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Zusammenfassung 

Zusammenfassung 

Biologisch aktive Peptide sind kurze Polymere von einer Länge von bis zu 100 Aminosäuren. 

Sie finden Anwendung in vielen Bereichen der Medizin, von Wirkstoffen gegen Krebs, 

antimikrobiellen Medikamenten bis hin zum Einsatz in der Immuntherapie. Limitierende 

Faktoren für die gängige Nutzung sind jedoch ihre metabolische Instabilität und strukturelle 

Flexibilität, sowie die für Impfstoffe erforderliche Immunogenität. In dieser Studie wurden 

verschiedene, bereits beschriebene, Strategien zur Modifizierung eines Peptids des 

Haemagglutinin Noose Epitop (HNE) des Masernvirus kombiniert, um dessen Stabilität 

gegenüber Peptidasen und die Immunogenität zu erhöhen. 

 

Epitop-Peptide mit substituierten Aminosäuren wurden mit Kernspinresonanzspektroskopie 

untersucht. Die Strukturen einiger Peptide wurden berechnet und die Ergebnisse lieferten 

Informationen über Anforderungen an die Peptidstruktur zur Aufrechterhaltung der 

Antigenität mit HNE-spezifischen Antikörpern. Durch Anwendung dieser Methoden wurden 

die jeweiligen Strategien zur Erhöhung der Biostabilität und Immunogenizität des HNE-

Peptid Modells angepasst. 

 

Die Resultate zeigten, dass HNE-Peptide eine C-terminale α-Helix formen und dass Lys387 

eine wichtige Rolle in der Antigenität spielt. Ausserdem kann der flexible N-terminale 

Bereich einiger substituierten Peptide das Binden von Antikörpern behindern, wenn das 

Peptid unabhängig von den Einschränkungen des Wildtyp-Proteins ist. Der Vergleich unserer 

Peptidstrukturen mit den kürzlich publizierten Röntgenkristallographiestrukturen vom 

Haemagglutinin-Protein vertieften unser Verständnis der Antigenität und bestätigten 

gleichzeitig die strukturelle Ähnlichkeit des Epitops im Protein und der freien HNE-Peptide. 

In den Stabilitäts-Untersuchungen wurden veränderte Peptide mit einer erhöhten Stabilität 

gegenüber Peptidasen in Serum und Intestinalflüssigkeit erfolgreich synthetisiert. Diese 

Peptide mit einer Vielzahl von verschiedenen ausgetauschten Aminosäuren in der Sequenz 

oder Änderungen an den Peptid-Enden, reagierten weiterhin mit Epitop-spezifischen 

Antikörpern. Diese Peptide bewahrten ihre Immunogenität und die induzierten Antikörper 

konnten mit dem Wiltyp-HNE-Peptid als auch mit dem nativen Haemagglutinin-Protein 
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kreuzreagieren, allerdings in geringerem Maße. Trotz ihrer erhöhten Stabilität konnten diese 

Peptide keine bessere Immunantwort hervorrufen. 

Neben den Substitutionen und terminalen Änderungen in der Peptidsequenz, wurden ein 

zyklisiertes und ein gerüstgebundenes HNE-Peptid analysiert. Eine erhöhte Biostabilität und 

eine aufrechterhaltene Antigenität und Immunogenität wurden bestätigt, jedoch erkannten die 

induzierten Antikörper das Wildtyp-Peptid und -Protein nicht. 

 

Zusammenfassend zeigten die Ergebnisse dass es möglich ist die Stabilität von HNE-Peptiden 

deutlich zu erhöhen, aber dass es erhebliche Unterschiede zwischen Antigenität und 

kreuzreagierender Immunogenität gibt, ein bekanntes Problem von kurzen Peptide. Der 

Austausch von Aminosäuren muss bedacht gewählt warden, um die korrekte strukturelle 

Ausrichtung von kurzen Peptiden in Lösung oder in Gerüstkomplexen und somit ihre 

kreuzreagierende Immunogenität zu gewährleisten. 
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Abstract 

Abstract 

Biologically active peptides, short polymers of less than 100 amino acids, are of great 

importance in several fields of medicine, from anticancer and antimicrobial drugs to 

immunotherapy. Their widespread use is however limited by several key problems such as 

their metabolic instability and their conformational flexibility. The use of peptides in vaccines 

faces the additional challenging need for immunogenicity. In this study several previously 

described strategies were combined to modify a peptide of the Haemagglutinin Noose Epitope 

(HNE) of measles virus, to improve its stability against peptidases and increase its 

immunogenicity. 

 

Epitope-peptides with amino acid substitutions were analysed by nuclear magnetic resonance 

spectroscopy. The structures of several of these peptides were resolved and the results 

provided information on the conformational requirements for antigenicity with antibodies 

targeting the HNE. These tools have guided the efforts to enhance biostability and 

immunogenicity of the HNE-peptide model. 

 

The results showed that HNE-peptides form a C-terminal α-helix and that Lys387 plays a 

crucial role in antigenicity. In addition a flexible N-terminal region in several substituted 

HNE-peptides can disrupt antibody binding, when the peptide is removed from the constraints 

of the wild-type protein. Comparisons of these peptide structures with recently published 

crystallography structures of the wild-type Haemagglutinin protein have further increased the 

understanding of the antigenicity and confirmed the structural similarities between the epitope 

in the protein and the shorter free HNE-peptides. 

In the stabilisation studies modified peptides with an increased resistance towards peptidases 

in serum and intestinal fluid were successfully synthesised. These peptides, with a number of 

substitutions in the epitope sequence and modified flanking regions, retained their reactivity 

with HNE-specific antibodies. The peptides were also immunogenic and antibodies raised 

against them were capable of crossreacting with the wild-type HNE-peptide and the native 

Haemagglutinin protein, but with lower reactivity. Despite their increased stability these 

peptides did not induce a better immune response. 
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Additionally to substitutions and additions in the peptide sequence, a scaffold-bound and a 

backbone cyclised HNE-peptide were analysed and their increased stability and conserved 

immunogenicity was demonstrated. However, the induced antibodies failed to crossreact with 

the wild-type peptide and protein. 

 

In conclusion the results showed that the stability of HNE-peptides can be significantly 

increased, but that there is a discrepancy between antigenicity and crossreactive 

immunogenicity that is inherent to these small peptides. Residue changes need to be carefully 

selected to guarantee the correct conformational arrangement of short peptides in solution or 

in constructs and thus their crossreactive immunogenicity. 
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Chapter 1: Introduction 

Chapter 1: Introduction 

1. Peptides as therapeutic agents and their role in vaccination 

1.1. Therapeutic peptides 

The therapeutic potential of peptides has been known for 40 years (Freidinger 2003). The 

clinical application of these biologically active peptides, short polymers of less than 50 or 100 

amino acids in length, has been hampered by several key problems such as their metabolic 

instability and their conformational flexibility (Adessi and Soto 2002; Lien and Lowman 

2003; Hans et al. 2006; Sato et al. 2006). Extensive peptide-based research has affected many 

fields of medicine and biology. 

 

Antimicrobial/antibacterial 

 

The current status of antibacterial peptides has been recently reviewed (Lien and Lowman 

2003; Marr et al. 2006). Antimicrobial peptides are part of the innate immune system of 

higher organism, for example magainins, a family of peptides with antibacterial and 

antifungal properties, have been isolated from the skin of the African clawed frog (Xenopus 

laevis) (Zasloff 1987). More than 600 peptides able to recruit elements of the innate immune 

system and capable of killing microorganisms including Gram-negative and Gram-positive 

bacteria, viruses and funghi, have been described. The common features of these peptides are 

a cationic charge and an induced amphiphilic conformation since half of the residues are 

hydrophobic (Powers and Hancock 2003). Molecular dynamics simulations have elucidated 

the mode of action of antimicrobial peptides: they form a pore in the phospholipid membrane, 

which is permeable to both water and lipids (Leontiadou et al. 2006). The main advantage of 

these antimicrobial peptides is their activity against methicillin-resistant Staphylococcus 

aureus and multi-drug resistant Pseudomonas aeruginosa (Zhang et al. 2005). In addition 

there is only a remote possibility of development of complete resistance against these peptides 

due to their mode of action on the membrane and possibly multiple other targets (Marr et al. 

2006). 
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Anti-cancer drugs 

 

Peptides have various potential uses in the treatment of cancers to increase the effectiveness 

of current anti-cancer treatments and to lower their considerable side-effects. Peptides can act 

by enhancing cellular uptake and drug targeting, as well as acting as antigens in cancer 

vaccines (Lien and Lowman 2003). The latter are further described in the Immunotherapy 

section below. 

Matrix metalloproteases (MMP) are capable of degrading the extracellular matrix and are 

thought to play a role in tumour metastasis as high MMP levels are often linked to poor 

prognosis (Stetler-Stevenson et al. 1993; Birkedal-Hansen 1995; Murray et al. 1998; Leeman 

et al. 2002). Koivunen and colleagues have reported the synthesis of cyclic peptides with 

selective inhibitor activity against MMP-2 and MMP-9, and potent antitumour activity 

(Koivunen et al. 1999). 

The group of Freidinger has developed a peptide-cytotoxic drug specifically targeting prostate 

tumours. Prostate specific antigen (PSA) is a protease only produced in prostate epithelium 

and metastasised cells of prostate cancer. Antibody levels induced against circulating PSA are 

used as prostate cancer marker. The peptide component of the drug is a PSA-specific substrate 

and the proteolytic cleavage releases the cytotoxic agent in the close environment of prostate 

cancer cell, thus increasing drug targeting (Freidinger 2003). 

 

1.2. Immunotherapy and the concept of subunit vaccines 

Immunotherapy and more specifically subunit vaccines is the most interesting field of 

peptide-research relating to this work. Traditionally most vaccines are based on whole 

microorganism or virus antigens, either in killed or attenuated form delivered by injection. 

With increasing knowledge of the targets of the immune response, there has been a shift away 

from these classical vaccines towards subunit vaccines. These are reduced to a limited set of 

microbial or viral proteins or even to the smallest immunogenic part of a protein which can 

induce a precisely directed immune response against the infectious pathogen (Purcell et al. 

2007). These minimal regions are called epitopes and in this work, an epitope of the measles 

virus is used as a model (Figure 1). 
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Figure 1: From whole virus to peptide-epitope 

Reductionist approach to vaccine design. Starting from whole measles virus, moving to immunogenic surface 

Haemagglutinin protein to give an immunogenic Haemagglutinin Noose Epitope peptide, capable of inducing a 

crossreactive immune response. 

 

For these synthetic vaccines to mount an effective immune response they need to incorporate 

two different antigenic epitopes: the T cell epitope (TCE) needs to be processed and presented 

by antigen presenting cells (APC) via the major histocompatibility complex (MHCI and 

MHCII) to activate the cell mediated cytotoxic response and combat intracellular infectious 

pathogens. The B cell epitope (BCE) binds to preformed cell receptors and with the help of T 

helper cells (TH) leads to clonal expansion and maturation of antibody secreting B cells 

(Purcell et al. 2007). Even when only an antibody response against a BCE is desired, a TCE is 

still required to induce an effective humoral response (Hans et al. 2006). 

The identification of antigenic determinant amino acid sequences are the prerequisite for the 

successful development of a synthetic vaccine. The methods employed to indentify these 

sequences are described in detail elsewhere (Zauner et al. 2001; Hans et al. 2006) and in the 

context of this work, priority is given to the selection of BCEs. Whereas TCEs are purely 

sequence dependent, the antibody reactive BCEs are related to the structure of the native 

antigen. These structural recognition patterns are usually located at the solvent exposed sites 

of the native proteins and can be formed by continuous amino acid residues, i.e. by sequential 

residues in the primary amino acid sequence, or by discontinuous sequences. These 

discontinuous BCEs are spatial arrangements of residues which are not closely located in the 

primary sequence, but brought together by the folding of protein chains into the secondary 

and tertiary structure, stabilised by disulfide bonds or non covalent interactions (Zauner et al. 
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2001). These epitopes are much more difficult to recreate synthetically, nevertheless this has 

been possible in the case of foot and mouth disease virus (FMDV) epitopes (Villen et al. 

2004). Continuous BCEs can be indentified by PEPSCAN, a method by which a library of 

synthetic peptides with overlapping sequences are screened for their reactivity with sera from 

mice immunised with the infectious pathogen (Hans et al. 2006). This method cannot be 

applied to discontinuous BCEs and thus the identification of these BCEs is more problematic 

(Zauner et al. 2001). 

 

1.3. Use of synthetic peptide-based vaccines in immunotherapy 

There has been extensive research into peptide-based vaccines, but given the long time 

required for the development of these therapeutic vaccines and the only recent advances in the 

field, these synthetic vaccines are only expected to hit the market in the near future. 

 

Cancer therapy 

 

As noted above, peptides can be used in cancer therapy to enhance drug targeting. Another 

attractive possibility is vaccination against cancers. The strategy of anti-cancer vaccination is 

based on the observation that cancerous cells express cell surface antigens not present on 

healthy cells. These tumour associated antigens can be used to develop synthetic peptide-

based vaccines that specifically target cancer cells and by upregulating the cytotoxic immune 

response, can effectively combat tumours (Sahin et al. 1997). Vaccines against a multitude of 

cancers including cervical, lung, breast, colorectal, leukaemia and melanoma cancer, are 

currently in development and have been reviewed elsewhere (Hans et al. 2006; Pietersz et al. 

2006). 

 

Allergies and other diseases 

 

Larché has reviewed the recent advances in immunotherapy for allergic diseases where 

peptide therapy showed promising results in preclinical studies against cat allergens, insect 

venoms and autoimmune diseases and has lead to first clinical studies in humans (Larché 

2007). There has also been an increased interest in vaccination against Alzheimer, a disease 

characterised by the deposition of extracellular β-amyloid (Aβ)-containing plaques. Human 
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clinical trials with Aβ42 containing peptide-vaccines were effective in reducing plaque 

formation but had to be prematurely halted because of severe side-effects. New refined 

peptides vaccines are currently undergoing clinical trials (Hawkes and McLaurin 2007). 

 

Viral infections 

 

The second biggest research area of peptide-based vaccines after anti-cancer vaccines is the 

vaccination against viruses, further advancing our understanding peptide/immune system 

interactions. Examples of peptide-vaccines in development include peptide-epitopes of the 

surface glycoprotein of human respiratory syncytial virus (Beck et al. 2007), influenza, herpes 

simplex virus (Purcell et al. 2007), human papilloma virus and of course several peptide-

epitopes from the surface proteins (gp120 and gp41) of HIV (Hans et al. 2006). 

Even though no peptide-based vaccine has yet been licensed for the human market, the 

feasibility and proof of concept have been confirmed by the successful vaccination of swine 

against FMDV (Wang et al. 2002). The peptide used in this vaccine is based on an epitope of 

the VP1 protein (Bittle et al. 1982) and short synthetic peptides of this region were found to 

induce neutralising antibodies against all seven serotypes of FMDV (Francis et al. 1990). 

 

1.4. Advantages and disadvantages of peptides-based vaccines 

Synthetic peptide-based vaccines offer a number of significant advantages over conventional 

vaccines, which are based on whole organisms, cells or viruses and are heterogeneous 

mixtures of chemicals and biological materials. These can cause important side-effects and 

there is concern about  the risk of reversion to virulent forms of live attenuated virus vaccines 

(Johnson 1999; Greensfelder 2000). In addition not all pathogens can be modified by these 

classical procedures (Zauner et al. 2001; Purcell et al. 2007). The controlled chemical 

synthesis of peptides eliminates the risk of infectious diseases and side-effects thus increasing 

safety. The use of several peptides of the same epitope or several epitopes of the same 

pathogen can potentially bypass genetic restriction arising from mutations in different virus 

strains (Table 1).  
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Table 1: Advantages and drawbacks of peptide-based vaccines adapted from Purcell (2007)and Hans (2006) 

 
Advantages Disadvantages 

 

Absence of infectious material 

 

Low chemical stability of native peptides 

Homogeneous and chemically pure Low conformational stability 

Economically large scale synthesis Poor immunogenicity of simple peptides 

Freeze-dried storage (avoids need for cold-chain) Need for T cell stimulation 

No risk of reversion to virulent strain  

(live attenuated viruses) 

Limited availability of carriers and adjuvants 

HLA restrictions for T cell epitopes 

No risk of genetic integration 

(DNA-Vaccines) 

 

Multiple epitopes of one or more pathogens  

Stabilisation by amino acid modification  

Improved quality control  

 

The development of peptide-based vaccines is hampered by three main interconnected factors: 

poor immunogenicity, chemical and metabolic instability. While the low immunogenicity of 

peptides is in fact a favourable and desirable aspect in the context of peptide drugs, it is the 

pivotal factor in peptide-vaccine design. The poor immunogenicity of peptides is a result of 

their chemical and conformational instability. Short peptides are rapidly removed from the 

circulating system by renal clearance and their in vivo stability is reduced by proteolytic 

degradation. Amino- and carboxyexopeptidases cleave single amino acids, dipeptides or 

tripeptides from the N- and C-termini, respectively, and endopeptidases cleave peptide bonds 

within the peptide sequence. Proteases do not cut peptides with discrete secondary structure 

without unwinding and reverting them to random coils that fit into their β-strand preferring 

active site (Tyndall and Fairlie 1999; Fairlie et al. 2000). Short peptides rarely display a 

defined secondary structure in solution. It is estimated that the longer peptides are, the more 

likely they are to fold into complex structures, burying a number of residues and thus 

increasing the stability towards proteolytic enzymes (Hans et al. 2006). Using this approach 

conformationally restricted epitopes appear to induce better immune responses than the linear 

epitopes (Kaumaya et al. 1992; Sundaram et al. 2004; Dakappagari et al. 2005). The relative 

influence of purely chemical stability and conformational stability becomes blurred as each 

one influences the other. 

In addition to the above listed concrete disadvantages there are doubts that a rational design of 

peptide-vaccines based purely on epitopes and the corresponding contact residues, is 
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achievable. This theory focuses on the relationship between peptide antigenicity, i.e. its ability 

to specifically interact with the antibody paratope, and crossreactive immunogenicity, i.e. the 

ability of the peptide to induce an immune response capable of recognising the parent protein. 

It is feasible to modify a peptide-epitope to increase binding to a monoclonal antibody that 

specifically recognises the epitope’s native parent protein. While this reductionist approach 

down to purely chemical interactions, is possible with respect to antigenicity, the situation 

with immunogenicity is however different since it relies on complex interactions between 

various parts of the immune system. A neutralising antibody can trap a flexible peptide-

epitope in a conformation corresponding to the structure of the native protein. Such an 

engineered peptide is unlikely to induce crossreactive antibodies against the parent protein, 

since its many possible conformations are recognised by a multitude of B cells. The affinity 

maturation is not limited to a single stable conformation but targets a variety of structures, 

thus weakening the specific response (Van Regenmortel 1999, 2001b, 2001a; Dormitzer et al. 

2008). 

Despite these warranted doubts and conceptual difficulties, synthetic peptides mimicking 

BCEs of FMDV and canine parvovirus have been successfully used for vaccinating the 

respective animals (Langeveld et al. 1994; Wang et al. 2002). Also peptide-epitopes of 

measles were shown to induce neutralising and protective antibodies (Obeid et al. 1995; 

Atabani et al. 1997; Putz et al. 2004). 

 

1.5. Engineering peptide-based vaccines – Stabilisation of peptides 

Several strategies have been developed to enhance the metabolic and conformational stability 

of peptides with the aim of improving immunogenicity (Figure 2). Cocktails of purified 

proteases generally do not mimic the complex metabolic behaviour of peptides in vitro and 

the use of homogenates, plasma or serum are more appropriate to investigate the stability of 

peptides (Adessi and Soto 2002). The thought is that the more stable a peptide is, the more 

persistently it can be presented and processed, thus increasing its immunogenicity (Delamarre 

et al. 2006). There are numerous strategies to improve the stability, conformation and 

immunogenicity of peptides-vaccines and only the most relevant will be described here. For a 

complete and extensive list of modifications the reader is referred to recent reviews (Adessi 

and Soto 2002; Webb et al. 2003; Werle and Bernkop-Schnurch 2006; Purcell et al. 2007) 
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Figure 2: Common peptide modifications to increase proteolytic stability 

The location of modifications introduced into linear peptides are illustrated. X and Y represent any chemical 

group or atom. R1, R2 and R3 denote sidechains of natural amino acids. Figure adapted from (Adessi and Soto 

2002) 

 

 

Chemical modifications 

 

Chemically modified peptides can be divided into three groups, depending on the importance 

of the changes to the original sequence and chemistry: (i) modified peptides are peptide 

derivatives with only small modifications which conserve the peptide bonds and the chemical 

nature of peptides. (ii) Pseudopeptides contain mostly peptide bond modifications and 

replacements. (iii) Peptide mimetics are organic molecules that mimic the activity of peptides 

but contain no peptide bonds. In line with the modifications applied in this study the focus 
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will be mainly on modified peptides. The two other groups are reviewed elsewhere (Adessi 

and Soto 2002).  

 

N- and C-terminal modifications 

 

Natural L-amino acid peptides with free N- and C- termini are rapidly degraded in serum. The 

stability of many neuropeptides is known to be dependent on acetylation and amidation, and 

some hormones and peptides are naturally end-protected. These termini modifications have 

been widely employed to block exopeptidase activity and to increase peptide drug 

biostabilities. Mallière and colleagues found that terminal acetylation or amidation of a 13 

residue peptide increased its stability compared to non-modified peptide and that the 

combination of the two modifications further stabilised these peptides (Maillère et al. 1995). 

A similar improvement was achieved in a pentapeptide (Heavner et al. 1986) and by 

alkylation of N-terminal amide (Marschütz et al. 2002). Terminal conjugation with 

polyethylene glycol (PEG) increases the overall size of peptides, decreases renal clearance 

and also protects peptides against exopeptidase degradation, however the lowered 

immunogenicity of some conjugated peptides make this modification only attractive for 

peptide drugs and not for peptide-vaccines (He et al. 1999; Werle and Bernkop-Schnurch 

2006). 

 

Cyclisation 

 

Cyclisation of peptides can function as chemical and/or conformational stabilisation. The 

conformational stability is increased by constraining the peptide in a conformation potentially 

more closely related to the native protein (Putz et al. 2003b). Cyclised peptides can be formed 

either by combining the terminal residues of a peptide sequence or by sidechain-sidechain 

linkage of residues within the sequence. Cyclisation can be achieved by reducing cysteines 

sidechains, by the formation of ester, ether or thioether bridges, and terminal residues can be 

backbone cyclised to give an additional peptide bond. The effects of cyclisation on peptides 

have been reviewed (Adessi and Soto 2002; Werle and Bernkop-Schnurch 2006) and 

cyclisation is an accepted method for reducing proteolytic cleavage and prolonging 

biostability (Clark et al. 2005). Tugyi and colleagues compared the biostabilities of thioether, 

peptide bond and disulfide cyclised peptides compared to their linear analogue and found 

them to decrease in stability as listed (Tugyi et al. 2005a). It should be noted that cyclisation 
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does not always lead to more reactive analogues of linear peptides, as has been shown by the 

cyclisation of a Herpes simplex virus epitope (Schlosser et al. 2003) and anthopleurin A 

epitope (Gould et al. 1992).  

 

Amino acid substitution 

 

Another strategy to improve the biostability of peptides is the replacement of susceptible 

amino acid residues. The substitution residue can be another natural amino acid with a 

chemically similar sidechain or a modified natural amino acid, in order to change the 

recognition site of proteases yet preserve the activity or antigenicity and immunogenicity of 

the peptide (Adessi and Soto 2002). For example methylated Lys in histones are known to 

play an important role in gene regulation and signal transduction (Morgunkova and Barlev 

2006; Paik et al. 2007) and have been shown to increase the stability of microbial peptides 

(Na et al. 2007). Alternatively substitutions with non-natural amino acids such as D-isomers 

and β-amino acids are also known to increase the biological stability of peptides, though their 

chirality and backbone elongation can lead to loss of activity or antigenicity. In the context of 

peptide-based vaccines, the need for conserved antigenicity and structural similarity with the 

parent protein precludes substitution of critical contact residues with D-amino acids. But 

substitution of non-conserved or flanking residues is an interesting approach. Powell and 

colleagues increased the biostability of several peptides by replacing the L-amino acid 

residues at both termini with their respective D-isomers (Powell et al. 1993). D-amino acids 

substitutions of terminal residues of antimicrobial peptides have also increased the proteolytic 

stability in serum and selected proteases without affecting the antimicrobial activity (Hong et 

al. 1999; Hamamoto et al. 2002). Manea and colleagues added D-amino acids and β-amino 

acids as non native flanking regions to a plaque specific β-amyloid epitope and observed the 

same antigenicity than native epitope (Manea et al. 2008). Substitution of flanking residues 

with D-amino acids in an epitope of mucin glycoprotein (MUC2) improved the stability of 

peptides in serum and lysosome homogenates, while preserving antigenicity (Tugyi et al. 

2005b). 

 

In addition to the above, some more extensive modifications have been employed in the 

design of pseudopeptides. Amide bond reduction from the natural amide (CO-NH) to a 

aminomethyl (CH2-NH) in a glycoprotein TCE of lymphocytic choriomeningitis virus, 

substantially increases stability of this peptide in vivo and maintains MHC binding (Stemmer 
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et al. 1999). Recently Reuter and colleagues synthesised a series of retro-inverse peptides 

based on chicken ovalbumin BCEs. Simultaneous reversion of chirality and sequence (Chorev 

et al. 1979), lead to a peptide that is structurally more related to its L-amino acid parent 

peptide than the D-analogue. These peptides displayed an increased stability in murine 

intestinal fluid compared to the natural peptides. Immunisation with these retro-inverse 

peptides induced similar anti-peptide antibody titres than their normal analogues, but failed to 

crossreact with the native ovalbumin protein (Reuter 2008). 

 

Conformational stability 

 

Conformational stability can be increased by conjugating the flexible peptide-epitope to a 

scaffold. Steroids have emerged as an attractive scaffold system due to their rigidity and the 

possibility of variable functionalisation (Barry et al. 1999; Salunke et al. 2006) and bile acids 

have attracted a lot of attention for peptide-conjugation (Kramer et al. 1997). Such a steroidal 

bile acid conjugate incorporating the HNE peptide was synthesised in a collaboration between 

our laboratory and the University of Ghent by Cathy Bodé (Bodé et al.; Bodé 2007; Bodé et 

al. 2007). 

 

1.6. Increasing the immunogenicity of peptides 

As mentioned before, peptides are only poorly immunogenic due to their size related inherent 

flexibility and the low biostability. Besides increasing the chemical and conformational 

stability, the immunogenicity of peptides can be increased by several mechanisms. 

 

Conjugation to carrier proteins 

 

There are suggestions that conjugating labile peptides to poorly digestible carrier proteins can 

partially protect them from proteolytic cleavage (Delamarre et al. 2006). Coupling of atrial 

natriuretic peptide to human serum albumin has been shown to increase it’s stability (Léger et 

al. 2003). Reuter and colleagues have increased the stability of ovalbumin derived peptides in 

muine intestinal fluid by coupling them to cholera toxin B (Reuter 2008). Peptides can be 

conjugated to a large variety of molecules to increase their immunogenicity, for animal 

experiments protein carriers such as bovine serum albumin (BSA), keyhole limpet 
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hemocyanin (KLH), tetanus toxoid (TT) and diphtheria toxoid (DT) are often used. (Zauner et 

al. 2001; Lien and Lowman 2003). These carrier proteins can also supply TCE, which are 

essential for a immunological memory (Zauner et al. 2001). 

 

Oligomerisation 

 

Branching several peptides onto a central polylysine core, via α and ε amino groups, form so-

called multiple antigen peptides (MAP) which can overcome the ineffectiveness of single 

linear peptides to induce an immune response (Tam 1996). Alternatively peptides can be 

assembled into linear chimeric constructs. Branched polyepitope constructs have been shown 

to induce higher antibody titres than carrier-conjugated peptides, with a significantly reduced 

response against the carrier molecule (Hudecz 2001). These MAP also allow the coupling of 

various peptides of the same epitope and peptides of different epitopes of the same or various 

pathogens, thus potentially overcoming the genetic variability of some pathogens such as HIV 

(Hewer and Meyer 2005). 

 

Adjuvants 

 

Adjuvants are substances that trigger or enhance an immune response of antigens that would 

under normal circumstances only be poorly immunogenic. As vaccine development moves 

away from killed or attenuated whole pathogens towards increasingly pure antigens, with 

poorer immunogenicity, there is an increasing and vital need for adjuvants to help elicit 

clinically relevant immune responses. Over the past decades there has been a large expansion 

in the search of new adjuvant (Table 2), yet despite this, only few adjuvants, including Alum 

(aluminium salts) and MF59 (a squalene based oil in water formulation) are currently licensed 

for human use because of stringent regulations. Immunopotentiating reconstituted influenza 

virosomes (IRIVs) incorporate peptides or proteins on the surface of influenza virus like 

particles. A hepatitis A vaccine using this adjuvant has been recently licensed for human use 

(Gluck 1999; Moreno et al. 2001; Westerfeld and Zurbriggen 2005). Alum was first used in 

1926 and has dominated the adjuvant market ever since (Glenny et al. 1926). Even though 

there have been a number of new adjuvants that proved to be as effective as or even more than 

Alum, they were deemed unsuitable for human use due to local and systemic toxicity. The 

most notable examples are Freund’s adjuvant (Freund et al. 1937) and lipopolysaccharide 

(LPS) (Johnson et al. 1956). Freund’s adjuvant is a water in mineral oil emulsion (incomplete 
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Freund’s adjuvant) that can be complemented with heat-killed mycobacteria (complete 

Freund’s adjuvant) and has been routinely used in veterinary medicine and experimental 

immunology for decades because of its very strong adjuvanticity and ease of use. Tolerance 

issues have lead to the development of several substitutes (O'Hagen 2000). 

 

 
Table 2: Short overview of current adjuvant classes 

 
Adjuvant family Adjuvant example References 

 

Mineral salts 

 

Aluminium hydroxide 

 

(Glenny et al. 1926) 

 Aluminium phosphate (Gupta and Siber 1994) 

 Calcium phosphate (He et al. 2000) 

Bacterial products Cholera toxin B subunit (Holmgren et al. 1993) 

 CpG oligonucleotides (Harandi 2004; Agger et al. 2006) 

 E. coli heat-labile enterotoxin 

non-toxic variants LTK63 LTR72 

(Partidos et al. 1996; Giuliani et al. 

1998; Tierney et al. 2003) 

 Monophosphoryl Lipid A (Schneerson et al. 1991) 

 Muramyl dipeptide (MDP) (Cohen et al. 1996) 

Emulsions Freund adjuvant (Freund et al. 1937) 

 Montanide (Aucouturier et al. 2002; Halassy et 

al. 2006) 

 MF59 (Granoff et al. 1997) 

Microparticles virosomes (Gluck 1999; Moreno et al. 2001) 

 ISCOMS (Sjolander et al. 1997) 

Surface-active reagents Saponins (QUIL-A, QS-21) (Dalsgaard 1984; Jackson and 

Opdebeeck 1995; Wong et al. 

1999; Boyaka et al. 2001) 

Cytokines Interleukins (Lynch et al. 2003) 

 Interferons (Odean et al. 1990) 

 

 
 
 
The ideal adjuvant should be non toxic, non immunogenic, generate a depot at the site of 

inoculation, slowly release the antigen, target antigen presenting cells, etc. (O'Hagen 2000; 

Zauner et al. 2001). By differently stimulating Th1 and Th2 T-helper cells, adjuvants can 

modulate the immune response of the host. Despite the increased knowledge of the immune 

system and the use of adjuvants for decades, their mechanisms of actions are still very poorly 
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understood. The family of toll like receptors (TLRs) has emerged as a key element of the 

reactivity of adjuvants (Seya et al. 2006), suggesting that adjuvants activate the innate 

immune response. Several adjuvants are known to act as TLR activators or ligands such as 

unmethylated CpGs and LPS, and initiate a Th1 mediated immune response. Though Alum, 

which stimulates a Th2 response, does not exercise its function through TLRs (Schnare et al. 

2001). Until recently it was also thought that Alum exerted its adjuvant function by depot 

effect , but this has since been disputed (Gupta et al. 1996). 

 

The choice of adjuvants depends on the antigen, the desired immune response and the route of 

inoculation. With the large variety of adjuvants currently in development or clinical trials, this 

choice is not simple. A description of the current adjuvants in development goes beyond the 

scope of this thesis and the reader is referred to recent reviews on adjuvants (Powell and 

Newman 1995; O'Hagen 2000; Vogel 2000; Zauner et al. 2001; Aguilar and Rodriguez 2007; 

Del Giudice and Rappuoli 2007). In an effort to further increase their adjuvanticity, many of 

these adjuvants have been combined and these mixtures of two or more adjuvants are 

reviewed elsewhere (Fraser et al. 2007). 
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2. Measles virus epitopes as models for peptide-subunit vaccines 

2.1. Family and history 

Despite the availability of an effective vaccine, measles, caused by the measles virus (MV), 

remains one of the most important causes of childhood mortality and morbidity worldwide 

with around 200,000 deaths and 20 million infected annually particularly in the developing 

world (WHO 2008). MV is a morbillivirus of the family of paramyxoviridae, which includes 

peste des petits ruminants, dolphin and porpoise morbillivirus, canine and phocoid distemper 

virus. The close phylogenetic relation to rinderpest virus suggests an ancestral virus evolving 

during the early stages of colonisation with close proximity of humans and cattle (Norrby et 

al. 1992). Measles transmission studies in island populations suggests that the critical 

community size is 300,000 to 500,000 (Keeling 1997); population sizes of this magnitude 

were first reached in ancient Egypt and Sumaria around 3000 BC (Griffin 2007). Measles was 

first precisely described by Abu Becr, an Arab physician of the 9th century also known as 

Rhazes of Baghdad (Rhazes 1748; Redd et al. 1999) and has caused millions of deaths over 

the last thousands of years, making it one of the most important human infectious diseases 

(Griffin 2007). 

In the 16th century the disease, together with smallpox, played an important role in the 

conquest of the Americas, disseminating the native Indian population and facilitating the 

colonisation (McNeill 1976). Humans are the only natural reservoir of MV (Griffin 2007). 

The first isolate of MV, the Edmonston strain, was cultured by Enders and Peebles in 1954 

from the blood of an infected child, David Edmonston (Enders and Peebles 1954) 

2.2. Disease and complications 

MV is transmitted from infected persons to susceptible individuals by aerosols or respiratory 

droplets and enters the organism via the respiratory route, where it infects and replicates in the 

epithelial cells. 10-14 days after measles infection the first non specific symptoms of measles 

disease appear: fever, cough, coryza and conjunctivitis. Following the 2-3 day prodrome 

period, the characteristic maculopapular rash starts on the face and behind the ears and then 

spreads centrifugally to the trunk and extremities. The rash lasts for 3-4 days and coincides 

with the immune response, clearance of virus and clinical recovery. Recovery from natural 
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measles infection is accompanied by a lifelong immunity and hence measles is considered a 

childhood disease since older members of a community are protected through previous 

exposure to the virus (Ota et al. 2005; Moss and Griffin 2006; Griffin 2007). 

In 60% of cases, patients remit uneventfully from measles, however malnutrition and age-

extremes increase the risk of complications caused by the immune suppressive character of 

measles, which renders patients more susceptible to secondary viral and bacterial infections 

(Ota et al. 2005). Pneumonia and diarrhoea are the most common complications with the 

former accounting for 56-86% of measles fatalities (Duke and Mgone 2003). 

Rare but serious complications of measles infection can occur in the central nervous system 

within 2 weeks (Post-measles encephalomyelitis). Measles inclusion body encephalitis 

(MIBE) and subacute sclerosing panencephalitis (SSPE) can occur months and even 5-15 

years, respectively, after acute infection and are caused by persistent MV infection (Moss and 

Griffin 2006). 

2.3. Genome, Proteins and Structure 

Measles virus is a negative sense single strand RNA virus of 100-300 nm diameter, whose 

16,000 nucleotides contain 6 genes encoding 8 proteins: Nucleoprotein (N), the 

transmembrane glycoproteins haemagglutinin (H) and fusion (F), matrix protein (M), 

phosphoprotein (P), large protein (L) as well as 2 non-structural proteins, C and V (Figure 3) 

(Griffin 2007). 

Nucleocapsid protein is first expressed and is the most abundant protein. It self assembles, 

complexes with L and P, and binds the viral RNA to form the nucleocapsid, the replicase 

complex of the virus. Nucleocapsid protein is an omnipresent antigen in infected cells and is 

the first target of the immune response, though antibodies are not neutralising due to it’s 

unavailability at the virus surface (Graves et al. 1984). The viral envelope is formed by matrix 

protein and cellular lipid bilayer containing haemagglutinin and fusion proteins.  

M is a basic protein with several hydrophobic domains and links the nucleocapsid 

ribonucleoproteins with the envelope proteins during virion assembly. M-protein plays an 

important role in virion generation and budding (Griffin 2007) but when it is associated with 

the ribonucleoprotein core, it inhibits transcription (Suryanarayana et al. 1994). 

The F-protein is a type I transmembrane glycoprotein and is the most highly conserved 

protein of MV. It is anchored in the virus membrane via the hydrophobic C-terminal tail and 

plays a role in cell-cell fusion. Fusion can be inhibited by the presence of anti-F antibodies. A 
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Cys rich region (F337-381), conserved throughout the paramyxoviridae family, interacts with 

H-protein facilitating virus-cell fusion (Griffin 2007). 

The haemagglutinin protein is a 617 amino acid long type II transmembrane protein expressed 

on the surface of the virus and infected cells. The N-terminal domain is essential for transport 

to the cell membrane and acts as a membrane anchor. It appears as disulfide linked 

homodimers which associate into tetramers on the cell surface (Hu and Norrby 1994). The C-

terminal ectodomain of H with its 13 highly conserved cysteine residues, binds to receptors on 

the cell surface and constitutes the first step in measles infection (Devaux et al. 1996). This 

event is followed by a functional cooperation with F allowing viral entry into the cell by 

attaching and fusing viral envelope to host cell membrane (Moss and Griffin 2006; Griffin 

2007). Initially CD46, a complement regulatory molecule expressed on all nucleated human 

cells, was identified as a cellular receptor (Naniche et al. 1993). Tatsuo and colleagues also 

identified SLAM (lymphocyte activation molecule; CD150) as an additional receptor (Tatsuo 

et al. 2000). Phylogenetic analysis of MV strains show that wt and vaccine strains both use 

SLAM but that vaccine strains have evolved to use ubiquitously expressed CD46 as well. 

There are suggestions that H-protein is not the only receptor binding protein of measles virus 

and that other MV proteins are also capable of facilitating virus entry (Yanagi et al. 2006). In 

addition in-vitro infection independent of CD46 and SLAM have been reported suggesting the 

role of not yet identified (inefficient) ubiquitous receptors (Andres et al. 2003; Griffin et al. 

2008). 
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Figure 3: Schematic representation of MV 

The core of the measles virus consists of a ribonucleoprotein complex incorporating N-protein encapsulated 

RNA associated with the polymerase complex of phosphoprotein and the large protein. The ribonucleocapsid is 

connected via M-protein to an enveloping lipid bilayer incorporating viral transmembrane glycoproteins F and 

H. 
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2.4. Immune response to MV infection 

The wt virus induces a humoral and cellular response leading to live-long immunity against 

reinfection (Panum 1938; Black and Rosen 1962; Graves et al. 1984). Passive immunisation 

with anti-measles antibodies protects against virus infection suggesting that a humoral 

response is sufficient to avoid infection, as demonstrated by the protection of infants by 

maternally transferred antibodies (Albrecht et al. 1977). However cellular immunity is crucial 

for virus clearance after infection (Kaplan et al. 1992). Children with agammaglobulinaemia 

(a disease state in which B-lymphocytes fail to produce antibodies), are able to recover from 

MV infection while defects in T-lymphocyte function lead to severe or fatal disease (Moss 

and Griffin 2006). 

Specific antibodies can be detected at the onset of rash, with IgM appearing first and lasting 

for about 8 weeks. IgG and IgA are detectable a few days after onset and remain for life. IgG 

antibodies are directed against most viral proteins N, M, F and H, with the majority targetting 

N, the most abundant protein of MV (Graves et al. 1984). Only anti-H and anti-F antibodies 

contribute to the neutralisation of the virus (de Swart et al. 2005) and the highest proportion of 

neutralising antibodies is directed against H–protein (McFarlin et al. 1980; Giraudon and 

Wild 1985). 

The immune response against measles is mediated by CD8+ and CD4+ cells. CD8+ cells are 

activated during the prodrome. CD4+ Th1 response is essential for virus clearance while a 

subsequent Th2 response promotes the induction of protective MV-specific antibodies 

(Griffin 1995). The strong efficient and long lasting immune response against MV is in stark 

contrast to the ensuing immune suppression that can last for several months (Tamashiro et al. 

1987) and increases the susceptibility towards secondary infections. While the exact 

mechanism of immune suppression remains poorly understood, several parts of the immune 

system seem to be involved. 

 

2.5. MV-vaccine 

The first vaccine against measles was developed at the end of the 1950s using the Edmonston 

strain. The virus was passaged in primary kidney and amnion cells followed by chick embryo 

cells and chick fibroblasts (Bellini et al. 1994). This passaged virus induced immunity against 

measles causing no or only mild clinical symptoms. No neurological sideffects, frequently 
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associated with measles infection, were observed after intracerebral inoculation of monkeys 

with the adapted virus (Enders et al. 1960). This first attenuated live vaccine (LAV) 

(Edmonston B) was patented as a vaccine in 1963. Later on, several attenuated vaccine strains 

were developed on the basis of wt Edmonston strain. The majority of these strains are still 

being used as vaccine: the Moraten strain is used primarily in the US whereas Schwarz is used 

throughout the world. Nucleotide analysis of M, N, H and F sequences showed no more than 

0.6% differences between the various vaccine strains derived from Edmonston strain (Redd et 

al. 1999). 

Prior to vaccination an estimated 5-8 million fatalities were attributed annually to measles 

with 80 million infected. This trend was significantly reduced with the joint efforts of 

vaccination, the increased nutritional status and the use of antibiotics against secondary 

bacterial infections. Today the vaccine is routinely injected to 9-15 months old children 

throughout the world, often together with Mumps and Rubella vaccine (MMR-vaccine). The 

vaccine has a high seroconversion rate, induces long-term protection against MV infection 

after a single dose and has an excellent safety record (Redd et al. 1999). As one of the most 

successful and cost-effective medical intervention it has resulted in the interruption of 

indigenous measles circulation in a number of developed countries (Finland (Heinonen et al. 

1998) and US (CDC 1997)). Several developing countries, especially in Latin America and 

southern Africa, have made significant progress towards eliminating measles (de Quadros et 

al. 1998; Biellik et al. 2002). 

Vaccination is generally accepted to result in long lasting immunity, accompanied with the 

standard rate of vaccine failure (Markowitz et al. 1990; Cutts et al. 1999; Redd et al. 1999). 

Observation in isolated insular population like Palau have shown that after 27 years of no 

known re-exposure to measles, antibody waning did not increase the risk of infection of 

vaccinees. But they confirmed that a second administration of vaccine was more protective 

than single doses (Guris et al. 1996). There have however been reports of measles outbreaks 

and subclinical measles in highly vaccinated populations (Gustafson et al. 1987; Pedersen et 

al. 1989; Yeung et al. 2005). 

2.6. Drawbacks of the current measles vaccine 

The success of the current measles vaccine has lead the WHO to target measles for 

eradication. Mathematical models estimate that in developed countries herd immunity is 

likely to be lost and endemic transmission of measles possible when herd immunity drops 
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below 93-95% (Meissner et al. 2004). Despite the advantages mentioned previously, the 

current LAV has some important drawbacks that may make it difficult to achieve such levels 

in the final stages of measles elimination. 

 

1) The common drawback of currently used attenuated measles vaccines is their thermal and 

chemical instability, requiring a continuous cold-chain and protection from sunlight; factors 

hindering deployment in third world countries.  

 

2) Since measles vaccine have to be administered subcutaneously or intramuscularly 

specialised health workers are required and hazardous waste of needles and syringes needs to 

be properly disposed of (Moss and Griffin 2006).  

 

3) Contrary to the high efficacy in adults and children immunisation with LAV of infants is 

coupled with a weak immunogenicity (Albrecht et al. 1977; Markowitz et al. 1990; Redd et al. 

1999). The reduced efficacy is caused by the presence of interfering maternal anti-MV 

antibodies (Albrecht et al. 1977; Osterhaus et al. 1998) and by the immaturity of the immune 

system even in the absence of maternal antibodies (Gans et al. 1998; Gans et al. 2001).  

Maternally transferred antibodies via the placenta during gestation protect infants after birth 

from a variety of infections. The presence of anti-measles maternal antibodies interferes with 

seroconversion during LAV vaccination by in vivo neutralisation prior to vaccine virus 

replication (Hayden 1979). While early vaccination is complicated by low seroconversion, 

delayed vaccination to improve seroconversion leaves an important fraction of infants without 

protection if maternal antibodies wane prematurely, until routine vaccination at 15 months is 

performed. Waning of maternal antibodies has been reviewed (Caceres et al. 2000; Leuridan 

and Van Damme 2007). Premature waning of maternal antibodies leads to a susceptibility gap 

during which infants and children are at an increased risk of measles infection. Studies in 

Nigerian infants showed that less than half remain protected by maternal antibodies at the age 

of 4 months (Oyedele et al. 2005) and that there is a considerable difference between maternal 

antibody waning in Nigerian and German infants, as infants from developed countries 

remained protected for a longer period (Hartter et al. 2000). To compensate for this observed 

earlier loss of protection and the danger posed by circulating MV, infants in developing 

countries are vaccinated at 9 months of age (Fagbule and Orifunmishe 1988). Despite the 

success of elimination programmes in Latin America a large outbreak in 1997 originating in 

São Paulo and spreading through other countries showed that under 1 year old and young 
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adults were most affected (Cutts et al. 1999) A recent study (Martins et al. 2008) suggested 

that a new group of children may already lose protective immunity by maternal antibodies at 

the age of 3-5 months. While the authors admit that their study was relatively small, they 

observed a vaccine efficacy of over 80% in 4.5 month old children. However earlier 

vaccination combined with the observed antibody waning in vaccinated individuals raises 

questions about the durability of immunity (Putz 2004; Kremer et al. 2006b). Infants in the 

developed world are protected by herd immunity and the first vaccine injection is 

administered at 15 months of age. 

 

4) Several studies have shown that remission from measles results in higher antibody titres 

than compared to vaccination (Christenson and Bottiger 1994; Bouche et al. 1998; Damien et 

al. 1998) 

 

5) Antibody titres raised via vaccination wane faster than those from naturally infected 

persons (Krugman 1983; Christenson and Bottiger 1994; Davidkin and Valle 1998). This 

phenomenon is likely to be further accentuated by the lack of boosts from subclinical 

infections (Davidkin and Valle 1998; Bennett et al. 1999) by circulating virus as measles 

incidence is reduced. Kremer and colleagues suggest that contact with circulating wt virus 

plays a role in maintaining antibody levels in late convalescent patients (Kremer et al. 2006a). 

At the same time there are fears that vaccinees with incomplete immunity can transmit 

measles during the subclinical phase (Mossong et al. 1999; Whittle et al. 1999). 

 

6) The widespread distribution of HIV in the developing world has implications on measles 

vaccination. A number of studies have reported a lower level of passively transmitted 

maternal antibodies against MV at birth in infants born to HIV-1 seropositive mothers, thus 

widening the window of susceptibility. These children were at a 3.8 fold higher risk of 

acquiring measles before immunisation at 9 months (Embree et al. 1992; Moss et al. 1999; 

Moss et al. 2007; Scott et al. 2007). HIV-1 infected infants reacted better to vaccine 

administration at 6 months of age than at 12-15 months presumably because at 6 months, 

infants were not yet immunocompromised (Rudy et al. 1994; Arpadi et al. 1996). In light of 

these findings the WHO has recommended vaccination of HIV-1 infected infants at 6 months 

and a second dose at 9 months, yet the unknown status of HIV-1 infection in infants render 

this policy difficult to implement (Scott et al. 2007). 
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Despite initial concerns MMR vaccination had long been recommended for HIV infected 

children and generally considered safe (Onorato et al. 1989) until in 1994 an HIV-infected 21-

year old man with haemophilia A died 10 months after receiving his second dose of measles 

vaccine. Measles vaccine is no longer recommended for severely immunocompromised HIV-

infected patients whose immunological status is defined by age-specific CD4+ T lymphocyte 

counts (Moss et al. 1999). 

 

2.7. The need for a new vaccine – experimental measles vaccines 

The need for high herd immunity will put the current measles vaccine to its ultimate test to 

achieve worldwide elimination of measles. In the final stages, small flaws of the current 

vaccine could potentially have wide ranging negative consequences and so, since the mid–

eighties, new generations of measles vaccines and/or new administration routes have been 

investigated (Putz 2004). A recent comprehensive review of those efforts has been published 

(Putz et al. 2003a). These experimental vaccines have been mostly tested in mice and the 

rhesus macaque model has been used to assess the risk of atypical measles. The large variety 

of experimental vaccines is illustrated in Table 3 and Table 4, and includes recombinant viral 

vectors expressing mostly the H- and F-surface proteins of measles, which lead to neutralising 

and protective antibodies in rodents and primates. The bacterial recombinant vectors mainly 

express the N-protein of measles as it is not dependent on the eukaryotic folding machinery. 

The success of neutralisation and protective activity with these vectors were more limited than 

for viral vectors. H- and F-proteins incorporated into ISCOMS with the Quil-A adjuvant 

component, were virus-neutralising and protective in cotton rats and macaques. Synthetic 

subunit vaccines of H- and F-protein epitopes induced neutralising and protective antibodies 

in mice and will be described in further detail later. 

 

One novel area of measles vaccine research focuses on aerosol vaccination. The use of 

nebulised measles vaccine has been trialled in Mexico and South Africa and follow-up studies 

suggest that vaccination via aerosol is as effective as or more effective than subcutaneous 

injection (Dilraj et al. 2007; Low et al. 2008). The WHO has recently started the Measles 

Aerosol Project (WHO 2005) aimed at licensing nebulisers and vaccines for this novel type of 

delivery which avoids the need for needles and the associated risks (de Swart et al. 2006; 

Cohen et al. 2008). There has also been recent research into the feasibility of using dry 
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powder inhalation of measles vaccine to circumvent the need of a cold-chain and the 

reconstitution of the virus (LiCalsi et al. 2001; de Swart et al. 2007), with the need for further 

improvements. Administration of these whole virus based vaccines is however still limited by 

the presence of neutralising maternal antibodies in young infants (Low et al. 2008).  

In what could be considered a twist of fate MV itself has become a possible viral vector (de 

Vries et al. 2008) and live attenuated MV is known to be oncolytic and is thus used in cancer 

research to specifically target cancer cells (Liniger et al. 2007; Gauvrit et al. 2008). 

 

 
Table 3: Experimental measles vaccines in rodents 
 

Experimental vaccine Mode of delivery Immune response References 

 
ISCOMs i.m., s.c. Neutralising Abs, CTL, protection (Varsanyi et al. 1987; Stittelaar et al. 2000a; Wyde et al. 

2000a; Wyde et al. 2000b) 
Recombinant viral vectors      
· Adenovirus vectors i.n., i.p., p.o. CTL, protection (Fooks et al. 1995; Fooks et al. 1998) 

· Poxvirus vectors (replication-competent) i.n., i.p. Neutralising Abs, CTL, protection (Drillien et al. 1988; Wild et al. 1992; Galletti et al. 1995; 
Etchart et al. 1996; Kovarik et al. 2001) 

· Poxvirus vectors (replication-deficient) i.n., i.p. Neutralising Abs, protection (Weidinger et al. 2001) 

· Avian virus vectors i.m., i.p. Neutralising Abs, CTL, protection (Wyde et al. 2000a; Wyde et al. 2000b; Kovarik et al. 

2001) 

· Vesicular Stomatitis Virus i.n., i.p. Neutralising Abs, protection (Schlereth et al. 2000b) 

· Attenuated parainfluenza virus type 3 i.n. Neutralising Abs (Durbin et al. 2000) 

 

Recombinant bacterial vectors  
· BCG i.p. IgG, protection (Fennelly et al. 1995) 

· Streptococcus gordonii s.c. IgG (Maggi et al. 2000) 

· Salmonella typhimurium i.p., p.o. IgG, CTL, protection (Verjans et al. 1995; Fennelly et al. 1999; Spreng et al. 
2000) 

· Shigella flexneri i.n. IgG, CTL (Fennelly et al. 1999) 

 

Nucleic Acid vaccines gene-gun, i.d., Neutralising Abs, CTL, protection (Cardoso et al. 1996; Fooks et al. 1996; Etchart et al. 
1997; Yang et al. 1997; Fennelly et al. 1999; Torres et al. 
1999; Fooks et al. 2000; Schlereth et al. 2000a; Green et 
al. 2001) 

 
Plant based vaccines i.m., i.p. Neutralising Abs (Huang et al. 2001; Webster et al. 2002; Bouche et al. 

2003; Marquet-Blouin et al. 2003; Bouche et al. 2005) 
 
Epitope based vaccines 
· Synthetic peptides of F protein i.n., i.p. Neutralising Abs, protection (Obeid et al. 1995; Atabani et al. 1997; Partidos et al. 

1997; Hathaway et al. 1998) 

· Synthetic peptides of H-protein i.p., i..n. Neutralising Abs, protection (Verjans et al. 1995; El Kasmi et al. 1998; El Kasmi et al. 

1999b; El Kasmi et al. 2000; Spreng et al. 2000; Putz 

2004; Putz et al. 2004; Halassy et al. 2006)  

· “Recombinant peptides” of F protein p.o. IgG, CTL, protection (Verjans et al. 1995; Spreng et al. 2000) 

· Polyepitopes of H-protein i.p. Neutralising Abs (Bouche et al. 2003; 2005) 

 
A summary of experimental measles vaccines in rodents. i.d.: intradermal; i.m.: intramuscular; i.n.: intranasal; 

i.p.: intraperitoneal; p.o.: oral; s.c.: subcutaneous. Table and references adapted from Putz (2003a). 

 27



Chapter 1: Introduction 

Table 4: Experimental measles vaccines in macaques 
 

Experimental vaccine Mode of delivery Immune response References 

   
ISCOMs i.m. Neutralising Abs, CTL, protection (de Vries et al. 1988; Rimmelzwaan and Osterhaus 1995; van 

Binnendijk et al. 1997; Stittelaar et al. 2000a; Stittelaar et al. 

2002c) 

Recombinant viral vectors      
· Poxvirus vectors (replication-competent) i.d., i.m. Neutralising Abs, CTL, protection (van Binnendijk et al. 1997; Zhu et al. 2000) 

· Poxvirus vectors (replication-deficient) i.m., i.n. Neutralising Abs, CTL, protection (Stittelaar et al. 2000b; Zhu et al. 2000; Stittelaar et al. 2001) 

· Attenuated parainfluenza virus type 3 i.n. Neutralising Abs (Skiadopoulos et al. 2001) 

 

Recombinant bacterial vectors  
· BCG i.d., i.n. IgG, CTL (Zhu et al. 1997)  

 

Nucleic acid vaccines gene-gun, i.d. Neutralising Abs, CTL, protection (Polack et al. 2000; Stittelaar et al. 2002b) 

 

Mucosal delivery of live attenuated virus  
 aerosol,  m.-e. under investigation (LiCalsi et al. 1999; LiCalsi et al. 2001; Stittelaar et al. 2002a) 

 

A summary of experimental measles vaccines in macaques. i.d.: intradermal; i.m.: intramuscular; i.n.: intranasal;, 

m.-e.: micro-encapsulated. Table and references adapted from Putz (2003a). 

 

2.8. Subunit vaccines based on measles specific epitopes 

Neutralising epitopes have been described for the fusion (F) and the haemagglutinin (H) 

surface glycoproteins of MV. 

 

Fusion protein 

 

Since anti-F antibodies have been found to protect mice against measles induced encephalitis, 

several neutralising epitopes of the F-protein were identified. Atabani and colleagues screened 

a panel of 15-mer peptide from MV-F with polyclonal sera from African children with acute 

measles and identified the F388-402 region, which is located in a conserved Cys rich domain 

of the F protein, as immunodominant. Immunisations of mice with the 15-mer induced MV-

crossreactive and neutralising antibodies. Passive transfer of the induced anti-peptide 

antibodies protected susceptible mice against encephalitis by challenge with a rodent adapted 

strain of MV (Atabani et al. 1997). Partidos and colleagues tested the F397-420 BCE for its 

immunogenicity and protective capacity against rodent adapted MV-challenge. The peptide 

was immunogenic in two mice strains and did not require the addition of a TCE. Analysis of 
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the fine specificities of induced antibodies showed strain dependent preferences that targeted 

F408-420 in the case of C57BL/6 mice, whereas BALB/c mice recognised the F407-417 

region specifically. Crossreactivity with MV was demonstrated but sera lacked neutralising 

activity. Despite this, passive transfer (BALB/c) of anti-397-420 peptide antibodies and active 

immunisation (C57BL/6) with F397-420 peptide protected mice against neuroadapted MV-

challenge (Partidos et al. 1997). Several chimeric peptides composed of one F404-414 BCE 

and one or two copies of the promiscuous TCE (F288) of the F-protein were analysed in 

several mouse strains and only peptides with two TCE followed by the BCE were found to 

induce a protective response against MV-challenge (Obeid et al. 1995). Intranasal 

immunisation of the above TTB chimeric peptide with cholera toxin b subunit adjuvant 

induced neutralising and protective immunity in mice (Hathaway et al. 1998). A random 

solid-phase combinatorial peptide library identified an 8-mer mimotope, with structural 

similarities to F153-161, which induced MV-crossreactive antibodies, demonstrating the 

potential of mimotopes (Steward et al. 1995). 

While the above mentioned epitopes and immunisations with peptides are promising, the fact 

that they are recognised by human sera, makes it unlikely that they can resist neutralisation by 

maternal antibodies and are thus not compatible with a PRE-vaccine (Protection by antibody 

Resistant Epitopes) (El Kasmi and Muller 2001). 

 

Haemagglutinin protein 

 

Two sequential B cell epitopes of the haemagglutinin protein have been identified in our 

laboratory by screening overlapping peptides with a panel of neutralising and protective 

monoclonal antibodies: H236-256, termed NE, neutralising epitope (Fournier et al. 1997) and 

H386-400 named HNE, haemagglutinin noose epitope (Ziegler et al. 1996). 

 

Neutralising Epitope 

 

Several mAb, induced by immunisation with Edmonston strain, recognised the NE domain 

with different fine specificities, were able neutralise a range of wt-MV strains in vitro and 

protected mice against a challenge with neuroadapted MV. A Lys242Gly mutation occurring 

in 50% of MV is thought to allow some viruses to escape neutralisation by these mAb. These 

anti-NE mAbs are functionally similar to anti-F antibodies as they seem to inhibit virus/cell 

fusion, yet are not able to block virus/receptor binding. Based on the discrepancy between 

 29



Chapter 1: Introduction 

haemolytic activity and haemagglutination, the location of the NE epitope is suggested to lie 

at the functional and/or topographical interface between the F- and H-proteins (Fournier et al. 

1997). Amino acid Arg243, which is part of the core epitope, is known to play a role in the 

downregulation of CD-46 receptor, further confirming the importance of the NE domain 

(Bartz et al. 1996). Using functional fine-mapping with truncation analogues the H236-256 

epitope was narrowed down to the core sequence of S244ELSQL249. Circular dichroism in 

combination with 3D structure homology modelling suggested an α-helical structure for the 

epitope (Deroo et al. 1998). Chimeric peptides were synthesised incorporating the BCE H236-

255 or H236-250 or the 7-mer core epitope H243-250 and various TCEs with varying copy 

numbers and orientations. Several of these chimera peptides induced crossreactive and 

neutralising antibodies and the binding motif of NE was defined as E245LXQL249 using mAbs. 

This binding motif was confirmed by anti-peptide antibodies with similar fine-specificities (El 

Kasmi et al. 1998; El Kasmi et al. 1999b). Passive immunisation with anti-peptide antibodies 

protected mice against a neuroadapted MV strain and immunisation with the peptide-vaccine 

was successful in the presence of MV-neutralising antibodies. These experiments demonstrate 

the potential of using peptide-based vaccines in the presence of maternally transferred 

antibodies (El Kasmi et al. 1999b). These anti-peptide sera were however only able to 

neutralise vaccine strain and none of the wt-field isolates. Several explanations were brought 

forward, such as the influence of low neutralising titres, differences in uptake mechanisms of 

the used cell lines and the Arg243Gly mutation in some field isolates. A phage display 

technique lead to several mimotopes of the NE core peptide which were used for 

immunisation and neutralisation tests. Surprisingly, the mimotopes which bound much more 

strongly to anti-NE mAb than some BCE peptides (up to 135 times) failed to induce MV-

crossreactive antibodies. Even more surprisingly antibodies induced against several BCE 

peptides and which did not bind to mAb, were able to crossreact with and neutralise MV (El 

Kasmi et al. 1999a). These finding show the inherent difficulty of a rational design of peptides 

(El Kasmi and Muller 2001). Recently Oh and colleagues demonstrated that the 10-mer 

H250-259 was a TCE and induced protective immunity against a challenge with recombinant 

vaccinia virus expressing H- and F-proteins of the Edmonston strain (Oh et al. 2006). 
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Haemagglutinin Noose Epitope 

 

The HNE is the second sequential epitope identified by mAb screening. Three of these mAbs 

(BH216, BH21 and BH6) reacted with MV under non-reducing conditions, neutralised MV in 

vitro and protected mice from a lethal challenge with a neuroadapted MV strain. These three 

mAbs specifically bound 15-mer peptides forming the H381-400 sequence. This fragment 

contains three Cys residues (Cys381, Cys386 and Cys394) which are conserved in all 

morbilliviruses and the 15-mers are not recognised by anti-MV sera of women of child-

bearing age (Ziegler et al. 1996). Two peptides of the HNE-epitope (H386-400 and H379-

400) containing two and three Cys respectively were combined with one or two copies of 

promiscuous TCE in different combinations and orientations. Peptides with the shorter BCE 

induced crossreactive but non-neutralising antibodies. The longer BCE with three Cys 

residues induced crossreactive sera when combined with two copies of the TCE, and these 

sera were also MV-neutralising. These peptides were still immunogenic even in the presence 

of anti-MV antibodies suggesting that maternal antibodies in infants would not interfere with 

the immune responses of such peptides (El Kasmi et al. 2000). Functional fine-mapping of the 

HNE H379-410 epitope (E379TCFQQACKGKIQALCEN396) was performed by synthesising 

substitution and truncation analogues. With the help of truncation analogues the core epitope 

was reduced to Q384ACKGKIQALCEN396. Binding of mAb to PEPSCAN peptides, where 

each amino acid residue of the H379-410 region was replaced with Ala, Glu, Asn, Gln, Arg 

and Ser, showed that none of these amino acid residues were tolerated in positions Lys387, 

Gly388, Gln391 and Glu395, with the exception of Arg in position 387. Thus the binding 

motif of X7C[KR]GX[AINQ]QX2CEX5 with a disulfide bridge was suggested for these 

protective antibodies BH216, BH21 and BH6. Twenty-one distinct HNE sequences found in 

92.9% of all MV-strains, displayed this binding motif and twenty of them reacted with mAb 

BH216. All, except one, wt-MV isolates, containing the above binding motif, were neutralised 

in vitro by these mAb (Putz et al. 2003b). 

Molecular modelling of the HNE-peptide H384-396 by dynamic simulations at 300 K 

(Kelvin) and 1000 K and superposition of the calculated structures showed an astonishingly 

rigid structure (Figure 4). The peptide is a flat circular structure and the hydrophilic residues 

Gln384, Lys387, Lys389, Gln391 and Glu395 are located at what is suspected to be the 

solvent exposed side. The hydrophobic sidechains of Ala385, Ile390, Ala392 and Lys393 are 

directed to the opposite side, most likely buried inside the protein (Putz 2004). 
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Figure 4: Molecular model of the HNE 

Top view (A) and lateral view (B) of 4 representative conformations (peptide backbone as yellow, red, blue and 

orange ribbon) from simulation runs at 1000 K superposed to a conformation (peptide backbone as green ribbon) 

from the simulation at 300 K. Sidechains of critical contact residues are shown in blue, hydrophilic/charged 

sidechains in green, hydrophobic sidechains in pink, disulfide bridge in yellow, peptide backbone as thick ribbon 

(Putz 2004). 

 

 

The immunogenicity of HNE-peptides conjugated to DT and TT were tested in the presence 

of maternally transferred anti-carrier and anti-peptide antibodies and prior vaccination with 

the carriers. Two injections of HNE-peptide-conjugates in mice previously immunised with 

the carrier protein induced similar levels than in naïve mice, demonstrating a lack of epitopic 

suppression. Maternally transferred anti-carrier and anti-peptide antibodies lead to initial 

suppression of the immune response which could be overcome by additional boosting. In 

addition, immunisation with the HNE-peptide-conjugates did not exclude the development of 

an immune response against administered MV as demonstrated by the appearance of anti-F 

antibodies. These experiments further reinforce the potential of the HNE-peptide-based 

vaccine in the presence of maternal antibodies and a subsequent immunisation with the 

current live attenuated MV vaccine (Putz et al. 2004). 

 

The potential of HNE-peptides to elicit crossreactive and neutralising antibodies was 

demonstrated by a series of high-molecular weight polyepitope constructs produced in 
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transgenic plants. While the crossreactivity and neutralising activity of paired multiple copies 

of NE- and HNE-epitopes combined with promiscuous TCEs was highly dependent on the 

molecular environment in which they were displayed, some constructs correctly displayed the 

BCEs (Theisen et al. 2000). Immunisation with extracts from transgenic carrots expressing a 

tandem 8-mer of four copies of the HNE and four copies of a promiscuous TT derived T cell 

epitope, induced MV crossreactive antibodies in mice. These antibodies were also capable of 

neutralising a wide range field of isolates of MV, even those with mutations in the HNE 

binding motif. This may indicate that, in this construct the epitopes may display different 

conformations and induce a broader range of antibodies which may overcome the genetic 

variability of some MV strains and ensure neutralisation (Bouche et al. 2003; 2005). 

 

A recent investigation into alternative administration routes of an HNE-peptide subunit 

vaccine showed that intranasal immunisation with cholera toxin induced antibody at similar 

levels than via intraperitoneal route. In addition immunisation with DT-conjugated HNE-

peptide protected mice against a challenge with neuroadapted MV. Transcutaneous 

administration was less successful, giving lower anti-peptide titres which were only weakly 

crossreacting with native H-protein (Putz 2004). 

 

2.9. The rationale of a peptide -based vaccine against measles 

The NE- and HNE-epitopes, described above, are potential epitope candidates for a peptide-

based vaccine to close the susceptibility gap in newborns and infants. Infants can develop 

efficient antibody responses against proteins, and antibodies against the surface proteins are 

sufficient to protect infants from measles  (Putz and Muller 2003). As demonstrated earlier, 

and contrary to most experimental vaccines which are based on whole virus, the immune 

response against NE and HNE is not suppressed by pre-existing anti-MV antibodies. By using 

measles unrelated carrier proteins such as TT, or promiscuous TCE, a Th2 priming of measles 

specific T cells can be avoided. An anomalous Th2 response has been linked to atypical 

measles (Polack et al. 2002). Children immunised with formalin inactivated measles vaccine, 

were affected by a severe form of measles after exposure to circulating wt-MV (Fulginiti et al. 

1967). The risk of atypical measles hampered the development of new measles vaccines until 

an animal model for the condition was found (Auwaerter et al. 1999; Polack et al. 1999). 

There are also suggestions that the current live attenuated vaccination is possible after 
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vaccination with a peptide-based vaccine. Such a PRE-vaccine (Protection by antibody 

Resistant Epitopes) could provide transient protection of susceptible infants until routine LAV 

vaccine can be administered and thus act as a supplement to the current vaccination schedule 

(El Kasmi and Muller 2001; Putz and Muller 2003). 

3. Study Objectives 

As described in the previous paragraphs a substantial amount of work has been done in our 

laboratory on defining BCEs of MV surface proteins and the feasibility of a peptide-based 

vaccine against measles. Two epitopes of the haemagglutinin protein were described and 

induced neutralising and protective antibodies in mice. 

 

The current study aims to further characterise the structure and define structurally and 

chemically important residues of the HNE-peptide with the objective to stabilise the peptide 

and to increase its immunogenicity. 

 

In a first part, the structure of the wt-HNE-peptide (KGQQACKGKIQALCEN) and several 

modified peptides will be resolved by Nuclear Magnetic Spectroscopy (NMR) and the 

influence of substitution will be analysed both by structural comparisons and by antigenicity 

tests with monoclonal antibodies. These models will shed more light on the structural 

requirements of the HNE-peptide for antibody binding and complement the current dynamic 

modelling structure of the HNE-peptide. The resolved structures will then be compared to the 

X-ray crystallography structures of MV-H-protein that have been published after our 

structural studies and further explain the differences between free HNE-peptides and the 

constraint HNE–epitope in the protein. 

 

In a second step we will use the acquired information from both our resolved NMR structures 

and the previously defined HNE binding motif and rationally apply some of the current 

strategies to increase the metabolic stability of peptides. The antigenicity of these modified 

peptides will be assessed by anti-HNE monoclonal antibodies. These modified and stabilised 

HNE-peptides will then be used in vivo to determine their immunogenicity. 

 

In collaboration with Cathy Bodé at the University of Ghent we will analyse the stability, 

antigenicity and immunogenicity of a bile acid-conjugated scaffold-peptide construct. 
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Coupling the HNE-peptide via its C- and N-termini to the scaffold will decrease the 

degradation by exopeptidases. The structural constraints of the scaffold will reduce the 

flexibility of the HNE-peptide and limit the number of peptide conformations presented to B 

cells during the immunisation, thus strengthening the immune response. 

 

This study will thus further increase our understanding of the HNE-peptide structure, and the 

relationship between stability, antigenicity and immunogenicity in the context of epitope-

peptide-based vaccines. 
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Chapter 2: Materials and Methods 

Part I: Materials 

1. Chemicals and reagents 

Commonly used chemicals were purchased from Sigma Aldrich (Bornem, Belgium) and 

Merck Schuchardt (Hohenbrunn, Germany). All chemicals were used without further 

purification. All cell culture medium and reagents were purchased Lonza (Basel, 

Switzerland).Solvents used in mass spectroscopy were from of MS grade from Biosolve 

(Valkenswaard, The Netherlands) 

 

Compound     Supplier 

acetonitrile (ACN)    Biosolve (Valkenswaard, The Netherlands) 

Tween 20     Sigma-Aldrich (Bornem, Belgium) 

phosphate substrate    Sigma-Aldrich (Bornem, Belgium) 

sodium-iodoacetate    Sigma-Aldrich (Bornem, Belgium) 

s-NHS/EDC     Pierce (Rockford, IL, USA) 

β-mercaptoethanol    Calbiochem (Merck, Darmstadt, Germany) 

dithiothreitol (DTT)    Sigma-Aldrich (Bornem, Belgium) 

3-Hydroxypicolinic acid (HCCA)  Bruker (Bremen, Germany) 

2,5-Dihydroxybenuoic acid (DHB)  Bruker (Bremen, Germany) 
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2. Peptide synthesis reagents and amino acids 

Reagents 

Reagents used for automated peptide synthesis were of peptide synthesis grade. 

 

Compound     Supplier 

dichloromethane (DMF)   Biosolve (Valkenswaard, The Netherlands) 

N-methylpyrrolidone (NMP)   Merck Schuchardt (Hohenbrunn, Germany) 

N-hydroxybenzotriazole (HOBt)  Sigma-Aldrich (Bornem, Belgium) 

piperidine      Merck Schuchardt (Hohenbrunn, Germany) 

N,N'-diisopropylcarbodiimide (DIC) Fluka/Sigma-Aldrich (Bornem, Belgium) 

phenol      Merck Schuchardt (Hohenbrunn, Germany) 

ethanedithiol     Merck Schuchardt (Hohenbrunn, Germany) 

thioanisole (methyl phenyl sulphide) Merck Schuchardt (Hohenbrunn, Germany) 

 

Amino acids and resin 

All natural L- and D-amino acids were from OrpegenPharma (Heidelberg, Germany). 

 

Compound      Supplier 

β-alanine     Novabiochem (Merck, Darmstadt, Germany) 

pamba      Fluka/Sigma-Aldrich (Bornem, Belgium) 

t-amcha     Fluka/Sigma-Aldrich (Bornem, Belgium) 

gaba      Fluka/Sigma-Aldrich (Bornem, Belgium) 

achca      Fluka/Sigma-Aldrich (Bornem, Belgium) 

aib      Novabiochem (Merck, Darmstadt, Germany) 

cha      Novabiochem (Merck, Darmstadt, Germany) 

Norleucine (Fmoc-Nle)   Novabiochem (Merck, Darmstadt, Germany) 

Norvaline (Fmoc-Nva)   Novabiochem (Merck, Darmstadt, Germany) 

diamnio propionic acid (dap)   Bachem (Bubenhof, Switzerland) 

trimethylated Lys    Bachem (Bubenhof, Switzerland) 

dimethylated Lys    Bachem (Bubenhof, Switzerland) 

Fmoc-Rink amide aminomethyl-  Iris Biotech (Marktredwitz, Germany) 

polystyrene resin     
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3. Antibodies 

Compound     Supplier 

anti-MV-H (BH216, BH21, BH6,   in house produced mAb from hybridomas 

BH195) (Ziegler et al. 1996) 

IgG-AP     Southern Biotechnology (Birmingham, AL, USA) 

anti-2,4-D (clone E2/G2)   (Franek et al. 1994) for Borstel Research Centre 

horseradish-peroxidase-labeled   Vector, (Burlingame, CA, USA) 

streptavidin (SA-HRP)    

FITC-labelled goat anti-mouse IgG   Sigma-Aldrich (Bornem, Belgium) 

(Anti-Mouse IgG (Fc specific)  

F(ab’) fragment-FITC)    

4. Buffers and Solutions 

The water used for the buffers and solutions was purified on an Elga Option 4 instrument 

(Elga Labwater, Ede, The Netherlands) 

 

HPLC     

HPLC Solvent A   HPLC Solvent B

100% H2O  80% ACN 

0.1% TFA  20% H2O 

   0.1% TFA 

    

Oxidation and conjugation    

Borate buffer   Ammonium bicarbonate buffer

50 mM boric acid  0.1 M NH4HCO3

150 mM NaCl  pH 7.8  

pH 7.4     

   MES  

   0.1 M MES 

   0.5 M NaCl 

   pH 6  
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ELISA and FACS    

Carbonate buffer   Washing buffer  

0.1 M Na2CO3  154 mM NaCl 

adjusted to pH 9.6 with  1 mM Trisbase 

0.1 M NaHCO3  1% (w/v) Tween 20 

   pH 8  

     

Blocking buffer   Dilution buffer  

15 mM Trizma-Acetate  0.1% (w/v) Tween 20 

136 mM NaCl  in blocking buffer 

2 mM KCl  pH 7.4  

1% (w/v) BSA    

pH 7.4     

     

Substrate buffer   FACS buffer  

1 mM AMP  0.5% (w/v) BSA 

0.1 M MgCL2.6H2O  0.05% (w/v) NaN3

pH 10.2   in PBS  

     

Proteolytic assays    

PBS (Dulbecco’s Phosphate-buffered 

saline)

 PBST  

2.7 mM KCl  0.05% (w/v) Tween 20 

1.5 mM KH2PO4  in PBS  

136 mM NaCl    

8.1 mM Na2HPO4    

pH 7.3     

     

L-PBS (“Lite” PBS)  SIFT CaCl2 buffer

10 mM sodium phosphate  1 mM CaCl2

10 mM NaCl  0.005% (w/v) Tween 20 

pH 7   in SIF  
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SIF-buffer (simulated intestinal fluid)  protease inhibitor cocktail

4.6 mM K  308 nM aprotinin 

111.3 mM Na  20 µM leupeptin 

101.5 mM Cl  400 µM 4-(2-aminoethyl)  

in 8 mM phosphate buffer   benzenesulfonyl fluoride 

pH 7.2   2 mM EDTA 

according to 

(Lockwood and Randall 1949)  

 in L-PBS  

     

 

5. Immunisation 

Animals 

BALB/cOlaHsd mice purchased from Harlan (AD Horst, The Netherlands). They were fed 

standard food and water ad libitum. and kept in cages connected to an air filtering system 

(Tecniplast, Someren, The Netherlands) under timed 12 h light/dark cycles at 22 ± 2 °C and 

40 ± 5% relative humidity. The mice were acclimatised for one week before the start of the 

immunisation studies. All animal experiments were done in compliance with the rules of the 

European Communities Council Directive of 24 November 1986 (86/609/EEC). 

 

Adjuvants and anaesthesiacs: 

Compound     Supplier 

Complete Freund adjuvant   Sigma-Aldrich (Bornem, Belgium) 

Incomplete Freund adjuvant   Sigma-Aldrich (Bornem, Belgium) 

Montanide ISA50V    Seppic (Paris, France) 

Alhydrogel 2% 30mg/mL   Brenntag-Biosector (Frederikssund, Denmark) 

Quil-A      Brenntag-Biosector (Frederikssund, Denmark) 

Ketaminum hydrochloridum   Merial, (Lyon, France) 

(Imalgene®1000) 

Xylazinum hydrochloridum   Bayer (Brussels, Belgium) 

(Rompun®2%) 

 40



Chapter 2: Methods 

Part II: Methods 

1. Peptide synthesis 

1.1. Solid-Phase Peptide Synthesis principle 

The general principle of Solid Phase Peptide Synthesis (SPPS) is one of addition of protected 

amino acids residues to a solid insoluble support in repeated deprotection and coupling cycles 

giving rise to a growing peptide chain. SPPS was pioneered by Bruce Merrifield (Merrifield 

1963) and without it modern peptide synthesis would be unthinkable. Indeed its introduction 

was deemed so revolutionary and essential that Merrifield was awarded the Nobel Prize in 

Chemistry in 1984. The SPPS method has been described and reviewed in several publication 

and textbooks (Atherton and Sheppard 1989; Merrifield 1997; Chan and White 2000). 

The widespread use of a solid polymer support in peptide synthesis and by extension in 

organic synthesis can be readily explained by the numerous advantages that the technique 

offers in contrast to liquid phase synthesis. Removal of reaction mixture, excess reagents, 

side-products and repeated washing steps can be easily achieved by filtration, leaving only the 

desired product on the solid support behind with minimal loss of product and hence increased 

yield. The use of excess reagents allows to push the reaction equilibria towards near 

completion. The simplicity of dispensing and filtration allows the use of automated systems 

(synthesising robots) to achieve peptide synthesis with significant savings in times and 

manpower. Since SPPS does not accommodate for intermediate purification steps, reagents 

need to be carefully selected to assure fast and near complete reactions as well as to minimise 

the production of side-products, especially insoluble ones. 

In standard SPPS peptides are synthesised starting with their C-terminal amino acid residue, 

which is either already preloaded to the resin or added in the first step of the synthesis. In 

order to avoid side-reactions all reactive amino acid residue sidechains are protected and the 

protecting groups are insensitive to the reagents used throughout the synthesis. To prevent 

multiple additions of the same amino acid residue on the growing peptide chain, the reactive 

α-amine group of the backbone is temporarily protected by either of two approaches: an acid 

labile t-BOC protection developed by Merrifield (Merrifield 1964) or an base-labile Fmoc-

group (Carpino and Han 1972). Since t-BOC-group is cleaved by TFA and Fmoc-group by 

 41



Chapter 2: Methods 

piperidine it is obvious that the sidechain protections of BOC-amino acids and Fmoc-amino 

acids as well as the selection of resins need to be adapted accordingly. Each amino acid 

residue is added via the unprotected C-terminal carboxy group to the reactive α-amine group 

of the growing peptide chain (or of the resin if first step) by use of a carbodiimide coupling 

reagent. The most common method employed consists of diisopopylcarboiimide as coupling 

reagent and hydrobenzotriaziole (HOBt) to suppress epimerisation (racemisation) Recently 

the introduction of 1H-benzotriazol-1-yloxy-tris(pyrrolidino)phosphonium hexafluoro-

phosphate (PyBOP) has further reduced reaction time, epimerisation and production of toxic 

side-products. After washing away the excess reagents, the α-Fmoc group of the newly 

coupled amino acid is removed and the next residue is added. These cycles are repeated until 

the peptide sequence is completed, after which the peptide is detached from the resin, the 

conditions of which depend on the α amine protecting group. The peptide can be released with 

its sidechain protecting groups still present in case of combinatorial synthesis, or more 

frequently the sidechain protecting groups are removed concurrently with resin cleavage. 

Peptides are then precipitated from the reaction mixture and ready for further modifications or 

purification. 

 

1.2. Peptide synthesis: reactor method 

Peptides were synthesised by automated solid phase peptide synthesis using standard Fmoc 

chemistry on a Syro II peptide synthesiser controlled via SyroXP software (Multisyntech, 

Witten, Germany). Synthesis was carried out either in 400 µL small scale polypropylene tip 

reactors (Multisyntech, Witten, Germany) on a 96 reactor block or in 2 mL large scale 

polypropylene reactors (Multisyntech, Witten, Germany) on a 48 reactor block at RT. For 

large scale 30 mg (small scale: 5 mg) of Fmoc-Rink amide aminomethyl-polystyrene resin 

with a loading density of 0.5-0.8 mmol/g were used. N-terminal Fmoc-protected amino acids 

were dissolved overnight at 4 °C at a concentration of 0.45 M in a 0.65 M HOBt solution in 

NMP with end-over-end rotation. Resins were washed and swollen in DMF and Fmoc group 

was removed by the addition of 300 µL (small scale: 80 µL) of 40% (v/v) piperidine in DMF 

twice for 10 min, each step was followed by 5 washes with 500 µL (small scale: 200µL) of 

DMF. The coupling reactions were started by adding 50 µL of a 3 M DIC solution 

(DMF:DCM, 1:1, v/v) and 300 µL (small scale: 50 µL) of amino acid solution giving an 8 

fold excess of amino acid to resin loading. Reactions were carried out twice for 90 min each, 
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followed by 5 washing steps each. The coupling step was completed by capping of unreacted 

NH2 groups to terminate chain elongation of incomplete coupling reactions, with 300 µL 

(small scale: 80 µL) of a 10% acetanhydride/5% DIPEA solution (v/v) in DMF for 15 min 

and washed 5 times with DMF. Capping solution was freshly prepared every 12 h. 

After completed synthesis the resin was washed extensively with DMF, followed by three 

washes with 2 mL (small scale: 300 µL) of methanol and diethyl ether for 1 min each. Peptide 

sidechain protection removal and peptide cleavage from resin was achieved by adding 2 mL 

(small scale: 300 µL) of TFA solution with 5% H2O, 15% scavenger K (6.5% (w/v) phenol, in 

thianisole:ethanedithiol (2:1)) and rotating end over end for 4 h. Since resin cleavage is faster 

than sidechain deprotection the reaction mixture was filtered into 50 mL tubes after 2 h 

reaction time to avoid resin disintegration. Peptides dissolved in TFA were precipitated and 

washed 3 times with 40 mL (small scale: 8 mL) ice-cold diethyl ether (-80°C). The dried 

pellet was dissolved in 80% tert-butanol, frozen and lyophilised in an Alpha 2-4 lyophilisator 

(Christ, Osterode am Harz, Germany). 

To avoid low yields with longer peptide sequences due to lack of mixing capability of the 

robot station, coupling reactions were carried out manually after amino acid position 25. 

Reactors were removed from the rack and the same volumes of DIC and Fmoc-amino acid 

solutions as described above were added manually and reactions allowed to proceed at RT 

with end-over-end rotation for 2 h. Deprotection, capping and washing steps were performed 

via the robot as described above. 

 

1.3. Peptide synthesis: SPOT method 

In the context of a collaboration with the Research Center Borstel (Division of Mucosa 

Immunology) peptide libraries were synthesised by Dr. Steffen Bade on a cellulose membrane 

support using standard Fmoc-amino acid protection chemistry as described by Frank (Frank 

1992). Briefly, peptide SPOTs were defined by automated application of a Boc-Lys(Fmoc) 

solution on a proline-derivatised cellulose membrane, establishing a cleavable ε-Lys-Pro 

anchor (Bray et al. 1990). Next, the first label, Fmoc-N-γ-(N-biotinyl-3-(2-(2-(3-

aminopropyloxy)-ethoxy)-ethoxy)-propyl)-L-glutamine (Merck Biosciences, Schwalbach, 

Germany), was applied. The peptide was then assembled in a semiautomated cycle using an 

ASP 222 peptide synthesiser (Intavis AG, Cologne, Germany): (i) acetyl-capping, (ii) Fmoc-

deprotection with 20% (v/v) piperidine in DMF, (iii) bromophenol blue staining for synthesis 
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control, (iv) drying, (v) triplicate automatic application of 0.2 µL of DIC-activated amino acid 

solutions (0.2 M Fmoc-protected amino acid in a 0.35 M HOBt in NMP solution). As the last 

synthesis step, the second label 11-(2-(2,4-dichlorophenoxy)acetylamino)undecanoic acid was 

attached. This marker had been previously synthesised in the Research Center Borstel 

(Patents: (Bade et al. 2007a; Bade et al. 2007b); unpublished results Bade et al). For sidechain 

deprotection and diketopiperazine formation of the ε-lysine-proline anchor the membrane was 

incubated in 50% TFA, washed and dried. The SPOTs were punched out and transferred 

individually to polypropylene tubes. Peptides were cleaved from the membrane in 0.1 M 

triethylammonium acetate, 20% ethanol at 30 °C. Lyophilised peptides were dissolved in 1.5 

mL L-PBS with 0.005% (w/v) Tween 20, snap frozen in liquid N2 and stored at -80 °C. The 

peptides were then analysed for their biostability. 

2. Peptide oxidation 

Two methods were used for the oxidation of lyophilised peptides: (i) Purified peptides were 

dissolved and oxidised at 1 mg/mL in a 20% DMSO solution in borate buffer for 5 h at RT 

with end-over-end rotation (Tam et al. 1991). The oxidised and reduced isoforms were 

immediately separated via RP-HPLC and lyophilised. (ii) Crude linear peptides were oxidised 

using an improved oxidation method adapted from Eichler (Eichler and Houghten 1997): 

peptides were dissolved in ammonium bicarbonate buffer at a concentration of 0.5 mg/mL 

and 5 molar equivalents of 0.3% H2O2 (stock 30% w/w, Sigma-Aldrich, Bornem, Belgium) 

were added. Peptides were oxidised at RT for 1 h with end-over-end rotation, after which the 

reaction mixture was quenched with 10% acetic acid (50% of reaction volume). Solutions 

were frozen, lyophilised and dissolved in HPLC starting buffer and purified via RP-HPLC. 

3. HPLC 

3.1. High Performance Liquid Chromatography-principle 

In order to analyse any molecules in great detail purification is essential. A useful tool in the 

purification and characterisation of peptides and proteins is provided by High Performance 

Liquid Chromatography (HPLC) (Lottspeich and Zorbas 1998). The basis of HPLC is the 

reversible interaction of the sample in a liquid mobile phase with a solid stationary phase. 

These interactions can be the result of either polarity, size, charge etc. and the methods used 
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to separate molecules via these interactions differ accordingly: reverse phase HPLC (RP-

HPLC), gel filtration or ion exchange chromatography, respectively. In the context of this 

work RP-HPLC was used. 

Loading of large sample volumes is possible with RP-HPLC as the sample binds to the non-

polar phase due to hydrophobic interactions as soon as it comes into contact with the solid 

phase. Gel chromatography which separates according to size differs in this respect as 

separation of sample mixture occurs immediately after loading and hence is only suitable for 

small sample volumes. After the sample mixture is loaded on the column, the sample is eluted 

with increasing concentrations of organic solvent (often acetonitrile or methanol) and the 

addition of ion pairing agents (e.g. TFA). The retention times of sample on the column 

depends on the amount of hydrophobic and hydrophilic groups present on the surface of the 

molecule and their strong yet reversible interactions with the solid phase. For RP-HPLC the 

solid phase is usually silica based attached aliphatic chains of variable carbon chain length. In 

addition structural changes such as those induced by the formation of disulfide bridges, 

influence retention times. 

HPLC in this work was used either in an analytical or semi-prep context: 

 

3.2. Analytical HPLC 

To assess peptide purity after peptide synthesis, aliquots of peptides in tert-butanol were taken 

and analytical RP-HPLC runs were performed. These runs were also important in determining 

elution and scouting parameters for large scale semi-prep HPLC runs. Typically solutions 

containing 15-50 µg of peptide were diluted to 100uL 10% solvent B in solvent A and 

injected into a RP-HPLC ÄKTAexplorer 10S system (Amersham Biosciences, Uppsala, 

Sweden). Elution was performed on a C18 silica gel column [Grom™Sil media, length: 250 

mm, diameter: 4 mm, pore diameter: 120 Å, particle size: 5 µm] (Grom, Rottenburg-

Hailfingen, Germany) with a linear gradient of 10-100% solvent B in solvent A over 6 

column volumes with a flowrate of 1 mL/min. C18 columns were equipped with a 0.2 µm 

stainless steel filter (Alltech, Lokeren, Belgium) and a pre-column of the same media as the 

main column to avoid damage to the column from insoluble sample components. Elution was 

monitored at 215 nm, 230 nm and 280 nm using a UV monitor and peptides were collected 

via an F950 fraction collector (Amersham Biosciences, Uppsala, Sweden). Peptide mass and 

oxidative status was confirmed by mass spectroscopy. 
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3.3. Semi-preparative HPLC 

Semi-preparative HPLC was used to purify peptides after peptide synthesis and after 

oxidation to separate linear and disulfide cyclised isoforms. Lyophilised peptides and peptides 

in oxidation reaction mixtures containing DMSO were dissolved in 10%-20% solvent B in 

solvent A at a concentration of 1-2 mg/mL. Peptide solutions were injected into a RP-HPLC 

ÄKTAexplorer 10S system (Amersham Biosciences, Uppsala, Sweden) and run over either 

one of two C18 columns [Grom™Sil media, length: 250 mm, diameter: 8 mm, pore diameter: 

120 Å, particle size: 5 µm or Grom™Sil media, length: 250 mm, diameter: 20 mm, pore 

diameter: 120 Å, particle size: 5 µm] (Grom, Rottenburg-Hailfingen, Germany) typically with 

a linear gradient of 25-65% solvent B in solvent A over 6-8 column volumes with a flowrate 

of 3 mL/min and 7 mL/min, respectively. C18 columns were equipped with a 0.2 µm stainless 

steel filter (Alltech, Lokeren, Belgium) and a pre-column of the same media as the main 

column. Elution was monitored at 215 nm, 230 nm and 280 nm using a UV monitor and 

peaks were collected via an F950 fraction collector (Amersham Biosciences, Uppsala, 

Sweden). Peptide solutions were frozen and lyophilised and peptide masses and oxidative 

status were confirmed by mass spectroscopy. 

 

4. Mass spectroscopy: MALDI-TOF 

After synthesis and oxidation reactions, peptide masses and oxidative status were confirmed 

by mass spectroscopy on an Ultraflex MALDI-TOF/TOF (Bruker, Bremen, Germany). 

Ground steel massive target mictotitre plates (MTP 384 Bruker, Bremen, Germany) were 

either coated with a thin layer matrix of HCCA in acetone or positions were individually 

spotted with 0.2 µL matrix mixture (HCCA, DHB; Bruker, Bremen, Germany) and 0.5 µL 

peptide solution containing 5 pmoles of peptide were deposed on spots. After drying, samples 

were recrystallised with 0.5 µL of 80% acetonitrile solution in H20 with 0.1% TFA to ensure 

proper crystallisation homogeneticity. External calibration was performed using tryptic 

digestion of BSA (Bruker, Bremen, Germany) with calibration points covering peptide mass 

range. Spectra were analysed for mass and isotopic distribution in flexAnalysis 2.4 (Bruker, 

Bremen, Germany). Furthermore peptide sequence was confirmed using MS-MS (MS2) post 

source decay fragmentation. 
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5. Biostability 

5.1. Biostability in serum 

To evaluate peptide biostability, peptide solutions (1mg/mL in H2O) were mixed in a 1:1 ratio 

with mouse serum (Harlan, AD Horst, Netherlands, Species: Mouse female, Stock/Strair: 

BALB/cOlaHsd, frozen commercial stock or freshly prepared) and incubated at 37 °C. 

Aliquots of 15 µL were collected and added to 335 µL H2O 0.1% TFA after 0, 24 and 48 h 

and frozen until analysis. The aliquots were filtered over previously pre-washed 30 kDa 

Microcon filters (Millipore, Billerica, MA, USA) and 300 µL of filtrate were injected into an 

ÄKTAexplorer 10S system (Amersham Biosciences, Uppsala, Sweden) over a Zorbax 

300SB-C3 column [length: 150 mm, diameter: 2.1 mm, pore diameter: 300 Å, particle size: 5 

µm] (Agilent, Diegem, Belgium) and C18 column [GromTMSil, length: 250 mm, diameter: 4 

mm, pore diameter: 120Å, particle size: 5µm] (Grom, Rottenburg-Hailfingen, Germany) with 

a linear gradient of 10-100% solvent B in solvent A over 6 column volumes with a flowrate of 

0.5 mL/min and 1mL/min, respectively. Biostability was expressed as percentage of 

remaining intact peptide determined via automated integration of the area under the curve of 

the corresponding HPLC peak at wavelengths 215 nm, 230 nm and 280 nm where 

appropriate. 

 

5.2. Biostability in intestinal fluid 

Biostability analysis using murine intestinal fluid was performed by Dr Steffen Bade at the 

Research Center Borstel (Division of Mucosa Immunology) using a novel patented method 

(Patent: (Gorris et al. 2007); Publication: (Gorris et al. 2009)). Peptide sequences were 

flanked C- and N-terminally with specific markers. After incubation with a variety of 

proteolytic fluids the peptides bind to to specific monoclonal antibody on a plastic support 

plastic support via the N-terminal marker 11-(2-(2,4-dichlorophenoxy) 

acetylamino)undecanoic acid. After several washes the peptides are incubated with horse 

radish peroxidase coupled to streptavidin which binds to the C-terminal biotin of intact 

peptides and detection is measured using the TMB substrate. By employing this method any 

cuts in the sequence by proteases will result in the separation of the two markers and no signal 

will be observed. 
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Proteolysis reactions were carried out in a 96-well polypropylene microtiter plate. Intestinal 

fluids were harvested from excised murine intestines (unpublished results Bade et al). The 

crude enzyme preparation was serially threefold diluted in 80 µL/well of approximately 67 

pM peptide in SIFT CaCl2 buffer. The sealed microtiter plate was incubated for 90 min at 37 

°C before the enzyme reaction was stopped by addition of 80 µL/well of doubly concentrated 

protease inhibitor cocktail. The microtiter plate was resealed, stored for 10 min on ice, heated 

for 10 min to 90 °C, and cooled on ice. From each cavity, 75 µL of the peptide solution was 

transferred into a corresponding cavity of a high-bind 96-well microtiter plate (Corning, 

Wiesbaden, Germany) which had been coated with 75 µL/well of 30 ng/mL anti-2,4-D 

antibody E2/G2 beforehand. The plate was washed three times with 300 µL/well of PBST, 

blocked with 250 µl/well of 1 % (w/v) casein/PBS for 3-4 h at RT, and again washed four 

times with PBST. After 2 h 30 min incubation at RT the plate was washed four times with 

PBST, and incubated for 60 min at RT with 75 µL/well of 1 µg/ml horseradish-peroxidase-

labeled streptavidin in 1 % (w/v) casein in PBS. After six washes with PBST, plates were 

developed with the 3,3’,5,5’-tetramethylbenzidine (TMB) substrate system (Frey et al. 2000). 

For the data analysis the raw data of the pseudo-first order proteolysis reaction were fitted to 

an exponential function according to Gorris and colleagues (Patent: (Gorris et al. 2007) 

Publication: (Gorris et al. 2009)). Hydrolysis half-lives were calculated by nonlinear-

regression and differences between hydrolysis half-lives were analysed statistically. 

 

6. Conjugation to carrier – peptide-conjugates 

6.1. Principle 

Bioconjugation chemistry involves the covalent coupling of two or more molecules to form a 

novel compound which combines the characteristics of the individual components. The 

benefits of bioconjugation chemistry have affected nearly every discipline in life sciences. 

Two interrelated chemical reactions are the basis of bioconjugation: the reactive functional 

groups on the crosslinking or derivatising reagent and the functional groups available on the 

target molecules to be conjugated, in this case short peptides and macromolecules. Without 

the presence and chemical compatibility of these functional groups bioconjugation cannot be 

achieved. Derivatisation of nonreactive groups to functionally useful groups for one particular 

conjugation strategy is of great interest to researchers. Knowledge of the basic chemistry 
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behind coupling reactions between reactive and target functional groups and the careful 

choice of reagent systems selected on the basis of the available functional groups, form the 

prerequisite of a successful and intelligent conjugation strategy. It is of particular importance 

in the context of vaccine and drug research to preserve the in vitro and in vivo characteristics 

of the molecules involved in the bioconjugation, thus the chosen reagents and conjugation 

should not affect functional groups of critical amino acid residues nor impede structure-

activity relationship. In the context of peptide-protein carriers the most commonly used 

functional groups are primary amines, i.e. the N-terminal α-amine or the ε-amine of Lys 

sidechain; and carboxylate groups, i.e. the C-terminal carboxylate, and β- or γ-carboxylate 

groups of Asp and Glu acid sidechains respectively. The amine and carboxylate group linkage 

coupling reaction employs EDC/NHS chemistry. Alternatively coupling reactions using 

sulfhydryl groups of cysteine sidechains are facilated by SPDP chemistry. Hermanson has 

published an extensive guidebook on bioconjugation techniques (Hermanson 1996). 

 

6.2. Method 

Whole tetanus toxoid (TT) (a generous gift from the Serum Institute of India, Hadaspar, Pune, 

India) was modified and conjugated to HNE-peptides using an adapted protocol (Prodhomme 

et al. 2007). First crude whole TT (150 kDa) was purified by buffer exchange using a 10 kDa 

cut-off Amicon Ultra-4 centrifugal filter (Millipore, Billerica, MA, USA) (3500 g, 20 °C, 15 

min) in PBS buffer. Protein concentration was determined by DC Protein Assay (Biorad 

Laboratories, Hercules, CA, USA) according to manufacturer’s recommendation. The purified 

TT solution was adjusted to 1 mg/mL and reduced by a 200 molar excess of DTT for 20 min 

at 50 °C. The reduced proteins were immediately alkylated by the addition of a 400 molar 

excess of sodium-iodoacetate. After 20 min at RT the modified TT was purified by washing 

with MES buffer [0.1 M MES, 0.5 M NaCl, pH 6] using a 10 kDa cut-off Amicon Ultra-4 

centrifugal filter, the solution was adjusted to 10 mg/mL and stored at 4 °C. 

In a next step the available carboxyl groups of TT were activated and coupled with the zero-

length crosslinking Sulfo-NHS/EDC chemistry (N-hydroxysulfosuccinimide/1-Ethyl-3-[3-

dimethylaminopropyl] carbodiimide hydrochloride) to TT in a two step one-pot reaction. First 

2x103 molar equivalents of Sulfo-NHS in H2O and 1x103 molar equivalents of EDC in H2O 

were added to the solution of modified TT and solution was adjusted with MES buffer to a 

final concentration of 1 mg/mL of TT. Reaction was allowed to proceed at RT with end-over-

 49



Chapter 2: Methods 

end rotation for 15 min after which β-mercaptoethanol was added in a 4x104 molar excess. 

After 10 min a solution of 300 molar excess peptides in PBS-H2O (1:1) was added and 

coupling reaction of activated carboxyl groups of TT to free primary N-terminal α-amine and 

ε-amine of Lys sidechain was carried out overnight at RT in the dark with end-over-end 

rotation. The conjugates were purified by washing with 3 reaction volumes of 50 mM 

ammonium bicarbonate buffer (pH 7.8) using 10 kDa cut-off Amicon Ultra-4 centrifugal 

filters. Protein concentration was measured as above and solutions were stored at 4° C. 

Coupling of peptides to TT was assessed by ELISA with anti-HNE monoclonal antibodies 

BH216, BH21 and BH6. 

 

7. ELISA 

7.1. Indirect Enzyme Linked Immunosorbent Assay 

The principle of Enzyme Linked Immunosorbent Assay (ELISA) is the recognition by 

enzyme linked antibodies of antigens absorbed onto a specially treated plastic support. 

Binding to the plate occurs via hydrophobic interaction between chemical groups on the 

peptide. In order to avoid any other components from the ELISA reaction to bind to the plate 

and lead to non-specific background noise, all free binding sites are blocked by the addition of 

a blocking reagent (e.g. BSA, Casein etc). The bound antigen is then exposed to a purified 

antibody or serum containing antibodies that may (or may not) recognise the coated antigen. 

After the addition of a secondary antibody covalently linked to an enzyme such as alkaline 

phosphatase, the samples are incubated with a substrate solution containing a chromophore 

which is oxidised by the enzyme on the secondary antibody. The colour change of the 

reaction is measured by a spectrophotometer. This method allows to assess the antigenicity of 

a given antigen with regard to specific antibodies or to assess the immunogenicity of a peptide 

by the amount of induced anti-peptide antibodies in sera. The term indirect ELISA is derived 

from the fact that the antibody bound to antigen is not measured directly but via a secondary 

antibody. 
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7.2. Antigenicity of synthetic peptides by indirect ELISA 

To assess the antigenicity of synthetic peptides by monoclonal anti-H-protein antibodies, 

ELISAs were performed in 96-well plates (Maxisorb, Nalge Nunc, Rochester, NY, USA). 50 

µL of twofold dilutions of peptides (starting concentration: 3.2 µM) in carbonate buffer 

adjusted to pH 9.6 were coated overnight at 4 °C. Plates were washed manually with washing 

buffer and blocked for 2 h with 200 µL blocking buffer at RT. Plates were washed again and 

incubated with 50 µL of monoclonal antibody BH216, BH21 or BH6 (1:1000 dilution in 

dilution buffer) for 90 min at RT. After washing, plates were incubated for 90 min at RT with 

50 µL of goat anti-mouse IgG-AP antibody (1:750 in dilution buffer). After washing, plates 

were incubated at 37 °C with 100 µL of a 1.35 mM phosphatase substrate buffer solution. 

Antibody binding was assessed by measuring the optical density at 405 nm after 60 min on a 

SPECTRAmax PLUS384 microplate reader system (Molecular Devices, Sunnyvale, CA, 

USA). Wells with no coated peptide, omitted primary or secondary antibody, or nonspecific 

primary antibody were used as negative controls. wt-HNE-peptide was used as positive 

controls. 

 

7.3. Anti-peptide reactivity of immunised mice sera by indirect ELISA 

Sera from immunised mice were assayed for the presence of peptide-binding antibodies by 

ELISA. The above protocol was adapted as follows: 50 µL of a peptide solution (1.6 µM) or 

125 ng of H-protein in 50 µL were coated in 96-well plates (Maxisorb, Nalge Nunc, 

Rochester, NY, USA) overnight at 4°C using carbonate buffer adjusted to pH 9.6. Plates were 

washed manually using washing buffer and blocked for 2 h with 200 µL blocking buffer at 

RT. Plates were washed again and incubated with 50 µL of a threefold serial dilution of 

mouse serum in dilution buffer for 90 min at RT. After washing, plates were incubated for 90 

min at RT with 50 µL of goat anti-mouse IgG-AP antibody (1:750 in dilution buffer). After 

washing, plates were incubated at 37 °C with 100 µL of a 1.35 mM phosphatase substrate 

buffer solution. Optical density was read at 405 nm after 60 min on a SPECTRAmax PLUS384 

microplate reader system (Molecular Devices, Sunnyvale, CA, USA). Positive controls 

included monoclonal antibodies BH216, BH21 and BH6. Wells with no peptide coated and 

sera from mice immunised with adjuvant or adjuvant and carrier protein (tetanus toxoid) were 
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used as negative controls. Serum end point titres were calculated at five times the response of 

non-immunised mice using the logit-log plot logarithm. 

 

8. Antigen preparation and in vivo animal experiments 

8.1. Antigen preparation 

Prior to injection into animals the peptide-conjugates were combined with their respective 

adjuvants. For the in vivo animal assays all antigen formulations were prepared just prior to 

use and were not stored thereafter to avoid degradation.  

Freund adjuvant water in oil emulsions were prepared by passing 25 µg of peptide-conjugate 

in 100 µL PBS mixed with 100 µL of adjuvant via two 2 mL glass syringes connected via a 

Luer lock constrictor until the solution emulsified. The priming injection formulation was 

prepared using Complete Freund Adjuvant and booster injections were formulated with 

Incomplete Freund Adjuvant. 

Adjuvant preparation with Montanide was performed according to manufacturer’s 

recommendation: 100 µL of peptide-conjugate solution (containing 25 µg conjugate) was 

added to an equal volume of Montanide ISA50V (a kind gift from Seppic, Paris, France), 

vortexed for 30 s and further mixed with five up and down stroked with a syringe. In order to 

achieve a better emulsion that did not separate within a short time, up to thirty up and down 

strokes had to be performed. 

Absorption of peptide-conjugates onto aluminium hydroxide (Alhydrogel 2% 30 mg/mL) was 

performed by adding peptide-conjugate solution (25 µg) to 500 µg of Alhydrogel in 100 µL 

PBS total reaction volume and rotating end-over-end overnight (20 h) at 4 °C. Prior to 

injection samples were diluted to 200 µL with PBS. 

Quil-A, purchased as purified and lyophilised powder, was dissolved to 10 mg/mL solution in 

PBS. 25 µg of peptide-conjugate were mixed with 25 µg Quil-A and diluted in PBS to a final 

injection volume of 100 µL. 
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8.2. Intraperitoneal and subcutaneous route 

Groups of 5-6 specific pathogen-free 11-12 week old female BALB/cOlaHsd mice were 

injected intraperitoneally with 200 µL prepared antigen-formulations (CFA/IFA, Montanide 

and Aluminium hydroxide) or subcutaneously into the scruff of the neck with 100 µL of 

prepared antigen-formulations (Quil-A according to manufacturer’s recommendation) 

containing 25 µg of peptide-conjugate. Booster injections were administered on day 14, 28 

and 42.  

 

8.3. Blood collection 

Mice were put under general anaesthesia by intraperitoneal injection of 200 µL anaesthetics 

solution containing 2.5 mg Ketaminum hydrochloridum (Imalgene®1000) and 50 µg 

Xylazinum hydrochloridum (Rompun®2%). Blood (200 µL) was collected via retro orbital 

bleeding on day 24, 38 and 52. Sera was separated by incubating whole blood samples at 37 

°C for 30 min, followed by centrifugation for 30 min at 3000 g at RT. 

 

9. Flow Cytometry 

9.1. Principle 

Flow Cytometry is an effective method for the identification and characterisation of 

subpopulations of cells such as lymphocytes or assessing the interaction of fluorescence 

labelled molecules with cells. Cells are diluted in saline solution and pass through a laser 

beam in a fluid stream ideally in single file. Flow cytometers that are equipped with a cell 

counter and separator are called fluorescence-activated cell sorter (FACS). In a first step, cells 

are incubated with specific antibodies or mixtures containing antibodies such as sera, 

followed by the addition of a second antibody with a high affinity for the first antibody 

(similar to ELISA). This second antibody is labelled by a chromophore such as fluorescein 

isothiocyanate (FITC). As each labelled or unlabelled cell passes through the laser beam, the 

scattering of light and changes in the wavelength originating from the fluorophore, are 

measured by a series of detectors located in line with the beam or perpendicular to it (forward 

and side scatter, respectively). Light scattering can give important information on the size of 
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the cell and allows setting the calibration to ignore aggregates formed by dead cells. Specific 

absorption and emission of various fluorophores attached to antibodies provides the 

possibility to discriminate between subpopulations (e.g. in lymphocytes) in a single 

experiment (Shapiro 1993). 

 

9.2. Method 

Flow cytometry was used to determine the crossreactivity of mouse sera immunised with 

peptide-conjugates and was performed on a transfected human melanoma cell line (Mel-JuSo-

H) expressing the H-protein of MV. Mel-JuSo-H and Mel-JuSo-wt cells were kindly provided 

by R.L. de Swart (Erasmus University, Rotterdam, The Netherlands (de Swart et al. 1998)). 

Cell stock was thawed and cultured in BioWhittaker® RPMI-1640 medium supplemented 

with 10% FBS-HI, 1% penicillin-streptomycin and 1% L-glutamine or ultraglutamine at 5% 

CO2. To reduce loss of expression of H-protein in Mel-JuSO-H cells, cells were passaged 

only once. On the day of the experiment cells were washed and resuspended in FACS buffer 

and 50 µL added to 1.2 mL tubes at a concentration of 4x106 cells/ml. 50 µL of serum 

dilution (1:50 or 1:100 dilution in FACS buffer) was added, mixed shortly and incubated on 

ice for 30 min. Cells were washed twice with 1 mL FACS buffer and stained for 15 min on 

ice with 50 µL of a 1:200 diluted FITC-labelled goat anti-mouse IgG. Cells were washed 

again twice with FACS buffer and fixed with 0.4% formol. Five thousand cells were counted 

and the fluorescence was measured by flow cytometry on an Epics Elite ESP instrument 

(Coulter Company, Miami, Florida, USA) or BD FACS Canto (BD Biosciences, San Jose, 

CA, USA) as described previously (Muller et al. 1995). Data are expressed as ratios of 

arbitrary fluorescence units (AFU) of immunised sera on Mel-Juso-H and Mel-JuSo-wt cells 

Histogram overlays were produced using WinMDI 2.8. H-protein expression in Mel-JuSo-H 

cells was confirmed by FITC-labelled H-protein specific BH216 monoclonal antibody and by 

mouse sera immunised with MV-H-protein. Negative controls included pre-immunisation 

sera, sera induced against adjuvant alone or against adjuvant carrier (tetanus toxoid) only, 

irrelevant primary antibody and immunised sera on Mel-JuSo-wt cells. 
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10. NMR 

10.1. History and principles 

The description of the intricate workings and details of NMR, couplings and spectroscopy and 

the physics behind these processes are beyond the context of this work. They are explained in 

detail in several textbooks (Williams and Fleming 1995; Lottspeich and Zorbas 1998) and 

with an increased focus on structure determination in Kurt Wüthrichs “NMR of proteins and 

nucleic acids” (Wüthrich 1986). In this chapter only the basics of NMR will be touched upon 

to illustrate the usefulness of the technique for the determination of structures of peptides and 

proteins. 

 

Limitations and comparison to X-ray 

NMR and X-ray crystallography (or X-ray diffraction) are the two major methods for the 

determination of three-dimensional structures of macromolecules and proteins. The two 

methods can be seen as complementary. X-ray crystallography requires the growing of 

crystals and is thus based on solid state. The obvious disadvantages are the difficulty in 

obtaining crystals for a number of molecules and the fact that solid state structure does not 

necessarily represent the structure of the molecule in a liquid physiological environment. 

NMR on the other hand is measured mostly in solution which has significant implications on 

the data obtained. First of all, solution dynamics allow the peptides to adopt a variety of 

structures and energy transfers from one molecule to the next can easily occur, resulting in 

signal averaging. The dynamics of solution phase NMR also allow for kinetic analysis of 

biological processes with real time observation of appearance product specific peaks or the 

disappearance of starting material specific peaks; a process which is useful in reaction kinetic 

and protein folding studies. The disadvantages of NMR include the need for larger amounts of 

sample and the lack of stereospecific resonance assignment. 

The phenomenon of NMR was first observed in 1946 and during the sixties it became a 

routine technique in organic chemistry. After the introduction of the Fourier transformation 

(FT) in the 1970s the field of NMR has expanded enormously. 
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Magnetisation field, free induction decay and Fourier Transformation 

In order for atoms to be visible in NMR they need to have a nuclear spin. Nuclei with odd 

mass numbers have non integer spins and can thus orient themselves in a magnetic field. The 

most important atoms with nuclear spins are 1H and 13C, which have both spins of ½. When 

exposed to an applied magnetic field (B0) these atoms can either align themselves with the 

magnetic field in a low energy state or they can oppose the magnetic field in a high energy 

state. A broad range of radio frequencies is applied to the system and nuclei can be promoted 

to the higher energy state if the radio frequency matches the required energy (Bulk 

magnetisation - M). When nuclei fall back to the low energy state in a process referred to as 

relaxation, energy is released which is measured. Since the differences in energy levels are 

low, NMR is a relatively insensitive method requiring much larger amounts of analytes than 

other spectroscopy methods. The sensitivity and signal to noise ratio can be improved by 

increasing the number of scans, but a much more effective way is to increase the strength of 

the applied magnetic field. With higher field strength the differences between ground and 

excited state are more significant increasing the energy released by relaxing nuclei and hence 

increasing the signal strength. While NMR machines started out using magnetic fields of 60-

100 MHz, most routinely used machines operate in the 400-600 MHz region and high end 

instruments reach up to 950 MHz.  

A radio frequency signal is applied to magnetic field (B0) at a 90° angle for a short time which 

results in an oscillating magnetic field (B1). A receiver coil along one axis records the 

oscillating signal during the relaxation time. The combined signals of all 1H nuclei in a 

sample constitute the free induction decay (FID) and are recorded as a series of decaying 

cosine waves. The Fourier transformation (FT), a mathematical approach to solving the 

complex mix of waves, converts these into frequencies which are plotted against the signal 

amplitude and give a 1D NMR spectrum (An analogy of this is an orchestra whose music also 

consists of large number of sound waves, which are deciphered by our brains into the 

different musical instruments). In Fourier transform NMR the pulses of radio frequencies are 

applied in multiple and quick succession cancelling out noise and giving average signal 

responses. 

 

Chemical shift 

The term chemical shift refers to the shift in frequencies at which nuclei are observed with 

respect to a reference frequency (usually 1H of TMS – Tetramethylsilane). The chemical shift 
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is defined as the difference between the frequency of the peak of interest and the frequency of 

a reference peak, divided by the operating frequency of the instrument: 

)(
)()(
MHzfrequencyoperating

HzHz refs υυ
δ

−
=  

The chemical shift has no units and is expressed as ppm. Since it is related to an internal 

standard it is not influenced by the NMR instrument or operating frequency. The scale of δ is 

written right to left (0-10 for 1H ) with high frequency responses appearing to the left in the 

downfield region and low frequency signals appearing upfield. The chemical shift is 

influenced by the environment of the nuclei: each nucleus is surrounded by circulating 

electrons which produce their own electromagnetic fields opposing the applied field. These 

nuclei are shielded and a stronger field is required to achieve resonance in such cases. In 

addition neighbouring atoms and double bonds also effect the shielding of nuclei. 

 

Coupling and Nuclear Overhauser Effect 

An important feature of NMR is the interaction of spins from adjacent nuclei. The spin of one 

nucleus affects the magnetic environment of an adjacent nucleus by transferring some of its 

energy. This interaction can occur in two ways: scalar coupling (or J-coupling) results from 

transfer of energy of nuclei via bonds. This effect is limited to nuclei distant by up to 3 

chemical bonds. The nuclear Overhauser effect (NOE) on the other hand is the interaction 

between magnetic fields of nuclei through space via dipolar relaxation and is detectable over 

short distances of 2-4 Å. This interaction is physically different from scalar coupling. Both of 

these phenomena are the basis of two dimensional NMR and provide information on the 

distance of nuclei in complex molecular arrangements like peptides and proteins and hence 

their structure. 

2D-NMR spectra 

In order to obtain 2D-NMR spectra an additional experimental step is applied to the 

traditional 1D-NMR experiment. As previously the magnetisation of the system is changed by 

bursts of radio frequencies at 90° angle to the established field. Instead of measuring the 

signals immediately an evolution and mixing time is added during which the spins are 

allowed to influence each other (either through space or through scalar spin-spin coupling). 

After the mixing time another series of 90° pulses are applied and the FIDs are acquired. The 
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setup of the instrument is arranged so that either spin-spin coupled or through space 

interactions are recorded and displayed diagonally as crosspeaks on a 2D-NMR (Figure 5).  

NH/α-H

NH/β,γ,δ,ε-H α-H/ β,γ,δ,ε-H

γ,δ,ε-H / γ,δ,ε-H

 
Figure 5: 2D TOSCY spectrum of an HNE-mutant peptide  

1D NMR spectra are shown on the axis and intraresidual crosspeaks are shown as 2D spectrum field. The 

diagonal separates the spectrum into a mirror image. The large peak at the centre is caused by water. The 

relevant regions containing intraresidual crosspeaks are highlighted and labelled. 

 

Three major 2D-NMR spectra are routinely used: 

COSY (COrrelation SpectroscopY) is the 2D representation with crosspeaks originating 

through single scalar coupling only. 

In TOCSY (TOtal Correlation SpectroscopY) the magnetisation is successively transferred 

through the entire spin system via scalar coupling. This allows the differentiation of 

overlapping signals of nuclei originating from different spin systems and specific assignment 

of these resonances to their respective spin system, which is essential in structural studies of 

 58



Chapter 2: Methods 

peptides and proteins. The advantage of TOCSY is the display of entire spins systems of 

amino acids resulting in characteristic patterns for each amino acid. 

NOESY (Nuclear Overhauser Effect SpectroscopY) is a 2D-NMR experiment which 

incorporates all proton-proton interactions through space and is essential in the determination 

of three dimensional structures. The intensities of crosspeaks between protons with a maximal 

distance of approximately 4 Å are inversely related to the sixth of the power of the distance. 

The main benefit of NOESY is that protons which are located far apart in the primary 

structure can induce crosspeaks due to their arrangement in secondary and tertiary structure. 

Crosspeaks of αH of residue (i) to NH of residue (i+1) are used for sequential assignment. 

Crosspeaks of αH(i) to NH(i+3) and NH(i+4) as well as NH(i) to NH(i+2) are characteristic 

of an α-helix. 310 helices show slightly different crosspeaks since they lack αH(i) to NH(i+4) 

but gain αH(i) to NH(i+2) crosspeaks. β-sheets show none of these crosspeaks and only have 

NH(i) to NH(i+1) and αH(i) to NH(i+1) sequential crosspeaks, whose intensities however are 

inverse of helix crosspeaks in the same region (Figure 6). 

 

 
Figure 6: Summary of sequential and medium range 1H -1H NOEs 

NOE pattern of sequential and medium range NOE expected in the standard secondary structures of parallel and 

antiparallel β-sheets, α-helices, 310-helices, tight turns I, II, I’ and II’, and half-turns. The numbers at the bottom 

represent the residue number in the secondary structure elements. Short 1H -1H distances between two residues 

are shown as bars, the thickness of which represent the crosspeak intensities in NOESY and are proportional to r-

6. Figure from (Wüthrich 1986) 

 

 

 59



Chapter 2: Methods 

10.2. Measurements 

4 mg of peptide were dissolved in 350 µL doubly distilled H2O and 350 µL of TFE-d2 or D2O 

were added to give 700 µL with a ±3 mM concentration. 1H-NMR Spectra were recorded on a 

Bruker Avance DMX 600 NMR spectrometer (Bruker, Rheinstetten, Germany) at 300 K with 

mixing times of 110 ms for TOCSY and 250 ms for NOESY. The spectra were referenced to 

residual water residues at 4.8 ppm or TFE signal at 3.95 ppm. 

 

10.3. NMR spectrum analysis and structure calculations 

NMR spectra were processed using XWin NMR software (Bruker, Rheinstetten, Germany). 

The characteristic crosspeak pattern of each amino acid in 50% TFE-d2 was determined in 

amide proton region of 2D-TOCSY 1H NMR spectra (Figure 7). Amide proton to sidechain 

protons crosspeaks within each amino acid allowed the assignment of NH/αH crosspeak to a 

specific residue (Wüthrich 1986). This assignment does not give any indication about the 

residues position in the sequence. Focusing on the fingerprint region of NH/αH in the NOESY 

spectrum, and superposing it on the corresponding region of the TOCSY, showed additional 

peaks, which were used for sequential residue assignment (Wüthrich 1986). Briefly, NOE 

crosspeaks between αH of one residue (i) coupling with HN of the following residue (i+1) in 

the peptide sequence and allows assignment of each amino acid pattern to the residue number 

in the sequence (Figure 8). For example Gly2 has a horizontal crosspeak with Gln3 (NH of 

Gly2 coupling to αH of Gln3). A vertical line down from this crosspeak will lead to αH of 

Gln3. After assignment of each αH peak, chemical shifts were obtained by using the NOESY 

spectrum. Experimental α-proton chemical shifts were compared to random coil chemical 

shifts (Wüthrich 1986), allowing identification of structural elements. According to Hung and 

Samudrala, 1H α-chemical shifts are higher than for random coil structures (downfield) in 

extended structures (β-sheet) and lower than average (upfield) in helices (Hung and 

Samudrala 2003). 
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Figure 7: Characteristic crosspeak patterns of amino acids in TOCSY 

Cutout of 8.8-7.5 ppm (amide region) and 0.08-5 ppm (sidechain region) of 2D-TOSCY shows amino acid 

specific crosspeak patterns which allow assignment of amide crosspeaks to specific residues. 
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Figure 8: Sequential amino acid assignment in fingerprint NOESY region 

Sequential NOE crosspeaks of αH(i) to NH(i+1) in the NOESY fingerprint region (x-axis: 8.8-7.5 ppm and y-

axis: 3.8-4.8 ppm) allows sequential assignment of amino acids. 

 

Spectra were analysed using the AURELIA software (Neidig and Kalbitzer 1990) (Bruker, 

Rheinstetten, Germany) on a Silicon Graphics work station: Threshold level was set 

arbitrarily, standard peak multiplicity was applied, a peak list was created and additional 

peaks were added manually to the list when not detected by the software. Each peak was 

either unambiguously assigned or removed from list. Peak signal integration was performed 

using side chain NH2 signals of Gln as calibration for distance calculation. For manually 

added crosspeaks distances were obtained by comparison (using topographic lines in spectra) 

to known crosspeaks of similar intensities with calculated distances. Since the interpretation 

of NOESY lacks stereospecific resonance assignment of sidechain protons, a theoretical 

proton located centrally with respect to these protons was added via pseudo-atom corrections 

as described by Wüthrich (Wuthrich et al. 1983). Duplicate signals originating from the peaks 

located diagonally in the NOESY spectrum were averaged. If the difference between the 

intensities of identical peaks was greater than 0.5 Å, signals were analysed for splitting or 

fusion with nearby peaks and corrected accordingly. 
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Structure calculations were performed using the protocol embedded in the CNSsolve software 

1.0 (Brunger et al. 1998) starting with an extended peptide backbone and incorporating the α-

proton chemical shifts and NOE data. Initial calculations were computed for 20 structures and 

NOE with distance violations above 0.5 Å which occurred in 4 or more structures were re-

examined carefully in NOESY and distance corrections were applied if necessary. Several 

rounds of such structure refinement were performed and the cut-off for distance violations 

was lowered to 0.2 Å. In a final step 100 structures were computed using the refined distance 

constraints; these were sorted according to lowest number of 0.2 Å distance violations, 

followed by the lowest ENOE and lowest ETotal. The 20 lowest energy structures were further 

analysed in superposition studies to determine the central structure. Finding an objective and 

optimal fitting region for the 20 structures is essential to determine the structure with the 

lowest overall RMSD. Pairwise RMSD were calculated using the consecutive segment 

method (Blankenfeldt et al. 1996). Short segments of two, three, four and five residues in 

length were compared pairwise for all 20 lowest energy structures by the INTRMS 

programme. For instance, in the case of 3 residue segment length, segments Lys1-Gln4, then 

Gly2-Ala5, Gln3-Cys6 up to Leu13-Asn16 were compared for each structure. The RMSD of 

the backbone atoms calculated for these fragment were assigned to each residue within the 

segment. In the three-residue segment calculations, each residue is present in three segments, 

with the exception of the two C- and N-terminal residues of the sequence. Finally the average 

of each assigned value was attributed to the residue in question and plotted against the 

sequence. The resulting plot was used to determine the best fitting regions for allows a section 

for fitting with an RMSD of 0.2, 0.4 or 0.6 Å (Figure 9). After combining the separate pdb 

files of the 20 structures to a single pdb file with the MOLEMAN2 module (Uppsala Software 

Factory, Sweden), LSQMAN calculation (Uppsala Software Factory, Sweden)(Kleywegt 

1996) was performed to determine the central structure with the lowest RMSD to a 

hypothetical mean of all 20 structures within a defined region, selected by the consecutive 

segment method. The LSQMAN module also calculated RMSD values of each structure to 

the central structure for the fitted region. 
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Figure 9: Mean RMSD for backbone atoms 

Mean RMSD for backbone atoms in each residue are shown, calculated using consecutive segment method (2-5 

amino acid segment length) and plotted against residue number for the 20 lowest energy structures 
 

11. Molecular Modelling 

Visualisation and analysis of pdb structure files was performed using a variety of software 

including BRAGI (Schomburg and Reichelt 1988); Pymol, an open-source projected 

maintained by DeLano Scientific LLC; ViewerLite 4.2 (Accrelys, San Diego, CA, USA) and 

Deepview/Swiss-PdbViewer 3.7 (Guex and Peitsch 1997). All the figures of resolved NMR 

structures in this work have been created with Pymol. Figures of amino acids or chemical 

compounds were created with MDL ISIS™/Draw 2.5 (MDL, San Ramon, CA, USA). 

 

12. Statistical analysis 

Statistical analysis was performed using SigmaStat 3.1 and SigmaPlot 9.0. Serum end point 

titres from ELISA and AFU ratios from flow cytometry experiments were analysed 

individually and plotted in boxplot with average values shown as horizontal line and the box 

area covering 75% data points. Data were analysed by One Way ANOVA logarithm and 

statistical significance was quantified by Student-Newman-Keuls test unless stated otherwise, 

with statistical difference being at least p<0.05. Half-lives from biostability tests with murine 

intestinal fluids were analysed using outlier analysis (extreme studentised deviate method), 

One Way ANOVA and the Bonferroni post hoc test. Statistical and regression analyses were 

performed on GraphPad Prism version 5.01 for Windows (GraphPad Software, San Diego, 

CA, USA). For all statistical analyses a probability of p<0.05 was considered significant.
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Chapter 3: Results 

Part I: Structures 

1. NMR 

1.1. Measurements and α-proton chemical shifts 

A series of HNE-peptides with substitutions in the epitope core (KGQQACKGKIQALCEN), 

which was previously defined in our laboratory (Putz et al. 2003b), were synthesised. These 

peptides were analysed by NMR and observations of α-chemical shifts highlighted structural 

differences between them and the wt-HNE-peptide, as α-proton chemical shifts are known to 

be dependent of the secondary structure of peptides and proteins. α-protons located in α-

helices experience an upfield shift in four consecutive residues when compared to chemical 

shifts of protons in random coil conformation (Wüthrich 1986). A downfield shift in three 

consecutive residues is indicative of β-sheets (Wishart et al. 1992). Figure 10A shows the 

differences between observed α-proton chemical shifts in 50% TFE-d2 solutions and random 

coil values for each amino acid of HNE-peptides in which Gly8 was substituted with a variety 

of amino acids. The values for the C-terminal region of Gln11-Asn16 of wt and modified 

HNE-peptides were similar. Based on chemical shift structural predictions the α-helix 

observed in the wt-peptide seems to be conserved between Gln11 and Glu15 in all mutants. 

Values for the N-terminal residues (Lys1-Ala5), which have no defined structure, were 

similarly well conserved and no significant difference in secondary structure was expected 

within this region. Substituting Gly8 had not only a direct effect on the chemical shift of the 

amino acid at that position but also lead to significant shifts in adjacent residues, further 

increasing the flexibility of the random coil loop region (Cys6-Ile10). As expected a Gly to 

Pro substitution had the largest effect based on the backbone altering character of Pro. The 

variations in the α-proton chemical shifts observed for the critical contact residues Cys6, Lys7 

and Gly8, indicate that the structure of the antibody binding motif of all HNE Gly8 

substituted peptides differed from the wt-HNE-peptide, which is likely to affect binding 

(Figure 10A). 
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Substitutions of amino acids located within the α-helical region generally show less dramatic 

effects (Figure 10B). Mirroring the results from Gly8 mutant the values for C- and N-termini 

of these helix mutants remain largely unchanged with regard to the reference peptide, 

retaining the N-terminal random coil arrangement and the C-terminal α-helix. One notable 

exception is the Leu13Asn substituted peptide, whose values changed significantly in the C-

terminal region from upfield to downfield shifts, which is likely helix destroying. As 

demonstrated in the case of Gly8 mutants the region located between Cys6 and Ile10 had no 

defined structure and HNE peptide mutants Ile10Ala and Ile10Glu exhibiting the largest 

difference in α-proton chemical shifts in this region. 
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Figure 10: Differences in secondary structure of HNE-peptide based on 1H α-chemical shifts in TFE-d2

Shown are differences between experimental and theoretical chemical shifts of α-protons of HNE-peptides with 

Gly8 substitutions (A) and helix substitutions (B) for each amino acid.  
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Influence of solvent on α-proton chemical shifts and structure 

 

To determine the influence of solvents on α-proton chemical shifts and structure, 1H NMR 

spectroscopy measurements were performed in H2O for wt-HNE-peptide and four substituted 

HNE-peptides (Figure 11A). While α-proton chemical shifts in H2O of residues located within 

the α-helical region were less pronounced and thus the helix was better defined in 50% TFE-

d2 solution, the overall secondary structure remained conserved in H2O in all measured 

peptides (Figure 11B, C and D). 
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Figure 11: Differences in secondary structure of HNE peptide based on 1H α-chemical shifts in H2O and 

50% TFE-d2  

Shown are differences between experimental and theoretical chemical shifts of α-protons for each amino acid of 

wt and modified HNE-peptides with Gly8 substitutions in H2O (A). Direct comparisons between chemical shifts 

in 50% TFE-d2 (filled bars) and H2O (empty bars) of wt-HNE-peptide (B), Gly8Ala mutant (C) and Gly8Val 

mutant (D) are shown. 

 
 
 
 
 

 67



Chapter 3: Results   Part I: Structures 

Influence of disulfide bond on the structure of HNE-peptide 
 
NMR measurements were performed in 50% TFE-d2 on both reduced and oxidised Gly8Val 

substituted HNE-peptides, in order to assess the influence of the disulfide bridge on the 

structure. Applying the method of using α-proton chemical shifts as easy and reliable criteria 

for structural domains, the oxidised HNE-peptide formed an α-helix between Lys9 and Cys14 

(Figure 12). While no actual structure was determined for either the reduced or oxidised 

Gly8Val peptide, the reduced isoform showed significant differences in α-proton chemical 

shifts. These were observed as expected for Cys6 and Cys14, since these residues were no 

longer constrained by the disulfide bond. This increase in conformational freedom also altered 

the structure of the loop region between Cys6 and Cys14, with an α-helix now extending N-

terminally up to residue Gln3.  
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Figure 12: Differences in secondary structure of reduced and oxidised HNE-peptide 

Shown are differences between experimental and theoretical chemical shifts of α-protons of reduced (open bars) 

and oxidised (filled bars) HNE-peptide Gly8Val in 50% TFE-d2. 

 

1.2. Biological activity of modified HNE-peptides 

HNE-peptides with substitutions of critical and non-critical contact residues were tested for 

their antigenicity (Figure 13). wt-HNE-peptide reacted strongest with HNE-specific 

monoclonal antibody BH216 while peptides with substitutions of non-critical contact residues 

Leu13Ala and Ile10Ala showed a 2/3 and 1/3 decreased response, respectively, compared to 

wt-HNE-peptide. The other single substituted peptides failed to interact with BH216 mAb in 
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line with previous results obtained for the binding motif (Putz et al. 2003b). A peptide with 

both Ile10Ala and Leu13Ala substitutions showed no reactivity even though Ile10 and Leu13 

are not contact residues and each of these substitutions is allowed separately on their own. 
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Figure 13: Indirect ELISA of Gly8 and α-helix mutants of HNE-peptides with monoclonal antibody 

Wt-HNE-peptide, Gly8 substituted peptides and α-helix substituted peptides were coated and analysed for their 

ability to bind monoclonal antibodies BH216 in indirect ELISA. 

 

1.3. Structure of wt-HNE-peptide 

The structure of the wt-HNE-peptide was determined for our laboratory in collaboration with 

Dr. Karsten Bruns and Prof. Victor Wray of the Helmholtz Research Centre for Infection 

Research (Structural Biology, Research Group Biophysical Analysis) in Braunschweig, prior 

to the start of this work and was essential in developing substitution peptides that were used 

throughout this work. It was in their laboratory, under their guidance and with their help that I 

performed all other NMR structure determinations of peptides mentioned throughout this 

work. 

Nuclear Overhauser effect (NOE) crosspeaks for KGQQACKGKIQALCEN in 50% TFE-d2 

were assigned as described before. The qualitative information obtained from comparison of 

observed α-proton chemical shifts with those from random coil structures, indicated that 

starting from Gln11, the C-terminus has a helical structure. The N-terminus appears largely 

unstructured (Figure 10A). The analysis of short and medium range NOE, showed that the C-

terminus contained significantly more interresidual interactions than the N-terminus (Figure 
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14). A number of these medium range interactions (αH(i) to NH(i+3) and NH(i+4)) are 

characteristic of an α-helical structure. The quantitative NOE data was used as distance 

constraints in molecular dynamics and energy minimisation calculations. A total of 197 NOE 

crosspeaks were assigned unambiguously, composed of 59 intraresidual, 73 sequential, 64 

medium range (up to i-i+4) and 1 long range (over i-i+4) interactions (Figure 15). These NOE 

were used to generate 100 conformations of which the 19 lowest energy conformations were 

used for fitting analysis. The consecutive segment method was applied to these structures, as 

described before, and amino acid sequence of Gln3 to Asn16 showed a backbone RMSD 

below 0.4 Å (Figure 16). This region was selected as fitting region and for central structure 

determination. Fitting of the lowest energy structures highlights regions with well conserved 

structural features and less defined domains (Figure 17), as suggested by qualitative α-proton 

chemical shift data and quantitative NOE. The peptide consists of a well conserved α-helix 

between Ile10 and Asn16 and an N-terminal linkerarm Lys1-Ala5, with pronounced 

flexibility. The critical HNE-motif residues Cys6, Lys7 and Gly8 as determined by Putz 

(2003b) are arranged in an exposed loop held in place by the disulfide bond between Cys6 

and Cys14. The presence of the disulfide bridge was confirmed by NOE of β-H of Cys6 to 

amide proton of Cys14. 

The critical hydrophilic residues of the antibody binding motif (Cys, Lys, Gly, Gln and Glu) 

are located on top of the α-helix (Figure 18). The bottom of the helix is formed by essentially 

hydrophobic uncharged residues (Ile, Ala and Leu), which have no role in binding. Ile10 can 

only be substituted by Ala, Glu and Gln, and plays most likely a structural role, as no direct 

contact with the antibody is expected. The linkerarm and Asn16, none of which are part of the 

binding motif, are directed away from the motif. A number of low energy structures are 

characterised by a backbone torsion around Gly8 causing the linkerarm to point into the 

antibody binding domain (Figure 19). Several Gly8 substituted HNE-peptides were 

synthesised to investigate this backbone flip and the structure of Gly8Ala has been resolved. 
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Figure 14: Structurally important short and medium range NOEs in wt-HNE-peptide 

Summary of observed structurally important sequential and non sequential short and medium range NOEs in the 

wt-HNE-peptide. 
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Figure 15: Total quantitative NOE crosspeaks observed and assigned for wt-HNE-peptide 

Distribution of quantitative NOE observed and assigned to each residue for wt-HNE-peptide and used for 

molecular dynamic calculations. Apart from intraresidual NOE, each interresidual NOE appears twice as both 

residues to which they are assigned are shown. 
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Figure 16: Mean RMSD for backbone atoms of wt-HNE-peptide 

Mean RMSD for backbone atoms in each residue are shown, calculated using consecutive segment method (2-5 

amino acid segment length) and plotted against residue number for the 19 lowest energy structures. 
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Figure 17: Structure of the 19 lowest energy conformations of wt-HNE-peptide 

Superposition of the 19 lowest energy structures calculated for wt-HNE-peptide after alignment of the backbone 

atoms of Gln3 to Asn16. Peptide backbones are shown as tubes. Central structure is shown in green, disulfide 

bridges as yellow lines. (A) Top view, (B) lateral view. 

 72



Chapter 3: Results   Part I: Structures 

 

C

N

Lys7 

Gly8 

Glu15
Gln11

 
Figure 18: Central structure of wt-HNE-peptide 

The critical contact residues of the antibody binding domain are displayed as coloured sticks and labelled. The 
peptide backbone is shown as tube. 
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Figure 19: Backbone torsion around Gly8 of wt-HNE-peptide 

Alignment showing flip of N-terminal linkerarm for 6 structures of the 20-40 lowest energy conformations of 
wt-HNE peptide. Peptide backbones are shown as tubes, disulfide bridge as yellow lines. 
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1.4. Structure of Gly8Ala-HNE-peptide 

The Gly8Ala substituted peptide (KGQQACKAKIQALCEN) was one of several synthesised 

to further determine the characteristics of the HNE-loop and the observed flip in the wt-

structure. NOE crosspeaks in 50% TFE-d2 were assigned as described before. α-proton 

chemical shift data (Figure 10A) and short and medium range couplings (Figure 20) indicate 

the presence of a C-terminal helical structure starting at Gln11 and a relatively unstructured 

N-terminus. A total of 211 NOE unambiguously assigned crosspeaks were composed of 104 

intraresidual, 59 sequential, 45 medium range (up to i-i+4) and 3 long range (over i-i+4) 

interactions (Figure 21) and used as distance constraints in structure modelling. 

After repeated and improved calculation steps, the 20 lowest energy structures of the last 

calculation were selected for structural analysis. Mean backbone RMSD values, obtained by 

the consecutive segment method, showed large backbone variations in the N-terminal domain. 

A mean RMSD below 0.4 Å was observed between residues Ala8 and Glu15 (Figure 22). 

This interval highlights a relatively stable region with a conserved secondary structure in the 

20 lowest energy conformations. The structure with the lowest RMSD to all other 

conformations was selected as the central structure and was used as a template for the 

alignment of the remaining 19 structures between Ala8 and Glu15 (Figure 23). The 

superposition confirmed indications of α-proton chemical shifts and qualitative NOE (Figure 

20) that the C-terminus of the peptide forms an α-helix between residue Gln11 and Glu15. 

Thus the Gly8Ala substitution did not affect the α-helix to any large extent. Disulfide bonds 

between Cys6 and Cys14 were confirmed by long range NOE interactions between Cys6 (βH) 

and Cys14 (NH) as well as Ala5 (βH) - Cys14 (NH) and Ala8 (βH) - Leu13 (γH). The Lys1-

Ala8 region exhibits substantial flexibility as observed for the wt-HNE-peptide structure. The 

structure of the peptide differs significantly from the wt-HNE-peptide with regard to the Gly 

loop and the orientation of the linkerarm. The Gly8Ala structure is more closely related to the 

observed flipped structure of wt-HNE-peptide. This random coil structure shows a preference 

to point upwards, into the antibody binding domain in 19 of the lowest energy conformations, 

with the central structure adopting a conformation in the plane of the α-helix. It is important 

to note that the central structure was determined as such for the fitting region Ala8-Glu15 of 

the backbone atoms, independently of orientation and structure of the Lys1-Lys7 sequence. 

Fitting clearly shows a preference for perpendicular arrangement of the sidearm with regard to 

the α-helix for majority of conformations. 
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Figure 20: Qualitative summary of observed short and medium range NOE in Gly8Ala peptide 

Summary of observed structurally important sequential and non sequential short and medium range NOEs in the 

Gly8Ala substituted HNE-peptide. 
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Figure 21: Total quantitative NOE crosspeaks observed and assigned for Gly8Ala mutant 

Distribution of quantitative NOE observed and assigned to each residue for Gly8Ala mutant and used for 

molecular dynamics calculation. Apart from intraresidual NOE, each interresidual NOE appears twice as both 

residues to which they are assigned are shown. 
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Figure 22: Mean RMSD for backbone atoms of Gly8Ala mutant peptide 

Mean RMSD for backbone atoms in each residue are shown, calculated using consecutive segment method (2-5 

amino acid segment length) and plotted against residue number for the 20 lowest energy structures. 
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Figure 23: Structure of the 20 lowest energy conformations of Gly8Ala mutant 

Superposition of the 20 lowest energy conformations calculated for Gly8Ala mutant after alignment of the 

backbone atoms residues 8 to 15. Peptide backbones are shown as tubes, disulfide bridge as yellow lines. Central 

structure is shown in pink. (A) Top view, (B) lateral view. 
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1.5. Structure of Ile10Ala-HNE-peptide 

The Ile10Ala substituted HNE-peptide is part of a series of peptides with potential α-helical 

stabilising substitutions. α-proton chemical shifts (Figure 10A) and quantitative observations 

of assigned NOE crosspeaks (Figure 24) indicated a C-terminal helical domain and an 

unstructured N-terminus. A total of 154 NOE crosspeaks were assigned unambiguously 

composed of 74 intraresidual, 55 sequential, 26 medium range (up to i-i+4) and 1 long range 

(over i-i+4) interactions (Figure 25). 

After gradual improvements of the NOE data, 100 structures were calculated and the 20 

lowest energy structures were selected for further structural analysis. The consecutive 

segment method was applied to these structures and amino acid sequence of Lys9 to Cys14 

with a backbone RMSD below 0.4 Å was selected as fitting region and central structure 

determination (Figure 26). After pairwise fitting of the 20 lowest structures over the region of 

Lys9-Cys14, the central structure was determined. Alignment of the remaining 19 structures 

to the central structure showed that the α-helical region is well conserved as expected (Figure 

27). The peptide backbone around C-terminal Glu15 and Asn16 residues is considerably more 

flexible and these residues are not part of the α-helix as predicted by qualitative NOE and α-

proton chemical shifts. The α-helix from Ile10 to Glu15 is preceded by a flexible N-terminus 

correlating with the observations from the structures of the wild-type and Gly8Ala substituted 

HNE-peptides. The disulfide bond between Cys6 and Cys14 is confirmed by long range NOE 

interaction of Cys6 (βH) and Gln11 (αH). 

 
 
Figure 24: Qualitative summary of observed short and medium range NOE in Ile10Ala mutant peptide 

Summary of observed structurally important sequential and non sequential short and medium range NOEs in the 

Ile10Ala substituted HNE-peptide. 
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Figure 25: Total quantitative NOE crosspeaks observed and assigned for Ile10Ala mutant peptide 

Distribution of quantitative NOE observed and assigned to each residue for Ile10Ala mutant peptide and used for 

molecular dynamic calculations. Apart from intraresidual NOE, each interresidual NOE appears twice as both 

residues to which they are assigned are shown. 
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Figure 26: Mean RMSD for backbone atoms of Ile10Ala mutant peptide 

Mean RMSD for backbone atoms in each residue are shown, calculated using consecutive segment method (2-5 

amino acid segment length) and plotted against residue number for the 20 lowest energy structures. 
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Figure 27: Structure of the 20 lowest energy conformations of Ile10Ala mutant peptide 

Superposition of the 20 lowest energy structures calculated for Ile10Ala mutant peptide after alignment of the 

backbone atoms residues 9 to 14. Peptide backbones are shown as tubes, disulfide bridges as yellow lines. 

Central structure is shown in blue. (A) Top view, (B) lateral view. 

 

1.6. Structure of Ile10Ser-HNE-peptide 

The structure of KGQQACKGKSQALCEN was resolved to assess the influence of a Ser 

substitution in the α-helix domain of the wt-HNE-peptide. α-proton chemical shifts (Figure 

10A) and quantitative NOE data (Figure 28) suggest that the α-helix was in fact retained but 

the lower number of crosspeaks in the C-terminal domain could be a sign of a weakened 

helix. Structure calculations were performed using a total of 222 unambiguously assigned 

NOE crosspeaks composed of 112 intraresidual, 71 sequential, 35 medium range (up to i-i+4) 

and 4 long range (over i-i+4) interactions (Figure 29). 

The 20 lowest energy structures were selected after structure calculations and the consecutive 

segment method was applied, as described above. Amino acids Lys7 to Cys14 with a 

backbone RMSD below 0.4 Å were selected as fitting region and central structure 

determination (Figure 30). The 19 lowest energy structures were aligned with the central 

structure for the fitting region of Lys7 to Cys14 (Figure 31). Generally the region between 

disulfide bound Cys exposed a well conserved structure in all 20 lowest energy 

conformations. Long range NOEs of β-protons of Cys6 with α and amide protons of Gln11 

and Cys14 respectively, and β-proton of Cys14 with the amide proton of Cys6 confirm the 

presence of a disulfide bond between the two Cys. The C-terminus is characterised by an α-

helix between Gln11 and Glu15, correlating with α-proton chemical shift data and results 
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obtained from the structures of wt-HNE-peptide and other substituted HNE-peptides. It is 

interesting to note that the C-terminus for this structure is considerably more flexible. For 

position Asn16, 11 structures align with the central structure corresponding to the structures 

of wt-HNE-peptide, Gly8Ala and Ile10Ala substituted peptides. However 8 conformations 

exhibit a backbone twist at Glu15 and as a result Asn16 of these structures is moved outside 

the α-helix. More importantly the side chain of Glu15 is directed away from the antibody 

binding site and hidden inside the α-helix. The random coil structure of the N-terminal 

linkerarm displays the expected flexibility and is located in the same plane as the α-helix. 

 
 
Figure 28: Qualitative summary of observed short and medium range NOE for Ile10Ser mutant peptide 

Summary of observed structurally important sequential and non sequential short and medium range NOEs in the 

Ile10Ser substituted HNE-peptide. 
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Figure 29: Total quantitative NOE crosspeaks observed and assigned for Ile10Ser mutant peptide 

 80



Chapter 3: Results   Part I: Structures 

Distribution of quantitative NOE observed and assigned to each residue for Ile10Ser mutant peptide and used for 

molecular dynamic calculations. Apart from intraresidual NOE, each interresidual NOE appears twice as both 

residues to which they are assigned are shown. 
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Figure 30: Mean RMSD for backbone atoms of Ile10Ser mutant peptide 

Mean RMSD for backbone atoms in each residue are shown, calculated using consecutive segment method (2-5 

amino acid segment length) and plotted against residue number for the 20 lowest energy structures. 
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Figure 31: Structure of the 20 lowest energy conformations of Ile10Ser mutant peptide  

Superposition of the 20 lowest energy structures calculated for Ile10Ser mutant after alignment of the backbone 

atoms residues 7 to 14. Peptide backbones are shown as tubes, disulfide bridges as yellow lines. Central structure 

is shown in yellow. (A) Top view, (B) lateral view. 
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2. Functional importance and location of disulfide bond in HNE-peptides 

The amino acid sequence of the HNE loop of measles virus H-protein contains three Cys that 

can potentially form disulfide bonds. To assess the location and importance of the disulfide 

bonds and the structural role of each Cys, Cys of full length HNE peptides were 

monosubstituted with amino butyric acid (Cys381B, Cys386B or Cys394B) and a full length 

HNE-peptide sequence with all three substitutions was synthesised as control. Binding of 

these peptides to anti-HNE specific monoclonal antibodies (mAbs) BH216, BH21 and BH6 

was assessed. Monosubstituted Cys386B, Cys394B and trisubstituted (Cys381B, Cys386B, 

Cys394B) peptides failed to bind anti-HNE specific antibodies (Figure 32). Only the oxidised 

peptide Cys381B with a disulfide bond between Cys386 and Cys394 reacted within this 

peptide series. BH216 (Figure 32A) recognises C381B peptide much stronger than the 

oxidised shorter HNE peptide sequence (KGQ383QACKGKIQALCEN396). Binding profiles of 

BH21 with peptides were very similar (data not shown). BH6 shows a different binding 

specificity than BH216 with the same peptides: the importance of the Cys386-Cys394 

disulfide bridge is confirmed and no other substituted peptide reacts with BH6 (Figure 32B). 

This mAb does however exhibit stronger binding to the shortened oxidised HNE-peptide. 

These results, indicating a disulfide bridge between Cys386-Cys394, corroborate observations 

made by Putz (2003b) and were later confirmed by the publications of crystal structures of the 

MV H-protein (Colf et al. 2007; Hashiguchi et al. 2007). 
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Figure 32: Indirect ELISA of mono and trisubstituted full length HNE peptides with monoclonal 

antibodies. 

Each Cys in the full length HNE sequence E379TCFQQACKGKIQALCENPEWA400 was substituted with amino 

butyric acid (Cys381B , Cys386B  or Cys394B , or trisubstituted ) and peptides were coated and analysed 

for their ability to bind mAbs BH216 (A) and BH6 (B) in indirect ELISA. Oxidised shortened wt-HNE-peptide 

 (KGQ383QACKGKIQALCEN396) was included as control. 
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Part II: Stability and antigenicity 

1. wt-HNE-peptide non-recognition by anti-MV sera 

The binding specificities of sera and anti-H-protein mAb to HNE peptide and H-protein were 

assessed in ELISA. Results showed that the shortened wt-HNE-peptide 

KGQ383QACKGKIQALCEN396 was only recognised by BH216 antibody (Figure 33) and 

related mAb BH21 and BH6 (data not shown), which specifically bind the HNE-loop. Sera 

from naturally immunised (late convalescent) and vaccinated individuals showed no reactivity 

with the HNE-peptide. mAb BH195 is known to bind only to reduced full length HNE 

peptides and selectively to the H397-400 region of the denatured H-protein and is routinely 

used as a negative control in ELISA with shortened HNE-peptides. As expected BH195 did 

not bind the HNE-peptide, however some reactivity with H-protein was observed possibly due 

to the presence of some denatured H-protein which exposed the H397-H400 region. The H-

protein was strongly recognised by mAb BH216 and sera from late convalescent and 

vaccinated individuals. MV negative sera did not bind the HNE peptide or the MV H-protein. 

These binding specificities, in particular the binding of the MV neutralising and protective 

BH216 and the absence of binding of human sera to peptide, confirmed the choice of the 

HNE-peptide as a lead peptide for peptide-based vaccine against MV in the presence of anti-

MV antibodies. 
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Figure 33: Differential recognition of H-protein and shortened HNE-peptide 

ELISA responses of human sera from naturally infected (late convalescent), immunised and vaccinated 

individuals and monoclonal anti-HNE antibodies binding to coated H-protein (empty bars) or shortened wt-

HNE-peptide (KGQ383QACKGKIQALCEN396) (filled bars). 
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2. Fine specificities of monoclonal antibodies 

The anti-HNE specific monoclonal antibodies BH216, BH21, BH6 and BH195 used 

throughout this work have different binding specificities to HNE-peptides. Confirming earlier 

results, BH195 binding was negative for both reduced and oxidised forms of the wt-HNE-

peptide (Figure 34A). Even the other anti-HNE mabs showed considerable differences in 

reactivity with the wt-HNE-peptide: BH216 only binds HNE-peptide with cyclised Cys 

residues. The reduced form was only poorly recognised. BH6 on the other hand, while 

predominantly binding the oxidised isoform, had a much higher tolerance for the lack of a 

disulfide bond in the wt-HNE-peptide, with approximately 50% of antibodies also binding the 

reduced isoform. 
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Figure 34: Fine specificities of anti-HNE monoclonal antibodies to shortened HNE-peptide 

HNE-peptide (KGQ383QACKGKIQALCEN396) was coated either in reduced (empty symbols) or oxidised (filled 

symbols) form and binding specificities of monoclonal antibody BH216 (circles) and BH195 (triangles) (A), and 

BH6 (B) were assessed in ELISA. 

 
 
 
 
 
 
 
 

 84



Chapter 3: Results   Part II: Stability and antigenicity 

3. Stability of wt-HNE-peptide in serum 

Initially the ELISA technique was assessed for its capacity to analyse peptide stability in 

serum. The method allows monitoring peptide fragments from degradation process for their 

interaction anti-HNE mAb. Peptides were coated on ELISA plates and incubated with serum 

at different time points and degraded peptides were analysed for mAb binding. In an 

alternative approach peptide was incubated with serum and the reaction mixtures were coated 

and standard ELISA protocol was followed thereafter. Both these methods were assessed and 

found to be inadequate. The major drawbacks of these techniques were background noise due 

to serum binding to plastic support and the apparent inability of serum proteases to degrade 

peptide that is coated to the plastic support (data not shown). The ELISA approach to peptide 

stability was abandoned and HPLC based stability tests were developed.  

The HPLC based biostability test of the reference peptide KGQQACKGKIQALCEN in 

mouse serum from the frozen stock revealed a half life of 11.8 hours (Figure 35A). In fresh 

serum the half life was even shorter (8.9 hours, Figure 35B). Frozen commercial mouse serum 

stock was chosen for further biostability tests because of the homogenicity of pooled sera 

compared to freshly prepared serum and thus higher reproducibility of results.  
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Figure 35: Degradation of wt-HNE peptide in mouse serum over a 72 h time span 

Biostability of wt-HNE-peptide was assessed in serum from frozen commercial stock (A) or from freshly 

prepared (B) mouse serum (n=1-2). Trendlines (black) were used to determine half-lives. 
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4. Enhancing the stability of wild-type HNE-peptide 

4.1.  Preliminary peptide synthesis 

 

In a first preliminary peptide synthesis two sets of peptides were produced to assess different 

functional aspects and to establish interesting modifications for further syntheses. 

 

1) In a first set of peptides, the N-terminus of the peptide chain featured a Fmoc protecting 

group on the Lys backbone amine. Prior to immunisation, peptides are generally coupled to 

carrier protein which is likely to block degradation of the peptide N-terminus. The presence of 

the Fmoc protecting group was intended to simulate the carrier protein and at the same time 

facilitate the monitoring of peptide degradation. But the Fmoc group was unable to protect the 

N-terminus against exopeptidase mediated proteolytic degradation, because of spontaneous 

cleavage of the protecting moiety and accelerated peptide degradation (data not shown).  

 

2) Our structures of the wt-HNE-peptide and substitution HNE-peptides have shown that 

amino acids following the C-terminal residue Glu15 are directed away from the antibody 

binding site and are unlikely to affect binding to the critical HNE contact residues. 

The second set of synthesised peptides were part of a library with different C-terminal 

extensions by non-natural amino acids (see Annexe 1), to identify modifications that 

enhanced peptide biostability without affecting its antigenicity. The various extension 

residues included large and modified amino acids and D-amino acids whose sidechains did 

not include functional groups. In contrast to expectations most single additions of non-natural 

amino acids such as pamba (4-(aminomethyl)benzoic acid) and gaba (γ-aminobutyric acid) or 

the additions of one or two D-amino acids had little effect on the stability towards serum 

proteases after 4 hours of incubation or reduced peptide antigenicity (data not shown). In 

contrast the analysis suggested that t-amcha (trans-4-(aminomethyl)cyclohexanecarboxylic 

acid), achca (1-(amino)cyclohexanecarboxylic acid), aib (α-amnioisobutyric acid), D-Phe, D-

Ala, and D-Val amongst others (data not shown), were potentially interesting. 

The combination of different N- and C-termini within the same peptides complicated the 

conclusions drawn from this exploratory peptide synthesis. 
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4.2. C-terminally extended peptides 

 

A new synthesis of peptides with the above mentioned C-terminal extensions or the C-

terminal addition of natural (PEWA) or modified (PEWa and PEWAa) HNE-sequence 

residues, were produced (see fold out page Annexe 2). The N-terminal Lys of all of these 

peptides, including the wt-HNE-peptide, was blocked via acetylation for the stability testing, 

as such a modification is known to stabilise peptides against exopeptidases(Maillère et al. 

1995) and allowed focus on the C-terminus only. The antigenicity measured binding of anti-

HNE mAb, and the biostability, expressed in terms of % of intact peptide remaining after 48 h 

incubation in serum, were plotted against each other. This plot shows peptides with interesting 

mutations in the top right corner (Figure 36). Those modified peptides exhibit increased 

stability and retained antigenicity, while peptides located at the bottom left of the plot contain 

the least favourable modifications. Only a few C-terminal additions such as D-Ala, PEWAa 

and PEWa retained antigenicity and were as stable as the N-acetylated wt-HNE-peptide 

(Figure 36). Unexpectedly, the large majority of modified peptides showed decreased 

biostability compared to the wt-HNE-peptide, although some of these reacted better with anti-

HNE mAbs. The addition of two D-amino acids to the C-terminus inhibited antibody binding, 

presumably because of steric interactions. 
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Figure 36: Biostability-antigenicity correlation plot of C-terminally extended peptides 

The biostability (x-axis) and antigenicity (y-axis) of modified HNE-peptides are plotted against one another. 

Biostability is calculated as % intact peptide and mean values (±SD) of 2 independent experiments are shown. 

Antigenicity is expressed as absorbance in ELISA with BH216 mAb binding to 0.8 µM coated peptide.wt-HNE-

peptide is shown in bold. 
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4.3. Internally and N-terminally modified peptides 

 

Since C-terminal extensions did not increase the biostability of the HNE-peptide, a number of 

peptides with internal modification were synthesised. Substitution studies in the HNE binding 

motif, which were previously done in our laboratories (Putz et al. 2003b), guided the selection 

of acceptable substitution sites. The critical antibody binding residues were left unaltered; 

instead the noncritical Lys9 which is also expected to be a major endopeptidase target was 

substituted with a variety of amino acids. Substitution of Lys9 with Ala, His, Ser and Gln 

produced peptides, which were more stable than the wt-HNE-peptide or as stable as in the 

case of Lys9Asn (Figure 37). However, with the exception of Lys9Ala substitution, their 

antigenicity was reduced or totally lost. 

The N-terminal Lys of the HNE-peptide is important for optimal coupling to the carrier 

protein and was added as a linker to the HNE-sequence during earlier work in our laboratory 

(Putz 2004). Since Lys is a known target of peptidases, modifications of the N-terminus such 

as branching extensions (G4K2KGQQ… and G2KGQQ...) were produced which could 

increase the stability of the peptides.The additional residues were added to the backbone and 

sidechain amine of N-terminal Lys. The increased number of N-terminal amine groups could 

also reduce the risk of coupling via sidechain amines of Lys residues located inside the 

antibody binding domain (Lys7 and Lys9). Coupling via the latter Lys was suggested to 

destroy the critical epitope. While improving the biostability to 48% (from 37%), a reduction 

in reactivity with mAb BH216 was observed for these peptides (Figure 37). The substitution 

of the N-terminal Lys with its D-isomer did not increase the stability, suggesting that the 

responsible aminoexopeptidase is not stereospecific. Thus only the Lys9Ala (peptide 2734) 

mutant showed both improved stability and antigenicity and was selected as the lead 

substitution for further rounds of synthesis. 
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Figure 37: Biostability-antigenicity correlation plot of internally and N-terminally modified peptides 

The biostability (x-axis) and antigenicity (y-axis) of modified HNE-peptides are plotted against one another. 

Biostability is calculated as % intact peptide and mean values (±SD) of 2 independent experiments are shown. 

Antigenicity is expressed as absorbance in ELISA with BH216 mAb binding to 0.8 µM coated peptide. 

Branched peptides: G4 and G2 = Gly coupled to preceding Lys via backbone and sidechain NH2, K2 = Lys 

coupled to preceding Lys via backbone and sidechain NH2,. wt-HNE-peptide is shown in bold 
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4.4. Internally and C-terminally modified peptides 

Based on the results observed for the C-terminal modifications and internal substitutions, a 

synthesis combining these individual changes, was performed. This resulted in peptides 

KGQQACKGAIQALCENPEWa (2741), KGQQACKGAIQALCENa (2744), 

KGQQACKGAIQALCENv (2745) and KGQQACKGAIQALCEN (2751), with better 

stability in mouse serum compared to wt-HNE-peptide KGQQACKGKIQALCEN (2752): 

stabilities increased from 37% to 47%, 54%, 50%, and 53%, respectively (Figure 38). These 

peptides also retained the reactivity with respect to mAb BH216. 

The substitution of Lys7 to D-Lys (peptide 2749) increased stability from 37% to 59% 

compared to wt-HNE-peptide. The addition of a Lys9Ala substitution to this peptide (peptide 

2750) lead to an additional increase in stability to 71%. However peptides whose Lys7 was 

replaced with its D-isomer failed to bind mAb. Substituting Lys with Arg had a destabilising 

effect suggesting that Arg is even more readily cleaved by proteases than Lys. 

It is interesting to note that the consecutive C-terminal extension of D-Val and D-Ala, on a 

peptide with a Lys9Ala substitution, abolished the reactivity of this peptide with BH216 mAb, 

confirming earlier results of loss of antigenicity due to the addition two D-amino acid 

additions. HoweverInstead, the addition of two consecutive D-Ala residues to the C-terminus 

conserved the peptide’s antigenicity. Presumably the steric hindrance with respect to the 

antibody binding domain by two small D-Ala residues is much less pronounced than with 

larger D-amino acids. 

The four peptides with an enhanced biological stability listed above, were singled out for 

immunological studies. 
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Figure 38: Biostability-antigenicity correlation plot of internally and C-terminally modified peptides 

The biostability (x-axis) and antigenicity (y-axis) of modified HNE-peptides are plotted against one another. 

Biostability is calculated as % intact peptide and mean values (±SD) of 2 independent experiments are shown. 

Antigenicity is expressed as absorbance in ELISA with BH216 mAb binding to 0.8 µM coated peptide. 

Underlined peptide sequences were selected for immunisation studies. wt-HNE-peptide is shown in bold. 
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4.5. Further improved internally and C-terminally modified peptides 

Following the immunisation with peptides 2741, 2744, 2745 and 2751 with the Lys9Ala 

mutation and various C-terminal modifications, an additional set of peptides were synthesised 

in an attempt to further stabilise the HNE-peptide. The immunisation results obtained with the 

above peptides directly influenced the selection of the new modifications that were included 

in the new synthesis. In this synthesis the D-Val C-terminal extension was eliminated to 

exclude solubility problems.  

The results obtained for these new peptides with additional modifications in the antibody 

binding motif, shed more light on the structure required for antibody binding, especially with 

respect to Lys7. Substitution with diaminopropionic acid (dap) with a shorter basic sidechain, 

in this position completely abolished antibody binding, whereas norvaline (Nva) and 

norleucine (Nle) preserved antibody binding, despite their lack of a basic sidechain (Figure 

39A). For most peptides with Nle and Nva substitutions no biostability measurements were 

possible: The Nle and Nva substitution peptides bind more strongly to the used cellulose filter 

since the substitution of basic residues by aliphatic ones increased hydrophobicity of the 

peptides. These peptides are thus only plotted on the y-axis showing the antigenicity. Only 

peptides containing at least two Lys (2796 and 2797) gave a reliably increased biostability, 

but their antigenicity was reduced or lost. No peptide stability assays were performed on 

Lys7dap substituted peptides, because they were not recognised by the mAbs. 

Dap was also investigated as a possible replacement of N-terminal Lys. Lys1dap substitution 

in the wt-HNE-peptide increased the stability from 37% to 47% and conserved the 

antigenicity (Figure 39A). When this substitution was combined with additional modifications 

such as Lys9Ala substitution and C-terminal extensions, the stability was further increased 

without compromising the antigenicity compared to wt-HNE-peptide. Peptide 2787 with 

Lys1Dap, Lys9Ala and C-terminal D-Ala modifications was substantially stabilised (to 68%) 

and was one of the most stable peptides that still reacted with BH216 and BH21 mAbs. 

Several Lys7 substitutions lead to peptides with both increased stability and conserved 

antigenicity (Figure 39B). These modified peptides included substitutions of Lys7 with 

sidechain ε-di- or tri-methylated Lys, but their stability was very dependent on additional 

modifications. A simple replacement of Lys7 with di-methylated sidechain Lys (peptide 

2798) did not improve the stability compared to wt-HNE-peptide. However when this 

substitution was combined with Lys9Ala (peptide 2791), or Lys9Ala and C-terminal D-Ala 

addition (peptide 2784), very stable and antigenic peptides were obtained. 
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A similar observation was made when Lys7 was substituted with tri-methylated sidechain 

Lys: this change alone increased the antigenicity of the peptide (peptide 2811) but the stability 

remained unchanged. An additional replacement such as Lys9Ala (peptide 2809) or Lys9Ala 

combined with either PEWa (peptide 2805) or a C-terminal extension with D-Ala (peptide 

2807), lead to some of the most stable and reactive peptides in this synthesis (Figure 39B).  

These further improvements in stability meant that nearly twice as much intact peptide was 

detected after 48 h incubation in serum compared to wt-HNE-peptide. Since the antigenicity 

of these peptides was also further improved, they were selected for immunisation (peptides 

2784, 2787, 2791, 2805, 2807 and 2809). 
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Figure 39: Biostability-antigenicity correlation plot of internally and C-terminally modified peptides 

improvements following results of immunisations 

The biostability (x-axis) and antigenicity (y-axis) of modified HNE-peptides are plotted against one another. 

Biostability is calculated as % intact peptide and mean values (±SD) of 2 independent experiments are shown. 

Antigenicity is expressed as absorbance in ELISA with BH216 mAb binding to 0.4 µM coated peptide. (A) Lys7 

substitutions with L* = Nle, V* = Nva, D* = dap. (B) Lys7 substitutions with K* = di-methylated Lys, K  = tri-

methylated Lys. Underlined peptide sequences were selected for immunisation studies. wt-HNE-peptide is 

shown in bold. 
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5. Stability of HNE-peptides in intestinal juice 

A number of peptides selected on the basis of their stability, were further analysed for their 

biostability in intestinal juice, in a collaboration with Dr. Steffen Bade at the Research Center 

Borstel (Research group: Mucosa Immunology). The method is performed on peptides that 

are flanked by 11-(2-(2,4-dichlorophenoxy)acetylamino)undecanoic acid and biotin on the N- 

and C-terminus, respectively. Peptides can be incubated with a variety of different 

physiological fluids (serum, intestinal wash, peritoneal wash etc). These peptides are then 

fixed N-terminally to an ELISA plate coated with the antibody specific for the N-terminal 

residue. The detection step is performed with a horse radish peroxidise coupled to 

streptavidin. This enzyme only detects intact peptides using the biotin/streptavidin interaction 

on the C-terminus. The half-lives of peptides were calculated via a logarithm based on serial 

dilutions of murine intestinal juice from intestinal washes. Wt-HNE-peptide 

KGQ383QACKGKIQALCEN396 had a half-life of 0.8 s and all tested modified peptides were 

more stable (Figure 40). The half-lives of peptides 2741, 2744, 2745 and 2751, which were 

tested in the first round of immunisation, correlate well with the stabilities observed in serum; 

for example peptide 2751 with only a Lys9Ala mutation, showed a 1.4 fold increase in 

stability in both serum and intestinal fluid. The peptides for the second immunisation (2807, 

2784, 2787, 2809 and 2791) were as stable as or more stable than the peptides used in the first 

immunisation. Peptide 2809 with a tri-methylated Lys and Ala substitution of Lys7 and Lys9 

respectively, showed a two fold increase in stability compared to wt-HNE-peptide. Only 

peptide 2805 showed a slight decrease in stability compared to the above peptides, but was 

still 1.3 times more stable than wt-HNE-peptide. Peptides of the second immunisation were 

overall more stable than those used for the first round of immunisation, but the increase in 

stability in intestinal fluid was less pronounced than in serum. An interesting outlier in the 

tested peptides was (dap)GQQACKGAIQALCEN (peptide 2787) whose half-life increased 

by a factor of 8. Peptide 2745, which lacks the dap substitution but is otherwise identical, is 

not stabilised to such an extent. In serum peptide 2787 was nearly twice as stable as wt-HNE-

peptide. These differences between intestinal fluid and serum suggest that exopeptidases with 

different specificities and affinities are present in both media. 
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This novel method for the determination of biostability also allowed the analysis of peptides 

with Lys387Nva and Lys387Nle substitutions, which could not be tested in serum using the 

standard HPLC analysis method because of their absorption on the filter. These peptides 

(2776, 2775, 2783, 2782, 2790, 2789, 2797 and 2796) with an additional Lys9Ala and or C-

terminal extensions, were not more stable than the other modified peptides. 
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Figure 40: Half-lives of selected peptides in murine intestinal juice 

Biostability was tested using a patented procedure (Gorris et al. 2007). Peptides were incubated with murine 

intestinal juice and intact peptide was measured by C-terminal marker specific revelation step. Half-life is 

expressed in s and shown as bars (mean +-SEM; n=6). One Way Anova was applied and significance levels are 

indicated as *** p<0.001 as determined by the Benferroni post hoc test. 
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6. Efficiency of peptide-conjugation to carrier protein 

Peptides with increased stability and conserved antigenicity were coupled to tetanus toxoid 

(TT) using zero-length crosslinking sulfo-NHS/EDC chemistry. Before using these peptide-

conjugates for immunisation, the efficiency of peptide conjugation to TT was confirmed by 

testing the conjugates with mAb BH216 (Figure 41A) and BH6 (Figure 41B) in ELISA. 

BH21 (not shown) and BH216 binding profiles were very similar. Binding of the mAbs to the 

unconjugated carrier TT served as negative control. Constructs segregated into two groups 

according to their binding to BH216: TT-2807, TT-2784 and TT-2787 reacted three times 

better than the other constructs. The same pattern of reactivity was observed with BH21 mAb 

(data not shown). In contrast BH6 bound equally well to all constructs with the exception of 

TT-2805. The differences in binding to BH216 mAb may have suggested lower coupling 

efficiencies for some peptides, however in light of the BH6 results, peptide coupling seems 

similar between the different conjugates. A second batch of conjugates gave the same 

reactivities with BH216, BH21 and BH6 mAb as observed here (data not shown). 
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Figure 41: Antigenicity of TT-peptide-conjugates with BH216 and BH6 mAb 

Prior to immunisation TT-peptide-conjugates were assessed for their coupling efficiency during conjugation 

reaction. TT-conjugates were coated in indirect ELISA and analysed for their ability to bind monoclonal 

antibodies BH216 (A) and BH6 (B). 
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Part III: Immunogenicity 

1. Reactivity of mouse sera against homologous peptides 

 
Table 5: List of peptides used for immunisation 

peptide code sequence1)

2752 / 2833 KGQQACKGKIQALCEN   - wt-HNE 
2741 KGQQACKGAIQALCENPEWa 
2744 KGQQACKGAIQALCENv 
2745 KGQQACKGAIQALCENa 
2751 KGQQACKGAIQALCEN 
2784 KGQQACK*GAIQALCENa 
2787 D*GQQACKGAIQALCENa 
2791 KGQQACK*GAIQALCEN 
2805 KGQQACK GAIQALCENPEWa 
2807 KGQQACK GAIQALCENa 
2809 KGQQACK GAIQALCEN 

  1) D* = diamoni propionic acid (dap) , K* = di-methylated Lys, K  = tri-methylated Lys 

 

Antigenic peptides with enhanced stability were selected from the previous experiments. They 

were coupled to TT and the TT-peptide-conjugates were assessed by immunisation. Peptide 

specific antibodies were measured by ELISA after 4 injections with TT-peptide–conjugates 

(Table 5, peptides 2741, 2744, 2745, 2751 and 2752). Median end point titres (EPT) for each 

group showed that similar levels of antibody were induced against TT-2741 and TT-2752 (wt-

HNE- peptide) (Figure 42A). TT-2744 gave significantly lower EPT values compared to TT-

2741 and TT-2752 (p<0.05) despite its increased stability. We assume that the lower 

solubility of peptide 2744 has impaired coupling resulting in reduced peptide binding to the 

carrier. In conclusion, increases in the stability of peptides 2741, 2744, 2745 and 2751 did not 

induce higher levels of antibodies than the wt-HNE-peptide. 

Based on the results obtained from these immunogenicity tests, further stabilising 

substitutions were performed. Selected peptides (Table 3, peptides 2784, 2787, 2791, 2805, 

2807, 2809 and 2833) were conjugated to TT and evaluated for their immunogenicity (Figure 

42C). Peptide-conjugates TT-2787 and TT-2833 (wt-HNE-peptide) induced similar levels of 

antibodies and these levels were higher than those of the other peptide-conjugates. There was 
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little variation in the levels of antibodies raised against TT-2805, TT-2807, TT-2784, TT-

2809 and TT-2791. 

It is interesting to note that the clustering observed during TT-peptide-conjugate quality 

control with BH216 did not lead to the same groups when assessing the levels of antibodies 

induced against these conjugates. BH216 reacted better with peptide-conjugates TT-2807 and 

TT-2784 than with TT-2809 and TT-2791, yet levels of antibodies raised against these 

peptide-conjugates were similar, further suggesting that the difference in reactivity with the 

antibody is related to fine-specificities of anti-HNE mAb binding rather than the quantity of 

peptides conjugated to the carrier. 
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Figure 42: Assessment of anti-peptide specific response after immunisation with peptide-conjugates 

Peptide specific serum end point titres (EPT) after 4 injections of TT-peptide-conjugates were determined in 

ELISA at 5 times OD response of negative sera. The bottom line of the box plot indicates the 25 percentile, the 

top line the 75 percentile. The median is shown as horizontal bar. Sera (n=4-6) were titrated against coated 

homologous peptide alone (not coupled to TT) revealing peptide specific antibodies only. (A) First round of 

immunisation; (C) further modified and stabilised peptides. One Way Anova was applied and significant 

difference is indicated as * p<0.05 as determined by the Student-Newman-Keuls method. (B) and (D) show 

median serum dilution curves of groups of mice (n=4-6) against the corresponding homologous peptide. 
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2. Reactivity of mouse sera against heterologuous wt-sequence 

2.1. wt-HNE-peptide 

All sera from immunised mice were analysed for their crossreactivity with wt-HNE-peptide 

(KGQQACKGKIQALCEN) (Figure 43 top panel). Mice immunised with TT-2741 gave a 

significantly higher antibody titres against wt-HNE-peptide compared to those induced by 

TT-2744 (p<0.05). The low level of crossreacting antibodies induced against TT-2744 could 

be explained by the lower solubility of this peptide. No significant differences in antibody 

titres were observed between TT-2741, TT-2745 and TT-2751, similar to their reactivity with 

the homologous peptide (Figure 42A). 

Evaluation of anti-wt-HNE-peptide antibody levels induced against peptide-conjugates with 

additional modifications, showed that these conjugates form two distinct groups with respect 

to their ability to induce crossreactive antibodies (Figure 43B). Sera from mice immunised 

with constructs TT-2787, TT-2809 and TT-2791 recognised wt-HNE-peptide better than those 

immunised with TT-2805, TT-2807 and TT-2784, with a statistical significance between TT-

2805 and TT-2787 and TT-2809, respectively (p<0.05). There was little difference between 

the various peptide-conjugates within the two groups. The clustering of groups against wt-

HNE-peptide differed from the results observed against homologous peptide where TT-2787 

induced higher levels of antibodies than the other modified HNE-peptide-conjugates. It was 

estimated that a higher proportion of the anti-peptide antibodies induced against TT-2809 and 

TT-2791 crossreacted with wt-HNE-peptide than those induced against the other peptide-

conjugates. Based on these results, peptide-conjugates TT-2787 and TT-2809 were selected to 

analyse the influence of a variety of adjuvants. 
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Figure 43: Assessment of crossreactivity with wt-HNE-peptide induced against different TT-peptide-

conjugates 

wt-HNE-peptide specific serum end point titres after 4 injections of TT-peptide-conjugates were determined in 

ELISA at 5 times OD response of negative sera. The bottom line of the box plot indicates the 25 percentile, the 

top line the 75 percentile. The median is shown as horizontal bar. Sera (n=4-6) were titrated against coated 

heterologous wt-HNE-peptide (KGQQACKGKIQALCEN) alone (not coupled to TT) revealing wt-HNE-peptide 

specific antibodies only. (A) First round of immunisation; (B) further modified and stabilised peptides. One Way 

Anova was applied and significant difference is indicated as * p<0.05 as determined by the Student-Newman-

Keuls method. 
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2.2. recombinant MV-H-protein 

In a further effort to demonstrate the HNE-crossreactivity of induced antibodies, sera from 

mice immunised with the first set of stabilised peptides, were titrated against recombinant H-

protein in ELISA (Figure 44) and showed only weak levels of crossreacting antibodies. 

Immunisation with wt-HNE-peptide-conjugate induced the highest level of antibodies. There 

was no significant difference in the levels of antibodies raised by peptide-conjugates TT-

2741, TT-2745 and TT-2751. Sera from mice immunised with TT-2744 showed the lowest 

crossreactivity with recombinant H-protein compared to wt-HNE-peptide (p<0.05) 

confirming the results obtained throughout the study. 
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Figure 44: Crossreactivity with recombinant MV-H-protein of sera from mice immunised with HNE-

peptide-conjugates. 

H-protein specific crossreactivity after 4 injections of TT-peptide-conjugates were determined in ELISA using 

mouse sera (1:200 dilution) titrated against 125ng of coated recombinant H-protein and are expressed as 

absorbance in mOD. The bottom lines of the box plots indicate the 25 percentile, the top line the 75 percentile. 

The median is shown as horizontal bar. . One Way Anova was applied and significant difference is indicated as * 

p<0.05 as determined by the Student-Newman-Keuls method. 

 
 
 
 
 

 103



Chapter 3: Results   Part III: Immunogenicity 

3. Effect of adjuvants 

3.1. Reactivity of mouse sera against homologous peptides 

Irrespective of adjuvant used, serum EPT values of mice immunised with peptide-conjugates 

TT-2787 and TT-wt-HNE-peptide (TT-2833) showed no significant difference between each 

other when titrated against coated homologous peptide (Figure 45). In contrast TT-2809 

induced lower anti-peptide antibodies (p<0.001). Immunisation of TT-wt-HNE-peptide 

(2833) with Montanide lead to significantly lower anti-peptide antibody titres compared to 

Alum, Quil-A and Freund adjuvant (p<0.05). Similarly, the combination of TT-2787 with 

Montanide was less potent than the other adjuvants, especially Freund adjuvant (p<0.05). 

When all peptide-conjugates are considered, Montanide induced significantly less antibodies 

than Alum (p<0.01), Freund’s adjuvant (p<0.01) and Quil-A (p<0.05). 
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Figure 45: Assessment of anti-peptide specific response after immunisation with peptide-conjugates using 

different adjuvants 

Anti-peptide specific end point titres (mean ±SD) after 4 injections of TT-peptide-conjugates determined in 

ELISA at 5 times OD response of negative sera. Sera (n = 4-6) were titrated against coated homologous peptide 

alone (not coupled to TT) revealing peptide specific antibodies only. Two Way Anova was applied and 

significant difference is indicated as * p<0.05 and *** p<0.001 as determined by the Student-Newman-Keuls 

method. 
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3.2. Reactivity of mouse sera against heterologuous wt-HNE-peptide 

Irrespective of the adjuvant used, peptide-conjugate TT-2787 induced higher levels of wt-

HNE-peptide crossreactive antibodies than TT-2809 (p<0.01) (Figure 46). TT-2787 peptide-

conjugate worked significantly better than TT-2809 when injected in combination with Quil-

A (p<0.01). The TT-2787 peptide-conjugate showed no difference in antibody levels 

irrespective of the adjuvants used. These data showed that there were significant differences 

between the adjuvants depending on which peptide-conjugate was used. In general Alum was 

the most appropriate universal adjuvant.  
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Figure 46: Assessment of crossreactivity to wt-HNE-peptide induced against different TT-peptide-

conjugates 

wt-HNE-peptide specific crossreactive end point titres (mean ±SD) after 4 injections of TT-2787 and TT-2809 

peptide-conjugates determined in ELISA at 5 times OD response of negative sera. Sera (n = 4-6) were titrated 

against coated heterologous wt-HNE-peptide (KGQQACKGKIQALCEN). Two Way Anova was applied and 

significant difference is indicated as ** p<0.01 as determined by the Student-Newman-Keuls method. 
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4. Flow Cytometry – Facs 

Flow cytometry with Mel-JuSo transfected cell lines expressing the MV-H-protein was 

performed to test the crossreactivity of antibodies with native MV-H-protein after 

immunisation with TT-peptide-conjugates. Sera, immunised with different peptide-conjugates 

recognised native MV-H-protein with varying affinities: Similar to the results with 

recombinant H-protein in ELISA, wt-HNE-peptide-conjugate induced always higher levels of 

crossreactive antibodies compared to TT-2741 (p<0.05), TT-2744 (p<0.001), 2745 (p<0.05) 

and 2751 (p<0.05) (Figure 47A). Peptide-conjugate TT-2741 immunised mice reacted better 

than those injected with TT-2745 and TT-2751. When compared to the antibody binding to 

recombinant H-protein in ELISA, the crossreactivity of TT-2741 to native H-protein is 

increased relative to TT-2745 and TT-2751. TT-2744 immunised mice essentially lacked 

crossreactivity similar to our observations in H-protein ELISA. 

 

Of the second series of peptide-conjugates, TT-2787 (1 out of 6 sera) and TT-wt-HNE-

peptide (3 out of 6) induced crossreactive antibodies with H-protein. None of the stabilised 

HNE-peptides, containing di- and tri-methylated Lys induced antibodies crossreacting with 

the H-protein when coinjected with Freund adjuvant (data not shown). 

 

To assess whether adjuvants could affect the crossreactivity of the antibodies, Montanide, 

Quil-A or Alum were coinjected with TT-2787, TT-2809 or TT-2833 (wt-HNE-peptide) 

conjugate. When TT-2787 and TT-2809 were administered with Montanide, 2 out of 6 or 1 

out of 6 H-protein crossreactive sera were obtained. No crossreactivity was observed when 

TT-2787 and TT-2809 were injected with Quil-A or Alum (data not shown). H-protein 

binding of sera immunised with TT-wt-HNE-peptide-conjugate was observed irrespective of 

the used adjuvants (Figure 47B). The efficacy of adjuvants to induce crossreactive antibodies 

varied with Montanide and Quil-A inducing 4 out of 6 and 5 out of 6 crossreactive sera, 

respectively, whereas in the Alum and Freund adjuvant groups only 2 out of 5 and 3 out of 6 

mice sera were positive, respectively. 
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Figure 47: Crossreactivity with native MV-H-protein of anti-HNE-peptide sera 

Crossreactivity with MV-H-protein of mouse sera after immunisation with TT-peptide-conjugates was measured 

by flow cytometry on Mel-JuSo-H transfected and Mel-JuSo-wt cells. Boxplot bars represent median values of 

AFU ratios (AFU H / AFU wt). The bottom lines of the box plots indicate the 25 percentile, the top line the 75 

percentile. Ratios above 2 are considered positive. (A) 1/50 serum dilution of mice immunised with various TT-

peptide-conjugates (n=4-5); (B) 1/100 serum dilutions of mice immunised with TT-wt-HNE-peptide-conjugate 

(n=5-6) in combination with 4 different adjuvants. One Way Anova was applied and significant difference is 

indicated as * p<0.05 and *** p<0.001 as determined by the Student-Newman-Keuls method. (C-H) Typical 

flow cytometry histograms of crossreactivity with H-protein on Mel-JuSo-H cells (red histogram) and Mel-JuSo-

wt cells (open histogram) TT-2741 (C), TT-2744 (D), TT-2745 (E), TT-2751 (F), TT-2752 (wt-HNE) (G) and 

adjuvant only (H) 
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Part: IV Bile-acid peptide-scaffold analysis 

1. Synthetic pathway 

1.1. Synthesis of scaffold-peptide construct 

In collaboration with Catherine Bodé at the Department of Organic Chemistry at the 

University of Ghent, we have evaluated an HNE-peptide-scaffold construct. We investigated 

the feasibility to restrict the conformation of a the HNE-peptide using a bile-acid based 

scaffold. The detailed description of the chemistry of the scaffold-peptide construct is beyond 

the scope of this thesis (Bodé et al.; Bodé 2007; Bodé et al. 2007) . In the following 

paragraphs only a short summary of the chemical synthesis pathway of the scaffold-peptide 

construct will be described, followed by a more in depth analysis of the biological data 

observed. 

 

An orthogonally protected bile-acid based steroidal scaffold was coupled to a functionalised 

Tentagel resin for SPPS, via a photolabile linker, which allowed easy deprotection and 

chemical analysis of reaction intermediates. Two approaches for the synthesis of the peptide 

on the scaffold were investigated: The two-strand approach is based on convergent solid 

phase peptide synthesis. One part of the peptide was synthesised on the C-12 amine of the 

scaffold linked to the resin. The second part of the peptide sequence was assembled separately 

on another resin. After resin cleavage the sidechain-protected peptide was coupled via the N-

terminus to the C-3 amine of the scaffold via compatible linkers (succinic acid). After 

successful coupling, the two strands were connected via simple backbone cyclisation to yield 

the final product. This two strand approach with convergent SPPS has a clear advantage in the 

synthesis of difficult and/or large peptide sequences. The second peptide sequence can be 

purified prior to coupling to the scaffold, thus reducing the number of by-products. This two 

strand approach was however complicated by several factors including difficulties of coupling 

the second strand to the scaffold. 

The single strand approach is based on the stepwise synthesis of the peptide strand starting 

from Fmoc-protected Gly linker residue coupled to the scaffold. After completion of the 

peptide sequence, the peptide was oxidised to form the disulfide bridge. The peptide strand 
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was coupled to the C-3 amine of the scaffold via the succinic acid linker thus closing the 

peptide loop. The orthogonal sidechain protection groups were removed by TFA and the 

scaffold-peptide construct was cleaved from the resin by UV-irradiation. After purification of 

the scaffold-peptide construct we analysed it in a collaboration for its stability, antigenicity 

and immunogenicity (Figure 48). 
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Figure 48: Synthetic pathway for scaffold-peptide construct 

The synthetic pathway starting with steroidal scaffold, linkage to resin and functionalisation of scaffold, one 

strand peptide synthesis on scaffold, followed by cystine formation, backbone cyclisation, sidechain protection 

group removal and cleavage from resin to yield final scaffold-peptide construct. 

 

1.2. Synthesis of cyclic control peptide 

To assess the influence of the scaffold of the scaffold-peptide construct on biostability, 

antigenicity and immunogenicity, a peptidic control sequence was synthesised. This control 

peptide contains the same peptide sequence as the scaffold-peptide construct including the 

disulfide bridge and merely lacks the scaffold itself. The synthetic pathway started with a 

Fmoc-Glu395-OAll residue which was covalently coupled via its sidechain to chlorotrityl resin 

and the peptide chain was elongated via SPPS until completion of the peptide sequence. The 

intermediate peptide “Fmoc-N-G-Q-A-C-K-G-K-I-Q-A-C-E-(resin)” was oxidised to form the 

disulfide bridge, followed by backbone cyclisation between amine group of N-terminal Asn 

residue and the carboxy group of Glu, to form the cyclised control peptide with a Gly spacer 

between “C-terminal” Glu and “N-terminal” Asn. Cyclisation of the peptide sequence prior to 

cystine formation caused dimerisation of the peptide chains presumably because of the high 
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loading of the resin. In this context it is important to differentiate between cyclic and oxidised 

peptides. Here cyclisation refers to the backbone connection of N- and C-terminal amino 

acids thus forming a cyclic peptide. Peptides such as the HNE-peptide with a disulfide bridge 

in the sequence are referred to as linear oxidised peptides. 

 

2. Biological evaluation 

2.1. Biostability 

Preliminary tests of the biostability of the scaffold-peptide construct and the cyclised control 

peptide indicate that after 24 h incubation in mouse serum, over 75% of the peptides remain 

intact (data not shown). This was a significant improvement in comparison with the natural 

wt-HNE-peptide which was degraded to 25% within the same time. Despite these 

improvements neither the scaffold nor the cyclisation increased the peptide stability to the 

same extent as our internal and C-terminal modifications. 

 

2.2. Antigenicity 

The cyclic peptide and scaffold-peptide construct were tested for their reactivity with anti-

HNE mAb BH216, BH21 and BH6. Binding patterns of BH216 and BH21 were similar, 

showing that binding to scaffold-peptide construct was stronger (Figure 49A) than binding to 

linear oxidised wt-HNE-peptide (KGQQACKGKIQALCEN). The cyclic control peptide gave 

a much weaker binding. Binding patterns to BH6 were predictably different: the linear 

oxidised control peptide gave the highest binding followed by the scaffold-peptide construct 

and cyclic peptide. It is interesting to note that the cyclic peptide gave much better binding 

with BH6 than it did with BH216 (Figure 49B). No binding of peptides to negative control 

BH195 were observed, which specifically recognises the PEWA region of denatured H-

protein. 
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Figure 49: Antigenicity of scaffold-peptide construct and cyclic control peptide tested with anti-HNE 

monoclonal antibodies. 

Scaffold-peptide construct (open circle) and cyclic control peptide (triangle) were analysed for their ability to 

bind monoclonal antibodies BH216 (A) and BH6 (B) in indirect ELISA in relation to wt-HNE-peptide 

(KGQQACKGKIQALCEN) (closed circle). 

 

2.3. Immunogenicity 

The chemistry of the scaffold-peptide construct and of the cyclic peptides did not allow 

covalent coupling to tetanus toxoid. The only available reactive amine and carboxy groups 

were located on sidechains and coupling would likely destroy the epitope. Thus peptides were 

merely mixed with TT in immunisation tests. Following the same immunisation schedule with 

Freund adjuvant described previously we injected 20 µg of each peptide either alone or mixed 

with 20 µg TT. After 3 injections sera of immunised mice were analysed for the presence of 

anti-peptide antibodies (Figure 50). The scaffold-peptide construct and the cyclic peptide 

induced high and comparable titres when coinjected with TT. In the absence of TT, the 

scaffold-peptide construct induced a much lower antibody titre and cyclic peptide was 

essentially non-immunogenic, demonstrating the benefit of additional T cell epitopesof TT. 

In order to establish the crossreactivity of the induced antibodies, sera of mice immunised 

against scaffold-peptide construct were titrated against coated cyclic control peptide in ELISA 

(data not shown). Poor binding was observed for scaffold-peptide construct mixed with TT 

and scaffold-peptide construct injected alone showed no crossreactivity. This poor binding 

can be explained either by the fact that most antibodies raised against the scaffold-peptide 

construct targeted the scaffold only, or more likely, that the structure of the cyclic peptide 
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differs substantially from the one adopted by the same peptide sequence constrained by the 

scaffold. 

Neither the scaffold-peptide construct nor the cyclic peptide induced sera crossreacting with 

recombinant MV-H-protein or with the native MV-H-protein expressed by Mel-JuSo-H cells 

assessed by ELISA and flow cytometry, respectively (data not shown) 
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Figure 50: Assessment of anti-peptide specific response after immunisation with scaffold-peptide construct 

and cyclic peptide with or without TT 

Serum dilution curves of mice (n=6) after three injections of scaffold-peptide construct mixed with TT (A), 

scaffold-peptide construct alone (B), cyclic peptide mixed with TT (C) and cyclic peptide alone (D) in ELISA 

against coated scaffold-peptide construct (A,B) and coated cyclic peptide (C,D). 
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Chapter 4: Discussion 

1. Role of Cysteine bridges and of the HNE 

The recent publication of two X-ray crystallography structures of the measles H-protein (Colf 

et al. 2007; Hashiguchi et al. 2007) has allowed us to put our structure of the wt- HNE-peptide 

into the context of the native H-protein. So far only few models were available: (1) a 3D 

structure obtained by homology modelling on the basis of the crystal structure of influenza 

virus neuramidase (Langedijk et al. 1997). After the publication of the crystal structure of the 

haemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) (Crennell et 

al. 2000) the model of MV-H-protein was refined: (2) A new model of the H-protein based on 

the HN-protein of NDV was proposed (Vongpunsawad et al. 2004). (3) A second model with 

NDV as a template using sequence homology, secondary structure prediction and protein 

folding was created (Masse et al. 2004). (4) A fourth structure was predicted by concerted use 

of homology modelling, fold recognition and de novo folding techniques also based on the 

crystal structure of the HN-protein of NDV (Damien et al unpublished). 

While these models gave a good indication on the location of protruding accessible loops of 

the H-protein, the structure of these loops was not well defined and the proposed Cys bridges 

remained a matter of debate for some time. The importance of the Cys in the structure and 

function of the H-protein has been recognised early on (Hu and Norrby 1994) and this is 

reflected in the conservation in number and position of the Cys in all MV isolates. The Cys 

pattern is not limited to MV but Cys are also conserved in the H-protein of rinderpest virus 

(Tsukiyama et al. 1987), canine (Curran et al. 1991), phocine (Kovamees et al. 1991) 

distemper viruses and all other morbilliviruses (Ziegler et al. 1996). However there has been 

conflicting data on which Cys bridges are important in the structure of the HNE. Hu and 

Norrby suggested that Cys381, Cys394 and Cys494 are essential for the function of the H-

protein and that Cys386 is most likely unpaired (Hu and Norrby 1994). Cys381 was suggested 

to form a disulfide bond with Cys494. The model by Langedijk on the other hand predicts the 

disulfide bridges Cys381-Cys386 and Cys394-Cys494. Earlier work within our laboratory by 

Ziegler could only show a functional importance for Cys394 and El Kasmi found that the 

presence of all three HNE Cys in peptides were necessary for the induction of MV-

neutralising antibodies (Ziegler et al. 1996; El Kasmi et al. 2000). More recent work by Putz 
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demonstrated that peptides containing only the Cys386-Cys394 bridge induced MV-

neutralising sera (Putz et al. 2003b). In this study we have also confirmed by Cys substitution 

of full length HNE peptides, the recognition of peptides with a Cys386-Cys394 bridge by 

anti-HNE mAbs. The importance of the Cys386-Cys394 disulfide bridge was also confirmed 

by the two crystal structures of the H-protein; both of them predict Cys bridges between 

Cys386-Cys394 and Cys381-Cys494. The structure of the loop and Cys positions preclude the 

formation of both Cys381-Cys386 and Cys381-Cys394 bridges, since Cys381 is locked in an 

α-helix pointing in the opposite direction of Cys 386 and Cys394 (Figure 51). 

While it seems that the crystal structures and our results contradict the data by Hu and 

colleagues, these data could represent different states of the H-protein: The disulfide bridges 

in a native protein are the end result of a process of oxidation, reduction and isomerisation of 

disulfide bonds by enzymes such as protein disulfide isomerase (Creighton et al. 1995), 

suggesting that different disulfide bridge arrangements may exist in the H-protein at different 

stages of its life cycle. It has also been reported that reduction and rearrangement of disulfide 

bridges in native proteins act as switches for biological functions (Hogg 2003). For example 

cleavage of various disulfide bonds within the bound complex of CD4 immune cell receptor 

and gp120 surface protein of HIV-1 has been reported to be essential for virus entry and cell-

cell fusion (Fenouillet et al. 2001; Gallina et al. 2002; Matthias et al. 2002). Even though such 

an effect has never been directly suggested in the case of MV-H it cannot be excluded that 

disulfide bridges undergo functional rearrangements. 

Disulfide bridges are important for stabilising the conformation of proteins by lowering the 

entropy of the unfolded state by restricting the degrees of freedom (Sternberg 1997). They 

also ensure the structural integrity of proteins and can protect them against oxidants and 

proteolytic cleavage (Arolas et al. 2006). In the HNE the disulfide bond between Cys386 and 

Cys394, located in two distinct α-helices, stabilises a turn between these two α-helices. The α-

proton chemical shift data obtained for the reduced Gly8Val substituted peptide suggests an 

elongation of the α-helix in the absence of disulfide link induced loop. This structural change 

may be responsible for the lack of reactivity of anti-HNE mAb with reduced HNE-peptides. It 

is however unknown whether a lack of disulfide bonds in the HNE would lead to the same 

structural change in the H-protein. This seems unlikely since the HNE is more constrained 

within the H-protein compared to the flexible free peptide. The disulfide bridge in the HNE-

peptides is essential for maintaining a structure able to mimic the HNE arrangement of the H-

protein. 
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The actual role of the HNE and its conserved Cys residues remains unclear. Since the HNE-

antibody binding motif is conserved in most known MV isolates (Putz et al. 2003b) and the 

Cys located within the HNE are conserved in all known morbilliviruses it very likely that this 

region has a very important but unknown function. 

It has been known for some time that the H-protein of wt-MV preferentially binds SLAM 

(CD150) and not CD46 (Yanagi et al. 2006). Mutational studies have shown that Pro486 and 

Ile487 are critical for H-protein binding to CD46 (Vongpunsawad et al. 2004) and 

substitutions in the vaccine strains (Asn390Ile, Asn481Tyr) further enable CD-46 binding 

(Bartz et al. 1996; Tahara et al. 2007). Residue 390 is located in the HNE, and the other 

amino acids are located in the opposite loop, which is kept in close proximity to the HNE by 

the Cys381-Cys494 disulfide bridge. It is thus possible that the HNE, with its proposed 

Cys386-Cys394 and Cys381-Cys494 disulfide bonds may stabilise the secondary structure 

required for CD46 binding and retain the function of regions located further away or possibly 

support conformational changes after binding which play a role in cell-cell fusion. 

Hashiguchi showed that although N-linked sugars hide several H-protein domains, the 

receptor binding sites and the HNE-loop remain exposed. A role in receptor binding would 

explain the relative conservation of the HNE-sequence (Hashiguchi et al. 2007). This would 

also explain the neutralising capacity of our HNE-targeting mAbs (BH216, BH21 and BH6). 

Cys394

Cys386

Cys381

Cys494

 
Figure 51: HNE cysteine residues 

The crystal structure of H-protein (Hashiguchi et al. 2007) is shown as cartoon type, HNE region 

(E379TCFQQACKGKIQALCENPEWA400) is coloured in blue, HNE Cys residues are labelled and disulfide 

bridges between Cys381-Cys494 and Cys386-Cys394 are shown in yellow. 
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2. HNE-peptide structures 

Comparisons of observed α-proton chemical shifts with literature values of random coil 

structures provided qualitative information on the position and nature of secondary structure 

elements in the modified HNE-peptides, without the need to resolve complete structures. It 

was thus shown that the majority of substitutions of Gly8, Ile10 and Leu13 of the wt-HNE-

peptide (KGQQACKGKIQALCEN) did not lead to an apparent loss of α-helical structure of 

the C-terminus. Notable exceptions were Gly8Pro, which due to the backbone twist affected 

the loop around Gly8, and Leu13Asn. Asn is known to be strongly helix-destructive and the 

α-proton chemical shifts confirm that the helix formation was inhibited and the whole peptide 

adopted a random coil structure (Pace and Scholtz 1998). N-terminal Asn may also account 

for the break in the α-helix observed in both our HNE-peptides and the HNE of the H-protein. 

We observed that some modified and wt-HNE-peptide retained most of their secondary 

structure in water even if the helix was weakened. This is surprising since short peptides 

usually do not adopt a secondary structure in water (Shepherd et al. 2005). We suspect that 

the disulfide bridge between Cys6 and Cys14 can account for this high stability. At the same 

time we showed that a Gly8Val substitution and a break in the disulfide bond increased the α-

helical content of the modified HNE-peptide, further confirming the tendency of this region to 

adopt such a secondary structure. 

 

2.1. wt-HNE-peptide 

Peptides can adopt a multitude of structures when they are removed from the constraints of 

the protein of which they are part. This effect was also obvious in our NMR structures. 

Comparisons of the crystal structure of the HNE region 

(E379TCFQQACKGKIQALCENPEWA400) of the H-protein (Hashiguchi et al. 2007) and our 

NMR structure of the wt-HNE-peptide (K1GQQACKGKIQALCEN16) clearly show that the 

structure of the flexible N-terminal linkerarm region observed in the HNE-peptide does not 

correlate to the structure of the N-terminal HNE in the H-protein (Figure 52). In the H-protein 

the amino acids preceding the loop around Gly8 form an α-helix keeping the critical contact 

residue Lys 7 in a more constrained conformation compared to the free peptide. In addition 

the N-terminal linkerarm in the free HNE-peptide adopts an orientation that would not be 

allowed in the protein because of steric hindrance from other structural domains. The helical 

region with the critical contact residues for antibody binding (BH216) on the other hand is 
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conserved in the free HNE-peptide, indicating that the structural informations for the α-helix 

are contained in the Ile10 to Asn16 sequence, independent of protein environment. The N-

terminal region Lys1-Lys7 requires other structural features of the H-protein to keep it in a 

helical conformation. It is also possible that the Lys1-Gly2 extension prevents helix 

formation. Gly has a greater conformational freedom because of its lack of sidechain 

(Sternberg 1997) and breaks the α-helix as shown by Gly8 in the HNE-peptide and Gly388 in 

the H-protein. 

Our resolved NMR structure of the wt-HNE-peptide was considerably more accurate than the 

molecular model of the HNE-peptide (QACKGKIQALCEN) previously generated by 

dynamic simulations (Putz 2004). The critical and non-critical residues were correctly located 

in opposite planes however that model did not predict the α-helix that we observed in the 

NMR structure. The relative positions of the critical residues were significantly different 

between the model and the NMR structure. This indicates that a purely dynamic modelling, 

based on force-fields, cannot give a correct representation of the structure of small peptides. 

 

Lys 

Gln 
Glu 

N 

C 

 
Figure 52: Superposition of H-protein and wt-HNE-peptide structures 

Crystal structure of H-protein (orange) and central structure wt-HNE-peptide (green) superposed by alignment of 

residues 390 to 395/10 to 15. Peptide backbones are shown as tubes and critical contact residues Lys387/7, 

Gln391/11 and Glu395/15 are shown as sticks. 
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2.2. Structure of Gly8Ala 

The superposition of the structures calculated for HNE-peptide mutants gave important clues 

about the effects of certain amino acid substitutions on the peptide structure, effects that are 

difficult to predict. Together with the results of the ELISA with mAb BH216 of HNE-

peptides these changes could shed light on the biological results and especially on the 

structural requirements for sustained antigenicity of the HNE-peptide. 

The Gly8Ala substituted peptide was part of a series of Gly8 mutants synthesised to 

investigate the importance and structure of the Gly loop formed by disulfide bond in the 

HNE-peptide structure and to further investigate the orientation of the N-terminal linkerarm 

observed in some of the wt-HNE-peptide conformations. Alignment of Gly8Ala to wt-HNE-

peptide was somewhat complicated by the peculiar conformation of the central structure. As 

seen in Figure 23, the orientation of the linkerarm of the central conformation did not align 

with those of the other 19 low energy conformations, while the the structural features of the 

loop between Cys6 and Cys14 are conserved in all these conformations. Comparisons 

between wt-HNE-peptide and Gly8Ala peptide showed that the position and orientation of the 

critical contact residues Gln11 and Glu15 sidechains within the helix are well conserved 

(Figure 53). The loop distortion caused by the substitution of Gly to Ala has severe effects on 

the position of Lys7 which is moved out of the plane formed by the contact residues in the wt-

HNE-peptide. This shift together with the tendency of the linkerarm to point into the binding 

domain explains the absence of interaction of mAb BH216 with this peptide. These results are 

confirmed by comparisons with the structure of the H-protein. Superposition of the central 

structure of Gly8Ala (Figure 54) and the twenty lowest energy conformations of Gly8Ala 

mutant (Figure 55) with H-protein confirmed the loop distortion between Cys6 and Cys14 and 

linkerarm orientation into the antibody binding domain. The lack of binding of mAb BH216 

to Gly8Ala peptide could be explained by comparison to both the HNE-peptide NMR 

structure as well as the H-protein crystal structure. The linkerarm orientation observed after 

Gly8Ala substitution may be caused by steric hindrance of the Ala sidechain with the 

backbone of the neighbouring residues, which causes a distortion of the Gly loop and a 

rearrangement of the peptide into an energetically preferred conformation. These results 

explain why no substitution of Gly8 is allowed without abolishing antigenicity.  
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Figure 53: Superposition of wt-HNE-peptide and Gly8Ala mutant peptide structures 

Central structures of wt-HNE-peptide (green) and Gly8Ala mutant peptide (pink) superposed by alignment of 

residues 10 to 15. Peptide backbones are shown as tubes and critical contact residues Lys7, Gln11 and Glu15 are 

shown as sticks. 
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Figure 54: Superposition of H-protein and Gly8Ala mutant peptide structures 

Crystal structure of H-protein (orange) and central NMR structure of Gly8Ala mutant peptide (pink) superposed 

by alignment of residues 390 to 395/10 to 15. Peptide backbones are shown as tubes and critical contact residues 

Lys387/7, Gln391/11 and Glu395/15 are shown as sticks. 
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Figure 55: Superposition of H-protein and 20 lowest energy conformations of Gly8Ala mutant peptide 

Crystal structure of H-protein (orange) and 20 lowest NMR energy conformations of Gly8Ala mutant peptide 

(coloured) superposed by alignment of residues 390 to 395/10 to 15. Peptide backbones are shown as tubes, 

central structure of Gly8Ala is in pink. 

 

2.3. Structure of Ile10Ala 

To increase the reactivity of the wt-HNE-peptide with mAbs we tried to reduce the flexibility 

of the α-helix in the peptide (Gurunath et al. 1995). While Ile10Ser lost antibody binding, the 

Ile10Ala substitution preserved some of the reactivity with mAb BH216 (Putz et al. 2003b). 

Since Ala is at the top of the propensity scale and thus the most preferred amino acid in α-

helices (Chou and Fasman 1974), the helix is well conserved in comparison to the wt-HNE-

peptide (Figure 56). Despite its distant location, the Ile10Ala substitution still influenced the 

linkerarm orientation with Lys7 pointing much further towards the antibody binding region. 

This would explain the partial loss in reactivity with mAb in the ELISA. The comparison of 

the Ile10Ala peptide with the H-protein shows that both align very well (Figure 57). There is a 

much better superposition of Lys7 of the Ile10Ala substituted peptide with Lys387 of H-

protein than there is of wt-HNE-peptide Lys7 and the H-protein Lys387 residue. Thus, in 

principle Ile10Ala should react better with BH216 than the wt-HNE-peptide. However, the 
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reduced reactivity with BH216 is probably again linked to the orientation of the linkerarm of 

the peptide. The linkerarm in the wt-HNE-peptide points in the opposite direction of the 

binding domain and is thus less likely to sterically interfere with an approaching antibody 

than the linkerarm of the Ile10Ala mutant which is located in the same plane as the antibody 

binding domain. The small position shift of Lys7 observed for the wt-HNE-peptide may be 

compensated by induced fit, thanks to the inherent flexibility of the peptide, by a slight 

distortion of the loop between Cys6 and Cys14, which would superpose the two Lys and 

allow antibody binding. 

 

Lys
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Figure 56: Superposition of wt-HNE-peptide and Ile10Ala mutant peptide structures 

Central structures of wt-HNE-peptide (green) and Ile10Ala mutant peptide (blue) superposed by alignment of 

residues 10 to 15. Peptide backbones are shown as tubes and critical contact residues Lys7, Gln11 and Glu15 are 

shown as sticks. 
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Figure 57: Superposition of H-protein and Ile10Ala mutant peptide structures 

Crystal structure of H-protein (orange) and central structure of Ile10Ala mutant peptide (blue) were superposed 

by alignment of residues 390 to 395/10 to 15. Peptide backbones are shown as tubes and critical contact residues 

Lys387/7, Gln391/11 and Glu395/15 are shown as sticks. 

 

2.4. Structure of Ile10Ser 

As demonstrated by Putz (2003b), an HNE-peptide with an Ile10Ser mutation lost the ability 

to react with anti-HNE mAb. This may seem surprising since Ile10 is not a contact residue but 

most likely plays a structural role. Negative effects on the α-helix of the HNE-peptide and 

consequently antibody binding were not expected since Ile and Ser are situated midfield on 

the propensity scale with 0.41 and 0.5 kcal/mol, respectively. The scale ranges from 0 

kcal/mol for Ala which is the amino acid most preferred in α-helices, to 1 kcal/mol for Gly, 

the least preferred residue (Pace and Scholtz 1998). Comparisons between the Ile10Ser 

mutant and wt-HNE-peptide and the HNE-epitope in the H-protein confirm that the α-helix 

together with the position and orientation of the critical contact residue Gln11 remain fairly 

well conserved (Figure 58A, Figure 59). As previously shown, the C-terminal region of the 

helix is more flexible compared to the rest of the HNE-peptide structures and the twists seen 

for Glu15 are expected to account for some of the reduced reactivity with antibodies. Ser also 

has a major influence on the structure of the loop between the two Cys residues. The loop 

appears more elongated compared to the wt structures (HNE-peptide and H-protein) resulting 
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in a significant shift of Lys7 (Figure 58B). In addition the flexible linkerarm tends to lie in the 

same plane as the Lys7 / Lys387 sidechain of the HNE and is likely to block access to the 

antibody (Figure 58A, Figure 59).  
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Figure 58: Superposition of wt-HNE-peptide and Ile10Ser m

Central structures of wt-HNE-peptide (green) and Ile10Sser mu

residues 10 to 15. Peptide backbones are shown as tubes and cr

shown as sticks. Lateral view (A), top view (B). 
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3. Stability and antigenicity 

The half-life of wt-HNE-peptide was the benchmark to which peptides modified for enhanced 

stability would be compared to. The stability of the peptides was tested in mouse serum, 

which is commercially available and known to represent a high protease activity, even if 

immunisations are not done by intravenous route but by intraperitoneal injection. 

Intraperitoneal fluid is rarely available and collection cannot be easily standardised. The use 

of serum is therefore generally accepted as a useful fluid to assess the stability of peptides to 

be used in a clinical setting (Brinckerhoff et al. 1999). For instance, degradation experiments 

comparing peptide stabilities in human serum and synovial fluid found no difference between 

the two (Powell et al. 1992). Thus as a model, serum was an appropriate choice for stability 

testing of peptides and given the context of the experimental settings, serum from mice was 

chosen. 

 

Analysis of the wt-HNE-peptides revealed a number of factors known to stabilise peptides: (i) 

the C-terminal amide stabilises peptides against exopeptidase degradation (Maillère et al. 

1995; Brinckerhoff et al. 1999; Marschütz et al. 2002) and has been used throughout our 

study. (ii) Disulfide bridges stabilise peptide conformations and to some extent also block 

peptidase activity (Tugyi et al. 2005a). (iii) Prior to immunisation HNE-peptide was coupled 

to tetanus toxoid, which acted as carrier and provided important T cell epitopes to induce an 

immune response. The conjugation, via the N-terminal amine groups, blocked the HNE-

peptide N-terminus from aminoexopeptidases specifically. 

 

Our NMR studies have helped our understanding of the structural effects of amino acid 

substitutions on peptide antigenicity. Initial modifications of the HNE-peptide to increase the 

stability without compromising its reactivity with the antibodies, focused on the extension of 

the C-terminus, because even substitutions of non-critical residues of the α-helix had negative 

effects on antigenicity. Previous work in our laboratory (Putz 2004) established that residues 

N396PEWA400 could be replaced with any number of residues without interfering with 

antibody binding. Our NMR structure of the wt-HNE-peptide has shown that the C-terminus 

following Glu15 points away from the antibody binding site and therefore C-terminally 

extended amino acids were not expected to severely influence antigenicity. The orientation of 

the backbone was also confirmed in later publications of the X-ray crystal structures of the 

native H-protein (Colf et al. 2007; Hashiguchi et al. 2007). 
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To simulate the carrier protein and hopefully block degradation via aminoexopeptidases, the 

N-terminal Fmoc protection group was assessed. Blocking the N-terminus would have 

allowed us to focus only on carboxypeptidases and endopeptidases which are the only 

peptidases that can degrade N-terminally conjugated HNE-peptides. However, our studies 

have shown that due to premature cleavage in serum, the Fmoc group was not suitable and 

acetylation was more appropriate. N-terminal acetylation has previously been shown to 

protect synthetic peptides against N-terminal degradation (Maillère et al. 1995; Brinckerhoff 

et al. 1999). In fact, in eukaryotes many proteins are protected against N-terminal degradation 

by acetylation (Bell and Strauss 1981; Bradshaw et al. 1998). 

To protect the C-terminus against degradation, candidate residues for C-terminal modification 

were selected from the literature as well as based on structural considerations (see Annexe 1). 

D-amino acids and modified natural amino acids, amongst others, were considered for this 

purpose. A limitation was the commercial availability of Fmoc-protected amino acids 

required for peptide synthesis. Candidate amino acids should not add additional functional 

groups which would potentially influence the peptide structure and affect the interaction with 

the antibody. At the same time they must be structurally different enough from natural amino 

acids to reduce peptide susceptibility towards peptidases. 

Surprisingly the variety of non-natural amino acids failed to significantly improve the 

biostability of peptides. β-amino acids have been reported to increase the stability of peptides 

(Steer et al. 2002; Hook et al. 2004) without loss of biological activity (Frackenpohl et al. 

2001; Sagan et al. 2003). A methyl insertion into the peptide backbone increases peptide 

flexibility (DeGrado et al. 1999; Beke et al. 2006). In our hands this did not adversely affect 

antibody binding since β-Ala was C-terminal and outside the binding domain, however the 

increase in stability was only minimal (data not shown). 

Despite their often unusual structures, nonnatural amino acids such as trans-4-

(aminomethyl)cyclohexane carboxylic acid (t-amcha), 1-amino-cyclohexane carboxylic acid 

(achca) and 4-(aminomethyl)benzoic acid (pamba; data not shown) failed to increase the 

stability of peptides, although antigenicity was conserved as expected. 

D-amino acid residues added C-terminally included the small D-Ala and D-Val and the larger 

D-Phe and D-Leu. As observed with the other non-natural residues, no stabilisation was 

achieved by single amino acid extensions. Only the peptide with a C-terminal D-Ala was as 

stable as wt-HNE-peptide in serum. While several studies have reported increased stabilities 

using one or more D-amino acids at the C-terminus of core epitopes, these were either in 

combination with other N-terminal modifications (Brinckerhoff et al. 1999) or have consisted 
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of D-isomer substitutions of L-amino acids already present in the core peptide sequence 

(Hong et al. 1999). Here additions and not substitutions of residues to the peptide sequence 

were analysed and results are comparable to those obtained by Tugyi and colleagues who 

substituted three C-terminal L-amino acids and observed lower peptide stability (Tugyi et al. 

2005b). More surprisingly the addition of two D-amino acids without other modifications, 

failed to stabilise peptides and all permutations of the above four D-amino acids, with the 

exception of 2 D-Ala residues, reduced or even abrogated antibody binding (amongst others 

peptides: 2711, 2712, 2723, 2742, and 2743; other data not shown). It is thought that the 

second amino acid, regardless of its nature, is located too close to the antibody binding 

domain and therefore reduces antigenicity. 

Extending the peptide by the natural sequence in the H-protein (P397EWA400) generated 

peptides with a stability that was similar to that of wt-HNE-peptide only when combined with 

a D-Ala addition (PEWAa and PEWa). Presumably the increase in stability by D-Ala is 

negatively compensated by the presence of additional cleavage sites. 

The failure to design more stable peptides solely by introducing C-terminal modifications 

suggested that carboxypeptidases play a less important role in degradation than 

aminopeptidases (Hong et al. 1999; Galati et al. 2003). Nevertheless this cannot explain the 

failure to improve stability and even the decrease in stability for certain C-terminal additions. 

While these terminal modifications can protect the peptide against exopeptidases, they have 

no protective effect against endopeptidases. In fact, similar to our findings, Marchütz and 

colleagues have also observed an increased susceptibility of terminally modified peptides 

towards endopeptidases. It was suggested that terminal modifications alter the peptide 

structure, thus exposing endopeptidase susceptible amide bonds (Marschütz et al. 2002). Thus 

C-terminal modifications may gain from combinations with amino acid substitutions within 

the core epitope (Webb et al. 2003). 

To investigate this synergic effect and to increase the biostability of modified peptides, 

several internal substitutions were performed. Based on the fine-mapping work of the epitope 

by Putz (2003b) Lys9 was an interesting substitution site since it could be replaced by a 

variety of amino acids without loss of antibody binding. As a basic residue it is also a 

preferred cleavage site of peptidases. While the stability of the HNE-peptides with Lys9 

substituted by several amino acids (Lys9Ala, Lys9Asn, Lys9Ser, Lys9His, Lys9Gln) were 

markedly increased compared to the wt-HNE-peptide, only the Lys9Ala substitution did not 

compromise antibody binding. Thus this substitution was further used in subsequent stability 

studies. The reduced reactivity with mAb BH216 of the other Lys9 substituted peptides does 
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not necessarily question the validity of the established binding motif, but may indicate that the 

shorter HNE-peptide would be more sensitive to a change in the proximity of the binding 

motif than the full length HNE-peptides, which were used in the fine-mapping studies. 

 

In an effort to further increase the stability and immunogenicity of modified peptides, the 

number of Lys in the peptide sequence was reduced. The hypothesis is that endopeptidases 

would be deprived of their cleavage sites. At the same time coupling to the carrier protein via 

ε-amine groups of Lys in the antibody binding domain would be reduced, thus increasing the 

number of N-terminally coupled and biologically active molecules in peptide-protein-

conjugates. Substitutions of Lys7 without loss of antibody binding were expected to be 

difficult since Lys7 is a critical part of the binding motif. D-Lys substitution of Lys7 showed a 

2 fold increased stability, but the loss of antibody binding suggested that the paratope of 

BH216 is stereospecific. Similarly Hong and Na observed a loss of activity of an 

antimicrobial peptide after D-Lysine substitution in the core epitope (Hong et al. 1999; Na et 

al. 2007). This observation is in line with the structural NMR data of the HNE-peptide and the 

H-protein crystal X-ray crystal structure. The sidechain of D-Lys is likely to point further into 

the antibody binding domain and the loop around Gly8 is expected to be distorted to 

accommodate the new sidechain orientation, thus reducing antibody binding.  

 

Methylation of basic amino acid sidechains has been known for some time to be an important 

post-transcriptional modification in a large number of proteins and can occur as mono-, di- or 

tri-methylation. The most well known Lys methylation is that reported in histones, which is 

important for gene regulation (Bannister et al. 2002; Paik et al. 2007). Methylation of Lys 

residues in the heparin-binding haemagglutinin adhesion protein in mycobacteria was 

reported to render the protein resistant to proteolysis (Pethe et al. 2002). Tri-methylation of 

Lys115 in calmodulin has been shown to inhibit ubiquitin mediated proteolysis (Gregori et al. 

1987). Na and colleagues increased the stability of an antimicrobial peptide using mono-

methylated Lys (Na et al. 2007). In our study substitution of Lys7 of the HNE-peptide showed 

that generally tri-methylated Lys are slightly more stable and more antigenic than di-

methylated Lys substituted peptides. Most surprisingly substitutions with di- and tri-

methylated Lys only increased the stability of HNE-peptides compared to wt-HNE-peptide 

when used in combination with further modifications (such as Lys9Ala substitutions), 

suggesting a synergic effect with respect to the additional modification. It is suspected that the 
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methylation of Lys7 on its own actually increases susceptibility of Lys9 towards 

endopeptidases via steric changes in the peptide structure. 

Norvaline- and norleucine-substitution in position 7 conserved or lowered antigenicity with 

mAb BH216 depending on the other substitutions in the same peptide. These data show that 

the binding pocket of the antibody can accommodate a variety of residues at position 7, and is 

relatively independent of functional sidechains since substitution by methylated Lys, 

norleucine and norvaline gave the best results in that order. The binding pocket does, 

however, show selectivity with respect to sidechain orientation (as demonstrated by D-Lys) as 

well as size: diamino propionic acid (dap) with its shorter sidechain loses all reactivity with 

the antibody while the simple addition of one methyl as in norvaline reverses that effect. 

These data showed that an increase in stability is possible but the conservation of antigenicity 

is much more delicate. Overall, our results show that substitutions of Lys7 with methylated 

Lys are interesting since they manage to tread the thin line between not fitting into the 

peptidase active site and yet preserving good interaction with the antibody paratope. 

 

An additional point of interest was the N-terminal linker Lys-Gly, which increased the 

probability of a correct N-terminal coupling to the carrier by adding an additional N-terminal 

amine group and thus reducing peptide coupling via Lys (7 and 9) in the binding motif. This 

additional Lys, however, increased the susceptibility towards exopeptidases in vitro and 

possibly endopeptidases in vivo after coupling to the carrier. Branched peptides in which Lys 

sidechain amine groups were used to couple additional amino acids, were more stable than the 

wt-HNE-peptide but exhibited reduced antigenicity. We hypothesise that the substantial 

increase in size of the linkerarm can sterically hinder the accessibility of the antibody or 

influence the coating efficacy during ELISA. Similar problems were observed with other N-

terminal substitutions or deletions. A possible approach in further tests could be to use biotin 

for N-terminal coating of the peptide in the streptavidin-ELISA system. In the case of 

branched peptides this may in fact strengthen binding compared to wt-HNE-peptide as a result 

of the increased number of N-terminal amine groups. Despite these problems with the current 

experimental setup, dap proved useful as N-terminal Lys replacement since it conserved 

antigenicity and increased peptide stability. 

 

Biostability analysis of a number of stabilised peptides in murine intestinal juice gave results 

that were comparable to those in murine serum. All peptides tested were more stable than the 

wt-HNE-peptide in both serum and intestinal juice. The increased stability of peptides used in 
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the second immunisation following further modification, was also confirmed by the latter. 

Surprisingly peptide 2787 with a dap substitution of N-terminal Lys was significantly more 

stable in intestinal juice than in serum. The reasons for this observation are still under 

investigation. This may be explained by differences in exopeptidase activity in serum and 

intestinal juice. The observation that the stability of peptide 2787 was increased by 8 fold in 

intestinal juice yet did not lead to a similar increase in anti-peptide titres would support this 

hypothesis. Even after only 2 injections with the TT-2787 conjugate there was no significant 

increase in anti-peptide antibody titres compared to other less stable peptides (data not 

shown). Further testing in vitro and in vivo of wt-HNE-peptide with a dap substitution, would 

provide more information on the exact effect of this substitution. 

 

4. Immunogenicity 

During the course of this work we have iteratively combined various peptide modifications 

that increase the stability against the peptide without losing the antigenicity of the parent wt-

HNE-peptide. The antigenicity, based on the interaction with the anti-HNE mAbs, specifically 

BH216, is an interesting tool to determine the effects of substitutions and modifications on 

peptide structure. Antigenicity, the capacity of a molecule to be recognised by antibodies, is 

however only a first step on the road to immunogenic peptide-based vaccines. 

Immunogenicity, the capacity of an antigen to induce an immune response, and specifically 

crossreactive immunogenicity, i.e. the reactivity with the protein from which the peptide is 

derived, are further critical properties. Here we investigated whether modified peptides induce 

antibodies that crossreact with the parent wt-HNE-peptide and with the native H-protein. 

 

Most peptides tested in vivo induced antibodies levels against the homologous peptide that 

were comparable with the wt-HNE-peptide, showing that in most cases the conserved 

antigenicity correlates with immunogenicity. Only peptides with di- and tri-methylated Lys in 

position 7, gave slightly lower titres compared to the two peptides with the natural Lys. We 

suspect that while these peptides bound anti-HNE antibodies to a high degree by induced fit, 

their largely modified sidechains may slightly reduce immunogenicity. The considerable 

increases in stability that were achieved with our modifications did, however, not induce an 

increase in antibody titres compared to the wt-HNE-peptide. Peptide 2787 was as stable in 

serum as other peptides, but in murine intestinal juice the peptide showed a significant 
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increase in stability. It was the only modified peptide with such a discrepancy between serum 

and intestinal juice. This peptide showed a slight increase in anti-peptide antibody titres 

compared to wt-HNE-peptide, but to a lesser extent than the increase in stability in intestinal 

fluid (8 fold). 

While the levels of anti-peptide antibodies are similar between the different peptide-

conjugates, the extent of crossreactivity is much more variable. In the first immunisation 

experiments KGQQACKGAIQALCENPEWa (2743) conjugated to TT induced higher levels 

of antibodies crossreacting with the wt-HNE-peptide than the other peptide-conjugates. 

Crossreactivity with the recombinant H-protein or H-protein expressed on the cell surface of 

Mel-JuSo-H cells was on the other hand more similar to the other peptide-conjugates. 

Putz found that antibodies induced against full length HNE-peptides predominantly 

recognised the C-terminal PEWA residues (Putz 2004). We have shown that conjugates with 

peptides KGQQAC(KMe3)GAIQALCENPEWa (2805) and KGQQAC(KMe3)GAIQALCEN 

(2809), which differ only by their C-terminal extension, induce similar levels of anti-peptide 

antibodies, but KGQQAC(KMe3)GAIQALCEN (2809) has a significantly higher 

crossreactivity with wt-HNE-peptide. This finding confirms that the majority of antibodies 

induced against the former peptide targeted the C-terminus and little or none targeted the core 

epitope. Based on additional C-terminal extensions we further suggest that any addition to the 

C-terminus after C14E15N16 is more immunogenic than the epitope core (i.e. the antibody 

binding motif). Peptides KGQQAC(KMe3)GAIQALCENa (2807) and 

KGQQAC(KMe2)GAIQALCENa (2784) induced similar levels of anti-peptide antibodies 

than their homologues without the C-terminal D-Ala residue KGQQAC(KMe3)GAIQALCEN 

(2809) and KGQQAC(KMe2)GAIQALCEN (2791). Crossreactivity with wt-HNE-peptide on 

the other hand shows that the peptides with an unmodified C-terminus induced more 

antibodies against the epitope core of the wt-HNE-peptide than the C-terminally modified 

peptides. There is an apparent contradiction with peptide 2809 with an unmodified C-terminus 

and 2787 with a D-Ala C-terminus: Immunisation with 2809 induced antibodies that 

crossreacted to a lesser degree with wt-HNE-peptide when combined with several adjuvants, 

than those induced against 2787. However we speculate that the increased complexity of the 

epitope core of 2809 with a tri-methylated Lys at position 7 and a Lys9Ala substitution leads 

to a structure that differs too much from that of the the wt-HNE-peptide and peptide 2787, 

which has only a Lys9Ala substitution in the antibody binding domain. Hence peptide 2787 

could induce higher levels of crossreactive antibodies despite the immunodominant C-

terminus.  
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A rapidly advancing field of vaccinology is the development of adjuvants since currently only 

few adjuvants (e.g. aluminium hydroxide) are licensed for human use. Here we have assessed 

the immunopotentiating efficacy of three different adjuvants: Montanide, Alum and Quil-A 

compared to Freund adjuvant. Due to its toxicity and side-effects Freund adjuvant is not 

allowed for human use and the use in animals is under scrutiny. After intraperitoneal injection 

with Freund adjuvants (complete and incomplete), mice showed signs of abdominal 

discomfort such as arched back and fluffy fur. No such side-effects were observed with any 

other tested adjuvant. Montanide induced lower levels of anti-peptide antibody titres, but 

levels of crossreactive antibody titres were similar to those induced by Freund adjuvant. Thus 

we can only partially confirm the results obtained by other groups which found Montanide 

equally effective as Freund adjuvant both for peptides and proteins (Martinez et al. 1996; 

Halassy et al. 2006). Nevertheless thanks to the absence of major side-effects Montanide 

remains an interesting alternative to Freund adjuvant, if an oil-based adjuvant with Th1 

dominated Th response is desired.  

In our tests Alum adjuvant was the most promising adjuvant. In addition to the absence of 

visual side-effects and discomfort on mice, Alum was the only adjuvant to induce wt-HNE-

peptide crossreactive antibody levels when formulated with TT-2809, and these were 

comparable to those of TT-2787. The use of Alum adjuvant is however not straightforward: 

The reproducibility of antigen absorption onto aluminium hydroxide gel and desorption later 

on, remain issues that can significantly affect in vivo results (O'Hagen 2000). Alum adjuvants 

can be injected subcutaneously (s.c.), intraperitoneally (i.p.) and intramuscularly (i.m.) and 

predominantly induce a Th2 biased Th response, which makes them particularly useful in 

peptide-vaccines where only an antibody response is required.  

Quil-A, a saponin based adjuvant, is also commonly used in ISCOMS (immunostimmulating 

complexes) inducing mainly Th1 immune responses. In our hands Quil-A reacted equally well 

as Alum and Freund’s adjuvant. The low titre of crossreactive antibody observed when used 

in combination with TT-2809 is more likely related to the general tendency of TT-2809 to 

give lower responses and not due to the efficacy of Quil-A, as demonstrated by the levels 

induced by Freund and Montanide. Compared to the other adjuvants, Quil-A is easy to use: a 

solution of Quil-A is simply mixed to the antigen and injected. There are however limitations 

with regard to injection sites and methods. Quil-A is recommended for s.c. injections since i.p 

injections induce chemical peritonitis and fibrous adherences between various organs in the 

body cavity. (Dr. Erik B. Lindblad; personal communication), although use of Quil-A in i.p. 

(Lee et al. 2007) and i.m. (Jackson and Opdebeeck 1995) has been reported. We have 
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observed only slight skin irritation after s.c. injection of 25 µg of Quil-A into the scruff of the 

neck. These side-effects may be even lower when purified varieties of saponin derived 

adjuvants such as QS-21 are used (Powell and Newman 1995; O'Hagen 2000). 

 

5. Fine-specificities of binding of HNE mAbs 

Throughout this work we have shown that anti-HNE monoclonal antibodies BH216, BH21 

and BH6, produced by distinct hybridomas (Ziegler et al. 1996), exhibit different fine-

specificities towards modified HNE-peptides. Our and previous experiments have confirmed 

that the three mAb bind to the HNE-epitope only when C386 and C394 form a disulfide 

bridge. BH6 is less stringent with respect to the oxidation of the disulfide bond and shows 

some reactivity with the reduced peptide while BH216 and BH21 do not. The Cys substituted 

peptides also showed that BH6 preferentially binds shortened HNE-peptide 

(KGQQACKGKIQALCEN) rather than full length HNE-peptide (ETBFQQACKGKIQA-

LCENPEWA). 

Analysis of the peptide coupling efficiency to tetanus toxoid carrier lead to the clustering of 

peptides-conjugates into two distinct groups, when these conjugates were tested with BH216: 

Peptide-conjugates TT-2807, TT-2784 and TT-2787, with a C-terminal D-Ala reacted three 

times stronger than peptides with the “PEWa” extension or no extension. In contrast BH6 

bound equally well to all peptide-conjugates irrespective of the different C-terminal 

modifications. It is therefore unlikely that the differences in binding observed for BH216 are 

caused by differences in the coupling efficiency to the carrier protein. The preference of 

BH216 for peptides with a C-terminus extended by a single amino acid was also observed for 

unconjugated modified HNE-peptides during the antigenicity tests, irrespective of the 

additional amino acid. 

We conclude that (i) BH6 is less stringent with respect to oxidation of the peptide, (ii) 

preferentially binds to shorter HNE-peptides and (iii) is essentially insensitive to C-terminal 

extensions. BH216 and BH21 on the other hand have a preference for the oxidised HNE-

peptides. The amino acid sequence data by Dr Fred Fack (unpublished results) further 

substantiate these findings. Sequence alignments of the complementarity determining regions 

(CDR) of the heavy chains of BH216, BH21 and BH6 to a germ-line sequence showed that 

BH216 and BH21 cluster differently than BH6 (Figure 60A). BH6 shows several mutations 

compared to BH216 and BH21 in CDR H2 and H3 as well as frameworks regions 2 and 3. 
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The alignment of the amino acid sequence of the kappa light chains with a germ-line sequence 

indicated that BH216 and BH6 clustered together (Figure 60B). But most of the substitutions 

in the kappa light chains were conservative replacements, where amino acids were substituted 

with residues of similar structure or property (polarity, basicity, acidity). A structure of the 

BH216 heavy and kappa light chains based on homology modelling with an anti-influenza H-

protein antibody shows that some of these mutations are solvent exposed and may play a role 

in epitope binding (data not shown). It is unclear what influence the framework region 

mutations may have on this binding. 

 

In the context of a collaboration with Prof Yanagi (Department of Virology, Faculty of 

Medicine, Kyushu University, Japan), work is currently underway to crystallise and 

structurally resolve the BH216 antibody/H-protein complex. This will shed more light on the 

antibody paratope and the residues interacting with the HNE-epitope of H-protein. The X-ray 

structure will also be important in determining the effects of the mutations observed in the 

heavy chains of BH6 and the consequences these may have on the antibody binding fine 

specificity.  
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Figure 60: Amino acid sequence alignment of heavy and light chains of three anti-HNE antibodies with 

germ-line sequences 

Amino acid sequences of heavy (A) and kappa light chains (B) of BH216, BH21 and BH6 aligned with germ-

line sequences. Conserved residues are marked with a dot, deletions with a hyphen. Framework regions are 

labelled as FR, heavy and light region CDRs are marked as H and L. (Figure adapted from and with kind 

authorisation by Dr. Fred Fack) 
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6. Bile-acid peptide scaffold 

In fulfilment of her PhD thesis Cathy Bodé (University of Ghent) synthesised a backbone 

cyclised peptide and a scaffold-peptide construct, incorporating the HNE sequence 

QACKGKIQALCEN with a C-terminal Gly spacer. Biological testing of these constructs 

confirmed their antigenicity with respect to the three anti-HNE mAbs. We could again show 

the differences in fine-specificities between BH6 on one hand and BH216 and BH21 on the 

other hand, with BH6 being less selective. The antibody binding profiles showed that the 

scaffold-peptide construct mimics the structure of the HNE more closely than the same 

peptide after end to tail cyclisation. 

The biostability data of the cyclic and scaffold-peptide construct suggest that both scaffold 

and the backbone cyclisation increased the peptide stability in vitro compared to the oxidised 

wt-HNE-peptide (KGQQACKGKIQALCEN). This is in line with the results from various 

groups showing that cyclised peptides are more resistant to proteolytic degradation than linear 

peptides (Clark et al. 2005; Tugyi et al. 2005a). The stability of these constructs however was 

not higher than the stability observed using our internal and terminal substitution strategies. 

This also confirms our previous results that blocking exopeptidases alone does not prevent 

peptide degradation to the same extent as by preventing endopeptidase attack by substitution 

of susceptible residues in the peptide core. 

In immunisation assays these peptides induced high levels of anti-peptide antibodies. 

Antibodies raised against the scaffold-peptide construct reacted only weakly with the cyclic 

peptide. It is not yet clear if the majority of anti-scaffold-peptide construct antibodies targeted 

mainly the scaffold-peptide interface instead of the core epitope, or whether the structural 

differences between the two peptides is too important. Antibodies induced against both cyclic 

control peptide and scaffold-peptide construct did not crossreact with the H-protein. We 

hypothesise that both peptides adopt conformations that can still bind the monoclonal 

antibodies by induced fit, but that are too distant from the natural conformation to induce 

crossreactive antibodies. 

 

It may be possible to improve the structure of these peptides by varying the length of the 

scaffold-bound peptide, or by reducing the disulfide bridge, giving the peptide more 

conformational freedom to adopt an energetically more favourable structure (Bodé 2007). 
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7. Concluding remarks and perspectives 

In this study we analysed the relationship between stability, antigenicity and immunogenicity 

of modified HNE-peptides and provided new information on the structural requirements of 

the HNE-epitope for antibody binding. The data obtained from our NMR structures guided 

our strategy to further improve peptide stability and to understand antibody binding in the 

antigenicity studies. We show that Lys387 plays a crucial role in this regard. 

Our study is one of only few that analysed the substitution by D-amino acids in flanking 

regions of epitope cores (Tugyi et al. 2005b; Manea et al. 2008). Our efforts to stabilise 

peptides based on a rational iterative approach and the NMR structures of HNE-peptides, 

have lead to the synthesis of several peptides with significantly increased stability without 

loss of antigenicity. These peptides induced strong antibody titres, showing that they also 

retained immunogenicity. The failure of these antibodies to strongly crossreact with the 

natural MV-H-protein confirms that antigenicity does not guarantee crossreactive 

immunogenicity. It is important to recognise that there may be large discrepancies between 

antigenicity and immunogenicity. Increased stability against degradation by peptidases was 

achieved by modifying amino acid sidechains. Alternatively a steroidal scaffold-system 

blocked degradation by exopeptidases. By restricting peptide flexibility, the scaffold limited 

the number of possible conformations that are presented during the immunisation process to 

the cell surface immunoglobulins of B cells. The preferred peptide conformations resulting 

from these modifications were still antigenic and bound the antibody via induced fit. They 

may however not be the conformations that are closest to the native protein structure, thus 

reducing crossreactive immunogenicity. Earlier studies in our laboratory demonstrated that 

some antigenic peptides failed to induce crossreactive antibodies, whereas some peptides 

which lacked antigenicity even induced neutralising antibodies (El Kasmi et al. 1999a). But 

the successful protection against FMDV and canine parvovirus of swine and dogs, 

respectively, using peptide-based vaccines demonstrated the feasibility of vaccination with 

peptides (Langeveld et al. 1994; Wang et al. 2002). 

An important question throughout this study was to what extent the wt-HNE-peptide could be 

further stabilised by chemical and conformational approaches, before crossreactive 

immunogenicity started to decrease. Especially a shorter peptide is less likely to accommodate 

amino acid substitutions without a change in its structure. In principle, most increases in 

biostability were penalised by changes in peptide structure and thus a reduction of 

crossreactive immunogenicity. We conclude that stability against degradation may not be the 
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most important factor in peptide-based vaccines and that the correct conformation of a peptide 

compensates to some extent the lower stability. 

The knowledge obtained from the peptide modifications and the NMR structures provide a 

blueprint for a more focused approach to modifying and coupling of the peptide to the 

steroidal scaffold. It would be possible that moderate internal modifications such as a 

Lys9Ala substitution can increase the biological stability of the scaffold-bound HNE-peptide. 

Changing the spacer amino acid residues to better conserve the loop structure of the peptide 

would be another step to improve the structure within the scaffold-system. A combination of 

the two approaches could create a construct with a more stable and yet structurally conserved 

peptide, able to induce a stronger crossreactive immune response. 
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1. Table of non-natural amino acids 

single letter 
code 

common 
abbreviation full name structure 

K* K(Me)2 di-methylated lysine 

N
H

O

O

N

CH3

CH3

R''
R'

 

K K(Me)3 tri-methylated lysine 

N
H

O

O

N
CH3

CH3

CH3

R''
R'

 

L* Nle norleucine 

N
H

O

CH3

O
R''

R'

 

V* Nva norvaline 
N
H

O

CH3

O
R''

R'

 

D* dap diamino propionic acid 
N
H

O

O

NH2

R''
R'

 

 β-Ala β-alanine N
H

NH2

O

R'

 

 pamba 4-(aminomethyl)benzoic acid 
N
H

NH2

O

R'
 

 t-amcha trans-4-(aminomethyl)cyclohexane 
carboxylic acid N

H
NH2

O

R'
 

 gaba γ-aminobutyric acid N
H

NH2

O

R'  

 achca 1-amino-cyclohexane carboxylic acid 
N
H

O

NH2R'

 

B aib α-aminoisobutyric acid NH2

O

CH3CH3

N
H

R'

 

 cha β-cyclohexyl-L-alanine 

O

NH2

N
H

R'

 

+ 

R’ = N-terminal peptide sequence extension  
R’’ = C-terminal peptide sequence extension 
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2. Table of synthesised peptides 

code C-terminally extended peptides    
     

2711 KGQQACKGKIQALCENlv  2721 KGQQACKGKIQALCENPEWA 
2712 KGQQACKGKIQALCENfa  2722 KGQQACKGKIQALCENPEWa 
2715 KGQQACKGKIQALCENv  2723 KGQQACKGKIQALCENva 
2716 KGQQACKGKIQALCEN(achca)  2724 KGQQACKGKIQALCENa 
2717 KGQQACKGKIQALCEN(t-amcha)  2725 KGQQACKGKIQALCENf 
2718 KGQQACKGKIQALCEN(aib)  2726 KGQQACKGKIQALCEN     wt-HNE 
2720 KGQQACKGKIQALCENPEWAa    

     
code internally and N-terminally modified peptides  

     
2729 G4K2KGQQACKGKIQALCEN  2735 KGQQACKGNIQALCEN 
2730 NH2-G4K2KGQQACKGKIQALCEN  2736 KGQQACKGSIQALCEN 
2731 G2KGQQACKGKIQALCEN  2737 KGQQACKGHIQALCEN 
2732 NH2-G2KGQQACKGKIQALCEN  2738 KGQQACKGQIQALCEN 
2733 kGQQACKGKIQALCEN  2739    GQQACKGKIQALCEN 
2734 KGQQACKGAIQALCEN  2726 KGQQACKGKIQALCEN     wt-HNE 

     
code internally and C-terminally modified peptides  

  
2740 KGQQACKGAIQALCENPEWAa  2748 KGQQACRGAIQALCEN 
2741 KGQQACKGAIQALCENPEWa  2749 KGQQACkGKIQALCEN 
2742 KGQQACKGAIQALCENva  2750 KGQQACkGAIQALCEN 
2743 KGQQACKGAIQALCENaa  2751 KGQQACKGAIQALCEN 
2744 KGQQACKGAIQALCENv  2752 KGQQACKGKIQALCEN    wt-HNE 
2745 KGQQACKGAIQALCENa  2753    GQQACKGAIQALCEN 
2747 KGQQACRGKIQALCEN    

     
code Further improved internally and C-terminally modified peptides 

     
2775 KGQQACL*GAIQALCENPEWa  2794 D*GQQACKGAIQALCEN 
2776 KGQQACV*GAIQALCENPEWa  2795 KGQQACLGAIQALCEN 
2777 KGQQACK*GAIQALCENPEWa  2796 KGQQACL*GKIQALCEN 
2780 D*GQQACKGAIQALCENPEWa  2797 KGQQACV*GKIQALCEN 
2781 KGQQACLGAIQALCENPEWa  2798 KGQQACK*GKIQALCEN 
2782 KGQQACL*GAIQALCENa  2801 D*GQQACKGKIQALCEN 
2783 KGQQACV*GAIQALCENa  2802 KGQQACLGKIQALCEN 
2784 KGQQACK*GAIQALCENa  2805 KGQQACK GAIQALCENPEWa 
2787 D*GQQACKGAIQALCENa  2807 KGQQACK GAIQALCENa 
2788 KGQQACLGAIQALCENa  2809 KGQQACK GAIQALCEN 
2789 KGQQACL*GAIQALCEN  2811 KGQQACK GKIQALCEN 
2790 KGQQACV*GAIQALCEN  2833 KGQQACKGKIQALCEN     wt-HNE
2791 KGQQACK*GAIQALCEN    
L* = Nle, V* = Nva, D* = dap, K* = di-methylated Lys, K  = tri-methylated Lys. 
Changes compared to wt-HNE-peptide sequence are marked red. Peptides used for immunisations are 
highlighted yellow. 
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