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Abstra
tIn the past years signi�
ant interest in 
lusters has been developed due to their fun-damental importan
e in both basi
 and applied s
ien
e. This in
reasing interest is amplyjusti�ed by the unique properties of 
lusters and by the promise these systems hold as
omponents of opti
al, magneti
, and ele
troni
 sensors and devi
es. Espe
ially alloy
lusters are of in
reasing interest as the ele
tri
, magneti
 and 
atalyti
 properties of amonometalli
 
luster 
an be improved by adding a se
ond 
omponent. In order to opti-mize the materials properties for a given appli
ation, it is of paramount importan
e tohave an a

urate understanding of the relation between 
omposition/
luster size on theone side and property on the other. Here, 
omputer simulations represent a useful methodfor predi
tions of 
luster properties and 
on�rming experimental data.In this work we have performed global optimization on the stru
tures of Ni�Cu, K�Csand Rb�Cs bimetalli
 
lusters. For NinCum bimetalli
 
lusters with N = n+m up to 20atoms, N = 23 and 38 atoms we have demonstrated that most of the bimetalli
 
lusterstru
tures have geometries similar to those of pure Ni 
lusters. In 
ontrast to the bulk, theground state stru
tures of Ni�Cu 
lusters do not experien
e a smooth transition betweenthe stru
tures of pure 
opper and pure ni
kel 
lusters as the number of Ni atoms 
hanges.Furthermore, an i
osahedron, a double i
osahedron, and a triple i
osahedron with one,two, and three Ni atoms at the 
entre, respe
tively, are espe
ially stable (magi
). In ad-dition, it is found that Ni atoms o

upy mainly high-
oordination inner (
ore) sites, whileCu atoms show a tenden
y to o

upy lower-
oordination sites at the 
luster surfa
e. ForK�Cs and Rb�Cs 
lusters we have found that the introdu
tion of K and Rb substitutionsin a Cs 
luster for the size range N=34�50 results in new stru
tures, di�erent from thoseof the pure elements. These are highly symmetri
 and belong to the same stru
turalfamily. The last fa
t leads to a more regular 
luster growth in the 
ase of the bimetalli

lusters.Another part of this thesis deals with deposition and global optimization of 
lusters onsurfa
es. An understanding of the 
luster-surfa
e intera
tion is important for the devel-opment of suitable materials, e.g. thin �lms, and it plays an important role in nu
leationpro
esses and 
rystal growth. In this thesis we simulate the experimental 
onditions ofthe Low Energy Cluster Beam experiment to study the in�uen
e of the atom type andthe impa
t energy on the stru
tural and energeti
 properties of the produ
ts of depositionof Ni13 and Cu13 
lusters on Ni(111) and Cu(111) surfa
es. It is shown that the shapeof the ni
kel 
lusters deposited on a Cu(111) surfa
e remains well kept, while the 
opper
lusters impa
ting a Ni(111) surfa
e 
ollapse forming double and triple layered produ
ts.In the 
ase of AgN 
lusters with N =2-20 adsorbed on Ag(111) and Ni(111) surfa
es,the lowest-energy stru
tures are determined. We have found that from N=18 upwards areversal of the magi
 numbers for the Ag/Ni(111) system 
ompared to the Ag/Ag(111)system takes pla
e, whi
h is due to the predominan
e of the adatom-substrate intera
tions
ompared to the adatom-adatom intera
tions. Finally, due to the large size mismat
h it isenergeti
ally unfavorable for Ag to form pseudomorphi
 monolayer stru
tures on Ni(111)and there is 
onsiderable strain produ
ed at the interfa
e. The e�e
t of this strain will1



give rise to disordered and elongated stru
tures of the adsorbed Ag 
lusters.
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AbstraktCluster spielen, sowohl in der Grundlagenfors
hung, als au
h in Berei
hen wie Nanoin-dustrie, Katalyse, Mikroelektronik, Informationsspei
herung und Medizin, eine wi
htigeRolle. Dabei sind besonders bimetallis
he Cluster von groÿer Bedeutung, da diese neueMögli
hkeiten erö�nen bestehende optis
he, elektris
he oder katalytis
he Eigens
hafteneines monometallis
hen Clusters dur
h Zugabe eines zweiten Metalls zu optimieren undbessere Katalysatoren oder elektronis
he Bauteile zu konstruieren. Aufgrund ihrer gerin-gen Gröÿe und groÿes Ober�ä
hen- zu Volumen Verhältnis besitzen Cluster Eigens
haften,die von denen eines makroskopis
hen Festkörpers abwei
hen und si
h von einer Cluster-gröÿe zur nä
hsten drastis
h ändern können. Für die erfolgrei
he Anwendung und Vorher-sage von Clustereigens
haften ist jedo
h die ri
htige Bestimmung der Clusterstrukturents
heidend und hier erweisen si
h Computersimulationen als sehr nützli
h.Die vorliegende Arbeit bes
häftigt si
h mit der globalen Strukturoptimierung vonbimetallis
hen Übergangsmetall- und Alkalimetall
lustern folgender Systeme: Ni�Cu, K�Cs und Rb�Cs. Strukturen, Stabilitäten, und Symmetrien der monometallis
hen Clusternwurden mit denen der bimetallis
hen Clustern vergli
hen. Es wurden drastis
he Struk-turumwandlungen mit Änderung der Konzentration der Elemente für bestimmte Cluster-gröÿen bes
hrieben, sowie überras
hendes Auftreten von neuen Strukturen und Wa
hs-tumsmotiven dur
h den Zusatz einer zweiten Komponente im monometallis
hen Clusterbeoba
htet. Auÿerdem wurde das Mis
hungs- bzw. Segregationsverhalten der Zweikom-ponenten Clustern mit dem der makroskopis
hen Zweikomponenten Systeme vergli
hen.Ein weiterer Teil dieser Arbeit bezieht si
h auf die Deponierung und Strukturop-timierung von Clustern auf metallis
hen Ober�ä
hen. Das Verständnis der Cluster-Cluster-We
hselwirkungen ist wi
htig für die Herstellung von Dünns
hi
ht-Filmen undes spielt eine wi
htige Rolle in Kristallwa
hstumsprozessen. Im Falle der Deponierungvon kleinen Ni und Cu Clustern auf Ni(111) und Cu(111) Ober�ä
hen, wurde die ex-perimentelle Prozedur des Low Energy Cluster Beam-Experiments simuliert. Man hatuntersu
ht wel
he Auswirkungen auf die Struktur und Energie der Cluster na
h dem De-ponierungsprozess zu erwarten sind, wenn Cluster und Substrat aus unters
hiedli
henElementen bestehen. Im Falle der Strukturoptimierung von Ag Clustern auf metallis-
hen Ober�ä
hen, wurden die energetis
h niedrigsten Strukturen von kleinen Ag Clus-tern auf eine Ag(111) Ober�ä
he mit denen auf eine Ni(111) Ober�ä
he vergli
hen undüberras
hende Umkehr der Stabilitäten für das Ag/Ni(111) System im Verglei
h zumAg/Ag(111) System aufgezeigt.
3



ZusammenfassungWährend des letzten Jahrzehnts sind Cluster immer mehr in den Mittelpunkt des Inter-esses von Fors
hern gerü
kt, da sie sowohl eine wi
htige Rolle in der Grundlagenfors
hungals au
h in Berei
hen wie Nanoindustrie, Katalyse, Mikroelektronik, Informationsspe-i
herung und Medizin spielen. Dabei sind besonders bimetallis
he Cluster von tragenderBedeutung, da diese neue Mögli
hkeiten erö�nen bestehende optis
he, elektris
he oderkatalytis
he Eigens
haften eines monometallis
hen Clusters dur
h Zugabe eines zweitenMetalls zu optimieren und bessere Katalysatoren oder elektronis
he Bauteile zu konstru-ieren.Unter Cluster versteht man Ansammlungen von Atomen oder Molekülen deren Atom-zahl zwis
hen drei und wenigen Tausenden liegt. Aufgrund ihrer geringen Gröÿe undgroÿes Ober�ä
hen- zu Volumen Verhältnis besitzen Cluster Eigens
haften, die von deneneines makroskopis
hen Festkörpers und von denen der Moleküle abwei
hen. Daher ist esein Hauptziel der Clusterfors
hung diese neuen Eigens
haften der Cluster herauszu�ndenund zu verstehen und somit Cluster als neue Materialien nutzen zu können.Obwohl Cluster s
hon seit mehr als zwei Jahrzehnten dur
h eine breite Auswahl anexperimentellen Methoden synthetisiert werden, stellt die zweifellose Zuordnung von bes-timmten Geometrien zu einem untersu
hten Cluster gegenwärtig eine Herausforderungdar. Insbesondere für kleine Cluster ist diese Aufgabe besonders s
hwierig, da diese auf-grund ihres groÿen Ober�ä
he- zu Volumen Verhältnisses Eigens
haften aufweisen, diesi
h von einer Gröÿe zur nä
hsten dramatis
h ändern können. Für die erfolgrei
he An-wendung und Vorhersage von Clustereigens
haften ist aber die ri
htige Bestimmung derClusterstruktur ents
heidend. Hier erweisen si
h Computersimulationen als sehr nützli
h,wenn es darum geht experimentelle Ergebnisse zu bestätigen, zu ergänzen, oder Vorher-sagen zu tre�en. Aufgrund der Riesenanzahl an lokalen Energieminima (und damit au
han mögli
hen Strukturen), die sogar für Cluster mit weniger als 10 Atomen existieren,sind jedo
h �rst-prin
iples Methoden auf Bere
hnungen von vorde�nierten Kon�guratio-nen und nur auf wenigen Atomen bes
hränkt. Für bimetallis
he Cluster ist das Problemder globalen Strukturoptimierung dramatis
her, da zusätzli
h zu den geometris
hen Iso-meren au
h no
h topologis
he Isomere (Homotops) existieren, wel
he dur
h Austaus
hvon unglei
hen Atomen ohne Änderung der Gesamtstruktur erhalten werden. Um dieGrundzustandsstruktur der Zweikomponenten Cluster bestimmen zu können werden indieser Arbeit semiempiris
he Potentiale verwendet, wie die Embedded-Atom Methodeund das many-body Gupta-Potential. Diese bieten die nötige Einfa
hheit im Bezug aufdie Bere
hnung von sol
hen komplizierten Systemen, aber au
h eine zufriedenstellendeGenauigkeit.Die vorliegende Arbeit bes
häftigt si
h mit der globalen Strukturoptimierung vonbimetallis
hen Übergangsmetall- und Alkalimetall
lustern, sowie mit Cluster/Ober�ä
henSystemen mit heteroatomaren We
hselwirkungen, d.h. We
hselwirkungen zwis
hen zwei
hemis
h unters
hiedli
hen Elementen. Die globale Strukturoptimierung von kleinenbimetallis
hen Ni�Cu Clustern wurde mit Hilfe des Genetis
hen Algorithmus in Kombina-4



tion mit der Embedded-Atom Methode zur Bere
hnung der Gesamtenergie dur
hgeführt,während für K�Cs und Rb�Cs Clustern der Basin-Hopping Algorithmus in Kombina-tion mit dem Gupta Potential angewandt wurde. Strukturelle und energetis
he Eigen-s
haften, wie z.B. Stabilität, Mis
hungsenergie, Symmetrie, Radiale Verteilungsfunktion,Ähnli
hkeitsfunktion und Wa
hstum, d.h. inwiefern ein Cluster bestehend aus N Atomenals ein Cluster aus N − 1 Atomen plus ein zusätzli
hes Atom betra
htet werden kann,wurden quanti�ziert. Strukturen und Stabilitätsfunktionen der monometallis
hen Clus-tern wurden mit denen der bimetallis
hen Clustern vergli
hen. Auÿerdem wurde dasMis
hungs- bzw. Segregationsverhalten der Zweikomponenten Clustern mit dem dermakroskopis
hen Zweikomponenten Systemen vergli
hen.Im Fall der NinCum Cluster mit N = n + m bis zu 20, N=23 und N=38 Atomenwurden die energetis
h niedrigsten Strukturen mit denen der reinen Kupfer und Ni
kelCluster vergli
hen und man fand heraus, dass die meisten der untersu
hten bimetallis
henStrukturen dieselbe Geometrie aufweisen wie die der reinen Ni
kel Cluster. Die Cluster-gröÿe N=38 stellt dabei einen besonderen Fall dar, da bei dieser Gröÿe eine drastis
heStrukturumwandlung mit Zunahme des Cu Anteils in den Ni�Cu Clustern vollzogen wird:von einem abges
hnittenen Oktaeder zu einer Struktur mit pentagonaler Symmetrie unddann wider zu Oktaedersymmetrie. Auÿerdem ist für Cluster mit 15, 16, und 17 Atomendie Auswirkung der Konzentration stärker, als der geometris
he E�ekt. Als besondersstabile (magische) Strukturen wurden der einfa
he, doppelte und dreifa
he Ikosaeder mitjeweils eins, zwei und drei Ni Atomen im Zentrum, identi�ziert. Im Allgemeinen tendierendie Ni
kel Atome dazu Plätze im Clusterinneren zu besetzen, wel
he eine hohe Koordina-tionszahl ermögli
hen, während Cu Atome an die Clusterober�ä
he segregieren.Für (KCs)n und (RbCs)n Cluster mit N = 2n bis zu 20 Atomen fanden wir heraus,dass eine Einführung von K oder Rb Verunreinigungen in einem Cs Cluster, für Clus-tergröÿen N=34-50, zur Entstehung von neuen Strukturen führt, wel
he unters
hiedli
hsind von denen der reinen K, Rb und Cs Cluster. Diese unters
hiedli
hen Strukturensind hö
hst symmetris
h und gehören der Familie der polyikosaedris
hen Strukturen an,wel
he dur
h Verkappung des s.g. fün�a
hen "Pfannku
hens" erhalten werden. Aufgrunddieses dominierenden strukturellen Motivs, weisen die bimetallis
hen Clustern ein vielregelmäÿigeres Wa
hstumsverhalten auf, vergli
hen mit dem der monometallis
hen K, Rbund Cs Cluster. Aufgrund der erhaltenen polyikosaedris
hen Strukturen und der Tat-sa
he, dass Cs an die Clusterober�ä
he segregiert, können wir s
hlieÿen, dass AlkalimetallK�Cs und Rb�Cs Cluster ebenfalls magis
he Kern-S
halle Strukturen ausbilden können,wie bereits von bestimmten Übergangsmetall
luster wie Ag�Ni beri
htet wurde.Ein weiterer Teil dieser Arbeit bezieht si
h auf die Deponierung und Strukturopti-mierung von Clustern auf metallis
hen Ober�ä
hen. Das Verständnis der Cluster-Cluster-We
hselwirkungen ist wi
htig für die Herstellung von geeigneten Materialien, wie z.B.von Dünns
hi
ht-Filmen dur
h Cluster Deponierung. Weiterhin spielt die Adsorptionvon Clustern auf Ober�ä
hen eine wi
htige Rolle in Kristallwa
hstumsprozessen. ImFalle der Deponierung von Ni und Cu Clustern auf Ni(111) und Cu(111) Ober�ä
hen,wurde ein Molekular-Dynamis
her Algorithmus angewandt, der die experimentelle Proze-dur des Low Energy Cluster Beam-Experiment (LECB) simuliert. Die Cluster-Cluster5



und die Cluster-Substrat We
hselwirkungen wurden mit der Embedded Atom Methodena
hgeahmt. Das Ziel war, zu untersu
hen wel
he Auswirkungen die heteroatomarenWe
hselwirkungen während des Deponierungsprozesses auf die Struktur und Energie derClustern haben, im Verglei
h dazu wenn nur homoatomare We
hselwirkungen herrs
hen.Man fand heraus, dass im Falle der heteroatomaren We
hselwirkungen die Kohäsionsen-ergie der Metalle der ents
heidende Faktor ist, der die Gestalt der Endstruktur bestimmt.Als Konsequenz davon, führt die Deponierung von Cu13 auf Ni(111) Ober�ä
he zu einerAusbreitung des Clusters, aufgrund der niedrigen Kohäsionsenergie von Kupfer, währendbei der Deponierung von Ni13 auf Cu(111) Ober�ä
he die Anfangsstruktur fast vollständigerhalten bleibt. Die Cluster wurden auÿeredem mit vers
hiedenen Anfangsenergien de-poniert und man fand heraus, dass die Anwendung von einer Deponierungsenergie von 0.5eV/Atom im Falle der Cu13 Cluster auf Ni(111) Ober�ä
he bevorzugt für die Herstellungvon eins
hi
htigen Filmen verwendet werden könnte.Im Falle der Strukturoptimierung von Clustern auf metallis
hen Ober�ä
hen, wurdeder Basin-Hopping Algorithmus zur globalen Strukturoptimierung in Kombination mitder Embedded Atom Methode angewandt. Die energetis
h niedrigsten und besondersstabilen Strukturen von AgN Clustern mit N=2-20 auf Ag(111) wurden mit denen derAgN Clustern auf Ni(111) Ober�ä
hen vergli
hen. Man fand heraus, dass in beidenFällen kompakte eins
hi
htige Strukturen erhalten werden, in denen die maximale An-zahl an nä
hsten Na
hbarn errei
ht wird, mit Ausnahme von Ag19 auf Ni(111). FürSilber Cluster, die mehr als 17 Atomen besitzen, �ndet eine Umordnung der magischenZahlen für das Ag/Ni(111) System im Verglei
h zum Ag/Ag(111) System statt. WährendAg19 auf Ag(111) besonders stabil ist, wird es auf Ni(111), als Folge der dominierendenCluster-Substrat We
hselwirkungen, seine kompakte Geometrie verlieren und au
h seinebesondere Stabilität. Desweiteren ist ein pseudomorphes S
hi
htwa
hstum aufgrund dergroÿen Fehlanpassung der Gitterkonstanten und Bindungslängen von Ag und Ni ener-getis
h ungünstig. Dies führt zu einer Spannung an der Grenzs
hi
ht Ag/Ni und zureiner Verzerrung der Strukturen der Ag Cluster auf der Ni(111) Ober�ä
he.
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7Prefa
eThis thesis 
onsists of the following papers that are referred to in the text by their Romannumerals.I. E. Hristova, Y. Dong, V. G. Grigoryan, and M. Springborg: "Stru
tural and energeti
properties of Ni�Cu bimetalli
 
lusters", J. Phys. Chem. A 112 (2008) 7905-7915.II. E. Hristova, V. G. Grigoryan, and M. Springborg: "Stru
ture and energeti
s of equiatomi
K�Cs and Rb�Cs binary 
lusters", J. Chem. Phys. 128 (2008) 244513. Reprinted withpermission from J. Chem. Phys. Copyright 2008, Ameri
an Institute of Physi
s.III. E. Kasabova, D. Alamanova, M. Springborg, and V. G. Grigoryan: "Deposition of
Ni13 and Cu13 
lusters on Ni(111) and Cu(111) surfa
es", Eur. Phys. J. D 45 (2007)425-431. Reprodu
ed with kind permission of Spinger S
ien
e and Business Media.IV. E. Hristova, V. G. Grigoryan, and M. Springborg: "Stru
tures and stability of Ag
lusters on Ag(111) and Ni(111) surfa
es", in preparation.The �rst two papers 
ontain the studies of transition and alkali bimetalli
 
lusters (Ni�Cu, K�Cs and Rb�Cs) and the third and fourth ones deal with deposition and growth of
lusters on surfa
es. We will des
ribe the ba
kground to these studies in an introdu
torypart of the thesis.The 
ode for the geneti
 algorithm used in the �rst paper has been provided by Dr. YiDong. The 
ode for the basin-hopping algorithm for the se
ond and fourth paper has beendownloaded from the website of Dr. David J. Wales and the mole
ular dynami
s 
ode forthe third paper has been provided by Dr. Denitsa Alamanova. The 
odes for total energy
al
ulation (embedded atom method and the Gupta potential) have been provided byDr. Valeri G. Grigoryan. All programs for global optimization, total energy 
al
ulations,fun
tions for analysing the stru
tures have been 
hanged from the monometalli
 to thebimetalli
 
ase and adapted to the 
orresponding systems. The embedded atom methodof Daw, Baskes and Foiles has been implemented in the geneti
 algorithm, in the basin-hopping algorithm and in the mole
ular dynami
s simulation 
ode. Further, the basin-hopping algorithm for optimization of free 
lusters has been modi�ed to optimize 
lusterson surfa
es.
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Chapter 1Introdu
tionThe physi
s of 
lusters studies the 
hara
teristi
 properties of aggregates whi
h size isintermediate between the atom and the solid, and thus bridges the gap between atomi
and bulk-like behavior. In the past years signi�
ant interest in 
lusters has been developeddue to their fundamental importan
e in both basi
 and applied s
ien
e. This in
reasinginterest is amply justi�ed by the unique properties of 
lusters and by the promise thesesystems hold as 
omponents of opti
al, magneti
, and ele
troni
 sensors and devi
es.Be
ause of the high proportion of surfa
e atoms in 
lusters there are some 
ommon areasof resear
h between 
lusters and surfa
e s
ien
e. Some of these areas, su
h as the 
atalyti
a
tivity of supported 
lusters, are 
learly of interest in the �eld of nanote
hnology. Besidetheir importan
e in nanote
hnologi
al appli
ations, 
lusters also provide a 
onvenienttesting ground for many theories in physi
s. By learning how bulk properties emergefrom properties of 
lusters, as the 
lusters grow larger and larger, we gain new kinds ofunderstanding of the behavior of bulk matter.Espe
ially alloy 
lusters have a major impa
t in industrial 
atalysis, as the a
tivity orsele
tivity of a pure metal 
atalyst 
an be improved by adding a se
ond 
omponent andby varying the 
omposition and the atomi
 ordering of the alloy. Used as nanoparti
les,alloy 
lusters are not only important as 
atalysts in fuel 
ell ele
trode rea
tions, butthey are also subje
t of an in
reasing interest in opti
s, magnetism, nanoele
troni
s andbiodiagnosti
 [1�8℄. For example, using AgcoreAushell nanoparti
les as biodiagnosti
 agentsthe sensitivities for s
anometri
 dete
tion of DNA have been greatly improved, resultingin ampli�
ation of the target signal [9℄.Although 
lusters 
an be synthesized for more than two de
ades by means of a widerange of methods, their systemati
 fundamental study is quite re
ent. Espe
ially forsmall parti
les a

urate experimental 
hara
terization is an arduous task and therefore,
omputer simulations 
an be very helpful in 
on�rming and 
omplementing experimentaldata or in predi
ting the properties of a 
luster.One of the most important properties of 
lusters, whi
h is a goal of many experimentaland theoreti
al investigations and an essential input for most 
al
ulations, is the geomet-ri
al arrangement of the 
onstituents. However, even the most powerful �rst prin
iplesstudies have di�
ulties with the global optimizations already of 
lusters 
ontaining a few9



10 CHAPTER 1. INTRODUCTIONtens of atoms. This is due to the huge number of lo
al minima that already exist at these
luster sizes. For alloy 
lusters the problem is 
onsiderably more 
hallenging, be
ause newstru
tures (topologi
al isomers or homotops) exist, in addition to the geometri
ally di�er-ent isomers. Homotops 
an be obtained through the inter
hange of unlike atoms without
hanging the overall stru
ture. Moreover, in bimetalli
 
lusters the interatomi
 intera
-tions are mu
h more 
ompli
ated than in the homoatomi
 
ase. To 
al
ulate the ground-state stru
ture of the investigated bimetalli
 
lusters, we used semiempiri
al potentials,the embedded atom method and the Gupta potential, whi
h 
ombine the 
omputationalsimpli
ity needed for binary 
lusters with su�
ient a

ura
y. The global optimization ofthe stru
tures was performed using the geneti
 (for Ni�Cu 
lusters) and the basin-hoppingalgorithm (for K�Cs and Rb�Cs 
lusters). Both algorithms possess a high 
omputationale�
ien
y proven in a series of previous studies.Another part of this thesis deals with deposited and adsorbed 
lusters on surfa
es.Clusters on surfa
es 
onstitute a broad sub�eld of 
luster physi
s. Pla
ing a 
luster on asurfa
e signi�
antly modi�es its geometry in 
omparison with equivalent free 
luster due tothe impa
t of the interfa
e energy and the surfa
e 
on�guration. Thus, an understandingof the 
luster-surfa
e intera
tion is important for the development of suitable materials,e.g. thin �lms, through 
luster deposition. Further, 
lusters adsorbed on surfa
es playan important role in the nu
leation pro
esses and 
rystal growth. Systemati
 studies ofthe 
hanges of the stru
tural properties of 
lusters on surfa
es as a fun
tion of 
lustersize lead to detailed understanding of su
h pro
esses. In this thesis we employ mole
ulardynami
s simulation to study the deposition of small Ni and Cu 
lusters on Ni(111) andCu(111) surfa
es and a basin-hopping algorithm to analyse the ground-state stru
tures ofadsorbed Ag 
lusters on Ag(111) and Ni(111) surfa
es.The present work is organized as follows: in Chapter 2 we introdu
e main terms and
on
epts related to 
lusters, as well as important 
luster experiments. In Chapter 3, ashort introdu
tion to the density fun
tional formalism is given. Here, we also des
ribethe potentials based on it, whi
h are used in this study. The algorithms for the globalstru
ture optimization are presented in Chapter 4. The main features of the MD algorithmare des
ribed in Chapter 5. Paper I 
ontains the results for Ni�Cu 
lusters. Paper IIpresents the stru
ture and energeti
s of K�Cs and Rb�Cs 
lusters. Arti
le III deals withthe deposition of Ni and Cu 
lusters on Ni(111) and Cu(111) surfa
es and arti
le IV withadsorbed Ag 
lusters on Ag(111) and Ni(111) surfa
es.



Chapter 2ClustersClusters are nanoparti
les (aggregates) of between three and a few thousand atoms ormole
ules. They are intermediates between small mole
ules and ma
ros
opi
 solid. Clus-ters 
an be pla
ed in the following 
ategories: (1) mi
ro
lusters (with 3 to 10-13 atoms) forwhi
h 
on
epts and methods of mole
ular physi
s are appli
able (2) small 
lusters (with10-13 to about 100 atoms) for whi
h many di�erent geometri
al isomers exist for a given
luster size with almost the same energies and mole
ular 
on
epts lose their appli
ability(3) large 
lusters (with 100 to 1000 atoms) for wi
h a gradual transition is observed tothe properties of the solid state (4) small parti
les or nano
rystals (with at least 1000atoms) whi
h display some of the properties of the solid state. The spe
ial interest in
lusters arises be
ause they 
onstitute a new type of material whi
h may have propertiesdistin
t from those of individual atoms and mole
ules or bulk matter. For example, ironand silver are immis
ible in the bulk, but readily mix in 
lusters [10℄. Furthermore, goldas bulk hardly rea
ts with mole
ular atmospheri
 oxygen or water, but small gold 
lusterhowever do rea
t with oxidation.A

ording to the types of atoms of whi
h they are 
omposed and the nature of thebonding, 
lusters 
an be divided into �ve di�erent types: metal 
lusters with delo
alizedor 
ovalent bonding, semi
ondu
tor 
lusters su
h as GaxAsy with a strong and dire
tional
ovalent bonding, ioni
 
lusters su
h as [NaxCly℄(x−y)+ with ele
trostati
 bonding, rare gas
lusters bound by weak van der Waals dispersion for
es and mole
ular 
lusters with vander Waals bonding and dipole-dipole intera
tions. In the present work we will 
on
entrateon metal 
lusters. Metal 
lusters are formed by metalli
 elements from a
ross the periodi
table. These in
lude: (1) the simple s-blo
k metals (alkali and alkaline earth metals) withdelo
alized and non-dire
tional bonding involving primarily the s orbitals (2) the sp-metals(su
h as aluminium) whith a degree of 
ovalent 
hara
ter where the bonding involves boththe s and the p orbitals and (3) the transition metals (sd-metals) with a greater degree of
ovalen
y and a higher dire
tionality in bonding.One of the most popular models whi
h have been developed to des
ribe the bondingin 
lusters of metalli
 elements is the so-
alled jellium model. In this a metal 
luster isapproximated by a uniform, positive ba
kground of density, whi
h binds a delo
alizedvalen
e ele
tron 
loud. The jellium model gives explanation to the observed peaks in the11
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Figure 2.1: Examples for metal 
lusters: gold 
lusters (left side, reprodu
ed with per-mission from A

elrys In
) and silver 
lusters stabilized by Fe(CO)4 ligands [11℄ (rightside).mass spe
tra of alkali metal 
lusters, 
orresponding to the nu
learities N=2, 8, 20, 40, 58,. . . The latter were 
alledmagi
 numbers and were attributed to the enhan
ed stability of a
luster (
orresponding to an intense peak) 
ompared to its immediate neighbours. Thesemagi
 numbers are based on the ele
troni
 shell 
losing. Whereas the jellium modelis useful for understanding the physi
al properties of small metal 
lusters taking intoa

ount the internal ele
troni
 stru
ture of the 
luster, it 
an not explain the appearan
eof even-odd numbers observed in the mass spe
tra of rare gas 
lusters. The even-oddmagi
 numbers have been as
ribed to the �lling of 
on
entri
 polyhedral, or geometri
shells of atoms, rather than ele
trons. Filled geometri
 shells impart stability to the
luster by maximizing the average 
oordination number and thereby redu
ing the 
lustersurfa
e energy. Geometri
 shell 
lusters based on twelve-vertex polyhedra (e.g. i
osahedra,de
ahedra and 
ubo
tahedra) are 
hara
terized by the following magi
 numbers N=13,55, 147, 309, 561, . . . In many 
ases there is a 
ompetition between ele
tron shell andgeometri
 shell (pa
king) e�e
ts.2.1 Cluster propertiesThe interesting properties of a 
luster are mainly determined by the high ratio of surfa
eatoms to interior (bulk) atoms. Using the SCA (Spheri
al Cluster Approximation) we
an predi
t this fra
tion Fs of surfa
e atoms [12℄
Fs = 4N−1/3. (2.1)In this approximation, an N-atom 
luster is modelled by a sphere and the volume of the
luster Vc is assumed to be the volume of an atom Va multiplied by the number of atomsN in the 
luster.
Vc = N ∗ Va. (2.2)



2.2. BIMETALLIC CLUSTERS 13Small 
lusters have more then 86% of their atoms on the surfa
e and large 
lusters havestill 20% on the surfa
e. As surfa
e atoms possess lower 
oordination numbers and anin
reased potential energy, large number of atoms in the 
luster 
an be exposed to 
hemi
alrea
tions. Thus, used as very �nely dispersed metal, 
lusters show ex
ellent 
atalyti
properties.Another important reason for the interest espe
ially in small 
lusters is the size-dependent evolution of their properties. While in medium-sized or large 
lusters the prop-erties are smoothly varying fun
tions of the number of atoms, in small 
lusters propertiessu
h as melting point, 
atalyti
 a
tivity, magneti
, or stru
tural ones, may drasti
ally
hange with size [12�14℄.With in
reasing parti
le size, the surfa
e-to-volume ratio de
reases proportionally tothe inverse parti
le size. Thus, all properties whi
h depend on the surfa
e-to-volume ratioextrapolate slowly to bulk values.The non-metal to metal transition of a 
luster depends on the 
luster size, too. Forsmall 
lusters the density of states within a band (the extent of the ele
troni
 wavefun
tion) is mu
h smaller than that for ma
ros
opi
 
rystallites and it is possible thatthe full width of a band may not have been developed. Thus, bands whi
h overlap inbulk materials are separated in 
lusters by a gap, i.e. the band stru
ture for the 
luster isnot 
ontinuous and nanos
opi
 amounts of a metal may behave as a semi
ondu
tor or aninsulator. Therefore, espe
ially for small 
lusters, properties are strongly 
hara
terizedby quantum e�e
ts.2.2 Bimetalli
 
lustersAs the name implies, bimetalli
 
lusters or so 
alled alloy 
lusters are 
omposed of atomsof two di�erent metalli
 elements. Su
h kinds of 
lusters 
ombine the 
hara
teristi
s ofthe �nite size systems together with those of the alloys.Whereas, for 
lusters 
ontaining one type of atoms, the properties 
an be varied simplyby 
hanging the size of the 
lusters, for bimetalli
 
lusters there are three additionalparameters to tune the materials properties, namely the 
omposition, the atomi
 typeand the atomi
 ordering. The last point refers to the fa
t that 
ompared to the pure
lusters with only one type of atoms, binary 
lusters may show segregation whi
h mayresult in, e.g., layered stru
tures or 
ore-shell stru
tures, or they may show 
ompletemixing [15�19℄. Be
ause of their non-trivial geometri
 stru
tures [20�26℄, and 
omplex
hemi
al ordering [27�32℄, it is di�
ult to predi
t the ground state stru
tures of binary
lusters from 
omputational point of view. Further, the interatomi
 intera
tions in abimetalli
 
luster are mu
h more 
ompli
ated than in a monometalli
 one. In addition tothe intera
tions between the same types of atoms A-A and B-B we must also 
onsider theintera
tions between the di�erent types of atoms (A-B/B-A). Moreover, in 
ontrast tomonometalli
 
lusters the interatomi
 intera
tions in bimetalli
 
lusters depend not onlyon the atom types, but also on the fra
tions of the di�erent atom types in the nanoalloy.The problem be
omes mu
h more 
ompli
ated be
ause of the existen
e of the so-
alled



14 CHAPTER 2. CLUSTERShomotops [32,33℄. Homotops are de�ned [33℄ as 
lusters with the same size, 
ompositionand geometri
 arrangement, di�ering only in the way in whi
h A and B-type atoms arearranged. The number of homotops for an AnBm 
luster, Pn,m, is given by
Pn,m =

(n +m)!

n!m!
. (2.3)Thus, if we for example 
onsider all possible repla
ements of 10 K atoms by Cs atoms inan isomer of K20, the number of homotops is as large as 184756. Be
ause of this largenumber of homotops, that in addition may have only small total-energy di�eren
es, aglobal optimization be
omes a very demanding task.As already mentioned bimetalli
 
lusters 
ombine the 
hara
teristi
s of the �nite sys-tems with those of the alloys. In bulk, alloys 
an be divided in solid solutions andintermetalli
 
ompounds. A solid solution is 
hara
terized by the la
k of a short- andof a long-range order. Compared to an intermetalli
 
ompound, where the 
ompositionis sto
hiometri
 and follows 
ertain distribution 'rules' (e.g. Cu5Zn8), a solid solutionshows a statisti
 distribution of the atoms in the latti
e (e.g. Ag�Au, Ni�Cu, Rb�Cs, K�Cs) [34, 35℄. In whi
h 
ase we will obtain a solid solution or an intermetalli
 
ompound,respe
tively, depends on the atom radii of the metal atoms and on the 
hemi
al rea
tivityof the two metals. If the two atom types di�er in their atom radii more than 15 % andthere are di�eren
es in their 
hemi
al properties, ordered stru
tures, i.e. intermetalli

ompounds are preferred. The reason is that the di�erent size of the atoms enables a
loser pa
king of themselves and a better spa
e �lling. Furthermore the ordered stru
tureis energeti
ally preferred be
ause of the larger latti
e energy set free by building the stru
-ture. If the atomi
 radii are similar, a solid solution is preferred, due to the larger entropyits unordered stru
ture 
auses. Considering this, one of the basi
 questions that have tobe answered when working with bimetalli
 
lusters is, if they show the same mis
ibilityproperties as the 
orresponding bulk alloys.2.3 Cluster experiments2.3.1 Synthesis methodsMono- and bimetalli
 
lusters 
an be generated in a variety of ways, in the gas phase, insolution, supported on a substrate, or in a matrix.Mole
ular BeamsThe development of mole
ular beam te
hniques has enabled the study of "free" 
lusters inan intera
tion-free environment: the so-
alled "
luster beam" [36,37℄. Clusters are gener-ated in a 
luster sour
e with 
luster generation 
onsisting of the pro
esses of vaporization(produ
tion of atoms or mole
ules in the gas phase), nu
leation (initial 
ondensationof atoms or mole
ules to form a 
luster nu
leus), growth (addition of more atoms ormole
ules to the initially formed nu
leus), and 
oales
en
e/aggregation (the merging of
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lusters to form larger 
lusters). Depending on the nature and 
onditions of thesour
e, di�erent size distributions of 
lusters may be generated. Most modern day metal
luster sour
es are of the gas 
ondensation type. These in
lude the following [12, 36�40℄.(1) Laser vaporization. For bimetalli
 nanoparti
les, a single alloy rod target, mixedmetalli
 powders, or two monometalli
 targets are vaporized by the in
ident laser beam.(2) Pulsed-Ar
 
luster ion sour
e. Vaporization of the mono- or bimetalli
 targets isa
hieved by passing an intense ele
tri
al dis
harge through them.(3) Ion sputtering. Clusters are produ
ed by bombarding the metal target with high-energy inert gas ions (generally Kr+ or Xe−) with bombardment energies in the range10-30 keV and 
urrents of approximately 10 mA.(4) Magnetron sputtering. Argon plasma is ignited over a target by applying either apotential and 
on�ned by a magneti
 �eld. Ar+ ions in the plasma are then a

eleratedonto the target, resulting in sputtering.After vaporization, 
ondensation of 
lusters 
an be a
hieved by letting the metalli
 vapors
ollide with a 
old inert 
arrier gas and expansion through a nozzle. On
e 
lusters havebeen made and are in the form of gaseous parti
les, it is frequently desirable to makethem into some kind of 
ontrollable beam or stream that 
an be studied or 
aptured. Toobserve 
lusters in a beam, one 
an probe them while they are free or trap them in amatrix, liquid, glassy or 
rystalline.Fig. 2.2 shows an example of the produ
tion of a 
luster beam by magnetron sputteringin the group of Palmer et al. [41℄. Here Ar+ ions are a

elerated by a high voltage suppliedto the Ag target, whi
h results in sputtering of the target atoms and the 
reation of adense vapour of energeti
 Ag atoms and small Ag 
lusters. Cold He gas is used to removeex
ess energy from these parti
les, leading to 
ondensation of 
lusters. To form a 
lusterbeam, 
harged 
lusters of various sizes are extra
ted ele
trostati
ally from the produ
tion
hamber through a series of small apertures, and subsequently fo
used by a series ofele
trostati
 lenses. By mass sele
tion in a mass �lter a size-sele
ted 
luster beam isgenerated.Chemi
al Redu
tionOne problem with studying naked metal 
lusters, su
h as those 
reated in 
luster mole
ularbeams, is that they 
annot be isolated and handled on a preparative s
ale like 
onventionalmole
ules. To enable the investigation of 
lusters and to exploit their properties in devi
eappli
ations, it is ne
essary to prote
t ("passivate") them with a ligand shell, as thisavoids 
oales
en
e at high 
luster densities. Su
h systems are realized as dispersion ofparti
les of one material in another. Ea
h parti
le in these so-
alled '
olloids' 
onsists ofa metalli
 
ore surrounded by a ligand shell.
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Figure 2.2: Produ
tion of size-sele
ted 
luster beams. (a) Cluster formation by plasmasputtering and gas aggregation. (b) Overview of the 
omplete 
luster beam sour
e. (
)Mass spe
tra of Ag 
lusters produ
ed by the sour
e by two di�erent sets of sour
e param-eters su
h as the Ar and He pressures [41℄.



2.3. CLUSTER EXPERIMENTS 17Colloidal metalli
 parti
les 
an be produ
ed by 
hemi
al redu
tion of metal salts dis-solved in an appropriate solvent in the presen
e of surfa
tant (e.g., 
itrate, alkylthiols, orthioethers) or polymeri
 ligands, whi
h passivate the 
luster surfa
e [42, 43℄. Bimetalli

olloids 
an readily be prepared by 
hemi
al redu
tion of the appropriate mixture of saltsin the solution phase using redu
tion agents su
h as NaBH4, N2H4 and H2 gas [42�45℄.During the redu
tion pro
ess, the metal spe
ies with the highest redox potential pre
ipi-tates �rst, forming a 
ore on whi
h the se
ond 
omponent is deposited as a shell [45℄. Asan example, 
o-redu
tion of Ag and Pd generally leads to PdcoreAgshell 
lusters due to thehigher redox potential of Pd.Another way of making bimetalli
 parti
les is to redu
e 
omplexes whi
h 
ontain bothof the metal spe
ies [45℄. This approa
h has been used, for example, to generate Pd�Agand Pd�Pt nanoparti
les [46℄.Thermal De
omposition of Transition-MetalsBare nanoalloys (e.g., Ni-Cu, Ag-Au, and Cu-Pd) have been generated by thermal evapo-ration of the metals in a va
uum. XPS measurements of 
ore-level binding energies showthat shifts (relative to the bulk metals) have 
ontributions due to size-e�e
ts as well asmixing [47℄.Ele
tro
hemi
al SynthesisBimetalli
 Pd-Ni and Fe-Co nano
olloids have been prepared using two sa
ri�
ial bulkmetalli
 anodes in a single ele
trolysis 
ell [48℄. Core-shell layered bimetalli
 nanoparti
les,as e.g. PtcorePdshell 
an also be produ
ed ele
tro
hemi
ally, where, the Pt 
ore 
an beregarded as a "living metal polymer" on whi
h the Pd atoms are deposited [42, 49℄.2.3.2 Investigation of ClustersMass Spe
trometryTraditional mass spe
trometers use homogeneous ele
tri
 or magneti
 �eld se
tors tode�e
t 
harged 
lusters by an extent depending on their 
harge-to-mass ratio and theirvelo
ities. If there is an inherent stability asso
iated with a given number of atoms in aneutral 
luster then this will give rise to a greater abundan
e of this 
lusters and a largepeak in intensity (magi
 numbers), relative to similarly sized 
lusters. Neutral 
lusters
an be mass sele
ted by de�e
tion using an interse
ting beam of inert gas atoms, or byreneutralising ions that have previously been mass sele
ted.X-ray Spe
tros
opyHigh-energy X-ray radiation is parti
ularly useful for studying metalli
 nanoparti
les be-
ause the binding energies and hen
e the spe
tral lines of the atomi
 
ore ele
trons arevery sensitive to the atomi
 number of the element, allowing metals whi
h are adja
ent in
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 table to be distinguished. X-ray absorption spe
tros
opy te
hniques are usedto determine the geometri
al arrangement, atomi
 number, distan
e and the 
oordinationnumber of the atoms in the 
luster.Ion mobility studiesIn these experiments, 
luster ions, produ
ed in laser vaporization sour
e, are mass sele
tedand inje
ted into a long drift tube whi
h is �lled with an inert bu�er gas. The 
lustermobilities (whi
h are inversely related to the time taken to pass through the drift tube)depend on the number of 
ollisions with the bu�er gas and these in turn depend on the
ollisional 
ross se
tional area, and hen
e the shape of the 
luster. For a given numberof atoms, spheri
al 
lusters have the smallest 
ollision 
ross se
tions and therefore travelfastest though the drift tube. Prolate spheroidal 
lusters 
arve out a large sphere, and thushave high 
ollisions 
ross se
tional areas and slower drift times. In this way 
lusters withdi�erent shapes are temporally separated and appear at di�erent times at the dete
tor.Ele
tron Mi
ros
opyIn the ele
tron mi
ros
opy the atomi
 stru
ture of 
lusters is imaged using ele
tron beams,that 
an be a

elerated to an appropriate energy and 
an be fo
used by ele
trostati
 lenses.High resolution transmission ele
tron mi
ros
opy (HRTEM) o�ers resolution down to theAngstrom level and enables information to be obtained on the stru
ture rather than justthe morphology of the nanoparti
les.Photoele
tron Spe
tros
opyEle
troni
 and dynami
 properties of metal 
lusters 
an be investigated by photoele
tronspe
tros
opy using lower energy radiation.S
anning Probe Mi
ros
opyIn s
anning probe mi
ros
opy (SPM) a surfa
e is imaged at high resolution by rasteringan atomi
ally sharp tip a
ross the surfa
e. Measurement of the strength of the intera
tionis used to map out the topography and ele
troni
 stru
ture of the surfa
e. In s
anningtunneling mi
ros
opy (STM), a potential bias is applied between the needle tip and thesubstrate, 
ausing ele
trons to tunnel from the surfa
e to the needle. One 
an eithermeasure the varying tunneling 
urrent in 
onstant height mode or keep the tunneling
urrent 
onstant and vary the height of the tip above the substrate. In the atomi
 for
emi
ros
opy (AFM) a �ne tip is brought into 
lose 
onta
t (without tou
hing) with thesample and senses the small repulsive for
e between the probe tip and the surfa
e. UsingSPM we 
an examine the morphology of 
lusters adsorbed or deposited onto a surfa
e.The last pro
esses are topi
 of the next se
tion.



2.4. CLUSTERS ON SURFACES 192.4 Clusters on Surfa
esThrough the deposition of size-sele
ted 
lusters onto a suitable substrate it is possible toprodu
e novel materials, su
h as thin �lms or nanostru
tured surfa
es, in a well-
ontrolledway. A way to size-sele
t 
lusters is to use ele
trostati
 or magneti
 de�e
tion of a beamof 
harged 
lusters as des
ribed in Se
. 2.3.1. Various te
hniques su
h as sputtering,Pulsed Laser Deposition, Ionized Cluster Beam Deposition et
., have been employed toobtain layers on surfa
es. The use of moderate impa
t energies (10-100 eV) generallyleads to �attening of the 
luster and little surfa
e damage, while by use of high impa
tenergies (keV), a 
rater hollow is formed on the surfa
e. If one wishes to deposit 
lusterson substrate without the 
lusters themselves breaking up or the surfa
e morphology ofthe substrate being disrupted, the 
lusters must be deposited with a low impa
t energy(0.1-1 eV). Low-energy 
luster deposition experiments have been 
arried out with the aimof produ
ing novel materials whi
h have a memory of the free 
luster stru
ture. Su
han e�e
t, where the 
lusters remain distin
t and identi�able upon �lm formation, wasobserved for �lms of fullerenes, but not for metalli
 
luster depositions, yet. However,independently of the nature of the in
ident 
lusters, the low-energy 
luster beam deposi-tion te
hnique (LECBD) allows to produ
e nanostru
tured materials with a morphology
onsisting of a nearly random sta
king of 
lusters. Fig. 2.3 shows an example of a setup ofthe Konstanz Cluster Deposition Experiment in the group of Prof. Dr. G. Gantefoer [50℄.In this experiment, 
lusters are produ
ed by a magnetron sputter sour
e, whi
h allows
overages up to several monolayers 
luster material within a few hours. The 
lusters are�rst produ
ed as ions in the gas phase, a

elerated by an ele
tri
 potential, mass separatedby means of a se
tor magnet and soft landed on a given substrate. These surfa
es 
anbe examined with various methods used in surfa
e analysis, for instan
e STM (S
anningTunneling Mi
ros
opy), LEED (Low Energy Ele
tron Di�ra
tion) and FIM (Field IonMi
ros
opy).To understand the deposition pro
ess and thin �lm formation, �rst one has to un-derstand the me
hanisms governing the 
luster-
luster and 
luster-substrate intera
tion,whi
h also 
an result in new e�e
ts. The impa
t of a single 
luster onto a surfa
e shouldbe 
onsidered as the basi
 pro
ess in 
luster impa
t thin �lm formation. Therefore, asimulation of this pro
ess gives valuable information pertaining to the growth 
hara
ter-isti
s of energeti
 
luster impa
t �lms. It may predi
t, for example, if the stru
ture ofthe nanoparti
le will be kept un
hanged when deposited, and on whi
h kind of substratethis is most likely to happen. To simulate theoreti
ally the experimental pro
ess of de-position we performed Mole
ular Dynami
s (MD) simulations (see Chapter 5), as theyexpli
itly des
ribe the mole
ular system as a fun
tion of time, and 
an dire
tly 
al
ulatetime-dependent phenomena. The impa
t 
luster energies used in this work are in therange of the experimental Low Energy Cluster Beam Deposition (see paper III). Anotherapproa
h we 
hose to investigate the 
luster growth on surfa
e, was to extend the basin-hopping algorithm in order to generate and optimize 
lusters onto substrates (see paperIV).
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Figure 2.3: Setup of the Konstanz Cluster Deposition Experiment [50℄.



Chapter 3Energy PotentialsIn order to predi
t a 
luster stru
ture, �rst a mathemati
al model of the total potentialenergy E of the 
luster has to be 
hosen. The a

ura
y of the model for the interatomi
for
es is a key fa
tor in 
al
ulating the real properties of a system. In this Chapter wewill give an overview of some of the most popular energy potentials and present thoseones used to model the intera
tions between the atoms in the bimetalli
 
lusters and inthe '
luster+surfa
e' systems in the present thesis.A simple and widely used energy potential is the Lennard-Jones (LJ) one. In thispotential the binding for
es are represented by pairwise intera
tions
V (r) = 4ǫ

[(σ
r

)n

−
(σ
r

)m]
. (3.1)Here r is the interatomi
 distan
e and σ is the interatomi
 distan
e where the potential
urve 
rosses zero. Most 
ommonly n=12 and m=6 are assumed. This potential approx-imates van der Waals intera
tions and gives good representations of some rare gas andmole
ular 
lusters.However, for truly representations of real 
lusters we need potentials whi
h are notpairwise additive and more a

urate. In metal 
lusters the many-body nature of the metal-li
 
ohesion (a 
onsequen
e of the 
hara
teristi
 delo
alization of the ele
trons) makes anadequate des
ription of even the homointera
tions a 
hallenging task. Reprodu
tion ofthe heteroatomi
 intera
tions is only a more 
omplex problem. Sear
hing for the rightpotential for des
ribing an intermetalli
 system one 
an 
hoose between ab initio, density-fun
tional, or semiempiri
al methods su
h as the embedded atom method or tight-bindingpotentials like the Gupta potential. Both �rst methods give highly a

urate results, butthey are mu
h more time 
onsuming. Even for 
lusters with only one type of atoms, it isoverwhelmingly demanding to identify the stru
ture for 
lusters with just around 10�20atoms using these methods. In 
ontrast, the last two methods are fast potentials with high
omputational e�
ien
y. Their parameters are �tted to experimental properties of bulkmetals and alloys. Moreover, both of them are many-body potentials and thus based onthe 
on
ept of density, or 
oordination. Su
h potentials give shorter and stronger bondsfor low-
oordination atoms. This many-body 
hara
ter of the intera
tion potential is veryimportant for a reasonably a

urate modelling of metalli
 systems.21



22 CHAPTER 3. ENERGY POTENTIALSIn the present thesis the intera
tions between the atoms in the Ni�Cu bimetalli
 
lus-ters as well as in the "
luster+surfa
e" systems are des
ribed through the embedded atommethod in the version of Daw, Baskes and Foiles, whereas for K�Cs and Rb�Cs bimetalli

lusters we used the Gupta tight-binding method. In the following we will give a shortoverview of the density fun
tional theory formalism before des
ribing the semiempiri
alpotentials based on it.3.1 Density-Fun
tional Theory (DFT)The main problem in theoreti
al 
hemistry remains the solution of the S
hrödinger equa-tion
ĤΨ = EΨ, (3.2)whi
h enables the 
al
ulation of the ele
troni
 and stru
tural properties of a given material[51℄. Unfortunately, it is possible to 
al
ulate the S
hrödinger equation without anyapproximation only for rather small mole
ular systems. In order to obtain a solutionof this equation for multiele
tron systems we use the Born-Oppenheimer approximation.Within this approximation the ele
troni
 and nu
lear motion are separated within theHamiltonian be
ause the nu
lei are mu
h heavier than the ele
trons and from the pointof view of the ele
trons they 
an be seen as �xed parti
les. Fo
using only on time-independent properties within this approximation we 
an solve S
hrodinger's equation forthe ele
trons [52℄:{ N∑

i=1

[
− ~2

2m
∇2

i + Vext(ri)

]
+

1

2

N∑
i6=j=1

e2

| ri − rj |
}

Ψ(r1, . . . , rN) = E ·Ψ(r1, . . . , rN) (3.3)where ri is the position of the ith ele
tron, N is the total number of ele
trons, Vext is theexternal �eld in whi
h the ele
trons move, E is the total ele
troni
 energy, and Ψ is theele
tron wavefun
tion. Vext(r) is the ele
trostati
 potential generated by the atomi
 nu
lei,but it may also 
ontain 
ontributions from surrounding media or other perturbations onthe system.For the 
al
ulation of experimental observables we need to know the 
omplete N-ele
tron wavefun
tion Ψ(r1, . . . , rN). However, 
al
ulating Ψ(r1, . . . , rN) does give mu
hmore detailed information than is a
tually needed in any pra
ti
al appli
ation, and itwould be a very great 
omputational simpli�
ation if one 
ould avoid the extra unusedinformation 
ontained in the ele
tron wavefun
tion. The main ansatz in the density-fun
tional theory itself [53, 54℄ is that we don't need to 
al
ulate the whole N-parti
lewavefun
tion of the system, but simply the ele
tron density in order to obtain any groundstate property of the system. This theorem has been published by Hohenberg and Kohn in1964 [55℄. They have proved that the ele
tron density ρ(r) of the ground state determinesuniquely the external potential Vext(r). This means that the ele
tron density in three-dimensional position spa
e is su�
ient in 
onstru
ting the full Hamilton operator of Eq.3.3 and on
e that is known it is possible to solve the S
hrödinger equation 3.3 and thus



3.1. DENSITY-FUNCTIONAL THEORY (DFT) 23obtain any ground state property. Thus, the total ele
troni
 energy, whi
h is a groundstate property of a given system, be
omes a fun
tional of the ele
tron density
E = E[ρ(r)]. (3.4)However, the Hohenberg-Kohn theorem proves the existen
e of the fun
tionals but do notprovide any instru
tion on how to derive them. Due to this la
k of exa
t fun
tionals, theele
tron density ρ(r) and the total ele
troni
 energy E are 
al
ulated by using 
ertainapproximations. A very useful approa
h for the 
al
ulation of the ele
tron density waspresented by Kohn and Sham in 1965 [56℄. The approximation begins with the step ofwriting the total ele
troni
 energy E[ρ] of the system as

E[ρ] = T [ρ] +

∫
ρ(r)

[
Vext(r) +

1

2
VC(r)

]
dr + Exc[ρ]. (3.5)Here, T is the total kineti
 energy, VC the ele
trostati
 Coulomb potential seen by theele
tron, Vext the external potential, and Exc is the ex
hange-
orrelation energy, whi
h
ontains all terms that are not in
luded in the other three addends. After exertion of thevariational prin
iple using the Lagrange multiplier µ we obtain

δT

δρ
+ Vext(r) + VC(r) +

δExc

δρ
= µ. (3.6)The Lagrange multiplier is per 
onstru
tion the 
hemi
al potential for the ele
trons.Kohn and Sham 
ompared this result with that obtained for N non-intera
ting parti-
les (fermions) moving in another external potential Veff de�ned in su
h a way that theele
tron density of this system is the same as that for the real system. The equivalent ofequation 3.6 is in this 
ase

δT̃

δρ
+ Veff(r) = µ (3.7)where T̃ is the kineti
 energy of the non-intera
ting parti
les and not these of the physi
alsystem. For these non-intera
ting parti
les we 
an solve the S
hrödinger equation. Thelast is signi�
antly simpli�ed and 
an be written as the sum of N single-parti
le equationsof the form [

− ~2

2m
∇2 + Veff(r)

]
ψi(r) = ǫiψi(r). (3.8)By solving this S
hrödinger equation we 
an 
ompute the ele
tron density, whi
h is thesum over the N orbitals with the lowest single-parti
le energies ǫi:

ρ(r) =

N∑
i=1

| ψi(r) |2 . (3.9)Given the density, one determines the ex
hange energy and hen
e its variation withdensity. One 
an now re
ompute the e�e
tive potential, solve again the one-ele
tron
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hrödinger equation, and re
ompute the density. The pro
edure is repeated until thepro
ess 
onverges in a self-
onsistent manner.Thus, Kohn and Sham reformulated the problem of 
al
ulating the total ele
troni
energy E as a fun
tional of the ele
tron density ρ(r) as that of solving a set of single-parti
le S
hrödinger-like equations, and this approa
h has formed the basis for almost allpra
ti
al appli
ations of the densty-fun
tional theory.3.2 The Embedded Atom Method (EAM)The EAM presents a semiempiri
al approximation for extended systems with largely de-lo
alized ele
trons (mainly for early and late transition metals). It is based on the densityfun
tional formalism.3.2.1 The EAM in the version of Daw, Baskes and Foiles (DBF)The 
on
eptual platform for the development of the EAM was provided in 1980 by theapproa
h of Stott and Zaremba, named the quasi-atom method [57℄. This approa
h hasits roots in the DFT. A

ordingly, the energy 
hange asso
iated with pla
ing an atom intoa host system of atoms is a fun
tional of the ele
troni
 density of the host system beforethe new atom is embedded. The energy of the host with impurity is then a fun
tional ofthe unperturbed host ele
tron density and a fun
tion of the impurity 
harge and position.By analogy with the approa
h of Stott and Zaremba, Daw and Baskes [58�60℄ 
onsiderea
h atom of a metal as an impurity embedded in a host provided by all other atoms.A

ording to this view the total energy Etot has the following form
Etot =

N∑
i=1

[Fi(ρ
h
i ) +

1

2

N∑
j=1(j 6=i)

φij(rij)]. (3.10)In Eq. 3.10, ρh
i is the lo
al ele
tron density at site i and Fi is the embedding energyrequired to embed an atom into this density. The lo
al density at site i is assumed beinga superposition of atomi
 ele
tron densities,

ρh
i =

N∑
j=1(j 6=i)

ρa
j (rij), (3.11)where ρa

j (rij) is the spheri
ally averaged atomi
 ele
tron density provided by atom j at thedistan
e rij . Further, in Eq. 3.10 φij is the short-range pair repulsive intera
tion betweenatoms i and j
φij(rij) =

Zi(rij)Zj(rij)

rij
, (3.12)separated by the distan
e rij.



3.2. THE EMBEDDED ATOM METHOD (EAM) 25The detailed analysis made in Ref. [60℄ have shown that the main Ansatz of the EAM,Eq. (3.10), also holds good in the 
ase of the binary alloys. In a

ord with Ref. [60℄the pair intera
tion between two di�erent spe
ies (A-B/B-A heterointera
tion) 
an beapproximated by the geometri
 mean of the pair intera
tion for the individual spe
ies:
φAB(R) =

√
φAA(R) · φBB(R). Further, the embedding fun
tions for the Ni�Cu and Ag�Ni systems have been determined by Daw, Baskes and Foiles empiri
ally by �tting toexperimental data of bulk sublimation energy, elasti
 
onstant and the heat of solution ofbinary alloys [60℄. The values for ρa

i , Fi and φij are available in numeri
al form for Ni, Cuand Ag [61℄. The validity of the embedding fun
tions for the Ni�Cu and Ag�Ni systemshas been tested by 
omputing a wide range of properties as e.g. the segregation energyof substitutional impurities to the (100) surfa
e [60℄.The EAM of DBF has been su

essfully applied to many bulk and low-symmetri
problems in transition metals su
h as defe
ts, surfa
e stru
tures and surfa
e segrega-tion/mixing e�e
ts in alloys [62℄. Furthermore, in our previous works [63�68℄ (thosein
lude also the dis
ussions with the available experiments) we have found that this ap-proa
h provides a

urate information on pure CuN , NiN and AgN 
lusters, whi
h is ourmain reason for 
hoosing this potential for studying Ni�Cu and Ag�Ni heteroatomi
 sys-tems.3.2.2 The EAM version of Voter and ChenThere is another well-a

epted version of the EAM developed by Voter and Chen [69,70℄.This version of the EAM distinguishes from the version of DBF mainly by means of theparametrization and by the form of the pair potential. Furthermore, the version of Voterand Chen takes into a

ount properties of the dimer as well as bulk properties in the�tting pro
edure, whereas Daw and Baskes use only bulk properties of the metals in theirparametrization.In the �tting pro
edure of Voter and Chen the pairwise intera
tion is taken to be aMorse potential,
φ(r) = DM [1 − e(−αM (r−RM ))]2 −DM (3.13)where the three parameters DM , RM and αM , de�ne the depth, position of the minimum,and a measure of the 
urvature near the minimum, respe
tively. The density fun
tion,

ρ(r), is taken as
ρ(r) = r6[e−βr + 29e−2βr] (3.14)where β is an adjustable parameter.To be suitable for use in mole
ular dynami
s, the interatomi
 potential φ(r) as well asthe ele
tron density ρ(r) should be 
ontinuous. This is a

omplished by for
ing φ(r) and

ρ(r) to go smoothly to zero at a 
uto� distan
e, rcut, whi
h is used as a �tting parameter.The �ve parameters de�ning φ(r) and ρ(r) (DM , RM , αM , β and rcut) are optimized byminimizing the root-mean-square deviation (χrms) between the 
al
ulated and experimen-tal values for the three 
ubi
 elasti
 
onstants, the va
an
y formation energy, the bondlength and the bond strength of the diatomi
 mole
ule.



26 CHAPTER 3. ENERGY POTENTIALSAlthough the two versions of EAM have 
ompletely di�erent parametrizations, theyyield 
lusters that are stru
turally and energeti
ally almost identi
al, as previous studiesof Grigoryan et al. have shown [64, 67℄.3.3 The Gupta PotentialThe Gupta potential [71℄ has been su

essfully applied to study the stru
ture, energeti
s,free energy, surfa
e energy and melting point of alkali metal 
lusters [72,73℄. It has beenderived from Gupta's expression for the 
ohesive energy of a bulk material. A

ordingto this, the total energy of a system with N atoms is written in terms of repulsive andattra
tive many-body terms,
Vclus =

N∑
i=1

[
V r(i) − V m(i)

] (3.15)where
V r(i) =

N∑
j=1 (6=i)

A(a, b) exp

[
− p(a, b)

(
rij

r0(a, b)
− 1

)] (3.16)and
V m(i) =

{ N∑
j=1(6=i)

ζ2(a, b) exp

[
− 2q(a, b)

(
rij

r0(a, b)
− 1

)]} 1
2

. (3.17)In these equations, rij is the distan
e between atoms i and j, and A, r0, ζ , p, and q areparameters whose values are �tted to experimental values su
h as 
ohesive energy, latti
eparameters and independent elasti
 
onstants for the referen
e 
rystal stru
ture at 0 K.Finally, a and b refer to atom type of atom i and j.The parameters for inhomogeneous K�Cs (Rb�Cs) intera
tions are taken as the averageof the K�K and Cs�Cs (Rb�Rb and Cs�Cs) parameters obtained by Li et al. [73℄. Thereasoning for this is that bulk K�Cs and Rb�Cs alloys are solid solutions, rather thanordered intermetalli
s, and mixture energies and mixture parameters of molten K�Cs andRb�Cs alloys 
omputed in a study of Christman [74℄ are very 
lose to the averages of the
orresponding single 
onstituent values. Furthermore, also for other alloy systems it hasbeen found that the parameters are 
lose to the average values and in general lie betweenthe limits of the homonu
lear intera
tion parameters [75℄.



Chapter 4Optimization AlgorithmsOptimization is a 
ommon problem in s
ien
e, engineerings, business, politi
s and everyday life. Engineers try to 
onstru
t ma
hines with an energy or material 
onsumption ase�
ient as possible. Managers try to maximise the pro�t and minimise the loss of their
ompanies. Also the rays of light in a medium follow a path whi
h minimises the traveltime. Finally in biology Darwin's paradigm of the survival of the �ttest (Darwin, 1859)interprets the origin of spe
ies as an optimization pro
ess. In this work we 
on
entrateour attention on the problem of stru
ture predi
tion of 
lusters, where the most stablestru
ture 
orresponds to a global minimum in the potential energy surfa
e (PES). Hereby,the PES represents the potential energy of the 
luster as a fun
tion of its atomi
 
oor-dinates. Ea
h lo
al minimum in the PES 
orresponds to a possible me
hani
ally stable
on�guration of the atomi
 
oordinates where the gradient of the potential vanishes.But, even for the simpler 
ase of monoatomi
 
luster, we are fa
ed with the problemof 
omplexity, i.e., the number of lo
al minima in the PES in
reases exponentially with
luster size. Bimetalli
 
lusters possess mu
h more 
omplex PES due to the inequivalen
eof homotops (as mentioned in Chapt. 2)). Therefore, to obtain a pre
ise information onthe stru
ture of the lowest total energy and thus to 
al
ulate the properties of interest,an unbiased and a

urate exploration of the potential energy surfa
e is required.4.1 Lo
al OptimizationFor the 
al
ulation of the 
losest lo
al total-energy minima we use two di�erent methods:the Broyden-Flet
her-Goldfarb-Shanno method, whi
h belongs to the variable metri
/quasi-Newton methods, and the 
onjugate gradient method.Both variable metri
 and 
onjugate gradient methods require that you are able to
ompute the fun
tion's gradient, or �rst partial derivatives, at arbitrary points. Thegoal of both methods is to a

umulate information from su

essive line minimizationsso that N su
h line minimizations lead to the exa
t minimum of a quadrati
 form in Ndimensions. The variable metri
 approa
h di�ers from the 
onjugate gradient in the waythat it stores and updates the information that is a

umulated.27



28 CHAPTER 4. OPTIMIZATION ALGORITHMS4.1.1 The Variable Metri
/Quasi-Newton MethodThe basi
 idea of the method is the appli
ation of the Newton method for solving nonlinearsystems of equations in order to �nd a zero point of the gradient of the fun
tion f(x) [76,77℄.The Newton step is then
xi+1 = xi −H−1∇f(xi) (4.1)where H−1 is the inversed Hessian matrix, i.e. the matrix of the se
ond derivative of f atpoint xi . A major drawba
k of using the Newton step is the ne
essity to evaluate the Hes-sian matrix H, whi
h might be 
omputationally expensive and error-prone. Furthermoreone has to invert this matrix, whi
h is 
omputational demanding too. The method pre-sented in this se
tion alleviates this di�
ulty by approximating the inverse of the Hessianusing solely the gradient of the fun
tion. Thus, the 'quasi' in the quasi-Newton methodis that we don't use the a
tual Hessian matrix H, but instead 
onstru
t a sequen
e ofmatri
es Hi, whi
h approximates the Hessian matrix

lim
i→∞

Hi = H−1. (4.2)The sear
h dire
tion di at the i-th step, i.e. the dire
tions along whi
h f de
reases isde�ned as following
di = −Ai∇f(xi). (4.3)Hereby, Ai is a symmetri
 and positive de�nite matrix, whi
h approximates the inverseHessian matrix. The di�erent quasi-Newton methods di�er in the update formula forthe inverse Hessian matrix. Su
h methods, with step wise approximation of the Newtondire
tion, exhibit a fast rate of 
onvergen
e. In the neighbourhood of the minimum they
onverge within few iterations yielding a high a

ura
y of the solution.4.1.2 The Broyden-Flet
her-Goldfarb-Shanno Method (BFGS)The Broyden-Flet
her-Goldfarb-Shanno algorithm [76℄ belongs to the family of quasi-Newton methods. Here the inverse Hessian matrix Ai is updated as follows:

Ai+1 = Ai +
sis

T
i

sT
i vi

− Aiviv
T
i Ai

vT
i Aivi

+ (vT
i Aivi) · ui (4.4)with

ui =
si

sT
i vi

− Aivi

vT
i Aivi

(4.5)where
si = xi+1 − xi (4.6)and

vi = ∇f(xi+1) −∇f(xi). (4.7)



4.1. LOCAL OPTIMIZATION 29Sin
e quasi-Newton methods require the storage of the Hessian matrix (or its inverse),their memory requirement is high, whi
h in most 
ases prevent their appli
ation to larges
ale optimization problems like minimizing the potential energy of a 
luster with morethan 3000 atoms. A method to redu
e the memory requirement, is to 
hoose a 
ompa
t,impli
it representation of the Hessian matrix. The most widely used method, the limited-memory BFGS, or L-BFGS algorithm for short, was introdu
ed by No
edal (1980) [78℄.It is almost identi
al in its implementation to the BFGS method. The only di�eren
e isin the matrix update: at every step the oldest information 
ontained in the quasi-Newtonmatrix is dis
arded and repla
ed by new one. In this way a more up to date model of thefun
tions is a
hieved. In this thesis a slightly modi�ed implementation of the L-BFGSalgorithm developed by Liu & No
edal (1989) [79℄ was used for the lo
al optimization ofthe "surfa
e+
luster" systems as well as of the K�Cs and Rb�Cs 
luster stru
tures, and asimple BFGS algorithm was employed for the optimization of Ni�Cu 
luster geometries.4.1.3 The Conjugate Gradient MethodIn the 
onjugate gradient method the new sear
h dire
tion is 
onjugate to the previoussear
h dire
tions [76℄. Starting with an arbitrary initial ve
tor g0 and letting h0 = g0,the 
onjugate gradient method 
onstru
ts two sequen
es of ve
tors from the re
urren
e
gi+1 = gi − λiA · hi hi+1 = gi+1 + γihi i = 0, 1, 2, .... (4.8)The ve
tors satisfy the orthogonality and 
onjuga
y 
onditions with respe
t to a symmet-ri
, positive de�nite matrix A if

gi · gj = 0 hi · A · hj = 0 gi · hj = 0 j < i. (4.9)The s
alars λi and γi are given by
λi =

gi · gi

hi · A · hi
=

gi · hi

hi · A · hi
(4.10)

γi =
gi+1 · gi+1

gi · gi
. (4.11)Suppose that we have gi = −∇f(Pi), for some point Pi. We pro
eed from Pi alongthe dire
tion hi to the lo
al minimum of f lo
ated at some point Pi+1 and then set

gi+1 = −∇f(Pi+1). Then, this gi+1 is the same ve
tor as would have been 
onstru
tedby Eq. 4.8. We have, then, the basis of an algorithm that requires neither knowledge ofthe Hessian matrix A, nor even the storage ne
essary to store su
h a matrix. A sequen
eof dire
tions hi is 
onstru
ted, using only line minimizations, evaluations of the gradientve
tor, and an auxiliary ve
tor to store the latest in the sequen
e of g's.The algorithm des
ribed so far is the original Flet
her-Reeves version of the 
onjugategradient algorithm. Later, Polak and Ribiere introdu
ed one signi�
ant 
hange. Theyproposed using the form
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γi =

(gi+1 − gi) · gi+1

gi · gi

(4.12)instead of Eq. 4.11. The Polak-Ribiere formula a

omplishes the transition to furtheriterations, after you have arrived at the minimum of the quadrati
 form, more gra
efully.It tends to reset h to be down the lo
al gradient, whi
h is equivalent to beginning the
onjugate-gradient pro
edure anew.4.2 Global OptimizationIn this work the geneti
 algorithm has been used to determine the global minima of thetotal energy of the Ni�Cu binary 
lusters, and the basin-hopping algorithm was appliedto K�Cs and Rb�Cs 
lusters, as well as to Ag 
lusters adsorbed on Ag(111) and Ni(111)surfa
es.4.2.1 The Geneti
 Algorithm (GA)Geneti
 algorithms are based on Darwins theory of evolution, i.e. on the me
hanisms ofnatural sele
tion ("survival of the �ttest"). The GA employs operators that are analoguesof the evolutionary pro
esses of geneti
 
rossover and mutation to explore multidimen-sional parameter spa
e. It 
an be applied to any problem where the variables to beoptimized ("genes") 
an be en
oded to form a string ("
hromosome"), ea
h string repre-senting a trial solution to the problem. The use of GAs for optimizing 
luster geometrieswas pioneered in the early 1990s by Hartke (for small sili
on 
lusters) and Xiao andWilliams (for mole
ular 
lusters). Sin
e then, geneti
 algorithms have been in
reasinglyused in a variety of global optimization problems in 
hemistry, physi
s, materials s
ien
eand biology. Notable appli
ations of GAs in the 
hemistry/bio
hemistry �eld in
lude thesimulation of protein folding, stru
tural studies of RNA and DNA, the design and do
k-ing of drug mole
ules, the predi
tion of 
rystal stru
tures and the solution from single
rystal, powder and thin �lm di�ra
tion data. In the 
ase when the GA is applied onatomi
 
lusters the more �t individuals in a generation are sele
ted and mated to produ
ethe next generation of o�springs. Here the �tness is a measure of the energeti
 stabilityfor a 
ertain 
luster stru
ture.Our version of the geneti
 algorithms has been applied to 
lusters with one, two, andthree types of atoms, for example Au, Na, AlO and HAlO 
lusters [80�82℄, and we havefound that this optimization method is reliable when studying the stru
tural and energeti
properties of one-
omponent as well as of multi-
omponent 
lusters.For the study on a given NinCum 
luster, a number of randomly generated stru
-tures are optimized lo
ally with the quasi-Newton method. The three lowest-total-energystru
tures are then used as the initial population. Subsequently, a new set of 
lustersis 
onstru
ted by 
utting ea
h of the three original ones randomly into two parts, thatare inter
hanged and randomly rotated relative to ea
h other, and afterwards allowed to



4.2. GLOBAL OPTIMIZATION 31relax. Out of the total set of six stru
tures, the three ones with the lowest total energyare kept as the next generation. This pro
edure is repeated until the lowest total energyis un
hanged for a large number of generations.4.2.2 The Basin-Hopping Algorithm (BH)In the following we will give a short overview of the Monte Carlo method before des
ribingthe BH algorithm based on it.The Monte Carlo Method (MC)The Monte Carlo method was developed by von Neumann, Ulam, and Metropolis at theend of the Se
ond World War to study the di�usion of neutrons in �ssionable material.The name 'Monte Carlo', 
hosen be
ause of the extensive use of random numbers in the
al
ulation, was 
oined by Metropolis in 1947. The method represents a random walkthrough phase spa
e, where the new parti
le positions are either a

epted or reje
ted bythe energy 
riterion of Metropolis. A

ording to the Metropolis 
riterion, if the energyof the new minimum, Enew is lower than the energy 
al
ulated in the last step Eold,then the probability to realize the new state is greater than those to realize the old stateand the step is a

epted. If Enew is greater than Eold, then the step is a

epted if exp[-(Eold − Enew)/kBT ℄ is greater than a random number drawn from the interval [0,1℄. Ifthe move uphill in energy is reje
ted, the system remains in the old state. In this 
ase theatom is retained at its old position and the old 
on�guration is re
ounted as a new statein the 
hain.In 
omparison to mole
ular dynami
s simulations, whi
h is des
ribed in Chapter 5,time does not enter in the MC s
heme, i.e. the temporal progression is lost.The BH MethodThe BH method is based upon Li and S
heraga's Monte Carlo minimization [83�87℄.In this method perturbations in the algorithm are introdu
ed by 
hanging slightly thelatest set of 
oordinates and 
arrying out a gradient-based optimization from the resultinggeometry. Moves are a

epted or reje
ted based on the Metropolis 
riterion. Thus, thedi�eren
e from the standard MC algorithm is that the energy should be minimized withrespe
t to the lo
al minimum before the Metropolis a

eptan
e rule is applied. The use ofa minimization pro
edure before the appli
ation of the a

eptan
e 
riterion is equivalentto sear
hing for a transformed potential energy surfa
e de�ned by
Ẽ( ~X) = min{E( ~X)}, (4.13)where min{...} represents a lo
al energy minimization pro
ess with ~X as initial stru
ture.The topography of the transformed surfa
e is that of a multidimensional stair
ase. Ea
hstep 
orresponds to the basin of attra
tion (plateau) surrounding a parti
ular minimum.



32 CHAPTER 4. OPTIMIZATION ALGORITHMSThe Monte Carlo part of the BH algorithm is introdu
ed in order to allow the systemto hop from one plateau to another at a thermal energy kBT ∗ measured in units of thebinding energy of the 
luster dimer. The hopping probability depends highly on the 
hoi
eof the �temperature� T ∗ and on the redu
ed-energy di�eren
e between the plateaus of thetwo 
onse
utive steps. In the present work the Monte Carlo simulation has been performedat a 
onstant redu
ed �temperature� of 0.8.The maximum allowed displa
ement of atoms is given by the parameters STEP andASTEP. The �rst one spe
i�es the maximum 
hange of any Cartesian 
oordinate andthe se
ond one the toleran
e on the binding energy of individual atoms below whi
h anangular step is taken for that atom. In this thesis we have used a 
ombination of 0.36and 0.4 for STEP and ASTEP, respe
tively, to explore the PES of binary 
lusters and a
ombination of 1.3 and 0.4 to optimize 
lusters on surfa
es.A further parameter is the ACCEPTRATIO whi
h governs the size of the trial move.If this parameter is too large then a large fra
tion of moves are a

epted but the phasespa
e of the 
luster is explored slowly, i.e. 
onse
utive states are highly 
orrelated. If it istoo small then nearly all the trial moves are reje
ted and again there is little movementthrough phase spa
e. An a

eptan
e ratio of 0.5 (whi
h means that half of the moves area

epted) is most 
ommon and used also in this work.The BH algorithm has su

essfully lo
ated all the lowest known minima for Lennard-Jones 
lusters with up to 110 atoms, in
luding all the noni
osahedral stru
tures (sizes 38,75-77, 102-104), for the �rst time in unbiased sear
hes [86℄. In a re
ent study, Doye et al.have found the parti
ularly stable stru
tures for binary Lennard-Jones 
lusters with upto 100 atoms [88℄.The BH 
ode we used in this work has been downloaded from the website of Dr. DavidJ. Wales [89℄. For the present study, the EAM of DBF and the Gupta potential, bothwritten for the 
ase of bimetalli
 systems, have been implemented in the algorithm. Tooptimize a 
luster stru
ture on a surfa
e, the 
ode has been modi�ed as follows. Wedisturb randomly the 
oordinates of the 
luster separately from those of the surfa
e andthen 
arry out a gradient-based optimization on the "
luster+surfa
e" system. Afterwardsthe Metropolis a

eptan
e rule is applied using the old and new lo
al minima of the"
luster+surfa
e". For the next step the 
luster atoms that belong to the latest set"
luster+surfa
e" 
oordinates are disturbed randomly again. This pro
edure is repeateduntil the lowest total energy of the "
luster+surfa
e" system is found.



Chapter 5Mole
ular Dynami
s Simulation (MD)MD is a widely used method to 
ompute the motions of individual mole
ules or atoms inmodels of solids, liquids, and gases. It 
an be viewed as a simulation of the system as itdevelops over a period of time. The mole
ular dynami
s method was �rst introdu
ed byAlder and Wainwright in the late 1950's [90,91℄ to study the intera
tions of hard spheres.The �rst mole
ular dynami
s simulation of a realisti
 system was done by Rahman andStillinger in their simulation of liquid water in 1971 [92℄. A mole
ular dynami
s simulationgenerates a sequen
e of points in phase spa
e as a fun
tion of time. These points belong tothe same ensemble, and they 
orrespond to the di�erent 
onformations of the system andtheir respe
tive momenta. There exist di�erent ensembles with di�erent 
hara
teristi
s.1. Mi
ro
anoni
al ensemble (NV E) : The thermodynami
 state 
hara
terized by a�xed number of atoms, N , a �xed volume, V , and a �xed energy, E. This 
orresponds toan isolated system.2. Canoni
al Ensemble (NV T ): This is a 
olle
tion of all systems whose thermody-nami
 state is 
hara
terized by a �xed number of atoms, N , a �xed volume, V , and a�xed temperature, T .3. Isobari
-Isothermal Ensemble (NPT ): This ensemble is 
hara
terized by a �xednumber of atoms, N , a �xed pressure, P , and a �xed temperature, T .4. Grand 
anoni
al Ensemble (µV T ): The thermodynami
 state for this ensemble is
hara
terized by a �xed 
hemi
al potential, µ, a �xed volume, V , and a �xed temperature,
T . In this thesis we use a mi
ro
anoni
al NV E ensemble, where kineti
 and potentialenergy are transformed into ea
h other all the time keeping the total energy of the system
onstant. In 
ontrast to the Monte Carlo method (see Chapter 4), whi
h follows a randomwalk, in MD the system moves in phase spa
e along its physi
al traje
tory as determinedby Newton's equations of motion. These are integrated numeri
ally.In Newton's se
ond low the mass mi of atom i and its a

eleration are related to thefor
e fi on that atom

miẍi = fi (5.1)with 33
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fi = ∇xi

V. (5.2)Here xi are the 
oordinates of atom i and V is the gradient of the potential energy �eld.In a 
lassi
al MD 
ode the starting 
onditions are the positions of the atoms. FollowingNewton's pres
ription, from the initial positions, velo
ities and for
es, it is possible to
al
ulate the positions and velo
ities of the atoms at a small time interval (a time step)later. From the new positions the for
es are re
al
ulated and another step in time made.The 
y
le has to be repeated many times in the 
ourse of a full simulation, usually formany thousands of time steps. It is worth noting that a single time step is usually of theorder of 1 femtose
ond, and thus signi�
antly smaller than the typi
al time taken for amole
ule to travel its own length.At the end of the simulation event, a 
ertain number of steps is dedi
ated to thesimulated annealing of the system, in whi
h the temperature is gradually redu
ed. As onthe one hand the potential energy of the system de
reases as a result of the intera
tionbetween the parti
les and on the other hand our program uses an NVE ensemble, i.e. thetotal energy is kept 
onstant, there will be an in
rease in the kineti
 energies of the 
lusteratoms. Thus, in order to obtain reasonable �nal stru
tures, we have to 
ool down thestru
tures at the end of the simulation and give the system the opportunity to surmountenergeti
 barriers, and �nd non-lo
al minima.5.1 The Verlet algorithmThe Verlet algorithm [93,94℄ is a dire
t solution of the se
ond-order Newtonian equations.In this method the positions at the next time step are 
al
ulated from the positions at theprevious and 
urrent time steps, without using the velo
ity. The equations are solved ona step-by-step basis. To use su
h a �nite time-step method of solution, it is essential thatthe parti
le positions vary smoothly with time. Whenever the potential varies sharply,impulsive 
ollisions between parti
les o

ur at whi
h the velo
ities 
hange dis
ontinuously.The parti
le dynami
s at the moment of ea
h 
ollision must be treated expli
itly, andseparately from the smooth inter-
ollisional motion. Thus, a Taylor expansion of x(t)about time t is ne
essary to obtain a potential energy whi
h is a 
ontinuous fun
tionof parti
le positions. In this sense the Verlet algorithm is a 
ombination of two Taylorexpansions. First the Taylor series for position from time t forward to t + ∆t is writtenas
x(t+ ∆t) = x(t) +

dx(t)

dt
∆t+

1

2

d2x(t)

dt2
∆t2 +

1

3!

d3x(t)

dt3
∆t3 + ... (5.3)Then the Taylor series from t ba
kward to t −∆t is written as follows

x(t− ∆t) = x(t) − dx(t)

dt
∆t+

1

2

d2x(t)

dt2
∆t2 − 1

3!

d3x(t)

dt3
∆t3 + ... (5.4)Adding these two expansions gives the basi
 Verlet formula
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x(t+ ∆t) = 2x(t) − x(t− ∆t) +

d2x(t)

dt2
∆t2 + ... (5.5)This o�ers the advantage that the �rst and third-order term from the Taylor expansion
an
els out, thus making the Verlet integrator an order more a

urate than integration bysimple Taylor expansion alone. As it 
an be seen in the basi
 Verlet formula, the velo
itiesare not expli
itly given in the basi
 Verlet equation, but often they are ne
essary for the
al
ulation of 
ertain physi
al quantities as the kineti
 energy. The velo
ities may beobtained from the formula

v(t) =
x(t+ ∆t) − x(t− ∆t)

2∆t
. (5.6)5.2 The Velo
ity Verlet algorithmA similar, but more 
ommonly used algorithm is the Velo
ity Verlet algorithm [94℄. Thismethod expli
itly in
orporates velo
ity. Positions and velo
ities are 
al
ulated at thesame time

x(t+ ∆t) = x(t) + v(t)∆t+
1

2
a(t)∆t2 (5.7)

v(t+ ∆t) = v(t) +
1

2
∆t[a(t) + a(t+ ∆t)]. (5.8)At the time t+∆t, the kineti
 energy is available and the potential energy will have beenevaluated in the for
e loop. The most time 
onsuming part of the MD method is thefor
e 
al
ulation and not the integration algorithm. Thus, it is important to be able toemploy a long time step ∆t. In this way, a given period of simulation time 
an be 
overedin a modest number of integration steps, i.e. in an a

eptable amount of 
omputer time.In 
ontrast to other methods of numeri
al integration, su
h as the predi
tor-
orre
toralgorithm, the Velo
ity Verlet method is fast, requires little memory and allows the use ofa long time step. Its numeri
al stability, 
onvenien
e, and simpli
ity make it perhaps themost attra
tive proposed to date. In this thesis mole
ular dynami
s simulation 
ombinedwith the Velo
ity Verlet algorithm was performed to study the deposition pro
ess of smallNi and Cu 
lusters on Ni(111) and Cu(111) surfa
es.
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Elisaveta Kasabova,∗ Yi Dong,† Valeri G. Grigoryan,‡ and Michael Springborg§

Physical and Theoretical Chemistry,

University of Saarland, 66123 Saarbrücken, Germany

Abstract

The lowest-energy structures for all compositions of NinCum bimetallic clusters with N = n+m

up to 20 atoms, N = 23, and N = 38 atoms have been determined using a genetic algorithm for

unbiased structure optimization in combination with an embedded-atom method for the calculation

of the total energy for a given structure. Comparing bimetallic clusters with homoatomic clusters of

the same size, it is shown that the most stable structures for each cluster size are composed entirely

of Ni atoms. Among the bimetallic clusters in the size range N = 2 − 20 the NiN−1Cu1 clusters

possess the highest stability. Further, it has been established that most of the bimetallic cluster

structures have geometries similar to those of pure Ni clusters. The size N = 38 presents a special

case, as the bimetallic clusters undergo a dramatic structural change with increasing atom fraction

of Cu. Moreover, we have identified an icosahedron, a double and a triple icosahedron with one,

two, and three Ni atoms at the centers, respectively, as particularly stable structures. We show

that in all global-minimum structures Ni atoms tend to occupy mainly high-coordination inner

sites and we confirm the segregation of Cu on the surface of Ni–Cu bimetallic clusters predicted in

previous studies. Finally, it is observed that, in contrast to the bulk, the ground state structures

of the 15-, 16-, and 17-atom bimetallic clusters do not experience a smooth transition between the

structures of the pure copper and the pure nickel clusters as a function of the relative number of

the two types of atoms. For these sizes the concentration effect on energy is more important than

the geometric one.
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I. INTRODUCTION

During the last few decades, clusters have attracted considerable interest both from ba-

sic science and for applications. Their partly controllable, unique physical and chemical

properties can be related to the large surface-to-volume ratio as well as to finite-size or

quantum-confinement effects.1–3 Thus, for clusters containing one type of atoms, the prop-

erties can be varied simply by varying the size of the clusters.

An additional degree of freedom for tuning the materials properties is provided by clusters

containing not one but two different types of atoms. Such bimetallic clusters have received

considerable attention because of their special chemical and physical properties.4–7 A change

in the concentration under the conditions of quantum-confinement effects may result in

new types of structures,8–11 including, for example, core-shell structures12–14. Moreover,

these materials possess, for chemical applications, interesting enhanced bifunctional catalytic

properties that have made them attractive candidates for various chemical applications.15,16

Thus, considering, e.g., the case of a nickel-copper alloy, the substitution of nickel atoms by

copper atoms adds extra electrons to the system. The degree to which the d band is filled

can affect the catalytic activity. Thus, by varying the composition of such alloy clusters

it is possible to influence the selectivity of a catalyst and improve the catalytic properties

of the heteroatomic clusters compared to their monometallic counterparts. Furthermore,

bimetallic clusters are also interesting candidates for use in nanoelectronics.17,18

In order to optimize the materials properties for a given application, it is of paramount

importance to have an accurate understanding of the relation between composition/cluster

size on the one side and property on the other. Although experimental studies can provide

much of this information, a full characterization of the experimentally studied systems is

often lacking, suggesting that additional, theoretical studies can be helpful. However, only

through precise information on the structure of the lowest total energy one may be able to

calculate the properties of interest. And even for clusters with only one type of atoms, it

is overwhelmingly demanding to identify this structure for clusters with just around 10–20

atoms when no assumption is made on the structure.

A nanoalloy cluster distinguishes drastically from a homoatomic cluster in the number of

different structures resulting by the permutation of the unlike atoms. For a one-component

cluster different isomers differ by the geometrical arrangement of the atoms. For a two-

2



component cluster, however, different isomers may be obtained by interchanging atoms of

the different types without changing the geometrical arrangement of the atoms. Jellinek

and co-workers introduced in 1996 the term homotops19,20 for such structures. The number

of homotops (topological isomers) for a AnBm cluster, Pn,m, is given through

Pn,m =
(n + m)!

n!m!
. (1)

If we consider all possible replacements of 10 Cu atoms by Ni atoms in an isomer of Cu20,

for example, the number of combinations is 184756. Because of this large number of homo-

tops, that, in addition may have only small total-energy differences, a global optimization

becomes a very demanding task.

Studies of the properties of a larger series of AnBm clusters have to rely on simplified

descriptions of the interatomic interactions. In this case, an extra complication may show up,

i.e., it is necessary to consider not only A–A and B–B interactions, but also A–B interactions,

and all of those may depend indirectly on the local and global concentrations of the two

types of atoms.

Most earlier theoretical studies have assumed that a structure that is particularly stable

for the pure AN and/or BN clusters, also will be so for the AnBm (n+m = N). This is, e.g.,

the case for the study of Montejano-Carrizales et al.21 who studied the structure and stability

of CunNim and CunPdm, N = 55 and 147, and in particular explored whether segregation

or mixing would be found. In similar studies, Rey et al.22 considered NinAlm with N = 13,

19, and 55, and López et al.23 studied CunAum with N = 13 and 14, whereby molecular-

dynamics simulations were used in identifying the structures of the lowest total energy.

Hsu and Lai24 used a genetic algorithm and the basin-hopping approach in optimizing the

structures of CunAum, N = 38. Cheng et al.25 used Monte-Carlo simulations in studying

the temporal behavior of the structural properties of CunAum, N = 55. Only in two studies,

by Lordeiro et al.8 and by Bailey et al.,26 a systematic study of the structural properties of

a whole class of bimetallic clusters, CunAum with N ≤ 30 in the first case, and Ni–Al with

up to 55 atoms in the second case, has been presented. Finally, the results of a number

of studies on the structural and thermodynamic properties (often with special emphasis

on segregation and/or the occurrence of core-shell structures) of selected larger bimetallic

clusters have been presented, too (see, e.g., [27–32]).

In this study we will concentrate on the Ni–Cu system. In the past, a long time this

3



system has been considered to be a classical example for a substitutional solid solution since

it seemed to exhibit complete miscibility over the whole range of concentrations. However,

experiments33–35 have shown that bulk Ni–Cu alloys in fact tend to phase separate. The

latest phase diagram of the bulk alloy presents a miscibility gap at a critical point of 65.6%

Ni and 627.5 K.36 To the best of our knowledge experiments on Ni–Cu clusters have not been

performed so far. Furthermore there are only few theoretical studies on Ni–Cu clusters, that

are neither systematic nor unbiased. Mainardi and Balbuena37,38 have predicted the surface

segregation of Cu for some Ni–Cu clusters containing 64, 125, 216, 343, 512, 729, 1000 and

8000 atoms using Monte Carlo Simulations, and hence without a fully geometry optimization.

Ni–Cu clusters with N = 55 and 147 atoms have been studied by Montejano-Carrizales et

al.21 but also without a systematic determination of the lowest-energy structures, i.e. the

energies of random generated structures are simply compared to each other to find the global

minimum.

Derosa et al.39 optimized the geometry of Ni–Cu clusters, but restricting to cluster sizes

containing up to five atoms and geometries with planar configurations.

The purpose of the present work is to study systematically and unbiased both the size

and the composition dependence of the total energy and the structure of a whole class of

binary clusters, i.e., of NinCum clusters with N up to 20, N=23 and N=38 atoms. The size

N=23 has been chosen because of the particular stability in both cases of pure Cu and Ni

clusters.40,41For N=38 Hsu and Lai24 found that this specific nuclearity has the consequence

of driving the Cu atoms in CunAum clusters to change dramatically the structure of the

bimetallic clusters in dependence of the Cu content.

In particular we will study whether those values of N that for the pure clusters correspond

to particularly stable structures also do so for in the present case. Moreover, by using

various descriptors we shall quantify to which extent the structures resemble those of the

pure clusters.

Our approach is based on the embedded-atom method (EAM) for calculating the total

energy of a given structure and we use a genetic algorithm in determining the structures of

the lowest total energies. The paper is organized as follows. In Sec. II we briefly outline the

embedded-atom method and the genetic algorithm. The main results are presented in Sec.

III, and a brief summary is offered in Sec. IV.
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II. COMPUTATIONAL METHOD

A. The Embedded-Atom Method

The interactions between the atoms in the bimetallic clusters are described through the

EAM in the version of Daw, Baskes and Foiles (DBF).42–44 The main idea of the EAM is to

consider each atom as an impurity embedded in a host provided by the rest of the atoms. In

addition, an electrostatic interaction between the atoms is included. Accordingly, the total

energy (relative to that of the isolated atoms) has the following form

Etot =
N∑

i=1

[Fi(ρ
h
i ) +

1

2

N∑
j=1(j 6=i)

φij(rij)]. (2)

In Eq. (2), ρh
i is the local electron density at site i, Fi is the embedding energy required to

embed an atom into this density, and φij is a short-range potential between atoms i and j

separated by distance rij . The local density at site i is assumed being a superposition of

atomic electron densities,

ρh
i =

N∑
j=1(j 6=i)

ρa
j (rij), (3)

where ρa
j (rij) is the spherically averaged atomic electron density provided by atom j at the

distance rij.

The detailed analysis made in Ref. 44 have shown that the main Ansatz of the EAM, Eq.

(2), also holds good in the case of the binary alloys. In accord with Ref. 44 the pair interaction

between two different species (A-B/B-A heterointeraction) can be approximated by the geo-

metric mean of the pair interaction for the individual species: φAB(R) =
√

φAA(R) · φBB(R).

Daw, Baskes and Foiles determined the embedding functions for the Ni–Cu system empir-

ically by fitting to experimental data of bulk sublimation energy, elastic constant and the

heat of solution of binary alloys.44 The values for ρa
i , Fi and φij are available in numeri-

cal form for Ni and Cu.45 The validity of the embedding functions for the Ni–Cu system

has been tested by computing a wide range of properties as e.g. the segregation energy of

substitutional impurities to the (100) surface.44

The EAM has been successfully applied to many bulk and low-symmetric problems in

transition metals such as defects, surface structures and surface segregation/mixing effects

in alloys.46 Furthermore, in our previous works40,41,47–49 (those include also the discussions

with the available experiments) found that this approach provides accurate information on
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pure CuN and NiN clusters, which is our main reason for choosing this potential for studying

NinCum clusters.

Considering two types of atoms A (Ni) and B (Cu), we have adopted for the case of

computational convenience that all the A-atoms have in Eq. (2) the numbers between 1

and NA and the B-atoms – between NA + 1 and N = NA + NB. Further there are two

different cutting distances at which three different types of short-range interactions: A-

A, B-B (homointeractions) and A-B/B-A (heterointeractions) vanish (s. Ref. 45): rNi
cut =

4.80 Å for A-A interaction and rCu
cut = 4.95 Å for B-B interaction. The cutting distance

for the A-B/B-A heterointeractions is the minimum from these two distances or 4.80 Å.

Correspondingly, the neighbour analysis in the case of bimetallic clusters is more complicated

as that for monoatomic ones. For each pair of atoms i, j the following situations are possible:

(i) rij ≥ rCu
cut: no interactions and no contributions of electron density at sites i and j; (ii)

rij ≤ rNi
cut: the atoms interact with each other, i contributes electron density at site j and

j – at site i; (iii) rNi
cut < rij < rCu

cut, i = Ni, j = Ni: as in case (i); (iv) rNi
cut < rij < rCu

cut,

i = Cu, j = Cu: as in case (ii); (v) rNi
cut < rij < rCu

cut, i = Ni, j = Cu: no interactions

between atoms, atom j contributes electron density at site i – contribution to the total

energy [Eq. (2)] via the embedding function Fi(ρ
h
i ); (vi) rNi

cut < rij < rCu
cut, i = Cu, j = Ni:

no interactions between atoms, atom i contributes electron density at site j – contribution

to the total energy [Eq. (2)] via the embedding function Fj(ρ
h
j ).

B. The Genetic Algorithm

The global minima of the total energy of the binary clusters has been determined using

the variable metric/quasi-Newton method in combination with a genetic algorithm.

Genetic algorithms50,51 are optimization techniques based on the mechanisms of natural

selection. Our version of the genetic algorithms has been applied to clusters with one, two,

and three types of atoms, for example Au, Na, AlO and HAlO clusters,52–55 and we have

found that this optimization method is reliable when studying the structural and energetic

properties of one-component as well as of multi-component clusters.

In the present study on a given NinCum cluster, a number of randomly generated struc-

tures are optimized locally with the quasi-Newton method. The three lowest-total-energy

structures are then used as the initial population. Subsequently, a new set of clusters is

6



constructed by cutting each of the three original ones randomly into two parts, that are

interchanged and randomly rotated relative to each other, and afterwards allowed to relax.

Out of the total set of six structures, the three ones with the lowest total energy are kept as

the next generation. This procedure is repeated until the lowest total energy is unchanged

for a large number of generations.

III. RESULTS

A. Structural Properties

Whereas macroscopic, crystalline Cu and Ni have the same crystal structures (fcc), pure

copper and nickel clusters, CuN and NiN , have different structures for certain values of

N . For 2 ≤ N ≤ 14, 18 ≤ N ≤ 20 and N = 23 the clusters have the same lowest-energy-

minimum structures, whereas for 15 ≤ N ≤ 17 they possess different ground-state structures.

For instance, for N =3, 4, 5, 6 the optimized structures correspond to an equilateral triangle,

a tetrahedron, a trigonal bipyramid and an octahedron, respectively, whereas for N = 15 a

centered bicapped hexagonal antiprism (D6d) is found for Cu, but a bicapped icosahedron

(C2v) for Ni.40,41 Thus, an important issue is whether these structures will be recovered for

the bimetallic clusters, and, for 15 ≤ N ≤ 17, which (if any) of the two structures for the

pure clusters will be found.

In Figs. 1 and 2 we show the global-minimum structures of monometallic and bimetallic

clusters for N = 13 and N = 23 for different values of (n, m). The results are typical for

most of the clusters we have examined, i.e., the geometry of the clusters is the same as found

for both pure clusters. Moreover, Ni atoms (dark atoms) tend to occupy the central parts

of the clusters, whereas Cu atoms are often found on the surface.

A different scenario concerning the evolution of the structure with composition is observed

when looking at alloy clusters of N = 38 (see Fig. 3). Up to n = 4 the lowest-energy structure

of the pure clusters, the truncated octahedron, is also found for the bimetallic clusters. But

from n = 5 upwards there is a dramatic change to a structure with pentagonal symmetry

(C5v), presenting an icosahedral fragment. In this structure the nearest Ni–Ni distance is 3

% shorter than that in the octahedral structure with 4 Ni atoms. Thus, for the Ni atoms

which possess the higher cohesive energy (ENi
coh=4.44 eV, ECu

coh=3.49 eV)56 the possibility is
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13(0,13) 13(1,12) 13(4,9) 13(8,5)

13(10,3) 13(11,2) 13(12,1) 13(13,0)

FIG. 1: The energetically lowest isomers of NinCum clusters for a fixed value of N = 13. The dark

atoms mark the Ni atoms.

given to form stronger bonds with the corresponding lowering of the cluster total energy. In

the composition range n = 26 − 37 we find again the octahedral symmetry. The structural

evolution with declining atom fraction of Cu described above is quite different from the

structural change of the CunAum clusters (with n + m=38) in a study of Hsu and Lai.24

In the mentioned study the authors classify four categories of the lowest-energy structures:

octahedral, pentagonal, hexagonal, and amorphous.
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23(0,23) 23(1,22) 23(3,19) 23(7,16)

23(12,11) 23(19,4) 23(22,1) 23(23,0)

FIG. 2: The energetically lowest isomers of NinCum clusters for a fixed value of N = 23.
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(1,37) (2,36) (3,35) (4,34)

(5,33) (6,32) (15,23) (25,13)

(26,12) (30,8) (36,2) (37,1)

FIG. 3: The energetically lowest isomers of NinCum clusters for a fixed value of N = 38.
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15(0,15) 15(2,13) 15(4,11) 15(6,9)

15(9,6) 15(12,3) 15(14,1) 15(15,0)

FIG. 4: The energetically lowest isomers of NinCum clusters for a fixed value of N = 15.

Next we consider the case of N = 15 for which the pure clusters have different ground-

state structures. Here, one may expect that the bimetallic clusters of this size would have

Cu-like or Ni-like ground state structures for low nickel and low copper concentrations,

respectively. However, as Fig. 4 shows, all structures of these NinCum clusters with n 6= 0

prefer the structure of the pure Ni cluster (C2v) over that of the pure Cu cluster (D6d). The

same trend is found for the 16-atom bimetallic clusters, which are not shown here. These

two examples suggest that the structural properties of the Ni–Cu alloy clusters can not be

obtained by interpolating (as a function of concentration) between the properties of the

corresponding pure clusters.

In order to obtain a quantitative comparison of the structures of the bimetallic clusters
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with those of the pure Cu and Ni clusters of the same sizes we use the so-called similarity

functions that we have used in previous studies, too.40,41 For each atom we define its radial

distance

rn = |~Rn − ~R0| (4)

with

~R0 =
1

N

N∑
i=1

~Ri. (5)

These are sorted in increasing order. Simultaneously, for each of the pure clusters we calcu-

late and sort the radial distances, {r′n}, for this, too. Subsequently, from

q =
[

1

N

N∑
n=1

(rn − r′n)2
]1/2

, (6)

the similarity function is given as

S =
1

1 + q/ul

(7)

(ul = 1 Å), which approaches 1 (0) if the AnBm cluster is very similar to (different from)

the pure cluster. The results are shown in Fig. 5 for N = 15, 17 and 23 and in Fig. 6 for

N = 38 as a function of the number of Ni atoms, n. The results for N = 23 are typical for

most values of N , i.e., the structure is very similar to that of the pure clusters. The main

difference can be related to the differences in Ni–Ni, Cu–Cu, and Ni–Cu bond-lengths.

Different results are found for N = 15 and N = 17. For these cluster sizes the calculated

functions show a higher similarity of the bimetallic clusters to the structure of the pure NiN

cluster than to that of the pure CuN cluster. For N = 17 an additional discontinuity in

the similarity functions at n = 5 indicates the formation of new structures, different from

those of the pure Ni and Cu clusters. The similarity function for N = 38 in Fig. 6 shows the

structural change in the composition range n = 5 − 25, discussed for Fig. 3. Up to n = 4

and from n = 26 upwards the lowest-energy structure for the bimetallic clusters is found to

be the truncated octahedron (the same as for the pure clusters). But from n = 5 to n = 25

there is a change to a structure with pentagonal symmetry C5v, very different from the pure

Ni and Cu clusters.

As mentioned above we found that for 9 ≤ N ≤ 20 the central position of the global-

minimum structures, which are icosahedral, is always occupied by a Ni atom (see for example

Figs. 1 and 4). There are three possible reasons for that. First, it is well-known that there

is strong internal strain in an icosahedron. Replacing the inner atom with smaller atoms
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FIG. 5: The similarity function vs the number of Ni atoms n. In the left panel the structures of

the bimetallic clusters of the sizes N=15, 17 and 23 are compared with those of the pure Ni15,

Ni17, and Ni23 clusters, respectively. The panel to the right shows the same comparison with the

corresponding pure Cu clusters.

(in our case Cu atoms with smaller Ni ones) may decrease this strain significantly. Second,

Ni–Ni bonds are stronger, making structures with large Ni coordinations energetic favorable.

Third, Cu possesses a smaller surface energy [σ(111) = 69.5 kJ/mol], compared with that

of Ni [σ(111) = 80 kJ/mol] (see, e.g. [57]), once again suggesting that Ni atoms prefer to

occupy positions with the highest coordination numbers (e.g. the center of an icosahedron).

In agreement with our findings Montejano-Carrizales et al.21 explained the surface seg-

regation of Cu by the smaller surface energy of Cu compared to Ni. Also Bailey et al.26

observed a correlation between cohesive energy, surface energy and the atomic size on the

one side and the structure of bimetallic Ni–Al clusters with up to 55 atoms on the other

side. He found that the central site of the cluster is favoured by the Ni atom because of its

smaller size, higher cohesive and higher surface energy. The results of Lordeiro et al.,8 López

et al.,23 Hsu and Lai,24 and Cheng et al.25 on Cu–Au clusters, who observed the tendency
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FIG. 6: The similarity function vs the number of Ni atoms n. The bimetallic clusters of the size

N=38 are compared with those of the pure Cu38 clusters.

of the smaller atom (Cu) to occupy the central site of the icosahedron and of the larger

atom (Au) to locate at surface sites are similar to our findings, too. Thus, our results are

in agreement with those of the earlier studies on other systems.

On the other hand, the icosahedral structures with only one Au atom found by Lordeiro

et al.8 is markedly different from those with one Cu atom found by us. Whereas in all

global-minimum structures determined in our study the central position of the icosahedron

is always occupied by the atom with the higher surface energy and the slightly smaller

size (Ni), the central atom in the work of Lordeiro et al.8 can be replaced by a Au atom.

Obviously, the fact that Au atoms posses a lower surface energy and larger size than Cu

atoms does not necessarily drive them to locate at the surface. The crucial factor for the

atomic arrangement in Cu–Au clusters is that Au–Cu bonds are stronger than Cu–Cu bonds

(Au–Au>Au–Cu > Cu–Cu),58 which drives the single Au atom to maximize the interactions

with atoms of the different type. This competition between maximizing the strongest atomic

interactions and minimizing the bulk strain which exists in a Cu–Au icosahedron is not to
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be found in a Ni–Cu cluster, resulting in different homotops of the icosahedral structures of

both cluster types.

Besides, the fact that the central atom of a Cu–Au icosahedron prefers to be surrounded

by atoms of different type can be explained by the negative heats of solution58 for solid

Cu–Au alloys favoring mixing of atoms of a different type, whereas the positive heats of

solution of Ni–Cu alloys leads to a segregation of copper to the surface. This segregation

tendency combined with the role of the relative cohesive energies results in different struc-

tures compared to Cu–Au clusters in spite of the relative similar behavior in size and surface

energy of the atoms.

In Tables I and II we list the point groups of the three energetically lowest isomers for

the clusters investigated in this work. One can identify a symmetry reduction from Ih to

C5v when going from the first to the second isomer in the case of Ni1Cu12, whereas for

Ni12Cu1 there is an increase in symmetry from C5v to Ih. The reason is that in contrast to

the first isomers of these bimetallic clusters, the second isomers have a Cu atom and not a

Ni atom at the center. The energy difference between the first and the second isomers for

these clusters is rather large, i.e., 0.51 eV for Ni1Cu12 and 0.62 eV for Ni12Cu1. Thus, also

this finding demonstrates that when Ni atom is occupying the center a strong stabilization

of the icosahedral structure results.

When comparing with the energy difference between the first and the second isomers

of the pure copper (1.06 eV) and the pure nickel (1.16 eV) cluster, the energy differences

mentioned above are smaller. The reason is that for bimetallic clusters these isomers are

homotops and the existence of homotops leads to a much richer total-energy surface.

B. Energetic Properties

Next we shall turn our attention to the energetic properties and stability of the Ni–Cu

bimetallic clusters as a function of cluster size and composition. In Fig. 7 we show the

binding energy per atom

En,m = −Etot(n, m)/N (8)

as a function of cluster size for n = 1 − 16. Here, Etot(n, m) is the total energy of the

energetically lowest NinCum cluster.

A kink at N = 13 and a smaller one at N = 19 indicates a stabilization of the structures at
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TABLE I: Point groups of the first three isomers.

N n,m I II III N n,m I II III N n,m I II III N n,m I II III

2 0,2 D∞h 8 7,1 Cs Cs Cs 12 5,7 Cs Cs Cs 15 3,12 C2v C1 Cs

2 1,1 C∞h 8 8,0 D2d Cs D3d 12 6,6 Cs C5v C1 15 4,11 Cs Cs C1

2 2,0 D∞h 9 0,9 C2v D3h C2v 12 7,5 C5v C1 Cs 15 5,10 C2v C1 Cs

3 0,3 D3h 9 1,8 C2v Cs Cs 12 8,4 Cs C1 Cs 15 6,9 Cs C1 Cs

3 1,2 C2v 9 2,7 Cs Cs C1 12 9,3 Cs Cs Cs 15 7,8 C1 Cs C1

3 2,1 C2v 9 3,6 C2v C1 C1 12 10,2 Cs Cs Cs 15 8,7 C1 Cs Cs

3 3,0 D3h 9 4,5 Cs C1 C1 12 11,1 Cs C5v Cs 15 9,6 C1 C2v C1

4 0,4 Td 9 5,4 C2v C1 Cs 12 12,0 C5v C1 D3h 15 10,5 Cs C1 Cs

4 1,3 Cs 9 6,3 C1 Cs C1 13 0,13 Ih Cs Cs 15 11,4 Cs C2 C1

4 2,2 C2v 9 7,2 Cs C2 Cs 13 1,12 Ih C5v Cs 15 12,3 C1 Cs Cs

4 3,1 C3v 9 8,1 C1 Cs Cs 13 2,11 C5v D2 C2v 15 13,2 C2v C1 C1

4 4,0 Td 9 9,0 C2v D3h C2v 13 3,10 C2v D6d C2v 15 14,1 Cs C1 Cs

5 0,5 D3h 10 0,10 C3v D2h C2 13 4,9 C3v Cs Cs 15 15,0 C2v D6d C2v

5 1,4 C2v C3v 10 1,9 C3v Cs Cs 13 5,8 C2v Cs C2 16 0,16 D3h Cs Cs

5 2,3 C2v Cs D3h 10 2,8 Cs Cs Cs 13 6,7 Cs Cs C1 16 1,15 Cs Cs D3h

5 3,2 D3h Cs C2v 10 3,7 Cs C1 Cs 13 7,6 C5v C2 C3v 16 2,14 Cs C1 C1

5 4,1 C3v C2v 10 4,6 C3v Cs C1 13 8,5 Cs Cs Cs 16 3,13 C1 C1 Cs

5 5,0 D3h 10 5,5 Cs Cs C1 13 9,4 C2v Cs Cs 16 4,12 C1 C1 C1

6 0,6 Oh C2v C2v 10 6,4 Cs C1 Cs 13 10,3 C3v Cs Cs 16 5,11 C1 Cs Cs

6 1,5 C4v Cs Cs 10 7,3 C3v Cs C1 13 11,2 C2v C2v D5d 16 6,10 C1 C1 C1

6 2,4 C2v D4h C2v 10 8,2 Cs C1 Cs 13 12,1 C5v Ih Cs 16 7,9 C1 C1 Cs

6 3,3 C3v C2v Cs 10 9,1 Cs Cs Cs 13 13,0 Ih Cs Cs 16 8,8 C1 C1 Cs

6 4,2 C2v C2v D4h 10 10,0 C3v D2h C2 14 0,14 C3v C2v C6v 16 9,7 C1 Cs C1

6 5,1 C4v Cs Cs 11 0,11 C2v C2 C2v 14 1,13 C3v C2v Cs 16 10,6 C1 Cs C1

6 6,0 Oh C2v C2v 11 1,10 C2v Cs C3v 14 2,12 Cs Cs Cs 16 11,5 Cs Cs C1

7 0,7 D5h C3v C2 11 2,9 Cs Cs C1 14 3,11 Cs Cs Cs 16 12,4 Cs C1 C1

7 1,6 C5v C2v Cs 11 3,8 C2v C1 C2v 14 4,10 C3v Cs C1 16 13,3 C1 C1 C1

7 2,5 D5h Cs C2v 11 4,7 Cs Cs C1 14 5,9 Cs Cs Cs 16 14,2 Cs C1 C1

7 3,4 C2v Cs Cs 11 5,6 C2v C1 C1 14 6,8 C1 Cs C1 16 15,1 C1 Cs Cs

7 4,3 C2v C2v Cs 11 6,5 C1 Cs Cs 14 7,7 C1 Cs Cs 16 16,0 Cs Cs C2

7 5,2 C2v C2v Cs 11 7,4 Cs C2 Cs 14 8,6 Cs C1 C1 17 0,17 Td C2 C2

7 6,1 C2v C5v C3v 11 8,3 C1 C1 C1 14 9,5 Cs C1 C1 17 1,16 Cs C2 Cs

7 7,0 D5h C3v C2 11 9,2 C2v C1 Cs 14 10,4 Cs C1 C1 17 2,15 Cs Cs C1

8 0,8 D2d Cs D3d 11 10,1 Cs C1 Cs 14 11,3 C1 Cs Cs 17 3,14 C1 Cs C2

8 1,7 Cs Cs Cs 11 11,0 C2v C2 C2v 14 12,2 Cs Cs Cs 17 4,13 Cs C1 Cs

8 2,6 C2v C2 Cs 12 0,12 C5v C1 D3h 14 13,1 C3v Cs Cs 17 5,12 C2 Cs Cs

8 3,5 Cs Cs Cs 12 1,11 C5v Cs C5v 14 14,0 C3v C2v C1 17 6,11 C1 C1 C1

8 4,4 D2d C1 Cs 12 2,10 Cs C5v Cs 15 0,15 D6d C2v D2 17 7,10 C2 C1 C1

8 5,3 Cs Cs C1 12 3,9 Cs Cs Cs 15 1,14 C2v D6d Cs 17 8,9 C1 C1 C1

8 6,2 C2v C2 Cs 12 4,8 Cs Cs Cs 15 2,13 Cs Cs Cs 17 9,8 C1 C2 C1
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TABLE II: Point groups of the first three isomers.

N n,m I II III N n,m I II III N n,m I II III N n,m I II III

17 10,7 C1 C1 C1 19 13,6 C5v Cs C1 23 12,11 C1 C1 C1 38 28,10 C1 C1 C1

17 11,6 C2 C1 C1 19 14,5 Cs C1 C1 23 13,10 C1 C1 C1 38 29,9 C1 C1 C1

17 12,5 C1 C1 C1 19 15,4 Cs C2 C2 23 14,9 Cs Cs C1 38 30,8 C1 C1 C1

17 13,4 C2 C2 Cs 19 16,3 Cs Cs Cs 23 15,8 C1 C1 C1 38 31,7 C1 C1 C1

17 14,3 C1 C3v C1 19 17,2 Cs C2 C2v 23 16,7 C1 C1 C1 38 32,6 Cs C1 C1

17 15,2 C2 C1 C1 19 18,1 Cs C5v C2v 23 17,6 Cs Cs C1 38 33,5 C1 C1 C1

17 16,1 C1 Cs C1 19 19,0 D5h C1 Cs 23 18,5 C1 C1 C1 38 34,4 C2 C1 C1

17 17,0 C2 Cs Cs 20 0,20 C2v D3d D2 23 19,4 C2v C1 C1 38 35,3 C1 C1 C1

18 0,18 Cs C5v C2v 20 1,19 Cs C3v C2 23 20,3 Cs C1 C1 38 36,2 D2 C1 Cs

18 1,17 Cs Cs Cs 20 2,18 C2v D3d D2 23 21,2 C1 C2v Cs 38 37,1 Cs Cs C1

18 2,16 Cs C5v C1 20 3,17 Cs C2v Cs 23 22,1 Cs Cs C1 38 38,0 Oh C5v C5v

18 3,15 C1 C1 C1 20 4,16 C2v Cs Cs 23 23,0 D3h D3h D2

18 4,14 C1 Cs Cs 20 5,15 Cs C2v Cs 38 0,38 Oh C5 C5

18 5,13 Cs Cs C1 20 6,14 Cs C2v C1 38 1,37 C4v C1 C5

18 6,12 C1 Cs Cs 20 7,13 C2v Cs Cs 38 2,36 C2v C1 C1

18 7,11 Cs C1 Cs 20 8,12 Cs Cs C2 38 3,35 C3v D2 C1

18 8,10 C1 C1 C1 20 9,11 C2v C1 C1 38 4,34 D4h C1 C1

18 9,9 Cs Cs Cs 20 10,10 C1 C1 Cs 38 5,33 C5v C1 C1

18 10,8 Cs Cs Cs 20 11,9 C1 Cs C2 38 6,32 C5v C5 C5

18 11,7 Cs Cs Cs 20 12,8 C1 C1 Cs 38 7,31 C5v C1 C3

18 12,6 C1 Cs C1 20 13,7 C1 C1 C1 38 8,30 Cs C3 C1

18 13,5 Cs C1 C1 20 14,6 C1 C1 C1 38 9,29 Cs Cs Cs

18 14,4 Cs C1 C1 20 15,5 C1 C1 C1 38 10,28 Cs C1 Cs

18 15,3 Cs Cs C1 20 16,4 C1 Cs C1 38 11,27 Cs C1 C1

18 16,2 Cs C1 C1 20 17,3 C2 Cs C1 38 12,26 C5v C1 C1

18 17,1 C1 Cs C1 20 18,2 C1 C1 Cs 38 13,25 Cs C1 C1

18 18,0 Cs C5v Cs 20 19,1 D2 C1 C1 38 14,24 Cs Cs Cs

19 0,19 D5h C1 C1 20 20,0 C2v D3d D2 38 15,23 Cs C1 C1

19 1,18 C5v C2v C5v 23 0,23 D3h D2 D3h 38 16,22 Cs Cs C1

19 2,17 D5h Cs C5v 23 1,22 C2v C3v C1 38 17,21 C5v C1 C1

19 3,16 C2v C5v Cs 23 2,21 C2v C1 Cs 38 18,20 Cs C1 C1

19 4,15 C2v C2v Cs 23 3,20 D3h Cs Cs 38 19,19 Cs C1 C1

19 5,14 C2v C2v Cs 23 4,19 C3v Cs C2v 38 20,18 Cs C1 C1

19 6,13 C2v C1 C1 23 5,18 Cs Cs C2v 38 21,17 C1 C1 C1

19 7,12 D5h C1 Cs 23 6,17 Cs Cs Cs 38 22,16 C5v C1 C1

19 8,11 Cs C1 C2 23 7,16 C2v C2 C1 38 23,15 C5v Cs C1

19 9,10 Cs C2 C2 23 8,15 C1 Cs C1 38 24,14 C1 C1 C1

19 10,9 Cs Cs Cs 23 9,14 C2 C1 C1 38 25,13 C1 C1 C1

19 11,8 Cs C2 C2 23 10,13 Cs C1 C1 38 26,12 C1 C1 C1

19 12,7 Cs C1 C1 23 11,12 C1 C1 C1 38 27,11 C1 C1 C1
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FIG. 7: The binding energy per atom as a function of cluster size for different number of Ni atoms

n.

these cluster sizes for all Ni concentrations due to the icosahedral geometry. Thus, structures

that are particularly stable for the monatomic clusters due to geometric effects, may also

be so for bimetallic clusters. Another relevant observation is that for N = 15, 16 and 17

the binding energy increases for clusters containing up to n = 4 Ni atoms and decreases for

clusters containing n = 6 Ni atoms upwards. The same result, namely that the concentration

effect on the binding energy is more important than the geometrical one is also found for

N = 10 and N = 11. Further we could find the nonmonotonic dependence of the binding

energy En,m with increasing N in the range n ≤ N ≤ 13 for n = 4 − 10. Those regions are
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especially pronounced for n = 6, 7 and 8 (see Fig. 7). Next we use

Estab(n, m) = Etot(n + 1, m− 1) + Etot(n − 1, m + 1)− 2Etot(n, m) (9)

to check the relative stability of a cluster compared to clusters of the same size containing

one more and one less Ni atom. As a function of n for given N Estab has peaks at particularly

stable clusters, so-called magic clusters. We notice that if the substitution of a Ni atom by a

Cu atom was accompanied by a concentration- and size-independent total-energy difference,

Estab would vanish.

In Fig. 8 we show this function together with the binding energy, for four different values

of N , i.e., N=13, 19, 23 and 38. We observe that the pure Ni clusters possess the most

stable structures (if compared to bimetallic clusters of the same size) for all investigated

cluster sizes. Further, among the bimetallic Ni–Cu clusters the NiN−1Cu1 clusters have the

lowest total energy and hence are the most stable ones in the size range N=2-20. This is not

surprising as the binding energy is expected to increase with Ni content due to its higher

cohesion.

The plots show special features, i.e., a kink in the binding energy function and a maximum

in the stability function Estab(n, m), for n=1, 2, 3 and 7. The corresponding magic clusters

for a larger set of values of N are presented in Fig. 9. The maximum in the stability function

at n=1 for N=13 refers to the icosahedron with only one Ni atom at the center whereas for

n = 2 and N = 19 the double icosahedron with two Ni atoms centered in each icosahedron is

found. These two structures turn out to be especially stable because they are obtained both

from the size dependence of the binding energy as well as from the concentration dependence

of the stability function (see also Figs. 8). In our study the magic cluster for the size N=38

refers to the structure with Ni atoms forming a pentagonal bipyramid in the cluster core.

For comparison we want to mention that in a study of Hsu and Lai24 of Cu–Au clusters the

peak in the stability function for N = 38 is found to be at n = 6. In the corresponding

magic cluster the Cu atoms form a plane hexagon at the center of the cluster.

Further, Fig. 9 shows that all of the magic clusters in the size range 10 ≤ N ≤ 20 have

icosahedron-based structures with a Ni atom at the center of each icosahedron. The magic

cluster for N = 23 is a triple icosahedron and it shows a perfect core-shell structure. The

Ni atoms centered in each icosahedron form the core while the copper atoms, which possess

the lower surface energy, form the shell of the cluster. That there is a tendency towards
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FIG. 8: The left panels show the binding energy per atom and the right panels the stability energy

Estab(n,m) as a function of n for N = n + m being 13 (top panels), 19 and 23 (middle panels),

and 38 (bottom panels).

the formation of core-shell structures can be further demonstrated by plotting the radial

distances of the Ni and Cu atoms separately. This is done in Fig. 10 for N=23. For a small

concentration of nickel (until n = 3), the Ni atoms prefer to occupy the inner positions,

whereas with increasing concentration of nickel, they have to occupy positions further away

from the center, but first for n = 11 also surface positions are occupied by Ni. The Cu

atoms display the opposite behavior: for a small copper concentration they are located to

the surface region and with increasing concentration of Cu, also the inner positions of the
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cluster are occupied.

The quantity

Esubst(n, m) = Etot(n− 1, m + 1)−Etot(n, m) (10)

describes the relative stability of a cluster with n Ni atoms with respect to clusters with one

less Ni and one more Cu atom. Thus, the function represents the energy gain (or loss) when

a Cu atom is replaced by a Ni atom. In Fig. 11 this function is presented in dependence

of the number of n for different cluster sizes, N = n + m. For n = 1 and N up to 8 the

function has relatively low values because the pure Cu clusters of these sizes do not form

strained icosahedral structures which can be stabilized by the replacement of a centered Cu

atom by a smaller Ni atom. From N = 9 upwards the stabilization effect begins to increase

corresponding to the icosahedral growth of the clusters (cf. Fig. 9). In agreement with the

discussion above, the most pronounced peak is found for N = 13 and n = 1, describing

the strong tendency of a Ni atom to replace one Cu atom in the center of the icosahedron.

The peaks for the other two magic clusters at n = 2 for N = 19 and at n = 3 for N = 23

posses slightly lower values. Obviously a replacement of a Cu atom centered in the second

icosahedron of a double icosahedron leads to a lower stabilization of the structure compared

to the replacement of a Cu atom centered in a single icosahedron. The reason is that by the

replacement of the Cu atom by the smaller Ni atom in the center of the first icosahedron a

major part of the strain is released. Thus when the second Ni atom is added it will occupy

a position at the center of a less strained icosahedron.

Another criterion that we use for comparing the relative stability of alloy clusters of the

same size but with a different composition is the change in cluster binding energy on mixing

defined by59

∆Emix = ENi−Cu
n,m − m

N
ECu

N − n

N
ENi

N (11)

where ENi−Cu
n,m is the binding energy of the alloy cluster containing n Ni atoms, m the

number of the Cu atoms in the cluster and ECu
N (ENi

N ) is the cohesive energy of the pure

CuN (NiN) cluster. The function represents the energy gain (or loss) for a mixed cluster

with respect to pure clusters of the same size. Here we want to emphisize that in our

study positive values for the mixing energies refer to exothermic process. Thus, a positive

value of ∆Emix corresponds to a nanoalloy cluster which is thermodynamically stable with
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FIG. 9: The structures of the magic NinCum clusters for 10 ≤ N ≤ 20, N = 23 and N = 38

atoms. The labels are given as N(n,m) with N being the total number of atoms, n the number of

Ni atoms, and m the number of Cu atoms.
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FIG. 10: The radial distances (in Å) for Ni and Cu atoms, separately, as a function of the number of

Ni atoms, n. In each panel a small horizontal line shows that at least one atom of the corresponding

type has that distance to the center of the cluster for a given value of N = 23.

respect to corresponding pure elemental clusters. The energies of mixing of the energetically

lowest isomers for each composition are shown in Fig. 12 for the nuclearities N = 13, 19,

23 and 38. The mixing energy for all bimetallic clusters investigated here is found to be

positive, corresponding to energy-favoured mixing. These results are not consistent with

the endothermic experimental enthalpie of mixing in solid Ni–Cu alloys58 which favours

ensembles with neighbours of the same type. We deduce: in contrast to bulk Ni–Cu alloys

the formation of Ni–Cu nanoalloy clusters is energetically favoured.

It is also interesting to obsreve that for N = 19 and 38 there is well defined composition

range: from n = 2 to 7 and from n = 7 to 17 (with a maximum value at n = 9) where the

structures possess a remarkable stability. This result suggests that beside the perfect core-

shell structures with all Cu atoms on the surface and all Ni atoms inside, there is a range

of very stable bimetallic structures with Ni atoms occupying both the core and the surface.

For N = 23 this range begins from n = 3 and it is less pronounced, whereas for N = 13

there is only one structure at n = 1 with special stability relative to the corresponding pure

clusters.
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To sum up, our calculations on small Ni–Cu clusters confirm the tendency for segregation

of Cu to the surface, predicted by experiments33–35 and theoretical60,61 calculations for Ni–Cu

macroscopic alloys as well as by Monte Carlo Simulations37,38 for larger Ni–Cu clusters (64-

8000 atoms). This effect is explained by the difference in the cohesive and surface energies

of Cu and Ni, by the bond enthalpy of the Ni–Cu bond, which is smaller than the average

of those of Ni–Ni and Cu–Cu bonds58 and by the positive heats of mixing of solid Ni–Cu

alloys.58

IV. CONCLUSIONS

In this work we have studied the structural and energetic properties of NinCum bimetallic

clusters with N = n+m up to 20 atoms and additionally for N = 23 and 38 atoms. We have

investigated systematically and unbiased both the size and the composition dependence of

the total energy and the structure of the clusters. The total energy of the bimetallic clusters

was computed with the embedded-atom method in the version of Daw, Baskes and Foiles.

The global geometry optimization was performed using a genetic algorithm.

We have determined the lowest-energy structures as well as the magic clusters for all

considered cluster sizes and concentrations of the components. It is demonstrated that

all Ni–Cu clusters investigated in this work are energetically stable. Comparing bimetallic

clusters with homoatomic clusters of the same size, we found that the most stable clusters

for each cluster size are those composed of Ni atoms, due to their higher cohesive energy.

Among the bimetallic clusters in the size range N = 2 − 20 the NiN−1Cu1 clusters possess

the highest stability.

Furthermore, our results show that an icosahedron, a double icosahedron, and a triple

icosahedron with one, two, and three Ni atoms, respectively, are especially stable (magic).

Thus, structures that for the pure clusters are particularly stable are also so for the bimetal-

lic clusters. In addition, it is found that for all global-minimum structures of the Ni–Cu

bimetallic clusters Ni atoms occupy mainly high-coordination inner (core) sites. In contrast,

Cu atoms show a tendency to occupy lower-coordination sites on the cluster surface.

Moreover, we found that most of the bimetallic cluster structures have geometries similar

to those of pure Ni clusters. The size N = 38 presents a special case: from n = 5 upwards

the bimetallic clusters undergo a dramatic structural change from the truncated octahedron

26



to a structure with pentagonal symmetry and return at n = 25 again to the octahedral

symmetry.

Finally, in contrast to the bulk, the ground state structures of NinCu15−n, NinCu16−n,

and NinCu17−n clusters do not experience a smooth transition between the structures of

pure copper and pure nickel clusters as the number of Ni atoms changes. For these sizes the

concentration effect on energy turned out to be more important than the geometric one.
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Structure and energetics of equiatomic K–Cs and Rb–Cs binary clusters
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The basin-hopping algorithm combined with the Gupta many-body potential is used to study the
structural and energetic properties of �KCs�n and �RbCs�n bimetallic clusters with N=2n up to 50
atoms. Each binary structure is compared to those of the pure clusters of the same size. For the
cluster size N=28 and for the size range of N=34–50, the introduction of K and Rb atoms in the
Cs alkali metal cluster results in new ground state structures different from those of the pure
elements. In the size range N�38 the binary and pure clusters show not only structural differences,
but they also display different magic numbers. Most of the magic Rb–Cs and K–Cs clusters possess
highly symmetric structures. They belong to a family of pIh structures, where a fivefold pancake is
a dominant structural motif. Such geometries have not been reported for alkali binary clusters so far,
but have been found for series of binary transition metal clusters with large size mismatch.
Moreover, tendency to phase separation �shell-like segregation� is predicted for both K–Cs and
Rb–Cs clusters with up to 1000 atoms. Our finding of a surface segregation in Rb–Cs clusters is
different from that of theoretical and experimental studies on bulk Rb–Cs alloys where phase
separation does not occur. © 2008 American Institute of Physics. �DOI: 10.1063/1.2944244�

I. INTRODUCTION

Bimetallic clusters have attracted considerable interest
both from basic science and for practical applications. Due to
their special chemical and physical properties, e.g., enhanced
bifunctional catalytic activity, they are subject of an increas-
ing interest in the fields of catalysis, optics, magnetism, and
nanoelectronics.1–8 Compared to the pure clusters with only
one type of atoms, binary clusters may show segregation
which may result in, e.g., layered structures or core-shell
structures. Alternatively, the clusters may show complete
mixing.9–13

In order to optimize the materials properties for a given
application, it is of paramount importance to have an accu-
rate understanding of the relation between cluster size on the
one side and property on the other. Although experimental
studies can provide much of this information, a full charac-
terization of the experimentally studied systems is often
lacking, suggesting that additional, theoretical studies can be
helpful.

Even for clusters consisting of just one elements, it is
difficult to make theoretical predictions about their structure
�see, e.g., Ref. 14�. Because of their nontrivial geometric
structures,15–21 as well as their complex chemical
ordering,22–27 it becomes much more difficult to predict the
ground state structures of binary clusters. Therefore, to ob-
tain a precise information on the structure of the lowest total
energy and thus to calculate the properties of interest, an
unbiased and accurate exploration of the potential energy
surface �PES� is required. But, even for the simpler case of

monoatomic cluster, we are faced with the problem of com-
plexity, i.e., the number of local minima in the PES increases
exponentially with cluster size. Bimetallic clusters possess
even more complex PES due to the inequivalence of so-
called homotops.27,28 Homotops are defined28 as clusters
with the same size, composition, and geometric arrangement,
differing only in the way in which A- and B-type atoms are
arranged. The number of homotops for an AnBm cluster, Pn,m,
is given by Pn,m= �n+m�! /n!m!. Thus, if we, for example,
consider all possible replacements of 10 K atoms by Cs at-
oms in an isomer of K20, the number of homotops is as large
as 184 756. Because of this large number of homotops, that
in addition may have only small total-energy differences, a
global optimization becomes a very demanding task.

Whereas a large number of studies have been carried out
for binary transition metal clusters,29–34 only few reports are
available for mixed alkali metal clusters. López et al.35–37

studied the structural and segregation properties of Na–Cs,
Na–Li, and Na–K nanoalloys using the density functional
theory method. Ab initio calculations, such as those of Desh-
pande et al.38,39 on Na–Li clusters, are restricted to small
sizes up to N=12. To our knowledge, there are no theoretical
and experimental studies on the structure and energetics of
K–Cs and Rb–Cs clusters so far. Therefore, these systems
will be in the focus of the present work.

Both bulk alloy systems form random substitutional
solid solutions over the whole concentration range. Theoret-
ical and experimental studies on surface properties of bulk
K–Cs and Rb–Cs alloys suggest that while surface segrega-
tion is present for K–Cs alloys, it does not occur in Rb–Cs
alloys.40 Moreover, whereas for K–Cs the heats of formation
are positive indicating segregation behavior, for Rb–Cs they
are negative, suggesting perfect mixing.41 Considering this,

a�Electronic mail: elli@springborg.pc.uni-sb.de.
b�Electronic mail: vg.grigoryan@mx.uni-saarland.de.
c�Author to whom correspondence should be addressed. Electronic mail:
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we found it interesting to study if and how the miscibility
properties change in these alloy clusters compared to those
of bulk alloys.

The purpose of the present work is, accordingly, to de-
termine and analyze the ground state structures of binary
K–Cs and Rb–Cs clusters with N up to 50 atoms in an unbi-
ased study. The dominant structural motif of the particularly
stable clusters will be found and compared to those of the
magic binary clusters build up by transition metals. Further,
we shall explore whether those values of N that for the pure
clusters correspond to particularly stable structures also do so
for in the present case. Moreover, by using various descrip-
tors, we shall quantify to which extent the structures re-
semble those of the pure clusters.

We have determined the lowest-energy structures of
K–Cs and Rb–Cs binary clusters using a basin-hopping �BH�
algorithm combined with a Gupta many-body potential.

The paper is organized as follows. In Sec. II we briefly
outline the Gupta potential and the BH algorithm. The main
results are presented in Sec. III, and a brief summary is of-
fered in Sec. IV.

II. COMPUTATIONAL METHOD

A. The Gupta potential

The Gupta potential42 has been successfully applied to
study the structure, energetics, free energy, surface energy,
and melting point of alkali metal clusters.43,44 It has been
derived from Gupta’s expression for the cohesive energy of a
bulk material. According to this, the total energy of a system
with N atoms is written in terms of repulsive and attractive
many-body terms,

Vclus = �
i=1

N

�Vr�i� − Vm�i�� , �1�

where

Vr�i� = �
j=1��i�

N

A�a,b�exp�− p�a,b�� rij

r0�a,b�
− 1�	 , �2�

and

Vm�i� = 
 �
j=1��i�

N

�2�a,b�

�exp�− 2q�a,b�� rij

r0�a,b�
− 1�	�1/2

. �3�

In these equations, rij is the distance between atoms i and j,
and A, r0, �, p, and q are parameters whose values are fitted
to experimental values such as cohesive energy, lattice pa-
rameters, and independent elastic constants for the reference
crystal structure at 0 K. Finally, a and b refer to atom type of
atom i and j.

The parameters for inhomogeneous K–Cs �Rb–Cs� inter-
actions are taken as the average of the K–K and Cs–Cs
�Rb–Rb and Cs–Cs� parameters obtained by Li et al.44 The
reasoning for this is that bulk K–Cs and Rb–Cs alloys are
solid solutions, rather than ordered intermetallics, and mix-
ture energies and mixture parameters of molten K–Cs and
Rb–Cs alloys computed in a study of Christman45 are very
close to the averages of the corresponding single constituent
values. Furthermore, also for other alloy systems it has been
found that the parameters are close to the average values and
in general lie between the limits of the homonuclear interac-
tion parameters.46

B. The basin-hopping algorithm

The basic idea of the BH method47–50 is to transform the
complex energy landscape as a function of X
��R1 ,R2 , . . . ,RN� �with Ri being the position of the ith
atom� to a new reduced-energy landscape, which consists of
plateaus of energy minima only,

Ẽ�X� = min
E�X�� , �4�

where min
¯� represents a local energy minimization pro-
cess with X as initial structure. Perturbations in the algorithm
are introduced by changing slightly the latest set of coordi-
nates and carrying out a gradient-based optimization from
the resulting geometry. Moves are accepted or rejected based
upon the energy difference between the new and old local
minimum. The BH approach can be also viewed as a gener-
alization of the “Monte Carlo plus energy minimization” pro-
cedure of Li and Scheraga.51 The Monte Carlo part of the BH
algorithm is introduced in order to allow the system to hop
from one plateau to another at a thermal energy kBT* mea-
sured in units of the binding energy of the K–Cs or Rb–Cs
dimer. The hopping probability depends highly on the choice
of the “temperature” T* and on the reduced-energy differ-
ence between the plateaus of the two consecutive steps. In
the present work the Monte Carlo simulation has been per-

FIG. 1. �Color online� The stability function for �top part� bimetallic K–Cs
and Rb–Cs and �bottom part� pure K, Rb, and Cs clusters as a function of N.
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formed at a constant reduced “temperature” of 0.8. We em-
phasize that our approach does not allow for a molecular-
dynamics simulation at a given temperature, but only for an
efficient identification of the structure of the global total-
energy minimum.

The BH algorithm has successfully located all the lowest
known minima for Lennard-Jones clusters with up to 110
atoms, including all the nonicosahedral structures �sizes of
38, 75–77, and 102–104�, for the first time in unbiased
searches.50 In a recent study, Doye et al. have found the
particularly stable structures for binary Lennard-Jones clus-
ters with up to 100 atoms.52 Further, the BH algorithm com-
bined with a Gupta potential has been successfully applied to
calculate the ground state structures of the pure alkali metal
clusters Na, K, Rb, and Cs.43 The present study is accord-
ingly an extension of the last mentioned studies.

III. RESULTS

A. Energetic properties

In order to identify particularly stable clusters we con-
sider the stability function,

Estab = Etot�N + 2� + Etot�N − 2� − 2Etot�N� . �5�

Estab is shown in Fig. 1 for binary K–Cs and Rb–Cs clusters
and for pure K, Rb, and Cs clusters. Maxima of Estab indicate
particularly stable �magic� clusters. We observe that for
smaller cluster sizes, up to N=36, the stability functions for
pure and for bimetallic clusters possess the same maxima.
From N�38, however, the stability function of the bimetal-
lic nanoalloys shows a complete different behavior compared
to that of the pure clusters. For example, the sizes N=44 and
48 are magic for binary K–Cs and Rb–Cs clusters, but not
for the monometallic ones.

The high stability for most of the magic K–Cs and
Rb–Cs binary clusters is strongly correlated with drastic
changes in structure towards a higher symmetry, compared to
their monometallic counterparts. Some of the particular
stable binary clusters are presented in Figs. 2 and 3. Here, the
size N=34 is a magic one for pure as well as for binary
clusters, but it displays a different symmetry in the two
cases. For the pure cluster it has a T symmetry, whereas for
the bimetallic cluster the heteroatomic interactions lead to
the formation of a fivefold so-called “pancake” and to an

FIG. 2. �Color online� Different struc-
tures for which the pure KN, RbN, and
CsN clusters have the same structures
as is the case for the �KCs�N/2 and
�RbCs�N/2 clusters. In each row, the
two left panels show the structure of
the pure clusters, and the two right
panels that of the bimetallic cluster.
The values of N are given above each
row, as is the case for the symmetry
group of the clusters �here, the sym-
metry of the bimetallic clusters does
not take the difference of the elements
into account.
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increase in symmetry to D5h �notice that the symmetries we
are reporting do not distinguish between atom types�.

The pancake structural element can be seen, e.g., in Fig.
2 in the left presentation for �KCs�17 and �RbCs�17 as the
32-atomic structure that is obtained by removing the top and
bottom atoms. Equivalently, for �KCs�20 and �RbCs�20, the
top atom and the seven bottom atoms shall be removed in
order to arrive at the pancake motif.

The 34-atom fivefold pancake was labelled magic pIh7 in
Ref. 16 since it consists of seven interpenetrating icosahedra.
The Rb–Cs ground state structure of the size N=50, which
does not appear in the stability function as a particularly
stable structure, is also interesting because it is formed by
two interpenetrating fivefold pancakes, also in this case lead-
ing to D5h symmetry. Binary clusters of the sizes N=40, 42,
44, and 48 shown in Figs. 2 and 3 belong to the same struc-
tural family and are obtained by capping the fivefold pan-
cake. Exceptions are K–Cs clusters of the sizes N=48 and
50, which do not result from the 34-atom pancake but still
possess an icosahedral core.

The structural motif of the fivefold pancake has been
found also for Ag–Cu, Ag–Ni, Au–Cu, and Au–Ni systems
for which a large size mismatch exists, but not for Ag–Pd
and Pt–Pd clusters where the size mismatch is below 5%.16

Rossi et al. explained the occurrence of such magic pIh bi-
nary clusters with the decrease in internal strain when the
inner atoms of a pure pIh cluster are substituted by smaller
ones. Besides, if the large atoms have a strong tendency to-
wards segregation then core-shell pIh clusters will be fa-
vored. In K–Cs and Rb–Cs systems, the K and Rb atoms are
16% and 9% smaller than Cs atoms, respectively, which ex-
plains why the alkali binary clusters show the same structural
motif as reported for binary transition metal clusters.

By further analyzing of the stability function, it is found
that the K–Cs and Rb–Cs clusters of the sizes N=28 and 38,
which show minima in the stability function, possess lower
symmetry than their monometallic counterparts �see Fig. 4�.
For N=28 there is a reduction from T to Cs symmetry and
for N=38 from Oh to C1 symmetry.

FIG. 3. �Color online� As in Fig. 2, but for clusters for
which �KCs�N/2 and �RbCs�N/2 have different structures.
For each N, the two left panels show the structure of the
pure cluster, the middle ones that of �KCs�N/2 and the
right ones that of �RbCs�N/2. Moreover, the symmetry
groups are here given below the representations of the
clusters.
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B. Structural properties

In order to quantify structural differences and similarities
between bimetallic clusters and pure clusters of the same size
of N atoms we use the concept of similarity functions intro-
duced by us in previous studies.53,54 For each atom we define
its radial distance,

rn = �Rn − R0� , �6�

with

R0 =
1

N
�
i=1

N

Ri. �7�

These are sorted in increasing order. Simultaneously, for
each of the pure clusters, we calculate and sort the radial
distances 
rn�� for this, too. Subsequently, from

q = � 1

N
�
n=1

N � rn

d0
−

rn�

d0�
�2	1/2

, �8�

we define a similarity function,

S1 =
1

1 + q
, �9�

which approaches 1 �0� if the AnBn cluster is very similar to
�different from� the pure cluster. In order to identify struc-
tural similarities, independent of scaling, we have scaled the
radial distances in Eq. �8� with the bond lengths of the di-
atomic systems, d0 and d0�. The same procedure is applied to
quantify whether the pure cluster consisting of N A atoms is
structural related to that consisting of N B atoms.

The similarity functions are shown in Fig. 5 as functions
of N. From the figure it can be seen that pure K and Cs
clusters have essentially the same structures except for the
sizes N=16, 24, and 30. Comparing pure Rb and Cs clusters,
the geometries differ for N=16 and 24.

At next we will compare the pure clusters with the bi-
nary ones. Comparing K–Cs to K clusters and Rb–Cs to Rb
clusters, it can be seen that there is a structural agreement
between the bimetallic and the pure clusters below the size
N=26. Accordingly, when comparing both types of binary
clusters to pure Cs clusters there will be structural differ-

FIG. 4. �Color online� As in Fig. 2,
but for other values of N.

FIG. 5. �Color online� The similarity
function S1 vs the total number of at-
oms N. In the left panels we compare
the structures of pure K to those of
pure Cs clusters �top�, of pure K to
those of the bimetallic K–Cs clusters
�middle�, and of pure Cs to those of
K–Cs clusters �bottom�. The panels to
the right show the same comparison,
but for Rb and Rb–Cs clusters.

244513-5 Energetics of �K–Cs�n and �Rb–Cs�n clusters J. Chem. Phys. 128, 244513 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



ences for exactly these cluster sizes �16 and 24� for which
the pure clusters K and Cs �or Rb and Cs� differ from each
other.

For N=28 and from N=34 upwards a drop in the simi-
larity functions indicates the formation of new structures,
different from those of the pure K, Rb, and Cs clusters. This
size range covers the sizes for which the pure and bimetallic
clusters show different particular stabilities as discussed
above. The binary cluster with 28 atoms is an incomplete
fivefold pancake for both K–Cs and Rb–Cs �Fig. 4� and,
thus, it belongs also to the family of pIh structures.

In order to study the possibility of a segregation in the
nanoalloys we consider the radial distances of the K and Cs
�Rb and Cs� atoms separately, as shown Fig. 6. It is clear that
the Cs atoms segregate preferentially to the surface in both
types of bimetallic clusters. Accordingly, the K and Rb atoms
are primarily located in the core. This is consistent with the
differences in the surface energy55 for Cs, Rb, and K, i.e., 95,
117, and 145 erg cm−2, respectively, as well as in the atomic
radii, i.e., 2.72, 2.50, and 2.35 Å, respectively.

An interesting issue is, thus, if the same segregation be-
havior will be observed for larger clusters. For this purpose
we considered equiatomic K–Cs and Rb–Cs bimetallic clus-
ters with N=2n atoms constructed in the following way. For
N=100 we construct an initial structure by optimizing that of
the CsN cluster, whereas for N=1036 we take a spherical
cutout of the fcc crystal structure of Cs with the center of the
sphere at a nearest-neighbor bond. Subsequently, we re-
placed n of the Cs atoms with K or Rb atoms resulting in a
core-shell structure with Cs atoms in the shell and K or Rb
atoms in the core, core-shell structures with Cs atoms in the
core and K or Rb atoms in the shell �notice that for these

core-shell structures, the separation into a core and a shell is
not perfect�, a completely segregated, layered structure, and,
finally, a completely mixed alloy �see Fig. 7�. Each of these
structures was relaxed to its closest total-energy minimum
structure.

The resulting binding energies are analyzed in Table I.
For both K–Cs and Rb–Cs systems, the core-shell structure
with Cs atoms in the shell possesses the highest binding
energy. Thus, our results suggest that, both for K–Cs and
Rb–Cs clusters, segregation will take place, leading to the
formation of core-shell structures. On the other hand, the
small differences in the binding energies suggest that at not
very high temperatures, entropy effects will lead to a prefer-
ence of the totally mixed alloys. The segregation-to-mixing
transition could be confirmed or refuted by molecular-
dynamics simulation on these systems at different tempera-
tures in future studies.

Theoretical and experimental studies show that, while
surface segregation is present for K–Cs alloys, it does not
occur in Rb–Cs alloys.40 The reason is the larger atomic-size
mismatch in K–Cs compared to Rb–Cs. Moreover, the heats
of formation for Rb–Cs are negative suggesting the existence
of a mixed alloy instead of phase separation.41

In the preceding subsection we identified the pancake
structural motif as a fundamental building block for the bi-
metallic clusters. This could imply that the clusters have very
similar structures, independent of n, i.e., that the structures
can be considered as being built up by adding KCs or RbCs
atom pairs to a central core. In order to quantify this sugges-
tion we consider two additional similarity functions.

For the cluster �ACs�n we first consider the �ACs�n−1

cluster. Moreover, for the �ACs�n cluster we consider at first
all those different n2 parts that can be considered by remov-
ing one A and one Cs atom. We then construct

q = 
 1

2n − 2�
i=1

n−1

��rA,i − rA,i� �2 + �rCs,i − rCs,i� �2��1/2

, �10�

with the sorted, unprimed and primed radial distances being
for the fragment of the �ACs�n cluster and for the �ACs�n−1

cluster, respectively. From the smallest of those n2 values we
define a similarity function,

S2 =
1

1 + q/ul
, �11�

with ul=1 Å.
Alternatively, we consider all the n�2n−1� possible

�2n−2�-atomic fragments of the �ACs�n cluster without dis-
tinguishing between atom type. Also here, we sort and com-
pare the radial distances of this system with those of the
�ACs�n−1 cluster, leading to

q = � 1

2n − 2 �
i=1

2n−2

�ri − ri��
2	1/2

, �12�

with a notation equivalent to that above. From the smallest
value of q we define a similarity function,

FIG. 7. �Color online� A cross-section of �from left to right� the core-shell,
the layered, and the completely mixed structures for the cluster size N
=1036.

FIG. 6. The radial distances �in Å� for �top� Cs and K atoms in K–Cs
clusters, and for �bottom� Cs and Rb atoms in Rb–Cs clusters as a function
of the number of the corresponding type of atoms, n=N /2. In each panel a
small horizontal line for a given value of n indicates that at least one atom
of the corresponding type has that distance to the center of the cluster.
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S3 =
1

1 + q/ul
. �13�

The results are shown in Fig. 8, where we also show a
similarity function similar to S3 but for the monoatomic clus-
ters. It is remarkable that there are very few features that are
specific for the atom types, i.e., the curves are essentially
identical for all systems considered here. Moreover, compar-
ing the top and bottom panels, the bimetallic clusters seem to
show a much more regular growth behavior than is the case
for the monoatomic ones. Finally, for the bimetallic clusters,
S3 is in general larger than S2, which may be ascribed to two
effects. At first, by not distinguishing between atom type, it
is easier to make two clusters look identical. But at second,
the segregation behavior that we have seen in Fig. 7 means
that, upon growth, one atom type has to be substituted by the
other, so that the former remains localized to the surface
region.

IV. CONCLUSIONS

In this work we have studied the structural and energetic
properties of �KCs�n and �RbCs�n bimetallic clusters with
N=2n up to 50 atoms. The homo- and heteroatomic interac-
tions in the bimetallic clusters have been modeled using the
Gupta potential. The global geometry optimization has been
performed using the basin-hopping algorithm.

We have found that K–Cs and Rb–Cs bimetallic cluster
structures with N�26 atoms tend to have geometries similar
to those of pure K and Rb clusters, respectively. On the other
hand, for the size N=28 and for the size range N=34–50 the
introduction of K and Rb substitutions in a Cs cluster results
in new structures, different from those of the pure elements.
In the size range from N�38, the binary and pure clusters
show not only structural differences, but they also display
different magic numbers.

Most of the magic bimetallic structures are highly sym-
metric. They belong to the family of pIh structures obtained
by capping the fivefold pancake. Such geometries have not
been reported for any of the investigated alkali bimetallic
clusters �Na–Li, Na–K, Na–Cs� so far. Moreover, tendency
to phase separation �shell-like segregation� is predicted for
both K–Cs and Rb–Cs clusters with up to 1000 atoms. These
results for Rb–Cs clusters are in contrast to those of theoret-
ical and experimental studies on bulk Rb–Cs, which have
found that surface segregation in the alloy system is not
present. Finally, the bimetallic clusters show a much more
regular growth behavior than is the case for the monoatomic
ones.

In conclusion, alkali metal K–Cs and Rb–Cs binary clus-
ters are also suitable for building up magic core-shell pIh
structures, already reported for binary transition metal
clusters.

TABLE I. Binding energy in eV/atom for �ACs�n clusters with A being K or Rb. N=2n is the total number of
atoms.

A N Core�A�-shell�Cs� Core�Cs�-shell�A� Layered Mixed

K 100 0.713 0.681 0.702 0.699
1036 0.80 0.773 0.792 0.785

Rb 100 0.680 0.665 0.673 0.672
1036 0.761 0.749 0.757 0.755

FIG. 8. The similarity functions S2 �middle panel� and
S3 �top panel� for �dashed lines� �KCs�n and �dotted
lines� �RbCs�n clusters as a function of N=2n. The low-
est panel shows a similarity function similar to S3 but
for monatomic clusters of K �dashed lines�, Rb �solid
lines�, and Cs �dotted lines� atoms.
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Abstract. The soft deposition of Ni13 and Cu13 clusters on Ni(111) and Cu(111) surfaces is studied by
means of constant-energy molecular-dynamics simulations. The atomic interactions are described by the
Embedded Atom Method. It is shown that the shape of the nickel clusters deposited on Cu(111) surfaces
remains rather intact, while the copper clusters impacting on Ni(111) surfaces collapse forming double and
triple layered products. Furthermore, it is found that for an impact energy of 0.5 eV/atom the structures
of all investigated clusters show the lowest similarity to the original structures, except for the case of nickel
clusters deposited on a Cu(111) surface. Finally, it is demonstrated that when cluster and substrate are
of different materials, it is possible to control whether the deposition results in largely intact clusters on
the substrate or in a spreading of the clusters. This separation into hard and soft clusters can be related
to the relative cohesive energy of the crystalline materials.

PACS. 61.46.+w Nanoscale materials – 36.40.-c Atomic and molecular clusters – 68.65.-k Low-
dimensional, mesoscopic, and nanoscale systems: structure and nonelectronic properties – 31.15.Ct Semi-
empirical and empirical calculations (differential overlap, Huckel, PPP methods, etc.)

1 Introduction

Due to the numerous applications in the nanoindustry,
nanodevices, catalysis, etc. [1–3] the deposition of transi-
tion and noble metal nanoparticles on diverse substrates
has attracted considerable attention among experimen-
talists and theoreticians over the past decades. Various
experimental techniques [4–6] have been developed in or-
der to deposit accurately even very small metal clusters
without damaging the surface and keeping the clusters as
identifiable entities. Successful growth of monolayers and
cluster islands has been achieved with controlled aggre-
gation following atom vapor deposition. Through the use
of scanning tunneling microscopy [7,8] it has become pos-
sible to deposit and move clusters on the surface. One
of the most recent experimental techniques is the Low
Energy Cluster Beam Deposition (LECBD) [4] that uses
only moderate energies of deposition. With this technique,
the surface structure remains largely intact in contrast to
experimental methods where the substrate is bombarded
with high-energy clusters resulting in thin films formed by
the cluster atoms. In that case, the clusters have so large
kinetic energies that they melt upon the deposition, lose

a e-mail: elli@springborg.pc.uni-sb.de
b e-mail: deni@springborg.pc.uni-sb.de
c e-mail: m.springborg@mx.uni-saarland.de
d e-mail: vg.grigoryan@mx.uni-saarland.de

their initial structures and spread out on the surface, that
in turn may suffer from the radiation damage.

Unfortunately, even in the latest experimental set-ups
it is not possible to determine the geometry of small or
medium-sized clusters, neither in gas phase nor deposited
on a substrate. Here, theory can be used in supplement-
ing the experimental studies. However, since theoretical
studies of cluster deposition processes on a substrate is
computationally extremely demanding when the studies
shall consider realistic systems and when attempting to
use first-principles methods, semiempirical methods pro-
vide a useful alternative for this kind of simulations. In
combination with molecular-dynamics (MD) simulations,
these methods are very attractive for studying the tempo-
ral evolution of the systems of interest. Therefore, several
studies of cluster deposition processes for higher impact
energy have been reported [9–11]. However, the formation
and growth of cluster islands through low-impact-energy
deposition have hardly been studied.

The purpose of the present study is to simulate the
experimental conditions of the LECBD experiment and,
thereby, obtain further details of the cluster deposition
that can not be derived in the experiment directly. We
shall use the Embedded Atom Method (EAM) in its
original version proposed by Daw, Baskes, and Foiles
(DBF) [12–14] in describing the interatomic interactions.
In a previous study [15] we demonstrated that these semi-
empirical potentials are accurate for most metals. Very
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recently [16], we have studied the soft deposition of cop-
per clusters on the Cu(111) surface using another version
of the EAM, proposed by Voter and Chen [17,18] (VC).
We considered different impact energies as well as orienta-
tions and sizes of the clusters. For the sake of comparison
we shall here include results from that study. As a natu-
ral extension we shall here study what happens when the
cluster and the substrate are of different metals. Accord-
ingly, we shall study the deposition of copper and nickel
clusters on copper and nickel substrates. We shall concen-
trate on the Cu13 and Ni13 clusters which are particularly
stable according to previous studies [15,19,20].

The advantage of the EAM is that it is possible to
study larger systems over longer time scales than what is
possible with more accurate methods. Nevertheless, the
EAM is approximate and, e.g., quantum effects of elec-
trons and of vibrations are only very indirectly included.
This means that the details of our conclusions may be al-
tered when using more accurate methods, although we do
not believe that our general conclusions will change. Fi-
nally, by studying Cu and Ni systems we are considering
materials for which the EAM has been found to be par-
ticularly precise. Lacking experimental studies on those
systems we, therefore, hope also that our work will serve
as a motivation for studying those.

The paper is organized as follows. The computational
details are described in Section 2 and the main results are
presented in Section 3. Finally, we conclude in Section 4.

2 Computational methods

2.1 The embedded-atom method

The interactions between the atoms of the magic Ni13,
Cu13 clusters and of the surfaces are described through
the EAM in the version of Daw, Baskes, and Foiles
(DBF) [12–14]. Then the total energy of the system is
split into a sum of atomic energies,

Etot =
N∑

i=1

Ei, (1)

with Ei consisting of two parts, i.e., the embedding en-
ergy (which is obtained by considering the ith atom as
an impurity embedded into the host provided by the rest
of the atoms), and pair interactions with all other atoms.
Accordingly,

Ei = Fi(ρh
i ) +

1
2

N∑
j=1,(j �=i)

φij(rij) (2)

where ρh
i is the local electron density at site i, Fi is the

embedding energy, and φij is a short-ranged potential be-
tween atoms i and j separated by distance rij .

The local density at site i is assumed being a superpo-
sition of atomic electron densities,

ρh
i =

N∑
j=1,(j �=i)

ρa
j (rij), (3)

where ρa
j (rij) is the spherically averaged atomic electron

density provided by atom j at the distance rij .
The EAM has been successfully applied to many bulk

and low-symmetric transition-metal systems such as de-
fects, surface structures and segregation [21]. Further-
more, in our previous studies [15,19,20,22–24] we have
tested its accuracy for nickel, copper, and gold clusters
and showed that it describes very well the properties of
most of those systems, with gold clusters being a possible
exception.

In the present study we have studied deposition of a
Ni13 cluster on the Ni(111) and the Cu(111) surface as well
as deposition of a Cu13 cluster on the Ni(111) surface. We
include our results on the deposition of a Cu13 cluster on
the Cu(111) surface from our recent study [16]. In that
study we did not use the DBF but the VC version of the
EAM.

2.2 Molecular-dynamics simulation

Our computational approach is similar to that of our pre-
vious work on the deposition of copper clusters on a cop-
per surface [16]. We model the (111) surfaces of the fcc
copper and nickel crystals using a periodic slab of seven
atomic layers and with a dimension of 10a0 × 10a0 with
a0 = 3.62 Å (3.52 Å) being the lattice constant for cop-
per (nickel) for the periodically repeated unit. Periodic
boundary conditions are applied parallel to the surface.

Before the deposition process is initiated we orient the
icosahedral Cu13 and Ni13 clusters relative to the surface
so that the S6 symmetry axis of the cluster is perpendic-
ular to the surface.

The equations of motion of the microcanonical (NV E)
ensemble are integrated by using the Velocity Verlet al-
gorithm. The time step is set to 2 fs and the total in-
tegration time is 50 ps. We consider impact energies of
E0 = 0.0, 0.1, 0.3, 0.5, 0.7, and 0.9 eV/atom, which is the
range for Low Energy Cluster Beam Deposition experi-
ments.

Both clusters and substrates are initially relaxed to
equilibrium at 0 K. Subsequently, the clusters are located
near the surface. Then the cluster atoms are given the
initial velocity in a direction perpendicular to the sub-
strate, whereas the substrate remains cold. At the end of
the simulation the clusters and surfaces are cooled down
by means of simulated annealing for a period of 5 ps.

3 Results and discussion

Limiting the summation in equation (1) to the 13 atoms of
the cluster, we can introduce a total energy of the cluster.
This corresponds to splitting the energy of the interaction
between cluster and substrate into two equally large half-
parts that each is attributed to one of the subsystems. In
particularly the variation of the total energy of the clus-
ter with deposition parameters (like impact energy and
geometry) can be used in analysing the outcome of the



E. Kasabova et al.: Deposition of Ni13 and Cu13 clusters on Ni(111) and Cu(111) surfaces 3

Table 1. The relative total energy (in eV) of the clusters after
the collision with the surface as a function of the impact energy
in eV/atom. The total energies of the initial, isolated structures
obtained with the EAM are shown for comparison (denoted
‘EAM’). ‘A/B’ denotes the A13 cluster deposited on the B(111)
surface. Notice that for the Cu/Cu simulation we use the VC
potential, whereas we for the others use the DBF potential.
Thereby, the isolated Cu clusters have slightly different total
energies.

Impact energy Ni/Ni Cu/Cu Cu/Ni Ni/Cu
0 −47.14 −36.66 −37.64 −48.46

0.1 −47.10 −37.67 −37.60 −48.46
0.3 −47.52 −37.67 −37.51 −48.46
0.5 −47.88 −37.79 −37.79 −48.43
0.7 −47.79 −36.80 −37.76 −48.46
0.9 −47.61 −36.96 −37.77 −47.61

EAM −44.87 −33.50 −34.37 −44.87

Fig. 1. The internal temperatures of Cu13 deposited on
Ni(111), Cu13 deposited on Cu(111), Ni13 deposited on
Ni(111), and Ni13 deposited on Cu(111) at an impact energy of
0.0 eV/atom as functions of the time. A B marks the A cluster
deposited on the B substrate.

deposition. Table 1 shows this quantity for all different
impact energies and cluster/substrate combinations.

In all cases, the attractive interactions between sub-
strate and cluster lead to a lowering of the total energy
of the cluster when being deposited on the substrate. For
clusters deposited on the Ni(111) surfaces the most stable
structures are obtained at impact energies of 0.5 eV/atom.
This result is consistent with our previous findings for
Cu-Cu interactions described with another version of the
EAM potential [16]. On the other hand, a nickel cluster
deposited on a Cu(111) surface keeps its structure intact
up to impact energies of 0.9 eV/atom, where the compact
shape is distorted by the removal of a single atom from
the cluster and substitution of this by a copper atom from
the surface.

In Figure 1 we show the evolution of the internal tem-
perature of the clusters as a function of time in the case
that the depositions are driven only by attractive forces,

i.e., for an impact energy of E0 = 0.0 eV/atom. The in-
ternal temperature is defined as follows. We define the
position of the center of mass of the cluster,

R0 =
1
N

∑
i

Ri, (4)

with N = 13 being the number of atoms in the cluster
and Ri their positions. Subsequently,

3
2
NkT =

1
2
m

N∑
i=1

[
|Ṙi|2 − |Ṙ0|2

]
, (5)

with m being the mass of a cluster atom and the dots rep-
resent time derivatives, defines the internal temperature.
As seen in Figure 1, the clusters with the highest inter-
nal temperatures are the copper ones, independently of
the substrate, whereas the nickel clusters have much lower
internal temperatures. Since the higher internal tempera-
tures imply that the atoms are more mobile, this finding
can be explained through the lower binding energies of the
Cu clusters than of the Ni clusters (cf. the lowest row in
Tab. 1).

Moreover, when the copper cluster is deposited on the
nickel substrate it obtains a rather high internal temper-
ature during the first 2–3 ps of the simulation and after
some further 5 ps the temperature drops again. On the
other hand, when the same cluster is deposited on the
copper substrate, the internal temperature does not reach
as high an absolute value (notice, that in this case the
simulations were initiated at a larger distance between
cluster and substrate, so that at the beginning the cluster
was moving as a whole towards the substrate and first af-
ter some 5 ps the structure of the cluster starts changing
structure leading to an increase in the internal tempera-
ture). Again, the higher mobility of copper atoms (lower
binding energy of the crystal) than of nickel atoms makes
it easier for the copper substrate to absorb the impact
energy from the collision process, leading to a more soft
landing of the clusters. In particular for the deposition of
Cu13 on Cu, initially most of the impact energy is ab-
sorbed by the substrate that deforms so much that the
cluster partly enters the surface. First then the cluster ex-
periences larger structural changes, indicated by the late
decrease in the inner temperature for this system.

Furthermore, due to the larger cohesive energy and
smaller lattice constant of nickel, it is favourable for a
deposited copper cluster to spread out on the surface in-
stead of staying intact. That this occurs is seen in Fig-
ure 2. The deposition of Cu13 on Cu(111) at negligible
attractive forces results in the formation of a distorted
icosahedron, cf. Figure 3, and the cluster atoms are not
spread on the surface. Here, the maximal internal tem-
perature of 500 K is not sufficient to break the cluster
bonds. According to our previous results [16] the minimal
impact energy needed to disturb significantly this cluster
is at least 0.5 eV/atom.

Further information on the resulting cluster structures
due to the deposition can be obtained by looking at the
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Fig. 2. (Color online) The final products of Cu13 clusters with
different deposition energies after deposition on the Ni surface.
The impact energies are (top, left) 0.0, (top, middle) 0.1, (top,
right) 0.3, (bottom, left) 0.5, (bottom, middle) 0.7, and (bot-
tom, right) 0.9 eV/atom.

Fig. 3. (Color online) The final products of Cu13 clusters with
different deposition energies after deposition on the Cu surface.
The presentation is as in Figure 2.

Table 2. The height of the cluster (in Å) after the collision
with the surface as a function of the impact energy in eV/atom.
A/B labels the A cluster deposited on the B surface.

Ni/Ni Cu/Cu Cu/Ni Ni/Cu
0 5.741 5.365 4.135 5.364

0.1 5.822 5.295 3.955 5.377
0.3 5.301 5.349 5.742 5.295
0.5 3.905 3.609 3.954 5.254
0.7 5.134 5.564 4.014 5.157
0.9 5.693 4.042 4.006 5.289

height of the clusters measured as the positions of the
atoms above the first plane of substrate atoms without
the deposited cluster. This parameter is given in Table 2
as a function of the deposition energy. It can be seen that
at a deposition energy of 0.5 eV/atom there is a minimum
in the cluster height, except for the Ni13 cluster deposited
on Cu(111) that has a minimum for an impact energy of

Fig. 4. (Color online) The final products of Ni13 clusters with
different deposition energies after deposition on the Cu surface.
The presentation is as in Figure 2.

Fig. 5. (Color online) The final products of Ni13 clusters with
different deposition energies after deposition on the Ni surface.
The presentation is as in Figure 2.

0.7 eV/atom. Again, the stronger interatomic bonds for
Ni than for Cu may explain this shift to higher impact
energies.

When simply viewing the final products of the de-
positions, Figures 2, 3, 4, and 5, it is immediately seen
that the shape of the Ni13 icosahedron deposited on a
Cu(111) surface remains very well kept for all impact ener-
gies (see Fig. 4). On the other hand, the Cu13 icosahedron
spreads out on the Ni(111) surface forming double layers
for all impact energies except for a deposition energy of
0.3 eV/atom, where the final structure is a symmetrical
pyramid (see Fig. 2). Also this finding is due to the fact
that Ni-Ni bonds are much stronger than Cu-Cu bonds
(nickel possesses a higher cohesive energy of 4.45 eV than
copper (3.51 eV) [25]).

As Figures 3 and 5 show, the final products of deposi-
tion of Ni13 and Cu13 clusters on surfaces of the same atom
type, are very similar for the lowest impact energies. How-
ever, while at a higher deposition energy of 0.5 eV/atom,
the Cu13 cluster spreads out on the Ni(111) surface form-
ing a slightly deformed monolayer, the Ni13 cluster forms
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Fig. 6. The evolution of the similarity functions with time for the simulations with cluster energies of 0.0, 0.5, and 0.9 eV/atom.
A B marks the A cluster deposited on the B substrate.

only a double layer on the Cu(111) surface. For an impact
energy of 0.7 eV/atom the Ni13 cluster remains relatively
intact, with one atom substituted by a surface atom. At
the same impact energy, the Cu13 cluster forms a sym-
metrical pyramid. A similar pyramid appears first at an
impact energy of 0.9 eV/atom for the Ni13 cluster, whereas
at this energy the Cu13 cluster collapses forming a dou-
ble layer. All these results allow us to coin the nickel and
copper clusters as being hard and soft, respectively.

The concept of hard and soft clusters can be further
quantified through the evolution of the cluster shape with
the simulation time. In order to compare the structures
of the deposited products with their initial structures we
use the so-called similarity functions introduced by us in
previous studies [19,20]. For each atom we define its radial
distance

rn = |Rn −R0|. (6)
These are sorted in increasing order. At any time in the
simulation we compare these with the sorted radial dis-
tances for the initial structure, {r′

n}. From

q =
[

1
N

N∑
n=1

(rn − r′
n)2

]1/2

, (7)

the similarity function is defined as

S =
1

1 + q/ul
(8)

(ul = 1 Å), which approaches 1 if the cluster has changed
structure very little.

The results are shown in Figure 6. The similarity func-
tion for nickel deposited on a copper surface stays at a
higher value than the one for copper deposited on a nickel
surface. This supports the consensus of hard nickel and
soft copper clusters. In contrast to these results, the nickel
cluster readily spreads on its homoatomic surface, produc-
ing a symmetric bilayered structure at an impact energy
of 0.5 eV/atom, as indicated by the low values seen in
Figure 6. It can also be seen in the figure that when de-
positing a cluster on a surface of the same type of atoms
the separation into hard and soft clusters becomes less
relevant (see also Figs. 3 and 5).

A further relevant question is whether the substrate
dictates the structure of the deposited cluster, i.e., to
which extent the deposition can be classified as being epi-
taxial. To this purpose we use an ‘index of epitaxy’, I, [16]
defined through

I =
1

1 + q/u2
l

, (9)

with

q =
N∑
i

|Ri −Rc|2 (10)

where |Ri − Rc| is the distance between the position of
the ith atom of the cluster and the closest-lying fictitious
atom in the infinite ideal crystal formed by the substrate
(notice that thereby I can also become close to 1 even
when the cluster and the substrate are far apart). When
I reaches 1, perfect epitaxy is obtained.
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Fig. 7. The evolution of the index of epitaxy with time for the simulations with cluster impact energies of 0.0 and 0.9 eV/atom.
A B marks the A cluster deposited on the B substrate.

In agreement with our previous study [16], there is
no direct relationship between the impact energy and the
value of I. In Figure 7 we show I for impact energies of 0.0
and 0.5 eV/atom. In all cases I is well below 1 which im-
plies that the interatomic forces within the clusters are suf-
ficiently strong to keep the cluster fairly intact and prevent
epitaxial spreading on the surface. It is again seen that the
nickel clusters are harder than the copper clusters, since
I stays roughly constant. A similar behaviour is observed
also for the highest impact energy of 0.9 eV/atom, which
is not shown here. On the other hand, the softer copper
clusters show an increasing index of epitaxy, which reflects
the spreading of these cluster on the Ni(111) and Cu(111)
surfaces. The highest indices of epitaxy are obtained for
the combination Cu13 deposited on Ni(111). In this case,
the cluster forms double layers for all impact energies, ex-
cept for E0 = 0.3 eV/atom, where a symmetric pyramid
is obtained (see also Fig. 2).

4 Conclusions

In the present work we have studied the structural rear-
rangements of nickel and copper clusters softly deposited
on Ni(111) and Cu(111) surfaces. We have used constant-
energy molecular-dynamics simulations with impact ener-
gies being typical of the Low Energy Cluster Beam De-
position experiment. The main point of this study was
to investigate the differences in the structural and ener-
getic properties of the final products when comparing de-

positions with homoatomic and heteroatomic interactions.
According to our findings we conclude that in the case of
heteroatomic interactions the cohesive energy of the bulk
element is a crucial factor influencing the shape of the fi-
nal structures. Thus, the deposition of Cu13 on a Ni(111)
surface results in an overall spreading of the cluster due
to the lower cohesive energy of copper, whereas the depo-
sition of the nickel cluster on a Cu(111) surface leads to
relatively small changes of the initial structure.

This may be the most interesting outcome of our study,
i.e., that when clusters of one type of metal are deposited
on another type of metal, it is possible to distinguish be-
tween hard and soft clusters, depending on whether the
cohesive energy of the cluster material is larger or smaller
than that of the substrate material. Then, soft clusters
tend to spread on the substrate even at modest impact
energies, whereas hard clusters largely remain intact also
at slightly higher impact energies.

Moreover, it turned out that a deposition energy of
0.5 eV/atom could be favorable for the production of
monolayers in the case of Cu13 cluster deposited on
Cu(111) and Ni(111) surfaces, and the formation of double
layers in the case of Ni13 cluster deposited on Ni(111).

Finally, we add that our study not at all aims at being
exhaustive. We have only considered two types of cluster
and substrate metals, only one cluster size and substrate
surface, and only one impact geometry. As we have found
in our recent study [16], varying the cluster size and im-
pact geometry may very easily change details of the out-
come of the deposition. Furthermore, in some preliminary
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studies we also found that by changing the approximate
method used in describing the interatomic interactions
(specifically, we considered the DBF potential instead of
the VC potential for the Cu on Cu deposition), slightly
different results will be found. Nevertheless, we are con-
vinced that our main conclusions remain valid, also when
taking such extensions into account.

This work was supported by the SFB 277 of the University of
Saarland and by the German Research Council (DFG) through
project Sp439/14-1.
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Abstract

The lowest-energy structures of small AgN clusters with N=2-20, which are

adsorbed on Ag(111) and Ni(111) surfaces, are determined using a combi-

nation of the embedded-atom method and the basin-hopping algorithm. We

have found that Ag cluster structures which correspond to magic sizes with

N < 18 tend to have similar geometries on both surfaces. On the other

hand, the geometries of the Ag clusters for the non-magic sizes in the same

size range differ for the different surfaces. From N=18 upwards a reversal of

the magic numbers for the Ag/Ni(111) system compared to the Ag/Ag(111)

system takes place. Finally, due to the large size mismatch it is energeti-

cally unfavorable for Ag to form a pseudomorphic monolayer structures on

Ni(111) and there is considerable strain produced at the interface. The effect

of this strain and the increased adatom-substrate interactions will give rise

to disordered and elongated structures of the adsorbed Ag clusters.
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and topography, Silver, Nickel

1. Introduction

The preparation of individual nanostructures or thin films on solid sur-

faces becomes more and more important during the last years because of

their technological importance in the field of catalysis and microelectronics.

The latter application is due to the novel magnetic and electronic effects that

result from low dimensional structures. Moreover, the creation of bimetallic

surfaces by hetero-epitaxial metal growth offers the potential to grow ar-

tificially structured materials with novel physical and chemical properties.

Beside the importance for nanotechnological applications, the geometrical

structures of clusters adsorbed on single-crystal surfaces reflect fundamental

aspects of adatom-adatom and adatom-substrate interactions and afford in-

sights into the initial stages of crystal growth modes and nucleation processes.

Systematic studies of the changes of the structural properties of clusters on

surfaces as a function of cluster size lead to detailed understanding of such

processes.

Thus, one fundamental question that has to be answered is what is the

initial stage of thin film formation and crystal growth of the investigated

metals: do the clusters develop chains parallel to the substrate or do they

form islands, and what is the dominant geometry of these islands. Zhuang

et al. [1, 2, 3] have performed global optimization on a series of adatom-

surfaces systems: Ag/Ag(111), Ni/Ni(111), Cu/Cu(111), and Au/Au(111)

with selected sizes up to N=52 atoms using a genetic algorithm combined

with embedded-atom method. They found close-packed islands of hexagonal
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shape with maximum number of nearest-neighbor bonds, which was in good

accordance with observations in scanning tunneling microscopy (STM) ex-

periments [4]. Also for Ir/Ir(111) and Ni/Au(111) compact islands are found

to be preferred, as observed in STM and field ion microscopy (FIM) exper-

iments [5, 6]. Linear chains are predicted e.g. for PtN clusters (N=3 and

5) on Pt (001) surface by semiempirical calculations [7], also for small PtN

(N=1-7) and PdN (N=1-17) clusters on Ag(110) surface by photoemission

study [8], and for Pt and Ir clusters on W(110) by FIM study [9].

Alternatively, the deposited cluster may alloy into the first or the first

several layers. For example, Ni adatoms can replace Ag atoms in the first

surface layer of a Ag(111) surface under the formation of a surface alloy

[10, 11], although Ag and Ni show no tendency for alloying in the bulk. The

reason is the strong tendency of Ag atoms for surface segregation. In contrast

to Ni/Ag(111), latest STM experiments show that Ag atoms deposited on

a Ni(111) surface aggregate in complex islands of two monolayer thickness

and do not show any diffusion processes at the Ag/Ni interface [12]. Unfor-

tunately, experiments can not provide information on the exact structure of

the Ag islands and additional theoretical investigations are needed.

To our knowledge there are no theoretical studies which determine the

geometry and energetics of Ag clusters interacting with a Ni surface. How-

ever, such investigations could provide important information on the initial

stages of Ag thin film formation on Ni surfaces. Further, the Ag–Ni system

presents a large lattice mismatch (the lattice constant of Ag is 16 % larger

than this of Ni) and a large difference in the cohesive energies (-2.96 eV for

Ag and -4.44 eV for Ni) [13, 14]. Thus, it would be interesting to know how
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the system releases the strain induced by the size mismatch and what is the

influence of the large difference in the cohesive energies on the most stable

equilibrium structures of the adsorbed Ag clusters. Therefore the detailed

structural evolution of Ag clusters on a Ni(111) surface will be in the focus

of the present work.

Our aim is, accordingly, to determine and analyze the ground state struc-

tures of AgN clusters adsorbed on a Ni(111) surface with N=2-20 in an un-

biased study and to compare them with those of AgN clusters on a Ag(111)

surface investigated in the same study. Further, we shall explore whether

those values of N that for the Ag clusters on the Ni(111) surface correspond

to particularly stable structures also do so for Ag clusters on the Ag(111)

surface.

The lowest-energy structures of AgN clusters with N=2-20 adsorbed on a

Ag(111) and a Ni(111) surface have been determined using a basin-hopping

algorithm combined with the embedded-atom method. The paper is orga-

nized as follows. In Sec. 2 we briefly outline the embedded-atom method

and the basin-hopping algorithm. The main results are presented in Sec. 3,

and a brief summary is offered in Sec. 4.

2. Computational methods

2.1. The Embedded-Atom Method (EAM)

The homoatomic and heteroatomic interactions Ag–Ag, Ni–Ni, and Ag–

Ni between the atoms in the Ag/Ag(111) and Ag/Ni(111) systems are mim-

icked by the EAM in the version of Daw, Baskes and Foiles (DBF) [15, 16, 17].

The main idea of the EAM is to split the total energy of the system into a
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sum of atomic energies,

Etot =

N∑
i

Ei, (1)

with Ei consisting of two parts, i.e., an embedding energy (which is obtained

by considering the ith atom as an impurity embedded into the host provided

by the rest of the atoms) and a pair-potential interaction with all other atoms.

Accordingly,

Ei = Fi(ρ
h
i ) +

1

2

∑
j 6=i

φij(rij), (2)

where ρh
i is the local electron density at site i, Fi is the embedding energy, and

φij is a short-ranged potential between atoms i and j separated by distance

rij.

The local density at site i is assumed being a superposition of atomic

electron densities,

ρh
i =

∑
j (6=i)

ρa
i (rij), (3)

where ρa
i (rij) is the spherically averaged atomic electron density provided by

atom j at the distance rij.

In accord with Ref. [17] the A-B/B-A heterointeraction can be approx-

imated in the EAM by the geometric mean of the pair interaction for the

individual species: φAB(r) =
√

φAA(r) · φBB(r). Daw, Baskes and Foiles

determined the embedding functions for the Ag–Ni system empirically by

fitting to experimental data of bulk sublimation energy, elastic constant and

the heat of solution of binary alloys [17]. The values for ρa
i , Fi and φij are

available in numerical form for Ni and Ag [18]. The validity of the embedding

functions for the Ag–Ni system has been tested by computing a wide range
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of properties as e.g. the segregation energy of substitutional impurities to

the (100) surface [17].

The EAM has been successfully applied to many bulk and low-symmetric

problems in transition metals such as defects, surface structures and seg-

regation [19]. Furthermore, in our previous works [20, 21, 22, 23] (those

include also the discussions with the available experiments) we have found

that this approach provides accurate information on pure nickel and silver

clusters, which is our main reason for choosing this potential for studying

the structures of Ag clusters on Ag(111) and Ni(111) surfaces.

2.2. The Basin-Hopping Algorithm (BH)

To find the lowest energy structures of the Ag/Ag(111) and Ag/Ni(111)

systems we use the BH method [24, 25, 26, 27]. The basic idea of the

BH method is to transform the complex energy landscape as a function of

~X ≡ (~R1, ~R2, . . . , ~RN) (with ~Ri being the position of the ith atom) to a new

reduced energy landscape, which consists of plateaus of energy minima only

Ẽ( ~X) = min{E( ~X)}, (4)

where min{...} represents a local energy minimization process with ~X as

initial structure. Perturbations in the algorithm are introduced by chang-

ing slightly the latest set of coordinates and carrying out a gradient-based

optimization from the resulting geometry. Moves are accepted or rejected

based upon the energy difference between the new and old local minimum.

Thus, the difference from the standard Monte Carlo algorithm is that the

energy should be minimized with respect to the local minimum before the

Metropolis acceptance rule is applied. The BH approach can be also viewed
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as a generalization of the “Monte Carlo plus energy minimization” proce-

dure of Li and Scheraga [28]. The Monte Carlo part of the BH algorithm

is introduced in order to allow the system to hop from one plateau to an-

other at a thermal energy kBT ∗. The hopping probability depends highly

on the choice of the “temperature” T ∗ and on the reduced-energy difference

between the plateaus of the two consecutive steps. In this study the Monte

Carlo simulation has been performed at a constant reduced “temperature”

of 0.8.

In the present modified version of the BH algorithm we start with ran-

domly generated cluster structures which are initially placed at a distance

of a1/2 above the relaxed Ag(111) and a2/2 above the relaxed Ni(111) sur-

face, where a1=4.09 Å is the bulk lattice constant of Ag and a2=3.52 Å this

of Ni. Then we disturb randomly the coordinates of the cluster separately

from those of the surface and carry out a gradient-based optimization on

the ”cluster+surface” system. Afterwards the Metropolis acceptance rule is

applied using the old and new local minima of the ”cluster+surface”. For the

next step the cluster atoms that belong to the latest set ”cluster+surface”

coordinates are disturbed randomly again. This procedure is repeated until

the lowest total energy of the ”cluster+surface” system is found. Thus, in

contrast to the optimization procedure of Ref. [1] in which relaxation is car-

ried out only for the cluster, we relax the whole atoms including those of the

surface after each disturbance of the coordinates.

2.3. Surface model

Before starting the optimization, first of all non-relaxed Ni(111) and

Ag(111) surface slabs were generated, using the equilibrium lattice constants
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a1 and a2 of both Ni and Ag bulk obtained from the EAM potential. To

find out how large the slab should be to mimic the surface behavior we car-

ried out a series of relaxations of slabs in which the number of layers (in

z-direction) and the number of hexagonal shells (in x-y direction) increase.

Then we evaluated the difference in the surface energy between a slab with

L layers and a slab with (L-1) layers. Thereby the surface energy is defined

as follows

ESURF (L) = 0.5 · (EL
tot − L · EBULK) (5)

with

EBULK(L) = 0.5 · (EL+2
tot −EL

tot). (6)

For the surface energy and for the binding energy of a cluster with the maxi-

mum number of N=20 atoms, we applied a convergence criterion of 0.1 meV

to decide for which combination of layers and shells the slab will represent

bulk properties. Thereby the convergence will be automatically fulfilled for

smaller clusters. For the further calculations we used a Ni(111) slab consist-

ing of 9 shells and 11 layers and a Ag(111) slab consisting of 10 shells and

15 layers.

3. Results and discussion

First of all we will investigate if Ag clusters adsorbed on a Ag(111) surface

possess the same particular stable structures as Ag clusters adsorbed on a

Ni(111) surface. In order to identify particularly stable clusters we consider

the stability function

Estab = Etot(N + 1) + Etot(N − 1) − 2Etot(N). (7)
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Estab is shown in Fig. 1 (bottom) for Ag clusters on a Ag(111) and a Ni(111)

surface separately. Maxima of Estab indicate particularly stable (magic) clus-

ters. The magic sizes N=7, 10, 12, 14, 16, and 19 found for the Ag/Ag(111)

system are in good agreement with those of Ref. [1]. Further, we observe

that for cluster sizes, up to N=12, the stability function for both homo- and

heteroatomic systems possess the same maxima and minima. In the size

range 13 ≤ N ≤ 17, the stability functions of Ag clusters on Ni(111) surface

shows the same peaks, but they are less pronounced compared to that of Ag

clusters on Ag(111) surface. Surprisingly, for N=18 and 19 there is a reversal

of the maxima in both stability functions. While N=19 is magic size for Ag

clusters adsorbed on a surface consisting of Ag atoms, it is non-magic size

for Ag clusters adsorbed on a surface consisting of Ni atoms. For the last

case a new magic size appears, at N=18.

At next we want to find out if the clusters which are especially stable on

both surfaces possess the same structures and if the difference in the magic

numbers for homo- and heteroatomic system corresponds to different geome-

tries. In order to quantify structural differences and similarities between

two Ag clusters of the same size of N atoms placed on different surfaces we

use the concept of similarity functions introduced by us in previous studies

[20, 22]. For each atom in a Ag cluster adsorbed on a Ag(111) surface we

define its radial distance

rn = |~Rn − ~R0| (8)

with

~R0 =
1

N

N∑
i=1

~Ri. (9)

These are sorted in increasing order. Simultaneously, for each atom in the
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Ag cluster on Ni(111) we calculate and sort the radial distances, {r′n}, for

this, too. Subsequently, from

q =

[
1

N

N∑
n=1

(rn − rn′)2

]1/2

, (10)

we define a similarity function,

S1 =
1

1 + q/ul
(11)

(ul = 1 Å), which approaches 1 (0) if the Ag cluster on the Ag(111) surface

is very similar to (different from) the Ag cluster on the Ni(111) surface. The

similarity function S1 is shown in Fig. 1 (top) as a function of the cluster size

N . From this figure it can be seen that Ag clusters have the same structures

for all magic sizes up to N=16, on both the Ag and the Ni surface. In

contrast, the non-magic clusters of the sizes N=6, 9, 11, and 13 possess

different geometries on the different surfaces. In the size range N=17-20 the

difference in the cluster geometries corresponds to the reversal of the magic

numbers of the Ag clusters on the homo- and heteroatomic surfaces described

above. Some of the structures which are different on the Ag(111) and the

Ni(111) surface are shown in Fig. 2. (The similarity function S2 in Fig. 1

will be discussed later in this work.)

To explain the appearance of different lowest-energy structures and magic

numbers in the heteroatomic system we plot the number of nearest-neighbor

bonds (NN) in Fig. 3 (left side) and the number of nearest substrate atoms

(SA) (right side) in dependence of cluster size. From the plot and from Fig. 2

it is visible that the ground-state structure of Ag19 on Ni(111), for example,

does not possess the geometry which maximizes the number of NN bonds in
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contrast to Ag19 on Ag(111). The first one is elongated and has more near-

est substrate atoms. This indicates that the adatom-substrate interaction

in the case of the Ag/Ni(111) system dominates over the adatom-adatom

interaction and can compensate the loss in binding energy caused by the NN

bond breaking (Ag–Ni interaction is stronger than Ag–Ag interaction [29]).

However, as compact structures are preferred (at least in the investigated

size range), Ag19 adsorbed on Ni(111) loses its special stability compared

to its neighbors Ag18 and Ag20 and instead Ag18, which possesses a more

compact structure, becomes more stable. For lower sizes the influence from

the adatom-substrate interactions is obviously not strong enough to change

the predominance of the NN adatom-adatom interactions and therefore the

same structures of magic clusters appear on the different surfaces.

An interesting question is also if cluster growth is a regular one, i.e. if the

structure of a AgN cluster can be considered as being built up by adding a Ag

atom to the structure of AgN−1 cluster. In order to quantify this suggestion

we consider the similarity function S2. We calculate and sort all interatomic

distances di, i = 1, 2, · · · , N(N−1)
2

. Subsequently we consider each of the N

fragments of the N -cluster that can be obtained by removing one of the atoms

and keeping the rest at their positions. For each of those we also calculate

and sort all interatomic distances d′i, and calculate, subsequently,

q =
[ 2

N(N − 1)

N(N−1)/2∑
i=1

(di − d′i)
2
]1/2

. (12)

Among the N different values of q we choose the smallest one, qmin and

11



calculate the similarity function

S2 =
1

1 + qmin/ul
(13)

(ul = 1Å) which approaches 1 if the AgN cluster is very similar to the AgN−1

cluster plus an extra atom. The results for Ag clusters on both Ag and Ni

surfaces are shown in Fig. 1 (middle row). In contrast to the Ag/Ag(111)

system, on the Ni(111) surface we observe a regular growth of the cluster

monolayer up to N=11, due to the presence of the hexagon as growth motif.

In the size range N=12-20 the cluster growth becomes irregular one for both

surfaces and we can not find a dominant structural growth motif.

In order to study the influence of the underlying substrate on the adsorbed

cluster structure we used the so-called ‘Index of epitaxy’, I, introduced by

us in a previous study [30]. This parameter enables us to quantify whether

the structure of the adsorbed cluster is dictated by the underlying substrate,

i.e., to which extent the adsorption or growth process of the clusters can be

classified as being epitaxic. It is described with the following formula:

q =
N∑
i

|~Ri − ~Rc|2

I =
1

1 + q/u2
l

, (14)

where |~Ri − ~Rc| is the distance between the positions of the ith atom and

the closest-lying fictitious atom in the infinite ideal crystal. In this case

we generated very large (more than 20000 atoms) ideal Ag(111) and Ni(111)

crystals using the lattice constants of the metals. When I reaches 1, a perfect

epitaxy is obtained. In Fig. 4 we show the results for the index of epitaxy
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for Ag clusters adsorbed on a Ag(111) surface and for Ag clusters adsorbed

on a Ni(111) surface. In the case when the underlying substrate consists of

Ag atoms I is near to 1, which indicates perfect epitaxial growth. All Ag

adatoms are adsorbed at the normal fcc sites (see Fig. 5), i.e. they occupy

equivalent sites with respect to the substrate lattice. In contrast, when the

underlying substrate consists of Ni atoms I decreases with cluster size and

possesses a minimum of I=0.47 at N=14. Fig. 5 shows examples for the

difference in the epitaxy for clusters of the same size on different surfaces.

As we can see all the Ag adatoms sit in inequivalent sites, i.e. they are

neither located all at fcc sites, nor at hcp sites. Instead most of them are

placed at intermediate sites as e.g. at bridge sites between two Ni atoms.

This lost of the three fold symmetry in the heteroatomic system compared

to the Ag/Ag(111) system leads to more irregular structures for Ag clusters

adsorbed on a Ni(111) surface.

To get a better understanding of the atomic structure of also larger clus-

ters on Ni(111) we take a cut out from a Ag monolayer of the ideal Ag(111)

crystal to obtain nearly close-packed structures of N=50 and 100 atoms and

let them relax on a Ag(111) and a Ni(111) surface to their most stable equi-

librium positions. The results are presented in Fig. 6. Here, it becomes

visible that when the cluster size increases to N=100 the Ag atoms start to

occupy also top sites (on Ni atoms) beside bridge sites. Further, we observe

some kind of waving of the Ag atom rows in x-y direction, so that Ag clus-

ter atoms propagate to one additional substrate row than expected from the

homoatomic case. See for example the structures of the cluster size N=50

shown in Fig. 6: the Ag atoms on Ag(111) are laying between 10 rows of
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substrate atoms, whereas on the Ni substrate they cover 11 rows of substrate

atoms. This effect becomes stronger with increasing cluster size. It is due

to the fact that Ag atoms try to keep the adatom-adatom distances as near

as possible to those of the pure Ag cluster (the Ag–Ag dimer bond length

(2.44 Å) is larger than the Ni–Ni dimer bond length (2.12 Å) and the lattice

constant of Ag is 16 % larger than this of Ni). By introducing the distortion

described above, some of the strain in the heteroatomic system due to the

mismatch is released, and the structure becomes more stable.
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4. Conclusions

In this work we have studied the structural and energetic properties of

AgN clusters on a Ag(111) and a Ni(111) surface with N up to 20 atoms.

The homo- and heteroatomic interactions in the cluster-surface systems have

been modeled using the EAM and the global geometry optimization has been

performed using the BH algorithm. For both Ag/Ag(111) and Ag/Ni(111)

systems the tendency to form close-packed structures with maximum number

of nearest-neighbor bonds, except for Ag19 on Ni(111), is common. Further,

the magic sizes up to N=17 and the corresponding structures are the same

for the homo- and heteroatomic system. In contrast, the geometries of the

Ag clusters for the non-magic sizes in the same size range differ for the

different surfaces. From N=18 upwards a reversal of the magic numbers for

the Ag/Ni(111) system compared to the Ag/Ag(111) system takes place, due

to the stronger influence of the adatom-substrate interactions compared to

the adatom-adatom interactions in Ag19. The increase in adatom-substrate

interactions for Ag clusters on Ni(111) results in a higher number of nearest

substrate atoms and in the preference of elongated structures. Finally, for

the Ag/Ni(111) system the index of epitaxy is decreasing with increasing

cluster size because of the large mismatch of dimer bond lengths and lattice

constants between Ag and Ni.
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Figure 1: The similarity functions S1 and S2 (top and middle row) in dependence of the

cluster size N . The third row shows the stability functions of Ag clusters on Ag(111) and

of Ag clusters on Ni(111) surface.
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Figure 2: The lowest-energy structures of Ag clusters on a Ni(111) (left column) and on a

Ag(111) (right column) surface.
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Figure 3: The number of nearest-neighbor (NN) bonds (left side) and the number of

nearest substrate atoms (SA) (right side) in dependence of cluster size separately for Ag

clusters on Ag(111) surface (square) and for Ag clusters on Ni(111) surface (circle).
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Figure 4: The evolution of the index of epitaxy with cluster size separately for Ag clusters

on Ag(111) surface (square) and for Ag clusters on Ni(111) surface (circle).
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N=13

N=17

N=19

Figure 5: The lowest-energy structures of Ag clusters on a Ni(111) (left column) and a

Ag(111) (right column) surface.

23



N=50

N=100

Figure 6: The relaxed structures of Ag50 and Ag100 clusters on a Ni(111) (left side) and

a Ag(111) (right side) surface.
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