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Abstract

In the past years significant interest in clusters has been developed due to their fun-
damental importance in both basic and applied science. This increasing interest is amply
justified by the unique properties of clusters and by the promise these systems hold as
components of optical, magnetic, and electronic sensors and devices. Especially alloy
clusters are of increasing interest as the electric, magnetic and catalytic properties of a
monometallic cluster can be improved by adding a second component. In order to opti-
mize the materials properties for a given application, it is of paramount importance to
have an accurate understanding of the relation between composition/cluster size on the
one side and property on the other. Here, computer simulations represent a useful method
for predictions of cluster properties and confirming experimental data.

In this work we have performed global optimization on the structures of Ni-Cu, K-Cs
and Rb Cs bimetallic clusters. For Ni, Cu,, bimetallic clusters with N = n + m up to 20
atoms, N = 23 and 38 atoms we have demonstrated that most of the bimetallic cluster
structures have geometries similar to those of pure Ni clusters. In contrast to the bulk, the
ground state structures of Ni-Cu clusters do not experience a smooth transition between
the structures of pure copper and pure nickel clusters as the number of Ni atoms changes.
Furthermore, an icosahedron, a double icosahedron, and a triple icosahedron with one,
two, and three Ni atoms at the centre, respectively, are especially stable (magic). In ad-
dition, it is found that Ni atoms occupy mainly high-coordination inner (core) sites, while
Cu atoms show a tendency to occupy lower-coordination sites at the cluster surface. For
K-Cs and Rb-Cs clusters we have found that the introduction of K and Rb substitutions
in a Cs cluster for the size range N=34-50 results in new structures, different from those
of the pure elements. These are highly symmetric and belong to the same structural
family. The last fact leads to a more regular cluster growth in the case of the bimetallic
clusters.

Another part of this thesis deals with deposition and global optimization of clusters on
surfaces. An understanding of the cluster-surface interaction is important for the devel-
opment of suitable materials, e.g. thin films, and it plays an important role in nucleation
processes and crystal growth. In this thesis we simulate the experimental conditions of
the Low Energy Cluster Beam experiment to study the influence of the atom type and
the impact energy on the structural and energetic properties of the products of deposition
of Nij3 and Cuys clusters on Ni(111) and Cu(111) surfaces. It is shown that the shape
of the nickel clusters deposited on a Cu(111) surface remains well kept, while the copper
clusters impacting a Ni(111) surface collapse forming double and triple layered products.
In the case of Agy clusters with N =2-20 adsorbed on Ag(111) and Ni(111) surfaces,
the lowest-energy structures are determined. We have found that from N=18 upwards a
reversal of the magic numbers for the Ag/Ni(111) system compared to the Ag/Ag(111)
system takes place, which is due to the predominance of the adatom-substrate interactions
compared to the adatom-adatom interactions. Finally, due to the large size mismatch it is
energetically unfavorable for Ag to form pseudomorphic monolayer structures on Ni(111)
and there is considerable strain produced at the interface. The effect of this strain will



give rise to disordered and elongated structures of the adsorbed Ag clusters.



Abstrakt

Cluster spielen, sowohl in der Grundlagenforschung, als auch in Bereichen wie Nanoin-
dustrie, Katalyse, Mikroelektronik, Informationsspeicherung und Medizin, eine wichtige
Rolle. Dabei sind besonders bimetallische Cluster von grofter Bedeutung, da diese neue
Moglichkeiten eréffnen bestehende optische, elektrische oder katalytische Eigenschaften
eines monometallischen Clusters durch Zugabe eines zweiten Metalls zu optimieren und
bessere Katalysatoren oder elektronische Bauteile zu konstruieren. Aufgrund ihrer gerin-
gen Grofe und grofes Oberflichen- zu Volumen Verh#ltnis besitzen Cluster Eigenschaften,
die von denen eines makroskopischen Festkorpers abweichen und sich von einer Cluster-
grofe zur ndchsten drastisch &ndern konnen. Fiir die erfolgreiche Anwendung und Vorher-
sage von Clustereigenschaften ist jedoch die richtige Bestimmung der Clusterstruktur
entscheidend und hier erweisen sich Computersimulationen als sehr niitzlich.

Die vorliegende Arbeit beschiftigt sich mit der globalen Strukturoptimierung von
bimetallischen Ubergangsmetall- und Alkalimetallclustern folgender Systeme: Ni-Cu, K-
Cs und Rb Cs. Strukturen, Stabilititen, und Symmetrien der monometallischen Clustern
wurden mit denen der bimetallischen Clustern verglichen. Es wurden drastische Struk-
turumwandlungen mit Anderung der Konzentration der Elemente fiir bestimmte Cluster-
grofen beschrieben, sowie iiberraschendes Auftreten von neuen Strukturen und Wachs-
tumsmotiven durch den Zusatz einer zweiten Komponente im monometallischen Cluster
beobachtet. Aufserdem wurde das Mischungs- bzw. Segregationsverhalten der Zweikom-
ponenten Clustern mit dem der makroskopischen Zweikomponenten Systeme verglichen.

Ein weiterer Teil dieser Arbeit bezieht sich auf die Deponierung und Strukturop-
timierung von Clustern auf metallischen Oberflichen. Das Verstdndnis der Cluster-
Cluster-Wechselwirkungen ist wichtig fiir die Herstellung von Diinnschicht-Filmen und
es spielt eine wichtige Rolle in Kristallwachstumsprozessen. Im Falle der Deponierung
von kleinen Ni und Cu Clustern auf Ni(111) und Cu(111) Oberflichen, wurde die ex-
perimentelle Prozedur des Low Energy Cluster Beam-Experiments simuliert. Man hat
untersucht welche Auswirkungen auf die Struktur und Energie der Cluster nach dem De-
ponierungsprozess zu erwarten sind, wenn Cluster und Substrat aus unterschiedlichen
Elementen bestehen. Im Falle der Strukturoptimierung von Ag Clustern auf metallis-
chen Oberflichen, wurden die energetisch niedrigsten Strukturen von kleinen Ag Clus-
tern auf eine Ag(111) Oberfliche mit denen auf eine Ni(111) Oberfliche verglichen und
tiberraschende Umkehr der Stabilitdten fiir das Ag/Ni(111) System im Vergleich zum
Ag/Ag(111) System aufgezeigt.



Zusammenfassung

Wihrend des letzten Jahrzehnts sind Cluster immer mehr in den Mittelpunkt des Inter-
esses von Forschern geriickt, da sie sowohl eine wichtige Rolle in der Grundlagenforschung
als auch in Bereichen wie Nanoindustrie, Katalyse, Mikroelektronik, Informationsspe-
icherung und Medizin spielen. Dabei sind besonders bimetallische Cluster von tragender
Bedeutung, da diese neue Moglichkeiten ertffnen bestehende optische, elektrische oder
katalytische Figenschaften eines monometallischen Clusters durch Zugabe eines zweiten
Metalls zu optimieren und bessere Katalysatoren oder elektronische Bauteile zu konstru-
ieren.

Unter Cluster versteht man Ansammlungen von Atomen oder Molekiilen deren Atom-
zahl zwischen drei und wenigen Tausenden liegt. Aufgrund ihrer geringen Groéfe und
grofkes Oberflichen- zu Volumen Verhiltnis besitzen Cluster Eigenschaften, die von denen
eines makroskopischen Festkorpers und von denen der Molekiile abweichen. Daher ist es
ein Hauptziel der Clusterforschung diese neuen Eigenschaften der Cluster herauszufinden
und zu verstehen und somit Cluster als neue Materialien nutzen zu kdnnen.

Obwohl Cluster schon seit mehr als zwei Jahrzehnten durch eine breite Auswahl an
experimentellen Methoden synthetisiert werden, stellt die zweifellose Zuordnung von bes-
timmten Geometrien zu einem untersuchten Cluster gegenwirtig eine Herausforderung
dar. Insbesondere fiir kleine Cluster ist diese Aufgabe besonders schwierig, da diese auf-
grund ihres grofen Oberfliche- zu Volumen Verhéltnisses Eigenschaften aufweisen, die
sich von einer Groéfe zur néchsten dramatisch &ndern kénnen. Fiir die erfolgreiche An-
wendung und Vorhersage von Clustereigenschaften ist aber die richtige Bestimmung der
Clusterstruktur entscheidend. Hier erweisen sich Computersimulationen als sehr niitzlich,
wenn es darum geht experimentelle Ergebnisse zu bestétigen, zu ergidnzen, oder Vorher-
sagen zu treffen. Aufgrund der Riesenanzahl an lokalen Energieminima (und damit auch
an moglichen Strukturen), die sogar fiir Cluster mit weniger als 10 Atomen existieren,
sind jedoch first-principles Methoden auf Berechnungen von vordefinierten Konfiguratio-
nen und nur auf wenigen Atomen beschrankt. Fiir bimetallische Cluster ist das Problem
der globalen Strukturoptimierung dramatischer, da zusédtzlich zu den geometrischen Iso-
meren auch noch topologische Isomere (Homotops) existieren, welche durch Austausch
von ungleichen Atomen ohne Anderung der Gesamtstruktur erhalten werden. Um die
Grundzustandsstruktur der Zweikomponenten Cluster bestimmen zu konnen werden in
dieser Arbeit semiempirische Potentiale verwendet, wie die Embedded-Atom Methode
und das many-body Gupta-Potential. Diese bieten die nétige Einfachheit im Bezug auf
die Berechnung von solchen komplizierten Systemen, aber auch eine zufriedenstellende
Genauigkeit.

Die vorliegende Arbeit beschéftigt sich mit der globalen Strukturoptimierung von
bimetallischen Ubergangsmetall- und Alkalimetallclustern, sowie mit Cluster/Oberflichen
Systemen mit heteroatomaren Wechselwirkungen, d.h. Wechselwirkungen zwischen zwei
chemisch unterschiedlichen Elementen. Die globale Strukturoptimierung von kleinen
bimetallischen Ni—-Cu Clustern wurde mit Hilfe des Genetischen Algorithmus in Kombina-



tion mit der Embedded-Atom Methode zur Berechnung der Gesamtenergie durchgefiihrt,
wihrend fiir K Cs und Rb Cs Clustern der Basin-Hopping Algorithmus in Kombina-
tion mit dem Gupta Potential angewandt wurde. Strukturelle und energetische Eigen-
schaften, wie z.B. Stabilitdt, Mischungsenergie, Symmetrie, Radiale Verteilungsfunktion,
Ahnlichkeitsfunktion und Wachstum, d.h. inwiefern ein Cluster bestehend aus N Atomen
als ein Cluster aus N — 1 Atomen plus ein zusétzliches Atom betrachtet werden kann,
wurden quantifiziert. Strukturen und Stabilitdtsfunktionen der monometallischen Clus-
tern wurden mit denen der bimetallischen Clustern verglichen. Aufserdem wurde das
Mischungs- bzw. Segregationsverhalten der Zweikomponenten Clustern mit dem der
makroskopischen Zweikomponenten Systemen verglichen.

Im Fall der Ni,Cu,, Cluster mit N = n + m bis zu 20, N=23 und N=38 Atomen
wurden die energetisch niedrigsten Strukturen mit denen der reinen Kupfer und Nickel
Cluster verglichen und man fand heraus, dass die meisten der untersuchten bimetallischen
Strukturen dieselbe Geometrie aufweisen wie die der reinen Nickel Cluster. Die Cluster-
grofe N—38 stellt dabei einen besonderen Fall dar, da bei dieser Grofe eine drastische
Strukturumwandlung mit Zunahme des Cu Anteils in den Ni-Cu Clustern vollzogen wird:
von einem abgeschnittenen Oktaeder zu einer Struktur mit pentagonaler Symmetrie und
dann wider zu Oktaedersymmetrie. Aufterdem ist fiir Cluster mit 15, 16, und 17 Atomen
die Auswirkung der Konzentration stirker, als der geometrische Effekt. Als besonders
stabile (magische) Strukturen wurden der einfache, doppelte und dreifache Tkosaeder mit
jeweils eins, zwei und drei Ni Atomen im Zentrum, identifiziert. Im Allgemeinen tendieren
die Nickel Atome dazu Plitze im Clusterinneren zu besetzen, welche eine hohe Koordina-
tionszahl ermdglichen, wihrend Cu Atome an die Clusteroberfliche segregieren.

Fiir (KCs),, und (RbCs),, Cluster mit N = 2n bis zu 20 Atomen fanden wir heraus,
dass eine Einfiihrung von K oder Rb Verunreinigungen in einem Cs Cluster, fiir Clus-
tergrofen N=34-50, zur Entstehung von neuen Strukturen fiihrt, welche unterschiedlich
sind von denen der reinen K, Rb und Cs Cluster. Diese unterschiedlichen Strukturen
sind hochst symmetrisch und gehoren der Familie der polyikosaedrischen Strukturen an,
welche durch Verkappung des s.g. fiinffachen "Pfannkuchens" erhalten werden. Aufgrund
dieses dominierenden strukturellen Motivs, weisen die bimetallischen Clustern ein viel
regelméfigeres Wachstumsverhalten auf, verglichen mit dem der monometallischen K, Rb
und Cs Cluster. Aufgrund der erhaltenen polyikosaedrischen Strukturen und der Tat-
sache, dass Cs an die Clusteroberfliche segregiert, konnen wir schliefen, dass Alkalimetall
K-Cs und Rb-Cs Cluster ebenfalls magische Kern-Schalle Strukturen ausbilden konnen,
wie bereits von bestimmten Ubergangsmetallcluster wie Ag-Ni berichtet wurde.

Ein weiterer Teil dieser Arbeit bezieht sich auf die Deponierung und Strukturopti-
mierung von Clustern auf metallischen Oberflichen. Das Verstdndnis der Cluster-Cluster-
Wechselwirkungen ist wichtig fiir die Herstellung von geeigneten Materialien, wie z.B.
von Diinnschicht-Filmen durch Cluster Deponierung. Weiterhin spielt die Adsorption
von Clustern auf Oberflichen eine wichtige Rolle in Kristallwachstumsprozessen. Im
Falle der Deponierung von Ni und Cu Clustern auf Ni(111) und Cu(111) Oberflichen,
wurde ein Molekular-Dynamischer Algorithmus angewandt, der die experimentelle Proze-
dur des Low Energy Cluster Beam-Experiment (LECB) simuliert. Die Cluster-Cluster
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und die Cluster-Substrat Wechselwirkungen wurden mit der Embedded Atom Methode
nachgeahmt. Das Ziel war, zu untersuchen welche Auswirkungen die heteroatomaren
Wechselwirkungen wihrend des Deponierungsprozesses auf die Struktur und Energie der
Clustern haben, im Vergleich dazu wenn nur homoatomare Wechselwirkungen herrschen.
Man fand heraus, dass im Falle der heteroatomaren Wechselwirkungen die Kohésionsen-
ergie der Metalle der entscheidende Faktor ist, der die Gestalt der Endstruktur bestimmt.
Als Konsequenz davon, fiihrt die Deponierung von Cuyz auf Ni(111) Oberflache zu einer
Ausbreitung des Clusters, aufgrund der niedrigen Kohésionsenergie von Kupfer, wihrend
bei der Deponierung von Nijz auf Cu(111) Oberfliche die Anfangsstruktur fast vollstandig
erhalten bleibt. Die Cluster wurden aufleredem mit verschiedenen Anfangsenergien de-
poniert und man fand heraus, dass die Anwendung von einer Deponierungsenergie von 0.5
eV/Atom im Falle der Cuy3 Cluster auf Ni(111) Oberfliche bevorzugt fiir die Herstellung
von einschichtigen Filmen verwendet werden konnte.

Im Falle der Strukturoptimierung von Clustern auf metallischen Oberflichen, wurde
der Basin-Hopping Algorithmus zur globalen Strukturoptimierung in Kombination mit
der Embedded Atom Methode angewandt. Die energetisch niedrigsten und besonders
stabilen Strukturen von Agy Clustern mit N=2-20 auf Ag(111) wurden mit denen der
Agy Clustern auf Ni(111) Oberflichen verglichen. Man fand heraus, dass in beiden
Fiallen kompakte einschichtige Strukturen erhalten werden, in denen die maximale An-
zahl an ndchsten Nachbarn erreicht wird, mit Ausnahme von Agy9 auf Ni(111). Fiir
Silber Cluster, die mehr als 17 Atomen besitzen, findet eine Umordnung der magischen
Zahlen fiir das Ag/Ni(111) System im Vergleich zum Ag/Ag(111) System statt. Wéhrend
Agyg auf Ag(111) besonders stabil ist, wird es auf Ni(111), als Folge der dominierenden
Cluster-Substrat Wechselwirkungen, seine kompakte Geometrie verlieren und auch seine
besondere Stabilitit. Desweiteren ist ein pseudomorphes Schichtwachstum aufgrund der
grofen Fehlanpassung der Gitterkonstanten und Bindungslingen von Ag und Ni ener-
getisch ungiinstig. Dies fiilhrt zu einer Spannung an der Grenzschicht Ag/Ni und zur
einer Verzerrung der Strukturen der Ag Cluster auf der Ni(111) Oberflache.



Preface

This thesis consists of the following papers that are referred to in the text by their Roman
numerals.

I. E. Hristova, Y. Dong, V. G. Grigoryan, and M. Springborg: "Structural and energetic
properties of Ni Cu bimetallic clusters", J. Phys. Chem. A 112 (2008) 7905-7915.

IT. E. Hristova, V. G. Grigoryan, and M. Springborg: "Structure and energetics of equiatomic
K Cs and Rb Cs binary clusters", J. Chem. Phys. 128 (2008) 244513. Reprinted with
permission from J. Chem. Phys. Copyright 2008, American Institute of Physics.

ITI. E. Kasabova, D. Alamanova, M. Springborg, and V. G. Grigoryan: "Deposition of
Niys and Cuyg clusters on Ni(111) and Cu(111) surfaces", Eur. Phys. J. D 45 (2007)
425-431. Reproduced with kind permission of Spinger Science and Business Media.

IV. E. Hristova, V. G. Grigoryan, and M. Springborg: "Structures and stability of Ag
clusters on Ag(111) and Ni(111) surfaces", in preparation.

The first two papers contain the studies of transition and alkali bimetallic clusters (Ni-
Cu, K-Cs and Rb—Cs) and the third and fourth ones deal with deposition and growth of
clusters on surfaces. We will describe the background to these studies in an introductory
part of the thesis.

The code for the genetic algorithm used in the first paper has been provided by Dr. Yi
Dong. The code for the basin-hopping algorithm for the second and fourth paper has been
downloaded from the website of Dr. David J. Wales and the molecular dynamics code for
the third paper has been provided by Dr. Denitsa Alamanova. The codes for total energy
calculation (embedded atom method and the Gupta potential) have been provided by
Dr. Valeri G. Grigoryan. All programs for global optimization, total energy calculations,
functions for analysing the structures have been changed from the monometallic to the
bimetallic case and adapted to the corresponding systems. The embedded atom method
of Daw, Baskes and Foiles has been implemented in the genetic algorithm, in the basin-
hopping algorithm and in the molecular dynamics simulation code. Further, the basin-
hopping algorithm for optimization of free clusters has been modified to optimize clusters
on surfaces.






Chapter 1

Introduction

The physics of clusters studies the characteristic properties of aggregates which size is
intermediate between the atom and the solid, and thus bridges the gap between atomic
and bulk-like behavior. In the past years significant interest in clusters has been developed
due to their fundamental importance in both basic and applied science. This increasing
interest is amply justified by the unique properties of clusters and by the promise these
systems hold as components of optical, magnetic, and electronic sensors and devices.
Because of the high proportion of surface atoms in clusters there are some common areas
of research between clusters and surface science. Some of these areas, such as the catalytic
activity of supported clusters, are clearly of interest in the field of nanotechnology. Beside
their importance in nanotechnological applications, clusters also provide a convenient
testing ground for many theories in physics. By learning how bulk properties emerge
from properties of clusters, as the clusters grow larger and larger, we gain new kinds of
understanding of the behavior of bulk matter.

Especially alloy clusters have a major impact in industrial catalysis, as the activity or
selectivity of a pure metal catalyst can be improved by adding a second component and
by varying the composition and the atomic ordering of the alloy. Used as nanoparticles,
alloy clusters are not only important as catalysts in fuel cell electrode reactions, but
they are also subject of an increasing interest in optics, magnetism, nanoelectronics and
biodiagnostic [1-8|. For example, using Ag.or. Augpey nanoparticles as biodiagnostic agents
the sensitivities for scanometric detection of DNA have been greatly improved, resulting
in amplification of the target signal [9)].

Although clusters can be synthesized for more than two decades by means of a wide
range of methods, their systematic fundamental study is quite recent. Especially for
small particles accurate experimental characterization is an arduous task and therefore,
computer simulations can be very helpful in confirming and complementing experimental
data or in predicting the properties of a cluster.

One of the most important properties of clusters, which is a goal of many experimental
and theoretical investigations and an essential input for most calculations, is the geomet-
rical arrangement of the constituents. However, even the most powerful first principles
studies have difficulties with the global optimizations already of clusters containing a few
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tens of atoms. This is due to the huge number of local minima that already exist at these
cluster sizes. For alloy clusters the problem is considerably more challenging, because new
structures (topological isomers or homotops) exist, in addition to the geometrically differ-
ent isomers. Homotops can be obtained through the interchange of unlike atoms without
changing the overall structure. Moreover, in bimetallic clusters the interatomic interac-
tions are much more complicated than in the homoatomic case. To calculate the ground-
state structure of the investigated bimetallic clusters, we used semiempirical potentials,
the embedded atom method and the Gupta potential, which combine the computational
simplicity needed for binary clusters with sufficient accuracy. The global optimization of
the structures was performed using the genetic (for Ni-Cu clusters) and the basin-hopping
algorithm (for K—Cs and Rb—Cs clusters). Both algorithms possess a high computational
efficiency proven in a series of previous studies.

Another part of this thesis deals with deposited and adsorbed clusters on surfaces.
Clusters on surfaces constitute a broad subfield of cluster physics. Placing a cluster on a
surface significantly modifies its geometry in comparison with equivalent free cluster due to
the impact of the interface energy and the surface configuration. Thus, an understanding
of the cluster-surface interaction is important for the development of suitable materials,
e.g. thin films, through cluster deposition. Further, clusters adsorbed on surfaces play
an important role in the nucleation processes and crystal growth. Systematic studies of
the changes of the structural properties of clusters on surfaces as a function of cluster
size lead to detailed understanding of such processes. In this thesis we employ molecular
dynamics simulation to study the deposition of small Ni and Cu clusters on Ni(111) and
Cu(111) surfaces and a basin-hopping algorithm to analyse the ground-state structures of
adsorbed Ag clusters on Ag(111) and Ni(111) surfaces.

The present work is organized as follows: in Chapter 2 we introduce main terms and
concepts related to clusters, as well as important cluster experiments. In Chapter 3, a
short introduction to the density functional formalism is given. Here, we also describe
the potentials based on it, which are used in this study. The algorithms for the global
structure optimization are presented in Chapter 4. The main features of the MD algorithm
are described in Chapter 5. Paper I contains the results for Ni-Cu clusters. Paper II
presents the structure and energetics of K-Cs and Rb-Cs clusters. Article IIT deals with
the deposition of Ni and Cu clusters on Ni(111) and Cu(111) surfaces and article IV with
adsorbed Ag clusters on Ag(111) and Ni(111) surfaces.



Chapter 2

Clusters

Clusters are nanoparticles (aggregates) of between three and a few thousand atoms or
molecules. They are intermediates between small molecules and macroscopic solid. Clus-
ters can be placed in the following categories: (1) microclusters (with 3 to 10-13 atoms) for
which concepts and methods of molecular physics are applicable (2) small clusters (with
10-13 to about 100 atoms) for which many different geometrical isomers exist for a given
cluster size with almost the same energies and molecular concepts lose their applicability
(3) large clusters (with 100 to 1000 atoms) for wich a gradual transition is observed to
the properties of the solid state (4) small particles or nanocrystals (with at least 1000
atoms) which display some of the properties of the solid state. The special interest in
clusters arises because they constitute a new type of material which may have properties
distinct from those of individual atoms and molecules or bulk matter. For example, iron
and silver are immiscible in the bulk, but readily mix in clusters [10]. Furthermore, gold
as bulk hardly reacts with molecular atmospheric oxygen or water, but small gold cluster
however do react with oxidation.

According to the types of atoms of which they are composed and the nature of the
bonding, clusters can be divided into five different types: metal clusters with delocalized
or covalent bonding, semiconductor clusters such as Ga,As, with a strong and directional
covalent bonding, ionic clusters such as [NEJ\JICly](”C_y)Jr with electrostatic bonding, rare gas
clusters bound by weak van der Waals dispersion forces and molecular clusters with van
der Waals bonding and dipole-dipole interactions. In the present work we will concentrate
on metal clusters. Metal clusters are formed by metallic elements from across the periodic
table. These include: (1) the simple s-block metals (alkali and alkaline earth metals) with
delocalized and non-directional bonding involving primarily the s orbitals (2) the sp-metals
(such as aluminium) whith a degree of covalent character where the bonding involves both
the s and the p orbitals and (3) the transition metals (sd-metals) with a greater degree of
covalency and a higher directionality in bonding.

One of the most popular models which have been developed to describe the bonding
in clusters of metallic elements is the so-called jellium model. In this a metal cluster is
approximated by a uniform, positive background of density, which binds a delocalized
valence electron cloud. The jellium model gives explanation to the observed peaks in the
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12 CHAPTER 2. CLUSTERS

Figure 2.1: Examples for metal clusters: gold clusters (left side, reproduced with per-
mission from Accelrys Inc¢) and silver clusters stabilized by Fe(CO), ligands [11] (right
side).

mass spectra of alkali metal clusters, corresponding to the nuclearities N=2, 8, 20, 40, 58,
... The latter were called magic numbers and were attributed to the enhanced stability of a
cluster (corresponding to an intense peak) compared to its immediate neighbours. These
magic numbers are based on the electronic shell closing. Whereas the jellium model
is useful for understanding the physical properties of small metal clusters taking into
account the internal electronic structure of the cluster, it can not explain the appearance
of even-odd numbers observed in the mass spectra of rare gas clusters. The even-odd
magic numbers have been ascribed to the filling of concentric polyhedral, or geometric
shells of atoms, rather than electrons. Filled geometric shells impart stability to the
cluster by maximizing the average coordination number and thereby reducing the cluster
surface energy. Geometric shell clusters based on twelve-vertex polyhedra (e.g. icosahedra,
decahedra and cuboctahedra) are characterized by the following magic numbers N=13,
55, 147, 309, 561, ...In many cases there is a competition between electron shell and
geometric shell (packing) effects.

2.1 Cluster properties

The interesting properties of a cluster are mainly determined by the high ratio of surface
atoms to interior (bulk) atoms. Using the SCA (Spherical Cluster Approximation) we
can predict this fraction Fy of surface atoms [12]

F, = 4N~1/3, (2.1)

In this approximation, an N-atom cluster is modelled by a sphere and the volume of the
cluster V, is assumed to be the volume of an atom V,, multiplied by the number of atoms
N in the cluster.

V,=N=xV, (2.2)
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Small clusters have more then 86% of their atoms on the surface and large clusters have
still 20% on the surface. As surface atoms possess lower coordination numbers and an
increased potential energy, large number of atoms in the cluster can be exposed to chemical
reactions. Thus, used as very finely dispersed metal, clusters show excellent catalytic
properties.

Another important reason for the interest especially in small clusters is the size-
dependent evolution of their properties. While in medium-sized or large clusters the prop-
erties are smoothly varying functions of the number of atoms, in small clusters properties
such as melting point, catalytic activity, magnetic, or structural ones, may drastically
change with size [12 14].

With increasing particle size, the surface-to-volume ratio decreases proportionally to
the inverse particle size. Thus, all properties which depend on the surface-to-volume ratio
extrapolate slowly to bulk values.

The non-metal to metal transition of a cluster depends on the cluster size, too. For
small clusters the density of states within a band (the extent of the electronic wave
function) is much smaller than that for macroscopic crystallites and it is possible that
the full width of a band may not have been developed. Thus, bands which overlap in
bulk materials are separated in clusters by a gap, i.e. the band structure for the cluster is
not continuous and nanoscopic amounts of a metal may behave as a semiconductor or an
insulator. Therefore, especially for small clusters, properties are strongly characterized
by quantum effects.

2.2 Bimetallic clusters

As the name implies, bimetallic clusters or so called alloy clusters are composed of atoms
of two different metallic elements. Such kinds of clusters combine the characteristics of
the finite size systems together with those of the alloys.

Whereas, for clusters containing one type of atoms, the properties can be varied simply
by changing the size of the clusters, for bimetallic clusters there are three additional
parameters to tune the materials properties, namely the composition, the atomic type
and the atomic ordering. The last point refers to the fact that compared to the pure
clusters with only one type of atoms, binary clusters may show segregation which may
result in, e.g., layered structures or core-shell structures, or they may show complete
mixing [15-19]. Because of their non-trivial geometric structures [20-26], and complex
chemical ordering [27-32], it is difficult to predict the ground state structures of binary
clusters from computational point of view. Further, the interatomic interactions in a
bimetallic cluster are much more complicated than in a monometallic one. In addition to
the interactions between the same types of atoms A-A and B-B we must also consider the
interactions between the different types of atoms (A-B/B-A). Moreover, in contrast to
monometallic clusters the interatomic interactions in bimetallic clusters depend not only
on the atom types, but also on the fractions of the different atom types in the nanoalloy.
The problem becomes much more complicated because of the existence of the so-called
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homotops [32,33|. Homotops are defined [33] as clusters with the same size, composition
and geometric arrangement, differing only in the way in which A and B-type atoms are
arranged. The number of homotops for an A, B,, cluster, P, ,,, is given by

(n—i—m)!'

Pn,m = T |
nim:

(2.3)

Thus, if we for example consider all possible replacements of 10 K atoms by Cs atoms in
an isomer of Ky, the number of homotops is as large as 184756. Because of this large
number of homotops, that in addition may have only small total-energy differences, a
global optimization becomes a very demanding task.

As already mentioned bimetallic clusters combine the characteristics of the finite sys-
tems with those of the alloys. In bulk, alloys can be divided in solid solutions and
intermetallic compounds. A solid solution is characterized by the lack of a short- and
of a long-range order. Compared to an intermetallic compound, where the composition
is stochiometric and follows certain distribution 'rules’ (e.g. CusZng), a solid solution
shows a statistic distribution of the atoms in the lattice (e.g. Ag—Au, Ni-Cu, Rb-Cs, K-
Cs) [34,35]. In which case we will obtain a solid solution or an intermetallic compound,
respectively, depends on the atom radii of the metal atoms and on the chemical reactivity
of the two metals. If the two atom types differ in their atom radii more than 15 % and
there are differences in their chemical properties, ordered structures, i.e. intermetallic
compounds are preferred. The reason is that the different size of the atoms enables a
closer packing of themselves and a better space filling. Furthermore the ordered structure
is energetically preferred because of the larger lattice energy set free by building the struc-
ture. If the atomic radii are similar, a solid solution is preferred, due to the larger entropy
its unordered structure causes. Considering this, one of the basic questions that have to
be answered when working with bimetallic clusters is, if they show the same miscibility
properties as the corresponding bulk alloys.

2.3 Cluster experiments

2.3.1 Synthesis methods

Mono- and bimetallic clusters can be generated in a variety of ways, in the gas phase, in
solution, supported on a substrate, or in a matrix.

Molecular Beams

The development of molecular beam techniques has enabled the study of "free" clusters in
an interaction-free environment: the so-called "cluster beam" [36,37|. Clusters are gener-
ated in a cluster source with cluster generation consisting of the processes of vaporization
(production of atoms or molecules in the gas phase), nucleation (initial condensation
of atoms or molecules to form a cluster nucleus), growth (addition of more atoms or
molecules to the initially formed nucleus), and coalescence/aggregation (the merging of

5
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small clusters to form larger clusters). Depending on the nature and conditions of the
source, different size distributions of clusters may be generated. Most modern day metal
cluster sources are of the gas condensation type. These include the following [12,36 40].

(1) Laser vaporization. For bimetallic nanoparticles, a single alloy rod target, mixed
metallic powders, or two monometallic targets are vaporized by the incident laser beam.

(2) Pulsed-Arc cluster ion source. Vaporization of the mono- or bimetallic targets is
achieved by passing an intense electrical discharge through them.

(3) Ton sputtering. Clusters are produced by bombarding the metal target with high-
energy inert gas ions (generally Kr* or Xe™) with bombardment energies in the range
10-30 keV and currents of approximately 10 mA.

(4) Magnetron sputtering. Argon plasma is ignited over a target by applying either a
potential and confined by a magnetic field. Ar* ions in the plasma are then accelerated
onto the target, resulting in sputtering.

After vaporization, condensation of clusters can be achieved by letting the metallic vapors
collide with a cold inert carrier gas and expansion through a nozzle. Once clusters have
been made and are in the form of gaseous particles, it is frequently desirable to make
them into some kind of controllable beam or stream that can be studied or captured. To
observe clusters in a beam, one can probe them while they are free or trap them in a
matrix, liquid, glassy or crystalline.

Fig. 2.2 shows an example of the production of a cluster beam by magnetron sputtering
in the group of Palmer et al. [41]. Here Ar-+ ions are accelerated by a high voltage supplied
to the Ag target, which results in sputtering of the target atoms and the creation of a
dense vapour of energetic Ag atoms and small Ag clusters. Cold He gas is used to remove
excess energy from these particles, leading to condensation of clusters. To form a cluster
beam, charged clusters of various sizes are extracted electrostatically from the production
chamber through a series of small apertures, and subsequently focused by a series of
electrostatic lenses. By mass selection in a mass filter a size-selected cluster beam is
generated.

Chemical Reduction

One problem with studying naked metal clusters, such as those created in cluster molecular
beams, is that they cannot be isolated and handled on a preparative scale like conventional
molecules. To enable the investigation of clusters and to exploit their properties in device
applications, it is necessary to protect ("passivate") them with a ligand shell, as this
avoids coalescence at high cluster densities. Such systems are realized as dispersion of
particles of one material in another. Each particle in these so-called ’colloids’ consists of
a metallic core surrounded by a ligand shell.
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Figure 2.2: Production of size-selected cluster beams. (a) Cluster formation by plasma
sputtering and gas aggregation. (b) Overview of the complete cluster beam source. (c)
Mass spectra of Ag clusters produced by the source by two different sets of source param-
eters such as the Ar and He pressures [41].
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Colloidal metallic particles can be produced by chemical reduction of metal salts dis-
solved in an appropriate solvent in the presence of surfactant (e.g., citrate, alkylthiols, or
thioethers) or polymeric ligands, which passivate the cluster surface [42,43]. Bimetallic
colloids can readily be prepared by chemical reduction of the appropriate mixture of salts
in the solution phase using reduction agents such as NaBHy, NoH, and Hy gas [42-45|.
During the reduction process, the metal species with the highest redox potential precipi-
tates first, forming a core on which the second component is deposited as a shell [45]. As
an example, co-reduction of Ag and Pd generally leads to Pd e Agsnen clusters due to the
higher redox potential of Pd.

Another way of making bimetallic particles is to reduce complexes which contain both
of the metal species [45]. This approach has been used, for example, to generate Pd Ag
and Pd Pt nanoparticles [46].

Thermal Decomposition of Transition-Metals

Bare nanoalloys (e.g., Ni-Cu, Ag-Au, and Cu-Pd) have been generated by thermal evapo-
ration of the metals in a vacuum. XPS measurements of core-level binding energies show
that shifts (relative to the bulk metals) have contributions due to size-effects as well as
mixing [47].

Electrochemical Synthesis

Bimetallic Pd-Ni and Fe-Co nanocolloids have been prepared using two sacrificial bulk
metallic anodes in a single electrolysis cell [48]. Core-shell layered bimetallic nanoparticles,
as e.g. PteyPdgspen can also be produced electrochemically, where, the Pt core can be
regarded as a "living metal polymer" on which the Pd atoms are deposited [42,49].

2.3.2 Investigation of Clusters
Mass Spectrometry

Traditional mass spectrometers use homogeneous electric or magnetic field sectors to
deflect charged clusters by an extent depending on their charge-to-mass ratio and their
velocities. If there is an inherent stability associated with a given number of atoms in a
neutral cluster then this will give rise to a greater abundance of this clusters and a large
peak in intensity (magic numbers), relative to similarly sized clusters. Neutral clusters
can be mass selected by deflection using an intersecting beam of inert gas atoms, or by
reneutralising ions that have previously been mass selected.

X-ray Spectroscopy

High-energy X-ray radiation is particularly useful for studying metallic nanoparticles be-
cause the binding energies and hence the spectral lines of the atomic core electrons are
very sensitive to the atomic number of the element, allowing metals which are adjacent in
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the periodic table to be distinguished. X-ray absorption spectroscopy techniques are used
to determine the geometrical arrangement, atomic number, distance and the coordination
number of the atoms in the cluster.

Ton mobility studies

In these experiments, cluster ions, produced in laser vaporization source, are mass selected
and injected into a long drift tube which is filled with an inert buffer gas. The cluster
mobilities (which are inversely related to the time taken to pass through the drift tube)
depend on the number of collisions with the buffer gas and these in turn depend on the
collisional cross sectional area, and hence the shape of the cluster. For a given number
of atoms, spherical clusters have the smallest collision cross sections and therefore travel
fastest though the drift tube. Prolate spheroidal clusters carve out a large sphere, and thus
have high collisions cross sectional areas and slower drift times. In this way clusters with

Electron Microscopy

In the electron microscopy the atomic structure of clusters is imaged using electron beams,
that can be accelerated to an appropriate energy and can be focused by electrostatic lenses.
High resolution transmission electron microscopy (HRTEM) offers resolution down to the
Angstrom level and enables information to be obtained on the structure rather than just
the morphology of the nanoparticles.

Photoelectron Spectroscopy

Electronic and dynamic properties of metal clusters can be investigated by photoelectron
spectroscopy using lower energy radiation.

Scanning Probe Microscopy

In scanning probe microscopy (SPM) a surface is imaged at high resolution by rastering
an atomically sharp tip across the surface. Measurement of the strength of the interaction
is used to map out the topography and electronic structure of the surface. In scanning
tunneling microscopy (STM), a potential bias is applied between the needle tip and the
substrate, causing electrons to tunnel from the surface to the needle. One can either
measure the varying tunneling current in constant height mode or keep the tunneling
current constant and vary the height of the tip above the substrate. In the atomic force
microscopy (AFM) a fine tip is brought into close contact (without touching) with the
sample and senses the small repulsive force between the probe tip and the surface. Using
SPM we can examine the morphology of clusters adsorbed or deposited onto a surface.

The last processes are topic of the next section.
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2.4 Clusters on Surfaces

Through the deposition of size-selected clusters onto a suitable substrate it is possible to
produce novel materials, such as thin films or nanostructured surfaces, in a well-controlled
way. A way to size-select clusters is to use electrostatic or magnetic deflection of a beam
of charged clusters as described in Sec. 2.3.1. Various techniques such as sputtering,
Pulsed Laser Deposition, lonized Cluster Beam Deposition etc., have been employed to
obtain layers on surfaces. The use of moderate impact energies (10-100 eV) generally
leads to flattening of the cluster and little surface damage, while by use of high impact
energies (keV), a crater hollow is formed on the surface. If one wishes to deposit clusters
on substrate without the clusters themselves breaking up or the surface morphology of
the substrate being disrupted, the clusters must be deposited with a low impact energy
(0.1-1 eV). Low-energy cluster deposition experiments have been carried out with the aim
of producing novel materials which have a memory of the free cluster structure. Such
an effect, where the clusters remain distinct and identifiable upon film formation, was
observed for films of fullerenes, but not for metallic cluster depositions, yet. However,
independently of the nature of the incident clusters, the low-energy cluster beam deposi-
tion technique (LECBD) allows to produce nanostructured materials with a morphology
consisting of a nearly random stacking of clusters. Fig. 2.3 shows an example of a setup of
the Konstanz Cluster Deposition Experiment in the group of Prof. Dr. G. Gantefoer [50].
In this experiment, clusters are produced by a magnetron sputter source, which allows
coverages up to several monolayers cluster material within a few hours. The clusters are
first produced as ions in the gas phase, accelerated by an electric potential, mass separated
by means of a sector magnet and soft landed on a given substrate. These surfaces can
be examined with various methods used in surface analysis, for instance STM (Scanning
Tunneling Microscopy), LEED (Low Energy Electron Diffraction) and FIM (Field Ton
Microscopy).

To understand the deposition process and thin film formation, first one has to un-
derstand the mechanisms governing the cluster-cluster and cluster-substrate interaction,
which also can result in new effects. The impact of a single cluster onto a surface should
be considered as the basic process in cluster impact thin film formation. Therefore, a
simulation of this process gives valuable information pertaining to the growth character-
istics of energetic cluster impact films. It may predict, for example, if the structure of
the nanoparticle will be kept unchanged when deposited, and on which kind of substrate
this is most likely to happen. To simulate theoretically the experimental process of de-
position we performed Molecular Dynamics (MD) simulations (see Chapter 5), as they
explicitly describe the molecular system as a function of time, and can directly calculate
time-dependent phenomena. The impact cluster energies used in this work are in the
range of the experimental Low Energy Cluster Beam Deposition (see paper III). Another
approach we chose to investigate the cluster growth on surface, was to extend the basin-

hopping algorithm in order to generate and optimize clusters onto substrates (see paper
V).
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Figure 2.3: Setup of the Konstanz Cluster Deposition Experiment [50].



Chapter 3

Energy Potentials

In order to predict a cluster structure, first a mathematical model of the total potential
energy F of the cluster has to be chosen. The accuracy of the model for the interatomic
forces is a key factor in calculating the real properties of a system. In this Chapter we
will give an overview of some of the most popular energy potentials and present those
ones used to model the interactions between the atoms in the bimetallic clusters and in
the 'cluster+surface’ systems in the present thesis.

A simple and widely used energy potential is the Lennard-Jones (I.J) one. In this
potential the binding forces are represented by pairwise interactions

o[- @) o

Here r is the interatomic distance and o is the interatomic distance where the potential
curve crosses zero. Most commonly n=12 and m=6 are assumed. This potential approx-
imates van der Waals interactions and gives good representations of some rare gas and
molecular clusters.

However, for truly representations of real clusters we need potentials which are not
pairwise additive and more accurate. In metal clusters the many-body nature of the metal-
lic cohesion (a consequence of the characteristic delocalization of the electrons) makes an
adequate description of even the homointeractions a challenging task. Reproduction of
the heteroatomic interactions is only a more complex problem. Searching for the right
potential for describing an intermetallic system one can choose between ab initio, density-
functional, or semiempirical methods such as the embedded atom method or tight-binding
potentials like the Gupta potential. Both first methods give highly accurate results, but
they are much more time consuming. Even for clusters with only one type of atoms, it is
overwhelmingly demanding to identify the structure for clusters with just around 10-20
atoms using these methods. In contrast, the last two methods are fast potentials with high
computational efficiency. Their parameters are fitted to experimental properties of bulk
metals and alloys. Moreover, both of them are many-body potentials and thus based on
the concept of density, or coordination. Such potentials give shorter and stronger bonds
for low-coordination atoms. This many-body character of the interaction potential is very
important for a reasonably accurate modelling of metallic systems.

21
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In the present thesis the interactions between the atoms in the Ni-Cu bimetallic clus-
ters as well as in the "cluster+surface" systems are described through the embedded atom
method in the version of Daw, Baskes and Foiles, whereas for K Cs and Rb Cs bimetallic
clusters we used the Gupta tight-binding method. In the following we will give a short
overview of the density functional theory formalism bhefore describing the semiempirical
potentials based on it.

3.1 Density-Functional Theory (DFT)

The main problem in theoretical chemistry remains the solution of the Schrédinger equa-
tion R
HY = EV, (3.2)

which enables the calculation of the electronic and structural properties of a given material
[51].  Unfortunately, it is possible to calculate the Schrodinger equation without any
approximation only for rather small molecular systems. In order to obtain a solution
of this equation for multielectron systems we use the Born-Oppenheimer approximation.
Within this approximation the electronic and nuclear motion are separated within the
Hamiltonian because the nuclei are much heavier than the electrons and from the point
of view of the electrons they can be seen as fixed particles. Focusing only on time-
independent properties within this approximation we can solve Schrodinger’s equation for
the electrons [52]:

{i [—%V%V;ﬁn(ri)} +% i %}\p(rl,...,m) —E-U(ry,....ty) (3.3)

=1

where r; is the position of the ith electron, IV is the total number of electrons, V,,; is the
external field in which the electrons move, E is the total electronic energy, and ¥ is the
electron wavefunction. V. (r) is the electrostatic potential generated by the atomic nuclei,
but it may also contain contributions from surrounding media or other perturbations on
the system.

For the calculation of experimental observables we need to know the complete N-
electron wavefunction W(ry,...,ry). However, calculating ¥(rq,...,ry) does give much
more detailed information than is actually needed in any practical application, and it
would be a very great computational simplification if one could avoid the extra unused
information contained in the electron wavefunction. The main ansatz in the density-
functional theory itself [53, 54| is that we don’t need to calculate the whole N-particle
wavefunction of the system, but simply the electron density in order to obtain any ground
state property of the system. This theorem has been published by Hohenberg and Kohn in
1964 [55]. They have proved that the electron density p(r) of the ground state determines
uniquely the external potential V., (r). This means that the electron density in three-
dimensional position space is sufficient in constructing the full Hamilton operator of Eq.
3.3 and once that is known it is possible to solve the Schrodinger equation 3.3 and thus
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obtain any ground state property. Thus, the total electronic energy, which is a ground
state property of a given system, becomes a functional of the electron density

E = Elp(r)]. (3.4)

However, the Hohenberg-Kohn theorem proves the existence of the functionals but do not
provide any instruction on how to derive them. Due to this lack of exact functionals, the
electron density p(r) and the total electronic energy E are calculated by using certain
approximations. A very useful approach for the calculation of the electron density was
presented by Kohn and Sham in 1965 [56]. The approximation begins with the step of
writing the total electronic energy E[p] of the system as

Bl =Tl + [ ot {vmm n %vc@)} dr + Bulp]. (3.5)

Here, T' is the total kinetic energy, V- the electrostatic Coulomb potential seen by the
electron, V,,; the external potential, and F,. is the exchange-correlation energy, which
contains all terms that are not included in the other three addends. After exertion of the
variational principle using the Lagrange multiplier i we obtain

orT 0E,.
% + Veue(r) + Ve(r) + 5 = L. (3.6)

The Lagrange multiplier is per construction the chemical potential for the electrons.
Kohn and Sham compared this result with that obtained for N non-interacting parti-
cles (fermions) moving in another external potential V.;; defined in such a way that the
electron density of this system is the same as that for the real system. The equivalent of
equation 3.6 is in this case )
orT
ot Vers(r) = p (3.7)
where T is the kinetic energy of the non-interacting particles and not these of the physical
system. For these non-interacting particles we can solve the Schrodinger equation. The
last is significantly simplified and can be written as the sum of N single-particle equations
of the form
h2
{ - —VQ —+ ‘/eff(r):| wl(r) = ezwl(r) (38)
2m
By solving this Schrodinger equation we can compute the electron density, which is the
sum over the N orbitals with the lowest single-particle energies ;:

N

pr) = [4(r) [ (3.9)

i=1
Given the density, one determines the exchange energy and hence its variation with
density. Omne can now recompute the effective potential, solve again the one-electron
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Schrodinger equation, and recompute the density. The procedure is repeated until the
process converges in a self-consistent manner.

Thus, Kohn and Sham reformulated the problem of calculating the total electronic
energy F as a functional of the electron density p(r) as that of solving a set of single-
particle Schrédinger-like equations, and this approach has formed the basis for almost all
practical applications of the densty-functional theory.

3.2 The Embedded Atom Method (EAM)

The EAM presents a semiempirical approximation for extended systems with largely de-
localized electrons (mainly for early and late transition metals). It is based on the density
functional formalism.

3.2.1 The EAM in the version of Daw, Baskes and Foiles (DBF)

The conceptual platform for the development of the EAM was provided in 1980 by the
approach of Stott and Zaremba, named the quasi-atom method [57|. This approach has
its roots in the DFT. Accordingly, the energy change associated with placing an atom into
a host system of atoms is a functional of the electronic density of the host system before
the new atom is embedded. The energy of the host with impurity is then a functional of
the unperturbed host electron density and a function of the impurity charge and position.
By analogy with the approach of Stott and Zaremba, Daw and Baskes [58-60| consider
each atom of a metal as an impurity embedded in a host provided by all other atoms.
According to this view the total energy FE,, has the following form

N N
1
Eioy = Z[Fz'(ﬂ?) t3 Z ij(riz)]- (3.10)
i=1 =1(70)
In Eq. 3.10, p! is the local electron density at site i and F; is the embedding energy

required to embed an atom into this density. The local density at site ¢ is assumed being
a superposition of atomic electron densities,

ph=Y rilry), (3.11)

J=1(j#9)
where p(r;;) is the spherically averaged atomic electron density provided by atom j at the

distance ;. Further, in Eq. 3.10 ¢;; is the short-range pair repulsive interaction between
atoms ¢ and j

Gij(rij) = —Zi(rij)zj(rij)a (3.12)

Tij

separated by the distance r;;.
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The detailed analysis made in Ref. |60] have shown that the main Ansatz of the EAM,
Eq. (3.10), also holds good in the case of the binary alloys. In accord with Ref. [60]
the pair interaction between two different species (A-B/B-A heterointeraction) can be
approximated by the geometric mean of the pair interaction for the individual species:
dap(R) = \/quA(R) - ¢pp(R). Further, the embedding functions for the Ni-Cu and Ag—
Ni systems have been determined by Daw, Baskes and Foiles empirically by fitting to
experimental data of bulk sublimation energy, elastic constant and the heat of solution of
binary alloys [60]. The values for p¢, F; and ¢;; are available in numerical form for Ni, Cu
and Ag [61]. The validity of the embedding functions for the Ni Cu and Ag Ni systems
has been tested by computing a wide range of properties as e.g. the segregation energy
of substitutional impurities to the (100) surface [60].

The EAM of DBF has been successfully applied to many bulk and low-symmetric
problems in transition metals such as defects, surface structures and surface segrega-
tion/mixing effects in alloys [62]. Furthermore, in our previous works [63-68| (those
include also the discussions with the available experiments) we have found that this ap-
proach provides accurate information on pure Cuy, Niy and Agy clusters, which is our
main reason for choosing this potential for studying Ni Cu and Ag Ni heteroatomic sys-

tems.

3.2.2 The EAM version of Voter and Chen

There is another well-accepted version of the EAM developed by Voter and Chen |69, 70].
This version of the EAM distinguishes from the version of DBF mainly by means of the
parametrization and by the form of the pair potential. Furthermore, the version of Voter
and Chen takes into account properties of the dimer as well as bulk properties in the
fitting procedure, whereas Daw and Baskes use only bulk properties of the metals in their

parametrization.
In the fitting procedure of Voter and Chen the pairwise interaction is taken to be a

Morse potential,
¢(T) = D]w[l — e(faM(rfRM))P _ D]w (313)

where the three parameters Dy;, Ry, and oy, define the depth, position of the minimum,
and a measure of the curvature near the minimum, respectively. The density function,
p(r), is taken as

p(r) = rSle P 4 2972P"] (3.14)

where (3 is an adjustable parameter.

To be suitable for use in molecular dynamics, the interatomic potential ¢(r) as well as
the electron density p(r) should be continuous. This is accomplished by forcing ¢(r) and
p(r) to go smoothly to zero at a cutoff distance, r.,;, which is used as a fitting parameter.
The five parameters defining ¢(r) and p(r) (D, Rar, aar, 0 and r) are optimized by
minimizing the root-mean-square deviation (,,s) between the calculated and experimen-
tal values for the three cubic elastic constants, the vacancy formation energy, the bond
length and the bond strength of the diatomic molecule.
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Although the two versions of EAM have completely different parametrizations, they
yield clusters that are structurally and energetically almost identical, as previous studies
of Grigoryan et al. have shown [64,67].

3.3 The Gupta Potential

The Gupta potential [71] has been successfully applied to study the structure, energetics,
free energy, surface energy and melting point of alkali metal clusters [72,73]. It has been
derived from Gupta’s expression for the cohesive energy of a bulk material. According
to this, the total energy of a system with N atoms is written in terms of repulsive and
attractive many-body terms,

Vetus = i:; {VT(i) - V’”(z’)} (3.15)
where
V(i) = iv(: )A(a, b) exp {—p(a, b) (ﬁ - 1)} (3.16)
j=1 (i ’
and 1
V(i) = { 42%) ¢*(a,b) exp [_ 2q(a, b)(ro(Zi 5 1)} } (3.17)

In these equations, 7;; is the distance between atoms 7 and j, and A, ry, ¢, p, and g are
parameters whose values are fitted to experimental values such as cohesive energy, lattice
parameters and independent elastic constants for the reference crystal structure at 0 K.
Finally, a and b refer to atom type of atom ¢ and j.

The parameters for inhomogeneous K—Cs (Rb—Cs) interactions are taken as the average
of the K-K and Cs—Cs (Rb-Rb and Cs—Cs) parameters obtained by Li et al. [73]. The
reasoning for this is that bulk K-Cs and Rb-Cs alloys are solid solutions, rather than
ordered intermetallics, and mixture energies and mixture parameters of molten K-Cs and
Rb-Cs alloys computed in a study of Christman [74] are very close to the averages of the
corresponding single constituent values. Furthermore, also for other alloy systems it has
been found that the parameters are close to the average values and in general lie between
the limits of the homonuclear interaction parameters [75].



Chapter 4

Optimization Algorithms

Optimization is a common problem in science, engineerings, business, politics and every
day life. Engineers try to construct machines with an energy or material consumption as
efficient as possible. Managers try to maximise the profit and minimise the loss of their
companies. Also the rays of light in a medium follow a path which minimises the travel
time. Finally in biology Darwin’s paradigm of the survival of the fittest (Darwin, 1859)
interprets the origin of species as an optimization process. In this work we concentrate
our attention on the problem of structure prediction of clusters, where the most stable
structure corresponds to a global minimum in the potential energy surface (PES). Hereby,
the PES represents the potential energy of the cluster as a function of its atomic coor-
dinates. Each local minimum in the PES corresponds to a possible mechanically stable
configuration of the atomic coordinates where the gradient of the potential vanishes.

But, even for the simpler case of monoatomic cluster, we are faced with the problem
of complexity, i.e., the number of local minima in the PES increases exponentially with
cluster size. Bimetallic clusters possess much more complex PES due to the inequivalence
of homotops (as mentioned in Chapt. 2)). Therefore, to obtain a precise information on
the structure of the lowest total energy and thus to calculate the properties of interest,
an unbiased and accurate exploration of the potential energy surface is required.

4.1 Local Optimization

For the calculation of the closest local total-energy minima we use two different methods:
the Broyden-Fletcher-Goldfarb-Shanno method, which belongs to the variable metric/
quasi-Newton methods, and the conjugate gradient method.

Both variable metric and conjugate gradient methods require that you are able to
compute the function’s gradient, or first partial derivatives, at arbitrary points. The
goal of both methods is to accumulate information from successive line minimizations
so that NN such line minimizations lead to the exact minimum of a quadratic form in N
dimensions. The variable metric approach differs from the conjugate gradient in the way
that it stores and updates the information that is accumulated.
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4.1.1 The Variable Metric/Quasi-Newton Method

The basic idea of the method is the application of the Newton method for solving nonlinear
systems of equations in order to find a zero point of the gradient of the function f(z)[76,77|.
The Newton step is then

Tiv1 = X5 — H*1Vf(xz) (41)

where H™! is the inversed Hessian matrix, i.e. the matrix of the second derivative of f at
point z;. A major drawback of using the Newton step is the necessity to evaluate the Hes-
sian matrix H, which might be computationally expensive and error-prone. Furthermore
one has to invert this matrix, which is computational demanding too. The method pre-
sented in this section alleviates this difficulty by approximating the inverse of the Hessian
using solely the gradient of the function. Thus, the quasi’ in the quasi-Newton method
is that we don’t use the actual Hessian matrix H, but instead construct a sequence of
matrices H;, which approximates the Hessian matrix

lim H; = H™". (4.2)

The search direction d; at the i-th step, i.e. the directions along which f decreases is
defined as following

d; = — AV f(z). (4.3)

Hereby, A; is a symmetric and positive definite matrix, which approximates the inverse
Hessian matrix. The different quasi-Newton methods differ in the update formula for
the inverse Hessian matrix. Such methods, with step wise approximation of the Newton
direction, exhibit a fast rate of convergence. In the neighbourhood of the minimum they
converge within few iterations yielding a high accuracy of the solution.

4.1.2 The Broyden-Fletcher-Goldfarb-Shanno Method (BFGS)

The Broyden-Fletcher-Goldfarb-Shanno algorithm [76] belongs to the family of quasi-
Newton methods. Here the inverse Hessian matrix A; is updated as follows:

SiSZT AZUZUZTAZ

A = At 57 Vi vl A, o Aw) (44)
with
" TAG 4
where
S; = Tiy1 — T (4.6)
and

v = Vf(zip1) = V(). (4.7)
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Since quasi-Newton methods require the storage of the Hessian matrix (or its inverse),
their memory requirement is high, which in most cases prevent their application to large
scale optimization problems like minimizing the potential energy of a cluster with more
than 3000 atoms. A method to reduce the memory requirement, is to choose a compact,
implicit representation of the Hessian matrix. The most widely used method, the limited-
memory BFGS, or L-BFGS algorithm for short, was introduced by Nocedal (1980) [78|.
It is almost identical in its implementation to the BFGS method. The only difference is
in the matrix update: at every step the oldest information contained in the quasi-Newton
matrix is discarded and replaced by new one. In this way a more up to date model of the
functions is achieved. In this thesis a slightly modified implementation of the L-BFGS
algorithm developed by Liu & Nocedal (1989) |79] was used for the local optimization of
the "surface+cluster" systems as well as of the K-Cs and Rb-Cs cluster structures, and a
simple BFGS algorithm was employed for the optimization of Ni Cu cluster geometries.

4.1.3 The Conjugate Gradient Method

In the conjugate gradient method the new search direction is conjugate to the previous
search directions [76]. Starting with an arbitrary initial vector gy and letting hy = gy,
the conjugate gradient method constructs two sequences of vectors from the recurrence

gi+1 = 8i — )\zA . hz hi+1 = 8i+1 + ’}/th 1= O, 1, 27 (48)

The vectors satisfy the orthogonality and conjugacy conditions with respect to a symmet-
ric, positive definite matrix A if

The scalars \; and ~; are given by

g 8i gih;
N = — 4.10
h;-A-h; h;-A-h; ( )
i:gi—l—l'gi—f—l' (4.11)

8i - &

Suppose that we have g; = —V f(P;), for some point P;. We proceed from P; along
the direction h; to the local minimum of f located at some point P, ; and then set
g1 = —Vf(P;11). Then, this g;,1 is the same vector as would have been constructed

by Eq. 4.8. We have, then, the basis of an algorithm that requires neither knowledge of
the Hessian matrix A, nor even the storage necessary to store such a matrix. A sequence
of directions h; is constructed, using only line minimizations, evaluations of the gradient
vector, and an auxiliary vector to store the latest in the sequence of g’s.

The algorithm described so far is the original Fletcher-Reeves version of the conjugate
gradient algorithm. Later, Polak and Ribiere introduced one significant change. They
proposed using the form
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;= (8ir1 — 8i)  8in (4.12)

8i - 8i
instead of Eq. 4.11. The Polak-Ribiere formula accomplishes the transition to further
iterations, after you have arrived at the minimum of the quadratic form, more gracefully.
It tends to reset h to be down the local gradient, which is equivalent to beginning the

conjugate-gradient procedure anew.

4.2 Global Optimization

In this work the genetic algorithm has been used to determine the global minima of the
total energy of the Ni-Cu binary clusters, and the basin-hopping algorithm was applied
to K-Cs and Rb-Cs clusters, as well as to Ag clusters adsorbed on Ag(111) and Ni(111)

surfaces.

4.2.1 The Genetic Algorithm (GA)

Genetic algorithms are based on Darwins theory of evolution, i.e. on the mechanisms of
natural selection ("survival of the fittest"). The GA employs operators that are analogues
of the evolutionary processes of genetic crossover and mutation to explore multidimen-
sional parameter space. It can be applied to any problem where the variables to be
optimized ("genes") can be encoded to form a string ("chromosome"), each string repre-
senting a trial solution to the problem. The use of GAs for optimizing cluster geometries
was pioneered in the early 1990s by Hartke (for small silicon clusters) and Xiao and
Williams (for molecular clusters). Since then, genetic algorithms have been increasingly
used in a variety of global optimization problems in chemistry, physics, materials science
and biology. Notable applications of GAs in the chemistry/biochemistry field include the
simulation of protein folding, structural studies of RNA and DNA, the design and dock-
ing of drug molecules, the prediction of crystal structures and the solution from single
crystal, powder and thin film diffraction data. In the case when the GA is applied on
atomic clusters the more fit individuals in a generation are selected and mated to produce
the next generation of offsprings. Here the fitness is a measure of the energetic stability
for a certain cluster structure.

Our version of the genetic algorithms has been applied to clusters with one, two, and
three types of atoms, for example Au, Na, AIO and HAIO clusters [80-82], and we have
found that this optimization method is reliable when studying the structural and energetic
properties of one-component as well as of multi-component clusters.

For the study on a given Ni,Cu,, cluster, a number of randomly generated struc-
tures are optimized locally with the quasi-Newton method. The three lowest-total-energy
structures are then used as the initial population. Subsequently, a new set of clusters
is constructed by cutting each of the three original ones randomly into two parts, that
are interchanged and randomly rotated relative to each other, and afterwards allowed to
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relax. Out of the total set of six structures, the three ones with the lowest total energy
are kept as the next generation. This procedure is repeated until the lowest total energy
is unchanged for a large number of generations.

4.2.2 The Basin-Hopping Algorithm (BH)

In the following we will give a short overview of the Monte Carlo method hefore describing
the BH algorithm based on it.

The Monte Carlo Method (MC)

The Monte Carlo method was developed by von Neumann, Ulam, and Metropolis at the
end of the Second World War to study the diffusion of neutrons in fissionable material.
The name "Monte Carlo’, chosen because of the extensive use of random numbers in the
calculation, was coined by Metropolis in 1947. The method represents a random walk
through phase space, where the new particle positions are either accepted or rejected by
the energy criterion of Metropolis. According to the Metropolis criterion, if the energy
of the new minimum, F,., is lower than the energy calculated in the last step FE,yq,
then the probability to realize the new state is greater than those to realize the old state
and the step is accepted. If FE,., is greater than E,,, then the step is accepted if expl|-
(Eotda — Enew)/kpT | is greater than a random number drawn from the interval [0,1]. If
the move uphill in energy is rejected, the system remains in the old state. In this case the
atom is retained at its old position and the old configuration is recounted as a new state
in the chain.

In comparison to molecular dynamics simulations, which is described in Chapter 5,
time does not enter in the MC scheme, i.e. the temporal progression is lost.

The BH Method

The BH method is based upon Li and Scheraga’s Monte Carlo minimization [83-87].
In this method perturbations in the algorithm are introduced by changing slightly the
latest set of coordinates and carrying out a gradient-based optimization from the resulting
geometry. Moves are accepted or rejected based on the Metropolis criterion. Thus, the
difference from the standard MC algorithm is that the energy should be minimized with
respect to the local minimum before the Metropolis acceptance rule is applied. The use of
a minimization procedure before the application of the acceptance criterion is equivalent
to searching for a transformed potential energy surface defined by

E(X) = min{E(X)}, (4.13)

where min{...} represents a local energy minimization process with X as initial structure.
The topography of the transformed surface is that of a multidimensional staircase. Each
step corresponds to the basin of attraction (plateau) surrounding a particular minimum.
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The Monte Carlo part of the BH algorithm is introduced in order to allow the system
to hop from one plateau to another at a thermal energy kg T* measured in units of the
binding energy of the cluster dimer. The hopping probability depends highly on the choice
of the “temperature” 7™ and on the reduced-energy difference between the plateaus of the
two consecutive steps. In the present work the Monte Carlo simulation has been performed
at a constant reduced “temperature” of 0.8.

The maximum allowed displacement of atoms is given by the parameters STEP and
ASTEP. The first one specifies the maximum change of any Cartesian coordinate and
the second one the tolerance on the binding energy of individual atoms below which an
angular step is taken for that atom. In this thesis we have used a combination of 0.36
and 0.4 for STEP and ASTEP, respectively, to explore the PES of binary clusters and a
combination of 1.3 and 0.4 to optimize clusters on surfaces.

A further parameter is the ACCEPTRATIO which governs the size of the trial move.
If this parameter is too large then a large fraction of moves are accepted but the phase
space of the cluster is explored slowly, i.e. consecutive states are highly correlated. If it is
too small then nearly all the trial moves are rejected and again there is little movement
through phase space. An acceptance ratio of 0.5 (which means that half of the moves are
accepted) is most common and used also in this work.

The BH algorithm has successfully located all the lowest known minima for Lennard-
Jones clusters with up to 110 atoms, including all the nonicosahedral structures (sizes 38,
75-77, 102-104), for the first time in unbiased searches [86]. In a recent study, Doye et al.
have found the particularly stable structures for binary Lennard-Jones clusters with up
to 100 atoms [88].

The BH code we used in this work has been downloaded from the website of Dr. David
J. Wales [89]. For the present study, the EAM of DBF and the Gupta potential, both
written for the case of bimetallic systems, have been implemented in the algorithm. To
optimize a cluster structure on a surface, the code has been modified as follows. We
disturb randomly the coordinates of the cluster separately from those of the surface and
then carry out a gradient-based optimization on the "cluster+surface" system. Afterwards
the Metropolis acceptance rule is applied using the old and new local minima of the
"cluster+surface". For the next step the cluster atoms that belong to the latest set
"cluster+surface" coordinates are disturbed randomly again. This procedure is repeated
until the lowest total energy of the "cluster+surface" system is found.
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Molecular Dynamics Simulation (MD)

MD is a widely used method to compute the motions of individual molecules or atoms in
models of solids, liquids, and gases. It can be viewed as a simulation of the system as it
develops over a period of time. The molecular dynamics method was first introduced by
Alder and Wainwright in the late 1950’s [90,91] to study the interactions of hard spheres.
The first molecular dynamics simulation of a realistic system was done by Rahman and
Stillinger in their simulation of liquid water in 1971 [92]. A molecular dynamics simulation
generates a sequence of points in phase space as a function of time. These points belong to
the same ensemble, and they correspond to the different conformations of the system and
their respective momenta. There exist different ensembles with different characteristics.

1. Microcanonical ensemble (NV E) : The thermodynamic state characterized by a
fixed number of atoms, N, a fixed volume, V', and a fixed energy, E. This corresponds to
an isolated system.

2. Canonical Ensemble (NVT): This is a collection of all systems whose thermody-
namic state is characterized by a fixed number of atoms, N, a fixed volume, V., and a
fixed temperature, T'.

3. Isobaric-Isothermal Ensemble (NPT): This ensemble is characterized by a fixed
number of atoms, IV, a fixed pressure, P, and a fixed temperature, 7T'.

4. Grand canonical Ensemble (uVT): The thermodynamic state for this ensemble is
characterized by a fixed chemical potential, u, a fixed volume, V', and a fixed temperature,
T.

In this thesis we use a microcanonical NV E ensemble, where kinetic and potential
energy are transformed into each other all the time keeping the total energy of the system
constant. In contrast to the Monte Carlo method (see Chapter 4), which follows a random
walk, in MD the system moves in phase space along its physical trajectory as determined
by Newton’s equations of motion. These are integrated numerically.

In Newton’s second low the mass m; of atom 7 and its acceleration are related to the
force f; on that atom

with
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f, =V, V. (5.2)

Here x; are the coordinates of atom ¢ and V is the gradient of the potential energy field.
In a classical MD code the starting conditions are the positions of the atoms. Following
Newton’s prescription, from the initial positions, velocities and forces, it is possible to
calculate the positions and velocities of the atoms at a small time interval (a time step)
later. From the new positions the forces are recalculated and another step in time made.
The cycle has to be repeated many times in the course of a full simulation, usually for
many thousands of time steps. It is worth noting that a single time step is usually of the
order of 1 femtosecond, and thus significantly smaller than the typical time taken for a
molecule to travel its own length.

At the end of the simulation event, a certain number of steps is dedicated to the
simulated annealing of the system, in which the temperature is gradually reduced. As on
the one hand the potential energy of the system decreases as a result of the interaction
between the particles and on the other hand our program uses an NVFE ensemble, i.e. the
total energy is kept constant, there will be an increase in the kinetic energies of the cluster
atoms. Thus, in order to obtain reasonable final structures, we have to cool down the
structures at the end of the simulation and give the system the opportunity to surmount
energetic barriers, and find non-local minima.

5.1 The Verlet algorithm

The Verlet algorithm [93,94] is a direct solution of the second-order Newtonian equations.
In this method the positions at the next time step are calculated from the positions at the
previous and current time steps, without using the velocity. The equations are solved on
a step-by-step basis. To use such a finite time-step method of solution, it is essential that
the particle positions vary smoothly with time. Whenever the potential varies sharply,
impulsive collisions between particles occur at which the velocities change discontinuously.
The particle dynamics at the moment of each collision must be treated explicitly, and
separately from the smooth inter-collisional motion. Thus, a Taylor expansion of x(t)
about time ¢ is necessary to obtain a potential energy which is a continuous function
of particle positions. In this sense the Verlet algorithm is a combination of two Taylor
expansions. First the Taylor series for position from time ¢ forward to ¢t + At is written

as
dx(t) 1d*(t)  , 1 d°x(t)
At) = — At + - A —
x(t + At) = x(t) + o t+ 5 a2 t°+ TR

Then the Taylor series from ¢ backward to ¢t — At is written as follows

AP+ .. (5.3)

dx(t) 1d*(t) , » 1 dx(¢)
W N 2 N
a St TTE

x(t — At) = x(t) A+ .. (5.4)

Adding these two expansions gives the basic Verlet formula
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d*x(t) \
x(t + At) = 2x(t) — x(t — At) + FAt + ... (5.5)
This offers the advantage that the first and third-order term from the Taylor expansion
cancels out, thus making the Verlet integrator an order more accurate than integration by
simple Taylor expansion alone. As it can be seen in the basic Verlet formula, the velocities
are not explicitly given in the basic Verlet equation, but often they are necessary for the
calculation of certain physical quantities as the kinetic energy. The velocities may be

obtained from the formula
_x(t+ At) —x(t — At)

v(t) = N, : (5.6)

5.2 The Velocity Verlet algorithm

A similar, but more commonly used algorithm is the Velocity Verlet algorithm [94]. This
method explicitly incorporates velocity. Positions and velocities are calculated at the
same time

x(t + At) = x(t) + v(t)At + %a(t)AtQ (5.7)

v(t+At) =v(t) + %At[a(t) + a(t + At)]. (5.8)

At the time t + At, the kinetic energy is available and the potential energy will have been
evaluated in the force loop. The most time consuming part of the MD method is the
force calculation and not the integration algorithm. Thus, it is important to be able to
employ a long time step At. In this way, a given period of simulation time can be covered
in a modest number of integration steps, i.e. in an acceptable amount of computer time.
In contrast to other methods of numerical integration, such as the predictor-corrector
algorithm, the Velocity Verlet method is fast, requires little memory and allows the use of
a long time step. Its numerical stability, convenience, and simplicity make it perhaps the
most attractive proposed to date. In this thesis molecular dynamics simulation combined
with the Velocity Verlet algorithm was performed to study the deposition process of small
Ni and Cu clusters on Ni(111) and Cu(111) surfaces.
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Structural and energetic properties of Ni—Cu bimetallic clusters
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Abstract

The lowest-energy structures for all compositions of Ni,, Cu,, bimetallic clusters with N =n+m
up to 20 atoms, N = 23, and N = 38 atoms have been determined using a genetic algorithm for
unbiased structure optimization in combination with an embedded-atom method for the calculation
of the total energy for a given structure. Comparing bimetallic clusters with homoatomic clusters of
the same size, it is shown that the most stable structures for each cluster size are composed entirely
of Ni atoms. Among the bimetallic clusters in the size range N = 2 — 20 the Niy_1Cuy clusters
possess the highest stability. Further, it has been established that most of the bimetallic cluster
structures have geometries similar to those of pure Ni clusters. The size N = 38 presents a special
case, as the bimetallic clusters undergo a dramatic structural change with increasing atom fraction
of Cu. Moreover, we have identified an icosahedron, a double and a triple icosahedron with one,
two, and three Ni atoms at the centers, respectively, as particularly stable structures. We show
that in all global-minimum structures Ni atoms tend to occupy mainly high-coordination inner
sites and we confirm the segregation of Cu on the surface of Ni-Cu bimetallic clusters predicted in
previous studies. Finally, it is observed that, in contrast to the bulk, the ground state structures
of the 15-, 16-, and 17-atom bimetallic clusters do not experience a smooth transition between the
structures of the pure copper and the pure nickel clusters as a function of the relative number of
the two types of atoms. For these sizes the concentration effect on energy is more important than

the geometric one.
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I. INTRODUCTION

During the last few decades, clusters have attracted considerable interest both from ba-
sic science and for applications. Their partly controllable, unique physical and chemical
properties can be related to the large surface-to-volume ratio as well as to finite-size or
quantum-confinement effects.™ Thus, for clusters containing one type of atoms, the prop-
erties can be varied simply by varying the size of the clusters.

An additional degree of freedom for tuning the materials properties is provided by clusters
containing not one but two different types of atoms. Such bimetallic clusters have received
considerable attention because of their special chemical and physical properties.*” A change
in the concentration under the conditions of quantum-confinement effects may result in

12-14

new types of structures,®*! including, for example, core-shell structures Moreover,

these materials possess, for chemical applications, interesting enhanced bifunctional catalytic
properties that have made them attractive candidates for various chemical applications.?16
Thus, considering, e.g., the case of a nickel-copper alloy, the substitution of nickel atoms by
copper atoms adds extra electrons to the system. The degree to which the d band is filled
can affect the catalytic activity. Thus, by varying the composition of such alloy clusters
it is possible to influence the selectivity of a catalyst and improve the catalytic properties
of the heteroatomic clusters compared to their monometallic counterparts. Furthermore,
bimetallic clusters are also interesting candidates for use in nanoelectronics.'”8

In order to optimize the materials properties for a given application, it is of paramount
importance to have an accurate understanding of the relation between composition/cluster
size on the one side and property on the other. Although experimental studies can provide
much of this information, a full characterization of the experimentally studied systems is
often lacking, suggesting that additional, theoretical studies can be helpful. However, only
through precise information on the structure of the lowest total energy one may be able to
calculate the properties of interest. And even for clusters with only one type of atoms, it
is overwhelmingly demanding to identify this structure for clusters with just around 10-20
atoms when no assumption is made on the structure.

A nanoalloy cluster distinguishes drastically from a homoatomic cluster in the number of

different structures resulting by the permutation of the unlike atoms. For a one-component

cluster different isomers differ by the geometrical arrangement of the atoms. For a two-



component cluster, however, different isomers may be obtained by interchanging atoms of
the different types without changing the geometrical arrangement of the atoms. Jellinek
and co-workers introduced in 1996 the term homotops'®?° for such structures. The number
of homotops (topological isomers) for a A, B,, cluster, P, ,,, is given through

(n—{—m)!'

nm.

)

(1)

If we consider all possible replacements of 10 Cu atoms by Ni atoms in an isomer of Cugy,
for example, the number of combinations is 184756. Because of this large number of homo-
tops, that, in addition may have only small total-energy differences, a global optimization
becomes a very demanding task.

Studies of the properties of a larger series of A,B,, clusters have to rely on simplified
descriptions of the interatomic interactions. In this case, an extra complication may show up,
i.e., it is necessary to consider not only A—A and B-B interactions, but also A—B interactions,
and all of those may depend indirectly on the local and global concentrations of the two
types of atoms.

Most earlier theoretical studies have assumed that a structure that is particularly stable
for the pure Ay and/or By clusters, also will be so for the A,,B,, (n+m = N). This is, e.g.,

1.2! who studied the structure and stability

the case for the study of Montejano-Carrizales et a
of Cu,Ni,, and Cu,Pd,,, N = 55 and 147, and in particular explored whether segregation
or mixing would be found. In similar studies, Rey et al.?* considered Ni,Al,, with N = 13,
19, and 55, and Lépez et al.?® studied Cu,Au,, with N = 13 and 14, whereby molecular-
dynamics simulations were used in identifying the structures of the lowest total energy.
Hsu and Lai?* used a genetic algorithm and the basin-hopping approach in optimizing the
structures of Cu,Au,,, N = 38. Cheng et al.?® used Monte-Carlo simulations in studying
the temporal behavior of the structural properties of Cu,,Au,,, N = 55. Only in two studies,
by Lordeiro et al.® and by Bailey et al.,?® a systematic study of the structural properties of
a whole class of bimetallic clusters, Cu,Au,, with N < 30 in the first case, and Ni—-Al with
up to 55 atoms in the second case, has been presented. Finally, the results of a number
of studies on the structural and thermodynamic properties (often with special emphasis
on segregation and/or the occurrence of core-shell structures) of selected larger bimetallic

clusters have been presented, too (see, e.g., [27-32]).

In this study we will concentrate on the Ni-Cu system. In the past, a long time this



system has been considered to be a classical example for a substitutional solid solution since
it seemed to exhibit complete miscibility over the whole range of concentrations. However,
experiments® 3 have shown that bulk Ni-Cu alloys in fact tend to phase separate. The
latest phase diagram of the bulk alloy presents a miscibility gap at a critical point of 65.6%
Ni and 627.5 K.?% To the best of our knowledge experiments on Ni-Cu clusters have not been
performed so far. Furthermore there are only few theoretical studies on Ni—Cu clusters, that
are neither systematic nor unbiased. Mainardi and Balbuena3"3® have predicted the surface
segregation of Cu for some Ni—Cu clusters containing 64, 125, 216, 343, 512, 729, 1000 and
8000 atoms using Monte Carlo Simulations, and hence without a fully geometry optimization.
Ni-Cu clusters with N = 55 and 147 atoms have been studied by Montejano-Carrizales et
al.?! but also without a systematic determination of the lowest-energy structures, i.e. the
energies of random generated structures are simply compared to each other to find the global
minimum.

Derosa et al.® optimized the geometry of Ni-Cu clusters, but restricting to cluster sizes
containing up to five atoms and geometries with planar configurations.

The purpose of the present work is to study systematically and unbiased both the size
and the composition dependence of the total energy and the structure of a whole class of
binary clusters, i.e., of Ni,Cu,, clusters with N up to 20, N=23 and N=38 atoms. The size
N=23 has been chosen because of the particular stability in both cases of pure Cu and Ni
clusters.“®* For N=38 Hsu and Lai** found that this specific nuclearity has the consequence
of driving the Cu atoms in Cu,Au,, clusters to change dramatically the structure of the
bimetallic clusters in dependence of the Cu content.

In particular we will study whether those values of N that for the pure clusters correspond
to particularly stable structures also do so for in the present case. Moreover, by using
various descriptors we shall quantify to which extent the structures resemble those of the
pure clusters.

Our approach is based on the embedded-atom method (EAM) for calculating the total
energy of a given structure and we use a genetic algorithm in determining the structures of
the lowest total energies. The paper is organized as follows. In Sec. II we briefly outline the
embedded-atom method and the genetic algorithm. The main results are presented in Sec.

ITI, and a brief summary is offered in Sec. IV.



II. COMPUTATIONAL METHOD
A. The Embedded-Atom Method

The interactions between the atoms in the bimetallic clusters are described through the
EAM in the version of Daw, Baskes and Foiles (DBF).**** The main idea of the EAM is to
consider each atom as an impurity embedded in a host provided by the rest of the atoms. In
addition, an electrostatic interaction between the atoms is included. Accordingly, the total

energy (relative to that of the isolated atoms) has the following form

N 1 N
By = Y _[Fi(p}) + 3 Y Bilry)l. (2)
i=1 J=1G#0)

In Eq. (2), pl is the local electron density at site i, F} is the embedding energy required to
embed an atom into this density, and ¢;; is a short-range potential between atoms ¢ and j
separated by distance 7;;. The local density at site ¢ is assumed being a superposition of

atomic electron densities,

pr=">" piry), (3)

=170
where p¢(r;;) is the spherically averaged atomic electron density provided by atom j at the
distance 7;;.
The detailed analysis made in Ref. 44 have shown that the main Ansatz of the EAM, Eq.
(2), also holds good in the case of the binary alloys. In accord with Ref. 44 the pair interaction
between two different species (A-B/B-A heterointeraction) can be approximated by the geo-

metric mean of the pair interaction for the individual species: ¢ap(R) = \/§Z5AA(R) - ¢BB(R).
Daw, Baskes and Foiles determined the embedding functions for the Ni-Cu system empir-
ically by fitting to experimental data of bulk sublimation energy, elastic constant and the
heat of solution of binary alloys.** The values for pf, F; and ¢;; are available in numeri-
cal form for Ni and Cu.*> The validity of the embedding functions for the Ni-Cu system
has been tested by computing a wide range of properties as e.g. the segregation energy of
substitutional impurities to the (100) surface.*!

The EAM has been successfully applied to many bulk and low-symmetric problems in
transition metals such as defects, surface structures and surface segregation/mixing effects

40,41,47-49 (

in alloys.*® Furthermore, in our previous works those include also the discussions

with the available experiments) found that this approach provides accurate information on

5



pure Cuy and Niy clusters, which is our main reason for choosing this potential for studying
Ni,, Cu,, clusters.

Considering two types of atoms A (Ni) and B (Cu), we have adopted for the case of
computational convenience that all the A-atoms have in Eq. (2) the numbers between 1
and N4 and the B-atoms — between N4 4+ 1 and N = N4 + NB. Further there are two
different cutting distances at which three different types of short-range interactions: A-

A, B-B (homointeractions) and A-B/B-A (heterointeractions) vanish (s. Ref. 45): r2i =

cut

4.80 A for A-A interaction and r¢% = 4.95 A for B-B interaction. The cutting distance

cut

for the A-B/B-A heterointeractions is the minimum from these two distances or 4.80 A.
Correspondingly, the neighbour analysis in the case of bimetallic clusters is more complicated
as that for monoatomic ones. For each pair of atoms 4, j the following situations are possible:

(i) ri; > rS% mo interactions and no contributions of electron density at sites ¢ and j; (ii)
Ni.

o the atoms interact with each other, ¢ contributes electron density at site j and

rijgr

Cu
cut?

Cu

. . . cee NZ - . - .. . \. . N,L' .

J —at site ¢; (iil) roy, < ry; < roy, @ = Ni, j = Nit as in case (i); (iv) ro) < riy < rof,
Ni
cut

Cu
cut»

i = Cu, j = Cw asin case (ii); (v) oy < riy < r5f, @ = Ni, j = Cuw: no interactions
between atoms, atom j contributes electron density at site ¢ — contribution to the total
energy [Eq. (2)] via the embedding function Fj(pl'); (vi) 72t < ri; < rS% i = Cu, j = Ni:
no interactions between atoms, atom ¢ contributes electron density at site j — contribution

to the total energy [Eq. (2)] via the embedding function Fj(p!).

B. The Genetic Algorithm

The global minima of the total energy of the binary clusters has been determined using
the wvariable metric/quasi-Newton method in combination with a genetic algorithm.

50,51

Genetic algorithms are optimization techniques based on the mechanisms of natural

selection. Our version of the genetic algorithms has been applied to clusters with one, two,

5255 and we have

and three types of atoms, for example Au, Na, AlIO and HAIO clusters,
found that this optimization method is reliable when studying the structural and energetic
properties of one-component as well as of multi-component clusters.

In the present study on a given Ni,Cu,, cluster, a number of randomly generated struc-

tures are optimized locally with the quasi-Newton method. The three lowest-total-energy

structures are then used as the initial population. Subsequently, a new set of clusters is



constructed by cutting each of the three original ones randomly into two parts, that are
interchanged and randomly rotated relative to each other, and afterwards allowed to relax.
Out of the total set of six structures, the three ones with the lowest total energy are kept as
the next generation. This procedure is repeated until the lowest total energy is unchanged

for a large number of generations.

III. RESULTS
A. Structural Properties

Whereas macroscopic, crystalline Cu and Ni have the same crystal structures (fcc), pure
copper and nickel clusters, Cuy and Niy, have different structures for certain values of
N. For 2 < N < 14,18 < N <20 and N = 23 the clusters have the same lowest-energy-
minimum structures, whereas for 15 < N < 17 they possess different ground-state structures.
For instance, for N =3, 4, 5, 6 the optimized structures correspond to an equilateral triangle,
a tetrahedron, a trigonal bipyramid and an octahedron, respectively, whereas for N = 15 a
centered bicapped hexagonal antiprism (Dgq) is found for Cu, but a bicapped icosahedron
(Cy,) for Ni.4%4! Thus, an important issue is whether these structures will be recovered for
the bimetallic clusters, and, for 15 < N < 17, which (if any) of the two structures for the
pure clusters will be found.

In Figs. 1 and 2 we show the global-minimum structures of monometallic and bimetallic
clusters for N = 13 and N = 23 for different values of (n,m). The results are typical for
most of the clusters we have examined, i.e., the geometry of the clusters is the same as found
for both pure clusters. Moreover, Ni atoms (dark atoms) tend to occupy the central parts
of the clusters, whereas Cu atoms are often found on the surface.

A different scenario concerning the evolution of the structure with composition is observed
when looking at alloy clusters of N = 38 (see Fig. 3). Up ton = 4 the lowest-energy structure
of the pure clusters, the truncated octahedron, is also found for the bimetallic clusters. But
from n = 5 upwards there is a dramatic change to a structure with pentagonal symmetry
(Csy), presenting an icosahedral fragment. In this structure the nearest Ni-Ni distance is 3
% shorter than that in the octahedral structure with 4 Ni atoms. Thus, for the Ni atoms
which possess the higher cohesive energy (EN!=4.44 eV, E$%=3.49 V) the possibility is

coh
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FIG. 1: The energetically lowest isomers of Ni, Cu,, clusters for a fixed value of N = 13. The dark

atoms mark the Ni atoms.

given to form stronger bonds with the corresponding lowering of the cluster total energy. In
the composition range n = 26 — 37 we find again the octahedral symmetry. The structural
evolution with declining atom fraction of Cu described above is quite different from the
structural change of the Cu,Au,, clusters (with n + m=38) in a study of Hsu and Lai.**
In the mentioned study the authors classify four categories of the lowest-energy structures:

octahedral, pentagonal, hexagonal, and amorphous.
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FIG. 4: The energetically lowest isomers of Ni, Cu,, clusters for a fixed value of N = 15.

Next we consider the case of N = 15 for which the pure clusters have different ground-
state structures. Here, one may expect that the bimetallic clusters of this size would have
Cu-like or Ni-like ground state structures for low nickel and low copper concentrations,
respectively. However, as Fig. 4 shows, all structures of these Ni,Cu,, clusters with n # 0
prefer the structure of the pure Ni cluster (Cy,) over that of the pure Cu cluster (Dgg). The
same trend is found for the 16-atom bimetallic clusters, which are not shown here. These
two examples suggest that the structural properties of the Ni—Cu alloy clusters can not be
obtained by interpolating (as a function of concentration) between the properties of the
corresponding pure clusters.

In order to obtain a quantitative comparison of the structures of the bimetallic clusters

11



with those of the pure Cu and Ni clusters of the same sizes we use the so-called similarity

functions that we have used in previous studies, too.4%*! For each atom we define its radial

distance

T'n = |én—§0| (4)
with

- 1 M.

Ry = N ; R;. (5)

These are sorted in increasing order. Simultaneously, for each of the pure clusters we calcu-

late and sort the radial distances, {r7,}, for this, too. Subsequently, from

1 g: /\2 1z
0= |3 2= (®
N n=1
the similarity function is given as
1
- - 7
1+ q/u ()

(u; = 1 A), which approaches 1 (0) if the A,B,, cluster is very similar to (different from)
the pure cluster. The results are shown in Fig. 5 for N = 15, 17 and 23 and in Fig. 6 for
N = 38 as a function of the number of Ni atoms, n. The results for N = 23 are typical for
most values of N, i.e., the structure is very similar to that of the pure clusters. The main
difference can be related to the differences in Ni-Ni, Cu—Cu, and Ni—Cu bond-lengths.

Different results are found for N = 15 and N = 17. For these cluster sizes the calculated
functions show a higher similarity of the bimetallic clusters to the structure of the pure Niy
cluster than to that of the pure Cuy cluster. For N = 17 an additional discontinuity in
the similarity functions at n = 5 indicates the formation of new structures, different from
those of the pure Ni and Cu clusters. The similarity function for N = 38 in Fig. 6 shows the
structural change in the composition range n = 5 — 25, discussed for Fig. 3. Up ton =4
and from n = 26 upwards the lowest-energy structure for the bimetallic clusters is found to
be the truncated octahedron (the same as for the pure clusters). But from n =5 to n = 25
there is a change to a structure with pentagonal symmetry Cs,, very different from the pure
Ni and Cu clusters.

As mentioned above we found that for 9 < N < 20 the central position of the global-
minimum structures, which are icosahedral, is always occupied by a Ni atom (see for example
Figs. 1 and 4). There are three possible reasons for that. First, it is well-known that there

is strong internal strain in an icosahedron. Replacing the inner atom with smaller atoms

12
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FIG. 5: The similarity function vs the number of Ni atoms n. In the left panel the structures of
the bimetallic clusters of the sizes N=15, 17 and 23 are compared with those of the pure Nijs,
Nij7, and Nigg clusters, respectively. The panel to the right shows the same comparison with the

corresponding pure Cu clusters.

(in our case Cu atoms with smaller Ni ones) may decrease this strain significantly. Second,
Ni—Ni bonds are stronger, making structures with large Ni coordinations energetic favorable.
Third, Cu possesses a smaller surface energy [o(111) = 69.5 kJ/mol], compared with that
of Ni [o(111) = 80 kJ/mol] (see, e.g. [57]), once again suggesting that Ni atoms prefer to
occupy positions with the highest coordination numbers (e.g. the center of an icosahedron).

l.21

In agreement with our findings Montejano-Carrizales et al.”* explained the surface seg-

regation of Cu by the smaller surface energy of Cu compared to Ni. Also Bailey et al.?°
observed a correlation between cohesive energy, surface energy and the atomic size on the
one side and the structure of bimetallic Ni—Al clusters with up to 55 atoms on the other
side. He found that the central site of the cluster is favoured by the Ni atom because of its

smaller size, higher cohesive and higher surface energy. The results of Lordeiro et al.,® Lépez

et al.,”® Hsu and Lai,?* and Cheng et al.?> on Cu-Au clusters, who observed the tendency

13
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of the smaller atom (Cu) to occupy the central site of the icosahedron and of the larger
atom (Au) to locate at surface sites are similar to our findings, too. Thus, our results are
in agreement with those of the earlier studies on other systems.

On the other hand, the icosahedral structures with only one Au atom found by Lordeiro
et al.® is markedly different from those with one Cu atom found by us. Whereas in all
global-minimum structures determined in our study the central position of the icosahedron
is always occupied by the atom with the higher surface energy and the slightly smaller
size (Ni), the central atom in the work of Lordeiro et al.® can be replaced by a Au atom.
Obviously, the fact that Au atoms posses a lower surface energy and larger size than Cu
atoms does not necessarily drive them to locate at the surface. The crucial factor for the
atomic arrangement in Cu—-Au clusters is that Au-Cu bonds are stronger than Cu-Cu bonds
(Au-Au>Au—Cu > Cu—Cu),?® which drives the single Au atom to maximize the interactions
with atoms of the different type. This competition between maximizing the strongest atomic

interactions and minimizing the bulk strain which exists in a Cu—Au icosahedron is not to

14



be found in a Ni—Cu cluster, resulting in different homotops of the icosahedral structures of
both cluster types.

Besides, the fact that the central atom of a Cu—Au icosahedron prefers to be surrounded
by atoms of different type can be explained by the negative heats of solution®® for solid
Cu—Au alloys favoring mixing of atoms of a different type, whereas the positive heats of
solution of Ni—Cu alloys leads to a segregation of copper to the surface. This segregation
tendency combined with the role of the relative cohesive energies results in different struc-
tures compared to Cu—Au clusters in spite of the relative similar behavior in size and surface
energy of the atoms.

In Tables I and II we list the point groups of the three energetically lowest isomers for
the clusters investigated in this work. One can identify a symmetry reduction from I to
Cs, when going from the first to the second isomer in the case of Ni;Cuyo, whereas for
Ni;oCu; there is an increase in symmetry from Cs, to I,. The reason is that in contrast to
the first isomers of these bimetallic clusters, the second isomers have a Cu atom and not a
Ni atom at the center. The energy difference between the first and the second isomers for
these clusters is rather large, i.e., 0.51 eV for Ni;Cu;s and 0.62 €V for Ni;sCuy. Thus, also
this finding demonstrates that when Ni atom is occupying the center a strong stabilization
of the icosahedral structure results.

When comparing with the energy difference between the first and the second isomers
of the pure copper (1.06 eV) and the pure nickel (1.16 eV) cluster, the energy differences
mentioned above are smaller. The reason is that for bimetallic clusters these isomers are

homotops and the existence of homotops leads to a much richer total-energy surface.

B. Energetic Properties

Next we shall turn our attention to the energetic properties and stability of the Ni-Cu
bimetallic clusters as a function of cluster size and composition. In Fig. 7 we show the
binding energy per atom

Enm = —Eiot(n,m)/N (8)

as a function of cluster size for n = 1 — 16. Here, Ey.(n,m) is the total energy of the
energetically lowest Ni, Cu,, cluster.

A kink at N = 13 and a smaller one at N = 19 indicates a stabilization of the structures at

15



TABLE I: Point groups of the first three isomers.

N nom [ II IIl Nnom [ II III Noam I II I[II N aom I II III

0,2 Dooy 8 71 Cs Cs Cs 12 57 Cs Cs Cs 153,12 Cyy C; Cs
1,1 Coon 8 80 Dog Cs Dyg 12 6,6 Cs Csy C1 15 4,11 C5 Cs Cy
2,0 Doch 9 0,9 Coy Dan Cow 12 7,5 Csy C1 Cs 15 5,10 Coy Cp Cs
0,3 Dg, 9 18 Coy Cs Cs 12 84 Cs C; Cs 15 69 Cs Cp Cs
1,2 Coy 9 27 Cs Cs C; 1293 Cs Cs Cs 15 7,8 C; Cs Cy
2,1 Coy 9 36 Coy C; C; 12102 Cs Cs Cs 15 87 C; Cs Cs
3,0 Ds, 9 45 Cy C; C; 12111 G5 Csy Cs 15 96 Cp Coy Cy
04 Tq 9 54 Co C; Cs 12 12,0Cs C; D3y 15 105 Cs Cp Cs
1,3 Cs 9 63 C; Cs C; 130,13 I, Cs Co 15114 Cs Cy Cy
2,2 Cay 9 72 Cs Cy Cs 131,12 I, Cs Cs 15123 C; Cs Cs
3,1 Cs, 9 81 C; Cs Cs 13211 Csy Dy Coy 15 132 Coy C1 Cy
4,0 Tq 9 9,0 Coy Dgn Coy 13 3,10 Cay Dgq Cay 15 14,1 Cy Cp Cs
0,5 Dsp 10 0,10 Cyy Do Co 13 4,9 Cg Cs Cs 15 15,0 Cay Dgq Cay
1,4 Coy Csy 10 1,9 C3, Cs Cs 13 58 Coy Cs Co 16 0,16 Dgy Cs Cs

23 Cpy Cs Dyn 10 28 Cs Cs Cs 13 6,7 Cs Cs C; 16 1,15 Cs Cs Dgp
32 Dy, Cs Coy 10 3,7 C5 Cp Gy 13 7.6 Csy Cy Cyv 16 2,14 Cs C; Cy

4,1 Csy Coy 10 46 Cs, Cs C; 13 85 Cs Cs Cs 16 3,13 C; C; Cs
50 Day, 10 55 Cs Cs C; 13 94 Coy Cs Cs 16 4,12 C; C; Cy
0,6 On Ca Coy 10 64 Cy C; Cs 13103 Cs Cs Cs 16 5,11 C; Cs Cs

1,5 Cu Cs Cs 10 7,3 Csy Cs C; 13 11,2 Coy Coy Dsg 16 6,10 C; C; Cy
24 Cay Dan Coy 10 82 Cg C; Cs 13121 Cs I, Cs 16 7.9 C; Cp Cs
3,3 Csy Cay Cs 10 91 C, Co Cs 13130 I, Cs Cs 16 88 C; C; Cs
42 Cyy Co Dy 10 10,0 Cgy Do o 14 0,14 Csy Coy Cev 16 9,7 C; Cs Cy
51 C4 Cs Cs 11 0,11 Cyy Cy Coy 14 1,13 Cgy Coy Cs 16 10,6 C; C

6,0 On Cay Coy 11 1,10 Cpy Cs C3y 14 212 Cs Cs Cs 16 11,5 Cs Cs Cy
0,7 Dsn Csy Co 11 29 C; Co C; 143,11 Cy Cs Cg 16 124 Cy C

1,6 Csy Coy Cs 11 38 Co C; Coy 14 410Cs Cs C; 16 133 C; C; Cy
25 Ds, Cs Coy 11 47 Cy Cs C; 14 59 Cs Cs Cs 16 142 Cs Cp
34 Co Cs Cs 11 56 Coy C; C; 14 68 C; Cs C; 16 151 C; Cs Cs
4,3 Coy Cay Cs 11 65 C; Cs Cs 14 7,7 C; Cs Cs 16 16,0 Cs Cy Co
5,2 Coy Cay Cs 11 74 C, Cy Cs 14 86 Cs C; C; 17 0,17 Tq Co Co
6,1 Cpy Csy C3y 11 83 C; C; C; 14 95 Cs Cp C; 17 1,16 Cs Cy Cs
7.0 Ds, Csy Co 11 92 Co C; Cs 14104 Cs C; C; 172,15 Cs Cs Cy
0,8 Dyg Cs Dsg 11101 Cs C; Cs 14113 C; Cs Cs 17 3,14 C; Cs Co
1,7 Cs Cs Cs 11 11,0 Coy Cy Coy 14 122 Cs Cs Cs 17 4,13 Cs C; Cs
2,6 Cay Cs Cq 12 0,12 Cs, C; Ds, 14 13,1 C3, Cs Cs 17 5,12 Co Cs Cs
35 Cs Cs Cs 12 1,11 Cs, Cy Csy 14 14,0 Cg, Coy C; 17 6,11 C; C; Cy
44 Doy Cp Cq 12 2,10 Cs Csy Cs 15 0,15 Dgqg Cay Dy 17 7,10 C C; Cy
53 Cs Cs Cy 12 39 C; Cy Cs 151,14 Coy Dgg Cs 17 89 C; C; Cy
6,2 Coy Co Cq 12 48 C; Cy Cs 15213 Cs Cs Cs 17 98 C; Cy Cy

0O 00 00 00 00 00 00 N 1 3 ~J 3 3 30O O O O O O O Ot Ut O Ut OO s i s b WWWwwwhh NN
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TABLE II:

Point groups of the first three isomers.

Nnm I ITIII N nm I II III N nm I II IIT N nm I II III
17 10,7 C; C; Cy 19 13,6 Cs Cs C; 23 12,11 C; C; C; 38 28,10 C; Cp Cy
17 11,6 Cy C; Cy 19 145 C, C; C; 231310 C; C; C; 38 299 C; O Cy
17 12,5 C; C; Cy 19 154 Cs Cy Cy 23 149 Cs Cs C; 38 308 C; O Cy
17 13,4 Cy Cy Cs 19 163 C; Cs Cs 23 158 C; C; C; 38 31,7 C; O Cy
17 14,3 C; Csy Cy 19 172 Cs Cy Coy 23 16,7 C; C; C; 38 326 Cy Cp Cy
17 15,2 Cy C; Cy 19 18,1 Cs Csy Cow 23 17,6 Cs Cs C; 38 335 C; Cp Cy
17 16,1 C; Cs Cy 19 190 Dy, C; Cs 23 185 C; C; C; 38 344 Cy, Cp Cy
17 17,0 Cy Cs Cs 20 0,20 Coy D3g Do 23 194 Coy C; C; 38 353 C; C; Oy
18 0,18 C5 Csy Coy 20 1,19 Cs Csy Co 23 203 Cs C; C; 38 36,2 Dy O Cs
18 1,17 Cy Cs Cq 20 2,18 Cy D3g Do 23 212 C; Coy Cs 38 37,1 Cs Cs C4
18 2,16 Cs Csy Ci 20 3,17 Cy Coy Cs 23 22,1 Cs Cs C; 38 38,0 Oy Csy Csy
18 3,15 C; C; C; 20 4,16 Coy Cs Cs 23 23,0 Day Day Do
18 4,14 C; Cs Cq 20 5,15 Cs Coy Cs 38 0,38 O, Cs Cs
18 5,13 Cs Cs Cy 20 6,14 Cg Coy C; 38 1,37 Cu Cp Cs
18 6,12 C; Cs Cs 20 7,13 Coy Cs Cs 38 2,36 Coy Cp Cy
18 7,11 Cs C; Cs 20 8,12 Cy Cy Co 38 3,35 Cs, Dy Cy
18 8,10 C; C; Cy 20 9,11 Cyy C; C; 38 4,34 Dy C; Cy
18 99 Cs Cs Cs 20 10,10 C; C; Cs 38 533 Cs Cp C
18 10,8 Cs Cs Cs 20 11,9 C; Cy Co 38 6,32 Csy Cs Cs
18 11,7 Cs Cs Cs 20 12,8 C; C; Cs 38 7,31 Cs Cy Cs
18 12,6 C; Cs Cy 20 13,7 C; C; C; 38 830 Cs C3 Cy
18 13,5 Cs C; C; 20 14,6 C; C; C; 38 929 Cs Cs Cs
18 144 Cy C; C4 20 155 C; C; C; 38 1028 Cs C; Cs
18 15,3 Cs Cs Cy 20 164 C; Cs C; 38 1127 Cs Cp Oy
18 16,2 Cs C; Cy 20 17,3 C, Cs C; 38 12,26 C5, C; Cy
18 17,1 C; Cs Cy 20 182 C; C; Cs 38 1325 Cs Cp (4
18 18,0 Cs Csy Cs 20 19,1 Dy C; C; 38 1424 Cs Cs Cs
19 0,19 D5, C; Cy 20 20,0 Coy D3g Do 38 1523 Cs C; Cy
19 1,18 Csy Coy Csv 23 0,23 Dg, Dy Dgn 38 16,22 Cy Cs Cy
19 2,17 D5, Cs Csy 23 1,22 Coy Csy Cp 38 17,21 Csy C; Cy
19 3,16 Cay Csy Cs 23 221 Cy C; Cs 38 1820 Cs C; Cy
19 4,15 Cay Cay Cs 23 3,20 Dy, Cs Cs 38 19,19 Cs C; Cy
19 5,14 Cyy Cay Cs 23 4,19 C3y Cs Cay 38 20,18 Cs Cp Cy
19 6,13 Cyy C; Cy 23 5,18 Cy Cg Co 38 21,17 C; Cp Cy
19 7,12 Dy, C; Cs 23 6,17 Cy Cs Cs 38 22,16 C5, C; Cy
19811 Cs C; Co 23 7,16 Coy Cy Cp 38 23,15 Csy Cs Cy
19910 Cs Cy Co 23 815 C; Cs C; 382414 C; C; Cy
19 10,9 Cs Cs Cs 23 9,14 C, C; C; 382513 C; Cp (4
19 11,8 Cs Cy Co 23 10,13 Cs C; Cp 38 26,12 C; C; Cy
19 127 Cy C; C4 23 11,12 C; C; C; 38 27,11 C; Cp Cy
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FIG. 7: The binding energy per atom as a function of cluster size for different number of Ni atoms

n.

these cluster sizes for all Ni concentrations due to the icosahedral geometry. Thus, structures
that are particularly stable for the monatomic clusters due to geometric effects, may also
be so for bimetallic clusters. Another relevant observation is that for N = 15, 16 and 17
the binding energy increases for clusters containing up to n = 4 Ni atoms and decreases for
clusters containing n = 6 Ni atoms upwards. The same result, namely that the concentration
effect on the binding energy is more important than the geometrical one is also found for
N =10 and N = 11. Further we could find the nonmonotonic dependence of the binding

energy E, ,, with increasing N in the range n < N < 13 for n = 4 — 10. Those regions are
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especially pronounced for n = 6, 7 and 8 (see Fig. 7). Next we use
Egap(n,m) = Eyot(n+1,m — 1) + Eiot(n — 1,m + 1) — 2E5¢(n, m) 9)

to check the relative stability of a cluster compared to clusters of the same size containing
one more and one less Ni atom. As a function of n for given N FE,;, has peaks at particularly
stable clusters, so-called magic clusters. We notice that if the substitution of a Ni atom by a
Cu atom was accompanied by a concentration- and size-independent total-energy difference,
Eg.1, would vanish.

In Fig. 8 we show this function together with the binding energy, for four different values
of N, ie., N=13, 19, 23 and 38. We observe that the pure Ni clusters possess the most
stable structures (if compared to bimetallic clusters of the same size) for all investigated
cluster sizes. Further, among the bimetallic Ni-Cu clusters the Niy_;Cu; clusters have the
lowest total energy and hence are the most stable ones in the size range N=2-20. This is not
surprising as the binding energy is expected to increase with Ni content due to its higher
cohesion.

The plots show special features, i.e., a kink in the binding energy function and a maximum
in the stability function Eg.p(n, m), for n=1, 2, 3 and 7. The corresponding magic clusters
for a larger set of values of N are presented in Fig. 9. The maximum in the stability function
at n=1 for N=13 refers to the icosahedron with only one Ni atom at the center whereas for
n =2 and N = 19 the double icosahedron with two Ni atoms centered in each icosahedron is
found. These two structures turn out to be especially stable because they are obtained both
from the size dependence of the binding energy as well as from the concentration dependence
of the stability function (see also Figs. 8). In our study the magic cluster for the size N=38
refers to the structure with Ni atoms forming a pentagonal bipyramid in the cluster core.
For comparison we want to mention that in a study of Hsu and Lai?* of Cu—Au clusters the
peak in the stability function for N = 38 is found to be at n = 6. In the corresponding
magic cluster the Cu atoms form a plane hexagon at the center of the cluster.

Further, Fig. 9 shows that all of the magic clusters in the size range 10 < N < 20 have
icosahedron-based structures with a Ni atom at the center of each icosahedron. The magic
cluster for N = 23 is a triple icosahedron and it shows a perfect core-shell structure. The
Ni atoms centered in each icosahedron form the core while the copper atoms, which possess

the lower surface energy, form the shell of the cluster. That there is a tendency towards
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FIG. 8: The left panels show the binding energy per atom and the right panels the stability energy

Egap(n,m) as a function of n for N = n 4+ m being 13 (top panels), 19 and 23 (middle panels),

and 38 (bottom panels).

the formation of core-shell structures can be further demonstrated by plotting the radial

distances of the Ni and Cu atoms separately. This is done in Fig. 10 for N=23. For a small

concentration of nickel (until n = 3), the Ni atoms prefer to occupy the inner positions,

whereas with increasing concentration of nickel, they have to occupy positions further away

from the center, but first for n = 11 also surface positions are occupied by Ni. The Cu

atoms display the opposite behavior: for a small copper concentration they are located to

the surface region and with increasing concentration of Cu, also the inner positions of the



cluster are occupied.
The quantity
Egpst(n,m) = Eyg(n — 1,m + 1) — Eigi(n,m) (10)

describes the relative stability of a cluster with n Ni atoms with respect to clusters with one
less Ni and one more Cu atom. Thus, the function represents the energy gain (or loss) when
a Cu atom is replaced by a Ni atom. In Fig. 11 this function is presented in dependence
of the number of n for different cluster sizes, N = n +m. For n = 1 and N up to 8 the
function has relatively low values because the pure Cu clusters of these sizes do not form
strained icosahedral structures which can be stabilized by the replacement of a centered Cu
atom by a smaller Ni atom. From N = 9 upwards the stabilization effect begins to increase
corresponding to the icosahedral growth of the clusters (cf. Fig. 9). In agreement with the
discussion above, the most pronounced peak is found for N = 13 and n = 1, describing
the strong tendency of a Ni atom to replace one Cu atom in the center of the icosahedron.
The peaks for the other two magic clusters at n = 2 for N = 19 and at n = 3 for N = 23
posses slightly lower values. Obviously a replacement of a Cu atom centered in the second
icosahedron of a double icosahedron leads to a lower stabilization of the structure compared
to the replacement of a Cu atom centered in a single icosahedron. The reason is that by the
replacement of the Cu atom by the smaller Ni atom in the center of the first icosahedron a
major part of the strain is released. Thus when the second Ni atom is added it will occupy
a position at the center of a less strained icosahedron.

Another criterion that we use for comparing the relative stability of alloy clusters of the
same size but with a different composition is the change in cluster binding energy on mixing

defined by"?

i—Cu m u n 7
AE i = BN — NEg — NE{VV (11)

where Erjl\”f;c“ is the binding energy of the alloy cluster containing n Ni atoms, m the
number of the Cu atoms in the cluster and ES* (EX?) is the cohesive energy of the pure
Cuy (Niy) cluster. The function represents the energy gain (or loss) for a mixed cluster
with respect to pure clusters of the same size. Here we want to emphisize that in our
study positive values for the mixing energies refer to exothermic process. Thus, a positive

value of AFE,,;x corresponds to a nanoalloy cluster which is thermodynamically stable with
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FIG. 9: The structures of the magic Ni,Cu,, clusters for 10 < N < 20, N = 23 and N = 38
atoms. The labels are given as N(n,m) with N being the total number of atoms, n the number of

Ni atoms, and m the number of Cu atoms.
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FIG. 10: The radial distances (in A) for Ni and Cu atoms, separately, as a function of the number of
Ni atoms, n. In each panel a small horizontal line shows that at least one atom of the corresponding

type has that distance to the center of the cluster for a given value of N = 23.

respect to corresponding pure elemental clusters. The energies of mixing of the energetically
lowest isomers for each composition are shown in Fig. 12 for the nuclearities N = 13, 19,
23 and 38. The mixing energy for all bimetallic clusters investigated here is found to be
positive, corresponding to energy-favoured mixing. These results are not consistent with
the endothermic experimental enthalpie of mixing in solid Ni-Cu alloys®® which favours
ensembles with neighbours of the same type. We deduce: in contrast to bulk Ni-Cu alloys
the formation of Ni-Cu nanoalloy clusters is energetically favoured.

It is also interesting to obsreve that for N = 19 and 38 there is well defined composition
range: from n = 2 to 7 and from n = 7 to 17 (with a maximum value at n = 9) where the
structures possess a remarkable stability. This result suggests that beside the perfect core-
shell structures with all Cu atoms on the surface and all Ni atoms inside, there is a range
of very stable bimetallic structures with Ni atoms occupying both the core and the surface.
For N = 23 this range begins from n = 3 and it is less pronounced, whereas for N = 13
there is only one structure at n = 1 with special stability relative to the corresponding pure

clusters.
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To sum up, our calculations on small Ni-Cu clusters confirm the tendency for segregation

33-35 160,61

of Cu to the surface, predicted by experiments and theoretica calculations for Ni-Cu
macroscopic alloys as well as by Monte Carlo Simulations®”3® for larger Ni-Cu clusters (64-
8000 atoms). This effect is explained by the difference in the cohesive and surface energies
of Cu and Ni, by the bond enthalpy of the Ni-Cu bond, which is smaller than the average
of those of Ni-Ni and Cu-Cu bonds®® and by the positive heats of mixing of solid Ni-Cu

alloys.?®

IV. CONCLUSIONS

In this work we have studied the structural and energetic properties of Ni, Cu,, bimetallic
clusters with N = n+m up to 20 atoms and additionally for N = 23 and 38 atoms. We have
investigated systematically and unbiased both the size and the composition dependence of
the total energy and the structure of the clusters. The total energy of the bimetallic clusters
was computed with the embedded-atom method in the version of Daw, Baskes and Foiles.
The global geometry optimization was performed using a genetic algorithm.

We have determined the lowest-energy structures as well as the magic clusters for all
considered cluster sizes and concentrations of the components. It is demonstrated that
all Ni-Cu clusters investigated in this work are energetically stable. Comparing bimetallic
clusters with homoatomic clusters of the same size, we found that the most stable clusters
for each cluster size are those composed of Ni atoms, due to their higher cohesive energy.
Among the bimetallic clusters in the size range N = 2 — 20 the Niy_;Cu; clusters possess
the highest stability.

Furthermore, our results show that an icosahedron, a double icosahedron, and a triple
icosahedron with one, two, and three Ni atoms, respectively, are especially stable (magic).
Thus, structures that for the pure clusters are particularly stable are also so for the bimetal-
lic clusters. In addition, it is found that for all global-minimum structures of the Ni—-Cu
bimetallic clusters Ni atoms occupy mainly high-coordination inner (core) sites. In contrast,
Cu atoms show a tendency to occupy lower-coordination sites on the cluster surface.

Moreover, we found that most of the bimetallic cluster structures have geometries similar
to those of pure Ni clusters. The size N = 38 presents a special case: from n = 5 upwards

the bimetallic clusters undergo a dramatic structural change from the truncated octahedron
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to a structure with pentagonal symmetry and return at n = 25 again to the octahedral
symmetry.

Finally, in contrast to the bulk, the ground state structures of Ni,Cujs_,, Ni,Cuig_n,
and Ni, Cuy7_,, clusters do not experience a smooth transition between the structures of
pure copper and pure nickel clusters as the number of Ni atoms changes. For these sizes the

concentration effect on energy turned out to be more important than the geometric one.
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Structure and energetics of equiatomic K-Cs and Rb-Cs binary clusters
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The basin-hopping algorithm combined with the Gupta many-body potential is used to study the
structural and energetic properties of (KCs), and (RbCs),, bimetallic clusters with N=2n up to 50
atoms. Each binary structure is compared to those of the pure clusters of the same size. For the
cluster size N=28 and for the size range of N=34-50, the introduction of K and Rb atoms in the
Cs alkali metal cluster results in new ground state structures different from those of the pure
elements. In the size range N =38 the binary and pure clusters show not only structural differences,
but they also display different magic numbers. Most of the magic Rb—Cs and K-Cs clusters possess
highly symmetric structures. They belong to a family of plh structures, where a fivefold pancake is
a dominant structural motif. Such geometries have not been reported for alkali binary clusters so far,
but have been found for series of binary transition metal clusters with large size mismatch.
Moreover, tendency to phase separation (shell-like segregation) is predicted for both K-Cs and
Rb—Cs clusters with up to 1000 atoms. Our finding of a surface segregation in Rb—Cs clusters is
different from that of theoretical and experimental studies on bulk Rb-Cs alloys where phase

separation does not occur. © 2008 American Institute of Physics. [DOI: 10.1063/1.2944244]

I. INTRODUCTION

Bimetallic clusters have attracted considerable interest
both from basic science and for practical applications. Due to
their special chemical and physical properties, e.g., enhanced
bifunctional catalytic activity, they are subject of an increas-
ing interest in the fields of catalysis, optics, magnetism, and
nanoelectronics.' Compared to the pure clusters with only
one type of atoms, binary clusters may show segregation
which may result in, e.g., layered structures or core-shell
structures. Alternatively, the clusters may show complete
mixing:{.g’13

In order to optimize the materials properties for a given
application, it is of paramount importance to have an accu-
rate understanding of the relation between cluster size on the
one side and property on the other. Although experimental
studies can provide much of this information, a full charac-
terization of the experimentally studied systems is often
lacking, suggesting that additional, theoretical studies can be
helpful.

Even for clusters consisting of just one elements, it is
difficult to make theoretical predictions about their structure
(see, e.g., Ref. 14). Because of their nontrivial geometric
structures, 21 a5 well as their complex chemical
ordering,n_27 it becomes much more difficult to predict the
ground state structures of binary clusters. Therefore, to ob-
tain a precise information on the structure of the lowest total
energy and thus to calculate the properties of interest, an
unbiased and accurate exploration of the potential energy
surface (PES) is required. But, even for the simpler case of
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monoatomic cluster, we are faced with the problem of com-
plexity, i.e., the number of local minima in the PES increases
exponentially with cluster size. Bimetallic clusters possess
even more complex PES due to the inequivalence of so-
called homotops.27’28 Homotops are defined”® as clusters
with the same size, composition, and geometric arrangement,
differing only in the way in which A- and B-type atoms are
arranged. The number of homotops for an A, B,, cluster, P, ,,,
is given by P, ,=(n+m)!/n!m!. Thus, if we, for example,
consider all possible replacements of 10 K atoms by Cs at-
oms in an isomer of K,,, the number of homotops is as large
as 184 756. Because of this large number of homotops, that
in addition may have only small total-energy differences, a
global optimization becomes a very demanding task.

Whereas a large number of studies have been carried out
for binary transition metal clusters,”* only few reports are
available for mixed alkali metal clusters. Lopez et al>>
studied the structural and segregation properties of Na—Cs,
Na-Li, and Na—-K nanoalloys using the density functional
theory method. Ab initio calculations, such as those of Desh-
pande et al*®* on Na-Li clusters, are restricted to small
sizes up to N=12. To our knowledge, there are no theoretical
and experimental studies on the structure and energetics of
K-Cs and Rb-Cs clusters so far. Therefore, these systems
will be in the focus of the present work.

Both bulk alloy systems form random substitutional
solid solutions over the whole concentration range. Theoret-
ical and experimental studies on surface properties of bulk
K—Cs and Rb-Cs alloys suggest that while surface segrega-
tion is present for K—Cs alloys, it does not occur in Rb—Cs
alloys.40 Moreover, whereas for K—Cs the heats of formation
are positive indicating segregation behavior, for Rb—Cs they
are negative, suggesting perfect mixing.41 Considering this,

© 2008 American Institute of Physics
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FIG. 1. (Color online) The stability function for (top part) bimetallic K—Cs
and Rb—Cs and (bottom part) pure K, Rb, and Cs clusters as a function of N.

we found it interesting to study if and how the miscibility
properties change in these alloy clusters compared to those
of bulk alloys.

The purpose of the present work is, accordingly, to de-
termine and analyze the ground state structures of binary
K-Cs and Rb-Cs clusters with N up to 50 atoms in an unbi-
ased study. The dominant structural motif of the particularly
stable clusters will be found and compared to those of the
magic binary clusters build up by transition metals. Further,
we shall explore whether those values of N that for the pure
clusters correspond to particularly stable structures also do so
for in the present case. Moreover, by using various descrip-
tors, we shall quantify to which extent the structures re-
semble those of the pure clusters.

We have determined the lowest-energy structures of
K-Cs and Rb—Cs binary clusters using a basin-hopping (BH)
algorithm combined with a Gupta many-body potential.

The paper is organized as follows. In Sec. I we briefly
outline the Gupta potential and the BH algorithm. The main
results are presented in Sec. III, and a brief summary is of-
fered in Sec. IV.

Il. COMPUTATIONAL METHOD
A. The Gupta potential

The Gupta potential42 has been successfully applied to
study the structure, energetics, free energy, surface energy,
and melting point of alkali metal clusters.”** It has been
derived from Gupta’s expression for the cohesive energy of a
bulk material. According to this, the total energy of a system
with N atoms is written in terms of repulsive and attractive
many-body terms,

J. Chem. Phys. 128, 244513 (2008)

N

Vclus = 2 [Vr(l) - Vm(l)]» (])

i=1
J) o

where

N
V)= >, A(a,b)exp[ pla, b)(—L
J=1(#i) o(a b)
and

N
> ab)

J=1(#0)

V(i) =

12
1)} . (3)

In these equations, r;; is the distance between atoms 7 and j,
and A, ry, ¢, p, and q are parameters whose values are fitted
to experimental values such as cohesive energy, lattice pa-
rameters, and independent elastic constants for the reference
crystal structure at 0 K. Finally, a and b refer to atom type of
atom 7 and j.

The parameters for inhomogeneous K-Cs (Rb-Cs) inter-
actions are taken as the average of the K-K and Cs—Cs
(Rb-Rb and Cs—Cs) parameters obtained by Li er al.** The
reasoning for this is that bulk K-Cs and Rb—Cs alloys are
solid solutions, rather than ordered intermetallics, and mix-
ture energies and mixture parameters of molten K-Cs and
Rb-Cs alloys computed in a study of Christman®® are very
close to the averages of the corresponding single constituent
values. Furthermore, also for other alloy systems it has been
found that the parameters are close to the average values and
in general lie between the limits of the homonuclear interac-
tion parameters.46

Xexp[ 24(a, b)(-ﬁ)(a b)

B. The basin-hopping algorithm

The basic idea of the BH method*’ ™" is to transform the
complex energy landscape as a function of X
=(R},R,,...,Ry) (with R; being the position of the ith
atom) to a new reduced-energy landscape, which consists of
plateaus of energy minima only,

E(X) = min{E(X)}, (4)

where min{---} represents a local energy minimization pro-
cess with X as initial structure. Perturbations in the algorithm
are introduced by changing slightly the latest set of coordi-
nates and carrying out a gradient-based optimization from
the resulting geometry. Moves are accepted or rejected based
upon the energy difference between the new and old local
minimum. The BH approach can be also viewed as a gener-
alization of the “Monte Carlo plus energy minimization” pro-
cedure of Li and Scheraga.51 The Monte Carlo part of the BH
algorithm is introduced in order to allow the system to hop
from one plateau to another at a thermal energy kzT™ mea-
sured in units of the binding energy of the K—Cs or Rb—Cs
dimer. The hopping probability depends highly on the choice
of the “temperature” 7% and on the reduced-energy differ-
ence between the plateaus of the two consecutive steps. In
the present work the Monte Carlo simulation has been per-
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FIG. 2. (Color online) Different struc-
tures for which the pure Ky, Rby, and
Csy clusters have the same structures
as is the case for the (KCs)y, and
(RbCs)y, clusters. In each row, the
two left panels show the structure of

the pure clusters, and the two right
panels that of the bimetallic cluster.
The values of N are given above each

59D

row, as is the case for the symmetry
group of the clusters (here, the sym-
metry of the bimetallic clusters does
not take the difference of the elements
into account.

CQV

i

formed at a constant reduced “temperature” of 0.8. We em-
phasize that our approach does not allow for a molecular-
dynamics simulation at a given temperature, but only for an
efficient identification of the structure of the global total-
energy minimum.

The BH algorithm has successfully located all the lowest
known minima for Lennard-Jones clusters with up to 110
atoms, including all the nonicosahedral structures (sizes of
38, 75-77, and 102-104), for the first time in unbiased
searches.” In a recent study, Doye etr al. have found the
particularly stable structures for binary Lennard-Jones clus-
ters with up to 100 atoms.” Further, the BH algorithm com-
bined with a Gupta potential has been successfully applied to
calculate the ground state structures of the pure alkali metal
clusters Na, K, Rb, and Cs.® The present study is accord-
ingly an extension of the last mentioned studies.

lll. RESULTS
A. Energetic properties

In order to identify particularly stable clusters we con-
sider the stability function,

Estab = Etot(N + 2) + Elot(N_ 2) - 2Etot(N) . (5)

E,p, 1s shown in Fig. 1 for binary K-Cs and Rb—Cs clusters
and for pure K, Rb, and Cs clusters. Maxima of E,, indicate
particularly stable (magic) clusters. We observe that for
smaller cluster sizes, up to N=36, the stability functions for
pure and for bimetallic clusters possess the same maxima.
From N=38, however, the stability function of the bimetal-
lic nanoalloys shows a complete different behavior compared
to that of the pure clusters. For example, the sizes N=44 and
48 are magic for binary K-Cs and Rb—Cs clusters, but not
for the monometallic ones.

The high stability for most of the magic K-Cs and
Rb-Cs binary clusters is strongly correlated with drastic
changes in structure towards a higher symmetry, compared to
their monometallic counterparts. Some of the particular
stable binary clusters are presented in Figs. 2 and 3. Here, the
size N=34 is a magic one for pure as well as for binary
clusters, but it displays a different symmetry in the two
cases. For the pure cluster it has a 7 symmetry, whereas for
the bimetallic cluster the heteroatomic interactions lead to
the formation of a fivefold so-called “pancake” and to an
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FIG. 3. (Color online) As in Fig. 2, but for clusters for
which (KCs)y,, and (RbCs),,, have different structures.

For each N, the two left panels show the structure of the
pure cluster, the middle ones that of (KCs)y,, and the
right ones that of (RbCs)y/,. Moreover, the symmetry

groups are here given below the representations of the
clusters.
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increase in symmetry to Ds;, (notice that the symmetries we
are reporting do not distinguish between atom types).

The pancake structural element can be seen, e.g., in Fig.
2 in the left presentation for (KCs);; and (RbCs),; as the
32-atomic structure that is obtained by removing the top and
bottom atoms. Equivalently, for (KCs),, and (RbCs),, the
top atom and the seven bottom atoms shall be removed in
order to arrive at the pancake motif.

The 34-atom fivefold pancake was labelled magic pIh" in
Ref. 16 since it consists of seven interpenetrating icosahedra.
The Rb—Cs ground state structure of the size N=50, which
does not appear in the stability function as a particularly
stable structure, is also interesting because it is formed by
two interpenetrating fivefold pancakes, also in this case lead-
ing to Ds;, symmetry. Binary clusters of the sizes N=40, 42,
44, and 48 shown in Figs. 2 and 3 belong to the same struc-
tural family and are obtained by capping the fivefold pan-
cake. Exceptions are K—Cs clusters of the sizes N=48 and
50, which do not result from the 34-atom pancake but still
possess an icosahedral core.

The structural motif of the fivefold pancake has been
found also for Ag—Cu, Ag—Ni, Au—Cu, and Au—Ni systems
for which a large size mismatch exists, but not for Ag—Pd
and Pt—Pd clusters where the size mismatch is below 5%.'°
Rossi et al. explained the occurrence of such magic plh bi-
nary clusters with the decrease in internal strain when the
inner atoms of a pure plh cluster are substituted by smaller
ones. Besides, if the large atoms have a strong tendency to-
wards segregation then core-shell plh clusters will be fa-
vored. In K-Cs and Rb—Cs systems, the K and Rb atoms are
16% and 9% smaller than Cs atoms, respectively, which ex-
plains why the alkali binary clusters show the same structural
motif as reported for binary transition metal clusters.

By further analyzing of the stability function, it is found
that the K—Cs and Rb—Cs clusters of the sizes N=28 and 38,
which show minima in the stability function, possess lower
symmetry than their monometallic counterparts (see Fig. 4).
For N=28 there is a reduction from 7 to C,; symmetry and
for N=38 from O, to C; symmetry.
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FIG. 4. (Color online) As in Fig. 2,
but for other values of N.
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duced by us in previous studies.

In order to quantify structural differences and similarities
between bimetallic clusters and pure clusters of the same size
of N atoms we use the concept of similarity functions intro-

its radial distance,

h= |Rn_R0 >
with
1 N
R,=—> R,.
N

53,54

For each atom we define

(6)

(7

These are sorted in increasing order. Simultaneously, for
each of the pure clusters, we calculate and sort the radial
distances {r/} for this, too. Subsequently, from

q:

N

=2

1
N

n=

r\2 |12
! b
1 \dy d;

we define a similarity function,

Similarity function

1.1

1.0

0.9

- -
o =

o
©

-
=

=4
©

-
o

(8)

: )

which approaches 1 (0) if the A,B,, cluster is very similar to
(different from) the pure cluster. In order to identify struc-
tural similarities, independent of scaling, we have scaled the
radial distances in Eq. (8) with the bond lengths of the di-
atomic systems, dy and d). The same procedure is applied to
quantify whether the pure cluster consisting of N A atoms is
structural related to that consisting of N B atoms.

The similarity functions are shown in Fig. 5 as functions
of N. From the figure it can be seen that pure K and Cs
clusters have essentially the same structures except for the
sizes N=16, 24, and 30. Comparing pure Rb and Cs clusters,
the geometries differ for N=16 and 24.

At next we will compare the pure clusters with the bi-
nary ones. Comparing K—Cs to K clusters and Rb—Cs to Rb
clusters, it can be seen that there is a structural agreement
between the bimetallic and the pure clusters below the size
N=26. Accordingly, when comparing both types of binary
clusters to pure Cs clusters there will be structural differ-

FIG. 5. (Color online) The similarity

function S; vs the total number of at-
oms N. In the left panels we compare

the structures of pure K to those of
pure Cs clusters (top), of pure K to
those of the bimetallic K-Cs clusters
(middle), and of pure Cs to those of

K-Cs clusters (bottom). The panels to
the right show the same comparison,
i but for Rb and Rb—Cs clusters.
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FIG. 6. The radial distances (in A) for (top) Cs and K atoms in K—Cs
clusters, and for (bottom) Cs and Rb atoms in Rb—Cs clusters as a function
of the number of the corresponding type of atoms, n=N/2. In each panel a
small horizontal line for a given value of n indicates that at least one atom
of the corresponding type has that distance to the center of the cluster.

ences for exactly these cluster sizes (16 and 24) for which
the pure clusters K and Cs (or Rb and Cs) differ from each
other.

For N=28 and from N=34 upwards a drop in the simi-
larity functions indicates the formation of new structures,
different from those of the pure K, Rb, and Cs clusters. This
size range covers the sizes for which the pure and bimetallic
clusters show different particular stabilities as discussed
above. The binary cluster with 28 atoms is an incomplete
fivefold pancake for both K-Cs and Rb-Cs (Fig. 4) and,
thus, it belongs also to the family of plh structures.

In order to study the possibility of a segregation in the
nanoalloys we consider the radial distances of the K and Cs
(Rb and Cs) atoms separately, as shown Fig. 6. It is clear that
the Cs atoms segregate preferentially to the surface in both
types of bimetallic clusters. Accordingly, the K and Rb atoms
are primarily located in the core. This is consistent with the
differences in the surface energy55 for Cs, Rb, and K, i.e., 95,
117, and 145 erg cm™2, respectively, as well as in the atomic
radii, i.e., 2.72, 2.50, and 2.35 A, respectively.

An interesting issue is, thus, if the same segregation be-
havior will be observed for larger clusters. For this purpose
we considered equiatomic K—Cs and Rb—Cs bimetallic clus-
ters with N=2n atoms constructed in the following way. For
N=100 we construct an initial structure by optimizing that of
the Csy cluster, whereas for N=1036 we take a spherical
cutout of the fcc crystal structure of Cs with the center of the
sphere at a nearest-neighbor bond. Subsequently, we re-
placed n of the Cs atoms with K or Rb atoms resulting in a
core-shell structure with Cs atoms in the shell and K or Rb
atoms in the core, core-shell structures with Cs atoms in the
core and K or Rb atoms in the shell (notice that for these

Q D [ ]
¢ o3888g0e R
%: 00 st teiele 24
% cg !
Y QA0 OC

© Y b, C ©

B

OO0

*
CC

0
&

L Lat3t1

o

gu i
FIG. 7. (Color online) A cross-section of (from left to right) the core-shell,

the layered, and the completely mixed structures for the cluster size N
=1036.
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core-shell structures, the separation into a core and a shell is
not perfect), a completely segregated, layered structure, and,
finally, a completely mixed alloy (see Fig. 7). Each of these
structures was relaxed to its closest total-energy minimum
structure.

The resulting binding energies are analyzed in Table I.
For both K-Cs and Rb-Cs systems, the core-shell structure
with Cs atoms in the shell possesses the highest binding
energy. Thus, our results suggest that, both for K-Cs and
Rb-Cs clusters, segregation will take place, leading to the
formation of core-shell structures. On the other hand, the
small differences in the binding energies suggest that at not
very high temperatures, entropy effects will lead to a prefer-
ence of the totally mixed alloys. The segregation-to-mixing
transition could be confirmed or refuted by molecular-
dynamics simulation on these systems at different tempera-
tures in future studies.

Theoretical and experimental studies show that, while
surface segregation is present for K—Cs alloys, it does not
occur in Rb—Cs alloys.40 The reason is the larger atomic-size
mismatch in K-Cs compared to Rb—Cs. Moreover, the heats
of formation for Rb—Cs are negative suggesting the existence
of a mixed alloy instead of phase separation.

In the preceding subsection we identified the pancake
structural motif as a fundamental building block for the bi-
metallic clusters. This could imply that the clusters have very
similar structures, independent of n, i.e., that the structures
can be considered as being built up by adding KCs or RbCs
atom pairs to a central core. In order to quantify this sugges-
tion we consider two additional similarity functions.

For the cluster (ACs), we first consider the (ACs),_;
cluster. Moreover, for the (ACs), cluster we consider at first
all those different n” parts that can be considered by remov-
ing one A and one Cs atom. We then construct

12
”/Ix,i)z + (regi— r’Cs,i)z] . (10)

E[(rAl

2n - 2,1

with the sorted, unprimed and primed radial distances being
for the fragment of the (ACs), cluster and for the (ACs),_,
cluster, respectively. From the smallest of those n” values we
define a similarity function,

. (11)
1+ qly,
with ;=1 A.

Alternatively, we consider all the n(2n—1) possible
(2n-2)-atomic fragments of the (ACs), cluster without dis-
tinguishing between atom type. Also here, we sort and com-
pare the radial distances of this system with those of the
(ACs),_; cluster, leading to

172

q= —_2?} (ri— , (12)

with a notation equivalent to that above. From the smallest
value of ¢ we define a similarity function,
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TABLE I. Binding energy in eV/atom for (ACs), clusters with A being K or Rb. N=2n is the total number of

atoms.
A N Core(A)-shell(Cs) Core(Cs)-shell(A) Layered Mixed
K 100 0.713 0.681 0.702 0.699
1036 0.80 0.773 0.792 0.785
Rb 100 0.680 0.665 0.673 0.672
1036 0.761 0.749 0.757 0.755

1

=— 13
1+q/ul ( )

S5

The results are shown in Fig. 8, where we also show a
similarity function similar to S5 but for the monoatomic clus-
ters. It is remarkable that there are very few features that are
specific for the atom types, i.e., the curves are essentially
identical for all systems considered here. Moreover, compar-
ing the top and bottom panels, the bimetallic clusters seem to
show a much more regular growth behavior than is the case
for the monoatomic ones. Finally, for the bimetallic clusters,
S; is in general larger than S,, which may be ascribed to two
effects. At first, by not distinguishing between atom type, it
is easier to make two clusters look identical. But at second,
the segregation behavior that we have seen in Fig. 7 means
that, upon growth, one atom type has to be substituted by the
other, so that the former remains localized to the surface
region.

IV. CONCLUSIONS

In this work we have studied the structural and energetic
properties of (KCs), and (RbCs), bimetallic clusters with
N=2n up to 50 atoms. The homo- and heteroatomic interac-
tions in the bimetallic clusters have been modeled using the
Gupta potential. The global geometry optimization has been
performed using the basin-hopping algorithm.

We have found that K—Cs and Rb-Cs bimetallic cluster
structures with N <26 atoms tend to have geometries similar
to those of pure K and Rb clusters, respectively. On the other
hand, for the size N=28 and for the size range N=34-50 the
introduction of K and Rb substitutions in a Cs cluster results
in new structures, different from those of the pure elements.
In the size range from N=38, the binary and pure clusters
show not only structural differences, but they also display
different magic numbers.

Most of the magic bimetallic structures are highly sym-
metric. They belong to the family of pIh structures obtained
by capping the fivefold pancake. Such geometries have not
been reported for any of the investigated alkali bimetallic
clusters (Na-Li, Na-K, Na—Cs) so far. Moreover, tendency
to phase separation (shell-like segregation) is predicted for
both K—Cs and Rb—Cs clusters with up to 1000 atoms. These
results for Rb—Cs clusters are in contrast to those of theoret-
ical and experimental studies on bulk Rb—Cs, which have
found that surface segregation in the alloy system is not
present. Finally, the bimetallic clusters show a much more
regular growth behavior than is the case for the monoatomic
ones.

In conclusion, alkali metal K—Cs and Rb—Cs binary clus-
ters are also suitable for building up magic core-shell plh
structures, already reported for binary transition metal
clusters.
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Abstract. The soft deposition of Niiz and Cuis clusters on Ni(111) and Cu(111) surfaces is studied by
means of constant-energy molecular-dynamics simulations. The atomic interactions are described by the
Embedded Atom Method. It is shown that the shape of the nickel clusters deposited on Cu(111) surfaces
remains rather intact, while the copper clusters impacting on Ni(111) surfaces collapse forming double and
triple layered products. Furthermore, it is found that for an impact energy of 0.5 eV /atom the structures
of all investigated clusters show the lowest similarity to the original structures, except for the case of nickel
clusters deposited on a Cu(111) surface. Finally, it is demonstrated that when cluster and substrate are
of different materials, it is possible to control whether the deposition results in largely intact clusters on
the substrate or in a spreading of the clusters. This separation into hard and soft clusters can be related
to the relative cohesive energy of the crystalline materials.

PACS. 61.46.+w Nanoscale materials — 36.40.-c Atomic and molecular clusters — 68.65.-k Low-
dimensional, mesoscopic, and nanoscale systems: structure and nonelectronic properties — 31.15.Ct Semi-

empirical and empirical calculations (differential overlap, Huckel, PPP methods, etc.)

1 Introduction

Due to the numerous applications in the nanoindustry,
nanodevices, catalysis, etc. [1-3] the deposition of transi-
tion and noble metal nanoparticles on diverse substrates
has attracted considerable attention among experimen-
talists and theoreticians over the past decades. Various
experimental techniques [4-6] have been developed in or-
der to deposit accurately even very small metal clusters
without damaging the surface and keeping the clusters as
identifiable entities. Successful growth of monolayers and
cluster islands has been achieved with controlled aggre-
gation following atom vapor deposition. Through the use
of scanning tunneling microscopy [7,8] it has become pos-
sible to deposit and move clusters on the surface. One
of the most recent experimental techniques is the Low
Energy Cluster Beam Deposition (LECBD) [4] that uses
only moderate energies of deposition. With this technique,
the surface structure remains largely intact in contrast to
experimental methods where the substrate is bombarded
with high-energy clusters resulting in thin films formed by
the cluster atoms. In that case, the clusters have so large
kinetic energies that they melt upon the deposition, lose

a

b
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their initial structures and spread out on the surface, that
in turn may suffer from the radiation damage.

Unfortunately, even in the latest experimental set-ups
it is not possible to determine the geometry of small or
medium-sized clusters, neither in gas phase nor deposited
on a substrate. Here, theory can be used in supplement-
ing the experimental studies. However, since theoretical
studies of cluster deposition processes on a substrate is
computationally extremely demanding when the studies
shall consider realistic systems and when attempting to
use first-principles methods, semiempirical methods pro-
vide a useful alternative for this kind of simulations. In
combination with molecular-dynamics (MD) simulations,
these methods are very attractive for studying the tempo-
ral evolution of the systems of interest. Therefore, several
studies of cluster deposition processes for higher impact
energy have been reported [9-11]. However, the formation
and growth of cluster islands through low-impact-energy
deposition have hardly been studied.

The purpose of the present study is to simulate the
experimental conditions of the LECBD experiment and,
thereby, obtain further details of the cluster deposition
that can not be derived in the experiment directly. We
shall use the Embedded Atom Method (EAM) in its
original version proposed by Daw, Baskes, and Foiles
(DBF) [12-14] in describing the interatomic interactions.
In a previous study [15] we demonstrated that these semi-
empirical potentials are accurate for most metals. Very
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recently [16], we have studied the soft deposition of cop-
per clusters on the Cu(111) surface using another version
of the EAM, proposed by Voter and Chen [17,18] (VC).
We considered different impact energies as well as orienta-
tions and sizes of the clusters. For the sake of comparison
we shall here include results from that study. As a natu-
ral extension we shall here study what happens when the
cluster and the substrate are of different metals. Accord-
ingly, we shall study the deposition of copper and nickel
clusters on copper and nickel substrates. We shall concen-
trate on the Cuys and Nij3 clusters which are particularly
stable according to previous studies [15,19,20].

The advantage of the EAM is that it is possible to
study larger systems over longer time scales than what is
possible with more accurate methods. Nevertheless, the
EAM is approximate and, e.g., quantum effects of elec-
trons and of vibrations are only very indirectly included.
This means that the details of our conclusions may be al-
tered when using more accurate methods, although we do
not believe that our general conclusions will change. Fi-
nally, by studying Cu and Ni systems we are considering
materials for which the EAM has been found to be par-
ticularly precise. Lacking experimental studies on those
systems we, therefore, hope also that our work will serve
as a motivation for studying those.

The paper is organized as follows. The computational
details are described in Section 2 and the main results are
presented in Section 3. Finally, we conclude in Section 4.

2 Computational methods

2.1 The embedded-atom method

The interactions between the atoms of the magic Nijs,
Cuy3 clusters and of the surfaces are described through
the EAM in the version of Daw, Baskes, and Foiles
(DBF) [12-14]. Then the total energy of the system is
split into a sum of atomic energies,

N
Bt =Y _E, (1)
=1

with F; consisting of two parts, i.e., the embedding en-
ergy (which is obtained by considering the ith atom as
an impurity embedded into the host provided by the rest
of the atoms), and pair interactions with all other atoms.
Accordingly,

N
1
EiZFi(P?)+§ D> i) (2)
J=1.(G#)

where pl is the local electron density at site i, F; is the
embedding energy, and ¢;; is a short-ranged potential be-
tween atoms ¢ and j separated by distance r;;.

The local density at site ¢ is assumed being a superpo-
sition of atomic electron densities,

N

> pry), (3)

J=1,(3#7)

pi =

where pf(r;;) is the spherically averaged atomic electron
density provided by atom j at the distance 7;;.

The EAM has been successfully applied to many bulk
and low-symmetric transition-metal systems such as de-
fects, surface structures and segregation [21]. Further-
more, in our previous studies [15,19,20,22-24] we have
tested its accuracy for nickel, copper, and gold clusters
and showed that it describes very well the properties of
most of those systems, with gold clusters being a possible
exception.

In the present study we have studied deposition of a
Nijy3 cluster on the Ni(111) and the Cu(111) surface as well
as deposition of a Cuys cluster on the Ni(111) surface. We
include our results on the deposition of a Cu;3 cluster on
the Cu(111) surface from our recent study [16]. In that
study we did not use the DBF but the VC version of the
EAM.

2.2 Molecular-dynamics simulation

Our computational approach is similar to that of our pre-
vious work on the deposition of copper clusters on a cop-
per surface [16]. We model the (111) surfaces of the fec
copper and nickel crystals using a periodic slab of seven
atomic layers and with a dimension of 10ag X 10ag with
ap = 3.62 A (3.52 A) being the lattice constant for cop-
per (nickel) for the periodically repeated unit. Periodic
boundary conditions are applied parallel to the surface.

Before the deposition process is initiated we orient the
icosahedral Cuy3 and Nij3 clusters relative to the surface
so that the Sg symmetry axis of the cluster is perpendic-
ular to the surface.

The equations of motion of the microcanonical (NV E)
ensemble are integrated by using the Velocity Verlet al-
gorithm. The time step is set to 2 fs and the total in-
tegration time is 50 ps. We consider impact energies of
Ey =0.0,0.1,0.3,0.5,0.7, and 0.9 eV/atom, which is the
range for Low Energy Cluster Beam Deposition experi-
ments.

Both clusters and substrates are initially relaxed to
equilibrium at 0 K. Subsequently, the clusters are located
near the surface. Then the cluster atoms are given the
initial velocity in a direction perpendicular to the sub-
strate, whereas the substrate remains cold. At the end of
the simulation the clusters and surfaces are cooled down
by means of simulated annealing for a period of 5 ps.

3 Results and discussion

Limiting the summation in equation (1) to the 13 atoms of
the cluster, we can introduce a total energy of the cluster.
This corresponds to splitting the energy of the interaction
between cluster and substrate into two equally large half-
parts that each is attributed to one of the subsystems. In
particularly the variation of the total energy of the clus-
ter with deposition parameters (like impact energy and
geometry) can be used in analysing the outcome of the
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Table 1. The relative total energy (in eV) of the clusters after
the collision with the surface as a function of the impact energy
in eV /atom. The total energies of the initial, isolated structures
obtained with the EAM are shown for comparison (denoted
‘EAM’). ‘A /B’ denotes the A13 cluster deposited on the B(111)
surface. Notice that for the Cu/Cu simulation we use the VC
potential, whereas we for the others use the DBF potential.
Thereby, the isolated Cu clusters have slightly different total
energies.

Impact energy Ni/Ni  Cu/Cu Cu/Ni Ni/Cu
0 —47.14 -36.66 —37.64 —48.46

0.1 —47.10 —=37.67 —37.60 —48.46

0.3 —47.52 =37.67 —37.51 —48.46

0.5 —47.88 =37.79 3779 —48.43

0.7 —47.79 -36.80 —37.76 —48.46

0.9 —47.61 —=36.96 —37.77 —47.61
EAM —44.87 —=33.50 —34.37 —44.87

800

600

400

Temperature (K)

200

time (ps)

Fig. 1. The internal temperatures of Cuiz deposited on
Ni(111), Cuiz deposited on Cu(111), Nij3 deposited on
Ni(111), and Niy3 deposited on Cu(111) at an impact energy of
0.0 eV/atom as functions of the time. A_B marks the A cluster
deposited on the B substrate.

deposition. Table 1 shows this quantity for all different
impact energies and cluster/substrate combinations.

In all cases, the attractive interactions between sub-
strate and cluster lead to a lowering of the total energy
of the cluster when being deposited on the substrate. For
clusters deposited on the Ni(111) surfaces the most stable
structures are obtained at impact energies of 0.5 eV /atom.
This result is consistent with our previous findings for
Cu-Cu interactions described with another version of the
EAM potential [16]. On the other hand, a nickel cluster
deposited on a Cu(111) surface keeps its structure intact
up to impact energies of 0.9 eV /atom, where the compact
shape is distorted by the removal of a single atom from
the cluster and substitution of this by a copper atom from
the surface.

In Figure 1 we show the evolution of the internal tem-
perature of the clusters as a function of time in the case
that the depositions are driven only by attractive forces,

i.e., for an impact energy of Ey = 0.0 eV/atom. The in-
ternal temperature is defined as follows. We define the
position of the center of mass of the cluster,

Ry = %ZRi, (4)

with N = 13 being the number of atoms in the cluster
and R; their positions. Subsequently,

3 1 X
_ 512 _ P2
§Nk;T =zm E_l {|RZ| |Ro| }, (5)

with m being the mass of a cluster atom and the dots rep-
resent time derivatives, defines the internal temperature.
As seen in Figure 1, the clusters with the highest inter-
nal temperatures are the copper ones, independently of
the substrate, whereas the nickel clusters have much lower
internal temperatures. Since the higher internal tempera-
tures imply that the atoms are more mobile, this finding
can be explained through the lower binding energies of the
Cu clusters than of the Ni clusters (cf. the lowest row in
Tab. 1).

Moreover, when the copper cluster is deposited on the
nickel substrate it obtains a rather high internal temper-
ature during the first 2-3 ps of the simulation and after
some further 5 ps the temperature drops again. On the
other hand, when the same cluster is deposited on the
copper substrate, the internal temperature does not reach
as high an absolute value (notice, that in this case the
simulations were initiated at a larger distance between
cluster and substrate, so that at the beginning the cluster
was moving as a whole towards the substrate and first af-
ter some 5 ps the structure of the cluster starts changing
structure leading to an increase in the internal tempera-
ture). Again, the higher mobility of copper atoms (lower
binding energy of the crystal) than of nickel atoms makes
it easier for the copper substrate to absorb the impact
energy from the collision process, leading to a more soft
landing of the clusters. In particular for the deposition of
Cui3 on Cu, initially most of the impact energy is ab-
sorbed by the substrate that deforms so much that the
cluster partly enters the surface. First then the cluster ex-
periences larger structural changes, indicated by the late
decrease in the inner temperature for this system.

Furthermore, due to the larger cohesive energy and
smaller lattice constant of nickel, it is favourable for a
deposited copper cluster to spread out on the surface in-
stead of staying intact. That this occurs is seen in Fig-
ure 2. The deposition of Cujz on Cu(111) at negligible
attractive forces results in the formation of a distorted
icosahedron, cf. Figure 3, and the cluster atoms are not
spread on the surface. Here, the maximal internal tem-
perature of 500 K is not sufficient to break the cluster
bonds. According to our previous results [16] the minimal
impact energy needed to disturb significantly this cluster
is at least 0.5 eV /atom.

Further information on the resulting cluster structures
due to the deposition can be obtained by looking at the
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Fig. 2. (Color online) The final products of Cui3 clusters with
different deposition energies after deposition on the Ni surface.
The impact energies are (top, left) 0.0, (top, middle) 0.1, (top,
right) 0.3, (bottom, left) 0.5, (bottom, middle) 0.7, and (bot-
tom, right) 0.9 eV /atom.

Fig. 3. (Color online) The final products of Cuis clusters with
different deposition energies after deposition on the Cu surface.
The presentation is as in Figure 2.

Table 2. The height of the cluster (in A) after the collision
with the surface as a function of the impact energy in eV /atom.
A/B labels the A cluster deposited on the B surface.

Ni/Ni Cu/Cu_Cu/Ni Ni/Cu

0 5741 5365 4135  5.364
01 5822 5295 3955 5.377
03 5301 5349 5742 5205
05 3905 3.609 3954  5.254
07 5134 5564  4.014  5.157
09 5693 4042 4006 5.289

height of the clusters measured as the positions of the
atoms above the first plane of substrate atoms without
the deposited cluster. This parameter is given in Table 2
as a function of the deposition energy. It can be seen that
at a deposition energy of 0.5 eV/atom there is a minimum
in the cluster height, except for the Nij3 cluster deposited
on Cu(111) that has a minimum for an impact energy of

Fig. 4. (Color online) The final products of Nii3 clusters with
different deposition energies after deposition on the Cu surface.
The presentation is as in Figure 2.

Fig. 5. (Color online) The final products of Niiz clusters with
different deposition energies after deposition on the Ni surface.
The presentation is as in Figure 2.

0.7 eV/atom. Again, the stronger interatomic bonds for
Ni than for Cu may explain this shift to higher impact
energies.

When simply viewing the final products of the de-
positions, Figures 2, 3, 4, and 5, it is immediately seen
that the shape of the Nij3 icosahedron deposited on a
Cu(111) surface remains very well kept for all impact ener-
gies (see Fig. 4). On the other hand, the Cuy3 icosahedron
spreads out on the Ni(111) surface forming double layers
for all impact energies except for a deposition energy of
0.3 eV/atom, where the final structure is a symmetrical
pyramid (see Fig. 2). Also this finding is due to the fact
that Ni-Ni bonds are much stronger than Cu-Cu bonds
(nickel possesses a higher cohesive energy of 4.45 eV than
copper (3.51 eV) [25]).

As Figures 3 and 5 show, the final products of deposi-
tion of Niy3 and Cuyz clusters on surfaces of the same atom
type, are very similar for the lowest impact energies. How-
ever, while at a higher deposition energy of 0.5 eV /atom,
the Cuyg cluster spreads out on the Ni(111) surface form-
ing a slightly deformed monolayer, the Nij3 cluster forms
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Fig. 6. The evolution of the similarity functions with time for the simulations with cluster energies of 0.0, 0.5, and 0.9 eV /atom.

A_B marks the A cluster deposited on the B substrate.

only a double layer on the Cu(111) surface. For an impact
energy of 0.7 eV /atom the Nij3 cluster remains relatively
intact, with one atom substituted by a surface atom. At
the same impact energy, the Cuys cluster forms a sym-
metrical pyramid. A similar pyramid appears first at an
impact energy of 0.9 eV /atom for the Niy3 cluster, whereas
at this energy the Cujs cluster collapses forming a dou-
ble layer. All these results allow us to coin the nickel and
copper clusters as being hard and soft, respectively.

The concept of hard and soft clusters can be further
quantified through the evolution of the cluster shape with
the simulation time. In order to compare the structures
of the deposited products with their initial structures we
use the so-called similarity functions introduced by us in
previous studies [19,20]. For each atom we define its radial
distance

rn = |Rn — Ryl (6)
These are sorted in increasing order. At any time in the
simulation we compare these with the sorted radial dis-
tances for the initial structure, {r/,}. From

| XN 1/2

_ 12

0= ¥ | @

the similarity function is defined as
- 1
14 q/u

(u; = 1 A), which approaches 1 if the cluster has changed
structure very little.

The results are shown in Figure 6. The similarity func-
tion for nickel deposited on a copper surface stays at a
higher value than the one for copper deposited on a nickel
surface. This supports the consensus of hard nickel and
soft copper clusters. In contrast to these results, the nickel
cluster readily spreads on its homoatomic surface, produc-
ing a symmetric bilayered structure at an impact energy
of 0.5 eV/atom, as indicated by the low values seen in
Figure 6. It can also be seen in the figure that when de-
positing a cluster on a surface of the same type of atoms
the separation into hard and soft clusters becomes less
relevant (see also Figs. 3 and 5).

A further relevant question is whether the substrate
dictates the structure of the deposited cluster, i.e., to
which extent the deposition can be classified as being epi-
taxial. To this purpose we use an ‘index of epitaxy’, I, [16]
defined through

1

I=—
L+q/uf

(9)
with

N
¢=Y |Ri— R (10)

where |R; — R.| is the distance between the position of
the ith atom of the cluster and the closest-lying fictitious
atom in the infinite ideal crystal formed by the substrate
(notice that thereby I can also become close to 1 even
when the cluster and the substrate are far apart). When
I reaches 1, perfect epitaxy is obtained.
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Fig. 7. The evolution of the index of epitaxy with time for the simulations with cluster impact energies of 0.0 and 0.9 eV /atom.

A_B marks the A cluster deposited on the B substrate.

In agreement with our previous study [16], there is
no direct relationship between the impact energy and the
value of I. In Figure 7 we show I for impact energies of 0.0
and 0.5 eV/atom. In all cases T is well below 1 which im-
plies that the interatomic forces within the clusters are suf-
ficiently strong to keep the cluster fairly intact and prevent
epitaxial spreading on the surface. It is again seen that the
nickel clusters are harder than the copper clusters, since
I stays roughly constant. A similar behaviour is observed
also for the highest impact energy of 0.9 eV/atom, which
is not shown here. On the other hand, the softer copper
clusters show an increasing index of epitaxy, which reflects
the spreading of these cluster on the Ni(111) and Cu(111)
surfaces. The highest indices of epitaxy are obtained for
the combination Cu;s deposited on Ni(111). In this case,
the cluster forms double layers for all impact energies, ex-
cept for Eg = 0.3 eV/atom, where a symmetric pyramid
is obtained (see also Fig. 2).

4 Conclusions

In the present work we have studied the structural rear-
rangements of nickel and copper clusters softly deposited
on Ni(111) and Cu(111) surfaces. We have used constant-
energy molecular-dynamics simulations with impact ener-
gies being typical of the Low Energy Cluster Beam De-
position experiment. The main point of this study was
to investigate the differences in the structural and ener-
getic properties of the final products when comparing de-

positions with homoatomic and heteroatomic interactions.
According to our findings we conclude that in the case of
heteroatomic interactions the cohesive energy of the bulk
element is a crucial factor influencing the shape of the fi-
nal structures. Thus, the deposition of Cu;z on a Ni(111)
surface results in an overall spreading of the cluster due
to the lower cohesive energy of copper, whereas the depo-
sition of the nickel cluster on a Cu(111) surface leads to
relatively small changes of the initial structure.

This may be the most interesting outcome of our study,
i.e., that when clusters of one type of metal are deposited
on another type of metal, it is possible to distinguish be-
tween hard and soft clusters, depending on whether the
cohesive energy of the cluster material is larger or smaller
than that of the substrate material. Then, soft clusters
tend to spread on the substrate even at modest impact
energies, whereas hard clusters largely remain intact also
at slightly higher impact energies.

Moreover, it turned out that a deposition energy of
0.5 eV/atom could be favorable for the production of
monolayers in the case of Cujs cluster deposited on
Cu(111) and Ni(111) surfaces, and the formation of double
layers in the case of Nijg cluster deposited on Ni(111).

Finally, we add that our study not at all aims at being
exhaustive. We have only considered two types of cluster
and substrate metals, only one cluster size and substrate
surface, and only one impact geometry. As we have found
in our recent study [16], varying the cluster size and im-
pact geometry may very easily change details of the out-
come of the deposition. Furthermore, in some preliminary
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studies we also found that by changing the approximate
method used in describing the interatomic interactions
(specifically, we considered the DBF potential instead of
the VC potential for the Cu on Cu deposition), slightly
different results will be found. Nevertheless, we are con-
vinced that our main conclusions remain valid, also when
taking such extensions into account.

This work was supported by the SFB 277 of the University of
Saarland and by the German Research Council (DFG) through
project Sp439/14-1.
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Structures and stability of Ag clusters on Ag(111) and
Ni(111) surfaces
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Abstract

The lowest-energy structures of small Agy clusters with N=2-20, which are
adsorbed on Ag(111) and Ni(111) surfaces, are determined using a combi-
nation of the embedded-atom method and the basin-hopping algorithm. We
have found that Ag cluster structures which correspond to magic sizes with
N < 18 tend to have similar geometries on both surfaces. On the other
hand, the geometries of the Ag clusters for the non-magic sizes in the same
size range differ for the different surfaces. From N=18 upwards a reversal of
the magic numbers for the Ag/Ni(111) system compared to the Ag/Ag(111)
system takes place. Finally, due to the large size mismatch it is energeti-
cally unfavorable for Ag to form a pseudomorphic monolayer structures on
Ni(111) and there is considerable strain produced at the interface. The effect
of this strain and the increased adatom-substrate interactions will give rise

to disordered and elongated structures of the adsorbed Ag clusters.
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and topography, Silver, Nickel

1. Introduction

The preparation of individual nanostructures or thin films on solid sur-
faces becomes more and more important during the last years because of
their technological importance in the field of catalysis and microelectronics.
The latter application is due to the novel magnetic and electronic effects that
result from low dimensional structures. Moreover, the creation of bimetallic
surfaces by hetero-epitaxial metal growth offers the potential to grow ar-
tificially structured materials with novel physical and chemical properties.
Beside the importance for nanotechnological applications, the geometrical
structures of clusters adsorbed on single-crystal surfaces reflect fundamental
aspects of adatom-adatom and adatom-substrate interactions and afford in-
sights into the initial stages of crystal growth modes and nucleation processes.
Systematic studies of the changes of the structural properties of clusters on
surfaces as a function of cluster size lead to detailed understanding of such
processes.

Thus, one fundamental question that has to be answered is what is the
initial stage of thin film formation and crystal growth of the investigated
metals: do the clusters develop chains parallel to the substrate or do they
form islands, and what is the dominant geometry of these islands. Zhuang
et al. [1, 2, 3] have performed global optimization on a series of adatom-
surfaces systems: Ag/Ag(111), Ni/Ni(111), Cu/Cu(111), and Au/Au(111)
with selected sizes up to N=52 atoms using a genetic algorithm combined

with embedded-atom method. They found close-packed islands of hexagonal



shape with maximum number of nearest-neighbor bonds, which was in good
accordance with observations in scanning tunneling microscopy (STM) ex-
periments [4]. Also for Ir/Ir(111) and Ni/Au(111) compact islands are found
to be preferred, as observed in STM and field ion microscopy (FIM) exper-
iments [5, 6]. Linear chains are predicted e.g. for Pty clusters (N=3 and
5) on Pt (001) surface by semiempirical calculations [7], also for small Pty
(N=1-7) and Pdy (N=1-17) clusters on Ag(110) surface by photoemission
study [8], and for Pt and Ir clusters on W(110) by FIM study [9].

Alternatively, the deposited cluster may alloy into the first or the first
several layers. For example, Ni adatoms can replace Ag atoms in the first
surface layer of a Ag(111) surface under the formation of a surface alloy
[10, 11], although Ag and Ni show no tendency for alloying in the bulk. The
reason is the strong tendency of Ag atoms for surface segregation. In contrast
to Ni/Ag(111), latest STM experiments show that Ag atoms deposited on
a Ni(111) surface aggregate in complex islands of two monolayer thickness
and do not show any diffusion processes at the Ag/Ni interface [12]. Unfor-
tunately, experiments can not provide information on the exact structure of
the Ag islands and additional theoretical investigations are needed.

To our knowledge there are no theoretical studies which determine the
geometry and energetics of Ag clusters interacting with a Ni surface. How-
ever, such investigations could provide important information on the initial
stages of Ag thin film formation on Ni surfaces. Further, the Ag—Ni system
presents a large lattice mismatch (the lattice constant of Ag is 16 % larger
than this of Ni) and a large difference in the cohesive energies (-2.96 eV for

Ag and -4.44 eV for Ni) [13, 14]. Thus, it would be interesting to know how



the system releases the strain induced by the size mismatch and what is the
influence of the large difference in the cohesive energies on the most stable
equilibrium structures of the adsorbed Ag clusters. Therefore the detailed
structural evolution of Ag clusters on a Ni(111) surface will be in the focus
of the present work.

Our aim is, accordingly, to determine and analyze the ground state struc-
tures of Agy clusters adsorbed on a Ni(111) surface with N=2-20 in an un-
biased study and to compare them with those of Agy clusters on a Ag(111)
surface investigated in the same study. Further, we shall explore whether
those values of N that for the Ag clusters on the Ni(111) surface correspond
to particularly stable structures also do so for Ag clusters on the Ag(111)
surface.

The lowest-energy structures of Agy clusters with N=2-20 adsorbed on a
Ag(111) and a Ni(111) surface have been determined using a basin-hopping
algorithm combined with the embedded-atom method. The paper is orga-
nized as follows. In Sec. 2 we briefly outline the embedded-atom method
and the basin-hopping algorithm. The main results are presented in Sec. 3,

and a brief summary is offered in Sec. 4.

2. Computational methods

2.1. The Embedded-Atom Method (EAM)

The homoatomic and heteroatomic interactions Ag—Ag, Ni—Ni, and Ag—
Ni between the atoms in the Ag/Ag(111) and Ag/Ni(111) systems are mim-
icked by the EAM in the version of Daw, Baskes and Foiles (DBF) [15, 16, 17].
The main idea of the EAM is to split the total energy of the system into a



sum of atomic energies,
N
B =Y E;, (1)
i

with F; consisting of two parts, i.e., an embedding energy (which is obtained
by considering the sth atom as an impurity embedded into the host provided
by the rest of the atoms) and a pair-potential interaction with all other atoms.

Accordingly,

B, = B + 5 3 oulra) @)
J#i
where p is the local electron density at site 4, Fj is the embedding energy, and
¢;; is a short-ranged potential between atoms ¢ and j separated by distance
Tij.
The local density at site ¢ is assumed being a superposition of atomic

electron densities,

Z p; (riz), (3)

3 (#)

where pf(r;;) is the spherically averaged atomic electron density provided by
atom j at the distance ry;.
In accord with Ref. [17] the A-B/B-A heterointeraction can be approx-

imated in the EAM by the geometric mean of the pair interaction for the

individual species: ¢ap(r \/ ¢aa(r) - ¢pp(r). Daw, Baskes and Foiles
determined the embedding functions for the Ag—Ni system empirically by
fitting to experimental data of bulk sublimation energy, elastic constant and
the heat of solution of binary alloys [17]. The values for p¢, F; and ¢;; are
available in numerical form for Ni and Ag [18]. The validity of the embedding

functions for the Ag—Ni system has been tested by computing a wide range



of properties as e.g. the segregation energy of substitutional impurities to
the (100) surface [17].

The EAM has been successfully applied to many bulk and low-symmetric
problems in transition metals such as defects, surface structures and seg-
regation [19]. Furthermore, in our previous works [20, 21, 22, 23] (those
include also the discussions with the available experiments) we have found
that this approach provides accurate information on pure nickel and silver
clusters, which is our main reason for choosing this potential for studying

the structures of Ag clusters on Ag(111) and Ni(111) surfaces.

2.2. The Basin-Hopping Algorithm (BH)

To find the lowest energy structures of the Ag/Ag(111) and Ag/Ni(111)
systems we use the BH method [24, 25, 26, 27]. The basic idea of the
BH method is to transform the complex energy landscape as a function of
X = (Z%l, Ry, ..., EN) (with R; being the position of the ith atom) to a new

reduced energy landscape, which consists of plateaus of energy minima only
E(X) = min{ E(X)}, (4)

where min{...} represents a local energy minimization process with X as
initial structure. Perturbations in the algorithm are introduced by chang-
ing slightly the latest set of coordinates and carrying out a gradient-based
optimization from the resulting geometry. Moves are accepted or rejected
based upon the energy difference between the new and old local minimum.
Thus, the difference from the standard Monte Carlo algorithm is that the
energy should be minimized with respect to the local minimum before the

Metropolis acceptance rule is applied. The BH approach can be also viewed

6



as a generalization of the “Monte Carlo plus energy minimization” proce-
dure of Li and Scheraga [28]. The Monte Carlo part of the BH algorithm
is introduced in order to allow the system to hop from one plateau to an-
other at a thermal energy kg T*. The hopping probability depends highly
on the choice of the “temperature” 7" and on the reduced-energy difference
between the plateaus of the two consecutive steps. In this study the Monte
Carlo simulation has been performed at a constant reduced “temperature”
of 0.8.

In the present modified version of the BH algorithm we start with ran-
domly generated cluster structures which are initially placed at a distance
of a;/2 above the relaxed Ag(111) and ay/2 above the relaxed Ni(111) sur-
face, where a;=4.09 A is the bulk lattice constant of Ag and a;=3.52 A this
of Ni. Then we disturb randomly the coordinates of the cluster separately
from those of the surface and carry out a gradient-based optimization on
the ”cluster+surface” system. Afterwards the Metropolis acceptance rule is
applied using the old and new local minima of the ” cluster+surface”. For the
next step the cluster atoms that belong to the latest set ”cluster+surface”
coordinates are disturbed randomly again. This procedure is repeated until
the lowest total energy of the ”cluster4surface” system is found. Thus, in
contrast to the optimization procedure of Ref. [1] in which relaxation is car-
ried out only for the cluster, we relax the whole atoms including those of the

surface after each disturbance of the coordinates.

2.3. Surface model

Before starting the optimization, first of all non-relaxed Ni(111) and

Ag(111) surface slabs were generated, using the equilibrium lattice constants

7



a1 and ao of both Ni and Ag bulk obtained from the EAM potential. To
find out how large the slab should be to mimic the surface behavior we car-
ried out a series of relaxations of slabs in which the number of layers (in
z-direction) and the number of hexagonal shells (in x-y direction) increase.
Then we evaluated the difference in the surface energy between a slab with
L layers and a slab with (L-1) layers. Thereby the surface energy is defined
as follows

Esyrr(L) =05 (EBE, — L - EBULK) 5)

with
EPUEE(L) = 0.5 (Bl — EL,). (6)

For the surface energy and for the binding energy of a cluster with the maxi-
mum number of N=20 atoms, we applied a convergence criterion of 0.1 meV
to decide for which combination of layers and shells the slab will represent
bulk properties. Thereby the convergence will be automatically fulfilled for
smaller clusters. For the further calculations we used a Ni(111) slab consist-
ing of 9 shells and 11 layers and a Ag(111) slab consisting of 10 shells and
15 layers.

3. Results and discussion

First of all we will investigate if Ag clusters adsorbed on a Ag(111) surface
possess the same particular stable structures as Ag clusters adsorbed on a
Ni(111) surface. In order to identify particularly stable clusters we consider

the stability function

Estab = Eiot (N + 1) + Byt (N — 1) — 2E;4¢(N). (7)



Egtap is shown in Fig. 1 (bottom) for Ag clusters on a Ag(111) and a Ni(111)
surface separately. Maxima of Eg,p, indicate particularly stable (magic) clus-
ters. The magic sizes N=7, 10, 12, 14, 16, and 19 found for the Ag/Ag(111)
system are in good agreement with those of Ref. [1]. Further, we observe
that for cluster sizes, up to N=12, the stability function for both homo- and
heteroatomic systems possess the same maxima and minima. In the size
range 13 < N < 17, the stability functions of Ag clusters on Ni(111) surface
shows the same peaks, but they are less pronounced compared to that of Ag
clusters on Ag(111) surface. Surprisingly, for N=18 and 19 there is a reversal
of the maxima in both stability functions. While N=19 is magic size for Ag
clusters adsorbed on a surface consisting of Ag atoms, it is non-magic size
for Ag clusters adsorbed on a surface consisting of Ni atoms. For the last
case a new magic size appears, at N=18.

At next we want to find out if the clusters which are especially stable on
both surfaces possess the same structures and if the difference in the magic
numbers for homo- and heteroatomic system corresponds to different geome-
tries. In order to quantify structural differences and similarities between
two Ag clusters of the same size of N atoms placed on different surfaces we
use the concept of similarity functions introduced by us in previous studies
[20, 22]. For each atom in a Ag cluster adsorbed on a Ag(111) surface we
define its radial distance

rn = | Ry — Ro| (8)
with

L 1N L

Ry = N;Ri. (9)

These are sorted in increasing order. Simultaneously, for each atom in the

Ne}



Ag cluster on Ni(111) we calculate and sort the radial distances, {r}}, for
this, too. Subsequently, from
L 1/2
2
= | % n — I'n' 5 10
y [Nn:1<r r)] (10)

we define a similarity function,

1

S =—
! 1+ q/u

(11)

(u; = 1 A), which approaches 1 (0) if the Ag cluster on the Ag(111) surface
is very similar to (different from) the Ag cluster on the Ni(111) surface. The
similarity function S is shown in Fig. 1 (top) as a function of the cluster size
N. From this figure it can be seen that Ag clusters have the same structures
for all magic sizes up to N=16, on both the Ag and the Ni surface. In
contrast, the non-magic clusters of the sizes N=6, 9, 11, and 13 possess
different geometries on the different surfaces. In the size range N=17-20 the
difference in the cluster geometries corresponds to the reversal of the magic
numbers of the Ag clusters on the homo- and heteroatomic surfaces described
above. Some of the structures which are different on the Ag(111) and the
Ni(111) surface are shown in Fig. 2. (The similarity function Sy in Fig. 1
will be discussed later in this work.)

To explain the appearance of different lowest-energy structures and magic
numbers in the heteroatomic system we plot the number of nearest-neighbor
bonds (NN) in Fig. 3 (left side) and the number of nearest substrate atoms
(SA) (right side) in dependence of cluster size. From the plot and from Fig. 2
it is visible that the ground-state structure of Agig on Ni(111), for example,

does not possess the geometry which maximizes the number of NN bonds in

10



contrast to Agjg on Ag(111). The first one is elongated and has more near-
est substrate atoms. This indicates that the adatom-substrate interaction
in the case of the Ag/Ni(111) system dominates over the adatom-adatom
interaction and can compensate the loss in binding energy caused by the NN
bond breaking (Ag—Ni interaction is stronger than Ag—Ag interaction [29]).
However, as compact structures are preferred (at least in the investigated
size range), Agg adsorbed on Ni(111) loses its special stability compared
to its neighbors Agis and Agyy and instead Agig, which possesses a more
compact structure, becomes more stable. For lower sizes the influence from
the adatom-substrate interactions is obviously not strong enough to change
the predominance of the NN adatom-adatom interactions and therefore the
same structures of magic clusters appear on the different surfaces.

An interesting question is also if cluster growth is a regular one, i.e. if the
structure of a Agy cluster can be considered as being built up by adding a Ag
atom to the structure of Agy_; cluster. In order to quantify this suggestion

we consider the similarity function S5. We calculate and sort all interatomic

N(N-1)
2

distances d;, i = 1,2,-- -, . Subsequently we consider each of the N
fragments of the N-cluster that can be obtained by removing one of the atoms
and keeping the rest at their positions. For each of those we also calculate

and sort all interatomic distances d;, and calculate, subsequently,

9 N(N—1)/2

NN=T) > (di—d)?

=1

(12)

1/2
"

Among the N different values of ¢ we choose the smallest one, g.;, and

11



calculate the similarity function

1

Sp=
? 1+Qmin/ul

(13)

(u = 1A) which approaches 1 if the Agy cluster is very similar to the Agy_1
cluster plus an extra atom. The results for Ag clusters on both Ag and Ni
surfaces are shown in Fig. 1 (middle row). In contrast to the Ag/Ag(111)
system, on the Ni(111) surface we observe a regular growth of the cluster
monolayer up to N=11, due to the presence of the hexagon as growth motif.
In the size range N=12-20 the cluster growth becomes irregular one for both
surfaces and we can not find a dominant structural growth motif.

In order to study the influence of the underlying substrate on the adsorbed
cluster structure we used the so-called ‘Index of epitaxy’, I, introduced by
us in a previous study [30]. This parameter enables us to quantify whether
the structure of the adsorbed cluster is dictated by the underlying substrate,
i.e., to which extent the adsorption or growth process of the clusters can be

classified as being epitaxic. It is described with the following formula:

N -
q = Z|RZ _Rcl2

1
SR 14
1+q/ul2 (14)

where |§Z — ﬁc| is the distance between the positions of the 7th atom and
the closest-lying fictitious atom in the infinite ideal crystal. In this case
we generated very large (more than 20000 atoms) ideal Ag(111) and Ni(111)
crystals using the lattice constants of the metals. When [ reaches 1, a perfect

epitaxy is obtained. In Fig. 4 we show the results for the index of epitaxy

12



for Ag clusters adsorbed on a Ag(111) surface and for Ag clusters adsorbed
on a Ni(111) surface. In the case when the underlying substrate consists of
Ag atoms [ is near to 1, which indicates perfect epitaxial growth. All Ag
adatoms are adsorbed at the normal fcc sites (see Fig. 5), i.e. they occupy
equivalent sites with respect to the substrate lattice. In contrast, when the
underlying substrate consists of Ni atoms [ decreases with cluster size and
possesses a minimum of /=0.47 at N=14. Fig. 5 shows examples for the
difference in the epitaxy for clusters of the same size on different surfaces.
As we can see all the Ag adatoms sit in inequivalent sites, i.e. they are
neither located all at fcc sites, nor at hep sites. Instead most of them are
placed at intermediate sites as e.g. at bridge sites between two Ni atoms.
This lost of the three fold symmetry in the heteroatomic system compared
to the Ag/Ag(111) system leads to more irregular structures for Ag clusters
adsorbed on a Ni(111) surface.

To get a better understanding of the atomic structure of also larger clus-
ters on Ni(111) we take a cut out from a Ag monolayer of the ideal Ag(111)
crystal to obtain nearly close-packed structures of N=50 and 100 atoms and
let them relax on a Ag(111) and a Ni(111) surface to their most stable equi-
librium positions. The results are presented in Fig. 6. Here, it becomes
visible that when the cluster size increases to N=100 the Ag atoms start to
occupy also top sites (on Ni atoms) beside bridge sites. Further, we observe
some kind of waving of the Ag atom rows in x-y direction, so that Ag clus-
ter atoms propagate to one additional substrate row than expected from the
homoatomic case. See for example the structures of the cluster size N=>50

shown in Fig. 6: the Ag atoms on Ag(111) are laying between 10 rows of
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substrate atoms, whereas on the Ni substrate they cover 11 rows of substrate
atoms. This effect becomes stronger with increasing cluster size. It is due
to the fact that Ag atoms try to keep the adatom-adatom distances as near
as possible to those of the pure Ag cluster (the Ag—Ag dimer bond length
(2.44 A) is larger than the Ni-Ni dimer bond length (2.12 A) and the lattice
constant of Ag is 16 % larger than this of Ni). By introducing the distortion
described above, some of the strain in the heteroatomic system due to the

mismatch is released, and the structure becomes more stable.
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4. Conclusions

In this work we have studied the structural and energetic properties of
Agpy clusters on a Ag(111) and a Ni(111) surface with N up to 20 atoms.
The homo- and heteroatomic interactions in the cluster-surface systems have
been modeled using the EAM and the global geometry optimization has been
performed using the BH algorithm. For both Ag/Ag(111) and Ag/Ni(111)
systems the tendency to form close-packed structures with maximum number
of nearest-neighbor bonds, except for Agjg on Ni(111), is common. Further,
the magic sizes up to N=17 and the corresponding structures are the same
for the homo- and heteroatomic system. In contrast, the geometries of the
Ag clusters for the non-magic sizes in the same size range differ for the
different surfaces. From N=18 upwards a reversal of the magic numbers for
the Ag/Ni(111) system compared to the Ag/Ag(111) system takes place, due
to the stronger influence of the adatom-substrate interactions compared to
the adatom-adatom interactions in Agi9. The increase in adatom-substrate
interactions for Ag clusters on Ni(111) results in a higher number of nearest
substrate atoms and in the preference of elongated structures. Finally, for
the Ag/Ni(111) system the index of epitaxy is decreasing with increasing
cluster size because of the large mismatch of dimer bond lengths and lattice

constants between Ag and Ni.
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Figure 1: The similarity functions S; and Sz (top and middle row) in dependence of the
cluster size N. The third row shows the stability functions of Ag clusters on Ag(111) and
of Ag clusters on Ni(111) surface.
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Figure 2: The lowest-energy structures of Ag clusters on a Ni(111) (left column) and on a

Ag(111) (right column) surface.

20



45- T T T T T T T T T 40 L = Ag(111)N
= 7 - —@— Ni (111)
i g i 35 i
40 _ 19 | I 1
35+ 7
30 N
/

30 8 |

- J 25 -
25 8 I
20 I / | 20 [

NN bonds
SA

10 b / .
L 4 10 | -
5L -
0 . ST il
PR U I ST RN NN R R PR (N W N T AN SRR NN T T T TSN M1
0 3 6 9 121518 21 0 3 6 9 121518 21
Cluster size Cluster size

Figure 3: The number of nearest-neighbor (NN) bonds (left side) and the number of
nearest substrate atoms (SA) (right side) in dependence of cluster size separately for Ag

clusters on Ag(111) surface (square) and for Ag clusters on Ni(111) surface (circle).
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Figure 4: The evolution of the index of epitaxy with cluster size separately for Ag clusters

on Ag(111) surface (square) and for Ag clusters on Ni(111) surface (circle).

22



B L

™
i
Z

R

L A AL

-
i
Z

(left column) and a

23

Figure 5: The lowest-energy structures of Ag clusters on a Ni(111)

Ag(111) (right column) surface.
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