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1 SHORT SUMMARY

1 Short summary

Drug application via the lung is a convenient route of administration, because of its easy

handling and the special anatomy of the lung. A large surface area, rapid absorption

through the thin alveolar epithelium, low enzymatic activity and a direct access to the

blood circulation are the advantages of the administration of local as well as systemic

drugs to the lung. However, new drugs and formulations have to be tested for their

safety and efficacy, especially since new particle types like nanoparticles or liposomes are

in the focus of the development of new drugs. Such testing is often done by animal

experiments due to a lack of appropriate in vitro models. Therefore a new in vitro model

was developed allowing to test aerosolisation, deposition as well as subsequent absorption

of aerosol formulations. The so-called ”Pharmaceutical Aerosol Deposition Device On

Cell Cultures” (PADDOCC) system relies on sedimentation, which is the main deposition

mechanism in the deep lung. The PADDOCC system, comprising of air flow control unit,

aerosolisation unit and deposition unit, is able to generate the dry powder aerosol and

deposit only the respirable fraction simultaneously onto three air-liquid interface grown

cell monolayers. After the deposition several endpoints such as cytotoxicity or absorption

are determined. Budesonide and salbutamol sulphate, two important drugs, which are used

to treat asthma were tested, and different absorption profiles compared to standardised

transport studies could be detected.
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2 KURZZUSAMMENFASSUNG

2 Kurzzusammenfassung

Die Lunge ist ein erfolgversprechender Ort für eine Arzneistoffgabe, da ihre Anatomie

viele Vorteile bietet. Sie besitzt eine große Oberfläche, eine schnelle Absorption des

Arzneistoffes durch das dünne Alveolarepithelium, eine geringe enzymatische Aktivität

sowie einen direkten Zugang zum Blutkreislauf. Neu entwickelte Arzneistoffformulierungen

zur inhalativen Anwendung müssen in Bezug auf ihre Sicherheit und Wirksamkeit getestet

werden, in besonderem Maße seitdem neue Partikeltypen wie Nanopartikel oder Lipo-

somen in den Focus der Neuentwicklungen gerückt sind. Diese Tests werden meistens mit

Tiermodellen durchgeführt, da es keine oder kaum geeignete in vitro Modelle gibt. Deshalb

wurde ein neues in vitro Modell entwickelt, mit dem die Aerosolisierung, die Deposition

sowie die nachfolgende Absorption einer Arzneistoffformulierung untersucht werden kann.

Das ”Pharmaceutical Aerosol Deposition Device On Cell Cultures” (PADDOCC) System

basiert auf der Sedimentation der Aerosolteilchen eines Arzneistoffes auf einem Zellmono-

layer, da die Sedimentation der Hauptdepositionsmechanismus in der tiefen Lunge ist.

Das PADDOCC System, bestehend aus einer Kontrolleinheit, einer Verneblungseinheit

sowie einer Depositionseinheit, generiert ein Trockenaerosol und deponiert nur die lun-

gengängige Fraktion gleichzeitig auf drei, an der Luft-Grenzschicht gewachsenen, Zell-

monolayer. Danach können verschiedene Endpunkte wie Zytotoxizität oder Absorption

bestimmt werden.

Budesonid und Salbutamolsulfat, die zwei bedeutende Therapeutika in der Asthmathera-

pie darstellen, wurden getestet und es wurden veränderte Absorptionsprofile im Vergleich

zu standardisierten Transportexperimenten mit diesen Arzneistoffen gefunden.
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3 INTRODUCTION

3 Introduction

Parts of this chapter have been published in:

S. Hein, A. Henning, M. Bur, M. Schneider, and C.-M. Lehr

Particulate carriers for pulmonary drug delivery in: P. Gehr, C. Mühlfeld, B. Rothen-

Rutishauser, F. Blank (Eds.) Particle lung interactions 2nd edition, Informa Healthcare,

New York (2009), ISBN: 978-1420072563
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3 INTRODUCTION

Drug administration by inhalation is well established since many years, but has mainly

been used for locally treating diseases in the lungs such as asthma or chronic obstructive

pulmonary disease (COPD). During the last two decades, though, increasing attention has

been paid to using the healthy lung as a convenient route to treat diseases such as diabetes

mellitus by aerosol delivery of insulin. Pulmonary delivery offers many advantages as a non-

invasive method for both local and systemic drug delivery due to the characteristics of the

lung. The lung has a large surface area, offers rapid absorption through the thin alveolar

epithelium, there is low enzymatic activity, and it affords direct access to the circulation.

However, most drugs, approved for inhalation therapy, consist of the pure drug and some

excipients like lactose or sodium chloride which stabilise the formulation, but do not offer

the possibility of prolonged release. The development of such prolonged drug formulations

is difficult due to the defense mechanisms of the lung. These defense mechanisms protect

the body from airborne particles of the environment, but they do not distinguish between

particles which could possibly harm the body (e.g. viruses, bacteria, particulate matter)

or drug particles which are able to heal or ameliorate the disease. New particle approaches

like liposomes or nanoparticles, among other things, try to evade the defense mechanisms

to offer an efficient therapy without severe side effects with a convenient administration

for the patient. Nevertheless, safety issues of the materials used in these new formulations

are a big challenge, because nowadays only very few excipients are approved for inhalation

therapy, and make the conversion of innovative delivery technologies into marketed drug

products a rather slow process.
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3 INTRODUCTION

3.1 Structure of the respiratory tract

3.1.1 Anatomy of the lung

The main function of the lung is gas exchange, meaning the oxygen uptake from the

atmosphere into the bloodstream and the carbon dioxide excretion from the bloodstream

into the atmosphere. The functional structure can be classified by the conducting airways

and the gas exchange part. The conducting airways consist of trachea, bronchi, bronchioles

and terminal bronchioles and open out into the gas exchange area, comprising of respiratory

bronchioles, alveolar ducts and alveoli. The inhaled air is filtered, warmed up to 37◦C and

humidified in the conducting airways. The trachea is divided into two main bronchi, a left

and right side. Afterwards the bronchi branch repeatedly into two smaller bronchi until the

alveolar region. The so formed generations of airways result in an exponentially increased

area of tissue. Generation 0 - 16 is formed by the conducting airways and 17 - 23 is located

in the gas exchange region (Figure 1).

Due to the different functions of the conducting and respiratory zone, there are differ-

ences in the morphology of the cells present. Bronchioles mainly consist of ciliated cells

and goblets cells [2], whereas the alveolar region is covered by a flat monolayer of epithelial

type I and II cells. Epithelial type I cells cover about 95% of the surface and are specialised

in gas exchange [3]. The other 5% are covered by epithelial type II cells which secret sur-

factant to prevent collapsing of the lung during exhalation [4]. The surfactant is composed

of 90% lipids, mostly phospholipids and 10% proteins. The surfactant proteins are divided

in the hydrophilic SP-A and SP-D plus the hydrophobic SP-B and SP-C which all have

different functions on the alveolar surface in the context of biophysics and immunology [5].

The alveolar region has a very large (100 m2), but thin (< 0.5 µm) surface to provide a

rapid gas exchange, and it is also suited for drug absorption into the bloodstream.
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3 INTRODUCTION

Figure 1: Different generations of the respiratory tract due to the branching of the trachea
(modified according to [1])

3.1.2 Clearance mechanisms of the lung

The lung has certain clearance mechanisms to protect the human body from the envi-

ronment. These mechanisms function as a barrier to withhold bacteria, viruses or other

pathogenic particles, but they also prevent drugs to take effects in the lung. Deposited

drug particles will also be eliminated because the defense mechanisms are not able to dis-

tinguish between pathogenic and drug particles. Indeed, establishing a depot for prolonged

release from drug particles is desirable, but still appears to be rather difficult. In order to

make further progress, the particles must be able to evade the clearance mechanisms of the

lungs such as macrophages and mucociliary clearance without affecting them, otherwise

the integrity of the respiratory tract could be compromised.
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3 INTRODUCTION

Mucociliary clearance

Dependent on size, density etc., not all particles are deposited in the deep lung and reach

the alveolar region. Most of the particles are deposited in the conducting airways during

in- and exhalation. To remove the particles from this region, the respiratory tract is

equipped with a so-called mucociliary clearance system. Ciliated cells covered with mucus

are lining the parts between the trachea and the terminal bronchioles. These ciliated cells

beat in a metachronal coordinated wave pattern, thereby transporting particles, deposited

on the mucus, towards the throat, where they can be swallowed [6]. This special mucus,

secreted by the goblet cells, consists mostly of water and in minor parts of glycoproteins,

proteins, lipids, and inorganic salts [7]. Depending on different experimental techniques,

the clearance velocity of healthy non-smokers varies from 4 to 20 mm/min [8, 9], but

the interactions between the ciliary cells, the mucus and deposited particles are not yet

explained. An in vitro model was developed to investigate the mucociliary clearance [10,

11]. An embryonic chicken trachea was used to determine the influence of particle size

or material properties on the clearance velocity. Clearance rates of polystyrene particles

of different sizes (50-6000 nm) did not differ significantly in this in vitro model. Thus, it

remains unclear which particle characteristics influence particle clearance.

Alveolar macrophages

Alveolar macrophages are present on the alveolar surface. These macrophages are derived

from monocytes in the bone marrow. Afterwards they migrate to the alveoli and represent

the first line of defense against inhaled particles because they have a high phagocytotic

and microbicidal potential [12]. Particles which are deposited in the alveolar region, will

be phagocytosed by those alveolar macrophages. Champion et al. [13] demonstrated

that particle shape and the position to the macrophage influences the internalisation by

7



3 INTRODUCTION

phagocytosis. Alveolar macrophages are also able to secrete a variety of cytokines or other

mediators and to attract other cells of the non specific immune system. Macrophages that

are full of phagocytosed particles are eliminited by migrating to the bronchial tissue and

then escape through the mucociliary escalator, where they are swallowed at the upper end.
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3 INTRODUCTION

3.2 Pulmonary drug targeting with different particulate carriers

In order to be effectively deposited in the deep lung, it is well known that an aerosol

must fulfill some requirements. The particle size of the administered drugs needs to have

a median mass aerodynamic diameter between 1 and 5 µm, because smaller particles

are exhaled while bigger particles will not reach the alveoli and are confined to the upper

airways instead. This is due to different deposition mechanisms, depending on aerodynamic

diameter and inhalation manoeuvre. Particles with a diameter> 5 µm are mostly deposited

in the upper airways by impaction forces [14, 15], whereas smaller particles are deposited

by sedimentation (1-5 µm) or Brownian diffusion (< 1 µm) in the deep lung (Figure 2).

Ultra-fine particles of 5-10 nm are also efficiently deposited and not exhaled. They may

remain in the deep lungs as well, but this size range is not used for aerosol medicines at the

moment. This is probably due to a lack of appropriate formulation technologies that can

generate ultra-fine drug particles, along with intrinsic limitations on the dose of an active

pharmaceutical ingredient that ultra-fine particles can deliver within a reasonable aerosol

volume or time of inhalation.

Regardless of their size, particulate drug carriers for inhalation aerosol must be non-toxic

and well tolerated. However, only a few materials are approved by the United States Food

and Drug Administration (FDA) for inhalation. Current aerosol drug products essentially

nebulise the ”naked” drug via different systems such as nebulisers, pressurised metered

dose inhalers or dry powder inhalers [17, 18]. Apart from a few propellants and solvents,

excipients other than lactose or NaCl are virtually uncommon in pharmaceutical aerosols

due to their unproven safety and a lack of regulatory approval for use in inhalation aerosols.

Biodegradable pharmaceutical polymers such as poly(lactic-co-glycolic-acid) (PLGA) and

chitosan are common in controlled release formulations for oral or even parenteral admin-

9



3 INTRODUCTION

Figure 2: Deposition in the different regions of the lung is dependent on particle size [16]

istration, but they have yet to be approved for use in humans by inhalation.

Limited by a very short list of approved excipients, the development of inhalation

medicines has so far focussed on aerosol production to optimise deposition in preferred

lung areas. Controlled release of the active ingredient from the carrier which is a common

strategy for many oral or parenteral drug formulations has yet to be achieved for inhaled

drugs. A controlled-release system for an inhaled drug is rather challenging because once

it is deposited in the lungs it will be prone to a variety of very efficient clearance mecha-

nisms, such as mucociliary clearance in the upper airways [19] and macrophage clearance

in the lower respiratory tract [20, 21]. These mechanisms are physiologically important to

protect the body from inhaled particles a priori, regardless of whether they are toxic or not.

Therefore advanced particulate drug carriers must overcome these clearance mechanisms in

order to achieve long-term sustained release or enhanced absorption into the bloodstream

for systemically acting drugs. At the same time, however, such carriers must be absolutely

10



3 INTRODUCTION

biocompatible and well-tolerated by the patient. In order to avoid any long-term accumu-

lation in the lung or other compartments in the body, they must be biodegradable within

an appropriate timeframe. Advanced carriers also offer an opportunity to target drugs to a

specific site of action, for example by triggering cell-specific uptake mechanisms, reducing

side effects while decreasing the dose that is required for treatment.

3.2.1 Systemic drug delivery via the lungs

The aim of aerosol delivery systems employed in systemic formulations is to provide good

systemic bioavailability by allowing convenient, pain-free inhalation and rapid uptake into

the bloodstream. This approach may be of interest whenever oral delivery of an active

pharmaceutical ingredient is not feasible and intravenous injection is not desired. These

formulations need to cross the diffusional barrier at the alveolar epithelial barrier and avoid

the clearance mechanisms of the lung that will act to diminish or inhibit uptake. Another

consideration for the inhaled formulation is whether the drug needs to act with a rapid

onset of action or over prolonged period of release.

Large molecules

It is difficult to deliver large molecules like insulin or heparin to the systemic circula-

tion with acceptable bioavailability by any route other than parenteral administration.

Nebulising and administering them via the lungs has been shown to be feasible, but the

bioavailability is usually rather low. This may, however, be further improved if advanced

particulate drug carriers and novel excipients are employed in conjunction with improved

aerosol technology. There has been strong interest in developing an inhalable insulin for-

mulation for many years due to an increase in diabetes mellitus patients and because many

patients suffer from their daily regime of injections. The first FDA-approved product was

11



3 INTRODUCTION

Exubera R©, which came on market in 2006. It was a microparticle powder produced by

a spray-drying technique containing recombinant human insulin, mannitol, glycine and

sodium citrate. Only 10% of rapid acting insulin was absorbed into the systemic circula-

tion compared to subcutaneous administered insulin [22]. Although certainly an important

pioneer, one must acknowledge that Exubera R© was in principle still a conventional formula-

tion where no attempt was made to enhance absorption or modify release from the carrier.

Exubera R© failed to gain wide acceptance and in October 2007 Pfizer decided to phase

out Exubera R© for mainly economical reasons. Other firms were also working on inhalable

insulin formulations, but after the withdrawal of Exubera R©, Novo Nordisk (AERx R© in-

sulin) and Eli Lilly (AIR R© insulin) decided to stop their clinical phase III trials because of

economical reasons, too.

One example of an enhanced insulin formulation is Technosphere R© insulin from the

MannKind Corporation. It consists of pH-sensitive carrier particles and monomer insulin,

which is the bioactive form of insulin. The insulin is loaded onto pH-sensitive organic

molecules that self-assemble into small particles under the neutral pH conditions in the

lung [23]. The monomers diffuse into the bloodstream and show rapid uptake with 30-

50% bioavailability compared to subcutaneous administration [24, 25]. The FDA accepted

submission for Technosphere R© insulin which is now called AFRESA R© in May 2009. Other

formulations have been tested in vitro and in animals. Grenha et al. [26] developed insulin

loaded lipid/chitosan nanoparticle complexes that were spray-dried with mannitol into

microspheres. Testing in vitro showed that the lipids provide controlled release of the in-

sulin. Other groups have used large porous particles for delivering insulin into the systemic

circulation [27]. These particles were first introduced by Edwards et al. [28] and are char-

acterised by large sizes (> 5 µm) but small mass densities. These particles can be deposited

into the deep lung, and since they are too big to be phagocytosed, they are an attractive

12



3 INTRODUCTION

delivery system for systemic drug application. To avoid accumulation in the lungs caused

by the reduced phagocytosis, these particles need to be biodegradable. Another advantage

is that the large porous particles aggregate less than other nonporous particles because

smaller particles have stronger cohesive forces [29]. Huang et al. [30] encapsulated insulin

into liposomes and administered them to mice and produced a decrease in plasma glucose

levels compared to mice administered empty liposomes. Cagnani et al. [31] produced an

inhalable insulin powder with spray-drying technique using clear mild acidic solutions of

insulin. In vitro studies showed that these particles had respirable aerodynamic diame-

ters and a ”raisin-like” morphology that showed no agglomeration tendency. While these

studies have all paid attention to insulin delivery, others have focussed on improving the

stability of the formulations. Amidi et al. [32] produced insulin-loaded microparticles with

N-trimethyl chitosan and dextran as carriers using a supercritical fluid-drying technique

and showed that the particle characteristics and the insulin structure were maintained for

one year. All of these carriers mentioned here could be employed in the lungs offering

enhanced systemic delivery, perhaps even sustained release properties, and therefore allow

diabetes patients to avoid daily injections.

Another important macromolecule for systemic delivery via the lungs is heparin. To

prevent deep vein thrombosis, a low molecular weight heparin (LMWH) was connected to

a positively charged dendrimer in order to enhance absorption by reducing the negative sur-

face charge density of the LMWH. The drug-dendrimer complex was administered to rats

and it was as efficacious as subcutaneously administered LMWH and it had no toxic effects

on the lungs [33]. Yang et al. [34] tested LMWH formulations with tetradecyl-β-maltoside

or dimethyl-β-cyclodextrin in vitro and in vivo and showed that both formulations en-

hance the pulmonary absorption of LMWH. They also showed that tetradecyl-β-maltoside

formulations were more potent than dimethyl-β-cyclodextrin formulations.

13



3 INTRODUCTION

Small molecules

Small molecules can also be systemically delivered via the lungs by inhalation. This is

an attractive option when the drug molecules are not stable or water soluble enough to

be delivered via the gastrointestinal tract, or when an extremely rapid onset of action is

desired, such as analgesia. Some nebulised drugs are in clinical trials that are administered

to the alveoli in order to achieve a rapid onset of action. MAP0004 is a dihydroergotamine

mesylate [35] used to treat migraine, however intravenous administration of this drug causes

some serious side effects. When MAP0004 was applied to the lungs by a pressurised metered

dose inhaler there was a decreased rate of side effects in healthy volunteers. MAP0004

(now: Levadex) is currently phase 3 studies [36, 37] and the new drug application (NDA)

submission is planned for the first half in 2011. Another strategy for inhaled migraine

therapy is described by Rabinowitz et al. [38, 39]. It is a single dose thermal aerosol

device with a thin (about 5 µm) film of pure drug (e.g. rizatriptan). Breath-activation

of the device by patients causes rapid heating of this film and a vapour is formed in less

than one second followed by condensation of the vapour phase drug into aerosol particles

during inhalation (Figure 3). The emerging solid particles are spherical with an amorphous

form and a mass median aerodynamic diameter of 1-3 µm, which is optimal for alveolar

deposition. Drugs delivered in this way will act rapidly, because the particles dissolve in the

alveolar liquid lining upon deposition and rise immediately into the systemic circulation.

Unfortunately, this delivery method is only suitable for drugs with specific properties: they

have to be able to sublimate and they need to be thermostabile because the drug is heated

to 400◦C in the device. About 175 different drugs, such as rizatriptan, fentanyl, zolpidem

or loxapine have been used with this technology without thermal decomposition. The

device was developed further to the Staccato system which is now in several trials with

different drugs. Loxapine finished phase 3 studies and an NDA was submitted in December

14



3 INTRODUCTION

2009. It is used in the acute treatment of agitation in emergency medical aid. Studies with

Staccato loxapine showed rapid absorption and was well-tolerated [40].

Figure 3: Staccato loxapine before and after inhalation [40]

In pain control, there is not only a need for a rapid onset of action, drug plasma levels

need to be maintained above a minimum level for a prolonged period of time while avoiding

an initial peak that exceeds the maximum tolerance level and undesired drug effects. From

a pharmaco-kinetic point of view, a controlled-release delivery system addresses all of these

issues.

There is a strong incentive to develop inhalable controlled-release formulations to treat

pain in cancer patients. There have been some attempts to use nebulised fentanyl for pain

relief [41] and the early stages of development are summarised by Farr et al. [42]. One

product is a composition of free and liposome-encapsulated fentanyl (AeroLEF
TM

) and it

passed the phase II trials in 2007. The free fentanyl provides a rapid onset of analgesia

while an extended period of analgesia is achieved with the liposome-entrapped fentanyl. Li-

posomes show many advantages for pulmonary delivery because they are made of different

phospholipids, such as dipalmitoylphosphatidylcholine (DPPC) and dilauroylphosphatidyl-

choline (DLPC), which naturally occur in the lung and therefore are compatible with lung

surfactant. Hydrophilic as well as lipophilic substances can be incorporated into liposomes

and they enable sustained drug release. Liposomes are not as stable as microparticles,
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though some attempts have been made to prolong their stability by producing a liposomal

dry powder by lyophilisation [43, 44] or spray-drying [45].

3.2.2 Controlled loco-regional delivery to the lungs

The field of inhalation therapy was established many years ago in order to develop drug

delivery systems to treat loco-regional diseases like asthma and COPD. These early drug

formulations often showed no controlled- or sustained-release because the particles were not

modified to circumvent the clearance mechanisms of the lungs. Therefore new particulate

systems were developed to prolong residence times of the drug particles that are used to

treat several lung diseases.

Asthma/COPD

There is a wide range of aerosol drug products on the market for the treatment of asthma

and COPD. Most of these formulations are made of drug particles mixed with lactose as a

carrier material (Figure 4) and are administered by a dry powder inhaler or by nebulising

the drug dissolved/dispersed in a propellant with a pressurised metered dose inhaler. Al-

though these formulations achieve efficient pulmonary deposition, they were not designed

to provide sustained- or controlled-release. If they are long acting (e.g. β-agonists), it is

due to the pharmacological half-life of the drug and not the delivery system. Indeed, the

particle technology of these conventional formulations aims to improve the aerodynamic

properties and thus the deposition rate of the aerosol particles. Some of the new approaches

in this area try to find formulations that show sustained release properties so as to reduce

the dose frequency for patients and improve bioavailability in the lung.

Arya et al. [46] coated budesonide particles with a very thin film of polylactic acid us-

ing the pulse laser ablation technique. They administered coated and uncoated budesonide
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Figure 4: Typical dry powder formulation comprising of large carrier particle covered with
small drug crystals

intratracheally to neonatal rats and observed higher AUC levels in the lung with coated

budesonide, while the systemic exposure of budesonide was reduced compared to uncoated

budesonide. In another study the poly-(ethylene oxide)-block-distearoyl phosphatidyl-

ethanolamine polymer (mPEG-DSPE) was used to prepare beclomethasone loaded micelles

[47]. The lyophilised beclomethasone loaded polymeric micelles showed high entrapment

efficiency and in vitro drug release studies showed a sustained release over six days. In an-

other study, salbutamol acetonide was incorporated into solid lipid microparticles (SLMs)

after increasing its lipophilicity [48]. SLMs show physicochemical stability and compati-

bility and no acute toxicity in vivo in rats [49] and in vitro release studies demonstrated

that salbutamol acetonide SLMs had a slower release of the drug than pure salbutamol

acetonide. Thus, SLMs promise to provide sustained pulmonary drug delivery, which in

turn will reduce the number of doses required by patients.

Liposomes have also been considered as another carrier for lung delivery of anti-inflamma-

tory drugs. Saari et al. [50] investigated the distribution of 99mTc-labeled beclomethasone
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dipropionate DLPC and DPPC liposomes in healthy volunteers. They found that the clear-

ance of DPPC liposomes was slower than DLPC liposomes, perhaps because of the different

phase transition temperatures, but in both formulations about 80% of the deposited ra-

dioactivity remained in the lungs 24 hours after inhalation. Learoyd et al. [51] produced

chitosan-based terbutaline sulphate particles where chitosan acted to modify drug release.

Different molecular weights of chitosan were used and high molecular weights of chitosan

increased the duration of terbutaline release.

Pulmonary arterial hypertension

Pulmonary arterial hypertension is a severe lung disease with increased pulmonary arterial

pressure resulting in right ventricular failure [52]. The vasodilator iloprost is FDA-approved

for pulmonary administration, but because of its short-acting properties, multiple inhaled

doses (6-9 per day) are necessary [53]. Therefore Kleemann et al. [54] developed iloprost-

containing liposomes for sustained release. Liposomes containing DPPC and cholesterol

showed good stability and iloprost loading efficiencies, so further investigations are under

way in vivo to develop a suitable carrier system for prolonged iloprost release in the lungs.

Immunosuppressives

Pulmonary drug delivery is being evaluated for loco-regional application of immunosuppres-

sive drugs to lung transplant patients. Intravenous or oral formulations of tacrolimus are

available for therapy of lung transplantation but they are poorly tolerated. Sinswat et al.

[55] created nanostructured aggregates containing amorphous (with lactose) or crystalline

tacrolimus nanoparticles by an ultra-rapid freezing technique. These aggregates could be

delivered by nebulisation and showed high drug absorption in the lungs of mice. Another

immunosuppressive drug, cyclosporine A is very hydrophobic so aerosol formulations were
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based on ethanol and propylene glycol dissolutions [56, 57], but these excipients were some-

times poorly tolerated in animals as well as humans. Thus, cyclosporine A liposomes were

produced and they were efficiently absorbed into lung tissue and the formulations were well

tolerated [58, 59]. In another approach, Chiou et al. [60] produced cyclosporine A powders

with confined liquid impinging jets (CLIJ) technique and subsequent spray-drying. They

optimised this technique to obtain suitable particles for pulmonary delivery of proteins.

All of these advanced formulations of cyclosporine A promise to reduce systemic plasma

levels and thus toxicities to other organs like kidneys.

From the discussion above it is clear that the majority of approaches either improve

bioavailability, control the release properties or reduce the dose frequency for the drug

with the aim of improving patient compliance and the quality of therapy. However, one

problem remains unsolved. There is no existing technology able to inhibit or circumvent

the clearance mechanisms of the respiratory tract. As a consequence, the potential of

such carriers to act as a platform for sustained drug delivery for longer periods cannot

be entirely exploited, even when it is possible to design aerosol drug carriers that show

sustained release profiles for 24 hours or longer. New carrier systems are needed that avoid

clearance and achieve a powerful drug depot in the respiratory tract.

3.2.3 Drug targeting within the respiratory tract

Targeted delivery of drugs is particularly important when the therapy causes severe side

effects, such as in the treatment of lung cancer. These drugs are often administered to the

systemic circulation, but in order to achieve an acceptable drug level at the site of action,

high plasma levels may be required and can produce side effects in other tissues. Therefore,

targeting drugs to the lungs by inhalation therapy promises to protect other tissues and

therefore reduce side effects.
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Vaccines

Delivering vaccines by the pulmonary route is easy, fast and non-invasive, and therefore

a powerful strategy in the fight against infectious diseases, particularly in the develop-

ing world. Furthermore, this immunisation route allows mass vaccination campaigns to be

carried out without the need for medical personnel. Many pulmonary vaccines are in devel-

opment for several infectious diseases such as influenza [61, 62], measles [63–65], diphtheria

[66] and hepatitis [67].

Pulmonary vaccine delivery can induce local immune responses in the lungs as well as

systemically [68]. Below the pulmonary epithelium, there is an array of immune cells, such

as antigen-presenting cells that continuously sample inhaled antigens and subsequently

present it to T cells, and the broncho-alveolar lymphoid tissue (BALT) that is induced

by local infection [69]. Local activation of the pulmonary immune response has the ad-

vantage of targeting pathogens directly at the port of entry and is suitable for diseases

like influenza. Several formulations for intranasal administration of influenza vaccine have

already been tested and shown to elicit a modest systemic immune response [61, 70]. Smith

et al. [71] encapsulated inactivated or subunit split influenza virus vaccines into spray-dried

microparticles containing DPPC as well as distearoylphosphatidylcholine (DSPC) and ad-

ministered them intratracheally to mice and rats. This formulation showed improved local

bioavailability to the BALT, and increased antigen-loading of antigen-presenting cells, IgG

antibodies, and T cell responses locally as well as systemically. In another study, an in-

fluenza subunit vaccine powder stabilised by inulin was prepared by spray freeze-drying

and delivered to the lungs of mice [62]. This formulation produced enhanced IgG and IgA

levels compared to the conventional intramuscular administered influenza vaccine, proving

that the modified vaccine can enhance local and systemic antibody production.

Another infectious disease that is transmitted by the airborne route is measles. Several
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research groups administered wet mist aerosols of live attenuated measles vaccine to peo-

ple and the immune response was greater compared to injected vaccine [72, 73]. However,

the stability of the vaccine was a big problem because of cold-chain maintenance caused

by the thermolability of the vaccine. Therefore different research groups have developed

powder vaccines with increased stability. De Swart et al. [63] administered two different

dry powder measles vaccines to macaques, but the vaccination was less efficient than in-

tramuscular vaccination or nebulised vaccination. Thus, more work is required to improve

the composition of the dry powders to obtain a formulation that can boost serum antibody

levels with acceptable properties for administration by dry powder inhalers.

Antiinfectives

One third of the world population is infected with tuberculosis [74]. The treatment of tu-

berculosis is a great challenge, because Mycobacterium tuberculosis invades and replicates

within macrophages. Drugs against tuberculosis are given orally and over a long period,

though side effects and a high dose frequency result in many interruptions to therapy. Tar-

geting macrophages could decrease systemic exposure, reduce the dose that is needed, and

decrease side effects though a special targeting strategy is needed to both channel the drugs

into infected macrophages and provide prolonged drug release once it is delivered. There-

fore different formulations for pulmonary administration are being developed. Pandey et al.

[75] produced biodegradable PLG nanoparticles with three anti-tubercular drugs (ATD)

(rifampicin, isoniazid and pyrazinamide) and administered the aerosolised nanoparticles to

infected guinea pigs. They found that the bioavailability of all three drugs was increased

compared to intravenous administration and that the drugs remained above a therapeutic

concentration for 11 days after inhalation. Sharma et al. [76] tried to improve the bioavail-

ability of ATDs by producing bioadhesive wheat germ agglutinin-coated PLG nanoparticles
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with ATDs. Wheat germ agglutinin was used because it is known to bind to the alveolar

epithelium [77] and the results showed that the concentrations of the nebulised ATDs were

in a therapeutic range for about 15 days. Other investigations have employed alginate

nanoparticles [78].

As already discussed above, liposomes are well suited for administration to the lungs be-

cause their similarity to surfactant prevents them from acting as an irritant once deposited

in the lungs. Zaru et al. [79] designed different rifampicin-loaded liposomes and showed

that rifampicin-liposomes were less toxic to alveolar epithelial cells (A549) compared to

the free drug. Stealth liposomes are sterically stabilised liposomes that avoid elimination

through the reticuloendothelial system [80] and are used for intravenous cancer therapy

(e.g. Caelyx R©/Doxil R© (stealth liposomal doxorubicin)). Deol et al. developed stealth

liposomes for pulmonary delivery by modifying the surface with O-stearylamylopectin to

increase the affinity for the lung tissue of mice. The encapsulated drugs isoniazid and

rifampicin showed reduced toxicity for peritoneal macrophages in infected mice compared

to free drugs [81, 82]. Another targeting strategy exploits the mannose receptors that are

expressed on alveolar macrophages through mannosylation of liposomes. Wijagkanalan et

al. [83] reported efficient targeting of mannosylated liposomes to alveolar macrophages

after intratracheal instillation to rats, as did Chono et al. [84] when they administered

ciprofloxacin-loaded mannosylated liposomes for pulmonary intracellular parasitic infec-

tions. In another study, ciprofloxacin nanoparticles were encapsulated in large porous

particles and showed controlled release over 2-4 weeks [85].

Other groups have developed microspheres with different polymers to act as carrier

systems for anti-infective drugs. Takenaga et al. [86] demonstrated that lipid microspheres

loaded with rifampicin could be delivered to alveolar macrophages in vitro as well as

in vivo with reduced side effects in the liver. Hirota et al. [87] examined the phagocytic
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activities of alveolar macrophages to rifampicin-containing PLGA microspheres of different

sizes. They found that 3 µm particles were the most efficient for drug delivery to alveolar

macrophages. Inhalable PLGA microspheres have been investigated for the treatment of

tuberculosis by several other research groups [88–91]. Capreomycin is used in the treatment

of multidrug-resistant tuberculosis, but it shows severe side effects when it is administered

intravenously. Garcia-Contreras et al. [92] developed large porous capreomycin sulphate

particles and administered them to the respiratory tract of guinea pigs, reporting a decrease

in both inflammation and bacterial burden in the lung tissue.

New approaches for delivering anti-infectives to the respiratory tract are not limited

to tuberculosis therapy though. Tobramycin is an anti-infective that is used to treat

Pseudomonas aeruginosa, which often exists in cystic fibrosis patients. Pilcer et al. [93]

formulated lipid-coated tobramycin particles and showed that they were in a respirable

range, and that the lipid coating reduced agglomeration, further improving drug deposi-

tion. In another approach, moxifloxacin was loaded onto chitosan microspheres that were

crosslinked with glutaraldehyde and tested in an in vitro model with Calu-3 cells. In these

experiments, the microspheres retarded the absorption of moxifloxacin compared to free

moxifloxacin [94].

Pulmonary gene therapy

Cystic fibrosis (CF) disease is caused by mutations in the gene that is encoding the cys-

tic fibrosis transmembrane conductance regulator. CF is characterised by abnormal mu-

cus production, inflammation in the respiratory tract and chronic bacterial infection [95].

Treatment of CF by gene therapy is an interesting field because by replacing the defective

gene with a gene transfer vector, mucus production can be normalised and infection sup-

pressed. Therefore cystic fibrosis transmembrane conductance regulator gene transfer was
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one of the first targets of gene therapy. There are other genetic disorders like α-1 antit-

rypsine deficiency [96] or haemophilia [97] where gene therapy could beneficially affect the

aetiopathology, but one of the biggest gene therapy fields is concerned with the treatment

of different types of cancer [98].

Nebulisation of naked plasmid DNA leads to low transfection rates and poor stability

of the DNA [99]. Therefore DNA must be delivered to the mucosal surface of the lung

by carrier systems that protect the DNA from enzymatic degradation, improve long-term

expression of the antigen, and enhance transfection efficiency. There are two different

types of DNA carriers, viral and non-viral vectors, and both have their own advantages

and disadvantages.

The viral vectors that are used for DNA delivery have a high efficiency in gene transfer

even though they have been modified to eliminate their pathogenicity. Since DNA delivery

by viral vectors is not based on particle technologies, they will not be discussed in this

chapter, except to note that they are immunogenic [100], which is a major disadvantage

compared to non-viral vectors, because multiple dosing therapies are not possible. Non-

viral vectors can be administered in multiple doses, but gene transfer is less efficient than

viral vectors. Most of the carriers are positively charged so that they can interact with

the DNA, which is negatively charged, by complexation or adsorption. Non-viral vectors

need to be biocompatible, non-toxic and able to carry DNA across various cellular barriers

to the nucleus. For these reasons, liposomes and polymers are perfectly suited carriers for

DNA delivery, and they are also easy to generate.

Chitosan is a very popular polymer for gene delivery that has been utilised by many

research groups [101–105] because of its mucoadhesive properties [106]. Li et al. [105]

developed lipid/polycation condensed plasmid DNA chitosan particles and showed that

the in vitro deposition of chitosan-modified powders was higher than unmodified powders,
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and that the level of reporter gene expression was enhanced. Another polymer that is

used for pulmonary gene delivery is polyethylenimine (PEI) [107–109]. Kleemann et al.

[110] developed TAT-PEG-PEI conjugates to deliver plasmid DNA and reported enhanced

DNA protection and higher transfection efficiencies in vivo compared to unmodified PEI.

Cationic lipids, such as lipofectin, have also been used as carriers for gene delivery. Bhat-

tarai et al. [111] administered lipofectin polymer (poly(p-dioxanone-co-L-lactide)-block-

poly(ethylene glycol) micelles with the tumour suppressor gene PTEN to C57BL/6 mice

with a melanoma and observed significantly improved gene expression of PTEN in the

lungs without any toxicity and longer survival times. It also is worth noting many of these

delivery particles have also been employed to deliver antisense DNA/RNA or siRNA to

the lungs to treat several diseases by gene therapy. Similar to plasmid DNA, these smaller

nucleotide sequences also need to be formulated with a carrier system that can protect

them and enhance transfection rates.

Lung cancer therapy

The therapy of cancer, especially lung cancer, is still very toxic for the patient because most

cytostatic drugs are not sufficiently specific in their action. Drugs against lung cancer are

administered systemically and they act systemically, causing serious side effects in healthy

organs such as the liver, heart or kidneys. Thus pulmonary administration offers the

opportunity to achieve higher local effects and even sustained release in the lung while

reducing systemic exposure to cancer drugs. Several approaches have been adopted to

target different cancer drugs to the lungs.

Hitzman et al. [112] administered aerosolised lipid-coated nanoparticles loaded with

5-fluorouracil to hamsters with squamous cell carcinoma of the lung. They chose lipid-

coated nanoparticles because earlier studies had shown that these particles have sustained
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release properties [113]. 5-fluorouracil levels were much lower in the serum than in the

lungs in these experiments, indicating effective local exposure and sustained release can be

achieved with this approach. Paclitaxel-loaded albumin nanoparticles were approved for

injection by the FDA in 2005 to treat breast cancer [114], and while there are no published

studies on their effectiveness in the lungs, the potential of this technology for inhalation

therapy deserves to be investigated. Liposomes have been used in rats by Zhang et al.

[115] to achieve sustained release of 9-nitrocamptothecin in the lungs while reducing accu-

mulation in other tissues. In another approach, the toxic effects of cisplatin were reduced

by sustained release lipid inhalation targeting (SLIT) [116]. SLIT-cisplatin is a dispersion

of cisplatin encapsulated in lipid vesicles that releases 50% of the dose immediately while

the other 50% remains in liposomes for sustained release [117]. This phase I study showed

that the administration of SLIT-cisplatin is feasible and safe unfortunately the deposition

efficiency (10-15%) was very low.

Some cell-specific targeting systems have the potential to further improve cancer ther-

apy in the respiratory tract. For example, lectin-functionalised liposomes bind specifically

to the tumor-derived cell line A549 [77, 118] and therefore may act as an effective targeting

system. Abu-Dahab et al. in our laboratories investigated the effect of nebulisation on the

stability of lectin-functionalised liposomes and their binding to A549 cells with promising

results. A more specific target may be the transferrin receptor, which is over-expressed

in many human tumour cells. Anabousi et al. [119, 120] examined the uptake levels

and cytotoxicity of transferrin-conjugated liposomes and showed enhanced uptake with

increased cytotoxicity. Additive PEGylation of these liposomes increased their stability

for aerosolisation. Finally, an interesting emerging target for cancer therapy is telomerase

because it is present in most human cancers [121](see Shay et al. [122] for a recent re-

view). Inhibiting telomerase may represent a novel therapy for lung cancer, except specific
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telomerase inhibitors like the antisense oligonucleotide 2’-O-methyl-RNA (2-OMR) need a

special carrier system to exert a biological effect in targeted cells. Beisner et al. [123] ad-

ministered this telomerase inhibitor in different liposomal formulations containing DOTAP

(N-[1-(2,3-Dioleoyloxy)]-N,N,N-trimethylammonium propane methyl-sulphate), which is a

cationic lipid, or a mixture of DOTAP and cholesterol to A549 cells. These reagents en-

hanced transfection of A549 cells and efficiently inhibited the telomerase. Nafee et al.

[124] used chitosan-coated PLGA nanoparticles, which were developed by Kumar et al.

for plasmid DNA delivery [125], as a carrier for the antisense oligonucleotide 2-OMR. Be-

cause of a cationic surface modification by chitosan, PLGA is able to form nanoplexes with

nucleotide-based drugs, protecting these molecules from premature degradation and facili-

tating their cellular uptake. Taetz et al. [126] used cationic chitosan/PLGA nanoparticles

to deliver 2-OMR to A549 cells, and observed enhanced uptake of 2-OMR nanoplexes into

A549 cells, efficient telomerase inhibition, and significant shortening of telomeres compared

to 2-OMR alone. Obviously, these kind of nano-technology based carrier systems represent

an interesting new platform for the safe and efficient delivery of telomerase inhibitors in

the context of lung cancer.
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3 INTRODUCTION

3.3 In vitro models for testing pulmonary particle deposition

There are many aerosol formulations on the market for the treatment of ”classical” lung

diseases, like asthma and COPD, and up until now, significant improvements have been

achieved mainly by improving the aerosol properties of the formulations. The technology

already exists to produce a variety of particles, such as nanoparticles, liposomes and large

porous particles that can be efficiently deposited by aerosol inhalation in the lungs - even

under patho-physiological conditions. More work is needed though to control what happens

to these particles after they are deposited in the respiratory tract. Most of these new

particle approaches (Table 1) that are in the pipeline as described in the previous chapter

are tested in vivo by intratracheal instillation or inhalation as an aerosolised formulation

as well as by testing a solution of the new formulation onto several lung cell culture models

in vitro. To obtain more realistic data, in vitro models are needed that not only mimic

the absorption of the drug, but also a realistic deposition onto cell cultures. There is a

big difference between the deposition of a particle in the lung and the testing of a drug

by pipetting a drug solution onto a cell monolayer. This chapter gives an overview both

about established pulmonary cell culture models and the current in vitro models of particle

deposition in environmental toxicology and pharmacology.

3.3.1 Cell culture models of the respiratory tract

There are many cell culture models available to determine absorption or cytotoxic effects of

particles in vitro. Some are cell lines, others are primary cells. An overview of the current

cell culture models of the respiratory tract is given by Steimer et al. [130]. This paragraph

will only focus on the Calu-3 cell line, because it was the cell line that was used in this

thesis.
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Figure 5: Liquid covered cultivation (left side) differs from the air-liquid interface cultiva-
tion (right side). LCC cells are covered with medium from both sides, whereas ALI cells
are exposed to air at their apical side

Calu-3 cell line

Calu-3 is an adenocarcinoma cell line from a 25-year old caucasian male. Calu-3 cells can

be cultivated in liquid covered culture (LCC) as well as air-liquid interface culture (ALI).

LCC cells are covered in medium from both sides when cultivated in a Transwell system

whereas the ALI cultivation only has medium supply from the basolateral compartment

(Figure 5). The air-liquid interface culture represents a more in vivo like situation, because

the lung surface is only covered by a thin lining fluid.

When cultivated at ALI conditions Calu-3 cells built mucus on their surface which can

be detected by Alcian blue staining. In LCC cells no such mucus is found, maybe because

it is diluted in the medium and washed away [131]. Calu-3 cells are an appropriate cell

line for transport studies due to its presence of tight junctions building a tight monolayer

which can be determined by transepithelial electrical resistance (TEER) measurement or by

immunostaining for zona occludens-1 (ZO-1) or claudin. However, significant differences in

their values are detected when using different cultivation methods. LCC Calu-3 cells show

higher TEER values (> 800 Ω*cm2) compared to ALI grown Calu-3 cells (> 350 Ω*cm2)

due to different tight-junctional protein distribution (Figure 6). Grainger et al. [132]

reported a higher amount of ZO-1 in immunostained LCC cells by confocal microscopy.

Although the Calu-3 cell line is of bronchial origin, it is often used for transport studies to
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simulate the deep lung, because other alveolar cell lines like e.g. A549 do not form tight

monolayers. Its usefulness for transport studies has been demonstrated in several studies

[133, 134]. Hamilton et al. showed that Calu-3 cells express an energy-dependent Pgp

efflux pump and possess MRP1 functional activity [135, 136]. Permeability characteristics

of passive and actively transported drugs could also be correlated to in vivo data from rats

[137].

Figure 6: Calu-3 cells show different TEER values dependent on their cultivation due to
different tight-junctional protein distribution

3.3.2 In vitro models in toxicology

In environmental toxicology the effects of aerosols of natural or artificial origin are inves-

tigated to determine their harmful potential for humans or animals. There are several

attempts to test these aerosols and determine mostly the long-time effects with the help

of in vivo as well as in vitro models. Due to the emerging nanotechnology industry new

particle types have to be tested for their toxic potential to be able to prevent diseases,

especially of the lung, caused by (accidently) inhaled particles. First in vitro experiments

32



3 INTRODUCTION

were performed by pipetting a solution or dispersion of the compound on top of a cell layer

and determine the effects [138]. However, this application did not represent the situation

in vivo. Therefore setups were developed where particles were deposited onto air-liquid

interface grown cells. The CULTEX model [139, 140] is designed to provide direct access

of complex gas mixtures to lung cell culture models which are grown at air-liquid interface.

The apparatus houses three vessels with cell culture inserts, provides access to culture

medium at the basolateral side and allows sample-taking during the experiments. The gas

mixture is drawn into the system by low-pressure and mainly deposited by impaction or

sedimentation (Figure 7). In first experiments the influence of airborne pollutants (e.g.

diesel exhaust) to human bronchial epithelial cells was investigated. The CULTEX system

was modified [141, 142] to also test cigarette smoke, or other pollutants [143] like fly ash

as did Diabate et al. [144]. They collected fly ash in a commercial municipal incinera-

tor, resuspended it in filtered air and deposited the aerosol onto BEAS-2B cells, a human

bronchial cell line, which was co-cultured with THP-1 macrophages. Release of IL-8, a

proinflammatory mediator, was induced as a function of exposure time, showing that this

model is suitable to detect interactions of the aerosol with the lung cells. Further develop-

ments of the CULTEX system which is now marketed by Vitrocell (Waldkirch, Germany)

were used to study various effects of different gas mixtures mostly to A549 cells [145–150].

Another approach was described by Tippe et al. [151]. They reconstructed a commercially

available perfusion cell (Minucell, Bad Abbach, Germany) to allow aerosol exposure by

stagnation point flow. Ultrafine carbonaceous particles were uniformly deposited onto air-

liquid interface cultured A549 cells with an efficacy of 2% [152] and the low flow velocity

did not affect the cell monolayer showed by testing with clean air.

A different setup of collecting particles onto cell monolayer is electrostatic precipitation.

By charging particles and applying an electrical field higher deposition efficacies of the

33



3 INTRODUCTION

Figure 7: An overview of the CULTEX-Vitrocell system: the gas mixture is drawn to the
three vessels which contain air-liquid interface cultured cell monolayer, viability of cells
is ensured by medium supply and temperature control (modified according to [153], by
courtesy of VITROCELL R©)

particles are obtained. Mainelis et al. [154, 155] first deposited airborne microorganisms

onto agar plates in an electrostatic precipitator. In this device two ionisers charge the par-

ticles if they do not carry a sufficient charge for collection. Savi et al. [156] developed an

exposure chamber to deposit polystyrene particles onto cells directly out of a conditioned

air flow. Before entering the chamber, particles pass a bipolar Kr-85 charger. Afterwards

about 40-70% of those particles are charged and they are deposited by an alternating,

square-wave electrical field of 4 kV/cm which is between the particle delivery tube and

an electrode placed underneath the filter inserts with the cells. Deposition efficacy of this

method is about 15-30% of all particles. Gaschen et al. [157] used the same model to
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deposit secondary organic aerosol particles like 1,3,5-trimethylbenzene or α-pinene onto

A549 or human alveolar macrophages to determine toxic effects. EAVES, the Electrostatic

Aerosol in vitro Exposure System, is another setup based on electrostatic precipitation

[158]. Volckens et al. [159] modified the EAVES system to increase cell capacity and

aerosol flow rate. They compared direct particulate matter deposition to NHBE cells with

liquid-interface deposition and detected differences between these two different ways of ap-

plication. Cellular responses from air-liquid interface deposition occured at concentrations

that were one order of magnitude lower than from liquid-interface exposures. This was

probably due to the different composition of the particulate matter due to physiological

changes caused by extraction, lyophilisation and resuspension of the liquid-interfacce de-

posited particles. The direct particle deposition represents a more in vivo like situation and

allows a more accurate assessment of particle toxicity. Stevens et al. [160] used the electro-

static particulate dosage and exposure system (EPDExS) to deposit 1,4-naphthoquinone

particles onto murine alveolar type II epithelial cells. The EPDExS consists of six cham-

bers which have cylindrical cage electrodes on the bottom. Culture dishes are placed on

top of the electrode separated by an insulating pedestal. The aerosol is generated by a

nebuliser and receives a bipolar charge distribution by passage through a Kr-85 charger.

Deposition efficacy was 100% for the particle range of 40-530 nm.

3.3.3 In vitro models in pharmacology

As mentioned before, in pharmaceutical context the focus is on high dose deposition in

short period of time, but in contrast to environmental toxicology only very few models are

available. The first group who used an impactor as a deposition system in the context

of pharmaceutical technology was Schreier et al. [161]. They used an Andersen Mark II

cascade impactor as a ”simulated lung setup” and put 2-CFSMEo-cells grown on micro-
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scope coverslips onto the steel plates of the impactor. A Pari LL Jet nebuliser was used to

aerosolise several liposome DNA complexes onto these 2-CFSMEo-cells on several stages

of the impactor in order to investigate the cellular uptake of these plasmid gene products.

Although the air flow was set to 28.3 l/min, which is the flow of air during tidal breathing

in humans, the cell viability, tested with aerosolised trypan blue, was not affected. Fiegel

et al. [131] used an Astra-type liquid cascade impinger to aerosolise and deposit large

porous particles onto Calu-3 cells. The Calu-3 cells were grown in Transwell R© systems and

then placed under the second stage nozzle of the impinger. Afterwards polymeric large

porous particles labelled with fluorescein were aerosolised, deposited and the effects on the

cell monolayer were determined. A similar model was developed by Cooney et al. [162]. A

viable cascade impactor, which was originally developed for the identification of airborne

microbes [163], was used to deposit fluorescein isothiocyanate (FITC)-dextran solutions

onto small airway epithelia cell (SAEC) monolayers to test for permeability coefficients.

Furthermore, Calu-3 cells were used to determine the monolayer integrity after an airflow

of 60 l/min in the impactor. In the models of Cooney and Fiegel, the Transwells R© were just

placed under the nozzles of the impactor stages. Therefore Bur et al. [164] cultivated the

cells on the underside of the Transwells R© to prevent turbulences in the impactor caused by

the bowel-like form of the Transwells R©. A multi stage liquid impinger (Figure 8) was used

with the inverted cell culture to deposit budesonide and salbutamol sulphate powders.

36



3 INTRODUCTION

Figure 8: Schematic view of a multi-stage liquid impinger which was used by Bur et al.

[164]

These dry powder formulations, approved for the treatment of asthma, consist of large

carrier particles and small drug particles which are separated during the aerosolisation

process and deposited onto several stages in the impinger by impaction. Therefore only

the drug particles deposit onto the cell monolayers and only the influence of the drug

particles is investigated. Absorption profiles of budesonide and salbutamol sulphate were

significantly different compared to standardised transport experiments (liquid culture) due

to the high concentration gradient on the apical side because of the air-liquid interface

cultivation in the apical compartment. A twin-stage impinger (Figure 9) was used by

Grainger et al. [165] who placed a Transwell R© insert at the bottom of this impinger
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Figure 9: Schematic view of a twin-stage impinger which was used by Grainger et al. [165]

and deposited aerosolised FITC-dextran particles of different molecular weights onto air-

liquid interface cultured Calu-3 cells and compared them to transport of dextran solutions

through the monolayer. Transport rate of particles was significantly higher due to the high

driving concentration generated by the dissolution in the low volume of fluid in the apical

compartment.
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3.4 Aim of this thesis

All those described pharmaceutical models rely on impaction as the main deposition mech-

anism. However, the main deposition mechanism in the deep lung is sedimentation. To

obtain a more in vivo like situation, our new in vitro model, designed for dry powder

aerosols, should be able to aerosolise a dry powder aerosol, and separate both carrier and

drug particles during this aerosolisation process. Furthermore it should only deposit the

respirable fraction of particles onto air-liquid interface grown lung cells and provide a gentle

deposition (without high airflow) by sedimentation to protect these sensitive cell mono-

layers. Reproducible and simultaneous deposition onto multiple cell monolayers should be

required.

The aims of this thesis were:

1. to develop an in vitro model to investigate the influence of the ”naked”

particle onto air-liquid interface cultured lung cells

2. to optimise and validate this new in vitro model

3. to deposit pharmaceutical relevant dry powder aerosols and subsequently

perform transport studies to determine differences to conventional trans-

port studies
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4 Development of the PADDOCC system

Parts of this chapter have been published in:

S. Hein, M.Bur, T. Kolb, B. Müllinger, U.F. Schäfer, C.-M. Lehr

Pharmaceutical Aerosol Deposition Device On Cell Cultures (PADDOCC) system in vitro:

Design and experimental protocol, Alternatives to Laboratory Animals, 38(4):285-295,

2010
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4.1 Summary

The development of aerosol medicines typically involves numerous tests on animals, due

to the lack of adequate in vitro models. A new in vitro method for testing pharmaceuti-

cal aerosol formulations on cell cultures was developed consisting of an aerosolisation unit

fitting a commercial dry powder inhaler (HandiHaler R©, Boehringer Ingelheim, Germany),

an air flow control unit (Akita R©, Activaero, Germany) and a custom made sedimentation

chamber. This chamber holds three Snapwell R© inserts with monolayers of pulmonary ep-

ithelial cells. The whole setup, referred to as Pharmaceutical Aerosol Deposition Device

On Cell Cultures (PADDOCC system) is aimed to mimic the complete process of aerosol

drug delivery, encompassing aerosol generation, aerosol deposition onto pulmonary epithe-

lial cells and subsequent drug transport across this biological barrier to investigate new

aerosol formulations in an early stage of development. We here describe the development of

the design and the protocol for this device. By testing aerosol formulations of budesonide

and salbutamol sulphate, respectively, reproducible deposition of aerosol particles on, and

integrity of pulmonary cell monolayer could be demonstrated.
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4.2 Introduction

The development of pharmaceutical aerosol medicines typically involves numerous tests

on animals prior to a first clinical evaluation in man. These experiments are usually

performed by intra-tracheal instillation or forced inhalation, and afterwards blood and

tissue samples are analysed. However, these animal experiments often fail to provide

useful information as neither the method of aerosol administration and deposition, nor the

subsequent absorption and disposition in the animal model used are easily transferable

to humans. Apart from ethical reasons and the obligation to follow the 3R principle

the development of new aerosol medicines could be made much more time effective and

cost efficient if adequate in vitro models were available. A number of in vitro models

of the so called air-blood barrier based on pulmonary epithelial cells have already been

described [130] including their culture and drug transport studies at an air-liquid interface

(ALI) e.g. with Calu-3 cells to mimic the physiological situation as closely as possible

[132]. Most in vitro deposition models have been developed in the context of toxicology

[139, 143, 151, 152, 156] where the focus is typically on high-dose and/or long-term exposure

scenarios. However, in order to evaluate the safety and efficacy of new aerosol medicines, it

is important to study the effects of a single aerosol bolus (”puff”) after deposition of relevant

doses on the epithelial surface within a relatively short time period. The probably most

relevant endpoints of such studies are i) the rate and extent of absorption (i.e. permeability)

of the active pharmacological ingredient across the pulmonary epithelial barrier, and ii)

possible changes of the latter, which might be either a symptom of some undesired toxic

effects of the drug or its formulation and excipient, or be elicited on purpose to temporarily

enhance drug absorption (e.g. by modulating the tightness of intercellular junctions or the

activity of some transporter/efflux pumps).
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There have been some attempts to adopt impinger systems which are described in most

pharmacopoeia for analytical aerosol fractionation. By integrating epithelial monolayers

grown on permeable filter systems (Transwells R©) into the impinger, the behaviour of the

aerosol to these cell culture models can be tested [131, 162, 164, 165]. Originally designed

to characterise the particle size distribution of an aerosol, impinger systems are based on

impaction forces to deposit particles on the various stages of the system. This implicates,

however, that inserted cell cultures are exposed to high air streams (up to 60 l/min) which is

not physiological with respect to the situation in the deep lung and may negatively influence

epithelial integrity and cell viability. Other approaches rely on sedimentation as deposition

mechanism [166]. This is certainly advantageous, as sedimentation and diffusion are main

mechanisms of particle deposition in the deep lung [167], and occur in an atmosphere

with low air streams. However, these deposition chambers, designed in the context of

environmental or work place toxicology, collect the entire spectrum of particles in a given

atmosphere and do not distinguish between respirable and non-respirable particles.

Nonetheless, the low mechanical forces of sedimentation process do have the advantage of

not disturbing sensitive cell monolayers, so sedimentation appeared as good starting point

for the design of a new system that suffices the particular research and development needs

of aerosol medicines. Pharmaceutical dry powder inhalers (DPIs) generate aerosols that

are often mixtures of large carrier particles and small drug crystals. These are separated

during the inhalation process in such a way that only the respirable particle fraction (i.e.

the drug) penetrates into the lung for subsequent deposition on the bronchial or alveolar

epithelium, while the larger carrier particles (typically lactose) do not pass beyond the

pharynx. As the sedimentation of particles is a predictable process [168, 169] particles can

be separated by size differences based on differential sedimentation velocities. A system

optimised in this way would therefore consist of an aerosol generation unit where drug
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particles are separated from their carrier particles and a deposition unit where the drug

particles can deposit onto cell cultures to test the behaviour of aerosolised particles onto

pulmonary epithelial cells.

The development and initial evaluation of such a new Pharmaceutical Aerosol Deposi-

tion Device On Cell Cultures (PADDOCC) as well as some essential technical details are

described in this chapter.
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4.3 Materials and Methods

4.3.1 PADDOCC system

The system consists of three parts: the aerosolisation unit, the air flow control unit and the

deposition unit, connected by flexible silicone tubes (inner ∅ 7 mm, outer ∅ 9 mm, Shore-

Hardness A 70◦, RCT, Heidelberg, Germany). The apparatus is schematically depicted in

Figure 10. For simplification, only one of three ports is shown at the top of the deposition

unit.

Aerosolisation unit

The aerosolisation unit (Figure 10 II) consists of an inhaler chamber, connected to a com-

mercially available dry powder inhaler HandiHaler R© (Boehringer, Ingelheim, Germany,

”HandiHaler R© chamber”, Figure 10, b) sitting on top of an aerosolisation chamber (Fig-

ure 10, c), so that the mouthpiece of the HandiHaler R© protrudes in this chamber. The

aerosolisation chamber has a volume of 300 ml.

Air flow control unit

The Akita R© device (Activaero, Gemünden/Wohra, Germany, Figure 10 I) is normally

used to optimise aerosol inhalation during patients administration process and can be

programmed by a SmartCard to generate different breathing patterns. In the PADDOCC

system the Akita system controls both aerosol generation and subsequent transport to the

sedimentation chamber by different aerosol manoeuvre with variable periods of dispersion

impulses (60 l/min) and ventilation flows (6 l/min). At one end the Akita R© device is

connected via tubing (aerosolisation tube, Figure 10, d) to the cap of the cylindrical inhaler

chamber. At the other end the Akita R© is connected by means of a Y-shaped tube (Figure

10, e) to the base of the aerosolisation chamber. The Y-shaped tube has a syringe on one
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Figure 10: Schematic view of the PADDOCC system I: air flow control unit, II: aerosoli-
sation unit, III: deposition unit, a: Akita R© device, b: HandiHaler R© chamber with capsule,
c: aerosolisation chamber, d: aerosolisation tube, e: y-shaped tube with syringe, f: sed-
imentation chamber, g: sampling unit, h: sampling unit (with Snapwell R©) in ventilation
mode, i: sampling unit (with Snapwell R©) in deposition mode
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Figure 11: Aerosolisation unit of the PADDOCC system

end to trigger aerosolisation by the pulling and pushing the plunger, thus generating a

temporary low-pressure impulse.

Deposition unit

The deposition unit (Figure 10 III) consists of a brass block with three sedimentation

chambers (Figure 10, f), a sampling unit (Figure 10, g) and a pedestal where discharged

air is deflected. The cylindrical sedimentation chambers have a diameter of 1.2 cm and a

length of 10 cm. They are arranged on top of a revolving sampling unit. The sampling unit

has three ventilation holes alternating with three sampling wells (Figure 13). Therefore

two different positions/modes of operation are possible: In ventilation mode (Figure 10,

h) (during the dispersion impulse and ventilation flow) the sedimentation chambers are

placed directly on top of the ventilation holes of the sampling unit so that the air streams

generated by the Akita device can escape through the pedestal, not reaching the sampling

47



4 DEVELOPMENT OF THE PADDOCC SYSTEM

wells. In deposition mode (Figure 10, i) just after the end of the ventilation flow the

sampling unit is rotated so that the sampling wells are placed directly on the bottom of

the sedimentation chambers to allow the particles to sediment simultaneously onto three

sampling wells.

Figure 12: Deposition unit of the PADDOCC system

The sampling wells are filled with 500 µl of buffer in the basolateral compartment

covered by a Snapwell R© insert (∅ 1.2 cm), on which a pulmonary epithelial cell monolayer

has been previously grown. Holes in the sampling unit permit sample aliquots to be taken

from the basolateral compartment with a pipette (Figure 13). The pedestal with integrated

ventilation holes underneath the sampling unit constitutes a continuous connection in the

ventilation mode between the sedimentation chamber and the sampling unit to tubes,

ending with a filter to protect the environment from non-deposited aerosol particles.
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Figure 13: Sampling unit with alternately sampling wells (a) and ventilation holes (b) as
well as pipetting ports for sample taking (c)

4.3.2 Experimental protocol

The experimental protocol is summarised in Table 2.

Before starting the experiment a dry powder capsule is placed in the HandiHaler R© and

the capsule is pierced by pressing and releasing the green piercing button on the side of

the HandiHaler R©. Two holes are made in the capsule by two needles, thus allowing the

powder to be released when the dispersion impulse is started. The deposition chamber

is positioned in ”ventilation mode”. The Akita R© device is turned on. By pulling and

pushing the plunger of the syringe a temporary low-pressure is generated in the system.

This activates the Akita R© device to produce a dispersion impulse. The pressure wave of the

dispersion impulse is propagated from the Akita R© via the tubing to the HandiHaler R©. The

capsule inside begins to vibrate and releases the dispersed powder into the aerosolisation

chamber. The aerosol cloud thus generated, is carried forward by the ventilation flow of the

Akita R© to the deposition unit. The progress of the different steps can be monitored by the

display of the Akita R© apparatus. After the ventilation flow stage, the deposition chamber

is positioned in ”deposition mode” and the Akita R© is turned off. During the experiment
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Table 2: Experimental protocol for the aerosolisation and deposition process of the PAD-
DOCC system, The period of the aerosolisation manoeuvre depends on the programmed
SmartCard used, see Table 3.
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Snapwells® in sampling unit,
capsule in HandiHaler®

sampling unit in ventilation
mode,
Akita® device is turned on

activation of DISPERSION 
IMPULSE by pulling and 
pushing plunger of syringe

powder from capsule is dispersed
in aerosolisation chamber

VENTILATION FLOW for
transportation

aerosol is transported to 
deposition unit

Akita® device is turned off
sampling unit in deposition
mode (10 min)

aerosol particles sediment onto
cell monolayers

technical procedure process of aerosol deposition

further experiments after
deposition (e.g. transport studies)
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Table 3: Technical data of the different SmartCards tested in the PADDOCC system

SmartCard No. dispersion impulse ventilation flow generated volume generated volume
in s (60 l/min) in s (6 l/min) during dispersion during ventilation

impulse (ml) flow (ml)

SC1 0.2 2.0 200 200

SC2 0.3 1.5 300 150

SC3 0.3 2.0 300 200

SC4 0.3 3.0 300 300

SC5 0.4 1.0 400 100

the PADDOCC system (without Akita R©) is placed in an incubator at 37◦C to maintain

physiological conditions while transport of the deposited drug across the cell monolayer is

taking place and is studied by taking samples from the basolateral compartment at given

time points The dispersion impulses that were tested were in the range of 0.2 s to 0.4 s

resulting in a volume of 200 ml to 400 ml. The ventilation flows which were tested were

in the range of 1.0 s to 3.0 s resulting in a volume of 100 ml to 300 ml (Table 3). The

sedimentation of respirable particles (2-5 µm) takes about 10 min in this sedimentation

chamber (calculated according to Dua et al. [125]). After deposition the amount of particles

can be analysed by rinsing the well with 1 ml of mobile phase and quantifying the amount

by HPLC analysis. To empty the capsule in the HandiHaler R© completely three cycles

of aerosolisation are required meaning a window of 30 min for the whole aerosolisation

and sedimentation process. In initial experiments SmartCard 4 (see Table 3) was used and

capsules of budesonide (Cyclocaps R© Budesonid 400 µg, PB Pharma, Meerbusch, Germany)

or salbutamol sulphate (Cyclocaps R© Salbutamol 400 µg PB Pharma, Meerbusch, Germany)

were aerosolised.
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4.3.3 Optimisation of aerosol deposition

Within the aforementioned protocol, further attempts were made to increase the deposition

amount in the sampling wells. Multiple SmartCards with different dispersion impulses and

ventilation flows (Table 3) were tested in the Akita R© device in combination with different

lengths of the connecting tubes to try to increase and optimise the amount deposited in the

sampling wells. Long tubes were 265 mm in length and were provided by the manufacturer

of the sedimentation chamber. The short tubes were 55 mm in length to obtain the shortest

connection between the aerosolisation and deposition unit. Five different SmartCards were

tested by aerosolising a capsule of budesonide (three cycles) and determining the deposited

amount on the sampling wells.

4.3.4 Deposition reproducibility

After optimisation of the deposition amount, experiments to show reproducibility of depo-

sition were performed by aerosolising a dry powder capsule within the PADDOCC system

(three cycles) and after sedimentation each well of the sampling unit (without cells) was

washed with 1 ml of HPLC mobile phase and quantified by HPLC analytics. For these

experiments SC1 was used in combination with long connecting tubes which had previously

identified as being the optimised combination.

4.3.5 Separation of lactose carrier and drug particles

To confirm that the powder mixture containing lactose carrier and drug particles in the

capsule could be separated through the aerosolisation and deposition processes, samples

of the original mixture from the capsule (Cyclocaps R© Budesonid 400 µg) were analysed

by HPLC analysis. After aerosolisation and sedimentation in the PADDOCC system,
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drug content was determined in samples collected from the pedestals of the sedimentation

chamber. The system deposits drug particles in the sampling wells of the deposition

unit by sedimentation forces, whereas the lactose carrier particles are collected in the

aerosolisation chamber by impaction during the dispersion impulse, or in the pedestal

during the ventilation flow due to their sedimentation velocity. The concentration of drug

in the mixture was calculated as µg/mg powder mixture.

4.3.6 Scanning electron microscopy

Samples of salbutamol sulphate and budesonide powders from capsules were aerosolised

and deposited in the PADDOCC system onto carbon tabs (Plano Leit-Tabs G3347, Plano,

Wetzlar, Germany). The same powders were placed onto the tabs with a spatula without

aerosolisation. The specimens were then mounted on stubs and sputtered with gold to a

layer thickness of 10 nm. Scanning electron micrographs were recorded on a PhilipsXL 30

SEM (FEI Co. Philips Electron Optics, Zürich, Switzerland) at 5 kV.

4.3.7 HPLC analysis

A Dionex RP-HPLC System was used comprising a 690 pump, ASI 100 automated sampler,

UVD 340 U UV/VIS detector (Dionex, Idstein, Germany) and a LiChrospher R© 100 RP-18

column (125 mm x 4.0 mm, Merck, Darmstadt, Germany). For analysis of salbutamol

sulphate a mobile phase of triethylamine-phosphate buffer (0.03 M triethylamine, 0.03

M NaH2PO4 dihydrate in 1000ml water, pH adjusted to 6.0 with phosphoric acid 85%)

and methanol (90:10, v/v) was used. The detector was set to 276 nm, flow rate 1.0

ml/min, column temperature 40◦ C and the injection volume was 80 µl. Under such

conditions, the lower limit of quantification was 100 ng/ml. Linearity was proven between

100 ng/ml and 250 µg/ml. For analysis of budesonide, the mobile phase was phosphate
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buffer pH 3.0 (Ph.Eur.) and acetonitrile (60:40, v/v) and detector was set to 240 nm.

The flow rate was 1.7 ml/min, the column temperature at 30◦ C and the injection volume

80 µl. The lower limit of quantification was 50 ng/ml and linearity was proven between

50 ng/ml and 250 µg/ml. All reagents were obtained from Sigma Aldrich (Taufkirchen,

Germany). Chromatograms were analysed by estimating the area under the peak in the

curve by employing a computerised data integration program (Chromeleon 6.5, Dionex)

and compared to external standards.

4.3.8 Cell culture

Pulmonary epithelial Calu-3 cells, clone HTB-55, were purchased from American Type

Culture Collection (ATCC, Manassas, VA, USA) and used at passages 38-42. Calu-3

cells were grown to 90% confluence in 75 cm2 T-flasks with RPMI 1640 (PAA, Pasching,

Austria) supplemented with 10% FBS Gold (PAA, Pasching, Austria) and 1 mM sodium

pyruvate (Lonza, Verviers, Belgium). Culture medium was changed three times a week.

The incubator temperature was set to 37◦C in an atmosphere of 90% relative humidity

and 5% CO2. After trypsinisation, cells were seeded on Snapwells R© (pore size 0.4 µm,

1.13 cm2, Snapwell R© type 3801, Corning Costar, Bodenheim, Germany) at a density of

100.000 cells/cm2 with 1.5 ml medium in the basolateral compartment and 500 µl in

the apical compartment. After two days, the cells were set to air-interface conditions

with 1.0 ml medium in the basolateral compartment. After 10-14 days the cells formed

a tight monolayer (TEER > 450 Ω*cm2) and were then deemed ready for the deposition

experiments. Buffer for monolayer integrity experiments was KRB. Composition was as

follows: 1.41 mM CaCl2, 3.00 mM KCl, 2.56 mM MgCl2, 142.03 mM NaCl, 0.44 mM

K2HPO4, 4.00 mM D-glucose and 10.0 mM HEPES. All these reagents were obtained from

Sigma Aldrich (Taufkirchen, Germany). KRB was adjusted to pH 7.4 by means of NaOH.
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All chemicals were of highest available grade.

4.3.9 Integrity of cell monolayer

Tight monolayers can be identified by their transepithelial electrical resistance (TEER).

It is an indicator of the integrity of a cell monolayer. As a consequence of the air-liquid

interface cultivation the apical compartment has to be filled with 500 µl pre-warmed buffer

and the basolateral compartment with 1.5 ml before TEER measurement and equilibrate in

an incubator for 30 min. TEER values of these Calu-3 cells on Snapwell R© filters were then

measured with an EVOM device (WPI, Berlin, Germany) equipped with chopstick elec-

trodes. Afterwards the buffer in the apical compartment was removed and the Snapwells R©

were put into the sampling unit which is filled with 500 µl pre-warmed KRB buffer in the

basolateral compartment. Deposition experiments (three cycles) were performed and the

Snapwells R© were put back into the well plate. The apical compartment was filled with 500

µl buffer and the basolateral compartment with 1.5 ml buffer and after equilibration for

30 min TEER was measured again in order to detect any damage to the cell monolayer

which might have occured during the deposition experiments.

4.3.10 MTT cytotoxicity assay

The MTT assay allows the quantification of the metabolic activity of cells. It is based

on the cleavage of the yellow tetrazolium salt MTT to purple formazan salts (Figure 14)

by metabolic active cells which can be quantified by spectrophotometry [170]. Snapwell R©

plates with Calu-3 cells at air-liquid interface conditions were grown and after 10 days

the MTT assay was performed. Medium was removed from the basolateral compartment,

replaced by KRB buffer, and equilibrated for 30 min in an incubator. The buffer was then

removed and the Snapwells R© were placed into the PADDOCC system and the deposition
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experiments (three cycles) were performed with Cyclocaps c© Salbutamol 400 µg. The wells

were put back into a 6-well plate and 400 µl of KRB buffer was filled into the apical

compartment. Cells were incubated for two hours. Then 40 µl of MTT reagent (Sigma,

Taufkirchen, Germany) was added to the apical compartment and the cells were incubated

for four hours. The liquid in the apical compartment was removed and 200 µl DMSO

(Sigma, Taufkirchen, Germany) was added. The samples of the single wells were pipetted

into a 96-well plate and absorption was measured at a wavelength of 550 nm with an

UV/VIS reader (infinite M200, Tecan, Crailsheim, Germany). Positive control was KRB

buffer with 1% Triton X (Sigma, Taufkirchen, Germany) and negative control was just

buffer in the apical compartment without the deposition experiments.

Figure 14: Metabolisation of MTT to a formazan salt by viable cells

4.3.11 Statistical analysis

Data are expressed as mean ± SD. Statistical analysis was performed by SigmaStat 3.0

software (Systat Software GmbH, Erkrath, Germany). Data of different SmartCards were

compared by one-way ANOVA followed by the Holm-Sidak method for differences between

two or more groups (n=9). Data of the TEER measurements before and after deposition

experiments as well as comparison between powder mixtures before and after aerosolisation

were compared by Student’s t-test. Differences were deemed statistically significant if p <

0.05.
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4.4 Results

4.4.1 Deposition experiments

After aerosolisation and deposition, drug particles were detected in the sampling wells

of the PADDOCC system by HPLC analysis and by SEM photography. SEM images of

salbutamol sulphate and budesonide powders showed differences before and after aerosoli-

sation in the PADDOCC system. Before aerosolisation, salbutamol sulphate particles were

attached to their lactose carrier particles (Figure 15a). After aerosolisation almost no lac-

tose particles could be seen onto the sampling wells, whereas small salbutamol sulphate

particles were now homogenously distributed onto the sampling well (Figure 15b). Same

results were obtained with budesonide (Figure 15c + d).

4.4.2 Optimisation of deposited amount

Based on the fact that the initial experiments, performed with SC4 and long connecting

tubes resulted in a low deposition (0.92 µg/well), further investigations with various com-

binations of SmartCards and long or short connecting tubes were performed. These experi-

ments showed no significant change in deposition amount when using the other SmartCards

in combination with the short tubes compared to SC4 with the short tubes (Figure 16).

Deposition amount was always about 1 µg/well when using the short tubes and much of

the powder was found in the pedestal in these cases. Experiments with different Smart-

Cards and long tubes showed differences in the deposition amounts between the various

SmartCards and a general significant increase in deposition amount compared to the short

tubes (Figure 16). SC1 gave the highest deposition amount with 2.23 µg/well (n=9), which

is a 2.5-fold increase compared to SC4.
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Figure 15: a) Salbutamol sulphate particles attached to lactose carrier particles before
aerosolisation; b) homogenously-distributed salbutamol sulphate particles in the sampling
well after deposition; c) budesonide particles attached to lactose carrier particles before
aerosolisation; and d) homogenously-distributed budesonide particles in the sampling well
after deposition.
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Figure 16: Deposited amounts of budesonide 400 µg when using different SmartCards
(dispersion impulse/ventilation flow in s) and connecting tubes (n=9, mean ± SD). SC4
and long tubes show a significant difference to other SmartCards used with long tubes

4.4.3 Reproducibility experiments of deposition

The aerosolised deposition of budesonide 400 µg in a sampling well, by means of SC1

and long connecting tubes was about 1.82 ± 0.44 µg/cm2 (n=27). Salbutamol sulphate

capsules of 400 µg were similarly deposited at 2.23 ± 0.44 µg/cm2 on each well (n=9). No

significant differences in deposition in the three different sampling wells were evident, with

either budesonide 400 µg or salbutamol sulphate 400 µg (Figure 17).

4.4.4 Separation of drug and carrier particles during aerosolisation

The drug content of budesonide 400 µg was 13.68 ± 3.7 µg/mg mixture in the capsule

(n=10). After aerosolisation and deposition in the pedestal the budesonide amount de-

creased significantly to 8.83 ± 0.9 µg/mg mixture (n=10) indicating the separation of the

drug crystals from the lactose carriers (Figure 18).
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Figure 17: The deposited amounts of budesonide 400 µg and salbutamol sulphate 400 µg
onto the three circularly-arranged sampling wells For budesonide 400 µg, n = 9 and for
salbutamol sulphate 400 µg, n = 3. Data are all shown as the mean ± SD. Black bars =
budesonide; grey bars = salbutamol sulphate.

Figure 18: The content of drug in powder mixture, before and after aerosolisation. Aerosoli-
sation sampling point was in the pedestal. A significant separation of drug and carrier
particles is shown. Data are all shown as the mean ± SD; n = 10.
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Figure 19: MTT assay showed no significant differences in viability of Calu-3 cells when
used in PADDOCC system compared to untreated control

4.4.5 Integrity of cell monolayer

TEER values of the Calu-3 cells, grown air-liquid interface, plateaued at day 8-14 after

forming a tight monolayer on a level of 500-600 Ω*cm2. This is in accordance with reports

from Fiegel et al. [131] or Foster et al. [171]. TEER consistency experiments showed a

TEER value of 508 ± 51 Ω*cm2 before the experiments. 30 min after deposition procedures

in the PADDOCC system TEER values were 525 ± 82 Ω*cm2 showing no significant

differences in monolayer integrity before and after the deposition experiments.

4.4.6 MTT assay

As can be seen in Figure 19 there is no significant difference between the cells in the

PADDOCC system and the untreated control. Viability of treated cells was about 98 ±

7.7% compared to control.
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4.5 Discussion

The main objective of this work was to develop an in vitro test system in which dry pow-

der aerosols can be generated and deposited onto cell monolayers without influencing cell

monolayer integrity and thus the possibility to conduct further studies, e.g. permeability

studies. In the in vitro system, the dry powder aerosol which consists of large carrier

particles and small drug crystals should be properly separated through the aerosolisation

process in order to mimic the situation which occurs by inhalation of dry powders by

patients. After aerosolisation, deposition of the drug crystals should occur on air-liquid

interface cell monolayers which have been previously grown on permeable filters placed

in the sampling wells of the PADDOCC system. thus permitting the investigation of the

interactions between the dry aerosol particles and the cell monolayers. In particular, the

possibility should be raised of conducting transport experiments over the cell monolayer.

Our new in vitro model for testing aerosol formulations combines an aerosol generation

step with deposition of particles onto sampling wells where permeable filters covered with

cell monolayers are integrated. Experiments showed that the PADDOCC system deposits

drug particles (2-5 µm) in the sampling wells of the deposition unit by sedimentation forces

whereas the lactose carrier particles (> 50 µm) are collected in the aerosolisation chamber

by impaction during the dispersion impulse or in the pedestal during the ventilation flow

due to their sedimentation velocity. Hence, only very few lactose carrier particles can be

found in the sampling unit. After deposition, drug particles which are smaller than 5 µm

are homogenously distributed in the sampling unit (Figure 15b + d). A comparison of

drug amount between the original powder mixture and the aerosolised powder mixture in

the pedestal showed that the drug amount significantly decreases during aerosolisation.

This implies that the lactose carrier particles are separated from the drug particles during
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the aerosolisation process (Figure 18). This is important because these carrier particles

are designed to prevent agglomeration of the small drug crystals in the capsule, but during

inhalation the particles have to separate so that the carrier particles deposit in the oropha-

ryngeal area and the small drug particles can reach the lower respiratory tract [172]. The

initial deposition experiments were carried out with SC4 and long connecting tubes which

resulted in a deposition amount of 0.92 ± 0.11 µg budesonide per well (Figure 16). To

increase the deposition amount in the system other programmed SmardCards as well as

short tubes were tested. Shorter tubes were tested in the hope of decreasing deposition of

the drug within the tubes, but this led to an increased deposition in the pedestal (data

not shown) indicating that a large proportion of the aerosol is transported through the

sedimentation chamber during the ventilation flow (100-300 ml). This was observed for all

of the SmartCards used, resulting in no significant increases of deposition amount (Figure

16) when using the short tubing. Therefore longer tubes are more suitable for experi-

ments although parts of the drug already deposit in the tubes during the ventilation flow.

Further experiments with long tubes, in combination with the other SmartCards, showed

significant differences in the deposition amount compared to SC4 which was used in the

initial experiment. The highest deposition was obtained with SC1 (2.23 µg/well), so that

a 2.5-fold increase was realised compared to our first settings with SC4 (0.92 µg/well).

Experiments with salbutamol sulphate using long tubes showed similar results, with the

highest deposition amount also being achieved with SC1 in this case (data not shown).

Deposited amount in the three different sampling wells of the deposition unit showed no

significant differences with either budesonide or salbutamol sulphate (Figure 17) Therefore,

three experiments can be performed in parallel without influencing the results.

The integrity of the cell monolayer in the PADDOCC system was tested to ensure

that drug permeation studies can be performed after deposition. Calu-3 cells were used
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which are known to form a tight monolayer under air-liquid interface conditions [171,

173]. As expected, experiments showed that there were no significant differences between

TEER values of the Calu-3 cells before and after the aerosolisation and deposition process.

MTT assay results of the cells which were put into the PADDOCC system also showed

no significant differences compared to the untreated cells (Figure 19). The integrity of the

cell monolayer results from protection of the cells in the ventilation mode from any air

streams of the aerosolisation process and their viability is maintained by buffer support

and an atmosphere of 37◦C. This is in contrast to the impinger systems where the cell

monolayer are exposed to high air flows [131, 162, 164]. Thus, the PADDOCC system is

able to deposit aerosolised particles onto cells in such a way that consecutive transport

experiments can be performed with an intact cell monolayer.

This prototype, featuring a combination of three sedimentation chambers is superior to

other deposition systems where only one well of cells can be investigated at time [165]. Our

system could also be modified by integrating more sedimentation chambers to obtain up to

6 or 8 experiments in parallel and would represent a suitable method to get representative

and reproducible data in short time.
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4.6 Conclusion

The PADDOCC system is a further step toward the realistic mimicking of the deposition

of a dry powder aerosol onto the lung surface in vitro. This permits the investigation

of the interactions between these aerosolised particles and the different cell types of the

lung without changing the aerosol properties. By depositing aerosols delivered from a

commercially available dry powder inhaler directly to the air-liquid interface of an epithelial

cell monolayer we consider that this model has potential value in the development of new

aerosol medicines. Beyond merely studying deposition the PADDOCC system may also

provide information on formulations and excipient effects on barrier function, as well as

on drug absorption across the pulmonary epithelium. By using human derived lung cell

cultures the PADDOCC may help to overcome inter-species differences and to reduce

animal experiments.
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5 Transport studies with PADDOCC system

Parts of this chapter have been accepted for publication:

S. Hein, M.Bur, U.F. Schäfer, C.-M. Lehr

A new Pharmaceutical Aerosol Deposition Device On Cell Cultures (PADDOCC) to evalu-

ate pulmonary drug absorption of metered dose dry powder formulations, European Journal

of Pharmaceutics and Biopharmaceutics, 2010
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5.1 Summary

Absorption studies with aerosol formulation delivered by metered dose inhalers across cell

and tissue based in vitro models of the pulmonary epithelia is not trivial due to the com-

plexity of the processes involved: i) aerosol generation and deposition, ii) drug release from

the carrier, and iii) absorption across the epithelial air-blood barrier. In contrast to the

intestinal mucosa, pulmonary epithelia are only covered by a thin film of lining fluid. Sub-

mersed cell culture systems would not allow to studying the deposition of aerosol particles

and their effects on this delicate epithelial tissue. We developed a new Pharmaceutical

Aerosol Deposition Device On Cell Cultures (PADDOCC) to mimic the inhalation of a

single metered aerosol dose and its subsequent deposition on filter-grown pulmonary ep-

ithelial cell monolayers exposed to an air-liquid interface. The reproducibility of deposition

of these dry powder aerosols and subsequent drug transport across Calu-3 monolayers with

commercially available dry powder inhalers containing salbutamol sulphate or budesonide

could be demonstrated. In the context of developing new dry powder aerosol formula-

tions PADDOCC appears as a useful tool, allowing to reducing animal testing and faster

translation into clinical trials.
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5.2 Introduction

Dry powder inhalers represent an important platform both for local as well as systemic

pulmonary drug delivery. As for all new medicines, aerosol powder formulations need to

be tested for safety and efficacy. Mostly these experiments are done in vivo by animal

experiments or on ex vivo lung preparations [174, 175]. Based on the 3R principle of

animal welfare there is a demand for in vitro test systems to determine the efficacy of

these aerosols, but they are rarely available. For the characterisation of aerosol properties

and pulmonary deposition physical devices like the multistage liquid impinger (MSLI) or

Andersen impactor are widely established. However, these methods allow no conclusions

about the influence of formulation factors on drug permeability and absorption across the

pulmonary epithelial barriers, nor do they provide any information about the biocompat-

ibility with or possible toxic effects on those cells and tissue. Therefore an apparatus

allowing to simultaneously studying both deposition and subsequent drug absorption of

pharmaceutical aerosols appears to be highly desirable. Aerosol effects on lung cells are

often addressed in environmental toxicology [139, 140, 143, 144, 151, 152]. There are dif-

ferent methods available, such as e.g. electrostatic precipitation [156, 158–160] to collect

particles from atmospheric aerosols, typically having a rather low particle density, onto

cell monolayers. The main focus of those investigations is long-term effects of low-dose ex-

posed materials like diesel dust or particulate matter. In contrast, pharmaceutical aerosols

are aimed to deliver a specific dose of a given drug with a single bolus or puff. However,

there are very few models available to study the effects of aerosolised drug powders on cell

culture systems. One approach is the integration of cell monolayer in a liquid impinger

system. Cooney et al. [162] used an Andersen viable cascade impactor as a deposition

device and delivered aerosolised FITC-dextran solutions to cell monolayers. Fiegel et al.
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[131] deposited large porous particles onto Transwell R© filters which were placed on the

stages of a liquid cascade impinger. In both setups no particular attention was paid to the

turbulences that were caused of the bowel-like form of the Transwell R© filters. Therefore

Bur et al. [164] refined this approach by integrating upside down Transwell R© filters in the

bottom of a multi-stage liquid impinger to minimise turbulences in the air streams and

subsequently increase deposition efficiency on the Transwell R© grown cell monolayers. Still,

these models rely on impaction as the main deposition mechanism. Besides impaction and

diffusion the prevailing deposition mechanism in the deep lung is sedimentation. Sedi-

mentation is a predictable process [168, 169] and does not cause changes of the aerosol

properties like electrostatic precipitation does. Therefore we decided to develop a system

where the deposition of aerosol particles mainly occurs by sedimentation at the air-liquid

interface of filter-grown pulmonary epithelial cells. To study drug absorption and perme-

ability in vitro tight cell monolayers are needed. The respiratory Calu-3 cell line forms

tight junctions and produces mucus, making it suitable for modelling the airway epithe-

lial barrier [171, 173]. Another advantage of the Calu-3 cell line is the formation of tight

monolayers on permeable filter supports at an air-liquid interface (ALI), yielding closer

resemblance to the native epithelium than under liquid covered culture (LCC) [132]. This

study describes a further evaluation of the new Pharmaceutical Aerosol Deposition De-

vice On Cell Cultures (PADDOCC) based on filter-grown cell monolayers placed on the

bottom of a sedimentation chamber. While the development and the experimental pro-

tocol of the apparatus with focus on optimisation of the deposited amount have already

been described elsewhere [176], we here report additional validation steps by conducting

combined deposition and transport experiments using commercially available dry powder

aerosol formulations of salbutamol sulphate and different doses of budesonide. The results

were compared with the standard procedure of liquid-interface transport studies.
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5.3 Materials and Methods

5.3.1 Materials

Snapwell R© permeable filters (pore size 0.4 µm, 1.13 cm2, Snapwell R© type 3801) and

Transwell R© permeable filters (pore size 0.4 µm, 1.13 cm2, Transwell R© type 3460) were

purchased from Corning Costar (Bodenheim, Germany). RPMI 1640 (without phenol red)

and fetal bovine serum (FBS Gold) were obtained from PAA (Pasching, Austria) and

sodium pyruvate was obtained from Lonza (Verviers, Belgium). Buffer for transport ex-

periments was KRB. Composition was as follows: 1.41 mM CaCl2, 3.00 mM KCl, 2.56 mM

MgCl2, 142.03 mM NaCl, 0.44 mM K2HPO4, 4.00 mM D-glucose and 10.0 mM HEPES.

All these reagents were obtained from Sigma Aldrich (Deisenhofen, Germany). KRB was

adjusted to pH 7.4 by means of NaOH. Budesonide and salbutamol sulphate powders were

a gift from Boehringer (Ingelheim, Germany). All other chemicals were of highest available

grade.

5.3.2 Cell culture

Calu-3 cells, clone HTB-55, were purchased from American Type Culture Collection (ATCC,

Manassas, VA, USA) and used at passages 38-52. Calu-3 cells were grown to 90% con-

fluence in 75 cm2 T-flasks with RPMI 1640 supplemented with 10% FBS Gold and 1mM

sodium pyruvate. Culture medium was changed three times a week. The incubator tem-

perature was set to 37◦C in an atmosphere of 90% relative humidity and 5% CO2. After

trypsinisation, cells were seeded on Snapwells R© or Transwells R© at a density of 100.000

cells/cm2 with 1.5 ml medium in the basolateral compartment and 500 µl in the apical

compartment. After two days, the cells in the Snapwells R© were set to air-liquid interface

conditions with 1.0 ml medium in the basolateral compartment. After 10-14 days the cells
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were ready for the deposition experiments.

5.3.3 Bioelectrical measurements

Transepithelial electrical resistance (TEER) was measured to monitor the tightness of the

cell monolayer. As a consequence of the air-liquid interface cultivation the apical com-

partment has to be filled with 500 µl pre-warmed medium and the basolateral compart-

ment with 1.5 ml before TEER measurement and equilibrate in an incubator for 30 min.

TEER was measured with an Electrical Volt-Ohm Meter (EVOM, WPI, Berlin, Germany)

equipped with chopstick electrodes. Thereafter the medium in both compartments was

removed and the basolateral compartment was filled with 1.0 ml medium again. TEER

was measured until 2-3 days before deposition experiments to assure the recovery of the

mucus layer on the cells, and after the transport experiments to confirm the integrity of

the cell monolayer during the experiments.

5.3.4 Dose dependent deposition

For all the follwing experiments, the PADDOCC system was used, as described previously

[176]. Experiments to demonstrate a linear dependence of the deposited amount of drug

were performed first by aerosolising a dry powder capsule with different concentrations of

budesonide (Cyclocaps R© Budesonid 200 µg, 400 µg and 800 µg, PB Pharma, Meerbusch,

Germany) and depositing the aerosol in the sampling wells (i.e. without cells). After three

aerosolisation-deposition cycles each well of the sampling unit was washed with 1 ml of

HPLC mobile phase and quantified by HPLC analytics.
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5.3.5 Deposition experiments and subsequent transport studies on ALI Calu-3

monolayers

60 min before the experiments, cell monolayers grown in Snapwells R© were transferred to

a 6-well culture plate, each containing 750 µl pre-warmed KRB buffer in the basolateral

compartment and equilibrated in an incubator. After this pre-equilibration, they were

placed into the sampling wells of the PADDOCC, filled with 500 µl pre-warmed KRB

buffer, and the apparatus was then assembled to conduct the deposition experiment. To

keep the temperature constant, the entire system (without Akita R© device) was placed in-

side an incubator at 37◦C. Commercially available capsules of dry powders were aerosolised

and deposited onto ALI grown Calu-3 cells via the deposition system. The studies were

performed with Cyclocaps R© Salbutamol 400 µg (with 480 µg salbutamol sulphate, PB

Pharma, Meerbusch, Germany) and Cyclocaps R© Budesonid 400 µg (PB Pharma, Meer-

busch, Germany) and dose dependent studies were performed with Cyclocaps R© Budesonid

200 µg and 800 µg (PB Pharma, Meerbusch, Germany). Sedimentation for respirable par-

ticles (i.e. with a MMAD in a range between 2 and 5 µm) takes no longer than 10 min in

this chamber (calculated according to Dua et al. [168]) and performing three deposition

cycles resulted in a window of 30 min for the aerosolisation and deposition process. After

these 30 min the Snapwells R© were then transferred back to the 6-well culture plate filled

with 750 µl pre-warmed KRB buffer in the basolateral compartment and rotated gently

on a shaker (150 rpm). Samples of 100 µl were taken at different time points from the

acceptor compartment and replaced by 100 µl fresh buffer. Samples were quantified by

HPLC analysis. After the transport experiments TEER values were measured to assure

the integrity of the monolayer. To determine the total amount of drug deposited at the end

of the experiment, the cells were lysed with 200 µl dimethylsulfoxide in case of budesonide
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as model drug, or with 200 µl isopropanol for salbutamol sulphate, unified with the apical

and basolateral compartment (total volume 2.2 ml) and centrifuged for 3 min at 14000

min−1. The supernatant was then quantified by HPLC.

5.3.6 Liquid interface transport experiments of budesonide and salbutamol

sulphate

Transport experiments were also carried out with Calu-3 cells after dissolving of the drugs

in buffer and pipetting the resulting solution to the apical cell compartment. The donor

concentration of budesonide was 30 µM and of salbutamol sulphate was 1000 µM. Sam-

ples from the acceptor compartment were taken at different time points and quantified by

HPLC analysis. Papp values were calculated as follows:

Papp =
J

A ∗ C

where J is the flux, A is the area (1.13 cm2) and C is the initial concentration in the donor

compartment.

5.3.7 HPLC analysis

HPLC analysis of budesonide and salbutamol sulphate has already been described in detail

in chapter 4.3.7

5.3.8 Data analysis and statistics

The area under the curve (AUCabsorption) as a parameter for absorption rate after 4 hours

in the transport experiments was calculated by SigmaPlot 8.0 software (Systat Software
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GmbH, Erkrath, Germany). Data are expressed as mean ± SD. Statistical analysis was

carried out using SigmaStat 3.0 software (Systat Software GmbH, Erkrath, Germany).

Data were compared by one-way ANOVA followed by the Holm-Sidak method for differ-

ences between two or more groups (n>6). Differences were deemed statistically significant

if p < 0.05.
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5.4 Results

5.4.1 Deposition experiments

Deposition experiments with salbutamol sulphate (400 µg) and different amounts of budes-

onide (200, 400 and 800 µg) showed a uniform and reproducible deposition of about 0.5%

of the aerosolised dose per well. There was no significant difference in deposition amount

between the three wells. As can be seen in Figure 20 the different doses of budesonide

resulted in a proportional deposition in the sampling wells.

Figure 20: Deposition behaviour of budesonide in dependency of different doses. The
deposited amount of budesonide per sampling well (in µg) is proportional to the original
dose (200,400 und 800 µg per capsule) which is equal to about 0.5% of the original dose
(mean ± SD).

5.4.2 Deposition experiments and subsequent transport studies

Transport experiments after deposition of budesonide aerosol powder (400 µg) showed a

linear increase in the transported amount in the first 60 min, but then the curve flattened,

resulting in a total transport of about 71 ± 11% of the deposited amount during four

hours (Figure 21). Transport of salbutamol sulphate showed a similar time course, with a
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flattening of the curve after 90 minutes and a total transport of 19 ± 6% after four hours

(Figure 22).

Figure 21: Transport of budesonide across filter-grown Calu-3 monolayers: Deposition and
subsequent transport experiments for the aerosol powder formulation using the PADDOCC
system (full circles, 400 µg capsule, n=12) versus the dissolved drug using a conventional
Transwell R© setup (open circles, 30 µM solution, n=5)

5.4.3 Liquid interface transport studies

Transport studies performed with dissolved budesonide in a conventional Transwell R© setup

showed a linear transport during the first four hours (Figure 21). Papp was 8.37 ± 0.36

∗ 10−6 cm/s and total transport was about 13.8 ± 0.8% after four hours. Salbutamol

sulphate transport studies also showed a linear transport in the first four hours (Figure

22), but total transport was only 0.11 ± 0.08% and Papp was calculated to be 0.126 ± 0.09

∗ 10−6 cm/s.
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Figure 22: Transport of salbutamol sulphate across filter-grown Calu-3 monolayers: De-
position and subsequent transport experiments for the aerosol powder formulation using
the PADDOCC system (full circles, 400 µg capsule, n=9) versus the dissolved drug using
a conventional Transwell R© setup (open circles, 1000 µM solution, n=5)

5.4.4 Dose dependent transport studies

After the deposition experiments, the budesonide capsules were aerosolised and deposited

with the PADDOCC system, but now equipped with Calu-3 monolayers grown on Snapwell R©

filter inserts. As can be seen in Figure 23 there is a dose dependent transport rate of the

budesonide molecules through the Calu-3 monolayer. Higher dosing of the drug resulted

in an increased transported amount while the fraction of the dose in % remained constant.

The area under the curve (AUCabsorption) as a parameter for absorption rate of the transport

curves is proportional to the original dose in the budesonide capsules (Figure 24).
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5.5 Discussion

Ideally, an in vitro model for testing new aerosols and formulations should be able to

mimic the deposition of aerosol particles on epithelial cell cultures by involving the same

processes of impaction, sedimentation and diffusion as they occur in the lung in vivo. The

new PADDOCC system aims to approximate this by the integration of Snapwells R© with

pulmonary epithelial cells in a sedimentation chamber. There the aerosol particles from

dry powders will deposit by sedimentation which is the prevailing deposition mechanism

for particles sizes between 1 and 5 µm in the deep lung [177, 178]. Before this respirable

aerosol fraction reaches the sedimentation chamber, the PADDOCC system separates larger

particles, such as e.g. lactose carriers, corresponding to the in vivo separation of larger

particles by the throat and pharynx, allowing only smaller drug particles to reach the deep

lung [127]. In the PADDOCC system larger carrier particles are already deposited in the

pedestal, due to higher sedimentation velocities, whereas the drug particles sediment onto

the sampling wells which has previously been shown by SEM imaging [176]. Therefore,

transport studies are not affected by the carrier particles.

In this study budesonide and salbutamol sulphate were chosen as model drugs for

aerosolisation because they are widely used to treat pulmonary diseases like asthma. Budes-

onide, as a biopharmaceutics classification system (BCS) class II model drug, is highly

permeable and poorly soluble and therefore its pulmonary bioavailability is likely to be

limited by its solubility in the lining fluid of the cell monolayer. In contrast, pulmonary

bioavailability of the highly soluble salbutamol sulphate, a BCS class III drug, may be

limited by its low permeability. As for systemic bioavailability after oral administration,

solubility and permeability are most likely as important as for pulmonary bioavailability

after aerosol delivery to the lung. Apart from effective deposition, adequate absorption
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across the pulmonary epithelia is pivotal. With the PADDOCC system, the ability of drug

to cross the biological absorption barriers of the lung, e.g. by a Calu-3 monolayer, can be

determined for dry powder aerosol formulations in a rather early stage of the development

process.

The total amount of drug recovered after deposition in the three sampling wells is about

1.5% of the total amount in the capsule. This may appear low compared to electrostatic

precipitation methods [156, 158] where deposition efficacies up to nearly 100% occur. How-

ever, the total surface area of the epithelial cell cultures (∼ 3 cm2) in the PADDOCC is

even much smaller than the total surface area of the deep lung (∼ 100 m2). Assuming ho-

mogeneous deposition of a single aerosol bolus in the 0.1 - 1 mg range would theoretically

lead to a density of deposited particles on the alveolar mucosa in the order of 0.1 - 1.0

ng/cm2. This is still at least 1000 times lower compared to the actually collected particle

concentration on the Snapwell R© filter surface in our setup. Further reducing the deposition

density would at the one hand demand much more analytical efforts. On the other hand,

the ∼ 1000 times higher concentration of particles to which the cells are exposed in this

in vitro setup appear as a useful ”safety margin” to detect any possible adverse effects of

a given drug or excipient, e.g. by a change of TEER or other cytotoxicity indicators.

Aerosol generation with a dispersion impulse of 60 l/min for 0.2 s is similar but shorter

compared to other studies [131, 162] where impactors with flow rates of 28.3 and 60 l/min

over 30 s occur. The main advantage is that the sedimentation process of the particles onto

the cells happens without any disturbing air streams, so that the cells were not affected. In

this study Calu-3 cells were used which were cultivated at air-liquid interface conditions,

reflecting the in vivo properties more than liquid covered cultured Calu-3 cells [132]. They

are more differentiated than LCC, but their TEER values are much lower than LCC due

to the cultivation conditions. Several studies for air-liquid interface grown Calu-3 cells
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show that TEER of about 450 Ω*cm2 are needed to obtain a tight monolayer [131, 179],

therefore only results of transport studies with TEER after experiments of more than 450

Ω*cm2 were used. However, aerosol generation and deposition did obviously not affect the

barrier properties of the cell monolayers, as indicated by practically the same TEER values

before and after the deposition [176].

Epithelial transport experiments of budesonide, which is known to be highly permeable

but poorly water soluble, after deposition with the PADDOCC system show a linear in-

crease in the first 60 min in the transport rate (Figure 21), and then flattens, indicating a

depletion in the donor compartment. After deposition of the aerosol on the monolayer, the

budesonide particles dissolve only partially, yielding a saturated solution around themselves

and some concentration gradient between the particle surface and the lining fluid. Another

concentration gradient exists between the lining fluid with dissolved budesonide and the

basolateral compartment containing KRB buffer. This concentration gradient leads to a

rapid transport through the monolayer to the basolateral compartment. After one hour

the transport curve flattens because the concentration gradient between the budesonide

particles and the lining fluid decreases. It runs out of sink conditions and the permeation

through the monolayer is limited by the dissolution process of the budesonide particles. As

a result the transport over the monolayer decreases resulting in a slower slope in transport

curve. However, the hydrophilic salbutamol sulphate is dissolved in the lining fluid after

deposition. In this case permeation is the limiting factor for transport. Due to the high

concentration gradient in the beginning salbutamol is transported through the monolayer

into the basolateral compartment (Figure 22). After about 90 min the transport rate de-

creases due to depletion in the donor compartment. As expected, the transport rate of the

hydrophilic salbutamol sulphate through the Calu-3 monolayer is much lower than of the

lipophilic budesonide. The high local drug concentrations on the Calu-3 monolayer due to
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Figure 23: Transported amount of different masses of deposited budesonide (after aerosoli-
sation and deposition in the PADDOCC system from a 200, 400 and 800 µg capsule, n=6)
across a Calu-3 monolayer

the landing of dry drug particles onto a cell monolayer with only a thin film of fluid cause

the high absorption rates compared to submersed transport studies where budesonide and

salbutamol sulphate show much lower absorption rates (Figure 21 and 22). The Papp val-

ues of the submersed transport studies calculated for budesonide and salbutamol sulphate

correlate very well with data from Bur et al. [180]. Similar observations of an increased

transport when using air-liquid interface cell monolayers were made by Grainger et al.

[165] where FITC-dextran particles which were deposited by a twin-stage impinger onto

air-liquid interface Calu-3 monolayers showed a 20 fold-higher transport rate compared to

FITC-dextran solutions.

When using budesonide capsules with different drug content, the ratio of the amounts

deposited on the sampling units of the PADDOCC were in good agreement with those of

the labelled dose (i.e. 1:2:4, Figure 20). Deposition and transport of increasing amounts of

budesonide show an increased transport (Figure 23) resulting in proportional increasing of
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Figure 24: The absorbed dose (AUCabsorption in µg/ml∗min) across the Calu-3 monolayer
from capsules of 200, 400 and 800 µg. The transport is proportional to the aerosolised dose
(mean ± SD)

area under the curve (AUCabsorption) values as a parameter for absorption rate (Figure 24)

indicating that the PADDOCC system is able to distinguish between different amounts of

the deposited drug. The ratio of the AUCabsorption (1:1.8:3.3) is also in good accordance with

the ratio of the dosing strength (1:2:4) in the budesonide capsules. While the processes of

aerosol deposition and absorption in vivo are much more complex, the PADDOCC system

aims to reduce this complexity to a level which at the one hand remains practically feasible,

but at the other hand may provide some insight into what happens when a dry powder

aerosol formulation reaches the epithelial air-blood barrier of the lungs. Such information

goes clearly beyond mere deposition studies of aerosol particles in a conventional impactor

device and beyond mere permeability testing of dissolved drug in a conventional Transwell R©

setup. Alternative to the bronchial epithelial cell line Calu-3, an extension of the current

setup towards more sophisticated cell culture systems, like human alveolar epithelial cells

[181] or co-cultures with endothelial cells and macrophages [182], also featuring a more

complex apical lining fluid (e.g. to model the surfactant film), appears easily feasible.
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5.6 Conclusion

The PADDOCC system allows to combining the aerosolisation and deposition of pharma-

ceutical aerosol formulations with subsequent absorption studies across filter-grown cell

cultures of pulmonary epithelial cells. Sedimentation as the main deposition mechanism is

gentle, thereby not affecting cell monolayer integrity. Moreover, it allows to separate res-

pirable drug particles from non-respirable carrier particles due to different sedimentation

velocities. Air-liquid interface deposition of drug particles directly on the apical cell mem-

brane, covered by only a minimal amount of lining fluid, makes an important difference to

pipetting the drug dissolved in a buffer solution in a conventional Transwell R© setup. For

the development of pharmaceutical aerosol powder formulations, we trust that this setup

could be very useful, replacing animal experiments and facilitating the translation of new

concepts for pulmonary drug delivery into the clinic.
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6 Summary and Outlook

Development of new inhalative drug formulations is increasing because pulmonary diseases

like tuberculosis or asthma are on the rise. There are also new approaches for local therapies

of lung cancer in the pipeline with advanced particle types like liposomes or nanoparticles.

All these new approaches have to be tested for their safety and efficacy, which is at the

moment mostly done in animal experiments.

There is a need for such an in vitro model to reduce animal experiments in the early

phase of drug formulation development, because in vitro models are, besides ethical rea-

sons, more time-effective and cost-efficient. The work presented in this thesis dealt with

the development of a new in vitro model to characterise aerosol particles which have been

deposited onto air-liquid interface grown cell monolayers. Other models used in pharma-

cological context rely on impaction as the deposition mechanism, but our model focuses

on sedimentation, the main deposition mechanism in the deep lung.

The first part of this thesis is about the development and first evaluation of our Pharma-

ceutical Aerosol Deposition Device On Cell Cultures (PADDOCC) system, which consists

of three components: air flow control unit, aerosolisation unit and deposition unit. The

air flow control unit aerosolises the dry powder formulation into the aerosolisation unit

and transports the aerosol to the deposition unit where these aerosolised drug particles are

deposited onto human lung cell culture monolayer by sedimentation. These cell monolay-

ers are grown at air-liquid interface conditions to represent a more in vivo like structure.

The dry powder formulation which typically consists of large carrier particles (> 50 µm)

and small drug crystals (2-5 µm) is separated during the aerosolisation process similar to

in vivo situation, so that only the drug crystals are deposited onto the cell monolayer.

Experiments showed a reproducible, uniform deposition of drug particles onto these cell
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monolayers and due to the gentle deposition mechanism no damage of the cell monolayer

was detected.

The second part focuses on the deposition and absorption of drug particles. Aerosolisa-

tion of different masses of drug particles resulted in a proportional deposition. Absorption

studies performed with air-liquid interface grown Calu-3 cells showed significant differences

compared to transport studies with liquid interface grown Calu-3 cells. This was due to

the high concentration gradient caused by the small amount of fluid on top of the ALI cell

monolayer.

Surely there are further developments needed to obtain a perfect in vitro model of the

respiratory tract where all the deposition mechanisms occur onto the relevant cell culture

models, but our model is a first step to simulate deposition in the deep lung by sedimen-

tation and may help to improve safety and efficacy testing of new aerosol formulations in

vitro.

This thesis was only focussing on the deposition of dry powder aerosols. However, there

are also liquid formulations on the market and in development. Promising approaches like

liposomes and nanoparticle suspensions need also to be tested for their efficacy and safety

before approval. To reduce animal experiments also in this area, in vitro models for liquid

formulations are needed. Therefore the next step would be to modify the PADDOCC

system to investigate the influences of liquid formulations onto cell monolayers, too.
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7 Zusammenfassung und Ausblick

Die Erforschung von neuen inhalativen Arzneistoffformulierungen entwickelt sich stetig

weiter, da Krankheiten der Lunge wie Tuberkulose oder Asthma auf dem Vormarsch sind.

Es gibt auch neue Ansätze für lokale Therapien zur Behandlung des Lungenkrebses, die

auf neuen Partikelarten wie Liposomen oder Nanopartikeln basieren sowie Versuche an-

dere Krebsarten durch systemisch wirkende Aerosole zu behandeln. Diese neuen For-

mulierungsansätze müssen hinsichtlich ihrer Sicherheit und Wirksamkeit getestet werden.

Dieses geschieht zur Zeit zum größten Teil mit Tierversuchen. Deshalb werden in vitro

Modelle benötigt, die die Tierversuche in der frühen Phase der Arzneistoffformulierung er-

setzen können. In vitro Modelle haben den Vorteil, dass sie, neben den ethischen Gründen,

zeitsparender und kosteneffektiver sind. Diese Arbeit beschäftigte sich mit der Entwick-

lung eines solchen in vitro Modells, das den Einfluß von deponierten Aerosolpartikeln auf

an der Luft-Grenzschicht gewachsenen Zellmonolayern untersucht. Andere Modelle, die

im pharmazeutischen Bereich genutzt werden, basieren auf der Impaktion als Depositions-

mechanismus. Unser Modell beruht auf der Sedimentation, die auch den Hauptdepositions-

mechanismus in der tiefen Lunge darstellt.

Der erste Teil dieser Arbeit beschreibt die Entwicklung sowie eine erste Evaluation

des Pharmaceutical Aerosol Deposition Device On Cell Cultures (PADDOCC) Systems.

Es besteht aus drei Hauptkomponenten: einer Kontrolleinheit, einer Verneblungseinheit

und einer Depositionseinheit. Die Kontrolleinheit vernebelt die Pulverformulierung in der

Verneblungseinheit und transportiert danach das entstandene Aerosol zur Depositions-

einheit, wo die Aerosolpartikel auf Lungenzellkulturen durch Sedimentationsprozesse de-

poniert werden. Diese Zellmonolayer sind an der Luft-Grenzschicht gewachsen, da sie so

eine ähnlichere in vivo Struktur aufweisen. Die Pulverformulierung besteht üblicherweise
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aus größeren Trägerpartikeln (> 50 µm) und kleinen Arzneistoffpartikeln (2-5 µm), die

während des Aerosolisierungsprozesses, ähnlich der in vivo Situation, getrennt werden, so

dass nur die Arzneistoffpartikel auf dem Zellmonolayer deponiert werden. Versuche in dem

PADDOCC System zeigten eine reproduzierbare und gleichmäßige Deposition der Par-

tikel auf den Zellmonolayern und durch den schonenden Depositionsprozess konnten keine

Beschädigungen am Zellmonolayer festgestellt werden.

Der zweite Teil der Arbeit beschreibt Depositions- und Absorptionsversuche mit ver-

schiedenen Arzneistoffpartikeln. Die Verneblung von unterschiedlichen Massen der Arznei-

stoffpartikel resultierte in einer zur Masse proportionalen Deposition. Absorptionsstudien,

die mit an der Luft-Grenzschicht kultivierten Calu-3 Zellen durchgeführt wurden, zeigten

signifikante Unterschiede im Absorptionsverhalten verglichen mit Transportstudien, die

mit submers kultivierten Calu-3 Zellen durchgeführt wurden. Dies ist bedingt durch den

großen Konzentrationsgradienten, der aufgrund der geringen Flüssigkeitsschicht auf dem

Zellmonolayer, entsteht.

Sicherlich sind noch einige Weiterentwicklungen nötig, um ein perfektes in vitro Modell

des Respirationstraktes zu erhalten, das alle relevanten Depositionsmechanismen auf die

verschiedenen Zelltypen simuliert, aber unser Modell ist ein erster Schritt, um die Sedi-

mentation von Arzneistoffen in der tiefen Lunge darzustellen. Das PADDOCC System

könnte in der Lage sein, Sicherheits- und Wirksamkeitsstudien von neuen Formulierungen

in vitro durchzuführen, um Tierversuche reduzieren oder gar teilweise zu ersetzen.

Diese Arbeit beschäftigte sich mit der Deposition von Pulverformulierungen. Ein an-

derer großer Part der Inhalanda besteht aber aus Flüssigformulierungen, die schon auf

dem Markt sind (Lösungen von Arzneistoffen) oder sich aber in der Entwicklung befinden.

Diese, sich in der Entwicklung befindlichen, neuartigen Partikeltypen wie Liposome oder

Nanopartikelsuspensionen müssen jedoch auch hinsichtlich ihrer Sicherheit und Wirksamkeit
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getestet werden bevor sie zugelassen werden können. Deshalb wird auch in diesem Feld

ein in vitro Modell benötigt, dass die Auswirkungen dieser Formulierungen auf Zellkul-

turen untersucht. Der nächste, konsequente Schritt wäre deshalb eine Modifikation des

PADDOCC Systems, so dass auch flüssige Fomulierungen getestet werden können.
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A ABBREVIATIONS

A Abbreviations

3R Replace, reduce, refine
ALI Air-liquid interface
ATD Antitubercular drug
AUC Area under the curve
BALT Broncho-alveolar lymphoid tissue
CF Cystic fibrosis
CLIJ Confined liquid impinging jet
COPD Chronic obstructive pulmonary disease
DLPC Dilauroylphosphatidylcholine
DMSO Dimethylsulfoxide
DPI Dry powder inhaler
DPPC Dipalmitoylphosphatidylcholine
DSPC Distearoylphosphatidylcholine
EAVES Electrostatic aerosol in vitro exposure system
EPDExS Electrostatic particulate dosage and exposure system
EVOM Electric Voltohmmeter
FBS Fetal bovine serum
FDA Food and Drug Administration
FITC Fluoresceinisothiocyanat
HPLC High pressure liquid chromatography
KRB Krebs Ringer buffer
LCC Liquid covered culture
LMWH Low molecular weight heparine
MTT Methyl-thiazolyl-tetrazolium
PADDOCC Pharmaceutical Aerosol Deposition Device On Cell Cultures
PLG Poly(lactide)-co-poly(glycolide)
PLGA Poly(lactic-co-glycolic-acid)
SAEC Small airway epithelial cells
SLIT Sustained release lipid inhalation targeting
SLM Solid lipid microparticles
TEER Transepithelial electrical resistance
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B Blueprints of the PADDOCC system

The blueprints of the PADDOCC system are listed below.

part page no.

Deposition unit

Overview 108
Bodenplatte 109
Tiegel 110
Zentralbefestigung 111
Platte 112
Kammer 113
Eingang 114

Aerosolisation unit

Overview 115
Deckel 116
Kammer 117
Oben 118
Stab 119
Boden 120
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