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1. Introduction 

Iron is probably the trace metal with the highest biological importance in comparison to 

others, such as zinc, manganese or nickel (Nies, 2003). Iron plays a central role for nearly all 

organisms, participating in diverse metabolic processes. This transition metals is an essential 

component of cytochrome proteins, which mediate redox reactions, of oxygen carrier proteins 

or of iron-sulfur clusters from many enzymes with various metabolic activities (Hantke, 2001; 

Krewulak and Vogel, 2008). The biological most important oxidation states of iron are the 

ferrous (Fe2+) and the ferric (Fe3+) forms (Andrews et al., 2003), while iron can exist in 

various oxidation states (from Fe-2 to Fe+6). 

In aqueous, aerobic environment iron exist predominantly in the oxidized form of Fe3+(OH)3 

(ferric hydroxide) which exhibits extreme insolubility (Ksp of 10-18 M at pH 7.0) (Winkelmann 

et al., 1987), but oxygen-dependend microorganisms need high amounts of iron in 

comparison to the low accessible concentrations. Furthermore, the accessible iron in soil can 

be the growth-limiting factor, in consideration to concentration below 0.1 µM (Vasil and 

Ochsner, 1999). Bacteria have developed different molecular strategies to support growth at 

such low, available iron concentrations (Andrews et al., 2003). 
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1.1 Role of iron in microbial metabolism 

Iron is among the most critical micronutrients for bacteria (Wackett et al., 1989), as it serves 

as a co-factor for many primary metabolic enzymes. Aerobic bacteria typically scavenge iron 

from the environment through the biosynthesis and secretion of high-affinity iron-chelating 

compounds called siderophores. Following recovery of the resulting iron-siderophore 

complexes by specific outer membrane receptors (Buchanan et al., 1999), the iron is 

transported into cytoplasmatic proteins by a number of different mechanisms. These systems 

are grouped into high- and low-affinity acquisition.  

 

 

1.1.1 High-affinity iron uptake 

A wide range of species employ chelating substances for iron uptake, the so-called 

siderophores (greek: iron-carrier) (Winkelmann et al., 1987; Moeck and Coulton, 1998; 

Stintzi et al., 2000; Crosa and Walsh, 2002). These water-soluble molecules show typically 

high affinity to Fe3+ (1020 ≤ Kf ≤ 1050) (Mahé et al., 1995) and Fe2+ (1010 ≤ Kf ≤ 1035) (Cornish 

and Page, 1998) and form very stable iron-siderophore chelate complexes.  

Siderophores can be divided into three major groups, classified by the following simple 

structures which are used as building blocks and finally for iron ligation: a) dihydroxybenzoic 

acid (catecholate) molecules coupled to an amino acid, b) hydroxamate groups containing �´-

acyl-�´- hydroxyornithine or �'-acyl-�'-hydroxylysine and c) hydroxycarboxylates consisting 

of citric acid or ß-hydroxyaspartic acid (Winkelmann, 2002). An example for each of the 

three siderophore types is shown in figure 1.1. 
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Figure 1.1: Example molecules of the three different siderophore types.  

The siderophores are categorized by their basic structure (Winkelmann, 2002): a) catecholate type 
(Enterobactin), b) hydroxamate type (Desferrioxamine B) or c) hydroxycarboxylate type (Rhizoferrin). 
 
 
Siderophores are excreted from the producer organisms, chelate iron extracellular and iron-

siderophore complexes are re-imported, subsequently. Upon receptor recognition, the iron-

siderophore molecules are imported by the high-affinity TonB ExbB-ExbD iron acquisition 

system (figure 1.2) in an energy-consuming process (Frost and Rosenberg, 1975; Andrews et 

al., 2003).  
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Figure 1.2: Scheme of siderophore-mediated iron uptake in Gram-negative bacteria. 

Iron-loaded siderophores (blue octagon) are recognized by an outer membrane (OM) receptor, in 
association with a TonB ExbB/D complex. A periplasmic binding protein shuttles ferri-siderophores 
from the OM receptor to cytoplasm membrane (CM) ATP-dependent permease that delivers the ferri-
siderophores to the cytosol. A more detailed explanation can be found elsewhere (Andrews et al., 
2003). 
 
 

The iron-loaded siderophore complexes are recognized via highly specific outer membrane 

(OM) receptors (Moeck et al., 1998; Andrews et al., 2003), which induces a conformational 

change to an active transporter (Krewulak et al., 2008) across the cytoplasm membrane. The 

TonB protein interacts with the receptor-bound ferri-siderophore complex, transducing the 

required energy. The receptor for iron-siderophore complexes in Escherichia coli (Coulton et 

al., 1986), FhuA, is a member of a family of integral outer membrane proteins, which, 

together with the energy transducing protein TonB, mediate the active transport of iron-
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siderophores across the outer membrane of this Gram-negative bacterium (Ferguson et al., 

1998). 

Subsequently, periplasmic binding proteins shuttle ferri-siderophores from the OM receptors 

to ATP-binding cassette (ABC) transporters that deliver the ferri-siderophores to the cytosol 

(Stintzi et al., 2000; Crosa et al., 2002; Andrews et al., 2003). Typically, Fe3+ is reduced 

during the membrane transport, resulting in Fe2+ ions. The reaction is nessecary to remove 

iron from iron-siderophore complexes (Andrews et al., 2003). Intracellularly located, ferrous 

iron is complexed generally, because "free" iron would catalyze production of toxic free 

radicals. The mechanism of release of iron from the siderophore and the destiny of the 

siderophore molecules, notable degradation (Raymond et al., 2003; Abergel et al., 2006) or 

re-use (Greenwald et al., 2008), seems to be structure-specific. In addition to the described 

function of the OM receptors, they furthermore play a role in transcriptional activation by 

signal transduction from iron-sensing from the outside of the bacterial cell, similar to FecA 

system in E. coli (Pressler et al., 1988; Venturi et al., 1995b; Marshall et al., 2009). The 

signals are transmitted across two membranes into the cytoplasm, leading to transcriptional 

activation or repression of target genes (Koebnik, 2005), so metabolism can be modulated to 

present environmental conditions as iron concentration. In summary, different regulatory 

networks allow microorganisms to adjust the siderophore production and iron-uptake very 

precisely, avoiding intracellular iron-shortage or overload. 

 

Moreover, some bacteria have developed additional strategies to overcome iron-deprivation 

and are able to steal iron-siderophore complexes by TonB dependent processes (Rabsch et al., 

1991; Ambrozic et al., 1998). These microorganisms with capacity to growth as “iron-

parasites” are well adapted to iron-limiting environments and show a much higher number of 

tonB genes than necessary for uptake of their own produced siderophores, which might also 

be evident for M. xanthus DK1622. Thus, the TonB systems were used for recognition and 

import of iron-loaded siderophores produced by other organisms (Venturi et al., 1995b).  

An additional iron resource is accessed by bacteria (often pathogenic hemolysin producers), 

which can degrade foreign structures like transferrin (Cornelissen and Sparling, 1994), heme, 

hemoglobin or hemin (Archambault et al., 2003) or which employ the Feo transport system of 

ferrous iron (Fe2+) by specific permeases (Andrews et al., 2003; Cartron et al., 2006). Some 

of these iron assimilation systems were found to be essential for colonialization of iron-

limiting environments (Baltes et al., 2002).  
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1.1.2 Low-affinity iron uptake 

Later studies have demonstrated that some microbes are able to reduce extracellular Fe3+ in a 

variety of chelate complexes (Vartivarian and Cowart, 1999). Also in yeast, a surface-

localized reductase generates Fe2+ from Fe3+. A multicopper oxidase converts Fe2+ back to 

Fe3+ which is immediately transported by a Fe3+-permease into the cytoplasm (Kosman, 

2003). Another Fe3+ uptake pathway was proposed in H. pylori. In this system, flavins reduce 

Fe3+ to Fe2+ which is taken up through OM porin into periplasm, and finally by an inner 

membrane ferrous transporter into the cytoplasm (Velayudhan et al., 2000). 

Such low-affinity iron transport has been measured in E. coli and H. pylori, showing 100-

2000fold lower iron uptake rates than high-affinity transport systems. However, the used 

uptake-pathways are unclear (Velayudhan et al., 2000). Low-affinity iron uptake alone does 

not enable normal growth even in the presence of sufficient concentrations of iron (Andrews 

et al., 2003). These systems are negligible, used only as “emergency” system which allows 

the cells at least to survive without any siderophore-based iron-supply.  

 

 

1.1.3 Iron homeostasis control by the ferric uptake regulator (Fur) protein 

Bacteria utilize different iron management systems: (i) efficient iron uptake systems to import 

iron from environment, (ii) generation of intracellular iron storage pools, to provide a resource 

of iron also if external amounts are limited, (iii) adaptation of redox balancing systems 

(disarming of redox stress, repair of redox-induced damage), (iv) exact control of iron 

consumption (control of expression and activity of siderophore pathways or iron-containing 

proteins), and (v) an over-arching iron-responsive regulatory system that coordinates the 

expression of the above mentioned iron homeostatic machinery according to iron availability 

(Andrews et al., 2003).  

 

 

The ferric uptake regulator (Fur) protein 

The balance of iron in bacteria is usually regulated by the ferric uptake regulator (Fur) 

protein, which plays the leading part as iron-responsive transcriptional regulator (Crosa et al., 

2002; Andrews et al., 2003). This iron-sensing, regulatory system mediates the response to 

environmental conditions (figure 1.3). The iron-loaded, dimerized protein can bind to 

palyndromic consensus DNA sequences (designated Fur boxes) (Escolar et al., 1999) and 
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affect selective initiation events of transcription (Mills and Marletta, 2005). Moreover, iron-

free Fur proteins can have also regulatory functions (Hantke, 2001). 

 

 

Figure 1.3: Model of Fur-DNA interaction. 

The ferric uptake regulator (Fur) is a metal-dependent transcriptional repressor that is activated by 
divalent transition metal cations, whereas iron acts as the primary functional metal cation (Mills et al., 
2005). The activated dimer can bind to distinct DNA sequences, the so-called Fur boxes.  
 
 
Fur boxes are normally located between the –35 and –10 sites of promoters of Fur-repressed 

genes, and consist of a 19 bp inverted repeat with the consensus sequence: 5´-

GATAATGATwATCATTATC-3´; w = A or T (Baichoo and Helmann, 2002a). Although Fur 

binding causes transcriptional repression in the majority of cases, activation has also been 

reported (Lee and Helmann, 2007). In contrast, under iron poor conditions in which the 

equilibrium favors release of Fe2+, Fur dissociates, and RNA polymerase can access its 

cognate promoters. Regulation is not always direct. For example, transcriptional repression by 

Fur can occur indirectly through expression of alternative sigma factors, AraC-like 

transcriptional regulators and two-component systems (Vasil et al., 1999; Hantke, 2001), 

while indirect activation is often mediated via repression of small RNAs (sRNA) which 

function post-transcriptionally as negative regulators (Massé et al., 2007).  

The number of genes in bacteria regulated by Fur varies from 50 to 250, depending on the 

respective organism (Wandersman and Delepelaire, 2004; Rudolph et al., 2006). Fur therefore 

serves as a global gene regulator which adjusts the state of the cell to accommodate changes 

in iron availability (Escolar et al., 1999; Andrews et al., 2003).  

Fur transcriptionally regulates genes which code for proteins of diverse metabolic activities. 

The proteins act mainly as a negative regulator of genes from iron-metabolism like fur itself, 

or genes for either siderophore biosynthesis, iron uptake as tonB (Crosa et al., 2002) or from 

primary metabolic pathways (tricarboxylic acid cycle), chemotaxis and motility, respiration, 

nitrogenases, hydrogenases, methane metabolism, DNA biosynthesis (ribonucleotide 

reductase), acid stress response, production of toxins or other virulence factors as well as 
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genes from redox sensing and stress response (Escolar et al., 1999; Hantke, 2001; Krewulak 

et al., 2008).  

 

In many Gram-negative bacteria and low GC-content Gram-positive bacteria, iron metabolism 

is exclusively controlled by the ferric uptake regulator (Miethke and Marahiel, 2007). Fur acts 

as dimeric protein, composed of two distinct domains: the dimerization is accomplished by 

the C-terminus containing a structural zinc binding domain, while the N-terminal portion 

shows iron-dependent DNA binding activity (Escolar et al., 1999). When iron is abundant, 

Fur binds Fe2+ or rarely Fe3+ ion, both acting as co-repressor (Mills et al., 2005). This induces 

a change of configuration which allows the dimer to bind to target DNA sequences.  

Typically, bacterial genomes contain more than one fur gene, whereof usually at least one 

exhibits iron-correlated function. The preference of metal binding is coded by the highly 

conserved amino acids and allows the sub-grouping of Fur proteins by sequence comparison. 

Other members of the Fur protein family participate in sensing additional metal ions, 

including zinc (Zur), manganese (Mur) and nickel (Nur), as well as peroxide stress (PerR) and 

heme availability (Irr) (Andrews et al., 2003; Yang et al., 2005; Lee et al., 2007), although Irr 

proteins have only been characterized to date from pathogens (Voyich et al., 2004; Martinez 

et al., 2005; Battisti et al., 2007) or a few α-proteobacteria (Rudolph et al., 2006). The crystal 

structures of several Fur family members have been solved as Fur of E. coli (Pecquer et al., 

2006), P. aeruginosa (Pohl et al., 2003) and V. cholerae (Sheikh and Taylor, 2009); Zur of 

M. tuberculosis (Lucarelli et al., 2007); PerR of B. subtilis (Traoré et al., 2006; Jacquament et 

al., 2009); and Nur of S. coelicolor (An et al., 2009), allowing discovery of the residues 

involved in each case in metal binding. In the case of B. japonicum Irr, amino acids which 

mediate heme binding were identified by site-directed mutagenesis (Yang et al., 2005). By 

these methods, the different binding domains in protein sequences of Fur family members 

have been clearly correlated to metal preferences.  

The iron-responsive Fur proteins show typically an iron binding site, the so-called Zn2 site 

and a structural zinc site Zn1 (Sheikh et al., 2009). For another Zn2 site of Zur proteins, a 

regulatory zinc binding motif was postulated (Lucarelli et al., 2007) additionally to the 

structural zinc binding domain in Zur (Zn1 site), which is also present in PerR proteins; 

together with a regulatory non-specific common metal site in PerR (Jacquament et al., 2009). 

In Nur proteins, a nickel/zinc specific structural site was detected and also a regulatory nickel 

binding site (An et al., 2009). In Irr-like regulators, some amino acids involved in heme 

binding sites had been discovered, but the exact binding motif is unclear (Yang et al., 2005; 
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Sangwan et al., 2008). For members of the Mur subfamily, it was published that only a single 

metal binding site is present, in this cases highly specific for manganese ions (Andrews et al., 

2003; Lee et al., 2007). 

 

As an example, primary targets of the active iron-responsive Fur proteins are genes directly 

involved in iron acquisition (negative regulation), or also basic metabolism, like for e.g. the 

aconitase (iron regulatory protein IRP1). At this juncture, the intracellular iron-concentration 

has direct impacts to metabolic rates, shutting down the TCA cycle in case of redox-stress by 

the IRP1 redox-sensitive 4Fe-4S centre, which changes the behavior of the aconitase from an 

enzymatic to a regulatory element (Klausner and Rouault, 1993). Also a lot of secondary 

effects are known, caused by a wide variety other Fur-controlled genes, responsible for 

transcriptional regulation of specific subsets of genes, protein phosphorylations and protein-

protein interactions (Jones et al., 2005), regulatory RNAs like PrrF (Vasil, 2007; Massé et al., 

2007) or ArrF (Wilderman et al., 2004; Jung and Kwon, 2008) (Pseudomonas or Azotobacter 

regulatory RNA involving Fe) or like RyhB, the E. coli homologue (Massé and Gottesman, 

2002; Vecerek et al., 2007). Some of these regulators may play important roles in control of 

iron metabolism in M. xanthus DK1622. 

 

In some organisms other strain-specific, metal-associated transcriptional regulators were 

described, such as DtxR in Gram-positive organisms as for e.g. C. diphtheriae (De Zoysa et 

al., 2005), its homologue IdeR in M. tuberculosis (Dussurget et al., 1999) or SirR in S. aureus 

and S. epidermidis (Hill et al., 1998). Furthermore, the iron-dependend FeoC regulator (also a 

homologue of the DtxR protein) is known to rule about the feo gene expression, an additional 

transport system of bacteria to acquire environmental ferrous iron (Cartron et al., 2006; 

Aranda et al., 2009). The last regulator family, which needs to be mentioned, belongs to the 

IscR-like proteins, found in many Gram-negative bacteria. A small subgroup of these belong 

to the RirA protein family (rhizobial iron regulator), only detected in some symbiotic α-

proteobacteria, namely Rhizobium etli, R. leguminosarum, Agrobacterium radiobacter, 

Octadecabacter antarcticus and Liberibacter asiaticus (Chao et al., 2005; Todd et al., 2005). 

In contrast to all other regulators, which act additionally to the Fur system(s), RirA represents 

the only iron-responsive transcription factor which can stand alone (Johnson et al., 2007; 

Duan et al., 2009). RirA-like regulators do not show any sequence homology to Fur proteins, 

but similar functions, typically repressing a set up to 100 genes from siderophore 
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biosynthesis, iron transport, energy metabolism, membrane composition and flagellum control 

(Chao et al., 2005; Todd et al., 2005). 

Many other genes with regulatory functions are, at least partially related to iron level, for e.g. 

changes in redox status causes altering in redox sensing and response (Arosio and Levi, 

2002). The Fur regulon includes also ECF sigma factors (Kirby et al., 2001), required for the 

regulation of additional subsets of genes. By this way, iron metabolism is linked to several 

other important organization mechanisms of the cell, as for e.g. to cell-cycle control by the 

carbon catabolite repressor (Miethke et al., 2006). Aside from this, there are maybe several 

more undiscovered events in the regulatory network of cellular iron balance. 

 

 

1.1.4 Iron storage and overload 

Bacteria can form intracellular iron storage pools like ferritins, bactoferritins or 

DPS/bactoferritin proteins (Andrews et al., 2003), which can accommodate up to 5000 iron 

atoms in a ferric hydroxide core covered by a protein shell (Arosio et al., 2002), if enough 

iron is accessible. There are three types of iron storage molecules: The archetypal ferritins 

which are also found in eukaryotes, the heme-containing bacterioferritins found only in 

eubacteria and the smaller DPS/bactoferritin proteins present only in prokaryotes. All types 

can exist in the same bacterium and multiple ferritin or bacterioferritin genes are common 

(Andrews et al., 2003). DPS/bactoferritin protein clusters (ca. 250 kDa) have a lower storage 

capacity with around 500 iron atoms (Zhao et al., 2002), while ferritins and bacterioferritins 

(500 kDa) can bind between 2000-5000 iron atoms (Carrondo, 2003).  

The sequestration of iron can also be managed extracellularly by selective lowering of the 

iron uptake via FhuA-like proteins (Neilands, 1995) or via TonB receptors (Moeck et al., 

1998).  

At intracellular concentrations surpassing the cellular demand, iron induces by Haber-Weiss 

and Fenton’s reaction (Goldstein et al., 1993) the generation of ROS (reactive oxygen 

species), subsequently followed by very reactive hydroxyl and superoxide radicals 

(Wooldridge K.G. and Williams, 1993), which cause DNA and protein damage.  

 

In case of extreme metal overload the usage of “emergency” efflux pumps (regulated by Fur, 

MerR and ArsR homologues) is described (Silver and Walderhaug, 1992; Ochsner et al., 

2002; Ollinger et al., 2006; Vidakovics et al., 2007). This transport is energy-dependent and 



Introduction 
 

 19

can be rather non-specific with regard to metal selectivity (Nies, 2003; Cavet et al., 2003; 

Wennerhold et al., 2005; Moore and Helmann, 2005; Miethke et al., 2006). 
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1.2 Myxobacteria 

Myxobacteria are Gram-negative soil-dwelling δ-proteobacteria, which are notable for their 

complex life styles which culminate in the formation of multi-cellular fruiting bodies (Gerth 

et al., 2003;  2007). The vegetative cells show a strict aerobe metabolism and are chemo-

organo-heterotropic, converting organic matter as micro-predators or scavengers. These 

bacteria are found worldwide; soil, rotting wood, dung pellets of herbivores are the preferred 

habitats (Dawid, 2000; Krug et al., 2008a). Myxobacteria contain remarkable large 

prokaryotic genomes (e.g. S. cellulosum So ce56 with the largest known bacterial genome of 

13.0 Mb) with a high GC content (> 70%) and a high percentage of genes coding for 

regulatory proteins or for secondary metabolite biosynthetic proteins (Schneiker et al., 2007). 

Myxobacteria can move by gliding over solid surfaces, which enables them to act as 

coordinated swarms, providing greater metabolic access to recourses than single cells 

(Shapiro, 1998). The term ‘‘swarming’’ is used in its general sense to denote a process ‘‘in 

which motile organisms actively spread on the surface of a suitably moist solid medium’’ 

(Goldman et al., 2006). 

Myxobacteria are also increasingly recognized as multi-producers of bioactive natural 

products, including the anti-cancer agent epothilone (Wenzel and Müller, 2009b). In many 

cases, however, the number of gene clusters for secondary metabolism present in 

myxobacterial genomes far exceeds the number of compounds produced under standard 

laboratory conditions (Wenzel and Müller, 2009a; Wenzel and Müller, 2009b). For example, 

the genome of the model myxobacterium Myxococcus xanthus DK1622 (Goldman et al., 

2006) revealed a total of 18 biosynthetic gene clusters, although only 5 compound families 

have been characterized from the strain to date, including the catecholate-type siderophores 

myxochelin A and B (Kunze et al., 1989; Ambrosi et al., 1998), the DKxanthenes (Meiser et 

al., 2006b), myxalamids (Gerth et al., 1983), myxochromides (Wenzel et al., 2006), and 

myxovirescins (Gerth et al., 1982).  

Iron-limitation might be a potential strategy for the awaking of these silent gene clusters and 

subsequently to correlate those to not yet identified products, because under stress conditions 

a bioactive substance may provide an additional advantage to overcome this environment 

(Haferburg et al., 2009). Under iron-limitation, carbon- and nitrate-resources are still 

available; the amounts of potential secondary metabolite precursors are not restricted.  

 

While the iron response has been characterized for a number of Gram-positive and Gram-

negative bacteria, as for e.g., Bacillus subtilis (Baichoo et al., 2002b; Ollinger et al., 2006), 
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Bordetella pertussis (Vidakovics et al., 2007), Escherichia coli (Hubbard et al., 1986; 

McHugh et al., 2003), Pseudomonas aeruginosa (Ochsner et al., 2002), Burkholderia 

multivorans (Yuhara et al., 2008), Yersinia pestis (Gao et al., 2008), Helicobacter pylori (Lee 

et al., 2004; Ernst et al., 2005), and Campylobacter jejuni (Holmes et al., 2005), no 

information is currently available how myxobacteria handle iron-limitation on transcriptional 

or protein level.  

 

 

1.2.1 Life cycle 

Myxobacteria move by gliding over solid surfaces and use two polar positioned engines to 

control their motility. These two engines undergo coordinated reversals, whereas changes in 

the reversal frequency and speed are responsible for the different patterns of movement that 

are observed during development. Furthermore, myxobacteria communicate with each other 

and coordinate their movements among others through cell-contact-dependent signals (Kaiser, 

2003). Under starving conditions vegetative cells aggregate by gliding to form a multicellular 

fruiting body, where vegetative cells in the so-called sporangium transform into 

environmentally resistant myxospores (Otani et al., 1995). The scheme of the myxobacterial 

life cycle is illustrated in figure 1.4. 

The majority of myxobacteria require peptides and amino acids as nutrients. These are 

obtained by the degradation of proteins and/or whole cells of other bacteria and yeasts (Gerth 

et al., 2003). The cells can secrete hydrolytic enzymes to lyse other cells and insoluble 

proteins to thereby obtain soluble amino acids (Berleman et al., 2006).  

 

 



Introduction 
 

 22 

 

Figure 1.4: Developmental program of M. xanthus.  

In the myxobacterial life cycle, a swarm of M. xanthus (a group of moving and interacting cells) can 
have one of two destinies depending on their environment (Goldman et al., 2006). The fruiting body 
(A) is a spherical structure and after morphological changes some of the cells become stress-resistant 
spores (B). When a fruiting body receives nutrients, the individual spores germinate (C) and 
thousands of M. xanthus cells emerge together as an ‘‘instant’’ swarm (D). When prey is available 
(micrococci in the figure), the swarm becomes a predatory collective that surrounds the prey. Swarm 
cells feed by contacting, lysing, and consuming the prey bacteria (E and F). Nutrient-poor conditions 
elicit a unified starvation stress response. That response initiates a self-organized program that 
changes cell movement behavior, leading to aggregation. The movement behavior includes wave 
formation (G) and streaming into mounded aggregates (H), which become spherical (A). This 
developmental behavior is found to be very similar in all myxobacteria (Dworkin, 1996; Plaga and 
Ulrich, 1999). 
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Roughly 100,000 individual M. xanthus cells aggregate and develop to form a fruiting body 

over the course of several hours (figure 1.5). The fruiting body is small (0.10 mm high), 

sticky, and its spores are tightly packed. 

 

 

Figure 1.5: Formation of fruiting bodies of M. xanthus. 

The cells are taken from exponentially grow phase in submerged culture, pictures are taken by field-
emission scanning electron microscope (Kuner and Kaiser, 1982). The aggregated cells start a 
morphogenesis from flat mounds (12 h) into strain-specific fruiting bodies (72 h). 
 
 
 
The morphology of fruiting bodies varies from simple knobs (dome shaped, e.g. genus 

Myxococcus) to more tree-like structures (e.g. genus Chondromyces) (figure 1.6).  
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Figure 1.6: Structures of different myxobacterial fruiting bodies.  

Fruiting bodies are strain-specific and can vary from simple knops to more tree-like structure. 
Additionally, fruiting body morphology is an important tool for the classification of myxobacteria. The 
images show fruiting bodies from (and pictured by): a) M. xanthus (M. Vos), b) M. xanthus (J. Berger), 
c) S. aurantiaca (H. Lünsdorf) and d) C. crocatus (M. Rohde). 
 
 

Enclosed in these fruiting bodies, myxospores guarantee survival of the strain while on 

sufficient nutrient supply, myxospores geminate again to mature cells (Shimkets et al., 2006). 

 

 

1.2.2 Myxococcus xanthus DK1622 as a model strain 

The strain M. xanthus DK1622 belongs to the suborder Cystobacterineae and is used as a 

model organism for myxobacterial development (Kroos et al., 1986; Downard and Kroos, 

1993; Kearns et al., 2001; Horiuchi et al., 2002; Meiser et al., 2006a; Berleman and Kirby, 

2007; Kroos, 2007) and motility (Reichenbach, 1988; Spormann, 1999; Mignot et al., 2005; 

Yu and Kaiser, 2007; Mauriello and Zusman, 2007). This organism was found to be an ideal 

model system for investigating of intercellular interaction and multicellular organizations in 

microbial communities (Pelling et al., 2005). M. xanthus DK1622 has short doubling times 

and is genetically well accessible, compared to other myxobacteria, as S. cellulosum or 

S. aurantiaca. 

The strain exists as isolated, rod-shaped cells or as aggregates. The cells interact as swarms 

and show a predatory, saprotrophic life style. Like other myxobacteria, the cells are capable of 

movement by gliding on solid surfaces. Myxococci use amino acids as resource of carbon, 

a b 

 c d 
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nitrogen, and energy while polysaccharides and simple sugars are not metabolized (Gerth et 

al., 2003). 

M. xanthus has been shown to be a potent producer of diverse secondary metabolites with 

unusual biosynthesis (Weissman and Müller, 2008). Several metabolites (Krug et al., 2008a) 

are already correlated to different biosynthetic gene clusters in M. xanthus DK1622, while 

others are still silent or orphan. The M. xanthus DK1622 genome was sequenced in 2006 

(Goldman et al., 2006) and exhibited one circular chromosome with a length of 9.13 

megabasepairs (Mb) with a GC-content of 68.89 %. A total of 7514 putative genes could be 

annotated. A scheme of the genome map is illustrated in figure 1.7, including the assigned 

gene functions. 

 

 

 

Figure 1.7: Genetic map of the M. xanthus DK1622 chromosome. 

The scheme of the genetic map of the M. xanthus DK1622 chromosome was published after DNA 
sequencing (Goldman et al., 2006). Layers (from out- to in-side): 1: ORFs (colorcoded, clockwise), 2: 
ORFs (colorcoded, counterclockwise), 3: lineage-specific gene duplications, 4: genes coding for 

9.1 Mb 
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secondary metabolite production, 5: GC skew. Base pair 1 was assigned to the predicted origin of 
replication. 
Color code of layer 1 and 2: Purple: fatty acid, phospholipid (137) and amino acid metabolism (79), 
Turquoise: Co-factor, prosthetic group and carrier biosynthesis (129), Light green: Cell envelope 
(734), Dark blue: Transport and binding proteins (79), Yellow: DNA metabolism (125), Red brown: 
Mobile and extrachromosomal (116), Apricot: Protein synthesis (162) and fate (314), Red: Cellular 
processes (410), Orange: Purine, pyrimidine, nucleoside and nucleotide metabolism (59), Light blue: 
Conserved hypothetical proteins (838), Brown: Central intermediary metabolism (58), Olive: 
Regulatory functions (581), signal transduction (267), Light grey: Energy metabolism (343), Dark grey: 
Unknown function (1097). The classification of gene roles based on the publication of Goldman et al., 
2006, recent annotations are inserted in the online database (http://xanthus.wikimods.org/cgi-
bin/GenomeBrowser.pl). 
 

 

1.2.3 Myxobacterial secondary metabolism 

In addition to the unique life style, myxobacteria are well-known and reliable producers of 

structurally unique and potent secondary metabolites (Weissman et al., 2008; Wenzel et al., 

2009b). This is probably due to the constant selection pressure in their habitat to compete with 

other microorganisms, which is reflected by the fact that the majority of the bioactive 

products are active against fungi and bacteria (Gerth et al., 2003). Up to now, from 7500 

different myxobacterial strains which have been isolated to date, approx. 100 different basic 

structures and more than 500 structural variants from myxobacteria have been isolated and 

characterized (Reichenbach, 2001; Gerth et al., 2003; Weissman et al., 2008). Most of these 

substances are moderately lipophilic, linear, or cyclic polyketides and peptides (Reichenbach, 

2001).  

These products derive either from polyketide synthases (PKS), nonribosomal peptide 

synthetases (NRPS), or hybrid systems and show diverse bioactivities of pharmaceutical 

interest (Weissman et al., 2008). The most prominent example is Epothilone, produced by the 

myxobacterium Sorangium cellulosum Soce 90, which has now entered the market as an anti-

cancer drug (Mulzer, 2009). Research for natural products (or secondary metabolites) of 

pharmaceutical interest has lead to: (i) identification of novel biological molecules for 

therapeutic applications; (ii) elucidation of their biosynthetic pathways; (iii) analysis and 

modification of regulatory mechanisms of biosynthesis to increase product yields; (iv) the 

discovery of the mode of action, and (v) total or partial synthesis of lead-structures and 

derivatives. 

As this work mainly deals with analysis and modification of regulatory mechanisms of 

biosynthesis to modify product yields, it is worth to explain the biosynthetic machinery of 

natural products in detail in the following section. 
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Polyketide synthases 

Polyketide synthases (or PKS) are a family of enzymes or multienzyme complexes which 

assemble polyketides, a large class of secondary metabolites found in bacteria, fungi, plants, 

and animals. The biosynthesis of polyketides shares a high degree of similarity with animal 

fatty acid biosynthesis (Khosla et al., 1999; Weissman, 2008). 

 

PKS can be divided in three types (figure 1.8):  

Type I PKS are large enzymes with a modular structure. Each type I PKS module consists of 

several domains with defined functions, separated by short spacer regions. 

Type II PKS are monofunctional proteins, which aggregate to one multienzyme complex to 

catalyze the formation of polyketons that are cyclized resulting in aromatic moieties. 

Type III PKS do not use acyl carrier domains, but single keto-synthase-like active sites to 

catalyze iteratively the condensations of acetate units to a CoA-derivative starter molecule 

(Cortes et al., 2002). Bacterial type III PKS generate chalcone-like structures in a mechanism 

similar to plant chalcone synthase (Moore et al., 2002). 

Usually, in iterative systems (type II and III) one module is repeatedly used until the desired 

molecule length is achieved. The iteration is a programmed event. The underlying mechanism 

of this remarkable ability remains elusive (Wenzel and Müller, 2005b). However, today the 

classification is not so strict anymore, finding more and more variances from this traditional 

allocation (Wenzel et al., 2005b; Ridley et al., 2008).  
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Figure 1.8: Scheme of the three PKS types (Weissman, 2009).  

A) Type I PKSs consist of multifunctional polypeptides. Each subunit (or module) consists of several 
domains with defined functions, separated by short spacer regions. Each module typically acts once 
(non-iteratively) and elongates the polyketide chain by one building block, partially associated with 
reductive processing reactions. For each module, the added building block after modification of 
respective domains is indicated (by color-coded bonds, and shadings). B) Type II PKSs comprise 
discrete catalytic functions that associate into a productive complex. The ‘‘minimal PKS’’ includes a 
KSα, a KSβ, and an ACP domain, which acts iteratively for a defined number of chain-extension 
cycles to construct a polyketone chain. C) Type III PKSs consist of a single multifunctional active site 
that, in cooperation with CoA-activated substrates, performs all the steps necessary to assemble a 
polyketone chain of defined length. 
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The type I polyketide synthases are the most complex and the most present type in bacteria, 

the PKS type I mechanism is graphically more detailed explained in figure 1.9 and the 

following section. In such linear systems, one module corresponds to one extension-unit. This 

implies that the number of modules defines length and finally the structure of the resulting 

polyketide (colinearity rule). The loading (or starting) module and elongation module can be 

subdivided into their catalytic domains. A minimum set of domains for an elongation cycle is 

formed by a keto-synthase (KS) domain, an acyl transferase (AT) domain and an acyl carrier 

protein (ACP) domain. 

 

 

Figure 1.9: Principle of a PKS type I system.  

The active domain of the intermediated step is marked in blue. The order of modules and domains of a 
complete polyketide-synthase is as follows (from N-terminus to C-terminus) A) loading and elongation: 
This represents an AT and an ACP domain for the loading module and a KS, an AT and an ACP 
domain for the elongation module. Phosphopantetheineylation activates the ACP domains first (to 
holo-form), and the starter molecule (here propionyl-CoA) is loaded to the ACP domain of the starter 
module, catalyzed by its AT domain. In addition, the first molecule for chain elongation (malonyl- or 
methylmalonyl-CoA) can be loaded to the ACP domain of the elongation module, catalyzed by its AT 
domain (step 1). The conserved SH group of the KS domain of the current module nucleophilic attacks 
the ACP-bound substrate of the previous module (step 2). The ACP-bound elongation group reacts in 
a Claisen condensation with the KS-bound polyketide chain under CO2 release, resulting in a free KS 
domain and an ACP-bound elongated polyketide chain (step 3). Step 1-3 are repeated on the next 
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module or the final module contains a TE domain for release of the polyketide chain (hydrolysis or 
cyclization). B) Optional domains of an elongation module fulfill a stepwise reduction on the ß-keto 
group by KR, DH and ER domains. At this, the unit added in the previous module is altered, but not 
the component bound to the ACP domain of the current module containing the modification domain(s). 
The KR domain reduces the β-keto group to a β-hydroxy group (step 4), the DH domain eliminates 
water (step 5), resulting in the α,β-unsaturated alkene, and the ER domain reduces the α,β-double-
bond to a single-bond (step 6). Taking all optional steps together (4-6), a so-called complete reductive 
loop is performed. 
 

 

The starter molecule, the elongation units and the growing polyketide chain are bound with 

their carboxyl group to the thiol groups of ACP domains by a serine-attached 4´-

phosphopantetheine (PPant) residue and to the KS domains by a cysteine residue via a 

thioester linkage. The growing chain is now handed over from one thiol group to the next and 

is released finally by hydrolysis or by cyclization, catalyzed by a thioesterase (TE) domain. 

 

Biochemical reactions of PKS enzymes can be divided in three basic steps:  

Starting or loading stage: The starter molecule (as CoA ester) is loaded onto the ACP domain 

of the starter module catalyzed by the AT domain, which is responsible for substrate 

activation and recognition. 

Elongation or extending stages: For elongation, the molecule (as CoA ester) is relocated onto 

the ACP domain of the elongation module, catalyzed by the ACP-AT domain. The polyketide 

chain is transferred from the ACP domain of the previous module to the KS domain of the 

current module, catalyzed by the KS domain. The KS catalytic strategy is stepwise: first the 

upstream acyl group is moved onto the KS active site via nucleophilic attack by a conserved 

KS cysteine, thus pre-serving the thermodynamic activation of the thioester. The KS domain 

then decarboxylates the downstream (methyl)malonyl-S-ACP, which elongates the product 

and translocates it to the downstream ACP, which in turn becomes the upstream donor for the 

next module. Then, the growing product is linked to the current ACP domain, a reaction 

catalyzed by the current AT domain. In summary, the ACP-bound elongation group reacts in 

a Claisen condensation with the KS-bound polyketide chain under CO2 release (driving 

force), leaving a free KS domain and an ACP-bound elongated polyketide chain. This cycle is 

repeated for each elongation module (Wenzel et al., 2005b; Weissman, 2009). 

Product modifications, catalyzed by additional domains inserted in the basic module, can 

occur during elongation cycles. The keto-reductase (KR) domain reduces β-keto groups to β-

hydroxy groups, the dehydratase (DH) domain eliminates water, resulting in the α,β-

unsaturated alkene, and the enoyl-reductase (ER) domain reduces the α,β double-bond to a 

single-bond (full reductive loop). The modification domain actually affects the previous 
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addition to the chain (the group added in the previous module), not the component loaded 

onto the ACP domain of the module which contains the modification domain. 

Termination or releasing stage: The TE domain hydrolyzes the completed polyketide chain 

from the ACP-domain of the previous module. After release of the polyketide chain from the 

PKS, post processing steps can be carried out as from glycosyl- and methyltransferases, 

acyltransferases, halogenases, cyclases and aminotransferases (Rix et al., 2002) 

 

 

.onribosomal peptide synthetases 

Nonribosomal peptides, a large class of secondary metabolites are synthesized by one or more 

specialized nonribosomal peptide-synthetase (NRPS) enzymes. Ribosomal peptide synthesis 

is normally restricted to the set of 20 amino acids from protein biosynthesis, but in NRPS 

several hundred substrates have been identified. The presence of additional structures, such as 

fatty acids, heterocyclic rings, non-proteinogenic amino acids, carboxylic acids, and modified 

amino acids is observed in this compound class. Thus, structural diversity is a predominant 

feature of non-ribosomally produced peptides (Walsh et al., 1997; Crosa et al., 2002; Finking 

and Marahiel, 2004). The members of the NRPS family compromise large multifunctional 

enzymes, organized in modules, which synthesize small peptide molecules. Each module is 

responsible for the introduction of one additional amino acid and consists of several domains 

with defined functions, separated by short spacer regions. These modules carry out substrate 

recognition, activation, binding, modification, elongation and release. The biosynthesis of 

nonribosomal peptides shows similarities with the polyketide and fatty acid biosynthesis. The 

principles of nonribosomal peptide synthesis are shown in figure 1.10. The NRPS and PKS 

proteins use a very similar strategy for the biosynthesis of two distinct classes of natural 

products. In addition to the sharing of a modular organization, both systems use carrier 

proteins (PCP for NRPS and ACP for PKS) to tether the growing chain. Both PCP and ACP 

are post-translationally activated by a 4´-phosphopantetheine prosthetic group, and this 

modification is catalyzed by a family of 4´-phosphopantetheinyl-transferases. A minimum set 

of domains of NRPS enzymes for an elongation cycle consists of an adenylation (A) domain, 

peptidyl carrier protein (PCP) domain, and condensation (C) domain. 
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Figure 1.10: Principle of a NRPS system. 

The active domain of the intermediated catalytic step is marked in green. The order of modules and 
domains of a complete nonribosomal peptide synthetase is as follows (from N-terminus to C-terminus) 
A) Loading and elongation: The initiation-module and elongation-module can be subdivided into their 
catalytic domains, an A and a PCP domain for the initiation-module and a C, an A and a PCP domain 
for the elongation-module. The PCP domains must first be activated by phosphopantetheineylation. 
The initial amino acid can be loaded onto the PCP domain of the starter module, activation catalyzed 
by its A domain (step 1). The first activated amino acid for chain elongation can be loaded to the PCP 
domain of the elongation module. The C domain of the current module catalyzes the formation of an 
amide bound between the amino group of the current module to the thioester bound to the previous 
module (step 2) under the elimination of H2O, resulting in a free PCP domain of the previous module 
and an PCP-bound elongated polypeptide chain (step 3) on the current module. Step 1-3 is repeated 
by the next module. The final module contains a TE or an R domain for release of the polypeptide 
chain. B) Modifications: The growing polypeptide chain can be altered by additional E and MT 
domains. The E domain catalyzes the conversion of L-amino acids to the respective D-enantiomere 
(step 4), the MT domain adds a methyl moiety (step 5) to the amino group using S-adenosyl 
methionine as cofactor. 
 

 

At first, the activation of the NRPS from apo- to holo-form is catalyzed by a PPant 

transferase. The A domain activates and selects the respective substrate for the nonribosomal 

peptide synthesis, consuming ATP. Then, it catalyzes the transfer of the activated acyl-

adenylate substrate to the PCP domain. The peptide bond is formed by the C domain by 
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catalyzing the nucleophilic attack of the downstream PCP-bound acceptor amino acid with the 

free α-amino group of the activated thioester of the upstream PCP-bound donor amino acid or 

peptide (Schwarzer et al., 2003). Activated amino acids and the growing polypeptide chains 

are bound with their carboxy group to the SH (thiol) groups of the PCP domains by conserved 

serine-attached 4´-phosphopantetheine residues via a thioester linkage. The growing chain is 

handed over from one SH group to the next, and finally released by hydrolysis or by 

cyclization, catalyzed by a TE or reductase (R) domain, respectively.  

 

Biochemical reactions of NRPS enzymes can be divided in three basic steps:  

Initiation or Starting stage: The first amino acid is activated as AMP-derivate by the A 

domain, in which ATP is consumed and Mg2+ is used as cofactor. The activated amino acid is 

loaded onto the PPant arm of the PCP domain. The amino group of the bound amino acid can 

be further processed by a formylation (F) domain or by an �-methylation (NMT) domain 

(Schwarzer et al., 2003).  

Elongation or Extending stages: In analogy to the starting stage, each module loads its 

specific, activated amino acid onto its PCP domain and activation is catalyzed by the modules 

A domain. The C domain forms an amide bond between the thioester group of the growing 

peptide chain from the previous module with the amino group of the current module. The 

extended peptide is now attached to the current PCP domain. In some cases the C domain is 

replaced by a condensation-cyclization (Cy) domain. This Cy domain catalyzes the amide 

bond formation and additionally a sidechain reaction of the amino acids serine, threonine, and 

cysteine, forming oxazolidines and thiazolidine, respectively. Further peptide synthesis is 

carried out by stepwise condensation with amino acid building blocks bound to the PCP 

domain of the downstream elongation modules.  

Optional modules such as epimerization (E) domains catalyze the epimerization of the 

incorporated amino acid of the peptide chain into the D-configuration. Further possible 

modules are oxidation (Ox) domains, which catalyze the oxidation of thiazolines or 

oxazolines to thiazoles or oxazoles or Red (reduction) domains, which catalyze the reduction 

of thiazolines or oxazolines to thiazolidines or oxazolidines, respectively. 

Termination or Releasing stage: A final module is required to release the growing peptide 

chain from its phosphopantetheinyl arm. This module contains, in most cases, a thioesterase 

domain (TE-domain, ~ 250 aa) for releasing the product. The TE domain hydrolyzes the 

completed polypeptide chain from the PCP domain of the previous module, thereby often 

forming cyclic amides (lactams) or cyclic esters (lactones). Finally, release of the product is 
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performed by the thioesterase (TE) domain by a nucleophilic attack on the PCP-peptidyl 

thioester. Depending on the TE domain, products can be released as linear or cyclic peptide 

(Schwarzer et al., 2003; Sieber and Marahiel, 2005). Another way of releasing the peptide is 

by an R domain (reduction) that reduces the thioester bond to an aldehyde or an alcohol 

residue. 

 

The great diversity of NRPS products is due to additional enzymatic processes called tailoring 

domains, which can be involved either during or after biosyntheses. Some represent an 

integral domain of the NRPS and act in cis (moving along in a single protein chain), and the 

others are distinct enzymes which act in trans (moving from one protein chain to another) on 

the way to the mature NRPS product. Some optional editing steps of the elongated peptide are 

for e.g. carried out by epimerization (E) domains or methyltransferase (MT) domains.  

Furthermore, the released peptide can be modified in post-NPRS processing step by 

methylation, glycosylation, acylation, halogenation, or hydroxylation. Enzymes involved in 

such modification reactions are usually associated to the synthetase complex (Floss, 2006). 

 

 

Hybrid systems 

The structural and catalytic similarities between NRPSs and PKSs have suggested that both 

might exist as hybrid enzymatic systems. Such enzymatic hybrid results in the production of 

diverse metabolites by the incorporation of amino acids and of C2 or C3 units (derived from 

short chain carboxylic acids) by NRPSs and PKSs, respectively. Based on the order in which 

either amino acid or carboxylic acid is incorporated, the hybrid PKS-NRPSs can be divided in 

two classes. Those whose biosynthesis do not involve functional interaction between NRPSs 

and PKSs modules and those whose biosynthesis are catalyzed by hybrid PKS-NRPS 

systems, involving direct interactions between NRPSs and PKSs modules (Du and Shen, 

2001). 

In figure 1.11, example structures of the known natural products of M. xanthus are shown, 

several of these molecules were derived from PKS-NRPS hybrid systems. 
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1.2.4 Natural products from M. xanthus DK1622 

The remarkable presence of 18 gene clusters in the genome of M. xanthus DK1622 suggest 

the ability to synthesize diverse secondary metabolite products. However, only 5 of those 

gene clusters have assigned functions that participate in the production of specific natural 

products. Notably, substances which have been isolated and characterized from M. xanthus 

DK1622 (Krug et al., 2008a; Kim et al., 2009) are the myxalamids (Gerth et al., 1983; 

Silakowski et al., 2001b), the myxochelins (Silakowski et al., 2000; Gaitatzis et al., 2001; Li 

et al., 2008), the myxochromides (Trowitzsch-Kienast et al., 1993; Wenzel et al., 2005a), the 

myxovirescins (Gerth et al., 1982; Simunovic et al., 2006; Simunovic and Müller, 2007a; 

Simunovic and Müller, 2007b) and the DKxanthenes (Meiser et al., 2006a; Meiser et al., 

2006b; Meiser et al., 2008).  

A sixth compound family has been detected in M. xanthus, which is produced ribosomal: the 

cittilins (Trowitzsch-Kienast, 1993; Krug et al., 2008a) 

 

The majority of the genes that code for PKSs and NRPSs have not yet been correlated to 

specific secondary metabolite end-products, while many of these proteins are demonstrably 

expressed (Schley et al., 2006; Bode et al., 2009). A structure derivative for each known 

family is illustrated in figure 1.11, and the biosynthesis for each known family is described 

briefly in the following section.  
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Figure 1.11: Diverse secondary metabolite families, produced by M. xanthus DK1622. 

An example structure for each family is illustrated. 1: Myxochromide A2, 2: Myxochelin A, 3: 
Myxalamid A, 4: Cittilin A, 5: Myxovirescin A, 6: DKxanthene560. All structures are derived from PKS-
NRPS hybrid systems, excepting for cittilin, which is produced ribosomal. 
 
 
 
Myxochromide belongs to the category of lipo-peptide lactones and is synthesized by 3 

proteins (MchABCA) encoded by the mchA gene cluster, exclusively produced by the order 
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myxococcales (Trowitzsch-Kienast et al., 1993). The aliphatic side chain is generated by the 

PKS MchA which is capable of producing polyketide chains of different lengths (Wenzel et 

al., 2006). The ER domain of MchA catalyzes the reduction of the polyketide chain to a 

polyunsaturated structure (Wenzel et al., 2005a). MchBC is subdivided into 6 NRPS modules 

which are responsible for the formation of the hexapeptide backbone of Myxochromide A 

(figure 1.11). The first two modules incorporate L-threonine and D-alanine. Herein, the 

epimerization (E) domain of module 2 catalyse the formation to L-alanine. Modules 3 to 6 

elongate the chain with the building blocks L-leucine, L-proline, L-alanine, and L-glutamine. 

Module 4 is skipped in the biosynthesis of Myxochromide S, a structural variant of 

Myxochromide produced by Stigmatella aurantiaca (Wenzel et al., 2006). The exact function 

of myxochromide is unknown. 

 

Myxochelins are iron-chelating compounds (siderophores) that are secreted by myxobacteria 

(Gaitatzis et al., 2005) to acquire iron from the medium (Gaitatzis et al., 2001). A conserved 

gene cluster, encoding for the biosynthesis machinery of myxochelin, can be found in 

different secondary metabolite producers, as myxobacteria or actinomycetes as �onomuraea 

pusilla (Kunze et al., 1989; Miyanaga et al., 2006). For myxochelin A, an in vitro inhibition 

of tumor cell invasion could be demonstrated (Miyanaga et al., 2006), but this activity might 

be correlated to the unspecific deprivation of iron. 

The biosynthesis includes the formation of two 2,3-dihydroxybenzoic acid moieties by the 

MxcCDEF proteins and subsequent condensation with the amino acid L-lysine, bound to 

NRPS MxcG. First, lysine must be activated by the A domain of MxcG and loaded to its PCP 

domain. The C domain performs two rounds of condensation reactions to attach two 2,3-

dihydroxybenzoic acid residues from MxcF to the two amino groups of lysine. The reduction 

domain of MxcG then reduces the PCP-bound myxochelin to the aldehyde intermediate. The 

MxcG Red domain and MxcL aminotransferase compete for this aldehyde intermediate, 

resulting in myxochelin A and B, respectively (Li et al., 2008).  

 

Myxalamid blocks electron transport chains in yeasts, molds and in some Gram-positive 

bacteria (Silakowski et al., 2001b). This substance class is formed by a PKS-NRPS hybrid 

system and is produced only by M. xanthus species (Gerth et al., 1983). The PKS complex 

MxaF-MxaB1-2 generates the linear polyketide moiety. The elongation step is carried out by 

the PKS module MxaB1-2, which is encoded as two separate proteins, MxaB1 and MxaB2 
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(Wenzel et al., 2005b). Subsequently, the extension with alanine is accomplished by the 

NRPS MxaA (Silakowski et al., 2001b).  

 

The role of cittilin for myxobacteria is still unclear. The biosynthesis of the cittilins is 

somehow special; this cyclic tetrapeptide is not produced by an NRPS. The incorporated 

amino acids (three tyrosines, one isoleucine) must be coded on the genome and being attached 

in a ribosomal process (Grabley and Thiericke, 1999). This coding DNA region is flanked by 

a cytochrome p450 oxygenase gene and a methyltransferase (at MXAN_0681). Two derivates 

are known to be produced from Myxococcus species (Cittilin A, containing a methyl moiety 

on the first tyrosine and Cittilin B without these).  

 

Myxovirescin shows potent inhibitory activity at the incorporation of diaminopimelic acid 

and uridine diphosphate-N-acetylglucosamine into E. coli cell walls and other Gram-negative 

bacteria (Gerth et al., 1982; Trowitzsch et al., 1982). This antibiotic is exclusively found in 

the genus Myxococcus, and is also known as antibiotic TA (Zafriri et al., 1981; Rosenberg et 

al., 1982) or as megovalicin (Takayama et al., 1988). The biosynthesis is carried out by a 

PKS-NRPS hybrid system, utilizing 4 type I PKS (TaI, TaL, TaO, TaP), one major hybrid 

PKS-NRPS (Ta-1) and a number of monofunctional enzymes. All of these are encoded by the 

21 ORFs of the myxovirescin biosynthetic gene cluster spanning 83 kbp (Simunovic et al., 

2006; Simunovic, 2007).  

 

DKxanthene seems to play a major role in myxobacterial fruiting body development and 

myxospore morphogenesis (Meiser et al., 2006b; Meiser et al., 2008). It is maybe involved in 

strain communication and coordination (Meiser et al., 2006a). DKxanthene assembly lines are 

formed by a hybrid PKS-NRPS gene cluster, exclusively found in myxobacteria. Up to now, 

thirteen unique structures from M. xanthus DK1622 were elucidated, differing in the length of 

their characteristic polyene functionality, as well as the extent of methyl branching (Meiser et 

al., 2008).  

 

 

The distribution of all secondary metabolite gene cluster in the chromosome of M. xanthus 

DK1622 is shown in figure 1.12, as well as the DNA template for cittilin biosynthesis.  
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Figure 1.12: Chromosomal distribution of the M. xanthus secondary metabolite gene cluster.  

The genome of M. xanthus DK1622 contains 13 PKS-NRPS hybrid clusters and 5 pure NRPS 
clusters. Additionally to the 18 PKS and PKS-NRPS gene clusters (red), the position of the genomic 
template of cittilin is indicated (blue) in the figure. In the last years, important research contributions to 
regulation and/or biosynthesis of all known secondary metabolites from M. xanthus had been made by 
members from our department: Myxochromide (Wenzel et al., 2006),Myxochelin (Gaitatzis et al., 2005; 
Li et al., 2008), Myxalamid (Bode et al., 2007), Cittilin (Krug et al., 2008a), Myxovirescin (Simunovic et 
al., 2006), DKxanthene (Meiser et al., 2006b). 
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1.3 Comparative proteomics 

Proteins are vital parts of living organisms, as they are the main components of the 

physiological metabolic pathways of cells. Comparative proteome analysis is the tool of 

choice to detect effects in the protein profile, induced by one or more certain factors. 

Genome analysis provides knowledge about the stable genetic information within a cell; but 

allows only limited prediction about the presence of functional products. Transcription of 

genes, translation, post-translational modifications and protein turn-over are regulated 

depending on the environment, resulting in qualitative and quantitative changes on the mRNA 

and protein levels. The availability of fully sequenced genomes facilitated the development of 

methods to study such dynamic changes in the course of transcriptome or proteome analyses 

(Lottspeich and Engels, 2006).  

A cellular proteome is defined as the protein expression profile under specific conditions as 

for e.g. kind of tissue, development, pH, aeration, nutrient supply, time point etc. (Wasinger et 

al., 1995; Lottspeich et al., 2006). Comparative protein pattern analysis is increasingly used in 

research as a tool to investigate adaptation of organisms to different environmental conditions 

(Heim et al., 2002; Lee et al., 2004; Vidakovics et al., 2007). Generally, the methodological 

approach of proteome analyses is based on high-resolution separation of proteins from 

different experimental conditions and subsequent protein identification. These new techniques 

account in great extent for the elucidation of areal and temporal reaction- and regulation-

networks, in contrast to classical protein-chemistry (Yates, 1998b).  

 

1.3.1 Proteome analysis by 2D-PAGE 

In order to analyze complex biological samples on the proteome level, high resolving 

separation of proteins is necessary. Two-dimensional polyacrylamide gel electrophoresis (2D-

PAGE) is based on migration of proteins according to their isoelectric point (pI) by isoelectric 

focusing (IEF) and subsequent separation of proteins by their molecular weight via SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) (O'Farrell, 1975). Several developments 

have been introduced since then, leading to more possibilities for application of this technique 

in last decades (Kellner et al., 1999; Görg et al., 2004; Lottspeich et al., 2006).  

IEF is mostly performed by using immobilized pH gradients (IPG strips), whereas the 

migration of proteins is achieved by applying high voltage. Thus, it is important to minimize 

the amount of charged molecules aside from proteins (impurities like salts) (Sanchez et al., 

1997; Rabilloud, 2000). IEF is generally accomplished under denaturing conditions using 

urea and thiourea, reductants and non-ionic or zwitterionic detergents for solubilization of 
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hydrophobic proteins. Highly hydrophobic proteins like integral membrane proteins are often 

difficult to solubilize and therefore, are rarely detectable on 2D-gels (Görg, 1999). Another 

problem is that very large proteins will not enter the acrylamide matrix for IEF (Görg et al., 

2000; Gershon, 2003).  

Separation in the second dimension is performed by standard sodium dodecyl sulfate (SDS)-

polyacrylamide gel electrophoresis (PAGE) on large format gels. Several thousand protein 

spots have been visualized on single 2D-gels (Patton, 2002; Görg et al., 2004). Equilibration 

with a buffer containing SDS and a reducing agent is necessary to ensure strong negatively 

charged proteins (Lottspeich et al., 2006).  

Since not all proteins in a sample can be visualized on a single gel, different pH gradients in 

the first dimension and several acrylamide concentrations in the second dimension can be 

used to visualize as many of the proteins within a sample as possible, thereby multiplying 

time, costs and number of samples necessary for a comprehensive analysis of the proteome 

(Görg et al., 2000).  

However, 2D-PAGE is a potent protein separation method and an ideal tool to monitor 

cellular proteome response upon a specific factor as treatment, mutations, invasion etc.  

 

1.3.2 Proteome analysis by 2D-DIGE  

2D-DIGE (two-dimensional differential gel electrophoresis) is a technique, which combines 

very high sensitivity and very stable detection of parameter-induced changes in the protein 

profile (Minden, 2007). In DIGE technique, three different fluorescent dyes Cy2, Cy3 and 

Cy5 (CyDyes) are used. The reactive NHS ester group of the CyDyes binds covalently to the 

ε-amino group of lysine in proteins via an amide linkage. 

 

The main advantages of 2D-DIGE compared to conventional 2D-PAGE are: 

1. The ability to run multiple samples on the same gel (multiplexing by different excitation-
emission wavelengths); 

2. an internal standard (reference) sample which can be run on all gels; and 

3. experimental designs unique to this technique (randomized, inverse labeling). 

 

Furthermore, sensitivity and linearity about a wide dynamic range of the CyDye fluorophores 

provides a much higher accuracy in quantitative analysis than 2D-PAGE (Ünlü et al., 1997; 

Yan et al., 2001; Alban et al., 2003; Marouga et al., 2005).  
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Probably most critically, this technique substantially reduces the effects of gel-to-gel variation 

of protein spots. Here, the usage of an internal standard allows a better (co-)detection of spots 

and distribution is statistical ensured, so false-positive signals can be excluded (Wu et al., 

2006). Therefore, the confidence that a difference in fluorescence intensity between two 

samples is due to biological variation rather than experimental variation has increased (Van 

den Bergh et al., 2003). A scheme of the single working steps is shown in figure 1.13. 

 

 

Figure 1.13: Diagram of DIGE workflow of single gel analysis.  

The labeled protein samples from two different conditions (protein extracts 1 and 2) and the labeled 
internal standard are mixed, and separated by 2D-PAGE. Afterwards, images from all three CyDyes 
are obtained by scanning on a Typhoon imager. Intensity profiling of protein spots from all three 
samples is performed by DeCyder software analysis (GE Healthcare Bio-Sciences, 2005). 
 
 
In summary, 2D-DIGE enables the analysis of experiments with different degrees of 

complexity from a simple control/treated experiment through to a multi-condition analysis, 

addressing factors such as dose and time, all performed in a single study (Patton, 2002). 2D-

PAGE (and even more 2D-DIGE) provides in combination with mass spectrometric 

techniques a method to detect very narrow regulation events at very low detection limits and 

monitors protein response to certain internal or external experimental conditions.  

 

 

1.3.3 Mass spectrometry based protein identification 

In 1985, Karas and Hillenkamp discovered the basis for MALDI-MS, that proteins embedded 

in an appropriate solid organic matrix could be desorbed and ionized with a pulse of 

ultraviolet laser light (Karas et al., 1985). Such a short pulse (5-10 ns) from a laser (nitrogen 

at 337 nm or Nd:YAG at 355 nm) is focused on the probe, and causes the desorption and 
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ionization of the analyte molecules. All matrices share the properties of strongly absorbing 

ultraviolet radiation along with incorporating and isolating analyte molecules within their 

crystals (Chaurand et al., 1999). The mechanism for MALDI is not completely understood, 

but it is believed that the ultraviolet radiation is absorbed by the matrix, which promptly 

vaporizes, carrying the embedded analyte intact into the gas phase, where ionization of 

analytes occurs by transfer of a proton from an excited matrix molecule (Arnott et al., 1993; 

Braun and Neusser, 2002). 

 

Proteins are usually identified from gels by in-gel digestions of protein spots and subsequent 

mass spectrometric analysis of the cleaved peptides (Yates, 1998b; Shevchenko et al., 2006; 

Granvogl et al., 2007).  

In the first stage of analysis, MS scan mode is performed and generates a mass spectrum of 

the peptides in the sample, the so-called peptide mass fingerprint (Pappin et al., 1993; Yates 

et al., 1993; Scheler et al., 1998). Since the peptide mass fingerprint is unique for an 

individual protein, it can be used in combination with protein databases or appropriately 

annotated DNA databases to identify the protein of interest (Yates, 1998a; Fenyö, 2000; 

Chamrad et al., 2004). Doubtless protein identification from gel spots can be achieved by 

different techniques. One of the most frequently used methods today is tandem mass 

spectrometry-based peptide sequencing to obtain amino acid sequences, at least partially 

(Cotter et al., 2007). Furthermore, for protein identification the combination of peptide mass 

fingerprint (PMF) and peptide fragment fingerprint (PFF) eliminates the allocation of data to 

false-positive identifications. 

In case of tandem mass spectrometry (also called MS/MS or MS2), operations are performed 

in a second MS stage to access peptide sequence information. In the MS/MS mode only a 

single, previously selected ion species (from the MS run) is selected to pass and used for 

further fragmentation reactions. The fragments are further separated and then detected by the 

ion detector. Since a fragment-series of a peptide differs in mass by a single amino acid, the 

amino acid sequence can in principle be deduced from the spectrum (peptide sequence tag or 

peptide fragment fingerprint, PFF) (Hunt et al., 1986; Biemann, 1990; Arnott et al., 1993; 

Shenar et al., 2009). Several advantages are assured by MS/MS technologies in comparison to 

classical protein sequencing methods like Edman degradation, which needs higher sample 

amounts, and shows only a small number of N-terminal amino acids. MALDI mass 

spectrometry offers the possibility to generate fragment spectra in post source decay (PSD) 

mode (Hunt et al., 1986; Dancik et al., 1999; Gevaert et al., 2001; Hernandez et al., 2006), 
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but new generation machines are also equipped with a collision induced dissociation (CID) 

chamber (Shenar et al., 2009). Both methods are suitable for peptide fragment fingerprinting 

at which CID is preferential for amino acid sidechain fragmentations. In an ideal case the 

whole sequence from the peptide (or peptides) can be obtained. Thus, sequence information 

allows cross-species identification of proteins in database searches. Hence, mass spectrometry 

represents a powerful tool for proteome analyses of species with full sequence information 

(Hunt et al., 1986; Yates, 1998a; Dancik et al., 1999). 

Here a MALDI-ToF/ToF mass spectrometer was used, which consists of a MALDI (matrix 

assisted laser desorption/ionization) ion source, a CID chamber, an 3 m long, electric field-

free drift track for separation and an ion detector (Lottspeich et al., 2006). For tandem MS 

experiments, a timed-ion-selector allows a very precise selection of single peptide species to 

enter the second MS stage. 

 

A great advantage of protein analysis by MS methods is the detection of post-translational 

modifications (PTMs), like protein-phosphorylations. Analysis of protein-phosphorylation is 

of special importance, because it is a reversible key modification. Protein-phosphorylations 

occur mainly on serine, threonine and tyrosine residues that can regulate enzymatic activity, 

subcellular localization, complex formation and degradation of proteins (Kalume et al., 2003; 

Peters et al., 2004). In signal transduction, phospho-transfer cascades provide fast point-to-

point transmission and conditional information transfer mechanisms to integrate internal and 

external status signals, activate regulatory molecules, and coordinate the progress of diverse 

asynchronous pathways (McAdams and Shapiro, 2003).  

Phospho-peptides can be isolated and fragmented in MS/MS using MALDI or LTQ (linear 

trap quadrupole) Orbitrap measurement, which both represent latest technologies. Both MS 

systems provide trace analysis with high accuracy, needed for the detection and analysis of 

PTMs (Olsen et al., 2005; Macek et al., 2006; Yates et al., 2006; Olsen et al., 2007).  

 

The LTQ-Orbitrap mass spectrometer is a hybrid system combining the LTQ linear ion trap 

mass spectrometer and the Orbitrap mass analyzer. Ions are generated in the atmospheric 

pressure ionization (API) ion source are trapped in the LTQ, where the ions are analyzed 

using the MS and MSn scan modes. Then, the ions are axially ejected from the LTQ and 

collected in a C-shaped ion trap (C-trap) from which they are passed into the Orbitrap mass 

analyzer. The ions transferred from the C-Trap are captured by rapidly increasing the voltage 

on the center electrode of the Orbitrap (Olsen et al., 2005). The trapped ions assume circular 
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trajectories around the center electrode and their axial oscillations, along the center electrode, 

are detected. LTQ-Orbitrap MS was coupled to a TriVersa NanoMate microfluidics chip, 

which allows sample inlet miniaturization. This microchip-based technology combines the 

strengths of liquid chromatography, mass spectrometry, fraction collection, and chip-based 

infusion in one integrated system. It allows to obtain more information from complex samples 

than with LC/MS alone (Pereira-Medrano et al., 2007). This microfluidics chip contains an 

array of nanoelectrospray nozzles, etched in a silicon wafer. The unique field strength created 

by the nanoelectrospray nozzles allows for a more efficient and stable spray with flow rates of 

20 to 300 nL/min. 

The system works with a very high resolving power (up to 200000), a high dynamic range 

(around 5000) and a very high mass accuracy (1–2 ppm) (Olsen et al., 2005; Makarov et al., 

2006). The mass spectrometer provides high accuracy mass information of biomolecules as 

peptides, which is necessary for an absolutely certain analysis of potential post-translational 

modifications. 
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1.4 Metabolite analysis by HPLC-MS 

Extraction and isolation of interesting molecules from bacterial cultures is the initial stage for 

analyzing natural products. Most myxobacterial secondary metabolites are excreted into the 

medium, which allows direct access to secondary product formation. For instance, the 

addition of the adsorber resin XAD-16 to a myxobacterial culture allows the take-off of 

secondary metabolites and increases their production by shifting of the concentration balance 

(Gerth et al., 1996). The resin binds hydrophobic compounds, and thus feedback inhibition 

can be prevented. This results in continuous production and accumulation of the excreted 

metabolites (Gerth et al., 1995; Lau et al., 2002).  

After cultivation, XAD-16 resins are extracted and resolved as concentrated culture extracts. 

Finally, the samples are analyzed by HPLC-MS (Silakowski et al., 2001a; Simunovic et al., 

2006). This system provides a good combination of analysis speed, resolution and sensitivity. 

The used high capacity ion trap (HCT) mass spectrometer is equipped with an electrospray 

ionization (ESI) ion source, which is ideal to be coupled to HPLC systems. For quantitative 

profiling of the single secondary metabolite families, the substances are identified via MS/MS 

by their characteristic fragmentation pattern. By this semi-quantitative method, production 

rate can be compared. 
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1.5 Protein-D.A interactions (D.A pull-down assay) 

Environmental and cellular changes require sophisticated responses, realized by altering gene 

transcription patterns. The control over gene expression is mediated by variations of DNA 

interaction proteins (Drewett et al., 2001). A special interest in microbial research is the 

identification of transcriptional regulators, including the finding of the target-sequence(s) and 

a deeper understanding of the cellular regulatory processes (Nilsson et al., 2000).  

For the analysis of proteins, binding to promoter regions of interest, short immobilized DNA 

fragments which contain the promoter sequence are incubated with proteome samples from 

different cultivation conditions. The principle of DNA pull-down-assays is illustrated in 

figure 1.14. This method allows the capturing of proteins which were functionally active in 

the regulation of transcription (Nilsson et al., 2000; Drewett et al., 2001; Jeong et al., 2004). 
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Figure 1.14: Workflow of DNA pull-down (promoter ligand-fishing) experiments.  

1: Genomic DNA sequences are amplified by PCR, spanning the promoter region of the target gene, 
primer positions are marked by small black arrows. One primer contains a biotinylated 3´end (marked 
by a black diamond). 2-3: DNA is loaded to paramagnetic Streptavidin beads by biotin-tag. 4-5: DNA-
loaded beads are incubated with protein extracts to load sequence-specific proteins to DNA promoter 
regions. 6-7: Elution of interacting proteins with increasing ionic strength; 6: Washing, 7: Proteins are 
eluted with high stringency, precipitated, redissolved and further analyzed by SDS-PAGE and MALDI-
ToF/ToF MS. 
 

 



Introduction 
 

 49

1.6 Target-oriented gene inactivation by homologous recombination 

In order to investigate the cellular role of interesting proteins, single or double crossover 

inactivation mutants of the corresponding genes are effective ways to get further information 

of protein functions. Therefore, plasmid DNA of integrative vectors, containing a gene 

fragment is transferred into cells. This strategy is used regularly in myxobacterial gene 

inactivation studies (Simunovic et al., 2006; Bode et al., 2006a; Meiser et al., 2008; Bode et 

al., 2009). Once the plasmid DNA is introduced into the cells, in some the DNA is inserted 

via homologous recombination into the chromosomal DNA, thereby switching-off the gene to 

non-functionality. 

Gene targeting by insertion of plasmids is made possible by the high frequency of 

homologous recombination in M. xanthus (Wenzel et al., 2005a; Bode et al., 2006a). The 

mechanism of plasmid integration is found to be very similar to the well-investigated 

recombination/proliferation mechanism of integrative plasmids in Streptomycetes (Hardy, 

1993). 

 

a) Gene inactivation by double crossover 

The ability to delete DNA sequences in-frame from the Myxococcus. xanthus genome, by way 

of the host's natural homologous recombination pathways, has started up by the detection of 

suitable counter-selection markers that work efficiently in different wild-type strains (Wu and 

Kaiser, 1996). Counter-selection markers allow for the positive selection of strains that have 

lost the marker and other unwanted sequences around them. In-frame deletions in M. xanthus 

are constructed by a plasmid integration-excision strategy, shown in figure 1.15. Such 

plasmids contain two PCR fragments (polymerase chain reaction), which are made by 

amplification of the genomic regions up- and down-stream from the target gene in M. xanthus 

(figure 1.15 A, shown in red and green).  
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Figure 1.15: Diagram of in-frame gene deletion by double crossover.  

Primer positions from PCRs are indicated by small black arrows. A) Vector generation for in-frame 
deletion: The first PCR (red) covers the start of the target gene (purple), while the second PCR (green) 
covers the end-sequence of the target gene. Both PCR products are combined in a digested deletion 
vector (here: pSWU41). B) First crossover by homologue recombination between homologue 
sequences of the black gene and first PCR fragment (red). C) Genomic integration of plasmid DNA: 
Mutants show resistance for selection marker (here: kanamycin resistance kanR) and sensitiy to 
counterselection marker (here: sucrose sensitivity sacB). D) Induction of the second crossover: After 
growth for several days in exponential phase, deletion can be induced by sucrose: second crossover 
between homologue regions (second PCR fragment (green) and its genomic template). E) The 
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exchange of the gene cassette after counter selection can result in truncated, inactive version of the 
target gene (or revert back to wild type form). The loss of the core region can be confirmed by PCR. 
 

 

In-frame inactivation required the careful selection of PCR primer positions. Each PCR-

product is cloned into a vector and replicated into E. coli. Both plasmid-derivates are 

extracted and purified, followed by excision using the introduced restriction sites. The 

purified digestion products are cloned together into a selection/counterselection vector, 

digested with the respective restriction endonucleases (figure 1.15 A). After replication and 

extraction, the purified plasmid is confirmed by hydrolysis using restriction endonucleases 

and by DNA-sequencing. The confirmed construct is introduced in M. xanthus (figure 1.15 

B), resulting in a first crossover mutant, (figure 1.15 C) which leads to antibiotic-resistant 

clones (as here for e.g. kanamycin as selection marker). Plasmid integration into genome of 

M. xanthus can be confirmed by PCRs (primer positions can be found in figure 1.15 C, shown 

by the black arrows). At this, one primer harbors in the vector backbone, while the other is 

localized in the amplified regions, so that a signal for PCR can only be obtained upon 

integration at the expected position. The confirmed first crossover mutants of M. xanthus are 

then kept in exponential growth phase for several days without antibiotic, followed by plating 

with counter-selection marker (here: plasmid-coded sacB cassette, coding levansucrase which 

converts sucrose into a toxic levanpolymer) to introduce the second crossover (figure 1.15 D). 

The second crossover then occurs between homologue regions from genome and PCR 

fragment. 

The second crossover can result in revertants (mutation back to original wild type sequence) 

or real in-frame deletion mutants, which miss the core region of the target gene (both 

kanamycin sensitive and sucrose resistant). The truncated form of the gene will not be active, 

but sequences in the same operon are unaffected. The two genotypes will give a very different 

signal by the examination via PCR (primer positions can be found in figure 1.15 E, shown by 

the small arrows).  

 

b) Gene inactivation by single crossover 

Plasmid constructs for single crossover gene disruption carrying a PCR fragment from the 

core of the targeted gene and integrate in the associated sequence. When the gene fragment in 

the plasmid and the chromosomal copy undergo homologous recombination, it results in two 

non-functional copies of the gene separated by the vector DNA. One copy is missing 
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sequences upstream, while the other is missing sequences downstream (Alberts et al., 2002). 

A diagram for the single crossover gene disruption is illustrated in figure 1.16. 

 
 

 

Figure 1.16: Gene disruption in M. xanthus by homologous recombination via single crossover. 

Primer positions from PCRs are indicated by small black arrows. A) In order to disrupt the target gene 
(in blue) an internal fragment (red) of the gene lacking its transcriptional start and end sequence is 
cloned into an integrative vector. B) The plasmid can integrate via homologue recombination to disrupt 
the chromosomal gene. Disruption mutants are isolated using the selection marker (here: kanamycin 
resistance kanR). C) Finally, vector integration is confirmed by PCR, spanning both incomplete copies 
of the gene. Further explanations to the method can be found in (Alberts et al., 2002). 

 

 
Clones, which have integrated the plasmid into the chromosome, can easily be isolated by 

antibiotic selection, using the plasmid-coded antibiotic resistance selection marker. The 

position of plasmid-integration in the chromosome can be confirmed by PCR. 

Plasmids with homologue gene sections with less than 500 bp may be difficult to incorporate 

by recombination into the M. xanthus chromosome. For such small gene fragments (< 500 bp) 

it was ensured to generate to inactive copies of the gene by the insertion of an additional stop-

codon.  
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1.7 Goal of this study 

Many secondary metabolite gene clusters in Myxococcus xanthus DK1622 are still of 

unknown function. Under stress conditions, a bioactive substance may provide an additional 

advantage to overcome a stress-inducing environment. Thus, iron limitation might be a 

potential strategy to awake silent gene clusters. 

Because no information is currently available as how myxobacteria handle iron-limitation, the 

effects of iron response on secondary metabolism of the strain M. xanthus were evaluated. In 

this study, a multi-disciplinary approach was used, including proteomics, secondary 

metabolomics, and molecular biology (gene inactivation and protein-DNA interaction studies) 

also to investigate the role of those gene clusters. Hence, insight into regulation of primary 

and secondary M. xanthus metabolism could be obtained by using these techniques. 

In myxobacteria, as exemplified by the model strain M. xanthus DK1622, the response to 

different environmental stress conditions, as for e.g. iron starvation, is predicted to alter 

growth, iron uptake, and expression of PKS-NRPS gene-clusters and subsequently the 

production rates of secondary metabolites. This approach may lead to the detection of new 

structures, derived by the orphan PKS or NRPS gene clusters without an assigned product or 

give an insight into the cellular response and regulatory processes of M. xanthus during iron 

starvation. 

 

To address the question directly, how myxobacteria regulate iron-limitation, the cellular 

response of M. xanthus DK1622 to low iron conditions was investigated, using a combined 

bioinformatics/proteomics/metabolomics/promoter-interaction approach, coupled with gene 

inactivation. 
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2. Material and Methodology 

 

2.1 Chemicals 

The chemicals, which were used in this work, can be found in table 2.1. All chemicals were 

stored, as described in the data sheets. 

 

Table 2.1: Chemicals and manufacturers  

If a manufacturer is not located in Germany, it is specified. 

Chemical Manufacturer Location 

Acetone Acros Geel, Belgium 
Agarose LE Biozym Oldendorf 
Bacto-agar 

Difco Augsburg 

Casitone 
Trypton 
Yeast extract 
Dimethylsulfoxide (DMSO) Fischer Chemicals Zürich, Switzerland 
N,N-Dimethylformamide (DMF) Fluka Seelze 
IPG-strip cover fluid GE Healthcare Bio-

Sciences München Pharmalyte pH3-10 
Potassium hydroxide Grüssing GmbH Filsum 
Phosphate buffer saline (PBS) Invitrogen Karlsruhe 
2,5-Dihydroxybenzoic acid (DHB) 

Merck KGaA Darmstadt 

Ammonium acetate 
Coomassie Brilliant Blue G-250 
Ferrospectral (ferrozine) 
Ferrous chloride (FeCl2) 

Hydroxylammonium chloride (HAC) 
Sodium perchlorate 
Trifluoroacetic acid (TFA) 
α-Cyano-4-hydroxycinnamic acid (CCA) 
(R,R)-Dithiothreitol (DTT) MP Biomedicals Illkirch, France 
5-Bromo-4-chloro-3-indolyl-beta-D-galactoside (x-
Gal) M.P.I. international Lansing, MI, USA 

Ammonium sulfate 
Riedel de Haen Seelze Glycerol 

Amberlite ® XAD 16 Rohm & Haas Frankfurt 
ortho-Phosphoric acid 

Carl Roth Karlsruhe 

2-Amino-2-(hydroxymethyl)-1,3-propanediol (Tris) 
Boric acid 
Ethidium bromide 
Glycine 
N,N,N',N'-Tetramethylethylenediamine (TEMED) 
ROTIphorese Gel 30 (Acrylamide solution T:30.8, 
C: 1) 
Sodium acetate 
Sodium dodecylsulfate (SDS) 

Sodium hydroxide 
Sucrose 
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Chemical Manufacturer Location 

Ammonium bicarbonate 

Sigma Aldrich Seelze 

1-propanesulfonate (CHAPS) 

3-[(3-Cholamidopropyl)dimethylammonio]- 

ammonium hydrogenphosphate 

Ammonium hydrogenphosphate 

Ammonium persulfate 

Bromophenol blue 

Ethylene diamine tetraacetic acid (EDTA) 

Iodo acetamide 

L-Lysine 

Manganese dichloride 

Thiourea 

Urea  

Xylencyanole FF 
Acetic acid 

VWR Darmstadt 

Acetonitrile (AcCN) 

Chloroform 

Dipotassium hydrogensulfate 

Ethanol 

Hydrochloric acid (HCl) 

Isopropanol 

Methanol 

Potassium dihydrogensulfate 

Sodium chloride 
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2.2 Commercial ´kits´, enzymes and markers 

The used ´kits´ or enzymes and the respective manufacturers can be found in table 2.2. All 

used ´kits´ or enzymes were deployed or stored, as described in the instruction. 

 
 
Table 2.2: Commercial ´kits´, enzymes and markers. 

If a manufacturer is not located in Germany, it is specified.  
Commercial ´kits´, consumables, enzymes and 
Markers Manufacturer Location 

4700 Calibration mixture Applied Biosystems Darmstadt 
Bradford dye concentrate 

Biorad München CHELEX 100 resin 
100bp Ladder 

Fermentas St. Leon-Rot 

100bp Ladder Plus 
1kb Ladder 
dNTPs 
Protein Ladder Page Ruler 
Restriction enzymes and corresponding buffers 
T4 DNA Ligase 
Taq polymerase (+ buffers) 
Phusion polymerase (+ buffers) Finnzymes Espoo, Finnland 
CyDye DIGE FLUOR Cy2 

 
 
GE Healthcare Bio-
Sciences 

 
 
 
München 

CyDye DIGE FLUOR Cy3 
CyDye DIGE FLUOR Cy5 
IPG-strips, pH 4-7 
IPG-strips, pH 3-11 NL 
pCR®2.1 TOPO cloning Kit Invitrogen Karlsruhe 
NucleoSpin® Extract II, MN kit Macherey Nagel  Düren 
pH Indicator sticks 5-10 Merck KGaA Darmstadt 

C18 ZipTip Millipore Bad Soden 
Sterilization filters, 0.2 µm pore size Nalgene Neerijse, Belgium 
Protein Ladder 

Promega Mannheim Trypsin, sequencing grade 
Folded filters, 150 mm diameter 

Carl Roth Karlsruhe 
Proteinase K 
Ribonuclease A (RNAse) 
Bovine serum albumin (BSA) 

Sigma Aldrich Seelze 

Serdolite particles 

ß-Casein (bovine) 
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2.3 Buffers and solutions 

All solutions and buffers were prepared in ultrapure water (H2O), which was pretreated by a 

MilliQ-ion exchange PURELAB ultra device. If necessary, water or buffers were sterilized 

for 20 min at 121°C (Autoclave V150). If a buffer or solution must not be autoclaved, but 

sterilized, this was realized by sterile filtration (pore size 0.2 µM). 

The compositions and storage conditions of used buffers and solutions can be found in the 

following tables (table 2.3-2.6). All pH-values were estimated by a digital pH-Meter 766 

Calimatic. 

 

2.3.1 Antibiotic solution 

To generate selection pressure to cells, which contain pCR®2.1-TOPO- or pSWU41-based 

vectors, the antibiotic kanamycin sulfate (kanamycin) was prepared in sterile H2O (50 

mg/ml). This stock solution was sterile filtrated, aliquoted and stored at – 20 °C. In media, the 

stock solution was diluted to a final concentration of 40 µg/ml.  

 

2.3.2 Buffers and solutions for 2D-gel electrophoresis 

The used buffers and solutions for 2D-gel electrophoresis and their compositions can be 

found in table 2.3. All urea- or thiourea-containing solutions prepared with sterile H2O, 

followed by an incubation step with Serdolit ion exchange resin, following the manufactures 

protocol. The solutions were cleared, using a folded filter and stored in sterile containers at – 

20 °C. 

 

 

Table 2.3: Buffers and solutions for 2D-gel electrophoresis.  

Tris stock and SDS stock were autoclaved, DIGE STOP solution (in DIGE label buffer) was sterile 
filtrated 

Appellation Composition Storage 

Precipitation solution 90 % (v/v) acetone - 80 °C 
 10 % (v/v) methanol  
   
DIGE lysis buffer 7 M Urea - 20 °C 
  2 M Thiourea   
  4 % CHAPS   
  2 % DTT*   
  2 % v/v Pharmalyte 3-10 (0,5 % w/v)*   
     
DIGE labeling buffer 7 M Urea - 20 °C 
  2 M Thiourea   
  4 % CHAPS   
  30 mM Tris (pH 8.8)   
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Appellation Composition Storage 

Rehydration buffer 8 M Urea - 20 °C 
  1 % CHAPS   
  0,002 % BPB   
  0.5 % DTT*   
  0.5 % v/v Pharmalyte 3-10 (0,5 % w/v)*   
     
Equilibration basis buffer 6 M Urea - 20 °C 
  2 % SDS   
  50 mM Tris (pH 8.8)   
  20 % Glycerol   
 Equilibration buffer 1* 100 mg DTT per 10 ml Equilibration basis buffer* - 
 Equilibration buffer 2* 250 mg IAA per 10 ml Equilibration basis buffer* - 
     
Homogeneous gel solution (12.5% T) 209 ml ROTIphorese Acrylamide solution 30.8% T - 
  125 ml 1.5 M Tris stock solution pH 8.8   
  160 ml H2O   
  5 ml 10 % SDS stock solution   
  2 ml 10 % APS solution**   
  70 µl TEMED   
     
Tris stock solution 1.5 M Tris 4 °C 
  pH 8.8, adjusted with 4 M HCl   
     
DIGE STOP solution 10 mM L-lysine - 20 °C 
     
10% SDS stock solution 10 % (w/v) SDS RT 
   
10% APS solution** 10 % (w/v) APS - 
     
   
10xRunning buffer 1 % SDS RT 
  0.248 M Tris   
  1.918 M Glycine   
  pH 8.8, adjusted with 1 M HCl   
   
*: added freshly 
**: prepared freshly 
 

 

2.3.3 Buffers and solutions MALDI mass spectrometry 

The used buffers and solutions for mass spectrometry and their compositions can be found in 

table 2.4. All solutions are prepared freshly (beside the digestion buffer), only using 

chemicals of highest quality standard. 
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Table 2.4: Buffers and solutions for mass spectrometry 

Appellation Composition Storage 

Ammonium bicarbonate buffer 40 mM Ammonium bicarbonate - 
     
Digestion buffer 40 mM Ammonium bicarbonate - 20 °C 
  5 ng/µl Trypsin, sequencing grade   
     
MS solution 1 0.1 % TFA in H2O - 
MS solution 2 50/50 H2O/AcCN - 
MS solution 3 50/50 H2O/AcCN + 0.1 % TFA - 
     
CCA 5 mg/ml CCA in (50/50) H2O/AcCN + 0.1 % TFA - 
   
DHB 
 

2 mg/ml in DHB (50/50) H2O/AcCN + 0.5 % 
phosphoric acid - 

     
Recrystallization solution 10 mM Ammonium hydrogenphosphate - 
     
Orbitrap Spray solution 50/50 H2O/AcCN + 0.5 % acetic acid - 
   

 

 

2.3.4 Buffers and solutions for DNA pull-down assay 

The used buffers and solutions for the protein-DNA interaction studies (DNA pull down 

assay) and their compositions can be found in table 2.5. 

 

 

Table 2.5: Buffers and solutions for protein-DNA interaction studies (DNA pull-down assay) 

Appellation Composition Storage 

Cell wash buffer 10 mM Tris, pH 7.5 RT 
  1 mM EDTA   
  40 mM NaCl   
Appellation Composition Storage 

Cell lysis buffer 10 mM Tris, pH 7.5 RT 
  1 mM EDTA   
  100 mM NaCl   
  1 mM DTT*   
  1x Complete protease Inhibitor cocktail*   
  0.05 % Triton-X 100   
     
DNA binding buffer 10 mM Tris, pH 7.5 RT 
  100 mM NaCl   
  5 % Glycerol   
  0.05 % Triton-X 100   
  1 mM DTT*   
  2.5 mM FeCl2**   
  1x Complete protease Inhibitor cocktail*   

  
10 µg competitor DNA / mg Streptavidin 
beads*   
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Appellation Composition Storage 

DNA wash buffer I 10 mM Tris, pH 7.5 RT  
  100 mM NaCl   
  5 % Glycerol   
  0.05 % Triton-X 100   
  1 mM DTT*   
  2.5 mM FeCl2**   
  1x Complete protease Inhibitor cocktail*   
  10 µg/ml salmon sperm*   
     
DNA wash buffer II 10 mM Tris, pH 7.5 RT  
  250 mM NaCl   
  5 % Glycerol   
  0.05 % Triton-X 100   
  1 mM DTT*   
  2.5 mM FeCl2**   
  1x Complete protease Inhibitor cocktail*   
  10 µg/ml salmon sperm*   
     
Elution buffer 10 mM Tris, pH 7.5 RT  
  1000 mM NaCl   
  5 % Glycerol   
  0.05 % Triton-X 100   
  1 mM DTT*   
  2.5 mM FeCl2**   
  1x Complete protease Inhibitor cocktail*   
  10 µg/ml salmon sperm*   
   
SDS sample buffer 60 mM Tris (pH 6.8)  
 2 % SDS  
 5 % Glycerol  
 0.1 % (w/v) DTT  
 0.01 % (w/v) BPB  
   

*: added freshly 
**: prepared freshly 
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2.3.5 Buffers and solutions for biomolecular work 

The used buffers and solutions for biomolecular work and whose compositions can be found 

in table 2.6. 

 

Table 2.6: Buffers and solutions for biomolecular work 

Appellation Composition Storage 

STE-buffer (pH 7,5): 75 mM NaCl RT 
 25 mM EDTA  
 20 mM Tris  
   
TE-buffer (pH 8):  10 mM Tris RT 
 1 mM EDTA  
   
Cell suspension buffer (P1) 50 mM Tris-HCl, pH 8,0 4 °C 
 10 mM EDTA  
 100 µg/ml RNase A   
   
Lysis buffer (P2) 200 mM NaOH RT 
 1 % SDS  
   
Neutralization buffer (P3) 3 M Potassium acetate, pH 5,5 RT 
 pH adjusted with acetic acid  
   
dNTP solution 
 

1.25 mM per dNTP 
 

- 20 °C 
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2.4 Equipment and instrumentation 

The equipment used and the respective manufacturer can be found in table 2.7. 

 

 

Table 2.7: Equipment and materials 

If a manufacturer is not located in Germany, it is specified.  

Equipment and materials Manufacturer Location 

TriVersa NanoMate chip Advion NY, USA 
HPLC series 1100 Agilent Böblingen 
MALDI 4800 ToF/ToF mass analyzer 

Applied Biosystems Darmstadt MALDI insert 384er sample plate 
Centrifuge Avanti® J-E  

Beckman Coulter Krefeld Rotor JA-14 
Microbiological incubator Serie BF Binder Tuttlingen 
Power supply Standard PowerPack P25 Biometra Göttingen 
Agarose gel electrophoresis equipment 

Biorad München 

Electroporation cuvettes, 0.1 cm 
Electroporator GenePulser Xcell 
SDS gel electrophoresis 
Photodocmentation of agarose gels Syngene Biostep GmbH Jahnsdorf 
Microplate Reader EL 808  Bio-TEK instruments Bad Friedrichshall 
ESI ion trap MS HCT plus Brucker Daltonics Bremen 
Rotary evaporator heating bath B-490 

Büchi Essen 
Rotary evaporator Rotavapor R-200 
Rotary evaporator Vacuum controller V-800 
PURELAB lab water Elga LabWater Celle 
Ultrasonic disintegrator USD 30 Emich Ultraschall Berlin 
Biophotometer 

 
Eppendorf 

Wesseling-
Berzdorf 

Centrifugal evaporator Concentrator 5301 (SpeedVac) 
F-45-48-11 
Ausschwingrotor A-2-VC 
Centrifuge 5810R 
Rotor A-4-81 
MTP incubator MixMate 
PCR Mastercycler Gradient 
Thermomixer Comfort 
2D-gel electrophoresis equipment 

 
 
GE Healthcare Bio-
Sciences 

 
 
München 

Ettan DALTtwelve 
ETTAN Spot picking robot 
Gel densitometer 
IPGphor 
Typhoon 9410 Laser scanner 
Table shaker Unimax 2010 

Heidolph Instruments Schwabach Tumble shaker Polymax 1040 
Centrifuge Biofuge fresco Heraeus Hanau 
Incubator Multitron and Multitron 2  Infors Einsbach 
Sterile bench HERAsafe Kendro Langenselbold 
pH electrode Pt 1000-Einstabmeßkette SE 100 

Knick Egelsbach pH Meter 766 Calimatic 
HPLC column Nucleodur C18 gravity 

Macherey Nagel  Düren 125 x 2 mm, 3µ particle size 
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Equipment and materials Manufacturer Location 

Ultrasonic bath Bandelin Sonorex Schalltec 
Mörfelden-
Walldorf 

Power supply Consent E835 Sigma Aldrich Seelze 
Autoclave V150 Systec GmbH Wettenberg 
LTQ-Orbitrap Thermo Finnigan Oberhausen 
Diaphragm Vacuum pump CVC2 Vacuubrand Wertheim 
UV table Chroma43 Vetter GmbH Wiesloch 
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2.5 Bioinformatic tools and analysis 

The software tools used and databases for in silico analysis and storage of DNA and protein 

information and sequences are listed below. 

A bioinformatic screening for the presence of conserved Fur boxes in the genome of 

M. xanthus DK1622 was performed by the software tool Virtual Footprint version 3.0, hosted 

by the technical university of Braunschweig (http://prodoric.tu-bs.de/vfp) (Münch et al., 

2005; Klein et al., 2008). The used parameters were set to: Bacterial Regulon Analysis; 

Position weight matrix (PWM): Fur P. aeruginosa (ATCC 15692/PAO1); Sensitivity-

Threshold: 0.8; Core Sensitivity/Size: 0.75/6; Promoter Length (Maximum Distance to Gene): 

300 bp. Hits with a PWM score higher than 9.9 were manually checked for the distance to the 

putative Shine-Dalgarno sequence and gene start site. If necessary, the original start sites 

(Goldman et al., 2006) were re-annotated using protein BLAST (NCBI) (Altschul et al., 

1990; Altschul et al., 1997) and FramePlot (http://nocardia.nih.go.jp/fp4/) (Ishikawa and 

Hotta, 1999), as well as for overall genomic context. Subsequent, these hits were used to 

derive a Fur box consensus sequence as sequence-logo representation (Schneider and 

Stephens, 1990) using WebLogo (http://weblogo.berkeley.edu/logo.cgi).  

The putative promoter regions of all genes whose expression was found in proteomics to be 

altered by iron restriction, were then analyzed using ClustalW2 

(http://www.ebi.ac.uk/Tools/clsutalw2/index.html) for the presence of putative Fur boxes 

(Chenna et al., 2003). Therefore, the derived Fur box consensus was compared to promoter 

regions (200 bp 5′ to the translational start site and 50 bp 3′ of the start site, to control for 

misannotations). Fur boxes were identified by the position-specific presence of at least 8 

members of the consensus sequence. 

Protein BLAST (NCBI) was routinely used to determine the putative functions of 

hypothetical proteins (Altschul et al., 1990; Altschul et al., 1997). Multiple sequence 

alignment was carried out using the ClustalW2 server for the detection of conserved residues 

(Thompson et al., 1994; Chenna et al., 2003).  

For storage of DNA and protein sequences and information the VectorNTI (InforMax, USA) 

software package was used.  

The 2D-DIGE images were analyzed by the DeCyder software 6.5 (GE Healthcare Life 

Sciences), including the difference-in gel analysis (DIA) and the biological variation analysis 

(BVA) modules.  

The analysis of visibly-stained gels was accomplished by ImageMaster 2D Platinum 7.0 (GE 

Healthcare Life Sciences). 
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MALDI-MS or -MS/MS measurement and spectra interpretation was performed by the 4000 

series explorer and the DeNovo Explorer software (both Applied Biosystems). 

The identification of proteins based on mass spectrometric analysis and was performed by 

MASCOT (Matrix Science). The complete M. xanthus protein database (FASTA format) can 

be obtained from Expasy (http://www.expasy.org/sprot/hamap/MYXXD.html). 

For verification of digest efficiencies and prediction of fragmentation of phosphor-peptides 

the two bioinformatics tools PeptideMass (http://www.expasy.org/tools/peptide-mass.html) 

and ProteinProspector (http://prospector.ucsf.edu/) were applied. 
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2.6 Bacterial strains 

2.6.1 The strain M. xanthus DK1622 

The used M. xanthus DK1622 wild type strain and the mutant strains, generated in this work, 

can be found in table 2.8. 

 

Table 2.8: Description of the used myxobacteria, wild type and generated mutants 

Strain  Description Reference 
M. xanthus DK1622  Natural producer of Cittilins, DKxanthenes, 

Myxalamides, Myxochelins, Myxochromides 
and Myxovirescins 
Ampicilline resistant 

(Kaiser, 1979) 

 
Mutant strains Mutagenesis  Description 
MXAN_KO1044 Insertion of pKO_0144 in M. xanthus DK1622 MXAN_0144::pKO_0144 
MXAN_KO1562 Insertion of pKO_1562 in M. xanthus DK1622 MXAN_1562::pKO_1562 
MXAN_KO1808 Insertion of pKO_1808 in M. xanthus DK1622 MXAN_1808::pKO_1808 
MXAN_KO1864 Insertion of pKO_1864 in M. xanthus DK1622 MXAN_1864::pKO_1864 
MXAN_KO1893 Insertion of pKO_1893 in M. xanthus DK1622 MXAN_1893::pKO_1893 
MXAN_KO1988 Insertion of pKO_1988 in M. xanthus DK1622 MXAN_1988::pKO_1988 
MXAN_KO2440 Insertion of pKO_2440 in M. xanthus DK1622 MXAN_2440::pKO_2440 
MXAN_KO3203 Insertion of pKO_3203 in M. xanthus DK1622 MXAN_3203::pKO_3203 
MXAN_KO4189 Insertion of pKO_4189 in M. xanthus DK1622 MXAN_4189::pKO_4189 
MXAN_KO4535 Insertion of pKO_4535 in M. xanthus DK1622 MXAN_4535::pKO_4535 
MXAN_KO5055 Insertion of pKO_5055 in M. xanthus DK1622 MXAN_5055::pKO_5055 
MXAN_KO5484 Insertion of pKO_5484 in M. xanthus DK1622 MXAN_5484::pKO_5484 
   
MXAN_DEL3702_1CO Insertion of pDEL3702 in M. xanthus DK1622 MXAN_3702::pDEL3702 
MXAN_DEL6967_1CO Insertion of pDEL6967 in M. xanthus DK1622 MXAN_6967::pDEL6967 
MXAN_DEL6967 Markerless mutant, missing 324 bp of 

MXAN_6967 after elimination of the inserted 
vector from MXAN_D6967_1CO („double 
crossover“-mutant) 

MXAN_6967, missing 324 
bp (from 447 bases in the 
wild type, the nucleotides 
79 to 403 were removed) 

 

 

2.6.2 The strain E. coli DH10B 

The description of the used E. coli strain DH10B can be found in table 2.9. The generated 

mutant strains were used for plasmid proliferation. After extraction, plasmids are controlled 

and subsequently used for plasmid insertion in M. xanthus DK1622. 

 

Table 2.9: Description and reference to E. coli DH10B 

Strain  Description Reference 

E. coli DH10B F-mcrA ∆(mrr-hdsRMS-mcrBC) 
φ80dlacZ∆M15 ∆lacZ∆X74 deoR recA1 
endA1 araD139 ∆(ara, leu)7697 galU galK 
λrpsL nupG 

(Grant et al., 1990) 
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2.7 Cultivation media 

The substances for the production of solid- and liquid-media were dissolved in H2O and 

sterilized by autoclaving for 20 min at 121°C (Autoclave V150). For solid media 1.5 % agar 

(w/v) was added, for soft-agar media only 0.75 % (w/v). 

Selection pressure for genetically modified strains was applied by adding the antibiotic 

kanamycin (section 2.3.1) to the liquid- or solid-media (after autoclaving). 

 

2.7.1 Cultivation media for M. xanthus DK1622 

Growth experiments with the wild type were carried out in parallel under iron rich/limiting 

conditions. For the comparative growth of M. xanthus on different iron concentrations, a 

batch of CTT medium (Dworkin, 1962; Bretscher and Kaiser, 1978) was prepared as shown 

in table 2.10 and split, while one half was further treated by 1 % (v/v) Chelex 100 resin beads 

to generate CTT-FeMIN medium as iron-limiting ambiance. The Chelex-based method was 

found suitable for the creation of iron-limiting conditions for many bacteria (Hubbard et al., 

1986; Ochsner et al., 2002; Ollinger et al., 2006; Vidakovics et al., 2007). For experiments 

with a defined iron concentration only plastic containers were used, as far as possible. Before 

usage, all glass containers and bottles were washed for 4 h at room temperature with 5 g/l 

Chelex 100 resin beads to ensure the absence of glass-bound iron ions. 

For the cultivation of M. xanthus mutants, CTT medium was used. 

 

 

Table 2.10: Composition of CTT medium (casitone rich).  

All solutions were prepared in H2O. 

Solution Composition 

Tris stock solution 1 M Tris stock solution, pH 8.8 
  
MgSO4 buffer 0.8 M MgSO4 
  
1 M K-Phosphate buffer (pH 7.6) 86.6 % (v/v) 1 M K2HPO4 
 13.4 % (v/v) 1 M KH2PO4 

  
CTT, pH 7.6 1 % (w/v) Bacto Casitone 
 1 % (v/v) 1 M Tris stock solution 
 1 % (v/v) 0.8 M MgSO4 buffer 
 0.1 % (v/v) 1 M K-Phosphate buffer 
  

 
 
Estimation of iron concentrations and iron uptake rates 

Iron uptake rates were estimated by comparing the iron concentrations present in the culture 

supernatants before and after growth. By the differences, the iron uptake per time per O.D.600 
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(means: per 3.06 * 107 cells per ml) was calculated to generate comparable values [unit:  

nmol *h-1*O.D.600
-1]. For the determination of the iron concentration a spectrophotometric 

method was applied, using Ferrospectral (disodium 4-[3-pyridin-2-yl-6-(4-sulfonatophenyl)-

1,2,4-triazin-5-yl]benzenesulfonate, also known as Ferrozine) which generates a stable, 

colored complex with iron ions. This method for estimation of iron-uptake by microorganisms 

was described earlier (Smith et al., 2006). 

For implementation, 0.5 ml sample or standard solutions were mixed with 0.5 ml of a 1 mM 

Ferrospectral solution (prepared as per description by the company). Then, 100 µl of a 10 % 

(w/v) hydroxylammonium chloride solution was added slowly and incubated for 5 min at 

room temperature to reduce all present Fe3+ in the sample to Fe2+. Afterwards 0.5 ml 2 M 

sodium acetate/2 M acetic acid buffer were admixed. Finally, 0.5 ml of a 10 % sodium 

perchlorate solution was added and the reaction batch was filled up to 2.5 ml with H2O. The 

mixture was incubated for 5 min at room temperature. The extinction-measurement was 

realized in a biophotometer at 595 nm. The sample concentration could be calculated by a 

regression line, produced with standards with known iron concentrations. 

To produce a regression line (correlation of iron concentration to extinction) a fresh 10 mM 

stock solution FeCl2 in pure H2O was generated. Based on this, different end concentrations 

were generated (0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 5, 10, 50 and 100 µM). H2O was used as blank. 

 

 

2.7.2 Cultivation medium for E. coli DH10B 

For the cultivation of E. coli cells, LB medium (Bertani, 1951) was used. The composition of 

LB medium is shown in table 2.11. 

 

Table 2.11: Composition of LB medium.  

All solutions were prepared in H2O. The pH of 7.6 was adjusted by 1 M HCl. 

Medium Composition 

LB 1 % (w/v) Trypton 
 0.5 % (w/v) Yeast extract 
 0.5 % (w/v) NaCl 
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2.8 Cultivation conditions and conserving of microbial strains 

2.8.1 Growth conditions of M. xanthus cultures 

To monitor cell concentration during cultivation, the optical density at 600 nm (O.D.600) was 

checked periodical. To make sure to work in the linear range (below O.D.600 of 0.3) of the 

used biophotometer, dilutions with sterile medium were generated. The dilutions were taken 

into account to calculate cell density in the respective flasks. Sterile Medium was also used as 

blank. Furthermore different dilutions were controlled under the microscope and the cells 

were counted. 

 

 

Application of Amberlite XAD 16 absorber resin to M. xanthus cultures 

For the analysis of secondary metabolite yields, it is necessary to extract these substances 

from culture broth. Therefore, application and use of Amberlite XAD 16 absorber resin for 

the selective take-off of hydrophobic substances was already standardized for bacteria 

(Sayyed and Chincholkar, 2006) and myxobacteria (Gerth et al., 1996; Krug et al., 2008b). 

First of all, the Amberlite XAD 16 absorber resin was pre-treated as described by the 

manufacturers. Sterilized XAD particles in pure water were added from the beginning of 

growth to all main cultures (25 ml) to a final concentration of 1 % (vol. /culture vol.).  

When M. xanthus wild type or mutant strains were harvested, the XAD resin were separated 

from cells and media by filtration, using a metal sieve (approx. 1 mm2 pore size). The XAD 

beads were stored at – 20 °C for HPLC-MS analysis, the flow-through was collected in new 

tubes. 

 

a) Growth of M. xanthus wild type cells on different iron concentrations 

Wild type growth experiments were carried out at 30 °C in parallel under iron rich/limiting 

conditions in triplicates. All glassware was pre-treated by Chelex to ensure the absence of 

glass-bound iron irons. M. xanthus wild type cells were taken from a - 80 °C stock culture and 

broad out on CTT agar plates by dilution streak with an inoculation loop (Brock and Madigan, 

1991). Afterwards, the plates were incubated at 30 °C for several days. For the inoculation of 

a 10 ml pre-culture of CTT medium, a single colony of M. xanthus was transferred from an 

agar plate. After 24 h at 30 °C and 170 rpm, two 5 ml samples were removed and cell 

pelleting was accomplished by centrifugation (Eppendorf 5810R, Rotor: A-4-81, 4 °C, 10 min 

at 3250 x g). One sample was washed two times with CTT, the other with CTT-FeMIN. The 

samples were resuspended in the respective medium, and used to start another round of two 

10 ml pre-cultures. At 30 h, the pre-cultures were pelletized and again washed twice in the 
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appropriate medium, and used to inoculate the 25 ml growth cultures in CTT or CTT-FeMIN, 

the initial O.D.600 of all cultures was 0.02. Finally, harvest was accomplished by 

centrifugation after 29, 40, 48 and 64 h. 

 

b) Growth of M. xanthus mutant cells on CTT medium 

The confirmed M. xanthus mutant strains (table 2.8) were taken from the - 80 °C stock culture 

and streaked out on CTT agar plates (containing kanamycin; section 2.3.1, but not in case of 

the deletion mutant of MXAN_6967) and incubated at 30 °C for several days. 

A single-cell-derived colony was taken to inoculate a first pre-culture in 10 ml CTT 

(containing kanamycin, except MXAN_6967) in a sterile 100 ml Erlenmeyer flask, incubated 

at 30 °C with 170 rpm. After approx. 30-45 h, 5 ml were centrifuged and washed twice with 

CTT medium. The cell pellet was resuspended in 2 ml sterile medium and used to start a 

second pre-culture in CTT medium (without kanamycin). After further 24-30 h, 10 ml of the 

pre-culture was pelletized by centrifugation, washed twice (sterile medium) and used to start 

the main-culture in CTT (without kanamycin; 25 ml medium in sterile 250 ml Erlenmeyer 

flasks, containing 1 % XAD resin). Production cultures were inoculated with an O.D.600nm of 

0.02 (except for knockout mutant of MXAN_0144 as difficult candidates had slightly higher 

inoculation). After growth, harvest was accomplished by centrifugation in dying phase 

(Eppendorf 5810R, Rotor: A-4-81, 4 °C, 10 min at 3250 x g). 

 

 

2.8.2 Growth conditions of E. coli cultures 

Plasmid proliferation and subsequent extraction was performed, using E. coli DH10B cells. 

Selection pressure for plasmid-containing strains was applied by adding kanamycin (section 

2.3.1) to the liquid- or solid-media (after autoclaving). 

E. coli DH10B cells or generated plasmid-containing strains (list of plasmids: table 2.22) 

were taken from stock cultures. To generate single-cell derived colonies, a dilution streak 

(Brock et al., 1991) was made on LB agar plates (containing kanamycin in case of mutants, 

carrying plasmid-coded antibiotic resistance). The plates were incubated at 37 °C for 1 or 2 

days. Single colonies were transferred by a pipette tip into a sterile 2 ml Eppendorf tube with 

1.6 ml LB medium (containing kanamycin in case of mutants). The suspension was incubated 

for 14-16 h (overnight) in a thermomixer with 900 rpm at 37 °C. Afterwards, harvest was 

accomplished by centrifugation (Biofuge fresco, 4 °C, 5 min at 16060 x g). 
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2.8.3 Preparation of stock cultures and microbial conserving 

a) Stock cultures of M. xanthus strains 

For long-time storage of M. xanthus strains, - 80 °C glycerol stock cultures were produced. 

Therefore, a previously described culture from CTT (section 2.8.1 a and b) was harvested by 

centrifugation (Eppendorf 5810R, Rotor: A-4-81, 4 °C, 10 min at 3250 x g) at on O.D.600 of 

approx. 1.0 and resuspended in 2.5 ml CTT medium, containing 25 % glycerol (v/v). The 

suspension was divided into 500 µl aliquots in sterile Eppendorf tubes, quick-frozen with 

liquid nitrogen and stored at - 80 °C. 

 

b) Stock cultures of E. coli strains 

For long-time storage of E. coli strains, - 80 °C glycerol stock cultures were produced. 

Therefore, the previously described over night cultures (section 2.8.2) were centrifuged 

(Biofuge fresco, 4 °C, 5 min at 16060 x g) and resuspended in 500 µl sterile LB medium, 

containing 40 % glycerol (v/v). The suspension was quick-frozen with liquid nitrogen and 

stored at - 80 °C.  
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2.9 Proteome analysis 

Proteome analysis was organized as 4 individual operations: 1) protein extraction, 2) 2D-

DIGE analysis, 3) MALDI-MS identification of proteins (and phosphorylations), and 4) 

detection of protein-phosphorylations via LTQ-Orbitrap. The methods are further specified in 

the following sections. 

 

2.9.1 Protein extraction of M. xanthus DK1622 samples from different iron 

concentrations 

Samples (25 ml) of M. xanthus DK1622 grown under iron rich and poor conditions from 29 

and 40 h (see section 2.8.1) were washed with 4 °C cold PBS and centrifuged (Eppendorf 

5810R, Rotor: A-4-81, 4 °C, 10 min at 3250 x g). For cell lysis, the pellets were resuspended 

in 1 ml DIGE lysis buffer (table 2.3) at 4 °C. The cell pellets were lysed by sonication on ice 

(ultrasonic disintegrator USD 30, 21 kHz, amplitude 25, 6 × 30 sec, followed each time by 2 

min break). The cell debris was then pelleted by centrifugation (Beckman Coulter Avanti J-E, 

Rotor JA25.50, 12096 × g, 4 °C, 10 min). The supernatant was transferred into a new tube. 

 

2.9.2 2D-DIGE sample preparation, running conditions and data interpretation 

2.9.2.1 2D-DIGE sample preparation 

a) Protein precipitation and resuspension 

For the precipitation of protein molecules an 8/1 mixture of - 20 °C cold acetone/methanol 

was added to the sample until the tenfold of the sample start volume was reached. The tube 

was incubated at - 80 °C for 2 h. Subsequently, the proteins were pelletized by centrifugation 

(Eppendorf 5810R, 1000 × g, 4 °C, 10 min). The supernatant was removed quantitatively. 

Protein-pellets were washed three times with - 20 °C acetone, followed by centrifugation as 

before (Eppendorf 5810R, 1000 × g, 4 °C, 10 min). After the last washing step the pellets 

were dried on ice completely and finally, resuspended in 200-300 µl DIGE label buffer (table 

2.3) (Elnakady et al., 2007). The pH was adjusted to exact 8.5 by DIGE label buffer, 

containing 1 % potassium hydroxide. 

 

b) Estimation of protein concentrations 

Protein concentrations were determined by the method of Bradford (Bradford, 1976). The 

used Bradford protein assay is based on the detection of colored Coomassie-protein 

complexes at 595nm. All measurements were performed as triplicates in 96well microtiter 

plates in a microtiter plate reader.  



Material and Methods 
 

 74 

The measurement was accomplished by a commercial Bradford dye concentrate (table 2.2), 

following the manufacturers instruction. Calibration curves were generated with BSA (0.1, 

0.2, 0.4, 0.6, 0.8 and 1.0 µg/µl), dissolved in DIGE label buffer (table 2.3), which was used 

pure as blank. Different dilutions of the samples were generated with DIGE label buffer. After 

measurement, samples were diluted with DIGE label buffer to adjust the protein concentration 

to exactly 5 µg/µl. 

 

c) 2D-DIGE: CyDye protein labeling 

The individual steps of 2D-DIGE (Van den Bergh et al., 2003; Marouga et al., 2005) analysis, 

namely sample preparation (labeling, sample pooling and in-gel rehydration), isoelectric 

focusing, disulfide-reduction/thiol-alkylation, PAGE running conditions, image recording and 

data interpretation generally based on the manuals of GE Healthcare Bio-Sciences (GE 

Healthcare Bio-Sciences, 2005) and (Elnakady et al., 2007), modifications were detailed 

described in the following sections. 

 

The protein samples were analyzed along with an internal, pooled standard containing equal 

amounts of proteins from all of the samples. Proteins (total of 50 µg) in DIGE labeling buffer 

were labeled minimally with one of three CyDye DIGE fluorophores, Cy2, Cy3 or Cy5 (GE 

Healthcare Bio-Sciences), the scheme is shown in figure 2.1.  

For DIGE experiments, protein extracts from CTT and CTT-FeMIN were labeled by two 

different CyDyes (Cy3 and Cy5). Samples were taken from early (29 h) and late exponential 

phase (40 h). Thereby, for replicas on different gels (same biological samples) the ´inverse 

label´ technique was used to proof non-preferential dye-interaction. The third CyDye (Cy2) 

was always used to label an internal standard. 

Before use, DIGE CyDyes were reconstituted in DMF and were then combined with the 

protein samples in a ratio of 400 pmol of CyDye per 50 µg protein, following the 

manufacturers instruction. Labeling reaction was performed on ice in the dark for 30 min. 

Afterwards, the reactions were quenched by incubating with DIGE STOP solution (10 nM L-

lysine) on ice in the dark for further 10 min.  

The labeled protein samples (iron rich and iron poor conditions at 29 and 40 h, and the 

internal standard) were then loaded onto immobilized pH gradient (IPG) stripes, the scheme is 

shown in figure 2.1. 
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Figure 2.1: Workflow for DIGE system 

The diagram shows the workflow for DIGE system. In all gels, protein extracts from two different iron 
concentrations (CTT and CTT-FeMIN) are compared. In detail, samples were obtained from two 
different time points (29 and 40 h, shown left and right). Each protein extract was analyzed in 
triplicates (e.g. gel A, B and C), where in one of the gels, the samples were labeled inverse (e.g. gel 
C). All samples were analyzed along an internal standard, always labeled with Cy2.  
 

 

For the purpose of protein identification, unlabeled pooled standard sample (500 µg) was 

separately processed by conventional 2D gel electrophoresis. Alternatively, unlabeled pooled 

standard (150 µg) was spiked into each gel from 2D-DIGE. 

 

d) 2D-DIGE: sample application by in-gel rehydration  

Two corresponding samples from different iron concentrations and the internal standard were 

combined and give an overall volume of 36 µl. To adjust the desired amount of Pharmalytes 

and DTT, the same volume of DIGE lysis buffer was added. Finally, 268 µl DIGE rehydration 

buffer was added to reach a volume of 340 µl, which is the recommended volume for the 

rehydration of 18 cm IPG-strips, using an immobilized pH gradient from 4-7. The sample 

were brought out in lanes of the rehydration tray, IPG-strips were placed gel-side-down 
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bubble-free in the liquid and covered carefully by IPG-strip cover fluid. The samples were 

incubated in the dark for 14-16 h for passive in-gel rehydration. 

 

2.9.2.2 2D-DIGE running conditions 

a) Isoelectric focusing (IEF) 

After finishing the in-gel rehydration the remaining oil was removed carefully and IPG-strips 

were placed in IEF chamber gel-side-up. The ends of the IPG-strips were covered with water-

drenched paper bridges before the electrodes were placed. All IPG-strips were covered 

carefully by IPG-strip cover fluid. An IPGphor focusing apparatus (table 2.7) was used for 

separation. The applied voltage for IEF can be found in table 2.12. By the IPGphor 

controlling software the actual voltage and resulting current was monitored. The temperature 

was kept constant at 20 °C during IEF. 

 

 

Table 2.12: Applied voltages for isoelectric focusing (IEF) in IPGphor.  

The current limit was set to 50 µA per IPG-strip. 

Step No. Step/Gradient Voltage kept for VHrs Total applied VHrs 

1 Gradient 500 2000 2000 

2 Step 500 1500 3500 

3 Gradient 3500 10000 13500 

4 Step 3500 3500 17000 

5 Gradient 8000 10000 27000 

6 Step 8000 32000 59000 

 
 

b) Equilibration 

Following to isoelectric focusing, the IPG stripes were further treated with equilibration 

buffer 1 (table 2.3). After 10 min, the buffer was replaced by equilibration buffer 2 (table 2.3). 

Also the second equilibration step was performed for 10 min on a table shaker with 30 rpm. 
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c) Polyacrylamide gel casting (PAGE) 

Homogenous SDS-polyacrylamide gels (12.5 % T-content; table 2.3) were casted between 

low fluorescent glass plates. To avoid evaporation, water-saturated butanol was used for 

overlay. 

 

Then, the equilibrated IPGs were washed for 10 sec with 2xRunning buffer (table 2.3), and 

transferred afterwards on top of SDS-polyacrylamide gels and sealed with 0.5 % agarose and 

0.1 % Bromophenol blue, dissolved in 2xRunning buffer. 

For separation by SDS-PAGE, the Ettan DALTtwelve system was used at a constant 

temperature of 20 °C. The lower buffer chamber was filled with 1xRunning buffer, the upper 

buffer chamber with 2xRunning buffer, following the manufacturer's instruction. Protein 

separation was performed by the application of 2 W per gel for 1 h, followed by 17 W per gel 

(approx. 8 h) until the Bromophenol blue front has reached the end of the gels.  

 

 

2.9.2.3 2D-DIGE image analysis and data interpretation 

a) Scanning conditions 

The gels were then scanned at 100 µm resolution with a Typhoon 9410 imager. The 

excitation/emission wavelengths for Cy2, Cy3 and Cy5 are 488/520, 532/580 and 633/670 

nm, respectively. The 2D-gels containing unlabeled pooled standard sample were post-stained 

with colloidal Coomassie blue (Westermeier, 2006) and scanned with the same imager using 

an excitation wavelength of 633 nm.  

Subsequently, Typhoon images were analyzed by DeCyder software. Relative protein 

quantification in single gels was performed using the DeCyder differential in-gel analysis 

(DIA) and across all samples by biological variation analysis (BVA).  

 

b) Differential in-gel analysis (DIA) 

The protein samples were analyzed along the internal, pooled standard containing equal 

amounts of proteins from all of the samples. DIA was used to analyze differences in 

individual gels by comparing protein spot intensities and distributions. Therefore, individual 

spots were co-detected and correlated in the three CyDye images, followed by normalization 

and background correction.  
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Protein spots with non-typical dye distribution were controlled manually (and, if necessary 

deleted from the spot list). The protein spot intensities were compared across all three CyDye 

images, so the intensity ratio of the two samples (labeled by Cy3 and Cy5) was calculated. 

 

c) Biological variation analysis (BVA) 

When spot detection and quantitation of the single gels by DIA was finished, data are 

transferred to the BVA module for inter-gel analysis. DeCyder BVA processes multiple gel 

images, performs matching of multiple images from different gels for comparison to provide 

statistical data on different protein abundance levels between multiple groups (here two: iron-

rich and iron-limitation). This module utilizes the internal standard and the experimental 

design to perform gel-to-gel matching on internal standard images and across sample images 

within the groups. This process enables comparison of protein abundance between samples on 

different gels. 

Student’s t-test and one-way analysis of variance (ANOVA) were used to proof significant 

differences in relative abundances of protein spot-features in cells grown under iron replete or 

iron-limiting conditions. This analysis was designed to identify proteins which were 

consistently up- or down-regulated more than 2fold at both time points, 29 and 40 h. 

 

d) Manual control, closing statistic  

Relative protein quantification across all samples was performed using DeCyder DIA and 

BVA. Protein spots, which show an altering of intensity, induced by other factors than iron 

were detected by ANOVA (P < 0.05) and excluded. Proteins showing constantly a change in 

expression levels of at least 2fold (student´s t-test; P < 0.05), were excised directly from the 

gels using a semi-automated Ettan spot picker and prepared by in-gel digestion for 

identification with MALDI-MS (section 2.9.3). 

 

 

2.9.3 Protein identification (incl. protein-phosphorylation) by mass spectrometry 

The protein identification from in-gel digests by MALDI-MS for myxobacteria is already 

used routinely (Dahl et al., 2007; Schneiker et al., 2007; Bode et al., 2009). Proteins of 

interest were subjected to trypsin in-gel digestion, following basically the protocol from 

(Sinha et al., 2001), but reducing trypsin amount to ca. 20 ng in an end volume of approx. 25 

µl, so lowering final end-concentration and -volume. If necessary, the in-gel digests were 

purified by solvents (Shevchenko et al., 1996) or by passages over C18 ZipTips (Millipore) or 
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stage tips (Rappsilber et al., 2003; Ishihama et al., 2006; Rappsilber et al., 2007). The 

respective work steps are described in the following section. 

 

2.9.3.1 Prearrangement 

a) Spot picking and band excision 

Protein spots of interest from DeCyder software analysis (section 2.9.2.3) or bands from high 

stringent elutions from DNA pull-down assay (section 2.10) were cut out from gels by an 

ETTAN spot picker. The gel plugs were transferred into the individual vials of a 96well 

microtiter plate (MTP). 

 

b) Destaining and in-gel digestion 

The spots were incubated for 20 min with 100 µl pure H2O at 300 rpm on a MixMate MTP 

incubator. Afterwards, the liquid was replaced with 100 µl of a 50/50 solution 

H2O/acetonitrile (AcCN), again incubated at 300 rpm for 20 min. In case of Coomassie 

staining, this step was repeated until all color had disappeared. Finally, the gel-plugs were 

washed with 100 µl pure AcCN at 300 rpm for 20 min. The AcCN was removed 

quantitatively and the gel plugs were dried completely in a SpeedVac. 

After drying, 10 µl digestion buffer (table 2.4) was added per gel plug, followed by 30 min 

incubation at 37 °C. To cover gel pieces completely, 15 - 20 µl ammonium 

hydrogencarbonate buffer (table 2.4) was added. The MTP was further incubated for 14-16 h 

at 37 °C. Digestion was stopped by the addition of 0.5 µl 1 % TFA in H2O. The supernatant 

was stored at – 20 °C. 

 

c) Sample purification and concentrating 

If necessary, peptides resulting from a tryptic in-gel digestion were purified and concentrated. 

Therefore, two different methods are used in this work: 

The solvent-based peptide extraction is deduced from the procedure of (Shevchenko et al., 

1996). Therefore, the individual in-gel digestion supernatants were transferred into a second 

MTP. The gel plugs were incubated for 15 min with 30 µl of MS solution 1 (table 2.4) at 300 

rpm. Afterwards, the supernatants were combined. The procedure was repeated with 30 µl MS 

solution 2 (table 2.4) and finally with 30 µl pure AcCN. After all supernatants from one gel 

plug were combined in the second MTP, then it was dried in a SpeedVac, using aqueous 

mode. Dried peptides were dissolved in 10 µl MS solution 1 overnight at 4 °C. 
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For pipette-tips based peptide extraction, C18-ZipTips (Millipore) or StageTips (Rappsilber 

et al., 2003; Ishihama et al., 2006; Rappsilber et al., 2007) were used. For implementation, 

both kind of tips need to be pre-washed, loaded with a sample, followed by washing (pure 

H2O) and subsequent elution of the formerly bound peptides. 

For both kinds of tips, elution was performed with approx. 1 µl MS solution 3 (table 2.4). 

 

 

2.9.3.2 MALDI ToF/ToF mass spectrometry 

For protein identification by PMF and MS/MS experiments (peptide fragment fingerprinting; 

PFF), samples were analyzed by a 4800 MALDI ToF/ToF mass analyzerTM (Applied 

Biosystems) in reflective, positive ion mode, using a Neodym/YAG laser at 355 nm in a high 

vacuum at ca. 1.0*10-8 mbar. 

 

a) Sample application 

For the identification of proteins of interest, the digested peptides (or extracts) were spotted 

twice onto Opti-TOF 384 well MALDI sample plates (0.5–1 µl). Sample spots were mixed on 

the plate with CCA or DHB (table 2.4) as matrix, used for co-crystallization in a 

matrix/analyte ratio of 1/1 (v/v). Finally, spots were air-dried at room temperature. In cases of 

low ion-yields, dried spots were washed with 1 µl recrystallization solution (table 2.4), which 

was removed after 2 sec. 

 

b) Calibration 

Each MALDI measurement was started by calibration using the 4700 calibration peptide 

mixture (Applied Biosystems), to optimize sensitivity and resolution (deflector and reflector 

correction).  

The calibration was performed in MS and MS/MS mode. In MS mode, at least 5 of 6 present 

peptides in the calibration mixture must be detected with a mass error smaller 20 ppm and a 

Signal-to-Noise (SN) ratio of 50 or more. In MS/MS calibration mode, GluFib fragment (m/z: 

1572.662) from calibration mixture was fragmented (precursor selection: +/- 5 Da). MS/MS-

calibration was accepted, if at least 10 peptide fragments from b- or y-series (Biemann, 1990) 

were detected with a mass error smaller than 0.1 Da and a SN ratio higher than 20. 
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c) MS conditions (acquisition of peptide mass fingerprints) 

In MS mode, a mass range from 800-4000 Da was covered. A spectrum was acquired by 50 

shots to 20 random positions, so 1000 laser shots were accumulated. Matrix peaks were 

suppressed automatically. Peaks for MS based analysis must show a peptide-typical carbon-

isotope distribution and have a SN ratio of 20 or higher. Peaks derived from sodium- or 

potassium-addition were ignored automatically in PMF analysis. 

 

d) MS/MS conditions (acquisition of peptide fragment fingerprints)  

For each measurement, the five most abundant peaks in the PMF were analyzed further by 

PFF (Tabb et al., 2006). For MS/MS analysis of the 5 most intense peptides peaks from MS 

analysis, fragmentation was induced by high laser energy, causing post-source dissociation. 

Only in cases of inconclusive results, fragment spectra were generated, using collision 

induced dissociation (CID) with nitrogen as collision gas at 2.5*10-5 bar. In MS/MS mode, a 

mass range from precursor mass down to 0 Da was covered. A spectrum was acquired by 50 

shots to 50 random positions, so 2500 laser shots were accumulated. Matrix peaks were 

suppressed automatically. Peaks for MS/MS based analysis must show a typical carbon-

isotope distribution and have a Signal/Noise ratio (SN) of 15 or higher. Peaks, derived from 

sodium- or potassium-addition were ignored in precursor-selection, as well as known peaks 

from trypsin or keratin. 

 

e) Protein identification using MS and MS/MS data by the MASCOT scoring 

algorithm 

Protein identification was then carried out by MASOCT scoring algorithm 

(http://www.matrixscience.com/search_intro.html), using a combination of PMF data and the 

5 PFF datasets per search using the M. xanthus FASTA protein database 

(http://www.expasy.org/sprot/hamap/MYXXD.html). Known trypsin- or keratin-peaks were 

excluded. Error tolerance was limited to 70 ppm in MS mode, and 0.1 Da in MS/MS mode. 

Furthermore, carboxyaminomethylation on cysteins was defined as fixed modification, 

oxidation of methionins as variable modification. Threshold was set to 99 % identification 

probability in MASCOT scoring (MOWSE score) for the identification of proteins.  

 

f) Detection of protein-phosphorylation 

The detection of protein-phosphorylations was accomplished by MALDI and LTQ-Orbitrap 

measurement. In both systems, the method was confirmed using a ß-casein digest. 
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With MALDI, phospho-peptide identification based on the specific induction and detection of 

the neutral loss of the phospho-group from the phosphorylated peptide (Kalume et al., 2003; 

Kjellstrom and Jensen, 2004; Peters et al., 2004), including sequence analysis for peptide 

confirmation. An exact determination of the position by this tandem MS method of the 

phosphate-group within the peptide was only possible, if in the respective peptide sequence 

only one potential phosphorylation-site occurs (table a2). 

 

For implementation, samples from in-gel digestion or peptide extracts were spotted with CCA 

or phosphorous DHB as matrices (table 2.4). To analyze phosphorylations, MS and MS/MS 

measurements were performed as described. Also the MASCOT search was used as 

described, but including phosphorylation as variable modification. Potential phospho-peptides 

were selected for new MS/MS fragmentation runs. MS/MS spectra of a potential phospho-

peptide from CCA and phosphorous DHB were combined and transferred to DeNovo 

Sequence Explorer software to validate the presence of a neutral loss of the phosphate group 

(based on a mass shift of 79.9 Da with mass tolerance of 200 ppm) and further confirmation 

of the sequence of the phospho-peptide (Kjellstrom et al., 2004). 

 

If necessary, phospho-peptides were further analyzed by a high-resolution LTQ-Orbitrap mass 

spectrometer after StageTip purification (section 2.9.3.1 c) with 20 µl Orbitrap spray solution 

(table 2.4) as elution solvent. 

Phosphopeptides were confirmed in composite spectra from different mass ranges, covering 

m/z-values from 0-1000 Da (Lu et al., 2007). Error tolerance was limited to 2.5 ppm. 
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2.10 D.A pull-down assay for identification of D.A interacting proteins to the 

promoter regions of MXA._3702 and MXA._6967 

In order to identify protein interaction partners from promoter regions of the genes 

MXAN_3702 and MXAN_6967, ligand fishing experiments (DNA pull-down assay) were 

performed, using Streptavidin coated paramagnetic beads. In both promoter-overarching PCR 

reactions, the forward primer contains a biotin tag at the 5´-end. This feature was used to 

connect amplificated DNA molecules to Streptavidin. An overview about the individual 

working steps could be found in figure 1.14. The promoter region of MXAN_4899 was used 

as background to identify proteins from rather unspecific interactions. 

 

2.10.1 Loading of amplified DNA to Streptavidin-coated paramagnetic beads  

Copies of the promoter regions of MXAN_3702 (fur) and MXAN_6967 (fur homologue) 

were generated by Taq PCR (section 2.11.6) using the primer pairs in table 2.14. The PCR 

products were controlled on an agarose gel and purified (section 2.11.5 b). DNA 

concentration and purity was determined in a biophotometer. 

Subsequently, the DNA was loaded on to 1 mg paramagnetic Streptavidin-coated beads 

(Dynabeads M-280, Invitrogen) via the biotin residue of one of the primers (12 pmol DNA 

per mg Streptavidin). The mixture was incubated for 1 h in DNA binding buffer (table 2.5).  

 

2.10.2 Protein extraction of M. xanthus DK1622 samples from different iron 

concentrations and incubation with DNA-loaded Streptavidin beads 

M. xanthus DK1622 was grown in CTT and CTT-FeMIN as described (section 2.8.1) and cells 

were harvested at 40 h by centrifugation (Eppendorf 5810R, 1000 × g, 4 °C, 10 min). The 

pellets were washed with 4 °C cold cell wash puffer (table 2.5) and centrifuged as before. 

Cells were resuspended in cell lysis buffer (table 2.5) and lysed using a two times a French 

Press with approx. 1000 atm. Cell debris were removed and protein concentration was 

estimated as described before (section 2.9.1). 

To enable protein-promoter interaction, 2 mg of the different protein extracts were incubated 

with Streptavidin-bound DNA molecules on a tumble shaker (20 rpm, 21 °C, 30 min). 

 

2.10.3 Washing and elution of promoter interacting proteins 

The stringent DNA binding proteins were isolated from Streptavidin beads by increasing ionic 

strength using higher NaCl concentrations with each washing step (wash buffer 1 and 2, table 
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2.5; 20 rpm, 21 °C, 20 min each). Finally, elution was performed in 250 µl elution buffer 

(table 2.5), applied on a rotating device (20 rpm, 21 °C, 20 min). 

 

2.10.4 Protein precipitation, PAGE, staining and protein identification, including protein-

phosphorylations (MALDI-ToF/ToF) 

All supernatants from washing and elution steps were precipitated as described (Wessel and 

Flügge, 1984). The protein pellets were resuspended in 20 µl SDS sample buffer (table 2.5). 

The samples were incubated at 95 °C for 5 min and subsequently loaded on 12 % acrylamide 

gels. After separation, the gels were silver stained and decolorized (Sinha et al., 2001), 

excision and in-gel digestion of protein-bands. Subsequently, bands were used for in-gel 

digestion prior to MS analysis or peptide purification procedures, as described before (section 

2.9.3).  
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2.11 Handling and manipulation of D.A molecules 

The working steps and materials, used for targeted gene inactivation experiments are further 

described in the following section.  

 

2.11.1 Vectors used  

For the purpose of gene disruption by single crossover insertion or for DNA proliferation, 

derivates of pCR®2.1-Topo (table 2.13) were generated. This activated vector contains a 

neomycin-resistance gene as selection marker and an open lacZ gene to detect auto-ligation. 

The principle of gene inactivation by single crossover insertion was already explained 

(section 1.6). The vector card of pCR®2.1-Topo can be found in appendix (figure a1). 

For the construction of double crossover mutants, derivates of pSWU41 (table 2.13) were 

used. The plasmid pSWU41 contains a neomycin phosphotransferase (nptII) and levansucrose 

gene cassette (sacB) (Wu et al., 1996). The principle of gene inactivation by double crossover 

deletion was already explained (section 1.6). The vector card of pSWU41 can be found in the 

appendix (figure a2). 

 

Table 2.13: Template-vectors used. 

Vector  Description Referenz  
pCR®2.1 Topo  LacZα, T7 promoter, f1 ori, bla, pUC origin  Invitrogen, USA  
pSWU41  pBluescript-Derivat, nptII, sacB  (Wu et al., 1996) 

 

 

2.11.2 Designed oligonucleotides 

Start- and end-point of PCRs are determined by the oligonucleotides used (forward- and 

reverse-primers). Attention was paid to similar melting temperatures (Tm) in each primer pair 

using the formula:  

Tm = (69.3 + (0.41 * GC content [%])) – (650 / no. binding nucleotides) 

 

a) PCR Primers for DNA pull-down assay 

Primers for DNA pull-down assays were used in Taq PCRs (table 2.14). Loading of amplified 

DNA molecules to Streptavidin beads was accomplished via biotin-tag carried by one of the 

primer in the pair.  
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Table 2.14: Primer pairs for DNA pull-down assays were used in Taq PCRs.  

The biotinylation is marked by [Btn]. The first primer pair covers the promoter sequence of 
MXAN_3702, the second the promoter of MXAN_6967. 

No. Name Sequence 

1 MA_ProMF3702F [Btn]AGTGTCAATGAGCCAGTCCGATTC 

 MA_ProMF3702R GTGGCCTCCCACCGCGAAGAA 

2 MA_ProMF6967F [Btn]GGCAGCGGTATCCCGTCAACA 

 MA_ProMF6967R CGTCCTCCAACTCCCGCAACA 

 

 

b) PCR Primers for single crossover  

Primers for gene inactivations via single crossover insertion were used in Taq PCRs (table 

2.15). The amplified DNA molecules were cloned into pCR®2.1-Topo and used after 

verification for gene disruption by homologue recombination. 

 
 
Table 2.15: Primer pairs in Taq PCRs for single crossover gene disruption experiments.  

To create stringent insertion into small genes (< 500 bp), additional in-frame stop codons were 
generated. These are marked by underlining; these codons were created by insertion of nucleotides. 

No. Name Sequence 

1 KO_MXAN0142for GACGGCGTCGTGCGCGCCTGG 
 KO_MXAN0142rev GAGCCATCCGCCGCGAGGCCG 
2 KO_MXAN0144for CAGCCCGAGCAGACGCCGGAG 
  KO_MXAN0144rev CAGGCGCATCAGCGCGTCCGG 
3 KO_MXAN1562for CGCGCACTGAAACATCAAGGGTC 
  KO_MXAN1562rev TTCGATGCGCTAGGCCAGGAG 
4 KO_MXAN1619for CGGTGGCTAGGCGTTGGATCGC 
 KO_MXAN1619rev CTGCTGCTCTAACCACGCCCG 
5 KO_MXAN1808for GACCACTGCCGCGACGAATCG 
  KO_MXAN1808rev CGAGAGAAGTGCGAGGCTCG 
6 KO_MXAN1864for GGCAAGAAGCGCCTGGCGAAG 
  KO_MXAN1864rev GGAGCCCTTCAGCATCCCAGG 
7 KO_MXAN1893for CATTCTGACGTGAGTGCGCCGC 
  KO_MXAN1893rev GCGTCTCTCCTACGGAGGGTC 
8 KO_MXAN1988for GCTCGCTGCGGCACTTCAATC 
  KO_MXAN1988rev CAGGTGGTTGTCCACCTGGTC 
9 KO_MXAN2094for GGAAACACCTAGGGGCCGCTA 
 KO_MXAN2094rev CTGCGTTTCCACCTACACGCCC 
10 KO_MXAN2347for GGGGAACTGGAGGTGCGGTCG 
 KO_MXAN2347rev GCGCGGAAGTGGCGGCGCATT 
11 KO_MXAN2440for GCTGCCGGGCACGCTGGCGGAG 
  KO_MXAN2440rev TCCGGGCTCCCGGAGGCGGAGG 
12 KO_MXAN2520for CGTGCTGGCGCCGGCCGTTCC 
 KO_MXAN2520rev CCTCGCGCTCGCGCTTCTCCG 
13 KO_MXAN3203for CCGCCGCCACGTAGCCGCCCC 
  KO_MXAN3203rev TGGGGCTCCAGCCGGCCCGTG 
14 KO_MXAN4189for GTCCGGGCTTAACCCGCGTGGG 
  KO_MXAN4189rev GACTGGCCGGCTAGAAGCCTCG 
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No. Name Sequence 

15 KO_MXAN4535for GCCCGAGGATGAACCCACGAA 
  KO_MXAN4535rev GAACCGCTAGGTCGACCGTTC 
16 KO_MXAN5055for GGAGGTGGCCACGCAGTCCCC 
  KO_MXAN5055rev GGACTGCTCCACGGCGCGCTC 
17 KO_MXAN5484for ACGCCGGGGTAGCCCGCCGTC 
  KO_MXAN5484rev CGCGGTCCCGCTACGGCAGCAC 

 
 

c) PCR Primers for double crossover  

Two pSWU41-based constructs were created for in-frame deletion of core-regions from the 

genes MXAN_3702 and MXAN_6967, respectively. For both constructs, the up- and down-

stream sequences of the genes were amplified via PCR, missing the core region of the gene. 

Each of these two fragments of were combined with a digested vector and subsequently used 

for first and second crossover in M. xanthus. Primers for the amplification for the fragments 

(table 2.16) are used in Phusion PCRs. 

 

 

Table 2.16: Primer pairs in Phusion PCRs for gene in-frame deletion.  

Primer pairs were used in Phusion PCRs for double crossover gene in-frame deletion experiments of 
MXAN_3702 and MXAN_6967. To create restriction nuclease cutting sites, additional nucleotides 
were introduced by primer sequence, leaving sequence in-frame. These nucleotides are marked in 
bold, the cutting sites by underlining. 

No. Primer Sequence 

1 D3702_F1forw CAGAAGTCCGAGCTCACGGCAACCG 
 D3702_F1rev GTGCTGGCGGCCGCATGTAGCGG 
2 D3702_F2forw CGTGGCGCGGCCGCAAGCACGGCTTCAA 
 D3702_F2rev GTGGGATCCTCCACGCCATGCCAGCCGG 
3 D6967_F1forw CGGCTTCCGGAGCTCCAGCTTCCC 
 D6967_F1rev CGGGGCGCGGCCGCTGCTGCGCAG 
No. Primer Sequence 

4 D6967_F2forw CCCCGCGCGGCCGCATGTCCCAGCG 
 D6967_F2rev GCACGGGGGATCCGCGGTCGAAGCTC 

 
 

d) PCR primers for verification of mutants 

Verification of single crossover insertion into the chromosome of M. xanthus was 

accomplished by Taq PCRs, using the primers in table 2.17 on genomic DNA of the 

corresponding mutant. Always, one gene-specific primer and one standard primer (M13 

forward or M13 reverse) were selected, following the scheme in figure 1.16 c.  

Verification of first crossover mutants for in-frame deletion follows the same principle, but 

using pSWU41-backbone specific primers (table 2.17) instead of M13 primers (Invitrogen). 

Second crossover mutants were confirmed by Taq PCRs, using only the gene specific primers 

CONF_D3702 and CONF_D6967. 
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Table 2.17: Primer pairs for Taq PCRs to confirm mutants of M. xanthus 

The primers were used for Taq PCRs to confirm mutants of M. xanthus, created by gene disruption 
using pCR2.1®TOPO insertion, pWSU41 first crossover insertions and second crossover in-frame 
deletion. The standard primer M13 forward and reverse were obtained from Invitrogen. 

No. Name Sequence 

1 M13 forward GTAAAACGACGGCCAGT 
 M13 reverse CAGGAAACAGCTATGAC 
2 CONF_0142F GCGGCGGGGACGGCCG 
 CONF_0142R CGGCGTGGCCTCCAGC 
3 CONF_0144F CTGTTCGACGCGTTGA 
 CONF_0144R CACCAGGAAGTCGTGC 
4 CONF_1562F CTGGAGTCTTAAGCCCC 
 CONF_1562R CAGCCTTCGAGCGAAGC 
5 CONF_1619F GTTCGGCGTCACGGTGC 
 CONF_1619R CTCGTGCCGGTTCATGA 
6 CONF_1808F GAGGAGTTGTGTGATCC 
 CONF_1808R GAGTGGTAGGTCGCGTA 
7 CONF_1864F GAGTCGACCTCCATGG 
 CONF_1864R GCATCTGGTGCATGAGG 
8 CONF_1893F GTAGAGTTCGGCGAGG 
 CONF_1893R CCAGCTCTTCATTCACA 
9 CONF_1988F GCTCCGTGGTGCTCTA 
 CONF_1988R ACCACGGTGTCGAAGC 
10 CONF_2094F CAGAACCCTTAGGCGAT 
 CONF_2094R CACCTGGACCGAGCCAC 
11 CONF_2347F CCCGAGTTGTACGAGAA 
 CONF_2347R GGCCGGCGAGGGCGTGT 
12 CONF_2440F GCCCCTCACGGTGGGGCTT 
 CONF_2440R CCCGGAGGCACAGGACGGT 
13 CONF_2520F CGCTCTAAGATGTCCGG 
 CONF_2520R GATCCACCTCGCTGCCA 
14 CONF_3203F GGAGGGGCAACGTTGCCCC 
 CONF_3203R GCCCAGCGTCTCCACCTGAC 
No. Name Sequence 

15 CONF_4189F CGATATCTGCACGGTCA 
 CONF_4189R GTGAAGACGATGGCGA 
16 CONF_4535F CGAACTCACCAGTGCG 
 CONF_4535R CGCAGTCTCAAGCCAA 
17 CONF_5055F CCCAGCGAGCTGCTGCCCCGC 
 CONF_5055R GCCCGCTCGTCCTCCAGCTCGC 
18 CONF_5484F CAAGGATGCGACGCATT 
 CONF_5484R GGTGCATGTTGATGCTC 
   
19 CONF_pSWU41F CTGGCGAAAGGGGGATGTGCTGCA 
 CONF_pSWU41R GACATTCATCCGGGGTCAGCACCGT 
20 CONF_D3702F AGTGTCAATGAGCCAGTCCGATTC 
 CONF_D3702R GTGGCCTCCCACCGCGAAGAA 
21 CONF_D6967F GGCAGCGGTATCCCGTCAACA 
 CONF_D6967R CGTCCTCCAACTCCCGCAACA 

 

 



Material and Methods 
 

 89

 

2.11.3 Extraction of genomic DNA from M. xanthus cultures 

For the extraction of genomic DNA from M. xanthus, wild type or mutants strains were 

incubated till an O.D.600 of approx. 1.0, as described before (section 2.8.1). The cells were 

then harvested by centrifugation (Eppendorf 5810R, Rotor: A-4-81, 4 °C, 10 min, 3250 x g) 

and resuspended in 3 ml STE buffer (table 2.6). Furthermore, 300 µl of a 10 % SDS solution 

and 300 µl proteinase K (1 mg/ml) were added and gently mixed. The tube was incubated at 

55 °C for 2 h, and periodically inverted. Then, 1.2 ml 5 M sodium chloride solution was 

added slowly. After the mixing with 5 ml Chloroform the tube was put on a tumble shaker 

with 10 rpm for 45 min. Subsequently, the tubes were centrifuged (4 °C, 10 min, 3250 x g) for 

the separation of the aqueous and the organic phase. The upper (water) phase was transferred 

carefully into a new tube. The same volume of isopropanol was added. The tube was mixed 

gently and incubated at room temperature for 10 min, followed by another centrifugation step 

(4 °C, 10 min, 3250 x g). The supernatant was removed and the pellet was washed 3 times 

with 4 °C cold 70 % ethanol, each time followed by centrifugation as before. After the last 

centrifugation all liquid was removed quantitatively. The tubes were air-dried completely at 

room temperature. The pellet was resuspended in 200 µl TE buffer (table 2.6) and stored at - 

20 °C. 
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2.11.4 Extraction of plasmid DNA from E. coli 

a) by ´kits´ 

Isolation of plasmid DNA (table 2.22) from E. coli strains was performed by 

NucleoSpin®Extract II kit, following the manufacturer’s instruction. The cells were grown as 

described before (section 2.8.2). For elution of plasmid DNA, always the minimal volume 

was used (20 µl H2O) and flow-though was stored at - 20 °C. 

 

b) by alkaline lysis 

To isolate plasmid DNA, a modified protocol of alkaline lysis (Birnboim and Doly, 1979) was 

used. The E. coli cells were grown as described before (section 2.8.2), the cell pellets were 

resuspended in 250 µl buffer P1 (table 2.6). For cell lysis, 250 µl buffer P2 was added and the 

tube was inverted 10 times. To neutralize pH again 250 µl buffer P3 was added and the tube 

was inverted 10 times, followed by 5 min incubation on ice. Cell debris and precipitated 

proteins were removed by centrifugation (Biofuge fresco, 4 °C, 10 min at 16060 x g). The 

supernatant was transferred into a new tube and mixed with 600 µl isopropanol. Then, the 

tube was inverted 10 times, again followed by centrifugation (4 °C, 10 min at 16060 x g). 

After washing the DNA pellet with 500 µl 70 % ethanol, all liquid was removed 

quantitatively. The tubes were dried completely at room temperature. The pellet was 

resuspended in 40 µl pure H2O and stored at - 20 °C. 

 

 

2.11.5 Separation and purification of DNA molecules 

a) Agarose gel electrophoresis 

For the separation of DNA molecules by size, 0.8 % (w/v) agarose gels were used. The 

agarose was mixed in TBE-buffer (table 2.6) and boiled until the agarose was dissolved 

completely. Gels were casted at ca. 40 °C after mixing with ethidium bromide solution (2.5 µl 

ethidium bromide to 35 ml agarose solution). After solidification the gels were put into the 

electrophoresis chamber, and overlaid with TBE buffer. The samples were mixed with sample 

loading buffer (table 2.6), before application. DNA electrophoresis was performed with 50 – 

70 V for approx. 2 h. Migration distance of DNA molecules was correlated to an applied 

DNA ladder as size marker (table 2.2). 
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b) Clean-up of DNA molecules from agarose gels 

For the extraction of DNA molecules from agarose gels (PCR products or DNA restrictions), 

the area of interest was cut out and transferred into a new tube (exposure time on UV table as 

short as possible). The single working steps of the NucleoSpin®Extract II kit (lysis of agarose 

and purification) were performed as described in the manufactures protocol. For elution, 

always the minimal volume was used (20 µl H2O) and flow-through was stored at - 20 °C. 

 

c) Precipitation of DNA molecules 

For the precipitation of DNA molecules from 100 µl solution, 10 µl 3 M sodium acetate 

solution was added. Then, the 300 µl pure ethanol was admixed. The tube was incubated at –

 20 °C for 1 h. Subsequently, the DNA was pelletized by centrifugation (4 °C, 10 min at 

16060 x g). The supernatant was removed quantitatively. The pellet was washed three times 

with 70 % ethanol, followed by centrifugation as before. After the last washing step the pellet 

was dried at room temperature completely. Finally, the pellet was resuspended in 20 µl pure 

H2O and stored at - 20 °C. 
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2.11.6 Polymerase chain reaction (PCR) 

Selected genomic DNA regions from M. xanthus were amplified in vitro by polymerase chain 

reaction. The start- and end-points were defined by oligonucleotides, homologue to genomic 

DNA of M. xanthus (primers, table 2.14-2.17). A single reaction cycle is divided into three 

parts:  

1) Denaturation (98 °C). Double-stranded DNA melted to build 2 separate single strands. 

2) Annealing (the annealing temperature was calculated by the primer sequence). The 

oligonucleotides can bind to homologue DNA sequences. 

3) Elongation (72 °C). Starting from the primer sequence the complementary strand can be 

synthesized by a heat stable DNA polymerase in 5´-3´ direction. The elongation time was 

correlated to the size of the amplified region.  

The cycle was repeated 35 times. 

 

a) DNA polymerases used  

Amplification of selected genomic DNA regions from M. xanthus for single cross gene 

inactivation was performed by Taq polymerase. Taq polymerases add template-free 

characteristic poly-adenine tails (´sticky ends´) to newly synthesized DNA sequences, which 

are necessary for an efficient pCR®2.1-TOPO cloning. 

Error-free DNA amplificates were produced by high-fidelity DNA Phusion polymerase with 

proof-reading function. This enzyme was used for the amplificates to create markerless in-

frame deletions of MXAN_3702 and MXAN_6967. Phusion generated DNA molecules were 

precipitated, resuspended and subsequently post-processed by Taq polymerase to build the 

poly-adenine tail for pCR®2.1-TOPO cloning. 

 

b) PCR composition  

For a PCR batch, all chemicals were mixed together (table 2.18-2.20), but not the polymerase. 

Before the first PCR cycle starts the tubes were initially heated for 3 min to 98 °C to ensure 

single-stranded, genomic DNA. Subsequently, the polymerase was added and the first cycle 

was started immediately. 
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Table 2.18: Composition of an in vitro Taq PCR batch. 

The polymerase-corresponding buffers are shown by underlining. The used Taq polymerase builds 
template-free poly A tails on the 3´ end of the PCR product, which are required for pCR®2.1-TOPO 
cloning. 

Chemical, buffer Volume 

10x KCl buffer 2.5 µl 
25 mM MgCl2 2.5 µl 
dNTP´s (1.25 mM) 4.0 µl 
DMSO 0.6 µl 
Forward primer (50 pM) 0.2 µl 
Reverse primer (50 pM) 0.2 µl 
Template DNA 0.2 µl 

H2O 14.6 µl 

Taq polymerase 0.2 µl 
 
 
 
Table 2.19: Composition of an in vitro Taq post-processing PCR batch. 

The polymerase-corresponding buffers are shown by underlining. The used Taq polymerase builds 
template-free poly A tails on the 3´ end of the PCR product, which are required for pCR®2.1-TOPO 
cloning. 

Chemical, buffer Volume 

10x KCl buffer 1.5 µl 
25 mM MgCl2 1.5 µl 
dATP (1.25 mM) 3.8 µl 
DMSO 0.4 µl 
Target DNA 5 µl 

H2O 2.7 µl 

Taq polymerase 0.1 µl 
 
 
 
Table 2.20: Composition of an in vitro Phusion PCR batch. 

The polymerase-corresponding buffers are shown by underlining. 
Chemical, buffer Volume 

5x "GC" buffer 2.5 µl 

dNTP´s (1.25 mM) 4.0 µl 

DMSO 0.6 µl 

Template DNA 0.2 µl 

H2O 14.6 µl 

Phusion polymerase 0.2 µl 

Forward primer (50 pM) 0.2 µl 

Reverse primer (50 pM) 0.2 µl 
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2.11.7 Enzymatic hydrolysis and ligation of DNA molecules 

a) Digestion/double digestion 

PCR amplificates were cut-out or their internal sequences were confirmed by digestion of 

plasmids with highly sequence-specific restriction-endonucleases (REs). The reaction batches 

for digests or double digests are shown in table 2.21. 

 

 

Table 2.21: Composition of single and double RE digests of DNA molecules. 

The RE-corresponding buffers were obtained from the company and are shown by underlining. The 
volume of the second REs for double digests could be varied, depending on manufacturer’s 
recommendation and the buffer used. The DNA concentration was estimated as before using a 
biophotometer, 1 µg usually was equal to approx. 4 µl. 

Digest    Double digest  

Target DNA 0.5-1.0 µg (ca. 4 µl)   Target DNA 0.5-1.0 µg (ca. 4 µl) 

RE-buffer 2 µl   RE-buffer 2 µl 

RE 0.2 µl   RE 1 0.2 µl 

H2O 13.8 µl   RE 2 x µl 

    H2O y µl 

      

Total volume 20 µl   Total volume 20 µl 

 

 

The restriction was performed for ca. 3 h at the optional temperature (usually 37 °C), 

followed by an agarose gel electrophoresis for band-detection and to control hydrolysis 

efficiency. If necessary, another 0.1 µl of the restriction enzyme(s) was added and the mixture 

was incubated for another hour. In case of further cloning steps (ligation of DNA molecules), 

the restriction batch was heat-inactivated, loaded on a quantitative agarose gel and the band of 

interest was extracted as described before (section 2.11.5). 

 

b) Ligation of DNA molecules 

Vector-Insert ligation by the Topo-cloning kit  

Direct cloning of Taq-derived or Taq post-treated DNA fragments was performed by the 

pCR2.1-Topo cloning kit (Invitrogen). All steps of Topo-cloning were performed, following 

the manufacturers instruction, but with reduced volume. In PCR reactions, the Taq 

polymerase synthesizes template-free poly-adenine tails at the 5´-ends of new synthesized 

DNA molecules. These cohesive-ended fragments (´sticky end´) utilizing the free 3´-thymine 

overhangs at pCR2.1-Topo vectors to bind a PCR product (insert) in a topoisomerase-
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catalyzed reaction, an enzyme covalently attached to both of the free 3' ends of the linear 

vector.  

 

Ligation of digested D.A molecules by T4-D.A ligase 

For the ligation of digested vector- and insert-molecules, T4-DNA ligase was used. The ligase 

connects 5´-phosphate groups to 3´-hydroxy groups of DNA molecule(s) with ATP and Mg2+ 

ions as co-factors. At first, vector and insert DNA molecules were digested by the respective 

REs, controlled on agarose gels and subsequently purified from these. DNA concentrations 

were checked by a biophotometer to ensure a molar ratio of vector/insert of 1/3. The required 

amounts of DNA were mixed with 10x ligation buffer and one unit T4-DNA ligase, following 

the manufacturer’s instruction. Then, ligation was performed by incubation overnight at 16 °C 

in a Comfort thermomixer. Ligation batches were used either directly for transformation of E. 

coli cells (section 2.11.8) or after purification by precipitation (section 2.11.5 c). 

 

c) Constructed plasmids 

Plasmids (table 2.22) were isolated from E. coli strains and confirmed via RE-hydrolysis or, 

in case of in-frame deletion constructs (table 2.22; no. 17 and 18) via DNA sequencing by the 

company Eurofins MWG. After subsequent insertion of the respective construct into the 

M. xanthus chromosome, plasmid integration was controlled by PCR (section 2.11.2). 

 
 
Table 2.22: Confirmed plasmids, pCR2.1-Topo- and pSWU41-derivates. 

No. Name Plasmid description 

1 pKO_0144 
681 bp amplificate (Taq) Primer KO_MXAN0144for/rev with gDNA M. 
xanthus DK1622 in pCR2.1Topo 

2 pKO_1562 
291 bp amplificate (Taq) Primer KO_MXAN1562for/rev with gDNA M. 
xanthus DK1622 in pCR2.1Topo 

3 pKO_1808 
643 bp amplificate (Taq) Primer KO_MXAN1808for/rev with gDNA M. 
xanthus DK1622 in pCR2.1Topo 

4 pKO_1864 
462 bp amplificate (Taq) Primer KO_MXAN1864for/rev with gDNA M. 
xanthus DK1622 in pCR2.1Topo 

5 pKO_1893 
294 bp amplificate (Taq) Primer KO_MXAN1893for/rev with gDNA M. 
xanthus DK1622 in pCR2.1Topo 

6 pKO_1988 
595 bp amplificate (Taq) Primer KO_MXAN1988for/rev with gDNA M. 
xanthus DK1622 in pCR2.1Topo 

7 pKO_2440 
700 bp amplificate (Taq) Primer KO_MXAN2440for/rev with gDNA M. 
xanthus DK1622 in pCR2.1Topo 

8 pKO_3203 
654 bp amplificate (Taq) Primer KO_MXAN3203for/rev with gDNA M. 
xanthus DK1622 in pCR2.1Topo 

9 pKO_4189 
432 bp amplificate (Taq) Primer KO_MXAN4189for/rev with gDNA M. 
xanthus DK1622 in pCR2.1Topo 

10 pKO_4535 
360 bp amplificate (Taq) Primer KO_MXAN4535for/rev with gDNA M. 
xanthus DK1622 in pCR2.1Topo 

11 pKO_5055 
744 bp amplificate (Taq) Primer KO_MXAN5055for/rev with gDNA M. 
xanthus DK1622 in pCR2.1Topo 
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No. Name Plasmid description 

12 pKO_5484 
426 bp amplificate (Taq) Primer KO_MXAN5484for/rev with gDNA M. 
xanthus DK1622 in pCR2.1Topo 

   

13 pD3702_F1 
521 bp amplificate (Phusion) Primer D3702_F1for/rev with gDNA M. xanthus 
DK1622 in pCR2.1Topo 

14 pD3702_F2 
544 bp amplificate (Phusion) Primer D3702_F2for/rev with gDNA M. xanthus 
DK1622 in pCR2.1Topo 

15 pD6967_F1 
372 bp amplificate (Phusion) Primer D6967_F1for/rev with gDNA M. xanthus 
DK1622 in pCR2.1Topo 

16 pD6967_F2 
501 bp amplificate (Phusion) Primer D6967_F2for/rev with gDNA M. xanthus 
DK1622 in pCR2.1Topo 

   

17 pDEL3702 
521 bp fragment from ┴ SacI/NotI of pD3702_F1 and 544 bp fragment from 
┴ NotI/BamHI of pD3702_F2 in pSWU41┴ SacI/BamHI 

18 pDEL6967 
372 bp fragment from ┴ SacI/NotI of pD6967_F1 and 501 bp fragment from 
┴ NotI/BamHI of pD6967_F2 in pSWU41┴ SacI/BamHI 

 

 

2.11.8 Transformation of bacteria via electroporation 

a) Transformation of E. coli DH10B 

For the preparation of electro-competent E. coli DH10B cells, the strain was grown to an 

O.D.600 of 0.6 – 0.8. Aliquots of 1.5 ml were harvested by centrifugation (Biofuge fresco, 

4 °C, 5 min at 16060 x g). Then, cell pellets were washed three times with ice-cold 10 % 

glycerol and finally resuspended in 40 µl sterile H2O. 

Insertion of DNA molecules was accomplished by electroporation. Electro-competent E. coli 

cells were mixed with different volumes (1, 2, 4 µl) of ligation batches from pCR2.1-Topo 

cloning or pSWU41-based ligations (section 2.11.7 b) and transferred into pre-cooled 1 mm 

electro-cuvettes. Thus, electroporation was performed in a GenePulser electroporator (table 

2.7), using a voltage of 1.25 kV, a capacitance of 25 µF and a resistance of 200 Ω. 

Directly after electroporation, phenotypic expression was realized in 1 ml LB medium (table 

2.11) at 37 °C with 900 rpm (thermomixer Comfort) for 1 h. 

Subsequently, cells were transferred to LB-agar plates, containing kanamycin with an end-

concentration of 40 µg/ml. In case of conventional pCR2.1-Topo cloning, 40 µl of (20 mg/ml) 

x-Gal solution (in dimethylformamide) was distributed on the surface on the agar plates, 

which allows differentiation of clones, containing auto-ligated vectors or vector-insert 

constructs. After 16-24 h incubation, clones were isolated on new LB-agar plates (40 µg/ml 

kanamycin) and finally used to inoculate new liquid growth cultures (section 2.8.2) for 

plasmid isolation and verification. Inserts were controlled by digestion with RE(s) to prove 

internal PCR-derived sequences. In case of pSWU41-based in-frame deletion constructs, 

plasmids were finally confirmed by DNA sequencing. 
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b) Transformation of M. xanthus DK1622 

For the preparation of electro-competent M. xanthus DK1622 cells, the strain was grown to an 

O.D.600 of 0.6 – 0.8. Aliquots of 1.5 ml were harvested by centrifugation (Biofuge fresco, 

4 °C, 5 min at 16060 x g). Then, cell pellets were washed three times with sterile, ice-cold 

H2O and finally resuspended in 40 µl sterile H2O. 

Insertion of DNA molecules was accomplished by electroporation. Electro-competent 

M. xanthus cells were mixed with different volumes (1, 2, 4 µl) of confirmed pCR2.1-Topo 

constructs or pSWU41-based constructs after extraction from E. coli (section 2.11.4), partially 

followed by purification (section 2.11.5). The mixture was transferred into pre-cooled 1 mm 

electro-cuvettes. Thus, electroporation was performed in a GenePulser electroporator (table 

2.7), using a voltages between 0.85 – 1.25 kV, a capacitance of 25 µF and a resistance of 400 

Ω. 

Directly after electroporation, phenotypic expression was realized in 1.5 ml CTT medium 

(table 2.10) at 30 °C with 300 rpm (thermomixer Comfort) for 6 h. 

Subsequently, cells were mixed with CTT-soft-agar and transferred to CTT-agar plates, both 

containing kanamycin with an end-concentration of 40 µg/ml. After a few days incubation, 

clones were isolated on new CTT-agar plates (40 µg/ml kanamycin) and used to cross-check 

sucrose sensitivity in case of pSWU41-based single crossover mutants. 

Furthermore, M. xanthus clones were used to inoculate new growth cultures (section 2.8.1) for 

isolation of genomic DNA and final verification of plasmid-insertion in the M. xanthus 

genomic DNA by PCR.  

 

 

2.12 Methodology of gene inactivation experiments in M. xanthus 

Targeted gene inactivation experiments had become already standard procedures for 

myxobacteria (Bode et al., 2006b; Simunovic et al., 2007a; Meiser et al., 2008). Briefly, two 

different strategies were used: a) in-frame gene deletion by double crossover and b) gene 

disruption by single crossover insertion 

 

a) Gene inactivation by double crossover deletion 

In the attempt to delete in-frame the putative Fur genes MXAN_3702 and 6967 by double 

crossover (figure 1.15), the two terminal fragments of both genes were amplified by Phusion 

PCR, and each cloned into plasmid pCR2.1-Topo in E. coli. The used primer pairs for the in-



Material and Methods 
 

 98 

frame deletion can be found in table 2.16. The products were then excised as SacI/BamHI or 

BamHI/XbaI fragments, and cloned into plasmid pSWU41 which had been digested 

previously with both SacI/XbaI (section 2.11.7). Ligated plasmids were transferred into 

E. coli. Re-isolated plasmids were controlled by RE digestion and DNA-sequencing. The final 

deletion-constructs were introduced into M. xanthus by electroporation, and clones were 

selected for kanamycin resistance and sucrose sensitivity. Finally, correct integration was 

confirmed by PCR (primer: table 2.17).  

To induce double homologous recombination (second crossover), single crossover mutants 

were grown in CTT medium without kanamycin and were repeatedly recultured in fresh 

medium. Aliquots were regularly drawn from the culture broth, mixed with CTT soft agar 

containing 5 % sucrose, and plated onto CTT agar containing 5 % sucrose. After a few days, 

single clones were transferred onto fresh CTT agar plates containing either sucrose or 

kanamycin.  

For verification of double crossover mutants, colonies of M. xanthus which grew only on 

sucrose agar were analyzed genetically using PCR after counter selection (section 2.12). Both 

primers (table 2.17) harbor in the surrounding regions of the deleted sequence (Weinig et al., 

2003; Simunovic et al., 2006). Wild type and positive markerless in-frame deletion mutants 

show significant differences in length (321 nt less in deletion mutant of MXAN_3702 and 324 

nt in deletion mutant of MXAN_6967; figure 1.15 E) of the specific PCR amplificate.  

The PCR amplificates of confirmed in-frame deletion mutants were finally sequenced to 

prove an intact genomic context without frame-shift. 

 

b) Gene inactivation by single crossover insertion 

The genes MXAN_0142, 0144, 1562, 1619, 1808, 1864, 1893, 1988, 2094, 2347, 2440, 2520, 

3203, 4189, 4535, 5055 and 5484 were targets to be disrupted by insertional mutagenesis 

(single crossover). In all cases, internal gene fragments were amplified by Taq PCR using 

primers in the table 2.15. The PCR constructs were cloned into pCR2.1-Topo vectors (section 

2.12), and the resulting plasmids were purified from E. coli DH10B and introduced into 

M. xanthus DK1622 via electroporation as described (section 2.11.8) (Bode et al., 2006b), 

leading to kanamycin-resistant mutants, respectively. For detection of single crossover 

insertion mutants of M. xanthus (Meiser et al., 2006a), PCR on genomic DNA was run, using 

one primer from the pair harboring in the vector backbone (table 2.17), giving a specific 

signal only if insertions occur at the expected position (figure 1.16 c). 
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2.13 Secondary metabolite analysis by HPLC-MS 

2.13.1 Extraction of secondary metabolites from XAD 

All chemicals used for secondary metabolite analysis were obtained in highest quality 

standard. 

Samples were obtained from M. xanthus cultures from CTT and CTT-FeMIN, as well as from 

mutant cultures, each time as triplicates (section 2.8.1). The XAD resin was separated from 

the culture medium by sieving, and washed twice with methanol (double of the culture 

volume), each time for 25 min. The extracts were pooled in roundbottom-flasks and then 

concentrated in vacuo and resuspended in methanol (10 % of the original culture volume). 

 

2.13.2 HPLC-MS system and conditions 

HPLC-MS analysis of secondary metabolite extracts was performed by an Agilent 1100 

system (125 × 2 mm Nucleodur C18/3 µm RP-column, Macherey Nagel) using a mixture of 

solvents A (H2O + 0.1 % formic acid) and B (acetonitrile + 0.1 % formic acid) with a flow 

rate of 0.4 ml/min (Meiser et al., 2008). The gradient starts with 5 % solvent B and a linear 

increase to 40 % within 30 min, followed by an increase to 95 % solvent B within 40 min. 

Mass detection was carried out using a Bruker Daltonics HCT Plus mass spectrometer 

operating in positive and negative ionization modes (mass range, m/z = 100–1000). An aliquot 

of 5 µl of different dilutions (1 % and 10 % in pure methanol) of the culture extracts were 

injected. The 7 compounds (DKxanthene 560, myxalamid A, myxovirescin A and 

myxochromide A2, Cittilin A, Myxochelin A and B) were detected semi-quantitative by MS2 

fragmentation in positive ionization mode. 

Screening for novel metabolites was performed by detailed analysis of extracts grown under 

iron-poor conditions (CTT-FeMIN) using both UV/Vis (DAD-detector) and mass spectrometry 

in comparison to data obtained following growth in iron-repleted medium (CTT). 

 

2.13.3 Qualitative and semi-quantitative data interpretation of 7 metabolites by HPLC-

MS 

Relative quantification was carried out on a representative member of each of the metabolite 

families DKxanthene 560, cittilin A, myxovirescin A (antibiotic TA), myxalamid A, 

myxochromide A2, and myxochelins A and B as previously described (Krug et al., 2008a), 

based on peak integration from extracted ion chromatograms, and compared to yields from 

the wild type sample. Here, production rates were calculated as function of peak area O.D.-1 h-
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1, to account for minor differences in growth. All samples were compared along standard 

solutions.  

 

2.13.4 Generation of standard solutions 

Data from HPLC-MS of all samples were compared to standard solutions. These solutions 

were generated from independently grown wild type cultures (as triplicates) from M. xanthus 

under iron-rich conditions (CTT) as described (section 2.8.1). XAD extraction and HPLC-MS 

analysis was performed as before (section 2.13). To generate comparable values, production 

rates were calculated as function per time per O.D.600 (as peak area O.D.-1 h-1). 
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3. Results 

  

3.1 Bioinformatic analysis of iron uptake regulation in M. xanthus 

As a starting point, the genome of M. xanthus was examined by bioinformatic methods to 

elucidate the biochemical background of iron-regulation. Therefore, amino acid sequence 

comparison with members of each Fur homologue family was performed (section 3.1.1) to 

identify potential candidates in the genome of M. xanthus. Further analysis of these proteins 

exhibit residues involved in metal-binding, including the preferred interaction partner, which 

allows the classification of the M. xanthus Fur proteins into known Fur sub-families (see 

introduction, section 1.1.2). In addition, Fur boxes in the genome of M. xanthus were detected 

(section 3.1.2), which allows the postulation of a Fur consensus sequence of M. xanthus 

(figure 3.3). Furthermore, the entirety of all proteins from M. xanthus, which are putatively 

involved in iron-uptake and transport could be determined (section 3.1.3).  

 

3.1.1 Identification and classification of Fur homologues in M. xanthus  

For the identification of Fur homologues in M. xanthus, BLAST analysis against the 

translated M. xanthus DK1622 genome was performed, using a sequence representative of 

each Fur sub-family: Fur, Zur, PerR, Mur, Nur and Irr. The result revealed clearly two Fur 

family members (MXAN_3702 and MXAN_6967), which show only 26 % mutual sequence 

identity.  

In order to classify the two M. xanthus Fur homologues, important residues involved in 

selective metal binding (see introduction 1.1.2) were compared. These amino acids were 

originally discovered in crystal structures of Fur homologues, which have been solved or by 

site-directed mutagenesis of Fur proteins, as for e.g. Fur from E. coli, P. aeruginosa and 

V. cholerae; Zur from M. tuberculosis; Irr from B. japonicum, PerR from B. subtilis; and Nur 

from S. coelicolor.  

In order to identify the equivalent residues in MXAN_3702 and MXAN_6967, a multiple 

sequence of Fur homologues were aligned by ClustalW2 algorithm, employing verified 

members of each Fur sub-type (figure 3.1). To identify Fur sub-types in this analysis, searches 

were carried out with the three additionally selected, closest homologues of MXAN_3702 and 

MXAN_6967 (detailed analysis set up, see section 2.5).  
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Figure 3.1: Multiple sequence alignment (ClustalW) of Fur and Fur family members. 

Metal binding residues in the M. xanthus DK1622 sequences of MXAN_3702 and MXAN_6967 were detected by alignment with Fur sub-types (Fur, Nur, Mur, 
Zur, Per and Irr) from A. cellulolyticus 11B (Acel), Anaeromyxobacter sp. K (AnaeK), A. radiobacter K84 (Arad), B. licheniformis ATCC14580 (BLi), B. japonicum 
(bll), B. pumilus SAFR-032 (BPUM), B. subtilis str. 168 (BSU), E. coli O157:H7 (ECSP), Enterobacter sp. 638 (Ent638), G. sulfurreducens PCA (GSU), 
M. xanthus DK1622 (MXAN), O. carboxidovorans OM5 (OCAR), P. aeruginosa PAO1 (PA), B. amyloliquefaciens FZB42 (RBAM), R. leguminosarum (RL), 
L. alexandrii DFL-11 (SADFL11), S. cellulosum So ce56 (sce), S. coelicolor A3(2) (SCO), S. sviceus ATCC 29083 (SSEG), S. aurantiaca DW4/3-1 (Stiau), 
V. cholerae (VC) and Y. pestis D27 (YPD27). 
The key residues are indicated by colors as follows: Red: Fe binding sites in Fur (Zn2 site); Blue: Zn structural site (Zn1 site); Purple: Mn binding site; Orange: 
DNA-binding motif of Fur; Yellow: regulatory site in PerR; Green, Ni regulatory site in Nur; Dark green Ni/Zn structural site in Nur; Light blue: Zn binding residues 
in Zur (Zn2 site); Grey: heme-binding motif in Irr.  
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The proteins Fur, Zur, PerR and Nur contain two metal-binding sites, a proposed structural 

and a regulatory (see introduction, section 1.1.2). Both of these sites show variations in site 

compositions, which account for metal selectivity. The character and location of these motifs 

are shown in figure 3.1.  

The analysis revealed that MXAN_3702 incorporates both metal binding motifs (a structural 

Zn- and a Fe-binding site) of iron-responsive Fur proteins, suggesting that it be functional in 

M. xanthus iron sensing. In contrast, the second Fur protein MXAN_6967 contains only a 

single structural Zn-binding motif, which is noted only in Irr and Mur proteins (see 

introduction, section 1.1.2). Two of the five residues which comprise the iron-binding site 

were found absent in MXAN_6967, clearly eliminating a possible function in iron sensing. To 

determine the sub-family relationship of MXAN_6967 more detailed, a phylogenetic tree 

analysis was performed using ClustalW2 algorithm (figure 3.2). 
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Figure 3.2: Phylogenetic tree analysis by ClustalW2 of M. xanthus DK1622 Fur proteins and 

related sub-families.  

The two proteins from M. xanthus MXAN_3702 and MXAN_6967 can be found in the red boxes. The 
three each closest homologues of MXAN_3702 and MXAN_6967 and representatives of each type of 
Fur sub-family members (Fur, Zur, PerR, Mur, Nur, and Irr) were used in the classification of Fur sub-
group belonging, employing sequences from A. cellulolyticus 11B (Acel), Anaeromyxobacter sp. K 
(AnaeK), A. radiobacter K84 (Arad), B. licheniformis ATCC14580 (BLi), B. japonicum (bll), B. pumilus 
SAFR-032 (BPUM), B. subtilis str. 168 (BSU), E. coli O157:H7 (ECSP), Enterobacter sp. 638 
(Ent638), G. sulfurreducens PCA (GSU), M. xanthus DK1622 (MXAN), O. carboxidovorans OM5 
(OCAR), P. aeruginosa PAO1 (PA), B. amyloliquefaciens FZB42 (RBAM), R. leguminosarum (RL), 
L. alexandrii DFL-11 (SADFL11), S. cellulosum So ce56 (sce), S. coelicolor A3(2) (SCO), S. sviceus 
ATCC 29083 (SSEG), S. aurantiaca DW4/3-1 (Stiau), V. cholerae (VC) and Y. pestis D27 (YPD27). 
 
 

The phylogenetic tree analysis discovered that MXAN_3702 and its closest homologues are 

only distantly related to the majority of iron-responsive Fur proteins from both Gram-positive 

and Gram-negative bacteria, consistent with convergent evolution of regulatory functions 

(figure 3.2). On the other hand, the phylogenetic analysis suggests that MXAN_6967 shows 

closest relationship to the heme-responsive Irr proteins, since MXAN_6967 is localized in this 
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sub-group (figure 3.2). Albeit MXAN_6967 and other Fur homologues from myxobacteria 

(S. aurantiaca DW 4/-1 and S. cellulosum So ce56) show all high sequence homology among 

themselves, indicated in figure 3.2 by clustering in an additional branch from Irr proteins. In 

any case, the exact function of MXAN_6967 in M. xanthus remains uncertain. 

 

 

3.1.2 Prediction of Fur boxes in the M. xanthus genome 

Given the putative function of MXAN_3702 as an authentic (iron-responsive) Fur protein, the 

genome was scanned for the presence of Fur boxes using the software tool Virtual Footprint 

3.0 (detailed description in section 2.5). Fur boxes are mostly located between the – 50 and  

– 10 sites of promoters of Fur-repressed genes (relative to transcriptional start sites), and 

consist of a 9-1-9 bp inverted repeat with a strain-specific consensus sequence (see 

introduction 1.1.2).  

Here, Fur-binding sites match was limited to sequences with high similarities to the 

P. aeruginosa Fur model consensus sequence by position weight matrix (PWM) score higher 

than 9.9. Hits were checked manually for the distance to the putative Shine-Dalgarno 

sequence and gene start site, as well as for overall genomic context. Overall, 40 putative Fur 

boxes could be identified using this method (table 3.1). 
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Table 3.1: Putative Fur boxes identified in the genome of M. xanthus DK1622. 

Hits from Virtual Footprint version 3.0 with a position weight matrix (PWM) score higher than 9.9 were manually checked for the distance to the putative Shine-
Dalgarno sequence and gene start site (max. 300 bp distance to start), as well as for overall genomic context. Uncharacterized proteins were further checked by 
BLAST analysis, positive results are shown in squared brackets. Genes in bold indicate possible operon structures (see text). 

No. 
PWM 
Score 

Gene Fur box sequence 
Distance to 
translational 
start site 

Description of proposed function 

1 10.17 MXAN_0085 GATAAAAGTAATCATCAAC 35 Uncharacterized protein 

2 9.91 MXAN_0122 GAAAAAGAATCTCAATCAC 8 Metal-dependent GTP cyclohydrolase II 

3 11.15 MXAN_0501 GAAATTTCTGATTATTTTT 48 D-fructose-6-phosphate amidotransferase GlmS 

4 10.71 MXAN_0502 TCAAATTCTTATTATTTAT 2 Transcriptional regulator AsnC 

5 9.91 MXAN_0612 CATATTGGGTCTCAATAAC 115 Sensory box histidine kinase 

6 9.95 MXAN_0675 GCGAATCATCATCATCGCC 10 Aha1 domain protein 

7 12.24 MXAN_1314 GAAAATCAGTATCAATATC 27 Uncharacterized protein  

8 10.67 MXAN_1559 GAAAACCACCATCATTCGC 66 Uncharacterized protein [putative RNA methylase] 

9 12.2 MXAN_1688 GAGAATGAGTATCAATATC 62 TonB family protein (MxcH homologue) 

10 10.15 MXAN_1873 GACAAGACAAGTCATTAAC 47 Site-specific recombinase, integrase family 

11 10.37 MXAN_1984 GACAATGCCCCTCATTTCC 274 Uncharacterized protein  

12 9.95 MXAN_2884 GGAATTGTTTGTCATTGTG 91 Tetratricopeptide repeat protein 

13 9.96 MXAN_2974 CACAATGAACGTCAGTTCG 36 Uncharacterized protein [endopeptidase inhibitor activity] 

14 10.42 MXAN_3603 CCCAATAAACATTATTGAC 14 Uncharacterized protein 

15 12.16 MXAN_3639 GAAAATGATATTCAATATC 16 Iron-chelator utilization protein (MxcB homologue) 

16 12.66 MXAN_3647 GAAAATCATTCTCATTATC 51 2,3-Dihydro-2,3-dihydroxybenzoate dehydrogenase MxcC 

17 10.65 MXAN_3915 GAGAACGATTCTCAATTTC 37 TonB family protein 

18 10.2 MXAN_3974 GAAAAATACTATGATTCTG 37 Sensory box histidine kinase 

19 11.58 
MXAN_4532 
or 
MXAN_4533 

GATAATAACGATTATTACA 
216 Non-ribosomal peptide synthase 

124 Major facilitator family transporter 

20 10.87 MXAN_4784 TAAAATCGTTTTCATATTC 120 Sulfate permease SulP family  

21 10.03 MXAN_5024 GTTAATGACAATCAACTTC 32 Delta-60 repeat domain protein  

22 11.64 MXAN_5025 GATAATCGTTATCAGTTTC 50 Uncharacterized protein [putative iron-regulated protein A precursor] 

23 10.08 MXAN_5047 AGCAATCCTTCTCATTGCC 27 Uncharacterized protein 
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No. 
PWM 
Score 

Gene Fur box sequence 
Distance to 
translational 
start site 

Description of proposed function 

24 10.28 MXAN_5098 CTCAATCGCAATCATTCCC 88 Ig domain protein 

25 9.96 MXAN_5348 CGGAATCACCATCAGTGTG 7 M23 zinc metallopeptidase domain protein  

26 10.07 MXAN_5416 CACAAGAAGATTCATTTCA 7 Uncharacterized protein 

27 10.34 MXAN_5422 CCCACTGGTAATCATTCTG 85 Ankyrin repeat protein-protein interaction motifs 

28 10.2 MXAN_5524 TTCAATCGTCATCATCATC 53 
Uncharacterized protein [Glutathione-dependent formaldehyde-activating 
enzyme] 

29 10.17 MXAN_5535 GACAATCACCTTCGTTAGC 98 
Uncharacterized protein [P-loop containing Nucleoside triphosphate 
hydrolase] 

30 10.13 MXAN_5682 AAAAAACCAAATCAGTAGC 18 Metal cation ZIP family transporter, Zn2+-Fe2+ permease  

31 9.99 MXAN_5919 CCAAATGCCTATCGTTCTC 4 Electron transfer flavoprotein, EtfA 

32 11.02 MXAN_6068 AAGAATAACAATAAATAAG 61 Uncharacterized protein 

33 10.18 MXAN_6265 AAAAAACAATGTCATTTCA 132 Monooxygenase, FAD-dependent  

34 10.57 MXAN_6607 GAGAATCCGCTTCATTCGC 4 Adventurous gliding motility protein AgmT 

35 10.54 MXAN_6641 GATAACGATTCTCATATTC 4 Uncharacterized protein [Hemin-binding protein HmuY] 

36 11.04 MXAN_6642 GAGAATCGTTATCAATTAT 113 Iron utilization domain protein 

37 11.92 MXAN_6805 GATAATCAGTATCAATTTC 44 30S Ribosomal protein S4 RpsD 

38 10.6 MXAN_6911 GCAAATCAATATCAATTGA 14 TonB-dependent receptor 

39 10.05 MXAN_6998 TGCAATGTGCATCATTACG 297 Helix-turn-helix DNA-binding protein  

40 10.06 MXAN_7353 GACATTGGGTGTCATTTAA 4 Putative ß-ketoacyl-acyl carrier protein synthase KASIII 
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The genes with putative Fur boxes (table 3.1) belong to various parts of metabolism (as from 

siderophore biosynthesis, redox response or from iron uptake systems), while other genes 

with regulatory functions (as transcriptional regulator or sensory box histidine kinase) had not 

been connected before to the regulatory network, which maintains iron homeostasis. Some of 

the genes from table 3.1 may represent only the first genes of a polycistronic mRNAs, in 

detail: 

1) MXA._1314 (to MXAN_1321): putative uncharacterized protein (MXAN_1315), TonB 

receptor (MXAN_1316), putative lipoprotein (MXAN_1317), hemin transport protein HemS 

(MXAN_1318), hemin ABC transporter (periplasmic hemin-binding protein) (MXAN_1319), 

hemin ABC transporter (permease protein) (MXAN_1320), and hemin ABC transporter, 

(ATP-binding protein) (MXAN_1321),  

2) MXA._3647 (to MXAN_3640): Myxochelin-operon: isochorismate synthase MxcD 

(MXAN_3646), 2,3-dihydroxybenzoate-AMP ligase MxcE (MXAN_3645), isochorismatase 

MxcF (MXAN_3644), non-ribosomal peptide synthase MxcG (MXAN_3643), 3-deoxy-7-

phosphoheptulonate synthase (MXAN_3642), major facilitator superfamily protein MxcK 

homologue (MXAN_3641), and the siderophore biosynthesis aminotransferase MxcL 

(MXAN_3640), 

3) MXA._6641 (to MXAN_6635): putative uncharacterized protein [TonB-dependent 

receptor] (MXAN_6640), Chalcone/stilbene synthase family protein [naringenin-chalcone 

synthase homologue from S. aurantiaca DW4/3-1] (MXAN_6639), putative uncharacterized 

protein [isoprenylcysteine carboxyl methyltransferase ICMT) family] (MXAN_6638), acyl 

carrier protein (MXAN_6637), AMP-binding protein (MXAN_6636) and a FAD-binding 

monooxygenase (MXAN_6635), 

4) MXA._6998 (to MXAN_6994): TonB domain protein (MXAN_6997), sensor protein 

asgD (two-component regulator required for A-signaling and nutrient sensing) 

(MXAN_6996), and a putative uncharacterized protein (MXAN_6995) and sensor signal 

transduction histidine kinase-related protein (MXAN_6994). 

 

The detected Fur box sequences (table 3.1) were used to generate an initial consensus motif 

for M. xanthus Fur boxes (figure 3.3). 
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Figure 3.3: DNA sequence logo of the Fur box consensus sequence of M. xanthus DK1622. 

The DNA sequence logo of the Fur-binding sites was derived by a bioinformatics approach The 
sequence-logo representation shows the most conserved bases in the putative Fur box elements of 
M. xanthus. 
 
 
According to the current bacterial model, a 19 bp sequence suggests to be organized as 9-1-9 

palyndromic motif. These sequence motifs are recognized by iron-loaded Fur dimers (see 

introduction, section 1.1.2), each of the two sub-units interacts with one of two 9-1-9 

palyndromic sequences of the inverted repeats of Fur boxes (figure 3.3).  

 

 

No indication for the presence of a Fur box was found at the promoter regions of M. xanthus 

Fur homologues, neither for the fur gene (MXAN_3702), nor for the fur homologue 

(MXAN_6967). Nonetheless, it was expected that iron-limiting conditions would produce a 

significant change in M. xanthus phenotype as iron availability represents a very important 

nutrient-factor for cells generally. This implicates the analysis of the proteome as next 

consequent step to elucidate the response of M. xanthus to iron-limitation. 
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3.1.3 Metabolic background of M. xanthus iron regulation 

An important control point of iron-uptake marks the import-management via Fhu proteins or 

via TonB receptor-dependent processes (see introduction 1.1.1). In the process of screening 

the genome of M. xanthus, various TonB-dependent iron import systems and Fhu homologues 

were found to be present, much more than expected for Gram-negative bacteria. Furthermore, 

several evidences were made that M. xanthus is capable to use heme as iron source, 

accomplished by diverse proteins of heme import and degradation.  

 
 
Table 3.2: Iron-uptake, transport and TonB-domain proteins of M. xanthus DK1622 

No. Gene number Putative function 

1 MXAN_0272 Carboxypeptidase/TonB domain protein 

2 MXAN_0273 TonB-system transport protein ExbD 

3 MXAN_0274 Biopolymer transport protein, ExbD/TolR family 

4 MXAN_0275 TonB domain protein/TolQ proton channel 

5 MXAN_0276 TonB domain protein 

6 MXAN_0518 TRP/TonB domain protein 

7 MXAN_0578 TonB domain protein 

8 MXAN_0684 Ferric siderophore ABC transporter, ATP-binding protein; Fhu homologue 

9 MXAN_0685 Ferric siderophore ABC transporter, permease protein 

10 MXAN_0686 Ferric siderophore ABC transporter, permease protein 

11 MXAN_0687 
Ferric siderophore ABC transporter, periplasmic ferric siderophore-binding 
protein 

12 MXAN_0770 Iron ABC transporter, periplasmic iron-binding protein 

13 MXAN_0771 Iron ABC transporter, permease protein 

14 MXAN_0772 Iron ABC transporter, ATP-binding protein 

15 MXAN_0819 Transport energizing protein, ExbD/TolR family 

16 MXAN_0820 TonB domain protein 

17 MXAN_0821 TonB-dependent receptor 

18 MXAN_0856 TonB family protein 

19 MXAN_0983 Heavy metal efflux pump, CzcA family 

20 MXAN_0985 Putative heavy metal resistance protein 

21 MXAN_1316 TonB-dependent receptor 

22 MXAN_1318 Hemin transport protein HemS 

23 MXAN_1319 Hemin ABC transporter, periplasmic hemin-binding protein 

24 MXAN_1320 Hemin ABC transporter, permease protein HemU  

25 MXAN_1321 Hemin import ATP-binding protein HmuV 

26 MXAN_1446 Biopolymer transport protein, ExbD/TolR family 

27 MXAN_1447 Biopolymer transport protein, ExbD/TolR family 

28 MXAN_1449 TonB domain protein 

29 MXAN_1450 TonB-dependent receptor 

30 MXAN_1688 TonB family protein 

31 MXAN_2305 Putative TonB domain protein 

32 MXAN_2680 
Phosphotransferases of the serine or threonine-specific kinase 
subfamily/TonB domain protein 
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No. Gene number Putative function 

33 MXAN_2777 TonB domain protein 

34 MXAN_2878 Putative bacterioferritin 

35 MXAN_3044 TonB domain protein 

36 MXAN_3256 Heme exporter protein CcmC 

37 MXAN_3257 Heme exporter protein CcmB 

38 MXAN_3279 Metal ion transporter family CorA 

39 MXAN_3377 FHA/TonB domain protein 

40 MXAN_3449 Heavy metal efflux pump, CzcA family 

41 MXAN_3671 Heavy metal efflux pump, CzcA family 

42 MXAN_3915 TonB domain protein 

43 MXAN_4365 TonB-dependent receptor 

44 MXAN_4559 TonB-dependent receptor 

45 MXAN_4670 Biopolymer transport protein, ExbD/TolR family 

46 MXAN_4746 TonB domain protein CirA 

47 MXAN_4867 FHA domain/TonB domain protein 

48 MXAN_5023 TonB domain protein FecA 

49 MXAN_5682 Metal cation transporter, zinc (Zn2+)-iron (Fe2+) permease (ZIP) family 

50 MXAN_5754 Transport energizing protein TolR 

51 MXAN_5755 TonB domain protein 

52 MXAN_6000 Iron compound ABC transporter, periplasmic iron compound-binding protein 

53 MXAN_6042 Putative ABC transporter, periplasmic substrate-binding protein 

54 MXAN_6044 TonB-dependent receptor plug 

55 MXAN_6484 Transport energizing protein, ExbD/TolR family 

56 MXAN_6485 Ferric siderophore transporter, periplasmic energy transduction protein TonB 

57 MXAN_6547 TonB-dependent receptor 

58 MXAN_6568 Ferrichrome ABC transporter, permease protein 

59 MXAN_6569 Ferrichrome ABC transporter, ATP-binding protein; Fhu homologue 

60 MXAN_6575 FecCD transport family protein 

61 MXAN_6576 Periplasmic iron-binding protein 

62 MXAN_6579 TonB domain protein FepA 

63 MXAN_6716 TonB-dependent receptor domain protein 

64 MXAN_6737 TonB-dependent receptor 

65 MXAN_6845 TonB-dependent receptor 

66 MXAN_6861 Biopolymer transport protein, ExbD/TolR family 

67 MXAN_6911 TonB-dependent receptor 

68 MXAN_6920 Protozoan/cyanobacterial globin family protein 

69 MXAN_6997 TonB domain protein 

70 MXAN_7331 TonB-dependent receptor 

71 MXAN_7437 Heavy metal efflux pump, CzcA family 

Protein names and functions: CcmB/C: heme exporter protein; CirA: outer membrane receptor 
proteins, mostly iron transport; CorA: metal transporter gene family (mostly Mg2+); CzcA: H+/heavy 
metal cation antiporter; ExbD: membrane bound transport proteins essential for ferric ion uptake in 
bacteria; FecA: outer membrane receptor for Fe3+-dicitrate; FecCD: periplasmic-binding-protein-
dependent transport mechanism for Fe3+-dicitrate; FepA: siderophore-iron transmembrane transporter 
activity; Fhu homologues: ferric hydroxymate binding/uptake protein; HemS: hemin storage and 
degradation protein; HemU: hemin permease protein; HmuV: involved in hemin import; TolQ: powers 
transport of siderophores across the bacterial outer membrane; TolR: TonB-dependent transport 
energizing protein.  
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Searching the genome of M. xanthus for the presence of significant homologies to known 

regulatory RNAs as PrrF, ArrF or RyhB (see introduction 1.1.2) did not reveal any related 

sequence. This suggests M. xanthus can use other alternative strategies to control iron balance 

as for e.g. iron-correlated transcriptional regulators, which were detected in the chromosome 

of M. xanthus. 

Some AraC-type regulators as for e.g. RipA (regulator of iron proteins A) are known to be 

involved in iron-balancing, acting as both positive and negative transcriptional factors (see 

introduction, section 1.1.2). In M. xanthus DK1622, 15 AraC-type regulatory proteins were 

found to be present (MXAN_0387, 0445, 0631, 0707, 1137, 1667, 1719, 2213, 2216, 3142, 

3429, 4060, 6206, 6479 and 7078), but their role in metabolism is unclear, as long as the 

subset of genes which is controlled by the single regulators remains unknown. 

Furthermore, three iron-associated, oxygen-sensitive Rrf2-like regulators (transcriptional 

main regulators of cytochromes) were identified in the genome of M. xanthus (MXAN_1152, 

MXAN_1643 and MXAN_6918). 

As over-arching control over further heavy metal (arsenic/mercury) resistance operons, ArsR- 

or MerR-like repressors regulate expression of metal efflux systems with rather low metal 

selectivity. Several homologue genes of ArsR-like repressors were detected in M. xanthus: 

MXAN_1970, 2835, 3679, 5617, 6215, 6233, 6275, and 7501. Also MerR-like transcriptional 

regulators were found in the genome of M. xanthus (MXAN_0777, 0903, 0904, 1093, and 

6983). Proteome experiments will give ultimate insight, if some of these transcriptional 

regulators could be involved in iron balancing in M. xanthus. 

 

 

In order to analyze the M. xanthus genome by bioinformatic methods to precast response to 

iron-limitation, MXAN_3450 was found to be misannotated automatically as DNA-binding 

heavy metal response regulator (Goldman et al., 2006), but BLAST results detect only high 

similarities to two-component transcriptional regulators (winged helix family), composed of 

three single domains: a phosphorylation site, a dimerization site, and a DNA binding site 

(60 % sequence identity I, and 76 % sequence similarity S). No evidence for any metal 

binding amino acids was detected in the protein sequence of MXAN_3450, showing also 

significant differences to Fur homologues or any other known heavy metal-associated 

transcriptional regulators in length, domain organization and sequences with special attention 

to metal binding domain architecture, which had been expected for a DNA-binding heavy 
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metal response regulator. The result from BLAST analysis, that no homologies to any metal-

associated regulators could be found, proves that MXAN_3450 was misannotated. 
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3.2 Response of M. xanthus wild type to different iron availabilities 

In order to evaluate response of M. xanthus to iron-limiting conditions, effects concerning 

growth (section 3.2.1), iron uptake (section 3.2.2), proteome response (section 3.2.3), and 

secondary metabolite production (section 3.2.5) were analyzed. Furthermore, protein-extracts 

from iron-rich and iron-low conditions were used to detect protein-interactions to the 

promoters regions of both Fur homologues; MXAN_3702 and MXAN_6967 (section 3.2.4). 

 

3.2.1 Effect of iron restriction on growth of M. xanthus 

Iron-limiting conditions are typically created by treating bacterial complex growth media with 

iron chelators. Here, the complex growth medium CTT (rich Casitone) was pre-treated with 

the transition metal chelating agent Chelex (see section 2.7.1). Analysis of the untreated 

(CTT) and treated (CTT-FeMIN) media by colorimetric assay using Ferrospectral revealed iron 

concentrations of 4.8 ± 0.6 and ca. 0.5 ± 0.12 µM, respectively. A more precise determination 

of the iron concentration of CTT-FeMIN was not possible, reaching the detection limit (at ca. 

0.3 µM) of the used photospectrometric method. The declared concentration of ca. 0.5 µM of 

CTT-FeMIN was estimated by extrapolation of the regression-line. The growth conditions are 

explained in detail in section 2.8, the growth curves of M. xanthus DK1622 on CTT and CTT-

FeMIN are shown in figure 3.4. 

 

 

 

Figure 3.4: Effects of iron concentrations on growth of M. xanthus DK1622. 

Growth profiles of M. xanthus, obtained from iron-rich (diamonds, CTT medium containing 4.8 µM iron) 
or from iron-poor condition (triangles, CTT-FeMIN medium containing ca. 0.5 µM iron). Comparative 

 WT: CTT 

WT: CTT-FeMIN 
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samples for iron-uptake measurement and HPLC-MS analysis were taken after 29, 40, 48 and 64 h 
(red). Further sampling for DNA pull-down assays was accomplished after 40 h of growth (blue arrow), 
for proteome analysis after 29 and 40 h (green arrows). 
 
 
The strain M. xanthus exhibited a characteristic growth pattern in untreated CTT medium with 

an exponential phase between ca. 25 and 50 h and after reaching the maximum O.D.600 of ca. 

2.5 immediately entering death phase (figure 3.4). In contrast, in CTT-FeMIN growth entered 

stationary phase after approximately 25 h and the O.D.600 never exceeded 0.4. 

 

 

3.2.2 Effect of iron restriction on iron uptake by M. xanthus 

Iron uptake rates of M. xanthus samples were quantified in both CTT and CTT-FeMIN, by 

measuring the concentration of iron present before and after growth for 29, 40, 48 or 64 h, 

respectively. The rates were calculated as function with the unit nmol h-1 O.D.-1 to account for 

differences in growth rates in the iron-rich and iron-poor media (table 3.3).  

 

Table 3.3: Rates of iron uptake by M. xanthus DK1622 wild type cells in CTT and CTT-Fe
MIN

. 

Wild type (WT) cells of M. xanthus were grown in liquid cultures under iron-rich (CTT medium 
containing 4.8 µM iron) or under iron-poor condition (CTT-FeMIN medium containing ca. 0.5 µM iron). 
The uptake rate from CTT at time point 64 h was set to 100 % (marked by X) for comparison with 
uptake rates from iron-limiting conditions and mutant strains (table 3.11). 

Wild type 
samples 

O.D.600  Time (h) 
Iron uptake rate 
(nmol O.D.

-1
 h

-1
) 

% of WT iron 
uptake 

CTT (1) 0.78 29 43.6 ± 0.6   

CTT (2) 1.88 40 16.9 ± 1.4   

CTT (3) 2.46 48 31.6 ± 0.2   

CTT (4) 1.84 64 37.1 ± 0.4 100.0X 

          

CTT-FeMIN (1) 0.27 29 12.6 ± 0.5 

CTT-FeMIN (2) 0.30 40 13.8 ± 0.1 

CTT-FeMIN (3) 0.37 48 12.4 ± 0.1 

CTT-FeMIN (4) 0.31 64 16.0 ± 0.1 

 
 

In iron-replete medium, uptake was highest in the period preceding exponential growth (0–29 

h; 43.6 nmol h-1 O.D.-1), lowest during the exponential phase (29–40 h; 16.9 nmol h-1 O.D.-1), 

and then rose again once growth leveled off (48–64 h; 37.0 nmol h-1 O.D.-1). The rate of iron 

influx was lower (ca. 30-50 % of iron-uptake under iron-rich conditions) and essentially 

constant under iron-poor conditions (average over all time points,  

13.7 nmol h-1 O.D.-1).  
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However, as the concentration of iron in the CTT-FeMIN medium was only 10 % of that in 

standard CTT, the uptake efficiency had increased by 3-5fold. This clearly shows that the 

triggering effect of low iron concentrations had activated iron uptake systems as responds in 

M. xanthus. 

 

3.2.3 Proteomic response of M. xanthus to iron-limitation  

To obtain deeper insight into the cellular response of iron-limitation in M. xanthus, the 

proteome profiles of M. xanthus grown under iron-rich and iron-poor conditions were 

compared using 2D-DIGE (section 3.2.3 a), inclusive MS/MS-based protein identification 

(section 3.2.3 b) and analysis of phosphorylation of differently expressed protein spots 

(section 3.2.3 c). A detailed description of analysis can be found in section 2.9. 

 

 

a) Proteome analysis of M. xanthus using 2D-DIGE technology 

For 2D-DIGE analysis, samples in triplicate were obtained from both cultures (CTT or CTT-

FeMIN) after 29 and 40 h of growth (detailed description, see figure 2.1). An example of the 

three images, obtained from a single 2D-DIGE gel is shown in figure 3.5.  

 

 

Figure 3.5: Examples of the Cy3-, Cy5- and Cy2-images from a single 2D-DIGE gel.  

Protein patterns of M. xanthus DK1622, grown on different iron-concentrations, were compared by 2D-
DIGE technology. Here, samples from 29 h were taken as an example, iron-rich sample labeled with 
Cy5 (red), iron-poor with Cy3 (green) and the internal standard with Cy2.  
 

 

In average, 1979 protein spots were detected per image with a deviation of less than 1.9 % 

between all 2D-DIGE gels. In order to minimize the detection of non-specific variation 

between samples, statistical analysis was carried out to determine proteins which were 
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consistently up-regulated or down-regulated at both time points for at least 2fold. By this 

criterion, a total of 172 differently expressed protein spots could be detected. From these, 74 

protein spots were detected with lower expression under iron starvation, and 98 with higher 

expression. The intensity distribution of the average ratios of the 1979 individual spots can be 

found in figure 3.6. 

 

 
Figure 3.6: Distribution of average ratios of spots from 2D-DIGE analysis of M. xanthus 

DK1622. 

1979 individual spots were detected in average on all 2D-DIGE gels. Protein spots of interest have to 
show a change in intensity higher than 2fold (marked by purple and green line). The spot number is 
correlated to spot detection, so low numbers represent very large, high number very small proteins. 
 

 

b) Identification of proteins from proteome analysis 

Subsequently, all 172 protein spots, which show an altering in spot intensity were excised, in-

gel digested with trypsin and further analyzed by matrix-assisted-laser desorption 

ionization/tandem time-of-flight mass spectrometry (MALDI-ToF/ToF). The resulting peptide 

profiles (MS) and sequence analysis (MS/MS) were used for protein database searches 

(detailed description, see section 2.9.3). All proteins from proteome response, including the 

ratio of up- or down-regulations and putative protein functions are summarized in table 3.4. 

By the analysis, 169 protein spots could be identified as 131 distinct proteins. Subsequently, 

the amino acid sequences of proteins with unknown functions were employed for protein 
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BLAST analysis. 
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Table 3.4: Proteome results of M. xanthus DK1622 under iron-limiting conditions. 

All identified M. xanthus proteins, which were found to be down- or up-regulated under iron-restricted 
conditions, were here ordered by gene number. The table includes the extent of up- or down-
regulation, T-test (P < 0.05) and protein functions (putative protein functions from BLAST are shown in 
square brackets). 

No. Av. ratio T-test Gene no. Description of proposed function 

Proteins with reduced expression under iron-limited conditions 

1 –2.64 0.008 MXAN_0264 DNA topoisomerase activity GyrB 
2 –2.27 0.012 MXAN_0350 Membrane protein 
3 –2.53 0.013 MXAN_0365 Hypothetical protein [DUF 82] 
4 –2.29 0.012 MXAN_0405 GTP-binding protein (2Fe-2S ferredoxin) YchF 
5 –2.12 0.013 MXAN_0463 Xaa-Pro aminopeptidase PepP 
6 –2.84 0.023 MXAN_0498 Lipoprotein 
7 –2.8 0.006 MXAN_0559 ABC transporter ATP-binding protein Mac1 
8 –2.1 0.081 MXAN_0599 Hypothetical protein [DUF 262/1524] 
9 –2.74 0.032 MXAN_0720 Sensor histidine kinase 
10 –2.98 0.008 MXAN_1073 Hsp33 family protein 
11 –2.39 0.012 MXAN_1158 Hypothetical protein [Fe-S assembly protein SufT] 
12 –3.56 0.012 MXAN_1539 Lipoprotein 

13 –2.62 0.012 MXAN_1619 
Hypothetical protein [Helix-turn-helix type 11 
domain protein] 

14 –2.46 0.011 MXAN_1892 Serine/threonine protein kinase 
15 –3.76 0.011 MXAN_2016 Prolyl endopeptidase Pep 
16 –3.4 0.014 MXAN_2318 Glutathione-disulfide reductase Gor 
17 –2.61 0.015 MXAN_2408 Translation elongation factor G FusA 
18 –2.1 0.039 MXAN_2408 Translation elongation factor G FusA 
19 –2.04 0.012 MXAN_2609 Exonuclease ABC subunit A UvrA 
20 –2.02 0.008 MXAN_2640 Hypothetical protein 
21 –2.22 0.012 MXAN_2822 Hypothetical protein 
22 –2.15 0.042 MXAN_3068 Elongation factor Tuf1 
23 –2.05 0.027 MXAN_3068 Elongation factor Tuf1 
24 –2.14 0.022 MXAN_3079 Hypothetical protein 
25 –2.05 0.043 MXAN_3080 Hypothetical protein 
26 –2.03 0.009 MXAN_3297 Elongation factor G 2 FusA 
27 –3.23 0.011 MXAN_3298 Translation elongation factor Tuf2 
28 –2.67 0.005 MXAN_3307 50S Ribosomal protein L29 RpmC 
29 –2.25 0.032 MXAN_3326 RNA polymerase subunit A RpoA 
30 –2.04 0.028 MXAN_3326 RNA polymerase subunit A RpoA 
31 –2.03 0.011 MXAN_3326 RNA polymerase subunit A RpoA 
32 –2.17 0.011 MXAN_3537 NADP-dependent isocitrate dehydrogenase Icd 
33 –2.17 0.015 MXAN_3540 Succinate dehydrogenase SdhB (Fe-S protein) 
34 –2.85 0.013 MXAN_3542 Succinyl-CoA synthetase subunit A SucD 
35 –2.88 0.011 MXAN_3556 Hypothetical protein [M18 bacteriocin protein] 
36 –2.07 0.036 MXAN_3571 Hypothetical protein [band 7 protein] 
37 –4.85 0.034 MXAN_3617 Hypothetical protein 
38 –2.09 0.011 MXAN_3633 Hypothetical protein [DUF407] 
39 –2.14 0.016 MXAN_3777 Inosine-5'-monophosphate dehydrogenase GuaB 
40 –2.57 0.012 MXAN_3793 Ribosomal protein S1 RpsA 
41 –2.58 0.008 MXAN_4137 Hypothetical protein 
42 –2.31 0.010 MXAN_4242 Transcriptional regulator 
43 –2.32 0.015 MXAN_4467 60 kDa chaperonin GroEL1 
44 –2.3 0.049 MXAN_4467 60 kDa chaperonin GroEL1 
45 –2.22 0.037 MXAN_4467 60 kDa chaperonin GroEL1 
46 –2.13 0.036 MXAN_4467 60 kDa chaperonin GroEL1 
47 –2.12 0.024 MXAN_4467 60 kDa chaperonin GroEL1 
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No. Av. ratio T-test Gene no. Description of proposed function 

48 –3.06 0.023 MXAN_4535 ECF sigma factor 
49 –2.12 0.025 MXAN_4802 Hypothetical protein [DUF876] 
50 –2.92 0.028 MXAN_4895 60 kDa chaperonin GroEL2 
51 –2.6 0.041 MXAN_4895 60 kDa chaperonin GroEL2 
52 –2.33 0.055 MXAN_4895 60 kDa chaperonin GroEL2 
53 –2.32 0.038 MXAN_4895 60 kDa chaperonin GroEL2 
54 –2.31 0.039 MXAN_4895 60 kDa chaperonin GroEL2 
55 –2.3 0.032 MXAN_4895 60 kDa chaperonin GroEL2 
56 –2.12 0.043 MXAN_4895 60 kDa chaperonin GroEL2 
57 –2.1 0.011 MXAN_4895 60 kDa chaperonin GroEL2 
58 –2.08 0.068 MXAN_4895 60 kDa chaperonin GroEL2 

59 –3.23 0.037 MXAN_5055 
Hypothetical protein [methyltransferase/ 
chromosome segregation protein SMC domain] 

60 –2.08 0.031 MXAN_5168 ABC Transporter (ATP-binding) protein 

61 –2.11 0.028 MXAN_5484 
Hypothetical protein [putative serine/threonine 
protein kinase] 

62 –3.24 0.041 MXAN_5511 Hypothetical protein 
63 –2.47 0.007 MXAN_5588 Hypothetical protein 

64 –2.66 0.010 MXAN_5846 
Hypothetical protein [M14-like metallo-
carboxypeptidase] 

65 –2.28 0.010 MXAN_6032 Response regulator/chemotaxis protein CheW 
66 –2.51 0.009 MXAN_6496 Thioredoxin peroxidase Tpx 
67 –2.22 0.009 MXAN_7020 CRISPR-associated helicase Cas3 
68 –2.41 0.011 MXAN_7040 Outer membrane protein P1 

69 –2.2 0.015 MXAN_7393 
Hypothetical protein [sigma-54 transcriptional 
regulator, Fis family] 

70 –2.15 0.011 MXAN_7446 Hypothetical protein 
71 –2.15 0.044 MXAN_7492 Hypothetical protein 
72 –2.41 0.008 MXAN_7497 Signal-peptide processing peptidase (M16B) 
73 –5.8 0.001  Not identified 
74 –3.11 0.012  Not identified 
     
Proteins with increased expression under iron-limited conditions 

No. Av. ratio T-test Gene no. Description of proposed function 

75 3.75 0.017 MXAN_0142 WD domain G-beta repeat protein 
76 2.9 0.008 MXAN_0144 Hypothetical protein [WGR domain protein] 
77 3.16 0.018 MXAN_0144 Hypothetical protein [WGR domain protein] 
78 2.05 0.028 MXAN_0236 DNA polymerase III subunit B DnaN 
79 2.18 0.014 MXAN_0237 Hypothetical protein 
80 7.78 0.043 MXAN_0303 Oxidoreductase aldo/keto reductase family 
81 2.23 0.010 MXAN_0351 Thioredoxin domain protein 
82 6.06 0.009 MXAN_0498 Lipoprotein 

83 2.08 0.039 MXAN_0543 
Peptidase M20 (glutamate carboxypeptidase) 
family 

84 3.71 0.027 MXAN_0548 Glutathione-S-transferase domain protein 
85 2.51 0.049 MXAN_0599 Hypothetical protein [DUF262/1524] 
86 4.39 0.024 MXAN_0790 Hypothetical protein 
87 5.75 0.028 MXAN_0791 Peptidase M16 (pitrilysin) family 
88 3.97 0.002 MXAN_0831 Saccharopine dehydrogenase Lys1 
89 27.16 0.047 MXAN_0866 DPS protein TpF2 
90 3.34 0.029 MXAN_0959 Nuclease SbcC 
91 2.81 0.045 MXAN_1024 Hypothetical protein 
92 7.49 0.022 MXAN_1069 Hypothetical protein 
93 2.23 0.010 MXAN_1141 Peptidase M16 (pitrilysin) family 
94 2.17 0.010 MXAN_1264 Phosphoenolpyruvate carboxykinase (GTP) PckG 
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No. Av. ratio T-test Gene no. Description of proposed function 

95 2.99 0.038 MXAN_1318 Hemin transport protein HemS 
96 27.14 0.039 MXAN_1562 DPS protein TpF1 
97 12.83 0.033 MXAN_1563 Alkyl hydroperoxide reductase D AhpD 
98 13.96 0.021 MXAN_1563 Alkyl hydroperoxide reductase D AhpD 
99 2.09 0.042 MXAN_1564 Alkyl hydroperoxide reductase C AhpC 
100 3.13 0.041 MXAN_1564 Alkyl hydroperoxide reductase C AhpC 
101 3.69 0.046 MXAN_1564 Alkyl hydroperoxide reductase C AhpC 

102 2.44 0.013 MXAN_1591 
Hypothetical protein [Sigma-54 factor/ AAA 
ATPase] 

103 3.85 0.011 MXAN_1808 
Restriction/modification enzyme (N6-adenine DNA 
methylase) 

104 2.04 0.017 MXAN_1815 Hypothetical protein [DUF 2169] 
105 3.33 0.035 MXAN_1864 N6-adenine DNA methyltransferase 
106 12.24 0.013 MXAN_1893 Hypothetical protein [ClpX protease] 
107 8.16 0.039 MXAN_1954 Thioredoxin-disulfide reductase TrxB 

108 4.59 0.008 MXAN_1988 
Hypothetical protein [SAM-dependent 
methyltransferases] 

109 2.74 0.032 MXAN_2073 Polyribonucleotide nucleotidyltransferase PnpA 
110 2.34 0.051 MXAN_2094 Hypothetical protein [TPR-domain protein] 
111 2.91 0.001 MXAN_2347 Hypothetical protein [Protamine P1 homologue] 
112 4.75 0.025 MXAN_2410 Hypothetical protein 

113 2.69 0.098 MXAN_2440 
Hypothetical protein [Provisional transcription 
termination Rho domain] 

114 3.2 0.039 MXAN_2440 
Hypothetical protein [Provisional transcription 
termination Rho domain] 

115 2.69 0.043 MXAN_2513 General secretory pathway protein E GspE 
116 2.57 0.013 MXAN_2520 FHA domain/tetratricopeptide repeat protein 
117 2.04 0.019 MXAN_2539 Hypothetical protein 
118 2.45 0.023 MXAN_2675 Glutamyl-tRNA synthetase GltX 
119 2.55 0.044 MXAN_2685 Chemotaxis protein CheW 
120 3.72 0.025 MXAN_2729 NADH dehydrogenase I subunit D 
121 5.78 0.012 MXAN_2940 Hypothetical protein 
122 2.19 0.011 MXAN_2952 Hypothetical protein 
123 2.9 0.013 MXAN_3068 Translation elongation factor EF-Tu1 
124 5.95 0.045 MXAN_3307 50S Ribosomal protein L29 RpmC 
125 3.53 0.025 MXAN_3379 GTP-binding protein TypA 
126 2.13 0.030 MXAN_3388 Carbamoyl-phosphate synthetase CarB 
127 2.72 0.029 MXAN_3571 Hypothetical protein [band 7 protein] 
128 9.62 0.036 MXAN_3617 Hypothetical protein 
129 10.62 0.044 MXAN_3640 Aminotransferase MxcL 
130 19.74 0.037 MXAN_3640 Aminotransferase MxcL 
131 7.54 0.012 MXAN_3644 Isochorismatase MxcF 

132 3.39 0.027 MXAN_3647 
2,3-Dihydro-2,3-dihydroxybenzoate 
dehydrogenase MxcC 

133 2.48 0.012 MXAN_3679 Hypothetical protein [ArsR-like regulator] 
134 2.07 0.046 MXAN_4003 Oxidoreductase 
135 19.25 0.036 MXAN_4003 Oxidoreductase 
136 12.5 0.013 MXAN_4067 Ferredoxin-like protein ThiS 
137 2.17 0.013 MXAN_4149 Response regulator FrzS 
138 3.42 0.014 MXAN_4189 Tetratricopeptide repeat protein 
139 7.18 0.041 MXAN_4863 Adventerous gliding motility protein AgmK 

140 7.61 0.007 MXAN_5023 
TonB-dependent receptor; outer membrane 
receptor 

141 2.82 0.029 
 

MXAN_5055 
 

Hypothetical protein [methyltransferase/ 
chromosome segregation protein SMC domain] 
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No. Av. ratio T-test Gene no. Description of proposed function 

142 7.06 0.047 MXAN_5055 
Hypothetical protein [methyltransferase/ 
chromosome segregation protein SMC domain] 

143 2.76 0.049 MXAN_5070 Hypoxanthine phosphoribosyltransferase Hpt 
144 7.91 0.041 MXAN_5108 Argininosuccinate synthase ArgG 
145 4.14 0.025 MXAN_5180 Hypothetical protein 
146 3.26 0.037 MXAN_5401 Hypothetical protein 

147 8.74 0.044 MXAN_5484 
Hypothetical protein [putative serine/threonine 
protein kinase] 

148 3.3 0.020 MXAN_5588 Hypothetical protein 
149 3.07 0.035 MXAN_5597 Cell division protein FtsZ 
150 6.68 0.027 MXAN_5650 Hypothetical protein 
151 2.31 0.035 MXAN_5670 Thioredoxin TrxB2 
152 56.33 0.049 MXAN_5670 Thioredoxin TrxB2 
153 2.12 0.016 MXAN_5743 Hypothetical protein [PEGA domain protein] 
154 2.04 0.013 MXAN_5795 Exonuclease 
155 3.17 0.044 MXAN_5806 Glutamate-cysteine ligase 

156 2.35 0.010 MXAN_5855 
Hypothetical protein [Phosphate-selective porin 
superfamily] 

157 17.48 0.031 MXAN_6434 Hypothetical protein 
158 2.68 0.010 MXAN_6438 ATP-dependent protease ClpP2 
159 3.6 0.041 MXAN_6450 ß-lactamase-related protein 
160 3.22 0.041 MXAN_6482 Oxidoreductase aldo/keto reductase family 
161 7.44 0.046 MXAN_6482 Oxidoreductase aldo/keto reductase family 
162 2.06 0.039 MXAN_6502 Hypothetical protein [SGNH-hydrolase] 
163 5.83 0.008 MXAN_6524 CobW/P47K family protein 

164 4.07 0.014 MXAN_6536 
Antioxidant/oxidoreductase, thioredoxin family 
AhpC/Tsa 

165 7.37 0.047 MXAN_6536 
Antioxidant/oxidoreductase, thioredoxin family 
AhpC/Tsa 

166 2.68 0.010 MXAN_6911 TonB-dependent receptor 
167 4.09 0.024 MXAN_6911 TonB-dependent receptor 
168 4.97 0.025 MXAN_7028 ATP Synthase F1 subunit A AtpA 
169 2.86 0.044 MXAN_7090 Glutathione peroxidase family protein 
170 3.73 0.013 MXAN_7380 CBS domain protein 
171 4.35 0.013 MXAN_7492 Hypothetical protein 
172 9.61 0.038  Not identified 

 
 

To provide a better overview, all proteins were categorized by metabolic function (table a1). 

A selection of M. xanthus iron-metabolism proteins, identified in proteome experiments, is 

shown in table 3.5. The selection of the respective proteins based on biochemical context and 

a similar change in expression under iron-limitation, typically observed for this sub-group of 

proteins. Many of the proteins can be correlated to iron-uptake system, siderophore 

biosynthesis, or iron-induced changes of redox status (table 3.5).  
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Table 3.5: Selection from proteome response: categorized proteins. 

Differentially regulated proteins of M. xanthus DK1622 under iron-limiting conditions were categorized 
by their biochemical function. The ratio of relative expression levels under iron-rich and iron-limited 
conditions for the selected proteins is shown column 2 (“Fold change”) 
Biochemical context / 
Gene no. 

Fold change Description of proposed function 

Proteins with increased expression under iron-limited conditions 

Iron acquisition   
MXAN_1318 3.0 HemS (heme binding protein) 
MXAN_3640 10.6, 19.7 a MxcL (myxochelin biosynthesis) 
MXAN_3644 7.5 MxcF (myxochelin biosynthesis) 
MXAN_3647 3.4 MxcC (myxochelin biosynthesis) 
MXAN_5023 7.6 TonB-dependent receptor 
MXAN_6911 4.1 a, 2.7 b TonB-dependent receptor 
   
Redox stress resistance   
MXAN_0303 7.8 Oxidoreductase, aldo/keto reductase family 
MXAN_0351 2.2 Thioredoxin domain protein 
MXAN_0866 27.2 Ferritin/ DPS family protein (TpF2) 
MXAN_1562 27.1 Ferritin/ DPS family protein (TpF1) 
MXAN_1563 12.8, 14.0 a AhpD (Alkyl hydroperoxide reductase D) 
MXAN_1564 2.1, 3.1, 3.7 a AhpC (Alkyl hydroperoxide reductase C) 
MXAN_1954 8.2 TrxB1 (Thioredoxin disulfide reductase) 
MXAN_4003 2.0, 19.5 a Oxidoreductase 
MXAN_5670 2.3, 56.3 a TrxB2 (Thioredoxin) 
MXAN_6482 3.2, 7.4 a Oxidoreductase 
MXAN_6536 4.1, 7.4 a Antioxidant, AhpC/Tsa family 
   
Motility/chemotaxis   
MXAN_2513 2.7 GspE (General secretory pathway protein E) 
MXAN_2685 2.6 CheW (Chemotaxis protein) 
MXAN_4149 2.2 FrzS (Response regulator) 
MXAN_4863 7.2 b AgmK (Adventerous gliding motility) 
   
Biochemical context / 
Gene no. 

Fold change Description of proposed function 

Proteins with decreased expression under iron-limited conditions 

DNA metabolism/transcription   
MXAN_0264 –2.6 GyrB (DNA topoisomerase activity) 
MXAN_2609 –2.0 UvrA (Exonuclease ABC, A subunit) 
MXAN_3326 –2.0, –2.2 a RpoA (RNA polymerase subunit A) 
MXAN_3777 –2.1 Inosine-5′-monophosphate dehydrogenase 
MXAN_4242 –2.3 Transcriptional regulator 
MXAN_7020 –2.2 Cas3 (CRISPR-associated helicase) 
   
Translation   
MXAN_0405 –2.3 YchF (GTP-binding protein) 
MXAN_2408 –2.1, –2.6 a FusA (Translation elongation factor G1) 
MXAN_3068 –2.1 Tu1 (Translation elongation factor) 
MXAN_3297 –2.0 FusA (Translation elongation factor G2) 
MXAN_3298 –3.2 Tu2 (Translation elongation factor) 
MXAN_3307 –2.7 b RpmC (50S ribosomal protein L29) 
MXAN_3793 –2.6 RpsA (Ribosomal protein S1) 
   

a These proteins were present in more than one spot. 
b Found to be phosphorylated. 

 
 
A high number (29) of the categorized proteins (table a1) exhibit interesting activity in signal-

transduction or as regulators, a few with potentially global effects on DNA, RNA or protein 
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metabolism. The selection of these proteins, hypothetically involved in iron regulation is 

shown in table 3.6.  

 

Table 3.6: Selection from proteome response of M. xanthus DK1622: potential regulators or 

signal-transducing proteins.  

The hypothetical regulators or signal-transducing proteins were found with altered expression profiles 
under iron-limitation (putative functions from BLAST are shown in square brackets). 

No. Gene no. Description of proposed function 

Proteins with increased expression under iron-limited conditions 

1 MXAN_0142 WD domain G-beta repeat protein 

2 MXAN_0144 Hypothetical protein [WGR domain protein] a 

3 MXAN_0866 Ferritin/ DPS (DNA protection during starvation protein) family protein TpF2 

4 MXAN_0959 Nuclease SbcC (DNA nuclease, mediates DNA-protein interactions) 

5 MXAN_1562 Ferritin/ DPS (DNA protection during starvation protein) family protein TpF1 

6 MXAN_1591 Hypothetical protein [sigma-54 factor/ AAA ATPase] 

7 MXAN_1808 Restriction/modification enzyme (N6-adenine DNA methyltransferase) 

8 MXAN_1864 N6-adenine DNA methyltransferase 

9 MXAN_1988 Hypothetical protein [PUA domain/ SAM-dependent methyltransferases] 

10 MXAN_2094 Hypothetical protein [tetratricopeptide repeat domain protein] 

11 MXAN_2347 Hypothetical protein [Protamine P1, interacts selectively with DNA] 

12 MXAN_2440 Hypothetical protein [provisional transcription termination Rho domain] a, b 

13 MXAN_2520 FHA domain/tetratricopeptide repeat protein 

14 MXAN_2685 Chemotaxis protein CheW 

15 MXAN_3679 Hypothetical protein [ArsR-like regulator] 

16 MXAN_4149 Response regulator FrzS 

17 MXAN_4189 Tetratricopeptide repeat protein 

18 MXAN_5055 
Hypothetical protein [methyltransferase domain/chromosome segregation protein 
SMC domain] a, b 

19 MXAN_5795 Exonuclease (tRNA turnover) 

20 MXAN_7380 
CBS domain protein (cystathionine-beta-synthase; plays a regulatory role making 
proteins sensitive to adenosyl carrying ligands) 

No. Gene no. Description of proposed function 

Proteins with decreased expression under iron-limited conditions 

21 MXAN_0720 Sensor histidine kinase 

22 MXAN_1619 Hypothetical protein [helix-turn-helix type 11 domain protein] 

23 MXAN_1892 Serine/threonine protein kinase 

24 MXAN_4242 Transcriptional regulator 

25 MXAN_4535 ECF sigma factor 

26 MXAN_5055 
Hypothetical protein [methyltransferase domain/ chromosome segregation 
protein SMC domain] a, b 

27 MXAN_5484 Hypothetical protein [putative serine/threonine protein kinase] a  

28 MXAN_6032 Response regulator/chemotaxis protein CheW 

29 MXAN_7020 CRISPR-associated helicase Cas3 

30 MXAN_7393 Hypothetical protein [sigma-54 transcriptional regulator, Fis family] 
a These proteins were present in more than one spot. 
b Found to be phosphorylated. 
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Perhaps most importantly, the Fur regulon of M. xanthus includes 8 putative ECF sigma 

factors and other regulatory proteins, some with receiver domains of sensor protein kinases, 

also described for other bacteria (see introduction, section 1.1.2). In addition to these results, 

several proteins with putative phospho-transferase activity were detected, acting as 

counterpart of some helix-turn-helix transcriptional regulators (table 3.6): Members of these 

two-component regulatory systems contain a response regulator receiver domain and an 

associated transcriptional regulatory region. These results motivate a direct analysis of 

protein-phosphorylations. 

 

 

c) Analysis of phosphorylation on differentially regulated proteins 

In order to detect protein-phosphorylations, a MS screening of all proteins was performed, 

which were found to be differently regulated in 2D-DIGE. A detailed explanation of analysis 

conditions is shown in the methods part (section 2.9.3.2). In principle, the detection of 

protein-phosphorylations by mass spectrometric methods is based the on induction and 

identification of the specific neutral loss of the phosphate group. An example spectrum is 

shown in figure 3.7.  
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Figure 3.7: Analysis of peptide phosphorylation.  

The MALDI spectra show an example of an in-gel digest, using the matrices CCA (Top) or 
DHB/phosphoric acid (Bottom) to analyze peptide phosphorylation by neutral loss. The digest contains 
two phospho-peptides, both intact (in blue boxes: AAQDALApSLPR at 1192.7; and 
VELSPYDLTR[p(STY)] at 1269.8) and after neutral loss (1112.6 or 1189.7, respectively). For the 
peptide VELSPYDLTR three phosphorylation sites are possible, so the exact position could not be 
determined (STY). 
 
 

Remaining doubts could be cleared out by LTQ-Orbitrap measurement of in-gel digests 

containing potential phospho-peptides, based on highly precise measurement (error < 1 ppm). 

Among the 169 identified protein spots, overall 15 protein spots (12 individual proteins) were 

detected with one or more phosphorylations (table 3.7). Thereof 10 proteins were detected 

with 1 phosphorylation, 4 protein spots carrying 2 and 1 protein containing 3 detectable 

phospho-residues. 
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Table 3.7: Protein phosphorylation analysis of differently regulated proteins of M. xanthus 

DK1622 under iron-limitation. 

The table shows the protein phosphorylations of differently regulated proteins of M. xanthus DK1622 
under iron-limitation, detected by MALDI-MS/MS using 2,5-dihydroxybenzoic acid (DHB) 
supplemented with phosphoric acid (1 %). If the protein was detected several times in proteome 
response with different phosphorylation patterns, more than one number is shown in column 3 (“no. of 
phosphorylations”). Hypothetical proteins were further analyzed by BLAST, results are shown in 
squared brackets. Peptide phosphorylation positions are shown in detail in table a2.  

Gene no. Description of proposed function No. of 

  phosphorylations 

MXAN_2440 Hypothetical protein [Provisional Rho domain protein] 1, 2 
MXAN_3079 Hypothetical protein 1 
MXAN_3307 50S ribosomal protein L29 RpmC 1 
MXAN_3326 RNA polymerase subunit A RpoA 0, 1, 2 
MXAN_3571 Hypothetical protein [Flottilin/band 7 protein] 0, 1 
MXAN_4137 Hypothetical protein 1 
MXAN_4467 GroEL1 0, 1 
MXAN_4863 Adventurous gliding motility protein AmgK 2 

MXAN_5055 
Hypothetical protein [methyltransferase/SMC domain 
protein] 

0, 1, 2 

MXAN_5401 Hypothetical protein 1 
MXAN_6911 TonB-dependent receptor 0, 3 
MXAN_7497 Signal-peptide processing peptidase M16B 1 

   
 
 
For a high content (76 %) of protein-phosphorylations the exact positions within the 

respective protein were clarified (table a2). However, the analysis was performed on the 

mixture of 2D-DIGE typical in-gel digestion of all samples. Therefore, it was not possible in 

the case of MXAN_5055 by this method to determine if the phosphorylated protein was more 

dominant under the iron-rich or iron-poor conditions.  
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3.2.4 Profiling protein-promoter interactions at MXAN_3702 and MXAN_6967 under 

iron-rich and iron-limiting conditions 

The promoter sequences of the two fur genes MXAN_3702 and MXAN_6967 were screened 

for highly stringent interacting proteins, using extracts from iron-rich and iron-limiting 

conditions. In order to detect such potential regulator proteins, a ca. 450 bp sequence of the 

M. xanthus fur promoters, either MXAN_3702 or MXAN_6967, was linked via biotinylation 

to streptavidin beads. Then, the beads were incubated with protein extracts from iron-rich and 

iron-limiting conditions. After removing by washing of unspecific-bound proteins, DNA 

binding proteins were eluted with increasing stringency, precipitated, and separated by SDS-

PAGE, followed by silver staining (figure 3.8). Preliminary experiments, binding of proteins 

was found to be more reliable, when manganese was used instead of iron to generate a stable, 

non-oxidative environment for metal-dependent protein binding conditions.  

 

 

 

Figure 3.8: SDS-gels of protein extracts from DNA pull down assay.  

The protein extracts of M. xanthus DK1622 were used to identify highly stringent protein interactions to 
promoter regions of MXAN_3702 (lanes 2 and 3) and MXAN_6967 (lanes 5 and 6). The protein 
extracts were obtained from iron-rich (lanes 2 and 6) or iron-limiting conditions (lanes 3 and 5). A 
Protein Ladder (table 2.2) was used as protein size standard (lane 1 and 4). The gels were stained by 
silver (Sinha et al., 2001).  
 
 

All bands, detected in final elution steps were further in-gel digested with trypsin and 

subsequently identified by mass spectrometry, followed by the screening of phosphorylated 

proteins (section 2.9.3). Identified proteins, which were detected to bind to the promoter 

1     2    3       4         5         6 
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regions of MXAN_3702 and/or MXAN_6967, are listed in table 3.8. For the identification of 

specific protein-promoter interactions on fur (MXAN_3702) or the fur homologue 

(MXAN_6967), the promoter of MXAN_4899 was used as a background to determine 

proteins which bind unspecific to promoter regions generally. 
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Table 3.8: Mass spectrometric identification of proteins from DNA pull-down assay.  

Marked protein bands from DNA pull-down polyacrylamide gel (figure 3.8) were cut out, digested with 
trypsin and identified by mass spectrometry. The sample lanes of the gel were loaded with proteins, 
bound to the promoter of MXAN_3702 (lane 2 and 3) or MXAN_6967 (lane 5 and 6), whereas the 
proteins were obtained from iron-rich (lane 2 and 6) or iron-limiting conditions (lane 3 and 5). The 
order of the identified proteins from the single lanes corresponds to their position in figure 3.8, from 
high- to low-molecular weight. Unspecific binding proteins were present in all samples and 
MXAN_4899 which was used as control. Hypothetical proteins were further analyzed by BLAST, 
results are shown in squared brackets. 

Sample Gene-no. putative function [BLAST] 

Lane 2: MXAN_3702; iron-rich conditions 

Band 1 MXAN_5055 
Hypothetical protein [methyltransferase domain/ chromosome 
segregation protein SMC] 

Band 2 MXAN_0959 Nuclease SbcC (DNA nuclease, mediates DNA-protein interactions) 

Band 3 MXAN_0144 
Hypothetical protein [WGR domain protein; motive of polyA 
polymerases and molybdate metabolism regulators] 

Band 4 MXAN_2347 Hypothetical protein [Protamine P1, interacts selectively with DNA] 

Band 5 MXAN_1359 Hypothetical protein [DeoR-family transcriptional regulator] 

Band 6 MXAN_3626 Transcription factor Jumonji JmjC 

   
Lane 3: MXAN_3702; iron-poor conditions 

Band 1 MXAN_0959 Nuclease SbcC (DNA nuclease, mediates DNA-protein interactions) 

Band 2 MXAN_1359 Hypothetical protein [DeoR-family transcriptional regulator] 

Band 3 MXAN_4116 Transposase IS66 family (DNA transposition) 

Band 4 MXAN_1562* DPS/bactoferritin family protein TpF1 

      

Lane 5: MXAN_6967; iron-poor conditions 

Band 1 MXAN_5055 
Hypothetical protein [methyltransferase domain/ chromosome 
segregation protein SMC] 

Band 2 MXAN_1808 Restriction/modification enzyme (N6-adenine DNA methyltransferase) 

Band 3 MXAN_3897 DNA mismatch repair protein MutS 

Band 4 MXAN_5271 DNA binding domain protein LuxR-like  

Band 5 MXAN_5872 DNA binding protein [HTH XRE-family like proteins] 

Band 5 MXAN_1562 DPS/bactoferritin family protein TpF1 

   
Lane 6: MXAN_6967; iron-rich conditions 

Band 1 MXAN_5055 
Hypothetical protein [methyltransferase domain/ chromosome 
segregation protein SMC] 

Band 2 MXAN_0959 Nuclease SbcC (DNA nuclease, mediates DNA-protein interactions) 

Band 3 MXAN_2609 
Excision repair protein UvrA domain II; Nucleotide excision repair / 
ABC component of the metal-type transporters 

Band 4 MXAN_3203 
FHA domain protein; (signaling domain found in protein kinases and 
transcription factors) 

  
  

 Unspecific bound proteins 

  MXAN_1922 TPR domain protein (mediates protein-protein interactions) 

  MXAN_2800 DNA polymerase III, delta subunit HolB 

  MXAN_3982 DNA polymerase III, DnaE 

      
*Only one protein (MXAN_1562 at promoter of MXAN_3702 under iron-poor conditions) was found to 
carry a phosphorylation (peptide: LADGLDLHpSQIK). 
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At both analyzed promoters (MXAN_3702 and MXAN_6967) neither the Fur protein nor the 

Fur homologue were detected to bind to the DNA sequences. This finding is consistent with 

the missing of potential Fur boxes in their respective promoter regions (see table 3.1).  

The combination of different transcriptional regulators (MXAN_1359 and MXAN_3626 at 

promoter of MXAN_3702 or MXAN_5271 and MXAN_5872 at promoter of MXAN_6967) 

indicates a heterogeneous and large set of regulators, involved in transcriptional control of Fur 

family members in M. xanthus.  

The DPS/bactoferritin protein TpF1 (MXAN_1562) was found to bind only under iron-

limiting conditions to the promoters of MXAN_3702 (protein contains a phosphorylation) and 

6967 (protein without any phosphorylation). This finding indicates another, more important 

biological role of DPS/bactoferritin proteins, rather than only protecting DNA, but may have 

also regulatory functions for genes of iron metabolism. 

Furthermore, MXAN_3203 (FHA protein, forkhead associated domain) was detected to bind 

to MXAN_6967 only under iron-rich conditions. This protein operates as putative 

phosphopeptide recognition site, involved in signal transduction, found in a wide range of 

protein kinases and transcription factors.  

In addition, MXAN_1808 was detected to interact only to the promoter of MXAN_6967 in 

iron-poor environment, and its function as DNA methyltransferase might indicate the gene-

silencing of MXAN_6967 under these conditions.  

In contrast, MXAN_5055 (methyltransferase domain / chromosome segregation protein 

SMC) binds to the promoter of MXAN_6967 in both; however, MXAN_5055 only binds to 

the promoter of MXAN_3702 only under iron-rich conditions.  

The found composition of regulators, methyltransferases and nucleases suggests a very 

heterogeneous and dynamic control of expression, more complicated than the proposed model 

of Fur auto-regulation, at least in M. xanthus. To investigate the cellular functions of 

MXAN_0144, 1562, 1808, 3203, 2347 and 5055, the corresponding genes were selected as 

target for single crossover inactivation. 

Some proteins were detected across all samples, including the control sample (promoter of 

MXAN_4899). The binding of these proteins was declared as unspecific (table 3.8). 
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3.2.5 Effects of iron-limitation on secondary metabolome of M. xanthus  

To investigate the effects of iron restriction on the secondary metabolism of M. xanthus, the 

relative yields of the known natural products myxochromide, myxochelin, myxalamid, cittilin, 

DKxanthene, and myxovirescin were quantified from cultures grown under high- and low-

iron conditions. As these compounds all represent metabolite families, quantification was 

performed on the most abundant metabolite in each family. Samples were obtained at four 

different time points (29, 40, 48 and 64 h). 

Secondary metabolite analysis was accomplished by HPLC-MS of culture-extracts (section 

2.13.1) from the wild type, grown at different iron concentrations (section 2.8.1). A detailed 

description of the calculation of the secondary metabolite yields was already given (section 

2.13.3). The relative yields of secondary metabolite production are shown in table 3.9. 
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Table 3.9: Secondary metabolite yields of M. xanthus DK1622 wild type under iron-rich and iron-limiting conditions. 

Relative yields of secondary metabolites in quantitative comparison of production by M. xanthus under iron-rich (CTT, 4.8 µM Fe) and iron-limiting conditions 
(CTT-FeMIN; ca. 0.5 µM Fe). The relative standard deviations (mean of three cultures) are shown behind the respective value. 

Sample Relative secondary metabolite yields (peak area O.D.
-1
 h

-1
)
a,b

 

 MchrA2 McheA McheB MxaA Cittilin DKx MyvA 

WT
x
; 64 h 100 100 100 100 100 100 100 
        

CTT        
29 h 28 ± 2 N.D. 22.1 ± 0.7 116 ± 1 N.D. 9 ± 5 74 ± 11 
40 h 42 ± 4 24 ± 3 50 ± 9 125 ± 10 85 ± 5.2 9 ± 5 130 ± 12 
48 h 51 ± 8 101 ± 6 99 ± 11 105 ± 3 87 ± 3.9 27 ± 9 104 ± 10 
64 h 100 ± 7 100 ± 6 100 ± 2 100 ± 3 100 ± 5.1 100 ± 3 100 ± 6.9 

        
CTT-FeMIN        

29 h 61 ± 9 943 ± 52 731 ± 33 100 ± 4 N.D. N.D. 3 ± 2 
40 h 382 ± 41 2075 ± 192 3705 ± 14 156 ± 1 0.04 ± 0.01 3.5 ± 0.2 82 ± 4 
48 h 658 ± 62 4690 ± 197 13955 ± 48 117 ± 1 0.5 ± 0.1 32 ± 7 71 ± 9 
64 h 2325 ± 127 8131 ± 367 67822 ± 70 131 ± 3 1.3 ± 0.2 61 ± 11 86 ± 3 

        

a All calculated production rates were normalized to an independently grown wild type culture (WT
X
, 64 h = 100 %).  

b Abbreviations: MchrA2: Myxochromide A2; McheA and McheB: Myxochelin A and B; MxaA: Myxalamid A; DKx: DKxanthene560; MyvA: Myxovirescin A; N.D.: 
not detected 

 
 



Results 
 

 134 

This analysis demonstrated that biosynthesis of the siderophores myxochelins A and B was 

very significantly increased at every examined time point (table 3.9). At 64 h, the yield of 

myxochelin A and B from the iron-depleted cultures was approximately 81 and 678fold 

higher than that observed under iron-rich conditions, respectively. Additionally, the 

biosynthesis of myxochromide A was also substantially up-regulated (23fold) at this time 

point, while cittilin production was reduced by the factor 75. In contrast, the production rates 

of the DKxanthenes, myxalamids and myxovirescin were not substantially affected (< 2fold 

change), although the onset of myxovirescin production was somewhat delayed. In figure 3.9, 

examples of extracted ion chromatograms from three compound classes (myxochromide, 

myxochelin and cittilin) can be found. 
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Figure 3.9: Secondary metabolite production by M. xanthus DK1622 wild type under iron-rich 

and iron-limiting conditions 

The illustration shows the HPLC-MS profiles of secondary metabolite of M. xanthus DK1622 wild type 
under iron-rich (grey line, CTT; 4.8 µM Fe) and iron-limiting conditions (black line, CTT-FeMIN; ca. 0.5 
µM Fe). The extracted ion chromatograms display: A) Myxochromide A2 ([M+H]+ = 833.9), B) 
Myxochelin B ([M+H]+ = 404.4) and C) Cittilin A ([M+H]+ = 631.7). 
 
 

Furthermore, the extracts from the iron-limiting growth were screened for the presence of 

novel compounds by comparing the MS and UV/Vis spectra (section 2.13) to that of the wild 

type under standard conditions. The detection of previously unknown secondary metabolite 

products was complicated by many media compounds and primary metabolic end-products, 

which show partially large variations in response of M. xanthus to iron-limitation. However, 

this analysis did not reveal any candidates for new metabolites. 

A B C 

   time [min]        time [min]       time [min] 
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3.3 Investigation of the Fur regulon by gene inactivation 

Gene knockouts were generated by single crossover disruption or double crossover in-frame 

deletion in order to understand the biological roles of the predicted protein functions. Selected 

gene targets were those which encode for proteins; found in promoter-interaction studies or 

detected in proteomics to be differently regulated in response to iron-limiting conditions. 

Mutants were analyzed in iron-rich medium (section 2.8.1), concerning effects to growth, 

iron-uptake rates and secondary metabolism (including siderophore production). 

 

 

3.3.1 Generation of markerless in-frame deletion mutants 

For the investigation of the roles of the putative iron-responsive Fur protein MXAN_3702 and 

a Fur homologue MXAN_6967 in iron homeostasis, both genes were attempted to delete by 

double crossover. However, no in-frame deletion of MXAN_3702 could be generated. 

Therefore, several different vectors and constructs (pSWU41-, pBJ113- and pBJ114-derived 

vectors (Wu et al., 1996; Black and Yang, 2004) were employed, containing several different 

inactivation regions), additionally to the application of different iron-concentrations to 

selection plates.  

In contrast, MXAN_6967 could be inactivated successfully, whereas double crossover 

mutants contain only a truncated, non-functional form of the gene, verified by the PCR result, 

shown in figure 3.10. 
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Figure 3.10: PCR results of the second crossover analysis of DEL6967. 

The agarose gel shows the PCR results of the second crossover analysis. PCR was run on genomic 
DNA from M. xanthus wild type (lane 10) and second crossover mutants of MXAN_6967 (DEL6967), 
where PCR products should miss 324 nt. Revertants and wild type genotype yield a product of 1.79 
kbp with primer pair CONF_D6967F/CONF_D6967R from table 2.17 (lanes 4, 5 and 10), while 
analysis of successfully generated double crossover mutants yielded in a truncated PCR product of 
1.47 kbp (lanes 2, 7 and 8). Lane 3 and 9 contain 1 kbp ladder and lane 6 contains 100 bp ladder 
(table 2.2), for some bands the DNA size is denoted (in kb). 
 
 
The PCR results, shown in figure 3.10, clearly proof the generated in-frame deletion in 

MXAN_6967. When comparing genotypes of wild type (lane 10) and DEL6967 (lane 2, 7 and 

8), 324 bp of MXAN_6967 where eliminated. The strategy, how to generate a truncated form 

of the wild type gene is shown in figure 1.16, the PCR results from figure 3.10 correspond to 

figure 1.16 E. Finally, selected clones (lane 2, 7 and 8) were sequenced to confirm the 

truncated form of MXAN_6967 stays in the former reading frame. 

 

 

3.3.2 Generation of gene disruption mutants by single crossover  

Deeper insight into the putative functions of genes whose regulation was altered by iron 

availability was achieved by a series of single gene inactivation experiments, targeting the 

following genes: MXAN_0142, MXAN_0144, MXAN_1562, MXAN_1619, MXAN_1808, 

MXAN_1864, MXAN_1893, MXAN_1988, MXAN_2094, MXAN_2347, MXAN_2440, 

MXAN_2520, MXAN_3203, MXAN_4189, MXAN_4535, MXAN_5055 and MXAN_5484 

(see table 2.15). 
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Some genes, which were selected as target for single crossover disruption, could not be 

inactivated successfully (MXAN_0142, 1619, 2094, 2347, 2520).  

Briefly, the following genes whose expression was up-regulated under iron-limiting 

conditions were inactivated successfully: MXAN_0144, 1562, 1808, 1864, 1893, 1988, 2440, 

4189 and 5055, as well as MXAN_4535 which was down-regulated. Additionally, 

MXAN_5484 was inactivated, because the gene product was detected as two spots, whereas 

one was up-, to other down regulated (table 3.10). Some of the genes might be more 

important in iron response, indicated by the detected phosphorylation(s) at the encoded 

proteins of MXAN_2440 and MXAN_5055 (table a2). 

Several genes (MXAN_0144, MXAN_1562, MXAN_1808 and MXAN_3203) were chosen 

for inactivation because of the binding of the encoded proteins to the promoter regions of 

MXAN_3702 and/or MXAN_6967 (table 3.8). A more detailed explanation about motivation 

of selection for knockout experiments can be found in the discussion part of the respective 

clones (section 4.4). 

 

 

Table 3.10: Confirmed mutants, generated by single crossover gene disruption in M. xanthus 

DK1622. 

No. Gene number Gene size (nt) Size PCR fragment  Stop-Codon 

      for homol. recombination introduced 

1 MXAN_0144 2733 681   
2 MXAN_1562 477 291 yes 
3 MXAN_1808 4971 643   
4 MXAN_1864 1284 462   
5 MXAN_1893 438 294 yes 
6 MXAN_1988 1197 595   
7 MXAN_2440 2223 700   
8 MXAN_3203 1167 654   
9 MXAN_4189 729 432 yes 

10 MXAN_4535 600 360 yes 
11 MXAN_5055 6045 744   
12 MXAN_5484 732 426 yes 

 

 

Growth, iron uptake rates as well as secondary metabolite production of the mutant strains 

were monitored in iron rich medium, along the deletion mutant DEL6967 (section 3.3.3).  
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3.3.3 Growth analysis of the generated mutants in iron-rich environment  

Strains were cultured in CTT medium and growth rates were monitored by measuring the 

optical cell density (O.D.600) at different time points (figure 3.11). Comparison of the growth 

rates of the mutants showed that they differ in each case from the wild type, and thus 

allowance was made for cell density when estimating both iron uptake rates and secondary 

metabolite yields.  
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Figure 3.11: Growth profiles of the mutants in iron-rich medium. 

The illustration display the O.D.600 growth curves of the generated mutant strains (dashed and dotted 
lines) in iron-rich medium (CTT medium, containing 4.8 µM iron). Additionally, the growth profiles of 
M. xanthus DK1622 wild type strain (WT; solid lines) under iron-rich (diamonds, CTT medium) or 
under iron-poor condition (triangles, CTT-FeMIN medium containing ca. 0.5 µM iron) are shown. The 
mutants were generated by single crossover (indicated as KO) or by in-frame deletion (indicated as 
DEL) of the corresponding gene in M. xanthus DK1622. 
 

 

All mutations had defects in growth; therefore correlation to growth stage was made when 

iron uptake (section 3.3.4) and metabolite production (section 3.3.5) of the respective strains 

were judged as functions of O.D.600. 

As an example, the detailed comparison of the wild type to mutant DEL6967, the mutant 

strain shows a larger lag-phase (30 h) in growth, and larger doubling times, but reaches almost 

the same maximum O.D.600nm (93 %) as the wild type under the same iron rich conditions. 
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The maximum O.D.600nm (approx. 2.33) was achieved after 65 h, ca. 15 h later than the wild 

type. The growth rate was found to be very similar at the knockout mutants of MXAN_1562 

and 1893. A more detailed discussion of the single mutants can be found in section 4.4. 

 

 

3.3.4 Estimation of iron uptake of generated mutant strains 

The relative iron uptake rates for each mutant (table 3.11) was calculated by subtracting the 

iron concentration at a single time point during growth (at which there was sufficient cell 

mass) from initial concentration, and then normalized the result to O.D.600 and time. Finally, 

rates were compared to the rate measured for the wild type strain (analyzed at t = 64 h with 

37.1 nmol h-1 O.D.-1).  

 

 
Table 3.11: Rates of iron uptake by mutant M. xanthus strains.  

Iron uptake rates were determined as end point measurement of triplicates. The standard deviation is 
shown behind the respective value (unit: nmol h-1 O.D.-1). Additionally, the ratio to wild type (WT) iron 
uptake (analyzed at t = 64 h with 37.1 nmol h-1 O.D.-1) is shown as %-value.  

Sample O.D.600 Time [h] 
Iron uptake rate 
[nmol h

-1
 O.D.

-1
] 

% of WT iron uptake 

KO0144 2.3 79 8.2 ± 0.6 22.1 
KO1562 1.84 97 0.5 ± 0.3 1.3 
KO1808 1.87 72 15.5 ± 2.8 41.8 
KO1864 1.97 67 2.6 ± 0.9 7.1 
KO1893 1.78 72 32.8 ± 0.2 88.4 
KO1988 1.61 67 29.0 ± 0.8  78.2 
KO2440 1.7 67 24.3 ± 0.8 65.5 
KO3203 1.66 67 9.8 ± 0.5 26.4 
KO4189 1.59 67 0.8 ± 0.3 2.2 
KO4535 1.55 79 10.0 ± 0.9 27.0 
KO5055 2.0 79 23.1 ± 0.8 62.3 
KO5484 2.14 86 0.7 ± 0.2 1.9 

     
DEL6967 1.74 82 15.9 ± 0.5 43.9 

     
 

 

Not one of the mutants showed an increase of the iron-uptake, compared to the wild type. 

Thus, the deletion mutant does not show the typical behavior of mutants of iron-responsive 

Fur genes, resulting in characteristic deregulation and constitutive iron uptake, which 

contradicts for an iron-monitoring function of MXAN_6967. 
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3.3.5 Metabolite analysis by HCPL-MS of the generated mutants  

Secondary metabolite analysis was accomplished by HPLC-MS (section 2.13) of culture-

extracts from the mutant strains, grown in CTT (section 2.8.1).  

Final relative metabolite yields were calculated by comparing compound amounts observed in 

the mutant strains (expressed as peak area h-1 O.D.-1) to those of the wild type. The results of 

the secondary metabolite analysis of the mutants, generated under iron-rich conditions can be 

found in table 3.12 (production relative to the wild type as a function of O.D.600). 
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Table 3.12: Relative yields of secondary metabolites from M. xanthus mutant strains. 

Relative yields of secondary metabolites in quantitative comparison to production of M. xanthus mutants under iron-rich (CTT, 4.8 µM Fe). The relative standard 
deviations (mean of three cultures) are shown behind the respective value. Triplicates with very large variations in detected concentrations of the respective 
substance were marked in red. 

Sample Time [h] Relative secondary metabolite yields (peak area O.D.
-1
 h

-1
)
a,b

 

  MchrA2 McheA McheB MxaA Cittilin DKx MyvA 

WT
x
, 64 h 64 100 100 100 100 100 100 100 
         

KO_0144 79 98 ± 38 ND 0.4 ± 0.3 26 ± 5 26 ±11 47 ± 5 0.6 ± 0.3 
KO_1562 97 30 ± 4 0.5 ± 0.2 0.05 ± 0.03 4 ± 4 4.2 ± 1.8 4.9 ± 0.7 2 ± 1 
KO_1808 72 107 ± 9 20 ± 20 23 ± 23 831 ± 73 93 ± 66 1839 ± 178 1182 ± 571 
KO_1864 67 57 ± 19 14 ± 7 14 ± 2 16 ± 12 4.9 ± 3.7 8 ± 8 2.9 ± 0.3 
KO_1893 72 1.0 ± 0.2 0.16 ± 0.04 0.2 ± 0.0 22.3 ± 0.3 0.2 ± 0.03 14 ± 2 0.15 ± 0.04 
KO_1988 67 122 ± 50 2 ± 1 176 ± 49 18 ± 18 102 ± 74 2243 ± 430 545 ± 182 
KO_2440 67 78 ± 13 12 ± 4 20 ± 8 74 ± 12 2.8 ± 2.1 1241 ± 762 404 ± 114 
KO_3203 67 92 ± 6.5 56 ± 18 65 ± 12 128 ± 20 80 ± 14.8 1926 ± 497 493 ± 54 
KO_4189 67 57 ± 11 36 ± 14 34 ± 34 11 ± 4 15 ± 15 59 ± 59 92 ± 22 
KO_4535 79 129 ± 70 0.8 ± 0.8 0.13 ± 0.08 56 ± 12 55 ± 5.7 104 ± 31 16 ± 1 
KO_5055 79 77.7 ± 0.4 25 ± 12 12 ± 8 44 ± 4 5.9 ± 3.4 81 ± 13 12 ± 4 
KO_5484 86 377 ± 118 6.4 ± 2.4 1.1 ± 0.5 212 ± 9 3.2 ± 2.1 43 ± 6 114 ± 4.5 

         
DEL6967 82 50 ± 12 0.3 ± 0.2 0.5 ± 0.3 2 ± 2 4.6 ± 4.6 6 ± 2 3 ± 2 

         

a All calculated production rates were normalized to an independently grown wild type culture (WT
X
, 64 h = 100%).  

b Abbreviations: MchrA2, Myxochromide A2; McheA and McheB; Myxochelin A and B; MxaA, Myxalamid A; DKx, DKxanthene560; MyvA, Myxovirescin A; 
ND = not detected. 
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Not one of the mutants showed a significant increase in myxochelin production, which 

corresponds well to the iron uptake rates of the mutants, found at wild type levels or below.  

Some mutants exhibit a drastic decrease (more than 90 %) in iron uptake (MXAN_1562, 

1864, 4189 and 5484). Additionally, some exhibit a strong decrease in myxochelin production 

(detected for DEL6967, MXAN_0144, 1562, 1893, 4535). Only for the knockout mutant of 

MXAN_1562 a correlation could be made between production of less siderophores, 

subsequently followed by reduction of iron uptake. This may indicate alternative mechanisms 

of iron acquisition (see introduction, section 1.1.1-1.1.3), at least active in a subset of mutants. 

The deletion mutant DEL6967 and the knockout mutants of MXAN_1562 and 1893 showed 

an extensive reduction of all monitored metabolites.  

 

To give a detailed example, the mutant DEL6967 shows that the efficient iron uptake was 

found in contrast to the strong reduction of the amounts of produced myxochelins. This 

observation (a strong reduction of myxochelin amounts, in contrast to an only slightly reduced 

iron uptake rate) was also evident for the knockout mutant of MXAN_1893. In detail, in 

DEL6967 the myxochelin A production was reduced by the factor 377.2, while B was 

reduced by 195.5. In contrast, the strain was able to take up iron with ca. 50 % of wild type 

rates .The cells produce 16.6fold less of DKxanthenes and 39.4fold less myxovirescin. Also 

myxalamid production decreased by the factor 59.6, but effects on myxochromide production 

were relatively small (2.0fold less). The production of cittilin was reduced by the factor 21.7. 

All secondary metabolite production rates show a decrease in this mutant, compared to wild 

type under iron rich conditions.  

However, in many mutants also secondary metabolites were found to be effected, which did 

not show any response in the wild type under iron-limiting conditions. A detailed discussion 

of the single mutants can be found in section 4.4. 

 

 

3.3.6 Overall results from mutant analysis 

The most common consequence of the mutations was to retard (5–30 h) the onset of 

exponential growth (figure 3.11), as well as to lower the overall growth maximum. While the 

iron uptake rate of several mutants was not substantially altered (MXAN_1893, 1988, 2440 

and 5055), the predominant effect was a substantial reduction in the efficiency of iron 

acquisition such as in the knockout mutants of MXAN_1562, 1864, 4189 and 5484.  

None of the mutants showed an increased ability to take up iron or a significant increase in 
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myxochelin production. 

 

Frequently, the result of the mutations was to reduce secondary metabolite yields across 

multiple metabolite classes (table 3.12). In fact, in mutants of MXAN_1562 and 

MXAN_1893, production of all compounds was significantly reduced, while in mutant 

MXAN_0144, the production of all metabolites with the exception of the myxochromides, 

were lower. In some cases (mutants of MXAN_4189, MXAN_4535 and MXAN_5055), the 

effects were limited to a subset of metabolite classes (myxovirescin, myxalamid and the 

myxochelins).  

In contrast, in mutants of MXAN_1808, MXAN_1988 and MXAN_2440, there was a drastic 

increase in production of specific compounds, including the DKxanthenes and myxovirescin, 

and in the case of MXAN_1808, biosynthesis of the myxalamids was also up-regulated. 

A detailed discussion of the single mutants can be found in section 4.4. 

Because of the limited time frame, the mutants were not grown and examined in separate 

experiments under iron-limiting conditions. Furthermore, it might be interesting to evaluate 

effects of iron-overfeeding of these mutants. 
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4. Discussion 

 

In this study, the response of the genome-sequenced strain M. xanthus DK1622 to low iron 

concentration was evaluated. In parallel, iron-limitation was a potential strategy for 

awakening silent biosynthetic gene clusters in myxobacteria. 

Reflecting the vital role of iron as enzymatic cofactor, studies in both transcriptomics and 

proteomics of a range of bacteria have been performed. Thereby, it could be experimentally 

probed that the extensive restructuring of bacterial metabolism, which occurs is based on iron 

availability (Escolar et al., 1999; Andrews et al., 2003; Massé and Arguin, 2005). Many of 

the iron-induced changes of transcriptomes and/or proteomes are directly or indirectly 

mediated by Fur (ferric uptake regulator) proteins, but although Fur-independent, iron-

dependent changes, have been reported for some bacteria (Lee et al., 2004; Holmes et al., 

2005; Ernst et al., 2005). The Fur regulon has been shown to encompass proteins with 

obvious roles in maintaining iron homeostasis (siderophore biosynthesis, uptake systems for 

iron-loaded siderophores and other iron-containing compounds, iron storage and redox stress 

and in some cases also subordinated regulators of such systems), also to include less clearly 

related functions such as acid shock response, flagellum assembly, chemotaxis/swarming or 

production of toxins and virulence factors (Escolar et al., 1999). Because only little is known 

about how myxobacteria handle iron-limitation, the response of the myxobacterial model-

strain M. xanthus DK1622 to iron-limitation was investigated. 
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4.1 Genetic background of M. xanthus iron regulation 

As a starting point, in silico analysis of the M. xanthus genome was carried out to determine 

whether the iron response in M. xanthus may be mediated by Fur, and to predict members of 

the Fur sub-families and the Fur regulon. This investigation includes amino acid sequence 

alignment by BLAST (section 3.1) and ClustalW2 analysis (figure 3.1), which was further 

used to generate the phylogenetic tree (figure 3.2). The character of the detected two Fur 

proteins from M. xanthus were then compared to the genome of two other members from 

the group of myxobacteria (Sorangium cellulosum So ce56 and Stigmatella aurantiaca 

DW4/3-1). Furthermore, members of the Fur regulon in M. xanthus were identified by the 

prediction of Fur boxes, which were a part of promoter elements of various genes using the 

Virtual footprint analysis software (table 3.1).  

 

Protein BLAST analysis, using representative members of the Fur family against the 

translated M. xanthus genome revealed two candidate proteins, MXAN_3702 and 

MXAN_6967 (figure 3.1), which share only little similarities among each other (29 % I, 42 % 

S). Further hits could be clearly delimited, showing only homologies to very small sequence 

parts (less than 50 bp). Thus, M. xanthus contains more than one Fur sub-family member like 

the majority of bacteria characterized to date (Lee et al., 2007) as for example the model 

strain. Escherichia coli (contains a iron-responsive Fur protein and a homologue with zinc-

sensing function Zur) (Hantke, 2002) or Bacillus subtilis (contains a Fur and Zur, and an 

additional peroxide sensing regulator, PerR) (Fuangthong and Helmann, 2003).  

 

Although a lot of bacteria contain multiple Fur homologues, many such putative Fur proteins 

do not function as regulators of iron homeostasis (Moore et al., 2005). Structure-guided 

sequence analysis by the ClustalW2 algorithm (figure 3.1) of the M. xanthus Fur proteins 

coupled to phylogenetics (figure 3.2), strongly suggested that MXAN_3702 is likely to be a 

true (iron-responsive) Fur protein, indicated by the presence of important residues in the 

amino acid sequence as the two highly conserved motifs for DNA-binding (ATVYR) at 

position 78-82 and for iron-binding (HHDH) at position 113-116 (figure 3.1). The important 

amino acids were detected in the crystal structures of other bacterial Fur proteins to complex 

iron, suggesting the same function of MXAN_3702 in M. xanthus. In agreement to this, no 

evidence was found for binding sites of manganese ions, characteristically for Mur proteins, 

despite of the close clustering of MXAN_3702 with other members of the Mur sub-group 

(figure 3.2), which may argue for the convergent evolution of this branch of iron-sensing Fur 
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proteins.  

 

The function of MXAN_6967 is less clear, however, it contains the structural Zn-binding 

motif noted for iron-responsive Fur proteins, PerR and Zur family members (Sheikh et al., 

2009), but clades with heme-responsive Irr proteins in the phylogenetic tree (figure 3.2), 

which typically miss the zinc-binding residues. The heme-binding motif is not completely 

understood (Stojiljkovic and Hantke, 1994; Yang et al., 2005), but important residues (e.g. 

histidine at position 84, 101 and 103) were found to be present in the sequence of 

MXAN_6967. Taking this fact together with the finding of several heme-uptake-correlated 

genes in the genome of M. xanthus (table 3.2) and the detection of the heme-

binding/degradation protein HemS in proteomics (table 3.4) to be differently regulated, 

indicates that heme may be used as iron-resource by M. xanthus. 

 

 

In order to get deeper insight into the function of both Fur genes of M. xanthus DK1622, a 

search for Fur homologues was performed with two other sequenced myxobacterial 

genomes, that of Sorangium cellulosum So ce56, a member of the suborder Sorangiineae and 

Stigmatella aurantiaca DW4/3-1, a member of the suborder Cystobacterineae. The genome of 

S. cellulosum contains homologues of both MXAN_3702 (Sce0007 with 56 % I, and 72 % S) 

and MXAN_6967 (Sce7206 with 52 % I, 75 % S), but additionally two other putative Fur 

family members which are more distantly related to the M. xanthus sequences (Sce1132 and 

Sce1752). Surprisingly, S. aurantiaca DW4/3-1 contains only a single Fur-family member, a 

homologue of MXAN_6967 (STIAU_0559), which misses the iron-binding motif. In this 

case, homology is exceptionally high (74 % I, 87 % S). This result was unexpected, as 

MXAN_6967 clearly lacks the iron-binding residues, typically observed in Fur crystal 

structure, so MXAN_6967 is unlikely to be an iron-responsive Fur regulator. Apparently, 

additional strain-specific control systems must function to maintain iron homeostasis in 

S. aurantiaca, which has been reported for only a few bacteria as for example in E. coli, 

Vibrio anguillarum, and Staphylococcus aureus (Escolar et al., 1999; Crosa et al., 2002; Chao 

et al., 2005), which employ iron-responsive transcriptional regulators beside Fur family 

members as DtxR, SirA and/or IdeR proteins (see introduction section 1.1.2). Because all of 

the mentioned organisms contain also iron-responsive Fur proteins (and sometimes several 

other Fur homologues), the importance of alternative control-mechanisms in iron-regulation 

might have been underestimated, at least for myxobacteria. Newer findings indicate that some 
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microorganisms, such as several α-proteobacteria live without any Fur homologue, 

corroborating the hypothesis of alternative regulators of iron-metabolism (Johnson et al., 

2007) which may also play a key role in regulatory network of myxobacterial iron metabolism 

additionally to Fur proteins. 

 

As the data from BLAST and phylogenetics (section 3.1.1) strongly suggested that 

MXAN_3702 is a classical Fur protein, the genome was further screened for putative Fur 

recognition sites (Fur boxes) using the bioinformatic tool Virtual Footprint version 3.0 

(Münch et al., 2005; Klein et al., 2008). It has been shown previously that Fur proteins 

interact also to 19 bp sequences with less than 50 % match to the consensus sequence in both, 

Bacillus subtilis and �eisseria meningitidis (Lee et al., 2007). Hence, the analysis was refined 

by manual evaluation of candidate Fur boxes, specifically addressing positioning with respect 

to promoter elements and presumed translational start sites. This method revealed putative Fur 

boxes upstream of 40 genes of diverse putative functions (table 3.1). To avoid overestimation 

of the numbers of Fur boxes, the distance to translational start-sites was limited to maximum 

300 bp, because only a few exceptions up to distances of 500 bp were described (Gao et al., 

2008).  

The Fur boxes of M. xanthus seem to be organized as two inverted repeats (figure 3.3), 

conform to the model of bacterial Fur boxes (Lee et al., 2007). As expected, Fur box 

consensus sequences (table 3.1) were identified within the promoter regions of genes typically 

involved in iron acquisition as tonB-family genes (MXAN_3915 and MXAN_6911), a 

putative ZIP family metal cation transporter (MXAN_5682) and genes from myxochelin 

biosynthetic cluster as MxcB (MXAN_3639), MxcH (MXAN_1688) and the main 

myxochelin operon (MXAN_3647-3640). Additionally, Fur boxes were found in proximity to 

genes, mediating a wide range of functions including primary metabolism, redox-reaction, 

translation, motility and probably most important, regulation. A large number of genes (13), 

coding for hypothetical proteins with unknown functions were also detected, but 6 could be 

correlated by BLAST analysis to putative activities. However, the overall findings are 

consistent with the size and diverse membership of Fur regulons observed in other bacteria, in 

which typically genes were included from siderophore biosynthesis, redox response, tonB-

dependent uptake systems, primary metabolism, transcriptional regulators and several other, 

often iron-correlated functions (Ochsner et al., 2002; Holmes et al., 2005; Massé et al., 2005; 

Ollinger et al., 2006; Vidakovics et al., 2007; Lee et al., 2007). 

Interestingly, the gene MXAN_7353 (putative ß-ketoacyl-acyl carrier protein synthase KAS 
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III, a FabH homologue) was detected to be putatively regulated by a Fur box in the promoter 

region. The coded enzyme is thought to catalyze the first elongation reaction of the fatty acid 

synthase in plants and bacteria and allows the organism to modulate fatty-acid composition 

according to changes in environmental conditions (Li et al., 2005). That iron has, at least 

partially, an influence on the fatty acid profile was already published for E. coli (Zhang et al., 

2005b) and seems to be also the case for M. xanthus. 

Another gene under Fur box control was MXAN_1873, which exhibits high homologies to 

integrase/recombinase proteins. These proteins are site-specific tyrosine recombinases, which 

catalyze the cutting and rejoining of the recombining DNA molecules. Many are associated 

with mobile DNA elements, including phage, transposons, and phase variation loci (Yates et 

al., 2003). The sequence shared highest homology to integrases/recombinases, whereof some 

were already found in association with metal-uptake and -regulation in bacteria (Ambrozic et 

al., 1998; Bach et al., 1999; Sonoda et al., 2002; Segall and Craig, 2005). This protein family 

was already included to the Fur regulon since detection in the response of Shewanella 

oneidensis to iron-starvation (Wan et al., 2004). Furthermore, it was published that this 

protein family is required for the genome-integration of plasmid-coded siderophore 

biosynthetic genes as postulated for the aerobactin cluster in Shigella strains (Vokes et al., 

1999). Another known recombinase activity, in interplay with sequence-specific 

methyltransferase restriction-modification systems, is to modify or even invert parts of 

promoter sequences, perhaps to generate Fur box sequences. 

No prediction of Fur boxes was made in promoter regions of genes, coding for ArsR- or 

MerR-like transcriptional regulator proteins (Nies, 2003), indicating separate regulatory 

networks for the distinct trace metals in M. xanthus.  

The genome of M. xanthus is known to be highly dynamic, indicated by the fact of the 

spontaneous mutation to TAN phase-locked phenotype (Laue and Gill, 1995). This 

convertibility may be associated to integrases/recombinases, for which it makes sense to be 

induced in hostile environment to overcome iron stress conditions in order to utilize plasmids, 

which contain genes of iron acquisition, commonly found in nature (Ambrozic et al., 1998; 

Vokes et al., 1999; Sonoda et al., 2002). 

 

Four of the genes from table 3.1 may represent only the first genes of polycistronic mRNAs:  

1) The possible operon MXAN_1314 to MXAN_1321 contains a TonB receptor and 4 hemin 

transport proteins besides 3 uncharacterized proteins. This potential operon supports the 

hypothesis that heme and heme-derivates may be taken up and be metabolized by M. xanthus. 
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2) A Fur box was determined to regulate the myxochelin biosynthetic gene cluster 

(MXAN_3647 to MXAN_3640), which was already known from other myxobacteria to be 

transcribed as single operon, containing the genes mxcCDEFGKL (Silakowski et al., 2000). 

Another gene in this cluster codes for a 3-deoxy-7-phosphoheptulonate synthase 

(MXAN_3642), which catalyzes the first step of the shikimate/chorismate/tryptophan 

synthesis. Chorismate molecules and derived structures (as for e.g. catecholate) from this 

pathway are known from other organisms to be provided for siderophore biosynthesis 

(Neilands, 1995; Kerbarh et al., 2005). Furthermore, the gene MXAN_3641 was found with 

high similarities to the major facilitator superfamily protein MxcK, which acts as transporter 

of small solutes. For the variation of the ratio between the two myxochelin derivates A and B, 

the responsible aminotransferase MxcL (MXAN_3640) must have an additional regulatory 

site besides the Fur box of the whole operon that its expression can be adjusted more 

individually, if necessary. An additional way to vary the ratio of myxochelin A and B could 

be performed by modulation of the enzymatic activities of MxcG and/or MxcL, which 

compete for the substrate, namely the myxochelin aldehyde intermediate (Li et al., 2008). The 

Fur-control of siderophore biosynthesis is detected most frequently in bacteria (Crosa, 1997), 

here taken as positive control in M. xanthus, arguing for the correctness of the used 

bioinformatic method. 

3) The operon structure from MXAN_6641 to MXAN_6635 would include a RppA-like 

chalcone/stilbene synthase family protein with very high homology (76 % I, 84 % S) to the 

chalcone synthase STIAU_8629 from S. aurantiaca DW4/3-1, an acyl carrier protein, an 

AMP-binding protein and a FAD-binding monooxygenase. Further two of the three 

uncharacterized proteins (BLAST homologies to: hemin-binding protein HmuY and tonB-

dependent receptor) of the potential polycistronic mRNA seem to be associated to iron-

uptake. Finally the metallo-enzyme isoprenylcysteine carboxyl methyltransferase ICMT was 

predicted to be part of the operon. This protein family carries out carboxyl methylation of 

target molecules, whose modification could have important function during iron-starvation. 

4) The potential operon from MXAN_6998 to MXAN_6994 would include a helix-turn-helix 

DNA-binding protein, a TonB domain protein, a sensor protein asgD (two-component 

regulator required for A-signaling and nutrient sensing), a putative uncharacterized protein 

and sensor signal transduction histidine kinase-related protein. Most of the proteins have 

regulatory functions, considering that phosphorylation status of some target molecules may be 

correlated in M. xanthus to iron-response. However, the large number of eukaryotic protein 
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kinase–like kinases in the genome of M. xanthus DK1622 (Perez et al., 2008) suggests that 

some of these play important roles in regulatory processes, as for e.g. iron-balancing. 

 

However, no indication for the existence of a Fur box was found for both Fur homologue 

promoters in M. xanthus, neither for the fur gene (MXAN_3702), nor for the fur homologue 

(MXAN_6967), fitting to the used Fur box prediction model from P. aeruginosa (Vasil et al., 

1999), which was found to be the only applicable model for M. xanthus to generate 

convincing results, in contrast to both other available Fur models (H. pylori and E. coli) from 

Virtual Footprint analysis.  

In the model organism E. coli, Fur negatively auto-regulates its own transcription via a Fur 

box (Wandersman et al., 2004). However, this mode of repression was not observed in 

P. aeruginosa (Vasil et al., 1999), Bradyrhizobium japonicum (Rudolph et al., 2006) or 

Campylobacter jejuni (Holmes et al., 2005) and does obviously also not appear to operate in 

M. xanthus, as a Fur box was not identified upstream of MXAN_3702. Anyway, 

transcriptional control of Fur family members can depend on alternative transcriptional 

regulators (see introduction 1.1.2). Several genes coding for such transcriptional regulators 

were found to be present in the genome of M. xanthus (section 3.1.3). Furthermore, some of 

the transcriptional regulator genes were predicted to be Fur-controlled, as MXAN_0502 and 

MXAN_6998 (table 3.1). 

To gain experimental evidence for proteins interacting with high specificity to the promoters 

of MXAN_3702 and MXAN_6967, both promoter regions were further examined by DNA 

pull-down assays (section 3.2.4). By this experiment, it was observed that both M. xanthus 

Fur proteins neither bind to the promoter of MXAN_3702 nor to MXAN_6967, while several 

other transcriptional regulators were identified to interact with these promoter sequences 

(table 3.8). The promoter of MXAN_4899 was used as control to identify at least unspecific 

binding of proteins to promoter sequences. Up to now, no promoter in M. xanthus had been 

detected experimentally, to which Fur proteins bind to.  

 

 

As mentioned, a potential limitation of the bioinformatic prediction of Fur boxes is that some 

genes associated with Fur boxes are not regulated by Fur, while other genes which are under 

Fur control are regulated from sites with little similarity to conventional Fur box consensus 

sequences (Baichoo et al., 2002a). A further issue is that it is not possible on the basis of 

sequence information alone to distinguish sites which would be bound by MXAN_3702 or 
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MXAN_6967, because Fur sub-family recognition motifs (as from Fur, Mur, Nur, Zur, Irr and 

PerR) are quite similar (Fuangthong et al., 2003; Lee et al., 2007). A heterologous expression 

of the two M. xanthus Fur proteins, followed by in vitro DNA footprint experiments could 

elucidate sequence specificity of the DNA binding regions of both and clarify which genes 

underlie Fur-mediated expression control. 

 

 

The small overlapping of Fur box-controlled genes (table 3.1) and genes from iron-uptake, -

transport as TonB domain proteins (table 3.2) suggests that M. xanthus can use other, 

alternative strategies to control iron balance. The genome contained much more TonB-

depending systems than necessary for the uptake of iron-myxochelin complexes, indicating 

for a potential import of competitor siderophore structures as found for Escherichia and 

Salmonella strain (Rabsch et al., 1991; Ambrozic et al., 1998), also if the activation of the 

uptake mechanism is not understood yet. The organism-foreign siderophores must be taken up 

somehow after iron-complexation, which argues for the expression of such formerly 

inactivation TonB-depended import-systems, which might be accomplished by 

integrases/recombinases, a protein family which is known to modify and subsequently 

activate promoter sequences (Hall and Collis, 1995; Koenig et al., 2008). As mentioned 

before, the integrase/recombinase MXAN_1873 was detected to be Fur-controlled (table 3.1).  

 

 

To summarize the results from bioinformatic analysis: The iron-regulation in the order of 

myxobacteria seems to be very strain-specific, suggested by the finding of different numbers 

of Fur proteins and functions encoded in the genomes of M. xanthus DK1622, S. aurantiaca 

DW4/3-1 and S. cellulosum Soce 56 (Quatrini et al., 2007). Diverse control-systems enable 

M. xanthus to use various possibilities to respond to iron-limitation.  

The overall response of M. xanthus shares a high degree of similarities with results from other 

bacteria (Wan et al., 2004; Ernst et al., 2005; Quatrini et al., 2007). More precisely, 

M. xanthus shows some features, typically found in Gram-negative bacteria, as in the genome 

several Fur proteins were coded, whereof one is iron-responsive (MXAN_3702), or as the 

existence and structure of Fur boxes of many iron-uptake and -transport genes. On the other 

hand, M. xanthus might be able to use several uncommon strategies such as iron-responsive 

putative integrase/recombinase proteins or as the import and degradation system for heme 

derivates, only known from a few other bacteria. 
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Two genes of M. xanthus (MXAN_4532 and MXAN_6639; a NRPS and a chalcone/stilbene 

synthase), each putatively controlled by Fur boxes substantiate the hypothesis that it may be 

possible to bring hidden metabolites into the range of detection during iron starvation. 

Surprisingly, with the ß-ketoacyl-acyl carrier protein synthase MXAN_7353, a protein of the 

initial step of fatty acid biosynthesis was predicted to be iron-responsive.  

In any case, the bioinformatic prediction of Fur homologues in M. xanthus DK1622 provides 

some interesting information about how the strain might respond to iron-limitation in advance 

of any practical experiments.  
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4.2 Response of M. xanthus DK1622 to iron-limitation 

After in silico analysis, the response of M. xanthus to iron-limitation concerning growth, iron-

uptake, proteome and secondary metabolite production was analyzed. To ensure statistical 

relevance of detected events, all experiments were carried out as triplicates. Additionally, 

protein interactions with the promoters of the two fur genes (MXAN_3702 and MXAN_6967) 

were evaluated via DNA pull-down assays, using protein samples from iron-rich or iron-

limiting conditions. 

 

4.2.1 Iron-limiting environment  

Iron concentration was determined in growth media before (CTT) and after (CTT-FeMIN) 

treatment with Chelex. Iron concentrations were thereby measured photometrically using 

Ferrospectral, as used routinely for bacterial iron-limiting environments (Cinkaya, 2002; 

Smith et al., 2006; Hamann, 2007; Ilg, 2007). To provide a defined amount of iron, it must be 

ensured that glass-bound iron was removed quantitatively from all containers used in advance 

of any practical experiments. This was accomplished by pre-treatment of all glass-containers 

with Chelex resin beads (see section 2.7.1). 

 

The iron concentration of CTT medium was 4.8 µM, with a standard deviation of 

approximately 0.6. Iron-rich conditions for other bacteria (growth without obvious limitation) 

are described to be in the range between 2 and 20 µM in the respective growth media 

(Hubbard et al., 1986; Winkelmann et al., 1987; Basler et al., 2006), which was also correct 

for CTT. Some exemptions have to be made as for several bacterial species, which use ferric 

iron as final electron acceptor, such as Geobacter strains (Mahadevan et al., 2006) or 

organisms, which do not need any iron at all, such as Lactobacilli (Archibald, 1983).  

The iron concentration of CTT-FeMIN was ca. 0.5 µM, with a standard deviation of ca. 0.12. In 

previous approaches of other groups, the used concentrations of iron-limiting conditions were 

found to be in the same range, i.e. between 0.2 and 2 µM (Hubbard et al., 1986; Lodge et al., 

1986; Wennerhold et al., 2005; Najimi et al., 2008). A second round of reduction of the iron 

concentration below 0.3 µM by re-treating the CTT-FeMIN with Chelex leads to a significant 

growth deficit, making this medium not feasible for follow-up studies.  

As all measurements, the here used spectrophototmetric system is defective. Remaining 

doubts could be cleared out by the usage of orthogonal detections mechanisms, as for e.g. by 

Atomic Absorption Spectrophotometry, which determines the total amount of iron, 

independent from change. 
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In the laboratory, bacteria are grown in culture media which are designed to provide all the 

essential nutrients in solution for bacterial growth and for maintaining cellular biosynthesis 

and energy metabolism. In principle, there are different ways to create iron-limiting bacterial 

growth media: When using complete synthetic (or minimal) media, iron-concentrations can 

be easily adjusted by adding the respective amount of iron to medium. Such approaches have 

been performed with e.g. Brucella (Anderson et al., 2008) or Corynebacterium (Wennerhold 

et al., 2005) strains. 

An alternative strategy to create iron-limiting media is the complexation of present iron. 

This can be accomplished by commercial available siderophores, which then remain in the 

media. As an example, desferrioxamine B (Desferal) was added to media of �eisseria 

meningitidis, (Basler et al., 2006) or H. pylori (Lee et al., 2004) to generate iron-limiting 

conditions. Furthermore, the iron chelators ethylenediamine-di-o-hydroxyphenylacetic acid 

(EDDA) and 2,2´-dipyridyl were used to create iron-limiting conditions for Aeromonas 

salmonicida (Najimi et al., 2008). It cannot be completely excluded for M. xanthus that some 

of the various TonB-related import systems may potentially take up competitor ferric-

siderophore complexes which finally would then be metabolized, since some bacterial strains 

are able to import foreign siderophore molecules (Rabsch et al., 1991; Ambrozic et al., 1998), 

as mentioned before. 

Alternative setups include the removal of iron from media before inoculation, e.g. with the 

transition metal chelating agent Chelex. The approach of bacterial growth in Chelex-

pretreated media as iron-limiting environment was reported previously for many bacterial 

strains, such as E. coli (Hubbard et al., 1986), Pseudomonas (Ochsner et al., 2002), Bacillus 

(Ollinger et al., 2006), Bordetella (Vidakovics et al., 2007) as well as Klebsiella pneumoniae 

(Lodge et al., 1986). 

Also here, for the preparation of CTT-FeMIN, the complex medium CTT was treated with 

Chelex resin beads. However, iron is the preferred binding target with the highest affinity 

from all potential interacting metals (see Chelex-manual). Effects on other trace metal should 

be negligible (Vidakovics et al., 2007), indicated by the fact that there was still 10 % of the 

initial iron (the preferred interaction partner) left in CTT-FeMIN, i.e. Chelex treatment was not 

performed exceedingly.  

There might be the possibility that divalent metal ions other than iron were affected by the 

Chelex-based method; ongoing experiments (iron supplementation of CTT-FeMIN back to the 

untreated level of CTT; R. Müller, T. Klefisch) will ultimately provide the evidence that 
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Chelex has created iron-limitation with a very high specificity. Again, these facts would argue 

for an additional determination method of total iron in both media, using techniques with 

higher accuracy and specificity, as e.g. Atomic Absorption Spectrophotometry. 

 

Accordingly, it has been expected that an approximately 10fold reduction of iron 

concentration in CTT generates an iron-limiting environment. In order to discover response of 

M. xanthus to iron-limitation, comparative studies were made using CTT or CTT-FeMIN. The 

effects on growth, proteome and secondary metabolite level, as well as protein interactions 

with promoters of the putative fur genes MXAN_3702 and MXAN_6967 were monitored. 

The results from M. xanthus (growth limitation, iron-uptake rates, proteome and secondary 

metabolites) show the fundamental characteristic response of Gram-negative bacteria to iron-

limitation. A detailed discussion will be given in the following sections. 

 

 

4.2.2 Growth and iron uptake under iron-limiting conditions 

To evaluate the direct consequence of iron, M. xanthus DK1622 was grown under both iron-

rich and iron-poor conditions. Resulting growth profiles (section 3.2.1), iron uptake rates 

(section 3.2.2), proteomes (section 3.2.3), D.A pull-down assays (fur promoter-protein 

interaction; section 3.2.4) and secondary metabolomes (section 3.2.5) were then compared. 

The results are discussed in detail in the following sections. 

 

Under conditions of iron sufficiency (CTT), wild type M. xanthus reproducibly exhibited a 

characteristic tri-phasic growth pattern (figure 3.4), with exponential growth commencing at 

20 h (after lag-phase), continuing for 30 h (log-phase), and then dropping off (dying phase). 

The maximum cell density was achieved after 50 h at an O.D.600 of ca. 2.5.  

Under iron-limiting conditions (CTT-FeMIN), the growth rate was drastically repressed. 

Growth of M. xanthus did not exceed an O.D.600nm of 0.4 upon iron-limitation (figure 3.4). A 

significant reduction in growth rate is characteristically observed in iron-poor medium, 

reflecting the essential requirement of iron in basic bacterial metabolism (Ochsner et al., 

2002; Lee et al., 2004; Holmes et al., 2005), demonstrating that the used Chelex-based 

method produced iron-restricted conditions.  

For the determination of iron uptake rates, iron-concentrations were determined by 

absorbance before and after growth using the iron reagent Ferrospectral (ferrozine) (Stookey, 

1970; Carter, 1971), as applied for many microorganisms, such as e.g. Rhodospirillaceae 

(Smith et al., 2006), Archaea (Hamann, 2007) or Clostridium strains (Cinkaya, 2002). Iron 
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uptake rates were calculated by subtracting the remaining iron concentration in used media 

from the initial iron concentration in fresh media and normalized to the optical density of cells 

(Smith et al., 2006). 

The iron uptake (table 3.3) was highest in the period preceeding exponential growth (43.6 

nmol h-1 O.D.-1), lowest during the exponential phase (16.9 nmol h-1 O.D.-1), and then rose 

again once growth leveled off (37.0 nmol h-1 O.D.-1). This observations indicate that iron 

transport and growth are decoupled in M. xanthus DK1622 as found for E. coli, in which 

intracellular iron storage pools are deposited pre- and post-exponentially (Abdul-Tehrani et 

al., 1999). In fact, there was a significant reduction in the iron uptake of M. xanthus under 

iron-rich conditions at the exponential phase. 

The results from iron-uptake rates (section 3.2.2) clearly indicate that M. xanthus had 

activated its iron uptake systems in order to respond to the low iron conditions. Accordingly, 

the relative increase of iron uptake was reported earlier (Touati et al., 1995), correlated to 

enhanced protein expression of siderophore biosynthesis and ferri-siderophore re-import.  

Correspondingly, the proportion of iron influx was significantly higher than under iron-rich 

conditions (ca. 5fold; calculated to total present iron), and essentially constant through the 

whole culture period (table 3.3). In fact, a very strong increase of both iron storage 

DPS/bactoferritin proteins MXAN_0866 and MXAN_1562 (both 27fold) was observed in the 

response of proteomes from M. xanthus to iron-deprivation. However, such a strong induction 

was unexpected; therefore gene MXAN_1562 was selected as a target for inactivation via 

single crossover (see section 4.4).  

Anyway, the highest rate of iron import was determined in the dying phase, which was also 

the fact under iron-limiation.  
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4.2.3 Response of the M. xanthus proteome to iron-limitation 

The search for proteins and protein networks involved in iron-dependent processes was 

attempted by comprehensive proteomic experiments. Monitoring of the protein profiles from 

iron-rich and iron-limiting conditions and subsequent screening for differentially expressed 

proteins allows to pinpoint key changes in the M. xanthus proteome, and additionally may 

help to discover crosstalks between secondary metabolic pathways, in response to changed 

iron supply.  

In Helicobacter pylori (Lee et al., 2004) and Campylobacter jejuni (Holmes et al., 2005), 

regulation by Fur and iron of selected genes was observed to differ at the transcriptional and 

protein levels, reflecting the existence of post-transcriptional/translational control 

mechanisms. This observation argues for direct analysis of cellular proteins, including post-

translational modifications.  

For implementation, three protein samples labeled with different CyDye DIGE fluorophores 

were run per 2D-gel. One of these samples, the internal standard, results from the pooling of 

aliquots of all biological samples in the experiment. Thereby, 2D-DIGE system brings 

statistical confidence and reliability to 2D-electrophoresis (see section 1.3.2). 

2D-DIGE experiments to identify iron-correlated, up- or down-regulation of proteins from 

samples of two different time points (29 and 40 h) were designed in a way that non-specific 

variations in the protein profiles were minimized (see figure 1.13/figure 2.1).  

Analysis by 2D-DIGE revealed in average 1979 protein spots per gel (standard deviation: 

1.86 %) and a total of 172 spots whose expression levels differed constantly at least 2fold 

under the two culture conditions (table 3.4). By the MALDI-MS analysis, 169 of these 172 

spots could be identified, resulting in 131 individual proteins (table a1). The detection of a 

single protein as several protein spots occurs frequently in proteome analysis. Such proteins 

are thought to be more important than single-spot proteins in the response to a certain factor, 

even more notable, if the regulation of the different spots show the same direction (all up- or 

all down-regulated). From the 131 identified proteins, 53 were analyzed as down-regulated in 

the presence of iron-limitation and 78 which were up-regulated (in case of protein, present as 

multiple spots, the not-modified protein species was taken into account). The occurrence of a 

higher number of up- than down-regulated proteins during iron-starvation is a 

characteristically result from bacteria under these conditions (Heim et al., 2002; Basler et al., 

2006; Vidakovics et al., 2007). 
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To get a better overview about proteome response of M. xanthus to iron-limitation, the 131 

identified proteins were categorized by their biological functions (table a1): Central 

metabolism (12), protein regulation (13), chaperone and GST domain proteins (6), 

membrane-associated (4), iron acquisition (6), redox stress resistance (15), 

motility/chemotaxis (4), D.A metabolism/transcription (13), translation (10), 

hypothetical proteins or unknown function (48). Many of the identified proteins from 

general metabolism, peptidases or proteins with DNA interaction activities could be further 

connected to iron metabolism, because of the usage of iron as cofactor. Strikingly, 48 (37 %) 

of the identified proteins do not have an annotated function and thereof 25 did not exhibit any 

high homology to proteins with annotated functions in the NCBI database (table a1), an 

observation which may ultimately provide insight into their potential functions. 

To elucidate the underlying metabolic changes responsible for the iron-starvation phenotype 

of M. xanthus DK1622, the following section will give a detailed view to the protein 

categories, found to be differently regulated (table a1).  

 

Iron-limitation has significant effects on central metabolism in M. xanthus. As observed for 

other bacteria (Ochsner et al., 2002; Holmes et al., 2005), lower levels of tricarboxylic acid 

(TCA) cycle enzymes were detected, including the Fe-S protein succinate dehydrogenase 

(MXAN_3540, - 2.2fold). As an iron dependent protein, the succinate dehydrogenase is 

typically down-regulated by bacteria in the absence of iron (Wilderman et al., 2004); its 

additional role in the electron transport chain makes the detection of this protein even more 

important, because it serves a key function in energy metabolism. Furthermore, the NADP-

dependent isocitrate dehydrogenase Icd (MXAN_3537, - 2.2fold) participates in the TCA 

cycle. It catalyzes the third step of the cycle: the oxidative decarboxylation of isocitrate, 

producing α-ketoglutarate and CO2 while converting NAD+ to NADH. Another protein from 

the TCA cycle, the succinyl-CoA synthetase, SucD (MXAN_3542, - 2.9fold), catalyzes a 

reversible step, which involves the substrate-level phosphorylation of GDP. All detected 

proteins from the TCA cycle were down-regulated and many of them use iron as cofactor. 

This strategy avoids the wasteful generation of iron-requiring proteins when there is no iron to 

combine with them, and increases the availability of this transition metal for more essential 

processes (Andrews et al., 2003). 

Another important protein, which was found to be differently regulated (MXAN_1264, 

2.2fold) was the PckG (phosphoenolpyruvate carboxykinase), the reaction-rate determining 

enzyme in the metabolic pathway of gluconeogenesis. Plants and bacteria can generate 
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glucoses from acetyl-CoA monomers by the glyoxylate cycle, which might give a hint for the 

enhanced consumption of acetyl-CoA units for the process of glyoxylate-gluconeogenesis in 

M. xanthus and simultaneously increase NADH formation to balance energetically the 

reduced TCA cycle (Kwon et al., 2008). The energy-rich, reduced form of NADH is used in 

oxidative metabolism as energy-delivering coenzyme from the respiratory chain, which 

generates ATP. However, higher expression levels of PckG increase ATP formation (Kwon et 

al., 2008). The switch from citrate-cycle to glyoxylate-cycle is performed by the isocitrate 

dehydrogenase Icd (- 2.2fold decreased). The difference in the energy status is also confirmed 

by induction of an ATP synthase (MXAN_7028; 5.0fold) and a CBS protein (sensor of 

cellular energy status; MXAN_7380, 3.7fold) under iron-limitation.  

On the other hand, the lower availability of iron is also important for the heme-containing 

cytochrome P450 proteins, a central energy-providing protein family. From the 7 present 

P450 proteins (MXAN_0683, 1743, 2304, 3943, 4127, 4919 and 7298), none was detected as 

differently regulated. This indicates their importance for the cell, so available iron is used in 

the central processes of energy metabolism, coupled P450-catalyzed reactions of M. xanthus. 

Accordingly, the Rrf2 proteins (known to act as transcriptional main regulators for 

cytochromes) MXAN_1152, 1643 and 6918 of M. xanthus were not detected as differently 

regulated under iron-limitation. That no proteins from P450 cytochromes or Rrf2-like 

regulators were found as differently regulated could be reasoned by the general low 

abundance of these families or variations of 2D-DIGE spots were too small to be detected 

(Heim et al., 2002; Lee et al., 2004). 

 

The argininosuccinate synthase ArgG (MXAN_5108, 7.9fold) and the carbamoyl-phosphate 

synthetase CarB (MXAN_3388, 2.1fold) were found induced under iron-limitation. Both 

proteins are correlated to the biosynthesis of the amino acid L-arginine, possibly involved in 

further synthesis of the non-proteinogenic amino acid ornithine, a precursor molecule of 

hydroxyornithine siderophores (Winkelmann, 2002). Anyway, housekeeping activities such 

as amino acid biosynthesis are typically found modulated during iron-starvation in other 

bacteria (Ochsner et al., 2002; Baichoo et al., 2002b; Ernst et al., 2005). 

However, no prove was found for an enhanced pathway of lysine biosyntheses, so this amino 

acid seems to be provided in sufficient amounts for the increased myxochelin production 

(table 3.3), which requires lysine as educt. Additionally, no evidence was found in the 

genome-screening or the proteome experiments of M. xanthus to excrete and subsequent re-
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import the amino acid cysteine, which is known to be used for iron utilization, as for e.g. by 

L. pneumophila (Jiang et al., 1997).  

Furthermore, 3 up-regulated proteins from the proteome studies could be correlated to 

glutamate metabolism (MXAN_0543, 2675, 5806), which was expected to be effected during 

iron starvation. Glutamate is the most abundant amino acid in both Gram-positive and Gram-

negative bacteria. Organisms can produce large intracellular glutamate pools, up to 100 mM 

for vegetative growth and adaptational processes. Previously, iron-starving conditions had 

also indicated the aconitase as the iron-dependent bottleneck of glutamate synthesis in 

B. subtilis (Miethke et al., 2006). In M. xanthus some proteins from this pathway were found 

to be up-regulated very similar, arguing for the accumulation of the important metabolite 

glutamate, as long as enough iron is available for the biosynthetic proteins. Additionally, 

glutamate is the start point for the biosynthesis of heme derivates by the C5 or Beale-pathway 

(Panek and O'Brian, 2002).  

 

On the other hand, the heme-degradation function of HemS may perform a fast acquiring of 

iron from foreign heme structures without de novo synthesis of required proteins. The ability 

to use heme as an iron resource was thought for many years to be restricted to pathogenic 

bacteria, but there is increasing evidence that many soil bacteria can also acquire iron from 

heme (Noya et al., 1997; Yang et al., 2005). Thus, M. xanthus might be able to degrade 

foreign heme derivates from other organisms, as performed for e.g. by S. aureus, which can 

metabolize human heme-molecules (Zhu et al., 2008).  

Significantly, the up-regulation of a HemS binding protein (MXAN_1318) was observed 

under iron-limiting conditions in M. xanthus (3.0fold) as found in some pathogens, such as 

P. aeruginosa, S. oneidensis or C. jejuni (Ochsner et al., 2002; Wan et al., 2004; Holmes et 

al., 2005). Additionally, the two proteins HemU and HmuV from heme uptake 

(MXAN_1320: hemin permease protein and MXAN_1321: involved in hemin import) could 

be detected to be present in M. xanthus (table 3.2). 

Worth mentioning, proteins from heme degradation as for e.g. MXAN_1318 (HemS protein) 

were detected to be induced (3.0fold) during iron starvation. This was unexpected, because up 

to now, these proteins were only found in pathogen microorganisms and a few α-

proteobacteria (Panek et al., 2002; Todd et al., 2005). The detected protein HemS is required 

for heme-storage and -degradation, the exact function is correlated to the current state of 

conformation (Schneider et al., 2006). Additionally, a Fur box was detected in the promoter 

of MXAN_6641, a HmuY homologue, which is a hemophore that scavenges heme from 
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infected hosts and delivers it to outer membrane receptors (Olczak et al., 2008). The iron-

storage function of heme and hemin molecules may be required in face of an increase of iron-

influx, also indicated by the fact that the iron-depending rate limiting step of the glutamate 

synthesis, the aconitase, was not found down-regulated, which is the starting point for 

synthesis of heme derivates.  

These findings were quite unusual, because heme was not expected to be an iron-resource in 

the natural environment of myxobacteria. This might be an oddment of a heme-degradation 

pathway, or the utilization of heme may be generally underestimated for soil-living 

organisms. Because M. xanthus can lyse prey-organisms, it is logical that iron-containing 

structures of these could be utilized as iron-resource (e.g. prey P450 cytochromes). The 

addition of heme as only iron resource in an iron-limiting environment as for e.g. CTT-FeMIN 

could clarify this possibility. 

Anyway, myxobacterial iron metabolism and its regulation seem to be more complex than in 

other bacteria. 

 

Among the differently regulated proteins were 14 categorized as protein-regulation, 

-modification and –metabolism. Seven hereof are predicted to possess proteolytic functions, 

three are peptidases of the M16 (pitrilysin) metallopeptidase family (MXAN_0791, 5.8fold; 

MXAN_1141, 2.2fold; and MXAN_7497, - 2.1fold), one is a M20 peptidase family member 

(MXAN_0543, 2.1fold), and one is an ATP-dependent Clp2 protease (MXAN_6483, 2.7fold). 

As most of these proteins were found to exhibit a higher expression under iron-limiting 

conditions in M. xanthus, the proteases may be involved in dismantling native, iron-

incorporating proteins in the cell in order to increase the intracellular availability of iron for 

more essential proteins. Furthermore, peptidases are known to have fundamental roles in the 

activation of pre-proteins or to acquire particular metabolite storage pools without de novo 

synthesis by hydrolysis, for example from extracellular matrices (Clemans et al., 1991; 

Kearns et al., 2002; Curtis et al., 2007).  

Clearly significant for regulatory events, two protein-phosphorylation-correlated sensor 

kinases (MXAN_0720, - 2.7fold and MXAN_1892, - 2.5fold) were down-regulated, and a 

FHA (forkhead associated) receiver domain protein (MXAN_2520, 2.6fold) was induced in 

M. xanthus during iron starvation. Because these proteins can represent important key 

regulators of diverse functions, including secondary metabolism, the gene of MXAN_2520 

was selected for gene inactivation. That more than 10 % of the identified proteins (14 from 

131) belong to protein-regulation, -modification and -metabolism is an unusual result for 
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bacterial response to iron-limitation (Ochsner et al., 2002; Baichoo et al., 2002b; Ernst et al., 

2005), which may be contributed by the complex life cycle of myxobacteria. 

 

All three identified chaperones from proteome experiments were analyzed with a reduced 

expression (MXAN_1073, - 3.0fold; MXAN_4467, all 5 detected spots between - 2.1 and - 

2.3fold; and MXAN_4895, all 9 detected spots between - 2.1 and - 2.9fold). This might be 

correlated to an unspecific reduction of protein biosynthesis and lower metabolic rates 

generally. Anyway, chaperones were typically down-regulated in bacteria under low-iron 

conditions as postulated for �. meningitidis (Basler et al., 2006), C. jejuni (Holmes et al., 

2005) and H. pylori (Ernst et al., 2005), to give only a few examples. Further proteins from 

this group, such as GST domain proteins (disarming of potentially harmful substances) or 

WD40 domain proteins (mediation of protein-protein interactions), did not show a clear trend.  

 

Massive rearrangement in the composition of the membrane proteins of pathogenic bacteria 

is known, if grown in-vivo in the iron-limiting environment of body fluids (Griffiths, 1990). 

In M. xanthus, several efflux pumps of the ABC type were also down-regulated 

(MXAN_0559, MXAN_5168), as well as an outer membrane protein P1 (MXAN_7040), a 

putative membrane- (MXAN_0350) and a putative lipo-protein (MXAN_0498), suggesting 

some remodeling of the outer membrane and cell surface structures, which takes place in 

response to low iron as detected in proteome analysis of H. pylori (Ernst et al., 2005).  

Anticipatory, to increase the number of identified membrane-proteins, sub-cellular 

fractionation could be performed. By this way, separate data could be attained for the sub-

proteomes of hardly-soluble and periplasmic fraction from the plasma membrane (Görg, 

1999; De la Cerda et al., 2007). Such an approach would provide a deeper insight into the 

membrane-adaptation of M. xanthus in response to iron-deprivation. 

 

Among the six proteins predicted to be involved in iron acquisition, all were detected with a 

higher expression during iron-starvation, partially with very strong increases of almost 20fold. 

This observation is consistent with a strong increase of iron-responsive genes dedicated to 

siderophore biosynthesis and iron-uptake in other bacteria, as for e.g. E. coli, P. aeruginosa, 

and B. subtilis (Ochsner et al., 2002; Baichoo et al., 2002b; McHugh et al., 2003). 

As expected from the increase of iron-uptake rates (table 3.3), a significant up-regulation was 

detected for all three identified proteins from the biosynthetic pathway of the siderophore 

myxochelin: the aminotransferase MxcL (MXAN_3640), the isochorismatase MxcF (2,3-
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dihydro-2,3-dihydroxybenzoate synthase, MXAN_3644), and the 2,3-dihydro-2,3-

didhydroxybenzoate dehydrogenase MxcC (MXAN_3647) (Silakowski et al., 2000). 

Surprisingly, MxcL was found as two protein spots in the 2D-DIGE experiment, both with a 

strong induction under iron-poor conditions (19.7fold and 10.6fold). This indicates a 

significant shift of the ratio of the myxochelins, to enhance rather the amino-derivate, which 

might have the higher affinity to iron. Indeed, HPLC-MS analysis exhibits a much more 

drastic increase of myxochelin B (678fold) than A (81fold), compared to iron-rich conditions 

(table 3.9).  

For some proteins, which had been expected to be differently expressed under iron-limiting 

conditions as for e.g. the iron-chelator utilization protein (MXAN_3639, MxcB), no up-

regulation was found. It can be speculated that at least some of the differences in expression 

may be too small to be detected by proteome experiments. 

In accordance with iron acquiring proteins, an increase in the level of several iron transport 

proteins was observed, including three TonB-dependent receptors, all of which were found 

constantly up-regulated (MXAN5023, 7.6fold and MXAN_6911 as two spots, 2.7 and 

4.1fold) as postulated for other microorganisms under iron-limitation (Ochsner et al., 2002; 

Wan et al., 2004). The TonB-ExbB-ExbD (see introduction; section 1.1.1) is an energy 

consuming system required for uptake of ferri-siderophore complexes by outer membrane 

receptors (Krewulak et al., 2008), a mechanism which furthermore allows bacteria to piratize 

siderophores from their competitors.  

The genome of M. xanthus contains other numerous TonB-dependent uptake systems (table 

3.2); but proteome analysis exhibits only three TonB domain proteins with a difference in 

expression. As mentioned before, activation of the various TonB-depending receptor, -binding 

and -shuttling proteins may require a genomic modification by integrase-based DNA 

shuffling for the uptake of iron, connected to unknown structures. Furthermore, it might be 

possible that other undiscovered regulatory mechanisms were used in M. xanthus to control 

expression of some TonB-correlated import proteins. 

 

In the group of proteins which alter redox state and/or provide redox stress resistance, a high 

content of up-regulated enzymes (14 of the 15 proteins) was detected. This highlights the 

adaption of the redox-status, in anticipation of an increased relative influx of iron which 

potentiates the formation of reactive oxygen species. Additionally, this observation is 

consistent with high proportions of iron-induced changes, dedicated to maintain redox-

homeostasis in other bacteria during iron-starvation, as for e.g. E. coli, P. aeruginosa, C. 
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jejuni and B. subtilis (Ochsner et al., 2002; Baichoo et al., 2002b; McHugh et al., 2003; 

Holmes et al., 2005). 

Likewise, the main response of M. xanthus to iron-limitation based on the increase of the 

uptake of iron while simultaneously preparing a protection for the cell from any toxic effects, 

caused by the stronger influx of iron. The importance of these shielding effects is evident 

from the identification of the three most up-regulated proteins: thioredoxin TrxB2 

(MXAN_5670; 56fold), a partner thioredoxin disulfide reductase, TrxB_1 (MXAN_1954; 

8.3fold), and two iron detoxification/iron storage proteins (DPS/bactoferritin; DNA protection 

during starvation) TpF1 and TpF2 (MXAN_1562 and MXAN_0866; both 27fold), which are 

supposed to protect the chromosome from iron-induced free radical damage by sequestering 

intracellular iron (Escolar et al., 1999; Holmes et al., 2005), which is correlated to the 

additional function of both proteins as bactoferritins.  

The remaining stress response proteins include the thioredoxin domain protein MXAN_0351, 

the antioxidant alkyl hydroperoxide reductases AphC (MXAN_1564, as three spots 2.1, 3.1 

and 3.7fold induced and MXAN_6536, as two spots 4.1 and 7.4fold) and AphD 

(MXAN_1563, 14fold), a glutathione peroxidase family protein (MXAN_7090, 2.9fold), and 

three oxidoreductases (MXAN_0303, MXAN_4003, MXAN_6482), which are all typically 

involved in redox-balancing of bacteria (Vasil et al., 1999; Ochsner et al., 2002; Lee et al., 

2004).  

Almost all detected proteins from this group were found induced, several at very high levels 

(as ca. 56fold for the thioredoxin protein TrxB2; MXAN_5670), which can be explained by 

the increase of the relative iron-influx. The only protein in this group, which was with reduced 

expression under iron-limiting conditions (- 2.5fold), was the thioredoxin peroxidase Tpx 

(MXAN_6496). This reduction may be reasoned by a function of these proteins in cell-to-cell 

communication, as antioxidant or as regulators in biomechanical signal transduction, as 

postulated for other organisms (Yu et al., 2007). 

 

The detection of significant increases of all proteins with predicted roles in motility and/or 

chemotaxis was found in M. xanthus (table 3.5), also reported for B. subtilis (Ollinger et al., 

2006), C. jejuni (Holmes et al., 2005) or H. pylori (Ernst et al., 2005). In contrast to other 

bacteria, myxobacteria as M. xanthus are able of coordinated movement in which cells move 

cooperatively (or ‘glide’) over solid surfaces (see introduction, section 1.2), as required for 

developmental aggregation processes in the formation of myxospores. This behavior is driven 

by two genetically-separable locomotive systems, the adventurous (A) and the social (S) 
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motility systems. Social gliding motility is powered by the retraction of Type-IV pili (a sort of 

bacterial ‘grappling hook’), while the more controversial, adventurous gliding motility 

involves mucus secretion and fixed focal adhesion sites (Mignot and Kirby, 2008). In 

proteomic experiments, the key player in controlling both the A and S motility systems, the 

response regulator FrzS (MXAN_4149; 2.2fold) was found with a higher expression level, as 

well as specific components of both movement mechanisms: a CheW-like chemotaxis protein 

(MXAN_2685; 2.5fold) and the GspE protein (MXAN_2513; 2.7fold, involved in type IV 

pilus biosynthesis), both required for S motility, and AgmK (MXAN_4683; 7.1fold), a 

tetratricopeptide repeat protein involved in A motility. Activation of the motility apparatus 

under iron starvation conditions enhance gliding of M. xanthus over surfaces, probably in 

search for additional resources of iron, including prey organisms. 

 

From 13 potential D.A interacting proteins from proteomic experiments (table a1), only 5 

were detected with a higher expression under iron-depleted conditions. The RNA polymerase 

α-subunit (MXAN_3326) was down-regulated, as well as four proteins with possible 

regulatory functions (MXAN_4149, MXAN_4242, MXAN_4535 and MXAN_6032).  

The gene MXAN_4535, coding for an ECF sigma factor was selected for single crossover 

disruption (section 4.4), because of the significant reduction during iron starvation (- 3.1fold).  

The majority of the proteins, involved in DNA metabolism and transcription appears down-

regulated (2–3fold lower). Typically, proteins from transcriptional regulation/D.A 

metabolism had been found with the same response in other bacteria (Ochsner et al., 2002; 

Baichoo et al., 2002b; Ernst et al., 2005). This result may be derived from the significantly 

slower growth rate and a reduction of metabolism generally observed in bacteria during iron 

insufficiency (Baichoo et al., 2002b). Therefore, it can be concluded that up-regulated 

proteins from the group may have important roles in the regulation of iron-metabolism. 

Remarkably, the Fur regulon of M. xanthus also includes several putative transcription 

factors, such as ECF sigma factors (MXAN_1591, 1619, 4242, 4535 and 7393), which are 

important for the regulation of specific subsets of genes with broad ranges of function, as 

described for example for Pseudomonas, Campylobacter or Bordetella strains (Ochsner et al., 

2002; Holmes et al., 2005; Vidakovics et al., 2007). Furthermore, it must be noticed that both 

N6-adenine DNA methyltransferases (MXAN_1808 and MXAN_1864) were found with a 

higher expression under iron-limiting conditions (3.9 and 3.3fold). This protein family was 

already associated to gene regulation in bacteria (Jeltsch, 2002), which was taken as a reason 

to generate knockout mutants of the genes MXAN_1808 and MXAN_1864 in further studies. 
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A more detailed explanation of the function of these proteins and the phenotypes of the clones 

can be found in the discussion parts of the respective mutants (section 4.4). In a few 

organisms, further strain-specific, metal-associated regulators (see introduction 1.1.3), such as 

DtxR (De Zoysa et al., 2005), IdeR (Dussurget et al., 1999), SirR (Hill et al., 1998). FeoC 

(Cartron et al., 2006; Aranda et al., 2009), RirA or IscR-like proteins (Chao et al., 2005; Todd 

et al., 2005) had been identified, which did not share homologies to proteins from the Fur 

family (Rudolph et al., 2006). Also here, several transcriptional regulators had been identified 

to be influenced by iron. As mentioned before, the importance of iron-responsive 

transcriptional regulators instead of Fur proteins might have been underestimated, indicated 

by newer findings that some α-proteobacteria did not contain any Fur homologue, but employ 

alternative regulator proteins for iron-management (Johnson et al., 2007). Such alternative 

regulators might be also present in M. xanthus, in addition to the two Fur proteins. 

Surprisingly, a high content of DNA interacting proteins with possible global regulatory 

functions has been detected during proteome analysis (13 of 131; table 3.6). This was not 

expected, because other results from bacterial iron-limiting response contain typically only a 

few proteins with DNA binding character (Ochsner et al., 2002; Baichoo et al., 2002b; Ernst 

et al., 2005). Hypothetically, M. xanthus could have developed several DNA-interaction-

based response strategies in order to overcome iron shortage, which can occur easily in soil 

(Vasil et al., 1999), the habitat of myxobacteria. However, the enormous modulation on the 

level of many DNA interacting proteins may also be reasoned by the complex life cycle and 

the extraordinary large genomes of myxobacteria.  

 

The group of translation-associated proteins contained 10 different proteins, hereof only 3 

up-regulated. The down-regulation of all four translation elongation factors (MXAN_2408, 

3068, 3297 and 3298) and two ribosomal proteins (MXAN_3307 and 3793) may be 

attributable to the significantly lower growth rate of bacteria, typically found under iron 

insufficiency (Ochsner et al., 2002; Baichoo et al., 2002b; Ernst et al., 2005), which accords 

to the reduction of the majority of proteins from transcription.  

 

Finally, 27 of the 48 hypothetical proteins were activated, several at very high levels as 

MXAN_6434 (17.5fold), MXAN_1893 (12.2fold) or MXAN_3617 (9.6fold). 25 of the 48 

hypothetical proteins show no strong homologies in public databases or share only similarities 

with other hypothetical proteins. Thus, no information about putative functions of these is 

currently available (table a1). 
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Convincing homologies by BLAST analysis (E-value < 10-20, high sequence coverage) could 

be detected for 23 of the 48 hypothetical proteins. Probably most important, 9 proteins were 

found with potentially regulatory functions. These proteins include 2 hypothetical peptidases 

(MXAN_1893, 12.2fold and MXAN_5846, - 2.7fold), 2 hypothetical DNA 

methyltransferases (MXAN_1988, 4.6fold and MXAN_5055, 2.8/7.1fold) and 5 hypothetical 

transcriptional regulators (MXAN_1591, 2.4fold; MXAN_1619, - 2.6fold; MXAN_2440, 

2.7/3.2fold; MXAN_3679, 2.5fold and MXAN_7393, - 2.2fold). Only the function of 

MXAN_3679 (hypothetical protein; 2.5fold) could be specified as ArsR-like regulator, 

required for repressing the expression of heavy metal efflux pumps, which are usually down-

regulated during iron-starvation. Induction of those repressors seems to be the logical 

consequence in M. xanthus during iron-starvation. 

Furthermore, it must be mentioned that MXAN_5484 shares high homology to the HasB 

protein (heme acquisition system) from pathogen strains of Serratia marcescens (Benevides-

Matos et al., 2008). This protein family is involved in shuttling heme molecules across to cell 

membranes into cytoplasm in analogy to iron-siderophore complex import by TonB-

dependent systems (Letoffe et al., 1994). 

However, some of the hypothetical proteins (MXAN_2440, 5055 and 5484) were detected as 

several proteins spots partially with phosphorylations, indicating a central function under 

iron-limiting conditions. As the exact cellular role of these proteins in M. xanthus is unknown, 

some genes were selected (MXAN_1619, 2440, 1988, 5055 and 5484) as target for gene 

inactivation experiments by single crossover knockout. A more detailed explanation of the 

function of these proteins, the motivation of selection for knockout clones and the single 

phenotypes can be found in the discussion parts of the respective mutants (section 4.4). 

 

However, only two of the 40 genes from Virtual Footprint analysis Fur box prediction could 

be correlated to identified proteins from the proteome experiment (MXAN_3647 and 

MXAN_6911). This significant discrepancy may be explained by the inability of a simple 

proteome experiment to reveal all changes in protein expression, but may also reflect that 

many iron-responsive changes in M. xanthus are not only mediated by Fur, as in 

P. aeruginosa for example, only 27 of 78 iron-regulated genes contain a Fur box (Ochsner et 

al., 2002). Another possibility was that the P. aeruginosa Fur box model used in the 

bioinformatic Fingerprint analysis was only a poor match for the M. xanthus recognition 

sequence. Therefore, it was aimed to correlate the proteomic response to the initial analysis of 

genes, regulated by Fur boxes. To address this concern, the promoter regions of all genes 
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whose expression was affected by iron-limitation were re-analyzed for the presence of 

putative Fur boxes (table a3). The analysis was refined by manual control of candidate Fur 

boxes, specifically addressing positioning with respect to promoter elements and presumed 

translational start sites. Previously, it has been shown that Fur interacts in both B. subtilis and 

�eisseria meningitidis (Lee et al., 2007) to sequences which match only 11 of the 19 bp 

consensus Fur box. In M. xanthus, localization and characterization of only 10 nucleotides 

from the designated 19 bp Fur box (figure 3.3) was possible, so these data were compared in 

the sequence alignment with promoter regions of proteins, which show altered expression in 

iron-limitation proteome response. For positive hits, it was required that the sequence of such 

proteome-responsive genes, the Fur boxes matches exactly to 8 or more of the 10 defined 

positions, in order to identify possible weaker-binding sites (Lee et al., 2007). Exact match to 

only 8 from the 19 bp consensus sequence (42 %) had been shown to be an acceptable 

criterion for binding of Fur proteins to Fur boxes in other bacteria (Baichoo et al., 2002a; 

Quatrini et al., 2007), therefore the threshold for the discovering of Fur boxes in promoters of 

iron-responsive genes in M. xanthus was set to 8 or more nucleotides as well. This analysis 

revealed putative Fur boxes upstream of 29 additional genes whose expression was up- or 

down-regulated in M. xanthus proteome response to low iron conditions (table a3).  

Interestingly, the alternative approach to re-analyze iron-responsive genes from proteome-

response for the presence of Fur boxes was highlighted by MxcL, an additional member of the 

myxochelin biosynthetic pathway (MXAN_3640; 10.6 and 19.7fold) and the highly up-

regulated proteins MXAN_0866 (DPS/bactoferritin protein TpF2; 27fold) and MXAN_5023 

(tonB-dependent receptor; 7.6fold). Surprisingly, the second DPS/bactoferritin protein 

MXAN_1562, which was also detected in proteome experiments with a 27fold higher 

expression, was neither predicted to contain a Fur box (table 3.1), nor the manual sequence-

check of its promoter region revealed any convincing sequence homology to the designated 

Fur box sequence of M. xanthus.  

 

However, ultimate determination of the Fur box sequences would require direct investigation 

of Fur protein binding (Baichoo et al., 2002a; Baichoo et al., 2002b; Holmes et al., 2005), as 

by heterologous expression of the Fur proteins followed by in vitro DNA footprint 

experiments.  
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Even small differences in protein expression levels can be discovered using the 2D-DIGE 

system by comparing protein spot intensity obtained from one fluorescently labeled sample 

directly with another. Here, differences in protein abundance of at least 2fold between 

M. xanthus DK1622 samples from iron-rich and iron-poor conditions were detected, with 

statistical confidence greater than 95 % (t-test; P < 0.05) (Lee et al., 2004).  

To recapitulate and compare the overall 2D-DIGE results of M. xanthus under iron-limiting 

conditions, it was shown that the main part of the proteome was not affected, while only a 

minority was detected to be changed or modified. This is found in accordance to characteristic 

proteome results, obtained from other bacteria under iron-limitation: in �eisseria meningitidis 

ca. 10 % of the proteome was found to be influenced by iron-limitations (70 spots with 

different expression from ca. 700 detected spots) (Basler et al., 2006); in Bordetella pertussis 

ca. 20 % (181 spots with different expression from ca. 900 detected spots) (Vidakovics et al., 

2007), and ca. 13 % in Campylobacter jejuni (Holmes et al., 2005) (67 spots with changed 

expression from ca. 500 in total). All these approaches use higher detection limits in 

comparison to the 2D-DIGE technology, here applied to samples of M. xanthus (1979 

detected protein spots per gel in average). Additionally, 2D-DIGE provides a much lower 

threshold (smaller range of changed expression) for protein spots to be defined as “differently 

expressed”. 

Furthermore, all three mentioned publications are based on data from conventional 2D-

electrophoresis. Therefore, it can be speculated that at least some of the detected changes 

could be caused by gel-to-gel variations, which were the major source of errors in a classical 

2D-PAGE experiment (Wu et al., 2006), minimized in 2D-DIGE based approaches by the 

application of an internal standard.  

Here, samples from M. xanthus in 2D-DIGE exhibited 2-3 times more spots than the three 

mentioned bacterial strains. Though, under iron-limiting conditions the number of differently 

expressed spots was only marginally higher (172 spots; ca. 8.7 % of the total), in face of a 

very tight threshold for the definition of proteins as differently expressed (2fold). Taking 

these facts together, the 2D-DIGE-based proteome analysis of M. xanthus was performed with 

higher specificity and lower detection limits than the three mentioned similar approaches 

(Holmes et al., 2005; Basler et al., 2006; Vidakovics et al., 2007).  

 

Nonetheless, a limitation of gel-based techniques is that some cellular proteins can only be 

detected with difficulties or not at all, typically caused by low solubility and/or extremely low 

abundance, or proteins at the boundary of the isoelectric or mass range (including the huge 
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polyketide synthases and non-ribosomal peptide synthetases of myxobacterial secondary 

metabolism). To overcome the problem that several of the PKS- or NRPS-proteins are far too 

large to be analyzed, proteome analysis needs to be set up in another way, such as 

multidimensional chromatographic separation approaches, which was already applied to 

M. xanthus samples (Schley et al., 2006). 

 

However, changes in regulation of at least some of the differently expressed proteins may be 

Fur-independent, a hypothesis in agreement with the much smaller number of detected Fur 

boxes in M. xanthus, which was also postulated for other bacteria (Ochsner et al., 2002; 

Baichoo et al., 2002b).  

 

The overall proteome response of M. xanthus to iron-limiting conditions (table a1) consists 

mainly in changed expression of proteins from iron metabolism/acquisition, central 

metabolism, redox stress resistance, motility/chemotaxis, DNA metabolism/transcription, 

translation and proteins with regulatory functions. Iron-concentration-based effects to these 

protein groups was discovered frequently in proteome or microarray analysis, e.g. in 

B. subtilis (Hoffmann et al., 2002; Baichoo et al., 2002b), B. pertussis (Vidakovics et al., 

2007), E. coli (McHugh et al., 2003), S. oneidensis (Thompson et al., 2002; Wan et al., 2004), 

P. aeruginosa (Ochsner et al., 2002), C. jejuni (Holmes et al., 2005), or H. pylori (Lee et al., 

2004; Ernst et al., 2005).  

Furthermore, it could be demonstrated for M. xanthus that fewer proteins are negatively- (74) 

than positively-regulated (98) by iron-deficiency. This result is characteristic for bacteria, in 

which Fur acts in the classical role as an iron-responsive repressor with iron as co-repressor. 

This might argue again for an iron-responsive function of at least one of the two Fur proteins 

of M. xanthus.  

Additionally, when comparing the proteome results from M. xanthus to other bacteria during 

iron-limiting conditions, a very high agreement was also found for the direction of regulation 

(induction or repression of the respective protein groups), shown in table 3.5.  

Unexpectedly, for 4 of the 7 metal-depending proteases an up-regulation was detected under 

iron-starvation. This may indicate the importance of these proteins in protein-processing or 

protein-turnover events, perhaps with a key role in restructuring of the protein profile to free 

iron for more important processes or in highly specific processing or degradation reactions. 

Furthermore, the proteome experiments of iron-response of M. xanthus exhibited some very 

unusual features, as the potential to take-up and metabolize heme-derivates or the detection of 



Discussion 
 

 172 

a array of iron-regulated transcriptional regulators (much more than in other microorganisms, 

table 3.6) and a extensive rearrangement of proteins, functional in protein-metabolism, -

regulation and -modification (table a1).  

That many of these proteins from protein-regulation (such as protein kinases) were influenced 

by iron availability in M. xanthus is a remarkable result for bacteria (Deutscher and Saier, Jr., 

2006b; Perez et al., 2008). Additionally, the detection of numerous protein-phosphorylations 

(table a2) is also an atypical effect for prokaryotes (Deutscher et al., 2006b), indicating 

miscellaneous possibilities for M. xanthus to respond and adapt to new life situations besides 

the complex life cycle of myxobacteria generally. These facts suggest significant modification 

of some proteins, which was found in contrast to the typical response of bacteria to changes in 

environment, usually varying protein profile rather in a quantitative and qualitative manner 

than to modify it. The common strategy of prokaryotes to control enzymatic activity (besides 

feedback inhibition or end product inhibition) mainly operates in regulation of biosynthetic 

pathways; and control or regulation of enzyme synthesis (Brock et al., 1991). However, in the 

genome of M. xanthus, 97 eukaryotic protein kinase-like kinases (ELKs) were coded and 

numerous other proteins with capability as regulators as for e.g. transcriptional regulators, 

DNA methyltransferases or protein kinases, much more than in other bacteria (Goldman et 

al., 2006; Perez et al., 2008), for which iron-response has been investigated. The genome 

sequences of the myxobacteria reveal that they incorporate a complex network of regulatory 

functions, including enhancer binding proteins, two-component systems, and ELKs 

(Schneiker et al., 2007). As M. xanthus contains almost 100 ELKs, phosphorylation is 

suggested to be a critical regulatory strategy in M. xanthus. Such modifications are not 

apparent from transcriptomic data, again motivating the use of proteome analysis in the case 

of M. xanthus, including the analysis of protein-phosphorylation patterns of iron-responsive 

proteins.  

There was no evidence for up-regulation of the two Fur proteins themselves under iron-

limitation, which seems likely to be observed in 2D-gels, but also no Fur protein was detected 

in similar experiments with P. putida (Heim et al., 2002), H. pylori (Ernst et al., 2005) or 

S. oneidensis (Thompson et al., 2002; Wan et al., 2004), which can be explained by marginal 

changes in expressions of Fur proteins, which are too small to be detected. Furthermore, it 

might be possible that other iron-responsive mechanisms can switch between an active and an 

inactive form of Fur proteins, hypothetically accomplished by posttranslational modifications. 

However, polypeptides with the size of Fur proteins (< 20 kDa) are known to be hard to detect 

on 2D-gels, reaching the limit of resolving power of polyacrylamide gels with generally used 
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crosslinker levels (Rehm, 1997). In addition to this, the identification of such small proteins is 

difficult anyway, caused by the small number of generated peptides by proteolytic cleavage 

(Yates, 2004). The results from M. xanthus may be attributed to the non-auto-regulated Fur 

expression, because no indication was found for Fur boxes at both promoter regions of the Fur 

family genes in M. xanthus (MXAN_3702 and MXAN_6967). Continuative, this suggests the 

involvement of other regulatory mechanisms for Fur expression by alternative transcriptional 

regulators as discovered for M. xanthus by DNA pull-down assays, which were also known in 

other bacteria (Lee et al., 2003). Also in cases of auto-regulation of Fur expression, the 

corresponding Fur proteins are typically not detected by proteome or transcriptome analysis 

(Wandersman et al., 2004; Gaballa et al., 2008).  

In the particular case of M. xanthus, both Fur homologues did not show any indication for 

auto-regulation in both, bioinformatic searches or practical experiments (proteome and DNA 

pull down). This was found in accordance to the Fur model from P. aeruginosa  (Vasil et al., 

1999), which was used in Virtual Footprint analysis.  

 

Although this proteome analysis represents an incomplete picture of the M. xanthus iron 

response, the number and kind of up- or down-regulated proteins agrees well with the 

measured Fur regulons of other bacteria (Heim et al., 2002; Wandersman et al., 2004; 

Rudolph et al., 2006).  

 

 

From all posttranslational modifications, the protein-phosphorylations are mostly described 

and probably best understood (Reinders and Sickmann, 2005; D´Ambrosio et al., 2007). 

Given this extensive kinase-based regulatory network in M. xanthus DK1622, cellular 

response to low iron might be mediated, at least in parts, by protein-phosphorylation of key 

proteins. To address this question directly, every differently regulated protein spot from 

proteome experiments was further examined by mass spectrometry (MALDI-ToF/ToF or 

LTQ-Orbitrap) for the presence of one or more phosphorylation(s), detected by specific 

induction of the neutral loss of the phosphate group (section 2.9.3.2).  

Proteins, present as more than one spot in the 2D-DIGE analysis, were expected to carry 

different functional groups (such as posttranslational modifications like protein-

phosphorylations), causing the variations in molecular weight and sometimes pI-value. If in 

such cases no difference in modifications was detectable, it can be explained by the general 

low abundance of modifications, which makes them difficult to detect anyway. Additionally, 
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it is possible that one or more of the other protein-modifications had been accomplished 

(Walsh et al., 2005), which were not detectable with the method used. Furthermore, it is 

known that some posttranslational modifications, such as protein-phosphorylations could be 

lost during the ionization processes (McLachlin and Chait, 2001; Kjellstrom et al., 2004). 

 

In comparison to the semi-automated data interpretation of MALDI-MS/MS, the analysis of 

phospho-peptides by LTQ-Orbitrap requires detailed manual control of composite spectra 

with overlapping mass ranges. This experimental set-up was found to perform highly precise 

measurements (error < 1 ppm) as reported before (Olsen et al., 2005; Macek et al., 2006; Chi 

et al., 2007; Olsen et al., 2007) but is on the other hand very time consuming. 

 

As a result, from the 172 proteins from 2D-DIGE, 15 protein spots (12 proteins) were 

measured with one or more phosphorylation(s) (table 3.7). From these 15 protein spots, 10 

were detected with one, 4 with two and 1 protein spot with three phosphorylations (table a2). 

For almost all detected phosphorylations, a trend of phosphorylation could be defined, if the 

respective modification was induced or reduced by iron-limitation. By correlation of mass 

spectrometric data to 2D-DIGE records, it was possible to determine that MXA._2440, 

3571, 4863, 5401 and 6911 show an induction of protein-phosphorylation(s) under iron-

limiting conditions, while it was found reduced in MXA._3079, 3307, 3326, 4137, 4467 and 

7497 (table a2). For technical reasons, it was not possible to find out if the phosphorylated 

protein MXA._5055 was more present under iron-rich or iron-limiting conditions (table a2). 

The protein functions and details of the identified protein-phosphorylations are further 

explained in the following section.  

This approach revealed that from 12 identified proteins (table 3.7/table a2) with one or more 

phosphorylation(s), six hypothetical proteins (MXAN_2440, MXAN_3079, MXAN_3571, 

MXAN_4137, MXAN_5055 and MXAN_5401) were among the phosphorylated species; two 

of which incorporated more than one phosphate group.  

As an example, two spots, both identified as MXAN_2440, were found up-regulated in 

single- and double-phosphorylated form. Similar results were detected when analyzing 

MXAN_6911. The data from the analysis of MXAN_2440 and 6911 strongly suggests a trend 

for both proteins to become more important and to be more often phosphorylated under iron 

restriction as a consequence. For both proteins, the increase of the phosphorylated spot is 

higher than the increase of the un-phosphorylated protein spot. The opposite was detected for 

MXAN_3326 (RNA polymerase RpoA) and MXAN_4467 (GroEL1 chaperonin). Here, 
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dephosphorylated and phosphorylated spots show reduced expression, so both proteins 

become less important under iron-limiting conditions.  

 

In detail, the up-regulation of MXA._2440 could be confirmed for two spots, containing one 

(3.2fold up) or two phospho-residues (2.7fold up on iron starvation), respectively. The non-

phosphorylated protein species was not detected to be differently regulated in 2D-DIGE. 

Hence, the tendency for MXAN_2440 can be clearly defined with a higher degree of 

phosphorylations under iron-limitation. More information about the function of this protein 

can be found in the discussion part of the generated knockout mutant (section 4.4). 

Furthermore, the hypothetical protein MXA._3079 was found to be phosphorylated, but 

significantly reduced under iron-limitation. Unfortunately, the BLAST analysis showed no 

convincing homologies to known proteins with assigned function. 

The detection of the down-regulation of a phosphorylated 50S ribosomal L29 protein 

(MXA._3307) under iron-limiting conditions may be correlated to the general reduction of 

translational processes, which agrees to the results from this and other proteome experiments 

(Baichoo et al., 2002b; Ernst et al., 2005). In accordance to that, the RNA polymerase α-

subunit (MXA._3326, RpoA) was detected as 3 spots with one, two or three 

phosphorylations, respectively. All three spots showed a similar down-regulation (all between 

- 2 and - 2.3fold), indicating that not only the quantity of this protein was reduced, but also 

the level of phosphorylation was decreased under iron-poor conditions. Changes in RNA 

polymerase phosphorylation patterns are thought to orchestrate the association of different 

sets of factors with the transcriptase and strongly influence functional organization of the core 

domain (Phatnani and Greenleaf, 2006). The reduction of both proteins point to an undirected 

reduction of the complete transcription in M. xanthus under iron-limiting conditions, possibly 

to save resources and energy for more important processes. This characteristic reduction of 

the overall metabolism of bacteria during iron-starvation was also expected for M. xanthus, 

indicated by the data from growth. 

In the proteome analysis, two spots with different expression profile were identified as 

MXA._3571 (hypothetical protein). One spot was - 2.1fold down-regulated (without any 

detectable modifications), while a second spot was 2.7fold up-regulated (containing one 

phosphorylation). While the intensity of the dephosphorylated spot of MXAN_3571 was 

reduced, the phosphorylated form was found with higher intensity. The protein BLAST 

indicates high similarity to members from the flotillin-band 7 protein family. These proteins 

cluster to form membrane microdomains and have been implicated in signal transduction and 
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regulation of cation conductance (Langhorst et al., 2005). The strong increase of the 

phosphorylated species of this protein suggests important differences in function, induced by 

the protein-phosphorylation, which was also reported from other bacteria (Zhang et al., 

2005a).  

MXA._4137 (hypothetical protein) was measured with a tendency to decrease 

phosphorylation levels during iron-starvation. Unfortunately, the BLAST analysis showed no 

convincing homologies to known proteins with assigned function. 

Another protein, identified as 60 kDa chaperonin GroEL1 (MXA._4467) was detected as 4 

spots (all between - 2.1 and - 2.4fold down regulated), only one spot was found to contain one 

phospho-residue (- 2.1fold down), other modifications (which cause the occurrence as several 

spots) could not be detected. GroEL proteins are known to cooperate in their function as 

chaperones, which is drastically increasing after phosphorylation, partially required for this 

proteins to be active (Kumar et al., 2009). The result may be correlated to the reduced 

transcription/translation and a general reduced metabolism of M. xanthus under iron-limiting 

conditions, accordingly a lower emerging of proteins per time need less chaperone-like 

folding helpers. 

The protein MXA._4863 (adventurous gliding motility protein AgmK) was detected with a 

tendency to increase the phosphorylated protein species under iron-deprivation. An increased 

amount of the phosphorylated protein species may be a hint that polymerization-function was 

enhanced in order to amplify cell movement by adventurous motility. The motility of 

M. xanthus was already connected to protein-phosphorylation, as some proteins require to 

interact with specific protein tyrosine kinase (Youderian and Hartzell, 2007). 

The trend of phosphorylation of MXA._5055 was inconsistent for this protein with unknown 

function, present in the proteome result as 3 individual spots (7.1fold up without, - 3.2fold 

down containing one, 2.8 for up containing two phosphorylations). A protein BLAST exhibits 

a methyltransferase type 11 domain, additionally to a SMC domain (structural maintenance of 

chromosomes). More information about the function of this protein can be found in the 

discussion part of the generated knockout mutant (section 4.4). 

MXA._5401 (hypothetical protein) was measured with a tendency to increase the level of 

phosphorylated protein during iron-starvation. Unfortunately, the BLAST analysis showed no 

convincing homologies to known proteins with assigned functions. 

Furthermore, in this analysis MXA._6911 (TonB receptor) was detected with 0 and 3 

phospho-residues, the corresponding two spots were both up-regulated (4.1fold and 2.7fold). 

Here, the protein was clearly induced and phosphorylation was amplified in the adaptional 
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process to iron-limitation. This argues again for the activation of import of iron-siderophore 

complexes by M. xanthus TonB systems (Karlin et al., 2006), as expected from measured 

iron-uptake rates and proteome response under iron-limiting conditions. 

Analysis of the phosphorylation pattern of the metal-depending peptidase M16B 

(MXA._7497) revealed that the degree of phosphorylation decreases under iron-limitation. 

This protein family of processing proteases is known to cleave signal sequences from larger 

proteins (Aleshin et al., 2009), but because the exact substrate of MXAN_7497 is unknown, it 

is difficult to give a statement about correlation to iron metabolism. 

 

 

Retrospectively, in proteome experiments two sensor kinases were down-regulated 

(MXAN_0720, - 2.7fold and MXAN_1892, - 2.5fold), while a FHA phospho-receiver domain 

protein (MXAN_2520, 2.6fold) was induced in M. xanthus under iron-limitation. That several 

(5 of 12) of the phosphorylated protein species were detected as induced, was found in 

contrast to the two down-regulated kinases from proteome responds. This apparently conflict 

may be explained by the up-regulation of other protein-kinases, which were below the 

threshold (factor 2), so the difference was too small to be discovered in the 2D-DIGE 

experiment, but may have strong cellular effects. 

Nevertheless, the analysis supports a central role for kinase-mediated regulation in the ability 

of M. xanthus to respond to changed environmental conditions, such as iron availability. The 

detection of many variations in the phosphorylation pattern is consistent with the expectations 

of key roles of phosphorylation in regulation of myxobacterial metabolism (Perez et al., 

2008), not only development (Jain and Inouye, 1998). On the other hand, this finding is quite 

unusual, because bacteria typically restructure the quantitative and qualitative composition of 

the protein profile, rather than to modify it, which is more common in eukaryotes (Deutscher 

et al., 2006a).  

 

 

4.2.4 DNA binding proteins at promoter MXAN_3702 and MXAN_6967 

For the identification of proteins interacting in vitro with high specificity to the promoter 

regions of MXAN_3702 (fur) or MXAN_6967 (fur homologue), the DNA pull-down strategy 

was used (see section 2.10). By this method, the interacting proteins from each promoter can 

be determined, using protein extracts from different growth conditions.  
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For implementation, protein extracts from M. xanthus, grown in iron-rich (CTT) or iron-

limiting (CTT-FeMIN) media, were analyzed for binding to streptavidin-coupled 

polynucleotide sequences (both ca. 440 bp), corresponding to the promoter regions of 

MXAN_3702 or MXAN_6967. Finally, SDS-PAGE and MALDI-ToF/ToF MS were used to 

identify proteins isolated by this DNA pull-down strategy (section 3.2.4). 

The major difficulty when studying transcriptional mechanisms is the distinct identification of 

proteins caused by their low abundance. Isolated from DNA pull-down assays in sub-

micromole quantities, the complexes can be dissociated; the proteins can be resolved by SDS-

PAGE and revealed by staining. Proteins were then further analyzed by proteolytic cleavage 

(in-gel digestion), followed by mass spectrometry and protein database search. The current 

standards in MS have mostly overcome the quantitative problem (Drewett et al., 2001). 

In previous experiments, a more stable, non-oxidative environment with stringent protein-

DNA binding conditions could be generated, when adding manganese instead of iron as 

potential cofactor, as recommended for the binding of bacterial Fur proteins and other iron-

requiring transcriptional regulators (Hantke, 2001). By this method, it is ensured that enough 

metal ions were supplied, which might be necessary for some DNA binding proteins to be 

active. 

 

The transcriptional regulation at both promoters of MXAN_3702 and MXAN_6967 is 

performed by highly dynamic aggregates of proteins, whose composition changes significant 

in face of different iron-concentrations (table 3.8). Many proteins were not correlated to iron-

depended regulation of transcription, some not even to transcriptional control at all. 

In detail, the SbcC nuclease MXAN_0959 was found to bind to the promoter of MXAN_3702 

under iron-rich and iron-limiting conditions (iron-concentration-independent), but to the 

promoter of MXAN_6967 only during iron-starvation. Therefore, it can be concluded that the 

binding of MXAN_0959 is only partially linked to iron-availability. The SbcCD protein 

complexes cleave DNA hairpin structures and disaggregate certain DNA-protein complexes, 

which can inhibit DNA replication, DNA recombination and expression events (Connelly et 

al., 1998).  

On the other hand MXAN_1359 (putative DeoR-like regulator) binds only to the promoter of 

MXAN_3702 under both conditions (highly sequence-specific, iron-independent). The 

protein family of DeoR-like transcriptional regulators was expected to be involved in 

regulation of Fur expression as reported for several other bacteria as for e.g. P. aeruginosa 
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(Vasil et al., 1999), B. japonicum (Rudolph et al., 2006) or Campylobacter jejuni (Holmes et 

al., 2005). 

Remarkably, MXAN_1562 (DPS/bactoferritin) was found to bind to both promoter regions 

under iron-limitation (Fur and Fur homologue promoter specific, iron-dependent), further 

target sequences are unknown. Thus, this protein may have regulatory, iron-correlated 

functions, additionally to the DNA protection under starvation conditions. Partially, 

MXAN_1562 was modified via phosphorylation, as detected at the promoter of MXAN_3702 

(table 3.8). Such a modification is known to induce significant conformational changes (Hong 

et al., 1991), hypothetically correlated to sequence-specificity in order to offer more 

individual control of expression. This might be also evident for the two Fur genes in 

M. xanthus. Functionally, the DPS subfamilies are very diverse, some exhibit a DNA-binding 

activity that is at least partially linked with iron complexation (Zeth et al., 2004). This protein 

seems to play a central role in response to iron-limitation, shown by the binding of 

MXAN_1562 to both promoter regions under iron-limitation and the high up-regulation 

(27fold), detected in proteomic study of M. xanthus. In order to gain deeper insight into the 

cellular function of MXAN_1562, the gene was selected as target for a knockout. More 

details about the protein function and the respective knockout mutant can be found in section 

4.4. 

Intrestingly, the DNA methyltransferase MXAN_1808 (putative restriction/modification 

enzyme) was detected to bind to the promoter of MXAN_6967 only during iron starvation, so 

expression may be silenced by DNA methylation. A discussion of the knockout mutant and 

the possible cellular function of MXAN_1808 can be found in section 4.4. 

Another protein, identified as gene product of MXAN_5055 (hypothetical protein) binds to 

the promoter of MXAN_6967 under both conditions, but to the promoter of MXAN_3702 

only under iron-rich conditions (partially iron depending). The BLAST analysis results in two 

domains with a SMC/methyltransferase function. Most likely, the combination of the SMC 

DNA binding domain and a methyltransferase domain indicates DNA as methylation target, 

which was not determinable more exactly from the methyltransferase sequence. DNA 

methyltransferases are used to silence expression of this gene, usually regulating a whole 

subset of genes (Jensen and Shapiro, 2003). These facts may indicate that the promoter of 

MXAN_6967 is poorly accessible under both conditions, but the promoter of MXAN_3703 

only under iron-rich conditions via silencing the respective gene via methylation of distinct 

promoters. Since the protein MXAN_5055 was not detected to bind to the promoter of 

MXAN_3702 under iron-limitation, this may be a sign of de-repression under these 
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conditions. The gene MXAN_5055 may be of special importance for M. xanthus iron-

response, therefore the gene was targeted for a inactivation experiment (section 4.4).  

Interestingly, under sufficient iron supply MXAN_3203 (FHA domain protein) was 

detectable at the promoter of MXAN_6967. This protein is typically correlated to eukaryotic 

nuclear signaling mechanisms and is required for some transcription factors (Durocher et al., 

1999; Durocher and Jackson, 2002). As the data from DNA pull-down assays were 

unsatisfying, the gene MXAN_3203 was selected for a knockout experiment, to find out more 

about the cellular role of the protein. More details about the protein function and the knockout 

strain can be found in section 4.4. 

 

Several proteins are found to perform highly specific and iron-depended promoter interaction 

as for e.g. MXAN_2347 (a protamine P1 homologue) was only detected at the promoter of 

MXAN_3702 under iron-rich conditions. Protamines are small, arginine-rich proteins that are 

believed to be necessary in DNA stabilization (Takami et al., 2004). Because this protein 

family is rarely detected in prokaryotes, knowledge is limited. No knockout mutant of the 

selected gene MXAN_2347 could be generated, indicating a central function in the regulation 

of metabolism in M. xanthus. 

 

Several regulatory proteins were identified at the promoter of MXAN_6967 under iron-

limitation (the adenine-specific DNA methylase MXAN_1808, and two transcriptional 

regulators (MXAN_5271 and MXAN_5872). Probably most importantly, transcriptional 

regulators were found to be involved in regulation of Fur expression, also found in several 

bacteria as for e.g. P. aeruginosa (Vasil et al., 1999), B. japonicum (Rudolph et al., 2006) or 

Campylobacter jejuni (Holmes et al., 2005). 

No methyltransferase was detected at the promoter of the propably iron-correlated fur 

homologoue MXAN_3702 during iron starvation, aguing for a good accessibility under these 

conditions, in contrast to iron limitation. 

 

No indication was found for the binding of one from both Fur homologue proteins in 

M. xanthus, neither at the promoter of the fur gene (MXAN_3702), nor of the fur homologue 

(MXAN_6967), dispite the usage of different transition metals as binding co-factors (section 

2.10). The absence of any evidence for binding activities of Fur (MXAN_3702) or the Fur 

homologue (MXAN_6967) is found in accordance to results from some other bacteria and it 

was consistent with the absence of Fur boxes in M. xanthus, analyzed by the virtual footprint 
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software. However, Fur expression control by several regulators, more than solely Fur 

proteins was already described (Lee et al., 2003) and could also be confirmed for M. xanthus 

by DNA pull-down assays (table 3.8). 

 

Several protein-bands from the SDS-gel of the DNA pull-down assay (figure 3.8) could not 

be identified. The problem might be explained by the low amounts of proteins (bands can be a 

mixture of different proteins in quite low amounts) or by the used silver staining, which is 

known to complicate and sometimes disable a subsequent mass spectrometric analysis. 

Anyway, this staining method was used because of required low detection limits, which are 

known to be much lower than for example Coomassie staining of protein gels (Sinha et al., 

2001). Some of these unidentified bands were found in good agreement at both screened 

promoters when using protein samples from iron-limiting conditions (namely in the lanes 3 

and 5); three highly similar bands occur in the low molecular weight regions (at ca. 10-15 

kDa). These polypeptides may represent important key factors in regulation of Fur expression, 

but since those were not identified, it is impossible to give any final statement about function. 

As mentioned, the identification of such small proteins is complicated anyway, caused by the 

small number of generated peptides by proteolytic cleavage (Yates, 2004).  

 

 

To conclude, the Fur model of transcriptional auto-regulation seems not to be applicable for 

M. xanthus, also described for other bacteria like for B. japonicum (Rudolph et al., 2006), 

Campylobacter jejuni (Holmes et al., 2005) or P. aeruginosa (Vasil et al., 1999), which was 

used as model in the Virtual footprint analysis. In these organisms, different sets of 

transcriptional regulators accomplish the control of Fur protein expression in order to adapt to 

iron-concentrations, as demonstrated for M. xanthus by DNA pull-down assays. 

 

 

4.2.5 The response of the M. xanthus secondary metabolome to iron-limitation 

The quantitative measurement of natural products by HPLC-MS is based on the MS2 peak 

area and provides a highly specific and quantitative method to compare secondary metabolites 

from different samples, stable over several orders of magnitude (see section 2.13). The 

correlation of peak area and metabolite concentration was generated with a dilution series 

from an independently grown wild type culture and showed R2 values higher than 0.999 for 

all metabolites. The peak area of the major fragment (MS2 peak area) is taken as a basis for 
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quantitative calculations. The advantage of this method is the exclusion of false positive 

molecules, which can co-elute at the same time; in case metabolites show the same mass, 

fragmentation patterns will be different.  

 

Inspection of the genome sequence of M. xanthus DK1622 revealed that the myxobacterium 

harbors 18 distinct gene clusters for the biosynthesis of polyketide and non-ribosomal peptide 

secondary metabolites (Goldman et al., 2006). However, to date, only six compound classes 

(the myxochelins, DKxanthenes, myxalamids, myxovirescins, myxochromides and the 

ribosomally produced cittilins) have been discovered from the strain (Krug et al., 2008a; 

Wenzel et al., 2009a), even though 17 of the clusters have been shown to be transcriptionally 

or translationally active (Schley et al., 2006; Bode et al., 2009). In principle, proteins from 

natural product biosynthesis might provide a competitive advantage for M. xanthus against 

other bacteria, particularly under conditions of nutrient limitation.  

 

In the first instance, the variations in yields of the monitored metabolites from cultures grown 

under iron-rich and iron-restricted conditions were analyzed (table 3.9). In iron-rich 

environment, production rates of the myxochelins, myxalamids and myxovirescins were 

stable during the later culture period (between 48 and 64 h).  

As predicted from the observed increase in iron uptake efficiency under iron starvation, 

biosynthesis of both myxochelins A and B was significantly boosted (81 and 678fold, 

respectively). Furthermore, the ratio of the two myxochelin derivates changes from 17-19fold 

more B than A under iron rich to 142-157fold more B than A under iron-limiting conditions. 

This adaptation was expected because in 2D-DIGE, a strong up-regulation of MxcL was 

discovered (two spots; 10.6 and 19.7fold), which catalyzes the generation of the amino-

derivate myxochelin B. Comparing the ratios of myxochelin A and B, the proportion of 

amino-derivative was significantly increased in CTT-FeMIN; therefore it can be speculated that 

the myxochelin B has the higher affinity and binding constant, which would allow a more 

efficient iron-binding and subsequent uptake in case of iron-competitors, which could cause 

the iron-limitation. Final determination of affinity and binding constants can be performed 

now after complete chemical synthesis (Prof. Dr. K. Hegetschweiler, S. Wilbrand; Universität 

des Saarlandes).  

 

Analysis of regulation of siderophore biosynthesis is of special importance, since these 

compounds are used in clinical pharmacy to treat acute iron intoxications or 
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hemochromatosis, as e.g. desferrioxamine (Desferal®), a siderophore which is produced by 

Streptomyces pilosus (Nielsen et al., 1995; Vermylen, 2008). Furthermore, some siderophores 

are known to act as additional virulence factors in some pathogens (Lamont et al., 2002; Bhatt 

and Denny, 2004; Kunkle and Schmitt, 2005; Vasil, 2007). Latest results show also promising 

approaches with siderophores as drug delivery agents (Möllmann et al., 2009). To understand 

regulation of siderophore biosynthesis in M. xanthus will possibly help to elucidate regulation 

in other bacteria or regulation of secondary metabolites generally and might also facilitate to 

find new applications for this or other natural product families. 

 

 

In addition to siderophore biosynthesis, the yield of the myxochromides was also increased 

(23fold for myxochromide A2) during iron-starvation. This increase may reflect a role of the 

myxochromides in gliding, enabling the M. xanthus swarm to move faster. As a hypothesis, 

the myxochromide fatty acid chain, which is variable in length, has a potential influence on 

surface tension. Indeed, an increase in swarming rate has been observed previously for a 

M. xanthus mutant strain, engineered to overproduce the myxochromides (R. Müller, S.C. 

Wenzel; unpublished data). There was no indication of a Fur box upstream of the 

myxochromide gene cluster, which would explain the up-regulation of this compound class 

during iron starvation. Interestingly, also 4 gliding-associated proteins were all found up-

regulated in 2D-DIGE analysis. The enhancement of motility-associated proteins is a 

comprehensible consequence of M. xanthus during iron-limitation to move to a more 

promising environment.  

Another observed fact was the significant reduction of cittilin under iron starvation (75fold), 

maybe to save amino acid resources (tyrosine and isoleucine for cittilin). Presumably, this 

drastic decrease in the production of cittilin must be an indirect effect of iron-limitation, 

because there is no indication for a Fur box upstream of the coding DNA sequence. The 

reduction of cittilin may be an unspecific, secondary effect; created by the general reduction 

of metabolism, mainly translational and transcriptional processes. Anyway, the function of 

cittilin is still unclear. 

The levels of the three other metabolite families, the DKxanthenes, myxalamids and 

myxovirescins remain unchanged. The yields of the DKxanthenes might have been 

anticipated to increase under iron starvation, due to the demonstrated role of these yellow 

metabolites in the developmental process of M. xanthus (Meiser et al., 2006a). Although, 

M. xanthus cells grown in liquid culture do not sporulate, and so there was no additional 
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requirement for the DKxanthenes under these conditions, as no cell-cell contacts or exactly 

localized signals are available. Of course, cells in liquid culture do not glide or develop to 

fruiting bodies, but these genetically coded events have evolved to adapt to soil as preferred 

habitat, which is far away from nutrient-rich, well-controlled laboratory conditions. 

 

Taking all the facts together, secondary metabolome response in M. xanthus consists of an 

increase of siderophore production to enhance iron uptake under iron-limiting conditions. 

Furthermore, the biological agents myxovirescin and myxalamid were still produced at high 

levels during iron-starvation, hypothetically to prevent growth of potential competitors 

(Rabsch et al., 1991; Ambrozic et al., 1998). No differences could be detected in the 

production levels of the development-associated metabolite family of DKxanthenes, while 

cittilin production was almost disengaged completely. As mentioned before, the enhanced 

myxochromide production may be used to facilitate movement to find and solubilize new iron 

resources. 

 

As a starting point for discovering unknown metabolites, all the promoter regions of the 

remaining secondary metabolite gene clusters were analyzed for the presence of Fur boxes. 

Promisingly, putative Fur binding sites were predicted upstream of a NRPS gene 

(MXAN_4532) and a cluster encoding a putative PKS (chalcone/stilbene synthase) with allied 

tailoring genes (MXAN_6635-MXAN_6640).  

These findings support the hypothesis that these silent secondary metabolite genes might be 

awakened under iron poor conditions. As MXAN_4532 encodes two modules of a non-

ribosomal peptide synthetase, the known correlation between the domain complement of 

NRPSs and their products was used (Fischbach and Walsh, 2006) for structure-prediction of 

the produced metabolite, in order to guide the search efforts. According to classical rules of 

NRPS biochemistry, a bimodular system should produce a dipeptide. However, the second 

module of enzymatic functions lacks an activity to catalyze release of the mature product 

(typically a thioesterase). This observation raises the possibility that the synthetase may 

collaborate with other multienzymes in M. xanthus, to give rise to a longer peptide. 

Promising, MXAN_4532 has a very close homologue (66 % I, 76 % S) in Stigmatella 

aurantiaca DW4/3-1 (MtaG); such interspecies conservation suggests that it serves a common 

function for the two myxobacteria. Alternatively, the NRPS may be a member of pathway in 

an ancestor common to both M. xanthus and S. aurantiaca, which has been degraded.  
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However, the molecule which is produced by the coded RppA-like chalcone/stilbene synthase 

(MXAN_6639) is unknown, but the typical broad substrate specificity of these enzymes 

yields in a wide variety of products. For e.g. RppA is involved in the biosynthesis of melanin 

in S. griseus (Funa et al., 2002). The pigment provides UV protection, as possibly in 

M. xanthus, which might be necessary in face of metal-mediated differences of the cellular 

redox status (Asad et al., 1998). On the other hand, the RppA homologue of S. cellulosum 

Soce 56 (Sce2133) was heterologously expressed and the production was found to be limited 

to flaviolin (Gross et al., 2006). In contrast to the high similarity of MXAN_6639 to the 

chalcone synthase STIAU_8629 from S. aurantiaca, the respective homologue of 

S. cellulosum was detected with much lower similarity to MXAN_6639 (34 % I, 51 % S). 

Therefore, no final conclusion can be made about the potential structures, produced by 

MXAN_6639 and also not about a possible iron-affinity or a further destiny in secondary 

metabolism of the produced molecule. 

In any case, no product of MXAN_4532, MXAN_6639 or any other novel or modified 

metabolites in extracts of DK1622 could be discovered, despite scrutiny of both the UV/Vis 

and mass spectrometry data. Thus, manipulation of environmental iron does not appear to be a 

productive strategy for genome mining, at least not in M. xanthus.  

Further explanations for the absence of new secondary metabolites are that products exist only 

as traces, because the conditions were not found yet for expression and/or activation of 

proteins in sufficient amounts or, on the other hand, to provide enough building blocks for 

product synthesis. An additional possibility is that the biosynthetic proteins could be inactive 

or the pathway might be degraded generally in M. xanthus or the metabolite was lost during 

pre-analysis sample treatment. Further environmental changes would perhaps support the 

generation of still unknown secondary metabolites of M. xanthus, as e.g. fruiting body 

development under iron-limiting conditions.  

 

Carotenoid analysis was disregarded, GC-MS guided approaches have shown massive non-

iron-responsive variations, which were rather growth phase correlated. At all, more than 60 

carotenoid-derivates are published from M. xanthus (Dworkin and Kaiser, 1993; Chapter 7: 

Genetics of regulation and pathway of synthesis of carotenoids), so a detailed analysis would 

here far exceed the timeframe of the work. However, carotenoid biosynthesis in M. xanthus 

had been shown to be affected mainly by light and copper (Moraleda-Munoz et al., 2005), in 

agreement with the results from other microorganisms (Tisch and Schmoll, 2010).  
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The unusual regulatory mechanisms and secondary metabolite response of M. xanthus can 

prospectively contribute to understand and positively impact the siderophore production or 

regulation of secondary metabolites generally in microorganisms, not only in M. xanthus. 

However, elucidation of pathways and regulation of the biosynthesis of secondary metabolites 

from M. xanthus will also help to make this organism play a more important role in 

biotechnological processes in the future. 

 

 

4.2.6 Importance of iron and Fur for M. xanthus 

From the available proteome data it is not possible to distinguish between Fur-dependent and 

Fur-independent effects of iron-responsive proteins whose expression has changed in this 

experiment. Additional proteome analysis with a desirable inactivation mutant of the fur gene 

MXAN_3702 would allow to divide Fur-dependent from –independent effects in response to 

iron-limitation and generate by this way a much deeper insight into the regulatory networks of 

the respective strain (Thompson et al., 2002; Wan et al., 2004; Lee et al., 2004). Such a 

desirable, engineered knockout-mutant in the putative Fur gene MXAN_3702 would help in 

comparative studies with the wild type to disentangle Fur-dependent and Fur-independent 

events in iron response (Lee et al., 2004; Holmes et al., 2005; Ernst et al., 2005). As 

mentioned before, it was not possible to inactivate MXAN_3702, suggesting that the gene is 

essential in M. xanthus DK1622. That Fur proteins were apparently essential has been noted 

for a number of other bacteria, as for e.g. Rhizobium leguminosarum (de Luca et al., 1998), 

Synechococcus sp. strain PCC7942 (Ghassemian and Straus, 1996), Pseudomonas putida 

(Venturi et al., 1995a; Vasil et al., 1999), �eisseria gonorrhoeae and �eisseria meningitidis 

(Berish et al., 1993; Grifantini et al., 2003), but it remains unclear why Fur is essential for 

some strains and not for others.  

Anyway, Fur proteins are known to control siderophore production, adaptation of the cellular 

redox status, and movement in many microorganisms (Ochsner et al., 2002; Baichoo et al., 

2002b; Ernst et al., 2005). Several of these proteins, some in key positions, could be 

associated to low-iron response in M. xanthus. Anticipatory, in this study neither the Fur 

protein (MXAN_3702) nor the Fur protein homologue (MXAN_6967) were detected to be 

differently regulated in the proteome analysis or found in the DNA interaction studies to bind 

to the respective promoter regions. The fact that Fur seems to be essential and not auto-

regulated in both, M. xanthus and Pseudomonas, argue for the correctness of the applied 
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Pseudomonas-model in the virtual footprint software to generate a M. xanthus Fur box 

consensus sequence. 

In M. xanthus, the importance of the Fur protein with “classical” iron-responsive structure 

(MXAN_3702) was clearly indicated by the fact that the gene could not be destroyed by 

deletion or single crossover gene disruption (as in P. aeruginosa; Vasil et al., Vasil, 2007), in 

face of the usage of several homologue DNA regions, cloned into different plasmids, as 

pSWU41, pBJ113 and pBJ114 (Wu et al., 1996; Black et al., 2004). The generation of some 

single crossover clones of iron-responsive genes may be a result of adding 10 µM FeCl2 to 

selection plates, to ensure that availability of iron is not part of selection pressure. The 

approach to provide sufficient iron supply for the initial growth of iron-uptake/-metabolism 

deficient mutants failed for the mutation of MXAN_3702.  

In the model strain E. coli, Fur is the downstream gene in the bicistronic fldA-fur operon; the 

fldA gene is essential and encodes flavodoxin, a flavin-containing protein which may be 

essential for providing iron in the ferrous (Fe2+) form for Fur (Andrews et al., 2003). In 

M. xanthus, MXAN_3702 seems very likely to be the upstream gene of a bicistronic operon, 

containing a gene for another redox enzyme, thioredoxin, which might be involved in the 

reduction-coupled release of ferrous iron from ferric-siderophore complexes. Anyway, 

inactivation of MXAN_3702 via in-frame deletion limits effects to the target gene, so polar 

effects from neighboring genes under the same promoter control are eliminated, in contrast to 

single crossover inactivation approaches. 

In contrast, MXAN_6967 is likely to be regulated independently from either its up- or 

downstream neighbors.  

Also the established strategy to generate spontaneous fur point mutations, induced by high 

concentrations of transition metals (usually manganese; between 10 and 200 µM MnCl2) 

failed here. This method was applied successfully to other “difficult” Fur candidates (Hantke, 

1987; Thomas and Sparling, 1996; Hickey and Cianciotto, 1997), but not in the case of 

M. xanthus DK1622. Mutants of M. xanthus, which were generated by this method were able 

to grow on high-metal selection-plates, but did not show any differences in DNA analysis of 

the Fur proteins or the related promoter sequences (data not shown).  

 

Furthermore, no disruption mutant of the myxochelin gene cluster could be generated up to 

now, again arguing for the importance of iron for M. xanthus DK1622. It must be mentioned 

that all other gene clusters coding for secondary metabolites in M. xanthus could be 

inactivated by members of our group (R. Müller, D. Krug, Cortina, N.S.; unpublished results).  
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In contrast, a mutant of S. aurantiaca could be generated after iron-supplementation, which 

did not produce detectable amounts of myxochelin (Silakowski et al., 2000), again arguing for 

a very heterogeneous regulation of iron-metabolism in myxobacteria generally, perhaps 

correlated to predatory or scavenger life style of the respective strain. The compound class of 

siderophores was found to be essential, for example in Agrobacterium tumefaciens  (Sonoda 

et al., 2002) or Aeromonas salmonicida (Najimi et al., 2008), but not in V. cholerae (Wyckoff 

et al., 2006) or Bordetella strains (Brickman et al., 2007). The essential requirement of iron-

chelating metabolites potentially depends on the existence and efficiency of alternative iron 

uptake systems and the importance of iron for the respective strain. For many pathogenic 

strains, siderophore production is strictly linked to iron-limiting environments, like host 

tissues, where it acts sometimes as pathogenesis factor. Thus, in laboratory passages with 

sufficient iron supply, siderophore production can be inactivated, in which some of the strains 

lose thereby the ability of colonialization of iron-low surroundings (Hickey et al., 1997; 

Wyckoff et al., 2006). 

This indicates an environmental-specific requirement of highly efficient iron uptake systems, 

but up to now, no conditions for M. xanthus could be found, where the conservation of 

siderophore production (including the potential main regulator Fur; MXAN_3702) was not 

essential. Furthermore, M. xanthus was found to be a constitutive myxochelin producer, also 

in the state of iron-overfeeding (data not shown). On the other hand, not one of the generated 

mutants exhibited a significant increase in myxochelin production or in iron uptake. 

M. xanthus allows only small and limited modifications of the iron-network, again arguing for 

the importance of uptake and metabolism of this trace metal in this organism, since 

modifications of iron-responsive proteins lead to strong impacts to primary and secondary 

metabolism. 

In reflection of its central role in iron metabolism of M. xanthus, fur is an essential gene as in 

some other bacteria (Escolar et al., 1999; Vasil et al., 1999; Andrews et al., 2003; Grifantini 

et al., 2003). Iron can become easily the limiting factor in the natural environment, caused by 

low concentrations of uncomplexed iron in soil and the extreme low solubility at biological 

pH (Vasil et al., 1999), so M. xanthus must have developed some highly specific iron-limiting 

response strategies.  

It is very difficult to give a final comprehensive statement, how M. xanthus resists iron-

limitation, some findings are characteristic strategies, typically known from other Gram-

negative bacteria with Fur as key regulator or the up-regulation of siderophore metabolites 

and their pathways; some findings are quite unusual, such as the potential uptake and 
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degradation of heme derivates, which had been connected only to pathogen microorganisms 

(Voyich et al., 2004; Martinez et al., 2005; Battisti et al., 2007) or a few α-proteobacteria 

(Rudolph et al., 2006). 

 

Iron is probably the most important trace metal for M. xanthus, indicated by the high number 

of proteins involved in iron-transport and regulation in both approaches, applying 

bioinformatic forecast (table 3.1) and proteome analysis (table 3.5). Both results suggest that 

M. xanthus can use unknown, alternative strategies besides Fur proteins to control iron 

balance.  

However, transcriptional control by Fur can occur indirectly through expression of small 

regulatory RNAs, AraC-like transcriptional regulators, alternative sigma-factors as for e.g. 

RipA (regulator of iron proteins A) and two-component systems (Vasil et al., 1999; Hantke, 

2001). Several AraC-like regulators were found in the genome of M. xanthus and some in 2D-

DIGE, but from sequence analysis alone, it is not possible to produce a reliable prediction if 

the protein activity is somehow correlated to iron or iron-regulation. Three alternative sigma-

factors of the Rrf2 protein family (transcriptional main regulators of cytochromes) were 

discovered in M. xanthus (MXAN_1152, MXAN_1643 and MXAN_6918), which were 

known to be involved in regulation of iron metabolism-correlated genes, but were neither 

found as differently regulated in 2D-DIGE, nor detected to bind to fur promoter sequences. In 

DNA pull-down (table 3.8) and proteome experiments (table 3.6), several alternative sigma-

factors were detected, including some putative. 

 

It can be concluded that M. xanthus can use some already known strategies of Gram-negative 

bacteria to overcome iron shortage in soil and to regulate iron metabolism with Fur as the key 

player.  

Many bacteria can produce different heme derivates; mostly for long-term storage of iron 

(Panek et al., 2002) or as protein co-factor (e.g. P450 cytochromes). On the other hand, only a 

few can take up and metabolize these molecules from foreign organisms. In addition to the 

unusual heme biosynthesis of M. xanthus (Dailey and Dailey, 1996; Shepherd et al., 2006), 

here some first evidence was found that myxobacteria can import and use extracellular heme 

as iron resource, which was thought to be a niche of pathogens (Voyich et al., 2004; Martinez 

et al., 2005; Battisti et al., 2007) and a few α-proteobacteria (Rudolph et al., 2006). By 

follow-up experiments, it would be possible to clarify if M. xanthus can metabolize foreign 

heme structures. 
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4.3 Probing the function of MXA._6967 by gene inactivation 

Many bacteria incorporate multiple members of the Fur family, usually an authentic, iron-

responsive Fur and one or more homologues with a range of possible functions, including 

sensing of alternative metal ions (zinc, manganese and nickel; Zur, Mur and Nur), peroxide 

stress (PerR) or heme availability (Irr) (Lee et al., 2007). Based on sequence and phylogenetic 

analysis (see results, figure 3.1 and figure 3.2), it was predicted that the Fur homologue 

MXAN_6967 would not be directly involved in sensing iron as characteristic iron-binding 

residues in the amino acid sequence were absent. A more detailed prediction of function is 

difficult, caused by inconclusive results from sequence and phylogenetic analysis.  

The existence of the second Fur homologue (MXAN_6967) as an additional intracellular 

regulator allows M. xanthus the control of an additional, specific subset of genes, which could 

not be identified up to now. A more precise determination of function of MXAN_6967 is 

difficult, because of the very high sequence homology of Fur-like proteins (section 3.1.1), but 

different functions of these homologues (Hantke, 2001). Most probably, MXAN_6967 may 

be functional as heme-sensing Fur homologue Irr-like transcriptional regulator, as logical 

consequence in face of several heme-uptake and -degradation enzymes of M. xanthus (see 

table 3.2 and section 4.1) and the high homology in the sequence of MXAN_6967 to some 

characteristic amino acids of Irr proteins from other organisms (figure 3.1), in contrast to 

lower overall sequence similarity to hydrogen peroxide tolerance PerR proteins (figure 3.2). 

However, the exact heme-responsive motif in Irr proteins is unclear (Mense and Zhang, 

2006). 

Nonetheless, no putative Fur box within the MXAN_6967 promoter could be identified (table 

3.1). Indeed, no Fur protein was found to interact to the promoter in the DNA pull-down 

assay, suggesting that the gene product might not be member of the Fur regulon. To probe its 

possible roles, the gene was aimed to be inactivated by in-frame deletion mutagenesis. 

Encouragingly, deletions of each type of Fur family member had been reported for various 

organisms as for e.g. Zur and Nur of Streptomyces coelicolor (Ahn et al., 2006; Shin et al., 

2007), Mur of Rhizobium leguminosarum (Diaz-Mireles et al., 2004), Irr of Bradyrhizobium 

japonicum (Yang et al., 2006) and both PerR and Zur of B. subtilis (Bsat et al., 1998). In 

contrast to MXAN_3702, the second fur homologue MXAN_6967 could be inactivated 

successfully (figure 3.10). 

It is very complex to compare the results from other microorganisms with non-iron-

responsive Fur mutations to the outcome of M. xanthus mutants, in which a different 

combination of partially Fur-controlled regulators is responsible for maintaining of iron 
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homeostasis. Furthermore, in not one of the above mentioned approaches, a meaningful 

proteome or secondary metabolite analysis was performed, which complicates the finding to 

the similarities in results from the deletion mutant DEL6967. The phenotype of DEL6967 

shared only some general similarities (as a delay in growth) to results obtained from other 

bacteria (B. japonicum, B. subtilis, C. jejuni, R. leguminosarum, S. coelicolor), in which a 

second non-iron-responsive Fur family member could be disrupted (Bsat et al., 1998; van 

Vliet et al., 1999; Diaz-Mireles et al., 2004; Ahn et al., 2006; Yang et al., 2006; Shin et al., 

2007). 

 

To compare the importance of Fur proteins in other microorganisms, in Mycobacterium 

tuberculosis two metal-dependent regulators (FurA and FurB) were described (Lucarelli et al., 

2008), where FurA acts as classical iron-responsive regulator, while FurB shares some 

homology with Zur proteins (Maciag et al., 2007). Both Fur proteins of M. tuberculosis were 

declared as non-essential, in contrast to the results from this work. Furthermore in 

M. tuberculosis, no Fur auto-regulation was detectable (Pym et al., 2001).  

Similar to results from M. xanthus, for V. vulnificus (containing one “classical” Fur and a non-

iron-responsive Fur protein) it was postulated that the gene cluster coding for the siderophore 

biosynthetic machinery could not be inactivated (Lee et al., 2003). Nevertheless, the only 

iron-responsive Fur protein could be deleted (Litwin and Calderwood, 1993), leading to an 

iron-blind mutant with up-regulated iron import. Unfortunately, no inactivation of the second 

Fur protein, probably functional as Zur, was performed up to now in this organism. 

Three Fur proteins could be clearly identified in Anabaena strains (Hernandez et al., 2004), 

where also the iron-responsive homologue AazoDRAFT_4021 was found to be essential, in 

contrast to both other Fur homologues (AazoDRAFT_1189 and AazoDRAFT_6240), which 

miss the iron-binding residues (personal communication; Prof. Dr. M. F. Fillat, University of 

Zaragoza, Spain).  

 

In fact, it was possible to inactivate the Fur homologue MXAN_6967 in M. xanthus, which 

probably does not have an iron-correlated function, in contrast to the possibly iron-responsive 

Fur protein MXAN_3702. Anyway, by inactivation of MXAN_3702 via in-frame deletion, 

polar effects (potential influence to neighboring genes) can be excluded, in contrast to single 

crossover inactivation approaches. The potential organization of MXAN_3702 with a second 

down-stream gene was not influenced in double crossover mutants. 
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The MXAN_6967 mutant showed a drastically altered phenotype compared to the wild type 

strain. Growth was delayed for approximately 25 h in comparison to the wild type, but 

reached approximately the same cell density (92 %), before falling off again. The mutant 

strain shows almost 50 % (15.9 nmol h-1 O.D.-1) of the iron-uptake of the wild type (table 

3.11). It has been observed previously that mutations of iron-responsive fur genes lead to 

constitutive expression of siderophore biosynthetic pathways, iron transporters and other Fur-

repressed genes, resulting in intracellular iron overload (Touati et al., 1995; Abdul-Tehrani et 

al., 1999). Contrarywise, in DEL6967 the siderophore production was significantly 

compromised. However, the finding that the rate of iron uptake was not seriously reduced in 

the mutant of MXAN_6967 is consistent with the hypothesis that the protein serves an 

alternative function than transcription-control of iron-responsive genes. Surprisingly, 

production rates of all metabolites were drastically reduced (all between 0.3 and 6 % of wild 

type production) with the exception of myxochromide (ca. 50 % reduced). This result 

implicates that MXAN_6967 operates in controlling secondary metabolism in M. xanthus 

DK1622, although the mechanism for this regulation remains unclear and might be indirect. 

Further examination, such as targeted mutagenesis of selective, important amino acids in the 

sequence of MXAN_6967, could exhibit residues involved in complexation of metal ions, 

dimerization or DNA-binding (Gonzalez de Peredo et al., 1999) and so, finally allow a deeper 

insight into cellular function of MXAN_6967 in gene regulation. 

Four metabolites are known to be common to M. xanthus DK1622 and Stigmatella aurantiaca 

DW4/3-1 (myxochromide, myxochelin, myxalamid and DKxanthene), which could account 

for the presence of a strong MXAN_6967 homologue in S. aurantiaca, to control production 

of these metabolites. Consequently, MXAN_6967 might represent a “super-regulator” of 

secondary metabolism in myxobacteria, an intriguing possibility which is currently being 

addressed by overexpression of the gene. These results may also point to a potential function 

of MXAN_6967 in heme-sensing. Hypothetically, extracellular heme molecules may be taken 

as a signal molecule for successful lysis of organic structures, so further production of 

biological agents is not necessary. 

Indeed, a genetically engineered overexpression mutant of MXAN_6967 showed in first 

experiments an increase of several secondary metabolites, namely the myxalamids, 

myxochelin A and the myxochromides (R. Müller, T. Klefisch, unpublished results). Such a 

mutant could be used further for the purification of the protein MXAN_6967 and 

subsequently for the determination of the regulon of MXAN_6967 by the identification of the 

DNA binding sequence via DNA footprint analysis. 
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The elimination of 324 bp from the core region of the Fur homologue gene MXAN_6967 did 

not result exactly in the phenotype expected from other strains with knockouts in homologue 

genes, as for e.g. Irr inactivation in B. abortus or Zur inactivation in C. diphtheriae (Martinez 

et al., 2005; Smith et al., 2009), which share both some important sequence-motifs with 

MXAN_6967. Typically, these mutants did not show a significant deregulation in production 

of their siderophores; none or only minor effects were measured here. In contrast, the 

inactivation of MXAN_6967 results in the significant decline of all secondary metabolites, 

including siderophore production (table 3.12).  

On the other hand, findings were made in several bacteria that mutants of iron-responsive Fur 

genes show a strong deregulation of siderophore production, as in Legionella pneumophila 

(Hickey et al., 1997) or Actinobacillus actinomycetemcomitans (Haraszthy et al., 2002; 

Haraszthy et al., 2006). Anyway, the discrepancy between the low myxochelin production 

(ca. 0.5 % of the wild type level) and the efficient iron-uptake (ca. 50 % of the wild type 

level) of the mutant DEL6967 could be explained by the use of alternative ways to shuttle 

iron through the membrane. 

All this indicates that the traditional Fur-model is a simplified guidepost, but bacterial cells 

behave more complex, addicted to the availability and importance of iron in the natural 

environment of the individual strain.  

 

To provide a comprehensive statement about the deletion mutant MXAN_6967, the complete 

secondary metabolism was reduced, showing the global response of this protein at least by 

secondary effects (table 3.12). A similar effect was detected only in P. aeruginosa, where the 

mutation of a non-iron-responsive Fur homologue (Prince et al., 1991) leads to a mutant with 

reduced siderophore production (Barton et al., 1996).  

Surprisingly, in the deletion mutant also secondary metabolites were found altered, which did 

not show any response in the wild type strain under iron-limiting conditions, such as 

DKxanthenes, myxalamids and myxovirescins. In detail, the deletion mutant of the Fur 

homologue (MXAN_6967) exhibits a strong reduced siderophore production (both derivates 

more than 200fold, see table 3.12), while the cells show almost 50 % of the iron uptake of the 

wild type (table 3.11), which can only be explained by a specific restructuring of the cell-

surface and membrane, a known reaction of bacteria to modulate iron-influx (Ernst et al., 

2005). As mentioned, the data suggests an efficient uptake of iron, perhaps connected to 

rather basic structures as postulated for dicitrate molecules (Marshall et al., 2009), cysteine 
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(Jiang et al., 1997) or myxochelin components, such as 2,3-dihydroxybenzoate (Screen et al., 

1995; Rowland et al., 1996a; Rowland and Taber, 1996b). Such an alternative pathway is 

perhaps only expressed in the mutant, but not present or not functional in wild type. Another 

fact arguing for this hypothesis is the presence of various tonB genes of M. xanthus (table 

3.2), which would be required for the uptake of iron bound to organic iron-chelating 

compounds besides myxochelin molecules. 

Furthermore, some genetic rearrangement may occur, indicated by the Fur box control of an 

integrase/recombinase (table 3.1) and the 3.3fold induction of a SbcCD nuclease under iron-

limitation (table 3.4). This protein may be required for a new genetic combination of iron-

import genes, which are present as numerous templates in M. xanthus. The protein family of 

integrases/recombinases was already associated to promoter control by inverting small 

sequence parts, potentially to generate intact Fur box sequences (Segall et al., 2005) or to 

genome integration of plasmids, coding for proteins from iron acquisition (Sonoda et al., 

2002).   

 

In conclusion, the analysis of DEL6967 could not clarify the exact function of the Fur 

homologue MXAN_6967 in M. xanthus, it might be functional in heme sensing. 

To get deeper insight into the function of MXAN_6967, it would be desirable to perform an 

additional proteome analysis with the wild type and the deletion mutant of MXAN_6967, also 

with heme as only iron resource. The synergistic use of proteomic techniques and knockout 

mutants of Synechocystis was found to be a powerful strategy to study metal homeostasis in 

microorganisms and get relevant information from comparative expression profiles and 

subproteomes (De la Cerda et al., 2007).  
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4.4 Probing the function of iron-responsive genes by site-directed mutagenesis  

The analysis of M. xanthus was extended to investigate specific proteins with putative roles in 

the response to iron-limitation, implicated by proteome or DNA pull-down experiments.  

The genes MXA._0142, MXA._0144, MXA._1562, MXA._1619, MXA._1808, 

MXA._1864, MXA._1893, MXA._1988, MXA._2094, MXA._2347, MXA._2440, 

MXA._2520, MXA._3203, MXA._4189, MXA._4535, MXA._5055 and MXA._5484 

were selected for inactivation via single crossover knockout (see section 2.12). The annotated 

gene function can be found in table 4.1. 

 

 

Table 4.1: Annotated gene functions / BLAST results of single crossover targets 

The table shows the single crossover target genes and potential functions of the encoded proteins. 
Hypothethical functions of uncharacterized proteins were obtained by BLAST analysis. Successful 
knockouts are indicated in the column “KO”. Gene numbers in bold indicate possible operon 
structures. 

Gene number Annotation BLAST KO 

MXAN_0142 
WD domain G-beta repeat/PBS 
lyase HEAT-like repeat protein 

  no 

MXAN_0144 Uncharacterized conserved protein WGR domain protein yes 

MXAN_1562 DPS/bactoferritin   yes 

MXAN_1619 Putative uncharacterized protein Helix-turn-helix type 11 domain protein no 

MXAN_1808 
Putative restriction/modification 
enzyme 

  yes 

MXAN_1864 
N6-adenine DNA 
methyltransferase 

  yes 

MXAN_1893 Putative uncharacterized protein ClpX protease yes 

MXAN_1988 Putative uncharacterized protein C5-cytosine methyltransferase  yes 

MXAN_2094 Putative uncharacterized protein TPR domain protein no 

MXAN_2347 Putative uncharacterized protein Protamine P1 homologue no 

MXAN_2440 Putative uncharacterized protein Transcription termination Rho factor yes 

MXAN_2520 
FHA domain/tetratricopeptide 
repeat (TPR) protein 

  no 

MXAN_3203 FHA domain protein   yes 

MXAN_4189 TPR domain protein   yes 

MXAN_4535 
Putative RNA polymerase sigma 
factor 

  yes 

MXAN_5055 Putative uncharacterized protein 
Chromosome segregation SMC protein 
/ type 11 methyltransferase 

yes 

MXAN_5484 Putative uncharacterized protein HasB yes 

 

 

Some genes (MXA._0142, 1619, 2094, 2347 and 2520) could not be inactivated in spite of 

the addition of iron to growth media, suggesting the respective gene may be essential. 

Assuming that knockouts of these proteins with diverse functions entail significant 

deregulation of fundamental cellular processes, possibly an iron-concentration-decoupled 
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uptake from CTT, which would finally result in the overload of intracellular iron-storage 

pools and induce lethal redox-stress. On the other hand, a complete disruption of iron-uptake 

is a further explanation, why some of these mutants were unable to grow. Also iron-correlated 

proteins may have very important functions in the accomplishment of redox-stress or play key 

roles in central metabolism, so inactivation of those could be lethal. 

Knockouts of target genes, which were possiblby part of a potential operon structures 

(hypothetical polycistronic mRNAs) are discussed at the end of this part, in section 

“Comparing of a subset of mutants”. 

 

Growth rates, iron uptake and the secondary metabolome of the mutants generated were 

compared under iron-repleted conditions to the wild type (see section 3.3). Remarkably, the 

majority of mutations affected all three metabolic parameters.  

Many mutations resulted in a delayed onset of exponential growth, lower overall cell density, 

or both. None of the mutants exhibited a higher O.D.600 (figure 3.11), higher iron-uptake rates 

(table 3.11) or enhanced myxochelin production compared to the wild type. Unexpectedly, 

several other secondary metabolites showed a significant increase in some of the mutants 

(table 3.12). Additionally, some mutants are able to grow faster than the wild type, indicating 

that some parts of metabolism were not active or the cell-cycle was accelerated by 

deregulation of important switching points. 

The secondary metabolite production of the generated knockout-mutants was also analyzed, 

as well as from the in-frame deletion mutant of the Fur family gene MXAN_6967. All 

generated clones show diverse phenotypes, different in each case from the wild type under 

standard conditions or under iron-limitation. Some of the growth profiles show similarities, 

but all secondary metabolite profiles show strong variations. All mutants showed a reduced 

siderophore production or reaches maximal wild type levels, none exhibited a significant 

enhanced biosynthesis of this class of compounds (table 3.12), which corresponds to the 

estimated iron-uptake rates of the mutants, reaching only wild type levels or less (table 3.11). 

Surprisingly, several mutants generated (MXAN_0144, MXAN_1562, MXAN_1893, 

MXAN_4535 and DEL6967) show a strong reduction of myxochelin production (all: more 

than 100fold decreased; table 3.12), but never a complete interruption. The myxochelins were 

only present as traces, but in some mutants iron-uptake was effected only a little, which again 

suggests an efficient import of iron, perhaps connected to basic structures, such as catechol-

derivates like 2,3-dihydroxybenzoate, used by B. subtilis (Rowland et al., 1996b) or as 

dicitrate molecules, used by P. aeruginosa (Marshall et al., 2009). Both alternative iron-
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uptake mechanisms could be used only as survival support, but did not enable normal growth, 

which also may be evident for several of the mutants generated of M. xanthus, which show 

iron-uptake rates below 3 % of the wild type (table 3.11). Comparing the wild type iron-

uptake rate to rates of these mutants (MXAN_1562, 4189 or 5484), the knockout strains 

exhibit an almost complete inhibition of iron import (table 3.11). Contrariwise, some mutants 

show efficient iron uptake, like the knockout mutants of the genes MXAN_1808, 1893, 1988, 

2440 and 5055 or the deletion mutant of MXAN_6967, suggesting a non-iron-responsive role 

of those gene products.  

As a follow-on experiment, it would be interesting to evaluate if the Fur box of the 

myxochelin gene cluster can be mutated, subsequently followed by determination of iron-

uptake rates and secondary metabolite product profiling. Additionally, DNA pull-down assays 

with protein extracts from iron-rich and iron-poor conditions at the promoter of the 

myxochelin gene cluster would be ideal to monitor proteins involved in its transcriptional 

regulation, possibly MXAN_3702.  

 

 

Phenotype of the single knockout mutants: The functions of the inactivated genes and the 

resulting phenotypes of the generated single crossover mutants are described in detail in the 

following section. 

Targets for inactivation experiments were mainly selected from proteins, which exhibited an 

extraordinary strong difference in expression in the proteome comparison of iron-rich and 

iron-limiting conditions. It must be mentioned that proteins which occur as several differently 

regulated spots in 2D-DIGE may be of higher importance in contrast to single-spot-proteins, 

which is even more significant, if the different spots of the same protein are all constantly up- 

or down-regulated. Furthermore, destruction of genes encoding proteins which were detected 

to carry one of the bacterial-unusual phosphorylations may provide deeper insight into 

regulatory cascades of M. xanthus. 

 

 

The disruption of MXA._0144 (encoding an uncharacterized conserved protein) was 

performed because of the up-regulation under iron-limiting conditions as two individual spots 

(2.9 and 3.2fold, for both no phosphorylation was detectable). A BLAST analysis proves a 

high homology (58 % I, 71 % S) to WGR proteins (named after the most conserved central 

motif of the domain). This domain is found in a variety of polyA polymerases, in the E. coli 
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molybdate metabolism regulator yehH and other proteins of unknown functions for which it 

was suggested to contain a nucleic acid binding pocket (White et al., 2009). Indeed, the 

protein was detected in the DNA pull-down assay to bind only to the promoter of 

MXAN_3702 under iron-rich conditions. 

The knockout mutant shows in growth a longer lag-phase (ca. 30 h), but similar doubling 

times and maximum O.D.600 (96 %) as the wild type. Quite unusually, the strain exhibited a 

kind of stationary phase at an O.D.600 of approximately 2.4 for ca. 30 h. The mutant cells 

show an iron uptake rate of 8.2 nmol per h per O.D.600, which accords to ca. 22 % of the wild 

type rate under same conditions. In secondary metabolite analysis, for the inactivation 

mutants of MXAN_0144 the strongest reduction in myxochelin A production of all generated 

mutant was discovered. While myxochelin B was reduced by the factor 276, myxochelin A 

was not detectable anymore. This was the only case of all mutants, where a secondary 

metabolite could not be detected. Furthermore, myxovirescin production was found reduced 

by the factor 186. The production of both, cittilin and myxalamid was lowered to only 26 % 

of the wild type production, while myxochromide and DKxanthene were not much affected. It 

must be mentioned that in this mutant the production of secondary metabolites was reduced or 

not influenced, no up-regulation was detectable. The significant reduction of myxochelins did 

not correlate to an only small reduction of iron-import. However, MXAN_0144 seems not 

only to be involved in transcriptional control of the myxochelin gene cluster, but must have 

also regulatory function correlated to the promoter of mxcL, indicated by the important fact 

that only the amino-derivate was present. 

 

The gene product of MXA._1562 TpF1 (DPS/bactoferritin) was found to bind to both fur 

promoter regions under iron-limitation (Fur and Fur homologue promoter specific, iron-

dependent binding). At this, MXAN_1562 was detected with a phosphorylation when 

interacting with the promoter regions of MXAN_3702; the phosphorylation may be necessary 

for precise adjustment of DNA interaction properties, contributing to sequence specificity. 

Furthermore, MXAN_1562 was selected for a knockout because of the extreme up-regulation 

found in proteome experiments (27.1fold). The function was annotated as DPS/bactoferritin 

(DNA binding, iron storage). DPS/bactoferritin proteins are one of the major reservoirs of 

intracellular iron in bacteria, but nothing is known about possible interactions to promoters. 

Members of the this protein family were originally discovered as stress proteins, which 

protect DNA against oxidative stress during nutrient starvation (DPS: DNA protection during 

starvation protein), but functionally the DPS subfamilies are much more diverse (Zeth et al., 
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2004). Bactoferritins build a broad superfamily of iron storage proteins, widespread in all 

domains of life. Ferritins, bacterioferritins and DPS/bactoferritins are very important non-

heme iron storage proteins in animals, plants, and microorganisms and have essentially the 

same architecture, assembling in a 24mer cluster to form a hollow construction (Carrondo, 

2003). DPS/bactoferritin consists of a mineral core of up to 500 iron atoms, which are 

enclosed by the multi-subunit protein shell, and consequently assures the solubility of the 

complex in aqueous environment.  

Several members of this group exhibit a DNA-binding activity that is at least partially linked 

with iron availability, such as the DPS/bacterioferritin from E. coli or the homologue from 

B. subtilis (Zeth et al., 2004). Anyway, the DNA target sequences of DPS proteins are 

unknown and the exact protein function is obscure (Abdul-Tehrani et al., 1999). The function 

of DPS/bactoferritin did not explain the significant up-regulation during iron starvation, 

because the lower amount of extracellular iron would cause less redox stress. Thus, the lower 

availability of intracellular iron would entail a reduction of iron-storage proteins. Therefore, it 

can be concluded that the regulatory function of the DNA binding of DPS proteins might have 

been underestimated for this protein family. 

The knockout mutant exhibited in growth a very long lag-phase (almost 50 h) and a lower 

maximum O.D.600 (ca. 80 % of the wild type), but similar doubling times as the wild type 

under the same iron rich conditions. The cells showed an almost complete disruption of iron-

import, with only 1.3 % the lowest uptake rate of all mutants. This can be explained by the 

drastic reduction of both myxochelin derivates, which were here only detectable in traces 

(myxochelin A reduced by the factor 209, B reduced by 2084.3; the strongest reduction of 

myxochelin B from all mutants). These cells produce 20.4fold less of DKxanthenes, 

myxovirescin production is reduced by the factor 47.6, compared to wild type under iron rich 

conditions. The production of cittilin was lower by the factor 23.9, myxalamid by the factor 

27.7, myxochromide was lowered by the factor 3.4. It is mentionable that in this mutant the 

production of all secondary metabolites was significantly reduced, indicating an important 

function of MXAN_1562 in central metabolism or perhaps a more specific function in the 

regulation of secondary metabolism gene clusters. 

In parts, the phenotype of the mutant behaves according to the expectations, namely the 

strong reduction of iron uptake caused by the loss of an important storage function. This was 

found in accordance to the strong decrease of siderophore synthesis, which needs to be 

reduced to restrict iron-import, thereby avoiding additional redox-stress by free intracellular 

iron ions. On the other hand, shielding by iron-encapsulation may not be the only effect of the 
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DPS/bactoferritin protein MXAN_1562, but it may play a central role in response to iron-

limitation, indicated by the extraordinary high up-regulation in the wild type during iron 

starvation and detection at both fur promoters. Thus, this protein may be more important 

under iron starvation than just protecting DNA, but rather have regulatory functions via 

interaction with distinct promoters.  

The consequences of the loss of MXAN_1562 in the mutant are drastic, in face of the 

existence of a homologue gene (MXAN_0866; 42 % I, 51 % S), which codes a protein with 

obviously different DNA binding activity (table 3.8).  

This multiplicity of effects is difficult to rationalize. Based on the putative function of 

MXAN_1562 in redox stress defense/iron-storage and its massive up-regulation in 

anticipation of iron influx under low-iron cultivation in the wild type, the central role of the 

encoded protein in binding DNA under iron-sufficient conditions is reflected.  

In contrast, an inactivation mutant of a homologue protein in E. coli showed a slightly 

increased iron uptake rate and no growth deficits at all (Abdul-Tehrani et al., 1999), the same 

results were obtained for an E. coli overproducer strain (Hudson et al., 1993). The only 

hypothesis could be made for the bactoferritin domain, which might be used for long-term 

storage of iron in M. xanthus; the precise function of MXAN_1562 remains unclear. 

 

The disruption of MXA._1808 (encoding a putative restriction/modification enzyme) was 

performed because of the strong up-regulation under iron-limiting conditions (3.9fold) and the 

detection in the DNA pull-down assay at the promoter of MXAN_6967 only under iron-

limiting conditions. 

A BLAST analysis proves two domains for MXAN_1808, exhibiting high homologies to 

DEAD box helicases and N6-adenine DNA methyltransferases, respectively. A number of 

eukaryotic and prokaryotic proteins involved in NTP-dependent, nucleic-acid unwinding have 

been characterised on the basis of their structural similarity. All these proteins share a number 

of conserved sequence motifs, such as the so-called DEAD box, also detected in the first 

domain of MXAN_1808. These proteins form the large DEAD box helicase superfamily and 

are conserved in all kingdoms of life. The DEAD box helicases show a high diversity of 

biological functions and are associated with processes of RNA metabolism, including 

transcription, pre-mRNA splicing, ribosome biogenesis, translation and RNA turnover 

(Wassarman and Steitz, 1991; Aubourg et al., 1999).  

Taking a look at the second domain, the major role of DNA methylation in prokaryotes is the 

protection of DNA against degradation by restriction enzymes, but also regulation of gene 
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expression via silencing of distinct promoters (Timminskas et al., 1995; Murphy et al., 2008). 

The cofactor S-adenosyl methionine (SAM) is utilized as methyl donor. N6-adenine DNA 

methyltransferases are enzymes that recognize a specific sequence in DNA and methylate an 

adenine in that sequence (Timminskas et al., 1995). Members of this class methylate 

exocyclic nitrogens and form N6-methyladenine (N6-methyltransferases).  

Commonly, the protein family of DNA methyltransferases has three biological roles in 

prokaryotes: 1) distinction of self and foreign DNA as a defense against infection of bacteria 

by restriction of foreign DNA molecules as from bacteriophages, 2) direction of post-

replicative mismatch repair, and 3) control of DNA replication and cell cycle by silencing of 

specific chromosomal regions (Jeltsch, 2002; Erova et al., 2006; Jeltsch et al., 2007; 

Seshasayee, 2007). Here, protein methyltransferase activity can be clearly limited to DNA 

silencing. Neither foreign DNA molecules make an additional digestion and subsequent 

protection of chromosomal DNA necessary, nor could an enhanced mismatching be 

connected to the iron-limiting environment. To the contrary, a lower O.D.600 of M. xanthus 

under iron-limiting conditions proofs a reduced cell division per time, and so causing less 

cellular stress by DNA mismatching. Therefore, it can be concluded that in this case DNA 

methyltransferase activity is connected to silencing of expression of distinct genes in 

M. xanthus. This protein family usually regulates a whole subset of genes in other bacteria 

(Timminskas et al., 1995; Seshasayee, 2007).  

The knockout mutant shows the same lag-phase in growth and same maximum O.D.600 as the 

wild type under iron rich conditions, but smaller doubling times. A kind of stationary phase 

(O.D.600 of ca. 2.5; ca. 97 % of the wild type) was achieved after ca. 40 h, stable for approx. 

24 h. The cells showed a reduced, but still efficient iron uptake compared to the wild type 

(42 %).  

Myxochelin production was found to be only slightly reduced (myxochelin A reduction by the 

factor 5, B reduced by 4.3), which contributes to the insignificant reduction of iron uptake. 

This may argue that MXAN_1808 is not involved in regulation of genes from siderophore 

biosynthesis or from uptake of iron-siderophore complexes. The mutant cells produce 

18.4fold more of DKxanthenes, myxovirescin production is also increased by the factor 11.5, 

compared to wild type under iron rich conditions. The enhanced production of myxalamid 

(factor 8.3) results in the highest overproduction of these metabolites of all generated mutants, 

which was also the case for the myxovirescin overproduction. The production of cittilin was 

not influenced, similar to the production of myxochromide. These non-uniform responses of 

secondary products as the insignificant changes in siderophore production, coupled to an only 



Discussion 
 

 202 

slight decrease of iron uptake rates argues for a role of MXAN_1808 rather in controlling 

central metabolism than regulation of iron- or secondary metabolism. 

 

The disruption of MXA._1864 (encoding a N6-adenine DNA methyltransferase) was 

performed because of the up-regulation under iron-limiting conditions (3.3fold). A detailed 

explanation of the function of N6-adenine DNA methyltransferase proteins was provided 

earlier in this section (see knockout mutant MXAN_1808). 

The knockout mutant shows a shorter lag-phase in growth, smaller doubling times, but a 

slightly lower maximum O.D.600 as the wild type under iron rich conditions (94 %). The 

maximum O.D.600 (approx. 2.4) is achieved 15 h earlier. Unexpectedly, the O.D.600 arrested at 

a kind of stationary phase at an O.D.600 of approx.1.7 for around 20 h. The iron uptake was 

found significantly reduced in this mutant strain (7.1 % of the wild type iron uptake). This 

drastic decrease cannot be explained by the only moderate decrease of the two produced 

myxochelin derivates, which were detected by HPLC-MS in sufficient amounts (ca. 14 % of 

both derivates were present, compared to wild type under iron rich conditions). Obviously, 

mxcL was not regulated individually by MXAN_1864, indicated by the fact that the ratio of 

myxochelin A and B was identical to the wild type under the same conditions. Furthermore, 

DKxanthenes were found to be reduced (12.2fold), myxovirescin production was also 

decreased by the factor 35.6 and cittilin by the factor 20.6. Furthermore, myxalamid was 

reduced by the factor 6.4. The production of myxochromide shows the smallest alteration 

(reduced by the factor 1.8). All secondary metabolite synthesis rates of this mutant were 

reduced compared to the wild type. 

Because iron-uptake rates in this mutant were found much more reduced than siderophore 

biosynthesis, it can be concluded that uptake or hydrolysis of iron-siderophore complexes was 

significantly affected, but still present. All secondary metabolite synthesis rates of this mutant 

were reduced compared to the wild type, which indicates a genome-wide activity of the DNA 

methyltransferase or at least of genes controlled by the DNA methyltransferase. Overall, 

strong effects were found in the mutant of MXAN_1864, where the loss of a single DNA 

methyltransferase activity leads to a partially extreme decrease of all examined secondary 

metabolites. This suggests the involvement of this protein in the regulation of diverse 

secondary metabolic gene clusters. Up to now, no mechanisms were described, in which DNA 

methyltransferases act globally as activators of expression of secondary metabolite gene 

clusters, which would be the case in the wild type. On the other hand, the results could be 
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explained by the hypothesis that MXAN_1864 is responsible for silencing of one or more 

repressors of biosynthetic genes. 

These interesting effects of the knockout mutant of MXAN_1864 lead to the inactivation of a 

homologue in S. cellulosum Soce 56 (Sce2777), which exhibited similar effects in secondary 

metabolism (seriously compromised production of ajudazols and etnangiens; R. Müller, S. 

Rachid, unpublished results). 

 

The disruption of MXA._1893 (encoding a putative uncharacterized protein) was performed 

because of the strong up-regulation under iron-limiting conditions (12.2fold). A protein 

BLAST analysis exhibits high homology to ClpX proteases (E-value: 6 * 10-47). ClpX is a 

member of the heat-shock protein 100 family, which functions as an ATP-dependent 

molecular chaperone (Grimaud et al., 1998). These proteins are involved in DNA damage 

repair, stationary-phase gene expression, and ssrA-mediated protein quality control. Some of 

these proteins bind zinc, but many interact with other metals such as iron or, rarely, no metal 

at all. To date more than 50 proteins including transcription factors, metabolic enzymes, and 

proteins involved in the starvation and oxidative stress responses have been identified as 

substrates (Flynn et al., 2003). Mutants of the clpX genes in Streptococcus pneumoniae had 

been found to be less functional in metal ion transport (Robertson et al., 2002). 

The knockout mutant shows a much larger lag-phase in growth (39 h), but smaller doubling 

times, and did not reach the same maximum O.D.600 as the wild type under iron rich 

conditions. The maximum O.D.600 (approx. 2.1; ca. 84 %) was achieved after 64 h. The cells 

show almost the same iron uptake rate as the wild type (difference ca. 12 %), in contrast to the 

results from S. pneumoniae (Robertson et al., 2002). The M. xanthus mutant cells exhibited 

almost wild type iron uptake rates, which was not found in accordance to the low amounts of 

myxochelins, here detectable only as traces. Myxochelin production was found to be reduced 

(myxochelin A reduced by the factor 632, B reduced by 652). The smaller doubling times and 

lower overall O.D.600 compared to the wild type may indicate a bypass metabolism. Maybe 

these cells use an alternative way for iron uptake, which is probably only expressed in the 

mutant, but not functional in wild type, as some bacteria are known to import iron connected 

to more basic structures (Rowland et al., 1996b; Jiang et al., 1997; Marshall et al., 2009). The 

mutant exhibits partially drastic reduction of secondary metabolite levels. The production of 

myxovirescin is also decreased by the factor 657 and cittilin by the factor 556, compared to 

the wild type under iron rich conditions. Also the production rate of myxochromide shows a 

decrease in this mutant (factor 104). Generally, all monitored secondary metabolites in this 
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mutant were found to be strongly reduced. It must be mentioned that this mutant showed the 

most drastic decrease in myxochromide, myxovirescin and cittilin production. In comparison 

to the relatively small differences in growth and iron-uptake it can be concluded that 

MXAN_1893 takes action as gene regulator for some biosynthetic gene clusters from 

secondary metabolism. 

 

The disruption of MXA._1988 (encoding a putative uncharacterized protein) was generated, 

because of 4.6fold up-regulation under iron-limiting conditions. In BLAST analysis, a high 

homology to C5-cytosine DNA methyltransferases was discovered, as to STIAU_4118 (E-

value: 0.0; 81 % I, 88 % S; 97 % sequence coverage). C5-cytosine methyltransferases are 

enzymes, which utilize SAM to specifically methylate the C5 carbon of cytosines in defined 

DNA sequences to produce C5-methylcytosine. The function of DNA methyltransferases was 

described already in this section (see knockout mutant MXAN_1808). 

The knockout mutant shows the same lag-phase as the wild type under iron rich conditions in 

growth, but larger doubling times, and reaches a first maximum (O.D.600 of 1.1; corresponds 

to 45 % of the wild type level) after 40 h, a second maximum (O.D.600 of 1.6; corresponds to 

65 %) after 64 h. However, overall growth profile of the mutant strain varied significant to 

wild type profile. The cells show almost the same iron uptake rate than the wild type (ca. 

78 %). 

This mutant strain was the only one, in which the myxochelin production was found to be 

differential regulated (myxochelin A reduced by the factor 57.7, B increased by 1.8). These 

cells produce 22.4fold more of DKxanthenes, and 5.3fold more myxovirescin. Otherwise, the 

production of myxalamid was decreased by the factor 5.5, compared to wild type under iron 

rich conditions. The production rate of myxochromide was not influenced in the mutant, as 

well as for cittilin. 

The focus of myxochelin production was significantly shifted to produce more of the amino-

derivate B as end product, more than in any generated mutant or in the wild type under any 

tested conditions: in the wild type, the ratio of the two myxochelin derivates changes from 17-

19fold more B than A under iron rich to 142-157fold more B than A under iron-limiting 

conditions, while the ratio in the mutant was determined with 1898fold more B than A. In the 

mutant, MxcL might be somehow over-activated because this result cannot be caused by the 

complete abolishment of the function of the NAD(P)H-dependent reduction domain of MxcG, 

which is required to yield the free myxochelin-aldehyde intermediate, the substrate, for which 

the reduction domain of MxcG competes with MxcL to generate a hydroxy-group or an 
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amino-group instead of the aldehyde function, respectively (Li et al., 2008). Therefore, it can 

be concluded that MXAN_1988 inhibits the functionality of MxcL in M. xanthus DK1622. 

Furthermore, the highest DKxanthene up-regulation of all mutants was noticed in this strain, 

which may point to an induction of development, as this natural product family was detected 

to play a major role during this process (Meiser et al., 2006a). 

 

The disruption mutant of MXA._2440 (encoding a putative uncharacterized protein) was 

generated, because of the induction of the protein in iron-limiting environment in two 

individual spots (3.2fold up-regulated, carries one phosphorylation and 2.7fold, carries two). 

A protein BLAST analysis discovered two domains, whereof the first did not have convincing 

homologues in public databases, while the second showed as result high similarities to 

RNA/DNA helicases, more precisely to transcription termination Rho factors (E-value CDD: 

3 * 10-25). This proteins disengages newly transcribed RNA from its DNA template at certain, 

specific transcripts. In the M. xanthus genome, two further Rho factors (MXAN_2479 and 

MXAN_5636) had been annotated, probably each responsible for a specific subset of genes. 

Generally, there are two types of terminators for transcription in the bacterial genomes: 1) 

Intrinsic terminators characterized by a GC-rich inverted repeat followed by an oligo(dT) 

stretch that induces RNA polymerase to disengage RNA; and 2) the factor-dependent 

terminators, which depend on an essential protein factor, called Rho, for termination 

(Chalissery et al., 2007). The protein is one of the few examples, where exogenous proteins 

regulate the termination of transcription in prokaryotes (Skordalakes and Berger, 2003). The 

unusual combination of a Rho factor domain to a second large domain with hypothetical 

function (ca. 420 amino acids) had not been reported before and might be correlated to 

regulatory processes, which motivates for the inactivation of this gene in M. xanthus. 

The knockout mutant of MXAN_2440 shows the same lag-phase as the wild type, but strong 

differences in growth. The cells grow with much larger doubling times (stable value between 

20 and 60 h) and reach only a maximum O.D.600 of approx. 1.8 (ca. 75 % of the wild type 

level), which was achieved after 64 h. This significant lowering of overall growth and growth 

speed may be caused by intracellular iron-limitation, because the mutant strain shows 66 % of 

the wild type iron uptake, which agrees quite well with the reduced O.D.600. 

Correspondingly, the effects on myxochelin production were relatively small, more precisely 

myxochelin A was reduced by factor 8.5, B reduced by factor 5, compared to the wild type. 

The cells produce 12.4fold more of DKxanthenes (but high standard deviation), myxovirescin 

production is also increased by a factor of 4. The production of cittilin was reduced by the 
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factor 36, compared to wild type under iron rich conditions. The production of myxalamid 

was not influenced, like the one of myxochromide. 

Thus, MXAN_2440 does not seem to be an important regulatory protein, at least not for iron 

metabolism. Detectable influences on the regulatory network of iron in the knockout mutant 

are relatively small, the iron uptake and myxochelin production were quite close to wild type 

level, but growth was compromised. The higher production of DKxanthene may point to a 

role of MXAN_2440 in development. Hypothetically, MXAN_2440 operates in a more 

central position in primary metabolism, rather than to regulate the expression of secondary 

metabolite gene clusters or iron-acquisition associated genes. In comparison to the other 

mutants, here the secondary metabolite production was not influenced or underlies only minor 

changes. This non-uniform response maybe based on secondary effects.  

 

The disruption of MXA._3203 (encoding a FHA domain-containing protein) was performed, 

because of the highly specific binding to the promoter region of MXAN_6967 under iron rich 

conditions. 

The FHA (forkhead-associated domain) proteins act as recognition site for phospho-residues 

in protein sequences and are found to be connected to signaling domains of protein kinases 

and transcription factors (Hofmann and Bucher, 1995). Protein phosphorylation, which plays 

a key role in most cellular activities, is a reversible process mediated by protein kinases and 

phosphoprotein phosphatases (Hanks et al., 1988). Phosphorylation of a protein substrate side 

chain results in a conformational change, which affects ultimately protein function, enzymatic 

activity or cellular location and has important functions in signal transfer (Manning et al., 

2002). It was already postulated that the phosphorylation status of some proteins is used as 

global regulator of gene expression in bacteria (Saskova et al., 2007). 

 In M. xanthus, FHA domain proteins were already found in association to sigma-54 

transcriptional regulator proteins (Jelsbak et al., 2005). 

The knockout mutant exhibited in growth the same lag-phase and the same doubling times, 

but did not reach the same maximum O.D.600 as the wild type under iron rich conditions 

(69 %). The exponential phase ends at an O.D.600 of 1.8, which passes into a stationary phase, 

stable for ca. 30 h. The cells show only 26 % of the iron uptake rate of the wild type. 

This was found in contrast to the relative high amounts of both myxochelins, which reach 

almost wild type levels. Also, the production of myxochromide, myxalamid and cittilin 

showed no significant differences to wild type rates. To the contrary, DKxanthene production 

was increased 19fold, myxovirescin 5fold. It might be possible that for most of these 
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metabolites, one of the numerous FHA domain proteins could compensate the inactivation of 

MXAN_3203 in face of 26 genes, coding for such proteins in M. xanthus. Generally, the 

influence on secondary metabolism in the mutant was very limited, the only notable effect 

was the strong up-regulation of the two families of DKxanthenes and myxovirescins. These 

facts, together with the finding that growth was seriously compromised, may argue for a more 

central function of MXAN_3203, possibly correlated to sporulation, because of the 

extraordinary high production level of DKxanthenes, a substance class which had already 

been connected to developmental processes (Meiser et al., 2006a). 

 

The disruption of MXA._4189 (encoding a tetratricopeptide repeat protein) was generated, 

because of 3.4fold up-regulation under iron-limiting conditions. 

The tetratricopeptide repeat region (TPR) is a structural motif present in a wide range of 

proteins. It mediates protein-protein interactions and the assembly of multiprotein complexes 

(Das et al., 1998). TPR motifs have been identified in various organisms, ranging from 

bacteria to humans. Proteins containing TPRs are involved in a wide range of biological 

processes, such as cell cycle regulation, transcriptional control and protein folding (Goebl and 

Yanagida, 1991; D'Andrea and Regan, 2003). 

The knockout mutant shows in growth the same lag-phase as the wild type under iron rich 

conditions, and the same doubling times, but the overall growth profile varies significantly 

from the wild type. The first growth maximum was reached after ca. 38 h at an O.D.600 of ca. 

1.6 (65 % of the wild type O.D.600), a second maximum at an O.D.600 of ca. 1.8 (73 %) after 

ca. 62 h. Additionally, the cells show almost no iron uptake (2.2 % of the iron uptake rate of 

the wild type), but this reduction could not be further connected to a very drastic reduction of 

myxochelin production. The two myxochelin derivates were present in sufficient amounts, 

both with ca. 35 % of the wild type level. No significant change was detected in ratio of 

myxochelin A and B, suggesting that MxcL is not regulated individually by MXAN_4189. 

While myxovirescin, myxochromide and DKxanthene production was not altered, myxalamid 

and cittilin production was reduced to only 11 and 15 % of the wild type levels, respectively. 

Generally, secondary metabolites in the knockout mutant of MXAN_4189 were found to be 

not affected or were only slightly reduced. 

 

Another mutant, carrying a knockout in MXA._4535 (encoding a putative RNA polymerase 

sigma factor) was generated, which showed a strong down-regulation (- 3.1fold) under iron-

limitation. Additionally, the function as transcriptional regulator motivates for inactivation. 
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The bacterial core RNA polymerase complex, which consists of five subunits, is sufficient for 

transcription elongation and termination but is unable to initiate transcription. Transcription 

initiation from promoter elements requires a sixth, dissociable subunit called sigma factor, 

which reversibly associates with the core RNA polymerase complex to form a holo-enzyme. 

Bacteria typically express a multiplicity of sigma factors which all act highly specific, so one 

cannot restore the action of another. Two of these factors, sigma-70 (the so-called major 

sigma factor) and sigma-54 direct the transcription of a wide variety of genes. Further sigma 

factors, known as alternative sigma factors, are required for the transcription of specific 

subsets of genes. RNA polymerase recruits alternative sigma factors as a means of switching 

on specific regulons (Helmann and Chamberlin, 1988). A BLAST analysis discovered that 

MXAN_4535 clearly belongs to the sigma-70 subfamily. 

The knockout mutant shows a very short lag-phase (< 10 h) in growth and very small 

doubling times. The cells reach the maximum O.D.600 (approx. 2.2) after 53 h, which is 

almost the same time, the wild type needs under iron rich conditions to reach the highest cell 

density. The strain exhibited a kind of stationary phase at an O.D.600 of approx. 1.8 for 26 h. 

The cells show only 27 % of the iron uptake of the wild type. 

The knockout mutant of MXAN_4535 was found to exhibit reduced production of 

myxochelin A by the factor 129.1, B was reduced by the factor 796.7. So, it can be concluded 

that MXAN_4535 might be a candidate to be involved in the specific regulation of 

transcription of mxcL, reflected by the strong shifting of the derivates of the myxochelins 

more towards the amino-derivate myxochelin B. Additionally, the mutant strain produces 

only 16 % myxovirescin, compared to production of the wild type. On the other hand, the 

levels of most secondary metabolites were not influenced (such as myxochromides, 

DKxanthenes, cittilins and myxalamids). The response of secondary metabolism was found to 

be limited to a few pathways; most levels were not affected or only narrow, which could also 

be derived from natural variations in production rates. Thus, this sigma factor seems to be 

highly specific for expression of the myxochelin biosynthetic gene cluster among others, 

where the strongest effect from all secondary products was noted in this mutant.  

As follow experiments, it would be desirable to discover protein-DNA binding via DNA pull-

down assay on the promoter of MXAN_4535, possibly Fur protein interaction, also if the 

protein intensity was decreased during iron starvation. Additionally, the involvement of 

MXAN_4535 in the regulation of the myxochelin biosynthetic genes may be proven by a 

DNA pull-down assays on the promoter region of the cluster. Furthermore, to discover the 
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regulon of MXAN_4535, overproduction and purification of this protein would be necessary, 

subsequently followed by in vitro DNA footprint analysis. 

 

The disruption of MXA._5055 (encoding a putative uncharacterized protein) was generated, 

because of the different regulation of this protein as three individual protein spots (7.1fold 

without detectable phosphorylation, - 3.2fold with one and 2.8fold with two 

phosphorylations) in 2D-DIGE analysis and the binding to the promoter region of 

MXAN_6967 under both, but to the promoter of MXAN_3702 only under iron rich 

conditions. 

A BLAST analysis exhibited two domains, each with high scores in the BLAST conserved 

domain database (CDD). The first domain of the protein shares some homology to 

chromosome segregation SMC proteins (E-value CDD: 2 * 10-12), the second domain to type 

11 methyltransferases (E-value CDD: 3 * 10-14). However, the DNA binding of the first 

domain could be clearly correlated to chromosome segregation SMC (structural maintenance 

of chromosomes) proteins, which interact with specific DNA sequences and perform 

organizing and segregating of chromosomes for partition, here probably correlated to DNA 

methylation. SMC proteins are found in bacteria, archaea, and eukaryotes. These proteins 

function together with other proteins in a range of chromosomal transactions, including 

chromosome condensation, sister-chromatid cohesion, recombination, DNA repair and 

epigenetic silencing of gene expression (Jensen et al., 2003). The protein family of type 11 

methyltransferase utilizes S-adenosyl-L-methionine (SAM) and modifies DNA (Jeltsch et al., 

2007), RNA (Sergiev et al., 2007), proteins and small molecules, such as catechol (Dhar and 

Rosazza, 2000). Most likely, the combination of the SMC DNA binding domain and a 

methyltransferase domain indicating DNA as methylation target, which could not be 

determined more exactly. SMC proteins are used to silence expression of this gene, usually 

regulating a whole subset of genes (Jensen et al., 2003). These facts may indicate that the 

promoter of MXAN_6967 is only poorly accessible under both, but the promoter of 

MXAN_3703 only under iron-rich conditions via silencing the respective gene via 

methylation of distinct promoters. That the protein MXAN_5055 was not detected to bind to 

the promoter of MXAN_3702 under iron-limitation may be a sign of de-repression under 

these conditions.  

In contrast to the DNA methyltransferases MXAN_1808, MXAN_1864 or MXAN_1988, 

which were already explained in detail before in this section, the substrate specificity of the 

methyltransferase domain of MXAN_5055 was unknown, to use DNA at least as binding 
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substrate was hypothesized from BLAST results and proven by DNA pull-down assays. To 

interpret the role of MXAN_5055 as DNA methyltransferase with gene silencing function its 

reasonable, fur genes were typically inactive under iron sufficient conditions, which might be 

the case here, indicated by the binding of MXAN_5055 to the promoter of MXAN_3702 

under iron-rich conditions. Anyway, the combination of SMC/methyltransferase type 11 

domains was not described before in literature. 

The knockout mutant shows a much larger lag-phase (35 h) in growth, the same doubling 

times and reaches almost the same maximum O.D.600 (89 %) as the wild type under iron rich 

conditions. The maximum O.D.600 (approx. 2.2) is achieved after 73 h. The cells show 62 % 

of the iron uptake of the wild type, explainable by the relatively small reduction of 

siderophore production (myxochelin A reduced by the factor 4.0, B reduced by 8.4). This 

mutant strain produces 2.3fold less of myxalamid, cittilin production was also decreased by 

the factor 16.8. Also the production of myxovirescin was reduced by the factor 8.9, compared 

to wild type under iron rich conditions. The production of myxochromide was not influenced, 

like the one of DKxanthenes. 

The effects found in this mutant had obviously only marginal interference with iron 

regulation, because siderophore production and iron uptake were found relatively close to 

values from the wild type. All differences in secondary metabolite profile from this mutant 

were relatively small, compared to the wild type, while some other mutants show much 

stronger effects. This argues for a function of MXAN_5055 in more central position, rather 

than regulating expression of secondary metabolite gene clusters or genes from iron-

acquisition. 

In contrast to the results from the knockout of MXAN_5055, SMC homologues had been 

identified from various bacteria, such as Bacillus subtilis, Caulobacter crescentus or E. coli, 

but disruption of these results in wild type phenotypes, which exhibit no difference in growth, 

but temperature-sensitivity (Jensen et al., 2003) 

 

The disruption of MXA._5484 (encoding a putative uncharacterized protein) was performed, 

because of the differences in spot intensity for two spots in 2D-DIGE (one spot 8.5fold up-, 

the other - 2.1fold down-regulated). For both spots, no modification was detectable. 

A BLAST analysis showed convincing sequence homologies to HasB (heme acquisition 

system) proteins from Serratia marcescens (Benevides-Matos et al., 2008). This protein 

family is involved in heme uptake in analogy to iron-siderophore complex import by TonB-

dependent systems (Letoffe et al., 1994). 
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The knockout mutant shows a long lag-phase (40 h) and slightly enlarged doubling times. The 

maximum O.D.600 of 2.3 was reached after approx. 80 h and found to be quite similar to the 

wild type (92 %). In contrast, the cells show only 1.9 % of the wild type iron uptake. 

Myxochelin A production was reduced by the factor 15.4, B reduced by the factor 88.2. Also 

the production of cittilin was reduced by the factor 31.4, compared to wild type under iron 

rich conditions, but myxalamid production has increased slightly by the factor 2.1, also 

measured for myxochromid (3.7fold more). The production of myxovirescin was not 

influenced significantly, as the one of DKxanthenes. 

However, the overall growth profile looks very similar to the wild type; only somehow 

delayed, despite of obvious restriction of iron-import. Nevertheless, that very drastic effects 

were detected in iron uptake, the knockout of MXAN_5484 can compensate the lower 

availability of intracellular iron, as effects on both, growth profile and secondary metabolism 

were relatively small. Additionally, it must be mentioned that MXAN_5484 might be 

responsible for the regulation of mxcL, which was indicated by a significant difference in the 

ratio of the two myxochelin derivates in the mutant. These facts argue for a specific role of 

MXAN_5484 in regulation of iron-uptake and intracellular distribution, contributing to a 

potential function as member of iron-subordinated heme-catabolism. 

 

 

Comparison of a subset of mutants  

Some of the mutants generated share striking similarities, which will be highlighted in the 

following section. Such similarities might be explained by inactivation of proteins from the 

same reaction- or information transfer-cascade. Additionally, it is possible that the phenotypes 

of two mutants are almost identical, because both proteins were required for interaction or 

cooperate somehow or the events detected could be caused by random.  

 

 

Generally, the results reinforce the idea that proteomics-guided engineering of regulatory 

pathways is a viable strategy for improving metabolite yields through fermentation. Most of 

the mutants show only reductions of secondary metabolism, but in some cases strong 

increases of one or more natural product families were detectable. This suggests that 

M. xanthus cells behave like well-optimized cellular factories, where a gene knockout mostly 

results in a significant slowing down of productivity. To understand the regulation of 

M. xanthus is the first step to rationally improve secondary metabolite yields. 
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Many of the knockout targets code for proteins, which may have regulatory functions for 

further genes or proteins. Some of these might represent important key factors that increase 

strain competitiveness in the hostile environment of the soil. Here, the highlight overproducer 

was the knockout mutant of MXAN_1808, where the highest up-regulation of all mutants was 

detected for the myxalamids (8fold) and the myxovirescins (12fold). Additionally, the 

biosynthesis of the DKxanthenes was also enhanced (18fold). Furthermore, the mutant strain 

of MXAN_1988 was found to be the strongest DKxanthene overproducing strain (22fold), 

compared to the other mutants. Moreover, myxovirescin production in this mutant had also 

increased (5fold). 

Not one of the mutants exhibited convincing similarities to the wild type under the same, iron-

rich conditions or showed such strong restriction of growth as the wild type under iron-

limiting conditions. It can be concluded that M. xanthus uses very diverse mechanisms to 

regulate metabolism in response to iron availability, some of the discussed, individual 

strategies are known and some are quite common for bacteria.  

From growth and modulation of secondary metabolite profile, it is difficult to derive an exact 

function of the protein in the respective knockout mutant, complicated by the fact that mostly 

the combination of effects was very mutant-specific and the regulatory mechanisms of iron, 

central metabolism, secondary metabolite pathways, development and movement in 

M. xanthus are strongly cross-linked 

 

Mostly, mutations resulted in a delayed exponential growth phase, lower overall cell density, 

or both (figure 3.11). All mutants exhibited only wild type levels or less in iron-uptake rates 

(table 3.11), also detected for myxochelin production, but several other secondary metabolites 

showed a significant increase in some of the mutants (table 3.12). Furthermore, some mutants 

are able to growth faster than the wild type, indicating that some parts of metabolism were not 

active or cell-cycle was accelerated by deregulation of important switching points. The 

available data of several of the mutated strains suggests important functions for the respective, 

inactivated protein in controlling general metabolism or iron-correlated reactions in 

M. xanthus.  

Typically, mutations result in reduced secondary metabolite yields across multiple metabolite 

classes (table 3.12). In fact, in mutants of MXAN_1562 and MXAN_1893, production of all 

compounds was significantly reduced, while in mutant MXAN_0144, the production of all 

metabolites with the exception of the myxochromides, were lower. In some cases (mutants of 
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MXAN_4189, MXAN_4535 and MXAN_5055), the effects were limited to a subset of 

metabolite classes (myxovirescin, myxalamid and the myxochelins). In contrast, in the 

mutants of MXAN_1808, MXAN_1988 and MXAN_2440 a drastic increase in production of 

specific compounds was detected, including the DKxanthenes and myxovirescin, and in the 

case of MXAN_1808 also myxalamids were up-regulated. 

 

 

The two disruption mutants of MXAN_1562 (DPS/bactoferritin) and MXAN_1864 (N6-

adenine DNA methyltransferase) show a global secondary metabolite response, precisely a 

reduction of all production rates. Both strains show also a strong decrease in iron uptake, 

compared to the wild type (below 10 %). Myxochelin production was found to be much lower 

in KO_1562, correspondingly to the lower iron-uptake rate of this strain. Furthermore, the 

secondary metabolite product profile was found to be highly similar to the deletion mutant 

DEL6967. In detail, all differences in production were below 2 %, compared to KO_1562, 

only the myxochromides exhibited a difference of ca. 20 %. Additionally, the growth profile 

was detected to be quite similar for both strains. In contrast, only the knockout strain of 

MXAN_1562 showed a significant reduction in iron uptake, which is explainable by the loss 

of an important bactoferritin iron-storage function in this mutant, which makes it necessary to 

restrict iron-import. However, the high conformity of both strains leads to the conclusion that 

MXAN_1562 might have a key role in regulation of MXAN_6967 or the other way round. 

This hypothesis could be corroborated by the detection of MXAN_1562 interacting with the 

promoter of MXAN_6967 under iron-limiting conditions. It might be possible that 

MXAN_1864 is also somehow involved in regulation of MXAN_1562 and/or MXAN_6967. 

In contrast, the in-frame deletion mutant of MXAN_6967 and the disruption mutant of 

MXAN_1893 (putative ClpX protease) show also such a global response in secondary 

metabolism, but in both the effects on iron uptake were not very prominent. Perhaps the 

regulatory process, in which MXAN_1893 is involved could be connected to the one of 

MXAN_6967, also if MXAN_1893 was not detected to bind to the promoter of 

MXAN_6967. Anyway, both mutants share several similarities in growth, iron uptake and 

effects to secondary metabolite production.  

 

On the other hand, the mutations of MXAN_1808 (DEAD box helicase/N6-adenine DNA 

methyltransferase), MXAN_1988 (putative C5-cytosine DNA methyltransferase) and 

MXAN_2440 (putative transcription termination Rho factor) produced significant increases in 
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the titers of selected metabolites, including the DKxanthenes, myxovirescin and the 

myxalamids. The effects on the DKxanthenes were most pronounced (18-, 22- and 12fold up-

regulated, respectively), but myxovirescin biosynthesis was up-regulated by at least 4fold in 

each of the mutants, and an 8fold increase in myxalamid production was observed only for the 

MXAN_1808 mutant. However, as the number and kind of genes, controlled by the three 

proteins MXAN_1808, MXAN_1988 and MXAN_2440 is unclear, it is again difficult to 

explain these results. However, the phenotype of each mutant argues for a disruption of high-

ranking switch-like mechanisms. Further biochemical tests would be necessary to identify the 

exact DNA target sequences of the proteins. Nonetheless, it is clear that exact elucidating of 

the roles of these proteins in regulating secondary metabolism might ultimately afford 

opportunities to rationally increase production levels. It makes sense that some iron 

responsive proteins were functional in regulation of secondary metabolism, at least coupled to 

some of these pathways by secondary effects. Iron-limitation typically induced the 

accumulation of some, specific metabolites, while others were discriminated (Heim et al., 

2002; Basler et al., 2006; Vidakovics et al., 2007). Proteome experiments, comparing the wild 

type and different mutant strains may clarify the function of some of the iron responsive 

proteins more precisely, including contributions to regulation of iron and secondary 

metabolism. 

 

The mutant of MXAN_1988 (putative C5-cytosine DNA methyltransferase) shares 

additionally a high degree of similarities to the mutant of MXAN_4189 (tetratricopeptide 

repeat protein), concerning the unusual growth profile, in contrast to results from secondary 

metabolite analysis, where MXAN_1988 exhibited some significant up-regulation of diverse 

natural product families, while MXAN_4189 showed only reductions. Furthermore, 

significant variations were detected in the amount of produced myxochelin, in addition to the 

strong differences in iron uptake. Both mutants produce still high amounts of myxochelin, but 

only the knockout mutant of MXAN_1988 can take up iron efficiently.  

Similarly to the knockout mutant of MXAN_4189 findings were made for the mutant of 

MXAN_1808, concerning the loss of efficient iron uptake in combination with an only small 

reduction of myxochelin. Again, the mutants differ significantly in secondary metabolite 

product profile. The regulatory function of the three proteins MXAN_1808, 1988 and 4189 

seems not to be connected very closely. 
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Almost identical production profiles were detected for the single crossover-based gene 

disruption mutants of MXAN_2440 (putative transcription termination Rho factor) and 

MXAN_3203 (FHA domain protein), except for the compound class of cittilins. Additionally, 

both strains exhibited a reduced, but still efficient iron uptake in comparison to the wild type. 

Despite of variations between both growth curves, maximum O.D.600 for both strains was 

significant lower (reach ca. 70 %) than estimated for the non-mutated strain. The similarities 

of both phenotypes suggest that both proteins MXAN_2440 and MXAN_3203 share several 

biochemical targets, are part of the same regulatory cascade or are somehow involved in 

similar or the same control processes. 

However, the phenotype of knockout mutant of MXAN_2440 may derive from polar effects, 

for example by the loss or shortage of important polycistronic mRNAs, which carry the 

information of several genes. For simple, single crossover knockout mutants, it is possible to 

generate the respective phenotype as a result of the loss of several important proteins, coded 

by polycistronic mRNA, but not only the target.  

 

If genes are part of an operon structure, ultimate elimination of polar effects could only be 

obtained when the target gene would be deleted in-frame from the genome sequence 

(Windgassen et al., 2000).  

In total, 4 genes which were inactivated show the structure of potential operons; in detail: 

MXAN_0144-0143; containing a cupin-like storage protein, 

MXAN_1562-1560; containing a putative lipoprotein and an aminotransferase, 

MXAN_2440-2445; containing a hypothetical protein and 4 proteins of flagellum assembly 

and flagellar motor switch proteins, 

MXAN_5484-5483; containing a sensory protein; a protein family which is already known to 

interact with protein-kinases. 

 

Indeed, for the knockout strain of MXAN_2440 a significant up-regulation of DKxanthene 

was discovered, which might correlate to operon MXAN_2440-2445 for the enhancement of 

cellular movement, required for development. This process could be facilitated by the 

flagellum-correlated potential operon, additionally to the S- and A-motility mechanisms, so 

DKxanthenes were up-regulated to compensate the reduced mobility of the mutant. Anyway, 

effects in these mutants could be derived by polar effects, which cause unpredictable 

consequences for cellular metabolism. 
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Analysis of the mutants suggests that regulation of secondary metabolism is depended on the 

exact interplay between many intra- and extra-cellular factors, regulatory proteins, such as 

protein-kinases or transcriptional regulators, so also strong influences were discovered, when 

disrupting the balance in the regulatory network of iron, at least by secondary effects. Some 

previously uncharacterized proteins/genes of M. xanthus with a response in expression under 

iron starvation had been identified to play central roles in fundamental cellular processes. 

The unusual regulatory mechanisms of M. xanthus to iron-limitation were found to influence 

primery metabolism and secondary metabolite production, including the significant up-

regulation of siderophore biosynthesis. However, elucidation of pathways and regulation of 

the biosynthesis of secondary metabolites from M. xanthus may also be a first step to 

understand iron regulation in myxobacteria generally. 

The combination of 2D-DIGE proteome analysis, DNA-binding assays and HPLC-MS-based 

secondary metabolite quantification, paired with gene inactivation experiments has provided a 

further module in the understanding of the highly complex regulation networks in M. xanthus 

DK1622.  
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5. Conclusion and Outlook 

 

As iron is essential for microbial life, bacteria have evolved complex mechanisms to balance 

metabolism and iron availability. In many Gram-negative and Gram-positive bacteria, this 

metabolic remodeling is mediated by the ferric uptake regulator (Fur), a transcriptional 

regulator with central function in iron-response. In this study, it was investigated how the 

myxobacterial model strain Myxococcus xanthus DK1622 responds to conditions of iron-

limitation, concerning effects on growth, iron uptake rates, proteome pattern, and secondary 

metabolite production. In addition, DNA interaction studies (DNA pull-down assays) under 

iron-rich and iron-limiting conditions had been performed on both fur promoters 

(MXAN_3702 and MXAN_6967). In this process, no evidence was found for an auto-

regulation of Fur expression. 

The probably iron-responsive Fur protein (MXAN_3702) seems to be essential in M. xanthus. 

Therefore, it was not possible to inactivate the respective gene and to decouple Fur-dependent 

and Fur-independent effects in proteome analysis. Nonetheless, the growth limitation and the 

spectrum of changes in cellular protein composition, which had been observed during iron 

starvation agrees well with resuls of previously characterized iron-response from other 

bacteria.  

On the other hand, an extraordinarily high percentage of these proteins exhibit regulatory 

functions, because many DNA interaction proteins (as transcriptional regulators or DNA 

methyltransferases) or proteins from other regulatory events (as protein kinases) could be 

detected with differences in expression under iron-limiting conditions.  

Twelve different proteins were found to carry up to three phosphorylations. Phosphorylation-

patterns of much more proteins were altered in M. xanthus during iron-limitation than 

expected for bacteria, which is more common in eukaryotes. This may be explained by the 

extraordinary large genome size, which encodes ca. 100 eukaryotic-like protein kinases and 

the complex life cycle of M. xanthus, generally. In contrast, M. xanthus possibly utilizes a 

more complex iron-regulation than expected from traditional bacterial models. Both Fur 

proteins from M. xanthus were not detected as differently regulated during iron starvation, but 

some other potential regulators which may contribute to intracellular iron balance. To have 

such additional players in the iron-regulatory network might be essential to survive in the 

typically iron-poor environment of soil bacteria, indicated by drastic altered phenotypes of the 

knockout mutants of some of these potential regulators.  



Conclusion 
 

 218 

Additionally, several proteins from A- and S-motility were found in the proteome experiment 

to be activated in the sub-optimal environment of iron-limitation. 

In comparable experiments with other bacteria, a significant rearrangement of proteins with 

redox-functions was detected, which was also the case in M. xanthus. This is probably 

explained by the change of cellular iron influx, which is a very important factor in redox-

balancing. Also the up-regulation of siderophore biosynthetic proteins was observed in 

M. xanthus, which is a typical effect in bacteria during iron starvation, resulting in M. xanthus 

in a 5fold increase of the relative iron uptake yield. In addition, several characteristic key 

points in central metabolism, which are known to be functional as iron-controlling element, 

were also detected in M. xanthus to be influenced by iron availability (e.g. several members 

from the TCA cycle). 

A high percentage of the identified proteins has no annotated function yet. Several of these 

show no convincing homologies to characterized proteins from databases with already known 

activities; therefore no final conclusion can be regarding about their functions. 

 

The disadvantage of the used 2D-DIGE-based proteome analysis is that most of the PKS and 

NRPS proteins are not detectable. An enormous amount of energy and precursors must be 

provided to keep the large-size gene clusters in the chromosome, express the corresponding 

biosynthetic proteins and finally synthesize the PKS- or NRPS-products. Several of these 

secondary metabolites have important physiological roles, as the siderophore myxochelin, 

whose gene cluster was found to be essential in M. xanthus. 

The response of the M. xanthus secondary metabolome to iron-limitation exhibits a drastic 

increase of siderophore production (myxochelin A: 81fold; myxochelin B: 678fold). The 

substance family of myxochromides was also found enhanced (23fold), maybe used to 

facilitate movement to find and metabolize new iron resources. Furthermore, the biological 

agents myxovirescin and myxalamid were still produced at high levels during iron-starvation, 

hypothetically to prevent growth of potential competitors. No differences could be detected in 

the production levels of the development-associated metabolite family of DKxanthenes, while 

cittilin production was almost disengaged completely (75fold reduced).  

 

There is a big interest in pharmaceutical chemistry/biology to identify new bioactive 

substances. A potential anti-cancer activity was postulated for myxochelin A (Miyanaga et al., 

2006). Today, siderophore structures from microorganisms are used also for the treatment of 

acute iron intoxication (Nielsen et al., 1995; Vermylen, 2008). For M. xanthus, a significant 
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amplification of the myxochelin production was discovered under iron-limitation, so the 

methods and results from the present work can be taken as instructions to produce 

significantly higher amounts of siderophores with the same resources.  

Additional studies had been performed to generate myxochelin derivates by total chemical 

synthesis (Prof. K. Hegetschweiler, S. Wilbrand; Universität des Saarlandes). Subsequently, 

examination of the destiny of ferri-myxochelin molecules after re-import into the cell could be 

performed.  

 

In spite of failure of the strategy to detect novel compounds from M. xanthus DK1622 under 

iron-limiting conditions, it might be successful in other myxobacteria such as Sorangium 

cellulosum So ce56 or Stigmatella aurantiaca DW4/3-1. The regulation of iron in each sub-

order seems to be completely different, so it will be interesting to evaluate the effects of iron-

limitation, Fur-inactivation or both in these organisms. In addition, myxobacterial 

development could be analyzed under iron starvation conditions, again motivated by the 

potential awaking of silent secondary metabolite gene clusters. 

 

Further examinations of remodeling of the cellular surface structures could be a next research 

topic, using a combined approach of (perhaps fluorescent-based) microscopy and membrane 

sub-proteome analysis to elucidate iron-regulation and iron uptake more in detail. 

 

 

Inactivation of selected, iron-correlated genes were generated, such as from the fur 

homologue MXAN_6967. The in-frame deletion of MXAN_6967 results in a mutant with a 

significant decrease in complete secondary metabolism, but only a slight reduction in iron 

uptake, which both argues for a function of MXAN_6967 apart from iron regulation.  

An genetically engineered overexpression mutant of MXAN_6967 showed in first 

experiments an increase of several secondary metabolites, namely the myxalamids, 

myxochelin A and the myxochromides (R. Müller, T. Klefisch, unpublished results), which 

accounts for a function of MXAN_6967 in controlling expression of secondary metabolism 

gene clusters, as suggested by data from secondary metabolite analysis of the deleltion mutant 

of MXAN_6967. 

Unexpectedly, some indications were found that M. xanthus may be able to import and 

metabolize heme molecules, as the presence of some proteins from heme-import and heme-

degradation or some important sequence motifs of Irr-like heme sensing Fur proteins in 
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MXAN_6967, which is the second, obviously not-iron-resonsive Fur homologue in 

M. xanthus. For verification of the hypothesis, M. xanthus could be grown in iron-limiting 

media, supplemented with heme as only iron resource. Furthermore, this experiment could be 

repeated with the deletion mutant of MXAN_6967 instead of the wild type strain to evaluate a 

possible heme-sensing function of MXAN_6967, perhaps both approaches could be followed 

by proteome analysis. 

A next consequent step would be the proteome analysis of the wild type grown on several, 

different iron concentration in comparison to the mutant, carrying the in-frame deletion in 

MXAN_6967 to find out more about the cellular role of this probably not-iron-correlated 

ferric uptake regulator. 

Furthermore, homologues of the DNA methyltransferase MXAN_1864 were detected in other 

myxobacteria (Sorangium cellulosum Soce 56, Stigmatella aurantiaca DW4/3-1). A gene 

knockout of the homologoue gene in S. cellulosum Soce 56 (Sce2777) had been performed. 

The mutant strain exhibited similar effects to the M. xanthus mutant KO_1864, precicely a 

seriously compromised secondary metabolite production (R. Müller, S. Rachid, unpublished 

results).  

This was the first time that a contribution of a DNA methyltransferase to regulation of 

secondary metabolite pathways in myxobacteria was suggested. In order to gain a deeper 

understanding of the regulation of secondary metabolite gene clusters, this gene could be 

inactivated in S. aurantiaca as well. 

Surprisingly, it was found that inactivation of several iron-responsive genes with no obvious 

role in secondary metabolism significantly enhanced production of selected natural products, 

but not myxochelin. In contrast, the deletion mutant of the second, probably not-iron-

responsive fur gene MXAN_6967 results in a significant reduction of all secondary 

metabolites, also detected for some other inactivation mutants of iron-responsive genes for 

M. xanthus. 

 

The synergistic use of 2D-DIGE proteome techniques, HPLC-MS-based secondary metabolite 

quantification, DNA-binding assays and knockout mutants of M. xanthus had been found to 

be a powerful combination to study metal homeostasis and get some first information from 

comparative expression profiles about the highly complex regulation networks in M. xanthus 

DK1622. 

 

 



Abstract / Zusammenfassung 
 

  221

6. Abstract 

 

The myxobacterium Myxococcus xanthus DK1622 is a reliable producer of different 

secondary metabolites with partially unknown bioactivities. In the present work the response 

of iron availibility were evaluated, concerning effects on growth, proteome profile and 

secondary metabolite production.  

The production of the siderophore myxochelin A was increased by the factor 81, myxochelin 

B by the factor 678. Unexpectedly, several other secondary metabolite production rates were 

found influenced, as e.g. myxochromids und cittilins. 

In proteome analysis, 1979 protein spots were detected in average, whereof 172 exhibited an 

iron-induced change in expression. A subsequent analysis by tandem mass spectrometry 

identified 169 of these spots as 131 individual proteins, some with up to 3 protein-

phosphorylations. 

Furthermore, the functions of some, interesting proteins were investigated by knockout of the 

respective coding gene. At all, 12 single crossover mutants were generated and compared in 

iron-rich environment concerning effects on growth and rates of iron uptake or secondary 

metabolite production to the wild type strain. Typically, mutant strains show variations in all 

three parameters. 

An in-frame deletion mutant in one of the two fur genes (MXAN_6967) exhibited reduced 

growth and a decrease in iron uptake (ca. 49 % of the wild type). Additionally, production of 

all seven monitored secondary metabolites cannot be explained with the traditional Fur model, 

which suggests a new, unexpected regulation in M. xanthus. 
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7. Zusammenfassung 

 

Das Myxobakterium Myxococcus xanthus DK1622 ist ein verlässlicher Produzent 

verschiedenster Sekundärmetabolite mit teilweise unbekannten biologische Aktivitäten. In der 

vorliegenden Arbeit wurde der Einfluss der Verfügbarkeit von Eisen auf Wachstum, Proteom-

Muster und Sekundärmetabolit-Produktion untersucht. 

Die Produktion der Siderophore Myxochelin A wurde bei Eisenlimitierung um den Faktor 81 

gesteigert, Myxochelin B um den Faktor 678. Unerwarteterweise wurden auch weitere 

Sekundärmetabolite-Produktionen stark beeinflusst, wie z.B. Myxochromid und Cittilin. 

In Proteomexperimenten konnten von durchschnittlich 1979 detektierten Proteinspots für 172 

eine eiseninduzierte Konzentrationsveränderung gezeigt werden. Hiervon wurden 169 Spots 

mittels Tandem-Massenspektrometrie identifiziert als 131 individuelle Proteine mit bis zu 3 

Phosphorylierungen. 

Des Weiteren wurde die Rolle von interessanten Proteinen durch Knockout entsprechender, 

codierender Genom-Bereiche untersucht. Insgesamt konnten 12 single-crossover Mutanten 

generiert werden, welche in eisenreicher Umgebung bezüglich Wachstum, Eisenaufnahme-

Raten und Sekundärmetabolit-Produktionsraten mit dem Wildtyp-Stamm verglichen wurden, 

wobei die Mehrzahl Abweichungen vom Wildtyp in allen drei Parametern zeigten. 

Eine in-frame Deletionsmutante von einem der beiden fur-Gene (MXAN_6967) zeigte im 

Verglich mit dem Wildtyp reduziertes Wachstum. Die Verminderung der Eisenaufnahmeraten 

(49 % des Wildtyps) und Abnahme der Produktionsraten alle sieben Sekundärmetabolte kann 

mit dem traditionellen Fur-Model nicht erklärt werden, was eine neue, unerwartete Regulation 

bei M. xanthus nahe legt. 
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9. Appendix 

 

 

 

 

Figure A1: Vector map of pCR2.1-Topo (Invitrogen) 

 
 

 

Figure A2: Vector map of pSWU41 (Wu et al., 1996) 
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Table A1: Classification of 131 identified proteins from 2D-DIGE.  

The 172 spots from 2D-DIGE experiment in response of iron-limitation of M. xanthus (table 3.4) were 
identified as 131 different proteins. These were categorized by their biochemical context. The 
corresponding spot-number from the 2D-DIGE result (table 3.4) is shown in column 2.  

No. 
 

DIGE-Spot 
no. 

Gene-no. 
 

Protein function 
 

Central metabolism 
 

1 94 MXAN_1264 PckG (GTP-phosphoenolpyruvate carboxykinase) 

2 126 MXAN_3388 CarB (carbamoyl-phosphate synthetase) 

3 32 MXAN_3537 Icd (isocitrate dehydrogenase, NADP-dependent) 

4 33 MXAN_3540 SdhB (succinate dehydrogenase, iron-sulfur protein) 

5 34 MXAN_3542 SucD (succinyl-CoA synthetase) 

6 143 MXAN_5070 Htp (hypoxanthine phosphoribosyltransferase) 

7 144 MXAN_5108 ArgG (argininosuccinate synthase) 

8 149 MXAN_5597 FtsZ (cell division protein) 

9 159 MXAN_6450 Beta-lactamase 

10 163 MXAN_6524 
CobW/P47K family protein (essential for VB12 (cobalamin) 
biosynthesis, methionin synthase associated) 

11 168 MXAN_7028 AtpA (ATP synthase F1) 

12 170 MXAN_7380 CBS domain protein (sensors of cellular energy status) 

    
Protein regulation; kinases, peptidases and protein metabolism 

1 75 MXAN_0142 
WD domain G-beta repeat protein (mediation of protein-
protein interaction) 

2 5 MXAN_0463 PepP (Xaa-Pro aminopeptidase) 

3 83 MXAN_0543 Peptidase M20 (glutamate carboxypeptidase) family 

4 9 MXAN_0720 Sensor histidine kinase 

5 87 MXAN_0791 Peptidase M16 (pitrilysin) family 

6 88 MXAN_0831 Saccharopine dehydrogenase Lys1 

7 93 MXAN_1141 Peptidase M16 (pitrilysin) family 

8 14 MXAN_1892 Serine/threonine protein kinase 

9 15 MXAN_2016 Prolyl endopeptidase Pep 

10 116 MXAN_2520 FHA domain/tetratricopeptide repeat protein 

11 138 MXAN_4189 TRP (tetratricopeptide repeat) protein 

12 155 MXAN_5806 Glutamate-cysteine ligase 

13 158 MXAN_6438 ClpP2 (ATP-dependent Clp protease) 

14 72 MXAN_7497 Processing peptidase beta-subunit, M16B 

    
Chaperone and GST domain proteins 

    
1 84 MXAN_0548 Glutathione-S-transferase domain protein 

2 10 MXAN_1073 Hsp33 family protein 

3 16 MXAN_2318 Glutathione-disulfide reductase Gor 

4 43-47 MXAN_4467 60 kDa chaperonin GroEL1 

5 50-58 MXAN_4895 60 kDa chaperonin GroEL2 

    
Membrane-associated 

 
1 2 MXAN_0350 Putative membrane protein 

2 7 MXAN_0559 ABC transporter, ATP-binding protein Mac1 
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No. 
 

DIGE-Spot 
no. 

Gene-no. 
 

Protein function 
 

Membrane-associated 
 

3 60 MXAN_5168 ABC transporter, ATP-binding domain, unknown permase 

4 68 MXAN_7040 Outer membrane protein P1 

    
Iron acquisition 

 
1 95 MXAN_1318 HemS (heme binding protein) 

2 129, 130 MXAN_3640 MxcL (myxochelin biosynthesis, aminotransferase) 

3 131 MXAN_3644 MxcF (myxochelin biosynthesis, isochorismatase) 

4 132 MXAN_3647 
MxcC (myxochelin biosynthesis, 2,3-Dihydro-2,3-DHB 
dehydrogenase) 

5 140 MXAN_5023 TonB-dependent receptor; outer membrane receptor 

6 166, 167 MXAN_6911b TonB-dependent receptor 

    
Redox stress resistance 

 
1 80 MXAN_0303 Oxidoreductase aldo/keto reductase family 

2 81 MXAN_0351 Thioredoxin domain protein 

3 89 MXAN_0866 
Ferritin/ DPS (DNA protection during starvation protein) 
family protein (TpF2) 

4 96 MXAN_1562 
Ferritin/ DPS (DNA protection during starvation protein) 
family protein (TpF1) 

5 97, 98 MXAN_1563 AhpD (Alkyl hydroperoxide reductase D) 

6 99-101 MXAN_1564 AhpC (Alkyl hydroperoxide reductase C) 

7 107 MXAN_1954 TrxB1 (Thioredoxin disulfide reductase) 

8 120 MXAN_2729 NADH dehydrogenase I, D subunit 

9 134, 135 MXAN_4003 Oxidoreductase 

10 136 MXAN_4067 ThiS (ferredoxin-like protein) 

11 151, 152 MXAN_5670 TrxB2 (Thioredoxin) 

12 160, 161 MXAN_6482 Oxidoreductase 

13 66 MXAN_6496 Tpx (thioredoxin peroxidase) 

14 164, 165 MXAN_6536 Antioxidant, AhpC/Tsa family 

15 169 MXAN_7090 Glutathione peroxidase family protein 

    
Motility/chemotaxis 

 

1 115 MXAN_2513 
GspE (secretory pathway protein E, type IV pilus 
biogenesis) 

2 119 MXAN_2685 CheW (Chemotaxis protein) 

3 137 MXAN_4149 FrzS (Response regulator) 

4 139 MXAN_4863b AgmK (Adventerous gliding motility) 

    
DNA metabolism/transcription 

 
1 78 MXAN_0236 DnaN (DNA polymerase III, beta subunit) 

2 1 MXAN_0264 GyrB (DNA topoisomerase activity) 

3 90 MXAN_0959 Nuclease SbcCD, C subunit 

4 103 MXAN_1808 
Restriction/modification enzyme (N6-adenine DNA 
methylase) 

5 105 MXAN_1864 N6-adenine DNA methyltransferase 

6 19 MXAN_2609 UvrA (Exonuclease ABC, A subunit) 

7 29-31 MXAN_3326 RpoA (RNA polymerase subunit A) 
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No. 
 

DIGE-Spot 
no. 

Gene-no. 
 

Protein function 
 

DNA metabolism/transcription 
 

8 39 MXAN_3777 Inosine-5'-monophosphate dehydrogenase GuaB 

9 42 MXAN_4242 Transcriptional regulator 

10 48 MXAN_4535 ECF sigma factor 

11 154 MXAN_5795 Exonuclease 

12 65 MXAN_6032 
CheW domain (chemotaxis signal transduction response 
regulator) 

13 67 MXAN_7020 Cas3 (CRISPR-associated helicase) 

    
Translation 

  
1 4 MXAN_0405 YchF (GTP-binding protein) 

2 109 MXAN_2073 PnpA (polyribonucleotide nucleotidyltransferase) 

3 17, 18 MXAN_2408 FusA (Translation elongation factor G1) 

4 118 MXAN_2675 GltX (glutamyl-tRNA synthetase) 

5 22, 23, 123 MXAN_3068 Tu1 (Translation elongation factor) 

6 26 MXAN_3297 FusA (Translation elongation factor G2) 

7 27 MXAN_3298 Tu2 (Translation elongation factor) 

8 28, 124 MXAN_3307b RpmC (50S ribosomal protein L29) 

9 125 MXAN_3379 TypA (GTP-binding protein) 

10 40 MXAN_3793 RpsA (Ribosomal protein S1) 

    
Hypothetical proteins or unknown function 

1 76, 77 MXAN_0144 Hypothetical protein [WGR domain protein] 

2 79 MXAN_0237 Hypothetical protein 

3 3 MXAN_0365 Hypothetical protein [DUF 82] 

4 6, 82 MXAN_0498 Lipoprotein 

5 8, 85 MXAN_0599 Hypothetical protein [DUF 262/1524] 

6 86 MXAN_0790 Hypothetical protein 

7 91 MXAN_1024 Hypothetical protein 

8 92 MXAN_1069 Hypothetical protein 

9 11 MXAN_1158 Hypothetical protein [Fe-S assembly protein SufT] 

10 12 MXAN_1539 Lipoprotein 

11 102 MXAN_1591 Hypothetical protein [Sigma-54 factor/ AAA ATPase] 

12 13 MXAN_1619 
Hypothetical protein [Helix-turn-helix type 11 domain 
protein] 

13 104 MXAN_1815 Hypothetical protein [DUF 2169] 

14 106 MXAN_1893 Hypothetical protein [ClpX protease] 

15 108 MXAN_1988 Hypothetical protein [SAM-dependent methyltransferase] 

16 110 MXAN_2094 Hypothetical protein [TPR-domain protein] 

17 111 MXAN_2347 Hypothetical protein [Protamine P1 homologue] 

18 112 MXAN_2410 Hypothetical protein 

19 113, 114 MXAN_2440 
Hypothetical protein [Provisional transcription termination 
Rho domain] 

20 117 MXAN_2539 Hypothetical protein 

21 20 MXAN_2640 Hypothetical protein 

22 21 MXAN_2822 Hypothetical protein 

23 121 MXAN_2940 Hypothetical protein 
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No. 
 

DIGE-Spot 
no. 

Gene-no. 
 

Protein function 
 

Hypothetical proteins or unknown function 

24 122 MXAN_2952 Hypothetical protein 

25 24 MXAN_3079 Hypothetical protein 

26 25 MXAN_3080 Hypothetical protein 

27 35 MXAN_3556 Hypothetical protein [M18 bacteriocin protein] 

28 36, 127 MXAN_3571 Hypothetical protein [flottilin-band 7 protein] 

29 37, 128 MXAN_3617 Hypothetical protein 

30 38 MXAN_3633 Hypothetical protein [DUF407] 

31 133 MXAN_3679 Hypothetical protein [ArsR-like regulator] 

32 41 MXAN_4137 Hypothetical protein 

33 49 MXAN_4802 Hypothetical protein [DUF876] 

34 59, 141, 142 MXAN_5055 Hypothetical protein [methyltransferase/SMC domain] 

35 145 MXAN_5180 Hypothetical protein 

36 146 MXAN_5401 Hypothetical protein 

37 61, 147 MXAN_5484 
Hypothetical protein [putative serine/threonine protein 
kinase] 

38 62 MXAN_5511 Hypothetical protein 

39 63, 148 MXAN_5588 Hypothetical protein 

40 150 MXAN_5650 Hypothetical protein 

41 153 MXAN_5743 Hypothetical protein [PEGA domain protein] 

42 64 MXAN_5846 Hypothetical protein [M14-like metallocarboxypeptidase] 

43 156 MXAN_5855 
Hypothetical protein [Phosphate-selective porin 
superfamily] 

44 157 MXAN_6434 Hypothetical protein 

45 162 MXAN_6502 Hypothetical protein [SGNH-hydrolase] 

46 69 MXAN_7393 
Hypothetical protein [sigma-54 transcriptional regulator, Fis 
family] 

47 70 MXAN_7446 Hypothetical protein 

48 71, 171 MXAN_7492 Hypothetical protein 
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Table A2: Peptides with detected phosphorylations.  

By 2D-DIGE 172 proteins were analyzed as differently regulated, thereof 169 (98.3 %) identified by MS as 131 individual proteins. If the protein was detected as 
several spot (also without phosphorylation), it is also shown (marked by peptide sequence: “-“). 
In the DNA pull-down assay, MXAN_1562 at promoter MXAN_3702 under iron-poor conditions was found to carry a phosphorylation (peptide: LADGLDLHpSQIK) 
Phosphorylated 

protein-no. 
Av. ratio 

(> 2 or < –2) 
Identified MXAN-
Nr. 

Protein function 
 

Peptide sequence with detected 
modification(s) 

    Sequence; Modification* (Mod-Site) 
     

1 2,69 MXAN_2440 Hypothetical protein [Provisional Rho domain protein] RVHANVPDERSRV; P (S)  
2 3,2 MXAN_2440 Hypothetical protein [Provisional Rho domain protein] RVQSGAPDERS; P (S)  
     RELLTMCDRL; CAM (C); P (T)  

3 –2,14 MXAN_3079 Hypothetical protein RVDAAGTELRKR; P (T)  

 5,95 MXAN_3307 50S ribosomal protein L29 RpmC - 
4 –2,67 MXAN_3307 50S ribosomal protein L29 RpmC RETLFQDQLKRR; P (T)  

 –2,25 MXAN_3326 RNA polymerase RpoA - 
5 –2,04 MXAN_3326 RNA polymerase RpoA RMHTNETKTLRI; P (T)  
     RGFGTTLGNSLRR; P (ST)  

6 –2,03 MXAN_3326 RNA polymerase RpoA RGFGTTLGNSLRRV; P (ST)  
     KTLRIEAEGPKE; P (T)  

7 –2,07 MXAN_3571 Hypothetical protein [Flottilin/band 7 protein] - 
 2,72 MXAN_3571 Hypothetical protein [Flottilin/band 7 protein] RGDIKVTFFVRV; P (T)  

8 –2,58 MXAN_4137 Hypothetical protein MGMMKFDIPHSLPKE; P (S)  

 –2,32 MXAN_4467 60 kDa chaperonin GroEL1 - 
 –2,3 MXAN_4467 60 kDa chaperonin GroEL1 - 
 –2,22 MXAN_4467 60 kDa chaperonin GroEL1 - 
 –2,13 MXAN_4467 60 kDa chaperonin GroEL1 - 

9 –2,12 MXAN_4467 60 kDa chaperonin GroEL1 KVGKEGVITVEEAKG; P (T)  

10 7,18 MXAN_4863 Adventurous gliding motility protein AgmK RACDLYRTHNDWRA; P (TY)  
     KYFAEQGQKE; P (Y)  

 7,06 MXAN_5055 Hypothetical protein [methyltransferase/SMC domain protein] - 
11 –3,23 MXAN_5055 Hypothetical protein [methyltransferase/SMC domain protein] RSALESEQQGRA; P (S)  
12 2,82 MXAN_5055 Hypothetical protein [methyltransferase/SMC domain protein] RAVEQSEDRRR; P (S)  

     RDALASEEERR; P (S)  
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Phosphorylated 
protein-no. 

Av. ratio 
(> 2 or < –2) 

Identified MXAN-
Nr. 

Protein function 
 

Peptide sequence with detected 
modification(s) 

    Sequence; Modification* (Mod-Site) 

13 3,26 MXAN_5401 Hypothetical protein RGRVIHTEAHGRL; P (T)  

14 4,09 MXAN_6911 TonB-dependent receptor - 
 2,68 MXAN_6911 TonB-dependent receptor RGISIRGMDSSYTLILVDGKR; P (STY)  
    KGKWDWGNSEVRG; P (S)  
     RGRTLYAGVNARF; P (TY)  

15 –2.41 MXAN_7497 Signal-peptide processing peptidase (M16B) KANAYYMAGQSLKL; P (Y) 
     

*Modifications:  CAM:  Carbamidomethylation 
P:  Phosphorylation 

 
 

8 protein spots with one detectable phospho-residue 
5 protein spots (4 proteins) with two detectable phospho-residue 
1 protein spots with three detectable phospho-residue 
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Table A3: List of potential Fur regulated proteins from proteome experiments.  

Back analysis of promoter regions from differently expressed proteins (2D-DIGE), screened for the 
presence of potential Fur boxes, guided by the generated sequence key of Fur boxes in M. xanthus 
(GANAATSNNNNTCAWTNNC; figure 3.3). 8 of 19 nucleotides (whereas only 12 are really defined) 
had to be identical for match. Sequence-hits in coding regions are marked by “Plus”. Hypothetical 
proteins were further checked by BLAST; result shown in squared brackets.  
No. 
 

Identified 
MXAN-Nr. 

Sequence 
 

Start  
distance 

Protein function 

     
1 MXAN_0365  GACGATGCGCTTCCATGGC 4 Hypothetical protein [DUF82] 
2 MXAN_0463  CAGAATGCTGCTCCCTTCC 4 Xaa-Pro aminopeptidase pepP 

3 MXAN_0548  GACGATGAAACTCTATTTC 4 
Glutathione S-transferase domain 
protein 

4 MXAN_0599  GAAACGCCTTTTCAACTCC 28 
Hypothetical protein 
[DUF262/1524] 

5 MXAN_0831  GAAAATATAGGTCAATCGA 21 Saccharopine dehydrogenase lys1 
6 MXAN_0866  GATGATGTTCTTCACCGCC 116 DPS protein tpF2 

7 MXAN_1892  GAGGATTCACAGCCATGAC 13 
Putative serine/threonine protein 
kinase 

8 MXAN_2318  GAGAGTCAAAACGCATGGC 13 Glutathione-disulfide reductase gor 
9 MXAN_2539  GAGAGTCGCGCTGAACCCC plus 9 Hypothetical protein 
10 MXAN_3068 GCAGATCCAGAACAATTTC plus 4 Elongation factor Tu 1 
11 MXAN_3080  GCACATCGCCGTCGTTCCC 85 Hypothetical protein 

12 MXAN_3571  GGCCATGGACCCCATTACC 2 
Hypothetical protein [band 7 
protein] 

13 MXAN_3633  GAAAATGCCACACGTCAAC 4 Hypothetical protein 

14 MXAN_3640  GTGAATCGCAGTCTCCGTC 2 
Siderophore biosynthesis 
aminotransferase 

15 MXAN_3647  GATAATGAAAATCATTCTC 57 
Siderophore biosynthesis 2,3-
dihydro-2,3-dihydroxybenzoate 
dehydrogenase 

16 MXAN_3777  GGGAACGGGCGTCAAAATC plus 21 
Inosine-5'-monophosphate 
dehydrogenase, guaB 

17 MXAN_3793  GAGGACGAACGTCACTGCC 75 Ribosomal protein S1 rpsA 
18 MXAN_4137  AATGATGAAGTTCGATATC 4 Hypothetical protein 
19 MXAN_4149  GAAAATCCTGATCGTCGAA plus 8 Response regulator frzS 
20 MXAN_4189  GGTCATGGGTTTCATGCGC 61 Tetratricopeptide repeat protein 

21 
MXAN_5023- 

             24 
GTTAATGACAATCAACTTC 32 

TonB dependent receptor; outer 
membrane receptor 

22 MXAN_5484 AAGGATGCGACGCATTGCG 16 Hypothetical protein 

23 MXAN_5743  AGGACTCCTTCTCACTTGC 50 
Hypothetical protein [PEGA 
domain surface layer protein] 

24 MXAN_5795  GATGATTTCCGGCGTTTTC 68 Exonuclease 

25 MXAN_5855  GAACGTCACCTTCGGTAAC 30 
Hypothetical protein [phosphate-
selective porin superfamily] 

26 MXAN_6032  GAAACGGTCCGTCAGTTCC 18 
Putative response 
regulator/chemotaxis protein cheW 

27 MXAN_6911  GCAAATCAATATCAATTGA 14 TonB-dependent receptor 

28 MXAN_7040  GACACTCTCCCTCATCACG plus 8 
Putative outer membrane protein 
P1 

29 MXAN_7090  GAACCTCTACGACATTCCC plus 7 
Glutathione peroxidase family 
protein  
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