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11.. AABBSSTTRRAACCTT

A novel method for high-throughput stoichiometric and metabolic flux profiling was devel-

oped and a set of deletion mutants of S. cerevisiae, which are known to be involved in central

carbon metabolism were selected and investigated on glucose, galactose and fructose. On

glucose and fructose, the growth was predominantly fermentative and on galactose, respira-

tion was more active. mae1  strain did not show any significant growth phenotype on glu-

cose, however, it had highest PPP flux  on galactose, which could be due to redirection of

NADPH production  to  the  PPP.  On fructose, mae1  strain had highest oxygen uptake rate

with  very  low  ethanol  yield,  which  could  be  due  to  reduced  PPP  flux  and  to  maintain

NADPH levels either via NADPH specific -isocitrate dehydrogenase or -aldehyde dehydro-

genase. imp2’  strain  had  lowest  PPP  flux  and  very  high  respiratory  activity  on  galactose;

and pck1 strain had lowest PPP flux on glucose, which might also point to a possible activa-

tion of malic enzyme. On fructose, hxt17 strain had highest sugar consumption and ethanol

production rates and imp2’  strain had highest ethanol yield. The functional prediction of

hypothetical genes by utilising this quantitative data using computational analyses suggested

a possible role in glycolysis or pyruvate metabolism for YBR184W and low affinity trans-

porter role for YIL170W.
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22.. ZZUUSSAAMMMMEENNFFAASSSSUUNNGG

Es wurde eine neue Hochdurchsatzmethode für die Charakterisierung der Stöchiometrie und

der metabolischen Flüsse entwickelt und auf ausgewählte Deletionsmutanten des Zentral-

stoffwechsels von S. cerevisiae angewendet, wobei Glucose, Galactose und Fructose als Sub-

strate eingesetzt wurden. Während auf Glucose und Fructose das Wachstum vorwiegend fer-

mentativ war, war es auf Galactose mehr respirativ. Der mae1  Stamm zeigte keinen Phäno-

typ auf Glucose, hatte aber auf Galactose einen sehr hohen Fluss in den Pentosephosphatweg

(PPP) mit entsprechend hoher Bereitstellung von NADPH und auf Fructose die höchste Sau-

erstoffaufnahmerate mit zugleich sehr niedriger Ethanolausbeute, was auf einen reduzierten

Fluss in den PPP und verstärkte Bildung von NADPH über die Isocitratdehydrogenase oder

die Aldehyddehydrogenase hindeutet. Der imp2’  Stamm hatte einen sehr niedrigen PPP-

Fluss und starke Respiration auf Galactose. Der pck1 Stamm hatte die niedrigsten PPP Fluss

auf Glucose, was auf eine Aktivierung des Malatenzyms hindeutet. Auf Fructose zeigte der

hxt17 Stamm höchste Zuckerverbrauchs- und Ethanolproduktionsraten und imp2’ hatte die

höchste Ethanolausbeute. Numerische Analysen erlaubten eine erste Vorhersage möglicher

Funktionen zweier hypothetischer Gene, in der Glykolyse oder im Pyruvatmetabolismus für

YBR184W und als niedrig affinen Transporter für YIL170W.
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33.. IINNTTRROODDUUCCTTIIOONN

33..11 MMOOTTIIVVAATTIIOONN
S. cerevisiae is one of the most thoroughly studied microorganisms. Along with its industrial

importance, S. cerevisiae serves as a model organism for understanding and engineering eu-

karyotic cell function. S. cerevisiae was  the  first  eukaryotic  organism  whose  genome  was

fully sequenced (Fig 3.1-1) (Goffeau et al., 1996, 1997). Understanding gene functions in

metabolic and regulatory processes in yeast is of central importance for engineering of new

production strains and also for the study of these processes with relevance to human metabo-

lism and drug discovery (Barr, 2003; Que and Winzeler, 2002). There have been many stud-

ies aiming to unravel the function of orphan genes in the genome, and various functional ge-

nomics techniques were first implemented in S. cerevisiae (Förster et al., 2003). The pheno-

type of an organism is the manifestation of its expressed genome and phenotypic screens are

frequently the first important steps to the functional characterization of genes (Carpenter et

al., 2004). A promising strategy for the elucidation of gene functions combines well-defined,

systematic genetic modifications with characterization of the resulting phenotypic analysis

for example,  growth rate (or fitness) of mutants missing the gene of interest  (Baganz et  al.,

1997; Winzeler et al., 1999; Que et al., 2002).

Figure 3.1-1 Snapshot of S. cerevisae genome. Graphical view of protein coding genes (as of

August 2003). Source: Saccharomyces Genome Database (www.yeastgenome.org)

http://www.yeastgenome.org
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In this context, an international consortium established a complete yeast strain collection with

the deletion of each single gene (Giaever et al., 2002). The availability of the complete set of

deletion mutants of S. cerevisiae provides  a  unique  resource  for  systematic  analysis  of  the

functional role of individual genes. Moreover, it is a quantitative tool for systematically

measuring the contribution to survival and reproduction (fitness) of most genes in the yeast

genome. In many of these analyses, the aim has been to determine how the different genes

(both the ones with known function and those open reading frames that have no assigned

function) interact with each other, enabling the cells to take up nutrients, grow, divide, regu-

late their metabolism, release products to the environment, and respond to different stimuli.

Exposition  of  such  strains  to  a  suitable  environment,  e.g.  substrate  mixture  or  stress  condi-

tion, and subsequent measurement of fitness or gene expression supports discovery of gene

function.

33..22 OOBBJJEECCTTIIVVEESS

To exploit this unique resource of complete set of yeast single gene knockouts, high-

throughput assays are needed to provide a phenotypic profile of the functional role of indi-

vidual genes. Currently many high-throughput techniques are available for large scale screen-

ing of yeast mutant library based on fitness (Giaever et al., 2002). Although, these techniques

are useful for massive screening of mutant strains to find gene-environment interactions dur-

ing several stress responses (Gasch et al., 2002), e.g. oxidative stress (Weiss et al., 2004),

saline response (Warringer et al., 2003), weak organic acid (Mollapur et al., 2004) quantita-

tive information on the actual metabolic changes induced is limited to growth rate which

serves as an overall indicator of so called fitness.

In the field of functional genomics, several comprehensive methods have been developed for

the analysis of different ‘Omic’ data i.e. genome, transcriptome, proteome and metabolome

depending on the type of compounds measured, i.e., transcripts, proteins, or metabolites (An-

dreas et al., 2001), respectively. The primary approaches of functional genomics, until re-

cently, have been expression arrays and proteomics. Although these are powerful approaches,

they do not necessarily elucidate gene function (Trethewey et al., 2001). Since mRNA mole-

cules are not functional entities within the cell, gene expression profiles alone cannot directly

identify the functions of genes. On the other hand, proteins and metabolites constitute func-
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tional entities within the cell (Delneri et al., 2001). However, at the proteomic level, changes

in protein abundance do not necessarily indicate increases in activity within the cell associ-

ated with this protein (Trethewey et al., 2001). Measuring changes in metabolite concentra-

tions (metabolic profiling) is another powerful approach for assessing gene function and rela-

tionships to different phenotypes (Phelps et al., 2002).

Figure 3.2-1 Overall picture of the central idea of the project

Generally,  the  determination  of  basic  physiological  parameter  as  rates  of  growth,  substrate

consumption, product formation and respiration and further of metabolic pathway activities is

of central importance for the characterization of strains. Thus it would be most desirable to

get a more detailed picture of metabolic activities of such mutants (Figure 3.2-1). Allen et al.

(2003) analyzed the supernatant of cultivated yeast deletion mutants using HPLC-MS, which

served as indicator for metabolic activities. Traditionally, this is only possible by controlled

cultivation of strains in fermenters. This is, however, hardly affordable for a large number of

strains. Therefore, controlled cultivation of microorganisms in microtiter plates has received

increased attention in recent years (John et al., 2003; Kumar et al., 2004; Sauer, 2004). Oxy-

gen supply has a major influence on the physiology of S. cerevisiae as has been shown in

continuous culture (Furukawa et al., 1983). Oxygen supply is, however, limited in microtiter

plates (Kumar et al., 2004). Recently, microtiter plates with integrated optical sensing of dis-

solved oxygen became available (John et al., 2003) and allow the measurement of dissolved

oxygen profiles of microbial cultures, which can serve as a basis for the estimation of oxygen
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uptake rate (Dunn et al., 2003). In batch culture the maximum range of exponential growth is

limited to a maximal critical cell concentration above which oxygenation is insufficient.

The main objectives of the thesis are

to develop and optimise a methodology for high-throughput kinetic and stoichiometric

analysis of yeast mutant libraries at miniaturized scale

to investigate the quantitative physiological profiling of the selected mutant strains on

different carbon sources for e.g., glucose, galactose and fructose substrates

to develop a methodology for high-throughput calculation of simplified metabolic fluxes

to analyse and compare the physiological and metabolic flux profiling of selected mutant

strains on different carbon sources

to investigate the quantitative physiological and metabolic flux profiling of mutant strains

with deletion of hexose transporters and regulators on different carbon sources

to predict the functional role of deleted genes by using statistical analyses and computa-

tional tools
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33..33 TTHHEEOORREETTIICCAALL BBAACCKKGGRROOUUNNDD OONN YYEEAASSTT MMEETTAABBOOLLIISSMM

S. cerevisiae is one of the most important species for biotechnological production and a most

relevant eukaryotic model organism. Yeast metabolism and growth are adapted to the avail-

ability of carbon source, in particular, to the type of carbon source for e.g., glucose, galactose

or fructose. Metabolism refers to the biochemical assimilation and dissimilation of nutrients

by the cells. Assimilatory, anabolic pathways are energy consuming, reductive processes

which lead to the biosynthesis of new cellular material. Whereas, dissimilatory, catabolic

pathways are oxidative processes, which remove electrons from intermediates and use these

to generate energy (Berg et al., 2002).

33..33..11 GGlluuccoossee mmeettaabboolliissmm
The major energy source in yeast is glucose and metabolises to produce energy in the form of

adenosine triphosphate (ATP). When ATP is hydrolysed to yield adenosine diphosphate

(ADP) and inorganic phosphate (Pi), the energy released is used by the cell for various reac-

tions and transformations.

33..33..11..11 GGllyyccoollyyssiiss

Glucose is metabolized in a series of steps known as Emben-Meyerhof-Parnas (EMP) path-

way or glycolysis in cytosol. Glycolysis provides yeast with energy, together with precursor

molecules and reducing power for biosynthetic pathways. Through a set of biochemical reac-

tions, metabolism of glucose eventually yields two pyruvate molecules. In the first stage glu-

cose is converted into fructose 1,6-bisphosphate by phosphorylation and isomerisation reac-

tions. Two ATP molecules are consumed per glucose molecule in these reactions. In the sec-

ond stage, fructose 1,6-bisphosphate is cleaved by aldolase into interconvertible dihydroxya-

cetone phosphate and glyceraldehyde 3-phosphate. In the third stage, ATP is generated when

glyceraldehyde 3-phosphate is converted to 3-phosphoglycerate. A phosphoryl shift and a

dehydration form phosphoenolpyruvate. Another molecule of ATP is formed when phos-

phoenolpyruvate is converted into pyruvate. There is a net gain of two molecules of ATP, and

NADH  in  the  formation  of  two  molecules  of  pyruvate  from  one  molecule  of  glucose.  The

glycolytic pathway is controlled by the regulation of the three irreversible reactions catalysed
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by hexokinase, phosphofructokinase and pyruvate kinase. The overall reaction of glycolysis

is (Berg et al., 2002)

OHHNADHATPOHCNADADPPOHC i 23436126 22222222

33..33..11..22 TTCCAA ccyyccllee

The pyruvate can enter either the Krebs cycle or tri carboxylic acid (TCA) cycle for complete

oxidation and production of carbon dioxide and adenosine triphosphate (ATP) under aerobic

conditions or it can be converted to fermentation products i.e., ethanol. The TCA cycle occurs

in the mitochondria of eukaryotic cells. The TCA cycle is responsible for the production of

reducing equivalents, required for ATP formation, and also for supplying biosynthetic pre-

cursors. The reducing equivalents are produced during the oxidation of carbon compounds.

The pyruvate produced by the glycolytic pathway from glucose easily enters the matrix of the

mitochondria. The pyruvate is than converted to a two-carbon fragment with the loss of the

carboxyl group as CO2 and this two carbon fragment attaches to a coenzyme known as coen-

zyme-A (CoA) forming acetyl-CoA. This reaction is catalyzed by pyruvate dehydrogenase.

Oxaloacetate reacts with acetyl-CoA and H2O to yield citrate and CoA by aldol condensation

followed by hydrolysis and is catalysed by citrate synthase. Citrate is isomerised to isocitrate,

catalysed by aconitase, accomplished by dehydration and hydration steps. Isocitrate is oxi-

dised and decarboxylated to –ketoglutarate by isocitrate dehydrogenase and this reaction

generates the first high-transfer-potential electron carrier, NADH. –ketoglutarate is oxida-

tive decarboxylated to yield succinyl CoA by –ketoglutarate dehydrogenase complex and

generates the second NADH. Succinyl CoA synthase catalyses the formation of succinate

from the energy-rich thioester compound, succinyl CoA and generates guanine triphosphate

(GTP), a compound with high-phosphoryl transfer capacity. Succinate is oxidised to fumarate

by succinate dehydrogenase and generates FADH2. Fumarate is hydrated to malate by fu-

marase. Finally, malate is oxidised to form oxaloacetate by malate dehydrogenase and gener-

ate the third NADH. A complete turn of the cycle results in the oxidation of the two carbon

fragment and formation of reducing equivalents. The TCA cycle is regulated by the activities

of the enzymes pyruvate dehydrogenase, citrate synthase, isocitrate dehydrogenase, -

ketoglutarate dehydrogenase and malate dehydrogenase (Berg et al., 2002). The net reaction

of the citric acid cycle is
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CoAHGTPFADHNADHCOOHPGDPFADNADAcetylCoA i 23223 222

33..33..11..33 OOxxiiddaattiivvee pphhoosspphhoorryyllaattiioonn

The NADH and FADH2 produced from glycolysis and TCA cycle are reoxidised to form

NAD+ and FAD through a complicated series of reactions known as oxidative phosphoryla-

tion and generate energy in the form of ATP for the cellular requirements. In eukaryotes oxi-

dative phosphorylation occurs in the mitochondrial compartment via the electron transport

assembly. The electron transport assembly is comprised of a series of protein complexes that

catalyze sequential oxidation reduction reactions. This process is facilitated by a proton car-

rier in the inner mitochondrial membrane known as ATP synthase. These reactions involve

the transfer of electrons through cytochromes with the ultimate electron acceptor being oxy-

gen to form water. Because of the need of oxygen, these reactions are active only under aero-

bic conditions. ATP will be produced from these reactions by a membrane-bound enzyme

ATPase at a rate of maximum 3 ATP molecules per a molecule of NADH oxidized (maxi-

mum 2 ATP molecules per a molecule of FADH2 oxidised). The oxidative phosphorylation is

controlled by the availability of ADP. Higher amount of ADP drives the process faster, as the

cells require more ATP (Berg et al., 2002).

33..33..11..44 PPeennttoossee pphhoosspphhaattee ppaatthhwwaayy ((PPPPPP))

The PPP generates necessary reducing equivalents, NADPH, pentose and erythrose carbon

units for the biosynthetic requirements of the cell. This pathway consists of two phases: the

oxidative generation of NADPH and non-oxidative interconversion of three-, four-, five-, six-

and seven-carbon molecules and results in the synthesis of five carbon sugars and connecting

the PPP with glycolysis. The first reaction in the oxidative phase is the dehydrogenation of

glucose 6-phosphate to 6-phosphoglucono- -lactone by glucose 6-phosphate dehydrogenase.

The next step is the conversion of 6-phosphoglucono- -lactone to 6-phosphogluconate by

lactonase. This six-carbon sugar is then oxidatively decarboxylated by 6-phosphogluconate

dehydrogenase to yield ribulose 5-phosphate. Two molecules of NADPH are generated from

these biochemical reactions. The net reaction of oxidative phase is (Berg et al., 2002)

22 22526cos COHNADPHphosphateRiboseOHNADPphosphateeGlu
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In non-oxidative phase, phosphopentose isomerase isomerizes ribulose 5-phosphate to ribose

5-phosphate and phosphopentose epimerase converts to xylulose 5-phosphate. Glyceralde-

hyde 3-phosphate and sedoheptulose 7-phosphate are generated by the transketolase and then

react to form fructose 6-phosphate and erythrose 4-phosphate by transaldolase. In the next

reaction, transketolase catalyses the synthesis of fructose 6-phosphate and glyceraldehyde 3-

phosphate from erythrose 4-phosphate and xylulose 5-phosphate. The first step of the oxida-

tive branch by the enzyme glucose 6-phosphate dehydrogenase, which is irreversible acts as

the main regulatory control for the pathway. The activity of this enzyme is determined by the

ratio of NADP+/NADPH. The net reaction of non-oxidative phase is (Berg et al., 2002).

phosphatehydeglyceraldephosphatefructosephosphateRibose 36253

33..33..11..55 FFeerrmmeennttaattiioonn

Several biotechnologically important yeasts are fermentative i.e., organisms which use or-

ganic substrates anaerobically as electron donor, electron acceptor and carbon source. When

oxygen is not available, the ability of the cell to reoxidise the reduced coenzymes (NADH

and FADH2)  is  greatly  diminished.  To  compensate,  the  biochemistry  of  the  cell  is  altered

such that pyruvate is decarboxylated by pyruvate decarboxylase to acetaldehyde and then to

ethanol by alcohol dehydrogenase in the fermentation process, which requires NADH. Thus,

the formation of ethanol allows the cell to reoxidise the NADH that was produced in earlier

steps of glycolysis (Eberhardt et al., 1999).

OHCOATPOHHCADPPOHC i 22526126 222222

Central carbon metabolic network model is depicted in figure 3-1, representing major path-

ways, i.e., glycolysis, TCA cycle, pentose phosphate pathway, anaplerotic pathway and fer-

mentation pathway.
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Figure 3-1 Metabolic network model in S. cerevisiae representing the major pathways in
central carbon metabolism; glycolysis, TCA cycle, pentose phosphate pathway, anaplerotic
pathway and fermentation pathway G6P - Glucose 6-phosphate, R5P – Ribose 5-phosphate,
F6P – Fructose 6-phosphate, E4P – Erythrose 4-phosphate, DHAP – Dihydroxyacetone
phosphate, GAP – Glyceraldehyde 3-phosphate, S7P – Sedoheptulose 7-phosphate, 3PG – 3-
phosphoglycerate, PEP – Phosphoenol pyruvate, PYR – Pyruvate, AcCoA – Acetyl CoA,
CIT – Citrate,  AKG - -ketoglutarate, SUC – Succinate, OAA – Oxaloacetate, BM – Bio-
mass

33..33..11..66 CCrraabbttrreeee eeffffeecctt

The Crabtree effect is a phenomenon, where at high glucose concentrations (>9 g/L) fermen-

tative metabolism and ethanol production continue to occur even in the presence of oxygen.

Here, NADH generated from the glycolysis is reoxidised by producing ethanol rather than the

combined pathways of respiration i.e., glycolysis, TCA cycle and oxidative phosphorylation.

The Crabtree effect may be due to a saturation of the limited respiratory capacity of yeast

cells. Thus glucose sensitive yeasts like S. cerevisiae i.e., Crabtree-positive yeast, may pos-

sess a limited oxidative capacity when grown on glucose which leads to an overflow reaction

at the pyruvate branch (Figure 3-2). This respiratory bottleneck in yeast indicates overflow

metabolism of glucose to ethanol when the respiratory capacity is saturated either due to glu-
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cose overload, the Crabtree Effect or to anaerobic conditions, the Pasteur Effect (Barwald and

Fischer, 1996).

Figure 3-2 Schematic representation of overflow metabolism at pyruvate branch in S. cere-

visiae

33..33..11..77 CCaarrbboonn ccaattaabboolliittee rreepprreessssiioonn

Glucose and fructose are the most preferred carbon substrates for yeast. When one of these

sugars is present, the enzymes required for the utilization of alternative carbon sources are

synthesized at low rates or not at all. This phenomenon is called “carbon catabolite repres-

sion” or most commonly “glucose repression”. Glucose may affect enzyme levels by causing

a decrease in the concentration of corresponding mRNAs, a decrease in their translation rate,

or an increase in the degradation rate of the protein. The main effect of glucose takes place at

the transcriptional level as the control of mRNA translation rate is not common in yeast

(Gancedo, 1998). Glucose and other repressing sugars can affect the rate of transcription by

two  basic  mechanisms;  they  interfere  with  activators  of  transcription,  or  they  facilitate  the

action of proteins with a negative effect on transcription (Gancedo, 1998).
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33..33..22 GGaallaaccttoossee mmeettaabboolliissmm
The galactose metabolic pathway is commonly known as Leloir pathway. S. cerevisiae con-

tains genes, which code for regulatory proteins for a number of metabolic pathways (Sellik et

al., 2008). This group of regulatory proteins acts as both positive as well as negative regula-

tory proteins. Galactose utilization consists of a biochemical pathway that converts galactose

into glucose-6-phosphate and a regulatory mechanism that controls whether the pathway is on

(in the presence of galactose) or off (in the absence of galactose).  Several  regulatory genes

are present, which code for these enzymes devoted to convert galactose to glucose phosphate.

The four enzymes are, galactokinase (coded by the gene, GAL1), uridylyltransferase (coded

by the gene, GAL7), epimerase (coded by a gene, GAL10), and phosphoglucomutase (coded

by the gene, GAL5/PGM2). These four genes are located on chromosome II of yeast cells. A

transporter gene (coded by the gene, GAL2) encodes a permease that transports galactose into

the cell. This gene is located on chromosome XII. Galactose acts as inducer in expressing all

the genes by a modulator called Gal4p. All the genes are never expressed unless Gal4p is

present in a cell. Hence, it’s a key player in gene regulation and plays a significant role in the

utilization of galactose. The Gal4p acts as positive regulator. It acts by binding to a specific

DNA sequence upstream from the site of initiation and transcription of the GAL1, GAL7 and

GAL10 genes (Platt and Reece, 1998) (Figure 3-3).

(A) (B)

Figure 3-3 Regulation of galactose metabolism. (A) When there is no galactose, the tran-
scription of GAL genes is repressed by Gal80p by binding to the active site on Gal4p (B) In
the presence of galactose, the repression on Gal4p by Gal80p is relieved by inducers, Gal3p,
ATP and galactose

The regulatory genes GAL3, GAL4, and GAL80 exert tight transcriptional control over the

transporter, the enzymes, and to a certain extent, each other. Gal4p is a DNA-binding factor

that can strongly activate transcription, but in the absence of galactose, Gal80p binds Gal4p
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and inhibits its activity. When galactose is present in the cell, it causes Gal3p to associate

with Gal80p. This association causes Gal80p  to  release  its  repression  of  Gal4p,  so  that  the

transporter and enzymes are expressed at a high level (Figure 3-3). In the presence of galac-

tose, genes for galactose utilizing enzymes are turned on and transcription is switched off

when galactose is absent (Ostergaard et al., 2001) (Figure 3-4). Although these genes and

interactions form the core of the GAL pathway, the complete regulatory mechanism is more

complex and involves genes whose roles in galactose utilization are not entirely clear. For

instance, the gene GAL6 (LAP3) functions predominantly in a drug-resistance pathway, but

can suppress transcription of the GAL transporter and enzymes under certain conditions and

may itself be transcriptionally controlled by GAL4.

Figure 3-4 In the presence of glucose, the transcription of GAL genes is repressed by a rep-
ressor complex involving Tup1p, Ssn6p and Mig1p

In this galactose-glucose interconversion pathway, galactose is phosphorylated to galactose

1-phosphate by galactokinase. Galactose 1-phosphate acquires an uridyl group from UDP-

glucose, an intermediate in the synthesis of glycosidic linkages, and produces UDP-galactose

and glucose 1-phosphate by galactose 1-phosphate uridyl transferase. The galactose moiety of

UDP-galactose is then epimerized to glucose by UDP-galactose 4-epimerase (Schulz et al.,

2004). Glucose 1-phosphate is isomerized to glucose 6-phosphate by phosphoglucomutase

and later on funnelled to glycolytic pathway (Figure 3-5). In many yeast species, growth on

certain sugars (such as galactose, raffinose, and maltose) occurs only under respiratory condi-

tions (Goffrini et al., 2002). That means yeast species can grow on these sugars aerobically,

but they cannot grow anaerobically or in the absence of respiration (Entian et al., 1983; Gof-

frini et al., 1989, 1996; Sims et al., 1978). Assimilation of these sugars occur only under re-

spiring conditions i.e., growth does not take place if inhibitors, mutation, or anaerobiosis
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blocks respiration. This apparent dependence on respiration for the utilization of certain sug-

ars has often been suspected to be associated with the mechanism of the sugar uptake step.

The phenomenon has been known by the classical name of the “Kluyver effect”. The kind of

sugars involved varies depending on the species and sometimes on the strains within a spe-

cies. Although the reason for this apparent dependence on respiration for the assimilation of

certain sugars is not clear, the phenomenon does appear to be brought about by the interplay

of several factors involving lowered rate of transport and metabolism of certain sugars. S.

cerevisiae generally does not show this phenomenon (Kluyver effect negative), although K.

lactis and S. cerevisiae seem to use similar pathways to metabolize galactose, raffinose, and

maltose.

Figure 3-5 Galactose metabolism in yeast. Schematic representation of interconversion of
galactose to glucose 6-phosphate, a glycolytic intermediate and regulation of galactose me-
tabolism by Gal4p
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33..33..33 FFrruuccttoossee mmeettaabboolliissmm
In yeast, fructose is metabolized by the fructose 6-phosphate pathway. Fructose is phosphory-

lated to fructose 6-phosphate by hexokinase (HXK1 gene) enzyme and then converted to fruc-

tose 1, 6-bisphosphate by 6-phosphofructokinase (PFK1 gene) enzyme.  A specific fructose

bisphosphate aldolase (FBA1 gene) enzyme converts fructose 1, 6-bisphosphate to glyceral-

dehyde 3-phosphate and DHAP.  Glyceraldehyde 3-phosphate is funnelled into glycolytic

pathway and further metabolized (Berg et al., 2002) (Figure 3-6).

Figure 3-6 Fructose metabolism in yeast. Schematic representation of interconversion of
fructose to glyceraldehyde 3-phosphate, a glycolytic intermediate

33..33..44 HHeexxoossee ttrraannssppoorrtteerrss ((HHXXTTss))
The most preferred hexose carbon sources of yeast are glucose, fructose and mannose. At

very high concentrations of these sugars, glycolytic flux rates can attain very high levels lead-

ing to alcohol production even in the presence of oxygen. Yeast has a broad range of hexose

concentration tolerance, ranging from 1.5 M to micro-molar concentrations and exhibits char-

acteristic responses to changes in the environmental sugar concentrations. Among hexoses,

glucose is the most preferred carbon and energy source and its transport into the cells exerts a

high control on the glycolytic flux. Glucose can also act as a “growth hormone” to regulate
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several aspects of cell growth, metabolism and development and it triggers regulatory

mechanisms that are responsible for rapid changes in the activity of proteins and for slower

changes in the expression level of specific proteins. But how a cell senses glucose and signal

transduction, how this signal affects cellular processes and how optimal utilization of the

sugar is achieved are still unknown mechanisms. Defects in glucose sensing, signalling and

metabolism cause the severe metabolic disorders in mammals known as diabetes. Thus, it is

of major interest to understand these processes.

The first and essential step in hexose utilization is the transport of sugar molecules across the

plasma membrane into the cells. Hexose transport is mediated by two different mechanisms,

carrier mediated facilitated diffusion, which is energy independent and transports its sub-

strates down a concentration gradient and active proton-sugar symport systems, which is en-

ergy dependent and couples the uptake of glucose molecules to the uptake of protons. Yeast

has 20 different genes related to hexose sensors and transporters, which belong to major fa-

cilitator super family (MFS) of transporters (Ko et al., 1993). This includes

Hexose sensors - Snf3p and Rgt2p;

Galactose transporter - Gal2p;

Low affinity transporters - Hxt1p, Hxt3p;

Moderate affinity transporter – Hxt5p

High affinity transporters – Hxt2p, Hxt4p, Hxt6p, Hxt7p;

Pleiotropic drug resistance (PDR) process - Hxt9p and Hxt11p;

Unknown transporters – Hxt8p, Hxt10p, Hxt12p to Hxt17p;

33..33..44..11 HHeexxoossee sseennssoorrss

SNF3 and RGT2 have only limited sequence similarities to the other hexose transporters.

Snf3p serves as a regulatory signal (Liang et al., 1996) rather than nutritional uptake and

Snf3p functions as a sensor for low concentrations of glucose. RGT2 is  60  %  identical  to

SNF3 and is located 100 kb downstream of SNF3 on chromosome IV and functions as a sen-

sor for high concentrations of glucose (Moriya and Johnston, 2003).
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33..33..44..22 GGaallaaccttoossee ttrraannssppoorrtteerr

The deletion of GAL2, the gene coding for the transporter of galactose, which is located on

chromosome XII, causes poor growth on galactose medium (Tscopp et al., 1986; Nehlin et

al., 1989). HXT6 and HXT7 are 71.8% identical to GAL2.

33..33..44..33 LLooww aaffffiinniittyy hheexxoossee ttrraannssppoorrtteerrss

HXT1 is located on chromosome VIII. Hxt1p has extremely low-affinity for glucose, fructose

and mannose (Km (glucose) = 100 mM; Km (fructose) > 300 mM). HXT3 is located on chro-

mosome IV and 86.4% identical to HXT1. Hxt3p is also a low-affinity hexose transporter

with a very high Km for glucose (60 mM). Induction of HXT3 is independent of sugar concen-

tration and is expressed only on glucose medium. HXT4 is located on chromosome VIII, just

downstream of HXT1 and 83.4% identical to HXT6 and HXT7.  Hxt4p has a moderately low

affinity for glucose (Km about 9 mM) and a low affinity for fructose (Km about 50 mM).

33..33..44..44 HHiigghh aaffffiinniittyy hheexxoossee ttrraannssppoorrtteerrss

HXT6 and HXT7 are highly similar and located on chromosome IV, downstream of HXT3.

These are high-affinity glucose transporters (Km about 1-2 mM). Hxt9p, Hxt11p and Hxt12p

are very closely related proteins with similar regulatory signals and located on chromosomes

X, XV and IX respectively. HXT9 and HXT11 are weakly expressed and are not regulated by

the carbon source. These have been found to be involved in the pleiotropic drug resistance

(PDR) process. Hxt5p and Hxt8p do not contribute significantly to catabolite glucose trans-

port. HXT5 is located on chromosome VIII, just upstream of HXT1 and HXT4. HXT8 is lo-

cated on chromosome X. HXT13, HXT15, HXT16 and HXT17, which are located on chromo-

somes V, IV, X and XIV respectively are closely related hexose transporter proteins and dis-

tantly related to the other members of the Hxtp family. Actual function of these transporters

is not known yet. Deletion of these genes did not cause any obvious growth phenotype.

33..33..44..55 GGlluuccoossee sseennssiinngg mmeecchhaanniissmmss iinn yyeeaasstt

In yeast, glucose is not only the most preferred carbon and energy source but also an impor-

tant primary messenger molecule, a global regulator of metabolism and signalling optimal

growth conditions to the cellular machinery (Rolland et al., 2002). Moreover, the major trans-

porters are also regulated at transcriptional level by the extracellular glucose concentration
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(Özcan et al., 1999). There are three different glucose sensing systems in yeast. Each system

senses  the  extracellular  glucose  and  transmits  the  signal  to  the  appropriate  effectors  differ-

ently.

1) Main glucose repression pathway. When glucose concentration is high, Snf1p pro-

tein kinase represses the expression of many genes involved in utilization of alterna-

tive carbon sources via Snf1-Mig1 glucose repression pathway (Gancedo et al., 1998;

Carlson et al., 1999; Kuchin et al., 2000, 2002).

2) Snf3/Rgt2 pathway. Snf3 and Rgt2 sensors induce expression of genes encoding

hexose transporters in the presence of glucose via Snf3-Rgt2-Rgt1 glucose induction

pathway (Johnston et al., 1999). Rgt1, a zinc-finger-containing DNA binding tran-

scriptional factor, is an ultimate target of this pathway. In the absence of glucose,

Rgt1p recruits the Ssn6p repressor complex to the promoters of specific genes (Ozcan

et al., 1996) and binds and represses the expression of both intermediate and low af-

finity HXT genes with the help of two paralogous proteins, Mth1p and Std1p (Schmidt

et al., 1999; Lafuente et al., 2000). Even low amounts of glucose inhibits the repressor

function of Rgt1p in the presence of Grr1p protein (Ozcan et al., 1995), resulting in

derepression of expression of HXT genes.  In order to act  as an activator,  removal of

Mth1p and Std1p as well as phosphorylation of Rgt1p is required. The glucose signal

mediated by Snf3p and Rgt2p sensors inhibits Rgt1-mediated repression by stimulat-

ing the degradation of Mth1p and Std1p (Flick et al., 2003; Li et al., 1997).

3) Gpr1/Gpa2 pathway. The glucose signal mediated by G-protein-coupled receptor

Gpr1 and cyclic AMP as a second messenger (Thevelein et al., 1998; Rolland et al.,

2002) leads to activation of protein kinase A, which phosphorylates Rgt1p and re-

leases the repression of HXT genes (Kaniak et al., 2004; Ozcan et al., 1996).

Figure 3-7 representing the hexose sensors and transporters and their regulation according to

the glucose levels (Ozcan and Johnston, 1995).
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Figure 3-7 Hexose sensors and transporters and their regulation.
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44.. MMAATTEERRIIAALLSS AANNDD MMEETTHHOODDSS

44..11 YYEEAASSTT SSTTRRAAIINNSS

S. cerevisiae deletion mutants with parental genotype of BY4742 Mat  his3 1 leu2 0

lys2 0 ura3 0 were obtained from Open Biosystems (Heidelberg, Germany). These strains

exhibit auxotrophy for lysine, leucine, histidine, and uracil, and are resistant to the antibiotic

geneticin.  From  this  collection,  the  parental  strain,  which  was  used  as  the  reference  strain,

and a set of deletion mutants, where genes are known to be involved in central carbon me-

tabolism, amino acid biosynthesis and a few strains with unknown function were chosen.

44..22 MMEEDDIIAA CCOOMMPPOOSSIITTIIOONN

Freeze cultures were revived on YPD agar plates with 200 mg L-1 geneticin. First precultiva-

tions were carried out in complex medium. Second precultivations and main cultivations

were carried out in defined medium. The media compositions are as follows. Vitamin and

trace element stock solutions, and stock solutions for lysine, leucine, histidine, and uracil,

respectively, were sterilized by filtration. All other solutions were sterilized by autoclaving

(15 min, 121 °C).

Table 4-1. YPD agar medium composition

Component Concentration (g/L)

Yeast extract 10
Peptone 20
Glucose 20
Agar 20

Table 4-2. Complex medium composition

Component Concentration (g/L)
Glucose monohydrate 11
Yeast extract 3
Peptone 5
Malt extract 3
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Table 4-3. Defined medium composition

Component Concentration (g/L)
(NH4)2HPO4 1.0
(NH4)2SO4 8.75
MgSO4·7H2O 1.0
Citric acid 0.025
KCl 1.1
CaCl2·2H2O 0.15
Glucose monohydrate 22.0
Lysine 0.12
Leucine 0.12
Histidine 0.08
Uracil 0.08
Component Concentration (ml/L)
0.5 M Na-phosphate buffer (pH 6) 100
100x Trace element solution 10
100x Vitamin solution 10

Table 4-4. 100x Trace element solution (pH <2)

Component Concentration
(mg/50ml)

FeCl3·6H2O 75
MnSO4·H2O 53
ZnSO4·7H2O 45
CuSO4·5H2O 12

Table 4-5. 100x Vitamin solution

Component Concentration
(mg/50ml)

myo-inositol 301.5
Ca-pantothenic acid 150
Thiamin hydrochloride 30
Pyridoxine hydrochloride 7.5
Biotin 0.15

44..33 DDEEFFIINNEEDD MMEEDDIIUUMM OOPPTTIIMMIIZZAATTIIOONN

In order to obtain quantitative data for phenotypic profiling, reproducible and defined cultiva-

tion of the examined deletion mutants of S. cerevisiae was required. For this purpose a de-

fined medium was developed. Mutants exhibit auxotrophy for the amino acids lysine, leucine

and histidine and for uracil. To investigate the optimum amino acid concentrations required

for good growth of deletion mutants, growth experiments were carried out with YML054C

strain with different amino acid concentrations in the medium as follows, one fold concentra-
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tion of lysine, leucine (each 30 mg/L) & histidine, uracil (each 20 mg/L), two fold, four fold,

six fold and eight fold concentrations. Figure 4-1 shows that four-fold concentration of ly-

sine, leucine (each 120 mg/L) & histidine, uracil (each 80 mg/L) was optimal for good

growth. Defined medium with this composition was used for cultivation in all experiments.
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Figure 4-1 Medium optimization. Strain YML054C was grown in 96-well microtiter plate
with different amino acid concentrations in the defined medium. Cultivation profile with one,
two, four, six and eight fold concentrations of lysine, leucine, histidine and uracil.

44..44 CCUULLTTIIVVAATTIIOONN

Cultivations were carried out either in shake flasks (SFC) or in microtiter plates (MTP).

44..44..11 SShhaakkee ffllaasskk ccuullttuurreess
Initially revived cells from YPD agar plates were inoculated into 5 ml complex medium and

grown in 50 ml baffled shake flask at 30° C, 250 rpm (INFORS AG, Bottmingen-Basel,

Switzerland) for 12 h. Subsequently, cells were harvested by centrifugation (Labofuge 400 R,

Functionline, Heraeus Instruments, Bensheim, Germany) at 4° C, 3000 x g for 15 min in Fal-

con  tubes  with  rotor  8172,  and  washed  two  times  with  sterile  0.9  %  (w/v)  NaCl.  Hundred

microliters of the obtained cell suspension was then inoculated into 5 ml defined preculture

medium and grown as described above. Prior to main cultivation the inoculum was harvested

by centrifugation and washed as described above. Resulting pellet was resuspended in 1 ml

defined medium. Main cultivations were carried out in 100 ml baffled shake flasks with 10

ml defined medium and cultivated as described above.
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44..44..22 CCrroossss ccoonnttaammiinnaattiioonn cchheecckk iinn MMTTPP
Parallel handling of large number of strains in microtiter plate could lead to cross contamina-

tion risk. To check this, a cultivation experiment was carried out with the reference strain at

both high (1020 rpm) and low (540 rpm) shaking rates for 24 h. The microtiter plate layout

was, only the center four wells were inoculated and the surrounding wells were filled with

medium (Figure 4-2A). Only the inoculated wells showed increased optical density, which

confirmed that there was no cross contamination at both the shaking rates (Figure 4-2B).

(A)

(B)

Figure 4-2 Cross contamination check. (A) Microtiter plate layout. (B) The reference strain
was cultivated at low, 540 rpm (left panel) and high, 1020 rpm (right panel) shaking rates for
24 h.
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44..44..33 MMiiccrroottiitteerr ppllaattee ccuullttuurreess
For microtiter plate cultivations, precultivations were carried out in 96 well microtiter plates

(Greiner bio-one, Frickenhausen, Germany) with 250 µl per well. The outermost wells of the

plate were not used for cultivation because of higher evaporation in these wells (John et al.,

2003). All wells not used for cultivation were filled with water. The microtiter plate was ad-

ditionally covered with a lid. Cells were incubated for 12 h in a fluorescence reader (Fluoros-

kan Ascent, Thermo Labsystems, Helsinki, Finland) at 30° C and 1020 rpm (orbital) with a

shaking diameter of 1 mm. Cells were harvested by centrifugation (Labofuge 400 R, Func-

tionline, Heraeus Instruments, Bensheim, Germany) at 4° C, 1660 x g for 10 min directly in

MTP with rotor 8177, and washed two times with sterile 0.9 % (w/v) NaCl. Ten micro liters

of the obtained cell suspension was then inoculated into 250 µl defined preculture medium

and grown as described above. Prior to main cultivation the inoculum was harvested by cen-

trifugation and washed as described above. The resulting pellet was re-suspended in 200 µl

defined medium. Main cultivations were carried out in 96 well microtiter plates with immobi-

lized oxygen sensors (Oxoplate F96, PreSens GmbH, Regensburg, Germany) with 150 µl

defined medium per well.

44..55 AANNAALLYYTTIICCSS

The following analytical methods were employed to calculate the sugar concentrations, opti-

cal density and dissolved oxygen measurements.

44..55..11 SSuuggaarrss aanndd eetthhaannooll mmeeaassuurreemmeennttss
Enzyme assays were applied for the determination of glucose, fructose and ethanol (Boe-

hringer–Mannheim, R-Biopharm GmbH, and Germany). Galactose was quantified by HPLC

(Bio-Tek, Neufahrn, Germany) with an Aminex HPX 87-H column (300 x 7.8 mm; Bio-Rad,

Hercules, California) and 0.05 N H2SO4 as an eluent with a flow rate of 0.8 ml/min at 45° C

and UV detection at 210 nm.

44..55..22 OOppttiiccaall ddeennssiittyy mmeeaassuurreemmeennttss
Growth was monitored via optical density either at 660 nm (OD660) with a spectrophotometer

(Novaspec  II,  Pharmacia  Biotech,  Cambridge,  England)  or  at  620  nm  (OD620) with an ab-
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sorbance reader (iEMS Ascent, Thermo Labsystems, Helsinki, Finland) directly in the

Oxoplate. The obtained correlation between the absorbance reader signals and spectropho-

tometer measurements is not linear. For calibration, a growth experiment was carried out with

strain YML054C in a 96-well Oxoplate as described above for 16 h. Parallel OD measure-

ments were taken for every 1 h directly in the Oxoplate in the absorbance reader (OD620) and

in the spectrophotometer (OD660). A calibration curve was obtained between undiluted reader

signals and diluted spectrophotometer measurements (Figure 4-3). Thus OD values measured

in an absorbance reader can be directly converted to the corresponding diluted OD660 values

by using this calibration curve and equation 4-1.

5
620

4
620

3
620

2
620620660

53.15

76.3105.1678.671.462.0

OD

ODODODODOD corrected

(Eq 4-1)

Figure 4-3 Calibration curve for on-line measurement of OD. Strain YML054C was grown
in 96-well microtiter plate and parallel OD measurements were taken in the absorbance
reader (OD620) and in the spectrophotometer (OD660).

Biomass dry weight (BDW) was determined from corrected OD660 after calibration. For this

purpose, the reference strain was cultivated in a shake flask and dry cell weight was deter-

mined gravimetrically. For this purpose, 10 ml of culture was centrifuged at 4 o C for 10 min

at 10,000 rpm, washed twice with 0.9 % NaCl and then with water and centrifuged again.

Washed cells were dried at 80 o C to constant weight (Kiefer et al., 2002).
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The correlation factor (g biomass/OD660)  between  dry  cell  weight  and  OD660 was 0.498.

Biomass dry weight can be obtained by using the equation 4-2,

correctedODBDW 660498.0 (Eq 4-2)

44..55..33 DDiissssoollvveedd ooxxyyggeenn mmeeaassuurreemmeennttss
The use of microtiter plates with immobilized oxygen sensors allows on-line monitoring of

dissolved oxygen concentrations during cultivation. The OxoPlate F96 is a sterile polystyrene

microplate (PRESENS, Germany) with 96 integrated sensors and is calibration-free (Figure

4-4).

Figure 4-4 Oxoplate F96, 96-well round bottom microtiter plate with an immobilized oxygen
sensor.

High accuracy is assured using two different dyes to get an internal referenced signal. Be-

cause these two dyes are immobilized in a thin hydrophilic matrix (10 µm thickness) of the

OxoPlate, response times are very low. The fluorescent intensities were measured with the

fluorescence filter combinations 544/644 nm and 544/590 nm. The first one was depending

on oxygen concentration; the latter was a reference signal, which was independent of oxygen

concentration. The relationship between fluorescence intensity and dissolved oxygen concen-

tration is nonlinear and described by the Stern – Volmer equation for collision quenching

(Equation 4-3) (John et al., 2003),

OKI
I

svor

r

1
1

,

(Eq 4-3)
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O - Dissolved oxygen concentration

 I r, o - Fluorescence intensity in the absence of O;

 I r, - Fluorescence intensity at O

Ksv - Stern-Volmer constant

44..55..44 MMaalliicc eennzzyymmee aaccttiivviittyy
Preparation of cell extracts and determination of malic enzyme activity was carried out as

described by Boles et al. (1998) with slight modifications. Extracts were not dialysed. Cells

were disrupted by sonication with 0.5-mm-diameter glass beads at 0  C for 3 min (15-s inter-

vals with 15-s resting time), using an MSE sonicator (Soniprep 150 with 150-W output,

10µm peak-to-peak amplitude).

44..66 SSIIMMUULLAATTIIOONNSS

The following simulations were carried out to estimate oxygen mass transfer coefficient and

to correct ethanol and water evaporation during the cultivation.

44..66..11 DDyynnaammiicc ooxxyyggeenn mmaassss ttrraannssffeerr ccooeeffffiicciieenntt ((kkLLaa))
Oxygen uptake rate can be determined from a stationary liquid phase oxygen balance,

OUR-ak
dt
d

L OOO (Eq 4-4)

where O* and O are the dissolved oxygen concentrations in the liquid phase and in equilib-

rium with the gas phase respectively, kLa is the volumetric liquid phase mass transfer coeffi-

cient and OUR is the oxygen uptake rate.

The volumetric liquid phase mass transfer coefficient, kLa was determined experimentally in

Oxoplates in 200 µL at 540 rpm by using sodium dithionite method as described previously

(John et al., 2003). In brief, dissolved oxygen was initially depleted by addition of 2 % (w/w)

sodium dithionite solution in 0.1 M sodium carbonate solution. Due to fast chemical reaction,

oxygen reaction rate was much greater than the air–liquid oxygen transfer. After consumption

of dithionite, oxygen reaction rate became zero and oxygen started to accumulate in the me-

dium. In this phase, kLa was estimated from the slope of the curve ln (O* O) versus time.



Materials and methods

29

Alternatively, the equation 4-4 was programmed and the simulations were done using

BERKELEY MADONNA software 8.0.2 (Dunn et al., 2003). Corresponding program is sup-

plied in the Appendix.

Figure 4-5 depicts the typical profile for the dynamic estimation of kLa. Due to the oxidation

of dithionite, dissolved oxygen concentration was dropped to zero and after the consumption,

dissolved oxygen concentration again started to rise due to oxygen transfer from air eventu-

ally reaching the saturation concentration. The rise of oxygen is first  order and the kLa was

estimated from liquid phase oxygen balance using the simulation program. The estimated kLa

was 1.46 h-1.

Figure 4-5 Dynamic estimation of kLa using dithionite method in Oxoplate at 540 rpm, or-
bital shaking, 1 mm shaking diameter, T = 30  C in  200  µL volume.  Symbols  indicate  ex-
perimental data and solid line represents simulations.

44..66..22 DDyynnaammiicc mmooddeell ffoorr yyiieellddss aanndd ssppeecciiffiicc ggrroowwtthh rraatteess
Specific growth rate was determined using a simple dynamic growth model suitable for bal-

anced growth comprising balances for biomass, X, substrate glucose, S, product ethanol, P,

and dissolved oxygen, O. This model was also used to determine biomass yield on oxygen

and to correct for evaporation losses of ethanol and water. The model assumes constant yield

of biomass and ethanol on glucose and oxygen. The variable volume mass balance equations

were as follows

Due to complete
Dithionite oxidation

rise in DO due to
oxygen transfer

after complete
consumption

Saturation level

Due to complete
Dithionite oxidation

rise in DO due to
oxygen transfer

after complete
consumption

Saturation level
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( )
X

d XV r V XV
dt

(Eq 4-5)

( ) X

XG

r Vd SV
dt Y

(Eq 4-6)

, ,
( )

X PX P evap X PX P evap
d PV r Y V r r Y V k P

dt
(Eq 4-7)

*( ) X
L

XO

r Vd OV k a O O
dt Y

(Eq 4-8)

2 , ,( ) H O evap P evapr rd V
dt

(Eq 4-9)

Growth kinetics were described with Monod-type kinetics (Dunn et al., 2003)

maxX
S O

S Or
K S K O

(Eq 4-10)

Simulations were carried out using BERKELEY MADONNA software and corresponding

program is supplied in the Appendix. The meaning of the symbols is

V – Volume [L];

X – Biomass concentration [g L-1];

S – Glucose concentration [mol L-1];

P – Ethanol concentration [mol L-1];

O – Dissolved oxygen concentration [mol L-1];

O* – Gas-liquid equilibrium dissolved oxygen concentration [mol L-1];

t – Time [h];

rX – Biomass formation rate [g L-1 h-1];

µ - Specific growth rate [h-1];

YXG – Biomass yield on glucose [g mol];

YPX – Ethanol yield with reference to biomass production [mol g-1];

YXO – Biomass yield on oxygen [g mol-1];

rP,evap – Rate of ethanol evaporation [mol h-1];

kP,evap – First order rate constant for ethanol evaporation [h-1];

kLa – Oxygen mass transfer coefficient [h-1];

kH2O,evap – Rate of evaporation of water [g h-1];

KS, KO – Substrate and oxygen affinity constant [mol L-1]
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44..66..33 DDyynnaammiicc mmooddeell ffoorr ccoorrrreeccttiinngg eetthhaannooll aanndd wwaatteerr
To  estimate  the  loss  of  ethanol  and  water  during  cultivation,  experiments  were  carried  out

with different initial ethanol concentrations of 2.5, 4 and 6 g L-1 at the same operating condi-

tions as the main cultivations. Ethanol concentrations were determined for every 2 h and rate

of ethanol evaporation was calculated. The estimated first order evaporation rate constant,

kP,evap, was 0.052 h-1. There was no influence of shaking rate on the ethanol evaporation rate

constant, which agrees with previous work (Oeggerli et al., 1994). Since water was also

evaporating, the culture volume was checked at the end of the cultivation to find the rate con-

stant. The difference in culture volume was 5µl after 12.5 h of cultivation. Thus the evapora-

tion constant for water was estimated as 0.4  10-3 g h-1. Kinetic parameters KO (= 2.2 mmol

L-1) and KS (= 0.5 mmol L-1) were taken from the literature (Furukawa et al., 1983). The satu-

ration concentration of oxygen, O*, under the applied conditions was 7.53 mg L-1. By using

this simulation model with determined ethanol and water evaporation rates, a hypothetical

ethanol concentration can be calculated which would have been observed in the absence of

evaporation (Figure 4-6).

( )h
X PX

d PV r Y V
dt

(Eq 4-11)

Figure 4-6 Dynamic model for ethanol correction using BERKELY MADONNA program.
Strain 56 was grown in an Oxoplate at 1020 rpm, orbital shaking, 1mm shaking diameter, T =
30 C in 200 µL volume.
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This simplified growth model was only used for growth phases exhibiting balanced growth,

i.e. as long as there wasn’t any limitation of glucose or oxygen. Oxygen uptake rates were

only estimated at dissolved oxygen concentrations between 40 % and 90 % air saturation. If

oxygen mass transfer is very high, dissolved oxygen concentration is near saturation and be-

cause of experimental errors it is not possible to get reliable estimates of oxygen uptake rate.

Therefore, in cases of low oxygen uptake rates additional cultures at lower shaking rate were

carried  out.  In  cases  with  oxygen  limitation,  ethanol  evaporation  and  specific  growth  rate

were estimated with a reduced model lacking oxygen balance (Equation 4-8) and the oxygen

term of Equation 4-10.

Specific growth rates were directly estimated from estimated biomass concentrations during

true exponential growth phase. From the increase in biomass concentration and glucose con-

sumption, biomass yield on hexoses was directly determined. Ethanol yield on hexoses was

estimated using the model and high shaking rate experimental data. Biomass yield on oxygen

was determined from low shaking rate experiments during declining dissolved oxygen con-

centration above 20 % air saturation using the model (Equations 4-5 and 4-6). The dissolved

oxygen profiles for all the strains are given in the Appendix.

44..77 EETTHHAANNOOLL LLAABBEELLIINNGG AANNAALLYYSSIISS AANNDD QQUUAANNTTIIFFIICCAATTIIOONN
UUSSIINNGG MMAALLDDII--TTOOFF--MMSS

A new method was developed for the quantitative estimation of isotope-labeled ethanol pro-

duced from labelled substrate during cultivation. Subsequently metabolic split ratio between

glycolysis and PP pathway was estimated based on the ethanol labelling using matrix-assisted

laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS).

44..77..11 PPrriinncciippllee
The working principle is an alcohol dehydrogenase (ADH) enzymatic oxidation of labelled

ethanol to acetaldehyde (AC) with subsequent formation of the barely volatile acetaldehyde-

2,4-dinitrophenylhydrazone (Ac-DNPH) in a separate vial after diffusion through the gas

headspace. Derivatization with 2, 4-dinitrophenylhydrazine (DNPH) has been shown to be

very efficient for trapping trace amounts of carbonyl compounds (Dong et al., 2004). After

extraction with ethyl acetate and evaporation of the organic phase, the solid Ac-DNPH is



Materials and methods

33

dissolved in -cyano-4-hydroxycinnamic acid (CCA) matrix solution and analyzed by

MALDI-ToF-MS. Schematic representation of the work flow is given in figure 4-7.

Figure 4-7 Schematic representation of analysis of ethanol labelling using MALDI-ToF-MS.

44..77..22 SSaammppllee pprreeppaarraattiioonn
Seventy-five microliter of centrifuged and diluted culture supernatant was put into a 2 ml

glass vial sealable with rubber septum and alumina crimp seal. To this solution, 25 µl of 0.7

% [13C2]-ethanol in 400 mM Tris/HCl (pH 8.8) was added. For unlabeled ethanol quantifica-

tion 14 samples from 1 to 50 µl of 0.7 % (w/w) ethanol in 100 mM Tris/HCl (pH 8.8), topped

up with 100 mM Tris/HCl buffer to 100 µl were used. For quantification of [1-13C]-ethanol,

14 samples from 1 to 25 µl unlabeled ethanol plus the equal volumes of [1-13C]-ethanol were

topped with buffer and 25 µl of [13C2]-ethanol as described above. All three ethanol types

were 0.7 % (w/w) in 100 mM Tris/HCl buffer (pH 8.8). The enzymatic reaction was started

by adding 50 µl of 1 mg /ml ADH (corresponding to 30 U) followed by 50 µl of 70 mg/ml

NAD+, both in 100 mM Tris/HCl buffer (pH 8.8). A 0.3 ml micro insert tube containing 75 µl
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of supernatant of centrifuged saturated DNPH solution in 10 % phosphoric acid was placed

inside this 2 ml tube. The 2 ml vial was tightly closed immediately and incubated at 25o C for

16 h.

This set up (Figure 4-8) consists of an inner compartment of acidified DNPH solution, which

is separated from the culture supernatant. Volatile compounds can freely diffuse into this in-

ner compartment via the gas phase. After incubation, the insert tube was removed and 150 µl

of ethyl acetate was added and intensively mixed several times by pipetting. Organic and

aqueous phases were separated by short centrifugation. Hundred microliters of the upper or-

ganic phase was transferred into a PCR tube and dried in a vacuum centrifuge (Speed-Vac,

Juan, RC 10.22, Saint-Nazaire, France) for 30 min. The residue was dissolved in 15 µl of

CCA- matrix solution (saturated -cyano-4-hydroxycinnamic acid in 50 % acetonitrile and 1

%  trifluoroacetic  acid).  Then  2  µl  of  this  solution  was  pipetted  onto  the  384  MALDI-TOF

steel target plate and air-dried.

Figure 4-8 Design  of  the  reaction  vials.  The  outer  tightly  closed  2  ml  vial  contains  200  µl
liquid consisting of sample, ADH from S. cerevisiae, NAD+ and  [13C2]-ethanol as internal
standard. The insert was filled with 75 µl supernatant of saturated DNPH solution in diluted
phosphoric acid.
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44..77..33 AAccqquuiissiittiioonn ooff MMSS ssppeeccttrraa aanndd ppeeaakk sseelleeccttiioonn
Analyses were performed on a Bruker Reflex III  time of flight mass spectrometer (Bruker-

Daltonic, Bremen, Germany) equipped with the SCOUT 384  probe ion source. The system

used a pulsed nitrogen laser (337 nm, Model VSL-337ND, Laser Science Inc., Boston, MA)

with energy of 400µJ/pulse. The ions were accelerated under delayed extraction conditions in

the positive mode with an acceleration voltage of 20 kV and a reflector voltage of 22.5 kV. A

6.7  kV  potential  difference  between  target  and  the  extraction  lens  was  applied  with  a  time

delay of 200 ns. A Lecroy Signalyst LS 10, 2GS/s, 1 GHz digital storage oscilloscope was

used for data acquisition (Lecroy Corp., Chestnut Ridge, NY, USA). The detector signals

were  amplified  in  two  stages,  digitized  and  transferred  to  the  XACQ  program  on  a  NT  4

work-station (Microsoft, USA). Autoexecute mode was chosen for automated measurements

with 26-32 % laser power, a resolution better than 1400, a signal to noise-ratio (S/N) better

than 4 and a noise range of 100 leading to optimal intensity. Spectra with saturated peaks

were  not  used.  For  each  spectrum,  12  sub  spectra  from more  than  6  spots  consisting  of  25

successful laser shots were added. The data were further processed with the program XMASS

5.15 (Bruker Daltonics, Bremen, Germany) using the APEX-algorithm for the detection of all

peaks within 215-237 Da with a threshold of 250 a.i. Each sample was measured in four rep-

licates.

All m/z values were rounded to integers and used with their absolute intensities. Carbon mass

isotopomer fractions of ethanol were calculated from the measured distribution of the derivat-

ized analyte mass distribution using the method developed by Yang et al. (2006 and 2009),

which is based on earlier work of Wiechert et al. (2001). The peak with m/z 225 represents

the mono isotopic mass of the Ac-DNPH product formed with unlabeled acetaldehyde [mi]

(Figure 4-9A). The peak with m/z 226 represents the mono isotopic mass of the single labeled

[1-13C]-Ac-DNPH [mi+1] as well as the mass of the unlabeled Ac-DNPH (Fig 4-9B). The

peak with m/z 227 comprises the mono isotopic peak mass of the double-labeled [13C2]-Ac-

DNPH as  well  as  the  [mi+2] mass for the unlabeled Ac-DNPH and the [mi+1] mass of the

single labeled [1-13C]-Ac-DNPH. The measured signal intensities of m/z 225, 226 and 227

were used for the calculation for the carbon mass isotopomer fractions.
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44..77..44 QQuuaannttiiffiiccaattiioonn ooff nnaattuurraall iissoottooppee eetthhaannooll
Ethanol concentrations from 30 to 720 mM in the enzymatic assay were used to determine

the maximum linear range for unlabeled ethanol quantification. Volumes of 5–115 µL of 1.9

M ethanol were topped with 100mM Tris/HCl buffer to 165 µL. To this solution 3.3 % (w/w)

[13C2]-ethanol (25 µL) was added as internal standard (45 mM in the enzymatic assay) fol-

lowed by 100 µL 100 mM NAD+ and 10 µL 1 mg/mL ADH, both in 100mM Tris/HCl

buffer. After incubation, ethyl acetate (150 µL) was added to separate the Ac-DNPH formed

without adding any additional acetaldehyde.

(A) (B)

Figure 4-9 (A) Mass spectrum showing the peaks of reagent, protonated DNPH (m/z 199.0);
matrix, CCA and mono isotopic mass of unlabeled Ac-DNPH (m/z 225.1) [mi] and (B) Mass
spectrum showing the peaks of mono isotopic mass of the single labeled [1-13C]-Ac-DNPH
(m/z 226.1) [mi+1]

44..77..55 QQuuaannttiiffiiccaattiioonn ooff uunnllaabbeelleedd aanndd [[11--1133CC]]--eetthhaannooll
Parallel quantification of both ethanol types was performed in the range 1–50 mM, represent-

ing the expected ethanol concentrations of the culture supernatant experiments. For quantifi-

cation of both ethanol isotopes, equal volumes were taken from 1 to 80 µL each. The result-

ing volumes were made up to 165 µL with 100 mM Tris/HCl buffer and 1.1 % (w/w) [13C2]-

ethanol  (25  µL)  as  internal  standard  was  added.  NAD+ and ADH were added as described

above. The incubation time was 16 h. The other steps of sample preparation were identical to

those described above. In the present experiment, the signal intensities of m/z 226 and 227

are influenced by the intensities of unlabeled Ac-DNPH and [1-13C]-Ac-DNPH, respectively.
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To obtain a standard curve for the quantification of natural isotope ethanol, different mixtures

of unlabeled and [13C2]-ethanol were applied and analyzed. Also in this case a correction for

natural isotopes was not necessary. The relative intensity of the peak m/z 225 (Irel, 225, mi) was

calculated using the absolute peak intensities of m/z 225 (I225, mi)  and of m/z 227 (I227, mi+2)

according to equation 4-12

227

,225
225, I

I
I mi

rel (Eq 4-12)

Linear regression analysis was performed using these relative intensities in relation to the

unlabeled ethanol concentrations (Figure 4-10). The slope of the straight line was 1.194, the

intercept 0.119 and the correlation r2 = 0.9948.

Figure 4-10 Standard curve for the quantification of natural isotope ethanol. Linear regres-
sion analysis was performed between relative intensities [I225/I227] and unlabeled ethanol con-
centrations.

44..77..66 EEssttiimmaattiioonn ooff tthhee fflluuxx sspplliitt rraattiioo bbeettwweeeenn ppeennttoossee--
pphhoosspphhaattee ppaatthhwwaayy ((PPPPPP)) aanndd ggllyyccoollyyssiiss (( pppppp))

The flux split ratio ( PPP) between pentose-phosphate pathway and glycolysis can be esti-

mated simply from metabolite labeling of compounds directly derived from pyruvate, e.g.

alanine or ethanol as described by Wittmann et al. (2004) and the principle involved in the

calculation of PPP is shown in figure 4-11.

micorr

micorr
PPP II

II

,225,226

,225,226

/*3/21
/1

(Eq 4-13)
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This simplified calculation provides a minimal value for the flux ratio between PPP and gly-

colysis as has been shown for Corynebacterium glutamicum, but gives reasonable results

especially for low values of PPP (Wittmann et al., 2004). For screening comparison of a large

collection of mutants or effective compounds, calculations using equation 4-13 are clearly

sufficient since the reversibility of the glucose 6-phosphate isomerase would be very similar.

Once a mutant is identified showing a different PPP flux split ratio, it must be characterized

more thoroughly using a more detailed method using isotopomer models which require, how-

ever, much more detailed data involving analysis of labeling of metabolites using, e.g.,

GC/MS or HPLC/MS. For such screening experiments, the incomplete labeling of [1-13C]-

glucose introduces only a marginal error and it was therefore neglected.

Figure 4-11 The principle involved in the flux split ratio ( PPP) between pentose-phosphate
pathway and glycolysis calculation.
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44..88 LLAABBEELLLLIINNGG AANNAALLYYSSIISS OOFF PPRROOTTEEIINNOOGGEENNIICC AAMMIINNOO AACCIIDDSS

Labelling patterns of proteinogenic amino acids were analysed from biomass hydrolysates

using gas chromatography mass spectrometry (GC-MS).

44..88..11 BBiioommaassss hhyyddrroollyyssaattee ssaammppllee pprreeppaarraattiioonn
Aliquots of batch cultures were harvested at OD660nm of 1.5-2.5, and centrifuged at 3000 g at

room temperature for 15 min. Pellets were washed twice with 1 ml 0.9 % (w/v) NaCl and

hydrolysed in 100 µL of 6 M HCl at 105° C for 24 h. The hydrolysate was filtered and freeze

dried and subsequently derivatised at 80° C in 20 µL of Dimethylformamide (DMF) with 0.1

% pyridine and 20 µL of MBDSTFA (N-methyl-tert.-butyldimethylsilyl-trifluoracetamide,

Macherey-Nagel, Düren, Germany)  for 1 h. Protic sites of amino acids (OH-, NH-, and SH-

groups) were blocked by silylation to reduce dipole-dipole interactions and to increase vola-

tility  for  GC  separation.  The  use  of  MBDSTFA  had  the  advantage  that  mostly  neutral  and

volatile byproducts are formed that did not react with the column, hence enabling direct GC-

MS analysis.

44..88..22 GGaass CChhrroommaattooggrraapphhyy MMaassss SSppeeccttrroommeettrryy
GC-MS was carried out using a HP 6890 GC-System equipped with HP5MS (95 % di-

methyl–5 % diphenylpolysiloxane; 30 m  0.25 mm x 250 µm, Restek, Bellefonte, PA, USA)

that was directly connected to a Quadrupole Mass Selective Detector 5973 Network (Agilent

Technologies, Waldbronn, Germany) with electron ionization at 70 eV. The injection volume

was 0.5 µL at a carrier gas flow rate of 1.5ml/min helium and column head pressure was 70

kPa. The temperature gradient for the separation of complex amino acid mixtures was 120 °C

for 5min, 4 °C/min up to 270 °C and 20 °C/min to 320 °C. Further operation temperatures

were 300 °C (inlet), 280 °C at the interface and 320 °C (quadrupole). In order to increase the

sensitivity, the mass isotopomer fractions [mi], [mi+1],  and  [mi+2] were quantified with se-

lected ion monitoring (SIM) of the corresponding ion clusters. Figure 4-12 demonstrating the

TIC chromatogram obtained using SIM method and about 14 amino acids were detected and

the names of the amino acids were given in the table 4-6.
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Figure 4-12 GC-MS chromatogram showing all the detected amino acids. Numbers on top of
each peak represents serial number of detected peaks.

Table 4-6 Peak table showing the peak number in the chromatogram (Fig 4-12) and its corre-
sponding amino acid
Peak number Amino acid Peak number Amino acid
1 Alanine 8 Threonine
2 Glycine 9 Phenyl alanine
3 Valine 10 Aspartic acid
4 Leucine 11 Glutamic acid
5 Isoleucine 12 Lysine
6 Proline 13 Arginine
7 Serine 14 Tyrosine

44..99 MMEETTAABBOOLLIICC NNEETTWWOORRKK MMOODDEELL AANNDD FFLLUUXX AANNAALLYYSSIISS

A system of connected chemical reactions that determine the physiological and biochemical

properties of a cell is called a metabolic network. These inter-connected metabolic networks

comprise a regulatory mechanism with the involvement of numerous enzymes. Metabolic

flux analysis (MFA) is a constraint based methodology for identifying metabolic flux distri-

butions using the stoichiometry based approach. The main advantage of MFA is a detailed

quantification of intracellular fluxes in the central metabolic pathways, which results in a flux

map that shows the distribution of anabolic and catabolic fluxes over the metabolic network

(Wiechert et al., 2001).
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44..99..11 MMeettaabboolliittee bbaallaanncciinngg
Metabolite balancing applies the principle of material conservation for each and every me-

tabolite pool in the metabolic network. At steady state, metabolite pools are constant; hence

the total of all metabolic fluxes entering a specific pool must equal the total of fluxes leaving

that same pool. This yields, for every metabolite pool, one linear equation relating all fluxes

connecting with that pool. Available measurement data on fluxes e.g. substrate uptake rates

(qs) and product production rates (qp) provide additional equations. Setting up the equations

for every pool in the network then yields a high-dimensional system of linear equations, with

the fluxes as unknowns that can be solved mathematically using matrix procedures, provided

the system is (over)determined i.e., there are more independent equations than the unknowns

(De Graaf et al., 1996; Varma and Palsson, 1994).

bvS (Eq 4-14)

where S is the stoichiometric matrix, v is the vector of fluxes and b is the net specific excre-

tion rate vector (in the case of substrate uptake rate, the elements of b will be negative). The

stoichiometric matrices are given in the Appendix section. Fluxes were estimated using the

inverse of the stoichiometric matrix using standard methods implemented in MATLAB

(Stephanopoulos et al., 1998). The program for calculation of fluxes is given in the Appendix.

44..99..22 YYeeaasstt mmeettaabboolliicc nneettwwoorrkk mmooddeell
A simplified yeast biochemical reaction network was used for the calculation of metabolic

fluxes.  The specific substrate i.e.,  glucose or galactose (qs) consumption rate; specific prod-

uct, ethanol (qp) production rate; specific growth rate (µ) and the flux split ratio between gly-

colysis and pentose phosphate pathway ( PPP) were used in the model for flux calculations.

The mass balance equations around each node are as follows (Figure 4-13),

0:6 1321 vbvvvPG (Eq 4-15)

0:6 412133 vvvvPF (Eq 4-16)

0: 3151211134 vbvvvvvGAP (Eq 4-17)

0: 414765 vbvvvvPYR (Eq 4-18)

0: 787 vbvvAcCoA (Eq 4-19)
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0: 598 vbvvAKG (Eq 4-20)

0: 109 vvSUC (Eq 4-21)

0: 681014 vbvvvOAA (Eq 4-22)

0:5 213112 vbvvvPP (Eq 4-23)

0:4 81312 vbvvPE (Eq 4-24)

0:7 1211 vvPS (Eq 4-25)

v is a reaction rate or flux as specified in figure 4-13. This stoichiometric network has 15

metabolic reactions, v1 to v15, and 8 anabolic reactions, v1 to v8, representing biomass forma-

tion. The anabolic demand reactions were calculated as function of the specific growth rate as

described by Frick et al. (2004). The specific substrate, i.e., glucose or galactose consumption

rate (qHexose = v1), specific ethanol production rate (qp = v6) are two external fluxes.

This system would be underdetermined unless there was an additional measurement. The flux

split  ratio  between glycolysis  and  pentose  phosphate  pathway,  PPP, provided an additional

measured variable and therefore the system was fully determined. The PPP can be estimated

simply from metabolite labeling of compounds directly derived from pyruvate, e.g. alanine or

ethanol as described by Wittmann et al. (2002). The net PPP flux split ratio is defined as

32

2

vv
v

PPP (Eq 4-26)

The net anaplerotic flux split ratio was calculated from the fluxes already calculated, Anaple-

rotic

1476

14

vvv
v

cAnapleroti (Eq 4-27)

This value does not take into account any reversibility of anaplerotic reactions. The estima-

tion of these would require a much more in-depth analysis (Frick et al., 2004; Blank et al.,

2005; Gombert et al., 2001; van Winden et al., 2005).
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Figure 4-13 Schematic diagram of the simplified central yeast metabolic network.
Glu, Glucose; G6P, Glucose-6-phosphate; F6P, Fructose-6-phosphate; P5P, Pentose-5-
phosphate; E4P, Erythrose-4-phosphate; S7P, Sedoheptulose-7-phosphate; GAP, Glyceralde-
hyde-3-phosphate; Pyr, Pyruvate; ETH, Ethanol; AcCoA, Acetyl Co-A; AKG, Alpha-keto
glutarate; SUC, Succinate; OAA, Oxaloacetate, Bio-Biomass

44..1100 SSTTAATTIISSTTIICCAALL AANNAALLYYSSEESS

Mean errors of hexoses i.e., glucose, galactose and ethanol determination were derived from

all pair wise measurements carried out for each well. For the specific growth rate the 90 %

confidence interval was estimated according to Massart et al. (1997). 90 % confidence inter-

vals for yields and flux partitioning to the pentose phosphate pathway were estimated by cal-

culating Gaussian error propagation. Errors of metabolic fluxes were estimated using Monte

Carlo simulation (MATLAB, Mathworks) assuming Gaussian distribution of errors. The error

of biomass yield on oxygen was estimated from a sensitivity analysis and visual inspection

using  the  software  BERKELEY  MADONNA.  To  distinguish  different  mutant  strains  from

each other and different mutant strains from the reference strain, strains were compared pair

wise using a t-test with 90 % confidence interval. Strains with overlapping confidence inter-

vals were considered equal. These comparisons were made for all four individual parameters

specified above for both sugar substrates.
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44..1100..11 CCoonnffiiddeennccee iinntteerrvvaallss iinn rreeggrreessssiioonn aannaallyyssiiss
The rate of cell growth is proportional to cell concentration during exponential phase of culti-

vation. Thus a plot of natural logarithm of biomass concentration (X) against time (t) yields a

straight line and the slope of this is the specific growth rate (µ).

X
dt
dx (Eq 4-28)

The regression coefficient, µ is the specific growth rate. Confidence intervals were set for

specific growth rates by calculating the critical value for regression coefficient as follows

(Kreyszig et al., 1993).

1. A confidence level  of 90 % was chosen.

2. The solution for p of the equation was determined from the table of the t-distribution with

n-2 degrees of freedom (n = sample size).

12
1pF (Eq 4-29)

3. For a sample of size (x1,  y1) to (xn,  yn), variances S1 and S2 were calculated for x and y,

respectively.

Critical value K for regression coefficient µ was computed as follows

1
12

2 2
S

n
SSpK (Eq 4-30)

The confidence interval is

KKCONF (Eq 4-31)

44..1100..22 SSttaannddaarrdd ddeevviiaattiioonnss ffoorr yyiieelldd ccaallccuullaattiioonnss
Yield coefficients were estimated as quantity of cell dry weight or ethanol produced per

quantity of carbon substrate utilized. Thus yield coefficients were coming from two inde-

pendent measurements i.e. the amount of glucose consumed, the amount of biomass or etha-

nol produced. When the final result is obtained from more than one independent measure-

ment, or when it is influenced by two or more independent sources of error, these errors can

accumulate or compensate. Thus standard deviations were calculated according to the law of
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propagation of errors (Massart et al., 1997). Random errors accumulate according to the law

of propagation of errors is given by:

y
xz (Eq 4-32)

yxz
dy
dz

dx
dz 2

2
2

2
2 (Eq 4-33)

                                  Where yxfz , (Eq 4-34)

and x, y must be independent variables and 2
x,

2
y, and 2

z are variances of x, y and z, respec-

tively. Standard deviation of z can be calculated by taking the partial derivative for the above

equation,

2
1

2
2

2
2

2
1

yxz y
x

y
 (Eq 4-35)

44..1100..33 MMuuttaanntt ccoommppaarriissoonn
Mutant-mutant and mutant-reference separations were done in the following way; two strains

were checked, if the confidence intervals of specific growth rates and standard deviations of

all yields of one strain were overlapping the confidence intervals and standard deviations of

another strain or not. Strains, which were common in all four dimensions i.e. specific growth

rates, biomass yields, ethanol yields and biomass yields on oxygen were considered as ‘not

distinguishable’ strains i.e., strains with overlapping confidence intervals were considered

equal and strains that were not overlapping in at least one dimension were considered as ‘dis-

tinguishable’ strains.

44..1100..44 HHiieerraarrcchhiiccaall cclluusstteerriinngg
Hierarchical clustering was based on complete linkage method with Euclidean metric by us-

ing hclust function of stats package of R statistical language software (http://www.r-

project.org/). The log2 transformed fold changes of metabolic flux values of mutant strains

vs. reference strain were visualized using the heatmap.2 function of the gplots package of R.

http://www.r-
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44..1100..55 EEuucclliiddeeaann ddiissttaannccee aapppprrooaacchh
Mutant strains were compared using relative Euclidean distance, d, between two strains using

all the available biological parameters i.e., specific growth rate, biomass yield on substrate,

ethanol yield on substrate and biomass yield on oxygen, using the equation 4-36,

2

1

,
npar

i

ii

y
yxyxd (Eq 4-36)

where x and y are the parameter values for the two selected strains. yi is  the  mean value  of

parameter i for all strains.

44..1100..66 GGrraapphhiiccaall GGaauussssiiaann MMooddeelllliinngg ((GGGGMM)) aapppprrooaacchh
Graphical Gaussian Modelling (GGM) or Covariance selection model or Concentration graph

is useful for learning undirected graphical Gaussian Markov models from data sets, where the

number of random variables ‘p’ exceeds the available sample size ‘n’ (Waddell and Kishino,

2000). GGM is used to infer the network of linear dependencies among a set of mutant strains

based on partial correlations as a measure of independence of any two strains by computing

all pair-wise correlations and subsequently the corresponding graph (To and Horimoto,

2002). If there is a missing edge between any two mutant strains i.e., partial correlation is

close to zero, that would mean that there is no direct dependency between those two strains.

If the partial correlation is close to one that would mean that there is a strong direct depend-

ency between those two strains. The corresponding program was written in ‘R’ is given in the

Appendix.
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The total work flow, starting from the selection of mutants strains from the yeast knockout

library till calculation of metabolic fluxes was illustrated in figure 4-14.

Figure 4-14 Schematic illustration of the total work flow
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55.. RREESSUULLTTSS AANNDD DDIISSCCUUSSSSIIOONN
Results and discussion chapter is organised in the following manner. This chapter is divided

in to six sub-chapters (sub-chapters: 5.1 to 5.6).

The first sub-chapter, 5.1 deals with the high-throughput stoichiometric and metabolic

     screening of a set of selected S. cerevisiae single deletion mutants, which are known to

     be involved in central carbon metabolism using 96-well microtiter plates with integrated

     optical sensors for dissolved oxygen monitoring on glucose and galactose sugars.

The 5.2 sub-chapter deals with the new method that was developed for the high-

     throughput quantification of unlabeled and mono-13C-labeled ethanol, which also permits

     the calculation of the flux split ratio between glycolysis and the pentose-phosphate

     pathway (PPP).

The sub-chapter 5.3 deals with the comparative quantitative metabolic flux profiling of

     the selected set of mutants on glucose and galactose sugars at miniaturised scale.

The sub-chapter 5.4 deals with the comparative stoichiometric and quantitative metabolic

     flux profiling of hexose transporter deletion mutant strains on glucose and galactose.

The sub-chapter 5.5 deals with the stoichiometric and quantitative metabolic profiling of a

     set of selected mutants on fructose sugar and comparison with the other carbon sources

     i.e., glucose and galactose.

In the final overview sub-chapter 5.6, all the strains discussed so far are combined to

     gether and analysed statistically by employing several techniques i.e., hierarchical clus

     tering, mutant comparison using Euclidean distance approach and data visualisation using

     clustered heat maps etc. Based on the available quantitative information on different car

     bon sources for different strains, the functions of hypothetical genes are predicted using

     Graphical Gaussian modelling approach.
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55..11 MMEETTAABBOOLLIICC SSCCRREEEENNIINNGG OOFF SS.. CCEERREEVVIISSIIAAEE SSIINNGGLLEE
KKNNOOCCKKOOUUTT SSTTRRAAIINNSS OONN GGLLUUCCOOSSEE AANNDD GGAALLAACCTTOOSSEE

Most of the results presented in this chapter are contained in the following publication.

Velagapudi, V.R., Wittmann, C., Lengauer, T., Talwar, P., Heinzle, E., 2006. Meta
bolic screening of Saccharomyces cerevisiae single knockout strains reveals unex
pected mobilization of metabolic potential. Process Biochem. 41, 2170–2179.

55..11..11 BBaacckkggrroouunndd
The determination of basic physiological parameters as rates of growth, substrate consump-

tion, product formation and respiration and further of metabolic pathway activities is of cen-

tral importance for the characterization of strains. To this end, a methodology for high-

throughput kinetic and stoichiometric analysis of yeast mutant libraries in 96 well microtiter

plates with on-line sensing of dissolved oxygen at miniaturized scale was developed and op-

timized. From this method, reliable data for specific growth rate, biomass and ethanol yields

on glucose and biomass yield on oxygen, which also allows mutant characterization, was

calculated. This method was applied to a selected set of mutants that were cultured on glu-

cose and galactose. A set of 27 deletion mutants were selected, which are proposed to be in-

volved in central carbon metabolism. The detailed information i.e., known or putative mo-

lecular, biological and cellular localization, about the mutants is described in Table 5.1-1.

55..11..22 MMiiccrroottiitteerr ppllaattee ccuullttiivvaattiioonn ooff SS.. cceerreevviissiiaaee
The growth profile of the wild type S. cerevisiae ATCC 32167 in a 96 well microtiter plate is

shown in Figure 5.1-1. Cells grew exponentially with a specific growth rate of µ = 0.46 h-1

and eventually reached an OD of 3.7 after 8 h of cultivation. Glucose was completely con-

sumed during first 5 h of cultivation, which was accompanied by an increase in ethanol con-

centration (Figure 5.1-1A). The cells thus revealed the typical profile of yeast, where high

levels of readily metabolizable sugars repress the ability of the cell  to carry out full  aerobic

respiration (Postma et al., 1989).
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A B

Figure 5.1-1 Cultivation profile of S. cerevisiae ATCC 32167. Wild-type yeast S. cerevisiae
was grown in 96-well microtiter plate (A), dissolved oxygen concentration was measured
during cultivation in three parallel wells (B). Microtiter plate reader operating conditions:
orbital shaking, 1080 rpm, r = 1 mm, T = 30 °C for 8 h.

It  was  observed  that  there  was  no  limitation  of  oxygen  throughout  the  cultivation.  This  as-

sures that ethanol production during cultivation was exclusively due to the “Crabtree Effect”

but not anaerobic fermentation. Furthermore, the oxygen profile revealed distinct events of

the cultivation. A gradual decrease in DO concentration was observed during initial cultiva-

tion. At about 5 h a significant increase in the DO level was observed, which coincided with

the depletion of glucose. This transient increase in DO concentration obviously results from a

short lag phase of decreased metabolic activity. Cells of S. cerevisiae have to synthesize the

enzymes necessary for the aerobic metabolism of ethanol. In addition, three parallel wells

showed almost identical oxygen profiles (Figure 5.1-1B). This underlines the high precision

of the DO measurements and the high reproducibility of cultivation in parallel wells.

55..11..33 CCoommppaarraattiivvee ggrroowwtthh aannaallyyssiiss iinn MMTTPP aanndd SSFFCC
In order to check the validity of the methodology developed for the cultivation in microtiter

plates, parallel growth experiments were carried out for S. cerevisiae ATCC 32167 in con-

ventional shake flasks and microtiter plates. Identical growth profiles were observed with

both cultivation tools (Figure 5.1-2). This showed that the developed approach is appropriate

for cultivation of S. cerevisiae. Thus the use of microtiter plate with online oxygen sensing is

a suitable approach for the subsequent physiological studies of yeast deletion mutants or

other mutant libraries.
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Table 5.1-1 Information about the selected yeast deletion mutant strains
ORF Gene Name Biological process  Molecular function
YMR280C CAT8 Regulation of transcription

from Pol II promoter
Specific RNA pol II transcription factor
activity

YML054C CYB2 Electron transport L-lactate dehydrogenase
YDL174C DLD2 Aerobic respiration D-lactate dehydrogenase (cytochrome)

activity
YLR377C FBP1 Gluconeogenesis Fructose-bisphosphatase activity
YJL155C FBP26 Gluconeogenesis Fructose-2,6-bisphosphate 2-

phosphatase activity
YMR250W GAD1 Response to oxidative stress Glutamate decarboxylase activity
YBR019C GAL10 Galactose metabolism Unknown
YPL248C GAL4 Regulation of transcription DNA-dependent transcriptional activa-

tor activity
YBR018C GAL7 Galactose metabolism UTP-hexose-1-phosphate uridylyltrans-

ferase activity
YCL040W GLK1 Carbohydrate metabolism Glucokinase activity
YML004C GLO1 Glutathione metabolism Lactoylglutathione lyase activity
YIL154C IMP2 DNA repair Transcription co-activator activity
YNL104C LEU4 Leucine biosynthesis 2-isopropylmalate synthase activity
YKL029C MAE1 Pyruvate metabolism Malate dehydrogenase (oxaloacetate

decarboxylating) activity
YBR297W MAL33 Regulation of transcription DNA-dependent  transcription factor

activity
YGL209W MIG2 Regulation of transcription

from Pol II promoter
RNA pol II transcription factor activity

YKL062W MSN4 Response to stress Transcription factor activity
YKR097W PCK1 Gluconeogenesis Phosphoenolpyruvate carboxykinase

(ATP) activity
YIL107C PFK26 Fructose-2,6-bisphosphate me-

tabolism
6-phosphofructo-2-kinase activity

YOL136C PFK27 Fructose-2,6-bisphosphate me-
tabolism

6-phosphofructo-2-kinase activity

YDL168W SFA1 Formaldehyde assimilation Formaldehyde dehydrogenase (glu-
tathione) activity

YNL257C SIP3 Transcription initiation from
pol  II promotor

 Transcription cofactor activity

YDR073W SNF11 Chromatin modeling RNA pol II transcription factor activity
YOR344C TYE7 Transcription Transcription factor activity
YBR006W UGA5 Response to oxidative stress Succinate-semialdehyde dehydrogenase

(NAD(P)+) activity
YGR194C XKS1 Xylulose catabolism Xylulokinase activity
YBR184W YBR184W Unknown Unknown

(Sources: Saccharomyces genome deletion project)
SGD (http://www.sequence.stanford.edu/group/yeast_deletion_project/references.html),
MIPS (http://mips.gsf.de/genre/proj/yeast/)
SGD (http://www.yeastgenome.org/) databases

http://www.sequence.stanford.edu/group/yeast_deletion_project/references.html
http://mips.gsf.de/genre/proj/yeast/
http://www.yeastgenome.org/
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Figure 5.1-2 Comparative growth profile analysis of Wild-type yeast S. cerevisiae in micro-
titer plate (MTP) and shake flask (SFC). Culture volumes were 10 ml in 100 ml shake flask,
T = 30 °C, 250 rpm for 8 h and 150 µl in microtiter plate. Microtiter plate operating condi-
tions were same as in Fig 5.1-1. (Open symbols: shake flask and closed symbols: microtiter
plate)

55..11..44 EEffffeecctt ooff sshhaakkiinngg rraattee oonn ooxxyyggeenn lliimmiittaattiioonn
To investigate the effect of shaking rate on oxygen limitation, two cultivation experiments

were carried out with suc2 strain with an initial OD~0.05 at low shaking rate (540 rpm) and

at high shaking rate (1020 rpm). During cultivation at low shaking rate (540 rpm), cells grew

slowly and produced 0.55 g L-1 of biomass at  14.6 h of cultivation. There was still  residual

glucose even after 14 h of cultivation. Figure 5.1-3A shows a fit between experimental and

simulated data of biomass, glucose and ethanol concentrations. Using equations (Eq 4-5 – 4-

11) overall specific growth rate that was calculated by the model was 0.17 h-1. Experimen-

tally determined ethanol concentration at 13.6 h was 1.85 g L-1, whereas the corrected ethanol

concentration by the model was 1.98 g L-1 corresponding to a difference of about 6 %. This

difference is larger than the estimation error. In other cultivations differences were signifi-

cantly larger. At 13.6 h of cultivation, estimated yield of biomass on glucose, YXS, was 0.086

g g-1, of ethanol on glucose, YPS, it was 0.35 g g-1, and YPX, the stoichiometric ratio of ethanol

to biomass production, was 4.0 g g-1. Figure 5.1-3B depicts the oxygen profile together with

optical density, which shows oxygen limitation after 8 h of cultivation. The measured DO

concentration at 15 h was 3 %. Simulations were made using the full model but only for the

first 8 h of cultivation, where there was no oxygen limitation. From this, the biomass yield on

oxygen, YXO, and specific growth rate, µ, were calculated. The calculated YXO for this time

period was 10.1 g g-1. This is clearly higher than typical yields at aerobic conditions with
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purely respiratory growth without any ethanol production. Furukawa et al. (1983) reported a

value of 1.1 g g-1 for a specific growth rate of 0.25 h-1 in continuous culture of S. cerevisiae,

where growth is almost entirely respiratory. The calculated specific growth rate for this time

period was 0.25 h-1,  which  was  significantly  different  from the  overall  average  growth  rate

determined from growth until depletion of glucose, which was 0.17 h-1.

Careful investigation of experimental and simulated growth curves of figure 5.1-3A shows

systematic deviations also indicating biphasic growth on glucose. This also shows that the

strain  revealed  two  different  growth  phases  during  the  cultivation  on  glucose  based  on  the

oxygen availability. When there was enough oxygen, the strain grew with high growth rate,

whereas it showed slow growth during oxygen limitation, which finally resulted in low bio-

mass production. This shows that oxygen limitation is not always very clearly seen solely

from growth profiles, whereas the measurement of dissolved oxygen provides a clear indica-

tion of oxygen limitation. During cultivation at a high shaking rate of 1020 rpm 0.89 g L-1 of

biomass was produced at 15 h of cultivation. During this process, it consumed all the glucose,

which was accompanied with an increase in ethanol concentration. Figure 5.1-3C shows a fit

between experimental and simulated data of biomass, glucose and ethanol concentrations.

Specific growth rate that was calculated by the model was 0.27 h-1. Experimentally deter-

mined ethanol concentration at 13.5 h was 2.75 g L-1, where as the corrected ethanol concen-

tration by the model was 3.06 g L-1 corresponding to about 10 % difference. Estimated yields

at 13.5 h were: YXS = 0.091 g g-1; YPS = 0.34 g g-1 and YPX = 3.7 g g-1. YXS is slightly larger

than in the oxygen limited case with a shaking rate of 540 rpm and YPS is slightly lower. The

deviations are, however not really significant since the error of estimation of these yields is in

the order of 5 to 10 %. Figure 5.1-3D shows the oxygen profile during the cultivation. The

measured  DO  concentration  at  15  h  was  95  %,  which  clearly  shows  that  there  wasn’t  any

oxygen limitation throughout the cultivation. The specific growth rate for the first 8 h of cul-

tivation calculated by the model was 0.29 h-1, which was about 15 % higher than the above

reported growth rate. It was not possible to get any reliable estimate of the oxygen uptake rate

and therefore of YXO because of the very small difference of the measured dissolved oxygen

concentration from the saturation value. Determination of oxygen uptake rate and YXO using

the method proposed here requires cultivation at an appropriate oxygen transfer rate.
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Figure 5.1-3 Effect of shaking rate on oxygen limitation. suc2 strain was grown in 96-well
microtiter plate at two different shaking rates and correction for evaporation loss of ethanol
was made by using dynamic model. A fit was shown between these experimental data and
simulated data. At low shaking rate of 540 rpm, Biomass ( ), glucose consumption ( ) and
ethanol production profiles ( )  and corrected ethanol concentration (line) (A),  Oxygen pro-
file ( ) (B). At high shaking rate of 1020 rpm. Biomass ( ), glucose consumption ( ) and
ethanol production profiles ( ) and corrected ethanol concentration (line) (C), oxygen profile
( ) (D).

This clearly indicates that at these operation conditions balanced growth prevailed throughout

the cultivation without oxygen limitation. The data of this strain were compared with that of

the reference strain (Table 5.1-2). The observed specific growth rate and the biomass yield on

glucose were significantly lower compared to the reference strain, whereas biomass yield on

oxygen and ethanol yield on glucose were not significantly different. The biological meaning

of these differences is not really clear since deletion of SUC2 should not have any effect,

provided the exclusive function of SUC2 was its known fructofuranosidase activity.

55..11..55 MMeetthhoodd VVaalliiddaattiioonn
To experimentally further proof the developed method, growth characteristics of mutants

with similar knocked out ORF functions were compared. We selected gene deletions for two

isoenzymes of 6-phosphofructose-2-kinase, pfk26  and pfk27 .  It has bee reported that these

two genes have almost identical function and identical kinetic behaviour in susceptibility to

activation by cAMP-dependent protein kinase (Aragon et al., 1987). The second selected pair
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is nrg1 and nrg2 . These two regulatory proteins involved in glucose repression, are two

very similar proteins, which have closely related functions in the regulation of glucose-

repressed genes (Vyas et al., 2001; Berkey et al., 2004). However, these genes are themselves

differently regulated in response to carbon source. Growing on glucose as sole carbon source,

one would expect similar physiological behaviour of these strains. Experiments showed sig-

nificant decreases in growth rate and biomass yield on glucose of all four mutants compared

to the reference strain. At the same time biomass yield on oxygen increased significantly

which indicates a reduction in respiratory activities compared to the reference strain. Higher

biomass yield is consistent with increased respiratory activity with higher ATP-yields.

Changes in ethanol yield on glucose were not significant. This indicates that there must be

other fermentation products apart from ethanol since the same fraction of glucose was trans-

formed into ethanol in all experiments (Table 5.1-2).

Table 5.1-2 Stoichiometric data of the examined strains originating from the reference strain
S. cerevisiae BY4742 Mat  his3 1 leu2 0 lys2 0 ura3 0. (Relative errors were calculated
from each duplicate measurement for specific growth rates and yields. The average relative
error of each parameter was applied for the calculation of the errors.)
Strain
name

Silenced
gene

Specific growth
rate

µ (h-1)

Biomass yield
on glucose
YXS (g g-1)

Biomass yield
on oxygen
YXO (g g-1)

Corrected etha-
nol yield on

glucose
YPS (g g-1)

Reference - 0.306  0.006 0.128  0.008 12.8  1.3 0.35  0.03
YIL107C PFK26 0.231  0.004 0.085  0.006 32.7  3.2 0.36  0.03
YOL136C PFK27 0.243  0.005 0.082  0.006 28.8  2.8 0.36  0.03
YDR043C NRG1 0.228  0.004 0.098  0.006 30.1  3.0 0.30  0.03
YBR066C NRG2 0.224  0.004 0.087  0.006 30.0  3.0 0.30  0.03
YIL162W SUC2 0.270  0.005 0.091  0.006 10.1  1.0 0.34  0.03

55..11..66 CCoommppaarraattiivvee pphhyyssiioollooggiiccaall aannaallyyssiiss
After an initial selection, mutants were first cultivated on glucose at high shaking rate of 1020

rpm. Then mutants were classified into three groups. Some mutants grew only slowly with

µmax < 0.17 h-1. These were not further quantitatively investigated with the method developed

here because of too high evaporation of ethanol and water during long term cultivation.

Strains growing with specific growth rates of 0.17 to 0.26 h-1 were classified as slow growers

and were later cultivated together to allow a reasonable common harvest time point. The rest

of the strains with growth rates higher than 0.26 h-1 were  classified  as  fast  growers,  which

were also cultivated as a group for more detailed studies. From these group-wise cultivations



Results and discussion

56

maximum specific growth rates, µmax, and yield coefficients of biomass and ethanol on glu-

cose were determined. All strains that did not show a significant decrease of dissolved oxy-

gen concentration were then cultivated at a shaking rate of 540 rpm to determine oxygen up-

take rates. In cases, where only a few biomass data points were measured within the period of

dissolved  oxygen concentration  higher  than  20  % air  saturation,  the  specific  growth  rate  of

the fully aerated culture was applied. The resulting data set is listed in Table 5.1-3 for glucose

and in Table 5.1-4 for galactose. The errors for the estimation of growth rates, biomass and

ethanol  yields  were  typically  between  5  and  10  %,  whereas  the  error  for  biomass  yield  on

oxygen was typically between 10 and 20 %. These allow various ways of comparison of the

mutants. First, specific rates calculated from specific growth rate and yield coefficients are

compared. Next, growth parameters of all strains on both sugars are compared. Then, every

single mutant is compared with the reference strain. Later, binary comparisons of all mutants

with respect to the 4 parameters determined for glucose and galactose as carbon substrates

follow.

55..11..66..11 CCoommppaarriissoonn ooff ssppeecciiffiicc rraatteess aanndd yyiieellddss ooff mmuuttaanntt sseett

In Figure 5.1-4 specific hexose consumption rates, qHexose, specific rates of ethanol produc-

tion, qEthanol, and specific oxygen consumption rates are plotted versus the maximum specific

growth rate of each mutant, µmax. From a first inspection it is evident that growth on galactose

is clearly different from growth on glucose. On glucose substrate consumption and ethanol

production are typically higher and respiration is clearly repressed. The parental reference

strain, indicated by the arrows, has about average characteristics for all specific rates. As

mentioned  earlier,  strains  growing  with  slower  rates  than  0.17  h-1 were excluded from this

analysis. As expected, the strains gal4 , gal7 and gal10  did not grow on galactose at all.

Generally, the specific hexose uptake rate, qHexose, and the specific rate of ethanol production,

qEthanol,  were  about  proportional  to  the  specific  growth  rate,  µmax, whereby the increase of

qEthanol with µmax was slightly higher on glucose than on galactose. The specific oxygen up-

take rate, qO2, was generally low on glucose because of the Crabtree-effect but qO2 increased

with increasing µmax. Oxygen uptake varied much more on galactose with some highly respir-

ing strains and a few almost complete lacking of respiration.
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Table 5.1-3 Growth data on glucose for all strains used together with corresponding 90 %
confidence intervals.
Gene name µGlu h-1 YX/S,Glu

g g-1
YE/S,Glu

g g-1
YX/O,Glu

g g-1

Reference 0.320 ± 0.014 0.128 ± 0.009 0.336 ± 0.018 4.3 ± 0.8
CAT8 0.350 ± 0.026 0.083 ± 0.004 0.305 ± 0.006 6.0 ± 1.0
CYB2 0.279 ± 0.025 0.099 ± 0.023 0.399 ± 0.011 6.8 ± 1.2
DLD2 0.303 ± 0.029 0.093 ± 0.005 0.430 ± 0.031 9.3 ± 1.4
FBP1 0.225 ± 0.014 0.101 ± 0.011 0.429 ± 0.036 10.0 ± 1.2
FBP26 0.288 ± 0.014 0.101 ± 0.007 0.423 ± 0.024 8.4 ± 1.4
GAD1 0.312 ± 0.012 0.083 ± 0.005 0.320 ± 0.006 6.8 ± 1.2
GAL10 0.338 ± 0.037 0.085 ± 0.004 0.412 ± 0.007 3.6 ± 1.0
GAL4 0.280 ± 0.027 0.092 ± 0.005 0.411 ± 0.026 4.0 ± 0.8
GAL7 0.306 ± 0.015 0.085 ± 0.004 0.251 ± 0.009 8.6 ± 1.4
GLK1 0.320 ± 0.016 0.083 ± 0.005 0.276 ± 0.005 8.1 ± 1.0
GLO1 0.342 ± 0.019 0.089 ± 0.005 0.320 ± 0.011 4.8 ± 0.6
IMP2 0.296 ± 0.046 0.100 ± 0.006 0.305 ± 0.010 9.9 ± 1.2
LEU4 0.314 ± 0.026 0.110 ± 0.007 0.361 ± 0.012 7.7 ± 1.0
MAE1 0.282 ± 0.038 0.098 ± 0.010 0.446 ± 0.016 8.6 ± 1.1
MAL33 0.306 ± 0.019 0.083 ± 0.004 0.423 ± 0.023 7.7 ± 1.2
MIG2 0.288 ± 0.027 0.118 ± 0.014 0.420 ± 0.033 10.3 ± 1.8
MSN4 0.294 ± 0.038 0.102 ± 0.009 0.381 ± 0.010 10.2 ± 1.6
PCK1 0.338 ± 0.023 0.082 ± 0.005 0.334 ± 0.017 5.0 ± 0.8
PFK26 0.243 ± 0.046 0.085 ± 0.012 0.358 ± 0.043 9.6 ± 1.5
PFK27 0.286 ± 0.038 0.082 ± 0.007 0.357 ± 0.013 9.9 ± 1.2
SFA1 0.351 ± 0.016 0.090 ± 0.006 0.333 ± 0.020 3.3 ± 0.5
SIP3 0.329 ± 0.023 0.095 ± 0.006 0.400 ± 0.022 6.5 ± 0.9
SNF11 0.400 ± 0.029 0.097 ± 0.013 0.436 ± 0.038 5.1 ± 1.0
TYE7 0.333 ± 0.022 0.085 ± 0.005 0.356 ± 0.028 8.0 ± 1.0
UGA2 0.237 ± 0.004 0.096 ± 0.019 0.311 ± 0.009 10.8 ± 1.8
XKS1 0.396 ± 0.026 0.097 ± 0.004 0.380 ± 0.012 6.7 ± 1.2
YBR184W 0.292 ± 0.028 0.101 ± 0.008 0.445 ± 0.015 9.0 ± 1.5
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Table 5.1-4 Growth data on galactose for all strains used together with corresponding 90 %
confidence intervals.

Gene name µGlu h-1 YX/S,Gal
g g-1

YE/S,Gal
g g-1

YX/O,Gal
g g-1

Reference 0.223 ± 0.012 0.190 ± 0.014 0.325 ± 0.019 1.3 ± 0.3
CAT8 0.276 ± 0.008 0.148 ± 0.006 0.380 ± 0.014 25.0 ± 5.0
CYB2 0.307 ± 0.069 0.119 ± 0.015 0.209 ± 0.006 1.7 ± 0.2
DLD2 0.199 ± 0.005 0.189 ± 0.012 0.187 ± 0.028 1.3 ± 0.2
FBP1 0.335 ± 0.019 0.214 ± 0.011 0.186 ± 0.022 1.1 ± 0.3
FBP26 0.236 ± 0.021 0.132 ± 0.011 0.251 ± 0.013 2.0 ± 0.2
GAD1 0.316 ± 0.021 0.166 ± 0.010 0.402 ± 0.018 1.8 ± 0.3
GAL10 0.005 ± 0.001 -  ±  - -  ±  - -  ±  -
GAL4 0.005 ± 0.001 -  ±  - -  ±  - -  ±  -
GAL7 0.005 ± 0.001 -  ±  - -  ±  - -  ±  -
GLK1 0.243 ± 0.023 0.122 ± 0.002 0.236 ± 0.004 1.5 ± 0.2
GLO1 0.316 ± 0.023 0.131 ± 0.007 0.237 ± 0.013 2.4 ± 0.3
IMP2 0.293 ± 0.017 0.164 ± 0.004 0.211 ± 0.012 1.6 ± 0.3
LEU4 0.220 ± 0.011 0.239 ± 0.013 0.294 ± 0.005 1.2 ± 0.2
MAE1 0.260 ± 0.015 0.181 ± 0.011 0.367 ± 0.033 1.4 ± 0.2
MAL33 0.196 ± 0.013 0.183 ± 0.010 0.159 ± 0.026 1.9 ± 0.2
MIG2 0.340 ± 0.028 0.140 ± 0.009 0.366 ± 0.030 4.5 ± 1.0
MSN4 0.261 ± 0.018 0.123 ± 0.007 0.356 ± 0.033 1.9 ± 0.2
PCK1 0.181 ± 0.012 0.158 ± 0.009 0.131 ± 0.014 1.7 ± 0.4
PFK26 0.234 ± 0.013 0.235 ± 0.008 0.312 ± 0.012 1.3 ± 0.3
PFK27 0.268 ± 0.028 0.145 ± 0.007 0.158 ± 0.017 5.6 ± 0.6
SFA1 0.253 ± 0.021 0.147 ± 0.014 0.409 ± 0.027 1.2 ± 0.3
SIP3 0.272 ± 0.014 0.134 ± 0.007 0.328 ± 0.014 1.9 ± 0.3
SNF11 0.207 ± 0.011 0.154 ± 0.005 0.406 ± 0.020 22.0 ± 4.0
TYE7 0.216 ± 0.018 0.136 ± 0.010 0.286 ± 0.026 1.7 ± 0.2
UGA2 0.221 ± 0.015 0.156 ± 0.007 0.143 ± 0.013 1.3 ± 0.3
XKS1 0.297 ± 0.020 0.084 ± 0.003 0.225 ± 0.007 1.7 ± 0.2
YBR184W 0.259 ± 0.011 0.119 ± 0.008 0.275 ± 0.028 3.3 ± 0.4
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Figure 5.1-4 Specific conversion rates of carbon substrate, ethanol and oxygen as function of
the  specific  growth  rate,  µmax, for selected deletion mutants during growth on glucose and
galactose (Tables 5.1-3 and 5.1-4). -glucose; - galactose. Arrows indicate the reference
strain BY4742 Mat  his3 1 leu2 0 lys2 0 ura3 0.

The maximum sugar uptake was close to 25 mmol g-1 h-1. On glucose, 11 strains consumed

glucose at rates higher than 20 mmol g-1 h-1: cat8  – 23.3; gad1  – 20.8; gal10 – 22.1;

glk1  – 21.3; mal33 – 20.5; pck1 – 22.8; sfa1 – 21.6; glo1  – 21.3; snf11  – 22.9; tye7

– 21.8; xks1  – 22.6 mmol g-1 h-1, whereas a single mutant consumed galactose at such high

rate: xks1  - 19.6 mmol g-1 h-1. Rodriguez-Pena et al. (1998) assigned this gene xylulokinase

activity. Most of the high glucose consumers had specific oxygen consumption rates below 2

mmol g-1 h-1, but on galactose xks1 consumed oxygen at about 5.6 mmol g-1 h-1. At the same

time it had a relatively low specific maximum ethanol production rate of 17.3 mmol g-1 h-1 on

galactose. On glucose, all high rate glucose consumers had values of qEthanol between 20 and

40 mmol g-1 h-1 (Figure 5.1-5).
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Figure 5.1-5 Specific conversion rates of ethanol and oxygen as function of the specific hex-
ose consumption rate, qHexose, for selected deletion mutants during growth on glucose and
galactose (Tables 5.1-3 and 5.1-4). -glucose; - galactose. Arrows indicate the reference
strain BY4742 Mat  his3 1 leu2 0 lys2 0 ura3 0. Straight line indicates the maximum
possible ethanol yield of 2 mol mol-1

Some of  the  strains  growing  on  galactose  showed very  high  respiratory  capacities  with  the

following qO2 values (mmol g-1 h-1): fbp1  - 9.3; imp2 - 8.1; sfa1  -  6.6.  The  two almost

respiratory deficient mutants were cat8 and snf11 that are both involved in RNA pol II

transcription factor activity. There isn’t any report so far reporting similar effects. Overall,

this part of the analysis shows that a significant number of strains show activities, which are

quite different from the reference strain. Some of them show entirely unanticipated improve-

ments of biotechnological interest. A number of strains grow clearly faster than the reference

strain. A significant number had higher specific substrate uptake rates and also high ethanol

production rates. The mig2  mutant, involved in the regulation of transcription from the pol

II promoter, showed qEthanol on galactose even higher than the corresponding value of the ref-

erence strain growing on glucose.

Figure 5.1-6 shows the missing carbon balance from these strains on glucose and galactose.

Most  of  the  strains  had  less  than  30  % of  missing  carbon balance,  whereas  few strains  had

about 35 - 45 % of missing carbon balance, especially on galactose, which could be due to

the production of other metabolites, e.g. glycerol.
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Figure 5.1-6 Missing carbon balance (%) on glucose and galactose for the selected strains.

55..11..66..22 CCoommppaarriissoonn wwiitthh rreeffeerreennccee ssttrraaiinn

The reference strain was quite close to an average value with respect to µmax, qO2, qEthanol on

galactose and qGalactose, where qGlucose and qEthanol on glucose were at the lower boundary of the

observed values (figures 5.1-4, 5.1-5 and 5.1-7 and Table 5.1-3). µmax on glucose of the refer-

ence strain was identical with dld2 , gad1 , gal10 , glk1 , imp2 , leu4 , sip3  and tye7 ;

on galactose with fbp26 , leu4 , tye7  and uga2 . Therefore, for leu4  and tye7 , µmax was

indistinguishable from the reference strain on glucose and on galactose. dld2 , fbp1 ,

fbp26 , gal4 , leu4 , mig2 , pfk26 , sip3 , snf11  and ybr184w  had  the  same  biomass

yield on glucose; dld2 , mae1  and mal33  on  galactose  and  therefore  no  strain  had  the

same  YX/S on both sugars. gad1 , glo1 , leu4 , pck1 , pfk26 , pfk27 , sfa1  and tye7

showed the same ethanol yield on glucose, YE/S, as the reference strain, mae1 , mig2 ,

msn4 , pfk26  and sip3  on galactose and pfk26 on both sugars. Biomass yields on oxygen,
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YX/O, of the reference strain were identical with gal10 , gal4  and glo1  during growth on

glucose, with dld2 , fbp1 , glk1 , imp2 , leu4 , mae1 , pck1 , pfk26 , sfa1  and uga2

on galactose and no single strain had identical YX/O on both sugars.

Figure 5.1-7 Stoichiometric profiling of selected yeast deletion mutants. Correlation between
specific growth rate, µmax, and biomass yields, YX/S, on glucose (A) and galactose (C) as well
as with ethanol yield, YE/S, on glucose (B) and galactose (D). Circled points indicate the ref-
erence strain BY4742 Mat  his3 1 leu2 0 lys2 0 ura3 0.
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Another interesting comparison relates physiological parameters on both sugars for each sin-

gle mutant (Figure 5.1-7). YE/S was only identical for the reference strain on glucose (0.336 ±

0.018 g g-1) and galactose (0.325 ± 0.019 g g-1). The specific growth rate, µmax, was identical

on both sugars for cyb2 , gad1 , imp2 , mae1 , pfk26  and pfk27 , respectively. Two

strains grew slower on glucose than on galactose, fbp1 : glucose - 0.225 h-1 and galactose -

0.335 h-1 and mig2 : glucose - 0.288 h-1 and galactose - 0.340 h-1. fbp1 , fructose-

bisphosphatase, is usually required for gluconeogenesis and is therefore considered of minor

importance for growth on glucose and galactose, which joins glycolysis at the level of glu-

cose 6-phosphate. mig2 has RNA pol II transcription factor activity and it remains unclear,

why the deletion of this gene has such a pronounced effect on the growth on galactose.

55..11..66..33 CCoommppaarriissoonn ooff mmuuttaannttss aaggaaiinnsstt mmuuttaannttss

All the examined mutants were compared against each other in all eight dimensions. We

searched for the indistinguishable strain combinations. Depending on the parameter investi-

gated and on the substrate the discrimination between strains varied (Table 5.1-5).

Table 5.1-5 Strains not distinguishable based on maximum specific growth rate, µmax, bio-
mass yield on carbon substrate, YX/S, ethanol yield on carbon substrate, YE/S, and on biomass
yield on oxygen, YX/O, and growth on glucose and/or galactose as limiting substrate.

µmax YX/S YE/S YX/O all
Glucose 109 337 114 85 13
Galactose 44 65 52 109 1
Glucose and galactose 44 58 17 28 0

Generally,  with  this  set  of  strains  the  discrimination  was  stronger  with  galactose  except  on

the basis of YX/O where growth on glucose was more discriminative. Experiments on galac-

tose alone would only lead to one indistinguishable mutant pair, msn4  - sip3 . Both genes

have transcription factor activity, MSN4 upon stress  and SIP3 in connection with transcrip-

tion initiation from pol II. On glucose alone, the 13 indistinguishable pairs were: dld2  -

fbp26 , dld2  – mae1 , dld2  - mig2 , dld2  - ybr184w , fbp26  - mae1 , fbp26  -

ybr184w , glo1  - pck1 , leu4  - tye7 , mae1  - mal33 , mae1  - ybr184w , mig2  -

msn4  and mig2  - ybr184w .
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55..11..66..44 HHiieerraarrcchhiiccaall cclluusstteerriinngg

In order to identify mutant pairs with similar physiological profiling, hierarchical clustering

was done using stoichiometric data on glucose, galactose, and combined data on glucose and

galactose i.e., µmax, YX/S, YE/S and YX/O using Euclidian distance as a distance metric. The rela-

tive Euclidian distances were calculated between mutant pairs and also between mutant and

the reference strain.

Glucose

The  top  five  most  closely  related  mutant  pairs  were mae1 -ybr184w  (0.07); fbp26 -

mae1  (0.077); glo1  -pck1 (0.088); fbp26  - ybr184w  (0.101); gal7  -glk1 (0.108). The

top three most closely related mutants with the reference strain were glo1 (0.427); sfa1

(0.436) and gal4 (0.453) and one mutant, uga2  (0.975) was distantly related to the refer-

ence strain indicating that this strain had a clear phenotype when grown on glucose. The

measured Euclidean distances were visualised as dendrogram and the data revealed 3 main

clusters, highlighted with colours in Figure 5.1-8.

Figure 5.1-8 Dendrogram on glucose. Hierarchical clustering was done using stoichiometric
data by using Euclidean distances as a metric.

In the first cluster (top to bottom), few strains that are involved in galactose metabolism were

clustered close to the reference strain for e.g., gal10 and gal4  suggesting no clear pheno-
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type on glucose. In the second cluster, isoenzymes pfk26 and pfk27  (phosphofructokinase

activity) were clustered together suggesting an identical phenotype and mae1 , fbp26  and

dld2  that are involved in pyruvate metabolism and glucose metabolic process were clustered

together and also close to the hypothetical gene ybr184w .

GGaallaaccttoossee

Similarly hierarchical clustering was done using stoichiometric data on galactose as well and

the relative Euclidian distances were calculated between mutant pairs and also between mu-

tant and the reference strain. The top five most closely related mutant pairs were leu4  -

pfk26  (0.097); msn4  -sip3  (0.133); fbp26  -glk1  (0.162); fbp26  - tye7  (0.177); dld2

-mal33  (0.196). The top three most closely related mutants with the reference strain were

mae1 (0.231); pfk26  (0.296) and leu4 (0.335). The measured Euclidean distances were

visualised as dendrogram and the data revealed 4 main clusters, highlighted with colours in

Figure 5.1-9.

Figure 5.1-9 Dendrogram on galactose. Hierarchical clustering was done using stoichiomet-
ric data by using Euclidean distances as a metric.
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The clustering results were different on glucose and galactose suggesting substrate specific

phenotypes of the mutant strains. The distance between the mutant pairs is smaller on glucose

than on galactose, representing strong phenotype of deletion mutants on galactose when

compared to glucose grown conditions. Furthermore, two mutants, snf11  (5.62) and cat8

(6.43) were very distantly related to the reference strain. Whereas these strains were ten times

closer to the reference strain when grown on glucose (snf11  -0.51 and cat8  -0.54) indicat-

ing that these strains had clearer phenotypes when grown on galactose than on glucose.

CCoommbbiinneedd aannaallyyssiiss –– GGlluuccoossee aanndd GGaallaaccttoossee

Hierarchical clustering was done using combined stoichiometric data on glucose and galac-

tose and the relative Euclidian distances were calculated in the similar fashion. The top five

most closely related mutant pairs were dld2  –mal33  (0.31); glk1  –tye7  (0.328); sip3  –

tye7  (0.39); fbp26  – ybr184w  (0.398); leu4 –pfk26  (0.444). The top three most closely

related mutants with the reference strain were leu4 (0.601); sfa1  (0.615) and sip3 (0.663).

The measured Euclidean distances were visualised as dendrogram and the data revealed 4

main clusters, highlighted with colours in Figure 5.1-10.

Figure 5.1-10 Dendrogram for glucose and galactose data. Hierarchical clustering was done
using stoichiometric data by using Euclidean distances as a metric.
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55..11..77 CCoonncclluussiioonnss
Twenty-seven deletion mutants of S. cerevisiae were investigated using a novel method for

high-content stoichiometric and kinetic metabolic profiling. From high-throughput quantita-

tive stoichiometric profiling of yeast mutants at miniaturized scale, quantitative information

was obtained about the metabolism of all tested mutants. Cultivation on glucose and galac-

tose in 96-well microtiter plates with on-line optical sensing of dissolved oxygen was repro-

ducible and identical to shake flask cultivation.  At high shaking rate (1020 rpm) there was no

oxygen limitation throughout all cultivations whereas at low shaking rate (540 rpm) oxygen

uptake rate could be measured during declining dissolved oxygen concentration.

First one could detect, whether oxygen limitation is occurring during cultivation using the

oxygen sensing microtiter plate. Secondly, dissolved oxygen profiles indicate most substrate

limitations and diauxic behaviour (Figures 5.1-1 and 5.1-3). The application of a simple bal-

anced growth model allows correction for ethanol and water evaporation. From this new

method, reliable data for specific growth rate, biomass and ethanol yields on carbon substrate

and biomass yield on oxygen were calculated. Using the two substrates glucose and galac-

tose, overall 8 parameters were obtained which could successfully discriminate between the

27  strains  described  here.  Maximum specific  growth  rates  were  in  the  same range  for  both

sugars. On glucose the growth was predominantly fermentative with high yield of ethanol,

low yield of biomass and low oxygen consumption rate. Clustering analysis on glucose re-

vealed that knockout strains with similar function were clustered together. On galactose, res-

piration was more active with correspondingly lower ethanol yields, higher biomass yields

and higher rates of oxygen consumption. The clustering results were different on galactose

than on glucose with large distance between the mutant strains and to the reference strain

suggesting strong phenotypes on galactose. Some strains showed unexpectedly high or low

growth rates and rates of ethanol production and respiration. Overall the four parameters de-

termined for each mutant on two different carbon sources (Figure 5.1-10) allowed statistically

significant discrimination of all mutants studied.
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55..22 MMAALLDDII--TTOOFF--MMSS FFOORR MMEETTAABBOOLLIICC FFLLUUXX AANNAALLYYSSEESS
UUSSIINNGG IISSOOTTOOPPEE LLAABBEELLEEDD EETTHHAANNOOLL

Most of the results presented in this chapter are contained in the following publication.

Hollemeyer, K., Velagapudi, V.R.,  Wittmann,  C.,  Heinzle,  E.,  2007.  Matrix-assisted
laser desorption/ionization time-of-flight mass spectrometry for metabolic flux analyses
using isotope-labeled ethanol. Rapid Commun Mass Spectrom. 21, 336-342.

55..22..11 BBaacckkggrroouunndd
Unknown gene function can be determined by phenotypic analysis of mutants missing the

gene of interest (Winzeler et al., 1999; Que et al., 2002). Complete libraries of gene deletion

mutants of S. cerevisiae have been established (Giaever et al., 2002; Brachmann et al., 1998).

Gene function analysis would be greatly supported by additional analysis of metabolic flux

distributions of mutants of this library. This requires the analysis of substrate consumption as

well as of biomass and product formation. Flux distribution can be determined by feeding
13C-labeled substrate with subsequent precise analysis of metabolites or products by using

mass spectrometry (MS). This is also possible at a microliter scale using, e.g., 96-well mi-

croplates. Usually, ethanol is derivatized prior to GC/MS analysis (Knapp, 1979) and most

derivatizations have to be carried out in a water-free organic solvent. Derivatization of highly

diluted ethanol on the microtiter plate scale is therefore difficult because of the small amounts

produced, the high volatility of ethanol and the presence of the aqueous matrix.

A new method was developed for the quantification of isotope-labeled ethanol (A detailed

description of the method was given in the Materials and Methods section). The new method

is now routinely used for the determination of unlabeled and mono-13C-labeled ethanol as

products of 1-13C-labeled hexose substrates in yeast fermentation experiments. This permits

the calculation of the flux split ratio between glycolysis and the pentose-phosphate pathway

(PPP). Compared with standard GC/MS analysis the new application works with much higher

throughput, with an average MALDI-TOF measuring time of less than 30 s per sample with

the instrument applied here, and less than 2 s with a high-frequency laser instrument. For

high throughput purposes, all steps of the method can be automated. Furthermore, no hazard-

ous chemicals such as diazomethane or trimethylchlorosilane are required.
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55..22..22 EEtthhaannooll qquuaannttiiffiiccaattiioonn aanndd vvaalliiddaattiioonn
The selected three S. cerevisiae deletion strains were cultivated in a 96-well microtiter plate

using [1-13C]-glucose as carbon source. Ethanol produced from the culture supernatant was

quantified using MALDI-ToF-MS (Figure 5.2-1) as described in the materials and methods

section. To validate these results, ethanol concentrations were also quantified enzymatically

using a spectrophotometer. The results from both methods were similar and the differences

were about 3.3 % on average (Table 5.2-1). This makes the new Ac-DNPH method suitable

for measurements of singly labeled 13C-ethanol in fermentation experiments.

55..22..33 EEssttiimmaattiioonn aanndd vvaalliiddaattiioonn ooff fflluuxx sspplliitt rraattiioo
The flux split ratio between the PPP and glycolysis, ppp was estimated (Eq 4-13), based on

ethanol labeling, by MALDI-ToF-MS and the obtained values were compared with those

obtained from GC/MS which were based on alanine labeling. The differences between both

methods were about 4.3 % (Table 5.2-1).

Table 5.2-1 Determination of ethanol concentration and flux partitioning ratio between gly-
colysis and PP pathway, ppp (Eq 4-13) in yeast cultures using MALDI-TOF MS and com-
parison with established reference methods, enzymatic conversion and spectroscopic detec-
tion and GC-MS analysis of alanine
Yeast
deletion
strains

Ethanol concentration
[g/l] ppp value

Spectro-
scopic

MALDI-
TOF

Difference
(%)

MALDI-
TOF GC-MS Difference

(%)
fbp26 2.63 ± 0.02 2.55 ±0.18 3.13 0.068 0.07 2.9
tye7 3.09 ± 0.26 3.16 ±0.16 2.22 0.074 0.07 5.7
pck1 3.36 ± 0.19 3.52 ±0.05 4.55 0.067 0.07 4.3

This difference is very small considering the amplification of errors. Additionally, in the

GC/MS measurements, all three carbon atoms of alanine can be labeled because of anaple-

rotic reactions but only two carbon atoms in ethanol. Clearly, other methods based on the

GC/MS analysis of amino acids from cell proteins and isotopomer modelling provide more

accurate data on the flux partitioning between the PPP and glycolysis. These approaches,

however, are linked to a higher experimental effort, which hampers their application to large-

scale screening of fluxes.
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Figure 5.2-1 (A) Blank value solely using [13C2]-labeled acetaldehyde-DNPH. (B) Mass
spectrum of naturally and [1-13C]-labeled acetaldehyde-DNPH in equimolar ratio (50mM)
each together with [13C2]-labeled acetaldehyde-DNPH (15 mM) as internal standard.

55..22..44 CCoonncclluussiioonnss
A novel method was developed for the determination of the concentration and labeling de-

gree of ethanol originating from 1-13C-labeling experiments. This method is suitable for high-

throughput metabolic flux analysis because of the possible parallel sample preparation and

fast final analysis using MALDI-ToF-MS.

This new application of the hydrazone reaction of 2, 4-dinitrophenylhydrazine with acetalde-

hyde, formed by an enzymatic reaction, is a sufficiently sensitive method for the quantifica-

tion of ethanol formed by fermentation. Not only unlabeled ethanol but also mono-13C-

labeled ethanol originating from labeled substrates can be quantified, even at a minimum

concentration of 1 mM, using [13C2]-ethanol as internal standard. Ethanol quantification using

this method was compared with enzymatic analysis and exhibited differences of less than 3.3

% on average. Similar results from spectrometric tests for total content of ethanol showed the

accuracy of the method. The method is linear up to 500 mM ethanol.
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Comparison of flux partitioning ratios between glycolysis and the pentose-phosphate pathway

(PPP) based on MALDI-TOFMS and gas chromatography GC/MS methods showed good

agreement, with differences for ethanol and alanine labeling of only 4.3 %. The main advan-

tage of the method compared with GC/MS methods is the possibility for high-throughput

analysis  with  parallel  sample  treatment  using  MALDI-TOFMS.  Using  MALDI-TOFMS,

large numbers of analyses of isotope-labeled ethanol can be performed almost in parallel with

measurement times of only a few seconds each. The sample preparation step of the new

method can also be automated using a robotic system. Therefore, this method is suitable for

high-throughput metabolic studies, e.g. of mutant libraries of yeast.
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55..33 MMEETTAABBOOLLIICC FFLLUUXX SSCCRREEEENNIINNGG OOFF SS.. CCEERREEVVIISSIIAAEE
KKNNOOCCKKOOUUTT SSTTRRAAIINNSS OONN GGLLUUCCOOSSEE AANNDD GGAALLAACCTTOOSSEE AATT
MMIINNIIAATTUURRIIZZEEDD SSCCAALLEE

Most of the results presented in this chapter are contained in the following publication.

Velagapudi, V.R., Wittmann, C., Schneider, K., Heinzle, E., 2007. Metabolic Flux
Screening of Saccharomyces cerevisiae Single  Knockout  Strains  on  Glucose  and  Ga
lactose Supports Elucidation of Gene Function. J Biotechnol. 132, 395–404.

55..33..11 BBaacckkggrroouunndd
The full understanding of yeast physiology requires quantitative methods. Continuous culti-

vation allows most thorough studies but requires an enormous amount of labour (von Meyen-

burg et al., 1969; Furukawa et al., 1983; Postma et al., 1989). Controlled batch cultivation

also may provide rich information (Westergaard et al., 2007) but the number of experiments

carried out is rather limited because of the high effort. New screening methods based on new

cultivation methods in microtiter plates as described in this thesis or by other groups (Fischer

and Sauer, 2003; Wittmann et al., 2004; Sauer, 2004) open up new possibilities in this field

particularly, when combined with modern analytical methods based on mass spectrometric

analysis.

The application of 13C-labelling techniques using mass spectrometry (Wittmann and Heinzle,

1999; 2001a and 2001b; Wittmann, 2002) shows a potential to carry out such analysis even at

a 96-well microtiter plate scale (Sauer, 2004) as was shown for C. glutamicum (Wittmann et

al., 2004), B. subtilis (Zamboni and Sauer, 2004) and E. coli (Fischer and Sauer, 2003).

Comprehensive flux analysis of yeast is complicated by the compartmentation, particularly

mitochondrial activity. Therefore, it requires extensive labelling analysis of amino acids con-

tained in cellular proteins (Frick and Wittmann, 2005; Blank et al., 2005; Gombert et al.,

2001) or even of intracellular metabolites (van Winden et al., 2005).

New microtiter plate cultivation techniques with integrated optical sensing of dissolved oxy-

gen (John et al., 2003) allow large-scale determination of specific growth rate, ethanol pro-

duction rate and glucose and oxygen consumption rates (Velagapudi et al., 2006). This study
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showed clear differences between strains cultivated on glucose and galactose. It also discov-

ered unexpected mobilization of metabolic potential and discrimination of all studied strains

using the four parameters mentioned above. It would be very interesting to extend the meta-

bolic information obtained by applying metabolic flux analysis. The above described new

technique in section 5.2, particularly suited to determine flux split ratios into the pentose

phosphate pathway in yeast that is based on MALDI-ToF mass spectrometry (Hollemeyer et

al., 2007). Using microtiter plate cultivation with dissolved oxygen measurement combined

with the new 13C flux screening method (for detailed description please refer to Materials and

Methods, section 4.10), a set of S. cerevisiae deletion mutants cultivated on glucose and ga-

lactose were studied to gain information about the function of deleted genes.

55..33..22 FFlluuxx tthhrroouugghh PPeennttoossee PPhhoosspphhaattee PPaatthhwwaayy ((PPPPPP))
Metabolic flux split ratios at glucose 6-phosphate branch point towards pentose phosphate

pathway ( PPP) were obtained based on the ethanol labelling using MALDI-ToF-MS as de-

scribed in section 5.2.3. Based on the obtained PPP values, mutants were classified into three

groups. Strains having PPP of 0.05 to 0.15 were classified as strains with low PPP. On glu-

cose, 17 strains were having low PPP, whereas on galactose only 2 strains had low PPP.

Strains having PPP of 0.15 to 0.25 were classified as strains with high PPP. On glucose, 11

strains were having low PPP whereas on galactose, 9 strains had high PPP. Strains with PPP

of 0.25 to 0.35 were classified as strains with very high PPP.  On galactose,  12  strains  had

very high PPP whereas none of the strains had very high PPP on glucose. One strain mae1

had exceptionally very high PPP of 0.455 on galactose, whereas on glucose this strain mae1

had low PPP of 0.138 (Tables 5.3-1 and 5.3-2).

The flux through the PPP, PPP was correlated to the yield of biomass YXS, suggesting a bal-

anced production and consumption of NADPH. This trend was more certain on galactose

rather than on glucose (Figure 5.3-1).
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Figure 5.3-1 Comparison of biomass yield, YX/S, and flux partitioning into the pentose phos-
phate pathway, PPP, in galactose and glucose cultures. Error bars indicate 90 % confidence
levels.  - glucose;  - galactose.
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Table 5.3-1 Growth data on glucose. Specific growth rate, µGlu, specific uptake rate of glucose, qGlu, specific rate of ethanol production, qETH,
flux partitioning from glucose 6-phosphate into the pentose phosphate pathway, PPP,Glu; and from pyruvate/PEP into oxaloacetate/malate, A-

naplerotic,Glu, and biomass yield on glucose, YX/S,Glu, all with 90 % confidence levels. The last line shows the average values of all strains (Table
5.1-1) and standard deviation between them.

Gene name µGlu h-1 qGlu mmol g-1 h-1 qETH mmol g-1 h-1
PPP,Glu Anaplerotic,Glu YX/S,Glu g g-1

Reference 0.320 ± 0.014 13.9 ± 0.9 18.2 ± 1.5 0.102 ± 0.020 0.025 ± 0.004 0.128 ± 0.009
CAT8 0.350 ± 0.026 23.4 ± 1.0 27.9 ± 1.3 0.170 ± 0.022 0.016 ± 0.002 0.083 ± 0.004
CYB2 0.279 ± 0.025 15.6 ± 1.0 24.4 ± 1.7 0.142 ± 0.020 0.018 ± 0.003 0.099 ± 0.023
DLD1 0.303 ± 0.029 18.1 ± 2.7 30.5 ± 5.1 0.081 ± 0.020 0.017 ± 0.003 0.093 ± 0.005
FBP1 0.225 ± 0.014 12.4 ± 1.9 20.9 ± 3.6 0.191 ± 0.025 0.018 ± 0.003 0.101 ± 0.011
FBP26 0.288 ± 0.014 15.8 ± 1.6 26.2 ± 3.1 0.153 ± 0.022 0.019 ± 0.003 0.101 ± 0.007
GAD1 0.312 ± 0.012 20.8 ± 0.7 26.1 ± 1.0 0.156 ± 0.022 0.016 ± 0.002 0.083 ± 0.005
GAL10 0.338 ± 0.037 22.1 ± 1.3 35.7 ± 2.2 0.158 ± 0.020 0.017 ± 0.003 0.085 ± 0.004
GAL4 0.280 ± 0.027 16.9 ± 2.1 27.1 ± 3.8 0.174 ± 0.024 0.017 ± 0.003 0.092 ± 0.005
GAL7 0.306 ± 0.015 20.0 ± 1.0 19.6 ± 1.2 0.138 ± 0.020 0.016 ± 0.002 0.085 ± 0.004
GLK1 0.320 ± 0.016 21.3 ± 0.7 23.0 ± 0.8 0.184 ± 0.022 0.016 ± 0.002 0.083 ± 0.005
GLO1 0.342 ± 0.019 21.3 ± 1.2 26.7 ± 1.8 0.114 ± 0.021 0.017 ± 0.003 0.089 ± 0.005
IMP2 0.296 ± 0.046 16.4 ± 1.3 19.6 ± 1.7 0.133 ± 0.022 0.019 ± 0.003 0.100 ± 0.006
LEU4 0.314 ± 0.026 15.8 ± 0.9 22.3 ± 1.5 0.116 ± 0.021 0.021 ± 0.003 0.110 ± 0.007
MAE1 0.282 ± 0.038 16.0 ± 1.5 27.9 ± 2.7 0.139 ± 0.022 0.018 ± 0.003 0.098 ± 0.010
MAL33 0.306 ± 0.019 20.6 ± 2.5 34.1 ± 4.5 0.157 ± 0.021 0.016 ± 0.003 0.083 ± 0.004
MIG2 0.288 ± 0.027 13.5 ± 1.7 22.2 ± 3.3 0.086 ± 0.021 0.022 ± 0.004 0.118 ± 0.014
MSN4 0.294 ± 0.038 16.0 ± 1.1 23.9 ± 1.8 0.090 ± 0.019 0.019 ± 0.003 0.102 ± 0.009
PCK1 0.338 ± 0.023 22.9 ± 2.1 29.9 ± 3.1 0.076 ± 0.020 0.016 ± 0.002 0.082 ± 0.005
PFK26 0.243 ± 0.046 15.8 ± 3.7 22.2 ± 5.8 0.212 ± 0.021 0.015 ± 0.002 0.085 ± 0.012
PFK27 0.286 ± 0.038 19.3 ± 1.7 27.0 ± 2.5 0.101 ± 0.021 0.015 ± 0.002 0.082 ± 0.007
SFA1 0.351 ± 0.016 21.6 ± 2.1 28.1 ± 3.2 0.157 ± 0.021 0.018 ± 0.003 0.090 ± 0.006
SIP3 0.329 ± 0.023 19.2 ± 2.0 30.1 ± 3.6 0.145 ± 0.021 0.018 ± 0.003 0.095 ± 0.006
SNF11 0.400 ± 0.029 22.9 ± 3.9 39.2 ± 7.5 0.108 ± 0.022 0.020 ± 0.004 0.097 ± 0.013
TYE7 0.333 ± 0.022 21.8 ± 3.1 30.4 ± 4.9 0.181 ± 0.022 0.017 ± 0.003 0.085 ± 0.005
UGA5 0.240 ± 0.004 14.0 ± 0.6 17.0 ± 0.9 0.128 ± 0.020 0.017 ± 0.003 0.096 ± 0.019
XKS1 0.396 ± 0.026 22.6 ± 1.3 33.6 ± 2.3 0.132 ± 0.023 0.020 ± 0.003 0.097 ± 0.004
YBR184W 0.292 ± 0.028 16.0 ± 1.2 27.9 ± 2.3 0.136 ± 0.022 0.019 ± 0.003 0.101 ± 0.008
Average 0.309 ± 0.010 18.4 ± 0.9 26.5 ± 1.6 0.138 ± 0.001 0.018 ± 0.000 0.094 ± 0.005
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Table 5.3-2 Growth data on galactose. Specific growth rate, µGal, specific uptake rate of galactose, qGal, specific rate of ethanol production, qETH,
flux partitioning from glucose 6-phosphate into the pentose phosphate pathway, PPP,Gal; and from pyruvate/PEP into oxaloacetate/malate, A-

naplerotic,Gal, and biomass yield on glucose, YX/S,Gal, all with 90 % confidence levels. The last line shows the average values of all strains and stan-
dard deviation between them.
Gene name µGal h-1 qGal mmol g-1 h-1 qETH mmol g-1 h-1

PPP,Gal Anaplerotic,Gal YX/S,Gal g g-1

Reference 0.223 ± 0.012 6.5 ± 0.2 8.3 ± 0.6 0.341 ± 0.029 0.037 ± 0.006 0.190 ± 0.014
CAT8 0.276 ± 0.008 10.4 ± 0.2 15.4 ± 0.7 0.292 ± 0.028 0.029 ± 0.005 0.148 ± 0.006
CYB2 0.307 ± 0.069 14.3 ± 1.1 11.7 ± 0.9 0.213 ± 0.021 0.023 ± 0.003 0.119 ± 0.015
DLD1 0.199 ± 0.005 5.8 ± 0.2 4.3 ± 0.6 0.210 ± 0.022 0.035 ± 0.005 0.189 ± 0.012
FBP1 0.335 ± 0.019 8.7 ± 0.3 6.3 ± 0.8 0.206 ± 0.023 0.045 ± 0.006 0.214 ± 0.011
FBP26 0.236 ± 0.021 9.9 ± 0.5 9.7 ± 0.7 0.200 ± 0.024 0.024 ± 0.004 0.132 ± 0.011
GAD1 0.316 ± 0.021 10.6 ± 0.4 16.7 ± 1.0 0.236 ± 0.026 0.034 ± 0.006 0.166 ± 0.010
GAL10 0.000
GAL4 0.000
GAL7 0.000
GLK1 0.243 ± 0.023 11.0 ± 0.5 10.2 ± 0.5 0.174 ± 0.023 0.022 ± 0.003 0.122 ± 0.002
GLO1 0.316 ± 0.023 13.4 ± 0.5 12.4 ± 0.8 0.305 ± 0.028 0.026 ± 0.004 0.131 ± 0.007
IMP2 0.293 ± 0.017 9.9 ± 0.3 8.2 ± 0.5 0.086 ± 0.021 0.032 ± 0.005 0.164 ± 0.004
LEU4 0.220 ± 0.011 5.1 ± 0.2 5.9 ± 0.2 0.239 ± 0.013
MAE1 0.260 ± 0.015 8.0 ± 0.3 11.5 ± 1.1 0.455 ± 0.030 0.037 ± 0.006 0.181 ± 0.011
MAL33 0.196 ± 0.013 5.9 ± 0.2 3.7 ± 0.6 0.271 ± 0.026 0.034 ± 0.005 0.183 ± 0.010
MIG2 0.340 ± 0.028 13.5 ± 0.6 19.3 ± 1.8 0.157 ± 0.021 0.028 ± 0.005 0.140 ± 0.009
MSN4 0.261 ± 0.018 11.8 ± 0.5 16.4 ± 1.6 0.315 ± 0.026 0.024 ± 0.004 0.123 ± 0.007
PCK1 0.181 ± 0.012 6.4 ± 0.2 3.3 ± 0.4 0.316 ± 0.026 0.029 ± 0.004 0.158 ± 0.009
PFK26 0.234 ± 0.013 5.5 ± 0.2 6.8 ± 0.3 0.314 ± 0.026 0.047 ± 0.007 0.235 ± 0.008
PFK27 0.268 ± 0.028 10.3 ± 0.5 6.4 ± 0.7 0.235 ± 0.024 0.028 ± 0.004 0.145 ± 0.007
SFA1 0.253 ± 0.021 9.6 ± 0.5 15.3 ± 1.3 0.130 ± 0.023 0.027 ± 0.005 0.147 ± 0.014
SIP3 0.272 ± 0.014 11.3 ± 0.4 14.5 ± 0.8 0.267 ± 0.025 0.026 ± 0.004 0.134 ± 0.007
SNF11 0.207 ± 0.011 7.5 ± 0.2 11.9 ± 0.7 0.257 ± 0.024 0.028 ± 0.004 0.154 ± 0.005
TYE7 0.216 ± 0.018 8.8 ± 0.4 9.9 ± 1.0 0.266 ± 0.024 0.025 ± 0.004 0.136 ± 0.010
UGA5 0.277 ± 0.015 13.8 ± 0.4 12.5 ± 0.5 0.242 ± 0.028 0.021 ± 0.003 0.112 ± 0.004
XKS1 0.297 ± 0.020 19.6 ± 0.6 17.3 ± 0.8 0.295 ± 0.027 0.016 ± 0.002 0.084 ± 0.003
YBR184W 0.259 ± 0.011 12.1 ± 0.4 13.0 ± 1.4 0.273 ± 0.026 0.023 ± 0.003 0.119 ± 0.008
Average 0.232 ± 0.012 10.0 ± 0.2 10.8 ± 0.4 0.252 ± 0.003 0.029 ± 0.001 0.155 ± 0.003
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The correlation of PPP between glucose and galactose showed PPP values are quite high on

galactose than on glucose. The reference strain itself showed three times higher PPP flux on

galactose than on glucose. Only 2 strains, glk1 and fbp1 had comparable PPP on both the

sugars. Mutant strains, pfk27 , sip3 , snf11 , xks1  and ybr184w  had double PPP values

on galactose than on glucose; deletion strains, glo1 , msn4 and pck1 had three times

higher PPP values on galactose than on glucose. One strain, mae1 showed extremely high

about 3.5 times higher PPP values on galactose than on glucose. Interestingly two strains had

higher PPP values on glucose than on galactose, imp2’  (about tow times) and sfa1  (slightly

higher) (Figure 5.3-2; Tables 5.3-1 and 5.3-2).

Figure 5.3-2 Comparison of flux partitioning into the pentose phosphate pathway, PPP, in
galactose and glucose cultures. Error bars indicate 90 % confidence levels. The full straight
line indicates identical values on glucose and galactose, the dashed one double ppp on galac-
tose compared to glucose, and dotted line triple values.

An increasing hexose uptake rate was observed with increasing specific growth rate (Figure

5.3-3 upper part). An inverse correlation was observed between the maximum growth rate

and PPP on both the sugars (Figure 5.3-3 lower part).
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Figure 5.3-3 Specific growth rate, µ, specific hexose uptake rates, qHexose (upper part), and
flux partitioning into the pentose phosphate pathway, PPP (lower part). Gene names are
specified in Table 5.1-1. Error bars indicate 90 % confidence regions (Tables 5.3-1 and 5.3-
2).  - glucose;  - galactose.

55..33..33 FFlluuxx tthhrroouugghh AAnnaapplleerroottiicc ppaatthhwwaayy
Strains having Anaplerotic of 0.005 to 0.015 were classified as strains with low Anaplerotic. On

glucose, 17 strains were having low Anaplerotic whereas  on  galactose  only  1  strain  had  low

Anaplerotic. Strains having Anaplerotic of 0.015 to 0.025 were classified as strains with high

Anaplerotic. On glucose, 11 strains were having low Anaplerotic whereas on galactose 13 strains

had high Anaplerotic.  Strains with Anaplerotic of 0.025 to 0.035 were classified as strains with

very high Anaplerotic. On galactose, 8 strains had very high Anaplerotic whereas none of the

strains had very high Anaplerotic on glucose. Two strains fbp1 and pfk26  had exceptionally

high Anaplerotic 0.0366 and 0.041 respectively on galactose (Figure 5.3-4; Tables 5.3-1 and

5.3-2).
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Figure 5.3-4 Comparison of flux partitioning into the anaplerotic pathways, Anaplerotic, in
galactose and glucose cultures. Error bars indicate 90 % confidence regions. The full straight
line indicates identical values on glucose and galactose, the dashed one double Anaplerotic on
galactose compared to glucose, and dotted line triple values.

55..33..44 CCoommppaarraattiivvee fflluuxx aannaallyyssiiss oonn gglluuccoossee aanndd ggaallaaccttoossee
The available metabolic flux profiling data on glucose and galactose for the examined strains

were utilised to make a comparative metabolic flux profiling analysis. The following interest-

ing and metabolically significant results were obtained.

55..33..44..11 MAE1 is important for NADPH supply on galactose

Significant differences were seen in the lower part of figure 5.3-3 where the flux partitioning

ratio, PPP, was plotted versus specific growth rate. Again cultivation on glucose was clearly

separated from cultivation on galactose for most strains with higher values for growth on ga-

lactose. The most significant outlier here is mae1 strain. MAE1 codes for the mitochondrial

malic enzyme, which is known to have a preference to NADPH (Boles et al., 1998).

The effect  of deletion of MAE1 is  even clearer when plotting PPP,gal versus PPP,Glu (Figure

5.3-2). A significant group of strains, representing the majority of the selected strains showed

PPP,gal values between 0.2 and 0.4, a few below and only mae1 showed a value above 0.4.

This high upregulation of the PPP activity can be explained by modifications in the NADPH

supply. During growth of the wild type and other strains, part of NADPH is likely produced

via Mae1p and deletion of MAE1 redirects NADPH formation to the PPP. During growth on

glucose no clear phenotype could be observed similar to the findings of Boles et al. (1998).
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Obviously, sufficient NADPH is supplied during highly fermentative growth and correspond-

ingly lower biomass yield by reactions other than catalyzed by Mae1p. No significant differ-

ence was observed when comparing the net anaplerotic flux split on glucose, Anaplerotic,Glu,

with that on galactose,  Anaplerotic,Gal, (Figure 5.3-4) again agreeing with earlier observations

of no clear phenotype (Boles et al., 1998). This metabolic split ratio only considers net fluxes.

The plot of the biomass yield on glucose,  YX/S,  versus PPP does not show any clear differ-

ence of the mae1  strain compared to the others during growth on glucose (Figure 5.3-1). On

the other hand mae1  has by far the highest value of PPP on galactose but only high value of

YX/S. Earlier a clear phenotype of this enzyme was only found during growth on ethanol

when PYK1 and MAE1 were both deleted (Boles et al., 1998). Either of the corresponding

proteins Pyk1p or Mae1p is required and permits biosynthesis of amino acids of the pyruvate

family.  Disruption of MAE1 alone, however, did not show a clear phenotype during growth

on ethanol. Mae1p was not directly related to the supply of NADPH in that study.

55..33..44..22 xxkkss11 aanndd ssnnff1111 aarree ffaasstteesstt ggrroowwiinngg oonn gglluuccoossee

The two strains xks1 and snf11  exhibited the highest growth rates on glucose and also very

high glucose consumption rates.

xks1 : Xks1p is xylulokinase (Rodriguez-Pena et al., 1998) and is therefore important

for pentose metabolism, particularly for fermentation of D-xylose and D-xylulose (Toivari et

al., 2001; van Maris et al., 2006). Deletion of XKS1 also resulted in the strain with the high-

est galactose consumption rate. PPP was in an average range growing on glucose and galac-

tose (Figures 5.3-3 and 5.3-2). However, Anaplerotic,Gal was exceptionally low in this strain

(Figure 5.3-4). Biomass yield on galactose was lowest observed in this set of mutants (Fig-

ure 5.3-1). Specific ethanol production was also very high both on glucose and galactose

(Tables 5.3-1 and 5.3-2). It is hard to imagine that Xks1p would be catalytically active in the

other strains since the phosphorylation of D-xylulose is an exergonic reaction consuming

ATP.  The  yield  of  ethanol  on  glucose  is  not  higher  than  with  several  other  strains  (Vela-

gapudi et al., 2006). It might be that Xks1p has unknown enzymatic activities producing a

compound limiting the growth rate.

snf11 : Snf11p is part of the SWI/SNF complex, which is a very large, 2000-KDa pro-

tein complex that appears to be highly conserved in all eukaryotes. In yeast it is composed of

11 different polypeptide subunits, and it is required in vivo for the transcriptional induction
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of a subset of yeast genes and for the functioning of a variety of sequence-specific transcrip-

tional activators. Conde et al. (2003) found affects in mannosylphosphorylation of cell wall

mannoproteins in snf11 strains when screening the strain from the same library as here.

SNF11 deletion did only influence maximal specific growth rate on glucose. No other sig-

nificant effect could be observed.

55..33..44..33 ppffkk2266 sshhoowwss hhiigghheesstt bbiioommaassss yyiieelldd

The deletion of PFK26 that is involved in the regulation of carbohydrate metabolism gave the

highest biomass yield on galactose with a high PPP,Gal and on glucose a low growth rate and

the highest PPP,Glu but no increase in yield. Pfk26p produces fructose 2,6-bisphosphate that

usually stimulates phosphofructokinase-1 and inhibits fructose 1,6-bisphosphatase. Muller et

al. (1997) demonstrated that Pfk26p is not needed in S. cerevisiae to sustain an adequate gly-

colytic flux under fermentative conditions, but rather is concerned with the homeostasis of

metabolite concentrations. No physiological significance found for inhibition of fructose 1,6-

bisphosphatase by Pfk26p (Muller et al., 1997).

55..33..44..44 ffbbpp11 hhaadd ddiiffffeerreenntt ggrroowwtthh rraatteess oonn gglluuccoossee aanndd ggaallaaccttoossee

Fbp1p, fructose 1,6-bisphosphatase, is essential for growth on ethanol when gluconeogenesis

is required. It seems, therefore, unnecessary during growth on glucose or galactose, and it is

even degraded in the proteasome when readily degradable sugars as glucose are available for

the cells (Hammerle et al., 1998). In this study, showing quantitative physiological data going

beyond published work, a lower growth rate on glucose and a higher one on galactose (Figure

5.3-3) and a higher biomass yield on galactose were observed (Figure 5.3-1). PPP,Glu is rela-

tively high but close to the majority of mutants (Figure 5.3-2). The increase in yield on galac-

tose is certainly not caused by an increased PPP activity.

55..33..44..55 OOtthheerr ssttrraaiinnss eexxhhiibbiittiinngg ssiiggnniiffiiccaanntt ddiiffffeerreenncceess

There are several other strains that are exhibiting interesting and significant metabolic flux

profiles on glucose and galactose.

glk1 strain: Deletion of glucokinase, GLK1, converting glucose to glucose 6-

phosphate  does  not  show  a  very  clear  phenotype.  It  is  however  remarkable  that  PPP and

naplerotic were the same on both sugars. The glucose uptake and ethanol production rates
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were about half on galactose compared to glucose (Tables 5.3-1 and 5.3-2). In Penicillium

chrysogenum the deletion of GLK1 resulted in stimulation of beta-galactosidase and penicil-

lin biosynthesis (Barredo et al., 1988).

mig2  strain: MIG2 together with MIG1 is involved in glucose repression (Westergaard

et al., 2007). Disruption of MIG2 resulted in similar behaviour of yeast on both sugars con-

cerning most growth parameters. Only PPP,Gal was about 1.5 fold higher than PPP,Glu both

exhibiting relatively low values. Much clearer effects would be expected when feeding

mixed substrates.

pck1 strain: Pck1p, an ATP dependent phosphoenolpyruvate carboxykinase is impor-

tant for gluconeogenesis (Valdes-Hevia et al., 1989) and possibly for cyclic fluxes between

the PEP/pyruvate and oxaloacetate/malate pools that are frequently observed in many organ-

isms. Its deletion does not show a very drastic phenotype. The very low PPP,Glu might point

to a possible activation of Mae1p for the generation of NADPH. However, the determined

specific malic enzyme activity, referred to total protein was very similar, 9.68 ± 0.13

nmol/min/mg protein for the reference strain and 9.38 ± 0.17 nmol/min/mg protein for the

pck1 mutant.

sfa1  strain: Sfa1p is a long-chain alcohol dehydrogenase also capable of reducing for-

maldehyde (Wehner et al., 1993). In this study sfa1 was only exceptional having lower

PPP,Gal than PPP,Glu, a characteristic it shares with imp2’ .

dld1 and imp2’ strains: Deletion of DLD1, a D-lactate dehydrogenase, showed low

PPP,Glu but no other very significant differences. The deletion of IMP2 resulted in the lowest

PPP,Gal value of all strains studied but biomass yield similar to other strains. Imp2’p is a

sugar regulatory protein. Again it seems that the requirement of NADPH needed for ana-

bolic purposes may be supplied by Mae1p.

55..33..55 CCoonncclluussiioonnss
New methods for an extended physiological characterization of yeast at a microtiter plate

scale were applied to twenty-seven deletion mutants of S. cerevisiae cultivated on glucose

and galactose as sole carbon sources. In this way specific growth rates, specific rates of glu-

cose consumption and ethanol production were determined. Flux distribution, particularly

concerning branching into the pentose phosphate pathway was determined using a new 13C-

labelling method using MALDI-ToF mass spectrometry showed some new phenotypes that
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are useful for the elucidation of the function of the corresponding genes and other important

flux distributions at branching points were determined using metabolic network model.

On glucose the growth was predominantly fermentative whereas on galactose respiration was

more active with correspondingly lower ethanol production. Some deletion strains showed

unexpected behaviour providing very informative data about the function of the correspond-

ing gene. Deletion of MAE1 did not show any significant phenotype when grown on glucose

but a drastically increased branching from glucose 6-phosphate into the pentose phosphate

pathway on galactose. This allows the conclusion that Mae1p is important for the supply of

NADPH during aerobic growth on galactose. In pfk1 the pentose phosphate pathway flux

decreased significantly pointing to a replacement of Pfk1p catalyzed gluconeogenetic flux by

Mae1p activity.



Results and discussion

84

55..44 SSTTOOIICCHHIIOOMMEETTRRIICC AANNDD MMEETTAABBOOLLIICC FFLLUUXX SSCCRREEEENNIINNGG OOFF
SS.. CCEERREEVVIISSIIAAEE HHEEXXOOSSEE TTRRAANNSSPPOORRTTEERR ((HHXXTTSS)) SSIINNGGLLEE
KKNNOOCCKKOOUUTT SSTTRRAAIINNSS OONN GGLLUUCCOOSSEE AANNDD GGAALLAACCTTOOSSEE

        Velagapudi, V.R., Heinzle, E., 2009. Physiological and metabolic flux profiling of
S. cerevisiae hexose transporter deletion mutants (In preparation)

55..44..11 BBaacckkggrroouunndd
The first step in the sugar metabolism is the transport of external sugar inside the cell. S. cer-

evisiae comprises a family encoding 20 different hexose transporter (HXTs) related proteins

(Hxtp), which are involved in sugar transport and regulation. They represent a major facilita-

tor superfamily (Reifenberger, 1997; Kruckeberg, 1996; Ciriacy and Reifenberger, 1997).

The reason for having 20 genes for hexose transport (18 genes encoding transporters, HXT1-

HXT17 and GAL2; and two genes encoding sensors, SNF3 and RGT2) may be due to con-

stantly changing nutrient availability in the environment. Yeast is exposed to an extremely

broad range of sugar concentrations under natural conditions. Yeast might have evolved to

meet these environmental challenges by developing an unusual diversity of hexose trans-

porter genes.

Hxtp  transporters  have  been  classified  based  on  their  affinities  as  low  affinity  transporters

(Hxt1p and Hxt3p) with Km values between 50 and 100 mM, moderately low affinity trans-

porters (Hxt2p and Hxt4p) with Km values  of  about  10  mM  and  high  affinity  transporters

(Hxt6p and Hxt7p) with Km values of 1-2 mM. Gal2p is a galactose transporter but also able

to transport glucose with high affinity with the same Km values as Hxt6p and Hxt7p but

GAL2 gene express only in the presence of galactose (Reifenberger, 1997; Platt et al., 1998).

Only the hxt  null mutant (hxt1-17  disruption mutant), with the deletion of all the 17 HXT

transporter genes and GAL2 gene, is unable to grow on glucose or fructose or mannose and

overexpression of any one of these genes, except HXT12, in the null mutant restores growth

on one of these hexoses (Wieczorke, 1999). There have been studies related to kinetic charac-

terization of individual transporters by expressing only one transporter in an hxt  null mutant

(Reifenberger  et al., 1997), transcriptional profiling of HXT genes at  different oxygen con-

centrations (Rintala et al., 2008) or at different glucose concentrations (Klockow et al., 2008),
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but quantitative physiological information is lacking in strains with missing single HXT

genes. In order to address this issue, we have selected a set of  available hexose transporter

deletion strains from the mutant library (Table 5-4-1) and studied each deletion mutant strain

on glucose and galactose and obtained quantitative stoichiometric and metabolic flux data

using previously developed platforms (Velagapudi et al., 2006; Hollemeyer et al., 2007).

Table 5.4-1 Information about the selected yeast deletion mutant strains

ORF Gene name Metabolic function Activity

YHR094C HXT1 Cellular sugar import
Low affinity transmembrane hex-
ose transport activity

YDR345C HXT3 Cellular sugar import
Low affinity transmembrane hex-
ose transport activity

YHR092C HXT4 Cellular sugar import
High affinity transmembrane hex-
ose transport activity

YJL214W HXT8 Cellular sugar import Unknown
YFL011W HXT10 Cellular sugar import Unknown
YIL170W HXT12 Unknown Unknown

YNL318C HXT14 Cellular sugar import
Transmembrane galactose trans-
port activity

YNR072W HXT17 Cellular sugar import Unknown
YDL194W SNF3 Sugar binding High affinity glucose sensor
YDL138W RGT2 Sugar binding Low affinity glucose sensor

YKL038W RGT1
Regulation of carbohydrate metabo-
lism Transcription factor activity

YLR081W GAL2 Galactose metabolism Galactose permease activity

YDR277C MTH1
Regulation of carbohydrate metabo-
lism

Repressor of hexose transport
genes

YDR043C NRG1
Regulation of carbohydrate metabo-
lism

Transcriptional repressor
activity

YBR066C NRG2
Regulation of carbohydrate metabo-
lism

Transcriptional repressor
activity

55..44..22 SSttooiicchhiioommeettrriicc pprrooffiilliinngg ooff HHXXTT kknnoocckkoouutt ssttrraaiinnss
A recently developed novel method for high-content stoichiometric and kinetic metabolic

profiling was used to obtain quantitative information on physiological parameters i.e., spe-

cific growth rate, biomass yield, ethanol yield, specific substrate uptake rate and specific

ethanol production rate, of selected HXTs deletion mutants on glucose and galactose sub-

strates at miniaturized scale using 96-well microtiter plates with on-line optical sensing of

dissolved oxygen (Velagapudi et al., 2006). The results are presented in the tables 5.4-2 and

5.4-3.
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55..44..22..11 SSppeecciiffiicc ggrroowwtthh rraattee ((µµmmaaxx))

Strains growing with specific growth rates of 0.17 h-1 to  0.26  h-1 were classified as slow

growers and the rest  of the strains with growth rates higher than 0.26 h-1 were classified as

fast  growers.  Growth  on  galactose  is  clearly  distinct  from  that  on  glucose.  The  specific

growth rate of mutants on glucose was higher than on galactose. On glucose, mutants showed

varied growth patterns with specific growth rates ranging from 0.232 h-1 to 0.334 h-1, whilst

on galactose, specific growth rates ranged from 0.198 h-1 to 0.294 h-1. On glucose, 2 strains,

nrg1 and nrg2 , were slow growers with maximum specific growth rates, µmax, of 0.232 h-1

and 0.237 h-1, respectively, and the rest of the 14 strains were fast growers. On galactose, 11

strains were slow growers having maximum specific growth rates, µmax, less than 0.26 h-1 and

only  4  strains  are  fast  growers.  As  expected,  the  strain  with  deletion  of GAL2, a galactose

transporter with galactose permease activity, did not grow on galactose at all.

55..44..22..22 SSppeecciiffiicc hheexxoossee uuppttaakkee rraattee ((qqhheexxoossee))

Substrate  consumption  rates  of  transporter  mutants  were  always  higher  on  glucose  than  on

galactose. On glucose, specific consumption rates, qglucose, are ranging from 12 mmol/g/h – 27

mmol/g/h, whereas on galactose, specific consumption rates, qgalactose,  are  ranging  from  3

mmol/g/h - 10 mmol/g/h. A single mutant, hxt8 , consumed glucose at a very high rate of

26.6 mmol/g/h, whereas on galactose, hxt8  had qgalactose of 7.6 mmol/g/h. One strain, hxt4 ,

had highest galactose consumption rate of 9.5 mmol/g/h, which is still less than the minimum

consumption rate on glucose and the same strain, hxt4  had qglucose of 23.3 mmol/g/h on glu-

cose.

55..44..22..33 SSppeecciiffiicc eetthhaannooll pprroodduuccttiioonn rraattee ((qqeetthhaannooll))

Specific ethanol production rate, qethanol, on glucose ranges from 14 mmol/g/h - 42 mmol/g/h.

Except hxt8  strain,  all  other  high  rate  glucose  consumers  with  qglucose above 20 mmol/g/h,

had specific ethanol production rates, qethanol, between 20 and 40 mmol/g/h. Two strains,

hxt3  and snf3  with  qglucose16.4 mmol/g/h and 18.8 mmol/g/h, respectively, had qethanol

above 20 mmol/g/h (hxt3  - 22.5 mmol/g/h and snf3  – 32.4 mmol/g/h). The deletion strain

hxt8 , which had the maximum glucose consumption rate, 26.6 mmol/g/h had a qethanol of

only 17.8 mmol/g/h. Maximum qethanol value was observed for hxt4  strain – 41.2 mmol/g/h.

On galactose, specific ethanol production rates, qethanol, were ranging from 2 - 13 mmol/g/h.

Maximum qethanol value was observed for rgt1  strain – 12.5 mmol/g/h.
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Table 5.4-2 Growth data on glucose. Specific growth rate, µGlu, biomass yield, YX/S,Glu, etha-
nol yield, YE/S,Glu, specific uptake rate, qGlu, specific rate of ethanol production, qETH. The last
line shows the average values of all strains and standard deviation between them.
Gene µGlu

h-1
YX/S,Glu
g g-1

YE/S,Glu
g g-1

qglucose
mmol
g-1 h-1

qethanol
mmol
g-1 h-1

Reference 0.320 ± 0.014 0.128 ± 0.009 0.336 ± 0.018 13.9 18.2
HXT1 0.304 ± 0.047 0.080 ± 0.003 0.313 ± 0.005 21.1 25.8
HXT3 0.305 ± 0.035 0.103 ± 0.002 0.350 ± 0.054 16.4 22.5
HXT4 0.319 ± 0.040 0.076 ± 0.006 0.451 ± 0.031 23.4 41.2
HXT8 0.334 ± 0.051 0.070 ± 0.004 0.171 ± 0.020 26.6 17.8
HXT10 0.295 ± 0.047 0.082 ± 0.002 0.353 ± 0.010 20.1 27.8
HXT12 0.329 ± 0.043 0.076 ± 0.002 0.343 ± 0.016 24.2 32.4
HXT14 0.330 ± 0.035 0.121 ± 0.021 0.426 ± 0.064 15.1 25.2
HXT17 0.272 ± 0.058 0.061 ± 0.003 0.394 ± 0.014 24.9 38.3
SNF3 0.301 ± 0.035 0.089 ± 0.003 0.439 ± 0.013 18.9 32.5
RGT2 0.292 ± 0.052 0.129 ± 0.007 0.304 ± 0.026 12.6 15.0
RGT1 0.293 ± 0.037 0.070 ± 0.002 0.272 ± 0.016 23.2 29.4
GAL2 0.285 ± 0.043 0.089 ± 0.003 0.214 ± 0.010 17.9 14.9
MTH1 0.274 ± 0.039 0.083 ± 0.003 0.204 ± 0.010 18.2 14.6
NRG1 0.232 ± 0.014 0.098 ± 0.013 0.245 ± 0.012 13.1 15.2
NRG2 0.237 ± 0.016 0.087 ± 0.007 0.251 ± 0.031 15.1 17.5
Average 0.295 ± 0.038 0.090 ± 0.006 0.317 ± 0.022 19.0 24.3

Table 5.4-3 Growth data on galactose. Specific growth rate, µGal, biomass yield, YX/S,Gal,
ethanol yield, YE/S,Gal, specific uptake rate, qGal, specific rate of ethanol production, qETH. The
last line shows the average values of all strains and standard deviations.
Gene µGal

h-1
YX/S,Gal

g g-1
YE/S,Gal

g g-1
qgal

mmol
g-1 h-1

qethanol
mmol
g-1 h-1

Reference 0.223 ± 0.012 0.190 ± 0.014 0.325 ± 0.019 6.5 8.3
HXT1 0.236 ± 0.017 0.265 ± 0.018 0.141 ± 0.025 4.9 2.7
HXT3 0.203 ± 0.009 0.340 ± 0.032 0.249 ± 0.018 3.3 3.2
HXT4 0.261 ± 0.031 0.152 ± 0.002 0.207 ± 0.012 9.5 7.7
HXT8 0.264 ± 0.030 0.193 ± 0.018 0.342 ± 0.012 7.6 10.2
HXT10 0.247 ± 0.022 0.172 ± 0.002 0.217 ± 0.003 7.9 6.8
HXT12 0.198 ± 0.009 0.219 ± 0.005 0.369 ± 0.020 5.0 7.21
HXT14 0.255 ± 0.021 0.371 ± 0.014 0.273 ± 0.007 3.8 4.1
HXT17 0.262 ± 0.025 0.208 ± 0.006 0.322 ± 0.010 7.0 8.8
SNF3 0.253 ± 0.022 0.211 ± 0.004 0.207 ± 0.009 6.6 5.4
RGT2 0.235 ± 0.015 0.162 ± 0.001 0.259 ± 0.007 8.1 8.2
RGT1 0.258 ± 0.018 0.171 ± 0.001 0.382 ± 0.009 8.4 12.5
GAL2
MTH1 0.230 ± 0.021 0.232 ± 0.014 0.306 ± 0.015 5.5 6.6
NRG1 0.235 ± 0.017 0.311 ± 0.019 0.124 ± 0.036 4.2 2.0
NRG2 0.294 ± 0.024 0.258 ± 0.015 0.343 ± 0.069 6.3 8.5
Average 0.244 ± 0.020 0.231 ± 0.011 0.271 ± 0.018 6.3 6.8
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55..44..22..44 CCoommppaarriissoonn ooff ssppeecciiffiicc rraatteess aanndd yyiieellddss ooff mmuuttaanntt sseett

Specific uptake rate of hexose, qhexose and specific ethanol production rate, qethanol, were plot-

ted versus the maximum specific growth rate of each mutant, µmax (Figure 5.4-1A). Increasing

specific hexose consumption and ethanol production rates were observed with increasing

specific growth rate. However, the increase of qEthanol with µmax was higher on glucose than

on galactose.  On glucose,  7  strains  consumed glucose  at  rates  higher  than  20  mmol  g-1 h-1:

hxt10  – 20.1; hxt1  – 21.1; rgt1 – 23.2; hxt4  – 23.3; hxt12  – 24.1; hxt17 – 24.8; hxt8

– 26.6 mmol g-1 h-1.

Figure 5.4-1 (A) Specific hexose uptake rate and specific ethanol production rates as func-
tion  of  the  specific  growth  rate,  µmax, during growth on glucose and galactose (B) Specific
rate of ethanol production as a function of the specific hexose consumption rate, qHexose, dur-
ing growth on glucose and galactose (Tables 5.4-2 and 5.4-3). The solid line indicates the
maximum theoretical qethanol Arrows indicate the reference strain BY4742 Mat  his3 1
leu2 0 lys2 0 ura3 0.
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On glucose, reference strain had qglucose of 13.9 mmol g-1 h-1 and qethanol of 18.2 mmol g-1 h-1,

values  that  are  below  the  average  values  of  all  the  other  examined  strains  (qglucosee – 19.0

mmol g-1 h-1 and qethanol – 24.3 mmol g-1 h-1). In contrast, the specific uptake rate of galactose

and  specific  ethanol  production  rate  on  galactose  were  very  small  compare  to  glucose  and

ranging from 3 – 10 mmol g-1 h-1 and 2 - 10 mmol g-1 h-1, respectively. On galactose, the ref-

erence strain had qgalactose of 6.5 mmol g-1 h-1 and qethanol of 8.3 mmol g-1 h-1, the values which

are about average values of all the other examined strains (qgalactose -  6.3  mmol  g-1 h-1 and

qethanol - 6.8 mmol g-1 h-1).

A clear trend was observed when specific uptake rate of hexose, qhexose, was plotted against

specific ethanol production rate, qethanol, of each mutant (Figure 5.4-1B). An increasing spe-

cific ethanol production rate was observed with increasing specific uptake rate both in glu-

cose and galactose. On glucose, all high rate glucose consumers had values of qEthanol between

20 and 40 mmol g-1 h-1 except hxt8 , the strain with maximum glucose consumption rate of

26.6 mmol g-1 h-1 had qEthanol of only 17.8 mmol g-1 h-1, which is very close to the reference

strain (Figure 5.4-1B). One strain, rgt1  with high specific uptake rate of galactose (8.4

mmol g-1 h-1), also had highest specific ethanol production rate, qethanol (12.5 mmol g-1 h-1).

Figure 5.4-2 represents the correlation between specific growth rate, µmax, and biomass

yields, YX/S,  as well  as with ethanol yield,  YE/S on glucose and galactose. The deletion mu-

tants had much higher biomass yield on galactose (0.15 – 0.35 g/g) than on glucose (0.06 –

0.13 g/g). One strain, hxt14 , had a very high biomass yield on both the sugars (0.121 g/g on

glucose and 0.371 g/g on galactose). The strains had higher ethanol yields on glucose (0.17 –

0.45 g/g) than on galactose (0.12 – 0.39 g/g). This represents that the strains showed higher

respiratory activity on galactose and fermentative activity on glucose.

55..44..22..55 CCoommppaarriissoonn ooff ggrroowwtthh aanndd yyiieellddss wwiitthh tthhee rreeffeerreennccee ssttrraaiinn

The maximum specific growth rate, µmax on glucose of the reference strain was identical with

hxt1 , hxt3 , hxt4 , hxt8 , hxt10 , hxt12 , hxt14 , hxt17 , snf3 , rgt2 , rgt1 , gal2 ,

grr1 , mth1 ; on  galactose  with hxt1 , hxt3 , hxt4 , hxt8 , hxt10 , hxt14 , snf3 , rgt2 ,

nrg1 , grr1 , mth1 . Therefore, for hxt1 , hxt3 , hxt4 , hxt8 , hxt10 , hxt14 , snf3 ,

rgt2 , grr1  and mth1  strains, µmax was indistinguishable from the reference strain on glu-

cose and on galactose. hxt14  and rgt2  strains had the same biomass yield as the reference
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on glucose; hxt8 and hxt17 on galactose and therefore no strain had the same YX/S on both

sugars. hxt1 , hxt3 , hxt10 , hxt12  and rgt2  showed the same ethanol yield on glucose,

YE/S, as the reference strain, hxt8 , hxt17 , grr1 , mth1  and nrg2  on galactose and there-

fore no strain had the same YE/S on both sugars.

Figure 5.4-2 Stoichiometric profiling of HXTs yeast deletion mutants. Correlation between
specific growth rate, µmax, and biomass yields, YX/S,  as  well  as  with  ethanol  yield,  YE/S, on
glucose and galactose.

55..44..22..66 CCoommppaarriissoonn ooff mmuuttaannttss aaggaaiinnsstt mmuuttaannttss

All the examined 14 mutants were compared against each other in all six dimensions i.e.,

three parameters on each carbon source and searched for the indistinguishable strain combi-

nations from the total of 91 possible unique binary combinations on glucose and galactose.

Depending on the parameter investigated and on the substrate the discrimination between

strains varied (Table 5.4-4). The discrimination of mutants against mutants was stronger on

galactose than on glucose. Experiments on galactose alone would only lead to one indistin-

guishable mutant pair, hxt8  – hxt17 . On glucose alone, 2 indistinguishable pairs were de-

tected: hxt3  – hxt14  and nrg1  – nrg2 . None of the mutant pairs was common in all the

biological parameters on both the sugars.
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Table 5.4-4 Strains not distinguishable based on maximum specific growth rate, µmax, bio-
mass yield on carbon substrate, YX/S, ethanol yield on carbon substrate, YE/S, and growth on
glucose and/or galactose as limiting substrate.
Carbon source µmax YX/S YE/S all
Glucose 74 25 19 2
Galactose 63 11 17 1
Glucose and galactose 51 4 5 0

55..44..22..77 HHiieerraarrcchhiiccaall cclluusstteerriinngg

Hierarchical clustering was done using stoichiometric data of glucose and galactose sepa-

rately using Euclidian distance as a distance metric. The relative Euclidian distances were

calculated between mutant pairs and also between mutant and the reference strain. The num-

ber  of  biological  parameters  is  in  total  six,  three  on  glucose  and  three  on  galactose.  Seven

deletion mutant pairs, hxt4  – snf3  (0.033); hxt10  – snf3  (0.044); hxt1  – nrg1  (0.062);

hxt4  – hxt10  (0.068); hxt8  – hxt17  (0.073); hxt14  – rgt2  (0.097) on galactose; and

nrg1  – nrg2  (0.126) on glucose were most closely related to each other. The measured

Euclidean distances were visualised as dendrograms. Dendrogram of glucose and galactose

data revealed 4 clusters on each substrate, highlighted with colours in Figure 5.4-3.

On glucose, in the first cluster (bottom to top), snf3 and hxt4  were clustered together. De-

tails of protein interactions and complexes using MIPS MPact Protein Interactions and Com-

plex DB (Güldener et al., 2006) (www.mips.gsf.de/genre/proj/impact) revealed that snf3 has

genetic interaction with hxt4 (Ko et al., 1993). In the second cluster, low affinity transport-

ers hxt1 and hxt3 and transporters with limited known function hxt10  and pseudogene

hxt12 were clustered together. hxt8 strain is only distantly related to all other strains.

On galactose, members of the first cluster (bottom to top) comprise transporters with limited

known function, hxt8 , hxt12  and hxt17 . In the second cluster, hexose sensors, rgt2 and

snf3  were grouped. Protein-protein interaction studies revealed that snf3  has direct genetic

interactions  with  rgt2  (Yang and Bisson, 1996); low affinity transporters hxt1  and hxt3

were clustered together. On glucose, hxt8 strain is distantly related to all other strains

whereas on galactose hxt8  is closely related to hxt17 .

http://www.mips.gsf.de/genre/proj/impact
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Figure 5.4-3 Dendrograms on (A) glucose and (B) galactose. Hierarchical clustering was
done using stoichiometric data by using Euclidean distances as a metric. Arrows indicate the
reference strain BY4742 Mat  his3 1 leu2 0 lys2 0 ura3 0.

(A)

(B)

(A)(A)

(B)(B)
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55..44..33 CCoommppaarraattiivvee pphhyyssiioollooggiiccaall pprrooffiilliinngg ooff HHXXTT mmuuttaannttss
Another interesting comparison relates physiological parameters on both sugars for each sin-

gle mutant. The specific growth rate, µmax, was indistinguishable on both the sugars for

hxt4 , hxt8 , hxt10 , hxt17 , snf3 , rgt2 , rgt1 , and mth1 and nrg1  mutant strains. One

strain, nrg2 , grew slower on glucose (0.237 h-1) than on galactose (0.294 h-1). None of the

mutants had similar biomass yield on glucose and galactose. Ethanol yield, YE/S, was identi-

cal on both the sugars for hxt12  and nrg2 . Interestingly, five mutant strains, hxt8 , hxt12 ,

rgt1 , mth1  and nrg2 , showed higher ethanol yields on galactose than on glucose.

55..44..33..11 HHeexxoossee sseennssoorrss:: rrggtt22 aanndd ssnnff33

On glucose, rgt2  strain grew slowly (µmax = 0.292 h-1) and had lowest specific glucose up-

take rate (qhexose = 12.6 mmol g-1 h-1) and specific ethanol production rate (qethanol = 14.9 mmol

g-1 h-1) as expected. This low affinity hexose sensor, Rgt2p, a glucose receptor that binds glu-

cose outside the cell and is induced only at high glucose concentrations. In rgt2  strain, no

signal can be generated inside the cell for induction of expression of HXT genes (Ozcan and

Johnston, 1999). The high affinity hexose sensor, snf3  is induced only at low concentration

of sugar.  Thus the deletion of snf3  didn’t cause any physiological effect on glucose under

the examined experimental conditions of high glucose concentrations. Since these hexose

sensors are more specific to glucose and fructose, the deletion mutants didn’t show any spe-

cific phenotype on galactose (Ozcan and Johnston, 1995).

55..44..33..22 LLooww aaffffiinniittyy ttrraannssppoorrtteerrss:: hhxxtt11 ,, hhxxtt33 aanndd hhxxtt44

Low affinity transporters hxt1 and hxt3 (share 80 % homology) and hxt4 are induced at

high levels of glucose. Since the selected deletion mutants are single knockouts, deletion of

one transporter can be compensated by another transporter and vice versa (Ko et al., 1993).

Hence phenotype was not observed on glucose and the strains were close to the reference

strain in all the biological parameters, especially hxt3  (Euclidean distance d: 0.288). More-

over, these strains are indistinguishable from each other in most of the biological parameters.

hxt1  and hxt3  are quite close to each other (Euclidean distance d: 0.282), whereas hxt4  is

far and equally distant from both hxt1 and hxt3  (Euclidean distance d: 0.435) in all the

biological parameters. On glucose, hxt1 and hxt3  had similar maximum specific growth

rate,  µmax (hxt1  – 0.304 h-1; hxt3  – 0.305 h-1), specific uptake rate, qhexose (hxt1  – 21.1
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mmol g-1 h-1; hxt3 – 16.4 mmol g-1 h-1) and specific ethanol production rate, qethanol (hxt1  –

25.8 mmol g-1 h-1; hxt3 – 22.5 mmol g-1 h-1).

55..44..33..33 HHXXTTss wwiitthh lliimmiitteedd kknnoowwnn ffuunnccttiioonnss

Except HXT12, which is a pseudo gene and not related to the hexose transporter family, the

function of the hexose transporters Hxt8p-Hxt17p is still not known completely. HXT8-

HXT17 transcript levels were very low in glucose-limited chemostat cultivation (Diderich et

al., 1999).

hxt8 : In a most recent global gene expression analysis study at different glucose con-

centrations, it has been shown that HXT8 is active during starvation and at low glucose con-

centrations (Klockow et al., 2008). On glucose substrate, the hxt8  strain showed a clear

phenotype with the highest specific growth rate (µmax = 0.334 h-1), highest specific glucose

consumption rate (qhexose = 26.6 mmol g-1 h-1) but low specific ethanol production rate (qetha-

nol =17.8 mmol g-1 h-1) with only 0.171 g/g ethanol yield. This phenotype might suggest a

possible role of Hxt8p on glucose fermentation capacity. hxt8 strain had the maximum

Euclidean  distance  (d,  Eq  4-36)  from  the  reference  strain  among  all  the  other  strains,  d  =

0.829. In order to obtain first insight on the function of this unknown transporter activity,

hxt8  strain was compared with all the other strains in all the biological parameters and the

Euclidean distances were calculated. On glucose, hxt8 strain was close to mth1  and gal2

strains with d = 0.27 and d = 0.3, respectively. On galactose, it showed no specific pheno-

type and was indistinguishable from the reference strain in all the parameters with Euclidian

distance d = 0.181. When compared pair-wise against each mutant, the following mutants

were close to the hxt8  strain; hxt17  (d = 0.073), nrg2  (d = 0.124), rgt1  (d = 0.148) and

mth1 (d = 0.192). Thus, mth1  is closely related to the hxt8 strain on both the sugars with

less distance on galactose than on glucose.

hxt10 : On glucose substrate, hxt10 strain was closely related to hxt1  (d = 0.131) and

hxt12  (d = 0.137) in all the biological parameters. Whereas on galactose, hxt10  strain was

closely related to snf3  (d = 0.044) and rgt2 (d = 0.161).

hxt12 : HXT12, a pseudogene, is not coding for a hexose transporter. hxt12  strain was

close to hxt1  strain on glucose (d = 0.134) and to rgt1 on galactose (d = 0.253).
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hxt14 : hxt14 strain had the highest biomass yield on both the sugars. The closest

strain to hxt14 on glucose is hxt3  strain (d = 0.322). On galactose, rgt2  is the most

closely related strain (d = 0.097) followed by mth1  (d = 0.159) and hxt17 (d = 0.181).

hxt17 : hxt17  strain had the lowest biomass yield on glucose and differs from the ref-

erence strain (d = 0.788). The closest strain to hxt17  on glucose is hxt10  (d = 0.278). On

galactose, mth1 (d = 0.145) and nrg2 (d = 0.153) are closely related to hxt17  and  are

closely related to the reference strain (d = 0.162). An upregulation of HXT17 promoter activ-

ity was observed on media containing galactose and raffinose at pH 7.7 versus pH 4.7

(Greatrix et al., 2006). HXT17 promoter is a target for Mac1p transcription factor, which

regulates high affinity copper uptake genes under copper deficient conditions (Gross et al.,

2000; Jungmann et al., 1993).

55..44..33..44 RReegguullaattoorrss

mth1 : MTH1 is also known as HTR1. It encodes a component of the glucose induction

mechanism that regulates HXT gene expression. Mth1p is a negative regulator of the glu-

cose-sensing signal transduction pathway (Schmidt et al., 1999). A mutation in MTH1

causes defective transcription of probably all HXT genes. Thus deletion of MTH1 causes im-

paired glucose transport and consequently grows poorly on glucose. As expected, mth1 de-

letion strain grew relatively slowly (µmax= 0.274 h-1) when compare to the rest of the studied

mutant strains and had relatively low specific glucose consumption rate (qhexose = 18.2 mmol

g-1 h-1) and the lowest specific ethanol production rate (qethanol = 14.5 mmol g-1 h-1) on glu-

cose. On galactose, mth1 showed no specific phenotype.

nrg1 and nrg2 : Nrg1p (Negative Regulator of Glucose-repressed genes) and Nrg2p

are C2H2 zinc finger proteins that function as transcriptional repressors, regulating glucose

repressed genes (Park et al., 1999). These proteins interact with Snf1p (Sucrose Non-

Fermenting) protein kinase complex, a key component of glucose signalling pathway and is

essential for the transcription of many glucose-repressed genes (Celenza and Carlson, 1986;

Vyas et al., 2001; Zhou et al., 2001). Though both the proteins have similar DNA binding

domains (87 % identity), they differ in sequence outside the DNA binding domains (27 %

identity). Thus they are differentially regulated and functionally distant in response to car-

bon source (Berkey et al., 2004). nrg1  and nrg2  showed  substrate  specific  phenotypes.
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Among the selected set of mutants, nrg1  and nrg2  were slow growers (µmax = 0.232 h-1

and µmax = 0.237 h-1, respectively) and they showed similar phenotypic profile on glucose

(qhexose = 13.1 mmol g-1 h-1 and qhexose = 15.0 mmol g-1 h-1, respectively; qethanol =15.1 mmol g-

1 h-1 and qethanol =17.5 mmol g-1 h-1). On galactose, nrg1 and nrg2  had very different phe-

notypic profile. The Euclidean distance between nrg1  and nrg2  is  less  on  glucose  (d  =

0.126) than on galactose (d = 0.834) in all the biological parameters.

55..44..44 CCoommppaarraattiivvee mmeettaabboolliicc fflluuxx pprrooffiilliinngg ooff HHXXTT mmuuttaannttss
Metabolic fluxes were calculated based on mass balances. The fluxes given are relative val-

ues normalized to the corresponding specific hexose uptake rates.

55..44..44..11 GGllyyccoollyyssiiss aanndd PPeennttoossee PPhhoosspphhaattee PPaatthhwwaayy ((PPPPPP))

Generally the absolute flux through glycolysis is higher on glucose than on galactose, except

for hxt8  and hxt17 mutant strains. Based on the PPP values, mutants were classified into

three groups. Strains having PPP of 0.1 to 0.15 were classified as strains with low PPP. On

glucose, 8 strains had low PPP, whereas on galactose none of the strains had low PPP.

Strains having PPP of 0.15 to 0.25 were classified as strains with high PPP.  On glucose,  4

strains had high PPP whereas on galactose, 12 strains had high PPP.  Strains  with PPP of

0.25 to 0.35 were classified as strains with very high PPP. On glucose, 4 strains had very

high PPP whereas on galactose, 3 strains had very high PPP. One strain rgt1  had an excep-

tionally high PPP of 0.445 on galactose, whereas on glucose this strain rgt1 had a low PPP

of 0.126 (Figure 5.4-4).

A slight inverse correlation was observed between the maximum growth rate and PPP on

both the sugars. The correlation of PPP between glucose and galactose showed that only 3

strains, hxt3 , hxt1  and hxt10  had comparable PPP on both the sugars; and two strains,

hxt14  and nrg2 had double PPP values on galactose than on glucose (Figure 5.4-4).
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Figure 5.4-4 Comparison of flux partitioning into the pentose phosphate pathway, PPP, on
galactose and glucose. The solid line indicates identical values on glucose and galactose and
the dashed line indicates double ppp values on galactose compared to glucose.

Absolute flux through PP pathway increased with increasing specific hexose uptake rate

(Figure 5.4-5) as was also shown in Blank et al. (2005).

Figure 5.4-5 Correlation between the specific hexose uptake rates, qHexose and flux partition-
ing into the pentose phosphate pathway in galactose and glucose cultures. Solid line repre-
sents PPP of 33%. Arrows indicate the reference strain BY4742 Mat  his3 1 leu2 0 lys2 0
ura3 0.
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The ratio between the biomass yields on galactose and glucose, YX/S,gal/YX/S,glu, and between

the ethanol yields on galactose and glucose, YE/S,gal/YE/S,glu, were plotted against the ratio be-

tween the PPP on galactose and glucose, PPP,gal/ PPP,glu (Figure 5.4-6).

Figure 5.4-6 Correlation between the ratio of PPP on galactose and glucose PPP,gal/ PPP,glu
and   ratios  of  biomass  yields  on  galactose  and  glucose,  YX/S,gal/YX/S,glu (upper) and ethanol
yields on galactose and glucose, YE/S,gal/YE/S,glu (lower). The solid line indicates identical val-
ues on both the axes, dotted line indicates the double the values of YX/S,gal/YX/S,glu and dashed
line indicates half the values of YE/S,gal/YE/S,glu compared to PPP,gal/ PPP,glu.

One strain, rgt2 had similar PPP,gal/ PPP,glu and YX/S,gal/YX/S,glu ratios i.e., this strain had 1.21

times higher PPP value and 1.26 times higher YX/S on galactose than glucose. Two strains,

hxt10  and mth1 had almost double the values of YX/S,gal/YX/S,glu ratios than PPP,gal/ PPP,glu

ratios i.e., they had 2-fold higher biomass yields, YX/S than their corresponding PPP values on

galactose than glucose. Two strains, hxt3 and hxt1 , which had almost identical PPP values

both on galactose and glucose ( PPP,gal/ PPP,glu values about 1) had about 3-fold higher bio-

mass yields on galactose than glucose. The strain with highest PPP value on galactose, rgt1 ,

had about 3.5-fold higher PPP and about 2.5-fold higher biomass yield on galactose than on

glucose. Reference strain, which had about 3.3-fold higher PPP on galactose had about 1.5-
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fold higher biomass yield on galactose than on glucose (Figure 5.4-6 upper part). Two strains,

hxt17  and mth1 had about similar PPP,gal/ PPP,glu and YX/S,gal/YX/S,glu ratios (Figure 5.4-6

lower part). This means that biomass yield is not directly related to PPP activity in these mu-

tants.

Two strains, hxt1  and snf3 which had almost identical PPP values both on galactose and

glucose  ( PPP,gal/ PPP,glu values about 1) had about half the ethanol yield on galactose than

glucose; one strain, hxt3 with PPP,gal/ PPP,glu value equal to 1 had about 75% ethanol yield

on galactose compared to glucose. hxt10  strain had half the values of YE/S,gal/YE/S,glu com-

pared to PPP,gal/ PPP,glu. hxt8 , which had lower PPP value on galactose, had 2-fold higher

ethanol yields on galactose than glucose. rgt1 strain, which had about 3.5-fold higher PPP

had about 1.5-fold higher ethanol yield on galactose than on glucose. Reference strain, which

had about 3.3-fold higher PPP on galactose had almost identical ethanol yield values on both

galactose and glucose sugars (Figure 5.4-6 lower part).

55..44..44..22 TTCCAA ccyyccllee aanndd FFeerrmmeennttaattiivvee ppaatthhwwaayy

On glucose, hxt4 , hxt14  and snf3 strains and on galactose, hxt12 , rgt1  and nrg2  had

very low TCA cycle flux and also OAA originating from TCA cycle fluxes, which represents

the non-cyclic operation of TCA cycle. These strains showed higher fermentative fluxes i.e.,

ethanol production on both the sugars. There was a very strong inverse correlation between

the TCA cycle flux and fermentative pathway flux on both the sugars. However, the strains

hxt4 , hxt10  and snf3 had similar TCA cycle and fermentative pathway fluxes on galac-

tose (Figure 5.4-7).

The strains, hxt8 and mth1  on glucose and hxt1 , hxt4 and nrg1  strains on galactose had

very high TCA cycle flux. Interestingly, the strains hxt4  and snf3 had extremely low TCA

cycle flux on glucose and extremely high TCA cycle flux on galactose. rgt1 and nrg2

strains had very low TCA cycle flux on galactose and very high TCA cycle flux on glucose.

When compared to the reference strain, hxt14 strain had low TCA cycle flux on both the

sugars and hxt17  strain had similar TCA cycle fluxes on both the sugars. TCA cycle flux is

neither correlated to the maximum specific growth rate nor to the specific hexose uptake rate
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on both the sugars and these observations are consistent with previous findings (Blank et al.,

2004).

Figure 5.4-7 Correlation between TCA cycle flux and fermentative pathway (ethanol produc-
tion) flux on both the sugars. The dotted line represents a linear regression on glucose and the
dashed line on galactose.

55..44..44..33 AAnnaapplleerroottiicc ppaatthhwwaayy

Pyruvate carboxylase mediates an anaplerotic reaction, replenishing the oxaloacetate (OAA)

pool, which is used to produce many of the biosynthetic intermediates needed for anabolism.

Strains having anaplerotic of 0.005 to 0.015 were classified as strains with low anaplerotic. On

glucose, 12 strains were having low anaplerotic, whereas none of the strains had low anaplerotic

on galactose. Strains having anaplerotic of 0.015 to 0.025 were classified as strains with high

anaplerotic. On glucose, 4 strains were having high anaplerotic whereas on galactose one strain

had high anaplerotic.  Strains  with anaplerotic of  0.025  to  0.035  were  classified  as  strains  with

very high anaplerotic. On galactose, 5 strains had very high anaplerotic whereas  none  of  the

strains had very high anaplerotic on glucose. Eight strains had exceptionally high anaplerotic on

galactose; snf3  (0.036), hxt12  (0.038), mth1  (0.04), nrg2 (0.046), hxt1 (0.047), nrg1

(0.057), hxt3  (0.065) and hxt14  (0.071) (Figure 5.4-8).

The correlation of anaplerotic between glucose and galactose showed that except rgt2  and

reference strains, none of the other strains had comparable anaplerotic on both the sugars.
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Most of the strains had three times higher anaplerotic values on galactose than on glucose.

hxt14 , hxt3 and nrg1  strains had extremely high anaplerotic values (Figure 5.4-8).

Figure 5.4-8 Comparison of flux partitioning into the anaplerotic pathways, Anaplerotic, in
galactose and glucose cultures. The solid line indicates identical values on glucose and galac-
tose and the dashed line indicates three times higher Anaplerotic values on galactose compared
to glucose.

The flux through anaplerotic pathway, which is normalised with the hexose uptake rate is

correlated to the maximum specific growth rate on glucose, which is in agreement with the

previous findings by Frick and Wittmann (2005) but no correlation was observed on galac-

tose (Figure 5.4-9 A). A strong inverse correlation was observed between the flux through

anaplerotic pathway and specific hexose uptake rate and specific ethanol production rate on

both the sugars (Figure 5.4-9 B).

hxt4 strain had lower respiration than other strains on glucose, whereas on galactose it had

highest respiratory flux. In contrast, hxt8 strain showed an opposite effect. Isogenic strains,

nrg1 and nrg2 had identical fluxes on glucose whereas on galactose they exhibited differ-

ent profiles. On galactose, nrg2 strain had higher PPP flux, biosynthesis from AKG in TCA

cycle flux and fermentative capacity than nrg1 .
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Figure 5.4-9 Correlation between (A) specific growth rate, µ, and flux partitioning into the
anaplerotic pathway, which is normalised with the hexose uptake rate (B) flux partitioning
into the anaplerotic pathway, which is normalised with the hexose uptake rate and specific
hexose uptake rate, qHexose, and specific ethanol production rate qEthanol.

55..44..55 CCoonncclluussiioonnss
A set of hexose transporter deletion mutants were selected and quantitative stoichiometric

and metabolic flux data on glucose and galactose as sole carbon sources was obtained using

previously developed methodology (Velagapudi et al., 2006; Hollemeyer et al., 2007). Since

these are single knockouts and complementary, these strains had no growth defects, except

for gal2  on galactose. This type of quantitative stoichiometric and metabolic flux profiling

revealed different phenotypic profiles on different carbon sources. Strains had mainly fer-

mentative activity on glucose and respiratory and biosynthetic activity on galactose.

On glucose, hxt4  strain had as low TCA fluxes as anaplerotic fluxes (2-3 %) with high-

est ethanol yield. On galactose, it had higher respiratory flux.
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On galactose, rgt1 strain had extremely high PPP flux.

On glucose, hxt8  grew with highest specific growth rate and had highest specific glu-

cose uptake rate with lowest ethanol yield. The strain had highest PPP and TCA cycle

fluxes, i.e., the hxt8 strain  is  highly  respiring,  thus  most  of  the  carbon flux  that  was

channelled to PPP and TCA cycle and released as CO2.

The mutant strain hxt14  had similar anaplerotic and TCA fluxes on both the sugars.

The mutant strain hxt17 had similar TCA and PPP fluxes as well as ethanol yields on

both the sugars.
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55..55 MMEETTAABBOOLLIICC SSCCRREEEENNIINNGG OOFF SS.. CCEERREEVVIISSIIAAEE SSIINNGGLLEE
KKNNOOCCKKOOUUTT SSTTRRAAIINNSS OONN FFRRUUCCTTOOSSEE SSUUGGAARR AANNDD AA

CCOOMMPPAARRAATTIIVVEE SSTTUUDDYY OONN DDIIFFFFEERREENNTT CCAARRBBOONN SSOOUURRCCEESS

Velagapudi, V.R., Heinzle, E., 2009. Comparative physiological profiling of S. cere
            visiae single knockouts on different carbon sources – Fructose, Glucose and galactose
            (in preparation)

55..55..11 BBaacckkggrroouunndd
Glucose and fructose are the most preferred carbon sources for S. cerevisiae and are metabo-

lised primarily via the glycolytic pathway. Like other hexoses, fructose is also transported via

a facilitated diffusion system mediated by hexose transporters. In S.cerevisiae, fructose is

first converted to fructose 6-phosphate pathway (detailed description was given in section

3.3.3) that is part of glycolysis. S.cerevisiae is the preferred species of yeasts for wine-

making. Both sugars are present in musts approximately in equal amounts. Since the affinity

for  glucose  is  higher  than  for  fructose  in S.cerevisiae, in the wine alcoholic fermentation

process, glucose metabolises first leaving large quantities of fructose (approximately ten

times compared to glucose) at the end. As a consequence, maximal rate of fermentation is

reduced after most of the glucose is consumed, which leads to sluggish or stuck fermentation.

Therefore, fructose consumption by wine-yeast is of great importance for maintenance of

high rate of fermentation (Schutz et al., 1995). According to a previous study, it is possible to

predict the sluggish or stuck fermentation based on the glucose/fructose ratio (GFR) (Gafner

et al., 1996). Thus the studies on metabolic profiling on fructose substrate have significant

importance in wine industries. Hence it is of great interest in the point of industrial biotech-

nology to study the physiological profiling of S. cerevisiae mutants with deletions in central

carbon metabolism on fructose substrate. This kind of physiological analysis will provide an

insight on quantitative metabolic profiling i.e., specific fructose uptake rate and specific etha-

nol production rate, specific growth rate and yields of mutants on fructose, which might help

in identifying an industrially useful strain. In this chapter, about 50 mutant strains were se-

lected (Table 5.5-1) and grown on fructose as a sole carbon source as described in previous

chapters. In the first step, all the physiological parameters were calculated on fructose and

then compared with the glucose and galactose data, which were described in previous chap-

ters.
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Table 5.5-1 Information about the selected yeast deletion mutant strains
ORF Gene name Metabolic function Activity
YML054C CYB2 Lactate metabolic process L-lactate dehydrogenase activity
YML051W GAL80 Positive regulation of transcription by galactose Specific transcriptional repressor activity
YMR205C PFK2 Glycolysis 6-phosphofructokinase activity
YMR250W GAD1 Response to oxidative stress Glutamate decarboxylase activity
YMR280C CAT8 Positive regulation of gluconeogenesis Specific RNA pol II transcription factor activity
YNL257C SIP3 Transcription initiation from pol  II promoter Transcription cofactor activity
YOR344C TYE7 Transcription Transcription factor activity
YPL248C GAL4 Positive regulation of transcription by galactose DNA-dependent transcriptional activator activity
YBR184W YBR184W Unknown Unknown
YDR073W SNF11 Chromatin modelling RNA pol II transcription factor activity
YGR194C XKS1 Xylulose catabolism Xylulokinase activity
YCL040W GLK1 Glycolysis Glucokinase activity
YLR131C ACE2 Transcription during G1 mitotic cell cycle Transcription factor activity
YKL029C MAE1 Pyruvate metabolism Malate dehydrogenase (oxaloacetate decarboxylating) activity
YKL062W MSN4 Response to stress Transcription factor activity
YJL155C FBP26 Gluconeogenesis Fructose-2,6-bisphosphate 2-phosphatase activity
YDR216W ADR1 Transcription Transcription factor activity
YGL209W MIG2 Regulation of transcription from Pol II promoter RNA pol II transcription factor activity
YGL253W HXK2 Carbohydrate metabolic process Hexokinase activity
YGR019W UGA1 Gamma-aminobutyric acid catabolic process 4-aminobutyrate transaminase activity
YDR248C YDR248C Unknown Unknown
YKR097W PCK1 Gluconeogenesis Phosphoenolpyruvate carboxykinase (ATP) activity
YJR153W PGU1 Pectin catabolic process Polygalacturonase activity
YBR297W MAL33 Regulation of transcription DNA-dependent transcription factor activity
YCR036W RBK1 Ribose metabolic process Ribokinase activity
YDL168W SFA1 Formaldehyde assimilation Formaldehyde dehydrogenase (glutathione) activity
YDL174C DLD2 Aerobic respiration D-lactate dehydrogenase (cytochrome) activity
YBR006W UGA5 Response to oxidative stress Succinate-semialdehyde dehydrogenase (NAD(P)+) activity
YBR018C GAL7 Galactose metabolism UDP-hexose-1-phosphate uridylyltransferase activity
YBR019C GAL10 Galactose metabolism UDP-glucose-4-epimerase activity
YIL107C PFK26 Fructose-2,6-bisphosphate metabolism 6-phosphofructo-2-kinase activity
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YNL071W LAT1 Pyruvate metabolism Dihydrolipoyllysine-residue acetyltransferase activity
YNL104C LEU4 Leucine biosynthesis 2-isopropylmalate synthase activity
YLR377C FBP1 Gluconeogenesis Fructose-bisphosphatase activity
YIL154C IMP2 DNA repair Transcription co-activator activity
YOR290C SNF2 Chromatin remodelling RNA pol II transcription factor activity
YHR094C HXT1 Cellular sugar import Low affinity transmembrane hexose transport activity
YDR345C HXT3 Cellular sugar import Low affinity transmembrane hexose transport activity
YHR092C HXT4 Cellular sugar import High affinity transmembrane hexose transport activity
YJL214W HXT8 Cellular sugar import Unknown
YFL011W HXT10 Cellular sugar import Unknown
YIL170W HXT12 Unknown Unknown
YNL318C HXT14 Cellular sugar import Transmembrane galactose transport activity
YNR072W HXT17 Cellular sugar import Unknown
YDL194W SNF3 Sugar binding High affinity glucose sensor
YDL138W RGT2 Sugar binding Low affinity glucose sensor
YKL038W RGT1 Regulation of carbohydrate metabolism Transcription factor activity
YLR081W GAL2 Galactose metabolism Galactose permease activity
YDR277C MTH1 Regulation of carbohydrate metabolism Repressor of hexose transport genes
YDR043C NRG1 Regulation of carbohydrate metabolism Transcriptional repressor activity
YBR066C NRG2 Regulation of carbohydrate metabolism Transcriptional repressor activity

Sources: Saccharomyces genome deletion project.
SGD (http://www.sequence.stanford.edu/group/yeast_deletion_project/references.html),
MIPS (http://mips.gsf.de/genre/proj/yeast/)
SGD (http://www.yeastgenome.org/) databases

http://www.sequence.stanford.edu/group/yeast_deletion_project/references.html
http://mips.gsf.de/genre/proj/yeast/
http://www.yeastgenome.org/
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55..55..22 PPhhyyssiioollooggiiccaall pprrooffiilliinngg ooff mmuuttaannttss oonn ffrruuccttoossee
Recently developed novel method for high-content stoichiometric and kinetic metabolic pro-

filing was used to obtain quantitative information of physiological parameters i.e., specific

growth rate, biomass yield, ethanol yield, specific substrate uptake rate, specific ethanol pro-

duction rate and specific oxygen uptake rate of selected deletion mutants on fructose sub-

strate as sole carbon source at miniaturized scale using 96-well microtiter plates with on-line

optical sensing of dissolved oxygen (Velagapudi et al., 2006).

55..55..22..11 SSppeecciiffiicc ggrroowwtthh rraattee ((µµmmaaxx))
On fructose carbon source, deletion mutants were growing in a varying range of specific

growth rates, µmax, ranging from 0.238 h-1 to 0.438 h-1. Strains with µmax less than 0.26 h-1 are

classified as “slow growers”, µmax from 0.26 h-1 to 0.4 h-1 are classified as “fast growers” and

µmax above 0.4 h-1 are classified as “very fast growers”. The reference strain had specific

growth rate, µmax, of 0.236 h-1 and all other mutant strains were growing faster than the refer-

ence strain. According to the above classification, 3 strains, hxt4 , ace2  and snf3  were

slow growers; 39 strains were fast growers and 12 strains were very fast growers.

55..55..22..22 SSppeecciiffiicc hheexxoossee uuppttaakkee rraattee ((qqhheexxoossee))
On fructose, deletion mutants had a very broad range of specific fructose consumption rates

(qfructose) ranging from 12 mmol/g/h - 48 mmol/g/h. Most of the strains had qfructose from 12

mmol/g/h - 25 mmol/g/h; 9 strains had high qfructose from 25 mmol/g/h - 30 mmol/g/h; 4

strains had very high qfructose from 30 mmol/g/h - 40 mmol/g/h; and one strain, hxt14  had

extremely high qfructose  43.8 mmol/g/h, and one strain, hxt17  had exceptionally high qfructose

48 mmol/g/h. Specific uptake rate of fructose, qfructose, is plotted versus the maximum specific

growth rate of each mutant, µmax (Figure 5.5-1A). In most of the strains, an increasing specific

hexose consumption rate was observed with increasing specific growth rate. Interestingly, all

the deletion strains with very high and exceptionally high fructose consumption rates are re-

lated to hexose transporter family and regulators (Figure 5.5-1A).
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Figure 5.5-1 (A) Specific fructose uptake rate, qfructose, (B) specific ethanol production rate,
qethanol, and (C) specific oxygen uptake rate, qO2, as function of the specific growth rate, µmax.
Arrows indicate the reference strain BY4742 Mat  his3 1 leu2 0 lys2 0 ura3 0.

55..55..22..33 SSppeecciiffiicc eetthhaannooll pprroodduuccttiioonn rraattee ((qqeetthhaannooll))
Specific ethanol production rate, qethanol, on fructose ranges from 9 mmol/g/h - 60 mmol/g/h.

Two strains had very high qethanol above 40 mmol/g/h (imp2  – 40.2 mmol/g/h and rgt1  –

40.5 mmol/g/h) and one strain, hxt17 , had exceptionally high qethanol of 59.8 mmol/g/h. An

increasing qethanol was observed with increasing specific growth rate. (Figure 5.5-1B).
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55..55..22..44 SSppeecciiffiicc ooxxyyggeenn uuppttaakkee rraattee ((qqOO22))
Most of the high fructose consumers had low specific oxygen consumption rates, qO2, below

2 mmol/g/h. Ten strains had high qO2 from 2 mmol/g/h - 3 mmol/g/h and these strains had

low qethanol of less than 20 mmol/g/h. One strain, mae1 , had very high qO2 of 3.53 mmol/g/h

and had only 10.9 mmol/g/h of qethanol. Few almost respiratory deficient mutants with qO2 less

than 1 mmol/g/h were snf2 , lat1 , fbp1 , fbp26 , imp2 , gal7 , hxk2  and glk1 . An in-

creasing qO2 was observed with increasing specific growth rate (Figure 5.5-1C). The refer-

ence strain had the lowest oxygen uptake rate of 0.31 mmol/g/h.

55..55..22..55 CCoommppaarriissoonn ooff ssppeecciiffiicc rraatteess aanndd yyiieellddss oonn ffrruuccttoossee
When specific fructose consumption rate, qfructose was plotted against specific ethanol produc-

tion rates, qethanol (Figure 5.5-2A), most of the strains showed increasing qethanol with increas-

ing qfructose. Except mae1 and hxt3 strains, all other high rate fructose consumers with qfruc-

tose above 25 mmol/g/h had specific ethanol production rates, qethanol, between 20 and 40

mmol/g/h (Figure 5.5-2A). Specific oxygen uptake rate, qO2 was plotted against qfructose (Fig-

ure 5.5-2B). mae1 had highest oxygen uptake rate of 3.53 mmol/g/h. snf11  with low qfruc-

tose of 13.5 mmol/g/h had qO2 above 2 mmol/g/h. The deletion strains, imp2 , lat1  and nrg2

with  high  qfructose of about 25 mmol/g/h had low qO2 of less than 1.0 mmol/g/h (Figure 5.5-

2B). When qO2 was plotted against qethanol, strains showed varied patterns (Figure 5.5-2C). For

instance, the mutant strain mae1  with low qethanol of 10.8 mmol/g/h had maximum qO2 of 3.5

mmol/g/h; similarly a couple of strains with low qethanol had high qO2 above 2 mmol/g/h. The

mutant strain imp2  with very high qethanol of 40.2 mmol/g/h had very low qO2 of 0.7

mmol/g/h, similarly a couple of strains with high qethanol had qO2 below 2 mmol/g/h. Surpris-

ingly one strain sip3 , had high qethanol of 38.5 mmol/g/h as well as high qO2 of 3 mmol/g/h.
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Figure 5.5-2 (A) Specific rate of ethanol production, qethanol, and (B) specific oxygen uptake
rate, qO2, as a function of the specific fructose consumption rate, qfructose (C) Specific oxygen
uptake rate, qO2, as a function of the specific rate of ethanol production, qethanol, Arrows indi-
cate the reference strain BY4742 Mat  his3 1 leu2 0 lys2 0 ura3 0.
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Figure 5.5-3 represents the correlation between specific growth rate, µmax, and biomass

yields, YX/S, ethanol yield, YE/S as well as with biomass yield on oxygen, YX/O. The results

were given in the Table 5.5-2. Most of the deletion mutants had biomass yield from 0.06 to

0.12 g/g, few strains, hxt17 , hxt4 , hxt14  and mth1  had low YX/S ranging from 0.04 to

0.06 g/g. Two strains, hxk2  and pfk2 , had a very high biomass yield (0.118 and 0.115 g/g,

respectively) (Figure 5.5-3A). Most of the strains had ethanol yields ranging from 0.20 – 0.35

g/g, some strains had low ethanol yields ranging from 0.10 – 0.2 g/g, and few strains, hxt4,

imp2 , sip3 and rgt1  had higher ethanol yields above 0.40 g/g (Figure 5.5-3B). Most of

the strains had biomass yield on oxygen, YX/O, ranging from 5 – 10 g/g, some strains had low

YX/O ranging from 3 – 5 g/g, and some strains had higher YX/O ranging from 10 – 20 g/g, the

reference strain had the highest YX/O of 23.5 g/g (Figure 5.5-3C).

Figure 5.5-3 Correlation between specific growth rate, µmax, and biomass yield on fructose,
YX/S, ethanol yield, YE/S, as well as with biomass yield on oxygen, YX/O (Table 5.5-2) Arrows
indicate the reference strain BY4742 Mat  his3 1 leu2 0 lys2 0 ura3 0.
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Table 5.5-2 Growth data on fructose. Specific growth rate, µmax, biomass yield on fructose,
YX/S,Fru, biomass yield on oxygen, YX/O, and ethanol yield, YE/S,Fru, with corresponding 90 %
confidence intervals. (ND – Not Determined)
Gene
name

µFru
h-1

YX/S,Fru
g g-1

YE/S,Fru
g g-1

YX/O,Fru
g g-1

Reference 0.236 ± 0.022 0.073 ± 0.007 0.323 ± 0.032 23.5 ± 5.0
CYB2 0.401 ± 0.022 0.100 ± 0.005 0.226 ± 0.012 5.0 ± 0.5
GAL80 0.373 ± 0.077 0.106 ± 0.005 0.217 ± 0.010 4.7 ± 0.5
PFK2 0.331 ± 0.075 0.115 ± 0.010 0.317 ± 0.016 7.7 ± 1.5
GAD1 0.317 ± 0.051 0.095 ± 0.003 0.284 ± 0.008 6.8 ± 0.7
CAT8 0.406 ± 0.063 0.090 ± 0.003 0.241 ± 0.028 5.3 ± 0.5
SIP3 0.400 ± 0.066 0.094 ± 0.006 0.416 ± 0.021 4.2 ± 0.8
TYE7 0.293 ± 0.021 0.100 ± 0.004 0.220 ± 0.020 4.3 ± 0.5
GAL4 0.369 ± 0.019 0.089 ± 0.006 0.206 ± 0.012 9.0 ± 2.0
YBR184W 0.436 ± 0.026 0.099 ± 0.005 0.105 ± 0.007 5.5 ± 1.0
SNF11 0.273 ± 0.035 0.113 ± 0.003 0.219 ± 0.012 4.1 ± 0.6
XKS1 0.336 ± 0.029 0.102 ± 0.004 0.229 ± 0.014 4.6 ± 0.5
GLK1 0.297 ± 0.043 0.090 ± 0.005 0.211 ± 0.010 10.0 ± 2.0
ACE2 0.244 ± 0.048 0.097 ± 0.010 0.176 ± 0.012 7.0 ± 1.4
MAE1 0.418 ± 0.043 0.089 ± 0.002 0.106 ± 0.007 3.7 ± 0.6
MSN4 0.412 ± 0.054 0.098 ± 0.006 0.354 ± 0.039 7.0 ± 1.5
FBP26 0.348 ± 0.056 0.092 ± 0.005 0.119 ± 0.006 15.0 ± 7.0
ADR1 0.412 ± 0.077 0.086 ± 0.006 0.298 ± 0.026 6.5 ± 1.0
MIG2 0.354 ± 0.068 0.087 ± 0.003 0.238 ± 0.018 7.9 ± 1.2
HXK2 0.273 ± 0.058 0.118 ± 0.009 0.333 ± 0.014 9.3 ± 2.0
UGA1 0.332 ± 0.054 0.097 ± 0.006 0.343 ± 0.021 4.2 ± 0.5
YDR248C 0.364 ± 0.070 0.088 ± 0.005 0.219 ± 0.013 4.5 ± 0.8
PCK1 0.412 ± 0.052 0.086 ± 0.005 0.191 ± 0.014 6.5 ± 2.4
PGU1 0.379 ± 0.022 0.085 ± 0.006 0.268 ± 0.018 6.0 ± 1.4
MAL33 0.332 ± 0.025 0.103 ± 0.005 0.250 ± 0.033 8.8 ± 1.4
RBK1 0.400 ± 0.043 0.077 ± 0.003 0.281 ± 0.038 7.8 ± 1.3
SFA1 0.394 ± 0.052 0.089 ± 0.004 0.251 ± 0.011 7.5 ± 1.5
DLD2 0.341 ± 0.020 0.082 ± 0.003 0.148 ± 0.009 8.8 ± 1.7
UGA2 0.377 ± 0.044 0.092 ± 0.006 0.237 ± 0.015 6.7 ± 1.4
GAL7 0.326 ± 0.023 0.084 ± 0.003 0.205 ± 0.014 13.0 ± 2.5
GAL10 0.317 ± 0.009 0.096 ± 0.006 0.313 ± 0.021 9.2 ± 1.2
PFK26 0.392 ± 0.027 0.090 ± 0.005 0.275 ± 0.022 7.2 ± 1.4
LAT1 0.381 ± 0.043 0.077 ± 0.001 0.200 ± 0.004 19.8 ± 4.0
LEU4 0.378 ± 0.047 0.104 ± 0.009 0.115 ± 0.006 7.5 ± 1.0
FBP1 0.354 ± 0.022 0.094 ± 0.006 0.326 ± 0.024 15.7 ± 3.0
IMP2 0.385 ± 0.027 0.087 ± 0.004 0.418 ± 0.016 17.0 ± 3.4
SNF2 0.287 ± 0.017 0.095 ± 0.009 0.303 ± 0.023 12.7 ± 2.0
HXT1 0.300 ± 0.072 0.075 ± 0.003 0.344 ± 0.019 ND
HXT3 0.323 ± 0.036 0.062 ± 0.001 0.124 ± 0.006 ND
HXT4 0.238 ± 0.060 0.056 ± 0.001 0.411 ± 0.025 ND
HXT8 0.314 ± 0.034 0.080 ± 0.002 0.175 ± 0.009 ND
HXT10 0.366 ± 0.072 0.062 ± 0.006 0.275 ± 0.015 ND
HXT12 0.340 ± 0.040 0.063 ± 0.004 0.334 ± 0.023 ND
HXT14 0.377 ± 0.063 0.048 ± 0.003 0.141 ± 0.010 ND
HXT17 0.343 ± 0.062 0.040 ± 0.001 0.318 ± 0.009 ND
SNF3 0.248 ± 0.038 0.063 ± 0.004 0.257 ± 0.018 ND
RGT2 0.329 ± 0.049 0.074 ± 0.003 0.282 ± 0.011 ND
RGT1 0.416 ± 0.028 0.092 ± 0.007 0.411 ± 0.024 7.9 ± 1.4
GAL2 0.322 ± 0.053 0.045 ± 0.002 0.244 ± 0.007 ND
MTH1 0.283 ± 0.044 0.048 ± 0.004 0.220 ± 0.012 ND
NRG1 0.403 ± 0.041 0.083 ± 0.006 0.214 ± 0.015 7.2 ± 0.8
NRG2 0.401 ± 0.048 0.088 ± 0.005 0.209 ± 0.011 12.8 ± 2.4
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55..55..22..66 CCoommppaarriissoonn ooff mmuuttaannttss aaggaaiinnsstt mmuuttaannttss aanndd wwiitthh rreeffeerreennccee
All the examined mutants were compared against each other in all four dimensions i.e., µmax,

YX/S, YE/S and YX/O and searched for the indistinguishable strain combinations and Table 5.5-

3 reveals all the 38 indistinguishable strain combinations. The mutant strain mig2  had maxi-

mum of 6 indistinguishable mutant pairs (mig2 -nrg1 ; mig2 -uga2 ; mig2 -pfk26 ;

mig2 -pgu1 ; mig2 -sfa1 ; mig2 -glk1 ) followed by adr1  with 5 (adr1 -gad 1; adr1 -

pfk26 ; adr1 -pgu1 ; adr1 -rbk1 ; adr1 -msn4 ) and then followed by pgu1  with  4

(pgu1 -pfk26 ;  pgu1 -rbk1 ;  pgu1 -sfa1 ;  pgu1 -uga2 ) indistinguishable mutant

pairs.

The  reference  strain  was  quite  close  to  an  average  value  with  respect  to  YX/S and  qEthanol

whereas µmax and YE/S were at the upper boundary and YE/S at the lower boundary of the ob-

served values (Figures 5.5-1 and 5.5-3 and Table 5.5-2). µmax of the reference strain was iden-

tical with ace2 , glk1 , hxk2 , hxt1 , hxt4 , mth1 , pfk2 , snf11  and snf3 . The deletion

strains adr1 , dld2 , hxt1 , hxt10 , hxt12 , hxt8 , lat1 , nrg1 , pgu1 , rbk1 , rgt2  and

snf3  had  the  same biomass  yield  as  reference  strain.  Mutant  strains adr1 , fbp1 , gad1 ,

gal10 , hxk2 , hxt1 , hxt2 , hxt12 , hxt17 , msn4 , pfk2 , pfk26 , rbk1 , rgt2 , snf2

and uga1  showed the same ethanol yield as the reference strain. Knockout strains, fbp1 ,

fbp26 , imp2  and lat1  had the same biomass yield on oxygen as reference strain. There-

fore, hxt1 strain was indistinguishable from the reference strain in all the three examined

biological parameters, µmax, YX/S and YE/S indicating that the deletion of HXT1 gene wouldn’t

cause any specific phenotype when grown on fructose.
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Table 5.5-3 Strains not distinguishable based on specific growth rate, µmax, biomass yield on
carbon substrate, YX/S, ethanol yield, YE/S, and biomass yield on oxygen, YX/O
Strain name Number of

mutant
pair(s)

adr1 gad1 pfk26 pgu1 rbk1  msn4 5
cat8 pgu1 uga2 ydr248c 3
cyb2 gal80  uga2 2
gad1 mal33  pfk26 2
gal4 nrg2 pck1 2
gal80 snf11 tye7 xks1 3
glk1 gal7 2
mig2 nrg1 uga2 pfk26 pgu1  sfa1  glk1 6
msn4 rgt1 1
pck1 nrg1 1
pfk2 hxk2 1
pgu1 pfk26  rbk1 sfa1 uga2 4
leu4 fbp26  ybr184w 2
tye7 xks1 1
uga2 nrg1 mal33 2
sfa1 uga2 pfk26 2

55..55..33 CCoommppaarraattiivvee pphhyyssiioollooggiiccaall pprrooffiilliinngg ooff mmuuttaannttss ––
ffrruuccttoossee ddaattaa wwiitthh gglluuccoossee aanndd ggaallaaccttoossee ddaattaa

The deletion mutants grown on glucose and galactose (Velagapudi et al., 2006) and fructose

were combined to study the comparative physiological profiling on these three carbon

sources.

55..55..33..11 CCoommppaarriissoonn ooff ssppeecciiffiicc rraatteess

Specific uptake rates qHexose, specific ethanol production rates, qethanol and specific oxygen

uptake rates, qO2 were plotted against specific growth rates, µmax, of each mutant (Figure 5.5-

5). Most of the mutants were growing faster than the reference strain on all the 3 carbon

sources. Strains grown on galactose were growing slowly when compared to glucose and

fructose. Some fructose grown strains were growing very fast when compared to the rest of

the strains on other carbon sources. A clear trend of increasing qHexose was observed with in-

creasing µmax for all most all the mutants on all the three carbon sources. However, there are

some outliers on fructose sugar with very high uptake rates and interestingly all of them are

hexose transport deletion mutants (Figure 5.5-5A).
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Figure 5.5-5 Comparative stoichiometric profiling on glucose, galactose and fructose (A)
Specific fructose uptake rate, qhexose, (B) specific ethanol production rate, qethanol, and (C) spe-
cific oxygen uptake rate, qO2,  as function of the specific growth rate,  µmax. Arrows indicate
the reference strain BY4742 Mat  his3 1 leu2 0 lys2 0 ura3 0.

Based on this observation, one could hypothesise a possible involvement of these hexose

transporter genes in controlling fructose uptake rate. A general trend of increasing qethanol was

observed with increasing µmax for most of the strains on all the carbon sources. Strains grown

on galactose had lower qethanol. Strains grown on glucose and some strains grown on fructose

had higher qethanol when compared to other carbon sources (Figure 5.5-5B). Strains grown on

galactose had very high qO2 when compared to glucose and fructose substrates. Few glucose

grown strains  and  a  couple  of  fructose  grown strains  had  higher  qO2 when compared to the

rest of the strains (Figure 5.5-5C). This analysis clearly indicates that strains grown on glu-
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cose were most fermentative followed by fructose grown strains, whereas strains grown on

galactose had higher respiration rates. A steep increase of qethanol was observed with increas-

ing specific uptake rate when qHexose was plotted against qethanol of each mutant grown on all

the three carbon sources. However, some strains grown on fructose didn’t follow this trend

and had very high uptake rates (Figure 5.5-6A). Strains grown on galactose showed a distinct

phenotype with very high qO2 representing that the strains had higher respiratory capacity

(Figure 5.5-6B) than fermentating capacity and in addition strains with lower qethanol had

higher qO2 (Figure 5.5-6C).

Figure 5.5-6 Comparative profiling on glucose, galactose and fructose (A) Specific rate of
ethanol production, qethanol, and (B) specific oxygen uptake rate, qO2, as a function of the spe-
cific hexose consumption rate, qhexose (C) Specific oxygen uptake rate,  qO2,  as a function of
the specific rate of ethanol production, qethanol. Arrows indicate the reference strain BY4742
Mat  his3 1 leu2 0 lys2 0 ura3 0.
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Pair-wise  comparison  of  specific  rates  on  two  different  carbon  sources  allows  identify  the

strains, which possess similar phenotypic profile on both the carbon sources. When specific

growth rate, µmax, was plotted on glucose against fructose (Figure 5.5-7A), few strains, hxt1 ,

mth1 , gad1 , hxt12  showed similar growth rates on both the sugars. Two strains, xks1 and

snf11  had  higher  growth  rates  on  glucose  than  on  fructose.  Mutant  strains, nrg1 , pfk26

hxt17 , imp2’ and gad1  showed similar growth profiles on both glucose and galactose sug-

ars (Figure 5.5-7B). Two strains, xks1 and snf11  had high growth rates on glucose and

mig2  strain had high growth rate on galactose. Mutant strains, snf3 , gad1 , fbp1 , mig2 ,

and the reference strain had similar growth profiles on both galactose and fructose sugars

(Figure 5.5-7C). Except hxt4  strain,  none of the mutant strains had higher growth rates on

galactose than on fructose.

When specific hexose uptake rate, qHexose, of  glucose  was  plotted  against  qHexose of fructose

(Figure 5.5-7D) two strains, hxt1 and hxt4  showed identical values on both the sugars.

hxt17  strain had highest uptake rate on fructose and very high uptake rate on glucose. hxt14

strain, which had about an average value of qHexose of glucose had very high qHexose of fruc-

tose. mig2  strain had an identical values of qHexose, of glucose and galactose (Figure 5.5-7E).

xks1  strain had highest uptake rate on galactose (Figure 5.5-7E) and similar uptake rates on

glucose and fructose (Figure 5.5-7F) .

When specific ethanol production rate, qEthanol, on glucose was plotted against qEthanol on fruc-

tose (Figure 5.5-7G), two strains, mig2 and hxt14  showed identical values on both the sug-

ars and two strains, hxt1  and hxt4  had about the similar profile. hxt17  strain, which had

very high qEthanol on glucose had the highest qEthanol on fructose. xks1  and snf11 , which had

very high qEthanol on  glucose  had  low  qEthanol on fructose. None of the strains had identical

qEthanol profiles on glucose and galactose (Figure 5.5-7H). mig2  strain had highest qEthanol on

galactose and about similar profile on glucose. nrg1  strain  had  lowest  qEthanol on both the

sugars. Mutant strains, mig2 , xks1 , snf11 , mae2 and fbp26 showed  identical  qEthanol

profiles on galactose and fructose sugars (Figure 5.5-7I).
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Figure 5.5-7 Pair-wise comparison of specific rates (A) Specific growth rate, µmax, on glu-
cose vs. µmax on fructose (B) µmax on glucose vs. µmax on galactose (C) µmax on galactose vs.
µmax on fructose (D) specific hexose uptake rate, qHexose, of glucose vs. qHexose of fructose (E)
qHexose of glucose vs. qHexose of galactose (F) qHexose of galactose vs. qHexose of fructose (G) spe-
cific ethanol production rate, qEthanol, on glucose vs. qEthanol on fructose (H) qEthanol on glucose
vs. qEthanol on galactose (I) qEthanol on galactose vs. qEthanol on fructose. Solid line represents the
identical values on both the axes.
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55..55..33..22 CCoommppaarriissoonn ooff yyiieellddss

Comparison of yields on different carbon sources indicates that the strains grown on galac-

tose had very high biomass yields on substrate and very low biomass yields on oxygen, repre-

sents  that  the  deletion  strains  grown  on  galactose  are  highly  respiratory  with  high  biomass

yields when compared to glucose and fructose (Figure 5.5-8A). Strains grown on glucose had

high ethanol yields representing that strains are more fermenting than on galactose and fruc-

tose grown strains (Figure 5.5-8B). Strains grown on fructose had higher biomass yields on

oxygen indicating that some of the strains grown on fructose are almost respiratory deficient

when compared to glucose and galactose grown strains (Figure 5.5-8C).

Figure 5.5-8 Stoichiometric profiling of yeast deletion mutants on glucose, galactose and
fructose. Correlation between specific growth rate, µmax,  and  (A)  biomass  yield,  YX/S, (B)
ethanol yield, YE/S, as well as with (C) biomass yield on oxygen, YX/O (Table 5.5-2) Arrows
indicate the reference strain BY4742 Mat  his3 1 leu2 0 lys2 0 ura3 0.
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55..55..44 PPhhyyssiioollooggiiccaallllyy iinntteerreessttiinngg ssttrraaiinnss
Based on this comparative stoichiometric analysis on different carbon sources, yeast single

knockout strains that revealed interesting phenotypes were selected and further discusses as

follows.

55..55..44..11 mmaaee11

This strain lacks MAE1 gene, which encodes malic enzyme activity. It has been previously

shown that on glucose substrate deletion of MAE1 has no significant phenotype in S. cere-

visiae (Boles et al., 1998) and in C. glutamicum (Petersen et al., 2000). Previous studies also

reported that on fructose, flux through PPP is significantly lower (Kiefer et al., 2004) and the

flux through TCA cycle and malic enzyme activity are higher (Dominguez, 1998). However,

mae1  strain showed a clear phenotype of very high PPP flux when grown on galactose in

order to maintain the NADPH levels (Velagapudi et al., 2007). As described in this chapter,

when grown on fructose as sole carbon source, mae1  strain showed clear phenotype. mae1

strain had highest oxygen uptake rate (3.53 mmol/g/h) with very low ethanol yield (0.1 g/g).

The biological interpretation of this phenotype on fructose could be due to lack of malic en-

zyme and reduced PPP flux on fructose; mae1  strain would have only 2 routes to maintain

NADPH levels, one way via TCA cycle by activating NADPH specific isocitrate dehydro-

genase activity forming alpha-keto glutarate from citrate, which is repressed during growth

on glucose (Loftus et al., 1994; Haselbeck et al., 1993) and the other one via NADPH specific

aldehyde dehydrogenase forming acetate from acetaldehyde (Kurita et al., 1999), which in

turn  produces  acetyl-CoA,  which  could  be  transported  back  to  mitochondrion  and  entering

the TCA cycle. The missing carbon balance for this strain is 66.3% suggesting the formation

of other by-products for e.g. glycerol and high CO2 production.

55..55..44..22 hhxxtt11 aanndd hhxxtt33

Low affinity transporters are highly expressed at very high levels of glucose or fructose and

repressed at low sugar levels. There have been many studies that aim to characterise hexose

transporters in yeast that usually used glucose as the substrate. On glucose, hxt1  and hxt3

strains showed similar phenotypic profiles (Please refer to chapter 5.4 for additional details)

as these are single knockouts; the function is complemented by other Hxtp. On fructose,
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hxt1  and hxt3  strains showed different phenotypes. hxt1  strain grew with a growth rate of

0.3 h-1 and fructose uptake rate (qfru = 22.1 mmol/g/h) and ethanol production rate (qEth =

29.8 mmol/g/h) with high ethanol yield (YP/S = 0.344 g/g). Whereas hxt3 strain had similar

growth  rate  (µmax = 0.32 h-1) and about similar fructose consumption rate (qfru = 29.1

mmol/g/h) but with low ethanol production rate (qEth = 14.1 mmol/g/h). In addition, hxt3

strain had very low ethanol yield (YP/S = 0.12 g/g) about three times less than hxt1  strain.

The possible explanation for this phenotype could be as follows.  In a recent study by Luyten

et al. (2002), it has been shown that Hxt3p has the highest capacity to support fermentation

on fructose. That means, since HXT3 is expressed in hxt1  strain, it consumed fructose at

higher rates and produced very high ethanol when compared to hxt3  strain. It has also been

shown that HXT3 gene is responsible for the capacity for consuming fructose among certain

yeasts and a mutation on allele of HXT3 gene was responsible for improving the performance

of wine yeasts by increased utilisation of fructose during fermentation that would be very

desirable in cases of stuck fermentation (Guillaume et al, 2007). Analysis of hexose carrier

expression and characterisation of transport kinetics during wine alcohol fermentation re-

vealed that Hxt1p expression was predominant during growth phase and Hxt3p during fer-

mentation phase (Perez et al., 2005). hxt3  strain is also sensitive to external ethanol pertur-

bations and in a previous study it has been shown that hxt3  strain displayed growth defect

when grown on 10% ethanol (Karpel et al., 2008).

55..55..44..33 hhxxtt44 aanndd hhxxtt1144

On fructose, hxt4  strain  was  growing  slowly  with  µmax = 0.23 h-1 and produced at a rela-

tively low biomass yield (YX/S = 0.05 g/g) but had a very high ethanol yield (YP/S = 0.411

g/g) when compared to other strains. On glucose hxt4  strain  had  µmax = 0.32 h-1;  YX/S =

0.076 g/g and higher ethanol yield than other strains (YP/S = 0.451 g/g) (please refer to section

5.4 for additional details).

On glucose, hxt14  strain had µmax = 0.33 h-1, higher biomass yield YX/S = 0.121 g/g and

higher ethanol yield, YP/S = 0.426 g/g. On galactose, it didn’t show any specific phenotype.

On fructose, hxt14  strain had µmax = 0.377 h-1 and had very high fructose uptake rate, qfru =

43.8 mmol/g/h but had very low biomass yield, YX/S = 0.048 g/g and ethanol yield, YP/S =

0.141 g/g, suggesting that a lot of carbon flux might be channelled through TCA cycle and
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released as CO2 or might be channelled to by-product formation e.g. acetate, glycerol or lac-

tate etc.

These observations allowed to hypothesise that on fructose, Hxt4p might be interacting or

interfering with the Hxt3p in hxt1  strain (please refer to section 5.5.4.2); since Hxt1p and

Hxt3p have complementary functions on glucose, Hxt4p and Hxt14p might be interacting or

interfering either with Hxt1p or Hxt3p and subsequently affecting the fermentation rates.

55..55..44..44 hhxxtt88

On glucose and fructose, hxt8   strain was growing with similar growth rates (µmax = 0.334 h-

1 and 0.314 h-1, respectively), had similar biomass yields (YX/S = 0.07 g/g and 0.08 g/g, re-

spectively) and had similar but very low ethanol yields (YP/S = 0.171 g/g and 0.175 g/g, re-

spectively), whereas on galactose it had 0.342 g/g ethanol yield, which is similar to the refer-

ence, suggesting that on galactose deletion of HXT8 had no role on fermentation but had se-

vere effect on glucose and fructose fermentation.

Thus we can hypothesise that Hxt8p with limited known function so far might be involved in

glucose and fructose fermentations but not in galactose fermentation. Another interesting

phenotype of this strain is higher PPP and TCA fluxes on glucose than on galactose.

55..55..44..55 hhxxtt1177

On glucose and galactose, hxt17   strain was growing with similar growth rates (µmax = 0.272

h-1 and 0.262 h-1, respectively) and on galactose it had about an average values of uptake rate

and ethanol production rate. The strain had very high uptake rates and ethanol production

rates on glucose and fructose sugars (qglu =  24.85  mmol/g/h  and  qfru = 47.95 mmol/g/h, re-

spectively; qEth = 38.34 mmol/g/h and qEth = 59.75 mmol/g/h, respectively).

This observation suggests a possible role of this putative hexose transporter gene to be in-

volved in glucose and fructose fermentation processes and also controlling the uptake rates.

55..55..44..66 xxkkss11

On fructose and galactose, xks1  strain was growing with similar growth rates (µmax = 0.336

h-1 and 0.297 h-1, respectively), had similar uptake rates (qfru = 18.28 mmol/g/h and qgal =

19.62 mmol/g/h, respectively) and similar ethanol production rates (qEth = 16.38 mmol/g/h
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and qEth = 17.3 mmol/g/h, respectively), whereas on glucose, it showed different profile, the

strain was growing with a very high growth rate and also had higher rates than on galactose

and fructose. Overall, xks1  strain  had  lower  uptake  rates  and  ethanol  production  rates  on

fructose followed by galactose and then glucose.

This observation suggests that xks1  strain (which had no xylulokinase activity, converting a

ketopentose, xylulose to xylulose phosphate), showed a phenotype when grown on ketohex-

ose, fructose rather than on aldohexoses, glucose and galactose.

55..55..44..77 iimmpp22’’

Imp2’p is a sugar utilisation regulatory protein and a transcriptional activator involved in

maintenance of ion homeostasis (Masson et al., 1998) and protects against DNA damage

caused by bleomycin and other oxidants (Masson et al., 1996). imp2’  strain had no obvious

phenotype  when  grown  on  glucose  but  on  galactose  it  had  the  lowest PPP,gal and showed

highest oxygen uptake rate that was about ten times higher than on glucose (Velagapudi et

al., 2007). That means most of the carbon flux was channelled to TCA cycle rather than PPP

on galactose substrate. This is in agreement with previous findings, where Imp2’p was shown

to have a positive effect on glucose derepression of Leloir pathway (GAL genes), raffinose

and maltose utilisation pathways genes (Alberti et al., 2003) and in addition, imp2  strain is

unable to grow on these sugars in the presence of inhibitors of mitochondrial protein synthe-

sis or ethidium bromide (Donninni et al., 1992). That means higher mitochondrial activity is

required in utilisation of galactose. On fructose, imp2’  strain had highest ethanol yield when

compared to other strains and even higher when grown on glucose. This is industrially bene-

ficial feature in wine industry with respect to higher fructose fermentation capacity.

55..55..55 CCoonncclluussiioonnss
In this chapter, a set of strains were selected and quantitative physiological profiling was

done when the strains were grown on fructose as sole carbon source as described in previous

chapters. The obtained data on fructose sugar was compared with glucose and galactose data.

Comparative physiological profiling on three carbon sources clearly indicates that strains

grown on galactose were growing slowly when compared to glucose and fructose. Strains

grown on glucose had higher fermentation activity followed by fructose grown strains,

whereas strains grown on galactose had higher respiratory capacity. On fructose, mae1
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strain had highest oxygen uptake rate with very low ethanol yield, which could be due to re-

duced PPP flux. mae1  strain would have only 2 routes to maintain NADPH levels, one way

via TCA cycle by activating NADPH specific isocitrate dehydrogenase activity other one via

NADPH specific aldehyde dehydrogenase. The obtained results suggested a positive effect of

Hxt3p on fructose fermentation and Hxt8p on both glucose and fructose fermentations but not

on galactose. Hxt4p on fructose and Hxt4p and Hxt14p on glucose might have negative ef-

fects on fermentation. Based on this analysis, physiologically and industrially beneficial

strains could be identified.
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55..66 FFUUNNCCTTIIOONNAALL GGEENNOOMMIICCSS OOFF SS.. CCEERREEVVIISSIIAAEE BBYY UUTTIILLIISSIINNGG
PPHHEENNOOTTYYPPIICC AANNDD MMEETTAABBOOLLIICC FFLLUUXX PPRROOFFIILLIINNGG DDAATTAA BBYY
UUSSIINNGG BBIIOOIINNFFOORRMMAATTIICCSS TTOOOOLLSS

            Velagapudi, V.R., Peddinti, G., Tang, J., Heinzle, E., 2009. Functional
             genomics of S. cerevisiae by utilising phenotypic and metabolic flux profiling data by
             using bioinformatics tools (in preparation)

55..66..11 BBaacckkggrroouunndd
S. cerevisiae is an excellent eukaryotic model system and its genome was completely se-

quenced more than a decade ago. Even for this well studied microorganism, a major fraction

of gene functions are uncharacterized. According to Saccharomyces Genome Database (as of

May 2009) (www.yeastgenome.org), there are only 72.82 % of protein coding genes with

identified functions, whereas 14.91 % of genes are uncharacterized and the function of the

12.27 % of genes are still dubious. A powerful strategy to unravel the function of unknown

genes is by studying the phenotypic effects of deletion mutants, with missing gene. Func-

tional genomics represent a systematic approach to elucidating the function of the novel

genes revealed by complete genome sequence.

Since the quantitative stoichiometric data and metabolic flux data is available on different

carbon sources for a set of mutants that are known to be involved in central carbon metabo-

lism, it is of great interest to check whether one can predict the function of uncharacterized

genes based on this data. Hence, the first part of this chapter deals with an overview of all the

mutants studied on different carbon sources and at the end functional predictions are made

using bioinformatics tools.

55..66..22 SSttaattiissttiiccaall aannaallyyssiiss ooff tthhee ddaattaa
In this chapter, all the examined mutants were combined and analysed statistically applying

hierarchical clustering algorithm using stoichiometric data i.e., YX/S, YE/S and µmax, and meta-

bolic flux data on different carbon sources using Euclidian distance as a distance metric to

identify homogenous clusters of cases based on the measured data, which means mutants

within each cluster are more closely related to one another than mutants assigned to other

clusters. The relative Euclidian distances (d) were calculated between mutant pairs and also

http://www.yeastgenome.org


Results and discussion

126

between mutants and the reference strain. Finally the functions of hypothetical genes were

predicted by combining all the available data.

55..66..22..11 HHiieerraarrcchhiiccaall cclluusstteerriinngg aannaallyyssiiss

GGlluuccoossee

The top five most closely related mutant pairs on glucose were pfk27 -hxt10  (d = 0.032);

gad1 -hxt1  (d = 0.046); mae1 -ybr184w  (d = 0.046); glo1 -sfa1  (d = 0.048); dld2 -

snf3 (d = 0.051). The measured Euclidean distances were visualised as dendrogram and the

data revealed 4 clusters, highlighted with colours in Figure 5.6-1.

Figure 5.6-1 Dendrogram on glucose. Hierarchical clustering was done using stoichiometric
data by using Euclidean distances as a metric.

In the first cluster (bottom to top), few strains were clustered together with the reference

strain for e.g., rgt2 , leu4  suggesting that these strains had no specific phenotype under the

examined conditions. In the second cluster, genes that are related to pyruvate metabolism

were clustered together. For instance, cyb2  (Cyb2p - lactate dehydrogenase) and dld2

(Dld2p - D-lactate dehydrogenase), mae1  (Mae1p - malic enzyme), fbp26  (Fbp26p - fruc-
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tose 2, 6 bisphosphatase) and also mig2  and msn4  (Mig2p and Msn4p - transcription fac-

tors that are involved in glucose repression) were clustered together. The third cluster con-

tains most of the hexose transporter knock out strains. In the fourth cluster, mth1 , rgt1  and

hxt8  (Mth1p, Rgt1p and Hxt8p are involved in glucose signalling and transport), and nrg1

and nrg2  (Nrg1p and Nrg2p - transcription factors that are involved in glucose repression)

were clustered together.

GGaallaaccttoossee

Similarly all the mutants grown on galactose were combined and analysed as above. The top

five most closely related mutant pairs on galactose were pfk26 -mth1  (d = 0.032); leu4 -

mth1  (d = 0.07); mae1 -rgt1  (d = 0.078); fbp26 -glk1  (d = 0.082); leu4 -pfk26  (d =

0.089).

Figure 5.6-2 Dendrogram on galactose. Hierarchical clustering was done using stoichiomet-
ric data by using Euclidean distances as a metric.

Figure 5.6-2 revealed five clusters on galactose. In the first cluster (bottom to top), strains

with knockout genes that are involved in catabolite repression, for e.g., cat8 , mig2  were

grouped. The second cluster contained hexose transporters and regulators knock out strains.
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In the third cluster glucose and pyruvate metabolism and hexose transporters knock out

strains were clustered. The fourth cluster comprises glucose, pyruvate, and glyoxalate me-

tabolism knock out strains. The fifth cluster includes hexose transport knock out strains and

nrg1  knock out strain (Nrg1p is a transcription repressor involved in glucose metabolism).

FFrruuccttoossee

The  top  five  most  closely  related  mutant  pairs  were cat8 -sfa1  (d = 0.054); gal4 -

ydr248c  (d = 0.055); sip3 -rgt1  (d = 0.055); nrg1 -nrg2  (d = 0.062); pfk2 -hxk2  (d =

0.072). The top three most closely related mutants with the reference strain were hxt1 (d =

0.204); snf3  (d = 0.288) and rgt2  (d = 0.313) and two mutants, mae1  (d  =  1.02)  and

ybr184w  (d = 1.08) are distantly related to the reference strain with Euclidean distance, d

above 1, indicating that these strains showed a clear phenotype when grown on fructose.  The

measured Euclidean distances were visualised as dendrogram and the data revealed 4 clus-

ters, highlighted with colours in Figure 5.6-3.

Figure 5.6-3 Dendrogram on fructose. Hierarchical clustering was done using stoichiometric
data by using Euclidean distances as a metric.
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In the first cluster (bottom to top), strains with silenced genes that are involved in hexose

transportation, hexose sensing and regulation were clustered together for e.g., hxt1 , hxt4 ,

hxt10 , hxt12 , hxt17 , snf3 , rgt2  and mth1  suggesting that these strains had similar

phenotype under the examined conditions. Interestingly the details of protein interactions and

complexes using MIPS MPact Protein Interactions and Complex DB (Güldener et al., 2006)

(www.mips.gsf.de/genre/proj/impact) revealed that Snf3p has direct interactions with Rgt2p

(Yang and Bisson, 1996); Hxt4p (Ko et al., 1993); Hxt1p (Lewis and Bisson, 1991) and

Mth1p (Irie et al., 1993). In the second cluster, snf2  and sip3  (Snf2p - which is a compo-

nent of SNF1 protein complex, which in turn has direct interaction with Sip3p (Gavin et al.,

2002; Lesage et al., 1994)) were clustered together. In addition, pfk2  (Pfk2p - phosphofruc-

tokinase activity) and hxk2  (Hxk2p - hexokinase activity) and imp2’  (Imp2’p - transcrip-

tional activator involved in carbohydrate metabolic process) were clustered together. In the

third cluster, genes that are related to pyruvate metabolism and glucose metabolic process, for

instance, mae1  (Mae1p - Malic enzyme) and fbp26  (Fbp26p - Fructose 2, 6 bisphos-

phatase) were clustered together with the ybr184w  (YBR184W – hypothetical gene). In the

fourth cluster, glk1  and dld2  (Glk1p and Dld2p are components of actin associated protein

complex (Amberg et al., 1995)); nrg1  and nrg2  (Nrg1p and Nrg2p - transcriptional repres-

sors) were clustered together; and gal4  and gal80  (Gal4p and Gal80p had direct physical

interaction (Sil et al., 1999)) were clustered together. All these evidences provide a biological

significance of clustering analysis.

CCoommbbiinneedd aannaallyyssiiss -- GGlluuccoossee,, GGaallaaccttoossee aanndd FFrruuccttoossee

Another  interesting  analysis  would  be  to  combine  all  the  strains  on  all  the  three  carbon

sources i.e., glucose, galactose and fructose and check for the most closely related strains.

The  top  five  most  closely  related  mutant  pairs  were cat8 -sfa1  (d = 0.186); fbp26 -

ybr184w  (d = 0.314); msn4 -sip3  (d = 0.319); glk1 -tye7  (d = 0.346); cat8 -gad1  (d =

0.395). Figure 5.6-4 revealed four main clusters. In the first cluster (bottom to top), mainly

hexose transporters and regulators in glucose signalling knock out strains were clustered.

Second cluster contained strains that had gene deletions in glucose metabolism. Third cluster

contained hypothetical gene, fbp26 , mae1  and hexose transporters knock out strains. The

last cluster contained strains that had gene deletions in glucose and pyruvate metabolism,

gluconeogenesis and transcriptional repressors etc.

http://www.mips.gsf.de/genre/proj/impact
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Figure 5.6-4 Dendrogram of combined effects of glucose, galactose and fructose sugars

55..66..22..22 DDaattaa vviissuuaalliizzaattiioonn aass cclluusstteerreedd hheeaatt mmaappss

In order to obtain an overview of all the metabolic fluxes for all the strains, metabolic flux

data of all the strains were combined and visualized as clustered heat maps using an algo-

rithm written in ‘R’. Flux data of mutants were normalized with respect to the reference strain

flux data and the obtained fold change values were converted to log2 values and then clus-

tered using hierarchical method.

Glucose: All the strains with similar flux profiling were clustered together (Fig 5.6-5).

In general, fermentation and PPP pathways were up regulated whereas anaplerotic and bio-

synthetic pathways were down regulated in mutants. In almost half of the strains, TCA cycle

was down regulated and in another half upregulated. Glycolysis was almost unchanged in all

the strains, which suggests that all the metabolic changes were occurred from lower glyco-

lytic pathway. Knockout genes with similar function or acting in same pathway were clus-
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tered together based on the flux data. For instance, in the lower half of the heat map, deletion

strains involved in galactose utilisation pathway, gal4  and gal10 ; gluconeogenic gene de-

letions, fbp1 , fbp26  and mae1 ; hexose transporter knockouts, hxt4 , hxt14 ; lactate

metabolic process gene deletions, cyb2  and dld2 ; and Snf1p interacting protein Sip3p

knockouts, sip3  and snf11  were clustered together. In this cluster of strains, fermentation

and PP pathways were highly up regulated, respiration and anaplerosis were significantly

down regulated and glycolysis was unchanged (Fig 5.6-5). In the upper half of the heat map,

strains showed up regulation of both PP pathway and TCA cycle, down regulation of anaple-

rosis and most of the strains showed unchanged glycolysis and fermentation (Fig 5.6-5).

Figure 5.6-5 Heat map with clustering representing the log2 values of fold changes of flux
values with respect to the reference strain on glucose. (Ferm – Fermentative pathway; Anap –
Anaplerotic pathway)
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Galactose: An overview of metabolic flux profiling of all the strains grown on galactose

(Fig 5.6-6) revealed that the strains showed very high up regulation of respiration and down

regulation of fermentation, anaplerosis and PP pathways and glycolysis was mostly un-

changed (upper part of the heat map). However, there is a cluster of strains that showed sig-

nificant down regulation of TCA cycle, which was complemented by moderate up regulation

of fermentation (lower part of the heat map).

Figure 5.6-6 Heat map with clustering representing the log2 values of fold changes of flux
values with respect to the reference strain on galactose. (Ferm – Fermentative pathway; Anap
– Anaplerotic pathway)
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55..66..22..33 BBiioollooggiiccaall ssiiggnniiffiiccaannccee ooff mmuuttaanntt ppaaiirrss

Hierarchical clustering on all the strains when combined the data of all the three carbon

sources revealed most closely related clusters based on stoichiometric data (section 5.6.2.2)

and the following explanation gives a possible biological link between the two mutant strains.

cat8 -sfa1  pair: Cat8p encodes a zinc-finger cluster protein that is necessary for

derepression of number of genes during non-fermentative growth conditions (Hedges et al.,

1995). Genomic studies have shown that many of the genes encoding proteins involved in

gluconeogenesis, ethanol utilization and glycoxylate cycle are regulated by Cat8p (Haurie et

al., 2001; Tachibana et al., 2005). SFA1 is a bifunctional enzyme encoding both alcohol de-

hydrogenase and glutathione-dependent formaldehyde dehydrogenase activities (Grey et al.,

1996; Wehener et al., 1993). Clustering of these two strains was observed on all individual

sugars and also in combined analysis. Even the metabolic flux profiling of these two strains

on glucose (Fig 5.6-3) and galactose (Fig 5.6-4) revealed that these two strains had similar

flux profiles and thus clustered together. Since both Cat8p and Sfa1p are somewhere in-

volved in a common pathway, ethanol metabolism might be the reason for this clustering

and it would be interesting to study this further.

sip3 -msn4  pair: Clustering of this mutant pair was not only observed using com-

bined stoichiometric data of all the sugars (Fig 5.6-2) but also using flux data on galactose

(Fig 5.6-4). Msn4 is a transcriptional activator related to Msn2p and activated during sev-

eral stress conditions (Martinez-Pastor et al., 1996; Gorner et al., 1998) and it is a Multicopy

suppressor of SNF1 mutation (Estruch et al., 1993). Sip3p, a SNF1 Interacting Protein

(Yang et al., 1992), which has transcription activity, has a direct physical interaction with

Snf1p (Lesage et al., 1994).

glk1 -tye7  pair: Both combined stoichiometric data of all the sugars (Fig 5.6-2) and

flux data on glucose (Fig 5.6-3) and galactose (Fig 5.6-4) yielded the clustering of this mu-

tant pair. Glk1p, glucokinase, catalyses phosphorylation of glucose (Herrero et al., 1995) in

glycolysis pathway; Tye7p, TY-mediated expression, a serine-rich protein that contains a

basic-helix-loop-helix DNA binding motif (Lohning et al., 1994). It binds to E-boxes of gly-

colytic genes and contributes to their expression (Sato et al., 1999). This could be a possible

link between these two mutants.
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55..66..33 FFuunnccttiioonnaall pprreeddiiccttiioonn ooff hhyyppootthheettiiccaall ggeenneess
Since the quantitative stoichiometric data is available for all the selected deletion mutant

strains  on  different  carbon  sources,  it  is  of  special  interest  to  predict  the  role  of  unknown

genes based on the phenotype and to see whether this study can already provide first indica-

tions for the hitherto unknown function of the gene product. It is obvious that studies of this

type cannot always directly give conclusive functional information but allow to direct future

research. Interesting phenotypes will, together with other established methods (Oliver et al.,

1998) provide an important basis to the discovery of gene function in yeast. Among the se-

lected mutant strains, one strain had a hypothetical gene deletion (ybr184w ) and the other

with pseudogene deletion (yil170w ).

55..66..33..11 EEuucclliiddeeaann ddiissttaannccee aapppprrooaacchh

One possibility is to compare these strains with all other strains and further investigate the

most closely related ones by utilising the stoichiometric data on three different sugars, µmax,

YX/S and YE/S (tables 5.1-3 and 5.1-4) and metabolic flux profiling data on glucose and galac-

tose by calculating a relative Euclidian distance, d (detailed description is given in Materials

and Methods section).

YBR184W (SGD ID: S000000388): YBR184W alias YBR1306, located on chromo-

some II (Feldmann et al., 1994), is not an essential gene. The gene product of YBR184W, a

putative protein of unknown function, has not been studied extensively (Kellis et al., 2003).

However, the gene expression analysis revealed that this gene is induced during sporulation.

Sequence analysis shows that it is similar to the gene YSW1, which encodes a spore-specific

protein (Chu et al., 1998).

On glucose,  the top five most closely related strains to ybr184w  and their distances are—

mae1 -0.046; fbp26 -0.064; dld2 -0.103; snf3 -0.135; cyb2 -0.138 and the distance to ref-

erence is 0.435. All these strains also showed similar metabolic flux profiling and are part of

a cluster where TCA cycle was down regulated (Fig 5.6-3). On galactose, the top five most

closely related strains are—fbp26 -0.145; glk1 -0.158; tye7 -0.198; sip3 -0.218; rgt2 -

0.259 and the distance to reference is 0.451. All these strains except sip3  also showed simi-

lar metabolic flux profiling and are part of a cluster where TCA cycle was up regulated (Fig
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5.6-4). On fructose, the top five most closely related strains are—mae1 -0.127; leu4 -0.181;

fbp26 -0.271; dld2 -0.377; pck1 -0.378; and the distance to reference is 1.08. Therefore,

fbp26  is a common strain present among the top five most closely related strains in all three

sugars followed by mae1  and dld2  present in two sugars, glucose and fructose. For all

strains the distances to ybr184w  are less on glucose than on galactose and fructose. This is

very pronounced for fbp26  with distances of 0.064 (Glucose), 0.145 (Galactose) and 0.271

(Fructose), and mae1  with distances of 0.046 (Glucose) and 0.127 (Fructose). In addition,

ybr184w  strain is most distantly related to reference strain on fructose with distance of 1.08

when compared to glucose and galactose (0.435 and 0.451, respectively). One possible ex-

planation is that ybr184w  has more specific effects during growth on fructose and galactose

than on glucose.

On glucose ybr184w  has identical specific growth rate with fbp26 , identical biomass yield

with fpb26 , mae1  and cyb2 , and identical ethanol yield with mae1  and snf3 . On fruc-

tose, ybr184w  is the fastest grower and had lowest ethanol yield and mae1  is  closely re-

lated to µmax and YE/S and there is no identity with respect to biomass yield among the top five

closely related strains. On galactose ybr184w  has identical biomass yield with glk1  and

ethanol yield with tye7  and there is no identity with respect to specific growth rate among

the top five closely related strains.

Since fbp26  is  one  among the  top  five  most  closely  related  strains  to ybr184w  in all the

three carbon sources, it seems therefore likely that the effects of ybr184w  deletion are

somewhat similar as fbp26  deletion. Fbp26p hydrolyzes fructose-2, 6-bisphosphate, which

is activating phosphofructokinase, Pfk1p, and inhibiting fructose-1, 6-bisphosphatase, Fbp1p

that is involved in gluconeogenesis pathway (Paravicini et al., 1992; Kretschmer et al., 1987).

The next closely related strains are mae1  and dld2 . Mae1p, mitochondrial malic enzyme

catalyses the oxidative decarboxylation of malate to pyruvate (Boles et al., 1998) has a strong

similarity to other malate dehydrogenases and is involved in gluconeogenesis and pyruvate

metabolic processes. Dld2p, D-lactate dehydrogenase activity, located in mitochondrial ma-

trix (Chelstowska, et al., 1999) is involved in lactate metabolic process and pyruvate metabo-

lism. Details of protein interactions and complexes using MIPS MPact Protein Interactions

and Complex DB (Güldener et al., 2006) (www.mips.gsf.de/genre/proj/impact) revealed that

http://www.mips.gsf.de/genre/proj/impact
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Ybr184wp has 2 direct physical interactions and one protein complex in which Mdh1p,

malate dehydrogenase precursor is involved which in turn had protein complex with lac-

tate/malate dehydrogenase (Ho et al., 2002). Based on these observations, one could predict

that in a broader sense, Ybr184wp might be involved in glucose metabolic process or pyru-

vate metabolic pathways.

YIL170W (SGD ID: S 000001432): YIL170W, a pseudogene HXT12, located on

chromosome IX is a non-functional member of the hexose transporter family (Nelissen et

al., 1995; Kruckeberg et al., 1996). This gene has high similarity to other 18-20 members of

hexose transporter family (Wieczorke et al., 1999; Diederich et al., 1999).

On  glucose,  the  top  five  most  closely  related  strains  to yil170w  and  their  distances  are—

pck1 -0.076; tye7 -0.105; gad1 -0.115; hxt1 -0.126; hxt10 -0.133 and the distance to ref-

erence is 0.566. All these strains also showed similar metabolic flux profiling and are part of

a cluster where TCA cycle was up regulated (Fig 5.6-3). On galactose, the top five most

closely related strains are—pfk26 -0.268; mth1 -0.274; leu4 -0.31; hxt17 -0.313; hxt8 -

0.313 and the distance to reference is 0.247. All these strains also showed similar metabolic

flux profiling and are part of a cluster where TCA cycle was either down regulated or con-

stant (Fig 5.6-4). On fructose, the top five most closely related strains are—hxt1 -0.185;

rgt2 -0.244; hxt10 -0.245; hxt17 -0.275; rbk1 -0.316 and the distance to reference is

0.323. Therefore, common strains present at least in two sugars among the top five most

closely related strains are hxt1 , hxt10  and hxt17 . In  general,  for  all  the  strains  the  dis-

tances to yil170w  are less on glucose than on fructose and galactose. This is very pro-

nounced for hxt10  with distances of 0.133 (Glucose); 0.245 (Fructose), and hxt1  with dis-

tances of 0.126 (Glucose); 0.185 (Fructose). Even though the distances are relatively smaller

on glucose than other two sugars, yil170w  strain is most distantly related to reference strain

on glucose followed by fructose and galactose, which indicates substrate specific phenotypes

of yil170w  strain.  The  deletion  of YIL170W is  somewhat  similar  to  the  deletion  effects  of

low affinity transporter, hxt1 , and hexose transporters with limited known function, hxt10

and hxt17  as these are among the top five most closely related strains to yil170w  at least in

two sugars.
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55..66..33..22 GGrraapphhiiccaall GGaauussssiiaann MMooddeell ((GGGGMM)) aapppprrooaacchh

Alternatively, the most closely related mutant pairs can be identified using graphical Gaus-

sian model approach using stoichiometric data and extracellular fluxes on three different sug-

ars. The corresponding q-order partial correlation graph (qp-graph) was obtained for each

sugar.

Glucose

Using stoichiometric and extracellular flux data on glucose substrate, qp-graph was obtained

by employing GGM approach (Figure 5.6-7). Mutant strain ybr184w  showed a strong and

significant direct dependency with mae1 strain with partial correlation, rho = 0.97; p-value

= 0.0005, which is in accordance with the Euclidean distance approach results. Mutant strain

yil170w had two direct dependencies with hxt4  and mth1  strains,  which  are  strong  and

statistically significant (hxt4 : rho = 0.1; p-value = 0.0007; mth1 : rho = 0.99; p-value =

0.0007).

    Figure 5.6-7 q-order partial correlation graph (qp-graph) for glucose data.
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Galactose
Similar analysis was done using quantitative data on galactose (Figure 5.6-8). The network

looks less connected when compared to glucose data suggesting that the mutant strains are

quite independent when grown on galactose and had their own phenotype. Mutant strain

ybr184w  showed a strong and significant direct dependency with tye7 strain with partial

correlation, rho = 0.97; p-value = 0.0004, which is in accordance with the Euclidean distance

approach results. Whereas mutant strain yil170w  showed a strong and significant direct de-

pendency with snf11 strain with partial correlation, rho = 0.1; p-value = 0.0007.

Figure 5.6-8 q-order partial correlation graph (qp-graph) for galactose data.
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Fructose
Qp-graph on fructose data showed that several mutant strains had no dependencies on other

mutant strains (Figure 5.6-9) and mutant strain yil170w is one among them. Mutant strain

ybr184w  showed a strong and significant direct dependency with mae1 strain with partial

correlation, rho = 0.99; p-value = 0.01, which is in accordance with the Euclidean distance

approach results.

    Figure 5.6-9 q-order partial correlation graph (qp-graph) for fructose data.
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55..66..44 CCoonncclluussiioonnss
In  this  overview chapter,  all  the  strains  studied  on  different  carbon sources  were  combined

and analysed either individually on each sugar or together. The following statistical analyses

were employed for the computational analysis of the data (i) hierarchical clustering analysis,

and (ii) metabolic flux data visualization using clustered heat maps, relation between mutant

pairs using Euclidean distance measure and finally functional prediction of hypothetical

genes by combining all the above analyses and also by graphical Gaussian model approach.

Hierarchical clustering analysis of the stoichiometric data on each sugar revealed most

closely related mutant pairs. Combined clustering analysis revealed that cat8 -sfa1 ;

fbp26 -ybr184w ; msn4 -sip3 ; glk1 -tye7 ; cat8 -gad1  as most closely related mutant

pairs, which is also consistent with the metabolic flux profiling data. The functional predic-

tion of hypothetical gene YBR184W based on this quantitative data suggested a possible role

in glucose metabolic process or pyruvate metabolic pathways as the most closely related

strains in all the sugars were fbp26 , mae1  and dld2 . The functional prediction of a pseu-

dogene, YIL170W (HXT12), which is close to other hexose transporters suggested a possible

close association with the low affinity transporter knockout, hxt1  and with other hexose

transporters with limited known function knockouts, hxt10  and hxt17 .
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6 SUMMARY AND CONCLUSIONS
The baker’s yeast, S. cerevisiae is a versatile eukaryotic model organism, whose genome was

first sequenced (Goffeau et al. 1996, 1997), and thoroughly investigated in several aspects,

which is used for understanding and engineering eukaryotic cell function (Ostergaard et al.,

2000). However, the function of a major fraction of genes coding for proteins has not yet

been determined. A powerful approach to determine gene function is the phenotypic analysis

of mutants missing the gene of interest (Winzeler et al., 1999; Que et al., 2002). The avail-

ability of the complete set of deletion mutants of S. cerevisiae provides a unique resource for

systematic analysis of the functional role of individual genes (Giaever et al., 2002; Brach-

mann et al., 1998). To exploit this unique resource of complete set, high-throughput assays

are needed to provide a quantitative phenotypic and metabolic profiles of the functional role

of individual genes besides already existing large-scale screenings to find gene-environment

interactions during several stress responses based on fitness (Giaever et al., 2002; Gasch et

al., 2002; Weiss et al., 2004; Warringer et al., 2003; Mollapur et al., 2004).

The determination of basic physiological parameters of deletion mutants on different carbon

sources would provide more detailed picture of metabolic activities of such mutants. Thus

this sort of research motivated to select and investigate the quantitative physiological charac-

terisation of a set of knockout strains involved in central carbon metabolism and hexose

transporters  on  different  carbon sources.  In  order  to  screen  a  large  number  of  deletion  mu-

tants simultaneously, 96-well microtiter plates with immobilized oxygen sensors were used

and metabolic flux profiling was studied by using labeled substrates and simplified fluxes

were calculated using stoichiometric mass balances.

The first chapter (5.1) of  the  thesis  dealt  with  the  development  and  optimisation  of  high-

throughput kinetic and stoichiometric analysis of yeast mutant libraries in 96 well microtiter

plates with on-line sensing of dissolved oxygen at miniaturized scale and obtained reliable

quantitative data of physiological parameters on glucose and galactose. Twenty-seven dele-

tion mutants of S. cerevisiae were investigated using a novel method for high-content

stoichiometric and kinetic metabolic profiling. We can detect, whether oxygen limitation is

occurring during cultivation using the oxygen sensing microtiter plate. Secondly, dissolved

oxygen profiles indicate most substrate limitations and diauxic behaviour. The application of
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a simple balanced growth model allowed correction for ethanol and water evaporation during

cultivation. From this new method, reliable data for specific growth rate, biomass and ethanol

yields on carbon substrate and biomass yield on oxygen were calculated on both the sugars

and allowed statistically significant discrimination of all mutants studied (Velagapudi et al.,

2006).

In the second chapter (5.2), a new method was developed for throughput quantification of

isotope-labeled ethanol originating from 1-13C-labeling experiments using MALDI-ToF-MS,

which permits the calculation of the flux split ratio between glycolysis and the pentose-

phosphate pathway (PPP). This new application of the hydrazone reaction of 2,4-

dinitrophenylhydrazine with acetaldehyde, formed by an enzymatic reaction, is a sufficiently

sensitive method for the quantification of ethanol formed by fermentation. Ethanol quantifi-

cation using this method was compared with enzymatic analysis and exhibited differences of

less than 3.3 % on average. Comparison of flux partitioning ratios based on MALDI-TOFMS

and gas chromatography GC/MS methods showed good agreement, with differences for etha-

nol and alanine labeling of only 4.3 % (Hollemeyer et al., 2007).

The third chapter (5.3) of the thesis dealt with the comparative metabolic flux profiling on

the selected mutants on glucose and galactose by utilizing the above developed methods. On

glucose, the growth was predominantly fermentative with high yield of ethanol, low yield of

biomass  and  low  oxygen  consumption  rate.  On  galactose  respiration  was  more  active  with

correspondingly lower ethanol yields, higher biomass yields and higher rates of oxygen con-

sumption. Some strains showed unexpectedly high or low growth rates and rates of ethanol

production and respiration providing very informative data about the function of the corre-

sponding gene. Deletion of malic enzyme gene, MAE1, did not show any significant pheno-

type when grown on glucose but a drastically increased branching from glucose 6-phosphate

into the pentose phosphate pathway on galactose. This allows the conclusion that Mae1p is

important for the supply of NADPH during aerobic growth on galactose (Velagapudi et al.,

2007).

The fourth chapter (5.4) of the thesis dealt with the hexose transporter deletion mutant

strains and each selected deletion mutant strain was grown on glucose and galactose to obtain

quantitative stoichiometric and metabolic flux data. Since these are single knockouts and

have complementary functions, these strains had no growth defects, except for gal2  on ga-

lactose but revealed substrate specific phenotypic profiles. On glucose, hxt4  strain was

highly fermentative (had as low TCA fluxes as anaplerotic fluxes), in contrast, on galactose,
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it had higher respiratory flux. On glucose, hxt8  was the fastest grower with lowest fermenta-

tive capacity. However, the strain had highest specific glucose uptake rate, PPP and TCA

cycle fluxes. On galactose, rgt1  strain had extremely high PPP flux and also high fermenta-

tive capacity with lower respiratory and anaplerotic fluxes. The mutant strain hxt14  had

similar anaplerotic and TCA fluxes on both the sugars; and had similar TCA, PPP fluxes as

well as ethanol yields on both the sugars.

The fifth chapter (5.5) of  the  thesis  dealt  with  the  comparative  physiological  profiling  on

three carbon sources, which clearly indicates that strains grown on galactose were growing

slowly when compared to glucose and fructose. Strains grown on glucose had higher fermen-

tative  activity  followed  by  fructose  grown  strains,  whereas  strains  grown  on  galactose  had

higher TCA and therefore higher respiratory activity. mae1  strain had highest oxygen up-

take rate with very low ethanol yield, which could be due to reduced PPP flux on fructose.

mae1  strain would have only 2 routes to maintain NADPH levels, one way via TCA cycle

by activating NADPH specific isocitrate dehydrogenase activity other one via NADPH spe-

cific aldehyde dehydrogenase. The obtained results suggested a positive effect of Hxt3p on

fructose fermentation and Hxt8p on both glucose and fructose fermentations but not on galac-

tose. Hxt4p on fructose and Hxt4p and Hxt14p on glucose might have negative effects on

fermentation. Based on this analysis, physiologically and industrially potentially beneficial

strains could be identified.

The sixth chapter (5.6) of the thesis dealt with the functional prediction of hypothetical

genes by utilising the quantitative stoichiometric and metabolic flux data on different carbon

sources. All the strains studied on different carbon sources were combined and analysed sta-

tistically. Combined hierarchical clustering analysis revealed that cat8 -sfa1 ; fbp26 -

ybr184w ; msn4 -sip3 ; glk1 -tye7 ; cat8 -gad1  as most closely related mutant pairs,

which is also consistent with the metabolic flux profiling data. Moreover, these mutant pairs

also have biological significance. Based on Euclidean distance approach, it seems that the

hypothetical gene YBR184W might play a role in pyruvate metabolism as ybr184w  is close

to mae1 , dld2  and fbp26. Pseudogene, YIL170W (HXT12), might play a role as low affinity

transporter as yil170w  is close to hxt1  and also with other hexose transporters with limited

known functions, hxt10  and hxt17 . These results were also confirmed by Graphical Gaus-

sian modelling approach.
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77.. OOUUTTLLOOOOKK
Impact of the thesis work

This thesis presents the high-throughput phenotypic and metabolic flux profiling of yeast

single gene knockouts on different carbon sources. From the complete yeast knockout library,

which contains over 6,000 gene-disruption mutants, a sub-set of over 60 deletion mutants

whose gene functions are supposed to be involved in central carbon metabolism, hexose

transportation, transcriptional factors and few uncharacterised genes were selected, i.e., about

1 % of the complete collection. Since the effects of most of the gene deletions are silent (si-

lent phenotype due to complementary functions) or robust (due to tight integration of yeast

metabolic network), three different sugars, glucose, galactose and fructose were selected as

the sole carbon source. For parallel handling of deletion strains, 96-well microtiter plates with

immobilised oxygen sensors were used for miniaturised cultivation purpose, which is both

time and cost-effective approach.

Quantitative stoichiometric data and metabolic flux profiling data were obtained by imple-

menting the developed novel methodology. This high-content metabolic screening of yeast

mutants revealed unexpected metabolic mobilisation of metabolic potential and in addition

metabolic flux screening of mutants on different carbon sources supported the elucidation of

gene function. Furthermore, combined quantitative data analysis by using computational ap-

proaches enabled to predict the function of hypothetical genes. The work described in this

thesis contributes significantly to the yeast community where the main goals of the yeast de-

letion project consortium are physiological profiling of each deletion knockout where the

ultimate aim is to unravel the function of uncharacterised genes i.e., functional analysis of the

yeast genome.
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Directions for future research

1. Metabolic flux results of mae1  strain revealed a very high PP pathway on galactose

and very high oxygen uptake rate on fructose to maintain NADPH demand; it would

be interesting to do in-depth analysis of this strain.

2. More in depth analysis of mutants on fructose sugar by measuring all possible ex-

tracellular products and subsequent metabolic flux analysis.

3. In order to confirm the early functional predictions of uncharacterised gene YBR184W

further investigation of this strain and its closely related strains, mae1 , fbp26  and

dld2  is necessary. For instance, similar analysis on non-fermentable carbon sources.

4. In order to obtain more insights on hexose transport, it would be interesting to carry

out similar research on strains carrying only one HXT gene.
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99.. AAPPPPEENNDDIICCEESS

99..11 SSYYMMBBOOLLSS AANNDD AABBBBRREEVVIIAATTIIOONNSS

µ Specific growth rate
qO2 Specific oxygen uptake rate
qhexose Specific hexose uptake rate
qethanol Specific ethanol production rate
AcCoA Acetyl CoA
ADP Adenosine diphosphate
AKG -Ketoglutarate
ALA Alanine
ARG Arginine
ASN Asparagine
ASP Aspartic acid
ATP Adenosine triphosphate
CIT Citrate
DNA Deoxyribonucleic acid
E4P Erythrose-4-phosphate
F6P Fructose-6-phosphate
FAD Flavin adenine dinucleotide oxidised
FADH Flavin adenine dinucleotide reduced
FUM Fumarate
G6P Glucose-6-phosphate
GAP Glyceraldehyde-3-phosphate
GLC Glucose
GLU Glutamic acid
GLY Glycine
HIS Histidine
ILE Isoleucine
LAC Lactate
LEU Leucine
LYS Lysine
KLa Volumetric mass transfer coeffficient
MTP Microtiter plate
NAD Nicotinamide adenine dinucleotide oxidised
NADH Nicotinamide adenine dinucleotide reduced
NADP Nicotinamide adenine dinucleotide phosphate oxidised
NADPH Nicotinamide adenine dinucleotide phosphate reduced
OAA Oxaloacetate
OUR Oxygen uptake rate
P5P Pentose-5-phosphate
PG Phosphoglycerate
PHE Phenylalanine
PPP Pentose phosphate pathway
PYR Pyruvate
RNA Ribonucleic acid
S7P Sedoheptulose-7-phosphate
SUC Succinate
TCA Tricarboxylic acid
YX/S Biomass yield on substrate
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YE/S Ethanol yield on substarte
YX/O Biomass yield on oxygen

99..22 BBEERRKKEELLEEYY MMAADDOONNNNAA PPRROOGGRRAAMM FFOORR KKLLAA EESSTTIIMMAATTIIOONN
{Created by Prof.Elmar Heinzle. Berkeley Madonna program for calculation of kla using microtiter
plate with integrated oxygen sensor. Oxygen removed by addition of dithionite. After consumption of
dithionite which reacts rapidly with oxygen, oxygen concentration rises again}
DT  =  0.01
DTMAX  =  0.1
DTOUT  =  0.1
TOLERANCE  =  0.001
KLA  =  0.001 ;volumetric liquid phase mass transfer coefficient (h-1)
CLS  =  100 ;Saturation concentration of Oxygen (%)
init CS  =  0.5 ;Initial concentration of Dithionite (mM)
k  =  200 ;Rate constant for dithionite reaction
init CL  =  0 ;Initial concentration of oxygen
{Oxygen balance for dithionite oxidation}
DCLDT  =  KLA*(CLS-CL)-k*CL*CS
d/dt (CL)  =  DCLDT
{Rate equation for dithionite oxidation}
d/dt (CS)  =  -k*CL*CS
Limit CL > = 0

9.3 BBEERRKKEELLEEYY MMAADDOONNNNAA PPRROOGGRRAAMM FFOORR YYXX//OO EESSTTIIMMAATTIIOONN
{Created by Prof.Elmar Heinzle Yeast growth and ethanol production assumptions: 1) constant spe-
cific growth rate; 2) constant biomass yield; 3) constant ethanol yield; 4) constant kLa; X biomass g/L;
G glucose g/L; E ethanol g/L; O oxygen g/L}
METHOD STIFF
STARTTIME =  0
STOPTIME = 15
DT =  0.02
Tolerance = 0.0001
muem = 0.3 ;h-1

KSG = 0.1 ;g/L
KS2 = 0.1 ;g/L
KSO = 7e-5 ;g/L
YXG = 0.3 ;gX/gS
Osat = 7.53e-3 ;gO/100% saturation
YEX = 0.2 ;gE/gX
revap_H2O = 1e-3 ;g/h
YXO =  1 ;gX/gO
Vinit =  0.15e-3 ;L
rho = 1000 ;g/L
kevap_E = 5.2e-6 ;L*h-1

Exp_evap = 2
kLa = 1.45 ;h-1

Xinit = 0.024 ;g/L
Ginit = 22 ;g/L
Einit = 0 ;g/L
Oinit = 7e-3
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INIT V = Vinit
INIT XV = Xinit*Vinit
INIT GV = Ginit*Vinit
INIT EV = Einit*Vinit
INIT OV = Oinit*Vinit
INIT ENV = Einit*Vinit
rEtOH_evap = kevap_E*E^Exp_evap
V' =  (-revap_H2O - rEtOH_evap)/rho
Gkin = G/(KSG+G)
Okin = O/(KSO+O)
mue = muem*Gkin*Okin
rX = mue*X
rXtot = rX*V
XV' =  rXtot
X = XV/V
GV' =  -rXtot/YXG
G = GV/V
qGlc = mue/YXG
EV' =  rXtot*YEX - rEtOH_evap
limit EV> = 1e-10
E = EV/V
OV' = kLa*(Osat-O)*V - rXtot/YXO
limit OV> = 0
O = OV/V
Oproz = O/Osat*Kproz
Kproz = 100
ENV' = rXtot*YEX
EN = ENV/V

99..44 PPRROOGGRRAAMM FFOORR EETTHHAANNOOLL CCOORRRREECCTTIIOONN
{Created by Prof.Elmar Heinzle Yeast growth and ethanol production assumptions:
1) constant specific growth rate
2) constant biomass yield
3) constant ethanol yield
4) constant kla
X biomass g/L; G glucose g/L; E ethanol g/L; O oxygen g/L}
METHOD STIFF
STARTTIME =  0
STOPTIME = 30
DT =  0.02
Tolerance =    0.0001
muem  =    0.3 ;h-1

KSG  =    0.1 ;g/L
KSO =    7e-5 ;g/L
YXG =    0.3 ;gX/gS
Osat = 7e-3 ;gO/100% saturation
YEX = 0.2 ;gE/gX
revap_H2O = 1e-3 ;g/h
YXO = 1 ;gX/gO
Vinit = 0.15e-3 ;L
rho = 1000 ;g/L
kevap_E = 0.052 ;L*h-1
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kLa = 0.246 ;h-1

Xinit = 0.024 ;g/L
Ginit = 22 ;g/L
Einit = 0 ;g/L
Oinit = 7e-3
INIT V = Vinit
INIT XV = Xinit*Vinit
INIT GV = Ginit*Vinit
INIT EV = Einit*Vinit
INIT ENV = Einit*Vinit
rEtOH_evap = kevap_E*E
V'  =  (-revap_H2O - (rEtOH_evap*V))/rho
Gkin = G/(KSG+G)
Okin = 1 ;O/(KSO+O)
mue = muem*Gkin*Okin
rX = mue*X
rXtot = rX*V
XV'  =  rXtot
X = XV/V
GV' =  -rXtot/YXG
G = GV/V
qGlc = mue/YXG
EV'  =  rXtot*YEX -(rEtOH_evap*V)
limit EV> = 1e-10
E = EV/V
ENV' = rXtot*YEX
EN = ENV/V

99..55 MMAATTLLAABB PPRROOGGRRAAMMSS FFOORR SSOOLLVVIINNGG CCAARRBBOONN MMAASSSS
IISSOOTTOOPPOOMMEERR DDIISSTTRRIIBBUUTTIIOONNSS AANNDD CCOORRRREECCTTIINNGG
NNAATTUURRAALL IISSOOTTOOPPIICC EEFFFFEECCTTSS FFOORR EETTHHAANNOOLL

% - High-Level Artificial Intelligence Technology (HiLAIT) by Dr.Tae hoon Yang
% << OHmasscorr.m >> Version 1.00 .............................................................
% - solving carbon mass isotopomer distributions for ethanol
% - Multiple measurement of ethaol MALDI-derivatives (m; m+1; m+2)
% - nonlinear least squares minimization using fmincon
% - input mat-file
%         input.mat:       << MSintmat >>    measured mass isotopomer intensities
% - output mat-file
%         output.mat:      << mdvcorr >> carbon mass isotopomer distributions.
% - DO NOT SUPPLY NORMALIZED DATA!
% .............................................................................................
 echo on; disp(' ')
echo off
warning off
% 3-times clear
  clear; clear globals; clear all
 % molecule structure and name of GCMS fragments
  load input
  % check size of matrices (multiple measurement of ETOH)
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  [rMDV, cMDV] = size(MSintmat);
   % numerical calculation MDV of carbon mass isotopomers
      % structure identification
  CCHONSiS  = [2, 6, 9, 4, 4, 0, 0];
  global sumerrcounter sumerror
  sumerrcounter = 1;
% normalization
  for iteration = 1: cMDV
      clear global Matcorr MDVexp sumvec1 Weight
      clear MSnorm sumvector idvcar mdvcar mdv skeleton Mcorr MDVexp xmdv
      global Matcorr MDVexp sumvec1 Weight
            sumvector = ones(1,3);
      MSnorm = MSintmat(:,iteration)/(sumvector*MSintmat(:,iteration))
% size of positional carbon isotopomer distribution
      idvcar = zeros(2^CCHONSiS(1),1);
      mdvcar = zeros(CCHONSiS(1)+1,1);
% calculation of additional mass distribtion except carbon skeleton of the metabolite
      [mdv,skeleton] = mdvresidue(idvcar, CCHONSiS);
% matrix composition
      Mcorr = zeros(skeleton+1, length(mdvcar));
              for k = 1:(skeleton+1)
                  Mcorr(k:(k+length(mdv)-1),k) = mdv;
              end
% experimental MDV data
      Matcorr = Mcorr(1:3,:)
% optimization process to solve carbon mass isotopomer distribution
      MDVexp = MSnorm;
      xmdv = mdveqsolver(Matcorr, MDVexp, mdvcar);
      sumerrcounter = sumerrcounter+1;
      disp('>> Difference between measured and calculated Mass Isotopomer Distribution .......')
      Difference = MDVexp - (Matcorr*xmdv/sum(Matcorr*xmdv))
      disp('..................................................................................')
% resize of xmdv to horizontal concatenation (maximum allowed carbon = 12)
      mdvcorr(:,iteration) = xmdv
  end
      filename = input('Filename to save results e.g. 25-OCT-04 >> ','s');
      save (['output_',filename], 'mdvcorr')
      copyfile('input.mat',['input_',filename,'.mat'])
      clear all
      warning off MATLAB:mir_warning_variable_used_as_function
      warndlg = warndlg('Created By TAE HOON YANG September 2004','HiLAIT Technology');
      pause(1.5)
      close(warndlg)

********************************************************************************
function xmdv = mdveqsolver(Matcorr, MDVexp, mdvcar);

% << mdveqsolver.m >> Version 1.00 ...........................................
% - solving equation system of carbon mass isotopomer distributions using
%   nonlinear least-square approach.
% - High-Level Artificial Intelligence Technology (HiLAIT) by Tae hoon Yang
% ............................................................................
% Optimization to solve carbon isotopomer distributions
  global sumvec1 Weight sumerrcounter sumerror
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  sumvec1 = ones(1,length(mdvcar));
% initial guess
  if length(MDVexp) ~= length(mdvcar)
      xmdv0   = zeros(length(mdvcar),1);
  else
      xmdv0   = MDVexp;
  end
% linear equality constraint
  Aeq     = sumvec1;
  beq     = 1;
% lower and upper bounds
  lb    = zeros(length(mdvcar),1);
  ub    = ones(length(mdvcar),1);
for optim = 1:1
    loopstop  = 0;      % loopstop deactivation
    exitflag  = 1;      % exitflag = 1 for starting iteration
    if optim == 1
       tolx   = 1e-15;
       tolfun = 1e-30;
       Weight = eye(length(MDVexp),length(MDVexp));
    end
    if optim > 1
       xmdv0 = xmdv;
       if rcond(diag(residabs)) <= 2*eps
          Weight = pinv(diag(residabs));
       else
          Weight = diag(residabs)\eye(length(MDVexp),length(MDVexp));
       end
    end
    tolerror       = 1;
    flagone        = 1;
    flagzero       = 1;
    displaying     = 'iter';
% logical loop operation (Yang et al. 2004. Met. Eng.)
   while loopstop ~= 1
       % Optimization setting and function designation
         options = optim-
set('Display',displaying,'LargeScale','off','GradObj','on','TolX',tolx,'TolFun',tolfun,'TolCon',1e-100, ...
                            'DiffMaxChange',0.1,'DiffMinChange',1e-10,...
                            'MaxFunEvals',50,'MaxIter',50,...
                            'LevenbergMarquardt','on');
                 [xmdv,fval,exitflag,output,lambda,grad] = fmin-
con(@getmdv,xmdv0,[],[],Aeq,beq,lb,ub,[],options);
      % Successful Optimization: Overwriting results
        if exitflag > 0
         % sum of mdv check
           errmdv = 0;
           sumxmdv = sum(xmdv);
           minusmdv = any(xmdv < 0);
        % Finalizing conditions
          if sumxmdv >= 1+(1e-14) | sumxmdv <= 1-(1e-14) | minusmdv ~= 0   %  > 0.01 % Error of
Sum of mdv or Negativ Frequency
             errmdv = 1;
          else
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             errmdv = 0;
          end
          if errmdv == 1
             if flagone == 1
                disp(' ')
                disp('... Please wait.. HiLAIT is trying to isolate the system root...')
                disp(' ')
                flagzero = 1;
                flagone  = 0;
                displaying ='off';
             end
                xmdvcheck = abs(xmdv);                   % no negative distribution allowed
                sumxmdv = sum(xmdvcheck);
                while abs(1-sumxmdv) >= 1e-14      % no significant digits error
                      xmdvcheck = xmdvcheck/sum(xmdvcheck);
                      sumxmdv = sum(xmdvcheck);
                end
                counter = 0;
                while sumxmdv ~= 1 & counter ~= 20
                      xmdvcheck(1) = xmdvcheck(1) + (1-sumxmdv);
                      sumxmdv = sum(xmdvcheck);
                      counter = counter + 1;
                end
                disp(' ')
                disp('>>>> TOLERANCE dereased')
                tolx = tolx*0.1;
                tolfun = tolfun*0.1;
                xmdv0 = xmdvcheck;
                loopstop = 0;
                clear xmdvcheck sumxmdv
                 elseif errmdv == 0
                 xmdvfin = xmdv;
                 disp(' ')
                 disp('... System root found by HiLAIT technology ...')
                 disp(' ')
                 xmdvcheck = abs(xmdv);                  % no negative distribution allowed
                 sumxmdv = sum(xmdvcheck);
                 while abs(1-sumxmdv) >= 1e-14           % no significant digits error
                       xmdvcheck = xmdvcheck/sum(xmdvcheck);
                       sumxmdv = sum(xmdvcheck);
                 end
                 counter = 0;
                 while sumxmdv ~= 1 & counter ~= 20
                       xmdvcheck(1) = xmdvcheck(1) + (1-sumxmdv);
                       sumxmdv = sum(xmdvcheck);
                       counter = counter + 1;
                 end
                 xmdv = xmdvcheck;
                 loopstop = 1;
                 clear xmdvcheck sumxmdv
          end
        elseif exitflag ~= 1
               if flagzero == 1
                  disp(' ')
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                  disp('... Lost in the space.. HiLAIT activated...')
                  disp(' ')
                  flagone  = 1;
                  flagzero = 0;
                  displaying ='off';
               end
               xmdvcheck = abs(xmdv);                  % no negative distribution allowed
               sumxmdv = sum(xmdvcheck);
               while abs(1-sumxmdv) >= 1e-14           % no significant digits error
                     xmdvcheck = xmdvcheck/sum(xmdvcheck);
                     sumxmdv = sum(xmdvcheck);
               end
               counter = 0;
               while sumxmdv ~= 1 & counter ~= 20
                     xmdvcheck(1) = xmdvcheck(1) + (1-sumxmdv);
                     sumxmdv = sum(xmdvcheck);
                     counter = counter + 1;
               end
               xmdv0 = xmdvcheck;
               loopstop = 0;
               tolerror = tolerror+1;
               if tolerror > 5
                  tolx = tolx*10;
                  tolfun = tolfun*10;
                  tolerror = 1;
              end
        end
   end
   residabs = abs(MDVexp -(Matcorr*xmdv/sum(Matcorr*xmdv)));
   sumerror(sumerrcounter,1) = sum(residabs)
end

********************************************************************************
function [mdv,skeleton] = mdvresidue(idvcar, CCHONSiS);
% << mdvresidue.m >> Version 1.0.............................................................................
% - idvcar: zero vector
% - CCHONSiS: molecular formular C[a,molecule]C[b,TBDMS]H[c]O[d]N[e]Si[f]S[g] as an array [a
b c d e f g]
% - since
% - see Rosman and Taylor (1998) Isotopic Compositions of the Elements 1997
%   Representative isotopic composition
% ..........................................................................................................
mCarbon    = [1.2e+1;1.3003355e+1];
fCarbon    = [9.893e-1;1.07e-2]; fCarbon = fCarbon/sum(fCarbon);
mHydrogen  = [1.0078250; 2.0141020];
fHydrogen  = [9.99885e-1;1.15e-4]; fHydrogen = fHydrogen/sum(fHydrogen);
mNitrogen  = [1.4003074e+1;1.5000109e+1];
fNitrogen  = [9.9632e-1; 3.68e-3]; fNitrogen = fNitrogen/sum(fNitrogen);
mOxygen    = [1.5994915e+1;1.6999131e+1;1.7999159e+1];
fOxygen    = [9.9757e-1;3.8e-4;2.05e-3];  fOxygen = fOxygen/sum(fOxygen);
mSilicon   = [2.7976928e+1;2.8976496e+1;2.9973772e+1];
fSilicon   = [9.22297e-1;4.6832e-2;3.0872e-2]; fSilicon = fSilicon/sum(fSilicon);
mSulfur    = [32;33;34;36];
fSulfur    = [9.493e-1;7.6e-3;4.29e-2;2e-5]; fSulfur = fSulfur/sum(fSulfur);
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if CCHONSiS(1) ~= 0
   for k = 1:length(idvcar)
       binind = dec2bin(k-1);
       clear mass
       for j = 1:length(binind); mass(j) = str2num(binind(j)); end
       massind(k,1) = sum(mass)+1;
   end
end
skeleton = CCHONSiS(1);
CHONSiS = CCHONSiS(2:7);
atoms = {'Carbon','Hydrogen','Oxygen','Nitrogen','Silicon','Sulfur'};
[CHONSiS, indexist] = sort(CHONSiS);
atoms = atoms(indexist);
nonzero = find(CHONSiS ~= 0);
molstructure = CHONSiS(nonzero);
isotopes = atoms(nonzero);
clear CHONSiS atoms indexist nonzero
for atomloop = 1:length(molstructure)
    if atomloop == 1
       if molstructure(atomloop) == 1
          eval(['mdv_temp = f',char(isotopes(atomloop)),';']);
       else
          for subloop_01 = 1:molstructure(atomloop)
              if subloop_01 == 1
                 eval(['mdv_temp = f',char(isotopes(atomloop)),';']);
              else
                 clear mdmtemp
                 eval(['mdm_temp = mdv_temp*f',char(isotopes(atomloop)),''';']);
                 clear mdv_temp
                 mdm_temp = fliplr(mdm_temp');
                 [row,col] = size(mdm_temp);
                 diagmax = col-1;
                 diagmin = 1-row;
                 diagind = fliplr([diagmin:1:diagmax]);
                 for subloop_02 = 1:length(diagind);
                     mdv_temp(subloop_02,1) = sum(diag(mdm_temp,diagind(subloop_02)));
                 end
              end
          end
       end
    else
       for subloop_01 = 1:molstructure(atomloop)
           clear mdm_temp
           eval(['mdm_temp = mdv_temp*f',char(isotopes(atomloop)),''';']);
           clear mdv_temp
           mdm_temp = fliplr(mdm_temp');
           [row,col] = size(mdm_temp);
           diagmax = col-1;
           diagmin = 1-row;
           diagind = fliplr([diagmin:1:diagmax]);
           for subloop_02 = 1:length(diagind);
                mdv_temp(subloop_02,1) = sum(diag(mdm_temp,diagind(subloop_02)));
           end
       end
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    end
end
mdv    = mdv_temp;
clear mdv_temp;

*******************************************************************************
function [f,g] = getmdv(xmdv);
% << getmdv.m >> Version 1.00 ..............................................
% - solving equation system of carbon mass isotopomer distributions using
%   nonlinear least-square approach.
% - High-Level Artificial Intelligence Technology (HiLAIT) by Tae hoon Yang
% ..........................................................................
global sumvec1 Matcorr MDVexp Weight
% objective function
  f = (MDVexp-(Matcorr*xmdv/(sumvec1*Matcorr*xmdv)))'*Weight*(MDVexp-
(Matcorr*xmdv/(sumvec1*Matcorr*xmdv)));
% output function's derivative
  Jacsys = ((Matcorr-
(Matcorr*xmdv)*(sumvec1*Matcorr)/(sumvec1*Matcorr*xmdv))/(sumvec1*Matcorr*xmdv));
  if nargout > 1
     % analytical gradient
       g = ((Matcorr*xmdv/(sumvec1*Matcorr*xmdv))-MDVexp)'*(Weight'+
Weight)*eye(length(MDVexp),length(MDVexp))*Jacsys;
  end
********************************************************************************

99..66 MMAATTLLAABB PPRROOGGRRAAMM FFOORR FFLLUUXX CCAALLCCUULLAATTIIOONNSS

% Created by Dr.Tae hoon Yang
global Ndata StMat StMatex k
load inputs   % save inputs StMat StMatex
% StMat:  Stoichiometric matrix for intracellular fluxes
% StMatex: Stoichiometric matrix for effluxes and anabolic fluxes
disp(' ')
Ndata = input('The Number of Data Sets ? >> '); % 1
for k = 1:Ndata                      % putmatrix MeasMat (input qs, qp, µ, ppp)
    eval(['load meas',int2str(k)]);  % save meas1 MeasMat

  % MeasMat : measurement matrix
    [row, col] = size(MeasMat);
  % MeasVec: particular measurement vector
    for kk = 1:col
        MeasVec = MeasMat(:,kk);
        StMat(1,1) = -1/MeasVec(4,1);
        StMat(3,1) = (1-MeasVec(4,1))/MeasVec(4,1);
       intflux = inv(StMat)*StMatex*MeasVec(1:3);
       FluxMat(:,kk) = intflux;
       clear intflux
    end
    FluxMat
    savename = ['save result',int2str(k),' FluxMat'];
    eval(savename)
    clear
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    global Ndata StMat StMatex k
end

99..77 PPRROOGGRRAAMM FFOORR QQPP--GGRRAAPPHH AANNAALLYYSSIISS

# Created by Dr. Jing Tang
# function for qpgraph analysis
# Input:
# data:
# The column is the one defining the random variables
# The row defines samples(conditions)
# variable_name:
# dim(variable_name) = [1 colnum]
# sample_name:
# dim(sample_name) = [1 rownum]
#source("http://bioconductor.org/biocLite.R")
#biocLite("Rgraphviz")
#library(Rgraphviz)
#setwd("d:/Obesity/data")
#data<-read.table("discordant_preprocessed.txt",header=F,sep=",",quote="");
#data<-t(data)
#variable_name<-read.table("variable_name.txt",header=F,sep="\t",quote="");
#sample_name<-read.table("sample_name.txt",header=F,sep="\t",quote="")
#variable_name<-t(variable_name)
#sample_name<-t(sample_name)

qpgraph<-function(data, variable_name, sample_name, t)
{

   colnames(data)<-variable_name
   rownames(data)<-sample_name

   # averageNrr
   avgnrr.estimates<-qpAvgNrr(data,long.dim.are.variables=FALSE)

   g<-qpGraph(avgnrr.estimates, threshold=t, return.type="graphNEL")
   gSymbols<-g
   nodes(gSymbols)<-as.character(variable_name)

   # chech the clique number
   # browser()

cliquenumber<-qpCliqueNumber(g)
   if(cliquenumber > dim(data)[1])

stop("clique number larger than the sample size, pac estiamtion unreliable, try smaller
threshold")

   else {
       # browser()
       pac.estimates<-qpPAC(data,g,return.K=FALSE,long.dim.are.variable=FALSE, verbose=FALSE)
       #nrrs<-avgnrr.estimates
       #pacs.rho<-pac.estimates$R
       #pacs.pva<-pac.estimates$P
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       pcc.estimates<-qpPCC(data,long.dim.are.variable=FALSE)
       #pccs.rho<-pcc.estimates$R
       #pccs.pva<-pcc.estimates$P

 edL<-edges(g)[names(edges(g))[unlist(lapply(edges(g),length))>0]]
       edM<-matrix(unlist(sapply(names(edL),function(x)
t(cbind(x,edL[[x]])),USE.NAMES=FALSE)),ncol=2,byrow=TRUE)
       edM <- matrix(as.numeric(edM), nrow=nrow(edM), ncol=ncol(edM))

       idx1<-edM[,1]
       idx2<-edM[,2]

       nrrs<-avgnrr.estimates[cbind(idx1,idx2)]
       pacs.rho<-pac.estimates$R[cbind(idx1,idx2)]
       pacs.pva<-pac.estimates$P[cbind(idx1,idx2)]

pccs.rho<-pcc.estimates$R[cbind(idx1,idx2)]
pccs.pva<-pcc.estimates$P[cbind(idx1,idx2)]

network<-
data.frame(AvgNRR=round(nrrs,digits=2),PCC.rho=round(pccs.rho,digits=2),PCC.pva=format(pccs.
pva,scientific=TRUE,digit=3),PAC.rho=round(pacs.rho,digits=2),PAC.pva=format(pacs.pva,scientifi
c=TRUE,digits=3))

networkSymbols<-network

      rownames(network)<-paste(edM[,1],edM[,2],sep=" -> ")

      networkSymbols[sort(networkSymbols[["AvgNRR"]],index.return=TRUE)$ix,]
summary<-network[sort(network[["AvgNRR"]],index.return=TRUE)$ix,]

      edM1<-matrix(unlist(sapply(names(edL),function(x)
t(cbind(x,edL[[x]])),USE.NAMES=FALSE)),ncol=2,byrow=TRUE)
      edSymbols<-
cbind(as.character(variable_name[1,edM[,1]]),as.character(variable_name[1,edM[,2]]))
      rownames(networkSymbols)<-paste(edSymbols[,1],edSymbols[,2],sep=" -> ")

summary<-network[sort(network[["AvgNRR"]],index.return=TRUE)$ix,]
      summarySymbols<-networkSymbols[sort(network[["AvgNRR"]],index.return=TRUE)$ix,]

write.csv(summarySymbols,"summarySymbols1.csv")
write.csv(summary,"summary1.csv")

x11()
g<-layoutGraph(g)
gSymbols<-layoutGraph(gSymbols)
graph.par(list(edges=list(col="purple")))
nodeRenderInfo(g)<-list(shape="ellipse",fill="lightgray", textCol="black", fontsize=10,lwd=1)
rownames(network)<-paste(edM[,1],edM[,2],sep="~")
edgeweight<-matrix()
for(i in 1:numEdges(g)){edgeweight[i]<-
network$AvgNRR[which(rownames(network)==as.character(edgeNames(g)[i]))]}
names(edgeweight)<-as.character(edgeNames(g))
edgeRenderInfo(g)<-list(lwd=round(t*10-edgeweight*10))
renderGraph(g)

x11()
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graph.par(list(edges=list(col="purple")))
nodeRenderInfo(gSymbols)<-list(shape="ellipse", textCol="black", fontsize=26,lwd=2)
rownames(networkSymbols)<-paste(edSymbols[,1],edSymbols[,2],sep="~")
edgeweightSymbols<-matrix()
for(i in 1:numEdges(g)){ edgeweightSymbols[i]<-
networkSym-
bols$AvgNRR[which(rownames(networkSymbols)==as.character(edgeNames(gSymbols)[i]))]}
names(edgeweightSymbols)<-as.character(edgeNames(gSymbols))
edgeRenderInfo(gSymbols)<-list(lwd=round(t*10-edgeweightSymbols*10))
renderGraph(gSymbols)

# adjacency matrix
g_adj<-as(g,"matrix")
colnames(g_adj)<-variable_name
rownames(g_adj)<-variable_name
}
   }

99..88 SSTTOOIICCHHIIOOMMEETTRRIICC MMAATTRRIICCEESS UUSSEEDD FFOORR MMEETTAABBOOLLIICC
FFLLUUXX CCAALLCCUULLAATTIIOONNSS
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99..88 GGRROOWWTTHH PPRROOFFIILLEESS OONN GGLLUUCCOOSSEE
Growth profiles of S.cerevisae single knockout strains grown on glucose. Mutants were cultivated in a 96-well microtite plates with immobilized

oxygen sensors. Natural log of optical density [Ln (OD)] was plotted against time [t]. Only regions with clear exponential growth are shown.
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99..99 GGRROOWWTTHH PPRROOFFIILLEESS OONN GGAALLAACCTTOOSSEE

Growth profiles of S.cerevisae single knockout strains grown on galactose. Mutants were cultivated in a 96-well microtite plates with immobi-
lized oxygen sensors. Natural log of optical density [Ln (OD)] was plotted against time [t]. Only regions with clear exponential growth are
shown.
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99..1100 GGRROOWWTTHH PPRROOFFIILLEESS OONN FFRRUUCCTTOOSSEE

Growth profiles of S.cerevisae single knockout strains grown on fructose. Mutants were cultivated in a 96-well microtite plates with immobi-
lized oxygen sensors. Natural log of optical density [Ln (OD)] was plotted against time [t]. Only regions with clear exponential growth are
shown.
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Dissolved oxygen (%) and biomass (g/L) profiles for the strains grown on glucose.
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Dissolved oxygen (%) and biomass (g/L) profiles for the strains grown on galactose.
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Professional Activities
Visiting Scientist in Metabolic Research Laboratories, University of Cambridge, UK - Nov 2009.
Coordinator for Metabolomics for clinical research training course at VTT, Finland, Oct 2009
Member in Metabolomics Society, MA, USA.
Member in “The Biobio Society”, Helsinki, Finland.
Member in international research organizations- FEBS, FEMS, IUBMB, IUMS, IUPAB, EBSA

Technical Expertise
Analytical Mass spectrometry (UPLC-MS/MS [QToF]; LC-MS, GC-MS; GC-FID;

GCxGC-ToF-MS, MALDI-TOF-MS; HPLC), Spectrophotometry; Fluoro-
scence and Absorbance Readers; Chromatography (Affinity, Paper, TLC
and Gel Filtration);

Fermentation Microtiter plate and Shake flask cultivation techniques
Proteomics Protein extraction and quantification; 2-D-, SDS-, native- PAGE; IEF
Molecular Biology Plasmid and Genomic DNA isolation; Cloning; PCR; Transformation of

Bacteria, Transfection, Agarose Gel Electophoresis; Western blotting
Tissue Culture Basic animal tissue culture techniques; Maintenance of Cell Lines; Plant

tissue culture techniques- Callus production, Artificial seed synthesis

Computational Skills
Bioinformatics: Multivariate & Univariate analyses, Clustering & Regression analyses
Softwares: MATLAB, PERL, C, R/Bioconductor, MySQL RDBMS,
Platforms: MS Windows, XP, MS Office and Linux

Publications (* Joint Authors)
Research Articles

10. López, M., Varela, L.,* Velagapudi, V.R.,* Lage, R., Vázquez, M.J., Tovar, S., Rodríguez-
Cuenca, S., Gonzalez, C.R., Martinez de Morentin, P.B., Nogueiras, R., Carling, D., Lelliott, C.J.,
Saha, A.K., Oreši , M., Diéguez, C., Vidal-Puig, A., 2009. Dysregulation of hypothalamic AMPK
and fatty acid metabolism mediates hyperthyroidism-induced alterations in energy balance. Na-
ture Medicine. (Submitted)
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9. Velagapudi, V.R., Hezaveh, R., Reigstad, C., Peddinti, G.V., Felin, J., Yetukuri, L., Mattila, I.,
Borén, J., Oreši , M., Bäckhed, F., 2009. The gut microbiota as a global modulator of host me-
tabolism. Molecular Systems Biology. (Submitted)

8. Medina-Gomez, G., Yetukuri, L., Velagapudi, V.R., Campbell, M., Jimenez-Linan, M., Blount,
M., Ros, M., Oreši , M., Vidal-Puig, A., 2009. Early mechanisms of beta cell adaptation and fail-
ure in the insulin resistant ob/ob and POKO mice. Disease Models and Mechanisms. (In Press)

7. Kotronen, A.,* Velagapudi, V.R.,* Yetukuri, L., Westerbacka, J., Bergholm, R., Ekroos, K.,
Makkonen, J., Taskinen, M.R., Oreši , M., Yki-Järvinen, H., 2009. Saturated fatty acids contain-
ing triglycerides are better markers of insulin resistance than total serum triglyceride concentra-
tions. Diabetologia. 52, 684-690.

6. Peddinti, G.V.,* Velagapudi, V.R.,* Lindfors, E., Halperin, E., Oresic, M., 2009. Dynamic net-
work topology changes in functional modules predict responses to oxidative stress in yeast. Mo-
lecular BioSystems. 5, 276-287.

7. Velagapudi, V.R., Wittmann, C., Schniden, K., Heinzle, E., 2007. Metabolic Flux Screening of
Saccharomyces cerevisiae Single Knock-out Strains on Glucose and Galactose Supports Elucida-
tion of Gene Function. Journal of Biotechnology. 132, 395-404.

4. Sysi-Aho, M., Vehtari, A., Velagapudi, V.R., Westerbacka, J., Yetukuri, L., Bergholm, R.,
Taskinen, M.R., Yki-Järvinen, H., Oreši , M., 2007. Predicting the lipoprotein composition using
Bayesian regression on serum lipidomic profiles. Bioinformatics. 23, i519 – i528.

3. Kolak,  M*., Westerbacka, J*., Velagapudi, V.R., Wågsäter, D., Yetukuri, L., Makkonen, J.,
Rissanen, A., Häkkinen, A.M., Lindell, M., Hamsten, A., Eriksson, P., Fisher, R.M., Oreši , M.,
Yki-Järvinen, H., 2007. Adipose Tissue Inflammation And Increased Ceramide Content Charac-
terize Subjects with High Liver Fat Content Independent of Obesity. Diabetes. 56, 1960.

2. Hollemeyer, K., Velagapudi, V.R., Wittmann, C., Heinzle, E., 2007. Matrix-assisted laser de-
sorption/ionization time-of-flight mass spectrometry for metabolic flux analyses using isotope-
labeled ethanol. Rapid Communications in Mass Spectrometry. 21, 336-342.

1. Velagapudi, V.R., Wittmann, C., Lengauer, T., Talwar, P., Heinzle, E., 2006. Metabolic Screen-
ing of Saccharomyces cerevisiae Single Knock-out Strains Reveals Unexpected Mobilization of
Metabolic Potential. Process Biochemistry. 41, 2170-2179.

Conference Talks

5. Velagapudi, V.R., (2009) Microbial regulation of host physiology. In: Academy of Finland’s
Annual seminar in Research Programme on Nutrition, Food and Health, Mar 19th, Finland.

6. Velagapudi, V.R., (2009) Systems biology approach to examine gut microbial effects on host
metabolism in mice. In: Mass spectrometric metabolomics workshop, Feb 27th, Denmark.

3. Velagapudi, V.R., (2009) Multivariate analysis of lipidomics data. In: Multivariate data modeling
for Systems Biology (Sysdiet) workshop, Jan 16th, Oslo, Norway

2. Velagapudi, V.R., (2008) Microbial regulation of host metabolism - A metabolomics strategy. In:
The Second Finnish Gut day, Nov 7th, Helsinki, Finland.

1. Velagapudi, V.R., (2008) Lipidomic profiling of animal models. In: EU Consortium meeting of
Hepatic & Adipose tissue and functions in the metabolic syndrome (HEPADIP), Oct 23rd, France.

Refereed Conference talk Abstracts

8. Velagapudi, V.R., Hezaveh, R., Reigstad, C., Peddinti, G.V., Felin, J., Yetukuri, L., Mattila, I.,
Borén, J., Oreši , M., Bäckhed, F., 2009. The gut microbiota regulates energy and lipid metabo-
lism. In: Frontier lipidology: Lipidomics in health and diseases. May 10-13, Sweden

7. Sysi-Aho, M., Vehtari, A., Velagapudi, V.R., Westerbacka, J., Yetukuri, L., Bergholm, R.,
Taskinen, M.R., Yki-Järvinen, H., Oreši , M., 2007. Predicting the lipoprotein composition using
Bayesian regression on serum lipidomic profiles. In: 15th ISMB/ECCB, July 21-25, Austria

6. Velagapudi, V.R., Yetukuri, L., Westerbacka, J., Sysi-Aho, M., Bergholm, R., Vehtari, A.,
Taskinen, M.R., Yki-Järvinen, H., Oreši , M., 2007. Characterisation of Lipoprotein Fractions us-
ing Comprehensive UPLC/MS and GCxGC ToF/MS Analyses in patients with metabolic syn-
drome. In: Metabolomics 3rd Scientific Meeting. June 11-14, Manchester, UK.
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5. Heinzle, E., Wittmann, C., Velagapudi, V.R., Kim, H.M., John, G.T., 2006. Miniaturization and
mini-bioreactors In: Engineering conferences international (ECI) - Natural products discovery and
production: New challenges, new opportunities. June 4-8, New Mexico, USA

4. C. Wittmann., Kim, H.M., Velagapudi, V.R., Heinzle, E., 2005. Metabolic network analysis at
miniaturized scale - A novel tool in strain and process development. In: Industrial Microbiology
& Biotechnology Conference SIM Annual Meeting, August 21-25, Chicago, IL, USA.

3. Heinzle, E., Velagapudi, V.R., Wittmann, C., Hollemeyer, K., Talwar, P., Lengauer, T., 2005.
Metabolische Hochdurchsatz-Charakterisierung von Deletionsmutanten von Saccharomyces cere-
visiae. In: Systembiologie für industrielle Prozesse, May 1-4, Braunschweig, Germany.

2. Heinzle, E., John, G., Velagapudi, V.R., Desphande, R., Wittmann, C., 2004. Biocatalyst screen-
ing using novel microtiter plates. In: Bioperspectives, May 4-6, Wiesbaden, Germany.

1. Wittmann, C., Kim, H.M., Velagapudi, V.R., Heinzle, E., 2004. Cultivation and metabolic profil-
ing at miniaturized scale. In: Bioperspectives, May 4-6, Wiesbaden, Germany.

Refereed Conference Poster Abstracts
16. Velagapudi, V.R.,  Bäckhed, F.,  Oreši ,  M., 2009. A systems biology approach to examine gut microbial

effects on host metabolism in mice. In: The fifth International Conference of the Metabolomics Society,
Aug 30 – Sep 2, Edmonton, Alberta, Canada.

15. Peddinti, G.V.,* Velagapudi, V.R.,* Lindfors, E., Halperin, E., Oresic, M., 2008. Dynamic network topol-
ogy changes in functional modules predict responses to oxidative stress in yeast. In: 9th International Con-
ference on Systems Biology (ICSB-9), Aug 22 – 28, Gothenburg, Sweden.

14. Peddinti, G.V., Velagapudi, V.R.,* Lindfors, E., Halperin, E., Oresic, M., 2007. Dynamic network topol-
ogy changes as result of cellular stress. In: 15th ISMB/ECCB, July 21-25, Austria.

13. Velagapudi, V.R., Yetukuri, L., Westerbacka, J., Sysi-Aho, M., Bergholm, R., Vehtari, A., Taskinen, M.R.,
Yki-Järvinen, H., Oreši , M., 2007. Comprehensive metabolomic characterisation of lipoprotein fractions
reveals differential lipoprotein-specific regulation of xenobiotic and pro-inflammatory metabolites in pa-
tients with metabolic syndrome. In: 76th EAS, June, Finland.

12. Talwar, P., Lengauer, T., Wittmann, C., Velagapudi, V.R., Heinzle, E., 2006. Development of Computa-
tional Methods for Analysis of Metabolic Profiling Data. In: 7th ICSB, Japan.

11. Peddinti, G.V.,* Velagapudi, V.R.,* Lindfors, E., Halperin, E., Oresic, M., 2007. Dynamic network topol-
ogy changes as result of cellular stress. In: ISSY-25, June 18-21, Espoo, Finland.

10. Velagapudi, V.R., Wittmann, C., Hollemeyer, K., Lengauer, T., Talwar, P., Heinzle, E., 2006. Metabolic
high-throughput characterization of yeast deletion mutants. In: ISSY-25. Finland.

9. Velagapudi, V.R., Wittmann,  C.,  Lengauer,  T.,  Talwar,  P.,  Heinzle,  E.,  2006.  Functional  Genomics  of
Yeast by Phenotypic and Metabolic Flux Profiling. In: Genomes to Systems Conference, 3rd Consortium for
Post-genome science, Mar 22-24, Manchester, UK.

8. Talwar, P., Lengauer, T., Rahnenführer, J., Heinzle, E., Velagapudi, V.R., Wittmann, C., 2005. Computa-
tional methods for protein functional prediction using metabolomics and transcript co-response data. In: 6th

ICSB, Oct 19 – 23, Boston, USA.
7. Talwar, P., Lengauer, T., Rahnenführer, J., Wittmann, C., Velagapudi, V.R., Heinzle, E., 2005. Computa-

tional methods for protein functional prediction using metabolomics data. In: International workshop on
systems biology, May 12-13, Milan, Italy.

6. Velagapudi, V.R., Wittmann, C., Lengauer, T., Talwar, P., Heinzle, E., 2005. High-throughput screening
of Saccharomyces cerevisiae Knockout Library: Method Development and Stoichiometric Profiling. In:
FEBS Advanced Course on Systems Biology, March 12-18, Austria.

5. Talwar, P., Lengauer, T., Rahnenführer, J., Wittmann, C., Velagapudi, V.R., Heinzle, E., 2004. Computa-
tional Methods for Metabolite Screening. In: 12th ISMB/ECCB, July 31-Aug 4, UK.

4. Talwar, P., Lengauer, T., Rahnenführer, J., Velagapudi, V.R., Wittmann, C., Heinzle, E., 2004. Computa-
tional Methods for Metabolite Screening. In: 5th ICSB, Oct 9 – 13, Heidelberg, Germany.

3. Velagapudi, V.R., Wittmann, C., Talwar, P., Lengauer, T., Heinzle, E., 2004. Functional Genomics of
Yeast by Metabolic Flux Profiling. In: 5th ICSB, Oct 9-13, Heidelberg, Germany.

2. Velagapudi, V.R., Wittmann, C., Lengauer, T., Talwar, P., Heinzle, E., 2004. Metabolic Flux Profiling of
Saccharomyces cerevisiae Mutants with Deletion of Genes in Central Metabolism at Miniaturized Scale. In:
5th ESBES, Sep 8-11, Stuttgart, Germany.

1. Talwar, P., Lengauer, T., Wittmann, C., Velagapudi, V.R., Heinzle, E., 2003. Towards cellular function
through metabolite screening. In: Metabolic Profiling-Pathways in Discovery, Cambridge Healthtech Insti-
tute Conference, Dec 8-9, New Jersey, USA


