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Abstract

Knowledge about the underlying free energy landscape of biomolecules is
crucial for a basic understanding of the inner workings of proteins. Its fast
and accurate calculation is indispensable for conformational analysis, struc-
ture–based protein design or for protein docking. On the one hand, existing
rigorous methods like free energy perturbation or thermodynamic integra-
tion are time–consuming and cannot be used for large scans required for
protein or vaccine design. On the other hand, fast treatments rely on em-
pirical or statistical data and deliberately neglect protein flexibility and are
therefore limited in accuracy.
In this thesis, a novel method for the estimation of free energy changes upon
mutation is proposed combining a physical effective energy function with
an efficient sampling of available conformational space. The energy func-
tion is based on physical chemistry and an efficient continuum solvent ap-
proach. It is averaged over alternative protein conformations fulfilling geo-
metric constraints. The main advantage of our method is its inclusion of full
protein flexibility, which dramatically improves the prediction quality for
protein-protein binding affinities. Due to its hundredfold gain in speed with
respect to conventional methods the method enables e.g. a full mutant scan
of protein–protein interfaces. The method was successfully applied to the
study of mutational effects on protein–protein and protein–peptide binding.
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Zusammenfassung

Die Kenntnis der Freie–Energielandschaft von Proteinen ist essentiell für
ein tiefergehendes Verständnis ihrer Funktionsweise. Die schnelle und prä-
zise Bestimmung der Freien Energie ist wichtig für strukturbasierte Analy-
sen, Proteindesign oder für das Proteindocking. Methoden wie die Freie En-
ergie Störungsrechnung liefern physikalisch korrekte Beschreibungen, die
allerdings mit hohem Rechenaufwand verbunden sind und daher für um-
fängliche Untersuchungen ungeeignet sind. Schnelle Methoden stützen sich
dagegen auf empirische oder statistische Daten, vernachlässigen dabei die
Proteinflexibilität und weisen daher eine eingeschränkte Genauigkeit auf.
Diese Arbeit stellt eine neu entwickelte Methode zur Berechnung von Freien
Energieänderungen durch Mutationen vor, die eine physikalisch effektive
Energiefunktion mit einer effizienten Abtastung des verfügbaren Konfor-
mationsraumes kombiniert.
Die über alternative Proteinstrukturen gemittelte Energiefunktion basiert
auf physikalischer Chemie und einer effizienten Behandlung des Lösungsmit-
tels. Der größte Vorteil unserer Methode ist die Berücksichtigung der vollen
Flexibilität, welche die Vorhersagequalität von Bindungsaffinitäten deutlich
steigert. Durch einen hundertfachen Geschwindigkeitszuwachs im Vergle-
ich zu konventionellen Methoden werden Studien ermöglicht, die den vollen
Mutationsraum von Protein–Protein Grenzflächen abdecken. Die Methode
wurde erfolgreich angewandt zur Analyse der Protein–Protein sowie der
Protein-Peptid Bindung.
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Notation

Abbreviations

cg Conjugate Gradient
Concoord Constrained Coordinates
Coul Coulomb
es electrostatic
FEP Free Energy Perturbation
FF Force Field
G53a6 GROMOS 53a6
GB Generalized Born
(l–)BFGS (low Memory) Broyden–Fletsher–Goldman–Shano algorithm
LIE Linear Interaction Energy
LJ Lennard–Jones
MD Molecular Dynamics
MM Molecular Mechanics
(MM/CC)/GBSA (MM/Concoord)/Generalized Born Surface Area
(MM/CC)/PBSA (MM/Concoord)/Poisson–Boltzmann Surface Area
OPLS(–AA) Optimized Potentials for Liquid Simulations (– All Atom)
PB Poisson–Boltzmann
PBE Poisson–Boltzmann Equation
PPIS Protein–Protein Interaction Surface
RF Reaction Field
rmsf root mean square fluctuation
SA Surface Area
SASA Solvent Accessible Surface Area
SDEC Standard Deviation of the Error of Calculation
se standard error
SES Solvent Excluded Surface
steep Steepest Descent
TI Thermodynamical Integration
vdW van der Waals

The symbol for standard deviation σ is also used for the standard deviation
for the error of calculation (SDEC) when a mix up is precluded.
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Amino Acids
One letter and three letter codes of amino acids:

Short Abbrev. Amino Acid
A Ala Alanine
C Cys Cysteine
D Asp Aspartic Acid
E Glu Glutamic Acid
F Phe Phenylalanine
G Gly Glycine
H His Histidine
I Ile Isoleucine
K Lys Lysine
L Leu Leucine

Short Abbrev. Amino Acid
M Met Methionine
N Asn Asparagine
P Pro Proline
Q Gln Glutamine
R Arg Arginine
S Ser Serine
T Thr Threonine
V Val Valine
W Trp Tryptophan
Y Tyr Tyrosine

Proteins
A mutation at position n is abbreviated XnY, with X being the One-Letter-
Code of the wild type amino acid and Y denoting the mutated amino acid.
If needed the letter of the peptide chain used in the pdb file is placed as
prefix: C_XnY. For example, B_A30G describes an alanine to glycine mutation
at position 30 of chain B.
In general, the wild type is abbreviated WT and the mutant MUT, respec-
tively.

XII



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VIII

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI

Introduction 1

1 Free Energy Calculations 13
1.1 Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Free Energy and Rate Constants of Biomolecular Processes . . 15
1.3 Internal Energy and Hamiltonian . . . . . . . . . . . . . . . . . . 17

1.3.1 Molecular Mechanics Force Fields . . . . . . . . . . . . . 17
1.3.2 Molecular Dynamics Simulations . . . . . . . . . . . . . . 20
1.3.3 Energy Minimization . . . . . . . . . . . . . . . . . . . . . 24

1.4 Statistical Physics Methods . . . . . . . . . . . . . . . . . . . . . 28
1.4.1 Thermodynamic Integration . . . . . . . . . . . . . . . . . 28
1.4.2 Free Energy Perturbation . . . . . . . . . . . . . . . . . . 29
1.4.3 Potential of Mean Force and Umbrella Sampling . . . . 30
1.4.4 Jarzynski’s Equality . . . . . . . . . . . . . . . . . . . . . . 33

1.5 Continuum Solvent Approaches . . . . . . . . . . . . . . . . . . . 33
1.5.1 Electrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.5.2 Poisson–Boltzmann Equation . . . . . . . . . . . . . . . . 36
1.5.3 Numerical Solution of the Linearized PBE via Finite

Difference Method . . . . . . . . . . . . . . . . . . . . . . . 39
1.5.4 Generalized Born Model . . . . . . . . . . . . . . . . . . . 44
1.5.5 Non–polar Solvation Contributions . . . . . . . . . . . . . 47

1.6 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.6.1 Thermodynamic Integration . . . . . . . . . . . . . . . . . 48

XIII



1.6.2 Normal Mode Analysis . . . . . . . . . . . . . . . . . . . . 49
1.6.3 Schlitter’s Approach . . . . . . . . . . . . . . . . . . . . . . 52
1.6.4 Solvent Entropy . . . . . . . . . . . . . . . . . . . . . . . . 55

1.7 Thermodynamic End States Methods . . . . . . . . . . . . . . . . 55
1.7.1 Linear Interaction Energy (LIE) . . . . . . . . . . . . . . 55
1.7.2 MM/PBSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

1.8 Statistical, Empirical Approaches . . . . . . . . . . . . . . . . . . 57
1.8.1 Fold-X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.9 Bioinformatic Techniques . . . . . . . . . . . . . . . . . . . . . . . 60

2 Experimental Methods 61
2.1 Structure Determination . . . . . . . . . . . . . . . . . . . . . . . 61

2.1.1 X–ray Crystallography . . . . . . . . . . . . . . . . . . . . 61
2.1.2 NMR Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 63

2.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2.1 Thermal Unfolding . . . . . . . . . . . . . . . . . . . . . . 65
2.2.2 Chemical Denaturation . . . . . . . . . . . . . . . . . . . . 66

2.3 Affinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Protein Stability Calculations 71
3.1 Materials: Selection of Data Set . . . . . . . . . . . . . . . . . . . 72
3.2 Preliminary Methods . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.1 Sampling of Conformational Space . . . . . . . . . . . . . 73
3.2.2 Denatured State Approximation and Thermodynamic

Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3 Methods: Concoord/PBSA . . . . . . . . . . . . . . . . . . . . . . . 78
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.1 Concoord/PBSA Energy Function . . . . . . . . . . . . . . 81
3.4.2 Importance of Considering Structural Flexibility . . . . 92
3.4.3 Convergence of Concoord/PBSA . . . . . . . . . . . . . . . 93
3.4.4 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.5 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.5 Concoord/PBSA Web Interface . . . . . . . . . . . . . . . . . . . . 98
3.5.1 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.5.2 CPU Time for CC/PBSA . . . . . . . . . . . . . . . . . . . 99

3.6 Comparison to Fold-X . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.7 Alternatives and Variations . . . . . . . . . . . . . . . . . . . . . 102

3.7.1 Dielectric Permittivity . . . . . . . . . . . . . . . . . . . . 102
3.7.2 Probesize . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.7.3 Minimization Method . . . . . . . . . . . . . . . . . . . . . 103
3.7.4 OPLS-AA force field vs. Gromos G53a6 force field . . . . 105

XIV



3.7.5 Inapplicable Contributions . . . . . . . . . . . . . . . . . . 106
3.7.6 Local Dielectric Permittivity . . . . . . . . . . . . . . . . . 107
3.7.7 Concoord/GBSA . . . . . . . . . . . . . . . . . . . . . . . . 108

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4 Protein binding affinities 119
4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.1.1 Binding Affinity Predictions with Concoord/PBSA . . . . 119
4.1.2 pKa Calculations . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2 Comparison of CC/PBSA to Fold-X and Robetta . . . . . . . . . 123
4.2.1 TEM1–BLIP complex . . . . . . . . . . . . . . . . . . . . . 123
4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3 Comparison to MM/PBSA for p53–mdm2 complex . . . . . . . . 125
4.3.1 Function and Importance . . . . . . . . . . . . . . . . . . . 125
4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4 Proline–rich peptide binding to the GYF domain . . . . . . . . . 127
4.4.1 Function and Importance . . . . . . . . . . . . . . . . . . . 127
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5 Dimerization of Insulin . . . . . . . . . . . . . . . . . . . . . . . . 130
4.5.1 Function and Importance . . . . . . . . . . . . . . . . . . . 130
4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5 Conclusions and Outlook 139

6 Author Contributions 143

A Protein Stability Results 145

B GYF-binding results 161

Bibliography 167

XV



XVI



Introduction

A wealth of different methods has been developed to shed light on the inner
workings of biomolecular systems that are the basis for cellular tasks. While
biochemical experiments may yield the influence of single functional groups,
structure determining techniques allow the analysis of interactions between
them. Computer–aided studies using molecular mechanics, quantum chem-
istry methods or data mining techniques supplement these studies by e.g.
elucidating protein dynamics, or enabling the study of chemical reactions in
silico. They also open up the possibility to predict the function of a protein
or even its atomic structure aiming to replace difficult, time consuming and
expensive experiments.
Disciplines like protein–structure analysis, structure–based protein design
and protein docking rely on accurate and fast computation of protein free en-
ergies. Rigorous treatments based on physical effective energy functions in-
volve computationally expensive methods such as free energy perturbation,
which are time–consuming and are thus incompatible with the need to per-
form extensive scans. Commonly used fast methods, in turn, involve empiri-
cally derived scoring functions and usually do not include protein flexibility
or are based on statistical potentials and are therefore highly dependent on
the availability of case–dependent experimental training data. Hence, such
methods are inherently limited in accuracy and applicability.
Here a structure–based, computational approach named Concoord/Poisson–
Boltzmann Surface Area (Concoord/PBSA) for protein free energy prediction
is proposed. The method can be used for both fast and quantitative estima-
tion of the folding free energy of mutants, that is, for measuring their con-
formational stability and for predicting the effect of mutations on protein–
protein binding affinity [1].

On a molecular scale the building blocks of life consist mainly of amino acids,
nucleic acids and fatty acids [2–4]. The latter are responsible for zoning the
interior of a cell and delimiting it to the outside by forming membranes.
Both, DNA, storing information for the construction of other cell compo-
nents, and RNA, involved in translating the genetic code to proteins and
in gene regulation, consist of nucleic acids. Most of the remaining tasks oc-
curring in a cell are covered by proteins. These working units, made up of
amino acids, have many distinct functions that comprise catalysis, cell sig-
nalling, cell division, immune response, and also structural and mechanical
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tasks in cell adhesion, the cytoskeleton or muscles.
Detailed knowledge about the molecular mechanism involved in the work-
ings of a protein is the key not only to gain insight into the cellular ma-
chinery, but also opens up the lane towards a directed functional design of
proteins. Also, it facilitates the rational design of drugs with defined proper-
ties.
Most of the above topics are typically addressed by experiments, e.g. by
structural studies, mutation experiments, or biophysical measurements yield-
ing, for example, binding strengths between molecules, turnover rates of en-
zymes, or information about flexibility and conformational changes of pro-
teins. These studies are increasingly supplemented and partially replaced
by in silico experiments. The capabilities of the latter experienced an un-
precedented increase during the last three decades, not only due to the in-
crease in computational speed, but also due to algorithmic development and
theoretical advancements.

Proteins
Proteins consist of amino acids that form linear chains by connecting their
amino and carboxyl groups via peptide bonds. Amino acid chains fold into
a sequence–dependent three dimensional structure typically referred to as
the native state fold. The protein fold is essential for its function. In gen-
eral, twenty different natural amino acids are available for the construction
of proteins. The amino acid sequence that underlies the three dimensional
structure is termed the primary structure. Repeating local arrangements
of hydrogen bonds between the amino acid backbone are called secondary
structure. α–helices and β–sheets are most common. The overall three di-
mensional arrangement of secondary structure elements in the folded pro-
tein is termed tertiary structure. The quaternary structure of proteins de-
scribes the arrangement of protein complexes. Figure 1 sketches the differ-
ent representations of a protein.
The basis to all functions assigned to proteins is the interaction of the pro-
tein with water molecules, ions, drugs, other proteins, nucleic acids, mem-
branes, or other organic compounds found in the cytoplasm. The numerous
activities associated with proteins are potential targets in pharmaceutical
research. With the goal to magnify, reduce or inhibit the resulting outcome,
the interactions are usually altered by introducing drugs to these systems.

Protein Folding and Stability
Protein folding describes the process of the amino acid chain to develop the
fully functional three dimensional structure starting from an unfolded con-
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formation (see Figure 2) [7]. In vivo folding occurs during and after riboso-
mal synthesis. Proteins fold in solution or with the help of chaperones. The
folding process can be completed on a microsecond timescale, but it also may
last for several hours depending on the system.
The state of an unfolded amino acid chain cannot be described by a single
conformation, but as an ensemble consisting of random coil configurations
and residual secondary and tertiary structure [9, 10]. As every amino acid
side chain bears distinct chemical features such as polarity, hydrophobic-
ity, aromaticity or protonation, interactions with each other and with its
surroundings eventually fold the protein into its native state located at the
minimum in free energy [11]. Most native conformations show a stabilizing
protected hydrophobic core surrounded by polar or charged amino acids at
the surface with their side chains reaching into the solvent or building salt
bridges. The main driving force is the burying of nonpolar side chains [12].
The folding process starts with the setup of secondary structure elements
— the so–called molten globule state [13] — followed by the arrangements
of α–helices and β–sheets, and ends with the positioning of the remaining
parts. Even for small molecules, the folding is not limited to a single path-
way. Smaller proteins often fold in a single step, whereas larger proteins
tend to have one or more intermediate states. Although being a steered pro-
cess, a complete, detailed understanding of the general underlying frame-
work for protein folding is still missing.
Comparison of the folding timescale with the number of microstates (known
as the Levinthal Paradox [14]) demonstrates that the folding process is in-
deed directed: Assuming an unfolded state of a protein with one hundred
amino acids, where every amino acid takes one of three different possible
conformations (e.g. rotameric states), a total number of 3100 configurations
can be sampled. Assuming a random search for the folded state in configura-
tional space, and that the unfolded protein has a sampling rate of 1013 s−1,
the folding would last 1027 years. This is not only at variance with the nor-
mal time scale for folding, but also with the life span of living organisms.
While under physiological conditions protein folding is a reversible process,
also the Law of Mass Action applies, i.e. both states exist in equilibrium and
the reaction rates for folding and unfolding are equal. The thermodynamic
stability of a reversibly folding and unfolding protein is described by the
difference in Gibbs free energy between both states

∆F = Ffolded −Funfolded.

Anfinson’s dogma [11] states that the native conformation corresponds to a
minimum in Gibbs free energy in a physiological milieu.
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The environment, i.e. the solvent, salt concentration, temperature, pressure,
pH, and molecular crowding [15] influence protein folding. Transmembrane
portions of proteins, for example, are by themselves more stable in a lipid
environment than in water. Also chaperones [16] and denaturants change
the folding behavior. While the former assists in folding by e.g. preventing
misfolding and aggregation under stress conditions like heat exposure, de-
naturants disrupt the native state by pushing the equilibrium towards the
unfolded state.
Misfolded proteins can lead to divergent illnesses [19]. Proteins that are
able to misfold into an extraordinary stable state that is immune against
digestion are called prions [20]. This unfolded state is prone to aggregation
and is probably coupled to or even invokes diseases like the Creutzfeldt–
Jakob disease or bovine spongiform encephalopathy (BSE). Neurodegenera-
tive diseases like Alzheimer’s or Parkinson’s disease also produce misfolded
proteins that aggregate to amyloid fibrils, as depicted in Figure 3. It is still
unknown, whether the misfolded protein compound is the cause or the out-
come of the incapability to degrade proteins in Alzheimer’s disease [21].

In vivo or in vitro folding studies analyze the assistance of other proteins
that support folding of specific proteins. In folding experiments, the pro-
tein is exposed either to high temperature, to high or low pH values or to
denaturants like urea or guanidine hydrochloride. Refolding is initiated by
returning to physiological conditions. With spectral analysis, e.g. circular
dichroism (CD) or fluorescence spectroscopy, it is possible to measure equi-
librium concentrations of the native and denatured state of the protein, or to
determine kinetic (un–) folding rates in order to deduce free energy changes
upon folding [22, 23].
Being able to measure free energy changes, not only the stability of spe-
cific mutants can be inspected, but also more complex questions may be
addressed by introducing systematic mutations. φ–value analysis [24], for
example, yields information about the transition state in a two state fold-
ing process. Here, every amino acid is mutated (one per studied mutant) to
an equally charged, smaller residue, and, thus, functional interactions are
removed. The differences in free energies are interpreted in terms of an in-
termediate state that is mapped onto the amino acid sequence. This method
helps to elucidate folding pathways.

Binding and Affinity
Protein–ligand binding takes over a crucial role in cell signalling pathways
but is also important for the regulation of physiological activities via hor-
mones or drugs [2–4]. Also, the binding of energy carriers in biological cells,
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Figure 1: (a) Primary and secondary structure of the B1 immunoglobulin–binding domain
of streptococcal protein G (PDB code 1PGA [5]). The illustration is taken from the protein
data bank web site http://www.pdb.org [6].
(b) Cartoon of the secondary structure projected on the tertiary structure.
(c) Representation of the tertiary structure with atoms depicted as spheres.

Figure 2: Denatured (left) and native (right) state of a protein (1PGA [5], unfolded struc-
ture provided by Daniele Narzi [8]) in cartoon representation.

Figure 3: The green–colored fragment of the helical, native shape of the amyloid beta A4
protein (1IYT) [17] misfolds to the fibril forming beta sheets (2BEG) [18].

5
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like ATP and GTP, is essential for the transformation of chemical energy
in translational (e.g. myosin) or rotational motion (e.g. F1F0–ATP synthase
[25]). The association between protein and ligand is usually non–covalent
and reversible and may result in a conformational change. Depending on the
process, binding may act as a switch enabling or disabling the functionality
of a protein.
Protein–protein binding is crucial for the arrangement of functional protein
complexes and thus it is the basis for quaternary structure formation, e.g. in
the regulation (e.g. by protease inhibitors that inhibit protease), in trigger-
ing immune responses (binding of antibody and antigen), for motor proteins
like kinesins walking along microtubules transporting other molecules, or
in pathological protein aggregation as mentioned above. Other proteins, e.g.
insulin, are fully functional in their monomeric form only but oligomerize
for self–regulation.
Protein–protein complexes usually show large interaction surfaces and thus
a large number of interactions between the chemical groups of both part-
ners [26]. Moreover the binding is highly specific revealing a lock–and–key
concept [27], an induced fit mechanism [28], or conformational selection [29].
Similar to the folding of a protein, no single elementary principle for protein–
protein binding could be identified due to the complex network of interac-
tions between the interacting partners. Thus, the analysis of protein–protein
binding is usually performed for specific systems [30]. But, still, the binding
process is energy driven, and the binding affinity between two proteins is ex-
pressed by the difference in free energy of the complex and the two separated
proteins

∆F = Fcomplex −Fpartner A −Fpartner B.

While in vivo studies mainly aim at the identification of new interacting
partners in the cell, in vitro experiments additionally allow the quantifica-
tion of the binding affinity. Similar to the protein stability, the dissociation
constant KD is frequently measured by spectroscopic methods. The binding
affinity can directly be expressed by this constant, and easily yield the bind-
ing free energy via (kB = Boltzmann constant)

∆F = kB lnKD .

Systematic mutation studies like the alanine scanning approach [31] yield
information about how single amino acid side chains influence the binding
behavior. Hereby, amino acids of interest are successively mutated to ala-
nine.
For investigating small binding regions consisting of a short peptide se-
quence, spot synthesis [32] yields a qualitatively more detailed picture since
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every possible single–point mutant (including every other amino acid as a
mutation) is tested for binding. The tested sequences are synthesized on a
cellulose membrane and brought in contact with its binding partner. The
density of the bound protein to the anchored sequence is measured after-
wards by chemiluminescent methods.

Structure Determination
Next to folding and binding experiments, structure determination is essen-
tial for many studies. X–ray crystallography [22, 33] as well as NMR spec-
troscopy [34] provide a detailed picture at atomic resolution and therefore
enable a structure based analysis.
Combined with φ–value analysis or alanine scanning the three dimensional
structure leads to an improved understanding of interatomic interactions
and the folding or binding behavior of proteins.
Also, experimentally derived protein structures are the basis for accurate
theoretical and computational structure–based studies (see below).

In silico experiments
Investigating large biomolecular systems in silico is a common task these
days. The accuracy in the prediction of e.g. free energy differences is re-
stricted mainly by the available computing power and of both the preci-
sion of the protein structure and the accuracy of the underlying theoreti-
cal model. The level of in silico investigations is steadily broadened by the
continuously increasing computational power. Not only faster CPUs, faster
networks and larger memories emerge, also new technologies like multi core
processing units speed up computations facilitating classical molecular me-
chanics studies of one million atom systems [35] or microsecond simulations
of smaller biomolecular systems [36, 37]. Theoretical advancements like the
mixed quantum and classical mechanics simulations enable to treat small
parts of a system quantum mechanically (QM/MM) [38], replica exchange
molecular dynamics (REMD) simulations [39] allow the folding of small pro-
teins in silico. Even the internet contributes to large scale computations by
making projects like Folding@Home [40] possible.
All biomolecular processes are governed by the underlying free energy land-
scape. Knowledge of the free energy landscape is the key to understand pro-
tein folding and unfolding or to predict binding affinities. Additionally, free
energy predictions are crucial in protein or drug design studies and in molec-
ular docking studies. The latter aims at identifying high–affinity binders and
binding sites for drugs.
A variety of methods has been developed in the past to predict the free en-
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ergy of a biomolecular system. These may be divided into structure–based
methods based on physico–chemical forcefields (see below) (molecular me-
chanics, quantum mechanics, QM/MM), into knowledge–based methods re-
lying on statistical, empirical data and on the protein structure only and
on machine–learning approaches (that rely on empirical data). While the
former are more accurate and can be used for ab initio predictions, the lat-
ter are computationally cheap and, therefore, can easily be applied, e.g. in
large–scale mutation studies.
Molecular dynamics (MD) simulations use parametrized potentials for in-
teratomic interactions known as force fields [41]. Iteratively solving New-
ton’s equations of motion for all nuclei yields the positions of all atoms as a
function of time, termed trajectory. With statistical ensembles as outcome,
observables and thermodynamic potentials (e.g. the Gibbs free energy) are
well defined from statistical thermodynamics and can be compared to exper-
imental measurements.
Depending on the addressed problem, different simulation–based procedures
are at hand for the prediction of free energy changes with varying compu-
tational effort [42–47]. Although also being titled as computational alchemy
[43] due to their sometimes involved transitions between non–physical states,
statistical mechanics methods like Free Energy Perturbation (FEP) [48, 49]
or Thermodynamic Integration (TI) [50] yield the most accurate results with
the lowest inherent statistical error of typically less than 1 kcal/mol [46].
Both methods slowly migrate the system from an initial state (e.g. the wild
type) to a defined final state (e.g. the mutant) and directly yield the free en-
ergy difference between the two states. These methods are based on the free
energy F which is related to the partition function Z via

F =−kBT ln Z.

Techniques like Molecular Mechanics/Poisson–Boltzmann Surface Area
(MM/PBSA) [51] or Linear Interaction Energy (LIE) [52] only consider the
end states (initial and final state). Here, free energy differences are based
on the decomposition in enthalpic (∆U)1 and entropic (T∆S) contributions

∆F =∆U −T∆S,

which are calculated on trajectories of the end states, only. Solvation effects
and changes in entropy are only approximated.
Thus, these procedures are computationally less demanding with the draw-
back of an enlarged error [46].

1U denotes the internal energy. The correct term for the enthalpy is H =U + pV and is
used in the Gibbs free energy G = H-TS.
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All of the above techniques make use of explicit solvent MD simulations that
are followed by the evaluation of physical energy functions. Depending on
the system size, adequate MD simulations of a fully solvated protein complex
can take several weeks on multiple processors.
The accurate prediction of free energies enables the prediction of protein
stabilities or binding affinities between proteins and ligands, rendering it
possible to find new drugs prohibiting, diminishing or enhancing binding, or
to design e.g. peptide–based vaccines to build up immune response against
tumor antigens [53]. Also, redesigning the surface of hydrophobic membrane
proteins like G protein–coupled receptors with a retained function could be
possible [54]. This may allow the design of water soluble analogues signifi-
cantly simplifying biochemical experiments.
Due to the immense computational effort the above simulation based meth-
ods cannot be applied to extensive mutational studies. Mutating a protein
in every MD snapshot instead of simulating the mutant leads to faster ap-
proaches like the computational alanine scanning [55] or the so–called vir-
tual mutagenesis method [56], which is the computational analogue to the
experimental spot synthesis. Inherently, these unrelaxed mutations neglect
conformational changes and flexibility adaptions as response to the muta-
tion that are, however, both crucial for the correct energetic prediction [57].
When studying only a small number of mutation sites, also simulations of
the full single–point mutational set [58] are possible.
Knowledge–based fast methods, that neglect the structural flexibility of a bi-
ological system have been developed, too. For example, Fold-X [59] takes con-
formational data from one structure only and applies an empirically derived
potential to obtain folding and binding free energies, and EGAD [60, 61] uses
a rotamer optimized configuration and physical free energy functions for the
design of novel proteins.
A third category of methods makes use of machine learning algorithms [62,
63] or simple scoring functions trained on experimental data sets. Thereby,
the obtained results strongly depend on the quality of the training set. Due
to the complexity of the (non–) linear functions no physical interpretions
are possible. Frequently, only the amino acid sequence acts as an input for
machine learning algorithms (e.g. artificial neural networks, SVM), which
makes this method class also applicable to cases where no atomic structure
is available.
To increase the mutant space of expensive, structure–based methods, bioin-
formatics methods can be combined with computational alanine scanning
or the virtual mutagenesis method [58]. Using MD results of hundreds of
mutations as training data for these methods, the prediction of billions to
trillions of (multiple) mutants is easily achieved. Interesting results can, in
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turn, be further analyzed by means of molecular mechanics.

Objectives and Organization
The main objective of this work was to develop a fast albeit structure–based
technique that is capable of reproducing experimental folding or binding free
energy differences upon mutation. Physical free energy functions were de-
veloped and evaluated on a structural ensemble generated using geometric
restraints only, replacing time–demanding MD simulations.

Chapter 1
Chapter 1 gives a short overview of statistical mechanics, with a focus on the
concept of free energy. Additionally, methods for the calculation of energies
of biomolecular systems are reviewed.
Molecular mechanics force fields, representing the internal energy of a bio-
molecular system, as well as the methods of molecular dynamics simulation
and energy minimization are introduced.
Both, MD–based statistical methods as well as continuum solvent approaches
are presented. As end state calculations are in need of an explicit entropy
estimate, different techniques for the approximation of the system’s entropy
are described. In addition to MD approaches, various other fast prediction
methods based on the crystal structure alone or on protein sequences are
presented.

Chapter 2
As the comparison to experiment is crucial for method development, the re-
lated experimental methods are sketched in Chapter 2. As this thesis would
not be possible without three dimensional structures, the two common meth-
ods for resolving protein structures at atomic resolution — X–ray crystal-
lography and NMR–spectroscopy — are briefly described. Besides, the ex-
perimental analogues to free energy computations with respect to protein
stability and protein–protein binding are covered.

Chapter 3
In Chapter 3 of this thesis a new approach is presented for the calcula-
tion of free energies using structure ensembles. Structures are generated
using Concoord [64], which samples conformational space around a given
input structure using geometrical constraints, only. Thereby, the computa-
tional efficiency is increased hundredfold as compared to simulation–based
approaches.
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As a first test case a set of more than five hundred mutants from five dif-
ferent proteins was considered. The method was parameterized in order to
reproduce experimental stabilities with high accuracy.
As the Concoord algorithm was used on protein structures in vacuo, con-
tinuum solvent approaches were required to include protein–water inter-
actions. For the development the slow yet precise Poisson–Boltzmann ap-
proach was chosen, hence, the name Concoord/PBSA — Concoord / Poisson–
Boltzmann Surface Area.
A web interface for the online calculation of free energy differences using
the Concoord/PBSA method is reported. With the help of the Concoord/PBSA
web interface the reproducibility and the time consumption were analyzed.

Chapter 4
Chapter 4 includes the enhancement to compute mutational effects on protein–
protein and protein–lignad binding affinities [30]. This chapter also reports
applications for the prediction of mutational free energy differences using
Concoord/PBSA. Next to the study of protein–peptide binding of the GYF
domain, as well as on the folding and dimerization of insulin, performance
comparisons to other methods are presented utilizing the TEM1–BLIP com-
plex or the p53–MDM2 complex as test cases.

Chapter 5
Conclusions and an outlook are given in Chapter 5. Further development
and possible applications are discussed.
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Chapter 1

Free Energy Calculations,
Approximations and Predictions

1.1 Statistical Mechanics

Statistical mechanics [42–44, 65] distinguishes several thermodynamic en-
sembles. For example the canonical ensemble (also termed NVT ensemble
due to constant particle number N, constant volume V and constant tem-
perature T) is coupled to a heat bath that allows exchange of energy. Exper-
iments are frequently performed in the NpT ensemble (constant pressure p
instead of constant volume). In the following we will concentrate on the NVT
ensemble. The results are easily transferable to other ensembles.
A molecular system can be described by the means of a Hamilton operator
or function H(p,q) of the generalized coordinates q and their conjugate gen-
eralized momenta p. Given the Cartesian coordinates q = (q1, q2, . . . , q3N),
momenta p = (p1, p2, . . . , p3N) and masses m1,m2, . . . ,mN of a classical sys-
tem with N atoms, the Hamiltonian is given by

H(p,q)=
3N∑

i=1

p2
i

2mi
+φ(q), (1.1.1)

where φ(q) is the interatomic potential. q and p span the phase space Γ that
holds all possible states of a system. An important quantity directly linked
to all possible states is the partition function Z given by

Z =
Ï

e−βH(p,q) dpdq
h3N , (1.1.2)

with the minimal phase space volume h3N . If treating indistinguishable par-
ticles an additional prefactor 1

N! occurs in Equation (1.1.2) [43].
Based on the energies of the microstates, the partition function yields in-
formation about the partitioning of probabilities for all possible states. Z
stands for the German ’Zustandssumme’, as for countable microstates it is a
’sum over states’.
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The probability to find the system in a microstate (q, p) can be expressed by
the density function ρ

ρ(p,q)= e−βH(p,q)

Z
. (1.1.3)

The integral over the whole phase space volume Γ is equal to one

Ï
ρ(p,q)

dpdq
h3N = Z

Z
= 1. (1.1.4)

The observable 〈A〉 of a system property A can be written by means of its
canonical ensemble average

〈A〉 =
Ï

ρ(p,q)A(p,q)
dpdq
h3N . (1.1.5)

Applied to the Hamiltonian H the ensemble average is equivalent to the
internal energy U

U = 〈H〉 =
Ï

ρ(p,q)H(p,q)
dpdq
h3N . (1.1.6)

The internal energy consists of the kinetic energy including translational,
rotational and vibrational contributions and the potential energy due to
inter– and intramolecular interactions. The Hamiltonian and its ensemble
average as found in biomolecular systems will be discussed in more detail
together with molecular force fields in subsection 1.3.1.
Another important quantity describing a thermodynamical system is its en-
tropy S

S =−kB〈lnρ〉. (1.1.7a)

The entropy is a measure for the phase space volume that is within reach
of a phase trajectory at constant macroscopic conditions like in the NVT or
the NpT ensembles. If only one single state ψ is accessible, ρψ = 1 and ρ = 0
otherwise and, thus, S = 0. With more microstates ρ adopts values in the
range of 0< ρ < 1, and as x ln x < 0 applies for 0< x < 1 the entropy increases.
Thus, the entropy may be used as a measure for the disorder of a system.
Every closed system strives for a maximum in entropy. It is increased over
time until the system reaches equilibrium.
Inserting equation (1.1.3) in (1.1.7a) leads to



1.2 Free Energy and Rate Constants of Biomolecular Processes 15

S = −kB

Ï
ρ(p,q) lnρ(p,q)

dpdq
h3N

= −kB

Ï
ρ(p,q) ln

e−βH(p,q)

Z
dpdq
h3N

= −kB

Ï
ρ(p,q)

(−βH(p,q)− ln Z
) dpdq

h3N

= 1
T
〈H〉+kB ln Z. (1.1.7b)

The emerging term kBT ln Z allows the connection of the statistical mechan-
ics of microscopic systems with the (Helmholtz) free energy of (macroscopic)
thermodynamics

F =−kBT ln Z. (1.1.8a)

The free energy may also be written as a difference of the ensemble average
of the internal energy and temperature times entropy

F = 〈H〉−TS =U −TS. (1.1.8b)

While the entropy of closed systems (NVT, NpT,. . . ) tends to its maximum,
the free energy adopts its minimum in equilibrium. In an NpT ensemble
Gibbs Free Energy

G =U + pV −TS (1.1.9)

is considered.

1.2 Free Energy and Rate Constants of Biomo-
lecular Processes

The free energy landscape determines the direction and rate of biomolecular
processes. In the following, the link of the free energy to rate constants is
established on the example of two–state systems.
Biomolecular systems show a minimum in free energy for the preferred state
according to the second law of thermodynamics.
In chemical equilibrium, the binding of two molecules A and B to the com-
pound AB

A + B *) AB
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is described by the thermodynamic binding constant

K = aAB

aAaB
, (1.2.1)

where a is the chemical activity. The chemical activity a can be approxi-
mated at low concentrations (or when other perturbing reactions can be ne-
glected) with the dimensionless concentration

a ≈ c

1 mol
l

. (1.2.2)

As cAB is the concentration for the bound state and the product cAcB a mea-
sure for all possible combinations for the unbound molecules, their ratio
equals the ratio of the states’ partition functions

K = cAB

cAcB
= ZAB

ZA + B
. (1.2.3)

Thus, this relation can be used to calculate the difference in free energy
between the two states

∆F = FAB −FA + B = −kBT ln ZAB − (−kBT ln ZA + B)

= −kBT ln
ZAB

ZA + B
=−kBT lnK . (1.2.4)

This relation couples the microscopic free energy difference to the thermody-
namic binding constant accessible by biochemical experiments. It allows to
study protein stability, solubility, protein–ligand and protein–protein bind-
ing (see Figure 1.1), aggregation, conformational changes or the protonation
of a protein by analysis of the microscopic initial and final states. Here, the
interesting question arises how these properties change upon a perturba-
tion of the system, either by the introduction of a mutation, the insertion of
a drug, or by a change in environment. The change in free energy differences
upon mutation is of special interest for the studied systems in this work.
In addition to the end states, free energies are often evaluated along a re-
action path (potential of mean force, PMF, subsection 1.4.3). Here, e.g. the
permeability and ion flux of an ion channel can be investigated (see Figure
1.1).
Estimates of observables of biomolecular systems from microscopic struc-
tures require the generation of proper statistical ensembles of the system
(see e.g. Equation (1.1.5)). Often these are obtained via Monte Carlo or Molec-
ular Dynamics simulations (see Section 1.3.2) of the biomolecular system.
Since the free energy is a function of state, i.e. it vanishes along closed paths,



1.3 Internal Energy and Hamiltonian 17

also unphysical pathways may be exploited in order to evaluate the free en-
ergy difference between physical states.

1.3 Internal Energy, Hamiltonian and its Evo-
lution In Time

The analysis of the properties of a biomolecular system requires knowledge
about the respective statistical ensembles. This is determined by the parti-
tion function and thus by the Hamiltonian of the system.
The most rigorous treatment would involve a full inclusion of quantum me-
chanics [65]. However, solving the Schrödinger equation is limited to small
systems consisting only of a few particles. Approximations of the time–depen-
dent Schrödinger equation lead to a classical mechanics approach, termed
Molecular Mechanics (MM), where the atoms are treated as classical point
masses moving in a semi–empirical potential according to Newton’s equa-
tions of motion. Thereby, the nucleic and electronic degrees of freedom are
separated (Born–Oppenheimer approximation). Typical sizes of biomolecu-
lar systems using Molecular Mechanics range between 10,000 and 1,000,000
atoms [35].

1.3.1 Molecular Mechanics Force Fields
In molecular dynamics (MD) simulations the interatomic interaction poten-
tials are approximated by so called force field energy functions. They con-
sist of a set of functions for the potential energies and the parameters used
in this functions. The potentials are usually divided into bonded and non–
bonded interactions. The first type accounts for chemical bonds, angles be-
tween bonds and dihedral angles that describe the rotation around bonds.
For the non–bonded interactions the Pauli repulsion and the van der Waals
attraction are approximated by e.g. a Lennard–Jones potential. Additionally,
atoms interact via their partial atomic charges (Coulomb interaction).
As an example, the OPLS–AA (optimized potentials for liquid simulations –
all atom) [68] force field is presented. The potential energy function

φFF(r)= Ebond +Eangle +Edihedral +ELJ +ECoulomb (1.3.1)

contains a bond stretching term (see Figure 1.2 a), a1) )

Ebond =
∑

i j

1
2

ki j
b (r i j − r0

i j)
2 (1.3.2)
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a

b

Figure 1.1: Examples for linking free energy to biology:
(a) Protein-Protein binding of Barnase-Barstar (1BRS) [66].
(b) Ion permeation through a membrane channel with the corresponding free energy
profile. Coordinates and PMF-data provided by Shirley Siu [67].
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Figure 1.2: Force Field Contributions: The harmonic potential (a) is used to describe
bonded atoms (a1) and angle bending (a2), the Ryckaert-Bellemans potential (b) for
proper (b1) and improper (b2/3) dihedrals, and the Lennard-Jones (c) and Coulomb (d) po-
tentials for non-bonded pairs.
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and an angle bending contribution (see Figure 1.2 a), a2) )

Eangle =
∑

i jk

1
2

ki jk
a (ϑi jk −ϑ0

i jk)2 (1.3.3)

between two bonds, both being approximated by a harmonic potential func-
tion.
Besides two– and three–body interactions, also four–body interactions are
considered using the Ryckaert–Bellemans potential [69]

Edihedral =
∑

i jkl

5∑
n=0

(Cn cos(φi jkl))n. (1.3.4)

The dihedral angle φi jkl is defined as the angle between the planes (i,j,k) and
(j,k,l). In addition to the normal, proper dihedral interaction, also improper
dihedrals are considered. They keep aromatic rings planar and conserve chi-
rality (Figure 1.2 b), b1), b2), b3) ).
The nonbonded terms include the Coulombic potential

ECoul =
∑

i j

1
4πε0

qi q j

εrr i j
, (1.3.5)

with the dielectric permittivity of vacuum ε0, and the Lennard-Jones poten-
tial

ELJ =
∑

i j
4εi j

((
σi j

r i j

)12
−

(
σi j

r i j

)6)
, (1.3.6)

where εi j and σi j depend on the considered atoms i and j (Figure 1.2). The

potential energy (Equation (1.3.1)) together with the kinetic energy
N∑

i=1

p2
i

2mi

these energy contributions approximate the true Hamiltonian of the system.
Other popular force fields are e.g. the AMBER force field [70], GROMOS
[71], or the CHARMM FF [72]. While AMBER, CHARMM and OPLS–AA
describe every atom explicitly, OPLS–UA [73] or GROMOS only implicitly
consider non–polar hydrogen atoms by so–called united atoms.
The above force fields all serve the same purpose, but use slightly different
functions, parameterizations and approximations for the interatomic inter-
actions in order to obtain global agreement with known observables.
The parameterization for the chosen interaction functions of a force field is
done by fitting to several molecular properties like geometric characteristics,
dynamical behavior, dielectric permittivity or to energetic transitions for
small molecules against experimentally derived or quantum-mechanically
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computed data [71]. Non–bonded interactions for OPLS–AA were parame-
terized using Monte Carlo simulations and bonded parameters were taken
from the AMBER FF [70], which are based on combinations of experiments
and MD simulations. The GROMOS force field is based on free enthalpies of
hydration and apolar solvation [71].
In general, these force fields can be taken for any quantity of a biomolecular
system. But also force fields serving a special purpose have been developed,
e.g. the Egad FF [61] for energy minimization of rotamers and the evaluation
of free energies.
The above force fields allow to generate statistical ensembles via MD or MC
simulation, and thereby e.g. to analyze free energy differences between dif-
ferent states of a system.

1.3.2 Molecular Dynamics Simulations

With the method of molecular dynamics simulation it is possible to follow
the time evolution of a system in order to obtain an NpT, NVT, or other
ensembles. In the MD simulation, the trajectory is determined by solving
Newton’s equations of motion

~Fi = mi
∂2

∂t2~r i. (1.3.7)

The forces ~Fi on atom i are the negative derivatives of the potential function
φ(~r1,~r2, . . .~rN)

~Fi =− ∂

∂~r i
φ(~r1,~r2, . . .~rN) (1.3.8)

with respect to the position~r i of atom i with mass i.
The numerical solution of Equations (1.3.7, 1.3.8) typically requires a time
step of 1 to 5fs. Reaching microsecond time scale is thus computationally
demanding and takes several weeks to years depending on the system size
and the amount of processors available.

Leap Frog Algorithm

A popular algorithm for the integration of equations (1.3.7, 1.3.8) in time
is obtained as follows: The second–order differential equation (1.3.7) can be
split into two first–order differential equations resulting in expressions for
the particle positions~r i and velocities~vi
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∂

∂t
~vi =

~Fi

mi
(1.3.9a)

∂

∂t
~r i = ~vi. (1.3.9b)

Using the Taylor expansion of~r i for a small time step ∆t yields

~r i(t+∆t) = ~r i(t)+ d~r i

d t
∆t+ 1

2
d2~r i

d t2 ∆t2 +O (∆t3) (1.3.10a)

= ~r i(t)+~vi(t)∆t+ 1
2

~Fi

mi
∆t2 +O (∆t3) (1.3.10b)

= ~r i(t)+
(
~vi(t)+

~Fi

mi

∆t
2

)
∆t+O (∆t3). (1.3.10c)

Here, the terms in brackets are the first two orders of the Taylor expansion
of~vi at the time point t+ ∆t

2

~vi

(
t+ ∆t

2

)
= ~vi(t)+ d~vi

d t
∆t
2

+ 1
2

d2~vi

d t2
∆t
2

2
+O (∆t3) (1.3.11a)

= ~vi(t)+
~Fi

mi

∆t
2

+O (∆t2). (1.3.11b)

Substituting equation (1.3.11b) in (1.3.10c) yields

~r i(t+∆t)=~r i(t)+~vi

(
t+ ∆t

2

)
∆t+O (∆t3), (1.3.12)

which is used to calculate~r i(t+∆t) using~r i(t) and~vi
(
t+ ∆t

2

)
.

While~r i(t+∆t) is evaluated at times (t+∆t) the particle’s velocities are cal-
culated in time steps

(
t+ ∆t

2

)
in between. The corresponding formula is ob-

tained by a second Taylor expansion at time
(
t− ∆t

2

)

~vi

(
t− ∆t

2

)
= ~vi(t)− d~vi

d t
∆t
2

+ 1
2

d2~vi

d t2
∆t
2

2
+O (∆t3) (1.3.13a)

= ~vi(t)−
~Fi

mi

∆t
2

+O (∆t2). (1.3.13b)

Solving equation (1.3.13b) for~vi(t) and substituting in (1.3.11) yields
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~vi

(
t+ ∆t

2

)
= ~vi

(
t− ∆t

2

)
+ d~vi

d t
∆t+O (∆t2)

= ~vi

(
t− ∆t

2

)
+
~Fi

mi
∆t+O (∆t2), (1.3.14)

the second equation for the leap frog scheme. The name comes from the
alternating calculation of positions and velocities.

Temperature and Pressure Coupling

Using the above equations should ideally lead to a microcanonical ensemble
with constant particle number N, constant volume V and constant energy
E. However, in most cases it is more convenient for the studied system to use
temperature and pressure as independent variables in favor of volume or en-
ergy. This can be realized using different temperature or pressure coupling
approaches [74–77].

Constraints

In order to allow larger time steps when simulating, fast bond vibrations
are often removed by using constraints especially on the length of covalent
bonds to hydrogen atoms.
Two commonly applied constrain algorithms are SHAKE [78] and LINCS
[79]. Although not contributing to the free energy itself, the SHAKE method
is presented here, as a similar procedure is used later on for random struc-
ture generation.
The goal is to correct a normal, unconstrained set of coordinates~r i

′ to a new
set~r i that fulfills previously defined constraints σk

σk(~r1,~r2, . . .~rN)= 0 (k = 1, . . .K), (1.3.15)

for example

σk(~rα,~rβ)= (∆~rk)2 −d2
k = 0, (1.3.16)

with

∆~rk =~rkα−~rkβ. (1.3.17)

Here, kα and kβ denote the two particles α and β involved in the constraint
k.
Introducing Lagrange multipliers leads to the altered equations of motion
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mi
∂2

∂t2~r i =− ∂

∂~r i
φ(~r1,~r2, . . .~rN)−

K∑

k=1
λk

∂

∂~r i
σk, (1.3.18)

with
∂

∂~r i
σk = 2∆~rk

(
δkα,i −δkβ,i

)
, (1.3.19)

where δa,b denotes the Kronecker delta.
Integrating twice with respect to time using the leap frog scheme yields a
corrected displacement

~r i(t+∆t)=~r i(t)+~vi

(
t+ ∆t

2

)
∆t

︸ ︷︷ ︸
=~r i ′(t+∆t)

−2
(∆t)2

mi

K∑

k=1
λk∆~rk

(
δkα,i −δkβ,i

)
. (1.3.20)

As the correction due to constraints have to satisfy

σk(~rα,~rβ, t+∆t)= (
~rα(t+∆t)−~rβ(t+∆t)

)2 −d2
k = 0, (1.3.21)

inserting (1.3.20) yields K equations that have to be solved for the Lagrange
multipliers λk

σk(t+∆t)=
(
∆~rk

′(t+∆t)−2(∆t)2
K∑

l=1
λl∆~r l

[(
δlα,kα−δlβ,kα

)

mkα
−

(
δlα,kβ−δlβ,kβ

)

mkβ

])2

−d2
k = 0,

(1.3.22)

with ∆~rk
′(t+∆t)=~rkα

′(t+∆t)−~rkβ
′(t+∆t).

Two approximations made in the SHAKE algorithm lead to an iterative pro-
cedure to find a constrained solution for the coordinates [78, 80]. First, the
quadratic terms in the Lagrange multipliers are neglected linearizing the
system of equations. Second, the K constraints are treated independently
of each other by assuming that the atoms involved in constraint k do not
contribute to any other constraint. Thus, equation (1.3.22) becomes

σk(t+∆t)= (
∆~rk

′(t+∆t)
)2

−4∆~rk
′(t+∆t)∆~rk(t)(∆t)2λk

[
1

mkα
+ 1

mkβ

]
−d2

k = 0.
(1.3.23)
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And the multipliers are given by

λk =
(
∆~rk

′(t+∆t)
)2 −d2

k

4∆~rk ′(t+∆t)∆~rk(t)(∆t)2
[

1
mkα

+ 1
mkβ

] , (1.3.24)

with the corresponding coordinate displacements

~rkα(t+∆t)=~rkα
′(t+∆t)−2(∆t)2λk

∆~rk(t)
mkα

(1.3.25)

and

~rkβ(t+∆t)=~rkβ
′(t+∆t)+2(∆t)2λk

∆~rk(t)
mkβ

. (1.3.26)

These formulas are taken as iteration scheme using the corrected coordi-
nates~rkα and~rkβ as unconstrained input for the next constraints or the next
iteration step. Thus, it is possible that already fulfilled constraints become
violated again. The iteration cycle is terminated as soon as the constraints
lie within a given tolerance ε

|∆~rk(t+∆t)−dk|
dk

≤ ε. (1.3.27)

Simulation Suites

Freely available software packages for MD simulations include GROMACS
(available at http://www.gromacs.org) [81–83], NAMD (available at http:
//www.ks.uiuc.edu/Research/namd/) [84] or TINKER [85] (http://dasher.
wustl.edu/tinker/). Gromos [86], Amber [87] and CHARMm [72, 88] are
examples for commercial simulation suites.

1.3.3 Energy Minimization

In addition to propagate a system’s trajectory, it is also possible with a force
field at hand to find local energy minima. Minimizations are applied to re-
move e.g. van der Waals overlaps or distortions in crystal structures, or to
optimize mutated crystal structures. In the following we shortly discuss the
widely applied methods for the energy minimization.

http://www.gromacs.org
http://www.ks.uiuc.edu/Research/namd/
http://www.ks.uiuc.edu/Research/namd/
http://dasher.wustl.edu/tinker/
http://dasher.wustl.edu/tinker/
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Steepest Descent

The negative derivative of the energy function with respect to the atom’s
coordinates results in the forces acting on every single atom

~Fi =−~∇iφ. (1.3.28)

Small displacements along the gradient of the potential

∆~r i = −ε~∇iφ (1.3.29a)
= ε~Fi (1.3.29b)

with step size ε give a small step towards the local energy minimum. Re-
peating this procedure on the previous step is called the steepest descent
algorithm [89]. The iteration stops after a fixed number of calculations or
when a convergence criteria is reached, typically a given maximum force
that is allowed.
Using the gradient vector g

g=
(
∂φ

∂q1
,

∂φ

∂q2
, . . .

∂φ

∂q3N

)T

(1.3.30)

which contains the first derivatives of the potential function φ with respect
to the generalized coordinates q,the steepest descent algorithm can be writ-
ten in the form

qi+1 =qi −εigi. (1.3.31)

Here, the gradient vector gi is evaluated at iteration step i. The step size εi
can be held constant or determined per iteration step by different means.
While the former converges slower, the latter method is computationally
more demanding.

Conjugate Gradient

The conjugate gradient method [89] uses a displacement that is a linear
combination of the gradient and the previous displacement

∆qi = εi

(
− gi

|gi|
+γi∆qi−1

)
(1.3.32)

with
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γi =
gT

i gi

gT
i−1gi−1

. (1.3.33)

The conjugate gradient implementation in the Gromacs package utilizes one
steepest descent optimization step every n conjugate gradient steps to en-
sure a fast convergence.

Newton-Raphson Optimization and l-BFGS

Next to the simple steepest descent and the conjugate gradient method, the
limited memory Broyden-Fletcher-Goldfarb-Shanno (l-BFGS) technique [90,
91] is presented here, as it is used later on in this thesis.
While the gradient g holds the first derivatives of the potentials, the Hessian
matrix H consists of the second derivatives

H=




∂2φ

∂q2
1

∂2φ

∂q1∂q2
. . .

∂2φ

∂q1∂q3N

∂2φ

∂q1∂q2

∂2φ

∂q2
2

. . .
∂2φ

∂q2∂q3N

...
... . . . ...

∂2φ

∂q1∂q3N

∂2φ

∂q2∂q3N
. . .

∂2φ

∂q2
3N




. (1.3.34)

The quadratic Taylor expansion of the potential energy φ around the gener-
alized coordinates q j can thus be written as

φ(q j +∆q j)=φ(q j)+gT
j ∆q j + 1

2
∆qT

j H j∆q j, (1.3.35)

where j denotes the iteration number of the optimization and

q j+1 =q j +∆q j. (1.3.36)

The gradient vector g j and the Hessian H j are both evaluated at q j. As the
Hessian is symmetric for twice continuously differentiable functions (which
is assumed to be the case here), the derivative of equation (1.3.35) reads

∇φ(q j +∆q j)= g j +H j∆q j. (1.3.37)

If we assume that q j+1 minimizes φ, equation (1.3.37) becomes zero
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0= g j +H j∆q j. (1.3.38)

and we obtain the iterative formula used in the Newton-Raphson optimiza-
tion [89]

∆q j =−H−1
j g j. (1.3.39)

As it is computationally expensive to calculate the inverse Hessian, the main
concept of the so called quasi-Newton methods is to approximate the inverse
Hessian iteratively using matrices fulfilling

lim
j→∞

A j =H−1. (1.3.40)

Based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [89, 90] algorithm

Aj+1 =
(
I− ∆gk∆qT

k

∆gT
k ∆qk

)T

︸ ︷︷ ︸
=UT

k

A j

(
I− ∆gk∆qT

k

∆gT
k ∆qk

)

︸ ︷︷ ︸
=Uk

+∆qk∆qT
k

∆gT
k ∆qk︸ ︷︷ ︸
=Vk

, (1.3.41)

Nocedal introduced the limited memory BFGS updating scheme [90, 91]

Aj+1 =
(
UT

k ·UT
k−1 · · ·UT

k−m

)
A0 (Uk−m ·Uk−m+1 · · ·Uk)

+
(
UT

k ·UT
k−1 · · ·UT

k−m+1

)∆qk−m∆qT
k−m

∆gT
k−m∆qk−m

(Uk−m+1 ·Uk−m+2 · · ·Uk)

+
(
UT

k ·UT
k−1 · · ·UT

k−m+2

)∆qk−m+1∆qT
k−m+1

∆gT
k−m+1∆qk−m+1

(Uk−m+2 ·Uk−m+3 · · ·Uk)

...

+ ∆qk∆qT
k

∆gT
k ∆qk

(1.3.42)

using only information of the last m steps. Instead of solving the inverse
Hessian explicitly, an efficient algorithm for calculating the product of the
inverse Hessian and the gradient H−1

j g j is used. As initial guess for the
inverse Hessian a scaled identity matrix I is used.
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1.4 Computational Alchemy & Statistical Phy-
sics Methods

Various methods have been developed in the past to compute free energy
(differences) of biomolecular systems based on statistical thermodynamics
(Equation (1.1.8a)). In the following we will briefly discuss methods for the
calculation of the free energy differences between an initial and final state
of a system, as well as for the computation of free energy along a reaction
path (PMF).

1.4.1 Thermodynamic Integration

For two well defined states A and B a continuos coupling parameter λ can
be introduced with λ = 0 describing state A, λ = 1 state B, respectively,
and 0 < λ < 1 for states in between. Thus, the Hamiltonian H of the end
states can be described with λ such that HA = H(λ = 0) and HB = H(λ = 1)
while passing smoothly from HA to HB with λ varying continuously from
0 to 1. The coupling parameter λ can be chosen in a way that describes
non-physical, alchemical reactions like making a methanol molecule vanish
while an ethane molecule appears or the mutagenesis of whole amino acids.
The Hamiltonian H along the path is given by

H(λ)= (1−λ)HA +λHB. (1.4.1)

Depending on the addressed problem also thermodynamic variables like the
temperature, pressure or a spatial coordinate can be chosen as a coupling
parameter λ.
As the Hamiltonian is a function of λ, also the free energy depends on the
coupling parameter, and the change in free energy is given as an integral
over the first derivative of Equation (1.1.8a) with respect to λ

d
dλ

F(λ) = −kBT
∂

∂λ
ln

Ï
e−H(p,q,λ)/kBT dpdq

h3N

=

Ï
∂

∂λ
H(p,q,λ)e−H(p,q,λ)/kBT dpdq

h3N
Ï

e−H(p,q,λ)/kBT dpdq
h3N

=
〈
∂

∂λ
H(p,q,λ)

〉

λ

(1.4.2)
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and yields

∆F = F(λB)−F(λA)=
λB∫

λA

〈
∂H(λ)
∂λ

〉

λ

dλ. (1.4.3)

Evaluating the ensemble average of the derivative of the Hamiltonian with
respect to λ (1.4.2) from MD simulations carried out at a series of λ val-
ues between 0 and 1 and subsequent numerical integration (of Equation
(1.4.3)) yields the free energy change between the initial (A) and the final
(B) state. This method is called thermodynamic integration (TI) [50]. In the
slow growth method the system is changed in a single simulation with a
continuously varying coupling parameter from the initial to the final state
[92, 93]. Here the problem arises that the system is never in equilibrium
as the Hamiltonian is changing in every time step. Recent applications of TI
can be found in Rodriguez et al. [94] and Schwab et al. [95]. TI with extended
heptapeptides serving as unfolded reference states was previously also used
to estimate folding free energies [96, 97] (compare to Section 3.2.2).

1.4.2 Free Energy Perturbation
The free energy perturbation approach (FEP) [48, 49] is an alternative to
thermodynamic integration. Again, the free energy difference is calculated
with the help of the coupling parameter λ. Here, every (intermediate) state
λ is perturbed by a small change ∆λ.
The free energy difference between state λ and its perturbation λ+∆λ reads

∆Fλ = F(λ+∆λ)−F(λ)=−kBT ln
Zλ+∆λ

Zλ

= −kBT ln

Ï
e−H(p,q,λ+∆λ)/kBT dpdq

h3N
Ï

e−H(p,q,λ)/kBT dpdq
h3N

. (1.4.4)

Multiplying the integrand of the partition function in the numerator with
the identity e−H(p,q,λ)/kBT e+H(p,q,λ)/kBT yields the change in free energy

∆Fλ = −kBT ln

Ï
e−

H(p,q,λ)
kBT e+

H(p,q,λ)
kBT e−

H(p,q,λ+∆λ)
kBT

dpdq
h3N

Ï
e−H(p,q,λ)/kBT dpdq

h3N

= −kBT ln
〈

e−(H(λ+∆λ)−H(λ))/kBT
〉
λ

. (1.4.5a)
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Summing over every intermediate free energy difference results in the change
of free energy between the initial and the final state

∆F = F(λB)−F(λA)=
λB−∆λ∑

λ=λA

∆Fλ. (1.4.5b)

For reasonable results a significant overlap between the states λ and λ+∆λ
is required. In practical applications, therefore, one chooses small perturba-
tions ∆λ to sum over an appropriate number of intermediate steps.
Recent adaptions of the free energy perturbation method can be found in
[98] and [99]. FEP was used for stability free energy computations with a
tripeptide as the unfolded reference state [100] (compare to Section 3.2.2).

1.4.3 Potential of Mean Force and Umbrella Sampling

Potential of Mean Force

The potential of mean force of an N particle system (developed by Kirkwood
[50]) is the mean force ~F acting on a particle i for a fixed set of n molecules
averaged over all possible conformations of the n+1 . . . N free particles

~Fi =−~∇iφPMF =

∫
. . .

∫ (
−~∇iφ

)
e−φ/kBT dqn+1 . . .dqN dpn+1 . . .dpN

∫
. . .

∫
e−φ/kBT dqn+1 . . .dqN dpn+1 . . .dpN

. (1.4.6)

As the potential φ is independent of the generalized momenta p, the integra-
tion of dp yields the same result in the numerator and in the denominator
and can therefore be canceled.
The formalism can also be applied to obtain free energy changes along a
specified reaction coordinate R [44, 101]. The reaction coordinate R is a hy-
persurface in configurational space and therein a function of the particle’s
coordinates R = R(q). To restrain the system with respect to the reaction
coordinate the constraint

R′ = R(q) (1.4.7)

must be applied. Thus, instead of integrating with respect to dqn+1 . . .dqN ,
the whole set of (infinitesimal) generalized coordinates (denoted by dq) is
taken and the restraining of one or more particles (or e.g. only one coordinate
of one particle) is done by introducing δ(R(q)− R′) in the integral, which
yields
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−~∇iφPMF =

∫
δ(R(q)−R′)

(
−~∇iφ

)
e−φ/kBT dq

∫
δ(R(q)−R′)e−φ/kBT dq

1
= kBT

~∇i

∫
δ(R(q)−R′) e−φ/kBT dq

∫
δ(R(q)−R′)e−φ/kBT dq

= kBT~∇i ln
∫
δ(R(q)−R′) e−φ/kBT dq. (1.4.8)

As we have now the derivative of a logarithm of a function ∂x ln f (x), we can
multiply any constant to the function f (x) as it will cancel out by applying
the chain rule of derivatives on ln f (x). Hence, dividing the argument of the
logarithm with

∫
e−φ/kBT dq we obtain a formula for the mean force contain-

ing an average distribution function
〈
ρ(R′)

〉

−~∇iφPMF = kBT~∇i ln




∫
δ(R(q)−R′) e−φ/kBT dq

∫
e−φ/kBT dq




︸ ︷︷ ︸
= 〈

ρ(R′)
〉

. (1.4.9)

Evaluation of the integral results in the free energy of the system at a sta-
tionary reaction coordinate R

F(R)=−kBT ln
〈
ρ(R)

〉+constant. (1.4.10)

The relative frequency, taken from a normal simulation, to find a system at a
reaction coordinate R′ = R(q) yields the probability

〈
ρ(R′)

〉
. Evaluating the

reaction coordinate at any value R′, a free energy profile can be established.
Recently, the potential of mean force methodology was used also for struc-
ture prediction and verification [102].
The application of Equation (1.4.10) requires averaging over a statistical
ensemble. However, reaction coordinates R′ corresponding to conformations
with high energy will not be sampled properly and will, therefore, not give
reliable results.

1For a δ distribution the relation ∂n
x
∫
δ f dx = ∫

δ∂n
x f dx = (−1)n ∫

∂n
xδ f dx holds.
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Umbrella Sampling

To overcome the sampling problem of high energy configurations, Torrie and
Valleau [103] restrained the distribution function in order to foster the sam-
pling of energetically unfavorable conformations. This can also be achieved,
for example, by adding a harmonic potential [104]

φU(R(q),R0)= kU (R(q)−R0)2 (1.4.11)

to the Hamiltonian H to restrain the position of the particle to the reaction
coordinate R0 [44, 101].
Inserting the biased potential φ+φU, the mean force (Equation (1.4.9)) yields

−~∇iφ
b
PMF = kBT~∇i ln




∫
δ(R(q)−R′) e(−φ−φU(R))/kBT dq

∫
e(−φ−φU(R))/kBT dq


 (1.4.12)

e−φU(R)/kBT will become a constant e−φU(R′)/kBT in the numerator because of
the δ–distribution and we can write the term outside the integral. In addi-
tion we multiply with the identity

∫
e−φ/kBT dq/

∫
e−φ/kBT dq in the denomi-

nator and obtain

−~∇iφ
b
PMF = kBT~∇i ln




e−φU(R′)/kBT

∫
e(−φ−φU(R))/kBT dq

∫
e−φ/kBT dq

∫
δ(R(q)−R′) e−φ/kBT dq

∫
e−φ/kBT dq




= kBT~∇i ln


 e−φU(R′)/kBT

〈
e−φU(R)/kBT

〉
〈
ρ(R′)

〉



︸ ︷︷ ︸
= 〈

ρ(R′)
〉b

(1.4.13)

with the biased distribution function
〈
ρ(R′)

〉b. In order to obtain the unbi-
ased potential of mean force, the extra term e−φU(R′)/kBT /

〈
e−φU(R)/kBT

〉
has to

cancel out. Rewriting Equation (1.4.13)

−~∇iφPMF = kBT~∇i ln




〈
e−φU(R)/kBT

〉

e−φU(R′)/kBT

〈
ρ(R′)

〉b


 . (1.4.14)

and integration finally yield
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F(R′)=−kBT ln
〈
ρ(R′)

〉b−φU(R′)−kBT ln
〈

e−φU(R)/kBT
〉
+constant. (1.4.15)

Besides this harmonic umbrella potential ansatz that gives a weighted po-
tential of mean force, other techniques exist [105], e.g. the weighted his-
togram analysis method (WHAM) [106] or an approach using a weighted
distribution function [107].
Umbrella sampling is well suited for exploring free energy profiles or land-
scapes. Multiple simulations using constraints at different values for the
reaction coordinate R allow e.g. to depict free energy barriers moving, for
example, ions through lipid bilayers or through ion channels [67] (see Fig-
ure 1.1).

1.4.4 Jarzynski’s Equality
The presented methods above apply all for (quasi–) equilibrated systems,
whereas Jarzynski’s relation [108, 109]

∆F =−kBT ln e−W /kBT (1.4.16)

couples the free energy difference ∆F between two states in equilibrium and
the work W of non–equilibrium processes to drive the system from state A
to state B. The Jarzyinski equality opens up the way for free energy calcula-
tions of stressed systems.
States A and B are again described by λ = 0 or λ = 1, where λ could be the
previously defined coupling parameter or a normalized reaction coordinate.
The work performed on the system in the initial state A to reach the final
state B (at time ts) is obtained by

W =
ts∫

0

∂λ

∂t
∂H
∂λ

(q(t),p(t)) dt (1.4.17)

where (q(t),p(t)) represents a molecular dynamics trajectory. An experimen-
tal verification of the Jarzynski equation was reported by Liphardt et al.
[110].

1.5 Continuum Solvent Approaches
One factor making regular molecular dynamics simulations computationally
expensive is the explicit use of solvent molecules in order to model appropri-
ate surroundings for the studied biomolecules.
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However, for some cases like for the analysis of protonation states of titrat-
able amino acid side chains (pKa value), implicit water models have been
shown to yield reasonable results [111]. Continuum solvent approaches make
use of simplified models for the van der Waals and Coulombic interaction be-
tween the solute and the solvent, neglecting explicit solvent molecules. With
the drawback of limited accuracy, continuum models were also used in early
MD simulations of biomolecules or recently to simulate folding of small pep-
tides in silico.

1.5.1 Electrostatics
In classical electrostatics [112] the energy E of a point charge q placed in an
electrostatic potential φ reads

E = qφ. (1.5.1)

Starting from a charge distribution ρ(~r ) in vacuum the electric field ~E (not
to confuse with the scalar energy E) is given by

~E(~r )=−~∇φ(~r ) (1.5.2)

and the electrostatic potential φ(~r) is obtained through Poisson’s Equation

∆φ(~r)=−ρ(~r)
ε0

, (1.5.3)

where ∆ denotes the Laplace Operator ∆ =~∇ ·~∇ and ε0 the permittivity of
vacuum. For a point charge q1 placed at~r1 the solution of the Poisson Equa-
tion (1.5.3) adopts the simple form

φ1(~r)= q1

4πε0|~r−~r1|
. (1.5.4)

Thereby, the interaction energy E (Equation 1.5.1) for a second charge q2 at
~r2 with q1 is given by

E = q1q2

4πε0|~r2 −~r1|
. (1.5.5)

As the superposition principle holds for the electrostatic potentialthe elec-
trostatic potential φ and the interaction energy E can be written in terms of
a charge distribution ρ(~r)

φ(~r)= 1
4πε0

∫
ρ (~r i)
|~r−~r i|

dV (1.5.6)
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and

E(~r )= 1
8πε0

Ï
ρ (~r1)ρ (~r2)
|~r1 − ~r2|

dV1 dV2, (1.5.7)

where the additional factor 1
2 accounts for counting charge–charge interac-

tions twice in the integral.
For a charge distribution ρ embedded in a dielectric medium, like for exam-
ple water or methane, dielectric screening has to be considered. E.g., dipo-
lar molecules exposed to an external electric field will orient along the field
vector and result in an antagonizing polarization field ~P. This dielectric re-
sponse leads to a weakened field by a factor of 1

ε
, where ε is the relative

dielectric constant.
Thus, the Poisson equation in a dielectric medium reads

∆φ(~r )=−ρ(~r )
εε0

. (1.5.8)

Additionally, the so-called electronic polarization, separating the centers of
positive and negative charges of an atom, leads to low dielectric constants
between 1.5−2.5 [113].
For water one obtains a relative dielectric constant of ε ≈ 78, while the di-
electric permittivity of proteins lies in the range between 1 and 40 as dis-
cussed in numerous publications, see e.g. [113, 114]. The dielectric constant
in proteins does also rely on the structure and amount of polar residues,
thus, different proteins may bear different dielectric permittivities. A model
for the calculation of a local dielectric permittivity of a protein proposed by
Voges and Karshikoff [115] considers polarizable sites and freely rotating
dipoles.
Due to this difference in dielectric constants of solute and solvent the Poisson
equation takes the more complex shape

−~∇
[
ε(~r )~∇φ(~r )

]
= ρ(~r )

ε0
. (1.5.9)

As different polarizations occur in different media, the induced dipoles can-
cel in the material, but not at the surface, and, therefore, lead to induced
surface charges. This can also be seen from the Poisson equation (Equation
(1.5.9)) after applying the product rule for derivatives and insertion of Equa-
tion (1.5.2)
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−ε(~r )∆φ(~r )−~∇ε(~r )~∇φ(~r )= ρ(~r )
ε0

⇐⇒ ε(~r )~∇~E(~r )=−~∇ε(~r )~E(~r )+ ρ(~r )
ε0

. (1.5.10)

Here, sources of the electric field ~E may result from discontinuities in the
dielectric permittivity as would emerge at interfaces. Analytical solutions
to problems with simple geometry can be found in textbooks, e.g. [112]. A
numerical algorithm for calculating the electrostatic potential using finite
differences is presented in Section 1.5.3. Next to numerical solutions other
methods are available like the Generalized Born approach [116] (see page
44), the Modified Image Electrostatic approximation [117] or the Tanford–
Kirkwood electrostatics [118].
The electrostatic potential φ can be split into φC having its sources in the ini-
tial charge distribution ρ(~r ) and in a reaction field contribution φRF(~r,εsolvent)2

originating from the induced surface charges at the dielectric boundary. The
product of the charge distribution and the reaction field integrated over
space yields the reaction field energy ERF

ERF(εsolvent)=
1
2

∫
ρ(~r,εsolvent)φRF dV , (1.5.11)

which gives directly the interaction energy between the charges in the so-
lute and the continuum dielectric solvent. The factor 1

2 is due to polarization
work3.
The free energy for hydration, putting the solute from vacuum (εsolute = 1)
into water with εsolute = 78, is simply the difference of the interaction ener-
gies

∆Ehyd = ERF(εwater = 78)−ERF(εvacuum = 1). (1.5.12)

Therefore, the Coulombic interactions inside the solute cancel.

1.5.2 Poisson–Boltzmann Equation
Debye and Hückel [119] suggested a model for the electrostatic free energy
of spherical ions in an ionic solution, which builds the basis of the Poisson–

2The reaction field potential also depends on the dielectric permittivity of the solute,
which is typically held constant during computations, while the solvent may be exchanged.

3Assuming a linear response for the reaction field to a charge φRF = cq, the work for
charging the particle from 0 to q is W = ∫ q

0 φRFdq′ = ∫ q
0 cq′dq′ = c

2 q2 = 1
2 qφRF.
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Boltzmann formalism combining Poisson’s Equation with a Boltzmann dis-
tribution for mobile ions.

Protein

Ionic solution

Ion-exclusion
layer

Figure 1.3: Schematic representation of the Debye-Hückel model showing the three regions
inside the protein (Ω1) and in solvent without ions (Ω2) near the protein and with ions (Ω3)
far from the protein.

The solute is placed in region Ω1 with a dielectric constant ε1 (see Figure
1.3). The solvent containing mobile ions is located in region Ω3 with the
dielectric permittivity of the solvent ε3. Region Ω2 in between is called the
ion–exclusion layer prohibiting ions to come closer to the solute. As Ω2 is in
the solvent phase its dielectric constant is ε2 = ε3.
The following derivation assumes single charged ions, carrying either the
positive or negative charge of an electron ec.
For each region Ωk with k = 1,2,3 the Poisson equation applies for the elec-
trostatic potential

∆φk(~r )=−ρk(~r )
εkε0

. (1.5.13)

A requirement for solving these equations is a given charge distribution
ρk(~r ).
For the protein interior region Ω1 we have a non–vanishing charge distri-
bution ρ1(~r ) leading to a potential (Equation (1.5.6)= and in region Ω2 we
find a vanishing charge distribution ρ2 = 0. Region Ω3 contains mobile ions.
In the following, far from region Ω1, the ion concentration c∞ is assumed to
be constant for univalent ions with charge ±ec. Near region Ω1, the concen-
tration of positive ions c+ will usually be different from the concentration
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c− of negative ions. The basic assumption of Debye and Hückel is that the
Boltzmann distribution applies for the ratio of concentrations

c±
c∞

= e−W±(~r )/kBT . (1.5.14)

W±(~r ) is the work required to move one ion from infinity to~r

W±(~r )=±ecφ(~r ). (1.5.15)

Inserting (1.5.15) in (1.5.14) yields the solution for the charge distribution
in region Ω3

ρ3(~r )= c+ec − c−ec = c∞ece−ecφ(~r )/kBT − c∞eceecφ(~r )/kBT

= −2c∞ec sinh
(

ecφ(~r )
kBT

)
. (1.5.16)

With the piecewise definition of the dielectric constant ε

ε(~r )=
{
ε1, if r ∈Ω1
ε3, else (1.5.17)

and the introduction of the (modified4) Debye-Hückel parameter κ2

κ2(~r )=





0, if r ∈Ω1

2c∞e2
c

ε0kBT
, else

(1.5.18)

the resulting Poisson–Boltzmann equation can be written as

−~∇
[
ε(~r )~∇φ(~r )

]
=−κ2

(
kBT
eC

)
sinh

(
ecφ(~r )
kBT

)
+ ρ1(~r )

ε0
(1.5.19)

or in its linearized5 form

−~∇
[
ε(~r )~∇φ(~r )

]
=−κ2φ(~r )+ ρ1(~r )

ε0
. (1.5.20)

4The unmodified parameter can be obtained by division with the dielectric constant κ=
κ/ε.

5sinh(ax)≈ ax+O (x3).
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For the two interfaces between the three distinguished regions the continu-
ity conditions

φ1|Ω1∩Ω2 =φ2|Ω1∩Ω2 , ε1~∇φ1|Ω1∩Ω2~n = ε2~∇φ2|Ω1∩Ω2~n, (1.5.21a)

φ2|Ω2∩Ω3 =φ3|Ω2∩Ω3 , ε2~∇φ2|Ω2∩Ω3~n = ε3~∇φ3|Ω2∩Ω3~n, (1.5.21b)

apply, where~n is the normal vector of length 1, and φ(∞)= 0 as the boundary
condition.

1.5.3 Numerical Solution of the Linearized PBE via Fi-
nite Difference Method

The numerical solution is usually obtained either by the finite difference
method [120–123] or by the boundary element method [124]. The former
method will be described in detail.
Finite difference methods are based on replacing derivative expressions by
difference quotients by decomposing the region of interest in grid points.
In the case of the Poisson-Boltzmann equation the solute molecule(s) and
the surrounding dielectric continuum solvent have to be translated onto a
three dimensional cubic grid. Atomic charges are not represented anymore
by point charges, but fractional charges mapped on the grid:

q f =
(
1− |∆x|

h

)(
1− |∆y|

h

)(
1− |∆z|

h

)
q. (1.5.22)

The atomic charges are smeared on the nearest eight grid points, with a grid
spacing h and |∆x|,|∆y|,|∆z| denoting the distance between particle and grid
point respectively in x, y and z direction.
Next to the mapping of charges, it is also important to define dielectric re-
gions on the grid. In general, two possibilities exist for the dielectric bound-
ary: the van der Waals surface (see Figure 1.4 a) as the union of spheres with
atomic van der Waals radii and the solvent excluded surface [125], also in-
cluding regions that are inaccessible to solvent molecules (see Figure 1.4 c).
The solvent excluded surface can be obtained by first building the so–called
solvent accessible surface [126] (see Figure 1.4 b). This is achieved by an in-
crease of the van der Waals radii by a probe radius — usually 1.4 Å as this
approximates the size of a water molecule — and by merging the enlarged
spheres. For the solvent excluded surface a ball with the same probe radius
is rolled over the initial vdW surface, but its center is not allowed to leave
the solvent accessible surface [127]. Every point that cannot be reached by
the rolling ball is not accessible for the solvent, and the boundary surface is
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a b c

Figure 1.4: Two dimensional representations of the van der Waals (a), the solvent accessi-
ble (b) and the solvent excluded (c) surface of two neighboring atoms.

called the solvent excluded surface. A grid based method for generating the
solvent excluded surface is presented in Reference [123].
Besides the molecular properties like charge and boundary surface, also the
dielectric permittivity ε for solvent and solute as well as the modified Debye–
Hückel parameter κ can be assigned to the lattice.
In finite difference methods each grid point represents the appropriate av-
erage over the volume that surrounds the grid point, thus we find at the ith
grid point

Ñ

i

f dx d ydz = f ih3, (1.5.23)

where the integration is done over the spatial points that are closer to grid
point i than to any other point. Consequently, the integral is taken over a
cube centered at the grid point i and with side length h.
Integrating the linearized Poisson-Boltzmann equation (1.5.20) over volume
yields

−
∫
~∇

[
ε(~r )~∇φ(~r )

]
dV =−

∫
κ2φ(~r )dV +

∫
ρ(~r )
ε0

dV . (1.5.24)

The second integral can be approximated with −κ2
iφih3 and the third one

with qi/ε0, where the index i indicates the affiliation with the ith grid point.
Using Gauss’ theorem on the first integral results in a surface integral and
equation (1.5.24) reads

−
∮
ε(~r )~∇φ(~r )d~A =−κ2

iφih3 + qi

ε0
, (1.5.25)
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where d~A is an infinitesimal surface element with an orientation perpendic-
ular to the surface. Again applying finite difference formalism on the surface
integral yields

∮
ε(~r )~∇φ(~r )d~A → εi

1
φi

1 −φi

h
~exh2~ex +εi

2
φi

2 −φi

h
(−~ex)h2(−~ex)

+εi
3
φi

3 −φi

h
~e yh2~e y +εi

4
φi

4 −φi

h
(−~e y)h2(−~e y)

+εi
5
φi

5 −φi

h
~ezh2~ez +εi

6
φi

6 −φi

h
(−~ez)h2(−~ez)

=
6∑

j=1
εi

j

(
φi

j −φi

)
h, (1.5.26)

where φi
j denotes the potential of the jth grid point surrounding i and εi

j =p
εiε j. Insertion in Equation (1.5.25) yields

−
6∑

j=1
εi

j

(
φi

j −φi

)
h =−κ2

iφih3 + qi

ε0
, (1.5.27)

and, eventually, after solving for φi:

φi =

qi

hε0
+

6∑
j=1

εi
jφ

i
j

κ2
i h2 +

6∑
j=1

εi
j

. (1.5.28)

This equation is solved for every grid point based on an initial guess for φ
and the whole grid is updated according to the solution. This procedure is
repeated until a predefined termination criterion is reached.
Important to such calculations are the boundary conditions, where the most
simple possibility is to set the potential boundary points to zero, or to the
Debye–Hückel expression

φ
boundary
i =

∑n
j=1 q j e−κr i j

εsolventr i j
. (1.5.29)

The Debye–Hückel potential is an approximation of the analytical solution
for the electrostatic potential far from the protein.
The numerically determined potential can be used to calculate the electro-
static energy according to
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Egrid =
1
2

∑

i∈grid
qiφi (1.5.30)

resulting in the so-called grid energy.
As the molecule is mapped onto the grid and the point charges are smeared,
numerical artifacts are introduced depending on the grid size and the rela-
tive position of the molecule to the grid.

q1

q2

δ1

δ2

εsolvent

εsolute

coulomb

cross

self

self

Figure 1.5: Coulomb, cross and self contributions of the total electrostatic energy are car-
tooned. Two real charges q1 and q2 lead to induced surface charges δ1 and δ2, respectively,
due to the dielectric boundary. Although the induced charges are distributed on the whole
surface, δ1 and δ2 are depicted in a localized fashion to clarify the existing electrostatic
interactions.
Next to the Coulomb interaction between the real charges q1 and q2, there exist additionally
the cross interactions between a real charge and the surface charges induced by other real
charges and the self contribution between a charge and its induced surface charge.

Another problem is that part of the potential is generated by the charge
carrier itself. It’s own contribution6 would result in an infinite energy, but
because of the smudged charges the grid energy remains finite with the
drawback of another numerical artifact (the resulting potential is grid de-
pendent). Other contributions to the total electrostatic grid energy that al-
low for a more detailed analysis of electrostatic interactions are depicted in
Figure 1.5. To cancel numerical artifacts and get rid of the own contribu-
tion, a second computation of Egrid with εsolvent = εsolute has to be subtracted

6This contribution is entitled as own contribution to distinguish from the self reaction
field of a charge due to its induced surface charge (see Figure 1.5).
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(thereby, the internal Coulombic interaction cancels, too). The neutraliza-
tion holds also for the calculation of hydration free energies according to
equation (1.5.12) — the internal Coulomb interactions and the artificial grid
contributions are canceled and no further treatment is necessary.
An alternative to the computation of the reaction field energy ERF via a
sum over the grid point energies is the direct calculation via induced surface
charges at the dielectric boundary [123]

ERF = 1
2

n∑

i=1

m∑

j=1

qiδ j

εsoluter i j
, (1.5.31)

where n is the number of real point charges, m the number of boundary
points hosting induced surface charges and δi denotes the surface charge at
point i. For the atomic partial charges the actual position of the atoms are
inserted. Thus, only the surface charge is grid–dependent. As the dielectric
response in the form of the induced surface charges will be calculated explic-
itly, the dielectric constant is dropped and Poisson’s equation (1.5.3) can be
used to obtain an effective charge distribution, containing real and induced
charges:

−∆φ(~r )= ρreal(~r )+ρinduced(~r )
ε0

. (1.5.32)

Using the same finite difference formalism as for the linearized Poisson-
Boltzmann equation yields

−
6∑

j=1

(
φi

j −φi

)
h = qi +δi

ε0
. (1.5.33)

At the boundary points we find for the induced surface charges7

δi =−ε0

6∑

j=1

(
φi

j −φi

)
h− qi. (1.5.34)

With only one calculation of the potential needed in contrast to the grid
energy method this formalism is computationally faster by a factor of ∼ 2.
Besides it is more accurate using point charges instead of the smeared ones.
In order to take account of salt effects the grid method is still necessary
and two computations are required: one with the de–ionized solvent and one
with a salt concentration I. The resulting salt contribution is then given by

∆Esalt
grid = Egrid(I)−Egrid(I = 0) (1.5.35)

7In the medium itself applies ρreal
ε

= ρreal +ρinduced.
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which has to be added to the reaction field energy at I = 0 in order to obtain
the complete solute–solvent interaction energy

ERF(I)= ERF(I = 0)+∆Esalt
grid(I). (1.5.36)

Several software packages are freely available for the numerical solution
of the Poisson–Boltzmann equation using the finite difference method like
DelPhi (http://wiki.c2b2.columbia.edu/honiglab_public/index.php/
Software:DelPhi) [121–123], UHBD (http://adrik.bchs.uh.edu/uhbd.
html) [128, 129] or BALL (http://www.ball-project.org) [130]. Another
popular program is apbs (http://apbs.sourceforge.net) [131] using a par-
allel adaptive finite element method to solve the PBE.

1.5.4 Generalized Born Model

Solving the Poisson–Boltzmann equation numerically is still computational
expensive and, therefore, prohibitive for use in MD simulations. One suc-
cessful approach for substituting the Poisson–Boltzmann formalism is the
use of the Generalized Born model [116].
Born [132] reported an analytical formula for the solvation free energy of
ions

∆GBorn = 1
4πε0

(
1− 1

ε

)
q2

2a
(1.5.37)

in a dielectric medium with a permittivity of ε, where q and a are the charge
and radius of an ion.
For a system consisting of n charged particles, pairwise separated at dis-
tances much larger than the sum of their radii, the total electrostatic free
energy Ges (sum of Coulomb interactions and Born solvation terms) can be
expressed as

Ges = 1
4πεε0

n−1∑

i=1

n∑

j=i+1

qi q j

r i j
− 1

4πε0

(
1− 1

ε

) n∑

i=1

q2
i

2ai
. (1.5.38)

The first term can be split up into the Coulombic interaction energy in vac-
uum and an expression similar to the second term

http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:DelPhi
http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:DelPhi
http://adrik.bchs.uh.edu/uhbd.html
http://adrik.bchs.uh.edu/uhbd.html
http://www.ball-project.org
http://apbs.sourceforge.net
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Ges = 1
4πε0

n−1∑

i=1

n∑

j=i+1

qi q j

r i j
︸ ︷︷ ︸

=Gvacuum
Coulomb

− 1
4πε0

(
1− 1

ε

)n−1∑

i=1

n∑

j=i+1

qi q j

r i j
− 1

4πε0

(
1− 1

ε

) n∑

i=1

q2
i

2ai
︸ ︷︷ ︸

=Gsolvation

.

(1.5.39)

The goal of the Generalized Born model is to rewrite the latter sum Gsolvation
in the form

Gsolvation =− 1
4πε0

(
1− 1

ε

)n−1∑

i=1

n∑

j=i

qi q j

f GB
i j

, (1.5.40)

with a simple approximation for the effective Born radius f GB
i j applicable for

standard molecular biology systems.
Still et al. [116] proposed

f GB
i j =

√
r2

i j +α2
i j e

−r2
i j /4α

2
i j , (1.5.41)

with

αi j =
√
αiα j, (1.5.42)

where αi denotes the Born radii of the atom i, which not only depend on the
radius of the atom, but also on the positions and radii of every other atom in
the system. The Born radius αi is obtained by evaluating the solvation free
energy G i

solvation for atom i

G i
solvation =− 1

4πε0

(
1− 1

ε

) q2
i

2αi
. (1.5.43)

All other charges are assumed to be neutral, while they replace the dielectric
medium of the solvent with the solute’s, at the same time. The most accurate
way to analyze the solvation free energy is to solve the Poisson–Boltzmann
equation numerically. But this procedure would have a similar or even worse
time consumption as solving the Poisson–Boltzmann equation for the fully
charged molecule directly, and, therefore, is not generally applicable.
In the model suggested by Still et al. [116], the effective Born radius is
obtained by solving Born’s equation (1.5.37) piecewise for concentric shells
around atom i with thickness T. The contribution of each shell is assumed
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i

jrk=1

rk=2

k=1 Shell

k=2 Shell

Figure 1.6: Schematic representation of Still’s GB method: Shells around an atom of a
diatomic molecule for the numerical calculation of the effective Born radius.

to be the Born energy of the shell times the fraction of the shell area outside
the van der Waals volume of the molecule

ak =
Ak

4πr2
k

. (1.5.44)

Ak is the surface area of the kth shell outside the van der Waals surface of
the whole molecule. The shell is isolated by the thick lines in Figure 1.6,
while the surface area is evaluated in the middle of the shell (light circu-
lar lines) in between the concentric shell borders. The surface area can be
numerically achieved as described in the next section.
If a shell surrounds the complete molecule (k = n+1), the Born equation is
used directly for calculating the energy contribution of the remaining dielec-
tric space.
Thus, the solvation free energy for atom i reads

G i
solvation =− 1

4πε0

(
1− 1

ε

)
q2

i

[(
n∑

k=1
ak

(
1

rk − 1
2 Tk

− 1
rk + 1

2 Tk

))
+ 1

rn+1

]
,

(1.5.45)
with rk+1 = rk + 1

2 (Tk +Tk+1). For efficiency reasons, Still et al. [116] used
Tk+1 = 3

2 Tk starting with T1 = 1Å and r1 = rFF − 0.09Å (rFF denotes the
atomic radius derived from the force field).
Combining equations (1.5.45) and (1.5.43) the effective radius αi is obtained
which obviously does neither depend on charge nor on the dielectric per-
mittivity. The Generalized Born solvation free energy is also independent of
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the molecule’s dielectric constant, which could be mimicked by changing the
coefficient containing the permittivity to

(
1

εsolute
− 1
εsolvent

)
. (1.5.46)

Also other methods for finding effective Born radii have been proposed [133–
139] and been reviewed in [140].

1.5.5 Non–polar Solvation Contributions

The non–polar Lennard–Jones interactions between solute and solvent mole-
cules are typically approximated to be proportional to the solvent accessible
surface area ASASA [141, 142] (see Figure 1.4)

GSASA = γASASA +b. (1.5.47)

The surface tension γ and the constant b are empirically derived.
This surface area is obtained by the union of the atomic spheres with en-
larged atomic radii by addition of a probe radius approximating a virtual
solvent molecule radius [126].
Although not capable of reproducing the experimental hydration free en-
ergies of cyclic alkanes or alkenes [143] this simple approximation yields
reasonable results when combined with polar contributions [142] or when
compared to MD simulations [144, 145]. The model was also successfully
applied in combination with other contributions to reproduce protein stabil-
ities or binding affinities, e.g. in combination with force field contributions
and entropy estimates in the EGAD program [60, 61].
The solvent accessible surface area can be computed in slow but correct ana-
lytical ways [146–149], using approximate analytical approaches [116, 150]
or numerically [126, 151].
The grid–based technique developed by Shrake and Rupley [151] distributes
reference points on an atomic sphere via




cosϕi sinϑi
sinϕi sinϑi

cosϑi


a, (1.5.48)

where ϑi varies from 0 to π and ϕi from 0 to 2π. a is the atomic radius.
Subsequently every reference point is tested whether it is buried or exposed
and the fraction of exposed points yields the atomic solvent accessible sur-
face area
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A = nexposed

ntotal
4πa2. (1.5.49)

Other methods for the nonpolar solvation also include a volume term [152]

GSAV = pV , (1.5.50)

where p is a constant parameter, or an integral [143, 152] of the form

G I = ρ
n∑

i=1

∫

solvent

I i(~r i,~x)dx3, (1.5.51)

where ρ is the density of the solute and I i(~r i,~x) contains the attractive (r−6)
contributions of the Lennard–Jones interaction (see Equation (1.3.6)) be-
tween atom i at position~r i and water at position~x.

1.6 Entropy
Apart from the internal energy also the entropy of a system contributes to
the overall free energy crucial for protein stabilities or binding affinities. The
following subsections present both, the change of entropy derived systemat-
ically by thermodynamic integration between two states and two widely ap-
plied approximations for the entropy of a solute that is not directly accessible
by MD simulations.

1.6.1 Thermodynamic Integration
Although being included implicitly in the free energy obtained e.g. via ther-
modynamic integration, it can be desirable to calculate the entropy explicitly
[44].
The entropy is obtained as the difference of internal energy and free energy
(Equation (1.1.8b))

TS =U −F. (1.6.1)

Similar as for the free energy (see Equation (1.4.2), the first derivative with
respect to the coupling parameter λ of the internal energy

U = 〈H〉 =
Î

e−βH(p,q,λ)H(p,q,λ)dpdqÎ
e−βH(p,q,λ)dpdq

(1.6.2)

is calculated and yields
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dU
dλ

=
Î (−βe−βH ∂H

∂λ
H+ e−βH ∂H

∂λ

)
dpdq

Î
e−βHdpdq

(Î
e−βHdpdq

)2

+
Î

e−βHHdpdq
Î −βe−βH ∂H

∂λ
dpdq

(Î
e−βHdpdq

)2

=
〈
−βH

∂H
∂λ

〉

λ

+
〈
∂H
∂λ

〉

λ

−〈H〉λ
〈
β
∂H
∂λ

〉

λ

. (1.6.3)

Differentiating equation (1.6.1) leads to

T
dS
dλ

= dU
dλ

− dF
dλ

. (1.6.4)

Substituting the derivatives of the internal energy U (Equation (1.6.3)) and
of the free energy (Equation (1.4.2)) finally yields

dS
dλ

= 1
kBT2

(
−

〈
H
∂H
∂λ

〉

λ

+〈H〉λ
〈
∂H
∂λ

〉

λ

)
. (1.6.5)

Integrating with respect to λ results in the change in entropy between ini-
tial and final state [44]. Thus, this method relies on an extensive sampling of
configurational space. A very precise ensemble is required since not only the
difference of the Hamiltonian between different states, but the full Hamil-
tonian enters in the calculation. Therefore, simplified approaches have been
developed.

1.6.2 Normal Mode Analysis
The entropy of a protein is often approximated by the entropy of a quantum–
harmonic oscillator (quasi–harmonic approximation) [153]. For a 1–dimen-
sional quantum–harmonic oscillator the entropy is given by [154]

Sqho =
kBα

eα−1
−kB ln

(
eα−1

)
(1.6.6)

with

α= ħω
kBT

. (1.6.7)

Approximating the entropy of every (internal) degree of freedom of a protein
by the entropy of a quantum mechanical oscillator the total configurational
entropy due to the vibrational modes can be written as
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Svib =
3N−6∑

i=1

[
kBαi

eαi −1
−kB ln

(
eαi −1

)
]

. (1.6.8)

For the remaining six translational and rotational degrees of freedom, that
are treated semi–classical, the entropy is given by [155]

Strans = kB

[
5
2
+ 3

2
ln

(
mkBT
2πħ2

)
− lnρ

]
and (1.6.9)

Srot = kB

[
3
2
+ 1

2
ln(I1I2I3)+ 3

2
ln

(
2kBT
ħ2

)
− lnσ

]
. (1.6.10)

ρ is the number density at a concentration of 1M, I i are the three princi-
pal moments of inertia and σ is a symmetry factor that equals 1 for non–
symmetric molecules and 2 for symmetric ones like dimers.
Every rotational and translational degree of freedom additionally contributes
an amount of 1

2 kBT to the absolute free energy.
A number of similar quasi–harmonic approaches using normal mode ana-
lysis (NMA) to obtain vibrational frequencies of the protein have been de-
veloped in the past [155–160]. Normal modes of an oscillating system are
collective vibrations with all particles moving with the same resonant fre-
quency. Every harmonic oscillation of a system can be described as a linear
combination of its normal modes.
For molecules, the normal modes can be obtained starting from a local en-
ergy minimum with coordinates r0. A local Taylor expansion of the potential
φ yields

φ(r)=φ(r0)+
3N∑

i=1

(
r i − r0

i
) ∂φ
∂r i

∣∣∣∣
r0
+ 1

2

3N∑

i=1

3N∑

j=1

(
r i − r0

i
)(

r j − r0
j

) ∂2φ

∂r i∂r j

∣∣∣∣
r0
+O (3).

(1.6.11)
Since the potential has a minimum at r0 the second term equals zero and
the Hamiltonian H can be written in a harmonic approximation around the
minimum r0

H(r)= 1
2

3N∑

i=1
mi ṙ2

i +
1
2

3N∑

i=1

3N∑

j=1

(
r i − r0

i
)(

r j − r0
j

) ∂2φ

∂r i∂r j

∣∣∣∣
r0
+const. (1.6.12)

Introducing mass–weighted coordinates via

Ri =p
mi

(
r i − r0

i
)

(1.6.13)
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the Hamiltonian writes

H(r)= 1
2

3N∑

i=1
Ṙ2

i +
1
2

3N∑

i=1

3N∑

j=1
RiR j

∂2φ

∂Ri∂R j

∣∣∣∣
R0

. (1.6.14)

To determine the normal modes, the Hamiltonian is rewritten as a superpo-
sition of 3N −6 independent harmonic oscillators8

H(q)= 1
2

3N−6∑

i=1
q̇2

i +
1
2

3N−6∑

i=1
ω2

i q2
i . (1.6.15)

The internal coordinates q are related to the coordinates R through the
transformation

R=Mq, (1.6.16)

with MTM= I. The first term of the Hamiltonian can now be expressed as

3N∑

i=1
Ṙ2

i = ṘTṘ= q̇TMTMq̇= q̇Tq̇, (1.6.17)

and the second one as

3N∑

i=1

3N∑

j=1
RiR j

∂2φ

∂Ri∂R j

∣∣∣∣
R0

=qTMTHq0Mq, (1.6.18)

where Hq0 denotes the Hessian matrix (1.3.34) evaluated at the minimum
q0. Comparing equations (1.6.17, 1.6.18) with (1.6.15) we find

qTMTHq0Mq=
3N−6∑

i=1
ω2

i q2
i . (1.6.19)

Introducing

Ω= diag
(
ω2

1,ω2
2, . . .ω2

3N−6
)

(1.6.20)

Equation (1.6.19) can be written as

qTMTHq0Mq=qTΩq, (1.6.21)

which results in the eigenvalue problem

MTHq0M=Ω. (1.6.22)

8There are only 3N −6 internal degrees of freedom as three degrees of freedom each are
due to the translation and rotation of the system, respectively.
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The solution yields a set of normal modes with eigenvectors an and their
associated resonant frequencies ωn.
In principle, the frequencies ω could be obtained from the covariance ma-
trix. However in Cartesian coordinates the covariance matrix is singular,
rendering its application in the above expression for Svib (Equation 1.6.8)
impossible. The singularities can be avoided by transformation to internal
coordinates, the so–called normal mode approach.
Entropy approximation via normal mode analysis makes use of a single
structure at a local energy minimum. Thus, an excessive energy minimiza-
tion has to precede the above presented procedure, which renders the analy-
sis computationally quite demanding. Also, the normal modes will only be a
rough approximation of protein fluctuations at a physiological temperature.

1.6.3 Schlitter’s Approach
In 1993 Schlitter [154] presented a modified approach analyzing absolute
entropies from the covariance matrix of atomic fluctuations.
Starting from a system with discrete states n = 0,1, . . . and associated ener-
gies εn the partition function takes the form

Z =∑
n

e−βεn . (1.6.23)

The probabilities of the states are given by

ρn = −βεn

Z
(1.6.24)

and are related to the entropy according to

S =−kB
∑
n
ρn lnρn. (1.6.25)

In the following we consider a one dimensional system with particle mass m
and position x. We assume that

〈x〉 = 0 and (1.6.26)
〈x2〉 = ∑

n
ρn〈x2〉n. (1.6.27)

〈·〉n denotes the expectation value belonging to the individual state n.
For a given (covariance) 〈x2〉 the upper limit for the entropy is found using
the derivatives of the entropy with respect to the probabilities ρn, including
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the Lagrange multipliers λ and µ for the constraints of Equation (1.6.27)
and for the normalization condition

∑
ρn = 1. A stationary point is found at

d
dρn

S =−kB
(
lnρn +1

)+λ〈x2〉n +µ= 0. (1.6.28)

It is a maximum because

d2

dρ2
n

S =−kB
1
ρn

< 0. (1.6.29)

Substituting (1.6.24) in (1.6.28) and rearrangement yields

βεn − λ

kB
〈x2〉n = µ

kB
− ln Z+1. (1.6.30)

To find a maximum to the total entropy this equation has to be valid for
every state n. Thus, the left hand site of equation (1.6.30) has to cancel and
the energies and variances in each state have to be proportional to each
other.
This is true for a quantum-harmonic oscillator with energy eigenvalues

εn = mω2
n〈x2〉n. (1.6.31)

Thus the entropy of a quantum–harmonic oscillator Sqho (1.6.6) is an upper
limit for the true entropy

S ≤ Sqho =
kBα

eα−1
−kB ln

(
eα−1

)
. (1.6.32)

A classical treatment of the harmonic oscillator would result in a Gaussian
distribution for x. At a given variance the Gaussian distribution gives the
largest entropy as compared to other distributions. For an entropy analysis
based on MD simulations the variance is replaced by the classical variance
〈x2〉c. In the classical limit ħω¿ kBT the equipartition theorem

mω2〈x2〉c = kBT (1.6.33)

is used to obtain the frequency ω.
Schlitter introduced another function being an upper limit to the entropy of
a quantum-harmonic oscillator

S ≤ Sqho < S′ = 1
2

kB ln
(
1+ e2

α

)
, (1.6.34)

which can directly be expressed as a function of the variance
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S < S′ = 1
2

kB ln
(
1+ kBTe2

ħ m〈x2〉c

)
. (1.6.35)

For the generalization to many–particle systems Schlitter made use of the
covariance matrix

σi j =
〈
(xi −〈xi〉)

(
x j −

〈
x j

〉)〉
, (1.6.36)

obtained from a MD trajectory. Introducing mass weighted coordinates

X i =p
mixi (1.6.37)

the mass–weighted covariance matrix is given by

σ′ =MTσM, (1.6.38)

with the 3N ×3N mass matrix

M= diag
(p

m1,
p

m1,
p

m1,
p

m2,
p

m2,
p

m2, . . .
p

mN
)
. (1.6.39)

Diagonalizing the mass weighted covariance matrix yields the classical vari-
ances of the resulting new coordinates qi in the diagonal elements. As the
fluctuations are independent and uncorrelated the one dimensional approx-
imation of the entropy can easily be applied to every coordinate separately,
with the sum yielding the total entropy

S < S′ = 1
2

kB

3N∑
n=1

ln
(
1+ kBTe2

ħ 〈q2
i 〉c

)
(1.6.40a)

= 1
2

kB ln
3N∏
n=1

(
1+ kBTe2

ħ 〈q2
i 〉c

)
(1.6.40b)

The product in the logarithm can be written in terms of a determinant of a
diagonal matrix with elements

(
1+ kBTe2

ħ 〈q2
i 〉c

)
. As a determinant is invari-

ant under orthogonal transformations — like the one used to diagonalize
the mass weighted covariance matrix — the entropy estimate can directly
be obtained from the mass weighted covariance matrix

S < S′ = 1
2

kB lndet
(
1+ kBTe2

ħ MTσM
)
. (1.6.41)

Schlitter’s approach has the big advantage that the covariances in cartesian
coordinates can be used for the entropy estimate. Although the covariance
matrix may be singular, Equation (1.6.41) will yield reasonable results —
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different from the normal mode approach. With the inclusion of every struc-
ture of a conformational ensemble for the approximation of the upper limit of
the configurational entropy, Schlitter’s method is expected to yield more reli-
able entropy estimates than the normal mode approach based on the crystal
structure only.

1.6.4 Solvent Entropy

One entropic contribution to the free energy not yet considered is due to
the increased ordering of solvent molecules at the surface of proteins with
respect to bulk water. It may be approximated by a term proportional to the
solvent–accessible surface.
For an explicit treatment of the solvent entropy the computational costly TI
method can be applied or the faster permutation–reduced approach based on
Schlitter’s approximation as recently proposed by Reinhard and Grubmüller
[161] may be used.

1.7 Thermodynamic End States Methods

In addition to the already presented statistical physics based methods using
the system’s Hamiltonian (Chapter 1.4) other techniques explicitly sum up
the various enthalpic (and entropic) contributions of different states. With-
out the need to sample configurational space along a pathway but, instead,
sampling around the initial and final state only, these methods are consid-
erably faster than the former ones. Some approximation schemes even aim
at sampling one state only and obtaining a conformational ensemble for the
other state by crudely trimming the trajectory.
Due to thermodynamic fluctuations, end states cannot be described accu-
rately by single conformations. As a protein’s conformational flexibility causes
a distribution of states around energy minima in the free energy landscape,
a single structure can only be used either for empirical and statistical ap-
proximations or as a starting point for a structural sampling to cover larger
parts of the conformational space. The latter can e.g. be achieved by MD or
MC methods.

1.7.1 Linear Interaction Energy (LIE)

Åqvist et al. [52] developed a semi–empirical method for the calculation of
binding free energies using molecular dynamics simulations. Based on the
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assumption of a linear response for electrostatic and van der Waals interac-
tions upon protein–ligand binding, the free energy function takes the simple
form

∆Gbinding =α
〈
∆EvdW

〉
+β〈

∆Ees〉 . (1.7.1)

The electrostatic and van der Waals energies only take interactions between
the ligand and its surroundings, i.e. solvent or a solvated, bound protein into
account, internal energies are neglected. 〈·〉 denotes the ensemble average
(averaging over snapshots of a MD simulation).
Two trajectories are computed using MD simulations. One with the ligand
bound to the protein in a water box, and the second contains only the freed
ligand in a water box. ∆E in equation (1.7.1) denotes the change in interac-
tion energy between the ligand and its surroundings with respect to the two
trajectories.
While the electrostatics coefficient β is fixed to 0.5 due to the linear response
approximation [162], empirical values for α range between 0.165 and 0.181
[52, 163]. β= 0.5 does not hold for non–ionic compounds and values between
0.33 and 0.5 were reported depending on the type of molecule [163]. Zoete
et al. [164] also found different, sometimes even negative parameters de-
pending on the system.
Different approaches including continuum solvent representations were sug-
gested [163, 164] speeding further up the method. Huang and Caflisch [165]
additionally substituted the time consuming MD simulations by an energy
minimization of the ligand.
The LIE method is not universal as it needs a training data set for each
investigated protein in form of experimental data in order to fit the system–
dependent coefficients α and β.

1.7.2 MM/PBSA
A popular method for the calculation of free energies is the Molecular Me-
chanics / Poisson–Boltzmann Surface Area method (MM/PBSA) [51, 166–
168]. In this method, the free energy is obtained as a sum of molecular me-
chanics force field terms (GMM), the solute–solvent interaction obtained by
the numerical solution of the Poisson–Boltzmann equation (GPB), a non–
polar solvation term proportional to the surface area approximating the
solute–solvent van der Waals interactions (GSA) and an estimate for the
conformational entropy (−TS):

GMM/PBSA =GMM +GPB +GSA −TS, (1.7.2)
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with

GMM =Gbond +Gangle +Gdihedral +GLJ +GCoulomb. (1.7.3)

The energetic contributions are averaged over a set of snapshots (with re-
moved solvent) [166]. The entropy is estimated using NMA techniques.
MM/PBSA is frequently applied for the calculation of binding affinities ac-
cording to

∆Gbinding =Gcompound −Gpartner 1 −Gpartner 2. (1.7.4)

Usually, only the trajectory of the compound is sampled and the free ener-
gies of the isolated partners are analyzed on extracted structures from the
compound trajectory (see e.g. Reference [169]). This scheme on the one hand
is computationally inexpensive. On the other hand, the above free energy
function probably has defiances in estimating free energy changes due to
conformational changes induced by unbinding (see also [170]).
A variant of the MM/PBSA method uses the Generalized Born formalism in-
stead of the Poisson–Boltzmann equation for the polar solvation interaction
(MM/GBSA) [171]. In contrast to the slower but more accurate MM/PBSA,
MM/GBSA allows also the energy decomposition per atom. Thus, enabling a
residue–resolved resolution of the energetic contributions to binding.
Compared to the LIE method both variants, MM/PBSA and MM/GBSA, are
universal as these are parameter–free methods.
Kuhn and Kollman [172] compared the LIE approach and the MM/PBSA
method to experimental data computing binding affinities between non–
peptide ligands and avidin and between a hexapeptide and streptadivin.
While MM/PBSA results were in excellent agreement to experiment (corre-
lation r = 0.92), the LIE method performed poor with a correlation of r = 0.55
(after fitting its parameters to the system).
The MM/PBSA method may also be used for the prediction of mutation–
induced changes in folding free energy, e.g. Zoete and Meuwly [173].

1.8 Statistical, Empirical Approaches

Statistical, empirical approaches for the structure–based free energy esti-
mates of biomolecular systems derive their potentials via statistical analy-
sis of e.g. the relative frequency of contacting residues, combined with phys-
ical effective energy functions and structural descriptors [174]. The energy
terms are subsequently weighted to reproduce experimental data. Usually,
these methods rely on only one structure per folded state.



58 Chapter 1 — Free Energy Calculations

Next to the Fold-X method [59] presented in the next subsection, examples
for these empirical potentials are, the Eris method [175, 176] or an approach
developed by Bordner and Abagyan [174] introducing a parameterized dena-
tured state.

1.8.1 Fold-X
A popular method is the empirical Fold-X energy function, developed by
Guerois et al. [59] based on data from protein stability experiments applied
on static configurations that are only for optimized hydrogen bond networks.
The mutational change in folding free energy in Fold-X is given by

∆G =WvdW∆GvdW +WsolvH∆GsolvH +WsolvP∆GsolvP +∆Gwb

+∆Ghbond +∆Gel +WmcT∆Smc +WscT∆Ssc.
(1.8.1)

The Wx denote weighting factors, vdW the van der Waals contributions,
solvH and solvP the solvation of hydrophobic and polar groups, respectively,
wb water bridges (water molecules with more than one hydrogen bond to the
protein leading to stabilization), hbond intra–molecular hydrogen bonds, el
electrostatic interactions, mc main chain (backbone), and sc side chain con-
tributions to the entropy. This energy function is computed for a single na-
tive wild type and the mutated conformation, respectively.
Solvent exposure effects are included by applying an additional scaling to
the atomic contributions. In contrast to the weighting factors Wx these scal-
ing parameters are not fitted to experimental data but constructed using the
atomic occupancies

Occi =
∑

j,di j<6Å

Vj e
d2

i j
2σ2 , (1.8.2)

with the fragmental volume Vj of atom j (taken from a predefined table), di j
is the distance between atoms i and j, and σ= 3.5Å (corresponding roughly
to the minimum of the van der Waals potential for two heavy atoms). The
scaling factor itself writes

S i
fact =

Occi −Occi
min

Occi
max −Occi

min

. (1.8.3)

The minimal and maximal reference values for the occupancy have been
statistically derived from a protein structure database. If the calculated oc-
cupancy is less than the minimal value, S i

fact is set to 0, if its value is larger
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than the maximum, the scaling factor is set to 1. S i
fact is applied to any en-

ergy term the atom i is involved in.
While the energy values per atom for van der Waals contributions, solva-
tion and hydrogen bonds were determined from an experimental data set,
the electrostatic contributions are calculated according to Coulomb’s Law
including ionic screening effects via

E i j =
332qi q j

εdi j
e−di jκ, (1.8.4)

with the Debye–Hückel parameter κ (see Equation 1.5.18 and associated
footnote).
The water bridge contribution includes a prediction for water positions fol-
lowed by the evaluation of an energy term combining hydrogen bond energy,
solvation costs for water burial, and several entropic contributions:

∆Gwb = Nhb∆Ghb+Sfact∆GsolvW+δSprot+(1−Sfact)Smax
wat +SfactSmin

wat . (1.8.5)

Here, Nhb denotes the number of hydrogen bonds, ∆Ghb the hydrogen bond
energy, Sfact the previously obtained scaling factor regarding exposure, ∆GsolvW
the solvation free energy contribution for water burial, δSprot the entropic
cost for fixing the backbone or the side chain involved in the water bridge.
The minimal and maximal water entropies Smin

wat and Smax
wat account for the

entropic cost of fixing the water molecule fully buried or fully exposed, re-
spectively. The water bridge term is only added if it is smaller than 0.
If van der Waals clashes occur in the structure a correction energy

∆Gclash = Sfact
(
Ri +R j −0.35Å−di j

) kcal
molÅ

(1.8.6)

is added, where Ri is the corresponding atomic radius of atom i.
Unfolded states are not explicitly taken into account. However assuming
similar properties for the unfolded states of single point mutants with re-
spect to the denatured wild type, they are included implicitly with the use of
the weighting factors Wx.
The involved parameters and the five weighting factors were trained on a
data set of 339 mutants and tested on 667 mutants resulting in a correla-
tion coefficient of 0.83 and a standard deviation 0.81 kcal

mol upon neglect of 5%
outliers.
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1.9 Bioinformatic Techniques
Algorithms lend from computer sciences are also used for sometimes crude
estimations of free energies. Both qualitative and quantitative estimates
may be obtained by machine learning algorithms like the artificial neural
network (ANN) or support vector machines (SVM) that are trained on ex-
perimental data and e.g. combined with the protein sequence or structure
[62]. Similar to the above presented, structure–based statistical methods,
weights are fitted to an energy function. However, in the case of machine
learning techniques the energy function is not a linear combination of en-
ergy terms but consists of more complex nonlinear terms. These terms are
often lacking a physical basis and make use of a large amount of descriptors.
Thus, these methods are capable of the prediction of free energies, however,
without supplying knowledge of the underlying physico–chemical processes.
With a given suitable training set, machine learning algorithms can also
be used to predict free energies for cases where physical functions fail, e.g.
due to missing crystal structures. Another advantage of ANNs or SVMs is
the small computational effort allowing even the prediction of e.g. 1012 data
points. However, over–fitting of parameters is a frequently occurring prob-
lem.
Examples of machine–learning based methods are I-Mutant (http://gpcr2.
biocomp.unibo.it/~emidio/I-Mutant/I-Mutant.htm) [62, 177] or MU-Pro
(http://www.ics.uci.edu/~baldig/mutation.html) [63].
I-Mutant, for example, predicts the folding free energy upon mutation with
only the protein sequence as input to an SVM. It achieves a correlation of
r = 0.62 and a root mean square standard error of 1.45kcal/mol for a data set
comprising 2048 mutants from 64 proteins. The method shows best agree-
ment to experimental data for conservative mutations of apolar amino acids.

http://gpcr2.biocomp.unibo.it/~emidio/I-Mutant/I-Mutant.htm
http://gpcr2.biocomp.unibo.it/~emidio/I-Mutant/I-Mutant.htm
http://www.ics.uci.edu/~baldig/mutation.html


Chapter 2

Structure Determination and
Experimental Free Energy

Measurements

2.1 Structure Determination

The experimental determination of protein structures (as found in the pro-
tein data bank http://www.pdb.org [6]) usually involves complex and dif-
ficult procedures. Especially the crystallization of membrane proteins for
X–ray diffraction experiments is tedious and often even impossible. This
chapter provides a brief introduction to structure determination by X–ray
crystallography and nuclear magnetic resonance (NMR) spectroscopy as well
as to experimental methods applied in the study of protein stabilities and
protein–ligand binding affinities.

2.1.1 X–ray Crystallography

In X–ray crystallography, the atomic structure is solved after obtaining the
electron density through X–ray diffraction measurements [22, 33].
When placing a crystal in an X–ray beam, the atoms’ electrons inside the
crystal scatter the incoming electromagnetic waves resulting in a reflection
picture. A regular arrangement of particles within the crystal leads to a reg-
ular scattering. While most interferences are destructive, spots can be found
in the diffraction pattern. Bragg’s law

2d sinϑ= nλ (2.1.1)

applies for these maxima, where d is the separation of grid planes responsi-
ble for the interference, ϑ denotes the angle between the incoming beam and
the reflecting surfaces (the incoming X–ray is diffracted at an angle of 2ϑ),
n is an integer and λ the wavelength of the monochromatic X–ray.
In order to obtain enough data to construct the three dimensional structure,
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the protein crystal has to be rotated during the measurement and a diffrac-
tion pattern has to be recorded for every orientation.
After the unit cell of the crystal is determined, the collected data is indexed:
every spot in the diffraction pattern corresponds to a set of reflection sheets
that can be described by Miller indices (h,k, l). The indices correspond to the
inverse intersections with the lattice vectors.
Information on the desired crystal structure is not just hidden in the position
of the spots, but also in the spots’ intensities I(h,k, l). Being proportional to
the squared amplitudes F(h,k, l)

I(h,k, l)∝ F2(h,k, l) (2.1.2)

the intensity does not comprise any information concerning the phase α(h,k, l)
of the electromagnetic wave. However, this property is crucial for the recon-
struction of the protein structure.
Via Fourier transformation, the three dimensional electron density ρ can be
written as

ρ(x, y, z)= 1
V

∑

h,k,l
F(h,k, l)eiα(h,k,l)e−2πi(hx+ky+lz), (2.1.3)

with the still unknown phase α(h,k, l) and the volume V of the unit cell.
The phase is refined starting from an initial guess. Next to the direct method
using known relations between reflexes or utilizing a similar molecule to fit
on the imperfect electron density, changing the molecular composition can
help to solve the phase problem. Including either heavy metal atoms or re-
placing the sulfur in methionine by selene (mutating to selene–methionine),
anomalies are introduced in the scattering pattern. The inner electrons of
these atoms also contribute to scattering and introduce a known phase. Also,
diffraction patterns for three wavelengths — one near the adsorption max-
imum of the heavy atoms, one above, one below may be used to determine
the phase.
From this initial phase an initial model structure is fitted to the electron
density. This model leads to a calculated set of complex spot amplitudes
F(h,k, l)eα(h,k,l) which in turn yield a new electron density. This iterative
procedure is repeated until the largest possible correlation is obtained.
If some residues exist in various conformations, the average electron density
is smeared over a large area not detectable any more by X–ray diffraction.
If an atom takes over a small number of distinct positions, it will appear
multiple times in the density map.
The final structures show different resolutions. While structures with a res-
olution of ≤ 2Å can reliably be used e.g. in MD simulations, lower resolu-
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tions introduce errors that can lead to wrong conformations of amino acid
side chains. Depending on the quality of the crystal, even the assignment of
hydrogen atoms to the electron density may be possible (resolution < 1Å).
Prior to the X–ray diffraction experiment, the most difficult task is to crystal-
lize the protein. Hereby the endeavor becomes more demanding with grow-
ing size and decreasing solubility of the molecule.
Ideally, the crystal is pure, without defects, of high regularity, and, obviously,
the protein should remain folded in the crystal.Different crystallization con-
ditions have to be screened for each protein. Hundreds of surroundings are
tested: different temperatures, pH, different salts at different concentra-
tions, additives that stabilize the protein fold, substances that help to grow
crystals, and many more.
Depending on the realization of the experiment, the crystal is cooled down
with liquid nitrogen, reducing radiation damage and lowering noise due to
thermal motions.
In theoretical studies based on crystal structures care has to be taken since
the protein surface may reflect artifacts due to crystal packing. Contacts in
the crystal between two molecules may alter the conformation of side chains
or of exposed loop regions. In general, crystallization conditions do not rep-
resent physiological states. This problem may be (partially) circumvented by
a simulation of a single structure in a water box at physiological settings.
Minor conformational changes due to interactions with additives, or a change
in pH, salts or temperature, can be corrected by carefully preparing the sys-
tem for simulations.

2.1.2 NMR Spectroscopy
Nuclear magnetic resonance spectroscopy of biomolecules is used to solve a
protein structure by locating atoms with a half–integer spin like 1H, 13C and
15N [22, 23, 34, 178].
A particle with a spin quantum number I shows an absolute value for its
spin of

J =
√

I(I +1)ħ. (2.1.4)

In an external magnetic field ~B = (0,0,Bz) a particle with a spin will orient
along the magnetic field and precess. An atom with spin I = 1

2 can adopt two
magnetic quantum numbers m =±1

2 with a spin contribution in z–direction
of

Jz = mħ. (2.1.5)

Due to the linkage to the magnetic moment via the material–specific gyro-
magnetic ratio γ
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µz = mγħ (2.1.6)

the two quantum states have different electric energies

Em =−mγħBz. (2.1.7)

The difference in energy
∆E = γħBz (2.1.8)

determines the distribution of quantum states according to the Boltzmann
distribution

N− 1
2

N 1
2

= e

γħBz

kBT (2.1.9)

with the number N± of particles found in the quantum states + and −,
and the resonant frequency — also called Larmor frequency —

ω0 = ∆E
ħ = γBz. (2.1.10)

The bound and unbound neighborhood of an atom induces a shift in the
Larmor frequency due to its inherent magnetic field (chemical shift).
In the course of an experiment a short magnetic pulse in x–direction acts on
the spin systems of the protein, forcing the spins to rotate by 90◦ along the
x–axis and reorient in y–direction.
Assuming a first order kinetic law, the relaxation of the magnetization ~M
obeys Bloch’s equations:

d
dt

Mx,y = γ(~M×~B)x,y −
Mx,y

T2
(2.1.11a)

d
dt

Mz = γ(~M×~B)z + M0 −Mz

T1
, (2.1.11b)

with the equilibrium magnetization M0, the spin–lattice relaxation time T1
and the spin–spin relaxation time T2.
Studying the T2–relaxation after a 90◦ pulse, the Fourier transformation of
the so–called free induction decay yields information about the neighborhood
of an atom that can be used later on to solve the structure. As many peaks
can overlap, assigning protons or other atoms may be difficult or even impos-
sible. In multi–dimensional NMR spectroscopy — different puls sequences
with varying intervals — improve the assignment.
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After the signals are assigned to amino acid protons, so–called cross peaks
provide information about intramolecular distances and dihedral angles.
Based on distance and angle restraints derived from the signals and using
other general information about non–measured atom types, protein struc-
tures are modelled fulfilling these restraints. Since the distance restraints
do not define one unique protein structure, typically 20 structures for one
protein extracted from the same NMR data are deposited in the protein data
bank.
In contrast to crystallographic approaches, the protein is in solution for
NMR measurements. In order to measure carbon or nitrogen atoms, these
particles have to be substituted by their less common, heavier isotopes 13C
and 15N with spin 1

2 . Structure determination using NMR is especially de-
manding for large proteins as signals are overlapping and since the relax-
ation times are shorter for larger molecules.

2.2 Stability

2.2.1 Thermal Unfolding

Protein stability is frequently measured in differential scanning calorimetry
experiments (DSC) [179–182] used during thermal unfolding. With increas-
ing temperature, the heat absorption of proteins is measured. Parallel to
the solvated sample, a reference chamber only containing the solvent with
the same volume is mounted. Both test samples are exposed to a constant
increase in temperature dT

dt .
Covering the transition from folded to the denatured conformation by ther-
mal unfolding, the resulting DSC scan yields some thermodynamic quanti-
ties:
The primal outcome is the specific heat cp as a function of the temperature
T. Integrating the heat capacity yields the change in calorimetric enthalpy
∆Hcal

∆Hcal =
T2∫

T1

cp dT. (2.2.1)

When choosing T1 and T2 as initial and final temperature for the transition
peak, ∆Hcal is the change in enthalpy due to protein denaturation. If the
unfolding is a two–state process, the enthalpy can be refined using the van’t
Hoff enthalpy [180]
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∆HvH =
4kBT2

mcmax
p

∆Hcal
, (2.2.2)

with the denaturation mid–point temperature Tm, at which half of the pro-
tein concentration is unfolded, and the maximum excess heat capacity cmax

p .
The folding free energy at temperature T is then found with the Gibbs–
Helmholtz equation

∆G(T)=∆Hm

(
Tm −T

Tm

)
−∆cp

(
Tm −T +T ln

T
Tm

)
, (2.2.3)

where ∆cp is the change in heat capacity during denaturation.

2.2.2 Chemical Denaturation
In chemical denaturation experiments, denaturants like urea or guanidine
hydrochloride are used to shift the chemical equilibrium towards the un-
folded state. Using the most common techniques like absorbance or fluores-
cence spectroscopy as well as circular dichroism experiments [22, 23] the
equilibrium concentrations of the native and denatured state can be mea-
sured. Combined with stopped flow [22] methods, also the folding rates can
be quantified.

Equilibrium Measurements

Assuming a proportionality between the folding free energy ∆G and the de-
naturant concentration cD via

∆G(cD)=∆GH2O −mcD, (2.2.4)

with the folding free energy in water ∆GH2O and the proportionality coeffi-
cient m, the folding free energy is obtained by measuring concentrations of
folded and unfolded proteins as a function of the denaturant concentration
as described below.
At the denaturation midpoint with equal amounts of folded and unfolded
proteins, the free energy change upon folding is 0 and the denaturant den-
sity cm

D yields the stability in pure water

∆GH2O = mcm
D . (2.2.5)

Denaturation curves are fitted to this equation in order to obtain both m and
cD.
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While m–values can vary for mutations and possibly provide information
about similarities in unfolded states, averaged m–values m from all mutants
may be used, as the resulting equation

∆G = mcm
D (2.2.6)

holds also if the linearity assumed in equation (2.2.4) does not.
A more general formula is given by

∆G(cD)= m
(
cm

D − cD
)

(2.2.7)

and may be used to measure the folding free energy as a function of the
denaturant density.

Stopped Flow Method

In stopped flow experiments a solution containing folded proteins in water
is rapidly mixed with a solvated denaturant within 1ms. Also refolding ex-
periments in a similar manner are possible.
The folding rates are measured with e.g. the circular dichroism method de-
scribed below.
Similar to equation (2.2.4) a linearity is assumed between the logarithm of
the (un–) folding rate kf/u

1 and the denaturant concentration cD:

lnkf/u(cD)= lnkH2O
f/u +mf/ucD, (2.2.8)

with the proportionality factor mf/u.
Fitting the experimental feasible range to this equation yields lnkH2O

f/u and
mf/u. The free energy change upon folding is given by

∆G =−kBT ln
kH2O

f

kH2O
u

. (2.2.9)

If the mutants measured in the experiment show only small fluctuations in
the folding or unfolding proportionality factor mf/u, no extrapolation for the
folding rates is necessary, as these terms cancel when calculating the change
in folding free energy ∆∆G upon mutation

∆∆G =−kBT

(
ln

kmut
f (cD)

kmut
u (cD)

− ln
kwt

f (cD)

kwt
u (cD)

)
, (2.2.10)

1The indices f and u denote the folded and unfolded state, respectively, throughout the
entire chapter.
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where the upper index wt or mut refer to the wild type or mutant, respec-
tively. Thereby, different denaturant concentrations for unfolding and refold-
ing are allowed.

Absorbance Spectroscopy

The absorbance A of incoming light is measured in absorbance spectroscopy
to obtain information about protein concentrations applying the Lambert-
Beer law [22, 23]

A(λ)= log10
Iin

Iout
= ε(λ)cd, (2.2.11)

with the intensities of incoming and outgoing light Iin/out, the sample con-
centration c, the thickness of the sample d and the extinction coefficient
ε(λ).
In the case of a mixed solution consisting of native and denatured proteins,
equation (2.2.11) can be rewritten as

A(λ)= (
ε f (λ)c f +εu(λ)cu

)
d. (2.2.12)

Thus from a fully recorded spectrum the concentrations of folded and un-
folded proteins can be deduced.
A prerequisite for this method is the absence of light scattering and photore-
actions as well as an homogenous distribution of the solute.

Fluorescence Spectroscopy

Fluorescence is found in materials where a photon is absorbed and, after a
short time of several nanoseconds, a photon with lower energy is emitted
again. Upon absorption, an electron is raised from its ground state to an
excited state and by emitting light it falls back to its ground state or to a low
lying excited state. Due to relaxing oscillations the outgoing light typically
has a longer wavelength than the incoming one.
In contrast to phosphorescence, the spin of the involved electron never changes.
Tyrosine, phenylalanine, and the stronger fluorophore tryptophane may be
used as absorbers and emitters in fluorescence spectroscopy [22, 23].
With the quantum efficiency φ

φ= number of absorbed photons
number of emitted photons

(2.2.13)

the fluorescence intensity F can be written as
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F = 2.303Iinφεcd, (2.2.14)

with the sample concentration c, the thickness of the sample d and the ex-
tinction coefficient ε(λ).
The quantum efficiency can also be described by excited state decay rates

φ= k f∑
i ki

, (2.2.15)

with the decay rate due to fluorescence k f and the sum of all possible decay
rates

∑
i ki.

The surroundings of the fluorophore can shift the absorption curve and its
maxima. A fully buried tryptophane will give a different spectrum as when
being exposed. Thus, with spectra of fully denatured and native proteins
analyzed, the midpoint spectrum yields the concentration of both shapes.

Circular Dichroism

Circular dichroism exploits the chirality of chemical groups found in proteins
[22]. Circular polarized light is absorbed differently depending on whether
it is right or left circular polarized light yielding different extinction coeffi-
cients εr and εl .
Using incoming linearly polarized light, that is a linear combination of right
and left circular polarized light, the ellipticity θ can be measured which
yields the concentrations of folded and denatured proteins (with known ex-
tinction coefficients) via

θ(λ)= const. (εr −εl) cd. (2.2.16)

Again analyzing a full spectrum of native and unfolded conformations as
well as the denaturation midpoint yields the desired concentrations (e.g. at
the midpoint) of folded and unfolded proteins.

2.3 Affinity

For quantitative affinity measurements many experimental instruments are
at hand. While kinetic binding rates may be measured with the methods de-
scribed above, other techniques like surface plasmon resonance or isother-
mal titration calorimetry can be used for measuring protein binding affini-
ties.
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Surface Plasmon Resonance

Reflecting light at the surface of a metal film shows a reduced intensity at
a certain angle [183]. When using a prism as coupling medium, this angle
mainly depends on the refraction index of the surface not facing the prism.
In surface plasmon resonance experiments, proteins are attached to this sur-
face and a solution with its binding partner flows underneath it. Protein–
protein binding leads to a change in the refraction angle and, thus, the an-
gle of maximum absorbance changes. The rate directly yields the binding
rate kon, and subsequently using a solution without the binding partner, the
dissociation rate koff can be determined.
The binding free energy is then given by

∆G = kBT ln
kon

koff
. (2.3.1)

Isothermal Titration Calorimetry

From a titration curve obtained by isothermal titration calorimetry the bind-
ing affinity constant Ka can be directly derived [184]. Via

∆G =−kBT lnKa (2.3.2)

the binding free energy is directly accessible, too.
Two cells are kept at the same temperature via an external heater. One
cell contains the sample solution, in which the ligand is titrated, the other
one only includes the solute. The addition of ligands leads to peaks in the
heater’s power supply, which due to a feedback keeps both cells at the same
temperature. Positive or negative peaks point to endothermic or exothermic
binding, respectively, and give the titration curve.



Chapter 3

Method Development for Protein
Stability Calculations

Concoord/PBSA, the approach presented here, is based on a modified ver-
sion of the MM/PBSA energy function. Instead of applying the physical ef-
fective free energy function to snapshots taken from a computationally ex-
pensive MD trajectory, ensembles of structures fulfilling specific geometric
constraints deduced from the input structure were taken here.
MM/PBSA methods are rarely used for mutational stability studies, as they
also require assumptions and approximations for the unfolded state [173].
For the development of the Concoord/PBSA procedure the problem of protein
stability was deliberately chosen as a first test case to overcome the lack
of a fast method for the prediction of stability free energies taking protein
flexibility into account.
The chapter is organized as follows:

• Materials: Selection of Data Set reports the experimental data
used in this chapter to adjust the developed technique to experiment.

• Preliminary Methods that are crucial for the novel method but that
are not mentioned before: The sampling of conformational space that
is used here, and the application of a thermodynamic cycle for the cal-
culation of folding free energy changes upon mutation.

• Methods: Concoord/PBSA is a novel protocol to predict folding free
energy changes upon mutation starting from a crystal or NMR struc-
ture.

• The Results section reports on performance of Concoord/PBSA on the
test set.

• The Concoord/PBSA Web Interface is presented in the following
section (3.5). Performance issues are also considered here.

• A Comparison to Fold-X is followed by a variety of possible
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• Alternatives and Variations of the method that came up during de-
velopment.

• A Discussion closes the chapter.

3.1 Materials: Selection of Data Set
Protein X-Ray Structures and Experimental Free Energies

As experimental data set we used the (pseudo–) wildtype X–ray structures
(Protein Data Bank codes in brackets) of colicin immunity protein Im7 (1AYI),
chymotrypsin inhibitor–2 (1YPC), B1 domain of protein L (1HZ6), B1 immuno-
globulin–binding domain from streptococcal protein G (1PGA), Staphylococ-
cal Nuclease (1STN), Bacteriophage T4 Lysozyme (2LZM), and of Salmonella
typhimurium CheY (3CHY) combined with folding free energies of mutants
of these proteins.
References of the crystal structures and the experimental free energies, as
well as the number of mutations considered for each protein are listed in
Table 3.1. The folding free energies for every mutation used in the folding
study are reported in Table A.1.
A total number of 582 mutations has been investigated in this work includ-
ing 425 conservative mutations preserving charges, 154 non-conservative
ones (charged to neutral changes), 326 solvent exposed and 253 buried loca-
tions.
The data set comprises experimental folding free energies measured by dif-
ferent techniques under different conditions. The test set is composed partly
of the training data set used by Guerois et al. [59] for the development of the
Fold-X method. Other proteins and mutations with known structures and
experimental energies were added to enlarge the diversity of used proteins.
A more systematic way of choosing a test set according to specific search cri-
teria applied to the protherm data bank [185] as previously done by Capri-
otti et al. [62], Saraboji et al. [186], and partly by Guerois et al. [59] proved
to be inefficient. Narrowing the list of mutations with respect to tempera-
ture, pH, denaturing conditions or experimental methods yields lists, that
have to be carefully combed through since often only crystal structures with
large gaps, bad resolution, ligands or mutations are available, rendering a
structure–based prediction inaccurate or even impossible for these mutants.
The few remaining mutants would be an inappropriate data set for further
method development.
The need to shorten the mutation list from Guerois et al. [59] was due to sim-
ilar problems mentioned above, and due to the restrictions to small proteins
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(with less than 200 amino acids) during method development.

Table 3.1: Proteins and Mutations used as test set for the development of Concoord/PBSA

PDB Resolution PDB-Reference Mutation-References #Mutations
1AYI 2.0Å [187] [188] 26
1HZ6 1.7Å [189] [190] 68
1PGA 2.07Å [5] [191] 30
1STN 1.7Å [192] [182, 193–196] 265
1YPC 1.7Å [197] [198] 76
2LZM 1.7Å [199] [180, 200–223] 82
3CHY 1.66Å [224] [225] 35

3.2 Preliminary Methods

3.2.1 Sampling of Conformational Space

The idea of using distance geometry to calculate a structure was first pro-
posed by Crippen [226], which proved to be a major tool in solving protein
structures from NMR distance restraints. Later the concept was picked up
to reproduce native backbone conformations [227] or whole protein configu-
rations [64]. In this work the program CONCOORD (http://www.mpibpc.
gwdg.de/groups/de_groot/concoord/) developed by de Groot et al. [64]
was used for conformational space sampling.
In the generation of random structure ensembles using CONCOORD three
steps can be distinguished (the workflow of Concoord is depicted in Figure
3.1):

Blueprint
In the first step, the distance of every occurring atom pair is measured and
classified with respect to its interaction type and intramolecular function
(e.g. an atom pair that is part of a quadruple defining a dihedral angle or
part of a secondary structure element). Different interactions lead to dis-
tinct fluctuations of distances. To roughly mimic the structural flexibility at
physiological temperature a distance range is assigned by adding and sub-
tracting a type–dependent distance limit D. These distance restraints de-
fined by upper and lower boundaries should not be violated by the resulting
structures.

http://www.mpibpc.gwdg.de/groups/de_groot/concoord/
http://www.mpibpc.gwdg.de/groups/de_groot/concoord/
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Figure 3.1: Sampling of conformational space using the Concoord method. The input struc-
ture (2LZM [199]; at the beginning of the circular arrow) is used for the generation of dis-
tance constraints. The cubic shape is the initially generated random structure. The next
three structures along the arrow represent the first three iterations quickly converging to-
wards a vague mirror image of the input structure. In this example, the eleventh step (next
structure in row) then showed the correct chirality, until in the 88th step (resulting confor-
mation the arrow points to) all distances fulfilled the given distance criteria. In this way a
set of independent conformations can be generated (center)
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Besides covalently bound atom pairs (1–2 restricted pairs), atoms connected
by two (1–3 restricted pairs) or three (1–4 restricted pairs) bonds, and also,
restraints for general, non–bonded atom pairs are distinguished. Depending
on the underlying dihedral angle, the 1–4 interactions are split into different
types shown in Table 3.2. Other restraints are for example ring restrictions
applied to atom pairs found in rings (e.g. in the tryptophane side chain) or
for hydrogen bonded pairs.
The different classifications and their appropriate distance limits are given
in Table 3.2.

Table 3.2: Concoord distance classifications and margins D. Omega, phi and psi denote the
dihedral angles found in the backbone of a peptide chain. Data taken from de Groot et al.
[64]. Classifications for the latest version of Concoord exceed the number of 50 and are not
shown.

Classification Margin D[nm]
1-2 0.002
1-3 0.005
Ring 0.01
double bond 1-4 0.01
Omega 1-4 0.01
Tight phi/psi 1-4 0.02.
Loose phi/psi 1-4 0.04
Other phi/psi 1-4 0.03
Other 1-4 0.04
Secondary structure 0.05
Salt bridges 0.075
Hydrogen bonds 0.05
Tight hydrophobic 0.05
Loose hydrophobic 0.1
All other pairs 0.5

The resulting list of constrained distances can be seen as a blueprint or a
construction plan for the protein structure, strongly depending on the input
structure. Optimized, high resolution input structures usually yield better
constraints in terms of convergence and a faster structure generation.

Random Structure Generation
Structure generation based on the before computed distance restraints starts
with initial random assignment of coordinates within the limits of a defined
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cubic box (see the cubic shaped random conformation in Figure 3.1).

Iterative Correction
The non–physical random structures are iteratively corrected to fulfill the
distance constraints in a SHAKE–like manner [228] (see Page 22 ff. for a
description of the SHAKE algorithm [78]). The resulting structures fulfill
all distance constraints. And as they rely only on the predefined constraints,
they are independent of each other. Neglecting energetic barriers, these sam-
pled conformations (based on geometrical considerations only) largely cover
the accessible conformational space close to the input structure.

With this procedure, representative ensembles are generated by 2 to 3 orders
of magnitude faster than with MD methods. For example, the MD simula-
tion of an MHC–peptide complex solvated in explicit water with a total of
ca. 100,000 atoms takes 25 days for 20 ns on eight Intel Xeon 3.2 GHz pro-
cessors using Gromacs [81]. In contrast, one may sample 500 structures of
the complex using CONCOORD within three days on one processor of the
same type.
For free energy calculations it turned out that 300–600 sampled conforma-
tions are sufficient (shown in Section 3.4.3). Also, a required short optimiza-
tion of the random configurations renders this method computationally still
less expensive than MD.
For the development of Concoord/PBSA an unofficial build of CONCOORD
version 2.1 (build date April 21 2006) provided by Bert de Groot was used.

3.2.2 Denatured State Approximation and Thermodyna-
mic Cycle

The folding free energy of a protein ∆Gfold is given as a difference between
the free energy of the folded (native) state Gnative and of the denatured state
Gdenatured:

∆Gfold =Gnative −Gdenatured. (3.2.1)

However, while the native state may be described by available crystal struc-
tures or homology models, structural information for the characterization
of the denatured state is lacking [229]. Therefore, in previous theoretical
studies, the free energy of the denatured state was either approximated to
be linearly related to the free energy of the folded state [230] or single con-
tributions to the free energy were obtained based on the protein sequence
or fragments of the folded state (see [231, 232] for polar contributions and
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[233–235] for non–polar solvation contributions, and [117, 222, 236–238] for
entropic contributions). In other approaches, unfolded conformations were
constructed by pumping up the native conformation [239], by Monte Carlo
sampling [240], or approximated by random coil models [241].
It is difficult or even impossible to obtain absolute folding free energies
∆Gfold by physical means. In contrast, for the calculation of relative changes
in stability upon mutation simple models can be used. Here, not the total
energy of the unfolded state, but the difference between two denatured pro-
teins differing in only one amino acid (for single–point mutants) contribute.
For the calculation of folding free energy changes upon mutation, i.e. the
difference between the folding free energies of the mutant ∆Gfold

Mutant and the
wildtype ∆Gfold

Wild Type,

∆∆Gfold
mutation =∆Gfold

Mutant −∆Gfold
Wild Type. (3.2.2)

four states (folded/denatured wildtype/mutant) have to be considered as shown
in the thermodynamic cycle

Gdenatured
Wildtype Gnative

Wildtype

Gdenatured
Mutant Gnative

Mutant

//
∆Gfold

Wildtype

��
� �
� �
� �

∆Gmutate
denatured

��
� �
� �
� �

∆Gmutate
native

//

∆Gfold
Mutant

(3.2.3)

Using that a closed path in the thermodynamic cycle does not lead to any
change in free energy

0=∆Gfold
Wildtype +∆Gmutate

native −∆Gfold
Mutant −∆Gmutate

denatured, (3.2.4)

the change in stability upon mutation can either be calculated from the dif-
ference between the folding free energies of the mutant and the wildtype
(3.2.2) or as the difference in energy for mutating the native (∆Gmutate

native ) and
denatured (∆Gmutate

denatured) state

∆∆G =∆Gfold
Mutant −∆Gfold

Wildtype

=∆Gmutate
native −∆Gmutate

denatured. (3.2.5)

The occurring energy difference between the unfolded states

∆Gmutate
denatured =Gdenatured

Mutant −Gdenatured
Wildtype (3.2.6)
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is easier to approximate than the total free energy of a single unfolded state,
e.g. by assuming a similar shape of the denatured conformations of wild type
and mutant. One of the easiest models to approximate the unfolded state
is an extended tripeptide GXG — the amino acid of interest X surrounded
by glycine residues G on each side. A more complicated model is, for exam-
ple, the random sequence structure model developed by Pokala and Handel
[61], who showed that longer chains with thirteen amino acids in random
sequence projected on protein fragments yield smaller errors than shorter
ones when comparing to experimental data. First tests with longer chains
when prototyping the Concoord/PBSA method did not yield a significant im-
provement in correlation between experimental data and predicted free en-
ergies (extended chains and protein fragments of 5 or 7 residues have been
considered, data not shown).

3.3 Methods: Concoord/PBSA
The Concoord/PBSA method is a composition of different procedures de-
scribed in the following. A rough overview is sketched as a workflow in Fig-
ure 3.2.
In order to obtain the desired change in folding free energy upon mutation all
four states shown in the thermodynamic cycle (Equation (3.2.3)) were con-
sidered and their corresponding free energies Gnative/denatured

Wildtype/Mutant were obtained
in the same way as outlined below.

Structure Preparation and Mutant Modeling
Prior to structure generation, the input structure is corrected and mini-
mized:
In a first step missing heavy side chain atoms in the crystal structures were
added with the corall routine of the program WHAT IF [242] and atoms not
belonging to the protein, e.g. water, ions and ligands are removed.
After a short minimization, the wild type crystal structure is mutated with
the program WHAT IF [243] and energy minimized, again. Both minimiza-
tions follow the protocol described below.
Contingent pseudo wild type crystal structures were mutated to match the
original wild type sequence.

Energy Minimization Protocol
All minimizations were carried out with the GROMACS simulation suite
(version 3.3.1) [81] using the GROMOS 53a6 [71] force field. The minimiza-
tions were performed in vacuum without explicit water molecules. Solvent
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Figure 3.2: Concoord/PBSA workflow: The processed input structure is mutated and opti-
mized, the resulting prototype is randomly replicated, the resulting raw structures are opti-
mized and their energy is evaluated and averaged over the whole set. The four contributions
to the Concoord/PBSA energy functions are the electrostatic energy Ges, the intramolecular
Lennard–Jones interactions GvdW, the surface area term approximating solute–solvent van
der Waals interactions GSA and the entropy estimate S.
Next to the working steps the used programs are given.

effects were implicitly taken into account by a distance–dependent dielec-
tric permittivity of ε(r)= 40nm−1 r [70]. The l–BFGS algorithm [90, 91] (see
Page 26 ff.) was applied with an initial step size of 0.01nm and a gradient
tolerance of 100kJmol−1 nm−1. Both Lennard–Jones and electrostatic inter-
actions were computed without a cut–off.
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Protonation
Missing hydrogen atoms were added to the structures using the program
pdb2gmx that is part of the Gromacs package. Here, protonation states for
all titratable groups were chosen according to their model pKa value at pH 7
[244]. Thus, the N– and C–termini as well as the side chains of Asp, Glu, Arg
and Lys were considered charged and His uncharged (single protonation).
The termini of the tripeptides were uncharged to avoid artificial effects due
to charged cappings.
Protonation changes in amino acids that are not target of the mutagene-
sis were omitted. In our model we assumed the same protonation states
for all titratable amino acids in the denatured conformations as chosen for
the folded conformation. Also, possible mutant–induced protonation charges
concerning other amino acids were not considered here.

Structure Sampling
Starting from the minimized mutated structures, random conformations were
generated with the program CONCOORD [64]. In that way an ensemble of
independent random structures (e.g. 300 in numbers) were sampled for the
wild type and mutant both in their folded and denatured states (e.g. a total of
4×300= 1200 conformations). All structures were subsequently minimized.

Van der Waals Contributions to Free Energy
Inter– and intramolecular van der Waals interactions were approximated by
a Lennard–Jones potential (1.3.6), parameterized in the chosen force field.
Gromacs was used for the evaluation of the force field energies.
Non–polar solute–solvent interactions were estimated to be proportional to
the solvent accessible surface area using Equation (1.5.47). The APOLAR
routine of apbs [131] was applied for the surface calculations. 0.5Å was
used as probe size for surface area calculations. The radii of various atom
types were obtained via the Lennard–Jones potential: the minimum of the
Lennard–Jones potential for an atom pair of the same atom type i yields the
atomic radius for atom type i:

Rii = 2
1
6σii. (3.3.1)

In cases of small radii (≤ 0.1nm), we used a minimum atom radius of 0.1nm
to avoid numerical artifacts.

Electrostatics Contribution
The electrostatic interaction of the solute with the solvent was estimated
by the solution of the Poisson–Boltzmann equation (see Section 1.5.2). For
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the numerical solution of the linearized PBE the program DelPhi [123] was
used. DelPhi utilizes a finite–difference algorithm (see Page 39 ff.).
A dielectric constant of 78 was chosen for water, and the relative dielectric
permittivity of the protein interior was set to 2.
GROMOS 53a6 atomic partial charges and the previously calculated atomic
radii (also based on the GROMOS 53a6 Lennard–Jones parameterization)
were used. (In the OPLS–AA [68] test case used later on, OPLS charges
were used. Radii based on the OPLS–AA FF were also obtained according to
Equation (3.3.1).
The cubic simulation box was chosen in a way that the proteins longest
linear dimension filled 60% of the lattice’s linear dimension with two grid
points per Å. Dipolar boundary conditions were applied. Ionic concentration
was set to 0mM. Thereby, only the Poisson equation (1.5.3) was solved.
Since biomolecular force fields neglect electrostatic interactions between atom
pairs that are connected by less than three covalent bonds, DelPhi was also
used for the calculation of the solute–solute Coulombic energies to retain
consistency.

Entropy Approximation
An upper boundary for the entropy was estimated using Schlitter’s method
[154]. The mass weighted covariance matrix was diagonalized applying the
g_covar program of the Gromacs package.

Mean Energy of the Structural Ensemble
All energy contributions for each state were evaluated for the complete set of
generated structures and the arithmetic average was used in the following.
Thus, a single energy contribution A was obtined via

∆∆A =
(
A

folded
mutant − A

folded
wild type

)
−

(
A

denatured
mutant − A

denatured
wild type

)
. (3.3.2)

3.4 Results

3.4.1 Concoord/PBSA Energy Function

After generating an ensemble of 600 random structures for each thermody-
namic end state of our test set with 582 mutants the mutational change in
physical free energy

∆∆GCC/PBSA =α∆∆Ges +β∆∆GLJ +γ∆∆ASA −τT∆∆S (3.4.1)
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Figure 3.3: Concoord/PBSA results I: The calculated changes in free energy upon mutation
are plotted against experimentally determined values. Fitting the weights of the single
contributions leads to a correlation of r = 0.75 and a standard deviation of σ= 1.04 kcal

mol . The
solid line represents y=x, the dashed lines are drawn at y= x±σ.

was evaluated on all generated structures.
Four weighting factors (α, β, γ, τ) for the considered electrostatic (∆∆Ges),
Lennard-Jones (∆∆GLJ), surface area (∆∆ASA), and entropic (T∆∆S) con-
tributions were introduced and fitted to maximize the agreement to experi-
mental data. Five–fold cross validation [245] was applied yielding α= 0.224,
β = 0.217, γ = 16.6calmol−1Å−2 and τ = 0.0287 (at T = 298K) (see Fig. 3.3).
The individual energy contributions for mutational folding free energy dif-
ferences are listed in Table A.1 of Appendix A.
In the five–fold cross validation procedure, the mutants were randomly di-
vided into five sets. One set was left out for later validation, while the re-
maining four were used for a regression fit to obtain the scaling factors. The
energy function that resulted out of it was applied to the validation sample.
This procedure was repeated five times using each of the five sets as valida-
tion sample while the remaining four served as training data. The averages
of the results were then used as final parameter set.
As a measure of the predictive power of Concoord/PBSA, the Pearson corre-
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lation coefficient defined as [246, 247]

r =

N∑
i=1

(xi − x) (yi − y)
√

N∑
i=1

(xi − x)2 N∑
i=1

(yi − y)2

(3.4.2)

was calculated (xi: predicted data; yi: experimental data). The average of
the five validation sets is r = 0.748±0.018 and the standard deviation of the
error of calculation (SDEC)1 [246, 248]

σ=
√√√√ 1

N

N∑

i=1
(xi − yi)2 (3.4.3)

achieved in the same fashion is σ = (1.04±0.03) kcalmol−1. Neglecting mu-
tants with a deviation from experiment larger than two times the stan-
dard deviation —

∣∣∣∆∆G i
exp −∆∆G i

CC/PBSA

∣∣∣ > 2σ — the resulting correlation

is r = 0.82 and the standard deviation σ= 0.82kcalmol−1. These outliers are
shown in Table 3.3 and are discussed in Section 3.4.4.
The attained accuracy of the Concoord/PBSA results indicates the method’s
potential for the prediction of relative stability free energies of proteins.
Figures 3.4, 3.5, and 3.6 show subsets of the single proteins used as training
and validation sets in this study. Other selected sets include mutations that
conserve the charge of the mutation site (conservative mutations) or change
the charge of the mutation site (non–conservative mutations), solvent ex-
posed mutations and mutations of buried sites. Also, the data set excluding
the outliers is plotted. The last two figures (Figure 3.6) show datasets with
and without alanine as mutational target.
While the mutational stability predictions show a very good agreement for
the majority of proteins (1AYI, 1STN, 1YPC, 2LZM and 3CHY), the largest
deviations were obtained for the B1 immunoglobulin–binding domain from
streptococcal protein G (PDB code 1PGA).
Predictions of folding free energies of charge conserving mutations are com-
parable to the whole data set with respect to correlation and SDEC. The
non–conservative mutants yield calculated free energy differences with a
worse but still acceptable correlation. As our model neglects dissimilarities

1In the following the term standard deviation alone is often used to describe the SDEC.
Depending on the type of study, the quantity may also be termed standard deviation of the
error of prediction (SDEP)
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Figure 3.4: Concoord/PBSA results II: Subsets of single proteins.
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Figure 3.5: Concoord/PBSA results III: Subsets of a single protein, conservative, non-
conservative, buried and exposed mutations and the dataset without outliers are shown.
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Figure 3.6: Concoord/PBSA results IV: Subsets with alanine or non–alanine mutations.

in the denatured state, the reason for deviations from experiment are prob-
ably due to long range interactions in the unfolded state between charged
groups.

Figure 3.7: Buried and exposed portions of a protein (1STN). The interior is shown by the
outlines of spheres, the solvent exposed part is depicted by the outlines of a stick model.
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Predictions of buried mutations outperformed those of exposed mutants slightly
with respect to the correlation, while free energy predictions that involved
exposed site mutants revealed a smaller SDEC than those of the buried ones.
Buried and exposed mutants were distinguished by the ratio between the
contribution to the solvent accessible surface area (calculated with a probe
size of 1.4Å) of the whole protein and when placed in a tripeptide GXG. If the
ratio exceeded 0.2 the amino acid was considered to be exposed. This value
was determined empirically by visual inspection. The resulting regions for
the 1STN wild type are depicted in Figure 3.7.
As can be seen in Figure 3.6, our method is capable of predicting folding free
energy changes of alanine and non–alanine mutants at a similar accuracy.
None of the subsets that are presented in Figures 3.4, 3.5, and 3.6 shows
anomalies that could hint to systematic errors. For more than two third of
the outliers probable explanations are discussed in Section 3.4.4.
The unscaled energetic contributions to the predicted mutational changes
in protein stability are given as a function of the experimental stabilities in
Figure 3.8. The correlations to experiment for the different energetic contri-
butions (electrostatic top left, Lennard–Jones top right, molecular surface
term, bottom left and entropy bottom right) vary between 0.1 and 0.62, sig-
nificantly smaller than the overall correlation of the weighted sum (3.4.1).
The necessity of the scaling factors and their interaction is discussed in de-
tail on Page 113 and following.
In addition to the averaged change in mutational free energies, the distri-
bution of energies in the generated structural ensemble were analyzed. Ex-
amples are discussed in the following: a charged–apolar mutation, a polar–
nonpolar mutation, and a charged–polar mutation.
As an example, Figure 3.9 shows the free energy contributions for the mu-
tant K116A of Staphylococcal Nuclease (1STN). Here, the entropy is left out,
since it was calculated via the covariance matrix of the complete set of struc-
tures only.
The electrostatic contributions — reaction field energy and Coulomb energy
— almost compensate each other: In this example, the Coulomb energy is
more favorable by 22kcal/mol for the folded mutant as compared to the na-
tive wild type, while the reaction field energy is more favorable for the wild
type (≈ 21kcal/mol). A similar effect is seen for the tripeptides (right column
in Figure 3.9).
For mutating polar to nonpolar side chains, or vice versa, a large difference
in the Coulomb energy of the native state is counterbalanced by a similar
difference in the tripeptides. For example, the mutation N118A of the protein
1STN (see Figure 3.10) shows a difference in Coulomb energy for the na-
tive state between the mutant and the wildtype of ∆Gnative

coul = 26.4kcal/mol
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Figure 3.8: Single Concoord/PBSA energy contributions compared to experiment.

while the difference in the reaction field contribution was only ∆Gnative
RF =

0.857kcal/mol. In this case, however, the Coulomb free energy difference
of the native states is compensated by a similar contribution of the tripep-
tides representing the unfolded mutant and wildtype protein(∆Gdenatured

coul =
24.3kcal/mol and ∆Gdenatured

RF = 1.81kcal/mol).
For mutations involving both charged and polar groups, all four contribu-
tions are crucial. For example, the energies for N118D of 1STN (see Figure
3.11) are ∆Gnative

coul = 3.86kcal/mol, ∆Gnative
RF = 12.67kcal/mol, ∆Gdenatured

coul =
20.4kcal/mol and ∆Gdenatured

RF =−7.44kcal/mol.
Apart from the individual energetic contributions, Figures 3.9 – 3.11 addi-
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Figure 3.9: Concoord/PBSA energy distributions are shown for the structural ensemble of
the native (left) and denatured (right) shapes of the wild type (blue) protein (1STN) and the
non–conservative K116A mutant (red). All energies are given in kcal/mol.
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Figure 3.10: Concoord/PBSA energy distributions are shown for the structural ensemble
of the native (left) and denatured (right) shapes of the wild type (blue) protein (1STN) and
the non–conservative N118A mutant (red). All energies are given in kcal/mol.
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Figure 3.11: Concoord/PBSA energy distributions are shown for the structural ensemble
of the native (left) and denatured (right) shapes of the wild type (blue) protein (1STN) and
the non–conservative N118D mutant (red). All energies are given in kcal/mol.
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tionally show the distribution of the enthalpy H2, i.e. the sum of the free
energy contributions (bottom row). The standard error for the enthalpy is
given as

se(H)=

√√√√
∑N

i=1

(
Hi −H

)

N(N −1)
. (3.4.4)

The resulting error for the mutational change in enthalpy was analyzed ac-
cording to

se(∆∆H)=
√

s2
e(Hfolded

mutant)+ s2
e(Hfolded

wild type)+ s2
e(Hdenatured

mutant )+ s2
e(Hdenatured

wild type )
(3.4.5)

and is listed for the calculated mutations in Table A.1. The calculated error
shows a dependence on the size of a protein ranging from 0.14kcal/mol to
0.4kcal/mol. The error in the entropic contribution to the free energy was
neglected.

3.4.2 Importance of Considering Structural Flexibility

The importance for considering the structural flexibility of proteins was ad-
dressed by applying a similar free energy function as used for Concoord/PBSA
to the minimized (mutated) crystal structure only. Thus, leaving out the
energetic averaging over a Concoord – generated structural ensemble. The
single–point energies of the wildtype crystal structure and mutant structure
substitute the mean values, and Schlitter’s entropy estimate was replaced by
an NMA analysis (see Chapter 1.6.2).
The scaling factors were determined again by five–fold cross validation yield-
ing a correlation of r = 0.57 and an SDEC of σ = 1.37kcal/mol (parameters:
α= 0.0965, β= 0.0187, γ= 23.55calmol−1 Å−2 and τ= 8.2·10−6). The compar-
ison to experiment is depicted in Figure 3.12. A similar result was obtained
neglecting the entropic contributions.
The poor performance using only crystal structures underlines the need for
explicit consideration of structural flexibility in order to estimate mutational
free energy changes. However, the computational effort scales linearly with
the number of structures.

2The term enthalpy has to be handled with care here, as entropic contributions may be
included implicitly.
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Figure 3.12: Concoord/PBSA results using only crystal structures as input instead of en-
sembles generated using Concoord.

3.4.3 Convergence of Concoord/PBSA

The convergence of the proposed method with respect to its correlation and
standard deviation (SDEC) to experiment was analyzed as shown in Figure
3.13. 600 data points were sampled in total for each mutant, and both corre-
lation and SDEC to experiment were analyzed as a function of the number of
input structures. Both values are given as averages over respective subsets
of all generated structures, e.g. the correlation and the standard deviation to
experiment for 50 structures are mean values of twelve independent subsets.
The entropic contribution was left out for the convergence analysis and a
five–fold cross validation fit for the remaining three parameters was used
(r = 0.731, σ= 1.05kcal/mol, α= 0.241, β= 0.179 and γ= 15.57calmol−1Å−2).
They have been evaluated using 600 structures and were kept fixed for the
convergence analysis.
Both correlation and standard deviation to experiment show a monotonous
increase (decrease) with the number of generated structures. Consideration
of 50 concoord structures was sufficient to obtain better agreement to experi-
ment than with the crystal structure (r = 0.609 and SDEC σ= 1.35kcal/mol)
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Figure 3.13: Convergence of the correlation and the standard deviation of the error of
calculation with respect to the number of generated structures.

alone.
The complete ensemble of 600 Concoord structures yielded improved results
(r = 0.731, σ = 1.05kcal/mol) with respect to 300 conformations (r = 0.717,
σ = 1.06kcal/mol). This is an increase of 2.0% in correlation compared to
a doubled computational cost. Using the full energy function including en-
tropic contributions for 300 and 600 structures the difference is even less
than 1%: r = 0.741, σ= 1.04kcal/mol for 300 and r = 0.748, σ= 1.04kcal/mol
for 600 conformations. Thus, we suggest the averaging over 300 structures
as a compromise between accuracy and computational effort.

3.4.4 Outliers
33 mutations shown in Table 3.3 led to a Concoord/PBSA energy that de-
viated more than two times the standard deviation from the experimental
value.
In nine cases this discrepancy could be attributed to a different behavior of
the unfolded state between wild type and mutant. As their m-value [249]
(see also Section 2.2.2) normalized to the wild type is smaller than 0.8 or
larger than 1.2, a large change in solvent accessible surface area in the un-
folded state is assumed to occur [250] that is only poorly described by the
tripeptide model. For the protein 3CHY, for example, López-Hernández and
Serrano [225] found only two mutations with an m-value below 0.8 with re-
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Table 3.3: Analysis of outliers: Data points deviating by more than 2σ from their exper-
imental value are shown with their experimental and calculated free energy differences
(in kcal/mol). Possible explanations are mentioned. * denotes that the experimental and
calculated free energies are taken relative to a pseudo wild type.

PDB Mutation ∆∆Gexp ∆∆Gcalc possible explanation
1HZ6 E32I 1.08 -1.1835
1HZ6 K41A -0.58 1.5894 Mutants are in the proximity of the

mutation in the crystal structure Y47W
that was reversed for calculations.

1HZ6 G45A 2.23 -0.5297
1HZ6 F62V 3.73 6.0822
1HZ6 G15V 2.53 -0.0044

General problem for mutating glycin.
1HZ6 G24A 2.08 -0.9119
1HZ6 G55A 2.04 -0.2295
1PGA G41A 2.84 0.2048
1STN D77A 3.10 0.6014 m = 0.75
1STN D95A 3.30 0.9063
1STN I72A 5.10 2.9746 m = 1.29
1STN K133G 3.30 0.6233
1STN L108A 5.80 2.7486 m = 0.77
1STN L38G 0.60 3.5184
1STN N100A 5.20 1.6906 m = 0.80
1STN N100G 5.10 2.2059 m = 0.71
1STN N118D 2.40 4.5357
1STN V111A 4.20 1.2623 m = 0.64
1STN V23T 3.20 0.7316 m = 1.23
1STN V74T 3.80 0.3745
1STN V99T 3.30 1.1498
1STN Y54L 3.40 1.0415
1STN Y93F 2.00 -0.4976 Mutants are either not correctly

modelled or they influence the unfolded
state.

1STN Y93G 7.50 5.2864
1STN Y93L 4.50 2.0697
1YPC D52A 3.41 0.3808
2LZM E11A -1.10 1.7152
2LZM I3A 0.70 2.8336

2LZM* F67A 1.90 4.1671
2LZM* T152S 2.60 0.2912 Mutants are in the proximity of the

pseudo wild type mutation C97A.2LZM* F153L -0.30 2.0754
3CHY* V10T 5.70 1.4345 m = 0.61
3CHY* V54T 4.80 1.0595 m = 0.77

spect to the pseudo wildtype — these two mutants were both identified as
outliers. Analysis of another five mutants were not expected to yield accu-
rate results, as they were found near an amino acid that was mutated either
for crystallization or for stability measurements.
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Substitutions of glycine were in general not well described. Only for two mu-
tants out of eight good results were obtained, while four mutants deviated
more than two times the standard deviation from their experimental refer-
ence values.
The change in stability for all three mutations of Y93 from 1STN was un-
derestimated by more than 2kcal/mol. This probably hints to a specific func-
tional importance of this tyrosine for the folding of this protein.
No specific reasons could be attributed to the remaining 12 outliers. Pos-
sible reasons could be a residual fold of either the wildtype or the mutant,
inaccuracies in the experimental measurements, or comparatively large con-
formational changes upon mutation.

3.4.5 Flexibility

Apart from the prediction of stability changes upon mutation, Concoord/PBSA
additionally yields a prediction of protein flexibility. Especially the change in
flexibility upon mutation may be crucial also for the function of a protein.
The root mean square fluctuation rmsf for atom i [247]

rmsfi = 1p
N

√
(xi − x)2 + (yi − y)2 + (zi − z)2. (3.4.6)

provides information about the flexibility of site i. This atomic rmsf is av-
eraged over all atoms of one amino acid in order to describe the collective
fluctuation of whole residues.
Two examples taken from the mutant set (F50A of 1YPC and D12A of 3CHY)
have been analyzed exemplarily. The cartoons at the top of Figure 3.14 show
the color–coded relative changes in flexibility upon mutation projected on
the wild type structure. An increase in flexibility upon mutation is colored
red, a decrease blue. The wild type amino acid that is subject to the mutation
is colored green. Neighboring side chains are shown in stick representation.
In the second panel, the relative change in rmsf is plotted with the residues
sorted according to their distance from the mutation site. For error estima-
tion, the structures are divided into six subsets for the evaluation of the
rmsf. The error bars are depicted in gray.
The bottom panel shows the rmsf per residue for both wild type (blue) and
mutant (red) as a function of the sequence residue number.
The stability changes of the shown mutants were both accurately predicted:
∆∆Gexp(1YPC, F50A)= 3.84 kcal

mol , ∆∆GCC/PBSA(1YPC, F50A)= 3.57 kcal
mol

and
∆∆Gexp(3CHY,D12A)=−2.50 kcal

mol , ∆∆GCC/PBSA(3CHY,D12A)=−2.66 kcal
mol .
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1YPC F50A 3CHY D12A

Figure 3.14: CC/PBSA flexibility prediction. For explanations see text.



98 Chapter 3 — Protein Stability Calculations

As the mutations involve a replacement of an amino acid side chain by a
smaller side chain the neighborhood can sample a larger conformational
space. Thus, the flexibility of amino acid side chains in the vicinity of the
mutation site is increased. Depending on the space that is freed by muta-
tion, also solvent molecules can fill the arising cavity. Interestingly, also pro-
tein sites distal from the mutation site may exhibit significantly decreased
or increased flexibility.

3.5 Concoord/PBSA Web Interface

A Concoord/PBSA web interface was set up to make the method easily avail-
able to the public. It is accessible under http://ccpbsa.bioinformatik.
uni-saarland.de and provides the possibilities to predict changes in stabil-
ity upon mutation, as well as the binding between proteins presented in the
next chapter.
The web interface was used to study the reproducibility of the results as well
as the time consumption of the method.

3.5.1 Reproducibility
The results of Concoord/PBSA depend on randomly generated structures.
Thus, the results differ when repeating the procedure with a different initial
random seed. The averaged standard deviation of predicted results for the
respective experimental value as obtained for selected mutations of the chy-
motrypsin inhibitor–2 (1YPC) is 0.256kcal/mol on average (see Table 3.4).
ITables A.2 to A.9 of the Supplementary show a more detailed analysis
for the individual mutants and of the different contributions to the Con-
coord/PBSA energy function.

Table 3.4: Reproducibility of Concoord/PBSA results: The experimental mutational folding
free energy, the Concoord/PBSA free energy difference, and an averaged Concoord/PBSA
free energy difference (10 calculations) for selected mutants of chymotrypsin inhibitor–2
(1YPC) are shown. Additionally, the standard deviation for the ten results obtained from
the web service for each mutant is displayed, too. All quantities shown are in kcal/mol.

A16G D45A E15Q F50A N56D S12A T39D V63T
∆∆Gexp 1.09 0.80 0.47 3.84 1.21 0.89 -0.02 1.15

∆∆GCC/PBSA 1.24 0.894 0.359 3.57 1.19 0.766 0.228 0.900

∆∆G
web
CC/PBSA 1.12 0.712 0.331 2.95 1.26 0.624 -0.121 0.903

σweb 0.261 0.253 0.331 0.222 0.182 0.288 0.274 0.238

http://ccpbsa.bioinformatik.uni-saarland.de
http://ccpbsa.bioinformatik.uni-saarland.de
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3.5.2 CPU Time for Concoord/PBSA

The CPU time consumption of the Concoord/PBSA method was measured
using the public Concoord/PBSA web interface (see Table 3.5). For every pro-
tein of the mutational test set, eight mutants have been randomly selected.
Thus, a total number of nine (eight mutants plus one wild type protein) times
300 structures was generated and evaluated for every protein. The fast eval-
uation of the tripeptide is neglected, as the bottleneck for its computation is
the peripheral hardware like hard disks and the network bandwidth. Be-
sides, the tripeptides had to be evaluated only once and could be used for all
calculations afterwards. For the first calculated mutant the time is doubled
due to the necessary wild type calculation.

Apart from the crystal structures 1HZ6 and 2LZM the CPU times ranged be-
tween 108 and 249 minutes for the remaining five proteins. For the former
two protein crystal structures, the Concoord procedure experienced conver-
gence problems, indicating (local) stress, by e.g. van der Waals overlaps
of atoms. A single awkward mutation may already raise the required CPU
time. The computation time also depends on external parameters like the
overall load of the master node in the compute cluster.

From the small number of studied proteins, no general law for the time con-
sumption could be derived. On average, Concoord/PBSA requires 3.5 CPU
minutes per residue.

Table 3.5: Concoord/PBSA CPU time consumption: The average computation time for mu-
tational folding free energy differences (300 structures) on a single processor (Intel Xeon,
3GHz) is presented together with the number of amino acids of the wild type structure.

PDB # AA
CPU time per mutant

(min)
1AYI 87 169
1HZ6 72 582
1PGA 56 166
1STN 149 249
1YPC 64 108
2LZM 164 1026
3CHY 128 200
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3.6 Comparison to Fold-X

For comparison, folding free energies for the mutation set used for Conco-
ord/PBSA have additionally been derived using Fold-X [59]. The most re-
cent Fold-X version (at the time of writing 3.0 Beta) obtained from http://
foldx.crg.es/ was used to mutate and to predict stabilities (unpublished).
Comparisons to experiments and to Concoord/PBSA are shown in Figure
3.15.

Figure 3.15: Folding free energies predicted with Fold-X are plotted against the corre-
sponding experimental free energies (left) and against the Concoord/PBSA results (right).

The overall correlation and SDEC for Fold-X (r = 0.76, σ = 1.02kcal/mol)
were comparable to the Concord/PBSA energy function (r = 0.75,
σ= 1.02kcal/mol)3.
Both methods show a comparable performance with respect to the accu-
racy. Also, some similarities can be seen in the outliers discussed in Section
3.4.4. Table 3.6 shows 14 common outliers for both methods. The two glycine
substitutions are overestimated by Fold-X and underestimated by Conco-
ord/PBSA. The remaining outliers are comparable in their deviation from
experiment for both methods. The Y93 mutants of 1STN were also reported
by Bordner and Abagyan [174] as outliers for their method.
Fold-X requires roughly one minute of computation time per mutation on
a 3GHz Intel Xeon machine. In this time, it has to mutate and evaluate

3The Concoord/PBSA correlation and SDEC have been obtained without 5-fold cross val-
idation in this section for comparison to Fold-X.

http://foldx.crg.es/
http://foldx.crg.es/
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Table 3.6: Common outliers for Concoord/PBSA and Fold-X (data points deviating by
more than 2σ from their experimental value). Experimental and calculated energies are
in kcal/mol. * denotes that the experimental and calculated free energies are taken relative
to a pseudo wild type.

PDB Mutation ∆∆Gexp ∆∆GCC/PBSA ∆∆GFold-X
1HZ6 G15V 2.53 -0.0044 4.62
1PGA G41A 2.84 0.2048 6.56
1STN D95A 3.30 0.9063 0.69
1STN L108A 5.80 2.7486 3.67
1STN L38G 0.60 3.5184 2.69
1STN V74T 3.80 0.3745 1.46
1STN Y54L 3.40 1.0415 -0.29
1STN Y93G 7.50 5.2864 5.42
1STN Y93L 4.50 2.0697 2.03
2LZM I3A 0.70 2.8336 2.78

2LZM* F67A 1.90 4.1671 4.41
2LZM* F153L -0.30 2.0754 2.16
3CHY* V10T 5.70 1.4345 2.87
3CHY* V54T 4.80 1.0595 2.26

the energies of both wild type and mutant. Its time consumption beats Con-
coord/PBSA by two to three orders of magnitude. For the generation and
energy evaluation of three hundred structures, Concoord/PBSA requires 2-5
CPU hours depending on the size of the protein and the quality of the struc-
ture (see Section 3.5).

With the prediction of conformational ensembles using Concoord it is possi-
ble to analyze protein configurations as a function of the respective energies,
or the combined influence of mutations on the folding free energy, structure
and flexibility. It is also possible to choose conformations from the gener-
ated ensemble applying different criteria (e.g. energy, clustering according
to rmsd) for further treatment (e.g. structure prediction). These possibili-
ties are not given using Fold-X. The comparability of the predictive power
of Fold-X and of Concoord/PBSA suggests a limited influence of mutational
flexibility changes on the folding stability.

While stabilities obtained by Concoord/PBSA are comparable to Fold-X fold-
ing free energies, CC/PBSA outperforms Fold-X with respect to the predic-
tion of mutational effects on protein–protein binding affinities (see Chapter
4.2 and Benedix et al. [1]).
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3.7 Alternatives and Variations
During the development phase of the Concoord/PBSA method, the proto-
col and parameters were adjusted numerous times. The most important pa-
rameters and methods are discussed below. Results for the variation of the
dielectric permittivity or the probe size are exemplarily presented in more
detail. Additional variations that proved to have no or only small effects on
the outcome are briefly mentioned.
As a fast adaption, the Concoord/GBSA method is introduced substituting
the slow numerical solution of the Poisson-Boltzmann equation by the faster
Generalized Born method.

3.7.1 Dielectric Permittivity
One major variable for the Concoord/PBSA procedure is the dielectric per-
mittivity ε for the interior of the protein. Due to the high computational cost
only a few values have been tested: 1, 2 and 4. The permittivity ε= 2 used in
Concoord/PBSA yielded only slightly more accurate results as compared to 1
or 4 as shown in Table 3.7. The scaling factor of the electrostatic contribution
to the total free energy (α) was roughly doubled for a doubled dielectric per-
mittivity, as expected. Interestingly, the best prediction accuracy obtained
for ε = 2 comes with an almost identical scaling for both the electrostatic
and the van der Waals contribution.

Table 3.7: Parameters and accuracy of Concoord/PBSA as a function of the dielectric per-
mittivity of the protein interior. (a) σ in kcal/mol, b) γ in calmol−1Å−2.)

ε r σa) α β γb) τ

1 0.745 1.042 0.109 0.204 17.68 0.0261
2 0.748 1.037 0.224 0.217 16.64 0.0287
4 0.738 1.052 0.391 0.216 16.56 0.0360

3.7.2 Probesize
For the non–polar solute–solvent interaction contribution to the free energy
different approaches and approximations are at hand, e.g. a linear rela-
tionship to the molecular surface area (Equation (1.5.47)), to the molecular
volume (Equation (1.5.50)) or a volume integral ansatz (Equation (1.5.51))
as shown in Section 1.5.5. The three presented approaches have been tested
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for the usage in Concoord/PBSA. Both, the integral and volume term, as
incorporated in apbs, did not lead to an improvement of the correlation and
standard deviation of the Concoord/PBSA method (not shown) but raised the
computational cost and have not been considered further.
In addition to testing technical approaches, also the impact of different molec-
ular surfaces (defined by their probe size) on the correlation and the stan-
dard deviation of the predicted Concoord/PBSA folding free energies to the
experimental free energies have been studied (see Figure 3.16). The surface
area term in Concoord/PBSA is an approximation that assumes a linear re-
lationship between the strength of the solute–solvent interactions and the
solute–solvent interface. Therefore, scaling of the probe size to obtain an
improved correlation to experiment appears justified.
Figure 3.16 shows the dependency of the correlation and the SDEC, as well
as of the scaling factors on the probe size. The best agreement for Conco-
ord/PBSA to experiment was obtained for a probe size of 0.5Å. This probe
size maximizes the correlation and minimizes the SDEC. The frequently cho-
sen probe size of 1.4Å, i.e. the approximate size of a water molecule, yields
a significantly decreased correlation of Concoord/PBSA to experiment and
led to a negative scaling factor for the surface area term (see lower panel in
Figure 3.16).
Interestingly, for a probe size of 1.2Å the best correlation was achieved for
a vanishing surface term (γ ≈ 0). While the scaling factors for electrostat-
ics and entropy were hardly affected by the probe size, the Lennard–Jones
coefficient β showed a strong dependency on the probe size, opposite to the
surface tension γ. Both reached an extremum at a probe size of 0.5Å.
One possible explanation for the excellent performance of this comparably
small probe size is the appearance of internal cavities. However, explicitly
considering cavity–related energetic contributions proportional to the cavity
volume did not yield a significant improvement for the prediction of muta-
tional changes in the folding free energy (data not shown). A possible further
refinement of Concoord/PBSA may be achieved by a separate treatment of
water–exposed protein surfaces and of buried cavity surfaces.
The interesting interaction between the Lennard–Jones contribution and
the surface area term is further discussed in section 3.8.

3.7.3 Minimization Method
Next to the chosen l–bfgs optimization, the steepest descent and conjugate
gradient methods were tested as alternatives (Figure 3.17).
Tolerances and step–sizes were unchanged for all methods. The conjugate
gradient method is supported every ten steps by a steepest descent opti-
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Figure 3.16: Dependency of correlation and standard deviation of Concoord/PBSA to exper-
iment on the chosen probe size for the non–polar solute–solvent interaction (upper panel).
The scaling factors in Concoord/PBSA were adjusted to the respective probe size (lower
panel). Instead of τ, τ′ =−τ is shown. Thus, the negative sign of the entropic contribution is
correctly expressed (adjusting TS).

mization step for faster convergence. Correlation, SDEC and scaling factors
were obtained using five–fold cross validation.

Table 3.8 holds the scaling factors for all three methods. While conjugate
gradient yielded similar results as compared to l–bfgs, the steepest descent
method is obviously not suitable for the optimization of Concoord structures
due to its slow convergence and and its comparably bad performance.
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Steepest Descent Conjugate Gradient l–bfgs

Figure 3.17: Concoord/PBSA results using different minimization methods.

Table 3.8: Scaling factors for different minimization approaches. For every set three hun-
dred structures were considered. a) σ in kcal/mol, b) γ in calmol−1Å−2.

Minimization Method r σa) α β γb) τ

l-bfgs 0.741 1.045 0.224 0.217 16.64 0.0287
conjugate gradient 0.737 1.038 0.220 0.343 6.34 0.0149

steepest descent 0.695 1.108 0.171 0.335 5.71 0.00725

3.7.4 OPLS-AA force field vs. Gromos G53a6 force field

The OPLS-AA all atom force field [73] was the first choice in the initial devel-
opmental stages of the Concoord/PBSA method. Due to the explicit consid-
eration of all hydrogen atoms an increased accuracy was expected. However,
in first comparative tests, G53a6 [71] outperformed OPLS both in accuracy
and efficiency.
For OPLS-AA, five–fold cross validation yielded r = 0.670 and σ= 1.13kcal/mol
with α= 0.186, β= 0.123, γ= 11.90calmol−1 Å−2 and τ= 3.5·10−4 (see Figure
3.18).
One possible reason for the comparably low accuracy of Concoord/PBSA us-
ing the OPLS-AA force field is the strong sensitivity of the minimization
observed for OPLS protein structures. The optimization converged to dis-
tinct conformations upon small translations of the same molecule. A similar
effect was also observed for the GROMOS force field, however with a clearly
reduced impact. This problem may be reduced or eliminated by an increased
numerical accuracy with the drawback of a significantly increased computa-
tional effort.
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Figure 3.18: Concoord/PBSA results using the OPLS-AA force field.

3.7.5 Inapplicable Contributions
Entropy from Normal Mode Analysis
The entropy estimate as proposed by Schlitter [154] (see Section 1.6.3) is
based on the covariance matrix. Here, the time consumption only has a
slight influence on the overall computational effort. Therefore, Schlitter’s
approximation was preferred over the normal mode approach (see Section
1.6.2). The latter requires expensive energy minimizations to the local min-
imum that would render the inclusion of every generated structure impossi-
ble for a large data set. Therefore, only the entropy for the Concoord/PBSA
input structure was estimated using NMA analysis. Coupled with the en-
thalpy of six hundred structures this approach yielded r = 0.729,
σ = 1.06kcal/mol with α = 0.241, β = 0.181, γ = 15.47calmol−1 Å−2 and τ =
1.92 ·10−5 (via five–fold cross validation, see left panel of Figure 3.19). Ne-
glection of this NMA based entropic energy contribution had a negligible
effect on the correlation of Concoord/PBSA to experiment and, thus, renders
this approach inappropriate.
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NMA Salt

Figure 3.19: Concoord/PBSA results applying a normal mode analysis on Concoord struc-
tures (left panel) and energies choosing a physiological salt concentration (right panel).

Salt effects to polar solute-solvent interactions
In the Concoord/PBSA protocol salt effects on the reaction field energy were
neglected, thus, i.e. the Poisson equation is solved instead of the more gen-
eral Poisson–Boltzmann equation. For a physiological salt concentration of
I = 0.15M of monovalent ions, the correlation decreased to r = 0.665 with an
increased SDEC of σ = 1.17kcal/mol as shown in Figure 3.19 (right panel).
The scaling factors determined using five–fold cross validation are
α= 0.000265, β= 0.0818, γ= 25.34calmol−1 Å−2 and τ= 0.0442. The strongly
decreased electrostatic contribution to the free energy hints to problems in
the description of the unfolded state.

3.7.6 Local Dielectric Permittivity

The use of a single constant to describe the dielectric permittivity of a protein
is a rough estimate. A transition region between the high permittivity sol-
vent and the low dielectric in the protein core can be taken into account by
assigning an increased intermediate permittivity to exposed groups which
are frequently identified by their increased flexibility (larger B–factor). This
concept of two different dielectric regions was successfully applied to pKa
calculations [111] in the past.
While Voges and Karshikoff [115] gave a more detailed picture for the lo-
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cal dielectricity of a protein by assigning a local dielectric constant to each
amino acid, two distinct approximations are much more easier to handle:
A simple comparison of the solvent–accessible surface of residues in proteins
with that of tripeptides in order to decide whether a residue is buried or
exposed could serve for the classification into a high (exposed) or low (buried)
dielectric region (see Figure 3.7) with predefined dielectric constants.
Also the Concoord/PBSA flexibility of amino acids could be used to distin-
guish low and high dielectric permittivity regions corresponding to low and
high flexibility, respectively.
Two problems arise due to the usage of different dielectric regions: The re-
gions may adopt different shapes upon mutation. This would lead to mal-
formed electrostatic contributions to the free energy function. Also, the di-
electric permittivity of the tripeptides resembling the unfolded states must
match the folded counterpart.
Therefore, at this developmental stage, we refrained from the usage of the
different dielectric regions inside the protein.

3.7.7 Concoord/GBSA
One of the computational bottlenecks of the Concoord/PBSA method is the
numerical solution of the Poisson–Boltzmann equation for every sampled
conformation. Substituting the Poisson–Boltzmann formalism by the Gener-
alized Born theory may significantly speed up the analysis of the solvation
free energy of proteins. To that end, the original finite difference method
developed by Still et al. [116] (see Section 1.5.4) was implemented using the
surface algorithm by Shrake and Rupley [151] (see Section 1.5.5). The im-
plementation was tested on a non–redundant set of pdb files entitled
cullpdb_pc40_res2.0_R0.25_d080530_chains5847 that was obtained from
http://dunbrack.fccc.edu/PISCES.php [251].
Figure 3.20 shows a very high correlation between the solution of the PBE
with that of the GB theory. Unfavorable calculation times were obtained
only for proteins with more than 10,000 atoms. This number exceeds the
number of atoms in the considered proteins. The Concoord/PBSA test set
consists of proteins with less than 1,800 atoms at most, and, evidently, the
time consumption for proteins with less than 2,000 atoms is at least reduced
by a factor of 5 applying the Generalized Born theory over the numerical
solution of the Poisson–Boltzmann equation.
Replacing the Poisson–Boltzmann calculations in the Concoord/PBSA pro-
tocol by the Generalized Born model leads to a slightly lowered accuracy
(r = 0.711, σ= 1.11kcal/mol) as compared to the Poisson-Boltzmann variant,
however, with a significantly lowered computational cost. With a dielectric

http://dunbrack.fccc.edu/PISCES.php
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Figure 3.20: Comparing the performance and outcome of the Generalized Born technique
with the Poisson-Boltzmann methodology. The reaction field energy correlates well with
the GB energy (correlation coefficient of r = 0.998 (left)). The right panel compares the
time consumption between the two methods. The whole set consisting of 5246 structures is
shown on top, results for a subset containing proteins with less than two thousand atoms
(1394 structures) are shown in the bottom panel.



110 Chapter 3 — Protein Stability Calculations

permittivity of ε= 1 for the protein the scaling factors obtained through five–
fold cross validation are α = 0.0863, β = 0.157, γ = 21.43calmol−1 Å−2 and
τ= 0.0310. The scaled energies for 600 structures per mutant are compared
to experimental data in Figure 3.21.
Due to explicitly taking the dielectric permittivity εsolute of the protein into
account via Equation (1.5.46)

(
1

εsolute
− 1
εsolvent

)

several dielectric permittivities can be scanned with a small computational
effort. Concoord/GBSA showed most suitable results at εsolute = 1 as shown
in Figure 3.22, compared to εsolute = 2 for the Concoord/PBA approach (see
Table 3.7).
As stated by Still et al. [116], the outcome of the Generalized Born formula
is roughly ten times more sensitive to small conformational alterations than
for changes in the effective Born radii. This led to the idea of an ultra fast
energy scanning for Concoord/GBSA by calculating the effective Born radii
only once for the mutated and minimized Concoord input structure. The cal-
culation of the polar solute–solvent interactions of 600 Concoord structures
via GB applying fixed effective Born radii proved to be less time consuming
than the determination of the effective Born radii of the crystal structure of
the same protein (what had been calculated 600 times in the previous case).
While the comparison with Poisson–Boltzmann shows a slightly decreased
performance as shown in Figure 3.23 (right panel), surprisingly, the over-
all performance of Concoord/GBSA with fixed Born radii (left panel) was
slightly improved with respect to its slower GB counterpart (r = 0.717, σ =
1.08kcal/mol, α = 0.0964, β = 0.160, γ = 20.05calmol−1 Å−2 and τ = 0.0373).
A scan of the dielectric permittivity gave similar results as for the correct
Concoord/GBSA method (not shown).
An additional alteration in favor of Generalized Born that can be tested in
the near future is the replacement of the distance–dependent dielectric per-
mittivity applied for the geometry optimization in Concoord/PBSA by Gen-
eralized Born electrostatics to mimic the dielectric screening. At the time
of writing this feature was not yet implemented in the official GROMACS
package.

3.8 Discussion

The random structure generation based on geometrical considerations only
was successfully combined with a physical free energy function using im-
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Figure 3.21: Concoord/GBSA results: Calculated free energy differences using General-
ized Born are plotted against experimental values (left panel). The reaction field energies
obtained by the Generalized Born model and the Poisson–Boltzmann formalism are com-
pared for more than 360,000 structures of the test set (right panel).

Figure 3.22: Concoord/GBSA correlation (+) and SDEC (♦) as a function of the dielectric
permittivity of the protein.
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Figure 3.23: Concoord/GBSA results for fixed effective Born radii.

plicit solvent models. The resulting Concoord/PBSA method is capable of
accurately calculating changes in folding free energies upon mutation.
Similar to MM/PBSA, explicit intramolecular interactions inside the protein
expressed by molecular mechanics force field energies were coupled with
continuum solvent approximations. Slow MD simulations were replaced by
Concoord–generated random structures that sample the conformational space
in the vicinity of the starting structure. The single energy contributions were
adjusted by introducing four scaling factors to reproduce experimental ener-
gies at high accuracy.
The development of the Concoord/PBSA method was based on a test set of
five proteins with experimentally known folding free energies for 582 mu-
tants and with known crystal structure of the (pseudo) wild type. The ana-
lysis of the full mutation set led to a correlation r = 0.75 to experiment and
a standard deviation (SDEC) of σ= 1.04kcal/mol.
Within this approach, it is shown that inclusion of conformational flexibility
via averaging of energies computed on an ensemble of structures is crucial
for a reliable prediction of folding free energy changes due to mutation. A
number of 300 structures was found as a compromise between accuracy and
computation time.
An analysis of the same set of mutants using Fold-X revealed a similar accu-
racy (r = 0.76, σ = 1.02kcal/mol). Different to Fold-X, Concoord/PBSA addi-
tionally yields a structural ensemble that can be used as a starting point for
further studies. Clustering algorithms [252, 253] or methods determining
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the quality of structures [242, 254] possibly further increase the accuracy.
The single energy rated structures could also be used for conformational
prediction in homology modelling or as a structural basis set for the docking
of ligands.
As a fast alternative to the numerical solution of the Poisson–Boltzmann
equation the Generalized Born electrostatics was implemented and tested.
Different from the MM/PBSA method, Concoord/PBSA makes use of scaling
factors for the different energetic contributions. Probable reasons for these
scaling factors are both due to the different structure generation and due to
the neglect and simplification of energetic contributions, as outlined in the
following.

Structural ensemble
One important approximation with respect to MM/PBSA is the use of mini-
mized Concoord structures in place of snapshots taken from explicit solvent
molecular dynamics trajectories. While the latter provide genuine statistical
ensembles in equilibrium allowing to obtain potential and kinetic energies
as ensemble averages, the random structures obtained via Concoord/PBSA
represent local energetic minima.
However, Concoord was reported to sample a similar conformational sub-
space as compared to MD [64] for proteins residing in a single preferred
conformation. For proteins or mutants expected to undergo conformational
transitions, explicit MD simulations are required for the sampling of the
(available) conformational space.

Unfolded state
Another assumption concerns the treatment of the unfolded state. The sim-
ple tripeptide model mainly covers mutation–induced changes of the solva-
tion free energy of the unfolded state. Differences in the long range interac-
tions that are caused by mutations are not considered in this method. Pos-
sible improvements in the description of the unfolded state maybe achieved
e.g. by the inclusion of long range electrostatic interactions using a Gaussian
chain model [231] or a more comprehensive model of the unfolded state. The
latter can be thought of as an ensemble of random coils without regular sec-
ondary structure. Similar to the method developed by Elcock [239] it should
be possible to use Concoord with altered distance restraints for non-bonded
pairs to sample unregular structures. However, the unfolded structure of a
protein may well encompass a non–random structure [255, 256] which fur-
ther complicates the energetic estimate of the unfolded state.
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Continuum solvent approaches
A further key element of the Concoord/PBSA technique is the use of contin-
uum solvent approaches at various states of the computation while using a
MM force field that was partially parametrized for explicit solvent usage.
In the optimization process a distance dependent dielectric permittivity ε(r)=
40nm−1 r mimics solvent screening. This screening is essential for prevent-
ing incorrect modelling of solvent exposed polar or charged amino acid side
chains. While energy minimizations with explicit solvent models are too time
consuming to meet the requirements for a fast method, minimizations using
the Generalized Born method may serve as an alternative (soon available in
Gromacs).
Implicit solute–solvent interactions approximated by the solution of the Pois-
son–Boltzmann equation, the Generalized Born model, or by the molecular
surface area approach are partly based on empirical parameters like the
dielectric constant of a protein or the surface tension that show large dif-
ferences in literature. Although the most suitable parameters were chosen
for the whole test set, it is possible that these parameters vary slightly from
protein to protein, e.g. depending on the polarity of the protein surface.
A general problem is the smoothly varying dielectric permittivity between
the protein interior (ε ≈ 2) and the bulk (ε ≈ 78). For the numerical solu-
tion of the PB equation ε = 2 was chosen. However, changing the dielectric
constant to ε = 1 results in a doubling of the Coulomb interaction and the
reaction field shows a scaling behavior similar to 1

1
ε− 1

78
. The electrostatics

weighting factor α = 0.224 may hint to a dielectric constant of about ε
α
= 9

for α= 1, although calculations with ε= 2 yield the overall largest accuracy.

Schlitter’s entropy estimation
Schlitter’s method yields an upper limit for the entropy of the solute. There-
fore, a scaling is required within the context of the whole energy function.

Experimental conditions
Experimental folding free energies used for the parameterization of Conco-
ord/PBSA were based on a variety of experimental conditions and methods
with differing accuracies. A refinement of Concoord/PBSA could therefore be
achieved by a method or condition dependent scaling of parameters for the
mutational test, i.e. results of Concoord/PBSA would be dependent on the
experimental method or condition chosen for comparison.
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Energy Function and Scaling Factors
The Concoord/PBSA free energy is a linear combination of the considered
energy contributions. A regression fit applied to find suitable scaling factors
is independent of the sources of the individual terms, i.e. by fitting energetic
terms neglected in the free energy function may implicitly be considered.
A similar scaling approach was previously also applied to MM/PBSA calcu-
lations [257]. As the fitting procedure was applied to one protein with differ-
ent ligands only, the obtained weighting factors are probably highly system
dependent.

Table 3.9: Importance of the different Concoord/PBSA contributions: Correlation, SDEC
and scaling coefficients for different forms of the energy function when neglecting up to two
contributions are shown. a) σ in kcal/mol, b) γ in calmol−1Å−2.

Energy Function r σa) α β γb) τ

∆GCC/PBSA 0.748 1.04 0.224 0.217 16.64 0.0287
∆∆Ges +∆∆GSA −T∆∆S 0.741 1.05 0.209 — 29.87 0.0248
∆∆Ges +∆∆GLJ −T∆∆S 0.737 1.06 0.244 0.468 — 0.0266
∆∆Ges +∆∆GLJ +∆∆GSA 0.731 1.05 0.241 0.179 15.57 —
∆∆GLJ +∆∆GSA −T∆∆S 0.665 1.16 — 0.080 25.46 0.0438

∆∆Ges +∆∆GSA 0.727 1.06 0.226 — 26.88 —
∆∆Ges +∆∆GLJ 0.721 1.07 0.258 0.417 — —
∆∆GSA −T∆∆S 0.665 1.17 — — 30.32 0.0419
∆∆GLJ −T∆∆S 0.633 1.21 — 0.462 — 0.0424
∆∆GLJ +∆∆GSA 0.622 1.21 — 0.004 24.76 —
∆∆Ges −T∆∆S 0.270 1.69 0.229 — — -0.115

∆∆GCC/PBSA −∆∆Gcoul 0.665 1.17 0.0009 0.078 25.61 0.0429
∆∆GCC/PBSA −∆∆GRF 0.665 1.17 0.0001 0.081 25.42 0.0439

∆∆GCC/PBSA +∆∆Gbonded 0.739 1.05 0.210 0.041 27.38 0.0297

The significance of the individual energetic terms for the full free energy
function was determined by neglecting contributions and applying a five–
fold cross validation procedure to the reduced set. All possible permutations
including two or three contributions are shown in Table 3.9.
Seemingly, the Lennard–Jones energies and the molecular surface term con-
tain redundant data for the calculation of folding free energies. Neglecting
one contribution leads to a roughly doubled scaling of the other while the
scaling of electrostatics (α) and of entropy (τ) remained almost unaffected.
The redundancy of both energies was examined by a comparison as shown
in Figure 3.24. Surprisingly, the SA energies showed a high correlation of
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Figure 3.24: The scaled energy terms (taking the full Concoord/PBSA energy function) of
the non-polar solvation contribution and the Lennard-Jones interaction are compared for
mutations at buried and exposed sites revealing a surprisingly high correlation.

r = 0.96 with a SDEC of σ= 0.27kcal/mol to the LJ energies. While exposed
mutation sites are expected to show different behavior in the surface area
than buried ones, the molecular surface term and Lennard–Jones contri-
butions were compared for exposed and buried mutations separately, both
resulting in a similar picture. One has to keep in mind, however, that only
the mutation–induced energy differences are similar. The total free energies
for these two contributions differ considerably (see Figure 3.9).

Also the importance for the inclusion of the full electrostatics consisting of
the Coulombic and reaction field contributions is seen (Table 3.9). Neglect of
either Coulombic or reaction field term resulted in a vanishing contribution
of the second electrostatic contribution.
The stability of the electrostatic scaling parameters was tested by introduc-
ing individual scaling parameters for all four states of the thermodynamic
cycle (Equation (3.2.3)), i.e. the folded and unfolded wild type and mutant
states. All scaling factors were determined to approximately ±0.22 with
signs correctly predicted in all cases (not shown).
The value for the surface surface tension γ= 16.64 cal

mol Å
is significantly larger

than the commonly used 5calmol−1 Å−2 introduced by Sitkoff et al. [142].
This frequently applied value in MM/PBSA calculations [51] was directly
fitted to hydration free energies of sidechain analogues and therefore finds
its use in unscaled energy functions.
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The last energy function analyzed in Table 3.9 is the Concoord/PBSA energy
function that now includes the full force field energies (bond, angle, dihe-
dral,...). The obtained accuracy is comparable to the set without any force
field contributions at all. A probable reason is the use of minimized input
structures. The steep energy functions of the bonded contributions may lead
to large errors if bond lengths or angles are far from equilibrium.
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Chapter 4

Protein binding affinities

The existing Concoord/PBSA method was adopted for the prediction of protein–
protein binding affinities. This chapter provides a brief description of the
Concoord/PBSA approach for the prediction of mutational effects on bind-
ing affinities as well as its application to protein–protein and protein–ligand
binding.
For an unbiased comparison of the Concoord/PBSA prediction for mutational
effects on the binding free energies of protein–protein complexes to other
well–established, fast methods the TEM1–BLIP complex was chosen (Chap-
ter 4.2). For this complex about 100 data points for mutations to alanine are
known from experiment.
The size of this complex is, however, prohibiting for a comparison to the
simulation–based MM/PBSA approach (Chapter 1.7.2). Here, the consider-
ably smaller p53–MDM2 complex was selected since this system was studied
previously using MM/PBSA [166] (Chapter 4.3).
Apart from the above systems, Concoord/PBSA was applied to complete mu-
tational scans of proline–rich peptides binding to the GYF domain (Chapter
4.4) and of the insulin–insulin dimer interface in order to suggest muta-
tions with a decreased binding affinity (Chapter 4.5). The latter is crucial
to identify so–called fast insulins that are used in the treatment of diabetes
mellitus.

4.1 Methods

4.1.1 Binding Affinity Predictions with Concoord/PBSA

Several changes have been made to the Concoord/PBSA approach for the cal-
culation of mutational changes of binding affinities [1]. The most important
one is due to an adapted thermodynamic cycle1:

1Although both binding partners are described as mutant in the mutant states (lower
row) of the thermodynamic cycle, only one partner may truly carry a mutation.

119
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Gpartner A
Wildtype +Gpartner B

Wildtype Gcompound
Wildtype

Gpartner A
Mutant +Gpartner B

Mutant Gcompound
Mutant

//
∆Gbind

Wildtype

��
� �
� �
� �

∆Gmutate
unbound

��
� �
� �
� �

∆Gmutate
compound

//

∆Gbind
Mutant

(4.1.1)

The denatured state is irrelevant for binding calculations. The change in
free energy upon binding, i.e. the binding free energy, is given by

∆Gbind =Gcompound −
(
Gpartner A +Gpartner B

)
. (4.1.2)

While Concoord/PBSA ensembles were generated for the wild type and mu-
tated complex structures, conformations of the respective binding partners
were obtained from the complex Concoord/PBSA ensembles by removing the
other partner, similar to the MM/PBSA approach. Thus, only interaction
energies between both partners as found in the complex structures are de-
termined, and bonded energies calculated from the force field cancel. Also by
restricting the structure generation to the complex corresponding CPU time
is decreased by more than a half.
As the structures were only generated for the complex conformations, the
usually increased flexibility of the isolated proteins with respect to the com-
plex is disregarded. Due to the weakness of implicit solvent free energy
functions based on present–day force fields in distinguishing different con-
formational substates of proteins, this approach was reported to yield sig-
nificantly improved results with respect to approaches explicitly considering
the conformational flexibility of the isolated proteins [166].
The Concoord/PBSA energy function for binding free energy changes upon
mutation has the form

∆∆Gbinding
CC/PBSA =α∆∆Ges +β∆∆GLJ +GPPIS, (4.1.3)

introducing an additional cooperativity contribution

GPPIS = γIwt + c (4.1.4)

that is proportional to the protein–protein interaction surface of the wild
type crystal structure Iwt (evaluated with a probe size of 1.4Å). The weight-
ing factors were determined using five–fold cross validation on a set of 367
mutants from 9 protein–protein complexes yielding α = 0.137, β = 0.258,
γ=−0.768calmol−1Å−2 and c = 2.574kcal/mol.



4.1 Methods 121

Consideration of entropy did not show any significant effect on the results
(data not shown).
For selected cases, changes in protonation states of titratable amino acids
upon complex formation or/and upon mutation were considered using a cor-
rection term to ∆∆Gbinding

CC/PBSA [258, 259] (based on pKa calculations, see next
section):

∆GpK = kBT ln(10) · (pKa −pHexp
)
. (4.1.5)

The calculated binding free energies from the used test set data are in very
good agreement to the experimental values with a correlation of r = 0.80 and
a SDEC σ= 1.17kcal/mol (Figure 4.1).

Figure 4.1: Concoord/PBSA binding free energy results: The calculated changes in binding
free energy upon mutation are plotted against experimentally determined values. Fitting
the weights of the single contributions leads to a correlation of r = 0.80 and a standard
deviation of σ= 1.17 kcal

mol .

4.1.2 pKa Calculations
The calculation of pKa values for titratable groups is based on the thermody-
namic circle for the protonation/de–protonation of an acceptor A or donator
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AH isolated in water and in its environment, i.e. in the protein [111, 260–
262]:

AH in Water A in Water +H+

AH in Protein A in Protein +H+

//
∆Gdeprotonate

in Water

��

∆Genv
AH

��

∆Genv
A

//

∆Gdeprotonate
in Protein

(4.1.6)

These calculations usually only take electrostatic contributions into account.
While ∆Gdeprotonate

in Water is experimentally known and listed in textbooks as the
model pK0

a for isolated titratable groups in water environment, the two ener-
gies (∆Genv

AH and ∆Genv
A ) introducing the protonated and de–protonated state

into the protein environment lead to an intrinsic pKint
a . The environmental

free energy contribution ∆Genv consists of the change in reaction field en-
ergy upon insertion in the dielectric environment of the uncharged protein,
∆GRF, and the electrostatic interactions between the inserted amino acid
and the permanent dipoles of the (now charged) rest of the protein ∆Gdipole

∆Genv =∆GRF +∆Gdipole. (4.1.7)

Every other titratable group is taken in its neutral state for calculating
∆Gdipole.
The intrinsic pKa is now obtained via

pKint
a = pK0

a −
ζ

kBT ln(10)
(
∆Genv

A −∆Genv
AH

)
. (4.1.8)

with ζ = 1 for acidic and −1 for basic groups. For molecules with a single
titratable site the true pKa equals the intrinsic pK0

a. For multiple titratable
sites, the interaction between all titratable groups has to be taken into ac-
count.
The change in free energy for charging two titratable groups ∆∆G i j is given
according to the thermodynamic cycle

(0,0) (0,1)

(1,0) (1,1)

//

�� ��

//

(4.1.9)

∆∆G i j =G i j(1,1)−G i j(0,1)−G i j(1,0)+G i j(0,0). (4.1.10)
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Here 0 denotes a neutral state and 1 a charged state that is later on ex-
pressed by ξ. The pair (ξi,ξ j) describes the charge state of both interacting
partners i and j. The charge qi on group i can be described as

qi =−ξiζi, (4.1.11)

with the sign of the charge defined by ζ as defined above.
For a given protonation state n of the whole protein with N titratable groups,
the electrostatic free energy is given by [260]

∆Gn =
N∑

i=1

[
qn

i

(
2.3kBT

{
pH− pK int

a

})
+ξn

i

∑

1≤ j<i
ξn

j∆∆G i j

]
. (4.1.12)

With a total of 2N possible protonation states, the average charge < qi > of
group i is given by

< qi >=

2N∑
n=1

−ξn
i ζi e−∆Gn/kBT

2N∑
n=1

e−∆Gn/kBT

. (4.1.13)

As for large proteins the number of 2N states is not feasible on a realis-
tic time scale any more, Monte Carlo sampling techniques are frequently
used to find the energetic minimum at a given pH corresponding to the most
probable protonation fraction. A Henderson-Hasselbalch fit of the titration
curve < qi > (pH) then yields the pKa of a group i (midpoint of the fit). The
accuracy is in the range of one pKa unit.
While WHAT IF [242] uses the approach presented above for the calculation
of a pKa, the freely available MCCE program (http://www.sci.ccny.cuny.
edu/~MCCE/) [263] follows a slightly different approach that also includes
different sidechain conformations for the titratable groups.

4.2 Comparison of Concoord/PBSA to Fold-X
and Robetta for the TEM1–BLIP complex

4.2.1 TEM1–BLIP complex
The study of the TEM1–BLIP complex is highly relevant for improving β–
lactam antibiotics like penicillin [264]. β–lactamases such as the TEM–1
β–lactamase (TEM1), can be found in various bacteria. These enzymes are
capable of hydrolyzing an important amide bond of β–lactamase antibiotics

http://www.sci.ccny.cuny.edu/~MCCE/
http://www.sci.ccny.cuny.edu/~MCCE/
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Relative changes in �exibility

a) b)

c)

Figure 4.2: Effect of alanine mutations on the TEM1–BLIP complex. (a) Relative changes
in flexibility of the TEM1–BLIP complex upon the F142A mutation (green). Side chains
with large increase in flexibility are shown in stick representation. (b) Relative change in
root mean square fluctuations (RMSF) upon the F142A mutation for all residues in the
TEM1–BLIP complex, sorted according to their distance to the mutation site. (c) Calculated
changes in binding free energy for TEM1–BLIP alanine mutants applying Fold-X, Robetta
and Concoord/PBSA. For the comparison, parameters for CC/PBSA were fitted on the re-
maining dataset on other protein–protein complexes only. The diagonal line corresponds to
ideal prediction.

rendering them ineffective. The β–lactamase inhibitory protein (BLIP) is a
potent inhibitor of TEM1. However, still many bacterial organisms are ca-
pable of hydrolyzing antibiotics in the presence of BLIP. Mutational studies
may eventually lead to the design of a more powerful β–lactamase inhibitory
protein analogue that increases the number of bacteria sensitive to β–lactam
antibiotics.
For the TEM1–BLIP complex, 96 (alanine) mutants and their effect on the
binding affinity were collected from literature [265–267]. These served as
an unbiased test set for a comparison of the prediction accuracy of Conco-
ord/PBSA to other well–established methods, Fold-X [59] and Robetta (http:
//robetta.bakerlab.org/) [268]. The test set was restricted to mutations
to alanine since Robetta does not allow for different target amino acids.
All predictions were based on the same wild type crystal structure for the

http://robetta.bakerlab.org/
http://robetta.bakerlab.org/
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TEM1–BLIP complex (1JTG) [269].

4.2.2 Results

Figure 4.2 c) shows the correlation of the calculated values of Robetta, Fold-
X and of Concoord/PBSA with the experimentally determined mutational
changes in binding free energies:Concoord/PBSA results are depicted in red
crosses, Fold-X in blue diamonds and Robetta in green triangles. Clearly,
Concoord/PBSA outperforms both Fold-X and Robetta. While the correla-
tion to experiment is reasonable for Fold-X (r = 0.64), Robetta is not able
to predict the influence of mutations on the binding affinity of the TEM1–
BLIP complex (r = 0.14). The latter is probably due to the observation, that
mutations of the TEM1–BLIP complex act in a highly cooperative manner
[266], while Robetta assumes a linear superposition of mutational effects.
It is therefore not able to cope with cooperative effects by construction. In
contrast, the structure generation in Concoord/PBSA is based on the partic-
ular mutant structure and thus, apart from cooperative effects in the free
energy function, explicitly considers mutation–induced differences in flex-
ibility. This is shown in Figure 4.2 a): the flexibility of residues close to
the mutant residue for the BLIP–F142A mutant was substantially enhanced
(mutation site colored in green, increase in rmsd in red, decrease in blue).
This effect is not taken into account by the Fold-X method or by Robetta.

4.3 Full mutational scan of p53 bound to MDM2
and comparison to MM/PBSA

4.3.1 Function and Importance

The multifunctional transcription factor p53 is responsible for cell cycle reg-
ulation and acts as a tumor suppressor, among others [270]. Mutations of
p53 or down–regulation by overexpressed murine double minute 2 protein
(MDM2) is found in most cancers. In order to restore p53 functionality in
cancers that leave the p53 sequence unchanged, the interaction between
MDM2 and p53 is a promising target for therapeutic studies. As p53 is only
fully functional in its tetrameric form, cancers showing mutated p53 with
intact binding interfaces may be targeted with altered p53 proteins. Fully
functional, mutated p53 with a decreased oligomerization affinity towards
the inactive p53 may be induced in cancer cells to restore the basal level and
activity of p53 [271, 272].
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Figure 4.3: Concoord/PBSA full mutational scan of the p53 binding interface to MDM2
and comparison to MM/PBSA. a) Cartoon representation of the binding interface shows the
sequence of p53 colored according to its solvent accessibility (blue inaccessible, red exposed
and green exposed but no comparison to MM/PBSA possible). b) and e) show the full muta-
tional scan of the p53 binding interface with full inclusion of the interface term (b) and with
inclusion according to the solvent accessibility (e). The first column shows the wild type se-
quence colored as in (a). The spots represent predicted binding free energy changes upon a
single–point mutation determined by row (mutation site) and column (mutant amino acid).
Plots c) and d) show the correlation with MM/PBSA with and without full inclusion of the
interface term.
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The p53–MDM2 binding was studied in order to check whether Concoord/PBSA
is able to identify known hot spots and for comparison to MM/PBSA calcula-
tions reported by Massova and Kollman [166].

4.3.2 Results
Figure 4.3 b) shows a complete mutational scan of p53 bound to human
MDM2 (PDB entry 1YCR) [273]. The experimentally determined hot spots,
B_F19, B_W23 and B_L26, were clearly identified also by Concoord/PBSA. Al-
most all mutations of these amino acids result in a loss in binding affinity of
more than 2kcal/mol.
A direct comparison to the MM/PBSA results for p53 bound to human (PDB
entry 1YCR) and frog MDM2 (PDB entry 1YCQ) (both crystal structures de-
termined by Kussie et al. [273]) shows a significant deviation for those mu-
tants that have a small effect on binding affinity as predicted by MM/PBSA
(Figure 4.3 c)). A more detailed analysis revealed that these mutational sites
are solvent–exposed, i.e. not at the interface between p53 and MDM2. For
these mutants, the protein–protein interaction surface term GPPIS was ne-
glected for further analysis and resulted in significantly improved agree-
ment (Figure 4.3 d)). The cartoon in Figure 4.3 a) shows a surface model of
MDM2 with a bound p53. The p53 sequence in the cartoon as well as in the
mutational scan is color–coded according to its solvent accessibility — blue
buried, red solvent exposed — and the possible importance of the interaction
surface term, respectively. The green colored, solvent exposed C–terminus of
the p53 peptide chain has not been studied by Massova and Kollman [166].
The results underline that the interface term GPPIS should only be consid-
ered for interface mutations. A possible distance–dependence of the inter-
face term cannot be determined based on the limited available experimental
data for protein–protein binding. The mutational scan when neglecting the
interface term for solvent exposed mutation sites is shown in Figure 4.3 e).

4.4 Proline–rich peptide binding to the GYF
domain

4.4.1 Function and Importance
GYF domains are responsible for the recognition of proline–rich sequences
[274, 275] next to profilin, SH3, the WW, the EVH1, and the UEV domains.
These intracellular domains assist in the coordinated assembly of multi–
protein complexes. The GYF domain is named after the glycine–tyrosine–
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phenylalanine tripeptide occurring in the binding interface that is important
for the recognition of the sequence motif (R/K/G)XXPPGX(R/K) by CD2BP2
[276]. Kofler et al. [276] analyzed the binding affinity towards single–point
mutants of the sequence SHRPPPPGHRV via spot synthesis [32] shown in Fig-
ure 4.4. The synthesized peptides are fixated and arranged as spots on a
cellulose membrane. In a following step the binding partner is brought into
contact with the cellulose membrane and can bind the immobilized peptide
chain. Via chemiluminescent methods the spot intensities and radii are ob-
tained. Both correlate with the binding affinity between the GYF–domain
and the corresponding peptide chain [32, 277, 278].

4.4.2 Results

A full mutational scan of the SHRPPPPGHRV sequence, comparable to the spot
analysis of Kofler et al. [276], has been evaluated using the Concoord/PBSA
web interface based on the crystal structure of the CD2BP2-GYF domain
(1L2Z) [279] that is in complex with the mentioned peptide sequence. The
outcome of the calculation is shown in Table B.1. The results and a compar-
ison to the spot synthesis are depicted in Figure 4.4. As a direct quantifica-
tion of the experimental spot analysis is not possible due to the large noise
and the low resolution of the picture, the peptides were sorted according to
binders or non-binders by visual inspection. For many mutants no clear cut
was possible. The calculated binding free energies can be sorted more easily
by a well defined cut–off value. Based on the differentiation of the exper-
imental data the cut–off was obtained by computationally scanning for the
highest accuracy. For a cut–off energy difference of 1.97kcal/mol an accuracy
(quotient of correctly predicted energy differences and the total number of
considered mutants) of 72.4% was achieved.
Although a high accuracy was obtained, two main problems exist:

• Alternative binding modes for the GYF domain have been observed
using MD simulations [280]. Here, the peptide chain with the mutation
G8W is shifted by one position while the binding site remains. Such
conformational changes cannot be predicted by Concoord/PBSA. Also,
a different binding site for SH3 domains has been identified by means
of MD [281]. A similar behavior of the GYF domain cannot be excluded.
Alternative binding modes may be considered by loosened constraints
between the peptide and the protein combined with a structure–based
clustering [252, 253]. This was, however, not considered here due to
the limited accuracy of the experimental data.
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Figure 4.4: Concoord/PBSA energies for proline-rich peptide binding to the GYF domain:
At the top the GYF domain is shown in light green with the peptide SHRPPPGHRV col-
ored blue to red from the N to C–terminus, respectively. This also applies for every ap-
pearance of the sequence. The experimental spot synthesis was taken from [276], the clas-
sification according to binder or non-binder is an estimate done by visual inspection. The
Concoord/PBSA results that are shown below are displayed in a similar fashion. The inten-
sities and radii of the spots shown in the Spot Synthesis column correlate with the binding
free energy. The achieved accuracy with respect to the classification is 72.4%.
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• Extensive pKa calculations of the whole mutational set using MCCE
[263] revealed possible changes in the protonation state of the second
histidine of the peptide chain upon binding. The calculated pKa for
the second histidine is raised from the model pKa of 6.0 to 7.0 in the
bound and 6.7 in the unbound state of the wild type (6.6 and 6.5 for the
first histidine, respectively). As a consequence, the protonation states
of these histidines are not well defined when assuming a pH of around
7.0. Another problem arising from the experimental data is the lack of
reported pH conditions of the study. Thus, pH7 is only an assumption.
Due to the above mentioned uncertainties concerning a pKa correction
term ∆GpK (see Equation (4.1.5)) was not considered in the presented
results.

Results of the pKa calculations for the two histidines in the peptide
chain are presented in Table B.1 in the Appendix.

4.5 Dimerization of Insulin

4.5.1 Function and Importance
Insulin is a hormone consisting of 51 amino acids distributed among two
distinct chains that form the monomer [2]. A cartoon of an insulin dimer is
shown in Figure 4.5 b). Insulin is crucial for the regulation of the physio-
logical glucose level in blood. By binding to the insulin receptor the glucose
uptake is activated. The malfunctioning of the regulatory process is known
as diabetes mellitus.
Type 1 diabetes mellitus patients suffer from an autoimmune disease. The
production of insulin is hindered by the destruction of insulin secreting β-
cells of the pancreas. Here, an insulin replacement therapy medicating in-
sulin analogues is applied [282–285]. A huge problem is to mimic a physio-
logical insulin secretion. While fast acting insulin analogues show no physi-
ological rapid rise in plasma insulin concentration shortly after a meal, long
lasting insulin analogues provide no constant insulin level over night or be-
tween meals. With slight alterations to the human insulin it is tried to con-
verge the activity profile of the analogues to the regular physiological se-
cretion. The change in starting time, impact and decay are accomplished by
exploiting the ability of insulin to self-associate.
The physiological active monomer forms dimers at micromolar concentra-
tions. Dimers further associate to hexamers in the presence of zinc.
The idea behind rapid acting insulin is to reduce the propensity of insulin
for the self–association that should eventually lead to faster absorption and
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a shorter activity period. There are three fast–acting insulin analogues cur-
rently used as medication in Germany at the time of this thesis [286]:

• aspart insulin (B_P28D) [283],

• lispro insulin (B_P28K, B_K29P) [284],

• glulisine insulin (B_N3K, B_K29E) [285].

With only one or two mutations (mentioned in brackets) the insulin self–
association is decreased. However, the resulting mutant has to retain its
biological activity and binding affinity towards the insulin receptor. Experi-
mentally determined residues that are important for receptor binding are
A_G1, A_I2, A_V3, A_E4, A_Q5, A_Y19, A_N21, B_L6, B_G8, B_L11, B_V12,
B_E13, B_Y16, B_Y17, B_G23, B_F24, B_F25 and B_Y26 [287]. Docking insulin
to a three dimensional structure of the insulin receptor solved by electron
microscopy, the amino acids A_E4, A_Q5, B_V12, B_Y16, B_Y17, B_F24 and
B_Y26 were recognized to be in close contact with the receptor [288]. Dock-
ing analysis of altered crystal structures of insulin and the insulin receptor
identified A_G1, A_I2, A_V3, A_E4, A_T8, A_Y19, A_N21, B_V12, B_B13, B_Y16,
B_F24, B_F25 and B_K29 as (possible) key residues for interacting with the
receptor [289].
The insulin stability and dimerization was extensively studied by Zoete et
al. [169, 173, 290]. Unfortunately, the authors only considered mutations in
one monomer of the dimer. Therefore, a direct comparison between the bind-
ing affinities reported using MM/PBSA [169] and Concoord/PBSA data was
omitted, as only a full mutational analysis using Concoord/PBSA applied to
both monomers at the same time was analyzed.

4.5.2 Results
For a Concoord/PBSA test study the direct contacts between the two insulin
monomers were chosen as mutation sites. The full single–point mutation set
comprising the positions B_S9, B_V12, B_E13, B_Y16, B_G20,B_E21, B_R22,
B_G23, B_F24, B_F25, B_Y26, B_T27, B_P28, B_K29 and B_A30 was computed
for the porcine insulin (4INS [291]) (human insulin was not available as
X-ray structure in the correct conformation). The only difference to human
insulin is a threonine at position 30 in chain B which is replaced by alanine
in porcine insulin. Sample calculations revealed no noticeable difference be-
tween both insulin analogues and, thus, the full mutational scanning com-
putation was applied to the unaltered porcine insulin.
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Figure 4.5: Concoord/PBSA energies for stability and dimerization analysis of insulin mu-
tations. For explanations see text.

Results of the complete mutational scan for both stability and dimerization
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analysis are depicted in Figure 4.5 a) and c). The free energies are shown
in a combined representation for both folding and binding: The coloring cor-
responds to the computed change in binding free energies and the circles’
radii are a measure for the change in folding free energies (see also legend).
The mutation sites are colored from blue to red (N– to C–terminal) at every
occurrence. Figure 4.5 b) shows an insulin dimer (4INS) in cartoon repre-
sentation. The lower right panel lists all mutations sorted according to their
effect on the binding affinity. The columns correspond to the mutations at a
particular position in the sequence and are independent of each other (only
single–point mutations considered). The effect of a mutation on the binding
affinity is given by its height.
Modelling of the five mutations B_G23F, B_G23W, B_G23Y, B_F25W and B_P28F
led to problems in the structure generation using Concoord. This was due
to overlaps of atoms when inserting bulky amino acids. These were omitted
from the analysis.

Table 4.1: In vitro alanine scanning results for dimerization and known analogues with
single-point mutations are compared to Concoord/PBSA binding and stability free energies
(in kcal/mol).

Mutation ∆∆Gbind
CC/PBSA ∆∆Gfold

CC/PBSA occurrence in vitro
B_V12A 2.317 0.8270 Dimer [292]
B_Y16A 3.775 1.4402 Monomer [292]
B_F24A 3.13 3.8942 Monomer [292]
B_F25A 2.48 0.5117 Dimer [292]
B_Y26A 2.356 3.7926 Monomer [292]
B_T27A 1.797 0.2585 Dimer [292]
B_Y16H 3.324 0.9024 Monomer [293]
B_E13Q -0.812 -0.3203 Dimer/Hexamer [284]
B_F25D 2.903 0.8648 Monomer [284]
B_V12E 10.504 -0.2038 most reduced self–association [283]
B_S9D 3.172 0.6974 \*****| [283]
B_P28D 4.005 1.4015 \****| [283]
B_Y26E 5.085 2.6839 \***| [283]
B_V12I 2.298 -0.3551 \**| [283]
B_T27E 1.847 -0.1883 least reduced self–association [283]

The outcome of Concoord/PBSA was compared to analogues with known in-
creased or decreased self–association (Table 4.1). The first part is in good
agreement with an experimental alanine scanning reported by Chen et al.
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[292]. Only the prediction for the B_F25A mutant is in disagreement with
experiment. However, this is probably due to the usage of porcine insulin
in Concoord/PBSA: Calculations based on the human insulin (porcine in-
sulin with mutation B_A30T) yielded an increased, destabilizing free energy
of 3.44kcal/mol for the B_Y26A mutation, while the dimerization free energy
for B_F25A stayed constant (2.47kcal/mol). Also, stabilization/destabilization
of the monomer fold may have an influence on dimer formation, i.e. the dimer
formation propensity may be decreased due to a decreased stability of the
monomer.
The tendency of the next three insulin mutants, B_Y16H, B_E13Q and B_F25D
have been estimated correctly, too. Especially the shift of the equilibrium
towards the dimeric and hexameric form for the B_E13Q mutant is correctly
predicted by a negative change in dimerization free energy.
Brange et al. [283] measured a decrease in self–association for several in-
sulin analogues. Most importantly the lowest and highest affinity decreas-
ing mutations were accurately predicted. However, the Concoord/PBSA free
energy changes of three mutations show a wrong order. A repeated calcula-
tion using mutations to human insulin showed similar values, thus, method
dependent fluctuations and the use of the wrong wild type can be canceled
as reasons.

Table 4.2: Binding energies of medically relevant insulin analogues. The porcine insulin
with the mutation B_A30T (human mutation) was used for the calculation. Energies in
kcal/mol.

Analogue ∆∆GCC/PBSA ∆∆GLJ ∆∆Ges ∆∆GPPIS
Aspart Insulin 3.92 0.0106 2.34 1.57

Glulisine Insulin 2.04 0.176 0.299 1.57
Lispro Insulin 2.71 -0.0293 1.17 1.57

Results for the medically used insulin analogues are reported in Table 4.2
showing a decrease in dimerization affinity for all three mutants.
The studies of Zoete and Meuwly [173] allow for a direct comparison between
MM/PBSA and Concoord/PBSA concerning the relative folding free energies
for insulin mutations. The comparison is shown in Figure 4.6 a) with their
computed Fold-X values as a kind of third opinion. The three different calcu-
lations allow a comparison between the distinct methods. For a full alanine
scan (except alanine, cysteine or glycine) of the insulin monomer correla-
tion coefficients and SDECs were determined for the comparison of Con-
coord/PBSA with MM/PBSA (r = 0.611, σ = 4.38kcal/mol), Concoord/PBSA
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Figure 4.6: Concoord/PBSA alanine scan on insulin for probing stability and dimerization.
A comparison was done between MM/PBSA (red), Fold-X (blue) and Concoord/PBSA on sta-
bility predictions (a). The loss in stability or affinity is projected on the cartoon representa-
tion of the monomer (b) and the dimer (c/d), respectively. The color–code from green (similar
stability/affinity) to red (unstable) as shown in the legend is the same for both cases. The
monomer is rotated around the shown axe to give a different point of view (b). The same
points of view were chosen for the dimers (c/d), which also show interface residues in stick
representation. Positions colored in white were not computed, as the wild type shows either
already an alanine, a cysteine or a glycine.
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Table 4.3: pKa corrections to insulin dimerization affinity calculations. All energies in
kcal/mol. m denotes a change in protonation in the monomer and ∆GpKa has been added
two times as there are two monomers. AA denotes the position and amino acid which shows
a different protonation state according to pKa calculations with respect to pH= 7.5.

Mutation ∆∆GCC/PBSA AA pKa ∆GpKa ∆∆GpKa
CC/PBSA

B_S9D 3.172 B_H10 8.444 -1.293 1.879
B_V12D 8.053 B_D12 9.636 -2.926

D_D12 9.157 -2.27 2.856
B_V12E 10.504 B_E12 8.167 -0.914

D_E12 10.746 -4.447 5.143
B_V12K 10.53 B_K12 6.041 -2.0

D_K12 1.539 -8.167 -0.373
B_R22H 1.697 D_H22 8.293 -1.086

mB_H22 8.421 +2.524 3.134
B_G23E 1.581 B_E23 8.084 -0.8 0.781
B_F24E 6.657 B_E24 9.287 -2.448 4.209
B_F24K 3.785 B_K24 4.531 -4.068

D_K24 3.142 -4.183 -6.252
B_F24R 3.528 B_R24 6.38 -1.534 2.023

with Fold-X (r = 0.771, σ = 1.02kcal/mol), and MM/PBSA with Fold-X (r =
0.496, σ = 4.91kcal/mol). Again, the calculated Concoord/PBSA and Fold-X
data show a high correlation, while the correlation to MM/PBSA data was
significantly smaller for both Concoord/PBSA (0.61) and Fold-X (0.496). With
the absence of experimental data, no interpretation on the accuracy of the
three methods can be given. Therefore, it remains unclear which approach
yields the best estimates for the insulin stability.
The alanine scanning with respect to both folding (b) and dimerization (c/d)
is depicted in Figure 4.6. For affinity calculations the interface term GPPIS
was neglected for mutation sites not belonging to the interface (suggested by
the outcome of the p53–MDM2 binding study, Section 4.3).

Additionally, pKa calculations using the MCCE program [263] for the full
mutational set on the dimer and on one monomer each were performed. Al-
most all mutants showed a standard protonation except those listed in Table
4.3. Here the correction term (4.1.5) was added. Due to large errors of 1pK
unit the corrected binding free energies have to be handled with care. A
large affinity increase for the mutant B_F24K of more then 6kcal/mol sug-
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gests that the ∆GpK contribution should be scaled similar to the Coulomb
and reaction–field contributions in Concoord/PBSA. In addition, ∆GpK does
not account for structural rearrangements upon (de–) protonation.

From the mutational scan the mutant B_P28 and is suggested as promising
mutation target for further studies including receptor binding. The mutants
B_V12, B_Y16, B_G23, and B_Y26 show a decrease in binding affinity and can
also be suggested for further studies. However, due to the importance to re-
ceptor binding [287–289], they may not be applicable in the treatment of di-
abetes mellitus. Although leading to decreased self–associations, mutations
at position 24 of chain B do not seem to be suitable as they also decrease the
stability of the monomer. The increased affinities of the B_E13 mutations
may hint to an important functional role of the wild type residue. Also these
mutations may provide an appropriate insulin supply over night.
A combined docking and Concoord/PBSA approach could reveal implications
of insulin mutations on insulin receptor binding.
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Chapter 5

Conclusions and Outlook

A fast and accurate free energy calculation scheme that substitutes compu-
tationally expensive molecular dynamics simulations with a structure gen-
eration based on geometrical considerations only was proposed. It can be ap-
plied to study mutational effects on the protein folding stability, on protein–
protein and on protein–ligand binding affinities. The method combines a
physical effective free energy function averaged over structural ensembles
with the efficient generation of conformational ensembles of the different
states of the respective thermodynamic cycle.
The developed Concoord/PBSA free energy function is similar to the well es-
tablished MM/PBSA [51] method combining molecular mechanics force field
contributions with continuum solvent energies. Different from MM/PBSA,
only electrostatic and van der Waals energies were considered, and the en-
ergetic terms were weighted by comparison to huge experimental data sets.
For protein–protein binding, an additional energetic contribution taking ac-
count of cooperativity effects at interfaces was introduced.
The development of Concoord/PBSA was based on test sets of several hun-
dred mutations. Following parameterization, the method was successfully
applied for full mutational scans on different systems. For the prediction of
mutational effects on folding free energies the accuracy of Concoord/PBSA
is similar to other methods. For the prediction of protein–protein binding
affinity changes Concoord/PBSA significantly outperforms well–established
methods like Robetta or Fold-X. This improved prediction is related to the
inclusion of flexibility. Especially, the mutation–dependent flexibility of Con-
coord/PBSA allowed to correctly predict cooperative mutational effects for
the TEM1–BLIP protein complex.
The Concoord approach, however, does not cover large conformational changes
as e.g. observed in MD simulations for the GYF [280] or the SH3 domain
[281] exhibiting different binding modes of bound peptides. Different ap-
proaches for the prediction of conformational changes [294] as well as the
structural prediction of bound peptide chains [295] using Concoord as basis
have been developed recently. The tConcoord extension established by Seel-
iger et al. [294] estimates hydrogen-bond stabilities that lead to different
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constraints enabling the prediction of larger conformational changes like bi-
ologically essential opened and closed structures of proteins. This extension
has already been applied for the identification of transient binding pockets
in proteins by Eyrisch and Helms [296, 297]. Another approach by Seibert
[295] aims at loosening the distance constraints between the protein and
a bound peptide while preserving experimentally known anchor positions.
By introducing constraint learning using several crystal structures of pep-
tide chains bound to the same protein important interactions are preserved.
Here, a conformational prediction of any sequence with given length is possi-
ble. Next to these predicted structures Concoord/PBSA is a complementary
method that enables an energetic estimate of the sampled configurations.
Despite the limitations of Concoord for the sampling of significantly differ-
ent conformations a good agreement with experiment was achieved for a
large mutational scan of peptides bound to the GYF domain.
For biomolecular systems that are sensitive to small changes in the pH an
extension of Concoord/PBSA encompassing extensive pKa calculations was
suggested. It is conceivable to combine the Concoord/PBSA conformational
prediction with pKa calculating schemes for an improved prediction of proto-
nation states. While the MCCE method [263] considers side chain rotamers
only, a Concoord–based prediction would additionally take the backbone flex-
ibility into account. Although this approach would be computationally more
expensive than conventional pKa calculations, it could prove efficient since
the sampled structures and part of the calculated energies are needed any-
way for free energy estimates. For performance reasons, Poisson-Boltzmann
solutions may be substituted by the considerably faster Generalized Born
calculations.

The primary goal for the near future is the application of Concoord/PBSA on
the immunologically relevant Major Histocompatibility Complexes (MHC).
With the development of the Concoord/PBSA method presented in this thesis
and the enhancements reported by Becker [30] and Seibert [295] for binding
affinity and binding mode prediction a prediction of the binding strength of
more than 10,000 peptides appears feasible. This data set is not sufficient to
cover the sequence space of 920 possibilities in the case of MHC bound pep-
tides (that are typically nine amino acids long), but instead it can be used to
substitute frequently missing experimental data in order to train machine
learning algorithms that can predict the affinity for some orders of magni-
tude more peptide sequences. This combination of a reliable structure–based
prediction with a statistical method will prove as a valuable tool for the de-
sign of peptide vaccines in the case of MHC proteins and more generally in
the design of proteins.
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Being limited on peptide compounds only, the inclusion of solvent molecules,
ions and other non-peptide ligands will enlarge the applicability of Conco-
ord/PBSA. With the combined fast structure generation and energy evalua-
tion it also opens up the lane towards a full flexible docking technique.
With the Concoord/PBSA web interface being publicly available, stability
and binding affinity predictions using the reported Concoord/PBSA proce-
dure may easily be performed by the interested reader. The respective con-
formational Concoord/PBSA ensembles are also accessible for further stud-
ies.
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Appendix A

Protein Stability Results

Table A.1: Concoord/PBSA results for stability calculations. Experimental and calculated
differences in folding free energies (in kcal/mol) relative to the wild type (both experimental
and calculated) are shown. Also single contributions of the computation are presented.
* denotes that the experimental and calculated free energies are taken relative to a pseudo
wild type.

PDB Mutation ∆∆Gexp ∆∆Gcalc ∆∆GRF ∆∆GCoul ∆∆GLJ ∆∆GSA −T∆∆S

1AYI A13G 0.60 0.5601 ±0.2553 0.1007 0.0442 0.1754 0.1488 0.0911
1AYI A28G 0.19 0.7808 ±0.2563 -2.1241 1.1374 0.6986 0.8327 0.2362
1AYI A77G 1.27 0.7952 ±0.2532 -0.3600 0.1481 0.3659 0.3988 0.2424
1AYI A78G 1.31 0.6711 ±0.2451 0.3473 -0.1665 0.1557 0.0169 0.3177
1AYI F15A 3.63 5.2159 ±0.2335 -1.1149 0.8079 2.6032 3.2166 -0.2970
1AYI F41L 1.89 3.5927 ±0.2260 -1.6453 1.2238 1.6611 2.2866 0.0665
1AYI I22V 2.13 1.7274 ±0.2201 -1.9938 1.6072 1.0373 1.1593 -0.0827
1AYI I44V 0.53 0.7856 ±0.2208 -0.8839 0.4800 0.6172 0.5622 0.0101
1AYI I54V 2.63 1.5377 ±0.2226 0.0560 -0.1799 0.7512 0.8876 0.0228
1AYI I68V 0.60 1.5933 ±0.2318 -0.6934 0.3681 0.9892 1.0288 -0.0994
1AYI I72V 0.41 0.6623 ±0.2281 -1.5447 1.2690 0.5399 0.4120 -0.0139
1AYI I7V 1.46 1.6385 ±0.2227 -1.5114 1.1684 1.1061 0.9641 -0.0888
1AYI L18A 3.01 3.1499 ±0.2271 -1.0577 0.3183 1.7862 2.3529 -0.2498
1AYI L19A 3.39 4.0922 ±0.2442 -2.1251 2.0346 2.1057 2.6135 -0.5366
1AYI L34A 1.84 2.5004 ±0.2342 -2.5352 1.8163 1.6684 1.9637 -0.4129
1AYI L37A 2.84 3.5325 ±0.2315 -1.4392 1.1593 1.8233 2.3595 -0.3704
1AYI L38A 2.68 2.7843 ±0.2272 -2.1132 1.6817 1.5828 1.9007 -0.2677
1AYI L3A 0.74 2.6208 ±0.2238 -2.1330 1.8226 1.5041 1.8662 -0.4391
1AYI L53A 3.25 2.9949 ±0.2340 -0.4211 -0.0970 1.5761 2.2153 -0.2784
1AYI T51S 0.96 1.2195 ±0.2208 1.2429 -0.8859 0.3420 0.4038 0.1167
1AYI V16A 1.48 1.3472 ±0.2287 -1.3197 1.0826 0.6848 0.8159 0.0835
1AYI V27A -0.50 0.5258 ±0.2315 -1.1799 1.0039 0.3757 0.2327 0.0934
1AYI V33A 0.24 0.4607 ±0.2248 0.0536 -0.4417 0.4104 0.3701 0.0682
1AYI V36A 0.10 1.0071 ±0.2282 -1.3101 0.9411 0.6262 0.5666 0.1833
1AYI V42A 0.69 1.1035 ±0.2276 -2.1862 1.8430 0.6759 0.7272 0.0436
1AYI V69A 0.69 2.5279 ±0.2305 0.5616 -0.3882 0.9603 1.3753 0.0190
1HZ6 A13P -0.10 -0.1675 ±0.1470 -0.0568 0.2051 -0.2003 -0.2934 0.1779
1HZ6 A13V 0.83 -0.4249 ±0.1444 -0.1227 0.3005 -0.3010 -0.3088 0.0072
1HZ6 A20G 2.17 1.9766 ±0.1852 -0.8456 0.8085 0.7725 1.2346 0.0066
1HZ6 A20V -1.47 -0.8600 ±0.1470 -0.3769 0.3439 -0.2107 -0.6048 -0.0115
1HZ6 A29G 2.54 1.3253 ±0.1816 -0.0541 0.1571 0.4726 0.8127 -0.0630
1HZ6 A33G 3.10 1.8246 ±0.1817 -0.0114 0.0559 0.7397 0.9144 0.1260
1HZ6 A35G 1.32 0.6115 ±0.1777 -0.1323 0.1967 0.2171 0.2615 0.0686
1HZ6 A37G 3.12 1.8632 ±0.1862 -0.1205 0.1746 0.7737 1.0839 -0.0484
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PDB Mutation ∆∆Gexp ∆∆Gcalc ∆∆GRF ∆∆GCoul ∆∆GLJ ∆∆GSA −T∆∆S

1HZ6 A52G 0.49 0.6651 ±0.1819 -0.0872 -0.0795 0.3456 0.4545 0.0317
1HZ6 A8G 2.43 1.6962 ±0.1795 -0.0597 0.0055 0.6436 0.9595 0.1473
1HZ6 D38A 1.21 -0.0952 ±0.1472 0.9933 -1.7402 0.6426 0.4048 -0.3957
1HZ6 D38G 2.14 0.5166 ±0.1694 0.8314 -1.5389 0.7424 0.7382 -0.2566
1HZ6 D50A 0.20 -0.0297 ±0.1455 3.0007 -3.3558 0.3681 0.3048 -0.3475
1HZ6 E21A 0.59 0.5404 ±0.1484 -5.7066 5.3348 0.6591 0.6927 -0.4395
1HZ6 E32G 1.19 0.9244 ±0.1727 -3.3186 2.3335 1.0327 1.1869 -0.3101
1HZ6 E32I 1.08 -1.1836 ±0.1346 -3.4161 2.2837 0.1817 0.0572 -0.2901
1HZ6 E46A 0.23 -0.1624 ±0.1468 -0.7381 0.2225 0.5007 0.3591 -0.5067
1HZ6 F12A 3.12 3.8833 ±0.1454 -1.2154 1.0719 2.2375 2.1992 -0.4100
1HZ6 F12L 0.68 2.2094 ±0.1352 -0.6396 0.7497 1.0005 1.1623 -0.0635
1HZ6 F22A 4.25 4.6338 ±0.1590 -0.3584 0.3827 2.3547 2.7607 -0.5059
1HZ6 F22L 3.12 2.7270 ±0.1464 0.0309 0.1092 1.1821 1.4738 -0.0690
1HZ6 F26G 3.08 2.5028 ±0.1762 -1.3187 1.2992 1.2805 1.5663 -0.3245
1HZ6 F26L 0.38 1.7796 ±0.1378 -0.5183 0.6398 0.6764 0.9112 0.0705
1HZ6 F62L 3.34 3.4836 ±0.1492 -0.6449 0.7240 1.6761 1.8708 -0.1423
1HZ6 F62V 3.73 6.0822 ±0.1445 -0.5184 0.7187 3.0106 3.1729 -0.3015
1HZ6 G15A 1.52 -0.3397 ±0.1796 -0.1995 -0.1001 0.1571 -0.2355 0.0384
1HZ6 G15V 2.53 -0.0044 ±0.1699 0.0543 -0.3389 0.2787 -0.1439 0.1453
1HZ6 G24A 2.08 -0.9119 ±0.1837 0.0127 -0.0098 -0.2792 -0.6147 -0.0208
1HZ6 G45A 2.23 -0.5297 ±0.1831 -0.0180 -0.0930 -0.0287 -0.3437 -0.0462
1HZ6 G55A 2.04 -0.2295 ±0.1831 -0.1894 0.1417 0.0178 -0.1561 -0.0435
1HZ6 I11A 1.37 1.8571 ±0.1442 -0.5683 0.3520 1.1682 0.9612 -0.0560
1HZ6 I11V 0.47 0.3975 ±0.1308 -0.3787 0.1804 0.4483 0.2176 -0.0700
1HZ6 I60A 4.72 3.9042 ±0.1462 -0.1717 0.2549 1.9396 2.0936 -0.2121
1HZ6 I60V 1.69 1.6095 ±0.1349 -0.2867 0.0481 1.0343 1.0375 -0.2238
1HZ6 I6A 4.90 4.1407 ±0.1493 -0.8583 0.6503 2.1135 2.5337 -0.2985
1HZ6 I6V 0.56 1.2084 ±0.1353 0.2734 -0.4428 0.7364 0.7446 -0.1032
1HZ6 K23A 0.88 0.2723 ±0.1446 -15.4784 14.9159 0.7143 0.6067 -0.4862
1HZ6 K28G -0.16 1.2971 ±0.1697 -18.2562 17.8394 0.9205 1.0042 -0.2109
1HZ6 K41A -0.58 1.5894 ±0.1484 -23.8279 23.7892 1.0411 1.3644 -0.7774
1HZ6 K42A -0.35 0.4221 ±0.1439 -12.9648 13.2957 0.2351 0.1002 -0.2440
1HZ6 K54A 0.09 0.3662 ±0.1449 -11.1482 11.3491 0.2398 0.3957 -0.4702
1HZ6 K61A 0.45 0.6771 ±0.1433 -18.9566 17.8887 1.0550 1.1747 -0.4846
1HZ6 K7A 0.92 1.8398 ±0.1414 -11.6481 11.8167 0.9740 1.2984 -0.6011
1HZ6 L10A 3.12 3.3422 ±0.1423 -0.3246 0.5151 1.6332 1.8789 -0.3603
1HZ6 L40A 2.44 1.9611 ±0.1430 -0.7887 0.4541 1.3480 1.3049 -0.3571
1HZ6 L58A 3.77 3.6404 ±0.1439 -1.1118 1.0642 1.8470 2.2668 -0.4258
1HZ6 N14A 1.78 0.5149 ±0.1479 -1.0652 1.2635 0.2105 0.2915 -0.1854
1HZ6 N44A 0.34 0.8270 ±0.1428 -0.9788 0.6197 0.6807 0.7673 -0.2619
1HZ6 N59A 1.73 0.9768 ±0.1466 -2.6702 2.5380 0.6210 0.8483 -0.3602
1HZ6 N9A 1.87 1.1695 ±0.1438 -2.1320 1.7570 0.7912 1.0402 -0.2870
1HZ6 S16A 0.30 0.2733 ±0.1444 -0.1138 -0.1612 0.3040 0.2854 -0.0411
1HZ6 S31A -0.41 0.2857 ±0.1419 0.0222 0.1023 0.1614 0.1466 -0.1468
1HZ6 S31G 0.82 0.7510 ±0.1761 0.0266 0.1830 0.2708 0.3272 -0.0566
1HZ6 T17A 1.17 0.5087 ±0.1413 -0.4447 0.2518 0.3316 0.3816 -0.0116
1HZ6 T19A 1.11 0.5899 ±0.1492 0.0587 -0.4029 0.4844 0.5990 -0.1493
1HZ6 T25A 1.25 0.6667 ±0.1455 -0.3058 -0.0014 0.4849 0.5151 -0.0262
1HZ6 T30A 1.09 0.8650 ±0.1464 -0.6745 -0.1653 0.7987 0.8619 0.0443
1HZ6 T39G 0.17 0.5338 ±0.1699 -0.1459 -0.1148 0.4909 0.3178 -0.0142
1HZ6 T48A 0.97 0.3118 ±0.1437 -0.4021 -0.0006 0.5296 0.2187 -0.0338
1HZ6 T57A 1.83 0.9248 ±0.1448 -0.4459 0.1342 0.6153 0.7636 -0.1425
1HZ6 T5A 1.63 0.7914 ±0.1404 -0.7461 0.4503 0.6025 0.5536 -0.0689
1HZ6 V49A 0.92 1.2834 ±0.1452 -0.0017 -0.0047 0.6317 0.7509 -0.0927
1HZ6 V4A 1.22 1.3426 ±0.1445 -0.2647 0.1658 0.5960 0.8128 0.0327
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PDB Mutation ∆∆Gexp ∆∆Gcalc ∆∆GRF ∆∆GCoul ∆∆GLJ ∆∆GSA −T∆∆S

1HZ6 V51A 1.14 1.4277 ±0.1465 -0.3181 0.4315 0.6088 0.7101 -0.0046
1HZ6 Y34A 2.82 4.1066 ±0.2140 -0.8121 0.7679 2.1667 2.4927 -0.5086
1HZ6 Y36A 2.46 2.2851 ±0.2117 -0.8959 0.8023 1.2214 1.3986 -0.2412
1HZ6 Y56A 1.66 2.2630 ±0.2170 -0.9055 1.1427 1.1525 1.2870 -0.4137
1HZ6 Y56L -0.43 1.0794 ±0.2070 -0.7064 0.8066 0.4270 0.5515 0.0007
1PGA A20G 2.39 1.2928 ±0.1973 -0.2647 0.3917 0.3845 0.7199 0.0615
1PGA A26G 2.96 1.1477 ±0.1996 0.3069 0.0538 0.1832 0.5308 0.0731
1PGA A34G 2.48 0.9462 ±0.1965 -0.1419 0.2174 0.3288 0.4736 0.0685
1PGA D22A 1.75 0.6876 ±0.1646 -2.4317 2.5629 0.4086 0.5000 -0.3522
1PGA D46A 1.74 1.0053 ±0.1742 -1.0807 0.9005 0.8387 0.8581 -0.5114
1PGA D47A -0.49 0.2058 ±0.1702 -3.3969 3.4021 0.2080 0.4282 -0.4356
1PGA E15A 0.47 0.6919 ±0.1694 -2.5704 2.3584 0.5198 0.7449 -0.3608
1PGA F30L 1.42 3.2195 ±0.1756 -0.6007 0.6431 1.3480 2.0304 -0.2013
1PGA F52L 3.54 2.4051 ±0.1615 -1.0620 1.1255 1.0702 1.2460 0.0254
1PGA G41A 2.84 0.2048 ±0.1933 -0.0500 -0.1669 0.3426 0.0689 0.0102
1PGA I6A 2.09 1.1464 ±0.1683 -0.2032 0.0413 0.8441 0.6042 -0.1401
1PGA K28G 0.05 0.7607 ±0.1921 -18.4931 18.4774 0.3974 0.7170 -0.3379
1PGA K31G 2.02 1.9553 ±0.1949 -21.7903 20.8941 1.6453 1.6566 -0.4505
1PGA L7A 1.85 2.5673 ±0.1664 -0.3608 0.4667 1.4664 1.4125 -0.4175
1PGA N35G 2.50 0.4387 ±0.1868 -0.8234 0.7603 0.3138 0.2130 -0.0250
1PGA N37A -0.17 0.4446 ±0.1689 -1.5450 1.5063 0.2832 0.3965 -0.1964
1PGA Q32G 1.00 0.8596 ±0.1941 -1.4854 1.5801 0.4717 0.4317 -0.1384
1PGA T11A 0.60 -0.3199 ±0.1677 -0.5766 0.3568 0.0651 -0.0934 -0.0718
1PGA T16A 0.38 0.9497 ±0.1762 -0.8243 0.2519 0.7288 0.8229 -0.0296
1PGA T18A 0.46 1.1855 ±0.1725 -0.4932 0.1472 0.5332 1.0713 -0.0730
1PGA T25A -0.22 0.4244 ±0.1652 -1.0224 0.8409 0.2614 0.4998 -0.1553
1PGA T49A 0.72 1.1610 ±0.1708 -2.0040 2.2167 0.4744 0.6735 -0.1996
1PGA T51A 1.87 1.1826 ±0.1715 -0.8600 0.6659 0.5970 0.8718 -0.0921
1PGA T53A 1.91 0.5922 ±0.1646 -0.3023 -0.2811 0.5969 0.5964 -0.0176
1PGA V29A 0.70 0.7745 ±0.1688 -0.2865 0.2876 0.3509 0.4160 0.0065
1PGA V39A 1.72 1.7804 ±0.1634 -1.0123 0.8355 0.9524 1.0786 -0.0738
1PGA V54A 2.93 1.5742 ±0.1705 -0.4462 0.3730 0.6820 0.9450 0.0204
1PGA Y33A 0.92 2.2149 ±0.2282 -1.0146 0.9977 1.4269 1.2732 -0.4682
1PGA Y3L 1.62 2.9239 ±0.2220 -1.9023 1.8883 1.4221 1.5621 -0.0463
1PGA Y45L 3.34 2.3901 ±0.2210 -2.3604 2.3793 1.1403 1.2569 -0.0260
1STN A102G 1.30 1.5013 ±0.3281 -0.5213 0.7949 0.4365 0.8157 -0.0244
1STN A109G 1.00 0.4421 ±0.3220 -0.2000 0.1425 0.1241 0.3235 0.0519
1STN A112G 0.00 0.7729 ±0.3273 0.0250 0.0699 0.3007 0.3795 -0.0022
1STN A12G 2.40 0.9205 ±0.3111 0.2246 -0.0611 0.2789 0.3479 0.1303
1STN A130G 1.10 0.5677 ±0.3188 -0.2209 0.2202 0.1743 0.2632 0.1309
1STN A132G 3.70 1.6953 ±0.3140 -0.5367 0.5651 0.6948 0.8474 0.1248
1STN A17G 0.30 1.1174 ±0.3240 -0.3059 0.5200 0.2785 0.6650 -0.0403
1STN A58G 2.60 1.6058 ±0.3278 0.3349 -0.1076 0.5648 0.7551 0.0587
1STN A60G 1.40 0.5957 ±0.3173 -0.2958 0.2480 0.2504 0.3138 0.0792
1STN A69G 2.00 0.7216 ±0.3221 0.4736 -0.1305 0.0908 0.3724 -0.0848
1STN A90G 2.00 1.1758 ±0.3124 0.2089 -0.1092 0.4389 0.4641 0.1730
1STN A94G 2.40 1.6317 ±0.3159 0.2320 0.2101 0.3797 0.8289 -0.0190
1STN D19A 0.10 -0.3230 ±0.2968 -26.2933 24.3017 1.0900 1.1984 -0.6198
1STN D19G 0.50 0.2376 ±0.3092 -26.5625 24.2793 1.2381 1.6400 -0.3572
1STN D21A -0.70 -0.2863 ±0.2963 -23.2145 22.5008 0.3975 0.6109 -0.5811
1STN D21G -0.30 -0.2530 ±0.3102 -23.6295 22.1987 0.6312 0.9819 -0.4352
1STN D40A -0.20 0.0106 ±0.3051 -21.9956 21.7449 0.3703 0.3175 -0.4267
1STN D40G 0.50 0.7988 ±0.3057 -21.4423 21.3189 0.5540 0.6389 -0.2707
1STN D77A 3.10 0.6014 ±0.3190 -30.3757 31.2967 0.0717 0.3117 -0.7030
1STN D77G 2.20 0.6310 ±0.3298 -29.3614 29.8876 0.0911 0.5044 -0.4906
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PDB Mutation ∆∆Gexp ∆∆Gcalc ∆∆GRF ∆∆GCoul ∆∆GLJ ∆∆GSA −T∆∆S

1STN D83A 3.80 2.5975 ±0.3052 -30.4607 31.5486 1.0548 0.8850 -0.4301
1STN D83G 2.70 2.7752 ±0.3124 -31.7084 32.3364 1.3171 1.2457 -0.4157
1STN D95A 3.30 0.9063 ±0.3006 -28.0378 27.9876 0.8244 0.7541 -0.6219
1STN D95G 2.70 1.5888 ±0.3261 -28.0152 28.2600 0.7701 1.1004 -0.5266
1STN E101A 1.90 1.4550 ±0.2978 -23.8362 24.3302 0.5709 0.8046 -0.4146
1STN E101G 3.10 2.6518 ±0.3209 -24.0678 24.6816 0.9664 1.4982 -0.4266
1STN E10A 1.30 0.6155 ±0.2950 -29.4380 28.3161 0.9343 1.3257 -0.5225
1STN E10G 1.80 1.5407 ±0.3112 -29.0970 28.0329 1.2690 1.8127 -0.4768
1STN E122A 0.40 1.1536 ±0.2975 -26.2732 26.2230 0.7085 1.0796 -0.5844
1STN E122G 2.20 1.7557 ±0.3125 -26.1469 25.9943 0.9599 1.3769 -0.4286
1STN E129A 0.40 2.3108 ±0.3042 -28.9364 29.1813 1.1204 1.2929 -0.3474
1STN E129G 2.20 2.7916 ±0.3131 -28.5309 28.7857 1.2306 1.7127 -0.4065
1STN E135A 0.70 0.9366 ±0.3062 -25.6084 25.3472 0.6456 1.0861 -0.5339
1STN E135G 1.70 1.8052 ±0.3150 -25.3369 25.2288 0.9347 1.3979 -0.4193
1STN E43A -0.30 -0.4952 ±0.2797 -20.7366 18.7243 1.0737 0.7047 -0.2613
1STN E43G -0.50 0.0777 ±0.3012 -20.9342 18.7028 1.3883 1.1763 -0.2556
1STN E52A 0.10 1.0293 ±0.3028 -24.3149 23.5314 1.2965 1.2495 -0.7333
1STN E52G 0.40 1.8576 ±0.3141 -22.9614 22.4046 1.4366 1.5329 -0.5550
1STN E57A 0.20 0.8297 ±0.3020 -19.9217 20.0254 0.5690 0.5641 -0.4069
1STN E57G 1.60 1.5130 ±0.3196 -19.7466 20.2497 0.5760 0.7146 -0.2808
1STN E67A 1.00 0.7028 ±0.3006 -27.7204 27.6817 0.4892 0.7151 -0.4628
1STN E67G 0.90 1.5461 ±0.3124 -27.7952 28.0611 0.7459 1.0746 -0.5403
1STN E73A 1.20 1.1026 ±0.3060 -25.5534 24.8580 1.2021 1.1393 -0.5433
1STN E73G 2.70 2.1511 ±0.3196 -25.6342 25.0728 1.4545 1.6152 -0.3573
1STN E75A 2.20 0.9688 ±0.2981 -30.3462 28.8361 1.4525 1.6023 -0.5757
1STN E75G 3.50 2.4666 ±0.3262 -30.3258 29.3302 1.7823 2.2629 -0.5829
1STN F34A 3.70 5.3888 ±0.2991 -0.8624 1.1624 2.7929 2.8480 -0.5521
1STN F61A 2.30 3.5398 ±0.3006 -0.8591 1.0692 1.8211 2.0856 -0.5770
1STN F61G 4.80 4.5079 ±0.3016 -0.1626 0.6683 2.0755 2.3077 -0.3810
1STN F76A 4.00 3.9248 ±0.2949 -2.1878 1.6568 2.3871 2.5972 -0.5285
1STN F76G 4.70 5.0978 ±0.3074 -2.5148 2.0486 2.7928 3.2433 -0.4721
1STN H121A 3.10 2.3434 ±0.3119 -2.1560 1.8755 1.4425 1.7208 -0.5394
1STN H121G 4.20 3.6445 ±0.3299 -2.6064 2.2922 1.9491 2.4946 -0.4850
1STN H124A -0.40 1.6527 ±0.3066 -1.9150 1.9765 0.9080 1.1464 -0.4632
1STN H124G 0.50 2.4835 ±0.3228 -1.1050 1.6109 0.9301 1.3854 -0.3379
1STN H46A 0.50 1.4512 ±0.2964 -2.1923 2.6222 0.9086 0.6303 -0.5176
1STN H46G 0.40 2.1265 ±0.3072 -3.2347 3.2294 1.4062 1.3625 -0.6369
1STN H8A 0.40 0.3093 ±0.3071 -1.0297 0.5409 0.6223 0.6474 -0.4717
1STN H8G 0.80 0.8769 ±0.3196 -1.0606 0.6735 0.8169 0.8658 -0.4187
1STN I139A 3.50 2.3786 ±0.3067 1.8742 -1.3990 0.9331 1.2988 -0.3285
1STN I139G 4.40 3.1952 ±0.3161 1.5130 -1.1617 1.2573 1.7452 -0.1586
1STN I139V 1.50 0.7465 ±0.3003 0.6896 -0.7918 0.5219 0.5502 -0.2234
1STN I15A 2.70 1.3739 ±0.2947 -0.9962 0.5396 1.1060 0.8769 -0.1524
1STN I15G 3.30 3.4662 ±0.3171 -0.4888 0.7388 1.6096 1.6827 -0.0760
1STN I15V 0.80 0.6489 ±0.2896 -0.0104 -0.0543 0.5292 0.2681 -0.0837
1STN I18A 2.50 1.8509 ±0.3037 -0.7693 0.8631 0.9524 0.9668 -0.1620
1STN I18G 2.50 2.5124 ±0.3143 -0.8870 0.9647 1.1719 1.3777 -0.1149
1STN I18V 1.10 0.8976 ±0.2979 -0.1916 0.1579 0.5418 0.5490 -0.1596
1STN I72A 5.10 2.9746 ±0.3097 -0.2773 0.3084 1.4220 1.7289 -0.2073
1STN I72V 1.80 0.8877 ±0.3037 -0.1768 0.0261 0.5875 0.5197 -0.0687
1STN I92A 4.00 3.0453 ±0.3044 0.3607 0.0949 1.1367 1.6631 -0.2101
1STN I92V 0.50 0.5995 ±0.2975 -0.1527 0.2525 0.3208 0.3880 -0.2092
1STN K110A 1.30 0.9215 ±0.2974 9.6488 -9.3489 0.5508 0.6251 -0.5542
1STN K110G 2.70 2.0141 ±0.3127 9.1903 -8.9055 0.9970 1.1936 -0.4613
1STN K116A -0.70 -0.8388 ±0.3102 11.4308 -12.0254 0.0960 0.1807 -0.5210
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PDB Mutation ∆∆Gexp ∆∆Gcalc ∆∆GRF ∆∆GCoul ∆∆GLJ ∆∆GSA −T∆∆S

1STN K116G -1.00 -0.6213 ±0.3258 11.2648 -11.7244 -0.0943 0.3116 -0.3789
1STN K127A -0.20 0.1590 ±0.3152 11.7477 -11.9632 0.4145 0.3541 -0.3941
1STN K127G 0.70 0.5503 ±0.3131 11.8935 -11.9526 0.5199 0.3991 -0.3097
1STN K133A 1.40 -0.0392 ±0.3091 5.7398 -7.0522 0.7524 1.0562 -0.5354
1STN K133G 3.30 0.6233 ±0.3166 5.6631 -6.7778 0.8959 1.3092 -0.4671
1STN K134A -0.10 0.3531 ±0.2981 6.2081 -6.4285 0.3521 0.6665 -0.4451
1STN K134G 0.70 1.0108 ±0.3102 7.3147 -7.0523 0.4139 0.6386 -0.3041
1STN K136A 0.90 0.2869 ±0.2987 5.1239 -5.1528 0.3908 0.2437 -0.3187
1STN K136G 0.20 0.8347 ±0.3191 5.1193 -4.7924 0.3254 0.5426 -0.3602
1STN K16A 0.20 -0.5397 ±0.2991 11.6700 -13.0584 0.5929 0.6768 -0.4210
1STN K16G 0.70 0.0558 ±0.3171 12.6190 -13.6365 0.6477 0.8000 -0.3745
1STN K24A 0.20 1.0034 ±0.2975 12.6060 -13.2086 1.1835 1.0263 -0.6037
1STN K24G 1.20 2.2131 ±0.3123 13.3991 -13.4035 1.3376 1.3766 -0.4967
1STN K28A 0.70 -0.0767 ±0.3017 5.7800 -6.5042 0.6009 0.6335 -0.5868
1STN K28G 0.70 1.0379 ±0.3059 5.8173 -6.1328 0.9065 0.9800 -0.5331
1STN K45A -0.30 -0.2155 ±0.2922 7.3391 -8.3085 0.6994 0.7329 -0.6784
1STN K45G -0.20 0.4938 ±0.3116 7.4318 -8.4091 0.9452 0.9642 -0.4382
1STN K48A -0.10 -0.1357 ±0.2995 9.3867 -9.3990 0.1592 0.0027 -0.2854
1STN K48G -0.20 0.4301 ±0.3158 9.6613 -9.5248 0.2844 0.1780 -0.1688
1STN K49A 0.30 0.1018 ±0.3062 5.5292 -5.8542 0.5157 0.5748 -0.6638
1STN K49G 0.20 1.5598 ±0.3225 5.6596 -5.4317 0.8447 1.0259 -0.5388
1STN K53A 0.20 -0.1809 ±0.2942 2.7480 -3.3022 0.2787 0.4557 -0.3612
1STN K53G 0.30 0.3650 ±0.3214 3.2742 -3.4853 0.4529 0.5340 -0.4108
1STN K63A 0.50 0.0391 ±0.3051 4.8028 -5.4630 0.6133 0.6601 -0.5741
1STN K63G 1.50 0.9272 ±0.3143 4.8553 -5.4446 0.9010 1.0449 -0.4293
1STN K64A -0.10 0.0394 ±0.3018 7.2724 -7.3782 0.3453 0.2777 -0.4778
1STN K64G 0.40 0.8612 ±0.3168 7.2267 -7.0294 0.4951 0.5397 -0.3709
1STN K70A 0.10 -0.2989 ±0.3015 9.8046 -9.8046 0.1931 0.0409 -0.5329
1STN K70G 0.50 0.4143 ±0.3114 9.4285 -9.2030 0.3782 0.2468 -0.4362
1STN K71A 0.40 0.2465 ±0.3042 10.3521 -10.1245 0.3320 0.1723 -0.4854
1STN K71G 1.10 1.2321 ±0.3165 10.2666 -9.8169 0.6797 0.4725 -0.3698
1STN K78A 0.60 0.6331 ±0.3077 11.9663 -12.8597 1.0082 1.1589 -0.6407
1STN K78G 1.10 0.9267 ±0.3228 12.7764 -13.3501 0.9061 1.0490 -0.4547
1STN K84A -0.20 0.5424 ±0.3088 9.8495 -10.3713 0.5431 0.9272 -0.4061
1STN K84G 0.30 0.2938 ±0.3184 9.9647 -10.4056 0.4670 0.6089 -0.3413
1STN K97A 0.10 -0.0738 ±0.3008 9.7106 -9.7721 0.4595 0.2106 -0.6825
1STN K97G 1.70 1.5065 ±0.3175 9.5331 -9.0734 0.8271 0.8043 -0.5844
1STN K9A 1.40 0.6607 ±0.2939 5.0377 -6.1310 1.1119 1.1374 -0.4953
1STN K9G 1.90 1.4596 ±0.3120 5.5774 -6.2323 1.1145 1.3751 -0.3750
1STN L103A 4.60 4.3931 ±0.3071 -0.4545 0.5924 2.2416 2.5737 -0.5601
1STN L108A 5.80 2.7486 ±0.3074 0.0922 0.0985 1.4616 1.5580 -0.4616
1STN L125A 4.90 3.1211 ±0.2981 -0.6993 0.5365 1.6724 2.0716 -0.4602
1STN L137A 2.30 1.4284 ±0.3024 -0.4526 0.1671 1.1217 0.9984 -0.4062
1STN L137G 4.60 3.0542 ±0.3123 -0.3677 0.5735 1.5874 1.5705 -0.3095
1STN L14A 2.30 2.2228 ±0.3012 -0.0147 0.0257 1.3245 1.3895 -0.5022
1STN L14G 3.70 3.1842 ±0.3124 -0.4292 0.4329 1.6019 1.9109 -0.3323
1STN L25A 2.70 2.8423 ±0.3003 -0.3262 0.6344 1.3823 1.6088 -0.4569
1STN L25G 4.50 4.1893 ±0.3185 -0.2839 0.7731 1.8238 2.2112 -0.3348
1STN L36A 3.50 1.5066 ±0.3021 0.2894 -0.5186 0.8215 1.3541 -0.4398
1STN L36G 5.30 3.2976 ±0.3179 0.3727 -0.2088 1.3272 2.1541 -0.3477
1STN L37A 1.70 1.8877 ±0.2997 -0.1365 -0.3202 1.3558 1.3231 -0.3344
1STN L37G 3.80 3.2679 ±0.3163 -0.8232 0.1857 2.1082 2.2073 -0.4102
1STN L38A 1.70 2.6967 ±0.3077 -0.0752 -0.0250 1.4921 1.7249 -0.4202
1STN L38G 0.60 3.5184 ±0.3100 -0.7579 0.6358 1.7830 2.2530 -0.3955
1STN L7A 1.60 1.0227 ±0.2906 -0.2662 -0.2944 0.9087 1.0652 -0.3906
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PDB Mutation ∆∆Gexp ∆∆Gcalc ∆∆GRF ∆∆GCoul ∆∆GLJ ∆∆GSA −T∆∆S

1STN L7G 1.50 1.7933 ±0.3054 -0.4642 -0.2722 1.1825 1.6166 -0.2694
1STN L89A 2.60 2.3422 ±0.3008 -0.6101 0.3164 1.6439 1.5142 -0.5223
1STN L89G 3.20 3.4725 ±0.3136 -0.1929 0.0483 1.9104 1.9862 -0.2794
1STN M26A 1.50 1.4533 ±0.3024 -0.8873 0.8831 1.1896 0.8904 -0.6226
1STN M26G 2.20 2.3474 ±0.3152 -0.0559 0.4944 1.2939 1.1072 -0.4922
1STN M32A 1.70 1.7683 ±0.2960 -0.4270 0.3334 1.2081 1.1518 -0.4981
1STN M32G 2.40 3.3217 ±0.3147 -0.5955 0.7052 1.8378 1.9457 -0.5716
1STN M65A 2.00 2.6022 ±0.2954 0.0213 -0.0808 1.6714 1.8419 -0.8516
1STN M65G 4.60 3.6078 ±0.3163 0.2228 0.0577 1.9296 2.0932 -0.6955
1STN M98A 4.60 2.8607 ±0.2929 -0.7370 0.3928 1.8699 1.9025 -0.5675
1STN M98G 4.50 3.8393 ±0.3157 -0.0894 -0.1329 2.1441 2.3150 -0.3976
1STN N100A 5.20 1.6906 ±0.2994 -1.2930 1.6802 0.6031 1.0681 -0.3678
1STN N100G 5.10 2.2059 ±0.3159 -1.4714 1.5724 0.8428 1.5644 -0.3023
1STN N118A 2.10 1.1494 ±0.2969 -2.6708 2.0465 1.0168 1.1116 -0.3547
1STN N118D 2.40 4.5357 ±0.2813 20.1100 -16.5478 0.0926 0.7617 0.1193
1STN N118G 1.90 2.0195 ±0.3243 -2.5338 2.0129 1.2716 1.6184 -0.3496
1STN N119A 1.30 0.5361 ±0.2959 -0.6713 0.6852 0.2511 0.6583 -0.3873
1STN N119G 1.30 0.7852 ±0.3110 -0.5619 0.0515 0.4405 1.1155 -0.2603
1STN N138A 1.10 1.0841 ±0.3001 -0.8758 0.9472 0.5930 0.7833 -0.3636
1STN N138G -0.10 1.2543 ±0.3255 -1.4432 1.3099 0.7527 0.9442 -0.3094
1STN N68A 0.50 0.4247 ±0.2980 -2.0262 2.2055 0.2718 0.3128 -0.3392
1STN N68G 0.50 0.5282 ±0.3111 -1.4423 1.6138 0.2797 0.2767 -0.1996
1STN P117A -0.80 0.1780 ±0.3020 -0.5441 0.4732 0.1084 0.1558 -0.0153
1STN P117G -0.90 0.5060 ±0.3165 -0.4360 0.5834 -0.0317 0.3707 0.0196
1STN P11A 0.40 0.1457 ±0.2966 -0.8895 0.8226 0.3027 0.0183 -0.1084
1STN P11G 1.00 0.3442 ±0.3057 -0.9281 1.0373 0.2401 -0.0352 0.0301
1STN P31A 0.50 -0.0964 ±0.2943 -0.9344 0.5756 0.3506 0.0494 -0.1376
1STN P31G 1.60 0.5901 ±0.3201 -0.2303 0.3608 0.2715 0.1593 0.0288
1STN P42A -0.10 0.7782 ±0.2995 -0.8941 0.4941 0.6388 0.6679 -0.1284
1STN P42G 0.40 1.4920 ±0.3073 -1.1770 1.0732 0.8308 0.8432 -0.0782
1STN P47A 0.60 0.1017 ±0.2976 -0.3234 0.3290 0.2232 -0.0299 -0.0974
1STN P47G 0.10 0.4926 ±0.3108 -1.3305 0.9439 0.5641 0.2642 0.0510
1STN P56A 0.00 0.6074 ±0.2979 -0.7857 0.7148 0.3622 0.4410 -0.1249
1STN P56G 1.00 0.7761 ±0.3192 -1.0196 0.8039 0.4894 0.5565 -0.0541
1STN Q106A -0.10 1.0579 ±0.3023 -0.4712 0.6932 0.5704 0.7402 -0.4748
1STN Q106G 1.50 2.2114 ±0.3103 -0.1596 0.6656 0.9998 1.0962 -0.3905
1STN Q123A 0.40 0.0845 ±0.3024 0.0989 -0.0649 0.3001 0.2140 -0.4636
1STN Q123G 0.60 0.3652 ±0.3187 -0.1096 0.2658 0.3599 0.3015 -0.4523
1STN Q131A 0.20 -0.0975 ±0.2984 -1.3330 1.0159 0.2495 0.4542 -0.4840
1STN Q131G 2.40 1.6414 ±0.3167 -1.7049 1.7006 0.7698 1.2532 -0.3773
1STN Q30A 0.30 0.5882 ±0.3105 -0.5161 0.5549 0.4552 0.5790 -0.4848
1STN Q30G 0.90 0.7660 ±0.3075 0.3815 -0.1588 0.5221 0.4212 -0.4000
1STN Q80A 0.10 1.3076 ±0.2981 -2.3253 2.3466 0.8506 1.0038 -0.5682
1STN Q80G 1.40 1.5938 ±0.3064 -2.2310 2.1762 1.0028 1.0377 -0.3917
1STN R105A 1.40 1.5608 ±0.2943 3.0525 -3.4123 1.1891 1.7097 -0.9782
1STN R105G 2.40 2.3779 ±0.3182 2.7362 -3.2029 1.5798 2.1384 -0.8735
1STN R126A 1.70 1.7153 ±0.3062 6.3429 -6.8060 1.3391 1.6163 -0.7769
1STN R126G 2.90 2.5957 ±0.3185 6.8775 -6.9289 1.4507 1.9196 -0.7232
1STN R35A 1.40 1.6823 ±0.3020 3.7206 -4.9258 1.6401 2.0226 -0.7752
1STN R35G 2.20 2.0984 ±0.2993 4.3915 -5.4154 1.7101 2.1511 -0.7389
1STN R81A 1.10 0.7332 ±0.2855 9.4355 -10.6499 1.3853 1.0747 -0.5124
1STN R81G 2.20 1.9497 ±0.3109 9.0455 -10.0041 1.6605 1.6176 -0.3698
1STN R87A 0.90 2.0129 ±0.3020 6.9026 -7.7137 1.5213 2.0346 -0.7318
1STN R87G 2.60 3.1915 ±0.3187 7.6571 -8.0079 1.7236 2.4967 -0.6780
1STN S128A -0.70 0.2127 ±0.3041 -0.5739 1.1922 -0.2584 0.0379 -0.1852
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1STN S128G 1.60 1.2335 ±0.3036 -0.4693 1.0666 0.1954 0.4988 -0.0580
1STN S141A 0.40 0.0506 ±0.3006 0.4031 -0.0915 -0.0939 -0.0799 -0.0871
1STN S141G 0.90 1.0126 ±0.3140 -0.7829 0.7959 0.4091 0.6856 -0.0951
1STN S59A -0.40 0.2343 ±0.2847 -0.8333 0.4591 0.3817 0.3826 -0.1558
1STN S59G 1.10 0.7055 ±0.3133 -1.0764 0.8460 0.4831 0.4587 -0.0057
1STN T120A 1.20 0.7220 ±0.3179 -1.7079 2.2783 -0.0079 0.5212 -0.3617
1STN T120G 2.10 1.3556 ±0.3301 -1.0999 1.4080 0.2229 0.9131 -0.0886
1STN T120V 1.80 0.4789 ±0.2932 -1.3242 1.9636 -0.2243 0.0726 -0.0088
1STN T13A 0.70 -0.0193 ±0.2965 -0.3414 0.0519 0.2762 0.1281 -0.1340
1STN T13G 1.10 0.6306 ±0.3119 -0.4097 0.4186 0.3879 0.3033 -0.0695
1STN T13V 0.40 -0.4753 ±0.2924 0.4051 -0.6676 0.0172 -0.1651 -0.0648
1STN T22A 1.60 0.7769 ±0.3150 -1.5995 1.3371 0.5201 0.8057 -0.2866
1STN T22G 2.40 1.9623 ±0.3223 -2.0068 1.6027 1.0039 1.5153 -0.1527
1STN T22V 0.90 -0.4324 ±0.3005 -0.7659 1.0221 -0.2802 -0.2277 -0.1807
1STN T33A 1.40 0.7675 ±0.2944 -1.0931 0.8396 0.4831 0.6468 -0.1090
1STN T33G 2.50 1.5041 ±0.3121 -0.8219 0.7991 0.6030 0.8859 0.0380
1STN T33V -0.40 -0.4242 ±0.2985 -0.5079 0.5018 -0.0945 -0.1170 -0.2066
1STN T41A 0.00 0.0042 ±0.3028 -0.1129 -0.4487 0.1020 0.5622 -0.0985
1STN T41G 2.00 1.2875 ±0.3117 -0.3168 -0.5304 0.8198 1.3464 -0.0315
1STN T41V -0.80 -0.4324 ±0.3019 0.0431 -0.8062 0.2369 0.2210 -0.1273
1STN T44A 0.40 0.4870 ±0.2992 -1.0430 0.5822 0.6124 0.5727 -0.2373
1STN T44G 0.60 0.9638 ±0.3197 -1.7226 1.0613 0.8528 1.0000 -0.2277
1STN T44V -0.10 0.2750 ±0.2943 -0.7305 1.1512 -0.0469 -0.0297 -0.0692
1STN T62A 2.40 2.0847 ±0.3037 -0.5277 0.6334 0.9482 1.1755 -0.1447
1STN T62G 3.50 3.1250 ±0.3240 -0.0614 0.2112 1.4482 1.8121 -0.2851
1STN T62V 0.20 -0.2184 ±0.2861 -0.5408 0.1562 0.1190 0.1535 -0.1063
1STN T82A 0.90 0.5994 ±0.3033 -0.0079 0.2023 0.3275 0.2519 -0.1745
1STN T82G 2.00 1.1567 ±0.3125 0.3046 0.3297 0.3246 0.3215 -0.1238
1STN T82V -0.20 -0.0653 ±0.2985 -0.5064 0.3060 0.0849 0.0910 -0.0409
1STN V104A 2.90 1.1620 ±0.3002 2.8348 -1.6831 -0.2568 0.1091 0.1581
1STN V104T 2.50 1.0310 ±0.2891 0.6801 0.3303 -0.0441 0.1562 -0.0915
1STN V111A 4.20 1.2623 ±0.3033 0.1295 -0.2885 0.8479 0.6710 -0.0975
1STN V111G 4.90 3.1587 ±0.3149 -0.1399 0.1131 1.4898 1.7837 -0.0880
1STN V111T 2.30 0.8025 ±0.2886 0.5967 -0.6186 0.4348 0.3749 0.0147
1STN V114A 0.00 0.9366 ±0.2928 0.4369 -0.3679 0.4638 0.5261 -0.1222
1STN V114G 0.20 1.7955 ±0.3046 1.1858 -0.9023 0.5295 1.0957 -0.1131
1STN V114T 0.30 -0.0885 ±0.2946 1.0764 -1.0950 0.1201 -0.0587 -0.1313
1STN V23A 2.90 2.6043 ±0.2986 -0.2558 0.2570 1.1513 1.5194 -0.0676
1STN V23G 5.60 3.9772 ±0.3181 -1.0338 1.0276 1.8498 2.2213 -0.0876
1STN V23T 3.20 0.7316 ±0.2935 1.0175 -0.7237 0.2628 0.1195 0.0555
1STN V39A 2.20 1.4265 ±0.3031 0.2196 -0.1129 0.6831 0.8308 -0.1941
1STN V39G 4.70 3.6131 ±0.3214 0.6215 -0.0163 1.2058 1.9180 -0.1159
1STN V39T 1.30 0.7639 ±0.2887 1.1493 -0.2978 -0.1190 0.0429 -0.0116
1STN V51A 0.30 0.8479 ±0.3064 -0.3336 0.3558 0.4950 0.3389 -0.0082
1STN V51G 0.40 1.2378 ±0.3127 -0.2073 0.5432 0.4415 0.4761 -0.0157
1STN V51T -0.20 0.2434 ±0.2919 -0.4014 0.4969 0.0950 0.0433 0.0096
1STN V66A 2.20 2.4276 ±0.3058 -0.2868 0.4504 1.1309 1.4027 -0.2696
1STN V66G 4.40 3.7745 ±0.3171 -0.4106 0.6801 1.5049 2.0545 -0.0543
1STN V66T 1.40 0.7255 ±0.2922 0.7047 -0.0745 0.0198 0.1200 -0.0445
1STN V74A 3.10 1.5303 ±0.3071 1.2013 -0.6315 0.3032 0.7195 -0.0621
1STN V74T 3.80 0.3745 ±0.2913 0.6778 0.4095 -0.4247 -0.3038 0.0158
1STN V99A 3.20 3.0577 ±0.3011 -0.7166 0.8963 1.3821 1.7902 -0.2943
1STN V99G 5.00 4.1522 ±0.3221 -0.0660 0.3771 1.7616 2.3291 -0.2495
1STN V99T 3.30 1.1498 ±0.2944 0.0626 0.5585 0.2900 0.3520 -0.1133
1STN Y113A 0.00 1.4595 ±0.3404 -0.6002 1.2327 0.6656 0.6494 -0.4880
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1STN Y113F 0.00 0.4047 ±0.3344 0.0743 -0.1009 0.3863 0.3351 -0.2901
1STN Y113G 0.30 1.9153 ±0.3516 -0.3495 1.1760 0.6836 0.7742 -0.3689
1STN Y113L -0.20 0.5078 ±0.3306 0.4658 0.2162 0.0569 -0.0795 -0.1517
1STN Y115A 0.30 1.3440 ±0.3349 -0.0595 0.6423 0.7562 0.4657 -0.4607
1STN Y115F 0.10 0.5968 ±0.3339 -0.5913 0.5812 0.4671 0.2778 -0.1380
1STN Y115G 0.70 2.2419 ±0.3518 -0.2223 0.6956 1.1457 0.9909 -0.3681
1STN Y115L 0.30 0.6395 ±0.3378 0.1439 0.3586 0.1070 0.1493 -0.1193
1STN Y27A 2.80 3.2876 ±0.3351 -1.7758 1.5343 1.9953 2.2307 -0.6970
1STN Y27F 0.60 -0.1096 ±0.3381 -1.2456 0.4417 0.3749 0.4825 -0.1630
1STN Y27G 5.10 5.0879 ±0.3573 -1.9411 1.9953 2.5184 3.1789 -0.6636
1STN Y27L 1.50 0.9493 ±0.3342 -1.0637 0.4801 0.8472 0.7952 -0.1095
1STN Y54A 2.20 2.5804 ±0.3351 -2.0564 1.6834 1.7646 1.8960 -0.7073
1STN Y54F 0.50 -0.2829 ±0.3402 -0.7245 0.4812 -0.0245 0.0186 -0.0338
1STN Y54G 1.90 3.2809 ±0.3479 -1.1359 0.5751 1.8423 2.5577 -0.5582
1STN Y54L 3.40 1.0415 ±0.3311 -2.0855 1.7220 0.8535 0.7831 -0.2316
1STN Y85A 0.40 1.3363 ±0.3445 -1.9932 1.7530 0.8058 1.1640 -0.3933
1STN Y85F 0.00 0.1793 ±0.3369 -2.7739 1.9688 0.4054 0.7786 -0.1995
1STN Y85G 1.00 1.9862 ±0.3498 -1.8889 1.7673 1.0503 1.3716 -0.3140
1STN Y85L 0.10 0.5694 ±0.3294 -1.3162 1.5246 0.1146 0.2842 -0.0378
1STN Y91A 5.30 5.8830 ±0.3396 -2.2727 2.4729 2.9380 3.3826 -0.6379
1STN Y91F 2.40 1.3753 ±0.3427 -0.3629 1.2265 0.3848 0.3115 -0.1845
1STN Y91L 3.90 3.6663 ±0.3309 -2.5424 2.9937 1.6424 1.8027 -0.2301
1STN Y93F 2.00 -0.4976 ±0.3363 -0.0346 -0.5540 0.1737 0.0020 -0.0848
1STN Y93G 7.50 5.2864 ±0.3461 -1.7187 0.7603 3.2401 3.3975 -0.3929
1STN Y93L 4.50 2.0697 ±0.3339 -1.4929 1.0409 1.3813 1.3289 -0.1885
1YPC A16G 1.09 1.2403 ±0.2307 0.4285 -0.1703 0.3401 0.6109 0.0311
1YPC A58G 1.88 1.1118 ±0.2284 -0.0263 0.1706 0.3199 0.5145 0.1330
1YPC D23A 0.96 0.5965 ±0.2060 -8.4956 8.0910 0.6877 0.6922 -0.3789
1YPC D45A 0.80 0.8935 ±0.2061 -13.7761 13.6185 0.6428 0.8960 -0.4878
1YPC D52A 3.41 0.3808 ±0.2061 -6.2983 5.9803 0.6156 0.4618 -0.3786
1YPC E14D 0.52 0.1497 ±0.2010 -2.9044 2.7208 0.1746 0.2593 -0.1007
1YPC E14N 0.70 -0.2674 ±0.1981 -5.7170 5.3267 0.0396 0.1669 -0.0836
1YPC E14Q 0.29 -0.3253 ±0.1972 -6.5794 6.4307 -0.1593 -0.1303 0.1129
1YPC E15D 0.74 0.5800 ±0.1968 -2.0380 1.9967 0.3157 0.3465 -0.0408
1YPC E15N 1.07 0.8665 ±0.1932 -7.4612 6.9863 0.7368 0.6341 -0.0296
1YPC E15Q 0.47 0.3592 ±0.1968 -7.8167 7.7602 0.1109 0.3345 -0.0298
1YPC E26A 0.32 0.6901 ±0.1913 -2.0388 3.2741 -0.3737 -0.3606 0.1891
1YPC E41A 0.70 0.1743 ±0.2025 -14.8276 14.0037 0.5808 0.8596 -0.4423
1YPC E7A 0.47 0.6013 ±0.2029 -10.7589 9.4409 1.2150 1.1155 -0.4113
1YPC E7Q 0.62 0.3861 ±0.1980 -9.2459 8.0435 0.8874 0.9216 -0.2205
1YPC F50A 3.84 3.5671 ±0.2018 -0.5165 0.6075 1.8865 2.0846 -0.4950
1YPC F50L 2.11 1.1937 ±0.1922 0.4516 -0.2017 0.2613 0.5586 0.1240
1YPC F50V 2.39 2.3602 ±0.1854 -0.5586 0.7860 1.0670 1.4496 -0.3837
1YPC I20V 1.30 1.5113 ±0.1959 0.4794 -0.3292 0.7306 0.7910 -0.1606
1YPC I29A 3.90 2.4516 ±0.2000 0.5641 -0.2568 0.9039 1.3512 -0.1108
1YPC I29V 1.11 0.7030 ±0.2005 0.3455 -0.3459 0.4463 0.3399 -0.0828
1YPC I30A 2.12 1.1280 ±0.2101 0.3445 -0.3446 0.4946 0.7653 -0.1318
1YPC I30G 3.52 2.3319 ±0.2197 0.3770 -0.1084 0.7924 1.3204 -0.0495
1YPC I30T 1.34 0.7181 ±0.2010 0.1000 0.4595 0.0732 0.1697 -0.0843
1YPC I30V -0.08 0.0380 ±0.2002 0.0511 -0.1106 0.0896 0.1567 -0.1487
1YPC I37A 0.03 0.1403 ±0.2039 0.3827 -0.2235 0.1221 -0.2365 0.0955
1YPC I57A 4.29 4.2241 ±0.2125 -0.1962 0.5183 1.7200 2.3444 -0.1624
1YPC I57V -0.19 1.0475 ±0.2017 -0.1721 0.1328 0.5009 0.5554 0.0304
1YPC K11A -0.42 1.1565 ±0.2029 -11.8812 12.0504 0.7534 0.7190 -0.4851
1YPC K17A 0.49 2.1406 ±0.2071 -12.6573 12.6137 1.2494 1.5653 -0.6304
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1YPC K17G 2.32 3.1426 ±0.2238 -12.6028 12.7046 1.5615 2.0722 -0.5929
1YPC K18A -0.21 0.2072 ±0.1977 -5.6350 5.9773 0.1686 -0.0369 -0.2668
1YPC K18G 0.99 0.7773 ±0.2183 -5.4867 6.0104 0.3268 0.0795 -0.1527
1YPC K24A 0.65 2.3588 ±0.2060 -9.8790 9.1569 1.5920 2.1131 -0.6242
1YPC K24G 3.19 3.3129 ±0.2197 -9.5684 9.0081 1.9114 2.4876 -0.5258
1YPC K2A 0.55 2.0867 ±0.2054 -15.3363 14.9584 1.3445 1.6399 -0.5200
1YPC K2M 0.67 0.9960 ±0.1997 -14.9989 15.5176 -0.0534 0.5195 0.0113
1YPC L21A 1.33 1.7644 ±0.2109 -0.1406 0.2497 1.1047 1.0333 -0.4827
1YPC L21G 1.38 2.3293 ±0.2228 0.2172 0.1816 1.1622 1.2102 -0.4419
1YPC L32A 2.37 2.4447 ±0.2007 -0.4825 0.6756 1.1480 1.5456 -0.4421
1YPC L32I 0.26 -0.1857 ±0.1903 0.8183 -0.3815 -0.1932 -0.3274 -0.1019
1YPC L32V 0.50 0.3627 ±0.1854 0.2133 0.0635 0.2486 0.1383 -0.3010
1YPC L49A 3.84 2.8431 ±0.2061 0.2499 -0.0615 1.1252 1.8472 -0.3176
1YPC L8A 2.68 1.9316 ±0.2014 0.5701 -0.3564 0.8745 1.0538 -0.2104
1YPC N56A 0.83 0.9080 ±0.2063 -0.8584 0.6149 0.6948 0.6923 -0.2356
1YPC N56D 1.21 1.1854 ±0.1950 -7.2129 8.4501 -0.2180 0.0010 0.1652
1YPC P25A 1.76 0.2720 ±0.2017 -0.5476 0.5815 0.2359 -0.0198 0.0220
1YPC P33A 0.17 0.7477 ±0.2078 -0.6362 0.7952 0.3940 0.1995 -0.0048
1YPC P61A 3.34 2.0440 ±0.2043 0.0723 0.2993 0.8860 0.7380 0.0484
1YPC P6A 1.57 0.4341 ±0.1939 0.6977 -0.4116 0.1798 -0.0318 -0.0000
1YPC Q22A 0.02 0.0171 ±0.2090 0.0638 0.1173 0.0737 0.0815 -0.3192
1YPC Q22G 0.60 0.6081 ±0.2272 0.0624 0.2004 0.3366 0.2791 -0.2704
1YPC R43A 0.58 -0.0192 ±0.2043 -8.2402 7.6463 0.5273 0.6464 -0.5989
1YPC S12A 0.89 0.7659 ±0.2003 -1.6847 1.7977 0.3527 0.4208 -0.1206
1YPC S12G 0.80 1.1538 ±0.2205 -1.9383 1.9975 0.5072 0.6465 -0.0591
1YPC T36A -0.23 0.6401 ±0.2007 -0.3233 0.2284 0.1882 0.3603 0.1866
1YPC T36S 0.02 0.3450 ±0.1913 0.0703 0.2032 -0.1481 -0.1263 0.3460
1YPC T36V 0.76 -0.4830 ±0.1945 -0.0448 -0.3456 -0.0805 -0.0250 0.0131
1YPC T39A 0.72 0.7860 ±0.2042 -0.9800 1.1623 0.2246 0.3885 -0.0094
1YPC T39D -0.02 0.2278 ±0.1950 1.6136 -1.8685 0.1504 0.1430 0.1893
1YPC T3A 0.85 0.9336 ±0.2022 -0.1627 0.4289 0.3458 0.3676 -0.0460
1YPC T3G 1.16 1.3482 ±0.2255 -0.1011 0.5805 0.3329 0.4382 0.0977
1YPC T3V 0.32 0.1331 ±0.1908 -0.1343 0.4544 -0.1380 -0.1574 0.1083
1YPC V19A 0.49 0.6258 ±0.2049 -0.4082 -0.0386 0.6639 0.6313 -0.2228
1YPC V34A 0.64 1.1104 ±0.2019 0.2060 -0.0258 0.4172 0.6010 -0.0880
1YPC V34G 2.43 1.8569 ±0.2218 0.7133 -0.3379 0.5466 0.8930 0.0419
1YPC V34T 1.03 0.2301 ±0.1862 1.0971 -0.2066 -0.5772 -0.3410 0.2578
1YPC V38A 1.47 1.5283 ±0.2001 -0.6213 0.7162 0.5695 0.8870 -0.0230
1YPC V47A 4.93 3.4354 ±0.2055 -0.3759 0.7360 1.4114 1.7651 -0.1013
1YPC V51A 1.98 1.4299 ±0.2081 0.2914 -0.0967 0.5699 0.7676 -0.1022
1YPC V60A 1.51 1.4186 ±0.2023 0.1746 -0.1213 0.6402 0.7277 -0.0026
1YPC V60G 3.24 2.4654 ±0.2197 -0.2603 0.3708 0.9501 1.3596 0.0451
1YPC V60T 0.38 0.2593 ±0.1912 0.1901 0.0795 -0.0932 -0.1435 0.2265
1YPC V63A 1.45 1.3707 ±0.2082 0.2495 -0.1267 0.6051 0.6549 -0.0122
1YPC V63G 3.50 2.6512 ±0.2198 -0.4164 0.1437 1.1537 1.6921 0.0780
1YPC V63T 1.15 0.8996 ±0.1982 0.4821 -0.0127 0.1408 0.1986 0.0908
2LZM E11A -1.10 1.7152 ±0.3584 -18.0360 17.7298 0.8522 1.4931 -0.3240
2LZM E128A 0.16 0.7588 ±0.3686 -22.4258 22.5745 0.5121 0.5065 -0.4086
2LZM I3A 0.70 2.8336 ±0.3714 -0.1031 0.3016 1.2255 1.5548 -0.1453
2LZM I3G 2.10 3.7282 ±0.3709 0.3379 0.2060 1.3812 1.8447 -0.0415
2LZM I3T 2.30 1.0609 ±0.3567 0.8662 -0.2569 0.2863 0.1999 -0.0347
2LZM I3V 0.40 1.7426 ±0.3636 -0.3124 0.6587 0.7314 0.7130 -0.0481
2LZM K124G 0.10 -0.8264 ±0.3742 4.0245 -6.2053 0.8276 0.9636 -0.4368
2LZM L133A 3.60 3.5470 ±0.3754 0.0838 0.0432 1.8469 2.0013 -0.4282
2LZM N116D -0.60 -0.2713 ±0.3459 21.4055 -21.7141 0.0261 -0.2210 0.2322
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PDB Mutation ∆∆Gexp ∆∆Gcalc ∆∆GRF ∆∆GCoul ∆∆GLJ ∆∆GSA −T∆∆S

2LZM N144D -0.50 -1.0599 ±0.3638 18.3443 -18.7243 -0.3021 -0.4406 0.0628
2LZM N55G 0.60 0.7410 ±0.3723 -1.7963 2.2431 0.0651 0.3880 -0.1589
2LZM P37A 0.00 0.3662 ±0.3637 -0.5165 0.7338 0.1004 0.1134 -0.0649

2LZM_pW D20A 0.30 0.0143 ±0.3760 -18.3642 18.5995 -0.0150 0.0669 -0.2729
2LZM_pW D47A 0.95 0.2427 ±0.3695 -21.1741 20.1132 0.7186 0.8644 -0.2793
2LZM_pW D92N 1.40 -0.6302 ±0.3863 -26.1846 26.0719 -0.1333 -0.2149 -0.1694
2LZM_pW E45A -0.01 0.7393 ±0.3913 -18.7688 19.0294 0.3347 0.4995 -0.3555
2LZM_pW F153A 3.80 4.7497 ±0.3851 -0.4937 0.6420 2.4228 2.5375 -0.3589
2LZM_pW F153L -0.30 2.0754 ±0.3751 -0.2152 0.3984 1.0017 0.8944 -0.0038
2LZM_pW F67A 1.90 4.1671 ±0.4031 -0.5669 0.7109 2.0105 2.3950 -0.3825
2LZM_pW I100A 3.40 2.7283 ±0.3770 -0.1956 0.3929 1.0574 1.5052 -0.0316
2LZM_pW I17A 2.70 2.8361 ±0.3788 0.5077 -0.2110 1.2202 1.3648 -0.0456
2LZM_pW I27A 3.10 1.5650 ±0.3959 0.8058 -0.9398 0.7858 1.0365 -0.1232
2LZM_pW I29A 2.60 1.9056 ±0.3805 -0.0554 -0.1791 1.0096 1.3035 -0.1730
2LZM_pW I50A 2.00 1.8815 ±0.3768 -0.2804 0.4837 0.7113 1.0482 -0.0813
2LZM_pW I58A 3.20 2.5577 ±0.3814 0.3032 -0.2265 1.2653 1.3401 -0.1244
2LZM_pW I78A 1.60 2.1050 ±0.3915 0.5966 -0.3818 1.0841 0.9553 -0.1492
2LZM_pW K43A 1.03 0.8240 ±0.3782 4.9887 -5.9596 0.9357 1.4177 -0.5586
2LZM_pW K48A 0.56 -1.0669 ±0.3805 -3.1758 2.5862 -0.0682 0.0277 -0.4369
2LZM_pW L118A 3.50 2.5925 ±0.3804 -0.2382 0.6490 1.1195 1.3018 -0.2397
2LZM_pW L121A 2.30 3.1791 ±0.3820 -0.2176 0.2766 1.7228 1.6908 -0.2935
2LZM_pW L33A 3.60 3.7743 ±0.3923 0.1607 0.0642 1.8963 1.9727 -0.3196
2LZM_pW L39A 0.90 0.6282 ±0.3857 0.0951 0.1327 0.4421 0.2351 -0.2768
2LZM_pW L46A 1.86 2.2193 ±0.3973 -0.1106 0.1248 1.1284 1.5875 -0.5107
2LZM_pW L66A 3.90 2.0730 ±0.3830 0.0201 -0.0270 1.1684 1.3024 -0.3910
2LZM_pW L7A 2.60 2.2460 ±0.3810 0.1949 -0.6337 1.4595 1.6089 -0.3836
2LZM_pW L84A 3.90 3.3378 ±0.3917 -0.3001 0.5352 1.5394 1.8805 -0.3173
2LZM_pW L91A 3.10 2.8153 ±0.3902 -0.2833 0.3113 1.3672 1.6616 -0.2415
2LZM_pW L99A 4.50 3.7784 ±0.3827 -0.0125 0.2190 1.7623 2.1142 -0.3046
2LZM_pW L99G 6.30 5.3065 ±0.3786 -0.0914 0.3768 2.3473 2.9269 -0.2531
2LZM_pW M106A 2.30 2.1443 ±0.3920 -0.4873 0.4350 1.2023 1.3531 -0.3588
2LZM_pW M120A 0.20 1.2386 ±0.3847 -0.1547 -0.5951 1.4820 1.0753 -0.5688
2LZM_pW M6A 1.90 2.5890 ±0.3969 -1.2993 0.4073 2.0546 1.9564 -0.5299
2LZM_pW N116A -0.17 -0.6469 ±0.3838 -1.0628 1.3542 -0.2914 -0.4281 -0.2187
2LZM_pW N163D 0.21 -1.0151 ±0.3908 11.2315 -11.7342 -0.3249 -0.3586 0.1711
2LZM_pW N40A -0.32 -0.5934 ±0.3856 -0.8664 1.2323 -0.3858 -0.3979 -0.1755
2LZM_pW N40D -0.44 -0.5018 ±0.3881 16.5730 -16.6910 -0.2385 -0.3540 0.2087
2LZM_pW N68A -0.05 0.4464 ±0.3868 -0.5166 0.2869 0.4475 0.4300 -0.2014
2LZM_pW Q122A 0.24 0.8014 ±0.3921 -0.0972 -0.3749 0.7602 0.8079 -0.2945
2LZM_pW Q123A 0.22 -0.3968 ±0.3844 -0.4491 -0.3304 0.2565 0.5231 -0.3970
2LZM_pW R119A 0.18 -0.0615 ±0.3885 11.5935 -12.3886 0.6251 0.6813 -0.5728
2LZM_pW S117A -1.27 -0.4807 ±0.3760 -0.9039 0.2057 0.1947 0.0550 -0.0323
2LZM_pW S44A -0.34 -0.1581 ±0.3836 0.4219 -0.1990 -0.1245 -0.1658 -0.0906
2LZM_pW S44G 0.53 0.1874 ±0.4000 0.4750 -0.2384 0.0612 -0.0789 -0.0315
2LZM_pW T115A 0.14 -0.5169 ±0.3862 0.2747 -0.3520 -0.0893 -0.3871 0.0368
2LZM_pW T151S -0.39 -0.1861 ±0.3714 -0.0303 -0.3146 -0.0512 0.1323 0.0776
2LZM_pW T152S 2.60 0.2912 ±0.3709 0.2094 -0.4149 0.1998 0.2426 0.0542
2LZM_pW T26S -0.57 0.0512 ±0.3817 0.1894 -0.7130 0.3203 0.2077 0.0467
2LZM_pW T59A 1.50 0.1698 ±0.3888 -0.4709 0.3013 0.2453 0.1770 -0.0829
2LZM_pW T59G 1.60 0.7761 ±0.3897 -0.7091 0.3616 0.5319 0.4808 0.1108
2LZM_pW T59S 0.20 -0.3686 ±0.3877 0.1901 -0.5007 -0.0752 -0.0445 0.0617
2LZM_pW T59V 1.50 -0.3798 ±0.3844 -0.3257 0.3572 -0.1460 -0.2101 -0.0551
2LZM_pW V111A 1.10 0.7774 ±0.3902 0.1273 -0.3041 0.5018 0.5634 -0.1110
2LZM_pW V149T 3.00 1.2467 ±0.3777 0.8021 0.4159 0.0400 -0.0596 0.0482
2LZM_pW V71A 1.50 1.8297 ±0.3920 0.2675 -0.0877 0.7717 0.9641 -0.0860
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PDB Mutation ∆∆Gexp ∆∆Gcalc ∆∆GRF ∆∆GCoul ∆∆GLJ ∆∆GSA −T∆∆S

2LZM_pW V75T 1.30 0.3072 ±0.3806 0.5199 0.1310 -0.1879 -0.1678 0.0121
2LZM_pW V87A 1.70 1.5537 ±0.3931 0.4393 -0.2999 0.6740 0.6789 0.0613
2LZM_pW V87T 1.60 0.2560 ±0.3817 0.6656 -0.2236 -0.0592 -0.1333 0.0064
2LZM_pW V94A 1.80 0.7833 ±0.3934 0.0581 -0.1377 0.4197 0.3698 0.0735

2LZM Q105A 0.60 2.1824 ±0.3635 -2.3017 2.0274 1.1825 1.5670 -0.2928
2LZM Q105E 1.10 0.6802 ±0.3536 21.0233 -19.3743 -0.8489 -0.4436 0.3237
2LZM Q105G 3.11 2.5340 ±0.3698 -2.9951 2.1051 1.5786 2.0454 -0.2000
2LZM Q123E -0.40 -0.7031 ±0.3644 20.7350 -21.1032 -0.3720 -0.0424 0.0795
2LZM T157A 0.50 0.7614 ±0.3705 -1.0694 1.5675 0.0794 0.2635 -0.0795
2LZM T157G 1.10 1.2508 ±0.3800 -1.0551 1.3893 0.2936 0.6761 -0.0530
2LZM T157S 0.66 0.4842 ±0.3674 0.2009 -0.1649 0.1019 0.3221 0.0242
2LZM T157V 1.20 0.4266 ±0.3581 -1.2121 1.8563 -0.2488 -0.0149 0.0462
2LZM V103A 1.91 2.0695 ±0.3753 0.0659 0.2962 0.7185 0.9742 0.0147
2LZM V131A -0.39 0.8371 ±0.3754 -0.0861 0.2540 0.2871 0.4229 -0.0408
2LZM V131G 0.68 1.3444 ±0.3840 -0.1656 0.3664 0.5514 0.5246 0.0676
2LZM V131T 0.12 0.6522 ±0.3621 -0.3257 0.5288 0.1030 0.1973 0.1488
2LZM V149A 2.87 2.9766 ±0.3683 -0.3222 0.5285 1.3631 1.3667 0.0406
2LZM Y25G 4.55 6.4469 ±0.4236 -1.7923 2.1667 2.9194 3.6985 -0.5453
3CHY A101G 1.00 0.9925 ±0.3293 0.4378 -0.2242 0.1691 0.3703 0.2395
3CHY A113G 1.30 1.0997 ±0.3231 1.5854 -1.2318 0.0561 0.4022 0.2878
3CHY A114G 0.80 0.6208 ±0.3255 1.2532 -0.9232 -0.0141 0.0417 0.2633
3CHY A74G 0.30 0.3431 ±0.3349 0.7524 -0.2867 -0.1284 -0.1873 0.1930
3CHY A99G 0.50 0.6634 ±0.3203 2.6903 -2.2020 -0.0336 -0.1444 0.3531
3CHY D12A -2.50 -2.6546 ±0.3093 0.1073 -4.4995 1.1990 1.0226 -0.4841
3CHY D13A -2.70 -2.1046 ±0.3115 3.7135 -6.8440 0.7855 0.6535 -0.4131
3CHY D57A -3.40 -2.3101 ±0.2971 -1.2608 -2.8374 1.0669 1.1166 -0.3954
3CHY F14A -0.80 -1.2703 ±0.3101 0.6169 -1.5190 0.1721 -0.3906 -0.1497
3CHY F14N -2.90 -1.8279 ±0.3093 -0.6377 -0.9711 0.1121 -0.3111 -0.0202
3CHY P61G 0.60 1.4092 ±0.3328 -0.6386 0.7873 0.4974 0.5954 0.1677

3CHY_pW A103G 1.70 1.5571 ±0.3332 -0.8915 0.8438 0.6183 1.1206 -0.1341
3CHY_pW A36G 3.10 1.3395 ±0.3251 -0.5105 0.4658 0.7001 0.8031 -0.1190
3CHY_pW A42G 2.30 0.9322 ±0.3287 -0.0696 0.1725 0.3712 0.5168 -0.0587
3CHY_pW A97G 1.40 0.9794 ±0.3200 -0.3129 0.3044 0.4343 0.6198 -0.0662
3CHY_pW A98G 1.30 1.9445 ±0.3283 -1.2940 1.1883 0.9109 1.3317 -0.1924
3CHY_pW D38A 1.90 0.5499 ±0.3128 4.9449 -5.3753 0.6839 1.0041 -0.7076
3CHY_pW D38G 1.00 2.0989 ±0.3215 4.5780 -5.2099 1.2416 2.0911 -0.6018
3CHY_pW D64A 1.00 0.6460 ±0.3018 4.5537 -4.7136 0.7155 0.6625 -0.5722
3CHY_pW G39A 1.00 0.3149 ±0.3160 -0.4938 0.1599 0.5814 0.3093 -0.2418
3CHY_pW G76A -0.50 -0.1015 ±0.3188 -0.5814 0.2516 0.1928 0.2956 -0.2601
3CHY_pW I123V 0.80 1.3167 ±0.2962 0.1489 -0.0263 0.6339 0.7360 -0.1757
3CHY_pW I55V 1.50 1.2283 ±0.2955 -0.6284 0.4589 0.8134 0.8941 -0.3097
3CHY_pW I72V 1.50 1.3813 ±0.2918 -1.1092 0.9833 0.7856 0.9928 -0.2712
3CHY_pW N23G 0.00 0.7547 ±0.3213 0.0728 -0.1918 0.5884 0.6015 -0.3162
3CHY_pW T112A 1.50 0.6972 ±0.3077 -0.9192 0.8823 0.4440 0.5664 -0.2764
3CHY_pW T112G 1.00 0.4311 ±0.3135 -0.0477 0.0745 0.2233 0.1772 0.0038
3CHY_pW V108T 1.00 0.5349 ±0.3021 -1.3685 0.8094 0.5757 0.6063 -0.0881
3CHY_pW V10T 5.70 1.4345 ±0.3020 -0.2716 0.6643 0.5221 0.6388 -0.1192
3CHY_pW V11T 3.20 1.2605 ±0.2942 -0.2689 0.7141 0.6241 0.4388 -0.2476
3CHY_pW V21T 0.20 0.6043 ±0.2911 -0.2153 0.3600 0.2697 0.3044 -0.1144
3CHY_pW V33T 1.50 1.2890 ±0.2995 -0.1063 0.4512 0.4952 0.5751 -0.1262
3CHY_pW V40T 0.70 0.4737 ±0.2968 -0.7862 0.7578 0.2468 0.3784 -0.1231
3CHY_pW V54T 4.80 1.0595 ±0.3042 0.1663 0.4776 0.1593 0.3825 -0.1262
3CHY_pW V83T 3.50 1.6970 ±0.2947 0.0722 0.8459 0.2970 0.5514 -0.0696
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Table A.2: Reproducibility of 1YPC A16G with an experimental stability of 1.09kcal/mol

number ∆∆GCC/PBSA ∆∆Ges ∆∆GLJ ∆∆GSA −T∆∆S
test set 1.2403 0.3401 0.2582 0.6109 0.0311

1 1.12000 -0.0527000 0.586000 0.773000 -0.188000
2 1.47000 -0.0353000 0.664000 0.885000 -0.0480000
3 1.20000 0.133000 0.412000 0.627000 0.0295000
4 1.42000 0.0971000 0.587000 0.847000 -0.106000
5 1.15000 0.137000 0.432000 0.637000 -0.0576000
6 0.968000 0.127000 0.310000 0.489000 0.0419000
7 0.748000 0.0823000 0.307000 0.417000 -0.0581000
8 0.669000 0.188000 0.254000 0.366000 -0.139000
9 1.19000 0.00585000 0.587000 0.698000 -0.0964000

10 1.27000 0.0791000 0.528000 0.688000 -0.0239000
mean 1.12050 0.0761350 0.466700 0.642700 -0.0645600

σ 0.260787 0.0792196 0.143511 0.174465 0.0712651

Table A.3: Reproducibility of 1YPC D45A with an experimental stability of 0.80kcal/mol

number ∆∆GCC/PBSA ∆∆Ges ∆∆GLJ ∆∆GSA −T∆∆S
test set 0.8935 -0.157600 0.6428 0.8960 -0.4878

1 0.646000 -0.575000 0.800000 0.958000 -0.536000
2 1.07000 -0.400000 0.897000 1.11000 -0.531000
3 0.283000 -0.374000 0.492000 0.644000 -0.479000
4 0.760000 -0.482000 0.749000 0.985000 -0.493000
5 0.739000 -0.300000 0.652000 0.923000 -0.536000
6 1.17000 -0.205000 0.732000 1.10000 -0.455000
7 0.680000 -0.310000 0.629000 0.871000 -0.510000
8 0.568000 -0.331000 0.678000 0.805000 -0.584000
9 0.650000 -0.396000 0.729000 0.891000 -0.574000

10 0.562000 -0.446000 0.665000 0.804000 -0.460000
mean 0.712800 -0.381900 0.702300 0.909100 -0.515800

σ 0.253302 0.104226 0.108187 0.141063 0.0444767
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Table A.4: Reproducibility of 1YPC E15Q with an experimental stability of 0.47kcal/mol

number ∆∆GCC/PBSA ∆∆Ges ∆∆GLJ ∆∆GSA −T∆∆S
test set 0.3592 -0.0565 0.1109 0.3345 -0.0298

1 0.217000 -0.259000 0.182000 0.466000 -0.172000
2 0.600000 -0.140000 0.263000 0.559000 -0.0819000
3 0.431000 -0.0209000 0.101000 0.465000 -0.113000
4 0.506000 0.0205000 0.116000 0.432000 -0.0633000
5 0.355000 0.0174000 0.0613000 0.286000 -0.0105000
6 0.187000 -0.118000 1.23000e-05 0.288000 0.0174000
7 -0.204000 -0.0806000 -0.150000 0.0402000 -0.0136000
8 0.214000 0.0291000 0.0713000 0.344000 -0.230000
9 0.459000 -0.145000 0.196000 0.476000 -0.0676000

10 0.542000 -0.288000 0.296000 0.567000 -0.0329000
mean 0.330700 -0.0984500 0.113661 0.392320 -0.0767400

σ 0.237607 0.113604 0.130867 0.158498 0.0769757

Table A.5: Reproducibility of 1YPC F50A with an experimental stability of 3.84kcal/mol

number ∆∆GCC/PBSA ∆∆Ges ∆∆GLJ ∆∆GSA −T∆∆S
test set 3.5671 0.0910 1.8865 2.0846 -0.4950

1 2.75000 -0.765000 2.03000 2.06000 -0.581000
2 3.36000 -0.589000 2.20000 2.35000 -0.600000
3 2.75000 -0.513000 1.92000 2.03000 -0.687000
4 3.09000 -0.354000 1.99000 2.12000 -0.668000
5 2.90000 -0.297000 1.85000 1.97000 -0.625000
6 2.69000 -0.708000 1.91000 2.01000 -0.513000
7 2.89000 -0.389000 1.87000 2.00000 -0.593000
8 3.25000 -0.586000 2.19000 2.39000 -0.747000
9 2.84000 -0.664000 2.07000 2.05000 -0.622000

10 2.94000 -0.637000 2.05000 2.17000 -0.646000
mean 2.94600 -0.550200 2.00800 2.11500 -0.628200

σ 0.221971 0.157863 0.123720 0.146686 0.0641644
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Table A.6: Reproducibility of 1YPC N56D with an experimental stability of 1.21kcal/mol

number ∆∆GCC/PBSA ∆∆Ges ∆∆GLJ ∆∆GSA −T∆∆S
test set 1.1854 1.23720 -0.2180 0.0010 0.1652

1 0.979000 1.08000 -0.126000 0.0482000 -0.0264000
2 1.50000 1.23000 -0.0437000 0.220000 0.0875000
3 1.22000 1.37000 -0.224000 -0.00793000 0.0735000
4 1.36000 1.24000 -0.0574000 0.226000 -0.0564000
5 1.17000 1.30000 -0.222000 0.0124000 0.0808000
6 1.30000 1.30000 -0.205000 0.0984000 0.110000
7 1.02000 1.13000 -0.190000 0.0262000 0.0541000
8 1.18000 1.31000 -0.185000 0.0560000 -0.000268000
9 1.35000 0.968000 0.0719000 0.302000 0.00371000

10 1.52000 1.03000 0.0768000 0.335000 0.0743000
mean 1.25990 1.19580 -0.110440 0.131627 0.0400842

σ 0.181830 0.135543 0.116423 0.127233 0.0557362

Table A.7: Reproducibility of 1YPC S12A with an experimental stability of 0.89kcal/mol

number ∆∆GCC/PBSA ∆∆Ges ∆∆GLJ ∆∆GSA −T∆∆S
test set 0.7659 0.1130 0.3527 0.4208 -0.1206

1 0.672000 -0.106000 0.512000 0.532000 -0.266000
2 1.27000 0.0951000 0.570000 0.719000 -0.110000
3 0.294000 0.204000 0.127000 0.127000 -0.164000
4 0.692000 -0.0412000 0.394000 0.446000 -0.106000
5 0.414000 -0.0452000 0.284000 0.329000 -0.155000
6 0.752000 -0.0970000 0.407000 0.508000 -0.0661000
7 0.277000 0.104000 0.208000 0.181000 -0.215000
8 0.512000 0.113000 0.328000 0.351000 -0.280000
9 0.593000 -0.131000 0.503000 0.469000 -0.248000

10 0.765000 -0.132000 0.535000 0.581000 -0.219000
mean 0.624100 -0.00363000 0.386800 0.424300 -0.182910

σ 0.288179 0.121602 0.148569 0.180897 0.0737198
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Table A.8: Reproducibility of 1YPC T39D with an experimental stability of −0.02kcal/mol

number ∆∆GCC/PBSA ∆∆Ges ∆∆GLJ ∆∆GSA −T∆∆S
test set 0.2278 -0.25490 0.1504 0.1430 0.1893

1 -0.289000 -0.439000 0.0433000 0.166000 -0.0592000
2 0.405000 -0.257000 0.251000 0.431000 -0.0198000
3 -0.259000 -0.169000 -0.118000 -0.0476000 0.0758000
4 0.176000 -0.143000 0.0647000 0.250000 0.00497000
5 -0.461000 -0.254000 -0.153000 -0.0573000 0.00312000
6 -0.0139000 -0.221000 -0.0425000 0.180000 0.0696000
7 -0.393000 -0.266000 -0.0904000 -0.0174000 -0.0201000
8 0.0326000 -0.186000 0.0645000 0.246000 -0.0911000
9 -0.0862000 -0.368000 0.0775000 0.159000 0.0454000

10 -0.318000 -0.419000 0.00609000 0.111000 -0.0152000
mean -0.120650 -0.272200 0.0103190 0.142070 -0.000650999

σ 0.274230 0.103573 0.118092 0.152879 0.0532417

Table A.9: Reproducibility of 1YPC V63T with an experimental stability of 1.15kcal/mol

number ∆∆GCC/PBSA ∆∆Ges ∆∆GLJ ∆∆GSA −T∆∆S
test set 0.8996 0.46940 0.1408 0.1986 0.0908

1 0.560000 0.0840000 0.334000 0.214000 -0.0713000
2 1.18000 0.443000 0.329000 0.347000 0.0593000
3 0.717000 0.456000 0.133000 0.0708000 0.0568000
4 1.15000 0.615000 0.278000 0.306000 -0.0497000
5 0.683000 0.437000 0.147000 0.115000 -0.0166000
6 0.853000 0.500000 0.179000 0.145000 0.0288000
7 0.905000 0.511000 0.215000 0.172000 0.00723000
8 1.20000 0.630000 0.311000 0.326000 -0.0660000
9 0.687000 0.237000 0.289000 0.166000 -0.00469000

10 1.09000 0.408000 0.381000 0.382000 -0.0775000
mean 0.902500 0.432100 0.259600 0.224380 -0.0133660

σ 0.238215 0.164649 0.0857168 0.108002 0.0516952
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Appendix B

GYF-binding results

Table B.1: Concoord/PBSA results for GYF calculations using the Concoord/PBSA web
interface. Binding free energies are shown relative to the wild type. All energies are in
kcal/mol. Also the pKa calculations for the two histidines in the peptide chain in bound and
unbound conformation are presented. The input structures for concoord are used in pKa
calculations.

pKa
bound free

Mutation ∆∆Gbind ∆∆GLJ ∆∆Ges ∆∆GPPIS H64 H71 H64 H71

S63A 1.82 0.305 -0.368 1.88 6.463 6.964 6.388 6.702
S63C 1.74 0.154 -0.289 1.88 6.679 7.167 6.621 6.863
S63D 2.06 0.368 -0.192 1.88 7.207 7.164 7.152 6.859
S63E 2.01 0.226 -0.095 1.88 6.792 7.108 6.967 6.805
S63F 1.82 0.33 -0.388 1.88 6.336 6.883 6.372 6.647
S63G 1.77 0.157 -0.265 1.88 6.671 7.157 6.548 6.847
S63H 1.77 0.193 -0.302 1.88 6.437 7.125 6.311 6.809
S63I 1.76 0.194 -0.316 1.88 6.229 6.901 6.274 6.652
S63K 1.62 0.198 -0.461 1.88 6.226 7.190 6.006 6.860
S63L 1.82 0.196 -0.26 1.88 6.448 6.852 6.387 6.614
S63M 1.51 -0.354 -0.0109 1.88 6.274 7.066 6.267 6.817
S63N 1.87 0.209 -0.218 1.88 6.606 7.103 6.476 6.773
S63P 1.91 0.0418 -0.0133 1.88 6.710 7.056 6.252 6.804
S63Q 1.8 0.24 -0.315 1.88 6.738 7.155 6.481 6.842
S63R 1.46 -0.145 -0.278 1.88 6.399 7.186 6.057 6.870
S63T 1.57 -0.273 -0.0351 1.88 6.406 6.945 6.397 6.677
S63V 1.72 0.148 -0.305 1.88 6.598 7.155 6.512 6.844
S63W 1.89 -0.00855 0.0217 1.88 6.497 6.934 6.360 6.684
S63Y 1.78 0.247 -0.349 1.88 6.244 7.168 6.364 6.715
H64A 1.89 0.367 -0.358 1.88 7.029 7.300
H64C 1.81 0.222 -0.289 1.88 6.694 6.923
H64D 1.84 0.214 -0.25 1.88 6.718 7.004
H64E 2.02 0.316 -0.176 1.88 6.862 7.165
H64F 1.59 -0.191 -0.104 1.88 6.606 6.876
H64G 1.86 0.318 -0.334 1.88 6.783 7.075
H64I 1.82 0.327 -0.389 1.88 6.792 7.068
H64K 1.77 0.238 -0.344 1.88 6.593 6.828
H64L 1.77 0.2 -0.306 1.88 6.637 6.944
H64M 1.87 0.262 -0.275 1.88 6.557 6.773
H64N 1.77 0.207 -0.316 1.88 6.750 6.998
H64P 1.77 0.266 -0.377 1.88 6.591 6.846
H64Q 1.84 0.215 -0.255 1.88 6.755 6.989
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pKa
bound free

Mutation ∆∆Gbind ∆∆GLJ ∆∆Ges ∆∆GPPIS H64 H71 H64 H71

H64R 1.86 0.184 -0.201 1.88 6.963 7.211
H64S 2 0.206 -0.0814 1.88 6.727 7.035
H64T 1.92 0.291 -0.255 1.88 6.726 7.016
H64V 1.87 0.32 -0.334 1.88 6.735 6.953
H64W 1.9 0.0535 -0.0337 1.88 6.604 6.848
H64Y 1.72 0.239 -0.401 1.88 6.606 6.900
R65A 1.9 0.882 -0.858 1.88 6.910 7.041 6.716 6.746
R65C 1.86 0.598 -0.62 1.88 6.997 7.249 6.758 6.900
R65D 2.02 0.525 -0.387 1.88 7.107 7.142 6.902 6.821
R65E 2.97 -0.259 1.35 1.88 7.076 7.247 6.658 6.887
R65F 1.35 0.0821 -0.61 1.88 6.888 7.128 6.645 6.805
R65G 2.26 1.3 -0.925 1.88 6.802 7.067 6.767 6.762
R65H 1.45 0.212 -0.644 1.88 6.656 7.079 6.571 6.769
R65I 1.29 0.191 -0.782 1.88 6.937 7.208 6.571 6.910
R65K 2.11 0.419 -0.187 1.88 6.816 7.211 6.684 6.843
R65L 1.36 0.127 -0.651 1.88 6.847 7.282 6.733 6.750
R65M 1.47 -0.135 -0.279 1.88 7.009 6.983 6.738 6.687
R65N 2.06 0.453 -0.268 1.88 6.924 7.263 6.742 6.904
R65P 1.67 0.457 -0.672 1.88 6.889 7.223 6.683 6.899
R65Q 1.52 -0.115 -0.25 1.88 7.018 7.273 6.746 6.911
R65S 2.09 0.895 -0.684 1.88 6.941 7.201 6.519 6.870
R65T 1.87 0.702 -0.71 1.88 6.810 7.027 6.730 6.719
R65V 1.7 0.591 -0.772 1.88 6.919 7.251 6.757 6.904
R65W 1.36 -0.275 -0.245 1.88 6.795 7.123 6.610 6.784
R65Y 1.13 -0.0706 -0.675 1.88 6.962 6.954 6.760 6.667
P66A 2.11 0.597 -0.367 1.88 6.747 7.175 6.659 6.854
P66C 1.83 0.34 -0.39 1.88 6.607 6.887 6.470 6.596
P66D 2.16 0.586 -0.303 1.88 6.810 7.068 6.705 6.799
P66E 1.91 -0.0474 0.0795 1.88 6.836 7.285 6.812 6.954
P66F 2.12 0.41 -0.169 1.88 6.601 7.035 6.504 6.788
P66G 2.18 0.629 -0.332 1.88 6.677 6.888 6.547 6.632
P66H 1.43 -0.339 -0.111 1.88 6.566 6.928 6.433 6.663
P66I 1.8 0.0698 -0.151 1.88 6.655 6.885 6.573 6.639
P66K 2.03 0.539 -0.394 1.88 6.449 6.927 6.367 6.726
P66L 2.04 0.493 -0.331 1.88 6.683 7.054 6.493 6.767
P66M 2.07 0.526 -0.331 1.88 6.706 7.148 6.597 6.858
P66N 2.12 0.472 -0.236 1.88 6.539 7.139 6.455 6.868
P66Q 1.96 -0.0843 0.165 1.88 6.712 7.098 6.632 6.834
P66R 1.77 -0.109 -0.00245 1.88 6.486 7.239 6.313 7.049
P66S 2.13 0.643 -0.393 1.88 6.690 7.109 6.478 6.817
P66T 2.03 0.393 -0.239 1.88 6.730 7.123 6.642 6.841
P66V 2.1 0.486 -0.262 1.88 6.658 6.877 6.543 6.638
P66W 2.04 0.443 -0.287 1.88 6.665 7.168 6.584 6.848
P66Y 1.1 -0.706 -0.075 1.88 6.555 7.041 6.559 6.807
P67A 1.73 0.299 -0.445 1.88 6.655 7.112 6.523 6.807
P67C 1.74 0.181 -0.324 1.88 6.536 7.153 6.493 6.932
P67D 1.88 0.211 -0.206 1.88 6.623 7.214 6.508 6.935
P67E 1.81 0.207 -0.282 1.88 6.469 7.322 6.541 6.906
P67F 1.74 0.172 -0.312 1.88 6.780 7.156 6.590 6.865
P67G 1.9 0.359 -0.341 1.88 6.362 6.923 6.499 6.670
P67H 1.59 -0.00707 -0.284 1.88 6.666 6.950 6.564 6.639
P67I 1.53 0.0914 -0.446 1.88 6.429 6.925 6.492 6.625
P67K 1.45 0.196 -0.626 1.88 6.611 6.809 6.448 6.579
P67L 1.75 0.251 -0.377 1.88 6.697 7.129 6.529 6.813
P67M 1.49 0.0817 -0.473 1.88 6.621 6.976 6.504 6.647
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pKa
bound free

Mutation ∆∆Gbind ∆∆GLJ ∆∆Ges ∆∆GPPIS H64 H71 H64 H71

P67N 1.67 0.118 -0.332 1.88 6.758 7.138 6.590 6.794
P67Q 1.75 0.145 -0.277 1.88 6.717 7.009 6.507 6.753
P67R 1.14 -0.0953 -0.642 1.88 6.470 6.425 6.339 6.211
P67S 2.01 0.252 -0.125 1.88 6.698 7.205 6.613 6.903
P67T 1.69 0.159 -0.351 1.88 6.674 7.071 6.578 6.752
P67V 1.55 0.0303 -0.358 1.88 6.676 7.031 6.524 6.723
P67W 1.66 0.117 -0.342 1.88 6.228 7.116 6.190 6.657
P67Y 1.67 0.13 -0.339 1.88 6.706 7.116 6.608 6.829
P68A 2.03 0.393 -0.243 1.88 6.628 6.992 6.485 6.731
P68C 1.65 -0.161 -0.0644 1.88 6.441 6.972 6.471 6.785
P68D 5.02 -0.907 4.05 1.88 6.547 7.522 6.620 7.094
P68E 5.51 -1.09 4.72 1.88 6.323 7.068 6.605 6.883
P68F 0.316 -1.84 0.281 1.88 6.674 7.213 6.568 6.909
P68G 2.52 0.853 -0.209 1.88 6.774 7.173 6.604 6.864
P68H 1.43 -0.8 0.351 1.88 6.571 7.028 6.413 6.733
P68I 1.56 0.0184 -0.343 1.88 6.694 7.190 6.573 6.877
P68K 3.47 -1.15 2.75 1.88 6.444 6.890 6.502 6.515
P68L 1.29 -0.399 -0.191 1.88 6.647 7.248 6.484 6.911
P68M 1.1 -0.951 0.168 1.88 6.685 7.144 6.550 6.859
P68N 1.83 -0.487 0.44 1.88 6.272 6.756 6.572 6.511
P68Q 1.69 -1.14 0.953 1.88 6.580 7.019 6.574 6.733
P68R 1.34 -1.96 1.42 1.88 6.490 6.646 6.514 6.498
P68S 2.11 0.191 0.0381 1.88 6.761 7.154 6.631 6.876
P68T 2.03 0.139 0.00701 1.88 6.688 7.147 6.559 6.840
P68V 1.83 0.0344 -0.0824 1.88 6.498 7.001 6.372 6.929
P68W 0.992 -2.02 1.14 1.88 6.427 7.163 6.579 6.642
P68Y 0.384 -2.38 0.888 1.88 6.553 6.625 6.512 6.448
P69A 2.41 0.564 -0.0322 1.88 6.505 6.951 6.443 6.778
P69C 2.29 0.692 -0.282 1.88 6.710 7.267 6.579 6.954
P69D 2.59 0.396 0.31 1.88 6.730 7.549 6.513 7.216
P69E 2.42 -0.269 0.807 1.88 6.712 7.490 6.493 7.085
P69F 2.05 0.224 -0.0568 1.88 6.588 7.339 6.439 6.941
P69G 2.71 1.2 -0.362 1.88 6.700 7.212 6.587 6.964
P69H 1.97 -0.168 0.253 1.88 6.342 7.123 6.500 6.801
P69I 2.15 0.36 -0.0883 1.88 6.478 6.956 6.548 6.670
P69K 1.87 0.217 -0.224 1.88 6.208 6.952 6.437 6.818
P69L 2.03 0.284 -0.13 1.88 6.692 7.215 6.561 6.913
P69M 2.14 0.432 -0.172 1.88 6.642 7.136 6.522 6.869
P69N 2.12 0.323 -0.0877 1.88 6.601 7.276 6.665 7.036
P69Q 1.9 0.102 -0.0829 1.88 6.586 7.242 6.459 7.071
P69R 1.94 -0.0503 0.115 1.88 6.404 6.695 6.505 6.674
P69S 2.41 0.796 -0.269 1.88 6.366 7.116 6.445 6.846
P69T 2.26 0.389 -0.00578 1.88 6.296 7.043 6.492 6.666
P69V 2.26 0.492 -0.114 1.88 6.522 6.872 6.459 6.718
P69W 2.23 0.0168 0.334 1.88 6.540 7.309 6.373 7.031
P69Y 2 0.142 -0.0264 1.88 6.511 7.187 6.352 6.940
G70A 2.08 0.266 -0.0635 1.88 6.666 6.975 6.533 6.706
G70C 2.34 0.108 0.35 1.88 6.365 7.181 6.492 6.926
G70D 4.47 -0.278 2.86 1.88 6.494 7.492 6.488 7.209
G70E 4.06 -1.67 3.86 1.88 6.614 7.303 6.539 7.062
G70F 0.504 -1.48 0.105 1.88 6.580 7.299 6.411 7.092
G70H 1.54 -1.02 0.678 1.88 6.545 7.360 6.433 7.037
G70I 1.75 -0.352 0.222 1.88 6.439 7.116 6.491 6.879
G70K 3.86 -0.77 2.75 1.88 6.645 6.902 6.456 6.687
G70L 1.82 -0.45 0.386 1.88 6.554 7.144 6.388 6.956
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pKa
bound free

Mutation ∆∆Gbind ∆∆GLJ ∆∆Ges ∆∆GPPIS H64 H71 H64 H71

G70M 1.23 -1.46 0.801 1.88 6.537 7.096 6.411 6.856
G70N 2.6 -0.0214 0.744 1.88 6.712 7.141 6.595 6.863
G70P 1.94 -0.316 0.372 1.88 6.459 7.247 6.439 7.017
G70Q 1.81 -1.16 1.08 1.88 6.724 7.188 6.638 6.821
G70R 1.73 -1.74 1.59 1.88 6.719 6.831 6.583 6.537
G70S 2.55 0.483 0.185 1.88 6.630 7.107 6.508 6.815
G70T 2.34 0.438 0.0218 1.88 6.647 7.240 6.461 6.962
G70V 2.2 0.449 -0.125 1.88 6.723 7.204 6.635 6.921
G70W 0.328 -2.46 0.913 1.88 6.498 7.255 6.492 7.121
G70Y 0.683 -1.54 0.346 1.88 6.626 7.372 6.482 7.125
H71A 1.89 0.419 -0.414 1.88 6.468 6.600
H71C 1.85 0.312 -0.338 1.88 6.587 6.574
H71D 2.01 0.0739 0.0597 1.88 6.571 6.736
H71E 1.98 0.0725 0.031 1.88 6.645 6.783
H71F 1.74 0.179 -0.323 1.88 6.509 6.564
H71G 1.92 0.297 -0.258 1.88 6.566 6.324
H71I 1.67 0.076 -0.289 1.88 6.535 6.528
H71K 1.75 0.241 -0.375 1.88 6.465 6.458
H71L 1.71 0.217 -0.383 1.88 6.466 6.498
H71M 1.71 0.22 -0.388 1.88 6.575 6.697
H71N 1.94 0.367 -0.311 1.88 6.555 6.683
H71P 1.56 -0.142 -0.179 1.88 6.545 6.639
H71Q 1.87 0.375 -0.388 1.88 6.484 6.628
H71R 1.68 0.305 -0.502 1.88 6.563 6.362
H71S 1.95 0.368 -0.299 1.88 6.605 6.737
H71T 1.74 0.236 -0.373 1.88 6.618 6.737
H71V 1.73 0.151 -0.296 1.88 6.510 6.627
H71W 1.82 0.114 -0.17 1.88 6.489 6.460
H71Y 1.89 0.288 -0.275 1.88 6.559 6.672
R72A 2.12 0.549 -0.312 1.88 6.699 7.222 6.566 6.902
R72C 2.12 0.646 -0.408 1.88 6.720 7.300 6.601 6.997
R72D 2.59 0.651 0.0551 1.88 6.354 7.889 6.352 7.563
R72E 2.48 0.554 0.047 1.88 6.711 7.433 6.582 7.120
R72F 1.8 0.259 -0.339 1.88 6.712 7.258 6.451 6.953
R72G 2.16 0.734 -0.451 1.88 6.437 6.816 6.421 6.538
R72H 2.04 0.478 -0.313 1.88 6.392 6.909 6.481 6.646
R72I 2.13 0.692 -0.445 1.88 6.435 7.422 6.464 7.088
R72K 1.97 0.316 -0.229 1.88 6.718 7.180 6.572 6.847
R72L 2.01 0.556 -0.426 1.88 6.688 7.312 6.490 7.008
R72M 2.1 0.425 -0.203 1.88 6.717 7.292 6.532 6.984
R72N 2.22 0.581 -0.245 1.88 6.718 7.236 6.527 6.901
R72P 2.05 0.578 -0.406 1.88 6.549 7.390 6.564 7.117
R72Q 2.17 0.374 -0.0851 1.88 6.563 7.016 6.500 6.726
R72S 2.25 0.753 -0.386 1.88 6.469 6.907 6.479 6.617
R72T 2.14 0.678 -0.414 1.88 6.353 7.109 6.467 6.834
R72V 2.15 0.719 -0.451 1.88 6.511 7.491 6.502 7.221
R72W 1.99 0.367 -0.26 1.88 6.663 7.194 6.523 6.875
R72Y 1.8 0.0368 -0.121 1.88 6.711 7.176 6.475 6.865
V73A 1.72 0.133 -0.294 1.88 6.462 7.070 6.450 6.776
V73C 1.8 0.15 -0.232 1.88 6.766 7.276 6.601 6.950
V73D 1.91 0.126 -0.0997 1.88 6.749 7.748 6.653 7.446
V73E 1.99 0.258 -0.153 1.88 6.791 7.528 6.584 7.258
V73F 1.84 0.255 -0.296 1.88 6.642 7.134 6.521 6.796
V73G 1.92 0.33 -0.289 1.88 6.359 6.979 6.429 6.678
V73H 1.89 0.24 -0.234 1.88 6.659 7.049 6.582 6.701
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pKa
bound free

Mutation ∆∆Gbind ∆∆GLJ ∆∆Ges ∆∆GPPIS H64 H71 H64 H71

V73I 1.8 0.143 -0.221 1.88 6.340 6.940 6.499 6.705
V73K 1.74 0.33 -0.467 1.88 6.552 6.821 6.423 6.455
V73L 1.79 0.238 -0.324 1.88 6.386 7.288 6.502 6.998
V73M 1.7 0.154 -0.33 1.88 6.701 7.279 6.619 6.937
V73N 1.73 0.164 -0.312 1.88 6.371 7.227 6.496 6.962
V73P 1.83 0.261 -0.312 1.88 6.480 7.064 6.423 6.841
V73Q 1.72 0.0309 -0.196 1.88 6.726 7.100 6.575 6.848
V73R 1.77 0.355 -0.46 1.88 6.672 6.833 6.477 6.550
V73S 1.9 0.293 -0.269 1.88 6.649 7.109 6.511 6.809
V73T 1.91 0.345 -0.315 1.88 6.702 7.198 6.605 6.842
V73W 1.9 0.0858 -0.0678 1.88 6.306 6.918 6.460 6.614
V73Y 2 0.278 -0.161 1.88 6.480 7.161 6.532 6.825
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