRI), which among all 

functional brain imaging techniques is reckoned an especially flexible one that offers a wide 

range of potential applications. Furthermore, unlike other imaging techniques as ‘positron 

emission tomography’ (PET) or ‘single photon emission computed tomography’ (SPECT), 

fMRI is absolutely noninvasive so that a person can be imaged repeatedly without concern. 

Generally, the functionality of brain imaging techniques is intimately connected to the 

physiology that underlie neuronal activity, comprising electrophysiological, biochemical, and 

metabolic processes. In particular, fMRI is based on hemodynamic changes, specifically on 

local increases of blood oxygen (i.e. oxygenated hemoglobin) – commonly referred to as the 

BOLD (blood oxygenation level dependent) response – that follow brain activity. 

 

2.1.2.1 Physiological basis: local increases of blood oxygenation 

Brain activity broadly consists of neurotransmitter release that is accompanied by metabolic 

changes in neurons and glia that require energy. Energy production in the brain ultimately 
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depends on oxidative metabolism. Therefore, neuronal activity is accompanied by an 

increased local demand for delivery of oxygen that is generally met by an increased local 

blood flow, occurring seconds later. An increase in local blood flow following brain 

stimulation was firstly shown in 1890 by Charles Sherrington, who beyond this found that the 

relative proportion of oxygen extracted from this blood was significantly increased. In other 

words, the increase in oxygen delivery exceeds the increase in oxygen utilization. This 

disproportionate increase of oxygenated hemoglobin is especially important for the oxygen 

supply – i.e. the oxidative metabolism and glucose substrate utilization – of the working brain, 

as vascular oxygen diffusion capacities are significantly restricted (Buxton & Frank, 1997). 

By increasing the relative proportion of oxygenated hemoglobin in blood, the oxygen gradient 

between capillaries and circumjacent cells is increased and thereby helps to adapt the 

diffusion-limited transport to the rate of utilization. However, the thereby accompanying 

increase in blood flow leads only to a small increase in local blood volume. In brief, changes 

in the oxygenation level of the blood occur as a consequence of neuronal activity and 

therefore can be used as an indirect measure of excitatory input to neurons which is closely 

related to the cell firing rate (Logothetis et al., 2001). 

 

2.1.2.2 Physical basis: nuclear magnetic resonance  

As already evident in the term itself, MRI techniques acquire magnetic resonance. Magnetic 

resonance is a physical phenomenon arising from the interaction of atom nuclei that have a 

magnetic moment with an applied magnetic filed. Nuclei of many atoms with a nuclear “spin” 

can behave as magnetic dipoles and accordingly can assume either a high-energy state if 

oriented against the applied magnetic field, or a low-energy state if aligned with the applied 

magnetic field. Transitions between the two energy states are associated with absorption or 

emission of energy in the radiofrequency range. The frequency of the energy emitted by an 

excited nucleus is proportional to the magnetic field at the nucleus which is primarily 

determined by the magnetic field applied in the imaging experiment. Generally, hydrogen 

nuclei perform spins around their axis which give them an angular moment. Furthermore, as 

protons are positive charges, a current loop perpendicular to the rotation axis is created so that 

the proton generates a magnetic field. The joint effect of the angular moment and the 

generated magnetic field is that protons get a magnetic dipole moment. Importantly, normally 

one will not experience any magnetic field from a volume of nuclei, because the magnetic 

dipole moments of the single protons are oriented randomly and in average equalize one 

another. If an external magnetic field (B0) is applied, protons are forced to align their spins in 
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parallel (or anti-parallel) to the applied magnetic field with an angular frequency w0, referred 

to as Larmor frequency. The Larmor frequency is defined as  

w0 = Gamma * B0, 

where gamma is a constant called gyromagnetic ratio, whose value depends on the type of 

nucleus. That means that under a given magnetic field (B0), the resulting resonance frequency 

(w0) is specific to the present kind of nucleus, a phenomenon which is used in ‘spectroscopic‘ 

MR techniques. In MRI one apply a stationary magnetic field in order to obtain some control 

over the single protons which is necessary to create resonance that one can record. On the 

static magnetic field, magnetic pulses are superimposed that tip the net magnetization vector 

of the nuclear spins away from the equilibrium alignment with the applied magnetic field. 

Thereby, protons get from a low- to a high-energy state by absorbing energy. When a 

magnetic pulse ends (i.e. the energy source is switched off), a relaxation process will start 

immediately during which protons return to the equilibrium state by emitting the afore 

absorbed energy. Emitting and absorbing radiofrequency energy – which is magnetic 

resonance – if recorded can be processed into a MR image. The relaxation process in 

resonance can be described by different time constants which are used to generate contrast in 

MRI. The biological parameters T1 and T2 are tissue dependent and therefore yield the 

possibility to separate different tissue types in the human brain. During BOLD-fMRI, T2* 

effects are recorded which are associated to the fact that deoxyhemoglobin is magnetic 

whereas oxygenated hemoglobin is not. Following, the three time parameters used to generate 

MRI contrasts are presented in a bit more detail.  

(A) T1 period: spin-lattice relaxation time 

How efficient the spin relaxation occurs is determined by the interaction of the spins with 

their surrounding environment referred to as ‘lattice’. During the spin-lattice relaxation, the 

high-energy state protons exchange energy with circumjacent protons which results in thermal 

energy. This process has a rate constant 1/T1, where T1 is the so-called ‘spin-lattice 

relaxation time’ and represents an exponential process. If excitation pulses are applied more 

rapidly than allows for full relaxation, then the proportion of spins that can be excited is lower 

and the resonance signal decreases. This provides one source of imaging contrast, as the T1 

for a water molecule depends on the chemical environment, which varies for different parts of 

the brain, for instance is longer for water in cerebrospinal fluid (CSF) than for water in tissue. 

By shortening the inter pulse delay (or TR = time of repetition) in a pulse sequence, signal 

from parts of the brain with a shorter T1 relaxation time will increase relative to signal from 

parts of the brain with longer T1 relaxation time. Excited spins regain 66% of their 
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equilibrium magnetization over one T1 period (and 95% over three T1 periods). In principle, 

if one could observe the signal from an single resonating nucleus, it would decay with a time 

constant equal to T1.  

(B) T2 period: spin-spin relaxation time 

Generally, during MRI one is observing emissions from huge numbers of spins 

simultaneously while single nuclei continuously experience small local changes in magnetic 

field. These shifting fields allow an exchange of energy between nuclei which leads to a loss 

of coherence in the phases of their resonance emissions. This loss of coherence leads to an 

exponential loss of intensity for the summed resonance signal from all of the nuclei together, 

which is described by the so-called ‘spin-spin’ or T2 relaxation time. The T2 is an intrinsic 

property of nuclei in a particular chemical environment. By increasing the delay before signal 

detection in a pulse sequence (i.e. lengthening the TE = echo time), signal from tissue with a 

longer T2 (e.g. gray matter) will be increased relative to tissues with shorter T2 (e.g. white 

matter).  

(C) T2* relaxation time 

The rate of decay of signal is faster if there are local field gradients that the molecules can 

diffuse through over the time course of a single TE. As molecules move into regions of 

different local fields, their resonance frequencies change slightly, lowering the coherence of 

the nuclear spins. This leads to a more rapid decay of the net signal. In the presence of local 

magnetic field inhomogeneities, the rate of signal decay is expressed by the T2* relaxation 

time. In regions of rapidly changing local magnetic fields, the T2* can be substantially shorter 

than the T2. This provides yet another mechanism for generating contrast that is especially 

important for functional imaging. T2 refers to changes of the signal inside a vessel whereas 

T2* refers to changes of the signal in the tissue immediately surrounding a vessel. Changes in 

both T2 and T2* relaxation times for intra- and extravascular water become greater with 

higher imaging magnetic field strength. However, for intravascular water the increase is linear 

and for extravascular water the increase is exponential (Ogawa et al., 1993). Consequently, at 

higher magnetic field strength the contribution of contrast change in the brain tissue increases 

relative to that from blood in vessels (Gati et al., 1997). 

 

2.1.2.3 Linking hemodynamic changes to magnetic properties 

In blood oxygenation level dependent (BOLD) fMRI, the imaging contrast arises as a 

consequence of changes in the local magnetic susceptibility following the higher ratio of 

oxyhemoglobin to deoxyhemoglobin in local draining venules and veins that accompanies 
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neuronal activation (Ogawa et al., 1993). In contrast, during perfusion MRI – a method much 

less sensitive as BOLD fMRI – there is a direct measuring of the blood flow response. 

Oxyhemoglobin has no substantial magnetic properties, i.e. is diamagnetic, but 

deoxyhemoglobin is strongly paramagnetic (Pauling & Coryell, 1936). Thus, variation in the 

relative proportion of oxyhemoglobin leads to changes in magnetic susceptibility. In BOLD 

fMRI, deoxyhemoglobin serves as intrinsic paramagnetic contrast agent that has only little 

effect on T1. Accordingly, in case of local increases of oxygen level, T2 weighted gradient-

echo EPI (‘echo planar imaging’) sequences and T2* weighted spin-echo EPI sequences, 

which are both highly susceptibility sensitive, will show an increase in signal (see below 

2.1.2.5). 

 

2.1.2.4 Relevant parameters of an MR-sequence 

The nature of a signal from an uncontrolled relaxation process would make it impossible to 

separate the influence of the different parameters, and accordingly different hemodynamic 

states or tissue types could not be distinguished. Therefore, one exerts control over the 

relaxation process by introducing a dependency of one of the biological parameters in the 

recorded signal. In other words, the MR-signals are weighted upon one of the biological 

parameters. To create controlled relaxation processes one changes the way in which the spins 

are excited and observed using different ‘pulse sequences’, e.g. a T2-weighted spin-echo 

sequence or the Inversion-Recovery method for T1-weightened images. There are three 

principle parameters of pulse sequences that can be varied to generate contrast: 

(a) the ‘flip-angle’ (extent to which the net magnetization vector of the nuclear spins is 

tipped away from the equilibrium alignment with the applied magnetic field, varied by 

the energy per pulse put into the sample), 

(b) the rate at which pulses are applied (the ‘pulse rate’) which increases as the TR (‘time of 

repetition’) interval becomes shorter (the shorter the TR, the less time is allowed for T1 

relaxation), and 

(c) the time that is waited before the resonance is detected after excitation, refereed to as TE 

(‘echo time’) (nuclei that have a shorter T2 will relatively less signal, the longer the TE 

value used). 

 

2.1.2.5 EPI: Echo planar imaging 

‘Echo planar imaging’ (EPI) is a data acquisition strategy that allows for a very rapid data 

acquisition. The EPI method was originally described by Mansfield (1977). The basic concept 
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of this method is that multiple rather than single image lines are acquired after spin 

preparation. Conventional imaging sequences record one slice of a volume each phase 

encoding step so that the time required to acquire a complete volume is determined by the 

product of TR and the number of slices. In contrast, during EPI sequences all slices of a 

volume are acquired in a single TR period. Hence, what distinguishes the EPI sequence from 

other sequences is that all the signal information needed to reconstruct an entire image is 

obtained in a “single shot”. Therefore, successful EPI requires that the time take to read a 

single image line is significantly smaller than T2* which necessitates strong gradient fields 

with rapid switching capability. There are two principal EPI sequences, ‘gradient-echo’ EPI 

and ‘spin-echo’ EPI. In both sequences, the readout of multiple slices occurs from a single 

‘free induction decay’ (FID), while the signal decay occurs with the time constant T2 for 

gradient-echo EPI and with the time constant T2* for spin-echo EPI. 

 

2.1.2.6 Imaging location: the generation of MR-images from MR-signals  

In order to generate MR-images, it is necessary to assign defined MR-signals to 

circumscribed locations in the brain. Methods to image the location of resonating nuclei in a 

sample in principle all use the same idea of “spatial frequency encoding”. Thereby, one 

employs small magnetic field gradients that are superimposed on the larger homogeneous 

static magnetic field of the imaging magnet. The relative positions of molecules along the 

smaller gradient field are measured simply from differences in resonance frequency, as a 

given point in space is equivalent to a given frequency. 

 
2.1.2.7 Time course of the BOLD response 

Generally, the time course of the BOLD response in a given region of activation is complex, 

and different time points of the time course may provide distinct information. BOLD time 

course is best defined for the primary visual cortex (Ernst & Hennig, 1994). Generally, there 

is an initial small decrease referred to as ‘early dip’ that evolves over the first second. The 

early dip is hypothesized to arise from the rapid deoxygenation of capillary blood following 

the greater oxygen utilization associated with greater synaptic activity. Over the next two till 

four seconds, there is a progressive increase in signal intensity due to the increase in blood 

flow which exceeds the increase in local oxygen utilization so that the oxyhemoglobin / 

deoxyhemoglobin ratio increases. For a simple stimulus that does not cause physiological 

habituation, the signal change is maintained on a relatively constant level for the period of 

stimulation (Bandettini et al., 1997). After the stimulation stops, both blood flow and the 
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oxyhemoglobin / deoxyhemoglobin ratio decay. Particularly, after the stimulation stops, the 

BOLD signal decreases over a few seconds to a level below the initial baseline, referred to as 

‘undershoot’, from which it recovers slowly over a further few seconds. Altogether, even for 

brief stimulus presentations, it takes about 12 to 18 seconds from the onset to the final return 

of the signal intensity to baseline. 

 

2.1.2.8 FMRI data acquisition in the current investigation 

Imaging in the current work was performed on a 3-T MRI scanner (Bruker Medspec 30/100; 

Bruker BioSpin MRI GmbH, Ettlingen, Germany) with a standard birdcage headcoil. 

Nineteen axial slices (voxel size 3 X 3 X 5 mm3, distance factor 0.2) were positioned in 

parallel to the AC-PC plane (AC = anterior commissure; PC posterior commissure), covering 

the entire brain. Prior to the functional scans, anatomical MDEFT (modified driven 

equilibrium Fourier transform pulse sequence) slices and EPI-T1 (echo-planar imaging, t1-

weighted) slices were obtained. These measurements were followed by three runs of a single-

shot, gradient EPI sequence (TR 1.75 s, TE 30 ms, flip angle 90°, filed of view 192 mm, 64 X 

64 matrix) each acquiring a total of 535 image volumes. Functional brain imaging was 

synchronized with stimulus presentation by means of ERTS (Experimental Run Time System, 

Version 3.11, BeriSoft Cooperation, Frankfurt am Main, Germany). In a separate session, a 

high-resolution structural scan (3D MDEFT) was obtained for each subject. Importantly, there 

was no whole-numbered or fixed relation between image acquisition and presentation rate, so 

that the hemodynamic response was sampled at different time points (i.e. was oversampled). 

Thus, there was no need to insert jittered inter-stimulus intervals for an exact estimation of the 

hemodynamic response. 

 

2.1.3 Experimental setting and paradigm 

2.1.3.1 Stimulation 

The stimulation was computer-based using the software package ERTS that run on a PC in the 

scanner control room. While subjects laid in the scanner tube (supine position; head-first), 

stimuli have been projected by a video beamer onto a small mirror that was positioned above 

the subjects’ head in a distance that ensured clear and relaxed vision. 
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2.1.3.2 Task paradigm 

For the current work’s purpose, a special version of the Stroop paradigm (see 1.2.2.2) was 

adopted in which participants classified colored word stimuli according to font size rather 

than according to ink color as it is the case in most other task versions. Subjects had to 

classify targets by a forced choice – left or right – button press response using either the 

middle or index finger of the right hand. They were instructed to make a left response if the 

word stimuli appeared in big font size and to make a right response for small font size stimuli. 

Unlike other Stroop paradigms, there was no task related to word meaning, and it was 

explicitly pointed out to the subjects that they would have to ignore it for good performance. 

Participants were further instructed to be fast but accurate. Because the current work should 

be directly linked up with a prior neuroimaging study called ‘Perseus’ (see 1.3.4), the 

implementation of a color oddball condition – consisting of a rarely occurring task-irrelevant 

and response-ineligible stimulus color – was of primary interest. On the other hand, it was 

impossible to operationalize color oddballs within the commonly used color Stroop task, 

because here color serves as task-relevant (i.e. response-indicating) dimension and 

accordingly cannot assume a response-ineligible value. Therefore, the described ‘size Stroop 

task’ was created in which all conditions of interest could be implemented and compared. 

Nevertheless, the experimental task also included color Stroop trials and accordingly 

consisted of a ‘cued task-switching paradigm’ (see 1.2.3.1) in order to keep the overall 

attentional demands on a higher level as during single task performance. 

Note: In particular, due to the task switches the cognitive system was expected to keep a 

higher flexibility and therefore a higher distractibility which should reinforce the oddball 

effect which actually is a distraction effect. During single task conditions, on the other hand, 

control efforts to shield the one relevant dimension are sustained and thus, assumably, get 

very strong so that there is only little distractibility (and hence probably a reduced sensitivity 

for oddballs) which is achieved at the cost of an attenuated cognitive flexibility. 

During the color-task, blue ink color was mapped to a left response and yellow ink color to a 

right response. It is important to emphasize that color task trials did not enter into the 

statistical analyses and that hence the current work’s results presentation is restricted to the 

size-task that comprised all conditions of interest (see also below, 2.2.3). 

In the beginning of each trial a cue lasting for 500 ms signalized which task had to be 

performed on the upcoming stimulus. A big letter F for “Farbe” (which is the German 

translation for “color”) indicated the color-task, while a big letter G for “Größe” (which is the 

German translation for “size”) indicated the size-task. Targets appeared after a short delay of 
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250 ms and lasted for 750 ms. RTs were recorded within a time period of 1500 ms with begin 

of the target presentation till the onset of the next cue. Thus, the total trial duration was 2250 

ms (see Figure 3). 
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Figure 3: Task paradigm and trial constitution. 
 

 

2.1.3.3 Design and experimental conditions 
Six basic experimental conditions of interest were created that occurred in both tasks equally 

frequent so that the experimental design was completely symmetrical. During congruent 

(CO) trials, word meaning matched the value of the currently relevant dimension, for instance 

the word BIG printed in big letters in the size-task, or the word BLUE printed in blue color in 

the color-task. During response-eligible incongruent / response-incongruent (RI) trials, 

word meaning denoted the opposed-mapped value of the currently relevant dimension, for 

instance the word SMALL printed in big letters in the size-task, or the word BLUE printed in 

yellow color in the color-task. During response-ineligible incongruent / semantically 

incongruent (SI) trials, word meaning was likewise incongruent with the currently relevant 

dimension but – in contrast to the RI condition – was not mapped to any response, i.e. was 

response-ineligible. Specifically, for the color-task the color word GREEN and for the size-

task the size-associated word BROAD were presented, which are both response-ineligible (i.e. 

not part of the task-set). Word-oddball (OW) trials comprised rarely occurring words that 

were semantically unrelated to the tasks, while the vast majority of trials comprised response-
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eligible or response-ineligible color or size words. Ten oddball words were implemented 

comprising of KALT, WARM, LAUT, BRAV, VOLL, LEER, SPÄT, FRÜH, HELL, and 

FERN (English translations: cold, warm, good (in terms of “well behaved”), full, empty, late, 

early, bright, and distal) which were matched for word length and syllable number with the 

prevalent word stimuli. Each oddball word was presented with a frequency of one in every 

112 trials (~0.9%) while each response-eligible and response-ineligible color word or size 

word appeared with a frequency of one in every six trials (~17%). Furthermore, another low-

frequency condition was created in which the oddball event occurred in the currently 

irrelevant dimension and that therefore differed for the color-task and the size-task. Regarding 

the size-task, Color-oddball (OC) trials consisted of rarely occurring red colored stimuli 

while the vast majority of stimuli appeared in yellow or blue ink color. Regarding the color-

task, Size-oddball trials consisted of rarely occurring mid-size stimuli while the vast majority 

of stimuli appeared in small or big font size. Important to note, the color-task could not 

include color oddballs (i.e. OC trials), since the oddball color red was response-ineligible and 

participants consequently could not have given a response on OC trials presented during the 

color-task. Similarly, the size-task could not include size oddballs because the mid-size value, 

just like the red color, was response-ineligible. Both, red colored and mid-size stimuli 

appeared with a frequency of one in every 32 trials (~3%) while each other color and size 

value (blue and yellow as well as big and small font size) appeared on virtually every second 

trial (~49%). Noteworthy, while Color-oddballs and Size-oddballs occurred with a different 

frequency, the frequency ratio (i.e. relative frequency) of rare values (i.e. oddball values) to 

prevalent values was roughly identical for the color and the word dimension (~1:17). 

Oddballs were distributed within the stimulation sequence in a pseudorandomized manner that 

ensured that no oddball trial followed another oddball trial, and furthermore that oddball trials 

were preceded by every other trial type equally often. Size-oddball trials – just as all other 

trials of the color-task – did not enter into the statistical analyses (see 2.2.3) and were 

implemented only to keep the design balanced (i.e. symmetrical) across the two tasks. Neutral 

/ semantically unrelated (SU) trials included the normally frequent and response-ineligible 

color word “GREEN” in the size-task and the normally frequent and response-ineligible size 

word “BROAD” in the color-task, so that word meaning was semantically unrelated to the 

task at hand. SU trials should primarily serve as contrast condition for the oddball conditions 

– Color-oddballs and Word-oddballs – and therefore were also termed ‘oddball control 

condition’. 
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Important to note, all trial types mentioned so far – with the exception of Color- and Size-

oddballs – were ‘basically congruent’, i.e. color and size were mapped to the same response. 

But, there were also ‘basically incongruent’ trials during which color and size were mapped 

to opposed responses. Specifically, basically incongruent trials comprised big font size 

combined with yellow color or small font size combined with blue color. However, basically 

incongruent trials were not relevant for the current work’s purposes and had been included for 

task-strategic reasons only, in order to prevent subjects from focusing on the same dimension 

in both tasks, which would be a “successful” strategy if only basically congruent trials were 

presented. Each trial type, with the exception of the oddball trials, appeared 36 times in both 

the color-task and the shape-task. Word-oddballs trials appeared 10 times in both tasks, while 

Color-oddballs and Size-oddballs appeared 36 times in the size task and 36 times in the color 

task, respectively. Switch trials, i.e. the first trials after a task switch, were excluded from the 

analyses because cognitive (re)configuration processes during task switches are not part of the 

current work’s purposes. The experimental stimulation was fully counterbalanced in that 

every color value, size value and word as well as their combinations occurred equally often 

within the experimental course, while the included low-frequency (i.e. oddball) events 

represented intended exceptions. Altogether, the experimental stimulation included 1168 trials 

which participants performed on three separate blocks of equal length. Conditions were 

presented in a counterbalanced order, generated to ensure that each trial type followed every 

other trial type equally often. Labelings of the experimental conditions and associated stimuli 

are depicted in the tables of Figure 4 and Figure 5 for the color-task and the size-task, 

respectively.  
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color-task 

experimental conditions 
word stimuli 

(English translation) 
GELB (YELLOW) Stroop-incongruency 

(response-eligible) 
BLUE (BLUE) 

GREEN (GREEN) Stroop-incongruency 
(response-ineligible) 

GREEN (GREEN) 
BLAU (BLUE) Stroop-congruency 

  
GELB (YELLOW) 

LAUT (LOUD) Word-oddball 
KALT (COLD) 

BREIT (BROAD) Size-oddball 
  BREIT (BROAD) 

BREIT (BROAD) Semantically unrelated / 
Oddball control 

BREIT (BROAD) 
BREIT (BROAD) Basic incongruency 

BREIT (BROAD) 
Figure 4: Table depicts condition labels and corresponding target stimuli of the color-task. 

size-task 

experimental conditions abbr.
word stimuli 

(English translation) 
KLEIN (SMALL) Stroop-incongruency 

(response-eligible) RI 
GROSS (BIG) 

BREIT (BROAD) Stroop-incongruency 
(response-ineligible) SI 

BREIT (BROAD) 

GROSS (BIG) Stroop-congruency 
CO 

KLEIN (SMALL) 

LAUT (LOUD) Word-oddball 
OW

KALT (COLD) 

GRÜN (GREEN) Color-oddball 
OC 

GRÜN (GREEN) 

GRÜN (GREEN) Semantically unrelated / 
Oddball control SU 

GRÜN (GREEN) 

GRÜN (GREEN) Basic incongruency 
GRÜN (GREEN) 

Figure 5: Table depicts condition labels and corresponding target stimuli of the size-task. 
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2.2 Data analysis 

 

2.2.1 Neuroimaging data 

 

2.2.1.1 Preprocessing of the fMRI data 

Using the SPM2 software package (http://www.fil.ion.ucl.ac.uk/spm/), the functional images 

acquired were realigned, corrected for motion artifacts, slicetime acquisition differences, 

global signal intensity variation, and low-frequency fluctuations, normalized into the standard 

stereotactic space (using the MNI template) and spatially smoothed with a 9 mm and 8 mm 

full-width-half-maximum Gaussian kernel for group and single subject analyses, respectively. 

Based on the General Linear Model approach for time-series data, a design matrix was created 

in which the experimental conditions were modeled as different events in time and convolved 

with a hemodynamic response function accounting for the delay of the BOLD (blood oxygen 

level dependent) response. 

 

2.2.1.2 Statistical procedures: cognitive subtraction and cognitive conjunction 

Consequent to the preprocessing, the fMRI data were statistically analyzed by adopting two 

basic statistical principles, cognitive subtraction and cognitive conjunction, that will be 

presented in the following subsections. 

 

2.2.1.2.1 Cognitive subtraction: condition contrasts 

Generally, cognitive subtraction comprises the definition of an experimental condition and a 

baseline condition so that the two conditions differ in only one cognitive component (i.e. 

cognitive process), which is the one that is actually sought to be investigated. Consequently, 

brain regions demonstrating (stronger) increases in vascular activity associated with the 

experimental compared to the baseline condition are interpreted as neural substrate of the 

differential (i.e. incremental) component (Price and Friston, 1997). In the current 

investigation, t-contrasts – corresponding to one sample t-tests – were performed for each 

subject separately. Thereby, the computed subtractions comprised both single contrasts and 

interaction contrasts. Generally, single contrasts determine activations that significantly differ 

between two conditions of an experiment, and in the current work have been defined in order 

to delineate neural activation related to the different interference (i.e. incongruency and 

oddball) effects. In a second step, interaction contrasts were performed so as to compare 

 

http://www.fil.ion.ucl.ac.uk/spm/
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interference effects against each other. In particular, interaction contrasts consisted of 

“contrasted contrasts” in terms of chained subtractions. For instance, if one wishes to compare 

two contrasts A–B and C–D, the subtractive chaining to an interaction contrast would result in 

(A–B)–(C–D) which corresponds to A–B–C+D, taking into account rules for dissolving 

mathematical operator brackets. In this way, Stroop-interference was compared against Word-

oddball interference and Color-oddball interference against Word-oddball interference. 

Thereby, each comparison (i.e. interaction contrast) was performed in both directions. 

Interaction contrasts should reveal areas that significantly differ between the single t-contrasts 

and thereby help to separate common from unique activations of the respective interference 

effects. For group statistics, random effect analyses (Holmes & Friston, 1998) were performed 

on single subject contrast images and were thresholded at p<.005, uncorrected. Essentially, 

random effect analyses identify those brain regions that are consistently activated across 

different subjects, while subjects are treated as random factors – giving random effect 

analyses their name – so that results can be generalized to the entire population to which 

subjects belong. 

 

2.2.1.2.2 Cognitive conjunction: conjoint condition contrasts 

In subtraction designs, one may encounter the problem that it is impossible to set an 

appropriate condition pair that isolates a certain component of interest. Specifically, condition 

contrasts may intermingle different incremental components (i.e. may confound the 

component of interest with other ones) so that a valid interpretation of the found pattern of 

differential activation as reflecting the neural substrate of the component of interest is 

precluded. Cognitive conjunction is in part designed to resolve this issue (Price & Friston, 

1997; Friston et al., 1999). Essentially, cognitive conjunctions identify regions that are 

commonly activated across two (or more) contrasts. In other words, conjunction analyses 

identify regions in which each of two (or more) condition pairs yield differential vascular (i.e. 

BOLD) responses. If the conjoint contrasts share one – and only one – common incremental 

component (the component of interest), the delineated pattern of common activation is 

interpreted as reflecting the neural substrate of this component. Incremental components or 

cognitive operations of the contrasts other than the component of interest (i.e. confounded 

variables) can be disregarded without concern as long as these components are not shared by 

the conjoint contrasts. 

Regarding the current investigation, conjunction analyses were performed by using a random-

effect statistical model in which the single-subject contrast images were entered (see above, 
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2.2.1.2.1) and were thresholded at p<.005, uncorrected. Specifically, conjunction analyses 

were applied according to the revised statistical test introduced by Tom Nichols and 

colleagues (Nichols et al., 2005). This test allows for a valid conjunction interference, i.e. 

tests for a true logical AND, while older versions refer to an inappropriate null hypothesis for 

a suchlike straightforward interpretation.  

 

2.2.1.3 Defined contrasts and contrast conjunctions 

2.2.1.3.1 Single contrasts to determine interference-related activation 

Three different single contrasts have been computed in order to delineate brain activations 

related to (1) Stroop-interference, (2) Word-oddball interference, and (3) Color-oddball 

interference. Ad (1): Neural activity related to Stroop-interference was determined by 

contrasting response-incongruent trials against congruent trials (RI-CO). Ad (2): Activations 

specific for interference emanating from Word-oddballs have been determined by the contrast 

Word-oddball trials against neutral (semantically unrelated) trials (OW-SU). Ad (3): Brain 

activations associated with interference from Color-oddballs were determined by the contrast 

Color-oddball trials against neutral (semantically unrelated) trials (OC-SU). 

Additionally, the contrast response-incongruent trials against neutral (semantically 

unrelated) trials (RI-SU) was computed so that the neural effects of incongruity and oddballs 

could be compared as derived from the same baseline. 

 

2.2.1.3.2 Interaction contrasts to determine differences between interference effects 

In a second step, pairings of the considered t-contrasts have been compared by means of so-

called interaction contrasts. Interaction contrasts in the current investigation consisted of 

subtractive connections of two single contrasts, i.e. of chained subtractions (see 2.2.1.2.1). 

Interaction contrasts have been computed to reveal areas that significantly differ between the 

single t-contrasts so as to separate common from unique activations of the respective 

interference effects. Thereby, subtractions have been conducted in both directions, each, in 

order to isolate activations that are significantly stronger in one contrast (i.e. for one 

interference effect) compared to other, and vice versa. Concretely, Stroop-interference has 

been contrasted against Word-oddball interference (corresponding to RI-CO-OW+SU and 

OW-SU-RI+CO) as well as Color-oddball interference against Word-oddball interference 

(corresponding to OW-SU-OC+SU = OW-OC and OC-SU-OW+SU = OC-OW). 
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2.2.1.3.3 Conjoint contrasts to determine activations related to conflict factors 

Conjunction analyses (see 2.2.1.2.2) have been conducted to delineate the influence of 

circumscribed conflict factors that may independently contribute to the overall Stroop-

interference effect. In particular, set pairings of conjoint contrasts should separate activations 

of the contrast RI-CO into two subgroups: (a) activations related to response-incompatibility 

and (b) activations related to semantic incongruency. The table in Figure 6 allocates conflict 

factors of interest to experimental conditions as well as to condition contrasts respectively 

contrast conjunctions. Thereby, conditions are arranged in an hierarchical order wherein each 

next “higher” condition includes only one incremental component, from SU including no 

factor of interest through RI including all three factors of interest. While the contrast RI-CO 

arguably intermingles ‘response-incompatibility’ and ‘semantic incongruency’ (see 1.4.2.3), 

the contrasts RI-SI and SI-CO isolate response-incompatibility and semantic incongruence, 

respectively. Accordingly, it was expected that activations of the contrast RI-CO that reflect 

response-incompatibility were also observable in the contrast RI-SI. Similarly, activations of 

the contrast RI-CO emanating from semantic incongruency should be equally present in the 

contrast RI-SI. Based on this allocation of conflict factors to condition contrasts, contrast 

conjunctions have been defined. Thereby, common activations of RI-CO with RI-SI have 

been attributed to response-incompatibility whereas common activations of RI-CO with SI-

CO have been interpreted as emanating from semantic incongruency. To determine 

activations specific to ‘task-reference’, the third conflict factor of interest, the single contrast 

CO-SU was computed, that includes no other incremental component. 

 

Figure 6: Table allocates conflict factors to experimental conditions (= included, X= not 
included) as well as to condition contrasts, respectively contrast conjunctions.  

 SU 
semantically 

unrelated 

CO 
congruent 

SI 
semantically 
incongruent

RI 
response-

incongruent 
contrasts / 

conjunction 

experimental conditions  

conflict factors 

response–
incompatibility X X X  RI-CO ∩ RI-SI 

semantic 
incongruency X X   RI-CO ∩ SI-CO 

task-reference X    CO-SU  
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2.2.2 Behavioral data 

Statistical analyses of the behavioral data used SPSS 11.5 for Windows and were conducted 

after wrong responses had been excluded. Reaction times (RTs) have been aggregated across 

subjects and conditions. Consequently, based on the GLM (General Linear Model), the data 

were analyzed by a repeated measures ANOVA (analysis of variance), thresholded at p<.05, 

as omnibus test for estimating the global effect of the experimental variation on the RT data. 

Consequently, single t-contrasts (using paired t-tests) for pairwise comparisons of the 

experimental conditions have been conducted to determine single interference effects. 

Specifically, single comparisons comprised the following five contrasts: RI-CO, SI-CO, SU-

CO, OW-SU, and OC-SU. Statistical inferences relied on one-tailed probabilities as the 

compared conditions (i.e. condition contrasts) were associated with definite a-priori 

expectancies, assuming prolonged RTs for interference conditions compared to non-

interference or baseline conditions (see 1.4.1). 

 

2.2.3 Restriction of the statistical analyses to the size-task 

All results that will be presented in the following section exclusively refer to the size-task as 

color-task trials did not enter into the statistical analyses of either the behavioral or the 

neuroimaging data. The reason for this was that color oddball trials could only be 

implemented in the size-task as the color-task, in which color serves as task-relevant 

dimension, could not include a response-ineligible color value (see also 2.1.2.3). The 

restriction of the analyses to the size-task, which included all relevant conditions that are 

needed to address the current work’s purposes, should ensure a good comparability among all 

compared trial types. Besides, size oddballs within the color task were not expected to 

produce a significant effect at either the behavioral or neural level, because the mid-size value 

did not represent a salient deviation from big or small font size stimuli whereas red color 

oddballs clearly contrasted with the prevalent blue or yellow stimuli. Rather, Size-oddballs 

were created just as ‘counterpart’ for Color-oddballs in order to keep the design balanced 

across both tasks. 
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3 Results 

3.1 Behavioral results 

All subjects reached high accuracy levels [mean percentages: correct responses 94.9%; wrong 

responses 3.3%; missing responses 1.8%]. The bar chart in Figure 7 depicts mean RTs and 

corresponding standard errors of the experimental conditions [means ± standard error: RI, 471 

ms ± 4.9; SI, 459 ms ± 4.7; CO, 452 ms ± 4.3; SU, 456 ms ± 5.3; OW = 478 ms ± 12.8; OC, 

482 ms ± 6.2]. 
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Figure 7: Behavioral data. The bar chart depicts mean reaction times and respective standard 
errors of the experimental conditions. Data exhibited significant effects (i.e. interference 
effects) for Stroop-incongruency (response-eligible incongruent trials), Word-oddballs and 
Color-oddballs. Statistical effects were determined by paired t-tests, thresholded at p<.05. 
 

The data showed, primarily at the descriptive level, that RTs on interference trials (i.e. RI, SI, 

OW, and OC) were generally prolonged as compared to non-interference trials (CO and SU). 

Then, the omnibus ANOVA across all conditions appeared significant at p=.017 (under 

sphericity assumption) indicating that the descriptive differences were at least in part reliable. 

T-contrasts appeared significant for the comparisons RI-CO (p=.025), OW-SU (p=.026), and 

OC-SU (p=.004), indicating a behavioral effect for Stroop-interference, interference from 

word oddballs, and interference from color oddballs. On the other hand, the contrast SI-CO 

did not yield a significant result (p=.149) and therefore provided no evidence for substantial 

interference in the SI condition. Finally, the contrast CO-SU was likewise not significant 

(p=.352) and hence yielded no evidence for substantial facilitation by congruent word 

meaning. 
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In conclusion, the behavioral data clearly indicated that the experimental manipulation within 

the adopted task paradigm was indeed effective in inducing interference. The following 

subsections present how the effects observed at the behavioral level were reflected in the 

neuroimaging data. 

 

3.2 Neuroimaging results 

 

3.2.1 Neural activations related to different interference effects 

 

3.2.1.1 Activations related to Stroop-interference 

Stroop-interference – as represented by the contrast “Stroop-incongruency vs. Stroop-

congruency” – elicited activation particularly in the left premotor cortex (BA 6) and left 

motor cortex (BA 4) along the precentral and central sulcus, in the pre-supplementary motor 

area (pre-SMA; BA 6/32), in a subgenual portion of the anterior cingulate cortex (ACC; BA 

24), as well as in the bilateral anterior insula (BA 13) and in a more posterior part of the left 

insula (BA 13). Further, a significant signal change was observed in the left postcentral 

(somatosensory) cortex (BA 1/3), in the bilateral cuneus (BA 19), the right occipito-temporal 

cortex (BA 37/39), and the cerebellum, as well as in the right basal ganglia and thalamus. The 

reported activations are listed in Table 1 and depicted in Figure 8A. 

The contrast response-incongruent trials against neutral (semantically unrelated) trials (RI-

SU) revealed significant activation in the right posterior lateral PFC, a region previously 

referred to as inferior frontal junction area (IFJA) (see 1.3.5) [t-value (coordinates): 3.80 (45 6 

18)] as well as in the ventral premotor cortex (BA 6) [t-value (coordinates): 3.80 (-60 6 36) / 

3.64 (-54 3 39)]. 

 

3.2.1.2 Activations related to interference from Word-oddballs 

Activations associated with Word-oddball interference have been determined by the contrast 

OW-SU. This contrast showed significant activation bilaterally in the frontolateral cortex, 

including bilateral activations along the posterior part of the inferior frontal sulcus (IFS) 

belonging to the IFJA, in an anterior portion of the right inferior frontal gyrus (IFG; BA 45), 

as well as in the right anterior insular cortex (BA 13). Furthermore, the contrast revealed 

significantly enhanced brain activity in posterior frontomedian cortex (BA 32) in the vicinity 
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of the cingulate sulcus, in the left precentral or premotor cortex (BA 6), and bilaterally in the 

temporo-polar cortex (TPC; BA 21/38) as well as in the left posterior insula (BA 13). Finally, 

word oddball interference was associated with activation in posterior cortical regions 

including bilateral parietal cortices along the intraparietal sulcus (IPS; BA 7), the left fusiform 

gyrus (FG; BA 37), the bilateral occipito-temporal cortex (BA 39) as well as bilateral 

extrastriate visual cortices (BA 18). The reported activations are listed in Table 1 (and Table 

2) and depicted in Figure 8B. 

 

3.2.1.3 Activations related to interference from Color-oddballs 

Color-oddballs produced neural activation – as revealed by the contrast OC-SU – throughout 

a largely distributed network of regions, comprising numerous bilateral cortical and 

subcortical structures. Lateral prefrontal activations were observed bilaterally in the anterior 

IFG, comprising pars triangularis and pars orbitalis (BA 45, BA 47), and bilaterally in the 

posterior IFG belonging to the IFJA. Furthermore, color oddball interference produced 

significantly enhanced activation in the frontomedian wall, particularly in the superior frontal 

gyrus (SFG; BA 8/9) as well as in a more ventral region in the vicinity of the cingulate sulcus 

(BA 32). Color-oddballs further elicited strong activation in the bilateral TPC and in parietal 

cortices bilaterally along the IPS. Finally, Color-oddballs involved mainly left-

hemispherically posterior processing regions, specifically the left FG (BA 37), left lingual 

gyrus (BA 19), left occipito-temporal cortex (BA 39), as well as bilateral extrastriate visual 

cortices (BA 18) and bilateral precuneus cortex (BA 19). The reported activations are listed in 

Table 2 and depicted in Figure 8C. 

 

3.2.2 Neural activations differentiating between different kinds of interference 

In a second step, pairwise comparisons of the presented single contrasts have been conducted 

in order to separate common from unique activations of the respective interference effects, i.e. 

to delineate activations that are specific to single interference effects. For this purpose, 

bidirectional interaction contrasts (see 2.2.1.3.2) have been computed to delineate activations 

that are significantly stronger for one of the pairwise contrasts as compared to the other, and 

vice versa. 

 

3.2.2.1 Comparison between Stroop-interference and interference from Word-oddballs 

Basically, Stroop-interference and Word-oddball interference exhibited quite distinct patterns 

of neural activation. There was only sparse activation overlap observed for the left premotor 
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cortex, the left posterior insula, and in the more anterior right insular cortex. Furthermore, 

there was overlapping activation in the postcentral gyrus that, important to note, appeared to 

be significantly stronger for Stroop-interference as for Word-oddballs. Activations specific to 

Stroop-interference was observed in the left precentral gyrus (dorsal premotor cortex), in the 

pre-SMA, in the subgenual ACC, in the left anterior insular cortex, in the bilateral cuneus, in 

the right cerebellum, as well as in the right basal ganglia and thalamus. Reversely, only Word-

oddballs activated the right anterior and posterior inferior frontal cortex and the bilateral 

IFJA, bilateral TPC, the posterior portions of the right inferior and superior temporal cortex, 

the left FG, as well as bilaterally the IPS and extrastriate visual cortices. The reported 

activations are listed in Table 1 and depicted in Figure 8A/B/D. 

 

3.2.2.2 Comparison between interference from Word-oddballs and interference from 

Color-oddballs 

Oddballs in both the word and color dimension produced signal changes in a wide range of 

cortical areas and thereby exhibited a striking overlap of activation. Both oddball types 

showed increased activation in prefrontal cortices including the right anterior IFG and 

bilaterally posterior lateral PFC (i.e. the IFJA), in the left precentral cortex, as well as in the 

posterior frontomedian cortex. Further common regions of significant activation were 

observed in parietal cortices, bilaterally along the IPS, as well as in posterior processing areas, 

specifically in the left posterior inferior temporal gyrus (ITG), left FG, left occipito-temporal 

cortex, and in bilateral extrastriate visual cortices. 

Beyond commonalities, the bidirectionally computed interaction contrast revealed areas that 

were differentially activated by the two oddball conditions. Activations unique to Color-

oddballs were observed in the medial prefrontal cortex, comprising left and right medial SFG 

as well as in the frontomedian cortex in the vicinity of the cingulate sulcus and further in the 

lateral PFC, particularly in the left IFG including Broca’s area. In addition, Color-oddballs 

uniquely elicited activation in the left lingual gyrus, bilateral precuneus, bilateral temporal 

cortices, bilateral thalamus, as well as in the right cerebellum. Areas exhibiting significantly 

more activation for Word-oddballs were less numerous and comprised cortices along the left 

central sulcus and in the left posterior insula, as well as the right anterior insula and posterior 

ITG. The reported activations are listed in Table 2 and depicted in Figure 8 B/C/E. 

Of note, both conflict contrasts exhibited significant activations bilaterally within the inferior 

TPC (BA 38) that, however, did not completely overlap resulting in a double dissociation 

within this region. Temporo-polar activations in the Word-oddball condition peaked in more 
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posterior areas in both hemispheres as compared to the Color-oddball condition which 

exhibited more anterior foci. In the left hemisphere, the activation focus in the Color-oddball 

condition was more dorsally located as compared to the Word-oddball condition. Activations 

of both oddball conditions in the TPC are displayed Figure 9. 
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Table 1: Comparative listing of regions sensitive to Word-oddball interference and Stroop-
interference. Common and differential activations associated with interference from Word-
oddballs (Word-oddball vs. Oddball control condition / OW-SU) and Stroop-interference 
(Stroop-incongruency vs. Stroop-congruency / RI-CO). Differential activations were revealed 
by interaction contrasts. All activations were determined by random effects analyses on single 
subject contrast images and thresholded at p<0.005, uncorrected. 

Region Statistical effects / t-value (coordinates) 

  Word-oddball Stroop-incongruency Word-oddball > 
Stroop-incongruency 

Stroop-incongruency > 
Word-oddball 

a) activations unique to Word-oddballs 

R inferior frontal cortex (IFJA) 4.31 (42 6 24) n.s. 3.34 (42 6 27) n.s. 

L inferior frontal cortex (IFJA) 7.20 (–36 12 27) n.s. 7.58 (–33 9 27) n.s. 

R inferior frontal gyrus 3.90 (54 30 15) n.s. 3.77 (54 30 12) n.s. 

R inferior frontal gyrus 3.59 (54 36 3) n.s. 6.45 (54 33 –6) n.s. 
L medial frontal (posterior frontomedian 
cortex) 3.51 (–9 18 45) n.s. 3.50 (–6 36 48) n.s. 

R inferior temporo-polar cortex 3.99 (39 3 –30) n.s. 3.44 (42 0 –33) n.s. 

L inferior temporo-polar cortex 9.01 (–33 3 –39) n.s. 7.78 (–30 3 –39) n.s. 

L fusiform gyrus 4.60 (–42 –66 –15) n.s. 5.08 (–42 –66 –15) n.s. 

R intraparietal sulcus 4.22 (24 –60 51) n.s. 5.17 (24 –60 51) n.s. 

L intraparietal sulcus  3.68 (–21 –57 42) n.s. 4.23 (–30 –48 57) n.s. 

R lateral occipital sulcus 3.78 (33 –72 24) n.s. 3.38 (33 –69 24) n.s. 

L lateral occipital sulcus 4.01 (–36 –75 18) n.s. 3.88 (–27 –66 24) n.s. 

R extrastriate visual cortex 6.35 (36 –90 –6) n.s. 4.59 (36 –93 –9) n.s. 

L extrastriate visual cortex  5.58 (–21 –93 –3) n.s. 6.22 (–27 –87 –9) n.s. 
b) activations unique to Stroop-incongruency 

R posterior frontomedian cortex (pre-
SMA) n.s. 3.91 (15 9 42) n.s. 2.34 (18 6 39) 

R anterior cingulate cortex (subgenual) n.s. 3.09 (3 27 –3) n.s. 3.84 (3 21 3) 

L insula (anterior) n.s. 4.44 (–45 3 0) n.s. 2.47 (–51 –9 –9) 
L precentral gyrus / dorsal premotor 
cortex n.s. 4.09 (–42 –18 66) n.s. 5.33 (– 45 –21 51) 

R basal ganglia / thalamus n.s. 4.97 (24 –21 12) n.s. 3.79 (21 –18 18) 

R cuneus n.s. 3.82 (6 –87 39) n.s. 3.11 (6 –87 42) 

L cuneus n.s. 2.38 (–6 –75 42) n.s. 5.45 (–12 –87 39) 

R inferior cerebellum  n.s. 6.39 (24 –42 –45) n.s. 4.56 (18 –45 –42) 

R superior cerebellum n.s. 2.92 (18 –57 –27) n.s. 4.25 (12 –45 –21) 

R gyrus occipitalis lateralis n.s. 3.54 (36 –63 18) n.s. 2.10 (36 –63 18) 
c) common activations of Word-oddballs and Stroop-incongruency 

R insula (anterior) 4.28 (42 12 9) 6.38 (42 6 3) 3.61 (42 15 9) n.s. 

L insula (posterior) 3.84 (–42 –18 9) 4.49 (–39 –15 6) 3.91 (–39 –3 27) 2.59 (–39 –18 9) 
L precentral sulcus / ventral premotor 
cortex 4.74 (–54 9 33) 3.95 (–60 6 36) 3.42 (–51 9 33) n.s. 

L precentral gyrus / ventral premotor 
cortex 5.57 (–39 –3 27) 3.47 (–51 0 36) 7.58 (–33 9 27) n.s. 

L central sulcus 4.41 (–30 –15 45) 4.22 (–18 –24 57) 4.73 (–42 –9 45) 2.51 (–24 –27 48) 

L postcentral gyrus 4.16 (–48 –24 36) 3.97 (–45 –21 42) n.s. 5.33 (–45 –21 51) 
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Table 2: Comparative listing of regions sensitive to Color-oddball interference and Word-
oddball interference. Common and differential activations associated with interference from 
Color-oddballs (Color-oddball vs. Oddball control condition / OC-SU) and Word-oddballs 
(Word-oddball vs. Oddball control condition / OW-SU). Differential activations were 
revealed by interaction contrasts. All activations were determined by random effects analyses 
on single subject contrast images and thresholded at p<0.005, uncorrected. 

 

Region Statistical effects / t-value (coordinates) 

  Color-oddball Word-oddball Color-oddball > 
Word-oddball 

Word-oddball > 
Color-oddball 

a) activations unique to Color-oddballs 

R medial frontal cortex (SFG)  6.83 (9 30 60) n.s. 4.73 ( 9 27 54) n.s. 

L medial frontal cortex (SFG) 5.21 (–9 39 48) n.s. 1.86 (–3 39 48) n.s. 

L inferior frontal gyrus (IFG)  11.32 (–57 18 15) n.s. 4.72 (–36 36 18) n.s. 

L inferior frontal gyrus (pars orbitalis) 5.22 (–42 33 –15) n.s. 4.98 (–36 39 –24) n.s. 

L frontomedian cortex (cingulate sulcus) 6.70 (–12 36 21) n.s. 5.46 (–15 42 9) n.s. 

L head of caudate nucleus 7.00 (–6 0 9) n.s. n.s. n.s. 

L temporo-polar cortex 8.86 (–39 12 –33), n.s. 4.02 (–33 27 –27) n.s. 

R temporo-polar cortex 9.41 (42 12 –33) n.s. 7.07 (54 –9 –30) n.s. 

R parahippocampal gyrus 5.21 (21 –6 –33) n.s. 1.96 (18 –9 –36) n.s. 

L postcentral sulcus 5.02 (–66 –21 24) n.s. 2.38 (–66 –24 24) n.s. 

L middle temporal gyrus 7.33 (–60 –48 0) n.s. 4.42 (–54 –48 –9) n.s. 

R superior temporal sulcus (post. part) 7.53 (57 –45 0) n.s. 4.51 (54 –45 –3) n.s. 

L thalamus 6.66 (–9 –18 3) n.s. 1.95 (–9 –18 –9) n.s. 

R thalamus 3.69 (9 –12 9) n.s. 3.20 (6 –15 18) n.s. 

R precuneus 3.81 (9 –72 48) n.s. 5.48 (9 –63 48) n.s. 

L precuneus 6.85 (–18 –63 36) n.s. 3.46 (–3 –63 48) n.s. 

L lingual gyrus 3.64 (–9 –51 –6) n.s. 4.46 (–18 –51 –6) n.s. 

R cerebellum 8.53 (39 –57 –30) n.s. 3.17 (24 –57 –42) n.s. 

b) activations unique to Word-oddballs 

R insula (anterior) n.s. 4.28 (42 12 9) n.s. 3.10 (39 12 9) 

L temporo-polar cortex n.s. 9.01 (–33 3 –39) n.s. 4.47 (–33 3 –33) 

R temporo-polar cortex n.s. 3.99 (39 3 –30) n.s. 3.71 (42 0 –33) 

L central sulcus n.s. 4.41 (–30 –15 45) n.s. 3.77 (–30 –18 48) 

L insula (posterior) n.s. 3.84 (–42 –18 9) n.s. 2.15 (–45 –18 15) 

R inferior temporal gyrus n.s. 4.23 (54 –42 –24) n.s. 3.12 (48 –36 –27) 

c) common activations of Color-oddballs and Word-oddballs 

R inferior frontal cortex (IFJA)  4.80 (42 6 24) 4.31 (42 6 24) n.s. n.s. 

L inferior frontal cortex (IFJA) 12.25 ( –39 6 21) 7.20 (–36 12 27) n.s. n.s. 

R inferior frontal gyrus (pars triangularis) 5.75 (60 21 6) 3.90 (54 30 15) n.s. n.s. 

L precentral gyrus / precentral sulcus 6.61 (–39 3 27) 5.57 (–39 –3 27) n.s. 3.21 (–39 –3 24) 

L/R medial frontal (posterior frontomedian 

cortex) 
4.43 (0 18 48) 3.51 (–9 18 45) n.s. n.s. 

L inferior temporal gyrus (post. part) 8.67 (–51 –54 –15) 4.60 (–42 –66 –15) 4.42 (–54 –48 –9) n.s. 

L fusiform gyrus 6.90 (–36 –75 –18) 4.60 (–42 –66 –15) n.s. n.s. 

R intraparietal sulcus 6.20 (36 –54 45) 4.22 (24 –60 51) n.s. n.s. 

L intraparietal sulcus 6.18 (–30 –69 45) 3.68 (–21 –57 42) 6.72 (–21 –81 39) 2.85 (–18 –57 45) 

L lateral occipital sulcus 5.99 (–39 –69 27) 4.01 (–36 –75 18) 3.79 (–36 –60 30) 1.96 (–27 –63 21) 

R extrastriate visual cortex 5.97 (48 –81 0) 6.35 (36 –90 –6) n.s. n.s. 

L extrastriate visual cortex 5.27 (–30 –84 –9) 5.58 (–21 –93 –3) n.s. n.s. 

R head of caudate nucleus 6.09 (12 –6 –3) 5.03 (15 6 6) n.s. n.s. 
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Figure 8: Neuroimaging data. A-C: Renderings of group-averaged brain activations 
associated with different interference effects. Part A refers to Stroop-interference (contrast: 
RI-CO), part B refers to interference from Word-oddballs (contrast: OW-SU), and part C to 
interference from Color-oddballs (contrast: OC-SU). D-E: Renderings of brain activations 
(composed multi-color brain maps) to compare between the defined interference effects. Part 
D refers to the comparison between Stroop-interference and interference from Word-Oddballs 
(interaction contrast). Common activations are shown in red, activations unique to Word-
oddballs in blue, and activations unique to Stroop-interference in green. Part E refers to the 
comparison between interference from Color-oddballs and interference from Word-Oddballs 
(interaction contrast). Common activations are shown in red, activations unique to Word-
oddballs again in blue, and activations unique to Color-oddballs in green. All activations were 
rendered onto a surface reconstruction of the MNI template and thresholded at p<0.005, 
uncorrected.  

 

 
 
 
 

A-C: activations associated with different interference effects (i.e. 
contrasts). 

A: Stroop-interference (RI-CO) 
B: Word-oddball interference (OW-SU) 

 C: Color-oddball (OC-SU) 
D-E: composite renderings showing commonalities and differences between single 
interference effects (i.e. contrasts) as revealed by interaction contrasts. 
 D: comparison between Stroop-interference and Word-oddball 
 E: comparison between Color-oddball and Word-oddball 
red: common activations 
blue: activations significantly stronger for Word-oddball 
green: activations significantly stronger for Stroop-incongruency (D) / Color-oddball (E)
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Figure 9: Neuroimaging data. Double dissociation of activations in temporo-polar cortex for 
Color-oddballs (A) and Word-oddballs (B). Color-oddballs exhibited more anterior and 
superior bilateral activation foci as compared to Word-oddballs (see also Table 2). The 
illustration is thresholded at p<0.005, uncorrected, and the view is according to the 
radiological convention (left brain hemisphere on the right side of the illustration, and vice 
versa). 

 

3.2.3 Neural activations related to different conflict factors of Stroop-interference 

 

3.2.3.1 Response-incompatibility vs. semantic incongruency 

Activations related to Stroop-interference as revealed by the contrast RI-CO should be 

separated into two subgroups that represent (the influence of) different conflict factors as two 

distinct and independent neurocognitive subcomponents of Stroop-interference: (a) 

activations related to response-incompatibility and (b) activations related to semantic 

incongruency (see 3.2.1.1), construed to reflect response-conflict and semantic conflict, 

respectively (see 1.2.1). For this purpose, the contrast RI-CO has been conjoined with the 

contrast RI-SI and with the contrast SI-CO, separately, in order to delineate activations related 

to response-incompatibility and semantic incongruency, respectively. Table 3 lists activations 
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of the mentioned contrast conjunctions as well as the corresponding activation foci that have 

been revealed in the single contrasts. There was only one activation focus specifically 

associated with response-incompatibility located in the left precentral gyrus (left ventral 

premotor cortex). This focus was significantly activated for both contrasts RI-SI and RI-CO, 

as well as in the corresponding conjunction. On the other hand, semantic incongruency was 

associated with activation in the posterior frontomedian cortex (pre-SMA), in the left 

postcentral gyrus (left ventral somatosensory cortex), bilateral anterior insula, right 

cerebellum, as well as in the right basal ganglia and thalamus. These brain regions were 

significantly activated for both single contrasts RI-CO and SI-CO, as well as in their 

conjunction. The reported activations are listed in Table 3 and depicted in Figure 10A/B. 

 

 

Table 3: Activations associated with response-incompatibility (section A) and semantic 
incongruency (section B), both revealed by contrast conjunctions (i.e. conjunction analyses). 
Common activations of the contrasts RI-CO and RI-SI were attributed to response-
incompatibility, whereas common activations of RI-CO and SI-CO were ascribed to semantic 
incongruency. All activations were determined by random effects analyses on single subject 
contrast images, thresholded at p≤0.005. 
 
 

 

Region Statistical effects / t-value (coordinates) 

  single contrasts contrast conjunctions 

  RI-SI RI-CO SI-CO RI-CO ∩ RI-SI RI-CO ∩ SI-CO
(A) response-incompatibility 
L ventral premotor cortex 5.00 (-60 3 33)*** 3.95 (-60 6 36)** n.s. 3.70 (-60 6 36)*** n.s. 

(B) semantic incongruency 
6.52 (-15 –6 45)*** 2.86 (12 6 42)**  L / R posterior frontomedian cortex 

(pre-SMA) n.s. 3.91 (15 9 42)** 
 5.27 (-12 6 42)*** 

n.s. 
[2.82 (-12 12 42)*] 

L postcentral gyrus n.s. 3.97 (-45 –21 42)** 7.05 (-51 –21 45)*** n.s. 3.77 (-48 –21 45)***

L insula (anterior) n.s. 4.44 (-45 3 0)** 4.85 (-39 15 6)*** n.s. 3.42 (-42 3 0)** 

R insula (anterior) n.s. 6.38 (42 6 3)*** 3.88 (42 6 3)** n.s. 3.33 (42 6 3)** 

R basal ganglia / thalamus n.s. 4.97 (24 –21 12)*** 9.74 (21 –21 9)*** n.s. 5.13 (24 –21 12)***

R inferior cerebellum  n.s. 6.39 (24 –42 –45)*** 4.46 (30 –66 –21)** n.s. 3.42 (24 –42 –45)**

***p≤.001 **p≤.005 [*p≤.01 ]; n.s.=not significant 
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(A) RESPONSE-INCOMPATIBILITY 

� L premotor / precentral cortex

 

 

 

 

 

 

 

 

 
 
 
 
 
 

(B) SEMANTIC INCONGRUENCY 

� L postcentral / 
somatosensory cortex 

� L insula 
� R insula 
� R posterior frontomedian 

cortex 
� R basal ganglia / thalamus

Figure 10: Activations related to response-incompatibility (revealed by the contrast 
conjunction RI-CO ∩ RI-SI) and related to semantic incongruency (revealed by the contrast 
conjunction RI-CO ∩ SI-CO). Depicted activations were rendered onto cross-sectional 
(sagittal, coronar, and axial) slices of the anatomic MNI template, thresholded at p≤0.005, 
uncorrected.  
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3.2.3.1 Task reference 

The neural substrate of task-reference, the third conflict factor of interest, was determined by 

the single contrast CO-SU that includes no other incremental component. Significant 

activations related to task-reference comprised the left rostro-ventral or fronto-opercular 

cortex (BA 47) and adjacent orbitofrontal cortex (OFC, BA 11), the right medial SFG (BA 9), 

and the left TPC (BA 38). The reported activations are listed in Table 4 and depicted in Figure 

11. 

 

 

 

 

Table 4: Activations associated with task-reference revealed by contrast CO-SU. Activations 
were determined by random effects analyses on single subject contrast images, thresholded at 
p≤0.005; uncorrected. 
 

Region Statistical effects / t-value (coordinates) 

  CO-SU 

(C) task-reference 

L fronto-opercular / orbitofrontal cortex  4.59 (–36 33 –12)*** 4.18 (–33 39 0)**  

R medial superior frontal gyrus 7.24 (18 51 42)*** 5.59 (24 39 42)***  

L temporo-polar cortex 5.82 (–42 9 –33)*** 3.96 (–27 21 –30)**  

**p<.005 ***p<.001 
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� R medial superior frontal 
cortex 

� L ventral inferior frontal 
cortex 

� L temporal pole 

TASK REFERENCE 

Figure 11: Activations related to task-reference revealed by the contrast CO-SU. Depicted 
activations were rendered onto cross-sectional (sagittal, coronar, and axial) slices of the 
anatomic MNI template, thresholded at p<0.005, uncorrected. 
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4 Discussion 

 

4.1 Dissociating motor and attentional components of cognitive interference 

On the one hand, the current oddball activations (i.e. activations related to color oddballs and 

word oddballs) nicely match those that were found in the reported prior investigation of 

Gruber and collaborators (e.g. Gruber & Goschke, 2004; Melcher et al., 2004; see 1.3.4). In 

essence, the current data exhibited oddball activation in the same frontoparietal network 

comprising the lateral prefrontal cortex including the IFJA, the posterior frontomedian cortex, 

intraparietal regions and extrastriate visual cortices. On the other hand, however, the current 

data’s activations related to Stroop-interference did not match the findings of Zysset and 

colleagues (Zysset et al., 2000; see 1.3.4), who observed a frontoparietal activation pattern 

related to Stroop-interference that broadly corresponded to the oddball pattern described 

above. Therefore, the current data does not corroborate the initial observation of a common 

activation pattern for Stroop-interference and oddball interference. Rather, Stroop-

interference and Word-oddballs elicited quite distinct patterns of neural activation that 

exhibited only sparse overlap.  

In conclusion, the comparison between Stroop-interference and oddball interference did not 

define one single or core neural mechanism of cognitive control as was initially expected, but 

rather dissociated two functionally distinct and complementary control mechanisms. In other 

words, the reported findings suggest that the two contrasts focusing on Stroop-interference 

and interference from Word-oddballs in the present study do not converge in a common or 

core neural mechanisms of cognitive control but rather map two different subcomponents (or 

levels) of cognitive interference, (A) a motor component and (B) an attentional component, 

that refer to distinct control functions (i.e. neural mechanisms). In the following two 

subsections, the delineated subcomponents will be presented and explained in more detail. 

 

4.1.1 A motor component of interference 

Stroop-incongruent (SI) trials and Stroop-congruent (CO) trials used exactly the same words 

(BIG and SMALL), that only differed in the particular color-size combination. Hence, word 

meaning (i.e. the lexical dimension) in both conditions is equally associated with the current 

task-set and can be expected to be equally able to distract attention from the currently relevant 
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size dimension. In accordance with this assertion, Milham and Banich (2005) found enhanced 

activity in a posterior division of the ACC in relation to both incongruent and congruent 

Stroop trials. Based on this and prior findings (Milham et al., 2002; Milham et al., 2003b; 

Milham & Banich, 2005; see 1.2.2), they argued that attentional demands may be similarly 

increased on both incongruent and congruent trials due to competition between task-relevant 

and task-irrelevant information (for priority in processing), as task-irrelevant information in 

both conditions is semantically related to the current task-set, i.e. provides competing task-

related information (see also below, 4.1.2 and 4.4.2). On the other hand, words (i.e. word 

meanings) of RI trials introduce incompatible information at the response-level whereas 

words of CO trials do not. Taken together, the contrast RI-CO reasonably subtracts out – at 

least to some extent – the attentional component of interference (i.e. equates for interference 

at the attentional level) and focuses on interference occurring at the level of motor or response 

preparation (i.e. response conflict). This conclusion is strongly supported by the activations 

revealed by this contrast which comprised dorsal and ventral premotor cortices, the pre-SMA, 

the cerebellum, as well as the basal ganglia and thalamus, regions that are well known to be 

implicated in the preparation and control of motor responses (e.g. Ikeda, 1992; Wiese et al., 

2004; Monchi et al., 2006). Generally, response conflict can be expected to recruit additional 

motor control in terms of strengthened response selection or inhibition. Specifically the dorsal 

premotor cortex, a prominent activation focus of the Stroop-interference contrast (RI-CO), has 

been described to play an important role in the mapping of sensory signals onto motor 

responses (Wise et al., 1996), and there is convincing evidence that this region is strongly 

involved in inhibitory motor control, i.e. controlled response selection (Praamstra et al., 

1999). Similarly, an influential hypothesis – primarily derived from electrophysiological 

studies – assumes that the basal ganglia essentially contribute to motor control by inhibiting 

incompatible motor tendencies that (might) interfere with an actually intended motor action 

(Mink, 1996; Aron et al., 2003). Moreover, several studies implicated the thalamus conjointly 

with the basal ganglia in motor control, i.e. in the implementation or inhibition of motor 

responses, during conflict situations (e.g. Huettel, 2001; Monchi et al., 2001; Aron et al., 

2003). Given the reported findings, it is persuasive – if not highly probable – that the 

activation pattern related to Stroop-interference primarily reflects strengthened motor control 

triggered by response conflict (i.e. the co-activation of two incompatible response tendencies) 

which should prevent false responding. 

Moreover, there was significant activation in the left ventral somatosensory cortex related to 

Stroop-interference which appeared to be significantly stronger than in the Word-oddball 
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contrast. Activation in this region has been repeatedly related to the processing of tactile 

sensations of the contralateral fingertip (e.g. Burton et al., 1999; Pleger et al., 2006) and 

beyond that has been shown to be boosted by increased attention towards proprioception, 

even in absence of proper stimulation (Burton et al., 1999). Furthermore, as revealed by 

morphological investigations of the animal brain (Porter, 1991, Porter, 1997), the 

somatosensory cortex projects to primary motor areas and in this way may essentially 

contribute to motor preparation (see Pleger et al., 2006). In conclusion, the observed 

somatosensory activation assumably underlie enhanced proprioceptive/tactile attention to the 

responding fingers as further aspect of strengthened motor control efforts. 

As already pointed out, the contrast RI-CO may intermingle interference at the semantic level 

and the motor level as the word’s lexical meaning on RI trials is both semantic incongruent 

and response-incompatible (see 1.4.2.3). In the current work, these properties of task-

irrelevant word information were defined as conflict factors (see 1.2.1), and one major 

purpose of the current work was to further split activations of the contrast RI-CO in two 

subgroups, (a) activations related to response-incompatibility (reflecting motor conflict) and 

(b) activations related to semantic incongruency (reflecting semantic conflict). The 

corresponding results are discussed in one of the following subsections (see 4.4.1). 

 

4.1.2 An attentional component of interference 

According to the conceptualization of oddball interference in this work (see 1.2.3.3), the task-

irrelevant word dimension in the Word-oddball condition gains saliency through the relative 

rareness of occurrence of the presented words and consequently evokes an attentional 

orienting response (i.e. an involuntary attentional switch) which subjects have to override. 

Thereby, as words’ lexical meaning on Word-oddball trials is response-ineligible, response 

preparation in this condition should be widely unaffected. Consequently, interference 

emanating from Word-oddballs – which is also true for Color-oddballs – assumably occurs at 

an earlier processing stage, solely at the attentional level and not at the response or motor 

level. In line with this notion, Word-oddballs – which is again also true for Color-oddballs – 

exhibited significant activation in a frontoparietal network which in the neuroimaging 

literature has been consistently related to conditions of enhanced attentional demands during 

cognitive tasks and, beyond this, has been interpreted as to reflect the exertion of top-down 

attentional control, particularly the implementation of selective attention (e.g. Corbetta & 

Shulman, 2002, Fan et al., 2003; see 1.3.2). Regarding the current investigation, frontoparietal 
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activation arguably underlay the overriding of the orienting response to the oddball events 

(i.e. to the oddball dimension) which has disrupted the task-appropriate attentional set. Within 

the frontoparietal network, both oddball conditions exhibited the IFJA as one main site of 

activation which, in accordance with the prior expectations of this work (see 1.4.2), suggests 

that this cortical region plays a pivotal role in attentional control during competition (see also 

below; 4.3). 

As mentioned above, the current data did not replicate the frontoparietal activation pattern 

associated with Stroop-interference as it was observed in the Zysset study (Zysset et al., 

2000). Rather, Stroop-interference in the current work exhibited primarily activation in 

premotor and motor regions, that can be convincingly interpreted as reflecting the 

implementation of strengthened motor control (see above). There are obvious differences 

between the two studies that may account for the divergence of findings. First, Zysset and 

colleagues employed another variant of the Stroop paradigm, the “Color-Word Matching 

Stroop Task”. Here, on each trial subjects are presented with two words simultaneously while 

they have to match the color of the first (above-standing) to the meaning of the second 

(below-standing). In this task version, interference takes place at a pure conceptual level and 

is (chronologically) separated from response preparation which – beyond that – is kept 

balanced across the experimental conditions (see 1.3.4). Second, to define Stroop-

interference, Zysset contrasted incongruent trials against neutral trials, while the present study 

contrasted incongruent trials against congruent trials, a contrast that arguably equalizes for 

attentional components of competition processing (see above; 4.1.1). On the other hand, the 

contrast incongruent against neutral trials in the Zysset study comprises substantial attentional 

components because the used baseline neutral trials (consisting of a row of colored Xs) 

include no word meaning to attentionally interfere with the attended color. In contrast, lexical 

word meanings of congruent trials are exactly the same as those of incongruent trials, which 

should therefore be equally able to draw attention (see above; 4.1.1). Accordingly, Milham 

and Banich considered the employment of a broader definition of cognitive conflict that is not 

restricted to cases of incongruity (see Milham & Banich, 2005). Basically, conflict may be 

conceptualized as any situation in which there are two or more competing sources of 

response-eligible information or, alternatively, as situations in which task-irrelevant 

information is related to task-demands (i.e. to the task set). In this context, task reference and 

response mapping (i.e. response eligibility), as properties of word meaning in both 

incongruent and congruent Stroop trials, might be conceived as conflict factors through which 
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task-irrelevant information gains saliency and thus may induce attentional interference, i.e. 

competition (see 1.4.2.3). 

Zysset and colleagues reported strong activation in the posterior lateral PFC belonging to the 

IFJA related to Stroop-interference whereas the contrast RI-CO in the current work did not 

exhibit activation in this cortical structure. As activation in the IFJA was essentially expected 

to occur when top-down control is required for (re-)orienting attention to task-relevant 

information (see 1.4.2), the lack of IFJA activation particularly corroborates the assumption 

that the contrast RI-CO equalizes – at least partly – for attentional processing. Furthermore, 

Stroop-interference as defined by the contrast RI-SU did exhibit IFJA activation which also 

fits in the outlined interpretation in so far as SU trials – as already evident from their label – 

are semantically unrelated to the task. Therefore, the contrast RI-SU conclusively involves 

substantial attentional processing. The functional role of the IFJA in the present work (in 

particular) and in cognitive control (in general) will be further discussed in a following 

subsection (see 4.3). 

 

4.2 Oddball activations and their sensitivity to processing domain 

The two oddball conditions exhibited a broad overlap of neural activation, mainly in anterior 

regions comprising both frontolateral and frontomedian cortices, but also in parietal cortices 

and other posterior processing areas. Thereby, Color-oddballs exhibited the more extensive 

activation pattern relative to Word-oddballs and also additional unique activations, e.g. in the 

left inferior frontolateral cortex, the medial superior frontal gyrus, the precuneus, and the left 

lingual gyrus. Activation in the left lingual gyrus has been previously implicated in processing 

of color (e.g. Corbetta et al., 1991; Zeki & Marini, 1998) and therefore in the present context 

substantiates the statement that the oddball color did draw special attention (i.e. did evoke an 

orienting response). Other unique activations of Color-oddballs may alternatively reflect 

quantitative differences, i.e. differences related to the degree of evoked interference, rather 

than qualitative differences between the two oddball conditions. Interestingly enough, the data 

revealed a double dissociation within the left and right TPC between the two oddball 

conditions. The TPC has been repeatedly implicated in conscious perception as well as 

semantic encoding and decoding of objects or object features (Markowitsch, 1995; Mesulam, 

1998; Sewards & Sewards, 2002; Damasio et al., 2004). The observed double dissociation 

putatively reflects the deviation detection in (i.e. orienting response to) different visual 
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attributes, i.e. the respective dimension – color or lexical word meaning – in which the 

oddball event has occurred.  

The strong activation overlap that was found in prefrontal areas is in line with the assumption 

that an anterior prefrontal system dynamically modulates activation in posterior processing 

areas in order to select task-relevant over task-irrelevant information (e.g. Banich et al., 2000; 

LaBerge, 2005; see 1.3.1). The posterior lateral PFC or IFJA – that represents a main 

activation focus in both oddball contrasts – is a candidate region to exert this attentional 

control function (see below). In this context, the interesting question arose as to whether 

attentional selection works through boosting the processing of task-relevant information 

and/or through inhibition the processing of task-irrelevant information (e.g. Banich et al., 

2000; Egner & Hirsch, 2005). In the present study, the two oddball conditions showed – with 

few exceptions – a broad overlap of activation in posterior processing areas while they shared 

the same task-relevant information (size) and differed in the distracting task-irrelevant 

attribute dimension (word vs. color). This finding is compatible with the notion that boosting 

the processing of task-relevant information plays an especially important role in attentional 

selection and particularly in the processing (i.e. resolution) of cognitive interference (e.g. 

Wojciulik et al., 1998; Egner & Hirsch, 2005). Banich et al. (2000) also investigated the 

influence of the processing domain of task-irrelevant information during interference (i.e. 

conflict) processing by comparing two different versions of the Stroop task which differed in 

the task-irrelevant information of the presented stimuli but not in the dimension which had to 

be attended. While Banich and colleagues likewise found highly overlapping activations 

within the frontolateral cortex, in contrast to our data, they also reported a strong influence of 

task-irrelevant information on posterior processing regions, suggesting that attentional 

selection also involves modulating the processing of task-irrelevant information. However, 

task-irrelevant information in the Banich study was semantically related to the task-relevant 

information, which is not true for the oddball conditions in the present study and which may 

account for its strong influence on posterior activations. As pointed out by Banich and 

colleagues themselves, selection of task-relevant information by prefrontal regions may 

involve “alerting” all posterior brain regions that process information related to the current 

task set, even if this information is presented in the irrelevant dimension. Generally, when 

individuals direct their attention to one particular attribute of an item, increased activity is 

observed in the posterior brain region specialized for processing this visual attribute (e.g. 

human equivalent of MT or V5; O’Craven et al., 1997; Kastner et al., 1998; Martinez et al., 

1999). 
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Color-oddballs compared to Word-oddballs elicited more extensive neural activations as well 

as a stronger effect in the RT data. Thus, both the behavioral and neuroimaging data indicated 

stronger interference emanating from Color-oddballs as compared to Word-oddballs which 

can be explained twofold: (a) Color also occurred as task-relevant attribute during the 

experimental course within the color-task, whereas word-meaning did not (see 2.1.2.2). As 

color had been previously attended to as task-relevant information, it hence may have been 

better able to attract attentional resources even as task-irrelevant attribute. (b) Independent of 

the task context, color is inherently a quite salient and conspicuous attribute dimension that 

apparently can be cognitively represented in a rather direct manner. Word-meaning, in 

contrast, appears to be much less salient and requires mediating semantic decoding processes 

to be cognitively represented. Therefore, task-irrelevant deviances in color may be generally 

more outstanding and influential compared to task-irrelevant deviances in word meaning. 

 

4.3 Neural activations to impose an attentional set 

There was strong activation related to both Color- and Word-oddballs in posterior parts of the 

lateral PFC, belonging to the inferior frontal junction area (IFJA). As was emphasized in the 

introduction of the present work, there is a growing body of evidence suggesting an important 

role of this cortical region in task-set management as well as in the selection of task-relevant 

over task-irrelevant information (see 1.3.5). For instance, the IFJA has been related to task-set 

preparation (Brass and von Cramon, 2004; Gruber et al., 2006), cognitive set shifting (e.g. 

Konishi et al., 1998; Konishi et al., 1999; Dove et al., 2000; Derrfuss et al., 2005), response 

inhibition (Konishi et al., 1999; Konishi et al., 2003), as well as to the processing of Stroop-

incongruency (e.g. Leung et al., 2000; Zysset et al., 2000; Milham et al., 2003a, Derrfuss et 

al., 2005), and task-irrelevant oddball events (e.g. Milham et al., 2003a; Gruber & Goschke, 

2004; Melcher et al., 2003). In a study similar to the present work, Milham and colleagues 

(Milham et al., 2003a; see also 1.3.5) sought to investigate prefrontal involvement in top-

down attentional control, and thereby they wanted to elucidate whether Stroop interference 

and word oddball interference produce similar or distinct neural activation. As one main 

result, word oddball trials and Stroop-incongruent trials produced marked activation overlap 

in a posterior region of the PFC which belongs to the IFJA. Based on this and prior findings, 

Milham and colleagues concluded that the posterior inferior PFC is substantially involved in 

manipulating posterior regions to ensure selection of task-relevant information. In contrast to 

Milham’s results, the current data exhibited no IFJA activation in relation to Stroop-

interference as represented by the contrast RI-CO. Rather, the current data exhibited IFJA 
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activation only in relation to Color- and Word-oddballs, that nevertheless can be assumed to 

underlie the same cognitive control function as the IFJA activation in the Milham study. The 

reported discrepancy of findings can be plausibly attributed to differences between the 

contrasts that have been computed to define effects of Stroop-interference in the current 

investigation and in the Milham study. While in the analyses of the current work response-

eligible incongruent trials were contrasted against congruent trials (RI-CO) – a contrast which 

arguably equalizes at least partly for attentional processing (see 4.1.1) – Milham and 

colleagues contrasted response-eligible incongruent trials against response-ineligible 

incongruent trials. Response-ineligible incongruent color words, in contrast to congruent color 

words, are not part of the task-set (i.e. response-set) and therefore might be expected to be less 

salient (i.e. attention-capturing) as compared to both incongruent-eligible and congruent trials. 

Hence, the contrast “incongruent-eligible vs. incongruent-ineligible” in the Milham study 

arguably not only includes motor but also substantial attentional components of interference 

processing. 

Note: In a previous subsection of the discussion (see 4.1.1), the discrepancy of neuroimaging 

findings, regarding the involvement of the IFJA in Stroop-interference, between the current 

work and a Stroop study of Zysset and collaborators (Zysset et al., 2000) was explained in a 

very similar and compatible way. 

In the current work, the contrast RI-SU was additionally computed in order to derive effects 

of Stroop-interference from the same baseline as the oddball effects. In this contrast, Stroop-

interference did exhibit a significant activation in the IFJA. This finding corroborates the 

above explanation for differences regarding the IFJA involvement in the present work and the 

Milham study. As word meaning on SU trials is not semantically related to the task at hand 

(i.e. is not part of the task-set), the contrast can be expected to map not only motor but also 

attentional components of interference. 

Taken together, in accordance with findings of prior investigations (e.g. Banich et al., 2000; 

Zysset et al., 2000; Milham et al., 2003a; Brass & von Cramon, 2004), the current data 

emphasize a prominent role of the posterior inferior frontolateral cortex, i.e. the IFJA, in 

attentional control. Particularly, the IFJA may provide a top-down executive mechanism for 

imposing an attentional set for task-relevant information by modulating processing in 

posterior neuronal perceptual systems. 

This putative role of the IFJA is also in line with the widespread general assumption of a 

basically twofold functional and neural organization of cognitive control comprising a 

monitoring or evaluative instance represented by frontomedian cortices and an executive or 
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regulative instance represented by frontolateral cortices. Specifically, the conflict monitoring 

theory (see 1.3.3) postulates that the anterior cingulate cortex (AAC) monitors for and 

responds to the occurrence of conflict in information processing and thereby signals the 

frontolateral cortex to strengthen control efforts in a context-sensitive manner (e.g. Carter et 

al., 1998; MacDonald et al., 2000; Botvinick et al., 2001; Kerns et al., 2004). However, 

neuroimaging studies providing evidence for the conflict monitoring theory most consistently 

pointed to the more anteriorly located mid-dorsolateral prefrontal cortex (mid-DLPFC) rather 

than the IFJA as the crucial frontolateral area in cognitive control (Petrides, 2000; see 1.3.3). 

In contrast, the current data – in line with a recent series of brain imaging studies – indicate 

that the IFJA represents the primary frontolateral region in the exertion of top-down 

attentional control (see 1.3.5; for a review see Brass et al., 2005). Taken together, findings 

may give rise to the speculation that the primary role attributed to mid-DLPFC in the context 

of cognitive control and frontolateral cortex function is owed to the fact that consistent 

activation in the IFJA has been neglected (see Brass et al., 2005). 

 

4.4 Conflict factors during Stroop task performance 

One major issue of the current work was to trace back Stroop-interference to the influence of 

circumscribed properties of task-irrelevant word information that can be conceived as conflict 

factors (see 1.2.1), and thereby to determine the properties’ (i.e. the conflict factors’) neural 

effects. In particular, it was sought to delineate the neural substrates of three conflict factors: 

(A) response-incompatibility (i.e. word identity indicates an opposed response), (B) semantic 

incongruency (i.e. word identity is incongruent, independent of its response-eligibility), and 

(C) task-reference (i.e. word identity is semantically related to the task-set, independent of its 

semantic concordance with the relevant dimension) (see 1.4.2.3). 

Specifically, it was planned to split activations of the contrast RI-CO – that have been already 

presented and discussed in prior subsections (see 3.2.1.1 and 4.1) – in two subgroups referring 

to response-incompatibility and semantic incongruency that reflect motor conflict and 

semantic conflict, respectively. For this purpose, conflict factors were assigned to common 

activations of contrast pairings (i.e. to contrast conjunctions) comprising the contrast RI-CO 

on the one hand and one further contrast – RI-SI for response-incompatibility and SI-CO for 

semantic incongruency – on the other hand (see 2.2.1.3.3). Furthermore, it was planned to 

determine the influence of task-reference of task-irrelevant word meaning – i.e. being a 
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(response-eligible) size word – as third conflict factor that is inherent in both incongruent and 

congruent trials, and that might essentially contribute to the overall Stroop interference effect. 

 

4.4.1 Splitting intermingled effects of response-incompatibility and semantic 

incongruency 

 

4.4.1.1 Behavioral effects of response-incompatibility and semantic incongruency 

The behavioral data showed that only response-incompatibility (as implemented in RI trials) 

but not semantic incongruency (as implemented in SI trials) led to significantly increased 

RTs, i.e. produced a behavioral effect. Although SI trials exhibited descriptively longer RTs 

compared to both CO and SU trials, the corresponding behavioral effects did not reach the 

level of statistical significance. In contrast, van Veen and Carter (van Veen & Carter, 2005) 

observed significantly prolonged RTs for both eligible-incongruent (widely corresponding to 

RI) and ineligible-incongruent (widely corresponding to SI) trials (compared to congruent 

trials), indicating a behavioral effect of both response-incompatibility (i.e. response conflict) 

and semantic incongruency (i.e. semantic conflict). However, the study of van Veen and 

Carter used another Stroop paradigm that was introduced by De Houwer (2003) which may 

account for the divergent findings. The outstanding feature of this paradigm is that it contains 

four response-eligible color values (and none response-ineligible value), two for each 

response side (i.e. response category). Therefore, in De Houwer’s paradigm, on each trial type 

– RI, SI, and CO trials – the distracting word information is part of the response-set. This 

feature was explicitly implemented to create a Stroop paradigm that experimentally controls 

for response eligibility (response mapping). In contrast to De Houwer’s paradigm, the word 

meaning of the SI condition in the current work is response-ineligible which might explain 

that the behavioral effect of this condition did not reach the statistical threshold. Moreover, 

and also in contrast to the current work, van Veen & Carter used color rather than size as 

relevant dimension, while a semantically incongruent color word might be more influential as 

the semantically incongruent size-related word ‘BROAD’. 

 

4.4.1.1 Neural effects of response-incompatibility and semantic incongruency 

The conjunction analyses revealed only one activation focus specific to response-

incompatibility which was located in the left precentral gyrus. This region belongs to the 

ventral premotor cortex (BA 6). Generally, as already evident from its name, the premotor 
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cortex is well known to play a pivotal role in the planning or preparation of motor responses, 

i.e. limb movements (e.g. Ikeda, 1992; Wiese et al., 2004). Specifically, a number of 

neuroimaging studies related activation in the ventral premotor cortex (i.e. inferior precentral 

gyrus) to the imagination, selection, and execution of contralateral finger movements (e.g. 

Cunnington et al., 2006), suggesting that the activated area is part of (or correponds to) the 

finger or hand representation of the premotor cortex. Therefore, in the current data, this 

activation focus conceivably reflects incremental or competing (button-press) response 

tendencies (in terms of response conflict) induced by response-incomptible word emaning. In 

line with this assertion, several other studies that used button-presses as response categories 

observed activation in the ventral premotor cortex under conditions of response competition, 

e.g. in the flanker task (Ullsperger & von Cramon, 2001) and in the Stroop task (Leung et al., 

2000; Mead et al., 2002). The attribution of this activation focus specifically to response-

incompatibility (rather than semantic incongruency) in the current work further corroborates 

this interpretation.  

Other activations of the contrast RI-CO appeared as common activation with the contrast SI-

CO and therefore were attributed (i.e. assigned) to semantic incongruency. These activations 

mainly comprised the posterior frontomedian cortex (pre-SMA), the left postcentral (i.e. 

somatosensory) cortex, the cerebellum, as well as the basal ganglia and thalamus. In a 

previous subsection, these activation foci have been already discussed as reflecting 

strengthened motor control efforts to prevent false responding, i.e. to ensure task-appropriate 

performance (see 4.1.1). For instance, the observed somatosensory activation was discussed 

as conceivable neural substrate of enhanced “proprioceptive attention” to the responding 

fingers as one aspect of strengthened motor control. Semantic incongruency further appeared 

related to activation in the bilateral anterior insula. For a long time, the insula has been 

primarily or even exclusively related to non-cognitive functions (e.g. visceral, sensational 

functions) as well as to language comprehension and production (Augustine, 1985/1996). 

However, recent studies seem to implicate the insula in top-down attentional processing. For 

instance, insular activity has been reported related to cognitive interference (Egner & Hirsch, 

2005; Leung et al., 2000), inhibitory filtering of invalid information (Thomsen et al., 2005), 

and selective stimulus processing (Hopfinger et al, 2000). The reported findings may lead one 

to conjecture that activity in the insula generally contributes to cognitive control to minimize 

or resolve interference. Alternatively, insular activation during cognitive interference may 

underlie an altered body sensation – e.g. enhanced tenseness – realted to the agent’s efforts to 

meet the increased situational requirements. 
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Taken together, the activation pattern related to semantic incongruency conceivably underlies 

strengthened control efforts, particularly selective motor processing in terms of reinforcing or 

shielding the correct and/or inhibiting the incorrect response (see above; 4.1.1). Hence, the 

current findings suggest that the neural executive system recruits strengthened motor control 

already in case of semantic conflict without the occurrence of proper response competition. 

As semantic conflict generally does not implicate an enhanced error probability (e.g. van 

Veen & Carter, 2005), strengthened motor control in response to pure semantic incongruency 

on SI trials may appear somewhat unnecessary. However, as the cognitive system also 

encountered response conflict and perhaps detected erroneous responses on previous RI trials 

that also included semantically incongruent word meaning (i.e. also included semantic 

incongruency as conflict factor), it may recruit control mechanisms in a preventive (rather 

than remedial) manner on both RI and SI trials. Hence, the current data provide no evidence 

for the existence of different control mechanisms for the processing (i.e. the resolution) of 

response conflict and semantic conflict which has been proposed by van Veen and Carter in 

the above-mentioned fMRI Stroop study (see van Veen & Carter, 2005). Essentially, this 

study showed a double dissociation of activation in ACC and DLPFC for the comparison 

between response conflict and semantic conflict. Based on this finding, the authors proposed 

that the neural control system possesses two distinct and parallel attentional networks in 

conflict processing that are specific to the level of cognitive processing – either the semantic 

or the motor level – at which conflict occurs. In contrast to this notion, the present 

investigation’s findings suggest that conflict processing recruit the same attentional 

mechanisms regardless of whether conflict occurs solely at the semantic level or additionally 

at the motor level. 

 

4.4.2 Competition and residual semantic processing due to task-reference 

All three conditions RI, SI, and CO trials included lexical word meaning that was 

semantically related to the task-set, i.e. provided competing size-information. It has been 

proposed that task-related irrelevant information may generally cause competition in 

information processing (see Milham et al., 2002; Milham & Banich, 2005). Accordingly, 

several authors have suggested that congruent Stroop-trials may have increased attentional 

requirements relative to neutral (i.e. semantically unrelated) Stroop-trials (Carter et al., 1995; 

Posner & Girolamo, 1998; Milham et al., 2002; Milham & Banich, 2005; see 4.1.1). In the 

current work, to define the neural substrate of task relatedness or task-reference – the third 

conflict factor of interest – the contrast CO-SU was computed. This contrast revealed 

 



Discussion  74 

circumscribed activation in rostro-ventral regions of the left inferior frontal cortex (BA 47 / 

BA 11), the right medial superior frontal cortex (BA 9), and in the left temporal pole (BA 38). 

There is a body of empirical evidence for each of these cortical areas to implicate them in 

semantic processing of linguistic tokens. Therefore, the current data’s activations in these 

areas may be conclusively interpreted as reflecting residual semantic processing of task-

irrelevant lexical word meaning when this is related to the task-set. In particular, results of 

imaging studies using both PET and fMRI strongly suggest that activation in the left inferior 

prefrontal cortex is directly related to stimulus-driven semantic processing. Specifically, 

anterior inferior frontal regions in the left hemisphere have been repeatedly shown to exhibit 

stronger activity in semantic than in non-semantic word-level processing and thus may 

substantially contribute to semantic elaboration (Petersen et al., 1988; Poldrack et al., 1999; 

Noppeney & Price, 2002). Likewise, neuroimaging studies converge to suggest that the left 

TPC plays a particularly important role in meaning or concept identification of lexical 

information. For instance, the left-hemispherical temporal pole has been implicated in word 

recollection and word comparison (e.g. Damasio et al., 1996, Vandenberghe et al., 1996), 

semantic priming (e.g. Kutas & Hillyard, 1984, Mummery et al., 1999), as well as meaning 

composition during sentence reading (e.g. Stowe et al., 1998), and focal lesions in this region 

have been associated with semantic deficits (for review, see Saffran & Sholl, 1999). Finally, 

there are studies that reported activation in dorsal frontomedian cortex which included 

linguistic tasks that require meaning-based inductive reasoning (Goel et al., 1997), semantic 

coherence judgments (Ferstl & von Cramon, 2001) and semantic categorizations (Binder et 

al., 1997).  

Against an interpretation of the superior frontal activation as reflecting semantico-linguistic 

processing, one may object that this activation focus is localized in the right hemisphere. 

Generally, there is a strong dominance of the left hemisphere for the majority of language 

functions, and the right hemisphere normally does not appear to have much responsibility for 

basic cognitive-linguistic processes (Capozzoli, 1999; Gernsbacher & Kaschak, 2003). 

However, higher-order linguistic processes like meta-semantic interpretations or inferences 

(e.g. understanding metaphors, indirect requests, and humor) have been related to bilateral 

activations equally involving the right hemisphere, including prefrontal regions (e.g. Bottini et 

al., 1994; Mitchell & Crow, 2005). Furthermore, it has been proposed that the right 

hemisphere gets specifically involved in lexical processing when subordinate associations 

rather than basic semantic connotations of a given word form become relevant (Coney & 

Evans, 2000). Hence, the right-hemispherical location of the superior frontal activation does 
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not contradict the interpretation of semantic-linguistic processing but rather converges with 

prior studies findings. 

Taken together, incremental (i.e. increased) semantic processing of task-irrelevant 

information may provide a meaningful and plausible concretization of ‘competition’ between 

task-relevant and task-irrelevant information during Stroop-performance which has been 

expected to occur during both incongruent and congruent trials (see Milham et al., 2002; 

Milham & Banich, 2005). 

 

4.5 Outlook – Future Directions 

The present data revealed definitive and meaningful results regarding the current work’s 

questions and purposes. Hence, findings may significantly contribute to refine and broaden 

the understanding of neural mechanisms that underlie cognitive control during cognitive 

interference. Beyond the current work’s objectives, results raise interesting new questions and 

thus may provide a fruitful basis or starting point for related successional investigations. In 

this last subsection, different issues for potential future projects to build up on the present 

work’s findings will be stated. 

 

4.5.1 Replicating current findings within the ’traditional’ color word Stroop task 

It would be a particularly interesting issue to replicate findings of the present study with a 

more “traditional” version of the Stroop task that uses ink color instead of font size as relevant 

target attribute. In the current work, font size was chosen as target dimension because this 

allowed to implement a color oddball condition that consisted of a task-irrelevant rarely 

occurring and response-ineligible color value. To create a suchlike color oddball condition – 

which was one main issue of the present work – would not have been feasible within a 

traditional color Stroop task where color already serves as target dimension (see 2.1.3.2). 

Specifically, a related study that uses a color Stroop paradigm could elucidate whether the two 

distinct components of cognitive interference that have been delineated in the present work – 

a motor component and an attentional component (see 4.1) – can be replicated across different 

paradigm versions. Similarly, one may repeat the factorial decomposition analyses – 

conducted in the present work to define the neural substrates of the defined conflict factors 

(response-incompatibility, semantic incongruency, and task-reference; see 4.4) – on 

neuroimaging data that have been acquired during subject’s performance of a color Stroop 
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task version. The underlying question here would be whether the defined conflict factors 

exhibit comparable neural substrates across different task versions of the Stroop paradigm. In 

both outlined cases, replications of findings would confirm the present conclusions and 

interpretations concerning the existence of different neurocognitive (sub-)components of 

interference resolution and their respective characters. On the other hand, functional 

neuroanatomical dissociations could also be instructive as these might give relevant insights 

in the task- or context-dependency of the delineated neurocognitive mechanisms. 

 

4.5.2 Investigation of the influence of transient emotional states on cognitive 

control processes 

The existence of a close interaction between cognitive processes and emotional sates is 

intuitively evident, as it is commonly manifest in everyday human experience and behavior. 

Thereby, emotional states can attenuate cognitive activity, and vice versa, in terms of a 

reciprocal suppression (e.g. Drevets & Raichle, 1998). Prior neuroimaging studies support the 

view that an interplay between emotion and cognition is reflected in discernable changes in 

the brain’s functional anatomy (e.g. Lane et al., 1998; Pessoa & Ungerleider, 2004). However, 

further tests to substantiate this hypothesis are needed. Thereby, the behavioral and neural 

instantiation of the influence of experimentally induced – either negative or positive – 

emotional states on Stroop-task performance would be an especially relevant issue, as the 

Stroop paradigm is among the most widely used and cited experimental tasks to investigate 

cognitive control mechanisms. In particular, future studies may be set out to examine the 

susceptibility of the neurocognitive mechanisms of interference processing – particularly 

those that were defined in the current work – to the agent’s current emotional state. As a 

concrete procedure, one may apply standardized picture materials – for instance, the IAPS 

(International Affective Picture System; Lang, et al., 1988/1995/2005) – to look at the 

influence of emotion on cognition on a trial-by-trial basis. Such a study design would allow to 

systematically expand the analyses of the current work by additionally including “emotional 

state” (in terms of a pre-induced transient emotional arousal state) as factor or moderator 

variable in the statistical model and thereby to elucidate its influence on the created condition 

contrasts and contrast conjunctions, i.e. on the respective neurocognitive mechanisms and 

components. 
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4.5.3 Functional specialization and functional integration of circumscribed brain 

areas 

The present findings provide interesting insights into the ‘functional specialization’ of 

circumscribed brain areas in the context of cognitive or attentional control. For instance, the 

present findings support the assumption that the inferior frontal junction area (IFJA) 

essentially contributes to top-down attentional control during competition by biasing 

activation in posterior sensory systems (see 4.3). Moreover, activation in the left temporo-

polar cortex was conclusively interpreted as reflecting residual semantic processing of 

distracting, task-irrelevant information when this is related to the current task-set (see 4.4.2), 

and the ventral somatosensory (i.e. postcentral) cortex was convincingly implicated in motor 

control or motor attention in the case of cognitive conflict (see 4.4.1). The present findings 

and their interpretations may motivate future studies that seek to further elucidate the 

functional specialization of certain of the highlighted cortical areas in cognitive control. 

Generally, the term ‘functional specialization’ denotes regionally specific effects – i.e. 

physiological variations in a circumscribed neuroanatomical area – that can be attributed to 

changes in stimuli or task-conditions and thus can be (indirectly) related to cognitive factors 

or processes (Friston, 1998). However, this approach might not be sufficient for an adequate 

description of the neural implementation of neurocognitive mechanisms or functions, as it 

completely neglects interactions among the actually focused and other distant brain areas. In 

other words, cognitive control may not be meaningfully conceptualized as activity of single, 

isolated neuroanatomical units but rather as emanating from multiple interacting cortical and 

subcortical areas that together constitute functionally specialized neural networks. 

Accordingly, it would be an important and highly relevant issue to investigate the functional 

connectivity of areas that exhibited prominent activation in the current data. There exists a 

number of statistical approaches that allow to address functional integration or interactions 

between different brain areas by looking for correlations among activity in different brain 

areas, i.e. by trying to explain activity in one brain area in relation to others (e.g. Friston et al., 

1993; McIntosh et al., 1994). These analyses are usually conceptually framed in terms of 

‘effective connectivity’, which means that statistical relations are construed as (direct) 

influence that one area exerts over another. The term ‘functional connectivity’, on the other 

hand, denotes a mere co-occurrence of activation in different brain regions without inferring 

directional or causal interpretations. The concept of ‘psychophysiological interactions’ (PPIs) 

(Friston et al., 1997) provides a very interesting and valuable statistical approach for the 

investigation of functional integration, according to the authors who developed this approach, 
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in terms of effective connectivity. The basic idea behind PPI analyses is to explain responses 

in one cortical area in terms of an interaction between the influence of another area and some 

experimental (e.g. cognitive or sensational) parameter. In other words, a PPI means that the 

contribution of one area to another area changes significantly with the experimental context, 

i.e. with the required cognitive performance. Future studies may purposefully look for PPIs of 

certain areas that exhibited prominent activation in the current study and thereby may further 

elucidate their functional role or contribution to cognitive control, especially during Stroop 

task performance. For instance, it would be of special relevance to look for connectivity 

patterns of the IFJA during oddball conditions or of the primary somatosensory cortex during 

conditions of motor conflict so as to further elucidate the areas’ contribution to cognitive 

control at the attentional and motor level, respectively. 
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