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Abstract

Sentiment Analysis is the task of extracting and classifying opinionated content in natural
language texts. Common subtasks are the distinction between opinionated and factual
texts, the classification of polarity in opinionated texts, and the extraction of the par-
ticipating entities of an opinion(-event), i.e. the source from which an opinion emanates

and the target towards which it is directed.

With the emerging Web 2.0 which describes the shift towards a highly user-interactive
communication medium, the amount of subjective content on the World Wide Web is
steadily increasing. Thus, there is a growing need for automatically processing this type
of content which is provided by sentiment analysis.

Both natural language processing, which is the task of providing computational meth-
ods for the analysis and representation of natural language, and machine learning, which
is the task of building task-specific classification models on the basis of empirical data,
may be instrumental in mastering the challenges of the automatic sentiment analysis of
written text.

Many problems in sentiment analysis have been proposed to be solved with machine
learning methods exclusively using a fairly low-level feature design, such as bag of words,
containing little linguistic information. In this thesis, we examine the effectiveness of
linguistic features in various subtasks of sentiment analysis. Thus, we heavily draw from
the insights gained by natural language processing. The application of linguistic features
can be applied on various classification methods, be it in rule-based classification, where
the linguistic features are directly encoded as a classifier, in supervised machine learning,

where these features complement basic low-level features, or in bootstrapping methods,



where these features form a rule-based classifier generating a labeled training set from
which a supervised classifier can be trained.

In this thesis, we will in particular focus on scenarios where the combination of lin-
guistic features and machine learning methods is effective. We will look at common text

classification tasks, both coarse-grained and fine-grained, and extraction tasks.



Zusammenfassung

Sentimentanalyse beschreibt die Aufgabe, Meinungen aus natiirlich-sprachlichem Text zu
extrahieren bzw. deren Inhalt zu klassifizieren. Ubliche Teilaufgaben sind die Unterschei-
dung zwischen sachbezogenem Text und Meinung, die Klassifikation von Polaritit (einer
Meinung), sowie die Extraktion von Entitdten, die an einer Meinung beteiligt sind, d.h.
der Ursprung, von dem eine Meinung ausgeht, und das Ziel, auf das sich eine Meinung
richtet.

Mit dem Aufkommen des Web 2.0, das den Ubergang des Internets zu einem hochgradig
interaktiven Kommunikationsmedium beschreibt, ist parallel auch der Anteil an subjek-

tiven Inhalten im Netz gestiegen. Dadurch wéchst logischerweise auch der Bedarf an

automatischen Verfahren, die die Aufgaben der Sentimentanalyse unterstiitzen.

Bei der Bewiltigung der automatischen Sentimentanalyse geschriebener Sprache sind
sowohl die natiirliche Sprachverarbeitung, die berechenbare Modelle fiir die Analyse und
Représentation natiirlicher Sprache bereitstellt, als auch maschinelle Lernverfahren, die
aufgabenspezifische Klassifikationsmodelle auf der Basis von empirischen Daten liefern,
hilfreich.

Viele Probleme in der Sentimentanalyse konnen mit Standardmethoden aus dem maschi-
nellen Lernen, die sich hauptséchlich auf elementares Merkmalsdesign stiitzen (wie z.B.
Bag of Words, die nur sehr begrenzt linguistische Information kodieren), gelst wer-
den. In dieser Dissertation soll die Nutzbarkeit von linguistischen Merkmalen in unter-
schiedlichen Teilaufgaben in der Sentimentanalyse untersucht werden. Hierbei stiitzen
wir uns vorwiegend auf Erkenntnisse der natiirlichen Sprachverarbeitung. Linguistische

Merkmale koénnen in den unterschiedlichsten Klassifikationsmethoden Anwendung finden,



sei es in rein regelbasierten Klassifikationsverfahren, bei denen die Merkmale direkt als
Klassifikator kodiert werden, in iiberwachten Lernverfahren, bei denen diese Merkmale
Standardmerkmale (z.B. Bag of Words) ergénzen, oder aber auch in Bootstrappingver-
fahren, bei denen die Merkmale Bestandteil eines regelbasierten Klassifikators sein kdn-
nen, der ein annotiertes Trainingsset generiert, auf dem wiederum einfache iiberwachte
Klassifikatoren trainiert werden kdnnen.

In dieser Dissertation werden wir uns vorwiegend auf Szenarien beschrénken, bei denen
eine Kombination aus linguistischen Merkmalen und maschinellem Lernen vorteilhaft ist.
Wir werden Textklassifikationsaufgaben (sowohl grob-kornig als auch fein-kornig) und

Extraktionsaufgaben betrachten.
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1. Introduction

1.1. Motivation

Sentiment Analysis is the task of extracting and classifying opinionated content in nat-
ural language texts. With the emerging Web 2.0 which describes the shift towards a
highly user-interactive communication medium the amount of subjective content on the
World Wide Web is steadily increasing. Thus, there is a growing need for automatically
processing this type of content which is provided by sentiment analysis. Modern search
engines or even more sophisticated extraction systems, such as question answering sys-
tems need to be adapted in order to be able to process subjective content in addition to

factual content. The most imminent components that these applications require are:
o text classifiers distinguishing between

— subjective and objective texts (i.e. subjectivity classifiers)

— different types of polarity, most prominently, positive and negative polarity

(i.e. polarity classifiers)
e entity extraction systems for

— opinion sources (a.k.a. opinion holders)

— opinion targets

Both natural language processing which is the task of providing computational methods
for the analysis and representation of natural language and machine learning which is the

task of building task-specific classification models on the basis of empirical data may be
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instrumental in mastering the challenges of the automatic sentiment analysis of written
text.

Many problems in sentiment analysis have been proposed to be solved with machine
learning methods exclusively using a fairly light-weight and task-unspecific feature design,
such as bag of words, containing little linguistic information. In this thesis, we examine
the effectiveness of linguistic features in various subtasks of sentiment analysis. Thus, we
heavily draw from the insights gained by natural language processing.

The application of linguistic features can be applied on various classification methods,
be it in rule-based classification, where the linguistic features are directly encoded as
a classifier; but also in supervised machine learning, where these features complement
basic low-level features, or in bootstrapping methods, where these features form a rule-
based classifier generating a labeled training set from which a supervised classifier can
be learned.

In this thesis, we will in particular focus on scenarios where the combination of linguis-
tic features and machine learning methods is effective. We consider this incorporation
of linguistic heuristics in a machine learning context as a kind of hybrid approach. We
will look at common text classification tasks, both coarse-grained and fine-grained, and

extraction tasks.

1.2. Contributions

This thesis contributes to the following aspects:

e Supervised Polarity Classification at Sentence Level. I present a set of
features helping to discriminate between positive and negative sentences. Since
sentence-level classification suffers more severely from data-sparseness than docu-
ment-level classification, some more advanced feature engineering than bag of words
is required. I focus on two types of features being structural features relying on
the sentence structure and knowledge-based features which incorporate polarity

lexicons. This work is also described in (Wiegand & Klakow, 2009b).
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e Feature Engineering for Detecting Indefinite Polar Sentences. I present a
set of linguistic features helping to discriminate between definite polar sentences and
indefinite polar sentences. These features are tested as part of a rule-based classifier
which does not require any training data. In a cross-domain evaluation, the classifier
produces a competitive performance to simple machine learning classification using

bag of words. This work is also described in (Wiegand & Klakow, 2010c).

o Topic-Related Polarity Classification. I present a study on the viability of
including topic information to sentence-level polarity classification. In an evalu-
ation on blog data, distance features and other linguistic features modeling the
structural relationship between topic and polar expressions (i.e. words containing
a prior polarity) are compared. This work is also described in (Wiegand & Klakow,

2009¢).

e Bootstrapping Algorithms for Document-Level Polarity Classification.
I present a cross-domain study on bootstrapping algorithms for document-level
polarity classification. I compare two different methods: semi-supervised learning
in which classifiers are bootstrapped with the help of at least few labeled data
instances and a learning method where the classifiers are bootstrapped with the help
of rule-based polarity classifiers. Moreover, for each learning method I will discuss
what parameters need to be taken into consideration in order to obtain optimal
performance. During that study, we will particularly address the importance of
linguistic knowledge and their relevance to classification performance. This work

is also described in (Wiegand & Klakow, 2009a, 2010a).

e Convolution Kernels for Opinion Holder Extraction. I present how convolu-
tion kernels can be tailored to opinion holder extraction allowing fairly complex but
also expressive structures, such as parse trees, being directly provided to a learning
method rather than manually deriving features from them. I will formulate several
kernels using various scopes and levels of information. I will, in particular, show

how important the consideration of linguistic insights is for the formulation of ker-
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nels and kernel combination. This work is also described in (Wiegand & Klakow,

2010b).

1.3. Outline of the Thesis

Chapter 2: In the second chapter of this thesis, I will give background information to
sentiment analysis. I will describe the most important applications for this discipline.
Moreover, I will present the main subtasks of this area and describe state-of-the-art
methods that are employed in order to solve them. I will also outline the main challenge
in sentiment analysis.

Chapter 3: The third chapter focuses on experiments on supervised polarity classifi-
cation at sentence level using linguistic features.

Chapter 4: In Chapter 4, I will examine a set of linguistic features designed to detect
indefinite polarity.

Chapter 5: In the fifth chapter, I will describe experiments on topic-related polarity
classification.

Chapter 6: The sixth chapter presents experiments on bootstrapping algorithms for
document-level polarity classification.

Chapter 7: The seventh chapter describes how convolution kernels have to be de-
signed in order to use them for opinion holder extraction.

Chapter 8: In the last chapter, I will draw some general conclusions from the results

obtained in the previous chapters. I will also show possible directions for future work.
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2. Background

2.1. What is Sentiment Analysis?

In this section, I will discuss the notion of sentiment analysis. 1 will first give an intrinsic

definition of the expression. Pang and Lee (2008) define sentiment as the:

reference to automatic analysis of evaluative text and tracking of predictive

judgments.

In the research community the expression sentiment analysis is often (almost) synony-
mously used with subjectivity analysis and opinion mining.

Subjectivity can be described as a type of private state (Wiebe, 1994). A private
state is a state that is not open to objective observation and verification (other types are
evaluations, emotions or speculations) (Quirk, Greenbaum, Leech, & Svartvik, 1985).

The term opinion mining originally had a more restricted meaning. It was mostly
understood as web-search (for products) and aggregating opinions about each of them
(poor, mixed, good) (Dave, Lawrence, & Pennock, 2003). In recent years, however, the
term has been given a more general sense making it hard to distinguish from sentiment
analysis (B. Liu, 2006). Pang and Lee (2008) claim that the only difference between these
two terms is that they are used by two different communities. While opinion mining is
mostly used in information retrieval, sentiment analysis is the preferred term in natural
language processing (NLP). Following this trend, I will use the two terms opinion and
sentiment synonymously in the remainder of this thesis.

In summary, one can describe sentiment analysis as the automatic analysis of opinions

while opinions (in this thesis) are understood as evaluating and judgmental utterances.

21



The type of analysis that is going to be considered in this thesis primarily focuses on text
classification (i.e. does a text express an opinion or not, and if so, what type of opinion
is it) and entity extraction (i.e. given a text expressing an opinion which is the entity

that expresses the opinion or which is the entity towards which the opinion is directed).

It should be noted, however, that although there is some general agreement in the
research domain on what an opinion is, there are many differences when it comes to the
annotation of concrete text. There exists a plethora of different annotation standards and
corpora for English for this task (Pang, Lee, & Vaithyanathan, 2002; Wiebe, Wilson, &
Cardie, 2003; Hu & Liu, 2004; Ounis, Rijke, Macdonald, Mishne, & Soboroff, 2007; Seki
et al., 2007; Stoyanov & Cardie, 2008; Dang, 2009; Kessler, Eckert, Clarke, & Nicolov,
2010; Toprak, Jakob, & Gurevych, 2010). Even though some of these corpora appear to
contain common annotation, they are not always compatible when it comes to actually

using them (Li, Bontcheva, & Cunningham, 2007).

In the following, I will give an extrinsic definition of sentiment analysis by distinguish-

ing it from related disciplines:

Flame detection is the task of detecting abusive messages (Spertus, 1997). There are
similarities to sentiment analysis as flames are usually highly subjective and contain a

negative polarity. Thus, flames are just a very specific type of subjectivity.

Hedging is defined as the linguistic means used to indicate a lack of complete com-
mitment to the truth value of a proposition or a desire not to express that commitment
categorically (Hyland, 1998). Thus, hedging is similar to subjective language in that nei-
ther of them can be assigned a truth value. Unfortunately, there are only few attempts
to discriminate these two terms. Medlock and Briscoe (2007) state that the domain of
interest between the two concepts differs. Hedging is mostly examined on scientific arti-
cles, in particular, on the biomedical domain (Light, Qiu, & Srinivasan, 2004; Medlock
& Briscoe, 2007; Kilicoglu & Bergler, 2008) whereas sentiment analysis is carried out
on the most diverse forms of text, most predominantly news (Wiebe et al., 2003) and
reviews (Pang et al., 2002). We assume that due to these different domains the phe-

nomena in focus vary. While in scientific texts mostly neutral subjective texts, such as
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Sentence (2.1) play an important role, in sentiment analysis there is also much work done

on subjective texts containing a value judgment, such as Sentence (2.2).

(2.1) I believe that the causes of increasing natural catastrophes can be ascribed to global

warming.

(2.2) T find it irresponsible that some people still deny the existence of global warming

given the notable increase of natural catastrophes in recent years.

Affect computing deals with the design of systems that can recognize human emo-
tions (Picard, 1997). While sentiment analysis is usually restricted to verbal utterances,
emotions can also be expressed on several other modes. As far as verbal utterances are
concerned, there is no universal agreement upon the distinction between emotions and
sentiment. A common distinction is that an emotion is a state of mind (Sentence (2.3))
whereas a sentiment or opinion is an evaluation or judgment towards some entity (Sen-

tence (2.4)).
(2.3) T am happy.
(2.4) T think that X is nice.

Another definition suggests that sentiment is an umbrella term that includes both emo-
tions (as a state of mind) and evaluations or judgments (Wilson, 2008b). T will follow the
second definition since the corpora I use have been annotated according to that notion.

Creative language, such as humour, irony, idioms, proverbs, puns, and figurative lan-
guage, bears some similarity to subjectivity in the sense that they often coincide (Wiebe,
Wilson, Bruce, Bell, & Martin, 2004), however creative language (e.g. irony) is only a
means to express subjectivity or a side-effect of it. Though the interrelation between
these two items might appear to be compelling to look into in a thesis about linguistic
aspects of sentiment analysis, I will mostly neglect this issue, since the computational
approaches towards the detection of creative language is still in their infancy (Sarmento,

Carvalho, Silva, & Oliveira, 2009).
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2.2. Applications of Sentiment Analysis

Rather than being justified on its own, sentiment analysis is a task that can be used
in several applications. Given that the web is currently the resource containing the
greatest amount of publicly available opinions, it comes as no surprise that many of
these applications are related to the web.

One of the most prominent applications are search engines which instead of merely
retrieving any web content that is topically related to a query just retrieve subjective
content. Ideally, the user formulating the query should even be able to specify the target
polarity of subjective content that is to be retrieved.

One step beyond such an opinion-related search engine would be an opinion gquestion
answering system. While in traditional factual question answering an answer snippet to
a natural language question, such as Question (2.5), is extracted, an opinion question
answering system should be able to answer questions asking for entities that are involved
in an opinion, such as Question (2.6). In addition, similar to definition questions which
ask for general information about a specific topic, such as Question (2.7), opinion-based
definition questions, such as Question (2.8), i.e. questions asking about the general

sentiment towards a particular topic, should be answered.
(2.5) When was Mozart born?

(2.6) Who likes Mozart’s music?

(2.7) Who is Mozart?

(2.8) What do people think about Mozart?

The scenario that is represented by the latter question type is of course very similar to
the task that is performed by opinion-related search engines; unlike the other opinion
question type (Question (2.6)), statements rather than entities are to be returned for
this type. Depending on how the output for such a question is to be formatted, the task
might also become very similar to opinion-related summarization, as a user may just want

the essence of the general sentiment towards a topic and not the mere concatenation of
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actual relevant texts that could be found (as it might be much too verbose and, thus,
difficult to grasp).

Another major type of applications for sentiment analysis are tools for social media
monitoring. By that one understands systems that observe a particular part of the web
for a longer period of time and try to detect new developments on these data. With regard
to sentiment analysis this could mean observing the public opinion (as represented by a
certain part of the web) towards a particular item. Such a monitoring system might be
attractive for businesses that want to observe the impact of their products on the market.
It should enable the detection of early signs of discontent allowing the businesses to
take counteraction at a very early stage preventing a negative sentiment regarding their
products to spread. Similarly, political institutions, like political parties in a general
election might be interested to obtain an immediate feedback on their latest campaign.

Finally, sentiment analysis may also be used as an additional filter in recommenda-
tion systems to exclude content receiving too much criticism from being recommended.
This additional filter might be useful since the algorithms applied to select items to be
recommended are usually not based on sentiment analysis but on the similarity of user

behavior/profiles.

2.3. Different Subtasks in Sentiment Analysis

In this section, I will provide an overview of the different subtasks in sentiment analysis.

2.3.1. Text Classification

The most prominent subtasks in sentiment analysis are the two text classification tasks
which T call in this thesis subjectivity detection and polarity classification. (Note that
in the literature other terms may be used for these tasks.) By subjectivity detection,
I mean the distinction between objective texts (Sentence (2.9)) and subjective texts

(Sentence (2.10)).

(2.9) The car is red.
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(2.10) The car looks horrible.

By polarity classification, I define the classification of texts according to different polarity
types. The most common types are positive polarity (Sentence (2.11)) and negative
polarity (Sentence (2.12)). Further types are neutral polarity (Sentence (2.13)) and
indefinite polarity (Sentence (2.14)). The difference between the latter two categories is
that while in neutral polarity there is no value judgment conveyed by the statement, in
indefinite polarity there is a value judgment conveyed but the polarity is neither definite
positive nor definite negative. In many publications, these two categories are omitted.
Neutral polarity is omitted as it may not be considered subjective as in (Pang & Lee,
2004). Indefinite polarity is omitted as it is usually less frequently observed than the

other categories.
(2.11) The food is delicious.
(2.12) The food tastes awful.
(2.13) 1 believe that the food is specially imported from Asia.!
(2.14) The food is so-so. (It is neither good nor bad.)

In this thesis, I will unlike some previous work on that task, such as (Wilson, Wiebe,
& Hoffmann, 2005) ignore the class of neutral polarity (see Sentence (2.13)) as the text
to be classified will contain value judgments.

In recent years, a two-stage classification has been established. One usually decides
whether a text is subjective or not (i.e. one applies subjectivity detection) and if the text
is subjective one also classifies its polarity (Pang & Lee, 2004). A distinction between
these two types of classification is useful since different features are relevant for these two
types (Karlgren, Eriksson, Tackstrom, & Sahlgren, 2010). Another justifying reason is
that there are text types where only one type of classification is necessary, e.g. in review
classification a subjectivity detection is superfluous since (at least at document level) all

reviews are usually subjective.

!Note that this type of polarity could also be interpreted as hedging.
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These types of text classification can also be applied on various levels of granularity.

The common levels are:
e document level
e sentence level
e word level

Note that the classification at word level can also be referred to as classification at ex-
pression level or phrase level. We will use these three terms interchangeably in this thesis.
In this text classification task, expressions are classified in their respective contexts. The
classification of expressions in isolation, e.g. the prediction of whether a word is subjec-
tive or has a specific polarity type, is another task which (in this thesis) is called lezicon
induction and will be discussed in Section 2.3.2.

The need for classification on more fine-grained levels than document level can be ex-
plained by the fact that sentiment is not uniformly spread throughout a single document.
For information extraction systems (like those presented in Section 2.2), which need to
identify the sentiment towards a specific entity, it is therefore vital to be able to compute
focused sentiment information, i.e. the information from a sentence or a clause with the
mentioning of that entity. Another usage for fine-grained sentiment analysis is that it
can be used for improving coarse-grained classification (i.e. classification at document

level) (Pang & Lee, 2004; McDonald, Hannan, Neylon, Wells, & Reynar, 2007).

Subjectivity Detection

There has been fairly little work at document-level subjectivity detection. Most work on
document-level subjectivity detection is usually restricted to blog-posts (Chesley, Vincent,
Li Xu, & Srihari, 2005; Ounis et al., 2007; Ounis, Macdonald, & Soboroff, 2009) as these
documents are fairly short and tend to be either fully subjective or objective. In contrast
to polarity, the overall degree of subjectivity of a document is less relevant for applications

in NLP than that of a sentence or a phrase.
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Most text classifiers constructed for sentiment analysis are models trained by super-
vised machine learning classifiers. Various types of features for these classifiers have
been explored. Bag of words offer good performance on an in-domain evaluation (Dias,
Lambov, & Noncheva, 2009). Improvements can usually be achieved by adding fea-
tures describing predictive classes of words, such as particular types of adjectives and
verbs (Wiebe et al., 2004; Breck, Choi, & Cardie, 2007; Dias et al., 2009) or task-
specific lexicons containing subjective expressions or patterns. They can be manually
constructed (Wiebe & Riloff, 2005) or automatically generated (Wiebe et al., 2004; Riloff
& Wiebe, 2003). Even substituting hypernym synsets from WordNet (Miller, Beckwith,
Fellbaum, Gross, & Miller, 1990) for words helps (Breck et al., 2007). The usage of these
predictive classes has also been shown to be an effective means to overcome domain-
mismatch problems encountered when bag of words features are used (Dias et al., 2009).
Structural features taking syntactic information into account can also improve perfor-
mance (Wilson et al., 2005; Karlgren et al., 2010). Recently, there have also been research
efforts showing that word sense disambiguation improves subjectivity detection (Wiebe

& Mihalcea, 2006; Akkaya, Wiebe, & Mihalcea, 2009).

Polarity Classification

For polarity classification the effectiveness of different types of features varies depending
on the level of granularity that is considered. On document level (again we consider
machine learning classifiers), the majority of research suggests that bag of words perform
well (Pang et al., 2002; Salvetti, Reichenbach, & Lewis, 2006), in particular when bigrams
and trigrams are added to unigrams. They also outperform more advanced linguistic
features using syntactic word dependency information (Ng, Dasgupta, & Arifin, 2006).
In comparison to document-level polarity classification, more linguistic features have
been examined on sentence-level and word-level polarity classification. Several works ad-
dress syntactic structures, mostly compositionality of phrases and clauses (Moilanen &
Pulman, 2007; Choi & Cardie, 2008; Thet, Na, Khoo, & Shakthikumar, 2009). Some of

these works focus on particular compositional constructions, such as conjunctions (Meena
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& Prabhabkar, 2007; Ding & Liu, 2007; Agarwal, T.V., & Chakrabarty, 2008) or con-
ditional clauses (Narayanan, Liu, & Choudhary, 2009). For some languages, such as
Chinese, using morphological features, i.e. features modeling the relationship between
several morphological units instead of lexical or phrasal units, has also been shown to be
effective.

The most predictive cues in polarity classification are polar expressions, i.e. words
containing a prior polarity, such as excellent™ and awful~. These expressions can be
directly converted to a rule-based classifier (Kennedy & Inkpen, 2005; Klenner, Petrakis,
& Fahrni, 2009; Velikovich, Blair-Goldensohn, Hannan, & McDonald, 2010) or be used
as features in a machine learning classifier complementing bag-of-words features. This
combination is, in particular, effective on sentence and word level (Wilson et al., 2005;
Wiegand & Klakow, 2009b; Choi & Cardie, 2009).

Another crucial aspect of polarity classification is negation modeling. If a polar expres-
sion occurs within the scope of a negation expression, then the polarity of the opinion is

reversed:
(2.15) The waiter in that restaurant was [not polite™]™.

There is no consensus on what features perform best on this task. While Karlgren et
al. (2010) suggest that only negation features are relevant, Gamon (2004) comes to the
conclusion that it is a plethora of different types of linguistic features.

Please note that in the context of polarity classification, we will not consider polar
expressions as linguistic features in this thesis. By linguistic features, we understand
features derived from general linguistic properties, such as part-of-speech information or
syntactic parse trees. Polar expressions are some task-specific lexical features which are

regarded as a separate category.

2.3.2. Task-Specific Lexicons

As pointed out in the previous section, text classification tasks in sentiment analysis
benefit from task-specific lexicons containing subjective/polar expressions. Though there

are several manually created resources (Stone, Dumphy, Smith, Ogilvie, & associates,
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1966; Wilson et al., 2005; Bloom, Stein, & Argamon, 2007), there has also been some
work on automatically inducing them.

One popular strand of methods makes use of general lexical resources, such as Word-
Net, and applies some semi-supervised learning scheme relying on some initially labeled
seed words in order to generate a lexicon (Esuli & Sebastiani, 2006a, 2006b, 2007; Rao
& Ravichandran, 2009). Another strand of methods applies similar techniques to large
unlabeled corpora (Turney & Littman, 2003; Velikovich et al., 2010). The lack of struc-
ture is compensated by relying on high-precision statistics, such as point-wise mutual
information, between seed words and candidate words. These restrictive measures only
work since the corpora that are used, such as the World Wide Web, are extremely large
and contain a considerable amount of redundancy.

Linguistic patterns, such as exploiting the coordination of seed words as a means of
finding lexical units with a similar meaning (Hatzivassiloglou & McKeown, 1997) or
some language specific heuristics (Zagibalov & Carroll, 2008), have also been employed

for lexicon induction.

2.3.3. Entity Extraction

There are two entity extraction tasks in sentiment analysis, being opinion holder and

opinion target extraction:

(2.16) [Koizumilopinion holder Maintains [a clear-cut collaborative stance]opinion towards

[the U.S ] opinion target-

The opinion holder is the source from which an opinion emanates whereas the target is
the entity towards which the opinion is directed.

Extracting opinion-related entities can be regarded as an information extraction task.
It can also considered as a specific subtype of semantic role labeling if one considers an
opinion as a predicate or an event whose arguments are opinion holder and opinion tar-
get (Bethard, Yu, Thornton, Hatzivassiloglou, & Jurafsky, 2004; Choi, Breck, & Cardie,
2006; S.-M. Kim & Hovy, 2006).
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Chapter 7 will discuss this subtask (including a short overview of related work) in more

detail focusing on opinion holder extraction.

2.3.4. Other Tasks

Recently, there has been an increasing interest in sentimental text classification using
additional types of categories than the two discussed in Section 2.3.1 (Kudo & Mat-
sumoto, 2005; Somasundaran, Wilson, Wiebe, & Stoyanov, 2007; Kobayakawa et al.,
2009). The most detailed study is a work on attitude classification (Somasundaran et al.,
2007), in which polarity? is distinguished from agreement, arguing, speculation, and in-
tention. Another trend is sentiment classification on other forms of communication, such
as conversation (Wilson, 2008a; Raaijmakers, Troung, & Wilson, 2008; Somasundaran,
Namata, Wiebe, & Getoor, 2009). These types require a notably different analysis than
the conventional sentiment classification on plain monologues. In dialogues, for example,
utterances may not necessarily be composed of complete sentences but just fragments.
Unlike monologues, such as news texts, these utterances cannot be properly analyzed
in isolation, i.e. without some consideration of their respective contexts. Therefore, a
segmentation of the text into dialogue acts is required for a successful opinion analy-
sis (Somasundaran et al., 2009).

There has also been some considerable work on adapting sentiment text classifiers to
new domains as there are many domains for which no annotated sentiment corpora ex-
ist. The methods that have been applied are structural corresponding learning (Blitzer,
Dredze, & Pereira, 2007), variations of semi-supervised learning algorithms (Aue &
Gamon, 2005; Tan, Cheng, Wang, & Xu, 2009), and algorithms combining domain-
independent rule-based classifiers and domain-specific supervised machine learning clas-
sifiers (Andreevskaia & Bergler, 2008; Tan, Wang, & Cheng, 2008; Tan et al., 2009; Qiu,
Zhang, Hu, & Zhao, 2009).

Born out of a similar need has been multilingual sentiment analysis, i.e. the task of au-

tomatically migrating sentiment resources or tools from one language to another (Hiroshi,

2Polarity is referred to as sentiment in this work.
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Tetsuya, & Hideo, 2004; Mihalcea, Banea, & Wiebe, 2007; Banea, Mihalcea, Wiebe, &
Hassan, 2008; Banea, Mihalcea, & Wiebe, 2008; Brooke, Tofiloski, & Taboada, 2009).
Another major strand in research in sentiment analysis is the joint modeling of senti-
ment text classification (primarily polarity classification) and target extraction of opin-
ions, or more precisely aspects of the targets (i.e. the properties of the targets that are

addressed):

(2.17) T [don’t like] [the design]gspect of [the new iPod]iqrget.

opinion

A typical scenario in which this task is evaluated is the classification of polarity of product
features (Dave et al., 2003; Hu & Liu, 2004; Popescu & Etzioni, 2005; B. Liu, Hu, &
Cheng, 2005; Bloom, Garg, & Argamon, 2007). A related task that jointly models the
detection of opinions and opinion holders has also been explored (Choi et al., 2006).

Several research efforts have been made addressing the unsupervised (or weakly su-
pervised) learning of specific aspects of targets (Mei, Ling, Wondra, Su, & Zhai, 2007;
Snyder & Barzilay, 2007; Du & Tan, 2009; Somasundaran & Wiebe, 2009) since, in
many realistic scenarios, the aspects are not known in advance. Attempts to use the
relation between target and opinion to (solely) improve polarity classification have also
been made (Mullen & Collier, 2004; Brooke & Hurst, 2009; Nowson, 2009).

As far as information retrieval is concerned, there has also been some work on enhanc-
ing search engines with sentiment information (Eguchi & Lavrenko, 2006; M. Zhang &
Ye, 2008; He, Macdonald, He, & Ounis, 2008; Gerani, Carman, & Crestani, 2009; Santos,
He, Macdonald, & Ounis, 2009; J. Kim, Li, & Lee, 2009; F. Liu, Li, & Liu, 2009). This
research has been most prominently enforced by the benchmark competitions TREC
Blog (Ounis et al., 2007; Ounis, Macdonald, & Soboroff, 2008; Ounis et al., 2009) and
TAC Opinion Question Answering (Dang, 2009).

2.4. The Main Challenge in Sentiment Analysis

There is one major challenge in sentiment analysis that concerns (almost) every single

subtask in that discipline. I call it the context-dependency of sentiment information. In
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virtually all subtasks of sentiment analysis, sentiment information is conveyed by some
(textual) cues. The problem of these cues is that they are ambiguous. I will exemplify
this on several word-level tasks:

In subjectivity detection, one needs to have a means of distinguishing between contexts
in which a potential subjective expression, such as alarm, is subjective (Sentence (2.18))

from contexts where it is objective (Sentence (2.19)).
(2.18) His alarm grew.
(2.19) The alarm went off.

In polarity classification, one needs to detect whether a polar expression, such as like,
undergoes a contextual modification that will change its polarity or at least its polar
intensity. Instead of a plain occurrence of a polar expression (Sentence (2.20)), the
expression can be negated (Sentence (2.21)), intensified (Sentence (2.22)), or diminished

(Sentence (2.23)).
(2.20) T like it.
(2.21) T don’t like it.
(2.22) I very much like it.
(2.23) I quite like it.

Moreover, in entity extraction, such as opinion holder extraction, one needs to find out
whether a mention of an entity, such as government, serves as the opinion holder of a

sentiment expression (Sentence (2.24)) or not (Sentences (2.25) and (2.26)).
(2.24) The government approves of the proposal.
(2.25) The government has been dissolved.
(2.26) The public mainly approves of the new government.

To a great extent, these types of ambiguity can be resolved by considering the teztual

context of the words to be classified. Consequently, these issues can be addressed by
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methods from NLP. It is precisely these kinds of phenomena that are addressed in this
thesis.

There are, however, other types of context-dependencies that address extra-textual is-
sues. For example, Sentence (2.27) cannot be recognized as a negative statement towards

a particular novel, since the sentiment information is not lexicalized.
(2.27) I threw the latest Harry Potter novel out of the window.

It requires cultural knowledge to interpret the act of throwing a novel out of a window
as indicative of a negative opinion. This type of sentiment information, also known as
pragmatic opinion (Somasundaran & Wiebe, 2009), is not considered in this thesis due to
the complexity of this phenomenon and the brittleness of state-of-the-art NLP methods

to model pragmatic knowledge.
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3. Feature Design for Sentence-Level

Polarity Classification

3.1. Introduction

This chapter presents feature design for sentence-level polarity classification. Though
polarity classification has been extensively explored at document level, fewer research
efforts have been made at sentence level although the task is an established research
problem (Matsumoto, Takamura, & Okumura, 2005; Meena & Prabhabkar, 2007; Agar-
wal et al., 2008; Narayanan et al., 2009).

Sentiment information is not evenly distributed across a document. Not only do doc-
uments usually comprise both subjective and objective sentences but also the polarity
of subjective sentences within a document varies. Thus, sentence-level classification can
be used to improve document-level classification (McDonald et al., 2007). Moreover, for
tasks demanding fine-grained text analyses, such as question answering or text summa-
rization, sentiment classification at sentence level seems more appropriate than document
classification.

Even though a sentence is shorter than a document, a sentence itself may contain
several polar expressions. We assume that for those cases, there is always one prominent
polar expression. For those cases, the overall polarity will be the polarity of that polar
expression. For examples, there are several polar expressions in Sentence (3.1). The polar
expression successfully is the prominent expression. In this chapter, we are exclusively

interested in the overall polarity of a sentence.

(3.1) [Although he had difficulties™ |oher, [he successfully™ managed the job in the
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end] main -+

Due to the small number of words within a sentence, polarity classification at sentence
level differs substantially from document-level classification in that resulting feature vec-
tors encoding sentences tend to be much sparser. Therefore, a classifier trained on bag
of words performs worse than at document level.

Fortunately, there is a plethora of linguistic features by which a word can be described
within a sentence. We consider features, such as part-of-speech information, clause types,
depth of word constituents, or WordNet hypernyms. At document level, these features
have hardly been used. In general, the benefit of these features remains controversial
since their extraction is computationally expensive (many of these features require lin-
guistic pre-processing such as part-of-speech tagging or even syntactic parsing) and their
contribution in terms of performance is fairly limited since bag-of-words classifiers already
pose a robust baseline.

We show that explicit polarity information and a set of simple linguistic features can
significantly improve a standard bag-of-words classifier. We also show that a standard
classifier can already be significantly improved by linguistic features in the absence of
any polarity information.

Using the established division between subjectivity detection and polarity classification
(see also Chapter 2), we consider polarity classification as a binary classification task.
That is, we assume that each sentence to be classified is subjective. We neglect the
distinction between objective and subjective content since this classification is usually
solved independently (Pang & Lee, 2004; Ng et al., 2006). Our experiments are carried
out on a subset of the MPQA-corpus (Wiebe et al., 2003).

The work presented in this chapter is also described in (Wiegand & Klakow, 2009b).

3.2. Related Work

The most closely related work to this are (Wilson et al., 2005; Choi & Cardie, 2008) which

determine the polarity of individual polar expressions using linguistic features. This word-
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level task is solved with supervised machine learning methods. The crucial difference
to these works is that we attempt to determine the overall polarity of a sentence (see
Section 3.1) rather than the local contextual meaning of each individual polar expression.
Sentence-level polarity classification has the benefit that it can harness features derived
from sentence structure displaying some form of prominence that cannot be used for
expression-level classification (e.g. we consider different clause types, the main predicate
of a sentence, and the depth of word constituents). In expression-level classification,
one needs to determine the polarity of all polar expressions rather than only the most
prominent one. Unlike (Wilson et al., 2005; Choi & Cardie, 2008), we also examine in
how far linguistic features improve a bag-of-words feature representation in the absence

of any polarity information.

Kudo and Matsumoto (2005) consider polarity and modality classification at sentence
level in Japanese. Improvement of a bag-of-words feature set is achieved on both tasks

using n-grams based on dependency paths.

Moilanen and Pulman (2007) present a symbolic approach using deep linguistic in-
formation. The evaluation is done on headlines and noun phrases but not on complete
sentences. The method is not compared with a baseline machine learning approach (e.g.
using bag of words) either. A similar compositional approach using more shallow linguis-
tic information is presented in (Klenner et al., 2009). Again, the method is not compared

with a baseline machine learning approach.

Some research efforts looking into particular sentence-level constructions for polarity
classification have also been attempted. While Meena and Prabhabkar (2007) and Agar-
wal et al. (2008) deal with conjunctions, Narayanan et al. (2009) examine conditional

clauses.

At document level, Gamon (2004) looks at a large set of linguistic features. The
performance is increased, but no definite feature subset can be determined to be effec-
tive. Karlgren et al. (2010) suggest, on the other hand, that only negation features are
relevant. Matsumoto et al. (2005) and Ng et al. (2006) present syntactically motivated

features, most of them based on dependency path information. Though some improve-
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ment can be achieved with these features, Ng et al. (2006) also show that higher-order

n-grams are virtually as effective in terms of performance as these linguistic features.

3.3. Data

As the dataset for our experiments, we decided to use a subset of the MPQA-corpus (Wiebe
et al., 2003) since the corpus is known to have a fairly high inter-annotation agreement.
Since the polarity annotation within the MPQA-corpus is not at sentence level but ex-
pression level, we had to extrapolate the annotation to sentence level. The procedure we
apply is similar to the procedure to generate sentence-level subjectivity data presented
in (Wiebe & Riloff, 2005). Expressions either labeled as direct subjective or expressive-
subjectivity with attitude-type positive or negative were identified as polar expressions.
The projection to sentence level is straightforward if the annotated polar expressions
within one sentence have the same polarity. Sentence (3.2), for example, illustrates the
case where there are two expressions with polarity information, which are both negative.

Therefore, the overall polarity of the sentence is also negative.
(3.2) Their cause was an unjust one™ and therefore had little support™.

Of course, there are a lot of sentences in which there are expressions with differing polarity.
We manually annotated these sentences (approximately 30% of the final subcorpus we
built). Sentence (3.3) illustrates the case where there are two expressions with different
polarity. However, the overall polarity is not mixed. There is a clear preponderance of
the second expression which is negative. Therefore, the overall polarity of the sentence

is negative.

(3.3) "The international community can support™ us so far, but it can never remove the

shackles of repression™", he said.
Moreover, there are also sentences where the overall polarity is mixed as well:

(3.4) African observers generally approved™ of his victory while Western governments

denounced™ it.
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The number of sentences with mixed polarity is so small that including it for our classifi-
cation task was not possible. The final corpus we produced was down-sampled to equal

class sizes. It contains 2,934 sentences in total.

3.4. Feature Design

In this work we distinguish between two types of knowledge-based features: polarity
features and linguistic features. The linguistic features have been formulated at two
levels: sentence level and word level. Polarity features have only been formulated at
sentence level. Table 3.1 lists all sentence-level features and Table 3.2 all word-level

features.

3.4.1. Prior Polarity Features

We use the Subjectivity Lexicon from the MPQA-project (Wilson et al., 2005) as it
is fairly large compared to other publicly available lexicons. We consider the polarity
values positive, negative, and neutral.' Moreover, the lexicon distinguishes between strong
entries (e.g. wonderful or hideous) and weak entries (e.g. valid or bulky). We exploit this

additional information in separate features.

3.4.2. Linguistic Features

A specific linguistic feature at sentence level refers to the overall amount of polar ex-
pressions within a sentence whereas linguistic features at word level describe for each
word whether or whether not a certain linguistic property holds for it in the context of a
particular sentence. For example, if we consider the linguistic property verb (one of the
part-of-speech types explained below), the corresponding features at sentence level are
number of positive verbs, number of negative verbs, and number of neutral verbs (within
this sentence), whereas the features at word level are for each word z: is z a verb? (in

this sentence). The benefit of using these two levels is that we have both coarse-grained

"We ignored the value both since there are only very few entries with that label (approximately 0.25%).
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Table 3.1.: List of sentence-level features.

Bare Polarity Features

number

of positive/negative/neutral expressions

number of strong positive/negative/neutral expressions

number of weak positive/negative/neutral expressions

Linguistic Features

number

number

number

number

number

of positive/negative/neutral nouns
of positive/negative/neutral verbs
of positive/negative/neutral adjectives

of positive/negative/neutral adverbs

of positive/negative/neutral other (part-

of-speech tags)

is main predicate positive/negative/neutral expression?

number

number

number

number

number

number

number

number

number

number

number

number

number

number

number

number

of positive/negative/neutral expressions
of positive/negative/neutral expressions
of positive/negative/neutral expressions
of positive/negative/neutral expressions
of positive/negative/neutral expressions
of positive/negative/neutral expressions
of positive/negative/neutral expressions
of positive/negative/neutral expressions
of positive/negative/neutral expressions
of positive/negative/neutral expressions
of positive/negative/neutral expressions
of positive/negative/neutral expressions
of positive/negative/neutral expressions
of positive/negative/neutral expressions

of positive/negative/neutral expressions

within main predicate phrase
with depth level 1

with depth level 1T

with depth level 111

with depth level IV

with depth level V

in main clause

in other clause

in weak clause

in strong clause

modified by intensifier
modified by positive expression
modified by negative expression
modified by neutral expression

in modal scope

of negated positive/negative/neutral expressions




Table 3.2.: List of word-level features.

Linguistic Features

is word a noun/verb/adjective/adverb/other?
add hypernym synsets of word

is word the main predicate?

is word within main predicate phrase?

has word depth level I/11/111/IV/V?

is word within main/other clause?

is word within weak/strong clause?

is word preceded by intensifier?

is word within modal scope?

is word negated?

and fine-grained features. Since all features at word level are independent of polarity
information?, we can also evaluate the impact of structural features which do not take

polarity information into account. We consider the following linguistic aspects:

Part-of-Speech Information

The predictability towards polarity varies throughout different parts of speech. Many
polarity lexicons, for example the one presented in (Nasukawa & Yi, 2003), contain
mostly adjectives. This means that this part-of-speech tag is more important for polarity
classification than others (i.e. a polar adjective may be more predictive than a polar
noun). Apart from that, part of speech may also be exploited for some basic word sense
disambiguation which can be of help in polarity classification since some important polar
expressions are ambiguous. For example, the word like can either be a polar verb or just
a preposition. In the latter case, the word is not relevant for the polarity classification.
In order not to add too much sparse information (in particular with regard to features

at word level), we only consider the five part-of-speech tags noun, verb, adjective, adverb,

2Note that, on the other hand, all sentence-level features carry polarity information.
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and other.

WordNet Hypernyms (only used at word level)

The WordNet ontology (Miller et al., 1990) allows words to be generalized to a certain
extent. Our features are inspired by Scott and Matwin (1998). For each word in a
sentence we add all the hypernyms of its synset.> In a sentence-level classification task,
the situation that a word is observed in the test set but has not been observed in the
training set usually occurs significantly more often than in corresponding document-level
classification tasks. The purpose of using WordNet is that words which have not been
observed in the training set (but in the test set) hopefully possess hypernyms that have
also appeared in the training set. Thus, a sparse distribution of words is compensated
for by a less sparse distribution of hypernyms. A similar usage of WordNet has already

been shown to work effectively for subjectivity detection (Breck et al., 2007).

Main Predicate & Main Predicate Phrase

We assume that words within a sentence which have a prominent role from a structural
perspective are also important words for polarity classification. In this respect, the main
predicate of a sentence is of particular importance. We deliberately did not restrict
ourselves to verbs since predicative adjectives (the book is interesting) seem to be at
least equally important. Sentence (3.5) displays a case where the polarity of the main
verb support, which is positive, corresponds to the overall polarity of the sentence. The
majority of polar expressions, however, is negative. The main predicate feature which is
only active on support should outweigh the other polar expressions within the sentence

with an appropriately learned feature weight.

(3.5) The Pakistani government supportst™ President Bush and his war™ on terror—.4

3In order to avoid word sense disambiguation, we always map a word onto the first synset in the list of

its potential synsets. The first synset usually corresponds to the most frequent sense.
Tt is certainly debatable whether war and terror should be regarded as polar expressions or as a part

of the multi-word expression war on terror in which the words war and terror, though having a prior
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Apart from a feature referring exclusively to the main predicate, we also introduce a more
general feature for the entire main predicate phrase, i.e. the entire verbal or adjectival
phrase. This should allow polar modifiers within the predicate phrase to be included as

well:
(3.6) The president of the National Trust™ [acted unlawfully™|predicate phrase-

We did not consider common grammatical functions (of a predicate) for separate features,
such as subject or object, because we assume that these entities are less likely to carry
polar information (e.g. these grammatical functions are usually occupied by opinion

holders and opinion targets).

Depth of Word Constituents

In addition to the previous feature which defines prominence on the basis of grammatical
functions (which is fairly restrictive), we also introduce a more general feature which
is not bound to any grammatical information. We assume that the depth of a word
constituent within a syntax tree (i.e. the length of the path from the leaf node to the
root node) can be regarded as another indicator as to how prominent the word is within
a sentence. The deeper a constituent is embedded, the less prominent it is and, therefore,

the less meaningful it should be for polarity classification. In order to avoid too sparse

features we restrict ourselves to five depth levels defined in Table 3.3.

Clause Type

We consider syntactic-based and discourse-based clause types. By syntactic-based type,
we distinguish between main clause and other clause (i.e. adverbial clauses, relative
clauses etc.). We assume that words within the main clause of a sentence are more

predictive to the overall polarity of a sentence than words in other clause types. By

polarity, lose their polar meaning. As we do not have the resources to robustly recognize multi-word

expressions, we will consider these words as polar expressions.

5We convert each character to its lowercase equivalent. Therefore, the distinction between Trust as

part of a named entity and trust as a common noun or full verb gets lost.
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Table 3.3.: Definition of the different depth features.

Feature | Description

level 1 constituents with depth < 5
level 11 constituents with depth < 10
level 111 constituents with depth < 15

level IV constituents with depth < 20

level V constituents with depth > 20

discourse-based types, we also make use of features inspired by Meena and Prabhabkar
(2007) which denote the presence of strengthening discourse connectives (e.g. but) and
weakening connectives (e.g. although).

Both feature types are illustrated by Sentence (3.7). The polarity of the main clause
is also the overall polarity. The strength of the polarity of the subordinate clause is
decreased by the presence of the weakening discourse connective although and by the fact
that this is an other clause. In Tables 3.1 and 3.2 these clauses are referred to as weak

and strong clauses.

(3.7) [Although he had difficulties™ |other, [he successfully™ managed the job in the

end]mqin -

We refrained from defining more specific clause types, e.g. enumerating each subordinate

clause, since it would have created extremely sparse features.

Intensifiers

Intensifiers are adjectives and adverbs which strengthen the meaning of words. For
example, a word, such as good, should obtain a higher weight in a sentence if it is
modified by an intensifier, such as eztremely. We took the intensifiers from (Wilson et
al., 2005). Note that we use this feature also as a word-level feature. A classifier trained
on word-level features only (i.e. without the knowledge of polar expressions) might still

learn that expressions modified by an intensifier are important since the likelihood of

44



these expressions being polar (in the scope of an intensifier) is quite high.

Modification of Polar Expressions by Other Polar Expressions (only used at

sentence level)

Polar expressions can modify each other. The consequence of this is that there is a
change in the overall meaning. If the polarity of both expressions is the same, there is an
intensification (this is similar to the phenomenon described with the previous category
type). If the polarity is different, there might be a weakening in strength or even a shift
in polarity of the polar expression being modified. The latter phenomenon is illustrated

in the following sentence:
(3.8) Korea has rejected™ the framework agreement™ .

Since the positive expression agreement is modified by the negative expression rejected,
the overall meaning is negative. This sentence also shows that the modifying relation is
a long-range relationship that can hardly been captured by higher-order n-grams. This
feature only operates at sentence level, since it refers to polar expressions which are not

considered at word level.

Modal Scope

If an utterance appears within a modal scope®, semantically, it is not bound to be true.
For polar expressions, we assume that words within modal scope are less important than
they usually are. Consider, for example, the positive expression like in Sentence (3.9)

which is modified by the modal verb might and thus semantically weakened.

(3.9) He might like™ the book, but I'm not sure.

Negation Scope

Usually, if a word, or more precisely a statement, appears within the semantic scope of a

negation, its meaning is reversed. Apart from using standard negation expressions, such

5We define the scope of constituent z as the set of all constituents which are dominated by the least

common ancestor of x.
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as no, not, or never, we also add polarity shifters (Wilson et al., 2005). Polarity shifters
are weaker than negation markers in the sense that they only reverse polarity. They only
change one particular polarity type. For instance, the positive shifter abate only turns
negative polar expressions into positive polar expressions (as in abate™ the damage™).
Likewise, the negative shifter lack turns positive polar expressions into negative polar

expressions (as in lack™ of talent™).

3.5. Experiments

The results of the following experiments are reported on the basis of a 10-fold cross-
validation. We evaluate the results using Accuracy, Precision, Recall, and F-Measure
(see also Appendix A.1). Feature selection was carried out on the training data of each
partitioning during the cross-validation in order to obtain an unbiased set of features.
Statistical significance is reported on the basis of a paired t-test with 0.05 as the signifi-
cance level. We used SVMLight (Joachims, 1999a) with its standard configuration (linear
kernel) for SVMs. All linguistic features were extracted from the output of Charniak’s

parser (Charniak, 2000).

3.5.1. Bag-of-Words Feature Set (Baseline)

Following Pang et al. (2002), we encoded all bag-of-words features as binary features
indicating the presence (or absence) of a feature in a sentence. In order to define a strict
baseline, we need to find out what subset of bag of words performs best. We tested
various amounts using x? feature selection (Yang & Pederson, 1997) and found that the
best feature set is the one using all words occurring in the training data. This means
that a feature selection on this dataset is superfluous.

The average Accuracy using the entire set of words occurring in the training dataset
with no further normalization than described above is 67.2%. By using the lemmatizer
within WordNet we increase the performance by approximately 1.4% to 68.6%. (The

size of the unlemmatized feature set with approximately 9,100 tokens is reduced by
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approximately 2,000 tokens when lemmatization is used.) Comparing this with results
of polarity classification at document level, e.g. Pang et al. (2002) report 82.9% on movie
reviews using similar features, suggests that polarity at sentence level is much harder and

that there is much more room for improvement given this low-performing baseline.

3.5.2. (Linguistic) Word-Level Features

The first extension of the standard feature set we look into are the linguistic word-level
features (see Table 3.2), none of which contains any polarity information. Since polar
expressions vary across different domains and common polarity lexicons only capture a
unique polarity of polar expressions, the linguistic word-level features should give us a
realistic estimate of how good domain-independent features are.

In order to see which features improve the performance of the bag-of-words feature
set, we add each feature category (for all words) separately to the standard feature set
and measure the increase in performance. We also apply x? feature selection on each
separate feature set. Table 3.4 shows the result of this experiment. The table displays
the benefit when the optimal feature size is used. We only display the results of the
feature types where we could measure a (notable) increase in performance. Clearly depth
of constituents is the predominant feature with a contribution of 2.1%. Part of speech,
clause type, and WordNet hypernyms are very similar in their strength. All features
with exception of main predicate (phrase) are significantly improving the bag-of-words
baseline. We were very surprised that negation did not notably increase the baseline
performance. However, Pang et al. (2002) also report only negligible improvement.

The upper part of Table 3.5 contrasts the word-level feature set with the other bare bag-
of-words feature sets. We applied x? feature selection to the entire linguistic word-level
feature set. The classifier using all bag of words and the optimal subset of all linguistic
features (i.e. 6,000 additional features) outperforms the simplest baseline classifier by
5.9% which is clearly significant and still 4.5% better than the lemmatized bag-of-words
feature set. The linguistic word-level features are the only features in our experiments

where a feature selection produced a significantly better performance than using the
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Table 3.4.: Benefit of individual word-level feature type categories (optimal feature size)

when added to bag of words.

Feature Type Optimal Size of Feature Set | Benefit (Accuracy)
depth of constituents 2000 +2.1%*
part of speech 2000 +1.3%*
clause type 1000 +1.2%*
WordNet hypernyms 1000 +1.1%*
main predicate (phrase) 1000 +0.8%

*: significantly better than lemmatized bag-of-words baseline on the basis of a paired t-test using p < 0.05

entire feature set. The Accuracy of the complete feature set (with approximately 26,000

active features) is more than 2% worse than the optimal feature set.

3.5.3. Sentence Level: Polarity and Linguistic Features

The lower part of Table 3.5 shows the result of the classifiers using different sentence-
level feature sets. A classifier only trained on the prior polarity features (see Table 3.1)
already achieves 70.4% Accuracy. If we add all linguistic sentence-level features (see
also Table 3.1), we obtain an increase in performance by 3.4%. This shows that these
remaining sentence-level features encode other important information than the bare prior
polarity features.

In order to find out which features are most discriminative and additive at sentence
level, we do a best-first forward selection. Unlike x? feature selection, forward selection

7 The feature se-

has the advantage of selecting features encoding disjunct information.
lection on the sentence-level features did not significantly improve performance. After
all, there are far fewer features in this feature set (less than 100 features) than in the pre-

vious word-level feature set (26,000 active features) and, therefore, less noise is expected

to be in that feature set. Table 3.6 displays the result of this feature selection. As far

"Please note that we could not use this feature selection method for the word-level features since it

would have been computationally prohibitive.
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Table 3.5.: Performance of different feature sets.

Feature Sets using no Polarity Information

Features Class | Rec. Prec. F. Acc.

+ 72.9 65.5 69.0
bag-of-words (not lemmatized) 67.2
- 61.5 69.5 65.2

+ 63.2 71.0 | 66.8
bag-of-words 68.6
- 74.1 66.8 | 70.3

bag-of-words + + 68.2 75.8 71.7
73.1
linguistic word-level features - 78.8 71.0 74.4
Feature Sets using Polarity Information
Features Class | Rec. | Prec. F. Acc.

+ 68.0 71.5 | 69.7
prior-polarity 70.4
- 72.9 69.6 | 71.1

prior-polarity + + 70.9 75.2 72.9

73.8
linguistic sentence-level features - 76.6 72.6 74.5

+ 74.0 | 76.1 | 75.0
prior-polarity + bag of words 75.4
- 76.8 | 74.8 | 75.7

prior-polarity + bag of words + + 74.6 78.0 76.2

76.7*
linguistic word-level features - 78.9 75.7 77.2
prior-polarity + bag of words + + 74.9 77.9 76.3

76.8*
linguistic sentence-level features - 78.7 75.9 77.2
prior-polarity + bag of words + + 75.2 78.8 76.9

77.5*

all linguistic features - 79.7 76.3 78.0

*

: significantly better than prior-polarity + bag of words on the basis of a paired t-test using p < 0.05



as linguistic features are concerned, the results are similar to the feature analysis of the
word-level features. The fact that adjectives are the most important part-of-speech tag
was to be expected (see discussion above). It is no surprise either that only depth levels
I and II occur in the optimal feature set since these two levels usually denote a high level
of prominence. With the occurrence of main predicate, main predicate phrase, and main
clause, our analysis proves that syntactically prominent constituents within a sentence

can be effective features for polarity classification.

Adding lemmatized bag of words instead of the other sentence-level features results in
an even higher improvement by 5% to 75.4% showing that bag of words and the prior
polarity features are complementary and extremely additive. This number, however, may
be optimistic since the polarity lexicon we are using does not have to have such a high

coverage on other domains.

Finally, we test in how far we can increase the performance of a feature set comprising
prior polarity information and bag of words. Performance is increased by adding either
the remaining sentence-level features or word-level features. Adding either set of features
results in a statistically significant improvement by 1.3% and 1.4%, respectively. When
both levels are added, the gain in performance by 2.1% is even higher. Comparing
this number with the simplest feature set we used (i.e. bag of words - not lemmatized

in Table 3.5) we have an increase by 10.3%.

3.5.4. Other Levels of Representation

We tested two alternative types of feature representations: bigrams and tree-kernels.
However, all these features did not improve the performance of our baseline. Bigrams
can be a means of capturing more local structure than unigrams and are known to improve
the quality of polarity classification at document level (Ng et al., 2006). We assume that
this representation does not work at sentence level due to the greater data-sparseness.
The potential of tree-kernels is that structural features are automatically (implicitly)

computed and do not have to be explicitly defined. (A detailed introduction will be
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Table 3.6.: Best sentence-level features according to best-first forward selection.

Bare Polarity Features

number of positive/negative expressions

number of strong positive/negative expressions

Linguistic Features

number of positive/negative adjectives

number of negative verbs

number of positive/negative expressions with depth level T
number of positive/negative expressions with depth level IT
is main predicate a positive expression?

number of negative expressions in predicate phrase
number of positive/negative expressions in main clause

number of positive expressions modified by positive/neutral expressions

given in Chapter 7.) We used SVMLight-TK (Moschitti, 2006b)® for our experiments.
The reason for the lacking improvement might be due to too much irrelevant information
encoded in syntax trees beside the relevant information as the one that is represented
by the linguistic features presented in this chapter. In Chapter 7, we will show that for
another task, namely opinion holder extraction, tree kernels work quite effectively. One
key premise for the application of tree kernels to work is that we only consider subtrees
containing little redundant information (such as, in opinion holder extraction, the subtree
encoding the relation between a candidate opinion holder and its nearest predicate). The
problem for sentence-level text classification is that, unlike in entity extraction, there are

no natural subtrees which immediately spring to mind.

The results of these two experiments may be opposed to the findings in (Kudo &

Matsumoto, 2005), but we assume that this is due to the different settings of the experi-

8We always tested within the hybrid mode which combines the tree-kernel with the standard bag-of-

words features.
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ments.?

3.6. Error Analysis

We found that the golden standard occasionally contains incorrect labels, i.e. positive
sentences have been labeled as negative sentences and vice versa. By closer inspection of
some of those cases, we found that the reason for that lies in the automatic projection of
labels from the phrase level to the sentence level. As mentioned in Section 3.3, we only
carried out a fully automatic projection in case the polarity labels of the phrases within
one sentence were identical. However, we spotted several sentences in which phrases
were missing in the (manual) annotation of the corpus which thus caused an incorrect
projection (as the missing phrases possessed a polarity type opposed to the other actually
anntoated expressions).

Another source of error lies in the recognition of polar expressions which forms the ba-
sis for any sentence-level feature (Section 3.5.3). Not only is the coverage of current
polarity lexicons limited but they also fail to provide the necessary information to dis-
ambiguate expressions which only possess a polar meaning with some particular sense
(Section 2.4). Our lexicon only disambiguates words on the basis of part-of-speech infor-
mation (Section 3.4.2) but is unable to disambiguate expressions which contain a unique

part-of-speech tag.

3.7. Conclusion

In this chapter, I have shown that the baseline performance of polarity classifiers of news
text at sentence level using bag of words can be significantly improved by applying both
linguistic features and polarity information. Unlike polarity classification at document

level, just using bag of words produces a fairly low performance.

9Kudo and Matsumoto (2005) report results on Japanese text, they use twice as much data and consider
a closed domain (reviews for Personal Handyphone System) presumably comprising more repetitive

language than the multi-topic MPQA news corpus.

52



Though adding prior polarity information to bag of words already gives a significant
boost to the baseline performance at sentence level, adding linguistic features can increase
this performance even further significantly. In total, our baseline is improved by up to
10.3%. We also showed that in the absence of any polar information, domain-independent
structural features can already improve the performance of bag-of-words feature sets by

approximately 6%.
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4. Detecting Indefinite Polar Utterances

4.1. Introduction

In Chapter 2, I stated that text classification in sentiment analysis is usually a two-stage
classification scenario consisting of subjectivity detection and polarity classification. Both
scenarios are mostly considered as a binary classification problem. The classification that
was presented in the previous chapter fits into that scheme. It is, however, too simplistic.
According to that scheme, once a text is considered subjective, it is either positive or
negative. Unfortunately, it fails to account for subjective texts which contain an indefinite
polar subjectivity.

Sentences (4.1) and (4.2) are definite polar utterances since these sentences can be

categorized as either positive or negative:
(4.1) She’s always the best of the best!
(4.2) That product is so bad, it should be illegal.

Sentences (4.3) - (4.5) are examples of indefinite polar utterances:
(4.3) That first record was amazing but then they fell off really fast.
(4.4) She has an average voice.

(4.5) T'm not hellishly impressed.

These utterances have in common that they are subjective and express a value judgment.
None of these statements can be categorized as definite positive or negative. The indefi-

niteness is achieved either by stating both positive and negative aspects (Sentence (4.3))

Y
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by using polar expressions not denoting definite polarity (average in Sentence (4.4)), or
by diminishing/negating definite polar phrases (Sentence (4.5)).

This chapter presents a small set of features to detect indefinite polar sentences. In
order to adhere to the common theme of this thesis, I will present domain independent
features reflecting the linguistic structure underlying these types of utterances. Since in-
definite utterances or even entire indefinite reviews are part of a realistic review collection,
those features might be helpful for an accurate text classification.

We give evidence for the effectiveness of these features by incorporating them into an
unsupervised rule-based classifier for sentence-level analysis and compare its performance
with supervised machine learning classifiers. We restrict ourselves to sentence-level analy-
sis since we are primarily interested in basic utterances (as we want to explore the nature
of this type of opinion) for which sentences are a suitable approximation.

The work presented in this chapter is also described in (Wiegand & Klakow, 2010c¢).

4.2. Related Work

Koppel and Schler (2006) present a machine learning approach to polarity classification
where also reviews with indefinite polarity are considered. A binary classifier for positive
and negative polarity is learned using bag-of-words features. Reviews being predicted
as positive or negative with a low confidence are classified as indefinite polar reviews.
The paper does not address features specifically designed for detecting indefinite polar
reviews.

Zhao, Liu, and Wang (2008) consider a CRF-based model for sentence-level polarity
classification of reviews also taking into consideration indefinite polar sentences as a
separate class. Again, there is no discussion about what predictive features are for this
class.

Wilson et al. (2005) present polarity classification of news text on phrase level. Apart
from positive and negative polar phrases, phrases with both polarities and neutral polarity
are considered. However, our task differs greatly from theirs. Wilson et al. (2005) carry

out classification of phrases whereas this work deals with sentence-level classification.
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Moreover, this chapter addresses another text type being online reviews whereas Wilson
et al. (2005) deal with news texts. As all four polar classes are classified within the same
classifier, it is not clear which features are predictive for the indefinite polar classes.
Wilson, Wiebe, and Hwa (2004) present features for distinguishing strong from weak
opinion clauses. Weak opinion clauses bear some resemblance to the class of indefinite
polar expressions. However, the paper does not address polarity. Moreover, the same
differences as the one mentioned to (Wilson et al., 2005) (i.e. level of granularity and

text type) also apply to (Wilson et al., 2004).

4.3. Data

We extracted a set of reviews from Rate-It-All.' Since we want to classify sentences, we
restricted our choice to reviews which only comprise one sentence. We only chose those
domains which given this restriction still contained sufficient reviews. The domains
we include in the experiments of this chapter are Person (person), Sports € Recreation
(sports), and Travel, Food, & Culture (travel). For definite polar utterances, we extracted
reviews rated with 1 or 5 stars and for indefinite reviews, we extracted reviews rated
with 3 stars. Of the latter subset, some reviews were manually removed, since they were
deemed definite polar utterances. For the sake of simplicity, we generated a balanced
dataset via random sampling. This results in a random baseline of 50% in Accuracy.
We chose web reviews for the experiments in this chapter because it is fairly easy to
generate annotated data from a set of reviews (as shown above) in comparison to other
domains, such as newswire text, where additional manual annotation would have been
required. The annotation of the MPQA-corpus could not be used despite the fact that it
is at phrase level (and therefore can be projected to sentence-level, as it has been done in
Chapter 3) since indefinite polarity as such is not contained in the annotation (see also
Section 4.2). Some phrases annotated as private states in MPQA may also be found in
our dataset as indefinite polar instances. These phrases were then labeled as either low

positive or negative polar phrases. Unfortunately, we could not make out a systematic

"nttp://ww.rateitall.com
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Table 4.1.: Size of the different datasets.

Domain | Number of Sentences

person 1914
sports 980
travel 1618

correspondence between the annotation in MPQA and the labels in our dataset.

Table 4.1 lists the size of the resulting datasets.

4.4. Feature Design

Table 4.2 lists all the features that we use. The feature set can be divided into the subset
indicating indefinite polarity and the subset indicating definite polarity. We will discuss
each of these features individually in the forthcoming subsections. Several of the features
require the knowledge of polar expressions (e.g. Posl nPast or Pol ar Super ). For their
detection we use, as in the previous chapter, the Subjectivity Lexicon from the MPQA-
project (Wilson et al., 2005). This lexicon is well suited for our experiments since it
contains a binary intensity feature dividing entries into weak polar expressions (e.g. valid
or bulky) and strong polar expressions (e.g. wonderful or hideous). We make use of this
distinction in one of our features (NegStrongPol ). In order to increase the coverage
of the polarity lexicon, we add adjectives from the Macquarie Semantic Orientation
Lexicon (Mohammad, Dunne, & Dorr, 2009).2 All these entries are categorized as weak

polar expressions.

4.4.1. Indefinite Polarity Features

The following subsections describe features indicative of indefinite polar opinions.

2We found that other entries are too noisy for our application.
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Table 4.2.: Description of the feature set.

Feature Abbreviation | Indefinite Definite | Example(s)

Polarity Polarity

Feature Feature
concessive conjunctions ConcConj v but, although, however
concessive conjunctions pre- | ConcAndPol ar v he is nice but ...
ceded by a polar expression
detensifiers Det ens v rather, kind of, slightly, almost
negated strong polar expres- | NegSt r ongPol v not excellent, not bad
sions
negation expressions NegExp v not, never, nothing
middle-of-the-road polar ex- | M ddl eExp v solid, average, ordinary
pressions
positive polar expressions in | Posl nPast v he used to be funny
past tense clause
polar superlatives Pol ar Super v best, funniest, worst
emphatic cues EnphCues v yeah, ah, grrreeeaaat, !
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Concessive Conjunctions (ConcConj )

In the introduction to this chapter, we pointed out that one way of expressing indefinite
polarity is to state both a positive and a negative opinion in a sentence. An intuitive
heuristic to look for utterances in which both positive and negative polar expressions
occur is not very effective. We ascribe it to the fact that the detection of polar opinions
is very error prone. The relevant polar expressions may not be detected if they are
not included in the polarity lexicon, and even if they can be detected, their contextual
polarity may be computed incorrectly. Contextual polarity comprises many linguistic
phenomena, such as negation or irony, which are difficult to model computationally.

We found, however, that there is another feature which most often co-occurs with
this type of utterance. Concessive conjunctions, such as but or although, indicate that
two clauses represent semantically opposed propositions. In our dataset this is usually
a juxtaposition of two polar opinions. Thus, such a conjunction is also indicative of a

sentence with an overall indefinite polarity:

(4.6) A nice™ wine, but definitely [not worth]™ the price.

Concessive Conjunctions Preceded by a Polar Expression (ConcAndPol ar)

Even though concessive conjunctions may be detected more easily than two contrasting
polar opinions, the concessive conjunction may itself be an ambiguous word. For instance,

but in the following sentence is not a concessive conjunction:

(4.7) They are nothing but an untalented stain on the music world ... totally atrocious

music.

We found, however, that a co-occurrence of a polar expression preceding the potential

concessive conjunction is a fairly reliable way of disambiguating these words.

Detensifiers (Det ens)

Another way of expressing indefinite polarity is to diminish polar phrases. Therefore,

a further cue may be diminishing expressions, or so-called detensifiers, such as almost,
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slightly, or less:

(4.8) Terry is almost as good as Robert Jordan, his stories are slightly less word encom-

passing.

For detensifiers, we adhere to the list presented in (Jason, 1988).

Negated Strong Polar Expressions (NegSt r ongPol )

In traditional polarity classification negated polar expressions are interpreted as if the
polarity of the polar expressions were reversed (Kennedy & Inkpen, 2005; Klenner et al.,
2009). We argue that for the detection of indefinite polarity negated polar expressions
should not be equated with unnegated polar expressions with the opposite polarity. In-
stead, they should be treated as a separate category. In particular, negated strong polar
expressions (Sentence (4.9)) may similarly convey indefinite polarity as detensified polar

expressions (Sentence (4.10)):
(4.9) They are not bad.
(4.10) They are quite good.

We did a simple negation detection matching the lexical entries labeled as negations
in (Wilson et al., 2005). We did not carry out a disambiguation of negation words. So
the performance of this feature can be considered as a lower bound. As we did not employ
full parsing for the experiments in this chapter, we define the scope of a negation as the

five words following a negation word.

Negation Expressions (NegExp)

NegSt r ongPol is a fairly complex feature in which several properties have to co-occur,
i.e. the sentence must contain a polar expression which has to be of strong intensity and
it has to be within the scope of a negation. The computation of such a feature is error-
prone as the negation may not be correctly computed or the strong polar expression may

be overlooked as it is not specified in the polarity lexicon. Therefore, we add a feature
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just recognizing negations. Admittedly, this feature is not equivalent to the previous
feature but its computation should be much more reliable and, often, it should coincide

with NegSt r ongPol .

Middle-of-the-Road Polar Expressions (M ddl eExp)

Indefinite polarity may not only be conveyed by the use of certain linguistic constructions,
be it on discourse level (ConcConj ) or on syntax level (Det ens or NegSt r ongPol ).
It can also be lexically realized by so-called middle-of-the-road polar expressions, such as

ok:

(4.11) This beer brand is ok ... really far away of the Paulaner Heffeweissen.

We compiled a list of such expressions by starting with a couple of manually defined seed
words which were expanded using semantic resources, such as WordNet (Miller et al.,
1990). Moreover, we also manually selected a subset of weak polar expressions from the
polarity lexicon of the MPQA-project. Note that middle-of-the-road polar expressions
differ quite substantially from the polar expressions marked as both (e.g. think, believe)
or neutral (e.g. demand, brag) in that lexicon, though the category names may suggest
otherwise. M ddl eExp always implies a value judgment whereas the two categories in
the Subjectivity Lexicon usually do not have that property. Besides, these two types of

expressions did not show any noticeable predictiveness on our datasets.

Positive Polar Expressions in Past Tense Clause (Pos| nPast )

We observed that in many indefinite polar reviews people tend to recall positive aspects
concerning the topic they review which they experienced in the past and contrast them
with negative aspects they presently perceive. We found that this behavioural pattern
can be automatically identified by detecting a positive polar expression uttered in a past
tense clause. Reviews are usually written in present tense and we found that if a clause

occurs in past tense, then this will most often be accompanied by a switch in tense:
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(4.12) [I usedpqst to like™ those chips a lot better™ some years ago], now the only way I

eat them is with sour cream.

We also experimented with a related feature, i.e. detecting a negative polar expression in
a past tense clause, however, we could not measure any correlation between this pattern

and the class of indefinite polar utterances.

4.4.2. Definite Polarity Features

The following subsections describe features indicative of definite polar opinions.

Polar Superlatives (Pol ar Super)

Definite polar opinions may often be conveyed by a polar superlative:
(4.13) He’s the best actor.

Intuitively, the polar intensity of a polar superlative (e.g. best) is stronger than the
intensity of a polar positive (e.g. good) or comparative (e.g. better). Though polar
superlatives are similar to strong polar expressions, such as ezcellent, or intensified polar
expressions, such as very good, we found in our initial experiments that they are far less

predictive for our task than the polar superlative.

Emphatic Cues (EnphCues)

Often, emphatic cues, such as interjections (yeah, ah etc.), co-occur with definite polar
sentences. A feature detecting such cues may help since in our dataset there are many
definite polar sentences in which  apart from the emphatic cue there is no other
feature that could be that easily computed. For instance, in the following sentence the
polar opinion is pragmatic, i.e. it is not lexicalized. However, there are three exclamation

marks whose occurrence is interpreted as an emphatic cue:

(4.14) T can eat this peanut butter on anything!///
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For the implementation of this feature, we mainly relied on exclamation marks and the
part-of-speech tag indicating interjections, i.e. UH. In addition, we formulated regular

expressions capturing irregular spelling as in suuuper or grrreeeaaat.

4.5. Rule-Based Classifier

The features from Section 4.4 can be used as a rule-based classifier. For each test instance,
the occurrences of features indicating definite and indefinite polar utterances are counted.
We assign the instance the class with the majority of feature occurrences. In case of ties
the instance is classified as definite polar since we have fewer features formulated for that

class.

4.6. Experiments

We evaluate the results using Accuracy only (see also Appendix A.1). Table 4.3 displays
the individual performance of the different features used as a rule-based classifier (as
formulated in Section 4.5). We test for each feature whether it is significantly different
from a random baseline (i.e. 50% Accuracy). We report statistical significance on the
basis of a x? test.

Each of the features is at least significantly better than the baseline when the entire
dataset is considered. It is very striking that among the best performing features are
ConcConj and NegExp which are features describing different types of closed-word
classes. Their advantage is that they comprise words frequently occurring across all
domains.

The features that fail to be significantly better than the baseline on each domain, i.e.
Pol ar Super , NegSt r ongPol , and Posl nPast , are more complex than most of the
other better performing features. They all describe a co-occurrence of separate properties,
e.g. Posl nPast is a polar expression that also happens to be positive and occurs in a
past tense clause. We assume that the reason for these features performing less well lies

in the sparsity of their occurrence.
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Table 4.4 compares the performance of the unsupervised rule-based classifier using all
features with supervised classifiers on 10-fold cross-validation. We compare Support Vec-
tor Machines (SVMs) using SVMLight® and a k Nearest Neighbour Classifier (kNN) using
TiMBL*. For SVMLight we use the standard configuration and for TiMBL we use the 5
nearest neighbours. This setting produces the best overall performance on all domains.
All words contained in the training sets are used as features for the supervised classifiers.
Following the insights of Pang et al. (2002), features indicate presence within an instance
and not its frequency. The inclusion of our novel high-level features (Table 4.2) did not
improve performance of these classifiers when they were added to the bag of words. For
the rule-based classifier, we also considered subsets of the features, but no significant im-
provement over the entire feature set could be achieved. SVMs achieve best performance.
Both kNN and the rule-based classifier are significantly worse than SVMs. Surprisingly,
the rule-based classifier is as robust as kNN. There is no significant difference between
the rule-based classifier and kNN.?

Figure 4.1 shows the average performance of the different classifiers with varying
amounts of labeled training data. For each configuration, we randomly sampled n train-
ing instances from the domain corpus and use the remaining instances as test data. We
sampled 20 times and report the averaged result. Even for SVMs, it takes more than 400
labeled data instances to achieve a significantly better Accuracy than the unsupervised
rule-based classifier. For less robust supervised classifiers, such as kNN, more than 800
labeled data instances are required to achieve the same performance as the rule-based

classifier.

4.7. Error Analysis

Our manual inspection of misclassified data instances revealed that several sentences

have been incorrectly labeled in the golden standard. The most frequent mistake is that

*http://svniight.joachins.org
‘http://ilk.uvt.nl/tinbl

®Statistical significance is again reported on the basis of a x? test with significance level p < 0.001.
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Table 4.3.: Accuracy of the different features on the different domains.

Type person sports travel all
ConcConj 72.99%%*F | T1.53*** | 73.24%** | T2.76%**
ConcAndPol ar | 65.94*** | 62.76*** | 66.25*** | 65.36***
NegExp 58.99*** | 60.92*** | 61.37*** | 60.26***
EnphCues 59.98*** | 57.86™** | 60.88*** | 59.84***
M ddl eExp 59.14*** | 58.06*** | 59.77*** | 59.13***
Det ens 55.28** 54.90* 55.56** 55.30***
Pol ar Super 52.46 57.65*** | 53.58* 54.56***
NegSt r ongPol 52.72 54.08 54.39* 53.73***
Posl| nPast 53.29* 52.65 50.74 52.23*

Statistical significance is reported on the basis of a x? test with significance levels p < 0.05 (*), p < 0.01 (**) and
p < 0.001 (***).

Table 4.4.: Comparison of Accuracy of the different classifiers.

Type person sports | travel | average
rule-based 76.18 78.06 77.32 77.19
kNN 78.00 77.55 75.59 77.05
SVMs 81.19 81.02 80.22 80.81

65



KNN with k=5 us'ing bag of words —+—
Rule-based classifier using all features ———----

&I SVMs using bag of words ---x---
80 _—
,,,,, B
XeoemeeenT
X I
75 S ]
,"” o —
7 * -
S -
5 -
[5]
(%)
< -
55 L L L L \ . )
100 200 300 400 500 600 700 800

Number of labeled data instances for training

Figure 4.1.: Average Accuracy of the different classifiers using different amounts of labeled

training data.

reviews rated with either 1 or 5 reviews, i.e. reviews that we consider as definite polar,
are actually indefinite. For some future work on this task, we therefore should manually
label sentences in our dataset with regard to polar definiteness from scratch.

We also found that features were frequently not recognized, the reason for that being
that words have been misspelt or have been tagged with incorrect part-of-speech tags.
By having some cleaner data, Accuracy may increase as the automatic feature extraction
would become more reliable. Of course, these two sources of errors (i.e. spelling and
part-of-speech tagging) are not the only sources for features being incorrectly extracted.
Several of them rely on the recognition of polar expressions but current state-of-the-art
polarity lexicons are far from being perfect as they have a limited coverage and cannot

sufficiently cope with the ambiguity of polar expressions (see Chapter 3.6).
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4.8. Conclusion

In this chapter, we presented a set of discriminative features for the detection of indefinite
polar sentences. All features are based on linguistic observations or intuitions. We showed
that these features can be used as an unsupervised rule-based classifier which provides
as good as performance as supervised machine learning classifiers, such as kNN trained
on bag-of-words. When only small amounts of training data are available (i.e. less than
300 sentences), the unsupervised approach even outperforms more robust supervised
classifiers, such as SVMs. Since the feature set uses domain-independent features the
classifier works equally well throughout different domains.

We leave it to future work to examine the impact of these features in a polarity clas-
sifier also accounting for the other common polarity types, i.e. positive and negative.
Unfortunately, due to the lack of annotated data for this scenario, this study is beyond

the scope of this thesis.
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5. Topic-Related Sentence-Level Polarity

Classification

5.1. Introduction

In this chapter, I return again to sentence-level polarity classification. While in Chapter 3
the task was to predict the overall polarity of a sentence, in this chapter we are interested
in the polarity towards a specific topic, i.e. targets of opinions. The inclusion of targets
of opinions may result in a more complex type of classification, however, this task is
also more similar to realistic scenarios. People are usually interested in opinions towards
certain topics rather than the overall polarity of a sentence. Moreover, even though the
task may be more complex than plain polarity classification, the presence of a target
mentioning in a sentence may help to overcome the common ambiguity problem that
a sentence contains polar expressions with opposing polarity types as will be explained
below.

The scenario that is going to be used in this chapter looks as follows: the problem
of polarity classification is converted into a retrieval task. A query consisting of a topic
and a target polarity, such as {topic: Mozart, target polarity: positive}, is posed to a
topic-related polarity ranker. The ranker should be able to highly rank Sentence (5.1),
which contains an opinion about the target whose polarity matches the target polarity,
and disprefer Sentence (5.2), which contains an opinion about the target topic but whose
polarity is incorrect, and Sentence (5.3), which is merely a factual statement about the

target topic.

(5.1) positive statement: My argument is that it is pointless™ to ordinary mortals like
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you and me to discuss why Mozart was a genius™.
(5.2) negative statement: I have to say that I [don’t liket]™ Mozart.

(5.3) neutral statement: Wolfgang Amadeus Mozart’s 250th birthday is coming up on

the 27th of this month.

In order to highly rank Sentence (5.1), the ranker must be able to decide which of
the two polar expressions having opposing polarity types, i.e. pointless or genius, is
related towards the topic. Bag-of-words classifiers, which we will use as a baseline, might
therefore mislabel this sentence. A classification which jointly takes the topic term and
the polar expressions into account, on the other hand, may result in a correct classification.
For example, the closest polar expression, i.e. genius, is the expression which actually
relates to the topic. This ambiguity can be resolved by both spatial distance and syntactic
information. In the current example, there is a direct syntactic relationship, i.e. a subject-
of relationship, between the topic term and the polar expression relating to it. Usually,
syntactic relation features are more precise but also much sparser than proximity features.

Not only is it important to identify the polar expression within a sentence which
actually relates to the polar expression but also to interpret a polar expression correctly
in its context. In Sentence (5.2), the only polar expression has a positive prior polarity
but since it is negated its contextual polarity is negative.

All these observations suggest that there are several sources of information to be con-
sidered which is why we examine features incorporating polarity information extracted
from a large polarity lexicon, syntactic information from a dependency parse, and surface-
based proximity. In particular, we address the issue whether syntactic information is ben-
eficial in this task. Many features that will be tested in this chapter resemble those from
previous experiments on plain sentence-level polarity classification in Chapter 3. We also
want to examine which of these features maintain their effectiveness on this task.

Modeling topic-related polarity classification as a retrieval task (instead of a traditional
classification task) simplifies the task since the ranking does not require that all instances

are classified correctly, i.e. lower ranks are virtually neglected by evaluation metrics for
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ranking, so incorrect predictions on lower ranks do not mar the overall result. Secondly,
neutral statements or opinions with indefinite polarity (as they have been dealt with
in Chapter 4) do not have to be specifically modeled, as the target polarity is either
positive or negative. Instances that do not match the target polarity should not occur
on the higher ranks but a reason, i.e. an explanation why these instances are different
(for instance by labeling them as neutral or indefinite polar) is not required.

The work presented in this chapter is also described in (Wiegand & Klakow, 2009c).

5.2. Related Work

The main focus of existing work in sentiment analysis has been on plain polarity clas-
sification which is carried out either at document level (Pang et al., 2002), sentence
level (Chapter 3), or expression level (Wilson et al., 2005). There has also been quite
some work on extracting and summarizing opinions regarding specific features of a par-
ticular product, one of the earliest works being (Hu & Liu, 2004). Unlike the work
presented in this chapter, the task is usually confined to a very small domain. Moreover,
the plethora of positively labeled data instances allows the effective usage of syntactic
relation patterns.

Santos et al. (2009) show that a Divergence From Randomness proximity model im-
proves the retrieval of subjective documents. However, neither an evaluation on sentence
level and nor an evaluation of polarity classification is conducted.

The works most closely related to the work presented in this chapter are (Kessler &
Nicolov, 2009) and (Jakob & Gurevych, 2010a) who examine the detection of targets
of opinions by using syntactic information. Whereas they both discuss how to detect
whether two entities are in an opinion-target relationship — Kessler and Nicolov (2009)
even already know that there is such a relationship in the sentence to be processed —
we do not conduct an explicit entity extraction but classify whether or not a sentence
contains an opinion-target relationship. Another difference is that we consider this task
as a ranking task while Kessler and Nicolov (2009) and Jakob and Gurevych (2010a)

consider this as a classification task (Kessler and Nicolov (2009) employ Support Vector
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Machines (SVMs) while Jakob and Gurevych (2010a) use Conditional Random Fields
(CRFs)). Like Jakob and Gurevych (2010a), we also carry out a cross-domain evaluation,
as our queries deal with various different domains. Unlike (Kessler & Nicolov, 2009;
Jakob & Gurevych, 2010a), we also restrict the opinion-bearing word to be of a specific
polarity. Thus, we can use knowledge about polar expressions in order to predict an
opinion-target relationship in a sentence.

The change in focus, i.e. the fact that we deal with a sentence-level ranking task
rather than an entity extraction task, raises the question whether a similar amount
of syntactic knowledge is necessary or whether sufficient information can be drawn from
more surface-based features and lexical knowledge of prior polarity. Moreover, we believe
that our results are more significant for realistic scenarios like opinion question answering,

since our settings are more similar to such a task than the ones presented by Kessler and

Nicolov (2009); Jakob and Gurevych (2010a).

5.3. Data

The dataset we use in the experiments of this chapter is a set of labeled sentences retrieved
from relevant documents of the TREC Blog06 corpus (Macdonald & Ounis, 2006) for
TREC Blog 2007 topics (Macdonald, Ounis, & Soboroff, 2008). The test collection
contains 50 topics. For each topic we formulate two separate queries, one asking for
positive opinions and another asking for negative opinions. In the final collection we
only include queries for which there is at least one correct answer sentence. Thus, we
arrive at 86 queries of which 45 ask for positive and 41 ask for negative opinions. The
sentences have been retrieved by using a language model-based retrieval (Shen, Leidner,
Merkel, & Klakow, 2007). Each sentence from the retrieval output has been manually
labeled. One annotator judged whether a sentence expresses an opinion with the target
polarity towards a specific topic or not. Difficult cases have been labeled after discussion
with another annotator. The additional annotator only annotated those difficult cases.
The annotation is strictly done at sentence level, i.e. no information of surrounding

context is taken into consideration. This means that each positively labeled sentence
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must contain some (human recognizable) form of a polar expression and a topic-related
word. Our decision to restrict our experiments to the sentence level is primarily to
reduce the level of complexity. We are aware of the fact that we ignore inter-sentential
relationships, however, Kessler and Nicolov (2009) state that on their similar dataset
91% of the opinion-target relations are within the same sentence.

The proportion of relevant sentences containing at least one topic term in our corpus
is 97% which is fairly high. By a topic term, we mean an occurrence of a token being
part of the topic. Although 71% of the relevant sentences contain a polar expression
of the target polarity according to the polarity lexicon we use, in 50% of the sentences
there is also at least one polar expression with opposing polarity. The joint occurrence
of a polar expression matching with the target polarity and a topic term is no reliable
indicator of a sentence being relevant, either. Only approximately 17% of these cases are
correct. The entire dataset contains 25,651 sentences of which only 1,419 (i.e. 5.5%) are
relevant! indicating a fairly high class imbalance. This statistical analysis suggests that

the extraction of correct sentences is fairly difficult.

5.4. Feature Design

In the following, we will describe the different features we use for the task of topic-related
polarity classification. Some of the features bear some resemblance to the features used in
plain sentence-level polarity classification presented in Chapter 3. The fact that similar
features are re-used for this task should be regarded as evidence for the robustness and

general applicability of these feature types for sentiment analysis.

5.4.1. Sentence Retrieval, Topic Feature, and Text Classifiers

Our simplest baseline consists of a cascade of a sentence-retrieval engine and two text

classifiers, one to distinguish between objective and subjective content, and another to

!By relevant, we mean every sentence which expresses a polar opinion (matching the target polarity)

towards the topic term, i.e. neither a polar expression nor a topic term need to be present.
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distinguish between positive and negative polarity. We employ stemming and only con-
sider unigrams as features. The two text classifiers are run one after another on the
ranked output. Rather than combining the scores of the classifiers with the retrieval
score in order to re-rank the sentences, we maintain the ranking of the sentence retrieval
and delete all sentences being objective and not matching the target polarity. This
method produces better results than combining the scores by some form of interpolation
and does not require any parameter estimation. This hierarchical two-stage classification
(subjectivity detection followed by polarity classification) has already been motivated in
Chapter 2.3.1.

We also consider a separate topic feature which counts the number of topic terms
within a sentence since this feature scales up better with the other types of features we

use for a learning-based ranker than the sentence retrieval score.

5.4.2. Polarity Features

For our polarity features, we mainly rely, as in the previous chapters of this thesis, on the
largest publicly available polarity lexicon, the Subjectivity Lexicon (Wilson et al., 2005)
from the MPQA-project. We chose this lexicon since, unlike other resources, it does not
only have part-of-speech labels attached to polar expressions, thus allowing a crude form
of disambiguation?, but also distinguishes between weak and strong expressions.

The set of polarity features that we use in this chapter is very similar to the sentence-
level prior polarity and linguistic features used for plain polarity classification presented
in Chapter 3.4.

As a basic polarity feature (Pol Mat ch), we count the number of polar expressions
within a candidate sentence which match the target polarity. Since this basic polarity
feature is fairly coarse, we add further polarity features which have specific linguistic
properties. We include a feature for strong polar expressions (St r ongPol Mat ch) and a

feature for polar expressions being modified by an intensifier (I nt ensPol Mat ch), such

as very. We suspect that a strong polar expression, such as excellent, or an intensified

2Thus we can distinguish between the preposition like and the polar verb like.
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Table 5.1.: List of polarity features.

Feature Abbreviation

number of polar expressions within sentence with matching polarity (basic | Pol Mat ch

polarity feature)

number of strong polar expressions within sentence with matching polarity | St rongPol Mat ch

number of intensified polar expressions within sentence with matching po- | | nt ensPol Mat ch

larity

number of strong and intensified polar expressions within sentence with | Strongl nt ensPol Mat ch

matching polarity

number of polar nouns/verbs/adjectives within sentence with matching | Pol POSMat ch

polarity

number of strong polar nouns/verbs/adjectives within sentence with | StrongPol POSMat ch

matching polarity

number of intensified polar nouns/verbs/adjectives within sentence with | | nt ensPol POSMat ch

matching polarity

number of strong and intensified polar nouns/verbs/adjectives within sen- | St rongl nt ensPol POSMat ch

tence with matching polarity

polar expression, such as very nice™, might be more indicative of a specific polarity than
the occurrence of any plain polar expression. We use the list of intensifiers from Wilson
et al. (2005). Furthermore, we distinguish polar expressions with regard to the most
frequent part-of-speech types (Pol POSMat ch), these being nouns, verbs, and adjectives.’
Some parts of speech, for instance adjectives, are more likely to carry polar information
than others (Pang et al., 2002). Table 5.1 lists all polarity features we use. It also includes
some combined features of the features mentioned above, i.e. StrongPol POSMat ch,

I nt ensPol POSMat ch, and St r ongl nt ensPol POSMat ch.

We also experimented with features counting the number of polar expressions not
matching the target polarity but none of these features gave any improvement when they

were added to the features counting the number of matches.

#We subsume adverbs by adjectives as well.
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5.4.3. Negation Modeling

A correct contextual disambiguation of polar expressions is important for topic-related
sentence-level polarity classification since the instances to be classified are rather sparse
in terms of polarity information. Therefore, we conduct negation modeling. Our negation
module comprises three steps. In the first step, all potential negation expressions of a
sentence are marked. In addition to common negation expressions, such as not, we also
consider polarity shifters. Polarity shifters are weaker than ordinary negation expressions
in the sense that they often only reverse a particular polarity type.* In the second step, all
the potential negation expressions are disambiguated. All those cues which are not within
a negation context, e.g. notin not just, are discarded. In the final step, the polarity of all
polar expressions occurring within a window of five words® after a negation expression is
reversed. We use the list of negation expressions, negation contexts, and polarity shifters

from Wilson et al. (2005).

5.4.4. Spatial Distance

Textual proximity provides additional information to the previously mentioned features,
as it takes the relation between polar expression and topic term into account. In Sen-
tence (5.4), for example, the positive polar expression genius is closest to the topic term
Mozart, which is an indication that the sentence describes a positive opinion towards the

topic.

(5.4) My argument is that it is pointless™ to ordinary mortals like you and me to discuss

why Mozart was a genius™.

We encoded our distance feature as a binary feature with a threshold value. This
gave much better performance than encoding the explicit values in spite of attempts to
scale this feature with the remaining ones. Since we do not have any development data,

we had to determine the appropriate threshold values on our test data. The threshold

‘For example, the shifter abate only modifies negative polar expressions as in abate the damage.
5This threshold value is taken from Wilson et al. (2005) which has been determined experimentally.
SThe feature is active if a polar expression and topic term are sufficiently close.
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value is set to 8.7 Since all feature sets containing this distance feature supported the
same threshold value, we have strong reasons to believe that the value chosen is fairly
universal. We also experimented with a more straightforward distance feature which
checks whether the closest polar expression to the topic term matches the target polarity.

However, we did not measure any noticeable performance gain by this feature.

5.4.5. Syntactic Features from a Dependency Path

In addition to polarity and distance features we use a small set of syntactic features. By
that we mean all those features that require the presence of a syntactic dependency parse.

This set of features supplements both of the other feature types.

Syntactic Prominence Features

Similar to the polarity features are the two prominence features we use. Their purpose is
to indicate the overall polarity of a sentence. Very similar features have again also been
presented in Chapter 3.4 where they have been shown to be effective for sentence-level
polarity classification on the news domain. Each polar expression can be characterized by
its depth within the syntactic parse tree. Depth is defined as the number of edges from
the node representing the polar expression to the root node. Usually, the deeper a node of
a polar expression is, the less prominent it is within the sentence. Similar to the distance
feature, we define a binary feature (LowDept h) which is active if a polar expression has a
sufficiently low depth. The threshold value is set to 5.8 The main predicate (Mai nPr ed),
too, is usually very indicative of the overall polarity of a sentence. Sentence (5.5) is a

case where the main predicate coincides with the correct overall polarity.

(5.5) The strings [screwed up]_ . . . the concert, in particular, my favorite™ scores

by Mozart. (overall polarity: negative, polarity towards Mozart: positive)

"The threshold may appear quite high. However, given the fact that the average sentence length in this
collection is at approximately 30 tokens and that there is a tendency of topic terms to be sentence

initial or final, this value is fairly plausible.
8The large value for the depth feature can be explained by the fact that Minipar uses auxiliary nodes

in addition to the nodes representing the actual words.
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Table 5.2.: List of syntactic features.

Syntactic Prominence Features

Feature Abbreviation

number of matching polar expressions with low depth within the syntactic parse tree LowDept h

is the main predicate of the sentence a matching polar expression? Mai nPr ed
Syntactic Relation Features

Feature Abbreviation

number of paths with an immediate dominance relationship between topic term and matching

polar expression

I medi at eDom

root node

number of paths with a dominating relationship between topic term and matching polar | Dom
expression

number of paths where topic term dominates matching polar expression Topi cDonPol
number of paths where topic term is dominated by matching polar expression Pol DomTopi ¢
number of paths between matching polar expression and topic term which are contained | SaneEvent
within the same event structure

number of paths between matching polar expression and topic term which do not cross the | NoCr ossRoot

Syntactic Relation Features

The shortcoming of the prominence features is that they do not consider the relation of

a polar expression to a mentioning of a topic but just focus on the overall polarity of

a sentence. The overall polarity, however, does not need to coincide with the polarity

towards a topic term, as it is shown by Sentence (5.5).

Moreover, textual proximity is sometimes a misleading clue as illustrated by Sen-

tence (5.6) where the polar expression with the shortest distance to the topic term is

not the polar expression which relates to it.

(5.6) Mozart, it is save™ to say, failed~ to bring music one step forward.

That is why we use a set of features describing the dependency relation path between
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polar expression and topic term. Unlike previous work (Kessler & Nicolov, 2009), we
do not focus on the relation labels on the path due to the heavy data-sparseness we
experienced in initial experiments. Instead, we define features on the configuration of

the path. The advantage of this is that these features are more general.

We use one feature that counts the number of paths with a direct dominance relation-
ship (I nredi at eDom), i.e. the paths between polar expressions and topic terms which
are directly connected by one edge. All common relationships, such as subject-verbd, verb-
object, or modifier-noun are subsumed by this feature. We also assume that, in general,
any dominance relationship (Dom) is more indicative than other paths.” Furthermore, we
use separate features depending on whether topic term dominates the polar expression

(Topi cDonPol ) or it is dominated by such an expression (Pol Doniropi c).

Often a sentence contains more than one clause. A polar expression is less likely to
refer to a topic term in case they appear in different statements. We account for this
by two additional features. The first counts the number of paths within a sentence
between polar expressions and topic terms which are within the same event structure
(SanmeEvent ). For this feature, we exclusively rely on the event-boundary annotation
of a sentence by the dependency parser we use, i.e. Minipar (Lin, 1998). Two nodes are
within the same event structure, if the they have the same closest event-boundary node
dominating them.'® Additionally, we define a feature which counts the number of paths
which do not cross the root node (NoCr o0ssRoot ). The root node typically connects

different clauses of a sentence.
Table 5.2 summarizes all the different syntactic features we use.

In order to familiarize the reader with the features, Figure 5.1 illustrates a sentence

with two candidate paths and the feature updates associated with both paths.

9We mean paths which go both up and down a tree.
10We assume the dominance relationship to be reflexive.
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Sentence: Driscoll is right™ to say this

argument is valid™.

Target polarity: positive

Dependency Parse Tree

Feature Updates for {Driscoll,right}

ROOT

T

rightt (E)

T

Driscolly, ;e is say (E)

N

to validt (E)

N

argument is

this

| mredi at eDomt+;
Domt+;

Pol DonTTopi c++;
SanmeEvent ++;
NoCr ossRoot ++;
Mai nPr ed: =Tr ue;

LowDept h++;

Feature Updates for {Driscoll,valid}

NoCr ossRoot ++;

LowDept h++;

Figure 5.1.: Tllustration of a (simplified) dependency parse tree and corresponding up-

dates for syntactic features. Nodes which present an event boundary are

marked with (E). Note that the pair {Driscoll,right} expresses a genuine

opinion-target relationship. Consequently, much more features fire.
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5.5. Experiments

We report statistical significance on the basis of a paired t-test using 0.05 as the signif-
icance level on a 10-fold cross-validation. For sentence retrieval, we used the language
model-based retrieval engine from Shen et al. (2007). The text classifiers were trained
using SVMLight (Joachims, 1999a) in its standard configuration. The subjectivity clas-
sifier was trained on the dataset presented by Pang and Lee (2004) which contains movie
reviews from www.rottentomatoes.com to represent subjective texts and plot summaries
from the Internet Movie Database (www.imdb.com) to represent objective texts. The
polarity classifier was trained on a labeled set of sentences we downloaded from Rate-It-
All''. Both datasets are balanced. The former dataset comprises 5,000 sentences and
the latter of approximately 6,800 sentences per class. Unlike the standard dataset for
polarity classification (Pang et al., 2002), our dataset is not at document level but at
sentence level'? and also comprises reviews from several domains and not exclusively the
movie domain. Thus, we believe that this dataset is more suitable for our task since
we use it for multi-domain sentence-level classification. We use the entire vocabulary of
the data collection as our feature set. Feature selection did not result in a significant
improvement on our test data.

For ranking, we use Yasmet'3, a Maximum Entropy ranker. Maximum Entropy models
are known to be most suitable for ranking tasks (Ravichandran, Hovy, & Och, 2003).
We trained the ranker with 1,000 iterations. This gave the best performance on all
feature sets. For part-of-speech tagging we employ the C&C tagger'* and for dependency
parsing Minipar (Lin, 1998). We evaluate performance by measuring Mean Reciprocal
Rank (MRR), Precision at Rank 10 (Prec@10), and Mean Average Precision (MAP).
These are common metrics for measuring ranking performance. MRR exclusively focuses
on the highest ranked correct instance in a ranking (no matter where it is situated in

the ranking). Prec@10 is restricted to the 10 most highly ranked instances. Thus, this

"http://ww. rateitall.com

12We only extracted reviews comprising one sentence.
Bhttp://ww. fj och. coml YASVET. ht m
Yhttp://svn.ask.it.usyd. edu. au/trac/ candc
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Table 5.3.: Performance of factoid sentence retrieval in combination with text classifiers.

Features MAP | MRR | Prec@l10
sentence retrieval 0.140 0.206 0.088
sentence retrieval + subjectivity classifier 0.179 0.247 0.118
sentence retrieval + subjectivity classifier + polarity classifier 0.220 0.267 0.114

metric reflects the (default) presentation of search results of common search engines, such
as Google. MAP is the most sophisticated metric as it takes into account all relevant
instances in the entire ranking. A formal definition of these measures is presented in
Appendix A.2.

Due to the high coverage of topic terms within the set of positive labeled sentences
(97%), we discard all instances not containing at least one topic term. This means that
the topic feature counting the number of topic terms (see Section 5.4.1) is no longer an
obligatory feature. In fact, we even found in our initial experiments that this gave much
better performance than taking all data instances into account and always adding the

topic feature.

5.5.1. Impact of Sentence Retrieval Combined with Text Classification

Table 5.3 displays the results of the baselines using sentence retrieval with a subjectivity
and a polarity filter. The results show that both text classifiers systematically increase
performance of retrieval. Only the increase in Prec@10 is marginal and slightly decreases

when polarity classification is added to subjectivity classification.

5.5.2. Comparing Basic Polarity Feature and Text Classifiers

Table 5.4 compares the baseline using sentence retrieval and text classifiers with the basic
polarity feature (i.e. Pol Mat ch) using polarity information from the polarity lexicon.
The polarity feature outperforms the baseline on all evaluation measures, most notably

on MRR and Prec@l1(0. We assume that the text classifiers suffer from a domain mis-
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match. The polarity lexicon is more likely to encode domain-independent knowledge.
Unfortunately, combining the components from the baseline with the polarity feature is
unsuccessful. Only the addition of the topic feature (which encodes information similar
to the sentence retrieval) to the polarity feature results in a slight (but not significant)
increase in MAP. Apparently, the precise amount of word overlap between topic and can-
didate sentence is less important than in factoid retrieval. Neither do the text classifiers
contain any more additional useful information than the polarity feature.

This result also proves our assumption made in Section 5.1 that for this ranking task
one does not necessarily have to explicitly model classes other than the target class (i.e. a
specific polarity type). Recall from that section that in ordinary classification, one would
need to consider a subjectivity classifier to distinguish between factual and subjective
statements. The text classifiers which include a subjectivity classifier do not improve the
ranking when added to the polarity feature.'

Unfortunately, we could not increase the performance of the text classifiers by adding
to the bag-of-words features of the text classifiers more expressive linguistic features not
relating to polar expressions. While in Chapter 3, an improvement could be achieved by
using linguistic word-level features (i.e. features combining lexical information with some
syntactic properties that those words possess in their particular contexts), on the blog
data we did not measure a similar effect. We assume that, like the bag-of-words features,
the linguistic word-level features suffer from a domain mismatch. While in Chapter 3 the
text is only news-domain (mostly politics), the topics to be found on the blog dataset we

are using in this chapter are much more diverse.

5.5.3. Comparing Polarity Features and Syntactic Features

Table 5.5 displays the performance of various feature combinations of polarity and syn-
tactic features. Each feature set is evaluated both without negation modeling (plain)

and with negation modeling (negation). When syntactic features are added to the basic

'5The same also holds for domain-independent subjectivity features using the polarity lexicon, e.g. the

number of subjective expressions in a sentence, with which we also experimented.
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Table 5.4.: Performance text classifiers and basic polarity feature.

Features MAP | MRR | Prec@10
sentence retrieval with text classifiers 0.220 0.267 0.114
basic polarity feature 0.236 0.420 0.212
basic polarity feature + topic 0.239 0.394 0.200
basic polarity feature + text classifiers 0.227 0.380 0.188
basic polarity feature + topic + text classifiers 0.222 0.390 0.179

polarity feature, there is always an increase in performance. With regard to MAP the
improvement is always significant. With regard to Prec@10, only the presence of the
relation features results in a significant increase. With regard to MRR, for a systematic
improvement all polarity features have to be present as well in addition to these features.
When the syntactic features are added to all polarity features the increase in performance
is similar. The best performing feature set (on average) is the set using all polarity scores
and the syntactic relation features. It significantly outperforms the basic polarity feature
on all evaluation measures. We, therefore, assume that the syntactic relation features
are much more important than the syntactic prominence features.

With the exception of some few feature sets, adding negation modeling increases per-
formance as well. However, the improvement is not systematically significant for any
evaluation measure (though for MAP there is only one feature set in which the improve-
ment is not statistically significant).

To a great extent these results are consistent with our results on plain sentence-level
polarity classification from Chapter 3. In this chapter, syntactic prominence features
always yield an improvement in performance when added to the other polarity features.
In Chapter 3, linguistic sentence-level features, which amount to the same type of features
as the syntactic prominence features, improved performance when added to prior-polarity
features. One additional insight of this chapter is that the syntactic relation features are
more effective than the syntactic prominence features. Moreover, the impact of negation

is different in these two scenarios. While it slightly helps in this chapter it did not
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Table 5.5.: Performance of polarity features and syntactic features.

Each feature set

is evaluated without negation modeling (plain) and with negation modeling

(negation).
Features MAP MRR Prec@10
plain negation plain negation plain negation
basic polarity feature 0.236 0.245% 0.420 0.441 0.212 0.215
basic pol. feat. + syntactic prominence feat. 0.258* 0.266*t 0.477* 0.473 0.214 0.216
basic pol. feat. + syntactic relation feat. 0.256* | 0.269*F | 0.444 0.481F 0.237* | 0.249*
basic pol. feat. + all syntactic feat. 0.262* 0.278*1 0.475 0.509* 0.237* 0.244*
all polarity features 0.245 0.257% 0.466 0.489F 0.207 0.215
all pol. feat. + syntactic prominence feat. 0.261* 0.269* 0.477 0.474 0.210 0.222f
all pol. feat. + syntactic relation feat. 0.273* 0.281*1 0.509* 0.518* 0.240* | 0.249*
all pol. feat. + all syntactic feat. 0.272* | 0.284*T | 0.502* | 0.526* 0.231* 0.242*F

*

using p < 0.05

: significantly better than basic polarity feature (with/without negation modeling) on the basis of a paired t-test

T: significantly better than the corresponding feature set without negation modeling on the basis of a paired t-test

using p < 0.05
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show any improvement in Chapter 3. We strongly assume that this is a side-effect of
different feature encoding. While in Chapter 3 the number of negated polar expressions
(with a particular polarity type) was taken into consideration with a separate feature, in
this chapter it is incorporated into the basic polarity feature.'® We will see in the next
Chapter that the incorporation of negation in the basic polarity feature will also work

for rule-based polarity classification on document level.

5.5.4. Impact of Distance Feature

Table 5.6 displays in detail what impact the addition of the distance feature has on the
previously presented feature sets. On almost every feature set, there is an increase in
performance when this feature is added. However, the degree of improvement varies.
It is smallest on those feature sets which include the syntactic relation features. We,
therefore, believe that these two feature types encode very much the same thing. Many
of the syntactic relation features implicitly demand the topic word and polar expression
to be close to each other. Therefore, when a syntactic relation feature fires, so does the
distance feature. Unfortunately, our attempts to combine the syntactic relation features
with the distance feature in a more effective way by applying feature selection remained
unsuccessful. Table 5.6 even suggests that syntactic features are not actually required for
this classification task since the best performing feature set only comprises all polarity
features and the distance feature. The improvement gained by this feature set when
compared to the basic polarity feature is larger than the sum of improvements gained
when the two feature subsets are evaluated separately.!” We assume that in the feature

spaces representing the two separate feature sets the decision boundary is highly non-

161f we want to count the number of positive polar expressions in a sentence, then we consider negated
negative polar expressions as positive polar expressions; in Chapter 3 the number of negated negative
polar expressions was regarded as an individual feature and the occurrences of those negated polar

expressions did not have any impact on the feature counting the number of positive polar expressions.
" The improvement from the basic polarity feature to the optimal feature set is greater than the sum of

improvements of the feature set comprising the basic polarity feature and the distance feature and

the feature set comprising all polarity features.
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Table 5.6.: Impact of distance feature.

Features MAP MRR Prec@10
“+dist +dist +dist
sentence retrieval with text classifiers 0.220 0.267 0.114
basic polarity feature 0.245 0.266T 0.441 0.491% 0.215 0.226
basic pol. feat. 4 syntactic prominence feat. 0.266* 0.276 0.473 0.499 0.216 0.235%
basic pol. feat. -+ syntactic relation feat. 0.269* 0.270 0.481 0.498 0.249* 0.253*
basic pol. feat. + all syntactic feat. 0.278* 0.271 0.509* 0.521 0.244* 0.256*
all polarity features 0.257 0.302*t | 0.489 0.596*T | 0.215 0.257*t
all pol. feat. + syntactic prominence feat. 0.269* | 0.285*T | 0.474 0.532f 0.222 0.256*1
all pol. feat. + syntactic relation feat. 0.281* 0.285* 0.518* 0.569*T 0.249* 0.256*
all pol. feat. + all syntactic feat. 0.284* 0.281 0.526* 0.555* 0.242* 0.252*

All feature sets with the exception of sentence retrieval with text classifiers include negation modeling.

+dist: distance feature

*

: significantly better than basic polarity feature (with/without distance feature) on the basis of a paired t-test
using p < 0.05
f: significantly better than the corresponding feature set without distance feature on the basis of a paired t-test

using p < 0.05

linear. The combination of the two sets provides the feature space with the best possible
class separation, even though there are other feature subsets, such as the basic polarity
feature and the syntactic features, which are individually more discriminative than the
feature set comprising all polar expressions or the feature set comprising the basic polarity

feature and the distance feature.

Accounting for different types of polar expressions is important and, apparently, this
is appropriately reflected by our set of different polarity features. Furthermore, polar ex-
pressions within the vicinity of a topic term seem to be crucial for a correct classification,
as well. Obviously, defining vicinity by a fixed window size is more robust than relying

on syntactic constraints.
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Despite its lack of syntactic knowledge, the optimal feature set shows a considerable
increase in performance when compared with the baseline ranker relying on text classi-
fication with an absolute improvement of 8.2% in MAP, 32.9% in MRR, and 14.3% in
Prec@10. There is still an improvement by 6.6% in MAP, 17.6% in MRR, and 4.5% in
Prec@10 when the optimal feature set is compared against the simplest ranker comprising

one polarity feature (without negation modeling).

5.6. Error Analysis

The result that syntactic relation features are less robust on this task is contrary to our
expectations. The poor text quality (i.e. various spelling mistakes, incomplete sentences
etc.) may have a notable negative impact on the parsing quality. Moreover, we observed
that often aspects of topics (Somasundaran & Wiebe, 2009) instead of the topic itself
are directly syntactically related to a polar expression. For example, given the query
{topic: Mozart, target polarity: positive}, the relevant Sentence (5.7) contains the
polar expression with matching polarity, i.e. nice, and the aspect of the topic, i.e. tunes,

(and not the topic) in a modifier relationship.
(5.7) Mozart wrote nice™ tunesggpect-

Unfortunately, the task of extracting (potential) aspects of topics in an unrestricted
domain is extremely difficult which is why we ignored it for this task.

Another issue that might have degraded the performance of the syntactic relation
features could be the fact that we did not carry out any pronoun resolution since the
noisy blog data heavily degrade the quality of resolution. As a result of that given the
query {topic: Driscoll, target polarity: negative}, the polar expression with matching
polarity in Sentence (5.8), i.e. embarrassed, cannot be related to the topic Driscoll, since
the two words are in two different clauses. However, the referring expression he is the

subject of the polar expression.

(5.8) I'm a very tolerant™ person but if that is what Driscoll; said, he; should be

embarrassed— of himself.
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Pronoun resolution has been shown to improve performance on related tasks, such as
topic-related entity extraction of opinions (Jakob & Gurevych, 2010b). However, the
effectiveness on our data may be limited as (based on our comparison with several publicly
available corpora used for sentiment analysis) our blog data will be much noisier than the

dataset on which the pronoun resolution has been applied (Zhuang, Jing, & Zhu, 2006).

5.7. Conclusion

In this chapter, we have evaluated different methods for topic-related polarity classifica-
tion at sentence level. We have shown that a polarity classifier based on simple bag-of-
words text classification produces fairly poor results. Better performance can be achieved
by classifiers using features derived from a polarity lexicon. Obviously, the polarity infor-
mation encoded in polarity lexicons is more domain independent. Optimal performance
of this type of classifier can be achieved when a small set of lightweight linguistic polarity
features is used in combination with a distance feature. A distance feature thus helps
to disambiguate polarity information in a sentence. Therefore, to some extent a joint
modeling of polarity information and topic information is beneficial. Syntactic features
derived from a dependency parse are not necessary for this classification task when a

distance feature is considered.
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6. Bootstrapping Algorithms for Polarity

Classification

6.1. Introduction

Supervised polarity classification, in particular classifiers using bag of words, are heavily
domain-dependent, i.e. they usually generalize fairly badly across different domains.
(One such example has been described in the previous chapter, i.e. in Chapter 5.5.2).
Yet the costs to label data for any possible domain are prohibitively expensive.

In this chapter, I will present experiments and results for bootstrapping algorithms for

polarity classification on document level. I will focus on two types of methods:
e semi-supervised learning
e supervised classifiers bootstrapped with the help of rule-based classifiers

In both methods a (large) unlabeled corpus is annotated with some prior knowledge
about the task. While in the first method this is achieved by using small amounts of
labeled data, it is a rule-based classifier in the second method. The extended annotation
i.e. the annotation on the previously unlabeled corpus should ideally present a labeled
training set that allows more robust classifiers to be built than the classifiers exclusively
using the prior knowledge source.

The purpose of this chapter is to show under what settings these bootstrapping meth-
ods work for polarity classification on document level and also compare the two types
with each other. As in the previous chapters, I will in particular focus on the impact of

linguistic knowledge on this classification task.
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In this chapter we exclusively consider document classification since most research on
polarity classification is done at the document level. We have, however, strong reasons
to believe that the majority of insights gained by the experiments presented in this
chapter also hold for sentence-level polarity classification since there are many similarities
between these two tasks (as shown, for example, by the effective re-usage of features from
Chapters 3 and 5 in the experiments of Section 6.6.1).

The work presented in this chapter is also described in (Wiegand & Klakow, 2009a,
2010a).

6.2. Related Work

There are only a few publications dealing with semi-supervised learning on document-
level polarity classification. Beineke, Hastie, and Vaithyanathan (2004) combine an unsu-
pervised web-mining approach using point-wise mutual information (Turney, 2002) with
labeled training data. Dasgupta and Ng (2009) suggest applying unsupervised learning
(i.e. clustering) to classify unambiguous data instances and restrict manual annotation to
hard data instances. Aue and Gamon (2005) present experiments using semi-supervised
learning focusing on domain adaptation. Neither different algorithms nor feature sets
are compared in these works.

In this chapter, we look into adjectives and adverbs as features in detail. Pang et al.
(2002) use feature sets exclusively comprising adjectives for supervised document-level
polarity classification but report performance to be worse than that of a standard bag-
of-words feature set. However, Ng et al. (2006) increase performance significantly by
adding to a standard feature set higher-order n-grams in which adjectives are replaced
by their in-domain polarity which has been established via manual annotation.

Bootstrapping supervised machine learning classifiers with the help of rule-based classi-
fication has been effective in the detection of subjective sentences (Wiebe & Riloff, 2005).
The method has also been applied to polarity classification, but so far only on Chinese
data (Qiu et al., 2009; Tan et al., 2008). While the performance of bootstrapped classi-

fiers has been compared with out-of-domain classifiers in (Tan et al., 2008), this method
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is embedded into a complex bootstrapping system which also extends the vocabulary (or
feature set) of the rule-based classifier in (Qiu et al., 2009). Neither of these works ex-
amines the relationship to semi-supervised learning, nor discusses various settings of the

self-training algorithm, in particular, different feature sets for the supervised classifier.

6.3. Bootstrapping Algorithms

6.3.1. Semi-Supervised Learning Algorithms

We will now briefly describe the different semi-supervised learning algorithms we use in
this chapter. Throughout the next sections, we adhere to the following notation:

A document is denoted by x; (or Z; in a vectorial context). Words which are part
of some predefined feature set are denoted by wg. In total, there are N documents
encompassing L labeled and U unlabeled documents. A labeled data instance is denoted
by xi whereas an unlabeled data instance is labeled as x}'. The label ¢; of an individual

document i is y; € {—1,1}.

Expectation Maximization Algorithm

The Expectation Maximization Algorithm (EM) for a Naive Bayes classifier first esti-
mates an expected posterior probability distribution of class label ¢; given a document

x; (which can be either labeled or unlabeled), defined as h(z;, ¢;), in the ezpectation step:

Py
M€ = S Palen) (6:-1)

The mazimization step uses this expected probability estimate in order to re-estimate
class-dependent probabilities of the individual words:

Zfil Z{mlwkexl} h(x“ c])

7 (6.2)

Plugle;) =

where Z; is a normalization. The new estimates P(wy|c;) are used to update the docu-

ment probabilities P(x;|c;) in the expectation step. Equations 6.1 and 6.2 are iterated
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until the overall likelihood converges:

L U
L= ZlogP(xé\yi) + ZlogZP(m}‘\C) (6.3)
i=1 j=1 c

Initially, the probabilities P(x;|c;) are directly estimated from the labeled training col-
lection. Since the distribution of the classes is uniform in all the experiments which we

use this classifier, we omit the estimation of the class prior.

Transductive Support Vector Machines

Transductive Support Vector Machines (TSVMs) (Joachims, 1999b) use an extended

objective function of SVMs:
1 L U
OFssom = 5|4 +0§;&+0*Z;£; (6.4)
= j=

which includes in addition to a weight vector ), a regularizer C, and a set of slack
variables &; for all labeled instances, an extra regularizer C* and an extra set of slack
variables &7 for unlabeled instances.

The algorithm first learns a base model Mjy,,, using the original objective function
of SVMs. All unlabeled instances are labeled with that model. A new model M}, is
created by minimizing the extended objective function O Figym and using the predicted
labels of the unlabeled instances of Mgy, as a proxy. A small C* is chosen. Then, the
algorithm iteratively computes improved models Mt’;)}n by swapping two opposing labels

of some originally unlabeled documents which have been misclassified according to M, .

C* is increased with each iteration step. If there are no more misclassifications, the final

model has been found.

Spectral Graph Transduction

In Spectral Graph Transduction (SGT) (Joachims, 2003), all data x; of a collection

(i.e. labeled and unlabeled) are represented as a symmetrized and similarity-weighted &
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nearest-neighbour (knn) graph G. Its adjacency matrix is defined as A = A’ + A'" where

sim(@;,25)

A;j _ ) i cknn(ay SmE ) if 7; € knn(z) 65)

0 else
and sim(-,-) is any common similarity function. The graph G is decomposed into its
spectrum. For this, the smallest 2 to d+ 1 eigenvalues and eigenvectors of the normalized
Laplacian L = B~'(B — A) where B is the diagonal degree matrix with B;; = Zj Ayj
are computed. The spectrum is used for minimizing the normalized graph cut:

. cut(GT,G7)
min — .
v [{i:yi = 1}H{i sy = =1}

where G and G~ denote the set of positive and negative classified vertices in the graph.

(6.6)

The cut-value cut(GT,G7) = >, ot ZjeG* A;; is the sum of the edge-weights of a cut

partitioning the graph into two clusters.

6.3.2. Self-Training a Polarity Classifier using the Output of a Rule-Based

Classifier

The idea of this bootstrapping method is that a domain-independent rule-based classifier
is used to label an unlabeled dataset. Unlike semi-supervised learning (see Section 6.3.1),
no labeled training data are used. The only knowledge available is encoded in the rule-
based classifier. In polarity classification, the rule-based classifier typically counts the
number of positive and negative polar expressions within a data instance (i.e. a document)
and assigns it the polarity type having the majority of polar expressions. The data
instances labeled by the rule-based classifier with a high confidence serve as labeled
training data for a supervised machine learning classifier. The supervised classifier is
typically trained with bag-of-words features.

Ideally, the resulting supervised classifier is more robust on the domain on which it
was trained than the rule-based classifier. The improvement can be explained by the
fact that the rule-based classifier only comprises domain-independent knowledge, i.e. in

polarity classification this corresponds to the knowledge of domain-independent polar

expressions. The supervised classifier, however, makes use of domain-specific features,
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i.e. words such as crunchy® (food domain) or buggy~ (computer domain), which are not
part of the rule-based classifier. It may also learn to correct polar expressions that are
specified in the polarity lexicon but have a wrong polarity type on the target domain. A
reason for a type mismatch may be that a polar expression is ambiguous and contains
different polarity types throughout the different domains (and common polarity lexicons
usually only specify one polarity type per entry). For instance, in the movie domain
the polar expression cheap is predominantly negative, as it can be found in expressions,
such as cheap films, cheap special-effects etc. In the computer domain, however, it is pre-
dominantly positive as it appears in expressions, such as in cheap price. If such a polar
expression occurs in sufficient documents which the rule-based classifier has labeled cor-
rectly, then the supervised learner may learn the correct polarity type for this ambiguous
expression on that domain, despite the fact that the opposite type is specified in the
polarity lexicon.

We argue that using a rule-based classifier instead of few labeled (in-domain) data
instances  as is the case in semi-supervised learning is more worthwhile since we
exploit two different types of features being domain-independent polar expressions and
domain-specific bag of words which are known to be complementary (Andreevskaia &
Bergler, 2008). Semi-supervised learning usually just makes use of one homogeneous
feature set.

Figure 6.1 illustrates both semi-supervised learning and self-training using a rule-based
classifier for bootstrapping.

For reasons of simplicity, we will often refer to the specific version of self-training
we consider in this chapter (i.e. self-training using a rule-based classifier) as plain self-

training in the following sections.

6.4. Data

In this chapter, we use both the dataset of IMDb movie reviews (Pang et al., 2002) and

a set of reviews extracted from Rate-It-All'. We evaluate on the former because it is

"nttp://ww.rateitall.com
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considered a benchmark dataset for polarity classification. The additional data are used
to show that our findings are valid throughout different domains. We chose four domains
from the list of Topic Categories of the website? which we thought are very different
from the movie domain?® and for which we could extract sufficient training data. We took
Computer € Internet (computer), Products (products), Sports € Recreation (sports), and
Travel, Food, & Culture (travel). Table 6.1 lists the properties of the corpora from the
different domains. We follow the method from previous work (Blitzer et al., 2007) to
infer the polarity of the reviews from Rate-It-All. Ratings with less than 3 stars are
considered negative reviews whereas ratings with more than 3 stars are positive reviews.
3 star reviews are labeled mized. The actual class of these reviews is unknown. Usually a
3 star review should be neutral in the sense that it equally enumerates both positive and
negative aspects about a certain topic, so that a definite verdict in favor or against it is
not possible. That is also why we cannot assign these instances either of the other two
groups previously mentioned, i.e. positive and negative. During a manual inspection of
some randomly chosen instances, however, we also found definite positive and negative
reviews among 3 star reviews. For this work, we leave these instances in the category of
mixed reviews. We only used reviews in our experiments having at least 3 sentences in

order to rule out too fragmentary instances.

6.5. Semi-Supervised Polarity Classification

I assume that discriminative feature sets are far more important in semi-supervised learn-
ing than in supervised learning since there is less reliable information contained in small
labeled datasets. This is why I put emphasis on the discussion of feature sets or feature
selection methods in this section. Since we exclusively consider polarity classification at
document level, we restrict the type of features to bag of words since it is known to be

very effective for document-level classification (Ng et al., 2006).

2The data were downloaded in 2008, so the appearance and content of the website may have changed.
3This is why we did not use the person domain from Chapter 4 as it mostly concerns celebrities also

being discussed in the movie domain.
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Table 6.1.: Properties of the different domain corpora.

Domain Source 4 & 5 Starst 3 Stars’ 1 & 2 Starsf Vocabulary
Positive Mixed Negative Size
computer | Rate-It-All 952 428 1253 15083
products Rate-Tt-All 2292 554 1342 21975
sports Rate-Tt-All 4975 725 1348 24811
travel Rate-1t-All 9397 1772 3289 38819
movies IMDb 1000 0 1000 50920

(Tonly relates to the Rate-It-All data)

6.5.1. The Different Feature Sets

In the context of semi-supervised document-level text classification the purpose of feature
selection is to remove features that are irrelevant or noisy for a particular classification
task. The elimination of these features does not only result in an increase in efficiency

but may also improve the Accuracy of a classifier.

Term Frequency Cut-off

The simplest feature selection method is using a term-frequency cut-off. The rationale
behind this is that rarely observed terms do not contribute to a good classifier. Usually,
this selection method is combined with stop-word removal.* Very frequently occurring
terms, in particular function words, are not considered to be predictive for a particular

class label, since they are uniformly distributed throughout all classes.

Polarity Lexicons

In our experiments, we use Appraisal Groups (AG) (Whitelaw, Garg, & Argamon, 2005),

General Inquirer (GI) (Stone et al., 1966), the Subjectivity Lexicon from the MPQA-
project (MPQA) (Wilson et al., 2005), and SentiWordNet (SWN) (Esuli & Sebastiani,

*We use a publicly available list of stopwords: http://ww. dcs. gl a. ac. uk/ i dont

ir_resources/linguistic_utils/stop_words
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2006b). From GI we use all polar expressions and from AG we only consider orientation
words that are not neutral (Whitelaw et al., 2005). From MPQA, we use like in
previous chapters  both weak and strong subjective words (Wilson et al., 2005) with
either positive or negative prior polarity.” These polarity lexicons have been successfully
applied to polarity classification (Kennedy & Inkpen, 2005; Wilson et al., 2005; Whitelaw
et al., 2005).

SentiWordNet (SWN) does not specify the polarity of individual words but synsets (i.e.
senses of words). The database provides a non-negative polarity score senseScore(s,p)
for each synset s and polarity p € {4, —}. Neutral polarity strength is denoted by 0.
Usually, words have different senses associated with them. There are even words which
have both senses with positive and negative polarity. Therefore, most words have various
polarity scores associated with them. Our goal is to derive a unique polarity for each
word with a corresponding score denoting its strength. We use the unique scores in order
to find a subset of SWN with highly polar expressions. We estimate the strength of a

word w and a polarity p, i.e. wordScore(w,p), by:
wordScore(w, p) = max [senseScore(s,p)] (6.7)
S

where s € synsets(w). The final polarity of the word, i.e. pol(w), is the polarity with

the maximum polarity score:

pol(w) = arg max [wordScore(w, p)] (6.8)
P

The unique score denoting the polarity strength is defined as:

strength(w) = max [wordScore(w, p)] (6.9)
P

By using only the subset of SWN instead of the entire set (we chose all words with
strength(w) > 0.5), we increased the Accuracy of the semi-supervised classifiers by
approximately 1.5% on average. We reduced the size of the initial version by 70% which
substantially increased the efficiency of model learning. A subset of SWN based on taking

the average rather than taking the maximum produced slightly worse results.

5Note that just focusing on the strong entries resulted in a decrease in performance.
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Adjectives and Adverbs

Adjectives, such as superb or poor, are usually regarded as very predictive words for polar-
ity classification. Their impact on semi-supervised learning has not yet been examined.
Even if this feature set is too small for supervised learning (Pang et al., 2002), it might
still be effective in semi-supervised learning. In contrast to supervised learning, large
feature sets which are noisy cannot be compensated by the information contained in
many labeled documents. Smaller but more predictive feature sets are preferable. We
use feature sets of frequently occurring adjectives and adverbs in our document collection.
The feature sets are extracted using the C&C part-of-speech tagger.® After manually in-
specting the 600 most frequent stemmed adjectives and adverbs from the movie domain
dataset (Pang et al., 2002), we estimate that more than 20% of the expressions are am-
biguous with regard to part of speech.” Thus, our selection method if combined with
stemming also captures some polar verbs and nouns. By looking at the list of extracted
adjectives and adverbs from other domains, we observed that unlike current polarity lex-
icons this method allows both some colloquial expressions, such as crappy, and highly
domain-dependent polar expressions, such as creamy or crunchy from the food domain,

to be detected.

Optimal Feature Size

Table 6.2 lists the optimal size® of the different feature sets we used in our experiments.’

By far, the smallest feature set are adjectives and adverbs; the largest feature set is SWN.

6.5.2. Experiments

The results of all our experiments below are reported on the basis of 20 randomized

partitionings. Each partitioning comprises a labeled dataset of varying length for train-

Shttp://svn.ask.it.usyd. edu. au/trac/candc
"For example, Interesting (adj) and interests (noun) are both reduced to interest.
#The optimal size was determined by testing all semi-supervised algorithms trained on various amounts

of labeled documents and 1,000 unlabeled documents.
?Due to the stemming we applied some of the entries in the original polarity lexicons were conflated.
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Table 6.2.: Optimal size of the different feature sets.

Feature Set Type #Words
top n words statistical selection 3000
top n non-stopwords statistical selection 2000
top n adjectives & adverbs statistical & linguistic selection 600
Appraisal Groups (AG) manual polarity lexicon 2014
General Inquirer (GT) manual polarity lexicon 2882
Subjectivity Lexicon (MPQA) | manual polarity lexicon 4615
SentiWordNet (SWN) semi-automatic polarity lexicon 11366

ing and another dataset comprising 1,000 documents used as unlabeled training data
and test data. We adhere to this configuration since it is required by the toolkit we
use. However, it is not uncommon to use test data as unlabeled training data in semi-
supervised learning (Aue & Gamon, 2005; Joachims, 1999b, 2003). We also experimented
with larger amounts of unlabeled data but did not measure any improvement in perfor-
mance. The labeled training data and the test data are always mutually exclusive. We
report the results of experiments carried out on the movie review database (Pang et al.,
2002) (benchmark dataset) and the results of cross-domain experiments using reviews
from Rate-It-All. Since the movie dataset is the standard dataset we will discuss our
experiments on this domain in more detail. The movie dataset comprises 2,000 reviews
whereas for the other domains we could only acquire 1,800 documents per domain. For
the sake of simplicity, all datasets are balanced. We report statistical significance on
the basis of a paired t-test using 0.05 as the significance level. We only state the re-
sults of the optimally sized feature sets (see Section 6.5.1). Since there is no difference
in performance between the optimally sized feature set with the most frequent words
and the optimally sized feature set with most frequent non-stopwords, we only evaluated

the latter feature set. We used SVMLight'® for SVMs and TSVMs and SGTLight'! for

Ohttp://svmight.joachims.org
http://sgt.joachimns. org
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SGT. We evaluate the results using Accuracy (see also Appendix A.1). Feature vectors
consist of tf-idf weighted words appearing in the pre-defined feature set normalized by
document length. This produced the best results throughout our experiments. Further
modifications of the standard configuration of SVMLight (e.g. by changing regularization
parameters) did not improve performance. We also confirm the results from (Aue & Ga-
mon, 2005) who report that further modifications on EM, i.e. by weighting the unlabeled
data!?, do not improve performance. For SGTLight we mainly adhered to the standard
configuration (as discussed in (Joachims, 2003)). Since we had no development data for
optimizing the only task-sensitive parameter k, i.e. the number of nearest neighbours, we
simply took the optimized value for the only text classification corpus tested in previous
work (Joachims, 2003) (i.e. Reuters collection). The current choice (i.e. k= 800) should
thus guarantee a fairly unbiased setting. EM is smoothed by absolute discounting (Zhai
& Lafferty, 2001). All classifiers are run with a reasonable parameter setting but we
did not attempt to tune the parameters to the current task. We also stem the entire
text since some polarity lexicons we use also include lemmas of inflectional words, such
as nouns and verbs. Moreover, stemming has considerable advantages for the feature
set comprising adjectives and adverbs (see discussion above). In-domain feature sets (i.e.
frequent non-stopwords and frequent adjectives and adverbs) are obtained by considering

the entire dataset of a particular domain.

Unsupervised Algorithm using Different Polarity Lexicons (Movie Domain)

Before comparing the different polarity lexicons in the context of semi-supervised learning,
we shortly display their performance using a completely unsupervised algorithm. A test
document is assigned the polarity of the majority of polar expressions in that document.
This experiment should give an idea of the intrinsic predictiveness of the polarity lexicons.
Note that we refrain from using any further linguistic modeling, e.g. negation modeling,
in order to improve this baseline since we also run the semi-supervised classifiers with

plain bag-of-words features (i.e. we carry out feature selection but beyond that we do not

12Note that this is similar to regularization in TSVMs.

101



Table 6.3.: Accuracy of unsupervised algorithm using different polarity lexicons (movie

domain).

SWN AG GI MPQA | GI4Turney

54.20 54.45 | 59.90 61.75 63.30

incorporate any expressive high-level features). Table 6.3 lists the results (on the movie
domain). Though all lexicons perform significantly better than the random baseline (i.e.
50%), the best performance of MPQA with 61.75 is still very low.

We also evaluated an extension GI4Turney which weights the polar expressions in GI
according to the association scores to a very small number of manually selected highly

13 The scores

polar seed words, such as excellent or poor (Turney & Littman, 2003).
for entries in GI are calculated in the same way as the scores for words in the web-
based lexicon induction method using Pointwise Mutual Information (Turney, 2002).
The improvement (towards GI) is significant, even though the scores have been gained
by domain-independent web-data.

In the following, we show that very small amounts of labeled in-domain documents

can produce significantly better results using semi-supervised learning.

Comparison of the Different Polarity Lexicons with Other Feature Sets (Movie

Domain)

Table 6.4 displays the performance of different (semi-supervised) classifiers on different
feature sets (again on the movie domain). On average, polarity lexicons perform sig-
nificantly better than the top 2000 non-stopwords. The same holds for an inexpensive
small feature set of in-domain adjectives and adverbs. On EM, we even achieved the best
performance with the latter feature set. The best performing feature set for the movie
dataset is AG. On several configurations, it is even significantly better than any other

feature set using semi-supervised learning.

13Unfortunately, currently only the weights for entries of GI are available to us.
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Table 6.4.: Accuracy of different classifiers on different feature sets using different

amounts of labeled documents (movie domain).
(a) 20 labeled documents

Top 2000 | SWN | MPQA | GI AG Adj
SVMs 59.81 61.24* | 63.07° | 61.48* | 62.22* | 61.44*
EM 67.50 67.31 68.73 66.63 | 69.44* | 69.5/*
TSVMs 64.57 67.04* | 66.58* | 65.53 | 68.87° | 68.37*
SGT 62.60 67.39* | 67.10* | 66.14* | 70.28*1 | 66.58*

(b) 200 labeled documents

Top 2000 | SWN | MPQA | GI AG Adj
SVMs 72.05 74.93% | 74.35% | 72,72 | 75.881 | 73.14*
EM 73.44 76.46* | 75.02* | 73.80 75.46% | 77.32*
TSVMs 73.48 76.80* | 75.73* | 7A.72* | 77.89* | 75.12*
SGT 70.91 77.55% | 77.78* | 75.12* | 80.21*1 | 76.90*

*

: significantly better than Top 2000 on the basis of a paired t-test using p < 0.05
t: significantly better than any other feature set on the basis of a paired t-test using p < 0.05

Semi-Supervised Classifiers (Movie Domain)

We compared all different learning algorithms using their respective best feature sets.
Figure 6.2 displays the results. (Again, these experiments have been run on the movie
domain.) All semi-supervised algorithms are better than the strict supervised baseline
(i.e. SVMs trained on AG) on small amounts of labeled data. EM gets worse than SVMs
trained on AG when more than 400 labeled documents are used, but still outperforms
SVMs trained on top 2000 non-stopwords when less than 700 labeled documents are used.
TSVMs and SGT, on the other hand, constantly perform better than SVMs.

Clearly, the best classifier is SGT which, with the exception of 1,000 labeled data, is
always significantly better than any other classifier tested. At approximately 200 labeled
documents, SGT already performs as well as SVMs trained on a standard feature set (i.e.

top 2000 non-stopwords)
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Figure 6.2.: Performance of different learning algorithms on the best respective feature

set (movie domain).

Just using 20 labeled documents offers an increase by 7% in performance in comparison

to the best unsupervised classifier (i.e. GI+Turney displayed in Table 6.3).

Complex Feature Sets that Do not Improve Performance

Contrary to our expectations, adding explicit polarity information to the feature set
by including the number of positive and negative polar expressions according to the

pertaining polarity lexicon did not improve performance.

We also experimented with more expressive features by adding bigrams with one token
being a polar expression, an adjective, or an adverb. On semi-supervised learning we did
not measure any increase in performance. We assume that this is due to data-sparseness.
Similar to (Ng et al., 2006), we observed an increase in performance by approximately

2% on supervised classifiers (when more than 400 labeled documents are used).
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Cross-Domain Experiments

In order to validate our findings from the movie domain, we repeat some of the previous
experiments on other domain corpora using the reviews from Rate-It-All. In particular,
we want to know whether semi-supervised learning works there as well, whether SGT out-
performs other classifiers, whether polarity lexicons improve performance, and whether
adjectives and adverbs produce classifiers competitive to average polarity lexicons. We
do not attempt to carry out detailed domain studies which would be beyond the scope

of this section.

Table 6.5 lists the average performance of all classifiers on different feature sets using
20 labeled documents. For the sake of completeness we also include the results from the
movie domain. There is no significant difference among the feature sets using SVMs,
but there is a difference between top 2000 non-stopwords and the remaining feature
sets on semi-supervised classification (with the exception of EM). All polarity lexicons
and adjectives and adverbs perform significantly better than top 2000 non-stopwords
using TSVMs and SGT. On average, the performance of EM is worse than any of the
other semi-supervised classifiers. The results of TSVMs and SGT are similar to our
previous observations on the benchmark dataset. SGT is the best performing classifier

(in particular in combination with adjectives).

Table 6.5.: Average Accuracy of different semi-supervised classifiers across all domains us-

ing different feature sets (trained on 20 labeled documents & 1,000 unlabeled

documents).
Top 2000 | SWN | MPQA | GI AG Adj
SVMs 61.17 61.13 | 60.81 | 61.17 | 60.77 | 60.68
EM 64.41 65.09% | 64.08* | 63.88* | 65.10* | 65.22*
TSVMs | 63.87 66.79% | 66.51* | 66.26* | 65.98* | 67.20%
SGT 64.60* | 66.92% | 67.69* | 67.83* | 67.22* | 68.30*

* .

: significantly better than SVMs on the basis of a paired t-test using p < 0.05
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Table 6.6 shows the performance on the individual domains and feature sets using 20
labeled documents on SGT. On average, semi-supervised learning improves performance
significantly over supervised learning. On some domains (e.g. computer) using a standard
feature set (i.e. using top 2000 non-stopwords in the collection) produces good results.
However, on some other domains, such as travel, there is no improvement whatsoever.
Polarity lexicons can perform significantly better than top 2000 non-stopwords (e.g. GI on
travel or, most notably, AG on mouvie) but there are also domains where they are actually
worse than the standard feature set (e.g. the sports domain). There is no polarity lexicon
which consistently outperforms all other polarity lexicons on all domains. A feature set
comprising in-domain adjectives and adverbs, however, is more robust: Firstly, it never
performs worse than the standard feature set. Secondly, it is never significantly worse
than the average performance of polarity lexicons and, thirdly, there might be some
domain, such as sports, where it outperforms any other feature set. Considering the

small effort required to generate such a feature set should make it particularly attractive.

Table 6.6.: Accuracy of SGT on different domains using different feature sets (trained on

20 labeled documents & 1,000 unlabeled documents).

SVMs SGT

Domain | Top 2000 | Top 2000 SWN MPQA GI AG Adj

computer 67.75 73.88* 75.77+1 | 1477 73.95% | 73.74* 74.51*
products 62.38 67.20* 68.45*1 | 68.40*T | 69.84*T | 68.44*1 | 68.79*1
sports 57.96 61.83* 57.57 59.80* 60.62* 58.53 63.55*
travel 57.95 57.48 65.44*T | 68.37*T | 68.62*1 | 65.09*T | 68.05*
movies 59.81 62.60* 67.39*T | 67.10*T | 66.14*" | 70.28*" | 66.58*1
average 61.17 64.60* 66.92* 67.69* 67.83* | 67.22* | 68.30*

*

: significantly better than SVMs using Top 2000 on the basis of a paired t-test using p < 0.05
T: significantly better than SGT using Top 2000 on the basis of a paired t-test using p < 0.05

Figure 6.3 displays the performance of SGT on various feature sets averaged over all

domains using various amounts of labeled training data. SGT only significantly outper-
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forms SVMs when less than 200 labeled documents are used. Therefore, we restricted
the figure to the range ending at that size. The lower performance of the averaged re-
sults must be due to some properties of the Rate-It-All data (either noise or the dataset
is more difficult) since the individual performance of the semi-supervised classifiers on
the movie domain was significantly better. Despite the lower performance, we can still
use the averaged results to characterize the relation between the different feature sets in
semi-supervised learning. Both polarity lexicons and adjectives and adverbs are signifi-
cantly better than top 2000 non-stopwords and there is no significant difference between
polarity lexicons and adjectives and adverbs.

All these results support both the competitiveness of adjective and adverbs and the
robustness of SGT. Given the best feature set in a particular domain, the average gain
in improvement compared to SVMs only trained on 20 labeled documents using top 2000
non-stopwords is approximately 8.5% when SGT is used. This is a clear indication that
semi-supervised learning for polarity classification works across all domains when only

tiny amounts of labeled data are used.

78 T T T T
SVMs trained on top 2000 non-stopwords —+—
SGT trained on top 2000 non-stopwords -~~~
@ 76 F SGT trained on SWN ---%--- |
< SGT trained on MPQA -
o SGT trained on GI
g SGT trained on AG v~
8 74 SGT trained on ADJ 4 4
ko]
2
g 721 = = —
= -
S J—
g B _—
g mf % - i
— —
< —
L
T 68 _— i
= —
5 -
b —
L 66 _— i
[7]
(0]
s
2
> 64 i
(5]
o]
5
[5]
g 62t i
60 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200

Number of labeled documents for training

Figure 6.3.: SGT trained on different amounts of labeled data and different feature sets

averaged over all domains (1,000 unlabeled documents).
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6.5.3. Conclusion of Experiments on Semi-Supervised Learning

In this section we have shown that semi-supervised learning can be successfully applied to
document-level polarity classification. Significant improvement over supervised classifica-
tion can be achieved across all domains when less than 200 labeled documents are avail-
able. On the movie domain we even achieved improved performance across all amounts
of labeled training data. SGT is the classifier which produces better results than all other
semi-supervised classifiers used in our experiments. On average, polarity lexicons and
adjectives and adverbs perform better than just using frequent in-domain non-stopwords.
Adjectives and adverbs are less expensive to obtain and more robust throughout different
domains. Thus, these experiments show that the consideration of linguistic knowledge,
be it the knowledge of polar expressions or the knowledge of adjectives and adverbs, is

helpful for semi-supervised learning.

6.6. Bootstrapping Supervised Polarity Classifiers using

Rule-Based Classification

I assume that the performance of supervised polarity classifiers bootstrapped with the

help of rule-based classifiers depends on two components:
e the type of rule-based classifier that is chosen
e the feature set on which the supervised classifier is trained

This is why I will focus on these two aspects in the discussion of this method.

6.6.1. Rule-Based Classifier

In the following, we describe how a polarity lexicon is converted to a rule-based polarity
classifier. The polarity lexicon, the list of other important word classes being intensifiers,
negation expressions (including the rules to disambiguate them), and polarity shifters are,

as in the experiments from the previous chapters, taken from the MPQA project (Wilson
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et al., 2005). We chose this resource since due to its feature diversity it allows the

construction of the most complex polarity classifier.

Feature Extraction

Any word in a review that is not included in a polarity lexicon is discarded. Positive words

(e.g. excellent) are assigned the value +1, negative words (e.g. awful) —1, respectively.

Basic Word Sense Disambiguation with Part-of-Speech Tags

The polarity lexicon we use has part-of-speech tags attached to polar expressions in order
to disambiguate them, e.g. the word like is either a polar verb or a preposition (in which
case it is meaningless for polarity classification). We identify words as polar expressions
only if their part-of-speech tags'* also match the specification in the lexicon. This can

be considered as some basic form of word sense disambiguation.

Negation Modeling

If a polar expression occurs within the scope of a negation, its polarity is reversed (e.g.
[not nice™]™). The negation modeling we use in this chapter, which includes both the
disambiguation of potential negation expressions and the usage of polarity shifters, is

identical to the method described in Chapter 5.4.3.

Heuristic Weighting

So far, all polar expressions contained in the polarity lexicon are assigned the same
absolute weight, i.e. (£)1. This does not reflect reality. Polar expressions differ in
their individual polar intensity or, in case of ambiguous words, in their likelihood to
convey polarity. Therefore, they should not obtain a uniform weight. We propose a
heuristic weighting scheme based on particular properties of polar expressions. We focus
on properties that have been effectively incorporated into features in Chapters 3 and 5 on

sentence-level polarity classification. The properties considered for heuristic weighting

"For part-of-speech tagging, we again use the C&C tagger.
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have already been motivated and proven effective in previous work (Kennedy & Inkpen,
2005; Pang et al., 2002).

Intuitively, strong polar expressions, such as chaotic, should obtain a higher weight
than weak polar expressions, such as bulky. The same holds for intensified polar expres-
sions, i.e. an ordinary (weak) polar expression has a similar polar intensity when it is
modified by an intensifier as a strong polar expression, e.g. extremely disordered and
chaotic.

The part of speech of a polar expression usually sheds light on the level of ambiguity
of the word. If a polar expression is an adjective, its prior probability of being polar is
much higher than the one of polar expressions with other parts of speech, such as verbs
or nouns (Pang et al., 2002). Therefore, polar adjectives should obtain a larger weight
than polar expressions with other parts of speech.

Since there are no development data in order to adjust the weights for the previously
mentioned properties, we propose to simply double the value of a polar expression if
either of these properties applies. If n of these properties apply for a polar expression,
then its value is doubled n times. For instance, an intensified adjective is assigned the

value of 4, i.e. 2-2.

Classification

For each data instance the contertual scores assigned to the individual polar expressions
are summed. If the sum is positive, then the instance is classified as positive. It is
classified as negative, if the sum is negative. We assign to all cases in which the sum
is 0 the polarity type which gives best performance on that individual dataset (which
is usually negative polarity). Thus, we have a stronger baseline that is to be beaten by
self-training.

Note that the prediction score of a data instance, i.e. the sum of contextual scores of
the polar expressions, can also be interpreted as a confidence score. This property is vital
for effectively using this rule-based classifier in self-training. Thus, previously mentioned

instances with a score of 0, for example, are unlikely to occur in the labeled training
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set since it only includes instances labeled with a high confidence score. The sum of
contextual scores is normalized by the overall number of tokens in a test instance. This
normalization reflects the density of polar expressions within the instance. The greater
the density of polar expressions of a particular type is in a text, the more likely the text

conveys that polarity.

Figure 6.4 summarizes all steps of the rule-based classifier.

1. Lexicon loading, i.e. polar expressions, negation words, and intensifiers
2. Preprocessing:

(i) Stem test instance.

(ii) Apply part-of-speech tagging to test instance.
3. Polar expression marking:

(i) Check whether part-of-speech tag of potential polar expression matches lexical entry (basic word

sense disambiguation).

(ii) Mark strong polar expressions.
4. Negation modeling:

(i) Identify potential negation words (including polarity shifters).
(ii) Disambiguate negation words.

(iii) Reverse polarity of polar expression in scope of (genuine) negation.
5. Intensifier marking
6. Heuristic weighting: double weight in case polar expression is:

(i) a strong polar expression
(ii) an intensified polar expression

(iii) a polar adjective.

7. Classification: assign test instance the polarity type with the largest (normalized) sum of scores.

Figure 6.4.: Rule-based classifier.
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Table 6.7.: Properties of the different rule-based classifiers.

Properties RBpiain | RBowsp | RBneg | RBweight
basic word sense disambiguation v v v
negation modeling v v
heuristic weighting v

Table 6.8.: Description of the different feature sets.

Feature Set Abbreviation
the 2000 most frequent non-stopwords in the domain corpus Top2000
the 600 most frequent adjectives and adverbs in the domain corpus Adj600

all polar expressions within the polarity lexicon MPQA

all unigrams in the domain corpus Uni

all unigrams and bigrams in the domain corpus Uni+Bi

Different Versions of Classifiers

We define four different types of rule-based classifiers. They differ in complexity. The
simplest classifier, i.e. RBpj4in, does not contain word sense disambiguation, negation
modeling, or heuristic weighting. RBywsp is like RBpy4, but also contains basic word
sense disambiguation. RB ¢4 is like RByyysp but also contains negation modeling. The
most complex classifier, i.e. RByyeignt, is precisely the algorithm presented in the previous

sections. Table 6.7 summarizes the different classifiers with their respective properties.

6.6.2. Feature Sets

Table 6.8 lists the different feature sets we examine for the supervised classifier (within
self-training) and the semi-supervised classifiers. We list the feature sets along their
abbreviation with which they will henceforth be addressed. The first three features
(i.e. Top2000, Adj600, and MPQA) have been used in the previous experiments on

semi-supervised learning (Section 6.5). They all remove noise contained in the overall

112



vocabulary of a domain corpus. The last two features (i.e. Uni and Bi) are known to be
effective for supervised polarity classification (Ng et al., 2006). Bigrams can be helpful
in addition to unigrams since they take into account some context of polar expressions.
Thus, crucial constructions, such as negation (/not nice/”) or intensification (/extremely
nice[TT), can be captured. Moreover, multiword polar expressions, such as [low tax/t or
[low grades|~, can be represented as individual features. Unfortunately, bigram features

are also fairly sparse and contain a considerable amount of noise.

6.6.3. Experiments

For the following experiments we mainly adhere to the settings of our experiments on
semi-supervised learning (see Section 6.5). We deliberately chose these settings in fa-
vor of semi-supervised learning in order to have a strong baseline for the proposed
self-training method. We again use a balanced subset (randomly generated) for each
domain. The Rate-It-All dataset consists of 1,800 data instances per domain, whereas
the IMDb dataset consists of 2,000 data instances. We just consider (definite) positive
and (definite) negative reviews. The rule-based classifiers and the self-trained classifiers
(bootstrapped with the help of rule-based classification) are evaluated on the entire do-
main dataset. The 1,000 most highly-ranked data instances (i.e. 500 positive and 500
negative instances) are chosen as training data for the supervised classifier. This setting
provided good performance in our initial experiments. For the supervised classifier, we
chose SVMs. All words are stemmed. We report statistical significance on the basis of a
paired t-test using 0.05 as the significance level unless we explicitly state otherwise. We

evaluate the results using Accuracy and F-Measure (see also Appendix A.1).

Comparison of Different Rule-Based Classifiers

Table 6.9 shows the results of the different rule-based classifiers across the different do-
mains. On average, the more complex the rule-based classifier gets, the better it performs.
The only notable exceptions are the products domain (from RByey to RByyeigne) and the

sports domain (from RBpjgip, to RByiwsp). We assume, however, that in particular those
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results in the sports domain are heavily affected by the high degree of spelling errors.
On average (i.e. considering all domains), however, the improvements are statistically

Y

significant.

Table 6.9.: Comparison of different rule-based classifiers (RB) (for each domain, perfor-

mance is evaluated on a balanced corpus).

Domain RBpiuin | RBywsp | RBneg | RBweignt
computer 64.11 70.61 73.56 74.28
products 60.78 66.06* 71.06* 70.94
sports 64.33 64.39 67.50 68.89
travel 64.61 67.39 70.72* 72.61
movies 61.75 64.80* 67.85* 71.30*
average 63.12 66.65* 70.14* 71.60*

*: significantly better than all less complex rule-based classifiers on the basis of a x2 test using p < 0.05

Self-Training with Different Rule-Based Classifiers and Different Feature Sets

Table 6.10 compares self-training (SelfTr) using different rule-based classifiers and dif-
ferent feature sets for the embedded supervised classifier. In addition to Accuracy, we
also listed the F-Measure of the two different classes. The results are averaged over
all domains. With the exception of RByey in combination with Top2000 and MPQA,
there is always a significant improvement from a rule-based classifier to the correspond-
ing self-trained version. If Top2000 or MPQA is used, there is a drop in performance
from RB ey to SelfTr in the sports domain. Improving a rule-based classifier also results
in an improvement of the self-trained classifier. With exception of Self Tr(RBpjun) to
Self Tr(RByw sp) this is even significant.

The feature set producing the best results is Uni+Bi. Uni+Bi is statistically signif-
icantly better than Uni. This means that, as far as feature design is concerned, the
supervised classifier within self-training behaves similar to ordinary supervised classifica-

tion (Ng et al., 2006). Unlike in semi-supervised learning, a noiseless feature set is not
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necessary. Best performance of SelfTr using a large set of polar expressions is reported
in (Qiu et al., 2009). The feature set comprises an open-domain polarity lexicon and is
automatically extended by domain-specific expressions. Our results suggest a less com-
plex alternative. Using SelfTr with unigrams and bigrams (i.e. SelfTryp;4+p;) already
provides better classifiers than SelfTr with a polarity lexicon (i.e. SelfTrp;pga). The

increase is approximately 3%.

It is also worth pointing out that the gain in performance that is achieved by improving
a basic rule-based classifier (i.e. RBpjqin) by modeling constructions (i.e. RByyeigne) is

the same as is gained by just self-training it with the best feature set (i.e. Self Trynivpi)-

The relation between the F-Measures of the two different classes differs between RB
and SelfTr. In RB, the score of the positive class is always significantly better than
the score of the negative class. This is consistent with previous findings (Andreevskaia
& Bergler, 2008). The gap between the two classes, however, varies depending on the
complexity of the classifier. In RBpj4ipn, the gap is 17.45%, whereas it is less than 6%
in RBneg and RByyeigne. In SelfTr, the F-Measure of the negative class is usually better
than the score of the positive class.!> This relation between the two classes is typical
of learning-based polarity classifiers (Andreevskaia & Bergler, 2008). However, it should
also be pointed out that the size of the gap is much smaller (usually not greater than
2%). Moreover, the size of the gap does not bear any relation to the gap in the original
RB, i.e. though there is a considerable difference in size between the gaps of RBpjgin
and RBne, (17.45% to 5.02%), the size of the gaps in the self-trained versions is fairly
similar (e.g. for Self Trypi+p; 3.55% and 2.19%).

We also experimented with a combination of bag of words and the knowledge encoded
in the rule-based classifier, i.e. the two features: the number of positive and negative
polar expressions within a data instance. The performance of this combination is worse
than a classifier trained on bag of words. The correlation between the two class labels and

the two polarity features is disproportionately high since the polarity features essentially

5 The only exception where the reverse is always true is SelfTraspga. This does not come as a surprise

since this feature set resembles RB most.
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Table 6.10.: Performance of self-trained classifiers with different feature sets (experiments

are carried out on a balanced corpus and results are averaged over all do-

mains).
RBpiain RB,wsD RB Ny RBweight
Type F+ F— Acc. F+ F— Acc. F+ F— Acc. F+ F— Acc.
RB (Baseline) | 69.81 52.36  63.12 70.39  61.79  66.65 72.42  67.40  70.14 74.26  68.30  71.60
SelfTrr,p2000 70.15  70.88  70.53* 70.26  71.55  70.92* 72.78  73.8%8  73.40 74.79 7418 75.73*
SelfTr 4 45600 68.94  69.92  69.44* 70.08  71.41  70.76* 72.46  73.90  73.20* 74.34  75.82  75.10*
Self Ty pgoa 69.18  67.85  68.55* 70.03  69.46  69.75* 72,50  72.19 7215 74.57  75.47  75.04*
SelfTry,; 69.82  71.16  70.51* 70.53  72.41  71.50* 73.17  74.87  74.05* 75.73  7T.67  76.74*
SelfTryniy Bi 71.14 7469  71.94*" | 7141 7364 7257*% | 7430 7612 75.20%T | 76.43 7862  77.58*%

*: Accuracy significantly better than RB on the basis of a paired t-test using p < 0.05

T Accuracy significantly better than SelfTryr,; on the basis of a paired t-test using p < 0.05

encode the prediction of the rule-based classifier. Consequently, the supervised classifiers

develop a strong bias towards these two features and inappropriately downweight the

bag-of-words features.

Table 6.11 compares rule-based classification and self-training on individual domains.

In some domains self-training does not work. This is most evident in the sports domain

using self-training on RByyygp. Apparently, the better the rule-based classifier is, the

more likely a notable improvement by self-training can be obtained. Note that in the

sports domain the self-trained classifier using the most complex rule-based classifier, i.e.

SelfTr(RByy¢ignt), achieves the largest improvement compared to the rule-based classifier.

These observations are also representative for the remaining feature sets examined but

not displayed in Table 6.11.

Self-Training using Rule-Based Classifiers Compared to Semi-Supervised Learning

In the following experiments, we use Spectral Graph Transduction (SGT) (Joachims,

2003) as a semi-supervised learning classifier, since it provided best performance in previ-
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Table 6.11.: Comparison of Accuracy between different rule-based classifiers (RB) and
self-trained classifiers (SelfTr) trained on best feature set (Uni+Bi) on dif-
ferent domains (for each domain, performance is evaluated on a balanced

corpus).

RBpiin RBywsp RB ey RBweight

Domain RB SelfTr RB SelfTr RB SelfTr RB SelfTr

computer | 64.11 80.22 70.61 81.72 73.56  83.67* 74.28  83.50*

products 60.78 70.78 66.06  73.89* 71.06  77.00*T | 70.94  77.00*T

sports 64.33  66.44 | 64.39  64.94 67.50 68.89T | 68.89  72.78*t%
travel 64.61  69.56 | 67.39  69.83 70.72  73.33*T | 72.61 76.89*1%
movies 61.75  72.70 | 64.80  72.45 67.85  73.55 71.30  77.75*t%

average 63.12 71.94 | 66.65 72.57 70.14  75.29*T | 71.60 77.58*1%

*: significantly better than SelfTr bootstrapped on RBpjq;n, 1@ significantly better than SelfTr bootstrapped
on RBywsp, I: significantly better than SelfTr bootstrapped on RBeg; statistical significance is based on a X2
test using p < 0.05

ous experiments on semi-supervised learning (see Section 6.5). For each configuration (i.e.
training and test partition) we randomly sample 20 partitions from the corpus. Labeled
training and test data are always mutually exclusive but the test data (500 positive and

500 negative instances) can be identical to the unlabeled training data.

Figure 6.5 compares self-training bootstrapped on the output of rule-based classifica-
tion (SelfTr) to supervised learning (SL) and semi-supervised learning (SSL). We compare
two variations of SelfTr. SelfTr-A, like SSL, uses 1,000 randomly sampled data instances
for both training and testing. (Again, we report the averaged result over 20 samples.)
SelfTr-B (like in previous sections) selects 1,000 training instances by confidence from
the entire dataset. The test data are, however, the same as in SelfTr-A. Unlike our pre-
vious experiments on SSL in which Top2000 was predominantly used for SL, we chose

Uni+Bi as a feature set. It produces better results than Top2000 on classifiers trained
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on larger training sets (i.e. > 400).!6 For SSL, we consider Uni+Bi and Adj600, which is
the feature set with the overall best performance using that learning method. For SelfTr,

we consider the best classifier, i.e. SelfTrypitpi-

85
‘ éupervised Iéarning (SL) v“/ith all unigraﬁ‘ls and bigrar‘ns —t
Semi-supervised learning (SSL) with top 600 adjectives and adverbs -~
Semi-supervised learning (SSL) with all unigrams and bigrams ---:---
Self-training with 1000 randomly selected instances (SelfTr-A)
Self-training with 1000 training instances selected by confidence (SelfTr-B)
80 - T
A -
e
75 e E

Accuracy (classifier trained on 1000 unlabeled documents)

Il Il Il Il Il Il
100 200 300 400 500 600 700 800
Number of labeled documents for training

Figure 6.5.: Comparison of self-training and semi-supervised learning (performance is

evaluated on balanced corpus and results are averaged over all domains).

Though SSL gives a notable improvement on small labeled training sets (i.e. < 100), it
produces much worse performance than SL on large training sets (i.e. > 200). Adjectives
and adverbs are a very reliable predictor. However, the size of the feature set is fairly
small. Too little structure can be learned on large labeled training sets using such a small
feature set. Using larger (but also noisier) feature sets for SSL, such as Uni+Bi, improves
performance on larger labeled training sets. However, even with Uni+Bi SSL does not
reach a performance comparable to SL on large training sets and it is significantly worse
than Adj600 on small training sets.

Whenever SSL outperforms SL, every variation of SelfTr also outperforms SSL. SelfTr-

B is significantly better than SelfTr-A which means that the quality of labeled instances

!Note that our previous experiments in SSL focused on small training sets.
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matters and SelfTr is able to select more meaningful data instances than are provided by
random sampling. Unfortunately, SSL-methods, such as SGT, do not incorporate such
a selection procedure for the unlabeled data. Further exploratory experiments using the
entire dataset as unlabeled data for SSL produced, on average, results similar to those
using 1,000 instances. This proves that SSL cannot internally identify as meaningful
data as SelfTr-B does. Whereas SSL significantly outperforms SL on training sets using
less than 200 training instances, the best variation of SelfTr, i.e. SelfTr-B, significantly
outperforms SL on training sets using less than 400 instances. This difference is, in
particular, remarkable since SelfTr does not use any manually labeled training data at

all whereas SSL does.

Natural Class Imbalance and Mixed Reviews

In this section, we want to investigate what impact natural class imbalance has on self-
training. While in both SL and SSL class imbalance should be a minor problem!” since
a class distribution can be estimated from the labeled training set (and, hopefully, the
estimate is similar to the distribution on the test set), there is no prior information
regarding the class distribution in self-training. This aspect has only been marginally
covered in previous work (Qiu et al., 2009; Tan et al., 2008). In those works, different class
ratios on the test set are evaluated. However, the same amount of positive and negative
reviews is always selected for training. We assume that the optimal performance of self-
training can be achieved when the class distribution of training and test set is identical
and we will provide evidence for that. Moreover, we want to explore what impact different
distributions between the two sets have on the Accuracy of the classifier and how different
class-ratio estimation methods perform.

Previous work dealing with bootstrapping polarity classifiers using unlabeled data also
focuses on datasets exclusively consisting of definite positive and negative reviews (Das-
gupta & Ng, 2009; Qiu et al., 2009; Tan et al., 2008). In this section, the unlabeled

dataset will also include mixed reviews, i.e. 3 star reviews (see Section 6.4). This review

Y"This is why, as far as text classification is concerned, we address class imbalance only in this section.
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category is part of every realistic review collection and therefore should be taken into
consideration for self-training. Unfortunately, the way that we formulate SSL for polarity
classification does not allow us to also include these unlabeled 3 star reviews. Due to the
unavailability of such data the experiments have only been carried out on the Rate-It-All
data. We also add the constraint that the test data must be disjoint from the unlabeled

training data.'8

Test data are exclusively (definite) positive reviews (i.e. 4 & 5 star reviews) and
(definite) negative reviews (i.e. 1 & 2 star reviews). From each domain, we randomly
sample 200 data instances 10 times. We state the results averaged over these different
test sets. The class ratio on each test set corresponds to the distribution of definite polar
reviews, i.e. 3 star reviews are ignored. The distribution has been presented on Table 6.1
on page 94.

The unlabeled training dataset is the dataset of a domain excluding the test data. As
labeled training data for the embedded supervised classifier within self-training, we use
70% of data instances labeled by the rule-based classifier ranked by confidence of predic-
tion (across all domains and configurations, this size provided best results). Hopefully,

most mixed reviews should be among the remaining 30%.

In the first experiment, we just focus on class imbalance (i.e. 3 star reviews are
excluded). We will examine a self-trained classifier using the class-ratio estimate of a
rule-based classifier as it is the most obvious estimate since the rule-based classifier is
also used for generating the labeled training data. In particular, we want to explore
whether there is a systematic relationship between the class distribution, the class-ratio
estimate of the rule-based classifier and the resulting self-trained classifier. Table 6.12
lists the actual distribution of classes on the test set, the deviation between the distribu-
tion as it is predicted by the rule-based classifier and the actual distribution along the
information towards which class the rule-based classifier is biased. Finally, we also list

the absolute improvement /deterioration of the self-trained classifier in comparison to the

¥We can include this restriction in this section since we will not consider the semi-supervised learning

algorithm SGT in this section.
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rule-based classifier. We will only consider the best rule-based classifier, i.e. RByw¢ignt,
and for self-training, we will exclusively consider the best configuration from the previous
experiments, i.e. SelfTry,;+p;. The table shows that the quality of class-ratio estimates
of rule-based classifiers varies among the different domains. The deviation is greatest on
the computer domain. This is also the only domain in which the majority class are the
negative reviews. With exception of the sports domain, the rule-based classifier always
overestimates the amount of positive reviews. This overestimation is surprising consider-
ing that the polarity lexicon we use contains almost twice as many negative as positive
polar expressions. This finding, however, is consistent with our earlier observation that
rule-based classifiers have a bias towards positive reviews, i.e. they achieve a better F-
Measure for positive reviews than for negative reviews.'® Table 6.12 also clearly shows
that the deviation negatively correlates with the improvement of the self-trained classi-
fier towards the rule-based classifier. The improvement is greatest on the sports domain
where the deviation is smallest and the greatest deterioration is obtained on the com-
puter domain where the deviation is largest. In summary of this experiment, the class
distribution of the data has a significant impact on the final self-trained classifier. In
case there is a heavy mismatch between actual and predicted class ratio, the self-training
approach will not improve the rule-based classifier.

In the following experiment we will compare how alternative class-ratio estimates relate
to each other when applied to self-training. We compare the actual (oracle) distribution
(Ratio-Or) with the balanced class ratio (Ratio-Bal), the class ratio as predicted by the
rule-based classifier over the entire dataset (Ratio-RB) and estimates gained by a small
amount of randomly sampled data instances from the dataset. We randomly sample 20
(Ratio-20), 50 (Ratio-50), and 100 (Ratio-100) instances. For each configuration (i.e. 20,
50, and 100), we sample 10 times, run SelfTr for each sample and report the averaged
result. We compare the self-trained classifier with a classifier always assigning a test

instance to the majority class (Majority-Cl) and the rule-based classifier (RByweignt)-

19We also observed that this bias is significantly larger on the simplest classifiers, i.e. RBpjq4in, which is
plausible since on this classifier the gap between F-Measures of positive and negative reviews is also

largest (see Table 6.10).
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Table 6.12.: Class imbalance and its impact on self-training.

Domain Class Deviation of Class Towards Difference in
Distribution Predicted which Predicted Accuracy
(+:-) Distribution from Distribution is between RB and
Actual Distribution Biased SelfTr(RB)
computer | 43.17:56.83 16.30 + —3.60
products 63.07 : 36.93 6.65 + —0.25
sports 78.68 : 21.32 2.10 — +3.15
travel 74.07 : 25.93 3.71 + +1.30

Table 6.13.: Accuracy of different classifiers tested on naturally imbalanced data: for self-
trained classifiers the unlabeled data also contain 3 star reviews; numbers in

brackets state the results on a dataset which excludes 3 star reviews.

Classifier computer products sports travel average
Majority-Cl 56.83 63.07 78.68 74.07 68.17
RBweignt 73.80 76.00 77.35 79.50 76.66
Ratio-Or 82.80 (83.35) 80.90 (81.70) 81.25 (81.10) 81.70 (81.60) 81.66 (81.94)
Ratio-Bal | 83.25 (82.95) 75.40 (76.05) 62.55 (60.30) 66.95 (66.10) 72.04 (71.35)
Ratio-RB 75.95 (70.20) 77.50 (75.75 80.75 (80.50) | 81.15 (80.80) 78.84 (76.81)
SelfTr
Ratio-20 77.36 (77.95) 77.61 (78.10) 79.10 (79.01) 78.94 (79.44) 78.01 (77.91)
Ratio-50 80.43 (80.91) 80.45 (80.86) 79.94 (79.94) 80.64 (80.52) 80.37 (80.56)
Ratio-100 80.96 (81.47) 80.69 (81.27) 80.62 (80.50) 80.76 (80.58) 80.76 (80.96)
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This time, we also include the 3 star reviews in the unlabeled dataset.

Note that since Ratio-20, Ratio-50, and Ratio-100 are averaged results over 10 samples
whereas the remaining classifiers are single results, we refrain from doing a statistical
significance test as there is no commonly accepted way of comparing those different

types of data (i.e. averaged results vs. single results).

Table 6.13 displays the results. We also display results of the datasets without using
3 star reviews in brackets. SelfTr using Ratio-Bal produces the worst results among the
self-training classifiers. This is the only method used in previous work (in Chinese) (Qiu
et al., 2009; Tan et al., 2008). Apparently, English data are more difficult than Chinese
and, in English, SelfTr is more susceptible to deviating class-ratio estimates since in (Qiu
et al., 2009; Tan et al., 2008) SelfTr with Ratio-Bal scores rather well. Ratio-Or produces
best results which comes as no surprise since the class distribution in training and test set
is the same. On average, Ratio-100 produces the second best result as it also gives fairly
reliable class-ratio estimates (the deviation is 3.3% on average, whereas the deviation of
Ratio-Bal is 18.16%). Both Ratio-50 and Ratio-100 produce results which are better than
Majority-Cl and RByyeigns. As Ratio-Or, Ratio-Bal, Ratio-20, Ratio-50, and Ratio-100
suggest, the presence of mixed polar reviews does not produce different results. It is very
striking, however, that the results of Ratio-RB are better using the 3 star reviews which
seems counter-intuitive. We found that this is a corpus artifact. As already stated in
Section 6.4, 3 star reviews do not only contain indefinite polar reviews but also positive
and negative reviews. We also noted that Ratio-RB has a bias towards predicting too
many positive instances. The bias is stronger if 3 star reviews are not included in the
ratio-prediction (deviation of 8.5% instead of 6%). We, therefore, assume that among the
3 star reviews the proportion of negative-like reviews is greater than among the remaining
part of the dataset and RB within SelfTr detects them as such. Thus, the bias towards

positive polarity is slightly neutralized.

In summary of this experiment, using small samples of labeled data instances is the
most effective way for class ratio estimation enabling SelfTr to consistently outperform

Majority-CL and Ratioweigns. Mixed reviews only have a marginal impact on the final
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overall result of SelfTr.

6.6.4. Conclusion of Experiments on Bootstrapping Supervised Classifiers

with Rule-Based Classification

In this section, we examined the effectiveness of bootstrapping a supervised polarity
classifier with the output of an open-domain rule-based classifier. The resulting self-
trained classifier is usually significantly better than the open-domain rule-based classifier
since the supervised classifier exploits in-domain features. As far as the choice of the
feature set is concerned, the supervised classifier within self-training behaves very much
like an ordinary supervised classifier. The set of all unigrams and bigrams performs best.

The type of rule-based classifier has an impact on the performance of the final classifier.
Usually, the more accurate the rule-based classifier is, the better the resulting self-trained
classifier is. Therefore, modeling open-domain constructions relevant for polarity classi-
fication, such as negations or intensification, is important for this type of self-training.
Thus, I have shown another aspect in sentiment analysis in which linguistic information
is important to be considered.

In cases in which semi-supervised learning outperforms supervised learning, self-training
at least also performs as well as the semi-supervised classifier. A great advantage of self-
training is that it can choose instances to be added to the labeled training set by using
confidence scores whereas in semi-supervised learning one has to resort to random sam-
pling. The resulting data from self-training are usually much better.

Self-training also outperforms a rule-based classifier and a majority-class classifier in
more difficult settings in which mixed reviews are part of the dataset and the class
distribution is imbalanced, provided that the class-ratio estimate does not deviate too
much from the actual ratio on the test set. A class-ratio estimate can be obtained by
the output of the rule-based classifier but, on average, using small amounts of labeled
samples from the data collection (i.e. approximately 50 instances) produces more reliable
results.

Since this self-training method works under realistic settings, it is more robust than
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semi-supervised learning, and its embedded supervised classifier only requires simple
feature sets in order to produce reasonable results, it can be considered an effective
method to overcome the need for large amounts of labeled in-domain training data for

polarity classification.

6.7. Error Analysis

The improvements achieved by applying semi-supervised learning presented in this chap-
ter are significantly smaller than they have been reported on other text classification
tasks, such as conventional topic classification (Nigam, McCallum, Thrun, & Mitchell,
2000). Moreover, the performance gain on the movie domain (Section 6.5.2) is much
larger than the average improvement on all domains (Section 6.5.2). We assume that the
noticeable improvement obtained by semi-supervised learning on the movie domain is an
exception. This improvement could only be achieved in combination with one particular
polarity lexicon (i.e. AG). Unfortunately, we know only little as to how this manual lex-
icon has been built. Given our cross-domain evaluation, however, we have strong reason
to believe that this lexicon was tuned for the movie domain. Therefore, we only need to
answer why the general impact of semi-supervised learning on polarity classification is
so low.

Similar to the dataset used for the detection of indefinite polarity (Chapter 4), the
gold standard used for the experiments in this chapter may suffer from the fact that the
labels for the data instances have been automatically generated, i.e. the ratings that have
been assigned by the individual reviewers may not always be correct. However, we do
not think that this is a general obstacle and the sole reason for the limited performance
of semi-supervised learning. If our golden standard severely suffered from noise, then
supervised learning and self-training should have been similarly affected. However, for
both we have provided evidence in this chapter that is not the case. Therefore, we must
assume that there is an inherent reason for the low performance of semi-supervised learn-
ing. One reason may be that topic information contained in the documents interferes

with polarity information (as every document does not only possess some polarity but
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addresses some specific topic). The fact that semi-supervised learning only provides a
notable improvement over supervised learning when a feature set with a high proportion
of polar expressions is used may support this assumption (as in those feature sets topic
information is removed to a great extent). We do not think that it is possible to improve
the performance of semi-supervised learning on polarity classification with a reasonable
effort. If one confines the feature set to polar expressions, then some improvement to-
wards supervised learning can be achieved, but only if very few labeled training data are
considered. If there is a reasonable amount of labeled documents, e.g. 200 and more,
then such a feature set provides too little expressiveness (usually at this point, supervised
classifiers significantly outperform the semi-supervised classifier). If, however, a larger
but less restricted feature set were considered, then the semi-supervised learner confuses

topic information with polarity information.

Conceptually speaking, self-training offers a better alternative, since it incorporates
both a predictive but also restrictive feature set (i.e. a polarity lexicon) and a more
expressive but also noisier feature set (i.e. all unigrams and bigrams). Moreover, self-
training encapsulates those different feature sets in two different classifiers (i.e. the
former in a rule-based classifier and the latter in a supervised learner). The rule-based
classifier has the advantage to restrict labels to data instances for which it makes a con-
fident prediction. As a consequence, the unrestricted and more expressive feature set
is used on labeled training data which have a higher quality than randomly selected la-
beled instances used in semi-supervised learning (see also Section 6.6.3). Semi-supervised
learning cannot reach the level of performance of self-training as it does not possess this

flexibility.

Self-training performs much better than semi-supervised learning but there is even
room for improvement for this classifier. The rule-based classifier used for the experiments
on self-training relies (as many other components/features of the classifiers presented in
the previous chapters) on a robust recognition of polar expressions. Therefore, similar
problems are encountered caused by limitations of currently available polarity lexicons.

Yet these limitations are fairly difficult to overcome (see Chapter 3.6 for more details).
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6.8. Conclusion

Polarity classification is a difficult text classification task and this becomes apparent if
bootstrapping algorithms for this task are considered. In order for bootstrapping to
become effective, one needs to make use of a fairly predictive source of information.
For instance, semi-supervised learning depends on a predictive feature set, otherwise no
improvement will be achieved. Surprisingly, adjectives and adverbs have the same effec-
tiveness as polarity lexicons. In comparison to semi-supervised learning, a bootstrapping
method using a rule-based classifier seems to be more promising, since in all settings
we examined the latter either outperformed the former or was at least equally robust.
There are three major advantages that we discovered. Firstly, self-training does not re-
quire any manually labeled training data at all. Secondly, the rule-based classifier can
choose training samples by itself (using confidence scores) and thus can choose those
instances which are most useful. Thirdly, our experiments suggest that improving the
quality of rule-based classifiers also improves the quality of the bootstrapped classifier.
Thus, this method leaves plenty of room for improvement as the most complex rule-based
classifier we used in this chapter is still very crude compared to other compositional ap-
proaches, such as (Moilanen & Pulman, 2007) or (Klenner et al., 2009). The effectiveness
of semi-supervised classifiers, however, is restricted to small labeled training sets and we

could not find a potential direction for future work to improve them.
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7. Convolution Kernels for Opinion

Holder Extraction

7.1. Introduction

In this chapter, we leave the realm of text classification in sentiment analysis and turn
to opinion holder extraction. Together with opinion target extraction, opinion holder
extraction is one of the common entity extraction tasks in sentiment analysis. It is
considered a critical component of several NLP applications, such as opinion question-
answering (i.e. systems which automatically answer opinion questions, such as “What
does [X] like about [Y]?”). Such systems need to be able to distinguish which entities in
a candidate answer sentence are the sources of opinions (= opinion holder) and which
are the targets.

In other NLP tasks, in particular, in relation extraction, there has been much work on
convolution kernels, i.e. kernel functions exploiting huge amounts of features without an
explicit feature representation. Previous research on that task has shown that convolution
kernels, such as sequence or tree kernels, are quite competitive when compared to manual
feature engineering (Moschitti, 2008; Bunescu & Mooney, 2005; Nguyen, Moschitti, &
Riccardi, 2009). In order to effectively use convolution kernels, it is often necessary to
choose appropriate substructures of a sentence rather than representing the sentence as
a whole structure (Bunescu & Mooney, 2005; M. Zhang, Zhang, & Su, 2006). As for tree
kernels, for example, one typically chooses the syntactic subtree immediately enclosing
two entities potentially expressing a specific relation in a given sentence. The opinion

holder detection task is different from this scenario. There can be several cues within a
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sentence to indicate the presence of a genuine opinion holder and these cues need not be
member of a particular word group, e.g. they can be opinion words (see Sentences (7.1)-
(7.3)), communication words, such as maintained in Sentence (7.2), or other lexical cues,

such as according to in Sentence (7.3).

(7.1) The U.S. commanders considerqpinion the prisoners to be unlawful combatants,pinion

as opposed to prisoners of war.

(7.2) During the summit, Koizumi maintained.ommunication @ clear-cut collaborative-
_stancegpinion towards the U.S. and emphasized that the President was objec-

tiveopinion and circumspect.

(7.3) According_tocye Fernandez, it was the worst_mistake,pinion in the history of the

Argentine economy.

Thus, the definition of boundaries of the structures for the convolution kernels is less
straightforward in opinion holder extraction.

The aim of this chapter is to explore in how far convolution kernels can be beneficial
for effective opinion holder detection. We are not only interested in how far different
kernel types contribute to this extraction task but we also contrast the performance of
these kernels with a manually designed feature set used as a standard vector kernel.

Moreover, we will show that in order to obtain a good performance the consideration
of linguistic knowledge is essential for several aspects of a classifier based on convolution

kernels being:

e the level of representation

e the scope for each convolution kernel

e the semantic categories that are used to generalize convolution kernels

The work presented in this chapter is also described in (Wiegand & Klakow, 2010b).
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7.2. Related Work

Choi, Cardie, Riloff, and Patwardhan (2005) examine opinion holder extraction using
CRFs with various manually defined linguistic features and patterns automatically learned
by the AutoSlog system (Riloff, 1996). The linguistic features focus on named-entity in-
formation and syntactic relations to opinion words. In this chapter, we use very similar
settings. The features presented in (S.-M. Kim & Hovy, 2005; Bloom, Stein, & Argamon,
2007) resemble very much (Choi et al., 2005). Bloom, Stein, and Argamon (2007) also
consider communication words to be predictive cues for opinion holders.

S.-M. Kim and Hovy (2006) and Bethard et al. (2004) explore the usefulness of seman-
tic roles provided by FrameNet (Fillmore, Johnson, & Petruck, 2003) for both opinion
holder and opinion target extraction. Due to data-sparseness, S.-M. Kim and Hovy (2006)
expand FrameNet data by using an unsupervised clustering algorithm.

(Choi et al., 2006) is an extension of (Choi et al., 2005) in that opinion holder extraction
is learned jointly with opinion detection. This requires that opinion expressions and
their relations to opinion holders are annotated in the training data. Semantic roles
are also taken as a potential source of information. In our work, we deliberately work
with minimal annotation and, thus, do not consider any labeled opinion expressions and
relations to opinion holders in the training data. We exclusively rely on entities marked
as opinion holders. In many practical situations, the annotation beyond opinion holder
labeling is too expensive.

Complex convolution kernels have been successfully applied to various NLP tasks, such
as relation extraction (Bunescu & Mooney, 2005; M. Zhang et al., 2006; Nguyen et al.,
2009), question answering (D. Zhang & Lee, 2003; Moschitti, 2008), and semantic role
labeling (Moschitti, Pighin, & Basili, 2008). In all these tasks, they offer competitive
performance to manually designed feature sets. Bunescu and Mooney (2005) combine
different sequence kernels encoding different contexts of candidate entities in a sentence.
They argue that several kernels encoding different contexts are more effective than just
using one kernel with one specific context. We build on that idea and compare various

scopes eligible for opinion holder extraction. Moschitti (2008) and Nguyen et al. (2009)
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suggest that different kinds of information, such as word sequences, part-of-speech tags,
syntactic and semantic information should be contained in separate convolution kernels.

We also adhere to this notion.

7.3. Data

As labeled data, we use the sentiment annotation of the MPQA 2.0-corpus®

. Opinion
holders are not explicitly labeled as such. However sources of private states and subjective
speech events (Wiebe et al., 2003) are a fairly good approximation of the task. Previous
works (Choi et al., 2005; S.-M. Kim & Hovy, 2005; Choi et al., 2006) use similar approxi-
mations. Please note, however, since we use a different version of the MPQA-corpus and
a more restrictive but also more accurate definition?, the numbers presented in this chap-
ter cannot be directly compared with these publications. However, we tried to account
for comparability by using similar features in our manual feature set (i.e. our baseline)
as part of our manually designed feature set (see also Section 7.4.5).

Also note that in this work, we deliberately omit any opinion information from the

annotation in the golden standard, since it is not only very difficult for human annotators

to annotate but it is also difficult to recognize automatically.

7.4. Method

In this work, we consider all noun phrases (NPs) as possible candidate opinion holders.
Therefore, the set of all data instances is the set of the NPs within the MPQA 2.0-corpus.
Each NP is labeled as to whether it is a genuine opinion holder or not. Throughout this

section, we will use Sentence (7.4) as an example.

(7.4) During the summit, Koizumi maintainedcommunication @ clear-cut _collaborative-

www. cs. pi tt. edu/ npga/ dat abaser el ease
For instance, e-mail correspondence with the first author of (Choi et al., 2005) confirmed that sources

of private states and all speech events (rather than only subjective speech events) had been considered

opinion holders.
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Table 7.1.: The different levels of representation.

structures

Type Description Example
WRD sequence of words During the summit , Koizumic 4y p maintained a clear-cut
collaborative stance ...
WRDgnN sequence of generalized words During the summit , CANDpgrsony COMM OPINION ...
POS part-of-speech sequence IN DET NN PUNC CAND VBD DET JJ JJ NN ...
POSgN generalized part-of-speech se- | IN DET NN PUNC CANDpgrsony COMM OPINION ...
quence
CONST constituency tree see Figure 7.1(a)
CONSTAyc | augmented constituency tree see Figure 7.1(b)
GRAMwRrD grammatical relation path la- | Koizumicanyp NSUBJT maintained DOBJ| stance
bels with words
GRAMpos grammatical relation path la- | CAND NSUBJT VBD DOBJ| NN
bels with part-of-speech tags
PAS predicate argument structures see Figure 7.2(a)
PASaua augmented predicate argument | see Figure 7.2(b)

_stancegpinion towards the U.S. and emphasized that the President was objec-

tiveopinion and circumspect.

7.4.1. The Different Levels of Representation

Several levels of representation are important for opinion holder extraction.

We will

briefly address every individual level that is going to be considered in this chapter. Ta-

ble 7.1 lists all the different levels that are used in this work.

Words

As already pointed out in the introduction of this chapter, there are certain words which

are indicative of a genuine opinion holder when occurring in the vicinity of the candidate.
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Figure 7.1.: Constituency parse trees (CONST).
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(a) plain
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COMMyys  summit PERSONaug canp OPINIONs,s emphasize summit PERSOMNauG canp

maintain koizumicang stance koizumicang
(b) augmented

Figure 7.2.: Predicate-argument structures (PAS).

Therefore, word sequences (W RD) are considered as a level of information. In addition to
the plain word level, we also introduce another level in which generalization is employed
(W RDgpn) where certain words or phrases are replaced by their corresponding semantic
categories which are known to be predictive for opinion holder extraction (Choi et al.,
2005; S.-M. Kim & Hovy, 2005; Choi et al., 2006; S.-M. Kim & Hovy, 2006; Bloom,
Stein, & Argamon, 2007). The semantic categories that we consider are named-entity
tags, an OPINION tag for opinion words, and a COMM tag for communication words.
Additionally, all candidate tokens are reduced to one generic CAND token. By applying

generalization we hope to account for data-sparseness.

Parts of Speech

The usage of part-of-speech sequences provides a more abstract level of representation.
That is why we assume that it might be possible to recognize some predictive sequential
patterns that are more general than the patterns on word level. Similar to the word
level, we also add another level with generalized part-of-speech information (POSgy) in
which tags representing words or phrases belonging to semantic categories are replaced

by semantic categories. We use the same categories as on word level.
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Figure 7.3.: Illustration of long-distance relationship between candidate opinion holder

President Khatami and related cue called.

Constituency Parse Trees

Constituency parse trees (CONST) allow to capture some long-range relationships that
cannot be captured by the previous levels of representation. For example in Figure 7.3,
the opinion holder, i.e. President Khatams, is fairly wide apart from the cue that relates
to it, i.e. called (communication word), as there are 11 intervening tokens.> However,
the relation path from NPoanp to the word consists of just 5 edges.

We also add another level of representation in which we augment constituency parse
trees by the semantic categories (CONSTayc) we also considered for WRDgn and
POSgn. The additional nodes with these semantic categories are added in such a way

that they directly dominate the pertaining words or phrases representing them.

Grammatical Relations from a Dependency Parse Tree

Like constituency parse trees, grammatical relations (GRAM) also allow the consider-
ation of long-range dependencies, however, they abstract even more from surface struc-
tures. For instance, a grammatical relation, such as subject-of, abstracts from active and

passive voice constructions, such as Sentences (7.5) and (7.6).

3Please note that the cue conversation (communication word) is nearer to the candidate but its presence

is coincidental. It is not related to the candidate, as it is part of a parenthetical insertion.
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(7.5) [The European Commission|sypject has critisizedopinion the Bush administration.

(7.6) The Bush admistration has been critisizedopinion by [the European Commission|gypject-

In addition to plain grammatical relations we also have a further level, GRAMpog, in
which words are replaced by part-of-speech tags in order to capture some more general
path sequences.

Note that the grammatical relation paths, i.e. GRAMwrp and GRAMppg, can only
be applied in case there is another expression in the focus in addition to the candidate
opinion holder of the data instance itself, e.g. the nearest opinion expression to the

candidate. Section 7.4.4 explains in detail how this is done.

Predicate Argument Structures

The most abstract level of representation are predicate argument structures (PAS). For
this level, we use the PropBank annotation scheme (Kingsbury & Palmer, 2002). Unlike
CONST, PAS just focuses on entities being arguments of a predicate. So, the resulting
structures in PAS are flatter than those structures provided by dependency parse trees
(which ideally encode relations among all words in a sentence).

In addition to that, the labels assigned to arguments also abstract from overt syntactic
variation as GRAM does. However, the labels generalize even across different parts-of-
speech. For instance, in Sentence (7.7) the opinion holder is the subject of the verbal
predicate agreed and is assigned the semantic role of an agent. The agent in the PropBank
taxonomy corresponds to A0. In Sentence (7.8), the opinion holder is not the subject of
the nominalization but its modifier. It is, however, still the agent. Grammatical relations
are ambiguous in contrast to semantic roles as Sentence (7.9) shows. In that sentence
there is no opinion holder but the grammatical relations are identical to Sentence (7.8).
The semantic difference is only reflected by the semantic role assigned to Kyoto which is

not an agent.

(7.7) The U.S.;“Objed has agreedprpp(v) to the resolution.
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(7.8) The U.S.%’diﬁer agreementprpp(n) to take missiles out of Turkey [...] (The U.S.

agreed to do something).

(7.9) The Kyotofgjgigc agreementprpp(N) 18 an international agreement linked to the

United Nations. (Kyoto is the place where the agreement was made.)

Similar to constituency parse trees, we also add another level of representation in which

augmentation is employed (PASauq)-

7.4.2. Support Vector Machines and Kernel Methods

Support Vector Machines (SVMs) are one of the most robust supervised machine learning
techniques in which training data instances Z are separated by a hyperplane H (&) = 0 -
Z+b =0 where w € R" and b € R. One advantage of SVMs is that kernel methods can be
applied which map the data to other feature spaces in which they can be separated more

easily. Given a feature function ¢ : O — R, where O is the set of the objects, the kernel

trick allows the decision hyperplane to be rewritten as: H(Z) = ( Z YT | X+ b=
i=1...1

Z YioTi - T +b= Z yici¢ (0;) - ¢ (0) +b

i=1..1 i=1..1

where y; is equal to 1 for positive and —1 for negative examples, o; € R with «o; >
0,0,¥; € {1,...,1} are the training instances and the product K(o0;,0) = (¢(0;) - ¢(0)) is

the kernel function associated with the mapping ¢.

7.4.3. Sequence and Tree Kernels

A sequence kernel (SK) measures the similarity of two sequences by counting the number
of common subsequences. We use the kernel by Taylor and Christianini (2004) which
has the advantage that it also considers subsequences of the original sequence with some
elements missing. The extent of these gaps in a sequence is suitably reflected by a
weighting function incorporated into the kernel.

Tree kernels (T'K's) represent trees by their substructures. The feature space of these
substructures, or fragments, is mapped onto a vector space. The kernel function computes

the similarity of pairs of trees by counting the number of common fragments. In this
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work, we evaluate two tree kernels: Subset Tree Kernel (STK) (Collins & Duffy, 2002)
and Partial Tree Kernel (PT Kpgsic) (Moschitti, 2006a).

In STK, a tree fragment can be any set of nodes and edges of the original tree provided
that every node has either all or none of its children. This constraint makes that kind
of kernel well-suited for constituency trees which have been generated by context free
grammars since the constraint corresponds to the restriction that no grammatical rule
must be broken. For example, STK enforces that a subtree, such as [VP [VBZ, NPJ],
cannot be matched with /[VP [VBZ][ since the latter VP node only possesses one of the

children of the former.

PT Ky, is more flexible since the constraint of ST K on nodes is relaxed. This makes
this type of tree kernel less suitable for constituency trees. We, therefore, apply it only
to trees representing predicate-argument structures (PAS) (see Figure 7.2). Note that
a data instance is represented by a set of those structures (i.e. all predicate-argument
structures of a sentence in which the head of the candidate opinion holder occurs) rather
than a single structure. Thus, the actual partial tree kernel function we use for this task,
PTK, sums over all possible pairs PAS; and PAS,, of two data instances x; and z;:

PTK(zi, ;)= Y. Y, PTKyu(PAS, PASy).
PASZEZ‘i PASmECCj

To summarize, Table 7.2 lists the different kernel types we use coupled with the ap-
propriate levels of representation. This choice of pairing has already been motivated and

empirically proven suitable on other tasks (Moschitti, 2008; Nguyen et al., 2009).

Table 7.2.: The different types of kernels.

Type | Description Levels of Representation

SK Sequential Kernel WRDany, POSgny, GRAMwrp, GRAMpos
STK Subset Tree Kernel | CONST avuq)
PTK Partial Tree Kernel | PAS

VK Vector Kernel not restricted
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7.4.4. The Different Scopes

We argue that using the entire word sequence or syntax tree of the sentence in which
a candidate opinion holder is situated to represent a data instance produces too large
structures for a convolution kernel. Since a classifier based on convolution kernels has to
derive meaningful features by itself, the larger these structures are the more likely noise is
included in the model. Previous work in relation extraction has also shown that the usage
of more focused substructures, e.g. the smallest subtree containing the two candidate
entities of a relation, is more effective (M. Zhang et al., 2006). Unfortunately, in our task
there is only one explicit entity we know of for each data instance which is the candidate
opinion holder. However, there are several indicative cues within the context of the
candidate which might be considered important. We identify three different cues being
the nearest predicate, i.e. full verb or nominalization, opinion word, and communication
word.* For each of these expressions, we define a scope where the boundaries are the
candidate opinion holder and the pertaining cue. Given these scopes, we can define
resulting subsequences/subtrees and combine them.

We further add two background scopes, one being the semantic scope of the candidate
opinion holder and the entire sentence. As semantic scope we consider the subclause in
which a candidate opinion holder is situated. The subclause should contain most relevant
relationships between candidate opinion holder and other linguistic entities while being
considerably smaller than the entire sentence at the same time. Typically, the subtree
representing a subclause has the closest S node dominating the candidate opinion holder
as the root node and it contains only those nodes from the original sentence parse which
are also dominated by that S node and whose path to that node does not contain another
S node.

Figure 7.4 illustrates the different scopes. Abbreviations are explained in Table 7.3. As
already mentioned in Section 7.4.1 for grammatical relation paths, a second expression
in addition to the candidate opinion holder is required. These expressions can be derived

from the different scopes, i.e. for PRED it is the nearest predicate to the candidate, for

“These three expressions may coincide but do not have to.
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Figure 7.4.: Illustration of the different scopes on a CON ST gy g; nodes belonging to the

candidate opinion holder are marked with canp.

OP it is the nearest opinion word, and for COM M it is the nearest communication word.
For the background scopes SEM and SENT, however, there is no second expression in

focus. Therefore, grammatical relation paths cannot be defined for these scopes.

Table 7.3.: The different types of scope.

Type Description

PRED scope with the boundaries being the candidate opinion holder and the nearest predicate

oprP scope with the boundaries being the candidate opinion holder and nearest opinion word

COMM | scope with the boundaries being the candidate opinion holder and the nearest communication
word

SEM semantic scope of the candidate opinion holder, i.e. subclause containing the candidate

SENT entire sentence in which in the opinion holder occurs

7.4.5. Manually Designed Feature Set for a Standard Vector Kernel

In addition to the different types of convolution kernels, we also define an explicit feature

set for a vector kernel (VK). Many of these features mainly describe properties of the
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relation between the candidate and the nearest predicate® since in our initial experiments
the nearest predicate has always been the strongest cue. Adding these types of features for
other cues, e.g. the nearest opinion or communication word, only resulted in a decrease
in performance. Table 7.4 lists all the features we use. Note that this manual feature
set employs all those sources of information which are also exploited by the convolution
kernels. Some of the information contained in the convolution kernels can, however, only
be represented in a more simplified fashion when using a manual feature set. For example,
the first PAS in Figure 7.2(a) is converted to just the pair of predicate and argument
representing the candidate (i.e. REL:maintain A0:Koizumi). The entire PAS is not
used since it would create too sparse features. Convolution kernels, on the other hand,
can cope with those complex structures as input since they internally match substructures.

Manual features are less flexible since they do not account for partial matches.

Table 7.4.: Manually designed feature set.

headword/governing category of CAND

is CAND capitalized/a person?

is CAND subj/dobj/iobj/pobj of OPINION/COMM?

is CAND preceded by according to? (Choi et al., 2005)

does CAND contain possessive and is followed by OPINION/COMM? (Choi et al., 2005)
is CAND preceded by by which is attached to OPINION/COMM? (Choi et al., 2005)

predicate-argument pairs in which CAND occurs

lemma/part-of-speech tag/subcategorization frame/voice of nearest predicate
is nearest predicate OPINION/COMM?

does CAND precede/follow nearest predicate?

words between nearest predicate and CAND (bag of words)

part-of-speech sequence between nearest predicate and CAND

constituency path/grammatical relation path from predicate to CAND

SWe select the nearest predicate by using the syntactic parse tree. Thus, we hope to select the predicate

which syntactically relates to the candidate opinion holder.
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7.5. Experiments

We used 400 documents of the MPQA-corpus for five-fold cross-validation and 133 doc-
uments as a development set. We report statistical significance on the basis of a paired
t-test using 0.05 as the significance level. All experiments were done with the SVM-Light-
TK toolkit®. The results are reported using Accuracy, Precision, Recall, and F-Measure as
evaluation measures (see also Appendix A.1). We evaluated on the basis of exact phrase
matching. We set the trade-off parameter j = 5 for all feature sets. For the manual fea-
ture set we used a polynomial kernel of third degree which resulted in better performance
than a linear kernel. These two critical parameters were tuned on the development set.
As far as the sequence and tree kernels are concerned, we used the parameter settings
from (Moschitti, 2008), i.e. A = 0.4 and p = 0.4. Kernels were combined using plain
summation. The documents were parsed using the Stanford Parser (Klein & Manning,
2003). Named-entity information was obtained by the Stanford tagger (Finkel, Grenager,
& Manning, 2005). Semantic roles were obtained by using the parser by Y. Zhang, Wang,
and Uszkoreit (2008). Opinion expressions were identified using the Subjectivity Lexicon
from the MPQA-project (Wilson et al., 2005). Communication words were obtained by
using the Appraisal Lexicon (Bloom, Stein, & Argamon, 2007). Nominalizations were
recognized by looking up nouns in NOMLEX (Macleod, Grishman, Meyers, Barrett, &
Reeves, 1998).

7.5.1. Notation

Each kernel is represented as a triple:
(levelOfRepresentation (Table 7.1),scope (Table 7.3), typeOfKernel (Table 7.2))

For example, (CONST,SENT,STK) is a Subset Tree Kernel of a constituency parse
having the scope of the entire sentence. Note that not all combinations of these three

parameters are meaningful.

Savailable at di si.unitn.it/mschitti
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Table 7.5.: Result of the vector kernel (VK).

Acc. Prec. Rec. F.

93.63 | 53.28 59.37 | 56.16

In the following, we will just focus on important and effective combinations. The kernel
composed of manually designed features is denoted by just VK. The kernel composed

of predicate-argument structures is denoted by (PAS,SENT, PTK).

7.5.2. Vector Kernel (VK)

Table 7.5 displays the result of the vector kernel using a manually designed feature set.
It should be interpreted as a baseline. Due to the high class imbalance we will focus
on the comparison of F-Measure throughout this chapter rather than Accuracy which is

fairly biased on this dataset. The F-Measure of this classifier is at 56.16%.

7.5.3. Sequence Kernels (SKs)

For both sequence and tree kernels we need to find out what the best scope is, whether
it is worthwhile to combine different scopes, and what different layers of representation
can be usefully combined.

The upper part of Table 7.6 lists the results of simple word kernels using the different
scopes. The performance of the kernels using individual scopes varies greatly. The best
scope is PRED (1), the second best is SEM (2). The good performance of PRED does
not come as a surprise since the sequence is the smallest among the different scopes, so
this scope is least affected by data sparseness. Moreover, this result is consistent with
our initial experiments on the manual feature set (see Section 7.4.5).

Using different combinations of the word sequence kernels shows that PRED and
SEM (6) are a good combination, whereas OP, COMM , and SENT (7;8;9) do not
positively contribute to the overall performance which is consistent which the individual

scope evaluation. Apparently, these scopes capture less linguistically relevant structure.
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Table 7.6.: Results of the different sequence kernels.

ID | Kernel Acc. | Prec.| Rec. | F.
1 (WRD, PRED, SK) 93.25 | 51.08 | 42.29 | 46.26
2 (WRD,OP, SK) 92.77 | 46.38 | 32.52 | 38.21
3 (WRD,COMM, SK) 92.42 | 43.70 | 35.99 | 39.46
4 (WRD, SEM, SK) 93.16 | 50.32 | 34.65 | 41.04
5 (WRD, SENT, SK) 90.60 | 29.90 | 27.29 | 28.53
6 (WRD, PRED,SK) + (WRD,SEM, SK) 93.78 | 56.55 | 41.36 | 47.77
7 | SicprED,0P.cOMM) (WRD, j, SK) 93.55 | 54.26 | 39.50 | 45.71
8 Y jescopes\SENT(WRD, j, SK) 93.82 | 57.21 | 40.28 | 47.26
9 | T,escopes(WRD, j, SK) 93.63 | 55.15 | 39.52 | 46.03
10 (WRD, PRED,SK) + (POS, PRED, SK) 93.03 | 49.39 | 53.53 | 51.37
11 | Sic(prep.seay (WRD, i, SK) + (POS, i, SK)) 93.86 | 55.60 | 53.22 | 54.38
12 | Zic(prED,sEM}{WRD, 4, SK) + (GRAMw rp, PRED, SK) 94.01 | 58.19 | 45.88 | 51.29
13 | Sie(prED,sEM}(WRD, 4, SK)+¥;c(prED,OP,cOMM} (GRAMwRrD,j, SK) | 93.83 | 56.28 | 45.64 | 50.40
(WRD, i, SK) + (GRAMw rp, PRED, SK) +
14 | ‘€{PRED,SEM} 93.98 | 56.59 | 53.92 | 55.21
(GRAMpos, PRED,SK)
15 | Sie(prED,sEMy (WRD, i, SK) + (WRDGN , i, SK)) 93.97 | 57.08 | 49.46 | 53.00
16 | Sic(prep.sEmy (WRD,i, SK) + (POSgN, i, SK)) 93.97 | 56.60 | 52.42 | 54.42
((WRD, i, SK) + (WRDgnN , i, SK) + (POS, i, SK) +
17 | i€{PRED,SEM} 93.85 | 55.16 | 57.00 | 56.06
(POSgN, i, SK))
((WRD, i, SK) + (WRDgn , i, SK) + (POS, i, SK) +
18 | ‘€{PRED,SEM} 94.21| 57.64| 59.81| 58.70

(POSGN,i, SK)Y) + (GRAMw gp, PRED, SK) + (GRAMpos, PRED, SK)
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The next part of Table 7.6 shows the contribution of PO.S kernels when added to
W RD kernels. Adding the corresponding PO.S kernel to the W RD kernel with PRED
scope (10) results in an improvement by more than 5% in F-Measure. We get another
improvement by approximately 3% when the corresponding SEM kernels (11) are added.
This suggests that POS is an effective generalization and that the two scopes PRED
and SEM are complementary.

For the GRAMyy rp kernel, the PRED scope (12) is again most effective. We assume
that this kernel most likely expresses meaningful syntactic relationships for our task.
Adding the GRAMpos kernel (14) gives another boost by almost 4%.

Generalized sequence kernels are important. Adding the corresponding W RDapn ker-
nels to the WRD kernel with PRED and SEM scope results in an improvement from
47.77% (1) to 53.00% (15) which is a bit less than the combination of WRD and POS )
kernels (16). However, these types of kernels seem to be complementary since their combi-
nation provides an F-Measure of 56.06% (17). This kernel combination already performs
on a par with the manually designed vector kernel though less information is taken into
consideration.

Finally, the best combination of sequence kernels (18) comprises WRD, W RDgn,
POS, and POSgn kernels with PRED and SEM scope combined with a GRAMw rp
and a GRAMpopgs kernel with PRED scope. The performance of 58.70% significantly

outperforms the vector kernel.

7.5.4. Tree Kernels (TKs)

Table 7.7 shows the results of the different tree kernels. The table is divided into two
halves. The left half (A) are plain tree kernels, whereas the right half (B) are the aug-
mented tree kernels. As far as CONST kernels are concerned, there is a systematic
improvement by approximately 2% using tree augmentation. This proves that further
non-syntactic knowledge added to the tree itself results in an improved F-Measure. How-
ever, tree augmentation does not have any impact on the PAS kernels.

The overall performance of the tree kernels shows that they are much more expres-
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Table 7.7.: Results of the different tree kernels.

A

t=CONST,j = PAS

B

t =CONSTayg,j = PASava

ID | Kernel Acc. | Prec.| Rec. | F. Acc. Prec. | Rec. F.
19 | (i, PRED, STK) 92.89 | 48.68 | 62.34 | 54.67 | 93.12 | 49.99 | 65.04 | 56.52
20 | (i, 0P, STK) 93.04 | 49.49 | 54.71 | 51.96 | 93.27 | 50.93 | 59.06 | 54.68
21 | (i, COMM, STK) 92.76 | 47.79 | 55.89 | 51.50 | 92.96 | 49.03 | 58.85 | 53.47
22 | (i, SEM, STK) 93.70 | 54.40 | 52.13 | 53.23 | 93.90 | 55.47 | 56.59 | 56.03
23 | (i, SENT, STK) 92.42 | 44.34 | 39.92 | 41.99 | 92.50 | 45.20 | 42.40 | 43.74
24 | Yyc(prED.oP.coran ik, STK) | 93.62| 53.26 | 60.05 | 56.44 | 93.77 | 54.06 | 6321 | 58.26
25 | Yype(prep,sma ik, STK) 93.90 | 55.26 | 59.50 | 57.30 | 94.13 | 56.57 | 63.12 | 59.67
26 | YpeseopesspnTlis by STE) 94.09 | 56.65 | 59.68 | 58.11 | 94.21 | 57.21 | 62.61 | 59.80
27 | Y scopes(is ks STK) 94.14 | 57.41 | 57.88 | 57.63 | 94.29 | 58.11 | 61.10 | 59.56
28 | (j, SENT, PTK) 92.11 | 45.02 | 69.96| 53.51 | 91.92 | 44.27 | 67.39 | 53.43
29 (i, k, STK) + 94.05 | 55.68 | 66.01 | 60.40| 94.16 | 56.18 | 68.36 | 61.67

ke{PRED,SEM}

(PAS,SENT, PTK)
30 (i,k, STK) + 94.30| 57.95| 62.62 | 60.19 | 94.36 | 58.07 | 64.94 | 61.31

k€ Scopes\SENT

(PAS,SENT, PTK)
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sive than sequence kernels. For instance, in order to obtain the same performance as of
(CONSTsua, PRED,STK) (19B), i.e. a single kernel with an F-Measure 56.52, it re-
quires several sequence kernels, hence much more effort. The performance of the different
CONST kernels relative to each other resembles the results of the W RD kernels. The
best scope is PRED (19). By far the worst performance is obtained by the SENT scope
(23). The combination of PRED and SEM scope achieves an F-Measure of 59.67%
(25B), which is already slightly better than the best configuration of sequence kernels
(18).

The performance of the PAS kernel (28A) with an F-Measure of 53.51% is slightly
worse than the best single plain CON ST kernel (19A). The PAS kernel and the CON ST
kernels are complementary, since their best combination (29B) achieves an F-Measure of
61.67% which is significantly better than the best combination of CON ST kernels (26B)

or sequence kernels (18).

7.5.5. Combination of Kernel Types

Table 7.8 lists the results of the different kernel type combinations. The convolution
kernels outperform VK. However, if VK is added to the best TKs, the best SKs, or both,
a slight increase in F-Measure is achieved. The best performance with an F-Measure of
62.61% is obtained by combining all kernels though the best SKs only have a marginal

impact.

7.6. Error Analysis

It is difficult to state precisely what the shortcomings of the proposed approach presented
in this chapter are. We found that the most predictive scope for the different kernels
is the predicate scope. However, we found that our automatic recognition of the near-
est predicate is not always correct. For instance, we assume that the nearest predicate
(according to the syntactic relation path) is also the predicate which relates to the candi-

date opinion holder. There are several cases, in which this is, unfortunately, not the case.
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Table 7.8.: Results of kernel combinations.

Combination Acc. Prec. | Rec. F.

VK 93.63 53.28 59.37 56.16
best SKs 94.21 57.64 59.81 58.70
best TKs 94.16 56.18 68.36 | 61.67*
VK -+ best SKs 94.34 58.44 61.27 59.82*
VK + best TKs 94.33 57.41 68.03 62.27*
best SKs + best TKs 94.49 59.22 | 63.96 61.49*
VK + best SKs + best TKs | 94.53 | 59.10 66.57 62.61*F

*

: significantly better than best SKs; T: significantly better than best TKs; all convolution kernels are significantly
better than VK; statistical significance is based on a paired t-test using p < 0.05

Moreover, the recognition of nominalizations depends on a lexicon of those predicates.
However, this lexicon has only a limited coverage and several entries are ambiguous. For
instance, opposition may be a predicate but it can also refer to the political parties op-
posing a government. Our procedure cannot make such a distinction. It is fairly difficult
to estimate the impact of these shortcomings as we believe that by using a combination
of different kernels with different scopes, the incorrect processing of individual structures
may be compensated by the correct processing of other structures. For instance, the
predicate scope may be computed incorrectly but the semantic scope may still comprise
the actual predicate relating to the candidate opinion holder.

We encountered similar problems for the semantic role labeling. For instance, the
assignment of roles for arguments of nominalizations is often incorrect (either incorrect
constituents are chosen or an argument is not assigned to a constituent at all). Since,
however, the relation between nominalizations and their arguments is usually restricted
to short-range dependencies, these relations may often be implicitly encoded in the con-

stituency parse subtrees that we use.
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7.7. Conclusion

In this chapter, we compared convolution kernels for opinion holder extraction. Similar
to the insights gained by the text classification tasks in sentiment analysis presented in
previous chapters, opinion holder extraction, too, requires the consideration on various
linguistic aspects. In terms of convolution kernels we obtained following results:

We showed that, in general, a combination of two scopes, namely the scope immediately
encompassing the candidate opinion holder and its nearest predicate and the subclause
containing the candidate opinion holder, provide best performance. The usage of the
entire sentence for convolution kernels, i.e. the scope which requires no linguistically
motivated processing, results in a very poor performance.

The fact that the scopes having the nearest opinion word or communication word as
a boundary do not perform best does not mean that the knowledge of these semantic
categories is not relevant for this type of classification. Indeed, we found that generalizing
sequences or augmenting trees with these categories (rather than using them for scope
boundaries) results in a consistent improvement.

Tree kernels containing constituency parse information and semantic roles achieve bet-
ter performance than sequence kernels or vector kernels using a manually designed feature
set. A combination of different kernel types is effective. Best performance is achieved if
all kernels are combined. These results suggest that various levels of representation in

various types of kernels are a promising solution for opinion holder extraction.
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8. Conclusion & Future Work

8.1. Conclusion

In this thesis, we presented various subtasks in sentiment analysis in which the consid-
eration of linguistic knowledge is useful. Linguistic knowledge can be incorporated in
several ways as will be presented below:

In sentence-level polarity classification, we added linguistic features and features count-
ing polar expressions to bag of words. The addition of features counting polar expressions
to bag of words results in a great performance gain. However, to some extent general
linguistic features not containing knowledge about polarity, such as depth of a word leaf
node in the syntactic parse tree or WordNet hypernyms, can also increase performance
in the absence of polar expressions. In addition, the combination of the two feature types
(on top of bag of words) is also slightly better than the best individual result (i.e. the
combination of bag of words and polar expressions). Therefore, in order to obtain the
best overall result, the inclusion of linguistic features is necessary.

In order to distinguish between definite and indefinite polar sentences, we devised a
rule-based classifier based on features derived from linguistic insights, such as polar ex-
pressions indicating middle-of-the-road polarity and various groups of function words (e.g.
detensifiers or concessive conjunctions). The resulting classifier performs on a par with
a k-Nearest Neighbour Classifier and also outperforms Support Vector Machines when
less than labeled 300 training instances are considered. The rule-based classifier may be
outperformed by a supervised classifier, such as Support Vector Machines, but unlike the
supervised classifier it does not require labeled in-domain data but exclusively relies on

linguistic insights which should be generally applicable.
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In topic-related polarity classification, a ranker using polar expressions, some lightweight
linguistic features (based on part-of-speech information, strength of polarity, intensifica-
tion, and negation), and a feature accounting for the spatial distance between polar
expression and topic word clearly outperforms a cascade of sentence-retrieval used in
conjunction with two text classifiers using simple bag-of-words features to select subjec-

tive sentences and sentences whose polarity matches the given target polarity.

In a detailed study on the effectiveness of bootstrapping algorithms for document-level
polarity classification, we found that the incorporation of linguistic knowledge (that is
relevant for the task) is actually a requirement for the pertaining bootstrapping algorithm
to work well. Semi-supervised learning depends on a very predictive feature set. On a
cross-domain evaluation the usage of in-domain adjectives and adverbs, i.e. the restriction
of the feature set towards a particular linguistic part of speech, is considerably more
effective than a plain bag-of-words feature set in which frequent non-stopwords are used.
Unfortunately, the incorporation of further linguistic knowledge in that class of classifiers
is not effective. The situation is different, however, if one considers another bootstrapping
method in which a supervised classifier self-trained by a rule-based classifier is considered.
In contrast to machine learning classifiers where some considerable performance is usually
already achieved by employing bag of words, be it unrestricted or restricted as in the
case of semi-supervised learning! — which can be difficult to beat in certain tasks, a
rule-based classifier is usually more sensitive to the incorporation of linguistic knowledge.
We found that the more linguistic knowledge about contextual polarity is encoded in
a rule-based classifier (i.e. basic word sense disambiguation, negation modeling, and
emphasizing certain constructions/expressions which convey a higher polar intensity),
the better the self-trained classifier becomes. Not only can this insight be considered a
general justification for linguistic modeling of polarity but it can also be regarded as an
incentive for further linguistic modeling beyond the modeling that has been presented in

this thesis (see Section 8.2 for ideas of more sophisticated rule-based classification).

Finally, modeling opinion holder extraction with convolution kernels also requires the

!The usage of in-domain adjectives and adverbs should still be considered a bag-of-words feature set.
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consideration of linguistic insights. For a good performance various levels of represen-
tation (beyond plain sequential word information), in particular, deeper linguistic in-
formation, as provided by parse trees or semantic-role labeling, are required and work
effectively when used in tree kernels. Moreover, a combination of two scopes, a scope with
the candidate opinion holder and its nearest predicate being the boundaries and a scope
with the subclause in which the candidate opinion holder is embedded, outperform other
scopes, in particular, the simplest scope requiring no linguistically motivated processing,

i.e. the entire sentence.

Unfortunately, the answer to the question of what gain in general knowledge has been
achieved in this thesis is less straightforward than pinpointing certain effective ways of
incorporating linguistic knowledge in specific subtasks in sentiment analysis. This thesis
did not propose a new theory accounting for sentiment analysis as a whole and I have
doubts whether such a theory can ever be devised. Moreover, it might not even be nec-
essary. In this thesis, I instead tried to determine appropriate methods from natural
language processing (NLP) for specific subtasks in sentiment analysis (and this usually
involved linguistic feature engineering). I assume that each subtask can be character-
ized by specific task-independent properties or parameters settings which suggest the

applicability of certain NLP methods.

For instance, in this thesis it could be established that for supervised text classifica-
tion in sentiment analysis the level of granularity is a property which decides on which
features are likely to be effective. In supervised document-level classification, bag of
words (including higher order ngrams) perform well while in sentence-level classification,
more advanced linguistic features and generalizing features relying on the knowledge of
subjective expressions are effective. Not only the level of granularity but also the type
of classifier has an impact on the effectiveness of linguistic knowledge. For example, in
document-level rule-based classification the incorporation of linguistic knowledge is far
more effective than in supervised machine learning. I also considered the task of opinion
holder extraction which bears some significant similarity to common NLP tasks, such as

relation extraction and semantic role labeling. It is, therefore, no surprise that sequen-
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tial information and structural information in the form of convolution kernels are helpful
which have also been successfully applied to those common NLP tasks mentioned above.

These examples support the view that the effectiveness of certain NLP methods on spe-
cific subtasks in sentiment analysis can be explained with the help of specific properties
of those subtasks. I argue that establishing the dependencies between settings and effec-
tiveness of NLP methods requires general knowledge about NLP methods rather than
an immense task-specific knowledge. The task-specific knowledge is, however, useful for
fine-tuning the feature set and thus obtain state-of-the-art performance. Furthermore,
these regularities should also enable the prediction of appropriate NLP methods if a new

subtask in sentiment analysis were considered.

8.2. Future Work

This section briefly outlines possible extensions of methods presented in this thesis and
other possible scenarios related to these tasks or methods which may be worthwhile

examining in future work:

e Bootstrapping Supervised Classifiers with more Complex Rule-Based
Classification: Our experiments on bootstrapping supervised classifiers with rule-
based classification (Chapter 6) suggest that the more complex the rule-based clas-
sifier is, the better the supervised classifier performs. Therefore, more complex
rule-based polarity classifiers than the ones presented in this thesis might be worth-

while examining.

One way of extending the rule-based classifier could be by assigning more fine-
grained weights to polar expressions. In this thesis, we proposed the weight of 1
to plain polar expressions and double the weight if the polar expression happens
to be in an intensifying context. Brooke et al. (2009) annotate all polar expres-
sions in a polarity lexicon with polar scores on a scale between —5 and +5. Such
additional annotation should enable a more accurate distinction between different

polar expressions.
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Another way of extending the current rule-based classification could be by enhanc-
ing the negation model. Currently, we use fixed window size for the scope of a
negation. However, recently Jia, Yu, and Meng (2009) showed that polarity classi-
fication improves the more linguistically accurate the scope model becomes. The

best performance is obtained by a scope model using syntactic information.

Furthermore, some kind of compositional semantics for sentiment analysis, such
as (Moilanen & Pulman, 2007), could be employed in order to combine the scores of

2 in order to compute the score

polar expressions from different clauses in a sentence
of the overall sentence. Currently, the scores of disambiguated polar expressions

are just summed.

Bootstrapping Methods using Rule-Based Classification Applied to Other
Tasks: The bootstrapping method using rule-based classification as presented in
Chapter 6 may also be effective for the other subtasks in sentiment analysis which

have also been discussed in this thesis.

The task of distinguishing between indefinite polarity and definite polarity as dis-
cussed in Chapter 4 might be a suitable candidate for this method. In this task,
two different types of features (i.e. bag of words and a set of linguistically mo-
tivated high-level features) similar to the two feature sets used for bootstrapping
(traditional) polarity classifiers had been presented. Due to these similarities, the

application of this bootstrapping method should be fairly straightforward.

The application of this method to opinion holder extraction, however, might be
more difficult as a sufficiently robust domain-independent rule-based classifier is
required for this task. Given that even fully supervised classifiers with a rich feature
set using various levels of information still produce comparably low performance,

the construction of such a rule-based classifier appears challenging.

e Convolution Kernels for Target Extraction of Opinions: As convolution

2 . . . . .
Thus, one could differentiate between polar expressions from the main clause and polar expressions

from subordinate clauses.
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kernels applied to opinion holder extraction produced promising results, one might
also wonder whether similar results can be obtained for targets of opinions. The
major problem in this scenario is that there is a significantly greater diversity of
linguistic units representing a target. While on the MPQA-corpus opinion holders
tend to be realized as noun phrases, targets can assume virtually any shape of
constituent. This is quite intuitive since opinions may be directed towards a certain
person, thing, behaviour, attitude, or event. To make it worse, we found that there
is a considerable amount of targets which cannot be matched onto any linguistic
constituent. We observed that this is often the case when the target is an entire
proposition. Apparently, manually annotating the scope of such complex structures
is more difficult than that of simple concrete objects, such as persons or things.
Even if those cases were neglected, the heterogeneity of targets would increase the
instance space dramatically which would have a severe impact on the running time

of the convolution kernel algorithm.

Alternatively, these experiments could also be carried out on corpora providing
similar annotation. The JDPA Sentiment Corpus (Kessler et al., 2010) or the
Darmstadt Service Review Corpus (Toprak et al.,; 2010) may be more suitable, since
they focus on product/web-serves. Thus, the entities labeled as opinion targets are

more restricted to specific linguistic entities, such as noun phrases.

Unsupervised Generalization for Sentiment Analysis: Throughout many
experiments in this thesis, generalizing from lexical units often resulted in an im-
provement of performance, e.g. the knowledge of polar expressions or WordNet
hypernyms on sentence-level polarity classification helped when corresponding fea-
tures were added to bag of words. Generalization is always useful when there is
sparse lexical information. This is usually the case when fine-grained text classifi-
cation, such as sentence level or expression level, or entity extraction is considered.
Unfortunately, all types of generalization we used in this work have been knowledge-
driven. In future work, one might examine various unsupervised generalization

techniques (e.g. clustering) for their effectiveness in sentiment analysis.
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e Subjectivity Word Sense Disambigation: As it has been suggested in this
thesis several times, one major downside of the polarity lexicons used is that they
do not properly distinguish between the different senses of polar expressions. An
expression may be subjective only if it conveys a particular sense. In several exper-
iments, we carried out some basic disambiguation using part-of-speech information,
however, there are many ambiguous polar expressions which have a unique part
of speech. For those cases, we have been unable to provide a suitable disambigua-
tion. Though some more sophisticated form of subjectivity word sense disam-
biguation (Akkaya et al., 2009) might be worthwhile to pursue in future work, the

necessary resources (i.e. lexicons and labeled corpora) are currently not available.
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A. Evaluation Measures

A.1. Measures for Classification and Extraction

The most common evaluation measure for classification is Accuracy:

#correct instances

(A1)

Accuracy =
#correct instances + #incorrect instances

For classification tasks in which the performance of individual classes is to be evalu-
ated, measures other than Accuracy are usually considered. This is in particular true
of extraction tasks, in which only the positive class, i.e. the instances to be extracted,
is of interest. For these cases, Precision, Recall, and F-Measure are considered. They
are defined by true positives which are the instances which belong to the class to be
evaluated and are correctly classified, false positives which are not instances of the class
to be evaluated but are misclassified as such, and false negatives which are instances of
the class to be evaluated but are misclassified as instances of another class.

The measure that evaluates the proportion of correctly classified instances (of the
class that is to be evaluated) within the set of instances predicted to be of that class is

Precision which is formally defined by Formula A.2:

#true positives (A2)

Precision =
#true positives + # false positives

Precision does not take into consideration the instances of a class that have been er-
roneously assigned to another class. This is, however, done by Recall whose formal

definition is given in Formula A.3:

true positives
Recall = 7 p

A3
#true positives + # false negatives (4.3)
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Finally, F-Measure is an evaluation measure combining the complementary measures
Precision and Recall. In this thesis, the most common form, the so-called harmonic mean,
is used. The formal definition of this measure is given in Formula A .4:

2 - Precision - Recall

F-Measure = A4
casure Precision + Recall (A4)

A.2. Measures for Ranking

A fairly simple ranking measure evaluating the rankings for a set of queries @) is Mean
Reciprocal Rank (MRR) in which for each query the correct instance with the highest

rank is considered. Its formal definition is given in Formula A.5:

MRR = EQ: ! (A.5)
Q] — rank; '

While MRR is fairly restricted since only one correct instance is considered, Precision

at Rank n (Prec@(n)) considers all correct instances at the top n ranks:

Q . C 1.
1 t inst f thin t k
Preca(n) = Z #correct instances for query ¢ within top n ranks (A.6)

_@izl

n

Note that this definition is also sometimes referred to as Awverage Precision at Rank n
since one actually calculates the average of the precision of individual rankings for a set
of queries.

Finally, Mean Average Precision (MAP) is a measure which considers all correct
instances within a ranking and not just the highest ranked instance or all instances to
a certain cut-off level. It completely traverses each ranking and sums at each rank n
at which a correct instance is found Prec@(n). This is additionally normalized by the

number correct instances for that query in the entire collection:

Yoo (Prec@(n) - 5(r)) (A7)

Q
1
MAP = —
Q| ; # correct instances for ¢ within the entire collection

where
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if instance at rank n is correct

else

(A.8)

159



References

Agarwal, R., T.V., P., & Chakrabarty, S. (2008). “I Know What You Feel”: Analyzing
the Role of Conjunctions in Automatic Sentiment Analysis. In Proceedings of the
International Conference on Natural Language Processing (GoTAL).

Akkaya, C., Wiebe, J., & Mihalcea, R. (2009). Subjectivity Word Sense Disambigua-
tion. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP).

Andreevskaia, A., & Bergler, S. (2008). When Specialists and Generalists Work Together:
Overcoming Domain Dependence in Sentiment Tagging. In Proceedings of the An-
nual Meeting of the Association for Computational Linguistics: Human Language
Technologies (ACL/HLT). Columbus, OH, USA.

Aue, A., & Gamon, M. (2005). Customizing Sentiment Classifiers to New Domains: a
Case Study. In Proceedings of Recent Advances in Natural Language Processing
(RANLP). Borovets, Bulgaria.

Banea, C., Mihalcea, R., & Wiebe, J. (2008). A Bootstrapping Method for Building
Subjectivity Lexicons for Language with Scarce Resources. In Proceedings of the
Conference on Language Resources and FEvaluation (LREC).

Banea, C., Mihalcea, R., Wiebe, J., & Hassan, S. (2008). Multilingual Subjectivity
Analysis Using Machine Translation. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Beineke, P., Hastie, T., & Vaithyanathan, S. (2004). The Sentimental Factor: Improv-
ing Review Classification via Human-Provided Information. In Proceedings of the

Annual Meeting of the Association for Computational Linguistics (ACL).

160



Bethard, S., Yu, H., Thornton, A., Hatzivassiloglou, V., & Jurafsky, D. (2004). Extract-
ing Opinion Propositions and Opinion Holders using Syntactic and Lexical Cues. In
Computing Attitude and Affect in Text: Theory and Applications. Springer-Verlag.

Blitzer, J., Dredze, M., & Pereira, F. (2007). Biographies, Bollywood, Boom-boxes and
Blenders: Domain Adaptation for Sentiment Classification. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics (ACL). Prague,
Czech Republic.

Bloom, K., Garg, N., & Argamon, S. (2007). Extracting Appraisal Expressions. In
Proceedings of the Human Language Technology Conference of the North American
Chapter of the ACL (HLT/NAACL).

Bloom, K., Stein, S., & Argamon, S. (2007). Appraisal Extraction for News Opinion
Analysis at NTCIR-6. In Proceedings of the NTCIR-6 Workshop Meeting. Tokyo,
Japan.

Breck, E., Choi, Y., & Cardie, C. (2007). Identifying Expressions of Opinion in Con-
text. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI).

Brooke, J., & Hurst, M. (2009). Patterns in the Stream: Exploring the Interaction
of Polarity, Topic, and Discourse in a Large Opinion Corpus. In Proceedings of
the International CIKM Workshop on Topic-Sentiment Analysis for Mass Opinion
Measurement (TSA). Hong Kong, China.

Brooke, J., Tofiloski, M., & Taboada, M. (2009). Cross-Linguistic Sentiment Analysis:
From English to Spanish. In Proceedings of Recent Advances in Natural Language
Processing (RANLP).

Bunescu, R. C., & Mooney, R. J. (2005). Subsequence Kernels for Relation Extraction. In
Proceedings of the Conference on Neural Information Processing Systems (NIPS).
Vancouver, Canada.

Charniak, E. (2000). A Maximum-Entropy-Inspired Parser. In Proceedings of the Confer-
ence on North American Chapter of the Association for Computational Linguistics

(ANLP) (pp. 132 139). Seattle, Washington.

161



Chesley, P., Vincent, B., Li Xu, F., & Srihari, R. K. (2005). Using Verbs and Adjectives
to Automatically Classify Blog Sentiment. In Proceedings of the AAAI Symposium
on Computational Approaches to Analysing Blogs (AAAI-CAAW).

Choi, Y., Breck, E., & Cardie, C. (2006). Joint Extraction of Entities and Relations for
Opinion Recognition. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP). Sydney, Australia.

Choi, Y., & Cardie, C. (2008). Learning with Compositional Semantics as Structural
Inference for Subsentential Sentiment Analysis. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP).

Choi, Y., & Cardie, C. (2009). Adapting a Polarity Lexicon using Integer Linear Program-
ming for Domain-Specific Sentiment Classification. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP).

Choi, Y., Cardie, C., Riloff, E., & Patwardhan, S. (2005). Identifying Sources of Opinions
with Conditional Random Fields and Extraction Patterns. In Proceedings of the
Conference on Human Language Technology and Empirical Methods in Natural
Language Processing (HLT/EMNLP). Vancouver, Canada.

Collins, M., & Duffy, N. (2002). New Ranking Algorithms for Parsing and Tagging. In
Proceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL). Philadelphia, USA.

Dang, H. T. (2009). Overview of the TAC 2008 Opinion Question Answering and
Summarization Tasks. In Proceedings of the Text Analysis Conference (TAC).
Gaithersburg, MD, USA.

Dasgupta, S., & Ng, V. (2009). Mine the Easy, Classify the Hard: A Semi-Supervised
Approach to Automatic Sentiment Classification. In Proceedings of the Joint Con-
ference of the Annual Meeting of the Association for Computational Linguistics and
the International Joint Conference on Natural Language Processing of the Asian
Federation of Natural Language Processing (ACL/IJCNLP). Suntec, Singapore.

Dave, K., Lawrence, S., & Pennock, D. M. (2003). Mining the Peanut Gallery: Opinion

Extraction and Semantic Classification of Product Reviews. In Proceedings of the

162



International World Wide Web Conference (WWW).

Dias, G., Lambov, D., & Noncheva, V. (2009). High-level Features for Learning Subjec-
tive Language across Domains. In Proceedings of the International AAAI Confer-
ence on Weblogs and Social Media (ICWSM).

Ding, X., & Liu, B. (2007). The Utility of Linguistic Rules in Opinion Mining. In
Proceedings of the ACM Special Interest Group on Information Retrieval (SIGIR).

Du, W., & Tan, S. (2009). An Iterative Reinforcement Approach for Fine-Grained
Opinion Mining. In Proceedings of the Human Language Technology Conference of
the North American Chapter of the ACL (HLT/NAACL).

Eguchi, K., & Lavrenko, V. (2006). Sentiment Retrieval using Generative Models. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP).

Esuli, A., & Sebastiani, F. (2006a). Derminining Term Subjectivity and Term Orienta-
tion for Opinion Mining. In Proceedings of the Conference on Furopean Chapter of
the Association for Computational Linguistics (EACL).

Esuli, A., & Sebastiani, F. (2006b). SentiWordNet: A Publicly Available Lexical Resource
for Opinion Mining. In Proceedings of the Conference on Language Resources and
FEvaluation (LREC). Genova, Italy.

Esuli, A., & Sebastiani, F. (2007). PageRanking WordNet Synsets: An Application
to Opinion Mining. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL).

Fillmore, C. J., Johnson, C. R., & Petruck, M. R. (2003). Background to FrameNet.
International Journal of Lexicography, 16, 235 — 250.

Finkel, J. R., Grenager, T., & Manning, C. (2005). Incorporating Non-local Information
into Information Extraction Systems by Gibbs Sampling. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics (ACL). Ann
Arbor, USA.

Gamon, M. (2004). Sentiment Classification on Customer Feedback Data: Noisy Data,

Large Feature Vectors, and the Role of Linguistic Analysis. In Proceedings of

163



the International Conference on Computational Linguistics (COLING). Geneva,
Switzerland.

Gerani, S., Carman, M., & Crestani, F. (2009). Investigating Learning Approaches
for Blog Post Opinion Retrieval. In Proceedings of the FEuropean Conference in
Information Retrieval (ECIR).

Hatzivassiloglou, V., & McKeown, K. R. (1997). Predicting the Semantic Orientation of
Adjectives. In Proceedings of the Conference on European Chapter of the Associa-
tion for Computational Linguistics (EACL) (pp. 174-181). Madrid, Spain.

He, B., Macdonald, C., He, J., & Ounis, I. (2008). An Effective Statistical Approach to
Blog Post Opinion Retrieval. In Proceedings of the Conference on Information and
Knowledge Management (CIKM).

Hiroshi, K., Tetsuya, N., & Hideo, W. (2004). Deeper Sentiment Analysis Using Ma-
chine Translation Technology. In Proceedings of the International Conference on
Computational Linguistics (COLING).

Hu, M., & Liu, B. (2004). Mining and Summarizing Customer Reviews. In Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD). Seattle, WA USA.

Hyland, K. (1998). Hedging in Scientific Research Articles. John Benjamins.

Jakob, N., & Gurevych, I. (2010a). Extracting Opinion Targets in a Single- and Cross-
Domain Setting with Conditional Random Fields. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP). Boston, MA,
USA.

Jakob, N., & Gurevych, I. (2010b). Using Anaphora Resolution to Improve Opinion
Target Idenfication in Movie Reviews. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL). Uppsala, Sweden.

Jason, G. (1988). Hedging as a Fallacy of Language. Informal Logic, 10(3), 169 — 175.

Jia, L., Yu, C., & Meng, W. (2009). The Effect of Negation on Sentiment Analysis
and Retrieval Effectiveness. In Proceedings of the Conference on Information and

Knowledge Management (CIKM).

164



Joachims, T. (1999a). Making Large-Scale SVM Learning Practical. In B. Scholkopf,
C. Burges, & A. Smola (Eds.), Advances in Kernel Methods - Support Vector Learn-
ing. MIT Press.

Joachims, T. (1999b). Transductive Inference for Text Classification using Support
Vector Machines. In Proceedings the International Conference on Machine Learning
(ICML).

Joachims, T. (2003). Transductive Learning via Spectral Graph Partitioning. In Pro-
ceedings the International Conference on Machine Learning (ICML). Washington,
D.C., USA.

Karlgren, J., Eriksson, G., Téackstrom, O., & Sahlgren, M. (2010). Between Bags and
Trees - Constructional Patterns in Text Used for Attitude Identification. In Pro-
ceedings of the European Conference in Information Retrieval (ECIR).

Kennedy, A., & Inkpen, D. (2005). Sentiment Classification of Movie Reviews Using Con-
textual Valence Shifters. In Proceedings of the Workshop on the Analysis of Formal
and Informal Information Exchange during Negotiations (FINEXIN) (Vol. 22).

Kessler, J. S., Eckert, M., Clarke, L., & Nicolov, N. (2010). The ICWSM JDPA 2010
Sentiment Corpus for the Automotive Domain. In Proceedings of the Interna-
tional AAAI Conference on Weblogs and Social Media Data Challange Workshop
(ICWSM-DCW).

Kessler, J. S., & Nicolov, N. (2009). Targeting Sentiment Expressions through Supervised
Ranking of Linguistic Configurations. In Proceedings of the International AAAI
Conference on Weblogs and Social Media (ICWSM). San Jose, CA, USA.

Kilicoglu, H., & Bergler, S. (2008). Recognizing Speculative Language in Biomedical
Research Articles: A Linguistically Motivated Perspective. BMC Bioinformatics,
9 Supplement.

Kim, J., Li, J.-J., & Lee, J.-H. (2009). Discovering the Discriminative Views: Measuring
Term Weights for Sentiment Analysis. In Proceedings of the Joint Conference of
the Annual Meeting of the Association for Computational Linguistics and the Inter-

national Joint Conference on Natural Language Processing of the Asian Federation

165



of Natural Language Processing (ACL/IJCNLP).

Kim, S.-M., & Hovy, E. (2005). Identifying Opinion Holders for Question Answering in
Opinion Texts. In Proceedings of AAAI-05 Workshop on Question Answering in
Restricted Domains. Pittsburgh, USA.

Kim, S.-M., & Hovy, E. (2006). Extracting Opinions, Opinion Holders, and Topics
Expressed in Online News Media Text. In Proceedings of the ACL Workshop on
Sentiment and Subjectivity in Text. Sydney, Australia.

Kingsbury, P., & Palmer, M. (2002). From TreeBank to PropBank. In Proceedings of the
Conference on Language Resources and Evaluation (LREC). Las Palmas, Spain.

Klein, D., & Manning, C. D. (2003). Accurate Unlexicalized Parsing. In Proceedings
of the Annual Meeting of the Association for Computational Linguistics (ACL).
Sapporo, Japan.

Klenner, M., Petrakis, S., & Fahrni, A. (2009). Robust Compositional Polarity Classifica-
tion. In Proceedings of Recent Advances in Natural Language Processing (RANLP).
Borovets, Bulgaria.

Kobayakawa, T. S., Kumano, T., Tanaka, H., Okazaki, N., Kim, J.-D., & Tsujii, J.
(2009). Opinion Classification with Tree Kernel SVM Using Linguistic Modality
Analysis. In Proceedings of the Conference on Information and Knowledge Man-
agement (CIKM).

Koppel, M., & Schler, J. (2006). The Importance of Neutral Examples for Learning
Sentiment. Computational Intelligence, 22(2), 100 — 109.

Kudo, T., & Matsumoto, Y. (2005). A Boosting Algorithm for Classification of Semi-
Structured Text. In Proceedings of the Conference on Human Language Technology
and Empirical Methods in Natural Language Processing (HLT/EMNLP).

Li, Y., Bontcheva, K., & Cunningham, H. (2007). Experiments of Opinion Analysis
on the Corpora MPQA and NTCIR-6. In Proceedings of the NTCIR-6 Workshop
Meeting.

Light, M., Qiu, X. Y., & Srinivasan, P. (2004). The Language of Bioscience: Facts,

Speculations, and Statements in Between. In Proceedings of BioLINK.

166



Lin, D. (1998). Dependency-based Evaluation of MINIPAR. In Proceedings of the
Workshop on the Evaluation of Parsing Systems. Granada, Spain.

Liu, B. (2006). Web Data Mining: Exploring Hyperlinks, Contents and Usage Data. In
(chap. 11: Opinion Mining). Springer-Verlag.

Liu, B., Hu, M., & Cheng, J. (2005). Opinion Observer: Analyzing and Comparing Opin-
ions on the Web. In Proceedings of the International World Wide Web Conference
(WWW) (pp. 342 351).

Liu, F., Li, B., & Liu, Y. (2009). Finding Opinionated Blogs Using Statistical Classifiers
and Lexical Features. In Proceedings of the International AAAI Conference on
Weblogs and Social Media (ICWSM).

Macdonald, C., & Ounis, I. (2006). The TREC Blog06 Collection (Tech. Rep. No. TR-
2006-226).

Macdonald, C., Ounis, I., & Soboroff, I. (2008). Overview of the TREC-2007 Blog Track.
In Proceedings of the Text Retrieval Conference (TREC). Gaithersburg, MD, USA:
NIST.

Macleod, C., Grishman, R., Meyers, A., Barrett, L., & Reeves, R. (1998). NOMLEX: A
Lexicon of Nominalizations. In Proceedings of EURALEX. Liege, Belgium.

Matsumoto, S., Takamura, H., & Okumura, M. (2005). Sentiment Classification Using
Word Sub-sequences and Dependency Sub-trees. In Proceedings of the Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD).

McDonald, R., Hannan, K., Neylon, T., Wells, M., & Reynar, J. (2007). Structured Mod-
els for Fine-to-Coarse Sentiment Analysis. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL).

Medlock, B., & Briscoe, T. (2007). Weakly Supervised Learning for Hedge Classification
in Scientific Literature. In Proceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL).

Meena, A., & Prabhabkar, T. (2007). Sentence Level Sentiment Analysis in the Presence
of Conjuncts Using Linguistic Analysis. In Proceedings of the European Conference

in Information Retrieval (ECIR). Rome, Italy.

167



Mei, Q., Ling, X., Wondra, M., Su, H., & Zhai, C. (2007). Topic Sentiment Mixture:
Modeling Facets and Opinions in Weblogs. In Proceedings of the International
World Wide Web Conference (WWW).

Mihalcea, R., Banea, C., & Wiebe, J. (2007). Learning Multilingual Subjective Lan-
guage via Cross-Lingual Projections. In Proceedings of the Annual Meeting of the

Association for Computational Linguistics (ACL).

Miller, G., Beckwith, R., Fellbaum, C., Gross, D., & Miller, K. (1990). Introduction to
WordNet: An On-line Lexical Database. International Journal of Lexicography, 3,
235 244.

Mohammad, S., Dunne, C., & Dorr, B. (2009). Generating High-Coverage Semantic Ori-
entation Lexicons from Overtly Marked Words and a Thesaurus. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP).

Moilanen, K., & Pulman, S. (2007). Sentiment Construction. In Proceedings of Recent
Advances in Natural Language Processing (RANLP). Borovets, Bulgaria.

Moschitti, A. (2006a). Efficient Convolution Kernels for Dependency and Constituent
Syntactic Trees. In Proceedings of the European Conference on Machine Learning
(ECML). Berlin, Germany.

Moschitti, A. (2006b). Making Tree Kernels Practical for Natural Language Learn-
ing. In Proceedings of the Conference on European Chapter of the Association for
Computational Linguistics (EACL). Trento, Italy.

Moschitti, A. (2008). Kernel Methods, Syntax and Semantics for Relational Text Cate-
gorization. In Proceedings of the Conference on Information and Knowledge Man-
agement (CIKM). Napa Valley, USA.

Moschitti, A., Pighin, D., & Basili, R. (2008). Tree Kernels for Semantic Role Labeling.
Computational Linguistics, 34(2), 193  224.

Mullen, T., & Collier, N. (2004). Sentiment Analysis using Support Vector Machines
with Diverse Information Sources. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing (EMNLP).

Narayanan, R., Liu, B., & Choudhary, A. (2009). Sentiment Analysis of Conditional Sen-

168



tences. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP).

Nasukawa, T., & Yi, J. (2003). Sentiment Analysis: Capturing Favorability Using
Natural Language Processing. In Proceedings of the International Conference on
Knowledge Capture (K-CAP). Sanibel Island, FL, USA.

Ng, V., Dasgupta, S., & Arifin, S. M. N. (2006). Examining the Role of Linguistic
Knowledge Sources in the Automatic Identification and Classification of Reviews.
In Proceedings of the International Conference on Computational Linguistics and
Annual Meeting of the Association for Computational Linguistics (COLING/ACL).
Sydney, Australia.

Nguyen, T.-V. T., Moschitti, A., & Riccardi, G. (2009). Convolution Kernels on Con-
stituent, Dependency and Sequential Structures for Relation Extraction. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP). Singapore.

Nigam, K., McCallum, A., Thrun, S., & Mitchell, T. (2000). Text Classification from
Labeled and Unlabeled Documents using EM. Machine Learning, 39(2), 103 134.

Nowson, S. (2009). Scary Films Good, Scary Flights Bad - Topic Driven Feature Selection
for Classification of Sentiment. In Proceedings of the International CIKM Workshop
on Topic-Sentiment Analysis for Mass Opinion Measurement (TSA).

Ounis, I., Macdonald, C., & Soboroff, I. (2008). Overview of the TREC-2007 Blog Track.
In Proceedings of the Text Retrieval Conference (TREC). Gaithersburg, MD, USA.

Ounis, 1., Macdonald, C., & Soboroff, I. (2009). Overview of the TREC Blog Track 2008.
In Proceedings of the Text Retrieval Conference (TREC). Gaithersburg, MD, USA.

Ounis, I., Rijke, M. de, Macdonald, C., Mishne, G., & Soboroff, I. (2007). Overview
of the TREC-2006 Blog Track. In Proceedings of the Text Retrieval Conference
(TREC). Gaithersburg, MD, USA.

Pang, B., & Lee, L. (2004). A Sentimental Education: Sentiment Analysis Using Sub-
jectivity Summarization Based on Minimum Cuts. In Proceedings of the Annual

Meeting of the Association for Computational Linguistics (ACL).

169



Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and
Trends in Information Retrieval, 2(1 2), 1 135.

Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment Classification
using Machine Learning Techniques. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing (EMNLP). Philadelphia, USA.
Picard, R. W. (1997). Affective Computing. MIT Press.

Popescu, A.-M., & Etzioni, O. (2005). Extracting Product Features and Opinions from
Reviews. In Proceedings of the Conference on Human Language Technology and
Empirical Methods in Natural Language Processing (HLT/EMNLP).

Qiu, L., Zhang, W., Hu, C., & Zhao, K. (2009). SELC: A Self-Supervised Model for

Sentiment Classification. In Proceedings of the Conference on Information and
Knowledge Management (CIKM). Hong Kong, China.

Quirk, R., Greenbaum, S., Leech, G., & Svartvik, J. (1985). A Comprehensive Grammar
of the English Language. Longman.

Raaijmakers, S., Troung, K., & Wilson, T. (2008). Multimodal Subjectivity Analysis of
Multiparty Conversation. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Rao, D., & Ravichandran, D. (2009). Semi-Supervised Polarity Lexicon Induction. In
Proceedings of the Conference on European Chapter of the Association for Compu-
tational Linguistics (EACL). Athens, Greece.

Ravichandran, D., Hovy, E., & Och, F. J. (2003). Statistical QA - Classifier vs. Re-
ranker: What’s the Difference. In Proceedings of the ACL Workshop on Multilingual
Summoarization and Question Answering.

Riloff, E. (1996). An Empirical Study of Automated Dictionary Construction for Infor-
mation Extraction. Artificial Intelligence, 85.

Riloff, E., & Wiebe, J. (2003). Learning Extraction Patterns for Recognizing Subjective
Expressions. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Salvetti, F., Reichenbach, C., & Lewis, S. (2006). Opinion Polarity Identification of

170



Movie Reviews. In J. G. Shanahan, Y. Qu, & J. Wiebe (Eds.), Computing Attitude
and Affect in Text: Theory and Applications (pp. 303 316). Springer-Verlag.
Santos, R. L., He, B., Macdonald, C., & Ounis, I. (2009). Integrating Proximity to
Subjective Sentences for Blog Opinion Retrieval. In Proceedings of the Furopean

Conference in Information Retrieval (ECIR).

Sarmento, L., Carvalho, P.; Silva, M. J., & Oliveira, E. de. (2009). Automatic Creation
of a Reference Corpus for Political Opinion Mining in User-Generated Content. In
Proceedings of the International CIKM Workshop on Topic-Sentiment Analysis for
Mass Opinion Measurement (TSA).

Scott, S., & Matwin, S. (1998). Text Classification Using WordNet Hypernyms. In
S. Harabagiu (Ed.), Use of WordNet in Natural Language Processing Systems: Pro-
ceedings of the Conference (pp. 38  44). Somerset, New Jersey: Association for
Computational Linguistics.

Seki, Y., Evans, D. K., Ku, L.-W., Chen, H.-H., Kando, N., & Lin, C.-Y. (2007). Overview
of Opinion Analysis Pilot Task at NTCIR-6. In Proceedings of the NTCIR-6 Work-
shop Meeting. Tokyo, Japan.

Shen, D., Leidner, J. L., Merkel, A., & Klakow, D. (2007). The Alyssa System at TREC
2006: A Statistically-Inspired Question Answering System. In Proceedings of the
Text Retrieval Conference (TREC). Gaithersburgh, MD, USA: NIST.

Snyder, B., & Barzilay, R. (2007). Multiple Aspect Ranking using the Good Grief
Algorithm. In Proceedings of the Human Language Technology Conference of the
North American Chapter of the ACL (HLT/NAACL).

Somasundaran, S., Namata, G., Wiebe, J., & Getoor, L. (2009). Supervised and Unsuper-
vised Methods in Employing Discourse Relations for Improving Opinion Polarity
Classification. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Somasundaran, S., & Wiebe, J. (2009). Recognizing Stances in Online Debates. In
Proceedings of the Joint Conference of the Annual Meeting of the Association

for Computational Linguistics and the International Joint Conference on Natu-

171



ral Language Processing of the Asian Federation of Natural Language Processing
(ACL/IJCNLP).

Somasundaran, S., Wilson, T., Wiebe, J., & Stoyanov, V. (2007). QA with Attitude:
Exploiting Opinion Type Analysis for Improving Question Answering in On-line
Discussions and the News. In Proceedings of the International AAAI Conference
on Weblogs and Social Media (ICWSM).

Spertus, E. (1997). Smokey: Automatic Recognition of Hostile Messages. In Proceedings
of Innovation Applications in Artificial Intelligence (IAAI) (pp. 1058 — 1065).
Stone, P. J., Dumphy, D. C., Smith, M. S., Ogilvie, D. M., & associates. (1966). The

General Inquirer: A Computer Approach to Content Analysis. MIT Press.

Stoyanov, V., & Cardie, C. (2008). Annotating Topics of Opinions. In Proceedings of
the Conference on Language Resources and FEvaluation (LREC).

Tan, S., Cheng, X., Wang, Y., & Xu, H. (2009). Adapting Naive Bayes to Domain
Adaptation for Sentiment Analysis. In Proceedings of the Furopean Conference in
Information Retrieval (ECIR).

Tan, S., Wang, Y., & Cheng, X. (2008). Combining Learn-based and Lexicon-based Tech-
niques for Sentiment Detection without using Labeled Examples. In Proceedings of
the ACM Special Interest Group on Information Retrieval (SIGIR). Singapore.

Taylor, J., & Christianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge
University Press.

Thet, T. T., Na, J.-C., Khoo, C. S., & Shakthikumar, S. (2009). Sentiment Analysis of
Movie Reviews on Discussion Boards using a Linguistic Approach. In Proceedings of
the International CIKM Workshop on Topic-Sentiment Analysis for Mass Opinion
Measurement (TSA).

Toprak, C., Jakob, N., & Gurevych, I. (2010). Sentence and Expression Level Annotation
of Opinions in User-Generated Discourse. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL). Uppsala, Sweden.

Turney, P. (2002). Thumbs up or Thumbs down?: Semantic Orientation Applied to

Unsupervised Classification of Reviews. In Proceedings of the Annual Meeting of

172



the Association for Computational Linguistics (ACL) (p. 417-424). Philadelphia,
Pennsylvania.

Turney, P., & Littman, M. (2003). Measuring Praise and Criticism: Inference of Semantic
Orientation from Association. In Proceedings of ACM Transactions on Information
Systems (TOIS).

Velikovich, L., Blair-Goldensohn, S., Hannan, K., & McDonald, R. (2010). The Viability
of Web-derived Polarity Lexicons. In Proceedings of the Human Language Technol-
ogy Conference of the North American Chapter of the ACL (HLT/NAACL).

Whitelaw, C., Garg, N., & Argamon, S. (2005). Using Appraisal Groups for Senti-
ment Analysis. In Proceedings of the Conference on Information and Knowledge
Management (CIKM) (pp. 625 631). Bremen, Germany.

Wiebe, J. (1994). Tracking Point of View in Narrative. Computational Linguistics, 20(2),
233 287.

Wiebe, J., & Mihalcea, R. (2006). Word Sense and Subjectivity. In Proceedings of the
International Conference on Computational Linguistics and Annual Meeting of the
Association for Computational Linguistics (COLING/ACL).

Wiebe, J., & Riloff, E. (2005). Creating Subjective and Objective Sentence Classifiers
from Unannotated Texts. In Proceedings of the International Conference on In-
telligent Text Processing and Computational Linguistics (CICLing). Mexico City,
Mexico.

Wiebe, J., Wilson, T., Bruce, R., Bell, M., & Martin, M. (2004). Learning Subjective
Language. Computational Linguistics, 30(3).

Wiebe, J., Wilson, T., & Cardie, C. (2003). Annotating Expressions of Opinions and
Emotions in Language. Language Resources and Evaluation, 1, 2.

Wiegand, M., & Klakow, D. (2009a). Predictive Features in Semi-Supervised Learning
for Polarity Classification and the Role of Adjectives. In Proceedings of the Nordic
Conference on Computational Linguistics (NoDaLiDa). Odense, Denmark.

Wiegand, M., & Klakow, D. (2009b). The Role of Knowledge-based Features in Polar-

ity Classification at Sentence Level. In Proceedings of the International FLAIRS

173



conference (FLAIRS).

Wiegand, M., & Klakow, D. (2009¢). Topic-Related Polarity Classification of Blog
Sentences. In Proceedings of the Portuguese Conference on Artificial Intelligence
(EPIA) (pp. 658 669). Springer-Verlag.

Wiegand, M., & Klakow, D. (2010a). Bootstrapping Supervised Machine-learning Polar-
ity Classifiers with Rule-based Classification. In Proceedings of the Workshop on
Computational Approaches to Subjectivity and Sentiment Analysis (WASSA).

Wiegand, M., & Klakow, D. (2010b). Convolution Kernels for Opinioin Holder Extrac-
tion. In Proceedings of the Human Language Technology Conference of the North
American Chapter of the ACL (HLT/NAACL).

Wiegand, M., & Klakow, D. (2010c). Predictive Features for Detecting Indefinite Polar
Sentences. In Proceedings of the Conference on Language Resources and Evaluation
(LREC).

Wilson, T. (2008a). Annotating Subjective Content in Meetings. In Proceedings of the
Conference on Language Resources and Evaluation (LREC).

Wilson, T. (2008b). Fine-grained Subjectivity and Sentiment Analysis: Recognizing the
Intensity, Polarity, and Attitudes of Private States. Unpublished doctoral disserta-
tion, University of Pittsburgh.

Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing Contextual Polarity in Phrase-
level Sentiment Analysis. In Proceedings of the Conference on Human Language
Technology and Empirical Methods in Natural Language Processing (HLT/EMNLP).
Vancouver, Canada.

Wilson, T., Wiebe, J., & Hwa, R. (2004). Just how mad are you? Finding strong
and weak opinion clauses. In Proceedings of the National Conference on Artificial
Intelligence (AAAI).

Yang, Y., & Pederson, J. (1997). A Comparative Study on Feature Selection in Text
Categorization. In Proceedings the International Conference on Machine Learning
(ICML) (pp. 412-420). Nashville, US.

Zagibalov, T., & Carroll, J. (2008). Automatic Seed Word Selection for Unsupervised

174



Sentiment Classification of Chinese Text. In Proceedings of the International Con-
ference on Computational Linguistics (COLING).

Zhai, C., & Lafferty, J. (2001). A Study of Smoothing Methods for Language Models
Applied to Information Retrieval. In Proceedings of the ACM Special Interest Group
on Information Retrieval (SIGIR). New Orleans, USA.

Zhang, D.,; & Lee, W. S. (2003). Question Classification using Support Vector Ma-
chines. In Proceedings of the ACM Special Interest Group on Information Retrieval
(SIGIR). Toronto, Canada.

Zhang, M., & Ye, X. (2008). A Generation Model to Unify Topic Relevance and Lexicon-
based Sentiment for Opinion Retrieval. In Proceedings of the ACM Special Interest
Group on Information Retrieval (SIGIR).

Zhang, M., Zhang, J., & Su, J. (2006). Exploring Syntactic Features for Relation
Extraction using a Convolution Tree Kernel. In Proceedings of the Human Language
Technology Conference of the North American Chapter of the ACL (HLT/NAACL).
New York City, USA.

Zhang, Y., Wang, R., & Uszkoreit, H. (2008). Hybrid Learning of Dependency Struc-
tures from Heterogeneous Linguistic Resources. In Proceedings of the Conference
on Computational Natural Language Learning (CoNLL). Manchester, United King-
dom.

Zhao, J., Liu, K., & Wang, G. (2008). Adding Redundant Features for CRFs-based
Sentence Sentiment Classification. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Zhuang, L., Jing, F., & Zhu, X.-Y. (2006). Movie Review Mining and Summariza-
tion. In Proceedings of the Conference on Information and Knowledge Management

(CIKM). Arlington, VA, USA.

175



