Homo- und Heteroleptische Übergangsmetallund Lanthanoidverbindungen und deren Einsatz in der Materialforschung

Dissertation zur Erlangung des Grades des **Doktors der Naturwissenschaften** der Naturwissenschaftlich-Technischen Fakultät III – Chemie, Pharmazie, Bio- und Werkstoffwissenschaften – der Universität des Saarlandes

> vorgelegt von Dipl.-Chem. Jessica Altmayer

> > Saarbrücken 2008

Tag des Kolloquiums:	01. April 2009
Dekan:	Prof. Dr. U. Müller
Prüfungsvorsitzender:	Prof. Dr. G. Wenz
Berichterstatter:	Prof. Dr. S. Mathur
	Prof. Dr. M. Veith
	Dr. S. Stucky

Diese Dissertation wurde im Zeitraum von Mai 2004 bis April 2008 am Leibniz- Institut für Neue Materialien (INM) in Saarbrücken unter der Leitung von Herrn Professor Dr. S. Mathur angefertigt.

Gott gebe mir die Gelassenheit. Dinge hinzunehmen, die ich nicht ändern kann, den Mut. Dinge zu ändern, die ich ändern kann, und die Weisheit, das eine vom anderen zu unterscheiden.

(Reinhold Niebuhr)

Danksagung

Mein Dank gilt vor allem meinem Doktorvater Prof. Dr. Sanjay Mathur für die interessante Themenstellung, die fachliche Begleitung und die hilfreiche Unterstützung sowie wertvollen Hinweise und Ratschläge bei der Erstellung dieser Dissertation.

Des Weiteren möchte ich Dr. Volker Huch recht herzlich für die Einkristallstrukturbestimmung, Dr. Sven Barth und Dr. Hao Shen für die Durchführung der REM-, EDX- und XPS-Messungen, Frau S. Timmroth für die CHN Analysen und Dipl. Biol. Margit Müller für die Durchführung der Zelltests danken.

Sieglind und Volker Wanke sowie Sven Barth danke ich darüber hinaus für das Korrekturlesen der vorliegenden Arbeit.

Besonderer Dank gebührt Sven Barth, Gabriele Koster und Christina Guth, die mir in den letzten Jahren stets mit Rat und Tat zur Seite gestanden haben und die ich als Freunde nicht mehr missen möchte.

Weiterhin möchte ich mich bei allen Mitarbeitern der CVD Abteilung, insbesondere Christian Cavelius und Nicole Donia, den Mitarbeitern des INM, hierbei insbesondere dem wissenschaftlichen Geschäftsführer Prof. Dr. Michael Veith, für ihre Unterstützung und das angenehme Arbeitsklima bedanken.

Mein größter Dank gilt meiner Familie und meinem Lebensgefährten Sören Wanke, die mich auf meinem gesamten Weg bis hierher begleiteten, mich stets in guten wie in schlechteren Zeiten bedingungslos unterstützten und immer für mich da waren.

Kurzzusammenfassung

Zur Entwicklung und Herstellung neuartiger funktioneller und technologisch relevanter Beschichtungssysteme besitzt die molekülbasierte chemische Gasphasenabscheidung (MBCVD) vielfältiges Potential. Dabei nimmt die thermische Zersetzung des Precursormoleküls zur Filmbildung eine Schlüsselposition ein. Um nun die Auswirkungen molekularen Designs von metallorganischen Precursorverbindungen des durch Ligandenmodifikation auf die resultierenden Materialeigenschaften zu untersuchen, wurden im Rahmen dieser Dissertation mittels CVD unter Verwendung verschiedener homo- und heteroleptischer Precursorsysteme dünne Filme abgeschieden. Die an den resultierenden Beschichtungen durchgeführten Untersuchungen Morphologie, bzgl. chemischer Zusammensetzung und Phasenevolution geben Aufschluss über die Korrelation von Precursormolekül, Prozessparametern und Materialeigenschaften, wodurch die Kontrolle der Schichtkonstitution allein durch gezieltes Precursordesign ermöglicht wird. In diesem Zusammenhang wurden nanokristalline Zirkoniumcarbonitrid (Zr-C-N) und Zirkoniumoxid (ZrO₂) Schichten aus Zr(NEt₂)₄, einem Zr(NEt₂)₄/Et₂NH Gemisch, bzw. Zr(O^tBu)₄ auf Stahlund Siliziumsubstraten erzeugt und bezüglich der mechanischen Eigenschaften bei variierten Prozessbedingungen untersucht. Neuartige heteroleptische Übergangsmetallprecursoren $Zr(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}, Hf(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}, [Ti(O^{t}Bu)_{2}N(SiMe_{3})_{2}ClLiN(SiMe_{3})_{2}]_{2} und$ Zr(O^tBu)₂(NⁱPr₂)₂ konnten durch Einkristallröntgenstrukturanalyse vollständig charakterisiert und im thermischen CVD-Verfahren eingesetzt werden. Außerdem ermöglichte die Verwendung homoleptischer $(Ti(O^{t}Bu)_{4})$ und $Ti(O^{1}Pr)_{4})$ sowie heteroleptischer Titanverbindungen der allgemeinen Form $XTi(O^{i}Pr)_{3}$, (X = Cl, Me, NMe₂, NEt₂, NⁱPr₂, C₅H₅, O^tBu und N(SiMe₃)₂) die Untersuchung des Einflusses der Ligandensphäre auf die Erzeugung von TiO₂-Filmen. Im Falle der ZrO₂- Zr-C-N- sowie TiO₂- Filme erfolgte eine Evaluation von Zell-Oberflächen-Wechselwirkungen. Darüber hinaus wurden metallorganische Moleküle der Lanthanoide, $[Nd(O'Pr){N(SiMe_3)_2}_2]_2,$ $[Ce(O^{1}Pr){N(SiMe_{3})_{2}}_{2}]_{2},$ $[Eu(Mal)_3]_2$, $ErN(SiMe_3)_2(Mal)_2$, $[Nd{OCH(CF_3)_2}_3(H_2O)_2]_2$ und $Er_3O(OSiMe_3)_7(HOSiMe_3)(THF)_2$ synthetisiert und strukturell aufgeklärt. Diese Synthesen erfolgten ebenfalls unter dem Aspekt der Generierung einer heteroleptischen Ligandensphäre.

Abstract

Thin film deposition by molecule-based chemical vapor growth techniques shows great potential for the development and synthesis of new functional coating systems of technological interest. In a CVD-process the thermolysis reaction of a precursor molecule has the major impact on the film formation. The influence of molecular precursor design by ligand modification on resulting material properties, such as morphology, chemical composition and crystallinity was elaborated. In addition studies on the impact of molecular constitution and process parameter on the resulting film quality were performed using various homo- and heteroleptic precursor systems. The results demonstrated the control of resulting material- and film properties by specific precursor design. In this context nanocrystalline zirconium carbonitride (Zr-C-N)- and zirconium oxide (ZrO₂)-films were deposited by MBCVD of $Zr(NEt_2)_4$, a mixture of $Zr(NEt_2)_4/Et_2NH$ and $Zr(O^tBu)_4$ on iron and Si(100), respectively, while the evolution of the mechanical properties was analyzed upon parameter variations. Moreover new heteroleptic transition metal precursors $Zr(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}$ $Hf(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}, Zr(O^{t}Bu)_{2}(N^{t}Pr_{2})_{2} \text{ and } [Ti(O^{t}Bu)_{2}N(SiMe_{3})_{2}ClLiN(SiMe_{3})_{2}]_{2} \text{ were}$ structurally characterized and used in a thermal CVD process. Various homo- (Ti(O^tBu)₄ and $Ti(O^{i}Pr)_{4}$) and heteroleptic titanium precursors of the general formula $XTi(O^{i}Pr)_{3}$ (X = Cl, Me, NMe₂, NEt₂, N¹Pr₂, C₅H₅, O^tBu and N(SiMe₃)₂) were synthesized and the impact on the precursor-dependent coating properties was investigated in detail. Morphology, chemical composition and phase evolution of the CVD deposits were explored, while ZrO₂, Zr-C-N as well as TiO₂ showed interesting cell-surface-interactions. Besides transistion metal complexes metal organic lanthanide compounds $[Nd(O^{i}Pr){N(SiMe_3)_2}_2]_2$, $[Ce(O^{i}Pr){N(SiMe_3)_2}_2]_2$, $[Eu(Mal)_3]_2$, ErN(SiMe₃)₂(Mal)₂, $[Nd{OCH(CF_3)_2}_3(H_2O)_2]_2,$ and Er₃O(OSiMe₃)₇(HOSiMe₃)(THF)₂ were synthesized and structurally characterized, while we focused on formation of heteroleptic molecules showing low tendency to oligomerisation.

Inhaltsverzeichnis

1	Einleitung	1
1.1	Einführung	1
1.2	Neue Materialien: Werkstoffe und Chemie	3
2	Motivation und Zielsetzung	6
3	Grundlagen der Gasphasenverfahren	8
3.1	Der thermische CVD-Prozess	9
3.2	Schichtwachstum	. 11
3.3	Prozessparameter- Mikrostruktur- Eigenschaftsverhältnis	. 13
3.4	Apparativer Aufbau	. 14
4	MOCVD und Precursordesign	. 15
4.1	Das Precursorkonzept	. 15
4.2	Metallorganische Verbindungen	. 16
4.3	Metallalkoxide und Metallamide	. 17
4.4	Heteroleptische Verbindungen	. 18
4.5	Single-Source-Precursoren (SSP) und Precursordesign	. 18
5	Ergebnisse und Diskussion	. 24
5.1	Übergangsmetall-Precursoren im CVD-Prozess	. 24
5.2	Nanostrukturierte ZrO ₂ - und Zr-C-N- Beschichtungen mittels CVD bzw. MACVD unter Verwendung der homoleptischen Precursoren $Zr(O^tBu)_4$ und	
	Zr(NEt ₂) ₄	. 25
	5.2.1 Precursorsynthese und Charakterisierung	. 26
	5.2.2 Chemical Vapor Deposition und Beschichtungseigenschaften	. 27
5.3	Synthese und Charakterisierung heteroleptischer Verbindungen der allgemeinen Form M(O ^t Bu) ₂ (NR ₂) ₂ , (M=Ti, Zr und Hf) und deren Einsatz im CVD –Verfahren	. 35
	5.3.1 Synthese und Charakterisierung von $Zr(O^tBu)_2\{N(SiMe_3)_2\}_2$. 36

	5.3.2	Synthese und Charakterisierung von $Hf(O^tBu)_2\{N(SiMe_3)_2\}_2$	40
	5.3.3	Synthese und Charakterisierung von $Ti(O^tBu)_2\{N(SiMe_3)_2\}_2$	41
	5.3.4	Synthese und Charakterisierung von Zr(O ^t Bu) ₂ (N ⁱ Pr ₂) ₂	46
	5.3.5	Chemical Vapor Deposition und Beschichtungseigenschaften	50
5.4	Herste durch	llung von TiO ₂ –Beschichtungen: Modulation der Schichteigenschaften gezieltes Precursordesign	56
	5.4.1	Synthese und Charakterisierung titanhaltiger Precursoren	58
	5.4.2	CVD und Beschichtungseigenschaften	66
5.5	Synthe Eu, No	ese und Charakterisierung lanthanoidhaltiger Verbindungen mit Ln = Ce, l und Er	81
	5.5.1	Synthese von $[Nd(O^{i}Pr){N(SiMe_{3})_{2}}_{2}]_{2}$	84
	5.5.2	Synthese von $[Ce(O^{i}Pr){N(SiMe_{3})_{2}}_{2}]_{2}$	87
	5.5.3	Synthese von ErN(SiMe ₃) ₂ (Mal) ₂	90
	5.5.4	Synthese von [Eu(Mal) ₃] ₂	93
	5.5.5	Synthese von $[Nd{OCH(CF_3)_2}_3(H_2O)_2)]_2$	96
	5.5.6	Synthese von Er ₃ O(OSiMe ₃) ₇ (HOSiMe ₃)(THF) ₂	100
6	Zusan	nmenfassung der Ergebnisse und Ausblick	107
7	Exper	imenteller Teil	114
7.1	Allger	neine Arbeitstechniken	114
7.2	Analy	semethoden und Geräte	114
	7.2.1	NMR-Spektroskopie	114
	7.2.2	Röntgenstrukturanalyse	114
	7.2.3	Beschichtungscharakterisierung (REM-, EDX- und XPS-Analysen)	115
7.3	Synthe	ese der Vorstufen	117
7.4	Synthe	ese der Zielverbindungen XTi(O ⁱ Pr) ₃	123
	7.4.1	Synthese von MeTi(O ⁱ Pr) ₃	123
	7.4.2	Synthese von Me ₂ NTi(O ⁱ Pr) ₃	124

	7.4.3	Synthese von Et ₂ NTi(O ⁱ Pr) ₃	124
	7.4.4	Synthese von ⁱ Pr ₂ NTi(O ⁱ Pr) ₃	125
	7.4.5	Synthese von (SiMe ₃) ₂ NTi(O ⁱ Pr) ₃	125
	7.4.6	Synthese von CpTi(O ⁱ Pr) ₃	126
	7.4.7	Synthese von ^t BuOTi(O ⁱ Pr) ₃	126
7.5	Synthe	ese der Zielverbindungen $M(O^tBu)_2(NR_2)_2 M=Ti$, Zr und Hf	127
	7.5.1	Synthese von Ti(O ^t Bu) ₂ {N(SiMe ₃) ₂ } ₂	127
	7.5.2	Synthese von $Zr(O^tBu)_2 \{N(SiMe_3)_2\}_2$	128
	7.5.3	Synthese von $Hf(O^tBu)_2\{N(SiMe_3)_2\}_2$	129
	7.5.4	Synthese von $Zr(O^tBu)_2(N^iPr_2)_2$	130
7.6	Synthe	ese der Lanthanoidverbindungen	131
	7.6.1	Synthese von $[Nd(O^{i}Pr){N(SiMe_{3})_{2}}_{2}]_{2}$	131
	7.6.2	Synthese von $[Ce(O^{i}Pr){N(SiMe_{3})_{2}}_{2}]_{2}$	131
	7.6.3	Synthese von ErN(SiMe ₃) ₂ (Mal) ₂	132
	7.6.4	Synthese von [Eu(Mal) ₃] ₂	132
	7.6.5	Synthese von $[Nd{OCH(CF_3)_2}_3]_2$	132
	7.6.6	Synthese von Er ₃ O(OSiMe ₃) ₇ (Me ₃ SiOH)(THF) ₂	133
7.7	Prozes	ssparameter der CVD- Experimente	133
	7.7.1	CVD mittels Zr(O ^t Bu) ₄ , Zr(NEt ₂) ₄ und Zr(NEt ₂) ₄ /Et ₂ NH	134
	7.7.2	$CVD mittels Zr(O^tBu)_2 \{N(SiMe_3)_2\}_2 und Hf(O^tBu)_2 \{N(SiMe_3)_2\}_2, \dots, N(SiMe_3)_2\}_2 $	134
	7.7.3	CVD mittels [Ti(O ^t Bu) ₂ N(SiMe ₃) ₂ ClLiN(SiMe ₃) ₂] ₂ und Zr(O ^t Bu) ₂ (N ⁱ Pr ₂) ₂	134
	7.7.4	CVD mittels heteroleptischer Titanprecursoren	135
7.8	Appar	ativer Aufbau	135
8	Litera	turverzeichnis	136
9	Anhai	ng	155
9.1	Vollst	ändiger Datensatz der Röntgenstrukturanalyse von $Zr(O^tBu)_2 \{N(SiMe_3)_2\}_2$	155

9.2	Vollständiger Datensatz der Röntgenstrukturanalyse von	
	$[Ti(O^{t}Bu)_{2}N(SiMe_{3})_{2}ClLiN(SiMe_{2})_{2}]_{2} \dots 1$	157
9.3	Vollständiger Datensatz der Röntgenstrukturanalyse von Zr(O ^t Bu) ₂ (N ⁱ Pr ₂) ₂ 1	163
9.4	Vollständiger Datensatz der Röntgenstrukturanalyse von	
	$[Nd(O^{i}Pr){N(SiMe_{3})_{2}}_{2}]_{2}$ 1	165
9.5	Vollständiger Datensatz der Röntgenstrukturanalyse von $[Ce(O^{i}Pr){N(SiMe_{3})_{2}}_{2}]_{2}$.	168
9.6	Vollständiger Datensatz der Röntgenstrukturanalyse von ErN(SiMe ₃) ₂ (Mal) ₂ 1	171
9.7	Vollständiger Datensatz der Röntgenstrukturanalyse von [Eu(Mal) ₃] ₂ 1	179
9.8	Vollständiger Datensatz der Röntgenstrukturanalyse von	
	$[Nd{OCH(CF_3)_2}_3(H_2O)_2)]_2$	183
9.9	Vollständiger Datensatz der Röntgenstrukturanalyse von	
	$Er_3O(OSiMe_3)_7(HOSiMe_3)(THF)_2.$	186

Verbindungsverzeichnis

(1)	Zr(NEt ₂) ₄	(15)	ClTi(O ⁱ Pr) ₃
(2)	Zr(O ^t Bu) ₄	(16)	MeTi(O ⁱ Pr) ₃
(3)	Zr(O ^t Bu) ₂ Cl ₂	(17)	Me ₂ NTi(O ⁱ Pr) ₃
(4)	$Zr(O^{t}Bu)_{2}{N(SiMe_{3})_{2}}_{2}$	(18)	Et ₂ NTi(O ⁱ Pr) ₃
(5)	Hf(O ^t Bu) ₄	(19)	ⁱ Pr ₂ NTi(O ⁱ Pr) ₃
(6)	$Hf(O^{t}Bu)_{2}Cl_{2}$	(20)	CpTi(O ⁱ Pr) ₃
(7)	$Hf(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}$	(21)	^t BuOTi(O ⁱ Pr) ₃
(8)	Ti(O ^t Bu) ₄	(22)	(Me ₃ Si) ₂ NTi(O ⁱ Pr) ₃
(9)	Ti(O ^t Bu) ₂ Cl ₂	(23)	$[Nd(O^{i}Pr)\{N(SiMe_{3})_{2}\}_{2}]_{2}$
(10)	$Ti(O^tBu)_2\{N(SiMe_3)_2\}_2$	(24)	$[Ce(O^{i}Pr)\{N(SiMe_{3})_{2}\}_{2}]_{2}$
(11)	[Ti(O ^t Bu) ₂ N(SiMe ₃) ₂ ClLiN(SiMe ₃) ₂] ₂	(25)	ErN(SiMe ₃) ₂ (Mal) ₂
(12)	$Zr(O^tBu)_2(N^iPr_2)_2$	(26)	[Eu(Mal) ₃] ₂
(13)	Ti(O ^t Bu) ₄	(27)	[Nd{OCH(CF ₃) ₂ } ₃ (H ₂ O) ₂] ₂
(14)	Ti(O ⁱ Pr) ₄	(28)	Er ₃ O(OSiMe ₃) ₇ (HOSiMe ₃)(THF) ₂

Abkürzungsverzeichnis

Å	Angström
Abb.	Abbildung
Acac	Acetylacetonat
Bu	Butyl
Bdmap	1,3-bis(dimethylamino)-2-propanolat
°C	Grad Celsius
0	Grad
CHN	Kohlenstoff-Wasserstoff-Stickstoff-Analyse
Ср	Cyclopentadienyl (C5H5)
CVD	Chemical Vapor Deposition
d.Th.	der Theorie
deacam	N, N-diethylacetoacetamid
dmae	2-Dimethylaminoethanolat
dmopH	2-(4,4-dimethyl-4,5-dihydroxooxazol-2-yl) propan-2-ol
dbml	Di-tert-Butylmalonat
EDX-	Energiedispersive Röntgenstrahl-
Et	Ethyl
Et ₂ O	Diethylether
g	Gramm
gef.	Gefunden
Gl.	Gleichung
HF	Hochfrequenz
hfip	Hexafluoroisopropoxid
ⁱ Pr	Isopropyl
IR	Infrarot
i. Vak.	Im Vakuum
μ	Präfix "Mikro" (10 ⁻⁶⁾
m	Präfix "Milli" (10 ⁻³)
Μ	molare Masse

Me	Methyl
mg	Milligramm
ml	Milliliter
min	Minute
mmp	1- methoxy- 2- methyl- 2-propanolat
mol	Mol
MOCVD	Metal-Organic-Chemical Vapor Deposition
MS	Massenspektrometrie
n	Präfix "Nano" (10 ⁻⁹)
NMR	Nuclear Magnetic Resonance
O ^t Bu	<i>tert</i> -Butoxy
O ⁱ Pr	Isopropoxy
ppm	parts per million
PVD	Physical Vapor Deposition / Physikalische Gasphasenabscheidung
q	Quartett
REM	Rasterelektronenmikroskop
RT	Raumtemperatur
S	Singulett
t	Triplett
Т	Temperatur
tbaoac	Tert- butylacetoacetat
tert	tertiär
thd	2,2,6,6,tetramethyl-3,5-haptandionat
THF	Tetrahydrofuran
Tol	Toluol
UV	Ultraviolett
XPS	Röntgen-Photoelektronen-Spektroskopie
XRD	X-Ray-Diffraction / Röntgenbeugung
δ	chemische Verschiebung

Abbildungsverzeichnis

Abbildung 1.1:	Formen der Nanomaterie	1
Abbildung 1.2:	Kratzschutzbeschichtung (links) und unbeschichtete Linse (rechts)	2
Abbildung 1.3:	Photokatalytische Wirkung von TiO ₂	4
Abbildung 3.1:	Der CVD-Prozess.	8
Abbildung 3.2:	Ablauf der chemischen Gasphasenabscheidung (a) und chemische Gasphasensynthese (b).	10
Abbildung 3.3:	Verschiedene Wachstumsprozesse beim CVD-Verfahren	11
Abbildung 3.4:	Temperaturabhängigkeit der Wachstumsrate.	12
Abbildung 3.5:	Zusammenhang Prozessparameter und Schichteigenschaften.	14
Abbildung 4.1:	Koordinationsmodii von Alkoxogruppen	17
Abbildung 4.2:	Zersetzungsprodukte bei verschiedenen Temperaturen.	20
Abbildung 4.3:	Donorstabilisierung am Beispiel von Zirkoniumverbindungen	20
Abbildung 4.4:	Zirkonium- und Hafnium-Precursoren mit verschiedenen Ligandensphären	21
Abbildung 4.5:	Unterschiedliche Precursorzufuhrsysteme (a) und (b).	23
Abbildung 5.1:	Homoleptische Zr-Precursoren: Zr(NEt ₂) ₄ (a) und Zr(O ^t Bu) ₄ (b)	26
Abbildung 5.2:	Röntgendiffraktogramme der ZrCN-Beschichtungen (a) und XPS-Spektren der ZrCN- und ZrO ₂ -Beschichtungen (b)	28
Abbildung 5.3:	REM-Aufnahmen der ZrCN-Beschichtungen aus (a) Zr(NEt ₂) ₄ und (b) Zr(NEt ₂) ₄ /Et ₂ NH.	29
Abbildung 5.4:	REM-Aufnahmen der ZrO ₂ -Beschichtungen bei verschiedenen Substrattemperaturen: (a) 450 °C, (b) 550 °C, (c) 650 °C, (d) Querschnitt und (e) Röntgendiffraktogramme der bei verschiedenen Substrattemperaturen erhaltenen ZrO ₂ - Beschichtungen	30
Abbildung 5.5:	Scratch- Tests an ZrCN- (a), (b) und ZrO ₂ -Beschichtungen (c) bei 550 °C.	31
Abbildung 5.6:	Mikrohärte der ZrCN- und ZrO ₂ -Beschichtungen	32
Abbildung 5.7:	Osteoblasten (a), (b) und Verofibroblasten (c) auf ZrCN sowie Osteoblasten auf ZrO ₂ (d)	33

Abbildung 5.8:	Verofibroblasten auf glatter ZrCN-Schicht und (b) auf rauer ZrO ₂ -Beschichtung.	34
Abbildung 5.9:	(a) ¹ H NMR-Spektrum und (b) ¹³ C NMR-Spektrum der Verbindung $Zr(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}$.	37
Abbildung 5.10:	Molekülstruktur von $Zr(O^tBu)_2 \{N(SiMe_3)_2\}_2$	37
Abbildung 5.11:	(a) ¹ H NMR-Spektrum und (b) ¹³ C NMR-Spektrum der Verbindung $Hf(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}$.	40
Abbildung 5.12:	$Molek \ddot{u}lstruktur von Hf(O^{t}Bu)_{2} \{N(SiMe_{3})_{2}\}_{2}$	41
Abbildung 5.13:	Molekülstruktur von [Ti(O ^t Bu) ₂ N(SiMe ₃) ₂ ClLiN(SiMe ₃) ₂] ₂	42
Abbildung 5.14:	Molekülstruktur von ZrCl{N(SiMe ₃) ₂ } ₃ ; Ti und Hf analog	42
Abbildung 5.15:	(a) ¹ H NMR-Spektrum und (b) ¹³ C NMR-Spektrum der Verbindung $[Ti(O^{t}Bu)_{2}N(SiMe_{3})_{2}ClLiN(SiMe_{3})_{2}]_{2}$.	45
Abbildung 5.16:	(a) ¹ H NMR-Spektrum und (b) ¹³ C NMR-Spektrum der Verbindung $Zr(O^{t}Bu)_{2}(N^{i}Pr_{2})_{2}$	46
Abbildung 5.17:	(a) ¹ H NMR-Spektrum und (b) ¹³ C NMR-Spektrum der mit THF/THFd ₈ stabilisierten Verbindung $Zr(O^tBu)_2(N^iPr_2)_2$	47
Abbildung 5.18:	Molekülstruktur von $Zr(O^tBu)_2(N^iPr_2)_2$	48
Abbildung 5.19:	Morphologie (a) sowie XRD (b) der mittels $Zr(O^{t}Bu)_{2} \{N(SiMe_{3})_{2}\}_{2}$ (Hf($O^{t}Bu)_{2} \{N(SiMe_{3})_{2}\}_{2}$ analog) bei 450–750 °C erhaltenen Beschichtungen auf Siliziumsubstraten. Morphologien resultierend aus der Zersetzung von [Ti($O^{t}Bu)_{2}N(SiMe_{3})_{2}ClLiN(SiMe_{3})_{2}]_{2}$ bei 450 °C (c), 550 °C (d), 650 °C (e) und 750 °C (f)	51
Abbildung 5.20:	XPS-Spektren von Filmen mittels Abscheidung von Zr(O ^t Bu) ₂ {N(SiMe ₃) ₂ } ₂ und Hf(O ^t Bu) ₂ {N(SiMe ₃) ₂ } ₂ (a) und [Ti(O ^t Bu) ₂ N(SiMe ₃) ₂ ClLiN(SiMe ₃) ₂] ₂ (b), jeweils bei 750 °C	52
Abbildung 5.21:	REM-Aufnahmen der an mittels $Zr(O^tBu)_2\{N(SiMe_3)_2\}_2$ (Hf $(O^tBu)_2\{N(SiMe_3)_2\}_2$ analog) erhaltenen amorphen Beschichtungen vorgenommenen Scratch-Tests bei verschiedener Krafteinwirkung (a) 0,01 N (Anfang), (b) 0,07 N und (c) 0,1 N (Ende).	53
Abbildung 5.22:	REM-Aufnahmen der Scratch-Tests an mittels [Ti(O ^t Bu) ₂ N(SiMe ₃) ₂ ClLiN(SiMe ₃) ₂] ₂ erhaltenen Filmen bei verschiedener Krafteinwirkung (a) 0,03 N (b) 0,07 N und (c) 0,1 N	53
Abbildung 5.23:	XRD-Spektren der bei verschiedenen Substrattemperaturen erhaltenen ZrO ₂ - (a) und Zr ₂ ON ₂ -Beschichtungen (b)	54
Abbildung 5.24:	Morphologien, resultierend aus der Zersetzung von $Zr(O^tBu)_2(N^iPr_2)_2$ bei 450 °C (a), 550 °C (b), 650 °C (c) und 750 °C (d)	55

Abbildung 5.25:	(a) REM-Aufnahme der absplitternden Beschichtung (750 °C). REM- Aufnahmen des Scratch-Tests an mittels $Zr(O^tBu)_2(N^iPr_2)_2$ bei 650 °C erhaltenen Film bei verschiedener Krafteinwirkung (b) Beginn (0,01N) und (c) 0,06 N
Abbildung 5.26:	Precursoren zur Herstellung der Titanoxidbeschichtungen
Abbildung 5.27:	(a) ¹ H NMR-Spektrum und (b) ¹³ C NMR-Spektrum der Verbindung MeTi(O ⁱ Pr) ₃
Abbildung 5.28:	(a) ¹ H NMR-Spektrum und (b) ¹³ C NMR-Spektrum der Verbindung Me ₂ NTi(O ⁱ Pr) ₃
Abbildung 5.29:	(a) ¹ H NMR-Spektrum und (b) ¹³ C NMR-Spektrum der Verbindung $Et_2NTi(O^iPr)_3$
Abbildung 5.30:	(a) ¹ H NMR-Spektrum und (b) ¹³ C NMR-Spektrum der Verbindung ⁱ Pr ₂ NTi(O ⁱ Pr) ₃ , (c) Vergrößerung der Doublettaufspaltung
Abbildung 5.31:	(a) ¹ H NMR-Spektrum und (b) ¹³ C NMR-Spektrum der Verbindung (Me ₃ Si) ₂ NTi(O ⁱ Pr) ₃
Abbildung 5.32:	(a) ¹ H NMR-Spektrum und (b) ¹³ C NMR-Spektrum der Verbindung CpTi(O ⁱ Pr) ₃
Abbildung 5.33:	(a) ¹ H NMR-Spektrum und (b) ¹³ C NMR-Spektrum der Verbindung ^t BuOTi(O ⁱ Pr) ₃
Abbildung 5.34:	Flüchtigkeiten der heteroleptischen Titanprecursoren
Abbildung 5.35:	Nummerierung der heteroleptischen Titanprecursoren
Abbildung 5.36:	Röntgendiffraktogramme der mittels verschiedener Precursoren (15) – (22) bei 550 °C erhaltenen TiO ₂ -Beschichtungen auf Si (100)
Abbildung 5.37:	Röntgendiffraktogramme der getemperten TiO ₂ -Beschichtungen (a), Phasenentwicklung der mittels Et ₂ NTi(O ⁱ Pr) ₃ erhaltenen Filme bei verschiedenen Substrattemperaturen (b)
Abbildung 5.38:	(a) Phasenentwicklung der mittels CpNTi(O ⁱ Pr) ₃ erhaltenen Filme bei verschiedenen Substrattemperaturen und (b) XPS-Übersichtsspektren der amorphen Filme aus Abscheidung von (Me ₃ Si) ₂ NTi(O ⁱ Pr) ₃
Abbildung 5.39:	REM-Aufnahmen der Morphologien mittels $ClTi(O^{i}Pr)_{3}$ hergestellter TiO ₂ -Schichten bei verschiedenen Substrattemperaturen (a) 450 °C, (b) 550 °C, (c) 650 °C und (d) Querschnitt (550 °C)71
Abbildung 5.40:	REM-Aufnahmen der Morphologien von TiO ₂ -Schichten aus Et ₂ NTi(O ⁱ Pr) ₃ bei verschiedenen Substrattemperaturen (a) 450 °C, (b) 550 °C, (c) 650 °C und (d) 750 °C sowie entsprechende Querschnitte (e) und (f)

Abbildung 5.42:	REM-Aufnahmen der Morphologien von TiO ₂ -Schichten aus CpTi(O ⁱ Pr) ₃ bei verschiedenen Substrattemperaturen (a) 450 °C, (b) 550 °C, (c) 650 °C und (d) 750 °C sowie entsprechender Querschnitt (e).	73
Abbildung 5.43:	REM-Aufnahmen der Morphologien von TiO ₂ -Schichten aus ⁱ Pr ₂ NTi(O ⁱ Pr) ₃ bei 450 °C (a), MeTi(O ⁱ Pr) ₃ bei 550 °C (b) und 650 °C (c).	74
Abbildung 5.44:	REM-Aufnahmen der Morphologien von TiO ₂ -Schichten aus ^t BuOTi(O ⁱ Pr) ₃ bei 750 °C (a) mit entsprechendem Querschnitt (b) und (c) mittels ⁱ Pr ₂ NTi(O ⁱ Pr) ₃ bei 750 °C hergestellte TiO ₂ - Beschichtung.	75
Abbildung 5.45:	Wachstumsraten der Precursoren.	76
Abbildung 5.46:	Phasenkontrolle durch Ligandendesign	77
Abbildung 5.47:	Infrarotspektren der Zersetzung von Stearinsäure auf TiO ₂ -Oberflächen (a) ClTi(O ⁱ Pr) ₃ und (b) Et ₂ NTi(O ⁱ Pr) ₃	78
Abbildung 5.48:	Osteoblasten auf Anatasoberflächen (a) aus $ClTi(O^{i}Pr)_{3}$ und (b) $Ti(O^{i}Pr)_{4}$	80
Abbildung 5.49:	Osteoblasten auf TiO ₂ -Beschichtungen, die aus CpTi(O ⁱ Pr) ₃ synthetisiert wurden (a) Zellkerne, (b) Übersicht (c) Aktinstruktur	80
Abbildung 5.50:	Verwendete sauerstoffhaltige Liganden.	84
Abbildung 5.51:	Molekülstruktur von $[Nd(O^{i}Pr){N(SiMe_3)_2}_2]_2$.	85
Abbildung 5.52:	Molekülstruktur von $[Ce(O^{i}Pr){N(SiMe_3)_2}_2]_2$	88
Abbildung 5.53:	Molekülstruktur von ErN(SiMe ₃) ₂ (Mal) ₂	91
Abbildung 5.54:	Molekülstruktur von [Eu(Mal) ₃] ₂ .	94
Abbildung 5.55:	Molekülstruktur von [Nd{OCH(CF ₃) ₂ } ₃ (H ₂ O) ₂)] ₂	97
Abbildung 5.56:	Verzerrt oktaedrische Ligandensphäre der Nd Atome in [Nd{OCH(CF ₃) ₂ } ₃ (H ₂ O) ₂)] ₂	100
Abbildung 5.57:	Molekülstruktur von Er ₃ O(OSiMe ₃) ₇ (Me ₃ SiOH)(THF) ₂	101
Abbildung 5.58:	Ausrichtung der Liganden in Er ₃ O(OSiMe ₃) ₇ (Me ₃ SiOH)(THF) ₂	105
Abbildung 6.1:	Das Konzept des molekülbasierten Materialdesigns	107
Abbildung 6.2:	Heteroleptische Übergangsmetallprecursoren und resultierende Filmzusammensetzungen.	108
Abbildung 6.3:	Phasenkontrolle durch Ligandendesign	110

Abbildung 6.4:	In der vorliegenden Arbeit synthetisierte Strukturtypen.	112
Abbildung 7.1:	Aufbau einer CVD-Anlage	135

Tabellenverzeichnis

Tabelle 1.1:	Anwendungsmöglichkeiten oxidischer Beschichtungssysteme	3
Tabelle 3.1:	Vergleich zwischen klassischer CVD und MOCVD.	9
Tabelle 5.1:	Precursoren zur Herstellung von Titan-, Zirkonium- und Hafniumoxiden	24
Tabelle 5.2:	Ausgewählte Kristall- und Strukturdaten von $Zr(O^tBu)_2 \{N(SiMe_3)_2\}_2$	38
Tabelle 5.3:	Bindungslängen und Bindungswinkel in $Zr(O^tBu)_2\{N(SiMe_3)_2\}_2$	38
Tabelle 5.4:	Ausgewählte Kristall- und Strukturdaten von [Ti(O ^t Bu) ₂ N(SiMe ₃) ₂ ClLiN(SiMe ₃) ₂] ₂	43
Tabelle 5.5:	Ausgewählte Bindungslängen und Bindungswinkel von [Ti(O ^t Bu) ₂ N(SiMe ₃) ₂ ClLiN(SiMe ₃) ₂] ₂	43
Tabelle 5.6:	Ausgewählte Kristall- und Strukturdaten von Zr(O ^t Bu) ₂ (N ⁱ Pr ₂) ₂	48
Tabelle 5.7:	Ausgewählte Bindungslängen und Bindungswinkel von $Zr(O^tBu)_2(N^iPr_2)_2$	49
Tabelle 5.8:	Chemische Verschiebungen von Me ₂ NTi(O ⁱ Pr) ₃	59
Tabelle 5.9:	Chemische Verschiebungen von Me ₂ NTi(O ⁱ Pr) ₃	60
Tabelle 5.10:	Chemische Verschiebungen von Et ₂ NTi(O ⁱ Pr) ₃	61
Tabelle 5.11:	Chemische Verschiebungen von ⁱ Pr ₂ NTi(O ⁱ Pr) ₃	62
Tabelle 5.12:	Chemische Verschiebungen von (Me ₃ Si) ₂ NTi(O ⁱ Pr) ₃	63
Tabelle 5.13:	Chemische Verschiebungen von CpTi(O ⁱ Pr) ₃	64
Tabelle 5.14:	Chemische Verschiebungen von ^t BuOTi(O ⁱ Pr) ₃	65
Tabelle 5.15:	Phasenzusammensetzung der mittels $(14) - (22)$ erhaltenen TiO ₂ -Beschichtungen.	70
Tabelle 5.16:	Lanthanoidhaltige Materialien und ihre Anwendungen	82
Tabelle 5.17:	Ausgewählte Kristall- und Strukturdaten von $[Nd(O^{i}Pr){N(SiMe_{3})_{2}}_{2}]_{2}$.	86
Tabelle 5.18:	Ausgewählte Bindungslängen und Bindungswinkel von $[Nd(O^{i}Pr){N(SiMe_{3})_{2}}_{2}]_{2}$	86
Tabelle 5.19:	Ausgewählte Kristall- und Strukturdaten von [Ce(O ⁱ Pr){N(SiMe ₃) ₂ } ₂] ₂	88

Tabelle 5.20:	Ausgewählte Bindungslängen und Bindungswinkel von $[Ce(O^{i}Pr){N(SiMe_{3})_{2}}_{2}]_{2}$	89
Tabelle 5.21:	Ausgewählte Kristall- und Strukturdaten von ErN(SiMe ₃) ₂ (Mal) ₂	91
Tabelle 5.22:	Ausgewählte Bindungslängen und Bindungswinkel von ErN(SiMe ₃) ₂ (Mal) ₂	92
Tabelle 5.23:	Ausgewählte Kristall- und Strukturdaten von [Eu(Mal) ₃] ₂	95
Tabelle 5.24:	Ausgewählte Bindungslängen und Bindungswinkel von [Eu(Mal) ₃] ₂	95
Tabelle 5.25:	Ausgewählte Kristall- und Strukturdaten von $[Nd{OCH(CF_3)_2}_3(H_2O)_2)]_2$	98
Tabelle 5.26:	Ausgewählte Bindungslängen und Bindungswinkel von $[Nd{OCH(CF_3)_2}_3(H_2O)_2)]_2$	98
Tabelle 5.27:	Ausgewählte Kristall- und Strukturdaten von Er ₃ O(OSiMe ₃) ₇ (Me ₃ SiOH)(THF) ₂ 1	.02
Tabelle 5.28:	Ausgewählte Bindungslängen von Er ₃ O(OSiMe ₃) ₇ (Me ₃ SiOH)(THF) ₂ 1	.02
Tabelle 5.29:	Ausgewählte Bindungswinkel von Er ₃ O(OSiMe ₃) ₇ (Me ₃ SiOH)(THF) ₂ 1	.03

1 Einleitung

1.1 Einführung

Die weltweit als Zukunftsbranche bezeichnete Nanotechnologie zeichnet sich vor allem dadurch aus, dass aufgrund nanoskaliger Dimensionen der Komponenten völlig neuartige Eigenschaften entstehen.^{[1][2]} Damit einhergehend resultieren neue Funktionalitäten und potentiell neue Materialien. Zur Herstellung solcher Materialien wird prinzipiell zwischen zwei verschiedenen Ansätzen unterschieden. Bei der **Top-Down-Strategie** werden durch Zerkleinerung makroskopischer Materialien mit Hilfe physikalischer Methoden, wie beispielsweise dem Kugelmahlen, nanoskalige Dimensionen erreicht. Das **Bottom-Up-Verfahren** hingegen beruht auf einem sukzessiven Aufbau der Nanomaterialien aus kleinsten molekularen Bausteinen, wodurch die Beeinflussung des Endproduktes durch chemisches Design möglich wird. Eine Einteilung der Nanomaterie kann, wie in Abbildung 1.1 veranschaulicht, anhand der räumlichen Ausdehnung erfolgen. Makroskopische Objekte werden dabei den 3-dimensionalen Objekten zugeordnet, da sie in jeder Raumrichtung, also in Höhe, Breite und Tiefe, Ausdehnungen von mehr als 100 Nanometern aufweisen. Diese Größenordnung stellt eine vereinbarte und allgemein anerkannte Grenze dar.

Abbildung 1.1: Formen der Nanomaterie.

Ausmaße innerhalb einer Dimension unter diesem Grenzwert werden im Terminus nicht mehr erwähnt. Dies bedeutet, dass 2-dimensionale Nanostrukturen, wie z. B. dünne Schichtstrukturen, in Höhe und Breite diesen Wert überschreiten, jedoch eine Tiefe besitzen, die geringer als 100 nm ist. 1-dimensionale Nanomaterialien umfassen Nanotubes, Nanowires, Nanobelts und Nanorods, die nur in einer Raumrichtung Abmessungen über 0,1 µm erreichen. Hierbei wird anhand der Grundstruktur noch eine weitere Einteilung in Hohlstrukturen (Nanotubes) und Vollmaterialien (Nanowires) vorgenommen. Eine Ausnahme bilden die sogenannten Nanobelts, die ein großes Verhältnis von A/B aufweisen und somit eine eigenständige Bezeichnung erhalten. Ebenso wird bei einem geringen Unterschied zwischen C/A bzw. C/B nicht von Nanodrähten, sondern von Nanostäbchen gesprochen. Als 0-dimensionale Objekte werden Nanopartikel bezeichnet. Diese können in unterschiedlichen Erscheinungsformen auftreten (Abbildung 1.1).

In vielen Bereichen der Technik sowie im alltäglichen Leben besteht stetig wachsendes Interesse an neuartigen Oberflächen mit besonderen Eigenschaften. Zum Erreichen solcher Eigenschaften auf bestimmten Substraten und Werkstücken ist es notwendig, die Oberfläche des Grundwerkstoffes mit dünnen Funktionsschichten zu versehen, was mit Hilfe chemischer Schichttechnologien bewerkstelligt werden kann. Insbesondere bei der Metall-Organischen-Gasphasenabscheidung (MOCVD) eröffnet die Konstitutions- und Strukturvielfalt metallorganischer Verbindungen bestimmter Elemente hinsichtlich anwendungsorientierter Beschichtungsmaterialien (beispielsweise anorganische Materialien, basierend auf einfachen und komplexen Oxiden, die sich durch ihre chemische und thermische Stabilität auszeichnen) ein sehr breites Anwendungsspektrum.^[3]

In diesem Zusammenhang sind neben Schutzschichten (Kratzschutz, siehe nebenstehende Abbildung, Korrosionsschutz und Abrasionsschutz)^{[4]-[7]} zur Erhöhung der Lebensdauer auch funktionelle Beschichtungen mit speziellen Eigenschaften wie z.B. Hightechkeramiken für die Elektronikund Automobilindustrie oder

Abbildung 1.2: Kratzschutzbeschichtung (links) und unbeschichtete Linse (rechts).

biokompatible bzw. bioaktive Oberflächen von großer Bedeutung.^{[8][9]} Des Weiteren finden oben erwähnte Oxide auch Anwendung im chemischen Bereich, wie z.B. in Membranen, Filtern und Katalysatoren.^[10] Anorganische, nitridische Materialien werden bei der Lösung materialtechnischer Probleme aufgrund ihrer Eigenschaften wie z. B. Wetter-, Korrosionsbeständigkeit und Härte, sowie wegen ihrer Einsatzmöglichkeiten in der Halbleiterindustrie ebenfalls immer wichtiger. Vor allem die stetig wachsenden Anforderungen der Halbleitertechnik und der Mikroelektronik verlangen nach einer Weiterentwicklung der Gasphasenabscheidung zur Darstellung hochreiner Metalle sowie technisch relevanter Halbleiterschichten.^{[11]-[15]}

1.2 Neue Materialien: Werkstoffe und Chemie

Die Entwicklung und Optimierung neuartiger Werkstoffe, der sogenannten "Hightech Materialien" in Form nanoskaliger Fasern, Partikel und Beschichtungen, steht insbesondere aufgrund vielfältiger Applikationsmöglichkeiten (Tabelle 1.1) im Mittelpunkt derzeitiger Forschungen.^{[16]-[19]}

Anwendungsfeld	Eigenschaften und Anwendung	Materialzusammensetzung
Biokeramiken	Biokompatibilität: Implantate und chirurgische Instrumente	Al ₂ O ₃ , ZrO₂ , TiO₂ , Y ₂ O ₄
Elektrokeramiken	Dielektrika (high k Materialien)	HfO₂, ZrO₂ , Gd ₂ O ₃ , La ₂ O ₃
	Ferroelektrika, Speichermedien (DRAM)	LiNbO ₃ , Ba _{1-x} Sr _x TiO ₃ , PbTi _{1-x} Zr _x O ₃ (PZT)
	Transparent leitende Oxide (TCO); Elektroden	SnO ₂ , LaNiO ₃ , ZnGa ₂ O ₄
	Ionenleiter (Solid oxide fuel cells (SOFC))	Bi ₂ O ₃
	Hochtemperatursupraleiter	YBa ₂ Cu ₃ O _{7-x} (YBCO)
	Ferrite: (Aufnahmemedien)	Y ₃ Fe ₅ O ₁₂ , (YIG Granate)
KatalysatorenPhotokatalysatoren (selbstreinigende Oberflächen)TiO2, ZnO		TiO ₂ , ZnO
Kommunikation	Optische Drähte	SiO ₂ , Er:SiO ₂ , SiO ₂ /GeO ₂ ,
Sensoren	Flüssigkeits- und Gassensoren	SnO ₂ , V ₂ O ₅ , Ga ₂ O ₃ ,
Veredelung	Schutz-, Funktions- und dekorative Beschichtungen	ZrO ₂ , ZrN, ZrCN, TiO ₂ , TiN, TiCN,

Tabelle 1.1: Anwendungsmöglichkeiten oxidischer Beschichtungssysteme.

Einsatz von Übergangsmetalloxiden, -Carbiden und –Nitriden sowie Lanthanoidoxiden

Metalloxide zeigen in Abhängigkeit von ihrer jeweiligen Kristallstruktur und chemischen Zusammensetzung interessante funktionelle Eigenschaften.^{[20]-[28]} Beschichtungen, bestehend

Seite 4

aus Übergangsmetalloxiden, -nitriden und -carbiden, werden aufgrund ihrer intrinsischen Eigenschaften, wie hohem Schmelzpunkt, extremer Härte, chemischer Resistenz und elektrischer Leitfähigkeit, in verschiedensten Bereichen angewendet.^{[4][29]-[35]} ZrO₂ könnte wegen seiner sehr hohen Dielektrizitätskonstante als Dielektrikum in Feldeffekttransistoren (metal oxide semiconductor field effect transistors (MOSFETs)) eingesetzt werden^[30] Zirkoniumnitrid (ZrN) und Zirkoniumcarbonitrid (Zr-C-N) finden hingegen bezüglich ihrer optischen und mechanischen Eigenschaften als dekorative und/oder Schutzbeschichtungen Verwendung.^{[6][30][36]-[45]} Auch Titandioxid (TiO₂) und Hafniumdioxid (HfO₂) wurden bereits Dielektrizitätskonstante (potentielle aufgrund ihrer hohen Anwendung in der Mikroelektronik) sowohl in Form von Partikeln als auch als Beschichtungsmaterial ausführlich untersucht.^{[46][47]}

TiO₂ zeichnen neben seinem optischen Verhalten und dem hohen Brechungsindex^{[48][49]} vor allem seine chemische Stabilität (Schutz-beschichtungen) und die herausragende photokatalytische Aktivität unter UV Bestrahlung aus, wodurch, wie in Abbildung 1.3 zu sehen, mehrere Applikationsfelder abgedeckt werden können.^{[50][51]}

Abbildung 1.3: Photokatalytische Wirkung von TiO₂.

Kristallines TiO_2 existiert in den drei verschiedenen Modifikationen Anatas, Rutil und Brookit. Rutil hat sich als stabilste Phase erwiesen und ist in Kombination mit seinen dielektrischen Eigenschaften für elektrische Bauteile von Interesse.^[52] Des Weiteren besitzen Rutil und Anatas sehr gute optoelektronische und photokatalytische Eigenschaften, wohingegen TiO₂ in amorpher Form diesbezüglich weniger aktiv ist.^{[53][54]} Auf Metallsubstratoberflächen befindliche dünne Filme aus TiO₂ schützen die Oberfläche vor Korrosion und führen darüber hinaus zu einer erhöhten Biokompatibilität des Substrates. Diese Eigenschaft wiederum steht in direktem Zusammenhang mit der Stöchiometrie, den Defekten, der Kristallstruktur und der chemischen Zusammensetzung des Beschichtungsmaterials.^{[55][56]} Wechselwirkungen zwischen Oberflächen und Zellen werden grundlegend durch die Mikrostruktur und Zusammensetzung der Beschichtung beeinflusst.^{[57]-}

Im Hinblick auf ihre vielseitige technologische Anwendung besteht ebenfalls ein starkes Interesse an der Entwicklung neuer Lanthanoidverbindungen, welche als Precursoren zur Herstellung verschiedenster lanthanoidhaltiger Reinst- und Komposit-Phasen sowie neuartiger funktioneller Materialien dienen können.^{[64][65]} Lanthanoidverbindungen sind nicht nur vielversprechende Fluoreszenzmarker im Bereich der modernen medizinischen Diagnostik.^{[66][67]} sondern eignen sich auch in Form von Nanopartikeln als Alternative zu den bisher eingesetzten Halbleiter-Quantum-Dots für Biomarker. Des Weiteren werden Seltenerdverbindungen wegen ihrer herausragenden optischen Eigenschaften und hohen magnetischen Momente (Gd = 7,55 μ_B) als Kontrastmittel in der Magnetresonanztherapie eingesetzt.^[68] Mit dotierter Yttrium-Aluminium-Granat Lanthanoiden (Ln:YAG. Ln:Y₃Al₅O₁₂) wurde aufgrund seiner Anwendung in Festkörperlasern (Nd:YAG) intensiv untersucht.^[69] Weiterhin sind lanthanoid-dotierte YAG-Materialien vielversprechende Leuchtstoffe für Kathodenstrahlröhren (CRTs), Feldemissionsdisplays (FEDs), Szintillatoren, Vakuumfluoreszenzdisplays (VFDs) und Systeme, die sich Elektrolumineszenzeigenschaften zu Nutze machen.^{[70][71]} Ausgewählte Anwendungsbeispiele lanthanoidhaltiger oxidischer Beschichtungsmaterialien sind beispielsweise Multilayer und Zwischen- bzw. Grenzschichten in elektronischen Bauteilen (High k Materialien) (CeO₂),^{[72]-[74]} (Gd₂O₃)^{[75][76]} und Hochtemperatursupraleiter (LnBa₂Cu₃O₇₋₈ oder YBa₂Cu₃O₇₋₈).^{[77][78]}

2 Motivation und Zielsetzung

Vorrangiges Ziel der vorliegenden Arbeit war die Entwicklung und Charakterisierung neuartiger heteroleptischer Alkoxidverbindungen der Übergangsmetalle Titan, Zirkonium und Hafnium, sowie der Lanthanoide Cer, Neodym, Europium und Erbium. Hierbei sollten die physikalischen und chemischen Eigenschaften bisher bekannter und zur Materialsynthese eingesetzter Verbindungen verbessert bzw. variiert werden, um dann das Applikationspotential dieser Verbindungen im thermischen CVD-Prozess zu evaluieren.

Diese erwähnten Elemente wurden aufgrund der diversen Einsatzmöglichkeiten ihrer Oxide und damit verbundenen Funktionalitäten ausgewählt. Das Augenmerk sollte dabei auf solche Verbindungen gelegt werden, deren Ligandensphäre bzw. chemische Zusammensetzung einen gezielten Einsatz im thermischen CVD-Prozess ermöglicht. Dies hat zur Folge, dass es sich hierbei um Moleküle handeln muss, die sowohl eine adäquate Flüchtigkeit gewährleisten, also problemlos in die Gasphase zu bringen sind, als auch stabil genug sind, keiner vorzeitigen Zersetzung zu unterliegen. Somit sollte sich erst auf dem Substrat ein definierter Oxid- bzw. Nitridfilm ausbilden, was sich wiederum durch geschicktes Design der Ligandensphäre gezielt beeinflussen lässt. Ausgehend von definierten Vorstufen, sollten heteroleptische Precursoren im Hinblick auf ein solches Gasphasenverhalten synthetisiert werden, wobei durch die Einführung verschiedener kohlenstoff-, stickstoff- und sauerstoffhaltiger Liganden Strategien für ein zielgerichtetes Precursordesign entwickelt werden können. (In diesem Zusammenhang sei angemerkt, dass heteroleptische Verbindungen schon von Natur aus aufgrund ihrer unterschiedlichen Liganden "mehrstufige Reaktivitäten" aufweisen.) Die verschiedenen Ligandenkombinationen der Precursormoleküle sollten eine steuerbare Variation der physikalischen Eigenschaften, wie Dampfdruck, Flüchtigkeit und Nuklearität, erlauben. Darüber hinaus sollte der Einfluss dieser "Precursormolekülkonstruktion" in Kombination mit einer bestimmten Variation und Optimierung der CVD-Prozessparameter auf die resultierenden Schichteigenschaften näher untersucht werden. Bezüglich der

Materialforschung kann eine solche durch Precursordesign optimierte Verbindungsklasse im CVD-Prozess eingesetzt werden und so zu Beschichtungen mit steuerbaren Eigenschaften führen.

3 Grundlagen der Gasphasenverfahren

Es wird zwischen der physikalischen und der chemischen Abscheidung aus der Gasphase (Physical- bzw. Chemical Vapor Deposition, PVD bzw. CVD) unterschieden. Im PVD-Verfahren (Physical Vapor Deposition bzw. Sputtern) werden z.B. Metalle unter reduziertem Druck durch Energiezufuhr (Glimmentladung, Plasmen oder Elektronenstrahl) in die Gasphase überführt und scheiden sich auf dem Substrat in einer Art Kondensationsreaktion ab. Dieser Prozess ist in der Regel nicht thermisch aktiviert. Nachteile dieses Verfahrens sind vor allem niedrige Wachstumsraten und bevorzugte Abscheidung auf bestimmten Sichtflächen, die eine homogene Beschichtung geometrisch komplexer Materialien erschwert. Eine Möglichkeit, diese Beschränkungen zu minimieren, kann durch höhere Prozessdrücke erreicht werden, jedoch geht dies zu Lasten der Abscheiderate. Im MOCVD-Verfahren (Metal Organic Chemical Vapor Deposition) werden eine oder mehrere flüchtige metallorganische Vorläuferverbindungen (Precursoren) ebenfalls in die Gasphase überführt, von dort zum Ort ihrer Abscheidung transportiert und hier durch Gasphasenreaktionen an der - in diesem Falle thermisch aktivierten - Oberfläche zersetzt.

Abbildung 3.1: Der CVD-Prozess.

Abbildung 3.1 zeigt schematisch einen Beschichtungsvorgang mit Hilfe des CVD-Verfahrens: Wichtig dabei ist, dass sich ausschließlich das gewünschte Endmaterial auf dem Substrat abscheidet, die bei der Zersetzung gebildeten Nebenprodukte hingegen abtransportiert werden. Diese Gasphasenmethode ermöglicht also die phasenselektive Herstellung hochreiner Materialien unter konkreter Strukturkontrolle im Nanometerbereich in Form dünner Filme. Pulver oder dünner Drähte bei moderaten

Substrattemperaturen.^{[79][80]} Die CVD-Technologie ist mittlerweile ein fester Bestandteil bei der kommerziellen Herstellung diverser Produkte, wie z.B. Diffusionssperrschichten, bestehend aus Titannitrid, III/V-Halbleitern, wie GaAs, InP, GaN, Diamond-like carbon (DLC)–Beschichtungen (Abrasionsschutz), Hartstoffschichten aus Titancarbid oder Titannitrid oder energiesparenden optischen Beschichtungen für Architekturglas. Der Einsatz metallorganischer Verbindungen als Precursoren im thermischen CVD-Verfahren im Rahmen der vorliegenden Arbeit erwies sich im Vergleich zur klassischen CVD als vorteilhaft, wie folgende Gegenüberstellung zeigt:

Klassisches CVD-Verfahren	MOCVD-Verfahren	
Elementhalogenide und Elementhydride (AlCl ₃ , TiCl ₄ , NH ₃ , CH ₄)	Einsatz von maßgeschneiderten metallorganischen Verbindungen	
→ Eingeschränkte Variationsmöglichkeiten	→ Stoffliche und strukturelle Vielfalt	
Kinetisch inerte Precursoren	Kinetisch labile Precursoren	
→ Hohe Aktivierungsenergien	→ Niedrige Aktivierungsenergie	
Hohe Prozesstemperaturen (> 800 °C) nahe dem thermodynamischen Gleichgewicht	Milde Prozessbedingungen fern vom thermodynamischen Gleichgewicht.	
→ Beschränkung auf thermodynamisch stabile Phasen	→ Abscheidung thermodynamisch metastabiler (neuer) Phasen möglich	
Etablierte Prozesstechnik	Neue Prozesstechnik	
Mehrkomponentenstrategie	Einkomponentenstrategie möglich	
Selektive Beschichtung nur selten möglich	Selektive Beschichtungen möglich	

Tabelle 3.1: Vergleich zwischen klassischer CVD und MOCVD.

Prinzipiell stehen verschiedene Techniken innerhalb des CVD-Prozesses zur Verfügung, welche die für den Zersetzungsvorgang des Precursors notwendige Energie zuführen. Dabei ist neben der photolytischen und der plasmagestützten Abscheidung der pyrolytische oder thermisch induzierte Prozess von großer Bedeutung. Ebenso ist der Druckbereich, der zwischen Hochdruck und wenigen tausendstel Millibar liegen kann, sehr variabel. Nachfolgend wird das thermisch aktivierte Niederdruck-Verfahren als Basis der Dünnschichtherstellung innerhalb dieser Arbeit näher erläutert.

3.1 Der thermische CVD-Prozess

Im thermischen CVD-Prozess wird die Energie, die für die ablaufenden Oberflächen-Reaktionen notwendig ist, in Form von Wärme zugeführt, so dass sich aus einem in der Gasphase befindlichen Precursor ein dünner Film auf dem beheizten Substrat bildet. Die chemische Gasphasenabscheidung (vgl. Abbildung 3.2 (a)) gliedert sich in mehrere Teilschritte. Zu Beginn wird ein gasförmiger Precursor zu der beheizten Substratoberfläche transportiert. Bei der Verwendung nicht-gasförmiger Vorstufen werden diese durch Prozesse wie Verdampfen oder Injektion, bzw. Sprühen einer precursorhaltigen Lösung in die Gasphase überführt. Bei Verdampfungsvorgängen sollte der Precursor hinreichend thermostabil sein (Vermeidung vorzeitiger Zersetzung) und dennoch eine für die Oberflächenreaktion (Zersetzung und Schichterzeugung) ausreichende Thermolabilität aufweisen. Die Abscheidung des gewünschten Produktes auf dem Substrat kann auf zwei verschiedenen Wegen erfolgen. Zum einen besteht die Möglichkeit, dass beim Precursortransport, bzw. in unmittelbarer Umgebung des Substrates, Zersetzungsreaktionen stattfinden, bei denen die Precursormoleküle in reaktive Zwischenstufen zerfallen, die auf dem Substrat adsorbieren und dort zum gewünschten Produkt sowie zu weiteren Nebenprodukten reagieren. Zum anderen kann es zu einer Adsorption der noch unzersetzten Precursormoleküle auf dem heißen Substrat kommen, wobei durch Thermolyse leichtflüchtige Bestandteile als Nebenprodukte sowie das gewünschte Produkt entstehen. Die resultierenden Nebenprodukte desorbieren in beiden Fällen von der Oberfläche und können aus dem Rezipienten entfernt werden. Die an der Substratoberfläche abgeschiedenen Produktkeime (anorganische Spezies) unterliegen einer Oberflächendiffusion, wobei es durch Migration zur Bildung von stabilen Keimen kommt, die im Laufe des Beschichtungsprozesses einen dichten, homogenen Film ausbilden.^{[80]-[83]}

Abbildung 3.2: Ablauf der chemischen Gasphasenabscheidung (a) und chemische Gasphasensynthese (b).

Durch Veränderung der Prozessparameter, wie Druck, Temperatur, Verweildauer des Precursors und somit Sättigungsgrad, erfolgt eine derartige Modifikation des CVD-Prozesses, dass anstelle von Schichtabscheidungen eine Partikelbildung beobachtet wird und man von einer chemischen Gasphasensynthese von Nanopartikeln (CVS) spricht. Gewöhnlich führen eine hohe Prozesstemperatur, ein hoher Precursorfluss und eine längere Verweildauer im Reaktor zu einer homogenen Nukleation in der Gasphase, wodurch eine Nanopartikelsynthese

begünstigt und damit ein Schichtwachstum verhindert wird (Abbildung 3.2 (b)). In einem Zwischenstadium zwischen CVD-Schichtwachstum und CVS-Nanopartikelsynthese können dicke nanokörnige keramische Schichten hergestellt werden, die eine kolumnare Morphologie aufweisen. Innerhalb dieses Bereiches (CVD $\leftarrow >$ CVS) lassen sich also resultierende Beschichtungseigenschaften durch Prozessparametervariationen beeinflussen.

3.2 Schichtwachstum

Vorrangiges Ziel bei der Abscheidung dünner Filme aus der Gasphase ist es, möglichst reine Beschichtungen zu erzeugen, da Verunreinigungen durch Fremdatome oder Precursorfragmente die angestrebten qualitativen Eigenschaften der jeweiligen Filme deutlich beeinflussen. Je nach Art der Wechselwirkung zwischen aufwachsender Schicht und Substrat, der Thermodynamik der Adsorption und der Kinetik des Kristallwachstums unterscheidet man zwischen den drei in Abbildung 3.3 dargestellten Wachstumsmechanismen:^[84] Dabei werden die Wachstumsprozesse entscheidend vom Verhältnis zwischen Oberflächenenergie des Beschichtungsmaterials (σ_k), Grenzflächenenergie (σ^*) und Oberflächenenergie des Substrates (σ_s) beeinflusst.

Abbildung 3.3: Verschiedene Wachstumsprozesse beim CVD-Verfahren.

Ist beispielsweise die Oberflächenenergie des Substrates größer als die Oberflächenenergie des Beschichtungsmaterials zuzüglich der Grenzflächenenergie ($\sigma^* + \sigma_k < \sigma_s$), liegen starke Wechselwirkungen zwischen Substrat und adsorbierenden Spezies vor. Dies hat zur Folge, dass die abgeschiedenen Atome zur Substratoberfläche eine stärkere Bindung ausbilden als die Einzelatome untereinander.

In diesem Falle bildet sich zuerst eine monoatomare Schicht, die im Vergleich zu den nachfolgenden Schichten stärker gebunden ist. Diese Filmbildung durch zweidimensionales Wachstum der Schichten ist in Abbildung 3.3 (a) dargestellt und wird als *Schicht oder Franck-van der Merwe–Lagenwachstumsmodell* bezeichnet. Bei dem *Insel- oder Volmer–Weber–Wachstumsmodus* kommt es aufgrund der Mobilität der Adsorbatteilchen auf der Substratoberfläche, wie in Abbildung 3.3 (c) gezeigt, zur Entstehung kleiner Cluster bzw.

Keime, an denen dann ausschließlich weiteres Wachstum erfolgt. Hier ist die Summe der Oberflächenenergie des Beschichtungsmaterials und der Grenzflächenenergie größer als die Oberflächenenergie des Substrats ($\sigma^* + \sigma_k > \sigma_s$). Die Wechselwirkungen zwischen den abgeschiedenen Atomen untereinander sind also größer als die zum Substrat. Neben den Modellen von Lagenwachstum und Inselwachstum kann es auch nach anfänglich schichtweisem Aufwachsen einer oder mehrerer Atomlagen zu einer nachfolgenden Inselbildung kommen. Diese Art von Wachstum ist in Abbildung 3.3 (b) dargestellt und wird als *Schicht-plus-Insel oder Stranski-Krastanov-Wachstum* bezeichnet.

Neben der Precursorkonstitution bestimmt die genaue Kontrolle der CVD- Prozessparameter, wie beispielsweise Substrattemperatur, Precursortemperatur, Precursorkonzentration und Abscheidezeit, das resultierende Schichtwachstum und ermöglicht daher die Erzeugung verschiedenster Filme. Bei dem im Rahmen dieser Arbeit verwendeten thermischen CVD-Verfahren, in dem die chemische Reaktion des Precursors auf der Substratoberfläche durch die Zufuhr von Wärmeenergie initiiert wird, unterscheidet man grundsätzlich drei Bereiche mit verschiedener Temperaturabhängigkeit der Abscheiderate auf dem Substrat (vgl. Abbildung 3.4).

Sowohl der Gasphasentransport als auch die Oberflächenreaktionen direkt auf der Substratoberfläche stellen beim thermischen CVD-Verfahren wachstumslimitierende Faktoren dar. Weist beispielsweise die Substratoberfläche eine sehr hohe auf, können Temperatur hier Zersetzungsreaktionen schneller

Abbildung 3.4: Temperaturabhängigkeit der Wachstumsrate.

ablaufen, als der Precursor aus der Gasphase nachgeliefert werden kann, wodurch der gesamte Prozess durch den Precursorfluss limitiert wird. Bei solchen hohen Substrattemperaturen gelangt man in einen Bereich, in dem der Precursor nicht nur an der Substratoberfläche, sondern auch schon in der Gasphase fragmentiert und es zur Keimbildung kommt. Diese parasitären Abscheidungen und Nukleationen führen dazu, dass die Gasphase über dem Substrat an wachstumsrelevanten Spezies verarmt. Demzufolge sinkt die Wachstumsrate. Der Bereich, in dem die Wachstumsrate nahezu konstant und damit temperaturunabhängig ist, wird als diffusionskontrollierter Bereich bezeichnet. Hierbei erfolgt die Kontrolle der Abscheidung durch die Diffusion der Precursormoleküle zur Substratoberfläche. Eine Erhöhung der Substrattemperatur äußert sich daher nicht in einem schnelleren Schichtwachstum, da dieses hier nur vom nachgelieferten Precursor bestimmt wird. Das Schichtwachstum hängt von der Dicke der Diffusionsschicht über dem Substrat ab, die durch die zugeführten und entstehenden gasförmigen Spezies ausgebildet und zudem von Prozessdruck und Reaktorgeometrie beeinflusst wird. In diesem Bereich erfolgt die Hin- und Wegdiffusion der gasförmigen Spezies, die bestimmen, wie viel potentiell abscheidbarer Precursor zur Substratoberfläche durchdringen kann.

Bei niedrigen Temperaturen ist die Wachstumsrate im Wesentlichen temperaturabhängig, d. h. kinetisch kontrolliert. Sie steigt, der Arrhenius–Gleichung entsprechend, exponentiell mit wachsender Temperatur an. Dieses Verhalten lässt sich wie folgt beschreiben:

Arrhenius-Gleichung

$$W = A \cdot \exp(E_A / R \cdot T)$$
 Gl. 3.1

Dabei entspricht W der Wachstumsrate, A einem prä-exponentiellen Faktor, E_A der Aktivierungsenergie, R der Gaskonstanten und T der Substrattemperatur. Eine Limitation des Wachstums erfolgt durch Oberflächenreaktionen des Precursors unmittelbar an der Substratoberfläche.

3.3 Prozessparameter- Mikrostruktur- Eigenschaftsverhältnis

Die jeweils gewählten Prozessparameter beeinflussen sowohl die Keimbildung als auch das darauf folgende Schichtwachstum, welches wiederum für die Mikrostruktur und damit die resultierenden Schichteigenschaften ausschlaggebend Die Keimbildungsist. und Wachstumskinetik wird beispielsweise durch die Abscheidetemperatur und Precursorsättigung (Konzentration reaktiver Spezies) in der Gasphase bestimmt, die selbst stark vom Umgebungsdruck abhängt. Eine Erhöhung der Abscheidetemperatur bedingt darüber hinaus eine Steigerung der Mobilität oberflächenadsorbierter Spezies. Die folgende Aufstellung zeigt schematisch die Zusammenhänge zwischen Prozessparametern, CVD-Einstellungen und Beschichtungseigenschaften.^[85]

Abbildung 3.5: Zusammenhang Prozessparameter und Schichteigenschaften.

Hierbei fällt jedoch auf, dass ein Prozessparameter in ganz besonderem Maße Einfluss auf die resultierenden Materialeigenschaften ausüben kann. Eine geeignete Precursorwahl (homooder heterometallische Metallalkoxide oder Metallamide) ermöglicht nicht nur die Vorbestimmung des Materials, sondern, wie in Kapitel 5.4 später ausführlich beschrieben wird auch eine gezielte Einstellung der jeweiligen Schichteigenschaften durch spezielle Ligandenmodifizierung.

3.4 Apparativer Aufbau

Der schematische Aufbau der CVD-Anordnung, die im Rahmen der vorliegenden Arbeit verwendet wurde, ist dem Experimentellen Teil zu entnehmen (Abbildung 7.1). Hierbei handelt es sich um einen Kaltwandreaktor, in dem das Substrat indirekt über einen Hochfrequenzfeldes Graphithalter Zur induktiv mittels eines erhitzt wird. Temperaturkontrolle ist unmittelbar unter dem Substrat ein Thermoelement angebracht, das mit der Steuerung des HF-Generators gekoppelt ist. Der Reaktorinnenraum wird separat geheizt, um die zur Verdampfung des Precursors erforderliche Energie bereitzustellen. Durch das während des Abscheidevorganges vorherrschende dynamische Vakuum können die gasförmigen Fragmente abtransportiert werden.^[86]

4 MOCVD und Precursordesign

Die Variante der chemischen Gasphasenabscheidung, in der metallorganische Verbindungen als Precursoren zum Einsatz kommen, wird als MOCVD (Metal Organic Chemical Vapor Deposition) bezeichnet und eignet sich zur Herstellung dünner Filme. Die hierbei verwendeten Vorläuferverbindungen unterliegen Zersetzungsreaktionen schon bei deutlich geringeren Temperaturen als beispielsweise analoge Halogenidverbindungen, was wiederum wesentlich geringere Abscheidetemperaturen ermöglicht. Dieses Verfahren wurde in der Vergangenheit bereits zur Herstellung verschiedenster ferroelektrischer (PbTiO₃, PbZrTiO₃, BaTiO₃),^{[87][88]} dielektrischer (ZnO)^[89] sowie supraleitender (YBa₂Cu₃O_x)^{[90][91]} Metalloxidbeschichtungen herangezogen. Auch die Synthese ein-dimensionaler Zinnoxidund Magnetitstrukturen wird mit Hilfe dieses Verfahrens zugänglich.^{[92]-[94]}

4.1 Das Precursorkonzept

Allgemeine Definition und Anforderungen

Als Precursoren (oftmals werden auch die Begriffe Vorläuferverbindung oder Vorstufen verwendet) werden im Allgemeinen Verbindungen bezeichnet, in deren Molekülen sich bereits alle für das Endmaterial notwendigen chemischen Strukturelemente entweder vollständig oder teilweise befinden. Hinsichtlich der Herstellung neuartiger Materialien erwecken metallorganische Verbindungen ein wachsendes Interesse, da hier die Möglichkeit besteht, über die Liganden einen entscheidenden Einfluss auf die Regulation der thermodynamischen Stabilität, kinetischen Labilität und der Flüchtigkeit der Verbindungen auszuüben. Die Entwicklung solcher Precursoren sollte sich nach folgendem Anwendungsprofil richten:^{[82][95][98]}

- Die Verbindung sollte neben einer geringen Toxizität einen hohen Dampfdruck besitzen, damit ein angemessener Massefluss gewährleistet ist.
- Zwischen der Verdampfungstemperatur und der Zersetzungstemperatur sollte ein angemessen großes Intervall liegen, um eine vorzeitige thermische Zersetzung der Moleküle zu vermeiden.
- Die thermische Zersetzung der Moleküle auf dem Substrat sollte bei einer moderaten Zersetzungstemperatur erfolgen.
- Die Zersetzung sollte möglichst vollständig verlaufen, um die Einlagerung von Verunreinigungen (organischen Resten) zu verhindern.
- Verbindungen, die als Precursoren verwendet werden, sollten eine gute Handhabbarkeit besitzen, die möglichst große Ausbeuten, Reinheiten sowie niedrige Produktionskosten beinhaltet.

Aufgrund der Schwierigkeit, all diese Eigenschaften in einem einzigen Precursormolekül zu realisieren, und wegen des Potentials der damit erzielbaren Beschichtungen wird auf diesem Gebiet intensiv geforscht.^{[99]-[111]} Bei den metallorganischen Verbindungen, die zurzeit im CVD-Prozess zur Materialherstellung eingesetzt werden, handelt es sich oftmals um die nachfolgend näher beschriebenen Precursor-Typen:

4.2 Metallorganische Verbindungen

Metallorganische Verbindungen stellen insgesamt eine Unterklasse der anorganischen Molekülverbindungen dar, in denen Liganden um ein zentrales Metallatom gruppiert sind, und zeichnen sich im engeren Sinne durch die Präsenz mindestens einer direkt bindenden Wechselwirkung zwischen einem Kohlenstoffatom und einem Metallatom aus. Eine weitere Unterteilung wird bei der Betrachtung der Liganden einerseits und der zentralen Metallatome andererseits möglich. Bezüglich der Liganden kann unterschieden werden zwischen homoleptischen Verbindungen, bei denen sich nur gleichartige Liganden am Metallatom befinden und heteroleptischen Verbindungen, die sich durch die Gruppierung verschiedener Liganden um das Metallatom auszeichnen. Bei den Liganden selbst kann eine weitere Unterteilung erfolgen. Hierbei ist zwischen σ -Donor-Liganden (NR₃, NR₂, OR) und σ - π -Donor/Akzeptor-Liganden (Alkene, η^5 -C₅H₅, η^6 -C₆H₆) sowie Chelatliganden (2-Methoxyethanol, thd, mmp) zu unterscheiden. Bei der Differenzierung anhand der zentralen Metallatome wird von homonuklearen Verbindungen gesprochen, wenn innerhalb eines Moleküls lediglich eine Metallsorte vorliegt, wogegen die Zentren der heteronuklearen Verbindungen von verschiedenen Metallatomen besetzt sind. Für viele dieser anorganischen Moleküle, vor allem die im Rahmen dieser Arbeit hergestellten Verbindungen, die im Sprachgebrauch der MOCVD als metallorganisch bezeichnet werden, gilt, dass zwar eine Metall-Kohlenwasserstoffbindung fehlt. die direkte Liganden jedoch meist Kohlenwasserstoffstrukturelemente enthalten, wie es bei den Metallalkoxiden $[M(OR)_n]$ und den Metallamiden $[M(NR_2)_n]$ der Fall ist.^{[95]-[97]} Dies bedeutet, dass ein Heteroatom als Linker zwischen Metallzentrum und dem Kohlenstoffgerüst des Liganden fungiert und somit eine M-Het-C-Bindung vorhanden ist.

4.3 Metallalkoxide und Metallamide

Verglichen mit den entsprechenden Alkylverbindungen sind Metallalkoxide $M^{n+}(OR)_n$ und Metallamide $M^{n+}(NR_2)_n$ oftmals weniger toxisch und zeigen je nach Konstitution einen geringeren Dampfdruck. Eine hohe Tendenz zur Oligomerisierung und damit eine geringe Flüchtigkeit weisen Verbindungen auf, bei denen das positiv geladene zentrale Metallatom koordinativ nicht abgesättigt ist. Die Ligandenwahl ist dabei von entscheidender Bedeutung, da hiermit eine Regulierung der Verbrückung zwischen Metallzentren und damit einhergehend eine Regulierung der Flüchtigkeit möglich wird. So übt beispielsweise die sterische Beschaffenheit der Alkylgruppierung am Sauerstoff- bzw. Stickstoffatom des Liganden einen entscheidenden und kontrollierbaren Einfluss auf den resultierenden Dampfdruck des Alkoxid- oder Amidprecursors aus.^[97] Alkoxide, die sterisch weniger anspruchsvolle Reste, wie z. B. Methyl oder Ethyl, besitzen, liegen als Oligomere (Dimere, Trimere oder Tetramere) vor, in denen die intramolekulare Verbrückung über die jeweiligen Sauerstoffatome erfolgt. In einem solchen Fall fungiert das Sauerstoffatom als Lewis-Base und bildet zu einem oder mehreren Metallkationen, die wiederum Lewis-Säure-Eigenschaften besitzen, sogenannte µ-Alkoxobrücken aus, was schließlich zu einem Ausgleich des Elektronendefizits und einer Koordinationsaufweitung am Metall selbst führt und dadurch

stabile Molekülstrukturen gewährleistet. Bei diesen für Alkoxide typischen Verbrückungen unterscheidet man, wie in Abbildung 4.1 zu sehen, je nach Anzahl der gebundenen Metallatome zwischen terminalen-, μ_2 -, und μ_3 -Alkoxogruppen. Metallalkoxide, die große

verzweigte, also sterisch sehr anspruchsvolle Alkylreste (z.B. *tert*-Butyl) besitzen, erschweren solche intramolekularen Verbrückungen und führen dadurch zu geringerem Oligomerisierungsgrad der Moleküle, die folglich eine höhere Flüchtigkeit aufweisen.

4.4 Heteroleptische Verbindungen

Heteroleptische Verbindungen zeichnen sich durch die Gruppierung verschiedener Liganden um ein zentrales Metallatom aus. Die im Folgenden beschriebenen Reaktionen geben einen kurzen Überblick über die Darstellungsmethoden der in dieser Arbeit verwendeten Vorstufen sowie über die Syntheseverfahren der heteroleptischen Endverbindungen.^{[11][112]}

Synthese der Vorstufen

 $\frac{\text{Metathesereaktion:}}{\text{(Metallorganyl + Metallhalogenid)}}$ $\mathbf{RM} + \mathbf{M'X} \Rightarrow \mathbf{RM'} + \mathbf{MX}$ Gl. 4.1

 $\frac{\text{Metallaustausch}}{\text{(Metallorganyl + Metallorganyl)}}$ $\mathbf{RM} + \mathbf{R'M'} \Rightarrow \mathbf{RM'} + \mathbf{R'M}$ Gl. 4.2

 $\frac{\text{Metallierung}}{\text{(Metallorganyl + acide Verbindung)}}$ $\mathbf{RM} + \mathbf{R'H} \Rightarrow \mathbf{RH} + \mathbf{R'M}$ Gl. 4.3

Synthese von heteroleptischen Verbindungen

 $\frac{\text{Ligandenaustausch:}}{M(OR)_4 + R'OH \Rightarrow M(OR)_3(OR') + ROH}$ $M(OR)_4 + M(OR')_4 \Rightarrow 2M(OR)_2(OR')_2$ Gl. 4.4

 $\frac{\text{Salzeliminierung:}}{M(OR)_3X + M'NR_2 \Rightarrow M(OR)_3NR_2 + M'X}$

 $M(OR)_{3}X + M'OR' \Rightarrow M(OR)_{3}OR' + M'X$ Gl. 4.5

 $\frac{\text{Lewis-Säure-Base-Reaktion:}}{x \text{ MR}_{n} + y \text{ M'R'}_{m} \Rightarrow M_{x} \text{M'}_{y} \text{ R}_{n} \text{ R'}_{m}}$ Gl. 4.6

4.5 Single-Source-Precursoren (SSP) und Precursordesign

Aus chemischer Sicht ist das Precursordesign eine interessante Herausforderung, da die physikalischen Eigenschaften einer potentiellen Vorläuferverbindung so eingestellt werden müssen, dass zum einen ein angemessener Gasphasentransport im CVD-Prozess gewährleistet ist und zum anderen eine vorhersehbare Zersetzungschemie auf dem Substrat erfolgen sollte. Dies wiederum übt einen sehr starken Einfluss auf die physikalischen Eigenschaften des Endmaterials aus. Will man aus mehreren Komponenten bestehende Materialien bzw. Beschichtungen einer bestimmten Zusammensetzung herstellen, besteht die Möglichkeit, mehrere Precursoren gleichzeitig einzusetzen. Hierbei ergibt sich jedoch aufgrund verschiedener Flüchtigkeiten das Problem, beide Verbindungen durch geeignete Reaktionen und Behandlungen möglichst gleichzeitig und in einem bestimmten Verhältnis hinsichtlich des erwünschten Endproduktes in die Gasphase zu bringen. Des Weiteren kann es durch ungewollte Nebenreaktionen zu Kontaminationen oder Fremdphaseneinschlüssen innerhalb der Beschichtungen kommen.^[113] Um diese Schwierigkeiten zu umgehen, wurde das SSP (Single Source Precursor)-Konzept entwickelt, bei dem lediglich eine einzige molekulare Verbindung (z. B. Zr(acac)₂(OSiMe₃)₂ und Mg{H₂Al(O^tBu)₂}₂) zum Einsatz kommt.^{[112]-[115]} Die Grundidee eines solchen Einkomponentenprecursors ist der Einbau aller schichtkonstituierenden Atomsorten in ein einziges Precursormolekül, und zwar in genau dem stöchiometrischen Metallverhältnis zueinander, wie es in dem angestrebten Material auftreten sollte.^{[114][116]-[119]} Durch diesen Ansatz besteht die Möglichkeit, dass nun gezielt bestimmte Atomsorten aus der Ligandensphäre zusammen mit dem Zentralatom in die wachsende Schicht eingebaut werden und somit den Anforderungen an bestimmte Materialien entsprochen werden kann.^[83] Gemeinsamer Vorteil dieser Single Source Precursoren ist, dass die Einstellung eines bestimmten und vor allem reproduzierbaren Konzentrationsverhältnisses der individuellen Komponenten in der Gasphase gewährleistet ist und sich die Prozesskontrolle stärker auf die Konstitutions- und Strukturoptimierung des Precursors verlagert. Eine solch geeignete Strukturanpassung ist speziell durch Ligandendesign möglich, da durch eine geschickte Ligandenauswahl die physikalischen Eigenschaften, wie beispielsweise der Dampfdruck und damit die Flüchtigkeit und das Gasphasenverhalten sowie die thermodynamische Stabilität, gesteuert werden können. Aus diesem Grunde beeinflussen die Liganden nicht nur das Precursorverhalten, sondern im weiteren Sinne auch durch bestimmte Zersetzungsreaktionen auf der Substratoberfläche während der Precursor-Material-Umwandlung die Qualität des Endproduktes. Ein Beispiel hierfür ist die Modifizierung von [Al(O^tBu)₃]₂, bei dem die terminalen *tert*-Butoxygruppen durch Wasserstoffatome ersetzt werden ($[HAl(O^tBu)_2]_2$, $[H_2Al(O^tBu)]_2$) und die resultierenden Verbindungen somit, je nach Abscheidetemperatur, ein unterschiedliches Gasphasenverhalten aufweisen und zudem zu verschiedenen Endmaterialien führen.^{[99][120]}

$$2 \text{ Al} + 6^{t} \text{BuOH} \rightarrow [\text{Al}(\text{O}^{t}\text{Bu})_{3}]_{2} + 3 \text{ H}_{2} \qquad \text{Gl. 4.7}$$

$$2 \text{``AlH}_3\text{``} + 2 \text{``BuOH} \rightarrow [\text{H}_2\text{Al}(\text{O}^{\text{t}}\text{Bu})]_2 + 2 \text{H}_2 \qquad \text{Gl. 4.8}$$

So entsteht bei der chemischen Gasphasenabscheidung unter Verwendung von $[Al(O^tBu)_3]_2$ ausschließlich Al_2O_3 , wogegen bei der Abscheidung des Dihydrido-Alkoxidprecursors $[H_2Al(O^tBu)]_2$ eine temperaturabhängige Phasenevolution auftritt. Bei einer Substrattemperatur von 300 °C kommt es zur Ausbildung einer Oxoaluminiumhydridschicht;

Abbildung 4.2: Zersetzungsprodukte bei verschiedenen Temperaturen.

Aufgrund dieser Fakten besitzen neuartige heteroleptische Verbindungen variable Reaktivitäten und stellen somit potentielle Vorstufen für neue Materialien dar.

Ein weiterer wichtiger Aspekt in diesem Zusammenhang ist die Flüchtigkeit der potentiellen Precursoren, wofür deren Nuklearität möglichst gering sein und die Molekülmassen nicht zu groß sein sollten. Um einen möglichst geringen Oligomerisierungsgrad erzeugen zu können, muss oftmals ein Kompromiss zwischen Größe und sterischem Anspruch des Restes gefunden werden. Diesbezüglich ist es, wie in Abbildung 4.3 dargestellt, möglich, durch die Koordination eines Donormoleküls (z.B. Chelatligand) den Polymerisierungsgrad einer Verbindung und somit ihre Flüchtigkeit kontrolliert zu variieren (Donorstabilisierung).

Abbildung 4.3: Donorstabilisierung am Beispiel von Zirkoniumverbindungen.

Zirkoniumisopropylat besitzt beispielsweise in Lösung eine Nuklearität von n > 3, die durch die Zugabe von Isopropanol auf n = 2 (Stabilisierung der dimeren Struktur durch Donorliganden) reduziert werden kann. Durch Zugabe eines Chelatliganden ist es sogar möglich, die monomere Form (n = 1) zu stabilisieren.^[97] Man kann also verallgemeinernd sagen, dass sterisch anspruchsvolle Liganden sowie mehrzähnige Liganden, die eine koordinative Absättigung des Metallzentrums gewährleisten, die Flüchtigkeit eines Precursors deutlich erhöhen, da sie die Bildung von Oligomeren unterdrücken.^{[19][121]-[124]}

Ein weiterer Aspekt, der in direktem Zusammenhang mit einer gezielten Precursorsynthese steht, ist die Hydrolyseempfindlichkeit der als Vorstufe eingesetzten Verbindungen. So ist die homoleptische Verbindung Zr(O^tBu)₄ mit vier sterisch sehr anspruchsvollen *tert*-Butoxyresten monomer und flüchtig, jedoch auch sehr empfindlich gegenüber geringsten Spuren von Feuchtigkeit.^[125] Wenn nun das oxophile Metallzentrum durch mehrzähnige Liganden, wie z.B. (2,2,6,6-tetramethylheptan-3,5-dionate), diesbezüglich thd durch Koordinationsaufweitung (von 4 auf 6) etwas abgeschirmt wird, resultiert daraus eine weniger hydrolyseempfindliche heteroleptische Verbindung Zr(O^tBu)₂(thd)₂, die jedoch – wie für β-Diketonatverbindungen bekannt - beim Einsatz im CVD-Prozess den großen Nachteil einer verringerten Flüchtigkeit besitzt und sich erst bei sehr hohen Temperaturen zersetzt.^[98] Um auch diesen Nachteil zu umgehen, werden häufig neutrale zwei Elektronen-Donatoren als Liganden, wie z. B. 1-methoxy-2-methyl-2-Propanolat (mmp), verwendet, da hier der Chelateffekt im Vergleich zu ß-Diketonaten geringer ist. Die Verbindung Zr(O^tBu)₂(mmp)₂ ist somit sechsfach koordiniert und ebenfalls weniger hydrolysempfindlich als Zr(O^tBu)₄.^[121] Um nun das etwas größere Hafniumzentrum monomer zu stabilisieren, ist es von Vorteil, einen sterisch noch anspruchsvolleren Liganden mit verstärkter Donorfunktionalität, wie dmopH (2-(4,4-dimethyl-4,5-dihydroxooxazol-2-yl)propan-2-ol), zu verwenden (Abbildung 4.4).

Abbildung 4.4: Zirkonium- und Hafnium-Precursoren mit verschiedenen Ligandensphären.

Hierbei bleibt jedoch immer zu beachten, dass die Synthese einer solchen gezielt modifizierten Precursorverbindung oftmals unerwartete Schwierigkeiten mit sich bringen kann und es daher nicht immer möglich ist, bestimmte Moleküle in der Praxis so, wie theoretisch geplant, herzustellen. Ein limitierender Faktor dabei ist beispielsweise der sterische Anspruch des jeweils verwendeten Liganden. So ist es z. B. durch die Insertion sehr großer, verzweigter Liganden möglich, das Bestreben des Metallzentrums nach hohen Koordinationszahlen deutlich herabzusetzen und im Falle der Lanthanoide sogar monomer vorliegende Trisilylamide (Ln{N(SiMe_3)_2}_3) mit KZ = 3 zu isolieren. Beim Versuch, einen oder mehrere dieser Reste gegen sterisch weniger anspruchsvolle Alkoxid- oder Trimethylsiloxoliganden auszutauschen, kommt es zu einer nicht vollständigen Absättigung des Metallzentrums, welches dann, wie in Gleichung 4.9 beschrieben, zwecks Stabilisierung zu Clusterbildung unter Cl⁻- oder O₂-Einlagerung neigt.^[122]

$$LnCl_3 + 3 Me_2NLi \rightarrow (Me_2N)_3Ln(LiCl)_3$$
 Gl. 4.9

Daraus resultierende Verbindungen sind zwar thermodynamisch stabil, aufgrund ihrer erhöhten Nuklearität jedoch oftmals nicht mehr für den Einsatz im CVD-Prozess geeignet. Dies wird bei Betrachtung der Reaktion von $Er\{N(SiMe_3)_2\}_3$ mit Me₃SiOH deutlich, da hierbei nicht etwa reines Erbiumsilanolat entsteht, sondern, wie schon zuvor erwähnt, eine Clusterverbindung, in der die drei vorhandenen Erbiumatome über einen Oxoliganden μ_3 miteinander verbrückt sind. Eine zusätzliche Absättigung der Koordinationssphäre wird, wie in Gl. 4.10 und in Kapitel 5.5.6 später zu sehen, durch zwei THF- Liganden bewerkstelligt.

$$\operatorname{Er}\{N(\operatorname{SiMe}_{3})_{2}\}_{3} + \operatorname{Me}_{3}\operatorname{SiOH}_{(\operatorname{\ddot{U}berschuss})} \xrightarrow{\operatorname{THF}}_{-\operatorname{HN}(\operatorname{SiMe}_{3})_{2}} [\operatorname{Er}_{3}O(\operatorname{OSiMe}_{3})_{7}(\operatorname{Me}_{3}\operatorname{SiOH})(\operatorname{THF})_{2}] \qquad \operatorname{Gl. 4.10}$$

Weiterhin kommt erschwerend hinzu, dass aufgrund der Größe des jeweiligen Metallzentrums nur ein bestimmter sterischer Anspruch seitens potentieller Liganden gestellt werden kann und diesbezüglich Ligandenaustauschreaktionen oftmals gar nicht, wie eigentlich geplant, ablaufen können. Demzufolge kommt es wegen des begrenzten Koordinationsvolumens (wie im nachstehend beschriebenen Beispiel) nur zu unvollständigem Ligandenaustausch. Gleichzeitig muss jedoch eine koordinative Absättigung des Metallzentrums gewährleistet sein, was oftmals durch Einbau von koordinierenden Lösemittelmolekülen oder aber auch kleineren, bei der Reaktion als Produkt entstehenden Abgangsgruppen (Bsp. LiCl) der Fall ist. So führt etwa, wie in Kapitel 5.3.3 später ausführlich dokumentiert wird, die Reaktion von Ti $(O^tBu)_2Cl_2$ mit zwei Äquivalenten LiN $(SiMe_3)_2$ nicht wie bei Zirkonium und Hafnium zu den monomer vorliegenden Verbindungen M $(O^tBu)_2{N(SiMe_3)_2}_2$ (M = Zr und Hf), sondern zu einem heterometallischen Dimer (Gl. 4.11).

$$2 \operatorname{Ti}(O^{t}Bu)_{2}Cl_{2} + 4 \operatorname{LiN}(SiMe_{3})_{2} \rightarrow [\operatorname{Ti}(O^{t}Bu)_{2} \{N(SiMe_{3})_{2}\}ClLiN(SiMe_{3})_{2}]_{2} \quad Gl. 4.11$$

Aufgrund des kleineren Metallzentrums ist es nicht möglich, beide Chloratome gegen Amidreste auszutauschen, so dass am Titan selbst neben den beiden *tert*-Butoxygruppen und einem überbleibenden Chloratom nur ein Amidligand vorhanden ist. Zusätzlich wirkt dieses Chloratom als Brückenglied zwischen jeweils einem Titanatom und einem Lithiumatom.

Wie wichtig eine geeignet abgestimmte Kombination zwischen Vorläuferverbindung und CVD-Prozessparametern für die resultierenden Materialeigenschaften ist, wird am Beispiel des heterometallischen Precursors NiGa₂(O^tBu)₈ deutlich. Obwohl sich der Precursor bei 125 °C im Vakuum in moderater Ausbeute sublimieren lässt, hängt die Zusammensetzung der resultierenden CVD-Schichten stark von der Reaktorgeometrie ab. Limitierender Faktor ist hierbei die Strecke des Gasphasentransports.

Abbildung 4.5: Unterschiedliche Precursorzufuhrsysteme (a) und (b).

Ein längerer Weg des Precursors zum Substrat (Abbildung 4.5 (a)) führt aufgrund vorzeitiger Fragmentierung des Precursors zu Phasenseparation (NiO, Ni, Ga₂O₃, NiGa₂O₄) und einer nicht stöchiometrischen Zusammensetzung der Schichten. Eine Reduktion dieser Weglänge Stoßzahl und eine Vermeidung von Orten höherer durch ein abgewandeltes Precursorzufuhrsystem (Abbildung 4.5 (b)) bewirken einen intakten Transport der Precursormoleküle und machen somit die Abscheidung der reinen NiGa₂O₄ Phase möglich.^[232]

5 Ergebnisse und Diskussion

5.1 Übergangsmetall-Precursoren im CVD-Prozess

Die im Folgenden gezeigte Tabelle 5.1 eröffnet einen kurzen Überblick über einige Precursoren, die bereits zur Herstellung von Übergangsmetalloxiden (M = Ti, Zr und Hf) eingesetzt werden.

Titan			Zirkonium			Hat	Hafnium	
Homoleptisch			Hom	oleptis	ch	Home	Homoleptisch	
TiCl ₄	[120	6][127]	ZrCl ₄ [137][138]		HfCl ₄		[62]	
Ti(O ⁱ Pr) ₄	[128	8]-[134]	Zr(O ^t Bu) ₄	[139][140][187][188]	Hf(O ^t Bu) ₄	[1	62][163]
Ti(NO ₃) ₄	[13:	5][136][200]	$Zr(acac)_4$	[141]-	[143]	Hf(acac) ₄	[2	200]
Ti(dmae) ₄	[140	6]	Zr(thd) ₄	[143][152]-[154]	Hf(tfac) ₄	[1	141][149][150]
Ti(NEt ₂) ₄	[190	0]	Zr(tfac) ₄	[143]-	[151]	Hf(NO ₃) ₄	[1	157]
			Zr(NO ₃) ₄	[157]		Hf(mmp) ₄	[1	60][161]
			Zr(NEt ₂) ₄	[186]		Hf(thd) ₄	[1	[65]
			Zr(dmae) ₄	[158]		Hf(NEt ₂) ₄	[1	77]
			Zr(mmp) ₄	[160][161]	Hf(dmop) ₄	[1	178]
			Zr(tbaoac) ₄	[174]				
Hetero	olept	isch	Heteroleptisch		Heteroleptisch			
Ti(O ⁱ Pr) ₂ (acac)	2	[141]	$Zr(O^{i}Pr)_{2}(thd)_{2}$		[155]	$Hf(O^{t}Bu)_{2}(mmp)_{2}$ [160][161]		[160][161]
Ti(O ⁱ Pr) ₂ (thd) ₂		[144] [145]	Zr(O ^t Bu) ₂ (thd) ₂		[155]	$[Hf(O^nPr)_3(thd)]_2$		[176]
Ti(O ⁱ Pr) ₃ (dmae	e)	[147]	$Zr_2(O^iPr)_6(thd)_2$	2	[156]	Hf(O ⁱ Pr)(thd) ₃		[176]
Ti(O ⁱ Pr) ₂ (dmae	e) ₂	[147]	Zr(O ^t Bu) ₂ (dma	e) ₂	[159]	Hf(O ⁱ Pr) ₂ (tboaac))2	[165]
			Zr(O ^t Bu) ₂ (mmp) ₂	[160][161]			
			Zr(O ⁱ Pr) ₂ (hfip) ₂		[173]			
			$Zr_2(O^iPr)_6(tboaac)_2$		[174]			
			Zr(O ⁱ Pr) ₂ (tboaa	c) ₂	[174]			
		$Zr(O^{i}Pr)_{2}(deacam)_{2}$		[174]				
		Zr(acac) ₂ (OSiMe ₃) ₂ [1		[175]				
Zr		Zr(acac) ₂ (hfip) ₂		[175]				
			[Zr(O ⁿ Pr) ₃ (thd)]	2	[176]			
			Zr(O ⁱ Pr)(thd)3		[176]			
			Zr(NEt ₂) ₂ (dbml)2	[179]			

Tabelle 5.1: Precursoren zur Herstellung von Titan-, Zirkonium- und Hafniumoxiden.

Der Einsatz der schwer flüchtigen Feststoffe ZrCl₄ und HfCl₄ zur Herstellung von ZrO₂-, HfO₂-, ZrN- oder ZrC-Beschichtungen muss nicht nur unter Verwendung verschiedener Reaktivgase erfolgen, sondern erfordert erfahrungsgemäß auch sehr hohe Temperaturen (> 800 °C), was wiederum die Substratwahl erheblich einschränkt.^{[137][162]} Die Herstellung dieser Oxide kann zwar mit Hilfe der PVD- Technik realisiert werden, ein Nachteil besteht jedoch darin, dass oftmals Inhomogenitäten bezüglich des Materials sowie ungleichmäßige Schichtdicken auf komplexen Substratgeometrien resultieren. TiCl₄ hingegen kommt wegen seiner höheren Flüchtigkeit (Siedepunkt 136,4 °C) des Öfteren als Precursor zur Herstellung von TiO₂ zum Einsatz,^{[180]-[182]} wobei nicht nur die Toxizität der Verbindung und der Nebenprodukte, sondern auch mögliche Schichtverunreinigungen durch Chlorideinlagerungen von großem Nachteil sind.^[180] Obwohl Precursoren der allgemeinen Form M(NO₃)₄, (M = Ti, Zr und Hf) schon bei relativ niedrigen Temperaturen sehr reine Oxidfilme liefern, dürfen wegen der thermischen Instabilität der Nitrate diverse Sicherheitsmaßnahmen nicht außer Acht gelassen werden.^{[24][157]} Diesbezüglich erscheinen metallorganische Verbindungen (insbesondere Metallalkoxide^{[128][130][132][183]-[185]} und Metallamide^{[177][186]}) aufgrund spezieller Bindungsverhältnisse innerhalb des Moleküls (geringere Bindungsenergien) für diese Anwendung wesentlich geeigneter.^{[164]-[173]} Als problematisch erweist sich hierbei jedoch, dass eine Vielzahl von Ti(OR)₄, Zr(OR)₄ und Hf(OR)₄ Precursoren oft in oligomerer Form vorliegen (Tendenz einer Koordinationsaufweitung der Zr(IV) und Hf(IV) Atome auf sechs, sieben oder acht^[97]) und somit ihre Flüchtigkeit stark eingeschränkt ist. Der Einsatz sperriger tert-Butoxyreste oder Diethylamidgruppen hingegen verhindert die unerwünschte Oligomerisierung und gewährleistet monomolekulare und somit flüchtige Amid- und $Ti(O^{i}Pr)_{4}$, [128]-[134] Zr(O^tBu)₄^{[139][140][187][188]} Alkoxidprecursoren der Form und $Hf(O^{t}Bu)_{4}$, [162][163] sowie Ti(NEt₂)₄[190], Zr(NEt₂)₄[186] und Hf(NEt₂)₄.[177]

5.2 Nanostrukturierte ZrO₂- und Zr-C-N- Beschichtungen mittels CVD bzw. MACVD unter Verwendung der homoleptischen Precursoren Zr(O^tBu)₄ und Zr(NEt₂)₄

Aus zuvor angeführten Gründen und im Hinblick auf ausreichende thermische Stabilität wurden für die im Folgenden beschriebenen Untersuchungen die beiden metallorganischen Verbindungen Zr(NEt₂)₄ und Zr(O^tBu)₄ ausgewählt. Durch die schon im Molekül selbst

vorhandenen Zr-N- bzw. Zr-O- σ -Bindungen sollte die Bildung von ZrO₂- und ZrN-Festphasen schon bei moderaten Substrattemperaturen möglich sein.

5.2.1 Precursorsynthese und Charakterisierung

Die Synthese der homoleptischen Zirkoniumverbindungen Zirkonium-tetra-Diethylamid $(Zr(NEt_2)_4)$ und Zirkonium-tetra-*tert*-Butoxid $(Zr(O^tBu)_4)$ erfolgt in Anlehnung an die in der Literatur beschriebene Vorgehensweise.^{[189][190]} Hierbei wird zuerst Et₂NLi durch Metallierung von Et₂NH mit n-BuLi hergestellt (Gl. 5.1), um dann im zweiten Reaktionsschritt unter Salzeliminierung mit ZrCl₄ zu Zr(NEt₂)₄ abzureagieren (Gl. 5.2). Zr(O^tBu)₄ resultiert aus der Alkoholyse von Zr(NEt₂)₄ mit ^tBuOH im Überschuss unter vollständigem Ligandenaustausch (Gl. 5.3).^{[97][189][190]}

$$Et_2NH + n-BuLi \rightarrow Et_2NLi + n-BuH$$
 Gl. 5.1
Metallierung

$$4 \text{ Et}_2\text{NLi} + Zr\text{Cl}_4 \rightarrow Zr(\text{NEt}_2)_4 + 4 \text{ LiCl} \qquad \text{Gl. 5.2}$$

Metathese

$$Zr(NEt_2)_4 + 4 {}^tBuOH \rightarrow Zr(O^tBu)_4 + 4 Et_2NH$$
 Gl. 5.3
Ligandenaustausch / Alkoholyse

Die so erhaltenen Precursoren können mittels Destillation im dynamischen Vakuum gereinigt werden, wobei die Destillationstemperatur des gelben $Zr(NEt_2)_4$ bei einem Druck von 10^{-3} mbar bei 80 °C und die des farblosen $Zr(O^tBu)_4$ bei 50 °C liegt. Die Charakterisierung dieser homoleptischen und monomer vorliegenden Zirkoniumprecursoren erfolgt mit Hilfe der NMR-Spektroskopie in einem C_6D_6 / Benzol Gemisch:

Abbildung 5.1: Homoleptische Zr-Precursoren: Zr(NEt₂)₄ (a) und Zr(O^tBu)₄ (b).

Im ¹H NMR-Spektrum ist für $Zr(NEt_2)_4$ bei 1,126 ppm das Triplett der CH₃ Gruppen und bei 3,315 ppm das Quartett der CH₂ Gruppen der Ethylreste zu sehen. Die entsprechenden

Seite 27

Signale befinden sich im ¹³C NMR-Spektrum bei 16,684 ppm (CH₃) und 43,047 ppm (CH₂). Zr(O^tBu)₄ zeigt ein Singulett bei 1,310 ppm für die Wasserstoffatome der Methylgruppen des *tert*- Butoxyrestes sowie Signale im ¹³C NMR-Spektrum bei 32,472 ppm (CH₃) und 74,696 ppm (C_{quart.}).

Zusätzlich zu den reinen Zirkoniumalkoxid- und Zirkoniumamid-Precursoren wird in einer weiteren Versuchsreihe ein 1:1-Gemisch; bestehend aus $Zr(NEt_2)_4$ und freiem Amin (MACVD; **Matrix-assisted CVD**), in diesem Falle Et₂NH, hergestellt und ebenfalls unter gleichen Reaktionsbedingungen und Prozessparametern im CVD-Prozess mit dem Augenmerk auf evtl. stickstoffreichere Beschichtungen hin untersucht.

5.2.2 Chemical Vapor Deposition und Beschichtungseigenschaften

Die Eignung dieser Precursoren zur Materialsynthese mittels thermischer CVD wird, wie in Abbildung 7.1 (Anhang) dargestellt, in einem Kaltwandreaktor unter reduziertem Druck (10⁻⁴-10⁻⁶ mbar) näher untersucht. Hierzu werden die zuvor polierten Stahlsubstrate gereinigt und auf einem induktiv heizbaren Graphithalter platziert. Die Temperaturkontrolle des Substrates erfolgt mit Hilfe eines Thermoelementes; die Precursortemperatur kann separat reguliert werden. Die Precursorzufuhr wird über ein Zulassventil durch das angelegte, während des gesamten Prozesses konstante dynamische Vakuum gewährleistet. Die für einen angemessenen Precursorfluss benötigten Temperaturen liegen unter obigen Druckbedingungen bei 50 °C für Zr(NEt₂)₄, 40 °C für Zr(O^tBu)₄, bzw. 45 °C für das Gemisch aus Zr(NEt₂)₄ und Et₂NH. Die Substrattemperaturen werden zwischen 450 °C und 750 °C variiert.

Phasenzusammensetzung und Mikrostruktur

Sowohl der reine Zirkoniumamidprecursor als auch das zur MACVD verwendete Gemisch mit freiem Ligand liefern bei der Zersetzung im thermischen CVD-Prozess auf den Stahlsubstraten Beschichtungen, deren Farben von blau bis goldbraun je nach Abscheidetemperatur variieren. Aus der Abscheidung von Zr(O^tBu)₄ hingegen resultieren in Abhängigkeit von der Substrattemperatur graue bis transparente Beschichtungen. Alle Filme, die unter Verwendung von Zr(NEt₂)₄ bzw. dem Precursorgemisch in einem Temperaturbereich zwischen 450 °C und 750 °C gewonnen werden, weisen im Röntgendiffraktogramm eine sehr deutliche Peakverbreiterung auf, was von einer sehr kleinen Partikelgröße und/oder geringer Kristallinität des Materials herrührt (vgl. Abbildung 5.2 (a)). Die hier beobachteten Röntgendiffraktogramme entsprechen den für Zirkoniumcarbonitrid veröffentlichten Daten, wobei der (111) Peak die größte Intensität besitzt.^[191]

Abbildung 5.2: Röntgendiffraktogramme der ZrCN-Beschichtungen (a) und XPS-Spektren der ZrCN- und ZrO₂-Beschichtungen (b).

Die EDX-Analyse der Filme, die unter Verwendung von Zr(NEt₂)₄ sowie dem Gemisch erhalten werden, zeigt neben den Elementen Zirkonium, Kohlenstoff und Stickstoff auch deutlich die Präsenz von Sauerstoff, was auf eine Oberflächenoxidation zurückzuführen ist. Des Weiteren kann mittels XPS-Analysen ein geringer Prozentsatz Stickstoff nachgewiesen werden, der im Tiefenprofil (unterhalb der oxidierten Oberfläche) zunimmt (Abbildung 5.2 (b)). Der deutlich nachzuweisende Kohlenstoffgehalt (sogar nach mehreren Sputterschritten) und die chemische Verschiebung in den XPS-Spektren deuten ebenfalls auf die Bildung der Zirkoniumcarbonitridphase hin.^[192] Da der verwendete Precursor keine direkten Zr-C-Bindungen besitzt und angesichts der relativ geringen Substrattemperaturen, ist die Wahrscheinlichkeit der Bildung von ZrC geringer als diejenige, dass die Stickstoff-Kohlenstoffeinheiten im Precursormolekül die Bildung des Carbonitrids favorisieren. Wie zu erwarten, enthalten alle im gewählten Temperaturbereich abgeschiedenen ZrO₂-Filme nur geringe Spuren von Kohlenstoff (vgl. Abbildung 5.2 (b)). Da in den sehr Zirkoniumamidmolekülen keine Sauerstoffatome vorliegen und alle Abscheidungen im dynamischen Vakuum durchgeführt wurden, kann der Sauerstoffgehalt innerhalb der ZrCN-Filme nur mit einer Oberflächenoxidation an der Luft nach dem Abscheideprozess erklärt werden, womit eine deutliche und zeitabhängige Farbveränderung der Schichten (blau während und unmittelbar nach der Abscheidung; gold-braun nach 48 h) einhergeht. Durch die Variation der stöchiometrischen Zusammensetzung erfolgt eine Veränderung der elektronischen Umgebung des Zirkoniums, die wiederum eine Differenzierung der Farbe sowie Reflexion bewirkt.^[193] Dieses Phänomen der sehr hohen Affinität des Zirkoniums zu Sauerstoff (Oxophilie) ist mittlerweile als limitierender Faktor bei der Herstellung von Nitridfilmen bekannt^[194] und wird ebenfalls daran sichtbar, dass Sputtern von metallischem Zirkonium in Stickstoff-Sauerstoffatmosphäre mit 80-prozentigem Stickstoffanteil lediglich zu reinen monoklinen Zirkoniumoxidfilmen führt. Um stickstoffreichere Beschichtungen zu erhalten, wird dem ursprünglich verwendeten Amidprecursor eine zusätzliche Stickstoffquelle in Form von Diethylamin als freier Ligand beigefügt. Wie vermutet, bewirkt das zugesetzte Et₂NH einen wachsenden Stickstoffgehalt innerhalb der ansonsten unter gleichbleibenden Prozessparametern hergestellten Beschichtungen (Abbildung 5.2 (b)). Darüber hinaus sind die mit dem Precursorgemisch hergestellten Oberflächen stabiler gegenüber nachträglicher Oxidation und zeigen bei der Röntgenbeugung, wie in Abbildung 5.2 (a) dargestellt, bei allen Abscheidetemperaturen (450-750 °C) die gleiche Zusammensetzung. Rasterelektronenmikroskopaufnahmen der Schichten, die mittels Abscheidungen von Zr(NEt₂)₄ sowie dem Gemisch Zr(NEt₂)₄/Et₂NH in einem Temperaturbereich von 450-750 °C entstehen, offenbaren eine granulare aus einzelnen Partikeln aufgebaute Morphologie (Abbildung 5.3). Die durchschnittlichen Kristallitgrößen (Scherra Formel) liegen zwischen 2-4 nm.

Abbildung 5.3: REM-Aufnahmen der ZrCN-Beschichtungen aus (a) Zr(NEt₂)₄ und (b) Zr(NEt₂)₄/Et₂NH.

Im Gegensatz dazu führt die Zersetzung des Alkoxidprecursors Zr(O^tBu)₄ zu ZrO₂-Beschichtungen, deren Morphologien sich je nach Substrattemperatur (450-650 °C) sehr stark unterscheiden (Abbildung 5.4). So zeigt beispielsweise die Oberfläche der bei 450 °C abgeschiedenen Filme eine aus länglichen, verschlungenen Kristalliten bestehende Mikrostruktur (Abbildung 5.4 (a)), während bei 550 °C und 650 °C eher gröber facettierte Kristallite vorliegen (Abbildung 5.4 (b) und (c)). Abbildung 5.4 (d) zeigt einen Querschnitt eines ZrO₂-Filmes, wobei eine insgesamt dichte säulenartige Mikrostruktur sichtbar wird.

Abbildung 5.4: REM-Aufnahmen der ZrO₂-Beschichtungen bei verschiedenen Substrattemperaturen:
(a) 450 °C, (b) 550 °C, (c) 650 °C, (d) Querschnitt und (e) Röntgendiffraktogramme der bei verschiedenen Substrattemperaturen erhaltenen ZrO₂- Beschichtungen.

Die Änderung der Oberflächenmorphologien dieser ZrO_2 -Filme bei verschiedenen Abscheidetemperaturen korreliert mit ihrer Strukturänderung, wie in den XRD-Diffraktogrammen (Abbildung 5.4 (e)) zu erkennen ist. Die mittels $Zr(O^tBu)_4$ hergestellten Beschichtungen liegen im gesamten Substrattemperaturbereich von 350–650 °C in kristalliner Form vor. Die bei 350 °C abgeschiedene Schicht besteht ausschließlich aus der tetragonalen ZrO₂-Phase, wobei die mittlere Kristallitgröße bei 6 nm liegt. Die Temperaturabhängigkeit der Phasenumwandlung innerhalb der abgeschiedenen Beschichtungen wird daran sichtbar, dass bei Substrattemperaturen von 450 °C ein Gemisch aus monoklinem und tetragonalem ZrO₂, bei höheren Temperaturen (550 °C und 650 °C) hingegen ausschließlich monoklines ZrO₂ in reiner Form vorliegt. Obwohl die tetragonale Phase bei höheren Temperaturen stabil sein sollte (monoklin stabil bis 1205 °C und tetragonal im Bereich von 1205–2377 °C), kann ihre Bildung bei 450 °C mit der geringeren Oberflächenenergie von nanokristallinem tetragonalem Zirkoniumoxid mit durchschnittlichen Kristallitgrößen < 10 nm erklärt werden.^{[195][196][197]}

Mikrohärte- und Adhäsionstests

Zur Untersuchung der Substrathaftung der hergestellten ZrCN- und ZrO₂-Beschichtungen werden Scratch-Tests unter Verwendung eines Diamantindenters mit einem Spitzenradius von 2 µm durchgeführt. Der Indenter bewegt sich dabei mit einer stetig ansteigenden, vertikal gerichteten Kraft (F_z) über die jeweils zu testenden Schichtoberflächen. Der kritische Wert (L_c), bzw. die Kraft, bei der sich anfänglich Risse bilden und schließlich keinerlei Haftung mehr zwischen Substrat und Beschichtungsmaterial besteht, ist bei den untersuchten ZrCN-Filmen nicht identisch. Die unter Verwendung des reinen Zr(NEt₂)₄ Precursors bei 550 °C erhaltenen Filme zersplittern schon bei einer geringeren Kraft (L_c : 0,08 N) als diejenigen, die mittels MACVD, also mit zusätzlichem freiem Ligand, hergestellt wurden (L_c : 0,1 N) und offensichtlich eine etwas bessere Substrathaftung zeigen. Rastermikroskopaufnahmen dieser Filme und einer bei 550 °C hergestellten ZrO₂-Beschichtung weicht, wie in Abbildung 5.5 (b) zu sehen, deutlich von dem für keramische Filme typischen Verhalten während des Scratch-Tests (Rissbildung und Abplatzen) ab und zeigt stattdessen ein eher plastisches Verhalten.^[198]

Abbildung 5.5: Scratch- Tests an ZrCN- (a), (b) und ZrO₂-Beschichtungen (c) bei 550 °C.

Untersuchungen bezüglich der Mikrohärte ergaben für die bei verschiedenen Substrattemperaturen erhaltenen ZrO_2 -Filme, die im Scratch-Test eine sehr gute Haftung am Substrat aufweisen (L_c: 0,1 N) (Abbildung 5.5 (c)), Werte zwischen 4,5 GPa und 5,0 GPa. Die Härte der mittels reinem $Zr(NEt_2)_4$ synthetisierten Filme liegt ebenfalls in diesem Größenbereich, und wie in Abbildung 5.6 zu sehen, speziell für die bei 550 °C erhaltenen bei

4,9 GPa. Bei den Beschichtungen, die mit Hilfe des Precursorgemisches hergestellt wurden, zeichnet sich die Tendenz ab, dass mit wachsender Substrattemperatur die Mikrohärte von

Abbildung 5.6: Mikrohärte der ZrCN- und Z Beschichtungen.

5,7 GPa bei 550 °C über 3,9 GPa bei 650 °C bis hin zu 2,1 GPa bei 750 °C stetig abfällt (Abbildung 5.6). Hierbei sollte in Betracht gezogen werden, dass es bei höheren Substrattemperaturen durch die Zersetzung der Diethylamidmoleküle zu vermehrten Kohlenstoffeinschlüssen in den Beschichtungen kommen kann, was sich merklich geringeren dann in den Mikrohärtewerten äußert.

Biokompatibilität

Neben mechanischen Eigenschaften wird oxidischen und nitridischen diesen Zirkoniummaterialien auch biokompatibles Verhalten zugesprochen. Als biokompatibel werden im Allgemeinen Materialien bezeichnet, die keinen negativen Einfluss auf Lebewesen in ihrer natürlichen Umgebung ausüben. Besonders relevant ist die Biokompatibilität von Implantaten, da diese sich für einen langen Zeitraum in unmittelbarem Körperkontakt befinden. Um ein biokompatibles Verhalten zu erreichen, können die Implantate aus einem nicht-biokompatiblen Werkstoff mit einer biokompatiblen Schicht überzogen werden. Hierbei spricht man von Oberflächenkompatibilität. Verallgemeinernd lässt sich sagen, dass Biokompatibilität von der Oberfläche ausgeht; dies bedeutet, dass sowohl ein mechanisch definierter Werkstoff als auch ein den Anforderungen des biologischen Umfeldes angepasster Oberflächenwerkstoff benötigt werden. Solche bioverträglichen Werkstoffe zeichnen sich dadurch aus, dass sie im Körper von körpereigenen Zellen nicht abgestoßen werden, Bakterien abweisen, Blutgerinnsel (Thrombosegefahr) verhindern und in Verbindung mit Blut und anderen Körperflüssigkeiten nicht korrodieren. Weiterhin ist es von großer Bedeutung, dass sie unter hohen mechanischen Belastungen in chemisch aggressiver Umgebung ohne Qualitätsverlust - teilweise über lange Zeiträume - uneingeschränkt funktionieren müssen. Werkstoffe, die im Fall von künstlichen Herzklappen oder Gefäßprothesen mit Blut, bei künstlichen Gelenken mit Knochen- und Weichgewebe und bei Zahnimplantaten mit Speichel

in Kontakt stehen, müssen körperverträglich sein. Dies betrifft nicht nur das Material selbst, sondern auch die möglichen im Körpermilieu aufgelösten Stoffe. Durch chemische und elektrochemische Reaktionen mit Körperflüssigkeiten können bei Metallen Korrosions-, bei Keramiken Auslaug- und bei Kunststoffen Degradationsprodukte entstehen. Entstehungsursachen hierfür sind etwa Gleitreibbewegungen zwischen Implantat und Gewebe, insbesondere mit den Knochen. Da Biokompatibilität in erster Linie von der Oberfläche ausgeht, ist in der Regel ein Werkstoff notwendig, der für mechanische Festigkeit sorgt und eine Oberfläche besitzt, die sich Abrieb sowie Korrosion widersetzt.

Zur Untersuchung einer solchen Bioverträglichkeit werden knochenbildende Zellen (Osteoblasten der Zelllinie MC3T3-E1) und Verofibroblasten (Vero B4) verwendet. Hierzu werden ZrCN- und ZrO₂-Filme auf Silizium- und Glassubstraten (Korrosion von Stahl im Zellmedium) abgeschieden. Die Morphologie der ZrCN-Beschichtungen auf den hier verwandten Substraten entspricht der in Abbildung 5.4 (a) gezeigten. Diese Oberflächen zeigen sowohl mit Osteoblasten als auch mit Verofibroblasten eine sehr gute Verträglichkeit. Wie den im Folgenden dargestellten Lichtmikroskopaufnahmen zu entnehmen ist (Abbildung 5.7), kommt es zu einer gleichmäßigen Besiedlung der kompletten Substratoberflächen, wobei Verofibroblasten hierbei etwas zur Agglomeration neigen (Abbildung 5.7 (c)). Insgesamt zeigen alle Zellen gesunde, z. T. sich teilende Zellkerne (blau angefärbt) und lang gestreckte Aktinfasern (grüne Färbung), weshalb von einer interzellulären Wechselwirkung ausgegangen werden kann. In Abbildung 5.7 (b) sind auf einer zum Teil am Rande beschädigten ZrCN-Beschichtung kultivierte Osteoblasten zu sehen, die in unmittelbarer Umgebung der Beschädigung abnormale Morphologien aufzeigen, und zudem nicht mehr plan auf der Substratoberfläche vorliegen.

Abbildung 5.7: Osteoblasten (a), (b) und Verofibroblasten (c) auf ZrCN sowie Osteoblasten auf ZrO₂ (d).

Sowohl Osteoblasten als auch Verofibroblasten weisen auf den getesteten ZrO₂-Oberflächen eine sehr hohe Besiedlungsdichte in Kombination mit einer gleichmäßigen Verteilung über das gesamte Substrat auf. Auffällig hierbei ist ein - im Vergleich zu anderen Beschichtungen -

Seite 34

schnelleres und sehr gut ausgeprägtes Zellwachstum. Die Osteoblasten bilden schon nach sehr kurzer Zeit gewebeartige Strukturen über dem Substrat aus (Abbildung 5.7 (d)). Zusammengefasst bedeutet dies also, dass sowohl die nitridischen als auch die oxidischen Zirkoniumbeschichtungen zellverträglich sind und die Eignung von ZrO₂ offensichtlich etwas ausgeprägter ist.

Des Weiteren ist vielen Berichten der Literatur zu entnehmen, dass bei Osteoblasten und Verofibroblasten bestimmte Tendenzen für eine Bevorzugung bestimmter Oberflächenbeschaffenheiten zu beobachten sind. Dabei liegt bei Verofibroblasten üblicherweise auf glatten Oberflächen ein stärker ausgeprägtes Zellwachstum vor, während Osteoblasten eine strukturierte und rauere Substratbeschaffenheit vorziehen.^[199] Auch bei den hier durchgeführten Zelltests kann dieses Verhalten beobachtet werden. Ein Vergleich des Wachstums von Verofibroblasten (Abbildung 5.8 (a)) und Osteoblasten (Abbildung 5.7 (a)) auf den morphologisch sehr glatten ZrCN-Filmen zeigt eine deutlich höhere Anzahl von Zellen und darüber hinaus größere interzelluläre Interaktionen (Gewebestruktur) im Falle der Verofibroblasten. Die strukturierte Oberfläche der ZrO₂-Filme wird hingegen von Osteoblasten bevorzugt, was im Vergleich von Abbildung 5.7 (d) mit Abbildung 5.8 (b), in der das Wachstum von Verofibroblasten auf einer solchen Oberfläche dokumentiert wird, zu sehen ist. Verofibroblasten neigen auf strukturierteren Oberflächen deutlich zu einer Agglomerisierung, wobei Zwischenbereiche entstehen, auf denen sich kaum Zellen befinden und bei denen man nicht mehr von einer homogenen Besiedlungsdichte ausgehen kann.

Abbildung 5.8: Verofibroblasten auf glatter ZrCN-Schicht und (b) auf rauer ZrO₂-Beschichtung.

5.3 Synthese und Charakterisierung heteroleptischer Verbindungen der allgemeinen Form M(O^tBu)₂(NR₂)₂, (M=Ti, Zr und Hf) und deren Einsatz im CVD –Verfahren

Neben dem in Kapitel 5.1 beschriebenen Problem, dass es bei einigen Titan-, Zirkonium- und Hafniumprecursoren sehr drastischer Maßnahmen bedarf, einen für das CVD-Verfahren angemessenen Dampfdruck zu gewährleisten, gibt es noch weitere vom Precursormolekül ausgehende Limitierungen. Obwohl durch die Verwendung der sehr flüchtigen monomeren $Ti(O^{1}Pr)_{4}$ $Zr(O^{t}Bu)_{4}$ $Hf(O^{t}Bu)_{4}$ Verbindungen und diesbezüglich sehr gute Beschichtungsergebnisse erzielt werden, führt das jeweils vierfach und somit koordinativ nicht abgesättigte Metallzentrum dazu, dass diese Precursoren stark luft- und feuchtigkeitsempfindlich sind. Dieses Verhalten wiederum bedingt sehr oft unerwünschte Reaktionen im Reaktorraum. Um eine Oligomerisierung zu umgehen und gleichzeitig eine koordinative Stabilisierung des positiven Metallzentrums sicherzustellen, werden daher oft donorfunktionalisierte Liganden (B-Diketonate), wie z. B. acac (acetylacetonat), eingeführt. Durch die Zersetzung von Zr(acac)₄ und Hf(acac)₄ entstehen zwar ZrO₂- bzw. HfO₂-Filme, jedoch ebenfalls nur unter Verwendung sehr hoher Temperaturen, bedingt durch den geringen Precursordampfdruck.^[200] Erschwerend kommt dabei hinzu, dass die resultierenden Oxidfilme starke Kohlenstoffkontaminationen aufweisen.^[201] Das ebenfalls relativ schwer flüchtige 2,2,6,6,-tetramethylheptan-3,5, Zr(thd)₄ (thd[.] Dionat) liefert reinere Oxidbeschichtungen,^{[201][202]} jedoch nur bei hohen Substrattemperaturen, während die flüchtigen Verbindungen Zr(tfac)₄ und Hf(tfac)₄ (tfac: trifluoro-acetylacetonat) aufgrund möglicher Fluoreinschlüsse im Endmaterial für mikroelektronische Anwendungen weniger geeignet sind.^[141] Im Hinblick auf die Vereinigung beider favorisierten Eigenschaften (Flüchtigkeit von Alkoxiden und adäquate Stabilität durch Absättigung der Koordinationssphäre) eines potentiellen Precursors innerhalb einer molekularen Vorstufe erlangt die Untersuchung gemischt substituierter Verbindungen immer größere Bedeutung. In diesem Zusammenhang wurden unter anderem die heteroleptischen Verbindungen $Ti(O^{i}Pr)_{2}(thd)_{2}$, [144][145] $Ti(O^{i}Pr)_{2}(dmae)_{2},^{[147]}$ $Ti(O^{i}Pr)_{2}(acac)_{2}$,^[141] $Zr(O^{i}Pr)_{2}(thd)_{2}$,^[155] $Zr(O^{t}Bu)_{2}(thd)_{2}$, [155] [$Zr(O^{i}Pr)_{2}(dmae)_{2}$]₂, [159] $Zr(O^{t}Bu)_{2}(mmp)_{2}$, [160][161] $Zr(NEt_{2})_{4}(dbml)_{2}$, [179] sowie die Hafniumverbindungen Hf(O^tBu)₂(mmp)₂^{[160][161]} und Hf(OⁱPr)(thd)₃^[176] erfolgreich in diversen CVD-Anwendungen eingesetzt. Weitere Beispiele solcher gemischt substituierter Übergangsmetallverbindungen können Tabelle 5.1 entnommen werden.

Nach dem erfolgreichen Einsatz der homoleptischen, monomer vorliegenden Zirkoniumprecursoren Zr(NEt₂)₄ sowie Zr(O^tBu)₄ im thermischen CVD-Prozess liegt nun das Hauptaugenmerk auf der Synthese solcher Verbindungen, deren Zentralatom, in diesem Falle Titan, Zirkonium oder Hafnium, von unterschiedlichen Liganden umgeben ist. Die Liganden werden dabei so gewählt, dass sich jeweils zwei Sauerstoffreste (-O^tBu) sowie zwei sterisch sehr anspruchsvolle Stickstoffgruppierungen (-N(SiMe₃)₂) am selben Zentralatom befinden. Des Weiteren wird insbesondere darauf Wert gelegt, dass die resultierenden Verbindungen durch eine geeignete und gezielte Insertion von Heteroliganden möglichst nicht zur Oligomerisierung neigen und sich somit durch eine adäquate Flüchtigkeit für ihren Einsatz im thermischen CVD-Prozess zur Beschichtungsherstellung auszeichnen. Darüber hinaus soll durch die heteroleptische Ligandensphäre ein verändertes Zersetzungsverhalten erreicht werden, welches letztlich zu modifizierten Schichteigenschaften führt. Die Verwendung eines solchen neuartigen heteroleptischen Precursors bietet durch seine strukturell bedingten modifizierten physikalischen Eigenschaften also die Möglichkeit, gezielt Einfluss auf das resultierende Beschichtungsmaterial auszuüben.

5.3.1 Synthese und Charakterisierung von Zr(O^tBu)₂{N(SiMe₃)₂}₂

Um sicherzustellen, dass die resultierende Verbindung monomer vorliegt, werden neben den *tert*-Butoxygruppen Stickstoffliganden mit einer sterisch anspruchsvollen Peripherie gewählt. Die Herstellung der heteroleptischen Verbindung $Zr(O^tBu)_2\{N(SiMe_3)_2\}_2$ erfordert eine zweistufige Synthese. Im ersten Reaktionsschritt erfolgt eine äquimolare Umsetzung von $Zr(O^tBu)_4$ mit $ZrCl_4$, so dass es während der zwölfstündigen Reaktionszeit durch einen Ligandenaustausch zur Bildung der farblosen Zwischenstufe $Zr(O^tBu)_2Cl_2$ kommt (Gl. 5.4). Ohne vorherige Isolierung dieses Zwischenproduktes wird im zweiten Syntheseschritt (SiMe_3)_2NLi im stöchiometrischen Verhältnis 1:2 beigefügt. Die sofort exotherm ablaufende Metathesereaktion führt unter Eliminierung von LiCl zu einem farblosen Feststoff (Gl. 5.5). Das Endprodukt $Zr(O^tBu)_2\{N(SiMe_3)_2\}_2$ kann leicht durch Sublimation im dynamischen Vakuum bei 120 °C gereinigt werden.

$$Zr(O^{t}Bu)_{4} + ZrCl_{4} \rightarrow 2 Zr(O^{t}Bu)_{2}Cl_{2}$$
Gl. 5.4
Ligandenaustausch

$$Zr(O^{t}Bu)_{2}Cl_{2} + 2 (SiMe_{3})_{2}NLi \rightarrow Zr(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2} + 2 LiCl \qquad Gl. 5.5$$

Metathese

NMR-spektroskopische Untersuchungen belegen, dass es sich bei der synthetisierten Verbindung eindeutig um $Zr(O^tBu)_2\{N(SiMe_3)_2\}_2$ handelt. Das ¹H NMR-Spektrum in Abbildung 5.9 (a) zeigt zwei Singuletts, wobei das erste bei 0,380 ppm den Wasserstoffatomen der CH₃ (N(SiMe_3)_2) Gruppen zuzuordnen ist. Das zweite Signal bei 1,341 ppm wird durch die beiden CH₃–Gruppen der (O^tBu)-Reste verursacht. Entsprechend befindet sich im ¹³C NMR-Spektrum das Signal der CH₃ (N(SiMe_3)_2)-Gruppen bei 4,962 ppm. Die Peaks bei 32,382 ppm und 78,562 ppm stammen von CH₃ (O^tBu) sowie C (O^tBu) (vgl. Abbildung 5.9 (b)).

Abbildung 5.9: (a) ¹H NMR-Spektrum und (b) ¹³C NMR-Spektrum der Verbindung Zr(O^tBu)₂{N(SiMe₃)₂}₂.

Aus einer gesättigten Toluol-Lösung des zuvor durch Sublimation aufgearbeiteten Feststoffs konnten schon nach wenigen Tagen farblose, plättchenförmige Kristalle isoliert und röntgenographisch bezüglich ihrer Struktur analysiert werden. Abbildung 5.10 zeigt eine mit Hilfe des Programms Diamond angefertigte Zeichnung dieser Molekülstruktur.

Abbildung 5.10: Molekülstruktur von $Zr(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}$.

Im Folgenden ist eine kurze Übersicht mit ausgewählten kristallographischen Daten der röntgenographischen Einkristallanalyse der Verbindung $Zr(O^tBu)_2\{N(SiMe_3)_2\}_2$ aufgelistet. Alle weiteren Daten können dem Anhang entnommen werden.

Summenformel C ₂₀ H ₅₄ N ₂ O ₂ Si ₄ Zr			
Molmasse	558,23 g/mol		
Temperatur	103(2) K		
Wellenlänge (Mo _{ka})	0.71073 Å		
Kristallsystem	Monoklin		
Raumgruppe	P2(1)/n		
	a = 11,8041(10) Å	$\alpha = 90^{\circ}$	
Elementarzellparameter	b = 23,306(2) Å	$\beta = 90,299(5)^{\circ}$	
	c = 11,9011(11) Å	$\gamma = 90^{\circ}$	
Zellvolumen	3274,1(5) Å ³		
Formeleinheit pro Zelle	4		
Dichte (berechnet)	1,133 mg/m ³		
Absorptionskoeffizient	0,498 mm ⁻¹		
F(000)	1200		
Kristallgröße	0,4 x 0,3 x 0,15 mm ³		
Gemessener θ -Bereich	1,92°- 9,57°		
Index -Bereiche	Index -Bereiche -16<=h<=16, -32<=k<=32, -15<=h<		
Gemessene Reflexe	55002		
Unabhängige Reflexe	9154 [R(int) = 0,0515]		
Strukturverfeinerung Full-matrix least		squares on F ²	
Daten / Restrains / Parameter	9154 / 0 / 275	9154 / 0 / 275	
Goodness-of-fit on F ²	6,199		
Endgültige R – Werte $[I > 2\sigma(I)]$	R1 = 0,2048, wR2 = 0,5274		
R-Werte (alle Daten) R1 = 0,2101, wR2 = 0,5293		0,5293	
Restelektronendichte 5,285 und -5,971 e.Å ⁻³		-3	

Tabelle 5.2: Ausgewählte Kristall- und Strukturdaten von Zr(O^tBu)₂{N(SiMe₃)₂}_{2.}

Tabelle 5.3: Bindungslängen und Bindungswinkel in Zr(O^tBu)₂{N(SiMe₃)₂}₂.

Bindung	Bindungslänge [Å]	Bindung	Bindungswinkel [°]
Zr - O(1)	1,914(8)	O(2) - Zr - O(1)	107,5(4)
Zr – O(2)	1,886(8)	O(2) - Zr - N(1)	107,8(4)
Zr - N(1)	2,084(8)	O(1) - Zr - N(1)	107,4(4)
Zr – N(2)	2,114(8)	O(2) - Zr - N(2)	108,4(4)
N(1) - Si(1)	1,741(10)	O(1) - Zr - N(2)	107,0(4)
N(1) - Si(2)	1,737(11)	N(1) - Zr - N(2)	118,3(4)

Bindung	Bindungslänge [Å]	Bindung	Bindungswinkel [°]
N(2) – Si(3)	1,711(10)	Si(2) - N(1) - Si(1)	121,0(5)
N(2) – Si(4)	1,750(9)	Si(2) - N(1) - Zr	117,5(5)
		Si(1) - N(1) - Zr	120,7(5)
		Si(3) - N(2) - Si(4)	123,3(5)
		Si(3) - N(2) – Zr	116,6(5)
		Si(4) - N(2) - Zr	119,5(5)
		C(13) - O(1) - Zr	163,2(13)
		C(17) - O(2) – Zr	163,4(9)

5.10 Die Abbildung dargestellte heteroleptische Zirkoniumverbindung in $Zr(O^{t}Bu)_{2}{N(SiMe_{3})_{2}}$ liegt, wie zu erwarten, in monomerer Form vor und kristallisiert im monoklinen Kristallsystem (Raumgruppe P2(1)/n). Hierbei besitzt das zentrale Zirkoniumatom eine verzerrt tetraedrische Koordination, die jeweils durch zwei Sauerstoffliganden (*tert*-Butoxyliganden) und zwei Stickstoffatome der Hexamethyldisilazylreste bewerkstelligt wird. Die Zr-O Bindungslängen liegen bei 1,914(8) Å für Zr–O(1) bzw. 1,886(8) Å für Zr–O(2), wogegen die Bindungen zu den Stickstoffliganden mit 2,084(8) Å für Zr–N(1) und 2,114(8) Å bei Zr–N(2) deutlich länger sind. Die Bindungslängen zwischen den Stickstoffatomen und den jeweils zwei Siliziumatomen innerhalb jedes der beiden Hexamethyldisilazylreste liegen alle im Bereich von 1,7 Å (N(1)–Si(1): 1,741(10) Å; N(1)–Si(2): 1,737(11) Å; N(2)–Si(3): 1,711(10) Å und N(2)-Si(4): 1,750(9) Å). Diese Bindungslängen sind im Allgemeinen gut mit Literaturbekannten vergleichbar, wobei für terminale tert-Butoxygruppen Werte von 1,941(11) Å $([Zr(O^{t}Bu)_{2}(dmae)_{2}]_{2})^{[159]}$ 1,939(4) Å $(Zr_{2}(O^{t}Bu)_{3}(bdmap)_{4}(OH))^{[203]}$ und $(Zr_{3}O(O^{t}Bu)_{10})^{[204]}$ Å angegeben werden. Für 1,916(2) die innerhalb der Hexamethyldisilazylgruppe vorhandenen Zirkonium-Stickstoff-Stickstoffbzw. Siliziumbindung findet man Werte von 2,097(3) Å für Zr-N sowie 1,764 (3) Å für N-Si.^[205] Sämtliche Bindungswinkel zwischen zentralem Zirkoniumatom und direkt gebundenen Sauerstoff- bzw. Stickstoffliganden liegen ungefähr bei 107 ° (vgl. obige Tabelle 5.4); lediglich der Winkel zwischen N(1)-Zr-N(2) zeigt eine Aufweitung auf 118,3°, bedingt durch den erheblichen sterischen Anspruch der Hexamethyldisilazylliganden, der ebenso die Stauchung der anderen Winkel (< 109,5 °) bedingt.

5.3.2 Synthese und Charakterisierung von Hf(O^tBu)₂{N(SiMe₃)₂}₂

Analog zum in Abschnitt 5.3.1 beschriebenen $Zr(O^tBu)_2\{N(SiMe_3)_2\}_2$ erfolgt die Herstellung der entsprechenden heteroleptischen Hafniumverbindung (vgl. Gleichung 5.6).

$$Hf(O^{t}Bu)_{4} + HfCl_{4} \rightarrow 2 Hf(O^{t}Bu)_{2}Cl_{2}$$
Gl. 5.6
Ligandenaustausch

Auf eine Isolierung dieses Zwischenproduktes wird verzichtet, so dass sofort im Anschluss durch Hinzufügen zweier Äquivalente $(SiMe_3)_2NLi$ unter Eliminierung von LiCl beide Chloratome ausgetauscht werden und das heteroleptische Endprodukt Hf $(O^tBu)_2\{N(SiMe_3)_2\}_2$ resultiert (Gl. 5.7).

$$Hf(O^{t}Bu)_{2}Cl_{2} + 2 (SiMe_{3})_{2}NLi \rightarrow Hf(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2} + 2 LiCl \qquad Gl. 5.7$$

Metathese

Diese heteroleptische Verbindung lässt sich durch Sublimation bei 130 °C im dynamischen Vakuum reinigen. Die Charakterisierung des farblosen Feststoffs erfolgt in C_6D_6/C_6H_6 mit Hilfe der NMR-Spektroskopie.

Abbildung 5.11: (a) ¹H NMR-Spektrum und (b) ¹³C NMR-Spektrum der Verbindung Hf(O^tBu)₂{N(SiMe₃)₂}₂.

Das ¹H NMR-Spektrum der Verbindung Hf(O^tBu)₂{N(SiMe₃)₂}₂ beinhaltet zwei Singuletts. Den Wasserstoffatomen der CH₃ Gruppen der N(SiMe₃)₂-Liganden kann das Signal bei 0,373 ppm und das Singulett bei 1,351 ppm den Methylprotonen der beiden (O^tBu)-Reste zugeordnet werden. (Abbildung 5.11 (a)). Dementsprechend befindet sich im ¹³C NMR-Spektrum (Abbildung 5.11 (b)) das Signal der CH₃ (N(SiMe₃)₂)-Gruppen bei 5,204 ppm. Die Peaks bei 32,619 ppm und 78,387 ppm stammen von Kohlenstoffatomen CH₃ bzw. C_{quart.} der *tert*-Butoxygruppen. Kristalle aus einer konzentrierten Toluollösung waren zur Durchführung einer umfassenden röntgenographischen Untersuchung nicht geeignet. Dennoch wird bei einem Vergleich der

Abbildung 5.12: Molekülstruktur von $Hf(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}$.

NMR-Daten der Hf-Verbindung (Abbildung 5.11 (a), (b)) und der analogen Zr-Spezies (Abbildung 5.9 (a), (b)) deutlich, dass es sich bei der hier synthetisierten Verbindung eindeutig um den gewünschten heteroleptischen, strukturell isotypen Precursor $Hf(O^{L}Bu)_{2}{N(SiMe_{3})_{2}}_{2}$ handelt. Die voraussichtliche Molekülstruktur ist in Abbildung 5.12 gezeigt. Auch hier wird das Zentralatom (Hf) von zwei Stickstoffatomen der Hexamethyldisilazylgruppen sowie von

zwei von *tert*-Butoxyliganden stammenden Sauerstoffatomen umgeben, wodurch sich eine vierfache, verzerrt tetraedrische Koordination ergibt.

5.3.3 Synthese und Charakterisierung von Ti(O^tBu)₂{N(SiMe₃)₂}₂

Analog zu den beiden vorab beschriebenen Reaktionen wird auch zur Herstellung der heteroleptischen Titanverbindung Ti(O^tBu)₂{N(SiMe₃)₂}₂ eine zweistufige Synthesestrategie verfolgt. Dazu wird im ersten Reaktionsschritt Ti(O^tBu)₄ mit TiCl₄ in einem stöchiometrischen Verhältnis von 1:1 umgesetzt, so dass nach einer zwölfstündigen Reaktionszeit durch Ligandenaustausch die symmetrisch substituierte, farblose Zwischenstufe Ti(O^tBu)₂Cl₂ (Gl. 5.8) vorliegt.

$$Ti(O^{t}Bu)_{4} + TiCl_{4} \rightarrow 2 Ti(O^{t}Bu)_{2}Cl_{2}$$
Gl. 5.8
Ligandenaustausch

Diese wiederum wird sofort quantitativ mit dem Lithiumsalz (SiMe₃)₂NLi (Verhältnis 1:2) umgesetzt, um einen vollständigen Austausch der Chloratome zu gewährleisten und demzufolge zwei (SiMe₃)₂N-Gruppen einzuführen (Gl. 5.9).

$$Ti(O^{t}Bu)_{2}Cl_{2} + 2 (SiMe_{3})_{2}NLi \rightarrow Ti(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2} + 2 LiCl \qquad Gl. 5.9$$

Metathese

Die Charakterisierung der zuvor im dynamischen Vakuum bei 110 °C destillierten, gelben, hoch viskosen, fast wachsartigen Substanz zeigt, dass es sich hierbei nicht, wie im Falle des Zirkoniums und Hafniums, um die monomere Verbindung Ti(O^tBu)₂(N(SiMe₃)₂)₂ handelt, sondern, wie in Gl. 5.10 zu sehen, um eine dimere heteroleptische und heterometallische Titan-Lithium-Verbindung folgender Form: [Ti(O^tBu)₂N(SiMe₃)₂ClLiN(SiMe₃)₂]₂.

 $2 \operatorname{Ti}(O^{t}Bu)_{2}Cl_{2} + 4 \operatorname{LiN}(SiMe_{3})_{2} \rightarrow [\operatorname{Ti}(O^{t}Bu)_{2}N(SiMe_{3})_{2}ClLiN(SiMe_{3})_{2}]_{2} + 2 \operatorname{LiCl} \qquad \text{Gl. 5.10}$ Metathese

Abbildung 5.13: Molekülstruktur von [Ti(O^tBu)₂N(SiMe₃)₂ClLiN(SiMe₃)₂]₂.

Offensichtlich ist es, bedingt durch die im Vergleich zu Zr und Hf geringere Größe des Titanatoms, nicht möglich, beide Chloratome gegen Amidreste auszutauschen, so dass am

Abbildung 5.14: Molekülstruktur von $ZrCl\{N(SiMe_3)_2\}_3$; Ti und Hf analog.^[207]

Titan selbst neben den beiden tert-Butoxygruppen und einem Chloratom nur ein Amidligand vorhanden ist. Hierbei fungiert das Chloratom zusätzlich als Brückenglied zu einem Lithiumatom des sozusagen noch als überbleibendes Edukt vorliegenden Lithiumhexamethyldisilazans, wobei das Stickstoffatom dieser Gruppierung zusätzlich eine µ2-Brücke zum zweiten Lithiumatom ausbildet. Das Chloratom die besetzt hierbei freie Koordinationsstelle des in reinem LiN(SiMe₃)₂ vorhandenen THF.^[206] Die Struktur des entstandenen Ti $(O^tBu)_2N(SiMe_3)_2Cl$ kann verglichen werden mit der des Substitutionsprodukts von Ti Cl_4 mit einem Überschuss an Li $N(SiMe_3)_2$, da dort ebenfalls, wie in Abbildung 5.14 dargestellt, aus sterischen Gründen nur drei Chloratome substituiert werden können.^[207]

Summenformel	$C_{40}H_{108}Cl_{2}Li_{2}N_{4}O_{4}Si_{8}Ti_{2}$		
Molmasse	1114,60 g/mol		
Temperatur	100(2) K		
Wellenlänge (Mo _{ka})	0,71073		
Kristallsystem	Monoklin		
Raumgruppe	P2/n		
	a = 17,9521(7) Å $\alpha = 90^{\circ}$		
Elementarzellparameter	b = 20,8972(8) Å β = 108,1620(10)		
	c = 19,3101(7) Å $\gamma = 90^{\circ}$		
Zellvolumen	6883,2(5) Å ³		
Formeleinheit pro Zelle	4		
Dichte (berechnet)	1,076 mg/m ³		
Absorptionskoeffizient	0,482 mm ⁻¹		
F(000)	2416		
Kristallgröße	0,25 x 0,38 x 0,43 mm ³		
Gemessener θ -Bereich	1,35° - 30,58°		
Index -Bereiche	-25<=h<=25,-29<=k<=29,-26<=l<=27		
Gemessene Reflexe	70254		
Unabhängige Reflexe	21100 [R(int) = 0.0294]		
Strukturverfeinerung	Full-matrix least-squares on F ²		
Daten / Restrains / Parameter	21100 / 0 / 597		
Goodness-of-fit on F ²	1,039		
Endgültige R – Werte $[I > 2\sigma(I)]$	R1 = 0,0337, wR2 = 0,0785		
R-Werte (alle Daten)	R1 = 0,0616, wR2 = 0,0928		
Restelektronendichte	0,617; -0,477 e.Å ⁻³		

Tabelle 5.4: Ausgewählte Kristall- und	Strukturdaten von [T	Гі(O ^t Bu) ₂ N(SiMe ₃) ₂ ClLi	$N(SiMe_3)_2]_2$
\mathcal{O}			(5)212

$$\label{eq:constraint} \begin{split} Tabelle \ 5.5: \ Ausgewählte \ Bindungslängen \ und \ Bindungswinkel \ von \\ [Ti(O^tBu)_2N(SiMe_3)_2ClLiN(SiMe_3)_2]_2. \end{split}$$

Bindung	Bindungslänge [Å]	Bindung	Bindungswinkel [°]
Ti (1) – O(2)	1,7506(10)	O(2) - Ti(1) - O(1)	111,61(5)
Ti(1) - O(1)	1,7590(10)	O(2) - Ti(1) - N(1)	109,68(5)
Ti(1) - N(1)	1,8964(5)	O(1) - Ti(1) - N(1)	112,90(5)
Ti(1) - Cl(1)	2,2826(5)	O(2) - Ti(1) - Cl(1)	102,20(2)
Si(1) - N(1)	1,7577(12)	O(1) - Ti(1) - Cl(1)	109,47(4)

Bindung	Bindungslänge [Å]	Bindung	Bindungswinkel [°]
Si(2) - N(1)	1,7638(12)	N(1) - Ti(1) - Cl(1)	110,47(4)
Cl(1) - Li(2)	2,464(3)	Ti(1) - Cl(1) - Li(2)	157,47(6)
Li(2) - N(2)	1,993(3)	Si(1) - N(1) - Si(2)	122,63(7)
Li(2) –N(3)	2,0173(3)	Si(1) - N(1) - Ti(1)	116,65(6)
Si(3) - N(2)	1,7045(8)	Si(1) - N(1) - Ti(1)	119,94(6)
Si(4) - N(3)	1,7028(8)	Li(2) - N(3) - Li(2)#1	73,26(15)
		Li(2) - N(2) - Li(2)#1	74,25(15)
		N(2) - Li(2) - N(3)	106,25(12)
		N(2) - Li(2) - Cl(1)	107,28(11)
		N(3) - Li(2) - Cl(1)	146,47(13)
		Si(3)#1 - N(2) - Si(3)	122,86(9)
		Si(4)#1 - N(3) - Si(4)	123,96(10)
		Si(3)#1 - N(2) - Li(2)	118,32(8)
		Si(3) - N(2) - Li(2)	106,75(8)
		Si(3)#1-N(2) - Li(2)#1	106,75(8)
		Si(3)-N(2) - Li(2)#1	118,32(8)
		Si(4)#1-N(3) - Li(2)#1	122,34(8)
		Si(4)-N(3)-Li(2)#1	102,66(8)
		Si(4)#1-N(3) - Li(2)	102,66(8)
		Si(4)-N(3)-Li(2)	122,34(8)

Das gebildete Dimer kristallisiert im monoklinen Kristallsystem in der Raumgruppe P2/n. Der von den beiden Lithiumatomen und den Stickstoffatomen der Hexamethyldisilazylliganden aufgespannte Vierring besitzt eine Winkelsumme von genau 360 ° und ist somit planar. Jedes Lithiumatom wird von einer Ti(O^tBu)₂N(SiMe₃)₂Cl- Einheit flankiert, wobei das Chloratom die beiden Metalle Titan und Lithium (Bindungslänge Ti(1)–Cl(1): 2,2826(5) Å, Cl(1)–Li(2): 2,464(3) Å und Bindungswinkel Ti(1)–Cl(1)–Li(2): 157,47°) µ₂ verbrückt. Diese Werte korrelieren recht gut mit Literaturbekannten, wobei Bindungslängen von 2,333(2) Å für Ti-Cl sowie 2,419(13) Å für Cl-Li angegeben werden.^[208] Die kürzere Bindungslänge zwischen Ti und Cl kann durch eine höhere Kernladung des Titans im Vergleich zu Lithium erklärt werden. Durch diese Bindung, sowie durch die µ2-verbrückenden Amidreste ergibt sich für jedes Lithiumatom eine Koordinationszahl von drei. Das Titanatom weist eine verzerrt tetraedrische Anordnung der verschiedenen Liganden auf. Hierbei liegen die Bindungslängen zu den Sauerstoffatomen der tert-Butoxygruppen bei 1,7506(10) Å für Ti(1)-O(2) und 1,7590(10) Å für Ti(1)-O(1). Die Bindungslänge zum Stickstoffatom des Hexamethyldisilazylliganden beträgt 1,8964(12) Å und ist damit wegen der höheren Elektronegativität des Sauerstoffs (attraktivere Wechselwirkungen) länger als die Ti-O-

Bindungen. Bei Betrachtung der Winkel zwischen Li–Cl und dem jeweiligen Stickstoffatom der verbrückend wirkenden Amidreste fällt eine deutliche Aufweitung des Bindungswinkels zwischen N(3)–Li(2)–Cl(1) mit 146,47(13) ° gegenüber N(2)–Li(2)–Cl(1) mit 107,28(11) ° auf, was auf den sterischen Anspruch der "benachbarten" Hexamethyldisilazylgruppierungen zurückzuführen ist, da der gleiche Winkel bei Anwesenheit zweier *tert*-Butoxyreste nur 107,28(11) ° beträgt. Bindungslängen und –winkel innerhalb der Amidliganden liegen etwa bei 1,7322 Å (N–Si) bzw. für Si–N–Si bei 123,15 ° (gemittelte Werte).

Entsprechend liefert die Charakterisierung dieser Substanz mittels NMR-Spektroskopie die in Abbildung 5.15 zu sehenden Spektren:

Abbildung 5.15: (a) ¹H NMR-Spektrum und (b) ¹³C NMR-Spektrum der Verbindung [Ti(OⁱBu)₂N(SiMe₃)₂ClLiN(SiMe₃)₂]₂.

Hierbei befindet sich das Singulett der endständigen CH₃ der N(SiMe₃)₂-Gruppen im ¹H NMR-Spektrum (Abbildung 5.15 (a)) bei 0,239 ppm und entsprechend im ¹³C NMR-Spektrum (Abbildung 5.15 (b)) bei 4,302 ppm. Die Signale bei 0,405 ppm, 0,416 ppm und 0,416 ppm im ¹H NMR-Spektrum sowie die bei 4,977 ppm, 5,166 ppm, 5,235 ppm und 6,038 ppm (¹³C NMR-Spektrum) sind den restlichen Hexamethyldisilazylgruppen zuzuordnen. Die Methylprotonen der jeweils endständigen *tert*-Butoxygruppen zeigen zwei Singuletts bei 1,301 ppm und 1,340 ppm, sowie im ¹³C-Spektrum die entsprechenden Peaks für die Kohlenstoffatome (CH₃) der O^tBu-Gruppen bei 31,421 ppm und 32,065 ppm, sowie für die quartären Kohlenstoffatome bei den ppm Werten von 81,481 und 86,719. Signale, die dem Lösemittel zuzuordnen sind, wurden explizit gekennzeichnet.

5.3.4 Synthese und Charakterisierung von Zr(O^tBu)₂(NⁱPr₂)₂

Die beiden monomolekular vorliegenden heteroleptischen Precursoren $Zr(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}$ und $Hf(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}$ als auch die dimere Verbindung $[Ti(O^{t}Bu)_{2}N(SiMe_{3})_{2}CILiN(SiMe_{3})_{2}]_{2}$ liefern bei ihrem Einsatz im CVD- Prozess selbst bei hohen Temperaturen lediglich amorphe Beschichtungen (genaue Ausführung vgl. Kapitel 5.3.5). Eine Substitution der Amidliganden sollte Aufschluss über Ligandeneffekte geben. Dabei liegt das Hauptaugenmerk auf der Insertion von zwei sterisch etwas weniger anspruchsvollen Diisopropylamid-Resten (im Gegensatz zu den vorab verwendeten Liganden besitzen diese eine reine Kohlenstoffperipherie ohne Heteroatome) bei Retention der *tert*-Butoxyliganden.

Zur Synthese der Verbindung $Zr(O^tBu)_2(N^iPr_2)_2$ wird gemäß Gleichung 5.4 die Zwischenstufe $Zr(O^tBu)_2Cl_2$ dargestellt. Im direkten Anschluss wird das Lithiumsalz ⁱPr_2NLi im stöchiometrischen Verhältnis 1:2 zugegeben, so dass nach vollständiger Salzeliminierung (Gl. 5.11) die heteroleptische Verbindung $Zr(O^tBu)_2(N^iPr_2)_2$ vorliegen sollte.

$$Zr(O^{t}Bu)_{2}Cl_{2} + 2 {}^{i}Pr_{2}NLi \rightarrow Zr(O^{t}Bu)_{2}(N^{i}Pr_{2})_{2} + 2 LiCl \qquad Gl. 5.11$$

Metathese

Nach Entfernen des Lösemittels resultiert ein gelblicher Feststoff, der bei 115 °C im dynamischen Vakuum vollständig sublimiert werden kann. Die Charakterisierung des gereinigten Produktes mittels NMR liefert die nachfolgend dargestellten Spektren:

Abbildung 5.16: (a) ¹H NMR-Spektrum und (b) ¹³C NMR-Spektrum der Verbindung Zr(O^tBu)₂(NⁱPr₂)₂.

Das ¹H-Spektrum in Abbildung 5.16 (a) zeigt ein überlagertes Doublett bei 1,276-1,305 ppm (CH₃; NⁱPr₂) und zwei Septetts bei 3,432 ppm, bzw. 3,605 ppm (CH; NⁱPr₂) für die

Isopropylamidgruppierungen, sowie zwei Singuletts bei 1,365 ppm und 1,456 ppm, die den *tert*-Butoxygruppen zugeordnet werden können. Die Peaks der CH₃ (NⁱPr₂)- bzw. CH (NⁱPr₂)-Gruppen im entsprechenden ¹³C-Spektrum liegen bei Werten von 26,360 ppm und 26,622 ppm, bzw. 47,072 ppm und 47,473 ppm (Abbildung 5.16 (b)). Die Kohlenstoffsignale der *tert*-Butoxygruppen befinden sich bei 33,191 ppm und 33,322 ppm (CH₃) sowie 76,307 ppm, bzw. 77,823 ppm für C_{quart}. Die Auswertung dieser Spektren legt nahe, dass die Verbindung Zr(O^tBu)₂(NⁱPr₂)₂ in Lösung ein dynamisches Monomer-Dimer-Gleichgewicht ausbildet. Durch Zugabe von THF/THFd₈ kann jedoch, wie die in Abbildung 5.17 (a) und (b) dargestellten NMR-Spektren belegen, eine Stabilisierung des Monomers erfolgen.

Abbildung 5.17: (a) ¹H NMR-Spektrum und (b) ¹³C NMR-Spektrum der mit THF/THFd₈ stabilisierten Verbindung Zr(O^tBu)₂(NⁱPr₂)₂.

Wie in Abbildung 5.17 (a) zu sehen, wird nun für die Isopropylamidgruppierung im ¹H NMR-Spektrum ein einziges Doublett für die Methylprotonen bei 1,259-1,281 ppm sowie ein Septett der CH-Gruppen bei 3,419 ppm beobachtet. Das Singulett bei einer chemischen Verschiebung von 1,354 ppm ist den CH₃ der O^tBu-Gruppierungen zuzuordnen. Die entsprechenden Signale im ¹³C NMR-Spektrum befinden sich bei 32,845 ppm (CH₃; O^tBu)) und 75,822 ppm (C_{quart.}), sowie 25,868 ppm und 46,981 ppm für die CH₃ bzw. CH der NⁱPr₂ Einheiten.

Aus einer gesättigten Toluollösung konnten geeignete Einkristalle isoliert und röntgenographisch analysiert werden. Wie die in Abbildung 5.18 dargestellte Molekülstruktur von $Zr(O^tBu)_2(N^iPr_2)_2$ belegt, ist es möglich, sterisch weniger anspruchsvolle Reste einzuführen und dennoch niedermolekular vorliegende, potentielle Precursoren zu erhalten (wichtig im Hinblick auf ein adäquates Zersetzungsverhalten beim Einsatz im CVD-Prozess).

Abbildung 5.18: Molekülstruktur von Zr(O^tBu)₂(NⁱPr₂)₂.

Es folgt eine Übersicht mit ausgewählten kristallographischen Daten der röntgenographischen Einkristallanalyse der in Abbildung 5.18 dargestellten Verbindung Zr(O^tBu)₂(NⁱPr₂)₂. Der vollständige Datensatz kann im Anhang eingesehen werden.

Summenformel	$C_{20}H_{46}N_2O_2Zr$		
Molmasse	437,88		
Temperatur	190(2) K		
Wellenlänge (Mo _{ka})	0,71073 Å		
Kristallsystem	Monoklin		
Raumgruppe	Cc		
	a = 16,5052(8) Å $\alpha = 90^{\circ}$		
Elementarzellparameter	b = 10,1937(8) Å β = 113,122(4)°		
	c = 17,0175(11) Å $\gamma = 90^{\circ}$		
Zellvolumen	2633,2(3) Å ³		
Formeleinheit pro Zelle	4		
Dichte (berechnet)	1,246 Mg/m ³		
Absorptionskoeffizient	0,438 mm ⁻¹		
F(000)	1072		
Kristallgröße	0,3 x 0,35 x 0,44 mm ³		
Gemessener θ -Bereich	2,41 to 24,68°.		
Index -Bereiche	-19<=h<=17, -11<=k<=11, -19<=l<=19		

Tabelle 5.6:	Ausgewählte	Kristall- und	Strukturdaten	von Zr(O	$^{t}Bu_{2}(N^{i}Pr_{2})_{2}$
1400110 0.00			S in anitom address	1011 =1(0	200)2(11112)2

Gemessene Reflexe	15342
Unabhängige Reflexe	4148 [R(int) = 0.0372]
Strukturverfeinerung	99,6 %
Daten / Restrains / Parameter	4148 / 2 / 271
Goodness-of-fit on F ²	1,105
Endgültige R – Werte $[I > 2\sigma(I)]$	R1 = 0,0422, wR2 = 0,1060
R-Werte (alle Daten)	R1 = 0,0535, wR2 = 0,1161
Restelektronendichte	1,016; -0.448 e.Å ⁻³

Tabelle 5.7: Ausgewählte Bindungslängen und Bindungswinkel von Zr(O^tBu)₂(NⁱPr₂)₂.

Bindung	Bindungslänge [Å]	Bindung	Bindungswinkel [°]
Zr(1)-O(2)	1,911(8)	O(2)-Zr(1)-O(1)	110,29(12)
Zr(1)-O(1)	1,931(8)	O(2)-Zr(1)-N(1)	107,3(3)
Zr(1)-N(1)	2,021(9)	O(1)-Zr(1)-N(1)	109,9(4)
Zr(1)-N(2)	2,091(8)	O(2)-Zr(1)-N(2)	110,6(4)
N(1)-C(10A)	1,39(2)	O(1)-Zr(1)-N(2)	108,8(3)
N(1)-C(7)	1,554(13)	N(1)-Zr(1)-N(2)	110,02(15)
N(1)-C(10B)	1,63(3)	C(10A)-N(1)-C(7)	114,5(11)
N(2)-C(4)	1,343(17)	C(10A)-N(1)-C(10B)	14,1(15)
N(2)-C(1)	1,47(2)	C(7)-N(1)-C(10B)	113,4(15)
O(1)-C(13)	1,395(12)	C(10A)-N(1)-Zr(1)	133,1(9)
O(2)-C(17)	1,442(14)	C(7)-N(1)-Zr(1)	111,2(7)
		C(10B)-N(1)-Zr(1)	135,2(14)
		C(4)-N(2)-C(1)	116,6(10)
		C(4)-N(2)-Zr(1)	114,2(8)
		C(1)-N(2)-Zr(1)	128,1(8)

So handelt es sich bei der heteroleptischen Verbindung $Zr(O^tBu)_2(N^iPr_2)_2$, die im monoklinen Kristallsystem (Raumgruppe Cc) kristallisiert, um ein Monomer. Bedingt durch zwei direkt gebundene Sauerstoffatome der beiden *tert*-Butoxyliganden sowie zwei von Diisopropylamidresten stammende Stickstoffatome besitzt das Zentralatom (Zirkonium) eine verzerrt tetraedrische Koordinationssphäre. Dabei befinden sich die Bindungslängen zwischen Zirkonium und den beiden Sauerstoffatomen der tert-Butoxygruppen bei 1,911(8) Å für Zr-O(2) bzw. 1,931(8) Å für Zr–O(1). Die vom zentralen Zirkonium ausgehenden Bindungen zu den Stickstoffliganden sind mit 2,021(9) Å für Zr-N(1) und 2,091(8) Å bei Zr-N(2) etwas länger. Bindungswinkel zwischen Zentralatom und den Sauerstoff- bzw. Stickstoffatomen der Liganden liegen - gemäß verzerrt tetraedrischer Koordination - bei Werten zwischen 107,3(3) ° (minimal) für O(2)-Zr(1)-N(1) und maximal 110,29(12) ° für O(2)-Zr(1)-O(1). Hinsichtlich der Bindungswinkel zwischen den Kohlenstoffatomen C(10A), C(7), C(4) und C(1) der Diisopropylamidgruppen, Stickstoff (N(1) und N(2)) und Zirkonium fällt auf, dass diese sich stark voneinander unterscheiden. So befinden sich die Winkel zwischen C(4)-N(2)-Zr(1) und C(7)-N(1)-Zr(1) bei Werten von 114,2(8) ° bzw. 111,2(7) °, wohingegen zwischen C(10A)-N(1)-Zr(1) und C(1)-N(2)-Zr(1) mit 133,1(9) ° bzw. 128,1(8) ° wesentlich größere Werte beobachtet werden.

5.3.5 Chemical Vapor Deposition und Beschichtungseigenschaften

Auch die vorab beschriebenen Übergangsmetallprecursoren $Zr(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}$ $Hf(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}, [Ti(O^{t}Bu)_{2}N(SiMe_{3})_{2}ClLiN(SiMe_{3})_{2}]_{2} und Zr(O^{t}Bu)_{2}(N^{t}Pr_{2})_{2} werden$ im thermischen CVD-Prozess zersetzt und die entstehenden Schichten charakterisiert. Hierfür sowie für alle im Folgenden durchgeführten Versuchsreihen werden gereinigte (100)orientierte Siliziumsubstrate auf dem Graphithalter platziert und mit Hilfe eines HF-Generators indirekt auf verschiedene Temperaturen erhitzt. Durch Anlegen eines dynamischen Vakuums (10⁻⁴ bis 10⁻⁶ mbar) und gegebenenfalls simultaner Beheizung des Precursorreservoirs werden die Precursorverbindungen in die Gasphase und entsprechend zur Schichtbildung zum Substrat transportiert. Für alle im Folgenden aufgelisteten Verbindungen werden Beschichtungsprozesse bei jeweiligen Substrattemperaturen von 450 °C bis 750 °C durchgeführt, wobei die Precursortemperaturen für $Zr(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}$ und Hf(O^tBu)₂{N(SiMe₃)₂}₂ bei 90 °C bzw. 100 °C gewählt werden. Die Sublimationstemperaturen von [Ti(O^tBu)₂N(SiMe₃)₂ClLiN(SiMe₃)₂]₂ sowie Zr(O^tBu)₂(N^tPr₂)₂ liegen hingegen bei 70 °C bzw. 80 °C.

Phasenzusammensetzung, Mikrostruktur und Beschichtungseigenschaften

Sowohl die Zersetzung der beiden heteroleptischen, monomeren $Zr(O^{t}Bu)_{2} \{N(SiMe_{3})_{2}\}_{2}$ und $Hf(O^{t}Bu)_{2}{N(SiMe_{3})_{2}}_{2}$ Precursoren als auch die der dimeren Verbindung [Ti(O^tBu)₂N(SiMe₃)₂ClLiN(SiMe₃)₂]₂ führen, wie in Abbildung 5.19 (b) zu sehen, bei allen gewählten Substrattemperaturen (450-750 °C) zu amorphen Filmen auf den verwendeten Si(100)-Substraten (auch durch nachträgliches Tempern bei 750 °C ist es nicht möglich kristalline Schichten zu erzeugen). Darüber hinaus können bezüglich der mittels $Zr(O^{t}Bu)_{2}{N(SiMe_{3})_{2}}_{2}$ und $Hf(O^{t}Bu)_{2}{N(SiMe_{3})_{2}}_{2}$ erhaltenen Beschichtungen keinerlei Morphologieunterschiede festgestellt werden. Sie zeigen über den gesamten

Abbildung 5.19: Morphologie (a) sowie XRD (b) der mittels Zr(O^tBu)₂{N(SiMe₃)₂}₂ (Hf(O^tBu)₂{N(SiMe₃)₂}₂ analog) bei 450–750 °C erhaltenen Beschichtungen auf Siliziumsubstraten. Morphologien resultierend aus der Zersetzung von [Ti(O^tBu)₂N(SiMe₃)₂ClLiN(SiMe₃)₂]₂ bei 450 °C (c), 550 °C (d), 650 °C (e) und 750 °C (f).

Ein Vergleich flüchtigen von Massenspektren der Thermolyseprodukte der $M(O^{t}Bu)_{2}{N(SiMe_{3})_{2}}_{2}$ -Precursoren (M = Zr und Hf) ergibt eine Übereinstimmung in den Hauptzersetzungsprodukten. Als vorherrschende Spezies können Fragmente der Hexamethyldisilvlaminzersetzung (m/z = 146, 100 und 86) ^[209] identifiziert werden. Des Weiteren werden eindeutige Hinweise auf Isobuten (m/z = 56, 41, 39, 28, 27) beobachtet. Die starken Signale bei m/z = 14 und 15 (Methin- und Methylenfragmente), stellen weitere Zersetzungsprodukte der Amin und Alkylabspaltung dar.

Die Zersetzung des Titanprecursors im gleichen Temperaturbereich liefert etwas rauere Oberflächen (450 °C und 550 °C, Abbildung 5.19 (c)) und zusätzliche Agglomerate bei höheren Temperaturen (650–750 °C; Abbildung 5.19 (e) und (f)). Eine nähere Charakterisierung dieser amorphen Filme hinsichtlich ihrer Zusammensetzung erfolgt mit Hilfe der durchgeführten XPS-Analysen (Abbildung 5.20). Hierbei kann in den bei 750 °C mit den monomeren Zirkonium- bzw. Hafniumverbindungen abgeschiedenen Schichten ein Nachweis aller bereits in der Ausgangsverbindung enthaltenen Elemente erfolgen. In beiden Filmen ist jeweils Zirkonium und Hafnium neben Sauerstoff, Stickstoff sowie Kohlenstoff und vor allem Silizium zu finden (Abbildung 5.20 (a)).

Abbildung 5.20: XPS-Spektren von Filmen mittels Abscheidung von $Zr(O^tBu)_2\{N(SiMe_3)_2\}_2$ und $Hf(O^tBu)_2\{N(SiMe_3)_2\}_2$ (a) und $[Ti(O^tBu)_2N(SiMe_3)_2ClLiN(SiMe_3)_2]_2$ (b), jeweils bei 750 °C.

Dies belegt offensichtlich die für eine reine Oxidbeschichtung unzureichende Zersetzung des Precursors. Gleiches trifft im Falle der mittels [Ti(O^tBu)₂N(SiMe₃)₂ClLiN(SiMe₃)₂]₂ hergestellten Filme (Abbildung 5.20 (b)) zu, in denen ebenfalls nicht nur Titan und Sauerstoff, sondern zusätzlich Stickstoff, Kohlenstoff, Silizium sowie Chlor und Spuren von Lithium vorhanden sind. Darüber hinaus resultieren aus allen durchgeführten Abscheidungen bei Substrattemperaturen von 450 °C nur sehr dünne Beschichtungen, so dass davon auszugehen ist, dass diese Temperatur offensichtlich nicht ausreicht, um eine für ein Schichtwachstum angemessene Zersetzung des Vorläufermoleküls zu initiieren. Bei höheren Abscheidetemperaturen können zwar höhere Wachstumsraten, jedoch keine Entstehung kristalliner Oberflächen beobachtet werden.

Die Untersuchung der Adhäsionseigenschaften dieser amorphen Beschichtungen erfolgt mit Hilfe des Scratch-Tests, wie bereits zuvor in Kapitel 5.2.2 näher erläutert. In diesem Zusammenhang zeigen die durch thermische Zersetzung von $Zr(O^tBu)_2\{N(SiMe_3)_2\}_2$ und $Hf(O^tBu)_2\{N(SiMe_3)_2\}_2$ erhaltenen Filme erst bei einer einwirkenden Belastung von $L_c = 0,07$ N (Abbildung 5.21 (b)) erste Beschädigungen in Form kleinster Aufwürfe entlang der Scratchspur. Im Allgemeinen gleitet der Indenter im gesamten Belastungsbereich durch diese Filme, ohne größere Schäden oder gar ein Abplatzen der Beschichtung zu verursachen. Wie den nachträglich aufgenommenen, in Abbildung 5.21 (a), (b) und (c) gezeigten Rasterelektronenmikroskopaufnahmen zu entnehmen ist, liegt auch hier ein eher plastisches Verhalten (lediglich am Ende der Spur sind leichte Materialaufwürfe zu sehen) mit guter Substrathaftung vor.

Abbildung 5.21: REM-Aufnahmen der an mittels Zr(O^tBu)₂{N(SiMe₃)₂}₂ (Hf(O^tBu)₂{N(SiMe₃)₂}₂ analog) erhaltenen amorphen Beschichtungen vorgenommenen Scratch-Tests bei verschiedener Krafteinwirkung (a) 0,01 N (Anfang), (b) 0,07 N und (c) 0,1 N (Ende).

Im Gegensatz dazu genügt, wie in Abbildung 5.22 (a) zu sehen, eine Kraft von 0,03 N, um erste Schäden in der mittels [Ti(O^tBu)₂N(SiMe₃)₂ClLiN(SiMe₃)₂]₂ inhomogener aufgewachsenen Schicht zu verursachen. Neben den Materialanhäufungen am Rande der Scratchspur ist deutlich eine Rissbildung zu erkennen, die bei einer einwirkenden Kraft von 0,1 N in einem Splittern des Films resultiert (Abbildung 5.22 (b)). Dafür sind wahrscheinlich sowohl die Agglomerationsbildung als auch die Präsenz mehrerer Fremdatome in Relation zum jeweiligen Metall innerhalb dieser Beschichtungen verantwortlich.

Abbildung 5.22: REM-Aufnahmen der Scratch-Tests an mittels [Ti(O^tBu)₂N(SiMe₃)₂ClLiN(SiMe₃)₂]₂ erhaltenen Filmen bei verschiedener Krafteinwirkung (a) 0,03 N (b) 0,07 N und (c) 0,1 N.

Im Gegensatz dazu ermöglicht der Einsatz des heteroleptischen Zirkoniumprecursors $Zr(O^tBu)_2(N^iPr_2)_2$ die Abscheidung kristalliner Filme, deren Phasenzusammensetzung jedoch in starkem Maße von der jeweiligen Substrattemperatur (450–750 °C) abhängt. Während bei höheren Temperaturen (650 °C und 750 °C) überwiegend Zirkoniumoxidfilme erhalten werden (Abbildung 5.23 (a)), resultieren aus Abscheidungen unter gleich bleibenden Rahmenbedingungen, jedoch niedrigeren Substrattemperaturen (450-550 °C)

Zirkoniumoxynitridbeschichtungen, deren Kristallinität sich mit steigender Temperatur erhöht (Abbildung 5.23 (b)). Zusätzlich zu den XRD-Messungen belegen die an den Beschichtungen durchgeführten EDX-Analysen deutlich die Präsenz von Stickstoff in den bei 450 °C sowie 550 °C hergestellten Filmen. Wie in Abbildung 5.23 (a) zu sehen, erfolgt bei den oxidischen Zirkoniumfilmen bei 650 °C ein Übergang von einem Phasengemisch, bestehend aus tetragonalem ZrO₂ und Spuren von Zr₂ON₂ zur vorwiegend monoklinen ZrO₂-Phase bei 750 °C. Die innerhalb der XRD-Spektren der Zirkoniumoxynitridschichten vorhandenen und nicht indizierten Peaks (Abbildung 5.23 (b)) können eindeutig dem Siliziumeinkristall (Substrateinfluss) zugeordnet werden (Spuren von tetragonalem ZrO₂ sind innerhalb dieses Spektrums mit (*) gekennzeichnet).

Abbildung 5.23: XRD-Spektren der bei verschiedenen Substrattemperaturen erhaltenen ZrO₂- (a) und Zr₂ON₂-Beschichtungen (b).

Auch bezüglich der Morphologie besteht hier, wie die in Abbildung 5.24 gezeigten REM-Aufnahmen bestätigen, eine Temperaturabhängigkeit. Insgesamt handelt es sich bei den durch Abscheidung bei 450 °C und 550 °C erhaltenen Beschichtungen um sehr dichte, offensichtlich durch inselartiges Wachstum entstandene Filme, wobei auf der gering strukturierten Oberfläche eine deutliche Agglomeratbildung zu erkennen ist (Abbildung 5.24 (a) und (b)). Bei einer Substrattemperatur von 650 °C bildet sich, wie in Abbildung 5.24 (c) zu sehen, eine insgesamt homogenere Filmoberfläche aus, wogegen die bei 750 °C abgeschiedenen Schichten wiederum größere, aus kleinen Kristalliten zusammengesetzte Agglomerate zeigen und insgesamt poröser wirken (Abbildung 5.24 (d)).

Abbildung 5.24: Morphologien, resultierend aus der Zersetzung von Zr(O^tBu)₂(NⁱPr₂)₂ bei 450 °C (a), 550 °C (b), 650 °C (c) und 750 °C (d).

Die Zersetzung der Zr(O^tBu)₂(N^tPr₂)₂-Vorstufe führt im Massenspektrum zu eindeutigen Signalen, die von Diisopropylamin (m/z = 101, 86 und 44) und Isobuten (m/z = 56, 41, 39, 28 und 27) stammen. Dies unterstützt die These, dass die Oxophilie des frühen Übergangsmetalls zur Abspaltung von sauerstofffreien Resten, wie Isobuten, führt und Sauerstoff hauptsächlich Des Weiteren hat sich herausgestellt, am Metall gebunden bleibt. dass die Zirkoniumoxidfilme, die bei 750 °C hergestellt wurden (Abbildung 5.25 (a)), deutlich zu erkennende Verspannungen aufweisen, was sich nach einigen Tagen in einem kompletten Absplittern vom Substrat äußert. Mit Hilfe der an Querschnitten dieser bei unterschiedlichen Temperaturen hergestellten Filme vorgenommenen REM-Untersuchungen kann eine mit steigender Substrattemperatur (und ansonsten völlig unveränderten Parametern) stetige Erhöhung der Wachstumsgeschwindigkeit nachgewiesen werden. So zeigen die Zirkoniumoxynitridschichten, die bei 450 °C bzw. 550 °C entstehen, Wachstumsraten von 8,6 nm/min bzw. 16,6 nm/min, wogegen das Wachstum der oxidischen Schichten bei 53,3 nm/min (650 °C) bzw. 87,7 nm/min (750 °C) liegt.

Abbildung 5.25: (a) REM-Aufnahme der absplitternden Beschichtung (750 °C). REM-Aufnahmen des Scratch-Tests an mittels Zr(O^tBu)₂(NⁱPr₂)₂ bei 650 °C erhaltenen Film bei verschiedener Krafteinwirkung (b) Beginn (0,01N) und (c) 0,06 N.

Wie schon durch obige Ausführungen zu erwarten, zeigen alle Filme, ausgenommen diejenigen, die durch Abscheidung bei Substrattemperaturen von 750 °C abgeschieden wurden, durchgehend gute Adhäsionseigenschaften am Substrat, wobei es, wenn überhaupt, erst bei einer einwirkenden Kraft von ca. 0,08 N zu Beschädigungen in Form kleiner Risse kommt. In Abbildung 5.25 (b) und (c) ist die Scratchspur auf einer bei 650 °C hergestellten Beschichtung einmal am Anfang, also bei beginnender Krafteinwirkung (b), sowie bei 0,06 N zu sehen (c), wobei deutlich wird, dass hier eine gute Substrathaftung vorliegt. Bei 0,06 N resultieren an der Beschichtung selbst keinerlei Schädigungen, es ist lediglich die Verbreiterung des Scratches zu sehen.

5.4 Herstellung von TiO₂–Beschichtungen: Modulation der Schichteigenschaften durch gezieltes Precursordesign

Nanomaterialien, bestehend aus Titanoxid, sind aufgrund ihrer Bandlücke (> 3,0 eV) für eine hohe Absorption im UV-Bereich und ihre damit einhergehende UV-Schutzfunktion bekannt.^{[210][211]} Darüber hinaus handelt es sich hierbei um ein stabiles, kostengünstiges und vor allem ungiftiges Material.^[212] das eine sehr hohe photokatalytische Aktivität hinsichtlich der Zersetzung organischer und anorganischer Verunreinigungen besitzt.^{[213]-[218]} Diese Eigenschaft kann zudem auch zur erfolgreichen Bekämpfung von Bakterien (selbstreinigende bzw. selbstständig sterilisierende Materialien) genutzt werden.^[219] Durch geeignete TiO₂-Beschichtungen (hydrophil / hydrophob) auf Hauswänden, Fenstern oder Spiegeln ist es sogar möglich, einen Selbstreinigungseffekt zu erzielen oder ein Beschlagen durch Feuchtigkeit zu verhindern.^{[220]-[223]} Darüber hinaus ist bekannt, dass der auf Titanwerkstoffen spontan ausgebildete, also native Titanoxidfilm, das Metall vor Korrosion schützt und somit einen erheblichen Beitrag zur Biokompatibilität leistet.^{[224]-[226]} Dennoch sollte nicht außer Acht gelassen werden, dass die biomedizinische Einsetzbarkeit einer synthetisch hergestellten Titanoxidbeschichtung drastisch von Oberflächeneigenschaften wie Stöchiometrie, Topografie und vor allem von der Defektdichte, Kristallstruktur, chemischen Zusammensetzung abhängt.^{[55][56]} Wie zahlreiche Studien belegen, werden sowohl die Protein-Oberflächen- als auch die Zell-Oberflächen-Wechselwirkungen in starkem Maße von der Oberflächentopographie, Rauigkeit und vor allem der chemischen Filmzusammensetzung bestimmt.^{[58]-[63]} So kann etwa eine Implantatoberfläche durch Ionenauswaschung oder Freisetzung bestimmter Komponenten für bestimmte Angriffe an Zellmembranen verantwortlich gemacht werden. Nach Einbringen eines Implantates kommt es also sofort zur Wechselwirkung mit der direkten biologischen Umgebung, was sich in diversen physikobiologischen Interaktionen zwischen chemischen sowie Implantatoberfläche und Makromolekülen des umgebenden Gewebes und der Körperflüssigkeit äußert. Diesbezüglich besteht ein großes Interesse an Oberflächenmodifikationen (Topografie und chemischer Konstitution), die z. B. eine verstärkte Osteointegration (Wechselwirkung mit Osteoblasten bis hin zum Einwachsen in das Knochengewebe) bewirken.^{[227]-[230]} Die Herstellung solcher Oberflächen, die eine homogene, nanostrukturierte Beschaffenheit in Kombination mit einer bioverträglichen Zusammensetzung aufweisen, stellt daher für die Beschichtungstechnologie eine große Herausforderung dar. In diesem Zusammenhang eröffnet die molekül-basierte chemische Gasphasenabscheidung die Möglichkeit, phasenselektiv sehr reine, dünne oxidische Beschichtungen mit guter Substrat-Schicht-Adhäsion in Kombination mit hohen Abscheidungsraten und Kontrolle der Zusammensetzung zu synthetisieren.^[231] Wichtig dabei ist jedoch, wie bereits erwähnt, die Verwendung eines geeigneten Precursors mit maßgeschneiderten Eigenschaften. Aus diesem Grunde erfolgt zur Abscheidung solcher Titanoxidbeschichtungen die Synthese der in Abbildung 5.26 dargestellten neuen "Precursorfamilie", bestehend aus insgesamt acht verschiedenen Verbindungen.

Abbildung 5.26: Precursoren zur Herstellung der Titanoxidbeschichtungen.

Ausgehend von ClTi(O¹Pr)₃ werden alle weiteren Titanprecursoren hergestellt, indem die drei Isopropoxygruppen am Metallatom beibehalten werden und das Chloratom durch Salzeliminierung Stickstoffliganden $(-NMe_2,$ -NEt₂, $-N^{1}Pr_{2}$ gegen $-N(SiMe_3)_2),$ Sauerstoffliganden (-O^tBu) sowie Aryl- bzw. Alkylreste (-C₅H₅ (Cp), -Me), ausgetauscht wird. Nachfolgend werden die so erhaltenen Titanverbindungen im thermischen CVD-Prozess eingesetzt, wobei die Abscheidung jeweils auf (100)-orientierten Siliziumsubstraten bei Temperaturen zwischen 450 °C und 750 °C erfolgt. Wie im Folgenden näher erläutert, ist es durch die Modifizierung jeweils nur eines Liganden möglich, Einfluss auf resultierende Schichtzusammensetzungen, Phasen, Topographieeffekte sowie das biokompatible Verhalten auszuüben. An den resultierenden Beschichtungen vorgenommene Zelltests mit Osteoblasten geben dabei Aufschluss über das (Precursor)Chemie-(Material)Struktur-(Bio)Aktivitäts-Verhältnis.

5.4.1 Synthese und Charakterisierung titanhaltiger Precursoren

Die Synthese der heteroleptischen Titanprecursoren erfolgt ausgehend von ClTi(OⁱPr)₃ (Aldrich), das ebenso wie Ti(OⁱPr)₄ (Aldrich) mittels Destillation (55 °C/10⁻³ mbar und 60 °C/10⁻³ mbar) gereinigt wird. Alle im Folgenden beschriebenen Precursoren (MeTi(OⁱPr)₃, $Me_2NTi(O^{1}Pr)_3$, $^{1}Pr_{2}NTi(O^{1}Pr)_{3}$ ^tBuOTi(O¹Pr)₃ $Et_2NTi(O^{1}Pr)_3$, $CpTi(O^{1}Pr)_{3}$, und $(Me_3Si)_2NTi(O^iPr)_3)$ werden, wie anhand der Reaktionsgleichungen 5.12 – 5.18 zu sehen, durch Metathesereaktionen von ClTi(O¹Pr)₃ mit den entsprechenden Lithium- bzw. Natriumverbindungen hergestellt. Die Modifizierung der Liganden erfolgt so, wie vorab schon kurz angesprochen, dass sich am Titanzentralatom drei Isopropoxygruppen befinden und jeweils der vierte Ligand variiert wird. Variation bedeutet in diesem Falle die Insertion von jeweils einem Sauerstoff-, Stickstoff- oder Kohlenstoffliganden. Die genaue sowie Vorgehensweise Reaktionszeiten, die Reaktionstemperaturen und die Synthesevorschriften der verwendeten Vorstufen können dem Experimentellen Teil entnommen werden. Die Umsetzung von ClTi(O¹Pr)₃ mit Methyllithium liefert die - aufgrund Einführung des kleinsten aller verwendeten Liganden - flüchtigste heteroleptische Verbindung dieser Reihe. MeTi(OⁱPr)₃ wird im dynamischen Vakuum (10⁻³ mbar) bei einer Übergangstemperatur von 45 °C durch Destillation in Form einer farblosen Flüssigkeit erhalten.

$$ClTi(O^{i}Pr)_{3} + MeLi \rightarrow MeTi(O^{i}Pr)_{3} + LiCl \qquad Gl. 5.12$$

Metathese

Abbildung 5.27: (a) ¹H NMR-Spektrum und (b) ¹³C NMR-Spektrum der Verbindung MeTi(OⁱPr)₃.

Die Charakterisierung dieses Produktes mittels NMR-Spektroskopie liefert die in Abbildung 5.27 gezeigten Spektren, deren Auswertung nachfolgend tabellarisch aufgelistet ist:

¹ H NMR-Spektrum [ppm]			¹³ C NMR-Spektrum [ppm]	
0,098	S	CH ₃ (Methyl)	40,511	CH ₃ (Methyl)
1,286-1,317	d	CH ₃ (O ⁱ Pr)	25,871	CH ₃ (O ⁱ Pr)
4,732	sep	CH(O ⁱ Pr)	76,204	CH (O ⁱ Pr)

Tabelle 5.8: Chemische Verschiebungen von Me₂NTi(OⁱPr)₃.

Die in Abbildung 5.27 (a) und (b) zu sehenden Spektren belegen den Austausch des Chloratoms am Titanzentrum gegen einen CH₃-Liganden. Hierbei ist neben den von den Isopropoxygruppen stammenden Signalen im ¹H NMR-Spektrum (Doublett bei 1,286-1,317 ppm und Septett bei 4,732 ppm) ein Singulett bei 0,098 ppm vorhanden, welches von den Methylprotonen stammt. Das entsprechende Signal der C-Atome befindet sich im ¹³C NMR-Spektrum bei 40,511 ppm.

Zur Insertion des kleinsten stickstoffhaltigen Restes dieser Precursorreihe (-NMe₂) wird die Ausgangsverbindung ClTi(OⁱPr)₃ mit einer äquimolaren Menge des zuvor frisch hergestellten Lithiumsalzes LiNMe₂ zur Reaktion gebracht. Die Charakterisierung des gelben, durch Destillation gereinigten, öligen Reaktionsproduktes mit Hilfe der NMR-Spektroskopie zeigt, dass es sich dabei eindeutig um die gemischt substituierte Titanverbindung Me₂NTi(OⁱPr)₃ handelt. Zur Destillation dieses Precursors im dynamischen Vakuum (10⁻³ mbar) ist eine Temperatur von 53 °C erforderlich.

$$ClTi(O^{i}Pr)_{3} + Me_{2}NLi \rightarrow Me_{2}NTi(O^{i}Pr)_{3} + LiCl \qquad Gl. 5.13$$

Metathese

Abbildung 5.28: (a) ¹H NMR-Spektrum und (b) ¹³C NMR-Spektrum der Verbindung Me₂NTi(OⁱPr)₃.

Die erhaltenen NMR-Spektren sind in Abbildung 5.28 (a) und (b) zu sehen, die Zuordnung der Signale ist in Tabelle 5.9 aufgeführt.

¹ H NMR-Spektrum [ppm]			¹³ C NMR-Spektrum [ppm]	
1,216-1,247	d	CH ₃ (O ⁱ Pr)	26,334	CH ₃ (O ⁱ Pr)
3,167	S	CH ₃ (NMe ₂)	45,848	CH ₃ (NMe ₂)
4,521	sep	CH(O ⁱ Pr)	75,764	CH(O ⁱ Pr)

Tabelle 5.9: Chemische Verschiebungen von Me₂NTi(O¹Pr)₃.

Die NMR-Spektren bestätigen das Vorliegen der Zielverbindung Me₂NTi(O¹Pr)₃. Neben den Signalen der Isopropoxygruppen befindet sich im ¹H-NMR das Singulett der Methylprotonen der Dimethylamidgruppe bei 3,167 ppm (Abbildung 5.28 (a)). Das entsprechende Signal der Kohlenstoffatome dieses Liganden ist im ¹³C-Spektrum (Abbildung 5.28 (b)) bei ppm Werten von 45,845 zu sehen. Die Synthese des Diethylamid-Analogons erfolgt auf gleichem Wege (vgl. hierzu Gleichung 5.14). Im Falle von Et₂NTi(OⁱPr)₃ wird ClTi(OⁱPr)₃ mit dem zuvor synthetisierten Et₂NLi in einem stöchiometrischen Verhältnis von 1:1 umgesetzt, wobei eine ölige, leuchtend gelbe Flüssigkeit als Reaktionsprodukt erhalten werden kann. Die Reinigung dieses Precursors erfolgt mittels Destillation im dynamischen Vakuum bei einer Übergangstemperatur von 75 °C.

$$ClTi(OiPr)_3 + Et_2NLi \rightarrow Et_2NTi(OiPr)_3 + LiCl$$

$$Gl. 5.14$$
Metathese

Die Charakterisierung zeigt, wie in Abbildung 5.29 zu sehen, eindeutig neben den beibehaltenen Isopropoxygruppen die Anwesenheit eines Diethylamidliganden am Titanatom. Die exakten chemischen Verschiebungen können Tabelle 5.10 entnommen werden.

¹ H NMR-Spektrum [ppm]			¹³ C NMR-Spektrum [ppm]	
1,137; 1,467	t	CH ₃ (NEt ₂)	15,553; 15,623	CH ₃ (NEt ₂)
1,213-1,243	d	CH ₃ (O ⁱ Pr)	26,425	CH ₃ (O ⁱ Pr)
3,494; 3,482	q	CH ₂ (NEt ₂)	47,501; 48,001	CH ₂ (NEt ₂)
4,497	sep	CH(O ⁱ Pr)	75,370	CH(O ⁱ Pr)

Tabelle 5.10: Chemische Verschiebungen von Et₂NTi(OⁱPr)₃.

Wie bei Betrachtung der in Abbildung 5.29 (a) und (b) dargestellten NMR-Spektren deutlich wird, zeigen alle vom Ethylamidliganden stammenden Signale jeweils sowohl im Protonenals auch im Kohlenstoffspektrum Peakverdoppelungen auf (1,137; 1,467 (t) CH₃(NEt₂), 3,494; 3,482 (q) CH₂(NEt₂) sowie 15,553; 15,623 CH₃(NEt₂) und 47,501; 48,001 CH₂(NEt₂)), wohingegen die von den Isopropoxygruppen verursachten unverändert vorliegen. Eine mögliche Erklärung hierfür ist das Vorhandensein eines dynamischen Monomer-/Dimergemisches innerhalb der Lösung.

Abbildung 5.29: (a) ¹H NMR-Spektrum und (b) ¹³C NMR-Spektrum der Verbindung Et₂NTi(OⁱPr)₃.

Gemäß Gleichung 5.15 resultiert aus der Umsetzung von ClTi(OⁱPr)₃ mit dem vorab durch Metallierung synthetisierten Lithiumsalz ⁱPr₂NLi ein weiterer potentieller Precursor (ⁱPr₂NTi(OⁱPr)₃) ebenfalls in Form einer gelben Flüssigkeit, die problemlos durch Destillation (65 °C Übergangstemperatur) im dynamischen Vakuum gereinigt werden kann.

$$ClTi(OiPr)_{3} + {^iPr_2NLi} \rightarrow {^iPr_2NTi(OiPr)_{3}} + LiCl \qquad Gl. 5.15$$

Metathese

Auch hier kann anhand der NMR-Spektren bewiesen werden, dass es sich bei dem erhaltenen Reaktionsprodukt, wie geplant, um eine Titanverbindung handelt, die neben den drei Sauerstoffliganden (Isopropoxygruppen) den eingeführten Stickstoffliganden (-NⁱPr₂) am Metallzentrum trägt. Deutlich wird dies bei Betrachtung des in Abbildung 5.30 dargestellten Protonen- (a) bzw. Kohlenstoffspektrums (b) und den in Tabelle 5.11 aufgelisteten chemischen Verschiebungen:

¹ H NMR-Spektrum [ppm]		¹³ C NMR-Spektrum [ppm]		
1,226-1,255	d	$CH_3(N^iPr_2)$	24,651	$CH_3(N^iPr_2)$
1,235-1,267	d	CH ₃ (O ⁱ Pr)	26,516	CH ₃ (O ⁱ Pr)
3,647	sep	CH(N ⁱ Pr ₂)	50,291	CH(N ⁱ Pr ₂)
4,574	sep	CH(O ⁱ Pr)	75,067	CH(O ⁱ Pr)

Tabelle 5.11: Chemische Verschiebungen von ¹Pr₂NTi(O¹Pr)₃.

Abbildung 5.30: (a) ¹H NMR-Spektrum und (b) ¹³C NMR-Spektrum der Verbindung ⁱPr₂NTi(OⁱPr)₃, (c) Vergrößerung der Doublettaufspaltung.

Abgesehen von den Signalen, die auf die Isopropoxyliganden zurückzuführen sind, ist im ¹H NMR-Spektrum (Abbildung 5.30 (a)) ein Doublett (1,226-1,255 ppm: $CH_3(N^iPr_2)$) sowie ein Septett (3,647: $CH(N^iPr_2)$) zu sehen. Diese Peaks können eindeutig den Wasserstoffatomen des Diisopropylamidrestes zugeordnet werden, wobei die in Abbildung 5.30 (c) dargestellte Vergrößerung deutlich die Aufspaltung der beiden überlagerten Doubletts (-OⁱPr und -NⁱPr_2) zeigt. Die Signale des Stickstoffliganden befinden sich im ¹³C-Spektrum (Abbildung 5.30 (b)) bei 24,651 ppm (CH₃(NⁱPr₂)) und 50,291 ppm (CH(NⁱPr₂)).

Der Austausch des Chloratoms der Ausgangsverbindung gegen den sterisch anspruchsvollsten Stickstoffliganden der Form $-N(SiMe_3)_2$ erfolgt gemäß Gl. 5.16 durch die Umsetzung von ClTi(OⁱPr)₃ mit LiN(SiMe₃)₂, welches zuvor aus n-BuLi und Hexamethyldisilazan synthetisiert und frisch sublimiert eingesetzt wird.

$$ClTi(O^{i}Pr)_{3} + (Me_{3}Si)_{2}NLi \rightarrow (Me_{3}Si)_{2}NTi(O^{i}Pr)_{3} + LiCl \qquad Gl. 5.16$$

Metathese

Die daraus resultierende farblose, sehr viskose Flüssigkeit wird durch Destillation gereinigt, wobei eine Übergangstemperatur von 84 °C beobachtet wird. Die Charakterisierung bestätigt den vollständigen Ablauf dieser Metathesereaktion:

Abbildung 5.31: (a) ¹H NMR-Spektrum und (b) ¹³C NMR-Spektrum der Verbindung (Me₃Si)₂NTi(OⁱPr)₃.

Die Anwesenheit des Hexamethyldisilazylrestes neben den Isopropoxygruppen am Titanatom äußert sich im ¹H NMR-Spektrum (Abbildung 5.31 (a)) durch das Singulett bei 0,357 ppm ($CH_3(N(SiMe_3)_2)$) sowie im ¹³C NMR-Spektrum (Abbildung 5.31 (b)) durch ein bei 4,325 ppm befindliches Signal ($CH_3(N(SiMe_3)_2)$).

Tabelle 5.12: Chemische Verschiebungen von (Me₃Si)₂NTi(O¹Pr)₃

¹ H NMR-Spektrum [ppm]			¹³ C NMF	R-Spektrum [ppm]
0,357	S	$CH_3(N(SiMe_3)_2)$	4,325	CH ₃ (N(SiMe ₃) ₂)
1,174-1,205	d	CH ₃ (O ⁱ Pr)	26,152	CH ₃ (O ⁱ Pr)
4,478	sep	CH(O ⁱ Pr)	76,682	CH(O ⁱ Pr)

Wie in Gl. 5.17 zu sehen, ist es möglich, durch die Umsetzung von $ClTi(O^{i}Pr)_{3}$ mit Cyclopentadienylnatrium einen weiteren Titanprecursor herzustellen (vgl. hierzu Gl. 5.12), der neben Sauerstoffatomen auch Kohlenstoff in seiner Ligandensphäre besitzt:

$$ClTi(OiPr)_3 + NaCp \rightarrow CpTi(OiPr)_3 + NaCl (Cp = C_5H_5)$$
Gl. 5.17
Metathese

Das hierbei erhaltene Endprodukt liegt in Form einer leicht gelblichen Flüssigkeit vor und kann durch Destillation bei $62 \,^{\circ}$ C und 10^{-3} mbar gereinigt werden. Die NMR-Spektren bestätigen dabei die Anwesenheit des aromatischen Ringsystems am Zentralatom:

Abbildung 5.32: (a) ¹H NMR-Spektrum und (b) ¹³C NMR-Spektrum der Verbindung CpTi(OⁱPr)₃.

Die Peaks der am Titan befindlichen Cyclopentadienylgruppe liegen bei ppm-Werten, die für Aromaten typisch sind. Wie in Abbildung 5.32 (a) ersichtlich, liegt das vom C_5H_5 -Liganden stammende Singulett im Protonenspektrum bei 6,127 ppm, wobei das entsprechende Signal im ¹³C NMR-Spektrum (Abbildung 5.32 (b)) bei 111,799 ppm zu sehen ist.

Tabelle 5.15:	Chemische verschiedungen von $Cp \Pi(OPr)_3$.	

-halla 5 12.

Chamiasha Uanashishan asa usa CaTi(OⁱDa)

¹ H NMR-Spektrum [ppm]		¹³ C NMR-Spektrum [ppm]		
1,096-1,126	d	CH ₃ (O ⁱ Pr)	25,651	CH ₃ (O ⁱ Pr)
4,444	sep	CH(O ⁱ Pr)	77,068	CH(O ⁱ Pr)
6,127	S	CH(Cp)	111,799	CH(Cp)

Die letzte heteroleptische Titanverbindung der im Rahmen der vorliegenden Arbeit synthetisierten Precursorbibliothek besitzt am Zentralatom vier durch Sauerstoffatome gebundene Liganden, wobei sich jedoch die Kohlenstoffperipherie eines Liganden von derjenigen der drei Isopropoxygruppen unterscheidet. Durch die Reaktion von ClTi(OⁱPr)₃ mit KO^tBu ist es möglich, über Salzeliminierung, wie in Gl. 5.18 zu sehen, die Verbindung ^tBuOTi(OⁱPr)₃ in Form einer farblosen Flüssigkeit herzustellen.

$$ClTi(OiPr)_3 + KOtBu \rightarrow {}^{t}BuOTi(OiPr)_3 + KCl \qquad Gl. 5.18$$

Metathese

Die Aufarbeitung dieses Precursors erfolgt durch Destillation im dynamischen Vakuum bei einer Temperatur von 50 °C. Die zur Charakterisierung herangezogenen NMR-Spektren untermauern auch hier eindeutig das Vorliegen der geplanten gemischt substituierten Verbindung der Form ^tBuOTi(OⁱPr)₃.

Abbildung 5.33: (a) ¹H NMR-Spektrum und (b) ¹³C NMR-Spektrum der Verbindung ^tBuOTi(OⁱPr)₃.

Wie in Abbildung 5.33 (a) zu sehen, liegt das von der *tert*-Butoxygruppe (CH₃(O^tBu)) stammende Singulett im ¹H NMR-Spektrum bei 1,292 ppm und im Kohlenstoffspektrum (Abbildung 5.33 (b)) bei 31,876 ppm (CH₃(O^tBu)) bzw. bei 79,631 ppm (C(O^tBu)).

¹ H NMR-Spektrum [ppm]			¹³ C NMR-Spektrum [ppm]	
1,185-1,216	d	CH ₃ (O ⁱ Pr)	26,235	CH ₃ (O ⁱ Pr)
1,292	S	CH ₃ (O ^t Bu)	31,876	CH ₃ (O ^t Bu)
4 450		$CU(O^{i}D_{r})$	75,643	$CH(O^{i}Pr)$
4,437	sep		79,631	$C(O^tBu)$

Tabelle 5.14: Chemische Verschiebungen von ^tBuOTi(OⁱPr)₃.

Das in Abbildung 5.34 dargestellte Diagramm gibt einen zusammenfassenden Überblick über alle im Rahmen dieser Dissertation synthetisierten heteroleptischen Titanverbindungen sowie einen direkten Vergleich ihres jeweils durch Ligandenmodifizierung resultierenden Flüchtigkeitsverhaltens.

Abbildung 5.34: Flüchtigkeiten der heteroleptischen Titanprecursoren.

Was hierbei sofort auffällt, ist der direkte Zusammenhang zwischen der das Metallzentrum umgebenden Ligandensphäre und den resultierenden Siedepunkten der Precursoren. Insgesamt ist es möglich, einen Temperaturbereich von 45 °C durch Insertion des kleinsten Liganden (**Me**Ti(OⁱPr)₃) bis hin zu 84 °C bei der Verbindung mit dem sterisch anspruchsvollsten Hexamethyldisilazylrestes ((**Me**₃Si)₂NTi(OⁱPr)₃) abzudecken.

5.4.2 CVD und Beschichtungseigenschaften

Nicht nur aufgrund der bereits angesprochenen, für den Einsatz im thermischen CVD-Prozess. erforderlichen Flüchtigkeiten, sondern auch wegen ihrer adäquaten Gasphasenstabilität (keine vorzeitige Zersetzung) in Kombination mit vordefinierten Titan-Sauerstoffbindungen innerhalb des Moleküls sollten alle diese als Flüssigkeit vorliegenden Verbindungen für den Einsatz als Single-Source-Precursor zur Herstellung von Titanoxidbeschichtungen prädestiniert sein. Darüber hinaus ermöglicht der systematische Ersatz einer Alkoxidgruppe durch verschiedene Heteroliganden die Modulation der physikochemischen Eigenschaften (Nuklearität, Reaktivität und Dampfdruck) und damit des Zersetzungsverhaltens (Ligandenfragmentierung und Stabilität der entstehenden Intermediate) des jeweiligen Precursors. In Abbildung 5.35 ist eine Zusammenstellung aller zur chemisch gesteuerten Synthese TiO₂ Beschichtungen verwendeten Titanprecursoren von (Nummerierung zur besseren Übersicht innerhalb nachfolgender Abbildungen) zu sehen.

Abbildung 5.35: Nummerierung der heteroleptischen Titanprecursoren.

Die Einsetzbarkeit dieser Verbindungen im thermisch aktivierten CVD-Prozess wird ebenfalls in dem in Abbildung 7.1 dargestellten horizontalen Kaltwandreaktor unter Verwendung von (100)-Siliziumsubstraten getestet, deren Temperaturen zwischen 450 °C und 750 °C gewählt werden. Die exakten, für jede Beschichtungsserie individuellen Prozessparameter, wie Precursortemperatur, Precursorvolumen und Abscheidezeit, können dem experimentellen Teil entnommen werden.

Die röntgenographische Untersuchung der TiO₂-Beschichtungen, die durch Abscheidung der Precursorsysteme (15) – (22) bei einer Substrattemperatur von 550 °C erhalten wurden, zeigen, wie in Abbildung 5.36 zu sehen, erhebliche Unterschiede bezüglich der Phasenzusammensetzung.

Abbildung 5.36: Röntgendiffraktogramme der mittels verschiedener Precursoren (15) – (22) bei 550 °C erhaltenen TiO₂-Beschichtungen auf Si (100).

Während ClTi(OⁱPr)₃, MeTi(OⁱPr)₃ und Me₂NTi(OⁱPr)₃ bei 550 °C reine Anatasfilme liefern, werden unter Verwendung der Precursoren Et₂NTi(O¹Pr)₃, ¹Pr₂NTi(O¹Pr)₃, CpTi(O¹Pr)₃ und ^tBuOTi(O¹Pr)₃ bei gleicher Substrattemperatur Phasengemische, bestehend aus Anatas und Rutil, erhalten. Der Einsatz des Precursors (Me₃Si)₂NTi(O¹Pr)₃ hingegen führt zu amorphen TiO₂-Filmen. Reine Anatasbeschichtungen können durch Abscheidung von ClTi(O¹Pr)₃ in einem breiten Temperaturbereich, angefangen von 450 °C bis hin zu 650 °C, erhalten werden, wobei eine Konvertierung zur reinen Rutilphase auch durch nachträgliches Tempern bei 850 °C (12 h) nicht gelingt. Im Gegensatz dazu resultiert aus Temperversuchen einer mittels Et₂NTi(O¹Pr)₃ hergestellten und aus einem Anatas-/Rutilgemisch zusammengesetzten Beschichtung eine fast vollständige Phasenumwandlung zu Rutil (Abbildung 5.37 (a)), was möglicherweise durch die bereits existierenden Rutilkeime innerhalb des Gemisches zu begründen ist. Fasst man nun die Resultate aller mit der Verbindung Et₂NTi(O¹Pr)₃ durchgeführten CVD- Experimente zusammen, wird deutlich, dass nur durch eine Variation der Substrattemperatur im letzten Fall durch nachträgliches (bzw. Tempern) Titanoxidbeschichtungen aller Phasenkompositionen synthetisiert werden können. Abbildung 5.37 (b) zeigt diese Phasenentwicklung von reinem Anatas bei 450 °C über ein Anatas-Rutilgemisch (550-750 °C) bis hin zur nahezu reinen Rutilbeschichtung (lediglich noch geringste Spuren von Anatas vorhanden) bei 850°C.

Abbildung 5.37: Röntgendiffraktogramme der getemperten TiO₂-Beschichtungen (a), Phasenentwicklung der mittels Et₂NTi(OⁱPr)₃ erhaltenen Filme bei verschiedenen Substrattemperaturen (b).

Abscheidungen mit Verbindung CpTi(O¹Pr)₃ ermöglichen ein gezielt steuerbares, phasenselektives Aufwachsen reiner Anatas- und Rutilfilme bei 450 °C bzw. 650 °C (Abbildung 5.38 (a)). Die geringe Kohlenstoffkontamination innerhalb dieser Beschichtungen lässt auf eine vollständige und saubere Abspaltung der Cyclopentadienylgruppe schließen, was die Bildung reiner Phasen zusätzlich zu unterstützen scheint. Diesbezüglich sei auch erwähnt, dass es durch die thermische Labilität der Metall-Cp-Einheiten, die eine effiziente Zersetzung bedingt, möglich ist, kristalline Germaniumstrukturen schon bei sehr niedrigen Temperaturen herzustellen.^[232] Im Gegensatz zu allen anderen Precursoren dieser Reihe können durch die thermische Zersetzung der Verbindung mit dem sterisch anspruchsvollsten Heteroliganden (Me₃Si)₂NTi(OⁱPr)₃ unabhängig von Substrattemperatur (450 °C – 750 °C) und Precursorfluss lediglich amorphe Filme erhalten werden.

Abbildung 5.38: (a) Phasenentwicklung der mittels CpNTi(OⁱPr)₃ erhaltenen Filme bei verschiedenen Substrattemperaturen und (b) XPS-Übersichtsspektren der amorphen Filme aus Abscheidung von (Me₃Si)₂NTi(OⁱPr)₃.

Durchgeführte XPS-Untersuchungen bestätigen deutlich, wie in Abbildung 5.38 (b) dargestellt, die Präsenz von Titan, Sauerstoff, aber auch Kohlenstoff sowie Silizium und geringer Mengen an Stickstoff innerhalb dieser Beschichtungen. Nach 15-minütigem Sputtern mit Ar⁺ weist die Elementzusammensetzung einen höheren Stickstoffanteil auf. Der im molekularen Aufbau des Precursors begründete Einbau von N und Si im resultierenden Endmaterial wirkt hemmend auf die Keimbildung. Obwohl durch höhere Substrattemperaturen die Einlagerung der Heteroatome etwas reduziert werden kann (450 °C: N: 2.68 %; Si: 7.59 % und 750 °C: N: 2.46 %; Si: 2.33 %), ist es nicht möglich, bei 750 °C eine Kristallisation zu initialisieren. Die chemische Gasphasenabscheidung von Ti(O^IPr)₄ führt in einem Temperaturbereich zwischen 450 °C und 550 °C zu reinem Anatas, wogegen bei höheren Temperaturen (bis 750 °C) beide Phasen (Anatas und Rutil) koexistieren.^[233] Reine Anatasfilme bzw. Phasengemische resultieren mit steigender Substrattemperatur aus Zersetzungen der Precursoren Me₂NTi(OⁱPr)₃ und ^tBuOTi(OⁱPr)₃ sowie ⁱPr₂NTi(OⁱPr)₃, wobei hier der Rutilanteil auch bei 750 °C nur sehr gering ist. Einzig bei der Verbindung mit dem kleinsten Heteroliganden MeTi(OⁱPr)₃ kommt es bei einer Substrattemperatur von 450 °C

neben Anatas zur Ausbildung der Brookitphase. Vergleichbare Ergebnisse sind in der Literatur zu finden, wobei man bei der Abscheidung von $Ti(O^iPr)_4$ bei 400 °C ebenfalls die Bildung der Brookitphase beobachtet.^[53]

Die folgende Auflistung ermöglicht einen zusammenfassenden Überblick über die Phasenevolution aller unter Verwendung dieser Precursoren hergestellten Titanoxidbeschichtungen:

Precursor	Molekulare Einheiten	Phasen	Kristallisations- temperatur
$\mathbf{CIT}_{i}(\mathbf{O}^{\mathbf{i}}\mathbf{D}_{\mathbf{r}})$	T : O / T : O	Anatas	450-650 °C
CIII(OPI) ₃	11- U / 11- CI	Anatas / Rutil	850 °C (getemp.)
		Anatas / Brookit	450 °C
MeTi(O ⁱ Pr) ₃	Ti -O / Ti -C	Anatas	550 °C
		Anatas / Rutil	650-750 °C
		Anatas	450-550 °C
Me ₂ NTi(O ⁱ Pr) ₃	Ti- O / Ti-N	Anatas / Rutil	650 °C
		Anatas	750 °C
	Ti- O / Ti-N	Anatas	450 °C
$Et_2NTi(O^iPr)_3$		Anatas / Rutil	550-750 °C
		Rutil	850 °C (getemp.)
ⁱ Pr₂N Ti(O ⁱ Pr) ₂	Ті -О / Ті -N	Anatas	450-550 °C
		Anatas / Rutil	650–750 °C
		Anatas	450 °C
$C_5H_5Ti(O^iPr)_3$	Ti- O / Ti-C	Anatas / Rutil	550 °C
		Rutil	650-750 °С
$^{t}\mathbf{BuOTi}(O^{i}\mathbf{Pr})_{2}$	Ti-O / Ti-O	Anatas	450 °C
Duo 11(011)3		Anatas / Rutil	550-750 °C
Ti(O ⁱ Pr) ₄	Ti -O	Anatas	450-550 °C
	11-0	Anatas / Rutil	550-750 °C
(Me ₃ Si) ₂ NTi(O ⁱ Pr) ₃	Ti-O / Ti-N	amorph	450-750 °C

Tabelle 5.15: Phasenzusammensetzung der mittels (14) - (22) erhaltenen TiO₂-Beschichtungen.

Bei den Morphologien der Anatasfilme, die mittels chemischer Gasphasenabscheidung der Verbindung ClTi $(O^{i}Pr)_{3}$ hergestellt wurden, besteht eine starke Abhängigkeit von der jeweils gewählten Substrattemperatur. Die Schichten, die alle eine Schichtdicke von mehreren μm aufweisen, unterscheiden sich deutlich in der Beschaffenheit ihrer Kristallite. So zeigen die

bei 450 °C erhaltenen Beschichtungen (Abbildung 5.39 (a)) insgesamt eine dichte, aus großen, glatten Kristalliten bestehende Oberfläche, während diejenigen, die aus Abscheidungen bei höheren Substrattemperaturen resultieren, eher zu elongierten und zusätzlich facettierten Kristallitbeschaffenheiten neigen (Abbildung 5.39 (b) und (c)). Die in Abbildung 5.39 (d)) zu sehende Querschnittsaufnahme eines bei 550 °C abgeschiedenen Films zeigt deutlich, dass diese Oberflächen durch ein säulenartiges Schichtwachstum entstehen.

Abbildung 5.39: REM-Aufnahmen der Morphologien mittels ClTi(OⁱPr)₃ hergestellter TiO₂-Schichten bei verschiedenen Substrattemperaturen (a) 450 °C, (b) 550 °C, (c) 650 °C und (d) Querschnitt (550 °C).

Obwohl bei der Zersetzung von Et₂NTi(O¹Pr)₃ bei 450 °C ebenso die Anatasphase gebildet wird, unterscheiden sich die Oberflächen in der Art ihrer Strukturierung. Die einzelnen Kristallite sind kleiner, zeigen keine großflächigen Kanten und scheinen eine größere Anzahl von Stufen aufzuweisen, so dass die gesamte Oberfläche, wie in Abbildung 5.40 (a) dargestellt, eher rau wirkt. Eine Erhöhung der Substrattemperatur auf 550 °C führt zu einer sporadischen Ausbildung deutlich größerer und zudem in sich facettierter Kristallite (Abbildung 5.40 (b)), die bei 650 °C weiter an Größe zunehmen. Hierbei sind neben den stark strukturiert vorliegenden auch noch pyramidenförmige Strukturen im Untergrund zu erkennen (Abbildung 5.40 (c)). Abscheidungen bei 750 °C resultieren in Filmen, deren Morphologie in der Grundstruktur der vorangehenden ähnelt, wobei jedoch die Facettierung, wie Abbildung 5.40 (d) zeigt, weniger stark ausgeprägt ist. Anhand der aufgenommenen Querschnittsaufnahmen (Abbildung 5.40 (e) und (f)) ist zu sehen, dass die bei 550 °C hergestellten Schichten sehr kompakt aufwachsen, wogegen bei 650 °C von Beginn an von einem kolumnaren Wachstum ausgegangen werden kann.

Abbildung 5.40: REM-Aufnahmen der Morphologien von TiO₂-Schichten aus Et₂NTi(OⁱPr)₃ bei verschiedenen Substrattemperaturen (a) 450 °C, (b) 550 °C, (c) 650 °C und (d) 750 °C sowie entsprechende Querschnitte (e) und (f).

Abbildung 5.41: REM-Aufnahme der Morphologie (a) und AFM-Analyse einer amorphen TiO₂ Schicht (b).

Die sehr dünnen und amorph vorliegenden Titanoxidfilme, die mittels Zersetzung von $(Me_3Si)_2NTi(O^iPr)_3$ erhalten wurden, weisen im gesamten Substrattemperatur-bereich keinerlei morphologische Veränderungen auf. Sie besitzen, wie der AFM-Analyse in Abbildung 5.41 (b) zu entnehmen ist, eine sehr glatte und aus globularen Partikeln geringer Größe bestehende Oberfläche.

Abscheidungen unter Verwendung der heteroleptischen Verbindung CpTi(OⁱPr)₃, die sowohl reine Anatasfilme und Mischphasen als auch homogene Rutilbeschichtungen liefern, resultieren in Schichtmorphologien, die in Abhängigkeit von der Substrattemperatur (450-750 °C) sehr stark ausgeprägte morphologische Unterschiede aufweisen.

Abbildung 5.42: REM-Aufnahmen der Morphologien von TiO₂-Schichten aus CpTi(OⁱPr)₃ bei verschiedenen Substrattemperaturen (a) 450 °C, (b) 550 °C, (c) 650 °C und (d) 750 °C sowie entsprechender Querschnitt (e).

Beispielsweise unterscheiden sich die bei 450 °C gewonnenen Anatasfilme (Abbildung 5.42 (a)) mit ihrer granularen und aus sehr kleinen einzelnen Kristalliten bestehenden Morphologie deutlich von allen Titanoxidbeschichtungen, die mit anderen Precursoren bei gleicher Temperatur erhalten wurden. Die Homogenität dieser Filme ist möglicherweise in der hohen Dichte von Kristallisationskeimen während des Aufwachsens und einer geringeren Mobilität der Precursorspezies auf der Siliziumoberfläche begründet. Die Tendenz der Bildung kleinerer Kristallite kann bei allen Substrattemperaturen beobachtet werden, auch wenn hier eine komplexere Oberflächenstrukturierung vorliegt (Abbildung 5.42 (a)-(d)). Vor allem die bei 550 °C aufgewachsenen Filme zeigen, wie in Abbildung 5.42 (b) zu sehen, ausgehend von der dichten Grundstruktur, ein Wachstum größerer und elongiert vorliegender Teilchen. Diese größeren Strukturen sind scheinbar hierarchische Gebilde, da sie aus kleineren Untereinheiten aufgebaut sind. Die in Abbildung 5.42 (e) abgebildete Querschnittsaufnahme einer bei 650 °C abgeschiedenen Schicht zeigt darüber hinaus eine vom Substrat an dichte Mikrostruktur, die durch säulenartiges Wachstum kleinerer Einheiten gebildet wird.

Die Resultate der REM-Untersuchungen, die an den mit den restlichen Precursoren (MeTi(OⁱPr)₃, Me₂NTi(OⁱPr)₃, ⁱPr₂NTi(OⁱPr)₃ und ^tBuOTi(OⁱPr)₃) synthetisierten TiO₂-Beschichtungen vorgenommen wurden, können zusammengefasst werden, da hier bei den jeweiligen Substrattemperaturen große morphologische Ähnlichkeiten aufzufinden sind.

Abbildung 5.43: REM-Aufnahmen der Morphologien von TiO₂-Schichten aus ⁱPr₂NTi(OⁱPr)₃ bei 450 °C (a), MeTi(OⁱPr)₃ bei 550 °C (b) und 650 °C (c).

Alle Beschichtungen, die bei 450 °C aufwachsen, bestehen aus relativ großflächigen Kristalliten, glatter Oberfläche und definierter Kanten, ähnlich denen, die mittels ClTi(OⁱPr)₃ (Abbildung 5.39 (a)) hergestellt wurden, jedoch größeren Ausmaßes. Exemplarisch wird dies an der mittels ⁱPr₂NTi(OⁱPr)₃ erhaltenen Schicht in Abbildung 5.43 (a) gezeigt. Eine Substrattemperatur von 550 °C bedingt eine deutliche Strukturierung bzw. Facettierung der

zuvor glatten Kristallite, die immer mehr eine pyramidale Form annehmen. In diesem Zusammenhang sind die einzelnen Partikel bei den mit ${}^{t}BuOTi(O^{i}Pr)_{3}$ hergestellten Beschichtungen am größten und bei denen, die mittels MeTi(OⁱPr)_{3} erhalten wurden, am facettiertesten (Abbildung 5.43 (b)). Wird nun eine Substrattemperatur von 650 °C gewählt, äußert sich dies lediglich in einer Verdichtung der pyramidalen Anordnungen innerhalb aller Filme, wie es, beispielhaft in Abbildung 5.43 (c) dargestellt, an einer unter Verwendung von MeTi(OⁱPr)_3 erhaltenen TiO_2-Schicht zu sehen ist.

Die bei Substrattemperaturen von 750 °C durchgeführten Abscheidungen liefern Titanoxidfilme, deren morphologische Eigenschaften im Falle von MeTi($O^{i}Pr$)₃, Me₂NTi($O^{i}Pr$)₃ und ^tBuOTi($O^{i}Pr$)₃ (exemplarisch in Abbildung 5.44 (a) dargestellt) keine deutlichen Veränderungen im Vergleich zu denen bei 650 °C erhaltenen aufweisen. Ein Querschnitt der Schicht, die mittels ^tBuOTi($O^{i}Pr$)₃ entstand, lässt ebenfalls, wie Abbildung 5.44 (b) zu entnehmen, auf hohe Kristallinität und kolumnares Schichtwachstum schließen.

Abbildung 5.44: REM-Aufnahmen der Morphologien von TiO₂-Schichten aus ^tBuOTi(OⁱPr)₃ bei 750 °C (a) mit entsprechendem Querschnitt (b) und (c) mittels ⁱPr₂NTi(OⁱPr)₃ bei 750 °C hergestellte TiO₂-Beschichtung.

Eine Ausnahme stellen in diesem Zusammenhang allerdings die Schichten dar, die bei 750 °C unter Verwendung der Verbindung ${}^{i}Pr_{2}NTi(O^{i}Pr)_{3}$ entstehen. Wie in Abbildung 5.44 (c) zu sehen, kommt es hier zu einem starken Anwachsen der zuvor pyramidal vorliegenden Kristallite (im Untergrund sind noch einige davon erkennbar) und einer zusätzlich starken Strukturierung. Hierbei bildet sich eine Schichtmorphologie aus, die aus blumenförmigen Zusammenlagerungen besteht und daher offensichtlich eine sehr hohe Rauigkeit aufweist.

Alle Zersetzungen der verschieden substituierten Tris-Isopropyl-Titan-Derivate zeigen Fragmentierungsmuster von Propan (m/z = 44, 43, 29, 28 und 27) und Propen (m/z = 42, 41, 39 und 27) sowie dem jeweiligen Heteroliganden. Hierbei konnten keine Anzeichen für unerwartete Intermediate aus den Massenspektren gewonnen werden. Somit hängt die

Nukleation hauptsächlich von der erforderlichen Energie zur Bindungsspaltung zwischen Metall und Heteroligand ab und darüber hinaus von weiteren Wechselwirkungen der entstehenden Nebenprodukte mit der beheizten Oberfläche, die ebenfalls die Diffusionslänge der adsorbierenden Spezies beeinflussen.

Dem in Abbildung 5.45 dargestellten Graphen können zusammengefasst die Wachstumsraten aller Precursoren bei einer Substrattemperatur von 550 °C entnommen werden. Zusätzlich zu den Abscheidungen der heteroleptischen Verbindungen wurden zum Vergleich bei identischen Prozessbedingungen Beschichtungen unter Verwendung der homoleptischen Precursoren Ti(OⁱPr)₄ sowie Ti(O^tBu)₄ hergestellt.

Precursoren

Abbildung 5.45: Wachstumsraten der Precursoren.

Insgesamt besteht eine Tendenz zu hohen Wachstumsraten bei den Precursoren, die ausschließlich Sauerstoff in ihrer Ligandensphäre besitzen, wobei die höchste bei der homoleptischen Verbindung Ti(O^tBu)₄ mit 138 nm/min erreicht wird. Die heteroleptischen Verbindungen hingegen variieren in ihren Wachstumsraten von 110 nm/min (^tBuOTi(OⁱPr)₃) bis hin zu der geringsten von 4 nm/min bei (Me₃Si)₂NTi(OⁱPr)₃. Offensichtlich wird bei einer Substrattemperatur von 550 °C das Schichtwachstum unter Verwendung der gemischt substituierten Verbindungen durch komplexere Zersetzungsvorgänge und chemische Reaktionen in der Gasphase sowie auf der Substratoberfläche limitiert. Dennoch ist durch den

Einsatz dieser Precursoren im CVD-Prozess eine gezieltere Einstellung von Phase sowie Morphologie der resultierenden Beschichtung nicht nur durch Änderung äußerer Prozessparameter, sondern auch durch Ligandendesign möglich.

Bezüglich der im Rahmen dieser Dissertation verwendeten heteroleptischen Titanprecursoren kann also Folgendes zusammengefasst werden: Wie aus Abbildung 5.46 ersichtlich, führte der Einsatz des Precursors CpTi(OⁱPr)₃ mit einer Siedetemperatur von 62 °C und einer relativ geringen Wachstumsrate zu TiO₂-Beschichtungen, deren Phasenkomposition (Anatas, Phasengemisch aus Anatas und Rutil (A/R) sowie Rutil) selektiv allein durch Variation der Substrattemperatur eingestellt werden konnte. Zudem waren Abscheidungen der reinen Rutilphase schon bei 650 °C möglich.

Abbildung 5.46: Phasenkontrolle durch Ligandendesign.

Im Falle von Et₂NTi(OⁱPr)₃ konnten reine Rutilfilme nur durch Nachtempern erhalten werden. Abscheidungen bei 450-750 °C unter Verwendung von (Me₃Si)₂NTi(OⁱPr)₃, dem am wenigsten flüchtigen Precursor mit der geringsten Wachstumsrate, resultierten lediglich in amorphen Filmen.

Untersuchungen auf **photokatalytische Eigenschaften** der im Rahmen der vorliegenden Arbeit hergestellten Titanoxidfilme erfolgen exemplarisch an zwei Beispielen. Hierfür werden Beschichtungen ausgewählt, die durch Abscheidung von $CITi(O^iPr)_3$ und $Et_2NTi(O^iPr)_3$ jeweils bei 650 °C hergestellt wurden und, wie aus Tabelle 5.15 zu entnehmen, aus reinem Anatas bzw. einem Phasengemisch aus Rutil und Anatas bestehen. Hinsichtlich der Morphologien handelt es sich bei diesen Filmen jeweils um diejenigen, die innerhalb der Temperaturreihe die größte Oberfläche besitzen: $(CITi(O^iPr)_3, Abbildung 5.39 (c), und Et_2NTi(O^iPr)_3, Abbildung 5.40 (c))$. Die jeweilige photokatalytische Aktivität wird anhand der Zersetzung von Stearinsäure unter UV-Bestrahlung ermittelt. Diesbezüglich wird jede der zu untersuchenden Titanoxidbeschichtungen durch Spin Coating mit einem dünnen Film, bestehend aus 10 mM Stearinsäure, bedeckt und anschließend in bestimmten Zeitabschnitten mit einer UV-Lampe (366 nm) belichtet, wobei es gemäß Gl. 5.19 zu einer Zersetzung der Säure in H₂O und CO₂ kommt.^[234]

$$C_{17}H_{35}COOH + 26 O_2 \rightarrow 18 CO_2 + 18 H_2O$$
 Gl. 5.19

Dieser Zersetzungsprozess auf den Oberflächen wird durch simultane Aufnahme von Infrarotspektren, die in Abbildung 5.47 zu sehen sind, verfolgt:

Abbildung 5.47: Infrarotspektren der Zersetzung von Stearinsäure auf TiO₂-Oberflächen (a) ClTi(OⁱPr)₃ und (b) Et₂NTi(OⁱPr)₃.

Die so erhaltenen Resultate zeigen, dass der Zerfallsprozess der organischen Verbindung auf der mit ClTi(OⁱPr)₃ erhaltenen reinen Anatasoberfläche schon nach 30 min Bestrahlung einsetzt. Die vollständige Zersetzung der Stearinsäure ist im Falle dieser Beschichtung nach

210 Minuten abgeschlossen (Abbildung 5.47 (a)). Im Vergleich dazu verläuft die Zersetzung auf der Oberfläche des Phasengemisches, die mittels $Et_2NTi(O^iPr)_3$ hergestellt wurde, wie in Abbildung 5.47 (b) zu sehen, wesentlich langsamer und zudem keineswegs vollständig. Die wahrscheinlichste Erklärung hierfür ist das Vorliegen der Rutilphase, die gegenüber reinem Anatas eine vergleichsweise geringere photokatalytische Aktivität besitzt.^{[53][54][235][236]} Die photochemisch induzierte Zersetzung der Testsubstanz ist deutlich an der Intensitätsabnahme der C-H-Schwingungen bei 2920 cm⁻¹ und 2850 cm⁻¹ mit steigender Bestrahlungsdauer zu erkennen. Obwohl die hier verwendete Stearinsäure mit einer Konzentration von 10 mM im Vergleich zu Versuchen, die in der Literatur beschrieben werden (2mM), wesentlich konzentrierter vorliegt, zeigt der getestete Anatasfilm eine höhere photokatalytische Aktivität, was für die Qualität der im Rahmen dieser Dissertation hergestellten Filme spricht.^[237] Die Tatsache, dass das aus $Et_2NTi(O^iPr)_3$ hergestellte Phasengemisch hingegen eine geringere Aktivität zeigt, wird durch Untersuchungen aus der Literatur bestätigt.^{[238][239]}

In Bezug auf die biomedizinische Einsetzbarkeit eines Materials sind Oberflächeneffekte in Kombination mit chemischer Konstitution von großer Bedeutung. Diesbezüglich bietet es sich an, die hergestellten TiO₂-Beschichtungen auf ihre Oberflächen-Zell-Wechselwirkungen zu untersuchen. Bei Zahnimplantaten hat beispielsweise eine gute Verankerung des eingebrachten Fremdkörpers im Knochengewebe (Osteointegration) höchste Priorität, wobei die topographische und chemische Oberflächenbeschaffenheit des Implantates von besonderer Bedeutung ist.^[240] Aus diesem Grunde wurden zur Untersuchung möglicher biokompatibler Eigenschaften der Titanoxidschichten in vitro Zelladhäsionstests mit Osteoblasten (MC3T3-E1) durchgeführt. Die Dokumentation des resultierenden Zellwachstums sowie der Adhäsion am Substrat erfolgte anhand mikroskopischer Aufnahmen nach 48-stündiger Inkubationszeit. Hierbei erwiesen sich alle Beschichtungen, die unter Verwendung der Precursoren ClTi(O¹Pr)₃ und (Me₃Si)₂NTi(O¹Pr)₃ hergestellt wurden, für ein Wachstum von knochenbildenden Zellen als ungeeignet. Osteoblasten auf den im ersten Fall bei verschiedenen Substrattemperaturen erzeugten Anatasfilmen (Abbildung 5.39 (a)-(d)) unterschiedlicher Morphologien zeigten keinerlei Wachstumsaktivität, was u. a. auch an ihrem sphärischen Vorliegen auf der Beschichtungsoberfläche deutlich zu erkennen war (Abbildung 5.48 (a)). Im Gegensatz dazu, bedingten die mit Ti(OⁱPr)₄ bei 550 °C aufgewachsenen Anatasfilme ein gutes Zellwachstum. Diese Aussage konnte wegen des Vorhandenseins der hohen Besiedlungsdichte der Osteoblasten auf dem Substrat, der aktiven Zellkerne, der lang gestreckten Aktinfasern und eines gut ausgebildeten Kontaktes zu Nachbarzellen getroffen werden (Abbildung 5.48 (b).

Abbildung 5.48: Osteoblasten auf Anatasoberflächen (a) aus ClTi(OⁱPr)₃ und (b) Ti(OⁱPr)₄.

Die höchste Anzahl von anhaftenden Zellen zeigen Titanoxidfilme, die aus Abscheidungen des heteroleptischen Precursors $CpTi(O^iPr)_3$ resultieren. Wie Abbildung 5.49 (a) zeigt, herrscht hier nicht nur eine sehr hohe Besiedlungsdichte der Osteoblasten vor, sondern es kann auch eine sehr homogene Verteilung dieser Zellen über die gesamte Substratoberfläche beobachtet werden (Abbildung 5.49 (b)).

Abbildung 5.49: Osteoblasten auf TiO₂-Beschichtungen, die aus CpTi(OⁱPr)₃ synthetisiert wurden (a) Zellkerne, (b) Übersicht (c) Aktinstruktur.

Insgesamt bestehen hier interzelluläre Kontakte, die in einer sehr hohen Anzahl vorliegen und bereits nach 48 h osteoblasten-basierte gewebeähnliche Strukturen ausbilden (Abbildung 5.49 (c)). Wie in Kapitel 5.2 kurz erwähnt, ist für eine gute Zell-Oberflächeninteraktion vor allem die Topografie des Substrates wichtig.^[241] Dabei bevorzugen verschiedene Zelltypen

unterschiedliche Oberflächen, wobei dies bei Osteoblasten vor allem raue Oberflächen sind. Diejenige Oberfläche der in Abbildung 5.42 (b) dargestellten Beschichtung hat offensichtlich eine für Osteoblasten optimale Morphologie mit einem hierarchischen Aufbau aus einer gekörnten Grundstruktur, die zusätzlich in bestimmten Abständen größere Anordnungen bietet, welche nur eine geringe Facettierung aufweisen. Ausschließlich große, kantige und strukturierte Kristallite, wie sie Abbildung 5.43 (b) (MeTi(OⁱPr)₃ bei 550 °C) und Abbildung 5.44 (a) (^tBuOTi(OⁱPr)₃ bei 750 °C) zu sehen sind, haben sich als weniger geeignet erwiesen.

Die Resultate des Wachstums knochenbildender Zellen auf diesen verschiedenen Titanoxidbeschichtungen bestätigen, dass Zelladhäsion und –wachstum von einer Kombination mehrerer Parameter abhängen. Dabei sind vor allem die chemische Konstitution der Oberfläche (Material selbst sowie mögliche Verunreinigungen durch Einlagerung von Fremdatomen) und ihre Nano-Mikro-Architektur, also die morphologische Beschaffenheit, von großer Bedeutung. Diese Faktoren wiederum können innerhalb des molekülbasierten Syntheseprinzips schon auf molekularer Ebene durch ein geeignetes Precursordesign moduliert und bezüglich bestimmter Anwendungsbereiche gezielt gesteuert werden.

5.5 Synthese und Charakterisierung lanthanoidhaltiger Verbindungen mit Ln = Ce, Eu, Nd und Er

Im Hinblick auf ein breites potentielles Anwendungsspektrum besteht ein starkes Interesse an der Entwicklung neuartiger Lanthanoidverbindungen, welche als Vorstufen zur Herstellung verschiedenster funktioneller Materialien dienen können. Bereits eingesetzt werden Lanthanoide u. a. in elektrooptischen Keramiken,^{[242][243]} Hochtemperatursupraleitern,^{[244]-[248]} Sensoren^{[249]-[251]} oder etwa in Katalysatoren.^{[252][253]} Des Weiteren können aus lanthanoid-dotiertem Aluminiumoxid optische Wellenleiter hergestellt werden.^[254] Neodym-, Erbiumund Europium-haltige Festkörper spielen sowohl bei Lichtleitern als auch innerhalb von Festkörperlasern (Nd:YAG) eine wichtige Rolle.^{[255][256]} Darüber hinaus erlangen Materialien der seltenen Erden im Bereich der medizinischen Diagnostik als potentielle Fluoreszenz-market^{[257]-[259]} oder Kontrastmittel bei der Magnetresonanztomographie^{[260]-[262]} immer größere Bedeutung. Angesichts dessen besteht ein stetiger Bedarf an neuen Verbindungen, die als molekulare Bausteine für die vorab genannten Funktionswerkstoffe genutzt werden können. Tabelle 5.16 beinhaltet eine Aufstellung lanthanoidoxid-basierter Materialien mit jeweiligen Anwendungsmöglichkeiten.^{[19][263]}

Verbindung	Eigenschaften/ Anwendungsbereich	Verbindung	Eigenschaften/ Anwendungsbereich	
(Pb,La)(Zr,Ti)O ₃	Elektrooptische	$Sm_2Sn_2O_7$		
(Pb,La)(Hf,Ti)O ₃	Keramiken	Ba ₂ LaBiO ₃	Katalysatoren	
LnBa ₂ Cu ₃ O _{7-x}	Hachtomporatur	$La_{1-x}M_{x}M'O_{3}$ (M=Sr, Ca,	Katarysatoren	
Ln _(2-x) Ce _x CuO ₄	supraleiter	Ce, Pb) (M'=Co, Mn)		
YBa ₂ Cu ₃ O _{7-x}	Supranenter	BaCeO ₃	Ionenleiter	
$Ln_4Ti_9O_{29}$		$Ln_2SiO_5:Ce^{3+}$ (Ln=Gd,		
(Ln=La, Nd, Sm)		Lu)	Szintillatoren	
$Ln_2Ti_2O_7$	Dielektrika	CeF ₃		
Gd ₂ O ₃		CeP ₅ O ₁₄		
La ₂ O ₃		LuPO ₄		
LaFeO ₃	MOS-FET Gassensor	Ln ₂ SiO ₅		
La. Nd MgAl. O.		Ln ₂ O ₂ S (Ln=Gd, Eu, Tb,	Optische Materialien	
		Er)	(Phosphoreszenz)	
Gd(MoO ₄) ₃	Lasermaterialien	LaNiO ₃	Transparent leitende Oxide (TCO)	
$Y_{3}Al_{5}O_{12}$ (Nd)		Sr ₂ CeO ₄ , NdAlO ₃ ,	Photolumineszenz	
Gd ₃ Ga ₅ O ₁₂		Y ₃ Fe ₅ O ₁₂	Speichermedien	

 Tabelle 5.16:
 Lanthanoidhaltige Materialien und ihre Anwendungen.

Zur Herstellung oxidischer Lanthanoidmaterialien erweisen sich Alkoxide der entsprechenden Elemente aufgrund der bereits im Molekül definiert vorliegenden Metall-Sauerstoffbindungen als sehr geeignete Vorstufen. Bedingt durch große Radien der Ln^{3+} Ionen, werden im Allgemeinen sehr hohe Koordinationszahlen (> 6) bevorzugt und damit Verbindungen hoher Nuklearität gebildet. Um dies zu umgehen und niedermolekular vorliegende Komplexe stabilisieren zu können, werden daher entweder mehrzähnige oder sterisch sehr anspruchsvolle Liganden verwendet.^{[264]-[275]} In diesem Zusammenhang bieten sich zur Herstellung und / oder Modifizierung potentieller Precursoren sowohl Amid- als auch Alkoxy-Gruppierungen an, da sie als harte Lewisbasen mit den Ln^{3+} -Ionen stabile Ln-N- bzw. Ln-O-Bindungen eingehen können. Zudem ermöglicht eine geschickte Variation der Liganden (Heteroatome, sterischer Anspruch) eine Anpassung der Moleküleigenschaften an unterschiedliche Anforderungen.

Lanthanoid-(III)-Isopropoxide, die erstmals 1968 beschrieben wurden, liegen beispielsweise, bedingt durch die geringe Größe der Alkoxygruppen, als pentanukleare Oxoaggregate

 $(Ln_5(\mu_5-O)(\mu_3-O^iPr)_4(\mu-O^iPr)_4)(O^iPr)_5)$ vor, was sowohl bei größeren als auch kleineren Ionenradien beobachtet werden konnte (Ln = Nd, Sm, Pr, Gd, Yb, und Y).^{[276][277]} Unter anspruchsvolleren Verwendung des sterisch *tert*-Butoxyliganden kann der Oligomerisierungsgrad etwas herabgesetzt werden, so dass bevorzugt dreikernige Lanthanoidverbindungen der allgemeinen Form $Ln_3(O^tBu)_9(HO^tBu)_2$ ausgebildet werden.^{[278] [280]} Die dreifach koordinierten monomolekularen, homoleptischen Lanthanoidtris-Amidderivate (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Ho, Yb, Lu und Er), die durch Einführung sterisch sehr anspruchsvoller N(SiMe₃)₂-Reste realisiert werden können,^{[264][281]-} [284] (Gl. 5.20) sind geeignete Ausgangsverbindungen für die Herstellung von Lanthanoidalkoxiden über die sogenannte Silylamidroute.^{[285]-[287]}

$$LnCl_{3} + 3 LiN(SiMe_{3})_{2} \rightarrow Ln\{N(SiMe_{3})_{2}\}_{3} + 3 LiCl_{3} \qquad Gl. 5.20$$

Metathese

$$Ln\{N(SiMe_3)_2\}_3 + 3 ROH \rightarrow Ln(OR)_3 + 3 HN(SiMe_3)_2 \qquad Gl. 5.21$$

Silylamidroute (Alkoholyse)

Hierbei werden, wie in Gl. 5.21 zu sehen, die Hexamethyldisilazylliganden mittels Alkoholyse unter relativ milden Reaktionsbedingungen durch die jeweilig verwendeten Alkoxygruppierungen (höhere Basizität der **O**R-Gruppen im Vergleich zu **N**R-Resten) vollständig substituiert, wodurch die Lanthanoidalkoxidverbindungen erhalten werden können.

Bei der Synthese der Lanthanoidverbindungen innerhalb der vorliegenden Arbeit liegt der Schwerpunkt auf der Darstellung heteroleptischer Verbindungen. Die gemischte Ligandensphäre sollte hierbei stickstoffhaltige sowie sauerstoffhaltige Reste beinhalten, wobei beachtet werden muss, dass der selektive Austausch einer oder mehrerer Hexamethyldisilazylgruppen durch kleinere Alkoxyreste keineswegs trivial ist. Ist das Metallzentrum sterisch nicht ausreichend abgesättigt, wird die Bildung von Clustern beobachtet, in denen eine Stabilisierung entweder über Koordination von Lösemittelmolekülen oder mittels gebundener Halogenanionen erfolgt.^{[288]-[292]} Diesbezüglich werden an homoleptischen Ausgangsverbindungen der Elemente Cer, Neodym, Europium und Erbium derartige Ligandenmodifizierungen vorgenommen, dass im Idealfall gemischt substituierte und darüber hinaus möglichst niedermolekular vorliegende Verbindungen resultieren.

Abbildung 5.50: Verwendete sauerstoffhaltige Liganden.

Bei den eingesetzten sauerstoffhaltigen Verbindungen, die zum Austausch einer oder mehrerer Amidliganden dienen sollen, handelt es sich, wie in Abbildung 5.50 dargestellt, um die Alkohole HOCH(CH₃)₂ (Isopropanol) (1) und HOCH(CF₃)₂ (1,1,1,3,3,3-Hexafluoro-2-propanol) (2), das Trimethyl-Silanol ((CH₃)₃SiOH) (3) sowie den chelatisierenden Rest (CH₃)₃COCOCH₂COOC(CH₃)₃ (Malonsäure-di-*tert* Butylester, "Mal") (4).

5.5.1 Synthese von $[Nd(O^{i}Pr){N(SiMe_{3})_{2}}_{2}]_{2}$

Die homoleptische Amidverbindung $Nd\{N(SiMe_3)_2\}_3$ wird durch Umsetzung mit äquimolaren Mengen an Isopropanol einer Teilalkoholyse unterzogen, was zur Erzeugung einer heteroleptischen und zugleich niedermolekularen Spezies führen sollte. Das zweistufige Syntheseverfahren umfasst im ersten Reaktionsschritt die Umsetzung von NdCl₃ mit drei Äquivalenten LiN(SiMe_3)₂ zur Darstellung der Ausgangsverbindung Nd{N(SiMe_3)₂}₃ mittels Metathese (Gl. 5.22). Die detaillierten Vorgehensweisen der nachfolgend beschriebenen Synthesen sowie Reaktionsdauer und Reaktionstemperaturen können dem experimentellen Teil entnommen werden.

$$NdCl_3 + 3 LiN(SiMe_3)_2 \rightarrow Nd \{N(SiMe_3)_2\}_3 + 3 LiCl$$

$$Gl. 5.22$$

$$Methathese$$

Die Substitution eines Hexamethyldisilazylliganden der Neodymamidverbindung durch einen Isopropoxyrest erfolgt durch langsame Alkoholyse (Gl. 5.23), indem zu dem in Toluol

gelösten Nd{N(SiMe₃)₂}₃ eine sehr stark verdünnte Lösung von ¹PrOH (ebenfalls in Toluol) unter ständigem Rühren sehr langsam zugetropft wird.

$$2 \operatorname{Nd} \{N(\operatorname{SiMe}_{3})_{2}\}_{3} + 2 \operatorname{PrOH} \rightarrow [\operatorname{Nd}(\operatorname{O}^{i}\operatorname{Pr})\{N(\operatorname{SiMe}_{3})_{2}\}_{2}]_{2} + 2 \operatorname{HN}(\operatorname{SiMe}_{3})_{2} \quad \text{Gl. 5.23}$$

Alkoholyse

Nach einer Reaktionszeit von insgesamt 48 h bei einer Temperatur von 60 °C wird das Lösemittelvolumen stark eingeengt, so dass die gemischt substituierte Neodymverbindung [Nd(OⁱPr){N(SiMe₃)₂}₂]₂ durch Kristallisation aus einer konzentrierten Toluollösung erhalten werden kann. Eine Sublimation dieser Verbindung ist aufgrund vorzeitiger Zersetzung (110-115°C) nicht möglich. Die aus der Lösung isolierten hellblau gefärbten, rautenförmigen Kristalle konnten röntgenographisch bezüglich ihrer Struktur analysiert werden. Abbildung 5.51 zeigt eine mit Hilfe des Programms Diamond angefertigte Zeichnung dieser Molekülstruktur.

Abbildung 5.51: Molekülstruktur von $[Nd(O^{i}Pr){N(SiMe_{3})_{2}}_{2}]_{2}$.

Im Folgenden ist eine Auflistung ausgewählter kristallographischer Daten der röntgenographischen Einkristallanalyse von Verbindung $[Nd(O^{i}Pr)\{N(SiMe_{3})_{2}\}_{2}]_{2}$ dargestellt. Alle weiteren Daten sind im Anhang aufgeführt.

Summenformel	CaeHacNiNdaOaSiaCaHa		
Molmasse	1140,36		
Temperatur	293(2) K		
Wellenlänge (Mo _{kα})	0,71073 Å		
Kristallsystem	Trklin		
Raumgruppe	P-1		
	a = 10,967(2) Å α = 109,023)°		
Elementarzellparameter	b = 11,977(2) Å β = 101,77(3)°		
	c = 12,610(3) Å $\gamma = 99,62(3)^{\circ}$		
Zellvolumen	1483,4(5) Å ³		
Formeleinheit pro Zelle	1		
Dichte (berechnet)	1,277 mg/m ³		
Absorptionskoeffizient	1,922 mm ⁻¹		
F(000)	592		
Kristallgröße	0,5 x 0,4 x 0,25 mm ³		
Gemessener θ -Bereich	3,01 – 23,97°		
Index -Bereiche	-11<=h<=12,-13<=k<=13,-14<=l<=13		
Gemessene Reflexe	9164		
Unabhängige Reflexe	4263 [R(int) = 0,0325]		
Strukturverfeinerung	Full-matrix least-squares on F ²		
Daten / Restrains / Parameter	4263 / 0 / 252		
Goodness-of-fit on F ²	1,102		
Endgültige R – Werte $[I > 2\sigma(I)]$	R1 = 0,0268, wR2 = 0,0739		
R-Werte (alle Daten)	R1 = 0.0277, WR2 = 0.0744		
Restelektronendichte	1,215 and -0.927 e.Å ⁻³		

Tabelle 5.17: Ausgewählte Kristall- und Strukturdaten von $[Nd(O^{i}Pr){N(SiMe_{3})_{2}}_{2}]_{2}$.

Tabelle 5.18: Ausgewählte Bindungslängen und Bindungswinkel von $[Nd(O^{i}Pr){N(SiMe_{3})_{2}}_{2}]_{2}$.

Bindung	Bindungslänge [Å]	Bindung	Bindungswinkel [°]
Nd - N(1)	2,320(3)	N(1)-Nd-N(2)	111,76(10)
Nd – N(2)	2,330(3)	N(1)-Nd-O(1)#1	125,60(10)
Nd - O(1)	2,377(2)	N(2)-Nd-O(1)#1	108,13(9)
Nd – O(1)#1	2,349(2)	N(1)-Nd-O(1)	104,55(9)
Si(1) - N(1)	1,719(3)	N(2)-Nd-O(1)	132,15(9)
Si(2) - N(1)	1,710(3)	O(1)#1-Nd-O(1)	71,57(10)
Si(3) - N(2)	1,718(3)	Nd#1-O(1)-Nd	108,42(10)
Si(4) - N(2)	1,729(3)	Si(3)-N(2)-Si(4)	123,57(16)
		Si(2)-N(1)-Si(1)	124,71(16)
		C(15)-C(13A)-C(14)	121,1(7)

Die in Abbildung 5.51 zu sehende heteroleptische Neodymverbindung liegt als Dimer vor und kristallisiert im triklinen Kristallsystem (Raumgruppe P1). Wie dem vollständigen Datensatz (Anhang) zu entnehmen ist, kommt es beim Aufbau der Packung zum Einbau eines Lösemittelmoleküls (Toluol), das jedoch keine koordinativen Funktionen ausübt. Jedes Neodymatom ist von jeweils zwei endständigen N(SiMe₃)₂-Gruppen mit Bindungsabständen der Stickstoffatome zum Zentralatom von 2,320(3)-2,330(3) Å umgeben. Zusätzlich wirken zwei O¹Pr-Liganden μ₂-verbrückend (Bindungslängen Nd-O(1): 2,377(2) Å und Nd-O(1)#: 2,349(2) Å), so dass sich für jedes Neodymatom insgesamt eine Koordinationszahl von vier ergibt. Die hier erhaltenen Bindungslängen stimmen sowohl für die Stickstoff- als auch für die Sauerstoffliganden sehr gut mit Literaturwerten überein, wobei Werte von 2,324(8)-2,335(8) Å für Nd-N(SiMe₃)₂^[293] und 2,3316-2,4065 Å für Nd-µ₂-OⁱPr^[294] beschrieben werden. Der von beiden Neodymatomen und den Sauerstoffatomen der Alkoxyliganden aufgespannte Vierring besitzt eine Winkelsumme von 359,98 ° (O(1)#-Nd-O(1): 71,57(10) ° und Nd#1-O(1)-Nd: 108,42(10) °), womit von einer planaren Geometrie ausgegangen werden kann. Der Winkel zwischen beiden Stickstoffatomen der Amidreste (N(1)-Nd-N(2)) beträgt 111,76(10)°, die Winkel zwischen Stickstoffatomen und den Sauerstoffatomen der Isopropoxyliganden liegen bei Werten von 125,60(10) ° (N(1)-Nd-O(1)#), 108,13(9) ° (N(2)-Nd-O(1)#), 104,55(9) ° (N(1)-Nd-O(1)) sowie 132,15(9) ° (N(2)-Nd-O(1)). Innerhalb der Hexamethyldisilazylliganden werden Bindungslängen bzw. -winkel von 1,719 Å (N-Si) bzw. für Si–N–Si 124,14 ° (gemittelte Werte) beobachtet.

5.5.2 Synthese von $[Ce(O^{i}Pr){N(SiMe_3)_2}_2]_2$

Die Herstellung der analogen Cerverbindung erfolgt aus der mittels Salzeliminierung von CeCl₃ mit drei Äquivalenten LiN(SiMe₃)₂ gewonnenen, homoleptischen Amidverbindung Ce{N(SiMe₃)₂}₃ (vgl. hierzu allgemeineGleichung 5.20).

Die Substitution eines der drei Hexamethyldisilazylliganden wird auch hier durch eine gezielte Alkoholyse (sehr langsames Zutropfen der stark verdünnten Alkohollösung) mit Isopropanol im stöchiometrischen Verhältnis von 1:1 gewährleistet, so dass nach zweitägigem Rühren bei ca. 65 °C und Reduzieren des Lösemittelvolumens die heteroleptische Zielverbindung [Ce(OⁱPr){N(SiMe₃)₂}₂]₂ in Form gelber Kristalle isoliert werden kann (Gl. 5.24).
$$2 \operatorname{Ce} \{ N(\operatorname{SiMe}_{3})_{2} \}_{3} + 2 \operatorname{^{i}PrOH} \rightarrow [\operatorname{Ce}(\operatorname{O}^{i}\operatorname{Pr}) \{ N(\operatorname{SiMe}_{3})_{2} \}_{2}]_{2} + 2 \operatorname{HN}(\operatorname{SiMe}_{3})_{2} \quad \text{Gl. 5.24}$$

Alkoholyse

Aus einer konzentrierten Toluollösung dieser Verbindung konnten einzelne plättchenförmige, für die Röntgenstrukturanalyse geeignete Kristalle isoliert und im Hinblick auf die Molekülstruktur, die in Abbildung 5.52 mit Hilfe des Programms Diamond dargestellt ist, untersucht werden. Auch hier war, wie bereits bei der anlogen Neodymverbindung beschrieben, keine Sublimation der unzersetzten Verbindung möglich.

Die nachfolgenden Tabellen (Tabelle 5.19 und Tabelle 5.20) beinhalten ausgewählte kristallographische Daten der Einkristallstrukturanalyse dieser Verbindung. Weitere Daten sind dem Anhang zu entnehmen.

Abbildung 5.52: Molekülstruktur von [Ce(OⁱPr){N(SiMe₃)₂}₂]₂.

Tabelle 5.19: Ausgewählte Kristall- und Strukturdaten von [Ce(O'Pr) {N(SiM	(e_3)	2	2]	2

Summenformel	$C_{30}H_{86}N_4Ce_2O_2Si_8C_7H_8$	
Molmasse	1132,12	
Temperatur	200(2) K	
Wellenlänge (Mo _{ka})	0,71073 Å	
Kristallsystem	Trklin	
Raumgruppe	P-1	
Elementarzellparameter	$a = 10,963(2) \text{ Å}$ $\alpha = 108,58(3)^{\circ}$	

	b = 11,915(2) Å	β=101,65(3)°
	c = 12,506(3) Å	$\gamma = 99,04(3)^{\circ}$
Zellvolumen	1472,7(5) Å ³	
Formeleinheit pro Zelle	1	
Dichte (berechnet)	1,277 mg/m ³	
Absorptionskoeffizient	1,718 mm ⁻¹	
F(000)	588	
Kristallgröße	0,8 x 0,25 x 0,16 mm ³	
Gemessener θ -Bereich	1,86 – 23,93°	
Index -Bereiche	-11<=h<=12,-13<=k<=13,- 14<=l<=13	
Gemessene Reflexe	7993	
Unabhängige Reflexe	4279 [R(int) = 0,0589]	
Strukturverfeinerung	Full-matrix least-s	squares on F ²
Daten / Restrains / Parameter	4279 / 0 / 235	
Goodness-of-fit on F ²	1,011	
Endgültige R – Werte $[I > 2\sigma(I)]$)] $R1 = 0,0391, wR2 = 0,0966$	
R-Werte (alle Daten)	R1 = 0,0497, wR2 = 0,1009	
Restelektronendichte	1,331; -0.926 e.Å ⁻³	

Tabelle 5.20: Ausgewählte Bindungslängen und Bindungswinkel von [Ce(OⁱPr){N(SiMe₃)₂}₂]₂.

Bindung	Bindungslänge [Å]	Bindung	Bindungswinkel [°]
Ce - N(1)	2,365(4)	N(1)-Ce-N(2)	111,61(14)
Ce – N(2)	2,357(4)	N(1)-Ce-O(1)#1	132,33(13)
Ce - O(1)	2,386(3)	N(2)-Ce-O(1)#1	103,35(13)
Ce – O(1)#1	2,400(3)	N(1)-Ce-O(1)	108,89(13)
Si(1) - N(1)	1,717(4)	N(2)-Ce-O(1)	127,10(13)
Si(2) - N(1)	1,724(4)	O(1)#1-Ce-O(1)	70,61(13)
Si(3) - N(2)	1,704(5)	Ce#1-O(1)-Ce	109,39(13)
Si(4) - N(2)	1,717(4)	Si(3)-N(2)-Si(4)	126,1(2)
		Si(2)-N(1)-Si(1)	124,3(2)
		C(15)-C(13A)-C(14)	116,7(11)

Die in Abbildung 5.52 dargestellte gemischt substituierte Verbindung $[Ce(O^{i}Pr)\{N(SiMe_{3})_{2}\}_{2}]_{2}$ besitzt eine zur vorab beschriebenen Neodymverbindung analoge Struktur und kristallisiert im triklinen Kristallsystem in Raumgruppe P1. Zwei $Ce\{N(SiMe_{3})_{2}\}_{2}$ -Elemente sind über zwei μ_{2} OⁱPr- Liganden verbrückt und bilden somit ein Dimer. Der durch die Ceratome und Sauerstoffatome der verbrückenden Liganden aufgespannte Vierring ist nahezu planar. Im Vergleich zur analogen Neodymverbindung sind

alle vom zentralen Ceratom ausgehenden Bindungen zu den Stickstoff- und Sauerstoffatomen der Liganden aufgrund des höheren Kernradius des Cers etwas länger (Ce-N(1): 2,365(4) Å, Ce-N(2): 2,357(4) Å, Ce-O(1): 2,386(3) Å und CeO(1)#1: 2,400(3) Å).

Trotz analoger Vorgehensweise konnten, wie in Gleichung 5.25 beschrieben, bei der Umsetzung von $Er\{N(SiMe_3)_2\}_3$ mit der entsprechenden Menge Isopropanol bisher noch keine Kristalle isoliert werden.

$$2 \operatorname{Er} \{N(\operatorname{SiMe}_{3})_{2}\}_{3} + 2 \operatorname{PrOH} \twoheadrightarrow [\operatorname{Er}(O^{i}\operatorname{Pr})\{N(\operatorname{SiMe}_{3})_{2}\}_{2}]_{2} + 2 \operatorname{HN}(\operatorname{SiMe}_{3})_{2} \quad \text{Gl. 5.25}$$

Alkoholyse

5.5.3 Synthese von ErN(SiMe₃)₂(Mal)₂

Zur Synthese einer monomeren Erbiumverbindung wird nun eine andere Strategie verfolgt. Ein chelatisierend wirkender Ligand, in diesem Falle Malonsäure-di-*tert*-Butylester (Mal), soll eine für ein niedermolekulares Vorliegen der Verbindung ausreichende, koordinative (Elektronendonoreigenschaften) und sterische (abschirmende *tert*-Butoxygruppen) Absättigung des Zentralatoms gewährleisten. Hierzu wird die Ausgangsverbindung $Er{N(SiMe_3)_2}_3$, wie in Gl. 5.26 dargestellt, mit Malonsäre-di-*tert*-Butylester im stöchiometrischen Verhältnis von 1:2 versetzt.

$$Er\{N(SiMe_3)_2\}_3 + 2 (Mal) \rightarrow ErN(SiMe_3)_2(Mal)_2 + 2 HN(SiMe_3)_2 \qquad Gl. 5.26$$

Ligandenaustausch

Zum Austausch zweier Amidliganden des $Er\{N(SiMe_3)_2\}_3$ gegen die chelatisierenden Liganden wird das in Toluol gelöste Erbiumamid zuerst auf ca. 55 °C erhitzt, bevor eine stark verdünnte Lösung des Malonsäure-di-*tert*-Butylesters unter ständigem Rühren langsam zugetropft wird. Nach zwölfstündigem Rühren bei 75 °C ist die Reaktion beendet. Durch Kristallisation in Toluol kann die heteroleptische Verbindung $ErN(SiMe_3)_2(Mal)_2$ in Form rosafarbener, rautenförmiger Kristalle isoliert werden, jedoch aufgrund vorzeitiger Zersetzung (110 °C bei 10⁻³ mbar) nicht in die Gasphase überführt werden.

Abbildung 5.53: Molekülstruktur von ErN(SiMe₃)₂(Mal)₂.

Durch rötgenographische Analyse eines Kristalls konnte die Molekülstruktur dieser Verbindung, die in Abbildung 5.53 illustriert ist, bestimmt werden.

Dabei wird deutlich, dass durch den Austausch zweier sterisch sehr anspruchsvoller Amidliganden gegen zwei Chelatliganden, in diesem Falle Di-*tert*-Butylmalonat, eine heteroleptische und monomere Erbiumverbindung erzeugt werden kann. Nachfolgend sind ausgewählte Strukturdaten tabellarisch zusammengefasst:

Summenformel	$C_{28}H_{56}ErNO_8Si_2$		
Molmasse	758,28		
Temperatur	100(2) K		
Wellenlänge (Mo _{ka})	0,71073 Å		
Kristallsystem	Orthorhombisch		
Raumgruppe	P bca		
	a = 17,7144(5) Å	$\alpha = 90^{\circ}$	
Elementarzellparameter	b = 12,1535 (4) Å	β=90°	
	$c = 34,9803(10) \text{ Å}$ $\gamma = 90^{\circ}$		
Zellvolumen	7530,98(40) Å ³		
Formeleinheit pro Zelle	8		

Tabelle 5.21: Ausgewählte Kristall- und Strukturdaten von ErN(SiMe₃)₂(Mal)₂.

Dichte (berechnet)	1,341 mg/m ³
Absorptionskoeffizient	2,333
F(000)	3144
Gemessener 0 -Bereich	2,68 - 26,06
Index -Bereiche	-21<=h<=21,-14<=k<=15,-43<=l<=43
Gemessene Reflexe	7410
R-Werte (alle Daten)	0,047

Tabelle 5.22:	Ausgewählte Bin	dungslängen und	Bindungswinkel v	on ErN(SiMe ₃) ₂ (M	al)2.
	0	0 0	0	(2/4	/~

Bindung	Bindungslänge [Å]	Bindung	Bindungswinkel [°]
Er(1)-N(1)	2,210(4)	Si(2)-N-Si(1)	123,90 (23)
N(1)-Si(1)	1,709(4)	N-Er-O(5)	104,06(14)
N(1)-Si(2)	1,719(4)	N-Er-O(6)	122,96(13)
Er(1)-O(1)	2,212(4)	N-Er-O(1)	127,46(14)
Er(1)-O(2)	2,224(4)	N-Er-O(2)	101,70(14)
Er(1)-O(5)	2,190(3)	O(5)-Er-O(6)	77,99(13)
Er(1)-O(6)	2,225(4)	O(2)-Er-O(1)	78,02(13)
Si(1)-C(11)	1,881(9)	O(6)-Er-O(2)	87,04(13)
Si(1)-C(13)	1,870(7)	O(5)-Er-O(1)	87,27(13)
Si(1)-C(12)	1,866(6)	O(5)-Er-O(2)	154,21(13)
Si(2)-C(21)	1,864(9)	O(6)-Er-O(1)	109,55(13)
Si(2)-C(22)	1,880(7)	O(7)-C(1)-O(5)	120,23(43)
Si(2)-C(23)	1,885(6)	O(6)-C(3)-O(8)	120.13(44)
C(1)-O(7)	1,374(6)	O(2)-C(6)-O(4)	121,90(47)
C(1)-O(5)	1,268(6)	O(3)-C(4)-O(1)	121,39(46)
C(3)-O(6)	1,277(6)		
C(3)-O(8)	1,339(6)		
C(4)-O(1)	1,262(6)		
C(4)-O(3)	1,347(6)		
C(6)-O(2)	1,256(6)		
C(6)-O(4)	1,337(6)		

Die in Abbildung 5.53 dargestellte Verbindung $ErN(SiMe_3)_2(Mal)_2$ liegt in monomerer Form vor und kristallisiert im orthorhombischen Kristallsystem (Raumgruppe P bca). Das zentrale Erbiumatom ist in erster Koordinationssphäre pyramidal von einem Stickstoffatom der Hexamethyldisilazylgruppe und jeweils zwei Sauerstoffatomen der beiden Malonatliganden umgeben, so dass sich eine Koordinationszahl von 5 ergibt. Die Er-N-Bindungslänge beträgt 2,210(4) Å und ist der in reinem $Er\{N(SiMe_3)_2\}_3$ beschriebenen (2,220 Å) ähnlich.^[273] Die Abstände zu den direkt gebundenen Sauerstoffatomen liegen bei Werten von 2,212(4) Å (Er(1)-O(1)), 2,224(4) Å (Er(1)-O(2)), 2,190(3) Å (Er(1)-O(5)) sowie 2,225 Å für Er(1)-O(6).

Innerhalb des Amidliganden beträgt der Abstand zwischen Stickstoff und Silizium 1,709(4) Å (N(1)-Si(1)) bzw. 1,719(4) Å (N(1)-Si(2)), die mittlere Bindungslänge zu der Kohlenstoffperipherie (Si-C) liegt bei 1,874 Å. Bei näherer Betrachtung der Bindungswinkel wird deutlich, dass die "Scherenwinkel" der Chelatliganden mit Werten von 77,99(13)° (O(5)-Er-O(6)) und 78,02(13)° (O(2)-Er-O(1)) wesentlich kleiner sind als diejenigen zwischen Sauerstoffatomen benachbarter Liganden (O(6)-Er-O(2): 87,04(13) ° und O(5)-Er-O(1): 87,27(13) °). Die Winkel N-Er-O, die alle größer als 90 ° sind (Einfluss des sterisch anspruchsvollen Hexamethyldisilazylliganden), unterscheiden sich ebenfalls voneinander. Während die Werte für N-Er-O(5) und N-Er-O(2) bei 104,06(14) ° bzw. 101,70(14) ° liegen sind die entsprechenden für die beiden anderen Sauerstoffatome dieser Liganden mit 122,96(13) ° (N-Er-O(6)) und 127,46(14) ° (N-Er-O(1)) größer. Diese Tatsache könnte auf die Ausrichtung der Malonsäuregruppen zurückzuführen sein, die dazu tendieren, den vorhandenen Raumbedarf optimal auszunutzen. Alle Winkel zwischen den direkt am Erbium gebundenen Sauerstoffatomen und denen der tert-Butoxyestergruppen der Malonatliganden (O(7)-C(1)-O(5), O(6)-C(3)-O(8), O(2)-C(6)-O(4) und O(3)-C(4)O(1)) liegen im Bereich von 120,91 ° (gemittelte Werte).

5.5.4 Synthese von [Eu(Mal)₃]₂

Im Gegensatz zur in Kapitel 5.5.3 beschriebenen Reaktion konnte bisher trotz analoger Reaktionsbedingungen und Variation des stöchiometrischen Verhältnisses der Edukte keine heteroleptische Europiumverbindung isoliert werden. Die homoleptische Spezies hingegen entsteht durch vollständige Substitution aller drei Amidliganden in Eu{N(SiMe₃)₂}₃ durch drei Malonatliganden. Zwei Europiumatome sind hierbei durch zwei μ_2 -verbrückend wirkende Sauerstoffatome miteinender verbunden und bilden somit ein Dimer, was auf die Abwesenheit des sehr sperrigen Hexamethyldisilazylliganden zurückzuführen ist. Die Herstellung dieser Verbindung erfolgt ausgehend von Eu{N(SiMe₃)₂}₃ durch einen vollständigen Austausch der N(SiMe₃)₂-Gruppen gegen drei chelatisierend wirkende Malonatliganden (Gl. 5.27).

$$2 \operatorname{Eu} \{N(\operatorname{SiMe}_3)_2\}_3 + 6 (\operatorname{Mal}) \rightarrow [\operatorname{Eu} (\operatorname{Mal})_3]_2 + 6 \operatorname{HN}(\operatorname{SiMe}_3)_2 \qquad \text{Gl. 5.27}$$

Ligandenaustausch

Hierbei ist anzumerken, dass es sich bei der Synthese des Hexametyldisilazylamids im Falle des Europiums als vorteilhaft erwiesen hat, die Reaktionstemperatur nicht höher als max. 75 °C zu wählen und die Reaktionsdauer auf 48 h zu beschränken. Im zweiten Reaktionsschritt wird das Europiumamid vollständig in Toluol gelöst und auf 55 °C erwärmt, bevor die Lösung von drei Äquivalenten Malonsäure-di-tert-Butylester in Toluol unter ständigem Rühren zugetropft wird. Nach zwölfstündigem Rühren bei 70 °C wird das Reaktionsgemisch auf Raumtemperatur abgekühlt und das Lösemittelvolumen stark eingeengt. Durch Kristallisation kann die Verbindung [Eu(Mal₃)]₂ in Form quadratischer roter Kristalle erhalten werden. Die Röntgenstrukturanalyse eines solchen Kristalls gibt Aufschluss die Molekülstruktur dieser Verbindung (Abbildung 5.54). Zur besseren über Veranschaulichung der ersten Koordinationssphäre der beiden Europiumatome sind Bindungen, die direkt vom Zentralatom ausgehen, innerhalb der Abbildung gelb markiert. Die Sauerstoffatome des Malonatliganden, die chelatisierend an den Europiumatomen angreifen, sind in einem dunkleren Blau, diejenigen der tert- Butylestergruppierungen in einem helleren Blau wiedergegeben.

Abbildung 5.54: Molekülstruktur von [Eu(Mal)₃]₂.

Summenformel	$Eu_2O_{24}C_{80}H_{130}$	
Molmasse	1779,76	
Temperatur	103(2) K	
Wellenlänge (Mo _{kα})	0,71073 Å	
Kristallsystem	Triklin	
Raumgruppe	P-1	
	a = 12,6713(11) Å α = 95,794(4)°	
Elementarzellparameter	b = 14,1006(11) Å β = 110,946(4)°	
	c = 14,8188(12) Å γ = 110,714(4)°	
Zellvolumen	2230,9(3)Å ³	
Formeleinheit pro Zelle	1	
Dichte (berechnet)	1,325 mg/m ³	
Absorptionskoeffizient	1,460 mm ⁻¹	
F(000)	928	
Kristallgröße	0,55 x 0,3 x 0,2 mm ³	
Gemessener θ -Bereich	1,53 - 26,37	
Index -Bereiche	-15<=h<=15, -17<=k<=17, -17<=l<=18	
Gemessene Reflexe	43295	
Unabhängige Reflexe	8937 [R(int) = 0.0457]	
Strukturverfeinerung	Full-matrix least-squares on F ²	
Daten / Restrains / Parameter	8937 / 0 / 497	
Goodness-of-fit on F ²	1,117	
Endgültige R – Werte $[I > 2\sigma(I)]$	R1 = 0,0368, wR2 = 0,0861	
R-Werte (alle Daten)	R1 = 0,0501, wR2 = 0,0973	

Tabelle 5.23: Ausgewählte Kristall- und Strukturdaten von [Eu(Mal)₃]₂.

Tabelle 5.24: Ausgewählte Bindungslängen und Bindungswinkel von [Eu(Mal)₃]₂.

Bindung	Bindungslänge [Å]	Bindung	Bindungswinkel [°]
Eu(1)-O(5)	2,288(3)	O(5)-Eu(1)-O(6)	74,56(9)
Eu(1)-O(6)	2,347(3)	O(5)-Eu(1)-O(2)	90,64(10)
Eu(1)-O(2)	2,355(3)	O(6)-Eu(1)-O(2)	146,52(9)
Eu(1)-O(1)	2,368(3)	O(5)-Eu(1)-O(1)	87,30(9)
Eu(1)-O(10)	2,397(3)	O(6)-Eu(1)-O(1)	134,18(9)
Eu(1)-O(9)	2,405(3)	O(2)-Eu(1)-O(1)	73,01(9)
Eu(1)-O(10)#1	2,426(3)	O(5)-Eu(1)-O(10)	153,73(9)
O(3)-C(1)	1,357(5)	O(6)-Eu(1)-O(10)	92,70(9)
O(3)-C(4)	1,467(5)	O(2)-Eu(1)-O(10)	87,77(9)
O(4)-C(3)	1,347(5)	O(1)-Eu(1)-O(10)	117,10(9)
O(4)-C(8)	1,472(5)	O(5)-Eu(1)-O(9)	82,98(9)
O(7)-C(12)	1,351(5)	O(6)-Eu(1)-O(9)	74,21(9)

Bindung	Bindungslänge [Å]	Bindung	Bindungswinkel [°]
O(7)-C(16)	1,465(6)	O(2)-Eu(1)-O(9)	74,29(9)
O(8)-C(14)	1,355(5)	O(1)-Eu(1)-O(9)	145,70(9)
O(11)-C(24)	1,345(4)	O(10)-Eu(1)-O(9)	71,34(9)
O(11)-C(27)	1,482(5)	O(5)-Eu(1)-O(10)#1	130,51(9)
O(12)-C(26)	1,361(4)	O(6)-Eu(1)-O(10)#1	80,81(9)
O(12)-C(31)	1,494(4)	O(2)-Eu(1)-O(10)#1	129,29(9)
		O(1)-Eu(1)-O(10)#1	80,04(9)
		O(10)-Eu(1)-O(10)#1	67,47(10)
		O(9)-Eu(1)-O(10)#1	130,13(9)
		Eu(1)-O(10)-Eu(1)#1	112,53(10)

Durch den Austausch aller Amidliganden gegen Malonatgruppen erhält man das in Abbildung 5.54 dargestellte, dimer vorliegende Molekül [Eu(Mal)₃]₂, welches im triklinen Kristallsystem (Raumgruppe P-1) kristallisiert. Hierbei ist jedes der beiden Europiumatome in erster Koordinationssphäre von jeweils zwei endständigen, chelatisierenden Malonatliganden umgeben. Zusätzlich fungiert pro Formeleinheit ein dritter Malonatligand mit einem Sauerstoffatom als μ_2 -Brückenglied zum zweiten Europiumatom. Insgesamt ergibt sich somit für jedes Zentralatom eine siebenfache Koordination. Der von beiden Europiumatomen und den µ₂-verbrückenden Sauerstoffatomen gebildete Vierring ist aufgrund einer Winkelsumme von exakt 360 ° (67,47(10) °: O(10)-Eu(1)-O(10)#1 und 112,56(10) °: Eu(1)-O(10)-Eu(1)#1) ideal planar. Die Bindungslängen zwischen Zentralatom und den Sauerstoffatomen der Liganden liegen bei Werten von 2,288(3) Å für Eu(1)-O(5) bis 2,426(3) Å für Eu(1)-O(10)#1. Die höheren Bindungslängen der verbrückenden Sauerstoffatome sind auf den Einfluss zweier positiv geladener Zentren zurückzuführen, die die Bindung schwächen. Auch hier sind die "Scherenwinkel" der Malonatliganden mit 74,56(9) ° (O(5)-Eu(1)-O(6)), 73,01(9) ° (O(2)-Eu(1)-O(1)) sowie 71,34(9) ° (O(10)-Eu(1)-O(9)) im Allgemeinen kleiner als diejenigen zwischen zwei verschiedenen Liganden. Werte hierfür liegen in einem breiten Bereich zwischen 74,21(9) ° (O(6)-Eu(1)-O(9)) und 153,73(9) ° für O(5)-Eu(1)-O(10).

5.5.5 Synthese von [Nd{OCH(CF₃)₂}₃(H₂O)₂)]₂

Der vollständige Austausch aller Hexamethyldisilazylliganden der Ausgangsverbindung Nd{N(SiMe₃)₂}₃ (siehe hierzu Gleichung 5.22 in Kapitel 5.51) mittels 1,1,1,3,3,3-Hexafluoro-2-propanol erfolgt durch Umsetzung des Neodymamids mit drei Äquivalenten des Alkohols. Hierzu wird eine entsprechende Alkohol/Toluolmischung unter Rühren zur Lösung des $Nd\{N(SiMe_3)_2\}_3$ in Toluol getropft, wobei gemäß Gl. 5.28 alle Amidgruppen von den sauerstoffhaltigen Liganden ersetzt werden und nach 24-stündiger Reaktionszeit bei einer Temperatur von 80 °C eine Alkoxidverbindung der Form $Nd\{OCH(CF_3)_2\}_3$ entstehen sollte.

$$Nd\{N(SiMe_3)_2\}_3 + 3 HOCH(CF_3)_2 \rightarrow Nd\{OCH(CF_3)_2\}_3 + 3 HN(SiMe_3)_2 \qquad Gl. 5.28$$

Alkoholyse

Nachdem das abgekühlte Reaktionsgemisch auf ca. ¹/₄ seines Lösemittelvolumens reduziert wurde, war es möglich, durch Kristallisation die Verbindung $[Nd{OCH(CF_3)_2}_3(H_2O)_2)]_2$ zu isolieren. Weil jeweils zwei H₂O-Liganden pro Zentralatom dieses dimeren Moleküls vorliegen, wurde die Synthese unter Verwendung des nochmals absolutierten Fluoralkohols erneut durchgeführt. Bei exakt gleicher Vorgehensweise und identischen Reaktionsparametern war es jedoch nicht möglich, Kristalle zu erhalten, so dass schließlich in einem weiteren Schritt, wie in Gleichung 5.29 dargestellt, entsprechend der zuvor leicht zu kristallisierenden Verbindung zwei Äquivalente Wasser zugegeben wurden.

$$2 \operatorname{Nd} \{\operatorname{N}(\operatorname{SiMe}_3)_2\}_3 + 6 \operatorname{HOCH}(\operatorname{CF}_3)_2 + 4 \operatorname{H}_2\operatorname{O} \rightarrow [\operatorname{Nd} \{\operatorname{OCH}(\operatorname{CF}_3)_2\}_3(\operatorname{H}_2\operatorname{O})_2]_2 + 6 \operatorname{HN}(\operatorname{SiMe}_3)_2$$

Alkoholyse / Hydrolyse Gl. 5.29

Nach wenigen Tagen konnten erneut für eine Einkristallanalyse geeignete Kristalle gewonnen werden und bezüglich der Molekülstruktur, die in Abbildung 5.55 zu sehen ist, analysiert werden.

Abbildung 5.55: Molekülstruktur von [Nd{OCH(CF₃)₂}₃(H₂O)₂)]₂.

Summenformel	$C_{18}H_{14}F_{36}Nd_2O_{10}$	
Molmasse	1362,77	
Temperatur	293(2) K	
Wellenlänge (Mo _{ka})	0,71073 Å	
Kristallsystem	Orthorhombic	
Raumgruppe	Pbca	
	a = 10,967(2) Å	$\alpha = 90^{\circ}$
Elementarzellparameter	b = 11,977(2) Å	$\beta = 90^{\circ}$
	c = 12,610(3) Å	$\gamma = 90^{\circ}$
Zellvolumen	4116,3(514) Å ³	
Formeleinheit pro Zelle	4	
Dichte (berechnet)	2,199 mg/m ³	
Absorptionskoeffizient	2,701 mm ⁻¹	
F(000)	25842	
Kristallgröße	0,22 x 0,3 x 0,35 mm ³	
Gemessener θ -Bereich	2,60°-28,04°.	
Index -Bereiche	-16<=h<=16, -21<=k	<=21, -25<=l<=26
Gemessene Reflexe	36349	
Unabhängige Reflexe	4263 [R(int) = 0.072	0]
Strukturverfeinerung	Full-matrix least-squ	ares on F ²
Daten / Restrains / Parameter	4916 / 0 / 406	
Goodness-of-fit on F ²	1,085	
Endgültige R – Werte [I > 2σ(I)]	R1 = 0,0339, wR2 = 0,0933	
R-Werte (alle Daten)	R1 = 0,0444, wR2 =	0,0983
Restelektronendichte	1,977;-1,372.Å ⁻³	

Tabelle 5.25: Ausgewählte Kristall- und Strukturdaten von [Nd{OCH	$H(CF_3)_2$ $(H_2O)_2)_2$.
---	-----------------------------

 $Tabelle \ 5.26: \quad Ausgewählte \ Bindungslängen \ und \ Bindungswinkel \ von \ [Nd \{OCH(CF_3)_2\}_3(H_2O)_2)]_2.$

Bindung	Bindungslänge [Å]	Bindung	Bindungswinkel [°]
Nd(1)-O(3)	2,167(3)	O(3)-Nd(1)-O(1)	98,47(12)
Nd(1)-O(1)	2,207(3)	O(3)-Nd(1)-O(2)#1	99,60(11)
Nd(1)-O(2)#1	2,406(2)	O(1)-Nd(1)-O(2)#1	88,55(9)
Nd(1)-O(2)	2,450(2)	O(3)-Nd(1)-O(2)	98,40(10)
Nd(1)-O(5A)	2,608(12)	O(1)-Nd(1)-O(2)	154,67(9)
Nd(1)-O(4)	2,678(3)	O(2)#1-Nd(1)-O(2)	70,08(8)
O(1)-C(1A)	1,375(8)	O(3)-Nd(1)-O(5A)	92,8(5)
O(2)-C(4)	1,397(4)	O(1)-Nd(1)-O(5A)	87,4(2)
O(3)-C(7A)	1,370(6)	O(2)#1-Nd(1)-O(5A)	167,4(5)
C(1A)-C(2)	1,481(11)	O(2)-Nd(1)-O(5A)	110,5(2)

Bindung	Bindungslänge [Å]	Bindung	Bindungswinkel [°]
C(1A)-C(3A)	1,511(15)	O(3)-Nd(1)-O(4)	176,28(14)
C(4)-C(5)	1,522(6)	O(1)-Nd(1)-O(4)	81,33(12)
C(4)-C(6)	1,532(6)	O(2)#1-Nd(1)-O(4)	84,11(12)
C(7A)-C(9A)	1,488(13)	O(2)-Nd(1)-O(4)	83,03(12)
C(7A)-C(8A)	1,490(14)	O(5A)-Nd(1)-O(4)	83,5(5)
		C(1A)-O(1)-Nd(1)	166,7(4)
		C(4)-O(2)-Nd(1)#1	120,4(2)
		C(4)-O(2)-Nd(1)	129,7(2)
		Nd(1)#1-O(2)-Nd(1)	109,92(8)
		C(7A)-O(3)-Nd(1)	160,5(4)
		C(2)-C(1A)-C(3A)	116,35(10)
		C(5)-C(4)-C(6)	111,9(3)
		C(9A)-C(7A)-C(8A)	110,09(9)

Die durch vollständigen Ligandenaustausch erhaltene und in Abbildung 5.55 zu sehende Verbindung $[Nd{OCH(CF_3)_2}_3(H_2O)_2]_2$ ist dimer und kristallisiert im orthorhombischen Kristallsystem (Raumgruppe P bca). Jedes der beiden zentralen Neodymatome besitzt in seiner Ligandensphäre jeweils zwei endständige Hexafluoroalkoxyliganden mit Bindungsabständen von 2,167(3) Å (Nd(1)-O(3)) und 2,207(3) Å (Nd(1)-O(1)) sowie zwei endständige H₂O-Gruppen, die Bindungslängen von 2,608(12) Å (Nd(1)-O(5A)) bzw. 2,678(3) Å (Nd(1)-O(4)) aufweisen. Die Verbrückung beider Neodymatome erfolgt durch einen zusätzlichen µ2-Hexafluoroisopropanolatliganden an jedem Zentralatom, das somit insgesamt eine sechsfache Koordination und dementsprechend eine verzerrt oktaedrische Ligandenumgebung aufweist. Dabei wird, wie in Abbildung 5.56 zu sehen, die Oktaedergrundfläche durch die "Eckpunkte" O(5A), O(1), O(2) und O(2)#1 definiert, und O(3) sowie O(4) stellen die Oktaederspitzen dar. Bindungsabstände zu den Sauerstoffatomen der μ_2 -Brückenglieder betragen 2,406(2) Å für Nd(1)-O(2)#1 und 2,450(2) Å für Nd(1)-O(2). Der mittels dieser Sauerstoffatome und der Neodymatome gebildete zentrale Vierring weist insgesamt die Winkelsumme von genau 360 ° auf (109,92(8) ° bei Nd(1)#1-O(2)-Nd(1) sowie 70,08(8) ° bei O(2)#1-Nd(1)-O(2)) und ist daher planar. Bei Betrachtung der restlichen Bindungswinkel fällt auf. dass entsprechend der verzerrt oktaedrischen Koordinationsgeametrie der O(3)-Nd(1)-O(4)-Winkel 176,28(14) ° beträgt, wogegen sich die anderen von O(3) ausgehenden Winkel bei Werten zwischen 92,8(5) ° für O(3)-Nd(1)-O(5A) und maximal 99,60(11) ° für O(3)-Nd(1)-O(2)#1 befinden. Im Vergleich hierzu sind die entsprechenden Bindungswinkel O(1)-Nd(1)-O(4), O(2)-Nd(1)-O(4), O(5A)-Nd(1)-O(4) und O(2)#1-Nd(1)-O(4) mit Werten von 81,33(12)°, 83,03(12)°, 83,5(5)° bzw. 84,11(12)° wesentlich kleiner (gestaucht), was durch den, wie vorab beschrieben, im Vergleich zu H_2O erhöhten sterischen Anspruch der Hexafluoroalkoholatgruppierung des gegenüberliegenden Liganden begründet werden kann.

Abbildung 5.56: Verzerrt oktaedrische Ligandensphäre der Nd Atome in [Nd{OCH(CF₃)₂}₃(H₂O)₂)]₂.

Die beiden H₂O-Moleküle sind cis-ständig, was wiederum durch eine Verringerung der auftretenden Spannungen erklärt werden kann. Somit wird die Grundfläche des Oktaeders von den Hexafluoroisopropanolatliganden aufgespannt, was mit einer geringeren Raumbeanspruchung einhergeht. Die Bindungslängen der Kohlenstoffatome innerhalb dieser Liganden betragen 1,540 Å (gemittelte Werte), wobei die Winkel mit 112, 78 ° (gemittelte Werte) sehr groß sind.

5.5.6 Synthese von Er₃O(OSiMe₃)₇(HOSiMe₃)(THF)₂

Beim Versuch der Herstellung einer homoleptischen Erbium-trimethylsiloxy-Verbindung der allgemeinen Form $[Er(OSiMe_3)_3]_x$ durch die Reaktion der Ausgangssubstanz Erbium-trishexamethyltrisilylamid mit einem Überschuss an Trimethylsilanol wurde deutlich, dass oftmals, bedingt durch die stark ausgeprägte Oxophilie der Lanthanoidatome in Kombination mit dem Bestreben nach koordinativer Absättigung, clusterartige Reaktionsprodukte entstehen können. Zur Synthese wird $Er\{N(SiMe_3)_2\}_3$ gemäß Gleichung 5.30 in Toluol gelöst und unter leichter Kühlung bei ständigem Rühren mit einem Überschuss an Me₃SiOH in Toluol vermischt. Nach einer Reaktionszeit von 12 Stunden bei Raumtemperatur wird das Lösemittel vollständig entfernt und der rosa gefärbte Rückstand erneut in einem Toluol/THF-Gemisch unter Wärmezufuhr (mögliche Erklärung für die Bildung einer Oxoverbindung) aufgenommen, wobei schon nach wenigen Tagen plättchenförmige Kristalle erhalten werden konnten.

$$\operatorname{Er} \{ N(\operatorname{SiMe}_{3})_{2} \}_{3} + \operatorname{Me}_{3} \operatorname{SiOH}_{(\ddot{U}\text{berschuss})} \xrightarrow{\operatorname{THF}}_{-\operatorname{HN}(\operatorname{SiMe}_{3})_{2}} [\operatorname{Er}_{3} O(OSiMe_{3})_{7} (Me_{3}SiOH)(THF)_{2}] \text{ Gl. 5.30}$$

Die Röntgenstrukturanalyse eines solchen Kristalls gibt Aufschluss über die Molekülstruktur der entstandenen Verbindung und belegt, dass der hier gewählte Ligandenaustausch nicht immer zielgerichtet zur geplanten Endverbindung führt. Die vorab beschriebene Reaktion liefert nicht etwa reines Erbiumsilanolat $[Er(OSiMe_3)_3]_x$, sondern resultiert in der Bildung eines Clusters, in dem eine μ_3 -Oxobrücke drei Er-Atome miteinander verbindet. Die Absättigung der Koordinationssphäre erfolgt, wie nachfolgend anhand Abbildung 5.57 zu sehen, zusätzlich durch zwei koordinierte THF-Liganden. Eine solche Stabilisierung durch Lösemittelmoleküle ist laut Literatur bei Lanthanoidsiloxiden der allgemeinen Form $[Ln(OSiR_3)_x]$ (x = 2-4) sogar bei sterisch anspruchsvollen Siloxyliganden nicht ungewöhnlich.^{[295]-[302]}

Abbildung 5.57: Molekülstruktur von Er₃O(OSiMe₃)₇(Me₃SiOH)(THF)₂.

Die in Abbildung 5.57 dargestellte Verbindung kristallisiert im monoklinen Kristallsystem (Raumgruppe P2(1)/c) und besitzt einen mit den homoleptischen Alkoxidverbindungen $La_3(O^tBu)_9(HO^tBu)_2$ und $Y_3(O^tBu)_9(HO^tBu)_2$ vergleichbares Grundgerüst.^{[278][279]} In den nachfolgenden Tabellen sind die wichtigsten Strukturdaten, Bindungslängen sowie Bindungswinkel aufgeführt:

Summenformel	$C_{32}H_{89}Er_{3}O_{11}Si_{8}$	
Molmasse	1376,71	
Temperatur	293(2) K	
Wellenlänge (Mo _{ka})	0,71073 Å	
Kristallsystem	Monoclinic	
Raumgruppe	P2(1)/c	
	a = 22,320(4) Å	$\alpha = 90^{\circ}$
Elementarzellparameter	b = 14,861(3) Å	$\beta = 93,10(3)^{\circ}$
	c = 20,440(4) Å	$\gamma = 90^{\circ}$
Zellvolumen	4	
Formeleinheit pro Zelle	6770(2) Å ³	
Dichte (berechnet)	1,388 mg/m ³	
Absorptionskoeffizient	3,864 mm ⁻¹	
F(000)	2820	
Kristallgröße	0,45 x 0,35 x 0,28 mm ³	
Gemessener θ -Bereich	1,90 to 23,96°	
Index -Bereiche	-25<=h<=25, -16<=k<	<=16, -23<=l<=23
Gemessene Reflexe	41700	
Unabhängige Reflexe	9920 [R(int) = 0,1405]	
Strukturverfeinerung	Full-matrix least-squares on F ²	
Daten / Restrains / Parameter	9920 / 0 / 535	
Goodness-of-fit on F ²	1,024	
Endgültige R – Werte $[I > 2\sigma(I)]$	R1 = 0,0433, wR2 = 0,1250	
R-Werte (alle Daten)	R1 = 0,0586, wR2 = 0,1309	
Restelektronendichte	2,057;-1,369 e.Å ⁻³	

Tabelle 5.27: Ausgewählte Kristall- und Strukturdaten vo	on Er ₃ O(OSiMe ₃) ₇ (Me ₃ SiOH)(THF) ₂ .
--	---

Tabelle 5.28: Ausgewählte Bindungslängen von Er₃O(OSiMe₃)₇(Me₃SiOH)(THF)₂.

Bindung	Bindungslänge [Å]	Bindung	Bindungslänge [Å]
Er(1)-O(7)	2,096(6)	Er(3)-O(3)	2,230(5)
Er(1)-O(6)	2,103(6)	Er(3)-O(4)	2,274(6)

Bindung	Bindungslänge [Å]	Bindung	Bindungslänge [Å]
Er(1)-O(3)	2,296(5)	Er(3)-O(2)	2,336(5)
Er(1)-O(5)	2,309(6)	Er(3)-O(1)	2,344(5)
Er(1)-O(1)	2,456(5)	Er(3)-O(11)	2,358(6)
Er(1)-O(2)	2,474(5)	Si(1)-O(3)	1,651(6)
Er(2)-O(8)	2,084(7)	Si(4)-O(2)	1,668(5)
Er(2)-O(5)	2,243(5)	Si(3)-O(5)	1,637(6)
Er(2)-O(4)	2,271(6)	Si(2)-O(4)	1,639(6)
Er(2)-O(2)	2,331(5)	Si(5)-O(7)	1,571(7)
Er(2)-O(1)	2,350(6)	Si(8)-O(9)	1,621(7)
Er(2)-O(10)	2,355(6)	Si(7)-O(8)	1,619(7)
Er(3)-O(9)	2,069(6)	Si(6)-O(6)	1,611(6)

Tabelle 5.29: Ausgewählte Bindungswinkel von Er₃O(OSiMe₃)₇(Me₃SiOH)(THF)₂.

Bindung	Bindungswinkel [°]	Bindung	Bindungswinkel [°]
O(7)-Er(1)-O(6)	108,6(3)	O(9)-Er(3)-O(2)	108,8(2)
O(7)-Er(1)-O(3)	97,3(2)	O(3)-Er(3)-O(2)	76,78(19)
O(6)-Er(1)-O(3)	106,3(2)	O(4)-Er(3)-O(2)	75,0(2)
O(7)-Er(1)-O(5)	101,3(2)	O(9)-Er(3)-O(1)	176,8(2)
O(6)-Er(1)-O(5)	101,1(2)	O(3)-Er(3)-O(1)	76,30(18)
O(3)-Er(1)-O(5)	139,72(19)	O(4)-Er(3)-O(1)	73,6(2)
O(7)-Er(1)-O(1)	84,2(2)	O(2)-Er(3)-O(1)	70,31(17)
O(6)-Er(1)-O(1)	167,0(2)	O(9)-Er(3)-O(11)	94,0(3)
O(3)-Er(1)-O(1)	72,91(18)	O(3)-Er(3)-O(11)	99,1(2)
O(5)-Er(1)-O(1)	73,82(19)	O(4)-Er(3)-O(11)	98,2(2)
O(7)-Er(1)-O(2)	150,4(2)	O(2)-Er(3)-O(11)	157,1(2)
O(6)-Er(1)-O(2)	101,0(2)	O(1)-Er(3)-O(11)	86,8(2)
O(3)-Er(1)-O(2)	72,86(18)	Er(3)-O(1)-Er(2)	91,56(18)
O(5)-Er(1)-O(2)	73,37(18)	Er(3)-O(1)-Er(1)	90,98(17)
O(1)-Er(1)-O(2)	66,25(17)	Er(2)-O(1)-Er(1)	90,51(18)
O(8)-Er(2)-O(5)	106,6(3)	Er(3)-O(2)-Er(2)	92,25(18)
O(8)-Er(2)-O(4)	102,9(3)	Er(3)-O(2)-Er(1)	90,74(18)
O(5)-Er(2)-O(4)	145,0(2)	Er(2)-O(2)-Er(1)	90,51(16)
O(8)-Er(2)-O(2)	110,0(2)	Er(3)-O(3)-Er(1)	98,3(2)
O(5)-Er(2)-O(2)	77,39(18)	Er(2)-O(4)-Er(3)	95,5(2)
O(4)-Er(2)-O(2)	75,19(19)	Er(2)-O(5)-Er(1)	97,18(19)
O(8)-Er(2)-O(1)	176,2(2)	Si(8)-O(9)-Er(3)	177,8(5)
O(5)-Er(2)-O(1)	77,13(19)	Si(7)-O(8)-Er(2)	177,2(5)
O(4)-Er(2)-O(1)	73,5(2)	Si(5)-O(7)-Er(1)	174,5(5)
O(2)-Er(2)-O(1)	70,27(18)	Si(6)-O(6)-Er(1)	166,1(4)
O(8)-Er(2)-O(10)	91,8(3)	Si(3)-O(5)-Er(1)	126,5(3)
O(5)-Er(2)-O(10)	100,7(2)	Si(3)-O(5)-Er(2)	136,2(3)

Bindung	Bindungswinkel [°]	Bindung	Bindungswinkel [°]
O(7)-Er(1)-O(6)	108,6(3)	O(9)-Er(3)-O(2)	108,8(2)
O(7)-Er(1)-O(3)	97,3(2)	O(3)-Er(3)-O(2)	76,78(19)
O(6)-Er(1)-O(3)	106,3(2)	O(4)-Er(3)-O(2)	75,0(2)
O(7)-Er(1)-O(5)	101,3(2)	O(9)-Er(3)-O(1)	176,8(2)
O(6)-Er(1)-O(5)	101,1(2)	O(3)-Er(3)-O(1)	76,30(18)
O(3)-Er(1)-O(5)	139,72(19)	O(4)-Er(3)-O(1)	73,6(2)
O(7)-Er(1)-O(1)	84,2(2)	O(2)-Er(3)-O(1)	70,31(17)
O(6)-Er(1)-O(1)	167,0(2)	O(9)-Er(3)-O(11)	94,0(3)
O(3)-Er(1)-O(1)	72,91(18)	O(3)-Er(3)-O(11)	99,1(2)
O(5)-Er(1)-O(1)	73,82(19)	O(4)-Er(3)-O(11)	98,2(2)
O(7)-Er(1)-O(2)	150,4(2)	O(2)-Er(3)-O(11)	157,1(2)
O(6)-Er(1)-O(2)	101,0(2)	O(1)-Er(3)-O(11)	86,8(2)
O(3)-Er(1)-O(2)	72,86(18)	Er(3)-O(1)-Er(2)	91,56(18)
O(5)-Er(1)-O(2)	73,37(18)	Er(3)-O(1)-Er(1)	90,98(17)
O(1)-Er(1)-O(2)	66,25(17)	Er(2)-O(1)-Er(1)	90,51(18)
O(8)-Er(2)-O(5)	106,6(3)	Er(3)-O(2)-Er(2)	92,25(18)
O(8)-Er(2)-O(4)	102,9(3)	Er(3)-O(2)-Er(1)	90,74(18)
O(5)-Er(2)-O(4)	145,0(2)	Er(2)-O(2)-Er(1)	90,51(16)
O(8)-Er(2)-O(2)	110,0(2)	Er(3)-O(3)-Er(1)	98,3(2)
O(5)-Er(2)-O(2)	77,39(18)	Er(2)-O(4)-Er(3)	95,5(2)
O(4)-Er(2)-O(2)	75,19(19)	Er(2)-O(5)-Er(1)	97,18(19)
O(8)-Er(2)-O(1)	176,2(2)	Si(8)-O(9)-Er(3)	177,8(5)
O(5)-Er(2)-O(1)	77,13(19)	Si(7)-O(8)-Er(2)	177,2(5)
O(4)-Er(2)-O(1)	73,5(2)	Si(5)-O(7)-Er(1)	174,5(5)
O(2)-Er(2)-O(1)	70,27(18)	Si(6)-O(6)-Er(1)	166,1(4)
O(8)-Er(2)-O(10)	91,8(3)	Si(3)-O(5)-Er(1)	126,5(3)
O(5)-Er(2)-O(10)	100,7(2)	Si(3)-O(5)-Er(2)	136,2(3)
O(4)-Er(2)-O(10)	96,7(2)	Si(2)-O(4)-Er(3)	132,0(4)
O(2)-Er(2)-O(10)	157,9(2)	Si(2)-O(4)-Er(2)	132,3(4)
O(1)-Er(2)-O(10)	87,8(2)	Si(1)-O(3)-Er(1)	125,4(3)
O(9)-Er(3)-O(3)	106,5(2)	Si(1)-O(3)-Er(3)	135,3(3)
O(9)-Er(3)-O(4)	103,3(2)	Si(4)-O(2)-Er(3)	124,5(3)
O(3)-Er(3)-O(4)	144,11(19)	Si(4)-O(2)-Er(2)	129,1(3)

 $Er_3O(OSiMe_3)_7(Me_3SiOH)(THF)_2$ besteht aus einer trinuklearen Struktureinheit, wobei drei in einer Ebene befindliche Erbiumatome das Grundgerüst darstellen. Alle Er-Atome sind untereinander durch verbrückend wirkende μ_2 -Sauerstoffatome der Trimethylsiloxygruppierungen verbunden, wobei Er-O-Bindungslängen von 2,230 (5) Å für Er(3)-O(3) bis zu 2,309(6) Å bei Er(1)-O(5) beobachtet werden. Die entsprechenden Bindungswinkel liegen bei Werten von 139,72(19) ° (O(3)-Er(1)-O(5)), 144,11(19) ° (O(3)- Er(3)-O(4)) und 145,0(2) ° (O(5)-Er(2)-O(4) bzw. 98,3(2) ° (Er(3)-O(3)-Er(1)), 95,5(2) ° (Er(2)-O(4)-Er(3)) und 97,18(19) ° (Er(2)-O(5)-Er(1)). Zusätzlich befindet sich unter der durch die drei Lanthanoidatome aufgespannten Ebene ein weiterer Me₃SiO-Ligand, dessen Sauerstoffatom eine μ_3 -Brücke mit Bindungswinkeln von 92,25(18) ° (Er(3)-O(2)-Er(2)), 90,74(18) ° (Er(3)-O(2)-Er(1)) sowie 90,51(16) ° Er(2)-O(2)-Er(1) zu den Erbiumatomen ausbildet. Hierbei fällt auf, wie in Abbildung 5.58 deutlich zu sehen ist, dass die Ausrichtung

Abbildung 5.58: Ausrichtung der Liganden in Er₃O(OSiMe₃)₇(Me₃SiOH)(THF)₂.

der Methylgruppen dieses Liganden bezüglich der Erbiumatome auf Lücke erfolgt. Eine Verbindung der Erbiumatome oberhalb dieser Ebene wird durch einen μ_3 -Oxoliganden bewerkstelligt. Die daraus resultierenden Bindungswinkel (91,56(18)° (Er(3)-O(1)-Er(2), 90,98(17)° (Er(3)-O(1)-Er(1)) und $90,51(18)^{\circ}$ (Er(2)-O(1)-Er(1)) entsprechen fast denen des µ₃-Trimethylsiloxyliganden, wodurch die Sauerstoffatome O(1) und O(2), wie in nebenstehender Abbildung zu sehen, in einer Ebene erscheinen. Durch zwei zusätzliche endständige Trimethylsiloxy-

gruppierungen bei Er(1) bzw. jeweils einer endständigen Me₃SiO- Gruppe und einem koordinierten Lösemittelmolekül (THF) im Falle von Er(2) und Er(3) erreicht jedes Erbiumatom eine sechsfache, verzerrt oktaedrische Koordination. Bezüglich der Bindungslängen Er-O-Ligand besteht auch hier die Tendenz größer werdender Abstände mit zunehmender Verbrückungstendenz (Er-OSiMe₃(terminal) < Er-(μ_2)-OSiMe₃ < Er-(μ_3)-OSiMe₃). Während die Bindungslängen Er-O der terminalen Trimethylsiloxyliganden 2,088 Å betragen, sind diejenigen der μ_2 -verbrückenden Gruppierungen mit 2,271 Å deutlich größer (gemittelte Werte). Bindungslängen zu den vom Lösemittelmolekül stammenden Sauerstoffatomen betragen 2,358(6) Å (Er(3)-O(11)) bzw. 2,355(6) Å (Er(2)-O(10)). Die längsten Distanzen sind jedoch, wie vorab schon kurz erläutert, bei Er(1)-O(2): 2,474(5), Er(2)-O(2): 2,331(5) und Er(3)-O(2): 2,336(5) sowie Er(1)-O(1): 2,456(5), Er(2)-O(1): 2,350(6) und Er(3)-O(1): 2,44(5) zu finden.

Die im Rahmen dieser Dissertation durchgeführten Untersuchungen bezüglich des chemischen Designs potentieller Precursorverbindungen, die eine für den Einsatz im CVD-

Prozess ausreichende Flüchtigkeit besitzen, lassen den Rückschluss zu, dass bei den Lanthanoiden eine wesentlich komplexere "Precursorchemie" als bei den tetravalenten Übergangsmetallen vorliegt. Die im ersten Teil der Arbeit beschriebenen Übergangsmetallprecursoren erfüllen nicht nur alle für eine Filmherstellung notwendigen Voraussetzungen, sondern ermöglichen auch eine gezielt steuerbare Materialsynthese. Die Lanthanoidprecursoren hingegen konnten aufgrund unzureichender Flüchtigkeiten und vorzeitiger Zersetzung nicht für vergleichbare CVD-Experimente herangezogen werden.

6 Zusammenfassung der Ergebnisse und Ausblick

Im Rahmen der vorliegenden Dissertation wurden neuartige heteroleptische Verbindungen der Übergangsmetalle Titan, Zirkonium und Hafnium sowie der Lanthanoide Cer, Neodym, Europium und Erbium synthetisiert und charakterisiert. Darüber hinaus wurden diese neuen Verbindungen im thermischen CVD-Prozess eingesetzt, um ihr Potential in der Dünnschichttechnologie zu evaluieren. Das dabei verfolgte Hauptziel war, Ligandenkombinationen zu finden, die definierte metallorganische Verbindungen niedriger Nuklearität und mit angemessenen Flüchtigkeiten gewährleisten. Das in dieser Arbeit entwickelte Precursorkonzept wurde u. a. bei der molekülbasierten chemischen Gasphasenabscheidung von TiO₂ Filmen angewendet.

Abbildung 6.1: Das Konzept des molekülbasierten Materialdesigns.

Die meist oxidischen Beschichtungssysteme mit unterschiedlichen Mikrostrukturen, die von verschiedenen Texturen bis hin zu amorphen Oberflächen reichten, wurden bezüglich Phasenzusammensetzung und biokompatibler Eigenschaften untersucht. Insgesamt war es so möglich, den Einfluss der organischen Ligandensphäre in Kombination mit bestimmten Prozessparametervariationen, wie Precursorfluss, Druck, Abscheidezeit und Substrattemperatur, auf die resultierenden Materialeigenschaften genau zu analysieren.

Der Einsatz der homoleptischen Verbindungen Zr(O^tBu)₄, Zr(NEt₂)₄ sowie Zr(NEt₂)₄/Et₂NH im thermischen CVD-Prozess erlaubte die Herstellung von Zirkoniumoxid- (ZrO₂) bzw.

Zirkoniumcarbonitrid- (Zr-C-N) Filmen. Sowohl die morphologische Beschaffenheit als auch die Phasenkomposition der ZrO₂-Schichten zeigten eine starke Abhängigkeit von der jeweils gewählten Substrattemperatur (450-650 °C). Hierbei wurde die Bildung von reinem tetragonalen ZrO₂ bei 350 °C und monoklinem Zirkoniumoxid bei Temperaturen > 550 °C beobachtet. Aus Zelltests mittels Osteoblasten und Verofibroblasten konnte sowohl für Zr-C-N- als auch für ZrO₂-Oberflächen eine sehr gute Verträglichkeit abgeleitet werden.

Um nun das Potential heteroleptischer Vorläuferverbindungen innerhalb der Materialsynthese zu evaluieren, wurden Übergangsmetallprecursoren hergestellt, bei denen die Ligandenwahl so getroffen wurde, dass jeweils zwei Sauerstoffreste $(O^{L}Bu)$ und zwei Stickstoffgruppierungen am Zentralatom koexistieren. Dabei handelte es sich zum einen um den sterisch sehr anspruchsvollen Hexamethyldisilazylliganden $(Zr(O^{T}Bu)_{2} \{N(SiMe_{3})_{2}\}_{2})$ Hf(O^tBu)₂{N(SiMe₃)₂}₂ sowie [Ti(O^tBu)₂N(SiMe₃)₂ClLiN(SiMe₃)₂]₂) und zum anderen um einen Diisopropylamidrest mit etwas geringerem Raumbedarf (Zr(O^tBu)₂(N^tPr₂)₂). Insgesamt sollten die resultierenden Verbindungen geringe Oligomerisierungsgrade bzw. für den Einsatz im CVD-Prozess ausreichende Flüchtigkeiten aufweisen. Die thermische Zersetzung der beiden heteroleptischen und monomer vorliegenden Precursoren $Zr(O^{t}Bu)_{2} \{N(SiMe_{3})_{2}\}_{2}$ und $Hf(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}$ als auch die des dimeren $[Ti(O^{t}Bu)_{2}N(SiMe_{3})_{2}ClLiN(SiMe_{3})_{2}]_{2}$ führte bei allen gewählten Substrattemperaturen (450-750 °C) zu amorphen Filmen, wobei keinerlei Morphologieunterschiede festzustellen waren. Die erschwerte Kristallisation beim Schichtwachstum war bei diesen drei Precursoren offensichtlich darin begründet, dass sich in den Filmen, wie XPS-Analysen belegen, neben den jeweiligen Metall-Sauerstoff-Komponenten auch große Anteile Stickstoff sowie Kohlenstoff und vor allem Silizium (im Falle des [Ti(O^tBu)₂N(SiMe₃)₂ClLiN(SiMe₃)₂]₂ sogar Li und Cl) befanden. Der Einsatz von Zr(O^tBu)₂(NⁱPr₂)₂ ermöglichte hingegen die Herstellung kristalliner ZrO₂- bzw. Zr₂ON₂-Schichten.

Abbildung 6.2: Heteroleptische Übergangsmetallprecursoren und resultierende Filmzusammensetzungen.

Dabei hing die Phasenzusammensetzung in starkem Maße von der jeweiligen Substrattemperatur ab. Während bei Temperaturen von 650-750 °C Zirkoniumoxidfilme synthetisiert wurden, resultierten aus Abscheidungen bei niedrigeren Substrattemperaturen (450-550 °C) Zirkoniumoxynitridbeschichtungen, deren Kristallinität sich mit steigender Temperatur erhöhte. Der zuvor erwähnte Temperatureinfluss spiegelte sich ebenfalls in der Morphologie der Filme wider.

Der Einfluss einer Ligandenmodifizierung auf resultierende Eigenschaften von Titanoxidschichten fand ebenfalls unter dem allgemeinen Aspekt des gezielten Precursordesigns statt. Dabei sollten Variationen in der Ligandensphäre teils bekannter Precursorstrukturen der Synthese verbesserter MOCVD-Precursoren dienen. Hierzu wurden TiO₂-Filme unter Verwendung der homoleptischen Verbindung Ti(O¹Pr)₄ sowie der heteroleptischen, durch Variation eines der vier Isopropoxyliganden modifizierten Precursoren ClTi(OⁱPr)₃, MeTi(OⁱPr)₃, Me₂NTi(OⁱPr)₃, Et₂NTi(OⁱPr)₃, ⁱPr₂NTi(OⁱPr)₃, (Me₃Si)₂NTi(OⁱPr)₃, CpTi(OⁱPr)₃ und ^tBuOTi(OⁱPr)₃ mittels thermischer CVD auf Siliziumsubstraten abgeschieden. Bei den verwendeten Vorstufen handelte es sich um die keiner vorzeitigen Zersetzung unterlagen. Flüssigkeiten, Sowohl die Phasenzusammensetzung als auch die Morphologie der erhaltenen Filme hing sehr stark von zwei Faktoren ab. Zum einen bewirkte die verwendete Substrattemperatur (450-750 °C) diesbezüglich unterschiedliche Resultate, und zum anderen konnten bei gleichbleibender Substrattemperatur - jedoch unter Verwendung der modifizierten Verbindungen - deutlich unterschiedliche Schichten produziert werden, was die Möglichkeit aufzeigte, auf molekularer Ebene Einfluss auf die Materialeigenschaften auszuüben. Des Weiteren zeigte sich eine deutliche Abhängigkeit der Wachstumsraten vom jeweils eingeführten Liganden, wobei die allgemeine Tendenz zu schnellerem Wachstum bei homoleptischen Precursoren aufzufinden war (Steuerung durch Ligandendesign). Die Mikrostrukturen variierten zwischen sehr glatten Oberflächen, die bei amorphen Filmen ((Me₃Si)₂NTi(O¹Pr)₃) beobachtet wurden, bis hin zu stark strukturierten und facettierten Beschaffenheiten, insbesondere bei den Schichten, die aus Abscheidungen von Et₂NTi(O¹Pr)₃ resultierten. Im Falle aller Precursoren konnte ein direkter Zusammenhang zwischen Abscheidetemperatur und Morphologie festgestellt werden. Lediglich auf die Oberflächenstruktur der amorphen Filme, die unter Verwendung von (Me₃Si)₂NTi(O¹Pr)₃ synthetisiert wurden, konnte so kein Einfluss ausgeübt werden.

Abbildung 6.3: Phasenkontrolle durch Ligandendesign.

Die Phasenzusammensetzungen variierten je nach verwendeter Vorläuferverbindung (Abbildung 6.3) und entsprechend gewählter Substrattemperatur von reinem Anatas über Phasengemische (Anatas/Rutil) bis hin zur reinen Rutilphase. Untersuchungen der photokatalytischen Eigenschaften, die anhand der Zersetzung von Stearinsäure unter UV-Bestrahlung ermittelt wurden, zeigten eindeutig, dass die aus reinem Anatas bestehenden Schichten eine höhere Aktivität besitzen als diejenigen, die sich aus einem Rutil/Anatasgemisch zusammensetzen. Darüber hinaus stellte sich bei Zelltests mit Osteoblasten heraus, dass TiO₂-Oberflächen, die aus Abscheidungen von Ti(OⁱPr)₄ und CpTi(OⁱPr)₃ resultierten, gegenüber denjenigen, die mit ClTi(OⁱPr)₃ hergestellt wurden, eine deutlich bessere Kompatibilität aufweisen. Insgesamt war es möglich, durch gezielte Ligandenmodifikationen Precursoren derart zu designen, dass in Kombination mit bestimmten Prozessparametern eine breite Auswahl an einstellbaren Phasen sowie morphologischen Oberflächenbeschaffenheiten zur Verfügung steht.

Die Synthese der Lanthanoidverbindungen innerhalb dieser Arbeit erfolgte ebenfalls unter dem Aspekt der Generierung einer heteroleptischen Ligandensphäre, die stickstoffhaltige sowie sauerstoffhaltige Reste beinhalten sollte. Dazu wurden die homoleptischen Trimethylsilylamide der Elemente Cer, Neodym, Europium und Erbium derart durch Insertion von Heteroliganden modifiziert, dass im Idealfall gemischt substituierte und darüber hinaus möglichst niedermolekular vorliegende Verbindungen resultieren. Durch den Einsatz der sauerstoffhaltigen Verbindungen HOCH(CH₃)₂ (Isopropanol) und HOCH(CF₃)₂ (1,1,1,3,3,3-Hexafluoro-2-propanol), des Trimethyl-Silanols ((CH₃)₃SiOH) sowie des chelatisierenden Restes (CH₃)₃COCOCH₂COOC(CH₃)₃ (Malonsäure-di-*tert* Butylester, "Mal"), die zum

Austausch einer oder mehrerer Amidliganden dienen sollten, konnten die metallorganischen Moleküle der Lanthanoide $[Nd(O'Pr){N(SiMe_3)_2}_2]_2$, $[Ce(O'Pr){N(SiMe_3)_2}_2]_2$, $[Eu(Mal)_3]_2$, $[Nd{OCH(CF_3)_2}_3(H_2O)_2]_2$ und $Er_3O(OSiMe_3)_7(HOSiMe_3)(THF)_2$ $ErN(SiMe_3)_2(Mal)_2$, synthetisiert und strukturell aufgeklärt werden. Die durch Umsetzung von Neodym- bzw. Certrimethylsilylamid mit jeweils einem Äquivalent Isopropanol entstandenen, strukturell $[Nd(O'Pr){N(SiMe_3)_2}_2]_2$ heteroleptischen Verbindungen isotypen und $[Ce(O^{1}Pr){N(SiMe_{3})_{2}}_{2}]_{2}$ besitzen neben zwei endständigen N(SiMe_{3})_{2}-Liganden einen verbrückend wirkenden Isopropoxyrest und liegen als Dimer vor. Ebenfalls dimere Molekülstrukturen wurden durch die Reaktion von Nd{N(SiMe₃)₂}₃ mit 1,1,1,3,3,3-Hexafluoro-2-propanol/H₂O und Eu{N(SiMe₃)₂}₃ mit Malonsäure-di-*tert* Butylester in einem stöchiometrischen Verhältnis von 1:3 erzeugt. Das Umsetzen von Er{N(SiMe₃)₂}₃ mit zwei Äquvalenten Malonsäre-di-tert-Butylester erlaubte die Isolierung der heteroleptischen und monomeren Verbindung ErN(SiMe₃)₂(Mal)₂, in der das zentrale Erbiumatom in erster Koordinationssphäre pyramidal von einem Stickstoffatom der Hexamethyldisilazylgruppe und jeweils zwei Sauerstoffatomen der beiden Malonatliganden umgeben ist. Offensichtlich gewährleistet diese Ligandenkombination eine optimale Absättigung des Zentralatoms, so dass eine monomere Molekülstruktur stabil ist. Bei der Reaktion von Er{N(SiMe₃)₂}₃ mit einem Überschuss an Trimethylsilanol hingegen war es nicht möglich, Erbiumsilanolat $[Er(OSiMe_3)_3]_x$ in reiner Form zu synthetisieren. Stattdessen wurde eine Clusterbildung (Er₃O(OSiMe₃)₇(HOSiMe₃)(THF)₂) beobachtet.

Eine Aufstellung aller im Rahmen der vorliegenden Dissertation synthetisierten Strukturtypen kann Abbildung 6.4 entnommen werden. Es lässt sich zusammenfassen, dass für eine kontrolliert ablaufende MB-CVD zur Herstellung definierter Materialien ein abgestimmtes Design individueller Precursorverbindungen von besonderer Bedeutung ist. Aus precursorchemischer Sicht bedeutet dies, dass Fragen der Reinheit, des Aggregationsverhältnisses und damit verbundener Flüchtigkeit, der Langzeitstabilität sowie der Reaktivität der potentiellen Precursoren berücksichtigt werden müssen. Bezüglich der Materialforschung kann eine derartige durch Precursordesign optimierte Verbindungsklasse im CVD-Prozess eingesetzt werden und in Kombination mit einer angepassten Prozessparameterwahl zu Beschichtungen mit gezielt steuerbaren Eigenschaften führen.

Abbildung 6.4: In der vorliegenden Arbeit synthetisierte Strukturtypen.

Zurzeit wird die Performance der im Rahmen dieser Arbeit unter Einsatz des heteroleptischen CpTi(OⁱPr)₃-Precursors entwickelten Titanoxidbeschichtungen in der Praxisanwendung getestet. Hierzu werden TiO₂-Filme auf Werkzeugeinsätzen von Spritzgusswerkzeugen abgeschieden. Mit den so modifizierten Einsätzen werden Well-Platten aus Polystyrol hergestellt, wobei eine Abformung der morphologischen Oberflächenbeschaffenheit der Oxidschicht in den Kunststoff erfolgt. Die veredelten Werkstücke zeigen gegenüber unbeschichteten eine deutlich verbesserte Standzeit (200 Arbeitszyklen).

Die Beurteilung des Einflusses der so erzeugten nanostrukturierten Kunststoffoberflächen auf Zellkulturparameter erfolgt mit Hilfe von HEK293- und SK-N-MC-Zellen. Erste Ergebnisse zeigen, dass HEK293- Zellen auf den nanotexturierten Oberflächen eine deutlich stärkere Haftung als auf Kontrolloberflächen aufweisen und dass die Strukturierung bei den kultivierten SK-N-MC-Zellen eine Morphologieänderung auslöst. Insgesamt können durch die bisher beobachteten Effekte zwei Aussagen getroffen werden: einerseits kann die Lebensdauer der Werkzeugeinsätze durch die aufgebrachte TiO₂-Beschichtung deutlich erhöht werden und andererseits wirken sich die strukturierten Well-Platten positiv auf die Zellhaftung aus.

In diesem Zusammenhang sind neben weiterem Tuning der Oberflächen auch noch Belastungstests der Werkzeugeinsätze (bis zu einer Woche), mögliche Untersuchungen bezüglich Recycling sowie Analysen der Einflüsse auf andere Zelltypen und Zellparameter geplant.

7 Experimenteller Teil

7.1 Allgemeine Arbeitstechniken

Aufgrund der Hydrolysegeschwindigkeit der eingesetzten Edukte sowie der synthetisierten Produkte wurden alle Reaktionen und Manipulationen an einer modifizierten Stock'schen Vakuumapparatur unter Verwendung von Stickstoff der Reinheit 5.0 durchgeführt. Die Lösungsmittel wurden nach den üblichen Standardmethoden, d.h. hier speziell durch Refluxieren über Natriumdraht und anschließender Destillation, getrocknet. Ihre Aufbewahrung erfolgte in Stickstoffatmosphäre entweder über Natriumdraht oder Molekularsieb.

7.2 Analysemethoden und Geräte

7.2.1 NMR-Spektroskopie

Zur Messung der ¹H und ¹³C NMR-Spektren wurde ein NMR-Spektrometer AC 200 der Firma Bruker verwendet. Soweit nicht explizit erwähnt, erfolgten alle Messungen in einem Gemisch, bestehend aus Benzol, und 10 % D₆-Benzol bei 295 K. Die beschriebenen chemischen Verschiebungen sind δ -Werte, die in ppm angegeben werden.

7.2.2 Röntgenstrukturanalyse

Die Röntgenstrukturanalysen wurden an einem automatischen Vierkreisdiffraktometer vom Typ AED2 der Firma Siemens durchgeführt. Der hierfür verwendete Einkristall wurde zuvor unter Schutzgas in eine abschmelzbare Glaskapillare gefüllt. Die Berechnung der Molekülstrukturen und deren Verfeinerung wurden mit einem Rechner der Firma Digital Equipment des Typs Micro Vax II vorgenommen, wobei die Programme SHELXS-86 und SHELXS-93 verwendet wurden. Die Molekülstrukturen wurden mit DIAMOND® dargestellt.

7.2.3 Beschichtungscharakterisierung (REM-, EDX- und XPS-Analysen)

REM- und EDX-Analysen

Untersuchungen bezüglich der Oberflächenmorphologien sowie Elementverteilungen der hergestellten Beschichtungen wurden mit Hilfe eines Rasterelektronenmikroskops (**REM**) JSM-6400F der Firma JEOL und einem daran gekoppelten **EDX**-Spektrometer (Energy Dispersive X-ray) vorgenommen.

Röntgendiffraktometrie

Die Charakterisierung der Phasenzusammensetzung der CVD-Filme erfolgte mittels Röntgendiffraktometrie (**XRD**) mit einem Diffraktometer der Firma Siemens (D-500) unter Verwendung von CuK_{α} -Strahlung bei Raumtemperatur. Die Kristallitgrößen wurden über die Halbwertsbreite der jeweiligen Peaks mit Hilfe der Scherrer-Formel errechnet.^[303]

 $D = K \cdot \lambda / HB \cdot \cos \theta \text{ mit}$ $(D = Kristallitgröße \quad K = Gerätekonstante (0,9) \quad \lambda = 0,154 \text{ nm}$ $HB = Halbwertsbreite \text{ im Bogenmaß } \theta = Lage \text{ des Reflexes})$

XPS-Analysen:

Die **XPS-** (X-ray Photoelectron Spectroscopy) Spektren wurden an einem Surface Science Instrument SSI-M-Probe mit AlK_{α}-Strahlung aufgenommen.

Infrarotspektroskopie

Zur Aufnahme der Infrarotspektren (2600–3200 cm⁻¹) wurde ein FT-IR Spektrometer FT 165 der Firma Bio Rad benutzt.

Scratch-Test

Zur Untersuchung der Hafteigenschaften der Schichten wurde ein Nanoscratch-Tester der Firma CSEM mit einer Rockwell-Diamantspitze (Spitzenradius 2 µm) als Indenter verwendet.

Mikrohärtemessung

Die Mikrohärte wurde mit Hilfe des Mikrohärtemesssystems Fischerscope H 100 mit WIN-HCU-Software bestimmt. Als Indenter diente ein vierseitiger Vickersdiamant mit einem Spitzwinkel von 136 °.

Biokompatibilitätsuntersuchungen

Für die Untersuchung der Bioverträglichkeit der beschriebenen Materialien wurden knochenbildende Zellen (Osteoblasten, MC3T3-E1; DMSZ) und Verofibroblasten (Vero B4) verwendet. Diese explantierten Zellen wurden im Labor gezüchtet und mit den zu testenden Materialien in Well-Plates in Kontakt gebracht. Nach einer bestimmten Inkubationszeit, in diesem Falle jeweils 48 Stunden bei 37 °C und 5 % CO₂, wurden die auf den Beschichtungen befindlichen Zellen analysiert. Hierzu wurde der Zellkern blau (4',6-Diamidin-2'-phenylindol dihydrochlorid; Roche, Mannheim) und das Zytoskelett grün (Alexa Fluor 488 phalloidin; Molecular Probes, Eugene, Oregon, USA) fluoreszierend angefärbt. Die erhaltenen Mikroskopaufnahmen (Axio Vert, Zeiss; Kamera: Leica) gaben Auskunft darüber, ob sich die Zellen ähnlich wie in der ursprünglichen Umgebung des Biosystems verhalten. Da einige der Beschichtungen hydrophobe Eigenschaften zeigten, wurden sie mit einer Zellsuspension beschickt und, um ein angemessenes, gut sichtbares Wachstum zu erhalten, wurde eine bestimmte Anzahl von Zellen (ausreichende Besiedlung, so dass die Zellen Kontakt zueinander finden, jedoch keine zu große Anzahl, damit innerhalb der Besiedlung einzelne Zellen noch definiert zu erkennen sind) gewählt. Somit wurden die ca. 1 cm² großen Substrate mit einer Suspension beschickt, die pro Milliliter etwa 70000 Zellen enthielt.

7.3 Synthese der Vorstufen

Synthese von Me₂NLi

n-BuLi 1,6 M Lsg. (Hexan); 120 ml; 0,192 mol

Me₂NH 2,0 M Lsg. (THF); 100 ml; 0,200 mol

Zu 120 ml (0,192 mol) einer mit flüssigem Stickstoff gekühlten 1,6 molaren n-BuLi Lösung in Hexan werden langsam 100 ml (0,200 mol) einer 2,0 molaren Me₂NH Lösung in THF zugegeben (geringer Überschuss an Amin), wobei nach langsamem Erwärmen auf Raumtemperatur die Lithiierung von Me₂NH stattfindet. Anschließend wird das Reaktionsgemisch 12 h bei Raumtemperatur gerührt, bevor das Me₂NLi abfiltriert und schließlich im dynamischen Vakuum getrocknet wird. Hierbei erhält man 6,735 g (0,132 mol, 69 % d. Th.) **Me₂NLi** als farblosen Feststoff.

Summenformel: C₂H₆NLi Molmasse: 51,03 g/mol

Synthese von Et₂NLi

n-BuLi1,6 M Lsg. (Hexan); 400 ml; 0,640 molEt2NH73,16 g/mol (0,70 g/ml); 70 ml; 0,670 mol

400 ml (0,640 mol) n-BuLi in Hexan werden vorgelegt und mit flüssigem Stickstoff gekühlt, bevor man 70 ml (0,670 mol) Et₂NH (da im Überschuss gearbeitet wird) hinzugibt. Nach Erwärmen auf Raumtemperatur und der Bildung eines Niederschlags von farblosem Et₂NLi lässt man das Reaktionsgemisch zwölf Stunden rühren und filtriert anschließend das entstandene Et₂NLi ab, das dann im dynamischen Vakuum getrocknet wird. Insgesamt erhält man 48,050 g (0,608 mol) **Et₂NLi** in Form eines farblosen Feststoffs in einer 95-prozentigen Ausbeute d. Th.

Summenformel: C₄H₁₀NLi Molmasse: 79,09 g/mol

Synthese von ⁱPr₂NLi

n-BuLi	1,6 M Lsg. (Hexan); 300 ml; 0,480 mol
ⁱ Pr ₂ NH	101,22 g/mol (0,72 g/ml); 70 ml; 0,498 mol

300 ml (0,480 mol) mit flüssigem Stickstoff gekühltes n-BuLi in Hexan werden vorgelegt und anschließend langsam mit 70 ml (0,498 mol) ⁱPr₂NH vermischt. Beim Erwärmen auf Raumtemperatur fällt ⁱPr₂NLi aus, das abfiltriert und im Vakuum getrocknet wird. Der farblose Feststoff ⁱPr₂NLi kann hierbei in einer Ausbeute von 82 % d. Th. (42,386 g (0,396 mol)) erhalten werden.

Summenformel: C₆H₁₄NLi Molmasse: 107,15 g/mol

Synthese von (SiMe₃)₂NLi

n-BuLi2,5 M Lsg. (Hexan); 180 ml; 0,450 mol(SiMe₃)₂NH161,44 g/mol (0,77 g/ml); 100 ml; 0,477 mol

180 ml (0,450 mol) n-BuLi (2,5 M Lsg. in Hexan) werden vorgelegt, bevor man unter ständiger Kühlung mit flüssigem Stickstoff vorsichtig 100 ml (0,477 mol) (SiMe₃)₂NH zutropft. Nun lässt man das entstandene Reaktionsgemisch 12 h bei Raumtemperatur rühren. Nachdem das Hexan abdestilliert ist, erfolgt eine Sublimation des gelben Rückstandes bei 80 °C im dynamischen Vakuum (10⁻³ mbar), die 58,747 g (0,366 mol) (SiMe₃)₂NLi als farblosen Feststoff in einer 81-prozentigen Ausbeute d. Th. liefert.

Summenformel: C₆H₁₈Si₂NLi Molmasse: 167,37 g/mol

Synthese von Ti(NEt₂)₄

Et2NLi79,09 g/mol; 48,662 g; 0,615 molTiCl4189,68 g/mol (1,72 g/ml); 29,176 g; 0,154 mol

29,176 g (0,154 mol) TiCl₄, gelöst in 100 ml Toluol, werden mit flüssigem Stickstoff gekühlt und mit 50 ml THF aktiviert. Nachdem Raumtemperatur erreicht ist, gibt man unter Rühren langsam die Lösung von 48,662 g (0,615 mol) Et₂NLi in 400 ml Ether hinzu, wobei LiCl als farbloser Feststoff ausfällt. Zur Vervollständigung der Salzeliminierung wird das Reaktionsgemisch noch weitere 12 h bei Raumtemperatur gerührt, bevor LiCl abfiltriert wird. Nach Entfernen des Lösemittels und Destillation des braunen Rückstandes im dynamischen Vakuum bei einer Ölbadtemperatur von 125 °C verbleiben 36,488 g (0,108 mol) **Ti(NEt₂)₄** in Form einer gelb-orangefarbenen Flüssigkeit (Übergangstemperatur 72 °C bei 10⁻³ mbar) (70 % d.Th.).

Summenformel: C₁₆H₄₀N₄Ti Molmasse: 336,48 g/mol ¹H NMR in C₆D₆/C₆H₆ [ppm]: 1,089 (t) CH₃; 3,555 (q) CH₂ ¹³C NMR in C₆D₆/C₆H₆ [ppm]: 15,053 CH₃; 44,772 CH₂

Synthese von Zr(NEt₂)₄

Et ₂ NLi	79,09 g/mol; 33,518 g; 0,424 mol
ZrCl ₄	233,02 g/mol; 24,778 g; 0,106 mol

24,778 g (0,106 mol) ZrCl₄, suspendiert in 70 ml Toluol, werden vorgelegt. Unter Kühlung (flüssiger Stickstoff) werden zu dieser Suspension 30 ml THF und anschließend 33,518 g (0,424 mol) Et₂NLi, gelöst in 400 ml Diethylether, gegeben. Nach 12 h Rühren bei Raumtemperatur wird das ausgefallene LiCl abfiltriert und das Lösemittel aus dem Filtrat entfernt. Es folgt eine Destillation bei 125 °C Ölbadtemperatur im dynamischen Vakuum (Übergangstemperatur 80 °C, bei 10⁻³ mbar), wobei 34,221 g (0,090 mol) **Zr(NEt₂)₄** als hellgelbe, klare Flüssigkeit in 85-prozentiger Ausbeute d. Th. entstehen.

Summenformel: C₁₆H₄₀N₄Zr Molmasse: 379,82 g/mol ¹H NMR in C₆D₆/C₆H₆ [ppm]: 1,126 (t) CH₃; 3,315 (q) CH₂ ¹³C NMR in C₆D₆/C₆H₆ [ppm]: 16,684 CH₃; 43,043 CH₂

Synthese von Hf(NEt₂)₄

Et ₂ NLi	79,09 g/mol; 18,908 g; 0,240 mol
HfCl ₄	320,29 g/mol; 19,138 g; 0,060 mol

19,138 g (0,060 mol) HfCl₄, suspendiert in 100 ml Toluol, werden unter Kühlung mit flüssigem Stickstoff mit 50 ml THF aktiviert, bevor man langsam 18,908 (0,240 mol) Et₂NLi

in 300 ml Diethylether hinzufügt. Dieses Reaktionsgemisch wird dann 12 h bei Raumtemperatur gerührt und die Lösung anschließend vom ausgefallenen LiCl Niederschlag abfiltriert. Nach vollständiger Entfernung des Lösemittels verbleibt ein gelb-brauner Rückstand, dessen Destillation im dynamischen Vakuum bei 120 °C Ölbadtemperatur 22,887 g (0,049 mol) **Hf(NEt₂)**₄ in Form einer klaren, leicht gelblichen Flüssigkeit (Übergangstemperatur 74 °C bei 10⁻³ mbar) liefert (82 % d.Th.).

Summenformel: C₁₆H₄₀N₄Hf Molmasse: 467,09 g/mol ¹H NMR in C₆D₆/C₆H₆ [ppm]: 1,130 (t) CH₃; 3,331 (q) CH₂ ¹³C NMR in C₆D₆/C₆H₆ [ppm]: 15,720 CH₃; 42,346 CH₂

Synthese von Zr(O^tBu)₄

Zr(NEt2)4379,82g/mol; 20,289 g; 0,053 mol*BuOH74,14 g/mol (0,79 g/ml); 20,05 ml (41 ml); 0,214 mol (0,428 mol)

41 ml (0,428 mol) ^tBuOH werden tropfenweise zu 20,289 g (0,053 mol) einer mit flüssigem Stickstoff gekühlten Lösung von Zr(NEt₂)₄ in 100 ml Toluol gegeben, woraufhin eine exotherme Reaktion stattfindet. Nach 12-stündigem Rühren bei 50 °C wird das überschüssige Lösemittel *tert*-Butanol unter vermindertem Druck entfernt und der gelbe Rückstand im dynamischen Vakuum bei einer Ölbadtemperatur von 80 °C destilliert. Man erhält 16,102 g (0,042 mol) farbloses **Zr(O^tBu)**₄. (Übergangstemperatur: 60°C, bei 10⁻³ mbar) in einer Ausbeute von 79 % d. Th.

Summenformel: $C_{16}H_{36}O_4Zr$ Molmasse: 383,74 g/mol ¹H NMR in C_6D_6/C_6H_6 [ppm]: 1,130 (s) CH₃ ¹³C NMR in C_6D_6/C_6H_6 [ppm]: 32,472 CH₃; 74,696 C

Synthese von Hf(O^tBu)₄

Hf(NEt2)4467,09 g/mol; 18,647 g; 0,040 mol*BuOH74,14 g/mol (0,79 g/ml); 15 ml (30 ml); 0,160 mol (0,320 mol)

Die Lösung von 18,647 g (0,040 mol) Hf(NEt₂)₄ in 100 ml Toluol wird unter Kühlung mit flüssigem Stickstoff langsam mit 30 ml (0,320 mol) ^tBuOH versetzt, wobei sofort eine

exotherme Reaktion eintritt. Nach 12-stündigem Rühren bei 60 °C wird das überschüssige *tert*-Butanol zusammen mit dem Lösemittel entfernt. Nach Destillation im dynamischen Vakuum bei 120 °C Ölbadtemperatur erhält man 13,890 g (0,029 mol) $Hf(O^tBu)_4$ als farblose Flüssigkeit in 74-prozentiger Ausbeute d.Th. (Übergangstemperatur: 56 °C, bei 10⁻³ mbar).

Summenformel: C₁₆H₃₆O₄Hf Molmasse: 410,01 g/mol ¹H NMR in C₆D₆/C₆H₆ [ppm]: 1,321 (s) CH₃ ¹³C NMR in C₆D₆/C₆H₆ [ppm]: 32,500 CH₃; 74,737 C

Synthese von KO^tBu

K39,10 g/mol; 4,958 g; 0,127 mol*BuOH74,14 g/mol (0,79 g/ml); 100 ml; 1,066 mol

Man gibt vorsichtig 400 ml (Überschuss) *tert*-Butanol zu den vorgelegten 4,958 g (0,127 mol) Kalium und lässt insgesamt 48 h bei 80 °C bis zum vollständigen Auflösen des Kaliums rühren. Anschließend wird überschüssiges ^tBuOH entfernt und der verbleibende gelbliche Rückstand bei 140 °C Ölbadtemperatur sublimiert, wobei 11,993 g (0,107 mol) KO^tBu in Form eines farblosen Feststoffes in einer 84-prozentigen Ausbeute d.Th. erhalten werden.

Summenformel: C₃H₉OK Molmasse: 112,23 g/mol

Synthese von Ce{N(SiMe₃)₂}₃

CeCl3246,48 g/mol; 3,657 g; 0,015 mol(SiMe3)2NLi167,37 g/mol; 7,448 g; 0,045 mol

3,657 g (0,015mol) zuvor bei 120 °C im dynamischen Vakuum getrocknetes CeCl₃ werden unter Kühlung mit flüssigem Stickstoff mit 50 ml THF aktiviert. Nach einstündigem Rühren bei 50 °C werden dieser Suspension 7,448 g (0,445 mol) (SiMe₃)₂NLi, gelöst in 100 ml Toluol, zugegeben, woraufhin die Salzeliminierung von LiCl deutlich zu erkennen ist. Das erhaltene Reaktionsgemisch wird 3 Tage bei 120 °C Ölbadtemperatur unter Rückfluss gekocht. Anschließend wird das gesamte Lösemittel entfernt und der Rückstand erneut in 100 ml Toluol aufgenommen, um bei der im Folgenden durchgeführten Filtration das entstandene LiCl vollständig zu entfernen. Das Filtrat wird unter vermindertem Druck vom Lösemittel

befreit und der braune Rückstand bei 140 °C im dynamischen Vakuum sublimiert. Man erhält 5,073 g (8,164 mmol) des gelben, sehr hydrolyseempfindlichen Feststoffes Ce{N(SiMe₃)₂}₃ (55 % d.Th.).

```
Summenformel: C<sub>18</sub>H<sub>54</sub>Si<sub>6</sub>N<sub>3</sub>Ce
Molmasse: 621,41 g/mol
```

Synthese von Nd{N(SiMe₃)₂}₃

NdCl ₃	250,65 g/mol; 6,395 g; 0,026 mol
(SiMe3)2NLi	167,37 g/mol; 12,811 g; 0,077 mol

Die Reaktionsdurchführung erfolgt analog zu **6.3.11**. Durch Sublimation des Produktes bei 120 °C erhält man 13,939 g (0,022 mol) des blau-violetten Feststoffes Nd{N(SiMe₃)₂}₃ (87 % d.Th.).

Summenformel: C₁₈H₅₄Si₆N₃Nd Molmasse: 625,53 g/mol

Synthese von Eu{N(SiMe₃)₂}₃

EuCl ₃	258,32 g/mol; 2,872 g; 0,011 mol
(SiMe ₃) ₂ NLi	167,37 g/mol; 5,582 g; 0,033 mol

Die Reaktionsdurchführung erfolgt analog zu **6.3.11**; jedoch hat es sich für diese Synthese als vorteilhaft erwiesen, das Reaktionsgemisch insgesamt nur maximal 48 h bei höchstens 75 °C Ölbadtemperatur zu rühren. Die Sublimation des so erhaltenen Rückstandes bei 125 °C liefert 4,728 g (7,462 mmol) des hellroten Feststoffes **Eu{N(SiMe_3)_2}_3** in 67-prozentiger Ausbeute d.Th..

Summenformel: C₁₈H₅₄Si₆N₃Eu Molmasse: 633,25 g/mol

Synthese von Er{N(SiMe₃)₂}₃

ErCl₃ 273,62 g/mol; 4,495 g; 0,018 mol (SiMe₃)₂NLi 167,37 g/mol; 9,166 g; 0,055 mol Die Reaktionsdurchführung erfolgt analog zu 6.3.11. Bei der Sublimation des Produktes bei 130 °C erhält man 9,881 g (0,015 mol) (83 % d.Th.) des Produktes $Er{N(SiMe_3)_2}_3$ als rosafarbenen Feststoff.

Summenformel: C₁₈H₅₄Si₆N₃Er Molmasse: 648,55 g/mol

Synthese von Me₃SiOH

(SiMe ₃) ₂ NH	161,44 g/mol (0,77 g/ml); 52 ml; 0,250 mol
CH ₃ COOH	60,06g/mol (1,05 g/ml); 14 ml; 0,250 mol
H ₂ O	18,02 g/mol; 9 ml; 0,500 mol

52 ml (0,250 mol) (SiMe₃)₂NH werden in 100 ml Diethylether vorgelegt, bevor unter ständigem Rühren und bei einer Temperatur von 0 °C eine Lösung von 14 ml (0,250 mol) Essigsäure und 9 ml (0,500 mol) H₂O zugegeben werden. Die vom farblosen Ammoniumacetat-Niederschlag getrübte Lösung wird noch eine Stunde bei Raumtemperatur gerührt, bevor der Niederschlag durch Filtration entfernt wird. Das klare Filtrat wird anschließend über MgSO₄ (ca. 6 g) getrocknet und das Lösemittel (Diethylether) im Vakuum entfernt. Eine Destillation bei 70 °C und 370 Torr (Übergangstemperatur: 33 °C) liefert **Me₃SiOH** als farblose Flüssigkeit.

7.4 Synthese der Zielverbindungen XTi(OⁱPr)₃

7.4.1 Synthese von MeTi(OⁱPr)₃

CITi(OⁱPr)₃ 260,62 g/mol; 4,783 g; 0,018 mol

MeLi 1,6 M Lsg. (Diethylether); 11,5 ml; 0,018 mol

Zu einer gekühlten Lösung von 4,783 g (0,018 mol) ClTi(OⁱPr)₃ in 50 ml Toluol werden langsam 11,5 ml (0,018 mol) einer 1,6 molaren Methyllithium-Lösung in Diethylether gegeben. Nachdem das Reaktionsgemisch Raumtemperatur erreicht hat, lässt man es für 12 h bei Raumtemperatur rühren und filtriert dann vom LiCl–Niederschlag ab. Anschließend wird das Lösemittel vollständig unter vermindertem Druck entfernt und der verbleibende
Rückstand im dynamischen Vakuum destilliert. Bei einer Übergangstemperatur von 45 °C erhält man 3,633 g (0,015 mol) **MeTi(OⁱPr)**₃ in Form einer klaren, farblosen Flüssigkeit in 82-prozentiger Ausbeute d.Th..

Summenformel: C₁₀H₂₄O₃Ti Molmasse: 240,21 g/mol ¹H NMR in C₆D₆/C₆H₆ [ppm]: 0,098 (s) CH₃ (Methyl); 1,286-1,317 (d) CH₃ (OⁱPr); 4,732 (sep) CH (OⁱPr) ¹³C NMR in C₆D₆/C₆H₆ [ppm]: 40,511 CH₃ (Methyl); 25,871 CH₃ (OⁱPr); 76,204 CH (OⁱPr)

7.4.2 Synthese von Me₂NTi(OⁱPr)₃

CITi(OⁱPr)₃ 260,62 g/mol; 2,178 g; 8,357 mmol

Me₂NLi 51,03 g/mol; 0,426 g; 8,357 mmol

2,178 g (8,357 mmol) frisch destilliertes ClTi(OⁱPr)₃ werden in 50 ml Toluol gelöst, bevor man unter Rühren langsam die Lösung von 0,426 g (8,357 mmol) Me₂NLi in 50 ml Toluol zugibt. Anschließend wird dieses Reaktionsgemisch 24 h lang bei 80 °C gerührt, das entstandene LiCl abfiltriert und das Lösemittel entfernt. Die Destillation des braunen Rückstandes im dynamischen Vakuum liefert 1,374 g (5,103 mmol) (61 % d. Th.) Me₂NTi(OⁱPr)₃ in Form einer gelben viskosen Flüssigkeit bei einer Übergangstemperatur von 53 °C.

Summenformel: C₁₁H₂₇O₃NTi Molmasse: 269,26 g/mol ¹H NMR in C₆D₆/C₆H₆ [ppm]: 1,216-1,247 (d) CH₃ (OⁱPr); 3,167 (s) CH₃ (NMe₂); 4,521 (sep) CH (OⁱPr) ¹³C NMR in C₆D₆/C₆H₆ [ppm]: 26,334 CH₃ (OⁱPr); 45,848 CH₃ (NMe₂); 75,764 CH (OⁱPr)

7.4.3 Synthese von Et₂NTi(OⁱPr)₃

CITi(OⁱPr)₃ 260,62 g/mol; 6,386 g; 0,025 mol

Et₂NLi 79,09 g/mol; 1,977 g; 0,025 mol

6,386 g (0,025 mol) ClTi(OⁱPr)₃ werden in 100 ml Toluol gelöst und langsam mit der Lösung von 1,977 g (0,025 mol) Et₂NLi in 50 ml Toluol vermischt. Nach 24-stündigem Rühren bei

85 °C wird vom ausgefallenen LiCl abfiltriert. Nach Entfernen des Lösemittels erhält man bei der Destillation des gelblichen Rückstandes im dynamischen Vakuum 5,668 g (0,019 mol) (78 % d.Th.) $Et_2NTi(O^iPr)_3$ in Form einer gelben viskosen Flüssigkeit (Übergangstemperatur: 75 °C).

Summenformel: C₁₃H₃₁O₃NTi Molmasse: 297,32 g/mol ¹H NMR in C₆D₆/C₆H₆ [ppm]: 1,137-1,467 (t) CH₃ (NEt₂); 1,213-1,243 (d) CH₃ (OⁱPr); 3,482-3,494 (q) CH₂ (NEt₂); 4,497 (sep) CH (OⁱPr) ¹³C NMR in C₆D₆/C₆H₆ [ppm]: 15,553; 15,623 CH₃ (NEt₂); 26,425 CH₃ (OⁱPr); 47,501-48,001 CH₂ (NEt₂); 75,370 CH (OⁱPr)

7.4.4 Synthese von ⁱPr₂NTi(OⁱPr)₃

CITi(OⁱPr)₃ 260,62 g/mol; 3,713 g; 0,014 mol ⁱPr₂NLi 107,15 g/mol; 1,524 g; 0,014 mol

3,713 g (0,014 mol) CITi($O^{i}Pr$)₃ werden in 50 ml Toluol gelöst und langsam mit der Lösung von 1,524 g (0,014 mol) ⁱPr₂NLi in 50 ml Toluol vereinigt. Nach 24-stündigem Rühren bei 90 °C wird vom LiCl abfiltriert und das gesamte Lösemittel entfernt. Die Destillation des gelben Rückstandes im dynamischen Vakuum liefert 3,551g (0,011 mol) (78 % d.Th.) ⁱPr₂NTi($O^{i}Pr$)₃ in Form einer gelben viskosen Flüssigkeit (Übergangstemperatur: 65 °C).

Summenformel: C₁₅H₃₅O₃NTi Molmasse: 325,38 g/mol ¹H NMR in C₆D₆/C₆H₆ [ppm]: 1,226-1,255 (d) CH₃ (NⁱPr₂); 1,235-1,267 (d) CH₃ (OⁱPr); 3,647 (sep) CH (NⁱPr₂); 4,574 (sep) CH (OⁱPr); ¹³C NMR in C₆D₆/C₆H₆ [ppm]: 24,651 CH₃ (NⁱPr₂); 26,516 CH₃ (OⁱPr); 50,291 CH (NⁱPr₂); 75,067 CH (OⁱPr)

7.4.5 Synthese von (SiMe₃)₂NTi(OⁱPr)₃

CITi(OⁱPr)₃ 260,62 g/mol; 8,834 g; 0,034 mol (SiMe₃)₂NLi 167,37 g/mol; 5,675 g; 0,034 mol 8,834 g (0,034 mol) ClTi($O^{i}Pr$)₃, gelöst in 100 ml Benzol, werden langsam mit der Lösung von 5,675 g (0,034 mol) (SiMe₃)₂NLi in 100 ml Benzol vermischt. Man belässt dieses Reaktionsgemisch 24 h bei 80 °C, filtriert anschließend das ausgefallene LiCl bei RT ab und entfernt das Lösemittel unter vermindertem Druck. Die Destillation des farblosen Rückstandes liefert bei einer Übergangstemperatur von 84 °C 9,714 g (0,025 mol) (SiMe₃)₂NTi($O^{i}Pr$)₃ in Form einer farblosen klaren Flüssigkeit (74 % d.Th.).

Summenformel: C₁₅H₃₉O₃NSi₂Ti Molmasse: 385,60 g/mol ¹H NMR in C₆D₆/C₆H₆ [ppm]: 0,357 (s) CH₃ (N(SiMe₃)₂); 1,174-1,205 (d) CH₃ (OⁱPr); 4,478 (sep) CH (OⁱPr) ¹³C NMR in C₆D₆/C₆H₆ [ppm]: 4,325 CH₃ (N(SiMe₃)₂); 26,152 CH₃ (OⁱPr); 76,682 CH (OⁱPr)

7.4.6 Synthese von CpTi(OⁱPr)₃

ClTi(O ⁱ Pr) ₃	260,62 g/mol; 5,999 g; 0,023 mol
NaCp	2,0 M Lsg. (THF); 11,5 ml; 0,023 mol

Zur Lösung von 5,999 g (0,023 mol) ClTi($O^{i}Pr$)₃ in 100 ml Benzol fügt man langsam unter Kühlung 11,5 ml einer 2,0-molaren NaCp-Lösung in THF hinzu. Das rote Reaktionsgemisch wird anschließend 24 h bei 75 °C gerührt, bevor man vom ausgefallenen NaCl abfiltriert und das restliche Lösemittel entfernt. Die Destillation des viskosen roten Rückstandes im dynamischen Vakuum bei einer Übergangstemperatur von 62 °C liefert 5,004 g (0,017 mol) des flüssigen, leicht gelblichen **CpTi(OⁱPr)**₃ in einer 75-prozentigen Ausbeute d. Th..

Summenformel: C₁₄H₂₆O₃Ti Molmasse: 290,27 g/mol ¹H NMR in C₆D₆/C₆H₆ [ppm]: 1,096-1,126 (d) CH₃ (OⁱPr); 4,444 (sep) CH (OⁱPr); 6,127 (s) CH (Cp) ¹³C NMR in C₆D₆/C₆H₆ [ppm]: 26,651 CH₃ (OⁱPr); 77,068 CH (OⁱPr); 111,799 CH (Cp)

7.4.7 Synthese von ^tBuOTi(OⁱPr)₃

CITi(OⁱPr)₃ 260,62 g/mol; 5,897 g; 0,023 mol KO^tBu 112,23 g/mol; 2,543 g; 0,023 mol Zu einer Lösung von 5,897 g (0,023 mol) ClTi($O^{i}Pr$)₃ in Toluol (100 ml) werden langsam unter Rühren 2,543 g (0,023 mol) KO^tBu in 100 ml Toluol zugegeben. Das Reaktionsgemisch wird 48 h lang bei 90 °C gerührt und das ausgefallene KCl abfiltriert. Durch Entfernen des Lösemittels und anschließender Destillation im dynamischen Vakuum erhält man 5,572 g (0,019 mol) (83 % d.Th.) der farblosen Flüssigkeit ^tBuOTi($O^{i}Pr$)₃ bei einer Übergangstemperatur von 50 °C.

Summenformel: C₁₃H₃₀O₄Ti Molmasse: 298,30 g/mol ¹H NMR in C₆D₆/C₆H₆ [ppm]: 1,185-1,216 (d) CH₃ (OⁱPr); 1,292 (s) CH₃ (O^tBu); 4,459 (sep) CH (OⁱPr) ¹³C NMR in C₆D₆/C₆H₆ [ppm]: 26,651 CH₃ (OⁱPr); 31,876 CH₃ (O^tBu); 75,643 CH (OⁱPr); 79,631 C (O^tBu)

7.5 Synthese der Zielverbindungen M(O^tBu)₂(NR₂)₂ M= Ti, Zr und Hf

7.5.1 Synthese von $Ti(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}$

Ti(O^tBu)₂Cl₂

TiCl4189,68 g/mol; (1,730 g/ml); 2,258 g (1,31 ml); 0,012 molTi(O^tBu)4340,40 g/mol; 4,043 g; 0,012 mol

1,31 ml (0,012 mol) TiCl₄ in 50 ml Toluol werden vorgelegt und unter Kühlung mit 20 ml THF aktiviert. Nachdem die orange gefärbte Lösung Raumtemperatur erreicht hat, fügt man langsam die Lösung von 4,043 g (0,012 mol) Ti($O^{t}Bu$)₄ hinzu und lässt 12 h bei 65 °C rühren, bevor das so erhaltene farblose Reaktionsgemisch (**Ti**($O^{t}Bu$)₂**Cl**₂) ohne weitere Charakterisierung im zweiten Syntheseschritt eingesetzt wird.

$Ti(O^{t}Bu)_{2}{N(SiMe_{3})_{2}}_{2}$

Ti(O^tBu)₂Cl₂ 265,04 g/mol; 6,361 g; 0,024 mol (SiMe₃)₂NLi 167,37 g/mol; 8,113 g; 0,048 mol 8,113 g (0,048 mol) (SiMe₃)₂NLi werden in 100 ml Toluol gelöst und anschließend langsam zu 6,361 g (0,024 mol) Ti(O^tBu)₂Cl₂ in Toluol gegeben. Nach 24-stündigem Rühren bei 70 °C wird vom LiCl-Niederschlag abfiltriert und das Lösemittel vollständig entfernt. Der verbleibende, hoch viskose orange gefärbte Rückstand wird im dynamischen Vakuum (Übergangstemperatur: 110 °C) destilliert, und man erhält eine gelbe wachsartige Substanz. Die Röntgenstrukturanalyse eines aus Toluol gewonnenen Kristalls ergibt, dass es sich nicht um die monomere Verbindung Ti(O^tBu)₂{N(SiMe₃)₂}₂, sondern um eine dimere heteroleptische und heterometallische Titan-Lithium-Verbindung [Ti(O^tBu)₂N(SiMe₃)₂CILiN(SiMe₂)₂]₂ handelt. Die Ausbeute dieser Reaktion beträgt 5,269 g (0,009 mol) 40 % d.Th..

Summenformel: C20H54ClLiN2O2Si4Ti

Molmasse: 557,30 g/mol

¹H NMR in C₆D₆/C₆H₆ [ppm]: 0,239, 0,405, 0,416, 0,431 (s) CH₃(N(SiMe₂)₂); 1,301, 1,340 (s) CH₃(O^tBu);

¹³C NMR in C₆D₆/C₆H₆ [ppm]: 4,302, 4,977, 5,166, 5,235, 6,038 CH₃(N(SiMe₂)₂); 31,421,
32,065 CH₃(O^tBu); 81,481, 86,719 C(O^tBu)

7.5.2 Synthese von $Zr(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}$

Zr(O^tBu)₂Cl₂

ZrCl₄ 233,02 g/mol; 2,365 g; 0,010 mol

Zr(O^tBu)₄ 383,74 g/mol; 3,897 g; 0,010 mol

Eine Suspension von 2,365 g (0,010 mol) ZrCl₄ in 50 ml Toluol wird unter Kühlung mit 20 ml THF aktiviert und bei Raumtemperatur langsam mit der Lösung von 3,807 g (0,010 mol) Zr(O^tBu)₄ versetzt. Das klare Reaktionsgemisch (**Zr(O^tBu)₂Cl₂**) wird 12 h bei 70 °C gerührt und anschließend unverändert im nächsten Reaktionsschritt eingesetzt.

Zr(O^tBu)₂{N(SiMe₃)₂}₂

Zr(O^tBu)₂Cl₂ 308,38 g/mol; 6,263 g; 0,020 mol (SiMe₃)₂NLi 167,37 g/mol; 6,801 g; 0,041 mol 6,801 g (0,041 mol) (SiMe₃)₂NLi werden in 100 ml Toluol gelöst und anschließend langsam zu 6,263 g (0,020 mol) aus der vorherigen Reaktion resultierendem $Zr(O^{t}Bu)_{2}Cl_{2}$ in Toluol gegeben. Nach 24 h Rühren bei 70 °C wird vom LiCl abfiltriert und das Lösemittel vollständig entfernt. Der verbleibende leicht gelbliche Feststoff wird im dynamischen Vakuum bei 120 °C sublimiert, und man erhält 8,227 g (0,015 mol) $Zr(O^{t}Bu)_{2}{N(SiMe_{3})_{2}}_{2}$ in Form eines farblosen Feststoffes in 73-prozentiger Ausbeute d.Th..

Summenformel: C₂₀H₅₄N₂O₂Si₄Zr Molmasse: 558,34 g/mol ¹H NMR in C₆D₆/C₆H₆ [ppm]: 0,380 (s) CH₃(N(SiMe₂)₂); 1,342 (s) CH₃(O^tBu); ¹³C NMR in C₆D₆/C₆H₆ [ppm]: 4,962 CH₃(N(SiMe₂)₂); 32,384 CH₃(O^tBu); 78,562 C(O^tBu)

7.5.3 Synthese von Hf(O^tBu)₂{N(SiMe₃)₂}₂

Hf(O^tBu)₂Cl₂

HfCl ₄	320,30 g/mol; 2,374 g; 7,412 mmol
Hf(O ^t Bu) ₄	471,01g/mol; 3,492 g; 7,412 mmol

Eine Suspension von 2,374 g (7,412 mmol) HfCl₄ in 100 ml Toluol wird unter Kühlung mit 25 ml THF aktiviert und anschließend langsam mit der Lösung von 3,492 g (7,412 mmol) Hf(O^tBu)₄ vermischt. Das klare Reaktionsgemisch (**Hf(O^tBu)₂Cl₂**) wird 12 h bei 70 °C gerührt und anschließend zur Synthese des Produktes eingesetzt.

$Hf(O^{t}Bu)_{2}{N(SiMe_{3})_{2}}_{2}$

Hf(O^tBu)₂Cl₂ 395,65 g/mol; 5,867 g; 0,015 mol

(SiMe₃)₂NLi 167,37 g/mol; 4,963 g; 0,030 mol

Die Lösung von 4,963 g (0,030 mol) (SiMe₃)₂NLi in 100 ml Toluol wird langsam mit 5,867 g (0,015 mol) Hf(O^tBu)₂Cl₂ in Toluol vereinigt. Nachdem dieses Gemisch 24 Stunden bei 70 °C gerührt und dann vom LiCl-Niederschlag abfiltriert wurde, entfernt man das Lösemittel vollständig und sublimiert den verbleibenden gelblichen Rückstand bei 130 °C im dynamischen Vakuum. Hierbei können 6,350 g (0,010 mol) Hf(O^tBu)₂(N(SiMe₃)₂) in Form eines farblosen Feststoffes in 66-prozentiger Ausbeute d.Th erzeugt werden.

Summenformel: C20H54N2O2Si4Hf

Molmasse: 645,61 g/mol

¹H NMR in C₆D₆/C₆H₆ [ppm]: 0,373 (s) CH₃(N(SiMe₂)₂); 1,351 (s) CH₃(O^tBu) ¹³C NMR in C₆D₆/C₆H₆ [ppm]: 5,204 CH₃(N(SiMe₂)₂); 32,619 CH₃(O^tBu); 78,387 C(O^tBu)

7.5.4 Synthese von Zr(O^tBu)₂(NⁱPr₂)₂

Zr(O^tBu)₂Cl₂

ZrCl ₄	233,02 g/mol; 2,246 g; 0,010 mol
Zr(O ^t Bu) ₄	383,74 g/mol; 3,699 g; 0,010 mol

Eine Suspension von 2,246 g (0,010 mol) ZrCl₄ in 50 ml Toluol wird unter Kühlung mit 20 ml THF aktiviert und bei Raumtemperatur langsam mit der Lösung von 3,699 g (0,010 mol) Zr(O^tBu)₄ versetzt. Das klare Reaktionsgemisch (**Zr(O^tBu)₂Cl₂**) wird 12 h bei 70 °C gerührt und anschließend unverändert im nächsten Reaktionsschritt eingesetzt.

$Zr(O^tBu)_2(N^iPr_2)_2$

Zr(O^tBu)₂Cl₂ 308,38 g/mol; 5,946 g; 0,019 mol ⁱ**Pr₂NLi** 107,15g/mol; 4,132 g; 0,039 mol

4,132 g (0,039 mol) ⁱPr₂NLi werden in 100 ml Toluol gelöst und langsam zu 5,946 g (0,019 mol) $Zr(O^{t}Bu)_{2}Cl_{2}$ in Toluol gegeben. Nach 24 h Rühren bei 75-80 °C wird vom LiCl abfiltriert und das Lösemittel vollständig entfernt. Der verbleibende gelbe Feststoff wird im dynamischen Vakuum bei 110–115 °C sublimiert, und man erhält $Zr(O^{t}Bu)_{2}(N^{i}Pr_{2})_{2}$ in Form eines farblosen Feststoffes in 41-prozentiger Ausbeute d.Th. (3,437 g; 7,849 mmol).

Summenformel: C₂₀H₄₆N₂O₂Zr Molmasse: 437,88 g/mol ¹H NMR in C₆D₆/C₆H₆ [ppm]: 1,276-1,278 (d) CH₃ (NⁱPr₂); 3,411, 3,586 (sep) CH (NⁱPr₂); 1,348, 1,441 (s) CH₃ (O^tBu) ¹³C NMR in C₆D₆/C₆H₆ [ppm]: 25,871; 26,137 CH₃(NⁱPr₂); 46,584; 46,978 CH(NⁱPr₂); 32,710; 32,846 CH₃(O^tBu); 75,825; 77,349 C (O^tBu)

7.6 Synthese der Lanthanoidverbindungen

7.6.1 Synthese von $[Nd(O^{i}Pr){N(SiMe_3)_2}_2]_2$

Nd{N(SiMe ₃) ₂ } ₃	625,53g/mol; 1,136 g; 1,816 mmol
ⁱ PrOH	60,11g/mol (0,785 g/ml); 0,109 g; 1,816 mmol

1,136 g (1,816 mmol) Nd{N(SiMe₃)₂}₃ werden in 50 ml Toluol gelöst, bevor man innerhalb von ca. 6 h eine sehr stark mit Toluol (50 ml) verdünnte Lösung von 0,109 g (1,136 mmol) ¹PrOH zutropfen lässt. Das resultierende Reaktionsgemisch wird zwei Stunden lang bei Raumtemperatur und anschließend 48 h bei 60 °C gerührt. Nach Einengen des Lösemittelvolumens kristallisiert die Verbindung bei -20 °C in Form plättchenförmiger hellblauer Kristalle und erhält 0,639 mmol) aus, man g (1, 121) $[Nd(O'Pr){N(SiMe_3)_2}_2]_2 \cdot C_7H_8$ in Form eines hellblauen Feststoffes (62 % d.Th.).

Summenformel: $C_{30}H_{86}N_4Nd_2O_2Si_8C_7H_8$

Molmasse: 1140,34 g/mol

Elementaranalyse in % (gefunden / berechnet): C: 38,88 / 38,97; H: 8,28 / 8,32; N: 4,87 / 4,91

7.6.2 Synthese von $[Ce(O^{i}Pr){N(SiMe_3)_2}_2]_2$

Ce{N(SiMe₃)₂} 621,41g/mol; 4,320 g; 6,952 mmol ⁱPrOH 60,11g/mol (0,785 g/ml); 0,418 g; 6,952 mmol

Zu 4,320 g (6,952 mmol) Ce {N(SiMe₃)₂}₃, gelöst in 100 ml Benzol, wird langsam eine sehr stark mit Benzol (100 ml) verdünnte Lösung von 0,418 g (6,952 mmol) ⁱPrOH zugetropft. Das Reaktionsgemisch wird zuerst zwei Stunden bei Raumtemperatur und dann 48 h lang bei 60 °C gerührt. Nach Entfernen von ca. 60 ml des Lösemittels kristallisiert die Verbindung in Form plättchenförmiger gelber Kristalle aus, und man erhält insgesamt 2,143 g (3,786 mmol) [Ce(OⁱPr){N(SiMe₃)₂}₂]₂·C₇H₈ als gelben Feststoff in 54-prozentiger Ausbeute d.Th..

Summenformel: $C_{30}H_{86}N_4Ce_2O_2Si_8C_7H_8$

Molmasse: 1132,10 g/mol

Elementaranalyse in % (gefunden / berechnet): C: 39,14 / 39,25; H: 8,26 / 8,39; N: 4,91 / 4,95

7.6.3 Synthese von ErN(SiMe₃)₂(Mal)₂

Er{N(SiMe_3)_2}3648,55 g/mol; 1,712 g; 2,640 mmolC11H20O4216,28 g/mol (0,965 g/ml); 1,142 g; 5,279 mmol

1,712 g (2,640 mmol) $Er\{N(SiMe_3)_2\}_3$ werden in 50 ml Toluol gelöst und auf 55 °C erwärmt, bevor 1,142 g (5,279 mmol) des Alkohols in 50 ml Toluol unter ständigem Rühren innerhalb von 5 h zugetropft werden. Nach 12 h Rühren dieses Reaktionsgemisches bei 70–75 °C wird das Lösemittelvolumen stark eingeengt; durch Kristallisation in Toluol kann die Verbindung $ErN(SiMe_3)_2(Mal)_2$ in Form rautenförmiger, rosa gefärbter Kristalle in 62-prozentiger Ausbeute (d. Th.) erhalten werden.

Summenformel: C28H58NErO8Si2

Molmasse: 760,20 g/mol

Elementaranalyse in % (gefunden / berechnet): C: 44,18 / 44,24; H: 7,60 / 7,70; 4,78 / 1,84

7.6.4 Synthese von [Eu(Mal)₃]₂

Eu{N(SiMe ₃) ₂ } ₃	633,25g/mol; 1,346 g; 2,126 mmol
$C_{11}H_{20}O_4$	216,28 g/mol (0,965 g/ml); 1,379 g; 6,377 mmol

1,346 g (2,126 mmol) Eu{N(SiMe₃)₂}₃ in 50 ml Toluol werden vorgelegt und auf 50 °C erwärmt, bevor unter ständigem Rühren die Lösung von 1,379 g (6,377 mmol) Di-*tert*-Butylmalonat ebenfalls in Toluol zugetropft wird. Anschließend wird das so erhaltene Reaktionsgemisch weitere 12 h bei 70 °C gerührt. Die Kristallisation in Toluol bei -20 °C liefert, wie sich durch Röntgenstrukturanalyse herausstellt, die dimere homoleptische Verbindung [Eu(Mal)₃]₂·2C₇H₈ in Form roter, rautenförmiger Kristalle in 52-prozentiger Ausbeute (0,971 g; 1,091 mmol)

Summenformel: C₈₀H₁₃₀Eu₂O₂₄ Molmasse: 1779,82 g/mol

7.6.5 Synthese von [Nd{OCH(CF₃)₂}₃)]₂

Nd{N(SiMe₃)₂}3625,53g/mol; 1,963 g; 3,138 mmol(CF₃)₂CHOH168,04 g/mol (1,618 g/ml); 1,582 g; 9,414 mmol

Eine Lösung von 1,963 g (3,138 mmol) Nd{N(SiMe₃)₂}₃ in 100 ml Toluol wird vorgelegt, bevor man unter ständigem Rühren innerhalb von 5 h die Lösung von 1 ml (geringer Überschuss) des Alkohols (CF₃)₂CHOH in 50 ml Toluol zutropfen lässt. Anschließend wird das Reaktionsgemisch 24 h lang bei 80 °C gerührt. Nach Zugabe von 0,113 g (6,276 mmol) Wasser zum zuvor stark eingeengten Reaktionsgemisch ist es möglich, plättchenförmige hellblaue Kristalle zu erhalten, bei denen es sich, wie durch Röntgenstrukturanalyse bewiesen werden kann, um die Verbindung [Nd{OCH(CF₃)₂}₃]₂·4H₂O handelt. Die Ausbeute dieser Reaktion beträgt 0,327 g (0,480 mmol) (77 % d. Th.).

Summenformel: C₁₈H₁₄F₃₆Nd₂O₁₀ Molmasse: 1362,73 g/mol

7.6.6 Synthese von Er₃O(OSiMe₃)₇(Me₃SiOH)(THF)₂

Er{N(SiMe ₃) ₂ } ₃	648,55 g/mol; 0,191 g; 0,295 mmol
Me ₃ SiOH	90,22 g/mol (0,807 g/ml); 0,080 g; 0,884 mmo

0,191 g (0,295 mmol) $Er\{N(SiMe_3)_2\}_3$, gelöst in 20 ml Toluol, werden bei leichter Kühlung (ca. 0-4 °C) unter ständigem Rühren mit 0,1 ml (da im leichten Überschuss gearbeitet wird) Me₃SiOH in 20 ml Toluol vermischt. Nach 12-stündigem Rühren bei Raumtemperatur werden das Lösemittel und somit auch das bei der Reaktion entstandene Hexamethyldisilazan vollständig entfernt und der verbleibende rosa gefärbte Feststoff in einem 1:1 Gemisch von Toluol und THF erneut aufgenommen. Hierbei können 0,059 g der rosa gefärbten Verbindung $Er_3O(OSiMe_3)_7(Me_3SiOH)(THF)_2$ in Form vom Kristallen gewonnen werden.

Summenformel: C₃₂H₈₉Er₃O₁₁Si₈ Molmasse: 1376,71 g/mol

7.7 Prozessparameter der CVD- Experimente

Zur Verwendung der Precursoren im thermischen CVD-Prozess wird der in Abbildung 7.1 dargestellte Kaltwandreaktor verwendet. Hierbei werden alle Substrate vorab durch eine 15minütige Ultraschallbehandlung in einem Isopropanol-/Ethanolgemisch gereinigt und anschließend auf dem induktiv beheizbaren Graphithalter platziert. Die Precursoren werden frisch destilliert bzw. sublimiert eingesetzt und simultan auf die erforderliche Verdampfungstemperatur gebracht.

Precursor	Zr(O ^t Bu) ₄	Zr(NEt ₂) ₄	Zr(NEt ₂) ₄ /Et ₂ NH
Precursormenge	1-1,5 ml	1-1,5 ml	1-1,8 ml
Precursortemperatur	40 °C	50 °C	45 °C
Substrat	Stahl, Si(100)	Stahl, Si(100)	Stahl, Si(100)
Substrattemperatur	450-750 °C	450-750 °C	450-750 °C
Abscheidezeit	30 min	30 min	30 min

7.7.1 CVD mittels Zr(O^tBu)₄, Zr(NEt₂)₄ und Zr(NEt₂)₄/Et₂NH

7.7.2 CVD mittels $Zr(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}$ und $Hf(O^{t}Bu)_{2}\{N(SiMe_{3})_{2}\}_{2}$,

Precursor	Zr(O ^t Bu) ₂ {N(SiMe ₃) ₂ } ₂	Hf(O ^t Bu) ₂ {N(SiMe ₃) ₂ } ₂	
Precursormenge	500-800 mg	500-800 mg	
Precursortemperatur	90 °C	100 °C	
Substrat	Si(100)	Si(100)	
Substrattemperatur	450-750 °С	450-750 °C	
Abscheidezeit	120 min	120 min	

7.7.3 CVD mittels [Ti(O^tBu)₂N(SiMe₃)₂ClLiN(SiMe₃)₂]₂ und Zr(O^tBu)₂(NⁱPr₂)₂

Precursor	[Ti(O ^t Bu) ₂ N(SiMe ₃) ₂ ClLiN(SiMe ₃) ₂] ₂	$Zr(O^{t}Bu)_{2}(N^{i}Pr_{2})_{2}$	
Precursormenge	500-800 mg	500-800 mg	
Precursortemperatur	70 °C	80 °C	
Substrat	Si(100)	Si(100)	
Substrattemperatur	450-750 °C	450-750 °C	
Abscheidezeit	20 min	30 min	

Precursor	CITi(O ⁱ Pr) ₃	Me ₂ NTi(O ⁱ Pr) ₃		Et ₂ NTi(O ⁱ Pr) ₃	
Precursormenge	1-1,5 ml	1-1,5 ml		1-1,5 ml	
Precursortemperatur	45 °C	RT		45 °C	
Substrat	Si(100)	Si(100)		Si(100)	
Substrattemperatur	450-750 °C	450-750	°C	450-750 °C	
Abscheidezeit	30 min	30 min		30 min	
Precursor	ⁱ Pr ₂ NTi(O ⁱ Pr) ₃	(Me ₃ Si) ₂	NTi(O ⁱ Pr) ₃	MeTi(O ⁱ Pr) ₃	
Precursormenge	1-1,5 ml 1,5-2			1-1,5 ml	
Precursortemperatur	RT	55-60 °C	2	20-25 °C	
Substrat	Si(100)	Si(100)		(100)	
Substrattemperatur	450-750 °C	450-750	°C	450-750 °C	
Abscheidezeit	30 min	30 min		30 min	
Precursor	C ₅ H ₅ Ti(O ⁱ Pr) ₃		^t BuOTi(O ⁱ Pr) ₃		
Precursormenge	1-1,5 ml		1-1,5 ml		
Precursortemperatur	35-40 °C		RT		
Substrat	Si(100)		Si(100)		
Substrattemperatur	450-750 °C		450-750 °C		
Abscheidezeit	30 min		30 min		

7.7.4 CVD mittels heteroleptischer Titanprecursoren

7.8 Apparativer Aufbau

8 Literaturverzeichnis

- [1] Nanotechnologie Innovation f
 ür die Welt von morgen, Hrsg: VDI-Technologiezentrum, M
 ärz, 2004.
- [2] Nanotechnologie erobert Märkte Deutsche Zukunftsoffensive für Nanotechnologie, Hrsg: Bundesministerium für Bildung und Forschung, Bonn, März 2004.
- [3] L. G. Hubert-Pfalzgraf, New J. Chem., (11), 663, 1987.
- [4] A. D. Mazzony, M. S. Conconi, E. F. Aglietti, *Mater. Res.*, (4), 107, 2001.
- [5] M. Pakala, H. Walls, R. Y. Lin, J. Am. Ceram. Soc., (80), 1477, 1997.
- [6] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, *Surf. Coat. Technol., (112)*, 108, **1999**.
- [7] U. Beck, G. Reiners, I. Urban, H. A. Jehn, U. Kopacz, H. Schack, Surf. Coat. Technol., (61), 215, 1993.
- [8] W. Vogel, J. Non-Cryst. Solids, (73), 593, 1985.
- [9] C. Brugoni, F. Lanza, G. Macchi, R. Müller, E. Parnisori, M. F. Stroosnijder, J. Vinhas, Surf. Coat. Technol., (100-101), 23, 1998.
- [10] E. Wisotzki, A. G. Balogh, H. Hahn, J. Vac. Sci. Technol. A, (17), 14, 1999.
- [11] Ch. Elschenbroich / A. Salzer, Organometallchemie, 3. Auflage, B.G. Teubner, Stuttgart, 1993.
- [12] Holleman-Wiberg, Lehrbuch der Anorganischen Chemie, 101. Auflage, Walter de Gruyter, Berlin-New York, 1995.
- [13] D. A. Atwood, R. A. Jones, A. H. Cowley, J. Organomet. Chem., (434), 143, 1992.
- [14] CD Römpp Chemie Lexikon Version 1.0, Stuttgart / New York, Georg Thieme Verlag, 1995.
- [15] O. T. Beachley, M. J. Noble, M. R. Churchill, Organometallics, (17), 3311, 1998.

- [16] H. J. Sanders, *Chem. Eng. News*, 26, **1984**.
- [17] A. G. Evans, *Mater. Sci. Eng.*, (71), 2, **1985**.
- [18] W. Heywang, H. Thomann, Ann. Rev. Mater. Sci., (14), 27, 1984.
- [19] L. G. Hubert-Pfalzgraf, J. Mater. Chem., (14), 3113, 2004.
- [20] D. S. R. Krishna, Y. Sun, Surf. Coat. Technol., (198), 447, 2005.
- [21] S. Mathur, M. Veith, V. Sivakov, H. Shen, V. Huch, U. Hartmann, H. B. Gao, *Chem. Vap. Depos.*, (8), 277, 2002.
- [22] Y. Sun, Appl. Surf. Sci., (233), 328, 2004.
- [23] A. Suzuki, Jpn. J. Appl. Phys., (39), 1295, 2000.
- [24] R. C. Smith, T. Ma, N. Hoilien, L. Y. Tsung, M. J. Bevan, L. Colombo, J. Roberts, S. A. Campell, W. L. Gladfelter, *Adv. Mater. Opt. Electron.*, (10), 105, 2000.
- [25] B. de Souza, C. E. Foerster, S. L. R. de Silva, F. C. Serbena, C. M. Lepienski, C. A. dos Santos, Surf. Coat. Technol., (191), 76, 2005.
- [26] B. Huber, A. Brodyansky, M. Scheib, A. Orendorz, C. Ziegler, H. Gnaser, *Thin Solid Films*, (472), 114, 2005.
- [27] T. Car, N. Radic, A. Turkovic, Jpn. J. Appl. Phys., (41), 5618, 2002.
- [28] C. H. Heo, S.-B. Lee, J.-H. Boo, *Thin Solid Films*, (475), 183, 2005.
- [29] E. L. Sham, E. M. Farfán-Torres, S. Bruque-Gámez, Solid States Ionics, (63), 45, 1993.
- [30] P. W. Gold, J. Loos, M. Kuhn, Materialwiss. u. Werkstofftech., (34), 919, 2003.
- [31] H. Berndt, A.-Q. Zeng, H.-R. Stock, P. Mayr, Surf. Coat. Technol., (74-75), 369, 1995.
- [32] H. Holleck, J. Vac. Sci. Technol. A, (4), 2661, 1986.
- [33] K.-T. Rie, A. Gebauer, J. Wöhle, Surf. Coat. Technol., (74-75), 362, 1995.

- [35] X. Y. Li, G. B. Li, F. J. Wang, T. C. Ma, D. Z. Yang, Vacuum, (43), 653, 1992.
- [36] T. Delachaux, Ch. Hollenstein, F. Lévy, C. Verdon, *Thin Solid Films, (425)*, 113, 2003.
- [37] S. Chatterjee, S. K. Samanta, H. D. Banerjee, C. K. Maiti, *Bull. Mater. Sci.*, (24), 579, 2001.
- [38] K. W. Chour, J. Chen, R. Xu, *Thin Solid Films*, (304), 106, 1997.
- [39] S. Shimada, M. Inagaki, J. Mater. Res., (11), 2594, 1996.
- [40] S. Niyomsoan, W. Grant, D. L. Olson, B. Mishra, *Thin Solid Films*, (415), 187, 2002.
- [41] G. Bertrand, M. Mévrel, *Thin Solid Films*, (292), 241, **1997**.
- [42] S. Kudapa, K. Narasimhan, P. Boppana, W. C. Russell, Surf. Coat. Technol., (120), 259, 1999.
- [43] M. Cassir, F. Goubin, C. Bernay, P. Vernoux, D. Lincot, *Appl. Surf. Sci.*, (193), 120
 2002.
- [44] S. Jin, X. Y. Wen, Z. X. Gong, Y. C. Zhu, J. Appl. Phys., (74), 2886, 1993.
- [45] H. Ma, J. H. Huang, H. Chen, Surf. Coat. Technol., (133-134), 289, 2000.
- [46] W. Yong, C. A. Wolden, *Thin Solid Films*, (515), 1708, 2006.
- [47] I. Oja, A. Mere, M. Krunks, R. Nisumaa, C. H. Solterbeck, M. Es-Souni, *Thin Solid Films*, (515), 674, 2006.
- [48] J.-Y. Zang, I. W. Boyd, B. J. Sillivan, P. K. Hurley, P. V. Kelly, J.-P. Senateur, J. Non- Ccryst. Solids., (303), 134, 2002.
- [49] B. Karungaran, K. Kim, D. Mangalaraj, J. Yi, S. Velumani, Solar Energy Materials & Solar Cells, (88), 99, 2005.

- [50] B. Kim, D. Byun, L. Kee Lee, D. Park, Jpn. J. Appl. Phys., (41), 222, 2002.
- [51] N. P. Mellot, C. Durucan, C. G. Pantano, M. Gullielmi, *Thin Solid Films, (502)*, 112, 2006.
- [52] S.-H. Jung, S.-W. Kang, Jpn. J. Appl. Phys., (40), 3147, 2001.
- [53] S.-C. Jung, N. Imaishi, *Korean J. Chem. Eng.*, (18), 867, 2001.
- [54] S.-C. Jung, B.-H. Kim, S.-J. Kim, N. Imaishi, Y.-I. Cho, Chem. Vap. Depos., (11), 137, 2005.
- [55] B. D. Ratner, J. Biomed. Mater Res., (27), 837, 1993.
- [56] J. Lausmaa, B. Kasemo, Appl. Surf. Sci., (44), 133, 1990.
- [57] S. Nishiguchi, H. Kato, M. Neo, M. Oka, H.-M. Kim, T. Kokubo, T. Nakamura, J. Biomed. Mater Res., (45), 198, 2001.
- [58] D. D. Deligianni, N. D. Katsala, P. G. Koutsoukos, Y. F. Missirlis, *Biomaterials, (22),* 87, 2001.
- [59] K. L. Kilpadi, P-L. Chang, S. L. Bellis, J. Biomed. Mater Res., (57), 258, 2001.
- [60] Y. M. Zhang, P. Bataillon-Linez, P. Huang, Y. M. Zhao, Y. Han, M. Traisnel, K. W. Xu, H. F. Hildebrand, J. Biomed. Mater Res. A, (68A(2)), 383, 2004.
- [61] J. C. Keller, G. B. Schneider, C. M. Stanford, B. Kellogg, *Implant Dent.*, (12), 175, 2003.
- [62] G. Zhao, Z. Schwartz, W. Wieland, F. Rupp, J. Geis-Gerstorfer, D. L. Cochran, B. D. Boyan, J. Biomed. Mater Res. A, (74A(1)), 49, 2005.
- [63] A. Bagno, C. Di Bello, J. Mater. Sci.: Materials in Medicine, (15), 935, 2004.
- [64] J. C. Frias, G. Bobba, M. J. Cann, Hutchinson und Parker D, Org. Biomol. Chem., (905), 1, 2003.
- [65] G.-L. Zhong, Y-H Wang, C-K Wang and K-Z Yang, *Thin Solid Films, (234)*, 385, 2001.

- [66] S. N. Misra, M. A. Gagnani, I. Devi and R. S. Shukla, *Bioinorganic Chemistry and Applications*, (2), 155, 2004.
- [67] P. R. Selvin, Annual Rev. Biophysics and Biomolecular Structures, (31), 275, 2000.
- [68] G. Bombieri, R. Artali, J. Alloys and Compounds, (344), 9, 2002.
- [69] D. Boyer, G. Bertrand-Chadeyron, R. Mahiou, Opt. Mater., (26), 101, 2004.
- [70] Y. Hakuta, T. Haganuma, K. Sue, T. Adschiri, K. Arai, *Mater. Res. Bull.*, (38), 1257, 2003.
- [71] A. Ikesue, K. Yoshida, K. Kamata, J. Am. Ceram. Soc., (79), 507, 1996.
- [72] J. M. Philips, J. Appl. Phys., (79), 1829, 1996.
- [73] A. Knierim, R. Auer, J. Geerk, G. Linker, O. Meyer, H. Reiner, R. Schneider, Appl. Phys. Lett., (70), 661, 1997.
- [74] D. L. Schulz, T. J. Marx, Adv. Mater., (6), 719, 1994.
- [75] J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, R. L. Opila. Jr., D. A. Muller, S. N. G. Chu, B. J. Sapjeta, T. S. Lay, J. P. Mannaerts, T. Boone, H. W, Krautter, J. J. Krajewski, A. M. Sergent, J. M. Rosomilia, *J. Appl. Phys.*, (89), 3920, 2001.
- [76] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, A. M. Sergent, *Science*, (283), 1897, 1999.
- [77] C. H. Rosner, *IEEE Trans. Appl. Supercond.*, (11), 39, 2001.
- [78] D. P. Norton, Annu. Rev. Mater. Sci. (28), 299, 1998.
- [79] S. Mathur, J. Altmayer, H. Shen, Z. Anorg. Allg. Chem., (630), 2042, 2004.
- [80] S. Mathur, V. Sivakov, H. Shen, S. Barth, C. Cavelius, A. Nielsson, P. Kuhn, *Thin Solid Films*, (88), 502, 2006.
- [81] M. J. Hampden-Smith, T. T. Kodas, Chem. Vap. Depos., (1), 39, 1995.

- [82] M. Lazell, P. O'Brien, D. J. Otway, J. H. Park, J. Chem. Soc., Dalton Trans., 4479, 2000.
- [83] S. Mathur, Chemical Physics of Thin Film Deposition–Processes for Micro- and Nano-Technologies, 91, 2002.
- [84] J. T. Spencer, Prog. Inorg. Chem., (41), 145, 1994.
- [85] K. L. Choy, Progress in Materials Science, (48), 57, 2003.
- [86] M. Veith, S. Kneip, Journal of Materials Science Letters, (13), 335, 1994.
- [87] A. Erbil, W. Braun, B. S. Zwak, B. J. Wilkens, L. A. Boatner, J. D. Budai, J. Cryst. Growth, (135), 285, 1994.
- [88] K. Tominaga, Y. Sakashita, H. Nakashima, M. Ada, J. Cryst. Growth, (145), 219, 1994.
- [89] N. D. Kumar, M. N. Kamalasanan, S. Chandra, Appl. Phys. Lett. (56), 1373, 1994.
- [90] T. Sugimoto, M. Yoshida, K. Yamaguchi, Y. Yamada, K.Sugawara, Y, Shirohara, J. Cryst. Growth, (107), 692, 1991.
- [91] C. Sant, P. Gibart, P. Genou, C. Verie, J. Cryst. Growth, (124), 690, 1992.
- [92] S. Mathur, S. Barth, H. Shen, J.-C. Pyun, U. Werner, *Small*, (1), 713, 2005.
- [93] S. Mathur, S. Barth, *Small, (3)*, 2070, 2007.
- [94] S. Mathur, S. Barth, U. Werner, *Adv. Mater.*, 2008 (in Druck).
- [95] R. A. Fischer, *Chemie in unserer Zeit, (3),* 141, **1995**
- [96] A. C. Jones, Chem. Soc. Revs., 101, 1997.
- [97] D. C. Bradley, R. C. Mehrotra, D. P. Gaur, *Metal Alkoxide*, Academic Press NY, 1978.
- [98] A. C. Jones, *Chem. Vap. Depos.*, (4), 169, **1998**.
- [99] M. Veith, S. Faber, H. Wolfanger, V. Huch, Chem. Ber., (129), 381, 1996.

- [100] M. Veith, A. Altherr, H. Wolfanger, Chem. Vap. Depos., (5), 87, 1999.
- [101] M. Veith, O. Schütt, J. Blin, J. Frères, S. Becker, V. Huch, Z. Anorg. Allg. Chem., (628), 138, 2002.
- [102] G. Bertrand, M. Mévrel, *Thin Solid Films, (292)*, 241, 1997.
- [103] S. R. Klopfenstein, C. Kluwe, K. Kirschbaum, J. A. Davis, *Can. J. Chem.*, (74), 2331, 1996.
- [104] S. Mathur, M. Veith, H. Shen, S. Hüfner, M. Jilavi, Chem. Mater., (14), 568, 2002.
- [105] S. Mathur, M. Veith, H. Shen, S. Hüfner, *Mater. Sci. Forum, (41)*, 386, 2002.
- [106] M. Veith, S. Mathur, H. Shen, S. Hüfner, M. Jilavi, Chem. Mater., (11), 4041, 2001.
- [107] S. Mathur, M. Veith, H. Shen, N. Lecerf, S. Hüfner, Script. Mater., (44), 2105, 2001.
- [108] S. Mathur, H. Shen, N. Lecerf, H. Fjellvag, G. Goya, Adv. Mater., (14), 1405, 2002.
- [109] M. Veith, S. Mathur, N. Lecerf, K. Bartz, M. Heintz, V. Huch, *Chem. Mater.*, (12), 271, 2000.
- [110] S. Mathur, M. Veith, V. Sivakov, H. Shen, H. B. Gao, J. Phys. IV, (11), 487, 2001.
- [111] S. Mathur, M. Veith, H. Shen, S. Hüfner, *Ceramic Eng. and Science Proceedings*, (23), 557, 2002.
- [112] M. Veith, S. Mathur, C. Mathur, *Polyhedron, (17)*, 1005, **1998**.
- [113] M. J. Hampden Smith, T. T. Kodas, *Chem Vap. Depos.*, (1), 1, **1995**.
- [114] D. C. Bradley, *Polyhedron*, (13), 1111, **1994**.
- [115] M. J. Hampden-Smith, T. T. Kodas, *The Chemistry of Metal CVD*, John Wiley & Sons. 1994.
- [116] M. Veith, J. of Metastable and Nanocrystalline Materials, (8), 531, 2000.
- [117] M. Veith, J. Chem. Soc., Dalton Trans., 2402, 2002.

- [118] R. C. Mehrotra, A. Singh, S. Sogani, *Chemical Society Reviews*, 215, 1994.
- [119] W. Herrmann, N. Huber, O. Runte, Angew. Chem., (107), 2371, 1995.
- [120] M. Veith, S. Kneip, S. Faber, E. Fritscher, *Materials Science Forum*, (269-2), 303, 1998.
- [121] A. C. Jones, J. Mater. Chem., (12), 2576, 2002.
- [122] T. G. Wetzel, P. W. Roesky, Z. Anorg. Allg. Chem., (625), 1953, 1999.
- [123] L. G. Hubert-Pfalzgraf, Inorg. Chem. Commun., (6), 102, 2003.
- [124] L. G. Hubert-Pfalzgraf and H. Guillon, Appl. Organomet. Chem., (12), 221, 1998.
- [125] L. McElwee-White, Dalton Trans., 5327, 2006.
- [126] R. N. Ghoshtagore, A. J. Norieka, J. Electrochem. Soc., (117), 1310, 1970.
- [127] K. S. Yeung, Y. W. Lam, Thin Solid Films, (109), 169, 1983.
- [128] C. P. Fictorie, J. F. Evans, W. L. Gladfelter, J. Vac. Sci. Technol. A, (12), 1108, 1994.
- [129] T. W. Kim, M. Jung, H. J. Kim, T. H. Park, Y. S Yoon, W. N. Kang, S. S. Yom, H. K. Na, *Appl. Phys. Lett.*, (64), 1407, 1994.
- [130] J. Lu, J. Wang, R. Rai, *Thin Solid Films, (204)*, L 13, 1991.
- [131] N. Rausch, E. P. Burte, *Microelec. Eng.*, (19), 725, **1992**.
- [132] N. Rausch, E. P. Burte, J. Electrochem. Soc., (140), 145, 1993.
- [133] J. Yan, D. C. Gilmer, S. A. Campbell, W. L. Gladfelter, P. G. Schmid, J. Vac. Sci. Technol. B, (14), 1706, 1996.
- [134] K. L. Siefering, G. L. Griffin, J. Electrochem. Soc., (137), 814, 1990.
- [135] D. C. Gilmer, D. G. Columbo, C. J. Taylor, J. Roberts, G. Haugstad, S. A. Campbell, H-S, Kim, G. D. Wilk, M. A. Gribelyuk, W. L. Gladfelter, *Chem. Vap. Depos.*, (4), 9, 1998.

- [136] C. J. Taylor, D. C. Gilmer, D. G. Colombo, G. D. Wilk, S. A. Campbell, J. Roberts,
 W. L. Gladfelter, *J. Am. Chem. Soc.*, (121), 5220, 1999.
- [137] R. N. Taubner, A. C. Dumbri, R. E. Caffrey, J. Electrochem. Soc., (118), 747, 1971.
- [138] H. Yamane, T. Hirai, J. Mater. Sci., (6), 1229, 1987.
- [139] D. C. Bradley, Chem. Rev., (89), 1317, 1989.
- [140] H. J. Frenck, E. Oesterschulze, R. Beckmann, W. Kulisch, R. Kassing, *Mater. Sci. Eng.*, (A139), 374, 1991.
- [141] M. Balog, M. Schieber, S. Patai, M. Michman, J. Cryst. Growth, (17), 298, 1972.
- [142] J. S. Kim, H. A. Marzouk, P. J. Reucroft, *Thin Solid Films*, (254), 33, 1995.
- [143] M. Balog, M. Schieber, M. Michman, S. Patai, *Thin Solid Films, (47), 109, 1977.*
- [144] R. A. Gardiner, P. C. van Buskirk, P. S. Kirlin, *Mater. Res. Soc. Symp. Proc.*, (335), 221, 1994.
- [145] P. Schäfer, R. Waser, Adv. Mater. Opt. Elektron., (10), 169, 2000.
- [146] J.-H. Lee, J.-Y. Kim, J.-Y. Shim, S.-W. Rhee, J. Vac. Sci., Technol. A, (17), 3033, 1999.
- [147] A. C. Jones, T. J. Leedham, P. J. Wright, M. J. Crosbie, K. A. Fleeting, D. J. Otway, P. O'Brien, M. E. Pebble, *J. Mater. Chem.*, (8), 1773, 1998.
- [148] C. S. Hwang, H. J. Kim, J. Mater. Res., (8), 1361, 1993.
- [149] M. Balog, M. Schieber, M. Michman, S. Patai, Thin Solid Films, (41), 247,1977.
- [150] M. Balog, M. Schieber, M. Michman, S. Patai, J. Electrochem. Soc., (126), 1203, 1979.
- [151] E.-T. Kim, S.-J. Yoon, *Thin Solid Films, (227), 7,* **1993**.
- [152] J. Si., S. B. Desu, C.-Y. Tsai, J. Mater. Res., (9), 1721, 1994.
- [153] C. H. Peng, S. B. Desu, J. Am. Ceram. Soc., (77), 1799, 1994.

- [154] Y. Akiyama, T. Sato, N. Imaishi, J. Cryst. Growth, (147), 130, 1995.
- [155] A. C. Jones, T. J. Leedham, P. J. Wright, M. J. Crosbie, P. A. Lane, D. J. Williams, K. A. Fleeting, D. J. Otway, P. O'Brien, *Chem. Vap. Depos.*, (4), 46, 1998.
- [156] A. C. Jones, T. J. Leedham, P. J. Wright, M. J. Crosbie, D.J. Williams, K. A. Fleeting,
 H. O. Davies, D. J. Otway, P. O'Brien, *Chem. Vap. Depos.*, (4), 197, 1998.
- [157] D. G. Colombo, D. C. Gilmer, J. V. C. Young, S. A. Campbell, W. L. Gladfelter, *Chem. Vap. Depos.*, (4), 220, 1998.
- [158] J. S. Na, H. Kim, D.-K. Yong, W. Rhee, J. Electrochem. Soc., (149), C23, 2002.
- [159] R. Matero, M. Ritala, M. Leskalä. A. C. Jones, P. A. Williams, J. F. Bickley, A. Steiner, T. J. Leedham, H. O. Davies, J. Non-Cryst. Solids, (303), 24, 2002.
- [160] P. A. Williams, J. L. Roberts, A. C. Jones, P. R. Chalker, J. F. Bickley, A. Steiner, H. O. Davies, T. J. Leedham, *J. Mater. Chem.*, (12), 165, 2002.
- [161] P. A. Williams, J. L. Roberts, A. C. Jones, P. R. Chalker, N. L. Tobin, J. F. Bickley, H. O. Davies, L. M. Smith, T. J. Leedham, *Chem. Vap. Depos.*, (8), 163, 2002.
- [162] C. F. Powell, *Chemically Deposited Nonmetals* (Eds: C. F. Powell, J. H. Oxley, J. M. Blocher) John Wiley & Sons Inc. New York, S. 343, 1996.
- [163] D. C. Gilmer, R. Hegde, R. Cotton, R. Garcia, V. Dhandapani, D. Triyoso, D. Poan, A. Franke, R. Rai, L. Prabhu, C. Hobbs, J. M. Grant, L. La, S. Samavedam, B.Taylor, H. Tseng, P. Tobin, *Appl. Phys. Lett.*, (8), 1288, 2002.
- [164] S. Mathur, H. Shen in *Encyclopedia of Nanoscience and Nanotechnology*, Ed. H. Nalwa, American Scientific Publisher 2004.
- [165] A. Baunemann, R. Thomas, R. Becker, M. Winter, R. A. Fischer, P. Erhart, R. Waser,A. Devi, *Chem. Commun.*, 1610, 2004.
- [166] H. Shen, S. Mathur, J. Phys. IV France, (12), Pr 4-1, 2002.
- [167] S. Mathur, M. Veith, R. Rapalaviciute, H. Shen, G. F. Goya, W. L. Martins Filho, T. S. Berquo, *Chem. Mater.*, (16), 1906, 2004.

- [168] S. Mathur, H. Shen, V. Sivakov, U. Werner, Chem. Mater., (16), 2449, 2004.
- [169] H. Wendel, H. Suhr, Appl. Phys. A, (A-54), 389, 1992.
- [170] J. Si, S. B. Desu, C. Tsai, J. Mater. Res., (9), 1721, 1994.
- [171] D. J. Burleson, J. T. Roberts, W. L. Gladfelter, S. A. Campbell, R. C. Smith, *Chem. Mater.*, (14), 1269, 2002.
- [172] P. L. Franceschini, M. Morstein, H. Berke, H. W. Schmalle, *Inorg. Chem.*, (42), 7273, 2003.
- [173] M. Morstein, I. Pozsgai, N. D. Spencer, Chem. Vap. Depos., (5), 151, 1999.
- [174] U. Patil, M. Winter, H.-W. Becker, A. Devil, J. Mater. Chem., (13), 2177, 2003.
- [175] M. Morstein, Inorg. Chem., (38), 125, 1999.
- [176] G. I. Spijksma, H. J. M. Bouwmeester, D. H. A. Blank, A. Fischer, M. Henry, V. G. Kessler, *Inorg. Chem.*, (45), 4938, 2006.
- [177] Y. Oshita, A. Ogura, M. Ishikawa, T. Kada, A. Hoshino, T. Suzuki, H. Machida, K. Soai, *Chem. Vap. Depos.*, (12), 130, 2006.
- [178] Y. F. Loo, R. O'Kane, A. C. Jones, H. C. Aspinall, R. J. Potter, P. R. Chalker, J. F. Bickley, S. Taylor, L. M. Smith, *Chem. Vap. Depos.*, (11), 299, 2005.
- [179] R. Thomas, A. Milanov, R. Bhakta, U. Patil, M. Winter, P. Erhart, R. Waser. A. Devil, *Chem. Vap. Depos.*, (12), 295, 2006.
- [180] R. N. Goshtagore, J. Electrochem. Soc., (117), 529, 1970.
- [181] S. Hayashi, T. Hirai, J. Cryst. Growth, (36), 157, 1976.
- [182] L. M. Williams, D. W. Hess, J. Vac. Sci. Technol., A, (1), 1810, 1983.
- [183] M. Yokozawa, H. Iwasa, I. Teramoto, Jpn. J. Appl. Phys., (7), 96, 1968.
- [184] E. T. Fitzgibbons, K. J. Sladek, W. H. Harting, J. Electrochem. Soc., (119), 735, 1972.

- [185] J. J. Gallegos, T. L. Ward, T. J. Boyle, M. A. Rodriquez, L. P. Francisco, *Chem. Vap. Depos.*, (6), 21, 2000.
- [186] A. Bastiani, G. A. Bastion, R. Gerbasi, M. Porchia, S. Daolio, J. Phys. IV, (5), C-525, 1995.
- [187] B. J. Gould, I. M. Povey, M. E. Pemble, W. R. Flavell, J. Mater. Chem., (4), 1815, 1994.
- [188] Y. Takahashi, T. Kawae, M. Nasu, J. Cryst. Growth, (74), 409, 1986.
- [189] I. M. Thomas, Can. J. Chem., (39), 1386, 1961.
- [190] D. C. Bradley, I. M. Thomas, J. Chem. Soc., 3857, 1960.
- [191] Ch. Täschner, K. Bartsch, A. Leonardt, Surf. Coat. Technol., (61), 158, 1993.
- [192] ESCA Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp.: Eden Prairie, MN, 1992.
- [193] S. Niyomsoan, W. Grant, D. L. Olson, B. Mishra, Thin Solid Films, (415), 187, 2002
- [194] L. Pichon, A. Straboni, T. Girardeau, M. Drouet, P. Widmayer, J. Appl. Phys., (87), 925, 2000.
- [195] R. C. Garvie, J. Phys. Chem. Solids, (69), 1238, 1965.
- [196] R. C. Garvie, J. Phys. Chem. Solids, (82), 284, 1978.
- [197] T. Chraska, A. H. King, C. C. Berndt, Mater. Sci. Eng. A, (286), 1568, 2000.
- [198] W. Gulbiński, S. Mathur, H. Shen, T. Suszko, A. Gilewicz, B. Warcholiński, Appl. Surf. Sci., (3-4), 302, 2005.
- [199] T. P. Kunzler, T. Drobek, M. Schuler, N. D. Spencer, *Biomaterials*, (28), 2175, 2007.
- [200] R. C. Smith, T. Ma, N. Hoilien, I. Y. Tsung, M. J. Bevan, L. Columbo, J. Roberts, S. A. Campell, W. Gladfelter, *Adv. Mater. Opt. Electron.*, (10), 105, 2000.
- [201] M. Pulver, G. Wahl, *Electrochem. Soc. Proc.*, (97-25), 960, 1977.

- [202] A. C. Jones, T. J. Leedham, P. J. Wright, M. J. Crosbie, D. J. Williams, P. A. Lane, P. O'Brien, Mater. Res. Soc. Symp. Proc., (495), 11, 1998.
- [203] U. M Triphati, A. Sigh, R. C. Mehrotra, S. C. Goel, M. Y. Chiang, W. E. Buhro, J. Chem. Commun., 152, 1992.
- [204] M. Wijk, R. Norrestam, M. Nygren, G. Westin, Inorg. Chem., (35), 1077, 1996.
- [205] X. Yu, Z.-L. Xue, Inorg. Chem., 44, 1505, 2005.
- [206] S. Popenova, R. C. Mawhinney, G. Schreckenbach, Inorg. Chem., (46), 3856, 2007.
- [207] C. Airoldi, D. C. Bradley, H. Chudzynska, M. B. Hursthouse, K. M. Abdul Malik, P. R. Raithby, J. Chem. Soc. Dalton, 2010, 1980.
- [208] E. Witt, D. W. Stephan, Inorg. Chem., (40), 3824, 2001.
- [209] J. Tamás, P. Miklós, Organic Mass Spectrometry, (10), 859, 1975.
- [210] B. Mahltig, H. Boettcher, K. Rauch, U. Dieckmann, R. Nietsche, T. Fritz, *Thin Solid Films*, (108), 485, 2005.
- [211] Y. Zhang, L. Zhang, C. Mo, Y. Li, L. Yao, W. Cai, J. Mater. Sci. Technol., (16), 277, 2000.
- [212] X. Chen, S. S. Mao, J. Nanosci. Nanotechnol., (6), 906, 2006.
- [213] F. Bosc, D. Edwards, N. Keller, V. Keller, A. Ayral, *Thin Solid Films, (495)*, 272, 2006.
- [214] D. Chatterjee, S. Dasguputa, J. Photochem. Photobiol. C: Photochem. Rev., (6), 186, 2005.
- [215] J. Yang, C. Chen, H. Ji, W. Ma, J. Zhao, J. Phys. Chem. B., (109), 21900, 2005.
- [216] C. W. Oh, G. D. Lee, S. S. Park, C. S. Ju, S. S. Hong, Korean J. Chem. Eng., (22), 547, 2005.
- [217] L. Li, W. Zhu, L. Chen, P. Zhang, Z. Chen, J. Photochem. Photobiol. A: Chem., (175), 172, 2005.

- [218] V. Augugliaro, E. Garcia-Lopez, V. Loddo, S. Malato-Rodriquez, I. Maldonato, G. Marci, R. Molinari, L. Palmisano, *Solar Energy*, (79), 402, 2005.
- [219] Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, A. Fujishima, J. Photochem. Photobiol. A: Chem., (106), 51, 1997.
- [220] X. T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, A. Fujishima, Chem. Mater., (17), 696, 2005.
- [221] K. Guan, Surf. Coat. Technol., (191), 155, 2005.
- [222] Y. Ohko, S. Saitoh, T. Tatsuma, A. Fujishima, J. Electrochem. Soc., (148), B24, 2001.
- [223] A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, A. Fujishima, Langmuir, (16), 7044, 2000.
- [224] D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart, J. Breme, J. Biomed. Mater. Res., (59), 18, 2002.
- [225] Y.-T. Sul, C. B. Johansson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerberg, T. Albrektsson, *Biomaterials*, (23), 491 2002.
- [226] N. Moritz, S. Areva, J. Wolke, T. Peltola, *Biomaterials, (26)*, 4460, 2005.
- [227] H. Liu, T. J. Webster, *Biomaterials*, (28), 354, 2007.
- [228] K. Anselme, P. Linez, M. Bigerelle, D. Le Maquer, A. Le Maquer, P. Hardouin, H. F. Hildebrand, A. Iost, J. M. Leroy, *Biomaterials*, (21), 1567, 2000.
- [229] D. L. Cochran, R. K. Schenk, A. Lussi, F. L. Higginbottom, D. Buser, J. Biomed. Mater. Res., (40), 1, 1998.
- [230] M. Bigerelle, K. Anselme, B. Noël, I. Ruderman, P. Hardouin, A. Iost, *Biomaterials*, (23), 1563, 2002.
- [231] S. Mathur, S. Barth, H. Shen, Chem. Vap. Depos., (11), 11, 2005.
- [232] S. Mathur, H. Shen, V. Sivakov, U. Werner, Chem Mater., (16), 2449, 2004.
- [233] S. Mathur, P. Kuhn, Surf. Coat. Technol., (201), 807, 2006.

- [234] T. Minabe, D. A. Tryck, P. Sawunyama, Y. Kikuchi, K. Hashimoto, A. Fujishima, J. Photochem. Photobiol. A, (137), 53, 2000.
- [235] A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev., (95), 735, 1995.
- [236] J. Augustynski, J. Electrochim. Acta, (38), 43, 1993.
- [237] P. Sawunyama, A. Fujishima, K. Hashimoto, *Langmuir*, (15), 3551, 1999.
- [238] D. R. Cairns, G. P. Crawford, *Proceedings of the IEEE, (93)*, 1451, 2005.
- [239] B. H. Lee, I. G. Kim, S. W. Cho, S. H. Lee, *Thin Solid Films*, (302), 25, 1997.
- [240] D. A. Puleo, A. Nanci, *Biomaterials*, (20), 2311, **1999**.
- [241] N. J. Sniadecki, R. A. Desai, S. A. Ruiz, C. S. Chen, Ann. Biomed. Engin., (34), 59, 2006.
- [242] T. Seine, M. Watanabe, *Electronics and Communications in Japan II-Electronics*, (77), 77, **1994**.
- [243] V. N. Alekseev, V. N. Katylev, V. I. Liber, *Quantum Electronics, (29), 510, 1999*.
- [244] Y. V. Fedotov, S. M. Ryabchenko, E. A. Pashitski, A. V. Semenov, V. I. Vakaryuk, V. M. Pan, V. S. Fils, *Low. Temp. Phys.*, (28), 172, 2002.
- [245] B. Okai, A. Ono, Jpn. J. Appl. Phys., 38, 1018, 1999.
- [246] D. A. Conte, W. D. Brown, S. S. Ang, H. A. Naseem, *Thin Solid Films*, (270), 493, 1995.
- [247] M. Li, Int. J. of Quantum Chemistry, (48), 49, 1993.
- [248] H. M. Buschbaum, Angew. Chem., 101, 1503, 1989.
- [249] Y. Takahashi, K. Tageyama, K. Kodaira, Jpn. J. Appl. Phys., (32), 4327, 1993.
- [250] M. Siemons, U. Simon, Sensor And Actuators B: Chemical, (126), 181, 2007.
- [251] V. Lantto, S. Sankko, N. N. Toan, L. F. Reyes, C. G. Granquist, J. of Electroceramics, (13), 721, 2004.

- [252] K. Tabata, M. Misono, *Catalysis Today*, (8), 249, **1990**.
- [253] S. S. Park, H. Zheng, J. D. Mackenzie, *Mater. Lett.*, (17), 346, 1993.
- [254] I. S. Molchan, N. V. Gaponenko, R. Kudrawiec, J. Misiemicz, G. E. Thompson, P. Skeldon, J. Electrochem. Soc., (151), 16, 2004.
- [255] J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, *Appl. Phys. B, Lasers and Optics*, (71), 469, 2000.
- [256] A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, J. Am. Ceram. Soc., (78), 1033, 1995.
- [257] T. Soukka, K. Kunungas, T. Rantanen, V. Haaslahti, T. Lövgren, J. Fluores., (15), 513, 2005.
- [258] D. S. Hubbard, M. P. Houlne, G. Kiefer, H. F. Jansen, C. Hacker, D. J. Bornhop, Lasers Med. Sci., (13), 14, 1998.
- [259] V. W. W. Yam, K. K. W. Lo, Coord. Chem. Rev., (184), 157, 1999.
- [260] F. Dioury, S. Sambou, E. Guéné, M. Sabatou, C. Ferroud, A. Guy, M. Port, *Tetrahedron*, (63), 204, 2007.
- [261] C. Picard, N. Geum, I. Nasso, B. Mestre, P. Tisnès, S. Laurent, R. N. Muller, L. V. Elst, *Bioorg. Med. Chem. Lett.*, (16), 5309, 2006.
- [262] M. Querol, A. Bogdanov, J. Magn. Reson. Imaging, (24), 971, 2006.
- [263] L. G. Hubert-Pfalzgraf, New J. Chem., (19), 727, 1995.
- [264] D. C. Bradley, J. S. Ghotra, F. A. Hart, J. Chem. Soc. Dalton, (10), 1021, 1973.
- [265] K. D. Pollard, H. A. Jenkins, R. J. Puddephatt, Chem. Mater., (12), 701, 2000.
- [266] L. J. Bowman, K. Izod, W. Clegg, R. W. Harrington, *Organometallics*, (25), 2999, 2006.
- [267] J. A. Belot, A. Wang, R. J. McNeely, L. Liable-Sands, A. L. Rheingold, T. J. Marks, *Chem. Vap. Depos.*, (5), 65, 1999.

- [268] J. Päväsaari, C. L. Dezelah IV, D. Back, K. M. El-Kaderi, M. J. Heeg, M. Putkonen, L. Niinströ, C. H. Winter, J. Mater. Chem., (15), 4224, 2005.
- [269] G. B. Deacon, C. M. Forsyth, N. M. Schott, Eur. J. Inorg. Chem., 1425, 2002.
- [270] O. Just, W. S. Rees Jr., Inorg. Chem., (40), 1751, 2001.
- [271] H. C. Aspinall, J. F. Bickley, J. M. Gaskell, A. C. Jones, G. Labat, *Inorg. Chem.*, (46), 5852, 2007.
- [272] S. C. F. Kui, H-W. Li, H. K. Lee, Inorg. Chem., (42), 2824, 2003.
- [273] W. A. Herrmann, R. Anwander, F. C. Munck, W. Scherer, V. Dufaud, N. W. Huber,
 G. R. J. Artus, Z. Naturforsch., (49b), 1789, 1994.
- [274] R. A. Andersen, D. H. Tempelton, A. Zalkin, *Inorg. Chem.*, (17), 2317, 1978.
- [275] N. L. Edleman, A. Wang, J. A. Belot, A. W. Metz, J. R. Babock, A. M. Kawaoka, J. Ni, M. V. Metz, C. J. Flaschenriem, C. L. Stern, L. M. Liable-Sands, A. L. Rheingold, P. R. Markworth, R. P. H. Chang, M. P. Chudzik, C. R. Kannewurf, T. J. Marks, *Inorg. Chem.*, (41), 5005, 2002.
- [276] D. C. Bradley, H. Chudzynska, D. M. Frigo, M. E. Hammond, M. B. Hursthouse, M. A. Mazid, *Polyhedron*, (9), 917, 1990.
- [277] O. Poncelet, W. J. Sartain, L. G.Hubert-Pfalzgraf, K. Folting, K. G. Caulton, *Inorg. Chem.*, (28), 263, 1989.
- [278] D. C. Bradley, H. Chudzynska, M. B. Hursthouse, M. Motevalli, *Polyhedron, (10)*, 1049, **1991**.
- [279] M. Veith, S. Mathur, A. Kareiva, M. Jilavi, M. Zimmer, V. Huch, J. Mater. Chem., (9), 3069, 1999.
- [280] S. N. Misra, T. N. Misra, R. C. Mehrotra, Aust. J. Chem., (21), 797, 1968.
- [281] R. A. Andersen, D. H. Tempelton, A. Zalkin, *Inorg. Chem.*, (17), 2317, 1978.
- [282] P. G. Eller, D. C. Bradley, M. B. Hursthouse, D. W. Meek, *Coord. Chem. Rev. (24)*, 1, 1977.

- [283] J. S. Ghotra, M. B. Hursthouse, A. J. Welch, J. Chem. Soc. Chem. Commun., 669, 1973.
- [284] W. S. Rees, O. Just, D. S. Vanderveer, J. Mater. Chem. (9), 249, 1999.
- [285] D. C. Bradley, M. H. Chisholm, Acc. Chem. Res., (9), 273, 1976.
- [286] W. A. Herrmann, R. Anwander, M. Kleine, W. Scherer, Chem. Ber., (125), 1971, 1992.
- [287] W. A. Herrmann, R. Anwander, M. Denk, Chem. Ber., (125), 2399, 1992.
- [288] F. T. Edelmann, A. Steiner, D. Stalke, J. W. Gilje, S. Jagner, M. Hakansson, Polyhedron, (13), 539, 1994.
- [289] H. Schumann, J. Winterfeld, E. C. E. Rosenthal, H. Hemling, L. Esser, J. Kim, Z. Anorg. Allg. Chem., (621), 122, 1994.
- [290] A. Recknagel, A. Steiner, M. Noltmeyer, S. Brooker, D. Stalke, F. T. Edelmann, J. Organomet. Chem., (414), 327, 1991.
- [291] A. Recknagel. F. Knosel, H. Gornitzka, M. Noltmeyer, F. T. Edelmann. J. Organomet. Chem., (417), 363, 1991.
- [292] D. L. Clark, J. G. Watkin, J. C. Huffman, Inorg. Chem., (31), 1554, 1992.
- [293] F. T. Edelmann A. Steiner, D. Stalke, Polyhedron, (13), 539, 1994.
- [294] X. Xu, Y. Yao, M. Hu, Y. Zhang, Q. Shen, J. Polym. Sci. A, (44), 4409, 2006.
- [295] W. J. Evans, R. E, Golden, J. W. Ziller, *Inorg. Chem.*, (30), 4963, 1991.
- [296] M. J. McGeary, P. S. Coan, K. Folting, W. E. Streib, K. G. Caulton, *Inorg. Chem.*, (30), 1723, 1991.
- [297] P. Shao, D. J. Berg, G. W. Bushnell, *Inorg. Chem.*, (33), 3452, 1991.
- [298] P. S. Gradeff, K. Yunlu, T. J. Deming, J. M. Olofson, R. J. Doedens, W. J. Evans, *Inorg. Chem.*, 29, 240, 1990.

- [299] P. S. Gradefe, K. Yunlu, A. Gleizes, J. Galy, Polyhedron, (8), 1001, 1989.
- [300] D. J. Duncalf, P. B. Hitchkock, G. A. Lawless, J. Organometall. Chem., (506), 437, 1996.
- [301] A. Fischbach, G. Eickerling, W. Scherer, E. Herdtweck, R. Anwander, Z. Naturforsch., (59b), 1353, 2004.
- [302] A. N. Kornev, T. A. Chenokova, E. V. Zhezlova, L. N. Zakharov, G. K. Fukin, Y. A. Kursky, G. A. Domrachev, P. D. Lickiss, J. Organometall. Chem., (587), 113, 1999.
- [303] P. Scherrer, Göttinger Nachrichten 2, 98, 1918.

9 Anhang

9.1 Vollständiger Datensatz der Röntgenstrukturanalyse von Zr(O^tBu)₂{N(SiMe₃)₂}₂

Lageparameter der Nichtwasserstoffatome in Verbindung Zr(O^tBu)₂{N(SiMe₃)₂}₂

(Atomkoordinaten $(\cdot 10^4)$ und äquivalente isotrope Auslenkungsparameter $(\text{\AA}^2 \cdot 10^3)$ U(eq) wird berechnet als ein Drittel der Spur des orthogonalen U^{ij} Tensors)

	X	у	Z	U(eq)		x	У	Z	U(eq)
Zr	7133(1)	1214(1)	2554(1)	26(1)	C(7)	9825(8)	1592(5)	2590(11)	39(2)
Si(1)	6914(4)	2540(1)	3566(4)	54(1)	C(8)	10582(13)	552(8)	1299(16)	65(4)
Si(2)	7205(3)	1563(2)	5216(3)	46(1)	C(9)	10582(11)	549(7)	3880(15)	58(3)
Si(3)	9766(3)	791(2)	2572(3)	42(1)	C(10)	7027(18)	-400(9)	3473(16)	78(6)
Si(4)	7987(4)	-150(1)	2353(3)	48(1)	C(11)	9195(16)	-667(6)	2400(19)	75(5)
N(1)	7160(8)	1818(4)	3845(9)	47(2)	C(12)	7243(19)	-228(7)	976(17)	75(5)
N(2)	8386(8)	566(4)	2555(7)	32(2)	C(13)	4465(13)	720(12)	2660(20)	93(7)
O(1)	5694(7)	836(4)	2602(7)	41(2)	C(14)	3840(20)	1209(9)	2100(40)	117(12)
O(2)	7212(8)	1613(4)	1178(8)	48(2)	C(15)	4232(19)	672(12)	3810(20)	100(8)
C(1)	8080(30)	2849(7)	2770(30)	180(20)	C(16)	4240(20)	158(13)	2020(40)	180(20)
C(2)	5525(18)	2622(8)	2800(20)	86(6)	C(17)	7186(13)	1758(6)	-1(11)	52(3)
C(3)	6760(40)	3005(9)	4790(30)	170(20)	C(18)	7980(30)	1380(30)	-540(20)	250(40)
C(4)	8440(30)	1859(10)	5910(20)	119(9)	C(19)	7450(40)	2430(20)	-90(40)	184(19)
C(5)	7249(11)	771(4)	5193(10)	39(2)	C(20)	6170(50)	1580(30)	-520(30)	320(15)
C(6)	5930(30)	1757(9)	6040(20)	107(10)					

Bindungslängen [Å] in Zr(O^tBu)₂{N(SiMe₃)₂}₂

Bindung	Bindungslänge
Zr-O(2)	1.886(8)
Zr-O(1)	1.914(8)
Zr-N(1)	2.084(8)
Zr-N(2)	2.114(8)
Si(1)-N(1)	1.741(10)
Si(1)-C(3)	1.82(2)
Si(1)-C(1)	1.82(3)
Si(1)-C(2)	1.88(2)
Si(2)-N(1)	1.737(11)
Si(2)-C(4)	1.81(3)
Si(2)-C(6)	1.854(19)
Si(2)-C(5)	1.848(11)
Si(3)-N(2)	1.711(10)
Si(3)-C(7)	1.869(12)

Bindung	Bindungslänge
Si(3)-C(8)	1.884(14)
Si(3)-C(9)	1.911(17)
Si(4)-N(2)	1.750(9)
Si(4)-C(10)	1.848(17)
Si(4)-C(11)	1.868(15)
Si(4)-C(12)	1.86(2)
O(1)-C(13)	1.477(18)
O(2)-C(17)	1.443(15)
C(13)-C(15)	1.41(4)
C(13)-C(14)	1.51(3)
C(13)-C(16)	1.53(5)
C(17)-C(20)	1.40(5)
C(17)-C(18)	1.45(6)
C(17)-C(19)	1.61(5)

Bindung	Bindungswinkel	Bindung	Bindungslwinkel
O(2)-Zr-O(1)	107.5(4)	N(2)-Si(4)-C(11)	113.9(7)
O(2)-Zr-N(1)	107.8(4)	C(10)-Si(4)-C(11)	104.2(10)
O(1)-Zr-N(1)	107.4(4)	N(2)-Si(4)-C(12)	109.9(7)
O(2)-Zr-N(2)	108.4(4)	C(10)-Si(4)-C(12)	108.4(10)
O(1)-Zr-N(2)	107.0(4)	C(11)-Si(4)-C(12)	108.6(8)
N(1)-Zr-N(2)	118.3(4)	Si(2)-N(1)-Si(1)	121.0(5)
N(1)-Si(1)-C(3)	116.1(10)	Si(2)-N(1)-Zr	117.5(5)
N(1)-Si(1)-C(1)	110.9(6)	Si(1)-N(1)-Zr	120.7(6)
C(3)-Si(1)-C(1)	105.1(18)	Si(3)-N(2)-Si(4)	123.3(5)
N(1)-Si(1)-C(2)	109.5(7)	Si(3)-N(2)-Zr	116.6(5)
C(3)-Si(1)-C(2)	103.6(13)	Si(4)-N(2)-Zr	119.5(5)
C(1)-Si(1)-C(2)	111.5(16)	C(13)-O(1)-Zr	163.2(13)
N(1)-Si(2)-C(4)	108.6(10)	C(17)-O(2)-Zr	163.4(9)
N(1)-Si(2)-C(6)	113.1(10)	C(15)-C(13)-O(1)	104.8(17)
C(4)-Si(2)-C(6)	108.7(14)	C(15)-C(13)-C(14)	113(3)
N(1)-Si(2)-C(5)	109.2(5)	O(1)-C(13)-C(14)	108.7(18)
C(4)-Si(2)-C(5)	111.4(10)	C(15)-C(13)-C(16)	112(3)
C(6)-Si(2)-C(5)	105.9(8)	O(1)-C(13)-C(16)	107(2)
N(2)-Si(3)-C(7)	109.9(4)	C(14)-C(13)-C(16)	110(2)
N(2)-Si(3)-C(8)	113.0(6)	C(20)-C(17)-O(2)	112.0(19)
C(7)-Si(3)-C(8)	106.6(7)	C(20)-C(17)-C(18)	100(4)
N(2)-Si(3)-C(9)	113.3(5)	O(2)-C(17)-C(18)	106.2(16)
C(7)-Si(3)-C(9)	105.5(7)	C(20)-C(17)-C(19)	115(3)
C(8)-Si(3)-C(9)	108.1(8)	O(2)-C(17)-C(19)	107(2)
N(2)-Si(4)-C(10)	111.6(7)	C(18)-C(17)-C(19)	117(3)

Bindungswinkel [°] in Zr(O^tBu)₂{N(SiMe₃)₂}₂

Uii-Werte $(Å^2 \cdot 10^3)$ des Temperaturfaktors e	$\exp(-2\pi^2 \ln^2 a^{*2} \Pi^{11} + \dots$	$+ 2 h k a * h * U^{12}$
Olj-werte (A 10) des remperaturiaktors e	xp (-2 <i>n</i> [n a 0 +)	+211Ka D U])

	U ¹¹	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Zr	27(1)	26(1)	24(1)	0(1)	-3(1)	1(1)
Si(1)	68(2)	29(1)	65(2)	-4(1)	-13(2)	11(1)
Si(2)	57(2)	50(2)	31(2)	-9(1)	-5(1)	10(2)
Si(3)	36(2)	49(2)	40(2)	9(1)	9(1)	11(1)
Si(4)	62(2)	29(1)	52(2)	-7(1)	-2(2)	7(1)
N(1)	36(4)	32(4)	45(5)	-15(4)	-5(4)	-6(3)
N(2)	38(4)	30(4)	29(4)	4(3)	1(3)	6(3)
O(1)	39(4)	55(4)	28(4)	4(3)	4(3)	-4(3)
O(2)	49(5)	51(5)	43(5)	18(4)	4(4)	4(4)
C(1)	290(40)	30(7)	200(30)	59(13)	170(30)	73(15)
C(2)	91(13)	52(8)	113(17)	-1(9)	-32(12)	31(9)
C(3)	310(50)	57(11)	140(20)	-66(14)	-130(30)	90(20)
C(4)	160(30)	93(14)	78(14)	-41(12)	-18(15)	-41(16)
C(5)	51(6)	30(4)	35(5)	5(4)	1(5)	-2(4)
C(6)	160(20)	64(10)	102(16)	14(10)	76(17)	43(13)
C(7)	22(4)	36(5)	58(7)	11(4)	2(4)	-5(3)
C(8)	48(7)	72(9)	76(11)	-31(8)	12(7)	10(7)
C(9)	35(6)	66(8)	71(10)	9(7)	-3(6)	-1(6)
C(10)	87(12)	88(12)	59(10)	-10(8)	13(9)	-46(10)
C(11)	79(10)	30(6)	116(15)	-11(7)	-15(10)	19(6)
C(12)	95(13)	56(8)	73(11)	-24(8)	-2(10)	14(8)
C(13)	32(7)	140(20)	103(16)	34(15)	-17(8)	-16(9)

C(14)	59(12)	83(15)	210(40)	27(16)	-29(17)	5(9)
C(15)	67(12)	100(16)	130(20)	-24(15)	17(13)	-23(11)
C(16)	80(16)	130(30)	320(60)	30(30)	-70(30)	-65(18)
C(17)	63(8)	57(7)	35(6)	17(5)	-8(6)	-3(6)
C(18)	90(19)	610(110)	40(12)	50(30)	-15(12)	-110(40)
C(20)	280(70)	600(130)	80(20)	120(50)	-80(30)	-270(80)

9.2 Vollständiger Datensatz der Röntgenstrukturanalyse von [Ti(O^tBu)₂N(SiMe₃)₂ClLiN(SiMe₂)₂]₂

Lageparameter der Nichtwasserstoffatome in Verbindung [Ti(O^tBu)₂N(SiMe₃)₂ClLiN(SiMe₂)₂]₂

Atomkoordinaten (·10 ⁴) und äquivalente isotrope Auslenkungsparameter (Å ² ·10 ³) U	J(eq)
wird berechnet als ein Drittel der Spur des orthogonalen U ^{ij} Tensors	

	x	y	z	U(eq)		x	у	z	U(eq)
Ti(1)	2403(1)	3378(1)	4470(1)	15(1)	C(9)	1710(1)	4907(1)	6580(1)	32(1)
Ti(2)	7464(1)	1657(1)	4484(1)	16(1)	C(10)	1088(1)	2383(1)	7945(1)	32(1)
Si(1)	1554(1)	2063(1)	4148(1)	19(1)	C(11)	1803(1)	1094(1)	8022(1)	35(1)
Si(2)	3231(1)	2168(1)	4041(1)	25(1)	C(12)	1010(1)	1663(1)	6552(1)	33(1)
Si(3)	1635(1)	4175(1)	7119(1)	20(1)	C(13)	1072(1)	4287(1)	3513(1)	27(1)
Si(4)	1661(1)	1867(1)	7495(1)	20(1)	C(14)	1542(1)	4708(1)	3168(1)	54(1)
Si(5)	8297(1)	2983(1)	4659(1)	21(1)	C(15)	735(1)	4666(1)	4016(1)	55(1)
Si(6)	6629(1)	2869(1)	3574(1)	28(1)	C(16)	433(1)	3932(1)	2934(1)	45(1)
Si(7)	6651(1)	3112(1)	7057(1)	20(1)	C(17)	3871(1)	4234(1)	4652(1)	22(1)
Si(8)	8361(1)	805(1)	7595(1)	21(1)	C(18)	4033(1)	4427(1)	3954(1)	34(1)
Cl(1)	2488(1)	3424(1)	5673(1)	32(1)	C(19)	3553(1)	4791(1)	4980(1)	31(1)
Cl(2)	7422(1)	1594(1)	5650(1)	39(1)	C(20)	4592(1)	3942(1)	5200(1)	40(1)
O(1)	1584(1)	3819(1)	3954(1)	23(1)	C(21)	9021(1)	2497(1)	5365(1)	31(1)
O(2)	3282(1)	3738(1)	4467(1)	21(1)	C(22)	7991(1)	3658(1)	5140(1)	51(1)
O(3)	6588(1)	1276(1)	3995(1)	22(1)	C(23)	8824(1)	3291(1)	4037(1)	36(1)
O(4)	8286(1)	1235(1)	4411(1)	24(1)	C(24)	6816(1)	3674(1)	3247(1)	44(1)
N(1)	2383(1)	2515(1)	4161(1)	19(1)	C(25)	6276(1)	2366(1)	2741(1)	54(1)
N(2)	2500	3785(1)	7500	18(1)	C(26)	5860(1)	2954(1)	4027(1)	54(1)
N(3)	2500	2250(1)	7500	18(1)	C(27)	6773(1)	3893(1)	6622(1)	34(1)
N(4)	7469(1)	2525(1)	4190(1)	19(1)	C(28)	6036(1)	3303(1)	7657(1)	37(1)
N(5)	7500	2723(1)	7500	18(1)	C(29)	6037(1)	2604(1)	6283(1)	37(1)
N(6)	7500	1190(1)	7500	18(1)	C(30)	9065(1)	1332(1)	7308(1)	34(1)
Li(1)	7494(2)	1953(1)	6874(1)	24(1)	C(31)	8884(1)	561(1)	8562(1)	36(1)
Li(2)	2495(2)	3024(1)	6876(1)	24(1)	C(32)	8278(1)	64(1)	7023(1)	37(1)
C(1)	868(1)	2546(1)	4490(1)	33(1)	C(33)	6005(1)	776(1)	3902(1)	24(1)
C(2)	997(1)	1798(1)	3209(1)	37(1)	C(34)	6376(1)	219(1)	4392(1)	31(1)
C(3)	1843(1)	1358(1)	4762(1)	44(1)	C(35)	5748(1)	575(1)	3108(1)	36(1)
C(4)	4003(1)	2124(1)	4941(1)	44(1)	C(36)	5335(1)	1063(1)	4124(1)	47(1)
C(5)	3562(1)	2649(1)	3381(1)	43(1)	C(37)	8725(1)	739(1)	4212(1)	29(1)
C(6)	3054(1)	1348(1)	3643(1)	44(1)	C(38)	8892(1)	239(1)	4800(2)	68(1)
C(7)	900(1)	3646(1)	6449(1)	29(1)	C(39)	9477(1)	1032(1)	4153(1)	38(1)
C(8)	1151(1)	4433(1)	7809(1)	31(1)	C(40)	8233(1)	479(1)	3479(1)	65(1)

Bindungslängen [Å] in [Ti(O^tBu)₂N(SiMe₃)₂ClLiN(SiMe₂)₂]₂

Bindung	Bindungslänge
Ti(1)-O(2)	1.7506(10)
Ti(1)-O(1)	1.7590(10)
Ti(1)-N(1)	1.8964(12)
Ti(1)-Cl(1)	2.2826(5)
Ti(1)-Si(1)	3.1107(4)
Ti(2)-O(3)	1.7533(10)
Ti(2)-O(4)	1.7624(10)
Ti(2)-N(4)	1.9001(12)
Ti(2)-Cl(2)	2.2814(5)
Ti(2)-Si(5)	3.1164(5)
Si(1)-N(1)	1.7577(12)
Si(1)-C(2)	1.8605(17)
Si(1)-C(3)	1.8609(18)
Si(1)-C(1)	1.8654(16)
Si(2)-N(1)	1.7638(12)
Si(2)-C(4)	1.8571(19)
Si(2)-C(5)	1.861(2)
Si(2)-C(6)	1.8657(17)
Si(3)-N(2)	1.7045(8)
Si(3)-C(9)	1.8793(16)
Si(3)-C(8)	1.8835(16)
Si(3)-C(7)	1.8900(15)
Si(3)-Li(2)	2.973(3)
Si(3)-Li(2)#1	3.179(3)
Si(4)-N(3)	1.7028(8)
Si(4)-C(10)	1.8809(16)
Si(4)-C(12)	1.8813(17)
Si(4)-C(11)	1.8832(16)
Si(4)-Li(2)#1	2.911(3)
Si(5)-N(4)	1.7622(12)
Si(5)-C(23)	1.8592(17)
Si(5)-C(22)	1.8626(18)
Si(5)-C(21)	1.8649(16)
Si(6)-N(4)	1.7586(12)
Si(6)-C(26)	1.860(2)
Si(6)-C(25)	1.860(2)
Si(6)-C(24)	1.8629(17)
Si(7)-N(5)	1.7034(8)
Si(7)-C(28)	1.8749(18)
Si(7)-C(27)	1.8809(16)
Si(7)-C(29)	1.8835(17)
Si(7)-Li(1)	2.935(3)

Bindung	Bindungslänge
Si(8)-N(6)	1.7016(8)
Si(8)-C(32)	1.8794(16)
Si(8)-C(31)	1.8807(18)
Si(8)-C(30)	1.8838(16)
Si(8)-Li(1)	2.961(3)
Si(8)-Li(1)#2	3.185(3)
Cl(1)-Li(2)	2.464(3)
Cl(2)-Li(1)	2.444(3)
O(1)-C(13)	1.4283(17)
O(2)-C(17)	1.4427(16)
O(3)-C(33)	1.4494(16)
O(4)-C(37)	1.4253(17)
N(2)-Si(3)#1	1.7045(8)
N(2)-Li(2)	1.993(3)
N(2)-Li(2)#1	1.993(3)
N(3)-Si(4)#1	1.7028(8)
N(3)-Li(2)#1	2.017(3)
N(3)-Li(2)	2.017(3)
N(5)-Si(7)#2	1.7033(8)
N(5)-Li(1)	2.011(3)
N(5)-Li(1)#2	2.011(3)
N(6)-Si(8)#2	1.7017(8)
N(6)-Li(1)#2	1.998(3)
N(6)-Li(1)	1.998(3)
Li(1)-Li(1)#2	2.410(5)
Li(1)-Si(8)#2	3.185(3)
Li(2)-Li(2)#1	2.406(5)
Li(2)-Si(4)#1	2.911(3)
Li(2)-Si(3)#1	3.179(3)
C(13)-C(14)	1.510(2)
C(13)-C(15)	1.518(3)
C(13)-C(16)	1.521(2)
C(17)-C(19)	1.519(2)
C(17)-C(18)	1.520(2)
C(17)-C(20)	1.521(2)
C(33)-C(35)	1.516(2)
C(33)-C(34)	1.518(2)
C(33)-C(36)	1.520(2)
C(37)-C(38)	1.504(3)
C(37)-C(40)	1.517(3)
C(37)-C(39)	1.519(2)

Bindungswinkel [°] in [Ti(O^tBu)₂N(SiMe₃)₂ClLiN(SiMe₂)₂]₂

Bindung	Bindungswinkel
O(2)-Ti(1)-O(1)	111.61(5)
O(2)-Ti(1)-N(1)	109.68(5)
O(1)-Ti(1)-N(1)	112.90(5)
O(2)-Ti(1)-Cl(1)	102.20(4)
O(1)-Ti(1)-Cl(1)	109.47(4)

Bindung	Bindungslwink el
Ti(1)-Cl(1)-Li(2)	157.47(6)
Ti(2)-Cl(2)-Li(1)	158.24(6)
C(13)-O(1)-Ti(1)	165.03(10)
C(17)-O(2)-Ti(1)	154.10(9)
C(33)-O(3)-Ti(2)	152.39(10)

Bindung	Bindungswinkel
N(1)-Ti(1)-Cl(1)	110.47(4)
O(2)-Ti(1)-Si(1)	140.00(3)
O(1)-Ti(1)-Si(1)	94.46(4)
N(1)-Ti(1)-Si(1)	30.33(3)
Cl(1)-Ti(1)-Si(1)	96.555(15)
O(3)-Ti(2)-O(4)	111.26(5)
O(3)-Ti(2)-N(4)	111.11(5)
O(4)-Ti(2)-N(4)	111.84(5)
O(3)-Ti(2)-Cl(2)	101.78(4)
O(4)-Ti(2)-Cl(2)	109.59(4)
N(4)-Ti(2)-Cl(2)	110.81(4)
O(3)-Ti(2)-Si(5)	141.44(4)
O(4)-Ti(2)-Si(5)	93.96(4)
N(4)-Ti(2)-Si(5)	30.38(3)
Cl(2)-Ti(2)-Si(5)	96.164(16)
N(1)-Si(1)-C(2)	111.62(7)
N(1)-Si(1)-C(3)	110.48(/)
U(2)-SI(1)-U(3)	110.16(10)
$\frac{N(1)-Si(1)-C(1)}{C(2)-Si(1)-C(1)}$	110./3(6)
C(2)-SI(1)-C(1)	10/.02(8)
V(3)-SI(1)-V(1)	100.00(9)
N(1)-SI(1)-TI(1) C(2) Si(1) Ti(1)	33.02(4)
C(2)-Si(1)-Ti(1)	122.34(0) 122.27(7)
C(3)-Si(1)-Ti(1) C(1) Si(1) Ti(1)	123.37(7)
N(1) Si(2) C(4)	10870(7)
N(1)-Si(2)-C(4) N(1)-Si(2)-C(5)	108.70(7) 100.08(8)
$\Gamma(1)-SI(2)-C(5)$	109.98(8)
N(1)-Si(2)-C(6)	112 88(7)
C(4)-Si(2)-C(6)	108 69(9)
C(5)-Si(2)-C(6)	105.26(9)
N(2)-Si(3)-C(9)	114 58(7)
N(2)-Si(3)-C(8)	112,99(5)
C(9)-Si(3)-C(8)	106.67(8)
N(2)-Si(3)-C(7)	111.32(7)
C(9)-Si(3)-C(7)	104.64(8)
C(8)-Si(3)-C(7)	105.94(8)
N(2)-Si(3)-Li(2)	39.95(6)
C(9)-Si(3)-Li(2)	116.17(8)
C(8)-Si(3)-Li(2)	136.12(7)
C(7)-Si(3)-Li(2)	72.84(7)
N(2)-Si(3)-Li(2)#1	33.51(6)
C(9)-Si(3)-Li(2)#1	148.02(7)
C(8)-Si(3)-Li(2)#1	91.81(7)
C(7)-Si(3)-Li(2)#1	94.64(7)
Li(2)-Si(3)-Li(2)#1	45.90(9)
N(3)-Si(4)-C(10)	109.79(7)
N(3)-Si(4)-C(12)	113.15(6)
C(10)-Si(4)-C(12)	108.20(8)
N(3)-Si(4)-C(11)	115.44(7)
C(10)-Si(4)-C(11)	104.15(8)
C(12)-Si(4)-C(11)	105.51(8)
N(3)-Si(4)-Li(2)#1	42.53(6)
C(10)-Si(4)-Li(2)#1	67.61(7)
C(12)-Si(4)-Li(2)#1	132.65(8)
C(11)-Si(4)-Li(2)#1	121.49(8)

Rindung	Bindungslwink		
	el		
C(37)-O(4)-Ti(2)	158.91(10)		
Si(1)-N(1)-Si(2)	122.63(7)		
Si(1)-N(1)-Ti(1)	116.65(6)		
Si(2)-N(1)-Ti(1)	119.94(6)		
Si(3)#1-N(2)-Si(3)	122.86(9)		
Si(3)#1-N(2)-Li(2)	118 32(8)		
Si(3)-N(2)-Ii(2)	106 75(8)		
Si(3)#1-N(2)-Li(2)#1	106.75(8)		
$Si(3) \pi I^{-1}i(2) Li(2) \pi I$ Si(3) N(2) Li(2) # I	100.75(0) 118.32(8)		
SI(3)-IN(2)-LI(2)#1	74.25(15)		
LI(2)-IN(2)-LI(2)#1	14.25(15)		
SI(4)#1-IN(3)-SI(4)	123.96(10)		
S1(4)#1-N(3)-L1(2)#1	122.34(8)		
$S_1(4)-N(3)-L_1(2)\#1$	102.66(8)		
Si(4)#1-N(3)-Li(2)	102.67(8)		
Si(4)-N(3)-Li(2)	122.34(8)		
Li(2)#1-N(3)-Li(2)	73.26(15)		
Si(6)-N(4)-Si(5)	122.22(7)		
Si(6)-N(4)-Ti(2)	120.61(6)		
Si(5)-N(4)-Ti(2)	116.58(6)		
Si(7)#2-N(5)-Si(7)	123.12(10)		
Si(7)#2-N(5)-Li(1)	121 28(8)		
Si(7)-N(5)-Li(1)	104 09(8)		
Si(7)#2-N(5)-Ii(1)#2	104.09(8)		
Si(7) = Ii(3) = Ii(1) = Ii(1) = 2 Si(7) N(5) I i(1) = 2	104.09(0)		
$J_{1}(1) N(5) J_{2}(1) \# 2$	72 62(15)		
LI(1)-IN(3)-LI(1)#2	13.02(13)		
SI(8) - IN(6) - SI(8) #2	123.34(9)		
S1(8)-N(6)-L1(1)#2	118.62(8)		
S1(8)#2-N(6)-L1(1)#2	106.00(8)		
S1(8)-N(6)-L1(1)	106.01(8)		
S1(8)#2-N(6)-L1(1)	118.62(8)		
Li(1)#2-N(6)-Li(1)	74.18(16)		
N(6)-Li(1)-N(5)	106.10(12)		
N(6)-Li(1)-Li(1)#2	52.91(8)		
N(5)-Li(1)-Li(1)#2	53.19(8)		
N(6)-Li(1)-Cl(2)	109.17(11)		
N(5)-Li(1)-Cl(2)	144.64(13)		
Li(1)#2-Li(1)-Cl(2)	161.94(6)		
N(6)-Li(1)-Si(7)	119.41(11)		
N(5)-Li(1)-Si(7)	34.25(5)		
Li(1)#2-Li(1)-Si(7)	73.92(8)		
Cl(2)-Li(1)-Si(7)	119.74(10)		
N(6)-Li(1)-Si(8)	33 54(5)		
$N(5) - I_i(1) - Si(8)$	117 58(11)		
$I_{i}(1) \# 2_{I}_{i}(1) = SI(0)$	71.02(7)		
$C_1(2) = C_1(2) = C$	(1.72(1)) 02.94(9)		
$CI(2)-LI(1)-SI(\delta)$	<i>73.04(0)</i>		
SI(7)-LI(1)-SI(8)	143.84(10)		
N(0)-LI(1)-SI(8)#2	2/.9/(4)		
IN(3)-L1(1)-S1(8)#2	108.81(10)		
$L_1(1)#2-L_1(1)-S_1(8)#2$	62.07(7)		
Cl(2)-Li(1)-Si(8)#2	101.22(8)		
Si(7)-Li(1)-Si(8)#2	105.31(8)		
Si(8)-Li(1)-Si(8)#2	58.27(5)		
N(2)-Li(2)-N(3)	106.25(12)		
N(2)-Li(2)-Li(2)#1	52.88(8)		
N(3)-Li(2)-Li(2)#1	53.37(8)		
N(2)-Li(2)-Cl(1)	107.28(11)		
Bindung	Bindungswinkel	Bindung	Bindungslwink
---	------------------------	--	--------------------------
N(4)-Si(5)-C(23)	111 95(7)	N(3)-Li(2)-Cl(1)	146 47(13)
N(4)-Si(5)-C(22)	109 59(8)	$L_{i}(2) # 1 - L_{i}(2) - Cl(1)$	160 16(6)
C(23)-Si(5)-C(22)	11044(10)	N(2)-I i(2)-Si(4)#1	120.42(11)
N(4)-Si(5)-C(21)	111 30(6)	N(2) E(2) S(4)#1	34.80(5)
C(23)-Si(5)-C(21)	106 36(8)	$I_{i}(2) # 1_{i} I_{i}(2)_{si}(4) # 1$	75.01(8)
C(22)-Si(5)-C(21)	107.06(9)	Cl(1)-Li(2)-Si(4)#1	121.63(10)
N(4)-Si(5)-Ti(2)	33.04(4)	$N(2)-J_i(2)-Si(3)$	3330(4)
C(23)-Si(5)-Ti(2)	124 12(6)	N(3)-Li(2)-Si(3)	117 42(11)
C(22) - Si(5) - Ti(2)	121.37(8)	I(3) E(2) S(3) I(2)#1-I(2)-S(3)	71 56(7)
C(21)-Si(5)-Ti(2)	78 26(5)	Cl(1)-Ii(2)-Si(3)	91 36(8)
N(4)-Si(6)-C(26)	109.05(8)	$Si(4) #1_L i(2)_Si(3)$	146 56(9)
N(4)-Si(6)-C(25)	110.06(8)	N(2)-I i(2)-Si(3)#1	28.17(4)
C(26)-Si(6)-C(25)	110.00(0)	N(3)-Li(2)-Si(3)#1	10939(10)
N(4)-Si(6)-C(24)	113.04(7)	$I_{i}(2)=I_{i}(2)=S_{i}(3)=I_{i}(3)=I$	6253(7)
$\Gamma(4)$ -SI(0)-C(24) $\Gamma(26)$ -Si(6)- $\Gamma(24)$	108.24(10)	Cl(1) - Li(2) - Si(3) #1	100.15(8)
C(20)-Si(0)-C(24)	105.24(10)	$Si(4)#1_Li(2)-Si(3)#1$	106.13(8)
N(5)-Si(7)-C(28)	113 52(6)	Si(4) = 1 - Li(2) - Si(3) = 1 Si(3) - Li(2) - Si(3) = 1	58 13(5)
N(5) Si(7) C(27)	115.32(0) 115.28(7)	O(1) C(12) C(14)	10853(13)
$\Gamma(3)-SI(7)-C(27)$	115.20(7) 105.20(8)	O(1)-C(13)-C(14) O(1) C(13) C(15)	106.55(15) 106.66(14)
N(5) Si(7) C(20)	103.30(8) 100.03(7)	C(14) C(13) C(15)	100.00(14) 111.61(17)
$\Gamma(3)-SI(7)-C(29)$ $\Gamma(28) Si(7) \Gamma(29)$	107.73(7) 107.42(0)	O(1) C(13) C(15)	111.01(17) 107.52(13)
C(28)-SI(7)-C(29)	107.42(9) 104.73(8)	C(14) C(13) C(16)	107.32(13) 110.00(16)
N(5) Si(7) Ii(1)	104.75(8)	C(14)-C(13)-C(16)	110.90(10)
$\Gamma(3)-SI(7)-LI(1)$ $\Gamma(28) Si(7) Li(1)$	122 50(8)	O(2) C(17) C(10)	111.41(10) 108.11(12)
C(20)-SI(7)-LI(1) C(27)-Si(7)-Li(1)	132.30(8) 121.74(8)	O(2) - C(17) - C(19)	106.11(12) 107.22(12)
C(27)-SI(7)-LI(1) C(20) Si(7) Li(1)	121.74(0)	C(10) C(17) C(18)	107.32(12) 111.52(12)
V(29)-SI(7)-LI(1) V(6) Si(9) C(22)	115.06(7)	O(2) C(17) C(18)	111.32(13) 106.40(12)
N(0)-SI(0)-C(32) N(6) Si(8) C(31)	112.00(7)	C(10) C(17) C(20)	100.49(12) 111.52(14)
$\Gamma(0)$ -SI(0)-C(SI) $\Gamma(22)$ S:(0) $\Gamma(21)$	112.93(0) 106.47(0)	C(19)-C(17)-C(20)	111.53(14) 111.59(14)
N(6) S(9) C(20)	100.47(9) 111.22(7)	C(18)-C(17)-C(20)	111.38(14) 107.80(12)
$\Gamma(0)-SI(8)-C(30)$	111.22(7) 104.26(8)	O(3)-C(33)-C(33)	107.80(12) 108.42(12)
C(32)-SI(8)-C(30)	104.20(8)	O(3)-C(33)-C(34)	108.43(12) 110.80(12)
V(31)-SI(8)-V(30)	100.14(9)	C(33)-C(33)-C(34)	110.80(13)
N(0)-SI(8)-LI(1)	40.45(6)	0(3)-0(33)-0(30)	106.49(12)
C(32)-SI(8)-LI(1)	117.24(8)	C(33)-C(33)-C(36)	112.12(15)
C(31)-SI(8)-LI(1)	133.47(8)	C(34)-C(33)-C(30)	110.99(15) 107.24(15)
U(30)-SI(8)-LI(1)	12.00(7)	O(4) - C(37) - C(38)	10/.34(15)
$1N(0)-51(\delta)-L1(1)#2$	35.42(0) 149.2((7)	U(4)-U(3/)-U(40)	10/.02(14)
C(32)-S1(8)-L1(1)#2	148.36(/)	C(38)-C(37)-C(40)	112.11(19)
C(31)-S1(8)-L1(1)#2	91.40(/)	O(4)-O(37)-O(39)	107.86(12)
C(30)-S1(8)-L1(1)#2	95.11(/)	C(38)-C(37)-C(39)	111.38(15)
$L_1(1)-S_1(8)-L_1(1)#2$	46.00(9)	C(40)-C(37)-C(39)	110.31(16)

Uij-Werte (Å²·10³) des Temperaturfaktors exp($-2\pi^{2}$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²])

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Ti(1)	13(1)	14(1)	18(1)	0(1)	5(1)	-1(1)
Ti(2)	15(1)	15(1)	18(1)	0(1)	4(1)	0(1)
Si(1)	16(1)	16(1)	25(1)	1(1)	7(1)	-3(1)
Si(2)	15(1)	23(1)	36(1)	-13(1)	8(1)	-3(1)
Si(3)	18(1)	15(1)	24(1)	2(1)	4(1)	1(1)
Si(4)	21(1)	16(1)	22(1)	1(1)	6(1)	-3(1)
Si(5)	18(1)	16(1)	26(1)	-2(1)	5(1)	-2(1)
Si(6)	16(1)	23(1)	40(1)	11(1)	2(1)	-1(1)
Si(7)	18(1)	16(1)	23(1)	3(1)	2(1)	1(1)

Si(8)	19(1)	15(1)	30(1)	-3(1)	9(1)	1(1)
Cl(1)	$\frac{19(1)}{41(1)}$	$\frac{13(1)}{27(1)}$	20(1)	-3(1)	$\frac{9(1)}{11(1)}$	$\frac{1(1)}{4(1)}$
CI(1)	52(1)	$\frac{37(1)}{45(1)}$	20(1) 24(1)	5(1)	11(1) 19(1)	-4(1)
O(1)	10(1)	43(1)	24(1)	-3(1)	$\frac{10(1)}{2(1)}$	-1/(1)
O(1)	19(1) 17(1)	$\frac{23(1)}{10(1)}$	20(1)	3(1)	$\frac{3(1)}{7(1)}$	$\frac{3(1)}{(1)}$
O(2)	1/(1) 17(1)	19(1)	$\frac{2}{(1)}$	-4(1)	/(1)	-0(1)
O(3)	1/(1)	20(1)	$\frac{2}{(1)}$	1(1)	4(1)	-4(1)
U(4)	18(1)	21(1)	30(1)	-1(1)	6(1)	4(1)
N(1)	14(1)	16(1)	28(1)	-4(1)	8(1)	-2(1)
N(2)	18(1)	12(1)	22(1)	0	4(1)	0
N(3)	19(1)	14(1)	22(1)	0	8(1)	0
N(4)	16(1)	16(1)	25(1)	2(1)	4(1)	-1(1)
N(5)	19(1)	13(1)	20(1)	0	2(1)	0
N(6)	17(1)	13(1)	23(1)	0	7(1)	0
Li(1)	28(1)	21(1)	23(1)	0(1)	7(1)	-2(1)
Li(2)	29(1)	20(1)	24(1)	1(1)	10(1)	0(1)
C(1)	26(1)	26(1)	56(1)	-5(1)	24(1)	-7(1)
C(2)	23(1)	54(1)	35(1)	-9(1)	8(1)	-15(1)
C(3)	39(1)	37(1)	59(1)	23(1)	21(1)	6(1)
C(4)	26(1)	49(1)	48(1)	-15(1)	1(1)	14(1)
C(5)	41(1)	44(1)	56(1)	-18(1)	32(1)	-9(1)
C(6)	31(1)	31(1)	74(1)	-27(1)	23(1)	-5(1)
C(7)	22(1)	26(1)	32(1)	0(1)	0(1)	-2(1)
C(8)	26(1)	30(1)	36(1)	-2(1)	9(1)	8(1)
C(9)	28(1)	23(1)	40(1)	11(1)	3(1)	1(1)
C(10)	29(1)	30(1)	43(1)	-5(1)	20(1)	-6(1)
C(11)	39(1)	26(1)	38(1)	9(1)	8(1)	-7(1)
C(12)	29(1)	36(1)	30(1)	-2(1)	5(1)	-7(1)
C(13)	20(1)	22(1)	33(1)	7(1)	-3(1)	0(1)
C(14)	39(1)	54(1)	54(1)	30(1)	-5(1)	-15(1)
C(15)	50(1)	40(1)	71(2)	-5(1)	13(1)	21(1)
C(16)	35(1)	38(1)	43(1)	9(1)	-13(1)	-8(1)
C(17)	16(1)	18(1)	30(1)	-1(1)	4(1)	-5(1)
C(18)	38(1)	26(1)	45(1)	1(1)	22(1)	-7(1)
C(19)	35(1)	21(1)	37(1)	-5(1)	10(1)	-5(1)
C(20)	23(1)	32(1)	53(1)	2(1)	-6(1)	-4(1)
C(21)	26(1)	28(1)	32(1)	1(1)	-3(1)	-7(1)
C(22)	49(1)	40(1)	58(1)	-25(1)	10(1)	7(1)
C(23)	22(1)	44(1)	42(1)	12(1)	8(1)	-5(1)
C(24)	29(1)	30(1)	62(1)	21(1)	-3(1)	-2(1)
C(25)	59(1)	39(1)	40(1)	15(1)	-18(1)	-13(1)
C(26)	27(1)	54(1)	85(2)	27(1)	24(1)	15(1)
C(27)	32(1)	24(1)	41(1)	12(1)	5(1)	4(1)
C(28)	28(1)	39(1)	45(1)	3(1)	14(1)	7(1)
C(29)	33(1)	28(1)	34(1)	0(1)	-11(1)	2(1)
C(30)	25(1)	28(1)	54(1)	-4(1)	19(1)	-4(1)
C(31)	30(1)	35(1)	40(1)	5(1)	7(1)	15(1)
C(32)	33(1)	25(1)	57(1)	-15(1)	20(1)	-2(1)
C(33)	16(1)	19(1)	36(1)	-3(1)	9(1)	-4(1)
C(34)	33(1)	24(1)	36(1)	2(1)	11(1)	-5(1)
C(35)	35(1)	29(1)	36(1)	-2(1)	-2(1)	-9(1)
C(36)	27(1)	32(1)	89(2)	-10(1)	31(1)	-3(1)
C(37)	20(1)	18(1)	52(1)	-2(1)	16(1)	1(1)
C(38)	49(1)	43(1)	127(2)	48(1)	50(1)	24(1)
C(39)	26(1)	31(1)	65(1)	2(1)	23(1)	-2(1)
C(40)	38(1)	73(2)	92(2)	-53(2)	30(1)	-16(1)

Lageparameter der Wasserstoffatome in Verbindung [Ti(O^tBu)₂N(SiMe₃)₂ClLiN(SiMe₂)₂]₂

	x	у	Z	U(eq)		x	у	z	U(eq)
H(1A)	1124	2659	5001	50	H(21A)	8779	2345	5725	47
H(1B)	395	2295	4449	50	H(21B)	9478	2761	5609	47
H(1C)	724	2937	4199	50	H(21C)	9186	2130	5133	47
H(2A)	819	2174	2898	56	H(22A)	7700	3973	4783	76
H(2B)	542	1545	3222	56	H(22B)	8457	3860	5476	76
H(2C)	1337	1536	3012	56	H(22C)	7656	3494	5415	76
H(3A)	2074	1030	4529	66	H(23A)	8952	2934	3766	54
H(3B)	1379	1182	4859	66	H(23B)	9309	3504	4324	54
H(3C)	2227	1489	5223	66	H(23C)	8490	3597	3695	54
H(4A)	4073	2546	5172	65	H(24A)	6993	3967	3662	66
H(4B)	4497	1986	4874	65	H(24B)	6332	3838	2899	66
H(4C)	3846	1815	5252	65	H(24C)	7222	3639	3007	66
H(5A)	3163	2632	2900	64	H(25A)	6687	2335	2507	81
H(5B)	4056	2474	3347	64	H(25B)	5807	2561	2401	81
H(5C)	3642	3094	3547	64	H(25C)	6148	1937	2875	81
H(6A)	2938	1056	3993	66	H(26A)	5756	2535	4207	81
H(6B)	3523	1199	3533	66	H(26B)	5378	3119	3677	81
H(6C)	2609	1357	3194	66	H(26C)	6041	3252	4437	81
H(7A)	1048	3602	6003	43	H(27A)	7004	4210	7002	50
H(7B)	378	3838	6330	43	H(27B)	6259	4045	6314	50
H(7C)	894	3223	6666	43	H(27C)	7118	3831	6322	50
H(8A)	1084	4061	8093	46	H(28A)	5918	2908	7875	55
H(8B)	637	4620	7557	46	H(28B)	5545	3505	7366	55
H(8C)	1480	4752	8136	46	H(28C)	6323	3597	8044	55
H(9A)	2041	5226	6905	48	H(29A)	6273	2600	5889	55
H(9B)	1186	5086	6353	48	H(29B)	5506	2782	6101	55
H(9C)	1942	4791	6200	48	H(29C)	6012	2166	6455	55
H(10A)	1373	2420	8467	48	H(30A)	8892	1370	6776	51
H(10B)	573	2189	7880	48	H(30B)	9590	1142	7473	51
H(10C)	1018	2810	7723	48	H(30C)	9078	1757	7525	51
H(11A)	2031	773	7777	53	H(31A)	8955	936	8880	54
H(11B)	1295	941	8045	53	H(31B)	9397	380	8593	54
H(11C)	2156	1165	8517	53	H(31C)	8572	239	8716	54
H(12A)	879	2055	6260	49	H(32A)	7963	-256	7176	56
H(12B)	527	1463	6582	49	H(32B)	8803	-109	7086	56
H(12C)	1283	1366	6323	49	H(32C)	8025	171	6509	56
H(14A)	1944	4936	3549	81	H(34A)	6821	55	4253	46
H(14B)	1193	5018	2843	81	H(34B)	5988	-122	4341	46
H(14C)	1794	4442	2886	81	H(34C)	6561	364	4900	46
H(15A)	453	4376	4246	83	H(35A)	5520	944	2800	54
H(15B)	372	4991	3734	83	H(35B)	5356	234	3030	54
H(15C)	1161	4875	4393	83	H(35C)	6203	419	2980	54
H(16A)	673	3660	2649	67	H(36A)	5535	1219	4627	70
H(16B)	82	4242	2611	67	H(36B)	4935	735	4090	70
H(16C)	133	3666	3170	67	H(36C)	5104	1420	3799	70
H(18A)	4231	4056	3754	51	H(38A)	9199	429	5266	102
H(18B)	4425	4770	4059	51	H(38B)	9189	-113	4677	102
H(18C)	3547	4579	3598	51	H(38C)	8396	74	4842	102
H(19A)	3071	4950	4624	47	H(39A)	9349	1382	3798	57

Atomkoordinaten ($\cdot 10^4$) und äquivalente isotrope Auslenkungsparameter ($\text{\AA}^2 \cdot 10^3$)

	X	У	Z	U(eq)		X	у	Z	U(eq)
H(19B)	3943	5134	5107	47	H(39B)	9779	705	3994	57
H(19C)	3438	4647	5419	47	H(39C)	9789	1199	4630	57
H(20A)	4461	3804	5634	60	H(40A)	7739	310	3519	98
H(20B)	5012	4261	5340	60	H(40B)	8521	135	3328	98
H(20C)	4767	3571	4980	60	H(40C)	8123	822	3116	98

9.3 Vollständiger Datensatz der Röntgenstrukturanalyse von Zr(O^tBu)₂(NⁱPr₂)₂

Lageparameter der Nichtwasserstoffatome in Verbindung Zr(O^tBu)₂(NⁱPr₂)₂

Atomkoordinaten ($\cdot 10^4$) und äquivalente isotrope Auslenkungsparameter (Å² $\cdot 10^3$) U(eq) wird berechnet als ein Drittel der Spur des orthogonalen U^{ij} Tensors

	x	y	Z	U(eq)		x	y	Z	U(eq)
Zr(1)	4032(1)	9069(1)	2977(1)	33(1)	C(10B)	2110(20)	10400(30)	2850(20)	39(8)
N(1)	2924(6)	10167(7)	2549(6)	43(2)	C(11B)	1610(30)	9020(40)	2580(30)	94(18)
N(2)	5142(5)	10284(8)	3406(6)	37(2)	C(12B)	2620(20)	10650(50)	3810(20)	111(18)
O(1)	4070(5)	7978(8)	2064(5)	52(2)	C(13)	3921(7)	7049(9)	1420(8)	51(3)
O(2)	4001(4)	8005(7)	3889(5)	44(2)	C(14A)	2990(7)	6677(11)	991(7)	51(2)
C(1)	5936(11)	10191(18)	3213(11)	90(5)	C(15A)	3687(9)	7812(11)	559(7)	69(3)
C(2)	6418(11)	8890(20)	3467(15)	110(8)	C(16A)	4682(9)	6238(14)	1610(9)	75(3)
C(3)	5732(11)	10600(19)	2282(11)	93(6)	C(14B)	4483(12)	7257(19)	945(12)	38(4)
C(4)	5186(9)	11097(14)	4043(10)	68(4)	C(15B)	4442(17)	5660(20)	2105(16)	48(5)
C(5)	5968(13)	10667(16)	5004(10)	94(5)	C(16B)	2901(11)	6406(17)	1331(11)	29(3)
C(6)	5272(9)	12631(11)	3904(10)	92(5)	C(17)	4129(9)	6964(14)	4501(9)	79(4)
C(7)	2890(8)	11072(9)	1802(8)	44(3)	C(18A)	4913(10)	6281(14)	4692(10)	82(4)
C(8)	2181(10)	10730(15)	1008(8)	73(4)	C(19A)	3565(8)	5821(11)	4092(9)	56(3)
C(9)	2804(9)	12437(11)	1991(8)	73(3)	C(20A)	3903(12)	7622(15)	5217(9)	89(4)
C(10A)	2141(12)	10105(18)	2673(13)	24(4)	C(18B)	3286(19)	6710(30)	4650(20)	82(8)
C(11A)	1741(17)	8760(30)	2510(20)	79(10)	C(19B)	3940(30)	5720(40)	3860(30)	124(16)
C(12A)	2240(20)	10440(20)	3580(20)	79(8)	C(20B)	4940(30)	7240(40)	5250(20)	138(13)

Bindungslängen [Å] in Zr(O^tBu)₂(NⁱPr₂)₂

Bindung	Bindungslänge
Zr(1)-O(2)	1.911(8)
Zr(1)-O(1)	1.931(8)
Zr(1)-N(1)	2.021(9)
Zr(1)-N(2)	2.091(8)
N(1)-C(10A)	1.39(2)
N(1)-C(7)	1.554(13)
N(1)-C(10B)	1.63(3)
N(2)-C(4)	1.343(17)
N(2)-C(1)	1.47(2)
O(1)-C(13)	1.395(12)
O(2)-C(17)	1.442(14)
C(1)-C(2)	1.52(2)
C(1)-C(3)	1.54(2)
C(4)-C(6)	1.596(18)
C(4)-C(5)	1.70(2)

Bindung	Bindungslänge
C(7)-C(8)	1.439(19)
C(10A)-C(11A)	1.50(3)
C(10A)-C(12A)	1.52(3)
C(10B)-C(12B)	1.55(5)
C(10B)-C(11B)	1.60(5)
C(13)-C(16A)	1.430(16)
C(13)-C(14B)	1.466(19)
C(13)-C(14A)	1.468(14)
C(13)-C(15A)	1.568(16)
C(13)-C(16B)	1.757(19)
C(13)-C(15B)	1.82(3)
C(17)-C(18A)	1.390(19)
C(17)-C(20B)	1.47(4)
C(17)-C(19A)	1.483(18)
C(17)-C(18B)	1.54(3)

1.56(2)

C(7)-C(9)	1.447(16)	C(17)-C(20A)
C(17)-C(19B)	1.62(5)	

Bindungswinkel [°] in Zr(O^tBu)₂(NⁱPr₂)₂

Bindung	Bindungswinkel	Bindung	Bindungslwinkel
O(2)-Zr(1)-O(1)	110.29(12)	C(16A)-C(13)-C(1	5A) 111.7(10)
O(2)-Zr(1)-N(1)	107.3(3)	C(14B)-C(13)-C(1	5A) 52.3(10)
O(1)-Zr(1)-N(1)	109.9(4)	C(14A)-C(13)-C(1	5A) 80.7(8)
O(2)-Zr(1)-N(2)	110.6(4)	O(1)-C(13)-C(16B) 100.8(9)
O(1)-Zr(1)-N(2)	108.8(3)	C(16A)-C(13)-C(1	6B) 122.0(10)
N(1)-Zr(1)-N(2)	110.02(15)	C(14B)-C(13)-C(1	6B) 143.0(12)
C(10A)-N(1)-C(7)	114.5(11)	C(14A)-C(13)-C(1	6B) 23.2(6)
C(10A)-N(1)-C(10B)	14.1(15)	C(15A)-C(13)-C(1	6B) 103.2(10)
C(7)-N(1)-C(10B)	113.4(15)	O(1)-C(13)-C(15B) 97.6(11)
C(10A)-N(1)-Zr(1)	133.1(9)	C(16A)-C(13)-C(1	5B) 41.8(11)
C(7)-N(1)-Zr(1)	111.2(7)	C(14B)-C(13)-C(1	5B) 102.9(13)
C(10B)-N(1)-Zr(1)	135.2(14)	C(14A)-C(13)-C(1	5B) 104.8(11)
C(4)-N(2)-C(1)	116.6(10)	C(15A)-C(13)-C(1	5B) 149.9(11)
C(4)-N(2)-Zr(1)	114.2(8)	C(16B)-C(13)-C(1	5B) 87.7(12)
C(1)-N(2)-Zr(1)	128.1(8)	C(18A)-C(17)-O(2) 113.4(12)
C(13)-O(1)-Zr(1)	166.3(8)	C(18A)-C(17)-C(2	0B) 56(2)
C(17)-O(2)-Zr(1)	163.8(9)	O(2)-C(17)-C(20B) 108(2)
N(2)-C(1)-C(2)	113.9(15)	C(18A)-C(17)-C(1	9A) 94.1(12)
N(2)-C(1)-C(3)	110.9(14)	O(2)-C(17)-C(19A) 110.6(11)
C(2)-C(1)-C(3)	114.0(16)	C(20B)-C(17)-C(1	9A) 138(2)
N(2)-C(4)-C(6)	117.7(13)	C(18A)-C(17)-C(1	8B) 134.1(15)
N(2)-C(4)-C(5)	113.5(12)	O(2)-C(17)-C(18B) 111.2(14)
C(6)-C(4)-C(5)	108.5(11)	C(20B)-C(17)-C(1	8B) 118(2)
C(9)-C(7)-C(8)	109.1(10)	C(19A)-C(17)-C(1	8B) 60.1(15)
C(9)-C(7)-N(1)	111.3(10)	C(18A)-C(17)-C(2	0A) 121.2(13)
C(8)-C(7)-N(1)	112.3(9)	O(2)-C(17)-C(20A) 103.6(11)
N(1)-C(10A)-C(11A)	112.5(16)	C(20B)-C(17)-C(2	0A) 70.0(19)
N(1)-C(10A)-C(12A)	113.8(19)	C(19A)-C(17)-C(2	0A) 113.9(13)
C(11A)-C(10A)-C(12A)	105(2)	C(18B)-C(17)-C(2	0A) 55.2(15)
C(12B)-C(10B)-N(1)	100(2)	C(18A)-C(17)-C(1	9B) 71.7(19)
C(12B)-C(10B)-C(11B)	117(3)	O(2)-C(17)-C(19B) 98.8(19)
N(1)-C(10B)-C(11B)	100(2)	C(20B)-C(17)-C(1	9B) 127(3)
O(1)-C(13)-C(16A)	110.3(10)	C(19A)-C(17)-C(1	9B) 31.6(17)
O(1)-C(13)-C(14B)	112.4(11)	C(18B)-C(17)-C(1	9B) 92(2)
C(16A)-C(13)-C(14B)	61.2(10)	C(20A)-C(17)-C(1	9B) 145(2)
O(1)-C(13)-C(14A)	113.1(9)	C(14B)-C(13)-C(1	4A) 121.9(12)
C(16A)-C(13)-C(14A)	128.1(9)	O(1)-C(13)-C(15A) 107.5(8)

Uij-Werte (Å²·10³) des Temperaturfaktors exp ($-2\pi^{2}$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²])

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Zr(1)	34(1)	26(1)	36(1)	0(1)	10(1)	-1(1)
N(1)	56(5)	22(3)	49(6)	8(3)	20(4)	-4(3)
N(2)	24(4)	44(4)	40(5)	-12(4)	10(4)	-18(3)
O(1)	59(6)	45(5)	50(6)	-19(4)	19(5)	-11(4)
O(2)	42(5)	41(4)	49(5)	11(4)	17(4)	-4(3)
C(1)	99(11)	96(12)	73(11)	-28(9)	32(9)	-32(10)
C(2)	46(8)	121(15)	145(18)	-63(11)	17(10)	10(8)

C(3)	84(12)	128(12)	97(13)	-42(9)	67(11)	-62(9)
C(4)	38(6)	103(9)	62(7)	-5(6)	18(5)	-20(5)
C(5)	111(12)	69(9)	78(11)	-1(7)	11(9)	-17(8)
C(6)	69(7)	39(5)	144(11)	-9(6)	18(7)	13(5)
C(7)	57(7)	31(4)	47(5)	26(4)	24(5)	9(4)
C(8)	69(7)	101(10)	34(6)	20(5)	3(5)	38(6)
C(9)	99(8)	34(5)	79(7)	36(4)	27(6)	19(5)
C(10A)	20(7)	7(8)	56(11)	10(7)	26(7)	18(6)
C(11A)	40(12)	48(12)	160(30)	-7(14)	55(15)	-23(12)
C(12A)	91(19)	52(9)	80(18)	7(11)	20(15)	41(11)
C(10B)	50(12)	16(13)	85(18)	-6(10)	65(13)	12(9)
C(11B)	80(30)	63(19)	170(40)	70(20)	90(30)	66(18)
C(12B)	80(20)	240(40)	32(13)	18(16)	40(15)	100(20)
C(13)	58(7)	30(4)	68(7)	-21(5)	27(6)	6(4)
C(17)	76(9)	93(10)	56(8)	39(7)	14(7)	24(8)

9.4 Vollständiger Datensatz der Röntgenstrukturanalyse von [Nd(OⁱPr){N(SiMe₃)₂}₂]₂

Lageparameter der Nichtwasserstoffatome in Verbindung [Nd(OⁱPr){N(SiMe₃)₂}₂]₂

Atomkoordinaten $(\cdot 10^4)$ und äquivalente isotrope Auslenkungsparameter $(\text{\AA}^2 \cdot 10^3)$ U(eq) wird berechnet als ein Drittel der Spur des orthogonalen U^{ij} Tensors

	X	у	Z	U(eq)		x	у	Z	U(eq)
Nd	1571(1)	6107(1)	6072(1)	30(1)	C(8)	2304(6)	8695(5)	3912(4)	73(2)
Si(1)	1686(1)	5742(1)	8753(1)	44(1)	C(9)	4773(5)	8077(5)	4738(5)	71(1)
Si(3)	3028(1)	7738(1)	4658(1)	44(1)	C(10)	2637(6)	8983(4)	8405(4)	65(1)
Si(2)	4075(1)	5714(1)	7888(1)	42(1)	C(11)	2603(7)	10511(5)	6932(5)	92(2)
Si(4)	3218(1)	9222(1)	7179(1)	48(1)	C(12)	5001(6)	9774(5)	7734(5)	95(2)
0(1)	638(2)	4100(2)	4658(2)	33(1)	C(13A)	1348(11)	3209(9)	4742(9)	56(2)
N(2)	2702(3)	7878(2)	5965(2)	35(1)	C(13B)	848(7)	2861(6)	4219(6)	30(1)
N(1)	2520(3)	5823(2)	7754(2)	35(1)	C(14)	1903(6)	2803(5)	3718(5)	74(1)
C(1)	265(4)	6394(4)	8479(4)	52(1)	C(15)	922(6)	2407(5)	5241(5)	85(2)
C(2)	1075(6)	4140(5)	8644(5)	81(2)	C(16)	166(16)	-215(11)	426(10)	80(4)
C(3)	2614(5)	6671(5)	10324(4)	74(2)	C(17)	1089(8)	629(7)	435(6)	97(2)
C(4)	4508(5)	5737(4)	6516(4)	59(1)	C(18)	1016(13)	1295(10)	-331(10)	78(3)
C(5)	4344(6)	4267(5)	8055(5)	72(1)	C(19)	1150(13)	-160(13)	1257(11)	89(4)
C(6)	5295(5)	7017(5)	9127(4)	72(1)	C(20)	216(12)	-929(8)	1186(7)	118(3)
C(7)	2303(6)	6095(4)	3639(4)	73(2)					

Bindungslängen [Å] in [Nd(OⁱPr){N(SiMe₃)₂}₂]₂

Bindung	Bindungslänge	Bindung	Bindungslänge
Nd-N(1)	2.320(3)	Si(4)-C(10)	1.873(4)
Nd-N(2)	2.330(3)	O(1)-C(13A)	1.440(10)
Nd-O(1)#1	2.349(2)	O(1)-C(13B)	1.481(7)
Nd-O(1)	2.377(2)	O(1)-Nd#1	2.349(2)
Nd-Si(2)	3.4022(15)	C(13A)-C(15)	1.379(10)

3.4553(13)
3.833(2)
1.719(3)
1.873(5)
1.876(5)
1.887(5)
1.718(3)
1.863(5)
1.879(5)
1.889(5)
1.710(3)
1.876(4)
1.877(5)
1.892(5)
1.729(3)
1.860(6)
1.873(5)

C(13A)-C(14)	1.512(11)
C(13B)-C(14)	1.428(9)
C(13B)-C(15)	1.547(8)
C(16)-C(17)	1.302(16)
C(16)-C(19)	1.319(19)
C(16)-C(16)#2	1.35(2)
C(16)-C(17)#2	1.460(17)
C(16)-C(20)	1.477(13)
C(16)-C(18)#2	1.63(2)
C(17)-C(18)	1.438(14)
C(17)-C(16)#2	1.460(17)
C(17)-C(19)	1.614(19)
C(18)-C(20)#2	1.442(15)
C(18)-C(16)#2	1.63(2)
C(19)-C(20)	1.224(16)
C(20)-C(18)#2	1.442(15)

Bindungswinkel [°] in [Nd(OⁱPr){N(SiMe₃)₂}₂]₂

Bindung	Bindungswinkel
N(1)-Nd-N(2)	111.76(10)
N(1)-Nd-O(1)#1	125.60(10)
N(2)-Nd-O(1)#1	108.13(9)
N(1)-Nd-O(1)	104.55(9)
N(2)-Nd-O(1)	132.15(9)
O(1)#1-Nd-O(1)	71.57(10)
N(1)-Nd-Si(2)	27.26(8)
N(2)-Nd-Si(2)	96.42(8)
O(1)#1-Nd-Si(2)	151.60(6)
O(1)-Nd-Si(2)	102.45(7)
N(1)-Nd-Si(3)	127.60(8)
N(2)-Nd-Si(3)	26.46(7)
O(1)#1-Nd-Si(3)	104.22(6)
O(1)-Nd-Si(3)	105.75(6)
Si(2)-Nd-Si(3)	104.10(3)
N(1)-Nd-Nd#1	120.82(7)
N(2)-Nd-Nd#1	127.35(7)
O(1)#1-Nd-Nd#1	36.03(5)
O(1)-Nd-Nd#1	35.55(6)
Si(2)-Nd-Nd#1	132.28(3)
Si(3)-Nd-Nd#1	108.59(3)
N(1)-Si(1)-C(2)	112.9(2)
N(1)-Si(1)-C(1)	108.31(16)
C(2)-Si(1)-C(1)	108.1(3)
N(1)-Si(1)-C(3)	114.7(2)
C(2)-Si(1)-C(3)	107.3(3)
C(1)-Si(1)-C(3)	105.1(2)
N(2)-Si(3)-C(9)	114.7(2)
N(2)-Si(3)-C(8)	114.7(2)
C(9)-Si(3)-C(8)	106.5(2)
N(2)-Si(3)-C(7)	107.17(17)
C(9)-Si(3)-C(7)	106.7(3)
C(8)-Si(3)-C(7)	106.5(2)
N(2)-Si(3)-Nd	37.18(9)

Bindung	Bindungslwi
Dindung	nkel
C(11)-Si(4)-C(10)	106.5(3)
C(13A)-O(1)-C(13B)	28.2(4)
C(13A)-O(1)-Nd#1	131.3(5)
C(13B)-O(1)-Nd#1	106.6(3)
C(13A)-O(1)-Nd	115.6(5)
C(13B)-O(1)-Nd	143.5(3)
Nd#1-O(1)-Nd	108.42(10)
Si(3)-N(2)-Si(4)	123.57(16)
Si(3)-N(2)-Nd	116.36(14)
Si(4)-N(2)-Nd	120.02(14)
Si(2)-N(1)-Si(1)	124.71(16)
Si(2)-N(1)-Nd	114.32(14)
Si(1)-N(1)-Nd	120.97(16)
C(15)-C(13A)-O(1)	117.9(7)
C(15)-C(13A)-C(14)	121.1(7)
O(1)-C(13A)-C(14)	111.2(6)
C(14)-C(13B)-O(1)	113.8(5)
C(14)-C(13B)-C(15)	115.6(6)
O(1)-C(13B)-C(15)	105.9(5)
C(13B)-C(14)-C(13A)	27.8(4)
C(13A)-C(15)-C(13B)	27.4(4)
C(17)-C(16)-C(19)	76.0(14)
C(17)-C(16)-C(16)#2	66.8(11)
C(19)-C(16)-C(16)#2	143(2)
C(17)-C(16)-C(17)#2	121.9(9)
C(19)-C(16)-C(17)#2	161.6(14)
C(16)#2-C(16)-C(17)#2	55.1(11)
C(17)-C(16)-C(20)	127.6(14)
C(19)-C(16)-C(20)	51.6(8)
C(16)#2-C(16)-C(20)	165(2)
C(17)#2-C(16)-C(20)	110.4(12)
C(17)-C(16)-C(18)#2	176.6(11)
C(19)-C(16)-C(18)#2	106.7(12)
C(16)#2-C(16)-C(18)#2	110.3(18)

Seite	167

C(9)-Si(3)-Nd	125.86(17)
C(8)-Si(3)-Nd	126.73(18)
C(7)-Si(3)-Nd	70.00(14)
N(1)-Si(2)-C(5)	113.6(2)
N(1)-Si(2)-C(6)	114.2(2)
C(5)-Si(2)-C(6)	107.3(2)
N(1)-Si(2)-C(4)	108.48(18)
C(5)-Si(2)-C(4)	106.9(2)
C(6)-Si(2)-C(4)	105.8(2)
N(1)-Si(2)-Nd	38.42(9)
C(5)-Si(2)-Nd	128.78(19)
C(6)-Si(2)-Nd	123.03(18)
C(4)-Si(2)-Nd	70.18(15)
N(2)-Si(4)-C(12)	113.2(2)
N(2)-Si(4)-C(11)	113.7(2)
C(12)-Si(4)-C(11)	106.9(3)
N(2)-Si(4)-C(10)	109.77(18)
C(12)-Si(4)-C(10)	106.4(3)

C(17)#2-C(16)-C(18)#2	55.2(9)
C(20)-C(16)-C(18)#2	55.1(8)
C(16)-C(17)-C(18)	126.3(11)
C(16)-C(17)-C(16)#2	58.1(9)
C(18)-C(17)-C(16)#2	68.2(8)
C(16)-C(17)-C(19)	52.4(8)
C(18)-C(17)-C(19)	178.1(8)
C(16)#2-C(17)-C(19)	110.4(9)
C(17)-C(18)-C(20)#2	113.7(10)
C(17)-C(18)-C(16)#2	56.5(7)
C(20)#2-C(18)-C(16)#2	57.2(7)
C(20)-C(19)-C(16)	70.9(10)
C(20)-C(19)-C(17)	122.4(11)
C(16)-C(19)-C(17)	51.5(9)
C(19)-C(20)-C(18)#2	125.1(11)
C(19)-C(20)-C(16)	57.5(10)
C(18)#2-C(20)-C(16)	67.7(9)

Uij-Werte (Å²·10³) des Temperaturfaktors exp($-2\pi^{2}$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²])

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Nd	28(1)	28(1)	32(1)	18(1)	3(1)	1(1)
Si(1)	51(1)	51(1)	35(1)	25(1)	12(1)	10(1)
Si(3)	49(1)	40(1)	43(1)	24(1)	10(1)	-4(1)
Si(2)	41(1)	47(1)	43(1)	25(1)	5(1)	13(1)
Si(4)	63(1)	30(1)	50(1)	17(1)	15(1)	2(1)
O(1)	36(1)	28(1)	39(1)	17(1)	9(1)	9(1)
N(2)	35(2)	32(1)	40(2)	21(1)	7(1)	1(1)
N(1)	42(2)	35(1)	31(1)	19(1)	6(1)	8(1)
C(1)	51(3)	59(2)	48(2)	24(2)	13(2)	9(2)
C(2)	105(5)	73(3)	100(4)	61(3)	53(3)	25(3)
C(3)	67(3)	117(4)	37(2)	30(2)	9(2)	22(3)
C(4)	52(3)	75(3)	68(3)	37(2)	25(2)	26(2)
C(5)	81(4)	76(3)	83(3)	49(3)	21(3)	44(3)
C(6)	50(3)	81(3)	70(3)	29(3)	-5(2)	4(2)
C(7)	108(5)	53(3)	44(2)	15(2)	19(2)	-11(3)
C(8)	81(4)	75(3)	69(3)	52(3)	10(2)	2(3)
C(9)	62(3)	78(3)	80(3)	35(3)	35(3)	6(2)
C(10)	98(4)	47(2)	62(3)	23(2)	38(3)	24(2)
C(11)	149(6)	46(3)	97(4)	36(3)	43(4)	35(3)
C(12)	79(4)	83(4)	68(3)	-3(3)	2(3)	-35(3)
C(14)	78(4)	70(3)	88(3)	28(3)	33(3)	46(3)
C(15)	115(5)	72(3)	105(4)	67(3)	33(3)	49(3)
C(16)	130(12)	67(6)	68(7)	26(5)	54(7)	54(7)
C(17)	101(6)	97(5)	85(4)	5(4)	41(4)	43(4)
C(18)	79(8)	75(7)	75(7)	16(6)	23(6)	28(6)
C(19)	65(8)	88(9)	76(7)	-12(6)	7(6)	23(6)
C(20)	186(10)	102(5)	97(5)	44(4)	57(6)	77(6)

	x	у	z	U(eq)		x	у	z	U(eq)
H(1A)	556	7214	8524	78	H(8B)	2424	8480	3145	109
H(1B)	-186	6397	9057	78	H(8C)	2717	9543	4358	109
H(1C)	-302	5904	7717	78	H(9A)	5183	7595	5102	106
H(2A)	597	3640	7852	121	H(9B)	5163	8928	5189	106
H(2B)	528	4135	9147	121	H(9C)	4871	7884	3964	106
H(2C)	1791	3823	8875	121	H(10A)	1716	8699	8159	98
H(3A)	2934	7503	10412	111	H(10B)	2892	9741	9065	98
H(3B)	3323	6343	10543	111	H(10C)	3005	8388	8619	98
H(3C)	2056	6643	10816	111	H(11A)	1682	10257	6634	138
H(4A)	3904	5091	5848	89	H(11B)	2968	10737	6380	138
H(4B)	5360	5622	6556	89	H(11C)	2843	11197	7658	138
H(4C)	4480	6507	6447	89	H(12A)	5348	9902	7132	142
H(5A)	3731	3580	7436	109	H(12B)	5347	9175	7965	142
H(5B)	4240	4268	8793	109	H(12C)	5231	10527	8397	142
H(5C)	5200	4212	8022	109	H(13A)	2126	3732	5359	67
H(6A)	5179	7775	9072	108	H(13B)	71	2339	3598	36
H(6B)	6145	6949	9087	108	H(14A)	1830	3339	3297	111
H(6C)	5183	6993	9855	108	H(14B)	1437	1985	3209	111
H(7A)	1401	5880	3576	110	H(14C)	2793	2827	3997	111
H(7B)	2722	5576	3939	110	H(15A)	315	2696	5646	127
H(7C)	2418	5996	2881	110	H(15B)	1638	2348	5782	127
H(8A)	1400	8552	3853	109	H(15C)	510	1616	4642	127

Lageparameter der Wasserstoffatome in Verbindung [Nd(OⁱPr){N(SiMe₃)₂}₂]₂

Atomkoordinaten ($\cdot 10^4$) und äquivalente isotrope Auslenkungsparameter ($\text{\AA}^2 \cdot 10^3$)

9.5 Vollständiger Datensatz der Röntgenstrukturanalyse von $[Ce(O^{i}Pr)\{N(SiMe_{3})_{2}\}_{2}]_{2}$

Lageparameter der Nichtwasserstoffatome in Verbindung [Ce(OⁱPr){N(SiMe₃)₂}₂]₂

Atomkoordinaten ($\cdot 10^4$) und äquivalente isotrope Auslenkungsparameter ($\text{\AA}^2 \cdot 10^3$) U(eq) wird berechnet als ein Drittel der Spur des orthogonalen U^{ij} Tensors

	X	у	Z	U(eq)		X	у	Z	U(eq)
Ce	6570(1)	6142(1)	6097(1)	31(1)	C(6)	7246(8)	8795(7)	3914(6)	74(2)
N(1)	7693(4)	7941(4)	5974(3)	40(1)	C(7)	7634(8)	8971(6)	8426(5)	69(2)
N(2)	7573(4)	5818(4)	7789(3)	37(1)	C(8)	9972(8)	9821(8)	7731(6)	93(3)
0(1)	4327(3)	5886(3)	5317(2)	33(1)	C(9)	7551(11)	10566(6)	6988(7)	94(3)
Si(1)	7988(2)	7819(1)	4650(1)	47(1)	C(10)	9544(7)	5782(7)	6526(5)	63(2)
Si(2)	8189(2)	9263(1)	7196(1)	53(1)	C(11)	10329(7)	7017(7)	9152(6)	75(2)
Si(3)	9126(2)	5723(1)	7909(1)	44(1)	C(12)	9432(9)	4272(7)	8049(7)	81(2)
Si(4)	6723(2)	5724(2)	8783(1)	47(1)	C(13)	6211(9)	4111(8)	8735(7)	88(2)
C(1A)	4080(18)	7088(12)	5710(17)	47(4)	C(14)	7570(7)	6738(8)	10349(5)	79(2)
C(1B)	3510(30)	6720(20)	5190(20)	47(6)	C(15)	5231(6)	6301(6)	8439(5)	57(2)
C(2)	3035(8)	7177(7)	6260(6)	76(2)					
C(3)	4055(9)	7607(7)	4750(7)	88(2)					

	x	у	Z	U(eq)	X	у	Z	U(eq)
C(4)	7274(9)	6174(6)	3636(5)	82(3)				
C(5)	9720(7)	8139(7)	4716(6)	72(2)				

Bindungslängen [Å] in [Ce(OⁱPr){N(SiMe₃)₂}₂]₂

Bindung	Bindungslänge
Ce-N(2)	2.357(4)
Ce-N(1)	2.365(4)
Ce-O(1)	2.386(3)
Ce-O(1)#1	2.400(3)
Ce-Si(3)	3.4401(18)
Ce-Si(1)	3.4856(17)
Ce-Ce#1	3.906(2)
N(1)-Si(1)	1.717(4)
N(1)-Si(2)	1.724(4)
N(2)-Si(3)	1.704(5)
N(2)-Si(4)	1.717(4)
O(1)-C(1A)	1.447(11)
O(1)-C(1B)	1.464(17)
O(1)-Ce#1	2.400(3)
Si(1)-C(5)	1.857(8)
Si(1)-C(6)	1.881(7)
Si(1)-C(4)	1.896(6)
Si(2)-C(8)	1.868(8)
Si(2)-C(9)	1.869(7)
Si(2)-C(7)	1.873(7)

Bindung	Bindungslänge
Si(3)-C(12)	1.866(7)
Si(3)-C(11)	1.881(7)
Si(3)-C(10)	1.896(6)
Si(4)-C(14)	1.888(6)
Si(4)-C(13)	1.893(8)
Si(4)-C(15)	1.895(7)
C(1A)-C(2)	1.451(13)
C(1A)-C(3)	1.513(15)
C(1B)-C(3)	1.44(2)
C(1B)-C(2)	1.51(2)

Bindungswinkel [°] in [Ce(OⁱPr){N(SiMe₃)₂}₂]₂

Bindung	Bindungswinkel
N(2)-Ce-N(1)	111.61(14)
N(2)-Ce-O(1)	127.10(13)
N(1)-Ce-O(1)	108.89(13)
N(2)-Ce-O(1)#1	103.35(13)
N(1)-Ce-O(1)#1	132.33(13)
O(1)-Ce-O(1)#1	70.61(13)
N(2)-Ce-Si(3)	26.71(11)
N(1)-Ce-Si(3)	96.10(11)
O(1)-Ce-Si(3)	152.22(8)
O(1)#1-Ce-Si(3)	101.54(9)
N(2)-Ce-Si(1)	127.29(11)
N(1)-Ce-Si(1)	26.17(10)
O(1)-Ce-Si(1)	103.70(9)
O(1)#1-Ce-Si(1)	106.17(8)
Si(3)-Ce-Si(1)	104.08(4)
N(2)-Ce-Ce#1	120.69(11)
N(1)-Ce-Ce#1	127.70(10)
O(1)-Ce-Ce#1	35.42(7)
O(1)#1-Ce-Ce#1	35.19(8)
Si(3)-Ce-Ce#1	131.56(3)
Si(1)-Ce-Ce#1	108.41(3)
Si(1)-N(1)-Si(2)	124.3(2)

Bindung	Bindungslwink el
N(1)-Si(2)-C(7)	109.3(3)
C(8)-Si(2)-C(7)	106.6(4)
C(9)-Si(2)-C(7)	106.8(4)
N(2)-Si(3)-C(12)	113.7(3)
N(2)-Si(3)-C(11)	114.4(3)
C(12)-Si(3)-C(11)	107.5(4)
N(2)-Si(3)-C(10)	108.4(2)
C(12)-Si(3)-C(10)	106.5(4)
C(11)-Si(3)-C(10)	105.8(3)
N(2)-Si(3)-Ce	38.43(12)
C(12)-Si(3)-Ce	128.7(3)
C(11)-Si(3)-Ce	123.0(3)
C(10)-Si(3)-Ce	70.1(2)
N(2)-Si(4)-C(14)	114.7(3)
N(2)-Si(4)-C(13)	112.8(3)
C(14)-Si(4)-C(13)	108.2(4)
N(2)-Si(4)-C(15)	108.4(2)
C(14)-Si(4)-C(15)	103.8(3)
C(13)-Si(4)-C(15)	108.4(4)
O(1)-C(1A)-C(2)	114.9(9)
O(1)-C(1A)-C(3)	109.3(10)
C(2)-C(1A)-C(3)	116.7(11)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Si(1)-N(1)-Ce	116.4(2)	C(3)-C(1B)-O(1)	112.6(15)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Si(2)-N(1)-Ce	119.2(2)	C(3)-C(1B)-C(2)	117.9(16)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Si(3)-N(2)-Si(4)	126.1(2)	O(1)-C(1B)-C(2)	110.6(14)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Si(3)-N(2)-Ce	114.9(2)	C(1A)-C(2)-C(1B)	29.6(6)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Si(4)-N(2)-Ce	119.0(2)	C(1B)-C(3)-C(1A)	29.6(7)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C(1A)-O(1)-C(1B)	30.1(6)	C(5)-Si(1)-C(4)	106.5(4)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C(1A)-O(1)-Ce	106.4(9)	C(6)-Si(1)-C(4)	107.0(4)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C(1B)-O(1)-Ce	134.1(13)	N(1)-Si(1)-Ce	37.41(14)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C(1A)-O(1)-Ce#1	142.6(9)	C(5)-Si(1)-Ce	125.0(2)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C(1B)-O(1)-Ce#1	112.5(13)	C(6)-Si(1)-Ce	127.0(3)
N(1)-Si(1)-C(5) 113.7(3) N(1)-Si(2)-C(8) 112.9(3) N(1)-Si(1)-C(6) 115.2(3) N(1)-Si(2)-C(9) 114.3(3) C(5)-Si(1)-C(6) 107.1(4) C(8)-Si(2)-C(9) 106.5(5) N(1)-Si(1)-C(4) 106.8(3)	Ce-O(1)-Ce#1	109.39(13)	C(4)-Si(1)-Ce	69.4(2)
N(1)-Si(1)-C(6) 115.2(3) N(1)-Si(2)-C(9) 114.3(3) C(5)-Si(1)-C(6) 107.1(4) C(8)-Si(2)-C(9) 106.5(5) N(1)-Si(1)-C(4) 106.8(3)	N(1)-Si(1)-C(5)	113.7(3)	N(1)-Si(2)-C(8)	112.9(3)
C(5)-Si(1)-C(6) 107.1(4) C(8)-Si(2)-C(9) 106.5(5) N(1)-Si(1)-C(4) 106.8(3)	N(1)-Si(1)-C(6)	115.2(3)	N(1)-Si(2)-C(9)	114.3(3)
N(1)-Si(1)-C(4) 106.8(3)	C(5)-Si(1)-C(6)	107.1(4)	C(8)-Si(2)-C(9)	106.5(5)
	N(1)-Si(1)-C(4)	106.8(3)		

Uij-Werte (Å²·10³) des Temperaturfaktors exp($-2\pi^{2}$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²])

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	43(3)	33(2)	43(2)	22(2)	6(2)	0(2)
N(2)	45(3)	43(2)	30(2)	22(2)	7(2)	11(2)
O(1)	34(2)	31(2)	37(2)	15(1)	8(1)	12(1)
Si(1)	57(1)	40(1)	44(1)	24(1)	11(1)	-3(1)
Si(2)	75(1)	31(1)	48(1)	17(1)	11(1)	3(1)
Si(3)	44(1)	51(1)	43(1)	28(1)	6(1)	14(1)
Si(4)	54(1)	60(1)	35(1)	27(1)	14(1)	13(1)
C(1A)	54(9)	29(5)	52(8)	13(5)	8(7)	10(5)
C(1B)	43(13)	37(10)	39(11)	-4(9)	-10(10)	14(9)
C(2)	81(6)	83(5)	83(4)	33(4)	38(4)	44(4)
C(3)	114(7)	66(5)	113(6)	61(4)	34(5)	39(4)
C(4)	129(7)	53(4)	46(3)	13(3)	21(4)	-18(4)
C(5)	77(5)	72(4)	75(4)	37(3)	32(3)	8(4)
C(6)	84(5)	82(5)	72(4)	58(4)	16(3)	10(4)
C(7)	108(6)	51(4)	56(3)	18(3)	30(3)	27(4)
C(8)	83(6)	87(6)	68(4)	6(4)	2(4)	-24(4)
C(9)	159(9)	43(4)	91(5)	36(4)	31(5)	35(5)
C(10)	52(4)	87(5)	69(4)	44(3)	25(3)	28(3)
C(11)	58(5)	83(5)	68(4)	30(4)	-6(3)	-1(4)
C(12)	98(6)	82(5)	92(5)	55(4)	22(4)	52(4)
C(13)	107(7)	92(6)	103(6)	68(5)	54(5)	27(5)
C(14)	73(5)	124(7)	38(3)	32(3)	10(3)	19(4)
C(15)	53(4)	67(4)	47(3)	18(3)	16(2)	12(3)

9.6 Vollständiger Datensatz der Röntgenstrukturanalyse von ErN(SiMe₃)₂(Mal)₂

Lageparameter der Nichtwasserstoffatome in Verbindung ErN(SiMe₃)₂(Mal)₂

Atomkoordinaten ($\cdot 10^4$) und äquivalente isotrope Auslenkungsparameter (Å	$^{2} \cdot 10^{3}$) U(eq)
wird berechnet als ein Drittel der Spur des orthogonalen U ^{ij} Tensors	

	x	v	z	U(ea)		x	v	z	U(ea)
Er1	0.47890(1)	0.18121(2)	0.12498(1)	- (- 1)	C43	0.4118(4)	0.4618(5)	0.0317(2)	- (- 1)
01	0.4577(2)	0.0467(3)	0.08375(10)		H43A	0.43440	0.43360	0.00810	0.0620
07	0.4904(2)	-0.0772(3)	0.21453(10)		H43B	0.44150	0.43660	0.05370	0.0620
08	0.29171(19)	0.1606(3)	0.20782(10)		H43C	0.41140	0.54240	0.03110	0.0620
05	0.5037(2)	0.0516(3)	0.16811(10)		C32	0.5382(3)	-0.1367(5)	0.05086(17)	
03	0.4149(2)	-0.0530(3)	0.03314(11)		H32A	0.54520	-0.10520	0.07640	0.0400
C2	0.3944(3)	0.0474(4)	0.20761(14)		H32B	0.55810	-0.08570	0.03160	0.0400
H2A	0.35930	-0.01570	0.20530	0.0180	H32C	0.56510	-0.20690	0.04920	0.0400
H2B	0.39950	0.06310	0.23530	0.0180	C42	0.2834(4)	0.4543(5)	0.00130(17)	
02	0.4079(2)	0.2646(3)	0.08126(10)		H42A	0.23170	0.42670	0.00430	0.0470
C3	0.3582(3)	0.1374(4)	0.19148(14)		H42B	0.30530	0.42410	-0.02220	0.0470
04	0.3289(2)	0.2982(3)	0.03162(11)		H42C	0.28260	0.53480	-0.00020	0.0470
C52	0.5563(4)	-0.1836(5)	0.16519(16)		C44	0.2938(3)	0.4529(5)	0.07264(17)	
H52A	0.55520	-0.12420	0.14620	0.0470	H44A	0.24310	0.42080	0.07420	0.0480
H52B	0.51010	-0.22760	0.16310	0.0470	H44B	0.29000	0.53330	0.07370	0.0480
H52C	0.60030	-0.23060	0.16050	0.0470	H44C	0.32440	0.42650	0.09410	0.0480
C1	0.4648(3)	0.0108(4)	0.19504(14)		C62	0.1696(3)	0.2255(6)	0.2176(2)	
C4	0.4174(3)	0.0399(4)	0.05410(15)		H62A	0.18460	0.25120	0.24310	0.0550
C51	0.5614(3)	-0.1345(5)	0.20518(16)		H62B	0.15390	0.14830	0.21910	0.0550
C6	0.3718(3)	0.2309(4)	0.05267(15)		H62C	0.12740	0.27030	0.20830	0.0550
C53	0.6280(3)	-0.0576(5)	0.21006(19)		C41	0.3306(3)	0.4190(4)	0.03529(16)	
H53A	0.62400	-0.01970	0.23470	0.0460	06	0.38257(19)	0.1963(3)	0.16387(10)	
H53B	0.62800	-0.00330	0.18940	0.0460	N1	0.5782(2)	0.2911(3)	0.12756(13)	
H53C	0.67500	-0.10010	0.20930	0.0460	Si1	0.56869(8)	0.42518(12)	0.14150(4)	
C5	0.3717(3)	0.1228(4)	0.03885(15)		C11	0.5926(4)	0.5264(5)	0.10267(18)	
H5A	0.38370	0.12720	0.01130	0.0210	H11A	0.56510	0.50690	0.07930	0.0460
H5B	0.31900	0.09620	0.04070	0.0210	H11B	0.64700	0.52430	0.09770	0.0460
C54	0.5635(4)	-0.2260(5)	0.23457(17)		H11C	0.57800	0.60060	0.11080	0.0460
H54A	0.56380	-0.19420	0.26030	0.0440	C12	0.4680(3)	0.4492(5)	0.1548(2)	
H54B	0.60920	-0.27030	0.23090	0.0440	H12A	0.45430	0.40090	0.17610	0.0510
H54C	0.51890	-0.27290	0.23150	0.0440	H12B	0.43560	0.43310	0.13280	0.0510
C31	0.4549(3)	-0.1554(4)	0.04368(16)		H12C	0.46130	0.52610	0.16240	0.0510
C33	0.4151(4)	-0.2065(5)	0.07758(18)		C13	0.6270(4)	0.4612(5)	0.18427(18)	
H33A	0.41890	-0.15710	0.09960	0.0480	H13A	0.61830	0.40700	0.20450	0.0520
H33B	0.43880	-0.27720	0.08380	0.0480	H13B	0.61280	0.53450	0.19350	0.0520
H33C	0.36180	-0.21830	0.07130	0.0480	HI3C	0.68060	0.46100	0.17720	0.0520
<u>C64</u>	0.2649(4)	0.3526(5)	0.1896(2)	0.0500	Si2	0.66320(9)	0.23060(13)	0.11661(5)	
H64A	0.30580	0.35850	0.17090	0.0520	C23	0.6437(3)	0.0896(5)	0.09642(18)	0.0440
H64B	0.28390	0.37250	0.21500	0.0520	H23A	0.69160	0.05250	0.09090	0.0440
H64C	0.22380	0.40250	0.18250	0.0520	H23B	0.61430	0.09670	0.07280	0.0440
<u>C63</u>	0.2154(4)	0.1928(6)	0.15113(18)	0.0500	H23C	0.61500	0.04640	0.11510	0.0440
H63A	0.25890	0.20060	0.13400	0.0580	C22	0.7246(4)	0.2091(6)	0.1598(2)	0.0700
HOSB	0.1/2/0	0.23490	0.14090	0.0580	HZZA	0.76630	0.15970	0.15320	0.0790
H03C	0.20140	0.11500	0.15300	0.0580	H22B	0.09460	0.1/640	0.18040	0.0790
	0.4432(3)	-0.2238(3)	0.00746(17)	0.0420	H22C	0.74490	0.28010	0.10830	0.0790
H34A 112.4D	0.36900	-0.23000	0.00220	0.0430		0.7199(4)	0.3030(0)	0.0799(3)	0.0000
H34B	0.40300	-0.29/20	0.01110	0.0430	H21A	0.70310	0.23900	0.07240	0.0900
H34U C61	0.40800	-0.16/40	-0.01410	0.0430		0.73600	0.3/4/0	0.09000	0.0900
1001	0.2339(3)	0.2300(4)	10.17042(10)	1	11210	0.00030	0.31760	0.03730	0.0700

Seite 172

Bindungslängen [Å] in ErN(SiMe₃)₂(Mal)₂

Bindung	Bindungslänge
Er1-O6	2.190(3)
Er1-N1	2.210(4)
Er1-O1	2.212(4)
Er1-O2	2.224(4)
Er1-O5	2.225(4)
Er1-Si2	3.332(2)
O1-C4	1.262(6)
O7-C1	1.347(6)
O7-C51	1.474(7)
O8-C3	1.339(6)
O8-C61	1.479(6)
O5-C1	1.268(6)
O3-C4	1.347(6)
O3-C31	1.479(6)
C2-C3	1.388(7)
C2-C1	1.395(7)
O2-C6	1.256(6)
C3-O6	1.277(6)
04-C6	1.337(6)
04-C41	1.557(6)
C52-C51	1 524(8)
C4-C5	1.321(0) 1 398(7)
C51-C53	1.556(7)
C51-C54	1.515(8)
C6-C5	1.313(0) 1 400(7)
C31-C33	1.513(8)
C31-C32	1.515(0) 1.514(8)
C31-C34	1.514(0)
C64-C61	1.525(8)
C63-C61	1.505(8)
C61-C62	1.515(8)
C01-C02	1.510(8)
C43-C41	1.555(7)
C42-C41	1.510(8)
N1 Si1	1.317(6) 1.700(4)
NI-SII	1.709(4)
NI-512 S:1 C12	1./19(4)
SII-C12 Sil C12	1.000(0) 1.970(7)
SII-CI5 Sil Cl1	1.0/0(7)
SII-CII 5:2 C21	1.881(0) 1.864(0)
S12-C21	1.804(9)
S12-C22	1.880(7)
SI2-C23	1.885(6)
OI-ErI	2.212(4)
01-03	2.275(5)
01-05	2.370(0)
01-H32A	2.424(4)
07-05	2.268(5)
07-02	2.290(6)
07-054	2.332(7)
07-C52	2.452(7)
07-C53	2.454(6)
07-H2B	2.455(4)
07-H2A	2.461(4)
08-06	2.268(5)

Bindung	Bindungslänge
H63A-O6	2.428(3)
H63A-H64A	2.457(0)
H63B-C63	0.981(7)
H63B-H63C	1.60()
H63B-H63A	1.601(0)
H63B-C61	2.063(6)
H63C-C63	0.980(7)
H63C-H63B	1.60()
H63C-H63A	1.60()
H63C-C61	2.061(5)
H63C-H62B	2.494(0)
C34-H34C	0.979(6)
C34-H34B	0.980(6)
C34-H34A	0.981(5)
C34-C31	1 529(8)
C34-O3	2 317(7)
H34A-C34	0.981(5)
H34A-H34C	1.60()
H34A-H34B	1.601(0)
H34A-C31	2.074(5)
H34AO3	2.458(4)
H34A-H33C	2.159(1)
H34B-C34	0.980(6)
H34B-H34C	1.60()
H34B-H34A	1.60()
H34B-C31	2.074(5)
H34B-H43C ^{vii}	2.074(3) 2.278(0)
H34B-H32C	2.275(0)
H34C-C34	0.979(6)
H34C-H34A	1.60()
H34C-H34R	1.60()
H34C-C31	2.071(6)
C61-08	1.479(6)
C61-C64	1.479(0) 1 508(8)
C61 C63	1.506(8)
C61 U64P	1.313(0) 2.052(5)
Со1-по4Б	2.033(3) 2.052(5)
С61-П04А	2.033(3) 2.054(5)
С61 Ц62 А	2.034(3)
C01-H03A	2.001(0)
C61-H03C	2.001(5)
C61-H62B	2.062(5)
C61-H63B	2.063(6)
C61-H62A	2.063(6)
C61-H62C	2.064(5)
C61-C3	2.4/6(/)
C43-H43A	0.9/9(7)
C43-H43C	0.980(6)
C43-H43B	0.981(7)
C43-O4	2.472(7)
H43A-C43	0.979(7)
H43A-H43B	1.60()
H43A-H43C	1.601(0)
H43A-C41	2.078(5)
H43B-C43	0.981(7)

O8-C2	2.281(6)
O8-C62	2.328(7)
O8-C63	2.432(7)
O8-H2B	2.444(3)
08-H2A	2.456(4)
O8-C64	2.465(7)
O8-H62B	2.477(3)
O5-Er1	2.225(4)
05-07	2.268(5)
O5-C2	2.379(6)
O5-H53B	2.418(4)
O5-H52A	2.446(4)
03-01	2 275(5)
O3-C5	2.278(6)
03-C34	2.317(7)
03-H5A	2.317(7) 2.384(4)
03-C33	2.428(7)
03-H34A	2.458(4)
03-C32	2.488(7)
03-H5R	2.400(7)
C2-H2A	0.991(5)
C2 H2B	0.991(5)
C2-08	2.991(3)
$\frac{C_{2}-0.6}{C_{2}-0.7}$	2.281(0)
$\frac{C_2 - O_1}{C_2 - O_2}$	2.290(0)
C2-06	2.379(6)
	2.3/9(0)
H2A-U2D	0.991(5)
H2A-H2B	1.589(0)
H2A-C3	1.923(5)
H2A-CI	1.930(5)
H2A-H64C	1.947(0)
H2A-08	2.456(4)
H2A-07	2.461(4)
H2B-C2	0.991(5)
H2B-H2A	1.589(0)
H2B-C3	1.924(5)
H2B-C1	1.930(5)
H2B-H54B ⁿ	2.35()
H2B-O8	2.444(3)
H2B-O7	2.455(4)
O2-Er1	2.224(4)
02-04	2.267(5)
O2-C5	2.363(6)
O2-H43B	2.378(4)
C3-O8	1.339(6)
C3-C2	1.388(7)
C3-H2A	1.923(5)
C3-H2B	1.924(5)
C3-C1	2.439(7)
C3-C61	2.476(7)
04-02	2.267(5)
04-C5	2.277(6)
04-C42	2 318(7)
04-H54	2.310(7) 2 401(4)
04-044	2.701(7) 2 445(7)
04-044	2.773(7) 2.462(4)
04-11420	2.402(4)
04-043	2.4/2(7)
04-H3B	2.482(4)

H43B-H43A	1.60()
H43B-H43C	1.601(0)
H43B-C41	2.078(5)
H43B-02	2378(4)
H43C-C43	0.980(6)
	1.601(0)
П43С-П43А Ц42С Ц42D	1.001(0)
H43C-H43B	1.601(0)
H43C-C41	2.078(5)
H43C-H34B ^{vin}	2.278(0)
С32-Н32С	0.979(6)
C32-H32A	0.980(6)
C32-H32B	0.981(6)
C32-C31	1.514(8)
C32-O3	2 488(7)
H32A-C32	0.980(6)
H32A-H32C	1 599(0)
Нала Паль	1.601(0)
1132A-1132D	2.050(5)
пэ2A-U31	2.039(3)
H32A-UI	2.424(4)
H32A-H52A	2.459(0)
H32A-H33A	2.462(0)
H32B-C32	0.981(6)
H32B-H32C	1.601(0)
H32B-H32A	1.601(0)
H32B-H5A ^{iv}	1.889(0)
H32B-C31	2 059(5)
H32C-C32	0.979(6)
H32C-H32A	1 500(0)
1132C-1132A	1.333(0) 1.601(0)
Н32С-П32Б	1.001(0)
H32C-C31	2.059(5)
H32C-H34B	2.475(0)
H32C-H5A ^{IV}	2.498(0)
C42-H42C	0.980(6)
C42-H42B	0.980(6)
C42-H42A	0.981(7)
C42-O4	2.318(7)
H42A-C42	0.981(7)
H42A-H42B	1.60()
H42A-H42C	1.60()
1142A-1142C	1.001(0) 2.062(5)
H42A-C41	2.062(5)
п42A-H44A	2.454(0)
H42B-C42	0.980(6)
H42B-H42A	1.60()
H42B-H42C	1.601(0)
H42B-C41	2.061(6)
H42B-O4	2.462(4)
H42C-C42	0.980(6)
H42C-H42A	1.601(0)
H42C-H42B	1 601(0)
H42C-C41	2 060(5)
11420-041 ЦАЭС Ц5Р ^{VI}	2.000(3) 2 417(0)
	2.41/(0)
C44-H44C	0.980(6)
C44-H44B	0.980(6)
C44-H44A	0.981(5)
C44-O4	2.445(7)
H44A-C44	0.981(5)
H44A-H44B	1.60()
H44A-H44C	1.601(0)
-	(/

C52-H52C	0.980(7)
C52-H52B	0.980(7)
C52-H52A	0.981(6)
C52-O7	2.452(7)
C52-C54	2.484(8)
H52A-C52	0.981(6)
H52A-H52C	1.600
H52A-H52B	1 602(0)
H52A-C51	2.070(6)
H52A-05	2.070(0) 2 446(4)
H52A-H32A	2.459(0)
H52A_H53B	2.437(0) 2.471(0)
H52R-C52	0.980(7)
Н52В-С52	1.601(0)
П52D-П52С	1.001(0) 1.602(0)
П32D-П32А 1152D-С51	1.002(0)
H52D-U51	2.007(0)
пэ2в-нэ40	2.40()
H52C-C52	0.980(7)
H52C-H52A	1.60()
H52C-H52B	1.601(0)
H52C-C51	2.069(6)
CI-05	1.268(6)
C1-07	1.347(6)
C1-C2	1.395(7)
C1-H2A	1.930(5)
C1-H2B	1.930(5)
C1-C3	2.439(7)
C1-C51	2.484(8)
C4-O1	1.262(6)
C4-O3	1.347(6)
C4-H5A	1.930(5)
C4-H5B	1.930(5)
C4C6	2.458(7)
C4-C31	2.492(7)
C51-07	1.474(7)
C51-C52	1.524(8)
C51-H53B	2.059(6)
С51-Н53А	2.060(6)
C51-H54C	2.060(6)
C51-H53C	2.060(5)
C51-H54A	2.061(6)
C51-H54B	2.062(6)
C51-H52B	2.067(6)
С51-Н52С	2.069(6)
C51-H52A	2.070(6)
C51-C1	2.484(8)
C6-O2	1.256(6)
C6-O4	1.337(6)
C6-H5A	1.931(5)
C6-H5B	1.931(5)
C6-C4	2.458(7)
C6-C41	2.476(7)
С53-Н53В	0.979(6)
С53-Н53А	0.980(7)
С53-Н53С	0.980(6)
C53-C51	1.515(8)
C53-07	2.454(6)
,	

H44A-C41	2.063(5)
H44A-H42A	2.454(0)
H44B-C44	0.980(6)
H44B-H44A	1.60()
H44B-H44C	1.602(0)
H44B-C41	2.062(5)
H44B-H5B ^{vi}	2.376(0)
H44C-C44	0.980(6)
H44C-H44A	1 601(0)
H44C-H44B	1.607(0)
H44C-41	2.062(6)
H44C-H12B	2.002(0) 2.302(0)
C62 U62D	2.392(0)
C62 1162C	0.980(7)
C62-H62C	0.980(6)
C62-H62A	0.982(7)
<u>C62-C61</u>	1.516(8)
C62-O8	2.328(7)
C62-C64	2.489(9)
C62-C63	2.494(9)
H62A-C62	0.982(7)
H62A-H62C	1.601(0)
H62A-H62B	1.601(0)
H62A-C61	2.063(6)
H62A-H64B	2.497(0)
H62B-C62	0.980(7)
H62B-H62C	1.60()
H62B-H62A	1.601(0)
H62B-C61	2.062(5)
H62B-O8	2.477(3)
H62B-H63C	2.494(0)
H62C-C62	0.980(6)
H62C-H62B	1.60()
H62C-H62A	1.601(0)
H62C-C61	2.064(5)
C41-O4	1.474(6)
C41-C42	1.516(8)
C41-C44	1.517(8)
C41-C43	1.535(9)
C41-H42C	2.060(5)
C41-H42B	2.000(5)
C41-H44R	2.001(0) 2.062(5)
C41-H44C	2.002(5)
C41-H42A	2.002(0) 2.062(5)
C41-H44A	2.002(5) 2.063(5)
C41-H43A	2.003(5) 2.078(5)
C41-1145A	2.078(5)
C41-H45C	2.078(5)
C41-E43D	2.078(3)
06.02	2.4/0(7)
06 Er1	1.2/(0) 2.100(2)
00-Ef1	2.190(3)
06-08	2.208(3)
06-02	2.3/9(6)
06-H64A	2.407(4)
06-H63A	2.428(3)
NI-Erl	2.210(4)
Sil-Nl	1.709(4)
S11-H12C	2 379(1)
<u></u>	

	1
H53A-C53	0.980(7)
H53A-H53B	1.599(0)
H53A-H53C	1.60()
H53A-C51	2.060(6)
H53B-C53	0.979(6)
H53B-H53A	1.599(0)
H53B-H53C	1 601(0)
H53B-C51	2.059(6)
H53B-05	2.039(0) 2.418(4)
1155D-05 1152D 1152A	2.410(4)
1155D-1152A	2.471(0)
Н53С-С55	0.980(0)
H53C-H53A	1.60()
H53C-H53B	1.601(0)
H53C-C51	2.060(5)
H53C-H22C ^m	2.488(0)
H53C-H54B	2.492(0)
C5-H5A	0.988(5)
C5-H5B	0.990(5)
C5-C4	1.398(7)
C5-C6	1.400(7)
C5-O4	2.277(6)
C5-O3	2.278(6)
C5-O2	2.363(6)
C5-O1	2.376(6)
H5A-C5	0.988(5)
H5A-H5B	1.585(0)
H5A-H32B ^{iv}	1 889(0)
H5A-C4	1.009(0)
H5A-C6	1.930(5)
H5A-03	2384(4)
H5A 04	2.304(4)
115A-04	2.401(4)
H5A-H52C	2.498(0)
HSB-CS	0.990(5)
Н5В-Н5А	1.585(0)
H5B-C4	1.930(5)
H5B-C6	1.931(5)
H5B-H44B ¹	2.376(0)
H5B-H42C ¹	2.417(0)
H5B-O4	2.482(4)
H5B-O3	2.499(4)
C54-H54A	0.980(6)
C54-H54C	0.980(7)
C54-H54B	0.981(7)
C54-C51	1.515(8)
C54-O7	2.332(7)
C54-C52	2.484(8)
C54-C53	2.496(9)
H54A-C54	0.980(6)
H54A-H54R	1 60()
H54A_H54C	1 601(0)
H54A_C51	2.061(6)
H54P C54	2.001(0)
1134D-U34	1.60()
H54B-H54A	1.00()
H54B-H54C	1.60()
H54B-C51	2.062(6)
H54B-H2B ^v	2.35()
H54B-H53C	2.492(0)
H54C-C54	0.980(7)

Si1-H12B	2.379(1)
Si1-H13A	2.383(1)
Si1-H13C	2.383(1)
Si1-H13B	2.384(1)
Si1-H11B	2.392(1)
Si1-H11A	2.393(1)
Sil-H11C	2393(1)
C11-H11B	0.980(7)
C11-H11C	0.980(6)
C11 H11A	0.980(0)
	1.991(6)
	1.001(0)
HIIA-CII	0.981(6)
HIIA-HIIC	1.601(0)
HIIA-HIIB	1.601(0)
HIIA-S11	2.393(1)
H11B-C11	0.980(7)
H11B-H11A	1.601(0)
H11B-H11C	1.601(0)
H11B-Si1	2.392(1)
H11B-H21B	2.443(0)
H11C-C11	0.980(6)
H11C-H11A	1.601(0)
H11C-H11B	1.601(0)
H11C-Si1	2393(1)
C12-H12C	0.979(6)
C12-H12A	0.979(0)
C12 H12R	0.979(7)
C12-III2D	0.960(0)
U12-511	1.000(0)
HIZA-CIZ	0.979(7)
HI2A-HI2B	1.599(0)
HI2A-HI2C	1.60()
HI2A-Sil	2.379(1)
H12B-C12	0.980(6)
H12B-H12C	1.599(0)
H12B-H12A	1.599(0)
H12B-Si1	2.379(1)
H12B-H44C	2.392(0)
H12C-C12	0.979(6)
H12C-H12B	1.599(0)
H12C-H12A	1.60()
H12C-Si1	2.379(1)
C13-H13A	0.979(6)
C13-H13B	0.980(6)
C13-H13C	0.980(0)
C13-Sil	1.870(7)
U13-011 U12A C12	1.070(7)
ПІЗА-СІЗ ЦІ2А ЦІ2Р	0.979(0)
ПІЗА-НІЗВ	1.00()
HI3A-HI3C	1.60()
HI3A-Sil	2.383(1)
H13B-C13	0.980(6)
H13B-H13A	1.60()
H13B-H13C	1.602(0)
H13B-Si1	2.384(1)
H13C-C13	0.981(7)
H13C-H13A	1.60()
H13C-H13B	1.602(0)
H13C-Si1	2.383(1)
H13C-H22C	2 496(0)

H54C-H54B	1.60()
H54C-H54A	1.601(0)
H54C-C51	2.060(6)
H54C-H52B	2.46()
C31-O3	1.479(6)
C31-H33A	2.058(6)
C31-H33C	2.059(5)
C31-H32B	2.059(5)
C31-H32C	2.059(5)
C31-H32A	2.059(5)
C31-H33B	2.060(5)
C31-H34C	2.071(6)
C31-H34B	2.074(5)
C31-H34A	2.074(5)
C31-C4	2.492(7)
С33-Н33А	0.979(6)
С33-Н33С	0.980(7)
C33-H33B	0.981(6)
C33-C31	1.513(8)
C33-O3	2.428(7)
H33A-C33	0.979(6)
H33A-H33C	1 599(0)
H33A_H33R	1.600
H33A-C31	2.058(6)
H33A_H32A	2.050(0)
H33B_C33	0.981(6)
ПЗЗБ-СЗЗ	1.60()
	1.00()
H22D C21	1.001(0)
H33D-C31	2.000(3)
	0.980(7)
H33C-H33A	1.399(0)
H33C-H33B	1.601(0)
H33C-C31	2.059(5)
H33C-H34A	2.469(0)
C64-H64A	0.979(7)
C64-H64C	0.980(7)
C64-H64B	0.980(7)
C64-08	2.465(7)
C64-C62	2.489(9)
H64A-C64	0.979(7)
H64A-H64B	1.60()
H64A-H64C	1.60()
H64A-C61	2.053(5)
H64A-O6	2.407(4)
H64A-H63A	2.457(0)
H64B-C64	0.980(7)
H64B-H64C	1.60()
H64B-H64A	1.60()
H64B-C61	2.053(5)
H64B-H62A	2.497(0)
H64C—C64	0.980(7)
H64C-H64B	1.60()
H64C-H64A	1.60()
H64C-H2A ^{vi}	1.947(0)
H64C-C61	2 054(5)
C63-H63C	0.980(7)
C63-H63A	0.981(7)
C63-H63R	0.981(7)
	0.701(7)

Si2-N1	1.719(4)
Si2-H21A	2.376(2)
Si2-H21C	2.377(2)
Si2-H21B	2.377(2)
Si2-H22A	2.391(2)
Si2-H22B	2392(2)
Si2-H22C	2.392(2) 2.393(2)
Si2-1122C	2.373(2) 2.307(2)
Si2-1123C	2.397(2)
SI2-FI25A	2.397(2)
SIZ-HZ3B	2.397(2)
C23-H23A	0.980(6)
С23-Н23С	0.980(6)
С23-Н23В	0.980(6)
C23-Si2	1.885(6)
H23A-C23	0.980(6)
H23A-H23C	1.601(0)
H23A-H23B	1.601(0)
H23A-Si2	2.397(2)
H23A-H21B ⁱⁱⁱ	2.495(0)
H23B-C23	0.980(6)
H23B-H23C	1 601(0)
H23B-H23C	1.601(0)
H23D-H23A	2307(2)
П23D-512 Царо Сар	2.397(2)
H23C-C23	0.980(6)
H23C-H23B	1.601(0)
Н23С-Н23А	1.601(0)
H23C-Si2	2.397(2)
C22-H22A	0.980(7)
C22-H22B	0.980(7)
C22-H22C	0.981(7)
C22-Si2	1.880(7)
H22A-C22	0.980(7)
H22A-H22B	1.60()
H22A-H22C	1 601(0)
H22A-Si2	2391(2)
H22R 512	0.980(7)
	1.60()
П22D-П22А	1.00()
H22B-H22C	1.00()
H22B-S12	2.392(2)
H22C-C22	0.981(7)
H22C-H22B	1.60()
H22C-H22A	1.601(0)
H22C-Si2	2.393(2)
H22C-H53C ^{ix}	2.488(0)
H22C-H13C	2.496(0)
C21-H21A	0.979(7)
C21-H21C	0.980(9)
C21-H21B	0.980(8)
C21-Si2	1 864(9)
H21A-C21	0.979(7)
H21A-H21P	1.60()
	1.00()
H21A-H2IU	1.001(0)
H21A-S12	2.376(2)
H21B-C21	0.980(8)
H21B-H21A	1.60()
H21B-H21C	1.60()
H21B-Si2	2.377(2)
H21B-H11B	2.443(0)

C63-O8	2.432(7)
C63-C62	2.494(9)
H63A-C63	0.981(7)
H63A-H63C	1.60()
H63A-H63B	1.601(0)
H63A-C61	2.061(6)

H21B-H23A ^{ix}	2.495(0)
H21C-C21	0.980(9)
H21C-H21B	1.60()
H21C-H21A	1.601(0)
H21C-Si2	2.377(2)
C6-C44	3.111(8)

Bindungswinkel [°] in ErN(SiMe₃)₂(Mal)₂

Bindung	Bindungswinkel	
O6-Er1-N1	122.96(13)	
O6-Er1-O1	109.55(13)	
N1-Er1-O1	127.46(14)	
O6-Er1-O2	87.04(13)	
N1-Er1-O2	101.70(14)	
O1-Er1-O2	78.02(13)	
O6-Er1-O5	77.99(13)	
N1-Er1-O5	104.06(14)	
01-Er1-05	87.27(13)	
O2-Er1-O5	154.21(13)	
O6-Er1-Si2	143.40(9)	
N1-Er1-Si2	27.76(10)	
O1-Er1-Si2	104.01(10)	
O2-Er1-Si2	114.3(1)	
O5-Er1-Si2	89.63(10)	
C4O1-Er1	132.87(33)	
C1-07-C51	123.36(40)	
C3-O8-C61	122.87(39)	
C1-O5-Er1	132.32(32)	
C4-O3-C31	123.64(38)	
C3-C2-C1	122.42(47)	
C6-O2-Er1	133.39(33)	
06-C3-08	120.13(44)	
06-C3-C2	126.37(46)	
08-C3-C2	113.50(45)	
C6-O4-C41	123.34(39)	
05-C1-07	120.23(43)	
05-C1-C2	126.53(48)	
07-C1-C2	113 24(44)	
01-C4-O3	121 39(46)	
01-C4-C5	126 44(48)	
O3-C4-C5	112.17(42)	
07-C51-C53	110.36(42)	
07-C51-C54	102.54(45)	
C53-C51-C54	110.94(50)	
07-C51-C52	109.76(45)	
C53-C51-C52	113.04(49)	
C54-C51-C52	109.70(47)	
O2-C6-O4	121.90(47)	
O2-C6-C5	125.57(47)	
04-C6-C5	112.53(43)	
C6-C5-C4	122.94(45)	
03-C31-C33	108.52(42)	
O3-C31-C32	112.46(42)	
C33-C31-C32	112.69(48)	
O3-C31-C34	100.72(39)	

Bindung	Bindungelwinkel			
O8-C61-C64	BINGUNGSIWINKE			
08-C61-C63	108.59(42)			
C64 C61 C63	112.96(49)			
08 C61 C62	112.90(49) 101.08(41)			
<u>C(4 C(1 C(2</u>	101.98(41)			
C64-C61-C62	110.79(48)			
04.041.042	110.72(50)			
04-C41-C42	101.6/(40)			
04-C41-C44	109.68(42)			
C42-C41-C44	111.20(47)			
04-C41-C43	110.46(41)			
C42-C41-C43	110.91(50)			
C44-C41-C43	112.40(47)			
C3-O6-Er1	133.32(32)			
Si1-N1-Si2	123.90(23)			
Sil-Nl-Erl	120.61(20)			
Si2-N1-Er1	115.44(19)			
N1-Si1-C12	108.33(23)			
N1-Si1-C13	113.39(24)			
C12-Si1-C13	106.97(29)			
N1-Si1-C11	113.29(24)			
C12-Si-C11	107.03(29)			
C13-Si1-C11	107.47(28)			
N1-Si2-C21	114.71(28)			
N1-Si2-C22	112.78(27)			
C21-Si2-C22	108.02(37)			
N1-Si2-C23	108.17(23)			
C21-Si2-C23	106.35(30)			
C22-Si2-C23	106.30(29)			
N1-Si2-Er1	36.80(12)			
C21-Si2-Er1	132.51(24)			
C22-Si2-Er1	118.11(23)			
C23-Si2-Er1	71.92(17)			
N1-Si1-Si2	28.14(13)			
Si2-N1-Si1	123.90(23)			
N1-Er1-O6	122.96(13)			
O5-Er1-O6	77.99(13)			
O2-Er1-O1	78.02(13)			
O5-Er1-O1	87.27(13)			
O5-Er1-O2	154.21(13)			
O5-O6-Er1	51.57(10)			
07-C1-O5	120.23(43)			
C4-01-08	111.58(30)			
03-C4-O1	121.39(46)			
Er1-05-C1	132.32(32)			
C2-C3-O6	126 37(46)			
C2-C3-O8	113 50(45)			

		00

C33-C31-C34	111.29(47)
C32-C31-C34	110.55(45)

C1-C2-C3	122.42(47)

Uij-Werte (Å²·10³) des Temperaturfaktors exp($-2\pi^{2}[h^{2}a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}])$

	\mathbf{U}^{11}	U ²²	U ³³	U^{23}	U^{13}	U^{12}
Er1	0.01560(11)	0.01109(11)	0.01918(12)	0.00038(9)	0.00035(9)	0.00051(8)
01	0.0240(19)	0.0141(18)	0.0217(19)	0.0015(14)	-0.0012(15)	0.0029(15)
07	0.0196(18)	0.0153(18)	0.026(2)	0.0063(15)	-0.0014(15)	0.0068(15)
08	0.0140(17)	0.0211(19)	0.0201(18)	0.0038(15)	0.0012(14)	0.0065(15)
05	0.0171(17)	0.0158(18)	0.026(2)	0.0020(15)	0.0035(15)	0.0047(15)
03	0.029(2)	0.0109(17)	0.026(2)	-0.0034(15)	-0.0027(16)	0.0016(16)
C2	0.013(2)	0.016(2)	0.017(2)	-0.001(2)	-0.0045(19)	-0.001(2)
02	0.0217(18)	0.0113(17)	0.0197(19)	-0.0001(14)	-0.0019(15)	0.0023(14)
C3	0.012(2)	0.013(2)	0.017(2)	-0.0030(19)	-0.0029(19)	-0.0007(19)
04	0.0238(19)	0.0133(18)	0.030(2)	0.0012(15)	-0.0078(16)	0.0034(15)
C52	0.043(4)	0.024(3)	0.027(3)	-0.003(2)	-0.006(3)	0.015(3)
C1	0.021(3)	0.009(2)	0.020(3)	0.0001(19)	-0.008(2)	-0.002(2)
C4	0.015(2)	0.013(2)	0.025(3)	0.001(2)	0.003(2)	-0.003(2)
C51	0.020(3)	0.021(3)	0.028(3)	0.000(2)	-0.004(2)	0.009(2)
C6	0.014(2)	0.017(2)	0.019(3)	0.004(2)	0.002(2)	0.000(2)
C53	0.024(3)	0.027(3)	0.041(4)	0.000(3)	-0.006(3)	0.005(2)
C5	0.014(2)	0.018(3)	0.020(3)	0.000(2)	0.003(2)	-0.004(2)
C54	0.035(3)	0.025(3)	0.029(3)	0.005(2)	-0.008(3)	0.010(3)
C31	0.031(3)	0.009(2)	0.027(3)	-0.002(2)	0.004(2)	0.001(2)
C33	0.043(4)	0.016(3)	0.037(3)	0.005(2)	0.012(3)	-0.001(3)
C64	0.028(3)	0.019(3)	0.058(4)	0.002(3)	0.007(3)	0.006(2)
C63	0.031(3)	0.052(4)	0.034(3)	-0.003(3)	-0.014(3)	0.011(3)
C34	0.033(3)	0.019(3)	0.034(3)	-0.008(2)	0.004(3)	-0.001(2)
C61	0.006(2)	0.021(3)	0.028(3)	0.005(2)	-0.001(2)	0.006(2)
C43	0.028(3)	0.025(3)	0.071(5)	0.022(3)	0.009(3)	-0.004(3)
C32	0.031(3)	0.022(3)	0.027(3)	-0.002(2)	0.006(2)	0.005(2)
C42	0.034(3)	0.030(3)	0.030(3)	0.008(3)	0.002(3)	0.016(3)
C44	0.033(3)	0.031(3)	0.031(3)	-0.003(3)	-0.001(3)	0.016(3)
C62	0.022(3)	0.041(4)	0.047(4)	0.014(3)	0.008(3)	0.013(3)
C41	0.019(3)	0.012(2)	0.031(3)	0.004(2)	0.001(2)	0.007(2)
06	0.0167(17)	0.0112(17)	0.0247(19)	0.0033(14)	0.0007(14)	0.0025(14)
N1	0.018(2)	0.017(2)	0.023(2)	-0.0040(18)	-0.0024(18)	-0.0016(17)
Si1	0.0198(7)	0.0136(7)	0.0234(7)	-0.0008(6)	-0.0004(6)	-0.0021(6)
C11	0.036(3)	0.018(3)	0.038(4)	0.005(2)	0.006(3)	-0.006(2)
C12	0.025(3)	0.028(3)	0.050(4)	-0.001(3)	0.012(3)	-0.002(3)
C13	0.039(4)	0.027(3)	0.037(4)	-0.010(3)	-0.008(3)	-0.001(3)
Si2	0.0165(7)	0.0191(7)	0.043(1)	-0.0068(7)	0.0043(7)	-0.0029(6)
C23	0.028(3)	0.019(3)	0.042(4)	-0.004(3)	0.006(3)	-0.003(2)
C22	0.032(4)	0.032(4)	0.093(6)	-0.015(4)	-0.027(4)	0.007(3)
C21	0.052(5)	0.022(3)	0.105(7)	-0.006(4)	0.045(5)	-0.007(3)

9.7 Vollständiger Datensatz der Röntgenstrukturanalyse von [Eu(Mal)₃]₂

Lageparameter der Nichtwasserstoffatome in Verbindung [Eu(Mal)₃]₂

Atomkoordinaten (·10 ⁴) und äquivalente isotrope Auslenkungsparameter (Å	$(2^{2} \cdot 10^{3})$ U(eq)
wird berechnet als ein Drittel der Spur des orthogonalen U ^{ij} Tensors	

	x	y	Z	U(eq)		X	y	Z	U(eq)
Eu(1)	1583(1)	339(1)	1205(1)	13(1)	C(16)	5822(4)	1065(4)	3708(4)	32(1)
O(1)	1117(3)	-1324(2)	1552(2)	19(1)	C(17)	5181(5)	1354(5)	4316(4)	42(1)
O(2)	1289(2)	494(2)	2686(2)	18(1)	C(18)	5338(5)	-120(4)	3294(4)	44(1)
O(3)	693(3)	-2691(2)	2267(2)	24(1)	C(19)	7237(4)	1544(5)	4346(4)	49(2)
O(4)	1340(3)	333(2)	4213(2)	23(1)	C(20)	3164(4)	2412(3)	-994(3)	24(1)
O(5)	3640(2)	725(2)	2109(2)	18(1)	C(21)	4007(5)	3155(4)	-1379(4)	39(1)
O(6)	2614(2)	1188(2)	284(2)	15(1)	C(22)	2366(4)	2893(4)	-742(4)	30(1)
O (7)	5738(2)	1587(2)	2897(2)	26(1)	C(23)	2373(5)	1350(4)	-1755(4)	32(1)
O(8)	4079(2)	2351(2)	-75(2)	23(1)	C(24)	1702(3)	2723(3)	1986(3)	16(1)
O(9)	2265(2)	2189(2)	1873(2)	17(1)	C(25)	-381(3)	-2396(3)	-1561(3)	17(1)
O(10)	-130(2)	791(2)	462(2)	14(1)	C(26)	429(3)	-1489(3)	-816(3)	15(1)
0(11)	2311(2)	3727(2)	2542(2)	21(1)	C(27)	3670(4)	4342(3)	2892(3)	21(1)
O(12)	1660(2)	-1235(2)	-279(2)	17(1)	C(28)	3988(4)	4383(3)	1997(4)	30(1)
C(1)	957(3)	-1670(3)	2269(3)	19(1)	C(29)	3866(4)	5422(3)	3404(4)	33(1)
C(2)	999(4)	-1121(3)	3125(3)	21(1)	C(30)	4415(4)	3911(3)	3650(4)	27(1)
C(3)	1211(3)	-59(3)	3292(3)	18(1)	C(31)	2463(4)	-1594(3)	-623(3)	19(1)
C(4)	943(4)	-3375(3)	1633(3)	25(1)	C(32)	3738(4)	-968(3)	249(4)	26(1)
C(5)	2303(4)	-2844(4)	1816(4)	33(1)	C(33)	2125(4)	-2765(3)	-755(4)	26(1)
C(6)	37(4)	-3642(3)	546(4)	29(1)	C(34)	2435(4)	-1280(4)	-1570(4)	29(1)
C(7)	716(5)	-4344(3)	2036(4)	31(1)	C(35)	9020(4)	5622(4)	4944(4)	30(1)
C(8)	1377(4)	1374(3)	4525(3)	24(1)	C(36)	9380(4)	6241(4)	4342(4)	29(1)
C(9)	1487(5)	1426(4)	5589(3)	30(1)	C(37)	8709(5)	5938(4)	3309(4)	34(1)
C(10)	170(5)	1388(4)	3847(4)	33(1)	C(38)	7654(5)	4991(4)	2857(4)	42(1)
C(11)	2511(5)	2236(4)	4535(4)	35(1)	C(39)	7292(5)	4367(4)	3444(5)	48(2)
C(12)	4641(3)	1373(3)	2126(3)	17(1)	C(40)	7966(5)	4683(4)	4473(4)	40(1)
C(13)	4763(3)	1921(3)	1413(3)	18(1)	C(41)	9741(5)	5947(4)	6066(4)	41(1
C(14)	3737(3)	1779(3)	533(3)	15(1)					

Bindungslängen [Å] in [Eu(Mal)₃]₂

Bindung	Bindungsläng		
Diliuung	e		
Eu(1)-O(5)	2.288(3)		
Eu(1)-O(6)	2.347(3)		
Eu(1)-O(2)	2.355(3)		
Eu(1)-O(1)	2.368(3)		
Eu(1)-O(10)	2.397(3)		
Eu(1)-O(9)	2.405(3)		
Eu(1)-O(10)#1	2.426(3)		
Eu(1)-O(12)	3.010(3)		
Eu(1)-C(26)	3.217(4)		
Eu(1)-Eu(1)#1	4.0105(5)		

Bindung	Bindungslänge
C(4)-C(7)	1.523(6)
C(4)-C(6)	1.517(7)
C(4)-C(5)	1.521(6)
C(8)-C(10)	1.509(7)
C(8)-C(11)	1.513(6)
C(8)-C(9)	1.523(6)
C(12)-C(13)	1.393(6)
C(13)-C(14)	1.407(5)
C(16)-C(17)	1.523(7)
C(16)-C(18)	1.529(7)

O(1)-C(1)	1.264(5)
O(2)-C(3)	1.256(5)
O(3)-C(1)	1.357(5)
O(3)-C(4)	1.467(5)
O(4)-C(3)	1.347(5)
O(4)-C(8)	1.472(5)
O(5)-C(12)	1.263(5)
O(6)-C(14)	1.255(4)
O(7)-C(12)	1.351(5)
O(7)-C(16)	1.465(6)
O(8)-C(14)	1.355(5)
O(8)-C(20)	1.474(5)
O(9)-C(24)	1.242(5)
O(10)-C(26)#1	1.298(4)
O(10)-Eu(1)#1	2.426(3)
O(11)-C(24)	1.345(4)
O(11)-C(27)	1.482(5)
O(12)-C(26)	1.361(4)
O(12)-C(31)	1.494(4)
C(1)-C(2)	1.390(6)
C(2)-C(3)	1.402(6)

C(16)-C(19)	1.537(6)
C(20)-C(23)	1.516(6)
C(20)-C(22)	1.524(6)
C(20)-C(21)	1.527(6)
C(24)-C(25)#1	1.432(5)
C(25)-C(26)	1.369(5)
C(25)-C(24)#1	1.432(5)
C(26)-O(10)#1	1.298(4)
C(27)-C(29)	1.521(6)
C(27)-C(28)	1.519(6)
C(27)-C(30)	1.520(6)
C(31)-C(34)	1.508(6)
C(31)-C(33)	1.523(6)
C(31)-C(32)	1.523(6)
C(35)-C(40)	1.383(7)
C(35)-C(36)	1.391(7)
C(35)-C(41)	1.507(7)
C(36)-C(37)	1.388(7)
C(37)-C(38)	1.388(7)
C(38)-C(39)	1.380(9)
C(39)-C(40)	1.382(8)

Bindungswinkel [°] in [Eu(Mal)₃]₂

Bindung	Bindungswinkel
O(5)-Eu(1)-O(6)	74.56(9)
O(5)-Eu(1)-O(2)	90.64(10)
O(6)-Eu(1)-O(2)	146.52(9)
O(5)-Eu(1)-O(1)	87.30(9)
O(6)-Eu(1)-O(1)	134.18(9)
O(2)-Eu(1)-O(1)	73.01(9)
O(5)-Eu(1)-O(10)	153.73(9)
O(6)-Eu(1)-O(10)	92.70(9)
O(2)-Eu(1)-O(10)	87.77(9)
O(1)-Eu(1)-O(10)	117.10(9)
O(5)-Eu(1)-O(9)	82.98(9)
O(6)-Eu(1)-O(9)	74.21(9)
O(2)-Eu(1)-O(9)	74.29(9)
O(1)-Eu(1)-O(9)	145.70(9)
O(10)-Eu(1)-O(9)	71.34(9)
O(5)-Eu(1)-O(10)#1	130.51(9)
O(6)-Eu(1)-O(10)#1	80.81(9)
O(2)-Eu(1)-O(10)#1	129.29(9)
O(1)-Eu(1)-O(10)#1	80.04(9)
O(10)-Eu(1)-O(10)#1	67.47(10)
O(9)-Eu(1)-O(10)#1	130.13(9)
O(5)-Eu(1)-O(12)	85.29(8)
O(6)-Eu(1)-O(12)	69.39(8)
O(2)-Eu(1)-O(12)	140.36(9)
O(1)-Eu(1)-O(12)	67.42(8)
O(10)-Eu(1)-O(12)	112.07(8)
O(9)-Eu(1)-O(12)	143.53(8)
O(10)#1-Eu(1)-O(12)	45.67(8)
O(5)-Eu(1)-C(26)	110.25(9)
O(6)-Eu(1)-C(26)	77.84(9)
O(2)-Eu(1)-C(26)	135.61(9)

Bindung	Bindungswinkel
O(2)-C(3)-O(4)	122.0(4)
O(2)-C(3)-C(2)	126.3(4)
O(4)-C(3)-C(2)	111.7(4)
O(3)-C(4)-C(7)	102.5(3)
O(3)-C(4)-C(6)	110.0(3)
C(7)-C(4)-C(6)	111.2(4)
O(3)-C(4)-C(5)	108.9(3)
C(7)-C(4)-C(5)	110.1(4)
C(6)-C(4)-C(5)	113.6(4)
O(4)-C(8)-C(10)	108.6(3)
O(4)-C(8)-C(11)	110.9(4)
C(10)-C(8)-C(11)	112.9(4)
O(4)-C(8)-C(9)	102.3(3)
C(10)-C(8)-C(9)	111.5(4)
C(11)-C(8)-C(9)	110.1(4)
O(5)-C(12)-O(7)	119.6(4)
O(5)-C(12)-C(13)	126.8(4)
O(7)-C(12)-C(13)	113.5(3)
C(12)-C(13)-C(14)	122.5(3)
O(6)-C(14)-O(8)	120.8(3)
O(6)-C(14)-C(13)	126.8(4)
O(8)-C(14)-C(13)	112.4(3)
O(7)-C(16)-C(17)	111.0(4)
O(7)-C(16)-C(18)	110.4(4)
C(17)-C(16)-C(18)	113.4(4)
O(7)-C(16)-C(19)	101.6(4)
C(17)-C(16)-C(19)	110.0(4)
C(18)-C(16)-C(19)	109.8(4)
O(8)-C(20)-C(23)	111.7(4)
O(8)-C(20)-C(22)	110.5(4)
C(23)-C(20)-C(22)	111.7(4)

Bindung	Bindungswinkel	Bindung	Bindungswinkel
O(1)-Eu(1)-C(26)	69.54(10)	O(8)-C(20)-C(21)	101.9(3)
O(10)-Eu(1)-C(26)	88.67(9)	C(23)-C(20)-C(21)	110.2(4)
O(9)-Eu(1)-C(26)	144.45(10)	C(22)-C(20)-C(21)	110.4(4)
O(10)#1-Eu(1)-C(26)	21.23(9)	O(9)-C(24)-O(11)	121.8(3)
O(12)-Eu(1)-C(26)	24.97(8)	O(9)-C(24)-C(25)#1	127.0(3)
O(5)-Eu(1)-Eu(1)#1	158.25(7)	O(11)-C(24)-C(25)#1	111.3(3)
O(6)-Eu(1)-Eu(1)#1	86.08(6)	C(26)-C(25)-C(24)#1	122.3(3)
O(2)-Eu(1)-Eu(1)#1	111.09(7)	O(10)#1-C(26)-O(12)	109.9(3)
O(1)-Eu(1)-Eu(1)#1	99.65(7)	O(10)#1-C(26)-C(25)	125.7(3)
O(10)-Eu(1)-Eu(1)#1	33.97(6)	O(12)-C(26)-C(25)	124.2(3)
O(9)-Eu(1)-Eu(1)#1	101.46(6)	O(10)#1-C(26)-Eu(1)	42.59(17)
O(10)#1-Eu(1)-Eu(1)#1	33.50(6)	O(12)-C(26)-Eu(1)	68.98(19)
O(12)-Eu(1)-Eu(1)#1	78.57(5)	C(25)-C(26)-Eu(1)	159.9(3)
C(26)-Eu(1)-Eu(1)#1	54.71(7)	O(11)-C(27)-C(29)	102.2(3)
C(1)-O(1)-Eu(1)	134.2(3)	O(11)-C(27)-C(28)	109.6(3)
C(3)-O(2)-Eu(1)	135.1(3)	C(29)-C(27)-C(28)	110.9(4)
C(1)-O(3)-C(4)	122.8(3)	O(11)-C(27)-C(30)	111.6(3)
C(3)-O(4)-C(8)	122.8(3)	C(29)-C(27)-C(30)	109.8(4)
C(12)-O(5)-Eu(1)	133.5(3)	C(28)-C(27)-C(30)	112.4(4)
C(14)-O(6)-Eu(1)	131.7(2)	O(12)-C(31)-C(34)	109.2(3)
C(12)-O(7)-C(16)	122.3(3)	O(12)-C(31)-C(33)	113.6(3)
C(14)-O(8)-C(20)	122.4(3)	C(34)-C(31)-C(33)	111.6(4)
C(24)-O(9)-Eu(1)	132.5(2)	O(12)-C(31)-C(32)	101.4(3)
C(26)#1-O(10)-Eu(1)	131.2(2)	C(34)-C(31)-C(32)	111.1(4)
C(26)#1-O(10)-Eu(1)#1	116.2(2)	C(33)-C(31)-C(32)	109.5(4)
Eu(1)-O(10)-Eu(1)#1	112.53(10)	C(40)-C(35)-C(36)	117.5(5)
C(24)-O(11)-C(27)	122.9(3)	C(40)-C(35)-C(41)	120.5(5)
C(26)-O(12)-C(31)	126.4(3)	C(36)-C(35)-C(41)	122.0(4)
C(26)-O(12)-Eu(1)	86.0(2)	C(37)-C(36)-C(35)	121.7(4)
C(31)-O(12)-Eu(1)	146.3(2)	C(38)-C(37)-C(36)	119.6(5)
O(1)-C(1)-O(3)	121.3(4)	C(39)-C(38)-C(37)	119.3(5)
O(1)-C(1)-C(2)	127.8(4)	C(38)-C(39)-C(40)	120.3(5)
O(3)-C(1)-C(2)	110.9(4)	C(35)-C(40)-C(39)	121.6(5)
C(1)-C(2)-C(3)	122.3(4)		

Uij-Werte (Å²·10³) des Temperaturfaktors exp($-2\pi^{2}[h^{2}a^{*2}U^{11} + ... + 2h k a^{*}b^{*}U^{12}])$

	\mathbf{U}^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Eu(1)	10(1)	14(1)	14(1)	5(1)	7(1)	3(1)
0(1)	21(1)	19(1)	21(2)	7(1)	13(1)	7(1)
O(2)	21(1)	22(1)	15(1)	9(1)	13(1)	7(1)
O(3)	31(2)	19(1)	30(2)	12(1)	20(1)	11(1)
O(4)	32(2)	23(1)	17(2)	8(1)	14(1)	8(1)
O(5)	11(1)	22(1)	18(1)	9(1)	7(1)	4(1)
O(6)	11(1)	19(1)	18(1)	7(1)	9(1)	3(1)
O (7)	10(1)	37(2)	26(2)	16(1)	5(1)	5(1)
O(8)	16(1)	31(2)	26(2)	19(1)	14(1)	7(1)
O(9)	14(1)	19(1)	19(1)	7(1)	9(1)	4(1)
O(10)	12(1)	15(1)	16(1)	5(1)	9(1)	4(1)
0(11)	13(1)	16(1)	26(2)	-2(1)	6(1)	1(1)
O(12)	10(1)	21(1)	21(1)	3(1)	8(1)	5(1)
C(1)	15(2)	20(2)	25(2)	13(2)	10(2)	7(2)
C(2)	24(2)	21(2)	21(2)	13(2)	14(2)	7(2)
C(3)	10(2)	25(2)	17(2)	6(2)	6(2)	4(2)
C(4)	33(2)	20(2)	33(2)	14(2)	22(2)	14(2)

C(5)	33(3)	30(2)	48(3)	21(2)	24(2)	17(2)
C(6)	39(3)	21(2)	34(3)	12(2)	21(2)	13(2)
C(7)	41(3)	22(2)	41(3)	16(2)	24(2)	15(2)
C(8)	30(2)	22(2)	20(2)	5(2)	14(2)	5(2)
C(9)	40(3)	31(2)	18(2)	7(2)	18(2)	10(2)
C(10)	40(3)	38(3)	26(2)	7(2)	16(2)	20(2)
C(11)	40(3)	28(2)	29(3)	4(2)	20(2)	1(2)
C(12)	11(2)	21(2)	18(2)	6(2)	6(2)	5(2)
C(13)	11(2)	21(2)	21(2)	9(2)	9(2)	3(2)
C(14)	17(2)	18(2)	17(2)	9(2)	12(2)	8(2)
C(16)	15(2)	48(3)	26(2)	21(2)	3(2)	8(2)
C(17)	39(3)	67(4)	13(2)	12(2)	8(2)	16(3)
C(18)	40(3)	50(3)	47(3)	28(3)	14(3)	24(3)
C(19)	19(2)	72(4)	42(3)	33(3)	1(2)	9(2)
C(20)	23(2)	29(2)	21(2)	14(2)	12(2)	7(2)
C(21)	37(3)	44(3)	36(3)	28(2)	18(2)	9(2)
C(22)	35(3)	33(2)	29(2)	15(2)	13(2)	19(2)
C(23)	38(3)	31(2)	24(2)	10(2)	16(2)	10(2)
C(24)	16(2)	16(2)	15(2)	5(2)	9(2)	4(2)
C(25)	15(2)	18(2)	18(2)	4(2)	9(2)	7(2)
C(26)	13(2)	18(2)	19(2)	10(2)	12(2)	6(2)
C(27)	14(2)	17(2)	25(2)	3(2)	6(2)	1(2)
C(28)	28(2)	24(2)	30(3)	9(2)	15(2)	0(2)
C(29)	24(2)	21(2)	38(3)	-1(2)	5(2)	3(2)
C(30)	18(2)	24(2)	28(2)	8(2)	6(2)	1(2)
C(31)	14(2)	22(2)	27(2)	8(2)	13(2)	9(2)
C(32)	13(2)	28(2)	34(3)	4(2)	11(2)	7(2)
C(33)	24(2)	23(2)	38(3)	9(2)	19(2)	10(2)
C(34)	31(2)	41(3)	34(3)	18(2)	24(2)	21(2)
C(35)	30(2)	32(2)	35(3)	9(2)	20(2)	16(2)
C(36)	27(2)	25(2)	37(3)	8(2)	17(2)	9(2)
C(37)	39(3)	39(3)	36(3)	15(2)	21(2)	22(2)
C(38)	35(3)	52(3)	34(3)	-1(3)	11(2)	19(2)
C(39)	29(3)	42(3)	55(4)	-7(3)	21(3)	0(2)
C(40)	41(3)	32(3)	54(3)	11(2)	32(3)	10(2)
C(41)	57(3)	43(3)	33(3)	12(2)	22(3)	30(3)

Lageparameter der Wasserstoffatome in Verbindung [Eu(Mal)₃]₂

	4	. 2	3
Atomkoordinaten (·10) und äquivalente isotrope Auslenkungsparameter (Å ·10	Ĵ)

	x	y	Z	U(eq)		x	y	Z	U(eq)
H(2)	879	-1478	3615	25	H(22B)	1812	2983	-1352	45
H(5A)	2432	-2238	1532	49	H(22C)	2907	3578	-251	45
H(5B)	2520	-3345	1496	49	H(23A)	2913	1076	-1917	47
H(5C)	2832	-2608	2538	49	H(23B)	1800	1425	-2365	47
H(6A)	-818	-3975	480	44	H(23C)	1894	861	-1475	47
H(6B)	184	-4126	132	44	H(25)	-55	-2824	-1806	20
H(6C)	161	-2997	322	44	H(28A)	3883	3685	1694	44
H(7A)	1262	-4138	2754	47	H(28B)	4854	4888	2218	44
H(7B)	895	-4850	1680	47	H(28C)	3433	4603	1503	44
H(7C)	-155	-4668	1935	47	H(29A)	3413	5710	2907	49
H(9A)	750	864	5574	44	H(29B)	4757	5891	3711	49
H(9B)	1548	2109	5885	44	H(29C)	3555	5361	3922	49
H(9C)	2235	1341	5992	44	H(30A)	4161	3878	4201	41
H(10A)	119	1339	3167	50	H(30B)	5305	4373	3913	41

	X	у	Z	U(eq)		x	y	Z	U(eq)
H(10B)	139	2045	4097	50	H(30C)	4261	3204	3323	41
H(10C)	-532	790	3837	50	H(32A)	3958	-215	329	39
H(11A)	3262	2165	4954	53	H(32B)	4361	-1139	114	39
H(11B)	2560	2922	4807	53	H(32C)	3713	-1147	865	39
H(11C)	2444	2180	3850	53	H(33A)	1873	-2990	-231	39
H(13)	5569	2410	1525	21	H(33B)	2849	-2900	-704	39
H(17A)	5436	2116	4471	64	H(33C)	1434	-3159	-1414	39
H(17B)	5420	1142	4941	64	H(34A)	1597	-1672	-2112	44
H(17C)	4276	991	3927	64	H(34B)	3036	-1438	-1754	44
H(18A)	4430	-427	2915	66	H(34C)	2653	-524	-1460	44
H(18B)	5556	-440	3850	66	H(36)	10104	6887	4646	35
H(18C)	5717	-253	2851	66	H(37)	8969	6376	2914	41
H(19A)	7653	1440	3924	74	H(38)	7187	4776	2150	50
H(19B)	7423	1199	4886	74	H(39)	6575	3716	3140	57
H(19C)	7537	2297	4634	74	H(40)	7700	4246	4866	48
H(21A)	4540	3828	-868	59	H(41A)	10518	6573	6260	61
H(21B)	3493	3272	-1992	59	H(41B)	9934	5373	6287	61
H(21C)	4527	2843	-1522	59	H(41C)	9241	6107	6380	61
H(22A)	1867	2426	-459	45					

9.8 Vollständiger Datensatz der Röntgenstrukturanalyse von [Nd{OCH(CF₃)₂}₃(H₂O)₂)]₂

Lageparameter der Nichtwasserstoffatome in Verbindung [Nd{OCH(CF₃)}₃(H₂O)₂)]₂

Atomkoordinaten ($\cdot 10^4$) und äquivalente isotrope Auslenkungsparameter (Å ² $\cdot 10^3$) U(e	eq)
wird berechnet als ein Drittel der Spur des orthogonalen U ^{ij} Tensors	

	X	У	Z	U(eq)		x	У	Z	U(eq)
Nd(1)	5941(1)	10075(1)	4202(1)	31(1)	F(2)	8745(3)	8389(2)	4630(3)	127(2)
0(1)	7636(2)	9762(2)	4239(1)	49(1)	F(3A)	10230(20)	8930(20)	4321(17)	95(5)
O(2)	4242(2)	10487(1)	4687(1)	37(1)	F(4A)	10248(9)	10464(8)	3875(9)	136(6)
O(3)	5394(3)	9042(2)	3616(2)	71(1)	F(5A)	8768(8)	11107(7)	3877(12)	127(6)
O(4)	6643(3)	11403(2)	4852(2)	98(1)	F(6A)	8741(13)	10027(11)	3068(7)	165(7)
O(5A)	6360(10)	10941(11)	3135(9)	89(4)	F(3B)	10140(20)	8780(20)	4128(18)	142(11)
O(5B)	6350(20)	10820(20)	3017(14)	182(11)	F(4B)	8736(11)	10786(14)	3355(9)	138(6)
C(1A)	8721(6)	9759(5)	4272(5)	62(2)	F(5B)	10081(9)	10165(9)	3427(8)	130(5)
C(1B)	8554(15)	9559(11)	3921(12)	60(5)	F(6B)	9290(20)	10804(16)	4236(10)	223(10)
C(2)	9155(4)	8918(4)	4242(4)	86(2)	F(7)	3925(3)	10517(3)	3324(1)	95(1)
C(3A)	9191(10)	10373(9)	3788(9)	69(4)	F(8)	2670(3)	9880(2)	3837(2)	101(1)
C(3B)	9011(19)	10187(17)	3460(30)	98(12)	F(9)	2385(3)	11064(2)	3420(2)	107(1)
C(4)	3442(3)	10973(2)	4413(2)	44(1)	F(10)	3134(3)	12361(2)	4081(2)	91(1)
C(5)	3107(4)	10616(3)	3740(2)	65(1)	F(11)	4708(2)	11901(2)	3958(2)	80(1)
C(6)	3838(4)	11855(3)	4344(2)	58(1)	F(12)	4108(3)	12148(2)	4937(2)	92(1)
C(7A)	5215(6)	8537(4)	3078(3)	60(2)	F(13)	4268(5)	7332(3)	2810(3)	171(2)
C(8A)	4468(10)	7882(7)	3293(6)	76(3)	F(14)	3535(3)	8243(3)	3417(3)	138(2)
C(9A)	6223(9)	8171(8)	2849(6)	105(4)	F(15A)	4692(5)	7493(3)	3845(3)	121(2)
C(7B)	5380(15)	8117(10)	3418(8)	65(4)	F(15B)	4490(30)	8746(18)	2520(12)	162(13)
C(8B)	4260(30)	8180(30)	2920(20)	144(19)	F(16)	6197(6)	7536(6)	2440(4)	243(5)
C(9B)	5900(40)	8570(30)	2290(30)	200(20)	F(17)	6811(5)	7817(4)	3361(4)	186(3)
F(1A)	8912(5)	8536(4)	3644(4)	130(2)	F(18)	6856(6)	8716(5)	2656(3)	199(3)
F(1B)	9190(9)	9273(11)	5028(8)	125(6)					

Bindung	Bindungslänge
Nd(1)-O(3)	2.167(3)
Nd(1)-O(1)	2.207(3)
Nd(1)-O(2)#1	2.406(2)
Nd(1)-O(2)	2.450(2)
Nd(1)-O(5A)	2.608(12)
Nd(1)-O(4)	2.678(3)
Nd(1)-O(5B)	2.71(2)
Nd(1)-Nd(1)#1	3.9757(7)
O(1)-C(1B)	1.363(18)
O(1)-C(1A)	1.375(8)
O(2)-C(4)	1.397(4)
O(2)-Nd(1)#1	2.406(2)
O(3)-C(7A)	1.370(6)
O(3)-C(7B)	1.561(15)
C(1A)-C(2)	1.481(11)
C(1A)-C(3A)	1.511(15)
C(1B)-C(2)	1.44(2)
C(1B)-C(3B)	1.49(5)
C(2)-F(2)	1.270(7)
C(2)-F(3B)	1.28(3)
C(2)-F(3A)	1.36(3)
C(2)-F(1A)	1.378(10)
C(2)-F(1B)	1.669(19)
C(3A)-F(5A)	1.33(2)
C(3A)-F(4A)	1.357(17)
C(3A)-F(6A)	1.64(3)
C(3B)-F(4B)	1.06(3)

Bindungslängen	[Å] in	[Nd{OCH(CF ₃)} ₃ (H	2 O)2)]2
Bindungslängen	[Å] in	$[Nd{OCH(CF_3)}_3(H_2)]$	2 O)2)

Bindung	Bindungslänge
C(3B)-F(5B)	1.36(3)
C(3B)-F(6B)	1.88(4)
C(4)-C(5)	1.522(6)
C(4)-C(6)	1.532(6)
C(5)-F(9)	1.331(5)
C(5)-F(7)	1.335(6)
C(5)-F(8)	1.338(6)
C(6)-F(12)	1.319(5)
C(6)-F(10)	1.324(5)
C(6)-F(11)	1.345(6)
C(7A)-C(9A)	1.481(12)
C(7A)-C(8A)	1.491(14)
C(8A)-F(15A)	1.301(12)
C(8A)-F(13)	1.341(10)
C(8A)-F(14)	1.344(14)
C(9A)-F(18)	1.258(13)
C(9A)-F(16)	1.319(10)
C(9A)-F(17)	1.389(15)
C(7B)-C(8B)	1.73(5)
C(7B)-F(17)	1.881(19)
C(8B)-F(15B)	1.25(5)
C(8B)-F(14)	1.35(4)
C(8B)-F(13)	1.41(5)
C(9B)-F(18)	1.44(4)
C(9B)-F(16)	1.76(5)
C(9B)-F(15B)	1.86(6)
F(1B)-F(2)	1.741(19)

Bindungswinkel [°] in [Nd{OCH(CF₃)}₃(H₂O)₂)]₂

Bindung	Bindungswin kel
O(3)-Nd(1)-O(1)	98.47(12)
O(3)-Nd(1)-O(2)#1	99.60(11)
O(1)-Nd(1)-O(2)#1	88.55(9)
O(3)-Nd(1)-O(2)	98.40(10)
O(1)-Nd(1)-O(2)	154.67(9)
O(2)#1-Nd(1)-O(2)	70.08(8)
O(3)-Nd(1)-O(5A)	92.8(5)
O(1)-Nd(1)-O(5A)	87.4(2)
O(2)#1-Nd(1)-O(5A)	167.4(5)
O(2)-Nd(1)-O(5A)	110.5(2)
O(3)-Nd(1)-O(4)	176.28(14)
O(1)-Nd(1)-O(4)	81.33(12)
O(2)#1-Nd(1)-O(4)	84.11(12)
O(2)-Nd(1)-O(4)	83.03(12)
O(5A)-Nd(1)-O(4)	83.5(5)
O(3)-Nd(1)-O(5B)	86.8(8)
O(1)-Nd(1)-O(5B)	87.0(6)
O(2)#1-Nd(1)-O(5B)	172.7(8)
O(2)-Nd(1)-O(5B)	112.7(6)
O(5A)-Nd(1)-O(5B)	6.1(13)

Bindung	Bindungslwi nkel
C(1A)-C(2)-F(1B)	69.5(7)
F(5A)-C(3A)-F(4A)	106.4(16)
F(5A)-C(3A)-C(1A)	110.9(14)
F(4A)-C(3A)-C(1A)	112.3(11)
F(5A)-C(3A)-F(6A)	106.7(15)
F(4A)-C(3A)-F(6A)	119.4(15)
C(1A)-C(3A)-F(6A)	101.0(11)
F(4B)-C(3B)-F(5B)	110(2)
F(4B)-C(3B)-C(1B)	129(3)
F(5B)-C(3B)-C(1B)	113(3)
F(4B)-C(3B)-F(6B)	74(2)
F(5B)-C(3B)-F(6B)	82(2)
C(1B)-C(3B)-F(6B)	87(3)
O(2)-C(4)-C(5)	109.1(3)
O(2)-C(4)-C(6)	109.5(3)
C(5)-C(4)-C(6)	111.9(3)
F(9)-C(5)-F(7)	107.6(4)
F(9)-C(5)-F(8)	106.3(4)
F(7)-C(5)-F(8)	107.5(5)
F(9)-C(5)-C(4)	113.6(4)

O(4)-Nd(1)-O(5B)	89.5(8)	F(7)-C(5)-C(4)	112.0(4)
O(3)-Nd(1)-Nd(1)#1	101.00(9)	F(8)-C(5)-C(4)	109.5(4)
O(1)-Nd(1)-Nd(1)#1	122.80(7)	F(12)-C(6)-F(10)	107.6(4)
O(2)#1-Nd(1)-Nd(1)#1	35.41(5)	F(12)-C(6)-F(11)	106.2(4)
O(2)-Nd(1)-Nd(1)#1	34.67(5)	F(10)-C(6)-F(11)	106.9(4)
O(5A)-Nd(1)-Nd(1)#1	143.7(3)	F(12)-C(6)-C(4)	110.2(4)
O(4)-Nd(1)-Nd(1)#1	82.14(11)	F(10)-C(6)-C(4)	113.7(4)
O(5B)-Nd(1)-Nd(1)#1	146.9(6)	F(11)-C(6)-C(4)	111.8(4)
C(1B)-O(1)-C(1A)	34.0(8)	O(3)-C(7A)-C(9A)	109.9(6)
C(1B)-O(1)-Nd(1)	150.4(10)	O(3)-C(7A)-C(8A)	108.2(6)
C(1A)-O(1)-Nd(1)	166.7(4)	C(9A)-C(7A)-C(8A)	110.1(9)
C(4)-O(2)-Nd(1)#1	120.4(2)	F(15A)-C(8A)-F(13)	108.5(9)
C(4)-O(2)-Nd(1)	129.7(2)	F(15A)-C(8A)-F(14)	104.5(10)
Nd(1)#1-O(2)-Nd(1)	109.92(8)	F(13)-C(8A)-F(14)	105.1(8)
C(7A)-O(3)-C(7B)	38.6(6)	F(15A)-C(8A)-C(7A)	117.1(9)
C(7A)-O(3)-Nd(1)	160.5(4)	F(13)-C(8A)-C(7A)	113.4(9)
C(7B)-O(3)-Nd(1)	153.4(7)	F(14)-C(8A)-C(7A)	107.2(8)
O(1)-C(1A)-C(2)	111.8(6)	F(18)-C(9A)-F(16)	112.6(9)
O(1)-C(1A)-C(3A)	111.1(7)	F(18)-C(9A)-F(17)	100.2(10)
C(2)-C(1A)-C(3A)	116.4(9)	F(16)-C(9A)-F(17)	98.0(11)
O(1)-C(1B)-C(2)	114.9(15)	F(18)-C(9A)-C(7A)	110.9(11)
O(1)-C(1B)-C(3B)	116.5(17)	F(16)-C(9A)-C(7A)	119.1(9)
C(2)-C(1B)-C(3B)	124.5(16)	F(17)-C(9A)-C(7A)	113.9(9)
F(2)-C(2)-F(3B)	112.6(17)	O(3)-C(7B)-C(8B)	95.3(18)
F(2)-C(2)-F(3A)	110.0(17)	O(3)-C(7B)-F(17)	104.9(10)
F(3B)-C(2)-F(3A)	20(2)	C(8B)-C(7B)-F(17)	140.4(16)
F(2)-C(2)-F(1A)	97.2(7)	F(15B)-C(8B)-F(14)	125(5)
F(3B)-C(2)-F(1A)	89.1(15)	F(15B)-C(8B)-F(13)	129(3)
F(3A)-C(2)-F(1A)	108.9(14)	F(14)-C(8B)-F(13)	101(3)
F(2)-C(2)-C(1B)	123.2(8)	F(15B)-C(8B)-C(7B)	103(3)
F(3B)-C(2)-C(1B)	124.0(18)	F(14)-C(8B)-C(7B)	98(3)
F(3A)-C(2)-C(1B)	124.6(18)	F(13)-C(8B)-C(7B)	91(3)
F(1A)-C(2)-C(1B)	80.2(10)	F(18)-C(9B)-F(16)	84(3)
F(2)-C(2)-C(1A)	117.1(6)	F(18)-C(9B)-F(15B)	131(4)
F(3B)-C(2)-C(1A)	121.9(16)	F(16)-C(9B)-F(15B)	108(2)
F(3A)-C(2)-C(1A)	110.8(15)	C(2)-F(1B)-F(2)	43.7(5)
F(1A)-C(2)-C(1A)	111.9(6)	C(2)-F(2)-F(1B)	65.1(6)
C(1B)-C(2)-C(1A)	31.7(8)	C(8A)-F(13)-C(8B)	39.2(19)
F(2)-C(2)-F(1B)	71.2(6)	C(8A)-F(14)-C(8B)	40(2)
F(3B)-C(2)-F(1B)	101.6(15)	C(8B)-F(15B)-C(9B)	105(3)
F(3A)-C(2)-F(1B)	82.1(15)	C(9A)-F(16)-C(9B)	49.8(17)
F(1A)-C(2)-F(1B)	166.5(7)	C(9A)-F(17)-C(7B)	54.5(7)
C(1B)-C(2)-F(1B)	100.2(11)	C(9A)-F(18)-C(9B)	60.0(16)

Uij-Werte (Å²·10³) des Temperaturfaktors exp($-2\pi^{2}$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²])

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Nd(1)	35(1)	34(1)	23(1)	1(1)	1(1)	-1(1)
O(1)	36(1)	50(1)	61(2)	7(1)	5(1)	3(1)
O(2)	41(1)	40(1)	28(1)	4(1)	-4(1)	9(1)
O(3)	63(2)	81(2)	69(2)	-46(2)	-3(2)	-13(2)
O(4)	113(3)	60(2)	122(3)	-22(2)	-40(3)	1(2)
O(5A)	64(5)	129(9)	74(8)	70(7)	30(5)	37(6)
O(5B)	230(20)	240(30)	80(11)	61(13)	31(11)	-14(17)
C(1A)	34(3)	50(4)	103(7)	19(4)	-6(4)	-3(3)
C(1B)	38(9)	50(9)	93(15)	3(9)	19(9)	-8(7)

C(2)	55(3)	74(4)	129(7)	30(4)	18(3)	16(2)
C(3A)	40(5)	55(7)	113(10)	24(6)	0(5)	-20(4)
C(3B)	41(10)	66(13)	190(40)	-12(19)	11(16)	-10(9)
C(4)	41(2)	52(2)	39(2)	11(2)	-2(2)	11(2)
C(5)	62(3)	75(3)	57(3)	10(2)	-24(2)	8(2)
C(6)	71(3)	51(2)	53(2)	11(2)	-14(2)	18(2)
C(7A)	79(4)	58(3)	43(3)	-18(3)	-1(3)	-17(3)
C(8A)	81(6)	71(5)	76(7)	-34(5)	-4(6)	-27(4)
C(9A)	96(7)	120(9)	99(8)	-70(7)	35(6)	-7(7)
C(7B)	85(12)	55(8)	55(9)	-11(7)	-6(8)	8(8)
C(8B)	120(30)	180(50)	130(30)	-100(30)	30(30)	-70(30)
C(9B)	190(40)	230(50)	180(40)	90(40)	-50(30)	-110(40)
F(1A)	148(6)	110(4)	132(5)	-47(4)	-6(4)	35(4)
F(1B)	67(7)	165(14)	144(13)	81(11)	-30(7)	-14(7)
F(2)	110(3)	78(2)	195(5)	64(3)	58(3)	33(2)
F(3A)	41(5)	99(9)	146(10)	6(6)	-5(6)	22(5)
F(4A)	43(4)	131(10)	232(16)	86(10)	3(8)	-19(5)
F(5A)	78(5)	70(5)	233(17)	93(9)	25(9)	3(4)
F(6A)	175(13)	209(16)	111(9)	104(10)	71(9)	85(11)
F(3B)	80(14)	115(16)	230(30)	65(17)	52(14)	52(11)
F(4B)	110(8)	175(16)	129(10)	90(11)	15(8)	-27(9)
F(5B)	55(6)	157(11)	179(12)	51(8)	42(7)	-12(5)
F(6B)	240(20)	192(17)	230(20)	17(17)	0(16)	-154(18)
F(7)	121(3)	129(3)	36(1)	-13(2)	-4(2)	20(2)
F(8)	98(3)	83(2)	122(3)	-1(2)	-55(2)	-19(2)
F(9)	108(3)	121(3)	93(2)	12(2)	-68(2)	24(2)
F(10)	99(2)	65(2)	109(2)	28(2)	-25(2)	31(2)
F(11)	67(2)	88(2)	86(2)	34(2)	4(2)	-12(2)
F(12)	139(3)	59(2)	77(2)	-15(1)	-29(2)	20(2)
F(13)	237(6)	124(4)	151(4)	-74(3)	-6(4)	-89(4)
F(14)	86(3)	136(4)	193(5)	-7(3)	-15(3)	-33(3)
F(15A)	179(5)	83(3)	100(4)	22(3)	-30(4)	-29(3)
F(15B)	260(40)	150(20)	76(14)	15(14)	-88(19)	40(20)
F(16)	231(7)	271(9)	226(8)	-200(8)	83(6)	-35(6)
F(17)	160(5)	124(4)	275(9)	-64(5)	39(5)	20(4)
F(18)	213(7)	220(7)	162(5)	-53(5)	116(5)	-48(6)

9.9 Vollständiger Datensatz der Röntgenstrukturanalyse von Er₃O(OSiMe₃)₇(HOSiMe₃)(THF)₂

Lageparameter der Nichtwasserstoffatome in Verbindung Er₃O(OSiMe₃)₇(HOSiMe₃)(THF)₂

Atomkoordinaten (·104) und äquivalente isotrope Auslenkungsparameter (Å2·10³) U(eq) wird berechnet als ein Drittel der Spur des orthogonalen U^{ij} Tensors

	X	У	Z	U(eq)
Er(1)	2956(1)	5358(1)	1250(1)	37(1)
Er(2)	1674(1)	4856(1)	2014(1)	42(1)
Er(3)	2788(1)	3331(1)	2015(1)	43(1)
Si(1)	4186(1)	3871(2)	1312(1)	56(1)

Si(2)	1464(2)	2763(2)	2842(2)	73(1)
Si(3)	1824(1)	7023(2)	1244(2)	63(1)
Si(4)	1964(1)	3703(2)	501(1)	51(1)
Si(5)	3966(2)	6938(2)	2134(2)	90(1)
Si(6)	3172(2)	5999(2)	-464(1)	65(1)
Si(7)	49(1)	4803(3)	1549(2)	79(1)
Si(8)	2867(2)	942(2)	1537(2)	98(1)
O(1)	2700(2)	4835(3)	2340(2)	37(1)
O(2)	2210(2)	4125(3)	1223(2)	38(1)
O(3)	3474(2)	4043(3)	1454(3)	42(1)
O(4)	1870(3)	3466(4)	2436(3)	52(2)
O(5)	2043(3)	6006(3)	1449(3)	46(1)
O(6)	3011(3)	5622(4)	244(3)	56(2)
O(7)	3550(3)	6217(4)	1776(3)	63(2)
O(8)	758(3)	4798(5)	1760(3)	66(2)
O(9)	2817(3)	1992(4)	1741(4)	69(2)
O(10)	1502(3)	5570(5)	3015(3)	65(2)
0(11)	3358(3)	3100(4)	3007(3)	66(2)
C(1)	4455(6)	4757(9)	742(7)	109(5)
C(2)	4639(5)	3942(8)	2096(6)	90(4)
C(3)	4276(6)	2756(8)	933(7)	106(5)
C(4)	1979(6)	1891(8)	3235(6)	101(5)
C(5)	865(6)	2247(9)	2270(7)	113(5)
C(6)	1111(10)	3349(10)	3494(8)	153(8)
C(7)	1484(8)	7544(8)	1958(7)	122(6)
C(8)	2455(5)	7719(6)	979(6)	83(4)
C(9)	1270(6)	6971(8)	531(7)	104(4)
C(10)	1533(6)	4578(7)	20(5)	85(4)
C(11)	2621(5)	3275(6)	68(5)	69(3)
C(12)	1454(6)	2767(7)	634(6)	88(4)
C(13)	4204(10)	7822(13)	1462(9)	188(10)
C(14)	4657(8)	6467(10)	2487(11)	176(10)
C(15)	3574(9)	7678(13)	2670(9)	177(9)
C(16)	3784(8)	6800(10)	-362(6)	127(6)
C(17)	3421(8)	5097(8)	-1018(6)	109(5)
C(18)	2528(7)	6636(11)	-854(7)	137(7)
C(19)	-201(5)	5914(9)	1244(7)	102(4)
C(20)	-128(6)	3985(9)	896(8)	115(5)
C(21)	-385(6)	4503(11)	2256(9)	136(6)
C(22)	2254(11)	279(9)	1833(14)	226(14)
C(23)	2877(9)	794(9)	655(7)	142(7)
C(24)	3568(9)	392(9)	1930(7)	147(8)
C(25)	926(5)	5927(9)	3202(6)	86(4)
C(26)	1099(10)	6474(12)	3823(8)	140(7)
C(27)	1622(9)	6008(13)	4114(7)	131(6)
C(28)	1964(6)	5723(10)	3546(6)	108(5)
C(29)	3676(6)	2277(7)	3174(6)	85(4)
C(30)	3966(8)	2413(10)	3836(7)	119(6)
C(31)	3862(10)	3248(12)	4023(9)	175(10)
C(32)	3454(7)	3719(9)	3526(6)	97(4)
C(33)	164(11)	766(14)	9917(12)	72(6)
C(34)	-375(18)	480(20)	9367(18)	134(12)
C(35)	426(17)	380(20)	10383(18)	124(11)
C(37)	4946(15)	196(19)	643(15)	99(8)
C(36)	4619(15)	-264(19)	346(16)	104(9)
C(38)	5358(19)	580(20)	350(20)	145(13)

Bindung	Bindungslänge
Er(1)-O(7)	2.096(6)
Er(1)-O(6)	2.103(6)
Er(1)-O(3)	2.296(5)
Er(1)-O(5)	2.309(6)
Er(1)-O(1)	2.456(5)
Er(1)-O(2)	2.474(5)
Er(1)-Er(2)	3.4147(10)
Er(1)-Er(3)	3.4245(7)
Er(2)-O(8)	2.084(7)
Er(2)-O(5)	2.243(5)
Er(2)-O(4)	2.271(6)
Er(2)-O(2)	2.331(5)
Er(2)-O(1)	2.350(6)
Er(2)-O(10)	2.355(6)
Er(2)-Er(3)	3.3644(7)
Er(3)-O(9)	2.069(6)
Er(3)-O(3)	2.230(5)
Er(3)-O(4)	2.274(6)
Er(3)-O(2)	2.336(5)
Er(3)-O(1)	2.344(5)
Er(3)-O(11)	2.358(6)
Si(1)-O(3)	1.651(6)
Si(1)-C(3)	1.844(11)
Si(1)-C(2)	1.851(12)
Si(1)-C(1)	1.878(11)
Si(2)-O(4)	1.639(6)
Si(2)-C(6)	1.807(14)
Si(2)-C(4)	1.882(13)
Si(2)-C(5)	1.890(13)
Si(3)-O(5)	1.637(6)
Si(3)-C(8)	1.850(11)
Si(3)-C(7)	1.852(12)
Si(3)-C(9)	1.861(13)
Si(4)-O(2)	1.668(5)
Si(4)-C(12)	1.827(11)
Si(4)-C(10)	1.865(10)

Bindungslängen [Å] in Er₃O(OSiMe₃)₇(HOSiMe₃)(THF)₂

Bindung	Bindungslänge
Si(4)-C(11)	1.867(10)
Si(5)-O(7)	1.571(7)
Si(5)-C(14)	1.809(16)
Si(5)-C(15)	1.811(15)
Si(5)-C(13)	1.993(17)
Si(6)-O(6)	1.611(6)
Si(6)-C(16)	1.816(14)
Si(6)-C(17)	1.860(12)
Si(6)-C(18)	1.864(13)
Si(7)-O(8)	1.619(7)
Si(7)-C(20)	1.833(14)
Si(7)-C(21)	1.836(16)
Si(7)-C(19)	1.841(13)
Si(8)-O(9)	1.621(7)
Si(8)-C(22)	1.815(18)
Si(8)-C(23)	1.817(15)
Si(8)-C(24)	1.905(17)
O(10)-C(25)	1.461(12)
O(10)-C(28)	1.473(13)
O(11)-C(32)	1.412(13)
O(11)-C(29)	1.446(11)
C(25)-C(26)	1.540(18)
C(26)-C(27)	1.46(2)
C(27)-C(28)	1.485(17)
C(29)-C(30)	1.482(16)
C(30)-C(31)	1.323(19)
C(31)-C(32)	1.499(18)
C(33)-C(35)	1.23(4)
C(33)-C(34)	1.66(4)
C(34)-C(35)#1	1.38(4)
C(35)-C(34)#1	1.38(4)
C(37)-C(36)	1.15(4)
C(37)-C(38)	1.26(4)
C(36)-C(38)#2	1.49(4)
C(38)-C(36)#2	1.49(4)

Bindungswinkel [°] in Er₃O(OSiMe₃)₇(HOSiMe₃)(THF)₂

Bindung	Bindungswinkel
O(7)-Er(1)-O(6)	108.6(3)
O(7)-Er(1)-O(3)	97.3(2)
O(6)-Er(1)-O(3)	106.3(2)
O(7)-Er(1)-O(5)	101.3(2)
O(6)-Er(1)-O(5)	101.1(2)
O(3)-Er(1)-O(5)	139.72(19)
O(7)-Er(1)-O(1)	84.2(2)
O(6)-Er(1)-O(1)	167.0(2)
O(3)-Er(1)-O(1)	72.91(18)
O(5)-Er(1)-O(1)	73.82(19)
O(7)-Er(1)-O(2)	150.4(2)
O(6)-Er(1)-O(2)	101.0(2)

Bindung	Bindungslwinkel
O(3)-Si(1)-C(1)	110.0(4)
C(3)-Si(1)-C(1)	108.9(7)
C(2)-Si(1)-C(1)	108.6(6)
O(4)-Si(2)-C(6)	109.9(5)
O(4)-Si(2)-C(4)	108.3(5)
C(6)-Si(2)-C(4)	107.3(8)
O(4)-Si(2)-C(5)	109.7(5)
C(6)-Si(2)-C(5)	109.3(8)
C(4)-Si(2)-C(5)	112.3(6)
O(5)-Si(3)-C(8)	111.7(4)
O(5)-Si(3)-C(7)	108.3(5)
C(8)-Si(3)-C(7)	110.4(7)

O(3)-Er(1)-O(2)	72.86(18)
O(5)-Er(1)-O(2)	73.37(18)
O(1)-Er(1)-O(2)	66.25(17)
O(7)-Er(1)-Er(2)	114.89(19)
O(6)-Er(1)-Er(2)	125.58(19)
O(3)-Er(1)-Er(2)	99.04(14)
O(5)-Er(1)-Er(2)	40.68(13)
O(1)-Er(1)-Er(2)	43.49(13)
O(2)-Er(1)-Er(2)	43.06(12)
O(7)-Er(1)-Er(3)	112.57(18)
O(6)-Er(1)-Er(3)	128.62(16)
O(3)-Er(1)-Er(3)	40.11(14)
O(5)-Er(1)-Er(3)	99.61(13)
O(1)-Er(1)-Er(3)	43.19(11)
O(2)-Er(1)-Er(3)	43.00(12)
Er(2)-Er(1)-Er(3)	58.935(14)
O(8)-Er(2)-O(5)	106.6(3)
O(8)-Er(2)-O(4)	102.9(3)
O(5)-Er(2)-O(4)	145.0(2)
O(8)-Er(2)-O(2)	110.0(2)
O(5)-Er(2)-O(2)	77.39(18)
O(4)-Er(2)-O(2)	75.19(19)
O(8)-Er(2)-O(1)	176.2(2)
O(5)-Er(2)-O(1)	77.13(19)
O(4)-Er(2)-O(1)	73.5(2)
O(2)-Er(2)-O(1)	70.27(18)
O(8)-Er(2)-O(10)	91.8(3)
O(5)-Er(2)-O(10)	100.7(2)
O(4)-Er(2)-O(10)	96.7(2)
O(2)-Er(2)-O(10)	157.9(2)
O(1)-Er(2)-O(10)	87.8(2)
O(8)-Er(2)-Er(3)	133.42(19)
O(5)-Er(2)-Er(3)	102.82(14)
O(4)-Er(2)-Er(3)	42.29(16)
O(2)-Er(2)-Er(3)	43.93(12)
O(1)-Er(2)-Er(3)	44.15(12)
O(10)-Er(2)-Er(3)	117.25(18)
O(8)-Er(2)-Er(1)	136.9(2)
O(5)-Er(2)-Er(1)	42.14(14)
O(4)-Er(2)-Er(1)	102.93(16)
O(2)-Er(2)-Er(1)	46.43(13)
O(1)-Er(2)-Er(1)	46.00(12)
O(10)-Er(2)-Er(1)	118.62(16)
Er(3)-Er(2)-Er(1)	60.678(16)
O(9)-Er(3)-O(3)	106.5(2)
O(9)-Er(3)-O(4)	103.3(2)
O(3)-Er(3)-O(4)	144.11(19)
O(9)-Er(3)-O(2)	108.8(2)
O(3)-Er(3)-O(2)	76.78(19)
O(4)-Er(3)-O(2)	75.0(2)
O(9)-Er(3)-O(1)	176.8(2)
O(3)-Er(3)-O(1)	76.30(18)
O(4)-Er(3)-O(1)	73.6(2)
O(2)-Er(3)-O(1)	70.31(17)
O(9)-Er(3)-O(11)	94.0(3)
O(3)-Er(3)-O(11)	99.1(2)
O(4)-Er(3)-O(11)	98.2(2)
O(2)-Er(3)-O(11)	157.1(2)

O(5)-Si(3)-C(9)	109.8(5)
C(8)-Si(3)-C(9)	106.2(6)
C(7)-Si(3)-C(9)	110.6(7)
O(2)-Si(4)-C(12)	109.5(4)
O(2)-Si(4)-C(10)	109.9(4)
C(12)-Si(4)-C(10)	107.6(6)
O(2)-Si(4)-C(11)	108.5(4)
C(12)-Si(4)-C(11)	108.9(5)
C(10)-Si(4)-C(11)	112.5(5)
O(7)-Si(5)-C(14)	113.0(6)
O(7)-Si(5)-C(15)	113.8(7)
C(14)-Si(5)-C(15)	115.0(10)
O(7)-Si(5)-C(13)	107.5(6)
C(14)-Si(5)-C(13)	106.1(10)
C(15)-Si(5)-C(13)	100.0(10)
O(6)-Si(6)-C(16)	109.2(5)
O(6)-Si(6)-C(17)	112.6(5)
C(16)-Si(6)-C(17)	107.1(7)
O(6)-Si(6)-C(18)	110.9(5)
C(16)-Si(6)-C(18)	105.9(8)
C(17)-Si(6)-C(18)	110.8(7)
O(8)-Si(7)-C(20)	111.1(5)
O(8)-Si(7)-C(21)	109.8(6)
C(20)-Si(7)-C(21)	108.1(8)
O(8)-Si(7)-C(19)	111.6(5)
C(20)-Si(7)-C(19)	107.4(7)
C(21)-Si(7)-C(19)	108.7(7)
O(9)-Si(8)-C(22)	111.9(7)
O(9)-Si(8)-C(23)	112.1(5)
C(22)-Si(8)-C(23)	108.4(10)
O(9)-Si(8)-C(24)	111.8(6)
C(22)-Si(8)-C(24)	104.1(10)
C(23)-Si(8)-C(24)	108.3(8)
Er(3)-O(1)-Er(2)	91.56(18)
Er(3)-O(1)-Er(1)	90.98(17)
Er(2)-O(1)-Er(1)	90.51(18)
Si(4)-O(2)-Er(2)	129.1(3)
Si(4)-O(2)-Er(3)	124.5(3)
Er(2)-O(2)-Er(3)	92.25(18)
Si(4)-O(2)-Er(1)	119.2(3)
Er(2)-O(2)-Er(1)	90.51(16)
Er(3)-O(2)-Er(1)	90.74(18)
Si(1)-O(3)-Er(3)	135.3(3)
Si(1)-O(3)-Er(1)	125.4(3)
Er(3)-O(3)-Er(1)	98.3(2)
Si(2)-O(4)-Er(2)	132.3(4)
Si(2)-O(4)-Er(3)	132.0(4)
Er(2)-O(4)-Er(3)	95.5(2)
Si(3)-O(5)-Er(2)	136.2(3)
Si(3)-O(5)-Er(1)	126.5(3)
Er(2)-O(5)-Er(1)	97.18(19)
Si(6)-O(6)-Er(1)	166.1(4)
Si(5)-O(7)-Er(1)	174.5(5)
Si(7)-O(8)-Er(2)	177.2(5)
Si(8)-O(9)-Er(3)	177.8(5)
C(25)-O(10)-C(28)	110.0(8)
C(25)-O(10)-Er(2)	125.3(6)
C(28)-O(10)-Er(2)	124.7(6)
	· · · · ·

O(1)-Er(3)-O(11)	86.8(2)
O(9)-Er(3)-Er(2)	133.0(2)
O(3)-Er(3)-Er(2)	101.95(13)
O(4)-Er(3)-Er(2)	42.22(14)
O(2)-Er(3)-Er(2)	43.82(13)
O(1)-Er(3)-Er(2)	44.29(13)
O(11)-Er(3)-Er(2)	117.56(17)
O(9)-Er(3)-Er(1)	135.74(19)
O(3)-Er(3)-Er(1)	41.56(13)
O(4)-Er(3)-Er(1)	102.57(14)
O(2)-Er(3)-Er(1)	46.26(13)
O(1)-Er(3)-Er(1)	45.83(13)
O(11)-Er(3)-Er(1)	116.93(16)
Er(2)-Er(3)-Er(1)	60.388(19)
O(3)-Si(1)-C(3)	109.9(5)
O(3)-Si(1)-C(2)	109.0(5)
C(3)-Si(1)-C(2)	110.3(6)

C(32)-O(11)-C(29)	108.7(8)
C(32)-O(11)-Er(3)	127.2(6)
C(29)-O(11)-Er(3)	124.1(6)
O(10)-C(25)-C(26)	102.8(12)
C(27)-C(26)-C(25)	104.2(13)
C(26)-C(27)-C(28)	104.5(13)
O(10)-C(28)-C(27)	104.6(12)
O(11)-C(29)-C(30)	106.6(10)
C(31)-C(30)-C(29)	108.4(12)
C(30)-C(31)-C(32)	110.6(13)
O(11)-C(32)-C(31)	105.5(11)
C(35)-C(33)-C(34)	134(3)
C(35)#1-C(34)-C(33)	93(3)
C(33)-C(35)-C(34)#1	132(4)
C(36)-C(37)-C(38)	118(4)
C(37)-C(36)-C(38)#2	129(3)
C(37)-C(38)-C(36)#2	112(3)

Uij-Werte (Å²·10³) des Temperaturfaktors exp($-2\pi^{2}[h^{2}a^{*2}U^{11} + ... + 2h k a^{*}b^{*}U^{12}]$)

	U ¹¹	U ²²	U ³³	U ²³	U^{13}	U ¹²
Er(1)	40(1)	36(1)	33(1)	2(1)	-7(1)	0(1)
Er(2)	37(1)	53(1)	35(1)	-7(1)	-5(1)	-2(1)
Er(3)	49(1)	39(1)	39(1)	6(1)	-7(1)	0(1)
Si(1)	44(2)	63(2)	62(2)	13(1)	1(1)	15(1)
Si(2)	81(2)	78(2)	61(2)	11(2)	13(2)	-28(2)
Si(3)	67(2)	48(2)	74(2)	1(1)	-2(2)	19(1)
Si(4)	57(2)	55(2)	38(1)	-12(1)	-17(1)	-1(1)
Si(5)	72(2)	89(2)	107(3)	-40(2)	-21(2)	-18(2)
Si(6)	96(3)	62(2)	37(2)	8(1)	2(2)	4(2)
Si(7)	38(2)	121(3)	76(2)	-18(2)	-4(2)	-3(2)
Si(8)	142(4)	38(2)	114(3)	-1(2)	16(3)	7(2)
O(1)	40(3)	44(3)	26(3)	-2(2)	-6(3)	-3(2)
O(2)	41(3)	38(3)	33(3)	-4(2)	-9(3)	2(2)
O(3)	38(3)	45(3)	41(3)	5(2)	-6(3)	6(2)
O(4)	56(4)	56(4)	43(4)	7(3)	3(3)	-11(3)
O(5)	50(4)	44(3)	42(3)	0(2)	-5(3)	8(3)
O(6)	72(5)	56(4)	40(4)	7(3)	0(3)	12(3)
O(7)	71(5)	53(4)	63(4)	-4(3)	-13(4)	-13(3)
O(8)	41(4)	102(5)	56(5)	-14(4)	-2(4)	0(3)
O(9)	88(6)	43(4)	76(5)	4(3)	2(4)	-5(3)
O(10)	59(5)	87(5)	48(4)	-20(3)	2(4)	-11(4)
O(11)	81(5)	69(4)	46(4)	12(3)	-26(4)	8(4)
C(1)	59(8)	158(13)	112(12)	67(9)	30(9)	23(8)
C(2)	57(8)	107(10)	103(10)	32(7)	-18(7)	12(6)
C(3)	83(10)	103(10)	133(13)	-35(8)	4(9)	34(8)
C(4)	125(12)	100(9)	78(9)	40(7)	-10(9)	-32(8)
C(5)	93(11)	140(12)	103(11)	38(9)	-13(9)	-53(9)
C(6)	220(20)	112(12)	140(15)	-17(9)	109(16)	-50(12)
C(7)	171(16)	80(9)	121(12)	1(8)	55(12)	48(9)
C(8)	90(9)	46(6)	111(10)	19(6)	-4(8)	7(5)
C(9)	92(10)	91(9)	124(12)	17(8)	-29(9)	21(7)
C(10)	88(9)	102(9)	58(7)	0(6)	-48(7)	5(7)
C(11)	95(9)	70(7)	40(6)	-19(5)	2(6)	5(6)
C(12)	91(10)	89(8)	81(8)	-28(6)	-13(7)	-30(7)
C(13)	220(20)	210(20)	133(16)	10(14)	-28(16)	-145(18)

C(14)	133(15)	103(11)	280(30)	-31(13)	-127(17)	-14(10)
C(15)	180(20)	230(20)	126(15)	-110(15)	10(15)	-25(16)
C(16)	194(19)	131(12)	59(9)	10(7)	24(10)	-68(11)
C(17)	167(17)	100(10)	64(9)	0(7)	30(10)	4(9)
C(18)	128(14)	206(17)	79(10)	74(10)	21(10)	71(12)
C(19)	57(8)	143(12)	104(11)	-12(8)	-14(8)	31(8)
C(20)	61(9)	139(13)	141(14)	-24(10)	-24(9)	-8(8)
C(21)	57(9)	188(17)	161(17)	10(12)	3(11)	-25(9)
C(22)	270(30)	58(10)	360(30)	-46(14)	110(30)	-63(13)
C(23)	240(20)	82(10)	103(12)	-32(8)	-42(13)	5(11)
C(24)	260(20)	89(10)	90(11)	4(8)	2(13)	74(12)
C(25)	68(8)	115(10)	79(9)	-30(7)	32(7)	4(7)
C(26)	168(19)	163(16)	91(12)	-68(11)	36(13)	-5(14)
C(27)	142(17)	194(18)	57(9)	-44(10)	11(10)	-5(13)
C(28)	99(11)	166(13)	55(8)	-58(8)	-15(8)	-4(9)
C(29)	102(10)	64(7)	85(9)	26(6)	-35(7)	16(6)
C(30)	129(14)	105(11)	116(13)	19(9)	-57(10)	18(10)
C(31)	260(30)	139(15)	113(14)	9(11)	-123(16)	13(15)
C(32)	121(12)	114(10)	53(7)	-9(6)	-38(8)	22(8)

-LEBENSLAUF-

ANGABEN ZUR PERSON

Name Geburtsdatum Geburtsort	Jessica Altmayer 21.08.1977 Püttlingen
E-mail	jessica_altmayer@web.de

WISSENSCHAFTLICHER WERDEGANG

• Datum	01.03.2007-jetzt
• Institution	Leibniz-Institut für Neue Materialien, 66123 Saarbrücken
• Beschäftigung als	Doktorand
• Datum	01.10.2003 - 28.02.2007
• Institution	Universität des Saarlandes, 66123 Saarbrücken
• Beschäftigung als	Doktorand
• Datum	15.09.2003 - 28.02.2007
• Institution	Leibniz-Institut für Neue Materialien, 66123 Saarbrücken
• Beschäftigung als	Wissenschaftliche Hilfskraft
• Datum • Institution • Beschäftigung als	15.03.2003 - 14.09.2003 Leibniz-Institut für Neue Materialien, 66123 Saarbrücken Studentische Hilfskraft Diplomarbeit
• Datum	01.10.2001 - 31.01.2002
• Institution	Universität des Saarlandes, 66123 Saarbrücken
• Beschäftigung als	Studentische Hilfskraft

STUDIUM- UND SCHULAUSBILDUNG

• Datum • Universität • Bezeichnung der erworbenen Qualifikation	April 2000 - September 2003 Universität des Saarlandes, 66123 Saarbrücken Diplom im Fach Chemie
• Datum • Universität • Bezeichnung der erworbenen Qualifikation	Oktober 1997 - April 2000 Universität des Saarlandes, 66123 Saarbrücken Vordiplom im Fach Chemie
• Datum • Schule • Bezeichnung der erworbenen Qualifikation	August 1988 - Juli 1997 Realgymnasium Völklingen, 66333 Völklingen Abitur (Hauptfächer: Chemie, Deutsch, Französisch)
• Datum • Schule	August 1984 - Juli 1988 Grund- und Hauptschule Völklingen/Heidstock, 66333 Völklingen

VERÖFFENTLICHUNGEN

Heteroleptische Alkoxo-Amido-Verbindungen: Synthese, Charakterisierung und Einsatz in der Materialforschung

S. Mathur und J. Altmayer; Z. Anorg. Allg. Chem., 630, 1708, 2004.

Nanostructured ZrO₂ and Zr-C-N Coatings from Chemical Vapor Deposition of Metal-Organic Precursors

S. Mathur, J. Altmayer und H. Shen; Z. Anorg. Allg. Chem., 630, 2042, 2004.

Microporous ZrO₂ Film Preparation by Chemical Vapor Deposition S. Mathur, E. Hemmer, S. Barth, J. Altmayer, N. Donia, N. Lecerf, I. Kumakiri und R. Bredesen; *Proceedings of ICIM9*; 524, **2006**.

Nanostructured Functional Ceramic Coatings Prepared by Molecule-Based Chemical Vapor Deposition S. Mathur, H. Shen und J. Altmayer; *Reviews on Advanced Materials Science (RAMS)* 15, 16, **2007**.

Nanostructured metal oxide surfaces for bio- medical applications; Modulation of surface properties through chemical precursor design

S. Mathur, J. Altmayer, S. Barth und M. Müller; *Tissue Engineering*, 13 (4), 906, 2007.

Microporous ZrO₂ Membrane Preparation by Liquid-Injection MOCVD S. Mathur, E. Hemmer, S. Barth, J. Altmayer, N. Donia; Proc. 31st Daytona Beach Conference/ ed. S. Mathur and J. Singh, 165, **2007**.

Molecular tailored Bioactivity of TiO₂ surfaces; S. Mathur, J. Altmayer, S. Barth und M. Müller; **2008** (eingereicht).

Vorträge

S. Mathur, J. Altmayer, E. Hemmer, H. Shen, M. Veith Influence of Precursor Composition on the Chemical Vapor Deposition of MgAl₂O₄ Oxides 28.03.-01.04.2005, MRS Spring Meeting, San Francisco, USA

S. Mathur, H. Shen, E. Hemmer, T. Ruegamer, J. Altmayer, P. Kuhn Protective Coatings by Chemical Vapor Deposition 31.05.-03.06.2005, E-MRS Spring Meeting, Strasbourg

J. Altmayer, S. Mathur Chemical Vapor Deposited Protective and Functional Coatings 18.-21.09.2005, 5th Iberian Vacuum Meeting and Applications – RIVA 5, Universidade do Minho, Guimarães, Portugal

S. Mathur, J. Altmayer, S. Barth, C. Cavelius, E. Hemmer, P. Kuhn, T. Ruegamer, H. Shen Chemical Nanotechnology: From Molecules to Applications 29.09.2005, Hochschullehrer-Infotage der BASF AG, Ludwigshafen

S. Mathur, H. Shen, J. Altmayer Nanostructured Functional Ceramic Coatings by Molecule-based CVD *Reviews on Advanced Materials Science* (Symposium A of the E-MRS Fall Meeting 2006) S. Mathur, J. Altmayer, E. Hemmer, N. Donia, S. Barth, T. Ruegamer, P. Kuhn, C. Cavelius, H. Shen Protective and bio-compatible nanostructured Surfaces by CVD Techniques: Controlled Modulation of Surface and Phase Structures

6th International Conference on Glass and Plastics: Advanced Coatings for Large-Area or High-Volume Products, 133, 2006

S. Mathur, J. Altmayer, T. Rügamer, N. Donia, R. Ganesan Nanostructured Surfaces through Chemical Nanotechnology, Opportunities and Applications, Thin Films 2006, Singapore

J. Altmayer, S. Mathur, S. Barth, M. Müller Biocompatible TiO₂ Surfaces: Modulation of functional properties through precursor design 10.06.2008, Workshop on Catalysis and Material Science, Köln

H. Shen, J. Wei, J. Altmayer, N. Donia, H. Shen, S. Mathur One-Dimensional Metal Oxide Nanowires: Synthesis, Characterization and Gas Sensing Application 01.09.2008, MSE Materials Science and Engineering, Nürnberg Germany

Posterbeiträge

GDCh-Tagung, Fachgruppe Festkörper und Materialforschung, Marburg, 13.-15.09.2004 Postertitel: Heteroleptische Alkoxo-Amido-Verbindungen: Synthese, Charakterisierung und Einsatz in der Materialforschung

MRS Spring Meeting, San Francisco, USA, 28.03.-01.04.2005 Postertitel: Influence of Precursor Composition on the Chemical Vapor Deposition of MgAl₂O₄ Oxides

WAM III – Nanostructured Advanced Materials, Stellenbosch, Südafrika, 05.-08.09.2005 Postertitel: Functional Coatings through Chemical Vapour Deposition

5th Iberian Vacuum Meeting and Applications – RIVA 5, Universidade do Minho, Guimarães, Portugal, 18.-21.09.2005 Postertitel: Functional Coatings through Chemical Vapor Deposition*

Congress on Regenerative Biology and Bio-Nanointerface, Stuttgard Germany, 09.-11.10.2006 Postertitel: Nanostructured metal oxide surfaces for bio-medical applications: modulation of surface properties through chemical precursor design

MSE Materials Science and Engineering, Nürnberg Germany 01.-04.09.2008 Postertitel: Controlled Synthesis and Growth Mechanism Study of Tin Oxide Nanowire Arrays

(*prämiert mit dem OUTSTANDING POSTER AWARD)

AUSZEICHNUNG

Preisträgerin der BMBF Initiative Nano4women (Nano & Art)