
Using Language Models in Question Answering

Dissertation

zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultät II

-Physik und Mechatronik-

der Universität des Saarlandes

von

Andreas Merkel

Saarbrücken

2008

Tag des Kolloquiums: 14.07.2008
Dekan: Univ.–Prof. Dr.rer.nat. A.Schütze
Mitglieder des
Prüfungsausschusses:
Vorsitzender: Univ.–Prof. Dr.–Ing. Ch. Xu
Gutachter: Univ.–Prof. Dr.rer.nat. D. Klakow

Univ.–Prof. Dr.–Ing. G. Weikum (MPII)
Akad. Mitarbeiter: Dr.–Ing. B. Martin

Für meine Frau Ina,

die mir tagtäglich die Kraft gegeben hat

diese Aufgabe zu bewältigen.

Acknowledgements

First of all I would like to thank Dietrich Klakow, who gave me the opportunity of doing a PhD

thesis at his chair. I have learned very much from him and he gave me a splendid scientific

supervision. I would also like to thank him for his inspiring ideas and conversations.

When we started research in the field of question answering at the Spoken Language Sys-

tem (LSV) chair, we were just a small number of people. Over the years, this group has

steadily grown and we have done a lot of projects together. The discussions with many of

the researchers in the LSV group have been very fruitful for my personal research. Here, I

would like to thank in particular Dan Shen, Irene Cramer, Barbara Rauch, Jochen Leidner,

Michael Wiegand, Stefan Kazalski, Christoph Lauer, Munawar Hussain, Yasir Iqbal, Andreas

Beschorner, and Akira Kakinohana.

During the last years I have published some papers together with colleagues. I would like

to thank Dietrich Klakow, Jochen Leidner, Michael Wiegand, Dan Shen, Irene Cramer, Ste-

fan Schacht, Stefan Kazalski, and Michaela Hunsicker for interesting discussions and really

good cooperation. I also want to mention Ute Stroh, Michael Wiegand, Jochen Leidner, and

John McDonough for proof–reading the papers and also for fruitful discussions.

Furthermore I would like to thank the people that provided administrative support during my

PhD studies. In particular I thank Karin Staab for proof–reading the thesis and Simon Hirth

for general administrative support and mental encouragement.

I also want to thank my parents–in–law, Anita and Dieter Stroh, who accompanied me on

my way.

Finally, I would like to acknowledge the financial support, that I received from the Federal

Ministry of Education and Research (BMBF) for the SmartWeb project under the contract

number 01 IMD01 M. Without BMBF’s support the research for this thesis would not have

been possible.

Short Summary in German

Mit dem Erscheinen des “World Wide Web” (WWW) in den 1990er Jahren versuchten Web–

Suchmaschinen wie Altavista oder Yahoo Zugang zu dem schnell wachsenden Internet zu

bieten. Da sie als öffentliche Dienste konzipiert waren, wurde die Anfragesprache so ver-

einfacht, dass die Mehrheit der Benutzer diese Suchmöglichkeiten auch nutzen konnte. Die

meisten der aktuellen Suchmaschinen benutzen eine einfache stichwortbasierte Suche, um

relevante Informationen wiederzufinden. Normalerweise enthalten diese gefundenen Doku-

mente dann lediglich ein oder mehrere Wörter der eigentlichen Suchanfrage. Daher kann

man diese Art der Informationssuche nur als grobe Suche nach relevanten Textdokumenten

bezeichnen. Wenn es das Ziel einer Suche ist, relevante Daten zu einem gegebenen Thema

zu finden, so ist diese Suchmethode ausreichend. Allerdings suchen immer mehr Menschen

spezifische Informationen zu einer Frage. Sie möchten eine genaue Antwort zu einer indivi-

duellen Suchanfrage, die sie in natürlicher Sprache gestellt haben und dabei nicht sämtliche

Dokumente nach möglichen Antworten durchsuchen.

Dieser Problematik wird mit Hilfe eines standardisierten Fragebeantwortungssystems nach-

gegangen. Hierbei ist es möglich, eine präzise Antwort zu einer natürlich–sprachlichen

Suchanfrage zu erhalten. Bis heute wurden unterschiedlichste Ansätze zur Lösung dieser

komplexen Aufgabe verfolgt. Die meisten dieser Methoden nutzen tiefe linguistische Analy-

sen, um die Bedeutung der Anfrage zu “verstehen” und mögliche Antwort–Kandidaten oder

relevante Textabschnitte innerhalb sehr großer Textsammlungen, wie z.B. dem Internet, zu

finden.

In dieser Arbeit wird ein sprachmodellbasierter Ansatz für verschiedene Bestandteile eines

kompletten Fragebeantwortungssystems beschrieben. Dies beinhaltet die Verarbeitung der

natürlichsprachlichen Suchanfrage sowie die Suche nach relevanten Dokumenten, Textab-

schnitten und Sätzen.

Das Modul der Frageverarbeitung versucht die natürlichsprachliche Nutzeranfrage zu “ver-

stehen”. Dies ist notwendig, um weitere Entscheidungen im Verlauf des Gesamtsystems,

z.B. bei der Wahl der möglichen Antworten, zu treffen. In dieser Arbeit wird daher zur Ana-

lyse der Frage ein statistischer Ansatz mit Sprachmodellen beschrieben. Der Hauptvorteil

hierbei liegt, bezogen auf andere linguistische Methoden, im deutlichen Zeitgewinn.

Die Dokumentsuche dient dabei als eine Art Filter, indem die Anzahl der Dokumente, die

von den nachfolgenden Modulen bearbeitet werden müssen, reduziert wird. Obwohl für die

Standarddokumentsuche traditionelle Algorithmen, wie tf–idf oder Okapi, optimal funktio-

nieren, zeigt die vorliegende Arbeit, dass sprachmodellbasierte Methoden besser für die

vielfältigen Aufgaben von Fragebeantwortungssystemen geeignet sind.

Eine ähnliche Aufgabe wie die Dokumentsuche übernimmt die “Suche nach Textabschnit-

ten”. Hier werden alle relevanten Dokumente in kleinere Sinnabschnitte aufgespalten. Da-

nach werden diese Abschnitte neu sortiert, um bestmögliche Resultate zu erhalten. Ein

Sonderfall dieser Methode ist die so genannte “Satz–Suche”, bei der als Textabschnitt ledig-

lich ein Satz benutzt wird. Auch auf diesen Teil eines Fragebeantwortungssystems wird in

dieser Arbeit eingegangen.

Die Ergebnisse der Arbeit zeigen, dass sprachmodellbasierte Methoden in einem eigens

implementierten Fragebeantwortungssystem genauso gut oder sogar noch besser funktio-

nieren, als derzeitige, moderne Systeme. Ein wesentlicher Vorteil des beschriebenen Sys-

tems liegt in der Nutzung schneller, statistischer Algorithmen gegenüber den vergleichswei-

se langsamen, tiefen linguistischen Analysen anderer Ansätze.

Summary in German

In den letzten Jahrzehnten wuchs die Notwendigkeit wichtige Informationen wiederzufinden

stetig an. Mit dem Bekanntwerden des Internets in den 1970er Jahren wurden zudem im-

mer mehr Informationen von einer immer größer werdenden Bevölkerungsgruppe benutzt.

Heutzutage existiert eine fast endlos erscheinende Anzahl von nutzbaren Informationen im

Internet. Zusätzlich besitzen viele Firmen noch eigene Intranets mit z.T. wichtigen, firmenin-

ternen Informationen.

In Anbetracht der Menge an Informationen haben die Menschen sehr schnell realisiert, dass

sie Hilfe brauchen, um spezifische Daten wiederzufinden. Zu diesem Zweck wurden die

ersten Suchmaschinen entwickelt. Allerdings waren diese Suchmaschinen sehr schwierig

zu handhaben, da sie eine spezifische und komplexe Anfragesprache besaßen. Es gab nur

wenige Personen, die wussten, wie diese Programme zu benutzen waren. So konnten nur

diese so genannten “Information Broker” bei der Suche nach Informationen behilflich sein.

Der nächste logische Schritt kam mit dem Erscheinen des “World Wide Web” (WWW) in

den 1990er Jahren. Web–Suchmaschinen wie Altavista oder Yahoo versuchten Zugang zu

dem schnell wachsenden Internet zu bieten. Da sie jedoch als öffentliche Dienste konzipiert

waren, wurde auch die Anfragesprache vereinfacht, so dass die Mehrheit der Benutzer die-

se Möglichkeiten auch nutzen konnte. Die meisten der aktuellen Suchmaschinen benutzen

eine einfache stichwortbasierte Suche, um relevante Informationen wiederzufinden. Norma-

lerweise enthalten diese gefundenen Dokumente dann lediglich ein oder mehrere Wörter

der eigentlichen Suchanfrage. Daher kann man diese Art der Informationssuche nur als gro-

be Suche nach relevanten Textdokumenten bezeichnen. Wenn es das Ziel einer Suche ist,

relevante Daten zu einem gegebenen Thema zu finden, so ist diese Suchmethode ausrei-

chend. Allerdings suchen immer mehr Menschen spezifische Informationen zu einer Frage.

Sie möchten eine genaue Antwort zu einer individuellen Suchanfrage, die sie in natürlicher

Sprache gestellt haben und dabei nicht sämtliche Dokumente nach möglichen Antworten

durchsuchen.

Dieser Problematik wird mit Hilfe eines standardisierten Fragebeantwortungssystems nach-

gegangen. Hierbei ist es möglich, eine präzise Antwort zu einer natürlichsprachlichen

Suchanfrage zu erhalten. Bis heute wurden unterschiedlichste Ansätze zur Lösung dieser

komplexen Aufgabe verfolgt. Die meisten dieser Methoden benutzen tiefe linguistische Ana-

lysen, um die Bedeutung der Anfrage zu “verstehen” und mögliche Antworten oder relevante

Textabschnitte innerhalb sehr großer Textsammlungen, wie z.B. dem Internet, zu finden.

In dieser Arbeit wird daher zur Anayse der Frage ein statistischer Ansatz mit Sprachmodellen

beschrieben. Dies beinhaltet die Verarbeitung der natürlichsprachlichen Suchanfrage sowie

die Suche nach relevanten Dokumenten, Textabschnitten und Sätzen.

Das Modul der Frageverarbeitung versucht die natürlichsprachliche Nutzeranfrage zu “ver-

stehen”. Dies ist notwendig, um weitere Entscheidungen im Verlauf des Gesamtsystems zu

treffen.

Zu diesem Zweck wird der genaue Typ der Anfrage bestimmt, z.B. Person bei der Frage

Wer gründete die Guiness Brauerei? Abhängig von der benutzten Klassifizierung sind auch

andere Typen, wie Ort, Beschreibung oder Entitäten möglich. Dieses Modul ist sehr wichtig

für das komplette System, da der Fragetyp auch in vielen anderen Bereichen eines Fragebe-

antwortungssystems benutzt wird. Z.B. korrespondiert er oft mit dem erwarteten Antworttyp

und wird daher auch benutzt, um mögliche Antwortkandidaten zu bestimmen. In dieser Ar-

beit wird daher ein statistischer Ansatz mit Realisierung durch Sprachmodelle beschrieben,

um die Benutzeranfrage genau zu anaysieren. Der Hauptvorteil hierbei liegt, bezogen auf

andere linguistische Methoden, im deutlichen Zeitgewinn.

Die Dokumentsuche dient dabei als eine Art Filter, in dem die Anzahl der Dokumente, die

von den nachfolgenden Modulen bearbeitet werden müssen, reduziert wird. Durch diese

Einschränkung des Suchraums können die nachfolgenden, z.T. linguistischen, Algorithmen

robuster und schneller arbeiten. Obwohl für die Standard–Dokumentsuche traditionelle Al-

gorithmen, wie tf–idf oder Okapi optimal funktionieren, zeigt die vorliegende Arbeit, dass

sprachmodellbasierte Methoden besser für die vielfältigen Aufgaben von Fragebeantwor-

tungssystemen geeignet sind.

Nun kann es sein, dass die gefundenen Dokumente immer noch zu groß sind, oder mehrere

Themen behandeln. Deshalb werden alle relevanten Dokumente in kleinere Sinnabschnitte

aufgespalten. Danach werden diese Abschnitte neu sortiert, um bestmögliche Resultate zu

erhalten. Diese Art der Dokumentverarbeitung ist derzeit Standard in Fragebeantwortungs-

systemen. In der vorliegenden Arbeit wird zugleich ein sprachmodellbasierter Ansatz zur

Neusortierung der Textabschnitte beschrieben.

Ein Spezialfall dieses Ansatzes ist die so genannte “Satz–Suche”, bei der als Textabschnitt

lediglich ein Satz benutzt wird. Auch auf diesen Teil eines Fragebeantwortungssystems wird

in dieser Arbeit eingegangen.

Die Ergebnisse der Arbeit zeigen, dass sprachmodellbasierte Methoden in einem eigens

implementierten Fragebeantwortungssystem genauso gut oder sogar noch besser funktio-

nieren, als derzeitige, moderne Systeme. Ein wesentlicher Vorteil des beschriebenen Sys-

tems liegt in der Nutzung schneller, statistischer Verfahren gegenüber den vergleichsweise

langsamen, tiefen linguistischen Analysen anderer Ansätze.

Abstract

In the last decades, the need for finding information grew continuously. With the upcoming

of the Internet in the seventies, more and more information was accessed by more and more

people. Today, the amount of accessible information on the Internet seems to be endless

and numerous companies have additional intranets with additional secret information.

In consideration of the amount of information, people realized very early that they will need

help in finding specific data. As a result, the first search engines were developed. But those

retrieval engines were very difficult to handle, because of their specific and complex query

language. There were just few people who knew how to use such systems, so, merely the

so–called information brokers were able to help if there was an information need.

The next, logical step came with the upcoming of the World Wide Web – WWW in the

nineties. Web search engines like Altavista or Yahoo tried to give access to the quickly

expanding Internet. But because these are public services, the query languages are much

easier to use than the earlier search engines. Most of today’s information retrieval systems

simply use a keyword–based search to find relevant documents. Normally, these documents

just contain one or more words given by the user’s query. Therefore it is a simplistic search

for relevant text documents. If the goal of a search was to find data for a given topic, this

might be sufficient. But more and more people have a specific information need. They want

to have an exact answer to a given natural language question, so, they do not want to look

at possible document candidates to find the answer.

This is what is done in a standard Question Answering (QA) system. It is possible to find

a precise answer string to a given natural language question. Today, there are many ap-

proaches to this very complex task. Most of them use deep linguistic methods to understand

the meaning of questions and possible answer candidates or to find relevant text snippets in

a very large collection like the Internet.

In this thesis, we describe a language model approach to parts of a complete QA system.

It includes the processing of the natural language query as well as the retrieval of relevant

documents, passages and sentences.

In the query processing module the system tries to understand the user’s natural language

questions. This is necessary to make decisions in later parts of the system. The document

retrieval module acts as a filter. It reduces the amount of documents that the following

components have to handle. Similarly, in the passage retrieval step, all relevant documents

from the previous component are split up into text passages. Then, a re–ranking is done to

find the best matching snippets. A special case of the passage retrieval module is selecting

just one sentence as text passage. The thesis also covers a statistical approach to this part

of QA system.

The results show that the language model based modules in our QA system perform equally

well or even better than current state–of–the–art systems. Due to the heavy use of fast

statistical algorithms the main advantage of our system is an efficiency gain compared to

the slower deep analysis linguistic methods used in other approaches. A second benefit of

using language models is the ability to train them for new languages. So, such a QA system

is also very flexible for using in a multi–lingual environment.

Contents

I Introduction 1

1 Motivation . 1

2 From Information Retrieval to Question Answering 2

3 Standard Tasks in Question Answering . 4

4 Outline of the Thesis . 5

5 Contributions . 7

II Background on Question Answering 9

1 A Short History of Question Answering Systems 9

2 Approaches to the Question Answering Task 11

3 An Open Domain Question Answering System 16

3.1 Question Processing . 19

3.2 Information Retrieval . 23

3.2.1 Document Retrieval . 24

3.2.2 Passage Retrieval . 27

3.2.3 Sentence Retrieval . 29

3.3 Answer Extraction . 32

3.4 Web–based Answer Validation . 32

3.5 Current Approaches . 33

4 Evaluation of Question Answering Systems 41

4.1 Evaluation Metrics . 41

4.2 Question Answering at the Text REtrieval Conference (TREC) 48

III Background to Statistical Language Modeling 53

1 Statistical Language Models . 53

xiii

2 Language Modeling for Information Retrieval 65

3 Language Modeling for Question Answering 70

IV Application 75

1 SmartWeb – Multi Language Question Answering 75

V Other Related Work 81

VI Query Construction 87

1 Question Typing . 87

1.1 Introduction . 88

1.2 Methodology . 89

1.3 Smoothing Methods . 90

1.3.1 Standard Smoothing Methods 90

1.3.1.1 Jelinek–Mercer . 90

1.3.1.2 Bayesian Smoothing with Dirichlet Priors 90

1.3.1.3 Absolute Discounting 91

1.3.2 Improved Smoothing Methods 91

1.3.2.1 Improved Absolute Discounting (UniDisc) 91

1.3.2.2 Log–Linear Interpolation 92

1.4 Background Models . 92

1.4.1 Zerogram . 92

1.4.2 Unigram . 92

1.4.3 Bigram . 93

1.5 Experiments . 93

1.5.1 Dataset . 93

1.5.2 Results . 95

1.5.3 Jelinek–Mercer Interpolation 95

1.5.4 Dirichlet Priors . 96

1.5.5 Absolute Discounting . 96

1.5.6 UniDisc . 97

1.5.7 Log–Linear Interpolation . 97

1.6 Conclusion . 98

2 Confidence Measures . 100

2.1 Introduction . 100

2.2 Dataset . 101

2.3 Used Methods . 101

2.4 Experiments . 102

2.4.1 TREC 10 . 103

2.4.2 TREC 2006 . 104

2.5 Conclusion . 106

VII Document Retrieval 109

1 Introduction . 109

2 Methodology . 110

2.1 Dataset . 110

2.2 Used Methods . 111

3 Experiments . 112

3.1 Evaluation Methodology . 112

3.2 Results . 113

3.2.1 Document Size Tuning . 113

3.2.2 Parameter Tuning for Language Modeling Techniques 114

4 Experiments for TREC 2007 . 115

4.1 Two–stage Document Retrieval . 115

4.2 Dynamic Document Fetching . 118

5 Conclusion . 120

VIIIPassage Retrieval 121

1 Introduction . 121

2 Related Work . 122

3 Methodology . 124

3.1 Passage Making . 124

3.2 Dataset . 124

3.3 Used Methods . 125

4 Experiments . 125

4.1 Results . 125

4.1.1 Parameter Tuning for Language Modeling Techniques 126

5 Passage Re–Ranking . 128

5.1 Experimental Setup . 129

5.1.1 Dataset . 129

5.1.2 Evaluation Methodology . 129

5.1.3 Experimental Methods . 129

5.2 System Architecture for Passage Re–Ranking 129

5.2.1 Language Model I (pdclm) 130

5.2.2 Language Model II (ppclm) 131

5.2.3 Language Model III (pdlm) 131

5.2.4 Language Model IV (pClm) 132

5.3 Experimental Results . 132

5.3.1 Language Model I (pdclm) 133

5.3.2 Language Model II (ppclm) 133

5.3.3 Language Model III (pdlm) 134

5.3.4 Language Model IV (pClm) 135

6 Conclusion and Future Work . 135

IX Sentence Retrieval 137

1 Introduction . 137

2 Related Work . 140

3 Methodology . 141

3.1 Jelinek–Mercer smoothing . 142

3.2 Absolute Discounting . 143

3.3 Bayesian smoothing with Dirichlet priors 143

3.4 Dataset . 143

4 Experiments . 144

4.1 Results . 146

4.1.1 Baseline Experiments . 147

4.1.2 Improved Smoothing Methods 148

5 Conclusion . 150

X Conclusion and Future Work 153

List of Figures

II.1 Information flow in a Q&A system. 18

II.2 Information flow of Q&A part used in this thesis. 19

II.3 Number of included topics vs MAP for TREC 2004 data. 22

II.4 Example of document retrieval results using Google. 24

II.5 Example of AQUAINT document. 28

II.6 Example of sentence retrieval output. 30

II.7 Module overview of the Alyssa system. 39

II.8 Precision and recall example for set theory. 43

II.9 Ideal and typical precision–recall graph. 44

II.10 Example of TREC Q&A questions for target 154. 51

III.1 The Model of Communication System. 55

IV.1 Overview of the Q&A system in SmartWeb 76

IV.2 Overview of the passage retrieval component in SmartWeb 78

VI.1 Correlation between number of errors for coarse and fine classes. 94

VI.2 MER for different linear interpolation parameters. 95

VI.3 MER for different Dirichlet prior parameters. 96

VI.4 MER for different discounting parameters. 97

VI.5 Contour plot for MER for different discounting parameters. 98

VI.6 MER for different log–linear parameter. 99

VI.7 Histogram of confidence values for the TREC 10 dataset. 103

VI.8 Histograms of confidence values for frequent question types for TREC 10. . . 104

VI.9 Histogram of confidence values for the TREC 2006 dataset. 105

VI.10Histograms of confidence values for frequent question types for TREC 2006. 106

xvii

VII.1 MAP for Document Retrieval with varying number of documents. 115

VII.2 MAP for Document Retrieval using AbsDisc and linear Interpolation. 116

VII.3 MAP for Document Retrieval using Dirichlet priors. 117

VII.4 Correct Answers per Question Type and Extracted Documents. 119

VIII.1MAP for Passage Retrieval with varying number of passages. 126

VIII.2MAP for Passage Retrieval using AbsDisc and linear Interpolation. 127

VIII.3MAP for Passage Retrieval using Dirichlet priors. 128

VIII.4Re–ranking setup for the pdclm language model. 132

VIII.5Dataset flow diagram for the pdlm language model. 133

VIII.6MAP of linear Interpolation using different background collections. 134

IX.1 A general architecture for question answering systems 138

IX.2 The sentence retrieval architecture for our experiments 145

IX.3 Number of retrieved sentences vs. accuracy for baseline experiments 148

IX.4 Number of retrieved sentences vs. accuracy for optimized smoothing methods 149

List of Tables

II.1 Examples of question types proposed by Li and Roth. 20

II.2 Number of included topics and corresponding MAP for TREC 2004 dataset . 23

II.3 Example of document retrieval results using the Lemur toolkit. 25

II.4 Example results of an imaginary information retrieval system. 42

II.5 Example results of a human expert. 42

III.1 Examples of applications for Source–Channel Framework. 55

III.2 Examples of popular language models. 57

VI.1 List of the new question types used for TREC 2007 experiments. 94

VI.2 Comparison of proposed approaches for query classification. 99

VII.1 Labels used for different datasets . 111

VII.2 MAP for best run of different retrieval methods. 118

VII.3 Results of TREC 2006 Document Retrieval. 118

VII.4 Comparison between One–Stage and Two–Stage Retrieval. 119

VIII.1MAP for best run of different retrieval methods. 128

VIII.2Labels used for different language models . 130

VIII.3MAP for the best run of language model–based approaches. 135

VIII.4Summary of Document and Passage Retrieval results. 136

IX.1 Mean Reciprocal Rank of baseline and optimized experiments 151

xix

Chapter I

Introduction

In this chapter, we want to introduce the topic and present a motivation of the thesis. In

particular, we discuss the task of information retrieval and how to extend such systems to

provide users with more specific pieces of information. This will directly result in a description

of question answering systems. After an overview of the thesis, our contributions in the field

of language model based question answering are given.

1 Motivation

The idea of searching and finding relevant information is as old as storing them. For thou-

sands of years people have already written down their knowledge and other people have

tried to find them.

With the introduction of the Internet this these problems have got worse, because nearly

everyone is now able to provide any kind of data to the rest of the world.

There is a growing amount of information today. People have a nearly endless repertoire

of sources they can use to satisfy their information need. In particular, there are lots of

newswire pages, like The New York Times1, Reuters2, or BBC3, online encyclopedias, like

Wikipedia4, and also other unstructured sources of information, like personal Web pages.

“To search for relevant information in large amounts of unstructured data calls for automatic

means that aid in this process, as manual inspection of all data is practically infeasible”

1http://www.nytimes.com
2http://www.reuters.com
3http://www.bbc.co.uk
4http://www.wikipedia.org

1

2 CHAPTER I. INTRODUCTION

(Monz 2003).

That is why Information Retrieval (IR) systems become an important part of our daily life.

Worldwide, millions of people use Internet based search engines like Google5 or Altavista6

to find various information like news, pictures, music or other text documents. Satisfying this

information need has become a real challenge, for developers and users of such systems.

Users normally want to receive some relevant data out of millions of documents and devel-

opers have to implement algorithms which fulfill this need with an additional time constraint

of just some few seconds per query.

In today’s Internet IR systems, users can submit a set of keywords, which represent their

information need. These queries are then processed by the system and a sorted list of

relevant documents is returned. Hence, such systems are also referred to as Document

Retrieval systems.

For example, if a user wants to know the date of birth of John Lennon, he/she probably

searches the Web using John, Lennon, and Birthday as keyword query. Afterwards, the

resulting documents have to be manually scanned to find the desired answer.

For such queries, the use of online encyclopedias is much more simple. By submitting the

query about John Lennon, a system like Wikipedia provides a biography about the person.

So, the date of birth and other interesting information can be found by reading just the one

document.

But, it would make much more sense, if it was possible to directly ask a system When was

John Lennon born? In this case, the answer of the system to this natural language question

should not be a set of documents but the concise answer October 9, 1940.

Such systems have been developed since the 1950s and are called Question Answering

(Q&A) systems, because they try to provide the user with a concise answer to his specific

information need.

2 From Information Retrieval to Question Answering

The question answering systems which have been developed since 1950 are different to

the Q&A system we describe in this thesis. The function of these early engines are mainly

restricted to specific domains, like Baseball or moon rocks. The underlying data structures

5http://www.google.com
6http://www.altavista.com

2. FROM INFORMATION RETRIEVAL TO QUESTION ANSWERING 3

were mostly database driven and therefore provided the system with structured data to pro-

cess.

With the beginning of the annual Text REtrieval Conference (TREC) in 1990 and in particular

the start of the question answering track in 1999 (Voorhees and Harman 1999), the task of

Q&A systems switched from closed–domain to open–domain systems. This means, that

those systems can provide a user with a concise answer to a natural language question by

analyzing unstructured data, like text documents, newswire articles or the Internet–based

Web documents.

As already mentioned, standard IR engines use document retrieval algorithms to satisfy a

user’s information need. For the task of question answering this is not sufficient, although it

is a necessary step to find the correct answer to a given natural language question.

Normally, the first step of a Q&A system is to analyze the natural language question. In this

part, the specific type of a question is determined. For example, if the question is When was

John Lennon born?, the corresponding question type is Date. But questions about other

classes, like Person, Entity or Definition are also possible. This information can be used in

various other modules of the complete Q&A system.

The following steps try to extract the accurate answer out of the given corpus, for example

the complete Internet. Because it is not possible to process each document in this corpus, a

filtering, or pre–fetching step (Monz 2003) has to be performed. Normally, this is done using

standard document retrieval approaches. So, the idea is to reduce the search space in which

a correct answer has to be found. It is necessary to reduce the search space because the

following components may use long–lasting deep analysis algorithms which strongly depend

on the size of the processed corpus. Therefore, it is important to process just the documents

which seem relevant to a query to get answers within an appropriate period of time.

But the document collection might still be too large, or some documents contain a variety of

different topics. If this is the case, again, the following components, like Sentence Retrieval

or Answer Selection, will have to analyze more text than is necessary in order to find the

correct answer. To overcome this problem, it is essential to further reduce the size of the

collection. This can be done by splitting up the text segments into smaller passages.

After dividing the documents, a second retrieval step is necessary in order to re–rank the

new collection. By doing so, the corpus size and thus the search space is reduced again. If

those pieces of text just contain one sentence, this step is also called Sentence Retrieval.

4 CHAPTER I. INTRODUCTION

Finally, relevant pieces of information are selected out of the text segments. This is done

by analyzing the passages using part of speech tagging, named entity tagging, and other

linguistic algorithms.

After re–ranking those answer candidates the best possible answer is returned to the user.

3 Standard Tasks in Question Answering

Now, as we know how open–domain question answering is performed, we want to talk about

the various tasks for such systems.

Primarily, the task of today’s Q&A systems is to provide a user with a concise answer to

a natural language question. This can be done by using text documents, like newswire

articles, as corpus, but also the Internet might be an adequate collection for answering a

non–specific question.

In 1999, this “main” task became part of the Text REtrieval Conference (TREC) as a textual

question answering task (Voorhees and Harman 1999). “At TREC, participating groups

evaluate and compare their question answering systems with respect to some standard set

of questions. This allows for an objective comparison if question answering techniques and

the rapid interchange of ideas to further the research in that area” (Monz 2003).

The weakness of Q&A at TREC is that it mainly focuses on English systems where both,

questions and answers, have to be in English.

This disadvantage was compensated by the Cross Language Evaluation Forum (CLEF)

where both, monolingual in different languages and special multilingual Q&A tasks were

introduced in 2003.

The CLEF Web site describes the task as follows (CLEF): “The NIST TREC Q&A tracks (this

year is the seventh round) have stimulated progress in Q&A state–of–the–art, establishing

widely accepted and standardized evaluation measures and requirements. Nevertheless,

multilinguality has always been outside of the scope of the TREC Q&A evaluation exercises,

which, up to now, have focused on systems for English.

Within the framework of the Cross Language Evaluation Forum (CLEF), a pilot track for non–

English monolingual and cross–language QA systems was successfully set up for the first

time in Europe in 2003. Since then, three other campaigns have been carried out, recording

a costant increase in the number of participants and in the results achieved.”

4. OUTLINE OF THE THESIS 5

Provided languages for this year’s CLEF Q&A task are Bulgarian, German, Spanish, French,

Italian, Dutch, Portuguese, and Romanian.

Another task which is based on question answering is the search for geographic informa-

tion. For this purpose, there is a special task at CLEF which is called Cross–Language

Geographical Information Retrieval (GeoCLEF). It is described as follows:

“Geographical Information Retrieval (GIR) concerns the retrieval of information involving

some kind of spatial awareness. Given that many documents contain some kind of spa-

tial reference, there are examples where geographical references (georeferences) may be

important for IR. For example, to retrieve, re–rank and visualize search results based on a

spatial dimension (e.g. “find me news stories about riots near Dublin City”). In addition to

this, many documents contain geo–references expressed in multiple languages which may

or may not be the same as the query language. This would require an additional translation

step to enable successful retrieval.

Existing evaluation campaigns such as TREC and CLEF do not explicitly evaluate geograph-

ical IR relevance. The aim of GeoCLEF is to provide the necessary framework in which

to evaluate GIR systems for search tasks involving both spatial and multilingual aspects.”

(GeoClef)

4 Outline of the Thesis

Chapter 2 describes the background on question answering systems. Here, a short history

of Q&A is given which also includes some of the earlier, closed–domain approaches.

We further describe approaches to how to solve the task of Q&A using state–of–

the–art techniques, like natural language processing algorithms or external knowledge

bases. The chapter also contains a description of a standard open–domain question

answering system as well as evaluation methods of measuring the success of such a

system.

Chapter 3 In this chapter, we provide background information about statistical language

modeling. This includes general information on language modeling, how to perform

smoothing and other important applications like Maximum Entropy models. Then, the

task for language model based information retrieval is described. Finally, we propose

a theoretical model of taking the notion of language modeling to the task of question

6 CHAPTER I. INTRODUCTION

answering.

Chapter 4 This chapter describes an application of language model based question an-

swering we used for the SmartWeb project. In particular, we introduce our approach

to performing passage retrieval by using statistical language models.

Chapter 5 presents related work in the field of applications for statistical language modeling

and question answering.

Chapter 6 Our studies in the area of language model based question classification are

introduced in this chapter. We present some standard and improved models which in-

clude count based absolute discounting or log–linear interpolation using bigram statis-

tics. In the result section we show that this approach even performs better than using

SVM. We also introduce in this chapter the notion of confidence measures for ques-

tion types. These values can be used in later modules for increasing sentence retrieval

performance or for the task of answer extraction.

Chapter 7 We explain our experiments on the task of document retrieval using language

models in this chapter. It introduces the different steps we used to improve the results

of this task. This includes fixing the number of returned documents as well as tuning

the smoothing parameters of the language models.

Chapter 8 This chapter presents results for passage retrieval and re–ranking using a lan-

guage model based approach. While using the same methodology as described for

document retrieval in order to increase the passage retrieval performance, we expe-

rimented with different background collections to improve the re–ranking of text frag-

ments.

Chapter 9 Sentence retrieval is a special case of passage retrieval where just one sentence

is included in the passage. In this chapter, we introduce some optimization steps, like

a weighted expansion of queries and sentences, based on Baysian smoothing using

Dirichlet priors.

Chapter 10 Finally, we want to summarize the results of our experiments and give some

hints for further research work in the field of language model based question answer-

ing.

5. CONTRIBUTIONS 7

5 Contributions

Finally, we want to give a short overview over our contributions in the field of using language

models in question answering.

As mentioned so far, parts of a complete Q&A system were implemented using statistical

language models. In particular, this includes:

• Language model based question classification. For this task, some improved language

models were developed and the notion of confidence measures were introduced.

• By using language models for the task of document retrieval, we also could improve

the effectiveness of a Q&A system.

• The same approach was done to improve passage retrieval. In addition, we used

different background collections to improve the re–ranking of the text passages.

• A further focus was the improvement of the sentence retrieval module in a Q&A sys-

tem. Here, we used some specific optimization steps to obtain a better set of results

for this task.

8 CHAPTER I. INTRODUCTION

Chapter II

Background on Question Answering

The chapter Background on Question Answering covers the main features of question an-

swering (Q&A) systems. It presents a short history of such systems and shows some pos-

sible methods of solving this task. Furthermore, we describe a complete open–domain

question answering system on the basis of a standard model.

The rest of the chapter is organized as follows. Section II.1 describes existing systems for

both, closed and open–domain Q&A. In section II.2 we provide some possible strategies for

approaching the task of finding answers. The section II.3 gives a complete overview of a

state–of–the–art Q&A system by means of the most important modules of such systems.

Here, we will also discuss variants of other state–of–the–art systems, most of them used

for the Text REtrieval Conference. The last section(II.4) covers current evaluation metrics

for both, standard retrieval methods and Q&A systems. It also introduces the Text REtrieval

Conference (TREC) organized by the National Institute of Standards and Technology (NIST)

as a benchmark for text retrieval systems and in particular for the task of Q&A.

1 A Short History of Question Answering Systems

As mentioned in chapter I.3, classic Q&A systems can be distinguished by their ability in an-

swering questions for just a specific domain (closed–domain) or domain independent (open–

domain). Former systems were the first ones which worked in a productive manner because

they just had to rely on databases or knowledge bases.

One of the earliest domain–specific Q&A systems is BASEBALL (Green et al. 1963). In

this database–driven approach, a user can ask specific questions about locations, dates

9

10 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

and results of baseball matches. The LUNAR system (Woods 1977) also tried to answer

natural language questions for the domain of moon rocks and soil of the Apollo 11 mission

(1969). To help high–school people to solve problems in the area of algebraic exercises, the

STUDENT (Winograd 1977) system was established. Another database–oriented approach

was PHLIQA (Bronnenberg et al. 1980, Scha 1983). In this system, users could ask short

queries about fictitious information concerning European computer systems and companies

using them.

At that time, the first systems began to use methods from the area of artificial intelligence.

For example QUALM (Lehnert 1978, Lehnert 1994), another natural language processing

approach, made use of the so called conceptual dependency approach and scripts to repre-

sent expected behavior in a situation. It’s main effort was to answer questions in the context

of story understanding.

All the systems mentioned so far use structured data in the form of hand–coded knowledge

bases or databases. The START system (Katz 1997) uses just a kind of knowledge base to

answer simple natural language questions. But it makes use of the unstructured information

from the Internet instead of structured data. That follows the general configuration of the

system. In a first step, Web documents are used to fill up the knowledge base, whereas in a

second step, sentences are generated from this knowledge base.

The FAQFINDER (Burke et al. 1997) uses various methods from information retrieval and

natural language processing to “provide answers to user questions through the retrieval

of previously asked questions residing in the Internet Frequently Asked Questions (FAQ)

files, primarily USENET FAQ file” (Mlynarczyk and Lytinen 2005). Therefore, the system

calculates the similarity of a user query with the queries in the FAQ. If there is a similar

query, the FAQFINDER will return the adequate answer. To calculate a similarity score,

it uses vector–space inspired model with word frequencies. Other linguistic methods like

parsing or part–of–speech tagging have been used as well.

The disadvantage of all Q&A systems described so far is the need for a specific domain.

Normally, this also includes the need for hand–crafted knowledge bases or databases. This

is not only expensive, but makes it also nearly impossible to use those systems in another

application than the original. All these are reasons why those systems have never played

a decisive role for commercial systems in that area of research. So, the logical conclusion

was to build up more flexible Q&A systems which do not rely on specific domain knowledge.

2. APPROACHES TO THE QUESTION ANSWERING TASK 11

As already mentioned, an advantage of such open–domain Q&A systems is that there is

no need for knowledge bases. But this means that they have to find their information within

other sources, in this case using plain–text documents. These document collections can

contain newspaper articles, books, stories, encyclopedias as well as web documents, such

as forums or web logs (Blogs). That is why such systems are also called text–based Q&A

systems (Monz 2003). Users can ask natural language questions and the system will search

the answer within the given text collection. To do so, the system has to analyze the ques-

tion, then selects documents which are in some sense similar to the question and tries to

extract the specific information out of the text. This means that a Q&A system contains el-

ements from various research fields, like natural language processing, information retrieval

and information extraction.

2 Approaches to the Question Answering Task

In this section we describe some possible techniques which are useful when implementing

an open–domain Q&A system. This includes the use of natural language processing in

combination with information retrieval and extraction as well as some explanation about

external components like part of speech tagger or WordNet.

The main goal of a Q&A system is the use of natural language questions to provide a user

with a specific piece of information. To do so, the system has to “understand” the seman-

tics of a given question. In most systems, this is done with the help of natural language

processing (NLP) techniques. These methods can include deep linguistic techniques like

dependency representations build from parse trees (Paşca 2003) or simple statistical lan-

guage models to classify the question into a taxonomy, like we did in this thesis.

Information Retrieval

Another interest of research in Q&A is the use of information retrieval methods. When the

user question has been analyzed and a system query has been build, relevant documents

should be searched out of an existing text collection. To find those text documents, the

similarity between the query and a document is calculated1.

1This chapter just covers the basic notions of the classic IR models. Please read (Baeza–Yates and Ribero–
Neto 1999) for more details.

12 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

This can be done in various ways. But most of them use keyword–based queries instead

of natural language questions. And normally, those methods also assume that the terms

within the query are independent. A representative for those “classic” information retrieval

approaches is the standard and extended Boolean retrieval (van Rijsbergen 1979, Salton

and McGill 1983), which simply uses set theory and Boolean algebra to rank documents

according to a query. The main disadvantage of this model is that it is based on a binary

decision criterion, which just can predict if a document is relevant or not. A second flaw is that

it is not so easy to “translate” a user’s information need to the specific semantic of that model

(Baeza–Yates and Ribero–Neto 1999). Therefore, it is not that easy for users to express their

needs within the Boolean algebra and so they just use some simpler expressions which

directly leads to worse results.

A second, very important information retrieval approach is the Vector Space Model (Salton,

Yang, and Yu 1975). In this approach, each term in a query and a document is assigned with

a non–binary weight (term weight). Each value for query and document can be regarded as

a vector and so, a degree of similarity can be calculated. This is done for each document to

get a ranking of the collection.

Normally, the similarity between the query and a document is calculated by the cosine simi-

larity, which computes the cosine of the angle between the two vectors.

The next step is to find an adequate method for calculating the weight of the index terms.

There are many possible approaches (Salton and McGill 1983), but tf–idf is the most popu-

lar method. It combines the term frequency (tf) with the inverse document frequency (idf).

The tf factor is calculated as the raw frequency of a term in a given document. Therefore,

it is a measure of how well the term describes the document (Baeza–Yates and Ribero–

Neto 1999). This is referred to intra–clustering similarity.

On the other hand, the idf factor (inverse document frequency) calculates the inverse raw

frequency of a term in the complete document collection. This factor models the fact, that a

term which very often occurs among the document collection cannot help to distinguish be-

tween a relevant or non–relevant document. This part is referred to as inter–cluster similarity

(Baeza–Yates and Ribero–Neto 1999).

Another “classical” model, which is in some sense similar to the approach we used in

this thesis (Lavrenko and Croft 2003), is the Probabilistic Information Retrieval Model

(Robertson 1977, Robertson and Walker 1994). It also tries to use a probabilistic approach

2. APPROACHES TO THE QUESTION ANSWERING TASK 13

to find a set of relevant documents to a user query.

The idea of this model is as follows (Baeza–Yates and Ribero–Neto 1999, Manning, Ragha-

van, and Schütze 2007). First, the information need (or query) and the document have to be

translated into adequate representations. Then, based on those models, the system com-

putes how well the document representation satisfies the information need. More specific,

the model tries to calculate the probability that a document is of relevance for the user.

One fundamental assumption is that there is an initial set of documents which are relevant.

So, if it is possible to specify the properties of this ideal set, it should be easy to find rel-

evant documents. But, the problem is, that these properties of relevance are not known.

There should be an initial guess followed by a user interaction (user feedback) to refine the

properties of the set of relevant documents.

Other, more sophisticated models, like the Okapi BM25 (Robertson et al. 1994) or the Latent

Semantic Indexing approach (Deerwester et al. 1990, Berry, Dumais, and O’Brien 1995)

mostly base on the “classical” models described above and are not further covered in this

thesis.

Web pages are in some sense a little bit more special than “normal” text documents. On

those pages, it is possible to link to other pages which are of interest for the author of the

page. On the basis of these Hyperlinks, there is a variety of possible approaches to rank

web pages. The two methods best–known are the HITS algorithm (Kleinberg 1998) and

PageRank (Page et al. 1998, Brin and Page 1998).

The HITS (Hypertext Induced Topic Search) algorithm bases on authorities, pages with

many links pointing to it, and hubs, pages with a high number of outgoing links. The idea

is now to find even better hubs and authorities. Better authorities will be found, if they have

good hubs as predecessors whereas better hubs are specified with good authorities as suc-

cessors. A good explanation of the iterative implementation of the HITS algorithm can be

seen in Weikum (2005). A major drawback of this approach is that it needs an initial set of

“root pages”, which have to be assigned via relevance ranking.

The PageRank algorithm, which is a part of the searching strategies used by Google, also

includes the structure of the Web to find relevant pages. The key idea behind this approach

is that a random user starts a random walk on the Web. It follows outgoing hyperlinks with

a given probability and never takes an already used link backwards. He can also randomly

jump (or teleport) to another web page with another probability. During this random walk,

14 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

the user visits some pages more often than others. Obviously, these pages have a higher

authority and better hubs than others.

The probability of being on a node during the walk can also be computed with the help of

Markov chains (Manning, Raghavan, and Schütze 2007).

NLP tools for Information Extraction

The ultimate goal of research on Natural Language Processing is to parse and understand

language (Manning and Schütze 1999). This goal also holds for the task of Q&A, where it is

essential to understand user questions as well as the given answers. The NLP community

provides us with a variety of useful tools to reach this target, like Part–of–Speech tagger or

Named Entity Recognition systems.

Part–of–Speech Tagger

The field on application of Part–of–Speech (POS) tagger, or simply tagger, is to assign an

adequate part of speech to each word in a text. This includes proper nouns, adjectives,

verbs, adverbs and so on. There is a variety of possible tags, but the most widely used tag

set in NLP is the Penn Treebank tag set2 (Marcus, Santorini, and Marcinkiewicz 1993).

Regarding a regular Q&A system, there are many modules which can make use of a POS

tagger, like question processing or answer extraction. For example, if a user searches for

facts, normally the answer is a noun. Thus, a sentence representation like

John–NNP Lennon–NNP was–VBD a–DT member–NN of–IN the–DT Beatles–NNP

may help to extract the answer to the question “John Lennon was a member of which group?”

because the only proper noun which does not occur in the question is the word “Beatles”.

For experimenting with the Alyssa system we used Brill’s tagger (Brill 1992, Brill 1994).

Named Entity Recognition

In general, the task of recognizing named entities (NE), like persons, locations or organi-

zations in a text is just a classification task. Typical classes for given words are names of

persons or organizations, locations, dates, monetary amounts or percentages. For example,

if the question asks for the word “Masouleh”, then the NE tagged sentence

2This set is also used in the Alyssa Q&A system, which is partly described in this thesis.

2. APPROACHES TO THE QUESTION ANSWERING TASK 15

Some 30 people have been killed and 45 others been injured in floods and landslide caused

by torrential rains in the historical city of 〈ENAMEX id=1 type=“LOCATION”〉 Masouleh

〈/ENAMEX〉

can give the answer that “Masouleh” is a location.

There is an approach which uses statistical, learned methods to tag entities in text (Bikel

et al. 1997). It is a flexible approach, easy to implement, which is mainly based on hidden

Markov models.

Parser

The idea of parsing (or syntactic analysis) is to be able to generate a syntactic, phrase data

structure (parse tree) out of a given sentence (Manning and Schütze 1999). Most commonly

used parsers are statistically motivated and use manually annotated training data to get

count statistics. There are also parsers which use the output of Part–of–Speech taggers to

build up their own parse tree.

The information gained from those data structures can be useful for example to map the

user question to an answer (Shen, Kruijff, and Klakow 2005).

External Resources

In this section, we want to present an external knowledge resource which is helpful for the

task of NLP in general or for Q&A in special. There are many toolkits available, but in this

section we exemplarily want to introduce WordNet3. Normally, these packages are freely

available and represent semantical connections between word entities.

WordNet

WordNet is a dictionary for English language. It links English nouns, verbs, adjectives, and

adverbs to set of synonyms that are in turn linked through semantic relations that deter-

mine word definitions (Miller 1995). WordNet is not a traditional lexical database but it was

designed for computational use. Each word in the collection is linked to other words with

the same meaning (set of synonyms or synset). There is also a general definition for each

synset. The semantic relations between words or word senses are for example synonyms,

3http://wordnet.princeton.edu/

16 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

antonyms, hyponyms, and much more.

WordNet also covers the problem of word ambiguity. For example, the synset car has five

different meanings, and is therefore a member of five different synsets. It can be: car, auto,

automobile, machine, motorcar (a motor vehicle with four wheels; usually propelled by an

internal combustion engine). But also the synset car, elevator car (where passengers ride

up and down) is valid for the word car.

Totally, WordNet 3.0 contains 117,659 synsets and a total number of 147,278 unique noun,

verb, adjective, and adverb strings.

3 An Open Domain Question Answering System

In today’s world, the effective finding of information becomes a crucial part of our lives. But

the searching and finding of relevant information is not that easy. Most information, we are

looking for, can theoretically be found on the Internet. If a user has a specific information

need, he visits a common search engine and translates his need into a keyword query,

which can be processed by such Internet search systems. As results, he will get a list with

potentially relevant documents and perhaps some text snippets from the corresponding web

page. Then, the user can look at those documents and can search the needed information

by hand.

The task of an open–domain question answering (Q&A) system is to provide a user’s in-

formation need, normally expressed by a natural language question, with a short answer.

Whereas today’s search engines return lists of documents containing the answer as de-

scribed, a Q&A system returns just the fact a user is interested in. So, most of the queries

a Q&A system has to answer are factoid questions. Those factoid questions are fact–based

and can be answered with a simple statement. An example for a question of that type is

In what year was Susan Butcher born?, which can simply be answered with the year 1954.

But, in an open–domain Q&A system, questions to all possible topics can be asked. This

also includes questions for persons, locations, organizations, and so on. This topic will be

picked up in the next section, when describing how to classify a user question in order to

better find correct answers.

Other possible questions for a Q&A system are list and definition questions. A list question

expects a list of different instances of a factoid question as returning values, like List names

3. AN OPEN DOMAIN QUESTION ANSWERING SYSTEM 17

of characters in ”Harry Potter and the Goblet of Fire”, which asks for a list of person names

in the book “Harry Potter and the Goblet of Fire”.

On the other hand, a definition question asks for more detailed information about persons or

things. In this case, the answer is not a short fact, but a longer text snippet which gives more

detailed information about the demanded facts. Examples for this kind of questions are Who

is Angela Merkel? or What is a Question Answering System?.

The question classes we named as possible types for Q&A systems are also the types which

are used at the Text REtrieval Conference (TREC) to evaluate and compare different Q&A

approaches from different research groups all over the world. At TREC 2006, 27 institutes

attended the competition with their systems. So it is easy to see that it is not possible to

represent all different approaches in a system overview.

Therefore, a more general architecture of a textual open–domain question answering system

is presented in Figure II.1. It contains all modules, which all state–of–the–art open–domain

question answering system have in common. Now a short description of all modules follows.

Longer descriptions with examples and citations can be read in the following sections.

The system begins on top with the information need a user has in mind. This “need” has to

be translated into a natural language (NL) question. The style of the NL–question is exactly

the same as when asking other persons. So, the user doesn’t have to build a complicated

keyword–based query to search for information.

In a next step, the question is processed and a query is build. The processing step in-

cludes the definition of the question type as well as other linguistic processings, like parsing,

whereas the query construction mainly builds a query which is best for the following infor-

mation retrieval modules.

After a query is constructed, the information retrieval part has to find relevant documents

out of a possibly large corpus. This might be a text collection of newswire data or even the

Internet. In this step, the size of the corpus is reduced to make it easier for following modules

to find an answer.

But because most documents are still very large or cover more than one topic, they are split

up to smaller text fragments and are re–ranked according to the query (passage retrieval).

Normally, these passages just contain a few sentences or at an extreme case, just one

sentence. In that case, this step is called sentence retrieval. This procedure ensures, that

the following modules simply get the amount of text they can process.

18 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

Document
Collection

Answer Validation

Query

Information Need

NL−Question

Answer Extraction and Selection

Answer

Document Retrieval Passage/Sentence Retrieval

Information Retrieval

Question Processing and Construction

Figure II.1: Information flow in a Q&A system.

The newly ranked text passages (or sentences) are then transmitted to the answer extrac-

tion and selection module. Here, possible answer candidates are extracted out of the text

snippets. When having a list of possible answers, further linguistic methods are used to re–

rank the set of answers. Normally, also the question type, gained in the question processing

step, is used.

The last module denoted in Figure II.1 is an optional step. In this module, each answer from

the set of answer candidates is validated. There are many possible ways of checking an

answer, but the most popular and easiest way is to search the Internet for that given answer

and parts of the question.

After finishing the validation, the system has just to decide how many answers to return.

Normally, in case of a factoid question, the Q&A engine returns the top answer. This is

not sufficient for list questions; here, the top–N answers are returned, where N has to be

defined.

In this thesis, we don’t explain a complete Q&A system. We have just investigated statistical

3. AN OPEN DOMAIN QUESTION ANSWERING SYSTEM 19

Query

NL−Question

Top N Sentences

Document Retrieval

Information Retrieval

Sentence Retrieval

Document
Collection

Question Processing and Construction

Figure II.2: Information flow of Q&A part used in this thesis.

methods for the modules shown in Figure II.2. It can be seen, that this describes the upper

part of a complete system. There is still the information need and the question processing

and query construction with the query to do the retrieval.

The information retrieval modules are also present with document retrieval, but instead of

doing passage retrieval, we decided to directly take just sentences as default. Nevertheless,

we also did experiments with different passage retrieval approaches. Chapter VIII presents

more information.

After doing a sophisticated sentence retrieval, the system returns a specified number of

sentences. In this thesis, we disregard the answer extraction and selection as well as the

answer validation. But as we used these modules for our TREC system, we discuss them in

the following sections.

3.1 Question Processing

The first step in a Q&A system is the processing of the question. This is done, because the

system has to “understand” the meaning of the information need a user has, i.e. what piece

of information should be returned by the system to answer the question. The processing can

be done in many ways, depending on the theoretical approach of the system. But normally,

the specific class of a question (question type) is determined and a query is produced for

20 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

later retrieval modules, also depending on the query language the retrieval modules provide.

Further processing steps are optional, but we will describe some approaches we used in our

Q&A system Alyssa.

Question Typing

The classification of the user’s question into different types is one of the main parts of this

thesis. Please refer to chapter VI for more detailed information.

Coarse Class Fine Class Description

ENTITY entities
animal animals
body organs of body
currency currency names
dis.med. diseases and medicine

HUMAN human beings
group a group or organization of persons
ind an individual

LOCATION locations
city city names
country country names

NUMERIC numeric values
count number of sth.
date dates
percent fractions

Table II.1: Examples of question types proposed by Li and Roth.

The approach, described in this thesis, uses the classification taxonomy proposed by Li and

Roth (2002). It consists of 6 coarse and 50 fine grained classes. For example, all numeric

values, like dates, prices or counts, are summarized within on coarse class NUMERIC.

Some examples of the classes are shown in Table II.1. As already mentioned, different

approaches use different classes. But most current Q&A systems use at least similar classes

like the coarse ones described in this approach.

The theoretical approach we used in this thesis is language model based. It uses a Bayes

classifier to determine the best possible question type. We applied this model because it is

known to produce the minimum number of misclassifications if the correct probabilities are

known.

As mentioned, language models are utilized to calculate the correct probabilities. More

3. AN OPEN DOMAIN QUESTION ANSWERING SYSTEM 21

specific, the probabilities are smoothed applying a backing–off approach called Kneser–

Ney–Smoothing4

To train the statistical models, the 5500 questions provided by the Cognitive Computing

Group at University of Illinois at Urbana–Champaign5 were adopted.

Other approaches, we will discuss later in this thesis, make use of machine learning ap-

proaches to classify questions, i.e. the system described by Zhang and Lee (2003) uses

support vector machines. A sophisticated approach applying pattern matching as classifica-

tion paradigm is presented by Suzuki et al. (2003). The system described by Zhang and Lee

(2004) also uses a statistical language modeling approach which is not as sophisticated as

the approach presented in this thesis.

Question Preprocessing

The Alyssa Q&A system uses a simple three–step–approach to do the question preprocess-

ing. It is mainly based on an anaphora resolution.

In a first step, all pronouns in the question are substituted by the main target noun phrase.

The second step consists of the replacements of noun phrases in the question, which have

the same head word as the target, but a shorter length. If both steps fail to include the tar-

get into the question, a noun phrase is selected by rules and replaced with the target noun

phrase.

Question Pattern Matching

In the TREC Q&A question sets, there are a number of specific “types” of questions which

occur more often than others. For example, question for a specific person X, like In what

year was person X born? or In what country was person X born?, are much more frequent

than other questions.

So, we decided to manually build question patterns to map such a question to different

question classes. Whereas Kaisser and Becker (2004) uses the syntactic structure of a

question to classify it, the Alyssa approach uses classes defined in terms of meaning.

In addition to the question patterns, further answer patterns were created. If a question

4Please read section VI.1.3 for a more detailed discussion of the used language models.
5http://l2r.cs.uiuc.edu/∼cogcomp/Data/QA/QC/

22 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

matches the question patterns described above, the corresponding answer pattern can be

used in later modules to extract the possible answer out of a sentence.

Dependency Relation Path Extraction

If a question cannot be matched by the question patterns, a statistical model is used to deter-

mine the relations between a question and possible answer candidates. Following Shen and

Klakow (2006), the dependency path between the question and an answer sentence is com-

pared and possible answers are extracted. To parse the question and extract dependency

relations in this stage, we use the Minipar (Lin 1994) parser.

Query Construction

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1 2 3 4 5 6

M
A

P

number of included topics

Figure II.3: Number of included topics vs MAP for TREC 2004 data.

Finally, a query for the following information retrieval modules is created. As explained in

Miller, Leak, and Schwartz (1999) each term in the query can be weighted with a score.

This means that repeating a specific term multiple times would give the latter term more

importance in form of a higher score. Because this also holds for our language model ap-

proach, we expanded the query in this step with the topic of the question. Figure II.3 shows

the effects on our document retrieval systems when we expand the query with the topic

multiple times on TREC 2004 data. On the x–axis the number of included topics is shown

whereas on the y–axis the Mean Average Precision (MAP) is plotted. The performance in-

3. AN OPEN DOMAIN QUESTION ANSWERING SYSTEM 23

included topics Mean Average Precision

0 0.0900
1 0.2440
2 0.2995
3 0.2997
4 0.2876
6 0.2799

Table II.2: Number of included topics and corresponding MAP for TREC 2004 dataset

creases until including the topic three times. So, if the topic is added too often it gets too

much weight and other possible important keywords are scored too lowly and, therefore, the

retrieval system performs worse.

Table II.2 also shows the impact of including the topic on the document retrieval. The per-

formance increases until the topic was added three times. This means, if we add the topic

too often, it gets too much weight and other possibly relevant keywords are scored too lowly.

This would result in a worse retrieval performance. Due to the fact that there is just a very

small performance gain between adding the topic twice or three times, we decided to include

the topic in our experiments only twice.

3.2 Information Retrieval

Normally, the search for the correct answer begins with the search for relevant pieces of

text. In modern information retrieval (IR), there are many ways of doing efficient retrieval as

already described in section II.2. In this thesis, we will focus on doing a statistical approach

called language model based information retrieval6 because for our experiments it works

best in efficiency and performance.

In open domain question answering, there are two possible text sources. One is a collection

of newswire articles, mainly used for the Text REtrieval Conferences Q&A task to compare

different systems and the other is the Internet. But regardless of the collection type, there

are a hundred of thousand up to millions of documents, which can contain the answer.

This makes it impossible to analyze all of them with linguistic methods. Therefore, all Q&A

systems have at least a document retrieval component to fetch a set of relevant documents.

This pre–selection (Monz 2003) helps further components to find possible answers more

6A detailed introduction of language model based IR can be found in chapter III.

24 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

efficiently.

Retrieval strategies strongly depend on the tasks. Whereas most systems of the TREC

task use their own retrieval engines, or out–of–the–box IR toolkits like Lemur7, standard

Internet Q&A systems rely on existing web search engines like Google or Altavista. Such

systems often offer not only a set of links to relevant pages but also short text snippets with

relevant parts of the web site. These information can also be used to find possible answer

candidates.

But in both cases, for most instances a simple document retrieval step is not sufficient to

find a relevant answer. Relevant full text documents, retrieved from web pages or from news

articles, are still too long for the successing modules to do deep linguistic analysis.

Therefore, further, more sophisticated, retrieval approaches are necessary to achieve better

results. Normally, these methods split the documents into smaller pieces of text.

In the following subsections, we will describe the single retrieval methods in more detail.

This includes document retrieval, passage retrieval as well as the special case of retrieving

sentences.

3.2.1 Document Retrieval

Figure II.4: Example of document retrieval results using Google.

Document retrieval is the most common step for all Q&A systems. The main aim is to

translate the user’s information need into a set of possible relevant documents which can

contain the answer to the user’s question. Because this is typically not the last retrieval

7http://www.lemurproject.org

3. AN OPEN DOMAIN QUESTION ANSWERING SYSTEM 25

step, the pre–fetching of relevant documents is also often called document pre–fetching

(Monz 2003). This also acts as a kind of filter. Special filtering methods (IR algorithms) are

used to get relevant documents out of a large collection. As mentioned above, this collection

is usually too large to process every document, so, most, or even all state–of–the–art Q&A

systems use a document retrieval module for pre–selection.

For all document retrieval experiments, we used some kind of pre–processing. To remove

morphological information, a stemmer is used for indexing and question processing. There

is a variety of different stemmers available, like the Porter stemmer (Porter 1980) or the

Krovetz stemmer (Krovetz and Croft 1992). For our experiments, we choose the most com-

monly used Porter stemmer implemented in Lemur or versions downloadable at Porter’s web

page8.

97.1 Q0 NYT20000120.0096 1 -3.13419 Exp
97.1 Q0 NYT19980710.0072 2 -3.40417 Exp
97.1 Q0 NYT19991207.0201 3 -3.44968 Exp
97.1 Q0 NYT20000727.0115 4 -3.64661 Exp
97.1 Q0 NYT20000811.0090 5 -3.65305 Exp

Table II.3: Example of document retrieval results using the Lemur toolkit.

For example, Table II.3 shows the top–5 document retrieval results using the Lemur toolkit,

whereas Figure II.4 shows the results for the Google web search engine, both for the

TREC 2005 question “Who is the lead singer of the Counting Crows?”. In both cases the

results just contain “links” to the original documents. In case of Lemur, they are news arti-

cles, i.e. NYT20000120.0096 from the New York Times news paper. Consistently, Google

returns hyperlinks to other web pages.

The only difference is, that Lemur also returns scores for the searches, i.e. -3.13419 for

the best document, whereas Google supports the user with relevant text snippets from the

appropriate web page.

The reduction of the document collection size also reduces the search space for following

components. For linguistic approaches, i.e. in the answer extraction module, it is easier

to select possible answer candidates out of a smaller amount of text. So, there is a high

interdependence between document retrieval and further answer selection modules. This

means by selecting the correct number of retrieved documents, the efficiency of the complete

8http://tartarus.org/∼martin/PorterStemmer/

26 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

system will be raised.

This leads to the next problem, namely the number of retrieved documents. When selecting

too many documents, the following extraction modules need too much computational time

to find possible candidates. It can also introduce much noise to the collection, which might

result in worse performance in extracting answer candidates (Monz 2003). If it comes to the

worst, this will hurt the system’s usefulness. And if this should be a real world application

the system might be completely futile.

On the other hand, if the set of retrieved documents is too small, it might be the case that no

document containing the answer is retrieved. So, succeeding modules cannot extract any

correct answer candidates and the overall performance of the system will degrade.

One scientific goal of this thesis is to find more sophisticated methods to do document

retrieval which will increase the overall performance of a Q&A system. This also includes

the task of parameter optimizing for retrieving documents using language models. Results

can be found in chapter VII.

Because document retrieval is such a critical part of Q&A systems, we also want to present

some other important work in that direction.

For example, Salton and Buckley (1988) show some sophisticated term–weighting methods

for queries in the vector space model. Their recommended methods strongly depend on the

type of the query and the characteristics of the document collection (Zhai and Lafferty 2002).

Llopis, Ferrández, and Vicedo (2002) present in their work a comparison of passage retrieval

and document retrieval as a retrieval strategy. This does not mean a chaining of document

and passage retrieval but a comparison of both as first level retrieval.

Nearly the same idea was described by Roberts (2002). They also compared the impact of

document retrieval vs. passage retrieval for question answering systems. But, they addition-

ally do some research about the length of the used passages for the complete system. They

showed, that using two paragraphs as one passage is more efficient than using a complete

document.

Finally, we want to mention Clarke and Terra (2003). The content of their research paper is

also a comparison of their own passage retrieval module, based on Okapi, with a standard

document retrieval strategy. Their findings show, that using document retrieval only returns

much more results with correct answers, but in the case of question answering, passage

retrieval might still be relevant, because of the smaller fraction of text, to find possible answer

3. AN OPEN DOMAIN QUESTION ANSWERING SYSTEM 27

candidates.

3.2.2 Passage Retrieval

For most state–of–the–art question answering systems, a pure document retrieval is not

sufficient. First, a complete document might still be very large. For example, newswire texts

can have up to 2000 words and more (referred to the AQUAINT corpus9) and therefore it is

still very difficult to find the adequate piece of information in it.

A second reason is that there might still be some topic shifts in a document. Regarding

weblog (BLOG) pages, there could be a switch in the topic of discussion. It may start with a

discussion about a new movie which will end in a discussion about what TV standard is best

suited to view this movie.

Therefore, most Q&A systems use a more fine grained text retrieval, often called Passage

Retrieval. In such implementations, a complete document is split up into smaller text frag-

ment using a variety of different methods. So, normally a text passage is a document frag-

ment containing several sentences. Figure II.5 shows a part of an AQUAINT news text. In

this case, the SGML framework provides a good opportunity to split the document. After

splitting the text using the <p> tags, each passage contains just about 2 sentences.

Another advantage of using passages instead of complete documents is that it is easier for

the following modules to extract possible answer candidates. When using deep linguistic

algorithms like parsing, it is much more efficient to work on a smaller piece of text.

Important work in the field of passage retrieval, was done i.e. by Allan (1996). Some Pas-

sage Retrieval methods are also described in Wade and Allan (2005), like tf–idf, query like-

lihood or relevance modeling approaches. They also show how to evaluate such passage

retrieval systems.

Approaches by using text passages (Salton, Allan, and Buckley 1993) or answer passages

(O’Connor 1980) also show an improvement in the effectiveness of their retrieval systems.

Cui et al. (2005) present in their work a way of using term density ranking to retrieve possible

text fragments. They match the dependency relations between the questions and answer

passages. The scores are computed using fuzzy relation matching based on statistical

models.

As mentioned above, it is also useful to do passage retrieval for web pages. Cai et al.

9Please see chapter II.4.2 for more information about the AQUAINT corpus.

28 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

Figure II.5: Example of AQUAINT document.

(2004) show how to segment web pages into smaller blocks. They compare four different

ways which are especially useful for web pages, including fixed–length passages, Document

Object Model (DOM) based segmentation, a vision–based approach and a combination of

all models. They also show the impact of these methods on web search.

Other important work in the field of passage retrieval for question answering systems was

done by Clarke et al. (2000). In TREC 9, they introduced their Q&A system MultiText, which

is mainly based on the length of the passage and weights of the terms. In this system,

a passage can start and stop at any position in the text. Beside the passage retrieval, a

passage post–processing is used to select the five top–ranked text fragments.

A comparison of various passage retrieval systems for the task of question answering is

given in Tellex et al. (2003). They showed the impact of different document and passage

retrieval approaches in a Q&A system. For document retrieval, Lucene10, PRISE11 and an

oracle, which just return relevant documents, is used.

For the task of passage retrieval, they investigated state–of–the–art systems, like Okapi

BM25 with sliding windows, MITRE using the number of terms a passage has in common

with the query, an approach by IBM, which uses a series of distance measures, a combina-

tion of all methods, called Voting, and many other. Their three most important findings were

10http://lucene.apache.org
11http://www-nlpir.nist.gov/works/papers/zp2/zp2.html

3. AN OPEN DOMAIN QUESTION ANSWERING SYSTEM 29

that boolean querying works well for the task of question answering, the choice of the doc-

ument retrieval system is very important and finally, the best algorithm in their experiments

was density based.

As we focus on statistical language models for the task of Q&A in this thesis, we also want

to mention some statistical approaches to passage retrieval.

A language model based system for the general task of passage retrieval is introduced by

Liu and Croft (2002). In their work, they compare the language model and a relevance model

with full–text document retrieval using the INQUERY (Callan, Croft, and Harding 1992) sys-

tem.

There are also some language model based approaches for passage retrieval for the task of

question answering. Corrada–Emmanuel, Croft, and Murdock (2003) for example, present

in their work a language model based system for the TREC 9 competition. In particular, they

take tagged entities into account and build answer models for each corresponding answer

type. As models, they also discuss the query likelihood and a relevance model. Passages

are build by splitting the top 20 documents into sentences and forming them into passages

of 250 byte length at most12.

Zhang and Lee (2003) present in their work a statistical language model based passage

retrieval using relevance models. To do so, they get an initial set of relevant passages and

build a language model for them. In a second step, they get possible relevant data from the

Internet and construct a Web language model in an analogous manner. After mixing the

two models, they include further constraints, like the occurrence of the answer–type in the

passage and correct answer context.

Finally, they rank the passages using the Kullback–Leibler–Divergence.

3.2.3 Sentence Retrieval

Actually, sentence retrieval is just a special case of passage retrieval. While in passage re-

trieval the size of a text fragment might be several sentences, in this special case a passage

contains just one sentence. Therefore, this is the smallest entity for following modules to find

relevant information.

But because one sentence alone contains just little or no context information at all, there is

a need to combine this model with adequate other models to overcome the problem of data

12This was the maximum passage size for the TREC 9 Q&A task.

30 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

Figure II.6: Example of sentence retrieval output.

sparseness. In the statistical language model based approach, we introduce in this thesis,

we solve the problem by using adequate smoothing models. For example, a sentence model

is smoothed with the document, the sentence is derived from, and this model is further

smoothed with the document collection. A more detailed discussion of this topic is found in

chapter IX.

Another problem of using just one sentence as a paragraph is that successing modules, like

deep linguistic approaches to select answer candidates, might possibly fail because of the

lack of context. But, as described in section II.3.5, this does not hold for the Alyssa system,

partially described in this thesis. Figure II.6 shows the top four example results for Alyssa’s

sentence retrieval for the question Where is Bollywood located? As can be seen, possible

answer candidates can be found in the top three answer sentences.

Other applications for sentence retrieval are presented i.e. in Otterbacher, Erkan, and Radev

(2005). They show in their work how to solve “the problem of question–focused sentence

retrieval from complex news articles describing multi–event stories published over time”.

This means, that most of the questions are time–sensitive. To do sentence retrieval in this

context, they use a stochastic, graph–based approach.

Another application is the TREC task of Novelty Detection described in Larkey et al. (2002)

and Allan, Wade, and Bolivar (2003). This task mainly consists of two parts

1. find relevant sentences to a given query and

2. find novel sentences out of the result list found in the first step.

3. AN OPEN DOMAIN QUESTION ANSWERING SYSTEM 31

As described in Allan, Wade, and Bolivar (2003), the difficult part is the finding of relevant

sentences. In contrast to the Q&A task, this challenge starts with a set of relevant docu-

ments.

In their work, sentence retrieval is done using a stopword list and a stemmer. For rank-

ing sentences, they compared the standard vector–space model using tf–idf, a language

model based approach using the Kullback–Leibler divergence and a Two–stage smoothing

as described in Zhai and Lafferty (2002).

A comparison between language models based on multinomial and multiple Bernoulli is

shown in Losada (2005). Multinomial models are de facto standard in today’s language

model based retrieval algorithms, whereas multiple Bernoulli was the original proposal by

Ponte and Croft in 1998 (Ponte and Croft 1998).

Multiple Bernoulli is based on the assumption that texts are a bag of words, and so cannot

handle non–binary notion of term frequencies. But this is generally no problem for small

vocabularies, like sentence retrieval. On the Novelty track, they showed an improvement

when using the Multiple Bernoulli approach for sentence retrieval.

A translation model for sentence retrieval for the same Novelty task is described in Mur-

dock and Croft (2005). To do a monolingual retrieval, they create a parallel corpus to use

their translation models. Because they lack of a proper parallel corpus, they estimated the

translation model using Mutual Information, lexicons, WordNet and an Arabic–English cor-

pus. To smooth the sentences of the language model based translation model, they use the

surrounding 5–11 context sentences.

Murdock and Croft (2004) also propose the translation model for the task of question answer-

ing. The idea behind the translation of the user question into a more or less complex answer

is that sentences are possibly too short to compute a multinomial distribution. Therefore, a

translation model is computed to overcome this problem. This model, which also makes use

of synonymy and word relations, is mainly based on the IBM Model 1 (Brown et al. 1993).

They also showed that query expansion will not work on short documents, like sentences.

For the task of definitional question answering, Cui, Kan, and Chua (2004) proposed a

promising approach. Their system uses external knowledge resources like WordNet and

the Internet as well as a soft pattern matching method to find relevant sentences. As result,

they showed that using Web knowledge improves the efficiency of definitional Q&A.

Another approach for sentence retrieval in context of question answering is described in Wu,

32 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

Zhao, and Xu (2006). Here, cluster–based language models for Chinese question answering

is presented. To group the sentences into clusters, two approaches are proposed, the One–

Sentence–Multi–Topics and One–Sentence–One–Topic method.

3.3 Answer Extraction

After the retrieval steps, a Q&A system still has to find possible answers out the text frag-

ments. As result of this module, one or more answers are returned. If just the top answer

is needed, the system typically returns the best one from the set of possible answer candi-

dates. Since this is a very time–consuming step, a good retrieval is indispensable. Normally,

the answer extraction starts with question–based sentence ranking on the set of retrieved

sentences (Paşca 2003).

Inspired by Information Extraction methods, there are many possible ways to identify an-

swers. For example, an answer extraction module can use named entity recognition, parse

trees, patterns and other approaches to identify possible candidates. Likewise the frequency

of specific answers can be used to make a decision for the best one. To take the number

of occurrences of an answer is also called redundancy–based answer selection (Clarke et

al. 2002).

In the Alyssa system, a relation path correlation–based method was used to ranking answer

candidates. This means, that using the correlation measure, the dependency relations of

candidate answers and mapped question phrases are compared with the corresponding

relations in the question (cf. Shen and Klakow (2006)).

3.4 Web–based Answer Validation

When finding one or more answers in the answer extraction part, a possible validation can

improve the performance and the quality of the complete system.

There are many ways to validate an answer candidate. In this section, we want to discuss

the possibility to use the Web as knowledge resource for answer validation. For example,

the TREC Q&A task normally expects newswire articles as answers. This kind of answer

can easily be validated using web search engines (Shen et al. 2006, Kaisser, Scheible, and

Webber 2006).

Not only web search engines like Google can be used to verify an answer, but also other

3. AN OPEN DOMAIN QUESTION ANSWERING SYSTEM 33

knowledge bases, like online encyclopedias, i.e. Wikipedia, can help to find the correct

answer.

One possible option to use the Web for answer validation is to send the question as well

as answer candidates to a search engine and count the number of resulting pages. These

numbers are then used to re–rank the set of answer candidates (Neumann and Sacaleanu

2005, Magnini et al. 2001). Alternatively, the answer with the most hits is taken as the correct

one and returned to the user.

But there are also systems going the other way around. Kaisser, Scheible, and Webber

(2006) describe in their work the experiments with their system at TREC 2006. They start

with a Web search to find possible answer candidates in the Internet. After fetching a list

of candidates, those are validated with the AQUAINT newswire corpus. This approach got

very good results at TREC 2006 Q&A competition.

Magnini et al. (2001) exploit in their work the web redundancy to quantify the connection be-

tween an answer and the user question. After modeling patterns for question and answers

(“validation patterns”), they use a Web search engine to retrieve possible answers and com-

pute scores including the number of retrieved documents. Then, the degree of relevance of

the Web search is estimated using different approaches, i.e. a pointwise mutual information

(MI), the maximum likelihood (ML) ratio and the corrected conditional probability.

A similar approach is used by Neumann and Sacaleanu (2005). Here, the question–answer

pair is sent to a Web search engine and “the resulting total frequency (TFC) is used to to

sort the set of answer candidates according to the individual values of TFC”. The answer

with the highest TFC is then selected and returned to the user.

(Shen et al. 2006, Shen et al. 2007) also use a similar methodology to validate possible

answer candidates. In this approach, the questions are transformed into different forms

using patterns. These forms include Bag–of–Words, Noun–Phrase–Chunks or Declarative

Forms. The declarative form leads to the best results, but it is not guaranteed that the

search engine will return adequate text snippets. So, all forms are weighted and a score is

computed to rank the answer candidates.

3.5 Current Approaches

This section introduces some state–of–the–art question answering systems to show differ-

ences as well as similarities of today’s approaches. Most of the systems presented in this

34 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

chapter actively participated at TREC 2006, amongst others the Alyssa system, which was

developed at our chair and is partially described in this thesis.

The first system we want to present is not really a Q&A engine concerning our definition

of Q&A. The AnswerBus question answering system developed by Zheng (2002) answers

open–domain questions by returning a set of relevant sentences. This is contradictory to

our definition, where a short answer has to be provided, but it is related in a broader sense,

because it accepts natural language questions and provides the user with answer sentences.

Another advantage of the AnswerBus Q&A system is the multilingual approach. It accepts

questions in six different languages, English, German, French, Spanish, Italian and Por-

tuguese. After a translation of the questions, it provides the user with answer sentences in

English.

The information source used for this approach is the Web and therefore, a working version

can be found on the AnswerBus homepage13. Overall, five different search engines14 are

used to retrieve a set of ten possible answer sentences. To obtain the best results, the three

most reasonable search engines are selected, depending on the task of the question. For

example, if the question asks for newswire texts, Yahoo News should be preferred to other

engines, like Google.

After generating a specific query for each search engine used in a run, the top documents

returned are split into sentences and a term matching algorithm is used to find relevant

sentences. Finally, some natural language processing methods are used to re–rank the set

of relevant sentences. For example, the question type is determined and used to judge

sentences as well as named entities and a kind of co–reference resolution.

The work presented by Kaisser, Scheible, and Webber (2006) describes the system they

used for the TREC 2006 Q&A task. It is mainly based on lexical resources, or more specific,

on frame semantics. For this purpose, they implemented an algorithm based on FrameNet

(Baker, Fillmore, and Lowe 1998), PropBank (Palmer, Gildea, and Kingsbury 2005) and

VerbNet (Schuler 2005). Because of the novelty of those resources compared to WordNet,

their main goal was to prove the usefulness for the task of Q&A.

The system mainly consists of two different algorithms to find relevant information. The first

one builds answer patterns out of the questions, search the Web for possible answer can-

didates and validates the answer. In particular, it uses the MiniPar (Lin 1998) parser and

13http://www.answerbus.com
14Google, Yahoo, WiseNut, AltaVista, and Yahoo News.

3. AN OPEN DOMAIN QUESTION ANSWERING SYSTEM 35

the lexical resources FrameNet, PropBank and VerbNet to construct abstract structures of

possible answer sentences. Out of these structures, exact queries are generated and sent

to Web search engine. So, the exact answers can directly be read from the resulting Web

documents using the abstract structures.

The second algorithm builds keyword–based queries for the Web and tries to find an ade-

quate answer. More specific, the keywords from the query are sent to a Web search engine

and the resulting documents are split into sentences. Then, a rule–based and weighted

algorithm is used to compare the dependency structure of PropBank examples with the

candidate sentences to extract possible answers.

After using the two different algorithms, the (Web) answer candidates are mapped to the

AQUAINT corpus. To do so, queries are created out of the question and possible answers.

Then, the Lucene (Hatcher and Gospodnetić 2004) retrieval engine is used to find relevant

documents. After locating sentences containing the answer, the sentences are scored ac-

cording to the presence or absence of key terms. This method is also used to process

definitional questions.

Whittaker et al. (2006) also present in their work an approach to the TREC 2006 Q&A task.

The underlying theoretical model for answering factoid questions is a data–driven, com-

pletely non–linguistic approach. In this approach, an answer only depends on the given

question. So, they use the Bayes classifier on the product of the probability of the answer

given, some information bearing set of features from the question (retrieval model) and the

probability of the set of features describing the question type given the answer (filter model).

The retrieval model is “essentially a language model which models the probability of an an-

swer sequence [. . .] given a set of information–bearing features [. . .]” (Whittaker et al. 2006).

It models the proximity of an answer to information–bearing feature set.

On the other hand, the filter model “matches an answer with features in the question–type

set. [. . .] This model relates ways of asking a question with classes of valid answers”

(Whittaker et al. 2006). This means, the filter maps some features of the answer, i.e. dates,

to different question types, like when questions.

The factoid part of the system also uses the Web to generate possible answer candidates.

For final results, they use a combination of their English, Spanish and French system with

different weights.

To answer the list question task, the same algorithms are used, but instead of returning the

36 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

top answer, this module returns the top 10 answers from the factoid system.

Definitional (“other”) questions are answered in another way. Here, they treat the task as a

variant of text summarization and so, an algorithm from speech summarization is used to

detect a possible answer. The data is only extracted from AQUAINT, in contrast to the factoid

stream.

They also used a kind of pre–processing for questions and target documents. In this system,

the question pre–processing just consists of removing the punctuation and mapping of each

word to upper–case. The target document preparation is mentioned as generating a query

for a Web search engine, downloading the top 500 documents and removing of the HTML

markup.

Finally, a backprojection to the AQUAINT corpus is done using an external program, called

Aranea system (Lin and Katz 2003).

An online system of this work can be found on the Asked homepage15.

The La Sapienza system presented by Bos (2006) is the complete opposite to the last ap-

proach. Whereas the former system was data–driven and non–linguistic, this Q&A engine is

completely linguistically inspired. A “Combinatory Categorical Grammar is used to generate

syntactic analyzes of questions and potential answer snippets, and Discourse Representa-

tion Theory is employed as formalism to match the meanings of questions and answers”

(Bos 2006).

In the first analysis step, the question is tokenized and parsed. The output is then used to

receive further information like answer type, answer cardinality and tense as well as some

background knowledge from lexical resources, i.e WordNet. Finally, a query for doing docu-

ment retrieval is created.

For doing document retrieval, the complete AQUAINT corpus is pre–processed. This com-

prises the removing of the SGML syntax, a sentence boundary detection and the tokeniza-

tion of the sentences. Then, mini–documents are created by merging two sentences using

a sliding window.

The document retrieval itself uses two kinds of different queries with different degrees of

difficulty. Then, the Indri (Metzler and Croft 2004) search engine is used to retrieve 1.500 of

the created mini–documents.

For answer extraction and selection, the Discourse Representation Structure of the question

15http://asked.jp

3. AN OPEN DOMAIN QUESTION ANSWERING SYSTEM 37

and answer documents is compared to find potential answers. Finally, the answer candidates

are re–ranked.

Schlaefer, Gieselmann, and Sautter (2006) decribe in their work the Ephyra Q&A system for

TREC 2006. It consists of a flexible framework to join several question analysis and answer

extraction techniques, combined with a variety of knowledge bases.

For doing factoid question answering, they use two different approaches, an answer type

analysis, and an approach using textual patterns to classify, interpret and extract answers.

Both methods use the Web to find answer candidates and then do a backprojection to the

AQUAINT corpus.

Before doing the retrieval step, a co–reference resolution using the question target and

a question normalization, which removes punctuation and unnecessary phrases, is done.

Then, a keyword–based query is constructed and a retrieval using Yahoo and Indri is per-

formed. The results of this module are text paragraphs.

The answer extraction by answer types uses about 70 different named entities, from which

adequate patterns (regular expressions) are specified to extract possible answers in later

modules. Depending on the type of the named entity (NE), different NE taggers are used.

When using the answer extraction by pattern matching, textual patterns, which are automat-

ically learned using question–answer pairs, are produced to classify and interpret questions

and to extract answers from text snippets.

To backproject the Web answer candidates to the AQUAINT corpus, the same extraction al-

gorithms are used as described above. If this produces no results at all, answer candidates

are extracted from the passage output produced using Indri.

The Language Computer Corporation (LCC) also presented their work at TREC 2006.

Harabagiu et al. (2006) show with the CHAUCER system for “combining several strategies for

modeling the target of a series of questions” and for “optimizing the extraction of answers”

(Harabagiu et al. 2006).

For target processing, a Maximum Entropy classifier is used to determine the type of the tar-

get. Then, a keyword–based query from the target is constructed to find relevant passages

for this specific target. Using a subset of top 50 passages, LCC’s PropBank–based parser is

used to “generate natural language questions from each predicate found in the top–ranked

passages” (Harabagiu et al. 2006).

The question processing used in CHAUCER consists of three components; a keyword expan-

38 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

sion, a question coreference, and an answer–type detection.

The keyword expansion uses a set of heuristics to include synonyms and a variety of other

keywords to the query. A heuristic–based name aliasing and nominal co–reference resolu-

tion is used in the question co–reference module. The last step, the answer type detection

uses a two–stage Maximum Entropy–based approach to classify the expected answer type

of a question. The system has a base of more than 300 different named entity types.

There are also many different methods to pre–process the AQUAINT corpus. First, they do

full syntactic parses of each document. Then, three semantic parsers are used to elaborate

semantic dependencies. After doing a named entity recognition and a mapping of temporal

expressions, a nominal and pronominal coreference resolution is done. Finally, Lucene is

used to perform document and passage retrieval.

The optimized answer extraction (AE) and selection module in CHAUCER uses five different

approaches to identify possible answers from passages. This includes i.e. an entity–based

AE, which makes use of the more than 300 entity types, a pattern–based AE, which uses

hand–crafted patterns, a soft pattern–based AE, which uses automatically generated pat-

terns and much more. Then, the top 5 answer candidates from each approach are re–ranked

using a Maximum Entropy model.

After extracting possible answer candidates, the top 25 answers are sent to the selection

module. This method uses a textual entailment system developed at LCC to return the most

reasonable answer.

3. AN OPEN DOMAIN QUESTION ANSWERING SYSTEM 39

Figure II.7: Module overview of the Alyssa system.

The last state–of–the–art system, we want to present in this section, is the Alyssa system

(Shen et al. 2006), our group developed for the Q&A task at TREC 2006. This system

is a statistically–inspired and very flexible approach to perform open–domain question an-

swering. It uses a “cascade of language model (LM)–based document retrieval, LM–based

sentence extraction, Maximum Entropy–based answer extraction over a dependency rela-

tion representation followed by a fusion process that uses linear interpolation to integrate

40 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

evidence from various data streams [. . .]” (Shen et al. 2006).

Figure II.7 shows the architecture of the Alyssa system with the used components.

For factoid questions, the first step is a question analysis. Here, a question pre–processing,

using a simple anaphora resolution approach, is performed. Then, the expected answer type

is extracted by chunking questions with the Abney chunker (Abney 1989). Using the noun

phrases of the chunks, the expected answer types are located. Because there are questions

at TREC occurring with a high frequency, hand–made patterns are defined to map these

kinds of questions into different classes. For each of these classes, an adequate answer

pattern is created. Finally, if a question could not be classified by the methods mentioned

above, the dependency relation between a question and an answer sentence is computed.

In this step, the question is parsed by using the Minipar parser.

A second module in this step is question classification and typing, which is discussed in

detail in chapter VI. It uses a Bayes classifier with language models to compute the best

possible answer candidate for a given question.

After constructing a query by including the question target for multiple times, a language

model–based document retrieval is performed using the Lemur toolkit for information re-

trieval. Then, the top 60 documents are fetched and split up into sentences. The answer

sentences are re–ranked using a sophisticated language model–based approach which also

takes the expected answer types from preceding steps into account. More detailed informa-

tion about document and sentence retrieval can be found in chapter VII and IX.

For answer extraction, the resulting sentences are first processed by using linguistic tools

like LingPipe16 for named entity recognition, Abney’s chunker and MiniPar. Then, two an-

swer extraction strategies are applied to the processed sentences. The first one uses answer

patterns which indicate expected answer positions in surface sentences (Surface Text Pat-

tern Matching).

The second answer extraction approach calculates a score to compare the dependency

relations between answer candidates and “mapped question chunks in sentences with cor-

responding relations in questions” (Shen and Klakow 2006). A Maximum Entropy ranking

model is then used to determine the top answer candidates for a given question.

To get even better answer candidates, we also used further sources, like Web search en-

gines and the Wikipedia online encyclopedia. Therefore, a final selection of the best answer

16http://www.alias-i.com/lingpipe/

4. EVALUATION OF QUESTION ANSWERING SYSTEMS 41

has to be done. For this purpose, a fusion module takes the different answer candidates as

input and uses a weighted linear interpolation to select the best possible answer.

4 Evaluation of Question Answering Systems

For each implementation of a software–based system, an evaluation is necessary to mea-

sure the success of this system. Following Baeza–Yates and Ribero–Neto (1999), the first

step of an evaluation is the proof of functionality, this means a test, if the system works as

specified. Normally, this step also includes a kind of error analysis.

A second measure is the evaluation of the systems performance in time and space con-

sumption. The fewer time and space a software approach needs to perform a task, the

better is the system. For most implementations, there is a strong connection between time

and space complexity which “allows trading one for the other” (Baeza–Yates and Ribero–

Neto 1999).

And finally, an evaluation of software systems can involve a comparison with other ap-

proaches for the same task. For the task of Q&A this benchmarking is done by the Text

REtrieval Conference, presented in section II.4.2.

4.1 Evaluation Metrics

For retrieval systems, there are some evaluation metrics which cover the quality of the re-

turned answers to a user’s information need. They include for example how precise a set of

answers is. Normally, such type of evaluation is called retrieval performance. In this section,

this retrieval performance evaluation for information retrieval and question answering sys-

tems is discussed. To do so, further test collections and evaluation measures are needed to

describe the performance.

To make the problem more explicitly, we want to introduce a retrieval example. This example

guides through the different evaluation measures and shows how the approaches work in

practice. Table II.4 shows the results of an imaginary search engine. The results of Table II.5

present the ranking of human experts for the same question. The complete corpus contains

1000 documents, labeled D1 to D1000 (Weikum 2000).

42 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

1. D877
2. D432
3. D558
4. D121
5. D47
6. D932
7. D111
8. D865
9. D99

Table II.4: Example results of an imaginary information retrieval system.

1. D558
2. D633
3. D47
4. D955
5. D877
6. D111

Table II.5: Example results of a human expert.

Recall and Precision

The most common metrics for information retrieval systems are Recall and Precision. They

describe the ability of a system to extract relevant documents (Baeza–Yates and Ribero–

Neto 1999). In particular, the Recall measures the completeness of an IR engine, which

means the capability of the system to find all relevant documents.

The Precision measures the system’s ability to retrieve just relevant documents. They are

defined as follows.

• “Recall is the fraction of relevant documents which has been retrieved” (Baeza–Yates

and Ribero–Neto 1999):

Recall =
#relevant documents in answer set
#relevant documents in collection

=
|Ra|

|R|
(II.1)

where |Ra| is the number of relevant documents in the answer set and |R| is the set of

relevant documents.

• “Precision is the fraction of the retrieved documents which is relevant” (Baeza–Yates

and Ribero–Neto 1999):

4. EVALUATION OF QUESTION ANSWERING SYSTEMS 43

Precision =
#relevant documents in answer set

#documents in answer set
=

|Ra|

|A|
(II.2)

where |Ra| is again the number of relevant documents in the answer set and |A| is the

number of all documents in the answer set.

|R|
Documents
Relevant Answer Set

|A|

Relevant Documents in Answer Set
|Ra|

Document Collection

Figure II.8: Precision and recall example for set theory.

All sets, i.e. the collection, the set of relevant documents, the answer set, and the intersection

of both, are illustrated in Figure II.8.

The need for getting high precision or high recall strongly correlates to the task of the infor-

mation retrieval engine. Tasks, like finding the day of birth or the place of birth of a person do

not necessarily need a high precision, because every relevant document contains the same

information.

However, if the system should find more general information, like the opinions about a movie,

a high recall is needed, because in this case, relevant documents will contain different in-

formation, like different opinions about the movie. For the task of question answering, a

higher precision is preferable because we theoretically need just one relevant document

containing the answer. This also implies that the answer extraction can find the answer in

this document.

44 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

pr
ec

is
io

n

recall

ideal
typical

Figure II.9: Ideal and typical precision–recall graph.

Also precision and recall strongly correlate to themselves. Ideally, all documents found are

relevant, which results in Precision = Recall = 1. But because of inexact questions and

the limitations of search engines, this is almost impossible. Figure II.9 shows an ideal and

a typical precision–recall curve. On the x–axis, recall is plotted, whereas on the y–axis, the

precision of the system can be found.

As illustrated, the ideal precision remains very high when increasing the recall. But the

typical curve shows that, in practice, the precision drops very fast for increasing values of

recall. This means, when raising the recall, more noise is introduced and therefore the

precision decreases.

Concerning the example from page 42, precision and recall are computed as follows:

• Precision:

Precision =
#relevant documents in answer set

#documents in answer set
=

4

9
(II.3)

• Recall:

Recall =
#relevant documents in answer set
#relevant documents in collection

=
4

6
=

2

3
(II.4)

Average Precision

The Average Precision is “the average of the precision value obtained for the top set of n

documents existing after each relevant document is retrieved [. . .]” (Manning, Raghavan,

4. EVALUATION OF QUESTION ANSWERING SYSTEMS 45

and Schütze 2007). The following formula describes this fact

avgPrec(r) =
1

n

n
∑

i=1

Preci(r) (II.5)

where n is the number of the set of relevant documents and Preci(r) is the precision at recall

level r.

Precision at n

It is also very common to cut the number of returned documents and calculate the precision

with this set. When using the top n documents, this is also called precision at n or simply

P@n.

Mean Average Precision

The Mean Average Precision (MAP) is currently the most important evaluation metric for

TREC competitions. It “provides a single–figure measure of quality across recall levels”

(Manning, Raghavan, and Schütze 2007). This means, the average precision described

above is averaged over all given queries. It is defined by

MAP(Q) =
1

q

q
∑

j=1

1

n

n
∑

i=1

Preci (II.6)

where q is the number of given queries and n is the number of relevant documents.

“When a relevant document is not retrieved at all, the precision value in the above equation

is taken to be 0. For one question, the average precision approximates the area under the

uninterpolated precision–recall curve, and so the MAP is roughly the average area under

the precision–recall curve for a set of queries” (Manning, Raghavan, and Schütze 2007).

R–Precision

The R–Precision describes the precision after r documents. It defines the mean of average

precision at document ranks 5, 10, 15, 20, 30, 50, 100, 200, 500, and 1000.

46 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

F–Measure

An evaluation metric which combines the precision and recall for a query is given by the

F–Measure. It is defined by the weighted harmonic mean of both, precision and recall:

F =
1

α 1
Prec + (1 − α) 1

Rec

(II.7)

As described above, a special case of this formula is the Harmonic Mean (F1). In this case,

α is set to 1
2 . The harmonic mean is 0, if no relevant document is retrieved, and 1, if all

retrieved documents are relevant. “Further, the harmonic mean F assumes a high value

only when both recall and precision are high. Therefore, determination of the maximum

value for F can be interpreted as an attempt to find the best possible compromise between

recall and precision” (Baeza–Yates and Ribero–Neto 1999).

Considering our example again, the F–Measure is computed as follows

F =
1

α9
4 + (1 − α)3

2

=
1

3
4α + 3

2

(II.8)

For the special case of harmonic mean, the equation is solved to 8
15 .

E–Measure

The E–Measure also combines the precision and recall values for a query. It was introduced

by van Rijsbergen (1979) to allow a user to model his interest in recall or precision on his

own. It is defined by

E = 1 −
1 + b2

1
Prec

+ b2

Rec

(II.9)

where Prec and Rec are precision and recall and the parameter b specifies the users interest

in recall and precision. The larger b is chosen, the more is a user interested in precision than

in recall and vice versa. For the special case of b = 1, the E–Measure is the complement of

the harmonic mean, as defined above. Regarding our example from page 42 for this case

the E–Measure is computed as follows

E = 1 −
1 + b2

9
4 + 3

2b2

= 1 −
2

9
4 + 3

2

= 1 −
8

15
=

7

15
(II.10)

4. EVALUATION OF QUESTION ANSWERING SYSTEMS 47

Fall–Out

The Fall–Out is an evaluation measure which describes the capability of a IR system to

retrieve as few irrelevant documents as possible. The formula of this measure is as follows

Fall–Out =
#non–relevant, retrieved documents

#non–relevant documents
(II.11)

This means for our example of an imaginary search engine that the Fall–Out is defined as

Fall–Out =
5

994
(II.12)

BPref

When the judgements for a specific query are not complete, the BPref measure is still able

to compute the performance of the system. In particular, it computes the fraction of known

relevant and irrelevant documents:

BPref =
1

R

∑ |nhigher ranked thanr|

min(n, r)
(II.13)

Accuracy

An evaluation measure for the performance of a complete question answering system or

parts of it, the Accuracy is defined as

accuracy =
#correct answers

#returned answers
. (II.14)

Hence, it measures the percentage of answerable questions using a specific number of

returned answers.

Mean Reciprocal Rank

The Mean Reciprocal Rank (MRR) is a precision–oriented evaluation measure for informa-

tion retrieval and question answering systems. It calculates the reciprocal rank rq for a given

query q where the first correct answer occurs. If there is no correct answer at all, the MRR

is 0. The following formula defines the MRR

48 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

MRR =
1

n

n
∑

q=1

1

rq
(II.15)

where n is the number of queries in the system.

For our small example, the MRR is 1 because there is just one query and a valid answer is

on the first rank.

Misclassification Error Rate

The Misclassification Error Rate (MER) defines the percentage of locations with errors in a

classified map. It is the probability that a given system incorrectly classifies an instance from

a sample obtained in a stage later than a training sample.

4.2 Question Answering at the Text REtrieval Conference (TREC)

There is a long tradition in open–domain question answering. There are publications for

more than four decades, like the ORACLE (Phillips 1960) or the ALA (Thorne 1962) system.

But there have been few other publications about this topic when the Text REtrieval Confer-

ences started an own Q&A track in 1999 (Voorhees and Harman 1999). Since that date, the

TREC evaluation for Q&A has been the de facto standard for comparing such systems. At

this track, participating user groups normally have one week to run their systems on a set

of questions provided by NIST. After an official evaluation, there is an annual conference,

where people can present their systems and can exchange their experiences. Nearly all of

the experiments we did in this thesis rely on TREC data or evaluation metrics provided by

NIST.

To understand the idea behind the Text REtrieval Conference (TREC), we have to look back

to about 25 years before the first conference.

In the late 1960s, Cleverdon (1967) created the first test collection for their different indexing

approaches. This collection contained about 1.400 documents, 225 queries about aerody-

namics, and a list of relevant documents according to the collection. And it was also used

by other researchers in the field of information retrieval. In the following years, many other

test collections appeared and were used to determine the performance of IR systems.

Following Voorhees and Harman (2007), there are mainly two major disadvantages of this

proceeding. First of all, the different groups neither were bound to a specific test collection

4. EVALUATION OF QUESTION ANSWERING SYSTEMS 49

nor had to use the same evaluation measures or compare their system results.

The second flaw was the size of existing collections. No test corpus had a realistic size to

do proper information retrieval.

So, in 1990 the National Institute of Science and Technology (NIST) was asked to create

an adequate test collection with standardized evaluation metrics and a forum to discuss the

results of the different system approaches. This project was then developed as part of the

Defense Advanced Research Projects Agency (DARPA) Tipster project (Merchant 1993).

The four main goals of TREC can be found in Voorhees and Harman (2007)

• To encourage research in text retrieval based on large test collections

• To increase communication among industry, academia, and government by creating

an open forum for the exchange of research ideas

• To speed the transfer of technology from research labs into commercial products

by demonstrating substantial improvements in retrieval methodologies on real–world

problems

• To increase the availability of appropriate evaluation techniques for use by industry and

academia, including the development of new evaluation techniques more applicable to

current systems

Since the first official conference meeting in November 1992, TREC is the de facto standard

for text retrieval benchmarks. When the first experiments started, the provided test collection

was about 100 times larger than the largest existing corpus. “Over the years, information re-

trieval systems such as SMART (Buckley, Salton, and Allan 1993), SPIDER (Schauble 1993),

OKAPI (Robertson et al. 1994) and INQUERY (Allan 1996) were often improved based on

their performance results on large test collections within TREC” (Paşca 2003).

Related sub–tasks to text retrieval were organized into separate task experiments, also

called tracks. Since 1992, there were 21 different related tracks, like Ad hoc, filtering, NLP,

Speech, Cross–language, Novelty or the Question Answering track.

In the following, we want to shortly describe the different tasks from TREC 2006. These

definitions can be found on the TREC homepage17.

17http://trec.nist.gov

50 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

Blog track The purpose of the blog track is to explore information seeking behavior in the

blogosphere.

Enterprise track The purpose of the enterprise track is to study enterprise search: satisfy-

ing a user who is searching the data of an organization to complete some task.

Genomics track The purpose of the track is to study retrieval tasks in a specific domain,

where the domain of interest is genomics data (broadly construed to include not just

gene sequences but also supporting documentation such as research papers, lab re-

ports, etc.).

Legal track The goal of the legal track is to develop search technology that meets the needs

of lawyers to engage in effective discovery in digital document collections.

Question Answering track A track designed to take a step closer to information retrieval

rather than document retrieval.

SPAM track The goal of the SPAM track is to provide a standard evaluation of current and

proposed Spam filtering approaches, thereby laying the foundation for the evaluation

of more general email filtering and retrieval tasks.

The Question Answering track has been part of TREC since 1999 (TREC–8). Over the

years, the task has often changed, mostly concerning the question set, the test collection or

the kind of answers.

So, when starting the track in 1999, the collection contained about 528.000 newspaper and

newswire articles. The answers were complete strings limited to a length of 50 or 250 bytes.

The biggest change in this paradigm was at TREC 2002 (Voorhees 2002), when a new

document collection was introduced. Now, instead of (up to five) answer strings of a specific

size, the system’s answer had to be one exact answer.

The new test collection, the AQUAINT corpus18 (Graff 2002) contains approximately

1.033.000 newswire and newspaper articles with roughly 375 million words from three dif-

ferent sources: the Xinhua News Service (People’s Republic of China), the New York Times

News Service, and the Associated Press Worldstream News Service. The AQUAINT col-

lection is mainly used for the Q&A track.

18http://www.ldc.upenn.edu/Catalog/docs/LDC2002T31/

4. EVALUATION OF QUESTION ANSWERING SYSTEMS 51

Figure II.10: Example of TREC Q&A questions for target 154.

The TREC–2002 question set contained 567 questions divided into 75 different targets.

Each target corresponds to a specific topic and contains several questions asking for factoid,

list or definitional questions about this topic. For example, Figure II.10 shows the set of

questions for the target 154, Christopher Reeve.

After a question set is released by TREC, each participating group has a specific amount of

time (normally one week) to fully automatic answer the questions and return them to NIST.

Then, the answers are manually evaluated by NIST employed assessors. They judge an

answer whether it is

globally correct , which means that the answer is completely correct

locally correct , which means that the answer is correct, but the collection contains a con-

tradictory answer that the assessor believes is better suited

non–exact , which means that the answer is included in the returned string, but it contains

also more information

unsupported , which means that the answer is correct, but the document, where the an-

52 CHAPTER II. BACKGROUND ON QUESTION ANSWERING

swer is extracted from is not correlated with the question and

incorrect , which is simply the wrong answer.

Chapter III

Background to Statistical Language

Modeling

This thesis studies the impact of Statistical Language Models (SLM) in the context of Ques-

tion Answering (Q&A). Hence, we want to give an introduction of these models in this chap-

ter. SLM are a well–known mechanism originally developed for the task of speech recogni-

tion (Jelinek 1997). In 1998, Ponte and Croft (1998) suggested to use SLM also for informa-

tion retrieval (IR) and so constituted a new, highly accepted paradigm to search information

in a mathematically well founded way.

The rest of this chapter is organized as follows. First, we want to give a short introduction

of general language models, including advantages and disadvantages. In section III.2, the

approach for using SLM in IR is discussed as well as some further applications for the task

are shown. The last section III.3 shortly presents how we introduced the language modeling

approach to the task of question answering.

1 Statistical Language Models

As mentioned in the introduction, this section wants to introduce statistical language models.

In principle, a SLM is a probability distribution over a text sequence. This means, it can

calculate the likelihood of a given string in a given context, like a specific language. For

example, consider the following probabilities for different sequences of words

• P1(“This is a thesis”)

53

54 CHAPTER III. BACKGROUND TO STATISTICAL LANGUAGE MODELING

• P2(“Thesis this a is”)

• P3(“This is a bottle”)

• P4(“Dies ist eine Doktorarbeit”)

This example shows, that the selection of the ”correct“ probability strongly correlates to the

language or the topic of the task we are modeling. For most of the applications described in

this thesis, a Bag–Of–Word approach is used where P1 = P2.

But, such a model of ”language of the kind familiar from formal language theory can be used

either to recognize or to generate strings“ (Manning, Raghavan, and Schütze 2007). Thus,

this kind of probabilistic mechanism is also called Generative Model.

But SLM are also generative. For example, using a language model decision boundaries

can be determined. So, it is possible to discriminate if a specific document is relevant to an

information need or if a question belongs to a specific class. In later chapters, we will utilize

this characteristic to model different tasks for our Q&A approach.

Originally, the idea of using SLM comes from the task of speech recognition. The Bayes

classifier

Ŵ = arg max
W

(P (A|W)P (W)) (III.1)

describes the approach of speech recognition, where W is a possible text string, Ŵ is the

optimal recognized piece of text, P (A|W) is the acoustic model and P (W) is the language

model. The role of SLM in this context is to act as a kind of grammar. This includes the

differentiation of similar–sounding phrases, like

• A woman, without her man, is nothing.

• A woman: without her, man is nothing.

This means, the language model provides the likelihood of a word given a specific history,

i.e. the likelihood of the word ”house“ given the string sequence ”The white“.

For the better understanding of SLM Figure III.1 illustrates a general ”Source–Channel

Framework“, which can easily describe the different applications of language models. This

framework was originally presented by Shannon (1948) as a Model of Communication Sys-

tems.

1. STATISTICAL LANGUAGE MODELS 55

Encoder Decoder DestinationSource

channel
noisy

P(X)
X

P(Y|X)

Y
P(X|Y)

X’

Figure III.1: The Model of Communication System.

Following Zhai (2005) a source produces X with a specific probability P (X). Then, X

is moved though an encoder and a noisy channel, which results in Y with the probability

P (Y |X). Finally, a decoder should reproduce X ′ with the likelihood P (X|Y).

Hence, the best possible X ′ should reach the destination. This can be modeled by the Bayes

classifier

X ′ = argmaxXP (X|Y) (III.2)

This classifier can be reformulated using Bayes rule (cf. Manning and Schütze (1999)).

P (B|A) =
P (A|B)P (B)

P (A)
(III.3)

Applying the rule to formula III.2, it results in

X ′ = argmaxXP (Y |X)P (X) (III.4)

where P (Y) can be disregarded, because it is independent to X.

Now, if X is specified as text, P (X) is called a language model.

X Y Example Application

word sequence speech signal speech recognition
English sentence Chinese sentence machine translation
summary document summarization
document query information retrieval

Table III.1: Examples of applications for Source–Channel Framework.

Zhai (2005) also gives some examples for different applications. Table III.1 shows four dif-

ferent interpretations of X and Y along with the adequate application. Hence, the tasks of

speech recognition, machine translation, text summarization and information retrieval can

56 CHAPTER III. BACKGROUND TO STATISTICAL LANGUAGE MODELING

be explained.

Using SLM in real applications like information retrieval, speech recognition or machine

translation has advantages and disadvantages. Lavrenko (2003) give a good overview of

the problems. According to them, advantages of using language models, especially for the

task of information retrieval, are

• a formal mathematical model

• a simple, well–understood framework

• the integration of both indexing and retrieval models

• a natural use of collection statistics (no heuristics)

• avoiding tricky issues ”relevance“, ”aboutness“, etc.

On the other hand, using SLM also brings some disadvantages, like

• difficulty to incorporate notions of ”relevance“ or user preferences

• the concept of relevance feedback or query expansion are not straightforward

• the accommodation of phrases, passages and Boolean operators is not easy

The task of extending, or building more sophisticated SLM tries to solve some of the prob-

lems described above. We will also describe some extended language models for informa-

tion retrieval in the next chapter, i.e. find a solution for the problem of having no adequate

concepts for relevance feedback.

The next important question is how to calculate the probability of a complete sequence of n

words P (w1 . . . wn). Normally, there is not enough training data to estimate such probabili-

ties. Hence, the solution is to decompose the sequence into smaller parts using the chain

rule. This results in

P (w1 . . . wn) = P (w1)P (w2|w1)P (w3|w2w1) (III.5)

But, also some of the probabilities in formula III.5 are still to complicated to train. Therefore,

the Markov Assumption

1. STATISTICAL LANGUAGE MODELS 57

P (wi|w1 . . . wi−1) = P (wi|wi−M+1 . . . wi−1) (III.6)

is made to overcome the problem. This means the history w1 . . . wi−1 is shortened to the

M − 1–word history wi−M+1 . . . wi−1. Hereafter, this history is called hM or simply h if we

don’t want to define an M . After shortening the history, we call such models M–gram Model

(Klakow 2003).

The simplest way of estimating such a language model is to simply ignore the history. These

models are called unigram language models:

Punigram(w1 . . . wn) = P (w1)P (w2) . . . P (wn) (III.7)

Zerogram P (w1|wi . . . wi−1) = 1
|V |

Unigram P (w1|wi . . . wi−1) = P (wi)

Bigram P (w1|wi . . . wi−1) = P (wi|wi−1)

Trigram P (w1|wi . . . wi−1) = P (wi|wi−2wi−1)

Table III.2: Examples of popular language models.

So, the words are independently generated from each other. This fact is also known as

Independence Assumption. Although words are normally not independently generated in

documents or questions, most existing approaches for information retrieval use this fact to

model their systems, i.e. Zhai and Lafferty (2001).

Because the order of words in this model is irrelevant, it is also called a Bag of Words model

(Manning, Raghavan, and Schütze 2007). In particular, it is a multinomial distribution over

words, where a piece of text can be regarded as a sample drawn according to this word

distribution (Zhai 2005).

But there are also some more difficult types of SLM. For example, the Bigram language

model uses a one–word history, and therefore is defined by

Pbigram(w1 . . . wn) = P (w1)P (w2|w1)P (w3|w2) . . . P (wn|wn−1) (III.8)

Table III.2 gives a short overview of popular language models used for different applications.

A special case is the Zerogram. Here, the uniform distribution 1
|V | is used to estimate the

language model, where |V | is the size of the vocabulary.

58 CHAPTER III. BACKGROUND TO STATISTICAL LANGUAGE MODELING

Further, more sophisticated approaches, like Remote–dependency language models , i.e.

the Maximum Entropy model, or Structured language models are discussed later or can be

found in Jelinek (1997) or Manning and Schütze (1999).

A measure of quality for SLM is the Perplexity. It is defined by

PP = P (w1 . . . wn)−
1
n = exp(−

∑

wh

f(wh) log P (w|h)) (III.9)

where n is the number of words in the corpus, h is the history, f(wh) is the relative frequency

of the word w after history h, and P (w|h) is the language model.

When using a Zerogram with V –word vocabulary to calculate the perplexity, then PP = V .

This means the perplexity defines the number of possible words. Considering an M–gram

model it can be interpreted as the median number of possible completions after a given

history. As a consequence, a lower perplexity results in a smaller error rate (Klakow 2003).

But normally, instead of minimizing the perplexity to obtain the most suitable language

model, it is also possible to maximize the Log–Likelihood

F = − log PP =
∑

wh

f(wh) log P (w|h) (III.10)

Maximizing the Log–Likelihood is done by using Lagrange Multiplier with the marginal con-

straint that probabilities are normalized, i.e.
∑

w P (w|h) = 1∀h. Solving this equation results

in a very good estimator for conditional probabilities, the Maximum Likelihood estimator,

defined by

PML(w|h) =
N(wh)

N(h)
(III.11)

where N(wh) is the absolute number of word w with history h in the training collection.

But, the Maximum Likelihood estimator has one big disadvantage. The count of the word

and a history N(wh) may vanish. This will inevitably result in zero probabilities for this event,

and for special applications, like information retrieval, in a zero probability for the complete

ranking.

To show that the problem of unseen words cannot be compensated by using a larger vocab-

ulary, we want to introduce the Out–Of–Vocabulary rate (OOV–rate)

1. STATISTICAL LANGUAGE MODELS 59

OOV–rate =
#OOV words in test corpus

#words in test corpus
(III.12)

An OOV word is defined as a word in the test corpus which is not covered by the training

collection. For example, if the test corpus contains 3000 words and 108 unknown words, it

results in: OOV–rate = 108
3000 = 0.036 = 3.6%.

Following Klakow (2003), the OOV–rate decreases approximately by 1/size of vocabulary.

Hence, the problem of unseen events is a problem in principle and cannot be resolved by

using more data.

Absolute Discounting

To overcome the problem of Zero Probabilities, smoothing has to be done to allocate a non–

vanishing probability to those events.

In principle, the idea is very easy. There is a need to find a further probability distribution

PBG(w|h) with non–vanishing values for w and h. This normalized function can simply be

added to the original distribution, with a given weight α(h). The resulting Backing–Off distri-

bution is called Absolute discounting. It is defined by

P (w|h) =

N(wh) − d
N(h)

+ α(h) · PBG(w|h) if N(wh) > 0

α(h) · PBG(w|h) else

(III.13)

where d is the discounting parameter and PBG(w|h) is the backing–off distribution, with
∑

w PBG(w|h) = 1.

A very popular choice for a Bigram language model P (wi|wi−1) is the Unigram PBG(w|h) =

P (wi). But, this choice is not necessarily optimal. Please read Kneser and Ney (1995) to

see, how optimal values for α(h), d, and PBG(w|h) can be computed.

Add Epsilon

There are many other smoothing techniques than Absolute Discounting for various different

tasks. The most simple one is the Floor Discounting, or Add Epsilon. In this approach, a

small value ε is added to each count. After normalization, we get

60 CHAPTER III. BACKGROUND TO STATISTICAL LANGUAGE MODELING

P (w|h) =
N(wh) + ε

N(h) + V · ε
(III.14)

For large vocabulary V , the denominator term V · ε can be problematic and introduce noise

to the probability. But due to the simplicity and the non–powerful performance of the model,

it is mostly used for taskes where quality is not important (Klakow 2003).

Linear Interpolation

The next smoothing method we want to introduce is Linear Interpolation, which is still very

popular for the task of information retrieval. This smoothing technique was first introduced by

Jelinek and Mercer (Ney, Essen,and Kneser 1994), and is therefore also referred to Jelinek–

Mercer smoothing. It is defined by

P (w|h) = (1 − ε)PML(w|h) + εPBG(w|h) (III.15)

There is also a variant presented by IBM, where the ε depends on the history h. But this

model is not so popular, because there are many variables, which are difficult to estimate. In

IR, ε is normally determined by searching the complete parameter space. This model works

very good for longer queries (Zhai and Lafferty 2001).

Dirichlet Smoothing

A multinomial distribution, in particular a Bayesian smoothing, with a Dirichlet distribution as

the conjugate prior for estimating language models results in the Dirichlet Smoothing

P (w|h) =
N(wh) + µPBG(w|h)

∑

w N(wh) + µ
(III.16)

This variant is also very popular for the task of information retrieval when using shorter

queries (Zhai and Lafferty 2001). As shown in the next chapters, best results are obtained

by using this smoothing technique for question answering.

Maximum Entropy Models

”Maximum Entropy (ME) modeling is a framework for integrating information from many het-

erogeneous information sources for classification. The data for a classification problem are

1. STATISTICAL LANGUAGE MODELS 61

described as a (potentially large) number of features. These features can be quite complex

and allow the experimenter to make use of prior knowledge about what types of information

are expected to be important [. . .]“ (Manning and Schütze 1999). This means that first the

training collection is analyzed and then an adequate model is created by maximizing the

entropy using the features as constraints which have to be satisfied by the model. The idea

behind maximizing the entropy of a model is ”motivated by the desire to preserve as much

uncertainty as possible“ (Manning and Schütze 1999).

In this subsection, we want to show this idea on the basis of an example, before presenting

the general definition of maximum entropy.

The example is taken from Klakow (2003) and shows the creation of a Bigram language

model. To simplify matters, compound probabilities are used as notation, but the transfer to

conditional probabilities should be very easy.

So, the probability P (w1w2) should be calculated. The training corpus should be relatively

small, so Unigrams can be properly estimated. This results in:

∑

w1

P (w1w2) = P (w2) and
∑

w2

P (w1w2) = P (w1) (III.17)

Now, the problem is that there are 2|V | conditions given by the two formulas. But there

are |V |2 free parameters for estimation. So, additional postulations have to be made. By

maximizing the entropy

H = −
∑

w1w2

P (w1w2) log P (w1w2) (III.18)

the hope is to include as little bias as possible.

Now, both constraints are included using Lagrange multipliers. So, the equation

H ′ = −
∑

w1w2

P (w1w2) log P (w1w2)

+
∑

w2

λ(w2)(
∑

w1

P (w1w2) − P (w2))

+
∑

w1

λ(w1)(
∑

w2

P (w1w2) − P (w1))

62 CHAPTER III. BACKGROUND TO STATISTICAL LANGUAGE MODELING

has to be derived by the Bigram probability.

After solving all following equations, the result of the maximum entropy problem is

P (w1w2) = P (w1)P (w2) (III.19)

Hence, as long as there is no given correlation for the constraints, maximizing the entropy

means a postulation of independence.

This was just an example, but now we want to generalize the notion of linear constraints. A

common equation of general constraints is given by

∑

wh

fS(wh)P (wh) = KS (III.20)

where KS is the required constraint and fS(wh) is the important feature function

fS(wh) =

1 if (wh) ∈ S

0 else
(III.21)

which defines the special kind of a constraint.

Common applications of this model are i.e. text classification (Manning and Schütze 1999),

or in particular for the task of Q&A, the answer extraction. The answer extraction module

in the Alyssa system also uses a maximum entropy model to select and extract possible

answer candidates (Shen and Klakow 2006).

The Kullback–Leibler Divergence

Cover and Thomas (2001) writes, that it is also possible to minimize the Kullback–Leibler

Divergence (KL–divergence) instead of maximizing the entropy. The formula of the KL–

divergence, which should be minimized to a given function π(wh), is given by

D(P ||π) =
∑

wh

P (wh) log
P (wh)

π(wh)
(III.22)

This equation results in the general ME approach, if the function π(wh) is equally distributed.

This approach is a real generalization and the solution of this kind of functions is called Log–

Linear Models.

1. STATISTICAL LANGUAGE MODELS 63

Log–Linear Models

As mentioned above Log–Linear models are the solution of the generalized form of max-

imum entropy models. One can show that this solution is unique and that there exists an

algorithm which converges to it. This Generalized Iterative Scaling algorithm is explained in

detail in Manning and Schütze (1999).

Now, if we minimize the KL–divergence D(P ||π) with the linear constraints

∑

wh

fS(wh)P (wh) = KS (III.23)

it results in

P (wh) = π(wh)µ
∏

S

µ
fS(wh)
S (III.24)

When taking the logarithm of this solution, the formula

log P (wh) = log(π(wh)µ)
∑

S

fS(wh) log µS (III.25)

is linear. That is why this approach is called log–linear model. For proving the existence

of the solution, please read Darroch and Rattcliff (1972). The use of language models for

log–linear interpolation was first introduced by Klakow (1998).

We also used this kind of model for doing question answering, in particular for classifying

question types.

Class–Based Language Models

The last models we want to introduce are the Class–Based Language Models. Occasionally

it might be that ”normal“ language models are too detailed. For example, a language model

for planes of different colors should be modeled, i.e. The * plane, where ”*“ is red, blue,

yellow, etc. Then, the color could be modeled by a class.

Hence, given a set of classes C = c1, . . . , cn and a unique mapping

64 CHAPTER III. BACKGROUND TO STATISTICAL LANGUAGE MODELING

V 7→ C (III.26)

wi 7→ c(wi) (III.27)

a class–based language model is for a word–M–gram is defined by

P (wi|wi−1 . . . wi−(n+1)) = P (wic(wi)|wi−1 . . . wi−(n+1))

= P (wi|c(wi)wi−1 . . . wi−(n+1)) · P (c(wi)|wi−1 . . . wi−(n+1))

≈ P (wi|c(wi)) · P (c(wi)|c(wi−1) . . . c(wi−(n+1)))

where P (wi|c(wi)) is called Emission Probability and P (c(wi)|c(wi−1) . . . c(wi−(n+1))) is

called Transitional Probability.

The advantages of using class–based language models are that there are fewer free vari-

ables to estimate and hence, are easier to train. For example, if a M–gram has SW = |V |M −

1 free parameters, a class–based language model just has SC = (|C|M − 1) + (|V | − |C|)

free parameters to estimate. The first term is derived from the transition probabilities and

the second term comes from the emission probability.

This means for given values V = 64000, C = 1000, and M = 3, it results in SW = 2.6 · 1014

and SC = 109.

To obtain an estimation of the emission probability P (w|c(w)), we maximize the log–

likelihood, defined by

F =
∑

wh

f(wh) log P (w|c(w))P (c(w)|c(h)) (III.28)

with the normalization as constraints

∑

wi∈c(w)

P (wi|c(w)) = 1 ∀w (III.29)

which are included using Lagrange multipliers. As a final result, the maximum likelihood

estimation defines the emission probability

2. LANGUAGE MODELING FOR INFORMATION RETRIEVAL 65

P (w|c(w)) =
f(w)

∑

wi∈c(w) f(wi)
∀w (III.30)

where f(w) is the relative frequency of word w in the corpus.

An analogous calculation is done to obtain the transition probabilities.

2 Language Modeling for Information Retrieval

In 1998, Ponte and Croft (1998) proposed a new technique for doing information retrieval

using statistical language models (SLM). This approach combines all advantages and dis-

advantages we presented in the last section and is still a very popular alternative to the

standard retrieval mechanism we discussed in chapter II.

Section III.1 shows in detail how language models are estimated and the problems when

using them. Now, we want to apply these models for the task of information retrieval, in par-

ticular how we can use SLM for ranking. There are two popular approaches, the Document

Likelihood and the Query Likelihood.

Document Likelihood

In the document likelihood, a language model for each question Q is estimated. The ranking

itself is to calculate the likelihood of a given document D of being a random sample from

this model. Hence, the SLM ”predicts“ a typical relevant document (Lavrenko 2003). The

formula

P (D|Q) =
∏

w∈D

P (w|Q) (III.31)

shows this fact. Additionally, the term independence assumption is used to calculate the

product of each word in the document.

Following Lavrenko (2003), there are some problems in using document likelihood for cal-

culating the rank of a document. For example, the probabilities are comparable when using

documents of different length. The model also prefers documents with frequent, perhaps

short function words. This fact becomes much more apparent when regarding the docu-

ment with the highest rank

66 CHAPTER III. BACKGROUND TO STATISTICAL LANGUAGE MODELING

max
D

∏

w∈D

P (w|Q) = max
w∈D

P (w|Q) (III.32)

There are many approaches to fix the document likelihood, but because it is not standard

for doing information retrieval or question answering, we don’t want to go into detail. Please

read Zhai and Lafferty (2001b) or Lavrenko (2003) for further information about this kind of

model.

Query Likelihood

On the other hand, the standard approach for ranking documents using language models

is the query likelihood. It is the opposite of the document likelihood and defined by the

probability of

P (Q|D) (III.33)

So, a language model for every document in the collection is calculated. It is derived from

the document likelihood by using Bayes rule (formula III.3).

P (D|Q) ∝ P (Q|D)P (D) (III.34)

where the term P (Q) in the denominator is neglected because it is independent from the

document D. Normally, the prior probability P (D) is regarded as a uniform distribution and

therefore it is also omitted.

When applying the independence assumption, we explained in the last section, it results in

P (Q|D) =
∏

q∈Q

P (q|D) (III.35)

This means, the documents are ranked by their ”ability“ to generate a query.

Lavrenko (2003) also describe some drawbacks of this approach. For example, they explain,

that there is no notion of relevance in the model and that everything is just randomly sam-

pled. Other flaws are that user feedback and query expansions are not part of this model,

and that it does not directly allow weighted or structured queries.

These disadvantages are correct for the simple approach. However, there are more sophis-

2. LANGUAGE MODELING FOR INFORMATION RETRIEVAL 67

ticated models which try to exactly overcome these problems. Some of these approaches

are described in chapter V.

Multinomial and Multiple–Bernoulli Models

”Although the seminal approach to introduce language modeling in information retrieval was

based on a multiple–Bernoulli distribution (Ponte and Croft 1998), the predominant modeling

assumption is now centred on multinomial models. Scoring is simpler in multinomial models,

and, basically, there is no much evidence giving good reasons to choose multiple–Bernoulli

over multinomial in general“ (Losada 2005).

The multinomial approach is defined by

P (q1 . . . qn|D) =
n

∏

i=1

P (qi|D) (III.36)

In this model, the fundamental event is the identity of the i’th query token. Hence, the

observation is a sequence of events, one for each query token (Lavrenko 2003). Most of

current state–of–the–art approaches use this model.

A multiple–Bernoulli model, as the model defined by Ponte and Croft (1998) for the task of

information retrieval is described by

P (q1 . . . qn|D) =
∏

w∈q1...qn

P (w|D) ·
∏

w 6∈q1...qn

(1 − P (w|D)) (III.37)

Compared to the multinomial model, here, the fundamental event is the occurrence of the

word w in the query. This means, that the observation is a vector of binary events, one for

each possible word (Lavrenko 2003). This model is just used to introduce language models

for information retrieval (Ponte and Croft 1998, Ponte 1998). Losada (2005) compares both

models for the task of sentence retrieval and concludes that for this task, multiple–Bernoulli

models are better suited because of the short length of sentences.

Although both models are similar, they are fundamentally different. Following Lavrenko

(2003), both models assume word independence, but the meaning of this fact is different.

Also, both use smoothed probability estimations, but in a completely different event space.

So, the advantages of multiple–Bernoulli models are that they are arguably better suited to

information retrieval. This is mainly due to the check for presence or absence of a query

68 CHAPTER III. BACKGROUND TO STATISTICAL LANGUAGE MODELING

term. Also, there are no issues with observation length.

Lavrenko (2003) describe the advantages of multinomial models as the account for multi-

ple word occurrences in a query. These models are also well understood because of the

research which is done in this area. This enables the integration of such models with Au-

tomated Speech Recognition, Machine Translation and Natural Language Processing, as

well.

Smoothing

To calculate the probabilities of a language model, the maximum likelihood estimator is used

PML(q|D) =
N(q,D)

∑

q N(q,D)
(III.38)

A detailed description of this estimator is given in section III.1. Again, there is a problem

when calculating the likelihood for unseen events. To overcome this problem of ”zero prob-

abilities“, smoothing is done as described in the last section. Here, mainly Jelinek–Mercer,

Dirichlet, and Absolute Discounting is used to smooth these probabilities.

Smoothing and the TF–IDF weighting

Hence, smoothing plays also a very important role for the task of information retrieval or

question answering. To make this fact more clear, Zhai and Lafferty (2001) describe the

connection between smoothing and the tf–idf weighting scheme.

The assumption for understanding the connection is that smoothing methods use two distri-

butions. The first model is used for ”seen“ events (Ps(w|d)), and the second one models the

distribution of ”unseen“ words (Pu(w|d)).

Now, the probability of a query q given a document d can be reformulated as

log P (q|d) =
∑

i

log P (qi|d)

=
∑

i:N(qi,d)>0

log Ps(qi|d) +
∑

i:N(qi,d)=0

log Pu(qi|d)

=
∑

i:N(qi,d)>0

log
Ps(qi|d)

Pu(qi|d)
+

∑

i

log Pu(qi|d)

2. LANGUAGE MODELING FOR INFORMATION RETRIEVAL 69

where N(w, d) means the count of word w in document d.

”The probability of an unseen word is typically taken as being proportional to the general

frequency of the word, e.g., as computed using the document collection. So, let us assume

that Pu(qi|d) = αdP (qi|C), where αd is a document–dependent constant and P (qi|C) is the

collection language model. Now we have

log P (q|d) =
∑

i:N(qi,d)>0

log
Ps(qi|d)

αdP (qi|C)
+ n log αd +

∑

i

log P (qi|C) (III.39)

where n is the length of the query. Note that the last term on the righthand side is indepen-

dent of the document d, and thus can be ignored in ranking“ (Zhai and Lafferty 2001).

The rest of equation III.39 can be split up into two parts. The first one describes a weight

for each matched term in document and query, and the second term introduces document–

dependent constant, which measures how much probability mass will go into the collection

model.

The numerator of the first term, Ps(qi|d), can be regarded as the tf–weighting.

”Thus, the use of P (qi|C) as a reference smoothing distribution has turned out to play a

role very similar to the well–known idf. The other component in the formula [. . .][is] playing

the role of document length normalization, which is another important technique to improve

performance in traditional models.

The connection just derived shows that the use of the collection language model as a ref-

erence model for smoothing document language models implies a retrieval formula that

implements tf–idf weighting heuristics and document length normalization. This suggests

that smoothing plays a key role in the language modeling approaches to retrieval“ (Zhai and

Lafferty 2001).

Improved Smoothing Techniques

Finally, we want to introduce two improved smoothing techniques we used for our experi-

ments in language model based question classification (cf. section VI.1).

The first model presented in this section is called Improved Absolute Discounting, or simply

UniDisc. It was introduced by Klakow (2006b) for the task of smoothing very small adaptation

corpora. It is mainly based on absolute discounting smoothing

70 CHAPTER III. BACKGROUND TO STATISTICAL LANGUAGE MODELING

P (w|c) =

N(w, c) − d
N + αPBG(w|c) if N(w, c) > 0

α · PBG(w|c) else

(III.40)

where N(w, c) is the frequency of term w in combination with a class c, d is the discounting

parameter, and PBG(w|c) is the collection language model, whereas α denotes the backing–

off weight. Equation III.40 itself describes a unigram backing–of model as defined in section

III.1.

In a ”normal“ absolute discounting model, the discounting parameter d is independent of the

term frequency. But, for our improved absolute discounting, we want to present a d which

depends on term counts. It is defined by the rational function

d(N) =
d0 + s(N − 1)

1 + g(N − 1)
(III.41)

where d0 is the original, count independent discounting parameter, whereas s and g are

additional parameters.

The second smoothing method we improved for our experiments is based on the log–linear

language models, presented in section III.1. The model is defined by

P (wi|wi−1c) = 1
Zλ(wi−1c) PUniDisc(wi|c)

1.0

PAbsDisc(wi|wi−1c)
λ

(III.42)

where 1
Zλ(wi−1c) is a normalization weight depending on wi−1, c and the parameter λ. The

model PUniDisc(wi|c) is the improved absolute discounting, we described above and

PAbsDisc(wi|wi−1c)
λ is a ”normal“ absolute discounting model using bigram statistics. The

parameter λ denotes the interpolation weight.

Further sophisticated smoothing methods, like the Translation Model, are described in chap-

ter V.

3 Language Modeling for Question Answering

In this section we want to provide a theoretical background on language model based ques-

tion answering for TREC question sets. Therefore, the task is considered as a classification

problem. In particular, for a given question Qi of a series of TREC questions Q1 . . . QN on

3. LANGUAGE MODELING FOR QUESTION ANSWERING 71

a topic T , the answer Ai is sought–after. Because a valid answer at TREC should also be

supported, a sentence Si and a document Di has to be provided.

Hence, the classification task is defined by

(Âi, Ŝi, D̂i) = argmaxAi,Si,Di
P (Ai, Si,Di|Qi, T,Q1...Qi−1A1...Ai−1) (III.43)

where A1 . . . Ai−1 are the answers to previous questions. In the Q&A system described in

this thesis, the dependency on previous questions is ignored, but future work should model

this fact to avoid duplicate answers and to increase the performance.

So, a simplified classification problem is

(Âi, Ŝi, D̂i) = argmaxAi,Si,Di
P (Ai, Si,Di|Qi, T) . (III.44)

Now we can decompose the probability

P (Ai, Si,Di|Qi, T) = P (Ai|Si,DiQi, T)P (Si|DiQi, T)P (Di|Qi, T) (III.45)

Here, P (Di|Qi, T) is the statistical language model for document retrieval, P (Si|DiQi, T) is

a model for sentence retrieval and P (Ai|Si,DiQi, T) models the part of answer extraction.

In speech recognition, a similar decomposition is done. But for this task, only two terms are

necessary: the acoustic model and the language model (Jelinek 1997). As the probabilities

of the two models in speech recognition have different dynamic ranges, it is helpful to intro-

duce some exponents to compensate this flaw. The same approach can be used for the task

of Q&A, although one more term is concerned. But this just results in one more exponent,

as shown in the following equation:

P (Ai, Si,Di|Qi, T) ≈ P (Ai|Si,DiQi, T)αP (Si|DiQi, T)βP (Di|Qi, T)γ (III.46)

One of the three parameters is redundant and so, one of them can be set to one or all can

satisfy that α + β + γ = 1.

Instead of optimizing the last formula, it is also possible to optimize

72 CHAPTER III. BACKGROUND TO STATISTICAL LANGUAGE MODELING

log P (Ai, Si,Di|Qi, T) ≈ α log P (Ai|Si,DiQi, T) + β log P (Si|DiQi, T) + γ log P (Di|Qi, T)

(III.47)

because of the monotony of the logarithm function. The result is a linear interpolation of the

scores of the different components of a Q&A system. This equation also provides a strategy

to fuse the scores of the different components.

The Document Retrieval Model

The document retrieval model P (Di|Qi, T) is further decomposed using Bayes rule. The

result is defined by

argmaxDi
P (Di|Qi, T) = argmaxDi

P (Qi, T |Di)P (Di) (III.48)

In addition, we assume a uniform prior P (Di) as explained in section III.1. The resulting

term can be further converted to

P (Qi, T |Di) = P (Qi|T,Di)P (T |Di) ≈ P (Qi|Di)P (T |Di) ≈ P (Qi|Di)P (T |Di)
δ (III.49)

where the first approximation assumes an independence of the question from the topic which

may not be correct. The second approximation introduces an exponent to model the different

dynamic range as already described above.

The Sentence Retrieval Model

For the sentence retrieval model, the question type is introduced

P (Si|Di, Qi, T) =
∑

t

P (Sit|Di, Qi, T) ≈ max
t

P (Si, t|Di, Qi, T) (III.50)

The last approximation assumes that only a single question type is dominating the sum. This

is equivalent to the assumption, that the probabilistic models always assign a question type

with very little ambiguity.

3. LANGUAGE MODELING FOR QUESTION ANSWERING 73

Additionally, the sentence Si is further decomposed into a tuple consisting of the set of

named entity types which are present in the sentence. Also, the key words of the sentence

are introduced, so Si = (NEi,Wi). Therefore, the model P (Wi,NEi, ti|Di, Qi, T) has to be

estimated. This results in

P (Si|Di, Qi, T) = max
t

P (Wi,NEi, t|Di, Qi, T) (III.51)

= max
t

P (ti|NEi,Wi,Di, Qi, T) (III.52)

·P (NEi|Wi,Di, Qi, T) (III.53)

·P (Wi|Di, Qi, T) (III.54)

where the first term is a question type classifier depending on the named entities in a sen-

tence. The second term is the result of a named entity recognizer and the last term is the

score of the sentence retrieval module, i.e. the result of the module described in chapter IX.

The Answer Extraction Model

This model is in a sense the most complex one, because it incorporates many complex

features derived from various sources like parse trees of the question and the answer can-

didate sentence. This problem is explained in detail in chapter II, and, for our Q&A system,

we decided to use a maximum entropy approach to estimate the model parameters. As an

implication, no further decomposition has to be done.

74 CHAPTER III. BACKGROUND TO STATISTICAL LANGUAGE MODELING

Chapter IV

Application

1 SmartWeb – Multi Language Question Answering

The SmartWeb project (Wahlster 2007) was funded by the Federal Ministry of Education

and Research (BMBF1). The main goals are described in the SmartWeb project proposal

(Smartweb 2007):

The World Wide Web (WWW) has dramatically simplified and accelerated the worldwide

access to digitally saved information. But, there currently are two major barriers to access

the information:

• The access to the contents is mainly optimized for PC’s with large displays. Instead of

a simple, intuitive access using natural language over ubiquitary mobile phones, infor-

mation retrieval systems currently use textual content for searching. It is not possible

to customize this content to a user using each possible modality.

• So far, the content of the Internet was just “readable” by machines, but not “understand-

able”. Because Internet–based information is mostly presented in natural language, all

retrieved documents are currently understandable by human users. Furthermore, de-

spite of advanced retrieval and ranking techniques, results do often not match the

user’s information need.

The SmartWeb project tries to overcome these problems. It provides a user with a mul-

timodal access to the semantic web. This includes written language as well as speech

1Bundesministerium für Bildung und Forschung.

75

76 CHAPTER IV. APPLICATION

recognition, optionally with touch screen applications. An example of such an application is

asking a question like What is the name of this player? and parallely touching the specific

player on the screen.

Figure IV.1: Overview of the Q&A system in SmartWeb

The main application of the SmartWeb project was the World Cup 2006 in Germany. So,

most knowledge bases are optimized for this task. But, there is also a component included,

which implements an open domain question answering system to cover all kinds of possible

questions. This Q&A systems is a corporate work from the German Research Center for

Artificial Intelligence (DFKI2), Siemens and Saarland University. It implements a multilingual

question answering system for German and English language.

Figure IV.1 presents the overall architecture of the question answering system in SmartWeb.

All included modules are realized as Web Services and for communication between them, a

pre–defined XML form is used. Finally, this XML file will contain all information and results
2Deutsches Forschungszentrum für Künstliche Intelligenz.

1. SMARTWEB – MULTI LANGUAGE QUESTION ANSWERING 77

for later use.

On the left–hand side, the Semantic Mediator is shown. This component gets the question

from the speech recognizer and distributes it to various adequate modules, depending on

the type of question. So, open domain questions are always routed to the Q&A system.

The next stage is the Question Analysis. In this step, DFKI implement algorithms to de-

termine question– and answer type. For example, question types are factoid, Definition or

Abbreviation, whereas the answer type specifies Person, Location, etc.

Besides this, the analysis of the best word chain, the query focus, all keywords from the

natural language question, a list of important named entities and query optimized for Web

search engines are provided and put to the XML file (Neumann and Sacaleanu 2005).

The Document Retrieval, which is also implemented by DFKI, uses the results from the

question answering to find a set of relevant documents. Here, a standard Web search engine

is used and a list of the top–N documents is added to the XML file, where top–N can be set

offline.

The bottom right part of Figure IV.1 shows the Web Service developed at Saarland Univer-

sity. Here, first, the question type is checked because questions about images and figures

are answered by an Image Extraction module developed at Siemens.

If the question asks for factoid information, the Passage Retrieval module downloads the

documents retrieved in the last step, uses discourse algorithms to make passages out of the

Web sites, and re–ranks them.

Finally, a language model based approach is used to find and extract relevant information

(Information Extraction). When finishing this step, all necessary information is put on the

XML file and sent to the Answer Selection.

The last part is again implemented by DFKI and selects the best suited answers from the

list of possible answer candidates. The ranked list is then added to the XML file and sent

back to the Semantic Mediator. From there, the answers are used by the dialog machine to

produce an adequate answer to the user question.

Because the multilingual passage retrieval is a real application for the theoretical ap-

proaches described in this thesis, we want to explain this part a bit more in detail.

Figure IV.2 presents the data flow off the passage retrieval implemented in SmartWeb. As

already explained, the Web Service communicates with the Semantic Mediator via a XML

78 CHAPTER IV. APPLICATION

Figure IV.2: Overview of the passage retrieval component in SmartWeb

form. At this stage, the XML file contains the question type, which was added by the question

analysis module. So, if the question asks for images, it is routed to the Image Extraction

module and images with adequate captions are extracted using Web–based PDF files and

Googles image search function.

If the question is of any other type, like Location, Person, etc., it is routed to the passage

retrieval core module. There, the Web documents are downloaded in parallel. At the same

time, an internal timeout sees to it that the complete process finishes in an adequate time

span which can be configured.

Then, passages are created out of the downloaded Web pages. Our first approach used a

Discourse Page Segmentation algorithm for this task. This means, passages are created

using the HTML syntax. The disadvantage of using such an implementation is that the size

of the passages dramatically varies.

This leads us to our second approach. Now, the text segments are not specified by the

HTML syntax, but each Web document is split up into single sentences. So, the number of

sentences defining a passage can be declared in a configuration file. Using this approach, it

is also possible to define Sliding Windows, which use a specific amount of sentence overlap,

which can also be declared within the configuration file.

One big problem was the different encoding of Web pages. Some documents specify their

encoding using Meta tags, but for most pages, the encoding is unknown. So, we had to

implement a module which guesses the used encoding and transforms the complete text of

a document to UTF–8.

1. SMARTWEB – MULTI LANGUAGE QUESTION ANSWERING 79

Figure IV.2 also shows the connection of the Web Service with a separate, socket–based

server for re–ranking the passages. We do this to obtain an optimal performance of the

system, because this server uses the language modeling toolkit we developed at the de-

partment (LSVLM)3.

Currently, the LSVLM server implements a Jelinek–Mercer linear interpolation using uni-

gram statistics. We also implemented all optimization features described in chapter IX, like

the simple query construction, stemming, using the Porter stemmer, dynamic stopword re-

duction, and the weighted expansion of the query and the passage.

Additionally, the weight of the document corresponding to the passage is included in the

complete score of the retrieval engine.

Another advantage of using a server for doing passage re–ranking is that it can be easily

replaced if a new server is available, which possibly implements better algorithms. It can

also be reused by other applications by simply implementing the used socket connection.

Apllying these features, we also experimented with long–range models, like bigrams (Song

and Croft 1999), and log–linear models (Klakow 1998). But non of them resulted in an

increase in performance for this task.

To support the following Answer Extraction module, we did some preparation work when

processing the text passage. So, the minimum and maximum distance between two query

keywords in a text segment is computed and added to the outgoing XML form.

This means for example, if the query is When did Napoleon die?, the minimum and maximum

distance in the passage between When and Napoleon, When and die, and Napoleon and

die is computed.

This information is then later used to extract the best suited answer out of the set of possible

answer candidates.

Finally, a special algorithm was implemented to process Web pages from the Wikipedia

online encyclopedia. These documents turned out to be a good knowledge source for an-

swering factoid questions. That is also the reason why many state–of–the–art question

answering systems for research also use this source to answer questions or to verify that a

given answer is correct (Shen et al. 2006).

3See chapter IX for more information about the LSVLM.

80 CHAPTER IV. APPLICATION

Chapter V

Other Related Work

As described in chapter II, a question answering (Q&A) system consists of many modules.

Hence, there is also a lot of work done in this area. This chapter focuses on applications

and approaches we did not mention in the single sections dealing with our experiments.

The first application presented in this chapter is a sophisticated smoothing technique for

information retrieval known as Two–Stage Smoothing (Zhai and Lafferty 2002). Based on the

problems, that the optimal parameter set of a smoothing method depends on the document

collection and the query, and that these parameters are normally estimated using a brute–

force search, Zhai and Lafferty (2002) proposed a new smoothing technique to overcome

these problems. They recommended a general framework based on risk minimization (Zhai

and Lafferty 2006) and the two–stage model as a special case (Zhai and Lafferty 2002).

In the first step of the model, Bayesian smoothing using Dirichlet priors is used to smooth

the document collection, and in the second stage, this document language model is further

interpolated with a query background model.

To automatically set the retrieval parameters, they also suggest a leave–one–out method to

estimate the Dirichlet parameters and a mixture model to obtain the interpolation weights.

The Risk Minimization Framework mentioned above is presented in Lafferty and Zhai (2001)

and Zhai (2002). Here, a framework is introduced that is able to combine both, document and

query models. Hence, the ranking is done using a probabilistic function based on Bayesian

decision theory. In particular, a language model for each document and a model for each

query is estimated. The retrieval problem is then solved using risk minimization.

The advantage of this model is its generality. This means by choosing specific models and

loss functions, other frameworks can be rebuild.

81

82 CHAPTER V. OTHER RELATED WORK

A very early work from Song and Croft in 1999 (Song and Croft 1999) proposes a more gen-

eral language model for the task of information retrieval compared to the Ponte and Croft

approach in 1998. Their models are based on a range of data smoothing techniques, which

include curve–fitting functions, model combinations and the Good–Turing estimate (Manning

and Schütze 1999).

The more interesting thing is that they move away from the term “independence assumption”

and use N–grams to estimate language models instead of unigrams. In particular, experi-

ments using bigrams and trigrams are presented, where word pairs are shown to work best

for this task.

Berger and Lafferty (1999) as well as Jin, Hauptmann, and Zhai (2002) suggest the use of

statistical machine translation techniques to solve the problem of information retrieval. The

idea behind this proposal is simply to “translate” a document into a query. This means, the

user’s information need, as a fragment of an “ideal” document, is translated into a query. It

can be regarded as generation process: the probability should be estimated that a query

was generated by a translation of the document. So, the “translation” relationship between

words in the query and words in a document can be directly modeled (Zhai 2005).

The training of these models is easy when relevance judgements are available. Then, the

query and the documents are used to train the translation model.

But, when lacking this information, Berger and Lafferty (1999) use synthetic queries for a

large document collection as training data, whereas Jin, Hauptmann, and Zhai (2002) use

the title a pseudo query and document body to train their translation model.

Another sophisticated approach is to use document clusters to perform retrieval. Cluster–

based Retrieval is based on the hypothesis that similar documents will match the same

information needs (van Rijsbergen 1979). In a document–based retrieval system, docu-

ments are ranked given a specific query and a set of relevant documents is returned. By

contrast, a cluster–based retrieval system groups documents by their similarity and returns

a list of documents based on the clusters they come from.

Liu and Croft (2004) and Kurland and Lee (2004) both present language models for cluster–

based retrieval. Whereas Liu and Croft propose models for ranking or retrieving clusters and

for using clusters to smooth documents, Kurland and Lee show a variety of algorithms for

integrating corpus similarity structure, modeled via clusters, and document specific informa-

tion (Kurland and Lee 2004).

CHAPTER V. OTHER RELATED WORK 83

Language models with a smaller index, faster performance and better results than standard

models are introduced by Hiemstra, Robertson, and Zaragoza (2004) with their work about

Parsimonious Language Models for information retrieval. The idea is to create models that

have fewer non–zero probabilities to describe the data. “A smaller model means that less

storage overhead and less CPU time is needed” (Hiemstra, Robertson, and Zaragoza 2004).

An application for these models is for example the use in Smartphones, where storage and

CPU are limited.

Hiemstra et al. applied their model at three stages of the retrieval process, i.e. at indexing

time, at search time and, finally, at feedback time.

The notion of Relevance for the language modeling approach is described by Lafferty and

Zhai (2003), Lavrenko and Croft (2003) and Spärck Jones et al. (2003). They all intro-

duce the classical probabilistic approach to information retrieval (Robertson and Spärck

Jones 1976) to the field of language modeling.

Lafferty and Zhai show that both models are equivalent, because they are based on different

factorizations of the same generative relevance model (Lafferty and Zhai 2003).

The focus of Lavrenko’s and Croft’s work is the estimation of relevance models when no

training data are available. They also use their resulting model to experiment in the field of

cross–language retrieval.

Spärck Jones et al. also describe in their work how to bring the notion of relevance to the

language modeling approach. In particular, they examine the use of multiple relevant docu-

ments and applying relevance feedback. Their approach also uses parsimonious language

models.

Beside information retrieval, Topic Detection and Tracking (TDT) is also an application area

for language models. The task of TDT is similar to IR, but instead of searching relevant

documents for a query, here, the topical structure of multilingual news streams should be

determined. In contrast to ad–hoc retrieval, topic tracking requires matching scores to be

comparable across topics (Kraaij and Spitters 2003).

Spitters and Kraaij (Spitters and Kraaij 2000, Kraaij and Spitters 2003) describe approaches

of how to use unigram language models for the task of TDT. They tested the document

likelihood and query likelihood ratio, and variants of both models, based on different length

normalization techniques.

Another focus of their work is the use of clustering for the grouping of stories. Here, a

84 CHAPTER V. OTHER RELATED WORK

language model based approach is used to calculate the similarity between a cluster and a

story.

We have already mentioned the task of Cross Language Information Retrieval (CLIR) above,

where documents in languages different from the query language are searched. The idea

of language model based CLIR is to build a language model which can be used to translate

a query to documents.

Lavrenko, Choquette, and Croft (2002) introduce a relevance model for this task. In their

work, a general, content–independent model for CLIR is developed. Another relevance

model is proposed by Lavrenko and Croft (2001) which refers to the probability distribution

specifying the expectation frequency of any word in the document relevant to the query.

Compression–based language models for the task of Text Categorization are presented by

Teahan and Harper (2003). They apply the information theoretically founded approach of

text compression for categorization of texts. Therefore, two different models are suggested.

The first one bases on the ranking by document cross entropy with respect to a category

model, and the second one bases on document cross entropy difference between category

and the complement of the category models (Teahan and Harper 2003).

Text Summarization is used to reduce or shrink a large amount of information to what is

absolutely necessary to understand a text. So, summaries help saving time for a reader.

Mittal and Witbrock (2003) present an automatic, non–extractive, language model based text

summarization for Web pages. In this context, “non–extractive” means, the the information

is not extracted from the original text, but a generative model is used to produce the summa-

rization. Their work shows a machine translation approach to the subject of summarization.

First, language models are used to overcome the problem of unsorted output, and second,

the output is created on the basis of trigrams.

If it is possible to match the document scores of different search engines for a given query

to normalized probabilities, a lot of new applications may be conceivable. Manmatha (2003)

presents in his work empirically “that the score distributions on a per query basis may be

fitted using an exponential distribution for the set of non–relevant documents and a normal

distribution for the set relevant documents” (Manmatha 2003). He also shows how to esti-

mate a score distribution if no relevance information is available by using a mixture model

consisting of an exponential and a normal distribution. Finally, some applications, like com-

bining different search engines, are presented.

CHAPTER V. OTHER RELATED WORK 85

Mittendorf and Schäuble (1994) and Miller, Leak, and Schwartz (1999) introduce Hidden

Markov Models (HMM) for the task of information retrieval, in particular for document and

passage retrieval.

For example, Miller, Leak, and Schwartz (1999) experimented with a framework including

blind feedback, bigram modeling, query weighting, and document–feature dependent priors.

Their experiments show that this approach also performs very good for ad hoc information

retrieval.

An extension of the language modeling approach to information retrieval by explicitly mod-

eling the importance of a term is given by Hiemstra (2002). In this complex model it is

possible to decide if words are stop words, mandatory words, or some pairs of words (bi-

grams) should be considered as phrases, etc.

“Decisions on stop words and non stop phrases are typically taken by the system, based

on a trade–off between search quality and search speed. Mandatory terms and phrases

are typically selected by the user” (Hiemstra 2002). Finally, they stated that statistical rank-

ing algorithms motivated by the language modeling approach perform quite well in such an

empirical setting.

A new Dependency Language Model for information retrieval is presented by Gao et al.

(2004). In their work, they extend the unigram language modeling approach by relaxing

the independence assumption. Therefore, the linkage of a query is introduced as a hidden

variable. This linkage tries to explain the interdependency of query terms.

Then, a query is generated from a document in two stages. In the first step, the linkage is

generated and in the second step, each term is generated depending on other related terms

according to the linkage. In the end, some applications for the task of information retrieval,

like smoothing with different techniques, are presented.

Another dependency language modeling approach for information retrieval which extends

the existing unigram model by relaxing the independence assumption is introduced by Cao,

Nie, and Bai (2005). But in this approach various word relationships can be integrated. Their

work presents two different kinds of relationships, word co–occurences and relationships

extracted from WordNet. Their main conclusion is, that including many different kinds of

resources into a language model for information retrieval provides better results.

86 CHAPTER V. OTHER RELATED WORK

Chapter VI

Query Construction

This chapter covers our approaches to use language models for the task of question clas-

sification. Normally, a user question can be assigned to a specific type, like a person or a

location, etc. This is a very important step, because in this module, the decision is made

what piece of information should be extracted in later stages. A language model based ap-

proach is described in section VI.1.

The best possible class is determined by calculating a score for each question type and

returning the class with the highest score. These confidence measures can also be used to

decide if a returned question class should be used or not. We discuss them in section VI.2.

1 Question Typing

Here, we propose a language model based approach to classify user questions in the con-

text of question answering systems. As categorization paradigm, a Bayes classifier is used

to determine a corresponding semantic class. We present experiments with state–of–the–art

smoothing methods as well as with some improved language models. Our results indicate

that the techniques proposed here provide performance superior to the standard methods,

including support vector machines.

This section is mainly based on Merkel and Klakow (2007c).

87

88 CHAPTER VI. QUERY CONSTRUCTION

1.1 Introduction

In a spoken question answering system a speech recognizer is used on top of a ques-

tion answering (QA) framework. For example, such a system was developed as a part of

the Smartweb project (Wahlster 2004). In this system, a speaker asks a natural language

question and the system provides an answer. In contrast to a classical document retrieval

framework, which just returns relevant documents to a user query, a QA system answers

with accurate responses to a question posed in natural language (Shen et al. 2006). Thus,

the task is very complex and document retrieval is only a small part of the entire system. In

order to provide the user with the correct answer, the QA system has to “understand” the

meaning of a question. For example, if a user asks the question When was James Dean

born?, the answer of the system should be a date and not a country. This means that the

QA system has to analyze the question before taking further steps. Normally, this is done

in the query construction. In this part, the user question is classified into several semantic

categories. This categorization helps the system to reduce the search space and, hence,

is very useful in finding and verifying resulting answers. It may also help to determine the

search strategies for further retrieval modules (Li and Roth 2002).

Most existing QA systems do not use more than 20 semantic categories to classify ques-

tions. In the approach we describe in this chapter, a more fine–grained classification taxon-

omy is applied. The original hierarchy was introduced in Li and Roth (2002) and describes

6 coarse– and 50 fine–grained classes. As we will show, it is sufficient to optimize only

the fine–grained classes; thus, in our experiments, we used this taxonomy for classifica-

tion. Based on this taxonomy, a Bayes classifier with language models as categorization

paradigm was employed. With this framework, we show that our approach is at least as

good as systems discussed in current literature (Zhang and Lee 2003).

A similar experimental system for retrieving video data was presented in Klakow (2006a).

Normally, most QA systems just use no more than 20 coarse classes for classification, but

in this chapter we decided to use the taxonomy proposed by Li and Roth (2002).

We applied the fine–grained classification in our experiments because they proved that they

are more useful to locate and verify answers. Based on this categorization we used a Bayes

classifier with language models as classification paradigm. We will demonstrate that this

approach outperforms systems in current literature.

1. QUESTION TYPING 89

1.2 Methodology

The framework we used to classify the user questions is described in this section. For the

task of information retrieval, a language model based approach was introduced by Ponte

and Croft (1998). They showed that this method performs better than traditional state–of–

the–art retrieval systems. In this chapter, we intend to propose the same techniques for the

task of classifying user questions. The main advantage of using a language model based

approach is the large supply of known techniques to calculate and smooth probabilities. This

is necessary, because there is so little training data available. On average, there are only

about 100 training questions per class.

As described in section VI.1.1, a Bayes classifier was used to perform the categorization

task. In this case, it is defined by

ĉ = argmaxcP (Q|c)P (c) . (VI.1)

The advantage of applying such a classifier is the certainty of obtaining a minimum error rate

provided that all probabilities are exactly known. The term P (Q|c) denotes the conditional

probability of the user question Q given semantic class c. P (c) is the prior probability of this

class. If we consider the problem of data sparsity for training, P (Q|c) has to be calculated

as the product of all occurring query terms:

P (Q|c) =
n

∏

i=1

P (wi|wi−1c) (VI.2)

where Q = {w1 . . . wn}. The prior probability P (c) is calculated as a unigram language model

on the specific class c. This is contrary to most of the current literature (Zhai and Lafferty

2001), where the prior information is considered uniform, and therefore can be neglected.

Smoothing is not required, because all of the semantic classes occur more than four times

in the training data, which is often sufficient to calculate the maximum likelihood probabilities

for language model estimation.

The next section shows how to calculate P (wi|wi−1c). To avoid the problem of zero prob-

abilities, which would result in excluding specific terms from the classification, smoothing

methods are introduced.

90 CHAPTER VI. QUERY CONSTRUCTION

1.3 Smoothing Methods

In this section, we will illustrate how to smooth zero probabilities, which can occur when

query terms are not seen in combination with a specific semantic class. For that purpose,

we introduce unigram as well as bigram language models.

1.3.1 Standard Smoothing Methods

Zhai and Lafferty (2001) presented three different smoothing methods based on unigram

statistics for the task of information retrieval. In the following sections, we also introduce

these standard methods for the task of question classification.

1.3.1.1 Jelinek–Mercer

A smoothing technique based on linear interpolation was first introduced by Jelinek and

Mercer (Zhai and Lafferty 2001). This technique was based on the probability estimate

Pλ(wi|c) = (1 − λ)
N(wi, c)

∑

wi
N(wi, c)

+ λPBG(wi|c) (VI.3)

where N(wi, c) is the count of the word wi in combination with the class c and PBG(wi|c)

is the “background” probability for unseen events. Possible distributions are introduced in

section VI.1.4.

The interpolation weight is defined by λ; higher values of λ induce more smoothing.

1.3.1.2 Bayesian Smoothing with Dirichlet Priors

If a multinomial distribution for estimating a language model is considered and a Dirichlet

distribution is used as the conjugate prior, it results in the smoothed probability estimate

Pµ(wi|c) =
N(wi, c) + µPBG(wi|c)

∑

wi
N(wi, c) + µ

(VI.4)

where N(wi, c) is the frequency of word wi and class c, PBG(wi|c) is the collection model

and µ is the smoothing parameter.

1. QUESTION TYPING 91

1.3.1.3 Absolute Discounting

Absolute discounting is the most common and popular smoothing method in speech recog-

nition. It is defined by

Pδ(wi|c) =
max (N(wi, c) − δ, 0)

∑

w N(wi, c)
+

δB
∑

wi
N(wi, c)

PBG(wi|c) (VI.5)

where N(wi, c) are the observation frequencies determined on the training data. The term

PBG(wi|c) denotes the backing–off model trained on background data and B specifies how

often N(wi, c) is larger than the smoothing parameter δ.

1.3.2 Improved Smoothing Methods

In addition to the smoothing algorithms defined in section VI.1.3.1, we here consider im-

proved methods to estimate smoothed probabilities.

1.3.2.1 Improved Absolute Discounting (UniDisc)

The improved absolute discounting smoothing method introduced in Klakow (2006b) for

smoothing very small adaptation corpora is known as UniDisc. This technique was based

on the probability estimate

Pd(w|c) =

N(wi, c) − d
N + αPBG(wi|c) if N(wi, c) > 0

α · PBG(wi|c) else

(VI.6)

Equation (VI.6) shows a unigram back–off model as described in section VI.1.3.1.3, where

N(wi, c) is the frequency of the term wi in combination with class c, the discounting param-

eter is defined by d, and PBG(wi|c) is the back–off language model. The term α denotes

the back–off weight. In this case, the discounting parameter is independent of the term

frequency. By contrast, the rational function

d(N) =
d0 + s(N − 1)

1 + g(N − 1)
(VI.7)

describes a discounting parameter which depends on term counts, where d0 is the abso-

lute discounting parameter introduced in section VI.1.3.1.3, whereas s and g are additional

92 CHAPTER VI. QUERY CONSTRUCTION

parameters.

1.3.2.2 Log–Linear Interpolation

The use of language models for log–linear interpolation was first proposed in Klakow (1998).

The exact model we will use in our experiments is defined by

P (wi|wi−1c) = 1
Zλ(wi−1c) PUniDisc(wi|c)

1.0

PAbsDisc(wi|wi−1c)
λ

(VI.8)

where Zλ(wi−1c) is a normalization weight depending on wi−1, c and the parameter λ. The

term PUniDisc(wi|c) is the improved absolute discounting method described in the previous

section and PAbsDisc(wi|wi−1c) is an absolute discounting approach using bigram statistics.

The parameter λ denotes the interpolation weight.

1.4 Background Models

In this section, possible background models we used for the smoothing methods described

in section VI.1.3 are shown.

1.4.1 Zerogram

The simplest background model, which uses no information about words, is the zerogram

defined by

PZero
BG (wi|c) =

1

|V |
(VI.9)

where |V | is the size of the vocabulary.

1.4.2 Unigram

Another commonly used distribution is the unigram model. It can be computed with the

well–known maximum likelihood estimator:

PUni
BG (wi|c) =

N(wi)
∑

wi
N(wi)

. (VI.10)

N(wi) means the frequency of the word wi in the training corpus. Note that both variants

are independent of the class c.

1. QUESTION TYPING 93

1.4.3 Bigram

For the task of information retrieval, bigram language models are not very popular. Never-

theless, we want to introduce them for classifying user questions. They are described by the

formula

PBi
BG(w|vc) =

N(wv, c)
∑

v N(v, c)
. (VI.11)

Here, N(wv, c) denotes the frequencies of the word–pair wv and the class c.

1.5 Experiments

This section describes the dataset we used for our experiments as well as the results of the

different smoothing approaches.

1.5.1 Dataset

We used the 5,500 questions provided by the Cognitive Computing Group at University of

Illinois at Urbana Champaign1 as training data. The evaluation was done with the TREC102

dataset, which contains 500 test questions. The vocabulary we used in our experimental

setup consists of about 10,000 words extracted from the training data.

As evaluation metric, the misclassification error rate (MER), which specifies the percentage

of misclassified semantic classes for the evaluation test data, was chosen.

For our experimental setup, we used the classification taxonomy defined in Li and Roth

(2002). It consists of 6 coarse– and 50 fine–grained semantic classes. Figure VI.1 shows

the correlation between the number of errors for the coarse– and fine–grained classes as

a scatter plot. It proves that both types of classification correlate very well. Hence, for

the balance of this work, we concentrate exclusively on improving the performance of the

fine–grained classes.

For our experiments at TREC 2007, we extended the proposed taxonomy by classes de-

scribed in Table VI.1. This was done because last year’s Q&A tracks at TREC showed an

increasing number of questions of those types.

1http://l2r.cs.uiuc.edu/∼cogcomp/Data/QA/QC/
2http://trec.nist.gov

94 CHAPTER VI. QUERY CONSTRUCTION

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 80 100 120 140 160 180

N
um

be
r

of
 e

rr
or

s
fo

r
fin

e
cl

as
se

s

Number of errors for coarse classes

Experiments
linear fit

Figure VI.1: Correlation between number of errors for coarse and fine classes.

Because, so far, there is no training data for the types introduced in Table VI.1, we had to

extend the original 5,500 questions provided by the Cognitive Computing Group at UIUC by

the new classes. But to get a more reasonable number of training data for those classes, we

additionally annotated the TREC 2001–2006 questions. So, the current training set contains

about 10% of questions labeled with the new classes (Shen et al. 2007).

New Class Description

ENTY:cremat:movie all moving images
ENTY:cremat:books any printed matter
ENTY:cremat:song any piece of music
HUM:ind:actor actor of movies and TV programmes
HUM:ind:author author of printed matter
HUM:ind:composer performer musical performer and/or composer

Table VI.1: List of the new question types used for TREC 2007 experiments.

1. QUESTION TYPING 95

1.5.2 Results

The results of our experiments are discussed in this section. As experimental methods, we

used the standard and improved smoothing algorithms defined in section VI.1.3.

1.5.3 Jelinek–Mercer Interpolation

 20

 25

 30

 35

 40

 45

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
is

cl
as

si
fic

at
io

n
er

ro
r

ra
te

 in
 %

λ

linear zerogram
linear unigram

Figure VI.2: Misclassification error rate for different linear interpolation smoothing parameters.

Figure VI.2 shows the results of the Jelinek–Mercer interpolation for different smoothing

weights. It proves that using a zerogram background distribution performs slightly better than

unigram information. Both curves are relatively independent of the interpolation weight and

reach their minimum MER at approximately 0.5, which means that smoothing is necessary.

For a high smoothing parameter (λ ≈ 1), the unigram language model is slightly better than

the zerogram distribution.

96 CHAPTER VI. QUERY CONSTRUCTION

1.5.4 Dirichlet Priors

The experiments with Dirichlet priors are presented in Figure VI.3. In this case, the zero-

gram model performs significantly better than the unigram distribution. A smoothing value

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000 2500 3000 3500 4000

m
is

cl
as

si
fic

at
io

n
er

ro
r

ra
te

 in
 %

µ

dirichlet zerogram
dirichlet unigram

Figure VI.3: Misclassification error rate for different Dirichlet prior smoothing parameters.

of µ = 200 is yielded the best performance, but this time, both methods depend more on the

smoothing parameter. Surprisingly, the behavior of the unigram background model in com-

parison with the zerogram distribution is completely different. These results indicate that the

unigram model requires much more smoothing to enhance the performance. When using a

parameter µ ≥ 1200, the unigram performs better than the zerogram language model.

1.5.5 Absolute Discounting

For absolute discounting (Figure VI.4), both used background distributions strongly depend

on the smoothing parameter. In contrast to the other standard methods, best results are

obtained when using a large discounting value. Again, the unigram model performs better

than the zerogram distribution for a high smoothing value. But in this case, the unigram

1. QUESTION TYPING 97

 20

 25

 30

 35

 40

 45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
is

cl
as

si
fic

at
io

n
er

ro
r

ra
te

 in
 %

δ

abs. disc. zerogram
abs. disc. unigram

Figure VI.4: Misclassification error rate for different discounting parameters.

statistics exceeds the zerogram background model.

1.5.6 UniDisc

The experimental results for the first improved language model are shown in Figure VI.5.

For this setting, the best performance was gained when using the discounting parameter

d0 = 1. From this follows that events, which appear just once, are discarded. Thus, only

terms with multiple occurrences are used for classification. As singletons are mostly nouns,

this is a reasonable result, because such events contain no useful information for the task of

question categorization.

The combination of both additional discounting parameters is presented as a contour plot. It

shows the area of best performance at s = 0.8 and g = 0.007 with a MER of 20.6%.

1.5.7 Log–Linear Interpolation

Figure VI.6 demonstrates the experiments for the log–linear interpolation approach. It proves

98 CHAPTER VI. QUERY CONSTRUCTION

 0.4 0.5 0.6 0.7 0.8 0.9 1

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 25%
 24%

 23%
 22%

 21%
 20.6%

s

g

Figure VI.5: Contour plot for misclassification error rate for different discounting parameters for UniDisc experi-
ments.

that using absolute discounting with bigram statistics for interpolation results in an additional

performance gain. The best MER is achieved at approximately λ = 0.1. For λ ≥ 0, the

distribution remains relatively independent to the smoothing parameter.

1.6 Conclusion

In this chapter, we have presented a language model based approach to question clas-

sification in the context of spoken question answering. Our methodology is based on a

Bayes classifier and uses several state–of–the–art and improved methods to smooth un-

seen events. We also showed the effects of using different background models, such as

zerogram and unigram models.

Table VI.2 gives an overview of all smoothing methods used in our experiments. It shows

the number of misclassified categories as well as the misclassification error rate (MER).

In general, our improved approaches perform better than the standard smoothing methods.

Here, the absolute discounting method is best, whereas Dirichlet priors performs best for

1. QUESTION TYPING 99

 20

 25

 30

 35

 40

 45

-0.4 -0.2 0 0.2 0.4 0.6 0.8

m
is

cl
as

si
fic

at
io

n
er

ro
r

ra
te

 in
 %

λ

log-linear

Figure VI.6: Misclassification error rate for different log–linear smoothing parameter.

the task of sentence retrieval in question answering (Shen et al. 2006). With regard to

the improved methods, the enhanced absolute discounting experiments performed better

than the standard back–off algorithm. The approach with the best results is the log–linear

interpolation method, which achieved a MER of 19.2%. These results are comparable to

other state–of–the–art methods, like SVMs. But, in terms of training, this approach can be

computed in linear time complexity and therefore is much faster compared to most existing

implementations which have to be computed in polynomial time.

Method MER

Jelinek–Mercer 28.4%
Dirichlet Prior 34.2%

Absolute Discounting 25.5%
UniDisc 20.6%

Log–Linear 19.2%

Table VI.2: Comparison of proposed language model based approaches for query classification. In contrast, the
best traditional method in literature is the Support Vector Machine (SVM) with a MER of 19.8%.

100 CHAPTER VI. QUERY CONSTRUCTION

2 Confidence Measures

In the last section, we introduced a language model based approach for the task of question

classification. For a more efficient use of the resulting question classes, a measure is pre-

sented in this section, which specifies the confidence in the module, that the returned class

is correct.

2.1 Introduction

The idea of calculating confidence measures for the task of question answering is originally

derived from formula III.51. Here, the confidence measures as we want to introduce them

in this section, are a part of the language model based approach for question answering. In

particular, it is part of the first term in the formula, where a question type classifier depending

on the named entities in a sentence has to be calculated.

The use of confidence measures is not new. For example, for the task of information re-

trieval, it is a very common approach to rank documents. The confidence measure of a

retrieval system is computed for each document to show how it matches the information

need of a user.

In this section we want to introduce the notion of confidence measures for the task of ques-

tion classification.

We described in the last section, that a question class is computed by using a Bayes clas-

sifier as classification paradigm (chapter VI.1). This algorithm calculates a score for each

possible question class and returns the class with the best score. As we will show in this

section, these scores can be regarded as confidence values for a specific class.

When using this definition of confidence measures, it is not only possible to return the best

class but also to return a specific number (topN) of possible classes. These classes with

the corresponding confidence values can then be made available to various other modules

of the system.

For example, the confidence measure of a class can be used to decide whether it is appli-

cable to specify the question type or not. We will show this discrimination characteristic in

section VI.2.4.

And finally, it can also be used in succeeding modules, i.e. in the answer extraction module,

to give further scores for finding the best answer candidate.

2. CONFIDENCE MEASURES 101

2.2 Dataset

Because calculating the confidence measures of question classes is nearly the same task

as described in the last section (VI.1), we also used the same datasets as specified there.

To simplify matters, we shortly recapitulate the used datasets.

As training data, we used the 5,500 questions provided by the Cognitive Computing Group

at University of Illinois at Urbana Champaign. For evaluating the experimental results, the

TREC10 dataset was used. For our experimental setup, we used the classification taxonomy

defined in Li and Roth (2002).

For further experimenting, mainly for the task of TREC 2007, we extended the existing taxon-

omy by classes such as movie, books and songs. Table VI.1 provide more information about

this facts. This was done because last year’s Q&A tracks for TREC showed an increasing

number of questions of those types.

Because there are no training data for those types, we had to extend the original 5,500

questions described above by the new classes. But to get a more reasonable number of

training data for those classes, we additionally annotated the TREC 2001–2005 questions.

So, the current training set contains about 10% of questions labeled with the new classes.

As testing set for this new kind of training data, we further annotated the TREC 2006 ques-

tion set. Finally, we calculated histograms for both datasets, each containing all classes and

the four most frequent classes in an experiment.

2.3 Used Methods

As explained in the introduction, the idea of calculating confidence measures originally

comes from formula III.51. Here, the approach of using language models for the task of

question answering is split up into different parts. One part is to determine the question type

classifier depending on the named entities in a sentence, i.e. P (c|NEi,Wi,Di, Qi, T), where

c is the question class, NEi is a named entity, Wi is a query word, Di a specific document,

Qi the query, and T the topic of a query.

As a simplification, we can also calculate

P (c1|Q)

102 CHAPTER VI. QUERY CONSTRUCTION

where this equation split the confidence measures into the single question types. It also

describes that it is possible to return more than just one class with a confidence value, as it

is standard for the task of question classification. So, the topN classes together with their

confidence values can be used by the Q&A system, if needed.

Following this, estimating the probability of a question type given a query can be expressed

by the following equation

P (c|Q) ∝ P (Q|c)w(c) · P (c) (VI.12)

= P (Q|c) · P (c)
1

w(c) (VI.13)

⇒ P (c|Q) =
P (Q|c) · P (c)

1
w(c)

∑

c′ P (Q|c′) · P (c′)
1

w(c′)

(VI.14)

Here, the first approximation (VI.12) is done using the Bayes rule. The only difference is

that the class dependent weight w(c) is introduced to further weight the probability of the

question given the class c. The idea of using such a weight is derived from the task of

speech recognition, where weights are introduced to compensate the flaw of having different

dynamic ranges for two or more different distributions (Jelinek 1997).

The final equation for calculating confidence values for a specific class is shown in formula

VI.14. The denominator is introduced to obtain a well–formed probability distribution for

P (c|Q). Now, if this probability is summarized over all possible classes, it results in one,

which means that it is normalized.

Because this likelihood is very similar to the task of question classification, it is very easy to

extend the implementation to also provide the system with confidence values for the specific

classes.

2.4 Experiments

In this section, we want to present some of our results concerning the confidence measure

of a question class. The plots just show the distribution of confidence values for the best

possible question type. Values for the topN classes are also available, but as they seemed

to deliver no further insight, we concentrate on the best possible class.

The resulting graphs are presented as histogram plots for correct and incorrect classified

2. CONFIDENCE MEASURES 103

questions. The axis of abscissae always shows the confidence measure whereas on the

axis of ordinates the no–normed number of correct or incorrect documents is printed.

2.4.1 TREC 10

The first set of experiments is made by just using the 5,500 questions provided by UIUC as

training set and the TREC 10 question set as testing data. The exact dataset is explained in

section VI.2.2.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 c

an
di

da
te

s

confidence

correct
non-correct

Figure VI.7: Histogram of confidence values for correct/incorrectly classified questions for the TREC 10 dataset.

Figure VI.7 shows the histogram graph for the combination of all question types used. It

is very obvious that for confidence values below 0.9 the number of correct and incorrect

classified questions is rather equal. This means that it is not possible to make a decision for

these values whether a returned class is correct or not.

But, if the confidence measure is higher than 0.9 the number of correctly classified questions

is much higher than the number of incorrect ones. So, if a value in this range is returned

by the question typing module, the system can highly trust this classification and take the

question type as correct.

104 CHAPTER VI. QUERY CONSTRUCTION

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 c

an
di

da
te

s

confidence for DESC:def

correct
non-correct

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 c

an
di

da
te

s

confidence for HUM:ind

correct
non-correct

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 c

an
di

da
te

s

confidence for NUM:date

correct
non-correct

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 c

an
di

da
te

s

confidence for LOC:other

correct
non-correct

Figure VI.8: Histograms of confidence values for correct/incorrectly classified questions of the four most frequent
question types for the TREC 10 dataset.

The result graphs of Figure VI.8 show the histograms of the four most frequent question

types for the used dataset.

Hence, on the top left–hand side the results for the class Description:definition (DESC:def)

is presented. It shows nearly the same characteristics as the results using all classes. This

means that a class with a confidence measure of 0.9 or higher is taken as correct.

The rest of the plots show the same behavior for the question types Human:individual

(HUM:ind), Number:date (NUM:date), and Location:other (LOC:other). For all figures it is

obvious to take a class with confidence values above 0.9 as correct and neglect all types

with a lower measure.

2.4.2 TREC 2006

The same experiments were also done using the extended dataset described in section

VI.2.2. Here, we added some additional question types to the original taxonomy, like movies

2. CONFIDENCE MEASURES 105

or songs. Therefore, the complete TREC 2001– 2005 question sets are additionally anno-

tated using the new types. The results presented in this section are then evaluated with the

TREC 2006 question set, we also annotated for this task.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 c

an
di

da
te

s

confidence

correct
non-correct

Figure VI.9: Histogram of confidence values for correct/incorrect classified questions for the TREC 2006 dataset.

Again, Figure VI.9 displays our results using all possible question types. Compared with the

graph in Figure VI.7 the results presented for these experiments are not that straightforward.

Nevertheless, it can be shown that for a confidence value above 0.9, the number of correctly

classified answers is still much higher than the number of misclassifications. So, for these

experiments, we can also argue that a confidence value of 0.9 or higher can be taken as

correct.

In a strict sense, this fact also holds for values above 0.5. But as the difference between the

number of correctly and incorrectly classified questions is very small, we take the confidence

measure of 0.9 as threshold.

The histograms in Figure VI.10 again show the experimental results for the four most fre-

quent question classes. In particular, results for Human:individual (HUM:ind), Location:other

(LOC:other), Number:count (NUM:count), and Number:date (NUM:date) are presented.

106 CHAPTER VI. QUERY CONSTRUCTION

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 c

an
di

da
te

s

confidence for HUM:ind

correct
non-correct

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 c

an
di

da
te

s

confidence for LOC:other

correct
non-correct

 0

 10

 20

 30

 40

 50

 0 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 c

an
di

da
te

s

confidence for NUM:count

correct
non-correct

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 c

an
di

da
te

s

confidence for NUM:date

correct
non-correct

Figure VI.10: Histograms of confidence values for correct/incorrect classified questions of the four most frequent
question types for the TREC 2006 dataset.

Although the number of correct and incorrect questions varies very much for specific ques-

tion types, it can be seen that using a value of 0.9 or higher is sufficient to distinguish be-

tween correctly and incorrectly classified question types. As in our previous experiments,

a value above 0.9 means that the returned class can be taken as correct. For some of the

question types, i.e. HUM:ind and LOC:other, a lower confidence value might also be useful

to distinguish between correct and incorrect classes.

2.5 Conclusion

In this section we presented an approach to calculate confidence measures for question

types using the question classification algorithm described in section VI.1.

We derived the idea of generating confidence values from the theoretic approach to a lan-

guage model based question answering system (III.3), where a question type classifier de-

pending on named entities in a sentence has to be calculated.

2. CONFIDENCE MEASURES 107

As results of our experiments regarding the best class returned we showed that a confidence

measure of 0.9 or higher is sufficient to take a classified question type as correct.

Experiments using the extended classification taxonomy described in section VI.2.2 and

TREC 2006 as testing set also showed that for special question classes it might be useful

to take a lower confidence value to differentiate between correctly and incorrectly classified

questions. This fact has to be researched in future work.

108 CHAPTER VI. QUERY CONSTRUCTION

Chapter VII

Document Retrieval

Document retrieval is the most common step for all Q&A systems. The main goal is to

translate the user’s query into a set of possibly relevant documents which can contain the

answer to the user’s information need. Because this is typically not the last retrieval step, the

pre–fetching of relevant documents is also often called document pre–fetching (Monz 2003).

This also acts as a kind of filter. Special filtering methods (IR algorithms) are used to get

relevant documents out of a large collection. As mentioned above, this collection is typically

too large to process every document, so, most, or even all state–of–the–art Q&A systems

use a document retrieval module for pre–selection.

This chapter is mainly described in Hussain, Merkel, and Klakow (2006).

1 Introduction

In this chapter, we explain our methodology to the task of document pre–fetching. As we

used a statistical approach to question answering, we also applied language models to find

relevant documents to a user query. These methods were first introduced by Ponte and

Croft (1998) and are now a common alternative to traditional algorithms, like tf–idf or Okapi

because of their formal mathematical model. Other reasons of the popularity of statistical

language models for this task are their simple framework, their use for indexing and retrieval

models and so on. A discussion about further advantages and disadvantages can be found

in chapter III.

For the experiments we present in this section, standard smoothing techniques to calculate

the statistical language models are used. The results are then optimized to return as few

109

110 CHAPTER VII. DOCUMENT RETRIEVAL

documents as possible to the following Q&A modules. This is necessary because following

algorithms, like answer extraction, use computational complex techniques and work much

faster and robust when processing a smaller amount of documents.

So, document retrieval is done in two steps. First, the number of returned documents is fixed

and, afterwards, the adequate smoothing technique is optimized to obtain the best perfor-

mance. We also talk about the experimental setup we used for the TREC 2007 challenge.

Here, a different approach was chosen, because two different corpora had to be processed.

The rest of this chapter is organized as follows. The used methodology and datasets are

described in section VII.2. The baseline experiments and the corresponding results are dis-

cussed in section VII.3. Our new experiments concerning document retrieval and fetching for

TREC 2007 are mentioned in section VII.4. And finally, section VII.5 concludes the chapter

about document retrieval.

2 Methodology

Before optimizing the smoothing algorithms, the dataset and methods used for the experi-

ments are explained. This also includes the pre–processing steps we did before performing

the document retrieval.

2.1 Dataset

The training document set or corpus for evaluation is the AQUAINT collection that consists of

1,033,461 documents taken from the New York Times, the Associated Press, and the Xinhua

News Agency newswires. We selected AQUAINT as some well established standard task,

which is helpful to compare our work with the state of the art. Our question set for evaluation

contains 50 factoid questions, from TREC topic 1394 to 1443, that look for short, fact–based

answers. These topics cover a range of different question type classifications, such as:

• Location: ”In what country did the game of croquet originate?”

• People: ”Who was the first person to run the mile in less than four minutes?”

• Date: ”When did the shootings at Columbine happen?”

• Amount: ”How old do you have to be to get married in South Carolina?”

2. METHODOLOGY 111

While conducting document retrieval we do not use this classification information. Some of

these questions do not have answers within the corpus. In all our experiments, stemming

is applied. No stop word removal is performed, since we do not want to be biased by any

artificial choice of stop words and we believe that the effects of stop word removal should

be better achieved by exploiting language–modeling techniques. Relevance judgments are

obtained from the judged pool of top retrieved documents by various TREC participating

retrieval systems. Table VII.1 shows the different datasets and the label used for them in this

paper.

For the task of TREC 2007 two new datasets were introduced. The AQUAINT 2 is a newswire

corpus similar to AQUAINT. The documents contained in this corpus are proofread, so we

can expect the texts to be written in proper English. BLOG 06 is a newly created corpus

comprising common blog pages from the web. Therefore, these web sites are not proofread

and can contain misspellings, ungrammatical formulations and incorrect punctuation marks.

The documents are unprocessed web pages extracted from the web and, thus, include

HTML tags and script language fragments (cf. Shen et al. (2007)).

2.2 Used Methods

The input to the system are the corpus and a set of questions. The output is a ranked list of

documents for each question. Bellow is an explanation of each of the system components.

KeyFileIndexer & Stemmer: This component builds a key file index of AQUAINT corpus.

Stemming is done along with indexing, using the Krovetz stemmer. The generated

index is used by each retrieval method.

Question Stemmer: It is responsible for converting questions into queries by stemming

Dataset Label
AQUAINT collection C

Retrieved document collection dc

Retrieved document for a given query dc(qi)

Single document d

Query collection Q

Single query qi

Single passage p

Passage collection pc

Table VII.1: Labels used for different datasets

112 CHAPTER VII. DOCUMENT RETRIEVAL

them. As for KeyFileIndexing, the Krovetz stemmer is used for question stemming.

These queries are used by the retrieval methods to perform document retrieval.

Retriever: This component is responsible for the actual retrieval of documents. There are

number of retrieval methods that we have tested. They are explained in following

section.

3 Experiments

A number of popular retrieval techniques exist, which include both traditional and language

modeling techniques. We evaluate the performance of some of these techniques on our

test data. The retrieval methods evaluated in this section are standard tf–idf, Okapi, and

the language modeling framework. The Dirichlet Prior, Jelinek–Mercer, and Absolute Dis-

counting smoothing methods are the three methods that we have tested. They belong, in

a general sense, to the category of interpolation–based methods, in which we discount the

counts of the seen words and the extra counts are shared by both the seen words and un-

seen words. The Lemur toolkit is used to run the experiments, because it is efficient and

optimized for fast retrieval. The Lemur toolkit is specially designed for research work. It

provides both traditional and language modeling based retrieval algorithms and has been

used by many research groups in the IR community. The basic idea behind the language

modeling approach is to estimate a language model for each document and rank documents

by the likelihood of the query according to the language model.

3.1 Evaluation Methodology

Our goal is to study the behavior of individual retrieval methods and smoothing techniques

as well as to compare different methods. Unlike traditional retrieval techniques, in case of

language modeling retrieval techniques, we experiment with a wide range of parameter val-

ues for each smoothing method. In each run, the smoothing parameter is set to the same

value across all queries and documents. While it is certainly possible to set the parameters

differently for individual queries and documents through some kind of training procedure, it

is beyond the scope of our work. In order to study the behavior of a particular smoothing

method, we examine the sensitivity of non–interpolated average precision to variations in a

3. EXPERIMENTS 113

set of selected parameter values. Along with finding the optimal value of smoothing param-

eters, we also need to find the optimal number of retrieved documents N . Therefore we first

fix the number of retrieved documents by comparing the non–interpolated average precision

for a varying number of documents retrieved, using each retrieval method. For the purpose

of comparing smoothing methods, we first optimize the performance of each method using

the non–interpolated average precision as the optimization criterion, and then compare the

best runs of each method. The optimal parameter is determined by searching the entire

parameter space.

3.2 Results

This section explains results obtained from different retrieval methods. We first derive the

expected influence of the number of documents retrieved by plotting the non–interpolated

average precision against the document number for each retrieval method. We examine the

sensitivity of retrieval performance by plotting the non–interpolated average precision at N

documents against the different values of the smoothing parameter. The following section

explains the reason for retrieving a finite number of N documents per query.

3.2.1 Document Size Tuning

In this section, we study the behavior of each retrieval technique for different numbers of

documents retrieved. We examine the sensitivity of retrieval performance by plotting the

non–interpolated average precision, with fixed smoothing parameters for this experiment

where required, against a different number of documents retrieved. The smoothing parame-

ter values are taken from previous work (Zhai and Lafferty 2001). For the Dirichlet Prior the

value of prior is set to 2, 000, for Jelinek–Mercer the value of λ is fixed at 0.8, and similarly

for Absolute Discounting the value of δ is preset to 0.8. The plot in Figure VII.1 displays the

non–interpolated average precision for a different number of documents retrieved. It can be

seen that with the increase in the number of document, the performance also rises. It can

also be seen that the increase in performance after 500 documents is relatively marginal.

All retrieval methods show this trend. For the number of retrieved documents N greater

than 500 the cost of computing is significantly larger compared to the gain in performance.

Therefore N is fixed at 500. Overall the Dirichlet Prior performed best by far. One reason

114 CHAPTER VII. DOCUMENT RETRIEVAL

for this could be that on average our queries are not verbose. Our experiments support

the claim that language modeling techniques perform better than traditional ones, e.g. tf–

idf and Okapi. Another noticeable fact is that performance ordering of retrieval methods is

independent from the number of retrieved documents.

3.2.2 Parameter Tuning for Language Modeling Techniques

In this section, we study the behavior of individual smoothing methods. We examine the

sensitivity of retrieval performance by plotting the non–interpolated average precision at 500

retrieved documents against the different values of the smoothing parameters. The analysis

of our results follows.

For Jelinek–Mercer, the value to λ is varied between zero and one. The plot in Figure VII.2

shows the non–interpolated average precision for different settings of λ. As depicted in

the plot, an optimal value of λ is near 0.5, which indicates that our queries are of mixed

length. According to Zhai and Lafferty (2001), the optimal point for short queries is around

0.1 and for long queries it is generally around 0.7. This is because long queries need more

smoothing and less emphasis is placed on the relative weighting of terms.

For Dirichlet Prior, the value of prior µ is varied between 500 and 5, 000 with intervals of

500. The plot in Figure VII.3 illustrates the non–interpolated average precision for different

settings of the prior sample size. As mentioned in Zhai and Lafferty (2001), the optimal prior

µ varies from collection to collection and depends on query lengths. For our dataset and

questions it is around 1, 000.

For Absolute Discounting, the value to δ is varied between zero and one. The plot in Fig-

ure VII.2 shows the non–interpolated average precision for different settings of d. The op-

timal value of δ is near 0.8, which fortifies the claim by Zhai and Lafferty (2001) that the

optimal value for δ tends to be around 0.7.

Overall the Dirichlet Prior performed best using prior of 1, 000 and 500 retrieved documents.

Then follows Absolute Discounting, which is better than Jelinek–Mercer. The good perfor-

mance of Dirichlet Prior is relatively insensitive to the choice of µ. Indeed, many non–optimal

Dirichlet runs are also significantly better than the optimal runs for Jelinek–Mercer and Ab-

solute Discounting. This is because our queries are not long. Jelinek–Mercer is supposed

to perform the best for long queries. According to Zhai and Lafferty (2001), Jelinek–Mercer

is much more effective when queries are more verbose. As displayed by Table VII.2, tf–idf

4. EXPERIMENTS FOR TREC 2007 115

Figure VII.1: Document Retrieval with varying number of documents retrieved. For Dirichlet Prior the value of
prior is set to 2000, for Jelinek–Mercer the value of λ is set to 0.8 and for Absolute Discounting the value of δ is
set also to 0.8.

performed slightly worse than Jelinek–Mercer, while Okapi performed even worse.

4 Experiments for TREC 2007

The results of the experiments we made for TREC 2007 are mainly taken from Shen et al.

(2007).

4.1 Two–stage Document Retrieval

As mentioned in the introduction, for TREC 2007 experiments two new text corpora were

used to perform question answering. We carried out three steps to prepare both corpora

for document retrieval. In the first step, we extracted the plain text from the BLOG 06 doc-

uments by removing HTML tags and script language fragments. For this purpose, we used

116 CHAPTER VII. DOCUMENT RETRIEVAL

Figure VII.2: Plot of non–interpolated average precision against smoothing parameter, with smoothing parameter
varying from 0.01 to 0.99. Number of retrieved documents fixed at 500.

CyberNeko Tools for XNI1. We preserved tables of contents and other meta–information that

are not part of the actual document. Fortunately, the language model based sentence extrac-

tion consistently ignores these text fragments. In the second pre–processing step, sentence

boundaries are detected in BLOG 06 and AQUAINT 2 documents using an HMM–based

approach. Finally, the documents with annotated sentence boundaries are indexed by the

Lemur Toolkit for Language Modeling and Information Retrieval. A single corpus compris-

ing all documents from BLOG 06 and AQUAINT 2 would result in a huge corpus containing

3,215,171 + 906,777 documents. Unfortunately, we were not able to use the language mod-

eling module of Lemur for these data sizes. The other document retrieval methods, such

as tf–idf or Okapi, were working on these data but previous experiments on AQUAINT show

that the document extraction using language modeling performs much better than tf–idf or

Okapi (Merkel and Klakow 2007a). So, we decided to split the document retrieval in two

1http://people.apache.org/∼andyc/neko

4. EXPERIMENTS FOR TREC 2007 117

Figure VII.3: Plot of non–interpolated average precision against prior (µ). Dirichlet Prior with prior varying from
500 to 5000. Number of retrieved documents fixed to 500.

stages. In both stages we used language modeling to extract the documents.

1. In the first stage, documents are extracted separately from BLOG 06 and AQUAINT 2.

We extract the same amount of documents from both corpora. The size of documents

to be extracted is larger in the second stage than in the first. The more documents are

extracted during the first stage the better a one–stage document retrieval is approxi-

mated.

2. After extracting documents from both corpora we create a new corpus from the ex-

tracted documents. This corpus is much smaller than a merged corpus of both cor-

pora.

3. After building the merged corpus the relevant documents are extracted for further pro-

cessing.

118 CHAPTER VII. DOCUMENT RETRIEVAL

Method Parameter MAP
Dirichlet Prior µ = 1000 0.254
Jelinek–Mercer λ = 0.5 0.219
Absolute Discounting δ = 0.8 0.219
tf–idf - 0.185
Okapi - 0.130

Table VII.2: Non–interpolated average precision for best run of each retrieval methods. With µ of 1000, δ of 0.8,
and λ of 0.5

Table VII.3 shows the results obtained by different retrieval methods. In our experiments

we used the question set from TREC 2006 and extracted the documents from AQUAINT.

30 documents were extracted in each run, because our QA System performs best with this

number of extracted documents. We obtained the parameter settings for each model from

previous experiments (Hussain, Merkel, and Klakow 2006). We observe that tf–idf and Okapi

perform worse than language modeling in a one–stage document retrieval. Our two–stage

document retrieval also performs better on a single corpus than the one–stage document

retrieval. Furthermore, the amount of irrelevant documents that are ranked higher than

relevant documents decreases in our two–stage document retrieval. This can be explained

by the filtering out irrelevant documents in the first stage resulting in a less noisy language

model in the second retrieval stage. Overall, the language model based document extraction

performs better than traditional document extraction methods like tf–idf or Okapi. The results

in these experiments confirm our previous experiments.

4.2 Dynamic Document Fetching

In our experiments we discovered that slight variations in the number of extracted docu-

ments affect the overall performance of our QA System. Using a question type independent

document retrieval, we obtain best results when 30 documents are extracted per question.

Additionally, we observed that the global change in performance induced by varying the

Method MAP R-prec P@10 bPref
Two–Stage 0.2646 0.335 0.1353 0.6549
One–Stage 0.2539 0.2328 0.1342 0.5514
Okapi 0.2249 0.2088 0.1300 0.5106
tf–idf 0.2052 0.188 0.1069 0.4917

Table VII.3: Results of Document Retrieval: TREC 2006 question set on AQUAINT.

4. EXPERIMENTS FOR TREC 2007 119

One–Stage Two–Stage
MAP 0.2661 0.2646
R–Prec 0.2328 0.335
P@10 0.1342 0.1353
bPref 0.8116 0.6549

Table VII.4: Results of Document Retrieval: Comparison between One–Stage and Two–Stage Retrieval using
BLOG06 and Aquaint2 corpus.

number of retrieved documents does not always correlate with the changes in performance

observed on the individual question types. Figure VII.4 illustrates the dependency of ex-

tracted documents, question type and number of correct answers. We can observe, for

example, that for the coarse question type HUM, extracting 10 documents leads to worse

performance than extracting 30 documents. The question type LOC, on the other hand, be-

haves in the opposite way.

The fine grained question types show similar changes in performance. With the optimal

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

pe
rc

en
ta

ge
 o

f r
el

ev
an

t d
oc

um
en

ts
 r

et
rie

ve
d

question type

DESC ENTY HUM LOC NUM

Number of
Documents
Retrieved
10
20
30
40
60

100

Figure VII.4: Correct Answers per Question Type and Extracted Documents.

number of documents for each question type we can improve the performance of our sys-

tem for the TREC 2006 question set on AQUAINT from 83 correct factoid answers to 93

correct answers. This is an increase of 12%. But this optimization would lead to overfit-

ting, so we decided to change only the number of documents for question types with clear

120 CHAPTER VII. DOCUMENT RETRIEVAL

maxima and leave other question types that fluctuate unchanged. Thus, we get a document

retrieval which improves the performance by 6 questions out of 567, an increase of 7%.

The dynamic document extraction could be further improved by including artificial question

type dependent terms. For example, a special document extraction for the question type

LOC using the artificial term location for the presence of an entity of that kind in a candidate

answer document increases the performance on these questions by 4 correct answers. Such

improvements need, however, further investigation to avoid overfitting.

5 Conclusion

In this chapter, we presented our experiments for the task of document retrieval for question

answering systems. We showed that it makes sense to downsize the number of returned

documents for doing question answering. So, a similar performance was achieved by pro-

cessing a smaller number of documents. After fixing the number of returned documents,

the used document retrieval methods were optimized. For our experiments, we used stand-

ard language model based smoothing techniques and compared them to some traditional

algorithms, like tf–idf or Okapi.

Our experiments showed that the Dirichlet Prior performed best with prior of 1, 000 and

that keeping the number of documents retrieved to 500 is both efficient and sufficient. The

retieved document sets in this chapter are then further used as a baseline for doing passage

retrieval in chapter VIII.

Chapter VIII

Passage Retrieval

Passage retrieval is an essential part of question answering systems. In this chapter, we use

statistical language models to perform this task. Previous work has shown that language

modeling techniques provide better results for both, document and passage retrieval.

The motivation behind this section is to define new smoothing methods for passage retrieval

in question answering systems. The final objective is to improve the quality of question

answering systems in order to isolate the correct answer by choosing and evaluating the

appropriate section of a document.

In this work we use a three–step approach. The first two steps are standard document

and passage retrieval using the Lemur toolkit. As a novel contribution we propose as the

third step a re–ranking using dedicated backing–off distributions. In particular backing–off

from the passage–based language model to a language model trained on the document

from which the passage is taken shows a significant improvement. For a TREC question

answering task we can increase the mean average precision from 0.127 to 0.176.

The content of this chapter is mainly taken from Hussain, Merkel, and Klakow (2006).

1 Introduction

Recently lot of work has been carried out on open–domain Question Answering Systems.

These Q&A Systems include an initial document and/or passage retrieval step. Retrieved

passages are then further processed using a variety of techniques to extract the final an-

swers. The passage retrieval method strongly influences the performance of QA System.

This is especially true for real systems where computational resources are limited. A good

121

122 CHAPTER VIII. PASSAGE RETRIEVAL

passage retrieval system means that only a small number of top–ranked passages need to

be analyzed to find the answer. In this paper we compare the existing retrieval methods,

both traditional and language modeling based ones, for document and passage retrieval.

We used the AQUAINT document collection as training and test corpus. Out of all methods

tested, by choosing the best passage retrieval method as our baseline, we define and test

new language models to improve retrieval performance. These language models are de-

fined by different data collections (passage collection, document collection, corpus) and are

interpolation based unigram language models.

The rest of this chapter is organized as follows. Related work is discussed in section VIII.2.

Section VIII.3 presents the passaging of documents and passage retrieval performed. Our

experiments are shown in section VIII.4, whereas section VIII.5 explains the process of re–

ranking. We conclude the paper by discussing our results and future work in section VIII.6.

2 Related Work

This section discusses the state of the art in the field of passage retrieval.

Passage retrieval is an important component of QA Systems and it directly influences overall

performance.

For example, Clarke et al. (2000) introduces a passage retrieval system for the TREC Ques-

tion Answering track (MultiText). They use a question pre–processing, a passage retrieval

and a passage post–processing step to select the top five text sections out of a set of doc-

uments. In the pre–processing step, the question is parsed and “selection rules” (patterns)

are defined. Each text block for the passage retrieval algorithm can start and end with any

query term. The score of such a passage is calculated by the text size and the number

of occurring query terms. Then a new passage with a required length around the center

point of the original passage is produced. Finally, the patterns are used to post–process the

passage retrieval results.

Another interesting approach is presented by Corrada–Emmanuel, Croft, and Murdock

(2003). In their paper, three methods to score relevant passages are shown. They compare

the famous query likelihood, relevance modeling and a bigram answer model. In this model,

the expected answer type is taken into account. Therefore, text selections are replaced

by their named entity tag and an answer model is trained. Then three different methods for

2. RELATED WORK 123

backing–off the bigram are used. They show that the bigram method provides a performance

superior to the other approaches.

Zhang and Lee (2003) also developed a language modeling approach to passage question

answering. Their system consists of a question classification component and a passage

retrieval component.

Tellex et al. (2003) carried out a Quantitative Evaluation of Passage Retrieval Algorithms

for Question Answering. They evaluated MITRE’s passage retrieval algorithm presented by

Light, the Okapi BM25 weighting scheme, the MultiText algorithm, IBM’s passage retrieval

algorithm, SiteQ’s passage retrieval algorithm, Alicante’s passage retrieval algorithm, ISI’s

passage retrieval algorithm, and one new algorithm of their own called Voting. They imple-

mented a voting scheme that scored each passage based on its initial rank and also based

on the number of answers the other algorithms returned from the same document. The most

important findings of their work is that boolean querying performs well for question answer-

ing, that the choice of the document retriever is very important and, that the best algorithms

use density based scoring.

Some work has been done to improve the document retrieval by performing passage re-

trieval.

Callan (1994) examined passage level evidence in document retrieval. Three different ap-

proaches were taken to determine passage size and location: paragraphs, bounded para-

graphs, and fixed–length windows.

The use of language modeling for passage retrieval and comparison with document–based

retrieval was done by Liu and Croft (2002). They also made a comparison with results from

the INQUERY search engine.

There is also some further literature in the field of language model based passage retrieval

for QA. In Zhang and Lee (2004) an LM based question classification and an LM based

passage retrieval approach is shown. To optimize their text selection, they first look at an

initial set of relevant passages and construct a language model. Then, relevant web data is

used to built a second language model. Finally, they mix the two models and include some

further constraints like answer type and answer context information.

Cai et al. (2004) explored the use of page segmentation algorithms to partition web pages

into blocks and investigated how to take advantage of block–level evidence to improve re-

trieval performance in the web context.

124 CHAPTER VIII. PASSAGE RETRIEVAL

3 Methodology

Passage retrieval is mainly used for three purposes. First, passage retrieval techniques

have been extensively used in standard IR settings, and have proven effective for document

retrieval when documents are long or when there are topic changes within a document.

Second, from an IR system user’s point, it may be more desirable that the relevant section

of a document is presented to the user than the entire document. Third, passage retrieval

is an integral part of many question answering systems. We perform passage retrieval for

question answering systems. This section explains our methodology to establish a baseline

using existing techniques developed for passage retrieval, which include both traditional and

language modeling based retrieval methods. For our experiments, we first retrieve docu-

ments (cf. chapter VII), then split these documents into passages. We call these passages

passage documents, and use the collection of these passage documents as a corpus for

retrieval of passages relevant to each query.

3.1 Passage Making

Passages are created using the following procedure. The top 500 retrieved documents are

selected (early tests showed that increasing this number had no significant effect on system

performance), see chapter VII for details of the document retrieval. The selected documents

are then split into passages by a ”passage maker”. Our passage making technique is based

on document structure (cf. Berger and Lafferty (1999), Agichtein and Gravano (2000), and

Clarke et al. (2000)). This entails using author–provided marking (e.g. period, indentation,

empty line, etc.) as passage boundaries. Examples of such passages include paragraphs,

sections, or sentences. Since our corpus is well structured (SGML form), we used para-

graphs as passages.

3.2 Dataset

The query topics are the same as used for document retrieval (cf. chapter VII). For each

query we have a distinct corpus consisting of passages created from the top 500 retrieved

documents. See chapter VII for more on document retrieval.

4. EXPERIMENTS 125

3.3 Used Methods

For passage retrieval we used the same set of retrieval methods as for document retrieval

explained in chapter VII. Likewise, the evaluation methodology is also the same as for

document retrieval (cf. chapter VII).

4 Experiments

We first derive the expected influence of the number of passages retrieved by plotting the

non–interpolated average precision against the size of the retrieved passage set for each

retrieval function. Then, we examine the sensitivity of retrieval performance by plotting

the non–interpolated average precision at N passages against the different values of the

smoothing parameter.

4.1 Results

In this section, we study the behavior of each retrieval technique for different number of

retrieved passages, which is similar to what we did for document retrieval in chapter VII. We

examine the sensitivity of retrieval performance by plotting the non–interpolated average

precision, with fixed smoothing parameters where required, against the different number of

retrieved passages. For Dirichlet Prior the value of the prior µ is set to 1, 000, for Jelinek–

Mercer the value of λ is set to 0.4, and for Absolute Discounting the value of δ is set also

to 0.4. The plot in Figure VIII.1 shows the non–interpolated average precision for different

number of retrieved passages. It can be seen that with the increasing number of retrieved

passage documents, the performance also increases. But the increase in performance after

500 passages is relatively marginal. This trend is approved by all retrieval methods. For

passage document number N larger than 500 the cost of computing is significantly large

compared to the gain in performance. Therefore the passage document number N is fixed

at 500. Overall Dirichlet Prior performed best. Our experiments also show that there is

no significant performance difference between retrieval methods, i.e. the curves are pretty

close to each other. The performance of Okapi is slightly worse than language modeling

techniques. Tf–idf showed worse performance. Another noticeable fact is that Dirichlet Prior

performance improves significantly for N between 1 and 10.

126 CHAPTER VIII. PASSAGE RETRIEVAL

Figure VIII.1: Passage Retrieval with varying number of retrieved passages. For Dirichlet Prior the value of prior
is set to 1000, for Jelinek–Mercer the value of λ is set to 0.4 and for Absolute Discounting the value of δ is set
also to 0.4.

4.1.1 Parameter Tuning for Language Modeling Techniques

This section covers the behavior of individual smoothing methods, as we did for document

retrieval in chapter VII. We examine the sensitivity of retrieval performance by plotting the

non–interpolated average precision at 500 passages against different values of the smooth-

ing parameter. Below, there is an analysis of our results.

Jelinek–Mercer smoothing: For Jelinek–Mercer, the value of λ is varied between zero and

one. The plot in Figure VIII.2 shows non–interpolated average precision for different

settings of λ. As depicted in the plot, optimal value of λ is near 0.4, which indicates

that our queries are of mixed length. According to Zhai and Lafferty (2001), for short

queries the optimal point is around 0.1 and for long queries the optimal point is gener-

ally around 0.7, as long queries need more smoothing and less emphasis is placed on

the relative weighting of terms.

4. EXPERIMENTS 127

Figure VIII.2: Plot of non–interpolated average precision against smoothing parameter, with smoothing parame-
ter varying from 0.01 to 0.99. Number of retrieved passages fixed at 500.

Dirichlet Prior: The value of Dirichlet Prior µ is varied between 1 and 5, 000 with intervals

of 500. The plot in Figure VIII.3 illustrates the non–interpolated average precision for

different settings of the prior sample size. As mentioned in Zhai and Lafferty (2001),

the optimal prior µ varies from collection to collection and depends on query lengths.

For our dataset and questions it is around 500.

Absolute Discounting: The value of δ is varied between zero and one. The plot in Fig-

ure VIII.2 shows the non–interpolated average precision for the different settings of d.

The optimal value of δ is near 0.3.

Overall the Dirichlet Prior performed best using µ of 500 and 500 retrieved passage docu-

ments. Then follows Jelinek–Mercer, which is slightly better than Absolute Discounting. But

the difference of performance is not very significant. Okapi performed slightly worse than

Absolute Discounting while tf–idf performed worst.

Table VIII.1 gives a comparison of the best runs by each technique.

128 CHAPTER VIII. PASSAGE RETRIEVAL

Figure VIII.3: Plot of non–interpolated average precision against prior (µ). Dirichlet Prior with prior varying from
500 to 5000. Number of retrieved passages fixed at 500.

5 Passage Re–Ranking

This section explains our statistical language model approach, which is based on an inter-

polation smoothing scheme. Since Lemur is not flexible enough to implement such custom

models, we shifted to our own language modeling toolkit. This toolkit is very flexible in

generating custom language models. It uses perplexity to rank the documents. To check

the similarity between the two toolkits, an experiment was carried out using Jelinek–Mercer

Method Parameter MAP
Dirichlet Prior µ = 500 0.127
Jelinek–Mercer λ = 0.4 0.114
Absolute Discounting δ = 0.3 0.113
tf–idf - 0.105
Okapi - 0.096

Table VIII.1: Non–interpolated average precision for best run of each retrieval methods

5. PASSAGE RE–RANKING 129

smoothing technique to regenerate the results produced by Lemur. These results confirmed

the validity of results generated by our toolkit.

5.1 Experimental Setup

Our experimental setup consists of document collections generated by experiments ex-

plained in previous sections. Following sections explain our datasets, experimental methods,

and the system architecture.

5.1.1 Dataset

The query topics are the same as used for document retrieval (chapter VII). The corpus

C for evaluation is the AQUAINT collection that consists of documents taken from the New

York Times, the Associated Press, and the Xinhua News Agency newswires. Also, we have

the document collection dc and the passage collection pc obtained from our previous exper-

iments. All these collections are stemmed and no stop word removal is performed.

5.1.2 Evaluation Methodology

Our toolkit uses perplexity to rank the documents. For the purpose of studying the behavior

of an individual language model, we select a set of representative parameter values and

examine the sensitivity of non–interpolated average precision MAP to the variation in these

values. In question answering mean reciprocal rank (MRR) is also widely used. We checked

the correlation of MRR and MAP on question answering tasks. For consistency with the

document retrieval, we report MAP throughout the chapter.

5.1.3 Experimental Methods

Our experimental methods are language modeling based. We have defined a number of

language models using Jelinek–Mercer smoothing techniques.

5.2 System Architecture for Passage Re–Ranking

This section explains the complete architecture of our experimental setup. We defined and

tested a series of language models; Table VIII.2 gives a listing of these language models,

130 CHAPTER VIII. PASSAGE RETRIEVAL

which are explained in following subsections. Language models described in this section

utilize the vocabulary closed with the query and the value of interpolation parameter is var-

ied between zero and one. The main difference between these models is the background

collection.

5.2.1 Language Model I (pdclm)

This language model is defined as linear interpolation between unigram language models

defined on passage and related document collection. Whereas each passage is taken from

related retrieved passages (section VIII.3) and the related document collection consists of

500 top ranked documents retrieved (chapter VII), for a given query. As perplexity is given

by the formula

PP = exp[−
∑

w

f(w) log P (w)]

where f(w) is the relative frequency of words in the query and the probability is

P (w) = (1 − λ)Pml(w|p) + λP (w|dc),

where Pml is maximum likelihood of word w in passage p. Figure VIII.4 explains the com-

plete setup to re–rank passages using this language model.

Standard Tree: It contains statistical information for given passage being ranked. We build

one standard tree per passage. This tree is the basis of the passage language model.

Language Model Label
Interpolation between language models
for passage and relevant document col-
lection.

pdclm

Interpolation between language models
for passage and relevant passage col-
lection.

ppclm

Interpolation between language models
for passage and single document from
which passage is taken.

pdlm

Interpolation between language models
for passage and complete corpus.

pClm

Table VIII.2: Labels used for different language models

5. PASSAGE RE–RANKING 131

Background Standard Tree: It consists of statistical information for the complete document

collection used for the backing–off language model.

Re–ranker: It is responsible for re–ranking the collection of 500 related passages per query.

It utilizes standard tree and background tree containing statistical information required

by language models.

Vocabulary: Our word list consists of all the words in document collection closed with words

from the query.

5.2.2 Language Model II (ppclm)

This language model is similar to pdclm explained above with the related passage collec-

tion consisting of 500 top ranked passages retrieved as the background collection. For this

language model the probability is

P (w) = (1 − λ)Pml(w|p) + λP (w|pc),

5.2.3 Language Model III (pdlm)

Here again the language model differs from pdclm in the background collection. The back-

ground collection is the single document from which the passage was extracted i.e. the

document containing the passage being ranked. For this language model, the probability for

calculating the perplexity is

P (w) = (1 − λ)Pml(w|p) + λP (w|d),

Figure VIII.5 explains the complete setup to re–rank passages using this language model.

Re–ranker: Same as in section VIII.5.2.1.

Vocabulary: Our word list consists of all the words in the single document containing the

passage being ranked, closed with words from query.

Standard Tree: Same as in section VIII.5.2.1.

132 CHAPTER VIII. PASSAGE RETRIEVAL

Figure VIII.4: Re–ranking setup for the pdclm language model.

Background Standard Tree: It consists of statistical information for the single document

containing the passage being ranked. We build one standard tree per document.

5.2.4 Language Model IV (pClm)

For this language model the background collection is the complete corpus (AQUAINT docu-

ment collection). The probability for calculating the perplexity is

P (w) = (1 − λ)Pml(w|p) + λP (w|C),

5.3 Experimental Results

This section discusses the results of our experiments. Jelinek–Mercer smoothing is used

in all of the experiments with the value of λ varied from 0.01 to 0.99. We first reproduce

Jelinek–Mercer smoothing results of passage retrieval (section VIII.3) with a pdclm language

model. Then other language models are defined and tested to improve baseline.

5. PASSAGE RE–RANKING 133

Figure VIII.5: Dataset flow diagram for the pdlm language model.

5.3.1 Language Model I (pdclm)

This language model is a reproduction of the language model with Jelinek–Mercer smooth-

ing used in section VIII.3. It reproduces our previous results, which confirmed the validity

of results generated by our language modeling toolkit. The plot in Figure VIII.6 shows the

non–interpolated average precision for different settings of λ. It illustrates that the optimal

value of λ is near 0.4.

5.3.2 Language Model II (ppclm)

Figure VIII.6 shows the results using this language model by line with squares as points.

The optimal value for λ is 0.05. According to Zhai and Lafferty (2001) small λ means more

emphasis on relative term weighting, which implies that the passage collection has a smaller

role in ranking than the passage itself. This might be due to a small size of passages and a

variety in topics they discuss. With this language model we observe a 20% decrease over

the baseline.

134 CHAPTER VIII. PASSAGE RETRIEVAL

Figure VIII.6: Plot of non–interpolated average precision against λ. Jelinek–Mercer b/w passage and different
background collections with λ varying from 0.01 to 0.99.

5.3.3 Language Model III (pdlm)

The line with asterisks in Figure VIII.6 shows the results using this language model. The

optimal value for λ is 0.70. The value of λ near the middle of the parameter space suggests

that both passage and document collection are equally important for ranking. Yet the doc-

ument is given a bit more importance than the passage, which is quite understandable as

passages are of small size and sometimes they miss some related terms from query. With

this language model we have more than 38% improvement over the baseline, which is quite

a significant figure. This is no surprise in so far as both the document and the passage being

used discuss the same topic. The related document size is relatively small compared to the

document or passage collection, which also contributes to the improvement in results.

6. CONCLUSION AND FUTURE WORK 135

5.3.4 Language Model IV (pClm)

Figure VIII.6 shows, using the line with bars, the results using this language model. The

optimal value of λ is 0.01. A small λ means more emphasis on relative term weighting,

which means that the corpus plays no role in ranking the passages. This is because of the

large size of the corpus, with lots of irrelevant terms. It is also clear from Figure VIII.6 that

this language model performed worst of all our proposed models.

Table VIII.3 displays the best results of each language model.

6 Conclusion and Future Work

We studied the problem of language model smoothing in the context of passage retrieval for

QA Systems and compared it with traditional models, including tf–idf and Okapi. We then

examined three popular interpolation–based smoothing methods (Jelinek–Mercer, Dirichlet

Prior, and Absolute Discounting), and evaluated them using the AQUAINT retrieval testing

collection.

We defined a number of language models based on the Jelinek–Mercer smoothing tech-

nique, and found out that interpolation between language models for the passage and the

single document from which the passage is extracted provided more than 38% improvement,

which is quite significant for QA Systems.

Table VIII.4 lists the best runs for our document retrieval, passage retrieval and re–ranking

experiments. Our best performing language model can be used for real QA Systems. We

used one of the basic approaches to passage generation. One problem with our approach

is that it does not take the topic shift within a passage into consideration. It also does not

account for topics which spread over multiple passages. Other more sophisticated passag-

ing techniques could further improve our proposed language model. The language models

we proposed and tested are all unigram models. As previous work depicts, higher order

Method Lambda MAP
pdclm 0.40 0.114
ppclm 0.05 0.101
pdlm 0.70 0.176
pClm 0.01 0.032

Table VIII.3: Non–interpolated average precisions for the best run of each language model. Passage re–ranking
using the document language model for smoothing improves MAP by 39% over the best result from Lemur.

136 CHAPTER VIII. PASSAGE RETRIEVAL

language models will improve retrieval performance.

Step Method Lambda MAP
Document Retrieval Dirichlet Prior µ = 1000 0.254
Passage Retrieval Dirichlet Prior µ = 500 0.127
Re–ranking pdlm λ = 0.70 0.176

Table VIII.4: Summary of Document and Passage Retrieval results.

It is also very important to study how to exploit the past relevance judgements, the current

query and the current database to train the smoothing parameters, since, in practice, it would

not be feasible to search the whole parameter space as we did in this thesis. One possibility

to determine the parameters automatically could be the use of Leaving–one–out.

Chapter IX

Sentence Retrieval

A retrieval system is a very important part in a question answering framework. It reduces

the number of documents to be considered for finding an answer. For further refinement,

the documents are split up into smaller chunks to deal with the topic variability in larger

documents. In our case, we divided the documents into single sentences. Then a language

model based approach was used to re–rank the sentence collection.

For this purpose, we developed a new language model toolkit. It implements all standard

language modeling techniques and is more flexible than other tools in terms of backing–off

strategies, model combinations and design of the retrieval vocabulary. With the aid of this

toolkit we carried out re–ranking experiments with standard language model based smooth-

ing methods. On top of these algorithms we developed some new, improved models in-

cluding dynamic stop word reduction and stemming. We also experimented with query ex-

pansion depending on the type of a query. On a TREC corpus, we demonstrated that our

proposed approaches provide a performance superior to the standard methods. In terms of

Mean Reciprocal Rank (MRR) we can prove a performance gain from 0.31 to 0.39.

This chapter is mainly based on Merkel and Klakow (2007a).

1 Introduction

The major goal of a question answering (QA) system is to provide an accurate answer to

a user question. Compared to a standard document retrieval framework, which just returns

relevant documents to a query, a QA system has to respond with an adequate answer to

a natural language question. Thus, the process of retrieving documents is just a part of

137

138 CHAPTER IX. SENTENCE RETRIEVAL

Figure IX.1: A general architecture for question answering systems

a complex sequence. In order to provide the user with an answer, possible candidates

have to be extracted from the documents. To simplify this procedure, the text is segmented

into smaller passages and a further retrieval step is done. This process is called sentence

retrieval, if the passage contains just one sentence.

In this chapter, we describe an experimental setup for comparing different language mod-

els in order to improve sentence retrieval within a question answering context. Figure IX.1

shows the general construction of a question answering system. It starts with the analysis

of a natural language (NL) question (upper part). Generally, in this Question Analyzer, the

expected answer type is determined, but it is also possible to make some other deep analy-

ses like part of speech (POS) tagging or named entity recognition. The result is a processed

query, which can be used for the following retrieval steps.

The next step is the document retrieval (Document Retriever). In a QA system, the retrieval

framework is a very crucial part. It is used to decrease the number of documents in a

potentially large corpus. This is done in order to reduce the search space in which a correct

answer has to be found. It is necessary to reduce the search space because the following

1. INTRODUCTION 139

components may use long–lasting deep analysis algorithms which strongly depend on the

size of the processed corpus. Therefore, it is important to process just the documents which

seem relevant to a query to get answers within an appropriate period of time (see chapter

VII for more information).

But within such a limited collection, there might still be large documents. Or within single

documents some topic changes might occur. If this is the case, again, the following com-

ponents have to analyse more text than necessary in order to find the correct answer. To

overcome this problem, it is essential to further reduce the size of the collection. This can

be done by splitting up the text segments into smaller chunks of passages. After dividing

the documents, a second retrieval step is necessary in order to re–rank the new passage

collection (Passage Retriever) using the pre–processed query. By doing so, the corpus size

and thus the search space is reduced again (see chapter VIII for a more detailed view on

passage retrieval).

In a final step, the passage collection is processed by the Answer Extractor. Here, the

single passages are analyzed by computing the part of speech, the named entities and

other linguistic features. Finally, the most probable answers are selected and returned by

the system (cf. chapter II for more information about a general Q&A architecture).

For our experimental setup we did not use the complete general architecture of a question

answering system but just the upper part of Figure IX.1. So we skipped the extraction of the

most relevant answers.

In the query construction, we used a language model based method to find the expected

answer type (cf. chapter VI.1) and some simple techniques to optimize the question for

the following retrieval steps. The document retrieval was also done by using a language

modeling approach.

Nevertheless, in this chapter, we describe the use of a special case of passage retrieval

where we directly split the documents into single sentences. In a next step, a language

model (LM) based approach with unigram distributions was applied to re–rank the text

chunks. For these purposes, we used the language modeling toolkit developed at our

chair. It implements all standard language modeling techniques, like linear interpolation

and backing–off models. Its advantage is that it is more flexible than other tools in terms

of model combinations, design of the retrieval vocabulary and the smoothing strategies. By

means of this toolkit we conducted re–ranking experiments with standard language model

140 CHAPTER IX. SENTENCE RETRIEVAL

based smoothing methods like Jelinek–Mercer linear interpolation, Bayesian smoothing with

Dirichlet priors and Absolute Discounting as well as some new, improved models. We fo-

cused on investigating refinements which are easy to implement such as ignoring query

words, dynamic stopword lists and stemming. We also experimented by modeling the ex-

pected answer type of a query into the LM approach.

To make our results comparable to current literature, we evaluated our algorithms on a news

texts corpus from the Text REtrieval Conference (TREC) – the AQUAINT corpus. Here,

we demonstrate that our proposed algorithms outperform the standard methods in terms of

mean reciprocal rank (MRR) by 25%. We can also show that we need to return fewer sen-

tences to achieve equal or even better accuracy. So it is possible to say that we attained our

goal, namely to reduce the search space for the following components in a QA framework.

The rest of the chapter is organized as follows: The next section presents some related work.

Section IX.3 shows the language model based smoothing methods we used for our experi-

ments. Section IX.4 presents the used datasets as well as the experiments we performed in

order to achieve optimal results. Section IX.5 concludes the results.

2 Related Work

As mentioned above, sentence retrieval is just a special case of passage retrieval where

the text selection has the size of one sentence. There is also some related work in the

area of sentence retrieval for QA systems. One example is Murdock and Croft (2004).

They understand the meaning of retrieving sentences as the translation of a user query to

a (more or less complex) answer. With this idea, they suppose to overcome the problem of

the shortness of sentences to compute a multinomial distribution. Their approach is based

on the IBM Model 1 and is smoothed with the corresponding document in addition to the

collection. They show a performance gain to the original query–likelihood scoring.

In Losada (2005) language model based approaches for sentence retrieval are compared.

They define multinomial and multiple–Bernoulli distributions on top of the query–likelihood

approach. Their motivation is the shortness of a sentence. In a multiple–Bernoulli framework

the non–query terms are also taken into account. So, they show a significant performance

increase compared to a multinomial approach.

An other application for sentence retrieval is the TREC Novelty track (Harman 2002). Here,

3. METHODOLOGY 141

the task is to reduce the amount of redundant and non–relevant information in a given docu-

ment set. Normally, this is done by a two–step approach. The first part is to find the relevant

sentences according to a query. In a second part, those sentences are selected which con-

tain novel information compared to the retrieved set in the first part. Larkey et al. (2002) and

Allan, Wade, and Bolivar (2003) give some examples of how to build such a system. They

use three different methods for extracting relevant sentences; a vector based approach us-

ing tf–idf, a version using the Kullback–Leibler divergence (KLD) and an approach using a

Two–Stage Smoothing model. Because, in contrast to our experiments, they do not find

any significant differences between these methods, they decide to use the tf–idf approach.

From their point of view, the selection of the relevant sentences is the major challenge, so

they try to further improve the performance by using known techniques like query expansion,

pseudo–relevance feedback and other features. But, again in contrast to our observations,

just pseudo–feedback helps to improve the performance.

A major difference to the open–domain question answering is that in the Novelty track, a set

of relevant documents is given. So, there is no need to find some relevant documents out

of a large corpus first. Allan, Wade, and Bolivar (2003) also show the negative effects when

using a real information retrieval system instead of a given document set.

A last significant difference is the kind of processing of the retrieved data. In a question

answering system, further steps are the extraction and selection of possible answers out of

the sentences. This task is very hard and time–consuming, so it is necessary to keep the

set of returned sentences as small as possible.

As already mentioned, a partial implementation of the system can be found in Shen et al.

(2006). There, a complete statistically–inspired QA system in the context of the TREC 2006

question answering track is developed.

Chapter VI gives a more specific description of the language model based query classifica-

tion part we used in our experiments.

3 Methodology

First, we want to introduce the language model based approach proposed by Ponte and Croft

(1998) as our information retrieval framework for sentence retrieval1. They rank the user

1Chapter III gives a more detailed view on language model based information retrieval.

142 CHAPTER IX. SENTENCE RETRIEVAL

query using a query model, whereas a language model for each document is determined.

Then the probability of producing the query with those models is calculated. Following Zhai

and Lafferty (2001), applying the Bayes rule results in

P (D|Q) ∝ P (Q|D)P (D) (IX.1)

where P (D) is the prior belief of a document and P (Q|D) is the probability of the query

given a document.

We act on the assumption that the prior P (D) is a uniform distribution, so it is equal for all

documents and therefore irrelevant for ranking the query. Thus, it will be ignored in further

computations. The probability of P (Q|D) is calculated by using language models. This

conversion means that we just have to calculate the conditional probability of the user query

and the document we intend to rank. This task seems easier than calculating P (D|Q).

Formula IX.1 has a data sparsity problem. Generally, there isn’t enough training data to

compute language models for a complete query2. To overcome this problem we act on the

assumption that all words in the query are independent. This independence assumption

results in unigram language models as proposed in Zhai and Lafferty (2001):

P (Q|D) =
N
∏

i=1

P (qi|D) (IX.2)

whereas N is the number of terms in a query. In our approach the documents are sentences,

so we used P (qi|S) as our experimental baseline, where S is the sentence we intend to

score.

In the next sections we will describe how to calculate those probabilities. Because we use a

maximum likelihood estimate to calculate P (w|S), it is necessary to smooth them in order to

avoid zero probabilities. Chapter III.1 presents more information about this topic.

3.1 Jelinek–Mercer smoothing

The Jelinek–Mercer smoothing method is just a linear interpolation between the maximum

likelihood probability and a background collection model. It is defined by

2Let’s suppose that a query has 7 words in average. Then 7–gram language models have to be computed.

3. METHODOLOGY 143

Pλ(w|S) = (1 − λ)
N(wS)

∑

w N(wS)
+ λP (w|C) (IX.3)

where N(wS) is the count of word w in sentence S and λ is the smoothing parameter.

P (w|C) is the collection model. In our experiments the background collection always con-

sists of the set containing all sentences.

3.2 Absolute Discounting

This smoothing method has its origin in the task of speech recognition. There, it is the most

efficient and thus the most commonly used technique. But it was also introduced to the task

of information retrieval by Zhai and Lafferty (2001). It results in

Pδ(w|S) =
max (N(wS) − δ, 0)

∑

w N(wS)
+

δB
∑

w N(wS)
P (w|C) (IX.4)

whereas N(wS) are the frequencies of w in S and P (w|C) is the collection model of all

sentences. δ defines the smoothing parameter to redistribute some probability mass to

unseen events. The parameter B counts how often N(wS) is larger than δ.

3.3 Bayesian smoothing with Dirichlet priors

Bayesian smoothing using Dirichlet priors is the approach which performs best according

to our question answering task in document retrieval as well as according to our sentence

retrieval framework. It is also described by Zhai and Lafferty (2001) and is defined by

Pµ(w|S) =
N(wS) + µP (w|C)

∑

w N(wS) + µ
(IX.5)

where N(wS) is the frequency of observations of the word w in sentence S. µ is the smooth-

ing parameter. Again, P (w|C) is the collection model containing all sentences. A special

case of this method is the add–epsilon smoothing, i.e. when a uniform collection model is

used.

3.4 Dataset

As dataset for our experiments we used the TREC 2004 QA collection. Chapter VII.2.1

presents more details about the used dataset.

144 CHAPTER IX. SENTENCE RETRIEVAL

The question set for TREC 2004 consists of 351 questions, which are further divided into

subsets. Each subset has a unique topic and a set of factoid, list and other questions. For

example, a typical factoid question is When was James Dean born? whereas a list question

would be What movies did James Dean appear in?. The task of the other question is mainly

to find as many different information concerning the topic as possible.

As evaluation metrics for the results, the Mean Reciprocal Rank (MRR) and the accuracy

of the system was used. In this context, accuracy means the percentage of answerable

questions using a specific number of returned sentences. For testing the parameters in the

query construction, we used the Mean Average Precision (MAP).

4 Experiments

For efficiency reasons we chose a three–step approach for our experiments. First, the user

question was analyzed. Therefore, we used the approach described in chapter VI.1 to ex-

tract the expected answer type. It specifies a language model based query classification,

using a simple Bayes classifier as paradigm. The taxonomy of the classifier takes 6 coarse

and 50 fine grained classes into account.

In addition to this, some simple methods were used to further optimize the query for the

following retrieval task.

In a second step, the Lemur Toolkit for Language Modeling and Information Retrieval was

used to carry out a language model based document retrieval. As suggested in Hussain,

Merkel, and Klakow (2006), we performed Bayesian smoothing with Dirichlet priors. We

fetched the top 50 relevant documents because Shen et al. (2006) showed that this num-

ber is sufficient to answer about 90% of questions. After the extraction, we split them up

into sentences using the sentence boundary detection algorithm provided by LingPipe. We

also used larger passages (Hussain, Merkel, and Klakow 2006), but the sentence–based

approach is much more efficient.

The third step was the re–ranking of sentences using the language model based methods

described in section IX.3. For these purposes we used the language modeling toolkit devel-

oped by our chair (LSVLM). It implements all standard language modeling techniques and

is more flexible than other tools in terms of backing–off strategies, model combinations and

design of the retrieval vocabulary.

4. EXPERIMENTS 145

Figure IX.2: The sentence retrieval architecture for our experiments

Figure IX.2 shows the architecture of the sentence retrieval experiments we made. On the

left–hand side, the pre–processing steps with standard software are shown. On the top one

finds the AQUAINT corpus described in section IX.3.4. Then the document collections we

gain by using Lemur can be seen. On the bottom one finds the sentence collections we

receive by using the LingPipe toolkit.

On the right–hand side, we show the experimental setup for the LSVLM framework. In the

middle the background model for each experiment is presented. It consists of the complete

sentence collection for a given user query qi. Out of this collection, a background language

model is build. As vocabulary for this model we use the combination of the vocabulary built

from the user query qi and the corresponding sentence collection. So, the vocabulary is

closed over the query.

On the bottom left, the single sentences for a query qi can be seen. These are the sentences

we want to re–score in our experiments. Then, again language models are created for each

146 CHAPTER IX. SENTENCE RETRIEVAL

individual sentence by using the closed vocabulary.

And finally, the two language models are used to calculate a new score. Because of the flex-

ibility of our toolkit, it is possible to easily change the smoothing algorithms and parameters

used to get the optimal setting.

In our sentence retrieval experiments, we used tf–idf and OKAPI as standard baseline ap-

proaches and linear interpolation (Jelinek–Mercer), absolute discounting and Dirichlet priors

as language model based smoothing algorithms (see section IX.3).

The smoothing parameters for the different methods were experimentally defined on the

TREC 2003 dataset. For absolute discounting, we took the discounting parameter δ = 0.1,

for linear interpolation the smoothing parameter was set to λ = 0.8 and for Dirichlet prior we

set µ = 100.

4.1 Results

In this section, we discuss the results we achieved by using the query construction, the

document retrieval and the optimized sentence retrieval steps.3

As already mentioned in section IX.4, we first analyzed the user query by extracting the

expected answer type4. This answer type is used in a later step to optimize the language

models in the sentence retrieval step.

In addition to this approach, we used further methods to optimize the query for document

and sentence retrieval. In a first step, the topic of the query was included for multiple times.

This inclusion was done because, within our language model approach, the repeating of a

specific term for multiple times results in a higher score for that term. A higher score means

that the included term gets greater importance in that context. Chapter II.3.1 provides more

information about this fact.

The last step in the query construction was the subtraction of the query word. In general, this

term has no positive effects on the retrieval system and can therefore be ignored. Here, the

same argumentation holds as for including the topic for multiple time. By removing the query

word, this score will be zero and other, possibly more relevant terms get a higher score.

The effects of these methods on the sentence retrieval framework can be found in section

IX.4.1.2.

3http://www.ldc.upenn.edu/Catalog/docs/LDC2002T31/
4Further results can be found in Merkel and Klakow (2007b).

4. EXPERIMENTS 147

As mentioned above, the Lemur toolkit was used to perform document retrieval. Therefore,

the queries as well as the AQUAINT corpus were stemmed and no stop–words were re-

moved. Then we chose a language model based approach to retrieve the documents. As

smoothing method, we used Bayesian smoothing with Dirichlet priors because chapter VII il-

lustrated that this approach performs best for this task. There, we show that it even provides

a performance superior to standard approaches like tf–idf and Okapi. We also suggest an

optimal smoothing parameter for this question set which we also used for our experimental

setup.

After doing the retrieval, the 50 most relevant documents were fetched and split up into

sentences.

4.1.1 Baseline Experiments

This section describes the baseline experiments we conducted before starting our optimiza-

tion approaches. Figure IX.3 shows the results of those experiments. On the x–axis it

presents the number of returned sentences by the system on a logarithmic scale. On the

y–axis the accuracy of the system is shown. For example, an accuracy of 0.5 means that

50% of the queries are answerable by the system.

For the standard tf–idf and Okapi baseline experiments we used the Lemur toolkit. The

figure shows that the tf–idf performs better than Okapi regarding this task. Both approaches

were not optimized for these experiments.

In a next step, we used our LSVLM toolkit to conduct the baseline experiments with the three

standard language model based smoothing approaches (as described in section IX.4).

For a small number of returned sentences (1–50), the linear interpolation (Jelinek–Mercer)

and the absolute discounting smoothing perform comparatively bad. In this part the

Bayesian smoothing with Dirichlet priors obviously performs better.

In the last segment (50–100 sentences) the Dirichlet prior approach performs somewhat

worse than absolute discounting. The best smoothing method for this part is the Jelinek–

Mercer interpolation. But this performance gain is not visibly significant.

The figure also shows that all baseline language model based approaches perform better

than the standard tf–idf and Okapi methods for this task by large margin.

As already mentioned in section IX.1, in a question answering system we are most inter-

ested in getting a high accuracy at a small number of returned sentences. That means, the

148 CHAPTER IX. SENTENCE RETRIEVAL

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10 100

A
cc

ur
ac

y

Number of retrieved sentences

abs. disc. baseline
lin. interp. baseline

dirichlet baseline
tfidf

okapi

Figure IX.3: Number of retrieved sentences vs. accuracy for baseline experiments

following modules need to process just smaller sets of sentences to reach the same level of

accuracy. Thus, the Bayesian smoothing with Dirichlet priors was chosen as a optimization

baseline for further experiments.

4.1.2 Improved Smoothing Methods

Figure IX.4 shows the results of the experiments we carried out with optimized language

models for the question answering task. Again, on the axis of abscissae the number of

returned sentences is plotted on a logarithmic scale, whereas on the ordinate the accuracy

of the system is shown (as described in section IX.3.4).

For better comparison of the improvements of the optimization steps, the Dirichlet prior

smoothing method is shown as baseline (curve (1)). The other lines show the performance

gain of each individual method we added to the baseline. Each new experiment is based on

the previous optimization method.

Our first approach is already discussed in section IX.4.1. It is the simple removal of the query

word and therefore belongs to the query construction step. Figure IX.4 shows the resulting

4. EXPERIMENTS 149

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10 100

A
cc

ur
ac

y

Number of retrieved sentences

dirichlet baseline (1)
(1) + query constr. (2)

(2) + stemming (3)
(3) + stopwords (4)

(4) + weighted expansion (5)

Figure IX.4: Number of retrieved sentences vs. accuracy for optimized smoothing methods

effects on the system. The new curve (2) provides a performance superior to the Dirichlet

baseline.

In a second step, we added the Porter stemmer to our experiments. The results are shown

in curve (3). As described in relevant literature, this addition also results in a further advance

of system accuracy of this specific kind of task.

As a next optimization criterion we used a dynamic stopword list. It was created by selecting

the four most commonly used terms of the complete sentence collection. However, those

terms were not removed as usual for stop–words but they got just a smaller weight in the

language model. This re–weighting is based on the same findings we already discussed in

section IX.4.1. The result in Figure IX.4 shows in curve (4) a small performance gain, when

looking at a very small number of returned sentences. Besides, the accuracy is nearly equal

to the previous step.

For the last optimization experiment, the expected answer type of user query we gained

in the query construction, was used to expand the language models with this additional

information (see section IX.4.1). This was done by expanding the query and a sentence in

150 CHAPTER IX. SENTENCE RETRIEVAL

dependency on the extracted question type. Thereby, sentences, which match the query

type, are ranked higher.

This means, for example, if the expected answer type is Date, the term DATE is added to the

question. Then patterns are used to identify expressions for dates in a sentence. If such a

date expression also occurs in a sentence, it is expanded with the DATE term as well. After

this step, the additional terms are weighted and thus the language model based approach

gives a higher rank to sentences which match the corresponding question.

The resulting effects of this last optimization step is also shown in Figure IX.4. Here, curve

(5) demonstrates the improvement of performance by adding the weighted expansion. The

distribution outperforms all other combined methods by a large margin.

Table IX.1 shows the MRR of the baseline experiments and combination of all optimization

steps. Standard Okapi and tf–idf achieved the worst MRR. The Jelinek–Mercer interpolation

and absolute discounting baseline perform better with a MRR of 0.29. We found out that

the Dirichlet prior baseline again performs a little bit better with a MRR of 0.31. This was

the reason why we developed the improved language models on top of this distribution.

The table also shows that the combination of all optimization steps (Dirichlet Combined)

performs best with an MRR of 0.39. This means that there is an improvement of more than

25% compared to the Dirichlet baseline and, that there is an improvement of more than 34%

compared to the other LM based experiments.

5 Conclusion

In this chapter, we showed a language model based framework to perform improved sen-

tence retrieval in a question answering context. The major goal was to improve the accuracy

of the system in order to return just a smaller number of relevant sentences. This reduces

the search space of the following components in a QA system. Because these components

are typically deep–analysis approaches which strongly depend on the size of processing

documents, such a step is necessary.

For this purpose, we first analyzed the user query by extracting the expected answer type

and by doing some other simple text manipulations.

After a language model based document retrieval step, we split up the documents into

smaller text passages in the size of sentences.

5. CONCLUSION 151

Distribution MRR

Okapi 0.16
tf–idf 0.18

Jelinek–Mercer 0.29
Absolute Discounting 0.29

Dirichlet Baseline 0.31
Dirichlet Combined 0.39

Table IX.1: Mean Reciprocal Rank of baseline and optimized experiments

Then, the LSVLM toolkit, a language model based framework we developed at our de-

partment, was introduced. With this toolkit, we were able to conduct sentence retrieval

experiments in a more flexible way than with other state–of–the–art information retrieval

frameworks. We conducted baseline experiments with standard tf–idf and Okapi as well as

with language model based smoothing methods like Jelinek–Mercer interpolation, Bayesian

smoothing with Dirichlet priors and absolute discounting.

We proved that Dirichlet priors baseline performed best for our task, so we developed our

optimization steps on top of this approach.

In several experiments we illustrated that using query word removal, dynamic stopword list

weighting and stemming had resulted in a performance gain. In the last experiment, we

modeled the expected answer type of a user query into the used language models. This

approach performed better than the LM baselines by at least 25%.

We also proved that we had needed to return fewer sentences in order to achieve equal or

even better performance in terms of system accuracy. So we attained our goal to reduce the

search space for the following components in a QA framework.

152 CHAPTER IX. SENTENCE RETRIEVAL

Chapter X

Conclusion and Future Work

The motivation of this thesis was to bring the notion of statistical language models to the task

of question answering. In particular, we performed experiments with language model based

question classification, document-, passage-, and sentence retrieval. We showed that using

a statistical approach to question answering can increase the performance of the complete

system.

In contrast to today’s standard Web search engines, where a set of relevant documents is

returned to satisfy a user’s information need, a question answering (Q&A) system provides

the user with a concise answer. This means, if a user asks for Who was the founder of the

Guinness Brewery?, the system should answer with Arthur Guinness instead with a set of

documents which might contain the correct answer.

To understand how a Q&A system works in particular, chapter II gives an overview of the

most important modules.

The first stage in finding a correct answer normally is to analyze the natural language ques-

tion. In this step, the specific type of a question is determined, i.e. the question type of

our example Who was the founder of the Guinness Brewery? is Person. Depending on the

used taxonomy, other classes like Location, Description or Entity are also possible. This

module is very important for the complete system, because the question type is used in

various other parts of the Q&A engine. For example, the question class often corresponds

with the expected answer type and is therefore used to specify possible answer candidates

in the answer extraction module. To determine the correct question class complex linguistic

methods are used in general. The approach, we used in this thesis, is based on statistical

language models and therefore has better performance as we explain later when discussing

153

154 CHAPTER X. CONCLUSION AND FUTURE WORK

our experimental results.

This analysis step also contains a simple form of query construction to increase the retrieval

performance in succeeding information retrieval modules.

The use of information retrieval (IR) for the task of question answering is controversially

discussed in recent literature (cf. Monz (2003)). The main motivation of IR modules is

to reduce the search space for the following deep linguistic algorithms because they can

perform much more robust and faster when processing a smaller amount of text.

Normally, the task of IR in a question answering systems is splitted into two parts. First, a

standard document retrieval is done to fetch the relevant documents out of a possibly large

corpus. This step is also called document pre-fetching (Monz 2003). Although, for standard

document retrieval, traditional retrieval algorithms, like Okapi25 or tf-idf perform best, we

showed that for the task of Q&A the language model based approaches perform better.

But because documents in the retrieved collection might still be too large or contain different

topics, this set is further divided into smaller text segments. This also leads to the main moti-

vation, because in doing so, the amount of text that will be processed by following algorithms

is further reduced and, therefore, the performance is increased.

Hence, Passage Retrieval is now standard in most state-of-the-art Q&A systems and there

are various approaches for this task. Again, in this thesis, we used a language model based

approach to retrieve and re-rank text passages.

If passage retrieval is done by just using one sentence as text size, the method is called

Sentence Retrieval. We also introduced optimized language models for this task which

perform better than traditional retrieval algorithms.

After reducing the set of relevant text fragments in that way, possible answer candidates

are selected and re-ranked. Normally, this task needs very complex and time-consuming

linguistic techniques, which strongly depend on the size of the processed corpus. That is

why we just focus on the upper part of a complete question answering system in this thesis.

In this chapter, we also presented former and state-of-the-art Q&A systems and introduced

our statistically inspired approach we implemented to perform at TREC.

To compare our approach with current Q&A systems and to evaluate single modules in this

thesis, we additionally introduced some standard evaluation metrics, like precision, recall or

the mean average precision.

The notion of statistical language models (SLM) was presented in chapter III. There, the

CHAPTER X. CONCLUSION AND FUTURE WORK 155

motivation of LM was introduced as well as some advantages and flaws identified. So,

for example, SLM are mathematically well founded and present a simple, well understood

framework. But on the other hand, it is also difficult to incorporate some well-known retrieval

notions, like relevance or relevance feedback.

Zero-probabilities constitute another disadvantage when estimating SLM. Therefore we ex-

plain different smoothing techniques to solve the problem of unseen events. Finally, some

further language model frameworks are presented as a basis of improving Q&A modules,

like Log-linear models.

This chapter also introduces language models for the task of information retrieval. This

technique was proposed by Ponte and Croft (1998) and was the fundamental idea of imple-

menting language model based question answering modules. In this context, the connection

between the traditional tf-idf and SLM is explained and some improved language models are

presented which we later used in some of our experiments. After introducing the notion of

SLM for IR, a theoretic approach for language model based question answering was given.

Here, the problem was taken as classification task and then split into the different subtasks,

like question typing, information retrieval and answer extraction.

Chapter IV presents an application for language model based passage retrieval which is

part of the question answering system developed at the SmartWeb project. This project is

sponsored by the Federal Ministry of Education and Research of Germany and wants to

provide users with multimodal access to the semantic web. Open-domain Q&A based on

Web pages is just one part of this system. The main focus was on presenting information

about the soccer Worldchampionship 2006 using multimodal access, like speech and scrip-

ture. In this chapter we showed that using language model based approaches for question

answering could work in real applications.

Some related work about language model based applications is presented in chapter V,

whereas in chapter VI experimental results for question classification and the correlated

confidence measures are presented.

As mentioned above question classification is very important for doing Q&A, because the

results are later used in various other components. In this thesis, we have introduced a

language model based question classification module which uses a Bayes classifier as clas-

sification paradigm. As smoothing methods several standard smoothing techniques as well

as improved methods were used to overcome the problem of zero-probabilities. We also

156 CHAPTER X. CONCLUSION AND FUTURE WORK

showed the effects of using different background models for standard smoothing, such as

zerogram and unigram models.

In general, we could verify that our improved methods perform better than the standard

smoothing techniques. Although, Bayesian smoothing using Dirichlet priors performs best

for the task of information retrieval, the absolute discounting is the best method to classify

questions.

Regarding the improved smoothing methods, the Improved Absolute Discounting performs

better than the standard backing-off approach. The best improved algorithm implements

a log–linear interpolation using bigram statistics. These results are comparable to other

question classification approaches like SVMs, but in terms of time complexity for model

training, the language model based approach performs much faster.

The second issue we discussed in this chapter is the notion of confidence measures for

question types. The motivation originally came from the theoretic approach for language

model based question answering. Here, the probability of a question class has to be calcu-

lated.

When regarding the best question type returned by the system, we have proved that a confi-

dence value of 0.9 or higher is sufficient to take the estimated class as correct. Experiments

with two different datasets confirmed these results. So, these values can be used in later

parts of a Q&A system, for example in order to have more features to select possible answer

candidates.

Chapter VII presents our experiments for the task of document retrieval. The first idea was

to find an adequate number of documents which should be returned by system. This was

done in order to reduce the search space for the following parts of the Q&A system. As

already mentioned, some modules use deep linguistic algorithms which strongly depend on

the size of the processing corpus and therefore work much faster and more robust if this size

is as small as possible.

Hence, our first experiments compared traditional retrieval methods with the language model

based approach concerning the differing numbers of returned documents. We showed that

the SLM used for the task of document retrieval perform better than traditional approaches,

like Okapi or tf-idf. We also concluded that returning 500 documents is sufficient for this task

using a newswire corpus as training collection.

The second set of experiments finally defined the used smoothing parameters by searching

CHAPTER X. CONCLUSION AND FUTURE WORK 157

the complete parameter space. As main result, we pointed out that using Bayesian smooth-

ing with Dirichlet priors performed best for the task of document retrieval.

The same experiments were also done for passage retrieval in chapter VIII. Again, first the

number of returned documents was fixed and afterwards the smoothing parameters were

tuned. The results were very similar, too. We showed, that the language model based ap-

proach performed better than using traditional methods and returning 500 text passages was

also sufficient. Here, the best standard approach was Dirichlet smoothing.

Further experiments were made using improved language models to re–rank the set of pas-

sages. In particular, the main research issue was to find the best–suited background distri-

bution for smoothing. Here, the results showed that using the single relevant document the

ranked passage came from as background corpus, the smoothing method performed best.

The final set of experiments was explained in chapter IX in the area of sentence retrieval.

Again, the motivation was to improve the accuracy of the system by returning just a smaller

number of relevant sentences to reduce the search space of the following components as

explained above.

In a first step, we carried out baseline experiments to compare traditional retrieval methods

with the language model based approach. We proved that Bayesian smoothing using Dirich-

let priors also performed best for the task of sentence retrieval. Hence, further optimization

steps were based on this method. Using simple modifications, like topic adding, query word

removal, dynamic stopword list weighting and stemming already resulted in a performance

gain. In the last optimization experiment, we showed that modeling the expected answer

type of a question into the SLM performed better than the language model baselines by at

least 25%.

A possible continuation of the presented experiments is the use of class based language

models (Brown et al. 1992) for question classification as well as for the retrieval tasks. Using

this approach might be promising because it is strongly related to clustering, which yields

very good results for the task of information retrieval (Kurland, Lee and Domshlak 2005).

Another idea, we have not experimented with so far is the use of our improved smoothing

techniques for doing document-, passage-, and sentence retrieval. This is also a promising

approach, because in the case of log–linear models, also higher-order models, like bigrams,

are incorporated, which are useful to increase performance in IR (Song and Croft 1999).

In chapter VI, we mentioned that for specific datasets the confidence measures showed

158 CHAPTER X. CONCLUSION AND FUTURE WORK

reasonable results for values lower than 0.9. Here, further experiments using question type

depending confidence measures should be done.

Finally, further corpora can be used to perform Q&A with the proposed modules. For ex-

ample, AnswerBus (Zheng 2002) uses the Internet to answer natural language questions.

As results, the system returns a set of relevant sentences to the user. This approach can

also be realized using the techniques proposed in this thesis. Chapter IV already shows the

implementation of the passage retrieval part for using the Web as corpus.

It should be a goal for the future to use Q&A systems not only with predefined newswire

data. Therefore, it is a very interesting task to bring the statistical language model based

question answering approach to the Internet.

Bibliography

Abney, S.P. (1989): Parsing by chunks, in Berwick, R.C., Abney, S.P., and Tenny, C., editors,

Principle-Based Parsing: Computation and Psycholinguistics, pp. 257–278. Kluwer

Academic Publishers, Boston, USA, 1991.

Agichtein, E. and Gravano, L. (2000): Snowball: Extracting Relations from Large Plain–

Text Collections, in Proceedings of the 5th ACM International Conference on Digital

Libraries, pp. 85–94, San Antonio, United States, 2000.

Allan, J. (1996): Incremental relevance feedback for information filtering, in Proceedings of

the 19th annual international ACM SIGIR conference on Research and development in

information retrieval, Zurich, Switzerland, 1996.

Allan, J., Wade, C., and Bolivar, A. (2003): Retrieval and novelty detection at the sentence

level, in Proceedings of the 26th annual international ACM SIGIR conference on Re-

search and development in information retrieval, Toronto, Canada, 2003.

Altavista: http://www.altavista.com.

Baeza–Yates, R. and Ribero–Neto, B. (1999): Modern Information Retrieval, Addison Wes-

ley, 1999.

Baker, C.F., Fillmore, C.J., and Lowe, J.B. (1998): The Berkeley FrameNet Project, Pro-

ceedings of the 36th annual meeting on Association for Computational Linguistics ,

Montreal, Canada, 1998.

BBC: The British Broadcasting Company. http://www.bbc.co.uk.

Berger, A. and Lafferty, J. (1999): Information retrieval as statistical translation, in Pro-

ceedings of the 22nd annual international ACM SIGIR conference on Research and

development in information retrieval, Berkeley, USA, 1999.

159

160 BIBLIOGRAPHY

Berry, M.W., Dumais, S.T., O’Brien, G.W. (1995): Using Linear Algebra for Intelligent Infor-

mation Retrieval, in SIAM Review, 37(4):573–595, 1995.

Bikel, D.M., Miller, S., Schwartz, R., and Weischedel, R. (1997): Nymble: a high-

performance learning name-finder, in Proceedings of the fifth conference on Applied

natural language processing, Washington, DC, 1997.

Bos, J. (2006): The L̈a SapienzaQ̈uestion Answering system at TREC–2006, in Proceedings

of the Fifteenth Text REtrieval Conference (TREC 2006), Gaithersburg: NIST, 2006.

Brill, E. (1992): A simple rule-based part of speech tagger, in Proceedings of the workshop

on Speech and Natural Language, Harriman, New York, 1992.

Brill, E. (1994): Some advances in transformation-based part of speech tagging, in Pro-

ceedings of the twelfth national conference on Artificial intelligence (vol. 1), Seattle,

Washington, 1994.

Brin, S. and Page, L. (1998): The anatomy of large–scale hypertextual Web search engine,

in Proceedings of the 7th international World Wide Web Conference, 1998.

Bronnenberg, W., Bunt, H., Landsbergen, J., Scha, R., Schoenmakers, W., and van Ut-

teren, E. (1980): The question answering system PHLIQUA1, in L. Bolc, editor,Natural

Language Question Answering Systems, pp. 217–305, MacMillan, 1980.

Brown, P.F., DeSouza, P.V., Mercer, R.L., Della Pietra, V., and Lai, J.C. (1992): Class-based

n-gram models of natural language, in Computational Linguistics, 18(4):467–479, 1992.

Brown, P.F., Pietra, S.A.D., Pietra, V.J.D., and Mercer, R.L. (1993): The mathematics of

statistical machine translation: Parameter estimation, in Computational Linguistics,

19:263–311, 1993.

Burke, R., Hammond, K., Kulyukin, V., Lytinen, S., Tomuro, N., and Schoenberg, S. (1997):

Question answering from frequently–asked question files: Experiences with the FAQ

Finder system, in AI Magazine, 18(2):57–66, 1997.

Buckley, C., Salton, G., and Allan, J. (1993): Automatic retrieval with locality information us-

ing SMART, in Harman, D.K., editor, Proceedings of the First Text REtrieval Conference

(TREC–1), Gaithersburg: NIST, 1993.

BIBLIOGRAPHY 161

Cai, D., Yu, S., Wen, J.R., and Ma, W.Y. (2004): Block-based web search, in Proceedings of

the 27th annual international ACM SIGIR conference on Research and development in

information retrieval, Sheffield, United Kingdom, 2004.

Callan, J.P. (1994): Passage–level Evidence in Document Retrieval, in Proceedings of the

17th annual international ACM SIGIR conference on Research and development in

information retrieval, Dublin, Ireland, 1994.

Callan, J.P., Croft, W.B., and Harding, S.M. (1992): The INQUERY Retrieval System, in Pro-

ceedings of DEXA–92, 3rd International Conference on Database and Expert Systems

Applications, Valencia, Spain, 1992.

Cao, G., Nie, J.Y., and Bai, J. (2005): Integrating word relationships into language models,

in Proceedings of the 28th annual international ACM SIGIR conference on Research

and development in information retrieval, Salvador, Brazil, 2005.

Clarke, C., Cormack, G.V., Kemkes, G., Laszlo, M., Lynam, T., Terra, E., and Tilke, P. (2002):

Statistical selection of exact answers (MultiText Experiments for TREC 2002), in Pro-

ceedings of the 11th Text REtrieval Conference (TREC 2002), Gaithersburg: NIST,

2000.

Clarke, C., Cormack, G.V., Kisman, D.I.E., and Lynam, T.R. (2000): Question Answering

by Passage Selection (MultiText Experiments for TREC–9), in Proceedings of the Ninth

Text REtrieval Conference (TREC–9), Gaithersburg: NIST, 2000.

Clarke, C. and Terra, E. (2003): Passage retrieval vs. document retrieval for factoid question

answering, in Proceedings of the 26th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pp. 427–428, 2003.

CLEF: The Cross-Language Evaluation Forum. http://www.clef-campaign.org.

Cleverdon, C.W. (1967): The Cranfield tests on index language devices, in Aslib Proceed-

ings, 19:173–192, 1967. Reprint in Sparck Jones, K. and Willet, P.: Readings in Infor-

mation Retrieval, San Fransisco. Morgan Kaufmann Publishers, 1997.

Corrada–Emmanuel, A., Croft, W.B., and Murdock, V. (2003): Answer Passage Retrieval for

Question Answering, CIIR Technical Report, University of Massachusetts, 2003.

162 BIBLIOGRAPHY

Cover, T. M. and Thomas, J. A. (2001): Elements of Information Theory, Wiley Series in

Telecommunications, 2001.

Cui, H., Kan, M.Y., and Chua, T.S. (2004): Unsupervised learning of soft patterns for gener-

ating definitions from online news, in Proceedings of the 13th international conference

on World Wide Web, New York, USA, 2004.

Cui, H., Sun, R., Li, K., Kan, M.Y., and Chua, T.S. (2005): Question answering passage

retrieval using dependency relations, in Proceedings of the 28th annual international

ACM SIGIR conference on Research and development in information retrieval, Sal-

vador, Brazil, 2005.

Darroch, J.N. and Rattcliff, D. (1972): Generalized Iterative Scaling for Log–Linear Models,

in The Annals of Mathematical Statistics, 43(5):1470-1480, 1972.

Deerwester, S., Dumais, S., Furnas, G.W., Landauer, T.K., Harshman, R. (1990): Indexing

by Latent Semantic Analysis, in Journal of the Society for Information Science, 41(6):

391-407, 1990.

Gao, J., Nie, J.Y., Wu, G., and Cao, G. (2004): Dependence language model for information

retrieval, in Proceedings of the 27th annual international ACM SIGIR conference on

Research and development in information retrieval, Sheffield, United Kingdom, 2004.

GeoClef: Evaluation of multilingual Geographic Information Retrieval (GIR) systems.

http://ir.shef.ac.uk/geoclef/.

Google: http://www.google.com.

Graff, D. (2002): The AQUAINT Corpus of English News Text, Technical Report, Linguistic

Data Consortium LCC, Philadelphia, 2002.

Green, B., Wolf, A., Chomsky, C., and Laughery, K. (1963): Baseball: An automatic ques-

tion answerer, in E. Figenbaum and J. Fledman, editors, Computers and Thoughts,

McGraw-Hill, 1963.

Harabagiu, S., Hickl, A., Williams, J., Bensley, J., Roberts, K., Shi, Y., and Rink, B. (2006):

Question Answering with LCC’s CHAUCER at TREC 2006, in Proceedings of the Fif-

teenth Text REtrieval Conference (TREC 2006), Gaithersburg: NIST, 2006.

BIBLIOGRAPHY 163

Harman, D. (2002). Overview of the TREC 2002 Novelty Track, in Proceedings of the

Eleventh Text REtrieval Conference (TREC 2002), Gaithersburg: NIST, 2002.

Hatcher, E. and Gospodnetić, O. (2004): Lucene in Action, in Manning Publications Co,

2004.

Hiemstra, D. (2002): Term-specific smoothing for the language modeling approach to in-

formation retrieval: the importance of a query term, in Proceedings of the 25th annual

international ACM SIGIR conference on Research and development in information re-

trieval, Tampere, Finland, 2002.

Hiemstra, D., Robertson, S., and Zaragoza, H. (2004): Parsimonious language models

for information retrieval, in Proceedings of the 27th annual international ACM SIGIR

conference on Research and development in information retrieval, Sheffield, United

Kingdom, 2004.

Hussain, M., Merkel, A., and Klakow, D.(2006): Dedicated Backing–Off Distributions for

Language Model Based Passage Retrieval, in Hildesheimer Informatik-Berichte, LWA

2006, Hildesheim, 2006.

Jelinek, F. (1997): Statistical Methods for Speech Recognition, Massachusetts Institute of

Technology Press, Cambridge, USA, 1997

Jin, R., Hauptmann, A.G., and Zhai, C. (2002): Title language model for information retrieval,

in Proceedings of the 25th annual international ACM SIGIR conference on Research

and development in information retrieval, Tampere, Finland, 2002

Kaisser, M. and Becker, T. (2004): Question Answering by Searching Large Corpora with

Linguistic Methods, in Proceedings of the Thirteenth Text REtrieval Conference (TREC

2004), Gaithersburg: NIST, 2004.

Kaisser, M., Scheible, S., and Webber, B. (2006): Experiments at the University of Edinburgh

for the TREC 2006 QA track, in Proceedings of the Fifteenth Text REtrieval Conference

(TREC 2006), Gaithersburg: NIST, 2006.

Kazalski, S. (2007): Evaluation of a Question Answering System Using Newswire and Blog

Corpora, in Bachelor thesis; to be published, Saarland University, 2007.

164 BIBLIOGRAPHY

Katz, B. (1997): Annotating the World Wide Web Using Natural Language, in Proceedings

of RIAO ’97, Montreal, 1997.

Klakow, D. (1998): Log–Linear Interpolation Of Language Models, in Proceedings of the 5th

International Conference on Spoken Language Processing, Sydney, Australia, 1998.

Klakow, D. (2003): Sprachmodellierung, Saarland University, 2003.

Klakow, D. (2006a): Using Regional Information in Language Model Based Automatic Con-

cept Annotation and Retrieval of Video, in Acoustics, Speech and Signal Processing,

2006. ICASSP 2006 Proceedings, Toulouse, France, 2006.

Klakow, D. (2006b): Language Model Adaptation for Tiny Adaptation Corpora, in Proceed-

ings of the Ninth International Conference on Spoken Language Processing, Pittsburgh,

USA, 2006.

Kleinberg, J. (1998): Authoritative sources in a hyperlinked environment, in Proceedings

of the 9th ACM–SIAM Symposium on Discrete Algorithms, pages 668–677, San Fran-

sisco, 1998.

Kneser, R. and Ney, H. (1995): Improved backing-off for M-gram language modeling, in Inter-

national Conference on Acoustics, Speech, and Signal Processing, ICASSP, 1(1)181–

184, Detroit, USA, 1995.

Kraaij, W. and Spitters M. (2003): Language Models for Topic Tracking, in Croft, W.B. and

Lafferty, J., editors Language Modeling for Information Retrieval, Kluwer Academic Pub-

lishers, Dordrecht, Netherlands, 2003.

Krovetz, R and Croft, W.B. (1992): Lexical ambiguity and information retrieval, in ACM

Transactions on Information Systems (TOIS), 10(2)115–141, 1992.

Kurland, O. and Lee, L. (2004): Corpus structure, language models, and ad hoc information

retrieval, in Proceedings of the 27th annual international ACM SIGIR conference on

Research and development in information retrieval, Sheffield, United Kingdom, 2004.

Kurland, O., Lee, L., and Domshlak, C. (2005): Better than the real thing?: iterative pseudo-

query processing using cluster-based language models, in Proceedings of the 28th

annual international ACM SIGIR conference on Research and development in informa-

tion retrieval, Salvador, Brazil, 2005.

BIBLIOGRAPHY 165

Lafferty, J. and Zhai, C. (2001): Document language models, query models, and risk mini-

mization for information retrieval, in Proceedings of the 24th annual international ACM

SIGIR conference on Research and development in information retrieval, New Orleans,

USA, 2001.

Lafferty, J. and Zhai, C. (2003): Probabilistic Relevance Models Based on Document and

Query Generation, in Croft, W.B. and Lafferty, J., editors Language Modeling for Infor-

mation Retrieval, Kluwer Academic Publishers, Dordrecht, Netherlands, 2003.

Larkey, L.S., Allan, J., Connell, M.E., Bolivar, A., and Wade, C. (2002): UMass at TREC

2002: Cross Language and Novelty Tracks, in Proceedings of the Eleventh Text RE-

trieval Conference (TREC 2002), Gaithersburg: NIST, 2002.

Lavrenko, V. (2003): Language Modeling in IR, Tutorial at the 26th annual international

ACM SIGIR conference on Research and development in information retrieval, Toronto,

Canada, 2003.

Lavrenko, V. and Croft, W.B. (2001): Relevance based Language Models, in Proceedings of

the 24th annual international ACM SIGIR conference on Research and development in

information retrieval, New Orleans, USA, 2001.

Lavrenko, V., Choquette, M., and Croft, W.B. (2002): Crosslingual relevance models, in

Proceedings of the 25th annual international ACM SIGIR conference on Research and

development in information retrieval, Tampere, Finland, 2002.

Lavrenko, V. and Croft, B. (2003): Relevance Models in Information Retrieval, in Croft, W.B.

and Lafferty, J., editors Language Modeling for Information Retrieval, Kluwer Academic

Publishers, Dordrecht, Netherlands, 2003.

Lehnert, W. (1978): The Process of Question Answering: A Computer Simulation of Cogni-

tion, in Lawrence Erlbaum Associates, 1978.

Lehnert, W. (1994): Cognition, computers and car bombs: How Yale prepared me for the

90’s, in R. Schank and E. Langer, editors, Beliefs, Reasoning, and Decision Making:

Psycho-logic in Honor of Bob Abelson, pages 143–173, Lawrence Erlbaum Associates,

1978.

166 BIBLIOGRAPHY

Li, X. and Roth, D. (2002): Learning Question Classifiers, in Proceedings of the 19th Inter-

national Conference on Computational Linguistics, Taipei, Taiwan, 2002.

Lin, D. (1994): Principar – an efficient, broad–coverage, priciple–based parser, in Proceed-

ings of COLING, pp. 482–488, Kyoto, Japan, 1994.

Lin, D. (1998): Dependency–based Evaluation of MINIPAR, in Workshop on the Evaluation

of Parsing Systems, Granada, Spain, 1998.

Lin, J. and Katz, B. (2003): Question Answering from the Web Using Knowledge Anno-

tation and Knowledge Mining, in Proceedings of Twelfth International Conference on

Information and Knowledge Management, New Orleans, USA, 2003.

LingPipe: http://www.alias-i.com/lingpipe/.

Liu, X. and Croft, W.B. (2002): Passage Retrieval Based On Language Models, in Proceed-

ings of the eleventh international conference on Information and knowledge manage-

ment, McLean, Virginia, 2002.

Liu, X. and Croft, W.B. (2004): Cluster–based retrieval using language models, in Pro-

ceedings of the 27th annual international ACM SIGIR conference on Research and

development in information retrieval, Sheffield, United Kingdom, 2004.

Llopis, F., Ferrández, A., and Vicedo, J. (2002): Passage selection to improve question an-

swering, in Proceedings of the COLING 2002 Workshop on Multilingual Summarization

and Question Answering, Taipei, Taiwan, 2002.

Losada, D.E.(2005): Language modeling for sentence retrieval: A comparison between

Multiple-Bernoulli models and Multinomial models, in Proceedings of the Information

Retrieval and Theory Workshop, Glasgow, United Kingdom, 2005.

Lucene Search Engine: http://lucene.apache.org.

Magnini, B., Negri, M., Prevete, R., and Tanev, H. (2001): Is it the right answer?: exploiting

web redundancy for Answer Validation, Proceedings of the 40th Annual Meeting on

Association for Computational Linguistics, Philadelphia, USA, 2001.

BIBLIOGRAPHY 167

Manmatha (2003): Applications of Score Distributions in Information Retrieval, in Croft, W.B.

and Lafferty, J., editors Language Modeling for Information Retrieval, Kluwer Academic

Publishers, Dordrecht, Netherlands, 2003.

Manning, C.D., Raghavan, P., and Schütze H. (2007): An Introduction to Information Re-

trieval, Cambridge University Press, Preliminary Draft, Cambridge University, 2007.

Manning, C.D. and Schütze H. (1999): Foundations of Statistical Natural Language Pro-

cessing, Massachusetts Institute of Technology, Cambridge, 1999.

Marcus, M., Santorini, B., and Marcinkiewicz, M.A. (1993): Building a large annotated

corpus of English: The Penn treebank, Computational Linguistics, 19:313–330, 1993.

Merchant, R.H. (1993): TIPSTER program overview, in Proceedings of TIPSTER text pro-

gram (phase 1), 1993.

Merkel, A. and Klakow, D. (2007a): Comparing Improved Language Models for Sentence

Retrieval in Question Answering, in Proceedings of Computational Linguistics in the

Netherlands CLIN, Leuven, Belgium, 2007.

Merkel, A. and Klakow, D. (2007b): Language Model Based Query Classification, in Pro-

ceedings of the 29th European Conference on Information Retrieval (ECIR), Rome,

Italy, 2007.

Merkel, A. and Klakow, D. (2007c): Improved Methods for Language Model Based Question

Classification, in Proceedings of the 8th Interspeech Conference, Antwerp, Belgium,

2007.

Metzler, D. and Croft, B. (2004): Combining the language model and inference network

approaches to retrieval, in Information Processing and Management: an International

Journal, 40(5):735–750, 2004.

Miller, G.A. (1995): WordNet: a lexical database for English, in Communications of the ACM,

38(11)39–41, 1995.

Miller, D.R.H., Leak, T., and Schwartz, R.M. (1999): A hidden Markov model information

retrieval system, in Proceedings of the 22nd annual international ACM SIGIR confer-

ence on Research and development in information retrieval, pp. 214–221, Berkeley,

California, 1999.

168 BIBLIOGRAPHY

Mittal, V.O. and Witbrock, M.J. (2003): Language Modeling Experiments in Non–Extractive

Summarization, in Croft, W.B. and Lafferty, J., editors Language Modeling for Informa-

tion Retrieval, Kluwer Academic Publishers, Dordrecht, Netherlands, 2003.

Mittendorf, E. and Schäuble, P. (1994): Document and passage retrieval based on hidden

Markov models, in Proceedings of the 17th annual international ACM SIGIR conference

on Research and development in information retrieval, Dublin, Ireland, 1994.

Mlynarczyk, S. and Lytinen, S. (2005): FAQFinder Question Answering Improvements Using

Question/Answer Matching, Proceedings of L&T-2005 – Human Language Technolo-

gies as a Challenge for Computer Science and Linguistics, Poznan Poland,, 2005.

Monz, C. (2003): From Document Retrieval to Question Answering, ILLC Dissertation Series

DS-2003-4, Amsterdam, 2003.

Murdock, V. and Croft, W.B. (2004): Simple translation models for sentence retrieval in

factoid question answering, in Proceedings of the Information Retrieval for Question

Answering Workshop at SIGIR 2004 , Sheffield, United Kingdom, 2004.

Murdock, V. and Croft, W.B. (2005): A translation model for sentence retrieval, in Pro-

ceedings of the conference on Human Language Technology and Empirical Methods

in Natural Language Processing, Vancouver, Canada, 2005.

Neumann, G. and Sacaleanu, B. (2005): DFKI’s LT–lab at the CLEF 2005 Multiple Lan-

guage Question Answering Track, in Proceedings of the Working Notes, CLEF Cross-

Language Evaluation Forum, Vienna, Austria, 2005.

Ney, H., Essen. U.,and Kneser, R. (1994): On Structuring Probabilistic Dependencies in

Stochastic Language Modeling, in Computer Speech and Language, 8(1)1-38, 1994.

NYT: The New York Times. http://www.nytimes.com.

O’Connor, J. (1980): Answer-passage retrieval by text searching, in Journal of the American

Society for Information Science, 31(4)227-239, Lehigh University, Bethlehem, 1980.

Otterbacher, J., Erkan, G., and Radev, D.R. (2005): Using Random Walks for Question–

focused Sentence Retrieval, in Proceedings of Human Language Technology Confer-

ence Conference on Empirical Methods in Natural Language Processing, pp. 915-922,

Vancouver, Canada, 2005.

BIBLIOGRAPHY 169

Reuters: http://www.reuters.com.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1998): The PageRank Citation Ranking:

Bringing Order to the Web, Technical Report, Stanford University, 1998.

Palmer, M., Gildea, D., and Kingsbury, P. (2005): The Proposition Bank: An Annotated

Corpus of Semantic Roles, in Computational Linguistics, 31(1):71–106, 2005.

Paşca, M. (2003): Open–Domain Question Answering from Large Text Collections, in Stud-

ies in computational linguistics, Leland Stanford Junior University, 2003.

Phillips, A. (1960): A question–answering routine, Memo. 16 Artificial Intelligence Project,

1960.

Ponte, J.M. and Croft, B. (1998): A Language Modeling Approach to Information Retrieval,

in Proceedings of the 21th annual international ACM SIGIR conference on Research

and development in information retrieval, Melbourne, Australia, 1998.

Ponte, J.M. (1998): A Language Modeling Approach to Information Retrieval, PhD thesis,

University of Massachusetts, 1998.

Porter, M.F. (1980): An algorithm for suffix stripping, in Program, 14:3:130–137, 1980.

The NIST PRISE search engine: http://www-nlpir.nist.gov/works/papers/zp2/zp2.html.

Reuters: http://www.reuters.com.

Roberts, I. (2002): Information Retrieval for question answering, Master’s thesis, University

of Sheffield, 2002.

Robertson, S.E. (1977): The Probability Ranking Principle in IR, in K. Sparck Jones and

Peter Willet, editors, Readings in Information Retrieval, 1997.

Robertson, S.E. and Spärck Jones, K. (1976): Relevance weighting of search terms, in

Journal of the American Society for Information Science, 27(3):129–146, 1976.

Robertson, S.E. and Walker, S. (1994): Some Simple Effective Approximations to the 2–

Poisson Model for Probabilistic Weighted Retrieval, in K. Sparck Jones and Peter Willet,

editors, Readings in Information Retrieval, 1997.

170 BIBLIOGRAPHY

Robertson, S.E., Walker, S., Jones, S., Hancock–Beaulieu, M., and Gatford, M. (1994):

Okapi at TREC-3, in Proceedings of the Third Text REtrieval Conference (TREC 1994),

Gaithersburg: NIST, 1994.

Salton, G., Allan, J, and Buckley, C. (1993): Approaches to Passage Retrieval in Full Text

Information Systems, in Computer Science Technical Reports, Cornell University, 1993.

Salton, G. and Buckley, C. (1988): Term-weighting approaches in automatic text retrieval, in

Information Processing and Management, 24(5):513–523, 1988.

Salton, G. and McGill, M. (1983): Introduction to Modern Information Retrieval, McGraw–

Hill, 1983.

Salton, G., Yang, C.S., and Yu, C.T. (1975): A theory of term importance in automatic text

analysis, Journal of the American Society for Information Sciences, 26(1): 33–44, 1975.

Scha, R. (1983): Logical Foundations for Question Answering, PhD thesis, University of

Groningen, 1983.

Schäuble, P. (1993): SPIDER: a multiuser information retrieval system for semistructured

and dynamic data, in Proceedings of the 16th annual international ACM SIGIR confer-

ence on Research and development in information retrieval, Pittsburgh, USA, 1993.

Schlaefer, N., Gieselmann, P., and Sautter, G. (2006): The EPHYRA QA System at TREC

2006, Proceedings of the Fifteenth Text REtrieval Conference (TREC 2006), Gaithers-

burg: NIST, 2006.

Schuler, K.K. (2005): VerbNet: A Broad–Coverage Comprehensive Verb Lexicon, PhD

thesis, University of Pennsylvania, 2005.

Shannon, C.E. (1948): A mathematical theory of communication, Bell System Tech, 27:379–

423, 1948.

Shen, D. and Klakow, D. (2006): Exploring Correlation of Dependency Relation Paths for

Answer Extraction, in Proceedings of the 21st International Conference on Computa-

tional Linguistics and 44th Annual Meeting of the ACL, pp. 889–896, Sydney, Australia,

2006.

BIBLIOGRAPHY 171

Shen, D., Kruijff, G.J., and Klakow, D. (2005): Exploring Syntactic Relation Patterns for

Question Answering, in Proceedings of the 2nd International Joint Conference on Nat-

ural Language Processing (IJCNLP), Korea, 2005.

Shen, D., Leidner, J., Merkel, A., and Klakow, D (2006): The Alyssa System at TREC 2006:

A Statistically-Inspired Question Answering System, in Proceedings of the 15th Text

Retrieval Conference (TREC 2006), Gaithersburg: NIST, 2006.

Shen, D., Wiegand, M., Merkel, A., Kaszalski, S., and Klakow, D. (2007): The Alyssa System

at TREC QA 2007: Do We Need Blog06?, in Proceedings of the 16th Text Retrieval

Conference (TREC 2007), Gaithersburg: NIST, 2007.

Smartweb (2007): Leitinnovation SmartWeb; mobiler, breitbandiger Zugang zum semantis-

chen Web, Managementzusammenfassung, DFKI, 2007.

Song, F. and Croft, W.B. (1999): A general language model for information retrieval, in Pro-

ceedings of the eighth international conference on Information and knowledge man-

agement, Kansas City, USA, 1999.

Spärck Jones, K., Robertson, S., Hiemstra, D., and Zaragoza, H. (2003): Language Mod-

eling and Relevance, in Croft, W.B. and Lafferty, J., editors Language Modeling for

Information Retrieval, Kluwer Academic Publishers, Dordrecht, Netherlands, 2003.

Spitters, M. and Kraaij, W. (2000): A Language Modeling Approach to Tracking News Events,

in Proceedings of the Ninth Text Retrieval Conference (TREC–9), Gaithersburg: NIST,

2000.

Suzuki, J., Taira, H., Sasaki, Y., and Maeda, E. (2003): Question classification using HDAG

kernel, in Proceedings of the ACL 2003 workshop on Multilingual summarization and

question answering, 12:61–68, 2003.

Teahan, W.J. and Harper, D.J. (2003): Using Compression–Based Language Models for

Text Categorization, in Croft, W.B. and Lafferty, J., editors Language Modeling for Infor-

mation Retrieval, Kluwer Academic Publishers, Dordrecht, Netherlands, 2003.

Tellex, S., Katz, B., Lin, J., Fernandes, A., and Marton, G. (2003): Quantitative evaluation

of passage retrieval algorithms for question answering, in Proceedings of the 26th an-

172 BIBLIOGRAPHY

nual international ACM SIGIR conference on Research and development in information

retrieval, Toronto, Canada, 2003.

Thorne, J. (1962): Automatic language analysis, ASTIA 297381 Final Technical Report,

Arlington, 1962.

van Rijsbergen, C. (1979): Information Retrieval,Butterworth, 2nd edition, 1979.

Voorhees, E. (2002): Overview of the TREC 2002 question answering track, in Notebook of

the 11th Text REtrieval Conference (TREC 2002), Gaithersburg: NIST, 2002.

Voorhees, E. and Harman, D. (1999): Overview of the Eigth Text REtrieval Conference

(TREC8), in The 8th Text REtrieval Conference (TREC-8), Gaithersburg: NIST, 1999.

Voorhees, E. and Harman, D. (2007): TREC: Experiment and Evaluation in Information

Retrieval, National Institute of Standards and Technology, The MIT Press, Cambridge,

2007.

Wade, C. and Allan, J. (2005): Passage Retrieval and Evaluation, CIIR Technical Report,

University of Massachusetts, 2005.

Wahlster, W. (2004): SmartWeb, Mobile Applications of the Semantic Web, in Proceedings

of Informatik, Springer, 2004.

Wahlster, W. (2007): SmartWeb, ein multimodales Dialogsystem für das semantische Web,

in Reuse, B. and Vollmar, R., editors, 40 Jahre Informatikforschung in Deutschland,

Heidelberg, Berlin, Springer, 2007.

Weikum, G. (2000): Information Retrieval, Lecture Slides Winter Semester 200001, Saar-

land University, 2000.

Weikum, G. (2005): Information Retrieval and Data Mining, Lecture Slides Winter Semester

200506, Saarland University, 2005.

Whittaker, E., Novak, J., Chatain, P., and Furui, S. (2006): TREC2006 Question Answer-

ing Experiments at Tokyo Institute of Technology, in Proceedings of the Fifteenth Text

REtrieval Conference (TREC 2006), Gaithersburg: NIST, 2006.

Wikipedia. The Free Encyclopedia. http://www.wikipedia.org.

BIBLIOGRAPHY 173

Winograd, T. (1977): Five Lectures on Artificial Intelligence, in A. Zampoli, editor, Funda-

mental Studies in Computer Science, North–Holland, 1977.

Woods, W. (1977): Lunar rocks in natural English: Explorations in natural language ques-

tion answering, in A. Zampoli, editor, Linguistic Structures Processing, Elsevier North–

Holland, 1977.

Wu, Y., Zhao, J., and Xu, B. (2006): Cluster–based Language Model for Sentence Retrieval

in Chinese Question Answering, in Proceedings of the Fifth SIGHAN Workshop on

Chinese Language Processing, Sydney, Australia, 2006.

Yahoo: http://www.yahoo.com.

Zhai, C. (2002): Risk Minimization and Language Modeling in Text Retrieval, PhD thesis,

Carnegie Mellon University, 2002.

Zhai, C. (2005): Statistical Language Models for Information Retrieval, Tutorial at the 28th

annual international ACM SIGIR conference on Research and development in informa-

tion retrieval, Salvador, Brazil, 2005.

Zhai, C. and Lafferty, J. (2001). A Study of Smoothing Methods for Language Models Applied

to Ad Hoc Information Retrieval, in Proceedings of the 24th annual international ACM

SIGIR conference on Research and development in information retrieval, New Orleans,

2001.

Zhai, C. and Lafferty, J. (2001b). Model-based feedback in the language modeling approach

to information retrieval, in Proceedings of the 24th annual international ACM SIGIR

conference on Research and development in information retrieval, New Orleans, 2001.

Zhai, C. and Lafferty, J. (2002): Two–Stage Language Models for Information Retrieval, in

Proceedings of the 25th annual international ACM SIGIR conference on Research and

development in information retrieval, Tampere, Finland, 2002.

Zhai, C. and Lafferty, J. (2006): A risk minimization framework for information retrieval, in

Information Processing and Management: an International Journal, 24(1):31–55, 2006.

Zhang, D. and Lee, W.S. (2003): Question classification using support vector machines, in

Proceedings of the 26th annual international ACM SIGIR conference on Research and

development in information retrieval, Toronto, Canada, 2003.

174 BIBLIOGRAPHY

Zhang, D. and Lee, W.S. (2004): A Language Modeling Approach to Passage Question

Answering, in NIST Special Publications: TREC 2003, Gaithersburg: NIST, 2004.

Zheng, Z. (2002): AnswerBus Question Answering, in Proceedings of the second interna-

tional conference on Human Language Technology Research, San Diego, California,

2002.

