Herstellung und Untersuchung halogenhaltiger Aluminiumalkoxide

Dissertation

Zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie und Bio- und Werkstoffwissenschaften der Universität des Saarlandes

von

Nils Köhler

Saarbrücken 2007

meiner Frau Sybille

Tag des Kolloquiums04.04.2008DekanProf. Dr. U. MüllerBerichterstatterProf. Dr. M. Veith
Prof. Dr. T. Eicher

Die vorliegende Arbeit wurde in der Zeit von September 2004 bis Dezember 2007 am Institut für Anorganische Chemie der Universität des Saarlandes unter der Anleitung von Herrn Prof. Dr. M. Veith angefertigt.

Meinem verehrten Lehrer, Herrn Prof. Dr. M. Veith, danke ich herzlich für die Bereitstellung des interessanten Themas, für die stete Diskussionsbereitschaft und für die Schaffung angenehmer Arbeitsbedingungen. Bei folgenden Personen möchte ich mich ebenfalls herzlich bedanken, da sie mich in dieser Zeit tatkräftig unterstützt haben, mir wissenschaftlich zur Seite gestanden haben und somit auch zum Gelingen dieser Arbeit beigetragen haben:

Herrn Dr. Volker Huch danke ich für die Röntgenstrukturanalysen, Herrn Dr. Michael Zimmer für die Aufnahme der VT-¹HNMR-Spektren und Festkörper-NMR-Spektren.

Frau Helga Feuerhake danke ich für die CHN-Analysen und die Metall- und Halogengehaltsbestimmungen.

Herrn Dipl.-Ing. Cenk Aktas danke ich für die Hilfe zur Durchführung des LASER-Experiments, Herrn Dipl.-Ing. Michael Bender für EDX- und REM-Messungen, Frau Aude Haettich für TEM-Messungen.

Des Weiteren möchte ich mich bei Dr. Daniel Himmel aus dem Arbeitskreis von Herrn Prof. Dr. Ingo Krossing (Universität Freiburg) für die computerchemischen Berechnungen danken.

Herrn Dr. Andreas Rammo danke ich für die gewissenhafte Durchsicht dieser Arbeit.

Weiterhin gilt mein Dank allen ehemaligen und jetzigen Kollegen des Arbeitskreises, die stets für eine freundliche und oftmals erheiternde Arbeitsatmosphäre gesorgt haben. Insbesondere gilt dabei mein Dank Dr. Yann Wolf, Dr. Christian Petersen, Dr. Hinka Hreleva-Caparotti, Dr. Thorsten Voigt, Dr. Peter König, Dorothea Loytved, Daniela Summa, Amadou Lathyr Ndiaye, Dr. Eung-Chul Yu, Dr. Markus Ehses, Carsten Bubel und meinen Laborkollegen David Kolano, Tatjana Kirs und Hammed Ullah Wazir.

Für Reparaturarbeiten, Sonderanfertigungen und Besorgungen danke ich dem technischen Personal des Instituts: Herrn Herrmann Recktenwald, Frau Sylvia Beetz und Armin Kempf (Werkstatt), Herrn Günther Müller und Frau Evelyn Altmeyer (Chemikalienlager).

Zum Schluss möchte ich mich bei meiner Familie und meinen Freunden bedanken, die mich in dieser Zeit außerhalb des Labors begleitet und aufgemuntert haben. Besonders meiner Frau Sybille danke ich recht herzlich für ihre Geduld, Aufmerksamkeit und den Rückhalt, den sie mir auch während der Anfertigung dieser Arbeit gegeben hat.

Kurzzusammenfassung

Die vorliegende Arbeit baut auf den Eigenschaften der Verbindung [H₂Al(O^tBu)]₂ auf. In der Synthese dient es u.a. als Reduktionsmittel, im CVD-Prozess als Precursor zur Darstellung metastabiler HAIO- und Al/Al₂O₃-Zusammensetzungen.

Im ersten Teil werden experimentelle Untersuchungen dimerer halogenhaltiger Aluminiumalkoxide behandelt. Dabei wird speziell die Darstellung halogenhaltiger *tert.*-Butoxyaluminiumderivate $[XAl(X)(O'Bu)]_2$ mit X, X'= Cl, Br und I, sowie X= Cl, Br und I und X'= H) aus den jeweiligen Blei(II)-halogeniden und $[H_2Al(O'Bu)]_2$ untersucht. Die Verbindungen wurden spektroskopisch analysiert und röntgenographisch charakterisiert. Die Alkoxyalane $[XAl(H)(O'Bu)]_2$ weisen aufgrund ihrer Prochiralität am Aluminium Unterschiede im Festkörper und in Lösung auf. Aus diesem Grund wurden parallel noch weitere Darstellungsmethoden durch Alkoholyse und Dismutation zum Vergleich der Produktbildung angewandt. Zur Interpretationshilfe der experimentellen Analysedaten wurden zudem theoretische Berechnungen durchgeführt. Außerdem wurde das Verhalten prochiraler dimerer Aluminiumalkoxide in Lösung an weiteren röntgenographisch charakterisierten Verbindungen $[ClAl(R)(O'Bu)]_2$ (R = Me, O'Bu) untersucht.

Im zweiten Teil wurde das leichtflüchtige Alkoxid [ClAl(H)(O^tBu)]₂ als Single-Source-Precursoren im LPCVD-Prozess untersucht, wobei die Zersetzungsreaktionen durch Massenspektroskopie verfolgt wurden.

Das durch $[ClAl(H)(O'Bu)]_2$ entstandene quartäre Schichtsystem aus den Elementen Cl-Al-H-O ist dabei von besonderem Interesse. Mittels ERAS konnte gezeigt werden, dass es sich formal nicht um eine hydroxidische Schichtzusammensetzung handelt, sondern um eine hydridische Aluminiumoxochloridschicht. Durch den zusätzlichen Eintrag von Chloratomen in HAlO ergeben sich so neue chemische und physikalische Eigenschaften.

Abstract

The presented thesis is build up on the properties and applications of the compound $[H_2Al(O'Bu)]_2$. In synthesis it serves as a reducing agent and as precursor cvd-process it is used for the preparation of metastabile HAIO- and Al/Al₂O₃-compositions.

In the first part experimental investigations of dimeric halogen containing aluminium alkoxides are examined. Thereby especially the preparation of halogen containing *tert*.-butoxyaluminium derivates $[XAl(X)(O'Bu)]_2$ with X, X'= Cl, Br and I, as well as X= Cl, Br, I and X'= H) by the respective lead(II)-halides and $[H_2Al(O'Bu)]_2$ are investigated. These compounds could be characterized by spectroscopic methods and by single-crystal determination. The alkoxyalanes $[XAl(H)(O'Bu)]_2$ feature differences in solid state and in

solution due to the pro-chirality at the aluminium atom. On this account further preparation methods in form of alcoholyis reaction and scrambling reaction have been accomplished to compare the product formation. To interpret the data of the experimental analysis methods, theoretical calculations have been carried out. Moreover the behaviour in solution of further prochiral dimeric aluminium alkoxides, like $[ClAl(R)(O'Bu)]_2$ (R = Me, O'Bu), has been investigated. These compounds could be characterized by single-crystal determination as well.

In the second part the volatile compound $[ClAl(H)(O^{t}Bu)]_{2}$ was investigated as precursors in the LPCVD-process (*low-pressure-chemical-vapour-deposition*). The current decomposition reaction is pursued by mass-spectrometry.

The originated quartary layer-system Cl-Al-H-O by $[ClAl(H)(O'Bu)]_2$ is of particular interest. By ERAS-analysis it could be shown, that it's not about an aluminiumhydroxide composition of the layer, but an aluminiumoxochloride compososition where the hydrogen atom is bonded to the aluminium atom. Hence new chemical and physical film properties arise from an additional insertion of chlorine atoms in HAlO-composition.

Abkürzungsverzeichnis	. <i>IV</i>
1 EINLEITUNG	1
1.1 Bis[tertButoxyaluminiumdihydrid] [H ₂ Al(O ^t Bu)] ₂ 1 und dessen Anwendungen 1.2 Aufgabenstellung und Zielsetzung	4
	10
2 LITEKATUKUBEKSICHT	.13
2.1 Halogenalane und deren Adukte [X _{3-n} AlX _n [*] nD0] (X=Cl, Br, 1/ n=1,2) 2.2 Aluminiumalkoxide und Aluminiumamide [X ₂ AlOR] _n und [X ₂ AlNR ₂] _n	10
3 FRGERNISSE UND DISKUSSION (TEILI) SYNTHESE)	25
3.1 Binäre Alkoxyaluminiumhalogenide des Typs [X ₂ Al(O ^t Bu)] ₂ (X=Cl, Br, I)	. 25
3.1.1 Synthese und Eigenschaften	
3.1.1.1 Bis[<i>tert</i> butoxvaluminiumdichlorid] [Cl ₂ Al(O ^t Bu)] ₂ 2	25
3.1.1.2 Bis[<i>tert</i> butoxyaluminiumdibromid] $[Br_2Al(O'Bu)]_2$ 3	26
3.1.1.3 Bis[<i>tert.</i> -butoxyaluminiumdiiodid] [I ₂ Al(O'Bu)] ₂ 4	27
3.1.2 Charakterisierung im Festkörper	30
3.1.2.1 Strukturbestimmungen von $[Cl_2Al(O'Bu)]_2 2$, $[Br_2Al(O'Bu)]_2 3$ und $[I_2Al(O'Bu)]_2 4$ 3.1.2.2 Beschreibung der Molekül- und Kristallstrukturen von $[Cl_2Al(O'Bu)]_2 2$,	30
$[Br_2Al(O'Bu)]_2$ 3 und $[I_2Al(O'Bu)]_2$ 4	33
3.1.3 Charakterisierung von [X ₂ Al(O'Bu)] ₂ (X=Cl: 2 , Br: 3 , I: 4) in Lösung	37
3.2 Binäre und ternäre Alkoxyaluminiummonohalogenide des Typs [XAl(R)(O'Bu)] ₂	
(X=Cl, Br und I / R=H, Me, O'Bu)	39
$3.2.1 [ClAl(H)(O'Bu)]_2 5$, $[BrAl(H)(O'Bu)]_2 6$ und $[IAl(H)(O'Bu)]_2 7$: Synthese und Eigenschaften.	39
3.2.1.1 Bis[<i>tert.</i> -butoxyaluminiumchloridhydrid] [ClAl(H)(O'Bu)] ₂ 5	39
3.2.1.1.a) Darstellung von $[CIAI(H)(O'Bu)]_2 5$ über Salzeliminierung und Alkoholyse	39
3.2.1.1.b) Darstellung von $[CIAI(H)(O'Bu)]_2$ buber Metathese und Redoxreaktion	40
3.2.1.1.c) Darstellung von [CIAI(H)(O Bu)] ₂ 5 uber Dismutation aus 2 und 1	40
3.2.1.2 Bis[<i>lett.</i> -butoxyaluminiumbronnunyunu] [BIAI(H)(O Bu)] ₂ 0	41 /1
3.2.1.2.a Darstellung von [BrAl(H)(O'Bu)] ₂ 6 über Metathese und Redoxreaktion	43
3.2.1.2.6) Darstellung von [BrAl(H)(O'Bu)] ₂ 6 über Dismutation aus 3 und 1	43
3.2.1.3 Bis[<i>tert</i> butoxyaluminiumiodidhydrid] [IAI(H)(O'Bu)] ₂ 7	
3.2.1.3.a) Darstellung von [IAl(H)(O'Bu)] ₂ 7 über Salzeliminierung und Alkoholyse	44
3.2.1.3.b) Darstellung von [IAl(H)(O'Bu)] ₂ 7 über Metathese und Redoxreaktion	45
3.2.2 [ClAl(H)(O'Bu)] ₂ 5, [BrAl(H)(O'Bu)] ₂ 6 und [IAl(H)(O'Bu)] ₂ 7:	
Charakterisierung im Festkörper	47
3.2.2.1 Strukturbestimmungen von [ClAl(H)(O'Bu)] ₂ 5, [BrAl(H)(O'Bu)] ₂ 6 und	
[IAl(H)(O'Bu)] ₂ 7	47
3.2.2.2 Beschreibung der Molekül- und Kristallstrukturen von $[ClAl(H)(O'Bu)]_2 5$,	
$[BrAl(H)(O'Bu)]_2 6 und [IAl(H)(O'Bu)]_2 7$	50
3.2.2.3 IR-spektroskopische Untersuchungen von $[CIAI(H)(O'Bu)]_2 5$, $[BrAI(H)(O'Bu)]_2 6$ und	
$[IAI(H)(O'Bu)]_2$ 7 sowie von $[CIAI(D)(O'Bu)]_2$ 5, $[BrAI(D)(O'Bu)]_2$ 6 und $[IAI(D)(O'Bu)]_2$ 7 and $[IAI(D)(O'Bu)]$	- A
$[IAI(D)(O'Bu)]_2 / \dots$	54
3.2.3 [CIAI(H)(O Bu)] ₂ 5, [BrAI(H)(O Bu)] ₂ 6 und [IAI(H)(O Bu)] ₂ 7: Charakteristerung in Losung.	38
3.2.3.1 NMK-spekiloskopische Offielsuchungen der Kauffielnperatur.	38
3.2.4 Computerchemische Untersuchungen zu den Isomeren der Verhindungen [CIAI(H)(O'Bu)].	05
$[\text{BrA}](\text{H})(\text{O}^{\prime}\text{Bu})]_{2}$ 6 und $[\text{IA}](\text{H})(\text{O}^{\prime}\text{Bu})]_{2}$ 7	, 77
3.2.5 Bis[<i>tert</i> butoxyaluminiummethylchlorid] [ClAl(Me)(O ^t Bu)] ₂ 8 [•] Synthese und Eigenschaften	
3.2.5.1 [ClAl(Me)(O'Bu)] ₂ 8: Charakterisjerung im Festkörner	
3.2.5.1.a) Strukturbestimmung von [ClAl(Me)(O'Bu)] ₂ 8	85
3.2.5.1.b) Beschreibung der Molekül- und Kristallstruktur von [ClAl(Me)(O'Bu)] ₂ 8	87
3.2.5.2 [ClAl(Me)(O'Bu)] ₂ 8: Charakterisierung in Lösung	90

3.2.5.2.a) NMR-spektroskopische Untersuchungen von [ClAl(Me)(O'Bu)] ₂ 8 bei Raumtemperat 3.2.5.2 b) Temperaturabhängige VT ₂ ¹ HNMR-spektroskopische Untersuchungen von	tur90
$[ClA](Me)(O'Bu)]_{8}$	94
3 2 6 Bis[<i>di-tert</i> -butoxyaluminiumchlorid] [ClAl(O'Bu) ₂] 10 . Synthese und Eigenschaften	
$3 2 6 1 [ClA](O'Bu)_2 10$ Charakterisierung im Festkörper	99
3.2.61 a) Strukturbestimmung von [ClA](O'Bu) ₂] ₂ 10	
3.2.6.1.4) Beschreibung der Molekül- und Kristallstruktur von [ClAl(O'Bu) ₂] ₂ 10	100
3.2.6.2 NMR-snektroskonische Untersuchungen von [C]Al(O'Bu) ₂] ₂ 10 in	
Lösung und Festkörner	103
3.3 Weitere Untersuchungen von Aluminiumamiden des Typs	
$(HA)(X)(NEt_{0})$ (X=H I)	109
3.3.1 Bis[<i>di</i> -ethylaminoaluminiumdihydrid] [H ₂ Al(NEt ₂)] ₂ 11	109
3 3 1 1 Synthese Figenschaften und Charakterisierung	109
3 3 1 2 Strukturbestimmung von [H_A](NFt_)] 11	111
3 3 1 3 Beschreibung der Molekülstruktur von [H. Al(NEt.)], 11	113
3 3 2 Bis[<i>di</i> -ethyaminoaluminiumhydridiodid] [IA1(H)(NEt ₂)] ₂ 12	115
3.3.2.1 Synthese Eigenschaften und Charakterisierung	115
3 3 2 2 Strukturbestimmung von [HΔ](I)(NFt ₂)], 12	116
3 3 2 3 Beschreibung der Molekül- und Kristallstruktur von [HA](I)(NFt.)]. 12	117
	1 1 /
4 ERGEBNISSE UND DISKUSSION (TEIL 2: CVD)	119
4.1. Einführung in den CVD-Prozess und das Precursorkonzept	. 119
4.2 Reaktionsabläufe im CVD-Prozess	. 122
4 3 Experimenteller Aufhau der verwendeten CVD-Annaraturen	125
4.4 Frste Untersuchungen der Precursoren [C]A](H)(O ⁴ Bu)], 5 bzw	• 120
[C[A](D)(OtDu)] = 5 im LDCVD Drozoss	127
[CIAI(D)(O Bu)] ₂ 5 IIII LFC V D-F rozess	127
4.4.1 Eigenschaften des Frecuisors und Beschreibung des C.V.D-Experimentes	120
4.4.2 Anaryse der massenspektroskopischen Fragmennerungsmuster des Freeursors 5	120
4.4.5 Initialoispekiloskopisele Ontersuchungen der ehlorhaltigen Schichten $(C[A](D), O]$ mittels Pasterelektronen	134
4.4.4 Ontersuchungen der einornautigen Seinenten $\{Cl_xAn(D)_yO_z\}$ mitters Kasteretektionen- mikrockonie (PEM) und Energiedignersiver Pöntgenetrahlung (EDV)	128
4.4.5 Thermische Behandlung einer chlorhaltigen Schicht durch einen CO. Laser	147
4.4.5 1 Untersuchungen mittels REM und EDY	1/18
4.4.5.1 Untersuchungen mittels FRAS	152
4.4.5.3 Untersuchungen mittels TEM (Transmissionelektronenmikroskonie)	157
4.4.5.5 Ontersuchangen mitters TEW (Transmissionerektronenmikroskopie)	137
5 ZUSAMMENFASSUNG UND AUSBLICK	160
	1/5
6 EXPERIMENTELLER TEIL	165
6.1 Allgemeine Arbeitstechniken (Teil 1: Synthese)	. 165
6.2 Versuchsbeschreibungen und Charakterisierungen	. 168
6.2.1 Darstellung von $[H_2Al(O'Bu)]_2 1$, $[D_2Al(O'Bu)]_2 1$ ` und $[HAl(O'Bu)_2]_2 9$	168
6.2.2 Darstellung von [Cl ₂ Al(O'Bu)] ₂ 2 über Metathese und Redoxreaktion	169
6.2.3 Darstellung von [Br ₂ Al(O'Bu)] ₂ 3 über Metathese und Redoxreaktion	170
6.2.4 Darstellung von [I ₂ Al(O'Bu)] ₂ 4 über Salzeliminierung und Alkoholyse	171
6.2.5 Darstellung und Charakterisierung von [ClAl(H)(O'Bu)] ₂ 5 und [ClAl(D)(O'Bu)] ₂ 5	173
6.2.5.1 Darstellung und Charakterisierung von [ClAl(H)(O'Bu)] ₂ 5 über Salzeliminierung und	
Alkoholyse	173
6.2.5.2 Darstellung von [ClAl(H)(O'Bu)] ₂ 5 und [ClAl(D)(O'Bu)] ₂ 5` über Metathese und	
Redoxreaktion	174
6.2.5.3 Darstellung und Charakterisierung von [ClAl(H)(O'Bu)] ₂ 5 durch Dismutation aus	
2 und 1	175
6.2.6 Darstellung von $[BrAl(H)(O'Bu)]_2$ 6 und $[BrAl(D)(O'Bu)]_2$ 6	176
6.2.6.1 Darstellung von [BrAl(H)(O'Bu)] ₂ 6 über Salzeliminierung und Alkoholyse	176
$6.2.6.2$ Derstellung von $[PrA](H)(O^{i}Pu)]$ 6 über Metathese und Pedovreaktion	178

6.2.6.3 Darstellung von [BrAl(H)(O'Bu)] ₂ 6 über Dismutation aus 3 und 1	
6.2.7 Darstellung von [IAl(H)(O'Bu)] ₂ 7 und [IAl(D)(O'Bu)] ₂ 7	
6.2.7.1 Darstellungen von [IAl(H)(O'Bu)] ₂ 7 über Salzeliminierung und Alkoholyse	
6.2.7.2 Darstellung von [IAl(H)(O'Bu)] ₂ 7 und [IAl(D)(O'Bu)] ₂ 7` über Metathese und	
Redoxreaktion	
6.2.8 Darstellung von [ClAl(Me)(O'Bu)] ₂ 8 durch Alkoholyse	
6.2.9 Darstellung von [ClAl(O'Bu) ₂] ₂ 10 über Metathese und Redoxreaktion	
6.2.10 Darstellung von [H ₂ Al(NEt ₂)] ₂ 11 über Salzeliminierung und Alkoholyse	
6.2.11 Darstellung von [HAl(I)(NEt ₂)] ₂ 12 über Metathese und Redoxreaktion	
6.3 Allgemeine Arbeitstechniken (Teil 2: CVD)	
6.3.1 Durchführung der CVD-Experimente	189
6.3.2 Technische Daten zur Verwendung der CVD-Apparaturen	
6.3.3 Parameter der CVD-Experimente	
7 LITERATURVERZEICHNIS	193
8 ANHANG	
8 ANHANG 8.1 Daten zur Molekül- und Kristallstruktur von [Cl ₂ Al(O ^t Bu)] ₂	202
8 ANHANG 8.1 Daten zur Molekül- und Kristallstruktur von [Cl ₂ Al(O'Bu)] ₂ 2 8.2 Daten zur Molekül- und Kristallstruktur von [Br ₂ Al(O'Bu)] ₂ 3	
8 ANHANG 8.1 Daten zur Molekül- und Kristallstruktur von [Cl ₂ Al(O'Bu)] ₂ 2 8.2 Daten zur Molekül- und Kristallstruktur von [Br ₂ Al(O'Bu)] ₂ 3 8.3 Daten zur Molekül- und Kristallstruktur von [I ₂ Al(O'Bu)] ₂ 4	
8 ANHANG. 8.1 Daten zur Molekül- und Kristallstruktur von [Cl ₂ Al(O'Bu)] ₂ 2 8.2 Daten zur Molekül- und Kristallstruktur von [Br ₂ Al(O'Bu)] ₂ 3 8.3 Daten zur Molekül- und Kristallstruktur von [I ₂ Al(O'Bu)] ₂ 4 8.4 Daten zur Molekül- und Kristallstruktur von [ClAl(H)(O'Bu)] ₂ 5	
 8 ANHANG	202 202 203 203 205 208 208 209
 8 ANHANG	202 203 203 205 208 209 209
 8 ANHANG	202 203 203 205 208 209 209 210 212
 8 ANHANG	202 203 203 205 208 209 210 212 212 213
 8 ANHANG	202 203 203 205 208 209 210 212 212 213 216
 8 ANHANG	202 203 203 205 208 209 210 212 212 213 216 217
 8 ANHANG	202 203 203 205 208 209 210 212 212 213 216 217 219
 8 ANHANG	202 203 203 205 208 209 210 212 212 213 216 217 219 219
 8 ANHANG	202 203 205 208 209 210 212 213 213 216 217 219 219 220
 8 ANHANG	202 203 203 205 208 209 210 212 213 213 216 217 219 219 220 220
 8 ANHANG	202 203 203 205 208 209 210 212 213 213 216 217 219 219 219 220 220

Abkürzungsverzeichnis

°	9						
A	Angström						
Abb.	Abbildung						
äq	Aquivalent						
amu	Atom mass units						
ATR	Abgeschwächte Totalreflektion						
B3LYP	Becke88-Austauschfunktional mit VWN5 und dem Korrelationsfunktional P8						
BP86	Becke-3-Parameter Hybridfunktional mit dem LYP-Korrelationsfunktional						
br	breit						
'Bu	iso-Butyl						
°Bu	sec-Butyl						
'Bu	<i>tert</i> Butyl						
CVD	Chemische Gasphasenabscheidung (engl.: chemical vapour deposition)						
Су	Cyclohexyl						
δ	chemische Verschiebung						
ε _r	Dielektrizitätskonstante						
d	Abstand						
Do	Donor						
DS	Deformationsschwingung						
Е	Energie						
ERAS	Infrarotmessung, <i>engl.</i> : external reflection absorption spectroscopy						
Et	Ethyl						
FT	Fourier-Transformation						
g	Gramm						
gef.	gefunden						
Gl.	Gleichung						
Н	Hartree						
Hal	Halogenatom, hier: Cl, Br, I						
Hex	<i>n</i> -Hexan						
Hg	Quecksilber						
HSAB	engl.: Hard-Soft-Acid-Base - Konzept nach Pearson						
Hz	Hertz						
IR	Infrarot						
J	Kopplungskonstante						
Kap.	Kapitel						
K	Kelvin						
ΚZ	Koordinationszahl						
L	Ligand						
LP	Niederdruck, <i>engl.</i> : low pressure						
М	(Edel)Metall						
М	Multiplett						
MAS	Festkörper-Kernspinresonanz Experiment (<i>engl.</i> :magic angle spinning)						
Me	Methyl						

mg	Miligramm						
MHz	Megahertz						
ml	Mililiter						
NMR	Kernspinresonanz (<i>engl</i> .: nuklear magnetic resonance)						
MAO	Methylaluminiumoxid						
Morph	Morpholin						
MP2	Møller-Plesset Störungstheorie zweiter Ordnung						
OEt ₂	Diethylether						
Ph	Phenyl						
pm	Pikometer						
ppm	10 ⁻⁶ (<i>engl</i> .: parts per million)						
q	Quartett						
quin	Chinoqlidin als Ligand						
r	Radius						
R	organischer Rest						
RT	Raumtemperatur						
S	Singulett						
SSP	Single-Source-Precursor						
SV(P)	Ahlrichs Single ζ aus Turbomol extrahiert und in Gaussian-basis-set Format						
	umgewandelt						
t	Triplett						
TEM	Transmissionelektronenmikroskopie						
tert	tertiär						
THF	Tetrahydrofuran						
tmpH	Tetra-methylpiperidin als Ligand						
TMS	Tetramethysilan						
tmtz	1,3,5-trimetylhexahydro-1,3,5-triazin als Ligand						
Tol	Toluol						
TZVP	Triple Zeta Valence Polarization						
TZVPP	Triple Zeta Valence Plus Polarization						
VS	Valenzschwingung						
VT	variable temperature						
$W_{1/2}$	Halbwertsbreite						

1 EINLEITUNG

Der Name Aluminium leitet sich von dem bereits im Altertum bekannten Doppelsalz (Al₂(SO₄)₃/K₂SO₄) Alaun ab (lat.: *alumen* = Alaun). In der Natur kommt es mit 7,57% neben Sauerstoff und Silizium als dritthäufigstes Element vor und liegt aufgrund der hohen Sauerstoffaffinität nur in Form oxidischer Verbindungen vor (Korund: Al₂O₃, Hydroxide: Al(OH)₃ Hydrargillit, AlO(OH) Diaspor und Böhmit sowie Alumosilicate: Feldspäte, Glimmer, Tone, Bauxite). Das natürlich vorkommende Isotop besteht zu 100% aus dem Nuklid²⁷₁₃Al. Entdeckt wurde das Metall im Jahr 1825 durch *Oersted* nach Zerlegung von Alaunerde, erstmals hergestellt wurde es 1827 von *Wöhler* durch Reduktion von Aluminiumtrichlorid mit Kalium. Das Leichtmetall (φ = 2.699 g/cm³) gilt aufgrund seiner guten mechanischen Eigenschaften wie Dehn- und Verformbarkeit und physikalischen Eigenschaften wie elektrischer Leitfähigkeit und Wärmeleitfähigkeit als wichtigstes Nichteisenmetall und findet daher besonders auch in Legierungen häufig Anwendung in der Metallverarbeitenden Industrie^[1].

Im Periodensystem steht es in der 13.Gruppe (Triele, Erdmetalle) und 3. Periode und stellt daher eine Elektronenmangelverbindung, eine Lewis-Säure, dar. Das bedeutet, dass das Metallatom selbst unter voller Nutzung seiner Bindigkeit nicht in der Lage ist die Valenzschale mit acht Elektronen zu füllen. Aufgrund der geringen Tendenz zur Ausbildung einer π -Bindung kann die Stabilisierung in Lösung intermolekular durch Koordination einer starken Base oder eines Donorlösungsmittels oder durch Eigenassoziation erfolgen. Nach dem Konzept von *Pearson*^[2] werden daher bevorzugt stickstoff-, phosphor- oder sauerstofffunktionalisierte Donormoleküle Do verwendet, die mit monomeren Aluminiumhalogeniden oder – wasserstoffverbindungen Mono- als auch Bisadukte AlX₃*nDo (X=H, Hal / n=1,2) bilden.

Diese Verbindungen, in denen das Aluminium eine Lewis-Säure darstellt, sind gefragte Reagenzien in der organischen Synthese. Die Trihalogenide dienen als Katalysatoren für Friedel-Crafts- Alkylierungen – und Acylierungen ^[3], die Alane und Derivate als Hydrierungsreagenzien ^[4]. Die Tris(alkyl)aluminiumverbindungen AlR₃ finden seit Jahrzehnten industrielle Anwendung als Cokatalysator neben TiCl₄, als Katalysator in der Olefinpolymerisation ^[5,6] und in der Aufbaureaktion zur Darstellung von höherkettigen Alkoholen ^[7]. Im materialwissenschaftlichen Bereich dienen die Tris(alkyl)aluminiumverbindungen ebenso wie die Aminadukte des Alans (R₃N \rightarrow AlH₃) als Ausgangsverbindungen im CVD-Beschichtungsprozess zur Darstellung von Aluminiumschichten [^{8-13]}.

Doch aufgrund der hohen Empfindlichkeit der Aluminiumtriorganyle gegenüber Spuren von Luft und Feuchtigkeit werden diese in vielen Bereichen durch weniger reaktive Substanzen ersetzt. Hier hat sich das Konzept der intra- und intermolekularen Stabilisierung durch Lewis-Basen der 15. und 16. Gruppe durchgesetzt. Ist das Donoratom kovalent über eine vier oder fünfgliedrige aliphatische Kohlenstoffkette am Aluminiumatom gebunden, so dass ein stabiler Chelatring resultiert ^[15,16], spricht man von einer intramolekularen Stabilisierung. Bei direkter kovalenter Bindung eines Donoratoms am Aluminiumatom kann die elektronische Absättigung durch Verknüpfung der Monomeren intermolekular erfolgen, wobei es zur Ausbildung von Di-, Tri- oder Tetrameren kommen kann.

Diese intra- und intermolekular stabilisierten Aluminiumverbindungen stellen somit interessante Verbindungen für den synthetisch tätigen Chemiker dar. Da diese organischen Aluminiumverbindungen im Gegensatz zu den Aluminiumorganylen weniger heftig an Luft reagieren und nicht zur Selbstentzündung neigen, bieten sie nicht nur ein geringeres Gefahrenpotential, sondern öffnen auch Forschungsgebiete, in denen versucht werden soll die einfachen hochreaktiven Aluminiumtrisorganyle in ihren vielfältigen Anwendungsbereichen zu ersetzen.

Aluminiumalkoxide R₂AlOR` und –amide R₂AlNR`₂ stellen diesbezüglich sehr interessante Gruppen an Verbindungen dar. Aufgrund der hohen Flüchtigkeit einiger Verbindungen eignen diese sich als ideale Ausgangssubstanzen für die Gasphasenabscheidung (CVD-Prozess). Außerdem finden diese Verbindungen aufgrund ihrer Löslichkeit sowohl in polaren als auch unpolaren Lösungsmitteln häufig Anwendung in der Synthesechemie und bieten somit großes Anwendungspotential.

Im Arbeitskreis von Herrn Prof. Dr. Veith wird seit mehreren Jahren das Alkoxid $Bis[tert.-butoxyaluminiumdihydrid] [H_2Al(O^tBu)]_2$ genauer erforscht. Durch die interessanten Eigenschaften, die die Verbindung mit sich bringt, bietet sie sich als Ausgangsmaterial für multiple Anwendungsbereiche an:

- Single-Source-Precursor (SSP) im CVD-Prozess
- Reduktionsmittel von Metalloxiden und –salzen
- > Synthesebaustein zur Darstellung von Oligoalumosiloxanen

1.1 Bis[*tert.*-Butoxyaluminiumdihydrid] [H₂Al(O^tBu)]₂ und dessen Anwendungen

Das *tert.*-Butoxyalan wurde erstmals 1968 von *Nöth* und *Suchy* als dimere Verbindung beschrieben, wobei die Überlegungen zur Kristallstruktur nur durch NMR und IR-spektroskopische Daten gestützt wurden ^[16]. Mittels Einkristallstrukturanalyse konnte die dimere Struktur im Rahmen der Dissertation von S. Faber 1995 bestätigt werden ^[13, 14]. Die Darstellungsmethode (Gl. 1.1 und 1.2) der Verbindung erfolgt in einer direkten Umsetzung des etherstabilisierten Alans mit dem Alkohol ^[19]:

(1.1)
$$3 \operatorname{LiAlH}_4 + \operatorname{AlCl}_3 \xrightarrow{\operatorname{Et}_2O} 4 \{\operatorname{AlH}_3 * \operatorname{OEt}_2\} + 3 \operatorname{LiCl}$$

(1.2) $4 \{\operatorname{AlH}_3 * \operatorname{OEt}_2\} + 4 \operatorname{^tBuOH} \longrightarrow 2 [\operatorname{H}_2\operatorname{Al}(\operatorname{O}^t\operatorname{Bu})]_2 + 4 \operatorname{H}_2$

Das Molekül besteht aus zwei monomeren Einheiten, die über die Sauerstoffatome der *tert.*-Butoxygruppe miteinander verknüpft sind. Als zentrales Strukturmerkmal ergibt sich so ein Vierring, der alternierend aus Al-O-Al`-O` aufgebaut ist. Die am Aluminium gebundenen Wasserstoffatome stehen dabei senkrecht zu dem planaren Ring. An den trigonal planaren Sauerstoffatomen sind die *tert.*-Butylgruppen in gestaffelter Konformation angeordnet ^[17, 18].

Neben der hohen Flüchtigkeit und thermodynamischen Stabilität in der Gasphase, weist die Verbindung Sollbruch- und Rekombinationsstellen im Molekül auf, wodurch sich eine Anwendung in der chemischen Gasphasenabscheidung (CVD = Chemical Vapor Deposition) ergibt. Der Vorteil, den diese Verbindung mit sich bringt, ist, dass die Zersetzung nicht radikalisch, sondern über eine intramolekulare Kaskadenreaktion abläuft, wodurch der Zersetzungsprozess und folglich die Zersetzungsprodukte vorgegeben werden.

Des Weiteren stellt das *tert*.-Butoxyalan durch die Bindungspolarität Al - H nicht nur ein Reduktionsmittel dar, sondern neigt auch bevorzugt zu Reaktionen protonenaktiver Substanzen.

Bis[*tert*.-butoxyaluminiumdihydrid] [H₂Al(O^tBu)]₂ im CVD-Prozess

Je nach Substrattemperatur können bei der Gasphasenabscheidung des *tert.*-Butoxyalans zwei Schichten unterschiedlicher Zusammensetzung und Eigenschaften abgeschieden werden. Ab einer Substrattemperatur oberhalb von 450°C entsteht eine grauschwarze Kompositschicht aus elementarem kristallinen Aluminium und Aluminiumoxid. Unterhalb der Temperatur bilden sich eine metastabile hydridischen Aluminiumoxidschicht (HAlO)_n. Diese Phase kann durch Tempern im Vakuum in die Kompositschicht überführt werden oder im Ofen ohne Luftausschluss in das reine Al₂O₃ (Abb. 1.1).

Anhand von massenspektroskopischen Untersuchungen lässt sich der Zersetzungsmechanismus des Moleküls wie folgt beschreiben. Die intramolekulare Kaskadenreaktion wird durch eine Komproportionierung eines Protons der *tert.*-Butoxygruppe und eines am Aluminium gebundenen hydridischen Wasserstoffatoms eingeleitet, wodurch formal elementarer Wasserstoff entsteht. Dadurch resultiert eine instabile carbenartige Verbindung, die durch Elektronenverschiebung und Abspaltung von *iso*-Buten das Schichtmaterial der Zusammensetzung HAIO ergibt. Geht man von einer 1:1:1 Zusammensetzung aus, so lässt sich die gleiche Stöchiometrie im Molekül wieder erkennen. Dies ist beinhaltet im *Single-Source-Precursor* Konzept^[20].

Abb. 1.1: Zersetzungsprodukte des *tert.*-Butoxyalans durch Gasphasenabscheidung bei unterschiedlichen Bedingungen

Strukturell gesehen konnte die Verwandtschaft zum isoelektronischen Aluminiumoxochlorid AlOCl nicht eindeutig geklärt werden. IR-Spektroskopische Untersuchungen sowie Computerberechnungen lassen jedoch eine Schichtstruktur ähnlich der des AlOCl^[21] auch für die hydridische Form vermuten^[22-24].

Untersuchungen zur Gasphasenabscheidung des Precursors und zur Bildung der unterschiedlichen Schichtzusammensetzungen und deren Eigenschaften lassen sich in den aus dem Arbeitskreis von Herrn Prof. Dr. Veith angefertigten Dissertationen von S. Faber ^[18], E.W. Fritscher ^[25], J. Blin ^[26], K. Andres ^[22], Y. Wolf ^[27], M. Burkart ^[24], C. Petersen ^[28] sowie in den Veröffentlichungen ^[17, 29, 30] nachlesen.

Eine interessante Anwendung ergibt sich aus der thermischen Umwandlung der HAIO in die Kompositphase. Durch Lasereinwirkung ist es möglich, nano- bis mikrostrukturierte Oberflächen aus beiden Schichtsystemen zu erzeugen und somit die unterschiedlichen Eigenschaften von HAIO (hydrophob) und dem Komposit (hydrophil) in einer Schicht zu vereinen. In der Dissertation von C. Petersen wurden diese strukturierten Oberflächen auf Biokompatibilität im Rahmen des CellPROM-Projekts mit Fibroplasten untersucht^[28].

Ein patentiertes Verfahren stellt die Reduktion von NiO mit $[H_2Al(O'Bu)]_2$ im "*hot-wall*"-Reaktor bei 400°C dar. Nach vollständiger Reaktion ergibt sich ein Kompositmaterial aus Ni/Al₂O₃^[31].

Bis[*tert*.-butoxyaluminiumdihydrid] [H₂Al(O^tBu)]₂ in der Synthese

zur Darstellung eines Alumopolysiloxans

Die Umsetzung des *tert.*-Butoxyalans mit vier Äquivalenten Diphenylsilandiol führt zur Bildung des Alumpolysiloxans [(Ph₂Si)O₃]₄Al₄(OH)₄ * 4Et₂O (Gl. 1.3). Das polyzyklische System ist aus fünf annelierten Achtringen aufgebaut und enthält einen [Al(OH)]₄-Ring als zentrale Baueinheit. Die elektronische Absättigung des Aluminiums erfolgt jeweils durch dative Bindungen eines benachbarten Sauerstoffatoms der Al-OH-Gruppe. Die Al-O-Al-Kanten des zentralen Achtrings sind durch Siloxanbrücken überspannt, wobei die Disiloxan-8-Ringe alternierend nach unten und nach oben stehen. Aus sterischen Gründen kristallisieren in der Molekülstruktur nur drei Ethermoleküle über H-Brücken, das vierte Molekül liegt unkoordiniert im Kristall vor.

Innerhalb des zentralen Al(OH)₄-Rings ergeben sich durch die aciden Protonen der OH-Gruppen interessante Reaktions- und Speichermöglichkeiten, die von der Sterik des Alumopolysiloxangerüst stark beeinflusst werden. Die selektive Speicherung oder Katalyse kennt man bereits von den technischen Gerüst-Alumosilicaten, dem Zeolith. Die Selektivität wird dabei über die Größe der Hohlräume im Gerüst eingestellt.

In dem Alumopolysiloxan, das in diesem Arbeitskreis untersucht wird, können durch Addition intramolekular unidentate Amine koordiniert werden und durch Addition bidentater Amine intermolekular sogar mehrere Alumopolysiloxane zu einem Polymernetzwerk aufgebaut werden. Des Weiteren können selektive Substitutionsreaktionen der protischen Wasserstoffatome der Hydroxygruppen des zentralen [Al(OH)]₄-8-Rings mit Metallorganylen stattfinden, die zur Einlagerung von Metallkationen führen.

Gl. 1.3: Darstellung des Alumopolysiloxans mit vereinfachter Darstellung der Molekülstruktur

Umfassende Untersuchungen lassen sich in der Dissertation von H. Hreleva-Caparotti ^[32] sowie in den Publikationen ^[33-36] nachlesen.

Bis[tert.-butoxyaluminiumdihydrid] [H₂Al(O^tBu)]₂ in der Synthese

als Reduktionsmittel

Die ersten Erkenntnisse des Reduktionsvermögens des *tert.*-Butoxyalans wurden durch die Reaktion mit dem zyklischen Stannylen Sn[(N'Bu)₂SiMe₂] gewonnen. Als Reaktionsnebenprodukte wurden kristallines β -Zinn und elementarer Wasserstoff gebildet, die aus der Reduktion von zweiwertigem Zinn (Sn²⁺ + 2e⁻ \rightarrow Sn⁰) und der Oxidation des hydridischen Wasserstoffs (2H⁻ \rightarrow H₂ + 2e⁻) resultieren. Allgemein lässt sich der Reaktionsmechanismus vereinfacht als nukleophiler Angriff des Amins an das lewis-saure Aluminium (III) und anschließender Abspaltung des hydridischen Wasserstoffs bei gleichzeitiger Ligandenübertragung beschreiben. Das wahrscheinlich intermediär gebildete instabile Metall(II)hydrid zersetzt sich zum elementaren Metall und Wasserstoff. Zur Veranschaulichung des Reaktionsmechanismus wurden einzähnige Aminliganden gewählt. (Gl. 1.4).

Gl. 1.4: Vereinfachter Reaktionsmechanismus der Redoxreaktion

Die Größe der dabei entstehenden Metallpartikel ist eine Funktion aus der Konzentration und der Polarität des Lösungsmittels sowie der Reaktionstemperatur ^[37]

In weiteren Arbeiten stand die Herstellung und Stabilisierung nanokristalliner Zinn- und Bleipartikel in kolloidaler Lösung im Vordergrund. Aufgrund ihrer optischen Eigenschaften und Stabilität in Acetonitril und THF wurden die Metallpartikel in Al₂O₃-Membranen für Untersuchungen als Wellenlängenfilter hergestellt ^[38, 39].

Bis[*tert*.-butoxyaluminiumdihydrid] [H₂Al(O^tBu)]₂ in der Synthese

als Hydridüberträger

Reagiert das *tert.*-Butoxyalan mit unedlen Organometallverbindungen, so fungiert das Alan nicht als Reduktionsmittel, sondern insertiert die Wasserstoffatome wie in der Reaktion mit Hexamethyldisilazyllithium LiN(SiMe₃)₂. Bei dieser Reaktion entsteht u.a. ein Li₄H₄-heterocuban, der an drei Kanten Al-H-Einheiten aus HAl{N(SiMe₃)₂} insertiert und zusätzlich durch drei dative Bindungen der Stickstoffliganden stabilisiert ist ^[40]. Auf diese Weise konnten größere LiH-Einheiten stabilisiert werden.

Abb. 1.2: Molekülstruktur des Li₄H₄-Heterokubus

1.2 Aufgabenstellung und Zielsetzung

Die Ziele dieser vorliegenden Arbeit beziehen sich auf zwei der vorher angesprochenen Schwerpunktsthemenbereiche um das dimere Alkoxyalan [H₂Al(O^tBu)]₂.

Zum einen soll das Reduktionsvermögen dieser hydridischen Verbindung gegenüber Bleihalogeniden PbX₂ (X=Cl, Br und I) in den stöchiometrischen Verhältnissen 1:1 und 1:2 untersucht werden. Bei dieser Reaktion sollte erwartungsgemäß eine Halogenligandensubstitution stattfinden, während das zweiwertige Blei reduziert und die hydridischen Wasserstoffatome oxidiert werden. Das Reaktionsprinzip ist bereits seit längerer Zeit bei Verwendung von Quecksilberorganylen und -salzen bekannt ^[41-45]. Mittels dieser Methode unter Verwendung der weniger gesundheitsschädlichen Bleihalogenide soll untersucht werden, inwieweit eine Ligandensubstitution überhaupt stattfindet und ob die Verwendung von Bleihalogeniden dabei eine Alternative zu den Quecksilberhalogeniden darstellt. Von besonderem Interesse sind die Umsetzungen des Alans mit den Bleihalogeniden im stöchiometrischen Verhältnis 1:1, die auf Selektivität anhand der Produktbildung untersucht werden sollen.

Weiterhin soll durch weitere Synthesestrategien versucht werden chlorhaltige Derivate des Alans zu synthetisieren. In Analogie zum *tert.*-Butoxyalan könnten die demnach auch nach dem *Single-Source-Precursor*-Konzept (SSP) interessante Ausgangsverbindungen für die Anwendung im CVD-Prozess darstellen. Hierbei besteht das Interesse in der Möglichkeit eine chlorhaltige Aluminiumoxidschicht AlOCI herzustellen, die isotyp und strukturverwandt zur Oxoaluminiumhydridschicht HAlO wäre. Aufgrund der stark hydrophilen Eigenschaften von AlOCI ^[46], infolge der Chlorliganden, würden sich andere chemische und physikalische Schichteigenschaften resultieren, die eventuell interessant im Bereich der Dünnschichttechnologie sein könnten.

2 LITERATURÜBERSICHT

Strukturen halogenhaltiger Aluminiumwasserstoffverbindungen und Aluminiumalkoxide sowie deren Darstellungsvarianten

Alkoxide stellen eine Verbindungsklasse dar, in denen ein Alkoholat an einem Metallzentrum koordiniert. Sie können u.a. als Alkoholyseprodukte entsprechender Aluminiumverbindungen angesehen werden, die über eine Salzeliminierung aus einem Metallalkoholat und einem Aluminiumhalogenid unter Abspaltung des Metallhalogenids oder über Protolyse eines Alkohols mit einem entsprechenden Aluminiumhydrid AlH₃ gebildet werden können.

Da die Aluminiumhydride eine wichtige Verbindungsklasse darstellen, soll einleitend an dieser Stelle ein kurzer Überblick über Aluminiumhydride und deren Adukte gegeben werden.

Das nichtflüchtige Aluminiumhydrid AlH₃ an sich liegt hauptsächlich polymer vor. Strukturell ist daher lediglich eine Phase, das α -AlH₃, vollständig charakterisiert, in dem die oktaedrisch koordinierten Aluminiumzentren jeweils über Hydridbrücken verknüpft sind ^[47].

Zur koordinativen und elektronischen Absättigung vermag das Alan also ähnlich wie das Boran $[H_2B(\mu-H)_2BH_2]$, 2Elektronen-3Zentren-Bindungen einzugehen, wie auch beispielsweise in Adukten mit Metall- und Halbmetallhydriden $[Li(\mu-H)AIH_2]$ bzw. $[H_2Al(\mu-H)BH_2]^{[1]}$.

Alanadukte mit Donorliganden, die durch ein freies Elektronenpaar die Oktettlücke füllen, wurden bereits in Pionierarbeiten in den 60er und 70er Jahren beschrieben ^[48-51]. Als Donorliganden für AlH₃ werden überwiegend die harten Nichtmetalle der 15. und 16.Gruppe gefunden, was dem *HSAB*-Konzept entspricht. Daher sind die strukturell am meisten charakterisierten Alanadukte mit tertiären Aminen zu finden, die gegenüber den sekundären Aminen und phosphorfunktionalisierten Liganden eine höhere Stabilität bieten. Mit Donorliganden der 16. Gruppe, die im Vergleich schwächere Lewis-Basen darstellen, sind wenige Adukte bekannt. Je nach elektronischen und sterischen

Eigenschaften der Liganden werden verschiedene Typen von Alanadukten gefunden (Abb. 2.1).

Im Typ A kristallisieren hauptsächlich Adukte, in denen die Donorliganden eine hohe Basizität und / oder einen hohen sterischen Raumbedarf aufweisen. Sehr stabile monomere 1:1 Adukte bilden beispielsweise die Komplexe H₃Al*N(ⁿBu)₃^[52] und $[H_3Al*NMe_3]_2^{[54]}$, $H_3Al^*quin^{[53]}$ $[H_3Al*N(Me_2)CH_2Ph]_2^{[55]}$ während und $[H_3Al*N(Me_2)(CH_2)_3Cl]_2$ [56] im Festkörper als Dimer über intermolekulare Wasserstoffbrücken vorliegen. Neben den sehr instabilen Arylphosphinadukten sind lediglich sterisch sehr anspruchsvolle Trialkylphosphine wie PR₃ (R=Cy ^[57], ^{*t*}Bu ^[58]) als Donoren zur Bildung eines Monoaduktes bekannt. In Gegenwart von Trimethylamin jedoch bilden Arylphosphine wie PPh₃, P(o-toluol)₃ ^[59] sowie Alkylphophine wie (Me₂PCH₂)₂ und ^tBu₃P gemischte Bisadukte mit Aminliganden ^[59] (Typ B). Bisadukte werden in der Regel ebenso von Donoren gebildet, die imstande sind AlH₃ auch in einem 1:1-Komplex zu stabilisieren, sofern die sterischen Verhältnisse es zulassen. Aluminium mit einer fünffachen Koordination in einer trigonal-bipyramidaler Umgebung lässt sich u.a auch für die reinen Aminadukte AlH3*2quin [60] und AlH3*2tmtz [61] finden. Für die letzte Verbindung wird ebenfalls eine polymere Anordnung der Moleküle im Festkörper gefunden. Diese polymeren Strukturen sind oft bei zweizähnigen Aminen und/oder schwächeren Basen finden, wie z.B. auch den Adukten zu bei $[H_3Al^*(NMe_2(CH_2)_nNMe_2)]_{\infty}$ mit n=2^[62], 3^[63] und $[H_3Al^*N(R)Morph]_{\infty}$ R=Me^[63], Et^[64] (Typ C). In Gegenwart höherer polydentater Amine existieren ebenfalls ionische Spezies wie $[H_2Al(N,N,N,-N^{\prime\prime\prime}-pentamethyldiethylen-etriamin)]^+[AlH_4]^-$ [65] (Typ D). Adukte primärer Amine und sekundärer Amine sind aufgrund ihrer thermischen Instabilität gar nicht bis wenig bekannt. Unter H₂-Freisetzung reagieren diese sofort weiter zum jeweiligen Amidoalan $[H_2Al(\mu_2-NR_2)]_n$ oder im Fall primärer Amine bis zum Aluminiumnitrid. N,N,N',N'-tmpH stellt wegen seiner sterischen Raumbeanspruchung sowie der geringen Neigung zur Brückbildung einen bislang bekannten Sonderfall eines stabilen Adukts aus Alan und sekundärem Amin^[66].

Unter den strukturell aufgeklärten Alanadukten mit unidentaten sauerstofffunktionalisierten Donoren sind nur das thermisch instabile Mono- und Bisadukt mit THF bekannt. Die Adukte lassen sich strukturell mit den jeweiligen Trimetylaminadukten

vergleichen. [H₃Al*THF]₂ liegt als Dimer über intermolekulare H-Brücken, [H₃Al*2THF] trigonal-bipyramidal als Monomer vor ^[67,68].

Abb. 2.1: Donorstabilisierte Alanadukte

2.1 Halogenalane und deren Adukte [X_{3-n}AlX_n*nDo] (X=Cl, Br; I / n=1,2)

Halogenalane der allgemeinen Summenformel $[H_{3-n}AlX_y]$ mit (X=Cl, Br und I / n=1,2), in denen ein bis zwei hydridische H-Atome durch Halogenliganden X ersetzt sind, besitzen daher durch die elektronenziehende Wirkung der Halogenatome eine höhere Lewis-Acidität als AlH₃. Durch die elektronenziehenden Halogenliganden resultiert eine Verkürzung der Al-H Bindungslängen, weshalb diese Alane eine geringere Reaktivität als AlH₃ aufweisen. Die Halogenalane wurden zeitgleich zu den AlH₃*Adukten von *Wiberg et al.* über Metathesereaktionen dargestellt und charakterisiert (Gl. 2.1 und 2.2):

(2.1)
$$2 \operatorname{AlH}_3 + \operatorname{AlX}_3 \xrightarrow{\operatorname{OR}_2} 3 \operatorname{H}_2\operatorname{AlX} X=\operatorname{Br} \operatorname{und} I$$

(2.2) $\operatorname{AlH}_3 + 2 \operatorname{AlX}_3 \xrightarrow{\operatorname{OR}_2} 3 \operatorname{HAlX}_2 X=\operatorname{Cl}, \operatorname{Br} \operatorname{und} I$

Aus den etherischen Lösungen des Alans und Aluminiumtrihalogenids AlX₃ können die jeweiligen Halogenalane gewonnen werden, die anhand von Molgewichtsbestimmungen bestätigt worden sind. Die Dihalogenmonoalane HAlX₂ besitzen gegenüber den Monohalogendialanen H₂AlX höhere Schmelzpunkte und Siedepunkte, beide neigen jedoch bei höheren Temperaturen zur Disproportionierung bzw. Umkehr der Bildungsgleichung^[69-71].

In einer weiteren vereinfachten Darstellungsmethode nach *Ashby* et al. können diese gemischten Halogenalane, insbesondere die Chlorderivate, auch direkt aus LiAlH₄ und einem Hydrochlorid oder Aluminiumchlorid durch Protolyse (Gl. 2.3.1 und 2.3.2) oder durch Salzeliminierung (Gl. 2.3.3) gewonnen werden:

(2.3.1) MAlH₄ + n HCl
$$\longrightarrow$$
 Cl_{n-1}AlH_{4-n} + MCl + n H₂
n=2,3

(2.3.2)
$$MAlH_4 + n R_3 NH^+ Cl^- \longrightarrow Cl_{n-1}AlH_{4-n} + MCl + n H_2$$

(2.3.3)
$$\begin{array}{rcrcr} MAlH_4 + AlCl_3 & \longrightarrow & 2 ClAlH_2 + MCl \\ MAlH_4 + 3 AlCl_3 & \longrightarrow & 4 ClAlH_2 + MCl \end{array}$$

Aus aktiven H-Bestimmungen und Elementanalysen geht hervor, dass Halogenalane H₂AlX und HAlX₂ im Vergleich zu Ether stabile Bisadukte X_{3-n}AlH_n*2THF bilden ^[72]. Mit Diethylether bilden die Dihalogenalane HAlCl₂*OEt₂ und HAlBr₂*OEt₂ Monoadukte ^[73]. Bislang sind wenig strukturell eindeutig charakterisierten Halogenalane bekannt. Nach Gleichung (2.3.2) konnte durch Reaktion des Hydrochlorids von Chinoqlidin und LiAlH₄ das Bisadukt H₂AlCl*2quin isoliert werden ^[74]. Mit tmpH bildet H₂AlCl ähnlich wie AlH₃ ein protolysestabiles Monoadukt tmpH*H₂AlCl ^[75].

2.2 Aluminiumalkoxide und Aluminiumamide $[X_2AlOR]_n$ und $[X_2AlNR_2]_n$

Sind die Donormoleküle Do kovalent am Aluminiumatom X_2 Al-Do gebunden, so erfolgt die Stabilisierung zur Erfüllung der Oktettregel intermolekular durch Verknüpfung von zwei oder mehreren monomeren X_2 Al-Do Einheiten über 4e3z-Bindungen. Die Donorliganden fungieren in der Regel als Brückenatome. Der Oligomerisierungsgrad (Dimer, Trimer, Tetramer) hängt dabei sowohl von der Sterik der Halogenliganden X als auch der Alkylgruppe R des Donorliganden ab. Aluminium besitzt in diesen Verbindungen die Koordinationszahl 4 oder unter Einbezug des d-Orbitals $3d^1$ die Koordinatinszahl 5.

In den letzten 15 Jahren wurden Dihalogenamide mit X=Cl, Br und I in der Literatur meistens als monomere Chelatkomplexe beschrieben, deren bidentate Aminliganden Derivate der β -Diimine, **1** Ketamin, **2** Amidin, **3** Guanidin darstellen (Abb. 2.2).

Die deprotonierten Amide bilden monoanionische Liganden, die durch das π -System die negative Ladung verteilen können und somit mesomeriestabilisert sind. Weitere Substituenten R können dabei sowohl den Mesomerieffekt verstärken als auch zusätzlich den sterischen Raumbedarf erhöhen. Somit bilden die Liganden durch Bildung einer kovalenten und dativen Bindung äußerst stabile Sechsringe (1) bzw. Vierringe (2) und (3) mit der AlX₂-Einheit. Die Darstellung kann einerseits durch Salzeliminierung des lithiierten Amins mit einem Aluminiumtrihalogenid oder durch Metathese des Amins mit MeAlCl₂ unter Abspaltung von Methan erfolgen ^[76].

Monomere Alkoxide, in denen Aluminium die KZ=4 besitzt, sind jedoch nur mit sterisch sehr anspruchsvollen Phenolderivaten mit R=Me^[77], ^{*t*}Bu^[78] bekannt. Die Oktettlücke füllt dabei ein zusätzlich koordinierendes Ethermolekül (Abb. 2.3, Struktur A).

Abb. 2.3: Einfluss sterisch anspruchsvoller Liganden auf die Molekülstruktur

Ohne die Koordination des Ethermoleküls bildet das Alkoxid durch intermolekulare Stabilisierung ein Dimer, das in diesem Fall aus sterischen Gründen im Festkörper bevorzugt über die Chlorliganden verbrückt ist (Abb. 2.3, Struktur B).

Bei geringerer sterischer Auswirkung des Donorliganden Do erfolgt die 4e3z-Brückenbildung im Festkörper über die sauerstoff- oder stickstofffunktionalisierten Lewis-Basen. Solche Dihalogenverbindungen sind schon seit ca. 40 Jahren bekannt, wurden aber überwiegend erst in den letzten beiden Dekaden strukturell charakterisiert. Als Beispiele hierfür werden in der Literatur zahlreiche Derivate des Typs X₂AlOR, X₂AlOSiR₃, X₂AlNR₂ mit Chlorliganden gefunden. Dagegen sind nur wenige Dibromidoder Diiodidderivate als Siloxyaluminium- und Aminoaluminiumverbindungen, wie z.B.: [X₂AlOSiR₃]₂ (X= Br^[79-82], I^[83]), [X₂AlNR₂]₂ (X=Br^[45, 84], I^[45], bekannt. Während die Aluminiumamide zwei Alkylreste R am Stickstoffatom tragen, kommen diese Verbindungen hauptsächlich als dimere Verbindungen vor. Hingegen sind zur Stabilisierung dimerer Alkoxide sterisch sehr anspruchsvolle Liganden erforderlich (Abb. 2.4).

Abb. 2.4: Molekülstrukturen dimerer halogenhaltiger Aluminiumalkoxide, -siloxide und - amide

Bei Verringerung des sterischen Anspruchs der Alkylreste R ergeben sich Trimere oder komplexer aufgebaute tri- oder tetrametallische Dichloridalkoxide ^[85] (Abb. 2.5).

Abb. 2.5: (A)Trimer, (B) Trimetallisch, (C) Tetrametallisch

-R	dimer	trimer	trimetallisch	tetrametallisch
$-^{t}Bu$	х			
- ^s Bu	х		х	
- ⁱ Pr	х		Х	
$-CH_2^{t}Bu$	х		х	
$-^{i}Bu$	х	х	Х	
$-^{n}Bu$	х	Х	Х	х
-Et	х	Х	Х	х

Tab. 2.1: Oligomerisierugsgrad in Abhängigkeit der Sterik des Alkylliganden in Dichloridaluminiumalkoxiden ^[85]

Nach NMR-Studien assoziieren diese Moleküle in Lösung ebenfalls wie im Festkörper über Sauerstoffbrücken. Dimere Strukturen der Alkoxyaluminiumdihalogeniden werden durch bidentate Diole gebildet, wodurch das Aluminium fünffach koordiniert ist. Durch ein freies Elektronenpaar des Sauerstoffatoms der Hydroxygruppe bildet sich eine dative Bindung zum Aluminiumatom aus. Bei diesen Alkoxyalkoholen handelt es sich um Derivate des Propanols oder Ethanols zur Bildung stabiler sechs- oder fünfgliedriger Ringe (Abb. 2.6)^[86-88].

Abb. 2.6: Molekülstrukturen von dimeren halogenhaltigen Aluminiumalkoxiden mit Diolen

In den Molekülstrukturen lassen sich nur schwache van-der-Waals Wechselwirkungen zwischen den Protonen des organischen Restes R und den Halogenliganden deuten. Dennoch neigen die Dihalogenide besonders bei höheren Temperaturen schnell zur Zersetzung unter Abspaltung von HCl.

Es lassen sich mehrere Darstellungsmethoden voneinander unterscheiden, je nachdem ob eine Aluminium-Sauerstoff-Bindung oder eine Aluminium-Halogenbindung gebildet wird. a) Bildung einer Aluminium-Sauerstoff-Bindung:

- Metathese mit Salzeliminierung zur Darstellung von Siloxyaluminiumdihalogeniden^[89]:

(2.4)
$$2 R_3 SiOSiR_3 + 2 AlX_3 \longrightarrow [X_2Al(\mu-OSiR_3)]_2 + 2 R_3SiX \qquad \substack{\text{R=H, Alkyl}\\ X=Cl, Br, I}$$

- Metathese mit Gaseliminierung zur Darstellung von Alkoxyaluminiumdihalogenide:

(2.5)
$$2 R^{1}AlX_{2} + 2 R^{2}OH \longrightarrow l/n [X_{2}Al(\mu-OR^{2})]_{n} + 2 R^{1}H \qquad \begin{array}{c} R^{1}=CH_{3}, C_{2}H_{5} \\ R^{2}=Alkyl \\ X=Cl, Br \end{array}$$

- Dismutation, wobei das Gleichgewicht auf der rechten Seite liegt:

(2.6)
$$2 \operatorname{AlCl}_3 + \operatorname{Al}(\operatorname{OR})_3 \longrightarrow 3 \operatorname{Cl}_2 \operatorname{Al}(\mu - \operatorname{OR})$$

b) Bildung einer Aluminium-Halogen-Bindung:

- Metathese mit Redoxreaktion, die durch A. Ahmed zur Darstellung von Dihalogenidaluminiumamiden angewendet wurde ^[44,45]:

(2.7)
$$2 \text{ HgX}_2 + 2 \text{ H}_2 \text{Al}(\mu - \text{NMe})_2]_2 \longrightarrow [X_2 \text{Al}(\mu - \text{NMe}_2)]_2 + 2 \text{ Hg}(0) + 2 \text{ H}_2 \xrightarrow{X=} \text{Cl, Br, I}_2$$

Metallorganische Alkoxyaluminiumverbindungen, die zwei unterschiedliche terminale Liganden am Aluminium aufweisen, wie beispielsweise $[(C_5Me_4H)AlCl(\mu-O^{-i}Pr)]_2^{[90]}$, $[\eta^1-C_5H_5(Cl)Al-O^tBu]_2^{[91]}$, $[LAl(Cl)[\mu-OMe)]_3$ (L=Me, Et)^[92] $[({}^tBuO)Al(H)(\mu-O^tBu)]_2^{[17, 93]}$, bilden in Lösung Gemische aus *cis/trans*-Isomeren. In den dimeren Molekülen stehen dabei im *trans*-Isomer die Chlor- bzw. die Liganden L am Aluminium jeweils unter und oberhalb der Al_2O_2-Ebene, während sie sich im *cis*-Isomer auf derselben Seite befinden (Abb. 2.7)

Abb. 2.7: Stereoisomere dimerer Aluminiumalkoxide $[LAl(Cl)(\mu-O'Bu)]_2$

Pasynkiewicz et al. zeigten anhand der Verbindungen [2,6-(Me)₂C₆H₃]AlMe₂, Me[2,6-(CH₃)₂C₆H₃]AlX mit X=Cl, Br und I sowie [2,6-(CH₃)₂C₆H₃]AlCl₂, dass diese Verbindungen jeweils als dimere Moleküle in Benzol vorliegen. Laut IRspektroskopischen Untersuchungen in Benzollösung bilden nicht die Phenoxygruppen, sondern die Halogenatome die Brückenliganden. Für die ternären Aluminiumverbindungen wurden NMR-spektroskopisch cis/trans-Isomere nachgewiesen ^[94]. Unter dieser Feststellung sollte jedoch auch angenommen werden, dass für die Dihalogenalkoxide 2, 3 und 4 ebenfalls cis/trans-Isomere existieren müssten, in denen die tert.-Butoxygruppe terminal am Aluminium koordiniert. In den bei Raumtemperatur gemessenen ¹H- und ¹³C-Spektren der Dihalogenalkoxide treten solche Isomere jedoch nicht auf.

Liegen die Moleküle als trimere Einheiten vor, können ebenfalls *cis*- und *trans*- Isomere vorliegen. In der *trans*-Form besetzen die Halogenliganden, bzw. die Liganden L am Aluminium, die axialen und äquatorialen Positionen, während in der *cis*-Form nur dieselben Positionen äquatorial oder axial besetzt werden (Abb. 2.8).

Abb. 2.8: Stereoisomere trimerer Aluminiumalkoxide

Diese trimeren Formen werden nach thermodynamischen Berechnungen bevorzugt mit sterisch weniger anspruchsvollen organischen Resten wie R = Methyl und Ethyl gebildet. Gleichgewichte in Lösung zwischen di- und trimeren Formen sind erst bei höheren Temperaturen zu beobachten ^[94-96].
3 ERGEBNISSE UND DISKUSSION (TEIL1: SYNTHESE)

3.1 Binäre Alkoxyaluminiumhalogenide des Typs [X₂Al(O^tBu)]₂ (X=Cl, Br, I)

3.1.1 Synthese und Eigenschaften

3.1.1.1 Bis[tert.-butoxyaluminiumdichlorid] [Cl₂Al(O^tBu)]₂ 2

Bis[*tert*.-butoxyaluminiumdichlorid] $[Cl_2Al(O'Bu)]_2$ ist schon seit längerer Zeit bekannt ^[98,99] die Herstellungsmethode wurde jedoch erst in den letzten Jahren publiziert. Bislang wurde die Synthese als Alkoholysereaktion unter Abspaltung von Methan beschrieben (Gl. 3.1). Mittels dieser Methode gelang es Kunicki *et al.* 2000 und Szumacher *et al.* 2003 jedoch, lediglich, eine Ausbeute von 45% zu erzielen ^[87].

$$(3.1) \qquad (CH_3)AlCl_2 + {}^tBuOH \longrightarrow [Cl_2Al(O'Bu)]_2 + CH_4$$

Eine deutliche Ausbeuteverbesserung stellt die heterogene Metathesereaktion mit Redoxreaktion dar (Gl. 3.2):

(3.2)
$$2 \operatorname{PbCl}_2 + [\operatorname{H}_2\operatorname{Al}(\operatorname{O}^t\operatorname{Bu})_2 \xrightarrow{n-\operatorname{Hex}} [\operatorname{Cl}_2\operatorname{Al}(\operatorname{O}^t\operatorname{Bu})]_2 + 2 \operatorname{Pb} + 2 \operatorname{H}_2$$

Bei dieser Reaktion liegt das Bleichlorid ungelöst vor. Die Reaktion von PbCl₂ und $[H_2Al(O'Bu)]_2$ <u>1</u> im Verhältnis 1:2 führt nach vier Stunden Rührzeit zur Bildung von $[Cl_2Al(O'Bu)]_2$ <u>2</u>. Beim Zutropfen der Lösung von <u>1</u> in *n*-Hexan tritt sofort eine starke H₂-Gasentwicklung ein. Das farblose PbCl₂ setzt sich zu elementarem Blei um, was sich in der Schwarzfärbung des Niederschlags äußert. Die Reaktion verläuft stark exotherm. Die Stärke der Wärmeentwicklung kann dabei durch die Zutropfgeschwindigkeit beeinflusst werden. Je langsamer die Zugabe des Alans erfolgt, desto geringer die Wärmeentwicklung. Diese wiederum beeinflusst die Pb-Partikelgröße. Je geringer die Wärmeentwicklung, desto mehr bilden sich kleine feinverteilte schwarze Pb-Partikel,

während sich bei höherer Wärmenetwicklung metallisch glänzende Bleipartikel im Millimetermaßstab bilden.

Als Lösungsmittel wurde *n*-Hexan gewählt, um sterische Effekte infolge Lösungsmittelkoordination am stark lewis-sauren Aluminium zu vermeiden.

Da die Verbindung <u>2</u> temperaturinstabil ist, muss darauf geachtet werden, dass die Reaktionslösung während des Zutropfens der Alanlösung gekühlt wird oder das Zutropfen sehr langsam erfolgt. Das Produkt kristallisiert während des Abdestillierens des Lösungsmittels unter vermindertem Druck als farbloser Feststoff mit einer Ausbeute von 90% aus.

Die Verbindung $\underline{2}$ ist in Lösung nur begrenzt haltbar. Nach einem Tag zersetzt sich die Verbindung zu einem unlöslichen braunen Feststoff. Als Feststoff kann das Produkt eine Zeit lang im Kühlschrank aufbewahrt werden. Lichteinwirkung oder thermischer Einfluss wie Sublimation bei 70°C/10⁻² mbar beschleunigen die Zersetzung. Eine Sublimation bei höheren Temperaturen ist daher stets mit hohem Ausbeuteverlust verbunden.

3.1.1.2 Bis[tert.-butoxyaluminiumdibromid] [Br₂Al(O^tBu)]₂ <u>3</u>

Nach dem gleichen Reaktionsprinzip und ähnlichen Reaktionsbedingungen wie bei der Synthese von $[Cl_2Al(O'Bu)]_2$ <u>2</u> erfolgt die Herstellung der Verbindung <u>3</u> mit zwei Äquivalenten PbBr₂. Bei der Umsetzung lässt sich im Vergleich zur Reaktion (Gl. 3.2) eine schwächere Wasserstoffentwicklung beobachten. Nach Aufarbeitung der Reaktionslösung kristallisiert das Rohprodukt in 78%-iger Ausbeute als farbloser Feststoff aus.

Die Verbindung <u>3</u> ist im Vergleich zur verwandten Chlorverbindung <u>3</u> länger in Lösung haltbar. Auch als Feststoff zeigt die Verbindung eine höhere Stabilität und kann daher über mehrere Wochen im Kühlschrank aufbewahrt werden, ohne dass Zersetzung stattfindet. Die Sublimation bei 90°C/10⁻² mbar fordert jedoch eine Zersetzung, die sich analog der Chlorverbindung <u>2</u> in einer Braunfärbung des Produkts äußert. Eine Sublimation ist daher auch stets mit hohem Ausbeuteverlust verbunden.

3.1.1.3 Bis[*tert*.-butoxyaluminiumdiiodid] [I₂Al(O^tBu)]₂ 4

Im Gegensatz zu den vorher beschriebenen Verbindungen $\underline{2}$ und $\underline{3}$, lässt sich die verwandte Diiodidverbindung $\underline{4}$ nicht über die "Bleiroute" (Gl. 3.3) gezielt herstellen.

(3.3)
$$2 \operatorname{PbI}_2 + [\operatorname{H}_2\operatorname{Al}(\operatorname{O}^t\operatorname{Bu})]_2 // [I_2\operatorname{Al}(\operatorname{O}^t\operatorname{Bu}]_2 + 2 \operatorname{Pb} + 2 \operatorname{H}_2]_2$$

Nachdem die Lösung zwei Tage bei Raumtemperatur gerührt wurde, konnte nach der Aufarbeitung lediglich die monosubstituierte Verbindung [IAl(H)(O'Bu)]₂ <u>7</u> für eine Einkristallröntgenstrukturuntersuchung isoliert werden.

Für diese Synthese wurde daher in Analogie zur Synthese des verwandten $[H_2Al(O'Bu)]_2 \mathbf{1}$ die "Alanroute" (Kap. 1, Gl. 1.1 und 1.2) gewählt. Als Ausgangsverbindung wurde daher zunächst das Diiodalan "HAII₂" hergestellt. Das iodhaltige Alan HAII₂ bildet anders als AlH₃ bereits mit Diethylether stabile Adukte ^[100]. Die Synthese der Verbindung $\mathbf{4}$ erfolgt in einer Zweistufenreaktion nach den Gleichungen (Gl. 3.4 und 3.5):

(3.4)
$$\text{LiAlH}_4 + 3 \text{AlI}_3 \xrightarrow{\text{OEt}_2} 4 \text{HAlI}_2 + \text{LiI}$$

(3.5) $4 \text{HAlI}_2 + \text{LiI} \xrightarrow{+4 \ ^t\text{BuOH}} 2 [I_2\text{Al}(\text{O}^t\text{Bu})]_2 + 4 \text{H}_2$
 $\xrightarrow{2) \text{NEt}_3} 2 [I_2\text{Al}(\text{O}^t\text{Bu})]_2 + 4 \text{H}_2$

In der Metathesereaktion aus LiAlH₄ und drei Äquivalenten AlI₃ wird in etherischer Lösung in situ Diiodalan als Etheradukt hergestellt. Das LiI bleibt ebenfalls gelöst. Vor der Zugabe des Alkohols wird die Lösung im Eisbad gekühlt, um durch den exothermen Charakter der Reaktion eine Zersetzung des Diiodalans zu unterbinden. Aufgrund der geringeren Reaktivität des Alans tritt nur eine schwache Wasserstoffentwicklung auf. Nach drei Stunden Rührzeit wurde die Lösung auf die Hälfte ihres Volumens eingeengt. Das Lithiumiodid wird durch Zusetzen von Triethylamin in Toluol als Aminadukt LiI*NEt₃ gefällt. Die Einkristallstrukturanalyse zeigte, dass das LiI als Heterocubus vorliegt und jeweils ein Aminmolekül am Lithiumatom koordiniert [LiI*NEt₃]₄. Die Struktur wurde bereits im Arbeitskreis von Herrn Prof. Dr. Schnöckel vollständig charakterisiert^[101].

Nach vollständigem Abfiltrieren des Lithiumiodidadukts aus der orangefarbenen Lösung kristallisiert das farblose Produkt <u>4</u> während des Einengens in Toluol aus. Die Ausbeute beträgt 82%.

Die lichtempfindliche Verbindung besitzt einen Schmelzpunkt unterhalb Raumtemperatur.

Die Dihalogenaluminiumalkoxide $[Cl_2Al(O'Bu)]_2 \underline{2}, [Br_2Al(O'Bu)]_2 \underline{3}$ und $[I_2Al(O'Bu)]_2 \underline{4}$ sind gut löslich in polaren als auch unpolaren Lösungsmitteln.

Hinsichtlich der Redoxreaktionen des Alans <u>1</u> mit den entsprechenden Bleihalogeniden im stöchiometrischen Verhältnis 1:2 ließ sich anhand des Reaktionsverlaufs eine Abnahme der Reaktivität erkennen, die sich in Form der Stärke der Gasentwicklung und Wärmefreisetzung im Substitutionsmuster zeigte. Die Reaktivität in der Reaktion kann als Funktion der Bindungsenergie gesehen werden. In der Gruppe der Halogene sinkt die Bindungsenergie zum Aluminium von Chlor nach Iod: *Al-Cl* 118 > *Al-Br* 103 > *Al-I* 88 [kcal/mol]^[102].

Die Darstellung der Diiodidverbindung <u>4</u> gelang, wie sich zeigte, ausschließlich über die "Alanroute"(S. 22, Gl. 3.4 und 3.5), bei der eine Al-O-Bindung geknüpft wurde. Da die Synthese nach der "Bleiroute" (S.21, Gl. 3.3) nicht in der Diiodidverbindung <u>4</u> resultiert, obwohl PbI₂ im Überschuss eingesetzt wurde, muss die Bildung einer zweiten Al-I-Bindung demnach entweder auf elektronische oder auf sterische Gründe zurückzuführen sein. Sterisch gesehen lässt sich vermuten, dass eine nukleophile Addition des monosubstituierten Alans [IAl(H)(O'Bu)]₂ <u>7</u> durch die sterisch sehr anspruchsvollen *tert.*-Butylgruppen an ein weiteres Iodatom gehindert sein könnte. Energetisch und elektronisch gesehen ist wäre die Bildung der Diiodidverbindung <u>4</u> möglich, da die Al-I-Bindung um 20 kcal/mol stabiler ist als die Al-H-Bindung. Da es sich bei beiden Liganden um weiche Basen handelt, wäre nach dem Symbioseprinzip ein solcher Ligandenaustausch begünstigt. Im Vergleich zur Darstellung von [I₂Al(NMe₂)]₂ über das Alan [H₂Al(NMe₂)]₂ und HgI₂ ^[45], lassen sich neben den elektronischen und sterischen Effekten auch das elektrochemische Potential Metallkationen Hg²⁺ (0.851V→ Hg⁰) ^[102] und Pb²⁺ (-0.126V→Pb⁰) ^[102] als Einflussmöglichkeit in Betracht ziehen. Hg ist im Vergleich zu Pb das deutlich edlere Metall, das daher ein deutlich stärkeres Oxidationsmittel darstellt. Weitere Untersuchungen der Iodsubstitution über PbI_2 werden im Kapitel (3.3) beschrieben.

3.1.2 Charakterisierung im Festkörper

3.1.2.1 Strukturbestimmungen von $[Cl_2Al(O^tBu)]_2 \mathbf{\underline{2}}, [Br_2Al(O^tBu)]_2 \mathbf{\underline{3}} und [I_2Al(O^tBu)]_2 \mathbf{\underline{4}}$

Für die Röntgenstrukturanalysen konnten von den Verbindungen $\underline{2}$ und $\underline{3}$ geeignete Kristalle aus der *n*-Hexanlösung gewonnen und isoliert werden. Von der Diiodidverbindung $\underline{4}$ konnten geeignete Kristalle aus der Toluollösung isoliert werden. Nach Bestimmung und Verfeinerung der Gitterkonstanten ergab sich für die Verbindungen $\underline{2}$, $\underline{3}$ die Raumgruppe P2/1(c) im monoklinen Kristallsystem und für $\underline{4}$ die Raumgruppe P-1 im triklinen Kristallsystem. Sämtliche Nichtwasserstoffatome wurden gefunden und anisotrop verfeinert. Zur Berechnung der Lagen der Wasserstoffatome wurden die entsprechenden idealisierten Geometrien verwendet. Der Zulässigkeitsfaktor der so erhaltenen Strukturen erreichte einen Wert von R₁ = 0.0783 für $\underline{2}$, R₁ = 0.0681 für $\underline{3}$ und R₁ = 0.0277 für $\underline{4}$. Die Daten zu den Kristallen und zu den Strukturbestimmungen sind in den nachfolgenden Tabellen (Tab. 3.1- 3.3) und im Anhang in den Tabellen (8.1-8.8) zusammengefasst.

Identifizierungscode	shelxs2068
Summenformel	C8 H18 Al2 Cl4 O2
Molmasse	341.98
Temperatur	200(2) K
Wellenlänge	0.71073 Å
Kristallsystem	monoklin
Raumgruppe	P2(1)/n
Gitterkonstanten	$a = 9.080(2) \text{ Å}$ $\alpha = 90^{\circ}$
	$b = 10.376(2) \text{ Å}$ $\beta = 92.03(3)^{\circ}$
	$c = 9.076(2) \text{ Å}$ $\gamma = 90^{\circ}$
Zellvolumen	854.6(3) Å ³
Anzahl der Formeleinheiten	2
Röntgenographische Dichte	1.329 Mg/m ³
Absorptionskoeffizient	0.781 mm^{-1}
F(000)	352
Kristallgröße	0.43 x 0.38 x 0.22 mm ³
Gemessener Theta-Bereich	2.98 to 22.48°.
Indexbereich	-9<=h<=9, 0<=k<=11, 0<=l<=9
Anzahl gemessener Reflexe	998
Unabhängige Reflexe	998 [R(int) = 0.0000]
Datenvollständigkeit bis theta = 22.48°	89.0 %

Tab. 3.1:	Kristalldaten	und Struk	xturverfeinerung	, für	2.
1	1 LI IStandaton	una strai	tour vor ronner ung		<u> </u>

Absorptionskorrektur	N/A
Verfeinerung	Full-matrix least-squares on F ²
Daten / Restraints / Parameter	998 / 0 / 73
Goodness-of-fit on F2	1.100
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0783, $wR2 = 0.1655$
R-Werte (alle Daten)	R1 = 0.1227, $wR2 = 0.2036$
Restelektronendichte	$0.363 \text{ and } -0.403 \text{ e.Å}^{-3}$

Tab. 3.2: Kristalldaten und Strukturverfeinerung für <u>3</u>.

Identifizierungscode	shelxs2216		
Summenformel	C8 H18 Al2 Br4 O2		
Molmasse	519.82		
Temperatur	200(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem	monoklin		
Raumgruppe	P2(1)/c		
Gitterkonstanten	$a = 14.864(3) \text{ Å}$ $\alpha = 90^{\circ}$		
	$b = 9.285(2) \text{ Å}$ $\beta = 93.93(3)^{\circ}$		
	$c = 13.042(3) \text{ Å}$ $\gamma = 90^{\circ}$		
Zellvolumen	1795.7(7) Å ³		
Anzahl der Formeleinheiten	4		
Röntgenographische Dichte	1.923 Mg/m ³		
Absorptionskoeffizient	9.050 mm ⁻¹		
F(000)	992		
Kristallgröße	0.53 x 0.35 x 0.18 mm ³		
Gemessener Theta-Bereich	2.59 to 23.93°		
Indexbereich	-16<=h<=16, -10<=k<=10, -14<=l<=14		
Anzahl gemessener Reflexe	10875		
unabhängige Reflexe	2775 [R(int) = 0.2261]		
Datenvollständigkeit bis Theta = 23.93°	99.2 %		
Absorptionskorrektur	numerisch		
Max. und min. Transmission	0.090 and 0.017		
Verfeinerung	Full-matrix least-squares on F ²		
Daten / Restraints / Parameter	2775 / 0 / 145		
Goodness-of-fit on F2	0.991		
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0681, wR2 = 0.1619		
R-Werte (alle Daten)	R1 = 0.1014, $wR2 = 0.1776$		
Restelektronendichte	$0.997 \text{ and } -0.836 \text{ e.}\text{Å}^{-3}$		

Identifizierungscode	shelxs2636
Summenformel	C15 H26 Al2 I4 O2
Molmasse	799.92
Temperatur	130(2) K
Wellenlänge	0.71073 Å
Kristallsystem	triklin
Raumgruppe	P-1
Gitterkonstanten	$a = 8.1170(4) \text{ Å}$ $\alpha = 73.563(2)^{\circ}$
	$b = 8.5484(4) \text{ Å}$ $\beta = 85.471(3)^{\circ}$
	$c = 9.7391(6) \text{ Å}$ $\gamma = 80.420(2)^{\circ}$
Zellvolumen	638.75(6) Å ³
Anzahl der Formeleinheiten	1
Röntgenographische Dichte	2.080 Mg/m ³
Absorptionskoeffizient	4.952 mm ⁻¹
F(000)	370
Kristallgröße	$0.38 \ge 0.25 \ge 0.11 \text{ mm}^3$
Gemessener Theta-Bereich	2.18 to 33.31°
Indexbereich	-12<=h<=12, -13<=k<=13, -14<=l<=15
Anzahl gemessener Reflexe	21486
unabhängige Reflexe	4898 [R(int) = 0.0274]
Datenvollständigkeit bis Theta = 33.31°	99.0 %
Absorptionskorrektur	Multiscan
Verfeinerung	Full-matrix least-squares on F ²
Daten / Restraints / Parameter	4898 / 0 / 110
Goodness-of-fit on F2	1.076
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0277, wR2 = 0.0612
R-Werte (alle Daten)	R1 = 0.0391, $wR2 = 0.0651$
Restelektronendichte	$1.132 \text{ and } -1.082 \text{ e.Å}^{-3}$

Tab. 3.3: Kristalldaten und Strukturverfeinerung für <u>4</u>.

3.1.2.2 Beschreibung der Molekül- und Kristallstrukturen von $[Cl_2Al(O'Bu)]_2 \underline{2}$, $[Br_2Al(O'Bu)]_2 \underline{3}$ und $[I_2Al(O'Bu)]_2 \underline{4}$

Die Dichloridverbindung $[Cl_2Al(O'Bu)]_2$ **<u>2</u>** und Dibromidverbindung $[Br_2Al(O'Bu)]_2$ **<u>3</u>** kristallisieren im monoklinen Kristallsystem. Das Iodderivat <u>**4**</u> besitzt im Kristallgitter ein nicht koordinierendes Toluolmolekül, weshalb das Kristallsystem mit der Raumgruppe P-1 resultiert. Während das Chlorderivat <u>**2**</u> und Iodderivat <u>**4**</u> mit zwei Molekülen in der Elementarzelle kristallisieren, werden für das Bromderivat <u>**3** vier Formeleinheiten gefunden.</u>

Bei der Austauschreaktion bleibt der zentrale Al_2O_2 -Vierring des dimeren zentrosymmetrischen Moleküls erhalten (vgl. [H₂Al(O^tBu)]₂, Kap. 1). Die Aluminiumatome zeigen eine verzerrt tetraedrische Umgebung, an den trigonal planar koordinierten Sauerstoffatome stehen die *tert*.-Butylgruppen in gestaffelter Anordnung bezüglich des (Al- μ O)₂-Rings.

Abb. 3.1: Molekülstruktur von [Cl₂Al(µ-O^tBu)]₂ 2

Abb. 3.2: Molekülstruktur von [Br₂Al(µ-O^tBu)]₂ 3

Abb. 3.3: Molekülstruktur von [I₂Al(µ-O^tBu)]₂ 4

Das quartäre Kohlenstoffatom C(1) bzw. C(1') der *tert*.-Butylgruppen steht dabei vernachlässigbar geringfügig ober- bzw. unterhalb der Al₂O₂-Ebene, sodass keine sterische Hinderung bei zunehmendem Radius der Halogenatome zu erkennen ist (Abb. 3.1-3.3). (In <u>4</u> steht die *tert*.-Butylgruppe um 10.2 pm aus der Al₂O₂-Ebene, in <u>2</u> um 10.5 pm und in <u>3</u> nur um 7.3 pm aus der Ebene).

In den zentrosymmetrischen Molekülen sind jeweils ausschließlich ein Inversionszentrum in der Mitte des planaren (Al- μ O)₂-Vierrings zu erkennen. Eine Spiegelebene, die durch die Atome C(1)-O(1)-O(1)-C(1) aufgespannt wird, existiert nicht, da sich die Bindungen C(1)-C(2) und C(1)-C(4) in den Molekülen der Verbindungen **2** und **4** hinsichtlich ihrer Bindungslänge unterscheiden. Ebenfalls existieren zwei asymmetrische Einheiten in den Molekülstrukturen der Verbindung **3**, sodass sich folglich nach der Schönfließ-Symbolik die Punktgruppe C_i für die Verbindungen <u>2</u> bis <u>4</u> ergibt.

Durch die Substitution der Wasserstoffliganden durch die unterschiedlich elektronegativen, elektronenziehenden Halogenliganden erniedrigt sich die Elektronendichte am Aluminium. Dieser Effekt müsste sich sowohl in der Verkürzung der kovalenten Al(1)-O(1)- als auch in der koordinativen und Al(1)-O(1)-Bindung infolge eines zunehmenden ionischen Charakters widerspiegeln. Allerdings zeigt sich wider Erwarten, dass sich der planare Al₂O₂-Vierring hinsichtlich der Bindungslänge für die Chlorverbindung 2 nicht verändert hat. Ebenso erkennt man in den Bindungswinkeln keine Tendenz in Abhängigkeit der Eigenschaften der Halogenliganden. Anhand der ausgesuchten Bindungslängen und -winkel, die in Tabelle (3.4) zusammengefasst sind, sind die strukturellen Veränderungen in den Molekülen 2, 3 und 4 bzgl. der Ausgangsverbindung <u>1</u> erkennbar.

In der Elementarzelle der Bromverbindung <u>3</u> liegt noch ein weiteres dimeres zentrosymmetrisches Molekül vor. Hauptsächlich unterscheidet sich dieses in den Winkeln O-Al-O` und Al-O-Al` des Al₂O₂-Vierings, diese betragen O(2)-Al(2)-O(2`) 82.7(3)° und Al(2)-O(2)-Al(2`) 97.3(3)°, wodurch der nichtbindende Al(2)^{...}Al(2`)-Abstand 2.725(6) Å kleiner wird. Die Al(2)-O(2) 1.810(7) Å und Al(2)-O(2`) 1.820(7) Å stimmen gut mit dem zweiten Molekül überein. Eine starke Verkürzung zeigt sich in der O(2)-C(5) 1.490(1) Å, die der O(1)-C(1)-Bindungslänge entspricht. Die Bindungslängen Al(2)-Br(3) 2.251(3) Å und Al(2)-Br(4) 2.252(3) Å weichen hier kaum voneinander ab.

Abstände/	$[H_2Al(O^tBu)]_2$	$[Cl_2Al(O^tBu)]_2$	$[Br_2Al(O^tBu)]_2$	$[I_2Al(O^tBu)]_2$
Bindungslängen [Å]	$1^{[17]}$	<u>2</u>	<u>3</u>	<u>4</u>
uwinkel [°]	[X=H]	[X=Cl]	[X=Br]	[X=I]
$Al(1)^{}Al(1)$	2.755(4)	2.735(4)	2.737(6)	2.733 (1)
Al(1)-X(1)	1.55(5),	2.105(4),	2.268(3),	2.4853(7),
Al(1)-X(2)	1.55(4)	2.103(4)	2.251(3)	2.4920(7)
Al(1)-O(1)	1.810(3)	1.810(6)	1.806(7)	1.816(2)
Al(1)-O(1`)	1.815(3)	1.815(5)	1.817(7)	1.812(6)
O(1)-C(1)	1.444(5)	1.498(1)	1.520(1)	1.505(1)
Al(1)-O(1)-Al(1`)	99.0(2)	97.9 (3)	98.2(3)	97.77 (8)
O(1)-Al(1)-O(1)	81.0(2)	82.1(3)	81.8(3)	82.23 (8)
Al(1)-O(1)-C(1)	130.49(1)	131.20(4)	131.0(6)	131.00(2)
Al(1)-O(1)-C(1)	129.94(7)	130.31(5)	130.5 (6)	130.60 (2)
X(1)-Al(1)-X(2)	110.67(5)	113.41(1)	113.10(1)	113.62 (3)

Tab. 3.4: Bindungslängen und –winkel in $\underline{1}, \underline{2}, \underline{3}$ und $\underline{4}$

Insgesamt deuten sich durch die Verkleinerung des Al-O-Al-Winkels bei den Halogenverbindungen um ca. 2 pm kürzere Al[…]Al-Abstände an. Die Al-X Bindungslängen liegen jeweils im Bereich der Summe ihrer Kovalenzradien von Al-Cl: 2.17 Å, Al-Br: 2.32 Å und Al-I: 2.51 Å und lassen sich mit isostrukturellen Dihalogenaluminium-alkoxiden gut vergleichen ^[82-87]. Anhand der zahlreichen Aluminiumdichloridderivaten (Cl₂AlR)₂, die in der Literatur zu finden sind, kann die Al-Cl-Bindungslänge in Abhängigkeit der Polarität der verbrückenden Liganden R verglichen werden. R = (-OCH₂C(CH₃)₃ (2.05 Å) ^[85], -OSiH₂CHCH₂ (2.08 Å) ^[101], -OSiMe₂Cl (2.08 Å)^[102], -OSiHMe₂ (2.08 Å) ^[83], -N(H)SiMe₃ (2.10 Å) ^[103], -N(Me)Et (2.102 Å) ^[103], -NMe₂ (2.11 Å) ^[45], - N(C₆H₁₁)₂ (2.12 Å) ^[105].

3.1.3 Charakterisierung von [X₂Al(O^tBu)]₂ (X=Cl: <u>2</u>, Br: <u>3</u>, I: <u>4</u>) in Lösung

Die NMR-Untersuchungen der dimeren Verbindungen $[Cl_2Al(O'Bu)]_2$ **2**, $[Br_2Al(O'Bu)]_2$ **3** und $[I_2Al(O'Bu)]_2$ **4** ergab im ¹H-Spektrum jeweils ein Singulett und in den dazugehörenden ¹³C-Spektren zwei Signale für den quartären α -Kohlenstoff und für die primären Kohlenstoffatome der *tert*.-Butylgruppe, sodass man von chemisch äquivalenten *tert*.-Butylgruppen ausgehen kann. Die Daten sind in folgender Tabelle (3.3) zusammengefasst:

NMR		$[\operatorname{Cl}_2\operatorname{Al}(\operatorname{O}^t\operatorname{Bu})]_2 \underline{2}$	$[\mathbf{Br}_{2}\mathbf{Al}(\mathbf{O}^{t}\mathbf{Bu})]_{2} \underline{3}$	$[I_2Al(O'Bu)]_2 \underline{4}$
$^{1}\mathrm{H}$	-OC(CH ₃) ₃	1.23	1.32	1.45
¹³ C	-OC(CH ₃) ₃	84.3	85.9	87.7
C	-OC(CH ₃) ₃	30.7	31.4	32.3
²⁷ Al		90.1	86.5	54.5

Tab. 3.5: NMR-Daten von <u>2</u>, <u>3</u> und <u>4</u> (C₆D₆, C₆H₆)

Die Werte der Resonanzsignale aus den ¹H- und ¹³C-NMR-Spektren treten mit abnehmender Elektronegativität der Halogenliganden Tieffeld verschoben auf. Diese Ergebnisse stimmen gut mit der Einkristallröntgenstrukturuntersuchung überein. Folglich kann davon ausgegangen werden, dass die Dihalogenalkoxide <u>2</u>, <u>3</u> und <u>4</u> in Lösung die gleiche Struktur besitzen wie im Festkörper, das heißt die brückenbildenen Liganden in den dimeren Molekülen bilden jeweils die *tert.*-Butoxygruppen. Die höhere Basenstärke der *tert.*-Butoxygruppe gegenüber den Halogenliganden, sowie die Oxogenophilie des Aluminiums sprechen ebenfalls für diesen Befund.

Dennoch kann eine Verbrückung über die Halogenliganden nicht ausgeschlossen werden. In diesem Fall würden zwei verschiedene Liganden, eine *tert.*-Butoxygruppe und ein Halogenligand X, senkrecht zum $(Al-\mu X)_2$ -Vierring stehen, wodurch zwei Konfigurationsisomere entstehen würden (die *cis-* und *trans-*Form), die jeweils ein Singulett im ¹H-NMR hervorrufen würden. Obwohl in Lösung nur ein Singulett im ¹H-NMR bei Raumtemperatur gefunden wurde, könnte auch vermutet werden, dass die Konfigurationsisomere isochron wären, *ergo* die gleiche chemische Verschiebung aufweisen würden.

Im 27 Al-NMR-Spektrum der Verbindungen [Cl₂Al(O'Bu)]₂ **<u>2</u>**, [Br₂Al(O'Bu)]₂ **<u>3</u>** und $[I_2Al(O'Bu)]_2 4$ tritt jeweils ein breites Signal auf. Durch die hohe Elektronendichte der Halogenatome, die eine stärkere Abschirmung der Aluminiumatome bewirkt, erscheinen die Signale im Bereich von 90 ppm bis 50 ppm Hochfeld verschoben im Vergleich zur Dihydridverbindung <u>1</u> (124.6 ppm). Für <u>2</u> und <u>3</u> ergibt sich eine chemische Verschiebung um ca. 35 ppm und 40 ppm. Während die ersten beiden Werte im Bereich für tetragonale koordinierte halogenhaltige Aluminiumalkoxide liegen^[87], lässt sich das Resonanzsignal für die Diiodidverbindung 4 nicht eindeutig der tetraedrischen Koordinationssphäre zuordnen. Diese sehr starke chemische Verschiebung von 70 ppm kann einerseits sterisch bedingt sein andererseits aber auch für eine pentagonale Koordinationssphäre am Aluminium sprechen. Diese könnte durch intermolekulare Brückenbindungen hervorgerufen werden (Abb. 3.4). Analog zu Aluminiumtriiodid, das unter den Aluminiumtrihalogeniden die stärkste Lewissäure darstellt, lässt sich der Trend zur elektronischen Absättigung verdeutlichen.

Abb. 3.4: Mögliche intermolekulare I₂Al^{...}IAl(I) Koordination

3.2 Binäre und ternäre Alkoxyaluminiummonohalogenide des Typs [XAl(R)(O^tBu)]₂ (X=Cl, Br und I / R=H, Me, O^tBu)

3.2.1 [ClAl(H)(O'Bu)]₂ <u>5</u>, [BrAl(H)(O'Bu)]₂ <u>6</u> und [IAl(H)(O'Bu)]₂ <u>7</u>: Synthese und Eigenschaften

3.2.1.1 Bis[tert.-butoxyaluminiumchloridhydrid] [ClAl(H)(O^tBu)]₂5

Schmidbaur und *Schindler* berichteten erstmals 1964 von einer chlorhaltigen Siloxyalanverbindung [ClAl(H)OSiMe₃)]₂, welche durch Metathese aus der Dichloridverbindung und LiAlH₄ erhalten werden konnte (Gl. 3.6) ^[91]:

(3.6)
$$[(CH_3)_3SiOAlCl_2]_2 \xrightarrow{+2LiAlH_4} [(CH_3)_3SiOAlClH]_2 + 2 (AlH_3)_x$$

Die Verbindung wurde zur damaligen Zeit mittels NMR und IR-Spektroskopie sowie Dipolmomentmessungen charakterisiert.

3.2.1.1.a) Darstellung von [ClAl(H)(O'Bu)]₂ 5 über Salzeliminierung und Alkoholyse

Bis[*tert*.-butoxyaluminiumchloridhydrid] [ClAl(H)(O^tBu)]₂ wurde bereits 1973 von *W.W. Zajac, Jr.* neben weiteren Alkoxyalanen und Alkoxychloralanen für eine Untersuchung der Hydrolyse von Acetalen und Ketalen hergestellt. Die Alanderivate an sich wurden jedoch nicht charakterisiert ^[106]. Zur Darstellung der Alkoxychloralane wurde dabei auf die Methode von *Ashby* und *Prather* zurückgegriffen (Gl. 3.7) ^[107]:

(3.7)
$$\text{LiAlH}_4 + \text{AlCl}_3 \xrightarrow{\text{OEt}_2} 2 \{\text{H}_2\text{AlCl}*\text{OEt}_2\} \xrightarrow{2 \text{ ROH}} 2 [\text{ClAl(H)OR}] + 2 \text{ H}_2$$

Bei der Salzeliminierungsreaktion aus Lithiumalanat und Aluminiumchlorid entsteht *in situ* das Monochloralan, das durch die Zugabe eines Alkohols das entsprechende Alkoxychloralan bildet.

Die Synthese wurde in dieser Arbeit wieder aufgenommen. Nach der vollständigen Zugabe der etherischen AlCl₃-Lösung zur Suspension aus LiAlH₄ in Diethylether wurde eine Minute lang gerührt und erst dann das *tert.*-Butanol zugetropft. Dabei fand eine heftige Gasentwicklung (H₂-Bildung) statt. Die Reaktion wurde nach vier Stunden beendet und aufgearbeitet.

3.2.1.1.b) Darstellung von $[ClAl(H)(O^{t}Bu)]_{2}$ über Metathese und Redoxreaktion

Im Prinzip verläuft diese Metathesereaktion analog der Reaktion (3.2) zur Darstellung der Dichloridverbindung <u>2</u> mit dem Unterschied, dass PbCl₂ und $[H_2Al(O^tBu)]_2 \underline{1}$ im Molverhältnis 1:1 vorliegen. Auch hier zeigt sich der exotherme Reaktionsverlauf besonders stark durch die stark perlende Wasserstofffreisetzung. Zur Vervollständigung der Reaktion wurde nach dem Zutropfen noch weitere fünf Stunden gerührt.

3.2.1.1.c) Darstellung von $[ClAl(H)(O'Bu)]_2 \underline{5}$ über Dismutation aus $\underline{2}$ und $\underline{1}$

Diese Reaktion stellt eine Gleichgewichtsreaktion aus den Verbindungen $[H_2Al(O'Bu)]_2 \underline{1}$ und $[Cl_2Al(O'Bu)]_2 \underline{2}$ dar, wobei das Gleichgewicht auf der Produktseite liegt (Gl. 3.8).

$$(3.8) \quad [H_2Al(O^tBu)]_2 + [Cl_2Al(O^tBu)]_2 \longrightarrow 2 [ClAl(H)(O^tBu)]_2$$

Die Reaktionslösung wurde zwei Stunden gerührt. Die NMR-Analyse zeigt jedoch, dass sich das Gleichgewicht auch direkt, nachdem die einzelnen Edukte stöchiometrisch vermengt wurden, auf die Produktseite verschiebt.

Beim Einengen der Reaktionslösungen unter reduziertem Druck fällt aus den jeweils verschiedenen Reaktionsansätzen (3.2.1.1 a-c)) ein farbloser, pulverartiger Feststoff aus. Während aus den ersten beiden Ansätzen (s. 3.2.1.1.a) und 3.2.1.1.b)) jeweils eine sehr gute Ausbeute von 90% der Theorie erhalten werden konnte, lässt sich das Alkoxychloralan <u>5</u> durch die Dismutation in quantitativer Ausbeute gewinnen. Die hoch flüchtige Verbindung lässt sich ab 50°C bei $2*10^{-2}$ mbar sublimieren. Im Gegensatz zur Dichloridverbindung <u>2</u> zeichnet sich nur ein geringer Substanzverlust durch thermische Einwirkung ab. Auch gegenüber Licht weist diese Verbindung im Vergleich zu <u>2</u> eine deutlich höhere Stabilität auf. Nach einer Molmassenbestimmung in Benzol,

265 g/mol (berechnet: 273.12 g/mol), liegt die Verbindung als Dimer vor.

3.2.1.2 Bis[tert.-butoxyaluminiumbromidhydrid] [BrAl(H)(O^tBu)]₂ <u>6</u>

3.2.1.2.a) Darstellung von [BrAl(H)(O'Bu)]₂ <u>6</u> über Salzeliminierung und Alkoholyse

Die Durchführung der Darstellung von Bis[*tert.*-butoxyaluminiumbromidhydrid] [BrAl(H)(O^tBu)]₂ <u>6</u> erfolgt im Prinzip genauso wie die entsprechende Synthese der Monochloridverbindung jedoch mit dem Unterschied, dass das in Ether besser lösliche LiBr als Aminadukt [LiBr*NEt₃]₄ vom Produkt abgetrennt werden muss.

(3.9)
$$\text{LiAlH}_4 + \text{AlBr}_3 \xrightarrow{\text{OEt}_2} 2 \text{ H}_2 \text{AlBr}^* \text{OEt}_2 + \text{LiBr}$$

(3.10.a) $2 \text{ H}_2 \text{AlBr}^* \text{OEt}_2 \xrightarrow{+2^t \text{BuOH}} [\text{BrAl}(\text{H})(\text{O}^t \text{Bu})]_2 + 2 \text{ H}_2$
(3.10.b) $\text{LiBr} + \text{NEt}_3 \xrightarrow{} 1/4 [\text{LiBr}^* \text{NEt}_3]_4$

Nach Gleichung (3.9) wird zunächst in etherischer Lösung aus LiAlH₄ und AlBr₃ das stabile Etheradukt H₂AlBr*OEt₂ ^[70] gebildet. Das im Eisbad gekühlte Etherat wird nach etwa fünf Minuten durch langsames Zutropfen mit *tert*.-Butanol versetzt. Dabei findet eine starke Gasentwicklung statt (Gl. 3.10.a)). Nach ca. drei Stunden Rührzeit wird die klare Lösung eingeengt und mit einem Überschuss an Toluol und einem Äquivalenten an NEt₃ versetzt. Das LiBr fällt sofort als kristalliner Niederschlag in Form des Aminadukts LiBr*NEt₃ aus, welches durch eine Röntgenstrukturanalyse identifiziert wurde und sich mit der bereits bekannten Struktur deckt ^{[108].} Das Aminadukt liegt ebenso wie das LiI*Adukt als Heterocubus vor, dessen Ecken mit Lithium- und Bromatomen besetzt sind. An den Lithiumatomen koordiniert jeweils ein Aminmolekül ^[110]. Nach Aufarbeitung erhält man das *tert*.-Butoxybromalan <u>6</u> in 72%-igen Ausbeute.

Entscheidend bei dieser Synthese sind die milden Reaktionsbedingungen. Bei zu starker Wärmeentwicklung durch die Zugabe des Alkohols kann eine Zersetzung des Alans H₂AlBr nach der Reaktion (3.11) ablaufen, wobei sich das Aluminiumtrihydrid und das Dibromidalan bildet ^[70].

$$(3.11) \qquad 2 H_2 AlBr \longrightarrow AlH_3 + HAlBr_2$$

3.2.1.2.b) Darstellung von $[BrAl(H)(O^tBu)]_2 \mathbf{\underline{6}}$ über Metathese und Redoxreaktion

Im Unterschied zur Darstellung der Monochloridverbindung <u>5</u> wird der Reaktionsansatz aus PbBr₂ und $[H_2Al(O'Bu)]_2$ <u>1</u> im Molverhältnis 1:1 14 Stunden lang in *n*-Hexan bei Raumtemperatur gerührt. Die Wasserstoffentwicklung erscheint im Vergleich zur Metathesereaktion zur Darstellung der analogen der chlorhaltigen Verbindung <u>5</u> weniger heftig. Nach Aufarbeitung kristallisiert das Produkt als farbloser Feststoff mit einer 88%igen Ausbeute aus.

3.2.1.2.c) Darstellung von $[BrAl(H)(O'Bu)]_2 \underline{6}$ über Dismutation aus $\underline{3}$ und $\underline{1}$

Die Reaktion aus den Verbindungen $[H_2Al(O'Bu)]_2 \mathbf{1}$ und $[Br_2Al(O'Bu)]_2 \mathbf{3}$ in *n*-Hexan wurde nach vollständiger Vermischung zwei Stunden gerührt. Beim Einengen der Reaktionslösung unter reduziertem Druck kann das Produkt wieder in quantitativer Ausbeute erhalten werden.

Beim Sublimieren der Verbindung $[BrAl(H)(O'Bu)]_2$ <u>6</u> ab 80°C (2*10⁻² mbar) kristallisiert das Produkt bevorzugt im eisgekühlten Sublimationsrohr aus. Auch hier ist der Substanzverlust durch thermische Einwirkung im Gegensatz zur zweifach substituierten Dibromidverbindung <u>3</u> gering. Der Schmelzpunkt von $[BrAl(H)(O'Bu)]_2$ <u>6</u> liegt bei 68°C. Eine Molmassenbestimmung in Benzol, 352 g/mol (berechnet: 362.02 g/mol) zeigt, dass die Verbindung als Dimer vorliegt.

3.2.1.3 Bis[tert.-butoxyaluminiumiodidhydrid] [IAl(H)(O^tBu)]₂ 7

3.2.1.3.a) Darstellung von [IAl(H)(O^tBu)]₂ 7 über Salzeliminierung und Alkoholyse

Die Darstellung von Bis[*tert.*-butoxyaluminiumhydridiodid] [IAl(H)(O'Bu)]₂ $\underline{7}$ erfolgt analog der Synthese von <u>6</u> nach den Gleichungen (3.9) und (3.10). Das LiI muss auch hier als Aminadukt, das gegenüber dem Iodalan <u>7</u> in Toluol unlöslich ist, abgetrennt werden. Das im Eisbad gekühlte Etheradukt H₂AlI*OEt₂^[69] wird durch langsames Zutropfen von *tert.*-Butanol zur Reaktion gebracht. Die Wasserstoffentwicklung ist nur gering. Nach ca. drei Stunden Rührzeit wird wieder die Polarität des Lösungsmittels durch einen Überschuss an Toluol gewechselt und mit einem Äquivalenten an NEt₃ versetzt. Nach kurzer anschließender Rührzeit wird das Lösungsmittel unter reduziertem Druck eingeengt. In der Kälte fällt das LiI-Aminadukt in Toluol langsam aus. Nach Abfiltrieren des Niederschlags und Abdestillieren des Toluols erhält man das *tert.*-Butoxyiodalan <u>7</u> in einer 75%-igen Ausbeute.

Auch hier sind milde Reaktionsbedingungen erforderlich um eine zu starke Wärmeentwicklung zu vermeiden. Daher ist eine langsame Zugabe des Alkohols ist erforderlich, damit keine Zersetzung des Alans H₂AlI nach der Reaktion (3.12) stattfindet kann, wobei sich das Aluminiumtrihydrid und das Diiodidalan bildet ^{[69].}

(3.12) $2 H_2 AlI \longrightarrow AlH_3 + HAlI_2$

3.2.1.3.b) Darstellung von [IAl(H)(O'Bu)]₂ 7 über Metathese und Redoxreaktion

Für die Darstellung der Monoiodidverbindung <u>7</u> kann PbI_2 im großen Überschuss eingesetzt werden, da eine zweifache Substitution mit PbI_2 nicht möglich ist (vgl. Kap. 3.1.3.2).

(3.13)
$$[H_2Al(O^tBu)]_2 + 3 PbI_2 \xrightarrow{n-Hex} [IAl(H)(O^tBu)]_2 + H_2 + Pb + 2 PbI_2$$

Die Umsetzung mit $[H_2Al(O'Bu)]_2$ <u>1</u> im Molverhältnis 1:1 ist nach zwei Tagen noch nicht beendet. Im IR-Spektrum konnte die Al-H-Valenzschwingung der Ausgangsverbindung <u>1</u> bei 1845 cm⁻¹ neben einer Al-H-Valenzschwingung bei 1912 cm⁻¹ nachgewiesen werden und im Pulverdiffraktogramm des Bleiniederschlags wurde neben kristallinen elementaren Bleipartikeln nicht umgesetztes PbI₂ gefunden. Aufgrund dessen, wurden in der Reaktion drei Äquivalente PbI₂ eingesetzt. Bereits bei der Zugabe des Alans äußert sich der langsame Austauschprozess: Weder erwärmt sich die Reaktionslösung, noch findet anscheinend eine Gasentwicklung statt. Nach 60 Stunden Rührzeit wird die Reaktionslösung vom schwarzbraunen kristallinen Niederschlag (Pb und PbI₂) abfiltriert und aufgearbeitet. Das Produkt wird als farbloser klebriger Feststoff in einer 83%-igen Ausbeute erhalten.

Die Verbindung $[IAl(H)(O'Bu)]_2 \underline{7}$ ist bei Raumtemperatur stabil, der Schmelzpunkt liegt bei 80°C. Eine Sublimation ab $110^{\circ}C/10^{-2}$ mbar ist mit sehr hohe Ausbeuteverlusten verbunden. Zurück bleibt ein unlöslicher brauner Feststoff. Eine Molegewichtsbestimmung in Benzol 445 g/mol (berechnet: 456.01g/mol) zeigt, dass die Verbindung als Dimer vorliegt.

In ihren Eigenschaften zeigen die einfach substituierten Verbindungen $[ClAl(H)(O'Bu)]_2$ <u>5</u>, $[BrAl(H)(O'Bu)]_2$ <u>6</u> und $[IAl(H)(O'Bu)]_2$ <u>7</u> im Gegensatz zur Dihydridverbindung <u>1</u> an Luft keine pyrophore Eigenschaften. Dennoch besitzen sie durch die stark polaren Aluminium-Halogenbindungen eine hohe Hydrolyseempfindlichkeit.

Durch ihre höhere Molmasse lassen sich die Halogenderivate erst bei höheren Temperaturen sublimieren, zeigen aber im Vergleich zu den verwandten Dihalogenverbindungen eine höhere Stabilität bei Wärmeeinwirkung. Aufgrund dieser Eigenschaften stellt insbesondere die Monochloridverbindung <u>5</u> eine interessante Ausgangsverbindung für den CVD-Prozess als Single-Source-Precursor dar.

3.2.2 [ClAl(H)(O^tBu)]₂ <u>5</u>, [BrAl(H)(O^tBu)]₂ <u>6</u> und [IAl(H)(O^tBu)]₂ <u>7</u>: Charakterisierung im Festkörper

3.2.2.1 Strukturbestimmungen von $[ClAl(H)(O'Bu)]_2$ <u>5</u>, $[BrAl(H)(O'Bu)]_2$ <u>6</u> und $[IAl(H)(O'Bu)]_2$ <u>7</u>

Aus den Reaktionslösungen der Umsetzungen mit den entsprechenden Bleihalogeniden konnten für die Einkristallröntgenstrukturuntersuchung geeignete farblose Kristalle von $\underline{5}$, $\underline{6}$ und $\underline{7}$ erhalten werden.

Nach Bestimmung und Verfeinerung der Gitterkonstanten ergab sich die Raumgruppe P2/1(c) im monoklinen Kristallsystem. Sämtliche Nichtwasserstoffatome wurden gefunden und anisotrop verfeinert. Zur Berechnung der Lagen der Wasserstoffatome wurden die entsprechenden idealisierten Geometrien verwendet. Die Zulässigkeitsfaktoren der so erhaltenen Strukturen erreichte einen Wert für <u>5</u> von R₁= 0.0443, für <u>6</u> von R₁= 0.0426 und für <u>7</u> von R₁= 0.0277. Die Daten zu den Kristallen und zu den Strukturbestimmungen sind in den nachfolgenden Tabellen (3.6-3.8) sowie im Anhang in den Tabellen (8.9-8.18) zusammengefasst.

Identifizierungscode	shelxs2100
Summenformel	C8 H20 Al2 Cl2 O2
Molmasse	273.10
Temperatur	200(2) K
Wellenlänge	0.71073 Å
Kristallsystem	monoklin
Raumgruppe	P2(1)/c
Gitterkonstanten	$a = 7.313(2) \text{ Å}$ $\alpha = 90^{\circ}$
	b = 10.717(2) Å β =106.53(3)°
	$c = 10.375(2) \text{ Å}$ $\gamma = 90^{\circ}$
Volumen	780.2(3) Å ³
Anzahl der Formeleinheiten	2
Röntgenographische Dichte	1.163 Mg/m^3
Absorptionskoeffizient	0.508 mm ⁻¹
F(000)	288
Kristallgröße	$0.6 \ge 0.43 \ge 0.3 \text{ mm}^3$

Tab 3.6: Kristalldaten und Strukturverfeinerung für 5.

Gemessener Theta-Bereich	3.47 to 23.97°
Indexbereich	-8<=h<=8, -12<=k<=11,11<=l<=11
Anzahl gemessener Reflexe	4738
Unabhängige Reflexe	1210 [R(int) = 0.0780]
Datenvollständigkeit bis Theta = 23.97°	98.9 %
Absorptionskorrektur	N/A
Verfeinerung	Full-matrix least-squares on F ²
Daten / Restraints / Parameter	1210 / 0 / 68
Goodness-of-fit on F2	1.152
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0443, WR2 = 0.1237
R-Werte (alle Daten)	R1 = 0.0487, WR2 = 0.1257
Restelektronendichte	0.229 and -0.254 e.Å ⁻³

Tab. 3.7: Kristalldaten und Strukturverfeinerung für <u>6</u>

Identifizierungscode	sh2352
Summenformel	C8 H20 A12 Br2 O2
Molmasse	362.02
Temneratur	200(2) K
Wallanlänga	0 71072 Å
	0./10/5 A
Kristalisystem	
Raumgruppe	P2(1)/c
Gitterkonstanten	$a = 7.442(2) A$ $\alpha = 90^{\circ}$
	$b = 8.845(2) \text{ Å}$ $\beta = 99.85(3)^{\circ}$
	c = 12.128(2) Å $\gamma = 90^{\circ}$
Zellvolumen	786.6(3) Å ³
Anzahl der Formeleinheiten	2
Röntgenographische Dichte	1.528 Mg/m ³
Absorptionskoeffizient	5.245 mm ⁻¹
F(000)	360
Kristallgröße	0.5 x 0.4 x 0.05 mm ³
Gemessener Theta-Bereich	2.78 to 23.92°.
Indexbereich	-8<=h<=8, -10<=k<=10,-13<=l<=12
Anzahl gemessener Reflexe	3672
Unabhängige Reflexe	1199 [R(int) = 0.1060]
Datenvollständigkeit bis Theta = 23.92°	98.2 %
Absorptionskorrektur	numerisch
Verfeinerung	Full-matrix least-squares on F ²
Daten / Restraints / Parameter	1199 / 1 / 71
Goodness-of-fit on F2	1.013
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0426, $wR2 = 0.1061$
R-Werte (alle Daten)	R1 = 0.0538, wR2 = 0.1106
Restelektronendichte	$0.936 \text{ and } -0.528 \text{ e.\AA}^{-3}$

Identifizierungscode	sh2291
Summenformel	C8 H20 A12 I2 O2
Molmasse	456.00
Temperatur	103(2) K
Wellenlänge	0.71073 Å
Kristallsystem	monoklin
Raumgruppe	P2(1)/c
Gitterkonstanten	$a = 7.4392(4) \text{ Å}$ $\alpha = 90^{\circ}$
	b = 8.7937(5) Å β = 99.536(2)°
	c = 12.4076(7) Å $\gamma = 90^{\circ}$
Zellvolumen	800.47(8) Å ³
Anzahl der Formeleinheiten	2
Röntgenographische Dichte	1.892 Mg/m ³
Absorptionskoeffizient	4.020 mm ⁻¹
F(000)	432
Kristallgröße	0.22 x 0.25 x 0.4 mm ³
Gemessener Theta-Bereich	2.78 to 38.56°
Indexbereich	-12<=h<=13, -15<=k<=13, -21<=l<=14
Anzahl gemessener Reflexe	20136
Unabhängige Reflexe	4502 [R(int) = 0.0209]
Datenvollständigkeit bis Theta = 38.56°	99.4 %
Absorptionskorrektur	Multiscan
Verfeinerung	Full-matrix least-squares on F ²
Daten / Restraints / Parameter	4502 / 0 / 68
Goodness-of-fit on F2	1.043
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0274, WR2 = 0.1188
R-Werte (alle Daten)	R1 = 0.0316, $wR2 = 0.1236$
Restelektronendichte	1.990 and -1.638 e.Å ⁻³

Tab. 3.8: Kristalldaten und Strukturverfeinerung für 7.

3.2.2.2 Beschreibung der Molekül- und Kristallstrukturen von $[ClAl(H)(O'Bu)]_2 \underline{5}$, $[BrAl(H)(O'Bu)]_2 \underline{6}$ und $[IAl(H)(O'Bu)]_2 \underline{7}$

Die Monohalogenalkoxyalane $[ClAl(H)(O'Bu)]_2$ <u>5</u>, $[BrAl(H)(O'Bu)]_2$ <u>6</u> und $[IAl(H)(O'Bu)]_2$ <u>7</u> stellen prochirale Verbindungen dar, die am Aluminiumatom ein stereogenes Zentrum besitzen. Dadurch ergeben sich zwei Stereoisomere. Es gelang jedoch nicht, Kristalle des *cis*-Isomers zu isolieren und zu identifizieren. Nach Aussage der Röntgenkristallstrukturanalysen sind im Kristall stets die offensichtlich stabileren, zentrosymmetrischen *trans*-Formen vertreten. Anhand der Gitterkonstanten zeigt sich, dass nur die Verbindungen [BrAl(H)(O'Bu)]_2 <u>6</u> und [IAl(H)(O'Bu)]_2 <u>7</u> isotyp sind.

In den zentrosymmetrischen Molekülen wird ausschließlich jeweils ein Inversionszentrum gefunden. Folglich ergibt sich nach der Schönfließ-Symbolik die Punktgruppe C_i für die Verbindungen <u>5</u>, <u>6</u> und <u>7</u>.

Diese Monohalogenidverbindungen kristallisieren jeweils bei Raumtemperatur im monoklinen Kristallsystem mit der Raumgruppe P2(1)/c mit je zwei Molekülen in der Elementarzelle.

Die Aluminiumatome zeigen eine verzerrt tetraedrische Umgebung, die Sauerstoffatome eine trigonal planare Umgebung, da die jeweiligen Winkelsummen nahezu 360° betragen. An den Sauerstoffatomen stehen die *tert.*-Butylgruppen in gestaffelter Anordnung bezüglich des (Al- μ O)₂-Rings (Abb. 3.5-3.7). Das quartäre Kohlenstoffatom C(1) bzw. C(1`) der *tert.*-Butylgruppen steht dabei vernachlässigbar geringfügig oberhalb bzw. unterhalb der Al₂O₂-Ebene (jeweils ca.13 pm).

In Tabelle (3.9) sind die wichtigsten Bindungslängen und –winkel zusammengefasst, um die strukturellen Veränderungen in den Molekülen 5, 6 und 7 bzgl. der Ausgangsverbindung 1 vergleichen zu können.

Abb. 3.5: Molekülstruktur von [ClAl(H)(µ-O'Bu)]₂ 5

Abb. 3.6: Molekülstruktur von [BrAl(H)(µ-O^tBu)]₂ 6

Abb. 3.7: Molekülstruktur von [IAl(H)(µ-O'Bu)]₂ 7

Abstände/ Bindungs- längen [Å] / - winkel [°]	$[H_{2}Al(OR)]_{2}$ $\frac{1}{2}^{[17]}$ (X=H; R='Bu)	$[ClAl(H)(OR)]_2$ $\frac{5}{(X=Cl; R='Bu)}$	$[BrAl(H)(OR)]_2$ $\frac{6}{(X=Br; R= {}^tBu)}$	$[IAl(H)(OR)]_2$ (X=I; \overline{R} = 'Bu)
Al(1)-H(1)	1.55(2), 1.55(4)	1.603(3)	1.478(3)	1.325(0)
Al(1)-X(1)	-	2.119 (1)	2.295(1)	2.514(1)
Al(1)-O(1)	1.810(3)	1.813(2)	1.821(3)	1.817 (1)
Al(1)-O(1`)	1.815(3)	1.820(2)	1.829(3)	1.827(1)
C(1)-O(1)	1.444(5)	1.488(4)	1.496(5)	1.475(2)
$Al(1)^{}Al(1)$	2.755(4)	2.758(2)	2.769(3)	2.756(1)
Al(1`)-O(1)-C(1)	131.4(3)	130.70(2)	130.40(3)	131.14(1)
Al(1)-O(1)-C(1)	129.6(3)	129.93(2)	129.90(3)	129.60(2)
O(1)-Al(1)-O(1`)	81.0(2)	81.60(1)	81.30 (2)	81.74(5)
Al(1)-O(1)-Al(1)	99.0(2)	98.40(1)	98.70(2)	98.26(5)
H(1)-Al(1)-X(1)	122.0(2)	110.67(5)	106.70(1)	115.72(2)

Tab. 3.9: Bindungslängen und –winkel von <u>1, 5, 6</u> und <u>7</u>

Durch die elektronenziehenden Halogensubstituenten am Aluminium wird die effektive positive Kernladung am Aluminium erhöht, wodurch die Al-H-Bindung verkürzt werden müsste. Die Al-H-Bindungslänge der Chlorverbindung von 1.603(3) Å ist daher unglaubwürdig. Diese fehlerhafte Angabe aus der Röntgenstrukturuntersuchung, die vermutlich auch für die anderen Halogenverbindungen gilt, ist auf die hohe Elektronendichte der Halogenatome zurückzuführen, weshalb die Lokalisierung der Wasserstoffatome ungenau ist.

Die kovalenten Al(1)-O(1)-Bindungen werden ähnlich wie bei den Dihalogenidstrukturen trotz der elektronenziehenden Halogenliganden im Vergleich zur Dihydridverbindung <u>1</u> verlängert. Diese Verlängerung lässt sich wiederum nicht auf die Sterik der Halogenliganden zurückführen, da die längste Al(1)-O(1)-Bindung für das Bromderivat <u>5</u> gefunden wird. Ebenso verhält es sich mit der C(1)-O(1)-Bindung.

Anhand der Al(1)-O(1)-Al(1`)- bzw. O(1)-Al(1)-O(1`)-Winkel zeigt sich im Allgemeinen, dass sich die Aluminiumatome durch die Halogenliganden näher kommen, während sich die Sauerstoffatome der *tert.*-Butoxygruppe voneinander distanzieren. Im Vergleich zu den entsprechenden Dihalogenidverbindungen erhöht sich jedoch der nichtbindende Al(1)-Al(1`)-Abstand. Im Vergleich zu den Dihalogenidverbindungen sind die Al-X-Bindungen in den Monohalogenidverbindungen [ClAl(H)(O'Bu)]₂ **5**, [BrAl(H)(O'Bu)]₂ **6** und [IAl(H)(O'Bu)]₂ **7** länger. Dies beruht auf dem geringeren elektronenziehenden Effekt der Hydridliganden im Vergleich zu den Halogenliganden, wodurch die Al-X-Bindung einen stärkeren kovalenten Charakter wieder bekommt.

Die H-Al-X-Bindungswinkel sind trotz der größeren Halogenatome kleiner als der H-Al-H-Bindungswinkel. Diese stark unregelmäßigen Winkel können jedoch auf die fehlerbehaftete genaue Lokalisierung der Wasserstoffatome in der Nähe der Halogenatome zurückzuführen sein.

Bei genauer Betrachtung der intra- und intermolekularen Abstände fällt auf, dass trotz der hohen Polaritätsunterschiede keine intermolekularen Wechselwirkungen in Form von Al^{...}X'-Al'-Brücken oder H^{...}X'Al'-Brücken vorliegen.

3.2.2.3 IR-spektroskopische Untersuchungen von $[ClAl(H)(O'Bu)]_2 \underline{5}, [BrAl(H)(O'Bu)]_2 \underline{6}$ und $[IAl(H)(O'Bu)]_2 \underline{7}$ sowie von $[ClAl(D)(O'Bu)]_2 \underline{5}, [BrAl(D)(O'Bu)]_2 \underline{6}$ und $[IAl(D)(O'Bu)]_2 \underline{7}$

Anhand der IR-Spektren sollen die Auswirkungen der Halogenliganden auf die Al-H-Schwingungsfrequenzen im Vergleich zur Dihydridverbindung <u>1</u> diskutiert werden. In diesem Zusammenhang können demzufolge auch die Al-H-Bindungslängen aus den Kristalldaten verglichen werden.

Aufgrund der Hydrolyseempfindlichkeit infolge der sehr polaren Al-H- und Al-X-Bindungen gelang es nicht, die Verbindungen in Benzollösungen zu vermessen, da beim Befüllen der IR-Messzelle stets Zersetzung auftrat, die sich in Form von Blasenbildung äußerte. Die Verbindungen <u>5</u>, <u>6</u> und <u>7</u> wurden demnach als Festkörper mittels ATR-IR-Spektroskopie vermessen. Wie zu erwarten, konnte im Festkörper ausschließlich die asymmetrische Al-H-Valenzschwingung für die *trans*-Isomere beobachtet werden. Die symmetrische Valenzschwingung ist IR inaktiv, da das Dipolmoment in diesem Fall Null ist. Quantitativ zeigt sich der Unterschied zwischen der Dihydridverbindung <u>1</u> und den monosubstituierten Verbindungen <u>5</u>, <u>6</u> und <u>7</u> anhand der Intensität der Al-H-Valenzschwingung.

Bei Substitution eines Hydridliganden in Verbindung <u>1</u> durch einen elektronenziehenden Halogenliganden verschiebt sich die Lage der asymmetrischen und symmetrischen Al-Hbzw. Al-D-Valenzschwingung infolge einer Positivierung des Aluminiumatoms und demzufolge einer Festigung der H-Al- bzw. D-Al-Bindung zu größeren Wellenzahlen. (Abb. 3.8 und 3.9.a-b)).

Abb. 3.8: IR-Spektren von $[XAl(H)(O^{t}Bu)]_{2}$ <u>1</u>, <u>5</u>, <u>6</u> und <u>7</u>: 3100-500 cm⁻¹ – Feststoff, N₂-Schutzgasatmosphäre: terminale Al-H-Valenzschwingung v(Al-H)

Abb. 3.9.a): IR-Spektren von [XAl(D)(O'Bu)]₂ 3100-500 cm⁻¹: <u>1</u>, <u>5</u>, <u>6</u> und <u>7</u>

Abb. 3.9.b): Ausschnitt der IR-Spektren von $[XAl(D)(O^{t}Bu)]_{2}$ 1450-650 cm⁻¹: terminale Al-D-Valenzschwingung v(Al-D)

Ein Vergleich der gefundenen IR-Daten der monosubstituierten Verbindungen und der Dihydridverbindung zeigt die erwarteten Verschiebungen zu größeren Frequenzen, die sich für die Halogenatome jedoch nur geringfügig unterscheiden. Die Quotienten aus den Wellenzahlen der hydridischen und der entsprechenden deuterierten Verbindung für die terminalen Al-H- und Al-D-Valenzschwingungen betragen ungefähr $\sqrt{2}$, was ebenso dem Massenverhältnis der Isotope Wasserstoff und Deuterium entspricht (Tab. 3.10).

		ν (Al-H _t) / ν (Al-D _t) [cm ⁻¹]	$\nu(Al-H_t) / \nu(Al-D_t)$	d (Al-H) [Å]
$[H_2Al(O'Bu]_2/ \\ [D_2Al(O'Bu]_2$	<u>1</u> <u>1</u>	1836/ 1337	1,37	1.5535
[ClAl(H)(O'Bu] ₂ / [ClAl(D)(O'Bu] ₂	<u>5</u> 5	1917/ 1399	1,37	1.6033
$[BrAl(H)(O'Bu]_2/[BrAl(D)(O'Bu]_2$	<u>6</u> 6	1915/ 1393	1,38	1.4775
$\frac{[IAl(H)(O'Bu]_2}{[IAl(D)(O'Bu]_2}$	<u>7</u> 7`	1909/ 1386	1,38	1.3245

Tab. 3.10: Al-H- und Al-D-Valenzschwingungsfrequenzen im Vgl. mit Bindungslängen

Die in Tabelle (3.10) nochmals aufgeführten Al-H-Bindungslängen der Verbindungen decken sich jedoch nicht mit den Verschiebungen der Al-H-Valenzschwingungsfrequenz der halogenhaltigen Monohydridverbindungen. Der Grund hierfür ist die durch die hohe Elektronendichte der Halogenatome fehlerbehaftete Lokalisierung der Wasserstoffatome im Molekül.

Durch die Verschiebung der Al-H-Valenzschwingung zu höheren Wellenzahlen infolge einer Verkürzung der Al-H-Bindung lässt sich dementsprechend für die monosubstituierten halogenhaltigen Derivate <u>5</u>, <u>6</u> und <u>7</u> eine deutlich geringere Reaktivität gegenüber CH-aciden Verbindungen für $[H_2Al(O'Bu)]_2$ <u>1</u> voraussagen.

Die Al-H-Deformationsschwingungen werden den Banden bei ca. 770 cm⁻¹ zugeordnet. Da sich bei den Deformationsschwingungen lediglich die Bindungswinkel ändern, müssten die Al-H- und Al-D-Deformationsschwingungen bei annähernd gleichen Bindungsabständen konstant bleiben. Des Weiteren können die intensiven Schwingungsbanden bei 920 cm⁻¹- 880 cm⁻¹ Al-O-Valenzschwingungen und die breiten bei 680 cm⁻¹-650 cm⁻¹ dem Al₂O₂-ring-mode zugeordnet werden.

Die im fingerprint-Bereich auftretenden terminalen Aluminium-Halogenschwingungen konnten aufgrund von Schwingungsüberlagerungen nicht separat zugeordnet werden. Diese liegen im Bereich ab 500 cm⁻¹- 200 cm⁻¹ [¹⁰⁹].

3.2.3 [ClAl(H)(O^tBu)]₂ <u>5</u>, [BrAl(H)(O^tBu)]₂ <u>6</u> und [IAl(H)(O^tBu)]₂ <u>7</u>: Charakterisierung in Lösung

3.2.3.1 NMR-spektroskopische Untersuchungen bei Raumtemperatur

Die Monohalogenalkoxyalane 5, 6 und 7 sind sowohl in unpolaren als auch in polaren Lösungsmitteln gut löslich. Die Charakterisierungen in Lösung durch ¹H-, ¹³C und ²⁷Al-NMR erfolgten in Benzol und C₆D₆. Basen wie Pyridin, THF, Dioxan bilden mit dem stark lewis-sauren Aluminium zahlreiche Adukte, die in Lösung durch NMR-Spektroskopie schwieriger zu analysieren wären. Eine Erhöhung der Koordinationszahl am Aluminium könnte sowohl in den dimeren als auch in den monomeren Alkoxiden auftreten. Da aus den verschiedenen Darstellungsmethoden für die jeweilige Verbindung vergleichbar ähnliche Resultate aus den NMR-Daten hervorgehen, können sie zusammen diskutiert werden. Die chemische Verschiebung der Signale im ¹H und ¹³C-Spektrum ist konzentrationsabhängig. Die Aufspaltung der Resonanzen ist vermutlich auf ein dynamisches Gleichgewicht zwischen den prochiralen Verbindungen, die in Lösung cisund trans-Stereoisomere bilden können, zurückzuführen. Diese dimeren Stereoisomere besitzen nach der Schönfließ-Symbolik die Punktgruppen C_{2h} (cis) und C_i (trans) und folglich müssten jeweils zwei Singuletts im ¹H-NMR für die *tert.*-Butylgruppen zeigen. Diese Signale mit unterschiedlichen Intensitäten liegen dicht beieinander und weisen chemische Verschiebungsdifferenzen von 1 Hz für 5, 2.8 Hz für 6 und 5.6 Hz für 7 auf. Eine exakte Zuordnung der Signale zu den Isomeren konnte jedoch nicht gemacht werden. Das dritte Singulett in den jeweiligen Spektren, das weiter Tieffeld verschoben auftritt, stellt keine feste Größe dar. Dessen Intensität hängt zum einen von der Konzentration der Lösung ab, könnte aber zum anderen auch durch Prozessparameter wie Reaktionszeit und -temperatur beeinflusst sein. Die Prozessparameter wurden jedoch nicht näher untersucht. Außerdem könnte es sich um ein stabiles Hydrolyseprodukt der jeweiligen Verbindungen handeln, da beim Befüllen der NMR-Röhrchen eine leichte Gasentwicklung zu beobachten war.

Die Spektren der Verbindungen wurden bei 0.05 M gemessen. In den NMR-Spektren wurden jeweils mehr Signale gefunden als erwartet (Tab. 3.11):

	NMR	[ClAl(H)(O'Bu)] ₂ <u>5</u>	[BrAl(H)(O'Bu)] ₂ <u>6</u>	[IAl(H)(O'Bu)] ₂ <u>7</u>
¹ H	Al-H	-	-	-
	$-C(CH_3)_3$	1.19 ppm (50%)	1.21 ppm (60%)	1.25ppm (70%)
	$-C(CH_3)_3$	1.20 ppm (50%)	1.22 ppm (40%)	1.27 ppm (30%)
	$-C(CH_3)_3$	1.21 ppm	1.26 ppm	1.35 ppm
¹³ C				
	$-C(CH3)_{3}(C^{P3})$	30.9 ppm	30.9 ppm	30.9 ppm
	$-C(CH_3)_3(C^{P2})$	31.0 ppm	31.1 ppm	31.3 ppm
	$-C(CH_3)_3(C^{P1})$	31.1 ppm	31.2 ppm	31.7 ppm
	$-C(CH_3)_3 (C^{Q1})$	80.2 ppm	80.9 ppm	81.7 ppm
	$-C(CH_3)_3 (C^{Q2})$	80.3 ppm	81.2 ppm	82.3 ppm
	$-C(CH_3)_3 (C^{Q3})$	82.2 ppm	83.3 ppm	84.7 ppm
²⁷ Al		106.4ppm	104.7 ppm	96.5 ppm
		$(w_{\frac{1}{2}}=520Hz)$	$(w_{\frac{1}{2}}=620$ Hz)	$(w_{\frac{1}{2}}=780$ Hz)
		90.1 ppm	86.5 ppm	54.5 ppm

Tab. 3.11: NMR-Daten von <u>5, 6</u> und <u>7</u> (C₆D₆/C₆H₆)

Die Hydridresonanz ließ sich infolge der hohen Asymmetrie und des Quadrupolmoments des Aluminiumkerns nicht nachweisen, was demnach nicht im Einklang mit den experimentellen Befunden von *Schmidbaur* steht, der nach Reduktion von $[Cl_2Al(OSiMe_3)]_2$ mittels LiAlH₄ ein breites Resonanzsignal für die Hydride in $[ClAl(H)OSiMe_3]_2$ bei 3.68 ppm und ein Singulett für die Wasserstoffresonanz der Methylgruppen bei 0 ppm gefunden hatte. Da die diskutierten *cis/trans*-Signale nicht gefunden wurden, muss eher von einer vollständigen Reduktion zum $[H_2AlOSiMe_3]_2$ ausgegangen werden, das analog zu **1** eine Hydridresonanz aufweist ^[77].

Im ²⁷Al-NMR-Spektrum mit dem einerseits über die Koordination und andererseits über die elektronische Wirkung der Substituenten am Aluminium eine Aussage gemacht werden kann, werden jeweils zwei verschiedene tetraedrische Koordinationen am Aluminium beobachtet. Im Fall der *cis-/trans* Isomere ergibt sich aufgrund derselben Substituenten dieselbe chemische Umgebung, das heißt, ein Signal. Das zweite Signal, das

jeweils Hochfeld verschobenen auftritt, könnte den zweifachsubstituierten Derivaten $\underline{2}$, $\underline{3}$ und $\underline{4}$ zugeordnet werden.

Dieser einfache analytische Befund lässt sich sehr gut bei der Halogensubstitution von Chlor- (\times) und Bromatomen (\circ) beobachten. Pro Halogensubstituent wird nahezu eine gleichgroße Abschirmung des Aluminiumkerns bewirkt.

Beim Eintrag eines zweiten Iodatoms (Kurve \triangle) wird hingegen eine deutlich höhere Abschirmung beobachtet, die durch die höhere Elektronendichte und Raumbeanspruchung der Iodatome resultiert. (Abb. 3.10).

Abb. 3.10: Chemische Verschiebung eines terminalen Halogensubstituenten im ²⁷Al-NMR-Spektrum
Die ermittelten Werte aus den quantitativen Elementanalysen für die Halogenionen deuten darauf hin, dass die Verbindungen 5 bis 7 jeweils zusätzlich als Nebenprodukte vorliegen können.

Gegen diese Feststellungen sprechen die spektroskopischen Messdaten aus unterschiedlichen Reaktionsansätzen. Falls in der Redoxreaktion a) die Dihalogenidverbindung entstanden sein sollte, müsste folglich auch die nicht abreagierte Dihydridverbindung <u>1</u> vorliegen. Genauso könnte man bei der Gleichgewichtsreaktion b) argumentieren. Würde das Gleichgewicht auch nur teilweise auf der Produktseite liegen, müsste neben der Dichloridverbindung $\underline{2}$ auch die Dihydridverbindung $\underline{1}$ vorliegen, die jedoch, wie aus den spektroskopischen Messdaten (IR, ²⁷Al-NMR) hervorgeht, nicht gefunden werden konnte.

Beim Vergleich der ¹³C-NMR-Lösungsspektren mit den ¹³C-MAS-NMR-Spektren des jeweiligen Feststoffs konnte weder gezeigt werden, dass die *cis*- und *trans*-Stereoisomere auch im Festkörper nebeneinander vorliegen noch konnte das weiter Tieffeld verschobene Signal in Lösung auch im Festkörper identifiziert als weiteres Nebenprodukt werden. Anhand der breiten symmetrischen Resonanzsignale der ¹³C-MAS-NMR-Spektren gelang es nicht, die Resonanzsignale aus den ¹³C-Lösungsspektren zu trennen, insbesondere die der quartären Kohlenstoffatome, die eine höhere chemische Verschiebungsdifferenz aufweisen. Die ¹³C-MAS-NMR-Spektroskopie liefert daher jeweils keinen eindeutigen Beweis, dass jeweils nur eine reine Verbindung als Feststoff vorliegt (s. Anhang 8.11-8.13). In der folgenden Tabelle (3.12) sind die Verschiebungsdifferenzen zwischen den Resonanzsignalen in Lösung zusammengefasst und den Signalbreiten der Resonanzsignale aus den Festkörper-Spektren gegenübergestellt. Die Signale, wie sie von der chemischen Verschiebung auftreten, werden zur vereinfachten Beschreibung mit C^{Q3}-C^{Q2}-C^{Q1} für die drei quartären C-Atome und C^{P1}-C^{P2}-C^{P3} für die dazugehörigen drei primären C-Atome bezeichnet. Die Signalpare besitzen die gleiche Ziffer.

¹³ C-NMR-Vergleich: Lösung- Feststoff von <u>5</u> , <u>6</u> und <u>7</u> (50.3 MHz)						
NMR- Methode	∆(chem. Verschiebung)	<u>5</u>	<u>6</u>	<u>7</u>		
Lösung (C_6D_6) δ [Hz]	$C^{Q3} \rightarrow C^{Q2}$	96Hz	111Hz	127Hz		
	$C^{Q2} \rightarrow C^{Q1}$	9Hz	16Hz	28Hz		
	$C^{P1} \rightarrow C^{P2}$	4Hz	2Hz	17Hz		
	$C^{P2} \rightarrow C^{P3}$	4Hz	10Hz	23Hz		
Feststoff J	C ^Q	310Hz	310 Hz	310Hz		
[Hz]	C ^P	630Hz	630Hz	630Hz		

Tab. 3.12: ¹³C-NMR-Signalabstände in Lösung / ¹³C-MAS-NMR-Signale (Signalbreiten J)

Zur Aufklärung und Identifizierung des dritten Singuletts im ¹H-NMR-Spektrum wurde ein weiteres Experiment durchgeführt, in dem die Monochloridverbindung <u>5</u> durch den Zusatz unterschiedlicher Konzentrationen der Dichloridverbindung <u>2</u> mittels ¹H-NMR-Spektroskopie untersucht wurde (Abb. 3.11).

Abb. 3.11: ¹H-NMR-Spektrenvergleich von <u>5</u> und unterschiedlichen Konzentrationen von <u>2</u>

Wie anhand der Abbildung (3.11) zu sehen ist, hat sich direkt nach der Zugabe von 0.2 äq der Dichloridverbindung <u>2</u> Gleichgewicht eingestellt. Dies äußert sich in der Intensitätserhöhung des Tieffeldes verschobenen Singuletts H³ bei 1.21 ppm in Bezug zu den überlappenden Singulettsignale H¹ und H² der Isomere. Bei einem Überschuss von <u>2</u> (1.2 äq) tritt ein weiteres zusätzliches Singulett H⁴ bei 1.24 ppm auf, das bei der gleichen Verschiebung erscheint wie das der Blindprobe von $[Cl_2Al(O'Bu)]_2$ <u>2</u>. Durch die hohe Konzentration von <u>5</u> lassen sich die Singuletts H¹ und H² kaum noch unterscheiden. Die Signale treten nun im Verhältnis H⁴: H³: H² H¹= 15%: 50%: 35% auf. Aufgrund dessen lässt sich vermuten, dass es sich bei dem zusätzlichen Signal entweder um die Verbindung <u>2</u> oder aber auch um eine zur Dichloridverbindung <u>2</u> isochrone Verbindung handelt, die infolge intermolekularer Wechselwirkungen in Lösung zwischen den Isomeren auftritt.

Wechselwirkungen Diese werden durch die Konzentrationserhöhung der Dichloridverbindung 2 erhöht. Unter der Voraussetzung, dass die Alkoxide auch in Lösung über die tert.-Butoxygruppen Dimere bilden, könnten diese Wechselwirkungen durch einen nukleophilen Angriff eines freien Elektronenpaares eines terminal gebundenen Chloratoms am benachbarten Aluminiumatom eingeleitet werden, wodurch nach Umlagerungsprozessen und Ligandenaustausch (C1)gegen H) eine thermodynamische stabile Verbindung resultieren könnte. Die Umlagerungsprozesse könnten wiederum durch Öffnung der dativen Bindung oder durch Spaltung der dimeren Moleküle in Monomere hervorgerufen werden. Diese Überlegungen lassen sich durch die stark unterschiedlichen Polaritäten der Aluminiumatome und Chlorliganden durchaus vertreten.

Analog könnte man ebenfalls für die Brom- und Iodverbindung argumentieren, da die Lewis-Acidität zunimmt und somit intermolekulare Austauschprozesse denkbar sind.

3.2.3.2 Temperaturabhängige VT-¹HNMR -spektroskopische Untersuchungen

Um zu überprüfen, ob ein inter- oder intramolekularen Austausch zur Bildung der *cis*- und *trans*-Isomere von $[ClAl(H)(O'Bu)]_2$ **5**, $[BrAl(H)(O'Bu)]_2$ **6** und $[IAl(H)(O'Bu)]_2$ **7** führt, wurden Proben unterschiedlicher Konzentrationen ($c_1 = 0.02$ M und $c_2 = 0.7$ M) temperaturabhängig in Toluol-D₈ mittels ¹H-NMR-Spektroskopie untersucht. Die Verbindungen, die für diese Messungen verwendet wurden, stammen aus unkontrollierten Alkoholysereaktionen (ohne Eiskühlung) (s. Kap. 3.2.1.2.a),

3.2.1.3.a)). Die Verbindungen <u>6</u> und <u>7</u> weisen daher jeweils ein weiteres Resonanzsignal auf, das Hochfeld verschoben auftritt. Dieses zusätzliche Signal soll bei der Interpretation vernachlässigt werden.

Für die Alkoxide <u>5</u> bis <u>7</u> konnte mit zunehmender Temperatur eine lineare Verschiebung der Resonanzsignale in Richtung Tieffeld beobachtet werden. Beim Abkühlen auf Raumtemperatur zeigten die Spektren reversibel die ursprünglichen Signale.

Bei der niedrigen Konzentration $c_1 = 0.2M$ zeigt sich mit zunehmender Temperatur eine Intensitätserhöhung des Tieffeld verschobenen Signals, das auf Kosten der Signale der *cis*und *trans*-Isomere wächst. In den VT-¹HMR-Spektren zeichnen sich nahezu lineare chemische Verschiebungen in Abhängigkeit von der Temperatur ab. Während die Verschiebungsdifferenz zwischen dem Tieffeld verschobenen Signal H1 zu H2 mit zunehmender Temperatur größer wird, ergeben sich für die zwei Hauptsignale H2 und H3 nahezu gleiche Abstände. Aufgrund der Verbreiterung der Signale unterhalb Raumtemperatur zeigen und deuten sich Zusammenlagerungen im Tieftemperaturbereich an. Im Hochtemperaturbereich scheint die Energie für die Verbindungen <u>5</u> bis <u>7</u> nicht auszureichen, um bei der Konzentration c₁ Koaleszenzphänomene zu beobachten.

Die ¹H-NMR Spektren der Chlorverbindung <u>5</u> zeigen im Temperaturbereich von 213 K-373 K keine Intensitätsänderungen der Signale. Das bedeutet, dass die Konfigurationsisomere die gleiche thermodynamische Stabilität besitzen. Ein intramolekularer Austauschprozess findet bei dieser Konzentration nicht statt. Durch die Verbreiterung der Signale mit zunehmender Temperatur deuten sich Austauschprozesse zwischen dem *cis*- und *trans*-Isomer sowie zwischen den Isomeren und dem Nebenprodukt an. Die Isomere liegen weiterhin getrennt nebeneinander vor. Mit abnehmender Temperatur wird die Differenz der chemischen Verschiebung der Signale H1 und H2 geringer (s. folgende Abb. 3.12 und 3.13).

Abb. 3.12: VT-¹H-NMR Spektren: [ClAl(H)(O^tBu)]₂ <u>5</u> (400 MHz): 0.2M

Abb. 3.13: Chemische Verschiebung der Resonanzsignale aus Abb. 3.12 in Abhängigkeit von der Temperatur [K]: Resonanzsignale der *tert.*-Butylgruppe: H2 und H3 des *cis*- und *trans*-Stereoisomers von [ClAl(H)(O^tBu)]₂ und H1 des Nebenprodukts [Cl₂Al(O^tBu)]₂

Für die Bromverbindung <u>6</u> deuten sich im Temperaturbereich von 213 K-353 K ähnliche Verhältnisse an. Das vierte Signal H4 stellt ein Nebenprodukt dar, das mit abnehmender Temperatur unter die Signale H2 und H3 wandert. Auch hier besitzen die Konfigurationsisomere die gleiche thermodynamische Stabilität. Ein intramolekularer Austauschprozess findet bei dieser Konzentration nicht statt. Die Isomere liegen getrennt nebeneinander vor. Die Halbwertsbreite der Signale ist bei der Bromverbindung zwischen 273 K und 293 K am kleinsten. Durch die Verbreiterung der Signale im Hochtemperaturbereich deuten sich Austauschprozesse zwischen dem *cis-* und *trans*-Isomer sowie zwischen den Isomeren und dem Nebenprodukt an (s. folgende Abb. 3.14).

Abb. 3.14: VT-¹H-NMR-Spektren: [BrAl(H)(O'Bu)]₂ <u>6</u> (400 MHz) : 0.2M

Abb. 3.15: Chemische Verschiebung der Resonanzsignale aus Abb. 3.14 in Abhängigkeit von der Temperatur [K]: Resonanzsignale der *tert.*-Butylgruppe: H2 und H3 des *cis*- und *trans*-Stereoisomers von [BrAl(H)(O'Bu)]₂, H1 des Nebenprodukts [Br₂Al(O'Bu)]₂ und H4 des Nebenprodukts aus unkontrollierter Alkoholysereaktion

In den VT-¹HMR-Spektren der Iodverbindung <u>7</u> im Temperaturbereich von 213 K-363 K bei der Konzentration $c_1 = 0.2$ M erkennt man deutlich eine Intensitätserhöhung des Tieffeld verschobenen Singuletts H1 auf Kosten der Signale H2 und H3. Auch hier besitzen die Konfigurationsisomere die gleiche thermodynamische Stabilität. Aufgrund der stark verbreiterten Signale lässt sich bei 213 K kein Unterschied zwischen den Isomeren feststellen. Auch hier besitzen die Signale zwischen 273 K und 303 K die kleinsten Halbwertsbreiten (s. folgende Abb. 3.16). Im Gegensatz zu den vorherigen beschriebenen VT-NMR-Spektren (Abb. 3.12 - 3.15) ist bei der Iodverbindung <u>7</u> die Verbreiterung der Signale mit zunehmender Temperatur geringer. Hier scheint die erforderliche Aktivierungsenergie für die intramolekularen Umwandlungs- und Austauschprozessen zwischen dem *cis*- und *trans*-Isomer sowie zwischen den Isomeren und dem Nebenprodukt am höchsten zu sein.

Abb. 3.16: VT-¹H-NMR-Spektren: [IAl(H)(O'Bu)]₂ <u>7</u> (400 MHz) : 0.2M

Abb. 3.17: Chemische Verschiebung der Resonanzsignale aus Abb. 3.16 in Abhängigkeit von der Temperatur [K]: Resonanzsignale der *tert.*-Butylgruppe: H2 und H3 des *cis-* und *trans*-Stereoisomers von [IAl(H)(O'Bu)]₂, H1 des Nebenprodukts [I₂Al(O'Bu)]₂ und H4 des Nebenprodukts aus unkontrollierter Alkoholysereaktion

Durch die Erhöhung der Konzentration auf $c_2 = 0.7 \text{ M}$ kann bereits bei deutlich niedrigeren Temperaturen eine Signalverbreiterung für die Chlor- und Bromverbindung <u>5</u> und <u>6</u> beobachtet werden.

Bei der hohen Konzentration c_2 zeigt sich mit zunehmender Temperatur eine Erhöhung der Austauschrate, die sich durch Verbreiterungen der Resonanzsignale bemerkbar macht. Bei [ClAl(H)(O'Bu)]₂ <u>5</u> könnte es sich bei der Annäherung der Peaks H2 und H3 mit zunehmender Temperatur um Koaleszenz zwischen dem *cis* und *trans*-Stereoisomer handeln. Eine Anpassung der Resonanzfrequenzen beider Kerne wird bei 328 K beobachtet. Eine weitere Temperaturerhöhung führt auch zur Verbreiterung des Tieffeld verschobenen Signals H1. Es scheint auch ein weiteres Gleichgewicht zwischen den Isomeren und dem unbekannten Signal zu geben.

Zwischen 273 K und 328 K lässt sich eine unterschiedliche chemische Verschiebung der Hauptsignale H2 und H3 erkennen. Unterhalb von 273 K überlagern sich die Signale aufgrund unterschiedlicher temperaturabhängiger Verschiebungsdifferenzen. Es deutet sich sogar an, dass unterhalb 218 K lediglich ein Signal resultieren würde (s. folgende Abb. 3.18 und 3.19).

Abb. 3.18: VT-¹H-NMR-Speltren: [ClAl(H)(O^tBu)]₂ <u>5</u> (400 MHz): 0.7M

Abb. 3.19: Chemische Verschiebung der Resonanzsignale aus Abb. 3.18 in Abhängigkeit von der Temperatur [K]: Resonanzsignale der *tert.*-Butylgruppe: H2 und H3 des *cis*- und *trans*-Stereoisomers von [ClAl(H)(O^tBu)]₂, H1 des Nebenprodukts [Cl₂Al(O^tBu)]₂

Durch die Konzentrationserhöhung ergibt sich für die Bromverbindung $\underline{6}$ eine Zusammenlagerung der Signale bei 233 K in Form von einem stark verbreiterten Signal. Im Vergleich zur Chlorverbindung (243 K) tritt die Signalverbreiterung somit erst bei niedrigerer Temperatur ein. Die Intensitäten der Resonanzsignale der Stereoisomeren verändern sich kaum, sodass auch hier ein Gleichgewicht vorliegt. Mit zunehmender Temperatur steigt die Austauschrate zwischen den Isomeren, wodurch die Resonanzsignale breiter werden. Die Koaleszenztemperatur wird jedoch nicht erreicht.

Abb. 3.20: VT-¹H-NMR-Spektren: [BrAl(H)(O^tBu)]₂ <u>6</u> (400 MHz): 0.7M

Abb. 3.21: Chemische Verschiebung der Resonanzsignale aus Abb. 3.20 in Abhängigkeit von der Temperatur [K]: Resonanzsignale der *tert.*-Butylgruppe: H2 und H3 des *cis*- und *trans*-Stereoisomers von [BrAl(H)(O'Bu)]₂, H1 des Nebenprodukts [Br₂Al(O'Bu)]₂ und H4 des Nebenprodukts aus unkontrollierter Alkoholysereaktion

Bei der Iodverbindung <u>7</u> tritt durch die Konzentrationserhöhung keine Zusammenlagerung der Signale bis 233 K auf. Obwohl sich bei niedrigeren Temperaturen ein solches Zusammenfallen andeutet, lassen sich die Hauptsignale H2 und H3 bei dieser Temperatur noch getrennt auflösen.

Deutlich lässt sich wieder eine Intensitätserhöhung des Tieffeld verschobenen Singuletts H1 mit zunehmender Temperatur feststellen, das auf Kosten der Hauptsignale H2 und H3 wächst. Zwischen diesen Isomeren ergibt sich jedoch kein signifikanter Unterschied.

Für die Iodverbindung <u>7</u> konnte ebenfalls eine Intensitätserhöhung des Tieffeld verschobenen Signals beobachtet werden, das demnach eine thermodynamisch stabilere Verbindung darstellt als das *cis*- und *trans*-Isomer. Eine Signalverbreiterung wird hier erst ab 353 K deutlich.

Abb. 3.22: VT-¹H-NMR-Spektren: [IAl(H)(O'Bu)]₂ 7 (400 MHz): 0.7M

[K]	H1	H2	Н3	H4
233	1.26	1.22	1.22	-
253	1.29	1.25	1.24	1.23
296	1.43	1.35	1.32	1.39
313	1.45	1.37	1.35	1.31
333	1.48	1.40	1.37	1.33
353	1.50	1.42	1.39	1.35

Abb. 3.23: Chemische Verschiebung der Resonanzsignale aus Abb. 3.22 in Abhängigkeit von der Temperatur [K]: Resonanzsignale der *tert.*-Butylgruppe: H2 und H3 des *cis*- und *trans*-Stereoisomers von [IAl(H)(O^tBu)]₂, H1 des Nebenprodukts [I₂Al(O^tBu)]₂ und H4 des Nebenprodukts aus unkontrollierter Alkoholysereaktion

Die temperaturabhängigen ¹H-NMR-Spektren der Verbindungen $[ClAl(H)(O'Bu)]_2$ <u>5</u>, $[BrAl(H)(O'Bu)]_2$ <u>6</u> und $[IAl(H)(O'Bu)]_2$ <u>7</u> zeigen bei den Konzentrationen $c_1 = 0.02$ M und $c_2 = 0.07$ M keine Änderungen der Resonanzsignalintensitäten der *tert*.-Butylgruppen der jeweiligen *cis*- und *trans*-Stereoisomere. Das bedeutet, dass die Isomerenpaare thermodynamisch stabil sind und die Population beider Zustände gleich bleibt. Konformative intramolekulare Umwandlungsprozesse in Form von Rotation um eine Al-O-Bindung sind jeweils durch hohe Energiebarrieren zwischen den konformativen Grundzuständen gehindert. Die hohe Aktivierungsenergie zur Überwindung dieser Energiebarriere spricht ebenso für kinetisch stabile Isomerenpaare.

Durch die Konzentrationserhöhung zeigt sich lediglich für $[ClAl(H)(O^{t}Bu)]_{2}$ 5 eine Überlagerung der Resonanzsignale der Stereoisomere. Dies könnte auf Koaleszenz zwischen den Isomeren hindeuten, wobei die Austauschrate ungefähr der Differenz der Resonanzfrequenzen entsprechen würde. Aufgrund der größeren Abstände zwischen den Resonanzsignalen der Brom- und Iodverbindung 6 und 7 würde erst bei höheren Temperaturen eine Anpassung der Signale auftreten. Die Austauschrate ist in diesen Fällen deutlich kleiner die Differenz der Resonanzfrequenzen. als Die Konzentrationsabhängigkeit spricht für einen konformativen Umwandlungsprozess, der intermolekular erfolgt.

Als intermolekulare Umwandlungsmechanismen könnte einerseits ein ionischer Austauschmechanismus formuliert werden, bei dem durch Ligandenwanderung und anschließender Abspaltung eine Konformationsänderung hervorgerufen könnte. Dieser Prozess würde nach folgendem Schema ablaufen, wäre jedoch in Toluol nicht begünstigt.

 $2 [XAl(H)(OR)]_2 \rightarrow [X(H)Al(RO)_2(H)Al]^+ [X_2(H)Al(RO)_2(H)AlX]^- \rightarrow 2 [XAl(H)(OR)]_2$

Andererseits könnte ein bimolekularer Mechanismus durch einen nukleophilen Angriff eines Halogenatoms eingeleitet werden, wodurch eine dative Al-O-Bindung des benachbarten Moleküls geöffnet werden könnte. Das Aluminumatom würde weiterhin die Koordinationszahl vier besitzen. Durch Rotation um die kovalente Al-O-Bindung würde so der konformative Umwandlungsprozess erfolgen (Abb. 3.24).

Abb. 3.24: Bimolekularer Umwandlungsprozess

Ferner deutet sich ein weiteres Gleichgewicht zwischen den Nebenprodukten $[X_2Al(O'Bu)]_2$ und den jeweiligen Stereoisomeren $[XAl(H)(O'Bu)]_2$ an. Die Energiebarriere zwischen diesen Gleichgewichten liegt jedoch noch höher als die zwischen den Isomeren.

3.2.4 Computerchemische Untersuchungen zu den Isomeren der Verbindungen [ClAl(H)(O'Bu)]₂ <u>5</u>, [BrAl(H)(O'Bu)]₂ <u>6</u> und [IAl(H)(O'Bu)]₂ <u>7</u>

Ziel dieses Kapitels soll es sein, eine Vorhersage über die Molekülgeometrien und energien der *cis*- und *trans*-Stereoisomere der Verbindungen $[ClAl(H)(O'Bu)]_2$ <u>5</u>, $[BrAl(H)(O'Bu)]_2$ <u>6</u> und $[IAl(H)(O'Bu)]_2$ <u>7</u> zu machen. Außerdem sollen die vorher diskutierten Übergangszustände, die zur konformativen Umwandlung der Isomere führen könnten, mit einbezogen werden.

Dazu wurden im Rahmen dieser Arbeit Berechnungen im Arbeitskreis von Herrn Prof. Dr. I. Krossing (Freiburg) mit dem Programmsystem TURBOMOLE ^[112,113] durchgeführt. Die Moleküle wurden jeweils mit drei unterschiedlichen Methoden B3LYP/def2-TZVP ^[114-116], MP2/def2-TZVPP ^[117,118] und BP86/def-SV(P) ^[119-121] gerechnet. Die Geometrie der Moleküle aus den Kristallstrukturen wurde für die Berechnungen beibehalten, das heißt es wurden ausschließlich dimere Verbindungen berechnet, in denen die monomeren Einheiten über die *tert.*-Butoxygruppen intermolekular verbrückt sind.

Zur Voruntersuchung wurde die Ausgangsverbindung $[H_2Al(O'Bu)]_2$ **1** ebenfalls mit B3LYP/def2-TZVP, MP2/def2-TZVPP und BP86/def-SV(P) berechnet. Die Strukturen lassen sich gut mit der durch Einkristallstrukturuntersuchung charakterisierten Verbindung vergleichen. Im Allgemeinen werden zu den experimentellen Werten zu lange Bindungslängen und zu kleine Winkel für die berechneten Strukturen gefunden. Die besten Resultate, die den experimentellen Werten am ähnlichsten sind, liefert die Methode MP2/def2-TZVPP. Die Strukturen sind in Abbildung (3.25) gegenübergestellt und einige ausgewählte Bindungslängen und -winkel sind in Tabelle (3.13) aufgelistet. Aus Gründen der Übersicht wurden die Wasserstoffatome der *tert.*-Butylgruppe weggelassen. Auffällig ist, dass in den in Gasphase berechneten Molekülen die *tert.*-Butoxygruppen deutlich aus der von den Aluminium- und Sauerstoffatomen aufgespannten Ebene abknicken (je 20 pm). Die berechneten Strukturen besitzen nach der Geometrieoptimierung die Punktgruppe C_{2h}.

Abb. 3.25: Vergleich der mit MP2/def2-TZVPP berechneten Struktur mit der Molekülstruktur von [H₂Al(O^tBu)]₂ <u>1</u>

Tab. 3.13: Vergleich ausgewählter Bindungslängen und -winkel der mit B3LYP/def2-TZVP, MP2/def2-TZVPP und BP86/def-SV(P) berechneten Struktur von $[H_2Al(O'Bu)]_2$ <u>1</u> und ihrer mittels Röntgenbeugung bestimmten Kristallstruktur und Angabe der berechneten Energiewerte.

Bindungslängen [Å]/	Kristalldaten	B3LYP	MP2	BP86
-winkel [°]	(C _i)	(C _{2h})	(C _{2h})	(C _{2h})
Al-O	1.810(3)/ 1.815(3)	1.8558	1.8489	1.8858
C-0	1.444(5)	1.4610	1.4473	1.4637
Al-H	1.55(2)/ 1.55(4)	1.5853	1.5774	1.6079
Al-O-C(1)	131.4(3)/ 129.6(3)	129.313	129.211	129.997
H-Al-H	122.0(2)	119.685	119.436	119.214
Al-O-Al	99.0(2)	99.422	99.104	98.505
O-Al-O	81.0(2)	80.578	80.896	81.495
Energie [Hartree]		-953.41315	-949.69251	-953.08847

Die Berechnungen der Verbindungen $[ClAl(H)(O'Bu)]_2$ <u>5</u>, $[BrAl(H)(O'Bu)]_2$ <u>6</u> und $[IAl(H)(O'Bu)]_2$ <u>7</u> nach den drei unterschiedlichen Methoden zeigen, dass auch alle drei Methoden gut übereinstimmen. Demnach ergeben sich für die jeweiligen Stereoisomerenpaare (*cis* und *trans*) lediglich geringe Energieunterschiede, die unter 1 kcal/mol liegen. Während jedoch aus den Einkristallstrukturuntersuchungen der Verbindungen <u>5</u>, <u>6</u> und <u>7</u> ausschließlich die *trans*-Isomere hervorgehen, werden nach allen Rechenmethoden energetisch günstigere *cis*-Isomere gefunden, die die Symmetrie C_{2v} besitzen. Der experimentelle und theoretische Unterschied kann folglich auf die Packung im Kristall zurückführen sein.

In Tabelle (3.14) sind nach den Rechenmethoden (B3LYP/def2-TZVP, MP2/def2-TZVPP und BP86/def-SV(P)) die berechneten Energien der *cis*- und *trans*-Isomere der Verbindungen gegenübergestellt. Es zeigt sich, dass der Energieunterschied zwischen den Stereoisomeren der einzelnen Verbindungen wächst, je größer das Halogenatom ist.

	MP2/	B3LYP/	BP86/ def-SV(P)		
	def2-TZVPP	def2-TZVP			
	-1870 7275 H	-1872 4326 H	-1872 0155 H	-1872 0144 H	
E(cis-[ClAl(H)(O'Bu)] ₂)	(c5-MP2)	(c5-B3LYP)	(c5-BP86)	(c5*-BP86)	
$\mathbf{F}(trans_{\mathbf{C}})$	-1870.7270 H	-1872.4323 H	-1872.0149 H	-1872.0149 H	
	(t5-MP2)	(t5-B3LYP)	(t5-BP86)	(t5-BP86)	
AF _{term} (cis-trans)	-5*10 ⁻⁴ H =	$-3.2*10^{-4}$ H =	-6.6*10 ⁻⁴ H =	$+4.34*10^{-4}$ H =	
	-0.314 kcal/mol	-0.201 kcal/mol	-0.414 kcal/mol	+0.272 kcal/mol	
$\mathbf{F}(ais [\mathbf{BrA}](\mathbf{H})(\mathbf{O}^{t}\mathbf{Bu})])$	-6096.52079 H	-6100.18786 H	-6100.06165 H		
	(c6-MP2)	(c6-B3LYP)	(c6-BP86)		
	-6096.51979 H	-6100.18712 H	-6100.06088 H		
$E(trans-[BrAI(H)(O Bu)]_2)$	(t6-MP2)	(t6-B3LYP)	(t6-BP86)		
ΔE _{trans} (cis-trans)	-9.98*10 ⁻⁴ H =	-7.4*10 ⁻⁴ H =	-7.7*10 ⁻⁴ H =		
	-0.626 kcal/mol	-0.464 kcal/mol	-0.483 kcal/mol		
$\mathbf{F}(cis_{II}\mathbf{A})(\mathbf{H})(\mathbf{O}^{t}\mathbf{Bu})\mathbf{I}_{t})$	-1545.47016 H	-1547.49782 H	-974.693625 H		
	(c7-MP2)	(c7-B3LYP)	(c7-BP86)		
$\mathbf{E}(t_{max} = [\mathbf{I} \mathbf{A}](\mathbf{H})(\mathbf{O}^{t} \mathbf{D}_{\mathbf{H}})]$	-1545.48633 H	-1547.49655 H	-974.69239 H		
$E(uuus-[iAi(H)(O Bu)]_2)$	(t7-MP2)	(t7-B3LYP)	(t7-BP86)		
AF ₁ ,	-15.27*10 ⁻⁴ H =	-12.72*10 ⁻⁴ H =	$-12.35*10^{-4}$ H =		
	-0.958 kcal/mol	-0.798 kcal/mol	-0.775 kcal/mol		

Tab. 3.14: Energiedaten (inkl. Nullpunktsenergiekorrektur) aus den Berechnungen der Stereoisomere von [ClAl(H)(O'Bu)]₂, [BrAl(H)(O'Bu)]₂ und [IAl(H)(O'Bu)]₂; Bezeichnungen der entsprechenden Isomere in Klammern

Durch eine weitere BP86-Rechnung wurde für das *cis*-Isomer von [ClAl(H)(O'Bu)]₂ zwei unterschiedliche Gerüstkonstitutionen berechnet, die sich aus der Anordnung der *tert*.-Butylgruppe hinsichtlich des (Al- μ O)₂-Vierrings ergeben. Das globale Minimum resultiert für das *cis*-Isomer mit der Symmetrie C_{2v}, in dem die *tert*.-Butylgruppen ekliptisch angeordnet sind. Das lokale Minimum wird für eine gestaffelte Anordnung mit C_s-Symmetrie gefunden (Drehung der *tert*.-Butylgruppe um 60°). Dieses Energieminimum liegt etwas höher als das der entsprechenden *trans*-Struktur von [ClAl(H)(O'Bu)]₂. In Abbildung (3.25) sind die mit (B3LYP/def2-TZVP, MP2/def2-TZVPP und BP86/def-SV(P) berechneten *cis*-Strukturen von [ClAl(H)(O'Bu)]₂ dargestellt. Da sich durch die unterschiedlichen Berechnungen grafisch keine signifikanten Strukturunterschiede bei den jeweiligen Isomeren der Verbindungen ergeben, sind aus Gründen der Übersicht ausschließlich die mit MP2/def2-TZVPP berechneten Strukturen abgebildet.

Im Anhang in Tabelle (8.30) sind zum Vergleich theoretischer und experimenteller Moleküldaten ausgewählte Bindungslängen und -winkel gegenübergestellt. Insgesamt werden durch die Berechnungen im Vergleich zu den Parametern aus den Einkristallstrukturuntersuchungen längere Bindungen und kleinere Winkel gefunden. Die Werte aus den MP2-Berechnungen korrelieren dabei am besten mit den Kristalldaten.

cis- [ClAl(H)(O'Bu)]₂: (c5-B3LYP)

cis- [ClAl(H)(O^tBu)]₂: (c5-MP2)

cis- [ClAl(H)(O'Bu)]₂: (c5-BP86)

cis- [ClAl(H)(O'Bu)]₂: (c5*-BP86)

trans- [ClAl(H)(O^tBu)]₂: (t5-MP2)

Abb. 3.26.a): Mit B3LYP/def2-TZVP, MP2/def2-TZVPP und BP86/def-SV(P) berechnete *cis*-Strukturen sowie mit MP2/def2-TZVPP berechnete *trans*-Struktur von [ClAl(H)(O^tBu)]₂

cis- [BrAl(H)(O^tBu)]₂: (*c6-MP2*)

cis- [IAl(H)(O'Bu)]₂: (*c7-MP2*)

trans- [BrAl(H)(O^tBu)]₂: (*t6-MP2*)

trans- [IAl(H)(O^tBu)]₂: (t7-MP2)

Die konzentrationsabhängigen VT-¹H-NMR-Untersuchungen zeigen, dass ausschließlich ein intermolekularer Umwandlungsprozess zwischen den Isomeren von $[ClAl(H)(O'Bu)]_2$ <u>5</u> bis 353 K stattfindet, der zur Bildung eines thermodynamisch günstigeren Isomers führt. Daher wurden zusätzlich Energieberechnungen zu möglichen Übergangszuständen mittels BP86/def-SV(P) für die Verbindung $[ClAl(H)(O'Bu)]_2$ <u>5</u> durchgeführt.

Im Fall eines ionischen bimolekularen Mechanismus spielt die Polarität des Lösungsmittels eine entscheidende Rolle (Abb. 3.27). Die freie Aktivierungsenthalpie für die Solvatisierung in Toluol mit einer Dielektrizitätskonstante ($\varepsilon_r = 2.4$) beträgt 82 kcal/mol, während die Solvatisierung in Dichlormethan ($\varepsilon_r = 9.0$) 40 kcal/mol beträgt. Demnach könnte dieser Mechanismus nur in höherpolarem Lösungsmittel erwartet werden.

Abb. 3.27: Bimolekularer ionischer Übergangszustand

Erfolgt die Umwandlung der Isomere über einen Übergangszustand mit einer planaren Koordinationssphäre am Aluminiumatom, muss zur Öffnung einer Al-O-Bindung eine freie Aktivierungsenthalpie von 30 kcal/mol aufgebracht werden, damit ein offenkettiges Intermediat entstehen kann (Abb. 3.28). Die Monomerisierung, bei der zwei Al-O-Bindungen geöffnet werden müssten, würde 68 kcal/mol kosten.

Abb. 3.28: Planarer Übergangszustand mit Rotation um die Al-O-Bindung

Die Berechnungen der Aktivierungsenergien der Übergangszustände, die bei der Umwandlung zwischen den Isomeren auftreten könnten, erklären die Resultate aus den konzentrationsabhängigen VT-¹H-NMR Untersuchungen. Die hohe Aktivierungs-

enthalpie, die für die Konformationsumwandlung zwischen dem *cis*- und *trans*-Isomer benötigt wird, konnte durch diese NMR-Experimente ausschließlich bei der Verbindung [ClAl(H)(O^tBu)]₂ <u>5</u> bei der Konzentration c₂ erreicht werden. Außerdem kann davon ausgegangen werden, dass bereits im Festkörper beide Isomere nebeneinander vorliegen. Nach den Berechnungen mit BP86 betragen die freien Solvatisierungsenthalpien für die Isomere von [ClAl(H)(O^tBu)]₂ <u>5</u> ungefähr ΔH_{Solv} = -2.65 kcal/mol (Toluol, ε_r = 2.4).

3.2.5 Bis[*tert*.-butoxyaluminiummethylchlorid] [ClAl(Me)(O^tBu)]₂ <u>8</u>: Synthese und Eigenschaften

Das entsprechende Bis[*tert*.-butoxyaluminiummethylchlorid] $[ClAl(Me)(O'Bu)]_2$ **8** lässt sich durch Alkoholyse aus Me₂AlCl und *tert*.-Butanol herstellen. Das dazu benötigte Edukt Me₂AlCl wurde in einer fertigen *n*-Hexanlösung vorgelegt. Aufgrund der sehr stark exothermen Reaktion durch die Gasentwicklung wurde die Lösung beim Zutropfen von *tert*.-Butanol im Eisbad abgekühlt.

(3.14)
$$2 \operatorname{Me}_2\operatorname{AlCl} + 2 {}^t\operatorname{BuOH} \xrightarrow{n-\operatorname{Hex}} [\operatorname{ClAl}(\operatorname{Me})(\operatorname{O}^t\operatorname{Bu})]_2 + 2 \operatorname{CH}_4$$

Nach drei Stunden Rührzeit wurde das Lösungsmittel eingeengt, wobei die Verbindung als farbloser pulverförmiger Feststoff anfiel. Die Ausbeute beträgt 88% der Theorie.

3.2.5.1 [ClAl(Me)(O'Bu)]2 8: Charakterisierung im Festkörper

3.2.5.1.a) Strukturbestimmung von [ClAl(Me)(O^tBu)]₂ 8

Nach Umkristallisation des Rohproduktes durch Sublimation im Vakuum konnten für die Einkristallröntgenstrukturuntersuchung geeignete farblose Kristalle von <u>8</u> erhalten werden. Nach Bestimmung und Verfeinerung der Gitterkonstanten ergab sich die Raumgruppe P2/1(c) im monoklinen Kristallsystem. Sämtliche Nichtwasserstoffatome wurden gefunden und anisotrop verfeinert. Zur Berechnung der Lagen der Wasserstoffatome wurden die entsprechenden idealisierten Geometrien verwendet. Der Zulässigkeitsfaktor der so erhaltenen Struktur erreichte einen Wert von $R_1 = 0.0789$. Die Daten zum Kristall und zur Strukturbestimmung sind in der nachfolgenden Tabellen (3.15) und im Anhang in den Tabellen (8.19-8.21) zusammengefasst.

Identifizierungscode	shelxs2396
Summenformel	C10 H24 A12 C12 O2
Molmasse	301.15
Temperatur	200(2) K
Wellenlänge	0.71073 Å
Kristallsystem	monoklin
Raumgruppe	P2(1)/c
Gitterkonstanten	$a = 7.8790(2) \text{ Å}$ $\alpha = 90^{\circ}$
	$b = 12.656(3) \text{ Å}$ $\beta = 102.50(3)^{\circ}$
	$c = 8.7021(2) \text{ Å}$ $\gamma = 90^{\circ}$
Volumen	847.1(3) Å ³
Anzahl der Formeleinheiten	2
Röntgenographische Dichte	1.181 Mg/m ³
Absorptionskoeffizient	0.474 mm ⁻¹
F(000)	320
Kristallgröße	$0.8 \ge 0.5 \ge 0.4 \text{ mm}^3$
Gemessener Theta-Bereich	3.10 to 27.92°.
Indexbereich	-10<=h<=9, -16<=k<=16, -11<=l<=8
Anzahl gemessener Reflexe	5280
Unabhängige Reflexe	1928 [R(int) = 0.1749]
Datenvollständigkeit bis Theta = 27.92°	94.9 %
Absorptionskorrektur	N/A
Verfeinerung	Full-matrix least-squares on F ²
Daten / Restraints / Parameter	1928 / 0 / 77
Goodness-of-fit on F2	2.376
Endg-ltige R-Werte [I>2sigma(I)]	R1 = 0.0789, wR2 = 0.2210
R-Werte (alle Daten)	R1 = 0.0903, WR2 = 0.2548
Restelektronendichte	0.897 and -1.075 e.Å ⁻³

Tab. 3.15: Kristalldaten und Strukturverfeinerung für <u>8</u>.

3.2.5.1.b) Beschreibung der Molekül- und Kristallstruktur von [ClAl(Me)(O'Bu)]2 8

Das Ergebnis der Röntgenstrukturuntersuchung zeigt, dass auch hier im Kristall ausschließlich das *trans*-Isomer von $[ClAl(Me)(O'Bu)]_2$ **8** als Dimer vorliegt. Die Verbindung kristallisiert im monoklinen Kristallsystem mit der Raumgruppe P2(1)/c mit zwei Molekülen in der Elementarzelle. Analog zu den vorherigen *trans*-Kristallstrukturen besitzt die Verbindung aufgrund des Symmetriezentrums im planaren Al₂(μ -O₂)-Vierring nach der Schönfließ-Symbolik die Punktgruppe C_i.

Abb. 3.29: Molekülstruktur von [ClAl(Me)(µ-O'Bu)]28

Der zentrale Vierring ist durch die Winkel Al-O-Al 98.30(1)° und O-Al-O 81.70(1)° stark verzerrt, wenn man vom idealen 90°-Winkel eines Rechtecks ausgeht. Im Vergleich zur Monochloridverbindung <u>5</u> wird dadurch der nichtbindende Al[…]Al-Abstand größer. Diese Aufweitung des planaren Rings in der Al-Al-Richtung lässt sich vermutlich auf abstoßende van-der-Waals-Wechselwirkungen zwischen der terminalen Methylgruppe und

der verbrückenden *tert.*-Butoxygruppe zurückführen. Ebenso sprechen sterische Gründe für die Aufweitung des Cl-Al-X-Winkels für die Verbindung <u>8</u>.

Durch die elektronenschiebende Methylgruppe wird die Elektronendichte am Aluminiumatom im Vergleich zu den bislang vorgestellten Chlorverbindungen $\underline{2}$ und $\underline{5}$ erhöht. Dies führt wie erwartet zu einer Verlängerung der Al-Cl-Bindung, die dadurch einen stärkeren kovalenten Charakter bekommt. Folglich ist die Al-O-Bindungslänge auch leicht gegenüber der hydridischen Chlorverbindung $\underline{5}$ erweitert.

In Tabelle (3.16) sind die wichtigsten Bindungslängen von $[ClAl(Me)(O'Bu)]_2$ **8** zusammengefasst und den Daten der Chlorverbindungen **2** und **5** gegenübergestellt. Durch diesen Vergleich wird die Auswirkung der unterschiedlichen induktiven und mesomeren Effekte der Liganden X auf die Al-O-Bindungslängen deutlich. Bei Gegenüberstellung der Al-Cl-Bindungslänge und der Al-O-Bindungslängen fällt auf, dass sich jeweils beide Bindungen von **2** nach **8** verlängern. Die Auswirkung des Liganden X=Cl, H, Me auf die benachbarten Bindungslängen Cl-Al-O erfolgt hier demnach nicht nach dem klassischen Prinzip.

Abstände/ Bindungslängen [Å]/ –winkel [°]	[ClAl(X)(O'Bu)] ₂ 2 (X=Cl)	[ClAl(H)(O'Bu)] ₂ 5 (X=H)	[ClAl(Me)(O'Bu)] ₂ <u>8</u> (X=CH ₃)
Al(1)-Cl(1)	2.103(3), 2.105(4)	2.119 (4)	2.144(4)
Al(1)-O(1)	1.810(6)	1.813(3)	1.823(2)
Al(1)-O(1`)	1.815(5)	1.830(2)	1.835(2)
C(1)-O(1)	1.498(1)	1.488(4)	1.483(4)
$Al(1)^{}Al(1)$	2.735(4)	2.758(2)	2.767(2)
Al(1`)-O(1)-C(1)	131.2(4)	130.70(2)	131.2 (2)
Al(1)-O(1)-C(1)	130.31(5)	129.93(2)	129.8 (2)
O(1)-Al(1)-O(1)	82.1(3)	81.6(1)	81.7(1)
Al(1)-O(1)-Al(1)	97.9(3)	98.4(1)	98.3 (1)
Cl(1)-Al(1)-X	113.41(1)	110.67(5)	116.2 (1)

Tab. 3.16: Vergleich ausgesuchter Bindungslängen und –winkel von 2, 5 und 8

Die kürzesten Al-Cl- und Al-O-Bindungslängen, die in $[ClAl(Cl)(O'Bu)]_2$ **2** gefunden werden, können auf die sich stärker auswirkenden +M-Effekte durch Orbitalüberlagerungen zurückzuführen sein. Die dadurch erhöhte Elektronendichte am Aluminiumatom führt zu einer verkürzten Al-O-Bindung.

In der Verbindung $[ClAl(H)(O'Bu)]_2 5$ dominiert nun der -I-Effekt neben dem +M-Effekt des Chlorliganden. Diese elektronische Auswirkung könnte eine Folge des starken +M-Effekt des Hydridliganden sein, der aufgrund des kleineren Radius (1.54 Å) im Vergleich zum Chloridliganden (r = 1.81 Å) eine stärkere Orbitalüberlappung mit dem Aluminiumatom bewirkt. Durch die somit höhere Bindungspolarität der Al-Cl-Bindung ergibt sich eine Verlängerung der Al-O-Bindung.

Bei der Verbindung [ClAl(Me)(O'Bu)]₂ <u>8</u> lässt sich aufgrund des vergrößerten C-Al-Cl-Winkels eine stärkere Abstoßung zwischen den am Aluminium gebundenen Liganden feststellen. Dies könnte eine Erhöhung des -I-Effekts des Chlorliganden zur Folge haben, wodurch die Al-O-Bindung einen stärkeren kovalenten Charakter bekommt. Der +I-Effekt der Methylgruppe kann vernachlässigt werden.

Im Kristallgitter lassen sich wie bei den vorherigen chlorhaltigen Verbindungen $\underline{2}$ und $\underline{5}$ keine intermolekularen Aluminium-Chlor-Brücken nachweisen, da auch hier durch die sperrigen *tert*.-Butylgruppen die abstoßenden van-der-Waals-Kräfte überwiegen.

3.2.5.2 [ClAl(Me)(O'Bu)]₂ 8: Charakterisierung in Lösung

3.2.5.2.a) NMR-spektroskopische Untersuchungen von $[ClAl(Me)(O'Bu)]_2 \mathbf{\underline{8}}$ bei Raumtemperatur

Die Charakterisierung des Produkts aus der Alkoholysereaktion erfolgte mittels ¹H-, ¹³C-, ²⁷Al-NMR und ¹H-VTNMR in Lösung sowie mittels ¹³C-MAS-NMR.

Für die Verbindung mit einem stereogenen Zentrum am Aluminiumatom sind erwartungsgemäß zu den zuvor diskutierten Verbindungen 5, 6 und 7 ebenfalls cis- und *trans*-Isomere in Lösung zu erwarten. Laut ¹H-NMR werden für die Methylgruppen der tert.-Butylgruppe drei Singuletts bei 1.22 ppm (1), 1.21 ppm (2.5) und 1.20 ppm (3.5) und für die am Aluminium koordinierenden Methylgruppen drei breite Singuletts weiter Hochfeld verschoben bei -0.26 ppm (1.2), -0.34 ppm (0.3) und -0.35 ppm (0.8) gefunden. Die Integrationsverhältnisse, die in Klammern angegeben sind, spiegeln das Verhältnis der Protonen der tert.-Butylgruppe zu den Protonen der Methylgruppen 3:1 wider. Unter der Annahme, dass die in der Intensität stärksten Signale den cis-und trans-Stereoisomeren zugeordnet werden, würde hier ein Isomerenverhältnis von 40% : 60% vorliegen. Im ¹³C-Spektrum werden für die quartären α -C-Atome C^{Q3} bei 81.4 ppm, C^{Q2} bei 79.1 ppm und C^{Q1} bei 79.0 ppm und für die primären Kohlenstoffatome C^{P1} bei 31.2 ppm, C^{P2} bei 31.1 ppm und C^{P3} bei 31.0 ppm für die *tert*.-Butylgruppe gefunden. Für die Methylgruppe am Aluminium wird ein breites Signal bei -7 ppm gefunden. Durch die jeweils geringe chemische Verschiebung der primären und guartären Kohlenstoffatome, deuten sich in den drei unterschiedlichen Konfigurationen in Lösung jeweils µ₂-Alkoxybrücken an.

Anhand der NMR-Daten sowie einer Molmassenbestimmung in Benzol mit 290 g/mol (berechnet 301.17 g/mol) liegt die Verbindung als Dimer in Lösung vor.

Ein Vergleich des ¹³C-Lösungsspektrum mit dem ¹³C-MAS-NMR-Spektrum zeigt, dass im Festkörper vermutlich nur eine Verbindung vorliegt. Allerdings weisen die Resonanzsignale im ¹³C-Lösungs-NMR-Spektrum nur eine geringe chemische Verschiebungsdifferenz auf, sodass im ¹³C-MAS-NMR-Spektrum weder das zweite Stereoisomer noch das Nebenprodukt aufgelöst dargestellt werden können. Im ¹³C-Lösungsspektrum beträgt die chemische Verschiebung der quartären C-Atome des *cis/trans*-Gemischs C^{Q2}-C^{Q1} 3.18 Hz, die der primären C^{P1}-C^{P2} 1.2 Hz. Zwischen dem Tieffeld verschobenen Signal und den Isomeren beträgt der Unterschied C^{Q3}-C^{Q2} 120 Hz für die quartären, für die primären C^{P2}-C^{P3} lediglich 9.1 Hz.

Im 13 C-Festkörperspektrum beträgt die Signalbreite der quartären C^Q 150 Hz, die der primären C^P 300 Hz.

Im ²⁷Al-NMR werden zwei Resonanzen bei 121.9 ppm und 90.1 ppm gefunden, die für eine tetraedrische Koordinationssphäre am Aluminium sprechen. Geht man von $[Me_2Al(O^tBu)]_2$ aus, lässt sich durch die Substitution einer Methylgruppe durch einen Chlorliganden eine lineare Verschiebung von ca. 30 ppm zu höherem Feld beobachten. Demnach ist das Signal bei 121.9 ppm dem Produkt zuzuordnen, während das Signal bei 90.1 ppm, wie es auch für die Monochloridverbindung <u>5</u> auftritt, wieder der Dichloridverbindung <u>2</u> zuzuordnen ist.

Da im ¹H-NMR jedoch die gleiche Anzahl an Signalen für die Methylgruppen der *tert.*-Butoxygruppe und terminalen Methylgruppen gefunden werden, lässt sich die Existenz der Dichloridverbindung <u>5</u> ausschließen.

Um sicher zu gehen, wurde der NMR-Lösung der Verbindung <u>8</u> in unterschiedlichen Konzentrationen die Dichloridverbindung <u>2</u> zugefügt. Bereits bei 0.2 Äquivalenten der Verbindung <u>5</u> tritt eine weitere Resonanzlinie bei 1.23 ppm auf, die aufgrund der chemischen Verschiebung eindeutig der Blindprobe <u>2</u> zugeordnet werden kann. Eine Erhöhnung der Konzentration auf 0.8 Äquivalente bewirkt lediglich eine Intensitätserhöhung (Abb. 3.30).

Abb. 3.30: ¹H-NMR-Spektren von $\underline{8} + \underline{2}$

Dieser experimentelle Befund wird durch die Untersuchung des Gleichgewichts zwischen $[Me_2Al(O'Bu)]_2^{[96]}$ und $[Cl_2Al(O'Bu)]_2$ **2** gestützt. Denn im Gegensatz zum Monochlorid-**5** und Monobromidalan **6** konnte die Verbindung **8** nicht über eine Austauschreaktion, die nach 20 Stunden abgebrochen wurde, erhalten werden. Der Grund hierfür liegt wahrscheinlich in der geringen Tendenz der Methylgruppe zur Brückenbildung. Da sich die Reaktanden im ¹H- und ¹³C-NMR spektroskopisch separat auch anhand der Intensitäten nachweisen, stellt sich kein Gleichgewicht zwischen ihnen ein.

NMR		$Cl_2Al(O^tBu)]_2 \underline{2}$	$[Me_2Al(O'Bu)]_2$	
¹ H	-C(CH ₃) ₃ , -CH ₃	1.24 (18), -	1.16(18), -0,43 ppm (12)	
¹³ C	-C(CH ₃) ₃ ,	30.8 ppm	31.5 ppm	
C	-C(CH ₃) ₃ ,	84.3 ppm	74.5 ppm	
²⁷ Al		90.1 ppm	152.0 ppm	

Tab. 3.17: NMR-Daten aus Dismutation [Me₂AlO^tBu)]₂ und [Cl₂AlO^tBu]₂

Aus diesen gewonnen Erkenntnissen können die Überlegungen zum intermolekularen Austauschprozess der prochiralen Verbindungen wie in Kapitel (3.1.2) beschrieben, fortgeführt werden. Im Vergleich zur Verbindung <u>5</u> besitzt die Verbindung <u>8</u> mit der Methylgruppe einen terminalen Liganden, der nur eine geringe Tendenz zur Brückenbildung aufweist und somit keinen Austauschprozess mit der Dichloridverbindung <u>2</u> eingeht. Folglich kann davon ausgegangen werden, dass auch in Lösung die *tert.*-Butoxygruppen die verbrückenden Liganden in den dimeren Molekülen bilden.

3.2.5.2.b) Temperaturabhängige VT-¹HNMR–spektroskopische Untersuchungen von $[ClAl(Me)(O'Bu)]_2 \mathbf{\underline{8}}$

Zur Untersuchung der Dynamik wurde mittels ¹H-NMR-Spektroskopie eine Probe in Toluol-D₈ der Konzentration c = 0.5M im Bereich von 293 K-373 K untersucht. Für die Resonanzsignale des *cis*- und *trans*-Stereoisomers werden die Bezeichnungen H1 und H2 für die *tert*.-Butylgruppe, H1'und H2' für die am Aluminium gebundenen Methylgruppen verwendet. Die Resonanzsignale H3 und H3' sind einem Stellungsisomer zuzuordnen. [Me₂Al(O^{*t*}Bu)]₂ kann NMR-spektroskopisch (²⁷Al) ausgeschlossen werden. Bei Erhöhung der Temperatur lässt sich eine nahezu lineare chemische Verschiebung der Resonanzsignale beobachten. Dabei bewegen sich die Resonanzsignale der *tert.*-Butylgruppe und die Resonanzsignale der Methylgruppe voneinander weg. Durch Integration der Resonanzsignale können keine signifikanten Veränderungen mit zunehmender Temperatur festgestellt werden. Somit besitzen die Isomere in etwa die gleiche thermodynamische und kinetische Stabilität. Ab 343 K erscheinen auf der positiven NMR-Skala zwei weitere Signale als Schulter für die *tert.*-Butylgruppe neben H3 und H1. Diese Asymmetrie deutet sich auch in den negativen Resonanzsignalen der Methylgruppe H1' und H2' an.

Allgemein zeigt sich, dass die chemische Verschiebungsdifferenz zwischen den intensitätsstärksten Resonanzsignalen H1 und H2 im gesamten Temperaturbereich bis 363 K konstant ist. Ab 373 K deutet sich eine Anpassung der Resonanzsignale der *tert.*-Butylgruppe H1 und H2 an, sodass bei höheren Temperaturen Koaleszenz zwischen den Isomeren zu erwarten ist. Dieser Effekt zeigt sich ebenfalls an den Resonanzsignalen der Methylliganden H1`, H2` und H3`.

Abb. 3.31: VT-¹H-NMR (296 K-373 K) von [ClAl(Me)(O^tBu)]₂ <u>8</u>; *cis*- und *trans*-Stereoisomere: H1 und H2 Resonanzsignale der *tert*.-Butylgruppe und H1` und H2`Resonanzsignale der Methylgruppe, Stellungsisomer: H3 Resonanzsignal der *tert*.-Butylgruppe und H3` Resonanzsignal der Methylgruppe

Tab. 3.18: Chemische Verschiebung der Resonanzsignale aus Abb. 3.31 in Abhängigkeit von der Temperatur [K]: Resonanzsignale der *tert.*-Butylgruppe: H1 und H2 des *cis-* und *trans-*Stereoisomers von [ClAl(Me)(O'Bu)]₂, H1 des Nebenprodukts ¹H-NMR (296 K-373 K)

[K]	Н3	H2	H1	H1`	H3`	H2`
296	1.305	1.283	1.279	-0.313	-0.358	-0,387
323	1.336	1.310	1.306	-0.331	-0.369	-0.402
343	1.358	1.329	1.325	-0.343	-0.375	-0.411
363	1.377	1.346	1.341	-0.352	-0.380	-0.420
373	1.384		1.349	-0.356	-0.381	-0.422

Abb. 3.32: Chemische Verschiebung der Resonanzsignale (296 K-373 K) [ClAl(Me)(O'Bu)]₂ 8
3.2.6 Bis[*di-tert.*-butoxyaluminiumchlorid] [ClAl(O^tBu)₂]₂ <u>10</u>: Synthese und Eigenschaften

Zur weiteren Untersuchung halogenhaltiger prochiraler Aluminiumalkoxide wurde Bis[di-tert.-butoxyaluminiumchlorid] [ClAl(O'Bu)₂]₂ <u>10</u> über die "Bleiroute" hergestellt. Da bei dieser Synthese lediglich ein Chlorligand substituiert werden kann, war es von Interesse, ob einerseits das Produkt eindeutige Resonanzsignale für die *cis*- und *trans*-Form liefert oder andererseits erneut Wechselwirkungen über die Chlorliganden in Lösung auftreten.

Für die Synthese musste im Vorfeld das Bis[*di-tert.*-butoxyaluminiumhydrid] [HAl(O'Bu)₂]₂ **9** hergestellt werden, das ebenfalls erstmals von *Nöth* und *Suchy* synthetisiert und 1991 im Rahmen der Dissertation von *H. Wolfanger* strukturell charakterisiert wurde ^[16, 95]. Die Synthese wird analog der Synthese von **1** (Kap.1.1, Gl. 1.1 und 1.2) durchgeführt, jedoch mit zwei Äquivalenten *tert.*-Butanol. Das Edukt wurde vor der Synthese zusätzlich mittels ²⁷Al-NMR-Spektroskopie charakterisiert. Im Vergleich zu [H₂Al(O'Bu)]₂ **1** wird ein Resonanz-signal 45 ppm Hochfeld verschobener bei 80.15 ppm gefunden. Im IR-Spektrum des Feststoffs tritt die Al-H-Valenzschwingung bei 1854 cm⁻¹ auf. Dies deckt sich mit dem bereits veröffentlichten Ergebnis (1859 cm⁻¹) ^[17]. Die Verbindung [ClAl(O'Bu)₂]₂ **10** lässt sich ausgehend von [HAl(O'Bu)₂]₂ **9** und PbCl₂ im Verhältnis 1:1 in nahezu quantitativer Ausbeute darstellen (Gleichung 3.15).

(3.15)
$$PbCl_2 + [HAl(O^tBu)_2]_2 \xrightarrow{n-Hex} [ClAl(O^tBu)_2]_2 + Pb + H_2$$

Im Vergleich zur Dihydridverbindung $[H_2Al(O'Bu)]_2$ <u>1</u> ist die Reaktivität dieser Ausgangsverbindung stark gehemmt, was auf den induktiven Effekt der zweiten *tert.*-Butoxygruppe und der damit verbundenen Verkürzung der Al-H-Bindung zurückzuführen ist. Die Reaktionslösung färbt sich erst nach vollständiger Zugabe der Alanlösung langsam braun bis nach etwa einer Stunde der Bleiniederschlag schwarz wird. Nach 20 Stunden wurde die Reaktionslösung aufgearbeitet. Das Produkt kristallisiert beim Abdestillieren des Lösungsmittels als pulverförmiger Feststoff in einer Ausbeute von 89% aus. Die Verbindung kann ab 80°C im Vakuum sublimiert werden.

Die vollständige Umsetzung der Reaktion konnte durch Aufnahme eines IR-Spektrums, das keine Al-H-Valenzschwingung des Edukts zeigte, bestätigt werden.

3.2.6.1 [ClAl(O^tBu)₂]₂ <u>10</u>: Charakterisierung im Festkörper

3.2.6.1.a) Strukturbestimmung von [ClAl(O^tBu)₂]₂ 10

Aus einer *n*-Hexanlösung des Rohproduktes von $[ClAl(O'Bu)_2]_2$ <u>10</u> konnten geeignete farblose Kristalle von <u>10</u> für die Einkristallröntgenstrukturuntersuchung gewonnen und isoliert werden. Nach Bestimmung und Verfeinerung der Gitterkonstanten ergab sich die Raumgruppe P2/1(c) im monoklinen Kristallsystem. Sämtliche Nichtwasserstoffatome wurden gefunden und anisotrop verfeinert. Zur Berechnung der Lagen der Wasserstoffatome wurden die entsprechenden idealisierten Geometrien verwendet. Der Zulässigkeitsfaktor der so erhaltene Struktur erreichte einen Wert von R₁= 0.0558. Die Daten zum Kristall und zur Strukturbestimmung sind in der nachfolgenden Tabelle (3.19) und im Anhang in den Tabellen (8.22-8.24) zusammengefasst.

Identifizierungscode	shelxs2417
Summenformel	C16 H36 Al2 Cl2 O4
Molmasse	417.31
Temperatur	103(2) K
Wellenlänge	0.71073 Å
Kristallsystem	monoklin
Raumgruppe	P2(1)/c
Gitterkonstanten	$a = 10.829(1) \text{ Å}$ $\alpha = 90^{\circ}$
	$b = 29.897(4) \text{ Å}$ $\beta = 112.374(7)^{\circ}$
	$c = 12.034(1) \text{ Å}$ $\gamma = 90^{\circ}$
Zellvolumen	1795.7(7) Å ³
Anzahl der Formeleinheiten	6
Röntgenographische Dichte	1.154 Mg/m ³
Absorptionskoeffizient	0.358 mm ⁻¹
F(000)	1344
Kristallgröße	$0.4 \ge 0.3 \ge 0.1 \text{ mm}^3$
Gemessener Theta-Bereich	1.36 to 29.91°.
Indexbereich	-15<=h<=15, -39<=k<=41, -16<=l<=16
Anzahl gemessener Reflexe	48314
unabhängige Reflexe	10283 [R(int) = 0.0602]
Datenvollständigkeit bis Theta = 29.91°	98.8 %
Absorptionskorrektur	N/A

Tab. 3.19: Kristalldaten und Strukturverfeinerung von <u>10</u>

Verfeinerung	Full-matrix least-squares on F ²
Daten / Restraints / Parameter	10283 / 0 / 343
Goodness-of-fit on F ²	1.038
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0558, wR2 = 0.1398
R-Werte (alle Daten)	R1 = 0.1087, WR2 = 0.1647
Restelektronendichte	0.857 and -0.513 e.Å ⁻³

3.2.6.1.b) Beschreibung der Molekül- und Kristallstruktur von [ClAl(O^tBu)₂]₂ 10

Abb. 3.33: Molekülstrukturen von [ClAl(O^tBu)₂]₂ 10

Wichtige Bindungslängen [Å]- und winkel[°]: *Molekül A*: Al(3)-O(5), 1.814(2), Al(3)-O(5`) 1.816(2), C(17)-O(5) 1.478(3), Al(3)-O(6) 1.672(2), C(21)-O(6) 1.421(3), Al(3)⁻⁻Al(3`) 2.742(1), Al(3)-O(5)-C(17) 131.8(2), Al(3`)-O(5)-C(17) 129.1(2), C(21)-O(6)-Al(3) 145.1(2), O(5)-Al(3)-

 $\begin{array}{l} O(5^{\circ}) \ 81.88(8) \ Al(3)-O(5)-Al(3^{\circ}) \ 98.12(8); \ Molekül \ B: \ Al(1)-O(1), \ 1.819(2), \ Al(1)-O(1), \ 1.816(2), \\ Al(2)-O(1) \ 1.812(2), \ C(1)-O(1) \ 1.482(3), \ C(5)-O(2) \ 1.482(3), \ Al(1)-O(3) \ 1.675(2), \ Al(2)-O(4) \\ 1.671(2), \ C(5)-O(2) \ 1.428(3), \ C(1)-O(1) \ 1.428(3), \ Al(1)^{--}Al(2) \ 2.749(1), \ Al(2)-O(2)-C(5) \\ 131.00(1), \ Al(2)-O(2)-C(5) \ 130.30(1), \ Al(1)-O(1)-C(1) \ 130.90(1), \ Al(1)-O(1)-C(1) \ 130.12(1) \\ C(13)-O(4)-Al(2) \ 143.60(2), \ C(9)-O(3)-Al(1) \ 142.40(2), \ O(1)-Al(1)-O(2) \ 81.55(7), \ O(1)-Al(1)-O(2) \ 81.50(7), \ Al(1)-O(1)-Al(2) \ 98.53(8), \ Al(1)-O(1)-Al(2) \ 98.40(8) \end{array}$

Das Ergebnis der Einkristallröntgenstrukturuntersuchung zeigt, dass die Verbindung $[ClAl(O'Bu)_2]_2$ <u>10</u> mit sechs Molekülen in der Elementarzelle kristallisiert. Dabei liegen zwei unterschiedliche dimere Moleküle A und B nebeneinander vor. Im Gegensatz zum Molekül A, liegt das Molekül B jedoch nicht auf einem Inversionszentrum. Ausschließlich für das Molekül A ergibt sich analog zu den vorherigen *trans*-Molekülstrukturen nach der Schönfließ-Symbolik die Punktgruppe C_i.

Beim Vergleich der Bindungslängen und -winkel der Moleküle A und B zeigen sich keine signifikanten Unterschiede. Um die Unterschiede der Strukturveränderung zu zeigen, die durch die Substitution der Wasserstoffliganden durch Chlorliganden verursacht wird, werden die entsprechenden Bindungslängen und -winkel der Verbindungen <u>9</u> und <u>10</u> in Tabelle (3.20) gegenübergestellt. Aufgrund der Asymmetrie des Moleküls B werden daher dessen mittleren Bindungslängen und -winkel verglichen.

Abstände/Bindungs- längen[Å]/- winkel [°]	[ClAl(OR) ₂] ₂ <u>10</u> <u>Molekül A / Molekül B</u> R='Bu		[HAl(OR) ₂] ₂ <u>9</u> ^[29, 93] R= ^t Bu
Al(3)-O(5)/ Al(2)-O(1), Al(1)-O(2)/	1.814(2)	1.812(2)	1.817(3)
Al(3)-O(5`)/ Al(1)-O(1), Al(2)-O(2)	1.816(2)	1.818(2)	1.817(3)
C(17)-O(5)/ C(1)-O(1), C(5)-O(2)	1.478(3)	1.482(3)	1.469(6)
Al(3)-O(6)/ Al(1)-O(3), Al(2)-O(4)	1.672(2)	1.673(2)	1.675(3)
C(21)-O(6)/ C(13)-O(4), C(9)-O(3)	1.421(3)	1.428(3)	1.411(6)
Al(3) Al(3 [.])/ Al(1) Al(2)	2.742(1)	2.749(1)	2.77(4)
Al(3)-O(5)-C(17)/ Al(2)-O(1)-C(1), Al(2)-O(2)-C(5)	131.80(1)	130.60(1)	130.6(3)
Al(3`)-O(5)-C(17)/ Al(1)-O(1)-C(1) , Al(1)-O(2)-C(5)	129.12(1)	130.56(1)	129.7(3)
C(21)-O(6)-Al(3)/C(13)-O(4)-Al(2),C(9)-O(3)-Al(1)	145.10(2)	143.00(2)	144.3(4)
O(5)-Al(3)-O(5`)/ O(1)-Al(1)-O(2), O(2)-Al(2)-O(1)	81.88(8)	81.53(7)	80.8(2)
Al(3)-O(5)-Al(3`)/ Al(1)-O(2)-Al(2), Al(2)-O(1)-Al(1)	98.12(8)	98.47(8)	99.2(2)

Tab. 3.20: Ausgesuchte Bindungslängen und -winkel von 9 und 10

Die Moleküle A und B der Verbindung $[ClAl(O'Bu)_2]_2$ <u>10</u> enthalten als zentrales Strukturmerkmal jeweils einen planaren Vierring, der alternierend aus Aluminium- und Sauerstoffatomen aufgebaut ist. Die Winkelsumme innerhalb der Ringe beträgt jeweils 360°. Die Aluminiumatome besitzen eine verzerrt tetraedrische Koordinationssphäre. Die Sauerstoffatome sind nahezu sp²-hybridisiert, was aus den Winkeln Al(3)-O(5)-C(17), Al(3')-O(5)-C(17) und Al(3)-O(5)-Al(3') hervorgeht. Der mittlere Wert dieser Winkel beträgt 119.67° für das Molekül A. Im Molekül B ergeben die entsprechenden Winkel eine mittlere Winkelsumme von 119.88°.

Anhand der Al-O-Bindungslängen innerhalb des Al₂O₂-Vierrings lässt sich im Gegensatz zur Ausgangsverbindung **9** eine leichte rautenförmige Verzerrung des Vierrings in den Molekülen A und B erkennen. Innerhalb der zentralen (Al- μ O)₂-Vierringe dieser Moleküle sind die Al-O-Al-Winkel kleiner. Dadurch wird der nichtbindende Al[…]Al-Abstand größer. Die geringe Verkürzung der Al-O-Bindungen innerhalb und außerhalb des zentralen (Al- μ O)₂-Vierrings ist auf den polarisierenden Effekt durch die Chlorliganden zurückzuführen. Infolgedessen werden längere C-O-Bindungen der terminalen und verbrückenden *tert.*-Butoxygruppe in den Molekülen A und B der Verbindung **10** im Vergleich zur hydridischen isostrukturellen Verbindung **9** gefunden. Intermolekular dominieren die abstoßenden van-der-Waals-Kräfte, es treten keine Wechselwirkungen auf. 3.2.6.2 NMR-spektroskopische Untersuchungen von $[{\rm ClAl}({\rm O'Bu})_2]_2$ $\underline{10}$ in Lösung und Festkörper

Die Verbindung [ClAl(O^tBu)₂]₂ <u>10</u> wurde in Lösung mittels ¹H-, ¹³C- und ²⁷Al-NMR-Spektroskopie sowie im Festkörper mittels IR-Spektroskopie und ¹³C-MAS-NMR-Spektroskopie analysiert.

Im ¹H-NMR und ¹³C-NMR-Spektrum würden analog zur Ausgangsverbindung $[HAl(O^{t}Bu)_{2}]_{2}$ **9**, die ebenfalls in Lösung ein *cis-trans*-Isomerengemisch darstellt, jeweils zwei Signale für die chemisch äquivalenten Methylgruppen der verbrückenden und terminalen Alkoxygruppe für das *cis-* und *trans*-Isomer erwartet werden.

Die Spektren sind jedoch weit aus komplexer. So finden sich im ¹H-NMR sechs Resonanzsignale und im ¹³C-Spektrum sechs Signale für die quartären α -C-Atome und sechs Signale für die primären Methylkohlenstoffatome. Aufgrund der chemischen Verschiebung lassen sich die quartären Kohlenstoffatome der terminalen von denen der verbrückenden *tert.*-Butoxygruppe unterscheiden. Zur besseren Übersicht sind die NMR-Daten in Tabelle (3.21) zusammengefasst.

Das ¹H-NMR-Spektrum weist anstatt für die erwarteten *cis-* und *trans*-Isomere mehr Resonanzsignale auf. Daher müssen in Lösung weitere Konfigurationsmöglichkeiten vorliegen. Die Signale lassen sich jedoch nicht einzelnen Stellungsisomeren zuordnen. Unabhängig von den zusätzlichen Signalen, liegen die Hauptsignale, die den *cis-* und *trans-* Isomeren zugeordnet werden, im Verhältnis 1:1 vor. Durch die zusätzliche Information aus dem ²⁷Al-Spektrum konnte festgestellt werden, dass wiederum zwei verschiedene Aluminiumkoordinationen vorliegen. Das breite Hauptsignal bei 66.4 ppm deutet aufgrund der hohen Halbwertsbreite von $w_{V_2} = 520$ Hz auf eine sehr asymmetrische Umgebung um das tetraedrisch koordinierte Aluminiumatom hin. Dieser analytische Befund unterstützt die Überlegungen weiterer Stellungsisomere in Lösung. Neben dem Signal zeigt sich ebenfalls Tieffeld verschoben eine Schulter bei 90.1 ppm, die in den vorherigen Unterkapiteln bei den zuvor besprochenen Chlorverbindungen <u>5</u> und <u>8</u> diskutiert wurde.

	NMR	$[\mathrm{HAl}(\mathrm{O}^{t}\mathrm{Bu})_{2}]_{2}\underline{9}$	$[ClAl(O^tBu)_2]_2 \underline{10}$
ΙΗ	-C(CH ₃) ₃	1.376 ppm (5) 1.378 ppm(4) 1.414 ppm (5) 1.420 ppm (4)	1.336 ppm (12) 1.353 ppm (1) 1.364 ppm (12) 1.376 ppm (3) 1.394 ppm (3) 1.417 ppm (12) 1.429 ppm (12) 1.476 ppm (6)
¹³ C	-CH ₃ (v) -C(CH ₃) ₃ (t) -C(CH ₃) ₃ (t) -C(CH ₃) ₃ (v)	31.51 ppm 34.03 ppm, 34.05 ppm 69.41 ppm, 69.53 ppm 76.39 ppm, 76.43 ppm	31.00 ppm, 31.20 ppm 33.42 ppm, 33,47 ppm, 33.75 ppm, 33.79 ppm 69.18 ppm, 70.09 ppm, 70.196ppm 78.01 ppm, 79.84 ppm, 79.92 ppm
²⁷ Al		80.15 ppm	66.4 ppm (<i>w</i> ¹ / ₂ =520 Hz), 90.1 ppm

Tab. 3.21: NMR Daten von [HAl(O'Bu)₂]₂ <u>9</u> und [ClAl(O'Bu)₂]₂ <u>10</u>

Um zu überprüfen, ob diese Austauschprozesse durch die terminalen Chlorliganden ausgelöst werden könnten, wurde im Folgenden, analog zu den zuvor beschrieben NMR-Experimenten die Di-*tert*-butoxyaluminiumchloridverbindung <u>10</u> mit der *tert*-Butoxyaluminiumdichloridverbindung <u>2</u> in unterschiedlichen Konzentrationen versetzt und mittels ¹H-NMR untersucht. In dem reinen ¹H-NMR-Spektrum von <u>10</u> wurden die Singuletts der terminalen Alkoxygruppen der Stereoisomere mit H¹ und H^{1°} und die der dazugehörenden verbrückenden Alkoxygruppen mit H² und H^{2°} bezeichnet. Die weiteren Signale H³-H⁶ sind möglichen Stellungsisomeren zuzuschreiben. Durch die Zugabe von 0.2 Äquivalenten von <u>2</u> ändert sich das Verhältnis der Signale H¹:H^{1°}:H^{2°}:H^{2°} nach 2:2:3:5, die im Ausgangsspektrum ungefähr ein Verhältnis 1:1:1:1 besitzen. Die Intensitäten der Signale H³-H⁶ gehen durch die Zugabe nahezu gegen Null, während Hochfeld verschoben ein Singulett (H⁰) bei 1.31 ppm auftritt. Dieses Signal kann der Dichloridverbindung <u>2</u> zugeordnet werden, da dieses Signal durch eine Konzentrationserhöhung eine typische lineare Hochfeldverschiebung aufweist. Bei weiterer Konzentrationserhöhung sind hauptsächlich die Signale der terminalen Alkoxygruppen (H¹ und H^{1°}) vorhanden, die im

⁽v): verbrückend

⁽t): terminal

Verhältnis 1:2 vorliegen. Das kleine Tieffeld verschobene Singulett kann von der chemischen Verschiebung dem Signal H² entsprechen.

Durch dieses Experiment konnte verdeutlicht werden, dass zwischen chlorhaltigen prochiralen Alkoxiden inter- oder intramolekulare Wechselwirkungen auftreten. Diese Wechselwirkungen können jedoch nicht eindeutig geklärt werden.

Abb. 3.34: ¹H-NMR-Spektren von <u>10+2</u>

Die ¹³C-MAS-NMR-Analyse ergibt für die primären α -Kohlenstoffatome zwei breite asymmetrische Signale gleicher Intensität mit Signalbreiten von 125 Hz (Abb. 3.35). Die Signale bei 31.9 ppm und 33.6 ppm zeigen jeweils in Richtung Tieffeld eine Verbreiterung in Form einer Schulter. Diese Schultern könnten den Signalen C² und C²

aus dem ¹³C-Lösungsspektrum entsprechen, die dem *cis*-Isomer zugeordnet werden könnte. Danach würden die intensitätsstärksten Signale den thermodynamisch stabileren *trans*-Isomeren zugeteilt werden. Diese Signale würden den Signalen C¹ und C¹ aus dem Lösungsspektrum entsprechen. Bei den Signalen C^X aus dem Lösungsspektrum, die nicht zuzuordnen sind, könnte es sich um Stellungsisomere handeln, die ausschließlich in Lösung entstehen. Für die quartären Kohlenstoffatome der *tert*.-Butylgruppe werden vier Signale gefunden, bei 80.8 ppm, 76.2 ppm, 70.7 ppm und 68.8 ppm. Durch die größeren Abstände der Resonanz-signale für die quartären Kohlenstoffatome, kann die Zuordnung wie sie für die primären C-Atome gemacht wurde, bestätigt werden. Dabei werden die weiter in Richtung Tieffeld verschobenen Signale den weniger stark abgeschirmten *tert*.-Butylgruppen zugeordnet (Abb. 3.36)

Anhand dieser Verbindung $[ClAl(O'Bu)_2]_2$ <u>10</u> kann gezeigt werden, dass im Festkörper sowohl das *cis*- als auch das *trans*-Isomer nebeneinander vorliegen. Obwohl es nicht gelang, das *cis*-Isomer für die Einkristallröntgenstrukturanalyse zu isolieren, scheint auch das *cis*-Isomer thermodynamisch stabil zu sein. Aufgrund stärkerer van-der-Waals-Abstoßungskräfte könnte das *cis*-Isomer vermutlich weniger begünstigt sein.

Abb. 3.35: Vergleich der ¹³C-Spektren von [ClAl(O'Bu)₂]₂ <u>10</u>: *unten:* ¹³C-Spektrum aus Lösung (C₆H₆) ; *oben:* ¹³C-Spektrum aus Festkörper

Abb. 3.36: Vergleich der ¹³C-Spektren von [ClAl(O'Bu)₂]₂ <u>10</u>: schwarz: ¹³C-Spektrum aus Lösung (C₆H₆) ; *blau:* ¹³C-Spektrum aus Festkörper

3.3 Weitere Untersuchungen von Aluminiumamiden des Typs [HAl(X)(NEt₂)]₂ (X=H, I)

In Kapitel (3.1.1.3 und 3.2.1.3) wurde gezeigt, dass trotz eines Überschusses an PbI₂ keine zweifache Iodsubstitution in der Metathesereaktion mit $[H_2Al(O^tBu)]_2$ <u>1</u> stattfindet. Um die Einflussgrößen auf diesen Prozess zu klären, wurde in Anlehnung an die Umsetzung von $[H_2AlNMe_2]_2$ mit zwei Äquivalenten HgI₂ mit dem vergleichbaren Diethylaminoaluminiumhydrid weitergearbeitet, um den sterischen Einfluss auf diese Reaktion auszuschließen.

3.3.1 Bis[di-ethylaminoaluminiumdihydrid] [H₂Al(NEt₂)]₂ <u>11</u>

3.3.1.1 Synthese, Eigenschaften und Charakterisierung

F.J. Pillong untersuchte bereits im Rahmen seiner Doktorarbeit die Verbindung. Zur Herstellung wurde dabei auf die Methode von *Wiberg* und *May* zurückgegriffen, bei der AlH₃ *in situ* aus Lithiumalanat und Aluminiumchlorid in etherischer Lösung generiert wird ^[120]. Anschließend erfolgt die Aminolyse unter Wasserstoffabspaltung. (Gl. 3.16)

$$(3.16) \quad 4 \operatorname{AlH}_3 * \operatorname{OEt}_2 + 4 \operatorname{HNEt}_2 \longrightarrow [\operatorname{H}_2 \operatorname{Al}(\mu - \operatorname{NEt}_2)]_n + 4 \operatorname{H}_2$$

Das Rohprodukt kann mittels dieser Methode in 91%-iger Ausbeute gewonnen werden. Dennoch gelang es ihm nicht das Produkt zu kristallisieren bzw. aufgrund eines niedrigen Schmelzpunktes Kristalle der Verbindung zu isolieren. In Anlehnung daran, wurde die Synthese analog Gleichung (3.16) durchgeführt. Das Rohprodukt kristallisierte beim Einengen der Lösung in 88%-iger Ausbeute als farbloses Pulver aus, das bei Raumtemperatur stabil bleibt.

Die ¹H-, ¹³C-NMR-Daten wurden in der vorliegenden Arbeit überprüft. Des Weiteren wurde die Charakterisierung des Produktes durch weitere Analyseverfahren wie ATR-Infrarotspektroskopie, ²⁷Al-NMR-Spektroskopie sowie Röntgenkristallstrukturanalyse

ergänzt. Trotz der hohen Flüchtigkeit der Verbindung konnte unter Schutzgasatmosphäre ein IR-Spektrum mittels ATR-Spektroskopie aufgenommen werden.

Im Vergleich zu den ebenso literaturbekannten Daten werden deutlich niedrigere Werte für die terminale Al-H_t-Valenzschwingung (VS) und –Deformationsschwingung (DS) gefunden. (Tab. 3.22)

	Massmathada	VS [cm ⁻¹]	DS [cm ⁻¹]
	wiessmethoue	ν (Al-H _t)	$\delta(\text{Al-H}_t)$
eigene Ergebnisse	Feststoff	1819	715
Kovar / Ashby ^[121]	Nujol	1829	734
Schomburg/ Hoffmann [122]	0.3M in Cyclohexan unter KBr	1832	734
F.J.Pillong ^[123]	Feststoff in KBr	1855	777

Tab. 3.22: IR-Resultate der Al-H-Schwingungsbanden von $[H_2Al(NEt_2)]_2$ <u>11</u> aus verschiedenen Arbeiten

Der Grund hierfür ist vermutlich auf verschiedene Assoziationsgrade zurückzuführen. Bei höherer Assoziation bzw. dichterer Packung der Moleküle im Festkörper ist eine höhere Anregungsenergie erforderlich.

Im Vergleich zum *tert.*-Butoxyaluminiumdihydrid erscheint die Al-H-Valenzschwingung bei niedrigeren Frequenzen, was im Vergleich zur *tert.*-Butoxygruppe durch den elektropositiveren Stickstoffligand bedingt ist.

Die NMR Daten bestätigen die Ergebnisse von Pillong. Hinsichtlich des ¹³C-NMR-Spektrums stimmen die Werte für das β - (41.94 ppm) und α -Kohlenstoffatom (11.95 ppm) der Ethylgruppe überein. Im ¹H-NMR-Spektrum zeigt sich neben dem Triplett bei 0.85 ppm und dem Quartett bei 2.84 ppm zusätzlich ein breites Signal mit einer Signalbreite J=100 Hz für die Hydridresonanz bei 4.09 ppm. Die Form des Signals lässt sich auf das Quadrupolmoment des ²⁷Al-Kerns zurückführen, das durch die Wechselwirkung mit dem Dipol des ¹H-Kerns eine verkürzte Relaxationszeit. Das Nichtauftreten einer solchen Kopplung kann durch eine zu niedrige Konzentration der NMR-Lösung bedingt sein. Im ²⁷Al-NMR erscheint ein breites Signal bei 152 ppm, das auf eine tetragonale Umgebung am Aluminium hindeutet.

Für eine Kristallstrukturanalyse konnten diesmal geeignete Kristalle nach Sublimation ab 28° C/ $2^{*}10^{-2}$ mbar gewonnen werden.

3.3.1.2 Strukturbestimmung von $[H_2Al(NEt_2)]_2 \underline{11}$

Nach Umkristallisation des Rohproduktes durch Sublimation im Vakuum konnten für die Einkristallröntgenstrukturuntersuchung geeignete farblose Kristalle von <u>11</u> gewonnen werden. Nach Bestimmung und Verfeinerung der Gitterkonstanten ergab sich die Raumgruppe P2/1(c) im monoklinen Kristallsystem. Sämtliche Nichtwasserstoffatome wurden gefunden und anisotrop verfeinert. Zur Berechnung der Lagen der Wasserstoffatome wurden die entsprechenden idealisierten Geometrien verwendet. Der Zulässigkeitsfaktor der so erhaltenen Struktur erreichte einen Wert von $R_1 = 0.0458$. Die Daten zum Kristall und zur Strukturbestimmung sind in der Tabelle (3.23) sowie im Anhang in den Tabellen (8.25-8.27) zusammengefasst.

Identifizierungscode	shelxs 2581
Summenformel	C8 H24 Al2 N2
Molmasse	202.25
Temperatur	100(2) K
Wellenlänge	0.71073 Å
Kristallsystem	monoklin
Raumgruppe	P2(1)/c
Gitterkonstanten	$a = 7.292(2) \text{ Å}$ $\alpha = 90^{\circ}$
	$b = 12.939(3)$ $\beta = 91.62(2)^{\circ}$
	$c = 7.123(2) \text{ Å}$ $\gamma = 90^{\circ}$
Volumen	671.8(3) Å ³
Anzahl der Formeleinheiten	2
Röntgenographische Dichte	1.000 Mg/m^3
Absorptionskoeffizient	0.180 mm ⁻¹
F(000)	224
Kristallgröße	$0.6 \ge 0.4 \ge 0.30 \text{ mm}^3$
Gemessener Theta-Bereich	2.79 to 41.28°
Indexbereich	-13<=h<=13, -23<=k<=22, -13<=l<=12
Anzahl gemessener Reflexe	17948
Unabhängige Reflexe	4305 [R(int) = 0.0377]
Datenvollständigkeit bis theta = 41.28°	95.4 %
Absorptionskorrektur	numerisch
Max. and min. Transmission	0.090 and 0.017
Verfeinerung	Full-matrix least-squares on F ²
Daten / Restraints / Parameter	4305 / 0 / 65
Goodness-of-fit on F2	1.028
Endg-Itige R-Werte [I>2sigma(I)]	R1 = 0.0458, wR2 = 0.1087
R-Werte (alle Daten)	R1 = 0.1044, WR2 = 0.1404
Restelektronendichte	$0.564 \text{ and } -0.468 \text{ e.}\text{Å}^{-3}$

Tab. 3.23: Kristalldaten und Strukturverfeinerung für <u>11</u>.

3.3.1.3 Beschreibung der Molekülstruktur von $[H_2Al(NEt_2)]_2$ 11

Die Verbindung Bis[*di*-ethylaminoaluminiumdihydrid] $[H_2Al(NEt_2)]_2$ <u>11</u> liegt dimer vor. Durch die koordinative Absättigung bildet sich ein zentraler planarer Vierring aus alternierenden Al und N-Atomen aus. Die Stickstoffatome sind sp³-hybridisiert, was aus dem Mittelwert der Winkel von 107.2° um das N(1)-Atom hervorgeht. Die Winkelsumme des Vierrings beträgt 360° mit leichter Verzerrung der quadratischen Geometrie. Dies zeigen die Winkel N(1)-Al(1)-N(1`) mit 90.21(4)° und Al(1)-N(1)-Al(1`) mit 89.79(4)°. Durch die leichte Verzerrung wird der Abstand der Aluminiumatome geringer, während die Stickstoffatome sich voneinander entfernen.

Eine stärkere Verzerrung tritt in isostrukturellen Verbindungen auf, in denen die Alkylliganden am Stickstoff sterisch anspruchsvoller sind, wie z.B. in $[H_2AIN(^{i}Pr)_2]_2$ ^[101]. Die Verzerrung lässt sich somit auf die abstoßenden van-der-Waals-Kräfte zwischen den Alkylresten erklären.

Die Bindungslängen für Al(1)-N(1) betragen 1.9529(9) Å und Al(1)-N(1`) 1.949(9) Å, wie sie für vergleichbare Dialkylaminoalane zu finden sind ^[123].

Das Molekül besitzt bedingt durch die Packung lediglich im Schwerpunkt des Al_2N_2 -Vierrings ein kristallographisches Inversionszentrum, sodass sich nach der Schönfließ-Nomenklatur die Punktgruppe C_i vorliegt.

Abb. 3.37: Molekülstruktur von [H₂Al(µ-NEt₂)]₂ <u>11</u>

3.3.2 Bis[di-ethyaminoaluminiumhydridiodid] [IAl(H)(NEt₂)]₂ <u>12</u>

3.3.2.1 Synthese, Eigenschaften und Charakterisierung

Die Umsetzung von $[H_2Al(NEt_2)]_2$ <u>11</u> und zwei Äquivalenten PbI₂ resultiert in der Monoiodidverbindung $[HAl(I)(NEt_2)]_2$ <u>12</u>. Auch hier findet sozusagen nur eine einfache Substitution eines Wasserstoffatoms gegen ein Iodatom statt, wie es ebenfalls die Umsetzung vom *tert.*-Butoxyalan <u>1</u> und PbI₂ im Überschuss zeigt (Kap. 3.1.2.1 und 3.2.1.3.b)). In Anlehnung an die Darstellung von Bis[*di*-methylaminoaluminiumdiiodid] $[I_2Al(NMe_2)]_2$, die aus dem entsprechenden Aminoalan und zwei Äquivalenten HgI₂ hergestellt wurde ^[71], lässt sich die Umsetzung mit PbI₂ auf energetische oder elektrochemische Gründe zurückführen. Energetisch gesehen beträgt die Pb-I-Bindungsenthalpie 47 kcal/mol, die Hg-I 9 kcal/mol ^[88]. Somit wäre die Bildung einer Al-I-Bindung (88 kcal/mol) durch die Umsetzung mit HgI₂ exothermer. Der weitere Unterschied stellt das elektrochemische Potential dar.

Die Verbindung besitzt am Aluminium ein stereogenes Zentrum, weshalb zwei Isomere (*cis* und *trans*) vermutet werden können. In Lösung kann aus den ¹H- und ¹³C-NMR-Spektren keine genaue Aussage gewonnen werden, da die Resonanzkopplungen nicht separat dargestellt werden können.

Im ²⁷Al-NMR werden wieder zwei Resonanzsignale gefunden. Ein breites Signal bei 132.9 ppm, das eine kleine Schulter bei 108.2 ppm aufweist. Geht man von Ausgangsprodukt (152.0 ppm) aus und ordnet das zusätzliche Signal der Diiodidverbindung $[I_2Al(NEt_2)]_2$ zu, so lässt sich ähnlich wie bei der iodhaltigen Alkoxidverbindungen <u>5</u> und <u>7</u> eine Abweichung von einer linearen Hochfeldverschiebung erkennen. Da die Abweichung jedoch geringer ist, lässt sich der Unterschied auf die sterisch anspruchsvolleren verbrückenden *tert.*-Butoxyliganden zurückführen.

Nach der IR-Analyse des Feststoffs zeigt sich die charakteristische asymmetrische Al-H-Valenzschwingung bei 1864 cm⁻¹. Infolge des Iodliganden am Aluminium wird die Al-H-Bindung verkürzt und somit zu höheren Wellenzahlen verschoben. Im Unterschied zu <u>11</u> ergibt sich eine Verschiebung um 45 cm⁻¹. Durch den Vergleich zu der iodhaltigen Alkoxyverbindung $\underline{7}$, bei der die Al-H-Schwingungsbande um 74 cm⁻¹ gegenüber $\underline{1}$ verschoben ist, zeigt sich ein Unterschied der verbrückenden Liganden anhand ihrer elektronenziehenden Wirkung.

3.3.2.2 Strukturbestimmung von $[HAl(I)(NEt_2)]_2$ 12

Nach Umkristallisation des Rohproduktes in Diethylether konnten für die Einkristallröntgenstrukturuntersuchung geeignete farblose Kristalle von 12 erhalten werden. Nach Bestimmung und Verfeinerung der Gitterkonstanten ergab sich die Raumgruppe Pnma im orthorhombischen Kristallsystem. Sämtliche Nichtwasserstoffatome wurden gefunden und anisotrop verfeinert. Zur Berechnung der Lagen der Wasserstoffatome wurden die entsprechenden idealisierten Geometrien verwendet. Der Zulässigkeitsfaktor der so erhaltene Struktur erreichte einen Wert von $R_1 = 0.0251$. Die Daten zum Kristall und zur Strukturbestimmung sind in der folgenden Tabelle (3.24) und im Anhang in den Tabellen (8.28-8.30) zusammengefasst.

Identifizierungscode	shelxs 2638
Summenformel	C8 H22 Al2 I2 N2
Molmasse	454.04
Temperatur	150(2) K
Wellenlänge	0.71073 Å
Kristallsystem	orthorhombisch
Raumgruppe	Pnma
Gitterkonstanten	$a = 12.4420(9) \text{ Å}$ $\alpha = 90^{\circ}$
	$b = 10.4159(8) \text{ Å} \qquad \beta = 90^{\circ}$
	c = 12.6310(9) Å $\gamma = 90^{\circ}$
Volumen	$1636.9(2) \text{ Å}^3$
Anzahl der Formeleinheiten	4
Röntgenographische Dichte	1.842 Mg/m ³
Absorptionskoeffizient	3.925 mm ⁻¹
F(000)	864
Kristallgröße	0.43 x 0.33 x 0.10 mm ³

Gemessener Theta-Bereich	2.30 to 33.51°
Indexbereich	-19<=h<=19, -15<=k<=15, -18<=l<=18
Anzahl gemessener Reflexe	34172
Unabhängige Reflexe	3123 [R(int) = 0.0340]
Datenvollständigkeit bis Theta = 33.51°	92.8 %
Absorptionskorrektur	Multiscan
Max. and min. Transmission	0.6949 and 0.2831
Verfeinerung	Full-matrix least-squares on F ²
Daten / Restraints / Parameter	3123 / 0 / 78
Goodness-of-fit on F2	2.376
Endg-ltige R-Werte [I>2sigma(I)]	R1 = 0.0251, wR2 = 0.0621
R-Werte (alle Daten)	R1 = 0.0370, wR2 = 0.0790
Restelektronendichte	2.144 and -0.716 e.Å ⁻³

3.3.2.3 Beschreibung der Molekül- und Kristallstruktur von [HAl(I)(NEt₂)]₂ 12

Wie bei den vorher beschriebenen prochiralen Verbindungen <u>5-8</u> und <u>10</u>, konnte von der Verbindung [IAl(H)(NEt₂)]₂ <u>12</u> auch hier für die Röntgenstrukturuntersuchung nur das *trans*-Isomer isoliert werden. Die Verbindung kristallisiert mit vier Molekülen in der Elementarzelle. In der Molekülstruktur befindet sich ausschließlich eine Spiegelebene senkrecht zum Al₂N₂-Vierring und wird durch Aluminium- und Iodatome aufgespannt. Nach der Schönfließ-Symbolik ergibt sich demnach die Punktgruppe C_s.

Die dimeren Moleküle besitzen jeweils einen zentralen planaren Vierring aus alternierenden Aluminium- und Stickstoffatomen als herausragendes Strukturmerkmal. Die Bindungslängen innerhalb des Vierrings betragen Al(1)-N(1) 1.948(1) Å und Al(2)-N(1) 1.944(2) Å. Dies zeigt, dass sich das dimere Molekül aus zwei asymmetrischen Einheiten über die gemeinsamen Diethylaminbrücken zusammensetzt. Weitere strukturelle Unterschiede werden für die Al-I-Bindung Al(1)-I(1) 2.524(1) Å und Al(2)-I(2) 2.528 Å gefunden. Die Al-I-Bindungslängen in <u>12</u> sind im Vergleich zu den isostrukturellen Verbindungen [I₂Al(NMe₂)]₂ (Al-I 2.505(8) Å und 2.478(5) Å) ^[71] und [I₂AlOSiMe₂H]₂ (Al-I 2.477(2) Å und 2.469(7) Å) ^[70] und [I₂Al(O^tBu)]₂ <u>4</u> (Al-I

2.485(3) Å und 2.492(7) Å) länger, was vermutlich auf den geringeren ionischen Bindungscharakter zurückzuführen ist. Hingegen besteht eine größere Ähnlichkeit zur Monoiodidverbindung $[IAl(H)(O^{t}Bu)]_{2}$ <u>7</u>, die eine Al(1)-I(1)-Bindungslänge von 2.5142(6) Å aufweist.

Die Stickstoffatome sind sp³-hybridisiert, was aus dem Mittelwert der Winkel von 107.8° um das N(1)-Atom hervorgeht. Die Winkelsumme des Vierrings beträgt 360° mit leichter Verzerrung der quadratischen Geometrie. Durch die leichte Verzerrung wird im Gegensatz zur Dihydridaminoverbindung der Abstand der Aluminiumatome Al(1)^{...}Al(2) 2.759(1) Å größer, während die Stickstoffatome sich einander nähern.

Abb. 3.38: Molekülstruktur von [IAl(H)(µ-NEt₂)]₂ 12

4 ERGEBNISSE UND DISKUSSION (TEIL 2: CVD)

4.1. Einführung in den CVD-Prozess und das Precursorkonzept

Die Schichterzeugung aus der Gasphase bildet eine besonders wichtige Gruppe von Herstellungsverfahren für dünne und ultradünne Schichten. Für viele Materialien ist die Abscheidung aus der Gasphase der einzige praktikable Weg, um zu dünnen und ultradünnen (~1 µm) Schichten homogener Stärker zu gelangen. Bei diesen Verfahren werden die Ausgangsstoffe (Precursoren) aus der Gasphase zur Substratoberfläche transportiert, wo sie als festes Schichtmaterial abgeschieden werden. Neben Bedampfung, Sputtern, galvanischer Abscheidung stellt die chemische Gasphasenabscheidung (Chemical Vapor Deposition) ein weiteres wichtiges Verfahren dar. Dieses Verfahren unterscheidet sich von den anderen dadurch, dass beim CVD-Verfahren eine chemische Reaktion stattfindet. die zum schichtbildenden Material führt. Da diese Zersetzungsreaktionen endotherm sind, ist eine Anregungsenergie erforderlich, die auf unterschiedliche Art zugefügt werden kann. Je nach Art der Energiezufuhr, lassen sich verschiedene CVD-Methoden unterteilen. Hauptsächlich erfolgt die Aktivierung - auch in industriellen CVD-Prozessen - thermisch über Wärmeleitfähigkeit oder IR-Strahlung: Thermal Activated CVD (TACVD). Außerdem kann die CVD-Reaktion auch photolytisch durch LASER-Bestrahlung (Laser Enhanced CVD) oder durch Plasmaeinwirkung (Plasma Enhanced CVD) aktiviert werden. Weitere Klassifizierungen der CVD können nach dem Druck erfolgen:

Findet die Beschichtung bei Atmosphärendruck oder im Vakuum (1-100 Pa) statt, so spricht man von (<u>A</u>tmospheric <u>P</u>ressure <u>CVD</u> oder <u>Low P</u>ressure <u>CVD</u>). Aufgrund der Vielzahl an CVD-Techniken ergeben sich daraus auch viele industrielle Anwendungsmöglichkeiten, u.a. in der Halbleitertechnik, Optoelektronik und zur Werkstoffhärtung. Schichtmaterialien aus einer Komponenete, wie z.B. Metallschichten, lassen sich aus den entsprechenden organischen Metallverbindungen darstellen ^[124]. Zur Herstellung binärer Schichtmaterialien wie z.B. Metallnitride, -oxide, -carbide... hingegen

werden meistens schon zwei Precursoren gebraucht oder ein Precursor, in dem eine Metall-Nichtmetall-Bindung vorgeformt ist ^[125]. Aufgrund dessen wurde dieser Begriff in den letzten Jahren im Sprachgebrauch vernachlässigt, als zusätzlich die Precursoren mit Metall-Halbmetallbindungen oder Metall-Nichtmetallbindungen Einsatz fanden. Man spricht zwar von metall-organischen Verbindungen und dem MOCVD-Prozess, sieht aber den MOCVD-Prozess heutzutage im erweiterten Sinn an.

Bei der Verwendung von zwei Precursoren (<u>Multiple Source Precursoren</u>) oder eines Precursors in Zusammenhang mit einem Trägergas zeigen sich große Nachteile bei der Abscheidung von binären Schichtmaterialien, da teilweise auch extreme Abscheidebedingungen erforderlich sind ^[126]. Außerdem ist es trotz einstellbaren stöchiometrischen Verhältnisses der Precursoren schwierig reine, wohl definierte Phasenzusammensetzung zu erhalten, da eine intermolekulare Reaktion auf dem Substrat auch zu Nebenprodukten führen kann.

Das Konzept des Single-Source-Precursors (SSP) stellt somit eine revolutionierende Alternative zur Herstellung binärer oder höherer Schichtzusammensetzungen dar, da bereits in den Precursoren die Elemente in einem bestimmten stöchiometrischen Verhältnis enthalten, die ebenso unter bestimmten Prozessbedingungen (Druck, Temperatur) im abgeschiedenen Schichtmaterial vorhanden sind. So bieten diese Vorlagemoleküle im CVD durch ihre Strukturanpassung optimale Umwandlungen in das jeweilige Endprodukt mit einer eindeutigen Phasenzusammensetzung. Dabei sollten solche Precursoren für die Verwendung der Precursoren im CVD-Prozess zur Zersetzung möglichst niedrige Aktivierungsenergien erfordern, um so substratschonende Prozessbedingungen zu ermöglichen. Niedrige Sublimationstemperaturen können durch sterisch anspruchsvolle Liganden wie die *tert*.-Butyl-Gruppen, die eine maximale sterische und koordinative Abschirmung der Metallzentren erlauben, erreicht werden ^[20]. Des Weiteren sollten die Vorlagemoleküle eine ausreichende Stabilität in der Gasphase besitzen. Die thermodynamische Stabilität, aber auch die Flüchtigkeit und Löslichkeit lassen sich dabei durch die Art der Liganden beeinflussen. Zudem bestimmen die Liganden bzw. auch die Zersetzungsprodukte die Ausbildung des Schichtmaterials.

Im Arbeitskreis von Prof. M. Veith werden seit einigen Jahren so genannte Alkoxid-Precursoren hergestellt, die zum Teil ihre Anwendung in der chemischen Dampfabscheidung finden. Es kommt in erster Linie auf die Flüchtigkeit an, ob ein Precursor für die CVD von Bedeutung sein wird. Diese hängt vor allem von dem Molgewicht der Verbindung und dem Aggregationszustand ab, wenn es sich um einen Feststoff handelt. Die Auswahl der organischen Liganden gibt uns die Möglichkeit die chemische Zersetzungsreaktion entscheidend zu beeinflussen.

Das in dieser Arbeit als Ausgangsverbindung eingesetzte chlorhaltige Aluminiumalkoxid $[ClAl(H)(O^{t}Bu)]_{2}$ <u>5</u> stellt modifizierte Verbindung zu den Ausgangsverbindungen $[H_{2}Al(O^{t}Bu)]_{2}$ <u>1</u> und $[HAl(O^{t}Bu)_{2}]_{2}$ <u>9</u> dar. In diesen Verbindungen sind die Liganden so gewählt, dass die chemische Zersetzungsreaktion im Molekül vorgeformt ist. Die Nebenprodukte werden durch eine Kaskadenreaktion im Molekül geformt und abgespalten. Dadurch kann die Kontamination des Schichtmaterials gesenkt werden.

4.2 Reaktionsabläufe im CVD-Prozess

Die chemische Gasphasenabscheidung ermöglicht in der Dünnschichttechnologie die Abscheidung anorganischer Verbindungen auf einem Substrat. Dabei können eine oder mehrere flüchtige molekulare Substanzen eingesetzt werden, die in die Gasphase transportiert werden und dort an einer erhitzten Substratoberfläche zersetzt werden.

$$AX_{gasf.} \xrightarrow{T_s} A_{fest} + X_{gasf.}$$

Bei der heterogenen Reaktion (gasförmig \rightarrow fest) entstehen auf dem Substrat feste Schichtmaterialien A nach Abspaltung flüchtiger Nebenprodukte X. Die Zersetzung des Precursors AX erfordert dazu eine entsprechende Substrattemperatur T_s.

Zur Vereinfachung der komplexen Fluiddynamik in der Gasphase wird ein laminares Strömungsprofil angenommen. Bei einem laminaren Fluss ist die Geschwindigkeit der Gasmoleküle an der Abscheidoberfläche Null. Die folgende Abbildung (4.1) zeigt die allgemeinen Einflussgrößen, die bei der Abscheidung aus der Gasphase berücksichtigt werden müssen.

Gasphasenreaktion 2) Diffusion 3) Adsorption 4) Oberflächenreaktion 5) Desorption
Keimbildung 7) Keimwachstum

Abb. 4.1: Teilschritte des CVD-Prozesses^[127]

Durch die hohe Substrattemperatur bildet sich aufgrund des Wärmegradienten oberhalb der Substratoberfläche eine Grenzschicht aus, deren Dicke *ergo* proportional zur Temperatur ist. Bei besonders hohen Temperaturen ist es einerseits möglich, dass labile Precursorverbindungen schon in der Gasphase zur Zersetzung kommen. Dies kann entweder durch den Zusammenstoß mit anderen Gasmolekülen oder mit der Reaktorwand geschehen. Die so gebildeten Wachstumskeime können dann zu größeren Partikeln oder Agglomeraten verbinden, die auch als Kontaminate beim Schichtwachstum wirken können oder desorbieren wie die Nebenprodukte aus dem Reaktionsraum.

Der Precursor kann aber auch erst nach Adsorption an der Substratoberfläche der thermischen Zersetzung unterliegen. Die wachsende Schicht kann dabei eine autokatalytische Wirkung besitzen, die durch Migration und Oberflächendiffusion der beim Precursorzerfall gebildeten Keime zum Ausdruck kommt. Dies führt zur Entstehung von Inseln und Stufen, die mit der Zeit zu einer flächendeckenden Schicht zusammenwachsen.

Die CVD-Prozess bestimmenden Teilschritte sind kinetisch kontrolliert, die von Temperatur und Druck abhängig sind. Bei niedrigem Druck und Temperatur erhöht sich die Schichtwachstumsrate schlagartig, sodass das Wachstum dann durch die Oberflächenreaktion begrenzt ist, während die Flussrate ausreichend hoch ist. Bei diesen Bedingungen ist die Grenzschicht recht dünn, sodass die Gasmoleküle nur einen geringen Diffusionsweg zurücklegen müssen. Im schlimmsten Fall können im Schichtmaterial nicht zersetzte Moleküle gefangen werden. Bei Erhöhung des Drucks und Temperatur wächst die Grenzschicht. Die Gasmoleküle benötigen eine längere Diffusionszeit zur Oberfläche, wodurch die Zersetzungsrate sinkt. Das Wachstum ist dann durch den Stofftransport limitiert. Bei besonders hohen Temperaturen und drücken geht die Wachstumsrate aufgrund Verarmung an Reaktanden zurück. Da durch den Temperaturgradienten die Grenzschicht wächst, kann auch eine Zersetzung der Reaktanden an den Reaktorwänden stattfinden. Daher ist es im CVD-Prozess wichtig durch die Einstellung der Prozessparameter geeignete Bedingungen zur Abscheidung homogener Schichten zu erreichen.

4.3 Experimenteller Aufbau der verwendeten CVD-Apparaturen

Die CVD-Experimente wurden in einer speziell für die leicht flüchtigen Aluminiumalkoxide konzepierten LPCVD-Anlage ^[128-131] durchgeführt. Die heterogene Reaktion findet hier in einem Reaktionsrohr aus Duranglas statt, in dem das jeweilige Substrat auf einem Substrathalter angebracht ist. Die Aufheizung des Substrates erfolgt in einem *"cold-wall"*-Reaktor ^[132]. Bei metallischen, gut leitenden Substraten (Fe, Cu) erfolgt die Erwärmung induktiv durch ein Hochfrequenzfeld, bei nichtleitenden Materialien, wie z.B. Si, erfolgt sie indirekt durch thermische Ankopplung an einen elektrisch leitenden Substratträger, wie z.B. Graphit. Die Einstellung der Substrattemperatur bzw. die Regelung des Hochfrequenzgenerators erfolgt mit einem Thermoelement, das direkt an der Rückseite des Substrates bzw. des Substratträgers in Kontakt steht.

Abb. 4.2: Schematischer Aufbau der verwendeten LPCVD-Anlage

Bei reduziertem Druck kann der Precursor in den Reaktionsraum zugeführt werden. Ist der Dampfdruck des Precursors noch nicht erreicht, kann zusätzlich mit Hilfe eines Ofens die Reaktionskammer inklusive Precursorvorlage erwärmt werden. Der Kolben, in dem sich der Precursor befindet, ist unmittelbar vor dem Reaktionsrohr durch einen Eckhahn abgetrennt.

Die bei dem CVD-Prozess entstehenden Pyrolysegase werden durch den steigenden Vakuumgradienten in eine nachfolgende Kühlfalle, die mit flüssigem Stickstoff gekühlt wird, einkondensiert. Bei entsprechenden Prozessparametern wie Druck (Stoffumsatz) und Substrattemperatur wird somit eine Kontamination der entstehenden Festkörperschicht auf dem Substrat mit organischen Pyrolysegasen verhindert.

Die Zersetzung des Precursors an der aufgeheizten Substratoberfläche erkennt man durch das Erscheinen von Interferenzfarben, die ein Maß für die Schichtdicke darstellen. Des Weiteren lassen sich mit Hilfe eines Quadrupolmassenspektrometers die entstehenden Pyrolysegase analysieren.

4.4 Erste Untersuchungen der Precursoren $[ClAl(H)(O^tBu)]_2 \underline{5}$ bzw. $[ClAl(D)(O^tBu)]_2 \underline{5}$ ` im LPCVD-Prozess

4.4.1 Eigenschaften des Precursors und Beschreibung des CVD-Experimentes

Die chlorhaltige Monohydridoverbindung Bis[*tert.*-butoxyaluminiumhydridchlorid] <u>5</u> besitzt einen Schmelzpunkt bei 43°C. Bei einer Temperatur von 50°C unter einem Druck von $2*10^{-2}$ mbar beginnt die Substanz zu sublimieren. Nach Sublimation erfolgt die Rekristallisation der Verbindung ausschließlich in der Kälte.

Durch die Oxidations- und Hydrolyseempfindlichkeit lässt sich die Verbindung ausschließlich unter einem trockenen Schutzgas wie Argon oder Stickstoff handhaben. Die chemische Zersetzung des Precursors wurde bei Temperaturen zwischen 200°C und 500°C durchgeführt. Als Substrate wurden Eisen- und Kupfersubstrate verwendet, die jeweils in einem "*cold wall*"-Reaktor ^[123] induktiv erhitzt wurden. Bei dem Analysevakuum von 5.0*10⁻² mbar war es für die Abscheidung des Precursors nicht notwendig die Reaktionsapparatur der CVD-Anlage 1 (s. Kap. 6.3.2) mit einem Ofen zu heizen.

Um den Zerfallsmechanismus des Precursors eindeutig aufzuweisen, wurde die analoge isotopenmarkierte Deuteriumverbindung $[ClAl(D)(O^{t}Bu)]_{2}$ <u>5</u>` über die "Bleiroute" hergestellt und eingesetzt.

Der Beginn und der Verlauf der heterogenen Zersetzungsreaktionen wurden durch eine kontinuierliche Analyse der entstehenden Pyrolysegase mittels Massenspektrometrie aufgezeichnet. Die Herstellung dieser Schichten dauerte jeweils zweieinhalb Stunden. Trotz der relativ guten Flüchtigkeit des Precursors wird viel von der Ausgangssubstanz verbraucht. Ungefähr 1-1.5 g sind notwendig, damit homogene goldfarbene Schichtoberflächen entstehen.

Die Analyse der Pyrolysegase erfolgte mit einem Quadrupolmassenspektrometer. Die Signale konnten mit der Software *Massoft* aufgezeichnet werden.

4.4.2 Analyse der massenspektroskopischen Fragmentierungsmuster des Precursors <u>5</u>

Die folgende Abbildung zeigt die Massenspektren der Pyrolysegase, die bei der Gasphasenabscheidung des Precursors $[ClAl(D)Al(O'Bu)]_2$ <u>5</u>` bei den jeweiligen Temperaturen entstehen.

Die Zersetzungsgase wurden massenspektroskopisch bis 220 amu detektiert. Da ab 59 amu keine weiteren Signale auftraten, wurde der Abbildungsbereich zur besseren Veranschaulichung bis 70 amu reduziert (Abb. 4.3).

Die einzelnen Intensitäten bzw. Partialdrücke sind auf die unterschiedlichen Prozessdrücke zurückzuführen.

Abb. 4.3: Massenspektren der Pyrolysegase aus der Gasphasenabscheidung von 5

Anhand der Massenspektren ist ersichtlich, dass im Temperaturbereich von 200-500°C die gleichen Molekülfragmente detektiert wurden. Die Zuordnung dieser Signale wurden nach den Untersuchungen von S. Faber anhand den Verbindungen [H₂Al(O'Bu)]₂ und [HAl(O'Bu)₂]₂ übernommen ^[17]. Neben den Signalen von *iso*-Buten und HD, treten

weitere Fragmente bei m/z = 15, 31 und 59 auf. Diese deuten auf Fragmente des *tert.*-Butanols hin. Weiterhin werden zusätzliche Signale bei m/z = 35,36 gefunden, bei denen es sich um Fragmente von $H^{35}Cl^+$ handelt. Für das Chlorisotop ³⁷Cl müssten weitere Signale bei (m/z +2) = 37 und 39 zu erwarten sein. Aufgrund der Signalüberlagerungen mit den Fragmenten des *tert.*-Butanols und *iso*-Buten, können aus den Massenspektren daher keine genauen qualitativen Aussagen gemacht werden.

Für diesen Zweck wurde eine genauere Untersuchung des Fragmentierungsmusters durch eine Peakdifferenzanalyse durchgeführt um die Signale der entstehenden Pyrolysegase genau zuzuordnen.

Zur Auswertung kann dabei das stabile Isotopenverhältnis zwischen 35 Cl und 37 Cl = 3:1 als feste Standardgröße angenommen werden. Dieses Isotopenverhältnis muss sich in dem Fragmentierungsmuster widerspiegeln, falls HCl als Abspaltungsprodukt aus der Gasphasenreaktion hervorgeht.

Für die Differenzanalyse wurden zunächst die Spektren auf *tert.*-Butanol bezüglich der Masse 31 normiert. Nach Abzug von *tert.*-Butanol wurde anschließend am verbleibenden Spektrum HCl abgezogen, dessen Fragmentintensitäten infolge der natürlichen Isotopenhäufigkeit feste Größen darstellen. Letztlich wurden aus den Spektren die *iso*-Butenfragmente subtrahiert, wonach lediglich die Massensignale für H⁺, D⁺, HD⁺ D₂⁺ bei m/z = 1, 2, 3 und 4 übrig bleiben (Abb. 4.4).

Abb. 4.4: Peakdifferenzanalyse des Pyrolysegases von [ClAl(D)(O^tBu)]₂ <u>5</u> (200°C): Spektrum A: Pyrolysegas, Spekrum B: Differenzspektrum nach Subtraktion der Signale von tert.-Butanol, Spektrum C: Differenzspektrum nach Subtraktion Signale tert.-Butanol der von und HCl; Spektrum D: Differenzspektrum nach Subtraktion der Signale von tert.-Butanol, HCl und iso-Buten

In den Massenspektren spiegelt sich zwischen HCl und *iso*-Buten nahezu ein konstantes Partialdruckverhältnis von 1:4 (HCl : *i*so-Buten) wider. Hingegen sinkt der Partialdruck des *tert*.-Butanol im Verhältnis zu HCl mit zunehmender Abscheidetemperatur.

	tertButanol : HCl
200°C	1:1
300°C	2:3
400°C	1:2
500°C	1:3

Der Wasserstoffpartialdruck lässt sich aufgrund der geringen Masse durch das stark unterschiedliche Strömungsverhalten im Reaktor nicht mit den anderen Partialdrücken vergleichen. Da jedoch der Massenpeak m/z = 36 von HCl nahezu im konstanten Verhältnis zum Massenpeak m/z=41 von *iso*-Buten steht, lässt sich daraus folgern, dass durch den kleiner werdenden Partialdruck des *tert*.-Butanols der HD-Partialdruck steigen muss.

	HD	<i>tert</i> Butanol	HCl	iso-Buten
200°C	2	1	1	4
300°C	2.4	0.6	1	4
400°C	2.5	0.5	1	4
500°C	2.75	0.25	1	4

Durch Differenzanalyse konnte infolge der Auslöschung der Signale bei m/z = 35, 37 und 39, gezeigt werden, dass eine Eliminierung von DCl aus der Schicht ausgeschlossen werden kann. Die relativ intensitätsschwachen Signale bei m/z = 4 deuten hingegen auf eine Eliminierung von D₂ aus dem Schichtmaterial hin.

Anhand dieser Ergebnisse lassen sich die Eliminierungsschritte und die daraus resultierenden Schichtzusammensetzung wie folgt aufstellen (Abb. 4.5):

Im Gegensatz zur isostrukturellen Dihydridverbindung <u>1</u> finden hier drei verschiedene Zersetzungsreaktionen statt. Hinsichtlich der Intensitätsverhältnisse der Pyrolysegase zeigt sich, dass die Eliminierung von HD begünstigt ist.

Abb. 4.5: Zerfallsmechanismus für die Bildung von HD, HCl, *iso*-Buten und *tert*.-Butanol

HD stellt neben iso-Buten ein Zerfallsprodukt einer intramolekularen Kaskadenreaktion zwischen den tert.-Butylresten und den basischen Deuteriumliganden dar. Die Reaktion läuft über einen intramolekularen Sechsring-Mechanismus ab, durch den die Eliminierungen infolge Wechselwirkung eines Methylprotons mit einem basischen Deuteriumliganden und Spaltung einer C-O-Bindung begünstigt wird. Die Bildung von HCl erfolgt nach dem gleichen Mechanismus. Dabei findet eine Wechselwirkung zwischen den basischen Chlorliganden und den Methylprotonen statt. Für die Bildung von tert.-Butanol kann ebenfalls ein intramolekularer Sechsring-Mechanismus postuliert werden, durch den infolge der Wechselwirkungen zwischen den verbrückenden tert.-Butoxyliganden neben tert.-Butanol Iso-Buten eliminiert wird. Durch die Eliminierung von tert.-Butanol muss eine kovalente und dative Al-O-Bindung gespalten werden. Diese Abspaltungsreaktion ist jedoch aufgrund der Intensität der Partialdrücke weniger begünstigt. Die Bildung von *tert*.-Butanol aus $[ClAl(O^{t}Bu)_{2}]_{2}$ **10** als Nebenprodukt - vgl. Zersetzung von $[HAl(O'Bu)_2]_2$ <u>9</u> ^[18] - kann aufgrund NMR-spektroskopischer Voruntersuchungen ausgeschlossen werden. Im Vergleich zu $[H_2Al(O^tBu)]_2$ <u>1</u> besitzt die tert.-Butoxygruppe in [ClAl(H)(O'Bu)]₂ <u>5</u> eine höhere Basizität, aufgrund der elektronenziehenden Wirkung der Chlorliganden. Dadurch könnte eine Wechselwirkung mit den Protonen der tert.-Butylgruppe ermöglicht werden.
Im Temperaturbereich von 200-500°C wird ausschließlich die Bildung dieser Pyrolysegase beobachtet. Durch die steigenden Intensitätsverhältnisse von HD, *respektive* sinkendem Anteil an *tert*.-Butanol, muss es sich bei den Schichten um metastabile Schichten handeln, die sich hinsichtlich ihrer Elementzusammensetzungen unterscheiden müssen.

4.4.3 Infrarotspektroskopische Untersuchungen der chlorhaltigenSchichten

Um Aussagen über die Schichtzusammensetzung und Struktur der Oberfläche zu treffen, wurden Infrarotmessungen mittels Reflektionstechnik durchgeführt.

In der folgenden Abbildung sind die IR-Reflektionsspektren von 200°C, 300°C, 400°C, 500°C dargestellt.

Abb. 4.6: IR-Spektren (ERAS, 50°) der erhaltenen Schichten des Precursors [ClAl(D)(O'Bu)]₂ <u>5</u>` in Abhängigkeit von der Abscheidungstemperatur

Zwischen 1650 cm⁻¹ und 1400 cm⁻¹ Schwingungsbanden geringer Intensität zu sehen, die im typischen Bereich der Al-D-Schwingungen auftreten. Diese Schwingungsbanden werden mit zunehmender Temperatur kleiner, sodass von einer Verminderung des Wasserstoffanteils in den Schichten gesprochen werden kann. Die Intensitätsabnahme ist auf die unterschiedlichen Partialdrücke der Zerfallsprodukte zurückzuführen, wodurch unterschiedliche Elementzusammensetzungen hervorgerufen werden. Im Gegensatz zur DAIO-Schicht zeigt sich, dass der Wasserstoff in den chlorhaltigen Schichten länger gebunden bleibt (400°C). Bei dieser Temperatur beginnt in der DAIO-Schicht unter Luftausschluss eine Phasenumwandlung in die Kompositschicht Al/Al₂O₃. Bei den intensitätsstarken Banden bei ca. 970 cm⁻¹ handelt es sich um Al-O-Schwingungsbanden, die durch die Verdrehung des Al-O-Al-Winkels im Festkörper hervorgerufen werden. Die Bande verschiebt sich dabei mit zunehmender Temperatur in positive Richtung . Dies belegen vorherige Studien von S. Faber ^[18] und Untersuchungen von *Franzen* bei der Herstellung von Al₂O₃(AlOOH)-Schichten im Rahmen eines CVD-Prozesses gefunden ^[133].

Über die Frequenz und deren temperaturabhängigen Verschiebung der Bande wurde bereits in der Dissertation von S.Faber anhand der HAIO-Schichten UnterDiese Banden wurden auch bei den HAIO-Schichten beobachtet ^[22, 27, 28]. Ab 900 cm⁻¹ treten die intensitätsstarken Al-O-Schwingungen auf ^[134], die hier im messbaren Bereich die Al-Cl-Schwingungsbanden überlagern. Die Al-Cl-Schwingungsbanden sind bei ca. 500 cm⁻¹ zu erwarten.

Für den Vergleich der Al-D-Schwingungsbanden (Abb. 4.7) der chlorhaltigen hydridischen Aluminiumoxidschicht { $Cl_xAl(D)_yO_z$ } (orangene Linie) und der reinen DAIO-Schicht (schwarze Linie) wurden die Schichten bei 250°C hergestellt und direkt vermessen. Es zeigt sich eine Verschiebungsdifferenz der beiden Banden von 30 cm⁻¹. Dieser Unterschied lässt wie für die Precursoren gezeigt, auf die zusätzlichen elektronegativen Chlorliganden zurückführen. Nach dieser Erkenntnis ist klar, dass sich bei der Gasphasenabscheidung lediglich eine Phase gebildet haben muss. Es muss sich dabei um eine Aluminiumoxidschicht handeln, in der das Aluminium sowohl Chlor- als auch Wasserstoffliganden besitzt.

Abb. 4.7: IR-Spektrum (ERAS, 50°) der erhaltenen Schicht des Precursors [ClAl(D)(O'Bu)]₂ <u>5</u> (orange Linie) im Vergleich mit einem IR-Spektrum einer DAIO-Schicht (schwarze Linie)

Beim Vergleich der Al-D-Schwingungsbanden der Schichten und der dazugehörigen Al-D-Schwingungsbanden des Precursors zeigt sich eine Verschiebungsdifferenz zu höheren Wellenzahlen. Die Differenz der chlorhaltigen Schicht und der Al-D-Bande des Precursors <u>5</u> beträgt lediglich 30 cm⁻¹, während die Al-D-Banden für das reine DAlO und dem dazugehörigen Precursor ca. 50 cm⁻¹ auseinander liegen.

Zum Vergleich wurde eine entsprechende Schicht bei 250°C mit $[ClAl(H)(O'Bu)]_2$ <u>5</u> als Precursor hergestellt, sowie dementsprechend bei gleichen Temperaturen eine HAlO-Schicht.

Abb. 4.8: IR-Spektrum (ERAS, 50°) der erhaltenen Schicht des Precursors $[ClAl(H)(O'Bu)]_2 5$ im Vergleich mit einem IR-Spektrum einer HAlO-Schicht (schwarze Linie)

Die Valenzschwingungsbande für eine terminale Al-H-Bindung in der chlorhaltigen Schicht wird bei 1960 cm⁻¹ gefunden. Ab 1000 cm⁻¹ treten die Al-O-Schwingungsbanden auf. Die Al-Cl-Schwingungsbande, die zwischen 400 cm⁻¹ und 500 cm⁻¹ erwartet werden, konnten aus technischen Gründen nicht detektiert werden.

Im Vergleich zur HAIO-Schicht ist die Al-H-Valenzschwingung zu höheren Wellenzahlen verschoben. Die Verschiebungsdifferenz zwischen dem Precursor und der entstandenen Schicht beträgt ca. 35 cm⁻¹. Die Verschiebungsdifferenz der Al-H-Bande ist dadurch deutlich geringer als zwischen HAIO und dem dazugehörigen Precursor <u>1</u> (85 cm⁻¹) ^[135].

4.4.4 Untersuchungen der chlorhaltigen Schichten {Cl_xAl(D)_yO_z} mittels Rasterelektronenmikroskopie (REM) und Energiedispersiver Röntgenstrahlung (EDX)

Durch die optische Charakterisierung von Schichten können Aussagen über die Homogenität und Oberflächenrauigkeit gemacht werden. Bilden sich eventuell kugelförmige Strukturen oder sonstige Aggregationen auf der Oberfläche?

Um diese Fragen zu klären, wurden Aufnahmen verschiedener Vergrößerungen mittels eines Rasterelektronenmikroskops der neuen Schichten gemacht. Außerdem wurden durch EDX-Analysen bestimmte Bereiche auf die Elementzusammensetzung überprüft. Aufgrund der Elementzusammensetzung der chlorhaltigen Schichten { $Cl_xAl(D)_yO_z$ } handelt es sich um hydrolyseempfindliche Schichtmaterialien. Wie schnell jedoch die Reaktion der Oberfläche mit der Luftfeuchtigkeit stattfindet, kann nicht bestimmt werden. Tatsache ist, dass die Schichten nicht luftstabil sind. Dies zeigt eindeutig die folgende Langzeituntersuchung. Die Schichten wurden in dieser Zeit in Plastikdosen im Dunklen aufbewahrt. Nach ungefähr 18 Monaten zeigten sich rein optisch sowohl Rissbildungen als auch Fleckenbildungen in den Schichten, die durch den Precursor [ClAl(D)(O'Bu)]₂ <u>5</u>[°] auf Stahl- und Kupfersubstraten entstanden sind. Die zeitabhängigen optischen Unterschiede der Oberflächenstruktur der Schichten, die bei 200°C und einem Prozessdruck von $5.0*10^{-2}$ mbar aufgedampft wurden, sind in den folgenden Abbildungen dargestellt.

Die REM-Aufnahme in der folgenden Abbildung wurde relativ kurz nach der Beschichtung gemacht. Die goldfarbene transparente Schicht wies dabei noch eine glatte Oberfläche auf, bei der optisch keine Rissbildung weder durch Oberflächenreaktionen noch durch innere Schichtspannungen zu beobachten war. Nach EDX-Analyse ergibt sich ein Elementverhältnis Al:Cl = 4:1 in Atom%.

Bei einer 5000-fachen Vergrößerung erkennt man eine homogene Oberfläche mit isolierten halbkugelförmigen Strukturen. Die Schichttopographie ist relativ glatt. Der Schichtaufbau lässt sich dadurch nur schwer erahnen. Durch die 20000-fache Vergrößerung der Schicht (Abb. 4.9) deutet sich durch die Hell-Dunkel-Schattierungen ansatzweise der Schichtaufbau an. Die Schicht ist, wenn auch nur undeutlich zu erkennen, aus mehreren voluminösen Kugeln aufgebaut, die sich zusammen in einer Schichtebene formieren. Durch den helleren Kontrast der isolierten Halbkugel erkennt man, dass sich dieses Gebilde auf der höchsten Schichtebene befindet.

Die so genannten Wachstumskugeln sind in dieser Schicht im Nanometerbereich, die dicht aneinander gewachsen sind. Dies ist vermutlich auf einen niedrigen Prozessdruck bzw. niedrigen Precursorumsatz zurückzuführen. Der Schichtaufbau ist somit kinetisch kontrolliert, wobei große Schichtaggregate entstehen, die wenig Fehlstellen aufweisen [116].

Abb. 4.9: 20000-fache Vergrößerung der Schicht (200°C), Teilstrich (1.4 µm)

Die angegriffene Substratoberfläche (nach 18 Monaten), auf der hauptsächlich vereinzelnde Fleckbildungen auf der gesamten Schicht zu erkennen sind, ist in den folgenden zwei Abbildungen in verschiedenen Vergrößerungen dargestellt. Dabei wurden die Randumgebung des Flecks in einer 8000-fachen Vergrößerung genauer untersucht. Der helle Fleckbereich ist ungefähr $0.5 \times 0.5 \text{ mm groß}$ (Abb. 4.10).

Neben dem hellen Fleck deuten sich auf der dunklen Oberfläche weitere Strukturveränderungen durch weitere Aufhellungen an. Es scheint demnach unterschiedliche Oberflächenbereiche zu geben, die unterschiedlich mit der Luftfeuchtigkeit reagieren, sodass man vermutlich nicht von einem homogenen Schichtmaterial ausgehen kann.

Abb. 4.10: 120-fache Vergrößerung der Schicht (200°C), Teilstrich (210 µm)

Die EDX-Analyse des hellen Bereichs zeigt, dass es sich hierbei um das Kupfersubstrat handelt. Folglich handelt es sich bei den hellen Stellen der Oberfläche nicht um eine Veränderung der chemischen Zusammensetzung des Schichtmaterials, sondern um abgeplatzte und angegriffene Flächen augrund auftretender Oberflächenreaktion. Die sehr geringe Vergrößerung des Flecks soll zeigen, dass die Schichten großflächig von der Luftfeuchtigkeit angegriffen wurden.

Durch die Aufnahme der Kante in einer 8000-fachen Vergrößerung der abgeplatzten Schicht (Abb. 4.11) lässt sich nun das Schichtwachstum besser erkennen. Der dunkle Bereich stellt den intakten Bereich der Schicht dar, unterhalb der Kante befindet sich der abgeplatzte helle Bereich aus der obigen Abbildung. Die Schicht besteht wie vermutet aus mehreren kugelartigen Strukturen, die miteinander verwachsen. Das Abplatzen der Schicht erfolgt hauptsächlich durch plättchenartige Abspaltungen aus der Schichtoberfläche.

Abb. 4.11: Detailaufnahme des Randbereichs – 8000-fache Vergrößerung der Schicht (200°C), Teilstrich (1 μm)

Die EDX-Analyse des dunklen Bereiches, das Schichtmaterial, ergibt ein ungefähres Verhältnis Al:Cl 4:1. Dieses Verhältnis wurde ebenso für das Schichtmaterial gefunden, das kurze Zeit nach der Beschichtung untersucht wurde. Aufgrund der großen abgeplatzten Bereiche kann man davon ausgehen, dass es sich hauptsächlich an der Oberfläche der Schicht befindet, wodurch die Schicht eine hohe Hydrolyseempfindlichkeit aufweist. Ungeklärt bleiben der Wasserstoffanteil im Schichtmaterial und die Frage ob weitere amorphe Aluminiumoxidphasen wie z.B. AlOOH, Al₂O₃, vorhanden sind. Aus dem Röntgendiffraktogramm geht hervor, dass das Schichtmaterial amorph ist.

Zur weiteren Untersuchung der Hydrolyseempfindlichkeit im Hinblick auf die Elementzusammensetzung wurde eine Schicht ausgewählt, die bei 500°C hergestellt wurde. Die Schicht weist nach der langen Aufbewahrungszeit die höchste Oberflächenstrukturveränderung anhand von Rissbildungen auf. An den Rissen erscheint die Schicht winkelabhängig in verschiedenen Farben. In den folgenden Abbildungen (4.12 und 4.13) zeigt sich deutlich, dass die Schicht flächenmäßig größere abgeplatzte Bereiche besonders am Schichtrand besitzt. Die Risse in der Schicht führen zu einzelnen Plättchen, die teilweise noch miteinander verwachsen sind. Durch die Hell-Dunkel-Kontraste erkennt man, dass die Schicht an den Kanten stärker von der Substratoberfläche absteht. Hier lassen sich die abgeplatzten Schichtbereiche nicht nur auf Oberflächenreaktionen zurückführen, sondern auch auf geringere Adhäsionskräfte des Schichtmaterials auf der Kupfersubstratoberfläche.

Abb. 4.12: Randbereich 20-fache Vergrößerung der Schicht (500°C), Teilstrich (1300 μm)

Abb. 4.13: Detailaufnahme des Randbereichs 65-fache Vergrößerung der Schicht (500°C), Teilstrich (100 μm)

Die erhöhte Reaktivität dieser Schicht kann vermutlich mit dem Wasserstoffgehalt im Schichtmaterial zusammenhängen. Diese Abhängigkeit wurde bereits anhand der HAIO-Schichten mittels Kontaktwinkelmessungen aufgezeigt. Je höher der Wasserstoffgehalt, desto hydrophober ist das Schichtmaterial. Durch die Phasenumwandlung unter Luftauschluss bei 400°C in die Kompositschicht aus Al/Al₂O₃ ergeben sich hydrophile Schichteigenschaften ^[22].

Ebenso lässt sich für die neuen Schichten anhand von IR-Reflektionsspektren eine Abnahme der Intensität der Al-D-Schwingungsbande mit zunehmender Temperatur feststellen. Das bedeutet, dass der Wasserstoffgehalt abnimmt. Wie der Wasserstoff aus der Schicht eliminiert wird, wurde nicht näher untersucht.

In der Mitte der Schicht sind ebenfalls, wie in der folgenden Abbildung (4.14) zu sehen ist, viele Rissbildungen durch die Hell-Dunkel-Kontraste zu erkennen. Der Bereich ist in einer 70-fachen Vergrößerung dargestellt. Innerhalb des rot markierten Fensters wurde das Schichtmaterial, mittels EDX analysiert. Dieser Bildausschnitt ist in der Abbildung (4.15) in 1400-facher Vergrößerung hervorgehoben.

Abb. 4.14: REM-Aufnahme aus der Mitte eines beschichteten Stahlsubstrates 70-fache Vergrößerung der Schicht (500°C), Teilstrich (400 μm)

Aufgrund der unterschiedlichen Farben wurden die Bereiche mit den Buchstaben A-D gekennzeichnet. Durch EDX-Analyse soll geklärt werden, ob es sich hier um unterschiedliche Phasen mit unterschiedlichen Wachstumsrichtungen handelt oder nur Folgeerscheinungen von Oberflächenreaktionen sind. In den Bereichen A, C und D sind nur noch Spuren von Chlor (ca.1 Atom%) enthalten, Aluminium liegt durchschnittlich mit 32 Atom% vor. Die weiteren 67 Atom% bildet Sauerstoff. Der Bereich B ist lediglich reines Kupfersubstrat.

Abb. 4.15: Detailaufnahme des rot markierten Bereichs der Abb. 4.13 1400-fache Vergrößerung der Schicht (500°C), Teilstrich (10 μm)

Anhand der quantitativen EDX-Analysen zeigt sich im Temperaturbereich von 200°C-500°C eine nahezu exponentielle Abnahme der Chloranteils mit zunehmender Abscheidetemperatur. Durch weitere EDX-Analysen von diesen chlorhaltigen Schichten, die bei 300°C und 400°C hergestellt wurden, kann diese Tendenz aufgewiesen werden:

	Al:Cl
200°C	4:1
300°C	9:1
400°C	20:1
500°C	32:1

Abb. 4.16: Graphische Auftragung des Verhältnisses Al:Cl gegen die CVD-Abscheidetemperatur

4.4.5 Thermische Behandlung einer chlorhaltigen Schicht durch einen CO₂-Laser

In den vorherigen (4.5.1 - 4.5.4)wurde Kapiteln gezeigt. dass bei der Gasphasenabscheidung des Precursors [ClAl(H)(O^tBu)]₂ 5 bei niedrigen Temperaturen (200-400°C) metastabile Schichten entstehen, die die Elemente Cl-Al-H-O enthalten. Aufgrund der stark hydrophilen Eigenschaften des Schichtmaterials wurde ein LASER-Experiment wenige Tage nach der Gasphasenabscheidung durchgeführt. Die Schicht wurde in der CVD-Anlage 2 (s. Kap. 6.32) auf Si (111) bei 250°C und einem Beschichtungsdruck von 4.3*10⁻² mbar abgeschieden. Zur Erhöhung des Precursorflusses wurde zusätzlich der Ofen, der das gesamte Reaktionsrohr erhitzt, auf 32°C eingestellt. Nach einer Beschichtungzeit von zweieinhalb Stunden entsteht eine goldfarbene transparente Schicht.

Für die thermische Behandlung dieser Schicht wurde ein luftgekühlter CW CO₂-LASER eingesetzt. Die Energie des Lasers wurde über einen Thermofühler gemessen und auf 5 Watt/cm² reguliert. Der Laserstrahl wurde dabei durch einen bikonvexe goldbedampfte ZnSe-Linse der Brennweite f=12 cm fokussiert. Bei der Wellenlänge des Laserstrahls 10.6 μ m erreicht diese Linse eine Transmission bis zu 99.5%. Der fokussierte LASER-Strahl erzeugt eine örtliche Wärmebehandlung auf der Oberfläche. Durch einen motorgesteuerten und computerkontrollierten XY-Scanner kann die Wärmebehandlung auf die gesamte Oberfläche ausgedehnt werden. Dabei wurde die Scannergeschwindigkeit in beide Richtungen X und Y auf 0.2 μ m/cm² eingestellt mit dem Ziel durch eine längere Wärmebehandlung eine Phasenumwandlung oder eine Änderung der Schichtmorphologie hervorzurufen.

4.4.5.1 Untersuchungen mittels REM und EDX

Zur Darstellung der Veränderung der Oberflächenmorphologie infolge der Temperatureinwirkung durch den LASER wurde ebenfalls eine unbehandelte Schicht untersucht, die im selben CVD-Experiment und demzufolge unter gleichen Bedingungen hergestellt wurde. In den folgenden Abbildungen (4.17) und (4.18) sind zwei unterschiedliche Bereiche der unbehandelten Schicht dargestellt. Es ist sehr gut zu erkennen, dass die Schicht eine sehr inhomogene Oberflächenstruktur zeigt. An manchen Stellen im Randbereich entstehen auf der glatten Substratoberfläche Agglomerate durch Oberflächendiffusion einzelner Wachstumskugeln (Ostwald-Reifung). In der Mitte der Schicht lässt sich ein flächendeckendes Schichtwachstum erkennen.

Abb. 4.17: REM-Aufnahme 1 vom Randbereich der Schicht, Teilstrich 0.9 µm.

Abb. 4.18: REM-Aufnahme 2 der Schichtmitte, Teilstrich 1.2 µm

Durch die thermische LASER-Behandlung hat sich die Farbe auf der gesamten Oberfläche von gold transparent nach matt grau verändert. Das zeigt, dass der Laserstrahl aufgrund der geringen Schichtabsorption keine bestimmte wärmebeeinflusste Zone erzeugt, die Oberflächendefekte wie Furchen, Krater oder Schichtablationen aufweist. Stattdessen entsteht durch die LASER-Bestrahlung eine interessante Umwandlung der Schichtmorphologie. Wie in den folgenden Abbildungen (4.19) und (4.20.a) und 4.20.b)) zu sehen ist, bilden sich Kugeln und Stäbchen aus, deren Oberfläche wiederum aus nadelförmigen Nano-/Mikrostrukturen besteht. In bestimmten Bereichen der Schicht entstehen einerseits verschmolzene Wachstumsgebilde (Abb. 4.19), die mit zunehmendem Abstand von der Substratoberfläche noch die richtungsorientierten nadelförmigen Nanostrukturen erkennen lassen. Andererseits sind diese Strukturen an einigen Stellen auf der Schicht wohl erhalten (Abb. 4.20.a und 4.20.b). Nun stellt sich die Frage, wie es zu dieser Veränderung der Oberflächenmorphologie kommt?

Abb. 4.19: REM-Aufnahme einer Schmelzzone, Teilstrich 5 μm.

Abb. 4.20.a): Stäbchen- und nadelförmigen Wachstumsstrukturen, Teilstrich 5 μm

Abb. 4.20.b): Vergrößerung der Abbildung 4.20.a) Teilstrich 1.7 μm

Nach unseren Überlegungen gibt es unterschiedliche Temperaturzonen in der Schicht durch die LASER-Wärmebehandlung. Zum einen kann die Schicht einen Teil der LASER-Energie absorbieren, zum anderen kann aber auch an der Grenzfläche (Substrat-Schicht) die absorbierte Energie in Wärme umgewandelt werden. Dadurch könnte die gesamte Wärmebehandlung aus einer direkten und indirekten Erwärmung zusammengesetzt sein. Außerdem bewirkt die ungleichmäßige Schichtdicke eine unterschiedliche lokale Schichterwärmung durch den Laserstrahl. Aufgrund der folglich stärkeren Wärmeentwicklung in der Substratnähe entstehen dort stäbchenförmige Gebilde, die einen größeren Durchmesser besitzen als die Nadeln. Diese sind weiter von der Substratoberfläche entfernt. Aufgrund der eindeutigen Wachstumsrichtung dieser Nadeln, wird es sich folglich um eine kristalline Phase handeln. Die Kugeln, auf denen diese Gebilde aufwachsen, sind hingegen amorph.

Die EDX-Analyse nach dem Experiment zeigt, dass infolge der Wärmebehandlung der Chloranteil in der Schicht reduziert wurde (Abb. 4.20). Das Verhältnis Al:Cl beträgt nach der Temperprozess 9:1. Nach der Gleichung aus Abbildung (4.6) würde das bedeuten, dass die Schicht durch die LASER-Strahlung nicht höher als 300°C erhitzt wurde.

Abb. 4.21: EDX-Spektren der Schicht - *oben*: vor der LASER-Behandlung - *unten*: nach der LASER-Behandlung

4.4.5.2 Untersuchungen mittels ERAS

Des Weiteren war es von Interesse, ob außerdem eine Wasserstoffeliminierung aus der ternären Schicht der Zusammenstzung Cl-Al-H-O durch das Tempern mit dem LASER erfolgt. Diese Beobachtung wurde in vorherigen LASER-Experimenten bei der Phasenumwandlung der HAIO-Schicht in die Kompositschicht Al/Al₂O₃ gemacht ^[22,27]. Wie zuvor gezeigt, liegt der Wasserstoff in der Schicht, gebunden am Aluminiumatom, in hydridischer Form vor. Zum Vergleich des Wasserstoffgehalts wurde daher eine unbehandelte und die LASER behandelte Schicht mittels IR-Reflektionstechnik unter einem Diese Methode erwies sich Mikroskop vermessen. gegenüber der winkelabhängigen Reflektionstechnik eher geeignet, da die Substrate nur eine Größe von 0.5 cm² hatten wodurch die Fokussierung des IR-Strahls erschwert war. Die Schichten stammen aus demselben Beschichtungsprozess, sodass ebenso gleiche Bedingungen wie Temperatur, Schichtdicke und Substrat erfüllt sind. In Abbildung (4.22) ist das IR-Spektrum der unbehandelten Schicht auf einem Si(111)-Substrat dargestellt. Die Al-H-Valenzschwingung erscheint hier durch den steilen Kurvenverlauf im Spektrum bei 1977 cm⁻¹. Die Schwingungsbande bei 981 cm⁻¹ stellt ein Artefakt dar, das auf das Stressverhalten durch die Verdrehung der Al-O-Al-Winkel zurückzuführen ist, wodurch sich die Lage der Absorptionsbanden ändern. Die Schwingungsbande bei 680 cm⁻¹ liegt im Bereich für oktaedrisch koordiniertes Aluminium [AlO₆]^{9- [136]}, wie z.B. in Al₂O₃. Bei der Schwingungsbande bei 773 cm⁻¹ handelt es sich vermutlich um eine Al-H-Deformationsschwingung, da diese im Spektrum der getemperten Schicht lediglich in einer geringen Intensität erscheint. Durch den steilen Verlauf des Spektrums, kann der Wasserstoffgehalt nicht quantifiziert werden. Nach der LASER-Behandlung weist die Schicht auf der gesamten Oberfläche eine mattgraue Farbe auf. Aufgrund dieser Oberflächenbeschaffenheit resultiert vermutlich im Gegensatz zu der goldfarbenen transparente Schicht ein unterschiedliches Absorptionsspektrum (Abb. 4.23). Wie auch hier zu sehen, weist die Schicht nach der LASER-Behandlung eine starke OH-Schwingungsbande bei 3500 cm⁻¹ auf. Trotz des Temperexperiments zeigt sich eine Al-H-Valenzschwingung, die nach 1966 cm⁻¹ verschoben ist. Das bedeutet, dass durch die LASER-Energie das Substrat und die Schicht nicht über 500°C erhitzt wurden. Dies

zeigen die IR-Reflektionsspektren der analogen Schichten in Abbildung (4.6), die bis zu 400°C Al-D-Schwingungsbanden aufweisen. Im Vergleich zum Spektrum der thermisch unbehandelten Schicht erscheint die charakteristische Al-O-Schwingungsbande der getemperten Schicht bei 995 cm⁻¹. Die Al-H-Deformationsschwingungsbande bei 750 cm⁻¹ tritt in einer viel geringeren Intensität auf, wenn man sie mit der Schwingungsbande bei 780 cm⁻¹ der unbehandelten Schicht vergleicht. Ein weiterer Vergleich der Al-H-Valenzschwingung bei 1966 cm⁻¹ aus dem Spektrum (Abb. 4.7) einer analogen Schicht, die bei 250°C auf Stahl abgeschieden wurde, zeigt, dass durch die Wärmebehandlung der Schicht, eine Intensitätsabnahme der Al-H-Schwingung zu verzeichnen ist. Diese Hinweise deuten daraufhin, dass durch den Temperprozess neben Chlor auch Wasserstoff aus der Schicht eliminiert wird. Wie die Liganden aus der Schicht freigesetzt werden, müsste in einem weiteren Temperprozess geklärt werden, in dem die Pyrolysegase massenspektroskopisch detektiert werden könnten.

Abb. 4.22: ERAS-Spektrum der thermisch unbehandelten Schicht auf Si(111)

Abb. 4.23: ERAS-Spektrum getemperten Schicht auf Si(111)

4.4.5.3 Untersuchungen mittels TEM (Transmissionelektronenmikroskopie)

Ergänzend wurde eine Untersuchung der Kristallinität der Mikro- und Nanostrukturen durchgeführt, die durch die Wärmebehandlung mittels CO₂-Laser aus der hydridischen Alumininiumoxochloridschicht entstanden sind. Für die Probenvorbereitung wurde das Schichtmaterial mechanisch abgetragen.

Die Stäbchen besitzen ungefähr eine Dicke von 0.1-0.2 µm. Die Aufnahmen solcher verzweigten und einzelnen Wachstumsstrukturen (Abb. 4.24.a)-d)) zeigen, dass die Stäbchen aus einem kristallinen Kern aufgebaut sind, der von einer Hülle umgeben ist. Das Wachstum des Kerns ist wie weitere Aufnahmen zeigen von amorphen Bereichen unterbrochen. Der Aufbau dieser Strukturen lässt sich so gut mit dem Wachstum der Nanowires von Al/Al₂O₃ vergleichen. Diese Nanowires bestehen aus einem kristallinen Aluminiumkern, der von einer amorphen γ -Al₂O₃-Hülle umgeben ist. Die Charakterisierung wurde in der Dissertation von C. Petersen beschrieben ^[28]. Weitere Untersuchungen zu diesem Wachstumsprozess des Kompositmaterials Al/Al₂O₃ werden in der Dissertation von E. Sow beschrieben ^[135].

Abb. 4.24.a) -d): TEM-Aufnahmen der stäbchenförmigen Wachstumsstrukturen, die durch die thermische Wärmebehandlung einer chlorhaltigen Aluminiumoxidschicht durch einen CO₂-Laser entstanden sind. *Oben* - Aufnahme B: Vergrößerung eines Ausschnitts aus Aufnahme A, *Unten* - Aufnahme D: Vergrößerung eines Ausschnitts aus Aufnahme C

Zur Untersuchung der Kristallinität der Stäbchen aus den Aufnahmen der Abbildung (4.2.4) wurde ein Elektronenbeugungsdiffraktogramm aufgenommen. Anhand dessen wurde für die kristalline Phase die Raumgruppe P2₁nm bestimmt (s. Abb. 4.25). Da es sich hier um ein orthorhombisches Kristallsystem handelt, kann davon ausgegangen werden, dass es sich hierbei nicht um kristallines Aluminium handelt, dieses kristallisiert kubisch flächenzentriert.

Abb. 4.25: Elektronendiffraktogramm dieser Wachstumsstrukturen aus Abb. 4.24

Wie anhand der infrarot-spektroskopischen Untersuchung im vorherigen Unterkapitel (4.4.5.2) festgestellt wurde, wurde das Schichtmaterial während der LASER-Behandlung

nicht höher als 400°C erhitzt (vgl. Kap. 4.4.3). Aufgrund dieser Erkenntnisse lässt sich vermuten, dass es sich möglicherweise um eine AlOOH-Modifikation handelt, die in diesem Temperaturbereich im orthorhombischem Kristallsystem auskristallisiert. Zwar werden diese Phasen unter Hochdruck bei höheren Temperaturen aus Al(OH)₃ hergestellt ^[1,136], dennoch lässt sich nicht ausschließen, dass es sich hier um hydrolysiertes AlOCl handelt, das infolge der Temperatureinwirkung eine höhere Ordnung erfahren hat und morphologisch verändert wurde.

5 ZUSAMMENFASSUNG UND AUSBLICK

Im ersten Teil dieser Arbeit (Kap. 3) wurde die Reaktion von $[H_2Al(O^tBu)]_2 \mathbf{1}$ mit den Bleihalogeniden PbCl₂, PbBr₂ und PbI₂ in den stöchiometrischen Verhältnissen 1:1 und 1:2 untersucht. Bei diesen Reaktionen findet eine Halogenligandenübertragung an das Aluminiumatom statt, während die hydridischen Wasserstoffatome oxidiert und das Blei zu elementarem Blei reduziert werden. Es zeigt sich, dass diese Metathesereaktion Grenzen besitzt, die durch das geringe elektrochemische Potential des unedlen Bleis und/oder die freiwerdende Energie hervorgerufen werden, die durch die Ausbildung der Aluminium-Halogenbindung freigesetzt wird. So zeigt sich, dass durch die unterschiedlichen stöchiometrischen Umsetzungen des dimeren Alans $\underline{1}$ mit PbCl₂ und PbBr₂ die dimeren Verbindungen Bis[*tert*.-butoxyaluminiumchloridhydrid] $[ClAl(H)(O'Bu)]_2$ <u>5</u> und Bis[*tert*.-butoxyaluminiumdichlorid] $[Cl_2Al(O'Bu)]_2$ <u>2</u> sowie Bis[*tert*.-butoxyaluminiumbromidhydrid] $[BrAl(H)(O^{t}Bu)]_{2}$ 6 und Bis[*tert*.butoxyaluminiumdibromid] $[Br_2Al(O^tBu)]_2$ <u>3</u> als Kristallstrukturen erhalten werden konnten. Die Substitution eines Iodliganden gelang lediglich durch einen hohen Überschuss an PbI₂, wobei die dimere Verbindung Bis[tert.-butoxyaluminiumhydridiodid] [IAl(H)(O'Bu)]₂ <u>7</u> als Kristallstruktur erhalten werden konnte. Es gelang jedoch, Bis[tert.butoxyaluminiumdiiodid] $[I_2Al(O'Bu)]_2 \underline{4}$ über eine Alkoholysereaktion aus HAll₂*OEt₂ und tert.-Butanol herzustellen und als Kristallstruktur zu sichern.

Sterische Gründe der Metathesereaktion mit PbI₂ konnten in Anlehnung an vorherige veröffentlichte analoge Reaktionen ^[44,45] durch weitere Experimente ausgeschlossen werden. Die Metathesereaktion mit PbI₂ und Bis[*di*-ethylaminoaluminiumdihydrid] [H₂Al(NEt₂)]₂ <u>11</u> resultiert ebenso in der einfach substituierten Verbindung Bis[*di*-ethylaminoaluminium-hydridiodid] [HAl(I)(NEt₂)]₂ <u>12</u>.

Aufgrund der strukturellen Ähnlichkeit der Verbindungen <u>1-7</u> konnte NMRspektroskopisch ein Trend für die chemischen Verschiebungen der halogenhaltigen Aluminiumalkoxide in Abhängigkeit der Liganden gezeigt werden. Für die halogenhaltigen Alane <u>5-7</u> konnte IR-spektroskopisch die Auswirkung der Halogenliganden am Aluminium auf die Al-H-Bindungslänge und der damit verbundenen Al-H-Schwingungsfrequenz in Bezug auf das Alan <u>1</u> aufgewiesen werden. In Lösung liegen die prochiralen Verbindungen <u>5</u>, <u>6</u> und <u>7</u> als *cis*- und *trans*-Isomere vor. Allerdings zeigt sich, dass die Anzahl der Resonanzsignale aus den ¹H-, ¹³C- und ²⁷Al-Spektren der Verbindungen nicht mit den theoretischen Erwatungen für die Stereoisomere übereinstimmt. Nach diesen Angaben liegen auch die Dihalogenidverbindungen <u>2-4</u> neben den dazugehörigen Monohalogenidaluminiumalkoxiden <u>5-7</u> vor, und zwar infolge einer nichtselektiven heterogenen Synthesereaktion. Zur genaueren Untersuchung wurden diese Verbindungen durch weitere Syntheserouten, wie Alkoholyse und Dismutation, hergestellt. Da die NMR-Spektren dieser Produkte jedoch ebenfalls dieselbe Anzahl an Resonanzsignalen zeigen, müssen zwischen den Molekülen Wechselwirkungen in Lösung vorliegen. Diese Beobachtungen wurden ebenfalls für die prochirale Verbindung Bis[*tert.*-butoxyaluminiummethylchlorid] [ClAl(Me)(O'Bu)]₂ <u>8</u> gemacht, die durch Alkohoyse dargestellt wurde.

Durch die weitere selektive Reaktion von $PbCl_2$ und Bis[di-tert.-butoxyaluminiummonohydrid] $[HAl(O'Bu)_2]_2$ **9** konnte gezeigt werden, dass bei einer eindeutigen Produktbildung Bis[*di-tert*.-butoxyaluminiummonochlorid] von [ClAl(O^tBu)₂]₂ <u>10</u> die zusätzlichen Resonanzsignale im NMR durch Wechselwirkungen in Lösung verursacht werden. Dies deutet darauf hin, dass in Lösung mehrere Stellungsisomere der Verbindung **10** enthalten sind. Mittels ¹³C-MAS-NMR-Analyse konnte aufgrund des größeren Abstands zwischen den Resonanzsignalen der quartären Kohlenstoffatome der tert.-Butylgruppe, gezeigt werden, dass im Feststoff beide Stereoisomere (cis und trans) vorliegen. Es gelang bisher jedoch nicht, einen Kristall zu isolieren, in dem das cis-Isomer vertreten ist. Von den prochiralen Verbindungen 5-10 wurden ausschließlich die *trans*-Isomere in den Kristallstrukturen gefunden.

Durch computerchemische Berechnungen mittels B3LYP/def2-TZVP, MP2/def2-TZVPP und BP86/def-SV(P) konnte für die Verbindungen <u>5-7</u> gezeigt werden, dass der energetische Unterschied zwischen den Stereoisomeren der jeweiligen Verbindungen kleiner als 1 kcal/mol ist. Dies bedeutet, dass beide Isomere nahezu die gleiche thermodynamische Stabilität besitzen. Für die Übergangszustände zwischen *cis-* und *trans-*Isomer der Verbindung [ClAl(H)(O^tBu)]₂ <u>5</u> wurden weitere Berechnungen durchgeführt. Dabei zeigte sich, dass die konformative Umwandlung über eine Rotation um die Al-O-Bindung gegenüber einem bimolekularen ionischen Austausch in Toluol begünstigt ist. Die freie Aktivierungsenthalpie zwischen den Isomeren beträgt demnach 30 kcal/mol. Für die Verbindungen $[ClAl(H)(O'Bu)]_2 5$ und $[ClAl(Me)(O'Bu)]_2 8$ könnten die Signalüberlagerungen im VT-¹H-NMR bei einer Konzentration von 0.7 M auf einen intermolekularen Austauschprozess zwischen den beiden Isomeren hinweisen. Aufgrund der größeren Differenz der Resonanzsignale der Isomere der Verbindungen <u>6</u> und <u>7</u> konnten die Koaleszenzpunkte im Temperaturbereich bis 353 K nicht erreicht werden.

Die halogenhaltigen Alane <u>5-7</u> stellen aufgrund der geringeren Reaktivität der Hydride im Gegensatz zur Dihydridverbindung <u>1</u> selektive Reduktionsmittel dar, die daraufhin untersucht werden könnten.

Die Vorstufen dieser Alkoxide {H₂AlX} mit X=Cl, Br und I, die für die Alkoholysereaktionen hergestellt wurden, wurden lediglich als Etheradukte H₂AlX*OEt₂ *in situ* hergestellt und nicht weiter untersucht. In der Literatur sind nur wenig strukturell charakterisierte Adukte solcher gemischten Alane zu finden. Bei ergänzend zur vorliegenden Arbeit durchgeführten Untersuchungen wurden daher gemischte Alanadukte mit Stickstoffbasen näher analysiert und röntgenographisch charakterisiert. Die Untersuchungen wurden im Rahmen einer Diplomarbeit im Arbeitkreis von Prof. Dr. M. Veith durchgeführt^[139].

Aufgrund der hydridischen Wasserstoffatome bieten sich ebenfalls Reaktionen mit stark protischen Verbindungen an. So könnte z.B. durch die Reaktion mit dem in der Einleitung beschriebenen Alumopolysiloxan eine Einlagerung des Aluminiumatoms über chemische Bindungen mit den Sauerstoffatomen erfolgen. Durch das am Aluminium gebundene Halogenatom könnten sich interessante Folgereaktionen infolge der Strukturgegebenheit des Alumopolysiloxans ergeben.

Im zweiten Teil der Arbeit (Kap. 4) wurde die Verbindung $[ClAl(H)(O'Bu)]_2 5$ im LP-CVD-Prozess untersucht mit dem Ziel, Aluminiumoxidschichten mit funktionellen Gruppen herzustellen, die eventuell durch Oberflächenmodifizierungen in Form von Molekülanbindungen für mögliche Katalysereaktionen dienen könnten. In diesem Fall würden Chlorliganden und/ oder Hydroxygruppen durch Hydrolyse als funktionelle Gruppen zur Verfügung stehen. Durch eine direkte Molekülanbindung an das Schichtmaterial wäre eine Nachbehandlung der Schicht nicht erforderlich und die dadurch resultierende chemische Bindung zwischen den Molekülen und der Schichtoberfläche könnte einfacher detektiert werden.

Zur Aufklärung des Zersetzungsmechanismus des Precursors auf der Substratoberfläche mittels Massenspektroskopie wurde die deuterierte Verbindung [ClAl(D)(O'Bu)]₂ <u>5</u> eingesetzt. Es konnte gezeigt werden, dass die Zersetzung der Verbindung analog der Dihydridverbindung 1 bzw. 1` über eine intramolekulare Kaskadenreaktion erfolgt. Überraschenderweise stellte sich heraus, dass bei der Zersetzungsreaktion neben iso-Buten, HD und HCl auch tert.-Butanol als Pyrolysegas abgespalten wird. Die Eliminierung von tert.-Butanol resultiert in einer Veränderung des 1:1 Verhältnisses von Aluminium zu Sauerstoff. Bei dem Schichtmaterial scheint es sich dennoch um eine Phase zu handeln. Durch IR-Spektroskopie konnte gezeigt werden, dass sowohl die Deuteriumbzw. Wasserstoffliganden als auch die Chlorliganden am Aluminium gebunden sind. Aufgrund der starken Hydrophilie dieser chlorhaltigen Schichten lässt sich das stöchiometrische Verhältnis der Elemente Cl-Al-D-O, das von der Temperatur beeinflusst wird, nicht exakt angegeben. Eine Angabe kann nach EDX-Analyse lediglich über das Verhältnis Aluminium zu Chlor gemacht werden. Dieses Verhältnis ändert sich von 4:1 bei einer Abscheidetemperatur von 200°C auf 32:1 bei einer Abscheidetemperatur von 500°C. Durch Langzeituntersuchungen mittels EDX und REM wurde der Zersetzungsvorgang bei Kontakt mit der Atmosphäre an der Schichtoberfläche verfolgt. Die Schichten wiesen starke Ablationen auf, wodurch nähere Erkenntnisse über den Schichtaufbau gewonnen werden konnten.

In einem Temperexperiment durch einen CO₂-Laser konnten auf einer Schicht, die kurz zuvor auf einem Si(111)-Substrat bei 250°C abgeschieden wurde, nadelförmige Nano- und Mikrostrukturen erzeugt werden. Diese Strukturen weisen aufgrund ihres richtungsorientierten Wachstums eine hohe Kristallinität auf. Mittels IR- und EDX-Analyse wurde gezeigt, dass durch das Tempern Wasserstoff und Chlor aus der Schicht freigesetzt wurde. Die Weiterführung dieses Experimentes z.B. durch Veränderung der Abscheidungsparameter könnte ein interessanter Forschungsaspekt für weitere Arbeiten sein, mit dem Ziel, den Wachstumsprozess besser verstehen zu können.

Weitere Forschungsschwerpunkte könnten einerseits die Anwendung der in vorliegender Arbeit vorgestellten halogenhaltigen Alkoxyalane als Synthesebaustein in Hydrierungssowie Protolysereaktionen sein. Andererseits bietet sich die Möglichkeit, die temperaturstabilen Verbindungen, die in sehr guter Ausbeute hergestellt werden konnten, im CVD-Prozess zu untersuchen. In vorliegender Arbeit ist es gelungen zu zeigen, dass durch den Austausch eines einzigen Liganden - $[ClAl(H)(O'Bu)]_2 \leq \leftrightarrow [HAl(H)(O'Bu)]_2$ <u>1</u>- Veränderungen im Abspaltungsmuster entstehen, aus denen wiederum veränderte Schichteigenschaften resultieren. Weiterführende Untersuchungen des Einflusses des Liganden stellen somit interessante Forschungsbereiche für den CVD-Prozess dar.

6 EXPERIMENTELLER TEIL

6.1 Allgemeine Arbeitstechniken (Teil 1: Synthese)

Aufgrund der Hydrolyseempfindlichkeit einiger Ausgangssubstanzen als auch der dargestellten Verbindung fanden die Versuchsdurchführungen ausschließlich an einer modifizierten Stockschen Vakuumapparatur statt. Als Schutzgas wurde Stickstoff verwendet, der über Sicapent[™] und CaCl₂ getrocknet wurde. Zur Erzeugung des Vakuums diente eine Drehschieberpumpe der Fa. Vacuumbrand Typ RD4 mit einem Saugvermögen von 4.3 m³/h.

Die verwendeten Lösungsmittel wurden nach den üblichen Standardverfahren getrocknet ^[140], unter Stickstoffatmosphäre destilliert und über Na-Draht gelagert. Die verwendeten Alkohole und Amine wurden über Molekularsieb gelagert.

Die Spektren wurden mit folgenden Geräten aufgenommen (in Klammern sind die allgemeingültigen Aufnahmebedingungen angegeben):

Reflektions-IR-Spektren:

- BRUKER, Typ RFS 100 mit einer Reflexionseinheit (50°)
- VARIAN, Typ FT-IR 2000 mit einer Reflexionseinheit (50°)
- VARIAN, Typ FT-IR 2000 gekoppelt mit einem Mikroskop BIO-RAD UMA 250, Kamera PIEPER FK6858 D-C

IR-Molekülspektren:

• VARIAN, Typ FT-IR 2000

NMR-Spektren:

- ¹H-Flüssigkeits-NMR-Spektren: AC 200 F der Fa. Bruker (200.13 MHz)
- ¹³C-Flüssigkeits-NMR-Spektren: AC 200 F der Fa. Bruker (50.3 MHz)
- ¹³C-MAS-NMR-Spektren: MSL 200S der Fa. Bruker (50.3 MHz)

- ²⁷Al-Flüssigkeits-NMR-Spektren: AC 200 P Spektrometer der Fa. Bruker (52.1 MHz)
- VT-¹H-NMR-Spektren: AC 200 P Spektrometer sowie Avance 400 der Fa. Bruker

Die Angabe der Resonanzen der betrachteten Kerne erfolgt nach der δ -Skala in ppm. Zur Fixierung des Nullpunkts der δ -Skala wurde TMS verwendet und die chemische Verschiebung gegenüber den Referenzlösungen D₆-Benzol mit 7.15 ppm für ¹H-Spektren, 128.0 ppm für ¹³C-Spektren und Toluol-D₈ mit 2.12 ppm für ¹H-Spektren. Die Unterscheidung der Signale der Kohlenstoffatome wird durch ¹³C-DEPT-NMR Spektren gestützt. Die Referenzierung der ²⁷Al-Spektren erfolgte über einen externen Standard (AlCl₃ in H₂O). Die aus den Spektren ermittelten Halbwertsbreiten w_{V_2} sind in Hz angegeben.

Die qualitativen und quantitativen Elementanalysen wurden von Frau Helga Feuerhake (Anorgansiche Chemie/ Universität des Saarlandes) durchgeführt. Die C,H,N-Werte wurden mittels Verbrennungsanalyser auf einem vollautomatischen Analysegerät CHN-900 Elemental Analysator der Fa. *Leco Corporation* ermittelt. Sowohl die Bestimmung des Al-gehalts als auch die Bestimmung des Halogengehalts der Proben erfolgte nach komplexometrischen und titrimetrischen Verfahren^[141,142].

Die Aufnahme von Schichtdiffraktogrammen erfolgte auf einem Diffraktometer des Typs STADIP der Fa. *Stoe* (Darmstadt) mit einem linearen PDS Detektor unter Verwendung einer monochromatischen CoK α -Strahlungsquelle ($\lambda = 1.78896$ Å).

Für die Röntgenstrukturanalyse wurden Kristalle mit einem Spatel auf ein Aluminiumblech übertragen, das sich im Stickstoffkaltgasstrom einer in der Literatur^[143] beschriebenen Apparatur befindet. Unter dem Mikroskop wurden geeignete Einkristalle ausgewählt, mit Siliconfett auf einem Glasfaden befestigt und ohne Unterbrechung der Kühlung in den Kaltgasstrom des Diffraktometers überführt. Die Daten für die Einkristallröntgenstrukturanalyse wurden auf einem *Stoe* IPDS Image Plate Diffractometer mit einer MoK_{α}-Strahlungsquelle (λ =0.71073 Å) gewonnen. Zur Bestimmung der Raumgruppe diente das Programm SHELXS-86, -97^[144] und zur Verfeinerung der Atomlage das Programm SHELXL-93, -97^[145]. Die Röntgenstrukturanalysen, die die Auswahl geeigneter Kristalle, Vermessung und die Berechnungen umfasst, wurden von Herrn Dr. Volker Huch (Anorgansiche Chemie/Universität des Saarlandes) durchgeführt. Grafisch dargestellt wurden die berechneten Strukturen mit Hilfe der Software Diamond 3 in der Version 3.1d^[146].

Gekaufte Ausgangssubstanzen:

AlBr ₃ wasserfrei, Pulver, 99.999%	Aldrich
AlCl ₃ Hydrat, 99.999%	Aldrich
All ₃ wasserfrei, Pulver, 99.999%	Aldrich
PbBr ₂ 99.999%	Aldrich
PbCl ₂ Pulver, 98%	Aldrich
PbI ₂ 99.999%	Aldrich
(Me) ₂ AlCl (0.9M in Hexan)	Aldrich
LiAlH ₄ Reinheitsgrad, 95%, Pulver	Aldrich
LiAlD ₄ Reinheitsgrad, 95%, 98% D, Pulver	Aldrich

6.2 Versuchsbeschreibungen und Charakterisierungen

6.2.1 Darstellung von $[H_2Al(O^tBu)]_2 \underline{1}, [D_2Al(O^tBu)]_2 \underline{1}$ und $[HAl(O^tBu)_2]_2 \underline{9}$

Die für die Reduktion der Bleihalogenide verwendeten Ausgangsverbindungen Bis-*tert*butoxyaluminiumdihydrid $[H_2Al(O^tBu)]_2 \mathbf{1}$, $[D_2Al(O^tBu)]_2 \mathbf{1}$ und Bis[*di-tert*.butoxyaluminiummonohydrid $[HAl(O^tBu)_2]_2 \mathbf{9}$ wurden nach bekannter Vorschrift synthetisiert ^[16-18, 93]. Zur Darstellung von $[D_2Al(O^tBu)]_2 \mathbf{1}$ wurde statt LiAlH₄ LiAlD₄ verwendet.

Charakterisierung:

Löslichkeit: in allen gängigen organischen Lösungsmitteln Elementaranalysen: (s. S. Faber und H. Wolfanger, Dissertationen)^[18, 93]

<u>NMR</u>:

- ¹H-NMR(C₆H₆/C₆D₆): $\underline{1} \delta$ [ppm] (s, breit, -AlH₂) 4.05, (s, 18H, -C(CH₃)₃) 1.215 / $\underline{1}^{\cdot} \delta$ [ppm] (s, 18H, -C(CH₃)₃) 1.215 / $\underline{2} \delta$ [ppm] (s, 18H, -C(CH₃)₃, 55%) 1.376, (s, 18H, -C(CH₃)₃, 45%) 1.378, (s, 18H, -C(CH₃)₃, 55%) 1.414, (s, 18H, -C(CH₃)₃, 45%) 1.420
- ¹³C-NMR(C₆H₆/C₆D₆): <u>1</u> und <u>1</u>` δ [ppm] (-C(CH₃)₃) 30.36, (-C(CH₃)₃) 76.43 / <u>9</u> δ [ppm] (breit, -CH₃) 31.58, (-C(CH₃)₃) 34.02, (-C(CH₃)₃) 34.09, (-C(CH₃)₃) 69.43, (-C(CH₃)₃) 69.57, (-C(CH₃)₃) 76.43, (-C(CH₃)₃) 76.48

²⁷Al-NMR (C₆H₆/C₆D₆): <u>1</u> und <u>1</u> - δ [ppm] 124.7 / <u>9</u> - δ [ppm] 80.15

 \underline{IR} : ATR (Feststoff): [cm⁻¹]

- <u>1</u> 2970, 2931, 2868, (Al-H) 1837, 1461, 1395, 1371, 1258, 1247, 1170, 1035, 916, 897, 773, 705, 663, 590, 566, 552, 542, 526, 511
- <u>1</u>'- 2970, 2928, 2868, 1473, 1463, 1395, 1371, (Al-D) 1337, 1257, 1243, 1215, 1172, 1053, 1035, 902, 772, 680, 568, 557, 539, 526, 509
- <u>9</u> 2965, 2929, 2869, (Al-H) 1853, 1457, 1371, 1357, 1210, 1176, 1050, 903, 801, 775, 690, 666, 623, 551, 481, 423
6.2.2 Darstellung von [Cl₂Al(O^tBu)]₂ <u>2</u> über Metathese und Redoxreaktion

$$2 \operatorname{PbCl}_2 + [\operatorname{H}_2\operatorname{Al}(\operatorname{O}^t\operatorname{Bu})]_2 \xrightarrow{n-\operatorname{Hex}} [\operatorname{Cl}_2\operatorname{Al}(\operatorname{O}^t\operatorname{Bu})]_2 + 2 \operatorname{Pb} + 2 \operatorname{H}_2$$

Die Umsetzung von $[H_2Al(O'Bu)]_2$ <u>1</u> mit 2äq Blei(II)chlorid PbCl₂ wird bei Raumtemperatur in *n*-Hexan durchgeführt. Dazu wird in einem Zweihalskolben und Tropftrichter eine Suspension aus 6.983 g (25 mmol) Bleichlorid in 40 ml *n*-Hexan vorgelegt und gerührt. Der Kolben wird in einem Eisbad gekühlt, bevor man langsam eine Lösung aus 2.242 g (11 mmol) $[H_2Al(O'Bu)]_2$ <u>1</u> in 25 ml *n*-Hexan langsam hinzutropft. Dabei setzt sofort eine starke Wasserstoffentwicklung und Schwarzfärbung der Pb-Partikel ein. Sobald die Wasserstoffentwicklung nachgelassen hat, wird die Lösung eine weitere halbe Stunde unter Eiskühlung nachgerührt und anschließend drei weitere Stunden bei Raumtemperatur nachgerührt. Die elementaren Pb-Partikel können über eine D4-Fritte abfiltriert werden. Beim Abdestillieren des Lösungsmittels fällt ein farbloser kristalliner Feststoff aus.

Ausbeute 3.392 g (9.9 mmol) (90% d. Th.)

Eine Sublimation bei 70 °C/ 10^{-2} mbar führt zu einem 30%-igen Ausbeuteverlust. Zurück bleibt ein unlöslicher brauner Feststoff.

Charakterisierung:

Löslichkeit: in allen gängigen organischen Lösungsmitteln

Molmasse: errechnet 342.005 g/mol

Elementanalysen: $(Al_2O_2C_8H_{18}Cl_4)$

	С	Н	Ν	Al^{3+}	Cl
berechnet	28.09	5.31	1	15.78	41.46
gefunden	26.11	5.11	I	16.31	41.84

7%- Kohlenstoffverlust durch Al₄C₃-Bildung.

¹H-NMR(C₆H₆/C₆D₆): δ [ppm] = 1.235 (s, 18H, -C(CH₃)₃) ¹³C-NMR(C₆H₆/C₆D₆): δ [ppm] = (-C(CH₃)₃) 30.751, (-C(CH₃)₃) 84.337 ²⁷Al-NMR (C₆H₆/C₆D₆): δ [ppm] = 90.1 ($w_{\frac{1}{2}}$ = 260 Hz)

<u>*IR*</u>: ATR (Feststoff): [cm⁻¹] 2971, 2935, 2875, 1470, 1402, 1378, 1252, 1158, 1037, 988, 921, 854, 772, 669, 560, 521

6.2.3 Darstellung von [Br₂Al(O^tBu)]₂ <u>3</u> über Metathese und Redoxreaktion

 $2 \operatorname{PbBr}_2 + [\operatorname{H}_2\operatorname{Al}(\operatorname{O}^t\operatorname{Bu})]_2 \xrightarrow[\mathrm{RT}]{n-\operatorname{Hex}} [\operatorname{Br}_2\operatorname{Al}(\mu-\operatorname{O}^t\operatorname{Bu})]_2 + 2 \operatorname{Pb} + 2 \operatorname{H}_2$

Die Durchführung der Synthese erfolgt analog zur Darstellung von $[Cl_2Al(O'Bu)]_2$ <u>2</u> (Abschnitt 6.2.2) mit 17.388 g (47.4 mmol) PbBr₂ in 70 ml *n*-Hexan und 4.838 g (23.7 mmol) $[H_2Al(O'Bu)]_2$ <u>1</u> in 25 ml *n*-Hexan. Die Reaktionslösung wird 2 Stunden gerührt. Aus der Lösung kristallisiert ein farbloser Feststoff aus.

Ausbeute: 9.61 g (18.5 mmol) (78% d. Th.)

Eine Sublimation bei 90 °C/ 10^{-2} mbar führt zu einem 20%-igen Ausbeuteverlust. Zurück bleibt ein unlöslicher brauner Feststoff.

Charakterisierung:

Löslichkeit: in allen gängigen organischen Lösungsmitteln Molmasse: errechnet 519.809 g/mol Elementanalysen: (Al₂O₂C₈H₁₈Br₄)

	С	Н	Ν	Al^{3+}	Br
berechnet	18.49	3.49	1	10.38	61.49
gefunden	16.66	3.50	-	10.38	61.10

<u>NMR:</u>

¹H-NMR(C₆H₆/C₆D₆): δ [ppm] = 1.321 (s, 18H, -C(CH₃)₃) ¹³C-NMR(C₆H₆/C₆D₆): δ [ppm] = (-C(CH₃)₃) 31.373, (-C(CH₃)₃) 85.876 ²⁷Al-NMR (C₆H₆/C₆D₆): δ [ppm] = 86.5 ($w_{\frac{1}{2}}$ =260 Hz)

<u>*IR*</u>: ATR (Feststoff): [cm⁻¹] 2976, 2937, 2875, 1474, 1400, 1374, 1259, 1167, 1076, 1038, 874, 773, 691, 586, 554, 529, 511, 497, 474, 446, 423, 419

6.2.4 Darstellung von [I₂Al(O^tBu)]₂ <u>4</u> über Salzeliminierung und Alkoholyse

$$LiAlH_{4} + 3 AlI_{3} \xrightarrow{OEt_{2}} 4 HAlI_{2}*OEt_{2} + LiI$$

$$4 HAlI_{2}*OEt_{2} + LiI \xrightarrow{+4 tBuOH} 2 [I_{2}Al(O^{t}Bu)]_{2} + 1/4 [LiI*NEt_{3}]_{4}$$

Zu einer Suspension aus 0.105 g (2.65 mmol) LiAlH₄ in 10 ml Diethylether wird eine orangefarbene Lösung aus 3.5 g (7.95 mmol) AlI₃ in 50 ml Diethylether langsam hinzugetropft. Das AlI₃ wird vor der Zugabe des Ethers mit flüssigem Stickstoff auf - 78 °C abgekühlt. Die klare farblose Lösung wird zehn Minuten bei Raumtemperatur

nachgerührt. Anschließend kühlt man die Lösung in einem Eisbad, bevor über einen Tropftrichter tropfenweise eine Lösung aus 1.02 ml (10.6 mmol) *tert.*-Butanol in 10 ml Diethylether zugegeben wird. Durch die Eiskühlung wirkt sich die stark exotherme Reaktion geringfügig aus, die H₂-Gasentwicklung ist kaum zu beobachten. Nach vollständiger Zugabe wird die Lösung eine weitere halbe Stunde unter Eiskühlung nachgerührt und anschließend eine weitere Stunde bei Raumtemperatur. Man engt die Lösung auf ca. ein Drittel des Volumens ein, bevor 100 ml Toluol zugegeben werden. Dabei fällt ein feiner farbloser Niederschlag aus. Zur besseren Fällung des LiI wird zusätzlich 0.50 ml NEt₃ ($\phi = 0.73$ g/ml) (0.36 mmol) zugegeben, wodurch das LiI als Aminadukt ausfällt [LiI*NEt₃]₄. Vor dem Abfiltrieren über einer D4-Fritte, wird die Lösung bis auf die Hälfte des Volumens eingeengt. Das LiI-Aminadukt fällt besonders gut in der Kälte! Die klare Lösung wird weitestgehend im Vakuum eingeengt. Bei -30 °C gehen farblose Kristalle aus der Lösung hervor.

Ausbeute: 2.960 g (4.2 mmol) (82% d. Th.)

Charakterisierung:

Löslichkeit: in allen gängigen organischen Lösungsmitteln

Schmelzpunkt: -5°C

Molmasse: errechnet 707.793 g/mol

Elementanalysen: (Al₂O₂C₈H₁₈I₄)

Aufgrund des koordinierenden Toluolmoleküls im Kristall konnte keine genaue Masse für eine Elementaranalyse eingewogen werden.

<u>NMR:</u>

¹H-NMR(C₆H₆/C₆D₆): δ [ppm] = 1.452 (s, 18H, -C(CH₃)₃) ¹³C-NMR(C₆H₆/C₆D₆): δ [ppm] = (-C(CH₃)₃) 32.34, (-C(CH₃)₃) 87.75 ²⁷Al-NMR (C₆H₆/C₆D₆):δ [ppm] = 54.5 ($w_{\frac{1}{2}}$ = 330 Hz)

6.2.5 Darstellung und Charakterisierung von [ClAl(H)(O^tBu)]₂ <u>5</u> und [ClAl(D)(O^tBu)]₂ <u>5</u>`

6.2.5.1 Darstellung und Charakterisierung von $[ClAl(H)(O'Bu)]_2 5$ über Salzeliminierung und Alkoholyse

 $LiAlH_{4} + AlCl_{3} \xrightarrow{OEt_{2}} 2 H_{2}AlCl^{*}OEt_{2} + LiCl$ $2 H_{2}AlCl^{*}OEt_{2} + 2 {}^{t}BuOH \longrightarrow [ClAl(H)(O^{t}Bu)]_{2} + 2 H_{2}$

Zu einer Suspension aus 1.105 g (29.1 mmol) LiAlH₄ in 20 ml Diethylether wird eine Lösung aus 3.882 g (29.1 mmol) AlCl₃ in 40 ml Diethylether getropft. Das AlCl₃ muss vor der Zugabe des Ethers mit flüssigem N₂ abgekühlt werden. Die Reaktionslösung wird zwei weitere Minuten nachgerührt, bevor eine Lösung aus 5.6 ml (58.2 mmol) *tert.*-Butanol in 5 ml Diethylether tropfenweise zugesetzt wird. Während des langsamen Zutropfens wird die Lösung mittels eines Eisbads abgekühlt. Trotzdem tritt augenblicklich eine starke Gasentwicklung ein. Die Lösung wird nach vollständigem Zutropfen vier weitere Stunden bei Raumtemperatur nachgerührt. Nach Abfiltrieren des Rückstandes und Abdestillieren des Lösungsmittels kristallisiert ein farbloser pulverförmiger Feststoff aus der Lösung aus.

Ausbeute: 7.272 g (26.6 mmol) (91% d. Th.)

Charakterisierung:

Löslichkeit: in allen gängigen organischen Lösungsmitteln Elementanalysen: (Al₂O₂C₈H₂₀Cl₂: 273.115 g/mol errechnet)

	С	Н	Ν	Al^{3+}	Cl
berechnet	35.20	7.39	1	19.77	25.98
gefunden	33.05	7.85	1	20.12	26.20

7%- Kohlenstoffverlust durch Al₄C₃-Bildung

¹H-NMR(C₆H₆/C₆D₆): δ [ppm] = *cis-trans* (s, 18H, -C(CH₃)₃, 50%) 1.191 , (s, 18H, -C(CH₃)₃, 50%) 1.196; 1.208 (s, 18H, -C(CH₃)₃)

¹³C-NMR(C₆H₆/C₆D₆): δ [ppm] = *cis-trans* (-C(CH₃)₃) 30.99, (-C(CH₃)₃) 31.06, (-C(CH₃)₃) 80.17, (-C(CH₃)₃) 80.34; (-C(CH₃)₃) 30.91, (-C(CH₃)₃) 82.18

²⁷Al-NMR (C₆H₆/C₆D₆): δ [ppm] = 106.4 ($w_{\frac{1}{2}}$ = 520 Hz), 90.1

6.2.5.2 Darstellung von $[ClAl(H)(O'Bu)]_2 5$ und $[ClAl(D)(O'Bu)]_2 5$ über Metathese und Redoxreaktion

$$PbCl_2 + [H_2Al(O^tBu]_2 \xrightarrow{n-Hex} [ClAl(H)(O^tBu)]_2 + Pb + H_2$$

Die Darstellung erfolgt im Prinzip wie die Synthese von $[Cl_2Al(O'Bu)]_2$ <u>2</u> mit 2.75 g (10 mmol) PbCl₂ in 30 ml *n*-Hexan und 2.021 g (10 mmol) $[H_2Al(O'Bu)]_2$ <u>1</u> in 30 ml *n*-Hexan.

Zur Darstellung von $[ClAl(D)(O'Bu)]_2 5$ wird $[D_2Al(O'Bu)]_2 1$ als Edukt verwendet.

Ausbeute 2.512 g (9.2 mmol) = 93%.

Die Sublimation erfolgt bei $45 \,^{\circ}C/10^{-2}$ mbar unter Verwendung eines eisgekühlten Sublimationsrohres. Dabei ist ein Ausbeuteverlust von 8% zu verzeichnen.

Charakterisierung:

Löslichkeit: in allen gängigen organischen Lösungsmitteln

Elementanalysen: (Al₂O₂C₈H₂₀Cl₂: 273.115 g/mol errechnet)

	С	Н	Ν	Al^{3+}	Cl
berechnet	35.20	7.39	1	19.77	25.98
gefunden	31.92	6.78	-	20.12	26.25

9%- Kohlenstoffverlust durch Al₄C₃-Bildung

- ¹H-NMR(C₆H₆/C₆D₆): δ [ppm] = *cis-trans* (s, 18H, -C(CH₃)₃, 50%) 1.191 , (s, 18H, -C(CH₃)₃, 50%) 1.196 ; 1.208 (s, 18H, -C(CH₃)₃)
- ¹³C-NMR(C₆H₆/C₆D₆): δ [ppm] = *cis-trans* (-C(CH₃)₃) 30.99, (-C(CH₃)₃) 31.06, (-C(CH₃)₃) 80.17, (-C(CH₃)₃) 80.34; (-C(CH₃)₃) 30.91, (-C(CH₃)₃) 82.18

²⁷Al-NMR (C₆H₆/C₆D₆): δ [ppm] = 106.4 ($w_{\frac{1}{2}}$ = 520 Hz), 90.1

<u>IR:</u>

ATR (Feststoff): [cm⁻¹]

- **5** 2974, 2935, 2875, (Al-H) 1917, 1467, 1400, 1375, 1255, 1213, 1167, 1072, 1037, 874, 837, 775, 696, 646, 631, 584, 548, 509
- <u>5</u>` 2976, 2929, 2872, 1472, (Al-D) 1399, 1373, 1255, 1163, 1074, 1037, 920, 837, 770, 686, 587, 558, 513

6.2.5.3 Darstellung und Charakterisierung von $[ClAl(H)(O'Bu)]_2 \underline{5}$ durch Dismutation aus $\underline{2}$ und $\underline{1}$

$$[Cl_2Al(O^tBu)]_2 + [H_2Al(O^tBu)]_2 \xrightarrow{n-Hex} 2 [ClAl(H)(O^tBu)]_2$$

Zu einer Lösung aus 0.306 g (1.5 mmol) $[H_2Al(O'Bu)]_2$ <u>1</u> in 20 ml *n*-Hexan wird bei Raumtemperatur unter Rühren eine Lösung aus 0.513 g (1.5 mmol) $[Cl_2Al(O'Bu)]_2$ <u>5</u> in 20 ml *n*-Hexan zugetropft. Die Reaktionslösung wird nach vollständiger Zugabe zwei Stunden gerührt. Beim Abdestillieren des Diethylethers kristallisiert das Produkt aus der Lösung aus.

Ausbeute 0.815 g (1.5 mmol) (100%)

Charakterisierung:

Löslichkeit: in allen gängigen organischen Lösungsmitteln Elementanalysen: (Al₂O₂C₈H₂₀Cl₂: 273.115 g/mol errechnet)

<u>NMR:</u>

¹H-NMR(C₆H₆/C₆D₆):
$$\delta$$
 [ppm] = *cis-trans* (s, 18H, -C(CH₃)₃, 50%) 1.195 , (s, 18H, -C(CH₃)₃, 50%) 1.199 ; 1.212 (s, 18H, -C(CH₃)₃)
¹³C-NMR(C₆H₆/C₆D₆): δ [ppm] = *cis-trans* (-C(CH₃)₃) 30.986, (-C(CH₃)₃) 31.062, (-C(CH₃)₃) 80.168, (-C(CH₃)₃) 80.335; (-C(CH₃)₃) 30.911, (-C(CH₃)₃) 82.184
²⁷Al-NMR (C₆H₆/C₆D₆): δ [ppm] = 106.4 ($w_{\frac{1}{2}}$ = 520 Hz), 90.1

<u>*IR*</u>: ATR (Feststoff): [cm⁻¹] 2974, 2935, 2875, 1915, 1467, 1400, 1375, 1255, 1213, 1167, 1072, 1037, 874, 837, 775, 696, 646, 631, 584, 548, 509

6.2.6 Darstellung von [BrAl(H)(O^tBu)]₂] <u>6</u> und [BrAl(D)(O^tBu)]₂ <u>6</u>

6.2.6.1 Darstellung von [BrAl(H)(O'Bu)]2 6 über Salzeliminierung und Alkoholyse

$$\operatorname{LiAlH}_{4} + \operatorname{AlBr}_{3} \xrightarrow{\operatorname{OEt}_{2}} 2 \operatorname{H}_{2}\operatorname{AlBr}^{*}\operatorname{OEt}_{2} + \operatorname{LiBr}$$

$$2 \operatorname{H}_{2}\operatorname{AlBr}^{*}\operatorname{OEt}_{2} + \operatorname{LiBr} \xrightarrow{+2 \operatorname{^{t}BuOH}}_{1) \operatorname{Iaq} \operatorname{NEt}_{3}} [\operatorname{BrAl}(\operatorname{H})(\operatorname{O}^{t}\operatorname{Bu})]_{2} + \operatorname{H}_{2} + 1/4 [\operatorname{LiBr}^{*}\operatorname{NEt}_{3}]_{4} \checkmark$$

Zu einer Suspension aus 0.509 g (13.4 mmol) LiAlH₄ in 10 ml Diethylether wird eine Lösung aus 3.610 g (13.5 mmol) AlBr₃ in 50 ml Diethylether langsam hinzugetropft. Das AlBr₃ wird vor der Zugabe des Ethers mit flüssigem Stickstoff auf -78 °C abgekühlt. Die

klare, farblose Reaktionslösung wird fünf Minuten bei Raumtemperatur nachgerührt. Anschließend kühlt man die Lösung in einem Eisbad, bevor über einen Tropftrichter tropfenweise eine Lösung aus 2.58 ml (27 mmol) *tert.*-Butanol in 10 ml Diethylether zugegeben wird. Durch die Eiskühlung wirkt sich die stark exotherme Reaktion geringfügig aus, die H₂-Gasentwicklung ist kaum zu beobachten. Nach vollständiger Zugabe wird die Lösung eine weitere halbe Stunde unter Eiskühlung nachgerührt und anschließend drei weitere Stunden bei Raumtemperatur. Man engt die Lösung auf ca. ein Drittel ihres Volumens ein, bevor 100 ml Toluol zugegeben werden. Dabei fällt ein feiner, farbloser Niederschlag aus. Zur besseren Fällung des LiBr wird zusätzlich 2 ml NEt₃ ($\varphi =$ 0.73 g/ml) (1.45 mmol) zugegeben, wodurch das LiBr als Aminadukt ausfällt [LiBr*NEt₃]₄. Vor dem Abfiltrieren über einer D4-Fritte, wird die Lösung bis auf die Hälfte des Volumens eingeengt. Das LiBr-Aminadukt fällt besonders gut in der Kälte! Aus der klaren Lösung gehen beim Abdestillieren farblose Kristalle hervor. Die Kristalle wurden in *n*-Hexan unkristallisiert.

Ausbeute: 3.518 g (9.7 mmol) (72% d. Th.)

Charakterisierung:

Löslichkeit: in allen gängigen organischen Lösungsmitteln Elementanalysen: (Al₂O₂C₈H₂₀Br₂: 362.017 g/mol errechnet)

	С	Н	Ν
berechnet	26.54	5.57	-
gefunden	23.94	5.32	-

9%- Kohlenstoffverlust durch Al₄C₃-Bildung

¹H-NMR(C₆H₆/C₆D₆): δ [ppm] = *cis-trans* (s, 18H, -C(CH₃)₃, 60%) 1.210 , (s, 18H, -C(CH₃)₃, 40%) 1.219; (s, 18H, -C(CH₃)₃) 1.261
¹³C-NMR(C₆H₆/C₆D₆): δ [ppm] = *cis-trans* (-C(CH₃)₃) 31.13, (-C(CH₃)₃) 31.17, (-C(CH₃)₃) 80.87, (-C(CH₃)₃) 80.18; (-C(CH₃)₃) 30.94, (-C(CH₃)₃) 83.31
²⁷Al-NMR (C₆H₆/C₆D₆):δ [ppm] = *cis-trans* 104.7 (*w*₂= 620 Hz), 86.5

<u>*IR*</u>: ATR (Feststoff): [cm⁻¹] 2970, 2928, 2875, 1915, 1464, 1400, 1371, 1258, 1211, 1163, 1036, 871, 772, 695, 642, 603, 566, 507

6.2.6.2 Darstellung von [BrAl(H)(O'Bu)]₂ <u>6</u> über Metathese und Redoxreaktion

$$PbBr_2 + [H_2Al(O'Bu]_2 \xrightarrow{n-Hex} [BrAl(H)(O'Bu]_2 + Pb + H_2]$$

Die Darstellung erfolgt im Prinzip wie die Synthese von $[ClAl(H)(O^{t}Bu)]_{2}$ <u>5</u> mit 1.71 g (4.7 mmol) PbBr₂ in 20 ml *n*-Hexan und 0.95 g (4.7 mmol) $[H_{2}Al(O^{t}Bu)]_{2}$ <u>1</u> in 20 ml *n*-Hexan.

Zur Darstellung von $[BrAl(D)(O'Bu)]_2 \underline{6}$ wird $[D_2Al(O'Bu)]_2 \underline{1}$ als Edukt verwendet. Ausbeute 1.478 g (4.1 mmol) = 88% Charakterisierung:

Löslichkeit: in allen gängigen organischen Lösungsmitteln Elementanalysen: (Al₂O₂C₈H₂₀Br₂: 362.017 g/mol errechnet)

	С	Н	Ν	Al^{3+}	Br
berechnet	26.54	5.57	-	14.91	44.14
gefunden	25.45	5.73	-	14.21	44.12

<u>NMR:</u>

- ¹H-NMR(C₆H₆/C₆D₆): δ [ppm] = *cis-trans* (s, 18H, -C(CH₃)₃, 60%) 1.210 , (s, 18H, -C(CH₃)₃, 40%) 1.219; (s, 18H, -C(CH₃)₃) 1.263
- ¹³C-NMR(C₆H₆/C₆D₆): δ [ppm] = *cis-trans* (-C(CH₃)₃) 31.13, (-C(CH₃)₃) 31.17, (-C(CH₃)₃) 80.87, (-C(CH₃)₃) 80.18; (-C(CH₃)₃) 30.94, (-C(CH₃)₃) 83.31
- ²⁷Al-NMR (C₆H₆/C₆D₆): δ [ppm] = *cis-trans* 104.7 ($w_{\frac{1}{2}}$ = 620 Hz), 86.5

 \underline{IR} : ATR (Feststoff): [cm⁻¹]

- <u>6</u> 2972, 2928, 2875, (Al-H) 1915, 1464, 1400, 1375, 1258, 1211, 1165, 1076, 1036, 876, 773, 694, 648, 584, 550, 507
- <u>6</u> 2975, 2932, 2870, 1470, 1400, (Al-D) 1393, 1375, 1257, 1161, 1077, 1036, 869, 773, 687, 567, 553, 523, 513

6.2.6.3 Darstellung von $[BrAl(H)(O^{t}Bu)]_{2}$ <u>6</u> über Dismutation aus <u>3</u> und <u>1</u>

$$[Br_2Al(O^tBu)]_2 + [H_2Al(O^tBu)]_2 \xrightarrow{n-Hex} 2 [BrAl(H)(O^tBu)]_2$$

Zu einer Lösung aus 0.623 g (3.05 mmol) $[H_2Al(O^tBu)]_2 \mathbf{1}$ in 20 ml *n*-Hexan wird bei Raumtemperatur unter Rühren eine Lösung aus 1.588 g (3.05 mmol) $[Br_2Al(O^tBu)]_2 \mathbf{5}$ in 20 ml Diethylether zugetropft. Die Reaktionslösung wird nach vollständiger Zugabe zwei Stunden gerührt. Beim Abdestillieren des Diethylethers kristallisiert ein farbloser Feststoff aus.

Charakterisierung:

Löslichkeit: in allen gängigen organischen Lösungsmitteln

<u>NMR:</u>

¹H-NMR(C₆H₆/C₆D₆): δ [ppm] = *cis-trans* (s, 18H, -C(CH₃)₃, 60%) 1.210 , (s, 18H, -C(CH₃)₃, 40%) 1.219 ; (s, 18H, -C(CH₃)₃) 1.263
¹³C-NMR(C₆H₆/C₆D₆): δ [ppm] = *cis-trans* (-C(CH₃)₃) 31.13, (-C(CH₃)₃) 31.17, (-C(CH₃)₃) 80.87, (-C(CH₃)₃) 80.18; (-C(CH₃)₃) 30.94, (-C(CH₃)₃) 83.31
²⁷Al-NMR (C₆H₆/C₆D₆):δ [ppm] = *cis-trans* 104.7 (*w*_{1/2} = 620 Hz), 86.5

<u>*IR*</u>: ATR (Feststoff): [cm⁻¹] 2972, 2928, 2875, 1915, 1464, 1400, 1375, 1258, 1211, 1165, 1076, 1036, 876, 773, 694, 648, 584, 550, 507

6.2.7 Darstellung von [IAl(H)(O'Bu)]₂ <u>7</u> und [IAl(D)(O'Bu)]₂ <u>7</u>

6.2.7.1 Darstellungen von [IAl(H)(O'Bu)]₂ 7 über Salzeliminierung und Alkoholyse

 $\operatorname{LiAlH}_{4} + \operatorname{AlI}_{3} \xrightarrow{\operatorname{OEt}_{2}} 2 \operatorname{H}_{2}\operatorname{AlI}^{*}\operatorname{OEt}_{2} + \operatorname{LiI}$ $2 \operatorname{H}_{2}\operatorname{AlI}^{*}\operatorname{OEt}_{2} + \operatorname{LiI} \xrightarrow{+ 2 \operatorname{^{t}BuOH}}_{1) \operatorname{Iaq} \operatorname{NEt}_{3}} [\operatorname{IAl}(\operatorname{H})(\operatorname{O}^{t}\operatorname{Bu})]_{2} + \operatorname{H}_{2} + 1/4 [\operatorname{LiI}^{*}\operatorname{NEt}_{3}]_{4} \checkmark$

Die Salzeliminierungsreaktion erfolgt analog der Darstellung der Monobromidverbindung <u>6</u> (Kap. 6.2.6.a)) mit 0.302 g (8 mmol) LiAlH₄ in 10 ml Diethylether und 3.249 g (8 mmol) AlI₃ in 30 ml Diethylether in der Vorlage. Nach zehn Minuten Rührzeit bei Raumtemperatur wird der Lösung unter Eiskühlung tropfenweise eine Lösung aus 1.54 ml (16 mmol) *tert*.-Butanol in 10 ml Diethylether zugeführt. Nach vollständiger Zugabe wird die Lösung eine weitere halbe Stunde unter Eiskühlung nachgerührt und anschließend drei weitere Stunden bei Raumtemperatur. Man engt die Lösung auf ca. ein Drittel ihres Volumens ein, bevor 100 ml Toluol und 1.1 ml NEt₃ ($\phi = 0.73$ g/ml) (8 mmol) zugegeben werden.

Ausbeute: 2.006 g (4.4 mmol) (55% d. Th.)

Charakterisierung:

Löslichkeit: in allen gängigen organischen Lösungsmitteln

Schmelzpunkt: 80-83°C

Elementanalysen: (Al₂O₂C₈H₂₀I₂: 456.009 g/mol errechnet)

	С	Н	Ν	Al^{3+}	I
berechnet	21.07	4.42	1	11.83	55.66
gefunden	19.84	4.11	-	11.72	56.40

6%- Kohlenstoffverlust durch Al₄C₃-Bildung

¹H-NMR(C₆H₆/C₆D₆): δ [ppm] = *cis-trans* (s, 18H, -C(CH₃)₃, 70%) 1.24, (s, 18H, -C(CH₃)₃, 30%) 1.27; (s, 18H, -C(CH₃)₃) 1.34

IR: ATR (Feststoff): [cm⁻¹]

2970, 2930, 2875, (Al-H) 1909, 1466, 1398, 1373, 1248, 1213, 1163, 1066, 1036, 868, 772, 688, 637, 525

6.2.7.2 Darstellung von $[IAl(H)(O'Bu)]_2 \underline{7}$ und $[IAl(D)(O'Bu)]_2 \underline{7}$ über Metathese und Redoxreaktion

$$3 \operatorname{PbI}_2 + [\operatorname{H}_2\operatorname{Al}(\operatorname{O}^t\operatorname{Bu})]_2 \xrightarrow{n-\operatorname{Hex}} 2 [\operatorname{IAl}(\operatorname{H})(\operatorname{O}^t\operatorname{Bu})]_2 + \operatorname{Pb} + 2 \operatorname{PbI}_2 + \operatorname{H}_2$$

In einem Zweihalskolben wird eine im dreifachen Überschuss vorliegende Suspension aus 7.680 g (17 mmol) Bleiiodid in 50 ml *n*-Hexan vorgelegt. Bei Raumtemperatur wird eine Lösung aus 1.130 g (5.5 mmol) $[H_2Al(O^tBu)]_2 \mathbf{1}$ in 20 ml *n*-Hexan tropfenweise hinzu gegeben. Dabei setzt sofort Braunfärbung der unlöslichen Bleipartikel ein, eine H₂-Entwicklung ist kaum sichtbar. Die Lösung wird nach vollständiger Zugabe des Alans 60 Stunden bei Raumtemperatur nachgerührt. Nach Abfiltrieren des schwarzen feinverteilten Bleiniederschlags über einer D4-Fritte wird das Lösungsmittel abdestilliert. Das Produkt kristallisiert als klebriger farbloser Feststoff aus.

Ausbeute 2.050 g (4.5 mmol): 82%

Zur Darstellung von $[IAl(D)(O'Bu)]_2 \underline{7}$ wird $[D_2Al(O'Bu)]_2 \underline{1}$ als Edukt verwendet.

Das Produkt sublimiert bei 115°C/10⁻² mbar, wobei ein dunkelbrauner unlöslicher Feststoff zurückbleibt. Dabei ist ein Ausbeuteverlust von 40% zu verzeichnen.

Charakterisierung:

Löslichkeit: in allen gängigen organischen Lösungsmitteln

Schmelzpunkt: 80-83°C

Elementanalysen: (Al₂O₂C₈H₂₀I₂: 456.009 g/mol errechnet)

	С	Н	Ν	Al^{3+}	I
berechnet	21.07	4.42	1	11.83	55.66
gefunden	19.01	4.12	-	11.99	56.24

9%- Kohlenstoffverlust durch Al₄C₃-Bildung

<u>NMR:</u>

¹H-NMR(C₆H₆/C₆D₆): δ [ppm] = *cis-trans* (s, 18H, -C(CH₃)₃, 60%) 1.24 , (s, 18H, -C(CH₃)₃, 40%) 1.27 ; (s, 18H, -C(CH₃)₃) 1.34

¹³C-NMR(C₆H₆/C₆D₆): δ [ppm] = *cis-trans* (-C(CH₃)₃) 31.4, (-C(CH₃)₃) 31.7, (-C(CH₃)₃) 81.75, (-C(CH₃)₃) 82.3; (-C(CH₃)₃) 30.9 (-C(CH₃)₃) 84.7

¹³C-MAS-NMR: δ [ppm] = (-C(CH₃)₃), (-C(CH₃)₃)

²⁷Al-NMR (C₆H₆/C₆D₆): δ [ppm] = *cis-trans* 96.5 ($w_{\frac{1}{2}}$ = 780 Hz), 54.5

 \underline{IR} : ATR (Feststoff): [cm⁻¹]

- <u>7</u> 2970, 2930, 2875, (Al-H) 1909, 1466, 1398, 1373, 1248, 1213, 1163, 1066, 1036, 868, 772, 688, 637, 525
- <u>7</u> 2969, 2928, 2868, 1467, 1398, (Al-D) 1386, 1371, 1256, 1165, 1058, 1035, 892, 871, 771, 682, 637, 597, 578, 552, 526, 516, 507

6.2.8 Darstellung von [ClAl(Me)(O^tBu)]₂ <u>8</u> durch Alkoholyse

2 (Me)₂AlCl + 2 ^tBuOH $\xrightarrow{n-\text{Hex}}$ [ClAl(Me)(O^tBu)]₂ + 2 CH₄

37 ml einer 0.9 M Lösung aus Dimethylaluminiumchlorid in *n*-Hexan (33 mmol) wird mit weiteren 20 ml *n*-Hexan verdünnt und in einen Zweihalskolben vorgelegt. Vor der Zugabe von 3.20 ml (33 mmol) *tert*.-Butanol wird die Lösung mit einem Trockeneis/Isopropanoleisbad auf ca. -20 °C abgekühlt. Die Reaktion zeichnet sich durch eine starke Gasentwicklung aus. Nach vollständiger Zugabe des Alkohols wird das Eisbad entfernt und zwei Stunden bei Raumtemperatur nachgerührt. Das farblose Produkt kristallisiert beim Abdestillieren des Lösungsmittels aus.

Ausbeute: 4.367 g (14.5 mmol) (88% d. Th.)

Das Produkt sublimiert ab 60 °C/10⁻² mbar mit 10%-Ausbeuteverlust.

Charakterisierung:

Löslichkeit: in allen gängigen organischen Lösungsmitteln

Elementanalysen: (Al₂O₂C₁₀H₂₄Cl₂: 301.172 g/mol errechnet)

	С	Н	Ν	Al^{3+}	Cl
berechnet	39.88	8.03	I	17.92	23.54
gefunden	36.35	8.79	-	17.68	23.56

9%- Kohlenstoffverlust durch Al₄C₃-Bildung

<u>NMR</u>:

- ¹H-NMR(C₆H₆/C₆D₆): δ [ppm] = *cis-trans* (s, breit, 6H, -Al(CH₃, 50%)) -0.26, (s, breit, 6H, -Al(CH₃, 36%)) -0.35, (s, 18H, -C(CH₃)₃, 50%) 1.21, (s, 18H, -C(CH₃)₃, 36%) 1.21; (s, breit, 6H, -Al(CH₃, 14%)) -0.33, (s, 18H, -C(CH₃)₃, 14%) 1.22
- ¹³C-NMR(C₆H₆/C₆D₆): δ [ppm] = *cis-trans* (breit, -AlCH₃) -7, (-C(CH₃)₃) 31.1, (-C(CH₃)₃) 31.2, (-C(CH₃)₃) 79.0, (-C(CH₃)₃) 79.1; (-C(CH₃)₃) 30.9 (-C(CH₃)₃) 81.4 ¹³C-MAS-NMR: δ [ppm] = (-C(CH₃)₃) 33.1, (-C(CH₃)₃) 80.5

²⁷Al-NMR (C₆H₆/C₆D₆): δ [ppm] = *cis-trans* 121.9 (*w*_{1/2} = 360 Hz), 90.1

IR: ATR (Feststoff): [cm⁻¹]

2982, 2949, 2876, 1470, 1399, 1375, 1258, 1202, 1166, 1037, 920, 880, 774, 667, 631, 567, 545, 525, 478, 453, 449, 437, 428, 407

6.2.9 Darstellung von [ClAl(O^tBu)₂]₂ <u>10</u> über Metathese und Redoxreaktion

$$PbCl_{2} + [HAl(O^{t}Bu)_{2}]_{2} \xrightarrow[RT]{n-Hex} [ClAl(O^{t}Bu)_{2}]_{2} + Pb + H_{2}$$

Zu einer Suspension aus 2.012 g (7.2 mmol) PbCl₂ in 20 ml *n*-Hexan wird eine Lösung aus 1.883 g (5.4 mmol) $[HAl(O'Bu)]_2$ **9** getropft. Die Umsetzung lässt sich lediglich an einer langsamen Braunfärbung der Suspension beobachten. Eine Gasentwicklung lässt sich nicht eindeutig erkennen. Nach 20 Stunden wird die Reaktion beendet und aufgearbeitet. Aus der Lösung kristallisiert das Produkt als farbloser Feststoff aus.

Ausbeute: 4.367 g (14.5 mmol) (89% d. Th.)

Das Produkt sublimiert ab 95°C/10⁻² mbar mit 26%-Ausbeuteverlust.

Charakterisierung:

Löslichkeit: in allen gängigen organischen Lösungsmitteln

Elementanalysen: (Al₂O₄C₁₆H₃₆Cl₂: 417.342 g/mol errechnet)

	С	Н	Ν	Al^{3+}	Cl
berechnet	46.05	8.70	1	12.93	16.99
gefunden	44.68	9.07	1	13.23	16.49

¹H-NMR(C₆H₆/C₆D₆): δ [ppm] = (s, 18H, -C(CH₃)₃, 45%) 1.34, (s, 18H, -C(CH₃)₃, %) 1.35, (s, 18H, -C(CH₃)₃, %) 1.36, (s, 18H, -C(CH₃)₃, %) 1.38, (s, 18H, -C(CH₃)₃, %) 1.39, (s, 18H, -C(CH₃)₃, %) 1.42, (s, 18H, -C(CH₃)₃, 45%) 1.43; ¹³C-NMR(C₆H₆/C₆D₆): δ [ppm] = (-C(CH₃)₃) 31.0, (-C(CH₃)₃) 31.2, (-C(CH₃)₃) 33.4, (-C(CH₃)₃) 33.5, (-C(CH₃)₃) 33.8, (-C(CH₃)₃) 33.8, (-C(CH₃)₃) 69.2, (-C(CH₃)₃) 70.1, (-C(CH₃)₃) 70.2, (-C(CH₃)₃) 78.0, (-C(CH₃)₃) 79.8, (-C(CH₃)₃) 79.9 ¹³C-MAS-NMR: δ [ppm] = (-C(CH₃)₃) 31.3, (-C(CH₃)₃) 33.7, (-C(CH₃)₃) 68.8 (-C(CH₃)₃) 70.6, (-C(CH₃)₃) 80.9 ²⁷Al-NMR (C₆H₆/C₆D₆): δ [ppm] = *cis-trans* 66.4 ($w_{\frac{1}{2}}$ 420 Hz); 90.1

<u>*IR*</u>: ATR (Feststoff): [cm⁻¹] 2979, 2934, 1471, 1397, 1371, 1194, 1167, 1035, 913, 859, 772, 684, 662, 560, 555

6.2.10 Darstellung von [H₂Al(NEt₂)]₂ <u>11</u> über Salzeliminierung und Alkoholyse

$$3 \operatorname{LiAlH}_{4} + \operatorname{AlCl}_{3} \xrightarrow{\operatorname{OEt}_{2}} 4 \left\{ \operatorname{AlH}_{3}^{*}\operatorname{OEt}_{2} \right\} + 3 \operatorname{LiCl}$$

$$4 \left\{ \operatorname{AlH}_{3}^{*}\operatorname{OEt}_{2} \right\} + 4 \operatorname{HNEt}_{2} \longrightarrow 2 \left[\operatorname{H}_{2}\operatorname{AlNEt}_{2} \right]_{2} + 4 \operatorname{H}_{2}$$

Zu einer Suspension aus 1.917 g (50.5 mmol) LiAlH₄ in 40 ml Diethylether wird eine Lösung aus 2.337 g (17.5 mmol) AlCl₃ in 40 ml Diethylether getropft. Das AlCl₃ wird zuvor unter N₂-Kühlung mit dem Ether versetzt. Nach vollständiger Zugabe wird max. eine Minute nachgerührt, anschließend erfolgt die Zugabe von 6.95 ml (67.5 mmol) Diethylamin ($\varphi = 0.71$ g/ml) über einen Tropftrichter. Durch die Wasserstoffentwicklung besitzt die Reaktion einen stark exothermen Charakter. Die Lösung wird bei Raumtemperatur 12 Stunden lang gerührt. Nach Abfiltrieren des LiCl-Niederschlags und Einengen des Lösungsmittels kristallisiert das Produkt als farbloser Feststoff aus der Lösung aus. Ausbeute: 5,575 g (27.6 mmol) (84% d. Th.)

Das Produkt sublimiert ab 28°C/10⁻² mbar

Charakterisierung:

Löslichkeit: in allen gängigen organischen Lösungsmitteln

Elementanalysen: (Al₂N₂C₄H₂₄: 226.280 g/mol errechnet)

	С	Н	N	
berechnet	53.08	10.70	12.39	
gefunden	50.11	10.22	12.51	

5%- Kohlenstoffverlust durch Al₄C₃-Bildung

<u>NMR</u>:

¹H-NMR(C₆H₆/C₆D₆): δ [ppm] = (t, 18H, -CH₂CH₃) 0.85, (q, 18H, -CH₂CH₃) 2.84, (br, s,

br, 2H, -AlH₂) 4.09;

¹³C-NMR(C_6H_6/C_6D_6): δ [ppm] = (-CH₂CH₃) 11.9, (-CH₂CH₃) 41.9;

²⁷Al-NMR (C₆H₆/C₆D₆): δ [ppm] = 152.0 ($w_{\frac{1}{2}}$ = 200 Hz)

<u>*IR*</u>: ATR (Feststoff): [cm⁻¹] 2965, 2918, 2817, (Al-H) 1819, 1471, 1453, 1381, 1289, 1197, 1177, 1133, 1110, 1046, 1002, 905, 853, 783, 715, 696, 613, 537

6.2.11 Darstellung von [HAl(I)(NEt₂)]₂ <u>12</u> über Metathese und Redoxreaktion

 $[H_2Al(NEt_2)]_2 + 2 PbI_2 \xrightarrow{n-Hex} [IAl(H)(NEt_2)]_2 + Pb + PbI_2 + H_2$

Zu einer Suspension aus 6.030 g (13.1 mmol) PbI₂ in 50 ml *n*-Hexan wird eine Lösung aus 1.314 g (6.5 mmol) $[H_2Al(NEt_2)]_2$ <u>11</u> getropft. Die Umsetzung lässt sich lediglich an einer langsamen Braunfärbung der Suspension beobachten, die Gasentwicklung lässt sich nicht eindeutig erkennen. Nach 18 Stunden wird die Reaktion beendet und aufgearbeitet. Aus der Lösung kristallisiert das Produkt als farbloser Feststoff aus.

Ausbeute: 2.015 g (5.0 mmol) (77 % d. Th.)

Subl.temp.: ab 110 $^{\circ}C/10^{-2}$ mbar.

Charakterisierung:

Löslichkeit: in allen gängigen organischen Lösungsmitteln

Elementanalysen: (Al₂N₂C₄H₂₂I₂: 405.998 g/mol errechnet)

	С	Н	N
berechnet	11.83	5.46	6.90
gefunden	10.71	5.16	6.83

9%- Kohlenstoffverlust durch Al₄C₃-Bildung

<u>NMR</u>: Eine Unterscheidung zwischen den Isomeren ist aufgrund Signalüberlagerung nicht möglich!

¹H-NMR(C₆H₆/C₆D₆): δ [ppm] = (m, 18H, -CH₂CH₃) 0.85, (m, 18H, -CH₂CH₃) 2.84,

¹³C-NMR(C₆H₆/C₆D₆): δ [ppm] = (m, -CH₂CH₃) 11.0, (m, -CH₂CH₃) 42.9;

²⁷Al-NMR (C₆H₆/C₆D₆): δ [ppm] = *cis-trans* 132.9 (*w*_{1/2}=380 Hz); 108.2

<u>IR</u>: ATR (Feststoff): [cm⁻¹]: 2966, 2932, 2885, 2807, (Al-H)1864, 1451, 1384, 1293, 1196, 1159, 1130, 1102, 1042, 997, 897, 779, 731, 663, 601

6.3 Allgemeine Arbeitstechniken (Teil 2: CVD)

6.3.1 Durchführung der CVD-Experimente

Vor dem Beginn der CVD-Abscheidung wird die gesamte Reaktionskammer, bestehend aus Reaktionsrohr, Substratträger und Substrat, solange evakuiert bis keine Signale mehr im Massenspektrometer bei 1.3*10⁻² mbar und einem Analysevakuum von 7*10⁻⁷ mbar zu beobachten sind. Danach wird die Anlage mit Schutzgas gespült um den Kolben mit dem jeweiligen Precursor an das Reaktionsrohr anzubringen. In dem Kolben befindet sich ca. 1-2 g Substanzmaterial. Anschließend wird langsam wieder Vakuum in die Anlage gezogen, wobei der Eckhahn zum Kolben, in dem sich der Precursor befindet, geschlossen wird. Sobald das Vakuum wieder den Minimalwert erreicht hat, wird das Substrat schrittweise auf die entsprechende Substrattemperatur erhitzt. Sind die Prozessparameter Druck und Temperatur erreicht, kann gegebenenfalls ein Untergrundspektrum aufgenommen werden, das später von den Massenspektren der Pyrolysegase nach Eichung auf den gleichen Analysedruck abgezogen werden kann.

Aufgrund der unterschiedlichen Sublimationstemperaturen der verwendeten Precursoren, muss zusätzlich an der CVD-Anlage ein Ofen zugeschaltet werden, der die gesamte Reaktionskammer erhitzt. Die Ofentemperatur muss dabei jeweils auf eine geeignete Temperatur eingestellt werden, um den Precursorfluss zu gewährleisten. Dieser muss so reguliert werden, dass die Aufnahme der Massenspektren innerhalb des messbaren Druckbereichs 1.3*10⁻²-7.5*10⁻² mbar ermöglicht werden kann.

6.3.2 Technische Daten zur Verwendung der CVD-Apparaturen

CVD-Anlage 1:

Zur induktiven Erwärmung der Metallsubstrate wurde ein Hochfrequenzgenerator der Firma Linn High Term vom Typ HTG 750/0.5 benutzt. Die wassergekühlte Induktionsspule besteht aus einem 5 mm dicken Kupferrohr mit drei Windungen. Der Windungsdurchmesser beträgt 6 cm. Die Messungen und die Steuerung der Substrattemperatur erfolgte über ein Ni-Cr-Ni-Mantelthermoelement, an das ein PID-Temperaturprogrammregler 847 der Firma Eurotherm gekoppelt ist.

Das für die Gasphasenabscheidungen benötigte Vakuum wurde durch eine Turbomolekularpumpe des Typs NT-151/361 der Fa. TURBOTRONIK (8 m³/h) erzeugt. Als Schutzgas wurde vorgetrocknetes Argon verwendet.

Das Quadrupol-Massenspektrometer der HAL Serie HAL2/301 der Fa. HIDEN steht in Verbindung mit einer Crossbeam-Ionenquelle. Die CVD-Anlage ist mit diesem Massenspektrometer über ein mechanisches Gasdosierventil verbunden. Das Ventil ist mit einem Druckmessgerät TPGR 250 der Fa. BALZERS und einem Steuergerät TPG 252 in Reihe geschaltet. Als Detektor steht ein Faradey-Detektor zur Verfügung. Das Hochvakuum wird von einer Membranvakuumpumpe des Typs MZ 2V der Fa. VARIAN (2.1 m³/h) erzeugt.

Die Nachweisgrenze des Systems liegt bei etwa 10^{-8} mbar. Der Messbereich erstreckt sich von 1 bis 200 amu Masseneinheiten.

CVD-Anlage 2:

Zur induktiven Erwärmung der Metallsubstrate wurde ein Hochfrequenzgenerator der Firma Linn High Term vom Typ HTG 750/0.5 benutzt. Die wassergekühlte Induktionsspule besteht aus einem 5 mm dicken Kupferrohr mit drei Windungen. Der Windungsdurchmesser beträgt 6 cm. Die Messungen und die Steuerung der Substrattemperatur erfolgte über ein Ni-Cr-Ni-Mantelthermoelement, an das ein PID-Temperaturprogrammregler 847 der Firma Eurotherm gekoppelt ist. Das für die Gasphasenabscheidungen benötigte Vakuum wurde durch eine Drehschieberpumpe des Typs RZ5 der Fa. VACUUBRAND (5.6 m³/h) erzeugt. Als Schutzgas wurde vorgetrockneter Stickstoff verwendet.

Die gesamte Reaktionskammer konnte mit einem speziellen Kastenofen aus Aluminium erwärmt werden. Der Ofen besitzt einen Radiallüfter und eine thrysistorgeregelte Heizstufe. Die maximale Heizleistung beträgt 2000 W.

Im Unterschied zur CVD-Anlage 1 ist diese Anlage nicht an ein Massenspektrometer gekoppelt.

6.3.3 Parameter der CVD-Experimente

CVD-Anlage 1:

Prozessparameter für die Gasphasenabscheidung von [ClAl(D)(O'Bu)]₂ <u>5</u> und [ClAl(H)(O'Bu)]₂ <u>5</u> Substratmaterialien: Eisen, Kupfer Reaktortyp: Cold-Wall-Reaktor Substrattemperatur: 190-500°C Analysedruck: 0.05-0.06 mbar Precursorkühlung: Eisbad

CVD-Anlage 2: Prozessparameter für die Gasphasenabscheidung von [ClAl(H)(O'Bu)]₂ <u>5</u> Substratmaterial: Si (111) Substrathalter: Graphit Reaktortyp: Cold-Wall-Reaktor Substrattemperatur: 300°C Ofentemperatur: 32°C Analysedruck: 0.04-0.05 mbar

7 LITERATURVERZEICHNIS

- [1] Hollemann, Wiberg, Anorganische Chemie, 101. Auflage,
- [2] Pearson, R.G.; J. Am. Chem. Soc., 1963, 85, 3533.
- [3] Hänsgen, Eicher, Chemie für Pharmazeuten und Naturwissenschaftler, 2. Auflage, 1997.
- [4] Zietz, J.R. Jr.; Robinson, G.C.; Lindsay K.L.; in *Comprehensive Organometallic Chemistry* (Hrsg.:G. Wilkinson, F. G. A. Stone, E. W. Abel), Vol. 7, Pergamon, Oxford 1982, Kap. 46.
- [5] Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H.; Angew. Chem., 1955, 67, 541.
- [6] Ziegler, K.; Angew. Chem.; 1964, 76, 545.
- [7] Ziegler, K.; Gellert, H.G.; Angew. Chem.; 1952, 64, 323.
- [8] Bradley, D.C.; Polyhedron, 1994, 13(8), 1111.
- [9] Sugai, K.; J. Vac. Sci. Tech., 1995, 13(5), 2115.
- [10] Gladfelter, W.L.; Boyd, D.C.; Jensen, K.F.; Chem. Mater., 1989, 1, 339.
- [11] Wee, A.T.S.; Murrell, A.J.; Singh, N.K.; O'Hare, D.; Foord, J.S.; J. Chem. Soc., Chem. Comm., 1990, 11.
- [12] Dubois, L.M.; Zegarski, B.R.; Gross, M.E.; Nuzzo, R.G., Surf. Sci., 1991, 244(1), 89.
- [13] Jegier, J.A.; Gladfelter, W.L.; Coord. Chem. Rev., 2000, (206-207), 631.
- [14] Schumann, H.; Kaufmann, J.; Dechert, S.; Schmalz, H.-G.; *Tetrahedron Lett.*, 2002, 43, 3507.
- [15] Schumann, H.; Wassermann, B.C.; Schutte, S.; Heymer, B.; Nickel, S.; Seuß, T.D.; Wernik, S.; Demtschuk, J.; Girgsdies, F.; Weimann, R.; Z. Anorg. Allg. Chem., 2000, 626, 2081.
- [16] Nöth; H.; Suchy, H.; Z. Anorg. Allg. Chem., 1968, 358, 44.
- [17] Veith, M.; Faber, S.; Wolfanger, H.; Huch, V.; Chem. Ber., 1996, 129, 381.

- [18] Faber, S.; "Herstellung von Metall-Metalloxid-Kompositen über Metal Organic Chemical Vapour Deposition unter Verwendung neuartiger Precursoren", Saarbrücken, Universität des Saarlandes, Dissertation, **1996**.
- [19] Roberts, C.B.; Toner, D.D.; Inorg. Chem.; 1970, 9(10), 2361.
- [20] Veith, M.; J. Chem. Soc., Dalton Trans., 2002, 2405.
- [21] Rouxel, J.; Comptes Rendue Hebdomadaires dses Seances de l'Academie des Sciences, 1959, 248, 810.
- [22] Andres, K.; "Umfassenden Untersuchungen zur Oxoaluminiumhydridschicht HAlO und zu Al/Al₂O₃ Kompositschichten", Saarbrücken, Universität des Saarlandes, Dissertation, **2003**.
- [23] Dong, Y.; Burkart, M.; Veith, M.; Springborg, M.; J. Phys. Chem. B, 2005, 109, 22820.
- [24] Burkart, M.; "Experimentelle und theoretische Untersuchungen zu Hydriden des Aluminiums und Galliums", Saarbrücken, Universität des Saarlandes, Dissertation, 2006.
- [25] Fritscher, E.W.; "*Chemical Vaour Deposition mit Silanen, Heterometallalkoxiden und Hydidoalkoxiden sowie Anwendungen*", Saarbrücken, Universität des Saarlandes, Dissertation, **1997**.
- [26] Blin, J.; "Herstellung und Reaktivität von Hydridoaluminiumalkoxi- und siloxyverbindungen und Herstellung von Eisen-Zinnheterometallischen Komplexen", Saarbrücken, Universität des Saarlandes, Dissertation, **1999**.
- [27] Wolf, Y.; "Neue Festkörperphasengemische im ternären System Wasserstoff-Aluminium-Sauerstoff", Saarbrücken, Universität des Saarlandes, Dissertation, 2005.
- [28] Petersen, C.; "Mikro-und nanostrukturierte Schichten mittels Gasphasenabscheidung von [H₂AlOtBu]₂ für den Einsatz in der Nanobiotechnologie", Saarbrücken, Universität des Saarlandes, Dissertation, **2007**.
- [29] Veith, M.; Faber, S.; Hempelmann, R.; Janssen, S.; Prewo, J.; Eckerlebe, H.; J. Mater. Science, 1996, 31, 2009.
- [30] Veith, M.; "*Single Source Precursor CVD for nano-scaled ceramics and cermats*", in: Materials Science Forum, **2000**, 343-346, 531.
- [31] Vanoppen, D.; Veith, M.; Valtchev, K.; PCT Int. Appl., DE 10032303A1, 2002

- [32] Hreleva-Caparotti, H.; "Ein Alumopolysiloxan mit Al₄(OH)₄-Kern und sein Verhalten gegenüber Diaminen und Metallorganylen", Saarbrücken, Universität des Saarlandes, Dissertation, 2006.
- [33] Veith, M.; Jarczyk, M.; Huch, V.; Angew. Chem., Int. Ed., 1997, 36(1-2), 117.
- [34] Veith, M.; Rammo, A.; Jarczyk, M.; Huch, V.; *Monatshefte für Chemie*, **1999**, 130(1), 15.
- [35] Veith, M.; Adv. Organomet. Chem., 2006, 54, 49.
- [36] Veith, M.; Hreleva-Caparotti, H.; Huch, V.; J. Organomet. Chem., 2007, 692(13), 2784.
- [37] Veith, M.; Schütt O.; Blin J.; Becker S.; Frères J.; Huch V.; Z. Anorg. Allg. Chem., 2001, 627, 1.
- [38] Veith, M.; Mathur, S.; König, P.; Carvelius C.; Biegler J.; Rammo, A.; Huch, V.; Shen, H.; Schmid, G.; C. R. Chimie, 2004, 7, 509.
- [39] Veith M.; Frères J.; König P.; Schütt O.; Huch V.; Blin J.; Eur. J. Inorg. Chem., 2005, 3699.
- [40] Veith, M.; König, P.; Rammo, A.; Huch, V.; Angew. Chem., Int. Ed., 2005, 44, 5968.
- [41] Ruff, J.K.; J. Am. Chem. Soc., 1960, 82, 2141.
- [42] Ruff, J.K.; J. Am. Chem. Soc., 1960, 83, 1798.
- [43] Cucinella, S.; Salvatori, T.; Busetto, C.; Mazzei, A.; J. Organomet. Chem., 1976, 108, 13.
- [44] Ahmed, A.; Schwarz, W.; Hess, H.; Acta Cryst., 1977, B33(11), 3574.
- [45] Ahmed, A.; Schwarz, W.; Hess, H.; Z. Naturforsch., 1978, 33b(1), 43.
- [46] Schäfer, H.; Wittig, F.E.; Wilborn, W.; Z. Anorg. Allg. Chem.; 1958, 297(1-2), 48.
- [47] Turley, J.W.; Rinn, H.W.; Inorg. Chem., 1968, 18.
- [48] Wiberg, E.; Amberger, E.; in Hydrides of the Elements of Main Groups I-IV, Ch.5.Elsevier, London, 1971.
- [49] Wiberg, E.; Amberger, E.; in Hydrides of the Elements of Main Groups I-IV, Ch.6.Elsevier, London, **1971**.

- [50] Cucinella, S.; Mazzei, A.; Marconi, W.; Inorg. Chim. Acta Rev., 1970, 4, 51.
- [51] Greenwood, N.N.; Thomas, B.S.; J. Chem. Soc. (A), 1971, 814.
- [52] Lobkovskii, E.B.; Semenenko, K.N.; Zh. Strukt. Khim., 1975, 16, 150.
- [53] Duke, B.J.; Liang, C.; Schaefer, H.F.; J. Am. Chem. Soc.; 1991, 113, 2884.
- [54] Heitsch, C.W.; Nordman, C.E.; Parry, R.W.; Inorg. Chem.; 1962, 2(3), 508.
- [55] Atwood, J.L.; Bennett, F.R.; Elms, F.M.; Jones, C.; Raston, C.L.; Robinson, R.L.; J. Am. Chem. Soc., 1991, 113(21), 8183.
- [56] Andrews, P.C.; Gardiner, M.G.; Raston, C.L.; Tolhirst, V.-A.; *Inorg. Chim. Acta*, 1997, 259, 249.
- [57] Bennett, F.R.; Elms, F.M.; Gardiner, M.G.; Koutsantonis, G.A.; Raston, C.L.; Roberts, N.K.; *Organometallics*, **1992**, 11, 1457.
- [58] Bennett, F.R.; Elms, F.M.; Gardiner, M.G.; Koutsantonis, G.A.; Raston, C.L.; Robinson, K.D.; *Inorg. Chem.*, **1993**, 32, 3482.
- [59] Jones, C; Koutsantonis, G.A.; Raston, C.L; Polyhedron, 1993, 12(15), 1829.
- [60] Harlan, C.J.; Bott, S.G.; Barron, A.R.; J. Chem. Cryst., 1993, 28, 649.
- [61] Atwood, J.L.; Bennett, F.R.; Jones, C.; Koutsantonis, G.A.; Raston, C.L.; Robinson, K.D.; J. Chem. Soc., Chem. Comm., 1992, 541.
- [62] Palenik, G.J.; Acta Cryst., 1964, 17, 1573.
- [63] Atwood, J.L.; Butz, K.W.; Gardiner, M.G.; Jones, C.; Koutsantonis, G.A.; Raston, C.L.; Robinson, K.D.; *Inorg. Chem.*, **1993**, 32(16), 3482.
- [64] Andrews, P.C.; Raston, C.L.; Skelton, B.W.; White, A.H.; Chem. Comm., 1997, 245.
- [65] Atwood, J.L.; Jones, C.; Koutsantonis, G.A.; Raston, C.L..; Robinson, K.D.; J. Chem. Soc., Chem. Comm., 1991, 1607.
- [66] Atwood, J.L.; Koutsantonis, G.A.; Lee, F.-C.; Raston, C.L.; Chem. Comm., 1994, 91.
- [67] Gorrell, I.B.; Hitchcock, P.B.; Smith, J.D.; J. Chem. Soc., Chem. Comm., 1993, 189.
- [68] Campbell, J.; Gladfelter, W.L.; Inorg. Chem.; 1997, 36, 4094.
- [69] Wiberg, E.; Schmidt, M.; Z. Naturforschg., 1951, 6b, 458.

- [70] Wiberg, E.; Schmidt, M.; Z. Naturforschg., 1951, 6b, 459.
- [71] Wiberg, E.; Schmidt, M.; Z. Naturforschg., 1951, 6b, 460.
- [72] Schmidt, D.L.; Flagg, E.E.; Inorg. Chem., 1966, 6(6), 1262.
- [73] Semenenko, K.N.; Fokin, V.N.; Savchenkova, A.P.; Lobkovskii, E.B.; Russ. J. Inorg. Chem.; 1973, 18(7), 926.
- [74] Jones, C.; Junk, P.C.; Cole, M.L.; Main Group Metal Chemistry, 2001, 24(4), 249.
- [75] Krossing I.; Nöth, H.; Schwenk-Kircher, H.; Seifert, T.; Tacke, C.; Eur. J. Inorg. Chem.; 1998, 1925.
- [76] ausgewählte Literatur: (a) Gardiner, M.G.; Koutsantonis, G.A.; Lawrence, S.M.; Raston, C.L.; *Inorg. Chem.*; **1996**, 35, 5696. (b) Qian, B.; Ward, D.L.; Smith, M.R.; *Organometallics*, **1998**, 17, 3070. (c) Aeilts, S.L.; Coles, M.P.; Swenson, D.C.; Jordan, R.F.; *Organometallics*, **1998**, 17, 3265. (d) Kuhn, N.; Fahl, J.; Fuchs, S.; Steimann, M.; Henkel, G.; Maulitz, A.H.; *Z. Anorg. Allg. Chem.*, **1999**, 625, 2108. (e) Stender, M.; Eichler, B.E.; Hardman, N.J.; Power, P.P.; Prust, J.; Noltemeyer, M.; Roesky, H.W.; *Inorg. Chem.*; **2001**, 40, 2794. (f) Kuhn, N.; Fuchs, S.; Steimann, M.; Henkel, **2002**, 628, 458. (g) Burford, N.; D'eon M.; Ragogua, P.J.; McDonald, R.; Ferguson, M.J.; *Inorg. Chem.*; **2004**, 43, 734. (h) Hill, M.S.; Hitchcock, P.B.; Karagouni S.M.A.; *J. Organomet. Chem.*, **2004**, 689, 722.
- [77] Healy, M.D.; Ziller, J.W.; Barron, A.R.; Organometallics, 1992, 11(9), 3041.
- [78] Schulz, S.; Roesky, H.W.; Noltemeyer, M.; Schmidt, H.-G.; J. Chem. Soc., Dalton Trans., 1995, 177.
- [79] Ercolani, C.; Camili, A.; Sartori, C.; J. Chem. Soc. A; 1966, 603.
- [80] Bonamico, M.; Dessy, G.; J. Chem. Soc. A, 1967, 1786.
- [81] Schmidbaur, H.; Hussek, H.; Schindler, F.; Chem. Ber., 1964, 97(1), 255.
- [82] Thewalt, U.; Stollmaier, F.; Angew. Chem. Int. Ed. Engl., 1982, 21(2), 133.
- [83] Bissinger, P.; Mikulcik, P.; Riede, J.; Schier, A.; Schmidbaur, H.; J. Organomet. Chem., 1993, 446, 37.
- [84] Her, T.Y.; Cheng, C.C.; Tsai, J.O.; Lai, Y.Y.; Liu, L.K.; Chang, H.C.; Chen, J.H.; Polyhedron, 1993, 12(7), 731.
- [85] Szumacher, S.; Kunicki, A.R; Madura, I.; Zachara, J.; J. Organomet. Chem., 2003, 682, 196.

- [86] Bélanger-Gariépy, F.; Hoogsten, K.; Sharma, V.; Wuest, J.D.; Inorg. Chem., 1991, 30(22), 4140.
- [87] Pietrzykowski, A.; Skrok, T.; Pasynkiewicz, S.; Brzoska-Mizgalski, M.; Zachara, J.; Anulewicz-Ostrowska, A.; Suwinska, K.; Jerzykiewicz, L.B.; *Inorg. Chim. Acta*, 2002, 334, 385.
- [88] Szumacher, S.; Madura, I.; Zachara, J.; Kunicki, A.R; J. Organomet. Chem., 2000, 613, 119.
- [89] Schmidbaur, H.; Schindler, F.; Chem. Ber., 1964, 97(1), 952.
- [90] Fisher, J.D.; Golden, J.T.; Shapiro, P.J.; Yap, G.P.A.; Rheingold, A.L.; *Main Group Metal Chem.*, **1996**, 19(8), 521.
- [91] Kunicki A.; Topszewski, J.; Szumacher, S.; Cebulski, A.; *Main Group Metal Chem.*, 2000, 23(12), 773.
- [92] Rhine, W.E.; Eyman, D.P.; Schauer, S.J.; Polyhedron, 1999, 18, 905.
- [93] Wolfanger, H.; "*Neue Aluminium- und Galliumalkoxide und Aluminiumhydridoalkoxide*", Saarbrücken, Universität des Saarlandes, Dissertation, **1991**.
- [94] Pasynkiewicz, S.; Starowieyski, K.B.; Skowronska-Ptasinska M.; J. Organomet. Chem., 1973, 52, 269.
- [95] Rogers, J.H.; Apblett, A.W.; Cleaver, W.A.; J. Chem. Soc., Dalton Trans., 1992, 22, 3179.
- [96] Kunicki, A.; Kosinska, W.; Boleslawski, M.; Pasynkiewicz, S.; J. Organomet. Chem.; 1977, 141, 283.
- [97] Skowronska-Ptasinska M.; Pasynkiewicz, S.; Sieczek, E.; J. Organomet. Chem., 1981, 206(1), 1.
- [98] Wiberg, E.; Graf, H.; Schmidt, M.; Usón, R.; Z. Naturforsch.; 1952, 7b, 578.
- [99] Doriat, C.; Köppe, R.; Baum E.; Stösser G.; Köhnlein, H.; Schnöckel, H.; Inorg. Chem., 2000, 39, 1534.
- [100] CRC Handbook of Chemistry and Physics, 53rd ed., 1972-1973.
- [101] Bissinger, P.; Paul, M.; Riede, J.; Schmidbaur, H.; Chem. Ber., 1993, 126, 2579.
- [102] Alexander, M.R.; Mair, F.S.; Pritchard R.G.; Warren, J.E.; Appl. Organomet. Chem., 2003, 17(9), 730.

- [103] Riedel, R.; Schaible, S.; Z. Anorg. Allg. Chem., 1991, 603, 119.
- [104] Dümichen, U.; Gelbrich, T.; Sieler, J.; Z. Anorg. Allg. Chem., 1999, 625, 262.
- [105] Belgardt, T.; Storre, J.; Klemp, A.; Gornitzka, H.; Haming, L.; Schmidt, H.G.; Roesky, H.W.; J. Chem. Soc.; Dalton Trans., 1995, 3747.
- [106] Zajac, W.W.; Byrne, K.J.; J. Organomet. Chem., 1973, 38(2), 384.
- [107] Ashby, E.C.; Prather, J.; J. Am. Chem. Soc., 1966, 88(4), 729.
- [108] Neumann, F.; Hampel, F.; v.Ragué Schleyer, P.; Inorg. Chem., 1995, 34, 6553.
- [109] Beattie, J.K.; de Bruyn, H.; Vib. Spec., 1995, 8(3), 461.
- [110] Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C.; Chem. Phys. Lett., 1989, 162(3), 165.
- [111] Häser, M.; J. Chem. Phys., 1991, 95(11), 8259.
- [112]Becke, A.D.; J. Chem. Phys., 1993, 98(7), 5648.
- [113] Lee, C.; Yang, W.; Parr, R.G.; Phys. Rev. B, 1991, 37, 785.
- [114] Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H.; Chem. Phys. Lett., 1989, 157(3), 200.
- [115] Häser, M.; Theo. Chem. Acc., 1993, 87(1-2), 147.
- [116] Werner, H.-J.; Manby, F.R.; Knowles, P.J.; J. Chem. Phys., 2003, 118(18), 8149.
- [117] Becke, A.D.; Phys. Rev A, 1988, 38(5), 3098.
- [118] Perdew, J.P.; Phys. Rev. B, 1986, 33(12), 8822.
- [119] Perdew, J.P., Phys. Rev B, 1986, 34(10), 7406.
- [120] Wiberg, E.; May, A.; Z. Naturforschg., 1955, 10b, 229.
- [121] Kovar, R.A.; Ashby, E.C.; Inorg. Chem.; 1971, 10, 893.
- [122] Schomburg, G.; Hoffmann, E.G.; Z. Elektrochem., 1957, 61(2), 1110.
- [123] Pillong, F.J.; "Aminoalane und deren Einsatz in der Metal Organic Chemical Vapour Deposition (MOCVD)", Universität des Saarlandes, Saarbrücken, Dissertation, **1999**.

- [124] Bunshah, R.F.; "Handbook of Deposition Technologies for films and coatings", Noyes Publ., 2nd ed., 1994.
- [125] Pierson, H.O.; Handbook of Chemical Vapor Deposition (CVD), Noyes Publ., 2nd ed., 1997.
- [126] Yoshida, S.; Misawa, S.; Fuji, Y.; Takada, S.; Hayakawa, H.; Gonda, S.; Itoh, A.; J. Vac. Sci. Technol., 1979, 16, 990.
- [127] Hamden-Smith, M.J.; Kodas, T.T.; Chem. Vap. Deposition, 1995, 1, 8.
- [128] Kneip, Universität des Saarlandes, Saarbrücken, Dissertation.
- [129] Veith, M.; Lecerf, N.; Marthur, S.; Shen, H.; Hüfner, S.; Chem. Mat., 11, 1999, 3103.
- [130] Veith, M.; Marthur, S.; Lecerf, N.; Bartz, K.; Heintz, M.; Huch, V.; Chem. Mater., 2000, 12, 271.
- [131] Marthur, S.; Veith, M.; Sivakov, V.; Shen, H.; Gao, H.B.; J. Phys. IV, 11, 2001,487.
- [132] Kodas, T.; Hampden-Smith, M.J.; " *The Chemistry of Metal CVD*", Wiley-VCH, 1994.
- [133] Haanappel, V.A.C.; vanCorbach, H.D.; Franzen, T.; Surf. Coat. Tech., 1995, 72, 13.
- [134] Veith, M.; Altherr, A.; Wolfanger, H.; Chem. Vap. Deposition, 1999, 5(2), 87.
- [135] Veith, M.; Köhler, N.; *Electrochem. Soc. Proc.*, 2005, EURO-CVD, 09, 768.
- [136] Tarte, P. "IR Spectra of Inorganic Aluminates and Characteristic Vibrational Frequencies of AlO₄ tetrahedra and AlO₆ Octahedra", *Spectrochim. Acta*, **1967**, 23A, 2127.
- [137] Sow, E., Universität des Saarlandes, Dissertation, 2008, im Druck.
- [138] Komatsu, K.; Kuribayashi, T.; Sano, A.; Ohtani, E.; Kudoh, Y., Acta Crystall. Sec. E, 2006, E62, i216.
- [139] Kirs, T.; Saarbrücken, Universität des Saarlandes, Diplomarbeit, 2007.
- [140] Autorenkollektiv, Organikum, 19. Aufl. Dt. Verl. der Wiss., Leipzig, Berlin, Heidelberg, **1993**, 659-681.
- [141] Komplexometrische Bestimmungsmethoden mit Titriplex, Merck., 3.. Auflage.

- [142] Gerdes, E.; Qualitative Anorganische Analyse, Verlag Vieweg, 1995
- [143] Veith, M.; Bärnighausen, H.; Acta Crystallogr. B, 1974, 30, 1806-1813.
- [144] G. Sheldrick, Programm for Crystal Structure Solution, Version SHELXS86, Göttingen **1990.**
- [145] G. Sheldrick, Programm for Crystal Structure Determination, Version SHELXL93, Göttingen **1990.**
- [146] Klaus Brandenburg, Diamond Version 3.1d, Crystal and Molecular Structure Visualization, Copyright Crystal Impact GbR, **1997-2006.**

8 ANHANG

8.1 Daten zur Molekül- und Kristallstruktur von [Cl₂Al(O^tBu)]₂ 2

Tab. 8.1: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å²x 10³) für <u>2</u>. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

	Х	У	Z	U(eq)
Cl(1)	6819(3)	757(3)	679(3)	83(1)
Cl(2)	9317(3)	-751(3)	3180(2)	84(1)
Al(3)	8952(3)	0(3)	1045(2)	56(1)
O(1)	10442(6)	1011(5)	449(5)	61(2)
C(1)	11113(1)	2207(9)	1108(1)	76(3)
C(2)	12267(2)	1757(1)	2300(1)	125(5)
C(3)	9917(2)	2922(1)	1851(2)	132(6)
C(4)	11841(2)	2942(1)	-73(14)	139(6)
Cl(1)	6819(3)	757(3)	679(3)	83(1)
Cl(2)	9317(3)	-751(3)	3180(2)	84(1)
Al(3)	8952(3)	0(3)	1045(2)	56(1)

Tab. 8.2: Bindungslängen [Å] und -winkel [°] für <u>2</u>.

Cl(1)-Al(3)	2.105(4)	O(1)-C(1)	1.498(1)
Cl(2)-Al(3)	2.103(3)	O(1)-Al(3)#1	1.815(5)
Al(3)-O(1)	1.810(6)	C(1)-C(4)	1.489(1)
Al(3)-O(1)#1	1.815(5)	C(1)-C(3)	1.495(1)
Al(3)-Al(3)#1	2.735(4)	C(1)-C(2)	1.550(2)
O(1)-Al(3)-O(1)#1	82.1(3)	Cl(1)-Al(3)-Al(3)#1	123.34(2)
O(1)-Al(3)-Cl(2)	113.3(2)	C(1)-O(1)-Al(3)	131.2(4)
O(1)#1-Al(3)-Cl(2)	115.6(2)	C(1)-O(1)-Al(3)#1	130.3(5)
O(1)-Al(3)-Cl(1)	115.5(2)	Al(3)-O(1)-Al(3)#1	97.9(3)
O(1)#1-Al(3)-Cl(1)	113.5(2)	C(4)-C(1)-C(3)	114.7(1)
Cl(2)-Al(3)-Cl(1)	113.41(1)	C(4)-C(1)-O(1)	108.7(7)
O(1)-Al(3)-Al(3)#1	41.11(2)	C(3)-C(1)-O(1)	107.4(8)
O(1)#1-Al(3)-Al(3)#1	40.96(2)	C(4)-C(1)-C(2)	110.5(1)
Cl(2)-Al(3)-Al(3)#1	123.25(2)	C(3)-C(1)-C(2)	108.6(1)

8.2 Daten zur Molekül- und Kristallstruktur von [Br₂Al(O^tBu)]₂ <u>3</u>

iur <u>5</u> . U(eq) wird berechnet als ein Dritter der Spur des orthogonansierten US Tensors.						
	X	У	Z	U(eq)		
Br(1)	8569(1)	2227(1)	8900(1)	51(1)		
Br(2)	8264(1)	152(1)	11336(1)	54(1)		
Br(3)	13491(1)	4436(2)	11579(1)	63(1)		
Br(4)	14187(1)	1815(1)	9582(1)	72(1)		
Al(1)	9168(2)	613(3)	10060(2)	31(1)		
Al(2)	14393(2)	4009(3)	10296(2)	35(1)		
O(2)	14448(5)	5447(7)	9366(5)	35(2)		
O(1)	10331(4)	986(6)	10465(5)	31(2)		
C(1)	10769(7)	2300(1)	10983(9)	42(3)		
C(2)	10049(9)	3033(1)	11560(1)	75(5)		
C(3)	11544(1)	1760(2)	11680(1)	75(4)		
C(4)	11075(1)	3241(1)	10128(1)	72(4)		
C(5)	13790(8)	5923(1)	8522(9)	50(3)		
C(6)	12856(8)	5633(2)	8836(1)	60(3)		
C(7)	13965(1)	5043(2)	7560(1)	79(5)		
C(8)	13944(1)	7520(2)	8364(2)	113(8)		

Tab. 8.3: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å²x 10^3) für <u>3</u>. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

Tab.	8.4:	Bindungslängen	[Å] und	-winkel	[°]	für	<u>3</u> .
------	------	----------------	---------	---------	-----	-----	------------

Br(1)-Al(1)	2.268(3)	O(2)-C(5)	1.490(1)
Br(2)-Al(1)	2.251(3)	O(2)-Al(2)#2	1.820(7)
Br(3)-Al(2)	2.251(3)	O(1)-C(1)	1.520(1)
Br(4)-Al(2)	2.252(3)	O(1)-Al(1)#1	1.817(7)
Al(1)-O(1)	1.806(7)	C(1)-C(3)	1.500(2)
Al(1)-O(1)#1	1.817(7)	C(1)-C(4)	1.510(2)
Al(1)-Al(1)#1	2.737(6)	C(1)-C(2)	1.510(2)
Al(2)-O(2)	1.810(7)	C(5)-C(6)	1.500(2)
Al(2)-O(2)#2	1.820(7)	C(5)-C(8)	1.520(2)
Al(2)-Al(2)#2	2.725(6)	C(5)-C(7)	1.530(2)
O(1)-Al(1)-O(1)#1	81.8(3)	Br(4)-Al(2)-Al(2)#2	124.60(2)
O(1)-Al(1)-Br(2)	115.4(3)	C(5)-O(2)-Al(2)	131.1(6)
O(1)#1-Al(1)-Br(2)	113.9(2)	C(5)-O(2)-Al(2)#2	131.3(6)
O(1)-Al(1)-Br(1)	113.1(2)	Al(2)-O(2)-Al(2)#2	97.3(3)
O(1)#1-Al(1)-Br(1)	116.1(3)	C(1)-O(1)-Al(1)	131.0(6)
Br(2)-Al(1)-Br(1)	113.10(1)	C(1)-O(1)-Al(1)#1	130.5(6)
O(1)-Al(1)-Al(1)#1	41.1(2)	Al(1)-O(1)-Al(1)#1	98.2(3)
O(1)#1-Al(1)-Al(1)#1	40.8(2)	C(3)-C(1)-C(4)	112.5(1)
Br(2)-Al(1)-Al(1)#1	123.40(2)	C(3)-C(1)-C(2)	112.8(1)
Br(1)-Al(1)-Al(1)#1	123.50(2)	C(4)-C(1)-C(2)	111.5(1)

O(2)-Al(2)-O(2)#2	82.7(3)	C(3)-C(1)-O(1)	106.7(8)		
O(2)-Al(2)-Br(3)	115.1(3)	C(4)-C(1)-O(1)	106.2(9)		
O(2)#2-Al(2)-Br(3)	111.9(3)	C(2)-C(1)-O(1)	106.6(9)		
O(2)-Al(2)-Br(4)	113.6(3)	O(2)-C(5)-C(6)	108.5(9)		
O(2)#2-Al(2)-Br(4)	116.8(3)	O(2)-C(5)-C(8)	107.0(1)		
Br(3)-Al(2)-Br(4)	113.30(1)	C(6)-C(5)-C(8)	111.3(1)		
O(2)-Al(2)-Al(2)#2	41.5(2)	O(2)-C(5)-C(7)	107.9(1)		
O(2)#2-Al(2)-Al(2)#2	41.2(2)	C(6)-C(5)-C(7)	109.9(1)		
Symmetrieoperationen zur Erzeugung äggivalenter Atome: #1 -x+2yz+2 #2 -x+3y+1z+2					

Tab. 8.5: U^{ij}-Werte (Å²x 10³) des Temperaturfaktors exp: (-2*π*²[h² a*²U¹¹ + ... + 2 h k a* b* U¹²])

					10	1.
	U ¹¹	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Br(1)	57(1)	47(1)	50(1)	11(1)	0(1)	13(1)
Br(2)	48(1)	59(1)	57(1)	9(1)	21(1)	3(1)
Br(3)	50(1)	83(1)	57(1)	-6(1)	16(1)	-13(1)
Br(4)	95(1)	36(1)	84(1)	-12(1)	-1(1)	-16(1)
Al(1)	32(2)	26(1)	34(2)	-1(1)	4(1)	3(1)
Al(2)	35(2)	31(2)	39(2)	3(1)	4(1)	-7(1)
O(2)	33(4)	27(3)	44(4)	7(3)	-2(3)	-5(3)
O(1)	26(3)	23(3)	42(4)	-4(3)	-4(3)	-4(3)
C(1)	41(6)	30(5)	55(7)	-16(5)	-9(5)	-6(5)
C(2)	56(8)	63(8)	107(1)	-54(8)	11(8)	-11(7)
C(3)	61(9)	66(8)	95(1)	-28(8)	-15(8)	-4(7)
C(4)	80(1)	35(6)	100(1)	-11(7)	9(9)	-23(7)
C(5)	45(7)	54(7)	51(7)	15(6)	1(6)	2(6)
C(6)	33(6)	89(9)	57(8)	13(7)	1(6)	6(7)
C(7)	65(9)	124(13)	46(8)	-3(8)	-8(7)	8(9)
C(8)	81(1)	75(1)	180(2)	70(1)	-47(1)	-5(9)
8.3 Daten zur Molekül- und Kristallstruktur von [I2Al(O^tBu)]2 4

Tab. 8.6. Atomkoor	dinaten (x 10 ⁴) und	äquivalente isotrope	Auslenkungsparamet	ter (Å ² x 10 ³)		
für <u>4</u> . U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U ^{ij} Tensors.						

	X	У	Z	U(eq)
I(1)	7939(1)	6692(1)	9796(1)	34(1)
I(2)	3498(1)	8337(1)	7606(1)	36(1)
Al	5353(1)	8754(1)	9351(1)	20(1)
0	5731(2)	10862(2)	9050(2)	21(1)
C(1)	6816(3)	11879(3)	7946(3)	28(1)
C(2)	6771(5)	11397(4)	6581(3)	46(1)
C(3)	8559(4)	11500(5)	8520(4)	52(1)
C(4)	6092(4)	13678(4)	7748(4)	45(1)
C(5)	838(7)	5146(9)	6039(7)	33(1)
C(6)	1431(1)	2790(1)	4871(9)	49(2)
C(7A)	394(8)	4032(9)	4825(7)	42(1)
C(7B)	-880(2)	6890(3)	5420(2)	45(4)
C(8A)	1670(8)	3589(9)	5877(8)	51(1)
C(9A)	69(1)	6154(1)	6082(1)	56(2)
C(8B)	914(8)	4633(1)	5902(8)	33(1)
C(9B)	1138(2)	2333(2)	4525(1)	51(2)
I(1)	7939(1)	6692(1)	9796(1)	34(1)

Tab. 8.7: Bindungslängen [Å] und -winkel [°] für <u>3</u>.

I(1)-Al	2.4853(7)	C(7A)- C(5)#2	1.329(8)
I(2)-A1	2.4920(7)	C(7A)- C(8B)	1.410(1)
Al- O#1	1.812(2)	C(7A)- C(8A)	1.443(9)
Al- O	1.816(2)	C(7A)- C(8B)#2	1.480(9)
Al- Al#1	2.733(1)	C(7A)- C(9B)	1.574(1)
O- C(1)	1.505(3)	C(7A)- C(7A)#2	1.790(1)
O- Al#1	1.812(2)	C(7B)- C(6)#2	0.540(2)
C(1)- C(2)	1.504(4)	C(7B)- C(9B)#2	0.68(2)
C(1)- C(3)	1.513(4)	C(7B)- C(7A)#2	0.91(2)
C(1)- C(4)	1.515(4)	C(7B)- C(9A)	1.04(2)
C(5)- C(9A)	0.986(1)	C(7B)- C(8A)#2	1.64(2)
C(5)- C(7A)#2	1.329(8)	C(8A)- C(8B)	1.001(9)
C(5)- C(8A)	1.433(1)	C(8A)- C(7B)#2	1.64(2)
C(5)- C(7A)	1.803(9)	C(8A)- C(9B)	2.030(2)
C(5)- C(7B)	1.86(2)	C(9A)- C(7A)#2	1.049(1)
C(6)- <u>C(7B)</u> #2	0.543(2)	C(9A)- C(8B)	1.416(1)
C(6)- C(9B)	0.663(1)	C(9A)- C(9B)#2	1.490(2)
C(6)- C(7A)	1.233(1)	C(9A)- C(6)#2	1.580(1)
C(6)- C(8A)	1.385(1)	C(8B)- C(7A)#2	1.480(9)

C(6)- C(9A)#2	1.580(1)	C(9B)- C(7B)#2	0.68(2)
C(7A)- C(7B)#2	0.91(2)	C(9B)- C(9A)#2	1.490(2)
C(7A)- C(9A)#2	1.049(1)		
O#1-Al-O	82.23(8)	C(8B)#2-C(7A)-C(7A)#2	50.1(4)
O#1-Al-I(1)	114.77(6)	C(9B)-C(7A)-C(7A)#2	178.4(8)
O-Al-I(1)	113.38(6)	C(7B)#2-C(7A)-C(5)	136.2(1)
O#1-Al-I(2)	114.19(6)	C(9A)#2-C(7A)-C(5)	157.9(8)
O-Al-I(2)	115.08(6)	C(6)-C(7A)-C(5)	112.5(6)
I(1)-Al-I(2)	113.62(3)	C(5)#2-C(7A)-C(5)	112.3(5)
O#1-Al-Al#1	41.18(5)	C(8B)-C(7A)-C(5)	10.3(4)
O-Al-Al#1	41.06(5)	C(8A)-C(7A)-C(5)	50.9(4)
I(1)-Al-Al#1	122.78(4)	C(8B)#2-C(7A)-C(5)	93.5(5)
I(2)-Al-Al#1	123.59(4)	C(9B)-C(7A)-C(5)	135.3(6)
C(1)-O-Al#1	130.60(2)	C(7A)#2-C(7A)-C(5)	43.4(4)
C(1)-O-Al	131.00(2)	C(6)#2-C(7B)-C(9B)#2	65(3)
Al#1-O-Al	97.77(8)	C(6)#2-C(7B)-C(7A)#2	114(4)
C(2)-C(1)-O	107.6(2)	C(9B)#2-C(7B)-C(7A)#2	167(3)
C(2)-C(1)-C(3)	111.9(3)	C(6)#2-C(7B)-C(9A)	171(4)
O-C(1)-C(3)	107.3(2)	C(9B)#2-C(7B)-C(9A)	119(3)
C(2)-C(1)-C(4)	111.0(3)	C(7A)#2-C(7B)-C(9A)	64.6(2)
O-C(1)-C(4)	107.6(2)	C(6)#2-C(7B)-C(8A)#2	53(2)
C(3)-C(1)-C(4)	111.2(3)	C(9B)#2-C(7B)-C(8A)#2	116(3)
C(9A)-C(5)-C(8A)	168.5(8)	C(7A)#2-C(7B)-C(8A)#2	61.1(1)
C(7A)#2-C(5)-C(8A)	119.1(7)	C(9A)-C(7B)-C(8A)#2	125(2)
C(9A)-C(5)-C(7A)	118.3(7)	C(6)#2-C(7B)-C(5)	155(3)
C(7A)#2-C(5)-C(7A)	67.7(5)	C(9B)#2-C(7B)-C(5)	140(3)
C(8A)-C(5)-C(7A)	51.4(4)	C(7A)#2-C(7B)-C(5)	41.9(1)
C(9A)-C(5)-C(7B)	24.2(9)	C(9A)-C(7B)-C(5)	22.8(9)
C(7A)#2-C(5)-C(7B)	27.2(7)	C(8A)#2-C(7B)-C(5)	102.9(1)
C(8A)-C(5)-C(7B)	146.1(8)	C(8B)-C(8A)-C(6)	119.3(8)
C(7A)-C(5)-C(7B)	94.7(8)	C(8B)-C(8A)-C(5)	10.6(5)
C(7B)#2-C(6)-C(9B)	67(2)	C(6)-C(8A)-C(5)	128.9(7)
C(7B)#2-C(6)-C(7A)	42(3)	C(8B)-C(8A)-C(7A)	67.7(6)
C(9B)-C(6)-C(7A)	108.5(2)	C(6)-C(8A)-C(7A)	51.6(5)
C(7B)#2-C(6)-C(8A)	109(3)	C(5)-C(8A)-C(7A)	77.6(5)
C(9B)-C(6)-C(8A)	163.1(2)	C(8B)-C(8A)-C(7B)#2	101.2(1)
C(7A)-C(6)-C(8A)	66.6(6)	C(6)-C(8A)-C(7B)#2	18.2(8)
C(7B)#2-C(6)-C(9A)#2	6(2)	C(5)-C(8A)-C(7B)#2	111.0(9)
C(9B)-C(6)-C(9A)#2	69.9(2)	C(7A)-C(8A)-C(7B)#2	33.4(7)
C(7A)-C(6)-C(9A)#2	41.5(5)	C(8B)-C(8A)-C(9B)	118.1(8)
C(8A)-C(6)-C(9A)#2	108.0(7)	C(6)-C(8A)-C(9B)	5.5(5)
C(7B)#2-C(7A)-C(9A)#2	63.8(1)	C(5)-C(8A)-C(9B)	128.2(6)
C(7B)#2-C(7A)-C(6)	23.7(1)	C(7A)-C(8A)-C(9B)	50.5(5)
C(9A)#2-C(7A)-C(6)	87.3(8)	C(7B)#2-C(8A)-C(9B)	17.5(8)
C(7B)#2-C(7A)-C(5)#2	111.0(1)	C(5)-C(9A)-C(7B)	132.9(2)
C(9A)#2-C(7A)-C(5)#2	47.2(6)	C(5)-C(9A)-C(7A)#2	81.5(9)

C(6)-C(7A)-C(5)#2	134.5(8)	C(7B)-C(9A)-C(7A)#2	51.5(1)
C(7B)#2-C(7A)-C(8B)	126.5(1)	C(5)-C(9A)-C(8B)	11.0(5)
C(9A)#2-C(7A)-C(8B)	168.1(9)	C(7B)-C(9A)-C(8B)	123.5(2)
C(6)-C(7A)-C(8B)	102.8(7)	C(7A)#2-C(9A)-C(8B)	72.0(7)
C(5)#2-C(7A)-C(8B)	122.4(6)	C(5)-C(9A)-C(9B)#2	154.3(1)
C(7B)#2-C(7A)-C(8A)	85.5(14)	C(7B)-C(9A)-C(9B)#2	23.4(1)
C(9A)#2-C(7A)-C(8A)	148.6(9)	C(7A)#2-C(9A)-C(9B)#2	74.4(8)
C(6)-C(7A)-C(8A)	61.8(5)	C(8B)-C(9A)-C(9B)#2	146.3(9)
C(5)#2-C(7A)-C(8A)	163.1(7)	C(5)-C(9A)-C(6)#2	132.7(9)
C(8B)-C(7A)-C(8A)	41.0(4)	C(7B)-C(9A)-C(6)#2	3.1(12)
C(7B)#2-C(7A)-C(8B)#2	129.3(2)	C(7A)#2-C(9A)-C(6)#2	51.2(6)
C(9A)#2-C(7A)-C(8B)#2	65.6(7)	C(8B)-C(9A)-C(6)#2	122.9(7)
C(6)-C(7A)-C(8B)#2	152.1(8)	C(9B)#2-C(9A)-C(6)#2	24.7(5)
C(5)#2-C(7A)-C(8B)#2	19.0(4)	C(8A)-C(8B)-C(7A)	71.3(7)
C(8B)-C(7A)-C(8B)#2	103.6(6)	C(8A)-C(8B)-C(9A)	169.7(9)
C(8A)-C(7A)-C(8B)#2	144.1(7)	C(7A)-C(8B)-C(9A)	118.6(6)
C(7B)#2-C(7A)-C(9B)	5.5(14)	C(8A)-C(8B)-C(7A)#2	146.9(9)
C(9A)#2-C(7A)-C(9B)	65.7(8)	C(7A)-C(8B)-C(7A)#2	76.4(6)
C(6)-C(7A)-C(9B)	23.5(5)	C(9A)-C(8B)-C(7A)#2	42.4(5)
C(5)#2-C(7A)-C(9B)	112.3(7)	C(6)-C(9B)-C(7B)#2	47.8(2)
C(8B)-C(7A)-C(9B)	125.2(7)	C(6)-C(9B)-C(9A)#2	85.3(2)
C(8A)-C(7A)-C(9B)	84.4(6)	C(7B)#2-C(9B)-C(9A)#2	38(2)
C(8B)#2-C(7A)-C(9B)	131.1(7)	C(6)-C(9B)-C(7A)	48.0(1)
C(7B)#2-C(7A)-C(7A)#2	173.6(2)	C(7B)#2-C(9B)-C(7A)	7.5(2)
C(9A)#2-C(7A)-C(7A)#2	115.4(8)	C(9A)#2-C(9B)-C(7A)	39.9(5)
C(6)-C(7A)-C(7A)#2	155.0(8)	C(6)-C(9B)-C(8A)	11.5(1)
C(5)#2-C(7A)-C(7A)#2	68.9(5)	C(7B)#2-C(9B)-C(8A)	47(2)
C(8B)-C(7A)-C(7A)#2	53.6(5)	C(9A)#2-C(9B)-C(8A)	84.6(7)
C(8A)-C(7A)-C(7A)#2	94.4(6)	C(7A)-C(9B)-C(8A)	45.1(4)
Symmetrieoperationen zur Erz	zeugung äquivalent	er Atome: #1 -x+2,-y,-z+2 #2	2-x+3,-y+1,-z+2

Tab. 8.8: U^{ij} -Werte (Å²x 10³) des Temperaturfaktors exp: (-2 π^2 [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²])

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U^{12}
I(1)	32(1)	29(1)	39(1)	-11(1)	-5(1)	7(1)
I(2)	47(1)	34(1)	33(1)	-11(1)	-15(1)	-11(1)
Al	23(1)	18(1)	20(1)	-6(1)	-2(1)	-4(1)
0	23(1)	21(1)	21(1)	-5(1)	3(1)	-8(1)
C(1)	30(2)	27(1)	26(2)	-3(1)	6(1)	-13(1)
C(2)	64(2)	50(2)	28(2)	-11(1)	15(1)	-27(2)
C(3)	34(1)	65(2)	51(2)	0(2)	2(3)	-22(1)
C(4)	59(2)	29(2)	46(2)	-5(1)	12(2)	-19(1)

8.4 Daten zur Molekül- und Kristallstruktur von [ClAl(H)(O^tBu)]₂ 5

Tab. 8.9: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenkungsparameter (Å ² x 10^3)
für <u>5</u> . U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U ^{ij} Tensors.

	X	У	Z	U(eq)
Cl(1)	2550(1)	7309(1)	4945(1)	79(1)
Al(1)	3404(1)	5424(1)	5323(1)	48(1)
O(1)	4019(3)	4696(2)	3923(2)	44(1)
C(1)	2766(4)	4141(3)	2670(3)	55(1)
C(2)	1063(5)	5011(4)	2156(4)	69(1)
C(3)	3945(7)	4067(5)	1690(4)	99(2)
C(4)	2118(7)	2879(4)	3037(5)	93(2)
Cl(1)	2550(1)	7309(1)	4945(1)	79(1)

Tab. 8.10: Bindungslängen [Å] und -winkel [°] für 5

Cl(1)-Al(1)	2.119(1)	O(1)-Al(1)#1	1.830(2)
Al(1)-O(1)	1.813(2)	C(1)-C(3)	1.508(5)
Al(1)-O(1)#1	1.830(2)	C(1)-C(4)	1.516(5)
Al(1)-Al(1)#1	2.758(2)	C(1)-C(2)	1.527(5)
O(1)-C(1)	1.488(4)		
O(1)-Al(1)-O(1)#1	81.61(1)	Al(1)-O(1)-Al(1)#1	98.40(1)
O(1)-Al(1)-Cl(1)	112.87(8)	O(1)-C(1)-C(3)	106.4(3)
O(1)#1-Al(1)-Cl(1)	111.09(8)	O(1)-C(1)-C(4)	107.2(3)
O(1)-Al(1)-Al(1)#1	41.04(7)	C(3)-C(1)-C(4)	113.6(4)
O(1)#1-Al(1)-Al(1)#1	40.57(6)	O(1)-C(1)-C(2)	107.6(3)
Cl(1)-Al(1)-Al(1)#1	119.63(6)	C(3)-C(1)-C(2)	111.2(3)
C(1)-O(1)-Al(1)	129.90(2)	C(4)-C(1)-C(2)	110.5(3)
C(1)-O(1)-Al(1)#1	130.70(2)		
Symmetrieoperationen zu	r Erzeugung äquivalenter At	ome: #1 -x+2 -y -z+2 #2 -	x+3 -v+1 -z+2
Symmetricoperationen zu	Eizeugung uquivulentei M	(110, 11, 12, 12, 12, 12, 12)	, j · 1, Z · 2

Tab. 8.11. U ^{ij} -Werte	e (Å ² x 10 ³) des	Temperaturfaktors	exp: $(-2\pi^2)$ h ² a ³	$*^{2}U^{11} + $	2 h k a* b* U ¹²])
-----------------------------------	---	-------------------	--	--	--------------------------------

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl	73(1)	63(1)	91(1)	-14(1)	7(1)	22(1)
Al	41(1)	54(1)	49(1)	-7(1)	14(1)	2(1)
O(1)	41(1)	48(1)	41(2)	-8(1)	8(1)	0(1)
C(1)	55(2)	57(2)	44(2)	-10(1)	1(1)	-1(2)
C(2)	62(2)	81(2)	52(2)	-2(3)	-3(2)	4(2)
C(3)	91(3)	152(5)	52(2)	-37(3)	19(2)	5(3)
C(4)	97(3)	59(2)	92(3)	-8(2)	-25(2)	-19(2)

8.5 Daten zur Molekül- und Kristallstruktur von [BrAl(H)(O^tBu)]₂6

Tab. 8.12: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å²x 10³) für $\underline{6}$. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

	X	У	Z	U(eq)
Br	2647(1)	2080(1)	201(1)	50(1)
Al	1621(2)	4479(2)	-276(1)	29(1)
O(1)	818(4)	5506(3)	847(3)	29(1)
C(1)	1874(6)	6344(5)	1819(4)	37(1)
C(2)	3518(7)	5371(7)	2279(5)	59(2)
C(3)	620(7)	6547(6)	2651(4)	48(1)
C(4)	2469(8)	7852(6)	1396(6)	54(2)
Br	2647(1)	2080(1)	201(1)	50(1)

Tab. 8.13: Bindungslängen [Å] und -winkel [°] für 6.

Br-Al	2.295(1)	O(1)-Al#1	1.829(3)
Al-O(1)	1.821(3)	C(1)-C(3)	1.498(7)
Al-O(1)#1	1.829(3)	C(1)-C(2)	1.521(7)
Al-Al#1	2.769(3)	C(1)-C(4)	1.522(7)
O(1)-C(1)	1.496(5)		
O(1)-Al-O(1)#1	81.30(2)	Al-O(1)-Al#1	98.70(2)
O(1)-Al-Br	114.20(1)	O(1)-C(1)-C(3)	106.6(4)
O(1)#1-Al-Br	111.60(1)	O(1)-C(1)-C(2)	106.8(4)
O(1)-Al-Al#1	40.74(9)	C(3)-C(1)-C(2)	112.0(4)
O(1)#1-Al-Al#1	40.54(1)	O(1)-C(1)-C(4)	108.2(4)
Br-Al-Al#1	120.86(8)	C(3)-C(1)-C(4)	111.9(4)
C(1)-O(1)-Al	129.9(3)	C(2)-C(1)-C(4)	110.9(4)
C(1)-O(1)-Al#1	130.4(3)		

Symmetrieoperationen zur Erzeugung äquivalenter Atome: #1 -x+2,-y,-z+2 #2 -x+3,-y+1,-z+2

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br	58(1)	35(1)	54(1)	5(1)	5(1)	19(1)
Al	28(1)	27(1)	30(1)	-1(1)	3(1)	4(1)
O(1)	32(2)	27(2)	26(2)	-6(1)	-1(1)	2(1)
C(1)	39(2)	34(2)	35(3)	-15(2)	-2(2)	-5(2)
C(2)	44(3)	76(4)	47(4)	-16(3)	-17(3)	2(3)
C(3)	55(3)	55(3)	34(3)	-14(3)	8(2)	-9(3)
C(4)	62(3)	46(3)	54(4)	-11(3)	10(3)	-24(3)

Tab. 8.14: U ^{ij} -Werte (Å ² x 10 ³) des Temperaturfaktors exp: (- $2\pi^2$ h	1 ² a* ² U ¹¹ + + 2 h k a* b* U ¹²])
--	---

	Х	У	Z	U(eq)
H(1)	2990(4)	5190(4)	-860(3)	27(1)
H(2A)	3110	4416	2521	88
H(2B)	4242	5876	2901	88
H(2C)	4237	5206	1704	88
H(3A)	-405	7153	2327	72
H(3B)	1262	7041	3307	72
H(3C)	199	5576	2854	72
H(4A)	3299	7677	884	81
H(4B)	3065	8441	2018	81
H(4C)	1420	8388	1020	81
H(1)	2990(4)	5190(4)	-860(3)	27(1)
H(2A)	3110	4416	2521	88
H(2B)	4242	5876	2901	88
H(2C)	4237	5206	1704	88
H(3A)	-405	7153	2327	72
H(3B)	1262	7041	3307	72

Tab. 8.15: Wasserstoffkoordinaten (x 10^4) und isotrope Auslenkungsparameter (Å²x 10^3)

8.6 Daten zur Molekül- und Kristallstruktur von [IAl(H)(O^tBu)]₂ 7

Tab. 8.16: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å²x 10³) für <u>7</u>. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

	Х	У	Z	U(eq)
Ι	7789(1)	6879(1)	132(1)	22(1)
Al	6611(1)	9527(1)	-302(1)	12(1)
O(1)	5814(2)	10475(1)	841(1)	12(1)
C(1)	6867(2)	11260(2)	1792(1)	16(1)
C(2)	5614(3)	11407(3)	2643(1)	21(1)
C(3)	8509(3)	10286(3)	2216(2)	26(1)
C(4)	7432(3)	12806(3)	1413(2)	26(1)

I-Al	2.5142(6)	O(1)- Al#1	1.817(1)
Al- O(1)#1	1.817(1)	C(1)-C(3)	1.513(3)
Al-O(1)	1.827(1)	C(1)- C(4)	1.521(3)
Al-Al#1	2.756(1)	C(1)- C(2)	1.525(2)
O(1)-C(1)	1.475(2)		
O(1)#1-Al-O(1)	81.74(5)	Al#1-O(1)-Al	98.26(5)
O(1)#1-Al-I	111.56(4)	O(1)-C(1)-C(3)	107.70(1)
O(1)-Al-I	113.74(4)	O(1)-C(1)-C(4)	107.95(1)
O(1)#1-Al-Al#1	41.00(4)	C(3)-C(1)-C(4)	111.40(2)
O(1)-Al-Al#1	40.74(4)	O(1)-C(1)-C(2)	106.84(1)
I-Al-Al#1	120.62(3)	C(3)-C(1)-C(2)	111.00(2)
C(1)-O(1)-Al#1	131.14(1)	C(4)-C(1)-C(2)	111.70(2)
C(1)-O(1)-Al	129.60(1)		
	• • •		
Symmetrieoperationen zur	Erzeugung äquivalenter At	ome: #1 -x+1,-y+2,-z	

Tab. 8.17: Bindungslängen [Å] und -winkel [°] für 7.

Tab. 8.18: U^{ij} -Werte (Å²x 10³) des Temperaturfaktors exp: (-2 π^2 [h² a*²U¹¹ + ... + 2 h k a* b* U¹²])

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Ι	23(1)	18(1)	23(1)	2(1)	2(1)	7(1)
Al	10(1)	14(1)	13(1)	-1(1)	3(1)	0(1)
O(1)	11(1)	14(1)	12(1)	-3(1)	1(1)	0(1)
C(1)	13(1)	19(1)	14(1)	-4(1)	1(1)	-2(1)
C(2)	23(1)	26(1)	16(1)	-4(1)	6(1)	-3(1)
C(3)	18(1)	35(1)	21(1)	-8(1)	-6(1)	5(1)
C(4)	28(1)	24(1)	27(1)	-5(1)	8(1)	-13(1)

8.7 Daten zur Molekül- und Kristallstruktur von [ClAl(Me)(O^tBu)]₂8

Tab. 8.19: Atomkoordinaten (x 10^4) und äquivalente isotrope Auslenku	ngsparameter (Å ² x 10 ³) für <u>8</u> .
U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U ^{ij}	Tensors.

	X	У	Z	U(eq)
Al	3539(1)	5346(1)	492(1)	27(1)
Cl	2434(1)	4294(1)	1941(1)	45(1)
O(1)	5896(3)	5362(2)	1168(2)	27(1)
C(1)	6977(4)	5694(3)	2705(4)	34(1)
C(2)	8592(5)	6260(4)	2364(5)	48(1)
C(3)	5896(5)	6449(4)	3472(5)	46(1)
C(4)	7466(7)	4697(4)	3679(5)	55(1)
C(5)	2359(4)	6736(2)	12(4)	30(1)

Tab. 8.20: Bindungslängen [Å] und -winkel [°] für <u>8</u>.

Al-O(1)	1.823(2)	O(1)-C(1)	1.483(4)
Al-O(1)#1	1.835(2)	O(1)-Al#1	1.835(2)
Al-C(5)	1.992(3)	C(1)-C(4)	1.522(5)
Al-Cl	2.144(1)	C(1)-C(3)	1.526(5)
Al-Al#1	2.767(2)	C(1)-C(2)	1.545(6)
O(1)-Al-O(1)#1	81.70(1)	C(1)-O(1)-Al	129.8(2)
O(1)-Al-C(5)	117.04(1)	C(1)-O(1)-Al#1	131.2(2)
O(1)#1-Al-C(5)	116.64(1)	Al-O(1)-Al#1	98.30(1)
O(1)-Al-Cl	109.41(9)	O(1)-C(1)-C(4)	107.1(3)
O(1)#1-Al-Cl	110.99(9)	O(1)-C(1)-C(3)	107.8(3)
C(5)-Al-Cl	116.20(1)	C(4)-C(1)-C(3)	111.9(4)
O(1)-Al-Al#1	41.01(7)	O(1)-C(1)-C(2)	107.1(3)
O(1)#1-Al-Al#1	40.68(7)	C(4)-C(1)-C(2)	111.8(3)
C(5)-Al-Al#1	126.64(1)	C(3)-C(1)-C(2)	110.8(3)
Cl-Al-Al#1	117.15(6)		
Symmetrieoperationen zur	Erzeugung äquivalenter At	ome: #1 -x+2,-y,-z+2 #2 -	x+3,-y+1,-z+2

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Al	26(1)	26(1)	30(1)	-2(1)	6(1)	1(1)
Cl	47(1)	46(1)	47(1)	2(1)	19(1)	-8(1)
O(1)	25(1)	32(1)	24(1)	-4(1)	5(1)	0(1)
C(1)	32(2)	37(2)	29(2)	-6(1)	-1(1)	-1(1)
C(2)	34(2)	55(2)	51(2)	-10(2)	1(2)	-10(2)
C(3)	49(2)	52(2)	37(2)	-20(2)	7(2)	-1(2)
C(4)	73(3)	50(2)	33(2)	3(2)	-8(2)	7(2)
C(5)	25(1)	23(1)	42(2)	-4(1)	2(1)	10(1)

Tab. 8.21: U^{ij} -Werte (Å²x 10³) des Temperaturfaktors exp: (-2 π^2 [h² a*²U¹¹ + ... + 2 h k a* b* U¹²])

8.8 Daten zur Molekül- und Kristallstruktur von [ClAl(O^tBu)₂]₂ 10

Tab. 8.22: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å²x 10³) für <u>10</u>. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

	X	У	Z	U(eq)
Al(1)	4512(1)	1486(1)	5879(1)	16(1)
Al(2)	5644(1)	1775(1)	4313(1)	15(1)
Al(3)	10544(1)	-167(1)	9226(1)	15(1)
Cl(1)	5103(1)	1805(1)	7587(1)	26(1)
Cl(2)	5057(1)	1475(1)	2583(1)	22(1)
Cl(3)	10209(1)	188(1)	7606(1)	21(1)
O(1)	4197(2)	1890(1)	4674(1)	17(1)
O(2)	5946(2)	1364(1)	5503(1)	17(1)
O(3)	3365(2)	1080(1)	5580(2)	23(1)
O(4)	6813(2)	2172(1)	4645(1)	21(1)
O(5)	10973(2)	221(1)	10479(1)	16(1)
O(6)	11421(2)	-642(1)	9462(2)	22(1)
C(1)	3020(2)	2179(1)	4069(2)	21(1)
C(2)	1951(3)	1897(1)	3143(2)	31(1)
C(3)	2552(3)	2350(1)	5028(2)	28(1)
C(4)	3468(3)	2559(1)	3477(3)	31(1)
C(5)	7097(2)	1061(1)	6077(2)	22(1)
C(6)	6663(3)	692(1)	6698(3)	44(1)
C(7)	7540(3)	891(1)	5114(3)	35(1)
C(8)	8205(3)	1337(1)	7001(3)	35(1)
C(9)	2559(2)	843(1)	6084(2)	22(1)
C(10)	1845(4)	479(1)	5216(3)	69(1)
C(11)	3418(3)	644(2)	7274(3)	70(1)
C(12)	1551(4)	1159(1)	6240(4)	73(1)
C(13)	7610(3)	2428(1)	4167(2)	23(1)
C(14)	6773(4)	2622(2)	2976(4)	96(2)

C(15)	8627(5)	2119(1)	3982(5)	91(2)
C(16)	8313(5)	2775(1)	5050(4)	94(2)
C(17)	12069(2)	548(1)	10968(2)	20(1)
C(18)	12267(3)	629(1)	12272(2)	27(1)
C(19)	11656(3)	974(1)	10236(2)	31(1)
C(20)	13303(3)	344(1)	10874(3)	31(1)
C(21)	12176(3)	-929(1)	9020(2)	25(1)
C(22)	11804(5)	-875(2)	7708(3)	89(2)
C(23)	13629(3)	-848(1)	9731(4)	72(1)
C(24)	11872(4)	-1408(1)	9293(4)	65(1)

Tab. 8.23: Bindungslängen [Å] und -winkel [°] für <u>10</u>.

Al(1)- O(3)	1.675(2)	O(6)- C(21)	1.421(3)
Al(1)- O(2)	1.812(2)	C(1)- C(3)	1.514(3)
Al(1)- O(1)	1.816 (2)	C(1)- C(4)	1.515(3)
Al(1)- Cl(1)	2.131(1)	C(1)- C(2)	1.520(4)
Al(1)- Al(2)	2.749(1)	C(5)-C(7)	1.501(3)
Al(2)- O(4)	1.671(2)	C(5)-C(6)	1.505(4)
Al(2)- O(1)	1.812(2)	C(5)-C(8)	1.530(4)
Al(2)- O(2)	1.819(2)	C(9)- C(10)	1.502(4)
Al(2)- Cl(2)	2.129(1)	C(9)-C(11)	1.502(4)
Al(3)- O(6)	1.672(2)	C(9)- C(12)	1.509(4)
Al(3)- O(5)#1	1.814(2)	C(13)- C(16)	1.472(4)
Al(3)- O(5)	1.816(2)	C(13)- C(14)	1.491(4)
Al(3)- Cl(3)	2.126(1)	C(13)- C(15)	1.518(4)
Al(3)- Al(3)#1	2.742(1)	C(17)- C(20)	1.512(3)
O(1)- C(1)	1.482(3)	C(17)- C(19)	1.516(3)
O(2)- C(5)	1.482(3)	C(17)- C(18)	1.520(3)
O(3)- C(9)	1.428(3)	C(21)- C(22)	1.483(4)
O(4)- C(13)	1.428(3)	C(21)- C(23)	1.498(4)
O(5)- C(17)	1.478(3)	C(21)- C(24)	1.532(4)
O(5)- Al(3)#1	1.814(2)		
O(3)-Al(1)-O(2)	115.80(8)	C(17)-O(5)-Al(3)	131.80(1)
O(3)-Al(1)-O(1)	114.26(9)	Al(3)#1-O(5)-Al(3)	98.12(8)
O(2)-Al(1)-O(1)	81.55(7)	C(21)-O(6)-Al(3)	145.10(2)
O(3)-Al(1)-Cl(1)	117.25(7)	O(1)-C(1)-C(3)	107.30(2)
O(2)-Al(1)-Cl(1)	111.08(7)	O(1)-C(1)-C(4)	107.35(2)
O(1)-Al(1)-Cl(1)	111.69(6)	C(3)-C(1)-C(4)	111.4(2)
O(3)-Al(1)-Al(2)	124.56(7)	O(1)-C(1)-C(2)	108.00(2)
O(2)-Al(1)-Al(2)	40.88(5)	C(3)-C(1)-C(2)	111.3(2)
O(1)-Al(1)-Al(2)	40.68(5)	C(4)-C(1)-C(2)	111.2(2)
Cl(1)-Al(1)-Al(2)	118.18(4)	O(2)-C(5)-C(7)	107.80(2)
O(4)-Al(2)-O(1)	116.95(8)	O(2)-C(5)-C(6)	108.3(2)
O(4)-Al(2)-O(2)	113.58(9)	C(7)-C(5)-C(6)	112.7(2)

O(1)-Al(2)-O(2)	81.50(7)	O(2)-C(5)-C(8)	107.30(2)		
O(4)-Al(2)-Cl(2)	116.74(7)	C(7)-C(5)-C(8)	110.5(2)		
O(1)-Al(2)-Cl(2)	110.51(6)	C(6)-C(5)-C(8)	110.0(2)		
O(2)-Al(2)-Cl(2)	112.55(6)	O(3)-C(9)-C(10)	107.5(2)		
O(4)-Al(2)-Al(1)	123.67(7)	O(3)-C(9)-C(11)	110.2(2)		
O(1)-Al(2)-Al(1)	40.79(5)	C(10)-C(9)-C(11)	110.2(3)		
O(2)-Al(2)-Al(1)	40.71(5)	O(3)-C(9)-C(12)	109.2(2)		
Cl(2)-Al(2)-Al(1)	119.58(4)	C(10)-C(9)-C(12)	109.6(3)		
O(6)-Al(3)-O(5)#1	112.94(8)	C(11)-C(9)-C(12)	110.2(3)		
O(6)-Al(3)-O(5)	116.86(9)	O(4)-C(13)-C(16)	108.2(2)		
O(5)#1-Al(3)-O(5)	81.88(8)	O(4)-C(13)-C(14)	110.8(2)		
O(6)-Al(3)-Cl(3)	117.82(7)	C(16)-C(13)-C(14)	112.3(3)		
O(5)#1-Al(3)-Cl(3)	111.89(6)	O(4)-C(13)-C(15)	108.4(2)		
O(5)-Al(3)-Cl(3)	110.09(6)	C(16)-C(13)-C(15)	109.3(3)		
O(6)-Al(3)-Al(3)#1	123.85(7)	C(14)-C(13)-C(15)	107.8(3)		
O(5)#1-Al(3)-Al(3)#1	40.96(5)	O(5)-C(17)-C(20)	107.60(2)		
O(5)-Al(3)-Al(3)#1	40.92(5)	O(5)-C(17)-C(19)	108.1(2)		
Cl(3)-Al(3)-Al(3)#1	118.31(4)	C(20)-C(17)-C(19)	111.7(2)		
C(1)-O(1)-Al(2)	130.90(1)	O(5)-C(17)-C(18)	107.0(2)		
C(1)-O(1)-Al(1)	130.12(1)	C(20)-C(17)-C(18)	111.1(2)		
Al(2)-O(1)-Al(1)	98.53(8)	C(19)-C(17)-C(18)	111.1(2)		
C(5)-O(2)-Al(1)	131.00(1)	O(6)-C(21)-C(22)	111.7(2)		
C(5)-O(2)-Al(2)	130.30(1)	O(6)-C(21)-C(23)	108.5(2)		
Al(1)-O(2)-Al(2)	98.40(8)	C(22)-C(21)-C(23)	113.0(3)		
C(9)-O(3)-Al(1)	142.40(2)	O(6)-C(21)-C(24)	106.5(2)		
C(13)-O(4)-Al(2)	143.60(2)	C(22)-C(21)-C(24)	109.7(3)		
C(17)-O(5)-Al(3)#1	129.12(1)	C(23)-C(21)-C(24)	107.1(3)		
Symmetrieoperationen zur	Symmetrieoperationen zur Erzeugung äquivalenter Atome: #1 -x+2yz+2				

Tab. 8.24: U^{ij} -Werte (Å²x 10³) des Temperaturfaktors exp: (-2 π^2 [h² a*²U¹¹ + ... + 2 h k a* b* U¹²])

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Al(1)	17(1)	16(1)	19(1)	1(1)	10(1)	0(1)
Al(2)	18(1)	13(1)	18(1)	1(1)	10(1)	1(1)
Al(3)	18(1)	13(1)	17(1)	-1(1)	10(1)	-1(1)
Cl(1)	27(1)	31(1)	22(1)	-6(1)	11(1)	-3(1)
Cl(2)	25(1)	23(1)	20(1)	-4(1)	10(1)	-1(1)
Cl(3)	26(1)	20(1)	21(1)	5(1)	12(1)	1(1)
O(1)	19(1)	14(1)	22(1)	3(1)	11(1)	3(1)
O(2)	19(1)	14(1)	23(1)	5(1)	12(1)	5(1)
O(3)	26(1)	23(1)	23(1)	2(1)	15(1)	-5(1)
O(4)	24(1)	21(1)	22(1)	0(1)	12(1)	-6(1)
O(5)	18(1)	13(1)	22(1)	-5(1)	11(1)	-6(1)
O(6)	29(1)	18(1)	22(1)	0(1)	14(1)	6(1)
C(1)	22(1)	18(1)	26(1)	5(1)	11(1)	7(1)

C(2)	25(1)	34(2)	30(2)	-1(1)	7(1)	6(1)
C(3)	28(1)	25(1)	34(2)	1(1)	16(1)	10(1)
C(4)	31(2)	26(2)	40(2)	13(1)	19(1)	8(1)
C(5)	25(1)	18(1)	26(1)	7(1)	14(1)	8(1)
C(6)	38(2)	38(2)	60(2)	25(2)	25(2)	14(1)
C(7)	37(2)	35(2)	38(2)	4(1)	17(1)	15(1)
C(8)	33(2)	34(2)	35(2)	0(1)	8(1)	9(1)
C(9)	26(1)	23(1)	22(1)	3(1)	13(1)	-5(1)
C(10)	96(3)	72(3)	52(2)	-22(2)	45(2)	-62(2)
C(11)	39(2)	109(3)	57(2)	52(2)	12(2)	-17(2)
C(12)	81(3)	41(2)	140(4)	18(2)	92(3)	9(2)
C(13)	26(1)	21(1)	25(1)	0(1)	12(1)	-7(1)
C(14)	56(3)	147(5)	72(3)	69(3)	11(2)	-33(3)
C(15)	95(3)	51(2)	182(5)	15(3)	114(4)	1(2)
C(16)	157(5)	83(3)	72(3)	-48(2)	78(3)	-89(3)
C(17)	21(1)	18(1)	23(1)	-5(1)	11(1)	-8(1)
C(18)	31(2)	25(1)	27(1)	-7(1)	13(1)	-11(1)
C(19)	40(2)	18(1)	34(2)	0(1)	14(1)	-10(1)
C(20)	22(1)	31(2)	42(2)	-10(1)	16(1)	-8(1)
C(21)	29(1)	19(1)	28(1)	-4(1)	13(1)	6(1)
C(22)	138(4)	107(4)	32(2)	21(2)	43(2)	97(3)
C(23)	37(2)	83(3)	101(3)	-48(3)	34(2)	0(2)
C(24)	90(3)	28(2)	99(3)	-1(2)	62(3)	10(2)

8.9 Daten zur Molekül- und Kristallstruktur von [H₂Al(NEt₂)]₂ 11

Tab. 8.25: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å²x 10³) für <u>11</u>. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

	X	У	Z	U(eq)
Al	3867(1)	627(1)	8920(1)	28(1)
Ν	6337(1)	70(1)	8669(1)	18(1)
C(1)	6541(1)	-680(1)	7092(1)	24(1)
C(2)	7748(1)	908(1)	8651(2)	25(1)
C(3)	8393(2)	-1214(1)	7057(2)	32(1)
C(4)	7727(2)	1556(1)	6869(2)	38(1)

Tab. 8.26: Bindungslängen [Å] und -winkel [°] für <u>11</u>

Al-N#1	1.949 (1)	N-C(2)	1.495(2)
Al-N	1.953(1)	N-Al#1	1.949(1)
Al-Al#1	2.7540(8)	C(1)-C(3)	1.518(2)
N-C(1)	1.495(2)	C(2)-C(4)	1.520(2)

N#1-Al-N	90.21(4)	C(1)-N-Al	114.85(6)	
N#1-Al-Al#1	45.16(3)	C(2)-N-Al	111.69(7)	
N-Al-Al#1	45.05(3)	Al#1-N-Al	89.79(4)	
C(1)-N-C(2)	112.38(8)	N-C(1)-C(3)	114.54(8)	
C(1)-N-Al#1	111.97(7)	N-C(2)-C(4)	114.60(9)	
C(2)-N-Al#1	114.39(6)			
Symmetrieoperationen zur Erzeugung äquivalenter Atome: #1 -x+2,-y,-z+2 #2 -x+3,-y+1,-z+2				

Tab. 8.27: U^{ij}-Werte (Å²x 10³) des Temperaturfaktors exp: (- $2\pi^{2}$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²])

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Al	19(1)	41(1)	23(1)	13(1)	6(1)	13(1)
Ν	15(1)	22(1)	16(1)	1(1)	3(1)	2(1)
C(1)	18(1)	30(1)	23(1)	-7(1)	2(1)	-3(1)
C(2)	23(1)	23(1)	29(1)	-2(1)	-1(1)	-3(1)
C(3)	22(2)	34(1)	41(2)	-14(1)	10(1)	0(1)
C(4)	31(1)	35(1)	48(1)	15(1)	8(1)	-6(1)

8.10 Daten zur Molekül- und Kristallstruktur von [HAl(I)(NEt₂)]₂ 12

Tab. 8.28: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å²x 10³) für <u>12</u>. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

	X	У	Z	U(eq)
I(1)	8640(1)	2500	4006(1)	25(1)
I(2)	6298(1)	2500	-979(1)	29(1)
Al(1)	7244(1)	2500	2555(1)	19(1)
Al(2)	7745(1)	2500	427(1)	21(1)
N(1)	7512(1)	1183(2)	1493(1)	19(1)
C(1)	8523(2)	401(2)	1638(2)	25(1)
C(3)	6527(2)	359(2)	1368(2)	24(1)
C(4)	6335(2)	-541(3)	2295(2)	35(1)
C(2)	8720(2)	-553(3)	747(3)	36(1)

I(1)-Al(1)	2.524(1)	Al(2)-N(1)#1	1.944(2)
I(2)-Al(2)	2.528(1)	N(1)-C(3)	1.505(3)
Al(1)-N(1)#1	1.948(2)	N(1)-C(1)	1.509(3)
Al(1)-N(1)	1.948(2)	C(1)-C(2)	1.521(4)
Al(1)-Al(2)	2.759(1)	C(3)-C(4)	1.519(4)
Al(2)-N(1)	1.944(2)		
N(1)#1-Al(1)-N(1)	89.56(1)	N(1)#1-Al(2)-Al(1)	44.91(6)
N(1)#1-Al(1)-I(1)	112.48(6)	I(2)-Al(2)-Al(1)	121.59(4)
N(1)-Al(1)-I(1)	112.48(6)	C(3)-N(1)-C(1)	112.60(2)
N(1)#1-Al(1)-Al(2)	44.79(6)	C(3)-N(1)-Al(2)	116.82(1)
N(1)-Al(1)-Al(2)	44.79(6)	C(1)-N(1)-Al(2)	109.95(1)
I(1)-Al(1)-Al(2)	123.50(4)	C(3)-N(1)-Al(1)	109.52(1)
N(1)-Al(2)-N(1)#1	89.80(1)	C(1)-N(1)-Al(1)	116.06(1)
N(1)-Al(2)-I(2)	112.37(6)	Al(2)-N(1)-Al(1)	90.31(8)
N(1)#1-Al(2)-I(2)	112.37(6)	N(1)-C(1)-C(2)	113.40(2)
N(1)-Al(2)-Al(1)	44.91(5)	N(1)-C(3)-C(4)	113.50(2)
Symmetrieoperationen zur	· Erzeugung äquiv	valenter Atome: #1 xv+1/2	Z

Tab. 8.29: Bindungslängen [Å] und -winkel [°] für 12

Tab. 8.29: U ^{ij} -Werte	(Å ² x 10 ³) des T	mperaturfaktors exp: (-2	$2\pi^2$ h ² a ^{*2} U ¹¹ +	. + 2 h k a* b* U ¹²])
-----------------------------------	---	--------------------------	---	------------------------------------

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
I(1)	26(1)	31(1)	18(1)	0	-3(1)	0
I(2)	31(1)	39(1)	17(1)	0	-3(1)	0
Al(1)	19(1)	18(1)	19(1)	0	0(1)	0
Al(2)	22(1)	23(1)	19(1)	0	2(1)	0
N(1)	20(1)	17(1)	21(1)	-1(1)	-3(1)	0(1)
C(1)	23(1)	21(1)	30(1)	-4(1)	-4(1)	3(1)
C(3)	24(1)	21(1)	28(1)	0(1)	-6(1)	-3(1)
C(4)	35(1)	27(1)	43(1)	9(1)	-7(1)	-9(1)
C(2)	34(1)	30(1)	45(2)	-15(1)	-4(1)	10(1)

8.11 ¹³C-MAS/ ¹³C-Lösungs-NMR-Spektren von [ClAl(H)(O'Bu)]₂ 5

Abb. 8.1: 13 C-MAS-NMR-Spektrum im Vergleich mit dem 13 C-Lösungsspektrum (C₆D₆/C₆H₆) von <u>5</u>

8.12 ¹³C-MAS/ ¹³C-Lösungs-NMR-Spektren von [BrAl(H)(O'Bu)]₂ <u>6</u>

Abb. 8.2: ¹³C-MAS-NMR-Spektrum im Vergleich mit dem ¹³C-Lösungsspektrum (CDCl₃) von <u>6</u>

8.13 ¹³C-MAS/ ¹³C-Lösungs-NMR-Spektren von [IAl(H)(O'Bu)]₂ 7

Abb. 8.3: ¹³C-MAS-NMR-Spektrum im Vergleich mit dem ¹³C-Lösungsspektrum (C_6D_6/C_6H_6) von <u>7</u>

8.14 ¹³C-MAS/ ¹³C-Lösungs-NMR-Spektren von [ClAl(Me)(O'Bu)]₂ 8

Abb. 8.4: ¹³C-MAS-NMR-Spektrum im Vergleich mit dem ¹³C-Lösungsspektrum (C₆D₆/C₆H₆) von <u>8</u>

8.15 Bindungsparameter aus den Molekülberechnungen von [ClAl(H)(O^tBu)]₂ <u>5</u>, [BrAl(H)(O^tBu)]₂ <u>6</u> und [IAl(H)(O^tBu)]₂ <u>7</u>

Tab. 8.30 : *oben* - Darstellung der mit BP86/def-SV(P) berechneten Strukturen der *cis*-Isomere von [ClAl(H)(O'Bu)]₂ sowie das dazugehörige mit MP2/def2-TZVPP berechnete *trans*-Isomer; *unten* - Darstellung der mit MP2/def2-TZVPP berechneten *cis*- und *trans*-Isomere von [BrAl(H)(O'Bu)]₂ und [IAl(H)(O'Bu)]₂

			E	3indungs	längen [Å] und -winkel [°]			
	Bezeichnung	Al-O	C-0	H-IA	X-IV	Al-O-C	H-Al-Cl	Al-O-Al	O-IA-O
	C5*-BP86(C _s)	1.8694/1.8701	1.4764/ 1.4747	1.5927	2.1468	130.247/129.627	116.281	98.888	81.085
[C5-BP86(C _{2v})	1.8489	1.4473	1.5774	2.1507	130.385	116.025	98.968	80.993
CIA	T5-BP86(C _i)	1.8702/1.8690	1.4769	1.5912	2.1511	129.759/ 130.146	116.278	98.862	81.138
l(H)	C5-B3LYP (C _{2v})	1.8408	1.4753	1.5676	2.1358	131.038	115.506	97.845	81.981
$(\mathbf{O}^t]$	T5-B3LYP (C _i)	1.8415/1.8407	1.4761	1.5681	2.1390	130.565/ 130.577	115.533	97.933	82.067
Bu)]	C5-MP(C _{2v})	1.8323	1.4569	1.5605	2.1181	130.485	116.266	98.602	81.338
2	T5-MP2(C _i)	1.8333/1.8316	1.4574	1.5609	2.1420	129.928/ 130.254	116.288	609.86	81.391
	Kristalldaten von <u>5</u>	1.820(2)/1.813(2)	1.488(4)	1.603(3)	2.119(1)	129.93(2)/ 130.70(2)	110.67(5)	98.40(1)	81.60(1)
	$C6-BP86(C_{2v})$	1.8714	1.4773	1.5911	2.3110	130.431	115.838	601.07	80.865
[Br	T6-BP86(C _i)	1.8712/1.8727	1.4795	1.5911	2.3138	130.007/129.984	115.662	96.964	81.036
Al($C6-B3LYP(C_{2v})$	1.8412	1.4772	1.5677	2.3051	131.017	115.125	996.76	81.938
H)((T6-B3LYP(C;)	1.8412/1.8428	1.4791	1.5677	2.3100	130.738/130.505	114.949	96.76	82.036
D ^t Bı	$C6-MP2(C_{2v})$	1.8313	1.4580	1.5608	2.2710	130.608	116.083	98.578	81.330
1)]2	T6-MP2(C _i)	1.8311/1.8324	1.4590	1.5608	2.2739	130.242/130.100	116.250	98.547	81.453
	Kristalldaten von <u>6</u>	1.821(3)/ 1.829(3)	1.496(4)	1.478(3)	2.295(1)	130.40(3)/ 129.90(3)	106.70(1)	98.70(2)	81.30(2)
	$C7-BP86(C_{2v})$	1.8728	1.4806	1.5916	2.5451	130.459	114.998	99.039	80.309
[]	$T7-BP86(C_i)$	1.8732/1.8749	1.4837	1.5915	2.5522	130.184/130.041	114.776	98.888	81.112
AI(H	$C7-B3LYP(C_{2v})$	1.8430	1.4791	1.5687	2.5352	130.960	114.631	98.001	81.904
I)(O	T7-B3LYP(C _i)	1.8430/1.8445	1.4819	1.5685	2.5411	130.719/130.647	114.579	97.894	82.106
^t Bu	$C7-MP2(C_{2v})$	1.8323	1.4593	1.5619	2.4825	130.683	116.108	98.608	81.311
)]2	T7-MP2(C _i)	1.8325/1.8342	1.4612	1.5617	2.4884	130.184/130.041	114.776	98.510	81.490
	Kristalldaten von $\overline{7}$	1.817(1)/ 1.827(1)	1.475(2)	1.325(0)	2.514(1)	131.14(1)/ 129.60(2)	115.72(2)	98.26(5)	81.74(5)