Aus der Klinik für Zahnärztliche Prothetik und Werkstoffkunde der Medizinischen Fakultät der Universität des Saarlandes

Direktor: Univ. Prof. Dr. Peter Pospiech

Vergleichende Passgenauigkeitsuntersuchungen von vollkeramischen Brückenkonstruktionen aus Zirkoniumdioxid an verschiedenen CAD/CAM-Systemen

Dissertation zur Erlangung des Grades eines Doktors der Zahnheilkunde der Medizinischen Fakultät der Universität des Saarlandes

vorgelegt von

Thomas Petry geb. am 23.05.69

Zahnarzt aus Saarbrücken

2009

Dekan:

Prof. Dr. M. Menger

Berichterstatter und Betreuer: Prof. Dr. P. Pospiech

Tag der mündlichen Prüfung:

1.	Zus	amme	enfassung / Summary	1
2.	Einl	eitung)	3
3.	Lite	raturü	bersicht	
	3.1	Passg	genauigkeit und ihre klinische Relevanz	5
	3.2	Einflu	ssfaktoren der Zementierung auf die Passgenauigkeit	7
	3.3	Zirkon	noxid - Entwicklung zur dentalen Hochleistungskeramik	9
	3.4	Herste	ellung von Zirkonoxid	13
		3.4.1	Materialeigenschaften	16
		3.4.2	Vollkeramische Systeme	20
		3.4.3	Verblendkeramiken für Zirkonoxid	22
	3.5	Studie	enrelevante CAD / CAM - Systeme	
		3.5.1	DCS / precident	25
		3.5.2	Degudent / cercon	26
		3.5.3	Etkon / etkon	27
		3.5.4	Hint-els / dentacut	28
		3.5.5	KaVo/everest	29
	3.6	Anwei	ndungsbereiche von Zirkonoxid in der Zahnarztpraxis	30
4.	Mat	erial u	Ind Methode	33
	4.1	Mode	ellherstellung	34
	4.2	Herst	ellung der CoCr-Patientenmodelle	36
	4.3	Abfor	mung und Herstellung der Sägeschnittmodelle	38

4.4	Scannen und Fräsen der 75 Stumpfmodelle	39
4.5	Aufpassen und Verblenden der Gerüste mit systemspezifischen Keramikmassen	41
4.6	Zementierung der Brücken auf den CoCr – Modellen	42
4.7	Sagittal- und Transversalschnitte	43
4.8	Auflichtmikroskopie	45
4.9	Statistische Auswertung	46

5. Ergebnisse

5.1	Systemvergleich sagittal Brücke 11 - 13 - 15	48
	5.1.1 Vergleich Brückenanker 11	59
	5.1.2 Vergleich Brückenanker 13	50
	5.1.3 Vergleich Brückenanker 15	51
	5.1.4 Randspalten der Brücken	52
5.2	Systemvergleich sagittal Brücke 24 – 27	53
	5.2.1 Vergleich Brückenanker 24	54
	5.2.2 Vergleich Brückenanker 27	55
	5.2.3 Randspalten der Brücken	56
5.3	Systemvergleich sagittal Brücke 33 - 43	57
	5.3.1 Vergleich Brückenanker 33	58
	5.3.2 Vergleich Brückenanker 43	59
	5.3.3 Randspalten der Brücken	60

5.4	Systemvergleich transversal Brücke 11 - 13 - 15	61
	5.4.1 Vergleich Brückenanker 11	62
	5.4.2 Vergleich Brückenanker 13	63
	5.4.3 Vergleich Brückenanker 15	64
	5.4.4 Randspalten der Brücken	65
5.5	Systemvergleich transversal Brücke 24 - 27	66
	5.5.1 Vergleich Brückenanker 24	67
	5.5.2 Vergleich Brückenanker 27	68
	5.5.3 Randspalten der Brücken	69
5.6	Systemvergleich transversal Brücke 33 - 43 5.6.1 Vergleich Brückenanker 33 5.6.2 Vergleich Brückenanker 43	70 71 72
	5.6.3 Randspalten der Brücken	73
5.7	Übersicht der Mittelwerte für den Bereich Randschluss	74
5.8	Übersicht der Mittelwerte für den Bereich Kronenwände	74
5.9	Übersicht der Mittelwerte für den okklusalen Bereich	74
5.10	Mittelwerte der Passungszeiten	75

6. Diskussion

	6.1	Mater	ial und Methode	77
	6.2	Ergeb	nisse	
		6.2.1	Randschluss und Hohlkehle	80
		6.2.2	Kronenwände	81
		6.2.3	Okklusaler Kronenbereich	82
	6.3	Messy	verfahren	83
	6.4	Anwe	nderfreundlichkeit der Systeme (subjektiv)	85
		6.4.1	Primäre und sekundäre Passgenauigkeit	85
		6.4.2	Zeit- / Passungs – Statistik	86
		6.4.3	Tabelle zur Anwenderfreundlichkeit	87
7.	Lite	raturve	erzeichnis	89
8.	Anh	ang		
	8.1	Deskr	iptive Statistiken	98
	0 0	Motor	iollisto	117

8.2		117
8.3	Danksagung	119
8.4	Lebenslauf	120

1. Zusammenfassung

Das Ziel dieser In-vitro-Studie war die Evaluation der klinisch erreichbaren Passgenauigkeit von vollkeramischen Brücken im Front- und Seitenzahnbereich, deren Gerüste mit den CAD/CAM-Systemen Cercon, Dentacut, Etkon, Everest und Precident hergestellt wurden. Gemäß klinischer Standards wurden 75 vollkeramische Brückenkonstruktionen mit 3 unterschiedlichen Pfeilertopographien hergestellt .

Als Gerüstwerkstoff wurde Y-TZP-Zirkoniumdioxid verwendet. Die vollkeramischen Brücken wurden nach Zementierung auf Metallmodellen bezüglich der Parameter Randschluss und Passgenauigkeit durch lichtmikroskopische Vermessung des Zementspaltes in 5 Bereichen je Zahnpräparat untersucht. Dazu wurden Präparate in sagittaler und transversaler Schnittrichtung angefertigt.

Zur *Internen Passgenauigkeit* wurden im Oberkiefer für die vollkeramischen Brücken auf den Brückenankern 11 - 13 - 15 die niedrigsten Mittelwerte mit 55 - 77 μ m im Bereich der Hohlkehle, 52 - 76 μ m im Bereich der Kronenwände und 67 - 130 μ m im okklusalen Bereich ermittelt. Die Mittelwerte für die Brücken auf den Brückenanker 24 - 27 wurden mit 54 - 81 μ m im Bereich der Hohlkehle, 51 - 88 μ m im Bereich der Kronenwände und 69 - 128 μ m im okklusalen Bereich gemessen.

Die vollkeramischen Brücken im Unterkiefer mit der Brückenspanne 33 - 43 zeigten Mittelwerte mit 50 - 101 μ m für den Bereich der Hohlkehle, 55 - 86 μ m für den Bereich der Kronenwände und 60 - 127 μ m für die okklusalen Bereiche. Bei den Mittelwerten zum *Randschluss* wurden bei allen untersuchten Systemen Mittelwerte zwischen 34 und 113 μ m ermittelt.

Aufgrund der vorliegenden Ergebnisse liegen alle gemessenen Mittelwerte zur internen und marginalen Passgenauigkeit innerhalb der geforderten Spanne für festsitzenden Zahnersatz zwischen 20 und 130 µm.

Ein Zusammenhang zwischen der Sinterstufe der jeweils verwendeten Y-TZP-Zirkon-Rohlinge und der Passgenauigkeit der Vollkeramikbrücken konnte nicht hergestellt werden. Vielmehr sind die Unterschiede der Mittelwerte innerhalb der Gruppen zwischen den verschiedenen Pfeilerpositionen und der Funktionalität der Systeme zu finden, was in den hohen Anforderungen an alle Komponenten der CAD/CAM-Systeme gründet. Ebenso war durch die Festlegung des Präparationswinkels $\alpha/2$ von nur 2° eine weitere Hürde für die berührungslosen digitalen Objekterfassungssysteme zu überwinden.

Summary

" Comparison of the marginal and internal fit of all-ceramic bridges made of five different CAD/CAM-systems"

The aim of this in-vitro-study was to compare the marginal and internal fit of all-ceramic bridges for three topographic situations made of Y-TZP-zirconia. The CAD/CAM-systems *Cercon, Dentacut, Etkon, Everest and Precident were evaluated.*

In total 75 bridges were manufactured. After cementation the bridges were embedded into PMMA and subsequently cut into sagittal and transversal slices. A light microscope evaluation was carried out for five different areas of the slices.

For the internal fit, the all-ceramic bridges on the teeth 11-13 -15 showed medians between 55 µm to 77 µm for the chamfer, 52 µm to 76 µm for the axial walls and 67 µm to 130 µm for the occlusal areas. The all-ceramic bridges on the teeth 24 - 27 revealed medians between 54 µm to 81 µm for the chamfer, 51 µm to 88 µm for the axial walls and 69 µm to 128 µm for the occlusal areas. For the mandibular situation, the bridges on the teeth 33 - 43 revealed medians between 50 µm and 101 µm for the chamfer, 55 µm to 86 µm for the axial walls and 60 µm to 127 µm for the occlusal areas. The marginal fit was classified according to the definition of *Holmes et al.* The results revealed medians between 34 µm - 113 µm.

In general, all results revealed medians between 34 μ m to 130 μ m. Obviously, there is not a connection between the shrinkage phase of the zirconia and the fit of the bridges. Difficulties arise from the scanning difficulties for the preparation angle of 2° - 4°.

During this study, the primary fit after milling and the secondary fit after adjusting of the bridges were evaluated and the mean time per sample recorded and compared.

However, CAD/CAM-systems can be used for producing fixed partial dentures by using Y-TZP-zirconium. In the future, efforts have to be laid on optimizing the functionability of the single components and in the reducting of production intervals. The results of this study support the extended indications for further fixed partial dentures by using Y-TZP-zirconia.

2. Einleitung

Auf der Suche nach einem biokompatiblen, zahnfarbenen und belastbaren Werkstoff zur Herstellung von Kronen- und Brückengerüsten, stellt das aus Zirkonsand synthetisierte Zirkoniumdioxid heute den Goldstandard in der Reihe der vollkeramischen Materialien zur Herstellung von Brückengerüsten dar [61,92,95].

Nicht nur aufgrund der ständig steigenden Nachfrage nach biokompatiblem Zahnersatz, sondern vielmehr wegen der gemessenen Werte zur Bruchfestigkeit, Risszähigkeit, Biegefestigkeit und Dauerfestigkeit kann Zirkonoxid als "das" vollkeramische Gerüstmaterial der Zukunft angesehen werden. Die bewiesene Körperverträglichkeit als Knochenersatzmaterial in der Endoprothetik und eine auf die Materialfarbe "weiß" zurückführende hervorragende Ästhetik prädestinieren diesen Werkstoff für die Zahnmedizin [32,42,47,80].

Durch die schnelle Entwicklung der dentalen CAD/CAM -Technologie, welche zur Bearbeitung von Zirkonoxid notwendig ist, können annährend alle geometrischen Strukturen realisiert werden.

Diverse Studien beschäftigten sich bei Passgenauigkeitsuntersuchungen mit dem Material Zirkonoxid und 3-gliedrigen Brückenkonstruktionen auf einer Pfeilersituation im Seitenzahnbereich und weisen dort auch akzeptable Ergebnisse aus. Ebenso können mittlerweile auf klinische Nachuntersuchungszeiträume für Zirkonoxidbrücken von bis zu 8 Jahren verwiesen werden [73,74,95]. Gelten jedoch diese Ergebnisse auch für weitspannige Brückenkonstruktionen, welche sich innerhalb des Zahnbogens vom Frontzahnbereich bis in den Seitenzahnbereich erstrecken?

Alle positiven Ergebnisse veranlassen die Hersteller von CAD/CAM- Systemen zu einer Herstellerfreigabe von diversen zahntechnischen Konstruktionen u.a. auch Brückengerüsten mit einer Spannweite von bis zu 14 Brückengliedern. Andere Anbieter von CAD/CAM-Systemen beschränken die Freigaben für vollkeramische Gerüste auf teilweise nur 4 bis 5 Brückenglieder [59,60,98].

Gründe hierfür sind zum einen in der Sensitivität der Objekterfassung durch die berührungslosen Objekterfassungssysteme, zum anderen in der Generierung der zu konstruierenden Gerüststruktur durch die Software zu finden. Nur eine optimale Durchführung des Fräsvorgangs durch die Fräseinheit mit einer zuverlässigen Abstimmung dieser Komponenten untereinander, als auch auf das zu bearbeitende Material, führen zu einem optimalen Ergebnis [58,59,60]. Hierbei sind besonders die zur Werkstückbearbeitung notwendigen Standzeiten und Werkzeugdurchmesser der rotierenden Fräswerkzeuge, als auch die unterschiedlichen kristallinen Gefügezustände der Materialrohlinge zur Grün- und Weißkörperbearbeitung zu nennen.

Ein dentales CAD/CAM-System kann die automatisierte Produktion von vollkeramischen Strukturen unter Umgehung von materialtechnischen Gefügefehlern und individuellen Fertigungsfehlern ermöglichen. Demnach sind die innere Passgenauigkeit und der marginale Randspalt der Brückenanker, als auch die durch CAD/CAM-Bearbeitung resultierende kristalline Gefügestabilität der hergestellten Gerüstkonstruktionen verantwortlich für die Langlebigkeit dieser vollkeramischen Restaurationen [24,55,74,77].

Das Ziel dieser In-vitro-Studie war die Untersuchung der marginalen und inneren Passgenauigkeit von 3 unterschiedlichen Brückentopographien. Es wurden 75 vollkeramische Brücken aus Zirkoniumdioxid mit Brückenspannen von 4 bis 6 Brückengliedern und einem Präparationswinkel $\alpha/2$ von nur 2° im Front- und Seitenzahnbereich hergestellt.

Die vollkeramischen Gerüste wurden mit den CAD/CAM-Systemen der Firmen DCS (Precident), Etkon (Etkon), Hint-els (Dentacut), KaVo (Everest), wie auch mit dem CAM-System der Firma Degudent (Cercon), angefertigt.

3. Literaturübersicht

3.1 Passgenauigkeitsuntersuchung und ihre klinische Relevanz

Bei der Überkronung eines Zahnes zum Schutz vor pulpalen Irritationen oder zur Wiederherstellung der Kaufunktion werden heutzutage eine Vielzahl von biologisch verträglichen Zahnrestaurationen besonders aus Keramik angeboten. Ein wesentlicher Aspekt für den langfristigen Erhalt der betreffenden Zähne ist maßgeblich die Randdichtigkeit einer eingegliederten Kronen- oder Brückenrestauration [50].

Nicht nur bei erfahrenen Behandlern unterliegt die klinische Beurteilung der Randmorphologie durch visuelle Inspektion oder taktile Sondierung erheblichen Schwankungen [103].

Die Untersuchung der Passgenauigkeit von Kronen und Brücken lässt sich in die gesonderte Beurteilung der Zementfuge zwischen äußerstem Kronenrand und Zahnpräparation, als Kronenrandspalt bezeichnet, und der zirkulär verlaufenden Zementfuge , als interne Passgenauigkeit bezeichnet, gliedern. Keineswegs ist jedoch die zur Randspaltbeschaffenheit dienende Terminologie in vielen Studien einheitlich [13,35,36]. Oft werden für verschiedene Messpunkte dieselben Begriffe verwendet , wie auch für unterschiedliche Termini identische Messstrecken beschrieben werden [35,76].

Abb .1 Randspaltmorphologie (nach Holmes et al. 1989 modifiziert)

Holmes et al. beschreiben die Problematik der Randspaltmorphologie in geeigneter Art und Weise (Abb.1). Ausgehend von der idealen Randspaltmorphologie, welche eher selten mit der tatsächlichen klinischen Situation übereinstimmt, wird sowohl auf eine Überkonturierung, als auch auf eine Unterkonturierung des Kronenrandes Bezug genommen [35,103]. Überkonturierungen und Unterkonturierungen des Kronenrandes können zu chronischen Reizen mit der Folge von Parodontopathien, Knochenabbau und Karies führen [3,6,90].

Nach Holmes et al. definiert sich die "gemessene Passgenauigkeit" einer Krone über die Zementfuge zwischen Kronenrand und Zahnstumpf [35,76]. Die innere Zementspaltbreite ergibt sich als senkrechte Messstrecke zwischen Kronenrand und präpariertem Stumpf. Bei einer Hohlkehl- oder Stufenpräparation entspräche der Randspalt nach Holmes et al. unter optimalen morphologischen Gegebenheiten der " absoluten marginalen Diskrepanz". Dies stellt die kürzeste Messstrecke zwischen äußersten basalen Punkt des Kronenrandes und dem der äußersten Präparationsgrenze dar. Eine Über- oder Unterkonturierung des Kronenrandes wird bezüglich der Messwerte dabei nicht gesondert beurteilt.

Beides führt jedoch, auch bei minimaler Zementfuge, zu unerwünschten Belastungen des Parodonts. Je kleiner die Zementfuge ist, desto weniger Zement kann bei speichellöslichen Mineralzementen pro Zeiteinheit ausgewaschen werden [50]. Nach *Marxkors et al.* steigt die Auswaschung der Zementfuge mit der dritten Potenz der Fugenbreite [62,63].

Die Folge sind unerwünschte kapilläre Spalten, Überhänge und Nischen. Ungünstige mikroökologische Nischen, welche die Entstehung einer komplexen Bakterienflora fördern, können bei schlechter Passung oder nach Zementauswaschung in den kapillären Räumen und Spalten zwischen Krone, Zement und Zahn entstehen [6]. Diese Räume werden auf Dauer komplett mit Bakterien besiedelt [3,6]. Folge ist eine durch entstehende Toxine verursachte entzündliche Reaktion des Parodonts, als auch eine durch die entstehenden Säuren verursachte Sekundärkaries [3,4]. Nach *Schlösser et al* stellt die Sekundärkaries die Hauptursache für die Erneuerungsbedürftigkeit von festsitzenden Restaurationen, besonders von Kronen - und Brückenverbänden, dar [71, 89].

Gleichermaßen verantwortlich für eine vorzeitige Neuanfertigung von Kronen und Brücken ist eine durch starke Plaqueakkumulation entstandene Parodontitis, welche besonders bei einer subgingivalen Kronenrandposition auf eine mangelhafte Kronenrandgestaltung zurückzuführen ist [13, 40, 89, 91]. Von *Rehberg* wurden Kronen mit einer gerade noch nachweisbaren Zementfuge von 20 µm Breite als "exakter Randschluss" bezeichnet [76]. *Jorgensen & Wakumoto* halten eine Zementfuge von 50 µm noch für vertretbar [40]. Zementrandspalten zwischen 50 bis 120 µm gelten als klinisch realisierbar und werden von vielen Autoren als akzeptabel angesehen [1,52,62]. In Anbetracht der Tatsache, dass eine Mindeststärke der Zementfuge bei Anwendung von Glasionomerzementen von 20-30 µm aus materialwissenschaftlichen Erkenntnissen nicht unterschritten werden sollte, kann unter klinischen Bedingungen eine Zementfuge bis 120 µm als akzeptabel betrachtet werden [26,28,29].

3.2 Einflussfaktoren bei der Zementierung auf die Passgenauigkeit

Der Einfluss der Zementierung auf die innere Passgenauigkeit und den gemessenen marginalen Randspalt ist ebenfalls bei Passgenauigkeitsuntersuchungen herauszustellen. Entscheidend bei der Zementierung einer Krone oder Brücke sind die Zementqualität, die Zementpartikelgröße, der Zementierungsmodus mit Temperatur und Krafteinleitung. Ebenso ist auch die Zahnstumpfoberfläche, der Konvergenzwinkel der Präparation und die gewählte marginale Präparationsart entscheidend [31,38,50]. Die Zahnärztlichen Befestigungswerkstoffe lassen sich in konventionelle Zemente und auf Bis-GMA basierende Kompositwerkstoffe einteilen.

Die konventionellen Zemente lassen sich wiederum in Zinkphosphat-, Polycarboxylatund Glasionomerzemente unterteilen. Carboxylat- und Glasionomerzemente zeichnen sich durch eine mechanische Verankerung wie auch durch eine physikalische und chemische Adhäsion am Zahnstumpf aus. Zinkphosphatzemente dagegen verkeilen den Zahnersatz nur mechanisch am Zahnstumpf und weisen eine höhere Zementlöslichkeit auf [26,50,72].

An Zahnstümpfen mit geringer Restdentinstärke sind Glasionomerzemente mit Vorsicht anzuwenden, da toxisch wirkende Zwischenprodukte die Pulpa schädigen und zu einer Pulpitis führen können [31]. Die kleinste mögliche marginale Zementfuge korreliert mit den größten Partikeln des Zementpulvers. Zahnärztliche Zemente werden außer als Befestigungsmaterial für festsitzenden Zahnersatz auch als Isolation gegen physikalische und chemische Reize in Form von Unterfüllungen wie auch als provisorisches und temporäres Füllungsmaterial verwendet. Die Zahnstumpfoberfläche mit dem Konvergenzwinkel und der marginalen Präparationsart sind mitentscheidend für eine gute Zementabflussmöglichkeit. Je niedriger die Zahnstumpfhöhe und je konischer der Konvergenzwinkel ausfällt, desto kleiner fällt die Zementfuge aus [26]. Zu große Konvergenzwinkel und zu kurze Zahnstümpfe wiederum verschlechtern den Halt und damit den langfristigen Erfolg von festsitzendem Zahnersatz. Kleine Konvergenzwinkel in Verbindung mit einer Stufenpräparation und hohen Stümpfen wirken sich nachteilig auf die Abflussmöglichkeiten des Zementes aus [53].

Als marginale Präparationsart hat sich die Hohlkehlpräparation mit einer idealen Abflussmöglichkeit, als auch aus materialtechnischen Gründen bewährt [38,49,65].

Ebenso wichtig ist es, dass Kronen mit langsam ansteigender Krafteinleitung zementiert werden [38]. Eine optimale Fließfähigkeit des Zementes wird durch das Anmischen nach Herstellerangaben und bei optimaler Temperatur erreicht. Das automatisierte Anmischen in einem Kapselanmischgerät gewährleistet reproduzierbare Viskositäten des Zementes bei der Zementierung von Zahnersatz.

3.3 Zirkonoxid – 200 jährige Entwicklung zur dentalen Hochleistungskeramik

Die Bezeichnung *Zirkonoxid* wird heute noch oft mit den Begriffen Zirkon, Zirkonium, Zirkondioxid oder Zirkoniumdioxid in einen Atemzug genannt. Grundsätzlich bezeichnet Zirkonoxid die abgekürzte Variante der technischen Oxidkeramik Zirkoniumdioxid. Die heute gebräuchlichen Dentalkeramiken entwickelten sich aus Porzellan, das ca. 700 n.Chr. in China entdeckt wurde und das *J.Böttcher* im Jahre 1708 als erster in Europa herzustellen vermochte. Im Jahre 1774 war es der Franzose *Nicolas Dubois de Chemant,* der sich nachweislich eine komplette Prothese aus Porzellan brennen ließ [15]. Mit der von *Charles Land* im Jahre 1889 entwickelten und patentierten Technik zur Herstellung der Vollkeramikkrone (Jacketkrone) aus Feldspatkeramik war eine Technik für vollkeramischen Zahnersatz zur Einzelzahnversorgung in der Zahnmedizin präsent. Dieser "Prototyp" einer Vollkeramikkrone verfügte über ein schwaches kristallines Gefüge und war daher stark frakturanfällig. Durch die konventionelle Zementierung konnte kein stabilisierender inerter Verbund mit dem Zahn einher gehen. Ebenso steckte die Entwicklung der Keramikmassen und Brennöfen noch in den Kinderschuhen [25].

Brill und Lewin etablierten ab dem Jahre 1930 weiterhin die Keramikmantelkrone für den weniger belasteten Frontzahnbereich. Die Entwicklung der Keramikmassen, Keramik-Brennöfen als auch der Abform – und Materialtechniken ermöglichten mit der Zeit bessere Ergebnisse. Die geringen Bruch- und Scherfestigkeiten der keramischen Gefüge konnten jedoch nicht wesentlich erhöht werden.

Aufgrund dieser Tatsache wurde in den fünfziger Jahren Versuche mit belastbaren Gerüstmaterialien und Verblendkeramiken durchgeführt und von *Katz und Weinstein* im Jahre 1962 als Metallkeramik patentiert [64]. Dabei wurden eine Metalllegierung und eine Keramikverblendmasse auf einen Wärmeausdehnungskoeffizienten (WAK) hin abgestimmt. Der hohe thermische Ausdehnungskoeffizient der Keramik ließ Brenntemperaturen von 900°C zu. Der Verbund zwischen Metalllegierung und Verblendkeramik wurde durch Diffusion von Metalloxiden hergestellt [15]. Nun war es möglich ästhetisch akzeptable und mehrgliedrige Brücken für den Seitenzahnbereich herzustellen. Schwierigkeiten zeigten sich jedoch bezüglich der eingeschränkten Biokompatibilität infolge von Oxidationsprodukten am Kronenrand und einer herabgesetzten Transluzenz [90].

Jedoch schon im Jahre 1965 konnte durch *Mc Lean und Hughes* bewiesen werden, dass die Einbindung von Aluminiumoxiden in das keramische Gefüge von Vollkeramikkronen zu einer Erhöhung der Bruch- und Scherfestigkeit führte [45].

Ein anderer Ansatz zur Herstellung von vollkeramischen Kronen war das Gussverfahren von Glaskeramiken. Beim Dicor-System wurde eine verflüssigte Glasmatrix dem Goldguss vergleichbar im Lost-wax-Verfahren in eine Gussform eingegossen. Die Bruchanfälligkeit von Dicor-Kronen führte jedoch rasch zur Bedeutungslosigkeit dieses Systems.

Ebenfalls im Jahre 1986 wurde das Empress-System durch *Wohlwend* patentiert. Eine Glasmatrix wurde durch Verstärkung mit Leuzitkristallen optimiert. Mit der nächsten Generation Empress 2 konnten durch Einbindung von stabilisierenden Whiskern bis zu dreigliedrige Brücken im weniger belasteten Prämolarenbereich hergestellt werden.

Im Jahre 1988 wurde das In-Ceram-System am Markt vorgestellt. Dabei wurde durch Schlickertechnik [25] ein Aluminiumoxidgerüst hergestellt und nachträglich mit Lanthanglas infiltriert. Die Biegefestigkeit und Risszähigkeit war um ein Vielfaches höher als bei den optimierten Glaskeramiken. Das Problem der mangelnden Biegefestigkeit und die daraus resultierende Bruchanfälligkeit von infiltrierten Aluminiumoxid-Keramiken ließ bis Anfang der neunziger Jahre nur vollkeramische Brücken im weniger belasteten Frontzahn- und Prämolarenbereich zu [44,46,47]. Seid dem Jahr 2003 werden vorgefertigte In-Ceram-Rohlinge mit Zirkonoxidanteilen verstärkt auch zur maschinellen Bearbeitung angeboten.

Bereits im Jahre 1789 wurde die Verbindung Zirkoniumdioxid erstmals durch den deutschen Chemiker *M.H. Klapproth* beschrieben. Die Eigenschaften von Zirkonoxid sollte jedoch erst 200 Jahre später der Medizin vertraut und zugänglich werden [25].

Mit der Weiterentwicklung der Oxidkeramiken konnte durch *Ron Garvie* im Jahre 1975 das teilstabilisierte Zirkonoxid vorgestellt werden. Es gelang ihm die Nachteile der hohen Elastizitätsmodule von gebräuchlichen Silikatkeramiken, und die damit verbundene Bruchanfälligkeit bei Überschreiten des Bruchwertes, initial zu kompensieren [19,45]. Dabei wurden während des Herstellungsprozesses kristalline Phasenübergänge manipuliert und stabilisiert. Das Material verfügte über hohe Biegefestigkeit und Bruchzähigkeit [22]. Mit den hohen Werten zur Biegefestigkeit konnte man nun auf ein Material zurückgreifen, dass den auftretenden Kaukräften im Seitenzahnbereich Stand halten konnte. Bereits im Jahre 1985 wurde in Frankreich und den USA teilstabilisiertes Zirkonoxid auf Grund seiner hohen Festigkeit und hervorragenden Biokompatibilität für künstliche Hüftgelenkskugeln eingesetzt. Dennoch gab es zu dieser Zeit keine wirtschaftliche und exakte Möglichkeit der Bearbeitung von Zirkonoxid zur Herstellung von passgenauem Zahnersatz. Dies änderte sich erst mit der allgemeinen Verfügbarkeit leistungsfähiger Computer, so dass CAD/CAM-Verfahren in der dentalen Technologie eingesetzt werden konnten.

Der Franzose *Francois Duret* gilt als Pionier und Begründer der dentalen CAD/CAM-Technologie. *Duret* beschäftigte sich bereits im Jahre 1971 mit Entwicklung eines CAD/CAM-Systems zur Herstellung von Zahnersatz. Das Fräsen der ersten Krone gelang ihm jedoch erst Mitte der achtziger Jahre. Aufgrund von mangelnden technologischen Erkenntnissen jener Zeit, welche keine erfolgversprechenden Ergebnisse prognostizierten, wurde das Projekt zu Ende der achtziger Jahre beendet. Zeitgleich zu *Duret* wurde durch Altschulter im Jahre 1972 das erste berührungslose optische Abdruckverfahren auf Basis der Holographie vorgestellt.

Der Zahnarzt *Mörmann* und der Ingenieur für Maschinenbau *Brandestini* begannen im Jahre 1980 mit der Entwicklung eines CAD/CAM-Systems, jedoch zur Chairside-Anwendung direkt in der Zahnarztpraxis. Nach einer intraoralen optischen Erfassung des präparierten Zahnes, die aufgrund der wünschenswerten kurzen Messzeiten über optische Flächensensoren erfasst wurden, konnte nach virtueller Konstruktion der Restauration durch eine Software an einem Monitor eine vollkeramische Restauration aus industriell vorgefertigten Feldspatrohlingen herausgefräst werden. Das System wurde im Jahre 1986 patentiert und im Jahre 1988 von der Firma Siemens unter dem Namen Cerec als erstes serienreifes CAD/CAM-System eingeführt [64]. Mit der 3.Generation des Systems (Cerec 3) können seit dem Jahr 2002 auch vorgesinterte Zirkonoxid-Rohlinge bearbeitet werden, die durch einen Sinterprozess im Labor fertig gestellt werden.

Zu Anfang der neunziger Jahre beschäftigten sich viele Unternehmen mit der Entwicklung von dentalen CAM/CAM-Systemen. Probleme und Schwierigkeiten mit den Rechenleistungen damaliger Datenverarbeitungssysteme, den Schneidleistungen der Diamantfräswerkzeuge für dicht gesintertes Zirkonoxid und den hohen Produktionskosten stellten die Entwickler zeitweise vor unüberwindbare technische Hürden. In den Jahren 1994-98 wurden die Systeme Precident der Fa. DCS-dental und Digident der Firma Girrbach als erste CAD/CAM-Systeme zur Bearbeitung von industriell dicht gesinterten Zirkonoxidrohlingen vorgestellt.

Im Jahre 2000 eröffnete das CAD/CAM-System Etkon dem Anwender die Möglichkeit mittels eigenem Scanner und Software die Gerüste im Labor zu konstruieren und die maschinelle Produktion durch ein Fräszentrum extern durchführen zu lassen.

11

Das Zeitalter des "Dentalen Outsourcings" hatte begonnen. Es folgte die Einführung weiterer CAD/CAM-Systeme wie Cercon, Everest und LAVA zur Bearbeitung von Zirkonoxid in Praxis und Labor. Als vollkeramisches Gerüstmaterial in der Kronen- und Brückentechnik wie auch zur Versorgung mit herausnehmbarem Zahnersatz ist Y-TZP-Zirkonoxid heute universal anwendbar [42,85,89,92].

3.4 Herstellung von Zirkonoxid

Das Ausgangsmaterial zur Synthetisierung der technischen Oxidkeramik Zirkoniumdioxid, als auch der Ausgangsstoff zur Herstellung des Reinmetalls *Zirkonium, ist* Zirkonsand.

Zirkon ist ein dem Diamanten ähnliches Mineral mit kristallinem Aufbau und verfügt über eine sehr gute Temperaturwechselbeständigkeit wie auch einen geringen Wärmeausdehnungskoeffizient [7,67].

Zirkonium ist ein Metall aus der Titangruppe. Es kann sich, wie auch Titan, durch eine dünne Oxidschicht passivieren und wird somit korrosionsresistent. Anwendung findet es als Metall weniger in der Zahnmedizin, sondern aufgrund seiner Materialeigenschaften in Kernanlagen, Düsenantrieben und als Bestandteil von Hochleistungslegierungen.

Zirkoniumdioxid (=Zirkonoxid) wird in einem aufwändigen Prozess aus mineralischem Zirkonsand (ZrSiO₄) unter Aufnahme von Sauerstoff und Zugabe von Additiven, wie u.a. Yttriumoxid, synthetisiert (Abb.2). Dabei wird in einem Reduktionsprozess durch Aufschmelzen des Zirkonsandes mit Koks und Kalk in großtechnischen Anlagen Zirkoniumdioxidpulver gewonnen. Verschiedene Synthesewege gewährleisten die Gewinnung von hochreinem Zirkonoxidpulver, welches für die Anwendung in der Dentalund Medizintechnik notwendig ist. Man unterscheidet bei den Syntheseverfahren das Aufschmelzen in Salzschmelzen, in einer Gasphase, die hydrothermale Pulversynthese und das Sol-Gelverfahren. Das zur Herstellung der dentalen Hochleistungskeramik Zirkonoxid notwendige Zirkon-Ausgangsmaterial für zu sinternde Korngrößen zwischen 0,1 und 0,6 µm lässt sich gerade mit dem Sol-Gelverfahren oder der Gasphase-Reaktion ideal synthetisieren [7,67].

Die gewonnene Zirkonoxid-Lösung wird zur weiteren Verarbeitung mit Sinteradditiven , wie Yttriumoxid (Y₂O₃) , und Hilfsstoffen, wie Wasser oder leicht flüchtigen organischen Verbindungen, vermengt. Die Sinteradditive, welche im keramischen Körper verbleiben, bestimmen mitunter das Sinterverhalten und die kristallographischen Erscheinungsformen der Schmelze. Zirkonoxid kristallisiert während des Abkühlungsvorganges ab 2706° C zuerst in die kubische Phase, ab 2370° C in die tetragonale Phase und ab 1163° C in die monokline Phase. Der Phasenübergang tetragonal zu monoklin ist mit einer Volumenzunahme verbunden. Die Zugabe von Yttriumoxid stabilisiert beim Abkühlungsprozess den Phasenübergang der tetragonalen in die monokline Phase bis auf Raumtemperatur und gibt Zirkonoxid die Eigenschaft zur Selbstlimitierung einer möglichen beginnenden Rissausbreitung. Dabei wird durch Volumenvergrößerung der Teilchen an einer beginnenden Rissspitze die stabilisierte tetragonale Kristallform destabilisiert und eine Ausbreitung der Risslinie auf diese Weise einmalig blockiert [7,67,74]. Die korrekte Bezeichnung dieser mit 3-5% Yttrium verstärkten Hochleistungskeramik lautet Yttria-stabilized Tetragonal Zirconia Polycrystals (Y-TZP).

Die Hilfsstoffe, wie Wasser und organische Verbindungen, dienen der Formgebung und verflüchtigen sich rückstandslos während des späteren Sinterprozesses. Durch Trockenpressen oder Schlickertechnik wird das synthetisierte Zirkonpulver mit den Sinteradditiven, den Hilfsstoffen und einem Bindemittel zu einem Grünling geformt. Dieser kreideartige keramische *Grünling* verfügt über eine sehr niedrige Eigenfestigkeit. Daher ist eine sichere maschinelle Bearbeitung in diesem Stadium im Labor schwierig.

Um eine sichere Bearbeitung im Labor zu gewährleisten wird der *Grünling* durch eine industrielle thermische Vorbehandlung um 5-10 % vorgesintert. Danach verfügt der keramische Rohling, ab hier *Weißling* genannt, über eine ausreichend hohe Eigenfestigkeit zur maschinellen Bearbeitung im zahntechnischen Labor und kann zeitund materialschonend weiterverarbeitet werden. Das vorgesinterte *Zirkonoxidgerüst* wird laborintern in einem Sinterprozess, welcher bei 1350°-1500°C zwischen 6-8 Stunden dauert, fertig durchgesintert. Dabei kommt es wiederum, je nach System und Sinterprogramm, zu einer Volumenverringerung von 19-23%. Der Schrumpfungsindex der Zirkonrohlinge wird vor Beginn der maschinellen Fräsung in den Fräsparametern durch die Software eingerechnet. Eine Evaluation der Materialeigenschaften bei porös vorgesinterten Keramikkörpern, wie Dichte und Korngröße, ist bei der Weißling-Bearbeitung jedoch nicht möglich [7,45].

Zirkonoxid wird von Seiten der Industrie auch dicht durchgesintert angeboten. Das Material verfügt dann über höchste mechanische Eigenschaften. Eine maschinelle Bearbeitung im Dentallabor in diesem Stadium zeichnet sich aufgrund der hohen Härte durch längere Fräszeiten und höhere Abnutzung der Schneidwerkzeuge aus, wobei jedoch das laborinterne Sintern entfällt. Durch das industrielle Sintern unter hohem Druck erhält das Zirkonoxid seine optimierten Eigenschaften. Aufgrund der industriellen Herstellung unter optimierten Bedingungen wird eine minimale Fehlstellendichte und eine maximale Materialdichte erreicht [67]. Durch Verringerung der spezifischen Oberfläche der Zirkonoxidteilchen kommt es zur Verdichtung, welche durch temperaturabhängige Diffusionsvorgänge erreicht wird. Man unterscheidet dabei mit fließenden Anteilen die Korngrenzen-, Oberflächen- und Volumendiffusion.

14

Werden die Diffusionsvorgänge unter hohem Druck durchgeführt, spricht man von heißisostatischem Pressen ("Hippen", HIP = Hot Isostatic Pressing). Der hohe Druck ist verantwortlich für die minimale Fehlstellendichte und beschleunigt auch den Sinterprozess. Die Anwendung neuartiger Additive, als auch die Anwendung von Mikrowellen zur leichteren Energieübertragung auf die keramischen Zirkonoxidteilchen, sollen in Zukunft die Sintertemperaturen senken und damit ebenfalls die aktuell hohen Produktionskosten und Sinterzeiten von Zirkonoxid reduzieren [42].

Abb. 2 Herstellung von Y-TZP- Zirkonoxid-Pulver (Quelle: ABC Keramik)

	Y-TZP-HIP Zirkonoxid	Alu-Oxid (industriell)	In- ceram	Empress 2	Hochgold- Legierung	Titan
Biegefestigkeit in MPa	1.200	430	~ 450	210	~ 330	400
Härte in HV	1.200	2.200	~ 190	175	670	870
Dichte in g / cm ³	6.10	3.98	~ 3,9	4,1	~ 14	5.5
Bruchzähigkeit in mPaVm	10,5	4,5	3,9	1,9		-
Weibullmodul m	14	8	4,5	5,7	-	-
E-Modul in GPa (diff. Messung)	(210	410	550	65	185	140)
Grundfarbe als Gerüst	weiß	weiß	beige	weiß	goldfarbig	grau
Transluzenz als Gerüst	ja	ja	(ja)	ja	nein	nein
Brücken- glieder	alle	alle	max. 4	max. 3	alle	alle

3.4.1 Materialeigenschaften von Zirkonoxid

Abb. 3 Materialeigenschaften von Gerüstmaterialien im Vergleich [15,67,74]

Als neuartiges biokompatibles Gerüstmaterial muss sich Zirkonoxid in einem Vergleich zur klinischen Zuverlässigkeit mit Zahnersatz aus bereits bewährten Materialien, hergestellt mit etablierten Technologien, messen lassen. Nach *Tan et al* lassen sich für konventionellen Brückenersatz 10-Jahres-Überlebensraten von über 89% evaluieren [91].

Andere Studien weisen für konventionelle metallkeramische Brückenrestaurationen vergleichbare Ergebnisse auf [8,83]. Ebenso werden in verschiedenen retrospektiven Studien für vollkeramische Inlays und Einzelkronen aus Aluminiumoxid-Keramik 10-Jahres-Überlebensraten von über 93% angegeben [70,75].

Nachuntersuchungen von Brücken aus Zirkonoxid lassen jedoch nach 2-,4- und 7 jährigen Valuierungsintervallen ebenfalls eine günstige Prognose zu [14,70,73,74].

Der Anteil von Gerüstfrakturen bei Brücken aus Zirkonoxidkeramik lag unter 0,3% [61]. Da die an Zirkonoxid gestellten wichtigen zahnärztlichen Anforderungen wie Biokompatibilität, Ästhetik, Versorgungsvielfalt und Passgenauigkeit aufgrund der modernen CAD/CAM-Technologie erfüllt werden, können besonders die materialtechnischen und werkstoffkundlichen Eigenschaften dieser Hochleistungskeramik mit denen von konventionellen Gerüstmaterialien gegenüber gestellt werden [92,93].

Zirkonoxid wird wegen der bereits langjährigen Anwendung als biokompatibles Material in der Medizin als Biokeramik bezeichnet. Die Anwendung in der Hüftgelenk-, Fingerund Gehörprothetik kann durch beste Ergebnisse belegt werden [80]. Besonders Zirkonoxid- und Aluminiumoxid werden aufgrund ihrer mechanischen Eigenschaften als Hochleistungskeramiken tituliert [37,67]. Die in der Zahnmedizin relevante Biegefestigkeit von Zirkonoxid erreicht bei industriell hergestellten Rohlingen mit 1200 MPa einen 3 fach höheren Wert als industriell hergestelltes Aluminiumoxid und einen rund 6 fach höheren Wert als vergleichbare moderne Glaskeramiken. Ein Maß für die Sicherheit und Zuverlässigkeit von vollkeramischen Gerüstmaterialien stellt der Weibull-Modul dar [19]. Er ist ein Maß für die untersuchten Streuungen der Festigkeiten in Keramiken. Aus den geringen Streuungen der Festigkeit für Zirkonoxid resultiert ein hoher Weibull-Modul. Bei porös vorgesinterten Zirkonoxidrohlingen, welche im zahntechnischen Labor im porösen Zustand bearbeitet und in einem Sinterofen dicht gesintert werden, liegen die Werte für Biegefestigkeit und Bruchzähigkeit jedoch erheblich unter denen von industriell dicht gesinterten Rohlingen. Jedoch auch hier zeigten sich die höchsten Werte zur belastungsfähigen Grenzlast und dem daraus resultierenden Weibull -Modul mit m = 7 für Zirkonoxid im Vergleich zu Glaskeramik und In-Ceram [61]. Bei Verwendung von porös vorgesintertem Zirkonoxid für weitspannige Brückengerüste ab 5 Gliedern sollte dies kritisch betrachtet werden.

Für vollkeramische Gerüstmaterialien ebenso entscheidend ist der Wert der Bruchzähigkeit. Der Wert beschreibt das Standverhalten einer Keramik gegenüber sich ausbreitenden Rissen. Zirkonoxid hat mit über 10 MPaVm einen rund 2,5 fach höheren Wert als Aluminiumoxid [74,92]. Mit einer Härte von 1200 HV bietet industriell dicht gesintertes Zirkonoxid einen Kompromiss bezüglich der Bearbeitungsparameter Zeitaufwand und Materialverschleiß bei subtraktiver Bearbeitung im Vergleich zu Aluminiumoxidkeramik mit einer extrem hohen Härte von 2100 HV [92].

Die zur Dauerfestigkeit erhobenen Werte liegen für Zirkonoxid mit 550 MPa für fünf Jahre simulierte Belastungszeiträume bei 50 % der Ausgangsstabilität.

17

Damit liegt dieser Wert nach fünf Jahren weit über den Dauerfestigkeiten von anderen keramischen Gerüstmaterialien wie Glaskeramik oder glasinfiltriertem Aluminiumoxid [24,74,95].

Zirkonoxidgerüsten gegenüber Ein entscheidender Vorteil von etablierten konventionellen Gerüstmaterialien wie Titan oder Hochgoldlegierungen, welche ebenso hohe Biegefestigkeiten aufweisen, aber aufgrund ihrer Materialdichte oder Kristallstruktur als Lichtblocker bezeichnet werden, liegt in der Möglichkeit der natürlichen Reproduktion von Zähnen. Die Lichtbrechung und die Reflexion der Prismen des natürlichen Zahnschmelzes kann bei Zirkonoxidgerüsten nach Verblendung mit Keramikmassen annährend reproduziert werden [74]. Die Lichtdurchflutung der Schmelz- und Dentinanteile im natürlichen Zahn sollte ebenso bei der Wahl der Gerüst- und formgebenden Verblendmaterialien für zahntechnische Restaurationen möglich sein [97]. Je nach Sinterstufe des verwendeten Zirkonoxids zeigen sich Unterschiede zwischen den Transluzenzgraden (Abb.4). Vollkeramische Gerüste, welche aus porös vorgesintertem Zirkonoxid hergestellt wurden, zeigen eine verminderte Transluzenz. Dies ist darauf zurückzuführen, dass durch die höhere Anzahl an Störstellen im Kristallgefüge die einfallenden Lichtstrahlen vielfach gebrochen und abgeleitet werden.

Dicht gesintertes Zirkonoxid hingegen verfügt über einen hohen Transluzenzgrad, da aufgrund der optimierten Produktionsprozesse eine hohe Materialdichte mit minimaler Störstellendichte vorliegt und es nicht zur diffusen Lichtstreuung kommt [74].

Daher können unterschiedliche Transluzenzgrade hinsichtlich der Abdeckung verfärbter Zahnstümpfe bei Berücksichtigung der mechanischen Beanspruchung und Statik zu einer weiteren Optimierung der Ästhetik führen.

Wie bei der Verwendung von etablierten zahntechnischen Werkstoffen zur Gerüstherstellung, wie Goldlegierungen oder Titan, bei denen unterdimensionierte Verbinder (Konnektoren) zwischen Brückenanker und Brückenglied unter physiologischer Last zum Gerüstbruch führen können, ist bei Anwendung von Zirkonoxid als Gerüstmaterial die Konnektorgeometrie ebenfalls zu beachten [74,77]. Da bei Zirkonoxid gegenüber hohen Druckfestigkeiten geringere Festigkeiten auf Zugbelastung nachgewiesen wurden, werden für den Seitenzahnbereich Verbinderquerschnitte von 9-12 mm² vorgegeben, welche in nachgewiesener Weise in vertikaler Dimension extendiert sein müssen [77].

Ebenso reagiert Zirkonoxid auf fehlerhafte manuelle Nachbearbeitung, wie überschießende Separierung der Verblendkeramik mittels Diamanttrennscheibe bis in das farblich gleich erscheinende Zirkonoxidgerüst mit einer Soll-Bruchstelle, die auch durch die für das Material spezifische Phasentransformationsumwandlung nicht mehr inhibiert werden kann. Eine Gerüstfraktur wäre somit vorprogrammiert. Gleiches gilt für Zirkonoxid-Gerüste, welche mit zu starker Vorschubbewegung aus dicht gesinterten Rohlingen gefräst wurden oder durch manuelle Nachbearbeitung Beschädigungen in der keramischen Struktur nach sich ziehen [74,77,80].

Abb 4 Vergleich von CAD/CAM gefrästen Brücken aus Titan, porös vorgesintertem und dicht gesintertem Zirkonoxid

3.4.2 Vollkeramische Systeme

Vollkeramische Systeme lassen sich in der Zahnmedizin nach verschiedenen Kriterien klassifizieren. Man kann sie nach deren Materialart, Herstellungstechnologie oder dem chemischen Aufbau unterscheiden [74]. Hinsichtlich der Entwicklung neuartiger Technologien ist es ebenso sinnvoll, die aktuellen vollkeramischen Systeme in subtraktive und additive Systeme einzuteilen.

Subtraktive Systeme zeichnen sich dahin aus, dass aus einem keramischen Rohling eine Struktur herausgefräst wird. Dies geht mit einem hohen Verlust an Material einher. Subtraktive Systeme lassen sich in manuelle Systeme und CAD/CAM-Systeme einteilen.

Bei den manuellen subtraktiven Systemen, wie dem Kopierschleifen, wird eine modellierte Restauration (=Prorestauration) durch analoge Kopierfräsung aus einem keramischen Rohling angefertigt. Vertreter sind z.B. das Celay-System und das Zirkonzahn-System.

Basistechnologie dentaler CAD/CAM-Systeme sind modifizierte CAD/CAM-Systeme aus der metallverarbeitenden Industrie, bei denen nach optoelektronischer Erfassung und Digitalisierung der Zahnstümpfe die Konstruktion der Zahngerüste mittels Computer entsteht (CAD= Computer Aided Design). In einem automatisierten Prozess wird durch eine Schleifeinheit aus einem industriell hergestellten Materialrohling das Zahngerüst heraus geschliffen (CAM = Computer Aided Manufacturing). Industriell vorgefertigte Rohlinge werden in den keramischen Materialien Feldspat- und Glaskeramik, Aluminiumoxid - und Zirkonoxidkeramik in verschiedenen Sinterstufen angeboten. Zum heutigen Zeitpunkt lassen sich Gerüste aus dicht gesintertem Y-TZP-Zirkonoxid nur durch subtraktive CAD/CAM-Systeme herstellen. Die Indikation von CAD/CAM-Systemen sind vollkeramische Einzelzahnrestaurationen wie Inlay, Teilkrone, Vollkrone, Teleskop-Primärteile und Gerüste für die Kronen- und Brückentechnik. Hinsichtlich der Tatsache, dass die Hartbearbeitung von dicht gesinterter Zirkonoxidkeramik zeit- und verschleißintensiv ist, wie auch eine Reduktion der Festigkeit nach Bearbeitung von dicht gesinterten Zirkonoxidkeramiken nachweisbar ist, wird die Hartbearbeitung der Bearbeitung mit porös vorgesintertem Zirkonoxid in Zukunft weichen [54]. Einen direkten Vergleich zur Passgenauigkeit zwischen Kronen und Brücken aus dicht und porös vorgesinterter Zirkonoxidkeramik kann diese vorliegende Studie bieten.

Bei *additiven Systemen* hingegen wird nur das zum Aufbau der gewünschten Struktur benötigte Rohmaterial verarbeitet. Diese lassen sich in manuelle, konventionelle, elektrophoretische und additive CAD/CAM-Systeme einteilen.

Zu den manuellen additiven Systemen gehören z.B. das *In-Ceram-Alumina-System* und das *In-Ceram-Spinell-System*. Dabei wird durch einen manuell angemischten Schlicker ein keramisches Gerüst aufgeschlickert und durch Feuchtigkeitsentzug verfestigt. In anschließenden Glasinfiltrations – und Sinterbränden erhält die Keramik ihre eigentliche Festigkeit. Die Gerüste werden durch Verblendkeramik zur gewünschten anatomischen Form ergänzt. Das Indikationsspektrum erstreckt sich von Einzelzahnkronen bis zu viergliedrigen Brücken im Frontzahnbereich.

Zu den konventionellen additiven keramischen Systemen, die auf Basis des Lost-Wax-Verfahren funktionieren, gehören die Presskeramik-Systeme wie z.B. das *Empress-System*. In Wachs modellierte Restaurationen werden dabei in einer hitzebeständigen Muffel ausgebrannt. Aufgeschmolzene Glaskeramikpellets werden unter 5 bar in die Muffelform gepresst [90]. Die Indikation dieser Systeme ist auf vollkeramische Einzelzahnrestaurationen, wie Inlay, Teilkrone, Vollkrone , bis auf maximal dreigliedrige Brücken, extendiert bis in Prämolarenbereich, limitiert.

Anders ist das Verfahren bei den *elektrophoretischen additiven Systemen*. Hier werden durch das Eintauchen des Zahnstumpfes in eine keramische Trägerflüssigkeit, welche aus dem keramischen Rohmaterial und einer Lösung besteht, und dem Anlegen einer zeitlich definierten Spannung durch Elektrophorese Keramikpartikel auf dem Zahnstumpf abgeschieden und verfestigt. Vertreter dieser Systeme sind z.B. das *Zirheiß-System und das CeHa-White-System*. Die hergestellten Gerüste werden anschließend mit Glas infiltriert. Die Indikation der am Markt erhältlichen additiven elektrophoretischen Systeme ist auf Einzelzahngerüste und dreigliedrige Brücken in der Erprobungsphase limitiert.

Additive CAD/CAM-Systeme, auch als *generative Fertigungsverfahren* bezeichnet, bei denen das Gerüst ebenfalls per Computer konstruiert wird und durch einen automatisierten additiven Aufbau mit Zirkonoxid hergestellt wird, befinden sich zur Zeit noch in der Entwicklungsphase. Man unterscheidet verschiedene additive Produktionsverfahren wie das selektive *Lasersintern*, welches durch Verfestigung von pulverförmigen Phasen unterschiedliche Strukturen generiert oder die *Stereolithographie*, bei der durch laserinduzierte Polymerisation flüssige oder zäh plastische Substanzen Schicht für Schicht verfestigt werden.

21

Eine andere Variante ist das *Lasergenerieren,* welches mit einem Laser durch Hitze einen Material-Mix verfestigt. Additiv hergestellte Testbrücken aus den Versuchsmaterialien Kunststoff, Edel- und Nichtedelmetall, Gold und Wachs, welche innerhalb einer CAD/CAM-Produktionskette aufgebaut wurden, zeigen Erfolg versprechende Ergebnisse [82]. Die zukünftigen Vorteile der generativen Systeme für die Zahnmedizin sind in einer zuverlässigen Evaluierung der Materialkomponenten von CAD/CAM- gefertigten Zahnrestaurationen, einer Material sparenden - und einer Werkzeug schonenden Verarbeitungstechnologie zu finden [82].

3.4.3 Verblendkeramiken für Zirkonoxidgerüste

Um die natürliche Ästhetik eines Zahnes möglichst naturgetreu zu reproduzieren, bedarf es der Anwendung von Keramikmassen mit unterschiedlichen Farbtönen, Transluzenz- und Transparenzgraden, sowie einer angepassten bilateralen Formgebung der vollkeramischen Kronen. Daher wird das als Basis dienende biegefeste Zirkonoxidgerüst mit speziellen Zirkon-Keramikmassen manuell verblendet. Anders als bei Metallkeramik, bei der es durch Haftoxide und Diffusionsvorgänge von Ionen zwischen Verblendkeramik und Legierung, wie auch durch Ausnutzung minimaler Unterschiede der Wärmeausdehnungskoeffizienten (WAK) durch entstehende Aufspannung zum Verbund kommt, wurde der Verbund zwischen Verblendkeramik zum Zirkonoxidgerüst bisweilen durch auftretende Aufspannung erklärt. Entscheidend hierfür sind genau eingestellte Wärmedehnungskoeffizienten der Keramikverblendmasse und exakt funktionierende Keramikbrennöfen [18]. Minimale Abweichungen vom Wärmedehnungskoeffizienten können die Ausdehnung der Verblendkeramiken entscheidend verschlechtern und damit den Verbund schwächen. Zu hohe resultierende Zugspannungen innerhalb der Verblendkeramik, welche auf zu hohe WAK-Unterschiede oder schlecht dimensionierte Gerüste zurückzuführen sind, können im Gegensatz zu Metalllegierungen von Zirkonoxid nicht durch Relaxation kompensiert werden [63]. Wehnert et al versuchten im Jahre 1996 durch Beschuss von Zirkonoxid mit Siliziumionen eine chemische Verbindung zu provozieren. In den rasterelektronischen Nachuntersuchungen des Zirkonoxid-Verblendkeramik-Interface konnte ein homogenes Benetzungsverhalten, wie auch eine erhöhte Anreicherung von Zirkon in der Kontaktzone nachgewiesen werden [100].

Gerade dies ist für das chemisch inerte Zirkonoxid ungewöhnlich und lässt auf eine Konditionierung der Zirkonoxidoberfläche durch die Ionenimplantation mit Silizium schließen. Umfangreiche Untersuchungen zum Haftverbund von Zirkonoxid werden zurzeit an vielen Universitäten durchgeführt, wobei der Mechanismus noch nicht definitiv verstanden ist [75].

Die erste Generation der Verblendkeramiken für Zirkonoxidgerüste waren modifizierte Titan-Verblendsysteme, deren Wärmeausdehnungskoeffizient (WAK) dem des Zirkonoxid lediglich angepasst wurde. Der WAK von Titanverblendmassen mit 10 unterschied sich nur gering von dem WAK des Zirkonoxid mit 11. Basis dieser Verblendkeramik waren Glaskeramiken, welche sich im Vergleich zu Feldspatkeramiken durch sehr spröde Materialeigenschaften und durch eine hohe Rissanfälligkeit auszeichneten. Aufgrund der für Glaskeramik spezifisch niedrigen Brenntemperatur von zirka 820° C führten schon geringförmige Abweichungen von der Brenntemperatur, ebenso wie Verzögerungen beim Aufheizprozess in der Brennkammer des Keramikofens zu verfälschter Farbwiedergabe und einer zusätzlichen Erhöhung der Bruchgefahr. Die heute erhältlichen Verblendmassen auf Basis von Glaskeramik verfügen über optimierte Material- und Farbsicherheit und gewähren eine sichere Brandführung [97,98]. Eine Renaissance erfahren die auf Glaskeramik basierenden Verblendsysteme in Form der Überpress-Technik von Zirkonoxid-Gerüsten. Hierbei wird die anatomische Krone mit schrumpfungsarmem Kronenwachs direkt über das Zirkongerüst aufgewachst und anschließend im Lost-Wax-Verfahren mit Presskeramik überpresst. Nachteile dieser Variante liegen in der oftmals notwendigen Korrektur von Kontakt - und Okklusionspunkten, basierend auf dem Schrumpfungsverhalten der Presskeramik, wie in der farblichen Uniformität der Presskrone, welche einer nachträglichen farblichen Gesamtüberarbeitung bedarf. Durch Keramikmalfarben kann eine individuelle Charakterisierung der Presskronen vorgenommen werden. Durch das biegefeste Zirkonoxidgerüst werden die limitierten Zugfestigkeiten der Glaskeramik kompensiert [59,60]. Aus finanzieller Sicht ist diese rationelle Herstellungsvariante der Vollkeramik interessant. Klinische Langzeitstudien stehen hierzu jedoch noch aus. Ein Vertreter der Überpress -Technik ist z.B. das Cercon-Press-System. Eine neue Generation von Zirkonverblendkeramiken basiert auf Feldspatkeramik [30]. Diese leuzitverstärkten Verblendkeramiken expandieren höher als synthetisch hergestellte Silikat-Glaskeramiken [97]. Daher ist eine spezielle WAK-Abstimmung zwischen Zirkonoxidgerüst und Verblendkeramik nötig. Aufgrund der Tatsache, dass die tm-Phasentransformationsumwandlung von der tetragonalen in die monokline Raumstruktur bei 1163°C abläuft sind auch bei hohen Brenntemperaturen um 900°C keine Veränderungen der Gerüststruktur zu beobachten [67].

Eine Temperatur von 1000° C sollte bei der Weiterverarbeitung von Zirkonoxid jedoch nicht überschritten werden. Neue Produktionsprozesse und verbesserte Zusammenstellungen der Materialkomponenten bei Zirkonverblendmassen führten zu feinkörnigeren und homogeneren Verteilungen der Kristallphasen. Hierdurch konnte eine bessere optische Anpassung an die Natur erreicht werden, da die Lichtbrechung der keramischen Prismen nun der Lichtbrechung des natürlichen Zahnschmelzes ähnlicher ist und die transluzente Wirkung von Zirkonoxid positiv zum Ausdruck kommt [30].

Zirkon- Verblendkeramik	WAK	Hersteller	Material	Haft- verbund (Gerüst)	Biegefestig- keit in MPa (Keramik)
GC Initial Zr	9,7	GC	Silikatglas	mechanisch chemisch	70
Cercon Ceram S	9,5	Degudent	Silikatglas	mechanisch chemisch	80
Lava Ceram	10,0	3M Espe	Feldspat	mechanisch chemisch	85
Triceram	8,6	Esprident	Synthet. Vitrokeramik	mechanisch chemisch	100
Vita VM 9	9,0	VITA	Silikatglas / feinstruktur	mechanisch chemisch > 100 MPa	100
Creation	9,7	Creation	Silikatglas	mechanisch chemisch	70
Shofu Vintage ZR	9,3	Shofu	Silikatglas	mechanisch chemisch	80

Abb.5 Übersicht der aktuell erhältlichen Keramikverblendmassen für Zirkonoxid

3.5 Studienrelevante CAD/CAM-Systeme

3.5.1 Precident

Hersteller: Systemname: Systemtyp: Scanner:	DCS dental , CH-Altschwill Precident CAD / CAM Rotlicht - Laserabtastung über Triangulation Sensitivität : 5 -15 µm Punkte/sec: 12.000 Stck Scanfeld: 90 mm
Softwareversion	n: 1.3(aktuellste Version, aus dem Jahr 2001 !!)
Fräseinheit :	3D - Achsen - Technologie mit jeweils beweglicher Fräskopf- und Rohlingeinheit mit automatischer Werkstückwender und Werkzeugwechsler Präzision: 9 -15 μm
Materialien :	Y-TZP-Zirkondioxid (vorgesintert und dicht gesintert), Titan -, NEM- und Goldlegierungen Kunststoff (Polyamid)
Studienrohling :	HIP Y-TZP- Zirkondioxidrohling (dichtgesintert)

Abb. 6 Precident - Systemdaten

Das bereits 1995 eingeführte System Precident der Firma DCS war das erste dentale CAD/CAM-System zur Herstellung von vollkeramischen Gerüsten aus dicht gesinterten HIP-Zirkonoxid-Rohlingen. Die Zahnmodelle werden in einem Rotlicht-Laserscanner mit Hilfe des Triangulationsverfahren berührungslos digitalisiert. Hierbei projeziert ein Laser, bestehend aus einer Diode und einer speziellen Optik, einen Laserstrich auf das Zielobjekt, welches aus verschiedenen Positionen abgetastet wird. Eine CCD-Chip-Kamera, welche 45° zum einfallenden Laserstrahl versetzt positioniert ist, erfasst die Reflexion der Laserstrahlen am Zielobjekt. Das entstehende Höhenrelief wird in einer digitalen Matrix aus Helligkeitswerten dargestellt. Die Datensätze werden durch die systemimmanente Software zu einer 3D-Struktur zusammengerechnet. Nach Eingabe der gewünschten Strukturparameter, wie Kronenwandstärke, Simulierung der Zementschichtstärke und Kronendimension- und form, konstruiert die Software das Kronengerüst (CAD). Aus einer Datenbank kann der Anwender auf eine Vielzahl von Zahngeometrien zurückgreifen. Der neue Datensatz wird an die Fräseinheit übermittelt. Nach Einlesen der betreffenden Chipkarte wird ein Zirkonoxidrohling in die Fräseinheit eingespannt. Nach automatischer Kontrolle der Fräswerkzeuge per Laser wird die maschinelle Produktion unter Wasserkühlung gestartet. Mit dem Precident-System können eine Vielzahl von Materialien, die 1:1 gefräst werden, wie dicht gesintertes Zirkonoxid, Polyamid-Kunststoff und Titan, bearbeitet werden.

3.5.2 Cercon

Hersteller: Systemname: Systemtyp: Scanner:	Degudent AG , D-Hanau Cercon CAM –System Rotlicht - Laserabtastung über Triangulation Sensitivität : 8-12 µm Messpunkte / sec : 26.000 Stck Salfeld : je nach Rohling
Softwareversion	: vorhandene Software cercon aus 2003
Fräseinheit :	3D – Achsen –Technologie mit 2 feststehendem Fräsköpfen mit beweglicher Scan-/ Rohlingeinheit Präzision: 10 μm
Materialien :	Y-TZP- Zirkonoxid (nur vorgesinterte Weißlinge) (weiße und verschieden eingefärbte Rohlinge)
Studienrohling :	Y-TZP – Zirkonoxidrohling (porös vorgesintert)

Abb.7 Cercon – Systemdaten

Untersucht wurde das CAM-System Cercon der Fa. Degudent. Die Modellation der zahntechnischen Gerüststruktur wurde hier in Wachs, wie in der Gold-Guss-Technologie, manuell durchgeführt. Anschließend wurde die Wachskonstruktion in den Positionsrahmen cercon-scan zur digitalen Vermessung eingewachst. Der Rahmen mit der Wachskonstruktion und ein passender vorgesinterter Zirkonoxid-Rohling (Weißling) wurden danach gleichzeitig in die Scan-/Schleifeinheit cercon brain eingespannt. Nach Starten des Vorgangs wird zuerst die Wachskonstruktion durch einen Rotlicht-Scanner berührungslos per Triangulation vermessen. Die erfassten Daten werden zur Berechnung der Fräsparameter intern an die CAM-Rechnereinheit übermittelt. Automatisch startet das System den Fräsvorgang. Nach Beendigung des Fräsvorgangs wird das um rund 20 % vergrößert gefräste vorgesinterte Zirkonoxidgerüst manuell aus dem Rohlingrahmen herausgetrennt. Das Material verfügt über eine ausreichende Festigkeit, so dass mit einer Hartmetallfräse kleine Korrekturen durchgeführt werden können. Anschließend wird das Zirkonoxidgerüst in dem Sinterofen cercon heat für ca. 6 Stunden bei 1350°C durchgesintert und erhält so seine mechanischen Eigenschaften, wie auch nach einer Sinterschrumpfung von noch rund 20% seine endgültige Dimension. Es werden weiße und eingefärbte Zirkonoxidrohlinge angeboten. Seid 2006 wurde das System um den externen Scanner cercon eye erweitert. Damit ist es möglich, wie bei anderen dentalen CAD/CAM-Systemen, ohne vorherige manuelle Wachsmodellation, das Gipsmodell berührungslos zu digitalisieren und das Zirkongerüst digital zu konstruieren (CAD). Studien stehen hierzu jedoch noch aus.

3.5.3 Etkon

Hersteller: Systemname: Systemtyp: Scanner :	Etkon AG , D-Gräfelfing bei München Etkon CAD/CAM Rotlicht - Laserabtastung über Triangulation Messgenauigkeit: 4-10 µm Meßpunkte/sec: 28.500 Stck Scanfeld : 60 mm
Softwareversion	n: Aktuelle 2.0 Software etkon aus 2004
Fräseinheit :	4D – Achsen –Technologie (Fa. I-mes) mit automat. Werkstückwender und Werkzeugwechsler mit beweglicher Fräskopfeinheit und Rohlingeinheit Präzision: 6-8 μm
Materialien :	Zirkonoxid (vorgesintert und dicht gesintert) Titan-, NEM-und Goldlegierungen , Kunststoff, In-Ceram
Studienrohling :	Y-TZP- Zirkonoxidrohling (porös vorgesintert)

Abb. 8 Etkon-Systemdaten

Das CAD/CAM-System Etkon wurde ursprünglich als "Outsourcing"-System für die Zahntechnik entwickelt. Der Anwender erwirbt dabei einen Laserscanner mit Hardwarekomponenten und eine Konstruktionssoftware zur Digitalisierung der Zahnmodelle und Konstruktion der Kronen- und Brückengerüste mittels EDV. Das Zahnmodell wird mit dem Laserscanner "es1" durch Triangulation digitalisiert. Die Modellation der Gerüststruktur erfolgt im Labor und wird per Datenleitung an das Etkon – Fräszentrum gesendet. Ebenso kann nur das Gipsmodell oder der Datensatz an Etkon versendet werden. Die Konstruktion der Gerüststruktur wird im Etkon-Fräszentrum konstruiert und gefräst. Bei Etkon erfolgt die maschinelle Fräsung der Gerüststrukturen aus den gewünschten Materialien. Etkon bietet eine Vielzahl von Materialien an, wie Zirkonoxid in verschiedenen Sinterstufen, Goldlegierungen, Titan, In-Ceram, glasfaserverstärkte Polyamide und NE-Legierungen Die gefrästen Gerüste werden von Etkon per Kurier zur Weiterverarbeitung an das Labor zurück gesendet. Ebenso ist es möglich ein komplettes CAD/CAM-System bestehend aus Scanner, PC mit Software-Paket, Fräsmaschine und Sinterofen zu erwerben.

3.5.4 Dentacut

Hersteller: Systemname: Systemtyp: Scanner :	Hint-els , D- Griesheim Dentacut (ex Digident) CAD/CAM Streifenlichtprojektion + Ka Messgenauigkeit : Kameraauflösung : 1360/ Scanfeld :	mera 5-12 µm 1030 Pixel 90 mm				
Softwareversion	Softwareversion: ARGUS - Software aus 2004					
Fräseinheit :	4D – Achsen – Technologi mit automat. Werkstückwe Präzision:	e (Fa. Kern) nder und Werkzeugwechsler 4- 9 μm				
Materialien :	Zirkonoxid (alle Sinterstufe Glaskeramik , In-Ceram Titan -, NEM- und Goldlegi Kunststoff (Composite)	en) erungen				
Studienrohling :	HIP-Y-TZP-Zirkonoxidrohli	ng (durchgesintert)				

Abb.9 Dentacut - Systemdaten

Das CAD/CAM-System Dentacut der Firma Hint-els aus Griesheim, ehemals als *Digident*® durch die Firma Girrbach vermarktet, stellt ein typisches dentales CAD/CAM-System dar. Das Zahnmodell wird durch einen Streifenlichtprojektion-Scanner digitalisiert. Dabei wird das Zahnmodell mit einer Streifenlichtprojektion bestrahlt und durch eine digitale CCP-Chip-Kamera aus unterschiedlichen Positionen fotografiert. Die Software generiert nach manueller Eingabe der Kronen- und Gerüstparameter ein 3D-Modell. Nach Konstruktion der Gerüststruktur am Bildschirm mittels Software (CAD) werden, bei diesem System bei Anwendung von Zirkonoxid vornehmlich aus dicht gesintertem Material, die zahntechnischen Gerüste durch eine Fräsmaschine hergestellt (CAM). Hint-els bietet eine Vielfalt von Materialien an, wie Zirkonoxid vorgesintert und dicht gesintert, leuzitverstärkte Glaskeramik und In-Ceram, Titan, Composite sowie NEM-und Goldlegierungen.

Besonders für große Betriebe bietet die Fa.Hint-els eine interessante technologische Lösung an. Die Bearbeitungseinheit "dmmx" verfügt über 30 Rohlingsfächer sowie 30 Fächer für Schleifinstrumente, welche alle über einen Roboterarm der Fräskammer während des Produktionsprozesses automatisch zugeführt und entnommen werden können.

3.5.5 Everest

Hersteller: Systemname: Systemtyp: Scanner :	KaVo AG , D- Leutkirch i.A. Everest CAD/CAM Streifenlichtprojektion + Kamera Messgenauigkeit: 4 - 12 μm Kameraauflösung: 1400/1100 PixeL Scannfeld: 100 mm
Softwareversion: Aktuelle Software KaVo-Everest aus 2004	
Fräseinheit :	4D-Achsen-Technologie mit beweglicher Fräskopf- und Rohlingeinheit inkl. eigener Achsneigung der Fräskopfeinheit mit Werkstückwender Präzision: 5-10 μm
Materialien :	Zirkonoxid (vorgesintert und dicht gesintert) Titan -, NEM- und Goldlegierungen Kunststoff (Polyamid) Glaskeramik und In-Ceram
Studienrohling :	Y-TZP- Zirkonoxidrohling (porös vorgesintert)

Abb.10 Everest – Systemdaten

Das CAD/CAM-System Everest der Firma KaVo wurde zur Herstellung von Zahnersatz aus den Materialien Titan, Glaskeramik und Zirkonoxid entwickelt. Inzwischen können die Anwender zusätzlich auf In-Ceram und Polyamid-Kunststoff zurückgreifen. Aus wirtschaftlicher Sicht empfiehlt die Fa.KaVo die Anwendung von porös vorgesinterten Zirkonoxidrohlingen. Das Zahnmodell wird mittels eines Streifenlichtprojektion-Scanners digitalisiert. Nach der Konstruktion der Gerüste mittels Software am Bildschirm werden die Datensätze an die Fräseinheit übermittelt. Das Everest-System arbeitet mit einer 2- Seiten-Frässtrategie. Nachdem der betreffende Zirkonrohling mit Kunststoff in einem Fräsrahmen positioniert wurde, werden zuerst die Innenflächen der Kronen aus dem Material herausgefräst. Vor Beginn der Außenbearbeitung der Gerüststruktur werden zur Stabilisierung der Struktur die Innenflächen mit einem erhärtenden Wachs-Kunststoff-Gemisch aufgefüllt. Dann werden die Außenkonturen gefräst. Das vollkeramische Gerüst befindet sich nach Beendigung des Fräsvorganges ausnahmslos in dem Wachs-Kunststoff-Materialblock fixiert. Nach Entfernen der Wachs-Kunststoff-Reste wird das porös vorgesinterte Gerüst einem Sinterprozess unterzogen und erhält nach einer Sinterschrumpfung von ca. 20% seine endgültige Dimension und Materialfestigkeit. Eine Bearbeitung von dicht gesinterten Zirkonoxidrohlingen ist möglich, wird aber aus wirtschaftlichen Gründen nicht verfolgt.

3.6 Anwendungsbereiche von Zirkonoxid in der Zahnarztpraxis

Zirkonoxid kann aufgrund seiner Materialeigenschaften und den Möglichkeiten der maschinellen Fertigung mittels CAD/CAM-Systemen als fast universal anwendbares Material in der Zahnmedizin angesehen werden. Nahezu alle vollkeramischen Kronenund Brückengerüste sind heutzutage realisierbar. Auch Primär-Teleskopkronen und mehrteilige Geschiebe lassen sich mit den aktuellen CAD/CAM-Systemen aus Zirkonoxid herstellen [81,94,95]. In der Endodontie wurde Zirkondioxid aufgrund seiner Farbe, Lichtdurchlässigkeit und Bruchfestigkeit bereits 1996 in Form von Y-TZP-Wurzelstiften eingesetzt [14]. Die verschiedenen Möglichkeiten zur konventionellen oder adhäsiven Zementierung mit Glasionomer- oder Dualzement, lassen eine individuelle Wahl zur Befestigung der Zirkonstifte zu [48]. Auf Grund der außerordentlichen Eigenschaften von Zirkonoxid wie hoher Biegefestigkeit, Bruchzähigkeit, Härte, Weibull-Modul und verminderter Plaqueaffinität, wie nach jahrelanger Erfolg versprechender Anwendung in der Gehör-, Finger und Hüftgelenkprothetik wird Y-TZP-Zirkonoxid seid 2001 als Werkstoff zur Herstellung von vollkeramischen Implantaten verwendet [42]. Durch die Fa. Z-Systems AG wurde im Jahre 2001 das erste weltweit zugelassene dentale Keramikimplantat vorgestellt. Dabei handelt es sich um einteilige Zylinderimplantate, welche aus einem mit Aluminium angereichertem Y-TZP-Zirkonoxid in der Schweiz hergestellt werden [67]. Nach vierjähriger Erfahrung und 2500 eingesetzten Implantaten aus Zirkonoxid beträgt die Erfolgsquote über 97% [42], wobei dieses Ergebnis durch klinische Studien nicht belegt werden konnte. Aufgrund der neuesten Erkenntnisse fördert Zirkonoxid die Osseointegration der Implantate. Diese osteoinduktive Wirkung beruht auf einer dem menschlichen Körper entgegen gesetzter Ladung von Zirkonoxid [86]. Der fast immer bei Titanimplantaten zu beobachtende Knocheneinbruch an der Implantatschulter konnte bei Zirkonoxid-Implantaten nicht oder nur selten beobachtet werden. Nach Volz konnte sogar die Osseointegration von hochglanzpoliertem Zirkonoxid nachgewiesen werden. Es kann von einer aktiven Weichgewebe-regeneration gesprochen werden [42]. Weiterhin weisen geringe Sondierungstiefen und geringe Plaque- und Blutungsindizes bei Zirkonoxidbrücken im Vergleich zu natürlichen Zähnen bei demselben Patient auf eine hohe Weichgewebsverträglichkeit hin [74]. Aufgrund der präzisen Fertigungstechnologie der dentalen CAD/CAM-Systeme können Implantataufbauten, wie auch deren Suprakonstruktionen aus Zirkonoxid individuell gefertigt werden.

30
Dabei kann auf industriell präfabrizierte Implantataufbauten oder auf laborgefräste individuelle Aufbauten aus Zirkonoxid zurückgegriffen werden [2,102]. Diverse chirurgische Instrumente, wie einteilige Skalpelle, Pinzetten, Implantatbohrer, Gewindeschneider oder Rasparatorien werden aus Zirkonoxid hergestellt und werden bereits in der Implantologie angewendet. Die schneidenden Instrumente, wie Implantatbohrer und -senker, werden aus hochfester ATZ - Hochleistungskeramik gefräst (Abb. 12a). Hierbei handelt es sich um HIP-Y-TZP-Zirkonoxid, welches zusätzlich durch Aluminiumoxid verstärkt wird (Alumina Toughened Zirconia). Dieser Werkstoff verfügt über eine Biegefestigkeit von über 1300 MPa [67]. Chirurgische Hilfsinstrumente, wie Skalpelle, Pinzetten und Rasparatorien werden auf Grund ihrer komplexen Form im Zirkonoxid-Spritzgussverfahren hergestellt und sind von ihrer und Kristallstruktur vom hochwertigen Zusammensetzung Y-TZP-Zirkonoxid abzugrenzen. Diese Variante der Zirkonoxid-Legierung verfügt nicht über eine hohe Biegefestigkeit. Da sich das typische Bruchverhalten von Keramiken zeigt, sollten diese Instrumente keinen harten Schlägen ausgesetzt werden [67]. Eine Alternative zur Elektrochirurgie, bei der Indikation zur internen Gingivektomie oder Freilegung von Implantaten, bietet der Zirkonschleifer (Abb. 12b) dar [74].

Die folgenden Abbildungen zeigen mögliche Indikationen von Zirkonoxid auf:

Abb.11a 9-gliedriges Brückengerüst [89]

Abb.11b Primär-Teleskopkronen [27]

Abb.11c Brückenteilungsgeschiebe [27]

Abb. 11e Implantat-Suprastruktur [27]

Abb. 11d Wurzelstifte aus Zirkonoxid [27]

Abb.12a Implantat + Bohrer [Z-Systems]

Abb. 12b Zirkonoxidschleifer zur Gingivektomie [74]

4. Material und Methode

Abb.13 Darstellung des Studienverlaufes

4.1 Modellherstellung

Abb. 14 Drei unterschiedliche Pfeilertopographien

Um eine möglichst kliniknahe Durchführung der Studie zu gewährleisten, wurden alle folgenden Arbeitsschritte nach den klinischen Standards durchgeführt. An Frasacomodellen wurden für den Oberkiefer die Zähne 11,13 und 15, sowie die Zähne 24 und 27, für den Unterkiefer die Zähne 33 und 43 zur Aufnahme von vollkeramischen Brücken vorbereitet. Es erfolgte die Präparation dieser Urmodelle nach den aktuell geltenden Präparationsrichtlinien für vollkeramischen Zahnersatz mit einem Rotringdiamant -Torpedo der Fa Komet [74]. Es wurde eine zirkuläre Hohlkehle von 0,8 mm angelegt, welche deutlich über dem Limbus alveolaris endete. Es wurde ein Konvergenzwinkel von nur 4° für alle Zähne realisiert. Die Retentionsflächen betrugen 4 bis 7 mm zirkulär (Abb.15-17). Die Feinpräparation der Pfeilerwände und der Hohlkehle wurden mit einem kreuzverzahnten Hartmetallfräser der Fa. Komet und dem Parallelometer F1 der Fa. Degussa durchgeführt.

Ansicht der 3 präparierten Pfeilertopographien:

Abb.15 Präparation der Zähne 11-13-15

Abb.16 Präparation der Zähne 24 - 27

Abb.17 Präparation der Zähne 33 - 43

4.2 Herstellung der CoCr-Patientenmodelle

Abb.18 Silikon-Negativformen der präparierten Ur-Frasacomodelle

Abb. 19 Wachsduplikat

Abb.20 CoCr – Patientenmodelle aller drei Pfeilersituationen

Die drei präparierten Frasaco-Modelle (Abb.15-17) wurden jeweils in einer verwindungssteifen Kunststoffmuffel fixiert und mit dem 2-Komponenten-A-Silikon Dublisil der Fa. Dreve dubliert (Abb.18). Nach dem Aushärten und Entspannen der Silikonformen wurden mit einem schrumpfungsfreien Kronen - und Brückenwachs der Fa.Heraeus von jeder Pfeilersituation 25 Wachsmodelle hergestellt.

Die insgesamt 75 Wachsmodelle wurden im Lost-Wax-Verfahren mit der Spezial-Einbettmasse Granisit der Fa. Siladent eingebettet und durch anschließendes Auf schmelzen und Gießen der CoCr-Legierung Wirobond C der Fa Bego zu CrCo-Modellen umgesetzt (Abb.25). Nach dem Abkühlen der Gussmuffeln wurden die CrCo-Modelle entformt und mit 250 µm Sandstrahlmittel abgestrahlt.

Aufgrund der relativ großen Menge an vergossener CoCr-Legierung kann es während der Abkühlungsphase durch stärkere Kontraktionserscheinungen der Legierung zum Verzug des Gussobjektes innerhalb der Einbettmassen-Ringmuffel kommen. Daher wurden die Brückenpfeiler aller 75 CoCr-Patientenmodelle mit dem Parallelometer F1 und einer kreuzverzahnten 2° Hartmetallfräse der Fa. Komet mit abgerundeter Spitze nachkonturiert. Um ein reales Schleifkonturenbild der Brückenpfeiler zu simulieren wurden die Brückenanker anschließend mit einem Rotringdiamanten abgezogen. Es wurde auf abgerundete Flächenübergänge geachtet. Nach der Reinigung mit einem Dampfstrahler waren die 75 Co-Cr Patienten-Modelle zur Abformung vorbereitet.

4.3 Abformung und Herstellung der Sägeschnittmodelle

Abb. 22 Abformungen und Gips- Zahnkränze aus Superhartgips

Für jedes der 75 CoCr-Patientenmodelle wurde ein eigener individueller Abformlöffel mit jeweils 5 definierten Stopps als Platzhalter zur Sicherung der optimalen Schichtstärke von 4 mm für das Abformmaterial Impregum penta der Fa. 3M ESPE aus lichthärtendem Plattenkunststoff der Fa. Omnident hergestellt. Die eigens für diese Studie hergestellten individuellen Löffel wurden mit zwei Auflagen zur sicheren und stabilen Positionierung während der Abbindephase der Abformmassen versehen und gewährleisteten eine einfache Entformung der partiellen Zahnkränze (Abb. 31,32).

Die Löffel und die CoCr-Modelle wurden vor der Abformung mit Alkohol gereinigt. Nach Herstellervorgaben wurden mit dem niedrig viskösen Abformmaterial Permadyne und der Abformmasse Impregum penta per Anmischgerät alle Modelle eines Systems abgeformt. Die CoCr-Modelle wurden nach 7 Minuten aus der Abformung entfernt. Nach der Rückstellzeit von einer Stunde wurden die Abformungen mit dem Superhartgips Typ 4 Octa-Stone der Fa. Heraeus ausgegossen. Die partiellen Zahnreihen wurden trocken getrimmt und mit einem Schleifpapier 600er Körnung an der Basis über einer Glasplatte plan geschliffen. Anschließend wurden nach den Richtlinien des Pindex-Systems die Pins fixiert, mit Kunststoffhülsen versehen und mit dem Flow-Superhartgips Klasse 4 Octa-Flow der Fa. Heraeus gesockelt. Nach dem Trimmen der fertigen Sägeschnittmodelle wurden mit einer Diamantscheibe die Stumpfsägeschnitte angefertigt. Die Präparationsränder wurden leicht unterkehlt. Zur späteren Zuordnung wurden die Modellnummern auch in die Modellsockel eingraviert. Untersuchungen zur Dimensionstreue von Gipsmodellen haben gezeigt, dass nach digitalem Vergleich durch Überlagerung von gescannten Duplikat-Gipsmodellen und deren Originalmodellen teilweise Abweichungen bezüglich der dreidimensionalen Ausdehnung der Gipsmodelle nachweisbar waren [28,58]. Dabei wurden Abweichungen zwischen konventionell abgeformten Zahnmodellen nach Digitalisierung und digitaler Überlagerung von +32 µm bis -54 µm gemessen. Dieser herstellungsbedingte Fehler kann sich summierend zu anderen Abweichungen im Gesamtergebnis niederschlagen. Um für alle Systeme eine gleichbleibende Dimensionstabilität der Sägeschnittmodelle vor dem Scannen zu gewährleisten, wurde darauf geachtet, dass zwischen der Modellherstellung und der Digitalisierung der Zahnmodelle für alle Systeme nicht mehr als 24 Stunden Zeit verstrich.

4.4 Scannen und Fräsen der 75 Zirkonoxid-Gerüste

Abb. 23 Triangulation

Abb.24 Streifenlichtprojektion

Bei den CAD/CAM-Systemen Etkon, Precident, Everest und Dentacut wurden die Modelle und Einzelstümpfe mittels optoelektronischer Abtastung digitalisiert. Die Systeme Etkon und Precident, wie auch das nachfolgend beschriebene CAM-System Cercon, digitalisieren die Zahnmodelle mittels eines Rotlichtscanners durch Triangulation (Abb.23). Dabei wird das Zahnmodell mittels einer Laseroptik abgetastet. Gleichzeitig digitalisiert eine um 45° angeordnete Kamera die Projektion.

Die Systeme Everest und Dentacut digitalisieren die Zahnmodelle mittels Streifenlichtprojektion. Durch eine Strahlerblende wird ein Streifenmuster auf das Zahnmodell projeziert und in verschiedenen Positionen durch eine Hochleistungs-Digitalkamera fotografiert und anschließend mittels Software digitalisiert (Abb. 24).

Mit den systemeigenen Software-Versionen der CAD/CAM-Hersteller wurden die Brückengerüste konstruiert. Für alle Systeme wurde 50 µm für den Randspalt als auch für die interne Zementfuge, sowie 0,6 mm Wandstärke vorgegeben. Nach der Konstruktion der Gerüste am Bildschirm wurden die Datensätze an die Fräseinheiten übermittelt. Die Gerüste der Systeme Etkon, Everest und Cercon wurden aus porös vorgesinterten Rohlingen (Weißlinge) gefräst und danach einem Sinterbrand unterzogen. Bei den Systemen Precident und Dentacut wurden dicht gesinterte "gehippte" Zirkonoxidrohlinge verwendet.

Bei der untersuchten CAM-Version des System Cercon wurde die Stümpfe zunächst bis 1mm vor die Präparationsgrenze mit dem Distanzlack Cergo überzogen. Die Vorbereitung der Modelle wurde nach zahntechnischen Standards durchgeführt. Die Brücken wurden, analog der Verwendung im Lost-Wax-Verfahren in der Gusstechnik, modelliert. Es erfolgte eine definierte Verstärkung der Konnektoren auf 12 mm². Die Wandstärken wurden in 0,6 mm Stärke modelliert und zirkulär durch zeitaufwändige manuelle Überprüfung mit einem Tasterzirkel für Wachs kontrolliert. Die Kronenränder wurden zur Stabilisierung während des späteren Fräsvorganges trichterförmig verstärkt. Nach der Fertigstellung der Modellation in Wachs wurden die Brücken an ein bis zwei Brückengliedern zur Entspannung mit einer dünnen Skalpellklinge getrennt und für 10 Minuten entspannt. Die Brücken wurden mit schrumpfungsarmem Wachs wieder verbunden und kontrolliert. Anschließend wurden die Brücken in dem systemeigenen Scan-Rahmen fixiert. Hier wurde mit höchster Präzision und definiert aufgeheiztem Wachs gearbeitet, um die Entstehung von internen Spannungen im Scan-Rahmen zu vermeiden. Der Scan-Rahmen mit eingewachster Brücke wurde in die Scan-Vorrichtung der Cercon-Fräs-Einheit eingespannt. Ein passender Rohling wurde über den Barcode, welcher den Schrumpfungsfaktor der Weißkörperkeramik enthält, eingelesen und in die Fräs-Vorrichtung eingespannt. Anschließend wurde der Scan-Fräsvorgang gestartet. Der Rotlichtscanner tastete den gesamten Scan-Rahmen mit der Wachsmodellation ab. Der Fräsvorgang wurde danach automatisch gestartet. Nach Beenden des Fräsvorgangs wurden die Brücken aus dem Rohlingrahmen getrennt und für ca. 6 Stunden im Sinterofen cercon-heat gesintert. Am nächsten Morgen wurden die Zirkon-Brücken aufgepasst. Der Cergo-Lack konnte nach Schlitzung mit einem Skalpell rückstandslos von den Zahnstümpfen abgezogen werden.

4.5 Aufpassen und Verblenden der Gerüste mit Keramikmasse

Abb.25 Zirkonoxid - Gerüst

Abb.26 Hydro-Turbine

Abb.27 Keramikbrand

Die 75 gefrästen Zirkonoxidgerüste wurden vor Beginn der Aufpassungsarbeiten mit einem Dampfstrahler gründlich gereinigt. Da nachträgliches manuelles Bearbeiten von Zirkonoxid zu Rissinduktion im keramischen Gefüge führen kann [55] und die Präzision der CAD/CAM-Systeme bei Zirkonoxidbearbeitung evaluiert werden soll, wurden alle gefrästen Gerüste unter Zeitmessung mit einer Hydro -Turbine der Fa. NSK mit einem Feinkorn-Diamanten der Fa. Komet und einem Störstellenindikator Okkluspray der Fa. M&W auf dem Meistermodell aufgepasst. Die Passung wurde mit einer Silikoninnenabformung kontrolliert. Danach wurden die Gerüste mit Alkohol gereinigt. Auf das Abstrahlen der Gerüste mit Sandstrahlmittel wurde aus materialtechnischen Gründen verzichtet. Eigene Untersuchungen seitens der Hersteller zur kristallographischen Strukturveränderung von Zirkonoxid veranlassen verschiedene Hersteller zu der Aussage, auf das Abstrahlen von Zirkonoxid mit Strahlmitteln zu verzichten. Ausschlaggebend ist die Annahme, dass durch unkontrolliert hohe Energiezuführung während des Strahlprozesses der tetragonal-monokline Stabilisierungszustand von Zirkonoxid, welcher eine beginnende Rissentstehung inhibiert, verändert wird. Anschließend wurden die Gerüste nach Herstellervorgaben mit den von Seiten der Systemhersteller empfohlenen Keramikmassen für Zirkonoxid mit einem Keramikofen Mach 2 der Fa. De Trey in 2 Vakuumbränden verblendet. Vor der Durchführung der Vakuumbrände wurden die Innenflächen der Brückenanker sorgsam auf Keramikmassenreste hin gereinigt. Nach den Vakuumbränden wurden die Innenflächen der Brückenanker wiederum unter einem Lichtmikroskop mit 20 facher Vergrößerung kontrolliert. Angebrannte Keramik-Verblendmassen können bei Zirkonoxidgerüsten auf einem Gipsmodell unerkannt bleiben, jedoch bei Zementierung auf der härteren Stumpfoberfläche zu erheblichen Passungsverschlechterungen führen.

Eine Erhöhung der Biegefestigkeit von Zirkonoxidgerüsten nach keramischer Verblendung ist nur bei optimaler Brandführung und idealisierter Konstruktion der Gerüststruktur zu erwarten [67].

Die folgenden Keramik-Verblendmassen wurden für die einzelnen Systeme verwendet:

CAD/CAM-System	porös gesintert (Weißling)	dicht gesintert (HIP)	Zr-Verblendkeramik
DCS		Х	GC Initial Zr
Degudent	Х		Cercon ceram S
Etkon	Х		GC Initial Zr
Hint-Els		Х	Girrbach Zr
KaVo	Х		GC Initial Zr

Abb. 28	Verwendete Keramik-Verblendmassen	je CAD/CAM-S	System mit Zirkon-Sinterstufe
---------	-----------------------------------	--------------	-------------------------------

4.6 Zementieren der Vollkeramikbrücken auf den CoCr – Patientenmodellen

Abb.29 CrCo-+ Gipsmodell + Brücke

Abb. 30 Zementierte Brücke 33-43

Die Innenflächen der Brückenanker und die Metallstümpfe der CoCr-Modelle wurden mit Alkohol gereinigt und getrocknet. Auf einer gekühlten Glasplatte wurde der speziell blau eingefärbte Glasionomerzement Ketac radiopaque der Fa. 3M Espe nach Herstellerangaben angemischt. Die Innenflächen der Brückenanker wurden dünn mit Zement bestrichen und zügig auf den CrCo-Modellen zementiert. Die Brücken-Modell-Komplexe wurden mit 500 N axial mittels einer Hartgummischeibe belastet. Nach einer Stunde wurden die Überschüsse entfernt.

4.7 Sagittal - und Transversalschnitte

Abb.31 Kunststoffblock mit Brücken-Modell-Komplex

Abb. 32 Sagittale Schnittführung (vestibulär nach oral)

Abb. 33 Transversale Schnittführung(mesial nach distal)

Abb.34 Secotom-Diamant-Schnitt einer Brücke 33 - 43

Die zementierten Brücken-Modell-Komplexe wurden mit Alkohol gereinigt und mit dem Silanisierungsliquid *Metal Primer 2* der Firma GC behandelt. Danach wurden die silanisierten Brücken-Modell-Komplexe mit dem PMMA-Kunststoff *ProBase* der Fa. Kulzer in Blöcke eingebettet (Abb.31). Nach dem Auspolymerisieren und Abkühlen des Kunststoffes wurden die Kunststoffblöcke in die Diamant-Trennmaschine *Secotom 10* der Fa. Struers eingespannt und unter starker Wasserkühlung mit minimalem Vorschub in sagittale und transversale Schliffpräparate zerschnitten (Abb.32-34).

Abb.35 Poliermaschine

Die Schliffpräparate wurden unter Wasserkühlung in dem Poliergerät *Tegrapol 31* der Fa. Struers mit einer 40 µm Diamant-Polierscheibe poliert (Abb.35). Anschließend wurden die Präparate gereinigt und zur sicheren Zuordnung mit einem wasserfesten Stift nummeriert. Danach wurden die Schliffpräparate auf einer Trägerplatte in horizontaler Ansicht zur Mikroskopieebene vorbereitet (Abb. 36).

4.8 Auflichtmikroskopie

Abb.36 Digitales Mikroskop AX10 mit Schliff-Präparaten

Abb.37 Beispiel einer Randvermessung: Originalvergrößerung 50-fach

Es wurde mit einer 50-fachen Vergrößerung im Auflichtverfahren mit dem digitalen Mikroskop *AX10* der Fa.Zeiss mikroskopiert. Mit der systemimmanenten Software *Scentis* der Fa. Struers wurde durch Fixieren der am kürzesten von einander distanzierten Punkte die Zementfuge in Mikrometer angezeigt (Abb.37). Dabei wurden alle Schliffpräparate in den 5 Bereichen Hohlkehle vestibulär, Kronenwand vestibulär, okklusaler Bereich, Kronenwand oral und Hohlkehle oral in sagittaler und transversaler Schnittrichtung vermessen [35]. Der Abstand der Messstrecken innerhalb der einzelnen Bereiche betrug ca.100 µm.

4.9 Erstellen der Statistiken

Mit dem Statistikprogramm SPSS (Version 14.0, SPSS Inc.) wurde die statistische Auswertung der gesammelten Daten durchgeführt. Die 35.000 Messwerte wurden direkt vom Lichtmikroskop in den Dateneditor des SPSS - Programms übertragen. Für jeden Brückenanker wurden die Werte der untersuchten Bereiche anhand der Mittelwerte, der Standardabweichungen und der Minimal – und Maximalwerte untersucht. Zur graphischen Veranschaulichung wurden Box-Plot-Diagramme in einer vergleichenden farblichen Gruppenansicht der Systeme verwendet.

Dabei wurden je Schnittrichtung, sagittal und transversal, alle Brücken im Verbund als auch alle einzelnen Brückenanker dargestellt. Für die Brückenverbände wurden je Schnittrichtung ebenso die Randspalten explizit dargestellt [Kapitel 5, Abb.38+39].

Die Tabellen der Deskriptiven Statistiken mit den Minimalwerten, Maximalwerten, Mittelwerten und Standardabweichungen befinden sich im Anhang (8.1).

Darstellung der Messbereiche je Schnittpräparat:

Sagittale Messbereiche

Abb. 38 Sagittale Messbereiche (von vestibulär nach oral)

Transversale Messbereiche

Abb. 39 Transversale Messbereiche (von mesial nach distal)

Sagittale Messbereiche :

- Blau Hohlkehle vestibulär
- Grün Kronenwand vestibulär
- Rot Okklusaler Bereich
- Violett Kronenwand oral
- Gelb Hohlkehle oral

Transversale Messbereiche:

Hohlkehle mesial
Kronenwand mesial
Okklusaler Bereich
Kronenwand distal
Hohlkehle distal

5. Ergebnisse

5.1 Systemvergleich sagittal der Brücken 11 - 13 - 15

Vergleich aller Brücken 11-13-15 in sagittaler Schnittrichtung

Abb.40 Messwerte aller Kronen in µm der Brücken 11-13-15 in sagittaler Schnittrichtung

Ermittelte Messwerte: 7.431	Mittelwert in µm	System
Hohlkehle vestibulär	52	DCS
Kronenwand vestibulär	52	Etkon
Okklusaler Bereich	67	DCS
Kronenwand oral	67	DCS
Hohlkehle oral	61	DCS

Abb. 41 Niedrigste Mittelwerte der Brücken 11-13-15 in sagittaler Schnittrichtung

5.1.1 Vergleich sagittal der Brückenanker 11

Vergleich des Brückenanker 11 in sagittaler Schnittrichtung

Abb.42 Messwerte in µm des Brückenanker 11 in sagittaler Schnittrichtung

Ermittelte Messwerte: 2443	Mittelwert in µm	System
Hohlkehle vestibulär	48	DCS
Kronenwand vestibulär	49	DCS
Okklusaler Bereich	59	DCS
Kronenwand oral	60	DCS
Hohlkehle oral	52	DCS

Abb. 43 Niedrigste Mittelwerte der Brückenanker 11 in sagittaler Schnittrichtung

5.1.2 Vergleich sagittal der Brückenanker 13

Vergleich des Brückenanker 13 in sagittaler Schnittrichtung

Abb.44 Messwerte in µm der Brückenanker 13 in sagittaler Schnittrichtung

Ermittelte Messwerte: 2.452	Mittelwert in µm	System
Hohlkehle vestibulär	53	DCS + Etkon
Kronenwand vestibulär	45	Etkon
Okklusaler Bereich	59	DCS
Kronenwand oral	56	DCS
Hohlkehle oral	60	DCS

Abb. 45 Niedrigste Mittelwerte der Brückenanker 13 in sagittaler Schnittrichtung

5.1.3 Vergleich sagittal der Brückenanker 15

Vergleich des Brückenanker 15 in sagittaler Schnittrichtung

Abb.46 Messwerte in µm der Brückenanker 15 in sagittaler Schnittrichtung

Ermittelte Messwerte: 2.463	Mittelwert in µm	System
Hohlkehle vestibulär	55	DCS
Kronenwand vestibulär	66	Hint-els
Okklusaler Bereich	82	DCS
Kronenwand oral	67	DCS
Hohlkehle oral	59	Hint-es

Abb. 47 Niedrigste Mittelwerte der Brückenanker 15 in sagittaler Schnittrichtung

5.1.4 Randspalten sagittal der Brücken 11-13-15

Vergleich sagittal der Randspalten der Brücken 11-13-15

Abb.48 Messwerte der Randspalten in µm der Brücken 11-13-15 in sagittaler Schnittrichtung

Deskriptive Statistik	Randspalten	Brücken 11-13-15	sagittale Schnittrichtung
	ranaopaiton	Bracken in ic ic	oughtaio o oinnitti iontaing

System		Anzahl der Brücken -anker	Minimum	Maximum	Mittelwert	Standardab weichung
Etkon/etkon	Rsp v	15	19,4	77,0	46,316	13,3805
	RSP o	15	30,8	86,7	51,147	14,6742
KaVo/everest	Rsp v	15	18,0	75,6	49,406	16,7335
	RSP o	15	56,7	128,4	76,320	18,3966
Degudent/cercon	Rsp v	15	23,8	84,5	66,620	15,7326
	RSP o	15	45,5	117,3	76,993	21,2093
DCS/precident	Rsp v	12	8,0	93,3	34,175	23,4330
	RSP o	12	1,0	81,2	45,450	24,9061
Hint-els/dentacut	Rsp v	15	25,6	84,4	57,440	14,2680
	RSP o	15	23,3	81,2	57,020	20,9853

Abb. 49 Messwerte in µm der Randspalten der Brücken 11-13-15 in sagittaler Schnittrichtung

5.2 Systemvergleich sagittal der Brücken 24 – 27

Vergleich der Brücken 24-27 in sagitaler Schnittrichtung

Abb.50 Messwerte in µm der Brücken 24 – 27 in sagittaler Schnittrichtung

Ermittelte Messwerte: 4.811	Mittelwert in µm	System
Hohlkehle vestibulär	54	Etkon
Kronenwand vestibulär	51	Etkon
Okklusaler Bereich	69	Etkon
Kronenwand oral	49	Hint-els
Hohlkehle oral	52	Hint-els

Abb. 51 Niedrigste Mittelwerte der Brücken 24 - 27 in sagittaler Schnittrichtung

5.2.1 Vergleich sagittal der Brückenanker 24

Vergleich des Brückenanker 24 in sagittaler Schnittrichtung

Abb.52 Messwerte in µm der Brückenanker 24 in sagittaler Schnittrichtung

Ermittelte Messwerte: 2.431	Mittelwert in µm	Systemhersteller
Hohlkehle vestibulär	52	Etkon
Kronenwand vestibulär	48	Etkon
Okklusaler Bereich	67	Etkon
Kronenwand oral	55	Hint-els
Hohlkehle oral	56	Hint-els

Abb. 53 Niedrigste Mittelwerte der Brückenanker 24 in sagittaler Schnittrichtung

5.2.2 Vergleich sagittal der Brückenanker 27

Vergleich des Brückenanker 27 in sagittaler Schnittrichtung

Abb.54 Messwerte in µm der Brückenanker 27 in sagittaler Schnittrichtung

Ermittelte Messwerte: 2.461	Mittelwert in µm	Systemhersteller
Hohlkehle vestibulär	57	DCS + Etkon
Kronenwand vestibulär	53	Etkon
Okklusaler Bereich	71	Etkon
Kronenwand oral	63	Etkon
Hohlkehle oral	47	Hint-els

Abb. 55 Niedrigste Mittelwerte der Brückenanker 27 in sagittaler Schnittrichtung

5.2.3 Vergleich sagittal der Randspalten der Brücken 24-27

Vergleich sagittal der Randspalten der Brücken 24-27

Abb.56 Messwerte der Randspalten in µm der Brücken 24 - 27 in sagittaler Schnittrichtung

Deskriptive	Statistik Ran	dspalten	Brücken 24	4 - 27 sag	ittale Schnit	trichtung
System		Anzahl der Brücken- anker	Minimum	Maximum	Mittelwert	Standardab weichung
Etkon/etkon	Rsp v	10	27,0	55,6	44,110	9,5007
	RSP o	10	40,1	61,7	48,980	6,0020
KaVo/everest	Rsp v	10	34,6	67,5	50,780	11,5832
	RSP o	10	30,1	80,5	67,377	13,8434
Degudent/cercon	Rsp v	10	36,4	73,4	61,290	11,5447
	RSP o	10	38,4	78,7	61,500	13,9885
DCS/precident	Rsp v	10	34,5	81,2	55,340	19,0226
	RSP o	10	42,3	84,4	69,610	13,9413
Hint-els/dentacut	Rsp v	10	19,4	73,4	44,240	15,3106
	RSP o	10	17,3	67,6	40,830	17,6354

Abb.57 Messwerte in µm der Randspalten in sagittaler Schnittrichtung der Brücken 24-27

5.3 Systemvergleich sagittal der Brücken 33 – 43

Vergleich der Brücken 33 - 43 in sagittaler Schnittrichtung

Abb.58 Messwerte in μ m der Brücken 33 – 43 in sagittaler Schnittrichtung

Ermittelte Messwerte: 4.989	Mittelwert in µm	Systemhersteller
Hohlkehle vestibulär	50	Etkon
Kronenwand vestibulär	55	Etkon
Okklusaler Bereich	60	Etkon
Kronenwand oral	58	Etkon
Hohlkehle oral	54	Etkon

Abb. 59 Niedrigste Mittelwerte der Brücken 33 - 43 in sagittaler Schnittrichtung

5.3.1 Vergleich sagittal der Brückenanker 33

Vergleich des Brückenanker 33 in sagittaler Schnittrichtung

Abb.60 Messwerte in µm der Brückenanker 33 in sagittaler Schnittrichtung

Ermittelte Messwerte: 2.479	Mittelwert in µm	Systemhersteller
Hohlkehle vestibulär	51	Degudent + Etkon
Kronenwand vestibulär	56	Etkon
Okklusaler Bereich	30	Etkon
Kronenwand oral	59	Etkon
Hohlkehle oral	58	Etkon

Abb. 61 Niedrigste Mittelwerte der Brückenanker 33 in sagittaler Schnittrichtung

5.3.2 Vergleich sagittal der Brückenanker 43

Vergleich des Brückenanker 43 in sagittaler Schnittrichtung

Abb.62 Messwerte in µm der Brückenanker 43 in sagittaler Schnittrichtung

Ermittelte Messwerte: 2.466	Mittelwert in µm	Systemhersteller
Hohlkehle vestibulär	50	Etkon
Kronenwand vestibulär	53	DCS
Okklusaler Bereich	60	Etkon
Kronenwand oral	58	Etkon
Hohlkehle oral	50	Etkon

Abb.63 Niedrigste Mittelwerte der Brückenanker 43 in sagittaler Schnittrichtung

5.3.3 Vergleich sagittal der Randspalten der Brücken 33 – 43

Vergleich sagittal der Randspalten der Brücken 33 - 43

Abb.64 Randspalten in µm in sagittaler Schnittrichtung der Brücken 33-43

Deskriptive S	tatistik Rand	spalten	Brücken 33	8 - 43 sag	gittale Schnit	ttrichtung
System		Anzahl der Brücken- anker	Minimum	Maximum	Mittelwert	Standardab weichung
Etkon/etkon	RSP vestibulär	10	24,5	49,5	39,410	8,2494
	RSP oral	10	32,5	73,4	44,690	15,3966
KaVo/everest	RSP vestibulär	10	26,7	108,0	58,919	23,9973
	RSP oral	10	26,0	329,3	107,085	84,2658
Degudent/cercon	RSP vestibulär	10	28,1	73,4	42,910	16,6854
	RSP oral	10	54,5	121,3	81,790	20,6069
DCS/precident	RSP vestibulär	10	1,0	78,6	46,670	27,7214
	RSP oral	10	22,3	186,6	80,480	50,3548
Hint-els/dentacut	RSP vestibulär	10	26,4	78,5	51,580	19,0709
	RSP oral	10	17,8	89,4	50,910	24,2367

Abb.65 Randspalten in µm sagittal der Brücken 33 – 43

5.4 Systemvergleich transversal der Brücken 11 - 13 - 15

Vergleich der Brücken 11-13-15 in transversaler Schnittrichtung

Abb. 66 Messwerte in µm der Brücken 11-13-15 in transversaler Schnittrichtung

Ermittelte Messwerte: 7.464	Mittelwert in µm	Systemhersteller
Hohlkehle mesial	62	Etkon
Kronenwand mesial	73	Etkon
Okklusaler Bereich	94	DCS
Kronenwand distal	68	Etkon
Hohlkehle distal	64	Etkon

Abb. 67 Niedrigste Mittelwerte der Brücken 11-13-15 in transversaler Schnittrichtung

5.4.1 Vergleich transversal der Brückenanker 11

Vergleich der Brückenanker 11 in transversaler Schnittrichtung

Abb.68 Messwerte in µm der Brückenanker 11 in transversaler Schnittrichtung

Ermittelte Messwerte: 2.438	Mittelwert in µm	Systemhersteller
Hohlkehle mesial	62	Etkon
Kronenwand mesial	69	Etkon
Okklusaler Bereich	91	Etkon
Kronenwand distal	66	Etkon
Hohlkehle distal	61	Etkon

Abb. 69 Niedrigste Mittelwerte der Brückenanker 11 in transversaler Schnittrichtung

5.4.2 Vergleich transversal der Brückenanker 13

Vergleich der Brückenanker 13 in sagittaler Schnittrichtung

Abb.70 Messwerte in µm der Brückenanker 13 in transversaler Schnittrichtung

Ermittelte Messwerte: 2.440	Mittelwert in µm	Systemhersteller
Hohlkehle mesial	65	Etkon
Kronenwand mesial	76	Etkon
Okklusaler Bereich	81	DCS
Kronenwand distal	69	Etkon
Hohlkehle distal	63	Etkon

Abb. 71 Niedrigste Mittelwerte der Brückenanker 13 in transversaler Schnittrichtung

5.4.3 Vergleich transversal der Brückenanker 15

Vergleich der Brückenanker 15 in transversaler Schnittrichtung

Abb. 72 Messwerte in µm der Brückenanker 15 in transversaler Schnittrichtung

Ermittelte Messwerte: 2.476	Mittelwert in µm	Systemhersteller
Hohlkehle mesial	59	Etkon
Kronenwand mesial	74	Etkon
Okklusaler Bereich	76	Etkon
Kronenwand distal	75	Etkon
Hohlkehle distal	62	Etkon

Abb. 73 Niedrigste Mittelwerte der Brückenanker 15 in transversaler Schnittrichtung

5.4.4 Vergleich transversal der Randspalten der Brücken 11-13-15

Vergleich transversal der Randspalten der Brücken 11-13-15

Abb.74 Messwerte der Randspalten in µm der Brücken 11-13-15 in transversaler Schnittrichtung

Deskriptive Statis	stik Randspa	alten Br	ücken 11-13	8-15 tran	sversale Scl	nnittrichtung
		Anzahl der Brücken-				Standardab
System		anker	Minimum	Maximum	Mittelwert	weichung
Etkon/etkon	RSP mesial	15	41,2	76,6	59,243	10,9261
	RSP distal	15	43,4	70,6	55,557	9,1282
KaVo/everest	RSP mesial	15	36,0	125,3	77,015	24,6853
	RSP distal	15	56,0	135,0	91,085	30,5284
Degudent/cercon	RSP mesial	15	38,0	93,4	69,538	15,0353
	RSP distal	15	,0	125,0	81,655	30,6021
DCS/precident	RSP mesial	12	39,5	98,4	71,233	19,9233
	RSP distal	12	53,4	120,3	78,489	19,6642
Hint-els/dentacut	RSP mesial	15	10,0	83,3	60,364	22,1158
	RSP distal	15	54,5	153,4	78,100	29,1038

Abb. 75 Randspalten in µm transversal der Brücken 11-13-15

5.5 Systemvergleich transversal der Brücken 24 – 27

Vergleich der Brücken 24 - 27 in transversaler Schnittrichtung

Abb. 76 Messwerte in µm der Brücken 24 – 27 in transversaler Schnittrichtung

Ermittelte Messwerte: 4.923	Mittelwert in µm	Systemhersteller
Hohlkehle mesial	57	Etkon
Kronenwand mesial	71	Etkon
Okklusaler Bereich	97	Etkon
Kronenwand distal	67	Etkon
Hohlkehle distal	58	Etkon

Abb. 77 Niedrigste Mittelwerte der Brücken 24 - 27 in transversaler Schnittrichtung
5.5.1 Vergleich transversal der Brückenanker 24

Vergleich der Brückenanker 24 in transversaler Schnittrichtung

Abb. 78 Messwerte in µm der Brückenanker 24 in transversaler Schnittrichtung

Ermittelte Messwerte: 2.438	Mittelwert in µm	Systemhersteller
Hohlkehle mesial	58	Etkon
Kronenwand mesial	73	Etkon
Okklusaler Bereich	91	Etkon
Kronenwand distal	69	Etkon + KaVo
Hohlkehle distal	61	Etkon

Abb. 79 Niedrigste Mittelwerte der Brückenanker 24 in transversaler Schnittrichtung

5.5.2 Vergleich transversal der Brückenanker 27

Vergleich der Brückenanker 27 in transversaler Schnittrichtung

Abb. 80 Messwerte in µm der Brückenanker 27 in transversaler Schnittrichtung

Ermittelte Messwerte: 2.439	Mittelwert in µm	Systemhersteller
Hohlkehle mesial	57	Etkon
Kronenwand mesial	70	Etkon
Okklusaler Bereich	101	Etkon
Kronenwand distal	65	Etkon
Hohlkehle distal	56	Etkon

Abb. 81 Niedrigste Mittelwerte der Brückenanker 27 in transversaler Schnittrichtung

5.5.3 Vergleich transversal der Randspalten der Brücken 24 – 27

Vergleich transversal der Randspalten der Brücken 24 - 27

Abb.82 Messwerte der Randspalten in µm der Brücken 24-27 in transversaler Schnittrichtung

Deskriptive Stat	istik Randspa	alten Br	ücken 24 - 2	27 trans	versale Schr	ittrichtung
System		Anzahl der Brücken- anker	Minimum	Maximum	Mittelwert	Standardab weichung
Etkon/etkon	RSP mesial	10	38,5	56,6	47,050	6,4229
	RSP distal	10	42,3	67,0	52,400	9,0787
KaVo/everest	RSP mesial	10	,5	83,4	57,533	29,2683
	RSP distal	10	29,3	76,7	56,633	19,8489
Degudent/cercon	RSP mesial	10	18,2	120,3	64,983	38,5368
	RSP distal	10	,1	106,5	51,050	46,1862
DCS/precident	RSP mesial	10	45,6	74,0	61,867	12,0793
	RSP distal	10	29,5	78,7	61,867	17,7468
Hint-els/dentacut	RSP mesial	10	67,5	79,8	72,017	5,6588
	RSP distal	10	35,5	125,4	78,117	33,5354

Abb.83 Randspalten in µm transversal der Brücken 24 - 27

5.6 Systemvergleich transversal der Brücken 33 – 43

Vergleich der Brücken 33 - 43 in transversaler Schnittrichtung

Abb. 84 Messwerte der Brücken 33 – 43 in transversaler Schnittrichtung

Ermittelte Messwerte: 4.921	Mittelwert in µm	Systemhersteller
Hohlkehle mesial	56	Etkon
Kronenwand mesial	65	Etkon
Okklusaler Bereich	87	Etkon
Kronenwand distal	75	KaVo
Hohlkehle distal	67	Etkon

Abb. 85 Niedrigste Mittelwerte der Brücken 33 – 43 in transversaler Schnittrichtung

5.6.1 Vergleich transversal der Brückenanker 33

Vergleich der Brückenanker 33 in transversaler Schnittrichtung

Abb. 86 Messwerte in µm der Brückenanker 33 in transversaler Schnittrichtung

Ermittelte Messwerte: 2.399	Mittelwert in µm	Systemhersteller
Hohlkehle mesial	54	Etkon
Kronenwand mesial	67	Etkon
Okklusaler Bereich	83	Etkon
Kronenwand distal	68	Etkon
Hohlkehle distal	68	Etkon

Abb. 87 Niedrigste Mittelwerte der Brückenanker 33 in transversaler Schnittrichtung

5.6.2 Vergleich transversal der Brückenanker 43

Vergleich der Brückenanker 43 in transversaler Schnittrichtung

Abb. 88 Messwerte in µm der Brückenanker 43 in transversaler Schnittrichtung

Ermittelte Messwerte: 2500	Mittelwert in µm	Systemhersteller
Hohlkehle mesial	58	Etkon
Kronenwand mesial	63	Etkon
Okklusaler Bereich	85	DCS
Kronenwand distal	67	KaVo
Hohlkehle distal	67	Etkon

Abb. 89 Niedrigste Mittelwerte der Brückenanker 43 in transversaler Schnittrichtung

5.6.3 Vergleich transversal der Randspalten der Brücken 33 – 43

Vergleich transversal der Randspalten der Brücken 33 - 43

Abb.90 Messwerte der Randspalten in µm der Brücken 33-43 in transversaler Schnittrichtung

Deskriptive Statistik Randsp		alt Brüc	ken 33-43	transversa	ale Schnittric	htung
System		Anzahl der Brücken- anker	Minimum	Maximum	Mittelwert	Standardab weichung
Etkon/etkon	RSP mesial	10	36,5	58,0	46,333	7,4744
	RSP distal	10	39,6	72,0	50,867	11,8771
KaVo/everest	RSP mesial	10	71,0	278,4	112,750	81,4518
	RSP distal	10	42,0	87,0	72,175	14,7827
Degudent/cercon	RSP mesial	10	14,0	72,0	44,800	25,1153
	RSP distal	10	39,4	78,7	61,817	17,0458
DCS/precident	RSP mesial	10	38,0	68,6	55,683	11,7909
	RSP distal	10	61,0	126,5	82,500	23,4290
Hint-els/dentacut	RSP mesial	10	48,5	72,3	62,967	8,5841
	RSP distal	10	47,0	89,5	73,667	14,8418

Abb. 91 Randspalten in µm transversal der Brücken 33 - 43

System / Brücke	Schnitt sagittal	Schnittsagittal	Schnitttransv.	Schnitt transv.
	vestibulär	oral	mesial	distal
DCS 24 - 27	55	70	62	62
DCS 11-13-15	34	45	72	78
DCS 33 – 43	47	80	56	83
Degud. 24 - 27	61	62	65	51
Degud. 11-13-15	67	77	70	82
Degud. 33 – 43	43	82	45	62
Etkon 24 - 27	44	49	47	53
Etkon 11-13-15	46	51	59	56
Etkon 33 – 43	39	45	47	51
Hintels 24 - 27	44	41	72	78
Hintels 11-13-15	57	57	60	78
Hintels 33 – 43	52	51	63	74
KaVo 24–27	51	67	58	47
KaVo 11-13-15	49	76	77	91
KaVo 33 – 43	59	107	113	73

5.7 Übersicht der niedrigste Mittelwerte für den Bereich Randschluss

Abb.92 Gesamtübersicht der erhaltenen Mittelwerte für den Bereich Randschluss in µm

5.8 Übersicht der niedrigste Mittelwerte für den Bereich Kronenwände

System	Schnitt sagittal vestibulär	Schnitt sagittal oral	Schnitt transv. mesial	Schnitt transv. distal
DCS	59	63	84	86
Degudent	65	66	79	80
Etkon	51	58	62	67
Hint-es	58	67	99	96
KaVo	64	65	75	75

Abb.93 Überblick der niedrigsten Mittelwerte für den Bereich Kronenwände in µm

5.9 Übersicht der niedrigste Mittelwerte für den okklusalen Bereich

System	Schnittrichtung sagittal (vestibulär nach oral)	Schnittrichtung transversal (mesial nach distal)
DCS	81	88
Degudent	90	121
Etkon	61	87
Hint-es	127	159
KaVo	86	110

Abb.94 Überblick der niedrigsten Mittelwerte für den okklusalen Bereich in µm

5.10 Zeit-/ Passungs - Statistik

Die Zeit-/Passungs-Statistik gibt Aufschluss über den zeitlichen Aufwand der hergestellten Zirkonoxidgerüste vor Beginn der manuellen Verblendung mit Keramikmasse. Gemessen wurde die Zeitspanne von Beginn der Anpassungsarbeit des Zirkonoxidgerüstes auf den Zahnpfeilern bis zum klinisch akzeptablen Randschluss zwischen Kronenrand und Präparationsgrenze. Das Anpassen der Brückengerüste wurde der zahntechnischen Praxis entsprechend auf den Meistermodellen durchgeführt.

Orientierend an der zahntechnischen Praxis wurden, wenn notwendig, die Kronenränder in Länge und Dimension, als auch die Passung unter einem Stereomikroskop kontrolliert und nachgearbeitet.

Verwendet wurde eine NSK-Hydro-Turbine mit maximalem Kühlmittelausstoß und spezielle Zr-Feinkorndiamanten der Fa. Komet. Als Störstellenindikator wurde *Okkluspray* der Fa. M&W verwendet.

Nach mikroskopischer Kontrolle der Randspalten wurde abschließend eine Innenabformung mit dem Testsilikon *Fitchecker* angefertigt.

Die Tabelle zur Zeit-/Passungs-Statistik (Abb. 95) spiegelt den gemittelten Zeitaufwand zum Aufpassen aller 15 Zirkonoxidgerüste je CAD/CAM-System in dieser vorliegenden Studie. Der *Mittelwert in Minuten* gibt den durchschnittlichen zeitlichen Arbeitsaufwand aller Brücken je System zum Aufpassen der Gerüste wieder. Die *Standardabweichung* gibt die mittlere absolute Abweichung aller gemessenen Zeitintervalle je System wieder.

einzelnen Niedrige Werte deuten Zeitunterschiede auf geringere der Aufpassungsintervalle hin, höhere Werte hingegen deuten auf eine große einzelnen Aufpassungsintervalle hin. Schwankungsbreite der Wirtschaftliche Produktionsprozesse zeichnen sich hierbei durch niedrige Werte bezüglich der Mittelwerte in Minuten als auch für die Standardabweichung aus (Abb.94).

75

	Mittelwert in	Anzahl der	Standardab
System	Minuten	Brücken	weichung
Etkon/etkon	2,2286	15	1,03144
KaVo/everest	11,3143	15	2,80516
Degudent/cercon	12,3429	15	2,18205
DCS/precident	13,5938	14	1,54208
Hint-els/dentacut	9,0286	15	2,21606

5.10 Mittelwerte der Aufpassungszeiten je Brücke

	Abb. 95	Mittelwerte und Standardabweichung der	Aufpassungszeiten der Gerüste
--	---------	--	-------------------------------

6. Diskussion

6.1 Material und Methode

Zirkonoxid wird aufgrund seiner Belastbarkeit, Biokompatibilität und der Möglichkeit zur natürlichen Reproduktion von Zahnersatz als "der" keramische Gerüstwerkstoff zur Herstellung von metallfreien Kronen und Brückenverbänden bezeichnet [81,93].

In dieser vorliegenden In-vitro-Studie wurde die marginale und interne Passgenauigkeit von unterschiedlichen vollkeramischen Brückenkonstruktionen aus Zirkonoxid durch Anfertigung von Schliffpräparaten nach Anwendung destruktiver Verfahren unter dem Lichtmikroskop untersucht. Die Durchführung der Arbeitsschritte orientierte sich an den klinischen Standards und wurde vom Autor mit zahntechnischer und zahnmedizinischer Ausbildung durchgeführt. Dadurch simulieren die produzierten Brücken das Resultat der Zusammenarbeit zwischen Zahnarzt und Zahntechniker in optimierter Art und Weise und spiegeln das machbare Produktionsergebnis in seiner Gesamtheit. Dennoch sind In-vitro-Studien nur als mögliche Annäherung an die klinische Situation zu beurteilen und lassen keine Garantie auf klinische Zuverlässigkeit zu [103].

ausgewählten Brückentopographien sollten ein breites Die drei klinisches Indikationsfeld abdecken. Bei der Wahl der Präparationsform der Brückenpfeiler wurde auf die aktuell geltenden Richtlinien und Empfehlungen für vollkeramische Restaurationen zurückgegriffen [65,75]. Der Substanzabtrag wurde mit 1,2 mm zirkulär und 1,8 mm okklusal relativ gering gehalten. Die Stumpfhöhen variierten anatomisch zwischen 4 und 7 mm. Durch den Präparationswinkel $\alpha/2 = 2^{\circ}$ wurden höchste Anforderungen an alle Komponenten der CAD/CAM-Systeme gestellt. Die 75 gegossenen CoCr-Modelle, welche im Lost-Wax-Verfahren hergestellt wurden und die "Patienten" simulierten, wurden vor der Abformung zur Herstellung der Meistermodelle mit einer 2°-Fräse mittels Parallelometer kontrolliert. Um den bei In-vitro-Studien hohen zeitlichen Aufwand zur Herstellung von großen Mengen an Patienten- oder Prüfmodellen zu optimieren, sollte zukünftig bereits in der Vorbereitungsphase auf Technologien der CAD/CAM-Industrie zurückgegriffen werden. Dadurch kann eine höhere Sicherheit bezüglich der Dimensionstreue bei der Duplikation der Prüfmodelle gewährleistet werden.

Diskussion 6

Eine explizite Funktionsprüfung der CAD/CAM-Systeme hätte auf nur einer Modellserie ohne Abformungen und ohne Verblendung der Gerüste durchgeführt werden können. Entscheidend bei der Durchführung von klinisch relevanten Passgenauigkeitsuntersuchungen sind eine genaue Abformung der Patientenmodelle und die präzise Anfertigung der Meistermodelle. Studien, in denen auf klinische und zahntechnische Prozeduren wie Abformung der Modelle oder Anfertigung von Meistermodellen verzichtet wird, spiegeln nicht das Ergebnis in seiner Gesamtheit und können nur bedingt als praxisrelevant beurteilt werden.

Auf den Meistermodellen wurden nach intensiver technischer Schulung durch die jeweiligen CAD/CAM-Spezialisten die Zirkonoxid-Brücken hergestellt. Während der CAM-Phase konnte kein Gerüstbruch oder Gerüstabplatzung festgestellt werden. Die 75 gefrästen Brückengerüste wurden, auch wenn kein nachgewiesener Materialverzug und dadurch keine Verschlechterung der Passgenauigkeit zu erwarten ist, nach Herstellervorgaben mit Keramikmasse verblendet. Eine beschriebene Erhöhung der Biegefestigkeit von Zirkonoxidgerüsten nach keramischer Verblendung ist klinisch nur nach optimaler Brandführung zu erwarten. Ebenso kommt es nur durch eine exakte maschinelle Bearbeitung zur Erhöhung der Biegefestigkeit von Zirkonoxidkeramik [55].

Beim Verblenden von Zirkonoxid-Gerüsten sollten die basalen Kronenrandbereiche und die inneren Kronenflächen vor dem Vakuumbrand sorgsam von anheftenden Keramikpulver gereinigt werden. Da getrocknete Keramikmasse weiß erscheint, sind Rückstände auf dem weißen Zirkonoxid schlecht bis überhaupt nicht zu erkennen. "Angebrannte" Keramikpartikel können die Zementfuge vergrößern und dadurch die gesamte Passgenauigkeit einer Brückenkonstruktion verschlechtern. Auf dem Gipsstumpf können sich angebrannte Keramikteilchen aufgrund von Abrasion und verminderter Härte des Gipsmaterials einlagern und am Zirkonoxidgerüst unauffällig bleiben. Als Kontrollverfahren von angefertigten Brücken hat sich in dieser Studie das Abtasten der internen Anteile mit einem 1mm-Gingivalrandschräger als sicheres Diagnostikum bewährt. Dies gilt ebenso für Zirkonoxid-Schleifstaub, welcher nach Bearbeitung mit Kühlflüssigkeit im Kronengerüst zurückbleiben kann.

Die verblendeten vollkeramischen Brücken wurden unter optimalen Bedingungen und Durchführung aller klinischen Kautelen auf den CoCr-Patientenmodellen standardisiert zementiert. Die axiale Belastung der Brücken mittels einer fünf Kilogramm schweren Hartgummischeibe gewährleistete eine gleichmäßige Krafteinleitung. Wie auch in der CAM-Phase kam es während der Zementierung weder zu Gerüstbrüchen noch zu Abplatzungen der Verblendkeramik vom Zirkonoxidgerüst.

78

Diskussion 6

Um die in der Literatur beschriebenen Zerstörungen der Brückenpräparate wie z.B. Gerüstbruch durch mechanische und temperaturbedingte Einflüsse bei destruktiven Verfahren zu minimieren, wurden vor der Einbettung der Brücken-Modell-Komplexe die CoCr-Oberflächen mit einem Silan-Haftvermittler konditioniert. Die zu erwartenden Temperatur-Probleme während des Zerschneidens der eingebetteten Brücken konnten durch maximale Kühlung und minimale Vorschubbewegung der Diamanttrennscheibe unter Kontrolle gehalten werden. Dieses Vorgehen verursachte jedoch extrem lange Schneid- und Trennzeiten. Der Vorteil dieser destruktiven Verfahrensweise liegt jedoch darin, dass durch Anfertigung von Schliffpräparaten in sagittaler und transversaler Richtung die gesamte Zementfuge dargestellt werden und je Schnittrichtung in 5 unterschiedlichen Bereichen untersucht werden konnte.

Aufgrund der individuellen Möglichkeiten der gewählten Haltevorrichtung der Trennmaschine konnten die Brücken parallel zur Schnittrichtung fixiert werden. Visuelle Vergrößerungen der Zementfuge aufgrund schräger Schnittrichtung konnten minimiert werden. Dies verlangte bereits beim Einbetten in den Kunststoff betreffend der Achsrichtung der Pfeiler eine Positionierung der Brücken-Modell-Komplexe im Lot zum Boden der Einbettform des Kunststoffes.

Als Nachteil der destruktiven Verfahrensweise sind die geringere Anzahl von Messpunkten für die Randspalten pro Schnittpräparat, sowie der hohe zeitliche Aufwand zur Herstellung der Schnittpräparate nennenswert. Insgesamt ist innerhalb dieser Studie ein Verlust von rund 2% der erhobenen Messwerte aufgrund von Zerstörungen nachzuweisen.

6.2 Ergebnisse

6.2.1 Randschluss

Die besten Mittelwerte bezüglich der geforderten Zementfuge von 50 µm für den Randschluss zeigten in sagittaler Schnittrichtung das Etkon- und das Hintels-System mit 44 µm vestibulär und mit 51 µm das Etkon-System oral.

In transversaler Schnittrichtung wurden mit 47 µm mesial und 51 µm distal die besten Mittelwerte für das Etkon-System ermittelt.

Die niedrigste Mittelwerte insgesamt für den Randschluss wurden in sagittaler Schnittrichtung mit 34 μ m vestibulär für das DCS-System und mit 45 μ m oral für das DCS-System und das Etkon System, sowie in transversaler Schnittrichtung mit 47 μ m mesial und 51 μ m distal ebenfalls für das Etkon-System ermittelt.

Der Randschluss wurde nach Holmes als "absolute marginale Diskrepanz" ausgemessen. Dies stellt die kürzeste Entfernung zwischen dem äußersten Präparationsrand des Zahnstumpfes und dem äußersten basalen Kronenrand dar. In anderen Studien werden Mittelwerte für Randspalten von 20 µm angegeben. Diese Werte wurden für Brückenanker mit Konvergenzwinkeln zwischen $\alpha/2 = 3^{\circ}-8^{\circ}$ ermittelt [32,47]. Auch unterschiedliche Stumpfhöhen können für Randspaltvergrößerungen verantwortlich sein, da der Randspalt proportional mit der Stumpfhöhe zunimmt. Dies gründet in einem besseren Zementabfluss bei kurzen Stumpfhöhen, welcher auch bei größeren Konvergenzwinkeln zu beobachten ist. Kurze Stumpfwände und große Konvergenzwinkel sind wiederum aufgrund mangelnder Friktion verantwortlich für frühzeitige Kronen- und Brückenverluste. Die Randmorphologie mit Randspalt und Hohlkehle konnte bei den angefertigten Sagittalund Transversalschnitten in ihrem gesamten Verlauf dargestellt werden.

Grundsätzlich war für alle untersuchten Systeme eine durchgehend stufenfreie Oberfläche nachzuweisen. Dies ist auf eine optimierte Abstimmung aller Komponenten innerhalb eines CAD/CAM-Systems, als auch auf eine optimierte Frässtrategie des Systems zurückzuführen. Nur beim DCS-System waren im Bereich der Hohlkehle Zementspaltverengungen auf intermittierende Fräsbahnstrukturen zurückzuführen. Diese führten zu unkontrollierten Frühkontakten auf der Hohlkehle.

6.2.2 Kronenwände

Die besten Mittelwerte bezüglich der geforderten Zementfuge von 50 µm für die Kronenwände zeigte in sagittaler und in transversaler Richtung das Etkon-System mit 51 µm und 67 µm.

Die niedrigste Mittelwerte für die Kronenwände wurden in sagittaler Schnittrichtung, sowie in transversaler Schnittrichtung mit 51 µm sagittal und 62 µm transversal ebenfalls für das Etkon-System ermittelt.

Der Präparationswinkel wurde mit $\alpha/2 = 2^{\circ}$ extrem niedrig gewählt. Unter klinischen Bedingungen sollte für eine Krone sowohl der gerichtete Zementabfluss möglich, als auch eine ausreichende Friktion gegeben sein. Ein Präparationswinkel von $\alpha/2 = 3^{\circ} - 5^{\circ}$ sollte beiden Forderungen gerecht werden [53,74].

Die in der Literatur beschriebenen Schwierigkeiten von Scanner-Systemen bei berührungsloser Abtastung von fast parallelwandigen Flächen, wie bei den Präparationswinkel dieser Studie gegeben, konnten nicht mehr nachgewiesen werden. Mit den untersuchten optoelektronischen Vermessungssystemen der untersuchten Systeme innerhalb dieser Studie wurden für die Zementfuge der Kronenwände ausschließlich Mittelwerte unter 120 µm ermittelt. Unterschiede im Ergebnis zwischen Scannern, bei denen die Modelle fest positioniert waren mit denen, welche über achsenbewegliche Modelltische verfügten, konnten auch nicht nachgewiesen werden. Dies ist darauf zurückzuführen, dass alle gescannten Stümpfe über eine optimal präparierte Stumpfoberfläche und eine sauber angelegte Hohlkehle verfügten, welche zusätzlich minimal unterkehlt wurde. Der Vorteil von beweglichen Modelltischen zur optoelektronischen Digitalisierung liegt in der Erfassung unter sich gehender Bereiche und einer höheren Erfassung von Messpunkten, welche bei ungenauen Präparationen zwecks einer Optimierung des Datensatzes zur Konstruktion der Gerüststruktur erforderlich sind. Dadurch werden schnellere Scan-Zeiten, als auch Funktionen wie digitales Ausblocken ermöglicht. Weiterhin wurde auf eine Oberflächenbehandlung der Gipsstümpfe verzichtet. Dadurch konnten auftretende Reflexionen, zurückzuführen auf reflektierende Gipshärter oder Farbstoffanteile von Distanzlacken, während der Digitalisierung der Modelle, besonders an steilen Flächen, verhindert werden.

6.2.3 Okklusaler Bereich

Die besten Mittelwerte bezüglich der geforderten Zementfuge von 50 µm für die okklusalen Bereiche zeigten in sagittaler Richtung mit 61 µm und in transversaler Richtung mit 87 µm das Etkon-System.

Die insgesamt niedrigste Mittelwerte für die okklusalen Bereiche wurden in sagittaler Schnittrichtung mit 61 μ m, sowie in transversaler Schnittrichtung mit 87 μ m für das Etkon-System ermittelt.

Bei allen untersuchten Systemen wurden in dieser Studie die höchsten Messwerte im okklusalen Bereich ermittelt. Dies ist einerseits auf die Wahl des Präparationswinkels von $\alpha/2 = 2^{\circ}$ zurückzuführen, da bei extrem kleinen Präparationswinkeln ein optimaler Zementabfluss in Frage gestellt werden muss [38,53]. Entscheidend war auch die Berücksichtigung der aktuell geltenden Präparationsrichtlinien. Besonders die geforderte Abrundung der gesamten okklusalen Strukturen gewährleistet eine optimale Digitalisierung der Zahnstrukturen, als auch aus materialtechnischer Sicht eine notwendige geometrische Richtlinie zur Vermeidung von auftretenden Kraftspitzen innerhalb der vollkeramischen Zirkonoxidgerüste. Weiterhin wird durch eine kantenfreie Präparation ein gerichteter Zementabfluss ermöglicht [74].

Für diese Studie wurden bei allen untersuchten Systemen kleinste Fräswerkzeuge mit einem Durchmesser von 1 mm für dicht gesintertes und 1,2 mm für porös vorgesintertes Zirkonoxid verwendet. Eine unkontrollierte Aushöhlung von okklusalen Strukturen, welche mit einer undefinierten Zementstärke und einer resultierenden vertikalen Gesamterhöhung des Kronengerüstes einher gehen würden, konnten nicht nachgewiesen werden. Passungsverschlechterungen im Zusammenhang mit Frühkontakten der okklusalen Bereiche der Zirkonoxidbrücken und dem Zahnstumpf konnten nach lichtmikroskopischer Untersuchung innerhalb dieser Studie ebenso nicht nachgewiesen werden.

Auffällig im Vergleich zwischen den Systemen war dennoch das Dentacut-System mit deutlich erhöhten okklusalen Bereichen, welche bereits bei Aufpassen der Gerüste auf den Meistermodellen mittels dünn fließenden Silikons nachweisbar waren. Seitens der Fa. Hintels wird eine okklusale Sicherheitsschicht gegen Frühkontakte zwischen Krone und Zahnstumpf in die Fräsparameter eingerechnet.

6.3 Messverfahren

Zur Zementspaltvermessung werden in der Literatur diverse Techniken beschrieben. Man unterscheidet destruktive bzw. zerstörende Techniken von zerstörungsfreien Techniken [29]. In dieser destruktiven Studie wurden zur Messung der Zementfuge die Brückenkomplexe in Schliffpräparate zerschnitten. Hierdurch konnte der Randspalt, die Zementfuge auf Niveau der Hohlkehlpräparation und die umlaufenden Zementfuge mittels Auflichtmikroskopie vermessen werden. Durch die hohe mechanische und thermische Belastung beim Durchtrennen der Brücken-Modell-Komplexe mit der Diamantscheibe können einzelne Strukturen zerstört werden. Dabei handelte es sich in dieser Studie in wenigen Fällen um Absplitterungen der Verblendkeramik vom Zirkonoxidgerüst oder Absplitterungen des Zirkonoxidgerüstes vom Metallstumpf. Insgesamt wurden innerhalb dieser Studie nur 2% der Präparate aufgrund von Zerstörungen unbrauchbar.

Zerstörungsfreie Techniken können mittels Rasterelektronenmikroskop, dem Auflichtmikroskop oder einem computerunterstützten Videomesssystem durchgeführt werden. Besonders die Rasterelektronenmikroskopie bietet bei einer Qualifizierung von Fügefugen auf Grund ihrer ausgezeichneten Plastizität und Tiefenschärfe erhebliche Vorteile bei der Untersuchung von dreidimensionalen Objekten. Andererseits unterliegt die Rasterelektronenmikroskopie auch einer Fehlertoleranz von 10% [28,29,79,81,90].

Ein weiteres zerstörungsfreies Messverfahren zur internen Passgenauigkeitsuntersuchung wird durch *Moldovan et al.* beschrieben. Hierbei wird das Meistermodell digitalisiert. Die Innenflächen des hergestellten Gerüstes werden mit Öl isoliert und mit Spezialsilikon unter 20 N Krafteinwirkung auf das Meistermodell gepresst. Nach Entfernung des Gerüstes wird das Meistermodell mit der anheftenden Innenabformung erneut digitalisiert. Beide digitalisierten Modelle werden einem Koordinatensystem zugeordnet. Die Passungsdiskrepanzen werden nach dreidimensionaler Überlagerung der beiden Datensätze als Punktewolken zwischen den beiden digitalisierten Modellen dargestellt und zeigen die Ergebnisse für die gesamte Kroneninnenfläche [68].

Eine ebenfalls zerstörungsfreie Vermessungstechnik wurde von *Fritz* beschrieben. Dabei wurden innerhalb einer In-vivo-Studie 40 definitive Kronen angefertigt. Vor dem definitiven Zementieren wurde mittels einer internen Silikonunterschichtung eine Replika des Rand- und Zementspaltes hergestellt und lichtmikroskopisch vermessen [20].

83

Nach *Groten et al.* sollte bezüglich der Entscheidungsfindung eines Messverfahrens die Eignung der Messgröße ausschlaggebend sein. Was genau soll untersucht werden? Seine Empfehlung tendiert bei Randspaltmessung zur Messung der "senkrechten äußeren Randspalthöhe" was mit der " vertikalen marginalen Diskrepanz" nach *Holmes et al.* zu vergleichen ist. In dieser vorliegenden Studie wurde mittels Auflichtmikroskopie die umlaufende Zementfuge in 5 Bereichen ausgemessen, wobei der Randspalt nach *Holmes et al* als "absolute marginale Diskrepanz" vermessen wurde [103].

Auf jeden Fall sollte sich man bei der Interpretation der Ergebnisse vor Augen halten, dass jede Komponente eines CAD/CAM-Systems, wie auch die angewandten Systeme der Vorbereitungsphase, wie Abformtechnik und Modellherstellung, einer Fehlertoleranz unterliegen. Ein Anspruch auf klinische Relevanz verlangt nach einer sauberen und exakten Durchführung der Studie.

Addiert man die aufgrund der Gipsexpansion beschriebene 3-8 μm Dimensionsabweichung Gips-Scannmodell CoCr-Patienten-Modell vom zum (Meistermodell) [54,58], eine Dimensionsabweichung von 5-20 µm innerhalb der Abformung zur Herstellung des CoCr-Modell [Abformung], eine Fehlertoleranz von 4-12 µm der berührungslosen Objekterfassungssysteme [9,11] und eine Abweichung von 8-15 µm beim Fräsvorgang ist von einer minimalen summierten Fehlertoleranz von 20-95 µm auszugehen. Zu dem Resultat, dass es innerhalb der geforderten Spanne von 20-120 µm für die Zementfuge nicht auf 20 µm ankommt, führten bereits auch frühere Studien [21,29].

6.4 Anwenderfreundlichkeit der Systeme

Der folgende subjektiv zu beurteilende Abschnitt vergleicht die Abläufe zur Herstellung der vollkeramischen Gerüste zwischen den CAD/CAM-Systemen. Sie kann für Anwender eine Informationsquelle zur Funktionalität darstellen.

Für alle Modelle wurde ein nicht reflektierender brauner Superhartgips der Klasse 4 verwendet. Alle Präparationsgrenzen wurden leicht unterkehlt und die Stümpfe wurden nicht mit Gipshärter oder Distanzlack (Ausnahme: CAM-System/Cercon) behandelt. Für die Randspalten als auch für die interne Zementfuge wurden als Fräsparameter 50 µm vorgegeben. Alle Arbeitsschritte wurden mit höchster Präzision und für alle Systeme gleich sorgsam durchgeführt. Es wurden ausschließlich neue Fräswerkzeuge und zertifizierte Zirkonoxid-Rohlinge verwendet.

Die Tabelle (6.4.2) gibt einen Überblick über das "Handling" und die Eindrücke bei der Arbeit mit den Systemen. Die Abläufe wurden mit Begriffen wie *schnell, einfach, aufwändig* und *anspruchsvoll* bemessen. In der Tabelle wird <u>keine</u> Aussage bezüglich der Vergleichsergebnisse gemacht. Ebenso kann keine Wirtschaftlichkeitsberechnung betreffend der Frage der Sinterstufe der verwendeten Zirkonoxid-Rohlinge oder der Standzeiten der Fräswerkzeuge abgegeben werden. Verantwortlich für die Wahl der Sinterstufe der Zirkonoxidrohlinge waren die Hersteller der CAD/CAM-Systeme. Die Zeit-Passungs-Statistik (Abb. 95) stellt Passgenauigkeit und Zeitaufwand im Kontext dar.

6.4.1 Primäre und sekundäre Passgenauigkeit

Beim Aufwand der manuellen Nachbearbeitung zum Aufpassen der Zirkonoxid-Gerüste zwischen den Systemen schwankten die Mittelwerte zwischen 2 Minuten je Brücke für das Etkon-System , 9 Minuten für das Dentacut-System und jeweils über 12 Minuten je Brücke für das Cercon-System , das Precident-System und das Everest-System. Dennoch können alle 5 untersuchten CAD/CAM-Systeme bezüglich der Passgenauigkeit zur Herstellung von vollkeramischen Brückenkonstruktionen unterschiedlicher Pfeilergeometrie angewendet werden. Zukünftige Entwicklungsarbeit liegt in der weiteren Optimierung der Funktionalität der einzelnen CAD/CAM-Komponenten und einer Rationalisierung der Produktionsintervalle.

Die dentale CAD/CAM-Technologie hat bei subtraktiver Anwendung von Y-TZP-Zirkonoxid ein Stadium erreicht, dass die Ausweitung der Indikation auf weitspannige vollkeramische Brücken im Front - und Seitenzahnbereich durchaus rechtfertigt. Neue dentale Technologien zur Herstellung von biokompatiblem Zahnersatz, wie generative CAD/CAM - Systeme, werden sich an diesen Ergebnissen messen lassen müssen.

	Positionier. der Modelle im Scanner	CAD - Phase	Scanzeit pro Stumpf in Minuten	Vorbereitung zur CAM-Phase	CAM - Phase	Brüche, Abplatzung, Fehlpassung in CAM-Phase	Sintervorgang und Sinterzeit	Oberfläche & Design	Mittlere Aufpaßzeit je Brücke in Minuten	Fazit
Etkon	schnell	schnell einfach	25 <u>Sek.</u>	Fräs- zentrum	Fräs- zentrum	/	Fräszentrum	Saubere Fräsung + Oberfäche	2	Für Zahnarzt, Zahntechniker geeignet
DCS	schnell	langsam	6	schnell	Lange Zeit, da HIP- Zirkonoxid	1 Brücke mit Fehlpassung	/	Nachbar- beitungsauf- wand	13	Verbesserung angebracht
Degudent	schnell	CAM ! Zahntechn. Fähigkeiten erforderlich	durchsch. 9 min. je Rahmen	Zahntech. Modellation	einfach schnell	/	einfach 7 h	CAM ! Saubere Fräsung	12	Individuelle Möglichkeit.
Hint-els	schnell	anspruchs- voll	1	schnell	Lange Zeit, da HIP- Zirkonoxid	/	/	optimal	9	Sehr präzise Fertigung
KaVo	schnell	einfach	1	aufwendig	aufwendig schnell	/	einfach 7 h	Saubere Fräsung + Oberfäche	11	Aufwändiges System

6.4.3 Tabelle zur Anwenderfreundlichkeit (Teil 1)

Abb. 96 a Tabelle zur Anwenderfreundlichkeit der Systeme

Tabelle zur Anwenderfreundlichkeit (Teil 2)

Etkon	Das System Etkon beeindruckt durch eine Kombination aus anwenderfreundlicher Software, einfachem Handling, Materialvielfalt und wirtschaftlicher Unabhängigkeit. Das System konnte sich ebenso mit hervorragenden Passungen der Zirkonoxidgerüste auszeichnen.
DCS	Die Firma DCS, das Unternehmen mit der längsten Erfahrung im Bereich zahntechnisches CAD/CAM, fällt im Vergleich zu den anderen Unternehmen mit langen Digitalisierungs – und Fertigungszeiten auf. Ein aufwendiges Nacharbeiten der Gerüste ist notwendig.
Degudent	Das Cercon-CAM-System ist auf zahntechnische Grundkenntnisse angewiesen und ermöglicht dem Zahntechniker wie auch dem Zahnarzt die schnelle eigene Produktion von vollkeramischen Gerüsten aus Zirkonoxid. Besonders hier werden Fehler in der manuellen Gerüstherstellung aus Wachs in der Umsetzung mittels Fräsmaschine zum vollkeramischen Gerüst zu 100% weitergegeben!!
Hint-els	Die Fa. Hintels aus Griesheim kann ebenfalls auf einen langen Erfahrungszeitraum bei der CAD/CAM- Herstellung von Zahnersatz zurückblicken. Das System besticht durch seine modernen Fräseinheiten, welche dicht gesintertes Zirkonoxid in kurzer Fertigungszeit bearbeiten können. Die Software ist innovativ, aber auch anspruchsvoll im Handling. Die Zahn-Datenbank der Software verfügt über diverse Zahngeometrien.
KaVo	Das KAVO-System erfordert Geschicklichkeit von der Positionierung der Modelle über die Konstruktion der Gerüste am Bildschirm bis zur Fixierung der Zirkonoxidrohlinge in der Fräsmaschine. Es sind ebenso manuelle Arbeiten während des Fräsvorganges notwendig. Das manuelle Entfernen des porös vorgesinterten Gerüstes aus der Wachshalterung für das Sintern verlängert weiterhin das Produktionsintervall.

Abb. 96 b Tabelle zur Anwenderfreundlichkeit der Systeme (Teil 2)

- [1] *Bieniek, K.W., Küpper, H.:* Zur Randspaltproblematik von Keramikkronen. Zahnärztl Welt 97,1048 – 1051 (1988)
- [2] *Brachwitz, J.*: Minimalinvasive Implantologie mit Zirkonoxidimplantaten. Implantologie Journal DGI, Sonderdruck, (06/2006)
- [3] Brannström, M., Nyborg, H.: The presence of bactaria in cavities filled silicate cement and composite resin materials. Swed Dent J 64, 149 155 (1971)
- [4] Brannström.G, Vojinovic,G.: Response of the dental pulp to invasion of bakteria around three filling materials. J Dent Res 43, 15-22 (1976)
- [5] Brick, E.M., Rudoph, H., Arnold, J., Luthard, R.G.: Analysis of three-dimensional sinter shrinkage of copings made from alumina in an innovative direct shaping process. Comput Med Imaging Graph, 28, 159 – 165 (2004)
- [6] Buchmann, G., Kimm, W., Geurtsen, W.: Der Füllungsrandspalt und seine mikroökologische Bedeutung. Dtsch Zahnärztl Z 47, 188-192 (1992)
- [7] Cramer v. Clausbruch: Zirkon und Zirkonium, Steigerung oder unterschiedliche Materialien? Dental Lab 07/2003 (Sonderdruck 2003)
- [8] Creugers, N.H., Käyser. A.F., van`t Hof, M.A.: A meta-analysis of durability data on conventional fixed bridges.
 Community Dent Oral Epidemiol 22, 448 (1994)
- [9] DCS: Precident-System, Produktinformation, DCS Dental AG, Allschwil, Schweiz (2003)
- [10] Degudent: Cercon ceram, Zirkon-Verblendkeramik, Verarbeitungsanleitung. Degudent AG, (2005)
- [11] Degudent: Cercon Smart Ceramics, Systembeschreibung + Verarbeitungsanleitung. Degudent AG, (2004)
- [12] *Degussa Dental*: Stellungnahme zur Belastung von Cercon Base mit radioaktiven Isotopen. Hanau, (2005)
- [13] Donath, K., Roth,K.: Histologisch morphometrische Studie zur Bestimmung des zervikalen Randschlusses von Einzel- und Pfeilerkronen. Stomatol 84, 53-72 (1987)

- [14] *Edelhoff , Junge , Spiekermann und Yilderim:* Three-year clinical results of two allceramic post Systems. J dent Res , 2002 (Abstract 2586)
- [15] *Eichner, K.,Kappert.H-F.:* Zahnärztliche Werkstoffe und Ihre Verarbeitung. Hüthig Verlag, Heidelberg (1996)
- [16] EN ISO 6872: "Dentalkeramik", Deutsche Fassung (1998)
- [17] ESPE 3M: Ketac cem radiopaque, Produktbeschreibung, 3M Espe Dental AG, Dental Products .D- 82229 Seefeld, (2003)
- [18] Etkon: Etkon-System, Scanner-Systembeschreibung, Etkon AG, München/Gräfelfing (2005)
- [19] Filser, F., Lüthy, H., Kocher, P., Schärer, P., Gauckler, L.J.: Vollkeramischer Zahnersatz im Seitenzahnbereich. Quintessenz Zahntech 28, 48 -60 (2002)
- [20] *Fritz,.H.* : Randspaltuntersuchugen bei Procera All-ceram-Kronen (In-vivo) Diss FU Berlin (2004)
- [21] *Gardner, F.M.*: Margins of complete crowns-Literature review. J Prosthet Dent 48, 396-409 (1982)
- [22] Garvie, R.C., Hannink, R.H., Pascoe, R.T.: Ceramic Stell ? Nature 258, 703 (1975)
- [23] GC: Initial Zirkon-Verblendkeramik, Verarbeitungsanleitung, GC Europe (2005)
- [24] Geis-Gerstorfer, J., Fässler, P.: Untersuchungen zum Ermüdungsverhalten der Dentalkeramiken Zirkondioxid-TZP und InCeram. Dtsch Zahnärztl Z 54, 692 (1999)
- [25] *Geist-Jacobi, G.P.:* Geschichte der Zahnheilkunde. Verlag Franz Pietzcker, Tübingen 146-149 (1896)

[26] Geursten, W.: Der Kronen- und Füllungsrand. Dtsch Zahnärztl Z 45, 380 – 386 (1990)

- [27] Groten, M., Klink, A.: : Bildmaterial Zirkonoxid-Vollkeramik. ZMK (22) 5, (2006)
- [28] Groten, M., Axmann, D., Pröbster, L., Weber, H.: Verlässlichkeit von zirkulären Randspaltmessungen an Einzelkronen. Dtsch Zahnärztl Z 53, 260-265 (1989)

- [29] Groten, M., Pröbster, L., Girthofer, S.: Marginal fit consistency of copy-milled all-ceramic crowns during fabrication by light- and scanning-electron-microscopic analysis in vitro. J Oral Rehabil 24, 871-881 (1997)
- [30] *Gutsche, ZTM:* Neue Verblendkeramik auf Feldspat für Zirkonoxidgerüste. DZW, 34-36, ZT 6-7 (2006)
- [31] Hannig, M., Albers, H.-K., Bößmann, K.: Die Pulpaverträglichkeit von Glasionomerzement. ZWR 101, 272-274 (1992)
- [32] *Hertlein,G., Höscheler,S., Frank,S., Suttor,D.:* Marginal fit of CAD/CAM manufactured all ceramic zirconia protheses. J Dent Res 80, 42 Abstr 049 (2001)
- [33] *Hickel, R, Kunzelmann, K.-H.:* Keramikinlays und Veneers. Hanser Verlag, München (1997)
- [34] Hint-els: Dentacut CAD/CAM Systembeschreibung , Hint-els GmbH , D Griesheim (2005)
- [35] Holmes, J.H., Bayner, S.D., Holland, G.A., Sulik, W.D.: Considerations in measurement of marginal fit. J Prosthet Dent 62, 405 - 407 (1989)
- [36] Hunter, A.J., Hunter, A.R.: Gingival crown margin configurations: A review and discussion. Part I – Terminology widths. J Prosthet Dent 64, 548 – 552 (1990)
- [37] *Ichikawa, Y., Akagawa, Y.,Nikai, H., Tsuru, H.:* Tissue compatibility and stability of a new zirkonia ceramic in vivo. J Prosthet Dent 68, 332-326 (1992)
- [38] Ishikiriama A., Oliveira J.F., Vieira D.F., Mondelle J.: Influence of some factors on the fit of cemented crowns. J Prosthet Dent 45, 400-414 (1981)
- [39] ISO Norm13356 Implants for surgery-ceramic materials based on yttria-stabilized tetragonal zirconia polycristal (Y-TZP) (1997)
- [40] Jorgensen, K.D., Wakumoto, S.: Occlusal amalgam fillings: marginal defects and secondary caries. Odontol Z 76, 43-54 (1968)
- [41] Kapert, H, Knode, H.: In-Ceram auf dem Pr
 üfstand. Quintessenz Zahntech 16: 980 1002 (1990)

- [42] Kohal, R.J., Weng, D., Bächle, M., Klaus, G.: Zirkonoxid-Implantate unter Belastung. Eine vergleichende histologische, tierexperimentelle Untersuchung. Z Zahnärztl Implantol (2003)
- [43] KaVo: Everest- CAD/CAM System , Systembeschreibung , KaVo AG, (2004)
- [44] Kelly, J.R., Tesk, J.A., Sorensen, J.A.: Failure of all-ceramic fixed partial dentures in vitro and in vivo : analysis and modelling. J Dent Res 74: 1253 – 1258 (1995)
- [45] *Kerkhof, F.:* Grundlagen der Festigkeit und des Bruchverhaltens von keramischen Werkstoffen. Handbuch der Keramik, Schmid Verlag, Freiburg (1982)
- [46] Kern, M., Knode, H., Strub, J.R.: The all-porcelain, resin-bonded bridge. Quintessence Int 22: 257 – 262 (1991)
- [47] Kern M., Pröbster L.: Vollkeramik für ästhetische und dauerhafte Restaurationen. Dental-Praxis 14,269-276 (2002)
- [48] *Kern, M., Simon, M.H.P., Strub, J.R.*: Erste klinische Erfahrungen mit Wurzelstiften aus Zirkonoxidkeramik. Dtsch Zahnärzl Z 53, 266 268 (1998)
- [49] Kersten, S., Tiedmann, C.: Strength and marginal fit of full and partial porcelain crowns on Branemark implants. Clin Oral Implants Res 11, 59 -64, (2000)
- [50] *Knappwost,A.:* Über die Zersetzung und Zersetzungshemmung der Phosphatzemente im Bereich der Mundhöhle. Dtsch Zahnärztl Z 5, 1022-1030 (1950)
- [51] Koutayas, S.O., Kern, M.: All-ceramic posts and cores: the state of the art. Quintessence Int 30, 383-392 (1999)
- [52] Körber, .K.H.,Lenz,P.: Beitrag zum Problem der Randgestaltung von Ersatzkronen. Zahnärztl Welt 69, 440 – 445 (1968)
- [53] Lenz, M., Patyk, A.J., Kobes L.W.R.: Randschlußverhalten von vollkeramischen Kronen in Abhängigkeit von der geometrischen Form des Stumpfes. ZWR 109, 154 – 159 (2000)
- [54] Loos, R., Quaas, S., Luthardt, R.G.: Accuracy of Intraoral Data Acquisition in Comparison to the Conventional Impression. Int J Comput Dent 2005, 8, 283 – 294.

- [55] Luthardt, R., Holzhüter, M., Sandkuhl, O., Herold, V., Walter, M.: Festigkeit und Randzonenschädigung von Zirkonia -TZP- Keramik nach simulierter Innenbearbeitung von Kronen. Dtsch Zahnärzt Z 55, 785 -789 (2000)
- [56] Luthardt, R., Herold, V., Sandkuhl, O., Reitz, B., Knaak, J.P., Lenz, E.: Kronen aus Hochleistungskeramik. Dtsch Zahnärztl Z 53, 280 (1998)
- [57] Luthardt, R., Kuhmstedt, P., Walter. M: Digital 3D-measurement method for accuracy testing of Dental impressions. J Dent Res 79, 617-618 (2000)
- [58] Luthardt, R., Kuhmstedt, P., Walter, M.: A new method for the computer-aided evaluation of three-dimensional changes in gypsum materials. Dent Mater 19(1), 19-24 (2003)
- [59] Luthardt, R., Rudolph.H., Sandkuhl.O., Walter, M.: Aktuelle CAD/CAM-Systeme zur Herstellung von keramischen Zahnersatz. Teil 1:Systeme ohne zusätzliche Sinterung des keramischen Grundmaterials. ZWR 110,747-754, (2001)
- [60] Luthardt. R, Rudolh, H., Sandkuhl, O. Walter, M.: Aktuelle CAD/CAM-Systeme zur Herstellung von keramischen Zahnersatz. Teil 2: Systeme mit zusätzlicher Sinterung des keramischen Grundmaterials. ZWR 110, 797-802 (2001)
- [61] Lüthy, H., Filser, F., Loeffel, O., Schumacher, M., Gauckler, L., Hämmerle, C.H.F.: Festigkeit und Zuverlässigkeit von 4-gliedrigen vollkeramischen Brücken. IADR 0722, Göteburg (2003)
- [62] Marxkors, R.: Der Randschluss der Gusskronen. Dtsch Zahnärztl Z 35, 913 915 (1980)
- [63] *Marxkors, R., Meiners, H.:* Taschenbuch der zahnärztlichen Werstoffkunde. Hanser Verlag, München (1993)
- [64] Mehl A .: Von den Anfängen bis heute. ZWP 4, 10-11 (2001)
- [65] Meier M., Fischer H., Richter E.-J, Maier H.R., Spiekermann H.: Einfluß unterschiedlicher Präparationsgeometrien auf die Bruchfestigkeit vollkeramischer Molarenkronen. Dtsch Zahnärztl Z 50, 295-299 (1995)
- [66] *Meiners, H.:* Das Problem der Passgenauigkeit: Der Randschluss von Gußkronen. Dent Lab 34 1934-1944 (1986)
- [67] Metoxit AG: Materialeigenschaften von Y-TZP-Zirkonoxid. Metoxit AG. CH- Thayngen , (2006)

- [68] Moldovan, O., Rudolph,H., Luthardt, R.G.: Interne 3D-Passgenauigkeit CAD/CAMgefertigter Zirkondioxidgerüste für den Seitenzahnberich. Dtsch Zahnärztl Z 61, 412-418 (2006)
- [69] Nobel Biocare Implants : Worldconference Implantology . Las Vegas (2005)
- [70] Odman, P., Andersson, B.: Procera Allceram Crowns followed for 5 to 10,5 years: a prospektiv clinical study. Int J Prosthodont 14, 504-507 (2004)
- [71] Pieper, K, Motsch, A., Sennhenn, S, Färborn, L.: Klinische Qualitätsbeurteilung von Amalgam-, Kunststoff- und Gußfüllungen. Ergebnisse einer Pilotstudie. Dtsch Zahnärztl Z 43, 874-879 (1988)
- [72] Porsche, A.: Die Eignung der Zinkoxyd Phosphatzemente als Befestigungsmittel. Dtsch Zahnärztl Z 16, 87-91 (1961)
- [73] Pospiech, P., Rountree, Nothdurft, F.: Clinical evaluation of zirconia-based all-ceramic posterior bridges, two-year results.J Dent Res 82, Spec Iss B-114 (Abtract 0817) (2003)
- [74] Pospiech, P., Tinschert, J., Raigrodski, A.: Keramik Vollkeramik . Ein Kompendium f
 ür die keramikgerechte Anwendung vollkeramischer Systeme. 3M ESPE AG , D- 82229 Seefeld (2004)
- [75] Pospiech, P.: Persönliche Mitteilungen
- [76] Posselt, A., Kerschbaum, T.: Longevity of 2328 chaiside cerec inlays and onlays. Int J Comput Dent 6 ,231 -248 (2003)
- [77] *Rehberg, H.J.:* Der Kronenrand: Exakter Randschluss was ist das? Dtsch Zahnärztl Z 26, 696-699 (1971)
- [78] *Reich,* S.: Clinical Connector Dimensions of CAD/CAM produced All-ceramic FDPs. J Dent Res, Abstr. 1355 (2003)
- [79] Reid, J.S.: Etch-retained porcelain laminate bridges. Restora Dent 6: 18-19 (1990)
- [80] Reppel, P.D., Böning, K., Walter, M.: Festsitzender Zahnersatz aus gefrästen/funkenerodierten Titan. Dtsch Zahnärztl Z 46, 756 -758 (1991)
- [81] *Rieger, W.:* Aluminium-und Zirkonoxidkeramik in der Medizin. IDR 2/1993, 116-120 (1993)

- [82] Rinke, S., Jenatschke, R.: Neue Perspektiven in der Anwendung vollkeramischer Seitenzahnrestaurationen auf Zirkonoxidbasis – Zwei klinische Falldarstellungen. Quintessenz 11, 35-36 (2001)
- [83] Rudolph, H., Quaas, S., Luthardt, R.G.: Neue Technologien und Entwicklungen in der Zahnmedizin und Zahntechnik. Dtsch Zahnärztl Z 58, 559 – 567 (2003)
- [84] Schlösser, R., Kerschbaum, T.H., Ahrens, F.J., Cramer, M.: Überlebensrate von Teil und Vollgußkronen. Dtsch Zahnärztl Z 48, 696-698 (1993)
- [85] Schneucker, T., Hommel, H., Hillmann, E.: Vollkeramischer Cercon-Transversalbügel. Dental Praxis 3 / 4, 83-94 (2006)
- [86] Scurria, M., Bader, J., Shugars, D.: Metanalysis of fixed partial dentures survival: protheses and abutments. J Prosthet Dent 79, 459 – 464 (1998)
- [87] Sennerby, L., Dasmah, A., Larsson, B., Iverhed, M.: Bone Tissue Responses to Surface- Modified Zirconia Implants: A Histomorphometric an Removal Torque Study in the Rabbit. Clinical Implant Dentistry and Related Research, Vol 7-Suppl 1:13-20 (2005)
- [88] *Siladent:* Siladent Cr-Co-Einbettmasse, Gebrauchsanweisung, Siladent GmbH, (2004)
- [89] *Spiekermann.H.:* Zur marginalen Passform von Kronen und Brücken. Dtsch Zahnärztl Z 41 ,1015-1019 (1986)
- [90] *Stephan, K.:* Teleskopierende Zirkonoxidbrücke ohne Galvano. Dent Lab,1119-1123, (07/2004)
- [91] Strup, J.R., Türp, J.C., Witkowski, S., Hürzeler, M.B., Kern, M.: Curriculum Prothetik Band 1-3 Quintessenz Verlag, Berlin (1999)
- [92] Tan, K., Pjetursen, B.E., Lang, N.P., Chan, E.S.: A systematic review of the survival and complication rates of fixed partial dentures(FPD`s) after an observation period of at least 5 years- III. Conventional FPD`s. Clin Oral Implants Res 15, 654 – 666 (2004)
- [93] Tinschert, J.: Materialkunde Zirkonoxid. ZWP Spezial 4, 43 (2001)
- [94] *Tinschert, J., Natt, G., Doose, B., Fischer, H., Marx,R.:* Seitenzahnbrücken aus hochfester Strukturkeramik. Dtsch Zahnärztl Z 54 , 545 550 (1999)

- [95] Tinschert J., Natt, G., Mautsch W., Spiekermann H., Anusavice K.L.: Marginal fit of alumina- and zirconia-based fixed partial dentures produced by a Cad/Cam-system. Oper Dent 26, 367 – 374 (2001)
- [96] Tinschert, J., Natt, G., Mohrbotter, N., Spiekermann, H.: In-vitro-Untersuchung zur Dauerfestigkeit glasinfiltrierter und polykristalliner Oxidkeramiken für Kronen- und Brückengerüste. (Veröffentlichung in Vorbereitung) (2006)
- [97] Tripodakis, A.P., Strub, J.R., Kappert, H.F., Witkowski. S.: Strength and mode of failure of single implant all-ceramic restorations under static load. Int J Prosthodont 8, 265 – 272 (1995)
- [98] Van der Zel, J.M.: Ergebnisse mit einem neuen Verblendsystem für Zirkonoxidgerüste. Zahntech MAG 9, 204-209 (2005)
- [99] Völkl,L.: Cercon Das CAM-Vollkeramiksystem von Degussa Dental. Quintessenz 52, 811 -814 (2001)
- [100] Wehnert, T., Tennes, H., Eisele, T., Steinmetz, W.: Oberflächenkonditionierung von Hartkernkeramik mittels Ionenimplantation. Dissertation (2002)
- [101] Willershausen, B: Gingivapigmentierungen bei Metallkeramik und Amalgamaufbauten. Dtsch Zahnärztl Z 45, 360 (1990)
- [102] Wohlwend, A., Strub, J.R., Schärer, P.: Metal ceramic and all porcelain restorations: Current Considerations. Int Prosthodont 2: 13-26 (1989)
- [103] Wohlwend, A., Studer, S., Schärer, P.: Das Zirkonoxidabutment ein neues vollkeramisches Konzept zur ästhetischen Verbesserung der Suprastruktur in der Implantologie. Quintessenz Zahntech 22: 364 -381 (1996)
- [104] Wöstmann, B., Hufnagel, A.: Vergleich verschiedener Methoden zur Bestimmung der Randschlußgenauigkeit von Kronen in vivo. Dtsch Zahnärztl Z 52, 272 – 273 (1997)

8. Anhang

8.1 Deskriptive Statistiken

Deskriptive Statistik Typ		oA Bri	icken 11-13-1	l5 sagitt	ale Schnittri	chtung
System		N	Minimum	Maximum	Mittelwert	Standardab weichung
Etkon/etkon	Hohlkehle vestib.	300	39,78	71,09	55,9679	10,27241
	Wand vestib.	293	19,87	80,27	52,0528	15,69495
	Okklusal	300	43,93	115,37	81,8430	20,14385
	Wand oral	300	46,81	119,93	70,5775	19,79286
	Hohlkehle oral	300	42,76	110,82	63,6513	16,49266
	Gültige Werte (Listenweise)	1493				
KaVo/everest	Hohlkehle vestib.	300	35,17	74,30	63,3690	10,19761
	Wand vestib.	278	46,73	86,70	73,5259	9,80061
	Okklusal	300	72,71	132,35	93,2157	15,63229
	Wand oral	298	50,37	120,43	76,2383	16,36770
	Hohlkehle oral	291	64,44	112,62	77,2029	12,56753
	Gültige Werte (Listenweise)	1467				
Degudent/cercon	Hohlkehle vestib.	300	22,59	76,38	64,9372	14,85583
	Wand vestib.	300	42,02	81,58	70,3819	9,96630
	Okklusal	300	82,25	217,12	123,9982	42,09702
	Wand oral	300	48,07	118,08	77,2697	21,08345
	Hohlkehle oral	300	61,49	94,06	75,0406	9,63324
	Gültige Werte (Listenweise)	1500				
DCS/precident	Hohlkehle vestib.	291	20,36	69,98	52,4039	17,47093
	Wand vestib.	300	22,08	85,85	61,8663	20,99405
	Okklusal	300	20,28	109,63	67,2818	27,41321
	Wand oral	298	28,25	105,85	67,2422	23,51756
	Hohlkehle oral	295	34,08	91,53	60,8710	15,85554
	Gültige Werte (Listenweise)	1484				
Hint-els/dentacut	Hohlkehle vestib.	300	30,05	77,92	62,2236	11,55712
	Wand vestib.	300	36,90	87,70	57,8452	15,42542
	Okklusal	300	103,86	197,06	130,5039	29,29494
	Wand oral	300	30,30	90,97	66,8960	15,89035
	Hohlkehle oral	287	36,65	84,85	67,3693	13,15420
	Gültige Werte (Listenweise)	1487				

Abb. 97 Deskriptive Statistik der Messwerte in µm der Brücken 11-13-15 in sagittaler Schnittrichtung

Deskriptive Statistik Typ		A Brüc	Brückenanker 11		sagittale Schnittrichtung		
						Standardab	
System		N	Minimum	Maximum	Mittelwert	weichung	
Etkon/etkon	Hohlkehle vestib.	100	39,78	71,09	53,3506	13,03318	
	Wand vestib.	97	31,44	68,25	50,5163	13,83461	
	Okklusal	100	46,14	104,84	79,5720	24,66814	
	Wand oral	94	46,81	96,54	71,9431	20,45849	
	Hohlkehle oral	100	42,76	78,11	58,0884	13,64236	
	Gültige Werte (Listenweise)	491					
KaVo/everest	Hohlkehle vestib.	100	57,06	70,82	65,4891	5,51972	
	Wand vestib.	100	74,20	86,70	80,8460	5,60022	
	Okklusal	97	80,03	106,35	89,2486	10,18786	
	Wand oral	100	64,75	84,54	77,2379	7,51420	
	Hohlkehle oral	95	71,41	85,91	78,0889	6,61321	
	Gültige Werte (Listenweise)	492					
Degudent/cercon	Hohlkehle vestib.	88	60,60	74,74	65,4081	5,98200	
	Wand vestib.	100	59,92	73,96	66,6510	5,08547	
	Okklusal	100	95,75	175,24	118,1073	33,11280	
	Wand oral	100	59,93	116,02	86,0590	23,13365	
	Hohlkehle oral	100	61,49	84,33	75,5525	10,12671	
	Gültige Werte (Listenweise)	488					
DCS/precident	Hohlkehle vestib.	92	20,37	66,19	48,5680	20,01385	
	Wand vestib.	100	23,37	61,01	49,7327	17,77166	
	Okklusal	100	20,28	85,50	59,4413	28,67394	
	Wand oral	100	28,25	81,83	60,3700	24,08419	
	Hohlkehle oral	96	34,08	62,67	52,9192	12,97440	
	Gültige Werte (Listenweise)	488					
Hint-els/dentacut	Hohlkehle vestib.	83	30,05	64,23	54,4826	13,93242	
	Wand vestib.	97	40,88	73,05	55,0950	11,82133	
	Okklusal	100	110,02	193,52	129,3337	36,02073	
	Wand oral	100	50,84	88,13	70,2747	14,50690	
	Hohlkehle oral	91	36,65	75,96	60,3764	18,84560	
	Gültige Werte (Listenweise)	471					

Abb.98 Deskriptive Statistik der Messwerte in µm der Brückenanker 11 in sagittaler Schnittrichtung

Deskriptive Statistik Typ		A B	rücl	kenanker 13	sagittale Schnittrichtung		
System		N		Minimum	Maximum	Mittelwert	Standardab weichung
Etkon/etkon	Hohlkehle vestib.	1	00	40,53	65,22	53,2530	10,92178
	Wand vestib.	1	00	19,87	66,77	45,6521	17,66142
	Okklusal		87	43,93	89,69	74,5561	17,80136
	Wand oral	1	00	55,11	119,93	76,7380	25,29424
	Hohlkehle oral		89	52,21	110,82	70,0698	23,96076
	Gültige Werte (Listenweise)	4	76				
KaVo/everest	Hohlkehle vestib.	1	00	35,17	65,90	54,7389	13,04026
	Wand vestib.	1	00	46,73	72,70	64,1077	10,10496
	Okklusal	1	00	72,71	132,35	93,9615	23,07184
	Wand oral	1	00	80,08	120,43	90,4826	17,18000
	Hohlkehle oral		96	71,54	112,62	85,5000	17,16942
	Gültige Werte (Listenweise)	4	96				
Degudent/cercon	Hohlkehle vestib.	1	00	41,14	76,29	65,9883	14,31707
	Wand vestib.	1	00	68,59	81,27	74,8785	4,78807
	Okklusal	1	00	91,36	193,44	125,1707	45,68903
	Wand oral	1	00	52,68	118,08	78,1151	24,48191
	Hohlkehle oral		92	61,72	94,06	76,1241	12,53786
	Gültige Werte (Listenweise)	4	92				
DCS/precident	Hohlkehle vestib.		91	20,36	68,67	53,0990	22,43843
	Wand vestib.		97	22,08	84,70	63,3513	28,23177
	Okklusal	1	00	22,40	84,93	59,5094	27,97753
	Wand oral	1	00	28,85	84,13	56,7616	22,87378
	Hohlkehle oral	1	00	44,65	75,93	60,2417	15,18413
	Gültige Werte (Listenweise)	4	88				
Hint-els/dentacut	Hohlkehle vestib.	1	00	63,42	69,24	65,3513	2,56761
	Wand vestib.	1	00	36,90	72,27	52,1253	13,48956
	Okklusal	1	00	103,86	141,76	119,2273	15,71025
	Wand oral	1	00	57,58	90,97	71,1143	13,85044
	Hohlkehle oral	1	00	59,24	74,28	67,1376	6,95377
	Gültige Werte (Listenweise)	5	00				

Abb. 99 Deskriptive Statistik der Messwerte in µm der Brückenanker 13 in sagittaler Schnittrichtung

Deskript	A Bri	ickenanker 1	anker 15 sagittale Schnittrichtung			
System		N	Minimum	Maximum	Mittelwert	Standardab weichung
Etkon/etkon	Hohlkehle vestib.	93	54,42	67,66	61,2999	5,18311
	Wand vestib.	97	40,14	80,27	59,9899	15,03092
	Okklusal	100	71,81	115,37	91,4008	17,54415
	Wand oral	100	49,18	82,80	63,0513	13,86463
	Hohlkehle oral	100	45,90	72,71	62,7956	10,03500
	Gültige Werte (Listenweise)	490				
KaVo/everest	Hohlkehle vestib.	100	65,70	74,30	69,8791	3,42924
	Wand vestib.	100	68,00	79,28	75,6240	4,39868
	Okklusal	100	81,70	111,88	96,4371	13,63260
	Wand oral	100	50,37	67,23	60,9944	6,37924
	Hohlkehle oral	100	64,44	74,69	68,0199	4,67266
	Gültige Werte (Listenweise)	500				
Degudent/cercon	Hohlkehle vestib.	94	22,59	76,38	63,4152	22,95904
	Wand vestib.	97	42,02	81,58	69,6163	15,98283
	Okklusal	100	82,25	217,12	128,7167	54,27416
	Wand oral	100	48,07	88,45	67,6349	14,41412
	Hohlkehle oral	100	62,13	80,54	73,4450	7,75061
	Gültige Werte (Listenweise)	491				
DCS/precident	Hohlkehle vestib.	100	40,99	69,98	55,5446	13,48099
	Wand vestib.	100	56,03	85,85	72,5149	12,36089
	Okklusal	100	50,33	109,63	82,8946	25,74832
	Wand oral	95	62,73	105,85	84,5951	17,71327
	Hohlkehle oral	100	51,49	91,53	69,4521	18,43593
	Gültige Werte (Listenweise)	495				
Hint-els/dentacut	Hohlkehle vestib.	98	47,46	77,92	66,8369	12,37108
	Wand vestib.	89	40,03	87,70	66,3154	19,26294
	Okklusal	100	106,50	197,06	142,9507	33,24236
	Wand oral	100	30,30	81,79	59,2990	19,30860
	Hohlkehle oral	100	60,92	84,85	74,5938	8,69888
	Gültige Werte (Listenweise)	487				

Abb. 100 Deskriptive Statistik der Messwerte in µm der Brückenanker 15 in sagittaler Schnittrichtung

						Standardab
System	Llohlkohlo vootik	N	Minimum	Maximum	Mittelwert	weichung
EIKON/EIKON		92	43,45	61,27	54,9453	6,06316
	Wand vestib.	187	33,69	66,60	51,0409	9,19572
	Okkiusai	200	60,05	80,50	69,5159	6,41514
		200	50,96	80,33	63,0147	9,37476
		192	39,14	63,40	55,6187	7,80476
	(Listenweise)	871				
KaVo/everest	Hohlkehle vestib.	200	49,13	71,95	64,1454	7,43358
	Wand vestib.	200	44,86	83,50	67,3328	11,42912
	Okklusal	181	73,48	116,05	93,3180	14,46891
	Wand oral	200	38,06	82,84	65,2351	14,94077
	Hohlkehle oral	200	59,15	89,03	72,2063	8,25640
	Gültige Werte (Listenweise)	981				
Degudent/cercon	Hohlkehle vestib.	200	58,86	79,48	69,2441	7,91780
	Wand vestib.	200	45,83	80,38	65,0665	9,21014
	Okklusal	200	72,78	121,66	90,0017	14,06164
	Wand oral	200	42,90	88,35	64,4831	15,10506
	Hohlkehle oral	200	51,17	80,42	64,7663	10,57362
	Gültige Werte (Listenweise)	1000				
DCS/precident	Hohlkehle vestib.	187	50,50	86,59	64,0568	11,78570
	Wand vestib.	200	41,49	80,95	58,5763	12,64087
	Okklusal	200	66,83	112,83	85,6858	15,48322
	Wand oral	188	46,15	87,78	71,2713	13,68203
	Hohlkehle oral	200	59,22	81,27	71,9069	8,53393
	Gültige Werte (Listenweise)	975				
Hint-els/dentacut	Hohlkehle vestib.	191	52,66	72,84	61,5180	6,94067
	Wand vestib.	200	31,03	87,15	66,1176	18,84880
	Okklusal	200	118,63	146,39	128,3801	8,59718
	Wand oral	200	26,88	69,98	49,0563	14,98493
	Hohlkehle oral	195	24,51	69,57	52,0497	16,67782
	Gültige Werte (Listenweise)	984				

Deskriptive Statistik	Тур А
-----------------------	-------

Brücken 24 - 27

sagittale Schnittrichtung

Abb.101 Deskriptive Statistik der Messwerte in µm der Brücken 24 - 27 in sagittaler Schnittrichtung

Deskriptiv	A Brückenanker 24 sagittale Schnittrichtung					
System		N	Minimum	Maximum	Mittelwert	Standardab weichung
Etkon/etkon	Hohlkehle vestib.	100	43,45	59,12	52,6137	6,90438
	Wand vestib.	100	33,69	61,92	48,4146	10,40977
	Okklusal	100	60,05	73,88	67,9768	5,82785
	Wand oral	92	50,96	80,33	62,0594	11,58048
	Hohlkehle oral	98	48,93	62,96	57,1687	6,92338
	Gültige Werte (Listenweise)	490				
KaVo/everest	Hohlkehle vestib.	91	60,86	71,95	66,9197	4,75241
	Wand vestib.	94	61,80	83,50	74,4550	8,62504
	Okklusal	100	73,48	102,34	86,9970	11,44953
	Wand oral	100	42,54	76,10	65,5251	13,73199
	Hohlkehle oral	100	66,71	89,03	76,1447	8,95621
	Gültige Werte (Listenweise)	485				
Degudent/cercon	Hohlkehle vestib.	89	58,86	78,88	68,8881	9,18868
	Wand vestib.	100	45,83	73,10	62,0000	10,27407
	Okklusal	100	72,78	121,66	91,0849	18,20536
	Wand oral	100	42,90	65,85	56,7580	8,48608
	Hohlkehle oral	81	51,17	73,82	63,4833	8,42228
	Gültige Werte (Listenweise)	470				
DCS/precident	Hohlkehle vestib.	100	59,47	86,59	70,1721	11,64163
	Wand vestib.	100	45,10	77,44	57,8762	12,58883
	Okklusal	100	69,70	112,83	89,5590	18,14066
	Wand oral	100	46,15	87,78	72,9569	16,55302
	Hohlkehle oral	98	59,22	81,27	75,0222	8,99209
	Gültige Werte (Listenweise)	498				
Hint-els/dentacut	Hohlkehle vestib.	97	55,17	70,94	62,5090	5,85017
	Wand vestib.	100	31,03	87,15	65,2361	22,12983
	Okklusal	93	118,63	146,39	129,8091	10,26302
	Wand oral	98	43,53	69,98	55,1500	11,37113
	Hohlkehle oral	100	24,51	67,69	56,4226	18,16743
	Gültige Werte (Listenweise)	488				

Abb.102 Deskriptive Statistik der Messwerte in µm der Brückenanker 24 in sagittaler Schnittrichtung
Quarters			NA' a 'a a a a a		Mittalaurat	Standardab
System Etkon/otkon	Hohlkohla vostih	N 100	Minimum	Maximum	Mittelwert	weichung
EIKON/EIKON	Mond vostib	100	49,59	61,27	57,2768	4,63174
		100	45,70	66,60	53,6672	8,04090
		100	61,86	80,50	71,0549	7,26023
		98	58,20	76,65	63,9700	7,83292
		92	39,14	63,40	54,0687	9,11689
	(Listenweise)	490				
KaVo/everest	Hohlkehle vestib.	100	49,13	69,64	61,3711	9,08317
	Wand vestib.	100	44,86	70,93	60,2107	9,62815
	Okklusal	92	74,58	116,05	99,6390	15,49373
	Wand oral	100	38,06	82,84	64,9450	17,70543
	Hohlkehle oral	89	59,15	74,65	68,2679	5,86407
	Gültige Werte (Listenweise)	491				
Degudent/cercon	Hohlkehle vestib.	100	60,88	79,48	69,6001	7,50381
_	Wand vestib.	100	61,80	80,38	68,1330	7,86098
	Okklusal	100	79,64	106,13	88,9185	10,51300
	Wand oral	100	46,19	88,35	72,2081	17,09273
	Hohlkehle oral	100	51,40	80,42	66,0492	13,28547
	Gültige Werte (Listenweise)	500				
DCS/precident	Hohlkehle vestib.	100	50.50	71.12	57.9416	9.13854
	Wand vestib.	100	41,49	80,95	59,2763	14,13602
	Okklusal	95	66,83	98,18	81,8125	13,14548
	Wand oral	100	54,40	83,52	69,5856	11,83592
	Hohlkehle oral	89	60,23	76,03	68,7916	7,66434
	Gültige Werte (Listenweise)	484				
Hint-els/dentacut	Hohlkehle vestib.	96	52,66	72,84	60,5269	8,46811
	Wand vestib.	100	39,03	83,63	66,9992	17,54144
	Okklusal	100	118,93	138,91	126,9510	7,47434
	Wand oral	100	26,88	68,24	42,9625	16,82546
	Hohlkehle oral	100	30,11	69,57	47,6768	15,74723
	Gültige Werte (Listenweise)	496				

Deskriptive Statistik	Тур А	Brückenanker 27	sagittale Schnittrichtung
-----------------------	-------	-----------------	---------------------------

Abb.103 Deskriptive Statistik der Messwerte in µm der Brückenanker 27 in sagittaler Schnittrichtung

Deskriptiv	ve Statistik Ty	pA Br	Brücken 33 - 43		sagittale Schnittrichtung		
System		N	Minimum	Maximum	Mittelwert	Standardab weichung	
Etkon/etkon	Hohlkehle vestib.	198	30,74	64,34	50,8270	11,64908	
	Wand vestib.	200	36,02	70,03	55,8157	9,41161	
	Okklusal	200	51,80	77,43	60,6676	8,03561	
	Wand oral	200	38,05	70,34	58,9990	9,84725	
	Hohlkehle oral	200	36,69	76,73	54,4032	12,03519	
	Gültige Werte (Listenweise)	998					
KaVo/everest	Hohlkehle vestib.	200	34,99	91,26	60,9954	17,07783	
	Wand vestib.	200	29,84	114,58	64,9628	24,24845	
	Okklusal	200	50,18	145,63	86,6912	28,88679	
	Wand oral	200	48,87	83,15	70,7797	10,43586	
	Hohlkehle oral	200	48,62	278,36	101,7983	66,32664	
	Gültige Werte (Listenweise)	1000					
Degudent/cercon	Hohlkehle vestib.	200	29,59	75,12	54,6540	15,41436	
	Wand vestib.	191	37,48	80,69	66,0205	13,76706	
	Okklusal	200	81,05	162,14	95,5733	24,07494	
	Wand oral	200	63,35	101,73	74,3648	11,29384	
	Hohlkehle oral	200	58,70	107,89	75,9771	14,04903	
	Gültige Werte (Listenweise)	991					
DCS/precident	Hohlkehle vestib.	200	20,32	73,72	57,1833	15,79177	
	Wand vestib.	200	37,30	86,96	60,7271	16,64501	
	Okklusal	200	45,63	126,65	81,2595	27,47013	
	Wand oral	200	39,77	92,60	63,1846	18,46352	
	Hohlkehle oral	200	32,04	140,92	80,9398	33,50961	
	Gültige Werte (Listenweise)	1000					
Hint-els/dentacut	Hohlkehle vestib.	200	42,28	110,07	64,7450	19,90786	
	Wand vestib.	200	35,50	168,47	66,3209	37,18915	
	Okklusal	200	71,59	199,23	127,4313	38,61277	
	Wand oral	200	51,10	94,65	70,0369	14,01072	
	Hohlkehle oral	200	49,19	104,37	71,8871	18,33696	
	Gültige Werte (Listenweise)	1000					

Abb.104 Deskriptive Statistik der Messwerte in µm der Brücken 33 - 43 in sagittaler Schnittrichtung

Deskriptive	A Brü	ckenanker 3	3 sagit	tale Schnittr	ichtung	
System		N	Minimum	Maximum	Mittelwert	Standardab weichung
Etkon/etkon	Hohlkehle vestib.	100	30,74	61,53	51,6431	12,11362
	Wand vestib.	100	36,02	70,03	56,2294	12,93498
	Okklusal	100	56,38	66,88	60,4381	4,14721
	Wand oral	89	38,05	70,34	59,1380	12,86138
	Hohlkehle oral	100	36,69	76,73	58,4230	15,93907
	Gültige Werte (Listenweise)	489				
KaVo/everest	Hohlkehle vestib.	100	46,51	91,26	67,2507	20,24002
	Wand vestib.	100	32,91	114,58	70,5032	29,36671
	Okklusal	100	55,82	145,63	93,9913	33,93769
	Wand oral	100	57,44	77,36	71,0251	8,14806
	Hohlkehle oral	100	69,03	278,36	116,0841	90,91262
	Gültige Werte (Listenweise)	500				
Degudent/cercon	Hohlkehle vestib.	92	29,59	75,12	51,9723	18,34145
	Wand vestib.	100	37,48	73,88	62,0940	14,43968
	Okklusal	100	84,05	162,14	104,6245	32,62419
	Wand oral	100	65,00	79,08	72,6845	6,74469
	Hohlkehle oral	100	58,70	107,89	74,0533	19,44330
	Gültige Werte (Listenweise)	492				
DCS/precident	Hohlkehle vestib.	100	43,84	73,72	58,8976	12,84288
	Wand vestib.	100	43,20	86,96	68,4291	18,19853
	Okklusal	100	50,15	119,68	83,0991	27,98236
	Wand oral	100	50,63	91,40	63,7100	16,47106
	Hohlkehle oral	100	54,65	121,38	88,8250	24,07564
	Gültige Werte (Listenweise)	500				
Hint-els/dentacut	Hohlkehle vestib.	98	42,28	110,07	73,7160	24,99180
	Wand vestib.	100	35,50	168,47	78,3276	52,13907
	Okklusal	100	71,59	199,23	126,7286	47,10981
	Wand oral	100	62,37	94,65	79,0183	11,61558
	Hohlkehle oral	100	65,26	104,37	82,4945	14,11284
	Gültige Werte (Listenweise)	498				

Abb.105	Deskriptive Statistik der Messwerte in µm der	Brückenanker	33	in sagittaler
	Schnittrichtung			

Deskriptive	A Brü	ickenanker	43 sag	ittale Schnitt	richtung	
System		N	Minimum	Maximum	Mittelwert	Standardab weichung
Etkon/etkon	Hohlkehle vestib.	100	33,96	64,34	50,0110	12,52689
	Wand vestib.	93	50,42	64,32	55,4020	5,61782
	Okklusal	100	51,80	77,43	60,8971	11,31167
	Wand oral	100	50,43	68,06	58,8600	7,26054
	Hohlkehle oral	96	43,05	56,30	50,3833	5,60815
	Gültige Werte (Listenweise)	489				
KaVo/everest	Hohlkehle vestib.	100	34,99	67,20	54,7400	12,19570
	Wand vestib.	100	29,84	79,13	59,4224	19,59152
	Okklusal	100	50,18	114,90	79,3910	24,34147
	Wand oral	100	48,87	83,15	70,5343	13,36039
	Hohlkehle oral	100	48,62	122,96	87,5125	33,51023
	Gültige Werte (Listenweise)	500				
Degudent/cercon	Hohlkehle vestib.	100	37,82	72,02	57,3357	13,42451
	Wand vestib.	100	46,57	80,69	69,9470	13,39399
	Okklusal	100	81,05	94,10	86,5220	5,91232
	Wand oral	100	63,35	101,73	76,0450	15,31145
	Hohlkehle oral	100	69,40	88,03	77,9008	7,53664
	Gültige Werte (Listenweise)	500				
DCS/precident	Hohlkehle vestib.	93	20,32	65,71	55,4691	19,71849
	Wand vestib.	97	37,30	70,65	53,0250	11,99526
	Okklusal	100	45,63	126,65	79,4200	30,10640
	Wand oral	100	39,77	92,60	62,6593	22,24956
	Hohlkehle oral	100	32,04	140,92	73,0547	42,32535
	Gültige Werte (Listenweise)	490				
Hint-els/dentacut	Hohlkehle vestib.	100	47,12	68,10	55,7740	8,12025
	Wand vestib.	87	44,93	59,98	54,3142	5,73918
	Okklusal	100	100,38	185,34	128,1340	33,67581
	Wand oral	100	51,10	77,18	61,0556	10,25138
	Hohlkehle oral	100	49,19	89,23	61,2797	16,61580
	Gültige Werte (Listenweise)	487				

Abb.106 Deskriptive Statistik der Messwerte in µm der Brückenanker 43 in sagittaler Schnittrichtung

Deskriptiv	Brücke	Brücken 11-13-15		transversale Schnittrichtung		
						Standardab
System		N	Minimum	Maximum	Mittelwert	weichung
Etkon/etkon		290	44,40	67,69	62,1942	7,40612
	Wand mesial	300	58,63	85,58	73,6944	10,26033
	Okklusal	300	65,51	135,98	100,5861	26,18206
	Wand distal	300	54,06	81,08	68,6233	8,87600
	Hohlkehle distal	289	50,96	77,53	64,4867	7,35110
	Gültige Werte (Listenweise)	1479				
KaVo/everest	Hohlkehle mesial	300	79,82	105,32	91,4818	11,70604
	Wand mesial	300	89,48	129,73	101,4938	15,01136
	Okklusal	300	115,26	177,61	133,7750	22,53107
	Wand distal	300	79,66	169,10	102,8521	34,74210
	Hohlkehle distal	298	77,66	128,97	93,0424	18,73959
	Gültige Werte (Listenweise)	1498				
Degudent/cercon	Hohlkehle mesial	300	69,13	99,69	85,9077	11,04443
	Wand mesial	300	76,84	133,35	95,6768	19,05033
	Okklusal	300	92,24	220,78	144,6799	53,57412
	Wand distal	300	72,64	106,08	86,1650	14,94036
	Hohlkehle distal	300	33,48	94,50	76,2098	19,84816
	Gültige Werte (Listenweise)	1500				
DCS/precident	Hohlkehle mesial	287	59,92	117,25	85,9593	19,33134
	Wand mesial	300	86,51	118,73	102,2411	11,76882
	Okklusal	300	71,78	109,39	94,0258	14,30378
	Wand distal	300	82,69	124,89	97,2438	18,05633
	Hohlkehle distal	300	,40	112,20	77,0706	35,91063
	Gültige Werte (Listenweise)	1487				
Hint-els/dentacut	Hohlkehle mesial	300	34,53	104,48	84,3899	22,95332
	Wand mesial	300	73,68	135,43	104,3512	26,86582
	Okklusal	300	80,47	264,73	159,2952	78,64155
	Wand distal	300	68,00	180,54	113,9752	38,75085
	Hohlkehle distal	300	66,20	156,25	98,8348	31,62320
	Gültige Werte (Listenweise)	1500				

Abb.107 Deskriptive Statistik der Messwerte in µm der Brücken 11-13 -15 in transversaler Schnittrichtung

						Standardab
System		N	Minimum	Maximum	Mittelwert	weichung
Etkon/etkon	Hohlkehle mesial	5	59,45	66,65	62,6364	3,16194
	Wand mesial	5	58,63	83,74	69,4875	11,02579
	Okklusal	5	65,51	135,98	91,8375	32,18911
	Wand distal	5	54,06	81,08	66,7695	10,15264
	Hohlkehle distal	4	50,96	67,33	61,3659	7,29250
	Gültige Werte	1				
	(Listenweise)	4				
KaVo/everest	Hohlkehle mesial	2	80,73	83,95	82,3364	2,27560
	Wand mesial	2	95,55	129,73	112,6375	24,16537
	Okklusal	2	115,26	122,44	118,8500	5,07349
	Wand distal	2	79,66	79,93	79,7938	,18562
	Hohlkehle distal	2	77,66	81,78	79,7227	2,91199
	Gültige Werte	2				
	(Listenweise)	2				
Degudent/cercon	Hohlkehle mesial	5	69,13	97,32	82,0669	10,43827
	Wand mesial	4	83,51	98,25	88,7094	6,51860
	Okklusal	4	92,24	195,53	126,0356	47,66442
	Wand distal	3	72,64	106,08	88,0967	16,85953
	Hohlkehle distal	4	33,48	86,92	67,8718	24,86194
	Gültige Werte	3				
	(Listenweise)	5				
DCS/precident	Hohlkehle mesial	2	78,58	117,25	97,9182	27,34575
	Wand mesial	2	88,29	107,21	97,7500	13,38200
	Okklusal	2	97,41	104,00	100,7063	4,65807
	Wand distal	2	86,33	124,89	105,6063	27,26781
	Hohlkehle distal	2	70,58	88,31	79,4473	12,53765
	Gültige Werte	2				
	(Listenweise)	2				
Hint-els/dentacut	Hohlkehle mesial	5	75,94	104,48	88,3025	12,89852
	Wand mesial	5	73,68	134,00	102,0292	27,19953
	Okklusal	5	80,47	264,73	133,3208	75,59738
	Wand distal	4	68,00	112,24	93,2000	18,95296
	Hohlkehle distal	4	66,20	95,12	82,6045	14,06117
	Gültige Werte	л				
	(Listenweise)	4				

Deskriptive Statistik	Brückenanker 11	transversale Schnittrichtung
-----------------------	-----------------	------------------------------

Abb. 108 Deskriptive Statistik der Messwerte in µm der Brückenanker 11 in transversaler Schnittrichtung

Deskriptive Statistik Typ A		Brücke	Brückenanker 13		transversale Schnittrichtung		
System		N	Minimum	Maximum	Mittelwert	Standardab weichung	
Etkon/etkon	Hohlkehle mesial	100	62,45	67,47	65,4855	2,30369	
	Wand mesial	98	62,81	87,25	76,4925	11,46321	
	Okklusal	92	72,24	107,88	91,7100	15,14641	
	Wand distal	100	62,09	80,94	69,8300	8,56384	
	Hohlkehle distal	98	51,00	77,53	63,6673	9,83247	
	Gültige Werte (Listenweise)	480					
KaVo/everest	Hohlkehle mesial	96	56,82	105,32	75,1242	19,30542	
	Wand mesial	98	84,63	97,00	91,9175	4,97230	
	Okklusal	100	56,00	177,61	112,5475	46,63359	
	Wand distal	100	77,94	169,10	103,4075	37,30117	
	Hohlkehle distal	95	72,50	128,97	90,9230	22,95699	
	Gültige Werte (Listenweise)	489					
Degudent/cercon	Hohlkehle mesial	100	57,16	96,97	77,9083	17,01138	
	Wand mesial	94	68,50	133,35	95,8688	27,20811	
	Okklusal	100	80,00	220,78	126,3188	64,80046	
	Wand distal	100	73,88	102,91	86,1031	12,83009	
	Hohlkehle distal	97	69,31	87,36	79,9977	8,35424	
	Gültige Werte (Listenweise)	491					
DCS/precident	Hohlkehle mesial	93	71,16	108,22	84,2079	20,81966	
	Wand mesial	100	86,51	118,73	97,4125	18,45878	
	Okklusal	100	71,78	91,50	81,7058	9,86066	
	Wand distal	100	79,33	115,18	92,3986	19,79610	
	Hohlkehle distal	96	76,40	112,20	92,0485	18,31988	
	Gültige Werte (Listenweise)	489					
Hint-els/dentacut	Hohlkehle mesial	97	34,53	98,97	71,6930	33,34003	
	Wand mesial	98	84,89	92,13	88,5063	5,11769	
	Okklusal	100	87,50	189,30	138,4000	71,98347	
	Wand distal	100	71,88	180,54	126,2063	76,83599	
	Hohlkehle distal	96	89,18	156,25	122,7182	47,42758	
	Gültige Werte (Listenweise)	491					

Abb.	109	Deskriptive	Statistik	der Mess	werte in	µm der	Brückenank	er 13 in	transvers	saler
		Schnittrichtu	ıng							

Deskriptiv	Deskriptive Statistik Typ A		Brückenanker 15		transversale Schnittrichtung		
System		Ν	Minimum	Maximum	Mittelwert	Standardab weichung	
Etkon/etkon	Hohlkehle mesial	89	44,40	67,69	59,3984	10,48136	
	Wand mesial	100	68,66	80,38	74,5188	8,28199	
	Okklusal	100	64,50	103,29	76,7400	16,69575	
	Wand distal	98	70,78	79,29	75,0313	6,01925	
	Hohlkehle distal	100	57,00	66,83	62,5007	4,06946	
	Gültige Werte (Listenweise)	487					
KaVo/everest	Hohlkehle mesial	100	74,67	104,80	90,1871	12,66682	
	Wand mesial	100	37,00	106,60	77,6813	30,03925	
	Okklusal	100	72,00	136,23	94,2969	28,63637	
	Wand distal	100	69,50	110,84	89,5781	18,25619	
	Hohlkehle distal	93	47,67	100,50	83,5939	24,29266	
	Gültige Werte (Listenweise)	493					
Degudent/cercon	Hohlkehle mesial	96	54,89	99,69	79,5164	18,50961	
	Wand mesial	100	76,84	104,71	89,6063	13,01735	
	Okklusal	100	78,75	180,55	111,3000	47,47937	
	Wand distal	100	73,94	90,38	80,7906	7,48591	
	Hohlkehle distal	98	79,73	88,16	84,9818	3,64976	
	Gültige Werte (Listenweise)	494					
DCS/precident	Hohlkehle mesial	93	71,42	91,77	83,4848	10,69048	
	Wand mesial	100	98,33	109,63	104,4833	5,71819	
	Okklusal	100	63,89	109,39	87,4320	20,83760	
	Wand distal	100	84,81	91,33	88,5736	3,37378	
	Hohlkehle distal	100	89,00	90,76	89,8182	,88868	
	Gültige Werte (Listenweise)	493					
Hint-els/dentacut	Hohlkehle mesial	100	54,95	100,11	75,7182	22,79476	
	Wand mesial	100	69,13	135,43	91,8083	37,78327	
	Okklusal	100	84,63	219,75	137,5833	72,14247	
	Wand distal	100	78,00	130,51	105,0879	26,29630	
	Hohlkehle distal	100	75,36	106,34	86,2636	17,40493	
	Gültige Werte (Listenweise)	500					

Abb. 110 Deskriptive Statistik der Messwerte in µm der Brückenanker 15 in transversaler Schnittrichtung

Deskriptive	Statistik Typ A	Brüc	ken 24 - 27	transver	sale Schnitt	richtung
						Standardab
System		N	Minimum	Maximum	Mittelwert	weichung
Etkon/etkon	Hohlkehle mesial	187	48,38	63,06	57,8003	4,75691
	Wand mesial	200	63,64	84,75	71,5117	7,28674
	Okklusal	200	84,59	112,03	97,2738	10,59622
	Wand distal	200	58,33	72,71	67,2530	5,32724
	Hohlkehle distal	190	50,59	64,44	58,8653	5,66159
	Gültige Werte (Listenweise)	987				
KaVo/everest	Hohlkehle mesial	192	37,69	122,44	81,1884	28,41569
	Wand mesial	200	54,00	96,08	75,1667	17,64324
	Okklusal	189	67,38	157,16	116,2938	34,86407
	Wand distal	200	60,80	89,64	77,3896	11,28936
	Hohlkehle distal	197	51,38	84,02	66,7186	13,48678
	Gültige Werte (Listenweise)	978				
Degudent/cercon	Hohlkehle mesial	185	45,93	140,93	83,6300	37,47050
	Wand mesial	200	60,30	168,19	106,0354	47,60906
	Okklusal	200	83,59	228,91	140,7896	53,55226
	Wand distal	200	71,26	130,71	98,2824	24,84123
	Hohlkehle distal	200	12,74	103,64	63,1818	38,70557
	Gültige Werte (Listenweise)	985				
DCS/precident	Hohlkehle mesial	197	72,25	90,37	82,0507	6,04535
	Wand mesial	200	70,00	106,83	88,3813	13,94943
	Okklusal	200	103,88	130,13	117,5409	9,78870
	Wand distal	200	75,35	116,80	96,9438	17,06514
	Hohlkehle distal	196	63,15	95,27	80,9470	11,34315
	Gültige Werte (Listenweise)	993				
Hint-els/dentacut	Hohlkehle mesial	200	66,87	121,45	83,0159	20,61342
	Wand mesial	200	82,00	165,06	105,8530	29,92928
	Okklusal	187	135,38	211,71	176,3313	31,03026
	Wand distal	193	72,61	155,39	110,3500	33,60991
	Hohlkehle distal	200	66,87	142,72	92,0262	26,64109
	Gültige Werte (Listenweise)	980				

Abb. 111	Deskriptive Statistik der Messwerte in µm der Brücken 24 – 27 in transversaler
	Schnittrichtung

Deskriptive Statistik Typ A		Brücke	Brückenanker 24		transversale Schnittrichtung		
System		N	Minimum	Maximum	Mittelwert	Standardab weichung	
Etkon/etkon	Hohlkehle mesial	96	56,43	62,82	58,7970	3,50094	
	Wand mesial	100	71,00	76,92	73,0896	3,32077	
	Okklusal	100	84,59	99,01	91,3667	7,25145	
	Wand distal	100	67,66	71,13	69,6333	1,78029	
	Hohlkehle distal	90	58,23	64,44	61,6391	3,15263	
	Gültige Werte (Listenweise)	486					
KaVo/everest	Hohlkehle mesial	95	67,22	88,91	77,6104	10,87206	
	Wand mesial	99	54,00	93,24	75,1292	19,79241	
	Okklusal	100	67,38	141,00	106,9042	37,11201	
	Wand distal	100	60,80	81,06	69,6583	10,36837	
	Hohlkehle distal	89	51,38	82,73	64,9947	16,07368	
	Gültige Werte (Listenweise)	483					
Degudent/cercon	Hohlkehle mesial	93	45,93	140,93	88,8576	48,15492	
	Wand mesial	100	60,30	160,55	108,2083	50,27183	
	Okklusal	100	83,59	171,21	125,6000	43,92329	
	Wand distal	100	81,14	126,88	97,6208	25,40276	
	Hohlkehle distal	89	22,21	99,71	67,3727	40,31088	
	Gültige Werte (Listenweise)	482					
DCS/precident	Hohlkehle mesial	93	79,78	90,37	84,3320	5,45166	
	Wand mesial	100	70,00	106,83	87,4208	18,49244	
	Okklusal	100	108,03	130,13	119,8401	11,12703	
	Wand distal	100	80,13	116,80	103,2208	20,10446	
	Hohlkehle distal	100	84,15	86,30	84,9182	1,19890	
	Gültige Werte (Listenweise)	493					
Hint-els/dentacut	Hohlkehle mesial	94	71,77	87,60	80,7424	8,12228	
	Wand mesial	100	91,14	165,06	116,6101	41,97934	
	Okklusal	100	135,38	203,30	176,3083	36,04482	
	Wand distal	100	72,61	109,94	89,0167	19,06801	
	Hohlkehle distal	100	66,87	94,60	81,4606	13,92027	
	Gültige Werte (Listenweise)	494					

Abb.	112	Deskriptive Statistik der Messwerte in μm der Brückenanker 24 in transversaler
		chnittrichtung

Deskriptive Statistik Typ A		A Brück	Brückenanker 27		transversale Schnittrichtung		
System		N	Minimum	Maximum	Mittelwert	Standardab weichung	
Etkon/etkon	Hohlkehle mesial	100	48,38	63,06	57,2023	5,68146	
	Wand mesial	100	63,64	84,75	70,5650	9,18791	
	Okklusal	100	88,33	112,03	101,7042	11,33309	
	Wand distal	93	58,33	72,71	65,4677	6,68808	
	Hohlkehle distal	92	50,59	63,79	56,7851	6,63458	
	Gültige Werte (Listenweise)	485					
KaVo/everest	Hohlkehle mesial	92	37,69	122,44	84,7663	43,15116	
	Wand mesial	96	57,04	96,08	75,2042	19,65874	
	Okklusal	100	84,38	157,16	125,6833	37,37599	
	Wand distal	92	78,80	89,64	85,1208	5,63951	
	Hohlkehle distal	100	58,31	84,02	68,4424	13,69140	
	Gültige Werte (Listenweise)	480					
Degudent/cercon	Hohlkehle mesial	100	52,38	115,94	78,4024	33,30488	
	Wand mesial	100	67,03	168,19	103,8625	55,90291	
	Okklusal	90	95,88	228,91	155,9792	67,44023	
	Wand distal	100	71,26	130,71	98,9440	29,93497	
	Hohlkehle distal	87	12,74	103,64	58,9909	45,47136	
	Gültige Werte (Listenweise)	477					
DCS/precident	Hohlkehle mesial	97	72,25	85,44	79,7694	6,78468	
	Wand mesial	100	81,95	103,08	89,3417	11,90500	
	Okklusal	100	103,88	122,65	115,2417	9,99382	
	Wand distal	100	75,35	103,78	90,6667	14,34060	
	Hohlkehle distal	100	63,15	95,27	76,9758	16,52025	
	Gültige Werte (Listenweise)	497					
Hint-els/dentacut	Hohlkehle mesial	100	66,87	121,45	85,2894	31,31781	
	Wand mesial	100	82,00	102,81	95,0958	11,40139	
	Okklusal	100	145,63	211,71	176,3542	33,28605	
	Wand distal	100	93,88	155,39	131,6833	33,09294	
	Hohlkehle distal	100	76,36	142,72	102,5918	35,29449	
	Gültige Werte (Listenweise)	500					

Abb.	113	Deskriptive Statistik der Messwerte in µm der Brückenanker 27 in transversaler
		Schnittrichtung

						Standardab
System		N	Minimum	Maximum	Mittelwert	weichung
Etkon/etkon	Hohlkehle mesial	196	49,48	61,11	56,3246	4,21138
	Wand mesial	198	57,98	70,50	65,6750	4,82478
	Okklusal	192	67,25	105,64	87,6083	13,02202
	Wand distal	199	64,96	131,59	84,5021	24,45072
	Hohlkehle distal	200	57,25	86,91	67,8333	11,13840
	Gültige Werte (Listenweise)	985				
KaVo/everest	Hohlkehle mesial	200	76,75	190,55	104,7133	43,17495
	Wand mesial	196	78,98	115,70	93,9813	15,23260
	Okklusal	198	86,63	130,90	110,4313	19,98072
	Wand distal	200	60,00	101,60	75,6313	13,16912
	Hohlkehle distal	197	58,88	87,64	74,2024	11,19960
	Gültige Werte (Listenweise)	991				
Degudent/cercon	Hohlkehle mesial	200	41,43	77,19	62,0511	15,56625
	Wand mesial	192	60,60	103,35	79,2271	14,75897
	Okklusal	198	96,71	164,98	121,2018	30,04065
	Wand distal	191	65,88	108,04	79,2604	16,13138
	Hohlkehle distal	200	61,15	89,53	75,3437	10,90388
	Gültige Werte (Listenweise)	981				
DCS/precident	Hohlkehle mesial	200	66,33	91,67	75,2627	10,40882
	Wand mesial	199	65,33	111,44	84,6104	15,42694
	Okklusal	200	68,25	113,25	88,0767	19,06077
	Wand distal	192	70,95	100,30	86,0125	10,04711
	Hohlkehle distal	193	65,65	90,45	80,7610	8,82461
	Gültige Werte (Listenweise)	984				
Hint-els/dentacut	Hohlkehle mesial	192	65,43	82,83	74,0712	6,58842
	Wand mesial	200	76,38	129,19	99,3625	17,60925
	Okklusal	192	105,75	196,96	173,3417	34,64771
	Wand distal	196	80,86	126,35	96,6188	16,79053
	Hohlkehle distal	200	77,45	96,28	84,8836	6,72481
	Gültige Werte (Listenweise)	980				

Dockrintivo	Statistik		Dr
Deskriptive	Statistik	тур А	Br

Brücken 33 - 43 transversal

Abb. 114 Deskriptive Statistik der Messwerte in µm der Brücken 33 – 43 in transversaler Schnittrichtung

		Statistik				
						Standardab
		N	Minimum	Maximum	Mittelwert	weichung
Etkon/etkon	Hohlkehle mesial	95	49,48	59,64	54,3455	5,09074
	Wand mesial	92	66,85	69,78	67,8750	1,64716
	Okklusal	89	67,25	94,79	83,4417	14,39410
	Wand distal	94	64,96	71,75	68,7083	3,44810
	Hohlkehle distal	97	57,25	86,91	68,3788	16,15504
	Gültige Werte (Listenweise)	467				
KaVo/everest	Hohlkehle mesial	93	76,75	190,55	117,2318	63,60658
	Wand mesial	100	82,50	115,70	95,5500	17,70219
	Okklusal	99	86,63	130,90	108,3750	22,14767
	Wand distal	92	82,03	101,60	89,0542	10,89130
	Hohlkehle distal	100	58,88	87,55	76,1977	15,24054
	Gültige Werte (Listenweise)	484				
Degudent/cercon	Hohlkehle mesial	97	44,01	70,55	59,7712	13,95552
	Wand mesial	93	69,60	103,35	84,7208	17,14634
	Okklusal	100	96,71	152,39	121,4214	28,35943
	Wand distal	93	65,88	108,04	82,0292	22,74308
	Hohlkehle distal	99	61,15	89,53	74,3939	14,28087
	Gültige Werte (Listenweise)	482				
DCS/precident	Hohlkehle mesial	93	66,33	67,85	67,3063	,84423
	Wand mesial	100	76,00	87,28	81,4250	5,64950
	Okklusal	94	69,30	113,25	90,3250	22,03652
	Wand distal	93	70,95	84,00	79,5792	7,47383
	Hohlkehle distal	96	65,65	90,45	77,9530	12,40125
	Gültige Werte (Listenweise)	476				
Hint-els/dentacut	Hohlkehle mesial	100	65,43	82,83	74,2455	8,70241
	Wand mesial	100	89,29	104,16	97,9542	7,73621
	Okklusal	95	168,69	186,48	180,3875	10,13528
	Wand distal	98	90,44	104,43	96,3333	7,24768
	Hohlkehle distal	97	79,65	96,28	86,1490	8,89336
	Gültige Werte (Listenweise)	490				

Deskriptive Statistik Typ A

A Brückenanker 33

33 transversal

Abb. 115 Deskriptive Statistik der Messwerte in µm der Brückenanker 33 in transversaler Schnittrichtung

		Statistik				
						Standardab
System		N	Minimum	Maximum	Mittelwert	weichung
Etkon/etkon	Hohlkehle mesial	100	56,03	61,11	58,3037	2,58318
	Wand mesial	100	57,98	70,50	63,4750	6,40024
	Okklusal	100	80,31	105,64	91,7750	12,83195
	Wand distal	100	84,63	131,59	100,2958	27,09939
	Hohlkehle distal	100	59,97	73,80	67,2879	6,94853
	Gültige Werte (Listenweise)	500				
KaVo/everest	Hohlkehle mesial	100	84,66	106,05	92,1947	12,01039
	Wand mesial	100	78,98	110,26	92,4125	16,10371
	Okklusal	100	86,88	126,99	112,4875	22,24565
	Wand distal	100	60,00	74,58	67,5775	5,28916
	Hohlkehle distal	100	63,57	87,64	73,0052	9,92923
	Gültige Werte (Listenweise)	500				
Degudent/cercon	Hohlkehle mesial	100	41,43	77,19	64,3311	19,88517
	Wand mesial	100	60,60	85,84	73,7333	12,65019
	Okklusal	100	98,57	164,98	120,9821	38,10118
	Wand distal	100	67,90	88,20	76,4917	10,50275
	Hohlkehle distal	100	66,50	85,51	76,2935	9,51771
	Gültige Werte (Listenweise)	500				
DCS/precident	Hohlkehle mesial	100	73,83	91,67	83,2192	8,95712
	Wand mesial	100	65,33	111,44	87,7958	23,07854
	Okklusal	100	68,25	107,88	85,8283	20,18687
	Wand distal	100	83,41	100,30	92,4458	8,50528
	Hohlkehle distal	100	80,75	88,34	83,5689	4,15207
	Gültige Werte (Listenweise)	500				
Hint-els/dentacut	Hohlkehle mesial	100	67,38	78,08	73,8970	5,71797
	Wand mesial	100	76,38	129,19	100,7708	26,63485
	Okklusal	100	105,75	196,96	166,2958	52,43571
	Wand distal	100	80,86	126,35	96,9042	25,53492
	Hohlkehle distal	100	77,45	87,52	83,6182	5,40021
	Gültige Werte (Listenweise)	500				

Desl	kriptive	Statisti	k E
------	----------	----------	-----

Brückenanker 43 transversal

Abb. 116	Deskriptive Statistik der Messwerte in µm	der	Brückenanker 43	in	transversaler
	Schnittrichtung				

8.2 Materialliste

Anmischgerät für Impregum, 3M ESPE AG Diamant-Scheibentrennmaschine, Secotom 10, Fa. Struers Dublisil-A-Silikon, 2 Komponenten-Dubliersilikon, Fa. Drewe Einbettkunststoff, Pro Base, Fa. Ivoclar Flowgips, Sockelgips Klasse 4, Fa. Heraeus Fräser, Hartmetall kreuzverzahnt 2 Grad, Fa. Komet Fräsgerät F1, Parallelometer, Degudent AG Gusstiegel aus Keramik, Fa.Bego Impregum, Polyetherabformmasse, 3M ESPE AG Keramikofen, Mach 2, Fa. Dentsply Ketac blau radioopaque, Glasionomerzement, 3M ESPE AG Kunststoffzähne A3G, Fa. Frasaco Löffelkunststoff lichthärtend, Fa.Dentalunion Modellationswachs grün, Fa.Degudent Muffelformer und Gußringmuffel, Fa Haereus Multiherz, Induktionsschleuder, Fa. Herz Nabertherm S7, Vorwärmofen, Fa. Nabertherm Permadyne, niedrig visköse Abformmasse, 3M ESPE AG Pindex-System, Pins und Hülsen, Fa. Colthene Whaldent Plattenwachs rosa, Fa.Omnident Präparierset nach Prof.Pospiech, Fa. Komet Sandstrahlmittel 110µm, Fa. Omnident Schleifpapier nass, 600er Körnung, Fa. Seitz Schleif- und Poliergerät, TegraPol 31, Fa. Struers, Siladent C, CrCo-Einbettmasse + Flüssigkeit, Fa. Siladent Statistikprogramm 14.0 SPSS, SPSS Inc., Prentice Hall Stereomikroskop AX 10, 50-fach, Fa. Zeiss Superhartgips Klasse 4, Fa. Heraeus Turbine, Fa. KaVo Umlaufsandstrahlgerät, Fa. Haereus

Verblendkeramik Cercon S , Degudent AG

Verblendkeramik ZR- GC , Fa. GC

Verblendkeramik Geller , Fa. Girrbach/Amann

Vermessungssoftware Scentis für Stereomikroskop, Fa. Struers

Wachshilfsteile , Fa. Bredent

Wirobond C , CrCo-Legierung (Ni-frei) , Fa. Bego

Y-TZP-Zirkonrohlinge HIP und Fräsmaschine , Fa. DCS

Y-TZP-Zirkonrohlinge vorgesintert und Fräsmaschine, Degudent AG

Y-TZP-Zirkonrohlinge vorgesintert und Fräsmaschine, Etkon AG

Y-TZP-Zirkonrohlinge HIP und Fräsmaschine , Fa. Hint-els

Y-TZP-Zirkonrohlinge vorgesintert und Fräsmaschine , Fa. Kavo

8.3 Danksagung

Vorab möchte ich mich bei Herrn Univ. Prof. Dr. P. Pospiech, dem Direktor der Abteilung für zahnärztliche Prothetik und Werkstoffkunde an der Universität des Saarlandes, für die Überlassung und die kompetente Betreuung dieser Dissertation bedanken.

Bei Frau Moritz bedanke ich mich für die unkomplizierte und rationelle administrative Unterstützung zur Realisierung der Projekte.

Dank gilt Herrn Heinrich vom Rechenzentrum Homburg für die schnelle und effektive Hilfestellung bei der statistischen Auswertung.

Des weiteren bedanke ich mich bei folgenden Unternehmen wegen Bereitstellung von Materialien und Maschinen:

Drewe, Bego / Dr.Strietzel, Siladent, Saar-Dental / Hr. Aufsatz, Fa. Heraeus, Fa.Colthene-Whaldent, Fa. Komet / Gbr.Brassler, AmannGirrbach / Hr.Karl Girrbach, GC – Germany, GC– Europe, DCS-Kelkheim, Degudent - Hanau, Etkon - Gräfelfing, Hint-els / Hr.Hintersehr, KaVo - Leutkirch i.Allgäu, Struers AG / Hr. Molitor und Lupp-Dental.

Besonderer Dank gilt Herrn Thomas Löw (Löw-Dentaltechnik), den CAD/CAM - Beratern Herrn Beretta-Piccoli (Kavo), Herrn Hörhold (Degudent), Frau Korrman (Hint-els) und Herrn Stahl (Etkon) für deren freundliche Unterstützung.

Bei meinen Eltern und meinem Onkel W. J. bedanke ich mich für deren ideelle Unterstützung während des Studiums und dieser Dissertation.

8.4 Lebenslauf

Name geboren	Thomas Petry 23.05.1969 in Saarlouis
Beruf Kontakt	Zahnarzt und Zahntechniker mail@zaehne-direct.de
1975 - 1979	Grundschule
1979 - 1985	Gesamtschule
1985 - 1988	Gymnasium
1988 - 1990	Fachoberschule für Maschinenbau
1990 - 1994	Ausbildung zum Zahntechniker
1994 - 2004	Zahntechniker in Praxis und Labor
1996 - 1999	Allgemeine Hochschulreife am Abendgymnasium
10/1999	Beginn des Studiums der Zahnheilkunde an der Universität des Saarlandes in der Medizinischen Fakultät
10/2002	Zahnärztliche Vorprüfung
11/2005	Approbation zum Zahnarzt
2004 - 2007	Forschungstätigkeit in der Abteilung für zahnärztliche Prothetik und Werkstoffkunde an der Universität des Saarlandes über dentale CAD/CAM-Systeme und Zirkonoxid
01 – 07/2006	Anstellung als Zahnarzt in freier Praxis in Bayern
08 – 10/2006	Gastzahnarzt in der Abteilung für zahnärztliche Prothetik und Werkstoffkunde an der Universität des Saarlandes
11/06 –12 /07	Anstellung als Zahnarzt in freier Praxis im Saarland
Seit 2008	Niedergelassener Zahnarzt in eigener Praxis in Saarbrücken