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Abstract 
 
Cytochromes P450 play a vital role in the steroid biosynthesis in the human adrenal gland, 

e.g. the production of hydrocortisone and aldosterone by CYP11B1 and CYP11B2, 

respectively. The steroid hydroxylases of the CYP11B family are important targets for drug 

development. Since they are very closely related, the discovery of selective inhibitors has 

been a focus of interest. Furthermore, hydrocortisone is a precursor for drugs with high 

therapeutic potential. Therefore, the purpose of this work was the development of an efficient 

system for CYP11B-dependent whole-cell biotransformation to facilitate the bioproduction of 

hydrocortisone and the discovery of selective inhibitors. The present work shows clearly that 

hydrocortisone production can be dramatically enhanced (3.4-fold) by coexpression of the 

natural redox partners of CYP11B1. Moreover, a high production efficiency has been 

achieved by optimisation of the reaction conditions. Additionally, in the course of this work 

an automated screening technology plate-format has been developed using a CYP11B2-

expressing fission yeast strain. Additionally, the conditions for HPLC analysis of steroids 

were optimised and a high throughput screening system for the discovery of CYP11B2 

inhibitors has been established. The new screening system was successfully used for the 

investigation of a library of pharmacologically active compounds resulting in the 

identification of several novel potential inhibitors of CYP11B2.  
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Zusammenfassung 
 
Cytochrome P450 spielen eine entscheidende Rolle in der Steroidbiosynthese in der 

menschlichen Nebenniere z. B. bei der Produktion von Hydrocortison durch CYP11B1 sowie 

von Aldosteron durch CYP11B2. Steroidhydroxylasen der CYP11B Familie stellen Ziele für 

die Entwicklung von Medikamenten dar. Wegen des hohen Verwandtschaftsgrades dieser 

Enzyme ist die Entdeckung selektiver Inhibitoren von großem Interesse. Darüber hinaus ist 

Hydrocortison eine Vorstufe für Arzneimittel mit großem therapeutischem Potenzial. Das  

Ziel der vorliegenden Arbeit war daher die Entwicklung eines effizienten Systems für die 

CYP11B-abhängige Ganzzellbiotransformation, um die Herstellung von Hydrocortison sowie 

die Identifizierung selektiver CYP11B2-Inhibitoren zu erleichtern. Die 

Hydrocortisonproduktion konnte in dieser Arbeit durch die Coexpression der natürlichen 

Redoxpartner von CYP11B1 und durch die Optimierung der Reaktionsbedingungen deutlich 

gesteigert werden. Für den Nachweis von selektiven CYP11B2-Inhibitoren wurde für die 

Spalthefe ein automatisches hintergrundarmes Hochdurchsatz-Screening-System, basierend 

auf Mikrotiterplatten und HPLC-Analyse entwickelt. Dieses Verfahren wurde anschließend 

erfolgreich für die Untersuchung einer Bibliothek pharmakologisch aktiver Komponenten 

benutzt, wobei neue potentielle Inhibitoren detektiert wurden. 
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Summary 
 
Cytochromes P450 play a vital role in the steroid biosynthesis pathway in the human adrenal 

gland, exemplified by the production of the main glucocorticoid hydrocortisone (cortisol) 

from 11-deoxycortisone by CYP11B1, and the production of the most important human 

mineralocorticoid aldosterone from 11-deoxycorticosterone by CYP11B2. CYP11B-

dependent steroid hydroxylases are drug development targets, and since they are very closely 

related enzymes, the discovery of selective inhibitors of each one has been a hot topic. 

Furthermore, hydrocortisone is a precursor for drugs with high therapeutic potential. 

Therefore, the purpose of this work was the development of efficient CYP11Bs-dependent 

whole-cell biotransformation reactions for the bioproduction of hydrocortisone and the 

discovery of selective inhibitors of CYP11B2.  

For this reason, the corresponding mitochondrial electron transfer proteins (AdR and Adx) 

were coexpressed with CYP11B1 in fission yeast Schizosaccharomyces pombe. Moreover, 

two mutants of Adx were investigated and coexpressed with AdR to improve the electron 

transport to CYP11B1 to increase the bioproduction of hydrocortisone in recombinant fission 

yeast. This work shows clearly that hydrocortisone production can be dramatically enhanced 

(3.4- fold) by coexpressing the other components of the CYP11B1 electron transfer chain and 

by optimising the reaction conditions to achieve a high production efficiency on the 

laboratory level. The new fission yeast strain TH75 coexpressing the wild type Adx and AdR 

displays high production efficiency at an average of 9.7 µmol hydrocortisone / 10 ml test 

culture over a period of 72 hours, the highest value published to date for this 

biotransformation. 

In addition, using a CYP11B2-expressing fission yeast strain, an automated screening 

technology plate-format has been developed. The new screening technology is a one-point 

HPLC-based assay that investigates compounds regarding of their inhibitory effect against 

CYP11B2 at concentration of 41.6 µM. Furthermore, the HPLC was further optimised, which 

enabled the separation of the closely related steroids 11-deoxycorticosterone (DOC) and 

corticosterone (B) within 2 minutes. Hence, a high throughput screening system has been 

established. The new screening system displayed high reproducibility and was validated in the 

presence of controls. In a next step, a library of pharmacologically active compounds was 

investigated using this new screening system, which reported novel potential inhibitors of 

CYP11B2. The new inhibitors were further validated and new selective inhibitors have been 

discovered. Since the use of these drugs is usually combined with unexplained hypotension 

and severe side effects, the ability of these compounds to inhibit CYP11B2 can explain to 
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some extent these side effects. Furthermore, the new inhibitors are “druggable” compounds 

that could be used either in the treatment of hyperaldosteronism-related diseases or as lead 

compounds that could further optimised in the field of drug development to achieve more safe 

and selective inhibitors of CYP11B2.  

Although the screening system was developed and validated on the laboratory level, it 

displayed the ability to screen up to 600 compounds per week with the possibility to increase 

the capacity of the test (10-fold) up to 6000 compounds per week. 

Taken together, the newly developed system is a robust screening system that can be 

applied to investigate libraries of existing drugs to find novel CYP11B2 inhibitors. This 

screening enables the reposition (recycling) of existing drugs, which can save costs and 

billions of dollars spend to develop new CYP11B2 inhibitors.    
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RH + O2 

NAD(P)H + H+ NAD(P)+

ROH + H2O 
P450-systems 

Figure 1.1.  Reaction generally catalysed by cytochrome P450. 
Cytochromes P450 are monooxygenases, which in contrast to dioxygenases 
catalyses the incorporation of a single atom of molecular oxygen into the substrate. 
The reduction equivalents needed for this reaction are provided by an external 
cofactor.  

1. Introduction 
 
1.1. Steroid hormones and cytochromes P450  
 

Steroid hormone research began in a broader sense with the crystallisation of several sex 

steroid hormones in the years 1929-1935, of the glucocorticoids in 1935–1938, and finally of 

aldosterone in 1953. All of these hormones possess the basic parent 

cyclopentanophenanthrene ring structure provided by cholesterol, which is modified by an 

array of enzymes expressed at various levels and in numerous tissues throughout the body.  

The enzymes involved in steroid hormone metabolism can be divided into three large groups: 

the cytochromes P450, reductases and steroid dehydrogenases (SDH), each of which exhibits 

important, biochemically distinct properties (Miller 1988; Lisurek and Bernhardt 2004; Hakki 

and Bernhardt 2006). P450 enzymes comprise a large family of highly conserved proteins that 

incorporate molecular oxygen into lipophilic substrates with the provision of reducing 

equivalents from the cofactor NAD(P)H (Figure 1.1). 

Cytochrome P450 proteins in humans are enzymes that synthesise cholesterol, steroids, and 

other important endogenous substrates such as prostacyclins and thromboxane A2, and 

degrade xenobiotics and drugs. They catalyse many types of reactions, but the most important 

one is hydroxylation. These enzymes are classified as mixed function oxidases or 

monooxygenases, because they incorporate one atom of molecular oxygen into the substrate 

and one atom into water (Figure 1.1.).  

 

 

 

 

 

 

 

 

 

 

 

These reactions are essentially irreversible, not easily to be inhibited, and are so poised in the 

steroidogenic pathway that they determine the formation of each of the five major classes of 
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steroid hormones: progestagens, mineralocorticoids, glucocorticoids, androgens, and 

estrogens. To activate oxygen in the substrate binding pocket of P450s, electrons must be 

transferred from NAD(P)H to the P450. Although some P450s do not require any other 

protein component to achieve the reductive activation of molecular oxygen (Degtyarenko and 

Kulikova 2001), the vast majority of P450s performs the diverse range of chemical reactions 

after interaction with one or more redox partners to obtain the redox equivalents from electron 

transfer (ET) chains. A protein complex forms transiently between the P450 and the redox 

partner allowing the effective transfer of electrons. Although ten classes of P450 systems have 

been recently classified depending on the topology of the protein components involved in the 

electron transfer to the P450 enzyme (Hannemann et al., 2007), there are only two redox 

protein systems involved in the steroid biosynthesis in mammals. One for the P450 enzymes 

anchored in the mitochondrial membrane and one for P450s located in the endoplasmic 

reticulum (microsomal compartment). The mitochondrial electron transfer chain consists of 

two components, a FAD containing flavoprotein, adrenodoxin reductase (AdR), and an iron-

sulphur protein of the [2Fe-2S] ferredoxin type, adrenodoxin (Adx) (Figure 1.2) (Lambeth et 

al., 1982; Hannemann et al. 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Microsomal P450s are supported by a single redox partner protein, the highly conserved FAD 

and FMN containing flavoprotein NADPH-cytochrome P450 reductase (CPR) (Black and 

Figure 1.2. The mitochondrial steroid hydroxylase systems.  
The electron transport chain for the adrenal mitochondrial steroid hydroxylases consisting of a 
[2Fe–2S] ferredoxin designated as adrenodoxin (Adx) and a FAD containing, NADPH-
dependent ferredoxin reductase accordingly referred to as adrenodoxin reductase (AdR). 
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Coon 1987; Porter 1991) In some cases, also a third protein, cytochrome b5 is involved in 

modular protein–protein interaction and electron transport (Figure 1.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, the subcellular location (Tamaoki 1973) and corresponding electron transfer or redox 

system also defines a subclassification of mitochondrial or microsomal cytochrome P450s 

involved in steroid synthesis, collectively known as the steroid hydroxylases. Within the 

mitochondrial class of steroid hydroxylases of most species, there are three functionally 

distinct P450 enzymes (Figure 1.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. The role of cytochromes P450 in the biosynthesis of steroid 
hormones in the human adrenal cortex. The biosynthesis of all steroid hormones 
in the adrenal cortex starts with a reaction catalysed by CYP11A1, which cleaves the 
cholesterol side chain and forms pregnenolone. Other members of the CYP11 family 
(CYP11B1 and CYP11B2) are involved in the production of cortisol and 
aldosterone. 

 
Figure 1.3. The microsomal steroid hydroxylase systems. 
Microsomal hydroxylases receive the necessary electrons from an NADPH-depending 
FAD-and FMN-containing reductase (CPR).  

CPR 
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The first one, the cholesterol side-chain cleavage P450 (CYP11A, also known as P450scc), 

utilizes cholesterol for the formation of pregnenolone, which is the universal precursor for all 

subsequent steroids. A second enzyme, which is cytochrome P450 steroid 11β-hydroxylase 

(CYP11B1, also known as P45011β or P450c11) catalyses the last step in cortisol 

(hydrocortisone) biosynthesis (Figure 1.4). In addition, CYP11B1 catalyses the subsequent 

conversion of corticosterone to aldosterone in some species such as cow and pig, and 

therefore this enzyme is critical in mineralocorticoid metabolism in these animals. In humans, 

baboons, rats, mice, and guinea pigs, however, a third mitochondrial cytochrome P450, 

aldosterone synthase (CYP11B2, also known as P450aldo), is encoded by another gene 

(CYP11B2), which has evolved by duplication of CYP11B1 to specifically catalyses 

aldosterone synthesis (Bureik et al., 2002a). 

The enzymes comprising the microsomal steroid hydroxylase group include three P450s 

involved in steroid hormone biosynthetic steps subsequent to CYP11A1 leading to both 

corticoid and sex steroid hormone synthesis.  

CYP17 (17α-hydroxylase/17,20-lyase, also known as P45017α or P450c17) catalyses the 17-

hydroxylation of pregnenolone and progesterone and the 17,20-lyase reaction of the 

corresponding 17-hydroxylated products. Progesterone and 17-hydroxyprogesterone are 

substrates for 21-hydroxylase cytochrome P450 (CYP21, also known as P450c21), which 

catalyses the formation of 11-deoxycorticosterone (DOC) and 11-deoxycortisol (RSS), 

intermediates in corticosterone and cortisol biosynthesis (Figure 1.4). Finally, the aromatase 

enzyme (CYP19, P450arom) is responsible for the aromatisation of ring A leading to 

estrogens. Mutations in steroid hydroxylase genes, or deficiencies of these enzymes, are 

responsible for several human diseases. Thus, congenital adrenal hyperplasia (CAH) (also 

known as adrenogenital syndrome; AGS) is mainly caused by defects of CYP21 (Migeon and 

Donohoue 1991; New 1992), although in 8-9% of the patients with CAH, CYP11B1 

mutations are fault (Naganuma et al., 1988; Migeon and Donohoue 1991; New 1992). Defects 

in aldosterone production caused by mutations in CYP11B2 lead to salt wasting and to failure 

to thrive (White 2004). Defects in the CYP17 gene exemplified by the 17-hydroxylase 

deficiency in which the production of sex steroids is absent, results in a compensatory 

increase in follicle-stimulating hormone and luteinizing hormone, comparable to menopausal 

levels. In humans, the CYP17 gene is expressed in the adrenal cortex, testes, and ovaries but 

not the placenta. The adrenals produce glucocorticoids, mineralocorticoids, and C-19 steroids. 

The gonads, on the other hand, predominantly produce the C-19 steroids and sex hormones. 

Thus, in patients with 17-hydroxylase deficiencies both adrenal and gonadal steroidogenesis 
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is impaired. In contrast, CYP17 overproduction leads to prostate cancer (Madigan et al., 

2003). Moreover, in some cases prostate cancer is stimulated by androgen production as 

breast cancer is by estrogens (Figure 1.5). Overproduction of cortisol can be one cause of 

Cushing’s syndrome, which is a chronic glucocorticoid excess associated with substantial 

morbidity and mortality (Boscaro et al., 2001; Fisher et al., 2001). Overproduction of 

aldosterone has been shown to cause hypertension. Furthermore, hyperaldosteronism was 

found to be in 5 to 10% of all patients with hypertension (Young 2007) and congestive heart 

failure and fibrosis of the heart (Pitt et al., 1999; Brilla 2000; Pitt et al., 2001; Hakki and 

Bernhardt 2006). More recently, R-fadrozole, which has been reported as aldosterone 

synthase inhibitor showed the ability to reverses cardiac fibrosis in spontaneously 

hypertensive heart failure rats (Minnaard-Huiban et al., 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

During the past years it became obvious that cytochromes P450 not only play an exceptional 

role in drug and xenobiotics metabolism and in the biosynthesis of endogenous compounds, 

but also gain increasing importance as novel therapeutic targets for drug development (Baston 

and Leroux 2007; Schuster and Bernhardt 2007). 
 
 

 

Figure 1.5. Steroid hydroxylases as drug development targets.  
Steroid overproduction-related diseases can be treated or controlled by inhibiting the corresponding steroid 
hydroxylase.  
 



Introduction                                                                                                                            6  

 

1.2. Human CYP11B1 and CYP11B2   
 
1.2.1. General aspects  
 

Human CYP11B1 and CYP11B2 are localised mainly in the adrenal cortex that consists of 

the zona glomerulosa and the zona fasciculata/reticularis, which differ from each other with 

regard to steroidogenic reactions catalysed by different cytochrome P450 isozymes. 

Glucocorticoids and adrenal androgens are synthesised in the zona fasciculata/reticularis, 

whereas aldosterone, the most potent natural mineralocorticoid, is synthesised in zona 

glomerulosa cells (Miller and Tyrell 1995). CYP11B1 is expressed at high levels in the zona 

fasciculata/reticularis of the adrenal cortex (Erdmann et al., 1995a; Erdmann et al., 1995b; 

Miller and Tyrell 1995) and produces cortisol, the principal human glucocorticoid. In contrast, 

aldosterone secretion (Miller and Tyrell 1995) and CYP11B2 expression (Pascoe et al., 1995) 

take place at low levels in the zona glomerulosa of the adrenal cortex. Vinson argued that the 

zona glomerulosa in fact has many functions, including aldosterone synthesis, but is probably 

only a relatively poor de novo source of steroids. In vitro, CYP11B2 (aldosterone synthase) of 

the glomerulosa has the ability to use the products that arise from CYP11B1 activity in 

fasciculate cells (Vinson 2004) as substrates. This zonal distribution of expression has been 

further investigated with surgically removed human adrenal gland cells, showing a higher 

concentration of CYP11B1 in the zona fasciculata than in the zona reticularis (Mitani et al., 

1982). Furthermore, Mitani et al. identified the so-called ‘‘undifferentiated cell zone’’, which 

could facilitate the exploration of molecular mechanisms for the differentiation and 

development of adrenocortical cells (Mitani et al., 2003). Min et al. characterized the adrenal-

specific inner zone antigen (IZA), which is a protein specifically expressed in the zona 

fasciculate/retricularis of the adrenal cortex, and reported the inhibition of adrenal 

steroidogenesis by the addition of an anti-IZA monoclonal antibody, and the adrenal 

steroidogenesis activation by IZA overexpression suggesting its importance in the 

steroidogenesis (Min et al., 2004). CYP11B enzymes of other species have also been studied, 

and results indicated that bovine (Wada et al., 1985), porcine (Yanagibashi and Hall 1986), 

and frog (Nonaka et al., 1995) adrenal cortex syntheses of gluco- and mineralocorticoids are 

catalysed by a single enzyme, while in man (Kawamoto et al., 1990a; Ogishima et al., 1991), 

baboons (Hampf et al., 1996; Brown et al., 2002), rats (Matsukawa et al., 1990), mice 

(Domalik et al., 1991), and guinea pigs (Bülow et al., 1996; Bülow and Bernhardt 2002) two 

distinct isoforms are involved in the formation of either mineralo- or glucocorticoids. The 
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Figure 1.6. CYP11B1-dependent hydroxylation reaction.  
Human CYP11B1 enzyme is a pure 11β-hydroxylase, and catalyses the 11β-
hydroxylation reaction that produces cortisol (F) from 11-deoxycortisol (RSS). 
 

 

reason for these interspecies differences is unknown. Enzymes with 11β-hydroxylase activity 

have also been found in several fungi (Megges et al., 1990); however, none of the genes for 

these enzymes has been cloned to date and their relation to the CYP11B family remains 

unclear.  

The DNA sequence of the CYP11B2 gene is about 95% identical to that of the CYP11B1 gene 

in the coding regions and 90% identical in the introns. The 5/ upstream region has, however, 

diverged considerably from that of CYP11B1, suggesting that this second gene, if expressed, 

may be regulated differently. Mornet et al. determined that the CYP11B1 and CYP11B2 genes 

both contain nine exons (Mornet et al., 1989). The eight introns are identical in location to the 

introns of CYP11A1. The genes encoding the two human enzymes are arranged ~ 45 kb apart 

from each other on chromosome 8 (Chua et al., 1987; Wagner et al., 1991) and chimeric 

CYP11B1/CYP11B2 genes that result from unequal crossing-over between these two genes 

have been found in patients suffering from familial hyperaldosteronism type I (FH-I; also 

called glucocorticoid-remediable hyperaldosteronism) and congenital adrenal hyperplasia 

(Lifton et al., 1992; Pascoe et al., 1992; MacConnachie et al., 1998; Hampf et al., 2001).  

 

1.2.2. Physiological role of CYP11B1 and CYP11B2 
 

Cortisol (Hydrocortisone) is the main glucocorticoid in humans. It regulates energy 

mobilisation and thus the stress response. In addition, it is involved in the immune response of 

the human body. It is formed by 11β-hydroxylation of 11-deoxycortisol (RSS) (Figure 1.6) 

and is normally secreted 100-to 1000-fold in excess over aldosterone.  
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Figure 1.7. CYP11B2 converts 11-deoxycorticosterone via corticosterone and 18-OH corticosterone to 
aldosterone. 
CYP11B2 11β-hydroxylates 11-deoxycorticosterone (DOC) to yield corticosterone (B), which will then 18-
hydroxylated to yield 18-hydorxycorticosterone and finally 18-oxidized to aldosterone.   

Aldosterone, the most important human mineralocorticoid, is involved in the regulation of the 

salt and water household of the body and thus in the regulation of blood pressure. The 

terminal three steps in aldosterone biogenesis in humans are the 11β-hydroxylation of 11-

deoxycorticosterone (DOC) that leads to corticosterone (B), which is then 18-hydroxylated to 

yield 18-hydroxycorticosterone (18-OH-B) and finally oxidized to aldosterone (Figure 1.7). 

DOC can also be first 18-hydroxylated to yield 18-hydroxy-11-deoxycorticosterone (18-OH-

DOC) followed by conversions to 18-OH-B and aldosterone, but in man this pathway is 

unlikely to be important (Fisher et al. 2001). Both CYP11B1 and CYP11B2 11β-hydroxylate 

RSS and DOC in vitro (Kawamoto et al. 1990a; Curnow et al., 1991; Denner et al., 1995a); 

however, the human CYP11B1 enzyme is a pure 11β-hydroxylase without 18-hydroxylase or 

18-oxidase activity and is even unable to 11β-hydroxylate 18-OH-DOC (Fisher et al. 2001). 

 

 

 

 

 

 

 

 

 

 

 

CYP11B2 displays much weaker 11β-hydroxylase activity towards RSS, but also 18-

hydroxylates cortisol. The influence of several 18-hydroxylated steroids on human CYP11B1 

and CYP11B2 activity was investigated (Fisher et al. 2001) using stably transfected V79 cells 

(Denner et al. 1995a; Denner et al., 1995b). It was found that neither 18-hydroxycortisol nor 

18-oxocortisol affected the efficiency of use of DOC or RSS as substrates by both enzymes, 

thus ruling out that these compounds contribute to lower 11β-hydroxylase activity in 

glucocorticoid-suppressible hyperaldosteronism. In contrast, 18-OH-DOC significantly 

reduced the conversion rate of DOC to B and that of RSS to cortisol by both enzymes, while it 

increased the production rate of 18-OH-B and aldosterone by CYP11B2. 

As mentioned above, there is a series of different diseases that are connected with changes in 

the steroid hormone production. Adrenogenital syndrome (AGS, CAH), which is a disorder 

affecting one in 14,000 patients, with mild forms of the disease occurring in one of every 
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100–1000 persons has been studied for many years (Cutler and Laue 1990; New 1992; 

Ohlsson et al., 1998). The condition is caused by deficient synthesis of cortisol; most cases 

are related to 21-hydroxylase or 11β-hydroxylase deficiency (White and Speiser 1994). The 

affected enzyme can be totally or partially impaired. The degree of enzyme insufficiency 

determines the severity of the condition (White and Speiser 1994). Steroid 11β-hydroxylase 

deficiency, an autosomal recessive disorder, is the second most common cause of congenital 

adrenal hyperplasia (Zachmann et al., 1983), and hypertension is a feature that often 

distinguishes this disorder from the steroid 21-hydroxylase deficiency causing virilizing 

adrenal hyperplasia due to the overproduction of 17-hydroxylated steroids. Before the 

identification and characterization of the CYP11B2 enzyme, it was thought that each of the 

last steps of aldosterone biosynthesis was catalysed by a separate enzyme, and in addition to 

the already known steroid 11β-hydroxylase, the existence of an 18-hydroxylase called 

corticosterone methyl oxidase (CMO) type I and of an 18-hydroxysteroid dehydrogenase 

(CMO II) was postulated. Consequently, isolated deficiencies of aldosterone biosynthesis that 

are caused by CYP11B2 gene defects were (and still are) called CMO deficiencies. These 

disorders are clinically characterised by salt wasting, hyponatremia, and hyperkalemia, often 

presenting in infants with failure to thrive. Plasma renin activity is elevated, plasma 

aldosterone is low or undetectable, and the plasma levels of aldosterone precursors are 

elevated. While different types of gene aberrations in CYP11B1 and CYP11B2 including 

gene conversions, insertions, and deletions have been found in patients (Peters et al., 1998; 

White 2004), the investigation of missense point mutations contributes most to our 

understanding of the structure–function relationship of these enzymes. More recently a novel 

missense mutation (L451F) caused by a T to C transition at position c.1351 in exon 8 was 

discovered in a newborn infant. This mutation showed complete aldosterone synthase 

deficiency type I. The L451F mutation is the first mutation found located immediately 

adjacent to the highly conserved heme-binding C450 of the cytochrome P450 (Nguyen et al., 

2008).  

In normal physiology, aldosterone secretion is under the principal control of the renin–

angiotensin system in a classical endocrine negative feedback loop. Renin is a proteolytic 

enzyme that is synthesized and stored by specialized cells in the wall of the afferent arteriole 

situated in the glomerulus of the kidney. These cells are anatomically and functionally 

associated with the cells in the wall of the distal convoluted tubules (the ‘‘macula densa’’), 

and the whole structure is known as the juxtaglomerular apparatus. The release of renin 

activates a cascade system (Figure 1.8) in which renin cleaves a leucine–valine bond in the 
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hepatic a2-globulin, angiotensinogen, to form the decapeptide angiotensin I. This is 

subsequently converted by angiotensin-converting enzyme (ACE) to the octapeptide 

angiotensin II. ACE is a dipeptidyl carboxypeptidase that is found in high concentrations in 

pulmonary circulation; it is, however, also present in systemic vasculature and the kidney. 

Angiotensin II is a potent vasoconstrictor and can thus elevate blood pressure but it also 

stimulates aldosterone secretion, which leads to sodium retention and potassium loss. The 

major trigger for renin release is a decrease in perfusion pressure, and this may result from 

hemorrhage, hypotension, or a reduction in the extracellular fluid volume after sodium 

depletion. Negative feedback for aldosterone secretion is ensured; increased renin secretion 

increases angiotensin II and aldosterone levels, which will raise blood pressure and result in 

sodium retention. In turn, this will subsequently inhibit renin secretion maintaining 

homeostasis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. The renin– angiotensin–aldosterone system. 
The release of renin activates a cascade system in which renin cleaves 
angiotensinogen to form angiotensin I and angiotensin II. Angiotensin II 
is a potent vasoconstrictor and can thus elevate blood pressure but it also 
stimulates aldosterone secretion, which leads to sodium retention and 
potassium loss. 
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1.2.3. Differences and similarities between CYP11B1 and CYP11B2 
 

Human CYP11B1 and CYP11B2 are synthesised as 503 amino acids containing precursor 

proteins (Mornet et al. 1989; Kawamoto et al. 1990a; Kawamoto et al., 1990b), both 

containing a 24-residue N-terminal mitochondrial targeting sequence, which is cleaved off 

after translocation into the mitochondrial matrix. In the mature enzymes, only 29 out of 479 

residues are not identical, all of these residues seem to be located outside of the generally 

accepted substrate recognition sites (Gotoh 1992), and are spread throughout the protein 

(Böttner and Bernhardt 1996). Human mature CYP11B1 and CYP11B2 have apparent 

molecular masses of 50 (CYP11B1) and 48.5 (CYP11B2) kDa, respectively, and are bound to 

the inner mitochondrial membrane by as yet undefined protein segments (Ogishima et al. 

1991). As mentioned above, human CYP11B1 and CYP11B2 are very similar in their primary 

sequence, but their catalytic properties are clearly different. To understand the structure–

function relationships of these enzymes, which like all mitochondrial P450s so far have 

resisted all attempts at experimental structure determination, homology models were 

developed (Belkina et al., 2001). Moreover, Böttner et al. suggested that the sequence 

spanned by amino acids 301 and 335 constitutes part of the substrate-binding site in 

CYP11B1 and CYP11B2 (Böttner and Bernhardt 1996; Böttner et al., 1998). The effect of the 

C-terminal portions of both proteins was investigated as well, and it was found that diverging 

residues at positions 471, 472, 492, 493, and 494 were insignificant for the stereospecificity 

and regiospecificity of steroid hydroxylation (Böttner et al. 1998). 

 

1.2.4. CYP11B1 and CYP11B2 modelling  
 

Understanding the structure–function relationships of CYP11B enzymes requires information 

about their 3- dimensional structure. Protein structure determination by X-ray diffraction is 

often problematic in the case of membrane-bound proteins such as CYP11B1 and CYP11B2, 

and NMR structure determination is restricted to smaller proteins. Due to these reasons, no 

structure of a mitochondrial cytochrome P450 has been experimentally resolved so far. Only 

the structures of several bacterial cytochrome P450s and that of a few microsomal P450s 

solubilized by truncation and site-directed mutagenesis have been experimentally determined 

(for more information about the resolved 3-dimensional structures of cytochrome P450 visit: 

http://www.expasy.org/). Analysis of the structures revealed a conserved structural fold. 

Therefore, homology modelling studies of human CYP11B1 and CYP11B2 have been 
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performed. The models have been evaluated and used to explain the significance of a number 

of residues that were identified by mutagenesis studies or found in patients (Belkina et al. 

2001). These models suggest that the main difference between the two proteins is the position 

of the heme. An angle of ~20o between the hemes of the two models has been observed, 

apparently dependent on the interaction of side chains forming the heme environment and the 

orientation of its binding loop (Figure 1.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In case of CYP11B1, one heme propionate group forms a hydrogen bond with Arg448 while 

the second one interacts with Arg384, whereas in CYP11B2 both heme propionate groups are 

involved in hydrogen bond interactions with Arg448. Both Arg384 and Arg448 have been 

found to be mutated in CYP11B1 of patients suffering from congenital adrenal hyperplasia 

(CAH) (White et al., 1991; Curnow et al., 1993; Nakagawa et al., 1995); all known mutations 

in positions 384 and 448 led to a complete loss of enzyme activity, most probably due to 

destabilisation of the holoprotein. As a consequence of the different hydrogen bonding 

 

Figure 1.9. Superposition of the ribbon structures of the homology models of human 
CYP11B1 (green) and CYP11B2 (orange) (Belkina et al. 2001). While the overall structure is 
similar, the position of the hemes in both proteins is different. 
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network around Arg384, Arg448, and the heme propionates, the active site of CYP11B2 is 

predicted to be smaller than that of CYP11B1. The larger active site found in the CYP11B1 

model correlates with the fact that the natural substrate of CYP11B1 (11-deoxycortisol) is 

larger than that of CYP11B2 (11-deoxycorticosterone) due to the presence of an additional 

17α-hydroxy group. Thus, from the structural point of view selective inhibition of one of the 

enzymes appears to be more probable than the extremely high homology of the protein 

primary sequences would suggest at first glance. 

 

1.2.5. CYP11B1 and CYP11B2 as drug targets 
 

As mentioned above, not only CYP11B1 and CYP11B2 deficiencies, but also abnormally 

increased plasma levels of aldosterone and cortisol are the cause of a variety of diseases like 

Cushing’s syndrome which leads to chronic glucocorticoid excess. Elucidation of multiple 

pathogenetic mechanisms has greatly improved the management of this complex endocrine 

disorder. However, the syndrome is still associated with substantial morbidity and mortality 

(Boscaro et al. 2001; Fisher et al. 2001). Many drugs have been used in the treatment of 

pituitary-dependent Cushing’s disease. They act at the hypothalamic–pituitary level and 

decrease corticotropin secretion, inhibit cortisol synthesis at adrenal level, or compete with 

cortisol at the receptor level. The neuromodulatory compounds used so far have shown real 

clinical efficacy only rarely when used as sole treatment, whereas inhibitors of steroid 

synthesis are effective in most cases in dose-dependent manner (Weber and Villarreal 1993; 

Engelhardt and Weber 1994; Hartmann et al., 2002). Through their ability to correct 

hypercortisolism and its severe complications quickly, they are suitable for critical cases and 

in preparation for surgery, for patients treated with pituitary irradiation, and whenever a 

definitive treatment is delayed. The most common inhibitors of steroid biosynthesis in clinical 

use are mitotane, metyrapone, aminoglutethimide, etomidate, and ketoconazole (Gross et al., 

2007). While the mode of action of mitotane seems to be multifactorial, the other inhibitors of 

adrenal steroidogenesis that play an important role in the management of patients all reduce 

cortisol secretion by blocking one or more of the steroidogenic P450s. However, this 

mechanism of action has little selectivity and extra-adrenal effects are likely (Sonino and 

Boscaro 1999). For example, metyrapone treatment leads to increased concentrations of 

androgens (causing acne and hirsutism) and DOC (leading to hypokalaemia and oedema) as a 

consequence of CYP11B2 inhibition. Therefore, the development of highly selective 

CYP11B1 inhibitors would be a major improvement for the treatment of patients suffering 
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from Cushing’s syndrome. The familial occurrence of primary aldosteronism was first 

described in 1966 by (Sutherland et al., 1966), which reported a father and son with 

hypertension due to hyperaldosteronism that was resolved during treatment with 

dexamethasone. Subsequent studies confirmed an autosomal dominant mode of inheritance 

(New et al., 1980). Today this disease is designated familial hyperaldosteronism type I [FH-I; 

also called glucocorticoid-suppressible hyperaldosteronism (GSH) or glucocorticoid-

remediable aldosteronism (GRA)] in order to distinguish it from a non-

glucocorticoidremediable form of familial hyperaldosteronism (FH-II) (Stowasser et al., 

1992). As mentioned above, the genetic basis for FH-I is a hybrid gene composed of 5\ 

sequence (including regulatory sequences) derived from the CYP11B1 gene fused to 3\ 

sequence (which include most of the coding sequences) derived from the CYP11B2 gene 

(Lifton et al. 1992). Like wild-type CYP11B2, the hybrid gene codes for an enzyme with 

aldosterone synthase activity, but its expression and consequently the production of 

aldosterone is regulated by the strong CYP11B1 promoter (about 100- to 1000-fold stronger 

than the CYP11B2 promoter) and by the Adrenocorticotropic hormone (ACTH) (rather than 

angiotension II, the principal regulator of CYP11B2 expression) by virtue of its CYP11B1 

regulatory sequences. In addition, chronic elevation of plasma aldosterone has also been 

diagnosed in other diseases such as adenoma, idiopathic hyperaldosteronism, as well as 

congestive heart failure or myocardial fibrosis (Brilla 2000; Tsybouleva et al., 2004), and in 

cases of insufficient renal flow (Stowasser and Gordon 2001). Especially in congestive heart 

failure, elevated aldosterone levels lead to an increase in blood volume and may stimulate 

cardiac fibroblasts resulting in cardiac hypertrophy, myocardial fibrosis, ventricular 

arrhythmia, and other adverse effects (Ramires et al., 1998; Lijnen et al., 2000; Young and 

Funder 2000). Thus, the Randomised Aldosterone Evaluation Study trial (RALES) was done 

to determine whether the aldosterone antagonist spironolactone reduces mortality in patients 

with severe heart failure (Pitt et al. 1999). The study followed 1663 patients who had been 

diagnosed with severe heart failure for two years. During this study the patients, in addition to 

the standard therapy, were treated with either placebo or with 25 mg daily spironolactone. It 

was clearly demonstrated that the group treated with the aldosterone antagonist revealed a 

decreased risk of mortality of 30% and an improvement of the heart disease (Pitt et al. 1999). 

Since spironolactone is associated with severe side effects in the patients, the investigations 

have been repeated with another anti-mineralocorticoid, eplerenone, which is described to 

cause fewer side effects. The Eplerenone Post-Acute Myocardial Infarction Heart Failure 

Efficacy and Survival Study (EPHESUS) trial investigated the benefits of using this drug and 
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demonstrated a reduced mortality in acute myocardial infarction by 15% and of sudden death 

by 21% (Pitt et al. 2001). Nevertheless, treatment with steroidal antihormones is still 

accompanied by severe side effects (MacFadyen et al., 1997; Delyani 2000; Mantero and 

Lucarelli 2000; Soberman and Weber 2000; Pitt et al. 2001). 

And thus, a promising pharmacological approach alternative to spironolactone, eplerenone, 

and to angiotensin-II antagonists (Thai et al., 1999) might be the use of specific and selective 

CYP11B2 inhibitors. Thus, CYP11B1 and CYP11B2 comprise new targets for drug treatment 

and selective inhibitors of both enzymes are of high pharmacological interest. 

 

1.2.6. General requirements for the development of CYP11B2 inhibitors  
 

Although Zöllner et al. succeeded recently in the expression and purification of functional 

human CYP11B1 in E. coli (Zöllner et al., 2008), human CYP11B2 has not been 

heterologous expressed so far in significant amounts. Hence, it is not possible to use pure 

CYP11Bs enzymes for the development of screening systems, and alternative systems have 

had to be developed. Thus, some clues toward the CYP11B reaction mechanism’s and 

potential inhibition have only been drawn from data obtained from their animal counterparts, 

although differences between different organisms have to be taken into account (Wada et al. 

1985; Yanagibashi and Hall 1986; Matsukawa et al. 1990; Domalik et al. 1991; Nonaka et al. 

1995; Bülow et al. 1996), or by using recombinant mammalian cell cultures (Denner et al. 

1995a; Denner et al. 1995b). The main challenges to develop specific and selective inhibitors 

of the two mitochondrial CYP11B enzymes are the following: (1) to overcome the high 

similarity of both proteins for producing inhibitors with sufficient selectivity; for example, 

inhibitors, which strongly bind to CYP11B1 and not to CYP11B2 and vice versa; and (2) to 

create convenient test systems for the analysis of the potential inhibitors. As mentioned 

before, the high similarity between CYP11B1 and CYP11B2 makes the development of 

selective inhibitors of each one a big challenge for pharmacists and chemists. Furthermore, 

the 3 dimensional structures are not available yet making the development of inhibitors 

difficult, but the computer models (Belkina et al. 2001; Ulmschneider et al., 2005a; 

Ulmschneider et al., 2005b; Roumen et al., 2007) of both enzymes may help to design and 

synthesise new and efficient inhibitors.  
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1.2.7. Heterologous expression of CYP11B1 and CYP11B2 in stable cell 

cultures 
In 1995, two cell lines that express human CYP11B1 and CYP11B2 in a stable and 

constitutive manner have been established in our group, the cells were derived from V79 

Chinese hamster cells, designated V79MZh11B1 and V79MZh11B2, respectively (Denner et 

al. 1995a; Denner et al. 1995b). Interestingly, the recombinant V79 cells were able to support 

CYP11B1- and CYP11B2-dependent steroid conversion without additional heterologous 

expression of the corresponding electron donor system (AdR and Adx) in these non-

steroidogenic lung fibroblast cells. As expected, metyrapone strongly inhibited CYP11B1 and 

to a lesser extent CYP11B2 activity when tested using these cell lines. When several 

pharmaceutically important azole derivatives were tested, it was shown for the first time that 

the inhibitory effect of fluconazole is minor compared with clotrimazole, ketoconazole, and 

miconazole (Denner and Bernhardt 1998). These results demonstrated the usefulness of 

V79MZh11B1 and V79MZh11B2 cell lines for investigating pharmaceutically important 

compounds for interference with human CYP11B1 and CYP11B2 activity. Spironolactone, 

which has been described as an inhibitor of rat aldosterone synthase (Weindel et al., 1991), 

and bovine CYP11B1 (Cheng et al., 1976) showed no inhibitory effect against human 

CYP11B2 using V79MZh11B2 cells even when used at high concentrations (Denner and 

Bernhardt 1998). This suggested that the rat enzyme is not an appropriate tool for the 

evaluation of inhibitors of the human enzyme. Furthermore, this finding indicated that the 

pharmacological activity of spironolactone is not caused by enzyme inhibition as had been 

speculated (Cheng et al. 1976) but is only due to its antagonistic property. Interestingly, the 

cell lines are still active and in use for testing potential inhibitors of CYP11B1 and CYP11B2 

(Fisher et al. 2001; Ehmer et al., 2002; Bureik et al., 2004; Bureik et al., 2005; Ulmschneider 

et al. 2005a; Ulmschneider et al. 2005b; Roumen et al. 2007).  

 

1.2.8. Heterologous expression of CYP11B1 and CYP11B2 in yeast 
 

It can be generally stated that mitochondrial cytochrome P450s are more difficult to express 

in microorganisms than their microsomal relatives. While some mitochondrial P450s like 

bovine CYP11A1 (Wada et al. 1985), rat CYP24 (Akiyoshi-Shibata et al., 1994), and CYP27 

(Pikuleva et al., 1997) can be readily expressed in Escherichia coli, expression of human 

CYP11B2 in bacteria has not been successful so far and that of the rat counterparts was 

achieved with only a very low yield (Nonaka et al., 1998). 
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Our group succeeded in the functional expression of human CYP11B2 and CYP11B1, using 

the fission yeast Schizosaccharomyces pombe (Bureik et al., 2002b; Dragan et al., 2005). The 

transformed yeasts displayed steroid hydroxylase activity in vivo without additional 

heterologous expression of the corresponding electron donor system (AdR and Adx) in these 

nonsteroidogenic cells. Our group found an adrenodoxin-like ferrodoxin (etp1fd) in this yeast, 

which was shown to be able to support substrate conversion of different cytochrome P450s 

(Bureik et al. 2002b; Schiffler et al., 2004). Meanwhile etp1fd has been cloned, isolated, and 

characterized. It was demonstrated to be able to transfer electrons to CYP11B1 and was 

shown to resemble the mammalian adrenodoxin in many aspects (Schiffler et al. 2004). 

Furthermore, our group confirmed recently the existence of a corresponding fission yeast 

ferredoxin reductase, which was characterised and called arh1 (Ewen et al., 2008).  

 

1.2.9. Inhibitors of CYP11B1 and CYP11B2 
 

As described above, two systems for evaluating compounds with respect to their inhibitory 

effect on human CYP11Bs have been established in our group, the yeast system using 

recombinant S. pombe (Bureik et al. 2002b; Ehmer et al. 2002; Dragan et al. 2005), and the 

mammalian cell culture system using recombinant V79 cells (Denner et al. 1995a; Denner et 

al. 1995b). The availability of the recombinant yeast system allows a convenient and effective 

testing of potential CYP11B1 and CYP11B2 inhibitors. Since candidate compounds can be 

tested in the fission yeast system, a medium throughput screening system seems to be possible 

but has not been realized yet. Repeated steroid hydroxylation measurements testing several 

compounds with fission yeast strains expressing both CYP11B1 and CYP11B2 showed very 

good reproducibility of the inhibitory effects (Bureik et al. 2002b; Ehmer et al. 2002; Dragan 

et al. 2005).  

Using both expression systems, it was clearly demonstrated that inhibitors can be identified 

with higher selectivity towards CYP11B2 or towards CYP11B1 (Denner and Bernhardt 1998; 

Ehmer et al. 2002), supporting the initial idea that although both proteins show an extremely 

high identity, the differences (as shown by the two models of CYP11B1 and CYP11B2) are 

nevertheless big enough to cause differences in the inhibitor binding. Moreover, the two 

testing systems were compared and evaluated and it was remarkable that all compounds that 

displayed an effective inhibitory effect in the cell culture assay were also active in the fission 

yeast system (Bureik et al. 2004).  
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Although several compounds were reported using these two testing systems as selective 

inhibitors of CYP11B2, the reported compounds were not ‘druggalbe’ compounds, which 

make their use as drugs or lead compounds difficult. 

In conclusion, each one of the two test systems mentioned before possess advantages 

and disadvantages (Table 1.1). So far neither of them could be considered as high or even 

medium throughput screening system, as they are radioactive-dependent typical inhibition 

assays, in which the enzyme activity is monitored, and a multiple concentration-response 

curve is used to generate the IC50 values. Using such multiple-concentrations assays at early 

(screening) stages of drug discovery is very time-and resource-intensive; therefore, further 

work is still needed to improve the fission yeast system for higher sensitivity and to allow 

medium or high throughput screening conditions.   

 

Table 1.1. Comparison of the yeast and mammalian recombinant systems for the 
development and analysis of potential selective inhibitors 
 

 

 

 

 

 

 

1.3. Fission yeast Schizosaccharomyces pombe as a model system 
 

Fission yeast Schizosaccharomyces pombe is a unicellular eukaryote belonging to the 

Ascomycetes (Sipiczki 2000). P. Lindner first described it in 1893, and since it was originally 

isolated in millet beer from eastern Africa, the yeast was called pombe which means beer in 

Swahili, and it was called also fission yeast as it divides by fission as opposed to budding 

spores.  

In comparison to baker’s yeast Saccharomyces cerevisiae (S. cerevisiae), the whole genome 

of S. pombe is only slightly bigger in size (13.8 Mb), and is distributed between chromosomes 

I (5.7 Mb), II (4.6 Mb) and III (3.5 Mb) (Smith et al., 1987), together with a 20 kb 

mitochondrial genome (Lang et al., 1987). Fission yeast has only 4824 different genes (Wood 

et al., 2002), which is significantly less than the number of genes in the human genome (about 

23,000) (Pennisi 2003). It is also substantially lower than the 6200 different genes found in S. 

cerevisiae. 

System Advantages Disadvantages 
Mammalian cell lines V79 

cells Widely used for drug evaluation 
Expensive 

Low cost Non mammalian cells S. 
pombe Medium-high throughput possible Cell wall can cause problems 
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Fission yeast S. pombe is a harmless, rapidly growing eukaryote. The cells are cylindrical, 

oval or round, with a diameter of 3-4 μm and a length of up to 7-15 μm (Figure 1.10). 

 

 

 

 

 

 

 

 

 

 

 

Fission yeast cells grow quickly, have a generation time between two and four hours and are 

easy to manipulate on the laboratory level, and since some features such as chromosome 

structure, cell cycle, and ribonucleic acid (RNA)-splicing are more similar between 

mammalian cells and S. pombe than between mammalian cells and S. cerevisiae (Moreno et 

al., 1991; Box et al., 2008; Miyoshi et al., 2008; Takeda et al., 2008), studying S. pombe 

gives the opportunity to understand what happens in mammalian system, which is more 

complex and experimentally more difficult to dell with.  

Moreover, the works carried out in S. pombe have greatly improved our knowledge about the 

eukaryotic cell (Nurse 2000) and its regulation (Moser and Russell 2000), and added to many 

related areas, such as microtubule formation (Hagan and Petersen 2000), cellular 

morphogenesis (Brunner and Nurse 2000), stress response mechanisms (Toone and Jones 

1998), and the response to deoxyribonucleic acid (DNA) damage (Zhou and Elledge 2000). 

Furthermore, S. pombe is an interesting model for studying mitochondria (Chiron et al., 

2007), and has been reported to be an interesting host for recombinant expression of P450 

(Yamazaki et al., 1993; Bureik et al. 2002b; Dragan et al. 2005; Dragan et al., 2006; Peters et 

al., 2007). Therefore, this work will focus on the use of recombinant S. pombe as a whole-cell 

system to develop efficient P450-dependent biotransformation reactions for steroid 

hydroxylation and drug discovery.  

 

 

 

Figure 1.10. Picture of the fission yeast 
Schizosaccharomyces pombe from Steve’s place (see 
http://www.steve.gb.com/science/model_organisms.ht
ml). 
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1.4.  Biotechnological applications of the 11β-Hydroxylases 

 
Hydrocortisone (cortisol) is an important starting molecule for the synthesis of drugs with 

potent anti-inflammatory or antiproliferative actions. The industrial synthesis of 

hydrocortisone and other glucocorticoids depends currently on hemi-synthesis, which 

involves multiple chemical and biotransformation reactions in order to introduce the 

functionally essential 11β-hydroxy group directly into the steroid scaffold. Several decades 

ago, studies were carried out to identify 11β-hydroxylating microorganisms and, as a result, 

several suitable species such as Cunninghamella blakesleeana, Curvularia lunata and 

Cochliobolus lunatus have been reported (Hanson et al., 1953; Fried et al., 1955; Zakelj-

Mavric et al., 1990).  

The 11β-position is axial and therefore more strongly hindered than the 11α-position by 1,3-

diaxial interactions with the C18- and C19-methyl groups and the 8β-hydrogen atom. This can 

explain why the microbial steroid 11β-hydroxylases generally proceed at lower yields and 

with more side-reactions (Megges et al. 1990). The 11β-hydroxylases of Curvularia lunata is 

an extremely labile enzyme (Zuidweg 1968) and seems to catalyse in addition to the 11β-

hydroxylation, the 10β and 14α hydroxylation when 19-nortestosterone is used as substrate 

(Lin and Smith 1970). However, this enzyme was first purified and characterized in 1993. It 

showed a turnover rate of 207 nmol/min per nmol P450 (Suzuki et al., 1993).  Cochliobolus 

lunatus was shown to efficiently hydroxylate progesterone at both 11β- and 14α-positions into 

mono- and dihydroxy-products. In addition, this fungus displays other minor hydroxylation 

and side-chain cleavage reactions.  

In the case of the 11α-hydroxylase, a comparison of 11β-hydroxylase on the basis of their 

specific activity was not possible, but comparative studies demonstrated C. lunata to be more 

effective than Streptomyces fradia and C. blakesleeana. 
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1.5. Aim of the work 
 

To apply cytochrome P450s in biotechnology either whole-cell systems expressing the P450 

isoforms of interest have to be developed or self-sufficient systems avoiding NAD(P)H 

regeneration have to be used. In general, whole-cell systems are used more often than (partly) 

isolated enzymes in biotechnological processes (Straathof et al., 2002). 

The main topic of this work consisted in the development of an efficient hydrocortisone- 

producing whole-cell system.   

Hydrocortisone (Cortisol) is used as all other glucocorticoids as important anti-inflammatory 

agent and generally requires an 11β-hydroxy group as a functionally essential entity. During 

the industrial synthesis of glucocorticoids, the microbiological introduction of the 11β-

hydroxy group into the steroid scaffold not only represents the most costly synthesis step, but 

also the step whereby most of the losses occur due to the formation of by-products (Dragan et 

al. 2005).  

In recent years, it has been demonstrated that the fission yeast Schizosaccharomyces pombe is 

a very suitable model system for the investigation of P450 dependent steroid hydroxylases 

(Bureik et al. 2002a; Bureik et al. 2002b; Dragan et al. 2005; Dragan et al. 2006). During 

these studies, the construction of recombinant fission yeast strains that functionally express 

human CYP11B1 was reported. In these strains (named CAD1 (Bureik et al. 2004) and SZ1 

(Dragan et al. 2005), respectively), 11β-hydroxylation of RSS was accomplished without the 

need for coexpression of the other components of the mitochondrial P450 electron transfer 

chain (Adx and AdR). 

While the hydrocortisone production efficiency using strain SZ1 is considerably higher than 

the values reported for production by other steroid 11β-hydroxylation systems with 

recombinant microorganisms (e.g. those from bovine CYP11B1 expressed in baker’s yeast 

Saccharomyces cerevisiae (Dumas et al., 1996; Dragan et al. 2005)), all bioconversion 

activities published to date appear to still be not competitive enough for the consideration of 

their use for industrial applications. Therefore, the purpose of this work was to improve the 

efficiency of hydrocortisone bioproduction in the CYP11B1-expressing fission yeast. In this 

context, it is of special interest to determine whether the coexpression of the corresponding 

mitochondrial electron transfer partners (AdR, Adx) is capable of directly improving the 11β-

hydroxylation activity of CYP11B1-expressing fission yeast strains.  
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In addition to the wild type of Adx, two mutants that were previously reported by our group to 

have enhanced affinity for the cytochrome P450 (Schiffler et al., 2001; Bichet et al., 2007) 

were also included in this work to determine whether a higher 11β-hydroxylation activity of 

CYP11B1 can be achieved by substituting AdxWT with the Adx mutants. 

 

The second part of this work consisted in the development of a medium or high throughput 

screening system for the discovery of aldosterone synthase inhibitors. These inhibitors can be 

used as lead compounds or drugs for the treatment of aldosterone overproduction-related 

diseases (Hakki and Bernhardt 2006; Baston and Leroux 2007; Schuster and Bernhardt 2007). 

As mentioned before (see subsection 1.2.9) two systems for evaluating compounds with 

respect to their inhibitory effect on human CYP11Bs have been developed in our group, the 

yeast system using recombinant S. pombe (Bureik et al. 2002b; Ehmer et al. 2002; Dragan et 

al. 2005), and the mammalian cell culture system using recombinant V79 cells (Denner et al. 

1995a; Denner et al. 1995b). Although fission yeast test system allows a convenient and 

effective testing of CYP11Bs inhibitors, no screening system has been reported. Moreover, 

the established testing system is a radioactive-dependent typical inhibition assay, in which the 

enzyme activity is monitored, and a multiple concentration-response curve is used to generate 

the IC50 value. Using such multiple-concentrations assays at early (screening) stages of drug 

discovery is very time-and resource-intensive; therefore, the target of this work was to 

develop a medium or a high throughput screening system (HTS) for the discovery of 

aldosterone synthase inhibitors. 

To accomplish this goal, to develop and execute an efficient, rapid, and reproducible S. 

pombe screening assay, an automated screening technology plate-format had to be 

established. In this context, it is of special interest to optimise the steroid hydroxylation assay 

for the 96-well plate format and to determine whether a one-point assay can be developed and 

used instead of the multiple points assay. The use of one-point assay will increase the 

throughput of the screening system.  

Additionally, the steroid detection method has to be investigated and optimised in order to 

allow the screening of large numbers of compounds and to achieve a high or even medium 

throughput screening system.   
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2. Materials & Methods 
 

2.1. Materials 
 

2.1.1. Microorganism growth media 
 

All following media were prepared and sterilised by autoclaving on a liquid cycle (20 min at 

121 °C) and stored in cold room. Solid form was obtained by setting up a 2% (w/v) agar 

concentration.  

 

2.1.1.1.  Growth media for Escherichia coli (E. coli) 
 

 LB medium (Luria-Bertani)  
 

25 g powder from DifcoTM LB Broth, Miller (Luria-Bertani) (Becton, Dickinson and 

company) was dissolved in 1 L of distilled water and the pH was adjusted to 7.5 with drop 

NaOH or HCl.  

LB formula per litter is shown in Table 2.1 below. 

 

Table 2.1. Composition of LB medium 
 

Tryptone 10 g 

Yeast extract 5 g 

Sodium chloride 10 g 

 

When needed, ampicillin was added to a final concentration of 100 µg/ml. 

 

 SOC medium 

 

SOC is a suitable medium for use in the final step of cell transformation to obtain maximal 

transformation efficiency of E. coli (Hanahan 1983).  
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Table 2.2. Composition of SOC medium 
 

Tryptone 2.0 % 

Yeast extract 0.5 % 

KCl 2.5 mM 

MgCl2•6H2O 10.0 mM 

Mg SO4 10.0 mM 

NaCl 10.0 mM 

Glucose 20.0 mM 

 

 

2.1.1.2. Growth media for Schizosaccharomyces pombe (S. pombe)  
 

 EMM (Edinburgh minimal medium) 

 

EMM is a minimal medium for the culturing of S. pombe, and is prepared with the following 

composition as shown in the Table below.  

 

Table 2.3. Composition of EMM medium 
 

Potassium hydrogen phthalate 12.0 g (14.7 mM) 

Na2HPO4 8.8 g (15.5 mM) 

NH4Cl 20.0 g (93.5 mM) 

Glucose  80.0 g (111.0 mM) 

The pH must be adjusted to be 5.4- 5.8; subsequently the vitamins, minerals and salt have 

to be added as shown in the table below, and filled up to 4 L with distilled water.  

Salt stock (x50)* 80.0 ml 

Vitamin stock (x1000)* 4.0 ml 

Mineral stock (x10,000)* 0.4 ml 

 

* For supplements, see appendix  

 

 



Materials & Methods                                                                                                         25                              

 

For culturing of S. pombe the needed supplements have to be added for each strain (as shown 

in Tables 2.6, 3.6) with an end concentration of 0.01% (w/v) for each supplement. When 

needed, thiamine with final concentration of 5 µM was added to suppress the nmt1 promoter. 

  

 YEA: yeast extract medium and supplements 
 

YEA medium is a rich and complete medium for the culturing of S. pombe, and is prepared as 

shown below in the Table.  

 

Table 2.4. Composition of YEA medium 
 

Yeast extract 5.0 g (0.5% w/v) 

Glucose 30.0 g (3.0% w/v) 

adenine, histidine, leucine, uracil 0.1 g each (0.01% w/v) 

Distilled water Up to 1.0 L 

 

 

 2X YEA with 25 % glycerol 
 

This medium is used to prepare glycerol stock cultures from S. pombe strains, in order to 

freeze them by -80oC. 

 

Table 2.5. Composition of 2X YEA with 25 % glycerol medium 
 

Yeast extract 1.0 g 

Glucose 6.0 g 

adenine, histidine, leucine, uracil 0.02 g each 

Distilled water 75.0 ml 

Glycerol 25.0 ml 
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2.1.2. Microorganisms 
 

Microorganisms used in this work are summarised in Table 2.6 below.  

 

Table 2.6. Microorganisms used in this work 
 

 

 

2.1.3. Plasmids 
 

 pNMT1-TOPO® 
 

Fission yeast vector pNMT1-TOPO (Invitrogen; Carlsbad, CA) was used for all subcloning 

steps for the development of AdR expression plasmids, and as a starting point for the 

construction of a new expression vector bearing two expression cassettes for Adx and AdR, 

respectively. 

This vector uses the TOPO I ligation strategy and is mainly designed to be used for 

expression of cDNA in S. pombe under the control of the nmt1 promoter (Maundrell 1990), 

which is the strongest known inducible promoter of S. pombe (Forsburg 1993). An autosomal 

replicating sequence (ars1) directs the high-copy maintenance in S. pombe. The LEU2 ORF 

from S. cerevisiae under the control of the SV40 promoter allows auxotrophic selection in 

leu1- hosts. Biological amplification in E. coli is possible due to a pUC ORI and an ampicillin 

resistance ORF enables the selection of transformed E. coli colonies in the presence of 

ampicillin. An additional feature represents the opportunity of tagging the protein of interest 

with the Pk tag (Craven et al., 1998) for immunologic detection and a hexahistidine (his6) tag 

Name 
(Organism) 

Genotype Supplements  Reference 

TOP10F` 
(E. coli) 

F- mcrA Δ (mrr-hsdRMS-
mcrBC)Φ80lacZΔ M15 Δ lacΧ74 

recA1deoR araD139 Δ (araleu)7697 galU 
galK rpsL (StrR) endA1 nupG 

- US Patent 
5,487,993 

(Invitrogen; 
Carlsbad, CA) 

MB164 
 (S. pombe) 

NCYC2036/pINT5-CYP11B2 integrant leucine  (Bureik et al. 
2002b) 

SZ1 
(S. pombe) 

h- ura4-dl18 leu1::pCAD1-CYP11B1 leucine  (Dragan et al. 
2005) 

1445 
(S. pombe) 

h- ade6.M210 leu1.32 ura4.dl18 his3.Δ1 adenine, leucine, 
uracil, histidine  

(Burke and Gould 
1994) 
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Figure 2.1. pNMT1-TOPO vector map (Invitrogen; Carlsbad, CA). 
Pk tag is the C-terminal peptide containing the V5 epitope, Pnmt is nmt1 
promoter, S. pombe ars1 origin of replication for non-integrative high-
copy maintenance of the plasmid in S. pombe cells, S. cerevisiae LEU2 
auxotrophic marker for selection of yeast transformants.

for purification with metal-chelating resins. Moreover, the addition of polyhistidine tags has 

sometimes a stabilising effect on the expressed protein (Nonaka et al. 1998). Further 

information can be extracted from Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 pREP42 Pk C 
 

A vector for the expression of tagged proteins in Ura4 - S. pombe strains under the control of 

the nmt1 promoter (Craven et al. 1998). An autosomal replicating sequence (ars1) directs the 

high-copy maintenance in S. pombe. The Ura4 ORF allows auxotrophic selection in Ura4 - 

hosts. Furthermore, this vector enables the tagging of the protein of interest with the Pk tag 

for immunologic detection (Figure 2.2). 
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 Adx expression plasmids  
 

Adx expression plasmids were a kind gift of Dipl. Biol. Calin-Aurel Dragan. (Derouet-

Hümbert et al., 2007) and are listed in the Table below. For the construction of Adx 

expression plasmids, the cDNA of bovine wild-type Adx was PCR-amplified and cloned into 

the fission yeast expression vector pNMT1-TOPO to yield pNMT1-AdxWT. Subsequently 

plasmid pNMT1-AdxWT was subjected to site-directed mutagenesis yielding pNMT1-

AdxS112W and pNMT1-AdxD113Y (Derouet-Hümbert et al. 2007). 

 

 

 

 

Figure 2.2. pREP42 Pk C vector map.  
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Table 2.7. Adx expressing plasmids used in this work (Derouet-Hümbert et al. 2007) 
 

 

 

 

 

 

 

 

 

 

2.1.4. Oligonucleotides  

 
All primers used during this work were obtained from the company BioTeZ (Berlin-Buch, 

Deutschland) and purified via HPLC. The sequences as well as the purpose of each 

oligonucleotide used in this work are given in the appendix section. 

5’ fluorescence labelled oligonucleotides (fluorophore IR800) used for DNA sequencing with 

a LicorTM-DNA sequencer 4000 were purchased from MWG Biotech. The applied 

sequencing primers are also listed in the appendix section. 

 

2.1.5. Library of pharmacologically active compounds (LOPAC) 

 
A library of 1268 compounds from the LOPAC1280 library (Library of pharmacologically 

active compounds) was obtained from SIGMA (Deisenhofen, Germany) and is shown in the 

appendix section. The library is a collection of high quality, innovative molecules that span a 

broad range of cell signalling and neuroscience areas. 

The complexion of the investigated library reflects the most commonly screened targets in the 

field of drug discovery, and it contains marketed drugs, failed development candidates and 

“gold standards” that have well-characterised activities. These compounds are the result of 

lead optimisation efforts and thus, possess a great deal of value, having been rationally 

designed by structure activity relationship (SAR) studies. For more information about the 

LOPAC1280 library see   

http://www.sigmaaldrich.com/catalog/search/ProductDetail/SIGMA/LO1280 

 

Plasmid Insert Selection marker 

pNMT1-AdxWT AdxWT LEU2 

pNMT1-AdxD113Y AdxD113Y LEU2 

pNMT1-AdxS112W AdxS112W LEU2 

http://www.sigmaaldrich.com/catalog/search/ProductDetail/SIGMA/LO1280
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Figure 2.4 The pipetting robot (Tecan Aquarius, 
Swizerland). 

2.1.6. Mega Block plates  

 
Two different kinds of Mega Block plates from VWR (Darmstadt, Germany) were used as 

shown below in Figure 2.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the 96-well plates are used to perform the steroid hydroxylation, an automated liquid 

handling system is needed to manipulate the 96-well plates. For this reason, the pipetting 

robot (Tecan Aquarius, Switzerland) (Figure 2.4) was used and several programs that enable 

the manipulation of plates were developed in this work.  

  

 

 

 

 

 

 

 

 

 

Mega Block 12-well plate (22ml) Mega Block 96-well plate (2.2 
l)

Figure 2.3. The Mega Block plates from VWR used during this work. The 96-well plate 
was used to perform the hydroxylation assay, whereas the 12-well plate was applied 
essentially for the preparation of the test as will be described in details below.  
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2.2.  Methods  
 

2.2.1. Molecular biology methods 
 

Unless otherwise noted, all genetic methods applied during this work were carried out 

according to the standard methods as described previously (Sambrook and Russell 2001). 

  
 
2.2.1.1.  pNMT1- TOPO cloning 
 

TOPO® Cloning depends on the DNA topoisomerase I enzyme, which functions both as a 

restriction enzyme and as a ligase. Its biological role is to cleave and rejoin DNA during 

replication. Vaccinia virus topoisomerase I specifically recognizes the pentameric sequence 

5´-(C/T)CCTT-3´ and forms a covalent bond with the phosphate group of the 3´ thymidine. It 

cleaves one DNA strand, enabling the DNA to unwind. The enzyme then religates the ends of 

the cleaved strand and releases itself from the DNA (Shuman 1994). To harness the religating 

activity of topoisomerase, pNMT-TOPO® vector is provided linearized with topoisomerase I 

covalently bound to each 3´ phosphate. This enables the vector to ligate DNA sequences with 

compatible ends (Figure 2.5) (Shuman 1994). In only five minutes at room temperature, the 

ligation is complete and ready for transformation into E. coli. 

 

 

 

 

 

 

 

 

 

 

The amplification of cDNA prior to cloning was carried out with PCR and the PfuTurbo® 

DNA Polymerase from Stratagene. Since an A-3´overhang is needed to perform the TOPO® 

cloning, the PCR product was then incubated at 72oC for ten minutes with the DNA 

Figure 2.5. TOPO TA Cloning® of Taq-amplified DNA (Invitrogen; Carlsbad, CA). 
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polymerase Taq, which has a nontemplate-dependent terminal transferase activity that adds a 

single deoxyadenosine (A) to the 3´ ends of PCR product.  

The DNA was then analysed by agarose gel electrophoresis and precipitated as described in 

subsection 2.2.1.3, dissolved in water and used for the TOPO® cloning. 

To perform the TOPO® cloning 4 µl from the DNA suspension was incubated with 1 µl 

pNMT1-TOPO® Vector and 1µl salt solution for 5 minutes at room temperature, finally 2 µl 

from the reaction mixture was then used to transform E. coli. The transformation was carried 

out using the TOP10 chemically competent E. coli, and heat-shock method at 42oC for 30 

seconds. The transformed cells were then resuspended in SOC medium, plated on ampicillin-

containing LB medium plates and incubated at 37oC for 24 hours. Positive clones were 

identified and isolated after performing colony PCR. 

 

2.2.1.2. Amplification of the human AdR 
 

The AdR cDNA was PCR-amplified using PfuTurbo® DNA Polymerase from Stratagene. The 

compositions of a typical reaction as well as the applied PCR-conditions are shown below. 

 

Sample composition: 

Pfu -poylmerase Buffer 

(10x) 

5.0 µl 

dNTP (5 mM) 1.0 µl 

Forward primer (10 µM) 1.0 µl 

Reverse primer (10 µM) 1.0 µl 

Template (100 ng/µl)  1.0 µl 

Pfu -poylmerase (3 u/µl) 0.5 µl 

dest.H2O 40.5 µl 

 

PCR-program:  

Segment Number of cycles Temperature Duration 

1 1 95oC 5 minutes 

95oC 30 seconds 

48oC 30 seconds 

2 35 

72oC 4 minutes 

3 1 72oC 10 minutes 
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The PCR amplification product was then analysed on 1% (w/v) agarose gel, isolated from the 

gel and precipitated as shown below.    

 

2.2.1.3. DNA electrophoresis and manipulation   
 

Products from PCR and endonuclease reactions were analysed by agarose gel electrophoresis 

using agarose mass concentrations ranging from 0.7 % to 1.5 % (w/v) in 0.5X TBE. The 

Smart Ladder from Eurogentec (Liège, Belgium) was used as reference DNA. 

The ethidium bromide stained DNA fragment of interest was then isolated from the agarose 

gel by cutting the band of interest. The band was then transferred to a bottom perforated 0.5 

mL flask filled with saline treated glass wool (Supelco, Bellefonte, PA, USA). The 0.5 ml 

flask containing the gel and the glass wool was set on an empty 1.5 ml flask. This assembly 

was centrifuged at 8*103 g for 10 min at 4°C. Subsequently the DNA in the flow-through was 

precipitated with ethanol (EtOH) and sodium acetate (NaAc) (Sambrook and Russell 2001). 

DNA concentration was determined spectroscopically by measuring the absorption at 260 nm. 

According to Hagemann (Hagemann 1990) 1 AU260 corresponds to a DNA concentration of 

50 μg/ml. 

 

2.2.1.4. DNA restriction and ligation 
 

Restriction endonucleases were from NEB (New England Biolabs, Beverly, MA, USA), 

Roche Diagnostics (Basel, Switzerland), and from Promega (Madison, WI, USA). All 

restriction reactions were performed according to the manufactures instructions in the 

recommended buffers. Double restrictions were simultaneously performed in the most 

appropriate buffers. Ligation of DNA fragments were performed using the commercially 

available T4 DNA ligase™ from NEB (New England Biolabs, Beverly, MA, USA). The 

ligation reactions were performed according to the manufactures instructions, at different 

molar ratios of linker to insert (Sambrook and Russell 2001). 

 

2.2.1.5. Plasmid purification and DNA sequencing  
 

Plasmid purification was performed using a commercially available kit from Macherey-Nagel 

(Nucleobond® midi plasmid preparation kit) according to the manufacturer’s instructions. 
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After purification, the plasmid concentration was determined spectroscopically by measuring 

the absorption at 260 nm as mentioned before.  

Correctness of all DNA inserts was verified by automatic sequencing using a slightly 

modified protocol of the didesoxynucleotide method developed by Sanger et al. (Sanger et al., 

1977). Primers used for DNA sequencing were 5’ fluorescence labelled (MWG Biotech) 

enabling a laser-scan detection on an automated DNA sequencer (LicorTM 4000 DNA 

sequencer). PCRs were performed with the Thermo-SequenaseTM Cycle Sequencing Kit 

from Amersham according to the manufactures instructions. Mrs. Natalie Lenz or Mrs. 

Katharina Bompais thankfully carried out all DNA sequencing reactions being part of this 

work. 

 

2.2.2. Microbiology methods 
 

2.2.2.1. E. coli cultivation and transformation 
 

Unless otherwise noted, E. coli cells were grown in LB medium (see 2.1.1.1) and incubated at 

37°C and 200 rpm. Media used for the cultivation of transformed E. coli cells always 

contained 100 μg/ml ampicillin. Transformation of competent E. coli cells after addition of 

approximately 50 ng plasmid-DNA was performed via heat-shock (30 seconds at 42°C; 

(Sambrook and Russell 2001)). Chemically Competent E. coli cells were from invitrogen or 

generated following a protocol published by Sambrook et al. (Sambrook and Russell 2001). 

 

2.2.2.2. S. pombe cultivation and transformation 
 

The starting point for all S. pombe cultures was a fresh plate, which was prepared by streaking 

an agar plate containing the desired solid medium from a glycerol stock, and incubated at 

30°C for approximately two to three days. The colony of interest was transferred to a 10 ml 

EMM medium containing the needed supplements (see Tables 2.6, 3.6) to prepare a pre-

culture, which was incubated at 30°C and 180 rpm overnight. The pre-culture was then 

centrifuged and the pellet was used to inoculate a 100 ml fresh medium, this 100 ml main 

culture was then incubated under the same condition like the pre-culture.  

In order to transform fission yeast S. pombe, a certain number of cells are needed to perform 

the transformation. For this reason, a culture of 100 ml was prepared as mentioned before and 

the cell density (δcell) was determined microscopically by using a haemocytometer for optical 
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counting. Cells were only used if δcelll ∈ [5⋅106-107] cells/ml, whereby the total number of 

cells used for transformation had to be 109 to 2⋅109 cells.  

The following steps describe the process that was applied to make the S. pombe cells 

competent in order to perform the transformation. The first step comprised a centrifugation 

step at 3*103 g for 5 min and a washing step with 5 ml distilled water. After a second 

centrifugation step under the same condition as above, the cells were resuspended in 1 ml of 

0.1 M LiAc pH 4.9 and transferred to a 1.5 ml flask. A volume of 100 µl of the above cell 

suspension was used for each transformation. An amount of 10 µg of DNA solution was 

added to each transformation. Following incubation at RT for 10 min, 260 µl of 40% 

PEG 4000 in 0.1 M LiAc pH 4.9 solution were added and gently mixed with the cell 

suspension. After one hour incubation at 30°C and 103 rpm, 43 µl DMSO was added, mixed 

and a heat shock was applied at 42°C for 5 min. Quickly, 500 µl water was mixed with the 

cell suspension that was then centrifuged at 3*103 g for 5 min and washed again with 500 µl 

water. After a second centrifugation step (3*103 g, 5 min) the cells were resuspended in 500 

µl water and 100 µl were streaked on the desired plate. The plates were then incubated at 

30°C for 3-4 days. The resulted colonies were then analysed by colony PCR. 

 

2.2.2.3. ura4 gene disruption in S. pombe 
 

A gene disruption process was carried out to disrupt the ura4 gene in fission yeast SZ1, in 

order to create a new S. pombe strain that already express CYP11B1 (Dragan et al. 2005), and 

posses in addition to leucine, uracil as second auxotrophic marker. This process will enable 

then the transformation of a new strain with two plasmids at the same time.  

The gene disruption was done essentially according to Akio Tohe-e (Toh-e 1995). The 

transformed yeast cells were selected depending on the new auxotrophic marker by multiple 

replica plating in the presence of 5-fluoroorotic acid (5-FOA), which generates a toxic 

metabolite in ura4+ strains (Boeke et al., 1987). 

The Hind III fragment containing the ura4 disruption cassette was excised from the plasmid 

pAT539 and used as donor for the transformation of SZ1 from ura4+ to ura4- (Toh-e 1995). 

The transformation of S. pombe (SZ1) was carried out as described in subsection 2.2.2.2, and 

transformed cells were then plated on EMM containing 0.01% leucine, 0.01% uracil and        

1 mg/ml fluoroorotic acid (5-FOA) as selection factor (Boeke et al. 1987). Multiple replica 

plating was carried out to isolate the ura4- fission yeast strain. 
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2.2.3. Biochemical methods  
 

2.2.3.1. Subcellular fractionation and protein preparation from S. pombe 
 

A total amount of 2.5⋅108 cells were centrifuged at 3*103 g for 5 min and resuspended in 5 ml 

water. After a second centrifugation step, the cells were resuspended in 200 µl of buffer B1, 

mixed with additional 200 µl of sorbitol and incubated at RT for 10 min. Following 

centrifugation (3*103 g, 5 min) and discarding of the supernatant, the cells were resuspended 

in 1 ml buffer B2 and incubated at 30°C with 20 mg of Zymolyase 20T (ICN Biomedicals, 

Aurora, OH, USA). Zymolyase 20T is an enzyme mixture from Arthrobacter luteus with the 

essential activity β-1,3-glucan laminaripentaohydrolase which is responsible for cell wall 

degradation and sphaeroblast formation. Incubation at 30°C was done until the sphaeroblast 

ratio reached 80% to 100%. The cells were then centrifuged (3*103 g, 5 min) and resuspended 

in protein extraction buffer containing 1 mM PMSF and 1 mM DTE. Cell breakage was 

performed in a Potter homogenizer with 900 rpm in an ice water bath. The liquid obtained 

from this step was named the raw homogenate. 

The following differential centrifugation steps were applied in order to isolate the subcellular 

component of interest. Nuclei and cell debris were easily centrifuged at 103 g for 5 min, 

whereas mitochondria were isolated after centrifugation at 104 g for 1 h. The supernatant from 

the mitochondria isolation step is called the cytosolic fraction. The mitochondria were 

suspended in 500 µl protein extraction buffer containing 1 mM PMSF, 1 mM DTE and were 

designated as mitochondrial fraction. For the purposes of this work only cytosolic and 

mitochondrial fractions were prepared from S. pombe cultures. 

Disruption of mitochondria was performed using the Emich USD 30 sonicator device set to 

40 % of maximal amplitude. Two consecutive 15 s pulses interrupted by a pause of 30 s were 

applied to the mitochondrial fractions on ice.  

The protein concentration in each fraction was measured using the BC assay kit from 

interchim® (Montlucon Cedex, France) according to the manufactures instructions. 

 

Sorbitol   1.2 M 

 

B1 

Tris-H2SO4, pH 9.4          100.0 Mm 
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B2 

Sorbitol    1.2 M 
KH2PO4, pH 7.4  20.0 mM  
 

 

Protein extraction buffer 

Tris-HCl, pH 7.5        1.0 M 
MgCl2                        1.0 M 
EDTA   0.5 M 
DTT   1.0 M 
IGEPAL CA-630       100% (w/v)  from Sigma® (Steinheim, Germany) 
 
 
 
2.2.3.2. SDS (Sodium dodecylsulfate) polyacrylamid gel electrophoresis 

and gel blotting 
 

Separation of proteins according to their molecular mass was carried out using the Laemmli 

discontinuous gel electrophoresis (SDS-PAGE) method (Laemmli 1970). Gels used for the 

separation of Adx and AdR consisted of a 15 % acrylamide containing separation gel 

superimposed with a stacking gel (5 % acrylamide). Sample buffer composition was as 

described by Sambrook et al. (Sambrook and Russell 2001). 

The reference protein mix for molecular weight identification was the pre-stained broad range 

protein marker purchased from NEB (New England Biolabs, Beverly, MA, USA).  

Blotting of proteins separated on a SDS gel onto a nitrocellulose membrane (pore size 0.2 

μm) was performed using a semi-dry electrophoretic unit from BIO-RAD® (München, 

Germany). 

Blotting of mini gels (8*8 cm) was carried out for 15-30 min and 10-15 V, whereas middle 

gels (16*17cm) were blotted for 30-60 min and 15-25V according to the manufactures 

instructions. 

 

2.2.3.3. Immunologic detection of proteins  
 

 Antibodies 
 

The detection of proteins after blotting onto nitrocellulose was performed using a monoclonal 

anti-Pk tag antibody (MCA1360, Serotec; Oxford, UK) or polyclonal rabbit antibodies 
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(Biogenes; Berlin, Germany) raised against bacterially expressed Adx, and peroxidase-

conjugated secondary antibodies (Dako; Glostrup, Denmark). 

 
 
 Western Blotting  

 

The nitrocellulose membrane bearing the transferred proteins (see 2.2.3.2) was blocked with 

Blotto1 for 1h. The primary antibody was added 1:103 diluted for α-Pk tag and 1:2*103 

diluted for α-Adx, respectively, in TBST (Pk tag) for 2 h, in Blotto1 (Adx) for 45 min. After 

the binding reaction, three washing steps with TBST were followed by incubation with the 

secondary antibody, 1:500 diluted in TBST (Pk tag), Blotto1 (Adx) for 30 min. A second 

washing process was carried out twice to remove the excess secondary antibody. 

 
TBST 

Tris-Cl, pH = 8 10.00 mM 
NaCl   150.00 mM 
Tween 20  0.05 % (v/v) 
 

The Blotto1 solution is TBST buffer with 1 % of lyophilised milk powder.  
 

The staining of immunolabelled protein bands was carried out by chlorornaphthol in presence 

of H2O2 via horseradish peroxidase. 

The nitrocellulose membrane from the previous step above was washed twice with PBS. To 

perform the visualization of targeted proteins, 25 ml fresh PBS was added on the membrane, 

10 mg of chloronaphtol was solved in 2 ml absolute ethanol and mixed with 10 µl H2O2 (30 

%) prior to be added on the membrane. After shaking for 10-30 minutes at room temperature, 

the targeted proteins became visible and membrane was then washed and scanned. 

 
PBS, pH 7.3 
 
NaCl                               137.0 mM 
KCl                                 2.7 mM 
Na2HPO4.2H2O              8.0 mM 
KH2PO4                          1.5 mM 
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2.2.4. Steroid hydroxylation assays 
 

The starting point for all bioconversion assays including IC50 determinations was fission yeast 

main culture set up as described in subsection 2.2.2.2. Main cultures with cell densities in the 

range of 107 to 5⋅107cells/ml were used for bioconversion assays. Cells from the main culture 

were washed with EMM, centrifuged (3*103 g, 5 min, 4°C) and resuspended in the 

appropriate assay medium as described in details below.  

The bioconversion assays were initiated by adding the appropriate substrate. After shaking at 

30°C, steroids were extracted with chloroform and measured.  

 

2.2.4.1. Bioconversion assay in Erlenmeyer flasks 
 

In order to follow the time course of the bioconversion process, the bioconversion assay was 

carried out in 300 ml wide-neck Erlenmeyer flasks covered by a cellulose-pot, where multiple 

sampling can be done. 

A fission yeast cell suspension with cell density of 108 cells/ml was prepared using fresh 

EMM medium. A volume of 9.75 ml cell suspension was transferred to the Erlenmeyer and 

the substrate concentration was set up to 1 mM using 250 μl from a 40 mM ethanolic steroid 

stock solution. The flask was then incubated at 30°C and 180 rpm, and multiple samples of 

500 µl were taken at defined time points and stored at -20°C until steroid extraction was 

carried out. 

 

2.2.4.2. Bioconversion in modified 1.5 ml tubes 
 

This bioconversion method is based on 500 µl cultures. In contrast to the method described in 

2.2.4.1, the use of such low-volume cultures allows only the sampling of one time point of the 

bioconversion period and was mainly designed to determine the IC50 values of CYP11Bs 

inhibitors. 

The system requires a simple modification of a conventional 1.5 ml tube (Figure 2.6) in order 

to add an exhaust to the culture flask. A fission yeast cell suspension with cell density of 

5*107 cells/ml was prepared using fresh EMM medium and steroid concentration was set to 

be 100 nM. The incubation was carried out at 30°C and 1400 rpm using a tube shaker 

(thermomixer). After the required assay period, the whole tip-tube content was extracted with 

chloroform (see subsection 2.2.4.3) or stored at -20°C until steroid extraction. 
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Figure 2.6. The construction of a modified 1.5 ml tube (tip-tube). This tip-tube 
format was developed by Dipl. Biol. Calin-Aurel Dragan.. The exhaust channel is 
made of a 200 µl pipette tip that was pressed through the cap of the 1.5 ml tube (A). 
To avoid plastic material blocking the air pathway, a cut was done at the line 
indicated (B) to finally yield a tip-tube (C). 

 

Inhibitors were dissolved in DMSO at different concentrations, and equal volumes were used 

in all cases (including controls). Final concentrations of inhibitors ranged from 100 nM to 25 

µM. Cells were pre-incubated with the respective inhibitor solutions for 15 min prior to the 

addition of 100 nM steroid substrate (11-deoxycortisol or 11-deoxycorticosterone in the case 

of CYP11B1 or CYP11B2, respectively). For the detection of CYP11Bs-dependent steroid 

bioconversion, 0.15 µCi [3H] 11-deoxycortisol or 2.5 nCi [14C] 11-deoxycorticosterone were 

added to each vial, respectively. After 6 h incubation at 30°C and 1400 rpm, steroids were 

extracted with chloroform. The detection of steroid bioconversion or inhibition was 

performed using the high performance thin-layer chromatography (HPTLC) as described 

below. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

2.2.4.3. Steroid extraction  
 

Samples (500 μl) gained from bioconversion assays mentioned before were twice completely 

extracted with 500 μl CHCl3 except where indicated. After vigorous shaking, the aqueous 

phase was pulled out while the organic phase was dried under vacuum. An amount of 10 μl of 

10 mM internal standard steroid was given to the cell suspension prior to steroid extraction in 

case of subsequent non-radioactive HPLC-based quantification assay. 
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2.2.4.4. Steroid analysing methods 
 

2.2.4.4.1. High performance liquid chromatography (HPLC) 
 

After evaporation of the chloroform phase, the steroids were resuspended in acetonitril and 

separated on a Jasco reversed phase HPLC system (Tokyo, Japan) composed of an auto-

sampler AS-2050 plus, pump PU-2080, gradient mixer LG-2080-02 and an UV-detector UV-

2075 plus equipped with a reversed phase Nova-Pak® C18 60Ao 4 μm column from Waters 

(Milford, MA, USA). The column temperature was kept constant at 25°C with a peltier oven. 

The mobile phase used for steroid separation was a mixture of MeOH:H2O(60:40) with flow 

velocity of 0.5 ml/min. Steroids were detected at 240 nm, and peak identification was done 

using the ChromPass software (V.1.7.403.1, Jasco), pure steroids (>99%) were used as 

standards to identify the peaks on HPLC and to construct calibration curve or as internal 

standard to normalize the steroid extraction efficiency. 

 

2.2.4.4.2. High performance thin layer chromatography (HPTLC) 
 

Extracted, dried, radioactive samples were dissolved in 10 μl chloroform and applied on the 

concentrating zone of an HPTLC silica gel 60 F254 plate (Merck, Darmstadt, Germany). The 

mobile phase for chromatography was CHCl3:MeOH:H2O (300:20:1). Radioactive decay 

signals were exposed to BAS-TR2040 (3H) or BAS-IIIS (14C) imaging plates (IP) from Fuji 

(Tokyo, Japan), and scanned with the BAS-2500 phosphoimager (BAS-2500, Fuji; Stamford, 

CT). Pure 10 mM steroid solutions dissolved in EtOH were used as reference substances for 

the identification of bands on the scanned IP. 

Quantification data analysis procedures were performed using the open-source analysis 

software TINA v2.10g. The intensity (I) of a region of interest (ROI) on the imaging plate 

was reported in PSL (phosphostimulated luminescence) units, whereby the background 

exposure signal was subtracted from the raw PSL values prior to conversion calculations by 

the internal background quantification function. The intensity of the radioactive signal (Iradio) 

caused by a certain steroid is proportional to the amount of radioactively labelled steroid 

(nradio).  

 

 

 



Materials & Methods                                                                                                         42                              

 

2.2.4.5. Measuring of steroid bioconversion 
  

Since, the steroids present in sample are chemically and physically very similar molecules, it 

was assumed that the relative loss of steroids during the extraction procedure is equal for all 

steroids. Therefore, the ratio of product formation can be calculated depending on the 

intensity signal (I) of steroid of interest as shown below. 

100*
)()(Pr

)(Pr)%(Pr
SubstarteIoductI

oductIoductR
+

=  

The intensity signal of a steroid is the radioactive signal (Iradio) in the case of HPTLC or the 

peak Area (A) of a certain steroid in the chromatogram with dimension mV.min. in the case 

of non radioactive HPLC.  

This kind of calculation displays the relative ratio of product formation and enables the direct 

comparison of different S. pombe strains and the investigation of the inhibitory effect of 

compounds compared with a negative control. Furthermore, a quantification assay was also 

applied to determine the hydrocortisone (Cortisol) production efficiency over time in the “hit” 

fission yeast strain developed during this work in comparison with the parental strain SZ1. 

The quantification assay was carried out in Erlenmeyer flasks as described in subsection 

2.2.4.1. Steroid extraction was carried out with chloroform in the presence of DOC as internal 

standard to normalize the steroid extraction efficiency. Therefore, the correction factor f, 

defined by the peak areas of the internal standard (IST) as  

sampleIST,

extractednonIST,:
A

A
f −=           

 

was applied to correct the measured peak area of every detected steroid in a particular sample. 

The data analysis relies on the peak area as a function of molar amount that can be easily 

established on the used HPLC system by relating A to different n. The linear function was 

determined for hydrocortisone in the range n ∈ [0.1, 10] nmol pure hydrocortisone (>99 %). 

 

2.2.4.6. Measuring of the inhibition of steroid bioconversion 

(Determination of the IC50 values)  
 

The ratio of a certain steroid product P can be regarded as a function of the inhibitor 

concentration cinh. The inhibition of the production of P (INH(P)) from the substrate is 

therefore defined as 
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)0,P(

),P(1)(P
inh

inh

=
−=

cR
cRINH          

Where R(P,cinh = 0) is the ratio of product in the control reaction without inhibitor. From the 

above formula one can clearly see that when cinh = 0 or when the inhibitor shows no effect at 

all then R(P,cinh = 0) = R(P,cinh) for all cinh and the inhibition is 0.    

Multiplying INH(P) by 100 displays the result in percent inhibition of the control reaction. 

The presentation of the data requires the following substitutions 

 

).log(:
),P(:

inhcx
INHy

=
=

            

After inserting the data in a two dimensional scatter plot a function of the form 

 

baxy +=             

 

is fitted by linear regression. The IC50 value is the inhibitor concentration cinh,50 where 

INH = 0.5 for the production of P. Therefore we rearrange the equation above to 

 

.5.0
a

bx −
=             

 

After back substitution and minor rearrangement we finally get 

 

,10
5.0

50,inh
a

b

c
−

=        Where IC50 = cinh,50. 

 

2.2.5. Structure activity relationship (SAR) study 
 

Structure activity relationship study was performed using the BenchwareHTS DataMiner 

(Tripos). Only the new selective CYP11B2 inhibitors defined in this work were included in 

this SAR study. SAR analysis being part of this work were thankfully carried out by Dr. Katja 

Hübel (Max-Planck-Institute of Molecular Physiology, Dortmund, Germany). 
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2.2.6. Statistical analysis  
 

To evaluate the results; descriptive statistics were applied using the “Statistica” computer 

program. Moreover, t-test for independent samples was applied to evaluate the differences in 

means between two groups (fission yeast strains), whereas the correlation coefficient Pearson 

r, was applied to measure the relation between two or more variables. The results of these 

statistical tests are considered significant when p<0.05. Furthermore, the Z'-Factor (Zhang et 

al., 1999) was used for the evaluation and validation of the screening system developed in this 

work. 

 

2.2.6.1. Descriptive statistics (Measures of variation) 
 

Descriptive statistics were calculated separately for each variable to provide basic information 

as the mean, standard deviation as well as data about the shape of the distribution of the 

variable. 

It is already known that standard deviation σ is a measure of the average deviation of 

measured values around the mean t  and is called in the case of single measurement “error of 

single measurement”. In practice, it is not interesting to know with which probability the 

result of a single measurement is within the range t ± σ, more important is the question of 

how reliable and reproducible is the mean t , which was found with a series of measurements 

and which represents the result of measurement. For this reason the standard deviation of the 

mean, which is often called “standard error of the mean (SE)” will be used in this work to 

measure the standard deviation of the results. The standard deviation of mean say with which 

probability would the mean of a second measurement series found in a given interval around 

the mean found by the first measurement.      

 
 
2.2.6.2. Statistical tests  
 

2.2.6.2.1.  t-test for independent samples 

 
The t-test is the most commonly used method to evaluate the differences in means between 

two groups. For example, the t-test was used in this work to test for a difference in 

hydrocortisone bioproduction efficiency between fission yeast strain that coexpresses the 
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complete mitochondrial chain (CYP11B1+Adx+AdR) and the parental fission yeast strain that 

expresses only the cytochrome CYP11B1. 

 

2.2.6.2.2.  Correlation 

 
Correlation is a measure of the relation between two or more variables. Correlation 

coefficients can range from -1.00 to +1.00. The value of -1.00 represents a perfect negative 

while a value of +1.00 represents a perfect positive correlation. A value of 0.00 represents a 

lack of correlation.  

The most widely used type of correlation coefficient Pearson r was applied to determines the 

extent to which values of the two variables are "proportional" to each other. The value of 

correlation (i.e., correlation coefficient) does not depend on the specific measurement units 

used. Proportional means linearly related; that is, the correlation is high if it can be 

"summarised" by a straight line (sloped upwards or downwards). 

This line is called the regression line or least squares line, because it is determined such that 

the sum of the squared distances of all the data points from the line is the lowest possible.  

This test was applied in this work to investigate the correlation between the inhibition and 

concentration of inhibitor in different test media. 

 

2.2.6.2.3.  Z'-Factor of assay  

 
To evaluate the robustness and reliability of the developed screening system the Z'-factor 

known as “screening window coefficient” (Zhang et al. 1999) that compare the assay’s 

dynamic range to data variation was applied. 

The Z'-factor was determined from the inhibition assays of ketoconazole, clotrimazole and 

miconazole against CYP11B2 in recombinant fission yeast. The calculation of Z'-factor was 

carried out using the following formula: 

Z'
tt NCPC

NCPC

−

+
−=

)*3*3(
1 σσ  

 

Where t and σ are the mean and standard deviation of mean, respectively. PC refers to the 

positive control and NC to negative control.  
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A Z'-factor equal to 1 indicates a perfect assay whereas a Z'-factor above 0.5 indicates an 

excellent screening assay for whole cell systems (Zhang et al. 1999). 
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3. Results   
 

The main topic of this work consisted in the improvement of hydrocortisone bioproduction 

using new recombinant fission yeast strains coexpressing additionally to CYP11B1 the 

corresponding electron transfer partners. In addition to this, a second project focussing on the 

CYP11B2-expressing fission yeast test system was carried out to develop a high throughput 

screening system for the discovery of selective CYP11B2 inhibitors. 

In order to address each project separately the results presented in this section as well as the 

subsequent discussion were divided into independent sections with the following titles: 

• Optimisation of steroid hydroxylation assay for the 96-well plate format 

• Coexpression of the corresponding redox partners in the CYP11B1-expressing fission 

yeast Schizosaccharomyces pombe   

• The development of a cell-based high throughput screening system for the discovery 

of human aldosterone synthase (CYP11B2) inhibitors 

 

3.1. Optimisation of a steroid hydroxylation assay for the 96-well plate 

format 

 
The goal of this part of work was to optimise the steroid hydroxylation assay in fission yeast 

described above in the Material and Methods section in order to use the 96-well plate to 

perform the assay in low-volume culture without the need to use radioactive-labelled 

substrates. This optimisation will give the opportunity to develop a screening assay that dose 

not require the use of radioactively substances that need an especial area in the laboratory.    

 

3.1.1. Steroid bioconversion assay in modified 1.5ml tubes (tip-tube format)  
 

The hydroxylation assay described in subsection 2.2.4 involved the use of radioactive labelled 

substrates when the bioconversion assay is carried out in low-volume culture (tip-tube 

format). Therefore, the aim of this part of work was the optimisation of the hydroxylation 

assay for low-volume cultures without the need to use radioactively labelled substrates. This 

optimisation was carried out using the CYP11B1-expressing fission yeast strain SZ1, and the 

tip-tube format described in subsection 2.2.4.2. The assay was designed to be carried out as 

described in subsection 2.2.4.2 with a cell density of 5*107 cells/ml and 100 nM non-
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radioactive RSS as substrate. After 24 hours incubation at 30°C and 1400 rpm, the steroid 

extraction was carried out with chloroform and the HPLC technique was applied as described 

in subsection 2.2.4.4.1. The HPLC measurement displayed no steroid bioconversion under the 

conditions described before. In order to optimise the hydroxylation assay to get detectable 

conversion on HPLC, the substrate concentration was increased but no conversion was 

detected even after increasing the concentration by 1000-fold (from 100 nM to 100 μM) 

(Table 3.1). In a next step, the cell density of the assay culture was investigated and a 2-fold 

concentrated culture was investigated with different concentrations of the substrate as 

mentioned before. Increasing the cell density and the concentration of substrate to 108 cells/ml 

and 100 μM, respectively, (Table 3.1) displayed detectable steroid bioconversion of RSS into 

F (Figure 3.1) in the tip-tube format.  

   

Table 3.1. Steroid bioconversion parameters (tip-tube format) 

Test Volume 500 µl 
Incubation 

time 
24 hours 

Shaking 
velocity 

1400 rpm 
(Thermo mixer) 

Cell density 
Cells/ml 

5*107 5*107 5*107 108 108 108 

Substrate 
concentration 

100 nM 500 nM 100 μM 100 nM 500 nM 100 μM 

Result No 
conversion 

No 
conversion

No 
conversion

No 
conversion

No 
conversion 

Conversion 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

Figure 3.1. HPLC chromatogram of CYP11B1-dependent 
bioconversion of RSS into F carried out using the tip-tube format. 
The bioconversion was carried out in the tip-tube format using the 
CYP11B1-expressing strain SZ1 with cell density of 108 cells/ml and 100 
μM RSS. Steroids extraction was performed manually with chloroform.   

 

RSS 

F 
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This first optimisation step enabled the coupling of the tip-tube format (low-volume culture) 

with the HPLC technique to perform steroid hydroxylation assay in low-volume culture and 

to measure the steroid bioconversion efficiency using the HPLC technique.  

 

3.1.2. Steroid bioconversion assay in 96-well plate  
 

The hydroxylation assay parameters established in subsection 3.1.1 (Table 3.1) were the 

starting point to develop a hydroxylation assay in 96-well plates.  

Since the hydroxylation assay will be performed in plates, an automated steroid extraction 

technology plate-format had to be developed. This automated technology should enable the 

manipulation of low-volume cultures on large scale and the performance of efficient steroid 

extraction in order to get detectable steroid bioconversion on the HPLC. For this reason, 

several protocols (Script) were developed during this work to perform the preparation of test 

plates and steroid extraction using the Aquarius 96 Multichannel pipetting robot (Tecan 

Aquarius, Switzerland). 

The main idea behind using the Aquarius pipetting robot is to mix the culture with the chosen 

organic solvent, which should not be miscible with water in order to extract the steroids from 

the culture. This mixing process must be various enough to resemble a strong shaking effect 

with the ability to separate finally the organic phase in order to perform an efficient HPLC 

measurement. For the development of an Aquarius script that enables the extraction of 

steroids from a 96-well plate, two kinds of organic solvents that have different densities and 

boiling points were investigated. The high boiling range (114-117°C) of 4-Methyl-2-

pentanone disables the fast evaporation of the solvent during the extraction process, which 

prevents any significant loss in the solvent volume. For this reason, it is expected heir to 

recover almost all the solvent that was added to extract the steroids after mixing the two 

phases using the pipetting robot. However the low density of 4-Methyl-2-pentanone (0.8) 

make it lighter than water and, as a result, it forms the upper phase above the culture after 

mixing the two phases. In contrast to this, chloroform has a boiling point of 61.2 °C and a 

density of 1.48, and, as a result, the solvent evaporation is higher in the case of chloroform 

whereas the high density of chloroform locates it under the aqueous phase. For this reason, it 

is important to determine the tip height at which the organic phase is dispensed to perform the 

mixing process and the height at which only the organic phase is aspirated to get pure organic 

phase in order to dray the steroids for the HPLC measurement. 
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Figure 3.2. Z-positions for a tube. 
Z-Travel is the height at which the tip moves from one position to 
another, Z-Start is usually slightly above the rim of the liquid 
container. Z-dispense is the tip height at which liquid is dispensed. Z-
Max is the position in the lowest point of the well/tube of the rack and 
is the lowest possible position the tip is allowed to reach.   

Figure 3.2 below illustrates the different Z positions for a tube in a 96-well plate. This 

coordinates were taken into consideration to develop an Aquarius script to extract the steroids.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the test culture is incubated for 24 hours at 30°C, the volume of the aqueous phase (test 

culture) will decrease. This is due to the evaporation of water and, as a result, 4-Methyl-2-

pentanone (Phase A, Figure 3.2) will display different Z positions above the aqueous phase 

after mixing them prior to perform the steroid extraction process. Hence, it is difficult in the 

case of an organic solvent, which is lighter than water to determine the tip height at which the 

organic phase is aspirated/dispensed to mix the two phases and the height at which only the 

organic phase is aspirated to get pure organic phase. For this reason, chloroform was chosen 

to develop the Aquarius script as it forms the lower phase (Phase B, Figure 3.2) and no 

changes in the Z position are expected. The Aquarius script developed in this work (Table 

3.2) performs several aspirating and dispensing steps in order to mix the organic phase 

(chloroform) with the assay culture. For this reason, several types of programs that determine 

the liquid class were developed. These programs are sets of liquid handling parameters that 

specify speed, airgaps, tip height, etc. Furthermore, and as shown below in Table 3.2 the 

Z

X

Y
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Aquarius scrip performs the steroids extraction process on two levels. In the first level, the 

first volume of chloroform (400 µl) added in Steps 6-9 is strongly mixed with the test culture 

for 50 times (steps 10-13). This strong mixing process resembles a various shaking effect that 

should be enough to extract almost all the steroids from the test culture. The strong mixing 

process is followed by a slow mixing process (steps 14-17) that enables the separation of the 

two phases by getting raid of the air bubbles formed between the two phases during the 

former mixing process. This first extraction level is ended by transferring 200 µl organic 

phase on the HPLC 96-well plate. A second extraction process begins by step 26 in which the 

culture plate receives 200 µl fresh chloroform. The second extraction process is also carried 

out like in the first level. Finally, 150 µl organic phase will transferred to the HPLC plate. 

This extraction program recovers 350 µl organic phase from the 600 µl chloroform added 

during the extraction process (Table 3.2). 

  

Table 3.2. Steroid extraction script developed during this work. Red and blue sentences 
represent the liquid class programs and positions in the Tecan working area, respectively 
(Figure 3.3). For more information about the liquid class programs, see appendix  
 

Step   Purpose  
1 Get 

DITIs* 
Grid1; site: 4 (TeMO_Diti_200µl) Getting Tips 

2 Begin loop                           5 times “Chloroform transfer”  
 3 Aspirate                   200 µl (Program 1)     

       “Chloroform pool” 
 4 

 

Dispense                  200 µl (Program 1) 
                                     “Chloroform plate”  

Filing up a 
96-well 

plate with 
chloroform 

5 End loop “Chloroform transfer”  
6 Begin loop 2 times “Chloroform transfer”  
 7 Aspirate                   200 µl (Program 1) 

                                       “Chloroform plate”  
 8 

 

Dispense                  200 µl (Program 1) 
                                           “Test plate”  

Adding 400 
µl 

chloroform 
(1st time 

extraction) 
9 End loop “Chloroform transfer”  
10 Begin loop 50 times “Chloroform mixing”   
 11 Aspirate                  200 µl (Program 2)   

                                          “Test plate”  
 12 

 

Dispense                  200 µl (Program 2) 
                                           “Test plate”  

Strong 
mixing to 
extract the 

steroids 
(Shaking-
like effect) 

13 End loop “Chloroform mixing”  
14 Begin loop 20 times “Chloroform relaxing”  
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 15 Aspirate                          200 µl (Program 3) 
                                                “Test plate”  

 16 

 

Dispense                         200 µl (Program 3) 
                                                  “Test plate”  

17 End loop “Chloroform relaxing” 
18 Wait timer  Timer 1: 300 sec 
19 Start timer 1 

Getting raid 
of the air 
bubbles 
formed 

between the 
organic and 

aqueous   
phases 

during the 
extraction 

process 
20 Begin loop 1 time “ Transfer of extract”   
 21 Aspirate                            200 µl (Program 1) 

                                                    “Test plate”  
 22 Dispense                            200 µl (Program 1) 

                                                     “Test plate”  

Checking if 
the 200 µl 

organic 
phase pure 

is, unless the 
process can 
be stopped 
at this step 

and repeated 
by step14 

 23 Aspirate                              200 µl (Program 1) 
                                                     “Test plate”  

 24 

 

Dispense                              200 µl (Program 1) 
                                                      “HPLC plate”  

Transfer of 
200 µl to the 
HPLC plate 

25 End loop “ Transfer of extract”  
26  Aspirate                               200 µl (Program 1) 

                                                   “Chloroform plate”  
27  Dispense                               200 µl (Program 1) 

                                                       “Test plate”  

Adding 200 
µl 

chloroform 
(2nd time 
extraction) 

28 Begin loop 20 times “Chloroform mixing”  
 29 Aspirate                                  200 µl (Program 2)   

                                                       “Test plate”  
 30 

 

Dispense                                 200 µl (Program 2)   
                                                       “Test plate”  

Strong 
mixing to 
perform 
steroid 

extraction 
(Second 

time) 
31 End loop “Chloroform mixing”  
32 Begin loop 10 times “Chloroform relaxing” 

 
 

 

 33 Aspirate                               200 µl (Program 3) 
                                                       “Test plate”  

 34 

 

Dispense                              200 µl (Program 3) 
                                                       “Test plate”  

35 End loop  
36 Wait timer  Timer 2: 150 sec 

Getting raid 
of the air 
bubbles 
formed 

between the 
organic and 
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Figure 3.3. Tecan working area during the extraction 
process 

37 Start timer 2 aqueous   
phases 

during the 
extraction 

process 
38  Aspirate                             150 µl (Program 1) 

                                                       “Test plate”  
39  Dispense                             150 µl (Program 1) 

                                                       “Test plate”  

Checking if 
the 150 µl 

organic 
phase pure 

is, unless the 
process can 
be stopped 
at this step 

and repeated 
by step 32 

40  Aspirate                              150 µl (Program 1)  
                                                    “Test plate”  

41  Dispense                             150 µl (Program 1) 
                                                   “HPLC plate”  

Transfer of 
150 µl to the 
HPLC plate 

42 Drop 
DITIs 

Grid1; site: 4 (TeMO_Diti_200 µl)  

 

*DITIs: Disposable Tip 

 

 

 

 

 

 

 

 

 

 

 

 

The automated extraction program developed in this work performs the several tasks 

mentioned above (Table 3.2) in ca 20 min. To investigate the efficiency of this program, a test 

was carried out to determine the steroid extraction efficiency when a 500 µl EMM with 100 

µM steroid concentration (RSS or DOC) is extracted automatically in comparison with the 

manual method. 

Since the automated extraction program recovers only 350 µl organic phase from the 600 µl 

chloroform added during the extraction process, a 2 ml tube with 500 µl EMM with steroid 
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concentration of 100 µM RSS or DOC was extracted manually with 600 µl chloroform (by 

shaking strongly for 3 min) whereas only 350 µl organic phase was transferred to be analysed 

on the HPLC. At the same time, another tube was extracted under the same conditions and the 

whole recoverable amount of chloroform (500 µl) was transferred to be analysed. After 

draying under vacuum, the steroids were resolved and measured with HPLC as described 

above in subsection 2.2.4.4.1. 

Figure 3.4 below shows the original HPLC chromatograms of the extracted steroids, which 

were obtained using the automated method that was applied in a 96-well plate. It is clearly to 

notice that the peak areas of the extracted steroids do not display any significant difference 

between the several wells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, peak areas of the steroids obtained with the automated extraction method were 

compared with the steroid peak areas obtained with the manual method, as well as with the 

same amount of steroids that was given directly on the HPLC without extraction (Figure 3.5).   

It is clearly to notice that 350 µl of the organic phase in the automated method displays higher 

steroid content in comparison with the same volume of organic phase obtained using the 

manual extraction method after mixing with the same volume of chloroform. Moreover, the 

steroid amount recovered with 350 µl organic phase in the automated method is still more 

than the amount of steroid recovered with 500 µl organic phase in the manual method. 

 

Figure 3.4. HPLC chromatograms of extracted steroids obtained using the automated extraction method 
applied in a 96-well plate.   
96-well plate was filed with 500 µl EMM per well and steroid concentration was set to be 100 µM. Steroid 
extraction was carried out using the automated method described above. (A) Extracted RSS, (B) Extracted DOC. 

A B 

DOC 



Results                                                                                                                                   55                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. HPLC chromatograms of steroids extracted automatically or manually. 
(I); RSS, (II); DOC. All samples were mixed with 600 µl chloroform, whereas different volumes of the 
organic phase were then analysed on the HPLC (Automatically; 350 µl, Manually (A); 350 µl, Manually (B); 
500µl).  

RSS 

I 

II 

DOC 
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These observations mean that the steroids extraction efficiency of the automated method is 

significantly higher than the manual method (Figure 3.6). Although the automated method 

displays high efficiency to extract steroids in comparison with the manual method, only a 

fraction and not all the organic phase will be transferred to the HPLC plate to be analysed. For 

this reason, the hydrocortisone ratio (R(F)) will be used to compare the 11β-hydroxylation 

activity between the different samples (wells), as it presents proportionally the hydrocortisone 

production (see 2.2.4.5). 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Direct comparison of the recovered steroids obtained using different 
extraction methods in comparison with the same amount of steroids that were given on 
the HPLC without extraction. (I); RSS, (II); DOC. The samples were mixed with 600 µl 
chloroform, whereas different volumes of the organic phase were then analysed on the HPLC 
(Automatically; 350 µl, Manually (A); 350 µl, Manually (B); 500µl). Values presented as 
mean ± standard error of mean. Asterisks above boxes indicate a significant difference to 
RSS without extraction (p<0.05). 

*

*

I

II
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To validate the 96-well plate hydroxylation assay and the extraction method, the fission yeast 

strain SZ1 was investigated under the parameters established in subsection 3.1.1. The test was 

carried out in a 96-well plate, which was shaken at 30oC and 1400 rpm for 24 hours. The 

HPLC measurement did not show any detectable steroid bioconversion, whereas increasing 

the test volume and the shaking velocity to 600 µl and 480 rpm, respectively, play an 

important role and detectable steroid bioconversion of RSS into F was achieved under these 

conditions (Table 3.3, Figures 3.7, 3.9). 

 

Table 3.3. Steroid bioconversion parameters (96-well plat format) 
 

Cell density (cells/ml) 108 

Substrate concentration (RSS) 100 µM 

Test volume 600 µl  

Incubation time 24 hours 

Shaking (Incubator) 480 rpm  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, and since each assay plate contains 96 samples, the HPLC parameters described 

in subsection 2.2.4.4.1 had to be optimised in order to increase the throughput of the HPLC 

Figure 3.7.  Steroid 11β-hydroxylation activity of SZ1 in a 96-well plate format. 
The test was carried out with 100 µM  RSS under different conditions. (A); 500 μl 
test volume incubated at 1800 rpm for 24h. (B); 600 μl test volume incubated at 480 
rpm for 24h. Values were calculated from three independent experiments and are 
presented as mean ± standard error of mean.
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assay. For this reason, the flow velocity of the mobile phase was increased in order to 

decrease the time needed for the separation of RSS and F.  

Figure 3.8 below shows the separation of RSS and F using a mixture of MeOH:H2O(60:40) as 

mobile phase with different flow velocities. Increasing the flow velocity from 0.5 to 1 ml/min 

decreased the retention times of RSS and F from 9.5 min and 6.7 min (Figure 3.1) to 5.32 min 

and 3.35 min, respectively (Figure 3.8 A). Moreover, RSS and F displayed with flow velocity 

of 1.2 ml/min retention times of 4.45 min and 2.8 min (Figure 3.8 B). Whereas increasing the 

flow velocity up to 1.5 ml/min decreased the time needed to separate RSS and F to less than 5 

min (Figures 3.8 C, 3.9) increasing the throughput of the HPLC assay by more than 2-fold.  

Hence, these new HPLC parameters (Table 3.4) will be applied when a steroid bioconversion 

assay is carried out in a 96-well plate.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

A B

C

1 ml/min 1.2 ml/min 

1.5 ml/min 

Figure 3.8.  HPLC Chromatograms show the separation of RSS and F under different HPLC 
conditions. 
The HPLC was carried out using a mixture of MeOH:H2O(60:40) as mobile phase with different flow 
velocities (A; 1 ml/min, B; 1.2 ml/min, C; 1.5 ml/min). 
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Figure 3.9. HPLC chromatogram of the CYP11B1-dependent bioconversion of RSS 
into F carried out using the 96-well plate format. 
The bioconversion was carried out in 96-well plate, using the CYP11B1-expressing strain 
SZ1 with cell density of 108 cells/ml and 100 μM RSS. Steroid extraction was carried out 
with chloroform using the pipetting robot as described above.  
 

 

Table 3.4. HPLC parameters to separate RSS and F in less than 5 min 
 

Mobile phase MeOH:H2O (60:40) 

Flow velocity 1.5 ml/min 

Column temperature 25 °C 

Time per sample  < 5 min 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, the steroid hydroxylation assay in 96-well plate did not show any significant 

difference in the bioconversion efficiency between the several wells (t-test, p<0.05) (As will 

be shown below in subsection 3.2.4). Therefore, this 96-well hydroxylation assay is an 

efficient screening tool to investigate and compare the steroid hydroxylation activity in the 

recombinant strains that will be developed during this work. 
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3.2. Coexpression of the corresponding redox partners in CYP11B1-

expressing fission yeast Schizosaccharomyces pombe   

 
As mentioned before, recombinant fission yeast strains that functionally express human 

CYP11B1 have been developed in our group (Bureik et al. 2002b; Dragan et al. 2005). 

Although these strains display 11β-hydroxylation of RSS without the need for coexpression of 

Adx and AdR, the hydrocortisone production is considerably higher than the values reported 

by other steroid 11β-hydroxylation systems, but still not competitive enough for industrial 

applications. Therefore, the purpose of this part of work was to coexpress the corresponding 

mitochondrial electron chain (Adx and AdR) to improve the activity of CYP11B1 and, as a 

result, the efficiency of hydrocortisone bioproduction at the laboratory level. In order to 

achieve this aim, two strategies were selected: one involved a gene disruption based method 

while the other involved the construction of an expression plasmid that could bear the Adx 

and the AdR expression cassette. Additionally, the Adx wild type was substituted by two Adx 

mutants, AdxS112W (Schiffler et al. 2001) and AdxD113Y (Bichet et al. 2007), in the 

coexpression strain which were suspected to further improve the electron transport chain and, 

as a result, the efficiency of steroid 11β-hydroxylation and hydrocortisone production.  

 

3.2.1. The Coexpression of AdR and Adx through two expression vectors 

(Strategy I) 

 
Since Adx expression vectors used in the work are derived from the pNMT1- TOPO vector 

(see subsection 2.1.3), and since the latter possesses a Leu2 gene from S. cerevisiae that 

complements functionally each leu1 mutant strain and enables the selection of yeast 

transformants (Andreadis et al., 1984), the transformation of the Adx plasmid in fission yeast 

strain SZ1 is possible through the (leu1-) auxotrophy. Since SZ1 contains only a single 

selection marker (leu1-), the creation of a second marker was a necessary prerequisite to 

accomplish the coexpression of AdR on a second plasmid.  
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Figure 3.10. Vector map of pCAD1_CYP11B1. Leu1Loc: gene 
fragments of the leu1 gene that serve as integration target 
sequences, ura4: ORF for orotidine monophosphate 
decarboxylase, complements ura4.dl18 in S. pombe (Dragan et 
al., 2005). 

3.2.1.1. Ura4 gene disruption in S. pombe (SZ1) and the characterisation of 

the new strain  
 

A gene disruption process was carried out to knockout the ura4 gene inserted by the pCAD1-

hCYP11B1 plasmid (Figure 3.10) in the fission yeast strain SZ1 (Dragan et al. 2005) in order 

to create a strain that expresses the human CYP11B1, and possesses ura4- and leu1- 

auxotrophies. The resulting strain then can be used as a host for the assembly of the human 

electron transfer chain. The ura4 gene disruption was done according to Akio Tohe-e (Toh-e 

1995). The Hind III fragment containing the ura4 disruption cassette was excised from the 

plasmid pAT539 and used as a donor for the transformation of SZ1 from ura4+ to ura4-. 

Transformed cells were plated on agar plates containing EMM, leucine, uracil and 5-FOA. 

After three days incubation in the presence of 5-FOA, and replica plating on selective media, 

positive colonies were checked for the presence of selection marker. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The transformation procedure yielded strain TH1, which was characterised as a new fission 

yeast strain that already expresses CYP11B1 and needs the addition of leucine and uracil to 

grow (Figure 3.11). 
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Figure 3.11. Fission yeast TH1 plated on different EMM plates.  
The new fission yeast TH1 shows no grow without the addition of leucine and 
uracil to the medium (A; EMM + leucine + uracil, B; EMM+ leucine, C; EMM 
+ uracil). 

A 

B C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, strain TH1 displayed the ability to grow in the presence of 1% 5-FOA in 

contrasts to SZ1 that showed an altered phenotype in comparison with TH1 after incubation 

with 5-FOA (data not shown). The morphologic differences between SZ1 and TH1 could 

indicate that the ura4 gene in TH1 is not functional, whereas the intact ura4 gene in strain 

SZ1 generates toxic metabolites (Boeke et al. 1987) that could be responsible for the 

morphological changes of the cells after incubation with 5-FOA. Since the ura4 gene is 

located near the cloned CYP11B1 in strain SZ1 (Dragan et al. 2005) (Figure 3.10) further 

validation was carried out to investigate the CYP11B1 activity in TH1. 

The CYP11B1 activity in the new S. pombe strain TH1 was investigated in comparison with 

the parental strain SZ1. The test was performed in the tip-tube format as described in 

subsection 2.2.4.2. The hydroxylation assay showed that strain TH1 still retains the 11β 

activity of SZ1 and no significant differences were noticed (p<0.05) (Figure 3.12). This 

observation indicates that the CYP11B1 gene in TH1 is still intact rendering TH1 as a 

potential host for the construction of the electron transfer chain in fission yeast. 



Results                                                                                                                                   63                           

 

 
Figure 3.12. Steroid 11β-hydroxylation activity of TH1 and SZ1.  
The bioconversion assay was carried out in tip-tube with 100 nM RSS. Values were 
calculated from three independent experiments and are presented as mean ± standard 
error of mean. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.2.1.2. Construction of AdR expressing vector (pTH1) 
 

The HsaAdR cDNA was PCR-amplified with the primers Pr_1, Pr_2 that introduce NdeI/XhoI 

restriction sites (see the appendix), and sub-cloned into the pNMT1-TOPO vector as 

described in subsection 2.2.1.1. After transformation of E. coli and plasmid purification, the 

fragment was cut out using NdeI and XhoI. The HsaAdR fragment was then cloned into the 

NdeI/XhoI -digested pREP42 Pk C vector to yield pTH1. The developed vector pTH1 was 

sequenced and it was shown that AdR revealed no alteration compared to the wild type 

sequence. In this way a vector for the expression of Pk tagged-AdR in ura4 - S. pombe strains 

is constructed, and will be used to transform the fission yeast strain TH1.   

 

3.2.2. Construction of an AdR+Adx expressing vector pTH2 (Strategy II) 
 

The aim of this cloning strategy was to develop an expression vector that coexpresses both, 

wild type Adx and AdR, under the control of the strong inducible nmt1 promoter. The 

construction of this expression vector enables the coexpression of the complete mitochondrial 
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Figure 3.13.  The cloning strategy used to create the Adx_AdR expression vector pTH2. 
The HsaAdR cDNA was PCR-amplified and subcloned in the PNMT1-TOPO, the resulting plasmid was then 
used as template to amplify the (nmt1 promoter + AdR expression cassette) with two XhoI sites as 
overhangs. The XhoI digested fragment was then isolated and cloned in the SalI site in the pNMT1-AdxWT to 
yield pTH2. 

electron transfer partners through one single plasmid. For the construction of the Adx-AdR 

expression plasmid a cloning strategy was carried out as shown below in Figure 3.13. The 

HsaAdR cDNA was PCR-amplified with the primers Pr_3, Pr_4 (see the appendix). The PCR 

product was isolated, purified and subsequently subcloned into the pNMT1-TOPO vector. 

After transformation of E. coli, a colony PCR was carried out to isolate the positive colonies 

with the correct orientation of the inserted AdR gene downstream the nmt1 promoter. The 

colony PCR was performed using Primer Pr_4 as forward primer and primer Pr_6 as reverse 

primer. 
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 B A 

Figure  3.14. A: Vector map of pTH2. Relevant restriction sites are shown, P nmt: nmt1 promoter. B. Restriction 
analysis of pTH2 confirming the existence of the two expression cassettes. NdeI and PvuII are unique sites that 
cut in Adx and AdR, respectively, whereas Bgl II cuts in Adx and AdR as shown. Numbers at bands indicate the 
theoretical sizes calculated from the pTH2 vector map. 

Subsequently the resulting plasmid from last step with the correct orientation was used as a 

template to PCR-amplify the (nmt1 promoter + AdR expression cassette). For this target, 

primers Pr_7, Pr_8 were used that introduced 5' and 3' terminal XhoI sites. The amplified 

product was then subcloned in pNMT1-TOPO, and finally cloned into the SalI site in 

pNMT1-AdxWT to yield pTH2 (Figure 3.14), which accordingly allows the coexpression of 

Adx and Pk-tagged AdR in leu1 hosts.  

The developed vector pTH2 was validated by performing Adx colony PCR using primers 

Pr_9, Pr_10. Furthermore, sequencing of the nmt1 promoter-AdR expression cassettes in 

pTH2 revealed no alteration compared to the wild type sequence. Restriction analysis of 

pTH2 confirmed the construction of the plasmid as shown in Figure 3.14 A, B. 

 

 

3.2.3. Coexpression of Adx and AdR in fission yeast  
 

The Adx expressing plasmids described in subsection 2.1.3, and the new developed plasmids 

pTH1 and pTH2 (Table 3.5) were then used to transform CYP11B1-expressing strains as well 

as the control strain 1445 as shown in Table 3.6. 
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Table 3.5. Fission yeast expression plasmids used in this work 
 

 
Table 3.6. Fission yeast strains created in this work 
 

 

 
 
Since the molecular mass of the Pk-tagged human AdR of 50 kDa could interfere with the 

very similar mass of the Pk-tagged human CYP11B1 (59 kDa), an approach was used to 

Plasmid Insert(s) Selection 
marker 

Reference 

pNMT1-AdxWT AdxWT LEU2 (Derouet-Hümbert et al. 2007) 

pNMT1-AdxD113Y AdxD113Y LEU2 (Derouet-Hümbert et al. 2007) 

pNMT1-AdxS112W AdxS112W LEU2 (Derouet-Hümbert et al. 2007) 

pTH1 AdRWT ura4 (Hakki et al., 2008) 

pTH2 AdxWT + AdRWT LEU2 (Hakki et al. 2008) 

Name Parental strain Expression construct(s) Expressed 
Protein(s) 

Required 
supplement(s) 

TH1 SZ1 pAT539 CYP11B1 leucine + uracil  

TH2 TH1 pNMT1-AdxWT  CYP11B1 + 
AdxWT 

uracil  

TH3 TH1 pTH1 CYP11B1 +  
AdRWT 

leucine  

TH4 TH1 pNMT1-AdxWT + pTH1 CYP11B1 + 
 AdxWT +AdRWT 

none 

TH6 TH1 pNMT1-AdxS112W + pTH1 CYP11B1+ 
AdxS112W +AdRWT 

none 

TH7 TH1 pNMT1-AdxD113Y + pTH1 CYP11B + 
AdxD113Y + AdRWT 

none 

TH75 SZ1 pTH2 CYP11B +  
AdxWT+ AdRWT 

none 

TH175 1445 pTH2 AdxWT +AdRWT adenine, uracil, 
histidine 
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Figure 3.15. Detection of AdRWT (A) and AdxWT (B) in mitochondrial lysates of strain 
TH175 by Western blot analysis. Mitochondrial lysates of TH175 and its parental strain 
1445 were separated by SDS/PAGE and blotted onto nitrocellulose membranes. Immunologic 
protein detection was carried out using α-Pk and α-Adx antibodies as described by materials 
and methods. M: Protein standard. 

confirm expression from the double cassette plasmid pTH2. A wild type leu1− fission yeast 

strain (1445) was transformed with pTH2 in order to eliminate the Pk signal background 

introduced by the CYP11B1 in SZ1. Western blot analysis using α-Pk and α-Adx antibodies 

to detect AdR and Adx, respectively, showed that pTH2 is able to coexpress AdR and Adx 

with mitochondrial localisation in fission yeast (Figure 3.15 A and B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As expected, the signals could not be detected in the parental wild type strain 1445. The 

apparent molecular weight of AdR and Adx expressed from pTH2 are displayed at 

approximately 56 and 15 KDa and are in good agreement with the calculated masses of 50 

and 13.8 KDa, respectively (Figure 3.15. A, B). For each of the Adx expressing plasmids used 

in this work, correct subcellular localisation of the expressed Adx in fission yeast strains was 

previously confirmed by Western blot analysis of mitochondrial protein lysates (Figure 3.16) 

(Derouet-Hümbert et al. 2007).  
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Figure  3.16. Immunological detection of adrenodoxin (Adx) expressed in S. 
pombe. Mitochondrial lysates were prepared and analyzed by SDS-PAGE and 
Western blot using an α-Adx antibody. Lane 1; purified mature bovine Adx 
(positive control), lane 2; AdxWT-expressing fission yeast strain, lane 3; 
AdxS112W-expressing fission yeast strain, lane 4; AdxD113Y-expressing fission 
yeast strain. 

 

 

 

 

 

 

 

 

 

 

Wild type of Adx (AdxWT) migrates at a higher molecular weight than the positive control 

because it contains an additional mitochondrial localisation signal (Derouet-Hümbert et al. 

2007). The calculated molecular weight of mutant AdxS112W is lower (about 2.2 kDa) than that 

of AdxWT, which is in good agreement with these results. Mutant AdxD113Y, however, should 

theoretically have a slightly higher mass than AdxWT, but migrates much faster during SDS-

PAGE. The reason for this discrepancy is not known, but rarely other point mutations in Adx 

also cause a change in migration behavior during SDS-PAGE that cannot be explained by 

their mass difference (Hannemann, unpublished observation). Expression of the activated Adx 

mutants also did not lead to slower growth of the cells or to a pronounced phenotype 

(Derouet-Hümbert et al. 2007). 

 

3.2.4. The 11β-hydroxylation activity of CYP11B1 in the new recombinant 

fission yeast strains 

 
The hydroxylation assay in the 96-well plate format developed in this work (subsection 3.1.2) 

was further validated. The validation was carried out to investigate the reliability of the assay. 

For this reason, the bioconversion efficiencies between the several wells in one plate were 

investigated for any differences. The test was carried out using the new fission strain TH4 

with a cell density of 108cells/ml. The bioconversion was initiated by adding RSS (substrate) 

to give a final concentration of 100 µM. After 24h shaking at 480 rpm and 30°C, steroids 

were extracted with chloroform, resolved in acetonitrile and analysed by HPLC as mentioned 

before in subsection 3.1.2.  
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Figure 3.17 below shows the bioconversion results of 66 wells. It is clearly to see that the 

majority of results belong to the range (Mean ± 1.96*SD) which is an acceptable normal 

distribution for any measurement. Therefore, this 96-well hydroxylation assay is an efficient 

screening tool and can be applied to investigate the steroid hydroxylation activity in the 

recombinant strains developed during this work. 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.4.1. Comparison of biotransformation activity of CYP11B1-expressing 

strains after coexpressing of the corresponding redox partners  

 
To compare the activities of CYP11B1 in the newly developed fission yeast strains, the 

hydroxylation assay in 96-well plate format developed in this work (subsection 3.1.2) was 

applied.  To perform the steroid hydroxylation assay, fission yeast cell suspensions with a cell 

density of 108cells/ml were prepared. The bioconversion was initiated by adding RSS 

(substrate) to give a final concentration of 100 µM. After 24h shaking at 480 rpm and 30°C, 

steroids were extracted with chloroform, resolved in acetonitrile and analysed by HPLC as 

mentioned before in subsection 3.1.2. Steroid 11β-hydroxylation activity was investigated in 

all fission yeast strains, which coexpressed Adx and/or AdR and compared with the parental 

strain SZ1 (Figure 3.18). These experiments clearly demonstrate that coexpression of AdxWT 

increases the biotransformation activity, with the hydrocortisone ratio increasing significantly 

from 12% in SZ1 to 25% in TH2 (t-test, p<0.05). As expected, 11β-hydroxylation activity in 

strain TH3 (CYP11B1 + AdR) did not show any improvement over the parental strain SZ1 

 

Figure 3.17. The biotransformation of RSS into F investigated in 66 wells using the newly 
developed hydroxylation assay. 
The test was carried out in a 96-well plate using the recombinant fission yeast TH4. 66 wells 
were analysed and presented as hydrocortisone production ratio (F ratio).    
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Figure 3.18. Direct comparison of the bioconversion rates of fission yeast strains 
coexpressing CYP11B1 and electron transfer proteins. SZ1 (CYP11B1), TH2 
(CYP11B1+AdxWT), TH3 (CYP11B1+AdRWT), TH4 (CYP11B1+AdxWT+AdRWT), TH6 
(CYP11B1+Adx S112W+AdRWT), TH7 (CYP11B1+AdxD113Y+AdRWT), TH75 [CYP11B1 
+(AdxWT+AdRWT)]. Values were calculated from three independent experiments and are 
presented as mean ± standard error of mean. Asterisks above boxes indicate a significant 
difference to the parental strain SZ1 (t- test, p<0.05).  

due to the fact that Adx plays a central role in the electron transfer chain (Figures 1.2, 4.1). A 

further increase in steroid hydroxylation activity could, however, be achieved in the strain 

TH4, which coexpresses AdR, AdxWT and CYP11B1, and displays a hydrocortisone 

production ratio of 40%. Since it was previously shown by our group that mutants of Adx are 

able to stimulate 11β-hydroxylation, I attempted to further increase the biotransformation 

efficiency by substituting AdxWT with the Adx mutants. The first mutant chosen was 

AdxS112W, which lacks the 16 carboxy terminal amino acids and features a terminal 

tryptophane, leading to enhanced affinity for the cytochrome P450 and also to a lower redox 

potential (-334 mV) (Schiffler et al. 2001). The second mutant, AdxD113Y, is a full-length Adx 

mutant with enhanced cytochrome P450 binding ability and a slightly changed redox potential 

(-298 mV) (Bichet et al. 2007). However, as can be seen in Figure 3.18, fission yeast strains 

TH6 and TH7 that coexpress AdR and either AdxS112W or AdxD113Y did not show any 

improvement in the 11β-hydroxylation activity compared with the strain TH4. Moreover, 

strains TH6 and TH7 even displayed a slightly lower activity than the strain TH4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second approach for the construction of a reconstituted CYP11B1 electron transfer chain 

in fission yeast involved the fusion of the Adx and the AdR expression cassettes on one 
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plasmid (pTH2). This approach bypasses the need for gene disruption and speeds up the 

process of strain generation by offering a more convenient way of adding two proteins at 

once. The coexpression of the wild type Adx and AdR from pTH2 in TH75 resulted in an 

11β-hydroxylation activity in the same range of the strain TH4, thereby confirming the 

functionality of pTH2 in fission yeast. 

 

3.2.4.2. Quantification of hydrocortisone production in the novel strain 

TH75 

 

3.2.4.2.1. Optimisation of the biotransformation parameters to achieve a 

high conversion rate 

 
To achieve a high production rate of hydrocortisone using the fission yeast strain TH75, 

biotransformation conditions were investigated and optimised. The cell density displayed an 

important factor to influence the hydrocortisone production in this system, since a cell 

suspension from strain TH75 with a cell density of 109 cell/ml displayed significant higher 

hydrocortisone production efficiency in comparison with low-density suspensions when 

investigated with 1 mM RSS (Figure 3.19).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.19. The influence of cell density of the recombinant fission yeast on the 
hydrocortisone production. The assay was carried out with 1 mM RSS, and different 
cell densities from TH75. Values were calculated from three independent experiments 
and are presented as mean ± standard error of mean. Asterisks above boxes indicate a 
significant difference (t-test, p<0.05). 
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Simultaneously increasing the substrate concentration up to 5 mM RSS increased the 

biotransformation efficiency, whereas 10 mM RSS displayed a negative effect and less 

hydrocortisone production was reported in comparison with 5 mM RSS (data not shown). 

 

3.2.4.2.2.  Hydrocortisone production efficiency in the fission yeast strain 

TH75 
 

Hydrocortisone production efficiency was investigated in the new strain TH75 in comparison 

with the parental strain SZ1. The assay was designed to be carried out in 300-ml Erlenmeyer 

flasks with 10 ml assay culture under the optimal conditions (109 cells/ml with 5 mM RSS) 

reported in subsection 3.2.4.2.1. During shaking for 72 hours at 180 rpm and 30°C, samples 

of 500 µl were extracted with chloroform at several time points after adding DOC as an 

internal standard to normalize the steroid extraction efficiency. A calibration curve was used 

to quantify the hydrocortisone amount produced over time. The calibration curve was 

constructed using pure hydrocortisone and displayed a high correlation between the amount of 

hydrocortisone injected on the HPLC and the corresponding peak areas. Depending on the 

internal standard and the hydrocortisone calibration curve, a quantitive measurement was 

carried out, and the hydrocortisone production was investigated over time in the two fission 

yeast strains. 

The assay demonstrated clearly that the new fission yeast strain TH75 possesses higher 11β-

hydroxylation activity in comparison with the parental strain SZ1 (Figure 3.20), although no 

differences in the steroid extraction efficiency between the two investigated strains had 

occurred (Figure 3.21).  

Additionally, the time course presented a steady increase in hydrocortisone production from 

the beginning up to maximum activity of 9.7 µmol/10ml test culture measured after 72 hours, 

in contrast to the parental strain that produce 3.2 µmol/10ml over the same time (Figure 3.20).  
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Figure 3.21. HPLC chromatograms of CYP11B1-dependent substrate conversion using 
the novel strain in comparison with the parental strain. Chromatograms were obtained 
from extracted samples after adding DOC as internal standard, black and green 
chromatograms represent the CYP11B1-dependent substrate conversions obtained with SZ1 
and TH75 respectively, whereas the red chromatogram represents the pure hydrocortisone 
injected on HPLC under the same condition. 

Figure 3.20. Time course of the hydrocortisone production efficiency by SZ1 
(CYP11B1) and TH75 (CYP11B1 + Adx + AdR). Data shown are mean values for 
triplicate measurements and standard deviations are too small to be displayed. The assay 
was performed in 300-ml Erlenmeyer flasks with a cell density of 109 cells/ml with 10 
ml assay culture and 5 mM RSS. During shaking for 72 hours at 180 rpm and 30°C, 
samples of 500 µl were extracted with chloroform at several time points after adding 
DOC as an internal standard to normalize the steroid extraction efficiency.  
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This demonstrates clearly that the 11β-hydroxylation activity in TH75 is significantly higher 

than in the parental strain SZ1. 

 

3.3. Development of a cell-based high throughput screening system for the 

discovery of human aldosterone synthase inhibitors  
   

In order to successfully develop and execute an efficient, rapid, and reproducible cell-based 

HTS assay in the field of drug discovery, one must have access to (1) automated screening 

technology plate-format, (2) detectable conversion and inhibition response.  

 

3.3.1. Automated screening technology plate-format 

 
The steroid bioconversion assay in the 96-well format established in this work (subsection 

3.1.2) was adapted to develop a CYP11B2 activity screening system. Plate preparation and 

steroid extraction programs were applied as described before. Taken into consideration the 

technical limitations and the capacity of the available HPLC instrument; 192 samples (two 

96-well plates) can be analysed per run, and since the HPLC parameters described in 

subsection 3.1.2 enable the separation of DOC and its hydroxylated products within 7 minutes 

(Figures 3.21, 3.22 A), the time needed to analyse 192 samples is 1344 min = 22.4 h. Hence, 

the HPLC parameters had to be further optimised to increase the throughput of the assay. For 

this reason, acetonitrile (ACN), which is more polar than methanol was used in a mixture with 

water as mobile phase. The new mobile phase was used to separate DOC and B and different 

flow velocities were investigated (Figure 3.22 B, C, D).  
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A B 

C D 

Figure 3.22. HPLC Chromatograms show the separation of DOC and B under different HPLC parameters. 
A; 1.2 ml/min MetOH:H2O (60:40), B; 0.5 ml/mim ACN:H2O (60:40), C; 1 ml/mim ACN:H2O (60:40), D; 1.2 
ml/mim ACN:H2O (60:40).  

It is clearly shown that a mixture of ACN:H2O (60:40) with flow velocity of 0.5 ml/min 

separates DOC and B within the same time that a mixture of MeOH:H2O (60:40) needs to 

separate them with a higher flow velocity (1.2 ml/min). Increasing the flow velocity of 

ACN:H2O mixture reduced the time needed to separate DOC and B (Figure 3.22 B, C, D). 

 

 

 

 

As a result, the mixture of ACN:H2O (60:40) with a flow velocity of 1.2 ml/min displays an 

efficient separation of DOC and B within 3 min (Figure 3.22 D). This HPLC conditions 

(Table 3.7) decreased the time needed to analyse 196 samples from 22.4 h to 9.6 h, which 

increases the throughput of the HPLC by more than 2-fold. 
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Table 3.7. Optimised HPLC parameters to separate DOC and B within 3 min 
 

Mobile phase ACN:H2O (60:40) 

Flow velocity 1.2 ml/min 

Column temperature 25 °C 

Time per sample  3 min 

 

 

3.3.2. Optimisation of the screening assay parameters to get detectable 

conversion/inhibition response  
 

In order to get reproducible conversion/inhibition response using a whole-cell-based assay, 

several parameters should be taken into consideration and optimised to achieve a reliable 

screening assay. These parameters include the amount of enzyme, substrate concentration, 

incubation time and the optimal test medium needed to get reproducible conversion and 

inhibition. For this reason, and in order to estimate the optimal conditions where reproducible 

screening can be performed, the CYP11B2-expresing S. pombe strain MB164 was used to 

investigate the parameters mentioned above. Moreover, this strain has already been used to 

test compounds for their CYP11B2 inhibitory effect and several compounds were identified to 

inhibit CYP11B2 in recombinant fission yeast with different IC50 values (Table 3.8). 

 

Table 3.8. The IC50 values of CYP11B2 inhibitors determined using recombinant S. 

pombe strain MB164 (Bureik et al. 2004) 

 

 

 

 

 

 

As addressed below, several optimisation steps were carried out in the presence of the known 

inhibitors of CYP11B2 (Table 3.8) as positive controls, in addition to mock-treated control. 

The starting point was the setting of assay time (duration of incubation) needed to get 

detectable conversion and inhibition. Hence, three hours incubation was suggested for the 

conversion of DOC into B and for the detection of a possible inhibition. For this reason, 600 

Compound IC50 against CYP11B2 

Clotrimazole 0.20  µM 
Ketoconazole 3.50  µM 
Miconazole 5.60  µM 



Results                                                                                                                                   77                           

 

Figure 3.23. HPLC chromatogram of the CYP11B2-dependent bioconversion 
using the 96-well plate format. 
The bioconversion was carried out in a 96-well plate using the CYP11B2-expressing 
fission yeast strain MB164 incubated with 5 μM Doc for three hours. Steroid 
extraction was carried out with chloroform using the pipetting robot as described 
before (see subsection 3.1.2). 

µl cell suspension from MB164 with cell density of 108 cell/ml was investigated with 

different concentrations of substrate and inhibitors. Furthermore, different test media were 

also investigated to estimate the optimal environment to get reproducible detection and 

inhibition in the presence of negative and positive controls. 

 

• Substrate concentration  
 

Although 100 µM substrate concentration described in subsection 3.1.2 displayed detectable 

conversion of DOC into B, no inhibition response was observed after incubation with even 

high concentrations of the well-known inhibitors of CYP11B2 (ketoconazole, clotrimazole). 

For this reason, the substrate concentration had to be reduced to a minimal level where 

detectable conversion and inhibition can take place and can be followed in the screening 

system. The investigation showed that 5 µM DOC is a minimal concentration that gives 

detectable conversion of DOC into B (Figure 3.23). Hence, the test will be carried out with 5 

µM DOC as substrate. In a next step, the inhibitor concentration must be estimated to get 

reproducible inhibition in the present of the CYP11B2 inhibitors. 
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• Inhibitor concentration  

 
To estimate the inhibitor concentration that has to be applied in the screening system, the 

inhibition profile of the CYP11B2 inhibitor ketoconazole was investigated in different test 

media. Although fission yeast cells used for each bioconversion assay in this work are 

prepared from a main culture, in which we expect that the cells achieved the stationary phase, 

performing the bioconversion/inhibition assay in fresh growth medium can give the cells the 

opportunity to grow and to use the fresh added glucose, which could influence the inhibition 

profile of the inhibitor during the assay. Hence, the aim of this part of work was to investigate 

the influence of different test media on the inhibition profile of ketoconazole, and the 

correlation between the concentration of inhibitor and inhibition.  

Fission yeast strain MB164 with cell density of 108 cells/ml was incubated in a 96-well 

plate with 5 µM substrate (DOC). Ketoconazole was added to achieve final concentrations in 

the range from 5 to 60 µM. Different test media including EMM, simple potassium phosphate 

buffer (50 mM) with different pH values (5.8, 7, 7.4) were investigated. After three hours 

incubation, steroid extraction and subsequent HPLC measurements were carried out as 

described before. The ketoconazole inhibition profile in EMM showed bad correlation 

between the inhibitor concentration and inhibition (r = 0.548). Furthermore, unexplained 

activation was observed with 5, 10, and 40 µM ketoconazole (Figure 3.24 A). This result 

shows clearly that the inhibition profile of ketoconazole in EMM is not reliable to perform 

reproducible screenings under our test condition since the correlation between the inhibitor 

concentrations and inhibition is very low (Figure 3.24 A). In contrast, it is clearly shown that 

the inhibition profile of ketoconazole displays better correlation between inhibitor 

concentration and inhibition when the test is performed in a simple phosphate buffer (Figure 

3.24 B, C, D).  Although high correlations were observed in the different pH-variants of the 

simple buffer, the physiological pH (7.4) will be used as test medium to develop the screening 

assay during this work.  

As mentioned before; the use of multiple-concentrations assay at early (screening) stages of 

drug discovery is very time-and resource-intensive, and when conducting the CYP11B2-

inhibition assay in a high- throughput format to support early drug discovery, inaccuracies in 

IC50 values determination are less problematic, because we are trying to quickly identify 

strong inhibitors, and we are less concerned with minor inhibition. Furthermore, in the early 

stages of drug development, before the in vivo pharmacokinetics and pharmacodynamics are 



Results                                                                                                                                   79                           

 

Figure 3.24. Correlation between the concentration of ketoconazole and inhibition in different test media. (A; 
EMM)  [B, C, D;  Potassium phosphate buffer 50 mM  (B; pH 5.8), (C; pH 7), (D; pH 7.4)].   

 

  

A B 

C D 

known, CYP inhibition assay results are often interpreted in board terms and used to classify 

compounds into three categories as potent, moderate or weak inhibitors (Lin et al., 2007).  

 

Therefore, the aim of this part of work was the development of a one-point method to 

estimate the CYP11B2 inhibitory profile. Bureik et al. reported the high inhibition effect of 

clotrimazole and ketoconazole against the expressed CYP11B2 in recombinant fission yeast, 

with IC50 values of 0.20 µM and 3.50 µM, respectively, whereas miconazole was reported to 

inhibit CYP11B2 with a relatively higher IC50 value of 5.6 µM and to be a less potent 

inhibitor of CYP11B2 (Bureik et al. 2004). These observations enable the classification of 

these known inhibitors of CYP11B2 into two groups; potent inhibitors (clotrimazole and 

ketoconazole), and less potent inhibitors (miconazole). 

To develop a one-point assay, a concentration of 41.6 µM (10 µl from a 2.5 mM stock 

solution) of each inhibitor was tested under the conditions established above. A cell 

suspension from MB164 with a cell density of 108 cells/ml and final volume of 600 µl was 
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Figure 3.25. HPLC Chromatograms of the CYP11B2-dependent conversion of DOC into 
B using MB164 in the presence of positive and negative controls. The presence of 
clotrimazole (Clo) or ketoconazole (Keto) causes total inhibition of CYP11B2, whereas the 
less potent inhibitor miconazole (Mico) inhibits partially CYP11B2 under these test 
conditions.   

incubated in a 96-well plate in potassium phosphate buffer (50 mM, pH 7.4) as test medium 

with 5 µM DOC as substrate. In addition to DMSO-mock treated samples; ketoconazole, 

clotrimazole and miconazole were added to achieve final concentrations of 41.6 µM (10 µl 

from 2.5 mM stock solutions in DMSO). After three hours incubation, steroid extraction and 

subsequent HPLC measurement were carried out as described before. 

The CYP11B2 inhibitors displayed different inhibition profiles during this test. The mock-

treated samples (DMSO) displayed CYP11B2 activity with B production ratio of 11.5 %, 

whereas the presence of miconazole decreased the CYP11B2 activity and B production ratio 

to 6.5 % showing 44 % inhibition. Furthermore, clotrimazole or ketoconazole displayed total 

inhibition (100 %) of CYP11B2 under the test conditions (Figure 3.25).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These results confirm clotrimazole/ketoconazole and miconazole as potent and less potent 

inhibitors of CYP11B2, respectively. Moreover, these observations display a significant and 

logical correlation between the multiple-point assay reported before (Bureik et al. 2004) and 

the one-point assay developed in this work. Hence, and since clotrimazole/ketoconazole 

display total inhibition of CYP11B2 under these test conditions, each compound with similar 
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Figure 3.26. Schematic overview of the 96-well plate during the screening assay of the investigated 
library (LOPAC). The yellow area presents the wells with the investigated compounds (one compound per 
well); 2.5 mM of stock solution of the individual compounds was prepared in DMSO to be tested at once per 
plate. Furthermore, mock-treated wells (DMSO) and well-known inhibitors of CYP11B2 as positive controls 
were incorporated in each plate as shown in the Figure.  

inhibition profile will be defined during the screening assay as clotrimazole-like inhibitor of 

CYP11B2, whereas compounds with less inhibition effect resembling the miconazole effect 

will be defined as miconazole-like inhibitors. 

 

3.3.3. Proof of principle 
 

For the validation of the newly developed screening system, a library of pharmacologically 

active compounds (LOPAC) was investigated as kindly provided by Prof. Herbert Waldmann 

(Max-Planck-Institute of Molecular Physiology, Dortmund, Germany). For controls, entire 

DMSO-treated and positive controls wells were incorporated in each plate (Figure 3.26) in 

order to have a kind of internal quality control along the screening process, and to enable the 

interpretation of results. 

 

 

 

 

Moreover, further optimisation was carried out in order to increase the throughput of the 

HPLC system. This was achieved by using a 70 mm high-speed column packed with 3 μm 

counterparts (reversed NUCLEODUR 100-3 C18) from MACHEREY-NAGEL (Düren, 

Germany). This column is shorter than the one mentioned by Materials and Methods, which 

decrease the time of separation whereas the smaller particles size packing allows the use of 

this short column for rapid separation without loss of resolution.  This column decreased the 
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Figure 3.27. HPLC chromatograms show the separation of DOC and B 
using a high-speed column. 
The HPLC separation was performed using pure steroids and the HPLC 
parameters mentioned in Table 3.7. The separation of DOC and B was done 
within 1.6 min, which increases the throughput of the HPLC system. 

HPLC time needed to separate DOC and B from 3 min to 1.6 min per each sample (Figure 

3.27) under the HPLC parameters mentioned in Table 3.7. This optimisation increased further 

the throughput of the HPLC and, as a result, the throughput of the developed screening 

system by 2-fold. An additional benefit in this rapid resolution column is the remarkable 

reduction of solvent consumption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cells from a main culture of MB164 were washed with EMM, centrifuged (3*103 g, 5 min, 

4°C) and resuspended in 50 mM potassium phosphate buffer (pH 7.4) to cell density of 108 

cells/ml with final volume of 600 µl of cell suspension per well. All assay steps were carried 

out using the pipetting robot Tecan. The assay was initiated by adding 10 µl from a 2.5mM 

stock solution of the investigated compound to give a final concentration of 41.66 µM. After 

20 min shaking at 480 rpm and 30°C, the substrate (DOC) was added to give a final 

concentration of 5 µM (10 µl from a 0.3 mM stock solution in DMSO). Once again, the assay 

plate was shaken at 480 rpm and 30°C for three hours the steroids were extracted with 

chloroform using the extraction program mentioned in subsection 3.1.2 and dried under 

vacuum. The dried steroids were then dissolved in acetonitril and analysed by HPLC using 

the high-speed column mentioned above and the HPLC parameters described in Table 3.7.  

Figure 3.28 below shows the HPLC separation of the CYP11B2-dependent bioconversion of 

DOC into B analysed using the high-speed column mentioned above. In contrast to Figure 
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Figure 3.29. HPLC chromatogram of an extracted sample that consists of 
water and DMSO. 
The chromatogram shows that the unknown peak reported in Figure 3.28 is a 
medium noise peak. This noise peak is obviously better separated using this high-
speed column in comparison with the long column mentioned above by Materials 
and Methods.    

3.27, the HPLC chromatogram in Figure 3.28 displays an unknown peak with retention time 

of 0.6 min. This peak was also detected when a 500 μl water mixed with 20 μl DMSO was 

extracted with chloroform and analysed with HPLC under the same condition (Figure 3.29).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.28. HPLC Chromatograms of the CYP11B2-dependent bioconversion 
of DOC into B analysed using the high-speed column.  The bioconversion was 
carried out as described before using fission yeast strain MB164 in the presence of 
positive and negative controls. Unknown peak with retention time of 0.6 min was 
observed.  

DOC
B

Unknown 
peak 
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The results of controls obtained from 32 independent assays using the one-point assay (41.6 

µM) displayed reproducible results, and were statistically analysed using t-test (p<0.05). The 

mock-treated samples (DMSO) displayed CYP11B2 activity with B production ratio of 

11.5%, whereas the presence of miconazole decreased significantly (p<0.05) the activity of 

CYP11B2 and B production ratio to 6.5% showing 44 % inhibition under our test condition. 

Furthermore, the presence of either clotrimazole or ketoconazole displayed total inhibition of 

CYP11B2 (100%) (Figure 3.30, Table 3.9).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3.9. The inhibition profiles of the CYP11B2 inhibitors tested using the six-point 
inhibition assay and the one-point assay developed in this work  
 
 
 
 
 
 
 
 

a(Bureik et al. 2004) 
b This work 

Compound IC50 against 
CYP11B2  (µM)a 

B ratio 
(%)b 

 

Inhibition  
(%)b 

Clotrimazole 0.20  0 100  
Ketoconazole 3.50   0  100 
Miconazole 5.60   6.5 44  

Figure 3.30 Direct comparisons of the CYP11B2-dependent conversion rates of DOC into B 
during the screening assay. Values were calculated from 32 independent experiments and are 
presented as mean ± standard error of mean. Asterisks above boxes indicate a significant difference to 
the mock treated sample (DMSO) (t-test, p<0.05). 
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The Z'-factor of the screening system was determined from the inhibition assay for 

clotrimazole, ketoconazole and miconazole as positive controls and DMSO as negative 

control. The Z'-factor was calculated using the formula mentioned in subsection 2.2.6.2.3. 

The screening assay gave a Z'-factor of 1.0 for clotrimazole, 1.0 for ketoconazole and 0.85 for 

miconazole, showing that the screening system is robust.    

 

In a next step, the LOPAC library was tested on triplicate. Additionally to 

ketoconazole, clotrimazole already supplied in the library, the screening assay reported two 

clotrimazole-like inhibitors (e.g. Compound Co_TH1, Figure 3.31), whereas nine compounds 

were defined regarding to our definition as miconazole-like inhibitors (Table 3.10, Figure 

3.32). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.31. HPLC chromatograms of CYP11B2-dependent bioconversion in the 
presence of Co_TH1 during the screening assay. 
Compound Co_TH1 displayed total inhibition of CYP11B2 under the test conditions. For this 
reason, Co_TH1 can be defined as clotrimazole-like inhibitor of CYP11B2.  

DOC

B
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Table 3.10. The new CYP11B2 inhibitors identified during the screening assay in this 
work  

 

Compound 
code in 

this work 
 

Compound 
code by 

SIGMA® 

Name Screening 
assay result  

 

Description 

Co_TH1 A5791 4-Androsten-4-ol-3,17-dione Clotrimazole-
like inhibitor 

 

Aromatase 
inhibitor 

Co_TH2 A9630 4-Androstene-3,17-dione 
 

Miconazole-
like inhibitor 

 

Testosterone 
precursor and 

metabolite with 
androgenic 

activity 
Co_TH3 C3635 DL-p-Chlorophenylalanine 

methyl ester hydrochloride 
 

Miconazole-
like inhibitor 

 

Tryptophan 
hydroxylase 

inhibitor 
Co_TH4 E3380 Ellipticine Miconazole-

like inhibitor 
 

Cytochrome P450 
(CYP1A1) and 

DNA 
topoisomerase II 

inhibitor 
Co_TH5 I0782 Imazodan 

 
Miconazole-
like inhibitor 

 

Selective 
phosphodiesterase 

II (PDEII) 
inhibitor 

Co_TH6 L3791 Lamotrigine 
 

Miconazole-
like inhibitor 

 

Anticonvulsant 

Co_TH7 V1889 VER-3323 hemifumarate salt Miconazole-
like inhibitor 

 

5-HT2C/5-HT2B 
serotonin receptor 

agonist. 
Co_TH8 L131 L-745,870 hydrochloride 

 
Miconazole-
like inhibitor 

 

Selective D4 
dopamine 
receptor 

antagonist 
Co_TH9 P6777 Phenelzine sulfate salt 

 
Miconazole-
like inhibitor 

 

Non-selective 
MAO-A/B 
inhibitor 

Co_TH10 P8765 Ammonium 
pyrrolidinedithiocarbamate 

 

Miconazole-
like inhibitor 

 

Prevents 
induction of nitric 

oxide synthase 
(NOS) by 
inhibiting 

translation of 
NOS mRNA 

Co_TH11 T7313 1-[2-
(Trifluoromethyl)phenyl]imidaz

ole 

Clotrimazole-
like inhibitor 

 

Potent nitric 
oxide synthase 
(NOS) inhibitor 
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Although fission yeast S. pombe has a cell wall, which could disable the transport of the 

investigated compound to the cell in the fission yeast test system, the new screening system 

reported in addition to ketoconazole, clotrimazole and micoconazole eleven potential 

inhibitors of CYP11B2. These observations demonstrate clearly that these 14 compounds 

could pass the cell wall since they inhibited the mitochondria-localised CYP11B2 in the 

recombinant fission yeast although they have different molecular weight values (Figure 3.33). 

For this reason, it is clearly to say that the cell wall of fission yeast does not form any 

disadvantages in the fission yeast test system.  

Figure 3.32.  Structures of the new CYP11B2 inhibitors identified during the screening assay in this 
work. 
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Figure 3.33. Distributions graph of the new inhibitors of CYP11B2 vs. their molecular weight.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.4. Validation of the new CYP11B2 inhibitors identified during the 

screening assay 

 
The potential inhibitors of CYP11B2 identified during the screening system (Table 3.10, 

Figure 3.32) were defined as active compounds (“hits”) and selected for further validation on 

the basis of commercial availability and clinical interest. 

 

3.3.4.1. Toxicity in fission yeast  

 
Since, the screening assay is an inhibition assay; further investigations had to be done to 

investigate if the detected inhibition is due to the inhibitory effect and not to the toxicity of 

the compound.  

After incubation of fission yeast cultures with the different “hits” under the same conditions 

like in the screening assay, no morphological changes were observed (colour and shape). 

Moreover, a cell viability assay was carried out, and no significant changes (p<0.05) were 

observed in comparison with mock-treated samples (Figure 3.34). 
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Although some compounds displayed less cell viabilities in comparison with the negative 

control, no significant differences were reported (t-test, p<0.05). This result displays clearly 

that the “hits” are not toxic against the fission yeast cells during the screening assay. Hence, 

the detected inhibition is due to the inhibitory effect of these compounds under the test 

conditions. Further validation had to be done to investigate the selectivity of these compounds 

and to calculate the IC50 values against CYP11B2 and CYP11B1. 

 

3.3.4.2. Determination of the IC50 values against CYP11B2 and CYP11B1 

 
For the determination of the IC50 values, the six-point method described previously (Bureik et 

al. 2004) was applied. This radioactive assay possesses high sensitivity to test the effect of the 

compound of interest in low concentration ranges (100 nM – 25 μM) to determine the IC50 

value in the presence of 100 nM substrate. This low concentration of the substrate does not 

allow a detectable bioconversion using HPLC, giving the radioactive method the advantage to 

perform the assay with low concentrations to determine the IC50 value. For this reason, fission 

yeast strains SZ1 and MB164 expressing human CYP11B1 and CYP11B2, respectively, were 

Figure 3.34. Cell viability shown as a percentage of negative control (DMSO).  
The fission yeast cultures were incubated with 41.6 μM from each hit under the same condition like in 
the screening assay. Diluted samples were taken and plated on the desired plates. Colonies were 
calculated after 48 hours incubation at 30oC. Each bar represents the average of triplicate data points. 
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used to perform the assay in the tip-tube format as described in subsection (2.2.4.2). The 

potassium phosphate buffer 50 mM (pH 7.4) was used as test medium, and the “hits” were 

tested with final concentrations ranging from 100 nM to 25 µM. Radioactive substrate was 

applied to detect the steroid conversion and inhibition with a final concentration of 100 nM. 

Clotrimazole with 25 µM was applied as positive control during the assay. 

Repeated steroid hydroxylation measurements with both CYP11B2- or CYP11B1-expressing 

fission yeast systems, were carried out, and only highly correlative data sets (R2>0.75) were 

used for the determination of the IC50 values. Comparing the inhibitor’s effect on the two 

enzymes using identical conditions is an appropriate strategy to evaluate their selectivity 

(Bureik et al. 2004). In this way, it was possible to identify highly selective inhibitors of 

CYP11B2 (Table 3.11). 

 

Table 3.11. The inhibition profiles of the active compounds against CYP11B2 and 
CYP11B1 in the validation assay 

Validation assay Compound code * Name 

CYP11B2 CYP11B1 
Co_TH1 4-Androsten-4-ol-3,17-dione IC50 = 2.4 μM 

R2 = 0.92 
 

- 

Co_TH2 4-Androstene-3,17-dione 
 

IC50= 3.11 μM 
R2 = 0.95 

- 

Co_TH3 DL-p-Chlorophenylalanine methyl 
ester hydrochloride 

 

IC50= 40 μM 
R2 = 0.90 

 

- 

Co_TH4 Ellipticine IC50= 8.9 μM 
R2 = 0.93 

 

- 

Co_TH5 Imazodan 
 

# # 

Co_TH6 Lamotrigine 
 

- - 

Co_TH7 VER-3323 hemifumarate salt - - 
Co_TH8 L-745,870 hydrochloride 

 
- - 

Co_TH9 Phenelzine sulfate salt 
 

IC50= 48 μM 
R2 = 0.75 

 

- 

Co_TH10 Ammonium 
pyrrolidinedithiocarbamate 

 

- - 

Co_TH11 1-[2-
(Trifluoromethyl)phenyl]imidazole 

IC50= 1.37 μM 
R2 = 0.97 

 

IC50= 0.7 μM 
R2 = 0.85 
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Figure 3.35. Autoradiographic detection of steroid hydroxylation activity. Steroid hydroxylation assay 
using strain MB164 and different concentrations of Co_TH1 was carried out as described in Section 2.2.4. 
Co_TH1 concentrations were as follows: (line 1) 100 nM; (line 2) 200 nM; (line 3) 500 nM; (line 4) 2 µM; 
(line 5) 5 µM; (line 6) 25 µM; (lines 7, 8) mock-treated cells (DMSO); (line 9, 10) 25 µM clotrimazole 
(positive control). 

* In this work 
(-) No significant inhibitory action was detectable under the conditions described  
(#) Nonspecific inhibitory action was detected, and no IC50 value was calculated 
 

The validation assay reported five selective inhibitors of CYP11B2 and two inhibitors of both, 

CYP11B2 and CYP11B1. Furthermore, four compounds showed no inhibitory effect against 

CYP11Bs under the validation assay conditions (Table 3.11). Co_TH1 and Co_TH11 

reported as clotrimazole-like inhibitors in the screening assay, showed in the validation assay 

different inhibition profiles. Compound Co_TH1 showed selective inhibitory effect against 

CYP11B2, whereas Co_TH11 showed inhibitory effects against both isoforms of enzyme.  

 Interestingly, out of the nine compounds defined during the screening assay as 

miconazole-like inhibitors, four compounds showed selective inhibition against CYP11B2. 

For this reason, it is important to include all miconazole-like inhibitors defined during the 

screening assay into the validation assay when the screening is carried out to discover 

selective inhibitors of CYP11B2.  

The new CYP11B2 inhibitors reported in this work are pharmacologically active compounds. 

Co_TH1 is already known as formestane (sold as Lentaron®) and described as an injectable 

steroidal aromatase inhibitor with significant activity against metastatic breast cancer 

(Wiseman and Goa 1996). Figure 3.35 below shows the autoradiographic detection of steroid 

hydroxylation activity in the case of increased concentrations of Co_TH1 in comparison with 

positive (clotrimazole) and negative (DMSO) controls.  
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The plot of the CYP11B2 inhibition against the concentration of Co_TH1 shows a high 

correlation as shown in Figure 3.36 below, and was used to calculate the IC50 value for 

Co_TH1 against CYP11B2. This result displays that formestane (Co_TH1) inhibits selectivity 

CYP11B2 with an IC50 of 2.4 µM, whereas no significant inhibition was detected against 

CYP11B1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

The closely related compound Co_TH2, which is androstendion is a testosterone precursor 

and metabolite with androgenic activity. Interestingly, Co_TH1 and Co_TH2 were identified 

during the screening assay as clotrimazole-like and miconazole-like inhibitors of CYP11B2, 

respectively. These results were confirmed through the validation assay, where the 

miconazole-like inhibitor displayed relatively higher IC50 value (Co_TH2; IC50 = 3.11 µM) 

(Figure 3.37) in comparison with the clotrimazole-like inhibitor Co_TH1 (IC50 = 2.4 µM) 

(Figure 3.36). Although the difference between the two IC50 values is not very high, a 

difference has been reported that confirms the screening results.    

 

 

 

Figure 3.36. The inhibitory effect of Co_TH1 on the activity of CYP11B2.  
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Figure 3.37. The inhibitory effect of Co_TH2 on the activity of CYP11B2. 

 

Figure 3.38. The inhibitory effect of Co_TH11 on the activity of CYP11B1 (opened 
symbols) and CYP11B2 (closed symbols).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regarding the steroidal scaffold of 4-androsterone-4-ol-3, 17-dione the structure activity 

analysis revealed that the ketone in position 17 (D-ring) is beneficial for the activity, and an 

OH- residue at position 4 (A-ring) is necessary for potent inhibition of CYP11B2 (Figure 

3.32). Although the nitric oxide synthase inhibitor Co_TH11 (1-[2-

(Trifluoromethyl)phenyl]imidazole ) was defined in the screening assay as clotrimazole-like 

inhibitor of CYP11B2, this compound displayed in the validation assay and in contrast to 

Co_TH1 a strong and unselective inhibition effect against CYP11B2 and CYP11B1 with IC50 

values of 1.37 μM and 0.7 μM, respectively (Table 3.11, Figure 3.38).   
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In contrast to this, Co_TH3, Co_TH4 and Co_TH9 which were defined as miconazole-like 

inhibitors in the screening assay showed in the validation assay selective inhibition against 

CYP11B2 with IC50 values of 40 μM, 8.9 μM and 48 μM respectively (Table 3.11).  

 

The new CYP11B2 inhibitors defined in this work are pharmacologically active 

compounds which make them “druggable” lead compounds that could further optimised 

during the drug development process to achieve more selective and safe inhibitors of 

CYP11B2. Furthermore, some of these compounds are already commercial drugs and are 

applied clinically with unexplained side effects and severe complications. These unexplained 

complications could be explained to some extent because of their inhibitory effect against 

CYP11B2 as will be discussed in details below. 
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4. Discussion and Outlook 

  
Since, the overall target of this work was the development of efficient P450-dependent whole-

cell biotransformation reactions for steroid hydroxylation and drug discovery, the CYP11Bs- 

expressing fission yeast systems mentioned above were investigated and optimised in order to 

achieve this target.   

The optimisation of the fission yeast systems was carried out on two different levels; the 

optimisation of the whole-cell system itself to increase the activity of the steroid hydroxylase 

and the optimisation of the hydroxylation assay parameters to achieve efficient reactions with 

biotechnological and pharmaceutical impacts. 

 

4.1. Optimisation of the steroid hydroxylation assay for the 96-well plate 

format 
 

Although fission yeast Schizosaccharomyces pombe was previously reported as an efficient 

host to express human CYP11Bs and to perform a whole-cell-based hydroxylation reaction 

(Bureik et al. 2002b; Bureik et al. 2004; Dragan et al. 2005), the ability to perform a 

CYP11B-dependent steroid hydroxylation assay in a 96-well plate has not yet been reported.  

Performing the steroid hydroxylation assay in 96-well plate will give the opportunity to 

perform the assay on a relatively large scale in comparison with the tip-tube format or with 

Erlenmeyer flasks, which enables the comparison of the 11β activity of several recombinant 

fission yeast strains at the same time. Furthermore, the plate-format method can be used to 

develop a screening system to check the steroid hydroxylation activity in a recombinant 

fission yeast strain under different conditions (inhibitor, medium, pH, etc.).  

In order to perform a steroid hydroxylation assay in a 96-well plate a steroid bioconversion 

had to be achieved using a low-volume culture of fission yeast and a non-radioactive 

substrate, in which the steroid bioconversion can be measured with the HPLC. For this reason, 

the hydroxylation parameters were investigated and optimised to perform the reaction in low-

volume culture in the tip-tube format and then in the 96-well plate format.  

This work showed clearly the ability to get steroid bioconversion using a low-volume culture 

of the CYP11B1-expressing fission yeast and without the need to use radioactive-labelled 

substrate (Figure 3.1). Although the test was optimised for low-volume culture and carried out 

in the tip-tube format, no steroid bioconversion was detected when the test was performed in a 

96-well plate. Taking into consideration the similarities and differences between the two test 
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formats (tip-tube and 96-well plate), it turns out that each format has its own test shape, which 

could influence the shaking process and aeration during the assay. Moreover, the tip-tube 

format assay was carried out using a thermomixer whereas the plate was shaken using an 

incubator. The investigations showed clearly the influence of the shaking velocity and assay 

volume on steroid bioconversion since increasing the shaking velocity to 480 rpm and assay 

volume to 600 µl displayed detectable steroid bioconversion on the HPLC when the test was 

carried out in a 96-well plate (Figure 3.9). Furthermore, using the pipetting robot to 

manipulate the 96-well plates showed high efficiency to perform the hydroxylation assay on a 

relatively large scale in comparison with other test formats described above. The extraction 

program developed in this work (Table 3.2) enables the extraction of steroids from 96 samples 

in ca. 20 min, which is significantly shorter than the manual extraction process. In addition to 

this, and since no significant differences were observed between several wells, this 

hydroxylation assay provides an efficient screening tool to investigate the P450-dependent 

steroid hydroxylases in recombinant fission yeast strains (in the case of CYP11B1 (Dragan et 

al. 2005), CYP11B2 (Bureik et al. 2002b), CYP17 or CYP21 (Dragan et al. 2006)) and can be 

further optimised to develop a high or medium throughput screening system.     

 

4.2. Coexpression of redox partners in CYP11B1-expressing fission yeast 

Schizosaccharomyces pombe  

 
The biotechnological production of hydrocortisone is a complex process, which requires many 

different optimisation steps in order to significantly increase the product formation.  

Although fission yeast Schizosaccharomyces pombe has been reported to be a very suitable 

model system for the investigation of P450 dependent steroid hydroxylases, hydrocortisone 

production efficiency using CYP11B1-expressing fission yeast strain SZ1 is not competitive 

enough for the consideration of its use for industrial applications.  

As mentioned above and although the human CYP11B1 is able to accept electrons from the 

yeast Adx homologue, it has been demonstrated that the electron transfer to the cytochrome 

P450 can be rate limiting in various P450 systems (Grinberg et al., 2000; Bernhardt 2006; 

Hannemann et al. 2007). For this reason, the target of this part of work was the improvement 

of the electron transfer pathway that supplies electrons to CYP11B1 in the recombinant 

fission yeast in order to increase the CYP11B1-mediated 11β-hydroxylation activity to 

produce more hydrocortisone. Hence, the corresponding mammalian electron transfer partners 

(Adx and AdR) were coexpressed with CYP11B1, and different mutants of Adx were 
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investigated to achieve a recombinant fission yeast strain with the highest hydrocortisone 

bioproduction efficiency.  

This work shows clearly that hydrocortisone production can be dramatically enhanced (3.4- 

fold) by coexpressing the other components of the CYP11B1 electron transfer chain and by 

optimising the reaction conditions to achieve high production efficiency on the laboratory 

level. 

The CYP11B1-expressing fission yeast strains developed during this work were classified 

into four types according to the presence of the electron transfer proteins (Figure 4.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fission yeast strain SZ1, which expresses the cytochrome CYP11B1 belongs to the first 

type, since this strain expresses only the P450. Nevertheless, this strain is capable of 

efficiently performing 11β-hydroxylation reaction and produces 12% hydrocortisone under 

the test conditions mentioned before (Figure 3.18), which confirms earlier reports that the 

Figure 4.1. Schematic overview of the recombinant fission yeast types according to the availability of the 
electron transfer proteins in the fission yeast strains used in this study. 
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P450 is supplied with reducing equivalents presumably from the endogenous electron transfer 

proteins etp1fd (Bureik et al. 2002b; Dragan et al. 2005) and arh1 (Ewen et al. 2008) (Figure 

4.1, type I).  Strain TH2 belongs to the second type in which the cytochrome CYP11B1 is 

heterologously coexpressed together with AdxWT. This strain displayed an increased 11β-

hydroxylation activity compared to SZ1 (Type I electron transfer chain) with a hydrocortisone 

production of 25% (Figure 3.18) indicating a participation of Adx in the electron transfer to 

CYP11B1 also in fission yeast (Type II electron transfer chain). The third type implemented 

in the strain TH3 heterologously coexpresses AdRWT and CYP11B1. The strain showed no 

increase in 11β-hydroxylation activity compared to the SZ1 strain, which clearly 

demonstrated that AdRWT alone can not improve the electron transfer efficiency in 

recombinant fission yeast. These findings could indicate a lack in cooperation between the 

heterologous AdR and the host ferredoxin etp1fd in the presence of its putative natural host 

partner arh1 or a maximum of electron transfer efficiency between the autologous redox 

partners (see Figure 4.1, compare type I and type III). Furthermore, it shows that the 

efficiency of substrate conversion depends mainly on the ferredoxin employed in the reaction 

(Ewen et al. 2008). 

Strains TH4 and TH75 which coexpressed CYP11B1, AdxWT, and AdRWT (Type IV electron 

transfer chain) displayed a 3.4-fold higher activity (40% of initial RSS converted, Figure 3.18) 

with respect to the parental strain SZ1. In this way, TH75 is a highly efficient recombinant 

organism that can be used for the biotechnological conversion of RSS to hydrocortisone.  

The investigations of Adx mutations that were assumed to improve the 11β-hydroxylation 

activity in the context of a complete electron transfer chain could not further improve the 

hydrocortisone production compared to TH4 or TH75. This could be due to the distinct 

interaction forms between the different types of Adx and AdR in the yeast or to other 

limitations in the reaction process apart from the electron transfer. 

Although human CYP11B1 in SZ1 was already optimised on the enzyme level and a site-

directed mutagenesis was performed at positions 52 and 78 of CYP11B1, which showed that 

the presence of an isoleucine at position 78 increased the 11β-hydroxylation activity (3.5-fold) 

(Hakki et al. 2008), the 11β-hydroxylation activity could be further optimised (3.4-fold) by 

the coexpression of the corresponding electron transfer partners. These results demonstrated 

clearly the opportunity to optimise the steroid hydroxylases by optimising the whole-cell 

system itself. Moreover, and additionally to the coexpression of Adx and AdR optimising the 

bioconversion conditions enabled a high bioconversion efficiency on the laboratory level in 

comparison with the parental strain (Figure 3.20). 
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Thus it can be clearly demonstrated that the new fission yeast strain TH75 (Figure 4.2) 

coexpressing the complete electron transfer chain of the mitochondrial cytochrome CYP11B1 

displays a significantly higher 11β-hydroxylation activity than the parental strain SZ1. This 

new fission yeast strain TH75 displayed a high hydrocortisone production efficiency at an 

average of 9.7 µmol hydrocortisone per 10ml test culture over a period of 72 hours (Figure 

3.20), the highest value published to date for this biotransformation. Moreover, it can be 

expected that optimising the fermentation conditions in order to perform a sophisticated high-

cell-density process can further enhance the efficiency of hydrocortisone bioproduction using 

TH75. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
 
Additionally, the newly developed vector pTH2 (Figure 3.14 A) has proven to be an important 

tool in combination with the integration vector pCAD1. Whereas the use of the integration 

vector pCAD1 enables the expression of a mitochondrial cytochrome of interest via 

chromosomal expression, the use of pTH2 enables the autosomal coexpression of the 

Figure 4.2. Schematic overview of the recombinant fission yeast strain TH75. The electron transfer 
proteins involved in the CYP11B1-dependent steroid hydroxylation in the fission yeast strain TH75.   
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complete mitochondrial electron transfer partners. This demonstrates an interesting way of 

functionally assembling the complete P450 system including the mitochondrial electron 

transfer chain by using only two expression vectors (pCAD1 and pTH2). 

 

4.3. The development of a cell-based high throughput screening system 

for the discovery of human aldosterone synthase inhibitors  

 
As mentioned before, the principal function of aldosterone is the maintenance of salt and 

water homeostasis and it therefore has a pivotal role in the regulation of blood pressure. It is 

unsurprising therefore that excessive aldosterone secretion has been reported in several cases 

of hypertension and has been correlated with higher mortality in congestive heart failure and 

fibrosis of the heart (Pitt et al. 1999; Brilla 2000; Pitt et al. 2001; Hakki and Bernhardt 2006). 

In addition to this, chronic elevation of aldosterone has also been implicated in adenoma, 

idiopathic hyperaldosteronism and insufficient renal flow (Stowasser and Gordon 2001). 

Although the use of aldosterone antagonists shows clinical benefit in the treatment of these 

diseases, it also leads to severe side effects like gynaecomastia and endocrinal dysregulation. 

Therefore, trials to inhibit the synthesis of aldosterone directly have been published  (Denner 

et al. 1995b; Ehmer et al. 2002; Bureik et al. 2004; Ulmschneider et al. 2005a; Ulmschneider 

et al. 2005b; Hakki and Bernhardt 2006; Baston and Leroux 2007). Thus, CYP11B2 

comprises a new target for drug treatment and selective inhibitors of the aldosterone 

producing CYP11B2 enzyme is of high pharmacological interest (Hakki and Bernhardt 2006; 

Baston and Leroux 2007; Schuster and Bernhardt 2007).  
Although two systems (recombinant V79 cells, recombinant fission yeast) have been already 

established for evaluating compounds with respect to their inhibitory effect on human 

CYP11B1 and CYP11B2 (Bureik et al. 2004), neither of these two systems mentioned before 

could be considered as high or even medium throughput screening system. For this reason, the 

target of this part of work was the development of a high throughput screening system (HTS) 

for the discovery of aldosterone synthase inhibitors. 

The development of the screening system was carried out on two levels; the development of a 

one point hydroxylation assay in fission yeast and the optimisation of the HPLC measurement 

in order to increase the throughput of the screening system.   

Using the CYP11B2-expressing S. pombe system, a rapid, reliable and reproducible whole-

cell-based HTS has been developed during this work. Furthermore, a new testing strategy has 
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been established to be applied in the field of drug discovery to discover CYP11B2 inhibitors 

for both academic and pharmaceutical purposes. 

This new testing strategy consisted of a high throughput screening system followed by 

secondary validation assays for the further characterisation of the potential inhibitors of 

CYP11B (Figure 4.3). 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To develop a one-point whole-cell assay, the CYP11B2-expressing fission yeast strain 

MB164 was investigated in the presence of the known inhibitors of CYP11B2 (Table 3.8). 

Figure 4.3. Schematic overview of the CYP11B2 testing strategy developed in this work. The new 
testing strategy consists of a primary screening assay, in which potential inhibitors will be investigated 
using the one point method to define the active compounds “hits. The hit will then go under secondary 
validation assays to investigate the toxicity of the compound and to define the selectivity against 
CYP11B2 and CYP11B1 using the multiple point method.    

Primary 
screening 

assay 

Secondary 
validation 

assays 
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The target of these investigations was the determination of the optimal conditions for a one-

point method, which gives reproducible results of conversion and inhibition in the presence of 

negative and positive controls.  

The results demonstrated clearly that 5 μM DOC is an optimal concentration to get detectable 

conversion of DOC into B after three hours incubation in a 96-well plate (Figure 3.23). 

Moreover, test media were investigated to define the optimal medium in which the model 

inhibitor of CYP11B2 (ketoconazole) gives reproducible and highly correlated inhibition with 

its concentration. This investigation showed that simple potassium phosphate buffer (50 mM) 

is an optimal test medium to perform the screening assay (Figure 3.24). Although the different 

pH values showed high correlation between the concentration of ketoconazole and inhibition, 

the physiological pH 7.4 was chosen in order to test the compounds in a mammalian cell 

culture-resembling pH-environment. 

 

Although the industry standard for initial CYP screening is 10 μM (Lin et al. 2007), 

the one-point assay developed in this work was designed to be carried out at 41.6 μM. This 

high concentration was chosen since this new developed screening assay is a whole cell-based 

assay and no information about the transport of compounds through the fission yeast cell wall 

is available. Moreover, it was assumed that the investigated compounds would be considered 

as uninteresting when no inhibition is detected even with this high concentration. 

Interestingly, this one-point method displayed reproducible results when the model inhibitors 

of CYP11B2 were tested. The mock- treated (DMSO) samples showed bioconversion ratio of 

11.5%, whereas the presence of the CYP11B2 inhibitors showed significant inhibition 

profiles. The potent CYP11B2 inhibitors ketoconazole and clotrimazole showed total 

inhibition under the test conditions. Furthermore, the less potent CYP11B2 inhibitor 

miconazole showed 44% inhibition (Figure 3.30, Table 3.9). The results of controls are well 

correlated with the literature results reported before since significant differences between the 

potent and less potent inhibitors of CYP11B2 were noticed when tested using the one-point 

method. This one-point assay enables the classification of the CYP11B2 inhibitors (“hits”) 

defined during the primary screening into potent and less potent inhibitors of CYP11B2. For 

this reason, the controls were considered as internal quality control parameters along the 

screening process and were incorporated in each plate. 

Moreover, the HPLC parameters were further optimised which enabled the separation of DOC 

and B within 2 min (Figures 3.27) reducing the solvent consumption and increasing the 

throughput of the HPLC by more than 2-fold.   
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4.4. Testing a library of pharmacologically active compounds using the 

developed screening system 

 
Drug companies try to conserve efforts, years of time and money they have put into drugs that 

failed to reach the marked for a variety of reasons like poor safety profile or unexplained side 

effects. However, recouping losses of billions of dollars spent to develop a drug could be 

simply done by finding a different disease to treat with it, or by taking drugs already existing 

on the market for one indication, and trying to find other possible indications to make more 

money with the existing drug, or in other words; recycling of existing drugs. 

Although repositioning of existing drugs has appeared in the early 1990s, it has only existed in 

its current form since the beginning of the decade and only very few companies looked at 

existing drugs or retooled themselves to do repositioning sprouted up (Table 4.1).    

 

Table 4.1. Selected long-standing pharmaceuticals that had been repositioned during or 
prior to 2004 (Ashburn and Thor 2004) 
 

Generic 
Name 

Trade Name, Original Indication 
(originator) 

Trade Name, Repositioned Indication 
(repositioner) 

Celecoxib Celebrex, osteoarthritis and 
rheumatoid arthritis (Pfizer) 

Celebrex, familial adenomatous polyposis, 
colon & breast cancer 

Minoxidil trade name N/A, hypertension 
(Pharmacia & Upjohn) Rogaine, hair loss (Pfizer) 

Topiramate Topamax, epilepsy (Johnson & 
Johnson) trade name N/A, obesity (Johnson & Johnson) 

Lidocaine Xilocaine, local anesthesia 
(AstraZeneca) 

trade name N/A, Oral corticosteroid-dependent 
asthma (Corus Pharma) 

Buproprion Wellbutrin, depression 
(GlaxoSmithKline) Zyban, smoking cessation (GlaxoSmithKline) 

Fluoxetine Prozac, depression (Eli Lilly) Sarafem, premenstrual dysphoria (Eli Lilly) 

Duloxetine Cymbalta, depression (Eli Lilly) Duloxetine SUI, stress urinary incontinence 
(Eli Lilly) 

 

In fact, of the top 50 selling pharmaceuticals in 2004, 84% have had additional indications 

approved since their initial US licensure. For this reason, the target of this part of work was to 

screen a library of pharmacologically active compounds using the newly developed screening 

system. The screening was carried out to validate the system itself and to check if a 
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repositioning process can be carried out on these existing pharmaceuticals to add the 

inhibition of CYP11B2 as a new indication. 

The results of controls displayed reproducible results using the one-point concentration 

method (41.6 µM), and showed significant differences between the controls and the mock-

treated samples (p<0.05). The mock-treated samples (DMSO) displayed CYP11B2 activity 

with B production ratio of 11.5%, whereas the presence of miconazole decreased significantly 

(p<0.05) the activity of CYP11B2 and B production ratio to 6.5% showing 44% inhibition 

under the test conditions. Moreover, the presence of either clotrimazole or ketoconazole 

displayed total inhibition of CYP11B2 (100%). Hence, each compound with similar inhibition 

profile will be defined during this screening assay as clotrimazole-like inhibitor of CYP11B2, 

whereas compounds with less inhibition effect resembling the miconazole effect will be 

defined as miconazole-like inhibitors. 

The results of control showed high reproducibility during the screening assay and confirmed 

the reliability of the screening system. Furthermore, the screening assay showed high 

robustness when the Z'-factor was calculated for the several known CYP11B2 inhibitors as 

positive controls and DMSO as negative control. The Z'-factor of 1.0 for clotrimazole and 

ketoconazole show that the screening assay is perfect to identify clotrimazole-like inhibitors, 

and is an excellent assay to identify miconazole-like inhibitors since the Z'-factor for 

miconazole was 0.85.   

The investigated library contains 1268 proven pharmacologically active compounds (see 

appendix) and is distributed in different kinds of drug classes as shown in Figure 4.4. 

Although 35% of the compounds in the library are inhibitors of different enzymes, only 13 

compounds were reported during the screening assay as potential inhibitors of CYP11B2. The 

two novel clotrimazole-like inhibitors reported in this work belong to the inhibitors class, 

whereas the miconazole-like inhibitors belong to different classes (Table 3.10, Figure 4.4).  
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Figure 4.4.  Pie chart depicting the composition of the investigated library.  
The LOPAC library contains different classes of compounds. The screening assay reported four clotrimazole-
like inhibitors, whereas nine miconazole-like inhibitors were also reported. The new inhibitors of CYP11B2 
belong to different classes as shown (▲ clotrimazole-like inhibitor, ■ miconazole-like inhibitor). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the new CYP11B2 inhibitors are pharmacologically active compounds, the unexplained 

side effects associated with the therapeutic application of these drugs can be explained to 

some extent according to the results of this work. 

 

 Co_TH1 is formestane (sold as Lentaron®) and described as an injectable steroidal 

aromatase inhibitor with significant activity against metastatic breast cancer. In the clinical 

trails, formestane has been generally well tolerated following intramuscular administration at 

doses of up to 500 mg weekly (Goss et al., 1986). 

Previous studies showed that systemic adverse effects occurred in about 12% of patients 

following intramuscular drug administration (Coombes et al., 1992). Many of these such as 

hot flushes, vaginal spotting and emotional labiality were related to the mechanism of action 

of formestane i.e. estrogen suppression. Lethargy, rash, nausea, dizziness, indigestion, ataxia, 

cramps and facial swelling have also been reported with an incidence of <7% (Hoffken et al., 

1990). Moreover, it was reported recently that formestane treatment is also associated with 

changes in bile composition, which may predispose to gallstone formation (Czerny et al., 
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2005). Our results display that formestane (Co_TH1) inhibits selectively CYP11B2 (IC50: 2.4 

µM) (Figure 3.32). This observation could explain some of the side effects associated with 

formestane i.e. nausea and dizziness.  

 The closely related compound Co_TH2 is androstendion, which is a testosterone 

precursor and metabolite with androgenic activity. Interestingly Co_TH1 and Co_TH2 were 

identified during the primary screening assay as clotrimazole-like and miconazole-like 

inhibitors of CYP11B2, respectively. This result was confirmed through the validation assay, 

where the miconazole-like inhibitor displayed higher IC50 value (Co_TH2; IC50= 3.11 µM) in 

comparison with the clotrimazole-like inhibitor Co_TH1 (IC50= 2.4 µM). Regarding the 

steroidal scaffold of 4-androsterone-4-ol-3, 17-dione the structure activity analysis revealed 

that the ketone in position 17 (D-ring) is beneficial for activity, and an OH- residue at position 

4 (A- ring) is necessary for potent inhibition of CYP11B2. 

Since androstendion (Co_TH2) is a dehyhdroepiandrosterone (DHEA) metabolite, it might be 

of special interest that hormonal replacement therapy increasing DHEA will increase 

androstendion. Therefore, DHEA replacement performed as anti-aging therapy (Ohnaka and 

Takayanagi 2007), should take into consideration the possibility to develop salt depletion and 

unexplained hypotension.      

  The anti cancer drug Ellipticine (Co_TH4) identified during the primary assay as 

miconazole-like inhibitor of CYP11B2 showed selective inhibition of CYP11B2 with an IC50 

of 8.9 μM (R2 = 0.93). Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole) and several of 

its derivatives isolated from Apocyanaceae plants (i.e. Ochrosia borbonica, Excavatia 

coccinea) are alkaloids exhibiting significant antitumor and anti-HIV activities. Ellipticine 

and its more soluble derivatives (9-hydroxyellipticine, 9-hydroxy-N2-methylellipticinium, 9-

chloro-N2-methylellipticinium and 9-methoxy-N2-methylellipticinium) exhibit promising 

results in the treatment of osteolytic breast cancer metastases, kidney sarcoma, tumors of brain 

and myeloblastic leukemia (Stiborova et al., 2001).The main reason for the interest in 

ellipticine and its derivatives for clinical purposes is their high efficiencies against several 

types of cancer, their rather limited toxic side effects and their complete lack of hematological 

toxicity (Auclair 1987). 

Many suggestions were reported about the mechanisms of action that ellipticines follow as 

anticancer drugs, taken into consideration that the prevalent mechanisms of antitumor 

activities are (1) intercalation into DNA (Chu and Hsu 1992; Singh et al., 1994), and (2) 

inhibition of DNA topoisomerase II activity (Monnot et al., 1991; Fosse et al., 1992).  
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Recently, it has been demonstrated that ellipticine covalently binds to DNA after being 

enzymatically activated. Cytochromes P450 (CYPs) are the major enzymes catalysing the 

ellipticine oxidation and its activation to more efficient metabolites forming DNA adducts 

(Aimova and Stiborova 2005). Furthermore, ellipticine was found to be a substrate of 

CYP1A1 and CYP1A2 (Auclair 1987; Frei et al., 2002), and an inducer of several CYPs 

(Aimova et al., 2007). On the other hand, this compound was previously reported to be a 

strong inhibitor of CYP1A1/2 (Auclair 1987). We found an inhibitory effect of ellipticine 

against the human CYP11B2. For this reason, it should be taken into consideration that the 

clinical application of ellipticine in the treatment of cancer could be associated with blood 

hypotension.  

Compound Co_TH9 known as phenelzine (Sold as Nardil®) is a potent, irreversible 

inhibitor of monoamine oxidase (MAO)-A and –B, that has been used to treat depression 

since the late 1950s (Furst 1959). There has been a recent resurgence of interest in this drug 

class for patients with severe depression (Shelton Clauson et al., 2004; Sokolski and Brown 

2006). 

Phenelzine toxicity is normally characterised by agitation, seizures, sweating, tachycardia and 

hypertension (Ciocatto et al., 1972; Bhugra and Kaye 1986; Henry and Antao 1992), although 

hypotension has also been described (Linden et al., 1984; Breheny et al., 1986). Furthermore, 

the unexplained phenelzine-induced hypotension could be treated successfully with salt 

tablets (Munjack 1984). Moreover, several studies reported phenelzine-overdose induced 

complications, these complications include severe and unexplained hypotension, impaired left 

ventricular function and acute myocarditis, death was also reported and should be considered 

in patients who develop unexplained hypotension after phenelzine overdose (Linden et al. 

1984; Waring and Wallace 2007). 

Since it was found in this work that phenelzine inhibits the aldosterone synthase (CYP11B2) 

with an IC50 value of 48 µM hence, the side effect of this drug concerning salt loss and 

hypotension can be explained with this result. As a result of CYP11B2 inhibition, the renin-

angiotension system will be activated in a classical endocrine negative feedback loop, this 

activation will increase the amount of converted angiotension II (AT II), the potent 

vasoconstrictor, which elevate thus the blood pressure, and could be the reason for the 

hypertension usually characterizing phenelzine toxicity. Furthermore, AT II has a direct 

stimulating action on the corticotropin-relasing hormone (CRH) (Ganong 1993; Jezova et al., 

1998), which induces in addition to steroidogenesis the catecholamine synthesis via the 

induction of tyrosine hydroxylase (TH) (Dermitzaki et al., 2007), dopamine β- hydroxylase 
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(DBH) and phenylethanolamine N-methyltransferase (PNMT) (Lima and Sourkes 1987). 

Moreover, CRH stimulates the catecholamine release and posses a trophic effect on 

chromaffin cells (Hoheisel et al., 1998). 

Thus, depending on the results of this work and the previous clinical observations mentioned 

above, it can be suggested that the unexplained hypotension after a massive phenelzine 

overdose is due to the CYP11B2 inhibition. 

The massive overdose could inhibit totally the aldosterone synthase, and, as a result, 

aldosterone, the primary hormone responsible for Na+ retention by the kidney, will disappear 

causing hypotension. Moreover, the activation of the renin-angiotension system stimulates the 

corticotropin-relasing factor (CRF) and adrenocorticotropic hormone (ACTH), which 

stimulate the adrenal gland, and since CYP11B2 is inhibited, more cortisol will produced.  

The increased CRH will enhance also the epinephrine synthesis through the stimulation of 

tyrosine hydroxylase and dopamine-β-hydroxylase. Moreover, the increased cortisol will 

increase the expression level of phenylethanolamine N-methyltransferase (PNMT) in 

chromaffin cells, enhancing also the synthesis of epinephrine (Isobe et al., 2000; Wong 2006) 

(Figure 4.5). 

Unlike many other hormones, epinephrine as well as the other catecholamines does not exert 

any negative feedback, and therefore the overdose of phenelzine increases the epinephrine 

synthesis, whether on the production level by enhancing indirectly the activity of the enzymes 

involved in catecholamine synthesis, or directly by inhibiting the monoamin oxidase enzymes 

involved in the epinephrine metabolism process (Figure 4.5). 
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The synthesis of the catecholamines will increase which explains the increased levels of brain 

epinephrine and dopamine found in patients treated with MAO inhibitors prior to death 

(Bogdanski et al., 1958; Green and Erickson 1962; Jones et al., 1972). Furthermore, the high 

levels of catecholamines in brain seem to be responsible for the central nervous system 

excitation and peripheral sympathetic stimulation associated with increased pulse reported in 

MAO inhibitor overdose cases (Sandler 1959; Reid and Kerr 1969; Mackell et al., 1979).   

Although no study reported the aldosterone concentration in depressed patients receiving a 

phenelzine therapeutic course, depressed subjects were reported to display huge increase in 

aldosterone concentration in comparison with controls (Murck et al., 2003). This could 

Figure 4.5. Schematic representation of catecholamine and adrenal hormone biosynthesis, and the 
speculated influence of an overdose of phenelzine (Co_ TH9).  
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minimize the influence of any aldosterone decrease in depressed patients receiving 

phenelzine. Whereas an overdose from phenelzine can lead to a total inhibition of CYP11B2 

and to a dramatic decrease in the aldosterone concentration. These findings could play an 

important role in the management of depressed patients receiving phenelzine by monitoring 

the aldosterone concentration and blood pressure. Furthermore, phenelzine overdose-induced 

death could be prevented by rapid infusion of normal saline and aldosterone replacement 

therapy. 

Finally, the tryptophan hydroxylase inhibitor Co_TH3 (4-Chloro-DL-phenylalanine methyl 

ester hydrochloride) defined during the screening assay as miconazole-like inhibitor, showed 

during the validation assay a selective inhibition of CYP11B2 with an IC50 of 40 μM 

(R2=0.90). In contrast, the nitric oxide synthase inhibitor Co_TH11 (1-[2-

(Trifluoromethyl)phenyl]imidazole) defined during the screening assay as clotrimazole-like 

inhibitor displayed strong inhibition effect against both, CYP11B2 and CYP11B1 with IC50 

values of 1.37 and 0.7 μM, respectively (Table 3.11, Figure 3.38). It is, thus, not specific 

enough as a “lead” for the development of CYP11B2 inhibitors. For this reason, the 

miconazole-like inhibitors of CYP11B2 defined during the screening assay should be taken 

into consideration and included in the validation assays when the screening is carried out to 

discover selective inhibitors of CYP11B2. 

Concluding, these results indicate that the new screening system developed in this 

work (Figure 4.3) is a robust screening system that can be applied to investigate libraries of 

existing drugs to find novel CYP11B2 inhibitors. This screening enables the reposition of 

existing drugs, which can save costs and billions of dollars spend to develop new CYP11B2 

inhibitors.    

Although the test was developed and validated on the laboratory level, it displayed the ability 

to screen up to 600 compounds per week. The throughput of the system can further increased 

by testing 10 compounds per well, which will increase the throughput of the system up to 

6000 compounds per week.     

Finally, this screening system can be modified and established for the use on the industrial 

level, especially when the required equipments are offered to enable the manipulation of large 

numbers of plates. Furthermore, the novel CYP11B2 inhibitors identified in this work are 

“druggable” compounds that can be repositioned to be used in the treatment of 

hyperaldosteronism-related diseases or as lead compounds that could further optimised in the 

field of drug development to achieve more safe and selective inhibitors of CYP11B2.     
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6.2. Index of Figures 

 
Figure Description Page 

1.1. Reaction generally catalysed by cytochrome P450. 1 

1.2 The mitochondrial steroid hydroxylase systems. 2 

1.3. The microsomal steroid hydroxylase systems. 3 

1.4. The role of cytochromes P450 in the biosynthesis of steroid hormones in the 

human adrenal cortex. 

3 

1.5. Steroid hydroxylases as drug development targets. 5 

1.6. CYP11B1-dependent hydroxylation reaction. 7 

1.7. CYP11B2 converts 11-deoxycorticosterone via corticosterone and 18-OH 

corticosterone to aldosterone. 

8 

1.8. The renin– angiotensin–aldosterone system. 10 

1.9. Superposition of the ribbon structures of the homology models of human 

CYP11B1 (green) and CYP11B2 (orange) (Belkina et al. 2001). 

12 

1.10. Picture of the fission yeast Schizosaccharomyces pombe from Steve’s place. 19 

2.1. pNMT1-TOPO vector map (Invitrogen; Carlsbad, CA). 27 

2.2. pREP42 Pk C vector map. 28 

2.3. The Mega Block plates from VWR used during this work. 30 

2.4. The pipetting robot (Tecan Aquarius, Swizerland). 30 

2.5. TOPO TA Cloning® of Taq-amplified DNA (Invitrogen; Carlsbad, CA). 31 

2.6. The construction of a modified 1.5 ml tube (tip-tube). 40 

3.1. 

 

HPLC chromatogram of CYP11B1-dependent bioconversion of RSS into F 

carried out using the tip-tube format. 

48 

3.2. Z-positions for a tube. 50 

3.3. Tecan working area during the extraction process. 53 

3.4. HPLC chromatograms of extracted steroids obtained using the automated 

extraction method applied in a 96-well plate.   

54 

3.5. HPLC chromatograms of steroids extracted automatically or manually. 55 

3.6. Direct comparison of the recovered steroids obtained using different 

extraction methods in comparison with the same amount of steroids that 

were given on the HPLC without extraction. 

56 

3.7. Steroid 11β-hydroxylation activity of SZ1 in a 96-well plate format. 57 

3.8. HPLC Chromatograms show the separation of RSS and F under different 58 



Appendix                                                                                                                               130                          

 

HPLC conditions. 

3.9. HPLC chromatogram of the CYP11B1-dependent bioconversion of RSS 

into F carried out using the 96-well plate format. 
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3.32. 

 

Structures of the new CYP11B2 inhibitors identified during the screening 

assay in this work. 

87 

3.33 Distributions graph of the new inhibitors of CYP11B2 vs. their molecular 

weight. 

88 

3.34. Cell viability shown as a percentage of control (DMSO). 89 

3.35. Autoradiographic detection of steroid hydroxylation activity.  91 

3.36. The inhibitory effect of Co_TH1 on the activity of CYP11B2.  92 

3.37. The inhibitory effect of Co_TH2 on the activity of CYP11B2. 93 

3.38. 

 

The inhibitory effect of Co_TH11 on the activity of CYP11B1 (opened 

symbols) and CYP11B2 (closed symbols).  

93 

4.1. 

 

Schematic overview of the recombinant fission yeast types according to the 

availability of the electron transfer proteins in the fission yeast strains used 

in this study. 

97 

4.2. Schematic overview of the recombinant fission yeast strain TH75. 99 

4.3. Schematic overview of the CYP11B2 testing strategy developed in this 

work.  

101 

4.4. Pie chart depicting the composition of the investigated library. 105 

4.5. Schematic representation of catecholamine and adrenal hormone 

biosynthesis, and the speculated influence of an overdose of phenelzine 

(Co_ TH9). 

109 

 

 



Appendix                                                                                                                               132                          

 

6.3. Index of Tables 

 
Table Description Page

1.1. Comparison of the yeast and mammalian recombinant systems for the 

development and analysis of potential selective inhibitors 

18 

2.1. Composition of LB medium 23 

2.2. Composition of SOC medium 24 

2.3. Composition of EMM medium 24 

2.4. Composition of YEA medium 25 

2.5. Composition of 2X YEA with 25 % glycerol medium 25 

2.6. Microorganisms used in this work 26 

2.7. Adx expressing plasmids used in this work (Derouet-Hümbert et al. 2007) 29 

3.1. Steroid bioconversion parameters (tip-tube format) 48 

3.2. The steroid extraction script developed during this work. 51 

3.3. Steroid bioconversion parameters (96-well plat format) 57 

3.4. HPLC parameters to separate RSS and F in less than 5 min 59 

3.5. Fission yeast expression plasmids used in this work 66 

3.6. Fission yeast strains created in this work 66 

3.7. Optimised HPLC parameters to separate DOC and B within 3 min 76 

3.8. The IC50 values of CYP11B2 inhibitors determined using recombinant S. 

pombe strain MB164 (Bureik et al. 2004) 

76 

3.9. The inhibition profiles of the CYP11B2 inhibitors tested using the six-point 

inhibition assay and the one-point assay developed in this work 

84 

3.10. The new CYP11B2 inhibitors identified during the screening assay in this 

work. 

86 

3.11. The inhibition profiles of the active compounds against CYP11B2 and 

CYP11B1 in the validation assay 

90 

4.1. Selected long-standing pharmaceuticals that had been repositioned during or 

prior to 2004 (Ashburn and Thor 2004) 

103 

 
 

 

 

 



Appendix                                                                                                                               133                          

 

6.4. Materials and Methods 

 

6.4.1. Stock solutions for EMM medium 
 

o Vitamin stock solution (x1000) 

 

Content Amount [g/L] Final concentration 

Sodium pantothenate 1.00 4.2 mM 

Nicotinic acid 10.00 8l.2 mM 

Inositol 10.00 55.5 mM 

Biotin 0.01 40.8 µM 

 

o Salt stock solution (x50) 

 

Content Amount [g/L] Final concentration 

MgCl2•6H2O 52.500  0.26 M 

CaCl2•2H2O 0.735  4.99 mM 

KCl 50.000 g 0.67 M 

Na2SO4 2.000  14.l0 mM 

 

o  Mineral stock solution (x10,000) 

 

Content Amount [g/L] Final concentration 

H3BO3 5.0  80.90 mM 

MnSO4 4.0  23.70 mM 

ZnSO4•7H2O 4.0  13.90 mM 

FeCl3•6H2O 2.0  7.40 mM 

H2MoO4 
 

1.6   2.47 mM 

KI 1.0  6.02 mM 

CuSO4•5H2O 0.4  1.60 mM 
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Citric acid 10.0 47.60 mM 

 

6.4.2. Oligonucleotides 

 
All primers used during this work were obtained from the company BioTeZ (Berlin-Buch, 

Deutschland) and purified via HPLC. The sequences as well as the purpose of each 

oligonucleotide used in this work are given below: 

 

Code Name Purpose Sequence (5´       3´) 

Pr_1 PR(HsaAdR_cra

ven)for 

Forward primer for the 

amplification of HsaAdR with 

NdeI restriction site 

GGC GGT GGC CAT ATG GCT TCG 

CGC TGC TGG 

 

 

 

Pr_2 PR(HsaAdRXST

OP_craven)rev 

Reverse primer for the 

amplification of HsaAdR with 

XhoI restriction site 

GCC ACC GCC CTC GAG A GTG GCC 

CAG GAG GCG CAG 

Pr_3 5´-hAdR Forward primer for the 

amplification of HsaAdR 

AGA GAG GGA TCC ATG GCT TCG 

CGC TGC TGG 

Pr_4 hSdR3PK Reverse primer for the 

amplification of HsaAdR 

GTG GCC CAG GAG GAG GCG CAG C 

Pr_5 NMT pombe 

Forward  

Forward primer for the 

sequencing of cloned insert in 

pNMT1-TOPO vector  

TTT CAA TCT CAT TCT CAC TTT 

CTG A 

Pr_6 URA4 pombe 

reverse 

Reverse primer for the sequencing 

of cloned insert in pNMT1-TOPO 

vector  

ACA AGG CAT CGA CTT TTT CAA 

TA 

Pr_7 PNMT1XhoI_F

OR 

Forward primer for the 

amplification of the nmt1 

promoter with XhoI restriction 

site 

AGA GAG AGA CTC GAG GAC AGA 

ATA AGT CAT CAG CGG TTG 

Pr_8 ura4XhoI_REV Reverse primer for the 

amplification of HsaAdR with 

XhoI restriction site 

AGA GAG AGA CTC GAG ACA  AGG 

CAT CGA CTT TTT CAA TA 
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Pr_9 K22-24Q (For) Forward primer for the 

amplification of Adx (Colony 

PCR) 

CAC TTT ATA AAC CGT GAT GGT 

GAA ACA TTA ACA ACC CAA GGA 

CAA ATT GGT GAC 

Pr_10 Adx S117A 

rück 

Reverse primer for the 

amplification of Adx (Colony 

PCR) 

CAT ATC AAT GGC CTC TCT GGC  

Pr_11 AdR_F Forward primer for the 

sequencing of HsaAdR 

ATG GCT TCG CGC TGC TGG CGC 

TG 

 

Pr_12 AdR_R Reverse primer for the sequencing 

of HsaAdR 

GTG GCC CAG GAG GCG CAG CAT 

CT 

 

Pr_13 AdR_F_+600 Forward primer for the 

sequencing of HsaAdR 

CAC CTG GAG GCC CTC CTT TTG 

TGC 
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6.4.3. Library of pharmacologically active compounds   
 
 

Lab_code mol 
weight 

Structure 

Name Class Action 

Sigma_120693 195.22 DL-alpha-Methyl-p-tyrosine Neurotransmission Inhibitor 
Sigma_144509 213.24 N-Phenylanthranilic acid Cl- Channel Blocker 
Sigma_190047 373.23 S(-)-p-Bromotetramisole oxalate Phosphorylation Inhibitor 
Sigma_194336 153.61 5-Aminovaleric acid hydrochloride GABA Antagonist 
Sigma_211672 129.16 (±)-Nipecotic acid GABA Inhibitor 
Sigma_246379 188.23 Azelaic acid DNA Metabolism Inhibitor 
Sigma_246557 196.68 Tryptamine hydrochloride Serotonin Ligand 
Sigma_265128 179.15 5-Fluoroindole-2-carboxylic acid Glutamate Antagonist 
Sigma_291552 202.26 6-Methoxy-1,2,3,4-tetrahydro-9H-pyrido[3,4b] 

indole 
Neurotransmission Inhibitor 

Sigma_861669 434.43 S-(4-Nitrobenzyl)-6-thioguanosine Adenosine Inhibitor 
Sigma_861804 432.00 TMB-8 hydrochloride Intracellular 

Calcium 
Antagonist 

Sigma_A 0152 94.12 4-Aminopyridine K+ Channel Blocker 
Sigma_A 0257 676.83 Atropine sulfate Cholinergic Antagonist 
Sigma_A 0382 366.42 Atropine methyl nitrate Cholinergic Antagonist 
Sigma_A 0384 270.31 Arcaine sulfate Glutamate Antagonist 
Sigma_A 0430 137.57 1-Aminocyclopropanecarboxylic acid 

hydrochloride 
Glutamate Agonist 

Sigma_A 0500 59.07 Acetamide Biochemistry Inhibitor 
Sigma_A 0666 349.28 N-(4-Aminobutyl)-5-chloro-2-

naphthalenesulfonamide hydrochloride 
Intracellular 

Calcium 
Antagonist 

Sigma_A 0760 101.11 L-azetidine-2-carboxylic acid Biochemistry Inhibitor 
Sigma_A 0779 281.57 p-Aminoclonidine hydrochloride Adrenoceptor Agonist 
Sigma_A 0788 136.15 3-aminobenzamide Apoptosis Inhibitor 
Sigma_A 0937 319.27 (±)-Norepinephrine (+)bitartrate Adrenoceptor Agonist 
Sigma_A 0966 212.21 4-Amino-1,8-naphthalimide Apoptosis Inhibitor 
Sigma_R 0875 608.69 Reserpine Serotonin Inhibitor 
Sigma_A 1260 187.71 Amantadine hydrochloride Dopamine Releaser 
Sigma_A 1755 420.43 Aminophylline ethylenediamine Adenosine Antagonist 
Sigma_A 1782 466.48 S-(p-Azidophenacyl)glutathione Multi-Drug 

Resistance 
Modulator 

Sigma_A 1784 440.42 Aminopterin Antibiotic Inhibitor 
Sigma_A 1824 218.26 N-Acetyl-5-hydroxytryptamine Melatonin Precursor 
Sigma_A 1895 422.35 Aurintricarboxylic acid Apoptosis Inhibitor 
Sigma_A 1910 183.10 (±)-2-Amino-4-phosphonobutyric acid Glutamate Antagonist 
Sigma_A 1977 361.53 N-arachidonylglycine Cannabinoid Inhibitor 
Sigma_A 2129 103.12 GABA GABA Agonist 
Sigma_A 2169 267.25 3'-Azido-3'-deoxythymidine Immune System Inhibitor 
Sigma_A 2251 195.69 Acetyl-beta-methylcholine chloride Cholinergic Agonist 
Sigma_A 2385 244.21 5-azacytidine DNA Metabolism Inhibitor 
Sigma_A 3085 299.77 5-(N-Ethyl-N-isopropyl)amiloride Ion Pump Blocker 
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Sigma_A 3134 256.26 3-Aminopropionitrile fumarate Multi-Drug 
Resistance 

Substrate 

Sigma_A 3145 270.24 Apigenin Cell Cycle Inhibitor 
Sigma_A 3539 175.62 Gabaculine hydrochloride GABA Inhibitor 
Sigma_A 3595 392.24 AC 915 oxalate Opioid Ligand 
Sigma_A 3711 326.44 AA-861 Leukotriene Inhibitor 
Sigma_A 3773 234.73 9-Amino-1,2,3,4-tetrahydroacridine hydrochloride Cholinergic Inhibitor 
Sigma_A 3846 402.51 AL-8810 Prostaglandin Antagonist 
Sigma_A 3940 134.14 1-Aminobenzotriazole Multi-Drug 

Resistance 
Inhibitor 

Sigma_A 4147 161.16 3-Amino-1-propanesulfonic acid sodium GABA Agonist 
Sigma_A 4393 303.79 Apomorphine hydrochloride hemihydrate Dopamine Agonist 
Sigma_A 4508 218.60 O-(Carboxymethyl)hydroxylamine 

hemihydrochloride 
Biochemistry Inhibitor 

Sigma_A 4562 294.15 5-(N,N-Dimethyl)amiloride hydrochloride Ion Pump Blocker 
Sigma_A 4638 277.27 Azathioprine P2 Receptor Inhibitor 
Sigma_A 4669 225.21 Acyclovir Immune System Inhibitor 
Sigma_A 4687 341.84 Amiprilose hydrochloride Immune System Modulator 
Sigma_S 9318 465.80 Sandoz 58-035 Lipid Inhibitor 
Sigma_A 4910 169.07 (±)-2-Amino-3-phosphonopropionic acid Glutamate Antagonist 
Sigma_A 5006 174.20 L-Arginine Nitric Oxide Precursor 
Sigma_A 5157 225.18 (±)-2-Amino-7-phosphonoheptanoic acid Glutamate Antagonist 
Sigma_A 5282 197.13 (±)-2-Amino-5-phosphonopentanoic acid Glutamate Antagonist 
Sigma_A 5330 472.39 L-732,138 Tachykinin Antagonist 
Sigma_A 5376 180.16 Acetylsalicylic acid Prostaglandin Inhibitor 
Sigma_A 5585 299.77 5-(N-Methyl-N-isobutyl)amiloride Ion Pump Blocker 
Sigma_A 5626 197.73 Acetylthiocholine chloride Cholinergic Agonist 
Sigma_A 5791 302.42 4-Androsten-4-ol-3,17-dione Hormone Inhibitor 
Sigma_A 5879 281.01 2-(2-Aminoethyl)isothiourea dihydrobromide Nitric Oxide Inhibitor 
Sigma_A 5909 313.83 N-Acetylprocainamide hydrochloride Na+ Channel Blocker 
Sigma_T 9034 537.70 Sodium Taurocholate Multi-Drug 

Resistance 
Modulator 

Sigma_A 5922 214.22 Amifostine Cell Stress Inhibitor 
Sigma_A 6011 222.25 Acetazolamide Biochemistry Inhibitor 
Sigma_A 6134 236.11 Arecoline hydrobromide Cholinergic Agonist 
Sigma_A 6351 345.47 A-315456 Adrenoceptor Antagonist 
Sigma_G 8543 377.49 GR 4661 Serotonin Agonist 
Sigma_A 6566 265.72 2-Hydroxysaclofen GABA Antagonist 
Sigma_A 6671 385.51 Actinonin Biochemistry Inhibitor 
Sigma_A 6770 454.45 Methotrexate DNA Metabolism Inhibitor 
Sigma_A 6883 384.32 Atropine methyl bromide Cholinergic Antagonist 
Sigma_A 6976 437.96 Amperozide hydrochloride Serotonin Ligand 
Sigma_A 7009 246.25 Aminoguanidine hemisulfate Nitric Oxide Inhibitor 
Sigma_A 7127 228.27 Agmatine sulfate Imidazoline Agonist 
Sigma_A 7148 208.09 4-Aminobenzamidine dihydrochloride Biochemistry Inhibitor 
Sigma_A 7162 139.09 3-Aminopropylphosphonic acid GABA Agonist 
Sigma_A 7250 163.20 N-Acetyl-L-Cysteine Glutamate Antagonist 
Sigma_A 7275 161.16 L-2-aminoadipic acid Glutamate Inhibitor 
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Sigma_A 7342 202.26 N-Acetyltryptamine Melatonin Agonist - 
Antagonist 

Sigma_A 7410 266.09 Amiloride hydrochloride Na+ Channel Blocker 
Sigma_A 7655 266.34 (±)-Atenolol Adrenoceptor Antagonist 
Sigma_A 7755 292.47 5alpha-Androstane-3alpha,17beta-diol Hormone Metabolite 
Sigma_A 7762 115.13 L-allylglycine Biochemistry Inhibitor 
Sigma_H-123 324.23 H-9 dihydrochloride Phosphorylation Inhibitor 
Sigma_A 7824 131.18 6-Aminohexanoic acid Immune System Inhibitor 
Sigma_A 7845 322.26 ATPO Glutamate Antagonist 
Sigma_A 8003 136.11 Allopurinol Cell Stress Inhibitor 
Sigma_A 8404 313.87 Amitriptyline hydrochloride Adrenoceptor Inhibitor 
Sigma_A 8423 681.78 Amiodarone hydrochloride Adrenoceptor Agonist 
Sigma_A 8456 239.70 4-(2-Aminoethyl)benzenesulfonyl fluoride 

hydrochloride 
Biochemistry Inhibitor 

Sigma_A 8598 261.67 Ancitabine hydrochloride DNA Metabolism Inhibitor 
Sigma_A 8676 285.82 Alprenolol hydrochloride Adrenoceptor Antagonist 
Sigma_A 8723 210.28 Altretamine DNA Metabolism Inhibitor 
Sigma_A 8762 195.22 N-Acetyldopamine monohydrate Dopamine Precursor 
Sigma_A 8835 110.55 Aminoguanidine hydrochloride Nitric Oxide Inhibitor 
Sigma_A 9013 566.42 BW 284c51 Cholinergic Inhibitor 
Sigma_A 9251 267.25 Adenosine Adenosine Agonist 
Sigma_A 9256 133.10 L-Aspartic acid Glutamate Agonist 
Sigma_A 9335 596.86 Astaxanthin Cell Stress Inhibitor 
Sigma_A 9345 272.69 N-(4-Amino-2-chlorophenyl)phthalimide Anticonvulsant  
Sigma_A 9501 329.21 Adenosine 3',5'-cyclic monophosphate Phosphorylation Activator 
Sigma_A 9512 319.27 L(-)-Norepinephrine bitartrate Adrenoceptor Agonist 
Sigma_A 9561 311.78 5-(N,N-hexamethylene)amiloride Ion Pump Inhibitor 
Sigma_A 9630 286.42 4-Androstene-3,17-dione Hormone Precursor 
Sigma_A 9657 232.28 (±)-p-Aminoglutethimide Biochemistry Inhibitor 
Sigma_A 9699 116.12 (±)-HA-966 Glutamate Antagonist 
Sigma_A 9755 290.45 Androsterone Hormone  
Sigma_A 9809 429.93 Amsacrine hydrochloride DNA Repair Inhibitor 
Sigma_A 9834 166.67 (±)-AMT hydrochloride Nitric Oxide Inhibitor 
Sigma_P 9623 365.84 Paroxetine hydrochloride hemihydrate (MW = 

374.83) 
Serotonin Inhibitor 

Sigma_A 9899 299.81 Antozoline hydrochloride Imidazoline Agonist 
Sigma_A 9950 219.24 Aniracetam Glutamate Agonist 
Sigma_A-003 284.32 1,3-Diethyl-8-phenylxanthine Adenosine Antagonist 
Sigma_A-013 336.33 8-(p-Sulfophenyl)theophylline Adenosine Antagonist 
Sigma_A-022 392.44 1,3-Dipropyl-8-p-sulfophenylxanthine Adenosine Antagonist 
Sigma_A-023 641.20 2-Methylthioadenosine triphosphate tetrasodium P2 Receptor Agonist 
Sigma_A-024 294.27 5'-N-Methyl carboxamidoadenosine Adenosine Agonist 
Sigma_P 0248 381.99 PNU-37887A K+ Channel Inhibitor 
Sigma_A-129 313.79 Amoxapine Adrenoceptor Inhibitor 
Sigma_A-138 322.45 Aminobenztropine Cholinergic Ligand 
Sigma_A-140 260.13 Arecaidine propargyl ester hydrobromide Cholinergic Agonist 
Sigma_A-142 266.34 R(+)-Atenolol Adrenoceptor Antagonist 
Sigma_A-143 266.34 S(-)-Atenolol Adrenoceptor Antagonist 
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Sigma_A-145 376.39 1-Allyl-3,7-dimethyl-8-p-sulfophenylxanthine Adenosine Antagonist 
Sigma_A-155 173.17 trans-(±)-ACPD Glutamate Agonist 
Sigma_A-162 179.65 1-Amino-1-cyclohexanecarboxylic acid 

hydrochloride 
Neurotransmission Substrate 

Sigma_A-164 292.21 Alaproclate hydrochloride Serotonin Inhibitor 
Sigma_P 9872 334.38 Psora-4 K+ Channel Inhibitor 
Sigma_S 0568 304.78 SB 200646 hydrochloride Serotonin Antagonist 
Sigma_A-167 225.18 D(-)-2-Amino-7-phosphonoheptanoic acid Glutamate Antagonist 
Sigma_A-178 324.40 Acetohexamide Hormone Releaser 
Sigma_A-196 173.58 SKF 97541 hydrochloride GABA Agonist 
Sigma_A-201 101.11 cis-4-Aminocrotonic acid GABA Agonist 
Sigma_A-202 386.41 N6-2-(4-Aminophenyl)ethyladenosine Adenosine Agonist 
Sigma_A-206 238.34 Agroclavine Dopamine Agonist 
Sigma_A-230 127.14 gamma-Acetylinic GABA GABA Inhibitor 
Sigma_A-236 399.41 AB-MECA Adenosine Agonist 
Sigma_A-242 214.18 Alloxazine Adenosine Antagonist 
Sigma_A-243 145.12 cis-Azetidine-2,4-dicarboxylic acid Glutamate Modulator 
Sigma_A-244 145.12 trans-Azetidine-2,4-dicarboxylic acid Glutamate Agonist 
Sigma_A-252 189.73 AGN 192403 hydrochloride Imidazoline Ligand 
Sigma_A-254 221.21 AIDA Glutamate Antagonist 
Sigma_A-255 365.90 A-77636 hydrochloride Dopamine Agonist 
Sigma_A-263 228.25 ATPA Glutamate Agonist 
Sigma_A-265 785.06 ARL 67156 trisodium salt P2 Receptor Inhibitor 
Sigma_B 0385 408.93 Beclomethasone Hormone  
Sigma_B 0753 101.11 2,3-Butanedione monoxime K+ Channel Blocker 
Sigma_S 5192 380.49 SB 222200 Tachykinin Antagonist 
Sigma_B 1183 323.35 1-benzoyl-5-methoxy-2-methylindole-3-acetic acid Multi-Drug 

Resistance 
Inhibitor 

Sigma_B 1266 108.10 p-Benzoquinone DNA Repair Inhibitor 
Sigma_B 1381 446.09 8-Bromo-cGMP sodium Cyclic 

Nucleotides 
Activator 

Sigma_B 1552 317.18 Bromoenol lactone Lipid Inhibitor 
Sigma_B 2009 121.14 Benzamide Apoptosis Inhibitor 
Sigma_B 2050 242.03 3-Bromo-7-nitroindazole Nitric Oxide Inhibitor 
Sigma_B 2134 750.72 (+)-Bromocriptine methanesulfonate Dopamine Agonist 
Sigma_B 2292 241.25 O6-benzylguanine DNA Repair Inhibitor 
Sigma_B 2377 137.96 N-Bromoacetamide Na+ Channel Modulator 
Sigma_B 2390 435.32 (±)-Brompheniramine maleate Histamine Antagonist 
Sigma_B 2417 356.22 Benzamil hydrochloride Ion Pump Blocker 
Sigma_B 2515 222.31 L-Buthionine-sulfoximine Multi-Drug 

Resistance 
Inhibitor 

Sigma_B 2640 222.31 DL-Buthionine-[S,R]-sulfoximine Multi-Drug 
Resistance 

Inhibitor 

Sigma_B 3023 364.42 Bumetanide Ion Pump Inhibitor 
Sigma_B 3501 153.61 Betaine hydrochloride Biochemistry Metabolite 
Sigma_B 3650 137.61 Betaine aldehyde chloride Cholinergic Metabolite 
Sigma_B 4555 320.37 Benazoline oxalate Imidazoline Agonist 
Sigma_B 4558 316.34 BWB70C Leukotriene Inhibitor 
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Sigma_B 5002 307.10 5-Bromo-2'-deoxyuridine DNA Metabolism Inhibitor 
Sigma_B 5016 403.01 Bepridil hydrochloride Ca2+ Channel Blocker 
Sigma_B 5275 435.32 (+)-Brompheniramine maleate Histamine Antagonist 
Sigma_B 5399 213.67 (±)-Baclofen GABA Agonist 
Sigma_S 7067 331.35 SB 202190 Phosphorylation Inhibitor 
Sigma_B 5681 249.33 Bay 11-7085 Cell Cycle Inhibitor 
Sigma_B 5683 343.90 Betaxolol hydrochloride Adrenoceptor Antagonist 
Sigma_B 6506 156.62 Benzamidine hydrochloride Biochemistry Inhibitor 
Sigma_B 7005 392.47 Betamethasone Hormone  
Sigma_B 7148 421.97 Buspirone hydrochloride Serotonin Agonist 
Sigma_B 7283 293.71 Benserazide hydrochloride Biochemistry Inhibitor 
Sigma_B 7651 280.37 Brefeldin A from Penicillium brefeldianum Cytoskeleton and 

ECM 
Inhibitor 

Sigma_B 7777 430.55 Budesonide Hormone  
Sigma_B 7880 430.09 8-Bromo-cAMP sodium Cyclic 

Nucleotides 
Activator 

Sigma_B 8262 403.54 Benztropine mesylate Cholinergic Antagonist 
Sigma_B 8279 278.35 Ro 20-1724 Cyclic 

Nucleotides 
Inhibitor 

Sigma_B 8385 344.84 Bestatin hydrochloride Biochemistry Inhibitor 
Sigma_B 8406 414.36 Bretylium tosylate Adrenoceptor Blocker 
Sigma_B 0936 244.27 BRL 50481 Phosphodiesterase Inhibitor 
Sigma_B 9308 417.56 BP 897 Dopamine Agonist 
Sigma_B 9647 333.14 (E)-5-(2-Bromovinyl)-2'-deoxyuridine Immune System Inhibitor 
Sigma_B 9929 443.42 BRL 15572 Serotonin Antagonist 
Sigma_B-003 408.59 Chloroethylclonidine dihydrochloride Adrenoceptor Antagonist 
Sigma_B-012 223.63 6-Fluoronorepinephrine hydrochloride Adrenoceptor Agonist 
Sigma_B-015 481.48 Bromoacetyl alprenolol menthane Adrenoceptor Antagonist 
Sigma_B-016 397.92 Benoxathian hydrochloride Adrenoceptor Antagonist 
Sigma_B-019 340.30 Phenoxybenzamine hydrochloride Adrenoceptor Blocker 
Sigma_B-102 276.21 Bupropion hydrochloride Dopamine Blocker 
Sigma_B-103 462.30 (-)-Bicuculline methbromide, 1(S), 9(R) GABA Antagonist 
Sigma_B-112 356.30 (±)-Bay K 8644 Ca2+ Channel Agonist 
Sigma_B-121 305.01 Bromoacetylcholine bromide Cholinergic Ligand 
Sigma_B-134 458.43 BMY 7378 dihydrochloride Serotonin Agonist 
Sigma_B-135 455.19 R(+)-6-Bromo-APB hydrobromide Dopamine Agonist 
Sigma_B-138 335.94 BTCP hydrochloride Dopamine Blocker 
Sigma_B-152 398.42 N6-Benzyl-5'-N-ethylcarboxamidoadenosine Adenosine Agonist 
Sigma_B-154 233.70 BU224 hydrochloride Imidazoline Antagonist 
Sigma_B-161 254.16 B-HT 933 dihydrochloride Adrenoceptor Agonist 
Sigma_B-168 397.99 (±)-Butaclamol hydrochloride Dopamine Antagonist 
Sigma_B-169 385.83 BRL 37344 sodium Adrenoceptor Agonist 
Sigma_B-173 346.39 BRL 54443 maleate Serotonin Agonist 
Sigma_B-175 322.86 BW 723C86 Serotonin Agonist 
Sigma_C 0253 304.22 Chlorambucil DNA Intercalator 
Sigma_C 0256 497.29 Citicoline sodium Lipid Inhibitor 
Sigma_C 0330 289.16 Ciprofibrate Transcription Ligand 
Sigma_C 0331 266.73 6-Chloromelatonin Melatonin Agonist 
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Sigma_C 0400 214.05 Carmustine DNA Intercalator 
Sigma_C 0424 352.87 PK 11195 GABA Antagonist 
Sigma_C 0625 180.16 Caffeic Acid Cell Stress Inhibitor 
Sigma_C 0737 369.47 Cilostazol Cyclic 

Nucleotides 
Inhibitor 

Sigma_C 0750 194.19 Caffeine Adenosine Inhibitor 
Sigma_C 0768 261.09 Cyclophosphamide monohydrate DNA Intercalator 
Sigma_C 0862 292.47 CGP-7930 GABA Modulator 
Sigma_C 0987 290.45 CGP-13501 GABA Modulator 
Sigma_C 1112 376.58 CP55940 Cannabinoid Agonist 
Sigma_C 1159 102.09 L-Cycloserine Sphingolipid Inhibitor 
Sigma_C 1172 361.29 ML-9 Phosphorylation Inhibitor 
Sigma_C 1251 290.28 (+)-Catechin Hydrate Cell Stress Inhibitor 
Sigma_C 1290 276.74 Chlorpropamide Hormone Releaser 
Sigma_C 1610 343.81 1-(4-Chlorobenzyl)-5-methoxy-2-methylindole-3-

acetic acid 
Multi-Drug 
Resistance 

Inhibitor 

Sigma_C 1671 352.33 Chlorprothixene hydrochloride Dopamine Antagonist 
Sigma_C 1754 184.08 Choline bromide Cholinergic Substrate 
Sigma_C 2137 707.25 Ceramide Phosphorylation Inhibitor 
Sigma_C 2235 252.19 CB 1954 DNA Intercalator 
Sigma_C 2321 255.15 Carcinine dihydrochloride Cell Stress Inhibitor 
Sigma_C 2505 346.47 Corticosterone Hormone  
Sigma_C 2538 371.26 Carboplatin DNA Intercalator 
Sigma_C 2755 360.45 Cortisone Hormone  
Sigma_C 2932 383.83 Chelerythrine chloride Phosphorylation Inhibitor 
Sigma_C 3010 320.05 1-(2-Chlorophenyl)-1-(4-chlorophenyl)-2,2-

dichloroethane 
Hormone Inhibitor 

Sigma_C 3025 390.87 (±)-Chlorpheniramine maleate Histamine Antagonist 
Sigma_C 3130 402.49 Cortisone 21-acetate Hormone  
Sigma_C 3270 478.78 Cephalosporin C zinc salt Antibiotic  
Sigma_C 3353 422.36 CGP-74514A hydrochloride Phosphorylation Inhibitor 
Sigma_C 3412 416.95 Cyproterone acetate Hormone Antagonist 
Sigma_C 3635 250.13 DL-p-Chlorophenylalanine methyl ester 

hydrochloride 
Neurotransmission Inhibitor 

Sigma_C 3662 1202.64 Cyclosporin A Phosphorylation Inhibitor 
Sigma_C 3909 102.09 D-Cycloserine Glutamate Agonist 
Sigma_C 3912 493.80 8-(4-Chlorophenylthio)-cAMP sodium Cyclic 

Nucleotides 
Activator 

Sigma_C 3930 687.71 Calmidazolium chloride Intracellular 
Calcium 

Inhibitor 

Sigma_G 5918 393.51 GR 113808 Serotonin Antagonist 
Sigma_C 4024 236.28 Carbamazepine Anticonvulsant  
Sigma_C 4042 217.29 Captopril Neurotransmission Inhibitor 
Sigma_C 4238 339.87 CNS-1102 Glutamate Antagonist 
Sigma_C 4382 182.65 Carbachol Cholinergic Agonist 
Sigma_C 4397 169.57 Chlorzoxazone Nitric Oxide Inhibitor 
Sigma_C 4418 153.16 L-Cysteinesulfinic Acid Glutamate Ligand 
Sigma_C 4479 299.35 9-cyclopentyladenine Cyclic 

Nucleotides 
Inhibitor 
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Sigma_C 4520 418.43 Cephalothin sodium Antibiotic  
Sigma_C 4522 252.34 Cimetidine Histamine Antagonist 
Sigma_C 4542 311.86 Cyclobenzaprine hydrochloride Serotonin Antagonist 
Sigma_C 4662 525.60 Carbetapentane citrate Opioid Ligand 
Sigma_C 4895 347.40 Cephalexin hydrate Antibiotic  
Sigma_C 4911 295.72 Chlorothiazide Biochemistry Inhibitor 
Sigma_C 4915 390.87 (+)-Chlorpheniramine maleate Histamine Antagonist 
Sigma_C 5020 476.49 Cefazolin sodium Antibiotic  
Sigma_C 5040 362.31 Clemizole hydrochloride Histamine Antagonist 
Sigma_C 5134 301.69 2-Chloroadenosine Adenosine Agonist 
Sigma_C 5259 196.68 Bethanechol chloride Cholinergic Agonist 
Sigma_C 5270 368.53 Cinnarizine Ca2+ Channel Blocker 
Sigma_C 5554 269.60 1-(3-Chlorophenyl)piperazine dihydrochloride Serotonin Agonist 
Sigma_S 0693 286.36 SB 204741 Serotonin Antagonist 
Sigma_C 5793 598.55 Ceftriaxone sodium Antibiotic  
Sigma_C 5913 357.16 4-Chloromercuribenzoic acid Biochemistry Inhibitor 
Sigma_C 5923 176.22 (-)-Cotinine Cholinergic Metabolite 
Sigma_C 5976 465.80 CL 316,243 Adrenoceptor Agonist 
Sigma_C 5982 256.69 7-Chloro-4-hydroxy-2-phenyl-1,8-naphthyridine Adenosine Antagonist 
Sigma_C 6019 344.85 Clotrimazole K+ Channel Inhibitor 
Sigma_C 6022 323.87 Cyproheptadine hydrochloride Serotonin Antagonist 
Sigma_C 6042 320.31 5'-(N-Cyclopropyl)carboxamidoadenosine Adenosine Agonist 
Sigma_C 6048 493.52 Cefmetazole sodium Antibiotic  
Sigma_C 6305 326.83 Clozapine Dopamine Antagonist 
Sigma_C 6506 199.64 (±)-p-Chlorophenylalanine Neurotransmission Inhibitor 
Sigma_C 6628 515.87 Chloroquine diphosphate DNA Intercalator 
Sigma_C 6643 242.70 Clofibrate Lipid Modulator 
Sigma_C 6645 279.68 Cytosine-1-beta-D-arabinofuranoside 

hydrochloride 
DNA Metabolism Inhibitor 

Sigma_C 6862 438.79 CB34 Benzodiazepine Ligand 
Sigma_C 6895 367.81 Cefaclor Antibiotic  
Sigma_C 7005 102.09 DL-Cycloserine Sphingolipid Inhibitor 
Sigma_C 7041 317.22 McN-A-343 Cholinergic Agonist 
Sigma_C 7230 373.89 N-(2-[4-(4-Chlorophenyl)piperazin-1-yl]ethyl)-3-

methoxybenzamide 
Dopamine Agonist 

Sigma_C 7255 225.20 Cystamine dihydrochloride Glutamate Inhibitor 
Sigma_C 7291 351.32 Clomipramine hydrochloride Serotonin Inhibitor 
Sigma_C 7522 523.63 Calcimycin Intracellular 

Calcium  
Sigma_C 7632 196.20 Cantharidin Phosphorylation Inhibitor 
Sigma_C 7861 405.31 Citalopram hydrobromide Serotonin Inhibitor 
Sigma_C 7897 266.56 Clonidine hydrochloride Adrenoceptor Agonist 
Sigma_C 7912 477.45 Cefotaxime sodium Antibiotic  
Sigma_C 7971 342.44 Cilostamide Cyclic 

Nucleotides 
Inhibitor 

Sigma_C 8011 183.12 Chelidamic acid Glutamate Inhibitor 
Sigma_C 8031 335.37 N6-Cyclopentyladenosine Adenosine Agonist 
Sigma_C 8088 214.22 Cantharidic Acid Phosphorylation Inhibitor 
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Sigma_C 8138 355.33 Chlorpromazine hydrochloride Dopamine Antagonist 
Sigma_C 8145 554.54 Cefsulodin sodium salt hydrate Antibiotic  
Sigma_C 8221 284.31 Caffeic acid phenethyl ester Cell Cycle Inhibitor 
Sigma_C 8270 445.45 Cephapirin sodium Antibiotic  
Sigma_C 8395 349.41 Cephradine Antibiotic  
Sigma_C 8417 313.07 DSP-4 hydrochloride Adrenoceptor Neurotoxin 
Sigma_C 8645 262.22 Cinoxacin Antibiotic Inhibitor 
Sigma_C 8759 260.34 Carisoprodol Neurotransmission  
Sigma_C 8773 294.18 Centrophenoxine hydrochloride Nootropic  
Sigma_C 8903 459.97 Clemastine fumarate Histamine Antagonist 
Sigma_C 9033 160.00 beta-Chloro-L-alanine hydrochloride Biochemistry Inhibitor 
Sigma_C 9510 110.11 Pyrocatechol Cell Cycle Inhibitor 
Sigma_C 9511 331.80 Z-L-Phe chloromethyl ketone Biochemistry Inhibitor 
Sigma_C 9611 247.25 CPCCOEt Glutamate Antagonist 
Sigma_C 9754 399.45 Colchicine Cytoskeleton and 

ECM 
Inhibitor 

Sigma_C 9758 274.25 L-Canavanine sulfate Nitric Oxide Inhibitor 
Sigma_C 9847 389.88 Cyclothiazide Glutamate Agonist 
Sigma_C 9901 349.39 N6-Cyclohexyladenosine Adenosine Agonist 
Sigma_C 9911 348.36 (S)-(+)-Camptothecin Apoptosis Inhibitor 
Sigma_C-007 362.92 10-(alpha-Diethylaminopropionyl)-phenothiazine 

hydrochloride 
Biochemistry Inhibitor 

Sigma_C-008 287.14 (+)-cis-Dioxolane iodide Cholinergic Agonist 
Sigma_C-011 303.21 OXA-22 iodide Cholinergic Agonist 
Sigma_C-101 304.40 8-Cyclopentyl-1,3-dipropylxanthine Adenosine Antagonist 
Sigma_C-102 248.29 8-Cyclopentyl-1,3-dimethylxanthine Adenosine Antagonist 
Sigma_C-104 252.21 (±)-CPP Glutamate Antagonist 
Sigma_C-106 450.42 CGS-12066A maleate Serotonin Agonist 
Sigma_C-108 207.75 2-Cyclooctyl-2-hydroxyethylamine hydrochloride Neurotransmission Inhibitor 
Sigma_C-117 319.32 5-Carboxamidotryptamine maleate Serotonin Agonist 
Sigma_C-121 223.62 7-Chlorokynurenic acid Glutamate Antagonist 
Sigma_C-125 315.80 (±)-CGP-12177A hydrochloride Adrenoceptor Agonist 
Sigma_C-126 226.23 S-(-)-Carbidopa Biochemistry Inhibitor 
Sigma_C-130 410.74 (±)-Chloro-APB hydrobromide Dopamine Agonist 
Sigma_C-141 535.99 CGS-21680 hydrochloride Adenosine Agonist 
Sigma_Y 0503 320.26 Y-27632 dihydrochloride Phosphorylation Inhibitor 
Sigma_C-144 248.12 1-(m-Chlorophenyl)-biguanide hydrochloride Serotonin Agonist 
Sigma_C-145 629.56 2-Chloroadenosine triphosphate tetrasodium P2 Receptor Agonist 
Sigma_C-147 271.41 (+)-Cyclazocine Opioid Antagonist 
Sigma_C-191 376.91 Capsazepine Vanilloid Agonist 
Sigma_C-192 273.74 Chlormezanone Neurotransmission Modulator 
Sigma_C-197 330.78 8-(3-Chlorostyryl)caffeine Adenosine Antagonist 
Sigma_C-199 285.69 CGS-15943 Adenosine Antagonist 
Sigma_C-203 198.60 2-Chloro-2-deoxy-D-glucose Biochemistry Analog 
Sigma_C-207 378.35 4'-Chloro-3-alpha-(diphenylmethoxy)tropane 

hydrochloride 
Dopamine Blocker 

Sigma_C-223 252.75 Cirazoline hydrochloride Adrenoceptor Agonist 
Sigma_C-231 590.58 CGP 20712A methanesulfonate Adrenoceptor Antagonist 
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Sigma_C-237 159.14 (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine Glutamate Agonist 
Sigma_C-239 276.12 CNQX disodium Glutamate Antagonist 
Sigma_C-271 247.30 CX 546 Glutamate Modulator 
Sigma_C-277 544.74 Chloro-IB-MECA Adenosine Agonist 
Sigma_D 0411 381.86 WB-4101 hydrochloride Adrenoceptor Antagonist 
Sigma_D 0540 252.14 DNQX Glutamate Antagonist 
Sigma_D 0670 586.68 Dihydroouabain Ion Pump Inhibitor 
Sigma_D 0676 337.85 Dobutamine hydrochloride Adrenoceptor Agonist 
Sigma_D 1064 229.28 Dihydrokainic acid Glutamate Blocker 
Sigma_D 1260 418.30 Decamethonium dibromide Cholinergic Agonist 
Sigma_D 1262 887.49 P1,P4-Di(adenosine-5')tetraphosphate 

triammonium 
Biochemistry Inhibitor 

Sigma_D 1306 448.55 Debrisoquin sulfate Neurotransmission Antihypertensive 
Sigma_D 1413 224.22 2',3'-didehydro-3'-deoxythymidine Immune System Inhibitor 
Sigma_D 1414 379.44 Droperidol Dopamine Antagonist 
Sigma_D 1507 247.68 L-3,4-Dihydroxyphenylalanine methyl ester 

hydrochloride 
Dopamine Precursor 

Sigma_D 1542 169.61 1,4-Dideoxy-1,4-imino-D-arabinitol Phosphorylation Inhibitor 
Sigma_D 1791 348.24 2,4-Dinitrophenyl 2-fluoro-2-deoxy-beta-D-

glucopyranoside 
Biochemistry Inhibitor 

Sigma_D 1916 319.15 D-ribofuranosylbenzimidazole Transcription Inhibitor 
Sigma_D 2064 766.60 Dequalinium analog, C-14 linker Phosphorylation Inhibitor 
Sigma_D 2521 450.99 Diltiazem hydrochloride Ca2+ Channel Antagonist 
Sigma_D 2531 352.32 Dextromethorphan hydrobromide monohydrate Glutamate Antagonist 
Sigma_S 0443 308.81 SB 203186 Serotonin Antagonist 
Sigma_D 2763 679.80 Dihydroergotamine methanesulfonate Serotonin Antagonist 
Sigma_D 2926 314.55 Diphenyleneiodonium chloride Nitric Oxide Inhibitor 
Sigma_D 3630 291.82 Diphenhydramine hydrochloride Histamine Antagonist 
Sigma_D 3634 86.09 2,3-Butanedione Cytoskeleton and 

ECM 
Inhibitor 

Sigma_D 3648 172.19 N,N,N',N'-Tetramethylazodicarboxamide Cell Stress Modulator 
Sigma_D 3689 183.17 (S)-3,5-Dihydroxyphenylglycine Glutamate Agonist 
Sigma_D 3768 527.59 Dequalinium dichloride K+ Channel Blocker 
Sigma_D 3775 388.47 Doxylamine succinate Histamine Antagonist 
Sigma_D 3900 302.85 Desipramine hydrochloride Adrenoceptor Inhibitor 
Sigma_D 4007 252.28 5,5-Diphenylhydantoin Anticonvulsant  
Sigma_D 4268 238.72 N^G,N^G-Dimethylarginine hydrochloride Nitric Oxide Inhibitor 
Sigma_D 4434 288.86 Clodronic acid Cytoskeleton and 

ECM 
Inhibitor 

Sigma_D 4505 274.26 Phenytoin sodium Anticonvulsant  
Sigma_D 4526 315.85 Doxepin hydrochloride Adrenoceptor Inhibitor 
Sigma_P-152_a 248.33 S(-)-Pindolol Adrenergic Antagonist 
Sigma_D 5290 183.21 (-)-alpha-Methylnorepinephrine Adrenoceptor Agonist 
Sigma_D 5294 677.63 Dilazep hydrochloride Adenosine Inhibitor 
Sigma_D 5385 180.17 1,7-Dimethylxanthine Adenosine Antagonist 
Sigma_D 5439 218.21 2,3-Dimethoxy-1,4-naphthoquinone Cell Stress Modulator 
Sigma_D 5564 178.15 Daphnetin Phosphorylation Inhibitor 
Sigma_D 5689 246.31 DM 235 Nootropic  
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Sigma_D 5766 113.16 5,5-Dimethyl-1-pyrroline-N-oxide Cell Stress Inhibitor 
Sigma_D 5782 211.22 2',3'-dideoxycytidine Immune System Inhibitor 
Sigma_D 5794 489.59 Diacylglycerol Kinase Inhibitor II Phosphorylation Inhibitor 
Sigma_D 5814 303.79 Dihydrexidine hydrochloride Dopamine Agonist 
Sigma_D 5886 203.67 N-Methyldopamine hydrochloride Dopamine Agonist 
Sigma_D 5891 318.20 1,1-Dimethyl-4-phenyl-piperazinium iodide Cholinergic Agonist 
Sigma_P 9248 360.35 PD 169316 Phosphorylation Inhibitor 
Sigma_D 6035 437.48 Disopyramide phosphate K+ Channel Modulator 
Sigma_D 6140 501.32 Demeclocycline hydrochloride Antibiotic  
Sigma_D 6518 393.35 Diethylenetriaminepentaacetic acid Biochemistry Inhibitor 
Sigma_D 6899 318.14 Diclofenac sodium Prostaglandin Inhibitor 
Sigma_D 6908 301.52 DL-erythro-Dihydrosphingosine Phosphorylation Inhibitor 
Sigma_D 6940 209.72 R-(-)-Desmethyldeprenyl hydrochloride Neurotransmission Inhibitor 
Sigma_D 7505 156.19 2,2'-Bipyridyl Biochemistry Inhibitor 
Sigma_D 7644 339.48 Disopyramide Na+ Channel Blocker 
Sigma_D 7802 254.24 Daidzein Cell Cycle Inhibitor 
Sigma_D 7814 275.31 Dubinidine Anticonvulsant  
Sigma_D 7909 345.96 Dicyclomine hydrochloride Cholinergic Antagonist 
Sigma_D 7910 215.04 3,4-Dichloroisocoumarin Biochemistry Inhibitor 
Sigma_D 7938 297.62 DBO-83 Cholinergic Agonist 
Sigma_D 8008 336.56 7,7-Dimethyl-(5Z,8Z)-eicosadienoic acid Lipid Inhibitor 
Sigma_D 8040 465.44 (±) trans-U-50488 methanesulfonate Opioid Agonist 
Sigma_D 8065 168.15 Dephostatin Phosphorylation Inhibitor 
Sigma_D 8190 425.11 3',4'-Dichlorobenzamil Ion Pump Inhibitor 
Sigma_D 8296 252.23 3-deazaadenosine Immune System Inhibitor 
Sigma_G 5168 312.46 (Z)-Gugglesterone Lipid Signaling Antagonist 
Sigma_D 8399 337.47 Danazol Hormone Inhibitor 
Sigma_D 8555 436.62 N,N-Dihexyl-2-(4-fluorophenyl)indole-3-

acetamide 
Benzodiazepine Ligand 

Sigma_D 8690 320.44 (R,R)-cis-Diethyl tetrahydro-2,8-chrysenediol Hormone Antagonist 
Sigma_S 5567 220.23 SP600125 Phosphorylation Inhibitor 
Sigma_D 9035 230.67 Diazoxide K+ Channel Activator 
Sigma_D 9128 168.15 3,4-Dihydroxyphenylacetic acid Dopamine Metabolite 
Sigma_D 9175 336.24 Dantrolene sodium Intracellular 

Calcium 
Inhibitor 

Sigma_D 9190 231.08 DCEBIO K+ Channel Activator 
Sigma_D 
9305_a 

199.64 1-Deoxynojirimycin hydrochloride Biochemistry Inhibitor 

Sigma_D 9628 197.19 L-3,4-Dihydroxyphenylalanine Dopamine Precursor 
Sigma_D 9766 504.64 Dipyridamole Adenosine Inhibitor 
Sigma_D 9815 547.59 Doxazosin mesylate Adrenoceptor Blocker 
Sigma_D 9891 480.91 Doxycycline hydrochloride Antibiotic  
Sigma_D-002 260.13 6,7-ADTN hydrobromide Dopamine Agonist 
Sigma_D-003 317.82 R(-)-Apocodeine hydrochloride Dopamine Agonist 
Sigma_D-027 331.85 R(-)-Propylnorapomorphine hydrochloride Dopamine Agonist 
Sigma_D-029 364.24 R(-)-2,10,11-Trihydroxyaporphine hybrobromide Dopamine Agonist 
Sigma_D-030 392.30 R(-)-2,10,11-Trihydroxy-N-propylnoraporphine 

hydrobromide 
Dopamine Agonist 
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Sigma_D-031 318.26 Dipropyldopamine hydrobromide Dopamine Agonist 
Sigma_D-033 397.99 (+)-Butaclamol hydrochloride Dopamine Antagonist 
Sigma_D-042 374.28 R(-)-N-Allylnorapomorphine hydrobromide Dopamine Agonist 
Sigma_D-044 308.34 Amfonelic acid Dopamine Modulator 
Sigma_I 9532 311.30 Icilin Neurotransmission Agonist 
Sigma_D-047 291.78 (±)-SKF-38393 hydrochloride Dopamine Antagonist 
Sigma_D-052 523.50 GBR-12909 dihydrochloride Dopamine Inhibitor 
Sigma_D-054 324.25 R(+)-SCH-23390 hydrochloride Dopamine Antagonist 
Sigma_D-101 357.62 (±)-DOI hydrochloride Serotonin Agonist 
Sigma_D-103 226.53 (±)-2,3-Dichloro-alpha-methylbenzylamine 

hydrochloride 
Neurotransmission Inhibitor 

Sigma_D-104 451.35 4-DAMP methiodide Cholinergic Antagonist 
Sigma_D-108 250.30 1,3-Dipropyl-7-methylxanthine Adenosine Antagonist 
Sigma_D-122 425.92 Domperidone Dopamine Antagonist 

Sigma_D126608 178.28 Propofol Cholinergic Inhibitor 
Sigma_D-127 407.47 Dextrorphan D-tartrate Glutamate Antagonist 
Sigma_D-129 399.32 R(+)-Butylindazone Ion Pump Inhibitor 
Sigma_E 2031 347.86 Eliprodil Glutamate Antagonist 
Sigma_D-131 200.11 3,5-Dinitrocatechol Neurotransmission Inhibitor 
Sigma_D-132 403.48 N,N-Dipropyl-5-carboxamidotryptamine maleate Serotonin Agonist 
Sigma_D-133 231.04 6,7-Dichloroquinoxaline-2,3-dione Glutamate Antagonist 
Sigma_D-134 218.22 3,7-Dimethyl-I-propargylxanthine Adenosine Antagonist 
Sigma_D-138 258.06 5,7-Dichlorokynurenic acid Glutamate Antagonist 
Sigma_D-142 394.34 4-Diphenylacetoxy-N-(2-chloroethyl)piperidine 

hydrochloride 
Cholinergic Antagonist 

Sigma_D14204 172.32 1,10-Diaminodecane Glutamate Agonist 
(inverse) 

Sigma_D-149 356.26 Dihydro-beta-erythroidine hydrobromide Cholinergic Antagonist 
Sigma_D-155 707.85 Dihydroergocristine methanesulfonate Dopamine Agonist 

Sigma_D1920-6 126.12 2,6-Diamino-4-pyrimidinone Phosphorylation Inhibitor 
Sigma_D-193 218.63 DL-alpha-Difluoromethylornithine hydrochloride Angiogenesis Inhibitor 
Sigma_S 4443 277.33 SCH-28080 Ion Channels Inhibitor 
Sigma_D-206 264.80 S(-)-DS 121 hydrochloride Dopamine Antagonist 
Sigma_E 0137 223.27 Vanillic acid diethylamide Vanilloid Agonist 
Sigma_E 0381 344.84 Epibestatin hydrochloride Biochemistry Inhibitor 
Sigma_E 0516 287.36 Etodolac Prostaglandin Inhibitor 
Sigma_E 1279 248.31 Enoximone Cyclic 

Nucleotides 
Inhibitor 

Sigma_E 1383 588.57 Etoposide Apoptosis Inhibitor 
Sigma_E 1779 523.74 ET-18-OCH3 Lipid Inhibitor 
Sigma_E 1896 325.80 Etazolate hydrochloride Adenosine Inhibitor 
Sigma_C 8863 370.46 7-Cyclopentyl-5-(4-phenoxy)phenyl-7H-

pyrrolo[2,3-d]pyrimidin-4-ylamine 
Phosphorylation Inhibitor 

Sigma_E 2375 553.58 Emetine dihydrochloride hydrate Apoptosis Activator 
Sigma_E 2387 308.30 5'-N-Ethylcarboxamidoadenosine Adenosine Agonist 
Sigma_E 3132 357.41 E-64 Biochemistry Inhibitor 
Sigma_S 3567 359.73 SB 415286 Phosphorylation Inhibitor 
Sigma_E 3149 185.09 S-Ethylisothiourea hydrobromide Nitric Oxide Inhibitor 
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Sigma_E 3256 201.70 Edrophonium chloride Cholinergic Inhibitor 
Sigma_E 3263 252.75 Efaroxan hydrochloride Imidazoline Antagonist 
Sigma_E 3380 246.31 Ellipticine Cell Cycle Inhibitor 
Sigma_E 3520 274.18 Ebselen Leukotriene Inhibitor 
Sigma_E 3645 522.71 rac-2-Ethoxy-3-hexadecanamido-1-

propylphosphocholine 
Phosphorylation Inhibitor 

Sigma_E 3770 550.77 rac-2-Ethoxy-3-octadecanamido-1-
propylphosphocholine 

Phosphorylation Inhibitor 

Sigma_E 3876 125.13 N-Ethylmaleimide Biochemistry Inhibitor 
Sigma_E 4375 333.30 (-)-Epinephrine bitartrate Adrenoceptor Agonist 
Sigma_E 4378 380.35 Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-

tetraacetic acid 
Biochemistry Inhibitor 

Sigma_E 4642 219.67 (±)-Epinephrine hydrochloride Adrenoceptor Agonist 
Sigma_E 7138 141.17 Ethosuximide Anticonvulsant  
Sigma_E 7649 186.17 Endothall Phosphorylation Inhibitor 
Sigma_E 7881 270.24 Emodin Phosphorylation Inhibitor 
Sigma_E 8375 275.35 (-)-Physostigmine Cholinergic Inhibitor 
Sigma_N 3911 434.20 NBI 27914 Neurotransmission Antagonist 
Sigma_E 8875 272.39 beta-Estradiol Hormone  
Sigma_E 9750 270.37 Estrone Hormone  
Sigma_E-002 226.24 Methyl beta-carboline-3-carboxylate Benzodiazepine Agonist 
Sigma_E-006 225.25 N-Methyl-beta-carboline-3-carboxamide GABA Antagonist 
Sigma_E-007 314.34 Methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-

carboxylate 
Benzodiazepine Agonist 

Sigma_E-100 334.38 (-)-Eseroline fumarate Cholinergic Inhibitor 
Sigma_E-101 377.31 S-(-)-Eticlopride hydrochloride Dopamine Antagonist 
Sigma_E-111 361.40 (S)-ENBA Adenosine Agonist 
Sigma_E-114 313.83 erythro-9-(2-Hydroxy-3-nonyl)adenine 

hydrochloride 
Adenosine Inhibitor 

Sigma_E-140 609.73 Ergocristine Dopamine Agonist 
Sigma_F 0778 238.25 Felbamate Glutamate Antagonist 
Sigma_F 0881 538.71 Fusidic acid sodium Cell Cycle Inhibitor 
Sigma_F 1016 384.27 Fenoterol hydrobromide Adrenoceptor Agonist 
Sigma_F 1553 345.80 S-(+)-Fluoxetine hydrochloride Serotonin Inhibitor 
Sigma_F 1678 345.80 R-(-)-Fluoxetine hydrochloride Serotonin Inhibitor 
Sigma_F 2802 434.42 Fluvoxamine maleate Serotonin Inhibitor 
Sigma_F 2927 327.36 1-(4-Fluorobenzyl)-5-methoxy-2-methylindole-3-

acetic acid 
Multi-Drug 
Resistance 

Inhibitor 

Sigma_F 3764 275.24 Furegrelate sodium Phosphorylation Inhibitor 
Sigma_F 4303 592.12 Fiduxosin hydrochloride Adrenoceptor Antagonist 
Sigma_F 4381 330.75 Furosemide Ion Pump Inhibitor 
Sigma_F 4646 183.18 p-Fluoro-L-phenylalanine Neurotransmission Substrate 
Sigma_F 4765 510.45 Fluphenazine dihydrochloride Dopamine Antagonist 
Sigma_F 6020 360.84 Fenofibrate Transcription Agonist 
Sigma_F 6145 296.80 Fenspiride hydrochloride Adrenoceptor Antagonist 
Sigma_F 6300 303.30 Flumazenil Benzodiazepine Antagonist 
Sigma_F 6426 307.35 Foliosidine Anticonvulsant  
Sigma_F 6513 179.22 Fusaric acid Dopamine Inhibitor 
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Sigma_F 6627 130.08 5-Fluorouracil Cell Cycle Inhibitor 
Sigma_F 6777 474.40 Flecainide acetate Na+ Channel Blocker 
Sigma_F 6800 386.68 Fenoldopam bromide Dopamine Agonist 
Sigma_F 6886 410.51 Forskolin Cyclic 

Nucleotides 
Activator 

Sigma_F 6889 337.45 Famotidine Histamine Antagonist 
Sigma_F 7927 506.56 FSCPX Adenosine Antagonist 
Sigma_F 8175 358.55 Farnesylthiosalicylic acid G protein Antagonist 
Sigma_F 8257 477.43 Flunarizine dihydrochloride Ion Pump Blocker 
Sigma_F 8791 246.20 5-fluoro-5'-deoxyuridine DNA Metabolism Inhibitor 
Sigma_F 8927 420.40 Flupirtine maleate Glutamate Antagonist 
Sigma_F 9397 276.22 Flutamide Hormone Inhibitor 
Sigma_F 9427 501.67 Fexofenadine hydrochloride Histamine Antagonist 
Sigma_F 9552 804.90 Formoterol Adrenoceptor Agonist 
Sigma_F 9677 384.26 Felodipine Ca2+ Channel Blocker 
Sigma_F-100 475.59 Fluspirilene Dopamine Antagonist 
Sigma_F-114 507.45 cis-(Z)-Flupenthixol dihydrochloride Dopamine Antagonist 
Sigma_F-124 260.25 Furafylline Biochemistry Inhibitor 
Sigma_F-131 347.42 FPL 64176 Ca2+ Channel Activator 
Sigma_F-132 345.80 Fluoxetine hydrochloride Serotonin Inhibitor 

Sigma_D 8816 268.36 N-(3,3-Diphenylpropyl)glycinamide Glutamate Blocker 
Sigma_G 0639 494.01 Glibenclamide K+ Channel Blocker 
Sigma_G 0668 395.47 GW2974 Phosphorylation Inhibitor 
Sigma_G 1043 282.56 Guanfacine hydrochloride Adrenoceptor Agonist 
Sigma_G 2128 183.59 L-Glutamic acid hydrochloride Glutamate Agonist 
Sigma_G 2536 255.24 Ganciclovir Cell Cycle Inhibitor 
Sigma_G 3126 146.15 L-Glutamine Glutamate Agonist 
Sigma_G 3416 699.61 Guanidinyl-naltrindole di-trifluoroacetate Opioid Antagonist 
Sigma_G 4788 398.19 Guanidinoethyl disulfide dihydrobromide Nitric Oxide Inhibitor 
Sigma_G 5668 495.58 GW1929 Transcription Agonist 
Sigma_G 6416 520.95 GW5074 Phosphorylation Inhibitor 
Sigma_G 6649 270.24 Genistein Phosphorylation Inhibitor 
Sigma_G 6793 502.77 GW7647 Transcription Agonist 
Sigma_G 7788 189.17 alpha-Guanidinoglutaric acid Nitric Oxide Inhibitor 
Sigma_G 8134 891.54 Gallamine triethiodide Cholinergic Antagonist 
Sigma_G 9659 487.52 GBR-12935 dihydrochloride Dopamine Inhibitor 
Sigma_G-002 163.61 Isoguvacine hydrochloride GABA Agonist 
Sigma_G-007 163.61 Guvacine hydrochloride GABA Inhibitor 
Sigma_G-017 267.08 (±)-AMPA hydrobromide Glutamate Agonist 
Sigma_G-019 195.02 Muscimol hydrobromide GABA Agonist 
Sigma_G-110 291.14 Guanabenz acetate Adrenoceptor Agonist 
Sigma_G-111 240.24 gamma-D-Glutamylaminomethylsulfonic acid Glutamate Antagonist 
Sigma_G-117 445.54 Glipizide K+ Channel Blocker 
Sigma_G-119 329.79 GYKI 52466 hydrochloride Glutamate Antagonist 
Sigma_G-120 295.34 GYKI 52895 Dopamine Inhibitor 
Sigma_G-133 530.41 GR-89696 fumarate Opioid Agonist 
Sigma_G-154 171.24 Gabapentin Anticonvulsant  
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Sigma_H 0126 356.26 DL-Homatropine hydrobromide Cholinergic Antagonist 
Sigma_H 0131 198.18 (±)-Vanillylmandelic acid Adrenoceptor Metabolite 
Sigma_H 0627 248.28 6-Hydroxymelatonin Melatonin Metabolite 
Sigma_H 0879 362.19 Hexamethonium bromide Cholinergic Antagonist 
Sigma_H 1252 182.18 4-Hydroxy-3-methoxyphenylacetic acid Dopamine Metabolite 
Sigma_H 1377 454.52 MHPG piperazine Adrenoceptor Metabolite 
Sigma_H 1384 109.15 Hypotaurine Cell Stress Inhibitor 
Sigma_H 1512 375.87 Haloperidol Dopamine Antagonist 
Sigma_H 1753 196.64 Hydralazine hydrochloride Neurotransmission Inhibitor 
Sigma_H 1877 134.57 4-Imidazolemethanol hydrochloride Histamine Inhibitor 
Sigma_H 2138 273.29 Hexamethonium dichloride Cholinergic Antagonist 
Sigma_H 2270 484.53 Hydrocortisone 21-hemisuccinate sodium Hormone  
Sigma_H 2380 213.19 6-Hydroxy-DL-DOPA Adrenoceptor Neurotoxin 
Sigma_H 2775 149.10 DL-threo-beta-hydroxyaspartic acid Glutamate Inhibitor 
Sigma_H 3146 330.34 Hydroxytacrine maleate Cholinergic Inhibitor 
Sigma_H 4001 362.47 Hydrocortisone Hormone  
Sigma_L 4408 42.39 Lithium Chloride Neurotransmission Inhibitor 
Sigma_H 4759 297.74 Hydrochlorothiazide Biochemistry Inhibitor 
Sigma_S 8817 396.45 SB 218795 Neurotransmission Antagonist 
Sigma_H 5257 246.22 Hispidin Phosphorylation Inhibitor 
Sigma_H 5752 330.47 17alpha-hydroxyprogesterone Hormone Metabolite 
Sigma_H 6036 386.45 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole Hormone Agonist 
Sigma_H 6892 206.27 1-(4-Hydroxybenzyl)imidazole-2-thiol Dopamine Inhibitor 
Sigma_H 7250 184.07 Histamine dihydrochloride Histamine Agonist 
Sigma_H 7258 182.23 Harmane Imidazoline Agonist 
Sigma_H 7278 250.26 NG-Hydroxy-L-arginine acetate Nitric Oxide Metabolite 
Sigma_H 7779 391.56 Retinoic acid p-hydroxyanilide Cell Cycle Inhibitor 
Sigma_H 8034 388.43 HE-NECA Adenosine Agonist 
Sigma_H 8125 191.62 L-Histidine hydrochloride Histamine Precursor 
Sigma_H 8250 328.30 (±)-8-Hydroxy-DPAT hydrobromide Serotonin Agonist 
Sigma_H 8502 189.64 Dopamine hydrochloride Dopamine Agonist 
Sigma_H 8627 76.06 Hydroxyurea DNA Metabolism Inhibitor 
Sigma_H 8645 383.40 (+)-Hydrastine GABA Antagonist 
Sigma_H 8653 328.30 (±)-7-Hydroxy-DPAT hydrobromide Dopamine Agonist 
Sigma_H 8759 302.35 MHPG sulfate potassium Adrenoceptor Metabolite 
Sigma_H 8876 191.19 5-Hydroxyindolacetic acid Serotonin Metabolite 
Sigma_H 9002 289.38 L-Hyoscyamine Cholinergic Antagonist 
Sigma_H 9003 110.11 Hydroquinone Leukotriene Inhibitor 
Sigma_B 8433 243.29 BU99006 Imidazoline Ligand 
Sigma_H 9382 211.09 3-Hydroxybenzylhydrazine dihydrochloride Biochemistry Inhibitor 
Sigma_H 9523 212.68 Serotonin hydrochloride Serotonin Agonist 
Sigma_L 2167 402.45 L-165,041 Lipid Signaling Agonist 
Sigma_H 9772 220.23 5-Hydroxy-L-tryptophan Serotonin Precursor 
Sigma_H 9876 69.49 Hydroxylamine hydrochloride Neurotransmission Inhibitor 
Sigma_H 9882 152.15 4-Hydroxybenzhydrazide Biochemistry Inhibitor 
Sigma_H-108 574.36 Hemicholinium-3 Cholinergic Blocker 
Sigma_H-120 329.81 HA-1004 hydrochloride Phosphorylation Inhibitor 
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Sigma_H-121 364.30 H-7 dihydrochloride Phosphorylation Inhibitor 
Sigma_H-127 386.03 Hexahydro-sila-difenidol hydrochloride, p-fluoro 

analog 
Cholinergic Antagonist 

Sigma_H-128 198.10 Histamine, R(-)-alpha-methyl-, dihydrochloride Histamine Agonist 
Sigma_H-135 210.25 5-hydroxydecanoic acid sodium K+ Channel Blocker 
Sigma_H-140 328.30 R-(+)-8-Hydroxy-DPAT hydrobromide Serotonin Agonist 
Sigma_H-168 328.30 R-(+)-7-Hydroxy-DPAT hydrobromide Dopamine Agonist 
Sigma_G 6043 524.59 GR 125487 sulfamate salt Serotonin Antagonist 
Sigma_I 0154 428.30 IEM-1460 Glutamate Inhibitor 
Sigma_I 0157 230.31 Ibudilast Cyclic 

Nucleotides 
Inhibitor 

Sigma_I 0375 162.58 Imidazole-4-acetic acid hydrochloride GABA Antagonist 
Sigma_I 0404 277.28 Indirubin-3'-oxime Phosphorylation Inhibitor 
Sigma_N 1786 310.39 NSC 95397 Phosphorylation Inhibitor 
Sigma_I 0782 240.27 Imazodan Cyclic 

Nucleotides 
Inhibitor 

Sigma_I 1149 184.96 Iodoacetamide Biochemistry Inhibitor 
Sigma_I 1392 313.81 HA-100 Phosphorylation Inhibitor 
Sigma_I 1637 412.37 Ipratropium bromide Cholinergic Antagonist 
Sigma_I 1656 497.51 Idarubicin DNA Metabolism Inhibitor 
Sigma_I 1899 358.18 2-Iodomelatonin Melatonin Agonist 
Sigma_S 2318 431.39 SB 228357 Serotonin Antagonist 
Sigma_I 2279 374.68 IMID-4F hydrochloride K+ Channel Blocker 
Sigma_I 2760 361.35 R(-)-Isoproterenol (+)-bitartrate Adrenoceptor Agonist 
Sigma_I 2764 452.74 ML-7 Phosphorylation Inhibitor 
Sigma_I 2765 158.11 (±)-Ibotenic acid Glutamate Agonist 
Sigma_I 2892 801.00 Ifenprodil tartrate Glutamate Blocker 
Sigma_I 3639 335.42 Isotharine mesylate Adrenoceptor Agonist 
Sigma_I 3766 256.26 Isoliquiritigenin Cyclic 

Nucleotides 
Activator 

Sigma_I 4883 206.29 (±)-Ibuprofen Prostaglandin Inhibitor 
Sigma_I 5531 348.45 IIK7 Melatonin Agonist 
Sigma_I 5627 247.72 (±)-Isoproterenol hydrochloride Adrenoceptor Agonist 
Sigma_I 5879 222.25 3-Isobutyl-1-methylxanthine Adenosine Inhibitor 
Sigma_I 6138 240.69 Idazoxan hydrochloride Imidazoline Ligand 
Sigma_I 6391 364.30 1-(5-Isoquinolinylsulfonyl)-3-methylpiperazine 

dihydrochloride 
Phosphorylation Inhibitor 

Sigma_I 6504 247.72 (-)-Isoproterenol hydrochloride Adrenoceptor Agonist 
Sigma_I 7016 364.30 1-(5-Isoquinolinylsulfonyl)-2-methylpiperazine 

dihydrochloride 
Phosphorylation Inhibitor 

Sigma_I 7378 357.80 Indomethacin Prostaglandin Inhibitor 
Sigma_I 7379 316.88 Imipramine hydrochloride Serotonin Blocker 
Sigma_I 7388 179.14 Isoxanthopterin Cell Stress Metabolite 
Sigma_I 7627 277.22 Iproniazid phosphate Neurotransmission Inhibitor 
Sigma_I 8005 361.35 S(+)-Isoproterenol (+)-bitartrate Adrenoceptor  
Sigma_I 8021 223.70 L-N6-(1-Iminoethyl)lysine hydrochloride Nitric Oxide Inhibitor 
Sigma_I 8250 307.09 3-Iodo-L-tyrosine Neurotransmission Inhibitor 
Sigma_I 8768 209.68 L-N5-(1-Iminoethyl)ornithine hydrochloride Nitric Oxide Inhibitor 
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Sigma_I 8898 875.12 Ivermectin Cholinergic Modulator 
Sigma_I 9531 280.76 Imiloxan hydrochloride Adrenoceptor Antagonist 
Sigma_I 9778 548.66 CR 2945 Cholecystokinin Antagonist 
Sigma_I 9890 648.26 m-Iodobenzylguanidine hemisulfate Apoptosis Activator 
Sigma_I-106 206.29 S(+)-Ibuprofen Prostaglandin Inhibitor 
Sigma_I-114 392.46 p-Iodoclonidine hydrochloride Adrenoceptor Agonist 
Sigma_I-117 357.24 R(+)-IAA-94 Cl- Channel Inhibitor 
Sigma_I-119 328.67 Indatraline hydrochloride Dopamine Inhibitor 
Sigma_I-120 339.65 Iofetamine hydrochloride Neurotransmission Analog 
Sigma_I-122 501.84 ICI 204,448 hydrochloride Opioid Agonist 
Sigma_I-127 313.87 ICI 118,551 hydrochloride Adrenoceptor Antagonist 
Sigma_I-135 332.06 Imetit dihydrobromide Histamine Agonist 
Sigma_I-138 161.16 1,5-Isoquinolinediol Apoptosis Inhibitor 

Sigma_M 1818 312.84 Molindone hydrochloride Dopamine Antagonist 
Sigma_I-146 510.29 IB-MECA Adenosine Agonist 
Sigma_I-151 426.90 Indomethacin morpholinylamide Cannabinoid Ligand 
Sigma_I-160 364.83 3-(1H-Imidazol-4-yl)propyl di(p-

fluorophenyl)methyl ether hydrochloride 
Histamine Antagonist 

Sigma_I18008 129.16 Isonipecotic acid GABA Agonist 
Sigma_J 4252 327.43 JWH-015 Cannabinoid Agonist 
Sigma_J-102 307.40 JL-18 Dopamine Antagonist 

Sigma_K 0250 213.24 Kainic acid Glutamate Agonist 
Sigma_K 1003 531.44 Ketoconazole Multi-Drug 

Resistance 
Inhibitor 

Sigma_K 1136 376.41 Ketorolac tris salt Prostaglandin Inhibitor 
Sigma_K 1751 254.29 Ketoprofen Prostaglandin Inhibitor 
Sigma_K 1888 376.50 K 185 Melatonin Antagonist 
Sigma_K 2628 425.51 Ketotifen fumarate Histamine Antagonist 
Sigma_K 3375 189.17 Kynurenic acid Glutamate Antagonist 
Sigma_K 3888 327.18 Kenpaullone Phosphorylation Inhibitor 
Sigma_K 4262 377.53 Karakoline Cholinergic Antagonist 
Sigma_L 0258 363.80 L-701,324 Glutamate Antagonist 
Sigma_L 0664 246.31 loxoprofen Prostaglandin Inhibitor 
Sigma_L 1011 364.88 Labetalol hydrochloride Adrenoceptor Antagonist 
Sigma_L 1415 582.79 L-162,313 Neurotransmission Agonist 
Sigma_L 1788 256.78 Lidocaine N-methyl hydrochloride Na+ Channel Blocker 
Sigma_L 2037 242.28 beta-Lapachone Apoptosis Activator 
Sigma_L 2411 452.55 LY-367,265 Serotonin Antagonist 
Sigma_L 2536 430.95 LY-310,762 hydrochloride Serotonin Antagonist 
Sigma_L 2540 591.24 L-368,899 Neurotransmission Antagonist 
Sigma_L 2906 387.82 Lomefloxacin hydrochloride Antibiotic Inhibitor 
Sigma_L 3791 256.10 Lamotrigine Anticonvulsant  
Sigma_L 4376 373.93 alpha-Lobeline hydrochloride Cholinergic Agonist 
Sigma_L 4762 513.51 Loperamide hydrochloride Opioid Ligand 
Sigma_L 4900 321.17 Lonidamine Cell Stress Inhibitor 
Sigma_L 5025 270.21 Leflunomide Immune System Inhibitor 
Sigma_V 1889 626.39 VER-3323 hemifumarate salt Serotonin Agonist 
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Sigma_L 5647 270.81 Lidocaine hydrochloride Na+ Channel Modulator 
Sigma_L 5783 343.31 Lidocaine N-ethyl bromide quaternary salt Na+ Channel Antagonist 
Sigma_L 8397 337.42 L-Leucinethiol, oxidized dihydrochloride Biochemistry Inhibitor 
Sigma_L 8401 290.41 LE 300 Dopamine Antagonist 
Sigma_L 8533 369.37 Lansoprazole Ion Pump Inhibitor 
Sigma_L 8539 327.90 L-687,384 hydrochloride Opioid Agonist 
Sigma_L 8789 360.01 LFM-A13 Phosphorylation Inhibitor 
Sigma_N 0287 564.58 NNC 55-0396 Ca2+ Channel Inhibitor 
Sigma_L 9539 373.86 L-655,240 Thromboxane Antagonist 
Sigma_L 9664 382.89 Loratadine Histamine Antagonist 
Sigma_L 9756 240.76 (-)-Tetramisole hydrochloride Phosphorylation Inhibitor 
Sigma_L 9787 341.37 L-655,708 Benzodiazepine Ligand 
Sigma_L 9908 343.81 LY-294,002 hydrochloride Phosphorylation Inhibitor 
Sigma_L-106 445.91 Loxapine succinate Dopamine Antagonist 
Sigma_L-107 500.60 LY-53,857 maleate Serotonin Antagonist 
Sigma_L-109 481.40 Lorglumide sodium Cholecystokinin Antagonist 
Sigma_L-110 414.47 LY-278,584 maleate Serotonin Antagonist 

Sigma_P 
0618_a 

312.25 cis(+/-)-8-OH-PBZI hydrobromide Dopamine Agonist 

Sigma_L-119 598.49 L-703,606 oxalate Tachykinin Antagonist 
Sigma_L-121 433.51 Levallorphan tartrate Opioid Antagonist 
Sigma_L-122 338.46 S-(-)-Lisuride Dopamine Agonist 
Sigma_L-131 363.29 L-745,870 hydrochloride Dopamine Antagonist 
Sigma_L-133 527.67 L-750,667 trihydrochloride Dopamine Antagonist 
Sigma_L-134 391.48 Linopirdine Cholinergic Releaser 
Sigma_L-135 340.86 L-741,626 Dopamine Antagonist 
Sigma_L-137 439.83 L-733,060 hydrochloride Tachykinin Antagonist 

Sigma_M 0763 336.26 Metoclopramide hydrochloride Dopamine Antagonist 
Sigma_M 0814 335.23 R(-)-Me5 Na+ Channel Antagonist 
Sigma_M 1022 307.44 Dihydrocapsaicin Vanilloid Agonist 
Sigma_M 1275 252.25 (-)-Naproxen sodium Prostaglandin Inhibitor 
Sigma_M 1387 118.57 4-Methylpyrazole hydrochloride Biochemistry Inhibitor 
Sigma_M 1404 301.33 Nocodazole Cytoskeleton and 

ECM 
Inhibitor 

Sigma_M 1514 280.28 N-omega-Methyl-5-hydroxytryptamine oxalate salt Serotonin Ligand 
Sigma_M 1559 278.14 Moxonidine hydrochloride Adrenoceptor Agonist 
Sigma_M 1692 398.42 MRS 1845 Ca2+ Channel Inhibitor 

Sigma_D 
9305_b 

199.64 1-Deoxynojirimycin hydrochloride Biochemistry Inhibitor 

Sigma_M 1809 399.56 MRS 1523 Adenosine Antagonist 
Sigma_M 2011 305.21 Melphalan DNA Metabolism Intercalator 
Sigma_M 2398 520.60 Metaproterenol hemisulfate Adrenoceptor Agonist 
Sigma_M 2525 300.83 Mianserin hydrochloride Serotonin Antagonist 
Sigma_M 2537 390.52 Mevastatin Antibiotic Inhibitor 
Sigma_M 2547 266.30 8-Methoxymethyl-3-isobutyl-1-methylxanthine Cyclic 

Nucleotides 
Inhibitor 

Sigma_M 2692 494.08 MK-886 Leukotriene Inhibitor 
Sigma_M 2727 215.73 Mexiletene hydrochloride Na+ Channel Blocker 
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Sigma_M 2776 455.52 Methylergonovine maleate Dopamine Antagonist 
Sigma_M 2901 242.24 Molsidomine Nitric Oxide Donor 
Sigma_M 2922 278.24 3-Methyl-6-(3-[trifluoromethyl]phenyl)-1,2,4-

triazolo[4,3-b]pyridazine 
Benzodiazepine Agonist 

Sigma_M 3047 259.22 Mizoribine DNA Metabolism Inhibitor 
Sigma_M 3127 278.37 S-Methylisothiourea hemisulfate Nitric Oxide Inhibitor 
Sigma_M 3184 437.37 MG 624 Cholinergic Antagonist 
Sigma_M 3262 147.13 N-Methyl-D-aspartic acid Glutamate Agonist 
Sigma_M 3281 245.71 alpha-Methyl-DL-tyrosine methyl ester 

hydrochloride 
Neurotransmission Inhibitor 

Sigma_M 3315 514.49 MJ33 Lipid Inhibitor 
Sigma_M 3668 403.53 Metergoline Serotonin Antagonist 
Sigma_U-106 519.43 (-)-cis-(1S,2R)-U-50488 tartrate Neurotransmission Ligand 

Sigma_M 3778 308.64 Clorgyline hydrochloride Neurotransmission Inhibitor 
Sigma_M 3808 459.30 MRS 2179 P2 Receptor Antagonist 
Sigma_M 3935 373.39 Meloxicam sodium Prostaglandin Inhibitor 
Sigma_M 4008 302.24 Morin Cell Stress Inhibitor 
Sigma_M 4145 209.25 Minoxidil K+ Channel Activator 
Sigma_M 4531 318.14 Meclofenamic acid sodium Prostaglandin Inhibitor 
Sigma_M 4659 211.23 Milrinone Cyclic 

Nucleotides 
Inhibitor 

Sigma_M 4796 209.20 (±)-alpha-Methyl-4-carboxyphenylglycine Glutamate Antagonist 
Sigma_M 4910 198.10 1-Methylhistamine dihydrochloride Histamine Metabolite 
Sigma_M 5154 315.84 Moxisylyte hydrochloride Adrenoceptor Antagonist 
Sigma_M 5171 265.33 S-Methyl-L-thiocitrulline acetate Nitric Oxide Inhibitor 
Sigma_M 5250 232.28 Melatonin Melatonin Agonist 
Sigma_M 5379 180.23 L-Methionine sulfoximine Glutamate Inhibitor 
Sigma_M 5391 684.83 (±)-Metoprolol (+)-tartrate Adrenoceptor Antagonist 
Sigma_M 5435 229.71 6-Methyl-2-(phenylethynyl)pyridine hydrochloride Glutamate Antagonist 
Sigma_M 5441 568.56 Mibefradil dihydrochloride Ca2+ Channel Blocker 
Sigma_M 5501 281.27 N6-Methyladenosine Adenosine Agonist 
Sigma_M 5560 232.60 (S)-MAP4 hydrochloride Glutamate Antagonist 
Sigma_M 5644 521.10 (±)-Methoxyverapamil hydrochloride Ca2+ Channel Antagonist 
Sigma_M 5685 276.29 Metrazoline oxalate Imidazoline Ligand 
Sigma_M 6191 276.68 GW9662 Transcription Inhibitor 
Sigma_M 6316 486.53 MRS 1754 Adenosine Antagonist 
Sigma_M 6383 302.42 2-methoxyestradiol Hormone Metabolite 
Sigma_M 6500 113.61 Cysteamine hydrochloride Somatostatin Depleter 
Sigma_M 6517 517.08 alpha,beta-Methylene adenosine 5'-triphosphate 

dilithium 
P2 Receptor Agonist 

Sigma_M 6524 247.72 Methoxamine hydrochloride Adrenoceptor Agonist 
Sigma_M 6545 517.41 Mitoxantrone DNA Metabolism Inhibitor 
Sigma_M 6628 226.71 O-Methylserotonin hydrochloride Serotonin Agonist 
Sigma_M 6680 218.54 Se-(methyl)selenocysteine hydrochloride Cell Cycle Inhibitor 
Sigma_M 6690 382.46 MDL 28170 Cell Cycle Inhibitor 
Sigma_M 6760 318.24 Myricetin Phosphorylation Inhibitor 
Sigma_M 7033 248.28 NG-Monomethyl-L-arginine acetate Nitric Oxide Inhibitor 
Sigma_M 7065 375.90 MK-912 Adrenoceptor Agonist 
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Sigma_M 7277 211.22 (±)-3-(3,4-dihydroxyphenyl)-2-methyl-DL-alanine Neurotransmission Inhibitor 
Sigma_M 7684 461.21 MRS 2159 P2 Receptor Antagonist 
Sigma_G 5793 534.06 GR 127935 hydrochloride Serotonin Antagonist 
Sigma_D 8941 402.44 2,6-Difluoro-4-[2-

(phenylsulfonylamino)ethylthio]phenoxyacetamide 
Glutamate Agonist 

Sigma_M 8046 429.61 Mifepristone Hormone Antagonist 
Sigma_M 8131 195.22 L-alpha-Methyl-p-tyrosine Neurotransmission Inhibitor 
Sigma_S 1068 337.81 SB-215505 Serotonin Antagonist 
Sigma_M 8878 82.11 1-Methylimidazole Prostaglandin Inhibitor 
Sigma_M 9020 203.76 Mecamylamine hydrochloride Cholinergic Antagonist 
Sigma_M 9125 297.85 Methapyrilene hydrochloride Histamine Antagonist 
Sigma_M 9292 215.77 Memantine hydrochloride Glutamate Antagonist 
Sigma_M 9440 168.15 Me-3,4-dephostatin Phosphorylation Inhibitor 
Sigma_M 9511 492.96 Minocycline hydrochloride Cell Cycle Inhibitor 
Sigma_M 9651 313.87 Maprotiline hydrochloride Adrenoceptor Inhibitor 
Sigma_M 9656 338.26 H-8 dihydrochloride Phosphorylation Inhibitor 
Sigma_M-001 334.42 Proglumide Cholecystokinin Antagonist 
Sigma_M-104 209.72 (±)-Muscarine chloride Cholinergic Agonist 
Sigma_M-105 728.77 Methoctramine tetrahydrochloride Cholinergic Antagonist 
Sigma_M-107 337.38 (+)-MK-801 hydrogen maleate Glutamate Antagonist 
Sigma_M-108 337.38 (-)-MK-801 hydrogen maleate Glutamate Antagonist 
Sigma_M-109 306.32 2-Methyl-5-hydroxytryptamine maleate Serotonin Agonist 
Sigma_M-110 306.32 alpha-Methyl-5-hydroxytryptamine maleate Serotonin Agonist 
Sigma_M-116 365.84 Metolazone Ion Pump Inhibitor 
Sigma_M-120 396.57 Metaphit methanesulfonate Opioid Antagonist 
Sigma_M-129 211.22 L-alpha-Methyl DOPA Biochemistry Inhibitor 
Sigma_M-137 469.54 Methysergide maleate Serotonin Antagonist 
Sigma_M-140 196.68 Methylcarbamylcholine chloride Cholinergic Agonist 
Sigma_M-149 452.66 Methiothepin mesylate Serotonin Antagonist 
Sigma_M-152 539.24 2-Methylthioadenosine diphosphate trisodium P2 Receptor Agonist 
Sigma_M-153 397.97 Mesulergine hydrochloride Dopamine Agonist 
Sigma_M-166 280.67 MDL 26,630 trihydrochloride Glutamate Agonist 
Sigma_Z 4626 367.92 ZM 39923 hydrochloride Phosphorylation Inhibitor 
Sigma_M-184 206.63 3-Morpholinosydnonimine hydrochloride Nitric Oxide Donor 
Sigma_M-187 293.84 3-Methoxy-morphanin hydrochloride Glutamate Antagonist 
Sigma_M-204 578.88 p-MPPI hydrochloride Serotonin Antagonist 
Sigma_M-216 376.20 MDL 105,519 Glutamate Antagonist 
Sigma_M-225 371.40 Metrifudil Adenosine Agonist 
Sigma_M-226 507.44 p-MPPF dihydrochloride Serotonin Antagonist 
Sigma_M-231 391.90 (-)-3-Methoxynaltrexone hydrochloride Opioid Antagonist 
Sigma_N 0630 282.22 Niflumic acid Prostaglandin Inhibitor 
Sigma_N 1016 308.31 Nimesulide Prostaglandin Inhibitor 
Sigma_N 1392 298.35 Nialamide Neurotransmission Inhibitor 
Sigma_N 1530 354.41 Nomifensine maleate Dopamine Inhibitor 
Sigma_N 1771 734.73 nor-Binaltorphimine dihydrochloride Opioid Antagonist 
Sigma_N 2001 303.20 Neostigmine bromide Cholinergic Inhibitor 
Sigma_N 2034 256.35 CR 2249 Glutamate Agonist 
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Sigma_N 2255 419.42 S-(4-Nitrobenzyl)-6-thioinosine Adenosine Inhibitor 
Sigma_N 3136 377.87 Naltrexone hydrochloride Opioid Antagonist 
Sigma_N 3398 220.25 S-Nitroso-N-acetylpenicillamine Nitric Oxide Donor 
Sigma_N 3510 327.13 Niclosamide Antibiotic  
Sigma_N 3529 474.40 NAN-190 hydrobromide Serotonin Antagonist 
Sigma_N 4034 234.62 NCS-356 GABA Agonist 
Sigma_N 4148 336.33 S-Nitrosoglutathione Nitric Oxide Donor 
Sigma_N 4159 242.25 NCS-382 GABA Antagonist 
Sigma_N 4382 254.22 Nalidixic acid sodium Antibiotic Inhibitor 
Sigma_N 4396 393.91 Nalbuphine hydrochloride Opioid Antagonist 
Sigma_N 4779 300.32 5-Nitro-2-(3-phenylpropylamino)benzoic acid Cl- Channel Blocker 
Sigma_N 4784 1505.10 NF449 octasodium salt G protein Antagonist 
Sigma_N 5023 302.37 Nordihydroguaiaretic acid from Larrea divaricata 

(creosote bush) 
Leukotriene Inhibitor 

Sigma_N 5260 462.41 (-)-Nicotine hydrogen tartrate salt Cholinergic Agonist 
Sigma_N 5501 219.20 NG-Nitro-L-arginine Nitric Oxide Inhibitor 
Sigma_N 5504 246.74 Naphazoline hydrochloride Adrenoceptor Agonist 
Sigma_N 5636 119.08 3-Nitropropionic acid Cell Stress Toxin 
Sigma_N 5751 269.69 NG-Nitro-L-arginine methyl ester hydrochloride Nitric Oxide Inhibitor 
Sigma_N 7127 219.67 (±)-Normetanephrine hydrochloride Adrenoceptor Metabolite 
Sigma_N 7261 299.85 Nortriptyline hydrochloride Adrenoceptor Inhibitor 
Sigma_N 7505 833.36 NADPH tetrasodium Nitric Oxide Cofactor 
Sigma_N 7510 516.00 Nicardipine hydrochloride Ca2+ Channel Antagonist 
Sigma_N 7634 346.34 Nifedipine Ca2+ Channel Antagonist 
Sigma_N 7758 363.84 Naloxone hydrochloride Opioid Antagonist 
Sigma_N 7778 163.14 7-Nitroindazole Nitric Oxide Inhibitor 
Sigma_N 7904 363.42 NS 521 oxalate Glutamate Modulator 
Sigma_N 7906 369.25 2-(alpha-Naphthoyl)ethyltrimethylammonium 

iodide 
Cholinergic Inhibitor 

Sigma_N 8403 175.15 6-Nitroso-1,2-benzopyrone Transcription Inhibitor 
Sigma_N 8534 317.23 Nilutamide Hormone Inhibitor 
Sigma_N 8652 1162.89 NF 023 P2 Receptor Antagonist 
Sigma_N 8659 272.70 Nimustine hydrochloride DNA Intercalator 
Sigma_N 8784 168.15 Norcantharidin Phosphorylation Inhibitor 
Sigma_N 9007 449.89 Noscapine hydrchloride Opioid Ligand 
Sigma_N 9765 548.60 (+)-Nicotine (+)-di-p-toluoyl tartrate Cholinergic Agonist 
Sigma_N-115 450.97 Naltrindole hydrochloride Opioid Antagonist 
Sigma_S 6319 342.70 Sertraline hydrochloride Serotonin Inhibitor 
Sigma_N-142 386.88 NO-711 hydrochloride GABA Inhibitor 
Sigma_N-144 360.37 Nitrendipine Ca2+ Channel Antagonist 
Sigma_N-149 418.45 Nimodipine Ca2+ Channel Antagonist 
Sigma_N-151 307.82 Nisoxetine hydrochloride Adrenoceptor Blocker 
Sigma_N-153 335.88 Nylidrin hydrochloride Adrenoceptor Agonist 
Sigma_N-154 217.28 N6-Cyclopentyl-9-methyladenine Adenosine Antagonist 
Sigma_N-156 511.60 Naltriben methanesulfonate Opioid Antagonist 
Sigma_N-158 465.42 Naftopidil dihydrochloride Adrenoceptor Antagonist 
Sigma_B 9305 368.48 BW 245C Prostanoids Agonist 
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Sigma_N-165 445.52 Naloxone benzoylhydrazone Opioid Agonist 
Sigma_N-170 362.23 NS-1619 K+ Channel Activator 
Sigma_N-176 723.70 Naloxonazine dihydrochloride Opioid Antagonist 
Sigma_N-183 380.25 NBQX disodium Glutamate Antagonist 
Sigma_N-211 269.06 NS 2028 Cyclic 

Nucleotides 
Inhibitor 

Sigma_O 0250 189.64 (±)-Octopamine hydrochloride Adrenoceptor Agonist 
Sigma_O 0383 325.54 N-Oleoylethanolamine Sphingolipid Inhibitor 
Sigma_O 0877 261.24 Oxolinic acid Antibiotic Inhibitor 
Sigma_O 0886 298.35 Olomoucine Phosphorylation Inhibitor 
Sigma_O 1008 282.47 Oleic Acid Phosphorylation Activator 
Sigma_O 2378 296.84 Oxymetazoline hydrochloride Adrenoceptor Agonist 
Sigma_O 2751 111.03 Sodium Oxamate Biochemistry Inhibitor 
Sigma_O 2881 393.96 Oxybutynin Chloride Cholinergic Antagonist 
Sigma_O 3011 158.16 Oxiracetam Nootropic  
Sigma_O 3125 584.67 Ouabain Ion Pump Inhibitor 
Sigma_O 3636 187.16 ODQ Cyclic 

Nucleotides 
Inhibitor 

Sigma_O 3752 305.85 Orphenadrine hydrochloride Cholinergic Antagonist 
Sigma_T 5575 249.33 TG003 Cell Cycle Inhibitor 
Sigma_O 8757 361.38 Ofloxacin Antibiotic  
Sigma_O 9126 760.80 Oxotremorine sesquifumarate salt Cholinergic Agonist 
Sigma_O 9387 426.57 Oxatomide Immune System Modulator 
Sigma_S 3442 371.23 SB 216763 Phosphorylation Inhibitor 
Sigma_O 9637 293.33 Oxaprozin Prostaglandin Inhibitor 
Sigma_O-100 322.19 Oxotremorine methiodide Cholinergic Agonist 
Sigma_O-111 460.98 (±)-Octoclothepin maleate Dopamine Antagonist 
Sigma_P 0130 314.47 Progesterone Hormone  
Sigma_P 0359 299.50 Palmitoylethanolamide Cannabinoid Agonist 
Sigma_P 0453 244.25 Piceatannol Phosphorylation Inhibitor 
Sigma_P 0547 592.69 Pentamidine isethionate Glutamate Antagonist 

Sigma_P 
0618_b 

312.25 cis-(±)-8-OH-PBZI hydrobromide Dopamine Agonist 

Sigma_P 0667 248.32 Parthenolide Serotonin Inhibitor 
Sigma_P 0778 248.33 Pindolol Adrenoceptor Antagonist 
Sigma_P 0878 185.07 O-Phospho-L-serine Glutamate Antagonist 
Sigma_P 0884 295.81 (±)-Propranolol hydrochloride Adrenoceptor Antagonist 
Sigma_P 1061 389.97 SKF-525A hydrochloride Multi-Drug 

Resistance 
Inhibitor 

Sigma_P 1675 602.60 Picrotoxin GABA Antagonist 
Sigma_P 1726 187.16 4-Phenyl-3-furoxancarbonitrile Nitric Oxide Donor 
Sigma_P 1784 278.31 Pentoxifylline Cyclic 

Nucleotides 
Inhibitor 

Sigma_P 1793 461.56 Pimozide Dopamine Antagonist 
Sigma_P 1801 277.24 L-Glutamic acid, N-phthaloyl- Glutamate Agonist 
Sigma_P 1918 732.69 Pancuronium bromide Cholinergic Antagonist 
Sigma_P 2016 334.50 3-alpha,21-Dihydroxy-5-alpha-pregnan-20-one GABA Modulator 
Sigma_P 2116 185.23 Pirfenidone Immune System Inhibitor 
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Sigma_P 2278 256.27 1,3-Dimethyl-8-phenylxanthine Adenosine Antagonist 
Sigma_P 2607 353.89 PRE-084 Opioid Agonist 
Sigma_P 2738 694.37 PPNDS tetrasodium P2 Receptor Antagonist 
Sigma_P 2742 217.29 PD 404,182 Biochemistry Inhibitor 
Sigma_P 3510 375.86 Papaverine hydrochloride Cyclic 

Nucleotides 
Inhibitor 

Sigma_P 3520 538.60 Pentolinium di[L(+)-tartrate] Cholinergic Antagonist 
Sigma_P 4015 235.33 1-Phenyl-3-(2-thiazolyl)-2-thiourea Dopamine Inhibitor 
Sigma_T 9567 210.30 Thiolactomycin Antibiotic Inhibitor 
Sigma_P 4394 300.06 Cisplatin DNA Intercalator 
Sigma_P 4405 414.42 Podophyllotoxin Cytoskeleton and 

ECM 
Inhibitor 

Sigma_S 1693 241.25 SU 9516 Cell Cycle Inhibitor 
Sigma_P 4509 436.08 Palmitoyl-DL-Carnitine chloride Phosphorylation Modulator 
Sigma_P 4532 385.43 R(-)-N6-(2-Phenylisopropyl)adenosine Adenosine Agonist 
Sigma_P 4543 166.20 Valproic acid sodium Anticonvulsant  
Sigma_P 4651 320.89 Promethazine hydrochloride Histamine Antagonist 
Sigma_P 4668 312.42 Praziquantel Antibiotic  
Sigma_P 4670 377.92 Propafenone hydrochloride K+ Channel Blocker 
Sigma_P 5052 332.49 5alpha-Pregnan-3alpha-ol-11,20-dione GABA Modulator 
Sigma_P 5114 305.37 Pempidine tartrate Cholinergic Antagonist 
Sigma_P 5295 142.16 Piracetam Glutamate Modulator 
Sigma_P 5396 182.02 Phosphomycin disodium Antibiotic  
Sigma_P 5514 401.47 Pyrilamine maleate Histamine Antagonist 
Sigma_P 5654 331.35 Piroxicam Prostaglandin Inhibitor 
Sigma_P 5679 194.19 3-n-Propylxanthine Adenosine Antagonist 
Sigma_P 6126 203.67 Phenylephrine hydrochloride Adrenoceptor Agonist 
Sigma_P 6402 403.98 Perphenazine Dopamine Antagonist 
Sigma_P 6500 138.17 Pentylenetetrazole Neurotransmission Modulator 
Sigma_P 6503 244.72 (+)-Pilocarpine hydrochloride Cholinergic Agonist 
Sigma_P 6628 271.28 Pilocarpine nitrate Cholinergic Agonist 
Sigma_P 6656 320.89 Promazine hydrochloride Dopamine Antagonist 
Sigma_P 6777 234.28 Phenelzine sulfate Neurotransmission Inhibitor 
Sigma_P 6902 356.43 Pheniramine maleate Histamine Antagonist 
Sigma_P 6909 140.03 Phosphonoacetic acid DNA Inhibitor 
Sigma_P 7083 166.22 (-)-Perillic acid G protein Inhibitor 
Sigma_P 7136 123.12 Pyrazinecarboxamide Antibiotic  
Sigma_P 7295 218.26 Primidone Anticonvulsant  
Sigma_P 7340 427.03 (±)-threo-1-Phenyl-2-decanoylamino-3-

morpholino-1-propanol hydrochloride 
Sphingolipid Inhibitor 

Sigma_P 7412 424.33 Pirenzepine dihydrochloride Cholinergic Antagonist 
Sigma_P 7505 161.08 Putrescine dihydrochloride Glutamate Agonist 
Sigma_P 7561 377.47 Phentolamine mesylate Adrenoceptor Antagonist 
Sigma_P 7780 376.95 Propionylpromazine hydrochloride Dopamine Antagonist 
Sigma_P 7791 419.87 Prazosin hydrochloride Adrenoceptor Antagonist 
Sigma_P 7912 274.28 Phloretin Ca2+ Channel Blocker 
Sigma_P 8013 195.69 Pargyline hydrochloride Neurotransmission Inhibitor 
Sigma_P 8139 616.84 Phorbol 12-myristate 13-acetate Phosphorylation Activator 
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Sigma_P 8227 444.26 1,3-PBIT dihydrobromide Nitric Oxide Inhibitor 
Sigma_P 8293 562.67 Protoporphyrin IX disodium Cyclic 

Nucleotides 
Activator 

Sigma_P 8352 444.26 1,4-PBIT dihydrobromide Nitric Oxide Inhibitor 
Sigma_P 8386 308.38 Phenylbutazone Prostaglandin Substrate 
Sigma_P 8477 376.42 Picotamide Thromboxane Antagonist 
Sigma_P 8511 169.66 Tranylcypromine hydrochloride Neurotransmission Inhibitor 
Sigma_P 8688 295.81 (S)-Propranolol hydrochloride Adrenoceptor Blocker 
Sigma_P 8765 164.29 Ammonium pyrrolidinedithiocarbamate Nitric Oxide Modulator 
Sigma_P 8782 173.17 (±)-cis-Piperidine-2,3-dicarboxylic acid Glutamate Agonist 
Sigma_P 8813 299.85 Protriptyline hydrochloride Adrenoceptor Blocker 
Sigma_P 8828 410.60 Pergolide methanesulfonate Dopamine Agonist 
Sigma_P 8852 195.22 6(5H)-Phenanthridinone Transcription Inhibitor 
Sigma_P 8887 318.50 5alpha-Pregnan-3alpha-ol-20-one GABA Modulator 
Sigma_P 8891 448.40 Propantheline bromide Cholinergic Antagonist 
Sigma_P 9159 165.21 Piperidine-4-sulphonic acid GABA Agonist 
Sigma_P 9178 606.10 Prochlorperazine dimaleate Dopamine Antagonist 
Sigma_P 9233 414.42 Piribedil maleate Dopamine Agonist 
Sigma_P 9297 713.72 Paromomycin sulfate Antibiotic  
Sigma_P 9375 180.21 1,10-Phenanthroline monohydrate Biochemistry Inhibitor 
Sigma_P 9391 271.79 Procainamide hydrochloride Na+ Channel Antagonist 
Sigma_P 9547 256.78 Prilocaine hydrochloride Na+ Channel Blocker 
Sigma_P 9689 306.37 Propentofylline Adenosine Inhibitor 
Sigma_P 9708 377.92 (S)-(-)-propafenone hydrochloride Adrenoceptor Blocker 
Sigma_P 9797 261.12 Pyridostigmine bromide Cholinergic Inhibitor 
Sigma_P 9879 272.78 Procaine hydrochloride Na+ Channel Blocker 
Sigma_P-101 358.36 2-Phenylaminoadenosine Adenosine Agonist 
Sigma_P-102 255.79 R(+)-3PPP hydrochloride Dopamine Agonist 
Sigma_P-103 255.79 S(-)-3PPP hydrochloride Dopamine Agonist 
Sigma_P-105 345.92 (±)-PPHT hydrochloride Dopamine Agonist 
Sigma_P-106 167.64 3-Phenylpropargylamine hydrochloride Dopamine Inhibitor 
Sigma_P-107 371.40 N6-2-Phenylethyladenosine Adenosine Agonist 
Sigma_P-108 343.34 N6-Phenyladenosine Adenosine Agonist 
Sigma_P-118 249.64 Phaclofen GABA Antagonist 
Sigma_P-119 480.45 (±)-Pindobind Adrenoceptors Ligand 
Sigma_P-120 177.21 1-Phenylbiguanide Serotonin Agonist 
Sigma_S 3317 284.32 SKF 94836 Calcium Signaling Inhibitor 
Sigma_P-126 393.47 Pirenperone Serotonin Antagonist 
Sigma_I 0658 311.34 IC 261 Phosphorylation Inhibitor 

Sigma_P-152_b 248.33 S(-)-Pindolol Serotonin Agonist 
Sigma_P-154 245.33 Pinacidil K+ Channel Activator 
Sigma_P-162 418.53 Pregnenolone sulfate sodium GABA Antagonist 
Sigma_P-178 599.31 PPADS P2 Receptor Antagonist 
Sigma_P-183 285.77 S(+)-PD 128,907 hydrochloride Dopamine Agonist 
Sigma_P-203 401.83 Phenamil methanesulfonate Na+ Channel Inhibitor 
Sigma_P-204 335.30 Phenylbenzene-omega-phosphono-alpha-amino 

acid 
Glycine Antagonist 
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Sigma_P-209 361.20 Phthalamoyl-L-glutamic acid trisodium Glutamate Agonist 
Sigma_P-215 267.29 PD 98,059 Phosphorylation Inhibitor 
Sigma_P-216 285.77 (±)-PD 128,907 hydrochloride Dopamine Agonist 
Sigma_P-233 450.50 PD 168,077 maleate Dopamine Agonist 
Sigma_S 9692 371.46 SU 6656 Phosphorylation Inhibitor 
Sigma_P63204 167.12 Quinolinic acid Glutamate Antagonist 
Sigma_Q 0125 302.24 Quercetin dihydrate Cyclic 

Nucleotides 
Inhibitor 

Sigma_Q 0875 746.93 Quinidine sulfate Na+ Channel Antagonist 
Sigma_Q 1004 445.43 Quipazine dimaleate Serotonin Agonist 
Sigma_Q 1250 746.93 Quinine sulfate K+ Channel Antagonist 
Sigma_Q 2128 189.13 (+)-Quisqualic acid Glutamate Agonist 
Sigma_Q 3251 472.89 Quinacrine dihydrochloride Neurotransmission Inhibitor 
Sigma_Q 3504 235.67 Quazinone Cyclic 

Nucleotides 
Inhibitor 

Sigma_Q-102 255.79 (-)-Quinpirole hydrochloride Dopamine Agonist 
Sigma_Q-107 459.46 Quipazine, N-methyl-, dimaleate Serotonin Agonist 
Sigma_Q-109 374.36 Quipazine, 6-nitro-, maleate Serotonin Inhibitor 
Sigma_Q-110 319.28 Quinelorane dihydrochloride Dopamine Agonist 
Sigma_Q-111 292.25 (±)-Quinpirole dihydrochloride Dopamine Agonist 
Sigma_R 0500 346.47 Cortexolone Hormone Precursor 
Sigma_R 0758 323.82 Ritodrine hydrochloride Adrenoceptor Agonist 
Sigma_R 1402 510.06 Raloxifene hydrochloride Hormone Modulator 
Sigma_R 2625 300.44 Retinoic acid Apoptosis Activator 
Sigma_R 2751 786.36 Ruthenium red Ion Pump Inhibitor 
Sigma_R 3255 300.44 13-cis-retinoic acid Transcription Regulator 
Sigma_R 3277 287.32 Rutaecarpine K+ Channel Blocker 
Sigma_R 4152 296.84 Ropinirole hydrochloride Dopamine Agonist 
Sigma_R 5010 228.25 Resveratrol Prostaglandin Inhibitor 
Sigma_R 5523 335.45 REV 5901 Leukotriene Antagonist 
Sigma_R 5648 516.55 Rottlerin Phosphorylation Inhibitor 
Sigma_R 6152 500.47 Ranolazine dihydrochloride Lipid Inhibitor 
Sigma_R 6520 275.35 Rolipram Cyclic 

Nucleotides 
Inhibitor 

Sigma_R 7150 375.94 Ro 25-6981 hydrochloride Glutamate Antagonist 
Sigma_R 7385 587.48 Phosphoramidon disodium Biochemistry Inhibitor 
Sigma_R 7772 354.46 Roscovitine Phosphorylation Inhibitor 
Sigma_R 8875 394.43 Rotenone Cell Stress Modulator 
Sigma_R 8900 406.89 Ro 8-4304 Glutamate Antagonist 
Sigma_R 9525 270.72 RX 821002 hydrochloride Adrenoceptor Antagonist 
Sigma_R 9644 244.21 Ribavirin Cell Cycle Inhibitor 
Sigma_R-101 350.87 Ranitidine hydrochloride Histamine Antagonist 
Sigma_R-103 477.58 Ritanserin Serotonin Antagonist 
Sigma_R-104 390.91 Rauwolscine hydrochloride Adrenoceptor Antagonist 
Sigma_R-106 235.11 Ro 16-6491 hydrochloride Neurotransmission Inhibitor 
Sigma_R-107 301.77 Ro 41-1049 hydrochloride Neurotransmission Inhibitor 
Sigma_R-108 277.21 Ro 41-0960 Neurotransmission Inhibitor 
Sigma_R-115 840.11 Reactive Blue 2 P2 Receptor Antagonist 
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Sigma_R-116 234.20 Riluzole Glutamate Antagonist 
Sigma_R-118 410.50 Risperidone Dopamine Antagonist 
Sigma_R-121 497.33 S(+)-Raclopride L-tartrate Dopamine Antagonist 
Sigma_S 4692 514.54 Sobuzoxane Gene Regulation Inhibitor 
Sigma_R-134 180.25 Rilmenidine hemifumarate Imidazoline Agonist 
Sigma_D 7815 317.39 R(-)-Denopamine Adrenoceptor Agonist 
Sigma_R-140 381.29 Ro 04-6790 dihydrochloride Serotonin Antagonist 
Sigma_S 0278 308.83 (±)-Sotalol hydrochloride Adrenoceptor Antagonist 
Sigma_S 0441 287.75 SB-366791 Vanilloid Antagonist 
Sigma_S 0501 261.92 Sodium nitroprusside dihydrate Nitric Oxide Releaser 
Sigma_S 0752 167.21 (±)-Synephrine Adrenoceptor Agonist 
Sigma_S 0758 314.37 Sulfaphenazole Multi-Drug 

Resistance 
Inhibitor 

Sigma_S 1316 808.99 Seglitide Somatostatin Agonist 
Sigma_S 1438 372.42 Sulindac sulfone Prostaglandin Inhibitor 
Sigma_S 1441 612.75 Cortexolone maleate Dopamine Antagonist 
Sigma_S 1563 232.15 SKF 86466 Adrenoceptor Antagonist 
Sigma_S 1688 248.16 SR 57227A Serotonin Agonist 
Sigma_S 1875 384.27 (-)-Scopolamine hydrobromide Cholinergic Antagonist 
Sigma_S 2064 352.75 SC-560 Prostaglandin Inhibitor 
Sigma_S 2201 111.53 Semicarbazide hydrochloride Neurotransmission Inhibitor 
Sigma_S 2250 380.40 (-)-Scopolamine methyl nitrate Cholinergic Antagonist 
Sigma_S 2381 464.13 DL-Stearoylcarnitine chloride Phosphorylation Inhibitor 
Sigma_S 2501 254.63 Spermidine trihydrochloride Glutamate Ligand 
Sigma_S 2812 449.64 SNC80 Opioid Agonist 
Sigma_S 2816 398.73 SKF 83959 hydrobromide Dopamine Agonist 
Sigma_S 2876 348.19 Spermine tetrahydrochloride Glutamate Antagonist 
Sigma_S 2941 350.26 SKF 75670 hydrobromide Dopamine Agonist 
Sigma_S 3065 331.76 SC 19220 Prostaglandin Antagonist 
Sigma_S 3066 328.23 SKF 89626 Dopamine Agonist 
Sigma_S 3191 419.15 SKF 83565 hydrobromide Dopamine Agonist 
Sigma_S 3313 419.35 SB 204070 hydrochloride Serotonin Antagonist 
Sigma_O 2139 417.64 N-Oleoyldopamine Neurotransmission Ligand 
Sigma_S 3378 416.58 Spironolactone Hormone Antagonist 
Sigma_S 4063 348.27 SCH-202676 hydrobromide G protein Modulator 
Sigma_S 4250 105.09 D-Serine Glutamate Agonist 
Sigma_S 5013 576.71 Albuterol hemisulfate Adrenoceptor Agonist 
Sigma_S 5890 367.79 Sanguinarine chloride Ion Pump Inhibitor 
Sigma_S 6633 215.21 N-Succinyl-L-proline Neurotransmission Inhibitor 
Sigma_S 6879 299.50 Sphingosine Phosphorylation Inhibitor 
Sigma_S 7389 388.96 SB 269970 hydrochloride Serotonin Antagonist 
Sigma_S 7395 431.94 Spiperone hydrochloride Dopamine Antagonist 
Sigma_S 7690 370.41 SR 2640 Leukotriene Antagonist 
Sigma_S 7771 341.43 (-)-Sulpiride Dopamine Antagonist 
Sigma_S 7809 402.93 SKF 96365 Ca2+ Channel Inhibitor 
Sigma_S 7882 440.38 (-)-Scopolamine,n-Butyl-, bromide Cholinergic Antagonist 
Sigma_S 7936 330.41 SB 205384 GABA Modulator 
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Sigma_S 8010 341.43 (±)-Sulpiride Dopamine Antagonist 
Sigma_C 7238 592.78 CV-3988 Cytokines & 

Growth Factors 
Antagonist 

Sigma_S 8139 356.42 Sulindac Prostaglandin Inhibitor 
Sigma_S 8251 361.31 Succinylcholine chloride Cholinergic Antagonist 
Sigma_S 8260 239.32 Salbutamol Adrenoceptor Agonist 
Sigma_S 5068 603.76 Salmeterol xinafoate Adrenoceptor Agonist 
Sigma_S 8442 238.29 SU 5416 Phosphorylation Inhibitor 
Sigma_S 8502 398.30 (-)-Scopolamine methyl bromide Cholinergic Antagonist 
Sigma_S 8567 264.33 SU 4312 Phosphorylation Inhibitor 
Sigma_S 8688 415.49 SR 59230A oxalate Adrenoceptor Antagonist 
Sigma_B 5559 391.77 BRL 52537 hydrochloride Neurotransmission Agonist 
Sigma_S 9066 371.91 SKF 89976A hydrochloride GABA Inhibitor 
Sigma_S 9186 213.24 SIB 1757 Glutamate Antagonist 
Sigma_S 9311 195.27 SIB 1893 Glutamate Antagonist 
Sigma_S-003 248.76 1-(1-Naphthyl)piperazine hydrochloride Serotonin Antagonist 
Sigma_S-006 545.53 Ketanserin tartrate Serotonin Antagonist 
Sigma_S-008 228.72 1-(2-Methoxyphenyl)piperazine hydrochloride Serotonin Agonist 
Sigma_S-009 349.40 PAPP Serotonin Agonist 
Sigma_S-103 379.46 Spiroxatrine Serotonin Agonist 
Sigma_S-106 368.23 SR-95531 GABA Antagonist 
Sigma_S-143 370.68 (±)-6-Chloro-PB hydrobromide Dopamine Agonist 
Sigma_S-145 248.22 SKF 91488 dihydrochloride Histamine Inhibitor 
Sigma_S 2671 1429.19 Suramin hexasodium P2 Receptor Antagonist 
Sigma_S-153 205.22 SQ 22536 Cyclic 

Nucleotides 
Inhibitor 

Sigma_S-154 237.22 Sepiapterin Nitric Oxide Cofactor 
Sigma_S-159 413.47 R(-)-SCH-12679 maleate Dopamine Antagonist 
Sigma_S-168 376.30 (±)-SKF 38393, N-allyl-, hydrobromide Dopamine Agonist 
Sigma_S-174 337.25 SDZ-205,557 hydrochloride Serotonin Antagonist 
Sigma_S-180 328.80 SB 206553 hydrochloride Serotonin Antagonist 
Sigma_S-201 557.10 SB 224289 hydrochloride Serotonin Antagonist 
Sigma_T 0254 204.23 L-Tryptophan Serotonin Precursor 
Sigma_T 0318 327.34 Tranilast Leukotriene Inhibitor 
Sigma_T 0410 364.89 Tiapride hydrochloride Dopamine Antagonist 
Sigma_T 0625 125.15 Taurine Glycine Agonist 
Sigma_T 0780 480.10 Thiothixene hydrochloride Dopamine Antagonist 
Sigma_T 0891 270.35 Tolbutamide Hormone Releaser 
Sigma_T 1132 296.54 Tetraethylthiuram disulfide Biochemistry Inhibitor 
Sigma_T 1443 402.07 TCPOBOP Transcription Agonist 
Sigma_T 1505 342.36 Tetraisopropyl pyrophosphoramide Biochemistry Inhibitor 
Sigma_T 1512 240.76 Tetramisole hydrochloride Phosphorylation Inhibitor 
Sigma_T 1516 337.94 Trihexyphenidyl hydrochloride Cholinergic Antagonist 
Sigma_T 1633 179.18 Theophylline Adenosine Antagonist 
Sigma_T 1694 101.11 (E)-4-amino-2-butenoic acid GABA Agonist 
Sigma_T 1698 288.50 Tetradecylthioacetic acid Transcription Agonist 
Sigma_T 2057 441.96 Trequinsin hydrochloride Cyclic 

Nucleotides 
Inhibitor 
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Sigma_T 2067 316.47 Tyrphostin AG 879 Phosphorylation Inhibitor 
Sigma_T 2265 165.71 Tetraethylammonium chloride Cholinergic Antagonist 
Sigma_T 2408 311.41 Tolazamide Hormone Releaser 
Sigma_T 2528 548.66 Terbutaline hemisulfate Adrenoceptor Agonist 
Sigma_T 2879 173.64 4-Hydroxyphenethylamine hydrochloride Dopamine Agonist 
Sigma_T 2896 388.89 Triflupromazine hydrochloride Dopamine Antagonist 
Sigma_T 3146 410.52 Trimipramine maleate Serotonin Inhibitor 
Sigma_T 3434 294.31 Tyrphostin AG 490 Phosphorylation Inhibitor 
Sigma_T 3757 348.49 TTNPB Transcription Ligand 
Sigma_L 3040 522.61 L-765,314 Adrenoceptor Antagonist 
Sigma_T 4143 253.27 Triamterene Na+ Channel Blocker 
Sigma_T 4182 315.76 Tyrphostin AG 1478 Phosphorylation Inhibitor 
Sigma_T 4264 236.75 Tetrahydrozoline hydrochloride Adrenoceptor Agonist 
Sigma_T 4318 280.29 Tyrphostin AG 494 Phosphorylation Inhibitor 
Sigma_T 4376 351.85 N-p-Tosyl-L-phenylalanine chloromethyl ketone Biochemistry Inhibitor 
Sigma_T 4425 314.17 (6R)-5,6,7,8-Tetrahydro-L-biopterin hydrochloride Neurotransmission Cofactor 
Sigma_T 4443 308.34 Tyrphostin AG 527 Phosphorylation Inhibitor 
Sigma_T 4500 180.17 Theobromine Adenosine Antagonist 
Sigma_T 4512 304.26 (±)-Taxifolin Cell Stress Inhibitor 
Sigma_T 4568 308.34 Tyrphostin AG 528 Phosphorylation Inhibitor 
Sigma_T 4680 423.90 Terazosin hydrochloride Adrenoceptor Antagonist 
Sigma_T 4693 448.44 Tyrphostin AG 537 Phosphorylation Inhibitor 
Sigma_T 4818 322.37 Tyrphostin AG 555 Phosphorylation Inhibitor 
Sigma_T 5193 308.34 Tyrphostin AG 698 Phosphorylation Inhibitor 
Sigma_T 5318 304.31 Tyrphostin AG 808 Phosphorylation Inhibitor 
Sigma_T 5515 781.46 Thio-NADP sodium Intracellular 

Calcium 
Blocker 

Sigma_T 5568 308.34 Tyrphostin AG 835 Phosphorylation Inhibitor 
Sigma_T 5625 206.33 (±)-alpha-Lipoic Acid Cell Stress Coenzyme 
Sigma_T 6031 253.32 DL-Thiorphan Neurotransmission Inhibitor 
Sigma_T 6050 264.20 Tulobuterol hydrochloride Adrenoceptor Agonist 
Sigma_T 6154 408.33 Trazodone hydrochloride Serotonin Inhibitor 
Sigma_T 6318 216.20 Tyrphostin AG 34 Phosphorylation Inhibitor 
Sigma_T 6376 394.44 Triamcinolone Hormone Agonist 
Sigma_T 6394 432.50 S(-)-Timolol maleate Adrenoceptor Antagonist 
Sigma_T 6692 423.34 N,N,N-trimethyl-1-(4-trans-stilbenoxy)-2-

propylammonium iodide 
Cholinergic Antagonist 

Sigma_T 6764 314.86 Triprolidine hydrochloride Histamine Antagonist 
Sigma_T 6943 236.23 Tyrphostin AG 112 Phosphorylation Inhibitor 
Sigma_T 7040 184.20 Tyrphostin 1 Phosphorylation Inhibitor 
Sigma_T 7165 186.17 Tyrphostin 23 Phosphorylation Inhibitor 
Sigma_T 7188 284.73 TFPI hydrochloride Nitric Oxide Inhibitor 
Sigma_T 7254 369.31 Na-p-Tosyl-L-lysine chloromethyl ketone 

hydrochloride 
Cyclic 

Nucleotides 
Inhibitor 

Sigma_T 7290 202.17 Tyrphostin 25 Phosphorylation Inhibitor 
Sigma_T 7313 212.18 1-[2-(Trifluoromethyl)phenyl]imidazole Nitric Oxide Inhibitor 
Sigma_T 7402 853.93 Taxol Cytoskeleton and 

ECM 
Inhibitor 
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Sigma_T 7508 300.83 Tetracaine hydrochloride Na+ Channel Modulator 
Sigma_T 7540 220.25 Tyrphostin 47 Phosphorylation Inhibitor 
Sigma_T 7665 268.23 Tyrphostin 51 Phosphorylation Inhibitor 
Sigma_T 7692 665.68 T-1032 Cyclic 

Nucleotides 
Inhibitor 

Sigma_T 7697 437.19 I-OMe-Tyrphostin AG 538 Phosphorylation Inhibitor 
Sigma_T 7822 297.27 Tyrphostin AG 538 Phosphorylation Inhibitor 
Sigma_T 7883 290.32 Trimethoprim Antibiotic Inhibitor 
Sigma_T 7947 255.36 Tomoxetine Adrenoceptor Inhibitor 
Sigma_T 8067 620.07 T-0156 Cyclic 

Nucleotides 
Inhibitor 

Sigma_T 8160 314.21 3-Tropanyl-3,5-dichlorobenzoate Serotonin Antagonist 
Sigma_T 8516 480.43 Trifluoperazine dihydrochloride Dopamine Antagonist 
Sigma_T 8543 266.47 D-609 potassium Lipid Inhibitor 
Sigma_T 9025 407.04 Thioridazine hydrochloride Dopamine Antagonist 
Sigma_T 9033 650.77 Thapsigargin Intracellular 

Calcium 
Releaser 

Sigma_T 9177 215.17 Tyrphostin AG 126 Phosphorylation Inhibitor 
Sigma_T 9262 563.65 Tamoxifen citrate Phosphorylation Inhibitor 
Sigma_T 9652 471.69 Terfenadine Histamine Antagonist 
Sigma_T 9778 284.36 Tropicamide Cholinergic Antagonist 
Sigma_T-101 176.60 THIP hydrochloride GABA Agonist 
Sigma_T-103 445.89 Trifluperidol hydrochloride Dopamine Antagonist 
Sigma_T-104 320.82 3-Tropanyl-indole-3-carboxylate hydrochloride Serotonin Antagonist 
Sigma_T-112 304.40 Tracazolate GABA Modulator 
Sigma_T-113 426.30 3-Tropanylindole-3-carboxylate methiodide Serotonin Antagonist 
Sigma_T-122 443.40 Telenzepine dihydrochloride Cholinergic Antagonist 
Sigma_T-123 408.52 Thioperamide maleate Histamine Antagonist 
Sigma_T-144 258.24 (±)-Thalidomide Cytoskeleton and 

ECM 
Inhibitor 

Sigma_T-165 340.47 R(+)-Terguride Dopamine Agonist 
Sigma_T-173 191.25 Thiocitrulline Nitric Oxide Inhibitor 
Sigma_T-182 282.39 Tyrphostin A9 Phosphorylation Inhibitor 
Sigma_T-200 161.14 TPMPA GABA Antagonist 

Sigma_U 1508 361.53 U-75302 Leukotriene Agonist 
Sigma_U 4125 448.13 Uridine 5'-diphosphate sodium P2 Receptor Agonist 
Sigma_U 5882 726.92 U-74389G maleate Cell Stress Inhibitor 
Sigma_U 6007 593.65 U-83836 dihydrochloride Cell Stress Inhibitor 
Sigma_U 6756 464.65 U-73122 Lipid Inhibitor 
Sigma_S 5317 613.69 SKF 95282 dimaleate Histamine Antagonist 
Sigma_U 7500 138.13 4-Imidazoleacrylic acid Histamine Inhibitor 
Sigma_U-100 423.95 Urapidil hydrochloride Adrenoceptor Antagonist 
Sigma_U-101 401.51 Urapidil, 5-Methyl- Adrenoceptor Antagonist 
Sigma_U-103 356.51 U-69593 Opioid Agonist 
Sigma_U-104 292.14 UK 14,304 Adrenoceptor Agonist 
Sigma_U-105 521.51 U-62066 Opioid Agonist 
Sigma_U-108 301.84 S(-)-UH-301 hydrochloride Serotonin Antagonist 
Sigma_U-109 301.84 R(+)-UH-301 hydrochloride Serotonin Agonist 
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Sigma_U-110 405.80 (+)-trans-(1R,2R)-U-50488 hydrochloride Opioid Agonist 
Sigma_U-111 405.80 (-)-trans-(1S,2S)-U-50488 hydrochloride Opioid Agonist 
Sigma_U-115 455.56 U-101958 maleate Dopamine Antagonist 
Sigma_U-116 393.48 U-99194A maleate Dopamine Antagonist 
Sigma_U-120 380.50 U0126 Phosphorylation Inhibitor 
Sigma_V 1377 909.07 Vinblastine sulfate salt Cytoskeleton and 

ECM 
Inhibitor 

Sigma_V 4629 491.08 (±)-Verapamil hydrochloride Ca2+ Channel Modulator 
Sigma_V 5888 371.40 VUF 5574 Adenosine Antagonist 
Sigma_V 6383 350.46 Vinpocetine Cyclic 

Nucleotides 
Inhibitor 

Sigma_V 8138 1485.75 Vancomycin hydrochloride from Streptomyces 
orientalis 

Antibiotic 
 

Sigma_V 8261 129.16 (±)-gamma-Vinyl GABA GABA Inhibitor 
Sigma_V 8879 923.06 Vincristine sulfate Cytoskeleton and 

ECM 
Inhibitor 

Sigma_V 9130 293.41 N-Vanillylnonanamide Vanilloid Ligand 
Sigma_V-100 295.86 (±)-Vesamicol hydrochloride Cholinergic Inhibitor 
Sigma_X 3628 366.74 XK469 Apoptosis Inhibitor 
Sigma_W 1628 428.44 Wortmannin from Penicillium funiculosum Phosphorylation Inhibitor 
Sigma_W 4262 250.17 1400W dihydrochloride Nitric Oxide Inhibitor 
Sigma_W 4761 808.66 WB 64 Cholinergic Ligand 
Sigma_W-102 522.63 ( R)-(+)-WIN 55,212-2 mesylate Cannabinoid Agonist 
Sigma_W-104 438.58 WIN 62,577 Tachykinin Antagonist 
Sigma_W-105 199.17 S(-)-Willardiine Glutamate Agonist 
Sigma_W-108 538.65 WAY-100635 maleate Serotonin Antagonist 
Sigma_W-110 325.06 S-5-Iodowillardiine Glutamate Agonist 
Sigma_X 1251 256.80 Xylazine hydrochloride Adrenoceptor Agonist 
Sigma_X 3253 794.86 Xamoterol hemifumarate Adrenoceptor Agonist 
Sigma_X 6000 280.84 Xylometazoline hydrochloride Adrenoceptor Agonist 
Sigma_X-103 428.50 Xanthine amine congener Adenosine Antagonist 
Sigma_Y 3125 390.91 Yohimbine hydrochloride Adrenoceptor Antagonist 
Sigma_Y-101 395.93 YS-035 hydrochloride Ca2+ Channel Blocker 
Sigma_Y-102 304.35 YC-1 Cyclic 

Nucleotides 
Activator 

Sigma_Z 0878 271.28 Zaprinast Cyclic 
Nucleotides 

Inhibitor 

Sigma_Z 2001 234.21 Zonisamide sodium Anticonvulsant  
Sigma_Z 3003 268.22 Zardaverine Cyclic 

Nucleotides 
Inhibitor 

Sigma_Z-101 390.15 Zimelidine dihydrochloride Serotonin Inhibitor 
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6.4.4. Liquid class programs 
 
 Program 1  (20-201 µl) 

 
 

 Aspiration Dispensing 
Speed (µl/s) 100 100 
Delay (ms) 500 200 

System Trailing Air gap (µl) 0 
Leading air gap (µl) 15 
Trailing air gap (µl) 10 

 

Aspiration/Dispensing position z-max ± offset, with 
tracking 

0 mm, x: center 

z-max ± offset, no tracking 
0 mm, x: center 

Retract tip to z-start 
0 mm 

z-start 
0 mm 

Retract speed (mm/s) 100 100 
 
 Program 2 (20-201 µl) 

 
 

 Aspiration Dispensing 
Speed (µl/s) 200 200 
Delay (ms) 500 200 

System Trailing Air gap (µl) 0 
Leading air gap (µl) 15 
Trailing air gap (µl) 0 

 

Aspiration/ Dispensing position z-max ± offset, with 
tracking 

0 mm, x: center 

z-dispense ± offset, no 
tracking 

-10 mm, x: center 
Retract tip to z-start 

0 mm 
z-start 
0 mm 

Retract speed (mm/s) 42 42 
 
 
 Program 3 (20-201 µl) 

 
 

 Aspiration Dispensing 
Speed (µl/s) 100 100 
Delay (ms) 500 200 

System Trailing Air gap (µl) 0 
Leading air gap (µl) 15 
Trailing air gap (µl) 10 

 

Aspiration/ Dispensing position z-max ± offset, with 
tracking 

0 mm, x: center 

z-max ± offset, no tracking 
-10 mm, x: center 

Retract tip to z-start 
0 mm 

z-start 
0 mm 

Retract speed (mm/s) 100 100 
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 Program 3 (7.5-15 µl) 
 
 

 Aspiration Dispensing 
Speed (µl/s) 10 20 
Delay (ms) 200 200 

System Trailing Air gap (µl) 0 
Leading air gap (µl) 10 
Trailing air gap (µl) 1 

 

Aspiration/ Dispensing position z-max ± offset, no 
tracking 

0 mm, x: center 

z-max ± offset, no tracking 
0 mm, x: center 

Retract tip to z-start 
0 mm 

z-start 
0 mm 

Retract speed (mm/s) 5 42 
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