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Abstract

Epigenetic deals with flexible biochemical information layers that lie on top
of the relatively stable DNA sequence and are involved in control of the struc-
ture and functionality of the DNA. One of the most easily analyzed epigenetic
layers is DNA methylation.
The first part of this work describes the development and assessment of new
algorithms enabling methylation quantification by interpretation of sequenc-
ing electropherogram data from direct bisulfite sequencing. It is shown that
the use of the algorithms on data from PCR products is a suitable replacement
for subcloning and sequencing of about 10 subclones - a prerequisite for effi-
cient high throughput DNA methylation studies by direct sequencing, such as
carried out in the Human Epigenome Project (HEP).
The second part demonstrates the possibility to compensate for artifacts and
signal echos in raw data from direct bisulfite sequencing using a deconvolu-
tion algorithm.
In the third part of this thesis the data of the HEP is analyzed. The HEP
is the first large-scale project providing high resolution methylation data in
12 healthy human tissue types on 3 chromosomes analyzed, with a view to
answering biological questions. It is shown that differential methylation be-
tween healthy tissues is a common phenomenon - especially in conserved
non coding sequences, how CpG density and proximity to functional genomic
sites influence the methylation profile and in how far CpGs tend to be orga-
nized in co-methylated blocks.

Many parts of this work, which was originally planned as cumulative the-
sis, were previously published in articles (Lewin et al., 2004; Eckhardt et al.,
2006; Rakyan et al., 2004) and will overlap with their content.



Zusammenfassung

Epigenetik beschäftigt sich mit dynamischen biochemischen Informationsebe-
nen, welche die im Vergleich dazu relativ stabile DNS beeinflussen und eine
Rolle bei der Kontrolle der Struktur und Funktion der DNS spielt. DNS
Methylierung ist eine der am besten untersuchbaren epigenetischen Ebenen.
Diese Arbeit beschreibt im ersten Teil die Entwicklung eines neuen Algorith-
mus, der quantitative Methylierungsmessung auf der Grundlage von Elektro-
pherogramm Daten aus der direkten Sequenzierung von PCR Produkten von
Bisulfit behandelter DNS ermöglicht. Es wird gezeigt, daß die Verwendung
des Algorithmus mit Daten von PCR Produkten eine brauchbare Alternative
zu Subklonierung und Sequenzierung von ca. zehn Subklonen ist und damit
effiziente DNS Methylierungsstudien durch Hochdurchsatzsequenzierung er-
möglicht.
Der zweite Teil der Arbeit beschreibt die Möglichkeit mit Hilfe eines Dekon-
volutions Algorithmus Artefakte und Signal Echos in Sequenzierungsroh-
daten zu kompensieren.
Der dritte Teil behandelt die Analyse und die biologische Erkenntnisse aus
den Daten des HEP, dem ersten hochauflösenden Methylierungsdatensatz für
drei Chromosomen in zwölf Geweben. Es wird gezeigt, daß differentielle Me-
thylierung zwischen gesunden Geweben weit verbreitet ist, welchen Einfluß
CpG Dichte und Nachbarschaft zu funktionalen genomischen Bereichen auf
das DNS Methylierungsprofil haben und in wieweit benachbarte CpGs dazu
tendieren, sich in comethylierten Einheiten zu organisieren.

Viele Teile dieser Arbeit, die ursprünglich als kumulative Arbeit geplant war,
haben einen hohen Überlapp mit bestehenden Veröffentlichungen (Lewin et al.,
2004; Eckhardt et al., 2006; Rakyan et al., 2004).
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Ausführliche Zusammenfassung

Epigenetik ist ein wichtiger Bereich der molekularen Genetik, der sich mit
dynamischen biochemischen Informationsebenen beschäftigt, welche die im
Vergleich dazu relativ stabile DNS beeinflussen. DNS Methylierung, Chro-
matinmethylierung, - acetylierung und -phosphorilierung spielen eine Rolle
bei der Kontrolle des Status, der Struktur und Funktion der DNS. DNS Me-
thylierung ist aufgrund ihrer Stabilität und Zugänglichkeit eine der am besten
untersuchbaren epigenetischen Ebenen, die mit vielen regulativen Funktionen
im Genom assoziiert wird.

Der erste Teil dieser Arbeit behandelt einen neuen Algorithmus, der quan-
titative Methylierungsmessung in DNS auf der Grundlage von Elektrophero-
gramm Daten aus der direkten Sequenzierung von PCR Produkten von mit
Bisulfit behandelter DNS ermöglicht. Die unter Verwendung des Algorith-
mus erzielten quantitativen Ergebnisse werden mit verschiedenen bekannten
Testsytemen bewertet: Daten aus DNS Mixturen mit bekannter Methylierung,
Daten von Gemischen bekannter Subklone von PCR Fragmenten und Methy-
lierungsmessungen von anderen Platformen. Es wird gezeigt, daß die Ver-
wendung des Algorithmus mit Daten von PCR Produkten eine brauchbare
Alternative zu Subklonierung und Sequenzierung von ca. zehn Subklonen ist
und damit effiziente DNS Methylierungsstudien durch Hochdurchsatzsequen-
zierung wie zum Beispiel das Humane Genom Projekt (HEP) ermöglicht.

Der zweite Teil der Arbeit beschreibt und evaluiert die Möglichkeit mit Hilfe
von Dekonvolution Artefakt und Signal Echos in Sequenzierungsrohdaten
zu kompensieren, die aufgrund der heterogenen Zusammensetzung von PCR
Produkten aus Bisulfit behandelter DNS auftreten können. Es wird an realen
Beispielen und generierten Modelldaten gezeigt, daß durch die Verwendung
eines solchen Algorithmus eine Verbesserung von Daten mit Artefakten erzielt
werden kann.

Der dritte Teil behandelt die Datenanalyse und die biologische Erkenntnisse
des HEP, dem ersten hochauflösenden Methylierungsdatensatz für drei Chro-
mosomen in 12 Geweben. Die Methylierung wird - basierend auf Annotatio-
nen der Gewebeproben und biologischem Kontext der genomischen Koordi-
naten der Messung - auf verschiedene Fragestellungen hin untersucht. Es wird
unter anderem gezeigt, daß differentielle Methylierung zwischen gesunden
Geweben weit verbreitet ist, vor allem in nicht kodierenden evolutionär kon-
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servierten Bereichen. Es wird untersucht welchen Einfluß CpG Dichte und
Nachbarschaft zu funktionalen genomischen Bereichen auf das DNS Methy-
lierungsprofil haben, und gezeigt, daß die durchschnittliche Methylierung um
Transkriptionsstartstellen (TSS) herum ein klares fast symmetrisches Profil
mit einem Minimum an der Stelle der TSS zeigt. Der Zusammenhang des Ein-
flusses von Faktoren wie dem Alter auf lokale und globale Methylierung wird
untersucht, mit dem Ergebnis, daß im zugrundelegenden Datensatz keine sys-
tematischen Tendenzen gefunden werden können. Es wird charakterisiert, in
wieweit benachbarte CpGs dazu tendieren, sich in comethylierten Einheiten
zu organisieren.

Viele Teile dieser Arbeit, die ursprünglich als kumulative Arbeit geplant war,
haben einen hohen Überlapp mit bestehenden Veröffentlichungen (Lewin et al.,
2004; Eckhardt et al., 2006; Rakyan et al., 2004).
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Chapter 1

Introduction

This chapter provides an overview of DNA methylation and methods to detect
and measure it with a focus on DNA sequencing methods, and relevant back-
ground about four color trace files as potential information source for quanti-
tative DNA methylation measurements. The biology and basic techniques are
explained to allow non biologists access to the themes of this thesis. I will ex-
plain why the research of the epigenome is of high importance and why DNA
methylation is the epigenetic layer of choice to be assessed. I will show that in
order to understand genetics, proteomics, cell differentiation, individual cell
behavior and even cancerogenesis it is useful to understand the epigenome.



CHAPTER 1. INTRODUCTION

1.1 From Genome to Epigenome - understanding
the cells individuality

Currently the complete DNA sequences of the human and many other genomes
are sequenced (Consortium, 2004; Lander et al., 2001) and available in data-
bases (Curwen et al., 2004). This source of information is the result of many
large international sequencing studies. Based on this and additional experi-
mental data many genetic functions are known about the genomes whereby
this information is mainly based on the four letter code of the DNA: protein
coding regions, variations that are connected to heritable phenotypes, diseases
or health risks, recognition patterns for protein binding sites and more (Lewin,
2003).

Though the four letter code sequence provides a lot of information about
a species or an individual organism, it does not explain how single cells or
differentiated tissues run and control their individual cellular programs using
specific subsets of the genomic information. In order to understand cellular
programs, genetic information must be investigated within its context using a
biological characteristic about which even less is known, the epigenome. The
epigenome carries further information based on chemical modifications of
DNA and chromatin that are associated with the three dimensional struc-
ture of the chromatin, its functionality, the activity of the transcriptome and
therefore the composition of the proteome (see Fig. 1.1). The fact that the
genomic DNA information layer is static in the process of a dividing cell de-
veloping to a complex individual suggests that the increasing intricacy of the
organism must be controlled by biochemical processes and patterns outside
the four letter code, probably by epigenome and proteome interaction.

The epigenetic information layer is heritable (Morgan et al., 1999) but is
also capable of quickly changing due to the internal programs of cells and/or
influences by their environment. The epigenome shows different patterns that
do not define or reflect the ”information” stored in the genome of an organism
in all its cells, but reflects which part of that information might be inactive or
active and thus of relevance in a certain cell, tissue and developmental stage.

The functionality of the epigenome has not been studied to the same ex-
tent as the genome. Our basic knowledge about its functionality has been
gained mainly from examples covering only parts of it. Those examples al-
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CHAPTER 1. INTRODUCTION

Figure 1.1: Epigenomics: A simple model of the framework of Genome,
Epigenome, Transcriptome and Proteome. The interaction of DNA methy-
lation, histone acetylation and methylation, chromatin density and structure
is influencing the transcription processes in the cell. The local states of the
epigenome are correlated with the active coding parts of the genome that are
the blueprints for the proteins available in the cell: Histones in stretches of
DNA with unmethylated CpGs are acetylated, the chromatin density is re-
laxed. DNA stretches in opened chromatin and unmethylated promoter re-
gions are associated with transcription. Methylation of CpGs introduced
by DNA methyl transferases is followed by binding of methyl binding pro-
teins that allow the docking of protein complexes deacetylating the DNA.
The deacetylated DNA leads to higher chromatin density, chromatin becomes
methylated. Compacted chromatin and methylated DNA in promoter regions
are associated with transcription repression (Fuks, 2005). Within this active
framework the DNA itself is a passive, static and unchanged information layer
identical in different cells, but controlled differently by the active framework.
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CHAPTER 1. INTRODUCTION

ready show that epigenetics has a great influence on inheritance, interacts with
the genome, provides a lot of medically relevant information (Yoo & Jones,
2006) - mainly for oncology (Jones, 2002) - and seems to play a major role in
the control of transcription (Fuks, 2005). In order to understand the func-
tionality of cells it is necessary to gain more knowledge of the epigenome.

1.2 Different layers of epigenetic modifications

The epigenome of vertebrates is mainly defined by chemical modifications of
DNA and histones (methylation, acetylation, phosphorylation), which have an
influence on the three dimensional structure and density of the chromatin and
indirectly influence transcription activity. DNA methylation is reported to di-
rectly interact with histone acetylation and histone methylation (see Fig. 1.2).
DNA methylation does not alter the code but provides additional informa-
tion, is stable for years in frozen or prepared tissue samples and purified DNA
and is also easily assessed with different methods (Dahl & Guldberg, 2003;
Siegmund & Laird, 2002), see also section 1.4. Therefore DNA methylation
is the information layer of choice for studying the epigenome - independent
of the question of if it is dominating the control of other layers and biological
processes or vice versa.

1.3 DNA methylation

Methylation of DNA plays several roles in nature, bacteria protect their DNA
from endogenous defense mechanisms by methylating it, thus restriction en-
zymes, that cut DNA into pieces (for example foreign DNA from phages),
are blocked by methyl groups at the cutting sites targeted by the enzymes. In
higher organisms methylation is found to play an important role in the indi-
vidual control of the genome within cells. Methylation of DNA in vertebrate
genomes is almost exclusively found in CG base duplets: cytosines followed
by guanines, called CpGs. Methylation of CpGs in the DNA of humans and
other vertebrates distinguishes tissues, imprints parental genes, influences the
chromatin structure (Bestor, 1998), and is involved in the regulation of gene
expression and cell differentiation (Ehrlich, 2003). DNA methylation patterns
change in the process of aging, undergo significant changes in tumorigenesis
and allow the differentiation of healthy from malignant tissue samples.
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CHAPTER 1. INTRODUCTION

Figure 1.2: DNA methylation and histone acetylation/methylation in the
epigenome. Two variable layers of information in the epigenome influence
each other. The methylation state of CpGs in the DNA that is wound around
the histones and packed in the chromatin structure influences the acetylation
and methylation state of the histones and vice versa. The modification state
of the histones is correlated with the chromatin density and structure (Bestor,
1998). It is not yet proven if there is a dominating layer which provides the
leading control and, if so, which one it is. It is also not completely clear how
much the one or other assessable chemical modification within the epigenome
plays a role as initiation element for further processes or might only be a
correlated observation caused by further regulative processes and does not
initiate but indicate these processes.
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CHAPTER 1. INTRODUCTION

1.3.1 An epigenetic information layer
DNA methylation is a chemical modification, that alters the base cytosine to
5’methyl cytosine. It is sometimes described as the ’fifth base’ of the genetic
alphabet. This modification provides a variable layer of information on top of
the genome that is quasi static within an individual organism. The genomic
layer provides identical information in the billions of different cells within an
individual, whereas the methylation pattern of cytosines can differ between
cells thus distinguishing them from one another, can rapidely change and can
be involved in the control of cellular processes. It does this without alter-
ing the genetic code itself, but can also be relatively stable and be inherited
(Morgan et al., 1999). If the genome of an individual is represented by an
alphabet of four letters, the information as to whether a cytosine on a specific
DNA molecule is methylated or not, could well be conveyed by case sensitive
use of the letter C, which will not change the text but will emphasize certain
parts for functional reasons.

In human DNA, methylation of cytosines occurs almost exclusively in
the two base palindromic sequence of cytosine followed by guanine, so called
CpGs1. Within a single human cell the methylation of most CpG loci can have
three states: 0% homozygote unmethylated, 100% homozygote methylated or
50% heterozygote methylated (except for those loci in an X or Y chromoso-
mal context that have no diploid counterpart). In tissue samples, which are
compositions of many cells, methylation becomes quantitative information or
a binary mosaic pattern if broken down to single molecules.

Cytosines in the CpG context have a high mutation rate, cytosines in
methylated CpGs tend to be deaminated to thymine (Duncan & Miller, 1980).
They are about five times less represented in the human genome than expected
by the overall base composition, are non randomly distributed and tend to
accumulate in relatively CpG dense regions that are in general described as
CpG islands (CpGI) 2. Most CpG islands are reported to be unmethylated in
healthy tissue (Grunau et al., 2000; Strichman-Almashanu et al., 2002), but
hyper-methylated in cancer (Smiraglia et al., 2001). The fact that such re-

1CpG means Cytosine, phosphate bound, Guanine. The sequence is palindromic: it is
identical to its reverse complement

2There are several different definitions and constraints that identify regions accumulating
CpGs as CpG islands (Bird, 1986). For the sake of clarity this work will mostly use the term
CpG dense regions
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CHAPTER 1. INTRODUCTION

gions were not lost within evolution is likely to be based on some biological
function that exerts evolutionary pressure on them leading to conservation. In
fact many such regions show significant sequence conservation between hu-
man and mouse (Waterston et al., 2002) and have probably been conserved
through evolution due to an important functionality - the possibility to carry a
variable additional information, the methylation layer.

1.3.2 The role of DNA methylation
The epigenetic information layer provided by DNA methylation, has been
described as playing a role in many different biological pathways, this has
lead to increasing interest from the scientific community, mostly with regard
to control functions.

1.3.2.1 Gene expression

About half of all known human gene promoters have CpG dense regions in
close proximity, which in somatic cells are reported to be mainly unmethy-
lated (Bird, 1986). This is in contrast to most CpGs elsewhere in the genome,
which are methylated in about 80% of all cases. It has been demonstrated that
methylation of CpGs in promoter regions can suppress the gene expression
of the associated gene. Methylation in promoter regions can therefore serve
as a switch for gene silencing. The fact that CpG methylation can be recog-
nized by enzymes3, suggests that they have a direct influence on the binding
and activity of transcription factors or co-factors (Yeivin & Razin, 1993; Kass
et al., 1997). An indirect way of transcription control via methylation has
been described to be based on its influence on the chromatin structure.

1.3.2.2 Chromatin structure

Methylation of CpGs is catalyzed by several DNA methyltransferases (Bestor,
2000) and is suspected to induce a higher density of the chromatin struc-
ture leading to transcription repression (Bestor, 1998). Methylated DNA can
bind the sequence independent transcriptional repressor MeCP2 followed by a
transcriptional corepressor and histonedeacetylase, leading to deacetylated hi-
stones (Nan et al., 1997; Nan et al., 1998; Jones et al., 1998). This deacetyla-

3Most restriction enzymes that have CpGs in their restriction site are known to be methy-
lation specific whereby in most cases reactivity is blocked by methylation.
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CHAPTER 1. INTRODUCTION

tion is associated with repression of transcription due to more densely packed
nucleosomes and a more condensed chromatin structure.

1.3.2.3 Genetic imprinting

The mechanism of gene silencing by methylation can play an important role
for the imprinting of parental genes. Either the maternal or paternal homo-
logue of approximately 0.1 to 1% of mammal genes is repressed via methyla-
tion while the other is expressed mono-allelically (Ferguson-Smith & Surani,
2001). Maternally and paternally imprinted alleles are often located side by
side in clusters.

A related mechanism to gene silencing and imprinting is the X chro-
mosome inactivation via methylation, that occurs after fertilization in em-
bryogenesis of females. This results in hyper-methylation and histone hypo-
acetylation of one of the two X chromosomes and suppresses the activity of
its genes (Avner & Heard, 2001) 4. In healthy somatic cells methylation pat-
terns of imprinted genes or deactivated X chromosomes are very stable, most
likely due to a special chromatin structure of the unmethylated allele (Feil &
Khosla, 1999). Nevertheless tissue specific exceptions from these methylation
states can be expected to be found at certain locations. Alterations for some
imprinted genes were reported to be connected to human diseases (Walter &
Paulsen, 2003).

1.3.2.4 Development

Within the development of mammals methylation undergoes many different
stages (Reik et al., 2001). The genome of germ cells is reprogrammed firstly
by demethylation that erases imprints from the previous generation and sec-
ondly by de novo methylation that reestablishes imprinting on the mature ga-
metes. After fertilization, the paternal half of the diploid zygote genome is ac-
tively demethylated by a currently unknown mechanism, whereas the mater-
nal half is more slowly and passively demethylated by synthesis of unmethy-
lated complement strands in the DNA replication step prior to cell divisions.
Within this period the imprints are conserved by a mechanism which is not

4X chromosomal genes with 100% methylation in male and 50% methylation in female
tissue samples due to X chromosomal silencing are commonly used as known methylation
markers for sex to proof new methylation marker detection technologies.

page 14 Jörn Lewin dissertation



CHAPTER 1. INTRODUCTION

methylation. The imprinted regions are again methylated in the development
of inner cells of the blastocyte.

1.3.2.5 Aging

Random changes in methylation of normal somatic cells occur very rarely, but
were observed to accumulate with the process of aging (Fraga et al., 2005).
It has been reported that during aging CpG dense regions next to genes can
show an increase in methylation (Issa et al., 1994; Issa et al., 1996) while
global methylation was reported to decline (Wilson et al., 1987).

1.3.2.6 Tumorigenesis

Changes in the methylation pattern, induced during the aging process or oth-
erwise, can contribute to carcinogenesis (Jones, 2002). Methylation of tumor
suppressor genes has been suspected to be a possible cause of silencing of
transcription and therefore proposed to be a third pathway for loss of function
(after intragenic mutation or loss of chromosomal material) (Jones & Laird,
1999) and was found to be as frequent as inactivation by genetic mutations
(Jones & Baylin, 2002) Another influence on tumorigenesis might also play
a huge role - methylated cytosines have a mutation rate ten times higher than
unmethylated cytosines. Inactivation of the human tumor suppressor gene
TP53 by point mutation, was reported to be based on methylated cytosine
in 50% of all cases (Rideout et al., 1990). In addition methylation seems to
change dramatically in cancer development, leading to hyper-methylation of
CpG dense regions next to promoters. Probably most of these changes do not
initiate carcinogenesis but are an accompanying symptom, that nevertheless
can be studied and used for diagnostic purposes.

1.3.2.7 Conclusion

The basic knowledge gained so far about the DNA methylation and the epi-
genome shows that it is of great importance to get a better understanding of
its global functionality within the interactive network of genomics, transcrip-
tion, proteomics and other fields that help to understand life on a cellular
level. Therefore large DNA methylation studies are fundamental for a bet-
ter understanding of diseases, cancer development, aging processes, cell
differentiation and more.
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CHAPTER 1. INTRODUCTION

1.4 Methylation detection methods
Different methods for methylation measurement like PCR based, DNA chip
based and sequencing based methods are described in several reviews (Dahl
& Guldberg, 2003; Siegmund & Laird, 2002).

One major group of technologies is based on methylation sensitive en-
zymatic restriction of the DNA. The methods use restriction enzymes with
recognition sites including CpGs, that block a cutting reaction when methy-
lated. Other methods like for example PCR are then used to detect whether
a known DNA context containing such a restriction site was cut (was un-
methylated) or is for example still amplifiable (was methylated). Though
these methods can be very precise and also be able to cover many sites in
a genome at once, they are restricted to CpGs located in recognition sites and
therefore are not able to provide detailed information about local profiles of
CpGs within a close context.

The other group of technologies is based on bisulfite conversion of un-
methylated cytosines (Olek et al., 1996). Bisulfite treatment of DNA leads
to a chemical conversion of unmethylated cytosine to uracil (see Fig. 1.3).
Methylation of cytosines blocks this reaction. In most cases PCR (see Fig.
1.4) is used to amplify regions of interest within the bisulfite converted DNA
template whereby positions converted to uracil appear as thymine in the prod-
uct, which is then measured by different methods (see Fig. 1.5). Typically a
tissue sample contains a mixture of different cells, therefore a proper descrip-
tion of methylation at a certain CpG requires quantification of the proportion
of the methylated templates at the investigated CpG. This proportion is re-
ferred to as the methylation rate of the CpG. After the bisulfite conversion
and the PCR reaction, the methylation rate at a CpG can be determined by
assessing the proportion of remaining cytosine relative to the thymine. This
can be done, for example, by hybridization to oligomer probes on DNA chips
(Adorjan et al., 2002) or by DNA sequencing (Frommer et al., 1992). Com-
monly used sequencing methods include the sequencing of a representative
number of subclones of the PCR product or direct PCR sequencing by run-
ning independent sequencing reactions for cytosine and thymine using the
same dye in different lanes of a sequencing gel (Paul & Clark, 1996). These
sequencing methods are costly and labor intensive.
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Figure 1.3: Bisulfite conversion of DNA. Cytosines in DNA can be deam-
inated via a chemical reaction that converts them to uracil. Cytosines with
a methyl group at 5’ position of their carbon ring are protected from this
reaction and therefore stay unconverted (In mammal DNA methylation of cy-
tosines is almost exclusively found at CpG positions). A) DNA with cytosines
of unknown methylation state is B) denaturated to its single strands either by
applying the melting temperature or by using chemicals. Cytosines that are
not methylated are chemically converted to uracil C), destroying the double
strand symmetry in a way that does not allow the DNA to renaturate. Methy-
lation information becomes easily detectable as base information.
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Figure 1.4: PCR: Polymerase Chain Reaction. The polymerase chain reac-
tion is used to amplify specific DNA regions, providing billions of identical
copies based on some few template molecules. The method uses a repeated
cycle with a functional temperature profile (temperatures given in the figure
are examples and can vary in setups optimized for specific amplification) and
the following components: 1. DNA template, 2. a high temperature stable
DNA polymerase (TAQ DNA polymerase: isolated from ıThermus aquaticus,
an bacterium that lives in almost boiling water and has a proteome that is
adapted to high temperatures), DNA polymerases are enzymes that can syn-
thesize double stranded DNA based on single strands using it as template
for the corresponding reverse complement. 3. primers, short starting frag-
ments of synthetic, single stranded DNA that are needed to define short dou-
ble stranded start positions for the polymerase. Primers are often chosen as
unique pairs that flank exactly one desired known sequence in the template.
4. single nucleotides that are used by the polymerase to build the new strands.
A) Denaturation: Double stranded DNA is denaturated to its single strands
by applying a temperature of 94°C. B) and C) Annealing: The reaction is
cooled down to 60°C to allow the primers to anneal to reverse complement
parts in the sequence. D) Elongation: The temperature is raised to 72 °C, the
ideal working condition for the polymerase that synthesizes double strands
from both single strands starting at the primer position and thereby doubles
the DNA in the primer defined region. E) and A) The process is iteratively
repeated, leading to an exponential amplification of the region between the
primers until the sources or the enzyme activity are exhausted. One cycle
takes about two to six minutes.
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population of
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molecules from
different cells
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...
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b) PCR

c ) subcloning1
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quantitative methylation
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MALDI
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pyro-sequencing

different methylation
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c ) other methods3-n
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Figure 1.5: Bisulfite conversion and PCR based methods for methylation
detection (with special respect to sequencing). a) Genomic DNA from e.g.
tissue samples providing a population of molecules from different cells is
treated with sodium bisulfite. This process converts unmethylated cytosines
in the DNA molecules to uracil. The reaction is blocked by methylation so
that methylated cytosines in CpG context are not chemically converted. b)
The shown parts match a region of interest for methylation analysis that is
amplified with specific primers. There is a possibility to observe amplificate
specific and systematical biases or PCR variance. Based on the amount of
template and other factors, the PCR more or less representatively amplifies
molecule populations differing at CpG positions. Different technologies can
be used to characterize the PCR product. To represent the population of dif-
ferent molecules in detail, single copies can be sampled via a subcloning step
c1) and are characterized via subclone sequencing c2). Other methods like
DNA chips, MALDI, or pyrosequencing c3-n) can be used to get quantitative
measurements for all or a subset of CpG positions. Direct sequencing of the
PCR product c2) can be used to quantify the average methylation of CpGs
in the amplificate either using special sequencing methods or using four dye
high throughput sequencing and special algorithms as described in detail in
this work.
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1.5 Four-dye capillary DNA sequencing
For the Human Epigenome Project direct PCR sequencing on standard se-
quencing machines was used to achieve the required throughput in a cost ef-
fective way. This technology produces four-dye electropherogram data (see
Fig. 1.6).

Figure 1.6: Four dye DNA sequencing uses millions of identical DNA
molecules as templates that are either obtained from PCR or from plasmid
preparations. Many single stranded copies from one side of the double strand
are synthesized using single nucleotides that are added as a mixture of 1)
dNTPs, which are polymerized and build new DNA single strands. A small
fraction of 2) ddNTPs are added which, if incorporated, do not allow a further
elongation. The four base types of ddNTPs are modified and carry different
dyes. Their random incorporation within millions of parallel 3) elongation
reactions by a polymerase leads to a statistical distribution of single strands
of different (primer to initiated stop position), that are marked by the dye
corresponding to their last base. The molecules are separated by length us-
ing electrophoresis leading to a 4) ladder of molecules. Sampling of light
emission after excitation with UV light during electrophoresis results in 5)
dye signals that are translated to base 6) sequence information. In this work
proportions of signals are used to quantify base compositions.
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Electropherogram data data is stored in trace files and in general repre-
sented as time series of signals from the four bases A, C, G and T. The data
includes annotations interpreted by basecaller software: maxima of signals
and the resulting DNA sequence of the sequencing experiment (see figure
1.7). One very established format for trace data is the scf file format (Dear &
Staden, 1992).

A

G

C

T

t0 t59

...

6 18 30 42 54

T A C G T

t54

t42

t30

t18t6

...

...

Figure 1.7: Trace file data from DNA sequencing (see Fig. 1.6). Trace files
mainly contain data fields of two sizes (gray in the figure): 1. preprocessed
signal data and 2. the sequence. Four vectors of same size describe time series
of signal measurements for the four bases A, C, G and T, two smaller vectors
of matching size describe the sequence interpreted from the time series and
the the time index of corresponding signals for each base position within the
signal data. Beside this general content, different types of trace files might
contain machine and provider specific data, annotations and for example raw
data from the machine used to generate the time series for base signals.

dissertation Jörn Lewin page 21



CHAPTER 1. INTRODUCTION

Though direct sequencing has advantages compared to subclone sequenc-
ing, it has one important limitation: Data from direct sequencing of PCR
products can describe the average methylation of the CpGs within the am-
plificate. The averaged methylation for a position over all molecules does not
allow assessment of mosaic patterns of the single molecules in case of mixed
methylation (see Fig. 1.8).

C
meth

C

a) b)

Figure 1.8: Schemes of methylation distributions in a population of molecules
with 50% methylation in average at each CpG position. a) Within the
molecules methylation is homogeneous. b) Methylation within molecules is
based on a random mosaic pattern based on a certain possibility of a CpG to
be either methylated or not. This leads to the average methylation observed
at each CpG. The difference of these two possibilities cannot be detected by
methods that quantify methylation at CpGs over the whole population but has
either to be able to distinguish homogeneous subgroups of molecules or char-
acterize single molecules for example with subcloning.
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1.6 Motivation

1.6.1 Why to establish direct bisulfite PCR sequencing for
methylation studies

Exploration of the epigenome at a representative level is a great challenge:
it is insufficient to assess the DNA methylation patterns of some single in-
dividuals. In order to find systematic patterns it is necessary to study sev-
eral different individuals’ epigenomic layer in several different tissues and at
different developmental stages or disease states. An analysis to understand
methylation in the epigenome has to cover large parts in detail. Such analy-
sis has been limited, because technologies leading to high resolution data and
efficient high-throughput studies in an affordable way have not been available.

Methylation in tissue samples which are compositions of different cells is
a quantitative information represented by cytosine/thymine proportions after
bisulfite conversion of unmethylated cytosines to uracil and polymerase chain
reaction (PCR). These PCR products can then be characterized for example
by sequencing (Frommer et al., 1992; Olek et al., 1996). In the past high
throughput sequencing of one sample used to break down this information to
single molecules by subcloning, needed sequencing of a representative num-
ber of subclones and later represented the methylation level by averaging the
results. This method is costly and labor intensive and therefore is not the first
choice if one wants to study DNA methylation within a significant amount of
different tissues represented by multiple tissue samples.

A preferable method to circumvent representations of molecules by sub-
cloning that makes large studies affordable is direct sequencing, given that it
is possible to quantify methylation using sequencing results from molecule
populations with differences at CpG positions.

1.6.2 The goal of this thesis

A main part of this thesis is focused on enabling large DNA methylation
studies using the established technology of DNA sequencing by developing a
novel quantitative methylation analysis algorithm and workflow based on di-
rect sequencing of PCR products from bisulfite treated DNA. The algorithm
gains quantitative methylation information directly from base proportions rep-
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resented by different dye signals in four-dye sequencing trace files, handling
imbalanced and overscaled signals, incomplete conversion, quality problems
and basecaller artifacts (the details of the method are topic of chapter 1.6.2).

The resulting method allows the use of infrastructures provided by the
large sequencing facilities all over the world that were installed for sequenc-
ing genomes. This technology is a prerequisite for success of the Human
Epigenome Project (HEP), the first large genome-wide sequencing study for
DNA methylation in many different tissues (Human Epigenome Consortium
et al., 2003), initiated in 1999 (Beck et al., 1999).

This thesis provides a closer look at the data of the pilot study and the
first work package of the HEP. The pilot study covers genes in the MHC
region in chromosome 6 of the human genome in six tissues. The first work
package provides data from chromosome 6, 20 and 22 for 12 different tissues.
These data provide information about differential methylation, methylation
distribution and methylation states of neighbored sites that was not available
in this resolution and quantity before the HEP.
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Quantitative analysis of trace data

In this chapter a quantitative methylation analysis algorithm and workflow
based on direct DNA sequencing of PCR products from bisulfite-treated DNA
with high-throughput sequencing machines is presented and evaluated. I show
that the algorithm is useful to replace the alternative procedure of subcloning
of PCR products and subclone sequencing, and therefore can extremely re-
duce costs and efforts for DNA methylation studies. This technology was a
prerequisite for the Human Epigenome Project, the first large genome-wide
sequencing study for DNA methylation in many different tissues. There is a
high overlap between the content of this chapter and the publication describ-
ing the algorithm (Lewin et al., 2004).



CHAPTER 2. QUANTITATIVE ANALYSIS OF TRACE DATA

2.1 Motivation and Theory
Methylation studies by bisulfite sequencing using subcloning and sequencing
of multiple subclones to represent a population of molecules are labor inten-
sive and expensive. Direct quantitative measurement of methylation using the
PCR product, is an alternative potential method in favor.

The possibility to use trace file electropherogram data for quantitative
analysis of base compositions at single sites within pooled DNA was demon-
strated for one single nucleotide polymorphism(SNP) (Qiu et al., 2003). The
same principle is used here for the measurement of methylation in bisulfite
treated DNA product. Quantitative analysis by direct sequencing of PCR
products from bisulfite treated DNA implicates several novel challenges: poor
signal quality compared to genomic sequencing, overscaled cytosine signals
and basecaller artifacts. In combination with the overscaled signals incom-
plete bisulfite conversion (Grunau et al., 2001; Warnecke et al., 2002) (which
is a general problem of all bisulfite based methylation detection methods) in-
fluences signal proportions in the trace significantly.

It was therefore necessary to develop a specific algorithm enabling the use
of four dye sequencing trace files to gain quantitative methylation informa-
tion. This newly developed data analysis method allows the use of established
high throughput sequencing technology for methylation studies.
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2.2 Materials and Methods

2.2.1 Algorithms
The algorithm I present uses four dye electropherogram trace file data (see
Fig.1.7) preprocessed by the basecaller of the sequencing machine manufac-
turer e.g. Applied Biosystems ".abi" files or the well described ".scf" files
(Dear & Staden, 1992). The data processing includes the following steps: (i)
entropy based clipping, (ii) signal detection, (iii) alignment, (iv) trace correc-
tion, (v) alignment based clipping, (vi) equalization of signal intensities signal
normalization, (vii) signal normalization, (viii) compensation of incomplete
conversion and (ix) methylation estimation (see Fig. 2.2.1). A scheme of the
data and the influence of the algorithmic steps (ii), (iii), (iv) and (vii) is given
in Fig. 2.2. Here we present the algorithms for forward sequencing that aims
at the estimation of the proportion of cytosine to thymine at the positions of
interest. Traces that originate from reverse sequencing and show guanine and
adenine signals at corresponding positions can be analyzed by the same algo-
rithm building the reverse complement of the trace files.

(i) Entropy based clipping: We observed that basecallers often generate
reads that contain long stretches of called bases with up-scaled background
signals after the end of an amplificate. These artifacts are detected by using
the normalized Shannon entropy 0 ≤ H ≤ 1 of the four trace curves Sb, b ∈
{A,C,G,T} in a sliding window of 200 data points in the time series space of
the trace signal data. Flanking sequence stretches with an entropy larger than
0.8 are removed.

H = − ∑
b∈{A,C,G,T}

(

Sb

∑B∈{A,C,G,T} SB
log4

Sb

∑B∈{A,C,G,T} SB

)

(2.1)

(ii) Signal detection: For each base position in the trace file we compute cor-
responding intensities Bint;B ∈ {A,C,G,T} that estimate the base proportions
in the molecular mixture. As an appropriate measure we have chosen the ar-
eas under the trace corresponding to the respective base for each position in
the sequence. By default, the trace segment between neighboring local min-
ima is used for the signal area estimation. If no local minima are present, then
the boundaries of the trace segment are estimated as the mid point between
two neighboring inflection points.
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Figure 2.1: Flow chart of all data process-
ing steps of the methylation estimation al-
gorithm. Detailed description of the sin-
gle steps is given in the text. Between all
data processing steps quality control (QC)
is performed. The analysis of a single trace
file is aborted if the file itself is corrupted or
if the genomic reference sequence is miss-
ing or if the length of good quality se-
quence, as determined by the clipping pro-
cedure, is below a certain threshold (default
is 50 bases) or if the bisulfite conversion
rates are below a minimum threshold (de-
fault is 65%).
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T signal

a) trace data b) normalized trace data

Figure 2.2: Schematic representation of a trace file electropherogram obtained
by bisulfite PCR sequencing a) before and b) after signal normalization. The
upper sequences below the trace curves in a) represent the sequence called
by the standard basecaller and in b) the peak mixture represented using IU-
PAC code. The sequences at the bottom show the aligned reference sequence
whereby t are genomic cytosine positions that are not in CpG context, and ex-
pected to be unmethylated and therefore completely convertible. Trace curves
are shown for all four bases. For every base position in the reference sequence
four base intensities Bint;B ∈ {A,C,G,T} are calculated as the area under the
trace curve segment that belongs to the base position (only Cint and T int shown
in a) ). Normalized base intensities for cytosine (Cnorm

b ;b ∈ {t,T,C}) and
thymine (T norm

b ) seen in b) are used to estimate the bisulfite conversion rate
(base intensities at t positions) and the methylation level at each CpG (base
intensities at C positions).
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(iii) Alignment: The base intensities estimated in the previous step are
then mapped to an underlying genomic reference sequence. The a priori
availability of the genomic sequence is a prerequisite for our application. To
describe the bisulfite converted DNA, the commonly used genomic alphabet
(A,C,G,T ) is extended by one letter, the lower case t, to distinguish a thymine
derived from uracil by bisulfite conversion from a thymine that was present
already in the genomic sequence. As an exception, cytosines in a CpG con-
text in the reference sequence are denoted by C because their methylation
status and therefore their conversion status is unknown. For the sake of clar-
ity in the notation, these bases should be distinguishable from t which is never
methylated and therefore expected to have a complete conversion by the bisul-
fite treatment. We use the Smith-Waterman algorithm (Smith & Waterman,
1981; Barton, 1993) for optimal local alignments allowing for gaps to align
the called sequence of the trace file with the a priori known reference se-
quence.
Bisulfite treated DNA contains long stretches of T signal. In some cases this
is misinterpreted by basecallers by inserting too many T -s into the called se-
quence. Accounting for this special situation, we have introduced an addi-
tional type of gap cost to guarantee proper mapping of CpGs. Assigning costs
for gaps between C and G in the reference sequence forces the alignment of
CpGs as one functional block to avoid their mismapping. An example of this
is given below, whereby costs for gaps (g) are -19 and for special additional
gap costs(sg) punishing insertion between C and G in the reference sequence
are -20.

trace ATTTTTTTGA ATTTTTTTGA
reference ATTTTTC-GA ATTTTT-CGA

cost(g + sg) = -39 cost(g) = -19

(iv) Trace correction: Standard basecallers expect one homogeneous DNA
population to be sequenced, therefore they often interpret mixed C and T base
intensities at a single position of the reference sequence as two adjacent bases.
In contrast to standard sequencing, in our experiments we expect signal mix-
tures from different DNA populations. It follows that the separation of over-
laying intensities belonging to one position into two bases by the basecaller
has to be corrected. We identify the separated base intensities by searching
adjacent T and C positions in the called sequence from which one is aligned
with t or C and the other is introducing a gap into the reference sequence.
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These base pairs in the called sequence are then fused into a single base.

(v) Alignment based clipping: The quality of trace files from PCR product
sequencing, especially of amplificates from bisulfite treated template contain-
ing different molecule populations, is lower than sequences from a homo-
geneous clone template. Alignment quality as a natural measure to assess
sequencing quality is used to identify areas of poor quality. Flanking regions
of the sequence are clipped such that the remaining inner part has less than
10% alignment error to the reference sequence.

(vi) Signal intensities in trace data decrease with progression of sampling
time. If signals from cytosine in and out of CpG context and thymidine sig-
nals are not randomly distributed within an examined region, the proportions
of those signals can be over or underinterpreted in normalization based on ac-
cumulation at locations with extreme signal intensity. We therefore equalize
all signal intensities prior to normalization by dividing all four time series of
base signals B(t);B ∈ (ACGT ) at each data point by the average signal inten-
sity within a window of p data points and multiplying with 10,000 (see Fig.
2.3).

B′(t) = B(t)
10,000p

∑i
t−p/2...t+p/2 A(i)+C(i)+G(i)+T(i)

(2.2)

(vii) Signal normalization: We found that cytosine trace curves often are
overscaled in direct bisulfite sequencing traces1. Base proportion calcula-
tion based on trace curves with different baseline intensities would lead to
misleading results. Therefore we normalize the trace curves prior to calculat-
ing the proportions of base intensities to determine bisulfite conversion and
methylation rate. The normalized base intensities are denoted by Bnorm

b ;
B ∈ {A,C,G,T} ; b ∈ {C, t,T} that fulfill constraints (2.3) and (2.4) based
on average base intensities .

T norm
T ≡ T norm

C +Cnorm
C (2.3)

T norm
T ≡ T norm

t +Cnorm
t (2.4)

Normalization of Cint is performed by multiplication of a global factor FC.

Cnorm
b = FCCint

b ,b ∈ {C, t,A,G,T} (2.5)

1We speculate that this over-scaling is a result of the standard basecaller software com-
pensating for the low frequency of C signals.

page 30 Jörn Lewin dissertation



CHAPTER 2. QUANTITATIVE ANALYSIS OF TRACE DATA

Based on the data we use different strategies for normalization. If there are
at least three C positions with Cint

C > T int
C normalization is based on data from

these positions (Eq. 2.6 following from Eq. 2.3). Otherwise normalization
is based on all t positions (Eq. 2.7 following from Eq. 2.4). In rare cases
when all cytosines were unmethylated and converted completely (Cint

C = 0)
normalization of the cytosine trace curve is impossible and unnecessary.

FC =
T int

T −T int
C

Cint
C

(2.6)

FC =
T int

T −T int
t

Cint
t

(2.7)

(iix) Compensation of incomplete conversion and (ix) methylation esti-
mation: Cytosine base intensity at CpG positions can arise from two sources:
from a population of methylated cytosines in the sample DNA and from an
incomplete conversion reaction. It follows that the bisulfite conversion rate
has to be first estimated to obtain a correct estimation of the methylation rate
in the sample DNA. For an individual t the conversion rate R is estimated by

R =
T norm

t
T norm

t +Cnorm
t

. (2.8)

Local Rloc and global conversion rates Rglob can be determined by averaging
over R of individual bases within defined ranges. Then the methylation rate
M,0≤M ≤ 1, at a certain CpG can be estimated by using the following simple
linear relationship

T norm
C = Rglob(1−M)(T norm

C +Cnorm
C ). (2.9)

The equation describes the fact that T base intensity at a C position T norm
C

is expected to arise from the unmethylated portion of the sample DNA that
is bisulfite converted by rate R. Furthermore the sum of the base intensities
T norm

C +Cnorm
C is assumed to be proportional to the total of cytosines in the

sample DNA. It follows that the methylation rate then can be estimated by
incorporating a correction for the incomplete bisulfite conversion

M = 1−
T norm

C
(Cnorm

C +T norm
C )Rglob

. (2.10)

Signal variance, artifacts or errors in the normalization might lead to negative
methylation estimation which is set to 0.
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Figure 2.3: Signal equalization: Decrease of signals of other local profiles
in trace files data can bias global factors based on base signals that are not
evenly distributed (a, b). Local intensity is adjusted by dividing data by local
smoothed intensities over all bases, leading to equalized signals.
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2.2.2 Implementation
Algorithms described in this work are implemented in C++ as part of the soft-
ware esme. For regular expression handling boostregex was used, file com-
pression and decompression was implemented using (zlib) tests were imple-
mented using cppunit. The software is object oriented and deeply integrated
into C++ libraries and other in house software components of the company
Epigenomics, allowing corba server and client functionality, file independent
use of databases and fully automated use in high throughput. The software
esme.was and is in use at Epigenomics and at Welcome Trust Sanger Center
to analyze data from the Human Epigenome Project. A stand alone version
of esme that can be used for analysis of the HEP data is freely provided as
binary at http://www.epigenome.org. All data interpretation of results in this
work was performed using the freely available statistical scripting language
R. Some characteristics of the free standalone software are:

• C++ binary command line program running on Debian Linux platform

• input analysis of single files or full directory content, detailed data in-
tegrity checks and report of corrupted data, use of one or multiple scf,
abi and abd trace files

• normalization of data and determination of bisulfite conversion

• estimation of methylation information gained by direct sequencing of
PCR products from bisulfite treated DNA taking conversion rate into
account

• plotting functionality for traces, modified traces, alignments of traces
and reference sequences and results

• tab delimited results in two tables, for trace file quality results and for
methylation at CpG levels
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2.2.3 Test systems

2.2.3.1 Test systems with known cytosine/thymine ratios

To test how accurate we can measure base proportions in four dye trace data
and if our normalization algorithm improves measurements, we created an ar-
tificial test system with known cytosine/thymine proportions. A 669 bp long
fragment in the promoter region of the gene G6e was amplified by PCR reac-
tion after bisulfite treatment of the template DNA. The bisulfite reaction was
set up such that the conversion of cytosines was not perfect. The PCR product
was sub-cloned into pCR2.1-Topo vector (invitogen).

96 clones were sequenced. Out of the 96 clones three showing differ-
ences at the most positions of genomic cytosine were chosen. The plasmid
concentrations of the three stocks were adjusted to the same level. To gain
different cytosine/thymine base compositions volumes were mixed in all six
permutations of the proportions 1:2:4. These mixtures contain molecules with
cytosine and thymine at the original genomic cytosine positions with expected
cytosine/(cytosine + thymine) ratios from 0 to 1 in 1/7 steps.

Sense strands of the clone mixtures were sequenced five times using the kit
1.1 on the ABI PRISM 310 (2.4 a). Trace files were analyzed by using the ABI
basecaller software 310POP4. Our algorithm was then used to estimate base
compositions at each original genomic cytosine position. Estimated values
were binned by their expected cytosine/(cytosine + thymine) ratios to assess
their distributions and the mean absolute errors.

2.2.3.2 Test system with known methylation

To test our algorithm on data from DNA with defined methylation status, un-
methylated human genomic DNA (Molecular Staging) was divided into two
equal volumes. DNA in one of the volumes was enzymatically methylated
with methylase SssI (NEB) following the manufacturer’s protocol. Volumes
of methylated and unmethylated DNA were mixed in 20 % steps from 0% to
100%. PCR for 60 amplificates was performed on a Tetrat MJ-research PTC-
225.

For cycle sequencing the forward PCR primer was used with ABI kit 1.1
and run on the ABI 3730 DNA analyzer (2.4 b). Trace files were called with
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Figure 2.4: Experimental setup of a) a test system with known cyto-
sine/thymine proportions b) a test system with known methylation rates.
Steps that are potential sources for variances or biases in the test systems
like mixing steps, incomplete enzymatic methylation, PCR bias (Warnecke
et al., 1997) and variance, incomplete bisulfite conversion (Grunau et al.,
2001; Warnecke et al., 2002) and variance in the sequencing procedure are
typeset in italics.

ABI’s basecaller 3730POP7. Our algorithm was then used to estimate the
methylation rates at each CpG position. Methylation rates were binned to-
gether by their expected methylation levels and variances and mean absolute
errors were assessed.
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2.2.3.3 Comparison with MALDI-TOFF

Data from direct bisulfite sequencing was compared with data for the same
DNAs and genomic sites provided by the group of Ivo G. Gut from the Cen-
tre National de Génotypage in Paris (CNG): methylation data from MALDI-
TOFF mass spectrometry using the GOOD assay (Tost et al., 2003). Data
was matched by CpG and tissue sample. Matched data was visualized in con-
gruent plots color coding methylation in matrices describing methylation for
each measured site and DNA, with one row per site and one column per site
(methylation matrix plots).

Pearson correlation and mean absolute differences were used to describe
the data comparison. The comparison was performed for sequencing data
from both strands and separately for the data from sequencing different strands,
either the cytosine poor forward or the guanine poor reverse strand of the
bisulfite PCR product. For visualization of correlation, data from sequenc-
ing was binned into 10 bins from 0 to 100% by methylation data gained by
MALDI measurements or vice versa.
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2.3 Results

2.3.1 Test systems with known cytosine/thymine ratios
To assess the effect of our signal normalization step, we used our algorithms
on data from the test system with known cytosine/(cytosine + thymine) ratios.
Figs. 2.5 a, b show the distribution of the estimated ratios against the ex-
pected ratios in the test system without and with normalization, respectively.
The results demonstrate that the normalization step decreases the mean ab-
solute error (represented by the dashed line on the figures) approximately to
the half. Sequencing several subclones from a PCR product is an alternative
method to measure the cytosine:thymine ratios in bisulfite treated DNA. The
measurement error of this method depends mainly on the number of subclones
that is sequenced. We benchmarked our direct sequencing method with the
subcloning method. We calculated the smallest theoretical measurement er-
ror inherent to the subcloning method by simulating the sampling of 10 and
20 subclones based on binomial distributions with a certain C:T ratio. Figs.
2.5 c, d and Table 2.1 show that errors in our estimates are comparable with
those that could be obtained by sequencing 20 subclones of a PCR product.
From this we can conclude that direct sequencing of bisulfite treated DNA is
a viable alternative to subclone sequencing of at least 10 subclones if only the
mixture rates are the subject of interest.

mean SD mean absolute error
signal proportions 0.110 0.130

normalized signal proportions 0.077 0.055
10 subclones 0.100 0.083
20 subclones 0.072 0.058

Table 2.1: Comparison of mean standard deviations and absolute errors of
C/(C+T) signal proportions as estimated in our test system with known cyto-
sine/thymine proportions and simulated representation by subclones.

2.3.2 Test system with known methylation
We have evaluated the performance of our algorithm by using the test sys-
tem with known methylation rates. Fig. 2.6 shows results for data assessed
without use of the algorithm (a), using different aspects of the algorithm only
(b to e). Fig. 2.6 f shows the distribution of the estimated methylation rates
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c) 10 subclones
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d) 20 subclones

Figure 2.5: a), b) Quantitative measurements of C signal proportions in data
from single sequencing runs of six clone mixtures with expected C/(C+T)
ratios from 0 to 1 in 1/7 steps. The boxplots show the distribution of the es-
timated values obtained by our algorithm without the normalization and with
normalization, respectively. The estimates are plotted against the expected ra-
tios (1039 data points total which means a measurement success rate of 89%
given six mixtures, five repetitions and 39 positions). Dashed graphs show
the means of absolute errors. c), d) Simulated data for representations of
mixed DNA in 0 to 1 in 1/7 steps by 10 and 20 subclones based on a binomial
distribution.
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against the expected methylation rates in the test system using the complete
algorithm. For the estimation of methylation rates all steps, normalization
of intensities, equalization of signal profiles, and the correction for bisulfite
conversion improve the data. Table 2.2 provides corresponding data to Fig.
2.6 summarizing yield of analyzable CpG position (N) errors from expected
measurements and variance. The algorithmic step of normalization (b) has a
major impact mainly on low methylation rates, where the absence of C sig-
nals leads to an overscaling of the C trace and overall improves the yield,
reduces error and variance compared to no algorithmic step (a). Correction of
incomplete conversion (c) reduces errors and variance, but does not influence
the alignability and therefore the yield. If both steps are applied the error is
even further decreased as with each of the steps, but variance is still higher
than with correction of incomplete conversion only (d). Raising alignability
and yield by normalization most probably allows the inclusion and assess-
ment of parts in trace file regions with higher variance and lower quality. If
the data is filtered for trace files that relatively stable intensities over their
whole length2, variance of measurements and errors could further be reduced
but costed yield. If signal equalization was applied in addition to all other
algorithmic steps, the best results were obtained for all parameters.

The methylation rates estimated in this experiment do not show as accu-
rate correlation with the expected rates as was obtained in the previous C:T
proportion experiments, where a mixture of subclones was used as a test sys-
tem. One possible explanation for this is that the real methylation rate in the
mixtures of methylated and unmethylated DNA deviates from the expected
methylation rate. Systematic biases in the real values of all 60 covered re-
gions can arise from incomplete enzymatic methylation of the DNA or from
amplificate specific biases in the PCR reaction itself.

Systematic biases in the test system would lead to deviations from ex-
pected values and to a higher variance in the complete data but still allow
detection of relative differences in the methylation rates at individual CpG po-
sitions. To evaluate the capability of our method to detect differential methy-
lation we paired data from templates with different methylation values for
each CpG. Table 2.3 lists the accuracy of classification of higher vs. lower
methylated CpGs in the test system.

2we used a filter based on coefficients of variances for each base: standard deviations over
all signals divided by average signal had to be below 2
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N MAE SD
nor normalized neither corrected 1716 0.2675 0.1441

only normalized 1854 0.1744 0.1805
only corrected 1716 0.1876 0.1478

normalized and corrected 1854 0.1417 0.1735
filtered, normalized and corrected 1812 0.1341 0.1535

equalized, normalized and corrected 1998 0.1256 0.1364

Table 2.2: Influence of algorithmic steps. Amount of positions measured
(N), mean absolute error (MAE) and standard deviation (SD) in 20% step
methylation mixture calibration data.

expected rate 0.2 0.4 0.6 0.8 1
0 91 98 97 99 99

0.2 90 98 99 99
0.4 96 97 98
0.6 79 88
0.8 89

Table 2.3: Test system with known methylation rates: accuracy of sorting
paired methylation estimates at identical CpGs in 60 amplificates after nor-
malization and conversion rate correction.

The accuracies for detecting differential methylation in neighboring methy-
lation rates with 20% steps are compared with those that were obtained with-
out normalization and correction for incomplete bisulfite conversion (Table
2.4). The performance clearly improves by using the normalization and the
conversion rate correction steps.

Despite the overlap of the distributions of the estimated methylation val-
ues (cf. Fig. 2.6 d) we can conclude that the detection of differential methy-
lation is highly accurate. This is in accordance with our hypothesis of having
amplificate specific systematic biases in our reference test system.

We have evaluated threshold parameters for quality control. More strin-
gent parameters do not improve the results significantly but lead to lower
measurement success rates. For example, raising the threshold for bisulfite
conversion from 65% to 80% reduces the mean absolute error by 0.02 % and
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correct sorting[%]
comparison raw norm/corr

0/0.2 84 91
0.2/0.4 71 90
0.4/0.6 86 96
0.6/0.8 77 79

0.8/1 89 89

Table 2.4: Test system with known methylation rates: accuracy of sorting
paired methylation estimates at identical CpGs in 60 amplificates with 20%
difference with and without using the normalization and correction for incom-
plete bisulfite conversion.

raises the accuracy by 1.3 % but reduces the number of accessible positions
by 16 %.
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Figure 2.6: Estimation of methylation in the test system with known methy-
lation rates. The boxplots show the distribution of the estimated methylation
rates as a function of the expected methylation and the mean absolute er-
ror (dashed line). Each box includes data from CpGs of all 60 amplificates
measured at the expected methylation rate. Different algorithmic steps were
applied: a) nor normalized neither corrected b) only normalized c) only cor-
rected d) normalized and corrected e) filtered, normalized and corrected f)
equalized, normalized and corrected .

2.3.3 Comparison with MALDI-TOFF

594 paired CpG/sample methylation measurements from 1. direct sequencing
with use of the algorithm and 2. MALDI-TOFF mass spectrometry were com-
pared. Over all the two different methods show similar methylation profiles
on CpG level see Fig. 2.7). Despite technical differences, individual biases
and variance of the two methods, a correlation of 0.88 could be achieved.
Interestingly the data did not only correlate around 0% and 100% but also
shows good results measuring mixed methylation. A mean absolute differ-
ence of 12% is in the same range as the mean absolute error measured for the
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test system with known methylation rates (see table 2.2). Data from forward
sequencing performed better than from reverse sequencing (see Fig. 2.8), but
the differences found are not significant given the size of the data set.
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Figure 2.7: Comparison of methylation rates for 28 CpG locations (11 am-
plificates) in 22 tissue samples (5 tissues) with a) MALDI and b) Sequenc-
ing/Esme. Sequencing data is binned by methylation measured with MALDI.
Methylation is color coded from yellow (0%) over green (50%) to blue
(100%). White areas lack measurements. A comparison with data binned
by sequencing is found in Fig. 7.1 in the appendix.
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Figure 2.8: Comparison of methylation measurements with MALDI. Mea-
surements from the method displayed at the y-axis are binned into ten inter-
vals form 0 to 1 by measurements at the same CpGs and in the same tis-
sue samples with the other method displayed at the x axis and displayed as
boxplots. a) Methylation rates at CpGs from forward and reverse sequenc-
ing compared to corresponding MALDI measurements. b) Methylation rates
at CpGs from forward sequencing compared to corresponding MALDI mea-
surements. c) Methylation rates at CpGs from reverse sequencing compared
to corresponding MALDI measurements. Red lines show the means of the
binned rates, bars show the standard deviations.
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2.4 Conclusion
Results obtained by comparison of data from the algorithm described and ref-
erence test systems show that direct PCR sequencing is a viable alternative
to estimating methylation rates by sequencing subclones from the PCR prod-
uct. Replacement of at least 10 times subcloning (see 2.3.1). extremely re-
duces laboratory work and costs. Furthermore, we have demonstrated that our
method can detect differences in methylation rates of at least 20% with high
accuracy. Applying our algorithms to bisulfite sequencing data of partially
differentially methylated DNA and comparison with MALDI-TOFF data demon-
strated that by the aid of the method, CpGs with differential methylation rates
between different tissue types can be identified.

The algorithm provides a useful way to analyze big DNA methylation
studies like the Human Epigenome Project based on direct sequencing in high
throughput facilities. It will help to gain information about differential methy-
lation in many tissue types and increase our understanding of the epigenetic
layer in the complex system of gene expression, cell differentiation and tu-
morigenesis.
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Chapter 3

Deconvolution of trace file data

Trace data, especially from non optimized direct bisulfite sequencing pro-
cesses or from problematic amplificates can show serious quality problems,
prohibiting correct base calling and quantitative analysis. This chapter covers
a proof of concept study, in which it is shown that in case of systematic prob-
lems such as molecular populations with different mobility quality problems
can be reduced and overcome with a numerical approach deconvolving the
trace data.



CHAPTER 3. DECONVOLUTION OF TRACE FILE DATA

3.1 Motivation and Theory
A fraction of trace files gained by direct bisulfite sequencing shows signal
echos or shifted signals, especially trace files from reverse sequencing. These
echos have an offset of up to three bases to the main signal; multiple echos
are observed rarely. We have three main theories about the origin of such
phenomena.

1. Mixtures of primers with a fraction that is missing bases in the 5’ end
region and therefore results in populations of different base length after
cycle sequencing reaction. Such effect would lead to global echos of
same size and offset over the whole trace data.

2. DNA polymerase slippage within stretches of the bisulfite converted
DNA in the sequencing reaction resulting in insertion or deletion of
bases and leading to multiple populations that differ downstream of
such stretches. Such effects would lead to echos starting at specific
positions in trace file data.

3. Mobility differences based on different base compositions, which has
been reported before to have an influence (Frank & Koster, 1979), in-
troduced by the bisulfite conversion. Sequencing reaction products re-
sulting from a methylated population in the DNA template could run
shifted in comparison to those from unmethylated DNA showing an in-
creasing offset with proceeding sequence length - based on the summa-
tion of the effects of different positions. Echos based on such an effect
are expected to have identical sizes and raising offset for all base sig-
nals except for signals from CpG positions which introduce the effect
because of base differences between the populations at these positions.
Latter are expected not to show defined echos but different signals that
sum up to total signal representation of such positions with identical
size and offset as the echos observed at other positions.

In the following we will name the first two effects postulated echo effects and
the third effect shift effect.

Both, echo and shift effects can be observed in trace data, but in most
cases we observe shift effects. Echo effects distort the general signal patterns
in trace files used for methylation analysis and therefore decrease the accu-
racy of results from the algorithms used in ESME. Shift effects below a offset
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G signal

NO effect

C signal

T signal

echo effect

shift effect

A signal

a)
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Figure 3.1: Schemes of thymine and cytosine signals with echo and shift
effects at CpG positions and at thymine position: On the top the complete
trace data of all signals is shown with mixed signals at CpG positions with a
methylation level of about 60%. a) Cytosine and thymine signals only with
no effects. b) Cytosine and thymine signals in convolved data, both showing
an echo effect. c) Cytosine and thymine signals in data showing a shift effect
introduced by the different base compositions at CpG positions, which come
up as separated signals and sum up to signals belonging to one position that
have the same shape as the echo of a thymine position being thymine in both
populations.
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of half a base position can be compensated by the fact that we do not use peak
height to determine signal intensities but their peak area and therefore com-
pute the total signal including slight shoulders and widened peaks. As soon as
a shift effect offset reaches a size of half a base position cytosine and thymine
signals at CpG positions are separated in a way that make further analysis
based on the algorithms used in ESME impossible. It was therefore necessary
to find a way to compensate for all such effects.

Deconvolution of trace data was already successfully used to enhanced
base calling (Zhang & Allison, 2002; Li, 2001). Data showing the echo effect
based on primers could easily be corrected by global deconvolution as used
for signal echos in seismography, while data showing echo effects based on
slippage could be corrected analogous by local deconvolution used for signal
echos in mobile communications. The third effect however needs a specific
model and specific kernels for positions that introduce the effect and are due
to unknown signal proportions which at the end of the process have to used
for quantitative methylation analysis.
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3.2 Materials and Methods

3.2.1 Algorithm
The algorithm that deconvolves observed trace file data to compensate for
echos, basically optimizes a kernel for the sum of cytosine and thymine sig-
nals, and a second kernel for the cytosine signal only, using a special energy
function for the latter. The deconvolved cytosine signal is then subtracted
from the deconvolved sum signal to get a deconvolved thymine signal. This
way the unknown proportions at CpG positions can be circumvented in the
model. The variables used in the following are defined in 7.1 in the appendix.
The distance δ of the main signal of DNA population i = 1 to itself is by
definition 0.

δ1 = 0 (3.1)

The sum of the proportions πi of all k DNA populations is 1.

k

∑
i=1

πi = 1 (3.2)

The model of the observed trace signals O′
B(t) in the trace data is the sum of

the signals from k DNA populations with different proportions πi and offset
δi to the main signal.

O′
B(t | π1, . . . ,πk,δ1, . . . ,δk,FB(t))= (1−

k

∑
i=2

πi)FB(t)+
k

∑
i=2

πiFB(t +δi) (3.3)

The deconvolved signal for a base FB is its signal in the observed data OB
normalized with a intensity factor fB and deconvolved with a kernel H.

FB = ( fB ∗OB)⊗H;B ∈ {A,C,G,T,Y} (3.4)

The deconvolution kernel H is dependent on the intensity factors for all bases,
and the offsets δ and proportions π of all k molecular populations.

H( fB,π1, . . . ,πk,δ1, . . . ,δk);B ∈ {A,C,G,T,Y} (3.5)

The minimum energy EB for kernel optimization is a function of the observed
data OB, the model of idealized data MB and the kernel H.

EB(OB,MB,H) (3.6)
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(i) The methylation of the cytosines in the CpGs to be measured are unknown
by definition. Therefore it is also unknown if they and which proportion were
or were not bisulfite converted/amplified to thymidine. This means that there
is no a priory expectation for cytosine signals at CpG positions in data from
bisulfite converted DNA. This turns out to make the model complicated: if
multiple signal ’echos’ are expected to be based on base composition dif-
ferences leading to divergent mobility of DNA populations. Each popula-
tion/echo might have different proportions of (C or T ) at different CpG sites
which after signal normalization, convolution and applying π must sum up as
the real proportion over all populations/echos. There are two possible ways
to deal with this:
1. building a very complex model, that takes individual methylation/conversion
rates of each cytosine for each different mobile population into account. This
approach would extend the amount of 4 + 2 ∗ k parameters describing the
model by n ∗ (k + 1) whereby n is the amount of cytosines in the described
part of a trace.
2. using an approach that is completely independent of methylation and bisul-
fite conversion by combination of OC and OT signals in both, model and data,
and treating it as one signal OY describing two bases, that has two signal nor-
malization factors fC and fT and a possible C signal shift offset SC that must
be taken into account for each algorithmic step but can be treated as one signal
concerning everything else. This second possibility needs an additional algo-
rithmic step that is able to separate the combined signals after deconvolving
OY .

The second possibility was chosen based on some observations and as-
sumptions:

• Bisulfite conversion rates obtained using recent Epigenomics’ technol-
ogy (or comparable methods), is always almost complete. Given this,
the influence of OC signal remaining from incomplete conversion of
cytosines outside of CpGs is negligibly low after signal normalization
and after deconvolution relevant FC signal is to be expected only at CpG
positions.

• Local deconvolution of OC in windows of certain trace data points will
mainly cover co-methylated CpGs that therefore can be described with
the same deconvolution kernel.
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OY (t, fC,SC, fT ) = OC(t, fC,SC)+OT (t, fT ) (3.7)

MY (t) = MC(t)+MT (t) (3.8)

(ii) The data is reduced to three signals: OY ,OA and OG. In principle only
OY is of interest containing all information of OC and OT and therefore for
methylation. OA and OG are only helper signals that
1. map the signals to the reference sequence identifying the CpG positions
2. are expected to show the similar echos/shifts as OY and therefore add more
data but
3. could for various unknown and trace file individual reason e.g. signal
shift effects behave slightly different than OY , so that their inclusion might be
counter productive.
The algorithm was therefore designed to allow three options: either a) the use
of OY only to find the optimal kernel within a given data window or b) the
use of all three signals OA,OG,OT , or c) first the use of all three signals to
find a good initial kernel that is then start for a further optimization based on
OY only. Kernel optimization is done by finding the set of parameters that
minimize the energy EB of the deconvolved signal. The idealized trace sig-
nal model MB is identical to that used for artificially generated trace data (see
section 3.2.4.1 and formula 3.14).

EB

(

t | π1, . . . ,πk,δ1, . . . ,δk,FB(t),OB(t)
)

=
(

MB(t)−OB(t)⊗H
)2

(3.9)

E = ∑
B

EB;B ∈ (A,G,Y ) (3.10)

(iii) The former step provides a kernel that can be used to deconvolve OY
to FY and also provides signal normalization factors fC and fT and C signal
shift offset SC, but does only describe the sum of the signals and therefore
does not allow deconvolution of the signals of interest C and T separately
from each other. The unknown methylation prohibits any meaningful model
MT based on expectation of thymidine signals at thymidine sites and cytosine
sites outside of CpG context but without any possible assumption within CpG
context. The same applies for MC: it is impossible to have a model that
simulates where C signals are expected to be, but it is possible to have a model
defining where C is NOT expected. This allows kernel optimization for OC
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with fixed signal normalization factor fC and shift SC. This kernel cannot be
optimized with a minimum energy based on differences between FC and MC,
but with a modified energy function that takes into account that any FC outside
of CpG context and negative FC within CpG context must be prohibited.

EC = ∑
t /∈CpG

FC(t)2 + ∑
t∈CpG

σ(t)FC(t)2 (3.11)

whereby

σ(t) =

{

0 if FC(t)≥ 0
1 if FC(t) < 0 (3.12)

(iv) The obtained kernel forces OC signals (as far as available) into CpG
positions. With FC and FY there is no use for a further step finding a kernel
for OT . FT is simply calculated by subtraction.

FT (t) = FY (t)−FC(t) (3.13)

(v) To find and optimize a deconvolution kernel, we used the downhill
simplex (Vetterling et al., 2002) method. It was necessary to find a way to
optimize the initial kernel of a downhill simplex that
1. results in a kernel with few parameters,
2. does not get lost in local minima.
To fulfill this we started with a more complex kernel allowing many k around
a main population and then iteratively repeated kernel optimization with with
decreasing number of k, using the δ from the last result for the next initial
setting, excluding populations with the lowest π in the last result. In princi-
ple except for the optimization of the last kernel, all former steps are only to
optimize starting parameters for the kernel in that last step (with few param-
eters) enhancing the likelihood that it does not get stuck in a local minimum.
Models for trace curves MB(t) were generated as described in section 3.2.4.1,
using perfect trace data except for increase in signal peak width with factor
1.3 over the trace.

Due to noise and variance in sequence data we expected deconvolution
of trace data without shift or echo effects to lower the data quality. In most
of all cases trace data does not show any effects and otherwise such effects
tend not to be global but begin at a certain time point in the trace data. Given
the former algorithm, such a decision can be done at different times. In order
not to correct or harm already correct data, we decided to include an optional
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and fully parameterized decision trigger, after step (ii) or (iii), whether to de-
convolve data within an assessed window or not, which needs at least one
echo/shift effect with a certain proportion π of the overall signal and a mini-
mum distance δ to the main signal peaks.

3.2.2 Implementation

Algorithms described in this work were implemented in an object oriented
way in C++. Complex algorithms were checked with unit tests using cp-
punit. All algorithms like fft, deconvolution and downhill simplex were based
on numerical recipes (Vetterling et al., 2002), altering the iterators used in
the FORTRAN based code examples from 1:n to 0:(n-1) and using an object
oriented implementation. The algorithms were integrated into Epigenomics
software ESME.

3.2.3 Parameter optimization

The optimization of parameters for the algorithm allows infinite possible com-
binations. The raw data interpretation using the algorithms is extremely costly
in computing time and extends trace file analysis time by a factor up to 1000 x
(minutes per trace file) compared to simple trace file analysis as described in
chapter 1.6.2 (parts of seconds per trace file) based on parameters, e.g. how
complex an iteratively optimized kernel is in the beginning, how sizes and
steps of shifting windows are and which steps to take.

In order to keep computing time low and to ensure validity on real data,
the optimization was performed using real trace file data from bisulfite se-
quencing. Trace files were used in sets of different sizes, that were hand
chosen out of many others and showed obvious shift and echo effects pro-
hibiting meaningful analysis so far. Due to the unknown methylation state
of these data, original and results were compared by visual inspection and
success was mainly defined by the fact whether C signals from various echos
were changed to correctly placed peaks with expected shape and area or if the
outcome showed obvious artifacts. Some parameters settings were tested on
single trace files only: bad results for one example were counted as valid rea-
son to directly neglect the tested parameter setting instead of extended testing
on larger data sets.
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Figure 3.2: Deconvolution algorithm. Based on an alignment of observed
trace data O in a trace file to a reference sequence (a), a trace data model M
is built, using the base positions in the trace file and expected bases in the
aligned reference sequence (b). To allow a methylation and conversion inde-
pendent model, C and T signals are summed up in a simplified observation
O′ and model M′. In the unnormalized observed data O′ the unknown C and
T signal proportions resulting from converted or unconverted cytosines are
equivalently treated as one signal, whereby base signal intensity factors fC,
fT and a possible shift offset SC for cytosine signal are included (c). A down-
hill simplex algorithm is used to find the optimal kernel for deconvolving O′

to fit M′ (d) including optimization of normalization factors FB for all four
signals. A parameterized step by step reduction from n to m signal echos in
the kernel helps to overcome local minima. Afterwards a more detailed opti-
mization of the very sensitive factors used for signal intensity normalization
of C and T is performed (e), that allows the calculation of a deconvolved C+T
signal. A kernel for the separated C signal, that is exclusively expected at CpG
positions, is locally determined to provide a deconvolved cytosine signal (f).
Again local minima are overcome by a reduction from n to m signal echos in
the kernel. T signal is now calculated by subtraction of the deconvolved C
from the deconvolved C+T signal (g).
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First different sliding window sizes were tested, from 1000 to 100 data
points, using different step sizes, from full window size, down to single data
point for windows smaller 250. For kernel optimization different starting
kernels with and without iterative reduction of kernel complexity were used,
within a range of k = 11 at a maximum and k = 1 at minimum, with different
π1 ranging from 0.25 to 0.75 for the main and (1−π1)/(k− 1) for the other
populations, with different sets of δi ∈ [−30,30] (δi was in general restricted
to this range also within the kernel optimization with downhill simplex). All
three options for step (ii) were tested with different settings of other param-
eters.

The influence of a decision trigger, whether trace data should be decon-
volved or not, was tested on a data set with known methylation and without
shift- or echo effects (see section 2.2.3.2) and on real data of 50% methylated
DNA showing shift effects.

3.2.4 Test systems

To assess and optimize the deconvolution algorithm, three test systems were
used: Generated trace files (see section 3.2.4.1), data from defined mixtures
of methylated and unmethylated DNA in 20% steps, as already used for as-
sessing the basic algorithm (see section 2.2.3.2) and trace files obtained from
known mixtures of 50% methylated DNA that showed quality problems based
on echos in their signal profiles.

3.2.4.1 Generated trace files

For basic tests of algorithms and for the possibility to generate models used
in algorithms, it was necessary to implement a trace data generator. The gen-
erator allows the inclusion of different observed characteristics of data ob-
tained from direct bisulfite sequencing, conversion and export as trace file
(scf 3.0).The basis of all trace data provided by the generator are four base
signals built by sums of peaks. Peaks are intensities from a signals S cal-
culated in an interval a cosine function positioned around different positions
p, horizontally stretched by their width w (in signal sampling positions) and
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multiplied by their maximum intensity I.

S(p+ i) =
I
2

+ cos(
2πi
w

)
I
2

; i ∈ [−
w
2

. . .
w
2

] (3.14)

Thereby the internal handling of such built trace data allows shifting complete
four base traces or single base trace information, multiply them by global fac-
tors or intensity profiles, add, subtract, randomize1 or convolve them. This
functionality is used to simulate the following observed trace data character-
istics:

• Different signal intensities and extremely overscaled signals.

• In silico bisulfite conversion including methylation simulation at CpG
positions.

• Decreasing intensity and increasing peak width within proceeding trace
sampling time.

• Pseudo-random variation of height and width of signal peaks.

• Addition of pseudo-random noise from other base signals based on a
linear distribution and a maximum intensity.

• Shifts and/or echos in single or complete signals.

For generation of defined traces based on genomic sequences of amplificates
a specific batch mode was integrated into ESME allowing parameterized def-
initions of characteristics. Examples for generated trace data can be seen in
Fig. 3.3.

1To be reproducible, randomization within trace data generation is performed determinis-
tically based on the simple use of rand in C++.
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A)

B)

C)

D)

E)

F)

G)

H)

I)

J)

Figure 3.3: Examples for generated trace files based on the se-
quence AGCTGCACGTGACTGGATCCTCGTATTAGACCCGACCTGGA-
GATTGAGCTCGTCTGCT with 10 % intensity decrease: A). conversion: 0.
methylation: 1. C signal factor: 1. B). conversion: 1. methylation: 1. C
signal factor: 1. C). conversion: 1. methylation: 0.33. C signal factor: 1. D).
conversion: 1. methylation: 0.33. C signal factor: 6. noise: 10%. E). conver-
sion: 1. methylation: 0.33. C signal factor: 5. F). conversion: 1. methylation:
0.33. C signal factor: 6. variance (h): ±0.2. variance (w): ±0.05. G). conver-
sion: 1. methylation: 0.33. C signal factor: 6. variance (h): ±0.2. variance
(w): ±0.05. shifted methylation: 15. H). conversion: 1. methylation: 0.33.
C signal factor: 6. variance (h): ±0.2. variance (w): ±0.05. convolution
kernel: 0δ, 0.5π; 12δ, 0.3π; -6δ, 0.2π. I). conversion: 1. methylation: 0.33. C
signal factor: 6. noise: 5%. variance (h): ±0.2. variance (w): ±0.05. shifted
methylation: 15. J). conversion: 1. methylation: 0.33. C signal factor: 6.
noise: 5%. variance (h): ±0.2. variance (w): ±0.05. convolution kernel: 0δ,
0.5π; 12δ, 0.3π; -6δ, 0.2π.
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3.3 Results and Discussion

Though convoluted trace data occurs in parts of real data sets and sometimes
biases and destroys data for some sites of interest, the frequency is still so low,
that is is not easy to get useful data sets based on calibration data with known
methylation that shows such phenomena. The main data set for testing and
optimization was therefore artificially generated data.

3.3.1 Parameter optimization

Sampling rates in trace data were on average about 12 data points per base.
Window sizes for local deconvolution turned out to be trade-offs: the shorter a
window, the more likely it is to cover insufficient data, the longer the window,
the more likely is it to cover CpGs that are either not co-methylated or are
already located in regions that would need different kernels. The step sizes
are mainly a trade-off of quality and computing time. We found that a win-
dow size of 240 data points (covering approximately 20 bp) and a shift of 200
(resulting in 40 bp overlap) lead to overall stable results.

Kernel optimization with downhill simplex lead into local minima with
high frequency, when starting with a kernel allowing for k = 3 only, indepen-
dent of other parameters. Kernels with k > 4 did not lead to stable results,
which is consistent with the following observation: in most cases the number
of additional echos beside the main signal observed in trace data were 1 or 2,
in rare cases 3. The use of the iterative process lead to better results. The best
setting tested used a starting kernel with

kstart = 11 , π1 = 0.5 , δ1 = 0
π j = 0.05 and δ j ∈ (−30,−24,−18,−12,−6,6,12,18,24,30) for j ∈ (2...11)

and iteratively reduced k by 2 in four steps down to kend = 3. The starting
kernel covers any echo in distances of half a base around ± 30 data points of
the main signal, the final kernel allows for two additional signal echos.

The third option c) for finding a kernel in the algorithmic step ii turned
out to lead to the best results: first using all signals OA, OG and OY , and then
using the result as initial kernel of a kernel optimization for OY only.
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3.3.2 Deconvolution of generated data
Generated data to simulate different trace quality for 2,142 CpGs at 6 dif-
ferent methylation levels in 20% steps was used to assess the deconvolution
algorithm and compare it to simple analysis with and without signal nor-
malization (see table 3.1 and Fig. 7.2 to 7.8.) In trace data that except for
overscaled cytosine signals shows an idealized profile deconvolution leads to
comparable results as signal normalization. Adding variance in peak height to
the simulation does not significantly changes the outcome, but random noise
by small false signals at all positions leads to worse results using the decon-
volution algorithm, which suggests, that data without signal echos or shift
effects should better be not use deconvolution. As soon as shift effects or
echo effects are simulated, the yield of assessable CpG sites, that can still be
aligned/associated with reference sequences drops. In these cases deconvo-
lution leads to higher yields and smaller errors when measuring methylation.
In the worst case scenarios for shift or echo effects with overscaled cytosine
signal, signal variance and noise, deconvolution is still able to enhance methy-
lation measurements significantly. In case of shift effects it is the only method
that leads to meaningful data in the range of expected methylation levels of
20 to 80%.

3.3.3 Deconvolution of real data
The use of the deconvolution algorithm on real data from 50% methylated
DNA mixtures with partially observed echo and shift effects enhanced the
data quality. The fact that parts of the data were unaffected by shifts/echos
(e.g. the first half of the trace file) were reason to test the algorithm with a
trigger used in each data window deciding whether to locally deconvolve or
not (based on thresholds for a minimum neighbor signal population besides
the main signal, either in a kernel found for A,G,Y or for C). The error rate
was lowered by applying deconvolution, and became better with use of the
trigger (see Fig. 3.4). Signal normalization with local absolute error around
23% using signal normalization only could be reduced to around 13% using
the C kernel based trigger. Examples of trace data fore 50% methylation be-
fore and after deconvolution are available in Fig. 7.12 to 7.14 and examples
demonstrating the influence of deconvolution on shift effects (50% methy-
lated DNA) at data level are shown in Fig. 7.9 to 7.11 in the appendix.

The use of real data from the test system with known methylation that
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no normalization normalization deconvolution
simulated yield MAE SD yield MAE SD yield MAE SD
C=5 100 20.0 0.8 100 3.1 1.8 100 2.3 2.3
C=2,v 100 21.0 1.0 100 3.1 2.3 100 3.3 4.3
C=2,n 86 24.0 2.1 88 2.5 3.0 88 4.7 6.0
C=2,v,e 79 18.0 6.8 98 8.3 8.5 100 5.6 6.5
C=2,v,s 67 15.0 6.8 67 15.3 6.6 98 6.2 6.5
C=2,v,n,e 50 20.0 5.9 83 9.8 9.3 86 7.5 7.7
C=2,v,n,s 53 19.0 4.1 72 20.0 5.0 86 7.6 9.0

Table 3.1: Generated trace data from 6 x 100 amplificates (6 x 2,142 CpG
sites) with methylation rates from 0% to 100% in 20% steps, influence of
different simulation parameters: C cytosine signal overscaled in dependence
of simulated methylation level; 40 x for 0%, 10 x for 20%, 5 x for 40%, 3.3x
for 60%, 2.5 x for 80% and 2 x for 100%, v variance in signal peak height
± 20% and width ±5%, e signal echos with π2 = 0.3, δ2 = 12, π3 = 0.2,
δ3 = −6, s C signal 15 data points shifted to the right, n random noise 0-
5% false base signals for each base, whereby C signal noise multiplied with
factor. The data was analyzed 1. without signal normalization, 2. with signal
normalization 3. with data deconvolution. Data in the table shows yield of
assessable CpGs [%], mean absolute error from expected measurement MAE
[% methylation] and average standard deviation for measurements binned by
expectation value [% methylation]. Corresponding boxplots and histograms
showing results in dependence of simulated methylation rate are found in Fig.
7.2 to 7.8 in the appendix.
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a) b) c) d)

0.0

0.1

0.2

0.3

0.4

0.5

absolute error distributions

Figure 3.4: Boxplot of absolute Errors in Phi DNA 50% methylation mixtures
in G rich sequencing trace data. a) not deconvolved, b) deconvolved, c) par-
tially deconvolved (A,G,Y kernel based decision), d) partially deconvolved
(C kernel based decision).
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showed no shift or echo effects but relatively high noise demonstrated that
for such data the general use of deconvolution reduces data yield and quality
(see table 3.2 and Fig. 3.5). The use of local deconvolution with formally
tested parameters lead to better error, but still to high loss of the data, which
shows that there might be either more parameter optimization necessary or
a completely different approach to a priory detect and deconvolve data with
echos and shift effects only.

N MAE SD
equalized, normalized and corrected 1998 0.1256 0.1364

deconvolved 954 0.1723 0.1871
partially deconvolved 1320 0.1358 0.1890

Table 3.2: Influence of algorithmic steps. Amount of positions measured
(N), mean absolute error (MAE) and standard deviation (SD) in 20% step
methylation mixture calibration data. The first
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Figure 3.5: Estimation of methylation in the test system with known methy-
lation rates. The boxplots show the distribution of the estimated methylation
rates as a function of the expected methylation and the mean absolute er-
ror (dashed line). Each box includes data from CpGs of all 60 amplificates
measured at the expected methylation rate. Data from different algorithmic
steps: a) equalized, normalized and corrected (without deconvolution) b) de-
convolved c) partially deconvolved (decision based on C kernel).
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3.4 Conclusions and Outlook
Only a small portion of trace files from direct bisulfite sequencing show sys-
tematical echos or shift effects due to molecule populations with different
mobility in the electrophoresis. For these data the deconvolution algorithm
presented in this proof of principle is a method that can significantly enhance
the data quality - even for data that any basecaller or visual inspector would
discard for quality reasons. In the case of data that has no need to be de-
convolved, the application of the algorithm does not improve the data and
reduces the yield. Therefore, further improvement of the algorithm to better
detect data in need of deconvolution would be required if one wanted to ap-
ply it more generally. At the time being four facts lead to the decision to not
enhance the algorithm further and include it as a default step when analyzing
trace data: 1. the fact that the observation of the cured phenomena in the data
is rare and therefore plays a minor role; 2. the success of projects on the the
wet lab side increasing data quality (not part of this work); 3. the very re-
stricted amount of real data available to train/improve the algorithm to have a
reliable and stable test system that allows a release for big or even commercial
projects; 4. the highly increased computing time.

Despite this decision, the method could well be adapted and enhanced in
case of new big data sets of trace files that have a high portion of shift/echo
effects. This might be the fact for technical reasons e.g. due to specific tis-
sue sample treatment and/or choice of genomic sites with a bias to DNA se-
quences tending to these effects.
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Chapter 4

Methylation data analysis for the
HEP

In this chapter the Human Epigenome Project (HEP) data, the first world-
wide large scale high resolution data set for methylation at CpG level with
1,885,000 measurements profiling 12 healthy tissues on three chromosomes,
and a pilot study data set based on 6 healthy tissues, are assessed to ad-
dress many questions about DNA methylation and to find answers and the-
ories for: association with genomic functionality, spacial profiles, influence
of CpG density and evolutionary conservation, differential methylation, co-
methylation behavior of CpGs and more. Several content of this chapter will
partially overlap with publications of results of the HEP (Eckhardt et al.,
2006; Rakyan et al., 2004), which were mainly based on data analysis per-
formed in this work.



CHAPTER 4. METHYLATION DATA ANALYSIS FOR THE HEP

4.1 Motivation and Theory
The previous two chapters covered technical aspects that enable high reso-
lution DNA methylation studies by direct bisulfite sequencing, and the opti-
mization thereof. The motivation behind the development of these methods
was their use in large-scale projects concerning methylation data, and ad-
dressing biological questions related to methylation profiling and the behavior
of the epigenetic methylation layer. This chapter will address the following
questions using data based on 43 healthy tissue samples and unique DNA
sequences in regions of interest (ROIs):

• Functional methylation: The methylation of genomic sites is associ-
ated with chromatin density, accessibility of the DNA for proteins and
transcription regulation. Is CpG methylation different in exons, introns,
or around transcription start sites? What is the spatial profile of methy-
lation within these functional regions? What role does the promixity
transcription factor binding sites play? Are there differences between
known and predicted genes? What are the chromosomal methylation
profiles of measured ROIs?

• CpG density/islands: About half of all promoter neighborhoods con-
tain CpG dense regions. How does CpG density influence methylation
profiles? To what extent is it correlated and does it influence functional
methylation?

• Tissue specific methylation: Different tissues have different functions,
proteomes and transcription profiles. How frequently is differential
methylation observed between different tissue types? Is it affected by
including or excluding not yet fully differentiated and/or specific tissue
types such as fetal tissue, sperm and placenta? Where are differentially
methylated sites found?

• Global methylation changes with proceeding age: How does age in-
fluence global methylation in non repeat covering regions? Does it in-
crease or even decrease significantly?

• Autosomal sex specific differential methylation: Is there an autoso-
mal global methylation difference between males and females ? Do we
find sites with significant differential methylation between males and
females?
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• Sequence homology and methylation: Evolutionary conserved re-
gions with higher CpG content found by homology between mouse and
human might be conserved due to functional reasons that are related
to their CpGs, especially outside of the gene context. If differential
methylation could be regarded as evidence for functional methylation,
do conserved sites show more or less differential methylation between
tissues?

• Cell differentiation: Methylation is suspected to play an important role
in cell differentiation. Is there differential methylation and, if so, how
strong is it between closely related differentiated tissues and their fetal
successors?

• Co-methylation: Within a certain number of bases and between certain
boundaries, CpGs might be organized in co-methylated blocks (ComBs)
and show similar methylation behavior due to functional reasons or
the mechanisms controlling their methylation state (see 4.1.1). How
large are these blocks and the distances between CpGs to be expected
to be co-methylated? In what content does CpG density influence co-
methylation?

4.1.1 Co-Methylation
The methylation profiles of CpGs within a certain distance in bases or in prox-
imity based on the DNA three dimensional structure are most probably not
independent. In most cases adjacent CpGs will have a correlated methylation
state; they are co-methylated. Two main factors will influence the methylation
behavior within a short distance: 1. association of CpGs to the same biolog-
ically functional group, 2. mechanisms for methylation and demethylation
addressing whole stretches, e.g. SS1 methylase binding the DNA at a certain
position, wandering along the strand, processing a part and then detaching.
The data obtained by bisulfite sequencing allows the assessment of the co-
methylation structure of CpG methylation over short and long distances.
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Figure 4.1: Simplified model for co-methylated blocks (ComBs) given no
mosaic patterns: CpGs observed in co-methylated blocks showing e.g. 20
(light gray lollipops), 50 (gray) and 70% methylation (dark grey) in average
over all molecules. The blocks are based on different molecule populations
from different cells with unmethylated (white circles) and methylated CpGs
(black). The molecules or their ancestors from parental cells must at one time
have been supplied with the pattern by a methylating mechanism (methylase)
or a demethylating mechanism, that worked along a specific stretch of DNA
and docked/started or undocked/stopped at a given position within the bound-
ary of two ComBs. The blocks are defined by the mechanisms and the lim-
iting boundaries, whereby the boundaries might be based on DNA sequence
patterns or complex factors like spacial behavior of the secondary structure.
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4.2 Materials and Methods

4.2.1 HEP pilot study
It was part of this study to find a simple strategy for choosing locations within
the MHC region of the human chromosome 6 to be used within the pilot
study of the HEP. Locations for methylation profiling in the human MHC were
chosen in 255 regions that are in the context of genes, based on a corrected and
annotated draft of the MHC region based on IHGSC, 2001. These location,
called Regions Of Interest (ROIs), are 2.5 kb in size and can be divided into
two groups:

1. 5’-UTR promoter related ROIs located from 2 kb upstream to 500 bp
downstream of the transcription start site (TSS). Genes that shared pro-
moter regions were represented together only once. For genes with
multiple annotated TSS the first was used (based on 5’ position).

2. Intragenic ROIs covering 2.5 kb fragments with the highest CpG den-
sity located from 500 bp after TSS down to the end of the gene. For
longer genes more than one of these ROIs was designed. For each gene
the amplificate with the highest CpG density was always used, the oth-
ers were optional and ranked by their CpG density.

The following steps after study design and before trace file data analysis were
not the author’s work and either performed at Epigenomics AG in Berlin us-
ing proprietary methods and protocols or at Welcome Trust Sanger Institute
(WTSI) in Cambridge UK. Amplificate design within the ROIs was performed
with Epigenomics’ proprietary in house software (Rujan et al. )1 allowing a
maximum amplificate length of 500 bases. For each ROI where it was pos-
sible we used the amplificate with the most CpGs that lead to PCR products
on bisulfite converted human Lymphocyte DNA (Promega) but did not lead
to products using unconverted DNA. This selection criteria resulted in 253
amplificates that were used in the study.

DNA was extracted from 30 tissue samples representing six tissue groups
(number of samples per group given in brackets): brain (5), breast(6), liver(2),
lung (5), muscle (4), prostate (8). Bisulfite conversion of DNA and PCR with

1patent number DE 102 36 406; "Verfahren zur Amplifikation von Nukleinsäuren mit
geringer Komplexität"; Inventors: T.Rujan, Ch.Piepenbrock, A.Schmitt, P.Adorjan
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conversion product specific primer pairs were performed at Epigenomics. For
each PCR product two direct sequencing reactions and runs from both sides of
the amplificate using one of the PCR primers each were performed at WTSI.

Trace files resulting from sequencing were used as raw data to gain methy-
lation information using Epigenomics’ software ESME that uses an implemen-
tation of the algorithms described in this work (see section 2.2.1). Trace file
analysis was done in parallel at WTSI and at Epigenomics. All IT steps, con-
ception, realization and application for this pilot study, except for the amplifi-
cate design, were performed by the author. Data interpretation presented in
this work used ESME results in tab delimited tables, and in one case MALDI-
TOFF data provided from external partners (CNG, Paris) and the statistical
script language R.

4.2.2 HEP study on chromosome 6, 20 and 22

For the first workpackage of the HEP, amplificates were designed for 2.5 kb
regions of interest (ROIs). Choice of more than 2/3 of the ROIs used the
same strategy as in the pilot study (see section 4.2.1). Additional ROIs in
evolutionary conserved regions (ECR) were chosen by a minimum of 70%
DNA sequence similarity between mouse and human, preferably but not ex-
clusively in non coding intergenic or intronic sites (see table 4.5). Amplificate
design was performed as in the pilot study. The source and handling of cells
and tissue samples, the amplicon selection and classification, DNA extraction,
PCR amplification and sequencing that lead to the data assessed in this work
is described in (Eckhardt et al., 2006). Raw data processing of trace files
to gain DNA methylation data was performed with Epigenomics’ software
ESME a C++ implementation that uses the algorithms previously described in
this work (see section 2.2.1). All sequencing raw data processing, data clas-
sification by mapping to CpG islands, exons, introns, TSS, and all data inter-
pretation shown in this work and in (Eckhardt et al., 2006) was performed by
the author.

4.2.3 Data Interpretation

Methylation data was assessed at different levels of aggregation: CpG wise,
amplificate wise, tissue sample wise, tissue wise. The basic data set with
the highest resolution contains methylation rates for each CpG in every tissue
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sample and is calculated by averaging (median) over all technical repetitions
for each CpG/tissue sample. CpG wise methylation for tissues is calculated
by averaging (mean) CpG data from the basic data set over all tissue sam-
ples from identical tissue origin. Amplificate wise methylation for tissue
samples is calculated by averaging (mean) CpG/sample data from the basic
data set over all CpGs from identical amplificates. Amplificate wise methy-
lation for tissues is calculated by first averaging (mean) CpG data from the
basic data set over all tissue samples from identical tissue origin and second
averaging (mean) over all tissue samples from identical tissue origin. Data
was mapped to genomic annotations obtained from the ENSEMBL database
(Curwen et al., 2004) by chromosomal coordinates: genes, tss, exons, CpG
islands. CpG densities associated to regions were calculated within 500 bp
windows around the center of amplificates.

4.2.3.1 Data quality

In the HEP work package 1 methylation data quality was assessed by analysis
of repetitions. There were three different kinds of repetitions available:

• technical repetitions of the same amplificate/sample/sequencing strand.

• repetitions of the same amplificate/sample PCR product but sequenced
on the reverse complement strand.

• CpG measurements for the same CpG and sample, based on different
overlapping amplificates.

For all three kind of repetitions correlation and differences in measurement
were assessed.

4.2.3.2 Function associated methylation behavior

Methylation data is associated with annotated functions based on distances
of CpGs to specific genomic positions, positions of CpGs between start and
end of an annotation and in case of average amplificate methylation overlap
of the amplificates with annotated regions were used. The annotations came
from ENSEMBL (Curwen et al., 2004) and for gene types from VEGA anno-
tations (Ashurst et al., 2005).
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Most genes lack a clearly defined and biologically confirmed location of
their promoter. Transcription start sites (TSS) on the other hand can be pre-
dicted with high accuracy (Down & Hubbard, 2002). We therefore used re-
gions around the located 2000 bases upstream and 500 bases downstream of
5’ UTR to define promoter associated regions.

The same definitions as used in the choice of regions of interest (ROIs) for
promoter sites (see section 4.2.1). For detailed assessment of different introns
and exons, data was grouped for exon/intron 1,2,3 and as all numbered 4 or
higher, for detailed assessment those groups were binned into thirds to assess
5’ anterior, middle and 3’ rear part. Methylation and average methylation as-
sociated with different functional groups were displayed in profiles (see also
4.2.3.6), histograms, and described in tables. Bimodal distributions of methy-
lation measured in healthy tissue (mainly distributed around 0 and 100%)
were also assessed for different functional groups looking only for strong
hypo-methylation (<= 10%) and strong hyper-methylation (>= 90%).

For CpG island definitions, we used a slightly modified version of the
definition by (Bird, 1986): a GC content of 50%, a ratio of observed to ex-
pected CpGs of 0.6 b and a minimum length of 400 bp (instead of 200 bp as
in the cited definition).

4.2.3.3 Differential methylation

Kruskall-Wallis tests on amplificate wise methylation data were used to de-
termine differential methylation between tissues. Some sites found to be dif-
ferentially methylated between tissues represented by only few tissue samples
were experimentally validated by sequencing of independent DNA samples.
For global estimations of differential methylation occurrence (not for statis-
tical significance of single sites), we defined the amount of p-values smaller
than 0.05 as a good estimate for the amount of differential methylation and
checked whether one would find similar results with resampled data. To do
so, the ratio of p-values from Kruskall-Wallis tests for all amplificates below
a certain threshold (0.05) was compared to the distribution of 1000 analogous
ratios obtained by resampling of the data set (based on sampling of the tissue
annotation). Data obtained from tests and resampling over the complete data
set were split into subgroups based on the genetic context of amplificates to
assess, if occurrence of tissue specific differential methylation is correlated
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by DNA functionality.

Data for two group comparisons (e.g. separated by age or sex) was fil-
tered by samples: related differences were calculated intra-tissue wise only
for tissues that were covered by enough samples to provide groups. In case
of age, data was used only for patients up to age 35 (young) and starting at
age 60 (old). Differential methylation by tests for equality (null hypothesis to
be rejected) of two groups were performed using Wilcoxon tests. CpG wise
methylation differences between tissues or groups were calculated as mean
of all differences between the group averages (mean) for all CpGs. Amplifi-
cate wise methylation differences between tissues or groups were calculated
as mean of all differences between the group averages (mean) for all amplifi-
cates. Unsupervised clustering of methylation data is based on manhattan
distances.

4.2.3.4 Homology between mouse and human DNA

The epigenome of mouse and human is reported to be even conserved on hi-
stone level (Bernstein et al., 2005). We therefore assessed our findings for
differential methylation for all amplificates in different regions with respect
to human mouse homology. Homology between mouse and human DNA se-
quences was calculated as the amount of identical bases in a optimal local
alignment of the human amplificate and the best blast result on the mouse
genome (extended on both sides to fit the amplificate length) divided by the
full length of the amplificate (not only the aligned part). Homology and p-
values found for differential methylation (see 4.2.3.3) were binned by associ-
ated annotations and compared.

4.2.3.5 Co-Methylation

For analysis of co-methylation, the data set was filtered to exclude techni-
cal outliers. Medians of CpGs methylation measurements for the same CpG,
tissue sample and sequencing strand were restricted to those available from
both strands, with a maximum absolute difference of 10% between measure-
ments from the two strands. Based on this criterion, 38% of CpGs were ex-
cluded from the analysis. After filtering the average methylation between
both strands were sued for further analysis. Methylation changes were calcu-
lated as absolute differences between all available pairs of different CpG po-
sitions in the same sample within a given window of 20.000 bases and within
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identical amplificate. For some analyzes the resulting data set was either re-
stricted to differences from adjacent CpG position pairs (no other CpGs in
the sequence in between) and/or to those gained within the same amplificate
(restricting the maximum distance to maximum amplificate length).

Co-Methylation of CpGs was described as function of the distance in
bases displaying either the observed ratio of equal methylation behavior (de-
fined by an absolute difference <= 10 %), as ratio of observed methylation
changes (defined as an absolute difference >= 25%) or as observed average
absolute methylation difference. Long range co-methylation was assessed be-
tween amplificates using identical methods as for CpGs after averaging mea-
surements for each amplificate and sample.

Results were compared with two resampled data sets: 1. Complete resam-
pling: after filtering methylation methylation values within identical samples
were randomly resampled. 2. Resampling of chromosomal start positions of
amplificates: preserving amplificate internal distances and methylation values
(not used for co-methylation between or within amplificates).

4.2.3.6 Profiles of methylation or co-methylation

In this work there are many calculations describing and visualizations dis-
playing tendencies in profiles. The profiles are based on

• absolute positionsi n bases in a coordinate system like chromosomal
position or distances to a TSS.

• relative positions between 0 and 1 to describe the location from be-
gin to end of for example an exon/intron which allows overviews over
multiple entities with different sizes.

In case of boxplots (and histograms), data was binned by coordinate inter-
vals of same size containing different number of measurements. In cases of
dotplots the data was binned into intervals of different sizes but with equal
amount of measurements in each bin: data was first numerical ordered by
the x-axis values, sorted into bins of the desired size (e.g. 1000 data points),
and then represented by means over x and y data. For methylation, these val-
ues in most cases provide the ratio of unmethylated and methylated CpGs,
which represent bimodal distributions with values that are mainly around 0
and 100%.
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4.3 Results and Discussion

4.3.1 Data set overview
4.3.1.1 HEP pilot study data set

A statistical summary for the pilot project is given in the following table 4.1.

n sd
Amplicons analyzed 253
Amplicons in 5’-UTR region 72
Amplicons in intragenic regions 181
Mean amplicon length [bp] 438 65
Maximum amplicon length [bp] 500
Minimum amplicon length [bp] 171
Mean Number of CpGs/amplicon 13 8
Mean G+C content of amplicons 0.56 0.0703
Amplicons with 200 bp window fulfilling CpG island definition 82
Amplicons fulfilling CpG island definitions over the whole sequence 23
Ratio of assessable trace files [%] 81
Mean alignable part of trace files [bp] 339 122
Ratio CpG sites observed/CpG sites expected per amplicon 0.824 0.11
CpG measurements total 134065
Unique CpG sites analyzed 3273
Ratio of unique CpG sites with methylation differences > 20% 0.81
Ratio of unique CpG sites with methylation differences > 50% 0.45
Ratio of CpGs with methylation differences > 20% between tissues 0.41

Table 4.1: Overview over data in the pilot project of the Human Epigenome
Project (HEP) focusing on the Major Histone Complex (MHC) located in
chromosome 6.

4.3.1.2 HEP work package 1 data set

A short summary for the dimensions of the data is given in table 4.2. The
coverage of functional annotations in the genome is described in table 4.3.
Overall methylation measured, amplificate lengths and CpG content are dis-
played in Fig. 4.2. More details of annotations associated with amplificates is
given in Fig. 4.3 to 4.5 and the corresponding tables 4.4 to 4.6.
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n sd
Amplicons analyzed 2,524
Mean amplicon length [bp] 411 77
Mean Number of CpGs/amplicon 16 10
CpGs measured (exclusive unassessable CpGs) 40,386
Tissues assessed 12
Tissue samples used 43
trace files assessed 217,243
CpG raw data measurements 1,885,003
CpG/sample measurements 1,271,004

Table 4.2: Overview over data in the HEP work package 1 of the Human
Epigenome Project (HEP) providing data for chromosome 6, 20 and 22.
Initially the data set included two more tissue samples, which were removed
from the study due to DNA amount problems.
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Table 4.3: HEP work package 1: Overlap of measurable CpG sites and
functional groups within chromosomes 6, 20 and 22. A site is counted
as overlapped/covered if there is at least one measurable CpG within the
location.

6 20 22 All
CpG islands in Chromosome(s) 1070 662 547 2279
CpG Islands covered 256 29 226 511
CpG Islands percentage covered 24 4 41 14
CpGs in CpG islands 7392 1016 8425 16833
Measurements in CpG islands 279167 39974 372431 691572
genes covered 383 401 89 873
CpGs in Genes 14071 8042 2376 24489
Measurements in genes 710062 303212 117275 1130549
exons covered 454 376 23 853
CpGs in exons 6682 3974 176 10832
Measurements in exons 352494 150129 7398 510021
introns covered 465 337 118 920
CpGs in introns 7389 4068 2200 13657
Measurements in introns 357568 153083 109877 620528
TSS sites 2500 upstream covered 186 230 31 447
CpGs in TSS 2500 upstream 4743 4171 467 9381
Measurements in TSS 2500 upstream 214775 157799 19823 392397
CpGs in complete data set 21672 13072 5642 40386
Measurements in complete data set 1075938 524227 284838 1885003
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Figure 4.2: HEP work package 1 data characteristics. a) Length of the 2,524
amplificates used in the HEP (411 ± 77 sd in average.) b) Distribution of
40,386 CpGs in the amplificates (16 ± 10.8) c) Distribution of all 1,271,044
CpG/sample methylation measurements in chromosome 6, 20 and 22 based
on 1,885,003 raw data measurements that were generated with 217,243 trace
files used with DNA from 45 tissue samples.
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Figure 4.3: HEP work package 1, chromosome wise distribution of CpG sites
in exons, introns and potential promoter regions (TSS associated) in and out of
CpG islands. Left plot: Chromosomes � 6 � 20 � 22. Right plot: Annotated
functions � exon � exon (island) � intron � intron (island) � other � other
(island) � promoter � promoter (island). Data corresponds to table 4.4.

Table 4.4: HEP work package 1, chromosome wise distribution of CpG
sites in exons, introns and potential promoter regions (TSS associated) in
and out of CpG islands. Corresponding data to Fig. 4.3.

20 22 6 Sum
exon 79 3522 810 4411
exon (island) 33 1295 205 1533
intron 1996 2790 761 5547
intron (island) 321 1167 827 2315
other 2231 1703 167 4101
other (island) 236 1047 50 1333
promoter 320 5232 3942 9494
promoter (island) 426 4916 6310 11652
Total 5642 21672 13072 40386
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Figure 4.4: HEP work package 1, chromosome wise distribution of CpG
sites in exons, introns and potential promoter regions (TSS associated) sorted
by reason of their choice: gene association, evolutionary conserved regions
(ECR), methylation sensitive tag (MeST), transcription factor binding site or
other. Left plot: � 6 � 20 � 22. Right plot: � exon ECR � exon Hu-
man Gene � exon Human VEGA Gene � exon other � exon TF-Binding
Site � intron ECR � intron Human Gene � intron Human VEGA Gene �

intron MeST � intron other � intron TF-Binding Site � intergenic ECR �

intergenic Human VEGA Gene � intergenic other � intergenic TF-Binding
Site � promoter ECR � promoter Human Gene � promoter Human VEGA
Gene � promoter MeST � promoter other � promoter TF-Binding Site. Data
corresponds to table 4.5.

Table 4.5: HEP work package 1, chromosome wise distribution of CpG
sites in exons, introns and potential promoter regions (TSS associated)
sorted by reason of their choice: gene association, evolutionary con-
served regions (ECR), methylation sensitive tag (MeST), transcription
factor binding site or other. Corresponding data to Fig. 4.4.

20 22 6 Sum
exon ECR 112 0 0 112
exon Human Gene 0 0 548 548
exon Human VEGA Gene 0 4700 467 5167
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Table 4.5: HEP work package 1, chromosome wise distribution of CpG
sites in exons, introns and potential promoter regions (TSS associated)
sorted by reason of their choice: gene association, evolutionary con-
served regions (ECR), methylation sensitive tag (MeST), transcription
factor binding site or other. Corresponding data to Fig. 4.4.

20 22 6 Sum
exon other 0 29 0 29
exon TF-Binding Site 0 88 0 88
intron ECR 2242 0 0 2242
intron Human Gene 0 0 624 624
intron Human VEGA Gene 0 3638 964 4602
intron MeST 75 0 0 75
intron other 0 138 0 138
intron TF-Binding Site 0 181 0 181
other ECR 2467 0 0 2467
other Human VEGA Gene 0 1783 217 2000
other other 0 521 0 521
other TF-Binding Site 0 446 0 446
promoter ECR 547 0 0 547
promoter Human Gene 0 0 879 879
promoter Human VEGA Gene 0 9233 9373 18606
promoter MeST 199 0 0 199
promoter other 0 130 0 130
promoter TF-Binding Site 0 785 0 785
Total 5642 21672 13072 40386
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Figure 4.5: HEP work package 1, chromosome wise distribution of CpG sites
in different types of gene annotations. Left plot: � 6 � 20 � 22. Right plot:
� Ig Pseudogene Segment � Ig Segment � Known � Novel CDS � Novel
Transcript � Processed pseudogene � Pseudogene � Putative � Unprocessed
pseudogene � no Type. Data corresponds to table 4.6.

Table 4.6: HEP work package 1, chromosome wise distribution of CpG
sites in different types of gene annotations. Corresponding data to Fig.
4.5.

20 22 6 Sum
Ig Pseudogene Segment 0 209 0 209
Ig Segment 0 564 0 564
Known 2854 7817 8830 19501
Novel CDS 109 6066 2164 8339
Novel Transcript 107 1767 1134 3008
Processed pseudogene 5 0 13 18
Pseudogene 0 1540 48 1588
Putative 169 1525 822 2516
Unprocessed pseudogene 6 0 25 31
no Type 2392 2184 36 4612
Total 5642 21672 13072 40386
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4.3.2 HEP work package 1 data quality

The number of purely technical repetitions in this study (15,655 data pairs)
was comparably small to the number of repetitions by reverse strand sequenc-
ing (557,837 data pairs): technical repetitions were only done at the beginning
of the study (working on chromosome 22) and were not originally planned, re-
verse sequencing was planned for all amplificates throughout the study. Over-
lapping amplificates (91,528 data pairs) mainly occurred due to overlap of bi-
ological functions (e.g. genes) that were both covered by amplificates.

The correlation of the three types of repetitions are: 0.9 for technical repe-
titions, 0.87 for for reverse strand sequencing and 0.85 for repeated measure-
ments for CpGs in overlapping amplificates. Correlation scatterplots, corre-
lated data binned in boxplots, distributions of differences and median methy-
lation measured for the three repetition data subsets can be found in Fig. 4.7,
4.8 and 4.9.

The observed correlations fulfill our expectations: purely technical se-
quencing of identical amplificates on the same strand is expected to lead to
trace files with identical systematical technical biases and artifacts (as far as
existing) and is therefore expected to correlate best. Sequencing results from
the reverse strand were slightly better correlated than we expected: CpGs are
assessed by G/A signals on the reverse strand of bisulfite converted DNA in-
stead of C/T signals on the sense strand, trace files contain positions assessed
in reverse order showing opposite decreasing signal intensity and different in-
dividual systematical trace profiles. Despite these technical differences still
62% of the data pairs showed methylation differences <= 10%. Sequencing
results from overlapping amplificates do not only come from a different region
sequenced with different primers but also are based on another PCR product
with different primers and potentially a slightly different PCR bias (as far as
existing).

Methylation data in this study shows bimodal distributions around 0 and
100%, which could in theory be based on biases in the technical method.
Comparison of methylation data from sequencing with comparable data from
other technical methods shows identical profiles. An example from the pi-
lot study is seen in Fig. 4.6, where data from direct sequencing is compared
with methylation data measured on a MALDI-TOFF. Though other technolo-
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gies might themselves not be a golden standard, we expect bimodal data most
likely to be based on biology and not on artifacts in our method.

The overall performance and technical variation of methylation measure-
ment in this study lead to a reliable data set to answer most of our questions.
In cases were light changes in methylation played an important role in data
interpretation (co-methylation), we used medians of data measured on both
strands with less than 10% methylation difference.

A compact graphical overview over the complete data of the work package
over all amplificates, tissues and chromosomes is given in Fig. 4.10, includ-
ing chromosomal profiles for CpG density, fragment coverage and gene den-
sity. Extended versions of these figures are found in the appendix: Fig. 7.15
to 7.17. Spacial methylation profiles on chromosomes for methylation data
measured for different tissue types are found in Fig. 7.18 but are most likely
biased by our design criteria and not representative for the chromosomes.
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Figure 4.6: Bimodal distributions of CpG methylation measurements from
a) sequencing/Esme analysis and b) MALDI-TOFF. a) Methylation based
on 86,374 single CpGs in different tissue samples (median for technical repe-
titions). b) Methylation based on 614 MALDI-TOFF measurements.
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Figure 4.7: Technical repetitions, based on 15,655 data pairs which have
identical sequencing strand, sample DNA, amplificate and CpG but were mea-
sured in independent technical repetitions. The correlation was 0.9. Top left:
scatter plot of repetitions. Top right: boxplots of correlated methylation
data pairs binned into 50 groups. Bottom left: Differences of methylation
measurements of pairs. Bottom right: Methylation distribution of the sub-
set of the data covered by the repetitions used in this analysis.
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Figure 4.8: Comparison of sequencing strand based data pairs, based on
557,837 data pairs, which have identical sample DNA, amplificate and CpG
but were measured either by sequencing the cytosine poor strand from PCR
after bisulfite conversion or the guanine poor reverse strand. The correlation
was 0.867. Top left: scatter plot of repetitions. Top right: boxplots of
correlated methylation data pairs binned into 50 groups. Bottom left: Dif-
ferences of methylation measurements of pairs. Bottom right: Methylation
distribution of the subset of the data covered by the repetitions used in this
analysis.
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Figure 4.9: Measurement repetitions by overlapping amplificates, based
on 91,528 data pairs which have identical sequencing strand, sample DNA
and CpG but were measured in different overlapping amplificates that cov-
ered the identical CpG. The correlation was 0.85. Top left: scatter plot of
repetitions. Top right: boxplots of correlated methylation data pairs binned
into 50 groups. Bottom left: Differences of methylation measurements of
pairs. Bottom right: Methylation distribution of the subset of the data cov-
ered by the repetitions used in this analysis.
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Figure 4.10: Chromosome 6, 20 and 22: On top of each chromosome the
relative density of annotated genes (red) and fragments assessed (blue) are
given. CpG densities are color coded in the bar below from � 0, � 0.005,
� 0.01, � 0.015 to � 0.02. Associated methylation matrices for averaged
methylation for tissue and amplificate are given from � 0% over � 50% to �

100%. Extended versions of these plots including a higher resolution map of
the chromosome are found in Fig. 7.15 to 7.17 in the appendix.
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4.3.3 Function associated methylation
4.3.3.1 Distribution of methylation

Methylation measured in healthy tissue shows bimodal distributions, this was
found independent in pilot study (Fig. 4.11) and in the work package 1 of
the HEP (chromosome 22 data as example in Fig. 7.29). The fact that not all
CpGs in an amplificate are co-methylated leads to smoother data, when aver-
aging all CpGs over amplificates, but preserves the bimodal distribution. The
majority of CpGs tends either to be highly hypo- or hypermethylated. In this
work a more stringent definition is used than in (Eckhardt et al., 2006) (see
section 4.2.3.2). In intragenic regions 62% of all measured CpGs fall into the
extremes, this will be discussed in more detail in section 4.3.3.2.

Both, pilot study and work package 1 show, that tendencies to and di-
rection of methylation are highly dependent on CpG density and biological
function of the region. In general CpGs in CpG islands outside of repeats (as
assessed in the HEP) tend to be hypomethylated, especially in promoter as-
sociated regions (71% hypermethylation versus 3% hypomethylation around
TSS ± 1000bp), where almost no hypermethylation is observed. Regions
with a CpG density > 7% show almost no hypermethylation and those > 10%
are all hypomethylated (see Fig. 4.13). The high mutation rate of methylated
CpGs that tend to spontaneous deamination (Duncan & Miller, 1980) proba-
bly puts a high pressure on regions with such high CpG density: at least in
germ line cells they will have to be unmethylated in order to be preserved. The
mechanism that prohibits methylation at such sites might be strong enough to
influence the methylation state also within all somatic tissues.
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Figure 4.11: CpG methylation distributions by region. a) The bimodal
distributions of methylation in promoter related regions (red) and intragenic
regions (blue) are compared. b) Bimodal distributions of measurements from
intragenic regions are split into groups by their distance to the gene start.
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Figure 4.12: Histogram of amplificate methylation measured in Chromo-
some 22. The data is averaged amplificate methylation per tissue. Data is
shown grouped by CpG island and promoter association. Top left: promoter
and CpG island associated amplificates. Top right: CpG island associated but
not in promoter. Bottom left: not CpG island but promoter associated. Bot-
tom right: neither CpG island nor promoter associated. Amount of data per
histogram given in brackets. Similar distributions for data from chromosome
6, 20 and for the complete data set are found in Fig. 7.29, 7.30 and 7.31.
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Figure 4.13: Methylation in dependency of CpG density. Measurement points
are average amplificate methylation over all Tissues. Red circles are based on
measurements that are CpG island associated. Data displayed per chromo-
some 6: 677, chromosome 20: 551, chromosome 22: 1189.
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4.3.3.2 Methylation in promoters, exons and introns

Methylation of CpGs and amplificates that are located in promoter associated
regions (from -2000 to 500 bp around TSS), inside exons or introns showed
clear differences. In promoter associated regions hypomethylation dominated.
When assessing methylation on CpG level around TSS we found that there is
a strong symmetrical hypomethylation around the TSS beginning within ±
2000 bp (see Fig. 4.14 top left). This methylation profile reaches a bottom
around TSS ± 1000 bp with 62% hypomethylation, 8% hypermethylation.
The effect was even stronger in case of verified Sp1 transcription factor bind-
ing sites (Cawley et al., 2004) within amplificate range (Sp1, see Fig. 7.25)
and/or CpG island (CpGI) association (see Fig. 7.26); TSS ± 1000 Sp1:
76%/1%, TSS ± 1000 CpGI: 71%/3%, TSS ± 1000 Sp1/CpGI: 78%, 0%.
The very small effect found for Sp1 neither confirms former reports of the
influence of methylation on those transcription factor binding sites (Mancini
et al., 1999; Clark et al., 1997) nor confirms the articles stating the opposite
(Holler et al., 1988; Harrington et al., 1988). It could be a coincidence: TSS
annotation used for the analysis might well be more accurate if transcription
factor binding sites are present.

Exons and introns after exon 1 and intron 1 which were in clear spacial
proximity to the TSS and tended to be hypomethylated (exon 1: 54% hypo-,
16% hypermethylated, intron 1: 54%/13%), showed a growing tendency to
be hypermethylated, especially in exons, with raising number and distance to
the TSS, which was stronger for exons from exon 2: 23% hypo-, 43% hy-
permethylated, intron 2: 14%/34%, exon 3: 4%/60%, intron 3: 13%/44%
to exon 4+: 3%/58%, intron 4+: 15%/43%. The differences for 3 and 4+
are small and it is most likely that exons as well as introns after a certain
distance from TSS show in average similar profiles. Interestingly exons and
introns show different profiles and statistically highly significant differences
(for statistics see table 4.7). Introns contain a 4 to 5 times higher percentage
of hypomethylated CpGs than exons and less hypermethylated CpGs, and the
methylation profile tends to decrease a bit with increased distance to the flank-
ing exons while the spacial methylation profile in exons stays pretty much at
the same level (see Fig. 4.3.3.2 top right and bottom).

Hypomethylation is often associated with open chromatin structure, which
provides access to the DNA, allowing regulation, transcription and more. The
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strong tendency of regions around TSS and statistical evident more frequent
hypomethylation in introns compared to exons suggests that it might play a
role to allow access to these sites, to primarily allow transcription, whereby
sites in introns might hint to alternative transcription start sites. Exons on
the other hand are mainly conserved for their coding functionality and might
therefore contain less elements playing a role in regulative processes. The
high mutation rate of methylated CpGs by spontaneous deamination seems
contradictory to the fact that coding parts in genes show the highest ratio of
hypermethylated methylated sites, inclusive the triplet CGA that might well
mutate to a stop codon. Though the following hypothesis is speculative: It
might well be that stability gained by dense packed chromatin structure for
non regulative regions might be of higher importance for the overall chromo-
somal organization than the influence of locally higher mutation rates might
cause problems.

Sorting the data into groups of predicted/novel and known genes leads
to methylation profiles that with stronger tendencies in known genes but in
principle identical findings (see Fig. 7.27 and table 7.3) in the appendix. This
might indicate that a majority of novel/predicted genes could be functional.
More detailed information about hypo- and hypermethylation around TSS and
in genes associated with different annotated genetic functionality/properties is
listed in table 7.1 to 7.10 in the appendix.

Table 4.7: Wilcoxon tests for CpG methylation in introns versus exons.

groups N1 mean1 sd1 N2 mean2 sd2 p-value
exon 1 vs. intron 1 58753 0.296 0.375 74307 0.282 0.36 8.5e-05
exon 2 vs. intron 2 18791 0.639 0.397 38243 0.652 0.344 2.22e-16
exon 3 vs. intron 3 10892 0.843 0.235 11070 0.708 0.342 0
exon 4 vs. intron 4 33146 0.84 0.231 41708 0.685 0.353 0
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Figure 4.14: Methylation profiles in genes based on CpG methylation for all
tissues, gene/TSS associated data only. Top: profiles binning sorted data into
bins of 1000 measurements. Data around TSS (yellow, top left) is plotted
by base distance to TSS. Data within gene (top right) shows average methy-
lation of 1000 measurement in numbered exons (green) and introns (blue)
given in relative positions (from 5’ start to 3’ end) to allow a summary of data
over all genes though exon and intron sizes differ. Each point in the plots on
top is the mean over the 1000 measurements. Due to the bimodal nature of
the data, each point represents the tendency for the data to either be hypo-
or hypermethylated, which is shown by the corresponding histograms in the
middle. Middle: Corresponding methylation distributions to above, the data
around the TSS (middle left) is binned into 2000 bp intervals with borders at
-5000, -3000, -1000, 1000, 3000 and 5000 bp. Data in the gene is shown for
each numbered exon/intron. Bottom: Boxplots of data binned by base posi-
tions around TSS and by functional regions within gene, thereby dividing each
exon/intron into three parts. 284,141 measurements around TSS and 286,920
measurements within genes. Proportions of hypo- and hypermethylation can
be found in tables 7.1 and 7.2 in the appendix.
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4.3.4 Tissue specific differential methylation

The loci for methylation measurements in this study were either chosen by
gene context or evolutionary conservation combined with a preferably high
CpG density. Repeats are not covered. Intergenic sites are only chosen by
conservation and are underrepresented in the data. The data set is therefore
biased which has to be considered for all statements and findings in this sec-
tion.

The average tissue methylation over all CpGs of the HEP work pack-
age 1 (’global’ methylation for functional sites) was at minimum 43.8% for
fibroblasts to 50.9% at maximum for CD8+ lymphocytes (see right labels
of Fig. 4.15). Though sperm DNA showed the second lowest methylation
(45.6%) neither sperm, nor placenta or fetal tissues showed strong tendencies
to be more or less globally unmethylated or methylated. Within this range, at
the lower end fibroblasts are outstandingly low methylated with a difference
of 1.8% methylation to sperm. The highest average methylation was mea-
sured in lymphocytes and liver (including fetal liver) and there is a gap of
1.3% methylation to the next tissue. Strong similarity of related tissues like
CD4+ lymphocytes and CD8+ lymphocytes or liver and fetal liver, show that
these findings are unlikely to be random. For CD4+ and CD8+ these findings
are consistent with the very close relation of their expression profiles (Zeng
et al., 2004). These differences hint that there might be strong tissue spe-
cific differences in methylation of functional sites that can be observed even
at global level.

The effect size of differential methylation (d.m.) between tissue, was
assessed by absolute methylation differences of paired data from CpGs in dif-
ferent tissues were averaged (see Fig. 4.16). It shows clearly that sperm has
the most different methylation patterns compared to all others (ranging from
17 to 20% methylation difference). It also confirms that related tissues tend to
show the lowest differences: different lymphocytes show the smallest differ-
ences, followed by heart muscle and skeletal muscle. Interestingly placenta
and liver tend to show little differences to muscles.

The efficiency of methylation to differentiate tissues can be seen, us-
ing unsupervised clustering (see Fig. 4.17 for data from chromosome 22,
from HEP work package 1). Within the data set, the single sperm sample is
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the outlier. Other samples clearly cluster in blocks of their tissues (except
for melanocytes). Fetal samples are close to their parental tissues. Similar
differential methylation behavior can be observed in the data from the pilot
study (see Fig. 4.18), demonstrating the same on a different sample/tissue set.
These results clearly suggest that methylation has tissue specific profiles that
can well distinguish and identify different healthy tissues.

To measure the frequency of differential methylation in our data set we
used CpG wise kruskal-wallis test over the whole data set and used differ-
ent p-values as thresholds to estimate the ratio of differentially methylated
sites. This was done for the whole data set and for a reduced data set that
excluded sperm, placenta and fetal tissues (see Fig. 4.19). Comparison of
the found ratios with comparable data from 1,000 resampling show that the
findings cannot be random: the found ratios are far distant from the resam-
pling data. A p-value threshold of 0.05 would suggests that up to half of all
CpGs assessed show d.m. This is of course only a valid statement for a global
overview. The study dimensions with very high number of features (CpGs)
and a comparably low number of samples do not allow the assignment of
meaningful statistics to defined single CpGs.

A similar approach with data subsets assessing the frequency of differen-
tial methylation in dependence of genomic functions (see Fig. 4.20) shows
that non coding, mainly intronic evolutionary conserved regions (ECRs) clearly
have the highest ratio of dm (around 75%). CpG island associated regions in
and outside of promoters show the lowest rate within the data set (around
25%) far from non conserved exons and introns (around 44%) and non CpG
island associated sites in promoter and intergenic regions (around 56%). This
finding is consistent with other studies using restriction landmark genomic
scanning (Shiota et al., 2002; Costello et al., 2002).

First these findings show clearly that tissue specific differential methyla-
tion is no longer a phenomena observed only at few sites and between few
tissues so far (Shiota, 2004) but is very frequent and strong. It therefore must
either play an important role in the programming of the different cell types
biology or at least be correlated with it, which is consistent with the fact that
tissue specific differential methylation is reported to be associated with gene
expression (Song et al., 2005). Second it raises the question if methylation
as mechanism for transcriptional control might not primarily be located in the
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CpG dense regions around TSS and promoter sites, where hypomethylation
could well have the more general function to keep the chromatin structure
open and the region accessible - independent of up or down regulation of
transcription. Third it strongly suggests that CpGs in conserved non coding
regions are conserved due to variable tissue specific methylation based func-
tionality that needs.

Figure 4.15: Average over all methylation differences between tissues based
on matched CpGs. The color codes from yellow (0) to blue (7.5 %). Average
CpG methylation per tissue over the whole data set is given on the right.
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Figure 4.16: Average absolute methylation differences between tissues, based
on matched CpGs. The color codes from blue (5%) to red (20%). Average
CpG methylation per tissue over the whole data set is given on the right.

dissertation Jörn Lewin page 99



CHAPTER 4. METHYLATION DATA ANALYSIS FOR THE HEP

Figure 4.17: Colored methylation plot, chromosome 22. Color codes from
� 0% over � 50% to � 100% methylation. White parts lack measurement
data. Y axis: genomic sites ordered by chromosomal position. X axis: Tis-
sue type. Horizontal dimension group descriptors: A) Tissue Color codes correspond to
the tissue types given at the bottom of the plot. Vertical dimension group descriptors: B)
Amplificate type � Pseudogene � Putative � Known � no Type � Novel CDS � Novel
Transcript � Ig Segment � Ig Pseudogene Segment . C) CpG island state � NOT island �

is island . D) Amplificate subtype � exon � other � promoter � intron . E) Amplificate
karyotype � G-band � R-band .
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Figure 4.18: Hierarchical clustering of methylation data from HEP pilot
project. Each column is a tissue sample, each row a CpG position. 301 CpGs
are plotted. The 24 best marker regions showing differential methylation were
used. Clustering: Positions without measurements were reduced in 25 steps
with decreasing thresholds alternating deletion of rows and columns with too
many empty positions. The final maximum of empty positions was 16%. Ma-
trix positions still lacking measurements (white positions) were filled with
average rates over all samples for that CpG. Clustering was performed in both
dimensions based on euclidean distances. The color bar on the top identifies
the tissue type given in the legend left of it, the color bar on the left identifies
the sequences region given in the legend on its bottom.
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Figure 4.19: Kruskal Wallis test based ratios of marker candidates [%] for
tissue based differential methylation in 2,524 amplificates (CpG data averaged
over amplificates). The blue histograms show occurrence of ratios found by
1,000 x resampling, the red line shows the percentage of potential markers
found in the original data (full data set), the green line shows the percentage
based on a reduced data set excluding all low represented and special tissue
groups (fetal tissues, placenta and sperm removed). Four p-value thresholds
were used: 0.05, 0.01, 0.005 and 0.05 corrected for multiple testing by 2,524
amplificates in the data set.
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Figure 4.20: Rates of tissue specific differential methylation markers candi-
dates on amplificate averaged methylation data. Marker candidates were de-
fined as amplificates where a Kruskal Wallis test lead to uncorrected p-values
<= 0.05. The data was split into different groups. Plots were sorted descend-
ing by percentage of marker candidates. Red lines show the percentage of
markers found for the group of interest. Grey lines show the percentage of
markers found for other groups. Blue histograms are distributions of rates
found by 1,000 x resampling of tissue definitions of the data.
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4.3.5 Differential methylation and mouse homology
One important group of sites chosen and analyzed in the HEP were non coding
evolutionary conserved regions (ECRs) based on human/mouse homology.
They turned out to be the sites with the highest frequency of tissue specific
methylation observed in this study (see Fig. fig:samplings in section 4.3.4).
For more than 70% of all fragments in ECRs an uncorrected p-value <= 0.05
was found. The human/mouse homology of amplificates was compared with
p-values from Kruskal Wallis tests using methylation data on CpG level split
into subsets based on different function relations of the amplificates (see Fig.
4.21).

We found that promoter associated sites and introns have a comparable
level of homology but show more differential methylation (d.m.) in introns.
Exons show in average more homology than promoter and intron associated
sites, but a similar level of d.m. as introns. The higher grade of conservation
in exons is based on the coding functionality and does not seem to influence
the intragenic level of d.m. The ECRs show the highest grade of conservation
(which was criterion for their choice) and also the highest rate of differential
methylation. ECRs were almost exclusively chosen in non coding regions, in
introns and intergenic sites that in some cases were hundreds of megabases
apart from the next annotated gene. This suggests that the most direct and
less biased group for comparison with ECRs possible are intronic sites. A
separate comparison of d.m. and conservation of ECRs and intronic regions
on CpG data level is displayed in Fig. 4.22. This data supports the theory
that evolutionary conservation (of non coding regions with high CpG density)
is highly correlated to d.m. and that such sites probably play a role that is
important enough to be conserved.
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Figure 4.21: Comparison of homology and differential methylation on
CpG level. Corresponding boxplots of amplificate human/mouse homology
(yellow) and corresponding p-values from Kruskal Wallis tests (grey) for tis-
sue specific methylation (data on CpG level) are plot side by side. The data
was split into four groups containing data associated with promoters, introns,
exons and evolutionary conserved regions (ECRs). The percentage of CpGs
below a certain p-value threshold are given on top of each of the four groups.
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Intronic sites ECR and non-ECR Intronic sites ECR and non-ECR

Intron ECR 74 % < 0.05

Intron, non-ECR 47% < 0.05

Figure 4.22: Histograms of homology and differential methylation in evo-
lutionary conserved regions and intronic sites. The left plot shows the
distribution of the human/mouse homology, the right plot shows the distribu-
tion of p-values from Kruskal Wallis tests, assessing the tissue specific d.m.
on CpG level. Data from intronic amplificates is displayed in red, data from
ECRs is displayed in blue.
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4.3.6 Cell differentiation and age

Unsupervised clustering of the full data set from HEP work package 1 (see
section 4.3.4) already showed that fetal tissues cluster close but not within
their adult tissues. This finding is supported by clustering of two data subsets
reduced to liver respectively muscle tissue. Fetal skeletal muscle is closer to
adult skeletal muscle than to heart muscle (see Fig. 4.23). Within the liver
data set the fetal tissue is clearly the outlier, though within the data set for
chromosome 22 it was right next to liver and heart muscle (see Fig. 4.17). Fe-
tal tissues tend to already show similar but not identical methylation profiles
as their parental tissues. This observation supports the theory that methylation
plays an important role in cell differentiation: the methylation profile and its
correlated biological functions are on their way to the final state but partially
need to be different to allow biological functionality specific for their devel-
opmental status.

Samples in different age groups or from patients with different sex did not
cluster. In addition there is no evidence that global DNA methylation tends
to systematically raise or get lower with proceeding age (see Fig. 4.24). The
amount of 130,904 paired measurements and 10,000 x resampling of the data
to simulate a distribution of random findings clearly shows that the very low
average methylation difference between old and young is within a very tight
random distribution and might well be found by chance. Paired data of old and
young is highly correlated. Wilcoxon tests on amplificate level did not find
any statistical significant data for age group specific differential methylation,
neither in liver nor in muscle. Within these tissues and the locations assessed
we can not find any systematical increase in methylation next to genes as pre-
viously reported (Issa et al., 1994) (Issa et al., 1996). For global methylation
which was reported to decline (Wilson et al., 1987) the missing coverage of
regions with repeats does not allow any statements.

This does not mean that global methylation alterations even with tendency
to hyper- or hypomethylation with progressing age are impossible: First, the
tissues we used for the analysis might simply not be affected by such changes,
other tissues might well behave completely different. Second, there might be
chromosome specific different methylation behavior in other chromosomes
that 6, 20 and 22. Third, regions we did not asses in our study, like for ex-
ample repeats, especially those with high CpG density, might behave com-
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pletely different. But it is most unlikely that some kind of mechanism or
loss of control for methylating mechanisms leads to a significantly raised or
lowered level of methylation in any tissue and at random CpG sites genome
wide. More likely potential methylation changes in progressing age introduce
more variance and more unspecific patterns as reported from comparisons of
methylation patterns for aging monozygotic twins (Fraga et al., 2005). But
the average level of methylation seems to be stable.

Sex specific methylation was neither found as global methylation ten-
dency in the data (no X chromosomal data), nor by statistical testing for dif-
ferential methylation on CpG or amplificate level within our data set, despite
the power to find differential methylation as demonstrated for tissues specific
differential methylation. Sex specific methylation in autosomes might there-
fore in general be rare.

0

0

0

H
ea

rt 
m

us
cl

e 
(o

) M
H

ea
rt 

m
us

cl
e 

(y
) M

H
ea

rt 
m

us
cl

e 
(y

) F
H

ea
rt 

m
us

cl
e 

(y
) M

H
ea

rt 
m

us
cl

e 
(o

) M
H

ea
rt 

m
us

cl
e 

(o
) M

Fe
ta

l s
ke

le
ta

l m
us

cl
e 

 M
S

ke
le

ta
l m

us
cl

e 
(o

) F
S

ke
le

ta
l m

us
cl

e 
(o

) M
S

ke
le

ta
l m

us
cl

e 
(o

) F
S

ke
le

ta
l m

us
cl

e 
(y

) M
S

ke
le

ta
l m

us
cl

e 
(y

) M
S

ke
le

ta
l m

us
cl

e 
(y

) M
S

ke
le

ta
l m

us
cl

e 
(o

) F
S

ke
le

ta
l m

us
cl

e 
(o

) M
S

ke
le

ta
l m

us
cl

e 
(o

) M

12
14

16
18

All muscle tissue samples

H
ei

gh
t

0 sex

0 age

0

0

Fe
ta

l l
iv

er
  M

Li
ve

r (
y)

 M

Li
ve

r (
o)

 M

Li
ve

r (
o)

 M

Li
ve

r (
o)

 F

Li
ve

r (
o)

 M

Li
ve

r (
o)

 F

Li
ve

r (
y)

 M

Li
ve

r (
y)

 M

15
16

17
18

19
20

21
22

Liver samples

H
ei

gh
t

0 sex

0 age

Figure 4.23: Unsupervised clustering on muscle and liver tissues. Age groups
are color coded as � old � young, sex is color coded as � female � male. In
addition age group and sex are at the end of sample names: (o) for old, (y) four
young, M for male and F for female. Clustering based on euclidean distances
between methylation of 11,001 (muscle) and 16,104 CpGs (liver). The differ-
ent data set sizes are caused by filtering of CpGs that lacked measurements
for one or more of the samples.
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Figure 4.24: Influence of age on global DNA methylation. a) Scatter plot of
130,943 paired mean methylation, each point is an averaged methylation of an
individual CpG measured in a specific tissue that was present in samples from
old and young persons. Correlation: 0.959. b) Distribution of age associated
with samples sorted in groups defined as old: 68.2 (8.17SD) and young: 25.8
(4.38SD). Intermediate age was discarded from this subset. In 57,455 cases
methylation was higher in older group, in 58,893 cases the difference was vice
versa. c) Distribution of differences of paired measurements. d) Distribution
of mean methylation differences between old and young. 10,000 x intra tis-
sue age group resampling . The red line marks the average methylation of
-0.00275 found in the original data. In 17% of all cases the differences found
by resampling were smaller than the original average, in 83% they were big-
ger. The blue line shows the differences between the sexes (male - female)
in the same data set. The green line is the biggest measured tissue specific
difference of CD8+ lymphocytes and fibroblasts.
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4.3.7 Co-Methylation
Within the data of the HEP, methylation was often observed to be organized
in co-methylated blocks of CpGs (ComBs) that could be identified by methy-
lation changes at borders between ComBs and that often were differentially
methylated ComBs. An example is given in Fig. 4.25.

The data from the pilot study suggested that within a range of 500 bp and
therefore within amplificates used in the HEP there is a very high probability
to find identical methylation behavior of CpGs. Data from the work pack-
age 1 with overlapping and neighbor amplificates allows analysis on CpG and
on amplificate level (see Fig. 4.26). Blocks of co-methylated CpGs seem to
reach maximum sizes of about 2000 bp, but rarely. In most cases blocks sizes
will be below 500 bp. In cancer much longer parts have been observed to be
co-methylated (Xu et al., 1999; Frigola et al., 2006). The difference is prob-
ably due to the loss of the fine controls regulating the methylation profiles
within cancerogenesis.

The probability to observe the same methylation behavior of two CpGs
is not only dependent on distance, but probably based on the fact whether
CpGs share a functional domain with certain properties especially properties.
There is strong evidence, that CpG density is one important parameter that in-
fluences co-methylation (see Fig. 4.27), which could mean that CpG islands
often are single functional blocks of co-methylated CoMBs and that smaller
blocks share CpGs that are locally spacial organized in blocks (as found in
many examples in this study when examining intra-amplificate methylation
on CpG level). Longer distances of two neighbor CpGs (which means with-
out any other CpG in between) leads to a much stronger increasing possibility
to have a methylation change >= 25% (which is per definition the end of any
ComB) than longer distances with CpGs in between.

In general the high density data gained by sequencing shows that in many
cases the measurement of a single CpG might well be used to characterize
whole regions - given the prior knowledge of co-methylation or a probability
estimate. Functional/regulatory and structure influencing methylation is not
methylation of single CpGs, CpG islands or other arbitrary regions, but the
smallest meaningful entity is the ComB.
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Figure 4.25: Co-Methylated blocks of CpGs (ComBs) showing tissue specific
differential methylation. Local groups of CpGs show identical methylation
behavior that at the borders of the ComBs change. The data within this ex-
ample could be described by the methylation state of four ComBs: CpG 1-5,
6-7, 8-10, 11-14. This example was chosen because of the high number of
ComBs in a short stretch of DNA sequence. In most examples data within
one amplificate contained only one border between blocks.
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Figure 4.26: Co-Methylation. Red: original data, grey: data based on re-
sampling, green: data based on resampling of amplificate positions in the
chromosomes.
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Figure 4.27: Co-Methylation of CpGs and neighbor CpGs. Observation of
equal methylation and methylation changes. Data is binned by CpG density
quantiles from red (low CpG density) over yellow and green to blue (high
CpG density).
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Conclusions and outlook

So far the HEP has been a successful and very interesting study that pro-
vided data in an amount and resolution formerly not available. The devel-
opment of the algorithm enabling the HEP gave us a stable and reliable tool
to analyze raw data. The large amount of high-resolution data enabled us to
describe methylation in human DNA in a general but also detailed way. There
is more information hidden in the data already available, answering questions
that were not the topic of this work, about methylation and about its role as
one mechanism interacting with others. Integration of the HEP data with other
biological data, proteomics data, expression data, gene network information,
and data from other epigenetic layers will provide new insights into cell biol-
ogy. Ongoing activities in the HEP (Eckhardt et al., 2004) will add more data.

The high frequency of tissue specific differential methylation, especially
at evolutionary conserved non coding sites - sometimes far away from known
genes, and the characteristic methylation profiles around the TSS, suggest
that methylation is even more important and more interesting than expected.
Though the results from the HEP so far are important, it is still just one short
episode amongst others at the beginning of the detailed understanding of this
epigenetic layer. Many unanswered questions remain, that will need further
data and analysis.

Besides high throughput sequencing based on the Sanger method, new
and more powerful technologies have become and will become available, en-
abling the rapid and concurrent genome wide methylation profiling of many
sites, such as established platforms for differentially methylated hybridiza-
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tion (DMH). New and other Human Epigenome Projects will be able to add
further data (Jones & Martienssen, 2005). However so far few of these tech-
nologies provide data at CpG level resolution and without gaps over complete
regions. New sequencing technologies might soon fill the gap and generate
huge amounts of data. Until then, the HEP data might for some time be an
important data set, that can help to answer questions that need such level of
data. At some point in the future it might be enough to measure single CpGs
or complete blocks of CpGs at once, given the knowledge that they represent
one co-methylated and functional block.

Currently still few information is available. Upcoming high-resolution
data might enable better analysis and description of co-methylated blocks
(ComBs), which could be used to train and verify ComB predictors based
on DNA sequence or other correlated properties. After such or similar ap-
proaches it will be possible to map measurements from other technologies
to such blocks and to describe genome wide profiles that cover all functional
sites. Such a step might enable us to understand the machinery controlling the
methylation of DNA in a better way. For example, what property identifies
the borders of a ComB that needs to be either methylated or demethylated at
some time point in cell differentiation?

The author is in pleasant anticipation of future findings in this field of cell
biology and regrets that there is no more time to answer all these questions by
himself or better yet in co-operation with others in the world wide scientific
community. Nevertheless the author encourages everybody to use the HEP
data, to profit from its findings and ideas mentioned in this work, or to contact
him personally to discuss related topics.
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APPENDIX

7.1 Variable definitions
Variables defined for deconvolution of trace data:

OB observed trace signals (with echos) for base B
OB(t) observed trace signals (with echos) for base B at time t
O′

B model for observed trace signals for base B
O′

B(t) model for observed trace signals for base B at time t
FB deconvolved and normalized signal of base B
FB(t) deconvolved and normalized signal of base B at time t
MB model for ideal trace signal of base B
MB(t) model for ideal trace signal of base B at time t
B ∈ (A,C,G,T,Y) bases of DNA
fB unknown signal intensity factor of the

signal of base B before normalization
k number of molecule populations with different mobility
πi ∈ [0,1] proportion of DNA population i, i ∈ (1...k)
δi shift population of i, i ∈ (1...k)
HB kernel for deconvolution of OB
EB energy describing discrepancy between model and data,

for base B
E energy describing discrepancy between model and data,

to be minimized
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7.2 Plots
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Figure 7.1: Comparison of methylation measurements obtained from di-
rect bisulfite sequencing with MALDI. a) Methylation rates at CpGs from
forward and reverse sequencing compared to corresponding MALDI mea-
surements, by binning the sequencing based rates into 10 bins from 0 to 1
based on the corresponding MALDI based methylation measurements. b)
Methylation rates from MALDI compared to corresponding measurements
from forward and reverse sequencing, by binning the MALDI data into 10
bins from 0 to 1 based on the corresponding sequencing based methylation
measurements. Red lines show the means of the binned rates, bars show the
standard deviations.
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Figure 7.2: Generated data (600 traces from 100 amplificates with six differ-
ent methylation rates simulated, linear C signal overscaling): A) unnormal-
ized, B) normalized, C) deconvolved
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Figure 7.3: Generated data (600 traces from 100 amplificates with six differ-
ent methylation rates simulated, non linear C signal overscaling, noise): A)
unnormalized, B) normalized, C) deconvolved
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Figure 7.4: Generated data (600 traces from 100 amplificates with six dif-
ferent methylation rates simulated, non linear C signal overscaling, random
intensities): A) unnormalized, B) normalized, C) deconvolved
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Figure 7.5: Generated data (600 traces from 100 amplificates with six dif-
ferent methylation rates simulated, non linear C signal overscaling, random
intensities, convolved): A) unnormalized, B) normalized, C) deconvolved
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Figure 7.6: Generated data (600 traces from 100 amplificates with six dif-
ferent methylation rates simulated, non linear C signal overscaling, random
intensities, shifted): A) unnormalized, B) normalized, C) deconvolved
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Figure 7.7: Generated data (600 traces from 100 amplificates with six dif-
ferent methylation rates simulated, non linear C signal overscaling, random
intensities, convolved, noise): A) unnormalized, B) normalized, C) decon-
volved
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Figure 7.8: Generated data (600 traces from 100 amplificates with six dif-
ferent methylation rates simulated, non linear C signal overscaling, random
intensities, shift, noise): A) unnormalized, B) normalized, C) deconvolved

dissertation Jörn Lewin page 125



CHAPTER 7. APPENDIX

 a)  b)  c)  d)

Figure 7.9: Methylation matrix plot example 1 of measurements from se-
quencing 50% methyalted DNA. a) not deconvolved, b) deconvolved, c) par-
tially deconvolved (A,G,Y kernel based decision), d) partially deconvolved
(C kernel based decision).

 a)  b)  c)  d)

Figure 7.10: Methylation matrix plot example 2 of measurements from se-
quencing 50% methyalted DNA. a) not deconvolved, b) deconvolved, c) par-
tially deconvolved (A,G,Y kernel based decision), d) partially deconvolved
(C kernel based decision).
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 a)  b)  c)  d)

Figure 7.11: Methylation matrix plot example 3 of measurements from se-
quencing 50% methyalted DNA. a) not deconvolved, b) deconvolved, c) par-
tially deconvolved (A,G,Y kernel based decision), d) partially deconvolved
(C kernel based decision).
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Figure 7.12: Deconvolved trace data example 1 for 50% methylated DNA.
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Figure 7.13: Deconvolved trace data example 2 for 50% methylated DNA.

Figure 7.14: Deconvolved trace data example 3 for 50% methylated DNA.
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Figure 7.15: Chromosome 6: On top of each chromosome the relative den-
sity of annotated genes (red) and fragments assessed (blue) are given. CpG
densities are color coded in the bar below from � 0, � 0.005, � 0.01, � 0.015
to � 0.02. Associated methylation matrices for averaged methylation for tis-
sue and amplificate are given from � 0% over � 50% to � 100%. The detail
map below the methylation matrix shows CpG density profiles as described
above but and highlights regions with genes (grey) and fragments assessed
(black) that were part of the data described in this work.
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Figure 7.16: Chromosome 20: On top of each chromosome the relative den-
sity of annotated genes (red) and fragments assessed (blue) are given. CpG
densities are color coded in the bar below from � 0, � 0.005, � 0.01, � 0.015
to � 0.02. Associated methylation matrices for averaged methylation for tis-
sue and amplificate are given from � 0% over � 50% to � 100%. The detail
map below the methylation matrix shows CpG density profiles as described
above but and highlights regions with genes (grey) and fragments assessed
(black) that were part of the data described in this work.
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Figure 7.17: Chromosome 22: On top of each chromosome the relative den-
sity of annotated genes (red) and fragments assessed (blue) are given. CpG
densities are color coded in the bar below from � 0, � 0.005, � 0.01, � 0.015
to � 0.02. Associated methylation matrices for averaged methylation for tis-
sue and amplificate are given from � 0% over � 50% to � 100%. The detail
map below the methylation matrix shows CpG density profiles as described
above but and highlights regions with genes (grey) and fragments assessed
(black) that were part of the data described in this work.
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Figure 7.18: Chromosomal methylation profiles in spacial coordiante system
differentiating different tissue types. These profiles are most likely biased by
our design criteria and not representative for the chromosomes. Color coding:
� heart muscle � skeletal muscle � liver � sperm � fetal liver � placenta
� fibroblasts � keratinocytes � CD8+ lymphocytes � CD4+ lymphocytes �

fetal skeletal muscle � melanocytes
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Figure 7.19: Colored methylation plot, chromosome 6. Color codes from
� 0% over � 50% to � 100% methylation. White parts lack measurement
data. Y axis: genomic sites ordered by chromosomal position. X axis: Tissue
type. Horizontal dimension group descriptors: Tissue Color codes correspond to the tissue
types given at the bottom of the plot. Vertical dimension group descriptors: C) CpG island
� NO island � is island. D) Amplificate subtype � promoter � exon � other � intron.
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Figure 7.20: Colored methylation plot, chromosome 6. Color codes from �

0% over � 50% to � 100% methylation. White parts lack measurement data.
Y axis: genomic sites ordered by average methylation. X axis: Tissue type.
Horizontal dimension group descriptors: Tissue Color codes correspond to the tissue types
given at the bottom of the plot. Vertical dimension group descriptors: C) CpG island state
� NO island � is island. D) Amplificate subtype � intron � promoter � exon � other.
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Figure 7.21: Colored methylation plot, chromosome 20. Color codes from
� 0% over � 50% to � 100% methylation. White parts lack measurement
data. Y axis: genomic sites ordered by chromosomal position. X axis: Tissue
type. Horizontal dimension group descriptors: Tissue Color codes correspond to the tissue
types given at the bottom of the plot. Vertical dimension group descriptors: C) CpG island
state � NO island � is island. D) Amplificate subtype � promoter � other � intron �

exon.
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Figure 7.22: Colored methylation plot, chromosome 20. Color codes from
� 0% over � 50% to � 100% methylation. White parts lack measurement
data. Y axis: genomic sites ordered by average methylation. X axis: Tissue
type. Horizontal dimension group descriptors: Tissue Color codes correspond to the tissue
types given at the bottom of the plot. Vertical dimension group descriptors: C) CpG island
state � NO island � is island. D) Amplificate subtype � exon � intron � other � promoter.
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Figure 7.23: Colored methylation plot, chromosome 22. Color codes from
� 0% over � 50% to � 100% methylation. White parts lack measurement
data. Y axis: genomic sites ordered by average methylation. X axis: Tissue
type. Horizontal dimension group descriptors: A) Tissue Color codes correspond to the
tissue types given at the bottom of the plot. Vertical dimension group descriptors: C) CpG
island state � No island � is island. D) Amplificate subtype � promoter � other � exon
� intron.
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Figure 7.24: Colored methylation plot, Ig segments in chromosome 22
only. Color codes from � 0% over � 50% to � 100% methylation. White
parts lack measurement data. Y axis: genomic sites ordered by chromosomal
position. X axis: Tissue type. Horizontal dimension group descriptors: Tissue Color
codes correspond to the tissue types given at the bottom of the plot. Vertical dimension group
descriptors: B) Amplificate type � Ig Segment � Ig Pseudogene Segment. D) Amplificate
subtype � other � promoter � exon � intron.
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Figure 7.25: Methylation distribution based on CpG methylation in different
gene types and all tissue types. Data was grouped by TF binding site classi-
fication: Within TSS regions 13,344 measurements were associated with TF
binding sites (263,593 were not), in genes 9,994 measurements could be as-
sociated with binding sites, (272320 not). Details and numbers of high and
low methylated proportions are available in table 7.5 and 7.6.
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Figure 7.26: Methylation distribution based on CpG methylation in different
gene types and all tissue types. Data was grouped by CpG island classifica-
tion, whereby withinin genes 74,063 measurements were available inside and
232,962 outside of CpG islands, in TSS regions it was 46,662 in islands and
232,962 outside. Details and numbers of high and low methylated proportions
are available in table 7.7 and 7.8.
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Figure 7.27: Methylation distribution based on CpG methylation in differ-
ent gene types and all tissue types. Data was grouped by known genes
and novel/predicted genes: 157,995 measurements for known genes around
TSS (91,740 for novel), and 160,324 for known genes within the gene body
(83,317 for novel). Details and numbers of high and low methylated propor-
tions are available in table 7.3 and 7.4.
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Figure 7.28: Methylation distribution based on CpG methylation in different
gene types and all tissue types. DAta was grouped by TF binding site and
CpG island association. Data within TSS regions: 69,360 in islands, 9,342
TF associated, 4,002 both, 192,103 neither island, nor TF associated. Data
within genes: 44,744 in islands, 8,288 TF associated, 1,706 both, 220,280
neither island, nor TF associated. Data within genes: Details and numbers
of high and low methylated proportions are available in table 7.9 and 7.10 in
the appendix. Individual profiles grouping the data only by CpG island or TF
binding site are found in Fig. 7.25 and 7.26.
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Figure 7.29: Methylation distribution in Chromosome 6. Average amplificate
methylation levels per tissue (7487 total). Data is shown grouped by CpG
island and promoter association.
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Figure 7.30: Methylation distribution in Chromosome 20. Average amplifi-
cate methylation levels per tissue. Data is shown grouped by CpG island and
promoter association.
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Figure 7.31: Methylation distribution (all data). Data is shown grouped by
CpG island and promoter association.
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Figure 7.32: Co-Methylation, long distance between amplificates.
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CpGs with p−values <= 0.05 from kruscal wallis tests
 based on original data set and on bootsrapping
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Figure 7.33: Ratio of tissue specific methylated CpGs found to be significant
(p value ≤ 0.05) with Kruskal Wallis tests in MHC data from Esme 3.0.0.
Tests were performed CpG wise. Bootstrapping was performed 1000 times
conserving correlation structures and the size and amount of groups by sam-
pling index vectors assigning original data to samples. The histogram is based
on the bootstrapping values, the vertical line is at the position of the real ratio
of significant CpGs in the data.
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7.3 Tables

Table 7.1: Table for gene data. Complete data.

methylation 10% 90%
all gene data 31 31
1 exon 54 16
1 exon 0 - 1/3 55 15
1 exon 1/3 - 2/3 55 15
1 exon 2/3 - 1 52 18
1 intron 54 13
1 intron 0 - 1/3 62 8
1 intron 1/3 - 2/3 43 13
1 intron 2/3 - 1 26 37
2 exon 23 43
2 exon 0 - 1/3 23 46
2 exon 1/3 - 2/3 20 45
2 exon 2/3 - 1 28 37
2 intron 14 34
2 intron 0 - 1/3 30 23
2 intron 1/3 - 2/3 7 38
2 intron 2/3 - 1 4 42
3 exon 4 60
3 exon 0 - 1/3 2 62
3 exon 1/3 - 2/3 4 57
3 exon 2/3 - 1 6 62
3 intron 13 44
3 intron 0 - 1/3 11 49
3 intron 1/3 - 2/3 19 34
3 intron 2/3 - 1 9 49
4 exon 3 58
4 exon 0 - 1/3 3 62
4 exon 1/3 - 2/3 2 58
4 exon 2/3 - 1 7 52
4 intron 15 43
4 intron 0 - 1/3 11 49
4 intron 1/3 - 2/3 23 33
4 intron 2/3 - 1 12 44

Table 7.2: Table for tss data. Complete data.

methylation <10% >90%
all TSS data 51 17
-5000 to -3000 42 24
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Table 7.2: em (continued)

methylation <10% >90%
-3000 to -1000 31 27
-1000 to 1000 62 8
1000 to 3000 27 35
3000 to 5000 19 42
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Table 7.3: Table for gene data. Known and novel classification.

group Known gene new/predicted
group Known gene new/predicted
methylation < 10% > 90% < 10% > 90%
all gene data 36 28 29 36
1 exon 58 13 46 22
1 exon 0 - 1/3 60 10 43 25
1 exon 1/3 - 2/3 57 13 50 20
1 exon 2/3 - 1 56 15 46 22
1 intron 56 12 55 14
1 intron 0 - 1/3 67 5 60 11
1 intron 1/3 - 2/3 41 13 52 10
1 intron 2/3 - 1 29 37 11 47
2 exon 25 41 13 51
2 exon 0 - 1/3 22 48 21 49
2 exon 1/3 - 2/3 29 36 6 55
2 exon 2/3 - 1 25 35 19 46
2 intron 26 28 12 42
2 intron 0 - 1/3 36 20 20 34
2 intron 1/3 - 2/3 15 34 3 51
2 intron 2/3 - 1 4 50 9 44
3 exon 3 62 1 63
3 exon 0 - 1/3 2 62 1 66
3 exon 1/3 - 2/3 4 62 2 54
3 exon 2/3 - 1 3 63 2 69
3 intron 11 47 30 33
3 intron 0 - 1/3 4 63 35 28
3 intron 1/3 - 2/3 16 40 41 18
3 intron 2/3 - 1 12 40 9 58
4 exon 3 55 2 64
4 exon 0 - 1/3 2 60 3 66
4 exon 1/3 - 2/3 1 54 2 65
4 exon 2/3 - 1 8 49 2 60
4 intron 15 42 10 51
4 intron 0 - 1/3 14 44 1 66
4 intron 1/3 - 2/3 16 40 27 28
4 intron 2/3 - 1 16 41 4 56

Table 7.4: Table for tss data. Known and novel classification.

group Known gene new/predicted
group Known gene new/predicted
methylation < 10% > 90% < 10% > 90%
all TSS data 57 12 43 23
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Table 7.4: em (continued)

group Known gene new/predicted
-5000 to -3000 51 19 37 30
-3000 to -1000 43 20 12 39
-1000 to 1000 66 6 60 10
1000 to 3000 37 24 14 49
3000 to 5000 26 36 13 50

Table 7.5: Table for gene data. TF binding site classification.

group no TF TF
methylation < 10% > 90% < 10% > 90%
all gene data 31 31 38 22
1 exon 54 16 76 1
1 exon 0 - 1/3 55 14 85 0
1 exon 1/3 - 2/3 55 15 75 1
1 exon 2/3 - 1 52 18 61 3
1 intron 53 13 62 7
1 intron 0 - 1/3 62 8 74 1
1 intron 1/3 - 2/3 43 13 40 13
1 intron 2/3 - 1 27 38 18 38
2 exon 23 43 10 62
2 exon 0 - 1/3 23 46 13 71
2 exon 1/3 - 2/3 20 44 12 55
2 exon 2/3 - 1 28 36 0 53
2 intron 15 34 4 37
2 intron 0 - 1/3 31 23 1 38
2 intron 1/3 - 2/3 8 38 6 37
2 intron 2/3 - 1 4 42 1 37
3 exon 3 61 29 32
3 exon 0 - 1/3 2 63 27 37
3 exon 1/3 - 2/3 4 58 21 34
3 exon 2/3 - 1 4 63 38 24
3 intron 13 45 10 13
3 intron 0 - 1/3 11 50 9 8
3 intron 1/3 - 2/3 19 34 11 44
3 intron 2/3 - 1 9 49
4 exon 3 58 12 48
4 exon 0 - 1/3 2 62 14 40
4 exon 1/3 - 2/3 2 58 4 61
4 exon 2/3 - 1 7 52 20 36
4 intron 15 43 19 35
4 intron 0 - 1/3 11 49 10 35
4 intron 1/3 - 2/3 24 33 28 32
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Table 7.5: em (continued)

group no TF TF
4 intron 2/3 - 1 12 44 17 39

Table 7.6: Table for tss data. TF binding site classification.

group no TF TF
methylation < 10% > 90% < 10% > 90%
all TSS data 51 17 63 8
-5000 to -3000 42 24 54 10
-3000 to -1000 31 28 35 18
-1000 to 1000 62 8 76 1
1000 to 3000 28 35 13 45
3000 to 5000 20 42 6 35

Table 7.7: Table for gene data. CpG island classification.

group no island CpG island
methylation < 10% > 90% < 10% > 90%
all gene data 27 34 57 15
1 exon 52 16 62 14
1 exon 0 - 1/3 55 14 58 14
1 exon 1/3 - 2/3 52 17 72 6
1 exon 2/3 - 1 49 17 60 20
1 intron 49 17 69 2
1 intron 0 - 1/3 60 10 72 1
1 intron 1/3 - 2/3 38 16 64 1
1 intron 2/3 - 1 18 46 56 6
2 exon 20 44 38 37
2 exon 0 - 1/3 23 42 24 53
2 exon 1/3 - 2/3 16 47 45 25
2 exon 2/3 - 1 21 41 58 19
2 intron 13 34 52 22
2 intron 0 - 1/3 31 22 55 11
2 intron 1/3 - 2/3 5 39 92 0
2 intron 2/3 - 1 4 41 7 76
3 exon 1 64 30 32
3 exon 0 - 1/3 1 66 21 25
3 exon 1/3 - 2/3 1 62 32 33
3 exon 2/3 - 1 1 66 36 38
3 intron 14 43 9 57
3 intron 0 - 1/3 12 51 11 32
3 intron 1/3 - 2/3 21 34 13 41
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Table 7.7: em (continued)

group no island CpG island
3 intron 2/3 - 1 10 43 8 72
4 exon 2 60 16 46
4 exon 0 - 1/3 2 63 9 60
4 exon 1/3 - 2/3 1 59 11 49
4 exon 2/3 - 1 4 56 33 17
4 intron 12 45 56 10
4 intron 0 - 1/3 7 52 52 7
4 intron 1/3 - 2/3 20 34 63 14
4 intron 2/3 - 1 11 45 52 8

Table 7.8: Table for tss data. CpG island classification.

group no island CpG island
methylation < 10% > 90% < 10% > 90%
all TSS data 46 20 66 6
-5000 to -3000 43 24 37 25
-3000 to -1000 24 34 62 3
-1000 to 1000 59 10 71 3
1000 to 3000 23 38 42 23
3000 to 5000 17 44 40 13

Table 7.9: Table for gene data. TF binding site assessment, CpG island
grouping.

group in island NO island TF in island TF outside island
methylation < 10% > 90% < 10% > 90% < 10% > 90% < 10% > 90%
all gene data 56 15 27 34 71 0 31 27
1 exon 62 14 52 16 88 0 68 1
1 exon 0 - 1/3 57 14 55 14 89 0 82 0
1 exon 1/3 - 2/3 70 7 52 17 92 0 61 1
1 exon 2/3 - 1 61 19 49 17 72 3 56 3
1 intron 69 2 49 17 66 0 60 10
1 intron 0 - 1/3 72 1 59 11 78 0 73 1
1 intron 1/3 - 2/3 65 1 38 16 48 1 32 26
1 intron 2/3 - 1 56 6 18 47 0 0 18 40
2 exon 38 38 20 43 77 0 6 65
2 exon 0 - 1/3 24 53 23 41 13 71
2 exon 1/3 - 2/3 44 26 17 46 77 0 0 65
2 exon 2/3 - 1 58 19 21 41 0 53
2 intron 52 22 13 34 4 37
2 intron 0 - 1/3 55 11 32 21 1 38
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Table 7.9: em (continued)

group in island NO island TF in island TF outside island
2 intron 1/3 - 2/3 92 0 5 40 6 37
2 intron 2/3 - 1 7 76 4 41 1 37
3 exon 26 38 1 64 50 0 0 77
3 exon 0 - 1/3 14 30 1 66 56 0 0 72
3 exon 1/3 - 2/3 31 37 1 62 39 0 0 75
3 exon 2/3 - 1 32 48 1 65 52 0 0 92
3 intron 10 59 15 43 5 4 13 20
3 intron 0 - 1/3 12 37 12 52 5 4 14 12
3 intron 1/3 - 2/3 13 41 21 34 11 44
3 intron 2/3 - 1 8 72 10 43
4 exon 16 46 2 60 12 48
4 exon 0 - 1/3 9 60 2 63 14 40
4 exon 1/3 - 2/3 11 49 1 59 4 61
4 exon 2/3 - 1 33 17 4 57 20 36
4 intron 56 10 12 46 19 35
4 intron 0 - 1/3 52 7 7 53 10 35
4 intron 1/3 - 2/3 63 14 20 34 28 32
4 intron 2/3 - 1 52 8 10 45 17 39

Table 7.10: Table for tss data. TF binding site assessment, CpG island
grouping.

group in island NO island TF in island TF outside island
methylation < 10% > 90% < 10% > 90% < 10% > 90% < 10% > 90%
all TSS data 65 6 46 20 78 0 56 12
-5000 to -3000 39 23 42 25 54 10
-3000 to -1000 62 3 23 35 73 2 30 20
-1000 to 1000 71 3 59 10 78 0 74 1
1000 to 3000 42 23 23 38 13 45
3000 to 5000 40 13 18 44 6 35
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