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Abstra
t
Sentiment Analysis is the task of extra
ting and 
lassifying opinionated 
ontent in naturallanguage texts. Common subtasks are the distin
tion between opinionated and fa
tualtexts, the 
lassi�
ation of polarity in opinionated texts, and the extra
tion of the par-ti
ipating entities of an opinion(-event), i.e. the sour
e from whi
h an opinion emanatesand the target towards whi
h it is dire
ted.With the emerging Web 2.0 whi
h des
ribes the shift towards a highly user-intera
tive
ommuni
ation medium, the amount of subje
tive 
ontent on the World Wide Web issteadily in
reasing. Thus, there is a growing need for automati
ally pro
essing this typeof 
ontent whi
h is provided by sentiment analysis.Both natural language pro
essing, whi
h is the task of providing 
omputational meth-ods for the analysis and representation of natural language, and ma
hine learning, whi
his the task of building task-spe
i�
 
lassi�
ation models on the basis of empiri
al data,may be instrumental in mastering the 
hallenges of the automati
 sentiment analysis ofwritten text.Many problems in sentiment analysis have been proposed to be solved with ma
hinelearning methods ex
lusively using a fairly low-level feature design, su
h as bag of words,
ontaining little linguisti
 information. In this thesis, we examine the e�e
tiveness oflinguisti
 features in various subtasks of sentiment analysis. Thus, we heavily draw fromthe insights gained by natural language pro
essing. The appli
ation of linguisti
 features
an be applied on various 
lassi�
ation methods, be it in rule-based 
lassi�
ation, wherethe linguisti
 features are dire
tly en
oded as a 
lassi�er, in supervised ma
hine learning,where these features 
omplement basi
 low-level features, or in bootstrapping methods,3



where these features form a rule-based 
lassi�er generating a labeled training set fromwhi
h a supervised 
lassi�er 
an be trained.In this thesis, we will in parti
ular fo
us on s
enarios where the 
ombination of lin-guisti
 features and ma
hine learning methods is e�e
tive. We will look at 
ommon text
lassi�
ation tasks, both 
oarse-grained and �ne-grained, and extra
tion tasks.
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Zusammenfassung
Sentimentanalyse bes
hreibt die Aufgabe, Meinungen aus natürli
h-spra
hli
hem Text zuextrahieren bzw. deren Inhalt zu klassi�zieren. Übli
he Teilaufgaben sind die Unters
hei-dung zwis
hen sa
hbezogenem Text und Meinung, die Klassi�kation von Polarität (einerMeinung), sowie die Extraktion von Entitäten, die an einer Meinung beteiligt sind, d.h.der Ursprung, von dem eine Meinung ausgeht, und das Ziel, auf das si
h eine Meinungri
htet.Mit dem Aufkommen des Web 2.0, das den Übergang des Internets zu einem ho
hgradiginteraktiven Kommunikationsmedium bes
hreibt, ist parallel au
h der Anteil an subjek-tiven Inhalten im Netz gestiegen. Dadur
h wä
hst logis
herweise au
h der Bedarf anautomatis
hen Verfahren, die die Aufgaben der Sentimentanalyse unterstützen.Bei der Bewältigung der automatis
hen Sentimentanalyse ges
hriebener Spra
he sindsowohl die natürli
he Spra
hverarbeitung, die bere
henbare Modelle für die Analyse undRepräsentation natürli
her Spra
he bereitstellt, als au
h mas
hinelle Lernverfahren, dieaufgabenspezi�s
he Klassi�kationsmodelle auf der Basis von empiris
hen Daten liefern,hilfrei
h.Viele Probleme in der Sentimentanalyse können mit Standardmethoden aus demmas
hi-nellen Lernen, die si
h hauptsä
hli
h auf elementares Merkmalsdesign stützen (wie z.B.Bag of Words, die nur sehr begrenzt linguistis
he Information kodieren), gelöst wer-den. In dieser Dissertation soll die Nutzbarkeit von linguistis
hen Merkmalen in unter-s
hiedli
hen Teilaufgaben in der Sentimentanalyse untersu
ht werden. Hierbei stützenwir uns vorwiegend auf Erkenntnisse der natürli
hen Spra
hverarbeitung. Linguistis
heMerkmale können in den unters
hiedli
hsten Klassi�kationsmethoden Anwendung �nden,5



sei es in rein regelbasierten Klassi�kationsverfahren, bei denen die Merkmale direkt alsKlassi�kator kodiert werden, in überwa
hten Lernverfahren, bei denen diese MerkmaleStandardmerkmale (z.B. Bag of Words) ergänzen, oder aber au
h in Bootstrappingver-fahren, bei denen die Merkmale Bestandteil eines regelbasierten Klassi�kators sein kön-nen, der ein annotiertes Trainingsset generiert, auf dem wiederum einfa
he überwa
hteKlassi�katoren trainiert werden können.In dieser Dissertation werden wir uns vorwiegend auf Szenarien bes
hränken, bei deneneine Kombination aus linguistis
hen Merkmalen und mas
hinellem Lernen vorteilhaft ist.Wir werden Textklassi�kationsaufgaben (sowohl grob-körnig als au
h fein-körnig) undExtraktionsaufgaben betra
hten.
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1. Introdu
tion
1.1. MotivationSentiment Analysis is the task of extra
ting and 
lassifying opinionated 
ontent in nat-ural language texts. With the emerging Web 2.0 whi
h des
ribes the shift towards ahighly user-intera
tive 
ommuni
ation medium the amount of subje
tive 
ontent on theWorld Wide Web is steadily in
reasing. Thus, there is a growing need for automati
allypro
essing this type of 
ontent whi
h is provided by sentiment analysis. Modern sear
hengines or even more sophisti
ated extra
tion systems, su
h as question answering sys-tems need to be adapted in order to be able to pro
ess subje
tive 
ontent in addition tofa
tual 
ontent. The most imminent 
omponents that these appli
ations require are:

• text 
lassi�ers distinguishing between� subje
tive and obje
tive texts (i.e. subje
tivity 
lassi�ers)� di�erent types of polarity, most prominently, positive and negative polarity(i.e. polarity 
lassi�ers)
• entity extra
tion systems for� opinion sour
es (a.k.a. opinion holders)� opinion targetsBoth natural language pro
essing whi
h is the task of providing 
omputational methodsfor the analysis and representation of natural language and ma
hine learning whi
h is thetask of building task-spe
i�
 
lassi�
ation models on the basis of empiri
al data may be17



instrumental in mastering the 
hallenges of the automati
 sentiment analysis of writtentext.Many problems in sentiment analysis have been proposed to be solved with ma
hinelearning methods ex
lusively using a fairly light-weight and task-unspe
i�
 feature design,su
h as bag of words, 
ontaining little linguisti
 information. In this thesis, we examinethe e�e
tiveness of linguisti
 features in various subtasks of sentiment analysis. Thus, weheavily draw from the insights gained by natural language pro
essing.The appli
ation of linguisti
 features 
an be applied on various 
lassi�
ation methods,be it in rule-based 
lassi�
ation, where the linguisti
 features are dire
tly en
oded asa 
lassi�er, but also in supervised ma
hine learning, where these features 
omplementbasi
 low-level features, or in bootstrapping methods, where these features form a rule-based 
lassi�er generating a labeled training set from whi
h a supervised 
lassi�er 
anbe learned.In this thesis, we will in parti
ular fo
us on s
enarios where the 
ombination of linguis-ti
 features and ma
hine learning methods is e�e
tive. We 
onsider this in
orporationof linguisti
 heuristi
s in a ma
hine learning 
ontext as a kind of hybrid approa
h. Wewill look at 
ommon text 
lassi�
ation tasks, both 
oarse-grained and �ne-grained, andextra
tion tasks.1.2. ContributionsThis thesis 
ontributes to the following aspe
ts:
• Supervised Polarity Classi�
ation at Senten
e Level. I present a set offeatures helping to dis
riminate between positive and negative senten
es. Sin
esenten
e-level 
lassi�
ation su�ers more severely from data-sparseness than do
u-ment-level 
lassi�
ation, some more advan
ed feature engineering than bag of wordsis required. I fo
us on two types of features being stru
tural features relying onthe senten
e stru
ture and knowledge-based features whi
h in
orporate polaritylexi
ons. This work is also des
ribed in (Wiegand & Klakow, 2009b).18



• Feature Engineering for Dete
ting Inde�nite Polar Senten
es. I present aset of linguisti
 features helping to dis
riminate between de�nite polar senten
es andinde�nite polar senten
es. These features are tested as part of a rule-based 
lassi�erwhi
h does not require any training data. In a 
ross-domain evaluation, the 
lassi�erprodu
es a 
ompetitive performan
e to simple ma
hine learning 
lassi�
ation usingbag of words. This work is also des
ribed in (Wiegand & Klakow, 2010
).
• Topi
-Related Polarity Classi�
ation. I present a study on the viability ofin
luding topi
 information to senten
e-level polarity 
lassi�
ation. In an evalu-ation on blog data, distan
e features and other linguisti
 features modeling thestru
tural relationship between topi
 and polar expressions (i.e. words 
ontaininga prior polarity) are 
ompared. This work is also des
ribed in (Wiegand & Klakow,2009
).
• Bootstrapping Algorithms for Do
ument-Level Polarity Classi�
ation.I present a 
ross-domain study on bootstrapping algorithms for do
ument-levelpolarity 
lassi�
ation. I 
ompare two di�erent methods: semi-supervised learningin whi
h 
lassi�ers are bootstrapped with the help of at least few labeled datainstan
es and a learning method where the 
lassi�ers are bootstrapped with the helpof rule-based polarity 
lassi�ers. Moreover, for ea
h learning method I will dis
usswhat parameters need to be taken into 
onsideration in order to obtain optimalperforman
e. During that study, we will parti
ularly address the importan
e oflinguisti
 knowledge and their relevan
e to 
lassi�
ation performan
e. This workis also des
ribed in (Wiegand & Klakow, 2009a, 2010a).
• Convolution Kernels for Opinion Holder Extra
tion. I present how 
onvolu-tion kernels 
an be tailored to opinion holder extra
tion allowing fairly 
omplex butalso expressive stru
tures, su
h as parse trees, being dire
tly provided to a learningmethod rather than manually deriving features from them. I will formulate severalkernels using various s
opes and levels of information. I will, in parti
ular, showhow important the 
onsideration of linguisti
 insights is for the formulation of ker-19



nels and kernel 
ombination. This work is also des
ribed in (Wiegand & Klakow,2010b).1.3. Outline of the ThesisChapter 2: In the se
ond 
hapter of this thesis, I will give ba
kground information tosentiment analysis. I will des
ribe the most important appli
ations for this dis
ipline.Moreover, I will present the main subtasks of this area and des
ribe state-of-the-artmethods that are employed in order to solve them. I will also outline the main 
hallengein sentiment analysis.Chapter 3: The third 
hapter fo
uses on experiments on supervised polarity 
lassi�-
ation at senten
e level using linguisti
 features.Chapter 4: In Chapter 4, I will examine a set of linguisti
 features designed to dete
tinde�nite polarity.Chapter 5: In the �fth 
hapter, I will des
ribe experiments on topi
-related polarity
lassi�
ation.Chapter 6: The sixth 
hapter presents experiments on bootstrapping algorithms fordo
ument-level polarity 
lassi�
ation.Chapter 7: The seventh 
hapter des
ribes how 
onvolution kernels have to be de-signed in order to use them for opinion holder extra
tion.Chapter 8: In the last 
hapter, I will draw some general 
on
lusions from the resultsobtained in the previous 
hapters. I will also show possible dire
tions for future work.
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2. Ba
kground
2.1. What is Sentiment Analysis?In this se
tion, I will dis
uss the notion of sentiment analysis. I will �rst give an intrinsi
de�nition of the expression. Pang and Lee (2008) de�ne sentiment as the:referen
e to automati
 analysis of evaluative text and tra
king of predi
tivejudgments.In the resear
h 
ommunity the expression sentiment analysis is often (almost) synony-mously used with subje
tivity analysis and opinion mining.Subje
tivity 
an be des
ribed as a type of private state (Wiebe, 1994). A privatestate is a state that is not open to obje
tive observation and veri�
ation (other types areevaluations, emotions or spe
ulations) (Quirk, Greenbaum, Lee
h, & Svartvik, 1985).The term opinion mining originally had a more restri
ted meaning. It was mostlyunderstood as web-sear
h (for produ
ts) and aggregating opinions about ea
h of them(poor, mixed, good) (Dave, Lawren
e, & Penno
k, 2003). In re
ent years, however, theterm has been given a more general sense making it hard to distinguish from sentimentanalysis (B. Liu, 2006). Pang and Lee (2008) 
laim that the only di�eren
e between thesetwo terms is that they are used by two di�erent 
ommunities. While opinion mining ismostly used in information retrieval, sentiment analysis is the preferred term in naturallanguage pro
essing (NLP). Following this trend, I will use the two terms opinion andsentiment synonymously in the remainder of this thesis.In summary, one 
an des
ribe sentiment analysis as the automati
 analysis of opinionswhile opinions (in this thesis) are understood as evaluating and judgmental utteran
es.21



The type of analysis that is going to be 
onsidered in this thesis primarily fo
uses on text
lassi�
ation (i.e. does a text express an opinion or not, and if so, what type of opinionis it) and entity extra
tion (i.e. given a text expressing an opinion whi
h is the entitythat expresses the opinion or whi
h is the entity towards whi
h the opinion is dire
ted).It should be noted, however, that although there is some general agreement in theresear
h domain on what an opinion is, there are many di�eren
es when it 
omes to theannotation of 
on
rete text. There exists a plethora of di�erent annotation standards and
orpora for English for this task (Pang, Lee, & Vaithyanathan, 2002; Wiebe, Wilson, &Cardie, 2003; Hu & Liu, 2004; Ounis, Rijke, Ma
donald, Mishne, & Soboro�, 2007; Sekiet al., 2007; Stoyanov & Cardie, 2008; Dang, 2009; Kessler, E
kert, Clarke, & Ni
olov,2010; Toprak, Jakob, & Gurevy
h, 2010). Even though some of these 
orpora appear to
ontain 
ommon annotation, they are not always 
ompatible when it 
omes to a
tuallyusing them (Li, Bont
heva, & Cunningham, 2007).In the following, I will give an extrinsi
 de�nition of sentiment analysis by distinguish-ing it from related dis
iplines:Flame dete
tion is the task of dete
ting abusive messages (Spertus, 1997). There aresimilarities to sentiment analysis as �ames are usually highly subje
tive and 
ontain anegative polarity. Thus, �ames are just a very spe
i�
 type of subje
tivity.Hedging is de�ned as the linguisti
 means used to indi
ate a la
k of 
omplete 
om-mitment to the truth value of a proposition or a desire not to express that 
ommitment
ategori
ally (Hyland, 1998). Thus, hedging is similar to subje
tive language in that nei-ther of them 
an be assigned a truth value. Unfortunately, there are only few attemptsto dis
riminate these two terms. Medlo
k and Bris
oe (2007) state that the domain ofinterest between the two 
on
epts di�ers. Hedging is mostly examined on s
ienti�
 arti-
les, in parti
ular, on the biomedi
al domain (Light, Qiu, & Srinivasan, 2004; Medlo
k& Bris
oe, 2007; Kili
oglu & Bergler, 2008) whereas sentiment analysis is 
arried outon the most diverse forms of text, most predominantly news (Wiebe et al., 2003) andreviews (Pang et al., 2002). We assume that due to these di�erent domains the phe-nomena in fo
us vary. While in s
ienti�
 texts mostly neutral subje
tive texts, su
h as22



Senten
e (2.1) play an important role, in sentiment analysis there is also mu
h work doneon subje
tive texts 
ontaining a value judgment, su
h as Senten
e (2.2).(2.1) I believe that the 
auses of in
reasing natural 
atastrophes 
an be as
ribed to globalwarming.(2.2) I �nd it irresponsible that some people still deny the existen
e of global warminggiven the notable in
rease of natural 
atastrophes in re
ent years.A�e
t 
omputing deals with the design of systems that 
an re
ognize human emo-tions (Pi
ard, 1997). While sentiment analysis is usually restri
ted to verbal utteran
es,emotions 
an also be expressed on several other modes. As far as verbal utteran
es are
on
erned, there is no universal agreement upon the distin
tion between emotions andsentiment. A 
ommon distin
tion is that an emotion is a state of mind (Senten
e (2.3))whereas a sentiment or opinion is an evaluation or judgment towards some entity (Sen-ten
e (2.4)).(2.3) I am happy.(2.4) I think that X is ni
e.Another de�nition suggests that sentiment is an umbrella term that in
ludes both emo-tions (as a state of mind) and evaluations or judgments (Wilson, 2008b). I will follow these
ond de�nition sin
e the 
orpora I use have been annotated a

ording to that notion.Creative language, su
h as humour, irony, idioms, proverbs, puns, and �gurative lan-guage, bears some similarity to subje
tivity in the sense that they often 
oin
ide (Wiebe,Wilson, Bru
e, Bell, & Martin, 2004), however 
reative language (e.g. irony) is only ameans to express subje
tivity or a side-e�e
t of it. Though the interrelation betweenthese two items might appear to be 
ompelling to look into in a thesis about linguisti
aspe
ts of sentiment analysis, I will mostly negle
t this issue, sin
e the 
omputationalapproa
hes towards the dete
tion of 
reative language is still in their infan
y (Sarmento,Carvalho, Silva, & Oliveira, 2009). 23



2.2. Appli
ations of Sentiment AnalysisRather than being justi�ed on its own, sentiment analysis is a task that 
an be usedin several appli
ations. Given that the web is 
urrently the resour
e 
ontaining thegreatest amount of publi
ly available opinions, it 
omes as no surprise that many ofthese appli
ations are related to the web.One of the most prominent appli
ations are sear
h engines whi
h instead of merelyretrieving any web 
ontent that is topi
ally related to a query just retrieve subje
tive
ontent. Ideally, the user formulating the query should even be able to spe
ify the targetpolarity of subje
tive 
ontent that is to be retrieved.One step beyond su
h an opinion-related sear
h engine would be an opinion questionanswering system. While in traditional fa
tual question answering an answer snippet toa natural language question, su
h as Question (2.5), is extra
ted, an opinion questionanswering system should be able to answer questions asking for entities that are involvedin an opinion, su
h as Question (2.6). In addition, similar to de�nition questions whi
hask for general information about a spe
i�
 topi
, su
h as Question (2.7), opinion-basedde�nition questions, su
h as Question (2.8), i.e. questions asking about the generalsentiment towards a parti
ular topi
, should be answered.(2.5) When was Mozart born?(2.6) Who likes Mozart's musi
?(2.7) Who is Mozart?(2.8) What do people think about Mozart?The s
enario that is represented by the latter question type is of 
ourse very similar tothe task that is performed by opinion-related sear
h engines; unlike the other opinionquestion type (Question (2.6)), statements rather than entities are to be returned forthis type. Depending on how the output for su
h a question is to be formatted, the taskmight also be
ome very similar to opinion-related summarization, as a user may just wantthe essen
e of the general sentiment towards a topi
 and not the mere 
on
atenation of24



a
tual relevant texts that 
ould be found (as it might be mu
h too verbose and, thus,di�
ult to grasp).Another major type of appli
ations for sentiment analysis are tools for so
ial mediamonitoring. By that one understands systems that observe a parti
ular part of the webfor a longer period of time and try to dete
t new developments on these data. With regardto sentiment analysis this 
ould mean observing the publi
 opinion (as represented by a
ertain part of the web) towards a parti
ular item. Su
h a monitoring system might beattra
tive for businesses that want to observe the impa
t of their produ
ts on the market.It should enable the dete
tion of early signs of dis
ontent allowing the businesses totake 
ountera
tion at a very early stage preventing a negative sentiment regarding theirprodu
ts to spread. Similarly, politi
al institutions, like politi
al parties in a generalele
tion might be interested to obtain an immediate feedba
k on their latest 
ampaign.Finally, sentiment analysis may also be used as an additional �lter in re
ommenda-tion systems to ex
lude 
ontent re
eiving too mu
h 
riti
ism from being re
ommended.This additional �lter might be useful sin
e the algorithms applied to sele
t items to bere
ommended are usually not based on sentiment analysis but on the similarity of userbehavior/pro�les.2.3. Di�erent Subtasks in Sentiment AnalysisIn this se
tion, I will provide an overview of the di�erent subtasks in sentiment analysis.2.3.1. Text Classi�
ationThe most prominent subtasks in sentiment analysis are the two text 
lassi�
ation taskswhi
h I 
all in this thesis subje
tivity dete
tion and polarity 
lassi�
ation. (Note thatin the literature other terms may be used for these tasks.) By subje
tivity dete
tion,I mean the distin
tion between obje
tive texts (Senten
e (2.9)) and subje
tive texts(Senten
e (2.10)).(2.9) The 
ar is red. 25



(2.10) The 
ar looks horrible.By polarity 
lassi�
ation, I de�ne the 
lassi�
ation of texts a

ording to di�erent polaritytypes. The most 
ommon types are positive polarity (Senten
e (2.11)) and negativepolarity (Senten
e (2.12)). Further types are neutral polarity (Senten
e (2.13)) andinde�nite polarity (Senten
e (2.14)). The di�eren
e between the latter two 
ategories isthat while in neutral polarity there is no value judgment 
onveyed by the statement, ininde�nite polarity there is a value judgment 
onveyed but the polarity is neither de�nitepositive nor de�nite negative. In many publi
ations, these two 
ategories are omitted.Neutral polarity is omitted as it may not be 
onsidered subje
tive as in (Pang & Lee,2004). Inde�nite polarity is omitted as it is usually less frequently observed than theother 
ategories.(2.11) The food is deli
ious.(2.12) The food tastes awful.(2.13) I believe that the food is spe
ially imported from Asia.1(2.14) The food is so-so. (It is neither good nor bad.)In this thesis, I will � unlike some previous work on that task, su
h as (Wilson, Wiebe,& Ho�mann, 2005) � ignore the 
lass of neutral polarity (see Senten
e (2.13)) as the textto be 
lassi�ed will 
ontain value judgments.In re
ent years, a two-stage 
lassi�
ation has been established. One usually de
ideswhether a text is subje
tive or not (i.e. one applies subje
tivity dete
tion) and if the textis subje
tive one also 
lassi�es its polarity (Pang & Lee, 2004). A distin
tion betweenthese two types of 
lassi�
ation is useful sin
e di�erent features are relevant for these twotypes (Karlgren, Eriksson, Tä
kström, & Sahlgren, 2010). Another justifying reason isthat there are text types where only one type of 
lassi�
ation is ne
essary, e.g. in review
lassi�
ation a subje
tivity dete
tion is super�uous sin
e (at least at do
ument level) allreviews are usually subje
tive.1Note that this type of polarity 
ould also be interpreted as hedging.26



These types of text 
lassi�
ation 
an also be applied on various levels of granularity.The 
ommon levels are:
• do
ument level
• senten
e level
• word levelNote that the 
lassi�
ation at word level 
an also be referred to as 
lassi�
ation at ex-pression level or phrase level. We will use these three terms inter
hangeably in this thesis.In this text 
lassi�
ation task, expressions are 
lassi�ed in their respe
tive 
ontexts. The
lassi�
ation of expressions in isolation, e.g. the predi
tion of whether a word is subje
-tive or has a spe
i�
 polarity type, is another task whi
h (in this thesis) is 
alled lexi
onindu
tion and will be dis
ussed in Se
tion 2.3.2.The need for 
lassi�
ation on more �ne-grained levels than do
ument level 
an be ex-plained by the fa
t that sentiment is not uniformly spread throughout a single do
ument.For information extra
tion systems (like those presented in Se
tion 2.2), whi
h need toidentify the sentiment towards a spe
i�
 entity, it is therefore vital to be able to 
omputefo
used sentiment information, i.e. the information from a senten
e or a 
lause with thementioning of that entity. Another usage for �ne-grained sentiment analysis is that it
an be used for improving 
oarse-grained 
lassi�
ation (i.e. 
lassi�
ation at do
umentlevel) (Pang & Lee, 2004; M
Donald, Hannan, Neylon, Wells, & Reynar, 2007).Subje
tivity Dete
tionThere has been fairly little work at do
ument-level subje
tivity dete
tion. Most work ondo
ument-level subje
tivity dete
tion is usually restri
ted to blog-posts (Chesley, Vin
ent,Li Xu, & Srihari, 2005; Ounis et al., 2007; Ounis, Ma
donald, & Soboro�, 2009) as thesedo
uments are fairly short and tend to be either fully subje
tive or obje
tive. In 
ontrastto polarity, the overall degree of subje
tivity of a do
ument is less relevant for appli
ationsin NLP than that of a senten
e or a phrase. 27



Most text 
lassi�ers 
onstru
ted for sentiment analysis are models trained by super-vised ma
hine learning 
lassi�ers. Various types of features for these 
lassi�ers havebeen explored. Bag of words o�er good performan
e on an in-domain evaluation (Dias,Lambov, & Non
heva, 2009). Improvements 
an usually be a
hieved by adding fea-tures des
ribing predi
tive 
lasses of words, su
h as parti
ular types of adje
tives andverbs (Wiebe et al., 2004; Bre
k, Choi, & Cardie, 2007; Dias et al., 2009) or task-spe
i�
 lexi
ons 
ontaining subje
tive expressions or patterns. They 
an be manually
onstru
ted (Wiebe & Rilo�, 2005) or automati
ally generated (Wiebe et al., 2004; Rilo�& Wiebe, 2003). Even substituting hypernym synsets from WordNet (Miller, Be
kwith,Fellbaum, Gross, & Miller, 1990) for words helps (Bre
k et al., 2007). The usage of thesepredi
tive 
lasses has also been shown to be an e�e
tive means to over
ome domain-mismat
h problems en
ountered when bag of words features are used (Dias et al., 2009).Stru
tural features taking synta
ti
 information into a

ount 
an also improve perfor-man
e (Wilson et al., 2005; Karlgren et al., 2010). Re
ently, there have also been resear
he�orts showing that word sense disambiguation improves subje
tivity dete
tion (Wiebe& Mihal
ea, 2006; Akkaya, Wiebe, & Mihal
ea, 2009).Polarity Classi�
ationFor polarity 
lassi�
ation the e�e
tiveness of di�erent types of features varies dependingon the level of granularity that is 
onsidered. On do
ument level (again we 
onsiderma
hine learning 
lassi�ers), the majority of resear
h suggests that bag of words performwell (Pang et al., 2002; Salvetti, Rei
henba
h, & Lewis, 2006), in parti
ular when bigramsand trigrams are added to unigrams. They also outperform more advan
ed linguisti
features using synta
ti
 word dependen
y information (Ng, Dasgupta, & Ari�n, 2006).In 
omparison to do
ument-level polarity 
lassi�
ation, more linguisti
 features havebeen examined on senten
e-level and word-level polarity 
lassi�
ation. Several works ad-dress synta
ti
 stru
tures, mostly 
ompositionality of phrases and 
lauses (Moilanen &Pulman, 2007; Choi & Cardie, 2008; Thet, Na, Khoo, & Shakthikumar, 2009). Some ofthese works fo
us on parti
ular 
ompositional 
onstru
tions, su
h as 
onjun
tions (Meena28



& Prabhabkar, 2007; Ding & Liu, 2007; Agarwal, T.V., & Chakrabarty, 2008) or 
on-ditional 
lauses (Narayanan, Liu, & Choudhary, 2009). For some languages, su
h asChinese, using morphologi
al features, i.e. features modeling the relationship betweenseveral morphologi
al units instead of lexi
al or phrasal units, has also been shown to bee�e
tive.The most predi
tive 
ues in polarity 
lassi�
ation are polar expressions, i.e. words
ontaining a prior polarity, su
h as ex
ellent+ and awful−. These expressions 
an bedire
tly 
onverted to a rule-based 
lassi�er (Kennedy & Inkpen, 2005; Klenner, Petrakis,& Fahrni, 2009; Velikovi
h, Blair-Goldensohn, Hannan, & M
Donald, 2010) or be usedas features in a ma
hine learning 
lassi�er 
omplementing bag-of-words features. This
ombination is, in parti
ular, e�e
tive on senten
e and word level (Wilson et al., 2005;Wiegand & Klakow, 2009b; Choi & Cardie, 2009).Another 
ru
ial aspe
t of polarity 
lassi�
ation is negation modeling. If a polar expres-sion o

urs within the s
ope of a negation expression, then the polarity of the opinion isreversed:(2.15) The waiter in that restaurant was [not polite+]−.There is no 
onsensus on what features perform best on this task. While Karlgren etal. (2010) suggest that only negation features are relevant, Gamon (2004) 
omes to the
on
lusion that it is a plethora of di�erent types of linguisti
 features.Please note that in the 
ontext of polarity 
lassi�
ation, we will not 
onsider polarexpressions as linguisti
 features in this thesis. By linguisti
 features, we understandfeatures derived from general linguisti
 properties, su
h as part-of-spee
h information orsynta
ti
 parse trees. Polar expressions are some task-spe
i�
 lexi
al features whi
h areregarded as a separate 
ategory.2.3.2. Task-Spe
i�
 Lexi
onsAs pointed out in the previous se
tion, text 
lassi�
ation tasks in sentiment analysisbene�t from task-spe
i�
 lexi
ons 
ontaining subje
tive/polar expressions. Though thereare several manually 
reated resour
es (Stone, Dumphy, Smith, Ogilvie, & asso
iates,29



1966; Wilson et al., 2005; Bloom, Stein, & Argamon, 2007), there has also been somework on automati
ally indu
ing them.One popular strand of methods makes use of general lexi
al resour
es, su
h as Word-Net, and applies some semi-supervised learning s
heme relying on some initially labeledseed words in order to generate a lexi
on (Esuli & Sebastiani, 2006a, 2006b, 2007; Rao& Ravi
handran, 2009). Another strand of methods applies similar te
hniques to largeunlabeled 
orpora (Turney & Littman, 2003; Velikovi
h et al., 2010). The la
k of stru
-ture is 
ompensated by relying on high-pre
ision statisti
s, su
h as point-wise mutualinformation, between seed words and 
andidate words. These restri
tive measures onlywork sin
e the 
orpora that are used, su
h as the World Wide Web, are extremely largeand 
ontain a 
onsiderable amount of redundan
y.Linguisti
 patterns, su
h as exploiting the 
oordination of seed words as a means of�nding lexi
al units with a similar meaning (Hatzivassiloglou & M
Keown, 1997) orsome language spe
i�
 heuristi
s (Zagibalov & Carroll, 2008), have also been employedfor lexi
on indu
tion.2.3.3. Entity Extra
tionThere are two entity extra
tion tasks in sentiment analysis, being opinion holder andopinion target extra
tion:(2.16) [Koizumi]opinion holder maintains [a 
lear-
ut 
ollaborative stan
e]opinion towards
[the U.S.]opinion target.The opinion holder is the sour
e from whi
h an opinion emanates whereas the target isthe entity towards whi
h the opinion is dire
ted.Extra
ting opinion-related entities 
an be regarded as an information extra
tion task.It 
an also 
onsidered as a spe
i�
 subtype of semanti
 role labeling if one 
onsiders anopinion as a predi
ate or an event whose arguments are opinion holder and opinion tar-get (Bethard, Yu, Thornton, Hatzivassiloglou, & Jurafsky, 2004; Choi, Bre
k, & Cardie,2006; S.-M. Kim & Hovy, 2006).30



Chapter 7 will dis
uss this subtask (in
luding a short overview of related work) in moredetail fo
using on opinion holder extra
tion.2.3.4. Other TasksRe
ently, there has been an in
reasing interest in sentimental text 
lassi�
ation usingadditional types of 
ategories than the two dis
ussed in Se
tion 2.3.1 (Kudo & Mat-sumoto, 2005; Somasundaran, Wilson, Wiebe, & Stoyanov, 2007; Kobayakawa et al.,2009). The most detailed study is a work on attitude 
lassi�
ation (Somasundaran et al.,2007), in whi
h polarity2 is distinguished from agreement, arguing, spe
ulation, and in-tention. Another trend is sentiment 
lassi�
ation on other forms of 
ommuni
ation, su
has 
onversation (Wilson, 2008a; Raaijmakers, Troung, & Wilson, 2008; Somasundaran,Namata, Wiebe, & Getoor, 2009). These types require a notably di�erent analysis thanthe 
onventional sentiment 
lassi�
ation on plain monologues. In dialogues, for example,utteran
es may not ne
essarily be 
omposed of 
omplete senten
es but just fragments.Unlike monologues, su
h as news texts, these utteran
es 
annot be properly analyzedin isolation, i.e. without some 
onsideration of their respe
tive 
ontexts. Therefore, asegmentation of the text into dialogue a
ts is required for a su

essful opinion analy-sis (Somasundaran et al., 2009).There has also been some 
onsiderable work on adapting sentiment text 
lassi�ers tonew domains as there are many domains for whi
h no annotated sentiment 
orpora ex-ist. The methods that have been applied are stru
tural 
orresponding learning (Blitzer,Dredze, & Pereira, 2007), variations of semi-supervised learning algorithms (Aue &Gamon, 2005; Tan, Cheng, Wang, & Xu, 2009), and algorithms 
ombining domain-independent rule-based 
lassi�ers and domain-spe
i�
 supervised ma
hine learning 
las-si�ers (Andreevskaia & Bergler, 2008; Tan, Wang, & Cheng, 2008; Tan et al., 2009; Qiu,Zhang, Hu, & Zhao, 2009).Born out of a similar need has been multilingual sentiment analysis, i.e. the task of au-tomati
ally migrating sentiment resour
es or tools from one language to another (Hiroshi,2Polarity is referred to as sentiment in this work. 31



Tetsuya, & Hideo, 2004; Mihal
ea, Banea, & Wiebe, 2007; Banea, Mihal
ea, Wiebe, &Hassan, 2008; Banea, Mihal
ea, & Wiebe, 2008; Brooke, To�loski, & Taboada, 2009).Another major strand in resear
h in sentiment analysis is the joint modeling of senti-ment text 
lassi�
ation (primarily polarity 
lassi�
ation) and target extra
tion of opin-ions, or more pre
isely aspe
ts of the targets (i.e. the properties of the targets that areaddressed):(2.17) I [don't like]−opinion [the design]aspect of [the new iPod]target.A typi
al s
enario in whi
h this task is evaluated is the 
lassi�
ation of polarity of produ
tfeatures (Dave et al., 2003; Hu & Liu, 2004; Popes
u & Etzioni, 2005; B. Liu, Hu, &Cheng, 2005; Bloom, Garg, & Argamon, 2007). A related task that jointly models thedete
tion of opinions and opinion holders has also been explored (Choi et al., 2006).Several resear
h e�orts have been made addressing the unsupervised (or weakly su-pervised) learning of spe
i�
 aspe
ts of targets (Mei, Ling, Wondra, Su, & Zhai, 2007;Snyder & Barzilay, 2007; Du & Tan, 2009; Somasundaran & Wiebe, 2009) sin
e, inmany realisti
 s
enarios, the aspe
ts are not known in advan
e. Attempts to use therelation between target and opinion to (solely) improve polarity 
lassi�
ation have alsobeen made (Mullen & Collier, 2004; Brooke & Hurst, 2009; Nowson, 2009).As far as information retrieval is 
on
erned, there has also been some work on enhan
-ing sear
h engines with sentiment information (Egu
hi & Lavrenko, 2006; M. Zhang &Ye, 2008; He, Ma
donald, He, & Ounis, 2008; Gerani, Carman, & Crestani, 2009; Santos,He, Ma
donald, & Ounis, 2009; J. Kim, Li, & Lee, 2009; F. Liu, Li, & Liu, 2009). Thisresear
h has been most prominently enfor
ed by the ben
hmark 
ompetitions TRECBlog (Ounis et al., 2007; Ounis, Ma
donald, & Soboro�, 2008; Ounis et al., 2009) andTAC Opinion Question Answering (Dang, 2009).2.4. The Main Challenge in Sentiment AnalysisThere is one major 
hallenge in sentiment analysis that 
on
erns (almost) every singlesubtask in that dis
ipline. I 
all it the 
ontext-dependen
y of sentiment information. In32



virtually all subtasks of sentiment analysis, sentiment information is 
onveyed by some(textual) 
ues. The problem of these 
ues is that they are ambiguous. I will exemplifythis on several word-level tasks:In subje
tivity dete
tion, one needs to have a means of distinguishing between 
ontextsin whi
h a potential subje
tive expression, su
h as alarm, is subje
tive (Senten
e (2.18))from 
ontexts where it is obje
tive (Senten
e (2.19)).(2.18) His alarm grew.(2.19) The alarm went o�.In polarity 
lassi�
ation, one needs to dete
t whether a polar expression, su
h as like,undergoes a 
ontextual modi�
ation that will 
hange its polarity or at least its polarintensity. Instead of a plain o

urren
e of a polar expression (Senten
e (2.20)), theexpression 
an be negated (Senten
e (2.21)), intensi�ed (Senten
e (2.22)), or diminished(Senten
e (2.23)).(2.20) I like it.(2.21) I don't like it.(2.22) I very mu
h like it.(2.23) I quite like it.Moreover, in entity extra
tion, su
h as opinion holder extra
tion, one needs to �nd outwhether a mention of an entity, su
h as government, serves as the opinion holder of asentiment expression (Senten
e (2.24)) or not (Senten
es (2.25) and (2.26)).(2.24) The government approves of the proposal.(2.25) The government has been dissolved.(2.26) The publi
 mainly approves of the new government.To a great extent, these types of ambiguity 
an be resolved by 
onsidering the textual
ontext of the words to be 
lassi�ed. Consequently, these issues 
an be addressed by33



methods from NLP. It is pre
isely these kinds of phenomena that are addressed in thisthesis.There are, however, other types of 
ontext-dependen
ies that address extra-textual is-sues. For example, Senten
e (2.27) 
annot be re
ognized as a negative statement towardsa parti
ular novel, sin
e the sentiment information is not lexi
alized.(2.27) I threw the latest Harry Potter novel out of the window.It requires 
ultural knowledge to interpret the a
t of throwing a novel out of a windowas indi
ative of a negative opinion. This type of sentiment information, also known aspragmati
 opinion (Somasundaran & Wiebe, 2009), is not 
onsidered in this thesis due tothe 
omplexity of this phenomenon and the brittleness of state-of-the-art NLP methodsto model pragmati
 knowledge.
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3. Feature Design for Senten
e-LevelPolarity Classi�
ation3.1. Introdu
tionThis 
hapter presents feature design for senten
e-level polarity 
lassi�
ation. Thoughpolarity 
lassi�
ation has been extensively explored at do
ument level, fewer resear
he�orts have been made at senten
e level although the task is an established resear
hproblem (Matsumoto, Takamura, & Okumura, 2005; Meena & Prabhabkar, 2007; Agar-wal et al., 2008; Narayanan et al., 2009).Sentiment information is not evenly distributed a
ross a do
ument. Not only do do
-uments usually 
omprise both subje
tive and obje
tive senten
es but also the polarityof subje
tive senten
es within a do
ument varies. Thus, senten
e-level 
lassi�
ation 
anbe used to improve do
ument-level 
lassi�
ation (M
Donald et al., 2007). Moreover, fortasks demanding �ne-grained text analyses, su
h as question answering or text summa-rization, sentiment 
lassi�
ation at senten
e level seems more appropriate than do
ument
lassi�
ation.Even though a senten
e is shorter than a do
ument, a senten
e itself may 
ontainseveral polar expressions. We assume that for those 
ases, there is always one prominentpolar expression. For those 
ases, the overall polarity will be the polarity of that polarexpression. For examples, there are several polar expressions in Senten
e (3.1). The polarexpression su

essfully is the prominent expression. In this 
hapter, we are ex
lusivelyinterested in the overall polarity of a senten
e.(3.1) [Although he had di�
ulties−]other, [he su

essfully+ managed the job in the35



end]main..Due to the small number of words within a senten
e, polarity 
lassi�
ation at senten
elevel di�ers substantially from do
ument-level 
lassi�
ation in that resulting feature ve
-tors en
oding senten
es tend to be mu
h sparser. Therefore, a 
lassi�er trained on bagof words performs worse than at do
ument level.Fortunately, there is a plethora of linguisti
 features by whi
h a word 
an be des
ribedwithin a senten
e. We 
onsider features, su
h as part-of-spee
h information, 
lause types,depth of word 
onstituents, or WordNet hypernyms. At do
ument level, these featureshave hardly been used. In general, the bene�t of these features remains 
ontroversialsin
e their extra
tion is 
omputationally expensive (many of these features require lin-guisti
 pre-pro
essing su
h as part-of-spee
h tagging or even synta
ti
 parsing) and their
ontribution in terms of performan
e is fairly limited sin
e bag-of-words 
lassi�ers alreadypose a robust baseline.We show that expli
it polarity information and a set of simple linguisti
 features 
ansigni�
antly improve a standard bag-of-words 
lassi�er. We also show that a standard
lassi�er 
an already be signi�
antly improved by linguisti
 features in the absen
e ofany polarity information.Using the established division between subje
tivity dete
tion and polarity 
lassi�
ation(see also Chapter 2), we 
onsider polarity 
lassi�
ation as a binary 
lassi�
ation task.That is, we assume that ea
h senten
e to be 
lassi�ed is subje
tive. We negle
t thedistin
tion between obje
tive and subje
tive 
ontent sin
e this 
lassi�
ation is usuallysolved independently (Pang & Lee, 2004; Ng et al., 2006). Our experiments are 
arriedout on a subset of the MPQA-
orpus (Wiebe et al., 2003).The work presented in this 
hapter is also des
ribed in (Wiegand & Klakow, 2009b).3.2. Related WorkThe most 
losely related work to this are (Wilson et al., 2005; Choi & Cardie, 2008) whi
hdetermine the polarity of individual polar expressions using linguisti
 features. This word-36



level task is solved with supervised ma
hine learning methods. The 
ru
ial di�eren
eto these works is that we attempt to determine the overall polarity of a senten
e (seeSe
tion 3.1) rather than the lo
al 
ontextual meaning of ea
h individual polar expression.Senten
e-level polarity 
lassi�
ation has the bene�t that it 
an harness features derivedfrom senten
e stru
ture displaying some form of prominen
e that 
annot be used forexpression-level 
lassi�
ation (e.g. we 
onsider di�erent 
lause types, the main predi
ateof a senten
e, and the depth of word 
onstituents). In expression-level 
lassi�
ation,one needs to determine the polarity of all polar expressions rather than only the mostprominent one. Unlike (Wilson et al., 2005; Choi & Cardie, 2008), we also examine inhow far linguisti
 features improve a bag-of-words feature representation in the absen
eof any polarity information.Kudo and Matsumoto (2005) 
onsider polarity and modality 
lassi�
ation at senten
elevel in Japanese. Improvement of a bag-of-words feature set is a
hieved on both tasksusing n-grams based on dependen
y paths.Moilanen and Pulman (2007) present a symboli
 approa
h using deep linguisti
 in-formation. The evaluation is done on headlines and noun phrases but not on 
ompletesenten
es. The method is not 
ompared with a baseline ma
hine learning approa
h (e.g.using bag of words) either. A similar 
ompositional approa
h using more shallow linguis-ti
 information is presented in (Klenner et al., 2009). Again, the method is not 
omparedwith a baseline ma
hine learning approa
h.Some resear
h e�orts looking into parti
ular senten
e-level 
onstru
tions for polarity
lassi�
ation have also been attempted. While Meena and Prabhabkar (2007) and Agar-wal et al. (2008) deal with 
onjun
tions, Narayanan et al. (2009) examine 
onditional
lauses.At do
ument level, Gamon (2004) looks at a large set of linguisti
 features. Theperforman
e is in
reased, but no de�nite feature subset 
an be determined to be e�e
-tive. Karlgren et al. (2010) suggest, on the other hand, that only negation features arerelevant. Matsumoto et al. (2005) and Ng et al. (2006) present synta
ti
ally motivatedfeatures, most of them based on dependen
y path information. Though some improve-37



ment 
an be a
hieved with these features, Ng et al. (2006) also show that higher-ordern-grams are virtually as e�e
tive in terms of performan
e as these linguisti
 features.3.3. DataAs the dataset for our experiments, we de
ided to use a subset of the MPQA-
orpus (Wiebeet al., 2003) sin
e the 
orpus is known to have a fairly high inter-annotation agreement.Sin
e the polarity annotation within the MPQA-
orpus is not at senten
e level but ex-pression level, we had to extrapolate the annotation to senten
e level. The pro
edure weapply is similar to the pro
edure to generate senten
e-level subje
tivity data presentedin (Wiebe & Rilo�, 2005). Expressions either labeled as dire
t subje
tive or expressive-subje
tivity with attitude-type positive or negative were identi�ed as polar expressions.The proje
tion to senten
e level is straightforward if the annotated polar expressionswithin one senten
e have the same polarity. Senten
e (3.2), for example, illustrates the
ase where there are two expressions with polarity information, whi
h are both negative.Therefore, the overall polarity of the senten
e is also negative.(3.2) Their 
ause was an unjust one− and therefore had little support−.Of 
ourse, there are a lot of senten
es in whi
h there are expressions with di�ering polarity.We manually annotated these senten
es (approximately 30% of the �nal sub
orpus webuilt). Senten
e (3.3) illustrates the 
ase where there are two expressions with di�erentpolarity. However, the overall polarity is not mixed. There is a 
lear preponderan
e ofthe se
ond expression whi
h is negative. Therefore, the overall polarity of the senten
eis negative.(3.3) "The international 
ommunity 
an support+ us so far, but it 
an never remove thesha
kles of repression−", he said.Moreover, there are also senten
es where the overall polarity is mixed as well:(3.4) Afri
an observers generally approved+ of his vi
tory while Western governmentsdenoun
ed− it.38



The number of senten
es with mixed polarity is so small that in
luding it for our 
lassi�-
ation task was not possible. The �nal 
orpus we produ
ed was down-sampled to equal
lass sizes. It 
ontains 2, 934 senten
es in total.3.4. Feature DesignIn this work we distinguish between two types of knowledge-based features: polarityfeatures and linguisti
 features. The linguisti
 features have been formulated at twolevels: senten
e level and word level. Polarity features have only been formulated atsenten
e level. Table 3.1 lists all senten
e-level features and Table 3.2 all word-levelfeatures.3.4.1. Prior Polarity FeaturesWe use the Subje
tivity Lexi
on from the MPQA-proje
t (Wilson et al., 2005) as itis fairly large 
ompared to other publi
ly available lexi
ons. We 
onsider the polarityvalues positive, negative, and neutral.1 Moreover, the lexi
on distinguishes between strongentries (e.g. wonderful or hideous) and weak entries (e.g. valid or bulky). We exploit thisadditional information in separate features.3.4.2. Linguisti
 FeaturesA spe
i�
 linguisti
 feature at senten
e level refers to the overall amount of polar ex-pressions within a senten
e whereas linguisti
 features at word level des
ribe for ea
hword whether or whether not a 
ertain linguisti
 property holds for it in the 
ontext of aparti
ular senten
e. For example, if we 
onsider the linguisti
 property verb (one of thepart-of-spee
h types explained below), the 
orresponding features at senten
e level arenumber of positive verbs, number of negative verbs, and number of neutral verbs (withinthis senten
e), whereas the features at word level are for ea
h word x: is x a verb? (inthis senten
e). The bene�t of using these two levels is that we have both 
oarse-grained1We ignored the value both sin
e there are only very few entries with that label (approximately 0.25%).39



Table 3.1.: List of senten
e-level features.Bare Polarity Featuresnumber of positive/negative/neutral expressionsnumber of strong positive/negative/neutral expressionsnumber of weak positive/negative/neutral expressionsLinguisti
 Featuresnumber of positive/negative/neutral nounsnumber of positive/negative/neutral verbsnumber of positive/negative/neutral adje
tivesnumber of positive/negative/neutral adverbsnumber of positive/negative/neutral other (part-of-spee
h tags)is main predi
ate positive/negative/neutral expression?number of positive/negative/neutral expressions within main predi
ate phrasenumber of positive/negative/neutral expressions with depth level Inumber of positive/negative/neutral expressions with depth level IInumber of positive/negative/neutral expressions with depth level IIInumber of positive/negative/neutral expressions with depth level IVnumber of positive/negative/neutral expressions with depth level Vnumber of positive/negative/neutral expressions in main 
lausenumber of positive/negative/neutral expressions in other 
lausenumber of positive/negative/neutral expressions in weak 
lausenumber of positive/negative/neutral expressions in strong 
lausenumber of positive/negative/neutral expressions modi�ed by intensi�ernumber of positive/negative/neutral expressions modi�ed by positive expressionnumber of positive/negative/neutral expressions modi�ed by negative expressionnumber of positive/negative/neutral expressions modi�ed by neutral expressionnumber of positive/negative/neutral expressions in modal s
openumber of negated positive/negative/neutral expressions
40



Table 3.2.: List of word-level features.Linguisti
 Featuresis word a noun/verb/adje
tive/adverb/other?add hypernym synsets of wordis word the main predi
ate?is word within main predi
ate phrase?has word depth level I/II/III/IV/V?is word within main/other 
lause?is word within weak/strong 
lause?is word pre
eded by intensi�er?is word within modal s
ope?is word negated?and �ne-grained features. Sin
e all features at word level are independent of polarityinformation2, we 
an also evaluate the impa
t of stru
tural features whi
h do not takepolarity information into a

ount. We 
onsider the following linguisti
 aspe
ts:Part-of-Spee
h InformationThe predi
tability towards polarity varies throughout di�erent parts of spee
h. Manypolarity lexi
ons, for example the one presented in (Nasukawa & Yi, 2003), 
ontainmostly adje
tives. This means that this part-of-spee
h tag is more important for polarity
lassi�
ation than others (i.e. a polar adje
tive may be more predi
tive than a polarnoun). Apart from that, part of spee
h may also be exploited for some basi
 word sensedisambiguation whi
h 
an be of help in polarity 
lassi�
ation sin
e some important polarexpressions are ambiguous. For example, the word like 
an either be a polar verb or justa preposition. In the latter 
ase, the word is not relevant for the polarity 
lassi�
ation.In order not to add too mu
h sparse information (in parti
ular with regard to featuresat word level), we only 
onsider the �ve part-of-spee
h tags noun, verb, adje
tive, adverb,2Note that, on the other hand, all senten
e-level features 
arry polarity information. 41



and other.WordNet Hypernyms (only used at word level)The WordNet ontology (Miller et al., 1990) allows words to be generalized to a 
ertainextent. Our features are inspired by S
ott and Matwin (1998). For ea
h word in asenten
e we add all the hypernyms of its synset.3 In a senten
e-level 
lassi�
ation task,the situation that a word is observed in the test set but has not been observed in thetraining set usually o

urs signi�
antly more often than in 
orresponding do
ument-level
lassi�
ation tasks. The purpose of using WordNet is that words whi
h have not beenobserved in the training set (but in the test set) hopefully possess hypernyms that havealso appeared in the training set. Thus, a sparse distribution of words is 
ompensatedfor by a less sparse distribution of hypernyms. A similar usage of WordNet has alreadybeen shown to work e�e
tively for subje
tivity dete
tion (Bre
k et al., 2007).Main Predi
ate & Main Predi
ate PhraseWe assume that words within a senten
e whi
h have a prominent role from a stru
turalperspe
tive are also important words for polarity 
lassi�
ation. In this respe
t, the mainpredi
ate of a senten
e is of parti
ular importan
e. We deliberately did not restri
tourselves to verbs sin
e predi
ative adje
tives (the book is interesting) seem to be atleast equally important. Senten
e (3.5) displays a 
ase where the polarity of the mainverb support, whi
h is positive, 
orresponds to the overall polarity of the senten
e. Themajority of polar expressions, however, is negative. The main predi
ate feature whi
h isonly a
tive on support should outweigh the other polar expressions within the senten
ewith an appropriately learned feature weight.(3.5) The Pakistani government supports+ President Bush and his war− on terror−.43In order to avoid word sense disambiguation, we always map a word onto the �rst synset in the list ofits potential synsets. The �rst synset usually 
orresponds to the most frequent sense.4It is 
ertainly debatable whether war and terror should be regarded as polar expressions or as a partof the multi-word expression war on terror in whi
h the words war and terror, though having a prior42



Apart from a feature referring ex
lusively to the main predi
ate, we also introdu
e a moregeneral feature for the entire main predi
ate phrase, i.e. the entire verbal or adje
tivalphrase. This should allow polar modi�ers within the predi
ate phrase to be in
luded aswell:(3.6) The president of the National Trust+5 [a
ted unlawfully−]predicate phrase.We did not 
onsider 
ommon grammati
al fun
tions (of a predi
ate) for separate features,su
h as subje
t or obje
t, be
ause we assume that these entities are less likely to 
arrypolar information (e.g. these grammati
al fun
tions are usually o

upied by opinionholders and opinion targets).Depth of Word ConstituentsIn addition to the previous feature whi
h de�nes prominen
e on the basis of grammati
alfun
tions (whi
h is fairly restri
tive), we also introdu
e a more general feature whi
his not bound to any grammati
al information. We assume that the depth of a word
onstituent within a syntax tree (i.e. the length of the path from the leaf node to theroot node) 
an be regarded as another indi
ator as to how prominent the word is withina senten
e. The deeper a 
onstituent is embedded, the less prominent it is and, therefore,the less meaningful it should be for polarity 
lassi�
ation. In order to avoid too sparsefeatures we restri
t ourselves to �ve depth levels de�ned in Table 3.3.Clause TypeWe 
onsider synta
ti
-based and dis
ourse-based 
lause types. By synta
ti
-based type,we distinguish between main 
lause and other 
lause (i.e. adverbial 
lauses, relative
lauses et
.). We assume that words within the main 
lause of a senten
e are morepredi
tive to the overall polarity of a senten
e than words in other 
lause types. Bypolarity, lose their polar meaning. As we do not have the resour
es to robustly re
ognize multi-wordexpressions, we will 
onsider these words as polar expressions.5We 
onvert ea
h 
hara
ter to its lower
ase equivalent. Therefore, the distin
tion between Trust aspart of a named entity and trust as a 
ommon noun or full verb gets lost. 43



Table 3.3.: De�nition of the di�erent depth features.Feature Des
riptionlevel I 
onstituents with depth ≤ 5level II 
onstituents with depth ≤ 10level III 
onstituents with depth ≤ 15level IV 
onstituents with depth ≤ 20level V 
onstituents with depth > 20dis
ourse-based types, we also make use of features inspired by Meena and Prabhabkar(2007) whi
h denote the presen
e of strengthening dis
ourse 
onne
tives (e.g. but) andweakening 
onne
tives (e.g. although).Both feature types are illustrated by Senten
e (3.7). The polarity of the main 
lauseis also the overall polarity. The strength of the polarity of the subordinate 
lause isde
reased by the presen
e of the weakening dis
ourse 
onne
tive although and by the fa
tthat this is an other 
lause. In Tables 3.1 and 3.2 these 
lauses are referred to as weakand strong 
lauses.(3.7) [Although he had di�
ulties−]other, [he su

essfully+ managed the job in theend]main.We refrained from de�ning more spe
i�
 
lause types, e.g. enumerating ea
h subordinate
lause, sin
e it would have 
reated extremely sparse features.Intensi�ersIntensi�ers are adje
tives and adverbs whi
h strengthen the meaning of words. Forexample, a word, su
h as good, should obtain a higher weight in a senten
e if it ismodi�ed by an intensi�er, su
h as extremely. We took the intensi�ers from (Wilson etal., 2005). Note that we use this feature also as a word-level feature. A 
lassi�er trainedon word-level features only (i.e. without the knowledge of polar expressions) might stilllearn that expressions modi�ed by an intensi�er are important sin
e the likelihood of44



these expressions being polar (in the s
ope of an intensi�er) is quite high.Modi�
ation of Polar Expressions by Other Polar Expressions (only used atsenten
e level)Polar expressions 
an modify ea
h other. The 
onsequen
e of this is that there is a
hange in the overall meaning. If the polarity of both expressions is the same, there is anintensi�
ation (this is similar to the phenomenon des
ribed with the previous 
ategorytype). If the polarity is di�erent, there might be a weakening in strength or even a shiftin polarity of the polar expression being modi�ed. The latter phenomenon is illustratedin the following senten
e:(3.8) Korea has reje
ted− the framework agreement+.Sin
e the positive expression agreement is modi�ed by the negative expression reje
ted,the overall meaning is negative. This senten
e also shows that the modifying relation isa long-range relationship that 
an hardly been 
aptured by higher-order n-grams. Thisfeature only operates at senten
e level, sin
e it refers to polar expressions whi
h are not
onsidered at word level.Modal S
opeIf an utteran
e appears within a modal s
ope6, semanti
ally, it is not bound to be true.For polar expressions, we assume that words within modal s
ope are less important thanthey usually are. Consider, for example, the positive expression like in Senten
e (3.9)whi
h is modi�ed by the modal verb might and thus semanti
ally weakened.(3.9) He might like+ the book, but I'm not sure.Negation S
opeUsually, if a word, or more pre
isely a statement, appears within the semanti
 s
ope of anegation, its meaning is reversed. Apart from using standard negation expressions, su
h6We de�ne the s
ope of 
onstituent x as the set of all 
onstituents whi
h are dominated by the least
ommon an
estor of x. 45



as no, not, or never, we also add polarity shifters (Wilson et al., 2005). Polarity shiftersare weaker than negation markers in the sense that they only reverse polarity. They only
hange one parti
ular polarity type. For instan
e, the positive shifter abate only turnsnegative polar expressions into positive polar expressions (as in abate+ the damage−).Likewise, the negative shifter la
k turns positive polar expressions into negative polarexpressions (as in la
k− of talent+).3.5. ExperimentsThe results of the following experiments are reported on the basis of a 10-fold 
ross-validation. We evaluate the results using A

ura
y, Pre
ision, Re
all, and F-Measure(see also Appendix A.1). Feature sele
tion was 
arried out on the training data of ea
hpartitioning during the 
ross-validation in order to obtain an unbiased set of features.Statisti
al signi�
an
e is reported on the basis of a paired t-test with 0.05 as the signi�-
an
e level. We used SVMLight (Joa
hims, 1999a) with its standard 
on�guration (linearkernel) for SVMs. All linguisti
 features were extra
ted from the output of Charniak'sparser (Charniak, 2000).3.5.1. Bag-of-Words Feature Set (Baseline)Following Pang et al. (2002), we en
oded all bag-of-words features as binary featuresindi
ating the presen
e (or absen
e) of a feature in a senten
e. In order to de�ne a stri
tbaseline, we need to �nd out what subset of bag of words performs best. We testedvarious amounts using χ2 feature sele
tion (Yang & Pederson, 1997) and found that thebest feature set is the one using all words o

urring in the training data. This meansthat a feature sele
tion on this dataset is super�uous.The average A

ura
y using the entire set of words o

urring in the training datasetwith no further normalization than des
ribed above is 67.2%. By using the lemmatizerwithin WordNet we in
rease the performan
e by approximately 1.4% to 68.6%. (Thesize of the unlemmatized feature set with approximately 9, 100 tokens is redu
ed by46



approximately 2, 000 tokens when lemmatization is used.) Comparing this with resultsof polarity 
lassi�
ation at do
ument level, e.g. Pang et al. (2002) report 82.9% on moviereviews using similar features, suggests that polarity at senten
e level is mu
h harder andthat there is mu
h more room for improvement given this low-performing baseline.3.5.2. (Linguisti
) Word-Level FeaturesThe �rst extension of the standard feature set we look into are the linguisti
 word-levelfeatures (see Table 3.2), none of whi
h 
ontains any polarity information. Sin
e polarexpressions vary a
ross di�erent domains and 
ommon polarity lexi
ons only 
apture aunique polarity of polar expressions, the linguisti
 word-level features should give us arealisti
 estimate of how good domain-independent features are.In order to see whi
h features improve the performan
e of the bag-of-words featureset, we add ea
h feature 
ategory (for all words) separately to the standard feature setand measure the in
rease in performan
e. We also apply χ2 feature sele
tion on ea
hseparate feature set. Table 3.4 shows the result of this experiment. The table displaysthe bene�t when the optimal feature size is used. We only display the results of thefeature types where we 
ould measure a (notable) in
rease in performan
e. Clearly depthof 
onstituents is the predominant feature with a 
ontribution of 2.1%. Part of spee
h,
lause type, and WordNet hypernyms are very similar in their strength. All featureswith ex
eption of main predi
ate (phrase) are signi�
antly improving the bag-of-wordsbaseline. We were very surprised that negation did not notably in
rease the baselineperforman
e. However, Pang et al. (2002) also report only negligible improvement.The upper part of Table 3.5 
ontrasts the word-level feature set with the other bare bag-of-words feature sets. We applied χ2 feature sele
tion to the entire linguisti
 word-levelfeature set. The 
lassi�er using all bag of words and the optimal subset of all linguisti
features (i.e. 6, 000 additional features) outperforms the simplest baseline 
lassi�er by
5.9% whi
h is 
learly signi�
ant and still 4.5% better than the lemmatized bag-of-wordsfeature set. The linguisti
 word-level features are the only features in our experimentswhere a feature sele
tion produ
ed a signi�
antly better performan
e than using the47



Table 3.4.: Bene�t of individual word-level feature type 
ategories (optimal feature size)when added to bag of words.Feature Type Optimal Size of Feature Set Bene�t (A

ura
y)depth of 
onstituents 2000 +2.1%∗part of spee
h 2000 +1.3%∗
lause type 1000 +1.2%∗WordNet hypernyms 1000 +1.1%∗main predi
ate (phrase) 1000 +0.8%

∗: signi�
antly better than lemmatized bag-of-words baseline on the basis of a paired t-test using p < 0.05entire feature set. The A

ura
y of the 
omplete feature set (with approximately 26, 000a
tive features) is more than 2% worse than the optimal feature set.3.5.3. Senten
e Level: Polarity and Linguisti
 FeaturesThe lower part of Table 3.5 shows the result of the 
lassi�ers using di�erent senten
e-level feature sets. A 
lassi�er only trained on the prior polarity features (see Table 3.1)already a
hieves 70.4% A

ura
y. If we add all linguisti
 senten
e-level features (seealso Table 3.1), we obtain an in
rease in performan
e by 3.4%. This shows that theseremaining senten
e-level features en
ode other important information than the bare priorpolarity features.In order to �nd out whi
h features are most dis
riminative and additive at senten
elevel, we do a best-�rst forward sele
tion. Unlike χ2 feature sele
tion, forward sele
tionhas the advantage of sele
ting features en
oding disjun
t information.7 The feature se-le
tion on the senten
e-level features did not signi�
antly improve performan
e. Afterall, there are far fewer features in this feature set (less than 100 features) than in the pre-vious word-level feature set (26, 000 a
tive features) and, therefore, less noise is expe
tedto be in that feature set. Table 3.6 displays the result of this feature sele
tion. As far7Please note that we 
ould not use this feature sele
tion method for the word-level features sin
e itwould have been 
omputationally prohibitive.48



Table 3.5.: Performan
e of di�erent feature sets.Feature Sets using no Polarity InformationFeatures Class Re
. Pre
. F. A

.bag-of-words (not lemmatized) + 72.9 65.5 69.0

67.2

− 61.5 69.5 65.2bag-of-words + 63.2 71.0 66.8

68.6

− 74.1 66.8 70.3bag-of-words + + 68.2 75.8 71.7 73.1linguisti
 word-level features − 78.8 71.0 74.4Feature Sets using Polarity InformationFeatures Class Re
. Pre
. F. A

.prior-polarity + 68.0 71.5 69.7

70.4

− 72.9 69.6 71.1prior-polarity + + 70.9 75.2 72.9

73.8linguisti
 senten
e-level features − 76.6 72.6 74.5prior-polarity + bag of words + 74.0 76.1 75.0

75.4

− 76.8 74.8 75.7prior-polarity + bag of words + + 74.6 78.0 76.2

76.7∗linguisti
 word-level features − 78.9 75.7 77.2prior-polarity + bag of words + + 74.9 77.9 76.3

76.8∗linguisti
 senten
e-level features − 78.7 75.9 77.2prior-polarity + bag of words + + 75.2 78.8 76.9 77.5∗all linguisti
 features − 79.7 76.3 78.0

∗: signi�
antly better than prior-polarity + bag of words on the basis of a paired t-test using p < 0.05
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as linguisti
 features are 
on
erned, the results are similar to the feature analysis of theword-level features. The fa
t that adje
tives are the most important part-of-spee
h tagwas to be expe
ted (see dis
ussion above). It is no surprise either that only depth levelsI and II o

ur in the optimal feature set sin
e these two levels usually denote a high levelof prominen
e. With the o

urren
e of main predi
ate, main predi
ate phrase, and main
lause, our analysis proves that synta
ti
ally prominent 
onstituents within a senten
e
an be e�e
tive features for polarity 
lassi�
ation.Adding lemmatized bag of words instead of the other senten
e-level features results inan even higher improvement by 5% to 75.4% showing that bag of words and the priorpolarity features are 
omplementary and extremely additive. This number, however, maybe optimisti
 sin
e the polarity lexi
on we are using does not have to have su
h a high
overage on other domains.Finally, we test in how far we 
an in
rease the performan
e of a feature set 
omprisingprior polarity information and bag of words. Performan
e is in
reased by adding eitherthe remaining senten
e-level features or word-level features. Adding either set of featuresresults in a statisti
ally signi�
ant improvement by 1.3% and 1.4%, respe
tively. Whenboth levels are added, the gain in performan
e by 2.1% is even higher. Comparingthis number with the simplest feature set we used (i.e. bag of words - not lemmatizedin Table 3.5) we have an in
rease by 10.3%.3.5.4. Other Levels of RepresentationWe tested two alternative types of feature representations: bigrams and tree-kernels.However, all these features did not improve the performan
e of our baseline. Bigrams
an be a means of 
apturing more lo
al stru
ture than unigrams and are known to improvethe quality of polarity 
lassi�
ation at do
ument level (Ng et al., 2006). We assume thatthis representation does not work at senten
e level due to the greater data-sparseness.The potential of tree-kernels is that stru
tural features are automati
ally (impli
itly)
omputed and do not have to be expli
itly de�ned. (A detailed introdu
tion will be50



Table 3.6.: Best senten
e-level features a

ording to best-�rst forward sele
tion.Bare Polarity Featuresnumber of positive/negative expressionsnumber of strong positive/negative expressionsLinguisti
 Featuresnumber of positive/negative adje
tivesnumber of negative verbsnumber of positive/negative expressions with depth level Inumber of positive/negative expressions with depth level IIis main predi
ate a positive expression?number of negative expressions in predi
ate phrasenumber of positive/negative expressions in main 
lausenumber of positive expressions modi�ed by positive/neutral expressionsgiven in Chapter 7.) We used SVMLight-TK (Mos
hitti, 2006b)8 for our experiments.The reason for the la
king improvement might be due to too mu
h irrelevant informationen
oded in syntax trees beside the relevant information as the one that is representedby the linguisti
 features presented in this 
hapter. In Chapter 7, we will show that foranother task, namely opinion holder extra
tion, tree kernels work quite e�e
tively. Onekey premise for the appli
ation of tree kernels to work is that we only 
onsider subtrees
ontaining little redundant information (su
h as, in opinion holder extra
tion, the subtreeen
oding the relation between a 
andidate opinion holder and its nearest predi
ate). Theproblem for senten
e-level text 
lassi�
ation is that, unlike in entity extra
tion, there areno natural subtrees whi
h immediately spring to mind.The results of these two experiments may be opposed to the �ndings in (Kudo &Matsumoto, 2005), but we assume that this is due to the di�erent settings of the experi-8We always tested within the hybrid mode whi
h 
ombines the tree-kernel with the standard bag-of-words features. 51



ments.93.6. Error AnalysisWe found that the golden standard o

asionally 
ontains in
orre
t labels, i.e. positivesenten
es have been labeled as negative senten
es and vi
e versa. By 
loser inspe
tion ofsome of those 
ases, we found that the reason for that lies in the automati
 proje
tion oflabels from the phrase level to the senten
e level. As mentioned in Se
tion 3.3, we only
arried out a fully automati
 proje
tion in 
ase the polarity labels of the phrases withinone senten
e were identi
al. However, we spotted several senten
es in whi
h phraseswere missing in the (manual) annotation of the 
orpus whi
h thus 
aused an in
orre
tproje
tion (as the missing phrases possessed a polarity type opposed to the other a
tuallyanntoated expressions).Another sour
e of error lies in the re
ognition of polar expressions whi
h forms the ba-sis for any senten
e-level feature (Se
tion 3.5.3). Not only is the 
overage of 
urrentpolarity lexi
ons limited but they also fail to provide the ne
essary information to dis-ambiguate expressions whi
h only possess a polar meaning with some parti
ular sense(Se
tion 2.4). Our lexi
on only disambiguates words on the basis of part-of-spee
h infor-mation (Se
tion 3.4.2) but is unable to disambiguate expressions whi
h 
ontain a uniquepart-of-spee
h tag.3.7. Con
lusionIn this 
hapter, I have shown that the baseline performan
e of polarity 
lassi�ers of newstext at senten
e level using bag of words 
an be signi�
antly improved by applying bothlinguisti
 features and polarity information. Unlike polarity 
lassi�
ation at do
umentlevel, just using bag of words produ
es a fairly low performan
e.9Kudo and Matsumoto (2005) report results on Japanese text, they use twi
e as mu
h data and 
onsidera 
losed domain (reviews for Personal Handyphone System) presumably 
omprising more repetitivelanguage than the multi-topi
 MPQA news 
orpus.52



Though adding prior polarity information to bag of words already gives a signi�
antboost to the baseline performan
e at senten
e level, adding linguisti
 features 
an in
reasethis performan
e even further signi�
antly. In total, our baseline is improved by up to
10.3%. We also showed that in the absen
e of any polar information, domain-independentstru
tural features 
an already improve the performan
e of bag-of-words feature sets byapproximately 6%.
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4. Dete
ting Inde�nite Polar Utteran
es
4.1. Introdu
tionIn Chapter 2, I stated that text 
lassi�
ation in sentiment analysis is usually a two-stage
lassi�
ation s
enario 
onsisting of subje
tivity dete
tion and polarity 
lassi�
ation. Boths
enarios are mostly 
onsidered as a binary 
lassi�
ation problem. The 
lassi�
ation thatwas presented in the previous 
hapter �ts into that s
heme. It is, however, too simplisti
.A

ording to that s
heme, on
e a text is 
onsidered subje
tive, it is either positive ornegative. Unfortunately, it fails to a

ount for subje
tive texts whi
h 
ontain an inde�nitepolar subje
tivity.Senten
es (4.1) and (4.2) are de�nite polar utteran
es sin
e these senten
es 
an be
ategorized as either positive or negative:(4.1) She's always the best of the best!(4.2) That produ
t is so bad, it should be illegal.Senten
es (4.3) - (4.5) are examples of inde�nite polar utteran
es:(4.3) That �rst re
ord was amazing but then they fell o� really fast.(4.4) She has an average voi
e.(4.5) I'm not hellishly impressed.These utteran
es have in 
ommon that they are subje
tive and express a value judgment.None of these statements 
an be 
ategorized as de�nite positive or negative. The inde�-niteness is a
hieved either by stating both positive and negative aspe
ts (Senten
e (4.3)),54



by using polar expressions not denoting de�nite polarity (average in Senten
e (4.4)), orby diminishing/negating de�nite polar phrases (Senten
e (4.5)).This 
hapter presents a small set of features to dete
t inde�nite polar senten
es. Inorder to adhere to the 
ommon theme of this thesis, I will present domain independentfeatures re�e
ting the linguisti
 stru
ture underlying these types of utteran
es. Sin
e in-de�nite utteran
es or even entire inde�nite reviews are part of a realisti
 review 
olle
tion,those features might be helpful for an a

urate text 
lassi�
ation.We give eviden
e for the e�e
tiveness of these features by in
orporating them into anunsupervised rule-based 
lassi�er for senten
e-level analysis and 
ompare its performan
ewith supervised ma
hine learning 
lassi�ers. We restri
t ourselves to senten
e-level analy-sis sin
e we are primarily interested in basi
 utteran
es (as we want to explore the natureof this type of opinion) for whi
h senten
es are a suitable approximation.The work presented in this 
hapter is also des
ribed in (Wiegand & Klakow, 2010
).4.2. Related WorkKoppel and S
hler (2006) present a ma
hine learning approa
h to polarity 
lassi�
ationwhere also reviews with inde�nite polarity are 
onsidered. A binary 
lassi�er for positiveand negative polarity is learned using bag-of-words features. Reviews being predi
tedas positive or negative with a low 
on�den
e are 
lassi�ed as inde�nite polar reviews.The paper does not address features spe
i�
ally designed for dete
ting inde�nite polarreviews.Zhao, Liu, and Wang (2008) 
onsider a CRF-based model for senten
e-level polarity
lassi�
ation of reviews also taking into 
onsideration inde�nite polar senten
es as aseparate 
lass. Again, there is no dis
ussion about what predi
tive features are for this
lass.Wilson et al. (2005) present polarity 
lassi�
ation of news text on phrase level. Apartfrom positive and negative polar phrases, phrases with both polarities and neutral polarityare 
onsidered. However, our task di�ers greatly from theirs. Wilson et al. (2005) 
arryout 
lassi�
ation of phrases whereas this work deals with senten
e-level 
lassi�
ation.55



Moreover, this 
hapter addresses another text type being online reviews whereas Wilsonet al. (2005) deal with news texts. As all four polar 
lasses are 
lassi�ed within the same
lassi�er, it is not 
lear whi
h features are predi
tive for the inde�nite polar 
lasses.Wilson, Wiebe, and Hwa (2004) present features for distinguishing strong from weakopinion 
lauses. Weak opinion 
lauses bear some resemblan
e to the 
lass of inde�nitepolar expressions. However, the paper does not address polarity. Moreover, the samedi�eren
es as the one mentioned to (Wilson et al., 2005) (i.e. level of granularity andtext type) also apply to (Wilson et al., 2004).4.3. DataWe extra
ted a set of reviews from Rate-It-All.1 Sin
e we want to 
lassify senten
es, werestri
ted our 
hoi
e to reviews whi
h only 
omprise one senten
e. We only 
hose thosedomains whi
h given this restri
tion still 
ontained su�
ient reviews. The domainswe in
lude in the experiments of this 
hapter are Person (person), Sports & Re
reation(sports), and Travel, Food, & Culture (travel). For de�nite polar utteran
es, we extra
tedreviews rated with 1 or 5 stars and for inde�nite reviews, we extra
ted reviews ratedwith 3 stars. Of the latter subset, some reviews were manually removed, sin
e they weredeemed de�nite polar utteran
es. For the sake of simpli
ity, we generated a balan
eddataset via random sampling. This results in a random baseline of 50% in A

ura
y.We 
hose web reviews for the experiments in this 
hapter be
ause it is fairly easy togenerate annotated data from a set of reviews (as shown above) in 
omparison to otherdomains, su
h as newswire text, where additional manual annotation would have beenrequired. The annotation of the MPQA-
orpus 
ould not be used despite the fa
t that itis at phrase level (and therefore 
an be proje
ted to senten
e-level, as it has been done inChapter 3) sin
e inde�nite polarity as su
h is not 
ontained in the annotation (see alsoSe
tion 4.2). Some phrases annotated as private states in MPQA may also be found inour dataset as inde�nite polar instan
es. These phrases were then labeled as either lowpositive or negative polar phrases. Unfortunately, we 
ould not make out a systemati
1http://www.rateitall.com56



Table 4.1.: Size of the di�erent datasets.Domain Number of Senten
esperson 1914sports 980travel 1618
orresponden
e between the annotation in MPQA and the labels in our dataset.Table 4.1 lists the size of the resulting datasets.4.4. Feature DesignTable 4.2 lists all the features that we use. The feature set 
an be divided into the subsetindi
ating inde�nite polarity and the subset indi
ating de�nite polarity. We will dis
ussea
h of these features individually in the forth
oming subse
tions. Several of the featuresrequire the knowledge of polar expressions (e.g. PosInPast or PolarSuper). For theirdete
tion we use, as in the previous 
hapter, the Subje
tivity Lexi
on from the MPQA-proje
t (Wilson et al., 2005). This lexi
on is well suited for our experiments sin
e it
ontains a binary intensity feature dividing entries into weak polar expressions (e.g. validor bulky) and strong polar expressions (e.g. wonderful or hideous). We make use of thisdistin
tion in one of our features (NegStrongPol). In order to in
rease the 
overageof the polarity lexi
on, we add adje
tives from the Ma
quarie Semanti
 OrientationLexi
on (Mohammad, Dunne, & Dorr, 2009).2 All these entries are 
ategorized as weakpolar expressions.4.4.1. Inde�nite Polarity FeaturesThe following subse
tions des
ribe features indi
ative of inde�nite polar opinions.2We found that other entries are too noisy for our appli
ation. 57



Table 4.2.: Des
ription of the feature set.Feature Abbreviation Inde�nitePolarityFeature De�nitePolarityFeature Example(s)
on
essive 
onjun
tions ConcConj X but, although, however
on
essive 
onjun
tions pre-
eded by a polar expression ConcAndPolar X he is ni
e but . . .detensi�ers Detens X rather, kind of, slightly, almostnegated strong polar expres-sions NegStrongPol X not ex
ellent, not badnegation expressions NegExp X not, never, nothingmiddle-of-the-road polar ex-pressions MiddleExp X solid, average, ordinarypositive polar expressions inpast tense 
lause PosInPast X he used to be funnypolar superlatives PolarSuper X best, funniest, worstemphati
 
ues EmphCues X yeah, ah, grrreeeaaat, !
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Con
essive Conjun
tions (ConcConj)In the introdu
tion to this 
hapter, we pointed out that one way of expressing inde�nitepolarity is to state both a positive and a negative opinion in a senten
e. An intuitiveheuristi
 to look for utteran
es in whi
h both positive and negative polar expressionso

ur is not very e�e
tive. We as
ribe it to the fa
t that the dete
tion of polar opinionsis very error prone. The relevant polar expressions may not be dete
ted if they arenot in
luded in the polarity lexi
on, and even if they 
an be dete
ted, their 
ontextualpolarity may be 
omputed in
orre
tly. Contextual polarity 
omprises many linguisti
phenomena, su
h as negation or irony, whi
h are di�
ult to model 
omputationally.We found, however, that there is another feature whi
h most often 
o-o

urs withthis type of utteran
e. Con
essive 
onjun
tions, su
h as but or although, indi
ate thattwo 
lauses represent semanti
ally opposed propositions. In our dataset this is usuallya juxtaposition of two polar opinions. Thus, su
h a 
onjun
tion is also indi
ative of asenten
e with an overall inde�nite polarity:(4.6) A ni
e+ wine, but de�nitely [not worth]− the pri
e.Con
essive Conjun
tions Pre
eded by a Polar Expression (ConcAndPolar)Even though 
on
essive 
onjun
tions may be dete
ted more easily than two 
ontrastingpolar opinions, the 
on
essive 
onjun
tion may itself be an ambiguous word. For instan
e,but in the following senten
e is not a 
on
essive 
onjun
tion:(4.7) They are nothing but an untalented stain on the musi
 world ... totally atro
iousmusi
.We found, however, that a 
o-o

urren
e of a polar expression pre
eding the potential
on
essive 
onjun
tion is a fairly reliable way of disambiguating these words.Detensi�ers (Detens)Another way of expressing inde�nite polarity is to diminish polar phrases. Therefore,a further 
ue may be diminishing expressions, or so-
alled detensi�ers, su
h as almost,59



slightly, or less:(4.8) Terry is almost as good as Robert Jordan, his stories are slightly less word en
om-passing.For detensi�ers, we adhere to the list presented in (Jason, 1988).Negated Strong Polar Expressions (NegStrongPol)In traditional polarity 
lassi�
ation negated polar expressions are interpreted as if thepolarity of the polar expressions were reversed (Kennedy & Inkpen, 2005; Klenner et al.,2009). We argue that for the dete
tion of inde�nite polarity negated polar expressionsshould not be equated with unnegated polar expressions with the opposite polarity. In-stead, they should be treated as a separate 
ategory. In parti
ular, negated strong polarexpressions (Senten
e (4.9)) may similarly 
onvey inde�nite polarity as detensi�ed polarexpressions (Senten
e (4.10)):(4.9) They are not bad.(4.10) They are quite good.We did a simple negation dete
tion mat
hing the lexi
al entries labeled as negationsin (Wilson et al., 2005). We did not 
arry out a disambiguation of negation words. Sothe performan
e of this feature 
an be 
onsidered as a lower bound. As we did not employfull parsing for the experiments in this 
hapter, we de�ne the s
ope of a negation as the�ve words following a negation word.Negation Expressions (NegExp)
NegStrongPol is a fairly 
omplex feature in whi
h several properties have to 
o-o

ur,i.e. the senten
e must 
ontain a polar expression whi
h has to be of strong intensity andit has to be within the s
ope of a negation. The 
omputation of su
h a feature is error-prone as the negation may not be 
orre
tly 
omputed or the strong polar expression maybe overlooked as it is not spe
i�ed in the polarity lexi
on. Therefore, we add a feature60



just re
ognizing negations. Admittedly, this feature is not equivalent to the previousfeature but its 
omputation should be mu
h more reliable and, often, it should 
oin
idewith NegStrongPol.Middle-of-the-Road Polar Expressions (MiddleExp)Inde�nite polarity may not only be 
onveyed by the use of 
ertain linguisti
 
onstru
tions,be it on dis
ourse level (ConcConj) or on syntax level (Detens or NegStrongPol).It 
an also be lexi
ally realized by so-
alled middle-of-the-road polar expressions, su
h asok:(4.11) This beer brand is ok ... really far away of the Paulaner He�eweissen.We 
ompiled a list of su
h expressions by starting with a 
ouple of manually de�ned seedwords whi
h were expanded using semanti
 resour
es, su
h as WordNet (Miller et al.,1990). Moreover, we also manually sele
ted a subset of weak polar expressions from thepolarity lexi
on of the MPQA-proje
t. Note that middle-of-the-road polar expressionsdi�er quite substantially from the polar expressions marked as both (e.g. think, believe)or neutral (e.g. demand, brag) in that lexi
on, though the 
ategory names may suggestotherwise. MiddleExp always implies a value judgment whereas the two 
ategories inthe Subje
tivity Lexi
on usually do not have that property. Besides, these two types ofexpressions did not show any noti
eable predi
tiveness on our datasets.Positive Polar Expressions in Past Tense Clause (PosInPast)We observed that in many inde�nite polar reviews people tend to re
all positive aspe
ts
on
erning the topi
 they review whi
h they experien
ed in the past and 
ontrast themwith negative aspe
ts they presently per
eive. We found that this behavioural pattern
an be automati
ally identi�ed by dete
ting a positive polar expression uttered in a pasttense 
lause. Reviews are usually written in present tense and we found that if a 
lauseo

urs in past tense, then this will most often be a

ompanied by a swit
h in tense: 61



(4.12) [I usedPast to like+ those 
hips a lot better+ some years ago], now the only way Ieat them is with sour 
ream.We also experimented with a related feature, i.e. dete
ting a negative polar expression ina past tense 
lause, however, we 
ould not measure any 
orrelation between this patternand the 
lass of inde�nite polar utteran
es.4.4.2. De�nite Polarity FeaturesThe following subse
tions des
ribe features indi
ative of de�nite polar opinions.Polar Superlatives (PolarSuper)De�nite polar opinions may often be 
onveyed by a polar superlative:(4.13) He's the best a
tor.Intuitively, the polar intensity of a polar superlative (e.g. best) is stronger than theintensity of a polar positive (e.g. good) or 
omparative (e.g. better). Though polarsuperlatives are similar to strong polar expressions, su
h as ex
ellent, or intensi�ed polarexpressions, su
h as very good, we found in our initial experiments that they are far lesspredi
tive for our task than the polar superlative.Emphati
 Cues (EmphCues)Often, emphati
 
ues, su
h as interje
tions (yeah, ah et
.), 
o-o

ur with de�nite polarsenten
es. A feature dete
ting su
h 
ues may help sin
e in our dataset there are manyde�nite polar senten
es in whi
h � apart from the emphati
 
ue � there is no otherfeature that 
ould be that easily 
omputed. For instan
e, in the following senten
e thepolar opinion is pragmati
, i.e. it is not lexi
alized. However, there are three ex
lamationmarks whose o

urren
e is interpreted as an emphati
 
ue:(4.14) I 
an eat this peanut butter on anything!!!62



For the implementation of this feature, we mainly relied on ex
lamation marks and thepart-of-spee
h tag indi
ating interje
tions, i.e. UH. In addition, we formulated regularexpressions 
apturing irregular spelling as in suuuper or grrreeeaaat.4.5. Rule-Based Classi�erThe features from Se
tion 4.4 
an be used as a rule-based 
lassi�er. For ea
h test instan
e,the o

urren
es of features indi
ating de�nite and inde�nite polar utteran
es are 
ounted.We assign the instan
e the 
lass with the majority of feature o

urren
es. In 
ase of tiesthe instan
e is 
lassi�ed as de�nite polar sin
e we have fewer features formulated for that
lass.4.6. ExperimentsWe evaluate the results using A

ura
y only (see also Appendix A.1). Table 4.3 displaysthe individual performan
e of the di�erent features used as a rule-based 
lassi�er (asformulated in Se
tion 4.5). We test for ea
h feature whether it is signi�
antly di�erentfrom a random baseline (i.e. 50% A

ura
y). We report statisti
al signi�
an
e on thebasis of a χ2 test.Ea
h of the features is at least signi�
antly better than the baseline when the entiredataset is 
onsidered. It is very striking that among the best performing features are
ConcConj and NegExp whi
h are features des
ribing di�erent types of 
losed-word
lasses. Their advantage is that they 
omprise words frequently o

urring a
ross alldomains.The features that fail to be signi�
antly better than the baseline on ea
h domain, i.e.
PolarSuper, NegStrongPol, and PosInPast, are more 
omplex than most of theother better performing features. They all des
ribe a 
o-o

urren
e of separate properties,e.g. PosInPast is a polar expression that also happens to be positive and o

urs in apast tense 
lause. We assume that the reason for these features performing less well liesin the sparsity of their o

urren
e. 63



Table 4.4 
ompares the performan
e of the unsupervised rule-based 
lassi�er using allfeatures with supervised 
lassi�ers on 10-fold 
ross-validation. We 
ompare Support Ve
-tor Ma
hines (SVMs) using SVMLight3 and a k Nearest Neighbour Classi�er (kNN) usingTiMBL4. For SVMLight we use the standard 
on�guration and for TiMBL we use the 5nearest neighbours. This setting produ
es the best overall performan
e on all domains.All words 
ontained in the training sets are used as features for the supervised 
lassi�ers.Following the insights of Pang et al. (2002), features indi
ate presen
e within an instan
eand not its frequen
y. The in
lusion of our novel high-level features (Table 4.2) did notimprove performan
e of these 
lassi�ers when they were added to the bag of words. Forthe rule-based 
lassi�er, we also 
onsidered subsets of the features, but no signi�
ant im-provement over the entire feature set 
ould be a
hieved. SVMs a
hieve best performan
e.Both kNN and the rule-based 
lassi�er are signi�
antly worse than SVMs. Surprisingly,the rule-based 
lassi�er is as robust as kNN. There is no signi�
ant di�eren
e betweenthe rule-based 
lassi�er and kNN.5Figure 4.1 shows the average performan
e of the di�erent 
lassi�ers with varyingamounts of labeled training data. For ea
h 
on�guration, we randomly sampled n train-ing instan
es from the domain 
orpus and use the remaining instan
es as test data. Wesampled 20 times and report the averaged result. Even for SVMs, it takes more than 400labeled data instan
es to a
hieve a signi�
antly better A

ura
y than the unsupervisedrule-based 
lassi�er. For less robust supervised 
lassi�ers, su
h as kNN, more than 800labeled data instan
es are required to a
hieve the same performan
e as the rule-based
lassi�er.4.7. Error AnalysisOur manual inspe
tion of mis
lassi�ed data instan
es revealed that several senten
eshave been in
orre
tly labeled in the golden standard. The most frequent mistake is that3http://svmlight.joachims.org4http://ilk.uvt.nl/timbl5Statisti
al signi�
an
e is again reported on the basis of a χ
2 test with signi�
an
e level p < 0.001.64



Table 4.3.: A

ura
y of the di�erent features on the di�erent domains.Type person sports travel all
ConcConj 72.99∗∗∗ 71.53∗∗∗ 73.24∗∗∗ 72.76∗∗∗

ConcAndPolar 65.94∗∗∗ 62.76∗∗∗ 66.25∗∗∗ 65.36∗∗∗

NegExp 58.99∗∗∗ 60.92∗∗∗ 61.37∗∗∗ 60.26∗∗∗

EmphCues 59.98∗∗∗ 57.86∗∗∗ 60.88∗∗∗ 59.84∗∗∗

MiddleExp 59.14∗∗∗ 58.06∗∗∗ 59.77∗∗∗ 59.13∗∗∗

Detens 55.28∗∗ 54.90∗ 55.56∗∗ 55.30∗∗∗

PolarSuper 52.46 57.65∗∗∗ 53.58∗ 54.56∗∗∗

NegStrongPol 52.72 54.08 54.39∗ 53.73∗∗∗

PosInPast 53.29∗ 52.65 50.74 52.23∗Statisti
al signi�
an
e is reported on the basis of a χ2 test with signi�
an
e levels p < 0.05 (∗), p < 0.01 (∗∗) and
p < 0.001 (∗∗∗).

Table 4.4.: Comparison of A

ura
y of the di�erent 
lassi�ers.Type person sports travel averagerule-based 76.18 78.06 77.32 77.19kNN 78.00 77.55 75.59 77.05SVMs 81.19 81.02 80.22 80.81
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Figure 4.1.: Average A

ura
y of the di�erent 
lassi�ers using di�erent amounts of labeledtraining data.
reviews rated with either 1 or 5 reviews, i.e. reviews that we 
onsider as de�nite polar,are a
tually inde�nite. For some future work on this task, we therefore should manuallylabel senten
es in our dataset with regard to polar de�niteness from s
rat
h.We also found that features were frequently not re
ognized, the reason for that beingthat words have been misspelt or have been tagged with in
orre
t part-of-spee
h tags.By having some 
leaner data, A

ura
y may in
rease as the automati
 feature extra
tionwould be
ome more reliable. Of 
ourse, these two sour
es of errors (i.e. spelling andpart-of-spee
h tagging) are not the only sour
es for features being in
orre
tly extra
ted.Several of them rely on the re
ognition of polar expressions but 
urrent state-of-the-artpolarity lexi
ons are far from being perfe
t as they have a limited 
overage and 
annotsu�
iently 
ope with the ambiguity of polar expressions (see Chapter 3.6).66



4.8. Con
lusionIn this 
hapter, we presented a set of dis
riminative features for the dete
tion of inde�nitepolar senten
es. All features are based on linguisti
 observations or intuitions. We showedthat these features 
an be used as an unsupervised rule-based 
lassi�er whi
h providesas good as performan
e as supervised ma
hine learning 
lassi�ers, su
h as kNN trainedon bag-of-words. When only small amounts of training data are available (i.e. less than300 senten
es), the unsupervised approa
h even outperforms more robust supervised
lassi�ers, su
h as SVMs. Sin
e the feature set uses domain-independent features the
lassi�er works equally well throughout di�erent domains.We leave it to future work to examine the impa
t of these features in a polarity 
las-si�er also a

ounting for the other 
ommon polarity types, i.e. positive and negative.Unfortunately, due to the la
k of annotated data for this s
enario, this study is beyondthe s
ope of this thesis.
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5. Topi
-Related Senten
e-Level PolarityClassi�
ation5.1. Introdu
tionIn this 
hapter, I return again to senten
e-level polarity 
lassi�
ation. While in Chapter 3the task was to predi
t the overall polarity of a senten
e, in this 
hapter we are interestedin the polarity towards a spe
i�
 topi
, i.e. targets of opinions. The in
lusion of targetsof opinions may result in a more 
omplex type of 
lassi�
ation, however, this task isalso more similar to realisti
 s
enarios. People are usually interested in opinions towards
ertain topi
s rather than the overall polarity of a senten
e. Moreover, even though thetask may be more 
omplex than plain polarity 
lassi�
ation, the presen
e of a targetmentioning in a senten
e may help to over
ome the 
ommon ambiguity problem thata senten
e 
ontains polar expressions with opposing polarity types as will be explainedbelow.The s
enario that is going to be used in this 
hapter looks as follows: the problemof polarity 
lassi�
ation is 
onverted into a retrieval task. A query 
onsisting of a topi
and a target polarity, su
h as {topi
: Mozart, target polarity: positive}, is posed to atopi
-related polarity ranker. The ranker should be able to highly rank Senten
e (5.1),whi
h 
ontains an opinion about the target whose polarity mat
hes the target polarity,and disprefer Senten
e (5.2), whi
h 
ontains an opinion about the target topi
 but whosepolarity is in
orre
t, and Senten
e (5.3), whi
h is merely a fa
tual statement about thetarget topi
.(5.1) positive statement: My argument is that it is pointless− to ordinary mortals like68



you and me to dis
uss why Mozart was a genius+.(5.2) negative statement: I have to say that I [don't like+]− Mozart.(5.3) neutral statement: Wolfgang Amadeus Mozart's 250th birthday is 
oming up onthe 27th of this month.In order to highly rank Senten
e (5.1), the ranker must be able to de
ide whi
h ofthe two polar expressions having opposing polarity types, i.e. pointless or genius, isrelated towards the topi
. Bag-of-words 
lassi�ers, whi
h we will use as a baseline, mighttherefore mislabel this senten
e. A 
lassi�
ation whi
h jointly takes the topi
 term andthe polar expressions into a

ount, on the other hand, may result in a 
orre
t 
lassi�
ation.For example, the 
losest polar expression, i.e. genius, is the expression whi
h a
tuallyrelates to the topi
. This ambiguity 
an be resolved by both spatial distan
e and synta
ti
information. In the 
urrent example, there is a dire
t synta
ti
 relationship, i.e. a subje
t-of relationship, between the topi
 term and the polar expression relating to it. Usually,synta
ti
 relation features are more pre
ise but also mu
h sparser than proximity features.Not only is it important to identify the polar expression within a senten
e whi
ha
tually relates to the polar expression but also to interpret a polar expression 
orre
tlyin its 
ontext. In Senten
e (5.2), the only polar expression has a positive prior polaritybut sin
e it is negated its 
ontextual polarity is negative.All these observations suggest that there are several sour
es of information to be 
on-sidered whi
h is why we examine features in
orporating polarity information extra
tedfrom a large polarity lexi
on, synta
ti
 information from a dependen
y parse, and surfa
e-based proximity. In parti
ular, we address the issue whether synta
ti
 information is ben-e�
ial in this task. Many features that will be tested in this 
hapter resemble those fromprevious experiments on plain senten
e-level polarity 
lassi�
ation in Chapter 3. We alsowant to examine whi
h of these features maintain their e�e
tiveness on this task.Modeling topi
-related polarity 
lassi�
ation as a retrieval task (instead of a traditional
lassi�
ation task) simpli�es the task sin
e the ranking does not require that all instan
esare 
lassi�ed 
orre
tly, i.e. lower ranks are virtually negle
ted by evaluation metri
s for69



ranking, so in
orre
t predi
tions on lower ranks do not mar the overall result. Se
ondly,neutral statements or opinions with inde�nite polarity (as they have been dealt within Chapter 4) do not have to be spe
i�
ally modeled, as the target polarity is eitherpositive or negative. Instan
es that do not mat
h the target polarity should not o

uron the higher ranks but a reason, i.e. an explanation why these instan
es are di�erent(for instan
e by labeling them as neutral or inde�nite polar) is not required.The work presented in this 
hapter is also des
ribed in (Wiegand & Klakow, 2009
).5.2. Related WorkThe main fo
us of existing work in sentiment analysis has been on plain polarity 
las-si�
ation whi
h is 
arried out either at do
ument level (Pang et al., 2002), senten
elevel (Chapter 3), or expression level (Wilson et al., 2005). There has also been quitesome work on extra
ting and summarizing opinions regarding spe
i�
 features of a par-ti
ular produ
t, one of the earliest works being (Hu & Liu, 2004). Unlike the workpresented in this 
hapter, the task is usually 
on�ned to a very small domain. Moreover,the plethora of positively labeled data instan
es allows the e�e
tive usage of synta
ti
relation patterns.Santos et al. (2009) show that a Divergen
e From Randomness proximity model im-proves the retrieval of subje
tive do
uments. However, neither an evaluation on senten
elevel and nor an evaluation of polarity 
lassi�
ation is 
ondu
ted.The works most 
losely related to the work presented in this 
hapter are (Kessler &Ni
olov, 2009) and (Jakob & Gurevy
h, 2010a) who examine the dete
tion of targetsof opinions by using synta
ti
 information. Whereas they both dis
uss how to dete
twhether two entities are in an opinion-target relationship � Kessler and Ni
olov (2009)even already know that there is su
h a relationship in the senten
e to be pro
essed �we do not 
ondu
t an expli
it entity extra
tion but 
lassify whether or not a senten
e
ontains an opinion-target relationship. Another di�eren
e is that we 
onsider this taskas a ranking task while Kessler and Ni
olov (2009) and Jakob and Gurevy
h (2010a)
onsider this as a 
lassi�
ation task (Kessler and Ni
olov (2009) employ Support Ve
tor70



Ma
hines (SVMs) while Jakob and Gurevy
h (2010a) use Conditional Random Fields(CRFs)). Like Jakob and Gurevy
h (2010a), we also 
arry out a 
ross-domain evaluation,as our queries deal with various di�erent domains. Unlike (Kessler & Ni
olov, 2009;Jakob & Gurevy
h, 2010a), we also restri
t the opinion-bearing word to be of a spe
i�
polarity. Thus, we 
an use knowledge about polar expressions in order to predi
t anopinion-target relationship in a senten
e.The 
hange in fo
us, i.e. the fa
t that we deal with a senten
e-level ranking taskrather than an entity extra
tion task, raises the question whether a similar amountof synta
ti
 knowledge is ne
essary or whether su�
ient information 
an be drawn frommore surfa
e-based features and lexi
al knowledge of prior polarity. Moreover, we believethat our results are more signi�
ant for realisti
 s
enarios like opinion question answering,sin
e our settings are more similar to su
h a task than the ones presented by Kessler andNi
olov (2009); Jakob and Gurevy
h (2010a).5.3. DataThe dataset we use in the experiments of this 
hapter is a set of labeled senten
es retrievedfrom relevant do
uments of the TREC Blog06 
orpus (Ma
donald & Ounis, 2006) forTREC Blog 2007 topi
s (Ma
donald, Ounis, & Soboro�, 2008). The test 
olle
tion
ontains 50 topi
s. For ea
h topi
 we formulate two separate queries, one asking forpositive opinions and another asking for negative opinions. In the �nal 
olle
tion weonly in
lude queries for whi
h there is at least one 
orre
t answer senten
e. Thus, wearrive at 86 queries of whi
h 45 ask for positive and 41 ask for negative opinions. Thesenten
es have been retrieved by using a language model-based retrieval (Shen, Leidner,Merkel, & Klakow, 2007). Ea
h senten
e from the retrieval output has been manuallylabeled. One annotator judged whether a senten
e expresses an opinion with the targetpolarity towards a spe
i�
 topi
 or not. Di�
ult 
ases have been labeled after dis
ussionwith another annotator. The additional annotator only annotated those di�
ult 
ases.The annotation is stri
tly done at senten
e level, i.e. no information of surrounding
ontext is taken into 
onsideration. This means that ea
h positively labeled senten
e71



must 
ontain some (human re
ognizable) form of a polar expression and a topi
-relatedword. Our de
ision to restri
t our experiments to the senten
e level is primarily toredu
e the level of 
omplexity. We are aware of the fa
t that we ignore inter-sententialrelationships, however, Kessler and Ni
olov (2009) state that on their similar dataset
91% of the opinion-target relations are within the same senten
e.The proportion of relevant senten
es 
ontaining at least one topi
 term in our 
orpusis 97% whi
h is fairly high. By a topi
 term, we mean an o

urren
e of a token beingpart of the topi
. Although 71% of the relevant senten
es 
ontain a polar expressionof the target polarity a

ording to the polarity lexi
on we use, in 50% of the senten
esthere is also at least one polar expression with opposing polarity. The joint o

urren
eof a polar expression mat
hing with the target polarity and a topi
 term is no reliableindi
ator of a senten
e being relevant, either. Only approximately 17% of these 
ases are
orre
t. The entire dataset 
ontains 25, 651 senten
es of whi
h only 1, 419 (i.e. 5.5%) arerelevant1 indi
ating a fairly high 
lass imbalan
e. This statisti
al analysis suggests thatthe extra
tion of 
orre
t senten
es is fairly di�
ult.5.4. Feature DesignIn the following, we will des
ribe the di�erent features we use for the task of topi
-relatedpolarity 
lassi�
ation. Some of the features bear some resemblan
e to the features used inplain senten
e-level polarity 
lassi�
ation presented in Chapter 3. The fa
t that similarfeatures are re-used for this task should be regarded as eviden
e for the robustness andgeneral appli
ability of these feature types for sentiment analysis.5.4.1. Senten
e Retrieval, Topi
 Feature, and Text Classi�ersOur simplest baseline 
onsists of a 
as
ade of a senten
e-retrieval engine and two text
lassi�ers, one to distinguish between obje
tive and subje
tive 
ontent, and another to1By relevant, we mean every senten
e whi
h expresses a polar opinion (mat
hing the target polarity)towards the topi
 term, i.e. neither a polar expression nor a topi
 term need to be present.72



distinguish between positive and negative polarity. We employ stemming and only 
on-sider unigrams as features. The two text 
lassi�ers are run one after another on theranked output. Rather than 
ombining the s
ores of the 
lassi�ers with the retrievals
ore in order to re-rank the senten
es, we maintain the ranking of the senten
e retrievaland delete all senten
es being obje
tive and not mat
hing the target polarity. Thismethod produ
es better results than 
ombining the s
ores by some form of interpolationand does not require any parameter estimation. This hierar
hi
al two-stage 
lassi�
ation(subje
tivity dete
tion followed by polarity 
lassi�
ation) has already been motivated inChapter 2.3.1.We also 
onsider a separate topi
 feature whi
h 
ounts the number of topi
 termswithin a senten
e sin
e this feature s
ales up better with the other types of features weuse for a learning-based ranker than the senten
e retrieval s
ore.5.4.2. Polarity FeaturesFor our polarity features, we mainly rely, as in the previous 
hapters of this thesis, on thelargest publi
ly available polarity lexi
on, the Subje
tivity Lexi
on (Wilson et al., 2005)from the MPQA-proje
t. We 
hose this lexi
on sin
e, unlike other resour
es, it does notonly have part-of-spee
h labels atta
hed to polar expressions, thus allowing a 
rude formof disambiguation2, but also distinguishes between weak and strong expressions.The set of polarity features that we use in this 
hapter is very similar to the senten
e-level prior polarity and linguisti
 features used for plain polarity 
lassi�
ation presentedin Chapter 3.4.As a basi
 polarity feature (PolMatch), we 
ount the number of polar expressionswithin a 
andidate senten
e whi
h mat
h the target polarity. Sin
e this basi
 polarityfeature is fairly 
oarse, we add further polarity features whi
h have spe
i�
 linguisti
properties. We in
lude a feature for strong polar expressions (StrongPolMatch) and afeature for polar expressions being modi�ed by an intensi�er (IntensPolMatch), su
has very. We suspe
t that a strong polar expression, su
h as ex
ellent, or an intensi�ed2Thus we 
an distinguish between the preposition like and the polar verb like. 73



Table 5.1.: List of polarity features.Feature Abbreviationnumber of polar expressions within senten
e with mat
hing polarity (basi
polarity feature) PolMatchnumber of strong polar expressions within senten
e with mat
hing polarity StrongPolMatchnumber of intensi�ed polar expressions within senten
e with mat
hing po-larity IntensPolMatchnumber of strong and intensi�ed polar expressions within senten
e withmat
hing polarity StrongIntensPolMatchnumber of polar nouns/verbs/adje
tives within senten
e with mat
hingpolarity PolPOSMatchnumber of strong polar nouns/verbs/adje
tives within senten
e withmat
hing polarity StrongPolPOSMatchnumber of intensi�ed polar nouns/verbs/adje
tives within senten
e withmat
hing polarity IntensPolPOSMatchnumber of strong and intensi�ed polar nouns/verbs/adje
tives within sen-ten
e with mat
hing polarity StrongIntensPolPOSMatch

polar expression, su
h as very ni
e+, might be more indi
ative of a spe
i�
 polarity thanthe o

urren
e of any plain polar expression. We use the list of intensi�ers from Wilsonet al. (2005). Furthermore, we distinguish polar expressions with regard to the mostfrequent part-of-spee
h types (PolPOSMatch), these being nouns, verbs, and adje
tives.3Some parts of spee
h, for instan
e adje
tives, are more likely to 
arry polar informationthan others (Pang et al., 2002). Table 5.1 lists all polarity features we use. It also in
ludessome 
ombined features of the features mentioned above, i.e. StrongPolPOSMatch,
IntensPolPOSMatch, and StrongIntensPolPOSMatch.We also experimented with features 
ounting the number of polar expressions notmat
hing the target polarity but none of these features gave any improvement when theywere added to the features 
ounting the number of mat
hes.3We subsume adverbs by adje
tives as well.74



5.4.3. Negation ModelingA 
orre
t 
ontextual disambiguation of polar expressions is important for topi
-relatedsenten
e-level polarity 
lassi�
ation sin
e the instan
es to be 
lassi�ed are rather sparsein terms of polarity information. Therefore, we 
ondu
t negation modeling. Our negationmodule 
omprises three steps. In the �rst step, all potential negation expressions of asenten
e are marked. In addition to 
ommon negation expressions, su
h as not, we also
onsider polarity shifters. Polarity shifters are weaker than ordinary negation expressionsin the sense that they often only reverse a parti
ular polarity type.4 In the se
ond step, allthe potential negation expressions are disambiguated. All those 
ues whi
h are not withina negation 
ontext, e.g. not in not just, are dis
arded. In the �nal step, the polarity of allpolar expressions o

urring within a window of �ve words5 after a negation expression isreversed. We use the list of negation expressions, negation 
ontexts, and polarity shiftersfrom Wilson et al. (2005).5.4.4. Spatial Distan
eTextual proximity provides additional information to the previously mentioned features,as it takes the relation between polar expression and topi
 term into a

ount. In Sen-ten
e (5.4), for example, the positive polar expression genius is 
losest to the topi
 termMozart, whi
h is an indi
ation that the senten
e des
ribes a positive opinion towards thetopi
.(5.4) My argument is that it is pointless− to ordinary mortals like you and me to dis
usswhy Mozart was a genius+.We en
oded our distan
e feature as a binary feature with a threshold value.6 Thisgave mu
h better performan
e than en
oding the expli
it values in spite of attempts tos
ale this feature with the remaining ones. Sin
e we do not have any development data,we had to determine the appropriate threshold values on our test data. The threshold4For example, the shifter abate only modi�es negative polar expressions as in abate the damage.5This threshold value is taken from Wilson et al. (2005) whi
h has been determined experimentally.6The feature is a
tive if a polar expression and topi
 term are su�
iently 
lose. 75



value is set to 8.7 Sin
e all feature sets 
ontaining this distan
e feature supported thesame threshold value, we have strong reasons to believe that the value 
hosen is fairlyuniversal. We also experimented with a more straightforward distan
e feature whi
h
he
ks whether the 
losest polar expression to the topi
 term mat
hes the target polarity.However, we did not measure any noti
eable performan
e gain by this feature.5.4.5. Synta
ti
 Features from a Dependen
y PathIn addition to polarity and distan
e features we use a small set of synta
ti
 features. Bythat we mean all those features that require the presen
e of a synta
ti
 dependen
y parse.This set of features supplements both of the other feature types.Synta
ti
 Prominen
e FeaturesSimilar to the polarity features are the two prominen
e features we use. Their purpose isto indi
ate the overall polarity of a senten
e. Very similar features have again also beenpresented in Chapter 3.4 where they have been shown to be e�e
tive for senten
e-levelpolarity 
lassi�
ation on the news domain. Ea
h polar expression 
an be 
hara
terized byits depth within the synta
ti
 parse tree. Depth is de�ned as the number of edges fromthe node representing the polar expression to the root node. Usually, the deeper a node ofa polar expression is, the less prominent it is within the senten
e. Similar to the distan
efeature, we de�ne a binary feature (LowDepth) whi
h is a
tive if a polar expression has asu�
iently low depth. The threshold value is set to 5.8 The main predi
ate (MainPred),too, is usually very indi
ative of the overall polarity of a senten
e. Senten
e (5.5) is a
ase where the main predi
ate 
oin
ides with the 
orre
t overall polarity.(5.5) The strings [s
rewed up]−mainPred the 
on
ert, in parti
ular, my favorite+ s
oresby Mozart. (overall polarity: negative, polarity towards Mozart: positive)7The threshold may appear quite high. However, given the fa
t that the average senten
e length in this
olle
tion is at approximately 30 tokens and that there is a tenden
y of topi
 terms to be senten
einitial or �nal, this value is fairly plausible.8The large value for the depth feature 
an be explained by the fa
t that Minipar uses auxiliary nodesin addition to the nodes representing the a
tual words.76



Table 5.2.: List of synta
ti
 features.Synta
ti
 Prominen
e FeaturesFeature Abbreviationnumber of mat
hing polar expressions with low depth within the synta
ti
 parse tree LowDepthis the main predi
ate of the senten
e a mat
hing polar expression? MainPredSynta
ti
 Relation FeaturesFeature Abbreviationnumber of paths with an immediate dominan
e relationship between topi
 term and mat
hingpolar expression ImmediateDomnumber of paths with a dominating relationship between topi
 term and mat
hing polarexpression Domnumber of paths where topi
 term dominates mat
hing polar expression TopicDomPolnumber of paths where topi
 term is dominated by mat
hing polar expression PolDomTopicnumber of paths between mat
hing polar expression and topi
 term whi
h are 
ontainedwithin the same event stru
ture SameEventnumber of paths between mat
hing polar expression and topi
 term whi
h do not 
ross theroot node NoCrossRoot

Synta
ti
 Relation FeaturesThe short
oming of the prominen
e features is that they do not 
onsider the relation ofa polar expression to a mentioning of a topi
 but just fo
us on the overall polarity ofa senten
e. The overall polarity, however, does not need to 
oin
ide with the polaritytowards a topi
 term, as it is shown by Senten
e (5.5).Moreover, textual proximity is sometimes a misleading 
lue as illustrated by Sen-ten
e (5.6) where the polar expression with the shortest distan
e to the topi
 term isnot the polar expression whi
h relates to it.(5.6) Mozart, it is save+ to say, failed− to bring musi
 one step forward.That is why we use a set of features des
ribing the dependen
y relation path between77



polar expression and topi
 term. Unlike previous work (Kessler & Ni
olov, 2009), wedo not fo
us on the relation labels on the path due to the heavy data-sparseness weexperien
ed in initial experiments. Instead, we de�ne features on the 
on�guration ofthe path. The advantage of this is that these features are more general.We use one feature that 
ounts the number of paths with a dire
t dominan
e relation-ship (ImmediateDom), i.e. the paths between polar expressions and topi
 terms whi
hare dire
tly 
onne
ted by one edge. All 
ommon relationships, su
h as subje
t-verb, verb-obje
t, or modi�er-noun are subsumed by this feature. We also assume that, in general,any dominan
e relationship (Dom) is more indi
ative than other paths.9 Furthermore, weuse separate features depending on whether topi
 term dominates the polar expression(TopicDomPol) or it is dominated by su
h an expression (PolDomTopic).Often a senten
e 
ontains more than one 
lause. A polar expression is less likely torefer to a topi
 term in 
ase they appear in di�erent statements. We a

ount for thisby two additional features. The �rst 
ounts the number of paths within a senten
ebetween polar expressions and topi
 terms whi
h are within the same event stru
ture(SameEvent). For this feature, we ex
lusively rely on the event-boundary annotationof a senten
e by the dependen
y parser we use, i.e. Minipar (Lin, 1998). Two nodes arewithin the same event stru
ture, if the they have the same 
losest event-boundary nodedominating them.10 Additionally, we de�ne a feature whi
h 
ounts the number of pathswhi
h do not 
ross the root node (NoCrossRoot). The root node typi
ally 
onne
tsdi�erent 
lauses of a senten
e.Table 5.2 summarizes all the di�erent synta
ti
 features we use.In order to familiarize the reader with the features, Figure 5.1 illustrates a senten
ewith two 
andidate paths and the feature updates asso
iated with both paths.9We mean paths whi
h go both up and down a tree.10We assume the dominan
e relationship to be re�exive.78



Senten
e: Dris
oll is right+ to say this argument is valid+.Target polarity: positiveDependen
y Parse Tree Feature Updates for {Dris
oll,right}ROOTright+ (E)Dris
olltopic is say (E)to valid+ (E)argumentthis is
. ImmediateDom++;

Dom++;

PolDomTopic++;

SameEvent++;

NoCrossRoot++;

MainPred:=True;

LowDepth++;Feature Updates for {Dris
oll,valid}
NoCrossRoot++;

LowDepth++;Figure 5.1.: Illustration of a (simpli�ed) dependen
y parse tree and 
orresponding up-dates for synta
ti
 features. Nodes whi
h present an event boundary aremarked with (E). Note that the pair {Dris
oll,right} expresses a genuineopinion-target relationship. Consequently, mu
h more features �re.
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5.5. ExperimentsWe report statisti
al signi�
an
e on the basis of a paired t-test using 0.05 as the signif-i
an
e level on a 10-fold 
ross-validation. For senten
e retrieval, we used the languagemodel-based retrieval engine from Shen et al. (2007). The text 
lassi�ers were trainedusing SVMLight (Joa
hims, 1999a) in its standard 
on�guration. The subje
tivity 
las-si�er was trained on the dataset presented by Pang and Lee (2004) whi
h 
ontains moviereviews from www.rottentomatoes.
om to represent subje
tive texts and plot summariesfrom the Internet Movie Database (www.imdb.
om) to represent obje
tive texts. Thepolarity 
lassi�er was trained on a labeled set of senten
es we downloaded from Rate-It-All11. Both datasets are balan
ed. The former dataset 
omprises 5, 000 senten
es andthe latter of approximately 6, 800 senten
es per 
lass. Unlike the standard dataset forpolarity 
lassi�
ation (Pang et al., 2002), our dataset is not at do
ument level but atsenten
e level12 and also 
omprises reviews from several domains and not ex
lusively themovie domain. Thus, we believe that this dataset is more suitable for our task sin
ewe use it for multi-domain senten
e-level 
lassi�
ation. We use the entire vo
abulary ofthe data 
olle
tion as our feature set. Feature sele
tion did not result in a signi�
antimprovement on our test data.For ranking, we use Yasmet13, a Maximum Entropy ranker. Maximum Entropy modelsare known to be most suitable for ranking tasks (Ravi
handran, Hovy, & O
h, 2003).We trained the ranker with 1, 000 iterations. This gave the best performan
e on allfeature sets. For part-of-spee
h tagging we employ the C&C tagger14 and for dependen
yparsing Minipar (Lin, 1998). We evaluate performan
e by measuring Mean Re
ipro
alRank (MRR), Pre
ision at Rank 10 (Pre
�10), and Mean Average Pre
ision (MAP).These are 
ommon metri
s for measuring ranking performan
e. MRR ex
lusively fo
useson the highest ranked 
orre
t instan
e in a ranking (no matter where it is situated inthe ranking). Pre
�10 is restri
ted to the 10 most highly ranked instan
es. Thus, this11http://www.rateitall.com12We only extra
ted reviews 
omprising one senten
e.13http://www.fjoch.com/YASMET.html14http://svn.ask.it.usyd.edu.au/trac/candc80



Table 5.3.: Performan
e of fa
toid senten
e retrieval in 
ombination with text 
lassi�ers.Features MAP MRR Pre
�10senten
e retrieval 0.140 0.206 0.088senten
e retrieval + subje
tivity 
lassi�er 0.179 0.247 0.118senten
e retrieval + subje
tivity 
lassi�er + polarity 
lassi�er 0.220 0.267 0.114metri
 re�e
ts the (default) presentation of sear
h results of 
ommon sear
h engines, su
has Google. MAP is the most sophisti
ated metri
 as it takes into a

ount all relevantinstan
es in the entire ranking. A formal de�nition of these measures is presented inAppendix A.2.Due to the high 
overage of topi
 terms within the set of positive labeled senten
es(97%), we dis
ard all instan
es not 
ontaining at least one topi
 term. This means thatthe topi
 feature 
ounting the number of topi
 terms (see Se
tion 5.4.1) is no longer anobligatory feature. In fa
t, we even found in our initial experiments that this gave mu
hbetter performan
e than taking all data instan
es into a

ount and always adding thetopi
 feature.5.5.1. Impa
t of Senten
e Retrieval Combined with Text Classi�
ationTable 5.3 displays the results of the baselines using senten
e retrieval with a subje
tivityand a polarity �lter. The results show that both text 
lassi�ers systemati
ally in
reaseperforman
e of retrieval. Only the in
rease in Pre
�10 is marginal and slightly de
reaseswhen polarity 
lassi�
ation is added to subje
tivity 
lassi�
ation.5.5.2. Comparing Basi
 Polarity Feature and Text Classi�ersTable 5.4 
ompares the baseline using senten
e retrieval and text 
lassi�ers with the basi
polarity feature (i.e. PolMatch) using polarity information from the polarity lexi
on.The polarity feature outperforms the baseline on all evaluation measures, most notablyon MRR and Pre
�10. We assume that the text 
lassi�ers su�er from a domain mis-81



mat
h. The polarity lexi
on is more likely to en
ode domain-independent knowledge.Unfortunately, 
ombining the 
omponents from the baseline with the polarity feature isunsu

essful. Only the addition of the topi
 feature (whi
h en
odes information similarto the senten
e retrieval) to the polarity feature results in a slight (but not signi�
ant)in
rease in MAP. Apparently, the pre
ise amount of word overlap between topi
 and 
an-didate senten
e is less important than in fa
toid retrieval. Neither do the text 
lassi�ers
ontain any more additional useful information than the polarity feature.This result also proves our assumption made in Se
tion 5.1 that for this ranking taskone does not ne
essarily have to expli
itly model 
lasses other than the target 
lass (i.e. aspe
i�
 polarity type). Re
all from that se
tion that in ordinary 
lassi�
ation, one wouldneed to 
onsider a subje
tivity 
lassi�er to distinguish between fa
tual and subje
tivestatements. The text 
lassi�ers whi
h in
lude a subje
tivity 
lassi�er do not improve theranking when added to the polarity feature.15Unfortunately, we 
ould not in
rease the performan
e of the text 
lassi�ers by addingto the bag-of-words features of the text 
lassi�ers more expressive linguisti
 features notrelating to polar expressions. While in Chapter 3, an improvement 
ould be a
hieved byusing linguisti
 word-level features (i.e. features 
ombining lexi
al information with somesynta
ti
 properties that those words possess in their parti
ular 
ontexts), on the blogdata we did not measure a similar e�e
t. We assume that, like the bag-of-words features,the linguisti
 word-level features su�er from a domain mismat
h. While in Chapter 3 thetext is only news-domain (mostly politi
s), the topi
s to be found on the blog dataset weare using in this 
hapter are mu
h more diverse.5.5.3. Comparing Polarity Features and Synta
ti
 FeaturesTable 5.5 displays the performan
e of various feature 
ombinations of polarity and syn-ta
ti
 features. Ea
h feature set is evaluated both without negation modeling (plain)and with negation modeling (negation). When synta
ti
 features are added to the basi
15The same also holds for domain-independent subje
tivity features using the polarity lexi
on, e.g. thenumber of subje
tive expressions in a senten
e, with whi
h we also experimented.82



Table 5.4.: Performan
e text 
lassi�ers and basi
 polarity feature.Features MAP MRR Pre
�10senten
e retrieval with text 
lassi�ers 0.220 0.267 0.114basi
 polarity feature 0.236 0.420 0.212basi
 polarity feature + topi
 0.239 0.394 0.200basi
 polarity feature + text 
lassi�ers 0.227 0.380 0.188basi
 polarity feature + topi
 + text 
lassi�ers 0.222 0.390 0.179polarity feature, there is always an in
rease in performan
e. With regard to MAP theimprovement is always signi�
ant. With regard to Pre
�10, only the presen
e of therelation features results in a signi�
ant in
rease. With regard to MRR, for a systemati
improvement all polarity features have to be present as well in addition to these features.When the synta
ti
 features are added to all polarity features the in
rease in performan
eis similar. The best performing feature set (on average) is the set using all polarity s
oresand the synta
ti
 relation features. It signi�
antly outperforms the basi
 polarity featureon all evaluation measures. We, therefore, assume that the synta
ti
 relation featuresare mu
h more important than the synta
ti
 prominen
e features.With the ex
eption of some few feature sets, adding negation modeling in
reases per-forman
e as well. However, the improvement is not systemati
ally signi�
ant for anyevaluation measure (though for MAP there is only one feature set in whi
h the improve-ment is not statisti
ally signi�
ant).To a great extent these results are 
onsistent with our results on plain senten
e-levelpolarity 
lassi�
ation from Chapter 3. In this 
hapter, synta
ti
 prominen
e featuresalways yield an improvement in performan
e when added to the other polarity features.In Chapter 3, linguisti
 senten
e-level features, whi
h amount to the same type of featuresas the synta
ti
 prominen
e features, improved performan
e when added to prior-polarityfeatures. One additional insight of this 
hapter is that the synta
ti
 relation features aremore e�e
tive than the synta
ti
 prominen
e features. Moreover, the impa
t of negationis di�erent in these two s
enarios. While it slightly helps in this 
hapter it did not83



Table 5.5.: Performan
e of polarity features and synta
ti
 features. Ea
h feature setis evaluated without negation modeling (plain) and with negation modeling(negation).Features MAP MRR Pre
�10plain negation plain negation plain negationbasi
 polarity feature 0.236 0.245† 0.420 0.441 0.212 0.215basi
 pol. feat. + synta
ti
 prominen
e feat. 0.258∗ 0.266∗† 0.477∗ 0.473 0.214 0.216basi
 pol. feat. + synta
ti
 relation feat. 0.256∗ 0.269∗† 0.444 0.481† 0.237∗ 0.249∗basi
 pol. feat. + all synta
ti
 feat. 0.262∗ 0.278∗† 0.475 0.509∗ 0.237∗ 0.244∗all polarity features 0.245 0.257† 0.466 0.489† 0.207 0.215all pol. feat. + synta
ti
 prominen
e feat. 0.261∗ 0.269∗ 0.477 0.474 0.210 0.222†all pol. feat. + synta
ti
 relation feat. 0.273∗ 0.281∗† 0.509∗ 0.518∗ 0.240∗ 0.249∗all pol. feat. + all synta
ti
 feat. 0.272∗ 0.284∗† 0.502∗ 0.526∗ 0.231∗ 0.242∗†
∗: signi�
antly better than basi
 polarity feature (with/without negation modeling) on the basis of a paired t-testusing p < 0.05

†: signi�
antly better than the 
orresponding feature set without negation modeling on the basis of a paired t-testusing p < 0.05
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show any improvement in Chapter 3. We strongly assume that this is a side-e�e
t ofdi�erent feature en
oding. While in Chapter 3 the number of negated polar expressions(with a parti
ular polarity type) was taken into 
onsideration with a separate feature, inthis 
hapter it is in
orporated into the basi
 polarity feature.16 We will see in the nextChapter that the in
orporation of negation in the basi
 polarity feature will also workfor rule-based polarity 
lassi�
ation on do
ument level.5.5.4. Impa
t of Distan
e FeatureTable 5.6 displays in detail what impa
t the addition of the distan
e feature has on thepreviously presented feature sets. On almost every feature set, there is an in
rease inperforman
e when this feature is added. However, the degree of improvement varies.It is smallest on those feature sets whi
h in
lude the synta
ti
 relation features. We,therefore, believe that these two feature types en
ode very mu
h the same thing. Manyof the synta
ti
 relation features impli
itly demand the topi
 word and polar expressionto be 
lose to ea
h other. Therefore, when a synta
ti
 relation feature �res, so does thedistan
e feature. Unfortunately, our attempts to 
ombine the synta
ti
 relation featureswith the distan
e feature in a more e�e
tive way by applying feature sele
tion remainedunsu

essful. Table 5.6 even suggests that synta
ti
 features are not a
tually required forthis 
lassi�
ation task sin
e the best performing feature set only 
omprises all polarityfeatures and the distan
e feature. The improvement gained by this feature set when
ompared to the basi
 polarity feature is larger than the sum of improvements gainedwhen the two feature subsets are evaluated separately.17 We assume that in the featurespa
es representing the two separate feature sets the de
ision boundary is highly non-16If we want to 
ount the number of positive polar expressions in a senten
e, then we 
onsider negatednegative polar expressions as positive polar expressions; in Chapter 3 the number of negated negativepolar expressions was regarded as an individual feature and the o

urren
es of those negated polarexpressions did not have any impa
t on the feature 
ounting the number of positive polar expressions.17The improvement from the basi
 polarity feature to the optimal feature set is greater than the sum ofimprovements of the feature set 
omprising the basi
 polarity feature and the distan
e feature andthe feature set 
omprising all polarity features. 85



Table 5.6.: Impa
t of distan
e feature.Features MAP MRR Pre
�10+dist +dist +distsenten
e retrieval with text 
lassi�ers 0.220 � 0.267 � 0.114 �basi
 polarity feature 0.245 0.266† 0.441 0.491† 0.215 0.226basi
 pol. feat. + synta
ti
 prominen
e feat. 0.266∗ 0.276 0.473 0.499 0.216 0.235†basi
 pol. feat. + synta
ti
 relation feat. 0.269∗ 0.270 0.481 0.498 0.249∗ 0.253∗basi
 pol. feat. + all synta
ti
 feat. 0.278∗ 0.271 0.509∗ 0.521 0.244∗ 0.256∗all polarity features 0.257 0.302∗† 0.489 0.596∗† 0.215 0.257∗†all pol. feat. + synta
ti
 prominen
e feat. 0.269∗ 0.285∗† 0.474 0.532† 0.222 0.256∗†all pol. feat. + synta
ti
 relation feat. 0.281∗ 0.285∗ 0.518∗ 0.569∗† 0.249∗ 0.256∗all pol. feat. + all synta
ti
 feat. 0.284∗ 0.281 0.526∗ 0.555∗ 0.242∗ 0.252∗All feature sets � with the ex
eption of senten
e retrieval with text 
lassi�ers � in
lude negation modeling.+dist: distan
e feature
∗: signi�
antly better than basi
 polarity feature (with/without distan
e feature) on the basis of a paired t-testusing p < 0.05

†: signi�
antly better than the 
orresponding feature set without distan
e feature on the basis of a paired t-testusing p < 0.05linear. The 
ombination of the two sets provides the feature spa
e with the best possible
lass separation, even though there are other feature subsets, su
h as the basi
 polarityfeature and the synta
ti
 features, whi
h are individually more dis
riminative than thefeature set 
omprising all polar expressions or the feature set 
omprising the basi
 polarityfeature and the distan
e feature.A

ounting for di�erent types of polar expressions is important and, apparently, thisis appropriately re�e
ted by our set of di�erent polarity features. Furthermore, polar ex-pressions within the vi
inity of a topi
 term seem to be 
ru
ial for a 
orre
t 
lassi�
ation,as well. Obviously, de�ning vi
inity by a �xed window size is more robust than relyingon synta
ti
 
onstraints.86



Despite its la
k of synta
ti
 knowledge, the optimal feature set shows a 
onsiderablein
rease in performan
e when 
ompared with the baseline ranker relying on text 
lassi-�
ation with an absolute improvement of 8.2% in MAP, 32.9% in MRR, and 14.3% inPre
�10. There is still an improvement by 6.6% in MAP, 17.6% in MRR, and 4.5% inPre
�10 when the optimal feature set is 
ompared against the simplest ranker 
omprisingone polarity feature (without negation modeling).5.6. Error AnalysisThe result that synta
ti
 relation features are less robust on this task is 
ontrary to ourexpe
tations. The poor text quality (i.e. various spelling mistakes, in
omplete senten
eset
.) may have a notable negative impa
t on the parsing quality. Moreover, we observedthat often aspe
ts of topi
s (Somasundaran & Wiebe, 2009) instead of the topi
 itselfare dire
tly synta
ti
ally related to a polar expression. For example, given the query{topi
: Mozart, target polarity: positive}, the relevant Senten
e (5.7) 
ontains thepolar expression with mat
hing polarity, i.e. ni
e, and the aspe
t of the topi
, i.e. tunes,(and not the topi
) in a modi�er relationship.(5.7) Mozart wrote ni
e+ tunesaspect.Unfortunately, the task of extra
ting (potential) aspe
ts of topi
s in an unrestri
teddomain is extremely di�
ult whi
h is why we ignored it for this task.Another issue that might have degraded the performan
e of the synta
ti
 relationfeatures 
ould be the fa
t that we did not 
arry out any pronoun resolution sin
e thenoisy blog data heavily degrade the quality of resolution. As a result of that given thequery {topi
: Dris
oll, target polarity: negative}, the polar expression with mat
hingpolarity in Senten
e (5.8), i.e. embarrassed, 
annot be related to the topi
 Dris
oll, sin
ethe two words are in two di�erent 
lauses. However, the referring expression he is thesubje
t of the polar expression.(5.8) I'm a very tolerant+ person but if that is what Dris
olli said, hei should beembarrassed− of himself. 87



Pronoun resolution has been shown to improve performan
e on related tasks, su
h astopi
-related entity extra
tion of opinions (Jakob & Gurevy
h, 2010b). However, thee�e
tiveness on our data may be limited as (based on our 
omparison with several publi
lyavailable 
orpora used for sentiment analysis) our blog data will be mu
h noisier than thedataset on whi
h the pronoun resolution has been applied (Zhuang, Jing, & Zhu, 2006).5.7. Con
lusionIn this 
hapter, we have evaluated di�erent methods for topi
-related polarity 
lassi�
a-tion at senten
e level. We have shown that a polarity 
lassi�er based on simple bag-of-words text 
lassi�
ation produ
es fairly poor results. Better performan
e 
an be a
hievedby 
lassi�ers using features derived from a polarity lexi
on. Obviously, the polarity infor-mation en
oded in polarity lexi
ons is more domain independent. Optimal performan
eof this type of 
lassi�er 
an be a
hieved when a small set of lightweight linguisti
 polarityfeatures is used in 
ombination with a distan
e feature. A distan
e feature thus helpsto disambiguate polarity information in a senten
e. Therefore, to some extent a jointmodeling of polarity information and topi
 information is bene�
ial. Synta
ti
 featuresderived from a dependen
y parse are not ne
essary for this 
lassi�
ation task when adistan
e feature is 
onsidered.
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6. Bootstrapping Algorithms for PolarityClassi�
ation
6.1. Introdu
tionSupervised polarity 
lassi�
ation, in parti
ular 
lassi�ers using bag of words, are heavilydomain-dependent, i.e. they usually generalize fairly badly a
ross di�erent domains.(One su
h example has been des
ribed in the previous 
hapter, i.e. in Chapter 5.5.2).Yet the 
osts to label data for any possible domain are prohibitively expensive.In this 
hapter, I will present experiments and results for bootstrapping algorithms forpolarity 
lassi�
ation on do
ument level. I will fo
us on two types of methods:

• semi-supervised learning
• supervised 
lassi�ers bootstrapped with the help of rule-based 
lassi�ersIn both methods a (large) unlabeled 
orpus is annotated with some prior knowledgeabout the task. While in the �rst method this is a
hieved by using small amounts oflabeled data, it is a rule-based 
lassi�er in the se
ond method. The extended annotationi.e. the annotation on the previously unlabeled 
orpus should ideally present a labeledtraining set that allows more robust 
lassi�ers to be built than the 
lassi�ers ex
lusivelyusing the prior knowledge sour
e.The purpose of this 
hapter is to show under what settings these bootstrapping meth-ods work for polarity 
lassi�
ation on do
ument level and also 
ompare the two typeswith ea
h other. As in the previous 
hapters, I will in parti
ular fo
us on the impa
t oflinguisti
 knowledge on this 
lassi�
ation task. 89



In this 
hapter we ex
lusively 
onsider do
ument 
lassi�
ation sin
e most resear
h onpolarity 
lassi�
ation is done at the do
ument level. We have, however, strong reasonsto believe that the majority of insights gained by the experiments presented in this
hapter also hold for senten
e-level polarity 
lassi�
ation sin
e there are many similaritiesbetween these two tasks (as shown, for example, by the e�e
tive re-usage of features fromChapters 3 and 5 in the experiments of Se
tion 6.6.1).The work presented in this 
hapter is also des
ribed in (Wiegand & Klakow, 2009a,2010a).6.2. Related WorkThere are only a few publi
ations dealing with semi-supervised learning on do
ument-level polarity 
lassi�
ation. Beineke, Hastie, and Vaithyanathan (2004) 
ombine an unsu-pervised web-mining approa
h using point-wise mutual information (Turney, 2002) withlabeled training data. Dasgupta and Ng (2009) suggest applying unsupervised learning(i.e. 
lustering) to 
lassify unambiguous data instan
es and restri
t manual annotation tohard data instan
es. Aue and Gamon (2005) present experiments using semi-supervisedlearning fo
using on domain adaptation. Neither di�erent algorithms nor feature setsare 
ompared in these works.In this 
hapter, we look into adje
tives and adverbs as features in detail. Pang et al.(2002) use feature sets ex
lusively 
omprising adje
tives for supervised do
ument-levelpolarity 
lassi�
ation but report performan
e to be worse than that of a standard bag-of-words feature set. However, Ng et al. (2006) in
rease performan
e signi�
antly byadding to a standard feature set higher-order n-grams in whi
h adje
tives are repla
edby their in-domain polarity whi
h has been established via manual annotation.Bootstrapping supervised ma
hine learning 
lassi�ers with the help of rule-based 
lassi-�
ation has been e�e
tive in the dete
tion of subje
tive senten
es (Wiebe & Rilo�, 2005).The method has also been applied to polarity 
lassi�
ation, but so far only on Chinesedata (Qiu et al., 2009; Tan et al., 2008). While the performan
e of bootstrapped 
lassi-�ers has been 
ompared with out-of-domain 
lassi�ers in (Tan et al., 2008), this method90



is embedded into a 
omplex bootstrapping system whi
h also extends the vo
abulary (orfeature set) of the rule-based 
lassi�er in (Qiu et al., 2009). Neither of these works ex-amines the relationship to semi-supervised learning, nor dis
usses various settings of theself-training algorithm, in parti
ular, di�erent feature sets for the supervised 
lassi�er.6.3. Bootstrapping Algorithms6.3.1. Semi-Supervised Learning AlgorithmsWe will now brie�y des
ribe the di�erent semi-supervised learning algorithms we use inthis 
hapter. Throughout the next se
tions, we adhere to the following notation:A do
ument is denoted by xi (or ~xi in a ve
torial 
ontext). Words whi
h are partof some prede�ned feature set are denoted by wk. In total, there are N do
umentsen
ompassing L labeled and U unlabeled do
uments. A labeled data instan
e is denotedby xl
i whereas an unlabeled data instan
e is labeled as xu

i . The label cj of an individualdo
ument i is yi ∈ {−1, 1}.Expe
tation Maximization AlgorithmThe Expe
tation Maximization Algorithm (EM) for a Naïve Bayes 
lassi�er �rst esti-mates an expe
ted posterior probability distribution of 
lass label cj given a do
ument
xi (whi
h 
an be either labeled or unlabeled), de�ned as h(xi, cj), in the expe
tation step:

h(xi, cj) =
P (xi|cj)

∑

k P (xi|ck)
(6.1)The maximization step uses this expe
ted probability estimate in order to re-estimate
lass-dependent probabilities of the individual words:

P (wk|cj) =

∑N
i=1

∑

{xi:wk∈xi}
h(xi, cj)

Zj
(6.2)where Zj is a normalization. The new estimates P (wk|cj) are used to update the do
u-ment probabilities P (xi|cj) in the expe
tation step. Equations 6.1 and 6.2 are iterated91



until the overall likelihood 
onverges:
L =

L
∑

i=1

logP (xl
i|yi) +

U
∑

j=1

log
∑

c

P (xu
j |c) (6.3)Initially, the probabilities P (xi|cj) are dire
tly estimated from the labeled training 
ol-le
tion. Sin
e the distribution of the 
lasses is uniform in all the experiments whi
h weuse this 
lassi�er, we omit the estimation of the 
lass prior.Transdu
tive Support Ve
tor Ma
hinesTransdu
tive Support Ve
tor Ma
hines (TSVMs) (Joa
hims, 1999b) use an extendedobje
tive fun
tion of SVMs:

OFtsvm =
1

2
‖~w‖2 + C

L
∑

i=0

ξi + C∗
U
∑

j=0

ξ∗j (6.4)whi
h in
ludes in addition to a weight ve
tor ~w, a regularizer C, and a set of sla
kvariables ξi for all labeled instan
es, an extra regularizer C∗ and an extra set of sla
kvariables ξ∗j for unlabeled instan
es.The algorithm �rst learns a base model Msvm using the original obje
tive fun
tionof SVMs. All unlabeled instan
es are labeled with that model. A new model M i
tsvm is
reated by minimizing the extended obje
tive fun
tion OFtsvm and using the predi
tedlabels of the unlabeled instan
es of Msvm as a proxy. A small C∗ is 
hosen. Then, thealgorithm iteratively 
omputes improved models M i+1

tsvm by swapping two opposing labelsof some originally unlabeled do
uments whi
h have been mis
lassi�ed a

ording to M i
tsvm.

C∗ is in
reased with ea
h iteration step. If there are no more mis
lassi�
ations, the �nalmodel has been found.Spe
tral Graph Transdu
tionIn Spe
tral Graph Transdu
tion (SGT) (Joa
hims, 2003), all data xi of a 
olle
tion(i.e. labeled and unlabeled) are represented as a symmetrized and similarity-weighted k92



nearest-neighbour (knn) graph G. Its adja
en
y matrix is de�ned as A = A′+A′T where
A′

ij =







sim(~xi, ~xj)
P

~xk∈knn( ~xi)
sim(~xi,~xk) if ~xj ∈ knn(~xi)

0 else (6.5)and sim(·, ·) is any 
ommon similarity fun
tion. The graph G is de
omposed into itsspe
trum. For this, the smallest 2 to d+1 eigenvalues and eigenve
tors of the normalizedLapla
ian L = B−1(B − A) where B is the diagonal degree matrix with Bii =
∑

j Aijare 
omputed. The spe
trum is used for minimizing the normalized graph 
ut:
min
∀yi

cut(G+, G−)

|{i : yi = 1}||{i : yi = −1}|
(6.6)where G+ and G− denote the set of positive and negative 
lassi�ed verti
es in the graph.The 
ut-value cut(G+, G−) =

∑

i∈G+

∑

j∈G− Aij is the sum of the edge-weights of a 
utpartitioning the graph into two 
lusters.6.3.2. Self-Training a Polarity Classi�er using the Output of a Rule-BasedClassi�erThe idea of this bootstrapping method is that a domain-independent rule-based 
lassi�eris used to label an unlabeled dataset. Unlike semi-supervised learning (see Se
tion 6.3.1),no labeled training data are used. The only knowledge available is en
oded in the rule-based 
lassi�er. In polarity 
lassi�
ation, the rule-based 
lassi�er typi
ally 
ounts thenumber of positive and negative polar expressions within a data instan
e (i.e. a do
ument)and assigns it the polarity type having the majority of polar expressions. The datainstan
es labeled by the rule-based 
lassi�er with a high 
on�den
e serve as labeledtraining data for a supervised ma
hine learning 
lassi�er. The supervised 
lassi�er istypi
ally trained with bag-of-words features.Ideally, the resulting supervised 
lassi�er is more robust on the domain on whi
h itwas trained than the rule-based 
lassi�er. The improvement 
an be explained by thefa
t that the rule-based 
lassi�er only 
omprises domain-independent knowledge, i.e. inpolarity 
lassi�
ation this 
orresponds to the knowledge of domain-independent polarexpressions. The supervised 
lassi�er, however, makes use of domain-spe
i�
 features,93



i.e. words su
h as 
run
hy+ (food domain) or buggy− (
omputer domain), whi
h are notpart of the rule-based 
lassi�er. It may also learn to 
orre
t polar expressions that arespe
i�ed in the polarity lexi
on but have a wrong polarity type on the target domain. Areason for a type mismat
h may be that a polar expression is ambiguous and 
ontainsdi�erent polarity types throughout the di�erent domains (and 
ommon polarity lexi
onsusually only spe
ify one polarity type per entry). For instan
e, in the movie domainthe polar expression 
heap is predominantly negative, as it 
an be found in expressions,su
h as 
heap �lms, 
heap spe
ial-e�e
ts et
. In the 
omputer domain, however, it is pre-dominantly positive as it appears in expressions, su
h as in 
heap pri
e. If su
h a polarexpression o

urs in su�
ient do
uments whi
h the rule-based 
lassi�er has labeled 
or-re
tly, then the supervised learner may learn the 
orre
t polarity type for this ambiguousexpression on that domain, despite the fa
t that the opposite type is spe
i�ed in thepolarity lexi
on.We argue that using a rule-based 
lassi�er instead of few labeled (in-domain) datainstan
es � as is the 
ase in semi-supervised learning � is more worthwhile sin
e weexploit two di�erent types of features being domain-independent polar expressions anddomain-spe
i�
 bag of words whi
h are known to be 
omplementary (Andreevskaia &Bergler, 2008). Semi-supervised learning usually just makes use of one homogeneousfeature set.Figure 6.1 illustrates both semi-supervised learning and self-training using a rule-based
lassi�er for bootstrapping.For reasons of simpli
ity, we will often refer to the spe
i�
 version of self-trainingwe 
onsider in this 
hapter (i.e. self-training using a rule-based 
lassi�er) as plain self-training in the following se
tions.6.4. DataIn this 
hapter, we use both the dataset of IMDb movie reviews (Pang et al., 2002) anda set of reviews extra
ted from Rate-It-All1. We evaluate on the former be
ause it is1http://www.rateitall.com94



Figure 6.1.: Comparison of semi-supervised learning and self-training using a rule-based
lassi�er for bootstrapping.
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onsidered a ben
hmark dataset for polarity 
lassi�
ation. The additional data are usedto show that our �ndings are valid throughout di�erent domains. We 
hose four domainsfrom the list of Topi
 Categories of the website2 whi
h we thought are very di�erentfrom the movie domain3 and for whi
h we 
ould extra
t su�
ient training data. We tookComputer & Internet (
omputer), Produ
ts (produ
ts), Sports & Re
reation (sports), andTravel, Food, & Culture (travel). Table 6.1 lists the properties of the 
orpora from thedi�erent domains. We follow the method from previous work (Blitzer et al., 2007) toinfer the polarity of the reviews from Rate-It-All. Ratings with less than 3 stars are
onsidered negative reviews whereas ratings with more than 3 stars are positive reviews.
3 star reviews are labeled mixed. The a
tual 
lass of these reviews is unknown. Usually a
3 star review should be neutral in the sense that it equally enumerates both positive andnegative aspe
ts about a 
ertain topi
, so that a de�nite verdi
t in favor or against it isnot possible. That is also why we 
annot assign these instan
es either of the other twogroups previously mentioned, i.e. positive and negative. During a manual inspe
tion ofsome randomly 
hosen instan
es, however, we also found de�nite positive and negativereviews among 3 star reviews. For this work, we leave these instan
es in the 
ategory ofmixed reviews. We only used reviews in our experiments having at least 3 senten
es inorder to rule out too fragmentary instan
es.6.5. Semi-Supervised Polarity Classi�
ationI assume that dis
riminative feature sets are far more important in semi-supervised learn-ing than in supervised learning sin
e there is less reliable information 
ontained in smalllabeled datasets. This is why I put emphasis on the dis
ussion of feature sets or featuresele
tion methods in this se
tion. Sin
e we ex
lusively 
onsider polarity 
lassi�
ation atdo
ument level, we restri
t the type of features to bag of words sin
e it is known to bevery e�e
tive for do
ument-level 
lassi�
ation (Ng et al., 2006).2The data were downloaded in 2008, so the appearan
e and 
ontent of the website may have 
hanged.3This is why we did not use the person domain from Chapter 4 as it mostly 
on
erns 
elebrities alsobeing dis
ussed in the movie domain.96



Table 6.1.: Properties of the di�erent domain 
orpora.Domain Sour
e 4 & 5 Stars†Positive 3 Stars†Mixed 1 & 2 Stars†Negative Vo
abularySize
omputer Rate-It-All 952 428 1253 15083produ
ts Rate-It-All 2292 554 1342 21975sports Rate-It-All 4975 725 1348 24811travel Rate-It-All 9397 1772 3289 38819movies IMDb 1000 0 1000 50920(†only relates to the Rate-It-All data)6.5.1. The Di�erent Feature SetsIn the 
ontext of semi-supervised do
ument-level text 
lassi�
ation the purpose of featuresele
tion is to remove features that are irrelevant or noisy for a parti
ular 
lassi�
ationtask. The elimination of these features does not only result in an in
rease in e�
ien
ybut may also improve the A

ura
y of a 
lassi�er.Term Frequen
y Cut-o�The simplest feature sele
tion method is using a term-frequen
y 
ut-o�. The rationalebehind this is that rarely observed terms do not 
ontribute to a good 
lassi�er. Usually,this sele
tion method is 
ombined with stop-word removal.4 Very frequently o

urringterms, in parti
ular fun
tion words, are not 
onsidered to be predi
tive for a parti
ular
lass label, sin
e they are uniformly distributed throughout all 
lasses.Polarity Lexi
onsIn our experiments, we use Appraisal Groups (AG) (Whitelaw, Garg, & Argamon, 2005),General Inquirer (GI) (Stone et al., 1966), the Subje
tivity Lexi
on from the MPQA-proje
t (MPQA) (Wilson et al., 2005), and SentiWordNet (SWN) (Esuli & Sebastiani,4We use a publi
ly available list of stopwords: http://www.dcs.gla.ac.uk/idom/
ir_resources/linguistic_utils/stop_words 97



2006b). From GI we use all polar expressions and from AG we only 
onsider orientationwords that are not neutral (Whitelaw et al., 2005). From MPQA, we use � like inprevious 
hapters � both weak and strong subje
tive words (Wilson et al., 2005) witheither positive or negative prior polarity.5 These polarity lexi
ons have been su

essfullyapplied to polarity 
lassi�
ation (Kennedy & Inkpen, 2005; Wilson et al., 2005; Whitelawet al., 2005).SentiWordNet (SWN) does not spe
ify the polarity of individual words but synsets (i.e.senses of words). The database provides a non-negative polarity s
ore senseScore(s, p)for ea
h synset s and polarity p ∈ {+,−}. Neutral polarity strength is denoted by 0.Usually, words have di�erent senses asso
iated with them. There are even words whi
hhave both senses with positive and negative polarity. Therefore, most words have variouspolarity s
ores asso
iated with them. Our goal is to derive a unique polarity for ea
hword with a 
orresponding s
ore denoting its strength. We use the unique s
ores in orderto �nd a subset of SWN with highly polar expressions. We estimate the strength of aword w and a polarity p, i.e. wordScore(w, p), by:
wordScore(w, p) = max

s
[senseScore(s, p)] (6.7)where s ∈ synsets(w). The �nal polarity of the word, i.e. pol(w), is the polarity withthe maximum polarity s
ore:

pol(w) = arg max
p

[wordScore(w, p)] (6.8)The unique s
ore denoting the polarity strength is de�ned as:
strength(w) = max

p
[wordScore(w, p)] (6.9)By using only the subset of SWN instead of the entire set (we 
hose all words with

strength(w) ≥ 0.5), we in
reased the A

ura
y of the semi-supervised 
lassi�ers byapproximately 1.5% on average. We redu
ed the size of the initial version by 70% whi
hsubstantially in
reased the e�
ien
y of model learning. A subset of SWN based on takingthe average rather than taking the maximum produ
ed slightly worse results.5Note that just fo
using on the strong entries resulted in a de
rease in performan
e.98



Adje
tives and AdverbsAdje
tives, su
h as superb or poor, are usually regarded as very predi
tive words for polar-ity 
lassi�
ation. Their impa
t on semi-supervised learning has not yet been examined.Even if this feature set is too small for supervised learning (Pang et al., 2002), it mightstill be e�e
tive in semi-supervised learning. In 
ontrast to supervised learning, largefeature sets whi
h are noisy 
annot be 
ompensated by the information 
ontained inmany labeled do
uments. Smaller but more predi
tive feature sets are preferable. Weuse feature sets of frequently o

urring adje
tives and adverbs in our do
ument 
olle
tion.The feature sets are extra
ted using the C&C part-of-spee
h tagger.6 After manually in-spe
ting the 600 most frequent stemmed adje
tives and adverbs from the movie domaindataset (Pang et al., 2002), we estimate that more than 20% of the expressions are am-biguous with regard to part of spee
h.7 Thus, our sele
tion method if 
ombined withstemming also 
aptures some polar verbs and nouns. By looking at the list of extra
tedadje
tives and adverbs from other domains, we observed that unlike 
urrent polarity lex-i
ons this method allows both some 
olloquial expressions, su
h as 
rappy, and highlydomain-dependent polar expressions, su
h as 
reamy or 
run
hy from the food domain,to be dete
ted.Optimal Feature SizeTable 6.2 lists the optimal size8 of the di�erent feature sets we used in our experiments.9By far, the smallest feature set are adje
tives and adverbs; the largest feature set is SWN.6.5.2. ExperimentsThe results of all our experiments below are reported on the basis of 20 randomizedpartitionings. Ea
h partitioning 
omprises a labeled dataset of varying length for train-6http://svn.ask.it.usyd.edu.au/trac/candc7For example, Interesting (adj) and interests (noun) are both redu
ed to interest.8The optimal size was determined by testing all semi-supervised algorithms trained on various amountsof labeled do
uments and 1, 000 unlabeled do
uments.9Due to the stemming we applied some of the entries in the original polarity lexi
ons were 
on�ated.99



Table 6.2.: Optimal size of the di�erent feature sets.Feature Set Type #Wordstop n words statisti
al sele
tion 3000top n non-stopwords statisti
al sele
tion 2000top n adje
tives & adverbs statisti
al & linguisti
 sele
tion 600Appraisal Groups (AG) manual polarity lexi
on 2014General Inquirer (GI) manual polarity lexi
on 2882Subje
tivity Lexi
on (MPQA) manual polarity lexi
on 4615SentiWordNet (SWN) semi-automati
 polarity lexi
on 11366ing and another dataset 
omprising 1, 000 do
uments used as unlabeled training dataand test data. We adhere to this 
on�guration sin
e it is required by the toolkit weuse. However, it is not un
ommon to use test data as unlabeled training data in semi-supervised learning (Aue & Gamon, 2005; Joa
hims, 1999b, 2003). We also experimentedwith larger amounts of unlabeled data but did not measure any improvement in perfor-man
e. The labeled training data and the test data are always mutually ex
lusive. Wereport the results of experiments 
arried out on the movie review database (Pang et al.,2002) (ben
hmark dataset) and the results of 
ross-domain experiments using reviewsfrom Rate-It-All. Sin
e the movie dataset is the standard dataset we will dis
uss ourexperiments on this domain in more detail. The movie dataset 
omprises 2, 000 reviewswhereas for the other domains we 
ould only a
quire 1, 800 do
uments per domain. Forthe sake of simpli
ity, all datasets are balan
ed. We report statisti
al signi�
an
e onthe basis of a paired t-test using 0.05 as the signi�
an
e level. We only state the re-sults of the optimally sized feature sets (see Se
tion 6.5.1). Sin
e there is no di�eren
ein performan
e between the optimally sized feature set with the most frequent wordsand the optimally sized feature set with most frequent non-stopwords, we only evaluatedthe latter feature set. We used SVMLight10 for SVMs and TSVMs and SGTLight11 for10http://svmlight.joachims.org11http://sgt.joachims.org100



SGT. We evaluate the results using A

ura
y (see also Appendix A.1). Feature ve
tors
onsist of tf-idf weighted words appearing in the pre-de�ned feature set normalized bydo
ument length. This produ
ed the best results throughout our experiments. Furthermodi�
ations of the standard 
on�guration of SVMLight (e.g. by 
hanging regularizationparameters) did not improve performan
e. We also 
on�rm the results from (Aue & Ga-mon, 2005) who report that further modi�
ations on EM, i.e. by weighting the unlabeleddata12, do not improve performan
e. For SGTLight we mainly adhered to the standard
on�guration (as dis
ussed in (Joa
hims, 2003)). Sin
e we had no development data foroptimizing the only task-sensitive parameter k, i.e. the number of nearest neighbours, wesimply took the optimized value for the only text 
lassi�
ation 
orpus tested in previouswork (Joa
hims, 2003) (i.e. Reuters 
olle
tion). The 
urrent 
hoi
e (i.e. k = 800) shouldthus guarantee a fairly unbiased setting. EM is smoothed by absolute dis
ounting (Zhai& La�erty, 2001). All 
lassi�ers are run with a reasonable parameter setting but wedid not attempt to tune the parameters to the 
urrent task. We also stem the entiretext sin
e some polarity lexi
ons we use also in
lude lemmas of in�e
tional words, su
has nouns and verbs. Moreover, stemming has 
onsiderable advantages for the featureset 
omprising adje
tives and adverbs (see dis
ussion above). In-domain feature sets (i.e.frequent non-stopwords and frequent adje
tives and adverbs) are obtained by 
onsideringthe entire dataset of a parti
ular domain.Unsupervised Algorithm using Di�erent Polarity Lexi
ons (Movie Domain)Before 
omparing the di�erent polarity lexi
ons in the 
ontext of semi-supervised learning,we shortly display their performan
e using a 
ompletely unsupervised algorithm. A testdo
ument is assigned the polarity of the majority of polar expressions in that do
ument.This experiment should give an idea of the intrinsi
 predi
tiveness of the polarity lexi
ons.Note that we refrain from using any further linguisti
 modeling, e.g. negation modeling,in order to improve this baseline sin
e we also run the semi-supervised 
lassi�ers withplain bag-of-words features (i.e. we 
arry out feature sele
tion but beyond that we do not12Note that this is similar to regularization in TSVMs. 101



Table 6.3.: A

ura
y of unsupervised algorithm using di�erent polarity lexi
ons (moviedomain). SWN AG GI MPQA GI+Turney54.20 54.45 59.90 61.75 63.30in
orporate any expressive high-level features). Table 6.3 lists the results (on the moviedomain). Though all lexi
ons perform signi�
antly better than the random baseline (i.e.
50%), the best performan
e of MPQA with 61.75 is still very low.We also evaluated an extension GI+Turney whi
h weights the polar expressions in GIa

ording to the asso
iation s
ores to a very small number of manually sele
ted highlypolar seed words, su
h as ex
ellent or poor (Turney & Littman, 2003).13 The s
oresfor entries in GI are 
al
ulated in the same way as the s
ores for words in the web-based lexi
on indu
tion method using Pointwise Mutual Information (Turney, 2002).The improvement (towards GI) is signi�
ant, even though the s
ores have been gainedby domain-independent web-data.In the following, we show that very small amounts of labeled in-domain do
uments
an produ
e signi�
antly better results using semi-supervised learning.Comparison of the Di�erent Polarity Lexi
ons with Other Feature Sets (MovieDomain)Table 6.4 displays the performan
e of di�erent (semi-supervised) 
lassi�ers on di�erentfeature sets (again on the movie domain). On average, polarity lexi
ons perform sig-ni�
antly better than the top 2000 non-stopwords. The same holds for an inexpensivesmall feature set of in-domain adje
tives and adverbs. On EM, we even a
hieved the bestperforman
e with the latter feature set. The best performing feature set for the moviedataset is AG. On several 
on�gurations, it is even signi�
antly better than any otherfeature set using semi-supervised learning.13Unfortunately, 
urrently only the weights for entries of GI are available to us.102



Table 6.4.: A

ura
y of di�erent 
lassi�ers on di�erent feature sets using di�erentamounts of labeled do
uments (movie domain).(a) 20 labeled do
umentsTop 2000 SWN MPQA GI AG AdjSVMs 59.81 61.24∗ 63.07∗ 61.48∗ 62.22∗ 61.44∗EM 67.50 67.31 68.73 66.63 69.44∗ 69.54∗TSVMs 64.57 67.04∗ 66.58∗ 65.53 68.87∗ 68.37∗SGT 62.60 67.39∗ 67.10∗ 66.14∗ 70.28∗† 66.58∗(b) 200 labeled do
umentsTop 2000 SWN MPQA GI AG AdjSVMs 72.05 74.93∗ 74.35∗ 72.72 75.88∗† 73.14∗EM 73.44 76.46∗ 75.02∗ 73.80 75.46∗ 77.32∗TSVMs 73.48 76.80∗ 75.73∗ 74.72∗ 77.89∗† 75.12∗SGT 70.91 77.55∗ 77.78∗ 75.12∗ 80.21∗† 76.90∗
∗: signi�
antly better than Top 2000 on the basis of a paired t-test using p < 0.05

†: signi�
antly better than any other feature set on the basis of a paired t-test using p < 0.05Semi-Supervised Classi�ers (Movie Domain)We 
ompared all di�erent learning algorithms using their respe
tive best feature sets.Figure 6.2 displays the results. (Again, these experiments have been run on the moviedomain.) All semi-supervised algorithms are better than the stri
t supervised baseline(i.e. SVMs trained on AG) on small amounts of labeled data. EM gets worse than SVMstrained on AG when more than 400 labeled do
uments are used, but still outperformsSVMs trained on top 2000 non-stopwords when less than 700 labeled do
uments are used.TSVMs and SGT, on the other hand, 
onstantly perform better than SVMs.Clearly, the best 
lassi�er is SGT whi
h, with the ex
eption of 1, 000 labeled data, isalways signi�
antly better than any other 
lassi�er tested. At approximately 200 labeleddo
uments, SGT already performs as well as SVMs trained on a standard feature set (i.e.top 2000 non-stopwords) 103
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Figure 6.2.: Performan
e of di�erent learning algorithms on the best respe
tive featureset (movie domain).Just using 20 labeled do
uments o�ers an in
rease by 7% in performan
e in 
omparisonto the best unsupervised 
lassi�er (i.e. GI+Turney displayed in Table 6.3).
Complex Feature Sets that Do not Improve Performan
eContrary to our expe
tations, adding expli
it polarity information to the feature setby in
luding the number of positive and negative polar expressions a

ording to thepertaining polarity lexi
on did not improve performan
e.We also experimented with more expressive features by adding bigrams with one tokenbeing a polar expression, an adje
tive, or an adverb. On semi-supervised learning we didnot measure any in
rease in performan
e. We assume that this is due to data-sparseness.Similar to (Ng et al., 2006), we observed an in
rease in performan
e by approximately
2% on supervised 
lassi�ers (when more than 400 labeled do
uments are used).104



Cross-Domain ExperimentsIn order to validate our �ndings from the movie domain, we repeat some of the previousexperiments on other domain 
orpora using the reviews from Rate-It-All. In parti
ular,we want to know whether semi-supervised learning works there as well, whether SGT out-performs other 
lassi�ers, whether polarity lexi
ons improve performan
e, and whetheradje
tives and adverbs produ
e 
lassi�ers 
ompetitive to average polarity lexi
ons. Wedo not attempt to 
arry out detailed domain studies whi
h would be beyond the s
opeof this se
tion.Table 6.5 lists the average performan
e of all 
lassi�ers on di�erent feature sets using
20 labeled do
uments. For the sake of 
ompleteness we also in
lude the results from themovie domain. There is no signi�
ant di�eren
e among the feature sets using SVMs,but there is a di�eren
e between top 2000 non-stopwords and the remaining featuresets on semi-supervised 
lassi�
ation (with the ex
eption of EM). All polarity lexi
onsand adje
tives and adverbs perform signi�
antly better than top 2000 non-stopwordsusing TSVMs and SGT. On average, the performan
e of EM is worse than any of theother semi-supervised 
lassi�ers. The results of TSVMs and SGT are similar to ourprevious observations on the ben
hmark dataset. SGT is the best performing 
lassi�er(in parti
ular in 
ombination with adje
tives).Table 6.5.: Average A

ura
y of di�erent semi-supervised 
lassi�ers a
ross all domains us-ing di�erent feature sets (trained on 20 labeled do
uments & 1,000 unlabeleddo
uments). Top 2000 SWN MPQA GI AG AdjSVMs 61.17 61.13 60.81 61.17 60.77 60.68EM 64.41 65.09∗ 64.08∗ 63.88∗ 65.10∗ 65.22∗TSVMs 63.87 66.79∗ 66.51∗ 66.26∗ 65.98∗ 67.20∗SGT 64.60∗ 66.92∗ 67.69∗ 67.83∗ 67.22∗ 68.30∗
∗: signi�
antly better than SVMs on the basis of a paired t-test using p < 0.05 105



Table 6.6 shows the performan
e on the individual domains and feature sets using 20labeled do
uments on SGT. On average, semi-supervised learning improves performan
esigni�
antly over supervised learning. On some domains (e.g. 
omputer) using a standardfeature set (i.e. using top 2000 non-stopwords in the 
olle
tion) produ
es good results.However, on some other domains, su
h as travel, there is no improvement whatsoever.Polarity lexi
ons 
an perform signi�
antly better than top 2000 non-stopwords (e.g. GI ontravel or, most notably, AG on movie) but there are also domains where they are a
tuallyworse than the standard feature set (e.g. the sports domain). There is no polarity lexi
onwhi
h 
onsistently outperforms all other polarity lexi
ons on all domains. A feature set
omprising in-domain adje
tives and adverbs, however, is more robust: Firstly, it neverperforms worse than the standard feature set. Se
ondly, it is never signi�
antly worsethan the average performan
e of polarity lexi
ons and, thirdly, there might be somedomain, su
h as sports, where it outperforms any other feature set. Considering thesmall e�ort required to generate su
h a feature set should make it parti
ularly attra
tive.Table 6.6.: A

ura
y of SGT on di�erent domains using di�erent feature sets (trained on20 labeled do
uments & 1,000 unlabeled do
uments).SVMs SGTDomain Top 2000 Top 2000 SWN MPQA GI AG Adj
omputer 67.75 73.88∗ 75.77∗† 74.77∗ 73.95∗ 73.74∗ 74.51∗produ
ts 62.38 67.20∗ 68.45∗† 68.40∗† 69.84∗† 68.44∗† 68.79∗†sports 57.96 61.83∗ 57.57 59.80∗ 60.62∗ 58.53 63.55∗travel 57.95 57.48 65.44∗† 68.37∗† 68.62∗† 65.09∗† 68.05∗†movies 59.81 62.60∗ 67.39∗† 67.10∗† 66.14∗† 70.28∗† 66.58∗†average 61.17 64.60∗ 66.92∗ 67.69∗ 67.83∗ 67.22∗ 68.30∗
∗: signi�
antly better than SVMs using Top 2000 on the basis of a paired t-test using p < 0.05

†: signi�
antly better than SGT using Top 2000 on the basis of a paired t-test using p < 0.05Figure 6.3 displays the performan
e of SGT on various feature sets averaged over alldomains using various amounts of labeled training data. SGT only signi�
antly outper-106



forms SVMs when less than 200 labeled do
uments are used. Therefore, we restri
tedthe �gure to the range ending at that size. The lower performan
e of the averaged re-sults must be due to some properties of the Rate-It-All data (either noise or the datasetis more di�
ult) sin
e the individual performan
e of the semi-supervised 
lassi�ers onthe movie domain was signi�
antly better. Despite the lower performan
e, we 
an stilluse the averaged results to 
hara
terize the relation between the di�erent feature sets insemi-supervised learning. Both polarity lexi
ons and adje
tives and adverbs are signi�-
antly better than top 2000 non-stopwords and there is no signi�
ant di�eren
e betweenpolarity lexi
ons and adje
tives and adverbs.All these results support both the 
ompetitiveness of adje
tive and adverbs and therobustness of SGT. Given the best feature set in a parti
ular domain, the average gainin improvement 
ompared to SVMs only trained on 20 labeled do
uments using top 2000non-stopwords is approximately 8.5% when SGT is used. This is a 
lear indi
ation thatsemi-supervised learning for polarity 
lassi�
ation works a
ross all domains when onlytiny amounts of labeled data are used.

 60

 62

 64

 66

 68

 70

 72

 74

 76

 78

 20  40  60  80  100  120  140  160  180  200

A
cc

ur
ac

y 
(c

la
ss

ifi
er

 tr
ai

ne
d 

on
 1

00
0 

un
la

be
le

d 
do

cu
m

en
ts

)

Number of labeled documents for training

SVMs trained on top 2000 non-stopwords
SGT trained on top 2000 non-stopwords

SGT trained on SWN
SGT trained on MPQA

SGT trained on GI
SGT trained on AG

SGT trained on ADJ

Figure 6.3.: SGT trained on di�erent amounts of labeled data and di�erent feature setsaveraged over all domains (1,000 unlabeled do
uments).
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6.5.3. Con
lusion of Experiments on Semi-Supervised LearningIn this se
tion we have shown that semi-supervised learning 
an be su

essfully applied todo
ument-level polarity 
lassi�
ation. Signi�
ant improvement over supervised 
lassi�
a-tion 
an be a
hieved a
ross all domains when less than 200 labeled do
uments are avail-able. On the movie domain we even a
hieved improved performan
e a
ross all amountsof labeled training data. SGT is the 
lassi�er whi
h produ
es better results than all othersemi-supervised 
lassi�ers used in our experiments. On average, polarity lexi
ons andadje
tives and adverbs perform better than just using frequent in-domain non-stopwords.Adje
tives and adverbs are less expensive to obtain and more robust throughout di�erentdomains. Thus, these experiments show that the 
onsideration of linguisti
 knowledge,be it the knowledge of polar expressions or the knowledge of adje
tives and adverbs, ishelpful for semi-supervised learning.6.6. Bootstrapping Supervised Polarity Classi�ers usingRule-Based Classi�
ationI assume that the performan
e of supervised polarity 
lassi�ers bootstrapped with thehelp of rule-based 
lassi�ers depends on two 
omponents:
• the type of rule-based 
lassi�er that is 
hosen
• the feature set on whi
h the supervised 
lassi�er is trainedThis is why I will fo
us on these two aspe
ts in the dis
ussion of this method.6.6.1. Rule-Based Classi�erIn the following, we des
ribe how a polarity lexi
on is 
onverted to a rule-based polarity
lassi�er. The polarity lexi
on, the list of other important word 
lasses being intensi�ers,negation expressions (in
luding the rules to disambiguate them), and polarity shifters are,as in the experiments from the previous 
hapters, taken from the MPQA proje
t (Wilson108



et al., 2005). We 
hose this resour
e sin
e due to its feature diversity it allows the
onstru
tion of the most 
omplex polarity 
lassi�er.Feature Extra
tionAny word in a review that is not in
luded in a polarity lexi
on is dis
arded. Positive words(e.g. ex
ellent) are assigned the value +1, negative words (e.g. awful) −1, respe
tively.Basi
 Word Sense Disambiguation with Part-of-Spee
h TagsThe polarity lexi
on we use has part-of-spee
h tags atta
hed to polar expressions in orderto disambiguate them, e.g. the word like is either a polar verb or a preposition (in whi
h
ase it is meaningless for polarity 
lassi�
ation). We identify words as polar expressionsonly if their part-of-spee
h tags14 also mat
h the spe
i�
ation in the lexi
on. This 
anbe 
onsidered as some basi
 form of word sense disambiguation.Negation ModelingIf a polar expression o

urs within the s
ope of a negation, its polarity is reversed (e.g.
[not ni
e+]−). The negation modeling we use in this 
hapter, whi
h in
ludes both thedisambiguation of potential negation expressions and the usage of polarity shifters, isidenti
al to the method des
ribed in Chapter 5.4.3.Heuristi
 WeightingSo far, all polar expressions 
ontained in the polarity lexi
on are assigned the sameabsolute weight, i.e. (±)1. This does not re�e
t reality. Polar expressions di�er intheir individual polar intensity or, in 
ase of ambiguous words, in their likelihood to
onvey polarity. Therefore, they should not obtain a uniform weight. We propose aheuristi
 weighting s
heme based on parti
ular properties of polar expressions. We fo
uson properties that have been e�e
tively in
orporated into features in Chapters 3 and 5 onsenten
e-level polarity 
lassi�
ation. The properties 
onsidered for heuristi
 weighting14For part-of-spee
h tagging, we again use the C&C tagger. 109



have already been motivated and proven e�e
tive in previous work (Kennedy & Inkpen,2005; Pang et al., 2002).Intuitively, strong polar expressions, su
h as 
haoti
, should obtain a higher weightthan weak polar expressions, su
h as bulky. The same holds for intensi�ed polar expres-sions, i.e. an ordinary (weak) polar expression has a similar polar intensity when it ismodi�ed by an intensi�er as a strong polar expression, e.g. extremely disordered and
haoti
.The part of spee
h of a polar expression usually sheds light on the level of ambiguityof the word. If a polar expression is an adje
tive, its prior probability of being polar ismu
h higher than the one of polar expressions with other parts of spee
h, su
h as verbsor nouns (Pang et al., 2002). Therefore, polar adje
tives should obtain a larger weightthan polar expressions with other parts of spee
h.Sin
e there are no development data in order to adjust the weights for the previouslymentioned properties, we propose to simply double the value of a polar expression ifeither of these properties applies. If n of these properties apply for a polar expression,then its value is doubled n times. For instan
e, an intensi�ed adje
tive is assigned thevalue of 4, i.e. 2 · 2.Classi�
ationFor ea
h data instan
e the 
ontextual s
ores assigned to the individual polar expressionsare summed. If the sum is positive, then the instan
e is 
lassi�ed as positive. It is
lassi�ed as negative, if the sum is negative. We assign to all 
ases in whi
h the sumis 0 the polarity type whi
h gives best performan
e on that individual dataset (whi
his usually negative polarity). Thus, we have a stronger baseline that is to be beaten byself-training.Note that the predi
tion s
ore of a data instan
e, i.e. the sum of 
ontextual s
ores ofthe polar expressions, 
an also be interpreted as a 
on�den
e s
ore. This property is vitalfor e�e
tively using this rule-based 
lassi�er in self-training. Thus, previously mentionedinstan
es with a s
ore of 0, for example, are unlikely to o

ur in the labeled training110



set sin
e it only in
ludes instan
es labeled with a high 
on�den
e s
ore. The sum of
ontextual s
ores is normalized by the overall number of tokens in a test instan
e. Thisnormalization re�e
ts the density of polar expressions within the instan
e. The greaterthe density of polar expressions of a parti
ular type is in a text, the more likely the text
onveys that polarity.Figure 6.4 summarizes all steps of the rule-based 
lassi�er.1. Lexi
on loading, i.e. polar expressions, negation words, and intensi�ers2. Prepro
essing:(i) Stem test instan
e.(ii) Apply part-of-spee
h tagging to test instan
e.3. Polar expression marking:(i) Che
k whether part-of-spee
h tag of potential polar expression mat
hes lexi
al entry (basi
 wordsense disambiguation).(ii) Mark strong polar expressions.4. Negation modeling:(i) Identify potential negation words (in
luding polarity shifters).(ii) Disambiguate negation words.(iii) Reverse polarity of polar expression in s
ope of (genuine) negation.5. Intensi�er marking6. Heuristi
 weighting: double weight in 
ase polar expression is:(i) a strong polar expression(ii) an intensi�ed polar expression(iii) a polar adje
tive.7. Classi�
ation: assign test instan
e the polarity type with the largest (normalized) sum of s
ores.Figure 6.4.: Rule-based 
lassi�er.
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Table 6.7.: Properties of the di�erent rule-based 
lassi�ers.Properties RBPlain RBbWSD RBNeg RBWeightbasi
 word sense disambiguation X X Xnegation modeling X Xheuristi
 weighting XTable 6.8.: Des
ription of the di�erent feature sets.Feature Set Abbreviationthe 2000 most frequent non-stopwords in the domain 
orpus Top2000the 600 most frequent adje
tives and adverbs in the domain 
orpus Adj600all polar expressions within the polarity lexi
on MPQAall unigrams in the domain 
orpus Uniall unigrams and bigrams in the domain 
orpus Uni+BiDi�erent Versions of Classi�ersWe de�ne four di�erent types of rule-based 
lassi�ers. They di�er in 
omplexity. Thesimplest 
lassi�er, i.e. RBP lain, does not 
ontain word sense disambiguation, negationmodeling, or heuristi
 weighting. RBbWSD is like RBP lain but also 
ontains basi
 wordsense disambiguation. RBNeg is like RBbWSD but also 
ontains negation modeling. Themost 
omplex 
lassi�er, i.e. RBWeight, is pre
isely the algorithm presented in the previousse
tions. Table 6.7 summarizes the di�erent 
lassi�ers with their respe
tive properties.6.6.2. Feature SetsTable 6.8 lists the di�erent feature sets we examine for the supervised 
lassi�er (withinself-training) and the semi-supervised 
lassi�ers. We list the feature sets along theirabbreviation with whi
h they will hen
eforth be addressed. The �rst three features(i.e. Top2000, Adj600, and MPQA) have been used in the previous experiments onsemi-supervised learning (Se
tion 6.5). They all remove noise 
ontained in the overall112



vo
abulary of a domain 
orpus. The last two features (i.e. Uni and Bi) are known to bee�e
tive for supervised polarity 
lassi�
ation (Ng et al., 2006). Bigrams 
an be helpfulin addition to unigrams sin
e they take into a

ount some 
ontext of polar expressions.Thus, 
ru
ial 
onstru
tions, su
h as negation ([not ni
e℄−) or intensi�
ation ([extremelyni
e℄++), 
an be 
aptured. Moreover, multiword polar expressions, su
h as [low tax℄+ or[low grades℄−, 
an be represented as individual features. Unfortunately, bigram featuresare also fairly sparse and 
ontain a 
onsiderable amount of noise.6.6.3. ExperimentsFor the following experiments we mainly adhere to the settings of our experiments onsemi-supervised learning (see Se
tion 6.5). We deliberately 
hose these settings in fa-vor of semi-supervised learning in order to have a strong baseline for the proposedself-training method. We again use a balan
ed subset (randomly generated) for ea
hdomain. The Rate-It-All dataset 
onsists of 1, 800 data instan
es per domain, whereasthe IMDb dataset 
onsists of 2, 000 data instan
es. We just 
onsider (de�nite) positiveand (de�nite) negative reviews. The rule-based 
lassi�ers and the self-trained 
lassi�ers(bootstrapped with the help of rule-based 
lassi�
ation) are evaluated on the entire do-main dataset. The 1, 000 most highly-ranked data instan
es (i.e. 500 positive and 500negative instan
es) are 
hosen as training data for the supervised 
lassi�er. This settingprovided good performan
e in our initial experiments. For the supervised 
lassi�er, we
hose SVMs. All words are stemmed. We report statisti
al signi�
an
e on the basis of apaired t-test using 0.05 as the signi�
an
e level unless we expli
itly state otherwise. Weevaluate the results using A

ura
y and F-Measure (see also Appendix A.1).Comparison of Di�erent Rule-Based Classi�ersTable 6.9 shows the results of the di�erent rule-based 
lassi�ers a
ross the di�erent do-mains. On average, the more 
omplex the rule-based 
lassi�er gets, the better it performs.The only notable ex
eptions are the produ
ts domain (from RBNeg to RBWeight) and thesports domain (from RBP lain to RBbWSD). We assume, however, that in parti
ular those113



results in the sports domain are heavily a�e
ted by the high degree of spelling errors.On average (i.e. 
onsidering all domains), however, the improvements are statisti
allysigni�
ant.Table 6.9.: Comparison of di�erent rule-based 
lassi�ers (RB) (for ea
h domain, perfor-man
e is evaluated on a balan
ed 
orpus).Domain RBPlain RBbWSD RBNeg RBWeight
omputer 64.11 70.61 73.56∗ 74.28produ
ts 60.78 66.06∗ 71.06∗ 70.94sports 64.33 64.39 67.50 68.89travel 64.61 67.39 70.72∗ 72.61movies 61.75 64.80∗ 67.85∗ 71.30∗average 63.12 66.65∗ 70.14∗ 71.60∗
∗: signi�
antly better than all less 
omplex rule-based 
lassi�ers on the basis of a χ2 test using p < 0.05Self-Training with Di�erent Rule-Based Classi�ers and Di�erent Feature SetsTable 6.10 
ompares self-training (SelfTr) using di�erent rule-based 
lassi�ers and dif-ferent feature sets for the embedded supervised 
lassi�er. In addition to A

ura
y, wealso listed the F-Measure of the two di�erent 
lasses. The results are averaged overall domains. With the ex
eption of RBNeg in 
ombination with Top2000 and MPQA,there is always a signi�
ant improvement from a rule-based 
lassi�er to the 
orrespond-ing self-trained version. If Top2000 or MPQA is used, there is a drop in performan
efrom RBNeg to SelfTr in the sports domain. Improving a rule-based 
lassi�er also resultsin an improvement of the self-trained 
lassi�er. With ex
eption of SelfTr(RBP lain) toSelfTr(RBbWSD) this is even signi�
ant.The feature set produ
ing the best results is Uni+Bi. Uni+Bi is statisti
ally signif-i
antly better than Uni. This means that, as far as feature design is 
on
erned, thesupervised 
lassi�er within self-training behaves similar to ordinary supervised 
lassi�
a-tion (Ng et al., 2006). Unlike in semi-supervised learning, a noiseless feature set is not114



ne
essary. Best performan
e of SelfTr using a large set of polar expressions is reportedin (Qiu et al., 2009). The feature set 
omprises an open-domain polarity lexi
on and isautomati
ally extended by domain-spe
i�
 expressions. Our results suggest a less 
om-plex alternative. Using SelfTr with unigrams and bigrams (i.e. SelfTrUni+Bi) alreadyprovides better 
lassi�ers than SelfTr with a polarity lexi
on (i.e. SelfTrMPQA). Thein
rease is approximately 3%.It is also worth pointing out that the gain in performan
e that is a
hieved by improvinga basi
 rule-based 
lassi�er (i.e. RBP lain) by modeling 
onstru
tions (i.e. RBWeight) isthe same as is gained by just self-training it with the best feature set (i.e. SelfTrUni+Bi).The relation between the F-Measures of the two di�erent 
lasses di�ers between RBand SelfTr. In RB, the s
ore of the positive 
lass is always signi�
antly better thanthe s
ore of the negative 
lass. This is 
onsistent with previous �ndings (Andreevskaia& Bergler, 2008). The gap between the two 
lasses, however, varies depending on the
omplexity of the 
lassi�er. In RBP lain, the gap is 17.45%, whereas it is less than 6%in RBNeg and RBWeight. In SelfTr, the F-Measure of the negative 
lass is usually betterthan the s
ore of the positive 
lass.15 This relation between the two 
lasses is typi
alof learning-based polarity 
lassi�ers (Andreevskaia & Bergler, 2008). However, it shouldalso be pointed out that the size of the gap is mu
h smaller (usually not greater than
2%). Moreover, the size of the gap does not bear any relation to the gap in the originalRB, i.e. though there is a 
onsiderable di�eren
e in size between the gaps of RBP lainand RBNeg (17.45% to 5.02%), the size of the gaps in the self-trained versions is fairlysimilar (e.g. for SelfTrUni+Bi 3.55% and 2.19%).We also experimented with a 
ombination of bag of words and the knowledge en
odedin the rule-based 
lassi�er, i.e. the two features: the number of positive and negativepolar expressions within a data instan
e. The performan
e of this 
ombination is worsethan a 
lassi�er trained on bag of words. The 
orrelation between the two 
lass labels andthe two polarity features is disproportionately high sin
e the polarity features essentially15The only ex
eption where the reverse is always true is SelfTrMPQA. This does not 
ome as a surprisesin
e this feature set resembles RB most. 115



Table 6.10.: Performan
e of self-trained 
lassi�ers with di�erent feature sets (experimentsare 
arried out on a balan
ed 
orpus and results are averaged over all do-mains).RBP lain RBbWSD RBNeg RBWeightType F+ F− A

. F+ F− A

. F+ F− A

. F+ F− A

.RB (Baseline) 69.81 52.36 63.12 70.39 61.79 66.65 72.42 67.40 70.14 74.26 68.30 71.60SelfTrT op2000 70.15 70.88 70.53∗ 70.26 71.55 70.92∗ 72.78 73.88 73.40 74.79 74.18 75.73∗SelfTrAdj600 68.94 69.92 69.44∗ 70.08 71.41 70.76∗ 72.46 73.90 73.20∗ 74.34 75.82 75.10∗SelfTrMP QA 69.18 67.85 68.55∗ 70.03 69.46 69.75∗ 72.50 72.19 72.15 74.57 75.47 75.04∗SelfTrUni 69.82 71.16 70.51∗ 70.53 72.41 71.50∗ 73.17 74.87 74.05∗ 75.73 77.67 76.74∗SelfTrUni+Bi 71.14 74.69 71.94∗† 71.41 73.64 72.57∗† 74.39 76.12 75.29∗† 76.43 78.62 77.58∗†
∗: A

ura
y signi�
antly better than RB on the basis of a paired t-test using p < 0.05

†: A

ura
y signi�
antly better than SelfTrUni on the basis of a paired t-test using p < 0.05en
ode the predi
tion of the rule-based 
lassi�er. Consequently, the supervised 
lassi�ersdevelop a strong bias towards these two features and inappropriately downweight thebag-of-words features.Table 6.11 
ompares rule-based 
lassi�
ation and self-training on individual domains.In some domains self-training does not work. This is most evident in the sports domainusing self-training on RBbWSD. Apparently, the better the rule-based 
lassi�er is, themore likely a notable improvement by self-training 
an be obtained. Note that in thesports domain the self-trained 
lassi�er using the most 
omplex rule-based 
lassi�er, i.e.SelfTr(RBWeight), a
hieves the largest improvement 
ompared to the rule-based 
lassi�er.These observations are also representative for the remaining feature sets examined butnot displayed in Table 6.11.Self-Training using Rule-Based Classi�ers Compared to Semi-Supervised LearningIn the following experiments, we use Spe
tral Graph Transdu
tion (SGT) (Joa
hims,2003) as a semi-supervised learning 
lassi�er, sin
e it provided best performan
e in previ-116



Table 6.11.: Comparison of A

ura
y between di�erent rule-based 
lassi�ers (RB) andself-trained 
lassi�ers (SelfTr) trained on best feature set (Uni+Bi) on dif-ferent domains (for ea
h domain, performan
e is evaluated on a balan
ed
orpus). RBPlain RBbWSD RBNeg RBWeightDomain RB SelfTr RB SelfTr RB SelfTr RB SelfTr
omputer 64.11 80.22 70.61 81.72 73.56 83.67∗ 74.28 83.50∗produ
ts 60.78 70.78 66.06 73.89∗ 71.06 77.00∗† 70.94 77.00∗†sports 64.33 66.44 64.39 64.94 67.50 68.89† 68.89 72.78∗†‡travel 64.61 69.56 67.39 69.83 70.72 73.33∗† 72.61 76.89∗†‡movies 61.75 72.70 64.80 72.45 67.85 73.55 71.30 77.75∗†‡average 63.12 71.94 66.65 72.57 70.14 75.29∗† 71.60 77.58∗†‡
∗: signi�
antly better than SelfTr bootstrapped on RBPlain, †: signi�
antly better than SelfTr bootstrappedon RBbWSD , ‡: signi�
antly better than SelfTr bootstrapped on RBNeg ; statisti
al signi�
an
e is based on a χ2test using p < 0.05ous experiments on semi-supervised learning (see Se
tion 6.5). For ea
h 
on�guration (i.e.training and test partition) we randomly sample 20 partitions from the 
orpus. Labeledtraining and test data are always mutually ex
lusive but the test data (500 positive and
500 negative instan
es) 
an be identi
al to the unlabeled training data.Figure 6.5 
ompares self-training bootstrapped on the output of rule-based 
lassi�
a-tion (SelfTr) to supervised learning (SL) and semi-supervised learning (SSL). We 
omparetwo variations of SelfTr. SelfTr-A, like SSL, uses 1,000 randomly sampled data instan
esfor both training and testing. (Again, we report the averaged result over 20 samples.)SelfTr-B (like in previous se
tions) sele
ts 1, 000 training instan
es by 
on�den
e fromthe entire dataset. The test data are, however, the same as in SelfTr-A. Unlike our pre-vious experiments on SSL in whi
h Top2000 was predominantly used for SL, we 
hoseUni+Bi as a feature set. It produ
es better results than Top2000 on 
lassi�ers trained117



on larger training sets (i.e. ≥ 400).16 For SSL, we 
onsider Uni+Bi and Adj600, whi
h isthe feature set with the overall best performan
e using that learning method. For SelfTr,we 
onsider the best 
lassi�er, i.e. SelfTrUni+Bi.
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Figure 6.5.: Comparison of self-training and semi-supervised learning (performan
e isevaluated on balan
ed 
orpus and results are averaged over all domains).Though SSL gives a notable improvement on small labeled training sets (i.e. ≤ 100), itprodu
es mu
h worse performan
e than SL on large training sets (i.e. ≥ 200). Adje
tivesand adverbs are a very reliable predi
tor. However, the size of the feature set is fairlysmall. Too little stru
ture 
an be learned on large labeled training sets using su
h a smallfeature set. Using larger (but also noisier) feature sets for SSL, su
h as Uni+Bi, improvesperforman
e on larger labeled training sets. However, even with Uni+Bi SSL does notrea
h a performan
e 
omparable to SL on large training sets and it is signi�
antly worsethan Adj600 on small training sets.Whenever SSL outperforms SL, every variation of SelfTr also outperforms SSL. SelfTr-B is signi�
antly better than SelfTr-A whi
h means that the quality of labeled instan
es16Note that our previous experiments in SSL fo
used on small training sets.118



matters and SelfTr is able to sele
t more meaningful data instan
es than are provided byrandom sampling. Unfortunately, SSL-methods, su
h as SGT, do not in
orporate su
ha sele
tion pro
edure for the unlabeled data. Further exploratory experiments using theentire dataset as unlabeled data for SSL produ
ed, on average, results similar to thoseusing 1, 000 instan
es. This proves that SSL 
annot internally identify as meaningfuldata as SelfTr-B does. Whereas SSL signi�
antly outperforms SL on training sets usingless than 200 training instan
es, the best variation of SelfTr, i.e. SelfTr-B, signi�
antlyoutperforms SL on training sets using less than 400 instan
es. This di�eren
e is, inparti
ular, remarkable sin
e SelfTr does not use any manually labeled training data atall whereas SSL does.Natural Class Imbalan
e and Mixed ReviewsIn this se
tion, we want to investigate what impa
t natural 
lass imbalan
e has on self-training. While in both SL and SSL 
lass imbalan
e should be a minor problem17 sin
ea 
lass distribution 
an be estimated from the labeled training set (and, hopefully, theestimate is similar to the distribution on the test set), there is no prior informationregarding the 
lass distribution in self-training. This aspe
t has only been marginally
overed in previous work (Qiu et al., 2009; Tan et al., 2008). In those works, di�erent 
lassratios on the test set are evaluated. However, the same amount of positive and negativereviews is always sele
ted for training. We assume that the optimal performan
e of self-training 
an be a
hieved when the 
lass distribution of training and test set is identi
aland we will provide eviden
e for that. Moreover, we want to explore what impa
t di�erentdistributions between the two sets have on the A

ura
y of the 
lassi�er and how di�erent
lass-ratio estimation methods perform.Previous work dealing with bootstrapping polarity 
lassi�ers using unlabeled data alsofo
uses on datasets ex
lusively 
onsisting of de�nite positive and negative reviews (Das-gupta & Ng, 2009; Qiu et al., 2009; Tan et al., 2008). In this se
tion, the unlabeleddataset will also in
lude mixed reviews, i.e. 3 star reviews (see Se
tion 6.4). This review17This is why, as far as text 
lassi�
ation is 
on
erned, we address 
lass imbalan
e only in this se
tion.119




ategory is part of every realisti
 review 
olle
tion and therefore should be taken into
onsideration for self-training. Unfortunately, the way that we formulate SSL for polarity
lassi�
ation does not allow us to also in
lude these unlabeled 3 star reviews. Due to theunavailability of su
h data the experiments have only been 
arried out on the Rate-It-Alldata. We also add the 
onstraint that the test data must be disjoint from the unlabeledtraining data.18Test data are ex
lusively (de�nite) positive reviews (i.e. 4 & 5 star reviews) and(de�nite) negative reviews (i.e. 1 & 2 star reviews). From ea
h domain, we randomlysample 200 data instan
es 10 times. We state the results averaged over these di�erenttest sets. The 
lass ratio on ea
h test set 
orresponds to the distribution of de�nite polarreviews, i.e. 3 star reviews are ignored. The distribution has been presented on Table 6.1on page 94.The unlabeled training dataset is the dataset of a domain ex
luding the test data. Aslabeled training data for the embedded supervised 
lassi�er within self-training, we use
70% of data instan
es labeled by the rule-based 
lassi�er ranked by 
on�den
e of predi
-tion (a
ross all domains and 
on�gurations, this size provided best results). Hopefully,most mixed reviews should be among the remaining 30%.In the �rst experiment, we just fo
us on 
lass imbalan
e (i.e. 3 star reviews areex
luded). We will examine a self-trained 
lassi�er using the 
lass-ratio estimate of arule-based 
lassi�er as it is the most obvious estimate sin
e the rule-based 
lassi�er isalso used for generating the labeled training data. In parti
ular, we want to explorewhether there is a systemati
 relationship between the 
lass distribution, the 
lass-ratioestimate of the rule-based 
lassi�er and the resulting self-trained 
lassi�er. Table 6.12lists the a
tual distribution of 
lasses on the test set, the deviation between the distribu-tion as it is predi
ted by the rule-based 
lassi�er and the a
tual distribution along theinformation towards whi
h 
lass the rule-based 
lassi�er is biased. Finally, we also listthe absolute improvement/deterioration of the self-trained 
lassi�er in 
omparison to the18We 
an in
lude this restri
tion in this se
tion sin
e we will not 
onsider the semi-supervised learningalgorithm SGT in this se
tion.120



rule-based 
lassi�er. We will only 
onsider the best rule-based 
lassi�er, i.e. RBWeight,and for self-training, we will ex
lusively 
onsider the best 
on�guration from the previousexperiments, i.e. SelfTrUni+Bi. The table shows that the quality of 
lass-ratio estimatesof rule-based 
lassi�ers varies among the di�erent domains. The deviation is greatest onthe 
omputer domain. This is also the only domain in whi
h the majority 
lass are thenegative reviews. With ex
eption of the sports domain, the rule-based 
lassi�er alwaysoverestimates the amount of positive reviews. This overestimation is surprising 
onsider-ing that the polarity lexi
on we use 
ontains almost twi
e as many negative as positivepolar expressions. This �nding, however, is 
onsistent with our earlier observation thatrule-based 
lassi�ers have a bias towards positive reviews, i.e. they a
hieve a better F-Measure for positive reviews than for negative reviews.19 Table 6.12 also 
learly showsthat the deviation negatively 
orrelates with the improvement of the self-trained 
lassi-�er towards the rule-based 
lassi�er. The improvement is greatest on the sports domainwhere the deviation is smallest and the greatest deterioration is obtained on the 
om-puter domain where the deviation is largest. In summary of this experiment, the 
lassdistribution of the data has a signi�
ant impa
t on the �nal self-trained 
lassi�er. In
ase there is a heavy mismat
h between a
tual and predi
ted 
lass ratio, the self-trainingapproa
h will not improve the rule-based 
lassi�er.In the following experiment we will 
ompare how alternative 
lass-ratio estimates relateto ea
h other when applied to self-training. We 
ompare the a
tual (ora
le) distribution(Ratio-Or) with the balan
ed 
lass ratio (Ratio-Bal), the 
lass ratio as predi
ted by therule-based 
lassi�er over the entire dataset (Ratio-RB) and estimates gained by a smallamount of randomly sampled data instan
es from the dataset. We randomly sample 20(Ratio-20), 50 (Ratio-50), and 100 (Ratio-100) instan
es. For ea
h 
on�guration (i.e. 20,
50, and 100), we sample 10 times, run SelfTr for ea
h sample and report the averagedresult. We 
ompare the self-trained 
lassi�er with a 
lassi�er always assigning a testinstan
e to the majority 
lass (Majority-Cl) and the rule-based 
lassi�er (RBWeight).19We also observed that this bias is signi�
antly larger on the simplest 
lassi�ers, i.e. RBPlain, whi
h isplausible sin
e on this 
lassi�er the gap between F-Measures of positive and negative reviews is alsolargest (see Table 6.10). 121



Table 6.12.: Class imbalan
e and its impa
t on self-training.Domain ClassDistribution(+ : −) Deviation ofPredi
tedDistribution fromA
tual Distribution Class Towardswhi
h Predi
tedDistribution isBiased Di�eren
e inA

ura
ybetween RB andSelfTr(RB)
omputer 43.17 : 56.83 16.30 + −3.60produ
ts 63.07 : 36.93 6.65 + −0.25sports 78.68 : 21.32 2.10 − +3.15travel 74.07 : 25.93 3.71 + +1.30

Table 6.13.: A

ura
y of di�erent 
lassi�ers tested on naturally imbalan
ed data: for self-trained 
lassi�ers the unlabeled data also 
ontain 3 star reviews; numbers inbra
kets state the results on a dataset whi
h ex
ludes 3 star reviews.Classi�er 
omputer produ
ts sports travel averageMajority-Cl 56.83 63.07 78.68 74.07 68.17RBWeight 73.80 76.00 77.35 79.50 76.66
SelfTr Ratio-Or 82.80 (83.35) 80.90 (81.70) 81.25 (81.10) 81.70 (81.60) 81.66 (81.94)Ratio-Bal 83.25 (82.95) 75.40 (76.05) 62.55 (60.30) 66.95 (66.10) 72.04 (71.35)Ratio-RB 75.95 (70.20) 77.50 (75.75 80.75 (80.50) 81.15 (80.80) 78.84 (76.81)Ratio-20 77.36 (77.95) 77.61 (78.10) 79.10 (79.01) 78.94 (79.44) 78.01 (77.91)Ratio-50 80.43 (80.91) 80.45 (80.86) 79.94 (79.94) 80.64 (80.52) 80.37 (80.56)Ratio-100 80.96 (81.47) 80.69 (81.27) 80.62 (80.50) 80.76 (80.58) 80.76 (80.96)
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This time, we also in
lude the 3 star reviews in the unlabeled dataset.Note that sin
e Ratio-20, Ratio-50, and Ratio-100 are averaged results over 10 sampleswhereas the remaining 
lassi�ers are single results, we refrain from doing a statisti
alsigni�
an
e test as there is no 
ommonly a

epted way of 
omparing those di�erenttypes of data (i.e. averaged results vs. single results).Table 6.13 displays the results. We also display results of the datasets without using
3 star reviews in bra
kets. SelfTr using Ratio-Bal produ
es the worst results among theself-training 
lassi�ers. This is the only method used in previous work (in Chinese) (Qiuet al., 2009; Tan et al., 2008). Apparently, English data are more di�
ult than Chineseand, in English, SelfTr is more sus
eptible to deviating 
lass-ratio estimates sin
e in (Qiuet al., 2009; Tan et al., 2008) SelfTr with Ratio-Bal s
ores rather well. Ratio-Or produ
esbest results whi
h 
omes as no surprise sin
e the 
lass distribution in training and test setis the same. On average, Ratio-100 produ
es the se
ond best result as it also gives fairlyreliable 
lass-ratio estimates (the deviation is 3.3% on average, whereas the deviation ofRatio-Bal is 18.16%). Both Ratio-50 and Ratio-100 produ
e results whi
h are better thanMajority-Cl and RBWeight. As Ratio-Or, Ratio-Bal, Ratio-20, Ratio-50, and Ratio-100suggest, the presen
e of mixed polar reviews does not produ
e di�erent results. It is verystriking, however, that the results of Ratio-RB are better using the 3 star reviews whi
hseems 
ounter-intuitive. We found that this is a 
orpus artifa
t. As already stated inSe
tion 6.4, 3 star reviews do not only 
ontain inde�nite polar reviews but also positiveand negative reviews. We also noted that Ratio-RB has a bias towards predi
ting toomany positive instan
es. The bias is stronger if 3 star reviews are not in
luded in theratio-predi
tion (deviation of 8.5% instead of 6%). We, therefore, assume that among the
3 star reviews the proportion of negative-like reviews is greater than among the remainingpart of the dataset and RB within SelfTr dete
ts them as su
h. Thus, the bias towardspositive polarity is slightly neutralized.In summary of this experiment, using small samples of labeled data instan
es is themost e�e
tive way for 
lass ratio estimation enabling SelfTr to 
onsistently outperformMajority-CL and RatioWeight. Mixed reviews only have a marginal impa
t on the �nal123



overall result of SelfTr.6.6.4. Con
lusion of Experiments on Bootstrapping Supervised Classi�erswith Rule-Based Classi�
ationIn this se
tion, we examined the e�e
tiveness of bootstrapping a supervised polarity
lassi�er with the output of an open-domain rule-based 
lassi�er. The resulting self-trained 
lassi�er is usually signi�
antly better than the open-domain rule-based 
lassi�ersin
e the supervised 
lassi�er exploits in-domain features. As far as the 
hoi
e of thefeature set is 
on
erned, the supervised 
lassi�er within self-training behaves very mu
hlike an ordinary supervised 
lassi�er. The set of all unigrams and bigrams performs best.The type of rule-based 
lassi�er has an impa
t on the performan
e of the �nal 
lassi�er.Usually, the more a

urate the rule-based 
lassi�er is, the better the resulting self-trained
lassi�er is. Therefore, modeling open-domain 
onstru
tions relevant for polarity 
lassi-�
ation, su
h as negations or intensi�
ation, is important for this type of self-training.Thus, I have shown another aspe
t in sentiment analysis in whi
h linguisti
 informationis important to be 
onsidered.In 
ases in whi
h semi-supervised learning outperforms supervised learning, self-trainingat least also performs as well as the semi-supervised 
lassi�er. A great advantage of self-training is that it 
an 
hoose instan
es to be added to the labeled training set by using
on�den
e s
ores whereas in semi-supervised learning one has to resort to random sam-pling. The resulting data from self-training are usually mu
h better.Self-training also outperforms a rule-based 
lassi�er and a majority-
lass 
lassi�er inmore di�
ult settings in whi
h mixed reviews are part of the dataset and the 
lassdistribution is imbalan
ed, provided that the 
lass-ratio estimate does not deviate toomu
h from the a
tual ratio on the test set. A 
lass-ratio estimate 
an be obtained bythe output of the rule-based 
lassi�er but, on average, using small amounts of labeledsamples from the data 
olle
tion (i.e. approximately 50 instan
es) produ
es more reliableresults.Sin
e this self-training method works under realisti
 settings, it is more robust than124



semi-supervised learning, and its embedded supervised 
lassi�er only requires simplefeature sets in order to produ
e reasonable results, it 
an be 
onsidered an e�e
tivemethod to over
ome the need for large amounts of labeled in-domain training data forpolarity 
lassi�
ation.6.7. Error AnalysisThe improvements a
hieved by applying semi-supervised learning presented in this 
hap-ter are signi�
antly smaller than they have been reported on other text 
lassi�
ationtasks, su
h as 
onventional topi
 
lassi�
ation (Nigam, M
Callum, Thrun, & Mit
hell,2000). Moreover, the performan
e gain on the movie domain (Se
tion 6.5.2) is mu
hlarger than the average improvement on all domains (Se
tion 6.5.2). We assume that thenoti
eable improvement obtained by semi-supervised learning on the movie domain is anex
eption. This improvement 
ould only be a
hieved in 
ombination with one parti
ularpolarity lexi
on (i.e. AG). Unfortunately, we know only little as to how this manual lex-i
on has been built. Given our 
ross-domain evaluation, however, we have strong reasonto believe that this lexi
on was tuned for the movie domain. Therefore, we only need toanswer why the general impa
t of semi-supervised learning on polarity 
lassi�
ation isso low.Similar to the dataset used for the dete
tion of inde�nite polarity (Chapter 4), thegold standard used for the experiments in this 
hapter may su�er from the fa
t that thelabels for the data instan
es have been automati
ally generated, i.e. the ratings that havebeen assigned by the individual reviewers may not always be 
orre
t. However, we donot think that this is a general obsta
le and the sole reason for the limited performan
eof semi-supervised learning. If our golden standard severely su�ered from noise, thensupervised learning and self-training should have been similarly a�e
ted. However, forboth we have provided eviden
e in this 
hapter that is not the 
ase. Therefore, we mustassume that there is an inherent reason for the low performan
e of semi-supervised learn-ing. One reason may be that topi
 information 
ontained in the do
uments interfereswith polarity information (as every do
ument does not only possess some polarity but125



addresses some spe
i�
 topi
). The fa
t that semi-supervised learning only provides anotable improvement over supervised learning when a feature set with a high proportionof polar expressions is used may support this assumption (as in those feature sets topi
information is removed to a great extent). We do not think that it is possible to improvethe performan
e of semi-supervised learning on polarity 
lassi�
ation with a reasonablee�ort. If one 
on�nes the feature set to polar expressions, then some improvement to-wards supervised learning 
an be a
hieved, but only if very few labeled training data are
onsidered. If there is a reasonable amount of labeled do
uments, e.g. 200 and more,then su
h a feature set provides too little expressiveness (usually at this point, supervised
lassi�ers signi�
antly outperform the semi-supervised 
lassi�er). If, however, a largerbut less restri
ted feature set were 
onsidered, then the semi-supervised learner 
onfusestopi
 information with polarity information.Con
eptually speaking, self-training o�ers a better alternative, sin
e it in
orporatesboth a predi
tive but also restri
tive feature set (i.e. a polarity lexi
on) and a moreexpressive but also noisier feature set (i.e. all unigrams and bigrams). Moreover, self-training en
apsulates those di�erent feature sets in two di�erent 
lassi�ers (i.e. theformer in a rule-based 
lassi�er and the latter in a supervised learner). The rule-based
lassi�er has the advantage to restri
t labels to data instan
es for whi
h it makes a 
on-�dent predi
tion. As a 
onsequen
e, the unrestri
ted and more expressive feature setis used on labeled training data whi
h have a higher quality than randomly sele
ted la-beled instan
es used in semi-supervised learning (see also Se
tion 6.6.3). Semi-supervisedlearning 
annot rea
h the level of performan
e of self-training as it does not possess this�exibility.Self-training performs mu
h better than semi-supervised learning but there is evenroom for improvement for this 
lassi�er. The rule-based 
lassi�er used for the experimentson self-training relies (as many other 
omponents/features of the 
lassi�ers presented inthe previous 
hapters) on a robust re
ognition of polar expressions. Therefore, similarproblems are en
ountered 
aused by limitations of 
urrently available polarity lexi
ons.Yet these limitations are fairly di�
ult to over
ome (see Chapter 3.6 for more details).126



6.8. Con
lusionPolarity 
lassi�
ation is a di�
ult text 
lassi�
ation task and this be
omes apparent ifbootstrapping algorithms for this task are 
onsidered. In order for bootstrapping tobe
ome e�e
tive, one needs to make use of a fairly predi
tive sour
e of information.For instan
e, semi-supervised learning depends on a predi
tive feature set, otherwise noimprovement will be a
hieved. Surprisingly, adje
tives and adverbs have the same e�e
-tiveness as polarity lexi
ons. In 
omparison to semi-supervised learning, a bootstrappingmethod using a rule-based 
lassi�er seems to be more promising, sin
e in all settingswe examined the latter either outperformed the former or was at least equally robust.There are three major advantages that we dis
overed. Firstly, self-training does not re-quire any manually labeled training data at all. Se
ondly, the rule-based 
lassi�er 
an
hoose training samples by itself (using 
on�den
e s
ores) and thus 
an 
hoose thoseinstan
es whi
h are most useful. Thirdly, our experiments suggest that improving thequality of rule-based 
lassi�ers also improves the quality of the bootstrapped 
lassi�er.Thus, this method leaves plenty of room for improvement as the most 
omplex rule-based
lassi�er we used in this 
hapter is still very 
rude 
ompared to other 
ompositional ap-proa
hes, su
h as (Moilanen & Pulman, 2007) or (Klenner et al., 2009). The e�e
tivenessof semi-supervised 
lassi�ers, however, is restri
ted to small labeled training sets and we
ould not �nd a potential dire
tion for future work to improve them.
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7. Convolution Kernels for OpinionHolder Extra
tion
7.1. Introdu
tionIn this 
hapter, we leave the realm of text 
lassi�
ation in sentiment analysis and turnto opinion holder extra
tion. Together with opinion target extra
tion, opinion holderextra
tion is one of the 
ommon entity extra
tion tasks in sentiment analysis. It is
onsidered a 
riti
al 
omponent of several NLP appli
ations, su
h as opinion question-answering (i.e. systems whi
h automati
ally answer opinion questions, su
h as �Whatdoes [X℄ like about [Y℄?�). Su
h systems need to be able to distinguish whi
h entities ina 
andidate answer senten
e are the sour
es of opinions (= opinion holder) and whi
hare the targets.In other NLP tasks, in parti
ular, in relation extra
tion, there has been mu
h work on
onvolution kernels, i.e. kernel fun
tions exploiting huge amounts of features without anexpli
it feature representation. Previous resear
h on that task has shown that 
onvolutionkernels, su
h as sequen
e or tree kernels, are quite 
ompetitive when 
ompared to manualfeature engineering (Mos
hitti, 2008; Bunes
u & Mooney, 2005; Nguyen, Mos
hitti, &Ri

ardi, 2009). In order to e�e
tively use 
onvolution kernels, it is often ne
essary to
hoose appropriate substru
tures of a senten
e rather than representing the senten
e asa whole stru
ture (Bunes
u & Mooney, 2005; M. Zhang, Zhang, & Su, 2006). As for treekernels, for example, one typi
ally 
hooses the synta
ti
 subtree immediately en
losingtwo entities potentially expressing a spe
i�
 relation in a given senten
e. The opinionholder dete
tion task is di�erent from this s
enario. There 
an be several 
ues within a128



senten
e to indi
ate the presen
e of a genuine opinion holder and these 
ues need not bemember of a parti
ular word group, e.g. they 
an be opinion words (see Senten
es (7.1)-(7.3)), 
ommuni
ation words, su
h as maintained in Senten
e (7.2), or other lexi
al 
ues,su
h as a

ording to in Senten
e (7.3).(7.1) The U.S. 
ommanders 
onsideropinion the prisoners to be unlawful_
ombatantsopinionas opposed to prisoners of war.(7.2) During the summit, Koizumi maintainedcommunication a 
lear-
ut_
ollaborative-_stan
eopinion towards the U.S. and emphasized that the President was obje
-tiveopinion and 
ir
umspe
t.(7.3) A

ording_tocue Fernandez, it was the worst_mistakeopinion in the history of theArgentine e
onomy.Thus, the de�nition of boundaries of the stru
tures for the 
onvolution kernels is lessstraightforward in opinion holder extra
tion.The aim of this 
hapter is to explore in how far 
onvolution kernels 
an be bene�
ialfor e�e
tive opinion holder dete
tion. We are not only interested in how far di�erentkernel types 
ontribute to this extra
tion task but we also 
ontrast the performan
e ofthese kernels with a manually designed feature set used as a standard ve
tor kernel.Moreover, we will show that in order to obtain a good performan
e the 
onsiderationof linguisti
 knowledge is essential for several aspe
ts of a 
lassi�er based on 
onvolutionkernels being:
• the level of representation
• the s
ope for ea
h 
onvolution kernel
• the semanti
 
ategories that are used to generalize 
onvolution kernelsThe work presented in this 
hapter is also des
ribed in (Wiegand & Klakow, 2010b).129



7.2. Related WorkChoi, Cardie, Rilo�, and Patwardhan (2005) examine opinion holder extra
tion usingCRFs with various manually de�ned linguisti
 features and patterns automati
ally learnedby the AutoSlog system (Rilo�, 1996). The linguisti
 features fo
us on named-entity in-formation and synta
ti
 relations to opinion words. In this 
hapter, we use very similarsettings. The features presented in (S.-M. Kim & Hovy, 2005; Bloom, Stein, & Argamon,2007) resemble very mu
h (Choi et al., 2005). Bloom, Stein, and Argamon (2007) also
onsider 
ommuni
ation words to be predi
tive 
ues for opinion holders.S.-M. Kim and Hovy (2006) and Bethard et al. (2004) explore the usefulness of seman-ti
 roles provided by FrameNet (Fillmore, Johnson, & Petru
k, 2003) for both opinionholder and opinion target extra
tion. Due to data-sparseness, S.-M. Kim and Hovy (2006)expand FrameNet data by using an unsupervised 
lustering algorithm.(Choi et al., 2006) is an extension of (Choi et al., 2005) in that opinion holder extra
tionis learned jointly with opinion dete
tion. This requires that opinion expressions andtheir relations to opinion holders are annotated in the training data. Semanti
 rolesare also taken as a potential sour
e of information. In our work, we deliberately workwith minimal annotation and, thus, do not 
onsider any labeled opinion expressions andrelations to opinion holders in the training data. We ex
lusively rely on entities markedas opinion holders. In many pra
ti
al situations, the annotation beyond opinion holderlabeling is too expensive.Complex 
onvolution kernels have been su

essfully applied to various NLP tasks, su
has relation extra
tion (Bunes
u & Mooney, 2005; M. Zhang et al., 2006; Nguyen et al.,2009), question answering (D. Zhang & Lee, 2003; Mos
hitti, 2008), and semanti
 rolelabeling (Mos
hitti, Pighin, & Basili, 2008). In all these tasks, they o�er 
ompetitiveperforman
e to manually designed feature sets. Bunes
u and Mooney (2005) 
ombinedi�erent sequen
e kernels en
oding di�erent 
ontexts of 
andidate entities in a senten
e.They argue that several kernels en
oding di�erent 
ontexts are more e�e
tive than justusing one kernel with one spe
i�
 
ontext. We build on that idea and 
ompare variouss
opes eligible for opinion holder extra
tion. Mos
hitti (2008) and Nguyen et al. (2009)130



suggest that di�erent kinds of information, su
h as word sequen
es, part-of-spee
h tags,synta
ti
 and semanti
 information should be 
ontained in separate 
onvolution kernels.We also adhere to this notion.7.3. DataAs labeled data, we use the sentiment annotation of the MPQA 2.0-
orpus1. Opinionholders are not expli
itly labeled as su
h. However sour
es of private states and subje
tivespee
h events (Wiebe et al., 2003) are a fairly good approximation of the task. Previousworks (Choi et al., 2005; S.-M. Kim & Hovy, 2005; Choi et al., 2006) use similar approxi-mations. Please note, however, sin
e we use a di�erent version of the MPQA-
orpus anda more restri
tive but also more a

urate de�nition2, the numbers presented in this 
hap-ter 
annot be dire
tly 
ompared with these publi
ations. However, we tried to a

ountfor 
omparability by using similar features in our manual feature set (i.e. our baseline)as part of our manually designed feature set (see also Se
tion 7.4.5).Also note that in this work, we deliberately omit any opinion information from theannotation in the golden standard, sin
e it is not only very di�
ult for human annotatorsto annotate but it is also di�
ult to re
ognize automati
ally.7.4. MethodIn this work, we 
onsider all noun phrases (NPs) as possible 
andidate opinion holders.Therefore, the set of all data instan
es is the set of the NPs within the MPQA 2.0-
orpus.Ea
h NP is labeled as to whether it is a genuine opinion holder or not. Throughout thisse
tion, we will use Senten
e (7.4) as an example.(7.4) During the summit, Koizumi maintainedcommunication a 
lear-
ut_
ollaborative-1www.cs.pitt.edu/mpqa/databaserelease2For instan
e, e-mail 
orresponden
e with the �rst author of (Choi et al., 2005) 
on�rmed that sour
esof private states and all spee
h events (rather than only subje
tive spee
h events) had been 
onsideredopinion holders. 131



Table 7.1.: The di�erent levels of representation.Type Des
ription Example
WRD sequen
e of words During the summit , KoizumiCAND maintained a 
lear-
ut
ollaborative stan
e . . .

WRDGN sequen
e of generalized words During the summit , CANDPERSON COMM OPINION . . .

POS part-of-spee
h sequen
e IN DET NN PUNC CAND VBD DET JJ JJ NN . . .

POSGN generalized part-of-spee
h se-quen
e IN DET NN PUNC CANDPERSON COMM OPINION . . .

CONST 
onstituen
y tree see Figure 7.1(a)
CONSTAUG augmented 
onstituen
y tree see Figure 7.1(b)
GRAMWRD grammati
al relation path la-bels with words KoizumiCAND NSUBJ↑ maintained DOBJ↓ stan
e
GRAMPOS grammati
al relation path la-bels with part-of-spee
h tags CAND NSUBJ↑ VBD DOBJ↓ NN
PAS predi
ate argument stru
tures see Figure 7.2(a)
PASAUG augmented predi
ate argumentstru
tures see Figure 7.2(b)

_stan
eopinion towards the U.S. and emphasized that the President was obje
-tiveopinion and 
ir
umspe
t.7.4.1. The Di�erent Levels of RepresentationSeveral levels of representation are important for opinion holder extra
tion. We willbrie�y address every individual level that is going to be 
onsidered in this 
hapter. Ta-ble 7.1 lists all the di�erent levels that are used in this work.WordsAs already pointed out in the introdu
tion of this 
hapter, there are 
ertain words whi
hare indi
ative of a genuine opinion holder when o

urring in the vi
inity of the 
andidate.132



(a) plain

(b) augmentedFigure 7.1.: Constituen
y parse trees (CONST ).
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(a) plain
(b) augmentedFigure 7.2.: Predi
ate-argument stru
tures (PAS).Therefore, word sequen
es (WRD) are 
onsidered as a level of information. In addition tothe plain word level, we also introdu
e another level in whi
h generalization is employed(WRDGN ) where 
ertain words or phrases are repla
ed by their 
orresponding semanti

ategories whi
h are known to be predi
tive for opinion holder extra
tion (Choi et al.,2005; S.-M. Kim & Hovy, 2005; Choi et al., 2006; S.-M. Kim & Hovy, 2006; Bloom,Stein, & Argamon, 2007). The semanti
 
ategories that we 
onsider are named-entitytags, an OPINION tag for opinion words, and a COMM tag for 
ommuni
ation words.Additionally, all 
andidate tokens are redu
ed to one generi
 CAND token. By applyinggeneralization we hope to a

ount for data-sparseness.Parts of Spee
hThe usage of part-of-spee
h sequen
es provides a more abstra
t level of representation.That is why we assume that it might be possible to re
ognize some predi
tive sequentialpatterns that are more general than the patterns on word level. Similar to the wordlevel, we also add another level with generalized part-of-spee
h information (POSGN ) inwhi
h tags representing words or phrases belonging to semanti
 
ategories are repla
edby semanti
 
ategories. We use the same 
ategories as on word level.134



Figure 7.3.: Illustration of long-distan
e relationship between 
andidate opinion holderPresident Khatami and related 
ue 
alled.Constituen
y Parse TreesConstituen
y parse trees (CONST ) allow to 
apture some long-range relationships that
annot be 
aptured by the previous levels of representation. For example in Figure 7.3,the opinion holder, i.e. President Khatami, is fairly wide apart from the 
ue that relatesto it, i.e. 
alled (
ommuni
ation word), as there are 11 intervening tokens.3 However,the relation path from NPCAND to the word 
onsists of just 5 edges.We also add another level of representation in whi
h we augment 
onstituen
y parsetrees by the semanti
 
ategories (CONSTAUG) we also 
onsidered for WRDGN and
POSGN . The additional nodes with these semanti
 
ategories are added in su
h a waythat they dire
tly dominate the pertaining words or phrases representing them.Grammati
al Relations from a Dependen
y Parse TreeLike 
onstituen
y parse trees, grammati
al relations (GRAM) also allow the 
onsider-ation of long-range dependen
ies, however, they abstra
t even more from surfa
e stru
-tures. For instan
e, a grammati
al relation, su
h as subje
t-of, abstra
ts from a
tive andpassive voi
e 
onstru
tions, su
h as Senten
es (7.5) and (7.6).3Please note that the 
ue 
onversation (
ommuni
ation word) is nearer to the 
andidate but its presen
eis 
oin
idental. It is not related to the 
andidate, as it is part of a parentheti
al insertion. 135



(7.5) [The European Commission]subject has 
ritisizedopinion the Bush administration.(7.6) The Bush admistration has been 
ritisizedopinion by [the European Commission]subject.In addition to plain grammati
al relations we also have a further level, GRAMPOS , inwhi
h words are repla
ed by part-of-spee
h tags in order to 
apture some more generalpath sequen
es.Note that the grammati
al relation paths, i.e. GRAMWRD and GRAMPOS , 
an onlybe applied in 
ase there is another expression in the fo
us in addition to the 
andidateopinion holder of the data instan
e itself, e.g. the nearest opinion expression to the
andidate. Se
tion 7.4.4 explains in detail how this is done.Predi
ate Argument Stru
turesThe most abstra
t level of representation are predi
ate argument stru
tures (PAS). Forthis level, we use the PropBank annotation s
heme (Kingsbury & Palmer, 2002). Unlike
CONST , PAS just fo
uses on entities being arguments of a predi
ate. So, the resultingstru
tures in PAS are �atter than those stru
tures provided by dependen
y parse trees(whi
h ideally en
ode relations among all words in a senten
e).In addition to that, the labels assigned to arguments also abstra
t from overt synta
ti
variation as GRAM does. However, the labels generalize even a
ross di�erent parts-of-spee
h. For instan
e, in Senten
e (7.7) the opinion holder is the subje
t of the verbalpredi
ate agreed and is assigned the semanti
 role of an agent. The agent in the PropBanktaxonomy 
orresponds to A0. In Senten
e (7.8), the opinion holder is not the subje
t ofthe nominalization but its modi�er. It is, however, still the agent. Grammati
al relationsare ambiguous in 
ontrast to semanti
 roles as Senten
e (7.9) shows. In that senten
ethere is no opinion holder but the grammati
al relations are identi
al to Senten
e (7.8).The semanti
 di�eren
e is only re�e
ted by the semanti
 role assigned to Kyoto whi
h isnot an agent.(7.7) The U.S.subject

A0 has agreedPRED(V ) to the resolution.136



(7.8) The U.S.modifier
A0 agreementPRED(N) to take missiles out of Turkey [. . . ] (The U.S.agreed to do something).(7.9) The Kyotomodifier

AM−LOC agreementPRED(N) is an international agreement linked to theUnited Nations. (Kyoto is the pla
e where the agreement was made.)Similar to 
onstituen
y parse trees, we also add another level of representation in whi
haugmentation is employed (PASAUG).7.4.2. Support Ve
tor Ma
hines and Kernel MethodsSupport Ve
tor Ma
hines (SVMs) are one of the most robust supervised ma
hine learningte
hniques in whi
h training data instan
es ~x are separated by a hyperplane H(~x) = ~w ·

~x+b = 0 where w ∈ R
n and b ∈ R. One advantage of SVMs is that kernel methods 
an beapplied whi
h map the data to other feature spa
es in whi
h they 
an be separated moreeasily. Given a feature fun
tion φ : O → R, where O is the set of the obje
ts, the kerneltri
k allows the de
ision hyperplane to be rewritten as: H(~x) =

(

∑

i=1...l

yiαi~xi

)

· ~x + b =

∑

i=1...l

yiαi~xi · ~x + b =
∑

i=1...l

yiαiφ (oi) · φ (o) + bwhere yi is equal to 1 for positive and −1 for negative examples, αi ∈ R with αi ≥

0, oi∀i ∈ {1, . . . , l} are the training instan
es and the produ
t K(oi, o) = 〈φ(oi) · φ(o)〉 isthe kernel fun
tion asso
iated with the mapping φ.7.4.3. Sequen
e and Tree KernelsA sequen
e kernel (SK) measures the similarity of two sequen
es by 
ounting the numberof 
ommon subsequen
es. We use the kernel by Taylor and Christianini (2004) whi
hhas the advantage that it also 
onsiders subsequen
es of the original sequen
e with someelements missing. The extent of these gaps in a sequen
e is suitably re�e
ted by aweighting fun
tion in
orporated into the kernel.Tree kernels (TKs) represent trees by their substru
tures. The feature spa
e of thesesubstru
tures, or fragments, is mapped onto a ve
tor spa
e. The kernel fun
tion 
omputesthe similarity of pairs of trees by 
ounting the number of 
ommon fragments. In this137



work, we evaluate two tree kernels: Subset Tree Kernel (STK) (Collins & Du�y, 2002)and Partial Tree Kernel (PTKbasic) (Mos
hitti, 2006a).In STK, a tree fragment 
an be any set of nodes and edges of the original tree providedthat every node has either all or none of its 
hildren. This 
onstraint makes that kindof kernel well-suited for 
onstituen
y trees whi
h have been generated by 
ontext freegrammars sin
e the 
onstraint 
orresponds to the restri
tion that no grammati
al rulemust be broken. For example, STK enfor
es that a subtree, su
h as [VP [VBZ, NP℄℄,
annot be mat
hed with [VP [VBZ℄℄ sin
e the latter VP node only possesses one of the
hildren of the former.
PTKbasic is more �exible sin
e the 
onstraint of STK on nodes is relaxed. This makesthis type of tree kernel less suitable for 
onstituen
y trees. We, therefore, apply it onlyto trees representing predi
ate-argument stru
tures (PAS) (see Figure 7.2). Note thata data instan
e is represented by a set of those stru
tures (i.e. all predi
ate-argumentstru
tures of a senten
e in whi
h the head of the 
andidate opinion holder o

urs) ratherthan a single stru
ture. Thus, the a
tual partial tree kernel fun
tion we use for this task,

PTK, sums over all possible pairs PASl and PASm of two data instan
es xi and xj :
PTK(xi, xj) =

∑

PASl∈xi

∑

PASm∈xj

PTKbasic(PASl, PASm).To summarize, Table 7.2 lists the di�erent kernel types we use 
oupled with the ap-propriate levels of representation. This 
hoi
e of pairing has already been motivated andempiri
ally proven suitable on other tasks (Mos
hitti, 2008; Nguyen et al., 2009).Table 7.2.: The di�erent types of kernels.Type Des
ription Levels of Representation
SK Sequential Kernel WRD(GN), POS(GN), GRAMWRD , GRAMPOS

STK Subset Tree Kernel CONST(AUG)

PTK Partial Tree Kernel PAS

V K Ve
tor Kernel not restri
ted
138



7.4.4. The Di�erent S
opesWe argue that using the entire word sequen
e or syntax tree of the senten
e in whi
ha 
andidate opinion holder is situated to represent a data instan
e produ
es too largestru
tures for a 
onvolution kernel. Sin
e a 
lassi�er based on 
onvolution kernels has toderive meaningful features by itself, the larger these stru
tures are the more likely noise isin
luded in the model. Previous work in relation extra
tion has also shown that the usageof more fo
used substru
tures, e.g. the smallest subtree 
ontaining the two 
andidateentities of a relation, is more e�e
tive (M. Zhang et al., 2006). Unfortunately, in our taskthere is only one expli
it entity we know of for ea
h data instan
e whi
h is the 
andidateopinion holder. However, there are several indi
ative 
ues within the 
ontext of the
andidate whi
h might be 
onsidered important. We identify three di�erent 
ues beingthe nearest predi
ate, i.e. full verb or nominalization, opinion word, and 
ommuni
ationword.4 For ea
h of these expressions, we de�ne a s
ope where the boundaries are the
andidate opinion holder and the pertaining 
ue. Given these s
opes, we 
an de�neresulting subsequen
es/subtrees and 
ombine them.We further add two ba
kground s
opes, one being the semanti
 s
ope of the 
andidateopinion holder and the entire senten
e. As semanti
 s
ope we 
onsider the sub
lause inwhi
h a 
andidate opinion holder is situated. The sub
lause should 
ontain most relevantrelationships between 
andidate opinion holder and other linguisti
 entities while being
onsiderably smaller than the entire senten
e at the same time. Typi
ally, the subtreerepresenting a sub
lause has the 
losest S node dominating the 
andidate opinion holderas the root node and it 
ontains only those nodes from the original senten
e parse whi
hare also dominated by that S node and whose path to that node does not 
ontain another
S node.Figure 7.4 illustrates the di�erent s
opes. Abbreviations are explained in Table 7.3. Asalready mentioned in Se
tion 7.4.1 for grammati
al relation paths, a se
ond expressionin addition to the 
andidate opinion holder is required. These expressions 
an be derivedfrom the di�erent s
opes, i.e. for PRED it is the nearest predi
ate to the 
andidate, for4These three expressions may 
oin
ide but do not have to. 139



Figure 7.4.: Illustration of the di�erent s
opes on a CONSTAUG; nodes belonging to the
andidate opinion holder are marked with CAND.
OP it is the nearest opinion word, and for COMM it is the nearest 
ommuni
ation word.For the ba
kground s
opes SEM and SENT , however, there is no se
ond expression info
us. Therefore, grammati
al relation paths 
annot be de�ned for these s
opes.Table 7.3.: The di�erent types of s
ope.Type Des
ription

PRED s
ope with the boundaries being the 
andidate opinion holder and the nearest predi
ate
OP s
ope with the boundaries being the 
andidate opinion holder and nearest opinion word
COMM s
ope with the boundaries being the 
andidate opinion holder and the nearest 
ommuni
ationword
SEM semanti
 s
ope of the 
andidate opinion holder, i.e. sub
lause 
ontaining the 
andidate
SENT entire senten
e in whi
h in the opinion holder o

urs

7.4.5. Manually Designed Feature Set for a Standard Ve
tor KernelIn addition to the di�erent types of 
onvolution kernels, we also de�ne an expli
it featureset for a ve
tor kernel (V K). Many of these features mainly des
ribe properties of the140



relation between the 
andidate and the nearest predi
ate5 sin
e in our initial experimentsthe nearest predi
ate has always been the strongest 
ue. Adding these types of features forother 
ues, e.g. the nearest opinion or 
ommuni
ation word, only resulted in a de
reasein performan
e. Table 7.4 lists all the features we use. Note that this manual featureset employs all those sour
es of information whi
h are also exploited by the 
onvolutionkernels. Some of the information 
ontained in the 
onvolution kernels 
an, however, onlybe represented in a more simpli�ed fashion when using a manual feature set. For example,the �rst PAS in Figure 7.2(a) is 
onverted to just the pair of predi
ate and argumentrepresenting the 
andidate (i.e. REL:maintain_A0:Koizumi). The entire PAS is notused sin
e it would 
reate too sparse features. Convolution kernels, on the other hand,
an 
ope with those 
omplex stru
tures as input sin
e they internally mat
h substru
tures.Manual features are less �exible sin
e they do not a

ount for partial mat
hes.Table 7.4.: Manually designed feature set.headword/governing 
ategory of CANDis CAND 
apitalized/a person?is CAND subj|dobj|iobj|pobj of OPINION/COMM?is CAND pre
eded by a

ording to? (Choi et al., 2005)does CAND 
ontain possessive and is followed by OPINION/COMM? (Choi et al., 2005)is CAND pre
eded by by whi
h is atta
hed to OPINION/COMM? (Choi et al., 2005)predi
ate-argument pairs in whi
h CAND o

urslemma/part-of-spee
h tag/sub
ategorization frame/voi
e of nearest predi
ateis nearest predi
ate OPINION/COMM?does CAND pre
ede/follow nearest predi
ate?words between nearest predi
ate and CAND (bag of words)part-of-spee
h sequen
e between nearest predi
ate and CAND
onstituen
y path/grammati
al relation path from predi
ate to CAND5We sele
t the nearest predi
ate by using the synta
ti
 parse tree. Thus, we hope to sele
t the predi
atewhi
h synta
ti
ally relates to the 
andidate opinion holder. 141



7.5. ExperimentsWe used 400 do
uments of the MPQA-
orpus for �ve-fold 
ross-validation and 133 do
-uments as a development set. We report statisti
al signi�
an
e on the basis of a pairedt-test using 0.05 as the signi�
an
e level. All experiments were done with the SVM-Light-TK toolkit6. The results are reported using A

ura
y, Pre
ision, Re
all, and F-Measure asevaluation measures (see also Appendix A.1). We evaluated on the basis of exa
t phrasemat
hing. We set the trade-o� parameter j = 5 for all feature sets. For the manual fea-ture set we used a polynomial kernel of third degree whi
h resulted in better performan
ethan a linear kernel. These two 
riti
al parameters were tuned on the development set.As far as the sequen
e and tree kernels are 
on
erned, we used the parameter settingsfrom (Mos
hitti, 2008), i.e. λ = 0.4 and µ = 0.4. Kernels were 
ombined using plainsummation. The do
uments were parsed using the Stanford Parser (Klein & Manning,2003). Named-entity information was obtained by the Stanford tagger (Finkel, Grenager,& Manning, 2005). Semanti
 roles were obtained by using the parser by Y. Zhang, Wang,and Uszkoreit (2008). Opinion expressions were identi�ed using the Subje
tivity Lexi
onfrom the MPQA-proje
t (Wilson et al., 2005). Communi
ation words were obtained byusing the Appraisal Lexi
on (Bloom, Stein, & Argamon, 2007). Nominalizations werere
ognized by looking up nouns in NOMLEX (Ma
leod, Grishman, Meyers, Barrett, &Reeves, 1998).7.5.1. NotationEa
h kernel is represented as a triple:
〈levelOfRepresentation (Table 7.1), s
ope (Table 7.3), typeOfKernel (Table 7.2)〉For example, 〈CONST, SENT, STK〉 is a Subset Tree Kernel of a 
onstituen
y parsehaving the s
ope of the entire senten
e. Note that not all 
ombinations of these threeparameters are meaningful.6available at disi.unitn.it/moschitti142



Table 7.5.: Result of the ve
tor kernel (VK).A

. Pre
. Re
. F.93.63 53.28 59.37 56.16In the following, we will just fo
us on important and e�e
tive 
ombinations. The kernel
omposed of manually designed features is denoted by just V K. The kernel 
omposedof predi
ate-argument stru
tures is denoted by 〈PAS, SENT,PTK〉.7.5.2. Ve
tor Kernel (VK)Table 7.5 displays the result of the ve
tor kernel using a manually designed feature set.It should be interpreted as a baseline. Due to the high 
lass imbalan
e we will fo
uson the 
omparison of F-Measure throughout this 
hapter rather than A

ura
y whi
h isfairly biased on this dataset. The F-Measure of this 
lassi�er is at 56.16%.7.5.3. Sequen
e Kernels (SKs)For both sequen
e and tree kernels we need to �nd out what the best s
ope is, whetherit is worthwhile to 
ombine di�erent s
opes, and what di�erent layers of representation
an be usefully 
ombined.The upper part of Table 7.6 lists the results of simple word kernels using the di�erents
opes. The performan
e of the kernels using individual s
opes varies greatly. The bests
ope is PRED (1), the se
ond best is SEM (2). The good performan
e of PRED doesnot 
ome as a surprise sin
e the sequen
e is the smallest among the di�erent s
opes, sothis s
ope is least a�e
ted by data sparseness. Moreover, this result is 
onsistent withour initial experiments on the manual feature set (see Se
tion 7.4.5).Using di�erent 
ombinations of the word sequen
e kernels shows that PRED and
SEM (6) are a good 
ombination, whereas OP , COMM , and SENT (7;8;9) do notpositively 
ontribute to the overall performan
e whi
h is 
onsistent whi
h the individuals
ope evaluation. Apparently, these s
opes 
apture less linguisti
ally relevant stru
ture.143



Table 7.6.: Results of the di�erent sequen
e kernels.ID Kernel A

. Pre
. Re
. F.1 〈WRD, PRED, SK〉 93.25 51.08 42.29 46.262 〈WRD, OP, SK〉 92.77 46.38 32.52 38.213 〈WRD, COMM, SK〉 92.42 43.70 35.99 39.464 〈WRD, SEM, SK〉 93.16 50.32 34.65 41.045 〈WRD, SENT, SK〉 90.60 29.90 27.29 28.536 〈WRD, PRED, SK〉 + 〈WRD, SEM, SK〉 93.78 56.55 41.36 47.777 P

j∈{P RED,OP,COMM}〈WRD, j, SK〉 93.55 54.26 39.50 45.718 P

j∈Scopes\SENT 〈WRD, j, SK〉 93.82 57.21 40.28 47.269 P

j∈Scopes〈WRD, j, SK〉 93.63 55.15 39.52 46.0310 〈WRD, PRED, SK〉 + 〈POS, PRED, SK〉 93.03 49.39 53.53 51.3711 P

i∈{PRED,SEM} (〈WRD, i, SK〉 + 〈POS, i, SK〉) 93.86 55.60 53.22 54.3812 P

i∈{PRED,SEM}〈WRD, i, SK〉 + 〈GRAMW RD , PRED, SK〉 94.01 58.19 45.88 51.2913 P

i∈{PRED,SEM}〈WRD, i, SK〉+
P

j∈{P RED,OP,COMM}〈GRAMW RD , j, SK〉 93.83 56.28 45.64 50.4014 X

i∈{P RED,SEM}

〈WRD, i, SK〉 + 〈GRAMW RD, PRED, SK〉 + 93.98 56.59 53.92 55.21
〈GRAMP OS , PRED, SK〉15 P

i∈{PRED,SEM} (〈WRD, i, SK〉 + 〈WRDGN , i, SK〉) 93.97 57.08 49.46 53.0016 P

i∈{PRED,SEM} (〈WRD, i, SK〉 + 〈POSGN , i, SK〉) 93.97 56.60 52.42 54.4217 X

i∈{P RED,SEM}

(〈WRD, i, SK〉 + 〈WRDGN , i, SK〉 + 〈POS, i, SK〉 + 93.85 55.16 57.00 56.06
〈POSGN , i, SK〉)18 X

i∈{P RED,SEM}

(〈WRD, i, SK〉 + 〈WRDGN , i, SK〉 + 〈POS, i, SK〉 + 94.21 57.64 59.81 58.70
〈POSGN , i, SK〉) + 〈GRAMW RD , PRED, SK〉 + 〈GRAMP OS , PRED, SK〉
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The next part of Table 7.6 shows the 
ontribution of POS kernels when added to
WRD kernels. Adding the 
orresponding POS kernel to the WRD kernel with PREDs
ope (10) results in an improvement by more than 5% in F-Measure. We get anotherimprovement by approximately 3% when the 
orresponding SEM kernels (11) are added.This suggests that POS is an e�e
tive generalization and that the two s
opes PREDand SEM are 
omplementary.For the GRAMWRD kernel, the PRED s
ope (12) is again most e�e
tive. We assumethat this kernel most likely expresses meaningful synta
ti
 relationships for our task.Adding the GRAMPOS kernel (14) gives another boost by almost 4%.Generalized sequen
e kernels are important. Adding the 
orresponding WRDGN ker-nels to the WRD kernel with PRED and SEM s
ope results in an improvement from
47.77% (1) to 53.00% (15) whi
h is a bit less than the 
ombination of WRD and POS(GN)kernels (16). However, these types of kernels seem to be 
omplementary sin
e their 
ombi-nation provides an F-Measure of 56.06% (17). This kernel 
ombination already performson a par with the manually designed ve
tor kernel though less information is taken into
onsideration.Finally, the best 
ombination of sequen
e kernels (18) 
omprises WRD, WRDGN ,
POS, and POSGN kernels with PRED and SEM s
ope 
ombined with a GRAMWRDand a GRAMPOS kernel with PRED s
ope. The performan
e of 58.70% signi�
antlyoutperforms the ve
tor kernel.7.5.4. Tree Kernels (TKs)Table 7.7 shows the results of the di�erent tree kernels. The table is divided into twohalves. The left half (A) are plain tree kernels, whereas the right half (B) are the aug-mented tree kernels. As far as CONST kernels are 
on
erned, there is a systemati
improvement by approximately 2% using tree augmentation. This proves that furthernon-synta
ti
 knowledge added to the tree itself results in an improved F-Measure. How-ever, tree augmentation does not have any impa
t on the PAS kernels.The overall performan
e of the tree kernels shows that they are mu
h more expres-145



Table 7.7.: Results of the di�erent tree kernels.A B
i = CONST, j = PAS i = CONSTAUG, j = PASAUGID Kernel A

. Pre
. Re
. F. A

. Pre
. Re
. F.19 〈i, PRED, STK〉 92.89 48.68 62.34 54.67 93.12 49.99 65.04 56.5220 〈i, OP,STK〉 93.04 49.49 54.71 51.96 93.27 50.93 59.06 54.6821 〈i, COMM, STK〉 92.76 47.79 55.89 51.50 92.96 49.03 58.85 53.4722 〈i, SEM,STK〉 93.70 54.40 52.13 53.23 93.90 55.47 56.59 56.0323 〈i, SENT,STK〉 92.42 44.34 39.92 41.99 92.50 45.20 42.40 43.7424 P

k∈{PRED,OP,COMM}〈i, k, STK〉 93.62 53.26 60.05 56.44 93.77 54.06 63.21 58.2625 P

k∈{PRED,SEM}〈i, k, STK〉 93.90 55.26 59.50 57.30 94.13 56.57 63.12 59.6726 P

k∈Scopes\SENT 〈i, k, STK〉 94.09 56.65 59.68 58.11 94.21 57.21 62.61 59.8027 P

k∈Scopes〈i, k, STK〉 94.14 57.41 57.88 57.63 94.29 58.11 61.10 59.5628 〈j, SENT, PTK〉 92.11 45.02 69.96 53.51 91.92 44.27 67.39 53.4329 X

k∈{PRED,SEM}

〈i, k, STK〉 + 94.05 55.68 66.01 60.40 94.16 56.18 68.36 61.67
〈PAS, SENT,PTK〉30 X

k∈Scopes\SENT

〈i, k, STK〉 + 94.30 57.95 62.62 60.19 94.36 58.07 64.94 61.31
〈PAS, SENT,PTK〉
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sive than sequen
e kernels. For instan
e, in order to obtain the same performan
e as of
〈CONSTAUG, PRED,STK〉 (19B), i.e. a single kernel with an F-Measure 56.52, it re-quires several sequen
e kernels, hen
e mu
h more e�ort. The performan
e of the di�erent
CONST kernels relative to ea
h other resembles the results of the WRD kernels. Thebest s
ope is PRED (19). By far the worst performan
e is obtained by the SENT s
ope(23). The 
ombination of PRED and SEM s
ope a
hieves an F-Measure of 59.67%(25B), whi
h is already slightly better than the best 
on�guration of sequen
e kernels(18).The performan
e of the PAS kernel (28A) with an F-Measure of 53.51% is slightlyworse than the best single plain CONST kernel (19A). The PAS kernel and the CONSTkernels are 
omplementary, sin
e their best 
ombination (29B) a
hieves an F-Measure of
61.67% whi
h is signi�
antly better than the best 
ombination of CONST kernels (26B)or sequen
e kernels (18).7.5.5. Combination of Kernel TypesTable 7.8 lists the results of the di�erent kernel type 
ombinations. The 
onvolutionkernels outperform VK. However, if VK is added to the best TKs, the best SKs, or both,a slight in
rease in F-Measure is a
hieved. The best performan
e with an F-Measure of
62.61% is obtained by 
ombining all kernels though the best SKs only have a marginalimpa
t.7.6. Error AnalysisIt is di�
ult to state pre
isely what the short
omings of the proposed approa
h presentedin this 
hapter are. We found that the most predi
tive s
ope for the di�erent kernelsis the predi
ate s
ope. However, we found that our automati
 re
ognition of the near-est predi
ate is not always 
orre
t. For instan
e, we assume that the nearest predi
ate(a

ording to the synta
ti
 relation path) is also the predi
ate whi
h relates to the 
andi-date opinion holder. There are several 
ases, in whi
h this is, unfortunately, not the 
ase.147



Table 7.8.: Results of kernel 
ombinations.Combination A

. Pre
. Re
. F.VK 93.63 53.28 59.37 56.16best SKs 94.21 57.64 59.81 58.70best TKs 94.16 56.18 68.36 61.67∗VK + best SKs 94.34 58.44 61.27 59.82∗VK + best TKs 94.33 57.41 68.03 62.27∗best SKs + best TKs 94.49 59.22 63.96 61.49∗VK + best SKs + best TKs 94.53 59.10 66.57 62.61∗†
∗: signi�
antly better than best SKs; †: signi�
antly better than best TKs; all 
onvolution kernels are signi�
antlybetter than VK; statisti
al signi�
an
e is based on a paired t-test using p < 0.05

Moreover, the re
ognition of nominalizations depends on a lexi
on of those predi
ates.However, this lexi
on has only a limited 
overage and several entries are ambiguous. Forinstan
e, opposition may be a predi
ate but it 
an also refer to the politi
al parties op-posing a government. Our pro
edure 
annot make su
h a distin
tion. It is fairly di�
ultto estimate the impa
t of these short
omings as we believe that by using a 
ombinationof di�erent kernels with di�erent s
opes, the in
orre
t pro
essing of individual stru
turesmay be 
ompensated by the 
orre
t pro
essing of other stru
tures. For instan
e, thepredi
ate s
ope may be 
omputed in
orre
tly but the semanti
 s
ope may still 
omprisethe a
tual predi
ate relating to the 
andidate opinion holder.We en
ountered similar problems for the semanti
 role labeling. For instan
e, theassignment of roles for arguments of nominalizations is often in
orre
t (either in
orre
t
onstituents are 
hosen or an argument is not assigned to a 
onstituent at all). Sin
e,however, the relation between nominalizations and their arguments is usually restri
tedto short-range dependen
ies, these relations may often be impli
itly en
oded in the 
on-stituen
y parse subtrees that we use.148



7.7. Con
lusionIn this 
hapter, we 
ompared 
onvolution kernels for opinion holder extra
tion. Similarto the insights gained by the text 
lassi�
ation tasks in sentiment analysis presented inprevious 
hapters, opinion holder extra
tion, too, requires the 
onsideration on variouslinguisti
 aspe
ts. In terms of 
onvolution kernels we obtained following results:We showed that, in general, a 
ombination of two s
opes, namely the s
ope immediatelyen
ompassing the 
andidate opinion holder and its nearest predi
ate and the sub
lause
ontaining the 
andidate opinion holder, provide best performan
e. The usage of theentire senten
e for 
onvolution kernels, i.e. the s
ope whi
h requires no linguisti
allymotivated pro
essing, results in a very poor performan
e.The fa
t that the s
opes having the nearest opinion word or 
ommuni
ation word asa boundary do not perform best does not mean that the knowledge of these semanti

ategories is not relevant for this type of 
lassi�
ation. Indeed, we found that generalizingsequen
es or augmenting trees with these 
ategories (rather than using them for s
opeboundaries) results in a 
onsistent improvement.Tree kernels 
ontaining 
onstituen
y parse information and semanti
 roles a
hieve bet-ter performan
e than sequen
e kernels or ve
tor kernels using a manually designed featureset. A 
ombination of di�erent kernel types is e�e
tive. Best performan
e is a
hieved ifall kernels are 
ombined. These results suggest that various levels of representation invarious types of kernels are a promising solution for opinion holder extra
tion.
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8. Con
lusion & Future Work
8.1. Con
lusionIn this thesis, we presented various subtasks in sentiment analysis in whi
h the 
onsid-eration of linguisti
 knowledge is useful. Linguisti
 knowledge 
an be in
orporated inseveral ways as will be presented below:In senten
e-level polarity 
lassi�
ation, we added linguisti
 features and features 
ount-ing polar expressions to bag of words. The addition of features 
ounting polar expressionsto bag of words results in a great performan
e gain. However, to some extent generallinguisti
 features not 
ontaining knowledge about polarity, su
h as depth of a word leafnode in the synta
ti
 parse tree or WordNet hypernyms, 
an also in
rease performan
ein the absen
e of polar expressions. In addition, the 
ombination of the two feature types(on top of bag of words) is also slightly better than the best individual result (i.e. the
ombination of bag of words and polar expressions). Therefore, in order to obtain thebest overall result, the in
lusion of linguisti
 features is ne
essary.In order to distinguish between de�nite and inde�nite polar senten
es, we devised arule-based 
lassi�er based on features derived from linguisti
 insights, su
h as polar ex-pressions indi
ating middle-of-the-road polarity and various groups of fun
tion words (e.g.detensi�ers or 
on
essive 
onjun
tions). The resulting 
lassi�er performs on a par witha k-Nearest Neighbour Classi�er and also outperforms Support Ve
tor Ma
hines whenless than labeled 300 training instan
es are 
onsidered. The rule-based 
lassi�er may beoutperformed by a supervised 
lassi�er, su
h as Support Ve
tor Ma
hines, but unlike thesupervised 
lassi�er it does not require labeled in-domain data but ex
lusively relies onlinguisti
 insights whi
h should be generally appli
able.150



In topi
-related polarity 
lassi�
ation, a ranker using polar expressions, some lightweightlinguisti
 features (based on part-of-spee
h information, strength of polarity, intensi�
a-tion, and negation), and a feature a

ounting for the spatial distan
e between polarexpression and topi
 word 
learly outperforms a 
as
ade of senten
e-retrieval used in
onjun
tion with two text 
lassi�ers using simple bag-of-words features to sele
t subje
-tive senten
es and senten
es whose polarity mat
hes the given target polarity.In a detailed study on the e�e
tiveness of bootstrapping algorithms for do
ument-levelpolarity 
lassi�
ation, we found that the in
orporation of linguisti
 knowledge (that isrelevant for the task) is a
tually a requirement for the pertaining bootstrapping algorithmto work well. Semi-supervised learning depends on a very predi
tive feature set. On a
ross-domain evaluation the usage of in-domain adje
tives and adverbs, i.e. the restri
tionof the feature set towards a parti
ular linguisti
 part of spee
h, is 
onsiderably moree�e
tive than a plain bag-of-words feature set in whi
h frequent non-stopwords are used.Unfortunately, the in
orporation of further linguisti
 knowledge in that 
lass of 
lassi�ersis not e�e
tive. The situation is di�erent, however, if one 
onsiders another bootstrappingmethod in whi
h a supervised 
lassi�er self-trained by a rule-based 
lassi�er is 
onsidered.In 
ontrast to ma
hine learning 
lassi�ers where some 
onsiderable performan
e is usuallyalready a
hieved by employing bag of words, be it unrestri
ted or restri
ted � as in the
ase of semi-supervised learning1 � whi
h 
an be di�
ult to beat in 
ertain tasks, arule-based 
lassi�er is usually more sensitive to the in
orporation of linguisti
 knowledge.We found that the more linguisti
 knowledge about 
ontextual polarity is en
oded ina rule-based 
lassi�er (i.e. basi
 word sense disambiguation, negation modeling, andemphasizing 
ertain 
onstru
tions/expressions whi
h 
onvey a higher polar intensity),the better the self-trained 
lassi�er be
omes. Not only 
an this insight be 
onsidered ageneral justi�
ation for linguisti
 modeling of polarity but it 
an also be regarded as anin
entive for further linguisti
 modeling beyond the modeling that has been presented inthis thesis (see Se
tion 8.2 for ideas of more sophisti
ated rule-based 
lassi�
ation).Finally, modeling opinion holder extra
tion with 
onvolution kernels also requires the1The usage of in-domain adje
tives and adverbs should still be 
onsidered a bag-of-words feature set.151




onsideration of linguisti
 insights. For a good performan
e various levels of represen-tation (beyond plain sequential word information), in parti
ular, deeper linguisti
 in-formation, as provided by parse trees or semanti
-role labeling, are required and worke�e
tively when used in tree kernels. Moreover, a 
ombination of two s
opes, a s
ope withthe 
andidate opinion holder and its nearest predi
ate being the boundaries and a s
opewith the sub
lause in whi
h the 
andidate opinion holder is embedded, outperform others
opes, in parti
ular, the simplest s
ope requiring no linguisti
ally motivated pro
essing,i.e. the entire senten
e.Unfortunately, the answer to the question of what gain in general knowledge has beena
hieved in this thesis is less straightforward than pinpointing 
ertain e�e
tive ways ofin
orporating linguisti
 knowledge in spe
i�
 subtasks in sentiment analysis. This thesisdid not propose a new theory a

ounting for sentiment analysis as a whole and I havedoubts whether su
h a theory 
an ever be devised. Moreover, it might not even be ne
-essary. In this thesis, I instead tried to determine appropriate methods from naturallanguage pro
essing (NLP) for spe
i�
 subtasks in sentiment analysis (and this usuallyinvolved linguisti
 feature engineering). I assume that ea
h subtask 
an be 
hara
ter-ized by spe
i�
 task-independent properties or parameters settings whi
h suggest theappli
ability of 
ertain NLP methods.For instan
e, in this thesis it 
ould be established that for supervised text 
lassi�
a-tion in sentiment analysis the level of granularity is a property whi
h de
ides on whi
hfeatures are likely to be e�e
tive. In supervised do
ument-level 
lassi�
ation, bag ofwords (in
luding higher order ngrams) perform well while in senten
e-level 
lassi�
ation,more advan
ed linguisti
 features and generalizing features relying on the knowledge ofsubje
tive expressions are e�e
tive. Not only the level of granularity but also the typeof 
lassi�er has an impa
t on the e�e
tiveness of linguisti
 knowledge. For example, indo
ument-level rule-based 
lassi�
ation the in
orporation of linguisti
 knowledge is farmore e�e
tive than in supervised ma
hine learning. I also 
onsidered the task of opinionholder extra
tion whi
h bears some signi�
ant similarity to 
ommon NLP tasks, su
h asrelation extra
tion and semanti
 role labeling. It is, therefore, no surprise that sequen-152



tial information and stru
tural information in the form of 
onvolution kernels are helpfulwhi
h have also been su

essfully applied to those 
ommon NLP tasks mentioned above.These examples support the view that the e�e
tiveness of 
ertain NLP methods on spe-
i�
 subtasks in sentiment analysis 
an be explained with the help of spe
i�
 propertiesof those subtasks. I argue that establishing the dependen
ies between settings and e�e
-tiveness of NLP methods requires general knowledge about NLP methods rather thanan immense task-spe
i�
 knowledge. The task-spe
i�
 knowledge is, however, useful for�ne-tuning the feature set and thus obtain state-of-the-art performan
e. Furthermore,these regularities should also enable the predi
tion of appropriate NLP methods if a newsubtask in sentiment analysis were 
onsidered.8.2. Future WorkThis se
tion brie�y outlines possible extensions of methods presented in this thesis andother possible s
enarios related to these tasks or methods whi
h may be worthwhileexamining in future work:
• Bootstrapping Supervised Classi�ers with more Complex Rule-BasedClassi�
ation: Our experiments on bootstrapping supervised 
lassi�ers with rule-based 
lassi�
ation (Chapter 6) suggest that the more 
omplex the rule-based 
las-si�er is, the better the supervised 
lassi�er performs. Therefore, more 
omplexrule-based polarity 
lassi�ers than the ones presented in this thesis might be worth-while examining.One way of extending the rule-based 
lassi�er 
ould be by assigning more �ne-grained weights to polar expressions. In this thesis, we proposed the weight of 1to plain polar expressions and double the weight if the polar expression happensto be in an intensifying 
ontext. Brooke et al. (2009) annotate all polar expres-sions in a polarity lexi
on with polar s
ores on a s
ale between −5 and +5. Su
hadditional annotation should enable a more a

urate distin
tion between di�erentpolar expressions. 153



Another way of extending the 
urrent rule-based 
lassi�
ation 
ould be by enhan
-ing the negation model. Currently, we use �xed window size for the s
ope of anegation. However, re
ently Jia, Yu, and Meng (2009) showed that polarity 
lassi-�
ation improves the more linguisti
ally a

urate the s
ope model be
omes. Thebest performan
e is obtained by a s
ope model using synta
ti
 information.Furthermore, some kind of 
ompositional semanti
s for sentiment analysis, su
has (Moilanen & Pulman, 2007), 
ould be employed in order to 
ombine the s
ores ofpolar expressions from di�erent 
lauses in a senten
e2 in order to 
ompute the s
oreof the overall senten
e. Currently, the s
ores of disambiguated polar expressionsare just summed.
• Bootstrapping Methods using Rule-Based Classi�
ation Applied to OtherTasks: The bootstrapping method using rule-based 
lassi�
ation as presented inChapter 6 may also be e�e
tive for the other subtasks in sentiment analysis whi
hhave also been dis
ussed in this thesis.The task of distinguishing between inde�nite polarity and de�nite polarity as dis-
ussed in Chapter 4 might be a suitable 
andidate for this method. In this task,two di�erent types of features (i.e. bag of words and a set of linguisti
ally mo-tivated high-level features) similar to the two feature sets used for bootstrapping(traditional) polarity 
lassi�ers had been presented. Due to these similarities, theappli
ation of this bootstrapping method should be fairly straightforward.The appli
ation of this method to opinion holder extra
tion, however, might bemore di�
ult as a su�
iently robust domain-independent rule-based 
lassi�er isrequired for this task. Given that even fully supervised 
lassi�ers with a ri
h featureset using various levels of information still produ
e 
omparably low performan
e,the 
onstru
tion of su
h a rule-based 
lassi�er appears 
hallenging.
• Convolution Kernels for Target Extra
tion of Opinions: As 
onvolution2Thus, one 
ould di�erentiate between polar expressions from the main 
lause and polar expressionsfrom subordinate 
lauses.154



kernels applied to opinion holder extra
tion produ
ed promising results, one mightalso wonder whether similar results 
an be obtained for targets of opinions. Themajor problem in this s
enario is that there is a signi�
antly greater diversity oflinguisti
 units representing a target. While on the MPQA-
orpus opinion holderstend to be realized as noun phrases, targets 
an assume virtually any shape of
onstituent. This is quite intuitive sin
e opinions may be dire
ted towards a 
ertainperson, thing, behaviour, attitude, or event. To make it worse, we found that thereis a 
onsiderable amount of targets whi
h 
annot be mat
hed onto any linguisti

onstituent. We observed that this is often the 
ase when the target is an entireproposition. Apparently, manually annotating the s
ope of su
h 
omplex stru
turesis more di�
ult than that of simple 
on
rete obje
ts, su
h as persons or things.Even if those 
ases were negle
ted, the heterogeneity of targets would in
rease theinstan
e spa
e dramati
ally whi
h would have a severe impa
t on the running timeof the 
onvolution kernel algorithm.Alternatively, these experiments 
ould also be 
arried out on 
orpora providingsimilar annotation. The JDPA Sentiment Corpus (Kessler et al., 2010) or theDarmstadt Servi
e Review Corpus (Toprak et al., 2010) may be more suitable, sin
ethey fo
us on produ
t/web-serves. Thus, the entities labeled as opinion targets aremore restri
ted to spe
i�
 linguisti
 entities, su
h as noun phrases.
• Unsupervised Generalization for Sentiment Analysis: Throughout manyexperiments in this thesis, generalizing from lexi
al units often resulted in an im-provement of performan
e, e.g. the knowledge of polar expressions or WordNethypernyms on senten
e-level polarity 
lassi�
ation helped when 
orresponding fea-tures were added to bag of words. Generalization is always useful when there issparse lexi
al information. This is usually the 
ase when �ne-grained text 
lassi�-
ation, su
h as senten
e level or expression level, or entity extra
tion is 
onsidered.Unfortunately, all types of generalization we used in this work have been knowledge-driven. In future work, one might examine various unsupervised generalizationte
hniques (e.g. 
lustering) for their e�e
tiveness in sentiment analysis. 155



• Subje
tivity Word Sense Disambigation: As it has been suggested in thisthesis several times, one major downside of the polarity lexi
ons used is that theydo not properly distinguish between the di�erent senses of polar expressions. Anexpression may be subje
tive only if it 
onveys a parti
ular sense. In several exper-iments, we 
arried out some basi
 disambiguation using part-of-spee
h information,however, there are many ambiguous polar expressions whi
h have a unique partof spee
h. For those 
ases, we have been unable to provide a suitable disambigua-tion. Though some more sophisti
ated form of subje
tivity word sense disam-biguation (Akkaya et al., 2009) might be worthwhile to pursue in future work, thene
essary resour
es (i.e. lexi
ons and labeled 
orpora) are 
urrently not available.
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A. Evaluation Measures
A.1. Measures for Classi�
ation and Extra
tionThe most 
ommon evaluation measure for 
lassi�
ation is A

ura
y :

Accuracy =
#
orre
t instan
es

#
orre
t instan
es + #in
orre
t instan
es (A.1)For 
lassi�
ation tasks in whi
h the performan
e of individual 
lasses is to be evalu-ated, measures other than A

ura
y are usually 
onsidered. This is in parti
ular trueof extra
tion tasks, in whi
h only the positive 
lass, i.e. the instan
es to be extra
ted,is of interest. For these 
ases, Pre
ision, Re
all, and F-Measure are 
onsidered. Theyare de�ned by true positives whi
h are the instan
es whi
h belong to the 
lass to beevaluated and are 
orre
tly 
lassi�ed, false positives whi
h are not instan
es of the 
lassto be evaluated but are mis
lassi�ed as su
h, and false negatives whi
h are instan
es ofthe 
lass to be evaluated but are mis
lassi�ed as instan
es of another 
lass.The measure that evaluates the proportion of 
orre
tly 
lassi�ed instan
es (of the
lass that is to be evaluated) within the set of instan
es predi
ted to be of that 
lass isPre
ision whi
h is formally de�ned by Formula A.2:
Precision =

#true positives

#true positives + #false positives
(A.2)Pre
ision does not take into 
onsideration the instan
es of a 
lass that have been er-roneously assigned to another 
lass. This is, however, done by Re
all whose formalde�nition is given in Formula A.3:

Recall =
#true positives

#true positives + #false negatives
(A.3)157



Finally, F-Measure is an evaluation measure 
ombining the 
omplementary measuresPre
ision and Re
all. In this thesis, the most 
ommon form, the so-
alled harmoni
 mean,is used. The formal de�nition of this measure is given in Formula A.4:F-Measure =
2 · Precision · Recall

Precision + Recall
(A.4)A.2. Measures for RankingA fairly simple ranking measure evaluating the rankings for a set of queries Q is MeanRe
ipro
al Rank (MRR) in whi
h for ea
h query the 
orre
t instan
e with the highestrank is 
onsidered. Its formal de�nition is given in Formula A.5:

MRR =
1

|Q|

Q
∑

i=1

1

ranki
(A.5)While MRR is fairly restri
ted sin
e only one 
orre
t instan
e is 
onsidered, Pre
isionat Rank n (Pre
�(n)) 
onsiders all 
orre
t instan
es at the top n ranks:

Prec@(n) =
1

|Q|

Q
∑

i=1

#
orre
t instan
es for query i within top n ranks
n

(A.6)Note that this de�nition is also sometimes referred to as Average Pre
ision at Rank nsin
e one a
tually 
al
ulates the average of the pre
ision of individual rankings for a setof queries.Finally, Mean Average Pre
ision (MAP) is a measure whi
h 
onsiders all 
orre
tinstan
es within a ranking and not just the highest ranked instan
e or all instan
es toa 
ertain 
ut-o� level. It 
ompletely traverses ea
h ranking and sums at ea
h rank nat whi
h a 
orre
t instan
e is found Pre
�(n). This is additionally normalized by thenumber 
orre
t instan
es for that query in the entire 
olle
tion:
MAP =

1

|Q|

Q
∑

i=1

∑N
n=1 (Prec@(n) · δ(r))

# 
orre
t instan
es for i within the entire 
olle
tion (A.7)where158



δ(n) =







1 if instan
e at rank n is 
orre
t
0 else (A.8)
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