Supramolekulare Aspekte eines Alumopolysiloxans ,, (Ph₂SiO)₈[AlO(OH)]₄ * 4 Et₂O" mit organischen Basen

Dissertation

Zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich -Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes

vorgelegt von

David Kolano

Saarbrücken, 2011

Tag des Kolloquiums: 18.07.2011

Prof. Dr. W. F. Maier
Prof. Dr. Dr. h. c. M. Veith
Prof. Dr. Dr. h. c. T. Eicher
Prof. Dr. R. W. Hartmann
PD Dr. H. Kohlmann

Meiner Familie

Herrn Prof. Dr. Dr. h. c. Michael Veith gilt mein besonderer Dank für die interessante Themenstellung, sowie der steten Diskussionsbereitschaft und wertvollen Hinweisen, die zum Gelingen der vorliegenden Arbeit geführt haben. Ich bedanke mich recht herzlich bei all denjenigen, die mich durch ihre Unterstützung auf verschiedene Art und Weise zum Gelingen dieser Arbeit beigetragen haben.

Herrn Dr. Volker Huch möchte ich für das Messen der Röntgenstrukturanalysen, seiner allgemeinen Hilfsbereitschaft und Geduld, sowie für das Korrekturlesen herzlich danken. Herrn Dr. Michael Zimmer bedanke ich mich für die Aufnahme von NMR-Messungen und Hilfe bei der Interpretation der NMR-Spektren. Ebenso bedanke ich mich bei Herrn Armin Kempf für seine Hilfsbereitschaft bei den NMR-Messungen. Herrn Dr. Andreas Rammo danke ich für das aufmerksame und gewissenhafte Korrekturlesen dieser Arbeit. Frau Susanne Harling und Frau Helga Feuerhake danke ich für die Durchführung der CHN-Analysen.

Frau Iris Wahlster (Sekretariat), Herrn Günther Müller und Frau Eveline Altmeyer (Chemikalienausgabe), Herrn Hermann Recktenwald und Frau Silvia Beetz (Werkstatt), Herrn Hans Conrad und Herrn Günter Berlin (Glasbläserwerkstatt), sowie Herrn Andreas Adolf danke ich für ihre ständige Hilfsbereitschaft.

Frau Dipl. Chem. Fadime Sahin, Frau Dipl. Chem. Daniela Summa und Herrn Dr. Thorsten Voigt danke ich für ihre zahlreichen Hilfestellungen und das sehr angenehme Zusammenarbeiten. Meiner lieben Laborkollegin Frau Dipl. Chem. Tatjana Kirs, meinen Laborkollegen Herrn Dr. Hameed Ullah-Wazir und Herrn Dr. Nils Köhler danke ich ganz herzlich für das sehr angenehme und freundliche Arbeitsklima, sowie wertvollen Hinweise und zahlreichen Anregungen.

Ich möchte mich auch bei allen Mitarbeitern des Arbeitskreises Veith bedanken, die mir mit Rat und Tat hilfreich zur Seite standen und für das sehr gute Arbeitsklima sorgten: Frau Dipl. Lebensmittelchem. Dorothea Loytved, Herrn Dr. Amadou Ndiaye, Frau Dr. Hakima Smail, Herrn Dr. Carsten Bubel, Herrn Dr. Michael Bender, Frau Dr. Celine Belot, Frau Dipl. Chem. Sandra Litzenburger, Herrn Dipl. Chem. Andreas Walgenbach, Herrn Dr. Cenk Aktas, Herrn Dr. Antoine Laurent, Frau Dr. Eva Sow, Herrn Dr. Omid Yazdani, Herrn Dr. Markus Ehses und Frau Dr. Hinka Hreleva-Caparroti.

Ein ganz besonderer Dank geht an meine Familie. Meinen Eltern, die mich immer unterstützten. Vor allem aber an meine Frau Juana Kolano und an meine Tochter Iliana Sophie Kolano, die immer hinter mir standen und mir immer wieder Mut gemacht haben, was mit zum Gelingen dieser Arbeit führte.

Zusammenfassung

Der Inhalt dieser Arbeit befasst sich mit der Untersuchung und Modifikation des erstmals von Veith et al. hergestellten Alumopolysiloxans $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 Et_2O \underline{1}$ durch verschiedene organische Basen.

Die Änderung von $\underline{1}$ durch unterschiedliche Basen führt sowohl zu Verbindungen, die die ursprüngliche Gerüststruktur von $\underline{1}$ beinhalten, als auch zu weiteren Produkten, bei denen ein Umbau des Molekülgerüstes des Edukts $\underline{1}$ eingetreten ist. In dieser Arbeit wird untersucht, inwiefern die Variation der Basenstärke, die Auswahl verschiedener Donoratome, als auch eine Variation der Sterik unterschiedlicher Basen einen Einfluss auf die Produktbildung von $\underline{1}$ ausübt. Die gebildeten Produkte werden Anhand verschiedener Analysemethoden (XRD, NMR, IR, UV-VIS, Elementaranalysen) charakterisiert.

Ein weiterer Gesichtspunkt dieser Arbeit beruht auf der Erforschung Supramolekularer Netzwerke, die das Alumopolysiloxan $\underline{1}$ mit unterschiedlichen bifunktionellen Liganden ausbilden kann. Verschiedene Ligandmoleküle sollen ein Netzwerk aufbauen, in dem mehrere Alumopolysiloxane mittels Wasserstoffbrückenbindungen an die Liganden koordinieren. Es wird gezeigt, dass es möglich ist, durch eine geeignete Basenauswahl gezielte ein-, zwei- oder dreidimensionale Netzwerke zu konstruieren.

Summary

This work concerns the study and modification of the Alumopolysiloxane $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 Et_2O \mathbf{1}$ by various organic bases, which was first time produced by Veith et al..

The modification of $\underline{1}$ with organic bases could form compounds with the same skeletal structure of $\underline{1}$, as well as further products in which a restructuring of the original framework structure has occurred. This work examines how the variation of the base strength, the variety of donor atoms, as well as a variety of bases with different sterics shows an influence on product formation of $\underline{1}$. The formed products are characterized by various analytic methods (XRD, NMR, IR, UV-VIS, elemental analysis).

Another aspect of this work is the research of supramolecular networks, which are combined by the Alumopolysiloxan $\underline{1}$ with different bifunctional ligands. Different ligand molecules should construct a network via hydrogen bonds to several Alumopolysiloxanes. It is shown that it is possible to construct one-, two-or three-dimensional networks by specific bases.

Abkürzungsverzeichnis:

Å	Ångström
Abb	Abbildung
Al	Aluminium
ber	berechnet
Bu	Butanol
bzw	beziehungsweise
cm	Zentimeter
d	Dublett
d. Th.	der Theorie
Et	Ethyl
g	Gramm
gef	gefunden
gem	gemessen
gr	griechisch
h	Stunden
IR	Infrarot
Κ	Kelvin
KBr	Kaliumbromid
kl	klein
kJ	Kilojoule
m	Multiplett
m-	meta
М	Metall
max	Maximum
min	Minimum
ml	Milliliter
mmol	Millimol
nm	Nanometer
NMR	Nuclear Magnetic Resonance
p-	para
PA	Protonenaffinität
Ph	Phenyl

ppm	parts per million
Pr	Propanol
Ру	Pyridin
S	Singulett
Si	Silizium
t	Triplett
tert	tertiär
THF	Tetrahydrofuran
UV	Ultraviolett
VIS	Visuelles Spektrum
WE	Wochenende

Verbindungsverzeichnis:

Verbindung <u>1</u> :	$(Ph_2SiO)_8[AlO(OH)]_4 \bullet 4 O(CH_2CH_3)_2$
Verbindung <u>2</u> :	$(Ph_2SiO)_8[AlO(OH)]_4 \bullet 3 N(C_2H_2)_2N$
Verbindung <u>3</u> :	$(Ph_2SiO)_8[AlO(OH)]_4 \bullet 3 CH_3COOCH_2CH_3$
Verbindung <u>4</u> :	$(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 CH_3COO(CH_2)_4OOCCH_3$
Verbindung <u>5</u> :	$(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 HO(CH_2)_6OH$
Verbindung <u>6</u> :	$(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 p - (C_5H_4N)_2$
Verbindung <u>7</u> :	$(Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O$
Verbindung <u>8</u> :	$(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 m - (C_5H_4N)_2N_2$
Verbindung <u>9</u> :	$(Ph_2SiO)_8[AlO(OH)]_4 \bullet 4 (HO)CH(CH_2)_4CH(OH)$
Verbindung <u>10</u> :	$(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 H_2N(CH_2)C_6H_4(CH_2)NH_2 \bullet 4 C_4H_8O$
Verbindung <u>11</u> :	$(Ph_{2}SiO)_{8}[AlO(O)_{0.25}]_{4}(OH \bullet N(CH_{2}CH_{2})_{3}N)_{2} (OH_{2} \bullet N(CH_{2}CH_{2})_{3}N)$
Verbindung <u>12</u> :	$C_6H_{12}N_2O$ (α -Amino-caprolactam)
Verbindung <u>13</u> :	$(Ph_2SiO)_{12}(Al_2O_2)(AlO_2)_2[AlO(OH)]_4(C_6H_{12}N_2O)_2$

Ι	Einleitung1
1	Silikate und Silikone1
2	Alumosiloxane4
3	Supramolekulare Chemie11
II	Zielsetzung und Aufgabenstellung17
III	Diskussion und Ergebnisse18
1	Polymorphe Strukturen des Alumopolysiloxans mit der Gerüststruktur
	(Ph ₂ SiO) ₈ [AlO(OH)] ₄
1.1	Synthese und Charakterisierung von $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 3 N(C_2H_2)_2N 2$,
	(Ph ₂ SiO) ₈ [AlO(OH)] ₄ • 3 CH ₃ COOCH ₂ CH ₃ 3 und
	$(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 CH_3COO(CH_2)_4OOCCH_3 4$
1.2	Erhaltene Kristallstrukturdaten der Umsetzung von (Ph ₂ SiO) ₈ [AlO(OH)] ₄ • 4 Et ₂ O mit
	Pyrazin 2
1.3	Molekülstruktur von (Ph ₂ SiO) ₈ [AlO(OH)] ₄ • 3 N(C ₂ H ₂) ₂ N 2
1.4	Erhaltene Kristallstrukturdaten der Umsetzung von (Ph ₂ SiO) ₈ [AlO(OH)] ₄ • 4 Et ₂ O mit
	Essigsäureethylester 3
1.5	Molekülstruktur von (Ph ₂ SiO) ₈ [AlO(OH)] ₄ • 3 CH ₃ COOCH ₂ CH ₃ 3
1.6	Erhaltene Kristallstrukturdaten der Umsetzung von (Ph ₂ SiO) ₈ [AlO(OH)] ₄ • 4 Et ₂ O mit
	1.4-Diacetoxybutan 4
1.7	Molekülstruktur von (Ph ₂ SiO) ₈ [AlO(OH)] ₄ • 2 CH ₃ COO(CH ₂) ₄ OOCCH ₃ 4 40
2	Eindimensionale, kettenartige, lineare Strukturen des Alumopolysiloxans
	$(Ph_2SiO)_{8}[AlO(OH)]_{4}$
2.1	Synthese und Charakterisierung von (Ph ₂ SiO) ₈ [AlO(OH)] ₄ • 2 p-(C ₅ H ₄ N) ₂ 645
2.2	Erhaltene Kristallstrukturdaten der Umsetzung von (Ph ₂ SiO) ₈ [AlO(OH)] ₄ • 4 Et ₂ O mit
	4,4´-Bipyridin 6
2.3	Molekülstruktur von (Ph ₂ SiO) ₈ [AlO(OH)] ₄ • 2 p-(C ₅ H ₄ N) ₂ 6

3	Zweidimensionale Schichtstrukturen des Alumopolysiloxans (Ph ₂ SiO) ₈ [AlO(OH)] ₄
3.1	Synthese und Charakterisierung von $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet$
	C_4H_8O 7 und $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 m \cdot (C_5H_4N)_2N_2$ 8
3.2	Erhaltene Kristallstrukturdaten der Umsetzung von (Ph ₂ SiO) ₈ [AlO(OH)] ₄ • 4 Et ₂ O mit
	4,4´-Azobipyridin 7 63
3.3	$Molek \ddot{u}ls truktur von (Ph_2SiO)_8 [AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O \textbf{7}66$
3.4	Erhaltene Kristallstrukturdaten der Umsetzung von $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 4 Et_2O$ mit
	3,3'-Azobipyridin 8
3.5	Molekülstruktur von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 \text{ m-}(C_5H_4N)_2N_2 875$
4	Dreidimensional angeordnete Strukturen des Alumopolysiloxans
	$(Ph_2SiO)_8[AlO(OH)]_4$
4.1	Synthese und Charakterisierung von (Ph ₂ SiO) ₈ [AlO(OH)] ₄ • 4 (HO)CH(CH ₂) ₄ CH(OH)
	9 und $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 H_2N(CH_2)C_6H_4(CH_2)NH_2 \bullet 4 C_4H_8O$ 10 83
4.2	Erhaltene Kristallstrukturdaten der Umsetzung von (Ph ₂ SiO) ₈ [AlO(OH)] ₄ • 4 Et ₂ O mit
	1,4-Cyclohexandiol 9
4.3	Molekülstruktur von (Ph ₂ SiO) ₈ [AlO(OH)] ₄ • 4 (HO)CH(CH ₂) ₄ CH(OH) 9 89
4.4	Erhaltene Kristallstrukturdaten der Umsetzung von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 Et_2O$ mit
	$H_2N(CH_2)C_6H_4(CH_2)NH_2$ 10
4.5	$Molek \ddot{u} lstruktur von (Ph_2SiO)_8 [AlO(OH)]_4 \bullet (H_2N(CH_2)C_6H_4(CH_2)NH_2 \bullet 2 C_4H_8O)_2$
	10
5	Reaktionen unter Änderung der Gerüststruktur des Alumopolysiloxans 1
5.1	Synthese und Charakterisierung von (Ph ₂ SiO) ₈ [AlO(O) _{0.25}] ₄ (OH • N(CH ₂ CH ₂) ₃ N) ₂
	$(OH_2 \bullet N(CH_2CH_2)_3N)$ 11
5.2	Synthese und Charakterisierung von
	$(Ph_2SiO)_{12}(Al_2O_2)(AlO_2)_2[AlO(OH)]_4(C_6H_{12}N_2O)_2 \ \textbf{13}113$
IV	Zusammenfassung und Ausblick 123

V	Experimenteller Teil	132
1.1	Darstellung von $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 3 C_4H_4N_2 2$. 133
1.2	Darstellung von (Ph ₂ SiO) ₈ [AlO(OH)] ₄ • 3 CH ₃ COOCH ₂ CH ₃ 3	136
1.3	Darstellung von (Ph ₂ SiO) ₈ [AlO(OH)] ₄ • 2 CH ₃ COO(CH ₂) ₄ OOCCH ₃ 4	137
1.4	Darstellung von $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 p-(C_5H_4N)_2 6$	139
1.5	Darstellung von $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O 7$	141
1.6	Darstellung von $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 \text{ m} \cdot (C_5H_4N)_2N_2 \textbf{ 8}$	144
1.7	Darstellung von (Ph ₂ SiO) ₈ [AlO(OH)] ₄ • 4 (HO)CH(CH ₂) ₄ CH(OH) 9	146
1.8	Darstellung von $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 H_2N(CH_2)C_6H_4(CH_2)NH_2 \bullet 4 C_4H_8O 10$	148
2	Reaktionen unter Änderung der Gerüststruktur	151
2.1	Darstellung von $(Ph_2SiO)_8[AlO(O)_{0.25}]_4(OH \bullet N(CH_2CH_2)_3N)_2(OH_2 \bullet N(CH_2CH_2)_3)_3(OH_2 \to N$	N)
	11	151
2.2	Darstellung von $(Ph_2SiO)_{12}(Al_2O_2)(AlO_2)_2[AlO(OH)]_4(C_6H_{12}N_2O)_2$ 13	153
VI	Literaturverzeichnis	156
VI	I Anhang	162
1	Daten zur Molekül- und Kristallstruktur von $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 3 C_4H_4N_2 2 \dots$	162
2	Daten zur Molekül- und Kristallstruktur von	
	$(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 CH_3COOCH_2CH_3 3$	172
3	Daten zur Molekül- und Kristallstruktur von	
	$(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 CH_3COO(CH_2)_4OOCCH_3 4$	182
4	Daten zur Molekül- und Kristallstruktur von $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 p - (C_5H_4N)_2$	6
		191
5	Daten zur Molekül- und Kristallstruktur von	
	$(Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 \ p - (C_5H_4N)_2N_2 \bullet C_4H_8O \ 7$	199
6	Daten zur Molekül- und Kristallstruktur von $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 m \cdot (C_5H_4N)_2$	N_2
	8	208

7	Daten zur Molekül- und Kristallstruktur von
	$(Ph_2SiO)_8[AlO(OH)]_4 \bullet 4 (HO)CH(CH_2)_4CH(OH) 9$
8	Daten zur Molekül- und Kristallstruktur von
	$(Ph_2SiO)_8[AlO(OH)]_4 \bullet (H_2N(CH_2)C_6H_4(CH_2)NH_2 \bullet 2 C_4H_8O)_2 10 \dots 233$
9	Daten zur Molekül- und Kristallstruktur von
	$(Ph_2SiO)_8[AlO(O)_{0.25}]_4(OH \bullet N(CH_2CH_2)_3N)_2 (OH_2 \bullet N(CH_2CH_2)_3N) 12236$
10	Daten zur Molekül- und Kristallstruktur von
	$(Ph_2SiO)_{12}(Al_2O_2)(AlO_2)_2[AlO(OH)]_4(C_6H_{12}N_2O)_2$ 13

I Einleitung

Die vorliegende Arbeit handelt von der Synthese und Modifizierung des Alumopolysiloxans $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 Et_2O \underline{1}$ und dessen Verhalten gegenüber organischen Basen. Unter diesem Aspekt wird der Aufbau Supramolekularer Verbindungen durch Selbstorganisation von Molekülen erforscht, die sich zum Beispiel durch intermolekulare Wasserstoffbrückenbindungen ausbilden.

Metallsiloxane bzw. Alumosiloxane stellen höchst interessante Verbindungen dar, die ein Silikatgrundgerüst aufweisen, in dem ein Teil der Siliziumatome durch Metallatome ersetzt ist. Handelt es sich bei dem Metallatom um ein Aluminiumatom resultiert ein Alumosilikat. Sind zwei Valenzen am Siliziumatom durch organische Reste abgesättigt, so erhält man Alumosiloxane (Abb. 1).

Abb. 1: Allgemeine Beispiele von acyclischen und cyclischen Metallsiloxanen (M = Metallatom (Al, Fe, Mg..., R = organischer Rest)

1 Silikate und Silikone

Natürlich vorkommende Silikate zeigen eine enorme Strukturvielfalt und bilden zusammen mit Siliziumdioxid ca. 90% der Erdkruste. In allen silikatischen Strukturen besitzt Silizium die Koordinationszahl 4 und bildet SiO₄–Tetraeder aus, die über gemeinsame Sauerstoffatome miteinander eckenverknüpft sind. Je nachdem, auf welche Art und wie viele dieser Tetraeder miteinander verbunden werden, können diese Verbindungen in verschiedene Klassen eingestuft werden, wie Inselsilikate (Nesosilicate) $[SiO_4^{4-}]$, Gruppensilikate (Sorosilicate) $[Si_2O_7^{6-}]$, Ringsilikate (Cyclosilicate) $[SiO_3^{2-}]_n$ (n = 3, 4, 6, 8), Kettensilikate (Inosilicate) $[SiO_3^{2-}]_{\infty}$, Bandsilikate (Inosilicate) $[Si_4O_{11}^{6-}]_{\infty}$, Schichtsilikate (Phyllosilicate) $[Si_2O_5^{2-}]_{\infty}$ (Abb. 2) ^{1,2} und Gerüstsilikate (Tektosilicate) $[Al_ySi_{1-y}O_2^{y-}]$ (y = 0 – 0,5), wobei die Gerüstsilikate noch weiter unterschieden werden in ^{1,3}:

- Pyknolite mit relativ kleinen Hohlräumen, die mit Kationen besetzt sind, wie beispielsweise Feldspäte M⁺[AlSi₃O₈⁻] und M²⁺[Al₂Si₂O₈²⁻]
- Clathrasile, die polyedrische Hohlräume mit eingeschlossenen Ionen oder Fremdmolekülen beinhalten
- Zeolithe, bei denen polyedrische Hohlräume vorhanden sind, durch die Ionen oder Fremdmoleküle diffundieren können

Abb. 2: Schematische Übersicht verschiedener Silikatstrukturen: a) Inselsilikate; b) Gruppensilikate; c) Kettensilikate; d) Bandsilikate; e) Schichtsilikate².

Der Ersatz von Siliziumatomen in den Silikatstrukturen durch Aluminiumatome führt zu Verbindungen, bei denen wegen der Ladungsdifferenz zwischen Si⁴⁺ und Al³⁺ zur Ladungskompensation zusätzliche Kationen erforderlich sind. Eine Gruppe der Alumosilikate stellen Zeolithe dar (gr. zein = sieden, lithos = Stein). Bei diesen Verbindungen handelt es sich um kristalline, hydratisierte Alumosilikate, mit anionischer Raumnetzstruktur, die Alkalibzw. Erdalkalimetallkationen enthalten. Charakteristisch für Zeolithe sind ihre porösen Strukturen mit spezifischen Hohlräumen und Kanälen, die aus Polyedern, Ketten oder Schichten von eckenverknüpften [(Al, Si)O₄]-Tetraedern gebildet werden ¹⁻⁶. Da die Ionen innerhalb dieser Strukturen einen beachtlichen Bewegungsspielraum besitzen, sind Ionenaustauschreaktionen und reversible Entwässerungen dieser Verbindungen leicht möglich und daher finden Zeolithe in großem Umfang Verwendung als Ionenaustauscher. Bezüglich ihrer Hohlräume und der Größe vorhandener Kanäle innerhalb ihrer Strukturen unterscheiden

sie sich in weiten Grenzen und können je nach Größe und Gestalt für bestimmte Moleküle "maßgeschneidert" sein, wodurch sie als Molekularsiebe fungieren können ⁷⁻⁹. Auch die Verwendung der Zeolithe als Katalysatoren, sowie der Einsatz von Zeolithen in optischen und elektronischen Anwendungsgebieten ist von großem Interesse und wird intensiv erforscht ^{8,10-12}. In Abb. 3 ist zur Veranschaulichung eine ausgewählte Zeolithstruktur von "Faujasit" Na₂Ca[Al₂Si₄O₁₂] • 16 H₂O abgebildet ¹⁻⁴.

Abb. 3: Beispiel einer Zeolithstruktur (Faujasit)

Eine weitere höchst interessante Verbindungsklasse stellen Silikone (Poly(organo)siloxane) dar, bei denen Siliziumatome über Sauerstoffatome miteinander verknüpft sind und kettenförmig, zyklisch, als Band-, Blatt- oder Raumnetzstruktur vorliegen können. Bei einer Darstellungsmethode von Silikonen werden als Ausgangsverbindungen Silanole (R₃SiOH), Silandiole (R₂Si(OH)₂), Silantriole (RSi(OH)₃) und die Kieselsäure (Si(OH)₄) eingesetzt, dessen Kondensation zu Disiloxanen, oder höhermolekularen Polysiloxanen führt. Durch Einstellen des Mischungsverhältnisses dieser vier Komponenten, kann der mittlere Polymerisationsgrad nach Belieben eingestellt werden, wodurch bestimmte Silikonstrukturen mit charakteristischen Eigenschaften resultieren ¹. Die intermolekulare Wasserabspaltung der Silanole kann durch sterisch anspruchsvolle Organylgruppen an den Siliziumatomen deutlich vermindert werden ¹³.

Aufgrund ihrer thermischen und chemischen Beständigkeit sind Silikone technisch vielseitig anwendbar und finden unter anderem Verwendung als Kunst- und Werkstoffe (Öle, Filme, Harze, Kautschuk ...)¹, aber auch in der Kosmetik und in biomedizinischen Anwendungen werden Silikone häufig eingesetzt¹⁴⁻¹⁶.

2 Alumosiloxane

Alumosiloxane stellen modifizierte, molekulare, lösliche Analoga von Alumosilikaten dar ¹⁷⁻²⁶, die als ein-, zwei-, oder dreidimensionale zeolithartige Strukturen erhalten werden können ^{25,27-31}. Ausgehend von diesen Precursormolekülen, wird die Darstellung von Aluminiumoxiden und verschiedenen Silikaten durch Sol-Gel Verfahren und ähnlichen Methoden realisierbar ³²⁻³⁸. Zudem ist eine Anwendung dieser Verbindungen als (co-)Katalysatoren in der Katalyse möglich ³⁸⁻⁴².

Verbindungen der allgemeinen Zusammensetzung [RSiO_{1,5}] werden Silsesquioxane ^{43,44} genannt und stellen Verbindungen dar, die ausgehend von unvollständig kondensierten Silsesquioxanen⁴⁵, eine Vielzahl weiterer Reaktionen eingehen können ⁴⁶⁻⁵⁰. So ist es möglich, mit weiteren Metallen eine Vielzahl an Metallsilsesquioxanen zu bilden ^{48,51-56}, die unter anderem katalytisch wirksam sind ^{39-41,44,57-63,64}. Handelt es sich bei dem Metall am Silsesquioxan um ein Aluminiumatom, so resultiert ein Aluminosilsesquioxan ^{17,18,51,65-68}.

Die erste Struktur eines Alumopolysiloxans der Zusammensetzung $(R_2SiO)_n(AIOX)_m$ wurde im Jahr 1968 veröffentlicht. Es handelt sich hierbei um $(Me_2SiO)_4(OAIBr_2)_2(AIBr)$ mit einem Si₄Al₂O₆–12-Gliedrigem–Ring, welcher spirozyklisch an eine Al-Br Einheit gebunden ist und erst 35 Jahre später wurde die entsprechende Chlorverbindung dargestellt und charakterisiert (Abb. 4) ^{24,29,69}.

Abb. 4: Struktur von (Me₂SiO)₄(OAlBr₂)₂(AlBr)^{24,69}

Im Jahr 1997 wurde eine Verbindung der allgemeinen Zusammensetzung (R₂SiO)_n(AlOX)_m als (Ph₂SiO)₈[AlO(OH)]₄ 1 dargestellt ^{72,73}. Es handelt sich bei dieser Verbindung um ein 24-gliedriges System mit einem polyzyklischen Si₈Al₄O₁₂-Ring. Die vier vorhandenen Hydroxylgruppen dieser Verbindung bilden mit jeweils zwei Siliziumatomen eine Al-(OH)-Al Kante aus, wodurch ein innerer Al₄(OH)₄-Ring entsteht. Insgesamt ergibt sich mit vier Diethylethermolekülen auskristallisiert, eine Struktur, die wobei drei Diethylethermoleküle an die zentrale Al₄(OH)₄ Ringeinheit binden und starke Wasserstoffbrückenbindungen mit O-H."O Bindungsabständen von 2.60 Å bis 2.70 Å aufweisen. Das vierte Molekül wird aus Platzgründen im van der Waals Gitter eingebaut. Jede Al-(OH)-Al Kante dieses inneren Rings wird von Siloxanketten überspannt, wobei sich die Siloxanflügel alternierend ober- beziehungsweise unterhalb der Al₄(OH)₄-Ebene ausrichten. An jeder Kante des Al₄(OH)₄ Rings bildet sich eine weitere achtgliedrige Ringstruktur, wodurch insgesamt ein Molekül resultiert, das aus fünf annelierten achtgliedrigen Ringen mit einer annähernden S4-Symmetrie aufgebaut ist. Somit kann eine Verbindung erhalten werden, die ober- beziehungsweise unterhalb der $Al_4(OH)_4$ -Ringebene zwei Käfige ausbildet, an deren Hydroxylgruppen weitere Moleküle angreifen können (Abb. 5)⁷⁰.

Abb. 5: Struktur von (Ph₂SiO)₈[AlO(OH)]₄⁷⁰

Die Darstellung von $(Ph_2SiO)_8(AlO(OH))_4 \cdot 4 Et_2O \underline{1}$ erfolgt mittels einer Heterokondensation, durch Zugabe von Diphenylsilandiol zu *tert*-Butoxyaluminiumdihydrid ⁷¹ in Diethylether als Reaktionsmedium. Dabei bilden zwei Diphenylsilandiole unter Kondensation eine Siloxanbrücke aus, wobei das entstehende Wasser als Hydroxylgruppe am Aluminiumatom vorliegt. Bei dieser Reaktion entstehen als Nebenprodukte Wasserstoff und *tert*-Butanol (Gleichung 1) ^{72,73}.

Gleichung 1: Darstellung von (Ph₂SiO)₈[AlO(OH)]₄ • 4 Et₂O ^{71,72,73}

Wenn statt Diphenylsilandiol direkt das Kondensationsprodukt von zwei Diphenylsilandioleinheiten, das 1,1,3,3-Tetraphenyldisiloxan bei einer Reaktion mit *tert*-Butoxyaluminiumdihydrid eingesetzt wird, so kann ein bizyklisches Alumosiloxan $Al_2[(OPh_2Si)_2O]_3 \cdot 2 Et_2O$ isoliert werden (Gleichung 2)⁷⁴.

Gleichung 2: Darstellung von Al₂[(OPh₂Si)₂O]₃ • 2 Et₂O ⁷⁴

Der entstandene Bizyklus reagiert in Gegenwart von Wasser und Aceton als eingesetztem Lösemittel zu dem Alumopolysiloxan (Ph_2SiO)₈[AlO(OH)]₄ • 4 Me₂C=O (Gleichung 3)⁷⁴.

Gleichung 3: Darstellung von (Ph₂SiO)₈[AlO(OH)]₄ aus Al₂[(OPh₂Si)₂O]₃⁷⁴

Eine weitere Darstellungsroute des polyzyklischen Alumopolysiloxans mit der $(Ph_2SiO)_8(AlO(OH))_4$ Gerüststruktur besteht in der Umsetzung von Diphenylsilandiol mit den Alkoxiden Aluminium-*tert*-butylat bzw. Aluminium-*iso*-propylat, wobei die Verbindungen { $(Ph_2SiO)_8(AlO(OH))_4 \cdot 2,5 \text{ Et}_2O \cdot 1 \text{ HO}^{t}Bu$ } <u>**1a**</u> bzw. { $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 \text{ Et}_2O \cdot 2 \text{ HO}^{t}Pr$ } <u>**1b**</u> gebildet werden (Gleichung 4) ⁷⁵.

1b: • 2 $Et_2O \cdot 2 HO^iPr$

Gleichung 4: Alternative Syntheserouten von (Ph₂SiO)₈[AlO(OH)]₄ mit Aluminium-*tert*-butylat bzw. Aluminium-*iso*-propylat ⁷⁵

Wird eine Reaktion von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 Et_2O \mathbf{1}$ mit kleinen Basen wie Ammoniak oder Wasser durchgeführt, so bilden sich Reaktionsprodukte mit neuen polyedrischen Anordnungen um einige Aluminiumatome. Mit Ammoniak wird das Anion $\{(Ph_2SiO)_{12}[Al_5O_7(OH)][Al(OH)_2(NH_3)_2] \cdot OEt_2\}^-$ erhalten, bei dem ein Aluminiumatom eine oktaedrische Koordinationsgeometrie aufweist, in der vier Sauerstoffatome die äquatorialen und zwei Stickstoffatome die axialen Positionen besetzen (Abb. 6)^{69,76,77}.

Nach längerer Exposition von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 Et_2O \underline{1}$ mit Wasser bildet sich eine Struktur mit der Zusammensetzung $(Ph_2SiO)_{12}[AlO(OH)]_6[Al(OH)_3] \cdot 3 OEt_2$ aus, die eine D₃-Symmetrie aufweist. In diesem Polyzyklus liegt ein oktaedrisch koordiniertes Aluminiumatom vor, an das über Sauerstoffatome sechs weitere Aluminiumatome mit tetraedrischer Koordinationsgeometrie gebunden sind, wobei jeweils zwei dieser Tetraeder eckenverknüpft vorliegen und über Siloxanbrücken zu den restlichen AlO₄ Tetraedern verbunden sind (Abb. 6) ^{69,76,77}.

 $\begin{array}{l} \textbf{Abb. 6: Schematische Darstellung der Reaktionsprodukte von} \\ (Ph_2SiO)_8(AlO(OH))_4 \bullet 4 \ Et_2O \ \underline{1} \ die \ mit \ Wasser \ und \ Ammoniak \ erhalten \ wurden.} \\ a) \ Struktur \ von \ (Ph_2SiO)_{12}[AlO(OH)]_6[Al(OH)_3] \bullet 3 \ OEt_2; \ b) \ Struktur \ von \ \{(Ph_2SiO)_{12}[Al_5O_7(OH)][Al(OH)_2(NH_3)_2] \bullet OEt_2\}^{-77,78} \end{array}$

Bei der Umsetzung des Alumopolysiloxans $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 Et_2O \mathbf{1}$ mit Hexamethyldisilazan und Pyridin in Tetrahydrofuran kann eine Kondensation von $\mathbf{1}$ beobachtet werden. Das gebildete Produkt beinhaltet weiterhin dieselbe Anzahl an Aluminiumatomen und Siloxanketten, wie das Edukt $\mathbf{1}$. Die erhaltene Verbindung beinhaltet jedoch keine Hydroxylgruppen mehr und im Vergleich zu $\mathbf{1}$ fehlen formal zwei Wassermoleküle. Das Reaktionsprodukt besitzt einen zentrosymmetrischen Al₂O₂-Ring, an dessen Sauerstoffatome weitere Aluminiumatome gebunden sind. Insgesamt sind die Sauerstoffatome somit annähernd trigonal-planar von Aluminiumatomen umgeben. Zudem sind alle Aluminiumatome über Siloxanketten miteinander verbunden und an zwei Lewis-Saure Aluminiumatome dieser Verbindung koordinieren weitere Pyridinmoleküle (Gleichung 5)⁷⁹.

Gleichung 5: Darstellung von (Ph₂SiO)₈(AlO_{1,5})₄ • 2 C₅H₅N⁷⁹

Unter Erhalt der ursprünglichen $(Ph_2SiO)_8[AlO(OH)]_4$ -Gerüststruktur von <u>1</u> ist es möglich, die Protonen der Hydroxylgruppen durch ein- und zweiwertige Metallatome zu substituieren, wodurch "molekulare Alumosilikate" erhalten werden. Ein vollständiger Austausch aller Protonen in <u>1</u> durch einwertige Metallatome, kann mit Lithium- und Natriumatomen erreicht werden, dabei bildet sich $(Ph_2SiO)_8(LiAlO_2)_4$ bzw. $(Ph_2SiO)_8$ $(NaAlO_2)_4$ (Gleichung 6) ^{80,81}.

Gleichung 6: Synthese von (Ph₂SiO)₈(LiAlO₂)₄ ^{80,81}

Des Weiteren lassen sich ausgehend vom Alumopolysiloxan $\underline{1}$ weitere Verbindungen mit Metallatomen isolieren, denen ein einziges Metallatom der bei nur an Alumopolysiloxaneinheit Verbindungen zu finden ist. Dies ist bei den (Ph₂SiO)₈(AlO(OH))₂(AlO₂)₂Ge und (Ph₂SiO)₈(AlO(OH))₂(AlO₂)₂Sn der Fall. Darüber hinaus gibt es weitere Strukturen wie (Ph₂SiO)₈(AlO₂)₄Sn₂, (Ph₂SiO)₈(AlO₂)₄Pb₂ und $(Ph_2SiO)_8(AlO(OH))_2(AlO_2)_2(Zn(OH))_2$, bei denen jeweils zwei Metallatome am Alumopolysiloxan vorliegen ^{82,83}. Abb. 7 gibt eine schematische Übersicht der erhaltenen Produkte von Reaktionen des Alumopolysiloxan <u>1</u> mit verschiedenen ein- und zweiwertigen Metallatomen wieder.

Abb. 7: Reaktionen von (Ph₂SiO)₈[AlO(OH)]₄ mit ein- und zweiwertigen Metallen ^{80,81,82,83}

Neben der besprochenen Substitution von Protonen des Alumopolysiloxans 1 durch ein- und zweiwertige Metallatome, ist auch eine Erweiterung des zentralen Al₄(OH)₄ - Rings der Alumopolysiloxaneinheit durch Metallatome möglich. In Abb. 8 sind die Darstellungen von $[(Ph_2Si)_2O_3]_4[Al(ONa)_2][Al(OH)(NaOEt)]_2 \bullet 2 Et_2O$ bzw. [(Ph₂Si)₂O₃]₄[Al(OLi)₂][Al(OH)(LiOH)]₂ • 2 Et₂O • 2 THF abgebildet, wobei eine Insertion eines Metallalkoxids bzw. eines Metallhydroxids in die Gerüststruktur des Alumopolysiloxans erfolgt, wodurch ein zentraler zwölfgliedriger Ring aus Metall- und Sauerstoffatomen gebildet wird⁸⁴.

Abb. 8: Darstellung von: a) $[(Ph_2Si)_2O_3]_4[Al(ONa)_2][Al(OH)(NaOEt)]_2 \cdot 2 Et_2O und b) [(Ph_2Si)_2O_3]_4[Al(OLi)_2][Al(OH)(LiOH)]_2 \cdot 2 Et_2O \cdot 2 THF^{84}$

3 Supramolekulare Chemie

Die Chemie der molekularen Verbindungen basiert größtenteils auf kovalenten Wechselwirkungen. Ein weiteres großes Gebiet in der Chemie, das in jüngster Zeit an Stellenwert enorm zugenommen hat, stellt die Supramolekulare Chemie dar. Deren Ziel beinhaltet die Kontrolle über intermolekulare Bindungsarten, wie Ion-Ion Wechselwirkungen, die ähnliche Bindungsstärken wie die der kovalenten Bindungsarten mit Bindungsenergien im Bereich von 100 – 352 kJ/mol aufweisen, Ion-Dipol Wechselwirkungen (50-200 kJ/mol), Dipol-Dipol Wechselwirkungen (5-50 kJ/mol) und Wasserstoffbrückenbindungen mit typischen O […] O Abständen im Bereich von 2,5 – 2,9 Å, bzw. N […] O Abständen im Bereich von 2,7 – 3,1 Å (2,9 – 3,4 Å für N […] N) und Energiebeträgen, die in der Regel 10 – 50 kJ/mol aufweisen. Auch Kation – π –Wechselwirkungen (5 – 80 kJ/mol), π - π Stacking (0-50 kJ/mol) und Van der Waals Kräfte (bis 5 kJ/mol) zählen zu den Supramolekularen Wechselwirkungen 1,85-87.

Supramolekulare Verbindungen stellen ganz allgemein "Wirt-Gast" Komplexe dar, bei denen ein Molekül ("Wirt") mit einem weiteren Molekül ("Gast") in Wechselwirkung tritt. Die Erkenntnis, dass selektive Bindungen eine Anziehung zwischen Wirt und Gast beinhalten, wurde bereits 1893 von Alfred Werner mit der Lehre der Koordinationschemie gegründet. Ein Jahr später fand Emil Fischer bei der Erforschung von Enzymen heraus, dass Bindungen aufgrund von sterischen und geometrischen Gegebenheiten selektiv sein müssen, was die Basis der molekularen Erkennung darstellt. Im Jahre 1906 postulierte Paul Ehrlich, dass Moleküle nicht agieren, solange sie keine Bindung eingehen können "Corpora non agunt nisi fixata" und dies ist die Grundlage für das Konzept eines Rezeptors⁸⁸. Zusammengenommen stellen diese Erkenntnisse die Grundlage der Supramolekularen Chemie dar.

Jean Marie Lehn, der als einer der Gründer der Supramolekularen Chemie gilt und 1987 gemeinsam mit Donald J. Cram und Charles Pedersen den Nobelpreis erhielt, beschreibt die Supramolekulare Chemie als Chemie von molekularen Baugruppen mit intermolekularen Bindungsarten. Er vergleicht die Supramolekulare Chemie mit einer "molekularen soziologischen Struktur", in der nicht-kovalente Interaktionen die Bindungen innerhalb der Komponenten definieren⁸⁹.

Er vergleicht sehr passend die Aspekte der Supramolekularen Chemie mit einer sozialen Struktur als Gemeinschaft von Individuen mit ihrer eigenen Organisation; ihrer Stabilität aber auch ihrer Zerbrechlichkeit; ihrer Tendenz, sich miteinander zu verbinden oder zu isolieren; ihrer Selektivität; ihrer Fähigkeit der Widererkennung; ihrer Dynamik, ihres Fließvermögens oder auch starrer Anordnungen; ihrer Bewegungen und Umorientierungen; ihrer voneinander abhängigen gegenseitigen Handlungen.

Durch den Aufbau Supramolekularer Gebilde wird es möglich, die Gestaltung geeigneter Supramolekularer Materialien mit unterschiedlichen Eigenschaften gezielt zu konstruieren. Dies geschieht durch Selbstanordnung molekularer Einheiten in Form von nicht-kovalenten Wechselwirkungen zu Supramolekularen Netzwerken⁸⁹.

Mit Hilfe der Supramolekularen Chemie ist es weiterhin möglich, Nanostrukturen, polymolekulare Strukturen oder Netzwerke mit polymetallischen Struktureinheiten zu erstellen ⁸⁸⁻⁹⁰. Ebenso ist die Herstellung Supramolekularer Polymere durch Vernetzungen mittels Wasserstoffbrückenbindungen zu stabförmigen, leiterförmigen, zwei- und dreidimensional verzweigten Polymeren möglich ^{88,89,91,92}.

Auch die erhaltenen Verbindungen des Alumopolysiloxans <u>1</u> lassen Strukturmerkmale der Supramolekularen Chemie erkennen. So können mit den Hydroxylgruppen des Alumopolysiloxans <u>1</u> und Basen wie Diethylether, Tetrahydrofuran, *tert*-Butanol, *iso*-Propanol, Aceton, Dimethylamin, Triethylamin und Pyridin Säure-Base-Addukte gebildet werden, bei denen die Basen über Wasserstoffbrückenbindungen an das Alumopolysiloxan koordinieren. Je nach Basenstärke und Sterik der eingesetzten Base, können zwei bis vier Basen an das Alumopolysiloxan koordinieren. Zum Beispiel wird Pyridin zwischen die Phenylgruppen der [(Ph₂SiO)₂O]-Henkel eingelagert, wodurch eine sandwichartige Konstitution resultiert und insgesamt vier Pyridinmoleküle alle koordinativen Zentren des Alumopolysiloxans besetzen können. Hingegen kann Triethylamin lediglich mit zwei Molekülen an der Alumopolysiloxaneinheit über Wasserstoffbrückenbindungen koordinieren, da sich aufgrund der sterisch größeren Raumbeanspruchung dieser Basen, die Phenylgruppen an den Siliziumatomen nach außen orientieren. Die Siloxanflügel der gegenüberliegenden Seite orientieren sich dementsprechend nach innen und erschweren somit den Angriff durch eine weitere sterisch anspruchsvolle Base (Abb. 9)^{88,89,93,94}.

Abb. 9: Molekülstrukturen von (Ph₂SiO)₈(AlO(OH))₄ mit den Basen Pyridin (links) und Triethylamin (rechts)^{72,73,76,80,81}

Wird die Basenstärke der koordinierenden Base gegen den Bindungsabstand der Al-O(H) Bindung im inneren Al₄O₄-Ring des Alumopolysiloxans (Ph₂SiO)₈(AlO(OH))₄ aufgetragen, ist eine Korrelation zwischen der Basenstärke und der Al-O Bindungslänge zu erkennen. Die Al-O Bindungsabstände liegen im erwarteten Bereich zwischen 1.72 Å und 1,82 Å ⁷⁶, wobei die koordinierende Base mit steigender Basenstärke die Al-O(H)-Bindungslänge im inneren Al₄O₄-Ring verkürzt. Aufgrund der steigenden Anziehung von H⁺-Ionen an die Basen resultiert eine größere Basizität am Sauerstoffatom, wodurch die Al-O Bindungsabstände verkürzt werden (Abb. 10) ^{95,96}.

Abb. 10: Korrelation zwischen der Basenstärke und der Al-O(H)-Bindungslänge⁶⁹

Neben bisher besprochenen Verbindungen den des Alumopolysiloxans mit monofunktionellen Basen, können mit Alkyldiaminen als zweizähnige Basen Verbindungen erhalten werden, die je nach Kettenlänge unterschiedlich an das Alumopolysiloxan binden. Die zweizähnigen Liganden haben auch die Möglichkeit, intermolekular Alumopolysiloxane durch Ausbildung von Wasserstoffbrückenbindungen miteinander zu vernetzen. Es ist weiterhin möglich, dass diese bifunktionellen Moleküle unter Ausbildung einer intramolekularen Brücke an zwei Hydroxylgruppen eines Alumopolysiloxans koordinieren. In 11 ist eine schematische Darstellung der Koordinationsmöglichkeiten von Abb. Alkyldiaminen dargestellt, die unter Erhalt der ursprünglichen Gerüststruktur von $\underline{1}$ auf unterschiedliche Art an das Alumopolysiloxan koordinieren können⁶⁹.

Abb. 11: Intra- und intermolekulare Koordinationsmöglichkeiten von Alkyldiaminen an (Ph₂SiO)₈[AlO(OH)]₄⁶⁹

Einen erheblichen Einfluss auf die jeweilige Koordination des Alkyldiamins übt die Kettenlänge des koordinierenden Moleküls aus. Im Falle vom 1,4-Diaminobutan reicht die Kettenlänge der Kohlenwasserstoffatome bereits verschiedene aus. um Alumopolysiloxaneinheiten miteinander zu vernetzen, was bei dem 1,3-Diaminopropan als eingesetztem Ligand aufgrund der kürzeren Kettenlänge nicht möglich ist. In diesem Fall wird entweder eine intramolekulare Brücke mittels Koordination an die beiden Hydroxylgruppen eines Alumopolysiloxan gebildet, wie dies auch bei den Liganden 1,4-Diaminobutan, 1,5-Diaminopentan und 1,3-Dimethylaminopropan beobachtet wurde. Es kann aber auch vorkommen, dass nur eine Amingruppe des 1,3-Diaminopropan an die Hydroxylgruppe des Alumopolysiloxans koordiniert, während die zweite Amingruppe keine Koordination ausbildet (Abb. 12) 69,69.

Abb. 12: Molekülstrukturen von (Ph₂SiO)₈[AlO(OH)]₄ mit 1,3-Diaminopropan ⁷⁰.
a) intramolekulare Koordination von zwei Liganden ans Alumopolysiloxan;
b) intramolekulare, sowie einseitige Koordination der Liganden mit nur einer Amingruppe ans Alumopolysiloxan

Neben der Ausbildung zweier intramolekularer Brücken durch eine Koordination des 1,4-Diaminobutanmoleküls an das Alumopolysiloxan, kann dieser Ligand in Abhängigkeit des stöchiometrischen Ansatzes verschiedene Strukturen mit dem Alumopolysiloxan ausbilden. So kann eine Struktur erhalten werden, bei der nur ein 1,4-Diaminobutanmolekül eine einzige intramolekulare Brücke mit dem Alumopolysiloxan ausbildet, während an die restlichen Hydroxylgruppen des Alumopolysiloxans Tetrahydrofuranmoleküle koordinieren. Weiterhin können ab dieser Kettenlänge die Vernetzungen ersten von Alumopolysiloxaneinheiten beobachtet werden, dabei werden beispielsweise mit 1,4-Diaminobutanmolekülen eindimensionale Strukturen gebildet (Abb. 13). Diese können wiederum mit Hilfe eines weiteren 1,4-Diaminobutanmoleküls zu einem zweidimensionalen Netzwerk verbunden werden. wobei das zusätzliche Alkyldiamin über Wasserstoffbrückenbindungen an die 1,4-Diaminobutanmoleküle koordiniert, die eine intramolekulare Brücke Alumopolysiloxan Schließlich bildet am ausbilden. 1,4-Diaminobutan, wie beim Einsatz 1,7-Diaminoheptan ebenso von und 1,12-Diaminododekan auch dreidimensionale Strukturen aus, wobei bei letzteren ausschließlich intermolekulare Produkte erhalten werden können (Abb. 13)^{69,70}.

(c)

Abb. 13: Beispiele von Netzwerken, die mit Alkyldiaminen erhalten wurden ⁶⁹. a) und b) zeigen eine eindimensionale Verknüpfung von Alumopolysiloxanen mit 1,4-Diaminobutan; c) Bildung eines dreidimensionalen Netzwerks mit 1,7-Diaminoheptan

II Zielsetzung und Aufgabenstellung

Ein Schwerpunkt dieser Arbeit beinhaltet die Synthese und Modifizierung molekularer Verbindungen, die ausgehend von dem Alumopolysiloxan $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 Et_2O \underline{1}$ durch Basensubstitutionen erhalten werden können. Dabei wird das Verhalten der Ausgangsverbindung <u>1</u> gegenüber unterschiedlichen Basen untersucht, wobei eine Variation der Donoratome stattfindet, indem sowohl Sauerstoffatome als auch Stickstoffatome eingesetzt werden. Des Weiteren wird der Einfluss von Basenstärke- und sterik auf das Alumopolysiloxan <u>1</u> untersucht.

Eine weitere Zielsetzung dieser Arbeit besteht im Aufbau verschiedenartiger supramolekularer Netzwerke, die durch Selbstorganisation von Molekülen erhalten werden sollen. Um dies zu ermöglichen, werden bifunktionelle Liganden mit unterschiedlicher Kettenlänge eingesetzt.

Die Charakterisierung der erhaltenen Verbindungen erfolgt IR- und NMR-spektroskopisch, sowie durch Elementar- und Röntgenstrukturanalysen.

Zur Veranschaulichung ist in Abb. 14 eine schematische Übersicht dargestellt, die mögliche Produktbildungen zeigt, die das Alumopolysiloxan $\underline{1}$ mit bifunktionellen Liganden ausbilden kann.

Abb. 14: Schematische Übersicht möglicher Produktbildungen, (L = Ligand)

III Diskussion und Ergebnisse

1 Polymorphe Strukturen des Alumopolysiloxans mit der Gerüststruktur (Ph₂SiO)₈[AlO(OH)]₄

Ausgehend vom Alumopolysiloxan (Ph₂SiO)₈[AlO(OH)]₄ • 4 O(CH₂CH₃)₂ <u>1</u> können unter Erhalt der Gerüststruktur "(Ph₂SiO)₈[AlO(OH)]₄", modifizierte Strukturen mit den Liganden Pyrazin (N(C₂H₂)₂N), Essigsäureethylester (CH₃COOCH₂CH₃) und 1,4-Diacetoxybutan (CH₃COO(CH₂)₄OOCCH₃) erhalten werden, wie es in Abb. 15 schematisch dargestellt ist. Die Liganden Pyrazin und 1,4-Diacetoxybutan weisen jeweils zwei funktionelle Gruppen auf, die über Wasserstoffbrückenbindungen an die Hydroxylgruppen des Alumopolysiloxans koordinieren können. Untersuchungen zeigen, dass bei Alkyldiaminen ab einer Kettenlänge von vier Kohlenwasserstoffatomen sowohl intramolekulare, als auch intermolekulare Koordinationen an der Alumopolysiloxaneinheit möglich sind. 1,4-Diacetoxybutan besitzt ebenfalls eine Kettenlänge vier Kohlenwasserstoffatomen und stellt einen geeigneten Liganden mit zwei Acetoxygruppen dar, welche an die Alumopolysiloxaneinheit koordinieren können. Des Weiteren konnte bisher gezeigt werden, dass sich Pyridin als hervorragender Ligand dieses Alumopolysiloxans mit insgesamt vier Molekülen sandwichartig zwischen die Phenylgruppen des Alumopolysiloxans einbettet und somit alle koordinativen Zentren absättigt ⁶⁹. Es ist daher von großem Interesse zu verfolgen, welchen Einfluss das dem Pyridin ähnliche Pyrazin mit zwei Stickstoffatomen im Molekül auf das Alumopolysiloxan 1 ausübt.

Abb. 15: Schematische Darstellung neuer molekularer Strukturen $\underline{2}$, $\underline{3}$ und $\underline{4}$ ausgehend vom Alumopolysiloxan $\underline{1}$

Neben Stickstoff als Protonenakzeptor können auch andere Atome eingesetzt werden. So kann zum Beispiel Essigsäureethylester über die Sauerstoffatome der Carbonylgruppe ebenfalls Wasserstoffbrückenbindungen mit der Alumopolysiloxaneinheit ausbilden. Einen weiteren Liganden stellt das 1,4-Diacetoxybutanmolekül dar, das formal aus zwei Essigsäureethylestereinheiten besteht, deren Ethylgruppen der Esterkomponente vereinigt wurden und wiederum ein Sauerstoffatom der Carbonylgruppe als Protonenakzeptor fungieren kann.

1.1 Synthese und Charakterisierung von $(Ph_2SiO)_8[AIO(OH)]_4 \cdot 3 N(C_2H_2)_2N \underline{2},$ $(Ph_2SiO)_8[AIO(OH)]_4 \cdot 3 CH_3COOCH_2CH_3 \underline{3} und$ $(Ph_2SiO)_8[AIO(OH)]_4 \cdot 2 CH_3COO(CH_2)_4OOCCH_3 \underline{4}$

Um die Verbindung (Ph₂SiO)₈[AlO(OH)]₄ • 3 N(C₂H₂)₂N $\underline{2}$ zu erhalten, wird eine Suspension des Alumopolysiloxans (Ph₂SiO)₈[AlO(OH)]₄ • 4 O(CH₂CH₃)₂ $\underline{1}$ in Diethylether bei Raumtemperatur vorgelegt und eine Lösung mit vierfachem molarem Überschuss an Pyrazin in Diethylether unter Rühren zugegeben. Dabei löst sich die Suspension des Alumopolysiloxans $\underline{1}$ während der Zugabe des Pyrazin auf und nach wenigen Minuten fällt ein weißer Niederschlag aus. Die Umkristallisation des erhaltenen Feststoffs aus Toluol liefert schließlich das Produkt $\underline{2}$ mit einer Ausbeute von 63 % (Gleichung 7).

$$(Ph_2SiO)_8[AlO(OH)]_4 * 4 Et_2O + 4 \swarrow N \qquad \underbrace{Et_2O}_{-4 Et_2O} (Ph_2SiO)_8[AlO(OH)]_4 * 3 \swarrow N \qquad \underbrace{Et_2O}_{-N(C_2H_2)_2N} 2 \underline{2}$$

Gleichung 7: Darstellung von (Ph₂SiO)₈[AlO(OH)]₄ • 3 N(C₂H₂)₂N, <u>2</u>

Für die NMR-spektroskopischen Untersuchungen von (Ph₂SiO)₈[AlO(OH)]₄ • 3 N(C₂H₂)₂N 2 werden die erhaltenen Kristalle in Tetrahydrofuran gelöst. Das aufgenommene ¹³C-NMR Spektrum zeigt ein Signal bei der chemischen Verschiebung von 145,4 ppm, das dem Pyrazin zuzuordnen ist. Weitere charakteristische Signale des Alumopolysiloxans werden bei den chemischen Verschiebungen von 127,4 ppm - 127,5 ppm, 129,2 ppm, 129,3 ppm, 134,8 ppm - 134,9 ppm, 138,5 ppm und 139,0 ppm beobachtet und können den Phenylgruppen an den Siliziumatomen zugeordnet werden. Insgesamt werden acht Signale für die Phenylgruppen erwartet, da sie sowohl in axialer als auch äquatorialer Position am Siliziumatom vorliegen. Somit ergeben sich pro Phenylgruppe jeweils vier Signale, die von den ortho-, meta-, para-, und Si-C Atomen herrühren. Das ¹H-NMR-Spektrum zeigt ein Signal bei 8,28 ppm, das dem Pyrazin zugeordnet werden kann. Weitere Signale der Phenylgruppen des Alumopolysiloxans sind bei den chemischen Verschiebungen im aromatischem Bereich von 6,8 ppm bis 7,2 ppm für die meta- und paraständigen Wasserstoffatome, sowie von 7,4 ppm bis 7,5 ppm für die orthoständigen Wasserstoffatome zu beobachten. Im ²⁹Si-NMR-Spektrum tauchen Signale bei den chemischen Verschiebungen von -39,8 ppm und -45,8 ppm auf. Das Signal bei -45,8 ppm ist dem erhaltenen Produkt 2 zuzuordnen, wohingegen das erhaltene Signal bei -39,8 ppm eine sehr geringe Intensität aufweist und wahrscheinlich von einem Nebenprodukt stammt. Wie eine später durchgeführte Röntgenstrukturanalyse gezeigt hat, ist die zu erwartende hohe Symmetrie der Verbindung <u>2</u> im Feststoff nicht mehr zu beobachten. Aufgrund der höheren Beweglichkeit der Ligandmoleküle in Lösung kann die dort beobachtete Symmetrieerhöhung begründet werden.

Die Verbindungen (Ph₂SiO)₈[AlO(OH)]₄ • 3 CH₃COOCH₂CH₃ <u>3</u> und (Ph₂SiO)₈[AlO(OH)]₄ • 2 CH₃COO(CH₂)₄OOCCH₃ <u>4</u> werden hergestellt, indem das Alumopolysiloxan <u>1</u> in Toluol gelöst und anschließend mit in Toluol verdünntem Essigsäureethylester beziehungsweise 1,4-Diacetoxybutan versetzt wird. Nach weiterem Rühren bei Raumtemperatur und anschließendem Einengen der Reaktionslösungen ist bereits eine Kristallbildung der Verbindung <u>3</u> beziehungsweise von Produkt <u>4</u> zu beobachten (Gleichung 8).

Gleichung 8: Darstellung von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 CH_3COOCH_2CH_3 \underline{3}$ und $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 CH_3COO(CH_2)_4OOCCH_3 \underline{4}$

Für NMR-spektroskopische Untersuchungen wurden Kristalle von <u>3</u> in Benzol gelöst. Das erhaltene ¹³C-NMR zeigt Signale bei den chemischen Verschiebungen von 127,2 ppm, 128,1 ppm, 129,8 ppm, 129,9 ppm, 134,6 ppm, 134,7 ppm und 138,0 ppm die charakteristisch für die Phenylgruppen an den Siliziumatomen des Alumopolysiloxans sind. Weiterhin sind Signale bei den chemischen Verschiebungen von 13,3 ppm, 20,4 ppm und 62,0 ppm zu erkennen, die eindeutig den Essigsäureethylestermolekülen zugeordnet werden können.

Das gemessene ¹H-NMR-Spektrum zeigt für die Essigsäureethylesterliganden ein Quartett bei der chemischen Verschiebung von 3,43 ppm, ein Singulett bei 1,12 ppm und ein Triplett bei 0,56 ppm. Weiterhin werden im aromatischen Bereich zwischen 7,67 ppm und 7,98 ppm Resonanzen der Phenylgruppen beobachtet. Im aufgenommenen ²⁹Si-NMR-Spektrum wird ein Signal bei der chemischen Verschiebung von -44,3 ppm erhalten und deutet auf eine hohe

Symmetrie der Verbindung $\underline{3}$ hin, welche wegen der erhöhten Dynamik der Liganden nur in Lösung zu beobachten ist. Die später durchgeführte Röntgenstrukturanalyse hat gezeigt, dass die hohe Symmetrie im Feststoff nicht vorhanden ist.

Damit NMR-spektroskopische Untersuchungen von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 CH_3COO(CH_2)_4OOCCH_3 <u>4</u> durchgeführt werden können, wurde ein Teil des erhaltenen$ Feststoffes in Benzol aufgelöst. Das aufgenommene ¹³C-NMR-Spektrum zeigt imaromatischem Bereich jeweils die charakteristischen acht Signale der Phenylgruppen an denSiliziumatomen der Alumopolysiloxaneinheit bei den chemischen Verschiebungen von127,8 ppm, 128,0 ppm, 129,5 ppm, 129,7 ppm, 134,7 ppm, 134,8 ppm, 138,2 ppm und138,3 ppm. Zudem werden weitere Signale bei den chemischen Verschiebungen von20,9 ppm, 24,1 ppm, 64,2 ppm und 173,1 ppm beobachtet, die dem 1,4-Diacetoxybutanzuzuordnen sind. Im aufgenommene ²⁹Si-NMR-Spektrum wird ein Signal bei derchemischen Verschiebung von -45,3 ppm erhalten, welches im Einklang mit derRöntgenstrukturanalyse der Verbindung <u>4</u> steht und dessen hohe Symmetrie widerspiegelt.

In Abb. 16 ist ein mittels diffuser Reflexion aufgenommenes IR-Spektrum der Startverbindung <u>1</u> (schwarze Linie), ein Spektrum der Verbindung von (Ph₂SiO)₈[AlO(OH)]₄ • 2 CH₃COOCH₂CH₃ <u>3</u> (blaue Linie) und ein Spektrum des erhaltenen Produkts (Ph₂SiO)₈[AlO(OH)]₄ • 2 CH₃COO(CH₂)₄OOCCH₃ <u>4</u> (rote Linie) abgebildet. Die Verbindung $\underline{3}$, die nach der Umsetzung von $\underline{1}$ mit Essigsäureethylester erhalten wurde, zeigt OH-Schwingungsbanden bei den Wellenzahlen von 3606 cm⁻¹, 3534 cm⁻¹, 3357 cm⁻¹ und 3312 cm⁻¹. Des Weiteren sind CH-Schwingungsbanden des Liganden bei 2910 cm⁻¹, sowie Signale von CO-Schwingungen bei 1697 cm⁻¹ und 1666 cm⁻¹ zu beobachten.

Ein Vergleich zwischen den Spektren der Verbindungen <u>1</u> und <u>4</u> zeigt, dass die OH-Schwingungsbanden der Startverbindung <u>1</u> bei etwa 3600 cm⁻¹ nach der Umsetzung mit 1,4-Diacetoxybutan sehr stark abgenommen haben. Zudem sind bei Verbindung <u>4</u> weitere schwache, breite Schwingungsbanden bei den Wellenzahlen 3550 cm⁻¹, und 3358 cm⁻¹ aufgetaucht. Hier sind OH-Schwingungsbanden zu erwarten, die intermolekular koordiniert vorliegen. Weiterhin sind die Schwingungsbanden bei 2963 cm⁻¹ und 2910 cm⁻¹ intensiver geworden. In diesem Bereich sind CH-Schwingungen der Liganden zu erwarten. Bei den Wellenzahlen von 1738 cm⁻¹ und 1704 cm⁻¹ findet man nun zusätzliche Signale, die von den CO-Schwingungen des 1,4-Diacetoxybutans stammen.

Das aufgenommene IR-Spektrum der Verbindung $\underline{2}$, das bei der Reaktion von $\underline{1}$ mit dem Liganden Pyrazin erhalten werden konnte, zeigt eine OH-Schwingungsbande bei 3608 cm⁻¹ sowie eine weitere Schwingungsbande bei 3314 cm⁻¹. Die CH-Schwingungsbanden von den Diethylethermolekülen der Startverbindung $\underline{1}$, die bei Wellenzahlen von 2978 cm⁻¹ erscheinen sind im IR-Spektrum von $\underline{2}$ nicht mehr zu beobachten.

Bei den erhaltenen Verbindungen <u>2</u>, <u>3</u> und <u>4</u> sind IR-Schwingungsbanden im Bereich von 3300 cm⁻¹ bis 3500 cm⁻¹ zu beobachten, in dessen Bereich intermolekular verbrückte OH-Schwingungen vorliegen. Zudem weisen alle drei Produkte eine weitere OH-Schwingungsbande bei etwa 3600 cm⁻¹ auf. Vermutlich liegt das Proton der Wasserstoffbrückenbindungen bei Koordination dieser Liganden zwischen den beiden Sauerstoffatomen der Verbindungen <u>3</u> und <u>4</u>, bzw. zwischen dem Sauerstoff und dem Stickstoffatom der Verbindung <u>2</u> (O ^{...} H ^{...} X, X = O, N).

Abb. 16: aufgenommene IR-Spektren von <u>1</u>, <u>3</u> und <u>4</u> (links) sowie <u>1</u> und <u>2</u> (rechts)
1.2 Erhaltene Kristallstrukturdaten der Umsetzung von (Ph₂SiO)₈[AlO(OH)]₄ • 4 Et₂O mit Pyrazin <u>2</u>

Für die Röntgenstrukturuntersuchung geeignete Kristalle der Reaktion von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 Et_2O$ mit vier Äquivalenten Pyrazin konnten durch Umkristallisation aus Toluol erhalten werden. Ein geeigneter Kristall wurde entnommen und einer Einkristallröntgenstrukturanalyse unterworfen. Nach Bestimmung und Verfeinerung der Gitterkonstanten ergab sich die trikline Raumgruppe P-1 mit zwei Formeleinheiten pro Elementarzelle. Sämtliche Nichtwasserstoffatome wurden gefunden und anisotrop verfeinert. Zur Berechnung der Lagen der Wasserstoffatome wurden die entsprechenden idealisierten Geometrien verwendet. Der Zuverlässigkeitsfaktor erreicht einen Wert von $R_1 = 0,047$. Die erhaltenen Kristalldaten sind in Tabelle 1 aufgeführt und Tabelle 2 zeigt ausgewählte Bindungslängen und Winkel auf.

Summenformel	C115 H104 Al4 N6 O16 Si8	
Molmasse [g/mol]	2158.68	
Messtemperatur [K]	153(2)	
Wellenlänge [Å]	0.71073	
Kristallsystem	triklin	
Raumgruppe	P-1	
Gitterkonstanten	a = 14.8724(6) Å	$\alpha = 77.359(2)^{\circ}$
	b = 15.0963(6) Å	$\beta = 82.902(2)^{\circ}$
	c = 26.879(1) Å	$\gamma = 74.072(2)^{\circ}$
Zellvolumen [Å ³]	5649.5(4) Å ³	
Anzahl der Formeleinheiten Z	2	
Dichte (berechnet)[g/cm ³]	1.269	
Absorptionskoeffizient [mm ⁻¹]	0.192	
F(000)	2256	
Kristallabmessungen [mm ³]	0.65 x 0.40 x 0.24	
Messbereich θ [°]	1.43 to 30.53	
hkl - Indexbereich	-21<=h<=21, -21<=k<=21, -37	<=l<=38
Gemessene Reflexe	125588	
Symmetrieunabhängige Reflexe	34429 [R(int) = 0.0272]	
Vollständigkeit des Datensatzes (bis $\theta = 30,53^{\circ}$)	99.6 %	
Absorptionskorrektur	Multiscan	

Tabelle 1 Kristalldaten und Strukturverfeinerungen für $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 3 C_4H_4N_2 2$

Diskussion und Ergebnisse

Max. und Min. Transmission	0.9548 and 0.8861
Strukturverfeinerungsmethode	Full-matrix least-squares on ${\sf F}^2$
Daten / Einschränkungen / Parameter	34429 / 0 / 1339
Güte des Fit auf F ²	1.032
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0467, wR2 = 0.1262
R-Werte (alle Daten)	R1 = 0.0708, wR2 = 0.1440
Restelektronendichte (min./max.) [e/Å-3]	1.001 and -0.543

Tabelle 2 Ausgewählte Bindungslängen [Å] und Winkel [°] für $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 3 C_4H_4N_2$

Al(1)-O(5)	1.698(1)	Si(1)-O(5)	1.602(1)
Al(1)-O(16)	1.700 (1)	Si(1)-O(6)	1.634(1)
Al(1)-O(4)	1.784(1)	Si(2)-O(7)	1.610(1)
Al(1)-O(1)	1.793(1)	Si(2)-O(6)	1.633(1)
Al(2)-O(8)	1.688(1)	Si(3)-O(8)	1.601(1)
Al(2)-O(7)	1.701(1)	Si(3)-O(9)	1.634(1)
Al(2)-O(1)	1.773(1)	Si(4)-O(10)	1.612(1)
Al(2)-O(2)	1.819(1)	Si(4)-O(9)	1.626(1)
Al(3)-O(10)	1.699(1)	Si(5)-O(11)	1.605(1)
Al(3)-O(11)	1.703(1)	Si(5)-O(12)	1.621(1)
Al(3)-O(3)	1.783(1)	Si(6)-O(13)	1.602(1)
Al(3)-O(2)	1.809(1)	Si(6)-O(12)	1.637(1)
Al(4)-O(14)	1.700(1)	Si(7)-O(14)	1.609(1)
Al(4)-O(13)	1.707(1)	Si(7)-O(15)	1.625(1)
Al(4)-O(4)	1.781(1)	Si(8)-O(16)	1.603(1)
Al(4)-O(3)	1.806(1)	Si(8)-O(15)	1.633(1)
O(5)-Al(1)-O(16)	115.96(6)	O(7)-Al(2)-O(2)	103.58(6)
O(5)-Al(1)-O(4)	110.03(6)	O(1)-Al(2)-O(2)	105.11(6)
O(16)-Al(1)-O(4)	109.66(6)	O(10)-Al(3)-O(11)	116.92(6)
O(5)-Al(1)-O(1)	110.97(6)	O(10)-Al(3)-O(3)	110.14(6)
O(16)-Al(1)-O(1)	107.67(6)	O(11)-Al(3)-O(3)	110.65(6)
O(4)-Al(1)-O(1)	101.57(6)	O(10)-Al(3)-O(2)	109.62(6)
O(8)-Al(2)-O(7)	118.61(6)	O(11)-Al(3)-O(2)	106.63(6)
O(8)-Al(2)-O(1)	109.40(6)	O(3)-Al(3)-O(2)	101.72(6)
O(7)-Al(2)-O(1)	110.65(6)	O(14)-Al(4)-O(13)	117.80(7)
O(8)-Al(2)-O(2)	108.50(6)	O(14)-Al(4)-O(4)	111.38(6)

O(13)-Al(4)-O(4)	105.95(6)	Al(3)-O(3)-Al(4)	127.00(7)
O(14)-Al(4)-O(3)	105.56(6)	Al(4)-O(4)-Al(1)	128.44(7)
O(13)-Al(4)-O(3)	108.77(6)	Si(1)-O(5)-Al(1)	157.56(8)
O(4)-Al(4)-O(3)	106.92(6)	Si(2)-O(6)-Si(1)	141.07(8)
O(5)-Si(1)-O(6)	111.94(6)	Si(2)-O(7)-Al(2)	150.39(8)
O(7)-Si(2)-O(6)	112.12(6)	Si(3)-O(8)-Al(2)	157.65(8)
O(8)-Si(3)-O(9)	110.70(6)	Si(4)-O(9)-Si(3)	151.41(8)
O(10)-Si(4)-O(9)	111.78(6)	Si(4)-O(10)-Al(3)	154.96(8)
O(11)-Si(5)-O(12)	112.78(7)	Si(5)-O(11)-Al(3)	147.14(8)
O(13)-Si(6)-O(12)	110.26(7)	Si(5)-O(12)-Si(6)	141.84(8)
O(14)-Si(7)-O(15)	112.55(7)	Si(6)-O(13)-Al(4)	147.62(9)
O(16)-Si(8)-O(15)	111.72(7)	Si(7)-O(14)-Al(4)	146.00(8)
Al(2)-O(1)-Al(1)	125.60(7)	Si(7)-O(15)-Si(8)	144.04(8)
Al(3)-O(2)-Al(2)	131.92(7)	Si(8)-O(16)-Al(1)	156.18(9)

1.3 Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 3 N(C₂H₂)₂N <u>2</u>

Wird die Ausgangsverbindung 1 mit Pyrazin umgesetzt, so bleibt bei dieser Umsetzung die Gerüststruktur der Startverbindung 1 erhalten. Das Alumopolysiloxan beinhaltet einen inneren Al₄O₄-Ring, dessen Al-O-Al Kanten von Disiloxanketten überspannt werden. Das in Abb. 17 dargestellte Produkt 2 wird gebildet, in dem drei Pyrazinmoleküle mit ihren Stickstoffatomen über Wasserstoffbrückenbindungen an der inneren Al₄O₄-Einheit des koordinieren. Die vierte mögliche des Alumopolysiloxans Koordinationsstelle Alumopolysiloxans bleibt in diesem Fall unbesetzt, was sich in etwas längeren Bindungsabständen der Al-O Bindungen des Al₄O₄-Rings für Al3-O2 mit 1,809(1) Å und für Al2-O2 mit 1,819(1) Å bemerkbar macht (Abb. 18). Die restlichen Al-O Bindungsabstände des inneren Rings liegen im Mittel bei 1,787(1) Å, was im Vergleich mit den Al-O Bindungslängen bei Verwendung von Pyridin als Ligand mit einer mittleren Al-O Bindungslänge von 1,768(2) Å, ein wenig länger ist ^{80,81}. Die Phenylgruppen an den Siliziumatomen umschließen die eingelagerten Liganden vollständig und eine intermolekulare Koordination der Pyrazinmoleküle mit einhergehender Vernetzung mehrerer Alumopolysiloxaneinheiten wird aufgrund der Kettenlänge dieses Moleküls, die zwei Kohlenwasserstoffatome beinhaltet, in diesem Fall nicht beobachtet. Insgesamt resultiert eine Molekülstruktur, die nicht über eine C₁-Symmetrie hinausgeht.

Abb. 17: Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 3 N(C₂H₂)₂N 2

Die Länge der Wasserstoffbrückenbindung eines Liganden auf der Seite der Al₄O₄-Ebene an der zwei Liganden koordinieren beträgt 2,666(1) Å für N3...O3 und ist damit um ca. 0,05 Å länger als die beiden anderen Bindungslängen der Wasserstoffbrückenbindungen, die die restlichen Liganden mit dem Alumopolysiloxan ausbilden (N1...O1 mit 2,614(1) Å und N5^{...}O4 mit 2,610(1) Å). Diese Abstände sind im Vergleich mit den Bindungslängen von 2,548(3) Å bei der Koordination von Pyridin als Ligand wie erwartet etwas länger. Die längeren Bindungsabstände der Wasserstoffbrückenbindungen bei der Koordination von Pyrazin, sowie die etwas längeren Al-O Bindungslängen im inneren Kern des Alumopolysiloxans im Vergleich zum Pyridin Addukt, spiegeln die etwas schwächere Basizität der Pyrazinliganden wider. Dies bestätigt auch die in der Gasphase gemessenenen Protonenaffinitäten (PA) der untersuchten Basen, die den Energiebetrag einer chemischen Vereinigung von Protonen mit Atomen, Molekülen oder Ionen festlegt und bei denen für die Pyrazinmoleküle ein PA-Wert von 877,1 KJ/mol und für die Pyridinmoleküle ein PA-Wert von 930,0 KJ/mol gefunden wurde^{80,81}. Um eine Koordination von vier Basenmolekülen an das Alumopolysiloxan 1 zu ermöglichen, ist demzufolge nicht alleine die Sterik der eingesetzten Base ausschlaggebend, sondern es ist ebenso notwendig, dass die O."H."N Bindungen besonders stark sind. Im Vergleich zum Pyrazin wird aufgrund der höheren Protonenaffinität des Pyridins als koordinierendem Ligand somit eine Koordination von vier Ligandmolekülen am Alumopolysiloxan erreicht.

Abb. 18: Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 3 N(C₂H₂)₂N <u>2</u>, zur besseren Übersicht mit ausgewählten Phenylgruppen am Siliziumatom und ohne Wasserstoffatome der Pyrazinliganden, bzw. Phenylgruppen

Die Winkel der Siloxanflügel zur besten Ebene des Al₄O₄-Rings sind auf der Seite, an der zwei Liganden koordinieren aus sterischen Gründen mit 136,6° und 137,6° etwas stärker aufgeweitet als die Winkel der Siloxanflügel auf der gegenüberliegen Seite an der lediglich ein Ligand gebunden ist und Winkel der besten Ebenen von 130,1° und 133,0° aufweisen. Eine Phenylgruppe der Siloxankette mit dem kleinsten Winkel der besten Ebenen der Siloxanflügel zum Al₄O₄-Ring mit 130,1°, die sich am Siliziumatom Si5 befindet, orientiert sich stark in Richtung der unkoordinierten Hydroxylgruppe und erschwert zusammen mit den restlichen Phenylgruppen dieser Seite eine mögliche Koordination von weiteren Pyrarazinmolekülen (Abb. 18). Einhergehend mit dem Zusammenrücken dieser Phenylgruppen in Richtung des Al₄O₄-Rings, drehen sich die Phenylgruppen an den Siloxanketten der gegenüberliegenden Seite, aufgrund der sterischen Raumbeanspruchung von zwei Moleküleinheiten Pyrazin an der Alumopolysiloxaneinheit, nach außen.

1.4 Erhaltene Kristallstrukturdaten der Umsetzung von (Ph₂SiO)₈[AIO(OH)]₄ • 4 Et₂O mit Essigsäureethylester <u>3</u>

Nachdem etwa 2/3 des verwendeten Lösemittels der Reaktion des Alumopolysiloxans <u>1</u> mit Essigsäureethylester entfernt wurden, konnte eine Kristallbildung beobachtet werden. Eine Lagerung dieser Lösung bei +4°C, die etwa zwei Monate andauerte, lieferte schließlich die für eine Einkristallröntgenstrukturanalyse geeigneten Kristalle. Alle Nichtwasserstoffatome konnten gefunden werden und wurden anisotrop verfeinert. Zur Berechnung der Lage der Wasserstoffatome wurden entsprechende idealisierte Geometrien verwendet. Nach Bestimmung der Gitterkonstanten und anschließender Verfeinerung der erhaltenen Daten konnte die monokline Raumgruppe P2₁/n bestimmt werden. Die Struktur besitzt einen Zuverlässigkeitsfaktor von 0,058.

Die erhaltenen Kristallstrukturdaten sind in den folgenden Tabellen aufgeführt.

Summenformel	C108 H107 Al4 O22 Si8	
Molmasse [g/mol]	2089.58	
Messtemperatur [K]	122(2)	
Wellenlänge [Å]	0.71073	
Kristallsystem	monoklin	
Raumgruppe	P2(1)/n	
Gitterkonstanten	a = 27.1062(9) Å	$\alpha = 90^{\circ}$
	b = 15.0407(5) Å	$\beta = 106.771(2)^{\circ}$
	c = 28.0107(10) Å	$\gamma = 90^\circ$
Zellvolumen [Å ³]	10934.1(6)	
Anzahl der Formeleinheiten Z	4	
Dichte (berechnet)[g/cm ³]	1.269	
Absorptionskoeffizient [mm ⁻¹]	0.198	
F(000)	4380	
Kristallabmessungen [mm ³]	0.74 x 0.69 x 0.29	
Messbereich θ [°]	1.24 - 29.86	
hkl - Indexbereich	-37<=h<=36, -17<=k<=20, -38	S<=l<=38
Gemessene Reflexe	117874	
Symmetrieunabhängige Reflexe	30784 [R(int) = 0.0429]	
Vollständigkeit des Datensatzes (bis $\theta = 29.86^{\circ}$)	97.8 %	
Absorptionskorrektur	None	
Max. und Min. Transmission	0.9440 und 0.8670	

Tabelle 3: Kristalldaten und Strukturverfeinerungen für (Ph₂SiO)₈[AlO(OH)]₄ • 3 CH₃COOCH₂CH₃ <u>3</u>

Strukturverfeinerungsmethode	Full-matrix least-squares on ${\rm F}^2$
Daten / Einschränkungen / Parameter	30784 / 0 / 1348
Güte des Fit auf F ²	1.075
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0583, wR2 = 0.1342
R-Werte (alle Daten)	R1 = 0.1183, wR2 = 0.1794
Restelektronendichte (min./max.) [e/Å-3]	1.326 / -1.464

Tabelle 4: Ausgewählte Bindungslängen [Å] und Winkel [°] für $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 3 CH_3COOCH_2CH_3$

Al(1)-O(5)	1.694(2)	Si(1)-O(5)	1.602(2)	
Al(1)-O(16)	1.695(2)	Si(1)-O(6)	1.625(2)	
Al(1)-O(1)	1.797(2)	Si(2)-O(7)	1.601(2)	
Al(1)-O(4)	1.800(2)	Si(2)-O(6)	1.623(2)	
Al(2)-O(8)	1.686(2)	Si(3)-O(8)	1.594(2)	
Al(2)-O(7)	1.694(2)	Si(3)-O(9)	1.626(3)	
Al(2)-O(1)	1.792(2)	Si(4)-O(10)	1.598(2)	
Al(2)-O(2)	1.799(2)	Si(4)-O(9)	1.629(3)	
Al(3)-O(10)	1.695(2)	Si(5)-O(11)	1.604(2)	
Al(3)-O(11)	1.711(2)	Si(5)-O(12)	1.626(2)	
Al(3)-O(3)	1.791(2)	Si(6)-O(13)	1.597(2)	
Al(3)-O(2)	1.796(2)	Si(6)-O(12)	1.623(2)	
Al(4)-O(14)	1.685(2)	Si(7)-O(14)	1.600(2)	
Al(4)-O(13)	1.705(2)	Si(7)-O(15)	1.633(2)	
Al(4)-O(3)	1.789(2)	Si(8)-O(16)	1.609(2)	
Al(4)-O(4)	1.805(2)	Si(8)-O(15)	1.631(2)	
O(5)-Al(1)-O(16)	117.4(1)	O(10)-Al(3)-O(11)	118.5(1)	
O(5)-Al(1)-O(1)	108.14(9)	O(10)-Al(3)-O(3)	108.8(1)	
O(16)-Al(1)-O(1)	109.71(9)	O(11)-Al(3)-O(3)	108.76(9)	
O(5)-Al(1)-O(4)	108.4(1)	O(10)-Al(3)-O(2)	108.84(9)	
O(16)-Al(1)-O(4)	109.25(9)	O(11)-Al(3)-O(2)	106.5(1)	
O(1)-Al(1)-O(4)	103.06(9)	O(3)-Al(3)-O(2)	104.54(9)	
O(8)-Al(2)-O(7)	118.8(1)	O(14)-Al(4)-O(13)	119.7(1)	
O(8)-Al(2)-O(1)	107.3(1)	O(14)-Al(4)-O(3)	108.24(9)	
O(7)-Al(2)-O(1)	110.34(9)	O(13)-Al(4)-O(3)	109.06(9)	
O(8)-Al(2)-O(2)	110.8(1)	O(14)-Al(4)-O(4)	109.82(9)	
O(7)-Al(2)-O(2)	105.5(1)	O(13)-Al(4)-O(4)	105.67(9)	
O(1)-Al(2)-O(2)	103.00(8)	O(3)-Al(4)-O(4)	103.05(8)	

O(5)-Si(1)-O(6)	111.9(1)	Si(1)-O(5)-Al(1)	169.6(1)
O(7)-Si(2)-O(6)	112.1(1)	Si(2)-O(6)-Si(1)	149.3(1)
O(8)-Si(3)-O(9)	110.5(1)	Si(2)-O(7)-Al(2)	165.2(1)
O(10)-Si(4)-O(9)	112.5(1)	Si(3)-O(8)-Al(2)	167.9(2)
O(11)-Si(5)-O(12)	112.2(1)	Si(3)-O(9)-Si(4)	139.7(2)
O(13)-Si(6)-O(12)	110.8(1)	Si(4)-O(10)-Al(3)	148.1(1)
O(14)-Si(7)-O(15)	109.7(1)	Si(5)-O(11)-Al(3)	155.1(1)
O(16)-Si(8)-O(15)	112.1(1)	Si(6)-O(12)-Si(5)	149.4(1)
Al(2)-O(1)-Al(1)	128.0(1)	Si(6)-O(13)-Al(4)	151.7(1)
Al(3)-O(2)-Al(2)	134.1(1)	Si(7)-O(14)-Al(4)	170.0(1)
Al(4)-O(3)-Al(3)	128.0(1)	Si(8)-O(15)-Si(7)	132.2(1)
Al(1)-O(4)-Al(4)	132.4(1)	Si(8)-O(16)-Al(1)	144.0(1)

1.5 Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄•3 CH₃COOCH₂CH₃ <u>3</u>

Das gebildete Produkt <u>3</u> der Umsetzung des Alumopolysiloxans <u>1</u> mit Essigsäureethylester weist wieder die ursprüngliche Gerüststruktur der Ausgangsverbindung <u>1</u> auf. Es handelt sich dabei um ein System aus insgesamt fünf annelierten Achtringeinheiten, die aus einem zentralen achtgliedrigen Al₄O₄-Kern bestehen, an dessen Kanten O-SiPh₂-O-SiPh₂-O – Ketten gebunden sind und somit die vier weiteren Achtringeinheiten bilden.

Insgesamt ergibt sich eine C_1 -Symmetrie für diese Verbindung, in der drei Moleküle des Essigsäureethylesters an der Alumopolysiloxaneinheit Platz finden und über Wasserstoffbrückenbindungen an den zentralen Al₄O₄-Kern koordinieren können (Abb. 19).

Abb. 19: Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 3 CH₃COOCH₂CH₃ <u>3</u>

Zwei Moleküle Essigsäureethylester koordinieren an einer Seite bezüglich der Al₄O₄-Ebene, wobei wegen des sterischen Anspruches dieser zwei Liganden die Siloxanflügel dieser Seite ein wenig verdrillt werden. Die Polyederdarstellung des erhaltenen Produkts ist in Abb. 20 abgebildet. Hier ist zu erkennen, dass die gebildeten Tetraeder der Sauerstoffatome um die Siliziumatome der Siloxanketten an der Seite mit einem Liganden am Alumopolysiloxan annähernd symmetrisch ausgerichtet sind und die Tetraeder der restlichen Siloxanketten zueinander leicht verdrillt vorliegen.

Abb. 20: Polyederdarstellung der Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 3 CH₃COOCH₂CH₃ <u>3</u>, mit ausgewählten Phenylgruppen

In Abb. 20 sind ausgewählte Phenylgruppen hervorgehoben, die an die Siliziumatome der Seite des Alumopolysiloxans gebunden sind, an der eine stärkere Verdrillung der Siloxanketten zu beobachten ist. Zwei Phenylgruppen an den Siliziumatomen Si4 und Si8 sind bis zur gegenüberliegenden Seite verschoben worden, an der lediglich ein Ligand koordiniert. Dadurch rücken die Si4 und Si8-Atome nach außen und zusammen mit den Phenylgruppen der Siliziumatome Si3 und Si7, die ein wenig zwischen die zwei Ligandmoleküle geschoben werden, resultiert die Verdrillung dieser Siloxanflügel. Eine Aufstellung der Winkel von den besten Ebenen zwischen dem Al₄O₄-Ring und den Siloxanketten weist für die Kette mit den Siliziumatomen Si3 und Si4 einen Wert von 139,5° auf. Die Winkel der gegenüberliegenden Siloxankette mit den Siloxankette mit den Si7 und Si8-Atomen dieser Seite beträgt 135,4°.

Oberhalb der Al₄(OH)₄-Ebene an der ein Essigsäureethylestermolekül koordiniert, werden die Siloxanbrücken kaum verdrillt, so dass man hier für die Winkel zwischen den besten Ebenen von Al₄O₄ und den Siloxanflügeln mit den Si6 und Si5 Atomen einen Wert von 139,0°erhält, sowie für die gegenüberliegende Siloxankette mit den Si1 und Si2 Atomen einen Wert von lediglich 130,9°.

Abb. 21: Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 3 CH₃COOCH₂CH₃ <u>3</u>, zur besseren Übersicht ohne Phenylgruppen der Siloxanketten

Im Gegensatz zu den bisher bekannten Strukturen des Alumopolysiloxans mit drei Ligandmolekülen, bei denen eine Hydroxylgruppe des Alumopolysiloxans stets unkoordiniert vorliegt, bleibt bei dieser Verbindung die vierte Hydroxylgruppe nicht unbesetzt. In diesem Fall besetzt der eingesetzte Ligand die Mitte der Al₄O₄-Ebene und es kann erstmals beobachtet werden, wie ein Ligand gleichzeitig an beide Hydroxylgruppen des Alumopolysiloxans koordiniert.

Die Längen der Wasserstoffbrückenbindungen weisen Werte von 2,650(1) Å für O2^{...}O17 beziehungsweise 2,675(1) Å für O4^{...}O17 auf und liegen somit im Bereich von relativ starken Wasserstoffbrückenbindungen.

Die O^{...}H^{...}O Bindungsabstände der Wasserstoffbrückenbindungen zwischen der Alumopolysiloxaneinheit und den Essigsäureethylestermolekülen auf der Seite, an der zwei Liganden koordinieren, sind mit 2,619(1) Å für O3^{...}O21 und 2,640(1) Å für O1^{...}O19 kürzer als die Bindungslängen des gegenüberliegenden Liganden und liegen im selben Bereich der Bindungsabstände, die bereits bei der Koordination von Aceton, *tert*-Butanol und 1,6-Hexandiolmolekülen mit gemittelten Bindungslängen von 2,623(6) Å beobachtet wurden ^{80,81,97,74,75}.

Im Vergleich zu Verbindung **2** bei der ebenfalls drei Ligandmoleküle am Alumopolysiloxan koordinieren und ein mittlerer Al-O Bindungsabstand von 1,787(1) Å um die von den Pyrazinmolekülen koordinierten Hydroxylgruppen erhalten wird, betragen die Al-O Bindungsabstände des Al₄O₄-Kerns von **3** im Mittel 1,796(2) Å. Die längeren Al-O Bindungsabstände von **3** spiegeln die geringere Protonenaffinität des Essigsäurethylesters (PA = 835,7 KJ/mol) im Vergleich zum Pyrazin (PA = 877,1 KJ/mol) wider. Zudem ist zu erkennen, dass auf der Seite, an der ein Ligand koordiniert die Al-O Bindungslängen des inneren Al₄O₄-Ringes mit einem Mittelwert von 1,800(2) Å etwas länger sind als die Al-O Bindungsabstände der Seite, an die zwei Liganden koordinieren und einen Mittelwert von 1,792(2) Å aufweisen. Die beobachteten Al-O Bindungsabstände liegen im selben Bereich, der für Liganden beobachtet wurde, die allgemein über Sauerstoffatome an die Hydroxylgruppen der Alumopolysiloxaneinheit koordinieren. Im Fall des Acetons als koordinierendes Molekül konnte ein mittlerer Al-O Bindungsabstand von 1,792(2) Å

1.6 Erhaltene Kristallstrukturdaten der Umsetzung von (Ph₂SiO)₈[AIO(OH)]₄ • 4 Et₂O mit 1,4-Diacetoxybutan <u>4</u>

Für die Einkristallröntgenstrukturanalyse der Reaktion von <u>1</u> mit 1,4-Diacetoxybutan konnten nach dem Einengen der Mutterlösung geeignete Kristalle erhalten und isoliert werden. Mittels direkter Methoden wurde die Struktur bestimmt in der alle Nichtwasserstoffatome gefunden wurden und anisotrop verfeinert werden konnten. Zur Berechnung der Lage der Wasserstoffatome wurden entsprechende idealisierte Geometrien verwendet. Nach Bestimmung der Gitterkonstanten und anschließender Verfeinerung der erhaltenen Daten konnte die trikline Raumgruppe P-1 bestimmt werden. Die Struktur besitzt einen Zuverlässigkeitsfaktor von 0,115, wobei der relativ hohe Wert auf die mäßige Kristallqualität der sehr kleinen Kristalle von Verbindung <u>4</u> zurückzuführen ist.

Die folgenden Tabellen enthalten die Werte der Kristalldaten, sowie ausgewählte Bindungsabstände und Winkel der Verbindung <u>4</u>.

Summenformel	C126 H128 Al4 O24 Si8	
Molmasse [g/mol]	2358.92	
Messtemperatur [K]	122(2)	
Wellenlänge [Å]	0.71073	
Kristallsystem	triklin	
Raumgruppe	P-1	
Gitterkonstanten	a = 14.9930(12) Å	$\alpha = 82.662(4)^{\circ}$
	b = 15.8662(14) Å	$\beta = 75.973(4)^{\circ}$
	c = 29.548(3) Å	$\gamma = 65.157(4)^\circ$
Zellvolumen [Å ³]	6185.6(9)	
Anzahl der Formeleinheiten Z	2	
Dichte (berechnet)[g/cm ³]	1.267	
Absorptionskoeffizient [mm ⁻¹]	0.184	
F(000)	2480	
Kristallabmessungen [mm ³]	0.62 x 0.30 x 0.04	
Messbereich θ [°]	1.41 to 26.71°	
hkl - Indexbereich	-18<=h<=18, -19<=k<=19, -3	7<=l<=37
Gemessene Reflexe	86574	
Symmetrieunabhängige Reflexe	24990 [R(int) = 0.0657]	
Vollständigkeit des Datensatzes (bis $\theta = 26.71^{\circ}$)	95.5 %	

Tabelle 5: Kristalldaten und Strukturverfeinerungen für (Ph₂SiO)₈[AlO(OH)]₄ • 2 CH₃COO(CH₂)₄OOCCH₃ <u>4</u>

Diskussion und Ergebnisse

Absorptionskorrektur	None
Max. und Min. Transmission	0.9925 and 0.8934
Strukturverfeinerungsmethode	Full-matrix least-squares on F^2
Daten / Einschränkungen / Parameter	24990 / 0 / 1411
Güte des Fit auf F ²	2.202
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.1145, wR2 = 0.2707
R-Werte (alle Daten)	R1 = 0.1820, wR2 = 0.3015
Restelektronendichte (min./max.) [e/Å-3]	1.499 and -1.095

Tabelle 6: Ausgewählte Bindungslängen [Å] und Winkel [°] für $(Ph_2SiO)_8[AlO(OH)]_4 \bullet$ 2 CH₃COO(CH₂)₄OOCCH₃

Al(1)-O(5)	1.702(4)	Si(1)-O(5)	1.598(4)
Al(1)-O(16)	1.705(4)	Si(1)-O(6)	1.626(5)
Al(1)-O(4)	1.787(4)	Si(2)-O(7)	1.593(4)
Al(1)-O(1)	1.799(4)	Si(2)-O(6)	1.632(5)
Al(2)-O(7)	1.697(4)	Si(3)-O(8)	1.593(4)
Al(2)-O(8)	1.702(4)	Si(3)-O(9)	1.630(4)
Al(2)-O(2)	1.797(4)	Si(4)-O(10)	1.600(3)
Al(2)-O(1)	1.798(4)	Si(4)-O(9)	1.637(3)
Al(3)-O(11)	1.689(3)	Si(5)-O(11)	1.595(4)
Al(3)-O(10)	1.689(3)	Si(5)-O(12)	1.635(4)
Al(3)-O(2)	1.785(4)	Si(6)-O(13)	1.601(3)
Al(3)-O(3)	1.792(3)	Si(6)-O(12)	1.639(4)
Al(4)-O(13)	1.698(3)	Si(7)-O(14)	1.606(4)
Al(4)-O(14)	1.698(4)	Si(7)-O(15)	1.635(3)
Al(4)-O(3)	1.789(3)	Si(8)-O(16)	1.600(4)
Al(4)-O(4)	1.796(4)	Si(8)-O(15)	1.627(4)
O(5)-Al(1)-O(16)	117.4(2)	O(7)-Al(2)-O(1)	110.2(2)
O(5)-Al(1)-O(4)	108.8(2)	O(8)-Al(2)-O(1)	103.6(2)
O(16)-Al(1)-O(4)	110.5(2)	O(2)-Al(2)-O(1)	108.0(2)
O(5)-Al(1)-O(1)	109.6(2)	O(11)-Al(3)-O(10)	116.9(2)
O(16)-Al(1)-O(1)	106.9(2)	O(11)-Al(3)-O(2)	107.2(2)
O(4)-Al(1)-O(1)	102.7(2)	O(10)-Al(3)-O(2)	110.6(2)
O(7)-Al(2)-O(8)	119.9(2)	O(11)-Al(3)-O(3)	110.9(2)
O(7)-Al(2)-O(2)	104.1(2)	O(10)-Al(3)-O(3)	108.7(2)
O(8)-Al(2)-O(2)	110.7(2)	O(2)-Al(3)-O(3)	101.6(2)

O(13)-Al(4)-O(14)	118.5(2)	Al(3)-O(2)-Al(2)	132.1(2)
O(13)-Al(4)-O(3)	110.1(2)	Al(4)-O(3)-Al(3)	132.0(2)
O(14)-Al(4)-O(3)	105.1(2)	Al(1)-O(4)-Al(4)	133.1(2)
O(13)-Al(4)-O(4)	104.4(2)	Si(1)-O(5)-Al(1)	159.8(3)
O(14)-Al(4)-O(4)	112.0(2)	Si(1)-O(6)-Si(2)	144.7(2)
O(3)-Al(4)-O(4)	106.4(2)	Si(2)-O(7)-Al(2)	158.8(3)
O(5)-Si(1)-O(6)	114.1(2)	Si(3)-O(8)-Al(2)	158.2(2)
O(7)-Si(2)-O(6)	110.5(2)	Si(3)-O(9)-Si(4)	141.8(2)
O(8)-Si(3)-O(9)	111.3(2)	Si(4)-O(10)-Al(3)	162.6(3)
O(10)-Si(4)-O(9)	111.6(2)	Si(5)-O(11)-Al(3)	163.5(3)
O(11)-Si(5)-O(12)	110.6(2)	Si(5)-O(12)-Si(6)	137.1(2)
O(13)-Si(6)-O(12)	110.5(2)	Si(6)-O(13)-Al(4)	156.6(2)
O(14)-Si(7)-O(15)	110.1(2)	Si(7)-O(14)-Al(4)	160.8(2)
O(16)-Si(8)-O(15)	113.1(2)	Si(8)-O(15)-Si(7)	141.8(2)
Al(2)-O(1)-Al(1)	132.9(2)	Si(8)-O(16)-Al(1)	154.0(2)

1.7 Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 2 CH₃COO(CH₂)₄OOCCH₃ <u>4</u>

Bei der Reaktion der Startverbindung 1 mit 1,4-Diacetoxybutan in Toluol wird das in Abb. 22 abgebildete Produkt 4 gebildet, in dem die ursprüngliche Skelettstruktur des Edukts 1 wieder unverändert vorliegt. Zwei Moleküle 1,4-Diacetoxybutan koordinieren mittels Wasserstoffbrückenbindungen an die Hydroxylgruppen des Alumopolysiloxans. Dabei bilden 1,4-Diacetoxybutanmolekül jeweils zwei Carbonylgruppen eine pro Wasserstoffbrückenbindung mit dem Alumopolysiloxan aus, wodurch eine intramolekulare Koordination der Liganden an den Polyzyklus entsteht.

Die Phenylgruppen an den Siliziumatomen der sich gegenüberliegenden Siloxanflügel richten sich räumlich parallel zueinander aus. Somit werden die Liganden zwischen die Phenylgruppen eingebettet und besitzen genügend Platz um an zwei Hydroxylgruppen des Al₄O₄-Rings intramolekular zu koordinieren. Die gegenüberliegende Seite der Al₄O₄-Ebene wird auf dieselbe Weise von einem 1,4-Diacetoxybutanmolekül koordiniert. Insgesamt fungieren zwei Diacetoxybutanmoleküle als zweizähnige Liganden, wodurch alle koordinativen Zentren des Alumopolysiloxan abgesättigt werden und die gesamte Molekülstruktur eine C₁-Symmetrie aufweist, da die Ligandmoleküle aufgrund ihrer Kettenlänge nicht symmetrisch ans Alumopolysiloxan koordinieren (Abb. 22).

Abb. 22: Molekülstruktur von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 CH_3COO(CH_2)_4OOCCH_3 \underline{4}$ (ohne Wasserstoffatome)

Die mittleren Bindungslängen der Wasserstoffbrückenbindungen betragen für die Carbonylgruppen des 1,4-Diacetoxybutanmoleküls jeweils 2,57(1) Å (2,575(1) Å für O4^{...}H^{...}O24 und 2,560(1) Å für O3^{...}H^{...}O17) und die zweiten Carbonylgruppen dieses Liganden weisen im Mittel etwas längere Bindungsabstände der Wasserstoffbrückenbindung von 2,64(1) Å auf (2,636(1) Å für O²...H^{...}O²1 und 2,649(1) Å für O¹...H^{...}O²0) (Abb. 23). Die unterschiedlichen Bindungsabstände der Wasserstoffbrückenbindungen für die zwei Carbonylgruppen 1,4-Diacetoxybutanmoleküle spiegeln der deren Lage am Alumopolysiloxan wider, in der eine Carbonylgruppe des Liganden aufgrund der Kettenlänge von vier Kohlenwasserstoffatomen etwas weiter von den Hydroxylgruppen am Alumopolysiloxan entfernt ist.

Diese erhaltenen Abstände der Wasserstoffbrückenbindungen von Verbindung <u>4</u> sind mit einem Mittelwert von 2,605(1) Å ein wenig kürzer als die Abstände, die bereits mit Essigsäureethylestermolekülen als koordinierende Einheiten beobachtet wurden und Bindungslängen der Wasserstoffbrückenbindungen zwischen 2,62 Å und 2,67 Å aufwiesen. Im Fall der Struktur mit vier Acetonmolekülen an der Alumopolysiloxaneinheit beträgt der Bindungsabstand für die Wasserstoffbrückenbindungen 2,627(6) Å ^{72-75,98}. Des Weiteren ist bei den Alkoholen 1,6-Hexandiol und *tert*-Butanol ein Bindungsabstand der Wasserstoffbrückenbindungen von 2,622(2) Å zu finden ⁷⁴.

Abb. 23: Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 2 CH₃COO(CH₂)₄OOCCH₃ <u>4</u>, ohne Phenylgruppen an den Siliziumatomen, sowie ohne Wasserstoffatome

Die Al-O Bindungsabstände des zentralen Al₄O₄-Rings betragen im Mittel 1,793(4) Å, wenn 1,4-Diacetoxybutanmoleküle an der Alumopolysiloxaneinheit koordinieren. Der Al-O Abstand, der mit Essigsäureethylester als Ligand erhalten wurde liegt mit 1,796(2) Å im selben Bereich. Auch die Struktur mit vier Acetonmolekülen am Alumopolysiloxan weist im Mittel Al-O Bindungslängen von 1,792(2) Å auf und ist der koordinierende Ligand Diethylether oder 1,6-Hexandiol, so wird eine Al-O Bindungslänge von 1,796(3) Å bzw. 1,798(3) Å beobachtet. Eine Al-O Bindungslänge von 1,805(2) Å wird erhalten, wenn *tert*-Butanol als Ligand fungiert ^{75,98}.

In Abb. 24 ist eine Polyederdarstellung von Verbindung <u>4</u> abgebildet, in der sehr schön die hohe Symmetrie des zentralen Al₄O₄-Kerns, als auch der Siloxanketten dieser Struktureinheit zu sehen ist, die eine annähernde S₄-Symmetrie bilden. Auch die Phenylgruppen der Siloxanflügel sind in diesem Produkt einheitlich angeordnet und eröffnen den Ligandmolekülen eine Art Kanal, wodurch diese genügend Freiraum finden, um intramolekular an der Alumopolysiloxaneinheit zu koordinieren.

Abb. 24: Polyederdarstellung von $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 CH_3COO(CH_2)_4OOCCH_3 <u>4</u> (ohne Wasserstoffatome)$

Eine Variation der Alumopolysiloxan koordinierenden am Liganden führt zu unterschiedlichen Produkten, in denen die Liganden über eine Wasserstoffbrückenbindung an das Alumopolysiloxan binden. Pyrazin und Essigsäureethylester koordinieren mit jeweils drei Molekülen über Wasserstoffbrückenbindungen am Alumopolysiloxan, während 1,4-Diacetoxybutan als mehrzähniger Ligand mit zwei funktionellen Gruppen intramolekulare Wasserstoffbrückenbindungen mit dem Alumopolysiloxan eingeht und somit alle vier koordinativen Zentren absättigt. Die bisher diskutierten Kristallstrukturen von $\underline{2}$, $\underline{3}$ und $\underline{4}$ stellen alle Molekül-Cluster dar, die untereinander keine weiteren Wechselwirkungen außer den Van der Waals Kräften aufweisen.

2 Eindimensionale, kettenartige, lineare Strukturen des Alumopolysiloxans (Ph₂SiO)₈[AlO(OH)]₄

Neben den bisher diskutierten Strukturen von $(Ph_2SiO)_8[AlO(OH)]_4$ mit den Liganden Pyrazin, Essigsäureethylester oder 1,4-Diacetoxybutan, die als molekulare Struktureinheiten vorliegen, ist es auch möglich, dieses Alumopolysiloxan zielgerichtet in der Art zu verknüpfen, dass eindimensionale Stränge ausgebildet werden.

Möchte man eindimensionale, lineare Strukturen mit dem Alumopolysiloxan darstellen, so können die zweizähnigen Liganden 1,6-Hexandiol oder 4,4'-Bipyridin eingesetzt werden. Im Falle des 1,6-Hexandiol wird die Verbindung (Ph₂SiO)₈[AlO(OH)]₄ • 2 HO(CH₂)₆OH 5 isoliert, bei der sowohl eine intramolekulare als auch eine intermolekulare Koordination der Liganden über Wasserstoffbrückenbindungen an die Alumopolysiloxaneinheit zu beobachten Es bildet sich in diesem Fall eine Kette verbundener ist. miteinander Alumopolysiloxaneinheiten aus, die parallel zur Al₄O₄-Ebene verläuft. Im gebildeten Produkt 5 koordiniert ein 1,6-Hexandiolmolekül über Wasserstoffbrückenbindungen intramolekular an zwei Hydroxylgruppen eines Alumopolysiloxans und ein weiteres 1,6-Hexandiolmolekül verbindet intermolekular zwei Alumopolysiloxaneinheiten miteinander 72-75,98.

Eine weitere linear aufgebaute Verbindung kann erhalten werden, indem 4,4'-Bipyridin als Ligand eingesetzt wird. Im Gegensatz zur erhaltenen Struktur mit 1,6-Hexandiol als Ligand, wird nun die Verbindung $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 p-(C_5H_4N)_2 \underline{6}$ erhalten, in der die Alumopolysiloxaneinheiten durch eine weitere Verknüpfungsart miteinander verbunden werden (Abb. 25).

Abb. 25: Bildung linearer Strukturen des Alumopolysiloxan (Ph₂SiO)₈[AlO(OH)]₄ mit den Liganden 1,6-Hexandiol und 4,4⁻-Bipyridin

2.1 Synthese und Charakterisierung von (Ph₂SiO)₈[AlO(OH)]₄ • 2 p-(C₅H₄N)₂ <u>6</u>

Die Darstellung von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 p-(C_5H_4N)_2 \underline{6}$ erfolgt in Diethylether als Reaktionsmedium. Zunächst wird 4,4'-Bipyridin in Diethylether gelöst und bei Raumtemperatur zu einer Suspension der Ausgangsverbindung <u>1</u> in Diethylether getropft. Danach wird die Reaktionsmischung für 20 Stunden bei Raumtemperatur gerührt und der Niederschlag abfiltriert. Eine anschließende Umkristallisation aus Tetrahydrofuran liefert das Produkt <u>6</u> mit einer Ausbeute von 90 % (Gleichung 9).

Gleichung 9: Darstellung von (Ph₂SiO)₈[AlO(OH)]₄ • 2 p-(C₅H₄N)₂ 6

Die in Tetrahydrofuran gelöste Verbindung <u>6</u> zeigt im ¹³C-NMR-Spektrum die charakteristischen Signale der Phenylgruppen des Alumopolysiloxans bei den chemischen Verschiebungen von 127,4 ppm, 127,5 ppm, 129,1 ppm, 134,8 ppm, 134,9 ppm, 138,9 ppm, 139,4 ppm. Weiterhin zeigt dieses Spektrum drei weitere Signale bei den chemischen Verschiebungen von 121,6 ppm, 145,9 ppm und 149,8 ppm, die dem 4,4'-Bipyridin zugeordnet werden können. Wenn der Ligand in Tetrahydrofuran gelöst vorliegt, so werden im ¹³C-NMR-Spektrum Signale bei den chemischen Verschiebungen von 121,6 ppm, 145,9 ppm und 149,8 ppm, die dem 4,4'-Bipyridin zugeordnet werden können. Wenn der Ligand in Tetrahydrofuran gelöst vorliegt, so werden im ¹³C-NMR-Spektrum Signale bei den chemischen Verschiebungen von 121,6 ppm, 145,9 ppm und 151,1 ppm beobachtet. Koordiniert der Ligand an das Alumopolysiloxan, so ergibt sich für das am Stickstoffatom befindliche C-Atom eine Hochfeldverschiebung von ca. 1,3 ppm. Das aufgenommene ²⁹Si-NMR-Spektrum zeigt ein Signal bei der chemischen Verschiebung von -45,8 ppm, weshalb eine hohe Symmetrie der Verbindung <u>6</u> zu erwarten ist.

Mittels diffuser Reflexion aufgenommene IR-Spektren der mit KBr verriebenen Feststoffe von der Ausgangsverbindung <u>1</u>, des Produkts <u>5</u> mit 1,6-Hexandiol als Liganden und der erhaltenen Verbindung <u>6</u> mit koordinierenden 4,4'-Bipyridinmolekülen, sind in Abb. 26 wiedergegeben. Im Bereich der Wellenzahlen zwischen 3500 cm⁻¹ und 3700 cm⁻¹ kann man sowohl für die Ausgangsverbindung <u>1</u> als auch für die Umsetzung von <u>1</u> mit 1,6-Hexandiol OH-Schwingungsbanden beobachten, wobei die OH-Schwingungen der Verbindung <u>5</u> ein wenig zu kürzeren Wellenzahlen verschoben werden ⁹⁸. Ist 4,4'-Bipyridin als Ligand

eingesetzt worden, sind im erhaltenen Produkt <u>6</u> keine OH-Schwingungen mehr im Bereich von 3500 cm⁻¹ bis 3700 cm⁻¹ zu beobachten. Auch eine NH-Valenzschwingung fehlt im Bereich von 3200 cm⁻¹ bis 3700 cm⁻¹. Wahrscheinlich liegt das Proton der gebildeten Wasserstoffbrückenbindung näher am Stickstoffatom (O⁻ ··· H-N⁺), wodurch eine NH⁺ Schwingungsbande entsteht und die zu erwartende IR-Schwingungsbande zu niedrigeren Wellenlängen verschoben wird. Diese Schwingungsbanden liegen nun unter den CH-Valenzschwingungen und können daher nicht eindeutig bestimmt werden. Außerdem zeigen die aufgenommenen IR-Spektren, dass die Schwingungsbanden bei 2978 cm⁻¹, die von Diethylethermolekülen der Ausgangsverbindung <u>1</u> stammen, in den IR-Spektren der Verbindungen <u>5</u> und <u>6</u> nicht mehr zu beobachten sind. Alle Diethylethermoleküle sind in den erhaltenen Verbindungen <u>5</u> und <u>6</u> durch Ligandmoleküle substituiert, wie sich einfach aus den IR- und NMR-Spektren ablesen lässt.

Abb. 26: IR-Spektren der Umsetzungen des Alumopolysiloxan $\underline{1}$ mit 1,6-Hexandiol $\underline{5}$ bzw. 4,4'-Bipyridin $\underline{6}$

2.2 Erhaltene Kristallstrukturdaten der Umsetzung von (Ph₂SiO)₈[AlO(OH)]₄ • 4 Et₂O mit 4,4⁻-Bipyridin <u>6</u>

Für die Röntgenstrukturuntersuchung geeignete Kristalle der Reaktion von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 Et_2O$ mit vier Äquivalenten 4,4'-Bipyridin konnten durch Umkristallisation aus Tetrahydrofuran erhalten werden. Ein Kristall wurde entnommen und einer Röntgenkristallstrukturanalyse unterworfen. Nach Bestimmung und Verfeinerung der Gitterkonstanten ergab sich die monokline Raumgruppe P2₁/n. Es konnten alle Nichtwasserstoffatome gefunden werden, die dann anisotrop verfeinert wurden. Zur Berechnung der Lagen der Wasserstoffatome wurden die entsprechenden idealisierten Geometrien verwendet. Der Zuverlässigkeitsfaktor erreicht einen Wert von $R_1 = 0,148$, da nur sehr kleine Kristalle erhalten wurden, die für eine Röntgenstrukturuntersuchung geeignet waren. Die nachfolgenden Tabellen listen die Kristalldaten, sowie ausgewählte Bindungsabstände und Winkel der Verbindung 6 auf.

Tabelle 7: Kristalldaten und Strukturverfeinerungen für $(Ph_2SiO)_8[AIO(OH)]_4 \cdot 2 p - (C_5H_4N)_2O \cdot 2 OC_4H_8$ ($\underline{6} \cdot 2 THF$)

Summenformel	C124 H116 Al4 N4 O18 Si8	
Molmasse [g/mol]	2282.85	
Messtemperatur [K]	152(2)	
Wellenlänge [Å]	0.71073	
Kristallsystem	monoklin	
Raumgruppe	P2(1)/n	
Gitterkonstanten	a = 19.7834(10) Å	$\alpha = 90^{\circ}$
	b = 28.4484(17) Å	$\beta = 101.813(2)^{\circ}$
	c = 23.5490(9) Å	$\gamma = 90^\circ$
Zellvolumen [Å ³]	12972.8(11)	
Anzahl der Formeleinheiten Z	4	
Dichte (berechnet) [g/cm ³]	1.169	
Absorptionskoeffizient [mm ⁻¹]	0.171	
F(000)	4784	
Kristallabmessungen [mm ³]	0.58 x 0.14 x 0.06	
Messbereich θ [°]	1.14 to 26.38	
hkl - Indexbereich	-24<=h<=24, -29<=k<=35, -27<=l<=29	
Gemessene Reflexe	74782	
Symmetrieunabhängige Reflexe	26337 [R(int) = 0.1213]	
Vollständigkeit des Datensatzes (bis $\theta = 26.38^{\circ}$)	99.2 %	

Absorptionskorrektur	Multiscan
Max. und Min. Transmission	0.9901 and 0.9073
Strukturverfeinerungsmethode	Full-matrix least-squares on F ²
Daten / Einschränkungen / Parameter	26337 / 0 / 1299
Güte des Fit auf F ²	1.885
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.1479, wR2 = 0.3302
R-Werte (alle Daten)	R1 = 0.2942, wR2 = 0.3562
Restelektronendichte (min./max.) [e/Å-3]	1.199 and -0.610

Tabelle 8: Ausgewählte Bindungslängen [Å] und Winkel [°] für (Ph₂SiO)₈[AlO(OH)]₄ • 2 p-(C₅H₄N)₂

Al(1)-O(5)	1.711(6)	Si(1)-O(5)	1.599(6)
Al(1)-O(16)	1.723(6)	Si(1)-O(6)	1.622(7)
Al(1)-O(1)	1.782(6)	Si(2)-O(7)	1.617(6)
Al(1)-O(4)	1.791(6)	Si(2)-O(6)	1.640(7)
Al(2)-O(7)	1.705(6)	Si(3)-O(8)	1.597(6)
Al(2)-O(8)	1.704(6)	Si(3)-O(9)	1.649(6)
Al(2)-O(2)	1.778(5)	Si(4)-O(10)	1.601(6)
Al(2)-O(1)	1.790(6)	Si(4)-O(9)	1.630(6)
Al(3)-O(10)	1.693(6)	Si(5)-O(11)	1.576(6)
Al(3)-O(11)	1.726(6)	Si(5)-O(12)	1.618(8)
Al(3)-O(3)	1.784(6)	Si(6)-O(13)	1.606(6)
Al(3)-O(2)	1.791(6)	Si(6)-O(12)	1.631(8)
Al(4)-O(13)	1.717(6)	Si(7)-O(14)	1.598(6)
Al(4)-O(14)	1.722(6)	Si(7)-O(15)	1.616(8)
Al(4)-O(3)	1.778(6)	Si(8)-O(16)	1.592(6)
Al(4)-O(4)	1.785(6)	Si(8)-O(15)	1.634(8)
O(5)-Al(1)-O(16)	116.1(3)	Q(2)-Al(2)-Q(1)	102.7(3)
O(5)-Al(1)-O(1)	109.6(3)	O(10)-Al(3)-O(11)	119.5(3)
O(16)-Al(1)-O(1)	106.9(3)	O(10)-Al(3)-O(3)	106.6(3)
O(5)-Al(1)-O(4)	107.2(3)	O(11)-Al(3)-O(3)	109.5(3)
O(16)-Al(1)-O(4)	109.4(3)	O(10)-Al(3)-O(2)	109.0(3)
O(1)-Al(1)-O(4)	107.4(3)	O(11)-Al(3)-O(2)	104.6(3)
O(7)-Al(2)-O(8)	116.3(3)	O(3)-Al(3)-O(2)	107.2(3)
O(7)-Al(2)-O(2)	107.4(3)	O(13)-Al(4)-O(14)	114.4(3)
O(8)-Al(2)-O(2)	109.2(3)	O(13)-Al(4)-O(3)	109.4(3)
O(7)-Al(2)-O(1)	111.8(3)	O(14)-Al(4)-O(3)	107.7(3)
O(8)-Al(2)-O(1)	108.5(3)	O(13)-Al(4)-O(4)	111.6(3)

O(14)-Al(4)-O(4)	108.9(3)	Al(4)-O(4)-Al(1)	129.3(3)
O(3)-Al(4)-O(4)	104.4(3)	Si(1)-O(5)-Al(1)	143.6(4)
O(5)-Si(1)-O(6)	111.7(3)	Si(1)-O(6)-Si(2)	144.0(4)
O(7)-Si(2)-O(6)	112.2(3)	Si(2)-O(7)-Al(2)	148.4(4)
O(8)-Si(3)-O(9)	112.0(3)	Si(3)-O(8)-Al(2)	170.0(4)
O(10)-Si(4)-O(9)	110.5(3)	Si(4)-O(9)-Si(3)	140.2(4)
O(11)-Si(5)-O(12)	110.5(4)	Si(4)-O(10)-Al(3)	151.3(4)
O(13)-Si(6)-O(12)	113.1(4)	Si(5)-O(11)-Al(3)	151.2(4)
O(14)-Si(7)-O(15)	111.0(4)	Si(5)-O(12)-Si(6)	146.0(4)
O(16)-Si(8)-O(15)	110.5(3)	Si(6)-O(13)-Al(4)	148.6(4)
Al(1)-O(1)-Al(2)	128.8(3)	Si(7)-O(14)-Al(4)	139.9(4)
Al(2)-O(2)-Al(3)	127.1(3)	Si(7)-O(15)-Si(8)	148.6(5)
Al(4)-O(3)-Al(3)	130.0(3)	Si(8)-O(16)-Al(1)	151.4(4)

2.3 Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 2 p-(C₅H₄N)₂ 6

Die Umsetzung von (Ph₂SiO)₈[AlO(OH)]₄ • 4 Et₂O mit 4,4'-Bipyridin führt unter vollständiger Substitution aller Diethylethermoleküle von 1 zur Verbindung (Ph₂SiO)₈[AlO(OH)]₄• 2 p-(C_5H_4N)₂ **6**. An alle vier Hydroxylgruppen des inneren Al₄O₄-Kerns vom Alumopolysiloxan koordinieren über Wasserstoffbrückenbindungen 4,4⁻Bibyridinliganden mit ihren Stickstoffatomen. Da diese Liganden über weitere funktionelle Gruppen verfügen, können sie über diese mit einer weiteren Alumopolysiloxaneinheit eine zusätzliche Wasserstoffbrückenbindung ausbilden, wobei jedes 4,4'-Bipyridinmolekül als intermolekulare Brücke fungiert. Jede Seite bezüglich der inneren Al₄O₄-Ebene bildet mit jeweils zwei Liganden 4,4'-Bipyridin Wasserstoffbrückenbindungen aus, wodurch die Molekülstruktur eine annähernde C2-Symmetrie erhält, in der alle Koordinationszentren des Alumopolysiloxans besetzt werden (Abb. 27). Im Kristall befinden sich noch jeweils zwei weitere Tetrahydrofuranmoleküle pro Formeleinheit, die das van-der-Waals-Gitter auffüllen.

Abb. 27: Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 2 p-(C₅H₄N)₂ <u>6</u>, wegen einer besseren Übersicht ohne Wasserstoffatome der Kohlenstoffatome

Die 4,4'-Bipyridinmoleküle auf einer Seite der Al₄O₄-Ringebene richten sich annähernd parallel zueinander aus und werden von den Phenylgruppen der Siloxanketten umschlossen. In analoger Weise wird die gegenüberliegende Seite von den Liganden besetzt und die zentralen Al₄O₄-Ebenen der nächsten Alumopolysiloxaneinheiten sind zueinander leicht verdreht. Insgesamt ergibt sich somit eine eindimensionale, kettenartige Struktur von Alumopolysiloxaneinheiten welche eine 2_1 -Schraubenachse aufweist und die durch Wasserstoffbrückenbindungen mit den 4,4'-Bipyridineinheiten gebildet wird (Abb. 28).

Abb. 28: Ausschnitt der linearen Struktur von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 p \cdot (C_5H_4N)_2 \underline{6}$ (ohne H-Atome der Kohlenstoffatome)

Im Vergleich von 6 mit der gebildeten Struktur 5, bei der 1,6-Hexandiol als Ligand fungiert und eine eindimensionale lineare Struktur erhalten wurde, in der die Alumopolysiloxane mit jeweils einem Liganden miteinander verknüpft wurden, weist die Verbindung 6 eine senkrecht zur Al₄O₄-Ebene gebildete, kettenartige Struktur auf. Durch Bildung von Wasserstoffbrückenbindungen der Hydroxylgruppen des Alumopolysiloxans mit den 4,4'-Bipyridinmolekülen bilden jeweils zwei Ligandmoleküle eine doppelte Verknüpfung von zwei Alumopolysiloxanen. Die Al₄O₄-Ringebenen der Alumopolysiloxaneinheiten liegen in diesen Strukturen um 90° zueinander versetzt vor und bilden eine maschenartige Struktur aus (Abb. 28).

Die Vernetzung der Al₄O₄-Einheiten durch Wasserstoffbrückenbindungen mit den 4,4'-Bipyridinliganden führt zu einem inneren Strang aus Al₄O₄-Ringen, der nach außen durch

Diskussion und Ergebnisse

Phenylgruppen der Siloxanketten abgeschirmt wird. In Abb. 29 ist ein Strukturausschnitt der Verbindung <u>6</u> in Form eines Kalottenmodells abgebildet und es ist sehr gut zu erkennen, wie sich die Phenylgruppen um den zentralen Strang aus Al_4O_4 -Einheiten anordnen. Selbst die 4,4'-Bipyridinmoleküle werden durch die Phenylgruppen nach außen abgeschirmt.

Abb. 29: Strukturausschnitt der linearen Verbindung <u>6</u> als Kalottenmodell. Sicht entlang der linearen Struktur (oben) und seitliche Ansicht der gebildeten Kettenstruktur (unten).

Die Bindungsabstände der Wasserstoffbrückenbindungen betragen bei einem Liganden 2,624(1) Å für N1^{...}O1 und 2,648(1) Å für N2^{...}O4, die Bindungsabstände des zweiten Liganden sind auf beiden Seiten ein wenig kürzer und betragen 2,612(1) Å für N4^{...}O3 und 2,601(1) Å für N3^{...}O2 (Abb. 30). Insgesamt sind alle Bindungslängen der Wasserstoffbrückenbindungen mit einem Mittelwert von 2,621(1) Å länger, als diese bei Pyridin als Ligand mit 2,548(3) Å beobachtet wurden ⁹⁸. Bei Pyrazin als koordinierendem Molekül liegen dagegen mit 2,666(1) Å, 2,614(1) Å und 2,610(1) Å (Mittelwert = 2,63(3) Å) etwas längere Bindungsabstände als bei der Koordination von 4,4[']-Bipyridin vor.

Abb. 30: Ausschnitt der linearen Struktur von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 p \cdot (C_5H_4N)_2 \underline{6}$, zur besseren Übersicht wurden die Phenylgruppen der Siloxanflügel und die H-Atome am Kohlenstoff entfernt

Die Al-O Bindungsabstände des inneren Al₄O₄ - Kerns betragen im Mittel 1,785(6) Å. Sie liegen damit etwas über den Al-O Bindungslängen von Pyridin mit 1,768(2) Å und minimal unterhalb der Al-O Bindungslängen von Pyrazin, die mit 1,787(1) Å bei Koordination mit der Alumopolysiloxaneinheit beobachtet wurden ^{76,80,81}.

Dieser Verlauf der Al-O Bindungslängen spiegelt die Basenstärke der aufgeführten Basen wider. Pyridin mit einem pKa-Wert von 5,25^{76,80,81} stellt die stärkste dieser Basen dar und weist wie erwartet die kürzesten Al-O Bindungslängen auf, gefolgt von 4,4'-Bipyridin mit einem pKa-Wert von 4,8^{99,100} und Pyrazin bildet mit einem pKa-Wert von 0,6^{101,102} die längsten Al-O Bindungslängen mit dem Alumopolysiloxan.

Die relativ geringe Abweichung zwischen den Liganden 4,4´-Bipyridin und Pyrazin im Hinblick auf die Al-O Bindungslängen und den Abständen der Wasserstoffbrückenbindungen ist vermutlich auf sterische Faktoren zurückzuführen. Pyrazin koordiniert mit einem Stickstoffatom am Alumopolysiloxan und wird von den am Siliziumatom befindlichen Phenylgruppen umschlossen, wohingegen 4,4´-Bipyridin zwei Alumopolysiloxane miteinander verbindet und die Phenylgruppen sich Kelchförmig nach außen ausrichten. Daher kann der Ligand 4,4´-Bipyridin im Gegensatz zum Pyrazin nicht nah genug an den Al₄O₄-Kern des Alumopolysiloxans herankommen.

Im Vergleich mit den mittleren Al-O Bindungsabständen die bei der Koordination von Alkyldiaminen ans Alumopolysiloxan beobachtet wurden und mittlere Werte von 1,77(3) Å für zwei intramolekular verbrückende 1,3-Diaminopropanmoleküle, bzw. 1,78(2) Å für zwei

1,5-Diaminopentanliganden aufweisen, liegen die Bindungslängen des 4,4'-Bipyridins mit 1,785(6) Å im oberen Bereich dieser Bindungslängen. Man muss jedoch berücksichtigen, dass bei den Alkyldiaminen die beiden Brückenbildenden Liganden unterschiedlich stark am Alumopolysiloxan koordinieren. Ein intramolekular gebundener Ligand weist im Mittel Al-O Bindungslängen um 1,75(1) Å auf und der zweite Ligand besitzt mittlere Al-O Bindungslängen um 1,80(1) Å ¹⁰⁰.

Zudem wurde bei weiteren Verbindungen mit Alkyldiaminen am Alumopolysiloxan beobachtet, dass bei intramolekular und intermolekular koordinierenden Liganden die Al-O Bindungslängen eines intermolekular verknüpfenden Liganden stets etwas längere Bindungsabstände zeigen, als die intramolekular koordinierenden Moleküle. Bei 1,3-Diaminopropan und 1,4-Diaminobutan ergeben sich Al-O Bindungsabstände um die nicht intramolekular verbrückenden Liganden von 1,77(1) Å bis 1,81(1) Å und die Al-O Abstände um die intramolekular koordinierenden Liganden betragen 1,72(1) Å bis 1,75(1) Å ^{69,103}. Auch hier liegt der Abstand von der erhaltenen Verbindung <u>6</u> mit 1,785(6) Å im oberen Bereich der Bindungslängen, die bereits für die nicht intramolekular verbrückenden Alkyldiamine beobachtet wurde. Bei Koordination von 1,7-Diaminoheptan und 1,12-Diaminododekan, die keine intramolekular verbrückenden Liganden enthalten, wurden mittlere Al-O Bindungsabstände im Bereich von 1,76(1) Å ^{69,103} beobachtet, die ein wenig kürzer sind als die des Produkts <u>6</u>. Die etwas längeren Al-O Bindungsabstände des Produkts <u>6</u> im Vergleich zu den Alkyldiaminen als Liganden stehen im Einklang mit der geringeren Basenstärke des 4,4'-Bipyridins mit einem pKa-Wert von 4,8¹⁰³ im Vergleich zu den aliphatischen Aminen, deren typische pKa-Werte um 10 liegen ^{101,102}.

Die Winkel zwischen der Al₄O₄-Ebene und den Disiloxanketten sind stark aufgeweitet und betragen 148,5° für den Winkel der besten Ebenen zwischen dem Al₄O₄-Ring und dem Siloxyflügel O-Ph₂Si1-O-Si2Ph₂-O, 147,4° für O-Ph₂Si5-O-Si6Ph₂-O, sowie 147,2° für O-Ph₂Si7-O-Si8Ph₂-O. Den kleinsten Winkel von 141,0° erhält man zwischen der Al₄O₄-Ringebene und dem Siloxyflügel mit den Si3 und Si4 Atomen. Die stark aufgeweiteten Winkel ermöglichen die Koordination von zwei Liganden 4,4'-Bipyridin an jeder Seite dieser Ebene. Abb. 31 zeigt die Anordnung der Alumopolysiloxaneinheiten im Kristall in Richtung der 2_1 -Schraubenachse. Es ist zu erkennen, dass die Alumopolysiloxaneinheiten der Verbindung <u>6</u> in Achsrichtung eine Translationssymmetrie aufweisen und dass sich die identischen Alumopolysiloxanketten parallel zueinander ausrichten, so dass die Hohlräume zwischen den Kettensträngen durch weitere Tetrahydrofuranmoleküle besetzt werden können.

Abb. 31: Sicht entlang der linearen Schraubenachsen von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 p-(C_5H_4N)_2$ <u>6</u> (ohne Phenylgruppen der Si-Atome)

3 Zweidimensionale Schichtstrukturen des Alumopolysiloxans (Ph₂SiO)₈[AIO(OH)]₄

Es konnte bisher gezeigt werden, dass das Alumopolysiloxan <u>6</u> mit dem Liganden 4,4'-Bipyridin mittels Wasserstoffbrückenbindungen lineare Strukturen bildet. Wird nun eine Azogruppe in 4,4'-Bipyridin insertiert, erhält man 4,4'-Azobipyridin. Mit diesem und dem isomeren Liganden 3,3'-Azobipyridin können schließlich die Verbindungen <u>7</u> und <u>8</u> dargestellt werden, die eine zweidimensionale Schichtstruktur aufweisen, wobei die Alumopolysiloxane wieder durch Wasserstoffbrückenbindungen mit den eingesetzten Liganden miteinander verknüpft werden. Ausschnitte der erhaltenen Schichtstrukturen mit den Liganden 4,4'Azobipyridin und 3,3'-Azobipyridin, die das Alumopolysiloxan auf zwei verschiedene Arten miteinander verknüpfen, sind in Abb. 32 dargestellt. Der besseren Übersicht wegen sind lediglich die Al₄O₄ – Kerne der Alumopolysiloxane und die 4,4'-Azobipyridinmoleküle beziehungsweise 3,3'-Azobipyridinmoleküle abgebildet.

Abb. 32: Schematische Ansicht der Bildung von Schichtstrukturen des Alumopolysiloxans (Ph₂SiO)₈[AlO(OH)]₄ mit den Liganden 4,4´-Azobipyridin (linke Abbildung) und 3,3´-Azobipyridin (rechte Abbildung)

3.1 Synthese und Charakterisierung von $(Ph_2SiO)_8[AIO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O \underline{7}$ und $(Ph_2SiO)_8[AIO(OH)]_4 \bullet 2 m-(C_5H_4N)_2N_2 \underline{8}$

Die Darstellung von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 1,5 p-(C_5H_4N)_2N_2 \cdot C_4H_8O \underline{7}$ sowie von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 m-(C_5H_4N)_2N_2 \underline{8}$ erfolgt durch Zugabe von 4,4'-Azobipyridin beziehungsweise von 3,3'-Azobipyridin zur Ausgangsverbindung $\underline{1}$ in Toluol als Reaktionsmedium. Um sicherzustellen, dass alle vier OH-Zentren des Alumopolysiloxans eine koordinative Bindung mit den Azobipyridinmolekülen eingehen können, erfolgen die Reaktionen jeweils in vierfachem molarem Überschuss an Liganden, wobei sich ein orange-roter Niederschlag bei Produkt $\underline{7}$, beziehungsweise ein orangefarbener Feststoff bei Verbindung $\underline{8}$ bildet, der abfiltriert und am Hochvakuum getrocknet wird (Abb. 33).

Abb. 33: Darstellung von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 1,5 \text{ p-}(C_5H_4N)_2N_2 \cdot C_4H_8O \underline{7}$ und $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 \text{ m-}(C_5H_4N)_2N_2 \underline{8}$

In den Addukten <u>7</u> und <u>8</u> ist die Anzahl der Stickstoffbasen kleiner als vier, wobei das Produkt <u>7</u> 1,5 Basenmoleküle pro $(Ph_2SiO)_8[AlO(OH)]_4$ aufweist im Gegensatz zu den zwei Basenmolekülen der Verbindung <u>8</u>. Für die NMR-spektroskopischen Untersuchungen wird der gebildete Niederschlag von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 1,5$ p- $(C_5H_4N)_2N_2 \cdot C_4H_8O$ <u>7</u> in Tetrahydrofuran gelöst. Das erhaltene ¹H-NMR-Spektrum weist ein Multiplett bei den chemischen Verschiebungen von 6,94 ppm bis 7,21 ppm und 7,45 ppm bis 7,48 ppm auf, welche den Phenylgruppen der Alumopolysiloxaneinheit zuzuordnen sind. Des Weiteren ist ein Dublett bei der chemischen Verschiebung von 8,55 ppm bis 8,57 ppm zu beobachten, welches den Protonen der Liganden 4,4'-Azobipyridin zugeordnet werden können. Das zweite Dublett des Liganden liegt unter den Signalen der Multipletts der Phenylgruppen und kann daher nicht eindeutig zugeordnet werden. Die ¹³C-NMR-spektroskopischen Untersuchungen zeigen drei Signale bei 116,4 ppm, 151,5 ppm und 157,1 ppm, die eindeutig den 4,4'-Azobipyridinliganden zuzuordnen sind. Weiterhin zeigt dieses Spektrum charakteristische Signale bei den chemischen Verschiebungen von 127,5 ppm, 129,2 ppm, 134,8 ppm - 134,9 ppm, 138,6 ppm und 139,2 ppm. Diese Signale stammen von den Phenylgruppen am Alumopolysiloxan. Das ²⁹Si-NMR-Spektrum zeigt ein Signal bei der chemischen Verschiebung von - 45,9 ppm. Nachfolgende Röntgenstrukturuntersuchungen haben gezeigt, dass aufgrund der geringeren Beweglichkeit der Liganden im gebildeten Kristall, eine geringere Symmetrie der Verbindung <u>7</u> im Feststoff vorliegt.

Für die NMR-spektroskopischen Untersuchungen von (Ph₂SiO)₈[AlO(OH)]₄ • 2 m-(C₅H₄N)₂N₂ 8 wurde der erhaltene Feststoff in Tetrahydrofuran gelöst. Das ¹³C-NMR-Spektrum zeigt im aromatischen Bereich bei den chemischen Verschiebungen von 126 ppm bis 140 ppm die charakteristischen acht Signale der Phenylgruppen der Siloxanketten auf. Weiterhin tauchen Signale bei den chemischen Verschiebungen von 147,6 ppm, 148,2 ppm und 152,3 ppm auf, welche dem 3,3'-Azobipyridin zuzuordnen sind. Im ¹H-NMR-Spektrum befinden sich bei den chemischen Verschiebungen von 6,8 ppm bis 7,5 ppm die Multipletts der Phenylgruppen an der Alumopolysiloxaneinheit. Des Weiteren sind Dubletts bei den chemischen Verschiebungen von 7,94 ppm und 7,98 ppm, sowie bei 8,49 ppm und 8,51 ppm zu beobachten, die von den 3,3'-Azobipyridinmolekülen stammen. Das erwartete Singulett des Liganden liegt unter den Signalen der Multipletts, die von den Phenylgruppen herrühren und sind deswegen nicht eindeutig zuzuordnen. Im erhaltenen ²⁹Si-NMR-Spektrum wird ein Signal bei der chemischen Verschiebung von -45,4 ppm beobachtet. Es ist davon auszugehen, dass dieses Koordinationspolymer in Lösung wegen erhöhter Fluktuationen der Liganden nicht der Struktur des erhaltenen Kristalls entspricht. Ein aufgenommenes ²⁹Si-CP/MAS-Spektrum vom Feststoff der Verbindung 8 zeigt hingegen ein breites Signal im Bereich von 43 ppm bis 47 ppm in dem weitere Signale zu vermuten sind, die aufgrund der Signalbreite jedoch nicht eindeutig bestimmt werden können.

Im IR-Spektrum der Umsetzung des 4,4'-Azobipyridin bzw. 3,3'-Azobipyridin mit der Startverbindung <u>1</u> (Abb. 34), welches in diffuser Reflexion mit KBr aufgenommen wurde, ist zu erkennen, dass die OH-Schwingungen der Ausgangsverbindung <u>1</u> in den erhaltenen Produkten <u>7</u> und <u>8</u> nun nicht mehr vorhanden sind. Bei der Verbindung <u>8</u> haben zudem die CH-Schwingungsbanden bei 2926 cm⁻¹ und 2855 cm⁻¹ deutlich zugenommen und im Bereich von koordinierenden OH- beziehungsweise NH-Schwingungsbanden sind bei 3303 cm⁻¹, sowie bei 3525 cm⁻¹ weitere Schwingungsbanden aufgetaucht. Diese Schwingungsbanden deuten darauf hin, dass sich womöglich das Wasserstoffatom zwischen dem Stickstoffatom der Pyridineinheit und dem Sauerstoffatom des Al₄O₄-Kerns befindet.

Da im Bereich der Wellenzahlen um ca. 3600 cm^{-1} in den erhaltenen IR-Spektren der Produkte <u>7</u> und <u>8</u> keine OH-Schwingungsbanden mehr zu beobachten sind, liegen vermutlich ebenso wie bei der Verbindung <u>6</u> mit 4,4'-Bipyridin als Liganden am Alumopolysiloxan, auch in diesem Fall die Protonen der Wasserstoffbrückenbindung eher an den Stickstoffatomen, wodurch diese einen Ammonium-Charakter aufweisen und eine Verschiebung der zu erwarteten Schwingungsbanden zu kleineren Wellenzahlen stattfindet.

Abb. 34: aufgenommene IR-Spektren von 1, 7 und 8

Eine besondere Eigenschaft der Verbindungen wie Azobenzol, sowie verschiedenen Derivaten des Azobenzols ist die Möglichkeit von photochemischen Reaktionen. Die photochemische Isomerisierung von Azobenzol ist schon lange bekannt und wurde bereits seit Mitte des 20'ten Jahrhunderts untersucht ¹⁰⁴⁻¹⁰⁸. Es konnte gezeigt werden, dass eine Steuerung der cis - trans
Diskussion und Ergebnisse

Isomerie durch Bestrahlung bei Wellenlängen im UV/VIS Bereich möglich ist. Das thermodynamisch günstigere trans-Isomer des Azobenzols kann durch Bestrahlung bei einer Wellenlänge von circa 360 nm in das cis-Isomer umgewandelt werden, welches wiederum durch Bestrahlung bei einer Wellenlänge von etwa 450 nm oder mittels thermischer Anregung in das trans-Isomer überführt werden kann (Abb. 35). Diese cis-trans-Isomerisierungen gehen reversibel mit gleichzeitiger Intensitätsabnahme der Absorptionbande des trans-Isomers im Bereich der Wellenlängen von 300 nm - 350 nm, sowie der Zunahme der Absorptionsintensität im Bereich von 400 nm - 500 nm einher ¹⁰⁰.

Abb. 35: Photochemisch induzierte cis-, trans – Isomerisierung von Azobenzol

Azobenzol zeigt im UV/VIS – Spektrum Absorptionen im Bereich von 300 nm - 350 nm die von einem π - π^* Übergang herrühren, sowie eine Bande des n- π^* Übergangs im Bereich der Wellenlänge von 400 nm - 500 nm. Das trans-Isomer zeigt im Vergleich zum cis-Isomer eine intensivere Absorptionsbande im UV-Bereich, wohingegen das cis-Isomer eine etwas intensivere Bande im visuellen Bereich aufweist, dessen Absorptionsmaximum zudem im Vergleich zum trans-Isomeren um einige nm zu kürzeren Wellenlängen verschoben ist ¹⁰⁴⁻¹⁰⁸. Ähnliche Eigenschaften beobachtet man bei cis-trans-Isomeren von Azobipyridinmolekülen, die in dieser Arbeit verwendet werden ¹⁰⁹.

Abb. 36 zeigt aufgenommene UV/VIS Spektren mit dem Liganden 4,4´-Azobipyridin und der Verbindung <u>7</u>, die jeweils in Tetrahydrofuran gelöst wurden. Das Molekül 4,4´-Azobipyridin besitzt ein Maximum bei einer Wellenlänge von 454 nm. Eine anschließende Bestrahlung der Probe bei einer Wellenlänge von 366 nm ruft eine Verschiebung des Signals zu niedrigeren Wellenlängen mit einem gleichzeitigen Anstieg des Absorptionsmaximums hervor und erreicht die minimale Wellenlänge von 433 nm nach drei Stunden Bestrahlung, was einer Verschiebung von 21 nm entspricht. Wird der bestrahlte Ligand unter Lichtausschluss gelagert, kann eine sehr

Diskussion und Ergebnisse

langsame Verschiebung zu höheren Wellenlängen mit einer Abnahme der Absorptionsintensität beobachtet werden, also zur Ausgangssituation zurück. In analoger Weise ist auch die Verbindung <u>7</u> untersucht worden. Vor Bestrahlung bei einer Wellenlänge von 366 nm ist ein Maximum bei der Wellenlänge von 451 nm zu beobachten. Mit einhergehender Bestrahlung verschiebt sich die Absorptionsbande zu niedrigeren Wellenlängen mit gleichzeitiger Zunahme des Absorptionsmaximums und erreicht sein Minimum der Wellenlänge bei 440 nm. Wird diese Probe unter Lichtausschluss gelagert, so erfolgt auch hier eine langsame Verschiebung zu höheren Wellenlängen mit einhergehender Absorptionsintensität.

Scheinbar bewirkt die Bestrahlung der gelösten Probe <u>7</u> bei einer Wellenlänge von 366 nm eine reversible cis-trans-Isomerisierung der Azoverbindung, welche nach längerer Lagerung wieder in der ursprünglichen Form vorliegt.

Abb. 36: Aufgenommene UV/VIS Spektren der Bestrahlung vom 4,4'-Azobipyridin (a), (b) und der Verbindung <u>7</u> bei einer Wellenlänge von 366 nm (c)

Die Verbindung 3,3'-Azobipyridin stellt ebenfalls eine photoaktive Verbindung dar, daher wurde sowohl das erhaltene Produkt <u>8</u>, als auch der verwendete 3,3'-Azobipyridinligand in Tetrahydrofuran gelöst und bei einer Wellenlänge von 366 nm bestrahlt. Vor und nach der Bestrahlung wurden UV/VIS Spektren aufgenommen die in Abb. 37 dargestellt sind. Es kann festgestellt werden, dass die Bestrahlung bei der Wellenlänge von 366 nm sowohl beim Liganden, als auch bei Verbindung <u>8</u> eine Zunahme der Absorptionsbande und eine Verschiebung um etwa 10 nm nach kürzeren Wellenlängen bewirkt.

Ebenso wie bei der Verbindung $\underline{7}$ wird auch in der Lösung des Produkts $\underline{8}$ eine cis-, trans-Isomerie hervorgerufen, die nicht durch die Anordnung der Alumopolysiloxane abgefangen werden kann, indem die Probe einer Wellenlänge von 366 nm ausgesetzt wird.

Abb. 37: Aufgenommene UV/VIS Spektren der Bestrahlung vom 3,3'-Azobipyridin (a) und der Verbindung <u>8</u> bei einer Wellenlänge von 366 nm (b)

3.2 Erhaltene Kristallstrukturdaten der Umsetzung von (Ph₂SiO)₈[AIO(OH)]₄ • 4 Et₂O mit 4,4⁻-Azobipyridin <u>7</u>

Für die Röntgenstrukturuntersuchung geeignete Kristalle der Reaktion von $(Ph_2SiO)_8[AlO(OH)]_4$ • 4 Et₂O mit vier Äquivalenten 4,4´-Azobipyridin konnten durch Umkristallisation aus Tetrahydrofuran erhalten werden. Ein geeigneter Kristall wurde entnommen und einer Röntgenkristallstrukturanalyse unterworfen. Nach Bestimmung und Verfeinerung der Gitterkonstanten ergab sich die monokline Raumgruppe P2₁/n. Sämtliche Nichtwasserstoffatome wurden gefunden und anisotrop verfeinert. Zur Berechnung der Lagen der Wasserstoffatome wurden die entsprechenden idealisierten Geometrien verwendet. Der Zuverlässigkeitsfaktor erreicht einen Wert von R₁ = 0,076.

Summenformel	C127 H128 Al4 N6 O20 Si8	
Molmasse [g/mol]	2390.99	
Messtemperatur [K]	192(2)	
Wellenlänge [Å]	0.71073	
Kristallsystem	monoklin	
Raumgruppe	P2(1)/n	
Gitterkonstanten	a = 15.7634(10) Å	$\alpha = 90^{\circ}$
	b = 31.423(2) Å	$\beta = 90.211(2)^{\circ}$
	c = 26.3881(13) Å	$\gamma = 90^\circ$
Zellvolumen [Å ³]	13070.7(13)	
Anzahl der Formeleinheiten Z	4	
Dichte (berechnet) [g/cm ³]	1.215	
Absorptionskoeffizient [mm ⁻¹]	0.175	
F(000)	5024	
Kristallabmessungen [mm ³]	0.44 x 0.30 x 0.20	
Messbereich θ [°]	1.30 to 26.85	
hkl - Indexbereich	-19<=h<=19, -38<=k<=39, -33	<=l<=32
Gemessene Reflexe	94542	
Symmetrieunabhängige Reflexe	27817 [R(int) = 0.0761]	
Vollständigkeit des Datensatzes (bis $\theta = 26.85^{\circ}$)	99.1 %	
Absorptionskorrektur	Multiscan	

Tabelle 9: Kristalldaten und Strukturverfeinerungen für (Ph2SiO)8[AlO(OH)]4 • 1,5 p-(C5H4N)2N2 • OC4H8 • 3 OC4H8 ($\underline{7}$ · 3 THF)

Diskussion und Ergebnisse

Max. und Min. Transmission	0.9653 and 0.9268
Strukturverfeinerungsmethode	Full-matrix least-squares on F ²
Daten / Einschränkungen / Parameter	27817 / 0 / 1472
Güte des Fit auf F ²	1.513
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0757, wR2 = 0.2027
R-Werte (alle Daten)	R1 = 0.1567, wR2 = 0.2291
Restelektronendichte (min./max.) [e/Å-3]	0.997 and -0.590

Tabelle 10: Ausgewählte Bindungslängen [Å] und Winkel [°] für $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 1,5 p-(C_5H_4N)_2N_2 \cdot C_4H_8O$

Al(1)-O(5)	1.705(3)	Si(1)-O(5)	1.603(3)
Al(1)-O(16)	1.709(3)	Si(1)-O(6)	1.629(3)
Al(1)-O(4)	1.774(3)	Si(2)-O(7)	1.599(3)
Al(1)-O(1)	1.788(3)	Si(2)-O(6)	1.635(3)
Al(2)-O(7)	1.701(3)	Si(3)-O(8)	1.607(3)
Al(2)-O(8)	1.706(3)	Si(3)-O(9)	1.624(3)
Al(2)-O(1)	1.774(3)	Si(4)-O(10)	1.599(3)
Al(2)-O(2)	1.783(3)	Si(4)-O(9)	1.639(3)
Al(3)-O(10)	1.707(3)	Si(5)-O(11)	1.610(3)
Al(3)-O(11)	1.712(3)	Si(5)-O(12)	1.623(3)
Al(3)-O(2)	1.778(3)	Si(6)-O(13)	1.592(3)
Al(3)-O(3)	1.797(3)	Si(6)-O(12)	1.631(3)
Al(4)-O(14)	1.701(3)	Si(7)-O(14)	1.608(3)
Al(4)-O(13)	1.706(3)	Si(7)-O(15)	1.621(3)
Al(4)-O(4)	1.766(3)	Si(8)-O(16)	1.589(3)
Al(4)-O(3)	1.806(3)	Si(8)-O(15)	1.625(3)
O(5)-Al(1)-O(16)	116.5(2)	O(8)-Al(2)-O(1)	108.0(2)
O(5)-Al(1)-O(4)	106.4(1)	O(7)-Al(2)-O(2)	107.1(1)
O(16)-Al(1)-O(4)	110.9(2)	O(8)-Al(2)-O(2)	109.7(2)
O(5)-Al(1)-O(1)	107.9(1)	O(1)-Al(2)-O(2)	104.7(1)
O(16)-Al(1)-O(1)	109.4(1)	O(10)-Al(3)-O(11)	116.2(2)
O(4)-Al(1)-O(1)	105.1(1)	O(10)-Al(3)-O(2)	110.5(2)
O(7)-Al(2)-O(8)	116.2(2)	O(11)-Al(3)-O(2)	107.7(2)
O(7)-Al(2)-O(1)	110.5(2)	O(10)-Al(3)-O(3)	109.0(2)

Diskussion und Ergebnisse

O(11)-Al(3)-O(3)	107.6(1)	Al(2)-O(1)-Al(1)	126.1(2)
O(2)-Al(3)-O(3)	105.3(1)	Al(3)-O(2)-Al(2)	128.8(2)
O(14)-Al(4)-O(13)	117.6(2)	Al(3)-O(3)-Al(4)	126.4(2)
O(14)-Al(4)-O(4)	109.3(1)	Al(4)-O(4)-Al(1)	131.4(2)
O(13)-Al(4)-O(4)	108.1(2)	Si(1)-O(5)-Al(1)	150.7(2)
O(14)-Al(4)-O(3)	106.3(1)	Si(1)-O(6)-Si(2)	145.2(2)
O(13)-Al(4)-O(3)	109.7(1)	Si(2)-O(7)-Al(2)	157.8(2)
O(4)-Al(4)-O(3)	105.4(1)	Si(3)-O(8)-Al(2)	150.9(2)
O(5)-Si(1)-O(6)	111.2(2)	Si(3)-O(9)-Si(4)	142.7(2)
O(7)-Si(2)-O(6)	112.8(2)	Si(4)-O(10)-Al(3)	143.5(2)
O(8)-Si(3)-O(9)	110.9(2)	Si(5)-O(11)-Al(3)	147.3(2)
O(10)-Si(4)-O(9)	112.3(2)	Si(5)-O(12)-Si(6)	148.9(2)
O(11)-Si(5)-O(12)	111.7(2)	Si(6)-O(13)-Al(4)	158.0(2)
O(13)-Si(6)-O(12)	112.7(2)	Si(7)-O(14)-Al(4)	146.7(2)
O(14)-Si(7)-O(15)	111.7(2)	Si(7)-O(15)-Si(8)	147.5(2)
O(16)-Si(8)-O(15)	112.2(2)	Si(8)-O(16)-Al(1)	156.8(2)

3.3 Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 1,5 p-(C₅H₄N)₂N₂ • C₄H₈O <u>7</u>

Bei der Umsetzung der Ausgangsverbindung 1 mit 4,4'-Azobipyridin in Toluol entsteht nach einer Umkristallisation aus Tetrahydrofuran die Verbindung (Ph₂SiO)₈[AlO(OH)]₄• 1,5 p-(C₅H₄N)₂N₂ • C₄H₈O 7 unter Erhalt der Gerüststruktur der Ausgangsverbindung. Alle Diethylethermoleküle von 1 wurden durch 4,4'-Azobipyridinliganden substituiert. Drei der eingesetzten Liganden koordinieren in Form von Wasserstoffbrückenbindungen über ihre Stickstoffatome an drei Hydroxylgruppen des inneren $Al_4(OH)_4$ -Zentralrings der Alumopolysiloxaneinheit und an die vierte Hydroxylgruppe koordiniert ein Tetrahydrofuranmolekül, wodurch die Molekülstruktur der Verbindung 7 insgesamt eine C₁-Symmetrie aufweist (Abb. 38).

Abb. 38: Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 1,5 p-(C₅H₄N)₂N₂ • C₄H₈O <u>7</u> (der besseren Übersicht wegen ohne H-Atome am Kohlenstoff)

An zwei sich gegenüberliegenden Hydroxylgruppen der inneren Al₄O₄-Ringebene des Alumopolysiloxans koordinieren zwei Liganden 4,4'-Azobipyridin, die mit ihrer zweiten funktionellen Gruppe wiederum an weitere Alumopolysiloxaneinheiten koordinieren. Eine nächste Hydroxylgruppe wird von einem weiteren Liganden 4,4'-Azobipyridin mittels Wasserstoffbrückenbindungen über die Stickstoffgruppe koordiniert, welche wiederum zwei Alumopolysiloxaneinheiten miteinander verbindet und die letzte Koordinationsstelle des Alumopolysiloxans wird von einem Tetrahydrofuranmolekül besetzt. In Abb. 39 ist die erhaltene Verbindung <u>7</u> dargestellt, hier sind die Phenylgruppen an den Siliziumatomen zur besseren Übersicht entfernt worden.

Abb. 39: Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 1,5 p-(C₅H₄N)₂N₂ • C₄H₈O <u>7</u>, zur besseren Übersicht ohne Phenylgruppen der Siloxanketten, sowie ohne H-Atome der Kohlenstoffatome

Aufgrund dieser Vernetzung der Alumopolysiloxaneinheiten durch die Liganden 4,4'-Azobipyridin wird ein zweidimensionales maschenartiges Netzwerk geschaffen, in dem die einzelnen Alumopolysiloxaneinheiten eine geschlossene Form von Hexameren bilden. Von den drei 4,4'-Azobipyridinen befindet sich eines auf dem Inversionszentrum der Raumgruppe, während die anderen beiden kristallographisch translatorisch identisch sind und die beiden Enden des gleichen Moleküls darstellen.

In Abb. 40 ist der Aufbau dieser Schichtstruktur angedeutet. Zunächst wird durch eine Verknüpfung von zwei Alumopolysiloxanen mit den 4,4'-Azobipyridinliganden eine lineare, translationssymmetrische Kette gebildet (Abb. 40a). Eine weitere inversionssymmetrische Kette, dessen Translation in entgegengesetzter Richtung verläuft ist in Abb. 40b dargestellt. Die Verknüpfung beider Ketten mit einem weiteren Liganden 4,4'-Azobipyridin führt zu einer zweidimensionalen Schichtstruktur, in der die Azogruppen dieses dritten Liganden das kristallographische Inversionszentrum aufweisen (Abb. 40c).

Abb. 40: Aufbau der Schichtstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 1,5 p-(C₅H₄N)₂N₂ • C₄H₈O
<u>7</u>. a) Darstellung einer linearen Kette durch 4,4'-Azobipyridinliganden; b) Abbildung von zwei tranlationssymmetrischen Kettensträngen; c) Bildung einer zweidimensionalen Schicht aufgrund der Verknüpfung der Ketten durch einen weiteren Liganden

Insgesamt findet man in der Kristallstruktur von <u>7</u> vier Moleküle Tetrahydrofuran pro Alumopolysiloxaneinheit. Ein Molekül koordiniert direkt an das Alumopolysiloxan, die drei weiteren Moleküle Tetrahydrofuran befinden sich zwischen den gebildeten zweidimensionalen Schichten, sowie innerhalb der gebildeten sechsgliedrigen Ringe (Abb. 41 und Abb. 42).

Abb. 41: Seitlicher Blick auf die Schichtstruktur von <u>7</u> (ohne Phenylgruppen der Siloxanketten)

Abb. 42: Blick auf die Schichtstruktur von <u>7</u> (ohne Phenylgruppen der Siloxanketten)

Die Bindungsabstände der Wasserstoffbrückenbindungen betragen 2,624(1) Å für N4^{...}O1 und 2,633(1) Å für den Bindungsabstand O17^{...}O3 des Tetrahydrofuranmoleküls, das auf derselben Seite wie der 4,4'-Azobipyridinligand am Alumopolysiloxan koordiniert. Die Bindungsabstände der Wasserstoffbrückenbindungen auf der gegenüberliegenden Seite der Al₄O₄-Ringebene sind kürzer und betragen 2,605(1) Å für N1^{...}O2 und nur 2,569(1) Å für N5^{...}O4. Im direkten Vergleich der Wasserstoffbrückenbindungslängen des Produkts 7 mit den Verbindungen bei denen Pyridin als Ligand an die Alumopolysiloxaneinheit koordiniert und Abstände der Wasserstoffbrückenbindungen von 2,548(3) Å aufweisen, sind bei Koordination von 4,4'-Azobipyridin ans Alumopolysiloxan alle Wasserstoffbrückenbindungen mit einem Mittelwert von 2,599(1) Å um etwa 0,05 Å länger (Abb. 43)^{110,111}.

Abb. 43: Molekülstruktur der Verbindung <u>7</u> (ohne H-Atome am Kohlenstoff und ohne Phenylgruppen an den Si-Atomen)

Die Al-O Bindungslängen des zentralen Al₄O₄-Kerns vom Alumopolysiloxan <u>7</u> liegen zwischen 1,766(3) Å und 1,806(3) Å. Die Al-O Kante mit der kürzesten koordinativen Bindung des Liganden 4,4'-Azobipyridin weist die kürzeste Bindungslänge von 1,766(3) Å für Al4-O4 auf und die Al-O Kante mit der Koordination von Tetrahydrofuran hat mit 1,806(3) Å für Al4-O3 und 1,797(3) Å für Al3-O3 die längsten Al-O Bindungsabstände, da aufgrund der im Vergleich zu Stickstoff schwächeren Sauerstoffbase ein relativ geringer Protonenabzug stattfindet. Diese Abstände liegen im beobachteten Bereich der Al-O Bindungslängen, die mit Aceton, Diethylether, 1,6-Hexandiol, Essigsäureethylester oder 1,4-Diacetoxybutan als Ligand an der Alumopolysiloxaneinheit beobachtet werden konnten und Bindungsabstände im Bereich von 1,79 Å bis 1,81 Å aufweisen ^{80,81}. Die übrigen Al-O Bindungslängen betragen im Mittel 1,779(3) Å und liegen damit ein wenig über den Al-O Bindungslängen, welche mit dem Liganden Pyridin beobachtet wurden und einen Bindungsabstand der Al-O Bindung von 1,768(2) Å besitzen ^{72-75,98}.

Ein Vergleich der erhaltenen Al-O Bindungsabstände von <u>7</u> mit den mittleren Al-O Bindungsabständen, die durch Koordination von Alkyldiaminen ans Alumopolysiloxan erhalten wurden zeigt, dass mit gemittelten Abständen von 1,77(3) Å bis 1,78(2) Å bei intramolekularer Koordination von zwei Alkyldiaminliganden, bzw. mit den um die intermolekular verknüpfenden Al-O Bindungsabstände, wenn intra- und intermolekular koordinierende Liganden mit Al-O Abständen von 1,77(1) Å bis 1,81(1) Å vorliegen ^{80,81}, die erhaltenen Al-O Bindungsabstände der Verbindung <u>7</u> mit 1,779(3) Å im oberen Bereich zu finden sind.

Bei Verbindungen mit Alkyldiaminen am Alumopolysiloxan, bei denen der Ligand nur intermolekulare Verknüpfungen ausbildet, liegt der gemittelte Al-O Bindungsabstand mit 1,76(1) Å ^{69,103} ein wenig unter dem des erhaltenen Produkts <u>7</u>.

3.4 Erhaltene Kristallstrukturdaten der Umsetzung von (Ph₂SiO)₈[AlO(OH)]₄ • 4 Et₂O mit 3,3⁻Azobipyridin <u>8</u>

Für die Röntgenstrukturuntersuchung geeignete Kristalle der Reaktion von (Ph₂SiO)₈[AlO(OH)]₄ • 4 Et₂O mit 3,3'-Azobipyridin konnten durch Umkristallisation aus Tetrahydrofuran erhalten werden. Ein geeigneter Kristall wurde entnommen und einer Röntgenkristallstrukturanalyse unterworfen. Nach Bestimmung und Verfeinerung der Gitterkonstanten ergab sich die trikline Raumgruppe P-1. Sämtliche Nichtwasserstoffatome wurden gefunden und anisotrop verfeinert. Zur Berechnung der Lagen der Wasserstoffatome wurden die entsprechenden idealisierten Geometrien verwendet. Der Zuverlässigkeitsfaktor erreicht einen Wert von $R_1 = 0,090$, da nur Kristalle sehr geringer Größe vermessen werden konnten.

Summenformel	C140 H148 Al4 N8 O22 Si8	
Molmasse [g/mol]	2627.30	
Messtemperatur [K]	100(2)	
Wellenlänge [Å]	0.71073	
Kristallsystem	triklin	
Raumgruppe	P-1	
Gitterkonstanten	a = 15.4342(15) Å	$\alpha = 76.243(5)^{\circ}$
	b = 18.3260(17) Å	$\beta = 82.781(5)^{\circ}$
	c = 25.949(2) Å	$\gamma = 84.762(5)^{\circ}$
Zellvolumen [Å ³]	7058.2(11)	
Anzahl der Formeleinheiten Z	2	
Dichte (berechnet) [g/cm ³]	1.236	
Absorptionskoeffizient [mm ⁻¹]	0.169	
F(000)	2768	
Kristallabmessungen [mm ³]	0.38 x 0.10 x 0.06	
Messbereich θ [°]	1.15 to 27.23	
hkl - Indexbereich	-17<=h<=19, -23<=k<=23, -32	2<=1<=33
Gemessene Reflexe	108335	
Symmetrieunabhängige Reflexe	30249 [R(int) = 0.2091]	
Vollständigkeit des Datensatzes (bis $\theta = 27.23^{\circ}$)	95.8 %	
Absorptionskorrektur	Multiscan	
Max. und Min. Transmission	0.9893 and 0.9379	
Strukturverfeinerungsmethode	Full-matrix least-squares on F ²	

Tabelle 11: Kristalldaten und Strukturverfeinerungen für $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 \text{ m-}(C_5H_4N)_2N_2 \cdot 6 \text{ OC}_4H_8$ (<u>8</u> · 6THF)

Diskussion und Ergebnisse

Daten / Einschränkungen / Parameter	30249 / 0 / 1684
Güte des Fit auf F ²	1.153
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0903, wR2 = 0.1953
R-Werte (alle Daten)	R1 = 0.2950, wR2 = 0.2447
Restelektronendichte (min./max.) [e/Å-3]	1.237 and -0.470

Al(1)-O(16)	1.710(5)	Si(1)-O(5)	1.594(4)
Al(1)-O(5)	1.721(4)	Si(1)-O(6)	1.621(4)
Al(1)-O(1)	1.771(4)	Si(2)-O(7)	1.604(5)
Al(1)-O(4)	1.787(5)	Si(2)-O(6)	1.631(4)
Al(2)-O(8)	1.721(4)	Si(3)-O(8)	1.619(4)
Al(2)-O(7)	1.722(4)	Si(3)-O(9)	1.630(5)
Al(2)-O(1)	1.771(4)	Si(4)-O(10)	1.606(4)
Al(2)-O(2)	1.774(5)	Si(4)-O(9)	1.637(5)
Al(3)-O(11)	1.702(5)	Si(5)-O(11)	1.606(5)
Al(3)-O(10)	1.703(4)	Si(5)-O(12)	1.648(4)
Al(3)-O(3)	1.774(4)	Si(6)-O(13)	1.610(5)
Al(3)-O(2)	1.775(4)	Si(6)-O(12)	1.642(5)
Al(4)-O(14)	1.717(5)	Si(7)-O(14)	1.608(5)
Al(4)-O(13)	1.731(5)	Si(7)-O(15)	1.635(5)
Al(4)-O(3)	1.768(4)	Si(8)-O(16)	1.596(5)
Al(4)-O(4)	1.780(5)	Si(8)-O(15)	1.641(5)

Tabelle 12: Ausgewählte Bindungslängen [Å] und Winkel [°] für (Ph₂SiO)₈[AlO(OH)]₄ • 2 m-(C₅H₄N)₂N₂

O(16)-Al(1)-O(5)	114.9(2)	O(10)-Al(3)-O(3)	104.3(2)
O(16)-Al(1)-O(1)	107.4(2)	O(11)-Al(3)-O(2)	105.7(2)
O(5)-Al(1)-O(1)	111.4(2)	O(10)-Al(3)-O(2)	109.5(2)
O(16)-Al(1)-O(4)	109.9(2)	O(3)-Al(3)-O(2)	107.0(2)
O(5)-Al(1)-O(4)	106.7(2)	O(14)-Al(4)-O(13)	115.5(2)
O(1)-Al(1)-O(4)	106.3(2)	O(14)-Al(4)-O(3)	108.6(2)
O(8)-Al(2)-O(7)	115.6(2)	O(13)-Al(4)-O(3)	109.0(2)
O(8)-Al(2)-O(1)	108.9(2)	O(14)-Al(4)-O(4)	108.1(2)
O(7)-Al(2)-O(1)	110.9(2)	O(13)-Al(4)-O(4)	110.8(2)
O(8)-Al(2)-O(2)	108.6(2)	O(3)-Al(4)-O(4)	104.3(2)
O(7)-Al(2)-O(2)	105.7(2)	O(5)-Si(1)-O(6)	112.5(2)
O(1)-Al(2)-O(2)	106.7(2)	O(7)-Si(2)-O(6)	112.1(2)
O(11)-Al(3)-O(10)	118.5(2)	O(8)-Si(3)-O(9)	111.0(2)
O(11)-Al(3)-O(3)	111.4(2)	O(10)-Si(4)-O(9)	112.6(2)

O(11)-Si(5)-O(12)	110.0(2)	Si(2)-O(7)-Al(2)	136.2(3)	
O(13)-Si(6)-O(12)	110.7(2)	Si(3)-O(8)-Al(2)	141.0(3)	
O(14)-Si(7)-O(15)	113.4(2)	Si(3)-O(9)-Si(4)	152.1(3)	
O(16)-Si(8)-O(15)	110.6(2)	Si(4)-O(10)-Al(3)	148.7(3)	
Al(2)-O(1)-Al(1)	133.5(3)	Si(5)-O(11)-Al(3)	164.6(3)	
Al(2)-O(2)-Al(3)	129.6(3)	Si(6)-O(12)-Si(5)	132.0(3)	
Al(4)-O(3)-Al(3)	129.7(2)	Si(6)-O(13)-Al(4)	141.2(3)	
Al(4)-O(4)-Al(1)	128.9(2)	Si(7)-O(14)-Al(4)	149.1(3)	
Si(1)-O(5)-Al(1)	149.1(3)	Si(7)-O(15)-Si(8)	138.8(3)	
Si(1)-O(6)-Si(2)	149.0(3)	Si(8)-O(16)-Al(1)	166.2(3)	

3.5 Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 2 m-(C₅H₄N)₂N₂ 8

Wird die Ausgangsverbindung 1 mit 3,3'-Azobipyridin umgesetzt, entsteht unter vollständiger die Verbindung Substitution aller Diethylethermoleküle $(Ph_2SiO)_8[AlO(OH)]_4$ 2 m-(C₅H₄N)₂N₂ 8, bei der das Grundgerüst der Ausgangsverbindung erhalten bleibt. Die erhaltene Kristallstruktur ist in Abb. 44 dargestellt. Das Grundgerüst dieser Verbindung besteht aus einem zentralen Al₄(OH)₄-Kern, dessen Al(OH)Al-Kanten von Disiloxanketten überspannt werden. Die Stickstoffatome des 3,3'-Azobipyridin koordinieren über Wasserstoffbrückenbindungen die aciden Hydroxylgruppen an des Alumopolysiloxanmoleküls, wobei eine C₁-Symmetrie des Moleküls resultiert und jeder Ligand über eine weitere funktionelle Gruppe verfügt, die mit einem zweiten Stickstoffatom intermolekular an eine nächste Alumopolysiloxaneinheit koordinieren kann.

Abb. 44: Ausschnitt der Kristallstruktur von <u>8</u> (ohne Wasserstoffatome)

Betrachtet man den inneren Kern einer Alumopolysiloxaneinheit von <u>8</u> ist zu erkennen, dass auf einer Seite des Alumopolysiloxans bezüglich der Al₄O₄-Ebene zwei Liganden 3,3'-Azobipyridin annähernd parallel ausgerichtet sind und über eine doppelte Brücke zwei Alumopolysiloxaneinheiten miteinander verbinden, wobei die Phenylgruppen der Siloxanbrücken eine molekulare Tasche bilden. In der Mitte der Azogruppen von den beiden 3,3'-Azobipyridinmolekülen befindet sich zudem ein kristallographisches Inversionszentrum (Abb. 44).

Im Gegensatz hierzu befinden sich zwischen den beiden Liganden der gegenüberliegenden Seite bezüglich der parallel angeordneten 3,3'-Azobipyridinliganden weitere Phenylgruppen, die an den Siliziumatomen Si1 und Si5 gebunden sind und hier 3,3'-Azobipyridin Liganden räumlich voneinander trennen. Durch die Azogruppen dieser zwei Liganden verlaufen weitere kristallographische Inversionszentrum und durch die weitere Koordination dieser 3,3'-Azobipyridinmoleküle an weitere Alumopolysiloxaneinheiten wird eine translationsidentische Kette von Alumopolysiloxaneinheiten gebildet (Abb. 45).

Abb. 45: Ausschnitt der gebildeten Ketten von Verbindung <u>8</u> (ohne Phenylgruppen an den Siloxanketten und ohne Wasserstoffatome)

Ein Strang dieser Alumopolysiloxaneinheiten wird mit den parallel ausgerichteten Liganden der gegenüberliegenden Seite an weitere Stränge gebunden, wodurch das in Abb. 47 gebildete zweidimensionale Netzwerk entsteht. Abb. 46 zeigt einen schematischen Aufbau der erhaltenen Schichtstruktur der Verbindung <u>8</u>, in der wegen einer besseren Übersicht lediglich die Al₄(OH)₄-Kerne und die 3,3⁻-Azobipyridinliganden dargestellt sind.

Abb. 46: Schematischer Aufbau der gebildeten Schichtstruktur von 8

In Abb. 47 ist ein Ausschnitt der erhaltenen Schichtstruktur von $\underline{8}$ ohne Phenylgruppen an den Siloxanketten abgebildet, in der eine Anordnung der Alumopolysiloxaneinheiten zu sehen ist, die sich innerhalb dieser zweidimensionalen Schicht in Form von geschlossenen Hexameren anordnen. In dieser Schichtstruktur werden doppelsträngig verknüpfte Alumopolysiloxaneinheiten kettenartig miteinander verbunden.

Abb. 47: Ausschnitt der Schichtstruktur von <u>8</u>, der besseren Übersicht wegen ohne Phenylgruppen der Siloxanketten und ohne Wasserstoffatome

Abb. 48 zeigt einen Ausschnitt der Schichtstruktur von Verbindung 8 als Kalottenmodell, der in Richtung der parallel angeordneten Liganden verläuft. In ähnlicher Weise, wie bei der Verbindung 6, orientieren sich auch in dieser Struktur die Phenylgruppen kelchförmig nach außen und 3,3'-Azobipyridinliganden verknüpfen die Al₄O₄-Ringe der Alumopolysiloxaneinheiten miteinander. Dabei wird ein linearer Strang mit zueinander leicht versetzten Al₄O₄-Einheiten ausgebildet, die alternierend einfach und doppelt besetzt sind. Der abgeschirmt wird durch Phenylgruppen und besizt Strang zusätzliche 3,3'-Azobipyridinliganden, die sich innerhalb der linearen Struktur alternierend nach außen orientieren und dort an einer weiteren Alumopolysiloxaneinheit eines nächsten Stranges binden. Durch die Verknüpfung dieser linear angeordneten Struktureinheiten auf beiden Seiten eines Stranges, wird eine zweidimensionale Schichtstruktur mit Hohlräumen erhalten, zwischen denen weitere Lösemittelmoleküle eingelagert sind (pro Formeleinheit $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 \text{ m-}(C_5H_4N)_2N_2 \text{ sechs Tetrahydrofuranmoleküle}).$

Abb. 48: Strukturausschnitt der Verbindung 8 als Kalottenmodell.

a) seitliche Ansicht des gebildeten linearen Strangs; b) Ansicht entlang der Kette; c) Sicht auf die Schichtstruktur; d) Darstellung entlang der linearen Ketten einer Schicht

Die Bindungsabstände im Al₄O₄-Zentralring betragen auf der Seite der parallel zueinander angeordneten Liganden 1,771(4) Å für Al1-O1, 1,771(4) Å für Al2-O1, 1,774(4) Å für Al3-O3 und 1,768(4) Å für Al4-O3. Auf der gegenüberliegenden Seite sind die Bindungsabstände mit 1,787(5) Å für Al1-O4, 1,780(5) Å für Al4-O4, 1,774(5) Å für Al2-O2 und 1,775(4) Å für Al3-O2 ein wenig länger (Abb. 49). Mit einem Mittelwert der Al-O Bindungslängen von 1,775(5) Å liegen sie minimal unter dem Bereich, der schon bei Verbindung 7 erhalten wurde und einen Mittelwert von 1,779(3) Å aufweist, wenn 4,4´-Azobipyridinmoleküle an die Hydroxylgruppen des Alumopolysiloxans koordinieren. Im Vergleich mit Pyridin als Ligand am Alumopolysiloxan bei dem ein Al-O Bindungsabstand von 1,768(2) Å beobachtet wurde, sind die Al-O Bindungslängen der Verbindung 8 ein wenig länger ¹⁰³. Zudem liegen die Al-O Bindungsabstände wie bereits bei Verbindung <u>7</u> diskutiert, im selben Bereich von diversen intra- und intermolekular koordinierenden Alkyldiaminen mit Al-O Bindungslängen von 1,77(1) Å bis 1,81(1) Å um die intermolekular koordinierenden Liganden, wenn intra- und intermolekulare Koordinationen am Alumopolysiloxan vorliegen. Koordiniert das Alkyldiamin ausschließlich intermolekular, so wird ein etwas geringerer Al-O Bindungsabstand von 1,76(1) Å beobachtet^{80,81}.

Die Bindungsabstände der N[…]H[…]O Wasserstoffbrückenbindungen liegen mit Werten von 2,530(1) Å bis 2,599(1) Å im Bereich starker Wasserstoffbrückenbindungen. Die Bindungslängen von N1[…]O2 und N3[…]O3 liegen im Mittel bei 2,555(1) Å, der Bindungsabstand von N6[…]O1 ist mit 2,530(1) Å der kürzeste und der Abstand von N7[…]O4 mit 2,599(1) Å am längsten. Insgesamt wird bei der Koordination von 3,3'-Azobipyridin ein Mittelwert der Wasserstoffbrückenbindungslängen von 2,560(1) Å erhalten. Vergleicht man die N[…]O Bindungsabstände der Wasserstoffbrücke von <u>7</u> mit 2,599(1) Å mit der von <u>8</u> mit 2,560(1) Å, so findet man die kürzere Brücke bei 3,3'-Azobipyridin, was sowohl Sterik als auch höhere Protonenakzeptanz als Ursache haben kann. Beide gefundenen Werte liegen über dem des vergleichbaren Pyridinadduktes mit 2,548(3) Å ^{69,103}.

Abb. 49: Molekülstruktur von <u>8</u>, der besseren Übersicht wegen ohne Phenylgruppen an den Siliziumatomen, sowie ohne Wasserstoffatome

Die Winkel zwischen den besten Ebenen des Al₄O₄-Rings und den Siloxyflügeln sind auf der Seite mit den parallel ausgerichteten Liganden mit 139,9° und 142,0° stark aufgeweitet. Die gegenüberliegende Seite bezüglich der Al₄O₄-Ringebene weist einen Winkel von 144,5° und 133,3° auf. Dieser große Unterschied der Winkel rührt von einer Verdrillung der Al-O-Tetraeder, wodurch die Phenylgruppen an den Si1 und Si5 - Atomen zwischen die Liganden geschoben werden und diese räumlich voneinander trennen (Abb. 50). Im Gegensatz zur Lösung konnten wir bei Bestrahlung der Kristalle von <u>7</u> und <u>8</u> mit Licht einer Wellenlänge von 366 nm keine Änderung in Farbe oder Kristallstruktur feststellen.

Abb. 50: Molekülstruktur von <u>8</u>, mit ausgewählten Phenylgruppen an Si1 und Si5 (ohne Wasserstoffatome)

4 Dreidimensional angeordnete Strukturen des Alumopolysiloxans (Ph₂SiO)₈[AlO(OH)]₄

Bisher wurden molekulare, eindimensionale lineare und zweidimensionale Schichtstrukturen des Alumopolysiloxans (Ph₂SiO)₈[AlO(OH)]₄ diskutiert. Es ist weiterhin möglich definierte dreidimensionale Netzwerke zu konstruieren, bei denen die Alumopolysiloxaneinheiten mit geeigneten Liganden über Wasserstoffbrückenbindungen miteinander verknüpft werden. Strukturen dieser Art können mit den Liganden 1,4-Cyclohexandiol oder para-Xylendiamin hergestellt werden.

Wird 1,4-Cyclohexandiol in einer Reaktion mit dem Alumopolysiloxan **1** eingesetzt, kann die Verbindung $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4$ $(HO)CH(CH_2)_4CH(OH)$ **9** isoliert werden und verlängert man sowohl die Moleküllänge, als auch die Basenstärke des eingesetzten Liganden, indem para-Xylendiamin als Ligand bei einer Reaktion mit **1** eingesetzt wird, so erfolgt ebenfalls eine dreidimensionale Vernetzung von Alumopolysiloxaneinheiten, indem die Verbindung $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 H_2N(CH_2)C_6H_4(CH_2)NH_2 \cdot 4 C_4H_8O$ **10** dargestellt wird (Abb. 51).

Abb. 51: Schematische Darstellung der Bildung von dreidimensionalen Strukturen des Alumopolysiloxans $(Ph_2SiO)_8[AlO(OH)]_4$ (<u>9</u> und <u>10</u>)

4.1 Synthese und Charakterisierung von (Ph₂SiO)₈[AlO(OH)]₄ • 4 (HO)CH(CH₂)₄CH(OH) <u>9</u> und (Ph₂SiO)₈[AlO(OH)]₄ • 2 H₂N(CH₂)C₆H₄(CH₂)NH₂ • 4 C₄H₈O <u>10</u>

Die Darstellung von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 (HO)CH(CH_2)_4CH(OH)$ **9** erfolgt bei Raumtemperatur in Toluol als Reaktionsmedium. Zunächst wird 1,4-Cyclohexandiol in Toluol vorgelegt und anschließend bei Raumtemperatur mit der in Toluol gelösten Ausgangsverbindung **1** versetzt. Nach fünftägigem Rühren bei Raumtemperatur, wird der farblose Niederschlag abfiltriert und am Hochvakuum getrocknet. Eine Umkristallisation aus heißem Toluol liefert das Produkt **9**.

Hingegen erfolgt die Synthese von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 H_2N(CH_2)C_6H_4(CH_2)NH_2 \cdot 4 C_4H_8O <u>10</u> durch Zugabe einer Suspension von para-Xylendiamin in Toluol, die bei Raumtemperatur zu einer klaren Lösung der Startverbindung <u>1</u> in Toluol getropft wird. Durch weiteres Rühren der Reaktionslösung für ca. 22 Stunden bei Raumtemperatur und anschließender Umkristallisation des erhaltenen Niederschlags aus heißem Tetrahydrofuran wird das gewünschte Produkt <u>10</u> gebildet.$

Abb. 52: Darstellung von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 (HO)CH(CH_2)_4CH(OH) \underline{9}$ und $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 H_2N(CH_2)C_6H_4(CH_2)NH_2 \cdot 4 C_4H_8O \underline{10}$

Für die NMR-spektroskopischen Untersuchungen von $\underline{9}$ wird ein Teil des erhaltenen Feststoffes in Tetrahydrofuran gelöst. Die ¹³C-NMR-Spektren zeigen Signale bei den chemischen Verschiebungen von 31,2 ppm, 33,6 ppm und 69,2 ppm die dem 1,4-Cyclohexandiol zugeordnet werden können. Weiterhin sind die für die Phenylgruppen des Alumopolysiloxans charakteristischen Signale bei den chemischen Verschiebungen von 127,5 ppm, 127,5 ppm, 129,2 ppm, 129,3 ppm, 134,9 ppm, 134,9 ppm, 138,6 ppm und 139,0 ppm zu beobachten.

Das ²⁹Si-NMR-Spektrum zeigt ein Signal bei einer chemischen Verschiebung von -45,8 ppm. Die hohe Symmetrie der Verbindung $\underline{9}$ wird nur in Lösung beobachtet. Die Kristallstruktur von <u>9</u> unterscheidet sich von der in Lösung, da in Lösung eine stärkere Dynamik der Liganden zu erwarten ist.

Die Aufnahmen der NMR-Spektren von Verbindung <u>10</u> erfolgten ebenfalls in Tetrahydrofuran und das ¹³C-NMR-Spektrum weist im Bereich der chemischen Verschiebungen von 127 ppm bis 140 ppm die charakteristischen Resonanzen der Phenylgruppen am Alumopolysiloxan auf. Daneben sind drei weitere Signale bei den chemischen Verschiebungen von 46,3 ppm, 127,2 ppm und 142,1 ppm zu finden, die vom Liganden para-Xylendiamin stammen. Das ¹H-NMR zeigt in den aromatischen Bereichen von 6,86 ppm - 7,21 ppm und 7,60 ppm – 7,75 ppm jeweils ein Multiplett der Phenylgruppen des Alumopolysiloxans, sowie zwei Singuletts der para-Xylendiaminliganden bei den chemischen Verschiebungen von 1,26 ppm und 7,25 ppm. Das erwartete dritte Singulett der Liganden liegt genau unter den Resonanzen des eingesetzten Lösemittels und wird von diesen überlagert.

Im aufgenommenen ²⁹Si-NMR-Spektrum kann ein Signal bei der chemischen Verschiebung von - 47,5 ppm beobachtet werden. Neben den NMR-Spektren, die auf eine hohe Symmetrie der Verbindung <u>10</u> hinweisen, zeigt auch die später durchgeführte Röntgenstrukturanalyse, dass in diesem Fall eine hohe Symmetrie des entstandenen Produkts vorliegt.

In Abb. 53 sind aufgenommene IR-Spektren der Startverbindung <u>1</u> und die der erhaltenen Produkte <u>9</u> und <u>10</u> abgebildet, die mittels diffuser Reflexion mit KBr erhalten wurden. Die OH-Schwingungen der Startverbindung <u>1</u> (schwarze Linie) sind im gebildeten Produkt <u>9</u> nicht mehr vorhanden, stattdessen tauchen OH-Schwingungsbanden bei Wellenzahlen von 3299 cm⁻¹ auf. In diesem Bereich liegen OH-Schwingungen vor, die mittels Wasserstoffbrückenbindungen intermolekular koordinieren. Weiterhin sind bei den Wellenzahlen von 2940 cm⁻¹ und 2862 cm⁻¹ Schwingungsspektren vorhanden die den CH-Schwingungen der eingesetzten Liganden zuzuordnen sind.

Im erhaltenen IR-Spektrum von <u>10</u> taucht die OH-Schwingungsbande des Edukts <u>1</u> im Bereich der Wellenzahlen bei 3600 cm⁻¹ nicht mehr auf, stattdessen bilden sich neue intensive Schwingungsbanden im typischen Bereich von NH-Valenzschwingungen bei 3355 cm⁻¹ und 3294 cm⁻¹. Auch die CH-Valenzschwingungen der Diethylethermoleküle bei 2978 cm⁻¹ der Ausgangsverbindung <u>1</u> sind im gebildeten Produkt <u>10</u> nicht mehr zu beobachten. Das erhaltene Produkt <u>9</u> zeigt im aufgenommenen IR-Spektrum eine OH-Schwingungsbande im Bereich von 3300 cm⁻¹, in dem intermolekular koordinierende OH-Schwingungen zu erwarten sind. Wahrscheinlich liegen die Protonen der Wasserstoffbrückenbindungen zwischen den Sauerstoffatomen des Liganden und denen des Alumopolysiloxans. Im Gegensatz hierzu ist bei der erhaltenen Verbindung <u>10</u> zu erwarten, dass die Wasserstoffatome der Wasserstoffbrückenbindung eher am Stickstoffatom liegen, da bei 3600 cm⁻¹ keine OH-Schwingungsbanden mehr zu beobachten sind und um 3300 cm⁻¹ typische NH-Valenzschwingungen vorliegen.

Abb. 53: IR-Spektren von $\underline{1}$, $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 4$ (HO)CH(CH₂)₄CH(OH) $\underline{9}$ (links) und $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 2 H_2N(CH_2)C_6H_4(CH_2)NH_2 \bullet 4 C_4H_8O \underline{10}$ (rechts)

4.2 Erhaltene Kristallstrukturdaten der Umsetzung von (Ph₂SiO)₈[AIO(OH)]₄ • 4 Et₂O mit 1,4-Cyclohexandiol <u>9</u>

Für die Röntgenstrukturuntersuchung geeignete Kristalle der Reaktion von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 Et_2O$ mit vier Äquivalenten 1,4-Cyclohexandiol konnten durch Umkristallisation aus Toluol erhalten werden. Ein geeigneter Kristall wurde entnommen und einer Röntgenkristallstrukturanalyse unterworfen. Nach Bestimmung und Verfeinerung der Gitterkonstanten ergab sich die monokline Raumgruppe Cc. Sämtliche Nichtwasserstoffatome wurden gefunden und anisotrop verfeinert. Zur Berechnung der Lagen der Wasserstoffatome wurden die entsprechenden idealisierten Geometrien verwendet. Der Zuverlässigkeitsfaktor erreicht einen Wert von R₁ = 0,058.

Summenformel	C141 H156 Al4 O24 Si8	
Molmasse [g/mol]	2567.30	
Messtemperatur [K]	120(2)	
Wellenlänge [Å]	0.71073	
Kristallsystem	monoklin	
Raumgruppe	Cc	
Gitterkonstanten	a = 29.205(4) Å	$\alpha = 90^{\circ}$
	b = 17.228(4) Å	$\beta = 107.541(13)^{\circ}$
	c = 28.657(5) Å	$\gamma = 90^\circ$
Zellvolumen [Å ³]	13748(5)	
Anzahl der Formeleinheiten Z	4	
Dichte (berechnet) [g/cm ³]	1.240	
Absorptionskoeffizient [mm ⁻¹]	0.172	
F(000)	5432	
Kristallabmessungen [mm ³]	0.95 x 0.49 x 0.49	
Messbereich θ [°]	1.39 to 32.92	
hkl - Indexbereich	-41<=h<=41, -24<=k<=23, -40<=l<=40	
Gemessene Reflexe	118965	
Symmetrieunabhängige Reflexe	40210 [R(int) = 0.0516]	
Vollständigkeit des Datensatzes (bis $\theta = 32.92^{\circ}$)	81.8 %	
Absorptionskorrektur	Multiscan	
Max. und Min. Transmission	0.9207 and 0.8538	
Strukturverfeinerungsmethode	Full-matrix-block least-squares	s on F ²
Daten / Einschränkungen / Parameter	40210 / 2 / 1595	
Güte des Fit auf F ²	1.124	
	- 86 -	

Tabelle 13 Kristalldaten und Strukturverfeinerungen für (Ph₂SiO)₈[AlO(OH)]₄ • 4 (HO)CH(CH₂)₄CH(OH) <u>9</u>

Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0575, wR2 = 0.1358
R-Werte (alle Daten)	R1 = 0.0895, wR2 = 0.1503
Absolute Strukturparameter	0.04(6)
Restelektronendichte (min./max.) [e/Å-3]	0.762 and -0.384

Tabelle 14: Ausgewählte Bindungslängen [Å] und Winkel [°] für $(Ph_2SiO)_8[AlO(OH)]_4 \bullet$ 4 (HO)CH(CH_2)_4CH(OH)

Al(1)-O(16)	1.710(2)	Si(1)-O(5)	1.606(2)
Al(1)-O(5)	1.711(2)	Si(1)-O(6)	1.633(2)
Al(1)-O(4)	1.796(2)	Si(2)-O(7)	1.610(2)
Al(1)-O(1)	1.796(2)	Si(2)-O(6)	1.641(2)
Al(2)-O(7)	1.695(2)	Si(3)-O(8)	1.601(2)
Al(2)-O(8)	1.720(2)	Si(3)-O(9)	1.634(2)
Al(2)-O(1)	1.795(2)	Si(4)-O(10)	1.601(2)
Al(2)-O(2)	1.796(2)	Si(4)-O(9)	1.626(2)
Al(3)-O(10)	1.694(2)	Si(5)-O(11)	1.610(2)
Al(3)-O(11)	1.703(2)	Si(5)-O(12)	1.630(2)
Al(3)-O(2)	1.798(2)	Si(6)-O(13)	1.603(2)
Al(3)-O(3)	1.804(2)	Si(6)-O(12)	1.628(2)
Al(4)-O(13)	1.704(2)	Si(7)-O(14)	1.610(2)
Al(4)-O(14)	1.717(2)	Si(7)-O(15)	1.626(2)
Al(4)-O(4)	1.799(2)	Si(8)-O(16)	1.608(2)
Al(4)-O(3)	1.800(2)	Si(8)-O(15)	1.636(2)
O(16)-Al(1)-O(5)	119.2(1)	O(11)-Al(3)-O(2)	108.22(9)
O(16)-Al(1)-O(4)	111.54(9)	O(10)-Al(3)-O(3)	109.61(9)
O(5)-Al(1)-O(4)	107.57(8)	O(11)-Al(3)-O(3)	108.13(9)
O(16)-Al(1)-O(1)	107.34(8)	O(2)-Al(3)-O(3)	102.86(8)
O(5)-Al(1)-O(1)	106.51(8)	O(13)-Al(4)-O(14)	116.79(9)
O(4)-Al(1)-O(1)	103.46(8)	O(13)-Al(4)-O(4)	111.46(9)
O(7)-Al(2)-O(8)	118.94(9)	O(14)-Al(4)-O(4)	106.66(9)
O(7)-Al(2)-O(1)	110.38(9)	O(13)-Al(4)-O(3)	108.66(9)
O(8)-Al(2)-O(1)	108.35(9)	O(14)-Al(4)-O(3)	109.50(9)
O(7)-Al(2)-O(2)	108.0(1)	O(4)-Al(4)-O(3)	102.86(8)
O(8)-Al(2)-O(2)	106.93(9)	O(5)-Si(1)-O(6)	110.6(1)
O(1)-Al(2)-O(2)	103.01(8)	O(7)-Si(2)-O(6)	113.0(1)
O(10)-Al(3)-O(11)	116.54(9)	O(8)-Si(3)-O(9)	111.3(1)
O(10)-Al(3)-O(2)	110.57(9)	O(10)-Si(4)-O(9)	112.8(1)

O(11)-Si(5)-O(12)	109.7(1)	Si(2)-O(7)-Al(2)	152.7(1)
O(13)-Si(6)-O(12)	112.9(1)	Si(3)-O(8)-Al(2)	150.3(1)
O(14)-Si(7)-O(15)	113.5(1)	Si(4)-O(9)-Si(3)	151.1(1)
O(16)-Si(8)-O(15)	111.3(1)	Si(4)-O(10)-Al(3)	155.6(1)
Al(2)-O(1)-Al(1)	125.4(1)	Si(5)-O(11)-Al(3)	149.2(1)
Al(2)-O(2)-Al(3)	125.9(1)	Si(6)-O(12)-Si(5)	148.9(1)
Al(4)-O(3)-Al(3)	126.0(1)	Si(6)-O(13)-Al(4)	156.7(1)
Al(1)-O(4)-Al(4)	125.7(1)	Si(7)-O(14)-Al(4)	147.5(1)
Si(1)-O(5)-Al(1)	144.9(1)	Si(7)-O(15)-Si(8)	148.1(1)
Si(1)-O(6)-Si(2)	142.1(1)	Si(8)-O(16)-Al(1)	144.4(1)

4.3 Molekülstruktur von $(Ph_2SiO)_8[AIO(OH)]_4 \cdot 4 (HO)CH(CH_2)_4CH(OH)$ <u>9</u>

Die Reaktion der Startverbindung (Ph₂SiO)₈[AlO(OH)]₄ • 4 Et₂O mit vier Äquivalenten an Toluol Reaktionsmedium liefert das 1,4-Cyclohexandiol in als Produkt $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 4 (HO)CH(CH_2)_4CH(OH)$ <u>9</u>. Das Grundgerüst der Ausgangsverbindung 1 bleibt bei dieser Umsetzung unverändert. Abb. 54 zeigt die erhaltene Molekülstruktur, bei der wegen einer besseren Übersicht die Phenylgruppen an den Siliziumatomen entfernt wurden. Die Molekülstruktur der Verbindung 9 besitzt eine annähernde C2-Symmetrie, bei der insgesamt vier 1,4-Cyclohexandiolmoleküle mittels Wasserstoffbrückenbindungen an die Hydroxylgruppen einer Alumopolysiloxaneinheit koordinieren und somit alle koordinativen Zentren des Alumopolysiloxans besetzen.

Abb. 54: Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 4 (HO)CH(CH₂)₄CH(OH) <u>9</u>, zur besseren Übersicht ohne Phenylgruppen an den Siliziumatomen

In Abb. 55 sind ausgewählte Phenylgruppen an den Siliziumatomen Si1, Si3, Si5 und Si7 mit abgebildet. Es ist zu erkennen, dass diese Phenylgruppen zwischen die 1,4-Cyclohexandiolmoleküle geschoben wurden und diese Liganden räumlich voneinander trennen.

Abb. 55: Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 4 (HO)CH(CH₂)₄CH(OH) <u>9</u> mit ausgewählten Phenylgruppen an den Siliziumatomen

Die Bindungsabstände der Wasserstoffbrückenbindungen zwischen den Hydroxylgruppen des Alumopolysiloxans und der 1,4-Cyclohexandiolmoleküle betragen auf einer Seite bezüglich der Al₄O₄-Ebene für einen Liganden im Mittel 2,60(1) Å (2,604(1) Å für O1^{...}O17 und 2,596(1) Å für O4^{...}O23) und für den zweiten Liganden dieser Seite liegen die O_(H) ^{...}O Bindungslängen im Mittel bei 2,65(1) Å (2,651(1) Å für O3...O21 und 2,656(1) Å für O2^{...}O19). Damit liegen die mittleren beobachteten Bindungslängen der Wasserstoffbrückenbindungen in denselben Bereichen, die bereits bei der Koordination von 1,6-Hexandiol, tert-Butanol oder Aceton mit O_(H) ^{...}O Abständen zwischen 2,62 Å – 2,63 Å beobachtet wurden^{80,81}.

Die Al-O Bindungsabstände des zentralen Al₄O₄-Rings betragen im Mittel 1,798(2) Å und liegen auch hier im Bereich der Al-O Bindungslängen von 1,792(2) Å – 1,805(2) Å, wie sie bei 1,6-Hexandiol, *tert*-Butanol, Aceton, Essigsäureethylester oder 1,4-Diacetoxybutan als koordinierenden Liganden an der Alumopolysiloxaneinheit gefunden wurden ^{72-75,98}.

Abb. 56 zeigt die vollständige Struktureinheit von $\underline{9}$ mit allen Phenylgruppen an den Siliziumatomen der Siloxanketten.

Die 1,4-Cyclohexandiolmoleküle koordinieren mit einer funktionellen Gruppe über Wasserstoffbrückenbindungen an die Hydroxylgruppen der Alumopolysiloxaneinheit, wobei jeder Ligand von den Phenylgruppen umschlossen wird. Die zweiten funktionellen Gruppen der eingesetzten 1,4-Cyclohexandioleinheiten liegen am äußeren Rand des von den Phenylgruppen ausgebildeten "Käfigs", wodurch eine Koordination mit nächsten 1,4-Cyclohexandiolmolekülen über Wasserstoffbrückenbindungen ermöglicht wird.

Abb. 56: Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 4 (HO)CH(CH₂)₄CH(OH) 9

In Abb. 57 ist die erhaltene Struktur von $\underline{9}$ mit 1,4-Cyclohexandiolmolekülen dargestellt und es ist angedeutet, wie sie mit ihren zweiten funktionellen Gruppen wiederum über Wasserstoffbrückenbindungen an weitere 1,4-Cyclohexandiolmoleküle koordinieren und einen tetrameren Ring aus miteinander verbundenen 1,4-Cyclohexandioleinheiten bilden.

Abb. 57: Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 4 (HO)CH(CH₂)₄CH(OH) <u>9</u> mit Andeutung der weiteren Koordination der 1,4-Cyclohexandiolmoleküle und zur besseren Übersicht ohne Phenylgruppen an den Si-Atomen

Abb. 58 zeigt die Koordination zweier Alumopolysiloxaneinheiten in Richtung der a-Achse, wobei nur die zur Verknüpfung der Alumopolysiloxaneinheiten in dieser Richtung beteiligten Liganden abgebildet sind. Eine funktionelle Gruppe der 1,4-Cyclohexandiolmoleküle koordiniert an der Alumopolysiloxaneinheit und die zweite Hydroxylgruppe dieses Liganden bildet mit drei weiteren Liganden einen Vierring, der aus Wasserstoffbrückenbindungen zu weiteren 1,4-Cyclohexandiolmolekülen resultiert. Das 1,4-Cyclohexandiolmolekül des gebildeten Vierringes, das in übernächster Position steht, bildet nun mit seiner zweiten funktionellen Gruppe eine Bindung zum Alumopolysiloxan aus und bildet in dieser Richtung eine Kette von Alumopolysiloxaneinheiten, welche durch Koordination von Liganden entsteht, die an einer Seite bezüglich des Al₄O₄-Rings koordinieren.

Abb. 58: Strukturausschnitt von (Ph₂SiO)₈[AlO(OH)]₄ • 4 (HO)CH(CH₂)₄CH(OH) <u>9</u> in Richtung a-Achse (ohne Phenylgruppen an den Si-Atomen)

Betrachtet man jetzt die von der a-, und b-Achse aufgespannte Ebene, erkennt man neben der eben besprochenen Verknüpfung zweier Alumopolysiloxaneinheiten eine weitere Verknüpfung der Alumopolysiloxaneinheiten in Richtung b-Achse unter Ausbildung einer weiteren Kette von Alumopolysiloxanen. Wir erhalten nun ein zweidimensionales Netzwerk aus Alumopolysiloxaneinheiten wie es in Abb. 59 dargestellt ist.

Abb. 59: Strukturausschnitt der a/b - Ebene von $(Ph_2SiO)_8[AlO(OH)]_4 \bullet 4$ (HO)CH(CH₂)₄CH(OH) <u>9</u> (ohne Phenylgruppen an den Si-Atomen)

Für die Bildung des besprochenen zweidimensionalen Netzwerks wurden bisher drei 1,4-Cyclohexandiolmoleküle pro Alumopolysiloxan verwendet, die Koordination des vierten Liganden ist in Abb. 60 dargestellt. Und zwar stellt dies die Koordination des Liganden in Richtung der c-Achse dar. Durch diese Verknüpfung werden nun die zweidimensionalen Schichten der Alumopolysiloxaneinheiten über Wasserstoffbrückenbindungen miteinander verbunden und es bildet sich ein dreidimensionales Netzwerk von Alumopolysiloxaneinheiten aus.

Abb. 60: Strukturausschnitt von (Ph₂SiO)₈[AlO(OH)]₄ • 4 (HO)CH(CH₂)₄CH(OH) <u>9</u>, der besseren Übersicht wegen ohne Phenylgruppen an den Siloxanketten

4.4 Erhaltene Kristallstrukturdaten der Umsetzung von (Ph₂SiO)₈[AlO(OH)]₄ • 4 Et₂O mit H₂N(CH₂)C₆H₄(CH₂)NH₂ <u>10</u>

Für die Röntgenstrukturuntersuchung geeignete Kristalle der Reaktion von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 Et_2O$ mit vier Äquivalenten para-Xylendiamin konnten durch Umkristallisation aus Tetrahydrofuran erhalten werden. Ein geeigneter Kristall wurde entnommen und einer Röntgenkristallstrukturanalyse unterworfen. Nach Bestimmung und Verfeinerung der Gitterkonstanten ergab sich die tetragonale Raumgruppe P 4(2)/n. Sämtliche Nichtwasserstoffatome wurden gefunden und anisotrop verfeinert. Zur Berechnung der Lagen der Wasserstoffatome wurden die entsprechenden idealisierten Geometrien verwendet. Der Zuverlässigkeitsfaktor erreicht einen Wert von $R_1 = 0,077$.

Summenformel	C128 H140 Al4 N4 O20 Si8	
Molmasse [g/mol]	2387.08	
Messtemperatur [K]	152(2)	
Wellenlänge [Å]	0.71073	
Kristallsystem	tetragonal	
Raumgruppe	P4(2)/n	
Gitterkonstanten	a = 19.7041(8) Å	$\alpha = 90^{\circ}$
	b = 19.7041(8) Å	$\beta = 90^{\circ}$
	c = 16.5008(9) Å	$\gamma = 90^{\circ}$
Zellvolumen [Å ³]	6406.5(5)	
Anzahl der Formeleinheiten Z	2	
Dichte (berechnet) [g/cm ³]	1.237	
Absorptionskoeffizient [mm ⁻¹]	0.177	
F(000)	2520	
Kristallabmessungen [mm ³]	0.21 x 0.11 x 0.06	
Messbereich θ [°]	1.46 to 27.31	
hkl - Indexbereich	-25<=h<=25, -25<=k<=22, -21	<=l<=21
Gemessene Reflexe	97856	
Symmetrieunabhängige Reflexe	7142 [R(int) = 0.3541]	
Vollständigkeit des Datensatzes (bis $\theta = 27.31^{\circ}$)	98.9 %	
Absorptionskorrektur	Multiscan	
Max. und Min. Transmission	0.9891 and 0.9642	
Strukturverfeinerungsmethode	Full-matrix least-squares on F ²	
Daten / Einschränkungen / Parameter	7142 / 0 / 382	

Tabelle 15: Kristalldaten und Strukturverfeinerungen für (Ph2SiO)8[AlO(OH)]4 • (H2N(CH2)C6H4(CH2)NH2 • 2 C4H8O)2 10
Güte des Fit auf F ²	1.054
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0767, wR2 = 0.1402
R-Werte (alle Daten)	R1 = 0.2529, wR2 = 0.1976
Restelektronendichte (min./max.) [e/Å-3]	0.389 and -0.461

Tabelle 16: Ausgewählte Bindungslängen [Å] und Winkel [°] für $(Ph_2SiO)_8[AlO(OH)]_4 \cdot (H_2N(CH_2)C_6H_4(CH_2)NH_2 \cdot 2C_4H_8O)_2$

Al(1)-O(3)	1.733(3)	Si(1)-C(7)	1.876(5)
Al(1)-O(2)	1.739(3)	Si(2)-O(2)#1	1.586(3)
Al(1)-O(1)	1.740(3)	Si(2)-O(4)	1.627(3)
Al(1)-O(1)#1	1.744(3)	Si(2)-C(13)	1.858(5)
Si(1)-O(3)	1.595(3)	Si(2)-C(19)	1.863(5)
Si(1)-O(4)	1.631(3)	O(1)-Al(1)#2	1.744(3)
Si(1)-C(1)	1.856(5)	O(2)-Si(2)#2	1.586(3)
O(3)-Al(1)-O(2)	110.7(2)	O(3)-Si(1)-O(4)	112.9(2)
O(3)-Al(1)-O(1)	108.1(2)	O(2)#1-Si(2)-O(4)	115.6(2)
O(2)-Al(1)-O(1)	109.9(2)	Al(1)-O(1)-Al(1)#2	139.1(2)
O(3)-Al(1)-O(1)#1	109.5(2)	Si(2)#2-O(2)-Al(1)	147.4(2)
O(2)-Al(1)-O(1)#1	104.9(2)	Si(1)-O(3)-Al(1)	148.7(2)
O(1)-Al(1)-O(1)#1	113.9(2)	Si(2)-O(4)-Si(1)	151.5(2)

Symmetrieoperationen zur Erzeugung äquivalenter Atome: #1 y,-x+3/2,-z+1/2 #2 -y+3/2,x,-z+1/2 #3 -x+2,-y+1,-z

4.5 Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • (H₂N(CH₂)C₆H₄(CH₂)NH₂ • 2 C₄H₈O)₂ <u>10</u>

Bei der Umsetzung der Startverbindung 1 mit para-Xylendiamin in Toluol als Reaktionsmedium, wird Umkristallisation Tetrahydrofuran die nach aus Verbindung $(Ph_2SiO)_8[AlO(OH)]_4 \bullet (H_2N(CH_2)C_6H_4(CH_2)NH_2 \bullet 2 C_4H_8O)_2$ 10 isoliert. Wie aus der Kristallstrukturanalyse hervorgeht, weist diese Verbindung eine annähernde S4-Symmetrie auf. Zudem werden bei dieser Umsetzung alle koordinativen Zentren des Alumopolysiloxans durch Koordination von vier Molekülen para-Xylendiamin besetzt. Hierbei koordinieren die vier Moleküle mit ihren Amingruppen über Wasserstoffbrückenbindungen an die Hydroxylgruppen der Alumopolysiloxaneinheit.

Die eingesetzten para-Xylendiaminliganden können nun mit ihren zweiten funktionellen Gruppen weitere Wasserstoffbrückenbindungen mit den nächsten Alumopolysiloxaneinheiten ausbilden, wie dies in Abb. 61 angedeutet ist.

Abb. 61: Molekülstruktur von $(Ph_2SiO)_8[AlO(OH)]_4 \bullet (H_2N(CH_2)C_6H_4(CH_2)NH_2 \bullet 2 C_4H_8O)_2$ <u>10</u>

Zudem koordinieren an die Amingruppen der eingesetzten para-Xylendiaminliganden weitere Tetrahydrofuranmoleküle. Diese Tatsache bestätigt die aufgestellte Hypothese, dass die Amingruppen der para-Xylendiaminmoleküle, wie auch bei der Koordination von Alkyldiaminen, einen Ammoniumcharakter aufweisen.

Die Bindungsabstände der O_{AI} "H"N Wasserstoffbrückenbindungen betragen im Mittel 2,567(1) Å und die Bindungslängen zwischen den Tetrahydrofuranmolekülen und der para-Xylendiaminmoleküle O_{THF} "H"N betragen 2,954(1) Å. Die Al- O_{AI} Bindungsabstände des Al₄O₄-Rings sind mit 1,740(3) Å im Vergleich zu den bereits besprochenen und beobachteten Abständen dieses Al₄O₄-Rings sehr kurz und liegen im Bereich von Bindungslängen die bereits bei Alkyldiaminen als eingesetztem Ligand gefunden wurden. Diese Tatsache deutet auf starke Wechselwirkungen der Alumopolysiloxaneinheit mit den para-Xylendiaminliganden und unterstützt wiederum die Hypothese des Ammoniumcharakters der Amingruppen der eingesetzten Liganden, da die starke Bindung der Liganden zum Alumopolysiloxan eine höhere Basizität am Sauerstoffatom bewirkt (O⁻), womit die kürzere Al-O_{Al}-Bindungslänge zu erklären ist.

Die Winkel der besten Ebenen zwischen den Siloxanflügeln und dem inneren Al_4O_4 -Ring betragen 129,7°. Im Vergleich zur Verbindung mit Pyridin als koordinierender Einheit mit einem Winkel von 134,3°, sind die Winkel des erhaltenen Produkts <u>10</u> kleiner geworden.

Abb. 62: Molekülstruktur von $(Ph_2SiO)_8[AlO(OH)]_4 \bullet (H_2N(CH_2)C_6H_4(CH_2)NH_2 \bullet 2 C_7H_8O)_2$ <u>10</u> mit ausgewählten Phenylgruppen

In Abb. 62 sind ausgewählte Phenylgruppen abgebildet, die an die Siliziumatome der Siloxanketten gebunden sind und sich räumlich so anordnen, dass zwei Liganden auf einer Seite der Al₄O₄-Ebene voneinander abgeschirmt werden. Dabei richten sich die Phenylgruppen einer Seite bezüglich des Al₄O₄-Rings zueinander annähernd parallel aus.

Wird eine Seite bezüglich der Al₄O₄-Ebene betrachtet und die Verknüpfung der Alumopolysiloxaneinheiten durch die para-Xylendiaminmoleküle in Richtung der gebildeten a/b-Ebene verfolgt, so ist ein alternierender Verlauf bezüglich der Koordination der para-Xylendiaminliganden an den Al₄O₄-Ring der Alumopolysiloxaneinheiten zu beobachten. Die para-Xylendiaminmoleküle koordinieren über Wasserstoffbrückenbindungen an einem Alumopolysiloxan oberhalb der Al₄O₄-Ebene und die benachbarte Alumopolysiloxaneinheit wird nun unterhalb der Al₄O₄-Ebenen angegriffen. Es entsteht in dieser Richtung eine Zick-Zackförmige Kette von Alumopolysiloxaneinheiten (Abb. 63).

Abb. 63: Ausschnitt der Struktur von (Ph₂SiO)₈[AlO(OH)]₄ • (H₂N(CH₂)C₆H₄(CH₂)NH₂ • 2 C₄H₈O)₂ <u>10</u> entlang einer Richtung (ohne Phenylgruppen an den Si-Atomen)

Diskussion und Ergebnisse

Auf der gegenüberliegenden Seite bezüglich der Al₄O₄-Ringebene ist dieselbe, um 90° versetzte Koordinationsgeometrie der para-Xylendiaminliganden zu den Alumopolysiloxaneinheiten zu beobachten, die bereits für die a/b-Ebene besprochen wurde. Jede Alumopolysiloxaneinheit wird tetraedrisch von vier weiteren Alumopolysiloxaneinheiten umgeben, die durch Wasserstoffbrückenbindungen mit para-Xylendiaminmolekülen vernetzt werden. Insgesamt ergibt sich ein zentrosymmetrischer Aufbau von Alumopolysiloxanmolekülen, die eine diamantartige Anordnung aufweisen.

Abb. 64: Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • (H₂N(CH₂)C₆H₄(CH₂)NH₂ • 2 C₄H₈O)₂ <u>10</u>, der besseren Übersicht ohne Phenylgruppen an den Siloxanketten

5 Reaktionen unter Änderung der Gerüststruktur des Alumopolysiloxans <u>1</u>

Bisher sind ausschließlich Strukturen diskutiert worden, bei denen die Gerüststruktur "(Ph₂SiO)₈[AlO(OH)]₄" der Startverbindung <u>1</u> beibehalten werden konnte. Es sind allerdings auch Reaktionen möglich, die mit einem Umbau dieser Gerüststruktur einhergehen. Eine solche Umstrukturierung geschieht zum Beispiel bei Einsatz der Aminosäure Lysin, oder bei Verwendung von Tris(ethylen)diamin als eingesetztem Ligand (Abb. 65).

Das Molekül Tris(ethylen)diamin besitzt einen PA-Wert von 963,4 KJ/mol und liegt damit sowohl mit seiner Basenstärke als auch mit seiner sterischen Beanspruchung zwischen Pyridin mit einem PA-Wert von 930,0 KJ/mol, das mit vier Molekülen am Alumopolysiloxan koordiniert und dem sterisch anspruchsvollerem Triethylamin mit einem höheren PA-Wert von 982 KJ/mol und zwei Ligandmolekülen am Alumopolysiloxan. Im Vergleich zu diesen Molekülen besitzt Pyrazin mit einem PA-Wert von 877,1 KJ/mol eine viel schwächere Protonenaffinität, findet aber dennoch genügend Freiraum um mit drei Ligandmolekülen am Alumopolysiloxan zu koordinieren. Durch die Verwendung von Tris(ethylen)diamin kann untersucht werden, inwiefern die Basenstärke, beziehungsweise die sterische Raumbeanspruchung der eingesetzten Ligandmoleküle einen Einfluss auf die Produktbildung ausübt.

Abb. 65: Schematische Übersicht der gebildeten Produkte <u>11</u> und <u>13</u> die ausgehend von <u>1</u> mit Lysin bzw. mit Tris(ethylen)diamin erhalten werden können

5.1 Synthese und Charakterisierung von (Ph₂SiO)₈[AIO(O)_{0.25}]₄(OH • N(CH₂CH₂)₃N)₂ (OH₂ • N(CH₂CH₂)₃N) <u>11</u>

Die Verbindung $(Ph_2SiO)_8[AlO(O)_{0.25}]_4(OH \cdot N(CH_2CH_2)_3N)_2(OH_2 \cdot N(CH_2CH_2)_3N)$ <u>11</u> kann erhalten werden, indem bei Raumtemperatur zu einer Lösung des Alumopolysiloxans <u>1</u> in Toluol, der ebenfalls in Toluol gelöste Ligand Tris(ethylen)diamin, zugegeben wird. Nach erfolgter Reaktion wird die Reaktionslösung eingeengt und das Produkt <u>11</u> kann in Form von Kristallen isoliert werden, wobei pro Produktmolekül vier weitere Toluolmoleküle im Kristallgitter vorliegen (Gleichung 10).

Gleichung 10: postulierte Darstellung von $(Ph_2SiO)_8[AlO(O)_{0.25}]_4(OH \bullet N(CH_2CH_2)_3N)_2$ $(OH_2 \bullet N(CH_2CH_2)_3N)$ <u>11</u>

Die Gerüststruktur der Ausgangsverbindung <u>1</u> ist im dargestellten Produkt <u>11</u> verändert worden, wobei die Anzahl der Gerüstatome erhalten geblieben ist. Es ist anzunehmen, dass zu Beginn der Umstrukturierung von <u>1</u> zunächst ein Basenmolekül an einer der vier möglichen Hydroxylgruppen des Alumopolysiloxans <u>1</u> angreift und dessen Proton entfernt. In Gleichung 10 wird von einem Tris(ethylen)diaminmolekül das Proton am O¹-Atom entfernt, wodurch die Basizität dieses Sauerstoffatoms erhöht wird und das O¹-Atom mit einem weiteren Aluminiumatom Al¹ eine neue Al-O Bindung aufbaut. Die Hydroxylgruppe, die an diesem Aluminiumatom koordinativ gebunden war, wird vom Sauerstoffatom O¹ verdrängt und es ist nun ein Angriff eines Protons oder eines Ammoniumions wie zum Beispiel N(CH₂CH₂)₃N⁺-H an der "freien" Hydroxylgruppe möglich, wobei ein formales Wassermolekül entsteht, das am Aluminiumatom Al² koordiniert vorliegt.

Ein Teil der Verbindung <u>11</u> zeigt die analoge Struktur des Edukts <u>1</u>, bei der zwei Aluminiumatome über Hydroxylgruppen miteinander verbunden sind und über Siloxanketten verbrückt werden. Mit den Protonen der Hydroxylgruppen tritt der Ligand Tris(ethylen)diamin nun in Wechselwirkung und bildet Wasserstoffbrückenbindungen aus. Der zweite Teil des Produkts <u>11</u> zeigt die Hälfte einer weiteren Gerüststruktur mit der Zusammensetzung (Ph₂SiO)₈[AlO(O)_{0,5}]₄ • 2 "Basen" (Basen = Pyridin oder N-Methylpiperidin), die bereits bei der Umsetzung mit Hexamethyldisilazan und anschließender Umsetzung mit Pyridin in Tetrahydrofuran ^{72-75,98}, sowie bei der Umsetzung von <u>1</u> mit dem Monochloralan AlH₂Cl • 2 nmp (N-Methylpiperidin), beobachtet werden konnten ⁷⁹. In diesen Verbindungen existiert ein zentraler Al₂O₂-Ring dessen Sauerstoffatome trigonal-planar von Aluminiumatomen umgeben sind. Weiterhin verbrücken vier O-Ph₂Si-O-SiPh₂-O Ketten jeweils zwei Aluminiumatome und es bilden sich somit vier Achtgliedrige Al₂O₄Si₂-Ringeinheiten aus.

Im Produkt **11** ist das Sauerstoffatom O^1 trigonal-planar von drei Aluminiumatomen umgeben und an das Aluminiumatom Al² bindet ein weiteres Sauerstoffatom, das formal ein Wassermolekül darstellt, welches an ein nächstes Tris(ethylen)diaminmolekül koordiniert vorliegt. Es ist anzunehmen, dass eine weitere Substitution dieses formalen Wassermoleküls durch den Angriff einer weiteren Base am Aluminiumatom und einer anschließenden des Mechanismus Wiederholung postulierten zu einer analogen Struktur wie (Ph₂SiO)₈[AlO(O)_{0.5}]₄ • 2 "Basen" führen kann, die zwei Wassermoleküle weniger beinhaltet als die Startverbindung 1.

In Abb. 66 ist ein Vergleich des erhaltenen Produkts <u>11</u> mit der Startverbindung <u>1</u> und des erhaltenen Pyridinaddukts mit veränderter (Ph₂SiO)₈[AlO(OH)]₄-Gerüststruktur gezeigt und die Strukturmerkmale beider Verbindungen sind im gebildeten Produkt <u>11</u> wiederzufinden.

Das Produkt <u>11</u> wurde in Tetrahydrofuran gelöst und NMR-spektroskopisch untersucht. Im erhaltenen ¹H-NMR Spektrum ist ein Signal bei der chemischen Verschiebung von 2,90 ppm vorhanden, das vom Tris(ethylen)diamin stammt. Weitere Resonanzen sind in den aromatischen Bereichen der chemischen Verschiebungen von 6,83 ppm – 7,20 ppm und 7,46 ppm – 7,64 ppm zu beobachten. Diese Signale sind den Phenylgruppen des Alumopolysiloxans zuzuordnen. Das aufgenommene ¹³C-NMR Spektrum weist ein Signal bei der chemischen Verschiebung von 45,5 ppm auf, das vom Tris(ethylen)diamin herrührt und weitere charakteristische Signale der Phenylgruppen sind im aromatischen Bereich bei den chemischen Verschiebungen von

127,4 ppm, 127,6 ppm, 128,9 ppm, 129,1 ppm, 135,1 ppm, 135,3 ppm, 140,2 ppm und 140,3 ppm zu sehen. Das ²⁹Si-NMR-Spektrum weist ein Signal bei der chemischen Verschiebung von -47,4 ppm auf. Eine nachfolgend durchgeführte Röntgenstrukturanalyse zeigt, dass im Feststoff eine geringere Symmetrie vorliegt. In Lösung liegt offenbar eine andere Struktur vor als im Festkörper.

In Abb. 67 sind die aufgenommenen IR-Spektren des Alumopolysiloxans 1 (schwarze Linie) und des erhaltenen Produkts 11 (rote Linie) gegenübergestellt, die in diffuser Reflexion mit KBr aufgenommen wurden. Es ist deutlich zu erkennen, dass die OH-Schwingung im Bereich von 3640 cm⁻¹ im gebildeten Produkt **11** viel schärfer geworden ist. Es ist daher anzunehmen, dass eine der vorhandenen Hydroxylgruppen die OH-Schwingungsbande bei 3640 cm⁻¹ hervorruft und die Protonen der restlichen Hydroxylgruppen an die Stickstoffatome der Tris(ethylen)diaminmoleküle koordinieren, die somit einen Ammoniumcharakter aufweisen. Unglücklicherweise kann die N-H⁺ Absorptionsbande nicht eindeutig identifiziert werden, da diese im Bereich der C-H Absorptionsbanden liegt und von ihnen überlagert wird. Außerdem sind neben den CH-Schwingungsbanden bei 3068 cm⁻¹, 3045 cm⁻¹, 3024 cm⁻¹ und 2999 cm⁻¹, weitere CH-Schwingungen bei 2947 cm⁻¹ und 2876 cm⁻¹ vorhanden, die man dem Liganden zuordnen kann.

Abb. 67: IR-Spektrum von $(Ph_2SiO)_8[AlO(O)_{0.25}]_4(OH \bullet N(CH_2CH_2)_3N)_2(OH_2 \bullet N(CH_2CH_2)_3N)$ <u>11</u> im direkten Vergleich mit dem Edukt <u>1</u>

5.1.1 Erhaltene Kristallstrukturdaten der Umsetzung von (Ph₂SiO)₈[AlO(OH)]₄ • 4 Et₂O mit Tris(ethylen)diamin <u>11</u>

Das Einengen der Mutterlösung von <u>11</u> führte zu einem geeigneten Kristall, das isoliert und entnommen wurde, um eine Röntgenkristallstrukturanalyse durchzuführen. Nach Bestimmung und Verfeinerung der Gitterkonstanten ergab sich die trikline Raumgruppe P-1. Alle Atome, bis auf die Wasserstoffatome, wurden anisotrop verfeinert. Zur Berechnung der Lagen der Wasserstoffatome wurden die entsprechenden idealisierten Geometrien zu Grunde gelegt. Es ergab sich ein Zuverlässigkeitsfaktor von 4,41 %.

Die Kristalldaten und Daten zur Strukturbestimmung sind in Tabelle 17 aufgelistet. In der Tabelle 18 sind ausgewählte Bindungslängen und Winkel der Verbindung <u>11</u> enthalten.

 $\label{eq:constraint} \begin{array}{l} \textbf{Tabelle 17: Kristalldaten und Strukturverfeinerungen für (Ph_2SiO)_8[AlO(O)_{0.25}]_4(OH \bullet N(CH_2CH_2)_3N)_2 \\ (OH_2 \bullet N(CH_2CH_2)_3N) \ \underline{11} \end{array}$

Summenformel	C114 H120 Al4 N6 O16 Si8 x 4 C7 H8	
Molmasse [g/mol]	2531.34	
Messtemperatur [K]	153(2)	
Wellenlänge [Å]	0.71073	
Kristallsystem	triklin	
Raumgruppe	P-1	
Gitterkonstanten	a = 14.6729(10) Å	$\alpha = 81.045(4)^{\circ}$
	b = 15.8940(13) Å	β=79.283(3)°
	c = 30.772(2) Å	$\gamma = 74.773(3)^{\circ}$
Zellvolumen [Å ³]	6760.3(9)	
Anzahl der Formeleinheiten Z	2	
Dichte (berechnet) [g/cm ³]	1.244	
Absorptionskoeffizient [mm ⁻¹]	0.170	
F(000)	2676	
Kristallabmessungen [mm ³]	0.57 x 0.31 x 0.18	
Messbereich θ [°]	1.34 to 28.38	
hkl - Indexbereich	-19<=h<=19, -21<=k<=21, -	-41<=l<=41
Gemessene Reflexe	123752	
Symmetrieunabhängige Reflexe	33723 [R(int) = 0.0324]	
Vollständigkeit des Datensatzes (bis $\theta = 28.38^{\circ}$)	99.5 %	
Absorptionskorrektur	Multiscan	
Max. und Min. Transmission	0.9693 and 0.9097	

Diskussion und Ergebnisse

Strukturverfeinerungsmethode	Full-matrix-block least-squares on F ²
Daten / Einschränkungen / Parameter	33723 / 0 / 1622
Güte des Fit auf F ²	1.011
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0441, wR2 = 0.1055
R-Werte (alle Daten)	R1 = 0.0710, wR2 = 0.1218
Restelektronendichte (min./max.) [e/Å-3]	0.632 and -0.609

 $\label{eq:alpha} \begin{array}{l} \textbf{Tabelle 18:} \ Ausgewählte \ Bindungslängen \ [Å] \ und \ Winkel \ [^{\circ}] \ für \ (Ph_2SiO)_8 \ [AlO(O)_{0.25}]_4 \ (OH \bullet N(CH_2CH_2)_3N)_2 \\ (OH_2 \bullet N(CH_2CH_2)_3N) \end{array}$

Al(1)-O(5)	1.719(1)	Si(1)-O(5)	1.590(1)
Al(1)-O(16)	1.738(1)	Si(1)-O(6)	1.631(1)
Al(1)-O(2)	1.757(1)	Si(2)-O(7)	1.597(1)
Al(1)-O(1)	1.801(1)	Si(2)-O(6)	1.631(1)
Al(2)-O(7)	1.736(1)	Si(3)-O(8)	1.598(1)
Al(2)-O(8)	1.743(1)	Si(3)-O(9)	1.636(1)
Al(2)-O(3)	1.750(1)	Si(4)-O(10)	1.588(1)
Al(2)-O(2)	1.767(1)	Si(4)-O(9)	1.632(1)
Al(3)-O(10)	1.725(1)	Si(5)-O(11)	1.600(1)
Al(3)-O(11)	1.733(1)	Si(5)-O(12)	1.635(1)
Al(3)-O(3)	1.747(1)	Si(6)-O(13)	1.597(1)
Al(3)-O(1)	1.802(1)	Si(6)-O(12)	1.631(1)
Al(4)-O(13)	1.718(1)	Si(7)-O(14)	1.600(1)
Al(4)-O(14)	1.733(1)	Si(7)-O(15)	1.636(1)
Al(4)-O(4)	1.767(1)	Si(8)-O(16)	1.601(1)
Al(4)-O(1)	1.780(1)	Si(8)-O(15)	1.629(1)
O(5)-Al(1)-O(16)	111.88(6)	O(8)-Al(2)-O(2)	110.11(6)
O(5)-Al(1)-O(2)	110.56(6)	O(3)-Al(2)-O(2)	102.80(6)
O(16)-Al(1)-O(2)	108.55(6)	O(10)-Al(3)-O(11)	111.28(6)
O(5)-Al(1)-O(1)	110.84(6)	O(10)-Al(3)-O(3)	112.70(6)
O(16)-Al(1)-O(1)	107.53(6)	O(11)-Al(3)-O(3)	107.13(6)
O(2)-Al(1)-O(1)	107.31(6)	O(10)-Al(3)-O(1)	104.83(6)
O(7)-Al(2)-O(8)	109.39(7)	O(11)-Al(3)-O(1)	114.21(6)
O(7)-Al(2)-O(3)	114.47(6)	O(3)-Al(3)-O(1)	106.73(6)
O(8)-Al(2)-O(3)	111.58(6)	O(13)-Al(4)-O(14)	112.89(6)
O(7)-Al(2)-O(2)	108.22(6)	O(13)-Al(4)-O(4)	105.82(6)

Diskussion und Ergebnisse

O(14)-Al(4)-O(4)	109.97(7)	Al(1)-O(2)-Al(2)	121.78(7)
O(13)-Al(4)-O(1)	111.98(6)	Al(3)-O(3)-Al(2)	121.69(7)
O(14)-Al(4)-O(1)	107.48(6)	Si(1)-O(5)-Al(1)	158.23(9)
O(4)-Al(4)-O(1)	108.64(6)	Si(2)-O(6)-Si(1)	150.27(9)
O(5)-Si(1)-O(6)	113.94(7)	Si(2)-O(7)-Al(2)	147.42(9)
O(7)-Si(2)-O(6)	113.89(7)	Si(3)-O(8)-Al(2)	142.20(9)
O(8)-Si(3)-O(9)	115.02(7)	Si(4)-O(9)-Si(3)	140.52(9)
O(10)-Si(4)-O(9)	113.85(7)	Si(4)-O(10)-Al(3)	154.59(9)
O(11)-Si(5)-O(12)	111.39(7)	Si(5)-O(11)-Al(3)	149.18(8)
O(13)-Si(6)-O(12)	112.30(7)	Si(6)-O(12)-Si(5)	137.21(8)
O(14)-Si(7)-O(15)	112.42(7)	Si(6)-O(13)-Al(4)	159.42(9)
O(16)-Si(8)-O(15)	111.79(7)	Si(7)-O(14)-Al(4)	135.54(8)
Al(4)-O(1)-Al(1)	117.11(6)	Si(8)-O(15)-Si(7)	141.01(9)
Al(4)-O(1)-Al(3)	123.73(7)	Si(8)-O(16)-Al(1)	153.26(8)
Al(1)-O(1)-Al(3)	116.66(6)		

5.1.2 Molekülstruktur von $(Ph_2SiO)_8[AlO(O)_{0.25}]_4(OH \bullet N(CH_2CH_2)_3N)_2(OH_2 \bullet N(CH_2CH_2)_3N) \underline{11}$

Die Darstellung von $(Ph_2SiO)_8[AlO(O)_{0.25}]_4(OH \cdot N(CH_2CH_2)_3N)_2(OH_2 \cdot N(CH_2CH_2)_3N)$ <u>11</u> erfolgt durch Zugabe von Tris(ethylen)diamin zum Alumopolysiloxan <u>1</u> in Toluol als Solvenz. Obwohl die Summenformel der Gerüstatome denen der Startverbindung <u>1</u> entspricht, weist das gebildete Produkt <u>11</u> nicht mehr dasselbe Grundgerüst von <u>1</u> auf.

Abb. 68: Polyederdarstellung von $(Ph_2SiO)_8[AlO(O)_{0.25}]_4(OH \bullet N(CH_2CH_2)_3N)_2$ $(OH_2 \bullet N(CH_2CH_2)_3N)$ <u>11</u> (ohne Phenylgruppen an den Si-Atomen)

Insgesamt koordinieren drei Moleküle des Tris(ethylen)diamins über Wasserstoffbrückenbindungen an Sauerstoffatome des Alumopolysiloxans und die erhaltene Verbindung <u>11</u> weist eine C1-Symmetrie auf. Zwei Liganden koordinieren wie erwartet an die Hydroxylgruppen einer Al(OH)Al Kante des zentralen Kerns, wobei eine O_{Al} ^{...}H^{...}N Bindungslänge von 2,55(3) Å (2,572(1) Å für O3^{...}N1 und 2,519(1) Å für O2^{...}N5) beobachtet wird. Der dritte Ligand koordiniert über Wasserstoffbrückenbindungen an ein am Aluminium gebundenes Sauerstoffatom, welches formal ein Wassermolekül darstellt. In diesem Fall ist die HO_{Al}^{...}H^{...}N Bindungslänge mit 2,606(1) Å etwas länger. Die vierte Hydroxylgruppe der Ausgangsverbindung <u>1</u> ist im Produkt <u>11</u> nicht mehr vorhanden, stattdessen ist nun das

Sauerstoffatom O1 trigonal-planar von den drei Aluminiumatomen Al1, Al3 und Al4 umgeben (Winkelsumme um O1 = $357,5^{\circ}$). In Abb. 68 ist eine Polyederdarstellung des gebildeten Produkts 11 abgebildet, in der das Sauerstoffatom O1 die drei Al-O Tetraeder über deren Ecken miteinander verknüpft. Weiterhin besetzten die Sauerstoffatome O2 und O3 die Ecken der Tetraeder um die Aluminiumatome Al1 und Al3, die gleichzeitig eine Kante des Tetraeders um das Al2 Atom darstellen. Am Aluminiumatom Al4 wird eine Ecke des gebildeten Tetraeders von einem Wassermolekül besetzt, an das ein Tris(ethylen)diaminligand koordiniert. Die Beiden Aluminiumatome (Al1 und Al3) weisen zusammen mit Al2 das bereits besprochene Koordinationsmuster unter Erhalt der ursprünglichen Gerüststruktur von 1 auf, bei der Hydroxylmoleküle die Aluminiumatome miteinander verbinden und mit Tris(ethylen)diaminmolekülen Säure-Base Addukte ausbilden.

Abb. 69: Molekülstruktur von $(Ph_2SiO)_8[AlO(O)_{0.25}]_4(OH \bullet N(CH_2CH_2)_3N)_2$ $(OH_2 \bullet N(CH_2CH_2)_3N)$ <u>11</u> ohne Phenylgruppen der Siloxanketten

Die Al-O Bindungsabstände der zentralen Einheit die sich aus den Aluminium- und Sauerstoffatomen Al1. Al2. A13. O2 und O3 zusammensetzt. bei der Tris(ethylen)diaminmoleküle wie in der Startverbindung <u>1</u> über Wasserstoffbrückenbindungen die Sauerstoffatome der Alumopolysiloxaneinheit koordinieren, weisen mittlere an Bindungsabstände von 1,755(1) Å auf. Wohingegen die Al-O Bindungsabstände um das Sauerstoffatom O1 mit der trigonal-planaren Umgebung von Aluminiumatomen im Mittel etwas längere Bindungsabstände von 1,794(1) Å aufweisen. Die kürzesten Al-O Bindungsabstände werden um das O3 Atom mit 1,750(1) Å für Al2-O3 und 1,747(1) Å für Al3-O3 beobachtet und sind ebenso wie die Bindungslängen Al1-O2 mit 1,757(1) Å und Al2-O2 mit 1,767(1) Å kürzer als die Al-O Bindungslängen, die mit 1,768(2) Å bei der Koordination von Pyridin an die Alumopolysiloxaneinheit beobachtet wurden. Auch im Vergleich zu Verbindung 2, bei der Pyrazin am Alumopolysiloxan mit ebenfalls drei Molekülen koordiniert und mittlere Al-O Bindungslängen von 1,787(1) Å aufweisen, sind die Bindungslängen im Fall von Produkt 11 viel kürzer. Diese Al-O Bindungsabstände zeigen eine Korrelation zur Basenstärke auf. Pyrazin besitzt einen PA-Wert von 877,1 KJ/mol und besitzt die längsten Al-O_{H-Pvrazin} Bindungslängen mit 1,787(1) Å. Darauf folgt Pyridin mit einem PA-Wert von 930,0 KJ/mol, sowie mittleren Al-O Bindungslängen von 1,768(2) Å. Tris(ethylen)diamin stellt mit einem PA-Wert von 963,4 KJ/mol die stärkste dieser Basen dar und weist zudem die kürzesten Al-O Bindungslängen um die von Pyrazinmolekülen koordinierten Hydroxylgruppen mit 1,755(1) Å auf. Diese sehr kurzen Bindungslängen sprechen dafür, dass die Protonen der Hydroxylgruppen eher am Stickstoffatom vorliegen und dieser Ligand somit einen Ammoniumcharakter besitzt. Dadurch wird das Sauerstoffatom stark basisch (O⁻) und geht eine stärkere Bindung mit dem Aluminiumatom ein, beziehungsweise ermöglicht erst eine Veränderung der Gerüststruktur von 1. In Abb. 70 sind die Basenstärken der Liganden Tris(ethylen)diamin, Pyridin, Pyrazin, Diethylether und Tetrahydrofuran, gegen die Al-O Bindungslängen des zentralen Al₄O₄-Rings vom Alumopolysiloxan aufgetragen. Dabei wird eine lineare Korrelation zwischen der Al-O Bindungslänge und der Basenstärke erhalten, bei der die Basen ziemlich genau die Punkte auf einer Geraden besetzen.

Abb. 70: Abhängigkeit der Basenstärke zur Al-O Bindungslänge

Wie in der Ausgangsverbindung $\underline{1}$ sind auch im Produkt $\underline{11}$ alle Aluminiumatome über Siloxanbrücken miteinander verbunden, jedoch weisen die Siloxanflügel im Vergleich zum Edukt $\underline{1}$ eine stärkere Verdrillung auf. Somit können die Phenylgruppen an den Siliziumatomen sich so ausrichten, dass alle Liganden von Phenylgruppen umschlossen werden können.

Abb. 71: Molekülstruktur von $(Ph_2SiO)_8[AlO(O)_{0.25}]_4(OH \bullet N(CH_2CH_2)_3N)_2$ $(OH_2 \bullet N(CH_2CH_2)_3N)$ <u>11</u>

5.2 Synthese und Charakterisierung von $(Ph_2SiO)_{12}(Al_2O_2)(AlO_2)_2[AlO(OH)]_4(C_6H_{12}N_2O)_2$ <u>13</u>

Die Darstellung von (Ph₂SiO)₁₂(Al₂O₂)(AlO₂)₂[AlO(OH)]₄(C₆H₁₂N₂O)₂ <u>**13**</u> erfolgt durch Zugabe der Aminosäure Lysin zur Startverbindung <u>**1**</u>. Anschließend wird die Reaktionslösung in Toluol unter Rückfluss gerührt und hinterher aus Tetrahydrofuran umkristallisiert. Während der Reaktion erfolgt eine Kondensation der Aminosäure zum α -Amino-caprolactam <u>**12**</u>. Das gebildete α -Amino-caprolactam <u>**12**</u> koordiniert an das Alumopolysiloxan, wobei formal zwei Siloxanketten abgespalten werden und sich eine neue Struktur <u>**13**</u> bildet (Gleichung 11).

Gleichung 11: schematische Darstellung der Synthese von (Ph₂SiO)₁₂(Al₂O₂)(AlO₂)₂[AlO(OH)]₄(C₆H₁₂N₂O)₂ <u>13</u>, wegen einer besseren Übersicht wurden die Siloxanbrücken entfernt Für die Darstellung von 13 kann der in Abb. 72 dargestellte Mechanismus postuliert werden. Zunächst erfolgt, wie bereits bei der Produktbildung von 11 diskutiert, der Angriff eines Liganden an einer Hydroxylgruppe des Alumopolysiloxans 1 mit einhergehender Entfernung eines Protons, wodurch die Basizität an diesem Sauerstoffatom O¹ erhöht wird. Das O¹-Atom greift nun am Aluminiumatom Al¹ an, wodurch eine Siloxankette am Al¹-Atom gelockert wird und ein α -Amino-caprolactammolekül am Al¹-Atom als zweizähniger Ligand koordinieren kann. Dadurch wird eine Siloxankette am Al^1 -Atom geöffnet, deren Sauerstoffatom O^6 das Proton einer weiteren Hydroxylgruppe bindet, wobei das Sauerstoffatom O^3 dieser Hydroxylgruppe wiederum an Basizität zunimmt. Dieses O³-Atom greift nun an das Al¹⁻Atom einer weiteren Alumopolysiloxaneinheit an, die in analoger Weise verändert wurde und deren O^{3'}-Atom unter Ausbildung eines viergliedrigen Al₂O₂-Rings am Al¹- Atom bindet. In einer womöglich konzertierten Reaktion zusammen mit der Bildung des Al₂O₂-Rings, greift das Sauerstoffatom O^5 (O^5) des geöffneten Siloxanflügel am Al^{2'} (Al²)-Atom an und spaltet eine komplette Siloxankette ab, an die wiederum ein Proton angreifen kann und mit dessen Abspaltungsprodukt weitere Kondensationsreaktionen möglich sind. Aufgrund dieser Eliminierungen Siloxanketten wird die Annäherung der beiden von zwei Alumopolysiloxaneinheiten unter Ausbildung des zentralen Al₂O₂-Rings überhaupt erst möglich. Während dieser Umlagerungsreaktion bleiben die Hydroxylgruppen, die die Sauerstoffatome O2 und O4 beinhalten, unverändert und stellen weiterhin reaktive Koordinationszentren dar. Mit dieser Reaktion ist es somit erstmals gelungen, zwei Alumopolysiloxaneinheiten miteinander zu verknüpfen.

Es ist ebenso vorstellbar, dass die Freisetzung von Wasser bei der Cyclisierung von Lysin zum α -Amino-caprolactam der Grund für die Umstrukturierung von <u>1</u> darstellt. Es ist bereits bekannt, dass eine Exposition von <u>1</u> mit Wasser zu einer neuen Verbindung führt, deren Gerüststruktur verändert wurde. Auch bei dieser Reaktion kann das in situ gebildete Wasser die Ausgangsverbindung <u>1</u> angreifen, wodurch mehrere Fragmente gebildet werden, deren Neustrukturierung zu Verbindung <u>13</u> führt.

Abb. 72: postulierter Reaktionsmechanismus der Bildung von 13

Ein Teil des gebildeten Produkts <u>13</u> wurde in Toluol gelöst und NMR-spektroskopisch untersucht. Im ¹³C-NMR-Spektrum werden Signale bei 21,2 ppm, 34,5 ppm, 41,5 ppm, 53,6 ppm und 179,1 ppm erhalten, die dem α -Amino-caprolactam zugeordnet werden können. Zudem werden im Bereich von 27,3 ppm bis 32,4 ppm mehrere Signale beobachtet, in dem ein weiteres Signal des α -Amino-caprolactam liegen müsste, das aufgrund der vorliegenden Signalvielfalt nicht eindeutig bestimmt werden kann. Im aromatischem Bereich werden Signale bei den chemischen Verschiebungen von 127,6 ppm, 127,7 ppm, 129,8 ppm, 130,1 ppm, 139,4 ppm und 141,0 ppm beobachtet, sowie ein breites Signal im Bereich der chemischen Verschiebung von 134,4 ppm – 136,1 ppm, die von den Phenylgruppen an den Siliziumatomen stammen.

Im ²⁹Si-CP/MAS-Spektrum werden zwei breite Signale bei -38 ppm und -47 ppm beobachtet. Das Signal bei -47 ppm stammt von den Siliziumatomen der Siloxanketten des erhaltenen Produkts <u>13</u> und das zweite Signal bei einer chemischen Verschiebung von -38 ppm besitzt eine geringere Intensität und liegt im Bereich von Diphenylsilandiol. Somit wird das bei dieser postulierten Reaktion freiwerdende HO-SiPh₂-O-SiPh₂-OH bzw. Ph₂Si(OH)₂ bestätigt.

Die mittels diffuser Reflexion mit KBr aufgenommenen IR-Spektren von <u>1</u> und <u>13</u> sind in Abb. 73 abgebildet. Die OH-Schwingungsbande der Startverbindung <u>1</u> bei ca. 3660 cm⁻¹ hat deutlich abgenommen und weitere Schwingungsbanden sind bei den Wellenzahlen 3521 cm⁻¹ und 3333 cm⁻¹ zu sehen, die im Bereich von koordinierenden OH-, beziehungsweise NH-Valenzschwingungen liegen. Eine deutliche Zunahme der Absorption ist bei den Schwingungsbanden im Bereich von 2926 cm⁻¹ und 2854 cm⁻¹ zu erkennen, in dem CH-Schwingungsbanden erwartet werden. Außerdem taucht im Produkt <u>13</u> eine weitere Schwingungsbande bei 1651 cm⁻¹ auf, in dessen Bereich CO-Schwingungsbanden vorliegen.

Abb. 73: aufgenommenes IR-Spektrum von 13

5.2.1 Erhaltene Kristallstrukturdaten der Umsetzung von (Ph₂SiO)₈[AlO(OH)]₄ • 4 Et₂O mit Lysin <u>13</u>

Von einem aus Tetrahydrofuran erhaltenen Kristall der Reaktion von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 Et_2O$ mit Lysin wurde eine Röntgenkristallstrukturanalyse durchgeführt. Die Gitterkonstanten wurden bestimmt und verfeinert, dabei ergab sich die monokline Raumgruppe P2(1)/n. Sämtliche Nichtwasserstoffatomlagen wurden gefunden und anisotrop verfeinert. Zur Berechnung der Lagen der Wasserstoffatome wurden die entsprechenden idealisierten Geometrien verwendet.

Der Zuverlässigkeitsfaktor erreicht einen Wert von R_1 =0,072. Die Daten zum Kristall können der Tabelle 19 entnommen werden. Ausgewählte Ergebnisse der Strukturanalyse für <u>13</u> befinden sich in der Tabelle 20.

Summenformel	C188 H214 Al8 N8 O35 Si12	
Molmasse [g/mol]	3698.60	
Messtemperatur [K]	132(2)	
Wellenlänge [Å]	0.71073	
Kristallsystem	monoklin	
Raumgruppe	P2(1)/n	
Gitterkonstanten	a = 18.5590(18) Å	$\alpha = 90^{\circ}$
	b = 24.169(3) Å	$\beta = 97.693(7)^{\circ}$
	c = 21.627(2) Å	$\gamma{=}90^\circ$
Zellvolumen [Å ³]	9613.3(18)	
Anzahl der Formeleinheiten Z	2	
Dichte (berechnet) [g/cm ³]	1.278	
Absorptionskoeffizient [mm ⁻¹]	0.190	
F(000)	3900	
Messbereich θ [°]	1.27 to 27.92	
hkl - Indexbereich	-24<=h<=24, -29<=k<=31, -28	<=l<=28
Gemessene Reflexe	81260	
Symmetrieunabhängige Reflexe	22880 [R(int) = 0.1545]	
Vollständigkeit des Datensatzes (bis $\theta = 27.92^{\circ}$)	99.4 %	
Absorptionskorrektur	Multiscan	
Strukturverfeinerungsmethode	Full-matrix least-squares on F ²	
	- 117 -	

 $\label{eq:constraint} \textbf{Tabelle 19:} Kristalldaten und Strukturverfeinerungen für (Ph_2SiO)_{12}(Al_2O_2)(AlO_2)_2[AlO(OH)]_4(C_6H_{12}N_2O)_2~\underline{13}$

Diskussion und Ergebnisse

Daten / Einschränkungen / Parameter	22880 / 0 / 1162
Güte des Fit auf F ²	1.069
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0723, wR2 = 0.1727
R-Werte (alle Daten)	R1 = 0.2005, wR2 = 0.2248
Restelektronendichte (min./max.) [e/Å-3]	1.774 and -0.432

$\begin{array}{l} \textbf{Tabelle 20:} Ausgewählte Bindungslängen [Å] und Winkel [°] für \\ (Ph_2SiO)_{12}(Al_2O_2)(AlO_2)_2[AlO(OH)]_4(C_6H_{12}N_2O)_2 \end{array}$

Al(1)-O(4)	1.709(4)	O(14)-C(73)	1.274(5)
Al(1)-O(7)	1.712(3)	N(1)-C(78)	1.482(6)
Al(1)-O(2)	1.774(3)	N(2)-C(73)	1.283(6)
Al(1)-O(1)	1.788(4)	N(2)-C(74)	1.486(7)
Al(1)-Al(2)	2.757(2)	C(73)-C(78)	1.509(7)
Al(2)-O(3)	1.861(3)	C(74)-C(75)	1.498(8)
Al(2)-O(3)#1	1.861(3)	C(75)-C(76)	1.515(8)
Al(2)-O(2)	1.910(3)	C(76)-C(77)	1.549(7)
Al(2)-O(14)	1.913(3)	C(77)-C(78)	1.506(7)
Al(2)-O(1)	1.937(4)	O(15)-C(79)	1.226(6)
Al(2)-N(1)	2.080(5)	N(3)-C(84)	1.492(7)
Al(2)-Al(2)#1	2.798(3)	N(4)-C(79)	1.343(7)
Al(3)-O(9)	1.707(3)	N(4)-C(80)	1.472(8)
Al(3)-O(3)	1.738(3)	C(79)-C(84)	1.503(8)
Al(3)-O(10)	1.757(3)	C(80)-C(81)	1.499(8)
Al(3)-O(12)	1.793(4)	C(81)-C(82)	1.503(8)
Al(4)-O(6)	1.712(4)	C(82)-C(83)	1.490(7)
Al(4)-O(13)	1.720(3)	C(83)-C(84)	1.519(7)
Al(4)-O(2)	1.754(3)	O(16)-C(87)	1.417(9)
Al(4)-O(12)#1	1.792(4)	O(16)-C(90)	1.438(8)
		C(87)-C(88A)	1.40(2)
Si(1)-O(4)	1.596(4)	C(87)-C(88B)	1.62(2)
Si(1)-O(5)	1.636(3)	C(88A)-C(89A)	1.44(2)
Si(2)-O(6)	1.595(4)	C(89A)-C(90)	1.38(2)
Si(2)-O(5)	1.633(3)	C(88B)-C(89B)	1.38(2)
Si(3)-O(7)	1.595(3)	C(89B)-C(90)	1.48(2)
Si(3)-O(8)	1.622(4)	O(17)-C(91)	1.407(8)
Si(4)-O(9)	1.591(3)	O(17)-C(94)	1.428(9)
Si(4)-O(8)	1.633(4)	C(91)-C(92)	1.504(8)
Si(5)-O(10)	1.620(3)	C(92)-C(93)	1.53(1)
Si(5) - O(11)	1.639(4)	C(94)-C(93)	1.49(1)
Si(6) - O(13)	1.585(3)	C(95)-C(96)	1.31(2)
Si(6) - O(11) #1	1.634(4)	C(95)-C(98)	1.31(2) 1.43(2)
	1.05 ((1)	C(96)- $C(97)$	1.13(2) 1.42(2)
O(3)-A1(2)#1	1 861(3)	C(97)-O(18)	1.12(2) 1.29(2)
O(11)-Si(6)#1	1.634(4)	C(98)-O(18)	1.22(2) 1.32(2)
$O(12)_{-}A1(4)#1$	1.051(1) 1.791(4)		1.52(2)
$O(12) I I (T) \pi I$	1.//1(7)		
O(4)-Al(1)-O(7)	111.3(2)	O(2)-Al(1)-O(1)	87.3(2)
O(4)-Al(1)-O(2)	115.1(2)	O(4)-Al(1)-Al(2)	131.8(1)
O(7)-Al(1)-O(2)	113.5(2)	O(7)-Al(1)-Al(2)	116.9(1)
O(4)-Al(1)-O(1)	115.4(2)	O(2)-Al(1)-Al(2)	43.5(1)
O(7)-Al(1)-O(1)	112.4(2)	O(1)-Al(1)-Al(2)	44.4(1)

O(3)-Al(2)-O(3)#1	82.5(1)	Si(2)-O(5)-Si(1)	136.7(2)
O(3)-Al(2)-O(2)	102.8(1)	Si(2)-O(6)-Al(4)	156.3(2)
O(3)#1-Al(2)-O(2)	96.4(1)	Si(3)-O(7)-Al(1)	151.8(2)
O(3)-Al(2)-O(14)	170.3(2)	Si(3)-O(8)-Si(4)	144.6(2)
O(3)#1-Al(2)-O(14)	94.6(1)	Si(4)-O(9)-Al(3)	165.8(2)
O(2)-Al(2)-O(14)	86.7(1)	Si(5)-O(10)-Al(3)	141.7(2)
O(3)-Al(2)-O(1)	92.8(2)	Si(6)#1-O(11)-Si(5)	146.4(2)
O(3)#1-Al(2)-O(1)	173.0(2)	Al(4)#1-O(12)-Al(3)	127.5(2)
O(2)-Al(2)-O(1)	79.4(1)	Si(6)-O(13)-Al(4)	153.7(2)
O(14)-Al(2)-O(1)	90.9(2)	C(73)-O(14)-Al(2)	121.3(3)
O(3)-Al(2)-N(1)	92.4(2)	C(78)-N(1)-Al(2)	113.0(3)
O(3)#1-Al(2)-N(1)	94.2(2)	C(73)-N(2)-C(74)	125.4(5)
O(2)-Al(2)-N(1)	162.5(2)	O(14)-C(73)-N(2)	120.6(5)
O(14)-Al(2)-N(1)	78.6(2)	O(14)-C(73)-C(78)	117.7(4)
O(1)-Al(2)-N(1)	91.2(2)	N(2)-C(73)-C(78)	121.6(4)
O(3)-Al(2)-Al(1)	95.2(1)	N(2)-C(74)-C(75)	112.6(5)
O(3)#1-Al(2)-Al(1)	134.7(1)	C(74)-C(75)-C(76)	113.5(5)
O(2)-Al(2)-Al(1)	39.72(9)	C(75)-C(76)-C(77)	115.0(5)
O(14)-Al(2)-Al(1)	93.4(1)	C(78)-C(77)-C(76)	113.4(4)
O(1)-Al(2)-Al(1)	40.2(1)	N(1)-C(78)-C(77)	112.1(4)
N(1)-Al(2)-Al(1)	131.1(2)	N(1)-C(78)-C(73)	105.9(4)
O(3)-Al(2)-Al(2)#1	41.3(1)	C(77)-C(78)-C(73)	111.9(5)
O(3)#1-Al(2)-Al(2)#1	41.3(1)	C(79)-N(4)-C(80)	127.8(6)
O(2)-Al(2)-Al(2)#1	102.8(1)	O(15)-C(79)-N(4)	118.0(5)
O(14)-Al(2)-Al(2)#1	135.1(1)	O(15)-C(79)-C(84)	122.9(5)
O(1)-Al(2)-Al(2)#1	133.9(1)	N(4)-C(79)-C(84)	119.1(5)
N(1)-Al(2)-Al(2)#1	94.4(2)	N(4)-C(80)-C(81)	114.3(5)
Al(1)-Al(2)-Al(2)#1	121.90(8)	C(80)-C(81)-C(82)	114.6(5)
O(9)-Al(3)-O(3)	115.3(2)	C(83)-C(82)-C(81)	115.5(5)
O(9)-Al(3)-O(10)	114.2(2)	C(82)-C(83)-C(84)	116.1(5)
O(3)-Al(3)-O(10)	109.6(2)	N(3)-C(84)-C(79)	107.1(4)
O(9)-Al(3)-O(12)	107.9(2)	N(3)-C(84)-C(83)	107.9(4)
O(3)-Al(3)-O(12)	103.2(2)	C(79)-C(84)-C(83)	115.3(5)
O(10)-Al(3)-O(12)	105.7(2)	C(87)-O(16)-C(90)	109.0(6)
O(6)-Al(4)-O(13)	110.8(2)	C(88A)-C(87)-O(16)	108.3(8)
O(6)-Al(4)-O(2)	114.9(2)	C(88A)-C(87)-C(88B)	35.0(9)
O(13)-Al(4)-O(2)	109.7(2)	O(16)-C(87)-C(88B)	101.2(9)
O(6)-Al(4)-O(12)#1	106.5(2)	C(87)- $C(88A)$ - $C(89A)$	105(1)
O(13)-Al(4)-O(12)#1	106.8(2)	C(90)- $C(89A)$ - $C(88A)$	111(1)
O(2)-Al(4)-O(12)#1	107.7(2)	C(89B)-C(88B)-C(87)	103(2)
O(4)-Si(1)-O(5)	111.8(2)	C(88B)-C(89B)-C(90)	111(2)
O(6)-Si(2)-O(5)	110.9(2)	C(89A)- $C(90)$ - $O(16)$	104.3(9)
O(7)-Si(3)-O(8)	1131(2)	C(89A)- $C(90)$ - $C(89B)$	50(1)
O(9)-Si(4)-O(8)	110.1(2) 110.9(2)	O(16)-C(90)-C(89B)	99(1)
O(10)-Si(5)-O(11)	109.9(2)	C(91)-O(17)-C(94)	105 6(6)
O(13)-Si(6)-O(11)#1	110 5(2)	O(17)- $C(91)$ - $C(92)$	109.2(6)
Al(1)-O(1)-Al(2)	954(2)	C(91)-C(92)-C(93)	102.6(6)
Al(4) - O(2) - Al(1)	129 7(2)	O(17) - C(94) - C(93)	106.8(7)
A1(4) - O(2) - A1(2)	129.7(2) 124.4(2)	C(94)-C(93)-C(92)	105.0(7)
$A_1(1) = O(2) = A_1(2)$	96.8(1)	C(96)-C(95)-C(98)	101(1)
$A_1(3) = O(3) = A_1(2)$	133 3(2)	C(95)-C(95)-C(97)	101(1) 104(2)
$\Delta 1(3) = O(3) = \Delta 1(2) \pm 1$	135.5(2) 126 7(2)	O(18) - C(97) - C(96)	104(2) 106(2)
$A_1(2) = O(3) = A_1(2) = 1$	975(1)	O(18)-C(98)-C(95)	100(2) 109(1)
$S_i(1) = O(4) = \Delta I(1)$	165 3(2)	C(97) - C(98)	107(1)
SI(1) - O(4) - AI(1)	105.5(2)	C(37)- $O(10)$ - $C(30)$	10/(1)

Symmetrieoperationen zur Erzeugung äquivalenter Atome: #1 -x,-y+1,-z+1

5.2.2 Molekülstruktur von $(Ph_2SiO)_{12}(Al_2O_2)(AlO_2)_2[AlO(OH)]_4(C_6H_{12}N_2O)_2$ <u>13</u>

Wird eine Reaktion der Ausgangsverbindung <u>1</u> mit der Aminosäure Lysin in Toluol unter Rückfluss durchgeführt und anschließend aus Tetrahydrofuran umkristallisiert, so kann das Produkt $(Ph_2SiO)_{12}(Al_2O_2)(AlO_2)_2[AlO(OH)]_4(C_6H_{12}N_2O)_2$ <u>13</u> mit der Molekülsymmetrie C_i erhalten werden.

Betrachtet man die gebildeten Koordinationspolyeder um die Aluminiumatome, erhält man zwei Oktaeder in der Mitte des Alumopolysiloxans die miteinander kantenverknüpft sind und sechs weitere Tetraeder. Eine Hälfte dieser zentrosymmetrischen Verbindung <u>13</u> beinhaltet einen Oktaeder und drei weitere Tetraeder. Zwei der Tetraeder sind miteinander eckenverknüpft und besetzen eine Kante des Oktaeders. Eine weitere Kante des Oktaeders ist mit einem Tetraeder kantenverknüpft, wobei eine Ecke dieser gemeinsamen Kante eine Hydroxylgruppe beansprucht. Weiterhin sind alle Tetraeder über Siloxanketten miteinander verbunden (Abb. 74).

Eine weitere Kante des Oktaeders wird vom α -Amino-caprolactam mit dessen Amin- und Ketogruppen besetzt.

Abb. 74: Polyederdarstellung von (Ph₂SiO)₁₂(Al₂O₂)(AlO₂)₂[AlO(OH)]₄(C₆H₁₂N₂O)₂ <u>13</u>, der besseren Übersicht wegen ohne Phenylgruppen an den Si-Atomen

Die Sauerstoffatome O3 und O2 sind jeweils von drei Aluminiumatomen annähernd trigonalplanar umgeben. Die Winkelsumme um O3 mit den Aluminiumatomen Al2 und Al3, welche eine Al₄O₂-Einheit bilden, beträgt 357,5° und um O2 liegt eine Winkelsumme von 350,9° vor, in diesem Fall rückt das Sauerstoffatom ein wenig aus der planaren Ebene heraus, die von den Aluminiumatomen Al1, Al2 und Al4 gebildet wird. Außerdem liegt das Sauerstoffatom O2 etwas näher an den Al1 und Al4 Atomen, welche über eine Siloxanbrücke miteinander verbunden sind. Die Bindungsabstände um das O2 Atom betragen 1,774(3) Å für Al1-O2, 1,754(3) Å für Al4-O2 und 1,910(3) Å für Al2-O2.

Die Bindungsabstände um das O3 Atom betragen zweimal 1,861(3) Å für Al2-O3 und 1,738(3) Å für Al3-O3. Dieses Sauerstoffatom liegt demnach ein wenig näher am Al3-Atom, welches tetraedrisch von Sauerstoffatomen umgeben ist.

Abb. 75: Molekülstruktur von $(Ph_2SiO)_{12}(Al_2O_2)(AlO_2)_2[AlO(OH)]_4(C_6H_{12}N_2O)_2$ **13**

a) Zur besseren Übersicht der Verbindung <u>13</u> ohne Siloxanketten, sowie einer Darstellung in schematischer Form;
b) Darstellung von <u>13</u> ohne Phenylgruppen an den Si-Atomen

Die Bindungslängen zwischen den Aluminiumatomen mit tetraedrischer Koordinationssphäre und den Sauerstoffatomen der Hydroxylgruppen sind homogen und betragen im Mittel 1,791(4) Å.

Die Al-O Bindungslängen der zwei gebildeten Oktaeder liegen im Mittel bei 1,928(5) Å. Die Bindungsabstände für die Atome Al2-O3, welche die Oktaeder über Kanten miteinander verknüpfen und Sauerstoffatome mit trigonal-planarer Umgebung beinhalten liegen im Bereich von 1,861(3) Å. Für Al2-O2 wird eine Bindungslänge von 1,910(3) Å beobachtet. In diesem Fall liegt das Sauerstoffatom wiederum in einer trigonal-planaren Umgebung. Der Bindungsabstand zur Hydroxylgruppe ist ein wenig länger und beträgt 1,937(4) Å. Das α -Amino-caprolactam koordiniert sowohl mit der Amingruppe, als auch mit seinem Sauerstoffatom am Al2-Atom des Alumopolysiloxans. Die Bindungsabstände innerhalb des gebildeten Oktaeders betragen 1,913(3) Å für Al2-O14_(Lys) und 2,080(5) Å für Al2-N1H₂.

In Abb. 76 sind ausgewählte Phenylgruppen dargestellt, die an die Siliziumatome gebunden sind. Sie richten sich räumlich so aus, dass die α -Amino-caprolactammoleküle vollständig eingeschlossen werden. Betrachtet man die acht Aluminiumatome der erhaltenen Verbindung <u>13</u>, erkennt man jeweils vier Aluminiumatome in einer Ebene, deren Lage in der Höhe versetzt vorliegen und durch zwei Sauerstoffatome, die einen zentralen Al₂O₂-Ring bilden, miteinander verbunden sind. Diese Verbindung beinhaltet insgesamt vier freiliegende Hydroxylgruppen, die analog der Startverbindung <u>1</u> jeweils zwei Aluminiumatome miteinander verbinden.

Abb. 76: Molekülstruktur von $(Ph_2SiO)_{12}(Al_2O_2)(AlO_2)_2[AlO(OH)]_4(C_6H_{12}N_2O)_2$ <u>13</u> mit ausgewählten Phenylgruppen

IV Zusammenfassung und Ausblick

Metallorganische Netzwerke werden bereits seit längerer Zeit untersucht und sind Gegenstand vieler aktueller Forschungsbereiche. Verbindungen dieser Art beinhalten metallische Zentren, die mittels organischen Gruppen zu ein-, zwei- oder dreidimensionalen Gebilden verknüpft werden ¹¹². Es handelt sich dabei im Allgemeinen um mikroporöse Verbindungen, die oftmals ihre Anwendung in der Katalyse, Stofftrennung, Gasspeicherung oder Sensorik finden ¹¹³⁻¹¹⁵.

Weiterhin stellen Supramolekulare Verbindungen ein höchst interessantes Themengebiet in der Chemie dar, welches in jüngster Zeit intensiv erforscht wird. In diesem Teilbereich der Chemie werden Bindungsarten beziehungsweise deren Auswirkungen auf Verbindungen untersucht, die auf nicht-kovalenten Wechselwirkungen beruhen. Es können somit verschiedenste Strukturen konstruiert werden, die aufgrund von intermolekularen Wechselwirkungen wie Wasserstoffbrückenbindungen oder Bindungsarten elektrostatischer Natur zusammengehalten werden.

Ausgehend von molekularen Struktureinheiten, werden durch Selbstorganisation einzelner Einheiten größere Molekülverbände mit einer geordneten und definierten Struktur aufgebaut. Ein vorteilhafter Aspekt dieser gebildeten Verbindungen besteht in ihrer Reversibilität, die aufgrund der nicht zu starren, ebenfalls reversiblen intermolekularen Bindungsarten herrührt. Dadurch wird es möglich, selbstheilende, sich regenerierende Materialien darzustellen ^{114,116-118}.

Außerdem ist es bei Strukturen mit diesen Bindungsarten möglich, die Ligandmoleküle, die für die jeweils gebildete Struktur eingesetzt wurden, gezielt durch andere Liganden zu ersetzen, was schließlich mit einer Neustrukturierung des Produkts einhergehen kann.

Insgesamt werden Gebilde erhalten, bei denen die Eigenschaften der eingesetzten Moleküle ausgenutzt werden, um größere, geordnete Molekülverbände zu konstruieren, die zudem nicht starr gebunden sind, sondern flexibel umstrukturiert werden können. Je nachdem zu welchem Zweck das gebildete Produkt dienen soll, kann es auf diese Weise modifiziert werden ¹¹⁹.

Im Rahmen dieser Arbeit wurde gezeigt, dass eine Variation der eingesetzten Liganden in einer Reaktion mit dem Alumopolysiloxan $\underline{1}$ zu unterschiedlichen Produkten führt, die mit einer Modifikation des Edukts $\underline{1}$ einhergehen.

Der Einsatz von kleinen, nicht zu starken Basen wie Pyrazin, liefert wie erwartet eine neue Struktur des Alumopolysiloxans <u>1</u>, bei der insgesamt drei Moleküleinheiten des Pyrazin über Wasserstoffbrückenbindungen an die Alumopolysiloxaneinheit binden. Die sterische Raumbeanspruchung von zwei Liganden oberhalb der Al₄O₄-Ebene verschiebt die Phenylgruppen der Siloxanketten nach außen und unterhalb der Al₄O₄-Ringebene orientieren sich die Phenylgruppen dementsprechend nach innen. Hier findet nur noch ein Pyrazinligand genügend Freiraum, um eine Koordination mit dem Alumopolysiloxan eingehen zu können (Abb. 77, Struktur <u>2</u>).

Abb. 77: Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 3 C₄H₄N₂ <u>2</u> und (Ph₂SiO)₈[AlO(O)_{0.25}]₄(OH • N(CH₂CH₂)₃N)₂ (OH₂ • N(CH₂CH₂)₃N) <u>11</u>, wegen einer besseren Übersicht ohne Wasserstoffatome der Pyrazinliganden und ohne Phenylgruppen an den Si-Atomen

der Ist eingesetzte Ligand dagegen eine starke Base, mit geringer sterischer Raumbeanspruchung, wie das bei Tris(ethylen)diamin der Fall ist, wird die Gerüststruktur der Ausgangsverbindung 1 verändert (Abb. 77). Die abgebildete Verbindung 11 weist zur Hälfte die Gerüststruktur der Ausgangsverbindung 1 auf und ein weiterer Teil dieser Struktur beinhaltet ein Sauerstoffatom, das trigonal-planar von drei Aluminiumatomen umgeben ist. Zudem findet man in dieser Struktureinheit ein formales Wassermolekül an einem Aluminiumatom, an das ein Tris(ethylen)diaminmolekül koordiniert. Man kann diese Struktur als ein isoliertes Zwischenprodukt von $(Ph_2SiO)_8[AlO(O)_{0,5}]_4 \cdot 2$ "Basen" (Basen = C₅H₅N oder N-Methylpiperidin) betrachten und es ist anhand der erhaltenen Verbindung möglich, einen postulierten Mechanismus der Umstrukturierung von <u>1</u> aufstellen zu können, die zur Verbindung (Ph₂SiO)₈[AlO(O)_{0,5}]₄ • 2 "Basen" (Basen = C₅H₅N oder N-Methylpiperidin) führt.

Mit den Liganden Essigsäureethylester und 1,4-Diacetoxybutan können weitere modifizierte Struktureinheiten des Alumopolysiloxans mit Carbonsäureestern erhalten werden. Essigsäureethylester koordiniert mit insgesamt drei Molekülen an das Alumopolysiloxan 1, wobei bemerkenswerter Weise die Seite des Alumopolysiloxans, an die ein einzelnes Essigsäureethylestermolekül koordiniert, gleichzeitig an zwei Hydroxylgruppen des Al₄(OH)₄-Rings bindet, was bisher bei noch keiner Verbindung mit diesem Alumopolysiloxan beobachtet werden konnte (Abb. 78, Verbindung 3). Die gebildete Struktur 4 der Reaktion mit 1,4-Diacetoxybutan liefert eine sehr symmetrische Verbindung, in der zwei 1,4-Diacetoxybutanmoleküle als zweizähnige Liganden fungieren und zwei Hydroxylgruppen einer Seite des Alumopolysiloxans intramolekular miteinander verbinden. Besonders interessant ist in diesem Fall die Ausrichtung der Phenylgruppen, die sich parallel zueinander anordnen, wodurch den Liganden die intramolekulare Koordination ans Alumopolysiloxan ermöglicht wird.

Abb. 78: Molekülstruktur von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 3 CH_3COOCH_2CH_3 \underline{3}$ (ohne Phenylgruppen an den Siliziumatomen) und $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 CH_3COO(CH_2)_4OOCCH_3 \underline{4}$ (ohne Wasserstoffatome)

Sind lineare Verknüpfungen der Alumopolysiloxaneinheiten gewünscht, so kann mit dem Liganden 4,4'-Bipyridin ein linearer, kettenartiger Strang von aneinanderhängenden Alumopolysiloxaneinheiten gebildet werden, die sich senkrecht zur Al₄O₄-Ebene des Alumopolysiloxan ausrichten. Dadurch ergibt sich eine maschenartige Struktureinheit, in der sich alle Phenylgruppen, die an die Siloxanketten gebunden sind nach außen orientieren und in der Mitte eine Kette von Al₄O₄-Einheiten resultiert, die nach außen durch die Phenylgruppen abgeschirmt wird (Abb. 79).

Abb. 79: Strukturausschnitte der linearen Struktur von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 2 p - (C_5H_4N) \underline{6}$ a) Molekülstruktur von <u>6</u> ohne Phenylgruppen an den Si-Atomen, sowie ohne H-Atome der Kohlenstoffatome; b) Darstellung von <u>6</u> als Kalottenmodell; c) schematische Darstellung von <u>6</u>

Eine Verlängerung des Liganden 4,4'-Bipyridin um eine Azogruppe liefert eine zweidimensionale maschenartige Schichtstruktur, in der die Alumopolysiloxane in hexameren Ringen angeordnet werden. Das vierte Koordinationszentrum des Alumopolysiloxans wird bei Koordination von 4,4'-Bipyridin von einem Tetrahydrofuranmolekül besetzt.

Die Verwendung von 3,3'-Azobipyridin als Ligand, führt ebenfalls zu einer Schichtstruktur in der die Alumopolysiloxaneinheiten als hexamere Einheiten angeordnet sind. Diese Schichtstruktur beinhaltet doppelsträngige Alumopolysiloxaneinheiten, die kettenartig miteinander verknüpft sind (Abb. 80).

Abb. 80: Ausschnitt der Schichtstrukturen von (Ph₂SiO)₈[AlO(OH)]₄ • 1,5 p-(C₅H₄N)₂N₂ <u>**7**</u> und (Ph₂SiO)₈[AlO(OH)]₄ • 2 m-(C₅H₄N)₂N₂ <u>**8**</u> als Molekülstrukturen, sowie als schematische Darstellungen

Eine andere Sichtweise des Aufbaus der Schichtstruktur von <u>8</u> besteht im Aufbau der Schicht aus einzelnen Kettensträngen, wie sie bereits in Verbindung <u>6</u> erhalten wurden, die wiederum mittels 3,3-Azobipyridinliganden an weitere Kettenstränge gebunden sind. Dadurch resultiert insgesamt eine zweidimensionale Anordnung wie sie in Abb. 81 abgebildet ist.

Abb. 81: Kristallstrukturausschnitt der Verbindung <u>8</u> als Kalottenmodell

Möchte man dreidimensional angeordnete Netzwerkstrukturen des Alumopolysiloxans erhalten, so gelingt dies mit den Liganden para-Xylendiamin und 1,4-Cyclohexandiol.

Mit para-Xylendiamin als Ligand kann eine Struktur dargestellt werden, in der die Alumopolysiloxanmoleküle hochsymmetrisch, adamantanartig angeordnet sind. Zudem koordiniert in dieser Verbindung an jedem Stickstoffatom des Liganden jeweils ein Tetrahydrofuranmolekül (Abb. 82).

Abb. 82: Ausschnitt der Struktur von (Ph₂SiO)₈[AlO(OH)]₄ • 2 H₂N(CH₂)C₆H₄(CH₂)NH₂ • 4 THF <u>10</u> ohne Phenylgruppen an den Si-Atomen, sowie eine schematische Darstellung der Verbindung <u>10</u>

Eine weitere Möglichkeit, um ein dreidimensionales Netzwerk zu konstruieren, besteht in der Verlagerung einer funktionellen Gruppe an den äußeren Rand des von den Phenylgruppen ausgebildeten "Käfigs", um dort wiederum weitere Koordinationen mit nächsten Molekülen zu ermöglichen. Im Fall des 1,4-Cyclohexandiol koordinieren diese Liganden mit einer funktionellen Gruppe an eine Alumopolysiloxaneinheit und mit ihren zweiten Hydroxylgruppen werden Wasserstoffbrückenbindungen zu weiteren 1,4-Cyclohexandiolmolekülen ausgebildet, welche wiederum an eine nächste Alumopolysiloxaneinheit binden. Auf diese Weise ergibt sich insgesamt ein dreidimensionales Netzwerk, das aus Alumopolysiloxaneinheiten aufgebaut ist (Abb. 83).

9

 Abb. 83: Molekülstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 4 (HO)CH(CH₂)₄CH(OH) <u>9</u> mit Andeutung der weiteren Koordination der 1,4-Cyclohexandiolmoleküle und zur besseren Übersicht ohne Phenylgruppen an den Si-Atomen, sowie eine schematische Darstellung von <u>9</u> in der die Vernetzung der Alumopolysiloxaneinheiten durch die Liganden angedeutet ist

Weiterhin konnte eine Verbindung isoliert werden, bei deren Produktbildung die Aminosäure Lysin beteiligt war, wobei während der Reaktion unter Dehydratation der Aminosäure zunächst ein α -Amino-caprolactam gebildet wurde, welches im Anschluss mit dem Alumopolysiloxan <u>1</u> weiterreagierte. Die Gerüststruktur der Ausgangsverbindung $\underline{1}$ wurde während dieser Reaktion umstrukturiert und der gebildete Ligand bindet mit seinen beiden funktionellen Gruppen direkt an ein Aluminiumatom des Alumopolysiloxans (Abb. 84). Die gebildete Struktureinheit stellt formal eine Verbindung aus zwei Eduktmolekülen von <u>1</u> dar, die unter Abspaltung von zwei Siloxanbrücken direkt miteinander verknüpft werden. Eine solche Reaktion des Alumopolysiloxans ist auf diesem Reaktionswege das erste Mal beobachtet worden. Hierzu konnte ein postulierter Reaktionsmechanismus der Produktbildung aufgestellt werden.

Abb. 84: Molekülstruktur von $(Ph_2SiO)_{12}(Al_2O_2)(AlO_2)_2[AlO(OH)]_4(C_6H_{12}N_2O)_2$ <u>13</u>, wegen einer besseren Übersicht ohne Siloxanketten, sowie einer schematischen Darstellung der Verbindung <u>13</u> (mit R = Ph_2SiO_{1,5})
Sämtliche Umsetzungen wurden unter Ausschluss von Luft und Feuchtigkeit und über CaCl₂, sowie Phosphorpentoxid (Sicapent) getrocknetem Stickstoff als Inertgas durchgeführt. Die Durchführung der Versuche fanden an einer modifizierten Stock´schen Hochvakuumsapparatur statt.

Die eingesetzten Lösemittel (Tetrahydrofuran, Toluol, Benzol, Dioxan, Diethylether und Hexan) wurden vor der Verwendung mittels Destillation gereinigt und über Natrium getrocknet. Die Aufbewahrung der Lösemittel erfolgte unter gepresstem Natriumdraht in Stickstoffatmosphäre.

Die ¹H- und ¹³C-NMR-Spektren wurden mit einem NMR–Spektrometer AC200F (Fa. Bruker) aufgenommen. Die Aufnahmen der ²⁹Si-NMR-Spektren erfolgten mittels Inept Pulsfrequenz an einem NMR–Spektrometer AC200P (Fa. Bruker). Alle Aufnahmen der NMR-Spektren erfolgten mit einem Volumenanteil C₆D₆ von etwa 5%. TMS diente als interner Standard.

Eichungen und Messfrequenzen:

c) ²⁹ Si-NMR:	
requenz: 39,7 MHz	

Messfrequenz:	50,32 MHz
Standard Benzol:	128 ppm

Die IR-Spektren wurden unter Verwendung einer Spiegeleinheit für diffuse Reflexion mit einem FT–IR Spektrometer Varian 2000 erhalten.

Die C-, H-, N-Analysen erfolgten mit einem CHN-900 Elemental Analysator der Firma Leco Corporation (St. Joseph, Mi, USA). Die Gehaltsbestimmung von Aluminium erfolgte mittels komplexometrischen Methoden. Die Daten der Strukturanalysen wurden mit einem Image Plate Diffraktometer der Firma Stoe (IPDS I) gewonnen und die Molekülstrukturen mit Hilfe der Programme SHELXS-86,97^{88,89} und SHELXL-93,97¹²⁰ bestimmt. Die Darstellung der Strukturen erfolgte mit dem Programm Diamond 3¹²¹.

Erworbene Chemikalien:

- Essigsäureethylester, (CAS: 141-78-6, Aldrich)
- 1,4-Diacetoxybutan, 98 % (CAS: 628-67-7, Alfa Aesar)
- Pyrazin, 99+ %, (CAS: 290-37-9, Aldrich)
- 4,4⁻Bipyridin, 98 %, (CAS: 553-26-4, Aldrich)
- 1,4-Cyclohexandiol, 99 %, (CAS: 556-48-9, Aldrich)
- para-Xylendiamin, (CAS: 539-48-0, Aldrich)
- DL-Lysine monohydrat, 98+ %, (CAS: 70-54-2, Alfa Aesar)
- Tris(ethylen)diamin, 98 % (CAS: 280-57-9, Aldrich)

In Zusammenarbeit mit "Laboratoire de Chimie de Coordination" des "Centre national de la recherche scientifique" zur Verfügung gestellte Verbindungen:

- 4,4´-Azobipyridin
- 3,3´-Azobipyridin

1.1 Darstellung von (Ph₂SiO)₈[AlO(OH)]₄ • 3 C₄H₄N₂ 2

$$(Ph_2SiO)_8[AlO(OH)]_4 * 4 Et_2O + 4 \swarrow N \qquad \underbrace{Et_2O}_{-4 Et_2O} (Ph_2SiO)_8[AlO(OH)]_4 * 3 \swarrow N \qquad \underbrace{Et_2O}_{-4 Et_2O} (Ph_2SiO)_8[AlO(OH)]_4 * 3 \swarrow N \qquad \underbrace{Et_2O}_{-N(C_2H_2)_2N} (Ph_2SiO)_8[AlO(OH)]_4 * 3 \bigotimes N \ \underbrace{Et_2O}_{-N(C_2H_2)_2N} (Ph_2SiO)_8[Al$$

Versuchsdurchführung:

Zu einer Suspension von 1,00 g (0,47 mmol) $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 Et_2O$ in 20 ml Diethylether wird bei Raumtemperatur eine klare Lösung von 0,15 g (1,89 mmol) C₄H₄N₂ in 10 ml Diethylether getropft. Während der Zugabe beginnt sich die Suspension aufzuklaren bis die Reaktionslösung schließlich vollständig klar ist. Nach zwei bis dreiminütigem Rühren bei Raumtemperatur fällt ein farbloser Niederschlag aus. Die Reaktionsmischung wird für weitere 22,5 Stunden bei Raumtemperatur gerührt und anschließend wird der entstandene farblose Niederschlag abfiltriert.

Ausbeute: 0,62 g (0,29 mmol) (61% d. Th.) M $(C_{115}H_{104}N_6O_{16}Si_8Al_4) = 2158,68$ g/mol

Charakterisierung:

Löslichkeit:

Das gebildete Produkt ist bei Raumtemperatur in Toluol und Tetrahydrofuran gut löslich.

NMR-Spektren:

¹ H (C ₄ H ₈ O, C ₆ D ₆):	δ: s; 3H; 2,17 ppm	$((C_6H_5)CH_3)$
	δ: 6,8 - 7,2 ppm	(m; 48H; meta und para-H
		5H; (C ₆ H ₅)CH ₃)
	δ: 7,4 - 7,5 ppm	(m; 32H; ortho-H)
	δ: 8,28 ppm	(s; 12H; $C_4H_4N_2$)

¹³C (C₄H₈O, C₆D₆):

δ: 21,0 ppm	$((C_6H_5)CH_3)$
δ: 125,5 ppm	$(para-(C_6H_5)CH_3)$
δ: 127,4 ppm - 127,5 ppm	(meta-C)
δ: 128,4 ppm	$(meta-(C_6H_5)CH_3)$

δ: 129,2 ppm	$(ortho-(C_6H_5)CH_3)$
δ: 129,2 ppm; 129,3 ppm	(para-C)
δ: 134,8 ppm – 134,9 ppm	(ortho-C)
δ: 138,5 ppm; 139,0 ppm	(Si-C)
δ: 137,9 ppm	$(CH_3-(C_6H_5))$
δ: 145,4 ppm	$(C_4H_4N_2)$

 $^{29}Si~(C_{4}H_{8}O,~C_{6}D_{6}):~\delta:~-39,8~(kl.);~-45,8~ppm$

C-, H-, N-Elementaranalysen:

	C [%]	H [%]	N [%]
ber.	63,99	4,86	3,89
gef.	62,21	4,94	3,82

IR-Spektroskopie [cm⁻¹]:

- 3608 OH-Valenzschwingungen (schwach)
- 3314 OH Valenzschwingungen (schwach, breit)
- 3071 aromatische
- 3046 und
- 3018 aliphatische
- 3000 CH-Valenzschwingungen

1.2 Darstellung von (Ph₂SiO)₈[AlO(OH)]₄ • 3 CH₃COOCH₂CH₃ <u>3</u>

Versuchsdurchführung:

Essigsäureethylester wird vor Versuchsbeginn mittels Destillation gereinigt. Dann werden 1,254 g (0,591 mmol) (Ph₂SiO)₈[AlO(OH)]₄ • 4 Et₂O unter leichtem Erwärmen in 15 ml Toluol gelöst. Anschließend werden 0,23 ml (2,363 mmol) Essigsäureethylester mit 10 ml Toluol verdünnt und bei Raumtemperatur zur farblosen Lösung des (Ph₂SiO)₈[AlO(OH)]₄ • 4 Et₂O getropft. Nach 18 stündigem Rühren der Reaktionslösung bei Raumtemperatur wird etwa 2/3 des Lösemittels unter reduziertem Druck in eine Kühlfalle überkondensiert und der Rückstand bei Raumtemperatur gelagert, bis eine Kristallbildung der Verbindung <u>3</u> zu beobachten ist.

Ausbeute: 0,84 g (0,40 mmol) (68% d. Th.) M ($C_{108}H_{107}O_{22}Si_8Al_4$) =2089,58 g/mol

NMR-Spektren:

¹H (C₆H₆, C₆D₆): δ : 0,56 ppm (t, CH₃COOCH₂CH₃) δ : 1,12 ppm (s, CH₃COOCH₂CH₃) δ : 3,43 ppm (q, CH₃COOCH₂CH₃) δ : 7,67 ppm – 7,98 ppm (m, ortho-H)

 $^{13}C (C_6H_6, C_6D_6)$:

δ: 13,3 ppm (CH ₃ COOCH ₂ CH ₃)	δ: 127,2 ppm; 128,11 ppm (meta-C)
δ: 20,3 ppm (CH ₃ COOCH ₂ CH ₃)	δ: 129,8 ppm; 129,88 ppm (para-C)
δ: 62,0 ppm (CH ₃ COOCH ₂ CH ₃)	δ: 134,6 ppm; 134,70 ppm (ortho-C)
	δ: 138,0 ppm (Si-C)

- 136 -

²⁹Si (C₆H₆, C₆D₆): δ : -44,3 ppm

IR-Spektroskopie [cm⁻¹]:

- 3606 OH-Valenzschwingungen
- 3534 OH-Valenzschwingungen
- 3357 OH-Valenzschwingungen (breit)
- 3312 OH-Valenzschwingungen (breit)
- 3070 aromatische

3048 und

C-, H- Elementaranalysen:

3003 aliphatische

2910 CH-Valenzschwingungen

1697 CO-Valenzschwingungen

1666 CO-Valenzschwingungen

Anmerkung: Die aufgetretene geringe Abweichung des gemessenen Kohlenstoffgehalts der Elementaranalysen ist auf mögliche Verunreinigungen im vermessenen Feststoff zurückzuführen.

i.

	C [%]	H [%]
ber.	62,08	5,16
gef.	57,85	4,97

1.3 Darstellung von (Ph₂SiO)₈[AlO(OH)]₄ • 2 CH₃COO(CH₂)₄OOCCH₃ <u>4</u>

Versuchsdurchführung:

Zu einer klaren, farblosen Lösung von 1,80 g (0,85 mmol) $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 Et_2O$ in 30 ml Toluol wird eine ebenfalls klare Lösung von 0,56 ml (3,40 mmol) 1,4-Diacetoxybutan in 10 ml Toluol bei Raumtemperatur getropft. Die zu Beginn klar vorliegende Reaktionslösung wird für 2 Tage bei Raumtemperatur gerührt und eine leichte Trübung sowie kleinere Kristalle werden erkennbar. Anschließend wird die Reaktionslösung unter reduziertem Druck um die Hälfte eingeengt und vom gebildeten farblosen Niederschlag abfiltriert.

Ausbeute: 1,24 g (0,53 mmol) (62% d. Th.) M $(C_{126}H_{128}O_{24}Si_8Al_4) = 2358,92$ g/mol

Charakterisierung:

Löslichkeit:

Das erhaltene Produkt ist sehr gut löslich in Tetrahydrofuran, Benzol und Toluol, dagegen unlöslich in Diethylether und n-Hexan.

NMR-Spektren:

¹H (C₆H₆, C₆D₆): δ: 0,78 ppm ((CH₃COOCH₂-CH₂)₂) δ: 1,90 ppm ((CH₃COOCH₂-CH₂)₂) δ: 3,44 ppm ((CH₃COOCH₂-CH₂)₂) δ: 7,5 ppm – 7,6 ppm (ortho-H)

 $^{13}C (C_6H_6, C_6D_6)$:

δ: 20,9 ppm ((CH ₃ COOCH ₂ -CH ₂) ₂)	δ: 127,8 ppm; 128,0 ppm (meta-C)
δ: 24,1 ppm ((CH ₃ COOCH ₂ -CH ₂) ₂)	δ: 129,5 ppm; 129,7 ppm (para-C)
δ: 64,2 ppm ((CH ₃ COOCH ₂ -CH ₂) ₂)	δ: 134,7 ppm; 134,8 ppm (ortho-C)
δ: 173,1 ppm ((CH ₃ COOCH ₂ -CH ₂) ₂)	δ: 138,2 ppm; 138,3 ppm (Si-C)

²⁹Si (C₆H₆, C₆D₆): δ : -45,3 ppm

IR-Spektroskopie [cm⁻¹]:

- 3630 OH-Valenzschwingungen (schwach)
- 3500 OH-Valenzschwingungen (schwach, breit)
- 3350 OH-Valenzschwingungen (schwach, breit)
- 3215 OH-Valenzschwingungen (schwach, breit)
- 3068 aromatische
- 3046 und
- 3022 aliphatische
- 3002 CH-Valenzschwingungen

- 2963 CH-Valenzschwingungen
- 2910 CH-Valenzschwingungen
- 1738 CO-Valenzschwingungen
- 1704 CO-Valenzschwingungen

C-, H- Elementaranalysen:

	C [%]	H [%]
theor.	64,15	5,47
gem.	62,16	5,39

1.4 Darstellung von $(Ph_2SiO)_8[AIO(OH)]_4 \cdot 2 p \cdot (C_5H_4N)_2 6$

Versuchsdurchführung:

Eine klare, farblose Lösung von 0,66g (4,24 mmol) 4,4'-Bipyridin in 40 ml Diethylether wird bei Raumtemperatur zu einer farblosen Suspension von 2,248 g (1,06 mmol) (Ph₂SiO)₈[AlO(OH)]₄ • 4 Et₂O in 20 ml Diethylether getropft. Die farblose Reaktionsmischung wird über Nacht bei Raumtemperatur gerührt, anschließend wird der farblose Niederschlag abfiltriert und bei 10^{-2} mbar getrocknet. Eine Umkristallisation aus Tetrahydrofuran liefert Kristalle von <u>6</u>.

Ausbeute: 2,18 g (0,95 mmol) (90% d. Th.)
M
$$(C_{124}H_{116}N_4O_{18}Si_8Al_4 (\underline{6} \cdot 2 C_4H_8O)) = 2282,85 \text{ g/mol}$$

Charakterisierung:

Löslichkeit:

Der gebildete Niederschlag ist sowohl bei Raumtemperatur, als auch in heißem Benzol, Toluol und Diethylether unlöslich. In Dioxan und Tetrahydrofuran löst sich der Feststoff bereits bei Raumtemperatur.

NMR-Spektren:

¹H (C₄H₈O, C₆D₆):
$$\delta$$
: 6,85 ppm – 7,13 ppm (m; 48H; meta und para-H)
 δ : 7,01 ppm – 7,07 ppm (d; 8H; p-[N-(CH-CH)₂-C]₂)
 δ : 7,32 ppm – 7,43 ppm (d; 16H; ortho-H)
 δ : 7,49 ppm – 7,59 ppm (d; 16H; ortho-H)
 δ : 8,20 ppm – 8,30 ppm (d; 8H; p-[N-(CH-CH)₂-C]₂)

¹³C (C₄H₈O, C₆D₆):

δ: 121,6 ppm (p-[N-(CH-CH) ₂ -C] ₂)	δ: 127,4 ppm; 127,5 ppm	(meta-C; Ph)
δ: 145,9 ppm (p-[N-(CH-CH) ₂ - C] ₂)	δ: 129,1 ppm	(para-C; Ph)
δ: 149,8 ppm (p-[N-(CH-CH) ₂ -C] ₂	δ: 134,8 ppm; 134,9 ppm	(ortho-C; Ph)
	δ: 138,9 ppm; 139,4 ppm	(Si-C; Ph)

²⁹Si (C₄H₈O, C₆D₆): δ : -45,8 ppm

IR-Spektroskopie [cm⁻¹]:

3067 aromatische

3047 und

3021 aliphatische

3001 CH-Valenzschwingungen

C-, H-, N-Elementaranalysen:

Anmerkung: Lässt man die zwei Tetrahydrofuranmoleküle nicht in die theoretische Berechnung mit einfließen, so nähern sich die gemessenen Gehaltsbestimmungen noch besser an die theoretischen Werte an (M ($C_{116}H_{100}N_4O_{16}Si_8Al_4$) = 2138,7 g/mol). Der zu niedere Kohlenstoffwert ist bedingt durch den verwendeten Katalysator bei der Elementaranalyse.

	C [%]	H [%]	N [%]
ber.	65,24	5,12	2,45
berLM	65,15	4,71	2,62
gef.	61,75	4,50	2,85

1.5 Darstellung von (Ph₂SiO)₈[AlO(OH)]₄ • 1,5 p-(C₅H₄N)₂N₂ • C₄H₈O <u>7</u>

Versuchsdurchführung:

Eine orange-rote Lösung von 0,07 g (0,39 mmol) p- $(C_5H_4N)_2$ in 5 ml Toluol wird zu einer klaren Lösung von 0,21 g (0,10 mmol) $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4$ Et₂O in 5 ml Toluol getropft. Nachdem die Reaktionslösung für circa 30 Sekunden bei Raumtemperatur gerührt wurde, wird eine leichte Trübung mit einhergehender Aufhellung der Lösung beobachtet. Nach weiterem 22 stündigem Rühren der Reaktionslösung bei Raumtemperatur, wird der gebildete orange-rote Niederschlag abfiltriert und bei 10^{-2} mbar getrocknet. Eine Umkristallisation aus Tetrahydrofuran liefert Kristalle von <u>7</u>.

Ausbeute: 0,20 g (0,08 mmol) (84% d. Th.) $M (C_{127}H_{128}O_{20}Si_8Al_4N_6 (\underline{7} \cdot 3 C_4H_8O)) = 2391,05 \text{ g/mol}$ <u>Charakterisierung:</u>

Löslichkeit:

Das erhaltene Produkt löst sich sehr schlecht in heißem Benzol und Toluol. In Diethylether und Hexan löst es sich nicht. In heißem Dioxan und Tetrahydrofuran löst sich der Niederschlag vollständig auf.

NMR-Spektren:

1 H (C ₄ H ₈ O, C ₆ D ₆):	δ: 2,21 ppm	(s; 3H; $(C_6H_5)CH_3$)
	δ: 6,94 - 7,21 ppm	(m; 48H; meta und para-H;
		6H; p-[N(CH-C H) ₂ C-N-] ₂ ;
		5H; (C ₆ H ₅)CH ₃)
	δ: 7,45 - 7,48 ppm	(m; 32H; ortho-H)
	δ: 8,55 – 8,57 ppm	(d; 6H; p-[N(C H -CH) ₂ C-N-] ₂)

¹³C (C₄H₈O, C₆D₆):

δ: 21,0 ppm	$((C_6H_5)CH_3)$
δ: 116,4 ppm	(p-[N(CH-CH) ₂ C-N-] ₂)
δ: 125,6 ppm	$(para-(C_6H_5)CH_3)$
δ: 127,5 ppm	(meta-C)
δ: 128,4 ppm	$(meta-(C_6H_5)CH_3)$
δ: 129,2 ppm	$(ortho-(C_6H_5)CH_3)$
δ: 129,2 ppm; 129,2 ppm	(para-C)

δ: 134,8 ppm - 134,9 ppm	(ortho-C)
δ: 138,6 ppm; 139,2 ppm	(Si-C)
δ: 137,9 ppm	$(CH_3-(C_6H_5))$
δ: 151,5 ppm	(p-[N(CH-CH) ₂ C-N-] ₂)
δ: 157,1 ppm	(p-[N(CH-CH) ₂ C-N-] ₂)

 29 Si (C₄H₈O, C₆D₆): δ : -45,9 ppm

IR-Spektroskopie [cm⁻¹]:

3067	aromatische

3046 und

3016 aliphatische

3001 CH-Valenzschwingungen

C-, H-, N-Elementaranalysen:

Anmerkung: Der zu niedere Kohlenstoffwert ist bedingt durch den verwendeten Katalysator bei der Elementaranalyse.

	C [%]	H [%]	N [%]
ber.	63,80	5,40	3,51
gef.	57,04	5,21	3,63

1.6 Darstellung von $(Ph_2SiO)_8[AIO(OH)]_4 \bullet 2 \text{ m-}(C_5H_4N)_2N_2 \underline{8}$

Versuchsdurchführung:

Bei Raumtemperatur werden zunächst 0,07 g (0,37 mmol) m- $(C_5H_4N)_2N_2$ in 10 ml Toluol gelöst, wobei eine klare, orangefarbene Lösung entsteht. Dann werden bei Raumtemperatur 0,20 g (0,09 mmol) (Ph₂SiO)₈[AlO(OH)]₄ • 4 Et₂O in weiteren 10 ml Toluol gelöst und im Anschluss eine Lösung von m- $(C_5H_4N)_2N_2$ in Toluol langsam hinzugetropft, wobei eine sofortige Niederschlagsbildung zu beobachten ist. Nach vollendeter Zugabe von m- $(C_5H_4N)_2N_2$ bildet sich eine orange trübe Reaktionsmischung, die für 16,5 Stunden bei Raumtemperatur gerührt wird. Danach wird der gebildete orange Niederschlag abfiltriert und bei 10⁻² mbar getrocknet. Eine Umkristallisation aus Tetrahydrofuran liefert Kristalle von <u>8</u>.

Ausbeute: 0,18 g (0,07 mmol) (76 % d. Th.) $M (C_{140}H_{148}Al_4N_8O_{22}Si_8 (\underline{8} \cdot 6 C_4H_8O)) = 2627,36 \text{ g/mol}$ Charakterisierung:

Löslichkeit:

In heißem Benzol und Toluol ist der gebildete Niederschlag nur mäßig löslich. In Diethylether und Hexan löst sich das Produkt nicht und in heißem Dioxan, sowie in erwärmten Tetrahydrofuran löst es sich vollständig auf.

NMR-Spektren:

1 H (C ₄ H ₈ O, C ₆ D ₆):	δ: 2,15 ppm	(s; 18H; $(C_6H_5)CH_3$)
	δ: 6,8 - 7,5 ppm	(m; 48H; meta und para-H;
		30H; ortho, meta, para-H; $(C_6H_5)CH_3)$

δ: 7,32 - 7,50 ppm	(m; 32H; ortho-H;
	4H; m-(C ₅ \mathbf{H}_4 N) ₂ N ₂ (6, 6'))
δ: 7,94 - 7,98 ppm	(d; 4H; m-(C_5H_4N) ₂ N ₂ (5, 5'))
δ: 8,49 – 8,51 ppm	(d; 4H; m-(C ₅ \mathbf{H}_4 N) ₂ N ₂ (4, 4'))
δ: 8,97 ppm	(d; 4H; m-(C_5H_4N) ₂ N ₂ (2, 2'))

¹³C (C₄H₈O, C₆D₆):

$((C_6H_5)CH_3)$
$(m-(C_5H_4N)_2N_2(5,5'))$
$(para-(C_6H_5)CH_3)$
$(m-(C_5H_4N)_2N_2(1, 1'))$
(meta-C)
$(meta-(C_6H_5)CH_3)$
$(ortho-(C_6H_5)CH_3)$
(para-C)
(para-C) (ortho-C)
(para-C) (ortho-C) (CH ₃ -(C ₆ H ₅))
(para-C) (ortho-C) (CH ₃ -(C ₆ H ₅)) (Si-C)
(para-C) (ortho-C) (CH ₃ -(C_6H_5)) (Si-C) (m-(C_5H_4N) ₂ N ₂ (6, 6 ⁻))
(para-C) (ortho-C) (CH ₃ -(C_6H_5)) (Si-C) (m-(C_5H_4N) ₂ N ₂ (6, 6')) (m-(C_5H_4N) ₂ N ₂ (4, 4'))

²⁹Si (C₄H₈O, C₆D₆): δ : -45,4 ppm

IR-Spektroskopie [cm⁻¹]:

3525	OH – Valenzschwingungen	3001	CH-Valenzschwingungen
3303	OH - Valenzschwingungen	2926	CH-Valenzschwingungen
3067	aromatische	2855	CH-Valenzschwingungen
3048	und		
3020	aliphatische		

	C [%]	H [%]	N [%]
ber.	64,00	5,68	4,26
gef.	64,29	6,17	4,00

C-, H-, N-Elementaranalysen:

1.7 Darstellung von (Ph₂SiO)₈[AlO(OH)]₄ • 4 (HO)CH(CH₂)₄CH(OH) <u>9</u>

Versuchsdurchführung:

Zunächst werden 0,21 g (1,80 mmol) 1,4-Cyclohexandiol in 10 ml Toluol vorgelegt, dann werden 0,95 g (0,45 mmol) (Ph₂SiO)₈[AlO(OH)]₄ • 4 Et₂O in 10 ml Toluol gelöst und diese klare Lösung zum 1,4-Cyclohexandiol getropft. Die Reaktionsmischung wird nun für fünf Tage bei Raumtemperatur gerührt. Es entsteht eine trübe, farblose Reaktionslösung. Im Anschluss wird der erhaltene Niederschlag abfiltriert und an einer Hochvakuumsapparatur getrocknet. Nach einer Umkristallisation aus heißem Toluol können schließlich Kristalle von $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4$ (HO)CH(CH₂)₄CH(OH) isoliert werden.

Ausbeute: 0,25 g (0,10 mmol) (22% d. Th.) $M(C_{141}H_{156}O_{24}Si_8Al_4) = 2567,30 \text{ g/mol}$

Charakterisierung:

Löslichkeit:

In Tetrahydrofuran löst sich der gebildete Feststoff bereits bei Raumtemperatur und in Toluol wird der Niederschlag erst nach leichtem Erwärmen gelöst.

NMR-Spektren:

1 H (C ₄ H ₈ O, C ₆ D ₆):	δ:1,00 – 1,18 ppm	(m; 32H; (HO)CH(C H ₂) ₄ CH(OH))
	δ: 2,15 ppm	(s; 9H; (C ₆ H ₅)C H ₃)
	δ: 6,84 - 7,18 ppm	(m; 48H; meta und para-H;
		15H; ortho, meta, para-H; $(C_6H_5)CH_3)$
	δ: 7,35 - 7,52 ppm	(m; 32H; ortho-H und 4H; $m-(C_5H_4N)_2$)

¹³C (C₄H₈O, C₆D₆):

δ: 21,0 ppm	$((C_6H_5)CH_3)$
δ: 33,6 ppm	((HO)CH(CH ₂) ₄ CH(OH))
δ: 69,2 ppm	$((HO)CH(CH_2)_4CH(OH))$
δ: 125,6 ppm	$(para-(C_6H_5)CH_3)$
δ: 127,5 ppm; 127,5 ppm	(meta-C)
δ: 128,4 ppm	$(\text{meta-}(\mathbf{C}_6\mathbf{H}_5)\mathbf{C}\mathbf{H}_3)$
δ: 129,2 ppm	$(ortho-(C_6H_5)CH_3)$
δ: 129,2 ppm; 129,3 ppm	(para-C)
δ: 134,9 ppm; 134,9 ppm	(ortho-C)
δ: 137,9 ppm	$(CH_3-(C_6H_5))$
δ: 138,6 ppm; 139,0 ppm	(Si-C)

²⁹Si (C₄H₈O, C₆D₆): δ : -45,8 ppm

IR-Spektroskopie [cm⁻¹]:

- 3299 OH-Valenzschwingungen
- 3047 aromatische
- 3003 und
- 2940 aliphatische
- 2862 CH-Valenzschwingungen

C-,	, H-,	N-Elementaranaly	ysen:

	C [%]	H [%]	N [%]
ber.	65,69	6,12	
gef.	66,33	6,76	

1.8 Darstellung von (Ph₂SiO)₈[AlO(OH)]₄ • 2 H₂N(CH₂)C₆H₄(CH₂)NH₂ • 4 C₄H₈O <u>10</u>

Versuchsdurchführung:

Wird zu einer Suspension von 0,37 g (2,70 mmol) $H_2N(CH_2)C_6H_4(CH_2)NH_2$ in 25 ml Toluol tropfenweise eine Lösung von 1,43 g (0,67 mmol) (Ph₂SiO)₈[AlO(OH)]₄ • 4 Et₂O in 25 ml Toluol hinzugegeben, wird während des Zugabe bei Raumtemperatur beobachtet, dass sich im Reaktionskolben erst Flocken und dann ein klumpenförmiger Niederschlag bildet. Die Reaktionsmischung wird für ca. 22 Stunden bei Raumtemperatur gerührt, dann wird der Niederschlag abfiltriert und am Hochvakuum getrocknet. Im Anschluss erfolgt eine Umkristallisation aus Tetrahydrofuran.

Ausbeute: 1,37 g (0,57 mmol) (86 % d. Th.) M $(C_{128}H_{140}O_{20}Si_8Al_4N_4) = 2387,08$ g/mol

Charakterisierung:

Löslichkeit:

Das gebildete Produkt ist unlöslich in Toluol.

In heißem Tetrahydrofuran kann der Niederschlag gelöst werden und in Pyridin löst sich der Feststoff bereits bei Raumtemperatur.

NMR-Spektren:

1 H (C ₄ H ₈ O, C ₆ D ₆):	δ: 6,86 – 7,21 ppm	(m; meta und para-H)
	δ: 7,25 ppm	$(s, H_2N-CH_2[C(CH-CH)_2C]CH_2-NH_2)$
	δ: 7,60 – 7,75 ppm	(m; ortho-H)
${}^{1}\text{H}(\text{C}_{5}\text{H}_{5}\text{N}, \text{C}_{6}\text{D}_{6}):$	δ: 1,07 – 1,29 ppm	$(m, H_2N-CH_2[C(CH-CH)_2C]CH_2-NH_2)$
	δ: 1,41- 1,50 ppm	$(\mathbf{m}, \mathbf{O}(\mathbf{CH}_2\mathbf{CH}_2)_2)$
	δ: 3,46- 3,55 ppm	$(m, O(CH_2CH_2)_2)$
	δ: 3,77 ppm	(s, $RNH_2^+ \cdots H \cdots OR$)
	δ: 7,75 – 7,89 ppm	(m; ortho-H)

¹³C (C₄H₈O, C₆D₆):

δ: 46,3 ppm	$(H_2N\text{-}CH_2[C(CH\text{-}CH)_2C]CH_2\text{-}NH_2)$
δ: 127,2 ppm	$(H_2N\text{-}CH_2[C(CH\text{-}CH)_2C]CH_2\text{-}NH_2)$
δ: 127,8 ppm; 128,3 ppm	(meta-C)
δ: 129,2 ppm	(para-C)
δ: 134,7 ppm; 135,2 ppm	(ortho-C)
δ: 139,6 ppm; 140,1 ppm	(Si-C)
δ: 142,1 ppm	$(H_2N\text{-}CH_2[\textbf{C}(CH\text{-}CH)_2C]CH_2\text{-}NH_2)$

$^{13}C (C_5H_5N, C_6D_6):$				
δ: 25,7 ppm	$(m, O(CH_2CH_2)_2)$			
δ: 46,1 ppm	$(H_2N\text{-}CH_2[C(CH\text{-}CH)_2C]CH_2\text{-}NH_2)$			
δ: 67,7 ppm	$(m, O(CH_2CH_2)_2)$			
δ: 127,5 ppm; 127,5 ppm	(meta-C)			
δ: 129,0 ppm; 129,1 ppm	(para-C)			
δ: 134,7 ppm; 135,0 ppm	(ortho-C)			
δ: 139,2 ppm; 139,9 ppm	(Si-C)			
δ: 141,9 ppm	$(H_2N-CH_2[C(CH-CH)_2C]CH_2-NH_2)$			

²⁹Si (C₄H₈O, C₆D₆): δ : -47,5 ppm

IR-Spektroskopie [cm⁻¹]:

3355	NH-Valenzschwingungen	3048	und
3294	NH-Valenzschwingungen	3021	aliphatische
3067	aromatische	3001	CH-Valenzschwingungen

C-, H-, N-Elementaranalysen:		
C [%]	H [%]	N

	C [%]	H [%]	N [%]
ber.	64,4	5,9	2,35
gef.	65,2	6,3	2,67

2 Reaktionen unter Änderung der Gerüststruktur

2.1 Darstellung von (Ph₂SiO)₈[AlO(O)_{0.25}]₄(OH • N(CH₂CH₂)₃N)₂(OH₂ • N(CH₂CH₂)₃N) <u>11</u>

Versuchsdurchführung:

Bei Raumtemperatur werden 1,033 g (0,49 mmol) $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 Et_2O$ in 25 ml Toluol gelöst. Dann werden 0,220 g (1,95 mmol) N(CH₂CH₂)₃N in 25 ml Toluol gelöst und bei Raumtemperatur zur Lösung des $(Ph_2SiO)_8[AlO(OH)]_4 \cdot 4 Et_2O$ getropft. Die klare Reaktionslösung wird für vier Stunden bei Raumtemperatur gerührt und anschließend am Hochvakuum eingeengt. Während des Einengens ist bereits eine Kristallisation des Produkts erkennbar und nach vollständigem Entfernen des Lösemittels wird ein farbloser Feststoff erhalten.

Ausbeute: 0,892 g (0,35 mmol) (72 % d. Th.) $M (C_{114}H_{120}O_{16}Si_8Al_4N_6 \bullet 4 C_7H_8) = 2531,34 \text{ g/mol}$ Characteristic rest of

Charakterisierung:

Löslichkeit:

Das gebildete Produkt ist in Benzol, Toluol und Dioxan erst unter Erwärmen löslich. In Tetrahydrofuran löst sich der Feststoff bereits bei Raumtemperatur vollständig.

NMR-Spektren:

1 H (C ₄ H ₈ O, C ₆ D ₆):	δ: 2,90 ppm	$(s, N(CH_2CH_2)_3N)$
	δ: 6,83 ppm – 7,20 ppm	(m; meta und para-H)
	δ: 7,46 ppm – 7,64 ppm	(m; ortho-H)

¹³C (C₄H₈O, C₆D₆):

δ: 45,5 ppm	$(N(CH_2CH_2)_3N)$
δ: 127,4 ppm; 127,6 ppm	(meta-C)
δ: 128,9 ppm; 129,1 ppm	(para-C)
δ: 135,1 ppm; 135,3 ppm	(ortho-C)
δ: 140,2 ppm; 140,3 ppm	(Si-C)

 $^{29}Si\;(C_4H_8O,\,C_6D_6)\!\!:\ \ \delta\!\!:\ \ -47,4\;ppm$

IR-Spektroskopie [cm⁻¹]:

3640	OH Valenzschwingungen
5040	On-valenzschwingungen

3068 aromatische

3045 und

3024 aliphatische

- 2999 CH-Valenzschwingungen 2947 CH-Valenzschwingungen
- 2876 CH-Valenzschwingungen

C-, H-, N-Elementaranalysen:

Anmerkung: Aufgrund möglicher Nebenprodukte des vermessenen Feststoffs weichen die experimentellen Gehaltsbestimmungen ein wenig von den berechneten Werten ab.

	C [%]	H [%]	N [%]	Al [%]
ber.	67,38	6,05	3,32	4,26
gef.	63,83	5,84	3,58	5,10

2.2 Darstellung von (Ph₂SiO)₁₂(Al₂O₂)(AlO₂)₂[AlO(OH)]₄(C₆H₁₂N₂O)₂ <u>13</u>

Versuchsdurchführung:

Bei Raumtemperatur werden 0,45 g (2,74 mmol) Lysin mit 70 ml Toluol versetzt und unter Rühren bis zum Rückfluss erhitzt, wobei eine trübe Lösung entsteht. Nach zweistündigem Rühren unter Rückfluss wird eine klare Lösung von 1,46 g (0,69 mmol) (Ph₂SiO)₈[AlO(OH)]₄ • 4 Et₂O zugetropft, wobei die trübe Reaktionslösung ein wenig aufklart. Anschließend wird das Reaktionsgemisch für weitere 22 Stunden unter Rückfluss gerührt und es entsteht eine klare Lösung, die bei 10⁻² mbar vollständig eingeengt wird. Das gebildete Produkt kann in Form eines gelben Feststoffes erhalten werden.

Ausbeute: 1,63 g (0,44 mmol) (64 % d. Th.) M ($C_{188}H_{214}Al_8N_8O_{32}Si_{12}$) = 3698,60 g/mol

Charakterisierung:

Löslichkeit:

Der entstandene Niederschlag löst sich nicht in Diethylether. In heißem Tetrahydrofuran, Toluol und Benzol kann der Feststoff gelöst werden.

NMR-Spektren:

$$\label{eq:c6D6} \begin{array}{ll} ^{1}\text{H} (\text{C}_6\text{D}_6, \text{C}_7\text{H}_8) & & \\ & \delta : \ 0,8725 \ \text{ppm} - 0,9979 \ \text{ppm} \ (\text{m}; \ \text{C}_6\text{H}_{12}\text{N}_2\text{O}) \\ & & \\ & \delta : \ 0,9979 \ \text{ppm} - 1,1799 \ \text{ppm} \ (\text{m}; \ \text{C}_6\text{H}_{12}\text{N}_2\text{O}) \\ & & \\ & \delta : \ 1,2347 \ \text{ppm} - 1,5258 \ \text{ppm} \ (\text{m}; \ \text{C}_6\text{H}_{12}\text{N}_2\text{O}) \\ & & \\ & \delta : \ 2,9237 \ \text{ppm} - 3,0894 \ \text{ppm} \ (\text{m}; \ \text{C}_6\text{H}_{12}\text{N}_2\text{O}) \\ & & \\ & \delta : \ 7,5618 \ \text{ppm} - 8,2708 \ \text{ppm} \ (\text{m}; \ \text{ortho}, \ \text{meta und para-H}) \end{array}$$

¹³C (C₆D₆, C₇H₈):

δ: 23,2 ppm	$(C_6H_{12}N_2O(C4))$
δ: 27,3 ppm – 32,4 ppm	(Signalvielfalt mit $C_6H_{12}N_2O(C5)$)
δ: 34,5 ppm	(C ₆ H ₁₂ N ₂ O (C3))
δ: 41,5 ppm	(C ₆ H ₁₂ N ₂ O (C6))
δ: 53,6 ppm	$(C_6H_{12}N_2O(C2))$
δ: 127,6 ppm; 127,7 ppm	(meta-C)
δ: 129,8 ppm; 130,1 ppm	(para-C)
δ: 134,4 ppm – 136,1 ppm	(ortho-C)
δ: 139,4 ppm; 141,0 ppm	(Si-C)
δ: 179,1 ppm	(C ₆ H ₁₂ N ₂ O (C1))

²⁹Si-CP/MAS: δ: -38 ppm; -47 ppm

IR-Spektroskopie [cm⁻¹]:

3663	OH-Valenzschwingungen
3663	OH-Valenzschwingunger

- 3521 OH-Valenzschwingungen
- 3333 NH-Valenzschwingungen
- 3067 aromatische
- 3046 und

- 3000 aliphatische
- 2926 CH-Valenzschwingungen
- 2854 CH-Valenzschwingungen
- 1651 CO-Valenzschwingungen

C-, H-, N-Elementaranalysen:

Anmerkung: Nach Einbeziehung eines weiteren Liganden ($C_6H_{12}N_2O$) in den theoretischen Wert der C-, H-, N-Gehaltsbestimmungen von <u>13</u>, stimmen die experimentell erhaltenen Befunde noch besser mit den berechneten Werten überein.

	C [%]	H [%]	N [%]
ber.	61,05	5,83	3,03
ber. (+ 1 Lig.)	60,87	5,98	3,66
gef.	59,38	6,16	3,81

VI Literaturverzeichnis

1. Holleman, A. F.; Wiberg, E.; Wiberg, N. *Lehrbuch Der Anorganischen Chemie;* de Gruyter: Berlin u.a., **1985**.

2. Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Anorganische Chemie : Prinzipien Von Struktur Und Reaktivität; de Gruyter: Berlin u.a., **1995**.

3. Müller, U. *Anorganische Strukturchemie;* B. G. Teubner Verlag / GWV Fachverlage GmbH: Wiesbaden, **2004**.

4. Cotton, F. A.; Wilkinson, G.; Fritz, H. P. *Anorganische Chemie;* Verl. Chemie: Weinheim/Bergstr., **1970**.

5. Cundy, C. S.; Cox, P. A. Chem. Rev. 2003, 103, 663.

6. Cheetham, A. K.; Ferey, G.; Loiseau, T. Angew. Chem. Int. Ed. Engl. 1999, 38, 3269.

7. Turro, N. J. Acc. Chem. Res. 2000, 33, 637.

8. Budd, P. M.; Makhseed, S. M.; Ghanem, B. S.; Msayib, K. J.; Tattershall, C. E.; McKeown, N. B. *materials today* **2004**, 40.

9. Smith, J. V. Chem. Rev. 1988, 88, 149.

10. Schüth, F.; Schmidt, W. Adv. Eng. Mater. 2002, 4, 269.

11. Ihlein, G.; Junges, B.; Junges, U.; Laeri, F.; Schüth, F.; Vietze, U. Appl. Organometal. Chem. **1998**, *12*, 305.

12. Ramamurthy, V.; Caspar, J. V.; Corbin, D. R.; Eaton, D. F. Journal of Photochemistry and Photobiology, A: Chemistry **1989**, *50*, 157.

13. Weidenbruch, M.; Pesel, H.; Van Hieu, D. Z. Naturforsch. 1980, 35 b, 31.

14. Hüttinger, R. Fette Seifen Anstrichmittel 1984, 41.

15. Klier, B.; Göbel, R.; Langbein, U.; Küpper, H. Kiefeorthop 2005, 19, 269.

16. Vandeven, D. Orthopädie-Technik 1999, 2, 106.

17. Feher, F. J.; Budzichowski, T. A.; Weller, K. J. J. Am. Chem. Soc. 1989, 7288.

18. Feher, F. J.; Weller, K. J. Organometallics 1990, 9, 2638.

19. Feher, F. J.; Budzichowski, T. A.; Weller, K. J. Polyhedron 1993, 12, 591.

20. Feher, F. J.; Weller, K. J.; Ziller, J. W. J. Am. Chem. Soc. 1992, 114, 9686.

21. Montero, M. L.; Voigt, A.; Teichert, M.; Usón, I.; Roesky, H. W. Angew. Chem. Int. Ed. Engl. 1995, 34, 2504.

22. Montero, M. L.; Uson, I.; Roesky, H. W. Angew. Chem. Int. Ed. Engl. 1994, 33, 2103.

23. Montero, M. L.; Uson, I.; Roesky, H. W. Angew. Chem. 1994, 105, 2198.

24. Bonamico, M.; Dessy, G. J. Chem. Soc. 1968, 291.

25. Murugavel, R.; Chandrasekhar, V.; Roesky, H. W. Acc. Chem. Res. 1996, 29, 183.

26. Chandrasekhar, V.; Murugavel, R.; Voigt, A.; Roesky, H. W.; Schmidt, H.; Noltemeyer, M. *Organometallics* **1996**, *15*, 918.

27. Murugavel, R.; Walawalkar, M. G.; Dan, M.; Roesky, H. W.; Rao, C. N. R. Acc. Chem. Res. **2004**, *37*, 763.

28. Murugavel, R.; Voigt, A.; Walawalkar, M. G.; Roesky, H. W. Chem. Rev. 1996, 96, 2205.

29. McMahon, C. N.; Obrey, S. J.; Keys, A.; Bott, S. G.; Barron, A. R. J. Chem. Soc. , Dalton Trans. 2000, 2151.

30. Gun'ko, Y. K.; Reilly, R.; Kessler, V. G. New. J. Chem. 2001, 25, 528.

31. Shklover, V. E.; Struchkov, Y. T.; Levitskii, M. M.; Zhdanov, A. A. *Zhurnal Strukturnoi Khimii* **1986**, *27*, 120.

32. Apblett, A. W.; Warren, A. C.; Barron, A. R. Chem. Mater. 1992, 4, 167.

33. Chaput, F.; Lecompte, A.; Dauger, A.; Boilot, J. P. Chem. Mater. 1989, 1, 199.

34. Miller, J. B.; Tabone, E. R.; Ko, E. I. Langmuir 1996, 12, 2878.

35. Terry, K. W.; Tilley, T. D. Chem. Mater. 1991, 3, 1001.

36. Duchateau, R.; Harmsen, R. J.; Abbenhuis, H. C. L.; van Santen, R. A.; Meetsma, A.; Thiele, S. K. H.; Kranenburg, M. *Chem. Eur. J.* **1999**, *5*, 3130.

37. Maxim, N.; Magusin, P. C. M. M.; Kooyman, P. J.; van Wolput, J. H. M. C.; van Santen, R. A.; Abbenhuis, H. C. L. *Chem. Mater.* **2001**, *13*, 2958.

38. Purkayastha, A.; Baruah, J. B. Appl. Organometal. Chem. 2004, 18, 166.

39. Skowronska-Ptasinska, M. D.; Duchateau, R.; van Santen, R. A.; Yap, G. P. A. *Organometallics* **2001**, *20*, 3519.

40. Duchateau, R. Chem. Rev. 2002, 102, 3525.

41. Feher, F. J.; Blanski, R. L. J. Am. Chem. Soc. 1992, 114, 5886.

42. Ritter, U.; Winkhofer, N.; Murugavel, R.; Voigt, A.; Stalke, D.; Roesky, H. W. J. Am. Chem. Soc. **1996**, *118*, 8580.

43. Feher, F. J.; Wyndham, K. D. Chem. Commun. 1998, 323.

44. Cordes, D. B.; Lickiss, P. D.; Rataboul, F. Chem. Rev. 2010, 110, 2081.

- 45. Hambley, T. H.; Maschmeyer, T.; Masters, A. F. Appl. Organomet. Chem. 1992, 6, 253.
- 46. Feher, F. J.; Phillips, S. H. J. organomet. chem. 1996, 521, 401.
- 47. Feher, F. J.; Newman, D. A. J. Am. Chem. Soc. 1990, 112, 1931.
- 48. Feher, F. J.; Budzichowski, T. A.; Rahimian, K.; Ziller, J. W. J. Am. Chem. Soc. 1992, 114, .
- 49. Feher, F. J.; Phillips, S. H.; Ziller, J. W. Chem. Commun. 1997, 829.

50. Lee, A.; Xiao, J.; Feher, F. J. Macromolecules 2005, 38, 438.

- 51. Feher, F. J.; Budzichowski, T. A. Polyhedron 1995, 14, 3239.
- 52. Feher, F. J.; Newman, D. A.; Walzer, J. F. J. Am. Chem. Soc. 1989, 111, 1741.

53. Feher, F. J.; Budzichowski, T. A.; Ziller, J. W. Inorg. Chem. 1997, 36, 4082.

54. Gerritsen, G.; Duchateau, R.; van Santen, R. A.; Yap, G. P. A. Organometallics 2003, 22, 100.

55. Edelmann, F. T. Angew. Chem. Int. Ed. Engl. 1992, 31, 586.

56. Lorenz, V.; Fischer, A.; Giessman, S.; Gilje, J. W.; Gun'ko, Y.; Jacob, K.; Edelmann, F. T. *Coord. Chem. Rev.* **2000**, *206-207*, 321.

57. Feher, F. J.; Blanski, R. L. J. Chem. Soc. ; Chem. Commun. 1990, 1614.

58. Abbenhuis, H. C. L.; Krijnen, S.; van Santen, R. A. Chem. Commun. 1997, 331.

59. Lovat, S.; Mba, M.; Abbenhuis, H. C. L.; Vogt, D.; Zonta, C.; Licini, G. *Inorg. Chem.* **2009**, 48, 4724.

60. Abbenhuis, H. C. L. Chem. Eur. J. 2000, 6, 25.

61. Abbenhuis, H. C. L.; Herwijnen, H. W. G. v.; Santen, R. A. v. Chem. Commun. 1996, 1941.

62. Crocker, M.; Herold, R. H. M.; Orpen, A. G. Chem. Commun. 1997, 2411.

63. Levitskii, M. M.; Smirnov, V. V.; Zavin, B. G.; Bilyachenko, A. N.; Rabkina, A. Y. *Kinetics and Catalysis* **2009**, *50*, 490.

64. Ohde, C.; Limberg, C.; Schmidt, D.; Enders, M.; Demeshko, S.; Knispel, C. Z. Anorg. Allg. Chem. 2010, 626, 2315.

65. Duchateau, R.; Harmsen, R. J.; Abbenhuis, H. C. L.; Santen, R. A. v.; Meetsma, A.; Thiele, S. K. H.; Kranenburg, M. *Chem. Eur. J.* **1999**, *5*, 3130.

66. Feher, F. J.; Weller, K. J.; Ziller, J. W. J. Am. Chem. Soc. 1992, 114, 9686.

67. Klemp, A.; Hatop, H.; Roesky, H. W.; Schmidt, H. G.; Noltemeyer, M. *Inorg. Chem.* **1999**, *38*, 5832.

68. Edelmann, F. T.; Gun'ko, Y. K.; Giessman, S.; Olbrich, F. Inorg. Chem. 1999, 38, 210.

69. Veith, M. Adv. Organomet. Chem. 2006, 54, 49.

70. Veith, M.; Hreleva, H.; Biegler, J.; Huch, V.; Rammo, A. *Phosphorus, sulfur and silicon and the related elements* **2004**, *179*, 651.

71. Veith, M.; Faber, S.; Wolfanger, H.; Huch, V. Chem. Ber. 1996, 129, 381.

72. Veith, M.; Jarczyk, M.; Huch, V. Angew. Chem. 1997, 36, 117.

73. Veith, M.; Jarczyk, M.; Huch, V. Angew. Chem. 1997, 109, 140.

74. Veith, M.; Sahin, F.; Rammo, A.; Huch, V. Comptes rendus chimie 2009, 12, 1181.

75. Veith, M.; Rammo, A.; Huch, V. Z. Anorg. Allgem. Chem. 2009, 635, 1110.

76. Veith, M.; Rammo, A.; Jarczyk, M.; Huch, V. Monatshefte für Chemie 1999, 130, 15.

77. Veith, M.; Jarczyk, M.; Huch, V. Phosphorus, sulfur and silicon and the related elements **1997**, *124*, 213.

78. Veith, M. ChemInform 2007, 38, i.

79. Veith, M.; Rammo, A.; Huch, V.; Biegler, J. Z. Anorg. Allgem. Chem. 2007, 633, 246.

80. Veith, M.; Jarczyk, M.; Huch, V. Angew. Chem. 1998, 37, 105.

- 159 -

- 81. Veith, M.; Jarczyk, M.; Huch, V. Angew. Chem. 1998, 110, 109.
- 82. Veith, M.; Hreleva, H.; Gasthauer, M.; Rammo, A.; Huch, V. Z. Anorg. Allgem. Chem. 2006, 632, 985.
- 83. Veith, M.; Hreleva-Carparrotti, H.; Huch, V. J. organomet. chem. 2007, 692, 2784.
- 84. Veith, M.; Smail, H.; Huch, V. Z. Anorg. Allgem. Chem. 2008, 634, 2867.
- 85. Steiner, T. Angew. Chem. Int. Ed. Engl. 2002, 41, 48.
- 86. Pauling, L. *Die Natur Der Chemischen Bindung;* Verlag Chemie GmbH: Weinheim Bergstr., **1968**.
- 87. McWeeny, R. Coulsons Chemische Bindung; S. Hirzel Verlag: Stuttgart, 1984.
- 88. Steed, J. W.; Atwood, J. L. Supramolecular Chemistry; Wiley-VCH, Weinheim, 2005.
- 89. Lehn, J. Supramolecular Chemistry Concepts and Perspectives; VCH, Weinheim, 1995.
- 90. Brinke, G.; Ruokolainen, J.; Ikkala, O. Adv. Polym. Sci. 2007, 207, 113.
- 91. Klok, H. A.; Jolliffe, K. A.; Schauer, C. L.; Prins, L. J.; Spatz, J. P.; Möller, M.; Timmerman, P.; Reinhoudt, D. N. *J. Am. Chem. Soc.* **1999**, *121*, 7154.
- 92. Kimizuka, N. Adv. Polym. Sci. 2008, 219, 1.
- 93. Binder, W. H.; Zirbs, R. Adv. Polym. Sci. 2007, 207, 1.
- 94. Bouteiller, L. Adv. Polym. Sci. 2007, 207, 79.
- 95. Jones, J. B. Acta. Cryst. 1968, 24, 355.
- 96. Barron, A. R.; Dobbs, K. D.; Francl, M. M. J. Am. Chem. Soc. 1991, 113, 39.
- 97. Hunter, E. P. L.; Lias, S. G. J. Phys. Chem. Ref. Data. 1998, 413.
- 98. Kolano, D. Diplomarbeit, Universität des Saarlandes, 2007.
- 99. Pearson, R. G.; Williams, F. V. J. Am. Chem. Soc. 1953, 75, 3073.
- 100. Albert, A.; Goldacre, R.; Phillips, J. J. Am. Chem. Soc. 1948, 2240.
- 101. Ashton, L. A.; Bullock, J. I.; Simpson, P. W. G. J. Am. Chem. Soc., Faraday Trans. 1982, 78, 1961.
- 102. Alonso, C.; Pascual, M. J.; Abruna, H. D. Electrochim. Acta 1997, 42, 1739.

- 103. Hreleva-Carparrotti, H. Dissertation, Universität des Saarlandes: Saarbrücken, 2006.
- 104. Hartley, G. S. Nature 1937, 281.
- 105. Hartley, G. S. J. Chem. Soc. 1938, 633.
- 106. Haessner, C.; Mustroph, H. J. prakt. Chem. 1986, 328, 113.
- 107. Rau, H.; Lüddecke, E. J. Am. Chem. Soc. 1982, 104, 1616.
- 108. Fischer, E. J. Am. Chem. Soc. 1960, 82, 3249.
- 109. Zimmerman, G.; Chow, L. Y.; Paik, U. J. J. Am. Chem. Soc. 1958, 80, 3528.
- 110. Brown, E. V.; Granneman, G. R. J. Am. Chem. Soc. 1975, 97, 621.
- 111. Sun, S. S.; Anspach, J. A.; Lees, A. J. Inorg. Chem. 2002, 41.
- 112. Veith, M.; Kolano, D.; Kirs, T.; Huch, V. J. organomet. chem. 2010, 695, 1074.
- 113. Natarajan, S.; Mahata, P. Journal of the Indian Institute of Science 2008, 88, 179.
- 114. Cheetham, A. K.; Rao, C. N. R.; Feller, R. K. Chem. Commun. 2006, 4780.
- 115. Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc. Chem. Res. 2005, 38, 217.
- 116. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276.

117. Czaja, A. U.; Trukhan, N.; Müller, U. Chem. Soc. Rev. 2009, 38, 1284.

118. Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. J. Mater. Chem. 2006, 16, 626.

119. Cordier, F.; Tournilhac, F.; Soulié-Ziakovic, C.; Leibler, L. Nature 2008, 451, 977.

120. Sheldrick, G. Program for Crystal Strukture Solution, Version SHELXS86, Göttingen, 1990.

121. Sheldrick, G. *Program for Crystal Strukture Determination, Version SHELXL93, Göttingen,* **1990**.

122. Brandenburg, K. Copyright Crystal Impact GbR 1996-2001 2001.

VII Anhang

1 Daten zur Molekül- und Kristallstruktur von (Ph₂SiO)₈[AlO(OH)]₄ • 3 C₄H₄N₂ <u>2</u>

Tabelle 21: Kristalldaten und Strukturverfeinerungen für (Ph₂SiO)₈[AlO(OH)]₄ • 3 C₄H₄N₂ (sh2850)

Identifizierungscode	sh2850	
Summenformel	C115 H104 Al4 N6 O16 Si8	
Molmasse [g/mol]	2158.68	
Messtemperatur [K]	153(2)	
Wellenlänge [Å]	0.71073	
Kristallsystem	Triclinic	
Raumgruppe	P-1	
Gitterkonstanten	a = 14.8724(6) Å	$\alpha = 77.359(2)^{\circ}$
	b = 15.0963(6) Å	$\beta = 82.902(2)^{\circ}$
	c = 26.8790(10) Å	$\gamma = 74.072(2)^{\circ}$
Zellvolumen [Å ³]	5649.5(4) Å ³	
Anzahl der Formeleinheiten Z	2	
Dichte (berechnet)[g/cm ³]	1.269	
Absorptionskoeffizient [mm ⁻¹]	0.192	
F(000)	2256	
Kristallabmessungen [mm ³]	0.65 x 0.40 x 0.24	
Messbereich θ [°]	1.43 to 30.53	
hkl - Indexbereich	-21<=h<=21, -21<=k<=21, -37<=l<=3	8
Gemessene Reflexe	125588	
Symmetrieunabhängige Reflexe	34429 [R(int) = 0.0272]	
Vollständigkeit des Datensatzes (bis $\theta = 30,53^{\circ}$)	99.6 %	
Absorptionskorrektur	Multiscan	
Max. und Min. Transmission	0.9548 and 0.8861	
Strukturverfeinerungsmethode	Full-matrix least-squares on F^2	
Daten / Einschränkungen / Parameter	34429 / 0 / 1339	
Güte des Fit auf F ²	1.032	
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0467, $wR2 = 0.1262$	
R-Werte (alle Daten)	R1 = 0.0708, $wR2 = 0.1440$	
Restelektronendichte (min./max.) [e/Å ⁻³]	1.001 and -0.543	

 Tabelle 22: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) für sh2850. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

	х	У	Z	U(eq)
Al(1)	6967(1)	-62(1)	7674(1)	17(1)
Al(2)	7289(1)	1214(1)	6596(1)	16(1)
Al(3)	7952(1)	2644(1)	7167(1)	16(1)
Al(4)	8403(1)	832(1)	8071(1)	17(1)
Si(1)	7165(1)	-1786(1)	7099(1)	18(1)
Si(2)	8133(1)	-701(1)	6181(1)	17(1)
Si(3)	5893(1)	2980(1)	5931(1)	17(1)
Si(4)	6289(1)	4283(1)	6606(1)	18(1)
Si(5)	10105(1)	2629(1)	6995(1)	20(1)
Si(6)	10474(1)	1088(1)	7962(1)	23(1)
Si(7)	7714(1)	-21(1)	9190(1)	21(1)
Si(8)	5863(1)	-62(1)	8788(1)	21(1)
O(1)	6606(1)	923(1)	7167(1)	19(1)
O(2)	8107(1)	1772(1)	6776(1)	19(1)
O(3)	7744(1)	1992(1)	7789(1)	19(1)
O(4)	8104(1)	25(1)	7768(1)	19(1)
O(5)	7049(1)	-1086(1)	7486(1)	23(1)
O(6)	7895(1)	-1571(1)	6609(1)	22(1)
O(7)	7995(1)	226(1)	6415(1)	20(1)

O(8)	6593(1)	2005(1)	6166(1)	24(1)
0(0)	0575(1)	2005(1)	0100(1)	24(1)
O(9)	5818(1)	3771(1)	6274(1)	22(1)
O(10)	6991(1)	3532(1)	7001(1)	22(1)
0(10)	0001(1)	3332(1)	7001(1)	22(1)
O(11)	8992(1)	2935(1)	7118(1)	23(1)
O(12)	10647(1)	1870(1)	7458(1)	30(1)
0(12)	10047(1)	10/0(1)	7450(1)	35(1)
O(13)	9567(1)	744(1)	7911(1)	25(1)
O(14)	80/11(1)	679(1)	8702(1)	24(1)
0(14)	0041(1)	075(1)	0702(1)	24(1)
O(15)	6645(1)	-80(1)	9169(1)	28(1)
0(16)	6227(1)	128(1)	8200(1)	24(1)
0(10)	0237(1)	136(1)	8200(1)	24(1)
C(1)	7653(1)	-3014(1)	7434(1)	26(1)
C(D)	7495(2)	22(4(2))	7050(1)	()(1)
C(2)	/483(2)	-3204(2)	7939(1)	02(1)
C(3)	7792(3)	-4190(2)	8213(1)	98(2)
$\mathbf{C}(4)$	8280(2)	1872(2)	7049(1)	Q1(1)
C(4)	8289(5)	-4872(2)	/948(1)	01(1)
C(5)	8492(2)	-4640(2)	7436(1)	56(1)
	9172(2)	2719(1)	7101(1)	20(1)
C(0)	81/2(2)	-3/18(1)	/181(1)	38(1)
C(7)	6007(1)	-1652(1)	6851(1)	25(1)
C(0)	5000(2)	040(2)	(020(1))	44(1)
C(8)	5222(2)	-940(2)	6939(1)	44(1)
C(9)	4374(2)	-836(2)	6732(1)	58(1)
	1000(2)	1420(2)	(125(1))	52(1)
C(10)	4298(2)	-1438(2)	6435(1)	53(1)
C(11)	5062(2)	-2137(2)	6333(1)	61(1)
	5002(2)	2157(2)	6555(1)	40(1)
C(12)	5905(2)	-2250(2)	6540(1)	48(1)
C(13)	7359(1)	-433(1)	5645(1)	21(1)
	7557(1)	1107(1)	5515(1)	21(1)
C(14)	/036(2)	-1137(2)	5520(1)	39(1)
C(15)	6455(2)	-950(2)	5123(1)	49(1)
	0433(2)	-)30(2)	5125(1)	4)(1)
C(16)	6191(2)	-57(2)	4838(1)	40(1)
C(17)	6506(2)	654(2)	4946(1)	35(1)
	0500(2)	034(2)	4)40(1)	55(1)
C(18)	7082(1)	468(1)	5348(1)	28(1)
C(10)	0380(1)	1121(1)	5053(1)	20(1)
C(19)	9380(1)	-1121(1)	5955(1)	20(1)
C(20)	9822(1)	-2071(1)	6010(1)	38(1)
COL	10740(2)	2277(1)	5915(1)	45(1)
C(21)	10/40(2)	-2577(1)	3813(1)	43(1)
C(22)	11234(1)	-1750(1)	5560(1)	32(1)
C(22)	10916(2)	800(2)	5506(1)	47(1)
C(23)	10810(2)	-809(2)	5500(1)	4/(1)
C(24)	9902(2)	-497(1)	5704(1)	41(1)
COS	6224(1)	2204(1)	5262(1)	20(1)
C(23)	0554(1)	5594(1)	5265(1)	20(1)
C(26)	7108(1)	3778(1)	5165(1)	27(1)
COT	7445(1)	4070(1)	4660(1)	22(1)
C(27)	/445(1)	4079(1)	4009(1)	52(1)
C(28)	7026(1)	3983(1)	4260(1)	31(1)
COD	6768(1)	2500(2)	4242(1)	22(1)
C(29)	0208(1)	3399(2)	4343(1)	55(1)
C(30)	5922(1)	3311(1)	4841(1)	28(1)
C(21)	4602(1)	2821(1)	5045(1)	21(1)
C(51)	4092(1)	2021(1)	5945(1)	21(1)
C(32)	3913(1)	3578(1)	5987(1)	27(1)
C(22)	2002(1)	2478(2)	6020(1)	25(1)
C(55)	5005(1)	5478(2)	6050(1)	55(1)
C(34)	2856(2)	2615(2)	6025(1)	38(1)
0(25)	260 0(2)	1056(2)	5076(1)	26(1)
C(35)	3013(2)	1850(2)	5976(1)	30(1)
C(36)	4525(1)	1956(1)	5936(1)	28(1)
0(27)	(004(1))	5002(1)	(140(1)	20(1)
C(37)	6904(1)	5083(1)	6149(1)	22(1)
C(38)	6421(1)	5682(1)	5737(1)	29(1)
C(20)	(1)	6002(1)	5274(1)	2(1)
C(39)	6829(2)	0280(1)	55/4(1)	36(1)
C(40)	7736(2)	6310(2)	5415(1)	42(1)
C(41)	8000(0)	5720(2)	5010(1)	FO(1)
C(41)	8229(2)	5129(2)	3010(1)	50(1)
C(42)	7820(1)	5116(2)	6183(1)	36(1)
C(43)	5310(1)	5015(1)	6058(1)	24(1)
C(+3)	5510(1)	5015(1)	0930(1)	24(1)
C(44)	4377(1)	5019(2)	6948(1)	33(1)
C(45)	3650(2)	5625(2)	7180(1)	17(1)
0(45)	3030(2)	5025(2)	/100(1)	47(1)
C(46)	3851(2)	6249(2)	7424(1)	57(1)
CUT	1764(2)	6271(2)	7441(1)	(1)
C(+/)	4/04(2)	02/1(2)	/441(1)	02(1)
C(48)	5492(2)	5658(2)	7211(1)	46(1)
C(49)	10561(1)	3680(1)	6805(1)	22(1)
C(+7)	10501(1)	3009(1)	0095(1)	22(1)
C(50)	10984(1)	3886(1)	7280(1)	29(1)
C(51)	11034(2)	1732(2)	7216(1)	27(1)
C(J1)	11234(2)	4/32(2)	/210(1)	57(1)
C(52)	11062(1)	5394(1)	6773(1)	36(1)
C(53)	10652(1)	5200(1)	6384(1)	24(1)
C(33)	10033(1)	5208(1)	0304(1)	34(1)
C(54)	10416(1)	4361(1)	6444(1)	28(1)
C(55)	10226(2)	2125(2)	6402(1)	27(1)
C(33)	10330(2)	2123(2)	0402(1)	57(1)
C(56)	9779(2)	2574(2)	5980(1)	52(1)
C(57)	0000(2)	2208(2)	5511(1)	72(1)
C(37)	9990(3)	2290(2)	5511(1)	/0(1)
C(58)	10743(3)	1596(3)	5449(1)	78(1)
C(50)	11210(2)	1117(2)	5840(2)	70(1)
C(39)	11310(2)	111/(3)	3840(2)	/8(1)
C(60)	11098(2)	1382(2)	6335(1)	57(1)
C(61)	10220(1)	1647(1)	9579(1)	20(1)
C(01)	10339(1)	104/(1)	8528(1)	29(1)
C(62)	10790(1)	1202(2)	8974(1)	38(1)
C(62)	10(70(2)	1625(2)	0280(1)	47(1)
C(03)	100/9(2)	1035(2)	9389(1)	4/(1)

 Tabelle 23: Bindungslängen [Å] und Winkel [°] für sh2850.

Al(1)-O(5)	1.698(1)	Al(1)-O(1)	1.793(1)
Al(1)-O(16)	1.700(1)	Al(2)-O(8)	1.688(1)
Al(1)-O(4)	1.784(1)	Al(2)-O(7)	1.701(1)

(1)-O(5)	1.698(1)	Al(1)-O(1)	1.793(1)
(1)-O(16)	1.700(1)	Al(2)-O(8)	1.688(1)
(1)-O(4)	1.784(1)	Al(2)-O(7)	1.701(1)

C(64)	10118(2)	2522(2)	9372(1)	54(1)
C(65)	9647(3)	2983(2)	8939(1)	70(1)
C(66)	9760(2)	2552(2)	8521(1)	53(1)
C(67)	11523(1)	70(1)	7992(1)	30(1)
C(68)	11435(2)	-842(1)	8067(1)	36(1)
C(69)	12222(2)	-1603(2)	8078(1)	54(1)
C(70)	13098(2)	-1462(2)	8023(1)	66(1)
C(71)	13205(2)	-571(3)	7950(1)	73(1)
C(72)	12427(2)	194(2)	7933(1)	54(1)
C(73)	7743(1)	483(1)	9758(1)	26(1)
C(74)	7018(2)	570(2)	10140(1)	38(1)
C(75)	7033(2)	1016(2)	10540(1)	46(1)
C(76)	7773(2)	1385(2)	10561(1)	44(1)
C(//)	8507(2)	1296(2)	10195(1)	48(1)
C(78)	8495(2)	848(2)	9796(1)	40(1)
C(79)	8502(1)	-122/(1)	9202(1)	28(1)
C(80)	8155(2)	-2018(2)	9310(1)	58(1)
C(81)	8/34(3)	-2909(2)	9293(2)	79(1)
C(82)	9701(2)	-5020(2)	9182(1)	51(1)
C(83)	0462(2)	-2233(2) 1266(2)	9082(1)	40(1)
C(85)	9402(2) 5586(1)	-1300(2) 1224(1)	9069(1)	40(1)
C(85)	5479(2)	-1234(1) 1600(2)	8570(1)	$\frac{27(1)}{37(1)}$
C(80)	5305(2)	-1099(2) 2586(2)	8700(1)	50(1)
C(88)	5230(2)	-3024(2)	9209(1)	57(1)
C(89)	5326(2)	-2575(2)	9588(1)	59(1)
C(90)	5497(2)	-1690(2)	9460(1)	44(1)
C(91)	4810(1)	887(1)	8910(1)	30(1)
C(92)	3946(2)	891(2)	8762(1)	64(1)
C(93)	3139(2)	1587(3)	8838(2)	92(1)
C(94)	3181(3)	2287(3)	9067(1)	93(2)
C(95)	4013(4)	2329(3)	9202(1)	106(2)
C(96)	4838(2)	1624(2)	9128(1)	69(1)
N(1)	4968(1)	1995(1)	7396(1)	34(1)
C(97)	4154(2)	2012(2)	7231(1)	49(1)
C(98)	3325(2)	2606(2)	7385(1)	61(1)
N(2)	3292(2)	3168(2)	7706(1)	57(1)
C(99)	4103(2)	3134(2)	7874(1)	52(1)
C(100)	4942(2)	2546(2)	7720(1)	43(1)
N(3)	6839(1)	3066(1)	8455(1)	39(1)
C(101)	6202(2)	3869(2)	8328(1)	65(1)
C(102)	5749(3)	4384(3)	8692(2)	114(2)
N(4)	5936(3)	4131(3)	9175(1)	119(2)
C(103)	6563(3)	3338(3)	9300(1)	86(1)
C(104)	7023(2)	2802(2)	8940(1)	54(1)
N(5)	9511(1)	-1265(1)	7476(1)	38(1)
C(105)	10197(2)	-1116(2)	7126(1)	51(1)
C(106)	10966(2)	-1848(3)	7043(1)	68(1)
N(0)	11050(2)	-2/1/(2)	7300(1)	/9(1)
C(107)	10353(2)	-2855(2)	7039(2)	80(1) 55(1)
$C(10\delta)$	9383(2)	-2134(2)	7/52(1) 0402(2)	33(1)
C(1L)	1937(0)	4769(0)	9493(3) 8022(3)	77(2)
C(2L)	2626(6)	4805(5) 5465(6)	8728(3)	$\frac{78(2)}{82(2)}$
C(3L)	1498(5)	4614(5)	8736(3)	75(2)
$C(\tau L)$	2338(7)	5137(7)	8549(4)	95(2)
C(7L)	3174(11)	5584(10)	9529(6)	146(5)
C(8L)	2601(12)	4943(12)	9729(7)	102(4)
C(9L)	2760(12)	5688(11)	9252(7)	158(5)
C(10L)	2120(10)	5326(10)	9547(5)	77(3)
C(6L)	1528(8)	4655(8)	9341(5)	113(3)
C(11L)	2981(8)	5728(8)	8831(5)	114(3)
				. ,

AI(2)-O(1)	1.773(1)	C(31)-C(32)	1.398(2)
Al(2)-O(2)	1.819(1)	C(31)-C(36)	1.401(2)
$A_1(3) = O(10)$	1 699(1)	C(32) - C(33)	1 301(3)
	1.000(1)	C(32) C(33)	1.391(3)
AI(3)-O(11)	1.703(1)	C(33)-C(34)	1.381(3)
Al(3)-O(3)	1.783(1)	C(34)-C(35)	1.385(3)
Al(3)-O(2)	1.809(1)	C(35)-C(36)	1.394(3)
$A_1(4) O(14)$	1 700(1)	C(37) C(42)	1 302(3)
AI(4)-0(14)	1.700(1)	C(37) - C(42)	1.392(3)
AI(4)-O(13)	1.707(1)	C(37)-C(38)	1.401(2)
Al(4)-O(4)	1.781(1)	C(38)-C(39)	1.386(3)
A1(4) - O(3)	1.806(1)	C(39) - C(40)	1 379(3)
$\Gamma_{1}(4) O(5)$	1.000(1)	C(40) C(41)	1.377(3) 1.201(2)
S1(1)-O(5)	1.602(1)	C(40)- $C(41)$	1.381(3)
Si(1)-O(6)	1.634(1)	C(41)-C(42)	1.397(3)
Si(1)-C(1)	1.862(2)	C(43)-C(44)	1.389(3)
$S_i(1) C(7)$	1.867(2)	C(43) C(48)	1 400(3)
51(1)-C(7)	1.607(2)	C(43) - C(46)	1.400(3)
$S_1(2)-O(7)$	1.610(1)	C(44)-C(45)	1.391(3)
Si(2)-O(6)	1.633(1)	C(45)-C(46)	1.373(4)
Si(2)-C(19)	1.861(2)	C(46)-C(47)	1.374(4)
$S_{1}(2) = C(12)$	1.861(2)	C(47) C(49)	1 206(2)
SI(2)-C(15)	1.801(2)	C(47) - C(48)	1.590(5)
Si(3)-O(8)	1.601(1)	C(49)-C(50)	1.398(2)
Si(3)-O(9)	1.634(1)	C(49)-C(54)	1.398(2)
Si(3)-C(31)	1 861(2)	C(50) - C(51)	1 396(3)
$S_{1}(2) C(25)$	1.867(2)	C(51) C(52)	1.279(2)
SI(5)-C(25)	1.807(2)	C(31)-C(32)	1.578(5)
S1(4)-O(10)	1.612(1)	C(52)-C(53)	1.387(3)
Si(4)-O(9)	1.626(1)	C(53)-C(54)	1.389(3)
Si(4)-C(43)	1.861(2)	C(55)-C(60)	1.384(3)
$S_{1}(4) C(37)$	1 868(2)	C(55) C(56)	1 420(4)
SI(4) - C(37)	1.605(1)	C(55)-C(50)	1.420(4)
S1(5)-O(11)	1.605(1)	C(56)-C(57)	1.389(4)
Si(5)-O(12)	1.621(1)	C(57)-C(58)	1.335(6)
Si(5)-C(49)	1.859(2)	C(58)-C(59)	1.376(6)
Si(5)-C(55)	1.868(2)	C(59) - C(60)	1444(4)
Si(6) O(13)	1.602(2)	C(61) C(62)	1.111(1) 1.201(3)
SI(0)-O(13)	1.002(2)	C(01) - C(02)	1.391(3)
S1(0)-O(12)	1.037(2)	C(61)-C(66)	1.399(3)
Si(6)-C(67)	1.860(2)	C(62)-C(63)	1.384(3)
Si(6)-C(61)	1.861(2)	C(63)-C(64)	1.364(4)
Si(7)-O(14)	1.609(1)	C(64)-C(65)	1 382(4)
Si(7) O(15)	1.625(1)	C(65) C(66)	1 388(4)
SI(7)-O(13)	1.025(1)	C(03) - C(00)	1.300(4)
Si(7)-C(73)	1.860(2)	C(6/)-C(68)	1.388(3)
Si(7)-C(79)	1.8710(2)	C(67)-C(72)	1.392(3)
Si(8)-O(16)	1.603(1)	C(68)-C(69)	1.395(3)
Si(8)-O(15)	1 633(1)	C(69)-C(70)	1 362(4)
$S_{1}(0) = O(10)$	1.055(1)	C(70) C(71)	1.362(1)
31(0)-C(91)	1.001(2)	C(70)- $C(71)$	1.500(5)
S1(8)-C(85)	1.8/3(2)	C(71)-C(72)	1.389(4)
C(1)-C(6)	1.388(3)	C(73)-C(74)	1.393(3)
C(1)-C(2)	1.390(3)	C(73)-C(78)	1.397(3)
C(2) C(3)	1 302(3)	C(74) C(75)	1.304(3)
C(2)- $C(3)$	1.392(3)	C(74)- $C(75)$	1.394(3)
C(3)-C(4)	1.3/3(4)	C(75)-C(76)	1.3/5(4)
C(4)-C(5)	1.360(4)	C(76)-C(77)	1.375(3)
C(5)-C(6)	1.391(3)	C(77)-C(78)	1.392(3)
C(7)- $C(8)$	1 389(3)	C(79) - C(80)	1 389(3)
C(7) C(12)	1.405(3)	C(70) C(84)	1.200(2)
C(7)-C(12)	1.405(5)	C(79)- $C(84)$	1.590(5)
C(8)-C(9)	1.396(3)	C(80)-C(81)	1.400(4)
C(9)-C(10)	1.371(4)	C(81)-C(82)	1.375(5)
C(10)-C(11)	1.367(4)	C(82)-C(83)	1.361(4)
C(11) - C(12)	1 387(3)	C(83)-C(84)	1 389(3)
C(12) C(14)	1.207(2)	C(05) C(07)	1 202(2)
C(13)-C(14)	1.397(3)	C(85)-C(86)	1.392(3)
C(13)-C(18)	1.400(2)	C(85)-C(90)	1.396(3)
C(14)-C(15)	1.387(3)	C(86)-C(87)	1.394(3)
C(15)-C(16)	1.375(3)	C(87)-C(88)	1.368(4)
C(16)-C(17)	1 379(3)	C(88)- $C(89)$	1.381(4)
C(17) C(19)	1.377(3)	C(80) - C(00)	1.301(4)
C(17)-C(18)	1.395(3)	C(89)-C(90)	1.390(3)
C(19)-C(20)	1.387(2)	C(91)-C(96)	1.379(3)
C(19)-C(24)	1.390(3)	C(91)-C(92)	1.389(3)
C(20)-C(21)	1.391(3)	C(92)-C(93)	1 388(4)
C(21) C(22)	1 270(2)	C(02) C(03)	1 257(6)
C(21) - C(22)	1.570(5)	C(93)-C(94)	1.552(0)
C(22)-C(23)	1.370(3)	C(94)-C(95)	1.354(6)
C(23)-C(24)	1.391(3)	C(95)-C(96)	1.412(4)
C(25)-C(30)	1.396(2)	N(1)-C(100)	1.321(3)
C(25)-C(26)	1 398(2)	N(1)-C(97)	1 332(3)
C(26) C(27)	1 200(2)	C(07) C(09)	1 207(2)
C(20) - C(27)	1.390(3)	C(97) - C(98)	1.367(3)
C(27)-C(28)	1.380(3)	C(98)-N(2)	1.325(4)
C(28)-C(29)	1.378(3)	N(2)-C(99)	1.323(4)
C(29)-C(30)	1.396(3)	C(99)-C(100)	1.394(3)

N(3)-C(104)	1.319(3)	C(19)-Si(2)-C(13)	110.25(7)
N(3)-C(101)	1 324(3)	O(8)-Si(3)-O(9)	110,70(6)
C(101) C(102)	1 270(4)	O(8) Si(2) C(21)	100.80(7)
C(101)-C(102)	1.379(4)	O(8)-SI(3)-C(31)	109.80(7)
C(102)-N(4)	1.311(5)	$O(9)-S_1(3)-C(31)$	106.64(7)
N(4)-C(103)	1.305(5)	O(8)-Si(3)-C(25)	108.99(7)
C(103)- $C(104)$	1 389(4)	O(9)-Si(3)-C(25)	109.72(7)
N(5) C(100)	1.303(1)	C(21) $S(2)$ $C(25)$	110,09(7)
N(5)-C(108)	1.322(3)	C(31)-S1(3)-C(25)	110.98(7)
N(5)-C(105)	1.332(3)	O(10)-Si(4)-O(9)	111.78(6)
C(105)-C(106)	1 389(4)	O(10)-Si(4)-C(43)	11046(7)
C(106) N(6)	1 202(5)	O(0) S(4) C(42)	106.00(7)
C(100)-IN(0)	1.525(5)	O(9)-SI(4)-C(45)	106.90(7)
N(6)-C(107)	1.322(5)	O(10)-Si(4)-C(37)	111.63(7)
C(107)- $C(108)$	1.383(4)	O(9)-Si(4)-C(37)	107.71(7)
C(11)- $C(61)$	0.86(1)	C(43) - Si(4) - C(37)	108 15(8)
	0.00(1)	C(43)-SI(4)-C(37)	100.15(0)
C(1L)-C(10L)	0.97(1)	$O(11)-S_1(5)-O(12)$	112.78(7)
C(1L)-C(8L)	1.33(2)	O(11)-Si(5)-C(49)	108.40(7)
C(11) - C(21)	1 52(1)	O(12) - Si(5) - C(49)	107 36(7)
C(1L)-C(2L)	1.52(1)	O(12) - SI(3) - O(47)	107.50(7)
C(2L)-C(4L)	1.053(9)	O(11)-Si(5)-C(55)	108.18(9)
C(2L)-C(5L)	1.16(1)	O(12)-Si(5)-C(55)	109.79(9)
C(2L)- $C(6L)$	1 23(1)	C(49)-Si(5)-C(55)	110 33(8)
C(2L) $C(3L)$	1.52(1)	O(12) $S(6)$ $O(12)$	110.35(0)
C(2L)-C(3L)	1.53(1)	O(13)-S1(6)-O(12)	110.26(7)
C(2L)-C(10L)	2.03(2)	O(13)-Si(6)-C(67)	109.08(8)
C(3L)-C(11L)	0.84(1)	O(12)-Si(6)-C(67)	107.29(8)
$C(2\mathbf{I}) C(5\mathbf{I})$	0.07(1)	O(12) Si(6) $C(61)$	11177(9)
	0.97(1)	O(13)-SI(0)-C(01)	111.77(0)
C(3L)-C(9L)	1.56(2)	$O(12)-S_1(6)-C(61)$	107.15(8)
C(4L)-C(5L)	1.63(1)	C(67)-Si(6)-C(61)	111.18(9)
C(4L)- $C(6L)$	165(1)	O(14)-Si(7)-O(15)	112 55(7)
$C(\mathbf{E}) C(\mathbf{E})$	1.00(1)	O(14) O(15)	112.33(7)
C(5L)-C(11L)	1.80(2)	$O(14)-S_1(7)-C(73)$	106.39(7)
C(7L)-C(9L)	0.99(2)	O(15)-Si(7)-C(73)	107.18(8)
C(7L)-C(8L)	1.44(2)	O(14)-Si(7)-C(79)	108 58(8)
C(7L) C(10L)	1.71(2)	O(15) S(7) O(70)	107.90(0)
C(/L)-C(10L)	1./1(2)	O(15)-S1(7)-C(79)	107.80(8)
C(7L)-C(11L)	1.89(2)	C(73)-Si(7)-C(79)	114.45(8)
C(8L)-C(10L)	0.91(2)	O(16)-Si(8)-O(15)	111.72(7)
$C(\mathbf{S}\mathbf{I}) C(\mathbf{O}\mathbf{I})$	1 55(2)	O(16) Si(8) $C(01)$	100.85(7)
$C(\delta L) - C(9L)$	1.55(2)	O(10)-S1(8)-C(91)	109.83(7)
C(9L)-C(11L)	1.13(2)	$O(15)-S_1(8)-C(91)$	106.99(8)
C(9L)-C(10L)	1.32(2)	O(16)-Si(8)-C(85)	109.76(8)
$\hat{\mathbf{C}}(10\hat{\mathbf{I}})$ - $\hat{\mathbf{C}}(6\mathbf{I})$	1 72(2)	O(15)-Si(8)-C(85)	107 67(8)
C(10L) C(0L)	1.72(2)	C(01) C(05)	110.01(0)
		C(91)-S1(8)-C(85)	110.81(9)
O(5)-Al(1)-O(16)	115.96(6)	Al(2)-O(1)-Al(1)	125.60(7)
O(5)-Al(1)-O(4)	110.03(6)	Al(3)-O(2)-Al(2)	131 92(7)
O(16) A(1) O(4)	100 66(6)	$A_1(3) O(3) A_1(4)$	127.00(7)
O(10)-AI(1)- $O(4)$	109.00(0)	AI(3)-O(3)-AI(4)	127.00(7)
O(5)-AI(1)-O(1)	110.97(6)	AI(4)-O(4)-AI(1)	128.44(7)
O(16)-Al(1)-O(1)	107.67(6)	Si(1)-O(5)-Al(1)	157.56(8)
O(4) - A(1) - O(1)	101 57(6)	$S_{i}(2) - O(6) - S_{i}(1)$	1/1 07(8)
O(4)-Al(1)- $O(1)$	101.57(0)	51(2)-0(0)-51(1)	141.07(0)
O(8)-AI(2)-O(7)	118.61(6)	$S_1(2)-O(7)-AI(2)$	150.39(8)
O(8)-Al(2)-O(1)	109.40(6)	Si(3)-O(8)-Al(2)	157.65(8)
O(7)-Al(2)-O(1)	110 65(6)	Si(4)-O(9)-Si(3)	151 41(8)
O(8) A1(2) O(2)	109 50(6)	$S_{1}(1) O(10) A_{1}(2)$	151.06(9)
O(8)-AI(2)- $O(2)$	108.30(6)	SI(4)-O(10)-AI(5)	134.90(8)
O(7)-Al(2)-O(2)	103.58(6)	Si(5)-O(11)-Al(3)	147.14(8)
O(1)-Al(2)-O(2)	105.11(6)	Si(5)-O(12)-Si(6)	141.84(8)
O(10) - A(3) - O(11)	116.92(6)	$S_{i}(6) - O(13) - A_{i}(4)$	147 62(9)
O(10) A(2) O(2)	110.74(0) 110.14(2)	$\mathbf{C}(7) \mathbf{O}(14) + 1(4)$	146.00(0)
O(10)-AI(3)- $O(3)$	110.14(0)	S1(7)-O(14)-AI(4)	140.00(8)
O(11)-Al(3)-O(3)	110.65(6)	Si(7)-O(15)-Si(8)	144.04(8)
O(10)-Al(3)-O(2)	109.62(6)	Si(8)-O(16)-Al(1)	156 18(9)
O(11) Al(3) O(2)	106.63(6)	C(6) C(1) C(2)	117.0(2)
O(11)-AI(3)- $O(2)$	100.05(0)	C(0)-C(1)-C(2)	117.0(2)
O(3)-AI(3)-O(2)	101.72(6)	C(6)-C(1)-Si(1)	123.0(2)
O(14)-Al(4)-O(13)	117.80(7)	C(2)-C(1)-Si(1)	120.0(1)
O(14) - A(4) - O(4)	111 38(6)	C(1) - C(2) - C(3)	121 0(2)
O(12) $A(4)$ $O(4)$	105.05(6)	C(4) C(2) C(3)	121.0(2)
O(13)-AI(4)- $O(4)$	105.95(6)	C(4)-C(3)-C(2)	120.4(3)
O(14)-Al(4)-O(3)	105.56(6)	C(5)-C(4)-C(3)	119.8(2)
O(13)-Al(4)-O(3)	108.77(6)	C(4)-C(5)-C(6)	119.9(2)
O(4) - A(4) - O(3)	106.92(6)	C(1) - C(6) - C(5)	121 8(2)
$O(\tau) = O(J)$	111.04(5)		121.0(2)
U(5)-S1(1)-U(6)	111.94(6)	C(8)-C(7)-C(12)	116.6(2)
O(5)-Si(1)-C(1)	109.37(8)	C(8)-C(7)-Si(1)	122.6(2)
O(6)-Si(1)-C(1)	106 91(7)	C(12)-C(7)-Si(1)	120 7(2)
O(5) S(1) O(7)	100.77(7)	$C(12) \cdot C(1) \cdot D(1)$	120.7(2)
O(3)-SI(1)-C(7)	109.0/(/)	U(7)-U(8)-U(9)	121.5(2)
U(6)-Si(1)-C(7)	107.85(7)	C(10)-C(9)-C(8)	120.5(2)
C(1)-Si(1)-C(7)	111.07(8)	C(11)-C(10)-C(9)	119.7(2)
$O(7)_{Si}(2) O(6)$	112 12(6)	C(10) C(11) C(12)	120 2(2)
O(7) - O(0)	112.12(0)	C(10)-C(11)-C(12)	120.2(3)
O(7)-S1(2)-C(19)	109.91(7)	C(11)-C(12)-C(7)	121.7(2)
O(6)-Si(2)-C(19)	105.86(7)	C(14)-C(13)-C(18)	117.0(2)
O(7)-Si(2)-C(13)	109.63(7)	C(14)-C(13)-Si(2)	120.8(1)
O(6) Si(2) $O(12)$	100.01(7)	C(19) C(12) C(2)	120.0(1)
0(0)-31(2)-0(13)	107.01(7)	C(10)-C(13)-SI(2)	122.2(1)

C(15)-C(14)-C(13)	121 6(2)	C(67)- $C(68)$ - $C(69)$	121.2(2)
C(16) C(15) C(14)	120.2(2)	C(70) C(60) C(68)	121.2(2) 120.2(3)
C(10)-C(13)-C(14)	120.2(2)	C(70) - C(09) - C(08)	120.2(3)
C(15)-C(16)-C(17)	119.9(2)	C(69)-C(70)-C(71)	119.8(2)
C(16)-C(17)-C(18)	119.9(2)	C(70)-C(71)-C(72)	120.5(3)
C(17)-C(18)-C(13)	121.4(2)	C(71)-C(72)-C(67)	120.9(3)
C(20)-C(19)-C(24)	117.1(2)	C(74)-C(73)-C(78)	117.5(2)
C(20) - C(19) - Si(2)	121 4(1)	C(74)-C(73)-Si(7)	123.0(2)
C(24) C(10) Si(2)	121.5(1)	C(78) C(72) Si(7)	120.0(2) 110.2(1)
C(24)-C(19)-SI(2)	121.3(1)	C(78) - C(73) - S(7)	119.3(1)
C(19)-C(20)-C(21)	120.9(2)	C(73)-C(74)-C(75)	121.3(2)
C(22)-C(21)-C(20)	121.1(2)	C(76)-C(75)-C(74)	119.9(2)
C(23)-C(22)-C(21)	119.0(2)	C(75)-C(76)-C(77)	120.1(2)
C(22)-C(23)-C(24)	120.3(2)	C(76)-C(77)-C(78)	1201(2)
C(19) - C(24) - C(23)	120.0(2)	C(77)- $C(78)$ - $C(73)$	120.1(2) 121.1(2)
C(1)) - C(24) - C(23)	121.7(2)	C(77) - C(70) - C(73)	121.1(2)
C(30)-C(25)-C(26)	117.3(2)	C(80)-C(79)-C(84)	117.0(2)
C(30)-C(25)-Si(3)	121.5(1)	C(80)-C(79)-Si(7)	121.9(2)
C(26)-C(25)-Si(3)	121.1(1)	C(84)-C(79)-Si(7)	121.1(2)
C(27)-C(26)-C(25)	121.4(2)	C(79)-C(80)-C(81)	120.8(3)
C(28) - C(27) - C(26)	120 0(2)	C(82)-C(81)-C(80)	120 6(3)
C(20) C(27) C(27)	120.0(2)	C(82) C(81) C(81)	120.0(3) 110.4(2)
C(29) - C(28) - C(27)	120.1(2)	C(83)-C(82)-C(81)	119.4(2)
C(28)-C(29)-C(30)	119.8(2)	C(82)- $C(83)$ - $C(84)$	120.2(2)
C(29)-C(30)-C(25)	121.4(2)	C(83)-C(84)-C(79)	122.0(2)
C(32)-C(31)-C(36)	117.7(2)	C(86)-C(85)-C(90)	116.9(2)
C(32)-C(31)-Si(3)	119.7(1)	C(86)-C(85)-Si(8)	122.1(2)
C(36)-C(31)-Si(3)	122 6(1)	C(90)- $C(85)$ -Si(8)	121 0(2)
C(33) - C(32) - C(31)	121.6(2)	C(85) - C(86) - C(87)	121.0(2) 121.3(2)
C(33)-C(32)-C(31)	121.0(2)	C(83)-C(80)-C(87)	121.3(2)
C(34)-C(33)-C(32)	119.7(2)	C(88)-C(87)-C(86)	120.8(2)
C(33)-C(34)-C(35)	120.0(2)	C(87)-C(88)-C(89)	119.1(2)
C(34)-C(35)-C(36)	120.3(2)	C(88)-C(89)-C(90)	120.3(2)
C(35)-C(36)-C(31)	120.7(2)	C(89)-C(90)-C(85)	121.6(2)
C(42)-C(37)-C(38)	117 3(2)	C(96)-C(91)-C(92)	116 9(2)
C(42) C(37) Si(4)	124 5(1)	C(96) C(91) S(8)	123.4(2)
C(42) - C(37) - SI(4)	124.3(1)	C(90) - C(91) - S1(8)	123.4(2)
C(38)-C(37)-S1(4)	118.2(1)	C(92)-C(91)-SI(8)	119.8(2)
C(39)-C(38)-C(37)	122.0(2)	C(93)-C(92)-C(91)	122.3(3)
C(40)-C(39)-C(38)	119.7(2)	C(94)-C(93)-C(92)	119.7(4)
C(39)-C(40)-C(41)	119.5(2)	C(93)-C(94)-C(95)	120.1(3)
C(40)-C(41)-C(42)	120.8(2)	C(94)-C(95)-C(96)	120.7(3)
C(37)-C(42)-C(41)	120 6(2)	C(91)- $C(96)$ - $C(95)$	1204(3)
C(44) C(42) C(48)	116.0(2)	C(100) N(1) C(07)	120.1(3) 117.0(2)
C(44) - C(43) - C(48)	122.2(1)	N(1) C(07) C(09)	117.0(2)
C(44)-C(43)-S1(4)	123.2(1)	N(1)-C(97)-C(98)	120.9(3)
C(48)-C(43)-Si(4)	119.7(2)	N(2)-C(98)-C(97)	122.6(3)
C(43)-C(44)-C(45)	122.3(2)	C(99)-N(2)-C(98)	116.0(2)
C(46)-C(45)-C(44)	119.5(2)	N(2)-C(99)-C(100)	122.0(3)
C(45)-C(46)-C(47)	120.1(2)	N(1)-C(100)-C(99)	121.4(2)
C(46) - C(47) - C(48)	1202(2)	C(104) - N(3) - C(101)	116.6(2)
C(47) C(48) C(42)	120.2(2)	N(2) C(101) C(102)	120.8(2)
C(47) - C(48) - C(43)	121.0(2)	N(3)-C(101)-C(102)	120.8(3)
C(50)-C(49)-C(54)	117.6(2)	N(4)-C(102)-C(101)	122.9(3)
C(50)-C(49)-Si(5)	121.8(1)	C(103)-N(4)-C(102)	116.2(3)
C(54)-C(49)-Si(5)	120.4(1)	N(4)-C(103)-C(104)	122.0(3)
C(51)-C(50)-C(49)	120.8(2)	N(3)-C(104)-C(103)	121.5(3)
C(52)-C(51)-C(50)	120.5(2)	C(108)-N(5)-C(105)	117.4(2)
C(51) - C(52) - C(53)	119 6(2)	N(5)-C(105)-C(106)	120.8(3)
C(51) - C(52) - C(53)	120.0(2)	N(5) - C(105) - C(105)	120.0(3)
C(32) - C(33) - C(34)	120.0(2)	N(0)-C(100)-C(103)	122.2(3)
C(53)-C(54)-C(49)	121.5(2)	C(107)-N(6)-C(106)	116.1(2)
C(60)-C(55)-C(56)	117.8(2)	N(6)-C(107)-C(108)	122.7(3)
C(60)-C(55)-Si(5)	122.2(2)	N(5)-C(108)-C(107)	120.8(3)
C(56)-C(55)-Si(5)	119.6(2)	C(6L)-C(1L)-C(10L)	141(2)
C(57)- $C(56)$ - $C(55)$	121.9(3)	C(6L)-C(1L)-C(8L)	177(2)
C(57) C(50) C(55)	$110 \ 4(4)$	C(101) C(11) C(91)	$\frac{177(2)}{42(1)}$
C(58) - C(57) - C(50)	119.4(4)	C(10L)-C(1L)-C(0L)	43(1)
C(57)-C(58)-C(59)	122.2(3)	C(6L)-C(1L)-C(2L)	54(1)
C(58)-C(59)-C(60)	119.5(3)	C(10L)-C(1L)-C(2L)	108(1)
C(55)-C(60)-C(59)	119.1(3)	C(8L)-C(1L)-C(2L)	125(1)
C(62)-C(61)-C(66)	116.8(2)	C(4L)-C(2L)-C(5L)	94.6(9)
C(62)-C(61)-Si(6)	122.9(2)	C(4L)-C(2L)-C(6L)	92(1)
C(66) - C(61) - Si(6)	120 3(2)	C(51) - C(21) - C(61)	173(1)
C(62) C(62) C(61)	120.3(2)	C(JL) = C(JL) = C(UL)	175(1)
C(03)-C(02)-C(01)	121.7(2)	C(4L)-C(2L)-C(1L)	126.4(9)
C(04)-C(03)-C(62)	120.5(2)	C(5L)-C(2L)-C(1L)	138.9(9)
C(63)-C(64)-C(65)	119.5(2)	C(6L)-C(2L)-C(1L)	34.7(6)
C(64)-C(65)-C(66)	120.2(2)	C(4L)-C(2L)-C(3L)	133.0(9)
C(65)-C(66)-C(61)	121.2(2)	C(5L)-C(2L)-C(3L)	39.3(6)
C(68) - C(67) - C(72)	117 3(2)	C(6I) - C(2I) - C(3I)	133 5(0)
C(60) - C(07) - C(72)	121 2(2)	C(0L) - C(2L) - C(3L)	100 2(7)
C(00) - C(07) - S1(0)	$1 \ge 1 \ge 2 \ge $	C(1L)-C(2L)-C(3L)	100.3(7)
C(72)-C(67)-S1(6)	121.4(2)	C(4L)-C(2L)-C(10L)	147.5(9)
C(5L)-C(2L)-C(10L)	115.0(9)	C(7L)-C(9L)-C(8L)	65(2)
---------------------	----------	--------------------	----------
C(6L)-C(2L)-C(10L)	57.7(7)	C(11L)-C(9L)-C(8L)	139(2)
C(1L)-C(2L)-C(10L)	27.0(5)	C(10L)-C(9L)-C(8L)	35.7(9)
C(3L)-C(2L)-C(10L)	75.8(6)	C(7L)-C(9L)-C(3L)	148(2)
C(11L)-C(3L)-C(5L)	167(2)	C(11L)-C(9L)-C(3L)	31.6(8)
C(11L)-C(3L)-C(2L)	142(1)	C(10L)-C(9L)-C(3L)	100(1)
C(5L)-C(3L)-C(2L)	49.4(8)	C(8L)-C(9L)-C(3L)	115(1)
C(11L)-C(3L)-C(9L)	45(1)	C(8L)-C(10L)-C(1L)	91(2)
C(5L)-C(3L)-C(9L)	147(1)	C(8L)-C(10L)-C(9L)	86(2)
C(2L)-C(3L)-C(9L)	97.9(9)	C(1L)-C(10L)-C(9L)	124(2)
C(2L)-C(4L)-C(5L)	45.2(6)	C(8L)-C(10L)-C(7L)	57(2)
C(2L)-C(4L)-C(6L)	48.2(7)	C(1L)-C(10L)-C(7L)	134(1)
C(5L)-C(4L)-C(6L)	93.4(7)	C(9L)-C(10L)-C(7L)	35.1(9)
C(3L)-C(5L)-C(2L)	91(1)	C(8L)-C(10L)-C(6L)	109(2)
C(3L)-C(5L)-C(4L)	131(1)	C(1L)-C(10L)-C(6L)	18.6(8)
C(2L)-C(5L)-C(4L)	40.2(6)	C(9L)-C(10L)-C(6L)	122(1)
C(3L)-C(5L)-C(11L)	6.3(8)	C(7L)-C(10L)-C(6L)	145(1)
C(2L)-C(5L)-C(11L)	96.9(9)	C(8L)-C(10L)-C(2L)	114(2)
C(4L)-C(5L)-C(11L)	136.5(8)	C(1L)-C(10L)-C(2L)	45.3(9)
C(9L)-C(7L)-C(8L)	77(2)	C(9L)-C(10L)-C(2L)	85(1)
C(9L)-C(7L)-C(10L)	50()	C(7L)-C(10L)-C(2L)	114.1(9)
C(8L)-C(7L)-C(10L)	32.0(8)	C(6L)-C(10L)-C(2L)	37.2(5)
C(9L)-C(7L)-C(11L)	29(1)	C(1L)-C(6L)-C(2L)	91(1)
C(8L)-C(7L)-C(11L)	97(1)	C(1L)-C(6L)-C(4L)	130(1)
C(10L)-C(7L)-C(11L)	76.8(9)	C(2L)-C(6L)-C(4L)	39.7(6)
C(10L)-C(8L)-C(1L)	47(1)	C(1L)-C(6L)-C(10L)	20.9(9)
C(10L)-C(8L)-C(7L)	91(2)	C(2L)-C(6L)-C(10L)	85.2(9)
C(1L)-C(8L)-C(7L)	127(2)	C(4L)-C(6L)-C(10L)	123.8(9)
C(10L)-C(8L)-C(9L)	58(1)	C(3L)-C(11L)-C(9L)	104(2)
C(1L)-C(8L)-C(9L)	89(1)	C(3L)-C(11L)-C(5L)	7.2(9)
C(7L)-C(8L)-C(9L)	38.3(8)	C(9L)-C(11L)-C(5L)	110(1)
C(7L)-C(9L)-C(11L)	126(2)	C(3L)-C(11L)-C(7L)	123(2)
C(7L)-C(9L)-C(10L)	95(2)	C(9L)-C(11L)-C(7L)	25(1)
C(11L)-C(9L)-C(10L)	132(2)	C(5L)-C(11L)-C(7L)	128.1(9)

Tabelle 24: Anisotropische Auslenkungsaparameter (Å $^2x 10^3$) für sh2850. Der anisotropische Exponentfaktor des Auslenkungsparameter lautet:
 $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2 h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Al(1)	18(1)	19(1)	14(1)	-4(1)	1(1)	-4(1)
Al(2)	17(1)	14(1)	14(1)	-3(1)	-2(1)	-1(1)
Al(3)	16(1)	15(1)	16(1)	-2(1)	-3(1)	-3(1)
Al(4)	16(1)	19(1)	14(1)	-1(1)	-1(1)	-4(1)
Si(1)	20(1)	15(1)	19(1)	-3(1)	1(1)	-4(1)
Si(2)	18(1)	15(1)	16(1)	-4(1)	1(1)	-2(1)
Si(3)	17(1)	16(1)	18(1)	-2(1)	-5(1)	-2(1)
Si(4)	18(1)	14(1)	20(1)	-4(1)	-4(1)	-1(1)
Si(5)	19(1)	21(1)	21(1)	-4(1)	1(1)	-8(1)
Si(6)	15(1)	22(1)	28(1)	1(1)	-3(1)	-3(1)
Si(7)	24(1)	27(1)	14(1)	-2(1)	-2(1)	-9(1)
Si(8)	19(1)	28(1)	16(1)	-5(1)	3(1)	-7(1)
O(1)	17(1)	21(1)	16(1)	-3(1)	0(1)	0(1)
O(2)	18(1)	20(1)	20(1)	-6(1)	2(1)	-5(1)
O(3)	19(1)	19(1)	16(1)	-3(1)	0(1)	-2(1)
O(4)	19(1)	20(1)	18(1)	-5(1)	-1(1)	-2(1)
O(5)	30(1)	20(1)	20(1)	-6(1)	3(1)	-8(1)
O(6)	24(1)	18(1)	20(1)	-3(1)	3(1)	-5(1)
O(7)	21(1)	17(1)	21(1)	-6(1)	-1(1)	-1(1)
O(8)	27(1)	19(1)	21(1)	-2(1)	-7(1)	2(1)
O(9)	21(1)	20(1)	26(1)	-7(1)	-5(1)	-4(1)
O(10)	21(1)	18(1)	23(1)	-2(1)	-7(1)	0(1)
O(11)	19(1)	24(1)	26(1)	-3(1)	-3(1)	-8(1)
O(12)	20(1)	30(1)	35(1)	7(1)	-5(1)	-8(1)
O(13)	17(1)	24(1)	31(1)	-2(1)	0(1)	-5(1)
O(14)	29(1)	28(1)	14(1)	-2(1)	-1(1)	-10(1)

A	nhar	ıg
		_

O(15)	$\partial c(1)$	41(1)	10(1)	4(1)	1(1)	14(1)
0(15)	20(1)	41(1)	19(1)	-4(1)	-1(1)	-14(1)
O(16)	24(1)	32(1)	16(1)	-6(1)	3(1)	-5(1)
C(1)	25(1)	19(1)	28(1)	-1(1)	1(1)	-2(1)
C(2)	95(2)	30(1)	33(1)	4(1)	13(1)	14(1)
C(3)	165(4)	42(2)	40(2)	16(1)	12(2)	24(2)
C(4)	122(3)	28(1)	60(2)	8(1)	-12(2)	21(2)
C(5)	68(2)	26(1)	59(2)	-8(1)	-5(1)	14(1)
C(5)	42(1)	26(1)	39(2) 38(1)	7(1)	3(1)	2(1)
C(0)	42(1)	20(1)	36(1)	-7(1)	J(1)	2(1)
C(7)	25(1)	25(1)	25(1)	-2(1)	0(1)	-9(1)
C(8)	31(1)	46(1)	53(1)	-16(1)	-11(1)	4(1)
C(9)	31(1)	66(2)	69(2)	-9(1)	-16(1)	6(1)
C(10)	36(1)	80(2)	45(1)	4(1)	-17(1)	-23(1)
C(11)	50(2)	81(2)	68(2)	-30(2)	-16(1)	-26(1)
C(12)	36(1)	52(1)	64(2)	-26(1)	-9(1)	-12(1)
$\dot{C(13)}$	22(1)	23(1)	18(1)	-5(1)	0(1)	-4(1)
C(14)	58(1)	32(1)	32(1)	-1(1)	-17(1)	-20(1)
C(15)	74(2)	49(1)	39(1)	-2(1)	-25(1)	-35(1)
C(15)	$\frac{74(2)}{28(1)}$	+5(1) 55(1)	20(1)	2(1)	12(1)	11(1)
C(10)	30(1)	33(1)	29(1)	-0(1)	-12(1)	-11(1)
C(17)	41(1)	34(1)	25(1)	-6(1)	-9(1)	3(1)
C(18)	34(1)	24(1)	24(1)	-7(1)	-4(1)	-3(1)
C(19)	20(1)	18(1)	19(1)	-5(1)	1(1)	-3(1)
C(20)	31(1)	19(1)	55(1)	-2(1)	18(1)	-4(1)
C(21)	34(1)	20(1)	65(2)	0(1)	21(1)	2(1)
C(22)	22(1)	30(1)	38(1)	-5(1)	9(1)	-3(1)
C(23)	35(1)	28(1)	74(2)	-12(1)	26(1)	-14(1)
C(24)	34(1)	20(1)	64(2)	-9(1)	19(1)	-8(1)
C(25)	10(1)	17(1)	21(1)	2(1)	3(1)	1(1)
C(25)	15(1)	$\frac{1}{(1)}$	21(1) 20(1)	-2(1)	-3(1)	-1(1)
C(20)	23(1)	29(1)	50(1) 20(1)	-11(1)	2(1)	-8(1)
C(27)	27(1)	30(1)	38(1)	-9(1)	10(1)	-9(1)
C(28)	31(1)	27(1)	25(1)	2(1)	6(1)	1(1)
C(29)	33(1)	40(1)	21(1)	0(1)	-4(1)	-4(1)
C(30)	26(1)	32(1)	23(1)	1(1)	-5(1)	-9(1)
C(31)	22(1)	21(1)	19(1)	-2(1)	-4(1)	-7(1)
C(32)	23(1)	24(1)	34(1)	-4(1)	-6(1)	-6(1)
C(33)	22(1)	39(1)	43(1)	-4(1)	-4(1)	-7(1)
C(34)	28(1)	51(1)	40(1)	-4(1)	-2(1)	-23(1)
C(35)	$\frac{1}{44(1)}$	37(1)	30(1)	-8(1)	-3(1)	-28(1)
C(36)	34(1)	25(1)	28(1)	7(1)	2(1)	11(1)
C(30)	3+(1)	$\frac{23(1)}{19(1)}$	20(1)	-7(1)	-2(1)	-11(1)
C(37)	23(1)	10(1)	23(1)	-3(1)	-4(1)	-3(1)
C(38)	28(1)	27(1)	30(1)	2(1)	-8(1)	-6(1)
C(39)	43(1)	30(1)	31(1)	7(1)	-8(1)	-9(1)
C(40)	46(1)	35(1)	43(1)	8(1)	-2(1)	-20(1)
C(41)	38(1)	50(1)	62(2)	13(1)	-14(1)	-27(1)
C(42)	33(1)	34(1)	42(1)	8(1)	-15(1)	-16(1)
C(43)	27(1)	18(1)	24(1)	-4(1)	-2(1)	0(1)
C(44)	26(1)	40(1)	29(1)	-9(1)	2(1)	-2(1)
C(45)	29(1)	55(1)	47(1)	-12(1)	8(1)	3(1)
C(46)	52(2)	48(1)	60(2)	-23(1)	19(1)	6(1)
C(47)	68(2)	52(2)	73(2)	-44(1)	15(2)	-8(1)
C(48)	41(1)	$\frac{32(2)}{45(1)}$	50(2)	32(1)	$\frac{13(2)}{4(1)}$	8(1)
C(40)	41(1) 16(1)	43(1) 22(1)	$\frac{39(2)}{26(1)}$	-52(1)	4(1)	-3(1)
C(49)	10(1)	23(1)	20(1)	-3(1)	$\Gamma(1)$	-7(1)
C(50)	27(1)	29(1)	52(1)	-5(1)	-0(1)	-9(1)
C(51)	35(1)	37(1)	47(1)	-16(1)	-6(1)	-16(1)
C(52)	33(1)	26(1)	53(1)	-11(1)	4(1)	-14(1)
C(53)	33(1)	29(1)	40(1)	2(1)	2(1)	-14(1)
C(54)	28(1)	30(1)	28(1)	-2(1)	-1(1)	-12(1)
C(55)	46(1)	38(1)	36(1)	-18(1)	17(1)	-28(1)
C(56)	85(2)	58(2)	27(1)	-13(1)	6(1)	-42(1)
C(57)	145(3)	73(2)	35(1)	-19(1)	12(2)	-67(2)
C(58)	120(3)	83(2)	56(2)	-36(2)	33(2)	-66(2)
C(59)	68(2)	74(2)	117(3)	-64(2)	50(2)	-48(2)
C(5)	49(1)	55(1)	85(2)	46(1)	31(1)	32(1)
C(61)	$\frac{1}{2}(1)$	20(1)	22(1)	-40(1)	51(1) 6(1)	-32(1)
C(01)	24(1)	29(1)	55(1) 26(1)	-2(1)	-0(1)	-3(1)
C(62)	29(1)	42(1)	30(1)	1(1)	-8(1)	-4(1)
C(63)	44(1)	65(2)	32(1)	-1(1)	-12(1)	-16(1)
C(64)	76(2)	59(2)	35(1)	-15(1)	-7(1)	-25(1)
C(65)	109(3)	42(1)	52(2)	-19(1)	-20(2)	10(2)
C(66)	75(2)	36(1)	40(1)	-11(1)	-24(1)	12(1)
C(67)	19(1)	35(1)	31(1)	-5(1)	-3(1)	2(1)
C(68)	34(1)	32(1)	39(1)	-13(1)	-11(1)	6(1)
C(69)	54(2)	42(1)	59(2)	-26(1)	-24(1)	19(1)
C(70)	41(1)	74(2)	74(2)	-41(2)	-19(1)	30(1)
/	· - \ - /	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· • (/	(- /	

|--|

C(71)	20(1)	90(2)	98(3)	-28(2)	-3(1)	10(1)
C(72)	21(1)	54(1)	80(2)	-9(1)	-1(1)	-2(1)
C(73)	30(1)	31(1)	16(1)	-2(1)	-3(1)	-9(1)
C(74)	34(1)	57(1)	26(1)	-13(1)	2(1)	-14(1)
C(75)	46(1)	67(2)	27(1)	-21(1)	4(1)	-11(1)
C(76)	63(2)	50(1)	25(1)	-15(1)	-6(1)	-15(1)
C(77)	60(2)	68(2)	34(1)	-18(1)	-1(1)	-38(1)
C(78)	45(1)	61(1)	25(1)	-14(1)	4(1)	-29(1)
C(79)	35(1)	29(1)	20(1)	-2(1)	-7(1)	-7(1)
C(80)	51(2)	32(1)	86(2)	2(1)	-10(1)	-12(1)
C(81)	84(2)	27(1)	123(3)	-4(2)	-16(2)	-16(1)
C(82)	70(2)	38(1)	70(2)	-15(1)	-20(2)	9(1)
C(83)	42(1)	52(1)	54(2)	-18(1)	-9(1)	6(1)
C(84)	36(1)	38(1)	44(1)	-10(1)	-5(1)	-6(1)
C(85)	23(1)	32(1)	28(1)	-5(1)	-1(1)	-9(1)
C(86)	40(1)	37(1)	36(1)	-10(1)	-4(1)	-11(1)
C(87)	56(2)	43(1)	61(2)	-19(1)	-8(1)	-18(1)
C(88)	66(2)	41(1)	70(2)	0(1)	-9(1)	-29(1)
C(89)	78(2)	59(2)	48(1)	10(1)	-7(1)	-44(2)
C(90)	58(1)	51(1)	31(1)	-1(1)	-2(1)	-31(1)
C(91)	29(1)	34(1)	20(1)	-4(1)	8(1)	-4(1)
C(92)	24(1)	43(1)	118(3)	-6(2)	6(1)	-8(1)
C(93)	28(1)	69(2)	144(4)	15(2)	22(2)	6(1)
C(94)	84(3)	85(2)	54(2)	0(2)	18(2)	49(2)
C(95)	151(4)	78(2)	60(2)	-48(2)	-40(2)	56(2)
C(96)	86(2)	59(2)	59(2)	-36(1)	-38(2)	22(2)
N(1)	26(1)	38(1)	27(1)	2(1)	2(1)	3(1)
C(97)	32(1)	76(2)	29(1)	-12(1)	0(1)	1(1)
C(98)	28(1)	99(2)	36(1)	-6(1)	-2(1)	10(1)
N(2)	38(1)	62(1)	43(1)	3(1)	8(1)	17(1)
C(99)	48(1)	41(1)	55(2)	-10(1)	10(1)	3(1)
C(100)	34(1)	40(1)	49(1)	-10(1)	3(1)	-1(1)
N(3)	51(1)	31(1)	33(1)	-10(1)	3(1)	-4(1)
C(101)	80(2)	48(1)	60(2)	-24(1)	-15(2)	13(1)
C(102)	131(4)	87(3)	102(3)	-62(3)	-29(3)	52(3)
N(4)	152(4)	106(3)	80(2)	-63(2)	4(2)	29(2)
C(103)	139(4)	76(2)	40(2)	-30(2)	9(2)	-14(2)
C(104)	85(2)	38(1)	35(1)	-12(1)	0(1)	-9(1)
N(5)	29(1)	43(1)	46(1)	-25(1)	-11(1)	3(1)
C(105)	43(1)	66(2)	44(1)	-25(1)	-4(1)	-2(1)
C(106)	44(2)	97(3)	71(2)	-56(2)	4(1)	0(2)
N(6)	47(1)	80(2)	112(2)	-62(2)	-14(2)	20(1)
C(107)	65(2)	44(2)	124(3)	-32(2)	-15(2)	12(1)
C(108)	43(1)	42(1)	81(2)	-24(1)	-7(1)	0(1)

Tabelle 25: Koordinaten des Wasserstoffs ($x \ 10^4$) und isotrope Auslenkungsparameter (Å $^2 x \ 10^3$) für sh2850.

	X	у	Z	U(eq)
	6090(20)	1280(20)	7208(11)	55(8)
H(2)	8590(20)	1640(20)	6659(11)	52(8)
H(3)	7410(20)	2340(20)	8006(11)	59(8)
H(4)	8560(30)	-380(30)	7670(14)	85(11)
H(2)	7156	-2796	8148	74
H(3)	7657	-4351	8571	118
H(4)	8491	-5505	8122	97
H(5)	8852	-5107	7254	67
H(6)	8313	-3567	6822	45
H(8)	5263	-515	7144	53
H(9)	3847	-343	6798	70
H(10)	3717	-1371	6300	64
H(11)	5016	-2546	6120	73
H(12)	6427	-2744	6470	57
H(14)	7220	-1760	5710	47
H(15)	6238	-1440	5049	59
H(16)	5793	69	4567	48
H(17)	6330	1270	4746	42
H(18)	7291	964	5421	33

H(20)	9493	-2519	6184	46
H(21)	11029	-3031	5859	54
H(22)	11857	-1966	5422	38
H(23)	11152	-366	5332	56
H(24)	9627	159	5669	49
H(26)	7409	3835	5444	33
H(27)	7963	4350	4611	38
H(28)	7261	4183	3921	38
H(20)	5982	3530	4061	40
H(20)	5395	3053	4001	-10
H(30) H(22)	4000	3033 4176	4095	33
$\Pi(32)$	2486	4170	5965	32
$\Pi(33)$ $\Pi(24)$	2400	3999	6055	42
$\Pi(34)$	2230	2343	5000	40
П(33)	5020	1203	5909	44
H(30)	5039	1431	5905	34
H(38)	5794	5674	5705	33
H(39)	6485	6682	5097	44
H(40)	8020	6724	5169	50
H(41)	8854	5746	5848	60
H(42)	8170	4718	6456	44
H(44)	4231	4593	6777	40
H(45)	3020	5607	7169	56
H(46)	3357	6666	7583	69
H(47)	4900	6706	7610	75
H(48)	6121	5677	7227	55
H(50)	11103	3439	7589	34
H(51)	11524	4853	7481	45
H(52)	11223	5974	6734	43
H(53)	10535	5659	6076	41
H(54)	10148	4235	6172	34
H(56)	9247	3079	6021	62
H(57)	9602	2605	5236	92
H(58)	10891	1421	5124	94
H(59)	11838	617	5786	94
H(60)	11476	1049	6611	69
H(62)	11183	584	8994	45
H(63)	10997	1313	9688	56
H(64)	10052	2821	9655	65
H(65)	9244	3595	8927	85
H(66)	9438	2879	8223	64
H(68)	10828	-951	8112	44
H(69)	12148	-2221	8123	64
H(70)	13633	-1981	8035	80
H(71)	13816	-473	7911	88
H(72)	12513	809	7880	65
H(74)	6503	310	10127	45
H(75)	6534	1065	10797	
H(75) H(76)	7777	1703	10727	53
H(77)	9024	1703	10323	58
$\Pi(77)$	9024	1341	10214	J0 19
$\Pi(70)$	9000	1055	9344	40
H(80)	8503	-1933	9393	09
$\Pi(01)$	10104	-3442	9304	93
$\Pi(02)$	10104	-3020	91/3	/4
$\Pi(03)$	0721	-2323	9008	01
H(84)	9721	-838	9013	4/
H(86)	5525	-1407	8229	44
H(8/)	5238	-2890	8440	60
H(88)	5113	-3629	9295	08
H(89)	5275	-28/2	9936	/1
H(90)	5555	-1388	9726	53
H(92)	3907	401	8603	77
H(93)	2560	1571	8730	110
H(94)	2626	2749	9133	111
H(95)	4042	2838	9349	127
H(96)	5416	1657	9229	83
H(97)	4141	1612	7006	58
H(98)	2759	2610	7254	73
H(99)	4113	3522	8107	63
H(100)	5509	2542	7852	52
H(101)	6056	4094	7981	78
H(102)	5281	4946	8589	137
H(103)	6709	3121	9647	103

H(104)	7480	2233	9047	65
H(105)	10161	-502	6932	61
H(106)	11447	-1720	6792	82
H(107)	10381	-3470	7827	96
H(108)	9105	-2265	7982	66

2 Daten zur Molekül- und Kristallstruktur von (Ph₂SiO)₈[AIO(OH)]₄ • 2 CH₃COOCH₂CH₃ <u>3</u>

Tabelle 26: Kristalldaten und Strukturverfeinerungen für (Ph₂SiO)₈[AlO(OH)]₄ • 2 CH₃COOCH₂CH₃ (sh2802a)

Identifizierungscode	sh2802a	
Summenformel	C108 H107 Al4 O22 Si8	
Molmasse [g/mol]	2089.58	
Messtemperatur [K]	122(2)	
Wellenlänge [Å]	0.71073	
Kristallsystem	monoklin	
Raumgruppe	P2(1)/n	
Gitterkonstanten	a = 27.1062(9) Å	$\alpha = 90^{\circ}$
	b = 15.0407(5) Å	$\beta = 106.771(2)^{\circ}$
	c = 28.0107(10) Å	$\gamma = 90^{\circ}$
Zellvolumen [Å ³]	10934 1(6)	
Anzahl der Formeleinheiten Z	4	
Dichte (berechnet)[g/cm ³]	1.269	
Absorptionskoeffizient [mm ⁻¹]	0.198	
F(000)	4380	
Kristallabmessungen [mm ³]	0.74 x 0.69 x 0.29	
Messbereich θ [°]	1.24 - 29.86	
hkl - Indexbereich	-37<=h<=36, -17<=k<=20, -38<=l<=38	3
Gemessene Reflexe	117874	
Symmetrieunabhängige Reflexe	30784 [R(int) = 0.0429]	
Vollständigkeit des Datensatzes (bis $\theta = 29.86^{\circ}$)	97.8 %	
Absorptionskorrektur	None	
Max. und Min. Transmission	0.9440 und 0.8670	
Strukturverfeinerungsmethode	Full-matrix least-squares on F ²	
Daten / Einschränkungen / Parameter	30784 / 0 / 1348	
Güte des Fit auf F ²	1.075	
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0583, $wR2 = 0.1342$	
R-Werte (alle Daten)	R1 = 0.1183, $wR2 = 0.1794$	
Restelektronendichte (min./max.) [e/Å ⁻³]	1.326 / -1.464	

Tabelle 27: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å 2 x 10³) für sh2802a. U(eq) wird berechnet als ein Drittel
der Spur des orthogonalisierten U^{ij} Tensors.

	X	у	Z	U(eq)
Al(1)	6747(1)	3189(1)	392(1)	17(1)
Al(2)	7978(1)	2916(1)	807(1)	18(1)
Al(3)	8062(1)	3234(1)	-337(1)	20(1)
Al(4)	6826(1)	3129(1)	-761(1)	18(1)
Si(1)	6856(1)	4775(1)	1221(1)	20(1)
Si(2)	8032(1)	4375(1)	1685(1)	20(1)
Si(3)	8793(1)	1278(1)	924(1)	31(1)
Si(4)	9100(1)	2148(1)	66(1)	43(1)
Si(5)	8039(1)	4821(1)	-1123(1)	25(1)
Si(6)	6868(1)	4458(1)	-1642(1)	24(1)
Si(7)	6054(1)	1415(1)	-899(1)	20(1)
Si(8)	5666(1)	2348(1)	-139(1)	20(1)

O(1)	7322(1)	2544(1)	641(1)	20(1)
O(2)	2007(1)	2525(1)	266(1)	20(1)
O(2)	8007(1)	3535(1)	266(1)	20(1)
O(3)	7465(1)	2692(1)	-639(1)	21(1)
O(4)	6833(1)	3636(1)	-175(1)	10(1)
0(4)	0055(1)	3030(1)	-175(1)	1)(1)
O(5)	6753(1)	4043(1)	788(1)	24(1)
O(6)	7459(1)	4805(1)	1547(1)	25(1)
O(7)	9097(1)	2667(1)	1276(1)	24(1)
O(7)	8087(1)	3007(1)	1270(1)	24(1)
O(8)	8354(1)	2003(1)	882(1)	31(1)
O(9)	9059(1)	1408(2)	477(1)	40(1)
0()))05)(1)	1400(2)	4//(1)	40(1)
O(10)	8548(1)	2490(1)	-262(1)	24(1)
O (11)	8094(1)	4207(1)	-642(1)	27(1)
0(12)	7452(1)	1207(1)	1401(1)	24(1)
O(12)	7432(1)	4641(2)	-1491(1)	54(1)
O(13)	6750(1)	3984(1)	-1176(1)	23(1)
0(14)	6400(1)	2272(1)	884(1)	23(1)
0(14)	0409(1)	2272(1)	-884(1)	23(1)
O(15)	56/8(1)	1578(1)	-546(1)	24(1)
O(16)	6226(1)	2511(1)	250(1)	22(1)
C(1)	6470(1)	4400(2)	1640(1)	24(1)
C(1)	6470(1)	4499(2)	1049(1)	24(1)
C(2)	6253(1)	3656(2)	1651(1)	35(1)
C(3)	5077(1)	3447(3)	1083(1)	47(1)
C(3)	3977(1)	3447(3)	1985(1)	4/(1)
C(4)	5918(1)	4076(3)	2319(1)	46(1)
C(5)	6123(1)	4914(3)	2326(1)	40(1)
	(205(1)	5125(2)	1002(1)	21(1)
C(6)	6395(1)	5125(2)	1993(1)	51(1)
C(7)	6684(1)	5906(2)	950(1)	22(1)
C	6167(1)	6131(2)	727(1)	26(1)
C(8)	0107(1)	0131(2)	727(1)	20(1)
C(9)	6031(1)	6954(2)	501(1)	29(1)
C(10)	6405(1)	7574(2)	493(1)	31(1)
C(11)	(010(1)	7371(2)	710(1)	20(1)
$C(\Pi)$	6918(1)	/36/(2)	/12(1)	30(1)
C(12)	7056(1)	6541(2)	938(1)	25(1)
C(13)	8163(1)	3805(2)	2200(1)	28(1)
C(13)	8103(1)	3803(2)	2299(1)	20(1)
C(14)	7784(1)	3592(3)	2518(1)	49(1)
C(15)	7894(2)	3079(3)	2952(2)	63(1)
C(16)	0200(2)	2770(2)	2177(1)	50(1)
C(10)	0300(2)	2779(3)	5177(1)	50(1)
C(17)	8772(1)	3012(3)	2978(1)	47(1)
CUN	8660(1)	3510(2)	2543(1)	36(1)
C(18)	8000(1)	3319(2)	2545(1)	50(1)
C(19)	8493(1)	5300(2)	1715(1)	27(1)
C(20)	8897(1)	5233(2)	1507(1)	38(1)
C(21)	00229(1)	5020(2)	152((2))	50(1)
C(21)	9238(1)	5929(3)	1556(2)	59(1)
C(22)	9182(2)	6706(3)	1764(2)	71(2)
C(23)	8780(2)	6797(3)	1969(2)	71(1)
C(23)	0709(2)	(102(2))	1000(2)	/1(1)
C(24)	8449(2)	6102(2)	1948(1)	48(1)
C(25)	8539(1)	116(2)	888(1)	41(1)
C(26)	9711(2)	572(2)	651(1)	52(1)
C(26)	8/11(2)	-573(2)	051(1)	55(1)
C(27)	8567(2)	-1455(3)	698(2)	64(1)
CON	8258(2)	1648(3)	081(2)	50(1)
C(28)	8238(2)	-1048(3)	981(2)	39(1)
C(29)	8078(2)	-982(3)	1215(2)	67(1)
C(30)	8217(2)	-105(3)	1165(2)	62(1)
C(21)	0280(1)	1248(2)	1545(1)	29(1)
C(31)	9289(1)	1348(2)	1545(1)	28(1)
C(32)	9646(1)	661(2)	1689(1)	40(1)
C(33)	10014(1)	663(3)	2153(1)	47(1)
C(33)	10014(1)	003(3)	2133(1)	4/(1)
C(34)	10029(1)	1349(3)	2482(1)	44(1)
C(35)	9672(1)	2018(3)	2356(1)	49(1)
C(36)	0205(1)	2016(2)	1800(1)	44(1)
C(30)	9303(1)	2010(2)	1890(1)	44(1)
C(37)	9481(1)	3100(4)	405(1)	66(2)
C(38)	9408(2)	3960(4)	216(2)	89(2)
	0.00(2)		210(2)	101(2)
C(39)	9693(2)	4675(5)	468(2)	104(2)
C(40)	10068(2)	4525(6)	918(2)	114(3)
C(41)	10146(2)	2700(6)	1112(2)	100(2)
C(+1)	10140(2)	5700(0)	1115(2)	109(3)
C(42)	9863(1)	2984(5)	864(1)	84(2)
C(43A)	9304(2)	1253(5)	-360(3)	32(1)
	0057(2)	1200(0)	550(5)	52(1)
C(44A)	9057(4)	1265(6)	-876(3)	46(2)
C(45A)	9171(4)	635(7)	-1196(3)	67(3)
C(46A)	0527(4)	16(7)	004(4)	72(2)
C(40A)	9327(4)	-10(/)	-994(4)	13(3)
C(47A)	9779(4)	-39(7)	-492(4)	82(3)
C(48A)	9654(3)	591(7)	-186(3)	65(3)
	2004(0)	JJ1(7)	-100(3)	05(5)
C(43B)	9481(2)	1895(4)	-369(2)	32(1)
C(44B)	9343(4)	1159(6)	-671(4)	57(2)
$C(45\mathbf{P})$	0607(5)	024(6)	1011(4)	72(2)
C(43D)	9007(5)	924(0)	-1011(4)	13(3)
C(46B)	10005(4)	1409(6)	-1049(4)	64(3)
C(47B)	10144(3)	2164(6)	-772(3)	52(2)
	10144(3)	2104(0)	-112(3)	52(2)
C(48B)	9881(3)	2409(5)	-436(3)	43(2)
C(49)	8476(1)	4402(2)	-1476(1)	31(1)
C(50)	8520(2)	1867(2)	1991(1)	52(1)
C(30)	0329(2)	4007(3)	-1001(1)	32(1)

C(51)	8865(2)	4591(3)	-2143(2)	67(1)
C(51)	0157(2)	2954(2)	1002(2)	(1)
C(52)	9157(2)	3854(3)	-1992(2)	64(1)
C(53)	9117(2)	3386(3)	-1597(2)	68(1)
C(54)	8780(2)	3661(3)	-1338(2)	54(1)
C(55)	8218(1)	5997(2)	-937(1)	29(1)
C(55)	7862(1)	6606(2)	1028(1)	25(1)
C(36)	/802(1)	0090(2)	-1028(1)	55(1)
C(57)	8015(2)	7565(2)	-889(1)	45(1)
C(58)	8520(2)	7759(2)	-662(2)	52(1)
C(59)	8880(1)	7085(3)	-566(2)	52(1)
C(60)	8721(1)	6212(2)	702(1)	40(1)
C(00)	8/31(1)	6213(2)	-705(1)	40(1)
C(61)	6427(1)	5423(2)	-1843(1)	30(1)
C(62)	6562(2)	6169(3)	-2074(2)	55(1)
C(63)	6223(2)	6871(3)	-2239(2)	73(2)
C(62)	5720(2)	6840(2)	2176(2)	62(1)
	3739(2)	0840(3)	-21/0(2)	05(1)
C(65)	5597(1)	6119(2)	-1949(1)	45(1)
C(66)	5940(1)	5419(2)	-1781(1)	31(1)
C(67)	6775(1)	3665(2)	-2172(1)	34(1)
C(70)	6508(2)	2440(3)	2060(2)	60(1)
C(70)	0398(2)	2440(3)	-2909(2)	54(1)
C(68)	6367(2)	3739(3)	-2606(1)	54(1)
C(69)	6283(2)	3135(3)	-2997(2)	60(1)
C(71)	6995(3)	2315(4)	-2540(2)	99(2)
C(72)	7081(2)	2028(3)	2144(2)	78(2)
C(72)	(1001(2))	2)20(3)	-21++(2)	70(2)
C(73)	6454(1)	415(2)	-64/(1)	24(1)
C(74)	6545(1)	-243(2)	-964(1)	31(1)
C(75)	6839(1)	-991(2)	-776(1)	41(1)
C(76)	7051(1)	-1091(2)	-266(1)	43(1)
C(77)	6060(1)	451(2)	55(1)	41(1)
C(77)	0909(1)	-431(2)	55(1)	41(1)
C(78)	66/3(1)	295(2)	-132(1)	32(1)
C(79)	5659(1)	1190(2)	-1551(1)	25(1)
C(80)	5240(1)	614(2)	-1659(1)	35(1)
C(81)	4971(1)	394(2)	-2152(1)	45(1)
C(81)	49/1(1)	394(2)	-2132(1)	43(1)
C(82)	5115(1)	/54(5)	-2540(1)	55(1)
C(83)	5522(2)	1336(3)	-2442(1)	59(1)
C(84)	5795(1)	1545(3)	-1954(1)	40(1)
C(85)	5231(1)	1958(2)	218(1)	22(1)
C(86)	4018(1)	1210(2)	210(1) 92(1)	20(1)
C(80)	4918(1)	1210(2)	85(1)	50(1)
C(87)	4596(1)	944(2)	360(1)	40(1)
C(88)	4580(1)	1425(2)	774(1)	41(1)
C(89)	4884(1)	2173(2)	916(1)	37(1)
C(90)	5206(1)	2435(2)	639(1)	29(1)
C(90)	5200(1)	2435(2)	405(1)	2)(1)
C(91)	5421(1)	3399(2)	-485(1)	23(1)
C(92)	5128(1)	3381(2)	-991(1)	31(1)
C(93)	4932(1)	4160(2)	-1245(1)	40(1)
C(94)	5022(1)	4971(2)	-1004(1)	37(1)
C(05)	5022(1)	5010(2)	50((1)	2(1)
C(95)	3310(1)	3010(2)	-306(1)	50(1)
C(96)	5507(1)	4232(2)	-251(1)	30(1)
O(17)	7463(1)	5026(1)	119(1)	25(1)
O(18)	7213(1)	6357(1)	-222(1)	26(1)
C(07)	7550(1)	5909(2)	49(1)	24(1)
C(97)	7559(1)	5808(2)	40(1)	24(1)
C(99)	6692(1)	6009(2)	-428(1)	2/(1)
C(98)	8077(1)	6205(2)	265(1)	34(1)
C(100)	6369(1)	6745(2)	-724(1)	38(1)
O(19)	7107(1)	1183(2)	1142(1)	70(1)
0(1))	(10)(1)	766(4)	1705(2)	152(2)
0(20)	6/3/(2)	/66(4)	1/05(2)	153(2)
C(101)	7115(2)	1098(3)	1577(2)	67(1)
C(102)	7534(3)	1268(7)	2005(2)	166(4)
C(1A3)	6181(5)	873(10)	1339(5)	117(4)
C(104)	6020(5)	165(7)	1160(4)	222(7)
	0020(3)	103(7)	1247(10)	222(1)
C(1B3)	6468(8)	121(19)	1347(10)	144(10)
O(21)	7540(1)	1293(2)	-1170(1)	43(1)
Q(22)	7762(2)	-107(2)	-1252(1)	89(1)
C(105)	7735(2)	601(2)	-981(1)	$\Lambda \Lambda (1)$
	7040(1)	427(2)	-20(1)	++(1)
C(106)	/949(1)	437(3)	-439(1)	48(1)
C(107)	7659(7)	62(6)	-1810(3)	295(12)
C(108)	7407(3)	-652(12)	-1968(4)	309(12)
· /	× /	` '	× /	` '

$A_1(1) = O(5)$	1 694(2)	C(20)- $C(21)$	1 383(5)
$A_1(1) O(16)$	1.695(2)	C(21) C(22)	1.363(3) 1.361(7)
$A_1(1) = O(10)$	1.075(2)	C(21)-C(22)	1.301(7)
AI(1)-O(1)	1./9/(2)	C(22) - C(23)	1.356(7)
AI(1)-O(4)	1.800(2)	C(23)-C(24)	1.383(6)
Al(2)-O(8)	1.686(2)	C(25)-C(30)	1.366(6)
Al(2)-O(7)	1.694(2)	C(25)-C(26)	1.382(5)
Al(2)-O(1)	1.792(2)	C(26)-C(27)	1.400(6)
Al(2)-O(2)	1.799(2)	C(27)-C(28)	1.342(7)
Al(3)-O(10)	1.695(2)	C(28)-C(29)	1.364(6)
Al(3)-O(11)	1.711(2)	C(29)-C(30)	1.390(6)
A1(3)-O(3)	1 791(2)	C(31)-C(36)	1.386(4)
A1(3) - O(2)	1.796(2)	C(31) - C(32)	1.300(1) 1.304(4)
$A_1(4) O(14)$	1.685(2)	C(31)-C(32)	1.374(4)
A1(4) - O(14)	1.005(2)	C(32) - C(33)	1.392(4)
AI(4)-O(13)	1.705(2)	C(33)-C(34)	1.376(5)
AI(4)-O(3)	1.789(2)	C(34)-C(35)	1.368(5)
Al(4)-O(4)	1.805(2)	C(35)-C(36)	1.392(5)
Si(1)-O(5)	1.602(2)	C(37)-C(38)	1.390(8)
Si(1)-O(6)	1.625(2)	C(37)-C(42)	1.409(5)
Si(1)-C(1)	1.850(3)	C(38)-C(39)	1.392(7)
Si(1)-C(7)	1.867(3)	C(39)-C(40)	1.389(8)
Si(2)-O(7)	1.601(2)	C(40)- $C(41)$	1.35(1)
Si(2)-O(6)	1.623(2)	C(41)-C(42)	1 389(8)
Si(2) - C(19)	1 857(3)	C(43A) - C(48A)	1.36(1)
Si(2) C(13)	1.863(3)	C(43A) C(44A)	1.30(1) 1.41(1)
$S_1(2) - C_1(13)$ $S_2(2) - C_2(13)$	1.504(2)	C(43A) - C(44A)	1.41(1) 1.40(1)
SI(3)-O(8)	1.594(2)	C(44A)- $C(45A)$	1.40(1)
S1(3)-O(9)	1.020(3)	C(45A) - C(46A)	1.38(1)
S1(3)-C(31)	1.870(3)	C(46A)-C(4/A)	1.37(1)
Si(3)-C(25)	1.871(4)	C(47A)-C(48A)	1.38(1)
Si(4)-O(10)	1.598(2)	C(43B)-C(44B)	1.38(1)
Si(4)-O(9)	1.629(3)	C(43B)-C(48B)	1.387(9)
Si(4)-C(43B)	1.850(6)	C(44B)-C(45B)	1.39(1)
Si(4)-C(37)	1.858(5)	C(45B)-C(46B)	1.33(1)
Si(4)-C(43A)	1.981(7)	C(46B)-C(47B)	1.37(1)
Si(5)-O(11)	1.604(2)	C(47B)-C(48B)	1.38(1)
Si(5) - O(12)	1 626(2)	C(49)- $C(54)$	1 373(5)
Si(5) C(12)	1.857(3)	C(49) C(59)	1.375(5)
$S_1(5) - C(49)$ $S_2(5) - C(55)$	1.857(5)	C(50) = C(51)	1.377(3)
SI(5)-C(55)	1.609(3)	C(50)- $C(51)$	1.360(0)
S1(6)-O(13)	1.597(2)	C(51)-C(52)	1.357(7)
S1(6)-O(12)	1.623(2)	C(52)-C(53)	1.342(7)
Si(6)-C(61)	1.861(3)	C(53)-C(54)	1.384(5)
Si(6)-C(67)	1.863(3)	C(55)-C(60)	1.393(4)
Si(7)-O(14)	1.600(2)	C(55)-C(56)	1.401(4)
Si(7)-O(15)	1.633(2)	C(56)-C(57)	1.393(5)
Si(7)-C(79)	1.862(3)	C(57)-C(58)	1.364(6)
Si(7)-C(73)	1.869(3)	C(58)-C(59)	1.379(6)
Si(8)-O(16)	1.609(2)	C(59)-C(60)	1 393(5)
Si(8) - O(15)	1 631(2)	C(61)- $C(66)$	1.392(4)
$S_{1}(0) O(15)$ $S_{2}(0) C(05)$	1.848(3)	C(61) C(62)	1.302(4)
$S_{1}(0) C_{1}(0)$	1.070(3)	C(62) C(63)	1 389(6)
C(1) C(2)	1.072(3) 1.200(4)	C(62) - C(63)	1.300(0)
C(1) - C(2)	1.377(4)	C(03)- $C(04)$	1.3/3(1)
C(1)- $C(6)$	1.403(4)	C(64)-C(65)	1.369(6)
C(2)-C(3)	1.387(5)	C(65)-C(66)	1.394(5)
C(3)-C(4)	1.377(5)	C(67)-C(72)	1.373(5)
C(4)-C(5)	1.376(5)	C(67)-C(68)	1.392(5)
C(5)-C(6)	1.383(4)	C(70)-C(69)	1.338(6)
C(7)-C(12)	1.397(4)	C(70)-C(71)	1.376(7)
C(7)-C(8)	1.401(4)	C(68)-C(69)	1.391(5)
C(8)-C(9)	1.390(4)	C(71)-C(72)	1.410(6)
C(9)-C(10)	1.384(4)	C(73)-C(74)	1.398(4)
C(10)-C(11)	1 385(4)	C(73)-C(78)	1404(4)
C(11)- $C(12)$	1 396(4)	C(74)- $C(75)$	1 302(4)
C(12) C(14)	1.377(4)	C(75) C(75)	1.372(4)
C(12) - C(14)	1.377(4)	C(75) - C(70)	1.307(3)
	1.371(4)	C(70) - C(71)	1.3/9(3)
C(14)-C(15)	1.399(5)	C(77) - C(78)	1.391(4)
C(15)-C(16)	1.380(5)	C(79)-C(84)	1.389(4)
C(16)-C(17)	1.360(5)	C(79)-C(80)	1.391(4)
C(17)-C(18)	1.395(4)	C(80)-C(81)	1.402(4)
C(19)-C(20)	1.384(4)	C(81)-C(82)	1.368(6)
C(19)-C(24)	1.394(5)	C(82)-C(83)	1.372(6)

Tabelle 28: Bindungslängen [Å] und Winkel [°] für sh2802a.

C(83)- $C(84)$	1 389(5)	O(10)-Si(4)-O(9)	112 5(1)
C(85) - C(86)	1.305(0)	O(10)-Si(4)-C(43B)	107.3(2)
C(85) - C(90)	1 309(4)	O(9)-Si(4)-C(43B)	107.3(2) 119.3(2)
C(85) - C(90)	1.395(4)	O(10) Si(4) $C(37)$	119.3(2) 100.7(2)
C(80)-C(87)	1.365(4)	O(10)-SI(4)-C(57)	109.7(2) 107.8(2)
C(87) - C(88)	1.376(3)	O(9)-SI(4)-O(57)	107.8(2)
C(88) - C(89)	1.363(3)	C(45B)-SI(4)-C(57)	99.5(2)
C(89)-C(90)	1.382(4)	O(10)-S1(4)-C(43A)	104.5(2)
C(91)-C(96)	1.402(4)	O(9)-S1(4)-C(43A)	92.8(2)
C(91)-C(92)	1.412(4)	$C(43B)-S_1(4)-C(43A)$	32.6(3)
C(92)-C(93)	1.395(4)	C(37)-Si(4)-C(43A)	128.4(2)
C(93)-C(94)	1.381(5)	O(11)-Si(5)-O(12)	112.2(1)
C(94)-C(95)	1.391(5)	O(11)-Si(5)-C(49)	109.4(1)
C(95)-C(96)	1.395(4)	O(12)-Si(5)-C(49)	109.1(1)
O(17)-C(97)	1.233(3)	O(11)-Si(5)-C(55)	110.9(1)
O(18)-C(97)	1.313(3)	O(12)-Si(5)-C(55)	107(1)
O(18)-C(99)	1.460(3)	C(49)-Si(5)-C(55)	108.4(1)
C(97)-C(98)	1.485(4)	O(13)-Si(6)-O(12)	110.8(1)
C(99)-C(100)	1.503(4)	O(13)-Si(6)-C(61)	109.5(1)
O(19)-C(101)	1.219(6)	O(12)-Si(6)-C(61)	107.1(1)
O(20)-C(101)	1.280(6)	O(13)-Si(6)-C(67)	110 6(1)
O(20)- $C(1B3)$	1 43(2)	O(12)-Si(6)-C(67)	109.4(1)
O(20) - C(1A3)	1.45(2)	C(61)-Si(6)-C(67)	109.4(1) 109.3(1)
C(101) C(102)	1.37(1)	O(14) S(7) O(15)	109.3(1) 100.7(1)
C(101)-C(102) C(102)	1.410(0)	O(14)-SI(7)-O(15) O(14)-Si(7)-O(70)	109.7(1) 110.2(1)
C(1A3)-C(104)	1.20(2)	O(14)-S1(7)-C(79)	110.2(1)
O(21)- $C(105)$	1.217(4)	O(15)-S1(7)-C(79)	109.8(1)
0(22)-C(105)	1.324(4)	O(14)-Si(7)-C(73)	111.1(1)
O(22)-C(107)	1.53(1)	$O(15)-S_1(7)-C(73)$	106.7(1)
C(105)-C(106)	1.481(5)	C(79)-Si(7)-C(73)	109.3(1)
C(107)-C(108)	1.28(2)	O(16)-Si(8)-O(15)	112.1(1)
		O(16)-Si(8)-C(85)	107.8(1)
O(5)-Al(1)-O(16)	117.4(1)	O(15)-Si(8)-C(85)	107.2(1)
O(5)-Al(1)-O(1)	108.14(9)	O(16)-Si(8)-C(91)	110.3(1)
O(16)-Al(1)-O(1)	109.71(9)	O(15)-Si(8)-C(91)	108.3(1)
O(5)-Al(1)-O(4)	108.4(1)	C(85)-Si(8)-C(91)	111.1(1)
O(16)-Al(1)-O(4)	109.25(9)	Al(2)-O(1)-Al(1)	128.0(1)
O(1)-Al(1)-O(4)	103.06(9)	Al(3)-O(2)-Al(2)	134.1(1)
O(8)-A(2)-O(7)	118.8(1)	Al(4)-O(3)-Al(3)	128.0(1)
O(8)-A(2)-O(1)	107.3(1)	$A_1(1) - O(4) - A_1(4)$	132.4(1)
O(7) - A(2) - O(1)	110 34(9)	Si(1) - O(5) - AI(1)	169.6(1)
O(8) - A(2) - O(2)	110.54())	Si(1) O(5) III(1) Si(2) O(6) Si(1)	149.3(1)
O(3)- $A(2)$ - $O(2)$	105 5(1)	$S_{1}(2) = O(0) - S_{1}(1)$ $S_{2}(2) = O(7) - A_{1}(2)$	147.3(1) 165 2(1)
O(1) A(2) O(2)	102.00(8)	Si(2) O(8) A1(2)	167.0(2)
O(1)-A(2)- $O(2)$	118 5(1)	Si(3) - O(0) - Ai(2) Si(3) - O(0) - Si(4)	107.9(2) 120.7(2)
O(10) - AI(3) - O(11)	110.3(1)	SI(3) - O(9) - SI(4) SI(4) - O(10) - AI(2)	139.7(2) 149.1(1)
O(10)-Al(3)- $O(3)$	108.8(1)	SI(4) - O(10) - AI(3)	146.1(1)
O(11)-Al(3)-O(3)	108.76(9)	S1(5)-O(11)-Al(3)	155.1(1)
O(10)-Al(3)-O(2)	108.84(9)	Si(6)-O(12)-Si(5)	149.4(1)
O(11)-Al(3)-O(2)	106.5(1)	$S_1(6)-O(13)-Al(4)$	151.7(1)
O(3)-Al(3)-O(2)	104.54(9)	Si(7)-O(14)-Al(4)	170.0(1)
O(14)-Al(4)-O(13)	119.7(1)	Si(8)-O(15)-Si(7)	132.2(1)
O(14)-Al(4)-O(3)	108.24(9)	Si(8)-O(16)-Al(1)	144.0(1)
O(13)-Al(4)-O(3)	109.06(9)	C(2)-C(1)-C(6)	117.3(3)
O(14)-Al(4)-O(4)	109.82(9)	C(2)-C(1)-Si(1)	121.6(2)
O(13)-Al(4)-O(4)	105.67(9)	C(6)-C(1)-Si(1)	121.0(2)
O(3)-Al(4)-O(4)	103.05(8)	C(3)-C(2)-C(1)	121.3(3)
O(5)-Si(1)-O(6)	111.9(1)	C(4)-C(3)-C(2)	119.5(3)
O(5)-Si(1)-C(1)	109.2(1)	C(5)-C(4)-C(3)	120.9(3)
O(6)-Si(1)-C(1)	107.9(1)	C(4)-C(5)-C(6)	119.5(3)
O(5)-Si(1)-C(7)	110.5(1)	C(5)-C(6)-C(1)	121.4(3)
O(6)-Si(1)-C(7)	107.2(1)	C(12)-C(7)-C(8)	117.4(3)
C(1)-Si(1)-C(7)	110.2(1)	C(12)-C(7)-Si(1)	122.3(2)
O(7)-Si(2)-O(6)	112.1(1)	C(8)-C(7)-Si(1)	120.2(2)
O(7)-Si(2)-C(19)	109 3(1)	C(9)-C(8)-C(7)	121.3(3)
O(6)-Si(2)-C(19)	107.3(1)	C(10)-C(9)-C(8)	120 5(3)
$O(7)_{-}Si(2)_{-}C(13)$	108.8(1)	C(9) - C(10) - C(11)	119 3(3)
O(6) Si(2) $O(13)$	100.0(1) 108.5(1)	C(10) = C(11) = C(11)	120 3(2)
C(10) = S(2) = C(13)	100.3(1) 110.0(1)	C(10)-C(11)-C(12) C(11)-C(12)-C(7)	120.3(3) 121.2(2)
O(19) - SI(2) - O(13)	110.9(1)	C(11)-C(12)-C(1)	121.3(3) 116.9(2)
O(8) = S(3) - O(9)	110.5(1)	C(14) - C(15) - C(18)	110.0(3)
O(8) - SI(3) - C(31)	110.5(1)	C(14)-C(15)-Si(2)	125.4(2)
O(9)-S1(3)-C(31)	110.6(1)	C(18)-C(13)-Si(2)	119.7(2)
O(8)-S1(3)-C(25)	112.3(1)	C(13)-C(14)-C(15)	121.0(3)
O(9)-Si(3)-C(25)	108.0(2)	C(16)-C(15)-C(14)	120.9(3)
C(31)-Si(3)-C(25)	104.9(1)	C(17)-C(16)-C(15)	119.0(3)

C(16)-C(17)-C(18)	120.0(3)	C(66)-C(61)-C(62)	116.7(3)
C(12) $C(19)$ $C(17)$	100.0(2)	C(66) C(61) C(6)	120 7(2)
C(13)-C(10)-C(17)	122.2(3)	C(00)-C(01)-SI(0)	120.7(2)
C(20)-C(19)-C(24)	116.5(3)	C(62)-C(61)-Si(6)	122.5(3)
C(20) = C(19) = Si(2)	122 0(2)	C(63)-C(62)-C(61)	122.0(4)
C(20) C(10) S(2)	122.0(2)		122.0(4)
C(24)-C(19)-Si(2)	121.5(3)	C(64)-C(63)-C(62)	119.7(4)
C(21)-C(20)-C(19)	121.1(4)	C(65)-C(64)-C(63)	119.7(4)
C(22) C(21) C(20)	121.0(4)	C(64) C(65) C(66)	120 4(4)
C(22)- $C(21)$ - $C(20)$	121.0(4)	C(04)-C(03)-C(00)	120.4(4)
C(23)-C(22)-C(21)	119.6(4)	C(61)-C(66)-C(65)	121.5(3)
C(22) = C(23) = C(24)	120 0(4)	C(72)- $C(67)$ - $C(68)$	1154(3)
C(22) C(23) C(24)	120.0(4)		113.4(3)
C(23)-C(24)-C(19)	121.9(4)	C(72)-C(67)-Si(6)	122.0(3)
C(30)-C(25)-C(26)	116.7(4)	C(68)-C(67)-Si(6)	122.4(3)
C(20) C(25) S(2)	118.0(2)	C(60) C(70) C(71)	118 0(4)
C(30)-C(23)-SI(3)	118.9(5)	C(09)-C(70)-C(71)	118.9(4)
C(26)-C(25)-Si(3)	123.8(3)	C(69)-C(68)-C(67)	123.0(4)
C(25) - C(26) - C(27)	121 7(4)	C(70) = C(69) = C(68)	120 5(4)
C(23)-C(20)-C(27)	121.7(4)	C(70)- $C(0)$ - $C(00)$	120.5(4)
C(28)-C(27)-C(26)	119.9(4)	C(70)-C(71)-C(72)	120.5(4)
C(27)-C(28)-C(29)	119.8(4)	C(67)-C(72)-C(71)	121.6(4)
C(29) C(20) C(20)	120.2(5)	C(74) C(72) C(79)	1175(2)
C(28) - C(29) - C(30)	120.2(3)	C(74)-C(75)-C(78)	117.3(3)
C(25)-C(30)-C(29)	121.7(4)	C(74)-C(73)-Si(7)	121.2(2)
C(36)-C(31)-C(32)	117 2(3)	C(78)-C(73)-Si(7)	1213(2)
C(36) C(31) C(32)	104.1(0)	O(75) O(74) O(72)	121.3(2)
C(30)-C(31)-S1(3)	124.1(2)	C(75)-C(74)-C(75)	121.2(3)
C(32)-C(31)-Si(3)	118.6(2)	C(76)-C(75)-C(74)	120.0(3)
C(33)-C(32)-C(31)	121 2(3)	C(77)- $C(76)$ - $C(75)$	120.0(3)
	121.2(3)		120.0(3)
C(34)-C(33)-C(32)	120.2(3)	C(76)-C(77)-C(78)	120.1(3)
C(35)-C(34)-C(33)	119.7(3)	C(77)-C(78)-C(73)	121.2(3)
C(34) - C(35) - C(36)	120 1(3)	C(84) - C(79) - C(80)	117.0(3)
C(31) C(35) C(30)	120.1(3)	C(04) C(70) C(00)	100.0(3)
C(31)-C(36)-C(35)	121.6(3)	C(84)-C(79)-Si(7)	120.9(2)
C(38)-C(37)-C(42)	116.6(5)	C(80)-C(79)-Si(7)	121.9(2)
C(38) C(37) Si(4)	121 7(3)	C(70) $C(80)$ $C(81)$	121 4(3)
C(30)-C(37)-SI(4)	121.7(3)		121.4(3)
C(42)-C(37)-Si(4)	121.6(4)	C(82)-C(81)-C(80)	120.1(3)
C(37)-C(38)-C(39)	122.0(5)	C(81)-C(82)-C(83)	119.4(3)
C(40) C(30) C(38)	110 1(7)	C(82) C(83) C(84)	120 7(4)
C(+0)-C(37)-C(38)	117.1(7)		120.7(4)
C(41)-C(40)-C(39)	120.4(6)	C(83)-C(84)-C(79)	121.4(3)
C(40)-C(41)-C(42)	120.7(5)	C(86)-C(85)-C(90)	117.9(3)
C(41) $C(42)$ $C(37)$	121 1(6)	C(86) C(85) Si(8)	122 0(2)
C(41)-C(42)-C(57)	121.1(0)	C(80)- $C(80)$ - $SI(8)$	122.9(2)
C(48A)-C(43A)-C(44A)	117.0(7)	C(90)-C(85)-Si(8)	119.2(2)
C(48A)-C(43A)-Si(4)	124.5(6)	C(87)-C(86)-C(85)	121.0(3)
C(44A) C(42A) Si(4)	118 4(5)	C(99) C(97) C(96)	110 8(2)
C(44A) - C(43A) - SI(4)	118.4(3)	C(88) - C(87) - C(80)	119.0(3)
C(45A)-C(44A)-C(43A)	121.4(9)	C(8')-C(88)-C(89)	120.7(3)
C(46A)-C(45A)-C(44A)	118.5(9)	C(90)- $C(89)$ - $C(88)$	119.3(3)
C(47A) C(46A) C(45A)	121 2(9)	C(90) C(00) C(85)	121 2(2)
C(47A) - C(40A) - C(43A)	121.3(0)	C(39)-C(30)-C(30)	121.5(5)
C(46A)-C(47A)-C(48A)	118.6(9)	C(96)-C(91)-C(92)	117.1(3)
C(43A)-C(48A)-C(47A)	123.1(8)	C(96)-C(91)-Si(8)	121.8(2)
$C(44\mathbf{P}) C(42\mathbf{P}) C(49\mathbf{P})$	1167(7)	C(02) C(01) S(0)	101 1(0)
C(44D) - C(45D) - C(46D)	110.7(7)	C(92)-C(91)-SI(8)	121.1(2)
C(44B)-C(43B)-Si(4)	117.7(6)	C(93)-C(92)-C(91)	121.2(3)
C(48B)-C(43B)-Si(4)	125.5(5)	C(94)- $C(93)$ - $C(92)$	1204(3)
$C(42\mathbf{P}) C(44\mathbf{P}) C(45\mathbf{P})$	121 4(0)	C(02) C(04) C(05)	110.9(2)
C(43D) - C(44D) - C(43D)	121.4(9)	C(33) - C(34) - C(33)	119.0(3)
C(46B)-C(45B)-C(44B)	120.2(9)	C(94)-C(95)-C(96)	119.9(3)
C(45B)-C(46B)-C(47B)	120.5(7)	C(95)-C(96)-C(91)	121.6(3)
C(4(D), C(47D), C(49D)	110.0(0)	C(07) O(18) C(00)	11(0(2)
$C(40D)-C(4/D)-C(4\delta D)$	117.0(0)	U(37) - U(10) - U(39)	110.8(2)
C(47B)-C(48B)-C(43B)	121.3(7)	O(17)-C(97)-O(18)	123.0(2)
C(54)-C(49)-C(50)	116.5(3)	O(17)-C(97)-C(98)	122.4(3)
C(54) C(40) C(5)	102.2(2)	O(19) O(07) O(09)	114 ((2)
C(34)-C(49)-SI(3)	125.5(5)	O(18) - C(97) - C(98)	114.0(2)
C(50)-C(49)-Si(5)	120.0(3)	O(18)-C(99)-C(100)	107.3(2)
C(49)-C(50)-C(51)	121.7(4)	C(101)-O(20)-C(1B3)	110.7(8)
C(52) C(51) C(50)	110 6(4)	C(101) O(20) C(142)	110 2(7)
C(32)-C(31)-C(30)	119.0(4)	C(101)-O(20)-C(1A3)	110.2(7)
C(53)-C(52)-C(51)	120.3(4)	C(1B3)-O(20)-C(1A3)	54(1)
C(52)-C(53)-C(54)	119.9(5)	O(19)-C(101)-O(20)	122.4(5)
C(40) C(54) C(53)	122 0(4)	O(10) C(101) C(102)	127 2(5)
	122.0(4)	O(17) - O(101) - O(102)	121.3(3)
C(60)-C(55)-C(56)	116.9(3)	O(20)-C(101)-C(102)	110.1(6)
C(60)-C(55)-Si(5)	119.7(2)	C(104)-C(1A3)-O(20)	110(1)
C(56) C(55) Si(5)	123 3(2)	C(105) O(22) C(107)	115 4(4)
C(30)-C(33)-SI(3)	123.3(2)	C(103)-O(22)-C(107)	113.4(4)
C(57)-C(56)-C(55)	121.2(3)	O(21)-C(105)-O(22)	121.8(3)
C(58)-C(57)-C(56)	120.7(3)	O(21)-C(105)-C(106)	125.6(3)
C(57) - C(58) - C(59)	119 4(3)	O(22) - C(105) - C(106)	112 6(3)
	117.T(J)	G(22) = C(103) = C(100)	112.0(3)
C(58)-C(59)-C(60)	120.4(3)	C(108)-C(107)-O(22)	98(1)
C(59)-C(60)-C(55)	121.3(3)		

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Al(1)	14(1)	18(1)	18(1)	0(1)	2(1)	-1(1)
Al(2)	15(1)	18(1)	20(1)	-1(1)	0(1)	2(1)
Al(3)	15(1)	23(1)	20(1)	0(1)	4(1)	0(1)
Al(4)	14(1)	18(1)	19(1)	0(1)	3(1)	-2(1)
Si(1)	18(1)	22(1)	19(1)	-2(1)	3(1)	3(1)
S1(2)	17(1)	22(1)	18(1)	-1(1)	I(1)	0(1)
S1(5) Si(4)	26(1) 17(1)	24(1)	33(1)	-4(1)	-5(1)	10(1)
Si(4) Si(5)	$\frac{17(1)}{22(1)}$	25(1)	23(1) 27(1)	-1(1) 3(1)	9(1)	-6(1)
Si(5)	22(1) 24(1)	26(1)	27(1) 21(1)	$\frac{3(1)}{4(1)}$	$\frac{1}{4(1)}$	-4(1)
Si(7)	16(1)	19(1)	24(1)	-2(1)	3(1)	-3(1)
Si(8)	14(1)	20(1)	24(1)	0(1)	4(1)	-3(1)
O(1)	17(1)	18(1)	24(1)	2(1)	2(1)	1(1)
O(2)	19(1)	18(1)	23(1)	-2(1)	5(1)	0(1)
O(3)	17(1)	19(1)	26(1)	-3(1)	6(1)	-1(1)
O(4)	18(1)	16(1)	20(1)	0(1)	3(1)	-1(1)
O(5)	23(1)	25(1)	24(1)	-5(1)	5(1)	2(1)
O(6)	19(1) 22(1)	29(1)	24(1)	-2(1)	1(1) 2(1)	4(1)
O(7)	23(1) 24(1)	$\frac{2}{(1)}$	21(1) 28(1)	-4(1)	2(1) 1(1)	2(1) 10(1)
O(8)	24(1) 36(1)	43(1)	34(1)	-4(1)	-1(1)	21(1)
O(10)	17(1)	31(1)	25(1)	-2(1)	5(1)	3(1)
O(11)	26(1)	27(1)	29(1)	4(1)	10(1)	-3(1)
O(12)	25(1)	40(1)	35(1)	11(1)	4(1)	-9(1)
O(13)	23(1)	23(1)	23(1)	4(1)	5(1)	-2(1)
O(14)	21(1)	19(1)	29(1)	-3(1)	6(1)	-5(1)
O(15)	20(1)	23(1)	30(1)	-4(1)	7(1)	-7(1)
O(16)	14(1)	27(1)	23(1)	3(1)	4(1)	-5(1)
C(1)	20(1)	30(2)	22(1)	3(1)	4(1)	6(1)
C(2)	33(2) 45(2)	52(2)	52(2)	0(1) 0(2)	9(1)	-4(1) 10(2)
C(3)	$\frac{43(2)}{34(2)}$	$\frac{32(2)}{71(3)}$	36(2)	$\frac{9(2)}{17(2)}$	13(2) 14(1)	-10(2) 6(2)
C(5)	40(2)	54(2)	29(2)	6(2)	14(1)	16(2)
C(6)	34(2)	34(2)	26(1)	2(1)	8(1)	8(1)
C(7)	22(1)	25(1)	19(1)	-4(1)	5(1)	2(1)
C(8)	21(1)	28(2)	26(1)	-1(1)	4(1)	0(1)
C(9)	25(1)	31(2)	28(1)	-2(1)	1(1)	7(1)
C(10)	37(2)	25(2)	29(1)	2(1)	6(1)	6(1)
C(11)	33(2)	25(1)	30(2)	-2(1)	7(1)	-2(1)
C(12)	21(1) 27(1)	$\frac{2}{(1)}$	24(1)	0(1) 1(1)	3(1) 3(1)	2(1) 1(1)
C(13) C(14)	$\frac{27(1)}{35(2)}$	$\frac{32(2)}{78(3)}$	$\frac{21(1)}{36(2)}$	20(2)	$\frac{3(1)}{13(1)}$	-1(1) 9(2)
C(14) C(15)	53(2)	99(4)	44(2)	30(2)	24(2)	4(2)
C(16)	56(2)	63(3)	30(2)	22(2)	11(2)	6(2)
C(17)	42(2)	63(2)	31(2)	17(2)	4(1)	16(2)
C(18)	28(1)	50(2)	27(1)	10(1)	5(1)	5(1)
C(19)	25(1)	24(1)	25(1)	2(1)	-3(1)	0(1)
C(20)	26(1)	43(2)	42(2)	9(2)	6(1)	-4(1)
C(21)	34(2)	67(3)	70(3)	26(2)	7(2)	-16(2)
C(22)	55(3) 84(2)	52(3)	86(3)	22(2)	-10(2)	-29(2)
C(23) C(24)	54(3)	34(2) 35(2)	78(3) 50(2)	-12(2)	-3(3)	-21(2)
C(24) C(25)	31(2)	30(2)	46(2)	-5(1)	-13(1)	8(1)
C(26)	72(3)	32(2)	47(2)	-8(2)	6(2)	9(2)
C(27)	84(3)	28(2)	72(3)	-14(2)	10(3)	6(2)
C(28)	61(3)	31(2)	67(3)	3(2)	-7(2)	2(2)
C(29)	59(3)	46(2)	91(3)	-9(2)	14(2)	-12(2)
C(30)	44(2)	40(2)	97(3)	-18(2)	15(2)	-4(2)
C(31)	22(1)	29(2)	30(1)	2(1)	2(1)	2(1)
C(32)	31(2)	43(2)	39(2)	1(2)	0(1)	14(1)
C(33)	33(2)	53(2)	43(2)	10(2)	-4(1)	15(2)
C(34)	39(2)	62(2)	$\frac{20(2)}{40(2)}$	-18(2)	-4(1)	3(2)
C(36)	36(2)	42(2)	44(2)	-12(2)	-5(1)	12(2)

Tabelle 29: Anisotropische Auslenkungsaparameter (Å 2 x 10 3) für sh2802a. Der anisotropische Exponentfaktor des Auslenkungsparameterlautet: $-2\Box^2$ [h 2 a $^{*2}U^{11}$ + ... + 2 h k a * b * U 12]

C(37)	30(2)	136(5)	28(2)	10(2)	3(1)	-33(2)
C(38)	65(3)	147(5)	44(2)	1(3)	1(2)	-70(3)
C(39)	89(4)	156(6)	66(3)	-18(4)	18(3)	-85(4)
C(40)	65(3)	229(9)	52(3)	-43(4)	24(3)	-96(5)
C(41)	44(2)	254(9)	27(2)	-20(4)	10(2)	-60(4)
C(42)	31(2)	187(6)	31(2)	10(3)	3(2)	-36(3)
C(43A)	28(3)	34(4)	37(4)	-4(3)	12(3)	2(3)
C(44A)	50(5)	51(5)	37(4)	-8(3)	10(3)	7(4)
C(45A)	77(6)	76(7)	52(5)	-26(5)	25(5)	-3(5)
C(46A)	77(6)	65(6)	95(8)	-31(5)	52(6)	7(5)
C(47A)	84(7)	77(7)	88(7)	-2(6)	30(6)	48(6)
C(48A)	61(5)	85(7)	49(4)	-3(4)	15(4)	41(5)
C(43B)	24(3)	34(3)	40(3)	6(3)	14(2)	8(2)
C(44B)	62(6)	53(5)	68(7)	-18(5)	36(5)	-6(5)
C(45B)	103(8)	41(5)	96(7)	-17(5)	64(7)	7(5)
C(46B)	69(6)	62(6)	84(6)	6(5)	57(5)	25(5)
C(47B)	41(4)	65(5)	61(5)	15(4)	31(4)	11(4)
C(48B)	35(3)	58(5)	41(4)	3(3)	20(3)	5(3)
C(49)	33(2) 72(2)	31(2)	52(2)	-5(1)	14(1) 27(2)	-9(1)
C(50)	73(3)	48(2)	40(2) 57(2)	2(2)	57(2)	-4(2) 17(2)
C(51)	92(3) 65(3)	70(3)	57(3)	-9(2)	J3(3) 43(2)	-17(3)
C(52)	76(3)	69(3)	74(3)	-31(2)	45(2)	-20(2) 16(2)
C(54)	65(3)	54(2)	53(2)	2(2)	$\frac{1}{36(2)}$	13(2)
C(55)	28(1)	27(2)	34(2)	$\frac{2(2)}{1(1)}$	14(1)	-2(1)
C(56)	38(2)	33(2)	37(2)	6(1)	17(1)	4(1)
C(57)	61(2)	29(2)	54(2)	4(2)	30(2)	10(2)
C(58)	71(3)	29(2)	68(3)	-12(2)	38(2)	-11(2)
C(59)	38(2)	42(2)	77(3)	-16(2)	20(2)	-18(2)
C(60)	28(2)	34(2)	61(2)	-8(2)	14(2)	-6(1)
C(61)	29(1)	30(2)	26(1)	6(1)	-1(1)	-3(1)
C(62)	42(2)	52(2)	66(3)	34(2)	7(2)	0(2)
C(63)	61(3)	55(3)	94(4)	48(3)	6(2)	6(2)
C(64)	54(2)	47(2)	73(3)	21(2)	-6(2)	14(2)
C(65)	36(2)	43(2)	45(2)	-1(2)	-3(2)	4(2)
C(66)	30(1)	32(2)	29(1)	0(1)	2(1)	-2(1)
C(67)	37(2)	38(2)	28(1)	0(1)	13(1)	-3(1)
C(70)	75(3)	62(3)	47(2)	-9(2)	24(2)	7(2)
C(68)	44(2)	62(3)	48(2)	-20(2)	-1(2)	3(2)
C(69)	60(3)	68(3)	45(2)	-19(2)	2(2)	-1(2)
C(71)	12/(5)	90(4) 85(4)	00(3)	-25(3)	5(3)	58(4)
C(72)	93(4) 17(1)	83(4) 22(1)	42(2) 22(1)	-12(2)	-1(2)	43(3)
C(73)	$\frac{1}{(1)}$	22(1) 26(2)	$\frac{33(1)}{40(2)}$	-1(1)	8(1)	-4(1)
C(75)	36(2)	20(2) 27(2)	61(2)	1(1)	16(2)	-2(1) 3(1)
C(76)	36(2)	29(2)	63(2)	17(2)	11(2)	6(1)
C(77)	38(2)	37(2)	43(2)	14(2)	6(1)	2(1)
C(78)	29(1)	30(2)	34(2)	4(1)	5(1)	-1(1)
C(79)	20(1)	24(1)	29(1)	-3(1)	2(1)	1(1)
C(80)	30(2)	32(2)	38(2)	-2(1)	1(1)	-6(1)
C(81)	30(2)	43(2)	51(2)	-13(2)	-5(1)	-4(1)
C(82)	39(2)	75(3)	35(2)	-20(2)	-2(2)	0(2)
C(83)	49(2)	94(3)	30(2)	-7(2)	7(2)	-10(2)
C(84)	33(2)	58(2)	29(2)	-4(2)	8(1)	-7(2)
C(85)	14(1)	22(1)	30(1)	4(1)	4(1)	2(1)
C(86)	22(1)	26(2)	42(2)	0(1)	9(1)	-2(1)
C(87)	25(1)	32(2)	64(2)	12(2)	17(1)	-4(1)
C(88)	32(2)	43(2)	58(2)	18(2)	26(2)	7(1)
C(89)	33(2)	42(2)	39(2)	/(1)	18(1)	/(1)
C(90)	23(1)	32(2)	33(2)	1(1) 2(1)	10(1)	-1(1)
C(91)	$\frac{1}{(1)}$	$\frac{27(1)}{28(2)}$	20(1) 20(2)	3(1)	7(1) 4(1)	5(1)
C(92)	$\frac{24(1)}{34(2)}$	53(2)	30(2)	10(2)	4(1) 5(1)	15(2)
C(93)	34(2) 35(2)	33(2) 37(2)	$\frac{29(2)}{43(2)}$	10(2) 19(2)	16(1)	15(2) 16(1)
C(95)	36(2)	27(2)	45(2)	$\frac{1}{2}$	13(1)	4(1)
C(96)	29(1)	26(2)	32(2)	$\frac{1}{2(1)}$	6(1)	0(1)
O(17)	24(1)	18(1)	33(1)	0(1)	6(1)	-2(1)
O(18)	30(1)	21(1)	28(1)	0(1)	8(1)	-1(1)
C(97)	28(1)	21(1)	23(1)	-3(1)	10(1)	-4(1)
C(99)	27(1)	22(1)	31(1)	1(1)	6(1)	2(1)
C(98)	31(2)	31(2)	38(2)	-2(1)	8(1)	-10(1)
C(100)	43(2)	29(2)	35(2)	0(1)	2(1)	9(1)

O(19)	69(2)	61(2)	75(2)	34(2)	16(2)	-10(2)
O(20)	141(4)	220(6)	104(3)	36(4)	43(3)	-98(5)
C(101)	60(3)	67(3)	72(3)	16(3)	15(2)	-7(2)
C(102)	109(6)	309(13)	81(4)	-82(6)	30(4)	-67(7)
C(1A3)	82(7)	127(11)	110(9)	34(8)	-25(7)	1(8)
C(104)	235(13)	116(8)	198(11)	56(7)	-123(10)	-39(8)
C(1B3)	89(12)	210(30)	170(20)	-80(20)	90(14)	-68(16)
O(21)	55(2)	34(1)	36(1)	-7(1)	8(1)	10(1)
O(22)	177(4)	43(2)	64(2)	7(2)	63(2)	38(2)
C(105)	53(2)	37(2)	47(2)	-4(2)	21(2)	8(2)
C(106)	43(2)	50(2)	45(2)	4(2)	2(2)	-12(2)
C(107)	680(30)	85(6)	95(6)	-22(5)	63(12)	168(12)
C(108)	70(5)	730(30)	131(8)	239(14)	34(5)	85(11)

Tabelle 30: Koordinaten des Wasserstoffs ($x \ 10^4$) und isotrope Auslenkungsparameter (Å² $x \ 10^3$) für sh2802a.

	х	у	Z	U(eq)
	7070	1930	692	25
H(2)	7272	4160	309	23
H(2)	7990	2101	-748	24
$\mathbf{H}(3)$	6804	4250	-740	23
U(2)	6204	4239	-105	42
$\Pi(2)$	5820	3219	1421	42
$\Pi(3)$	5722	2072	1978	50
П(4) Ц(5)	3733	5950	2549	33
$\Pi(3)$	6079	5345	2558	48
H(0)	5005	5705	1996	37
H(8)	5905	5/14	729	31
H(9)	56/8	7092	352	35
1(1U) I(11)	6311	8136	538	38
H(11)	7178	7/90	709	36
1(12)	7410	6408	1088	30
1(14)	7442	3796	2371	59
H(15)	7626	2934	3095	76
H(16)	8458	2415	3466	60
H(17)	9116	2830	3136	56
H(18)	8932	3675	2409	43
H(20)	8940	4701	1341	45
H(21)	9516	5863	1396	70
H(22)	9417	7181	1779	85
I(23)	8747	7339	2128	85
I(24)	8177	6174	2097	58
H(26)	8933	-445	452	63
H(27)	8688	-1917	529	77
H(28)	8165	-2248	1018	70
H(29)	7857	-1117	1414	81
1(30)	8084	353	1327	74
I(32)	9637	181	1466	48
H(33)	10255	190	2243	56
H(34)	10286	1359	2795	52
1(35)	9675	2483	2585	59
H(36)	9060	2485	1808	53
I(38)	9156	4063	-94	107
I(39)	9633	5259	334	125
I(40)	10270	5006	1088	137
I(10) I(41)	10270	3608	1425	130
I(42)	9978	2406	1005	101
$I(44\mathbf{A})$	8807	1711	-1011	56
$I(45\Delta)$	9006	655	-1545	80
$I(16\Lambda)$	9000	457	1206	80
I(40A)	1002	-437	-1200	00
I(4/A) I(48A)	10055	-4/0	-338	90 70
1(40A) J(AAD)	9019	201	105	/0
1(44D) I(45D)	9001	804	-04/	09
I(43D)	9505	41/	-1218	87
I(40B)	10194	1229	-12/0	11
(4/B)	10420	2519	-809	63

Anhang

H(48B)	9976	2940	-248	51
H(50)	8331	5390	-1985	63
H(51)	8891	4916	-2425	80
H(52)	9392	3668	-2168	77
H(53)	9320	2867	-1495	82
H(54)	8757	3326	-1058	64
H(56)	7508	6575	-1187	42
H(57)	7766	8028	-953	54
H(58)	8623	8354	-571	63
H(59)	9232	7215	-406	62
H(60)	8984	5756	-636	49
H(62)	6895	6198	-2119	66
H(63)	6325	7371	-2394	88
H(64)	5505	7317	-2290	76
H(65)	5262	6095	-1905	54
H(66)	5836	4927	-1619	38
H(68)	6135	4224	-2636	65
H(69A)	5999	3216	-3286	73
H(71)	7213	1810	-2510	119
H(72)	7357	2830	-1851	93
H(74)	6403	-178	-1314	37
H(75)	6894	-1433	-998	49
H(76)	7253	-1601	-137	52
H(77)	7116	-518	405	49
H(78)	661 / 5125	730	93	38
H(80)	5155	304	-1393	42
H(81)	4088	-3	-2210	54
H(82)	4933 5619	1508	-2074	71
H(84)	5018	1030	-2710	/1
H(86)	4926	878	-203	36
H(87)	4386	431	265	47
H(88)	4359	1241	963	50
H(89)	4872	2503	1202	44
H(90)	5415	2948	737	35
H(92)	5064	2828	-1162	38
H(93)	4735	4133	-1586	48
H(94)	4887	5501	-1179	45
H(95)	5374	5567	-339	44
H(96)	5704	4267	89	35
H(99A)	6550	5818	-156	33
H(99B)	6694	5491	-645	33
H(98A)	8165	6190	629	51
H(98B)	8075	6823	153	51
H(98C)	8333	5865	155	51
H(10A)	6381	7262	-508	56
H(10B)	6012	6542	-857	56
H(10C)	6504	6911	-1001	56
H(10D)	7679	704	2157	249
H(10E)	7413	1615	2246	249
H(10F)	7800	1005	1909	249
$\Pi(1A1)$	5948	1110	1322	141
H(10C)	6305	261	1071	333
H(10H)	5866	-201	800	333
H(10I)	5759	-52	1311	333
H(10D)	8289	-32	-318	555 72
H(10E)	7980	-205	-377	72
H(10F)	7718	692	-263	72
H(10G)	7449	603	-1921	354
H(10H)	7982	100	-1907	354
H(10I)	7635	-1166	-1872	463
H(10J)	7271	-628	-2333	463
H(10K)	7120	-706	-1822	463

3 Daten zur Molekül- und Kristallstruktur von (Ph₂SiO)₈[AIO(OH)]₄ • 2 CH₃COO(CH₂)₄OOCCH₃ <u>4</u>

Tabelle 31: Kristalldaten und Strukturverfeinerungen für (Ph₂SiO)₈[AlO(OH)]₄ • 2 CH₃COO(CH₂)₄OOCCH₃ (sh2822a)

Identifizierungscode Summenformel Molmasse [g/mol] Messtemperatur [K] Wellenlänge [Å] Kristallsystem Raumgruppe Gitterkonstanten	sh2822a C126 H128 Al4 O24 Si8 2358.92 122(2) 0.71073 triklin P-1 a = 14.9930(12) Å b = 15.8662(14) Å c = 29.548(3) Å	$\alpha = 82.662(4)^{\circ}$ $\beta = 75.973(4)^{\circ}$ $\gamma = 65.157(4)^{\circ}$
Zellvolumen [Å ³] Anzahl der Formeleinheiten Z	6185.6(9) 2	•
Dichte (berechnet)[g/cm ³]	1.267	
Absorptionskoeffizient [mm ⁻¹] F(000)	0.184 2480	
Kristallabmessungen [mm ³] Messbereich θ [°] hkl - Indexbereich Gemessene Reflexe Symmetrieunabhängige Reflexe Vollständigkeit des Datensatzes (bis θ = 26.71°) Absorptionskorrektur Max. und Min. Transmission	0.62 x 0.30 x 0.04 1.41 to 26.71° -18<=h<=18, -19<=k<=19, -37<=l<=: 86574 24990 [R(int) = 0.0657] 95.5 % None 0.9925 and 0.8934	37
Strukturverfeinerungsmethode Daten / Einschränkungen / Parameter	Full-matrix least-squares on F ² 24990 / 0 / 1411	
Güte des Fit auf F ² Endgültige R-Werte [I>2sigma(I)] R-Werte (alle Daten)	2.202 R1 = 0.1145, wR2 = 0.2707 R1 = 0.1820, wR2 = 0.3015	
Restelektronendichte (min./max.) [e/Å-3]	1.499 and -1.095	

Tabelle 32: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å 2 x 10³) für sh2822a. U(eq) wird berechnet als ein Drittel
der Spur des orthogonalisierten U^{ij} Tensors.

	Х	у	Z	U(eq)
Al(1)	8472(1)	1318(1)	3053(1)	33(1)
Al(2)	8778(1)	1607(1)	1909(1)	33(1)
Al(3)	7227(1)	3801(1)	1975(1)	25(1)
Al(4)	6960(1)	3535(1)	3109(1)	27(1)
Si(1)	10882(1)	95(1)	2898(1)	50(1)
Si(2)	11168(1)	419(1)	1823(1)	46(1)
Si(3)	7721(1)	1413(1)	1118(1)	32(1)
Si(4)	6264(1)	3483(1)	1170(1)	25(1)
Si(5)	7386(1)	5759(1)	2045(1)	32(1)
Si(6)	7119(1)	5505(1)	3102(1)	35(1)
Si(7)	5394(1)	3052(1)	3962(1)	28(1)
Si(8)	6880(1)	993(1)	3930(1)	29(1)
O(1)	8280(2)	1257(2)	2483(1)	31(1)
O(2)	8423(3)	2840(2)	1903(1)	35(1)
O(3)	6643(2)	3589(2)	2557(1)	24(1)
O(4)	8121(3)	2533(2)	3103(1)	31(1)
O(5)	9716(3)	741(3)	3062(2)	52(1)
O(6)	11352(3)	268(3)	2355(2)	49(1)
O(7)	10053(3)	1150(3)	1807(1)	47(1)
O(8)	8190(3)	1344(2)	1558(1)	36(1)
O(9)	6701(3)	2357(2)	1122(1)	29(1)
O(10)	6562(3)	3744(2)	1602(1)	31(1)
O(11)	7438(3)	4775(2)	1943(1)	36(1)
O(12)	7584(3)	5752(2)	2566(1)	36(1)

O(13)	7248(3)	4445(2)	3151(1)	37(1)
O(14)	5995(3)	3413(2)	3511(1)	33(1)
0(15)	5833(3)	1017(2)	3074(1)	30(1)
O(15)	7(52(2)	059(2)	2445(1)	22(1)
0(16)	7652(3)	958(2)	3445(1)	33(1)
C(1)	11605(5)	351(5)	3253(3)	56(2)
C(2)	11127(6)	792(6)	3673(3)	74(2)
C(3)	11636(8)	1001(6)	3956(3)	89(3)
C(4)	12654(10)	741(7)	3805(5)	110(4)
C(4)	12634(10)	741(7)	3803(3)	110(4)
C(5)	13138(8)	314(7)	3408(5)	102(4)
C(6)	12606(5)	123(5)	3131(3)	75(2)
$\mathbf{C}(7)$	11065(5)	-1147(5)	2972(3)	67(2)
C(0)	11005(5)	1922(5)	2772(3)	07(2)
	11840(7)	-1855(5)	2708(3)	80(5)
C(9)	12014(7)	-2780(5)	2756(4)	94(3)
C(10)	11355(9)	-3023(7)	3099(5)	115(4)
$\mathbf{C}(11)$	10579(10)	-2368(8)	3374(5)	137(5)
C(12)	10/09(7)	1419(6)	3314(4)	108(3)
	10409(7)	-1419(0)	3314(4)	106(3)
C(13)	11367(4)	-709(4)	1591(2)	45(2)
C(14)	10616(5)	-1051(5)	1717(3)	67(2)
C(15)	10747(6)	-1883(5)	1557(3)	72(2)
C(16)	11605(5)	-2377(5)	1257(2)	55(2)
C(10)	1005(5)	-2377(3)	1257(2)	50(2)
C(1/)	12357(5)	-2080(6)	1125(2)	59(2)
C(18)	12234(5)	-1243(5)	1288(2)	49(2)
C(19)	12101(5)	844(4)	1453(3)	63(2)
C(20)	12031(6)	1150(8)	1000(4)	153(6)
C(20)	12031(0)	1442(8)	712(4)	151(6)
C(21)	12/3/(/)	1442(8)	/12(4)	151(6)
C(22)	13547(7)	1411(5)	869(5)	111(5)
C(23)	13639(8)	1088(8)	1304(4)	127(5)
C(24)	12915(5)	832(6)	1605(3)	79(3)
C(25)	7245(4)	422(4)	1150(2)	15(3)
C(25)	7345(4)	422(4)	1150(2)	45(2)
C(26)	7926(5)	-448(4)	1308(2)	49(2)
C(27)	7684(6)	-1216(4)	1321(2)	67(2)
C(28)	6850(7)	-1104(6)	1178(6)	170(7)
C(20)	6202(8)	204(6)	1022(8)	220(12)
C(29)	0293(8)	-294(0)	1033(8)	200(13)
C(30)	64/6(6)	517(5)	1040(5)	16/(6)
C(31)	8659(5)	1391(4)	574(2)	46(2)
C(32)	9444(8)	1546(11)	568(4)	165(7)
C(33)	10136(9)	1579(12)	135(4)	187(8)
C(34)	10150(5)	1272(7)	246(2)	107(0)
C(34)	10062(10)	13/2(7)	-246(3)	106(4)
C(35)	9313(9)	1181(9)	-258(3)	130(5)
C(36)	8601(6)	1242(9)	142(3)	139(5)
C(37)	4874(4)	3938(4)	1265(2)	27(1)
C(29)	4270(4)	3425(4)	1175(2)	25(1)
C(38)	4370(4)	3423(4)	11/3(2)	55(1)
C(39)	3331(4)	3784(4)	1247(2)	45(2)
C(40)	2763(5)	4646(4)	1421(2)	46(2)
C(41)	3232(4)	5183(4)	1511(2)	44(2)
C(42)	4259(4)	4821(4)	1/35(2)	37(1)
C(42)	4239(4)	4821(4)	1435(2)	37(1)
C(43)	6785(4)	3978(3)	619(2)	27(1)
C(44)	7657(4)	4130(5)	567(2)	48(2)
C(45)	8079(5)	4443(6)	137(2)	72(2)
C(46)	7617(5)	4644(5)	-233(2)	57(2)
C(47)	6740(5)	4526(4)	188(2)	$\frac{37(2)}{48(2)}$
C(47)	0740(3)	4320(4)	-188(2)	40(2)
C(48)	6331(4)	4202(4)	239(2)	40(2)
C(49)	8404(5)	6009(4)	1610(2)	48(2)
C(50)	8392(7)	6111(6)	1141(3)	96(3)
C(51)	0168(10)	6287(8)	825(3)	124(4)
C(51)	9108(10)	0287(8)	825(5)	124(4)
C(52)	9895(9)	6421(6)	974(5)	119(5)
C(53)	9897(5)	6325(4)	1423(4)	72(3)
C(54)	9162(5)	6130(4)	1754(3)	55(2)
C(55)	6153(4)	6698(4)	1989(2)	34(1)
C(55)	5955(5)	7599(5)	210(2)	54(1)
C(30)	3833(5)	/388(3)	2100(5)	05(2)
C(57)	4955(5)	8302(5)	2045(3)	65(2)
C(58)	4320(7)	8137(6)	1879(4)	105(4)
C(59)	4613(13)	7240(8)	1740(9)	349(17)
C(60)	5465(10)	6544(6)	1021(6)	220(10)
	5405(10)	0344(0)	1831(0)	239(10)
C(61)	7870(4)	5687(3)	3471(2)	36(1)
C(62)	8731(5)	5835(4)	3277(2)	49(2)
C(63)	9323(6)	5921(5)	3552(3)	66(2)
C(64)	0011(6)	5003(5)	4033(3)	63(2)
	9011(0)	5505(5)	+033(3)	05(2)
C(05)	8146(6)	5763(5)	4247(3)	69(2)
C(66)	7582(5)	5658(4)	3948(2)	50(2)
C(67)	5775(4)	6287(4)	3266(2)	38(1)
C(68)	4005(5)	5086(5)	3325(2)	65(7)
C(00)	+775(5)	5700(5)	3323(3)	03(2)

C(69)	3998(6)	6604(6)	3423(3)	78(3)
C(70)	3728(6)	7533(6)	3474(2)	68(2)
C(71)	4473(7)	7822(5)	3431(3)	77(2)
C(72)	5470(6)	7218(5)	3330(2)	60(2)
C(73)	5542(5)	3432(4)	4504(2)	38(1)
C(74)	6257(5)	3/85(4)	44/4(2)	55(2)
C(75)	5902(7)	4005(5)	4883(3)	70(3) 72(2)
C(77)	5185(6)	3504(5)	5345(2)	62(2)
C(78)	5005(6)	3306(4)	4940(2)	52(2)
C(79)	4035(4)	3472(4)	3930(2)	32(1)
C(80)	3370(5)	4389(4)	4025(2)	48(2)
C(81)	2377(5)	4727(5)	3974(2)	58(2)
C(82)	2041(5)	4129(5)	3827(2)	58(2)
C(83)	2679(5)	3220(5)	3742(2)	54(2)
C(84)	3668(4)	2894(4)	3796(2)	39(1)
C(85)	6496(4) 7172(5)	4(4) 872(4)	3981(2)	35(1)
C(80)	/1/3(5)	-8/2(4)	3823(2)	53(2)
C(88)	5010(7)	-1020(3)	3883(3) 4104(3)	70(2) 73(2)
C(89)	5239(6)	-631(5)	4253(3)	66(2)
C(90)	5516(5)	114(4)	4198(2)	51(2)
C(91)	7470(4)	968(4)	4422(2)	39(2)
C(92)	6912(5)	1117(4)	4880(2)	48(2)
C(93)	7310(6)	1112(5)	5254(2)	63(2)
C(94)	8312(6)	942(6)	5177(3)	75(3)
C(95)	8906(6)	786(6)	4728(3)	87(3)
C(96)	8478(5)	800(5)	4354(2)	58(2)
O(17)	538/(4) 2008(4)	2914(4)	2509(2)	84(2)
C(97)	3861(6)	2093(3) 4251(5)	2400(2) 2676(2)	50(2)
C(98)	4442(7)	3314(7)	2526(2)	70(3)
C(99)	4644(7)	1911(6)	2198(4)	94(3)
C(100)	4779(13)	1056(14)	2473(5)	225(11)
C(101)	5200(20)	940(20)	2846(5)	365(19)
C(102)	6256(13)	532(11)	2612(8)	279(14)
C(103)	7742(6)	-869(5)	2565(2)	60(2)
C(104)	8233(8)	-1884(5)	2572(3)	106(4)
O(19)	0///(0) 8227(4)	-515(7)	2037(3)	140(3)
O(20)	9717(3)	3319(3)	1271(1)	53(1)
O(22)	10812(3)	3687(3)	1508(2)	51(1)
C(105)	10900(6)	3752(6)	694(2)	82(3)
C(106)	10406(5)	3560(4)	1182(2)	48(2)
C(107)	10292(6)	3617(5)	1988(2)	59(2)
C(108)	10662(6)	4025(5)	2292(3)	74(2)
C(109)	11688(5)	3353(5)	2376(3)	82(3)
C(110)	11641(5)	2612(5)	2/10(3)	62(2)
C(112)	0572(6)	2981(0)	3785(3)	80(3) 80(3)
O(23)	11051(4)	2927(4)	3186(2)	83(2)
O(24)	9735(4)	2798(4)	3024(2)	71(2)
C(113)	1537(9)	2311(9)	5019(3)	112(4)
C(114)	895(8)	3199(7)	4894(3)	92(3)
C(115)	-130(9)	3502(8)	4995(4)	125(4)
C(116)	-485(10)	2863(9)	5217(4)	137(4)
C(117)	173(12)	1992(10)	5347(4)	148(5)
C(118)	11/0(10)	1/33(9)	5240(4)	123(4)
C(119) C(120)	2090(15) 4790(9)	2914(8)	4952(5) 9875(3)	195(0) 104(3)
C(120)	5545(8)	2239(7)	9916(3)	87(3)
C(122)	5920(9)	1186(8)	9794(4)	117(3)
C(123)	5246(13)	1099(12)	9621(5)	112(5)
C(124)	4043(14)	2648(13)	9722(6)	81(5)
C(125)	4380(20)	2950(20)	9394(11)	173(11)
C(1B3)	5226(12)	1566(11)	9406(5)	43(4)
C(1B4)	4222(15)	1761(13)	9634(6) 10125(8)	66(5)
C(1DJ) C(1C6)	3000(20)	1914(15) 3330(20)	9688(0)	48(J) 87(R)
0(100)	5070(20)	5550(20)	7000(7)	02(0)

Al(1)-O(5)	1.702(4)	C(7)-C(12)	1.39(1)
$A_1(1) - O(16)$	1 705(4)	C(8)- $C(9)$	1.41(1)
$A_1(1) = O(10)$	1.705(4)	C(0) - C(10)	1.71(1)
AI(1)-O(4)	1.787(4)	C(9)=C(10)	1.5/(1)
Al(1)-O(1)	1.799(4)	C(10)-C(11)	1.36(2)
Al(2)-O(7)	1.697(4)	C(11)-C(12)	1.41(1)
Al(2)-O(8)	1.702(4)	C(13)-C(18)	1.384(9)
A1(2) - O(2)	1 797(4)	C(13)- $C(14)$	1 400(8)
A1(2) - O(2)	1.709(4)	C(14) C(15)	1.400(0)
AI(2) - O(1)	1.798(4)	C(14)-C(15)	1.579(9)
AI(3)-O(11)	1.689(3)	C(15)-C(16)	1.353(9)
Al(3)-O(10)	1.689(3)	C(16)-C(17)	1.353(9)
Al(3)-O(2)	1.785(4)	C(17)-C(18)	1.394(9)
A1(3)-O(3)	1 792(3)	C(19)-C(20)	1.38(1)
$A_1(4) O(13)$	1 608(3)	C(19) C(24)	1 30(1)
$A_1(4) = O(13)$	1.090(3)	C(20) $C(21)$	1.37(1)
AI(4)-O(14)	1.098(4)	C(20)-C(21)	1.59(1)
AI(4)-O(3)	1.789(3)	C(21)-C(22)	1.38(2)
Al(4)-O(4)	1.796(4)	C(22)-C(23)	1.34(2)
Si(1)-O(5)	1.598(4)	C(23)-C(24)	1.40(1)
Si(1)-O(6)	1.626(5)	C(25)-C(30)	1.36(1)
Si(1) = C(7)	1.862(7)	C(25) - C(26)	1 380(8)
$S_{1}(1) - C_{1}(1)$	1.002(7)	C(25) - C(20)	1.300(0)
SI(1)-C(1)	1.804(7)	C(26)-C(27)	1.405(8)
S1(2)-O(7)	1.593(4)	C(27)-C(28)	1.35(1)
Si(2)-O(6)	1.632(5)	C(28)-C(29)	1.29(1)
Si(2)-C(19)	1.862(6)	C(29)-C(30)	1.43(1)
Si(2)-C(13)	1.876(7)	C(31)-C(32)	1.30(1)
Si(3)-O(8)	1 593(4)	C(31)- $C(36)$	1 36(1)
Si(3) O(0)	1.630(4)	C(32) C(33)	1.50(1)
SI(3)-U(9)	1.050(4)	C(32) - C(33)	1.43(1)
$S_1(3)-C(31)$	1.854(6)	C(33)-C(34)	1.26(1)
Si(3)-C(25)	1.866(6)	C(34)-C(35)	1.29(1)
Si(4)-O(10)	1.600(3)	C(35)-C(36)	1.37(1)
Si(4)-O(9)	1 637(3)	C(37)-C(42)	1 391(7)
Si(4) = C(37)	1 856(5)	C(37) - C(38)	1 405(7)
SI(4) - C(37)	1.050(5)	C(37) - C(38)	1.403(7)
S1(4)-C(45)	1.858(5)	C(38)-C(39)	1.380(7)
$S_1(5)-O(11)$	1.595(4)	C(39)-C(40)	1.359(9)
Si(5)-O(12)	1.635(4)	C(40)-C(41)	1.394(8)
Si(5)-C(55)	1.854(6)	C(41)-C(42)	1.368(8)
Si(5)-C(49)	1.887(6)	C(43)-C(48)	1.384(7)
Si(6)-O(13)	1 601(3)	C(43)-C(44)	1 396(7)
$S_{1}(6) O(12)$	1 630(4)	C(44) C(45)	1 404(8)
SI(0) - O(12)	1.039(4)	C(44) - C(45)	1.404(8)
S1(6)-C(67)	1.848(0)	C(45)-C(46)	1.300(8)
$S_1(6)-C(61)$	1.868(5)	C(46)-C(47)	1.378(8)
Si(7)-O(14)	1.606(4)	C(47)-C(48)	1.400(7)
Si(7)-O(15)	1.635(3)	C(49)-C(50)	1.38(1)
Si(7)-C(73)	1.873(6)	C(49) - C(54)	1.397(9)
$S_{i}(7) = C(79)$	1 881(5)	C(50) - C(51)	1.0000(0)
$S_{1}(7) C_{1}(7)$	1.600(4)	C(51) $C(52)$	1.71(1) 1.27(2)
51(8)-0(15)	1.000(4)	C(51)- $C(52)$	1.37(2)
S1(8)-O(15)	1.62/(4)	C(52)-C(53)	1.32(1)
Si(8)-C(91)	1.864(5)	C(53)-C(54)	1.397(9)
Si(8)-C(85)	1.865(5)	C(55)-C(60)	1.35(1)
C(1)-C(6)	1.353(9)	C(55)-C(56)	1.353(8)
C(1)-C(2)	1.38(1)	C(56)-C(57)	1.385(9)
C(2)-C(3)	1 41(1)	C(57)- $C(58)$	1 30(1)
C(3) - C(4)	1 37(1)	C(58) - C(59)	1 30(1)
C(4) C(5)	1.37(1) 1.22(1)	C(50) - C(57)	1.37(1) 1.25(1)
C(4)-C(5)	1.32(1)	C(39)-C(00)	1.33(1)
C(5)-C(6)	1.41(1)	C(61)-C(66)	1.373(8)
C(7)-C(8)	1.36(1)	C(61)-C(62)	1.383(8)
C(62)-C(63)	1.396(8)	C(113)-C(114)	1.40(1)
C(63)-C(64)	1.38(1)	C(113)-C(119)	1.55(2)
C(64)- $C(65)$	1 39(1)	C(114)- $C(115)$	1 37(1)
C(65) C(66)	1 420(8)	C(115) C(116)	1.26(1)
C(03) - C(00)	1.429(8)	C(115) - C(110)	1.30(1)
C(0/)-C(72)	1.375(8)	C(116)-C(117)	1.39(2)
C(67)-C(68)	1.405(8)	C(117)-C(118)	1.35(2)
C(68)-C(69)	1.38(1)	C(120)-C(121)	1.21(1)
C(69)-C(70)	1.37(1)	C(120)-C(124)	1.53(2)
C(70)-C(71)	1.35(1)	C(120)-C(125)	1.66(3)
C(71)- $C(72)$	1 38(1)	C(120) - C(1B5)	2 00(2)
C(71)- $C(72)$	1.30(1)	C(120)- $C(1D5)$	2.00(2)
U(73) - U(78)	1.384(8)	C(121)-C(1B5)	0.91(2)
C(73)-C(74)	1.384(8)	C(121)-C(122)	1.58(1)
C(74)-C(75)	1.408(8)	C(122)-C(123)	1.30(2)
C(75)-C(76)	1.37(1)	C(122)-C(1B5)	1.62(2)

 Tabelle 33: Bindungslängen [Å] und Winkel [°] für sh2822a.

C(76)-C(77)	1.38(1)	C(122)-C(1B3)	1.62(2)
C(77)-C(78)	1.387(8)	C(123)-C(1B3)	0.91(2)
C(79)-C(84)	1.388(7)	C(123)-C(1B4)	1.45(2)
C(79)-C(80)	1.392(8)	C(124)-C(125) C(124)-C(1C6)	1.13(3) 1.41(3)
C(81)-C(82)	1.398(9)	C(124)-C(1E0) C(124)-C(1B4)	1.36(2)
C(82)-C(83)	1.370(9)	C(124)-C(1B3)	2.00(2)
C(83)-C(84)	1.393(8)	C(125)-C(1C6)	1.80(4)
C(85)-C(86)	1.388(8)	C(125)-C(1B3)	2.02(3)
C(85)-C(90)	1.398(8)	C(1B3)-C(1B4)	1.41(2)
C(80)-C(87)	1.393(8)	O(5) - A(1) - O(16)	117.4(2)
C(88)-C(89)	1.35(1)	O(5)-Al(1)-O(4)	108.8(2)
C(89)-C(90)	1.388(8)	O(16)-Al(1)-O(4)	110.5(2)
C(91)-C(96)	1.387(8)	O(5)-Al(1)-O(1)	109.6(2)
C(91)-C(92)	1.397(8)	O(16)-Al(1)-O(1)	106.9(2)
C(92)- $C(93)$	1.377(8)	O(4)-AI(1)-O(1) O(7) AI(2) $O(8)$	102.7(2)
C(94)-C(95)	1.373(9)	O(7)-Al(2)-O(8) O(7)-Al(2)-O(2)	104 1(2)
C(95)-C(96)	1.397(9)	O(8)-Al(2)-O(2)	110.7(2)
O(17)-C(98)	1.28(1)	O(7)-Al(2)-O(1)	110.2(2)
O(18)-C(98)	1.255(8)	O(8)-Al(2)-O(1)	103.6(2)
O(18)-C(99)	1.56(1)	O(2)-Al(2)-O(1)	108.0(2)
C(97)-C(98) C(99)-C(100)	1.44(1) 1.45(2)	O(11)-Al(3)-O(10) O(11)-Al(3)-O(2)	116.9(2) 107.2(2)
C(100)- $C(101)$	1.45(2)	O(11)-Al(3)-O(2) O(10)-Al(3)-O(2)	107.2(2) 110.6(2)
C(101)-C(102)	1.46(3)	O(11)-Al(3)-O(3)	110.9(2)
C(102)-O(19)	1.51(2)	O(10)-Al(3)-O(3)	108.7(2)
C(103)-O(20)	1.221(7)	O(2)-Al(3)-O(3)	101.6(2)
C(103)-O(19) C(102) $C(104)$	1.29(1)	O(13)-AI(4)-O(14) O(12)-AI(4)-O(2)	118.5(2)
O(21)-C(104)	1.40(1)	O(13)-AI(4)-O(3) O(14)-AI(4)-O(3)	110.1(2) 105.1(2)
O(22)-C(106)	1.334(7)	O(14) $Al(4)$ $O(3)O(13)$ - $Al(4)$ - $O(4)$	104.4(2)
O(22)-C(107)	1.459(7)	O(14)-Al(4)-O(4)	112.0(2)
C(105)-C(106)	1.509(8)	O(3)-Al(4)-O(4)	106.4(2)
C(107)-C(108)	1.491(9)	O(5)-Si(1)-O(6)	114.1(2)
C(108)- $C(109)C(100)$ $C(110)$	1.518(9)	O(5)-Si(1)-C(7)	109.3(3) 107.4(3)
C(109)-C(110) C(110)-O(23)	1.430(9)	O(5)-Si(1)-C(1)	107.4(3)
C(111)-O(24)	1.194(8)	O(6)-Si(1)-C(1)	106.3(3)
C(111)-O(23)	1.372(9)	C(7)-Si(1)-C(1)	111.1(3)
C(111)-C(112)	1.47(1)	O(7)-Si(2)-O(6)	110.5(2)
C(113)-C(118)	1.29(1)	$O(7)-S_1(2)-C(19)$	110.5(2)
O(0)-SI(2)-C(19) O(7)-Si(2)-C(13)	107.8(5)	C(0)-C(1)-Si(1) C(2)-C(1)-Si(1)	124.1(7) 120 5(5)
O(6)-Si(2)-C(13)	110.5(2)	C(1)-C(2)-C(3)	123.0(8)
C(19)-Si(2)-C(13)	108.9(3)	C(4)-C(3)-C(2)	118(1)
O(8)-Si(3)-O(9)	111.3(2)	C(5)-C(4)-C(3)	121(1)
O(8)-Si(3)-C(31)	109.5(3)	C(4)-C(5)-C(6)	120(1)
O(9)-Si(3)-C(31) O(8)-Si(3)-C(25)	109.8(2)	C(1)-C(6)-C(5) C(8)-C(7)-C(12)	123.0(9)
O(9)-Si(3)-C(25)	109.0(2)	C(8)-C(7)-S(12)	123.0(5)
C(31)-Si(3)-C(25)	110.9(3)	C(12)-C(7)-Si(1)	120.5(7)
O(10)-Si(4)-O(9)	111.6(2)	C(7)-C(8)-C(9)	124.8(8)
O(10)-Si(4)-C(37)	109.3(2)	C(10)-C(9)-C(8)	117(1)
O(9)-Si(4)-C(37) O(10) Si(4) $C(42)$	107.1(2)	C(11)-C(10)-C(9)	120.4(9)
O(10)-SI(4)-C(43) O(9)-Si(4)-C(43)	109.9(2) 108.3(2)	C(10)-C(11)-C(12) C(7)-C(12)-C(11)	122(1) 120(1)
C(37)-Si(4)-C(43)	110.6(2)	C(18)-C(13)-C(14)	116.0(6)
O(11)-Si(5)-O(12)	110.6(2)	C(18)-C(13)-Si(2)	123.5(4)
O(11)-Si(5)-C(55)	110.8(2)	C(14)-C(13)-Si(2)	120.6(5)
O(12)-Si(5)-C(55)	109.9(2)	C(15)-C(14)-C(13)	121.8(7)
O(11)-S1(5)-C(49) O(12) Si(5) C(49)	109.3(2)	C(16)-C(15)-C(14) C(17)-C(15)-C(15)	120.0(6)
C(12)-SI(3)-C(49) C(55)-Si(5)-C(49)	107.3(2) 108 5(3)	C(17)-C(10)-C(13) C(16)-C(17)-C(18)	120.0(7)
O(13)-Si(6)-O(12)	110.5(2)	C(13)-C(18)-C(17)	121.8(6)
O(13)-Si(6)-C(67)	110.0(2)	C(20)-C(19)-C(24)	116.9(7)
O(12)-Si(6)-C(67)	109.8(2)	C(20)-C(19)-Si(2)	120.1(6)
O(13)-Si(6)-C(61) O(12) Si(6) C(61)	110.0(2)	C(24)-C(19)-Si(2)	122.9(6)
C(12)-SI(0)-C(01) C(67)-Si(6)-C(61)	105.5(2) 111.2(3)	C(19)-C(20)-C(21) C(22)-C(21)-C(20)	121(1) 121(1)
O(14)-Si(7)-O(15)	110.1(2)	C(22) - C(21) - C(20) C(23) - C(22) - C(21)	118.5(8)
			. ,

O(14)-Si(7)-C(73)	109.7(2)	C(22)-C(23)-C(24)	122(1)
O(15)-Si(7)-C(73)	109.0(2)	C(19)-C(24)-C(23)	120.9(9)
O(14)-Si(7)-C(79)	110.3(2)	C(30)-C(25)-C(26)	116.4(6)
O(15)-Si(7)-C(79)	105.6(2)	C(30)-C(25)-Si(3)	122.7(5)
C(73)-Si(7)-C(79)	112.1(3)	C(26)-C(25)-Si(3)	120.8(5)
O(16)-Si(8)-O(15)	113.1(2)	C(25)-C(26)-C(27)	122.3(7)
O(16)-Si(8)-C(91)	109.6(2)	C(28)-C(27)-C(26)	119.2(7)
O(15)-Si(8)-C(91)	108.1(2)	C(29)-C(28)-C(27)	119.3(9)
O(16)-S1(8)-C(85)	109.9(2)	C(28)- $C(29)$ - $C(30)$	123(1)
O(15)-S1(8)-C(85)	104.7(2)	C(25)-C(30)-C(29)	112.2(7)
(91)- $SI(8)$ - $C(83)$	111.3(2) 122.0(2)	C(32)- $C(31)$ - $C(30)$	112.3(7) 122.4(6)
$A_1(2) - O(1) - A_1(1)$ $A_1(3) - O(2) - A_1(2)$	132.9(2) 132.1(2)	C(36)-C(31)-Si(3)	122.4(0) 125 3(6)
$A_1(3) - O(2) - A_1(2)$ $A_1(4) - O(3) - A_1(3)$	132.0(2)	C(31)-C(32)-C(33)	123.5(0) 121 5(9)
$A_1(4) - O(3) - A_1(3)$ $A_1(1) - O(4) - A_1(4)$	132.0(2)	C(34)-C(32)-C(32)	121.3(9) 121.8(9)
Si(1)-O(5)-Al(1)	159.8(3)	C(33)-C(34)-C(35)	119(1)
Si(1)-O(6)-Si(2)	144.7(2)	C(34)-C(35)-C(36)	119(1)
Si(2)-O(7)-Al(2)	158.8(3)	C(31)-C(36)-C(35)	126(1)
Si(3)-O(8)-Al(2)	158.2(2)	C(42)-C(37)-C(38)	115.4(5)
Si(3)-O(9)-Si(4)	141.8(2)	C(42)-C(37)-Si(4)	121.5(4)
Si(4)-O(10)-Al(3)	162.6(3)	C(38)-C(37)-Si(4)	123.1(4)
Si(5)-O(11)-Al(3)	163.5(3)	C(39)-C(38)-C(37)	121.9(5)
Si(5)-O(12)-Si(6)	137.1(2)	C(40)-C(39)-C(38)	120.4(6)
Si(6)-O(13)-Al(4)	156.6(2)	C(39)-C(40)-C(41)	119.6(6)
Si(7)-O(14)-Al(4)	160.8(2)	C(42)-C(41)-C(40)	119.2(6)
Si(8)-O(15)-Si(7)	141.8(2)	C(41)-C(42)-C(37)	123.4(5)
$S_1(8)-O(16)-Al(1)$	154.0(2)	C(48)- $C(43)$ - $C(44)$	117.0(5)
C(6)-C(1)-C(2)	115.4(7)	C(48)- $C(43)$ -S1(4)	121.3(4)
C(44)- $C(43)$ - $S1(4)$	121.7(4)	C(85)-C(80)-C(87)	121.5(0)
C(45)-C(44)-C(45) C(46)-C(45)-C(44)	120.9(3) 120.4(6)	C(80)-C(87)-C(80)	119.0(7)
C(45)-C(45)-C(47)	120.4(0)	C(88)- $C(89)$ - $C(90)$	120.0(0) 120.4(7)
C(46)- $C(47)$ - $C(48)$	119 2(5)	C(89)-C(90)-C(85)	120.4(7)
C(43)-C(48)-C(47)	122.4(5)	C(96)-C(91)-C(92)	116.7(5)
C(50)-C(49)-C(54)	118.2(6)	C(96)-C(91)-Si(8)	122.0(5)
C(50)-C(49)-Si(5)	120.4(5)	C(92)-C(91)-Si(8)	121.2(4)
C(54)-C(49)-Si(5)	121.3(5)	C(93)-C(92)-C(91)	123.5(6)
C(49)-C(50)-C(51)	118.9(9)	C(94)-C(93)-C(92)	118.5(7)
C(52)-C(51)-C(50)	122(1)	C(93)-C(94)-C(95)	120.5(6)
C(53)-C(52)-C(51)	118.6(9)	C(94)-C(95)-C(96)	119.6(7)
C(52)-C(53)-C(54)	122.5(9)	C(91)-C(96)-C(95)	121.2(7)
C(53)-C(54)-C(49)	119.8(7)	C(98)-O(18)-C(99)	117.9(7)
C(60)-C(55)-C(56)	114.1(6)	O(18)-C(98)-O(17)	120.2(9)
C(60)-C(55)-Si(5)	122.2(5)	O(18)-C(98)-C(97)	118.1(8)
C(56)-C(55)-S1(5)	123.8(4)	O(17)-C(98)-C(97)	121.7(7)
C(55)-C(50)-C(57)	124.2(0)	C(100)- $C(99)$ - $O(18)$	124(1) 116(2)
C(58)-C(57)-C(58)	120.3(7) 117.2(8)	C(101)- $C(100)$ - $C(99)$	110(2)
C(57)-C(58)-C(59)	117.2(8)	C(100)-C(101)-C(102) C(101)-C(102)-O(19)	$\frac{99(2)}{116(2)}$
C(55)-C(60)-C(59)	121(1) 1224(9)	O(20)-C(102)-O(19)	170(2) 122 6(8)
C(66)-C(61)-C(62)	118.3(5)	O(20)-C(103)-C(104)	121.4(8)
C(66)-C(61)-Si(6)	119.9(4)	O(19)-C(103)-C(104)	115.9(8)
C(62)-C(61)-Si(6)	121.8(5)	C(103)-O(19)-C(102)	117(1)
C(61)-C(62)-C(63)	121.9(7)	C(106)-O(22)-C(107)	115.1(4)
C(64)-C(63)-C(62)	118.9(7)	O(21)-C(106)-O(22)	123.1(6)
C(63)-C(64)-C(65)	121.7(6)	O(21)-C(106)-C(105)	124.3(6)
C(64)-C(65)-C(66)	117.0(7)	O(22)-C(106)-C(105)	112.6(5)
C(61)-C(66)-C(65)	122.2(6)	O(22)-C(107)-C(108)	107.5(5)
C(72)-C(67)-C(68)	115.2(6)	C(107)-C(108)-C(109)	111.3(7)
C(72)-C(67)-Si(6)	121.6(5)	C(110)-C(109)-C(108)	112.8(6)
C(68)-C(67)-S1(6)	125.1(5)	C(109)-C(110)-O(23)	114.7(7)
C(69)-C(68)-C(67)	121.2(7)	O(24)- $C(111)$ - $O(23)$	120.6(9)
C(70)-C(09)-C(08)	121.3(7) 117.6(8)	O(24)-C(111)-C(112) O(22)-C(111)-C(112)	123.0(7)
C(71)-C(70)-C(72)	11/.0(0)	O(25)-O(111)-O(112) O(111) O(23) O(110)	113.8(0)
C(70)-C(71)-C(72)	121.0(0) 122 7(7)	C(111)-O(23)-C(110) C(118)-C(113)-C(114)	120(1)
C(78)-C(73)-C(74)	118 8(5)	C(118)-C(113)-C(119)	114(1)
C(78)-C(73)-Si(7)	121.5(4)	C(114)-C(113)-C(119)	125(1)
C(74)-C(73)-Si(7)	119.5(5)	C(115)-C(114)-C(113)	123(1)
C(73)-C(74)-C(75)	119.9(6)	C(116)-C(115)-C(114)	115(1)
C(76)-C(75)-C(74)	119.7(7)	C(115)-C(116)-C(117)	120(1)
C(75)-C(76)-C(77)	121.1(6)	C(118)-C(117)-C(116)	122(1)

C(76)-C(77)-C(78)	118.9(7)	C(113)-C(118)-C(117)	119(1)
C(73)-C(78)-C(77)	121.5(6)	C(121)-C(120)-C(124)	111(1)
C(84)-C(79)-C(80)	117.6(5)	C(121)-C(120)-C(125)	115(1)
C(84)-C(79)-Si(7)	121.5(4)	C(124)-C(120)-C(125)	41(1)
C(80)-C(79)-Si(7)	120.8(4)	C(121)-C(120)-C(1B5)	16.6(8)
C(79)- $C(80)$ - $C(81)$	121.5(6)	C(124)-C(120)-C(1B5)	118(1)
C(80)- $C(81)$ - $C(82)$	119.2(6)	C(125)-C(120)-C(1B5)	130(1)
C(83)-C(82)-C(81)	120 1(6)	C(1B5)-C(121)-C(120)	141(2)
C(82)- $C(83)$ - $C(84)$	119.8(6)	C(1B5) - C(121) - C(122)	76(1)
C(79)- $C(84)$ - $C(83)$	121 7(6)	C(120)-C(121)-C(122)	132(1)
C(86)-C(85)-C(90)	117 6(5)	C(123)-C(122)-C(121)	102(1)
C(86) C(85) S(8)	121 8(4)	C(123) - C(122) - C(121) C(123) - C(122) - C(1B5)	135(2)
C(80) - C(85) - Si(8)	121.0(4) 120.6(4)	C(123)- $C(122)$ - $C(1B5)$	133(2) 33 1(8)
C(90)- $C(85)$ - $SI(8)$	24.0(8)	C(121)- $C(122)$ - $C(1B3)$	55.1(6)
C(123)-C(122)-C(1B3)	34.0(8)		
C(121)-C(122)-C(1B3)	86.6(9)		
C(1B5)-C(122)-C(1B3)	119(1)		
C(1B3)-C(123)-C(122)	93(2)		
C(1B3)-C(123)-C(1B4)	69(2)		
C(122)-C(123)-C(1B4)	128(2)		
C(125)-C(124)-C(1C6)	90(2)		
C(125)-C(124)-C(1B4)	108(2)		
C(1C6)-C(124)-C(1B4)	116(2)		
C(125)-C(124)-C(120)	76(2)		
C(1C6)-C(124)-C(120)	120(2)		
C(1B4)-C(124)-C(120)	124(2)		
C(125)-C(124)-C(1B3)	74(2)		
C(1C6)-C(124)-C(1B3)	144(2)		
C(1B4)-C(124)-C(1B3)	45(1)		
C(120)-C(124)-C(1B3)	87(1)		
C(124)-C(125)-C(120)	63(2)		
C(124)-C(125)-C(1C6)	51(2)		
C(120)-C(125)-C(1C6)	940		
C(124)-C(125)-C(1B3)	73(2)		
C(120)-C(125)-C(1B3)	84(1)		
C(1C6)-C(125)-C(1B3)	117(2)		
C(123)-C(1B3)-C(1B4)	74(2)		
C(123)- $C(1B3)$ - $C(122)$	53(1)		
C(1B4)-C(1B3)-C(122)	108(1)		
C(123)-C(1B3)-C(124)	102(2)		
C(1B4)-C(1B3)-C(124)	43(1)		
C(122) C(1B3) C(124)	102(1)		
C(122)- $C(1D3)$ - $C(124)$	102(1) 124(2)		
C(123)-C(1B3)-C(123)	70(1)		
C(122) C(123) - C(123)	70(1)		
C(122)- $C(1B3)$ - $C(123)$	110(1)		
C(124)-C(1B3)-C(125)	32.6(9)		
C(1D3)-C(1D4)-C(124)	92(2)		
C(1B3)-C(1B4)-C(123)	37.1(9)		
C(124)-C(1B4)-C(123)	114(2)		
C(121)-C(1B5)-C(122)	71(2)		
C(121)-C(1B5)-C(120)	22(1)		
C(122)-C(1B5)-C(120)	89(1)		
C(124)-C(1C6)-C(125)	39(1)		

Tabelle 34: Anisotropische Auslenkungsaparameter (Å 2 x 10 3) für sh2822a. Der anisotropische Exponentfaktor des Auslenkungsparameter lautet: $-2\pi^2$ [$h^2 a^{*2} U^{11} + ... + 2 h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Al(1)	21(1)	33(1)	50(1)	19(1)	-17(1)	-16(1)
Al(2)	15(1)	28(1)	50(1)	17(1)	-8(1)	-8(1)
Al(3)	19(1)	24(1)	37(1)	10(1)	-13(1)	-12(1)
Al(4)	33(1)	27(1)	39(1)	12(1)	-21(1)	-24(1)
Si(1)	22(1)	38(1)	95(1)	28(1)	-31(1)	-13(1)
Si(2)	15(1)	29(1)	86(1)	24(1)	-10(1)	-9(1)
Si(3)	26(1)	23(1)	42(1)	6(1)	-2(1)	-10(1)
Si(4)	21(1)	23(1)	32(1)	6(1)	-9(1)	-11(1)

Si(5)	28(1)	26(1)	50(1)	16(1)	-16(1)	-18(1)
Si(6)	44(1)	$\frac{28(1)}{28(1)}$	53(1)	16(1)	-33(1)	-27(1)
$\mathbf{S}_{\mathbf{i}}(7)$	$\frac{1}{21(1)}$	26(1)	35(1)	R(1)	15(1)	$\frac{27(1)}{10(1)}$
51(7)	31(1) 37(1)	20(1)	$\frac{30(1)}{42(1)}$	12(1)	-15(1)	-1)(1)
51(8)	27(1)	27(1)	43(1)	15(1)	-13(1)	-19(1)
0(1)	19(2)	28(2)	44(2)	9(2)	-8(2)	-9(2)
O(2)	21(2)	29(2)	55(2)	15(2)	-13(2)	-12(2)
O(3)	20(2)	26(2)	33(2)	4(2)	-14(2)	-15(2)
O(4)	26(2)	30(2)	50(2)	14(2)	-23(2)	-21(2)
O(5)	26(2)	58(3)	76(3)	31(2)	-29(2)	-20(2)
0(6)	23(2)	35(2)	92(3)	17(2)	-22(2)	-15(2)
O(7)	15(2)	40(2)	75(3)	20(2)	-9(2)	-6(2)
O(8)	$\frac{15(2)}{26(2)}$	$\frac{40(2)}{32(2)}$	44(2)	12(2)	12(2)	8(2)
O(8)	20(2)	32(2)	$\frac{44(2)}{20(2)}$	$\frac{12(2)}{8(2)}$	-12(2) 10(2)	-0(2)
0(9)	21(2)	23(2)	39(2)	8(2) 2(2)	-10(2)	-12(2)
O(10)	31(2)	31(2)	36(2)	2(2)	-18(2)	-11(2)
O(11)	38(2)	29(2)	52(2)	14(2)	-17(2)	-23(2)
O(12)	33(2)	34(2)	59(2)	19(2)	-28(2)	-26(2)
O(13)	56(3)	33(2)	50(2)	15(2)	-33(2)	-36(2)
O(14)	41(2)	32(2)	37(2)	8(2)	-15(2)	-24(2)
O(15)	30(2)	28(2)	44(2)	6(2)	-19(2)	-19(2)
O(16)	33(2)	30(2)	43(2)	12(2)	-12(2)	-22(2)
$\mathbf{C}(1)$	38(4)	42(4)	97(6)	34(4)	-38(4)	-20(3)
C(2)	62(5)	74(6)	107(7)	44(5)	-61(5)	-37(5)
C(2)	114(9)	90(6)	107(7)	42(5)	75(6)	55(6)
C(3)	114(0)	30(0)	100(7)	42(3)	-73(0)	-55(0)
C(4)	115(11)	74(7)	190(12)	/0(7)	-122(10)	-58(8)
C(5)	51(6)	64(7)	205(12)	42(7)	-/1(8)	-27(6)
C(6)	33(4)	57(5)	141(7)	26(5)	-51(5)	-15(4)
C(7)	37(4)	45(4)	132(7)	41(4)	-50(4)	-25(4)
C(8)	58(6)	48(5)	158(8)	42(5)	-50(6)	-26(5)
C(9)	86(7)	35(4)	169(9)	30(5)	-64(7)	-21(5)
C(10)	115(10)	68(7)	205(12)	52(8)	-92(9)	-62(7)
CÌIÍ	136(12)	80(8)	211(13)	40(8)	-17(9)	-83(9)
$\hat{C}(12)$	79(7)	77(6)	175(10)	43(6)	-17(6)	-56(6)
C(12)	19(3)	43(4)	70(4)	28(3)	-14(3)	-16(3)
C(14)	28(4)	37(4)	124(6)	$\frac{20(3)}{3(4)}$	10(4)	15(3)
C(14)	20(4)	37(4)	124(0)	-3(4)	10(4)	-13(3)
C(15)	42(3)	42(4)	123(7)	-2(4)	-3(4)	-20(4)
C(16)	39(4)	42(4)	82(5)	1(3)	-18(4)	-11(4)
$C(\Gamma/)$	29(4)	84(6)	60(4)	0(4)	-6(3)	-20(4)
C(18)	30(4)	66(5)	55(4)	13(3)	-11(3)	-25(4)
C(19)	21(4)	32(3)	121(6)	24(4)	-4(4)	-10(3)
C(20)	55(6)	185(11)	202(11)	164(10)	-50(7)	-69(7)
C(21)	62(7)	141(10)	213(13)	131(9)	-24(7)	-46(7)
C(22)	58(6)	34(4)	211(12)	-29(6)	61(8)	-31(5)
C(23)	101(8)	162(11)	161(10)	-110(9)	75(8)	-119(9)
C(24)	48(5)	94(6)	108(6)	-66(5)	38(4)	-53(5)
C(25)	31(4)	22(3)	73(4)	2(3)	6(3)	-11(3)
C(26)	51(+) 68(5)	22(3) 25(3)	15(4)	2(3)	3(3)	15(3)
C(20)	72(6)	$\frac{23(3)}{12(2)}$	40(4)	-2(3)	-3(3)	-13(3)
C(27)	72(0)	13(3)	91(3)	4(3)	0(4)	-7(4)
C(28)	27(5)	31(5)	430(20)	15(8)	-13(8)	-12(5)
C(29)	72(8)	31(5)	770(40)	9(12)	-156(15)	-23(6)
C(30)	46(6)	21(4)	450(20)	7(7)	-86(9)	-17(4)
C(31)	50(4)	29(3)	54(4)	-8(3)	10(3)	-20(3)
C(32)	105(9)	350(20)	106(8)	-116(10)	58(7)	-164(12)
C(33)	133(11)	390(20)	121(10)	-104(12)	53(8)	-202(15)
C(34)	139(11)	108(8)	77(7)	-33(5)	51(7)	-86(8)
C(35)	88(8)	171(12)	63(6)	36(7)	2(6)	-10(8)
C(36)	44(5)	268(15)	46(5)	49(7)	-8(4)	-20(8)
C(37)	20(3)	33(3)	29(3)	12(2)	-9(2)	-12(3)
C(38)	28(3)	28(3)	48(3)	$\frac{12(2)}{4(3)}$	-11(3)	-10(3)
C(30)	20(3)	28(J) 52(4)	40(3)	4(3)	-11(3)	-10(3)
C(39)	31(4)	55(4)	60(4) 55(4)	12(3)	-20(5)	-24(3)
C(40)	28(4)	54(4)	55(4)	17(3)	-13(3)	-18(3)
C(41)	31(4)	36(3)	52(4)	-2(3)	-7(3)	-1(3)
C(42)	27(3)	28(3)	53(4)	1(3)	-10(3)	-10(3)
C(43)	21(3)	21(3)	37(3)	4(2)	-6(2)	-7(2)
C(44)	33(4)	72(5)	49(4)	23(3)	-16(3)	-35(4)
C(45)	56(5)	126(7)	61(4)	46(4)	-32(4)	-67(5)
C(46)	44(4)	79(5)	48(4)	27(4)	-10(3)	-32(4)
C(47)	50(4)	66(4)	42(4)	21(3)	-20(3)	-37(4)
C(48)	33(3)	52(4)	46(3)	15(3)	-17(3)	-27(3)
C(49)	45(4)	24(3)	78(5)	6(3)	-4(3)	-24(3)
C(50)	125(0)	$\frac{2}{110(8)}$	66(5)	35(5)	-5(5)	-90(7)
C(50)	123(3) 171(12)	110(0)	71(6)	21(6)	-3(3)	-03(1) 80(10)
C(51)	1/1(15)	119(9)	/1(0)	21(0)	22(1)	-60(10)
U(32)	94(9)	44(5)	182(12)	2(6)	53(9)	-37(6)

C(53)	36(4)	27(4)	142(8)	0(5)	12(5)	-17(4)
C(54)	32(4)	20(3)	107(6)	-1(3)	0(4)	-12(3)
C(55)	30(3)	32(3)	43(3)	9(3)	-13(3)	-13(3)
C(55)	28(4)	$\frac{32(3)}{40(4)}$	+3(3) 121(7)	(3)	24(4)	12(2)
C(30)	20(4)	40(4)	131(7)	-14(4)	-24(4)	-13(3)
C(57)	40(4)	43(4)	105(6)	0(4)	-15(4)	-13(4)
C(58)	71(6)	52(5)	189(10)	-26(6)	-97(7)	23(5)
C(59)	250(20)	75(8)	770(40)	-146(16)	-400(30)	79(10)
C(60)	184(13)	58(6)	520(30)	-98(10)	-295(17)	48(7)
C(61)	47(4)	10(2)	520(30)	12(2)	25(17)	+0(7)
C(61)	47(4)	19(3)	58(4)	13(3)	-35(3)	-19(3)
C(62)	45(4)	36(3)	85(5)	3(3)	-36(3)	-23(3)
C(63)	53(5)	62(5)	107(6)	-10(4)	-41(4)	-30(4)
C(64)	61(5)	58(5)	101(6)	-5(4)	-48(4)	-34(4)
C(65)	105(7)	49(4)	77(5)	8(4)	-63(5)	-34(5)
C(05)	105(7)	+)(+)	77(5)	10(4)	-03(3)	-34(3)
C(66)	61(5)	38(3)	74(5)	12(3)	-43(4)	-32(4)
C(67)	41(4)	47(4)	38(3)	18(3)	-23(3)	-25(3)
C(68)	52(5)	61(5)	101(6)	19(4)	-41(4)	-34(4)
C(69)	46(5)	93(7)	104(6)	39(5)	-38(4)	-35(5)
C(70)	10(5)	92(6)	69(5)	27(4)	20(4)	12(5)
C(70)	42(3)	03(0)	08(3)	27(4)	-30(4)	-13(3)
C(71)	68(6)	47(5)	102(6)	4(4)	-14(5)	-14(5)
C(72)	52(5)	46(4)	86(5)	7(4)	-19(4)	-23(4)
C(73)	52(4)	30(3)	47(3)	12(3)	-26(3)	-25(3)
C(74)	85(5)	61(4)	54(4)	15(3)	-43(4)	-54(4)
C(75)	110(7)	70(5)	94(4)	13(3)	-43(4)	-34(4)
C(75)	119(7)	70(5)	84(6)	21(4)	-/1(5)	-03(5)
C(76)	141(8)	50(4)	56(5)	17(4)	-61(5)	-52(5)
C(77)	101(7)	47(4)	44(4)	6(3)	-24(4)	-32(5)
C(78)	83(5)	51(4)	37(4)	6(3)	-23(3)	-38(4)
C(79)	29(3)	35(3)	37(3)	7(2)	-12(2)	-18(3)
	29(3)	35(3)	ST(S)	1(2)	-12(2)	-10(3)
C(80)	42(4)	36(3)	68(4)	-1(3)	-21(3)	-13(3)
C(81)	43(4)	42(4)	65(5)	5(3)	-13(4)	5(3)
C(82)	30(4)	75(5)	66(5)	14(4)	-22(3)	-17(4)
C(83)	38(4)	58(5)	77(5)	7(4)	-26(3)	-24(4)
C(84)	27(3)	37(3)	57(4)	0(3)	16(3)	15(3)
C(04)	27(3)	37(3)	57(4)	0(3)	-10(3)	-15(3)
C(85)	30(3)	27(3)	54(4)	10(3)	-16(3)	-1/(3)
C(86)	54(5)	36(4)	76(5)	10(3)	-14(4)	-27(4)
C(87)	83(6)	31(4)	104(6)	1(4)	-19(5)	-32(4)
C(88)	89(7)	66(6)	96(6)	26(4)	-29(5)	-65(6)
C(80)	55(5)	57(5)	100(6)	18(4)	$\frac{1}{10(4)}$	44(5)
C(89)	35(3)	57(5)	71(4)	10(4)	-10(4)	-44(3)
C(90)	45(4)	47(4)	71(4)	12(3)	-5(3)	-37(4)
C(91)	37(4)	46(4)	50(4)	25(3)	-24(3)	-30(3)
C(92)	51(4)	59(4)	48(4)	20(3)	-25(3)	-35(4)
C(93)	64(5)	91(6)	52(4)	24(4)	-25(4)	-48(5)
C(04)	76(6)	116(7)	52(1) 65(5)	41(5)	23(1) 52(5)	63(6)
C(94)	70(0)	110(7)	05(5)	41(5)	-52(5)	-03(0)
C(95)	66(6)	148(8)	81(6)	56(5)	-53(5)	-73(6)
C(96)	49(4)	82(5)	54(4)	31(4)	-29(3)	-37(4)
O(17)	72(4)	95(4)	118(5)	12(3)	-42(3)	-58(4)
0(18)	64(4)	130(6)	107(4)	24(4)	-40(3)	-65(4)
C(10)	04(4)	(7(5)	52(4)	24(4)	-40(3)	-05(+)
C(97)	80(6)	67(5)	52(4)	6(4)	-24(4)	-44(5)
C(98)	100(7)	114(7)	45(4)	22(4)	-27(4)	-90(7)
C(99)	70(7)	78(6)	154(9)	-18(6)	-22(6)	-47(6)
C(100)	250(20)	430(30)	136(12)	164(16)	-127(13)	-280(20)
C(101)	390(40)	750(60)	84(12)	30(20)	14(16)	-400(40)
C(101)	122(16)	102(12)	420(20)	00(16)	05(10)	9(12)
C(102)	155(10)	125(15)	430(30)	90(10)	83(18)	-8(12)
C(103)	82(6)	51(4)	62(5)	19(3)	-31(4)	-38(5)
C(104)	188(11)	63(6)	97(7)	13(5)	-28(7)	-86(7)
O(19)	85(6)	207(10)	188(8)	40(7)	-65(5)	-94(7)
O(20)	85(4)	13(3)	64(3)	12(2)	-21(3)	-36(3)
O(20)	0J(4) 44(2)	43(3)	(4(3))	12(2)	-21(3)	-30(3)
O(21)	44(5)	69(3)	64(3)	26(2)	-20(2)	-43(3)
O(22)	51(3)	55(3)	68(3)	6(2)	-16(2)	-41(3)
C(105)	101(7)	120(7)	62(5)	34(5)	-19(4)	-89(6)
C(106)	42(4)	51(4)	62(4)	17(3)	-12(3)	-34(4)
C(107)	73(5)	70(5)	57(4)	10(4)	_25(4)	_58(5)
C(107)	75(5)	17(3)	102(4)	10(4)	-23(4)	-30(3)
C(108)	75(6)	56(5)	102(6)	23(4)	-32(5)	-38(5)
C(109)	39(5)	76(6)	139(7)	54(5)	-38(5)	-35(4)
C(110)	33(4)	76(5)	81(5)	9(4)	-11(4)	-30(4)
cam	105(7)	90(6)	108(7)	58(5)	-79(6)	-85(6)
C(112)	70(6)	62(5)	116(7)	_12(5)	58(5)	22(5)
C(112)	79(0)	02(3)	110(7)	-12(3)	-30(3)	-25(5)
O(23)	71(4)	112(5)	110(4)	45(4)	-60(3)	-72(4)
O(24)	64(3)	113(4)	83(3)	37(3)	-47(3)	-74(3)
C(113)	117(10)	150(11)	79(6)	-9(6)	-4(6)	-70(9)
. ,	. ,	× /		× /	× /	

4 Daten zur Molekül- und Kristallstruktur von (Ph₂SiO)8[AIO(OH)]4 • 2 p-(C₅H4N)2 6

Tabelle 35: Kristalldaten und Strukturverfeinerungen für (Ph₂SiO)₈[AlO(OH)]₄ • 2 p-(C₅H₄N)₂ (sh2788)

Identifikationscode Summenformel Molmasse [g/mol] Messtemperatur [K] Wellenlänge [Å] Kristallsystem Raumgruppe Gitterkonstanten	sh2788 C124 H116 Al4 N4 O18 Si8 2282.85 152(2) 0.71073 monoklin P2(1)/n a = 19.7834(10) Å b = 28.4484(17) Å c = 23.5490(9) Å	$\alpha = 90^{\circ}$ $\beta = 101.813(2)^{\circ}$ $\gamma = 90^{\circ}$
Zellvolumen [Å ³] Anzahl der Formeleinheiten Z Dichte (berechnet) [g/cm ³]	12972.8(11) 4 1.169	
Absorptionskoeffizient [mm ⁻¹] F(000)	0.171 4784	
Kristallabmessungen [mm ³] Messbereich θ [°] hkl - Indexbereich Gemessene Reflexe Symmetrieunabhängige Reflexe Vollständigkeit des Datensatzes (bis θ = 26.38°) Absorptionskorrektur Max. und Min. Transmission	0.58 x 0.14 x 0.06 1.14 to 26.38 -24<=h<=24, -29<=k<=35, -27<=l<=29 74782 26337 [R(int) = 0.1213] 99.2 % Multiscan 0.9901 and 0.9073)
Strukturverfeinerungsmethode Daten / Einschränkungen / Parameter	Full-matrix least-squares on F ² 26337 / 0 / 1299	
Güte des Fit auf F ² Endgültige R-Werte [I>2sigma(I)] R-Werte (alle Daten)	1.885 R1 = 0.1479, wR2 = 0.3302 R1 = 0.2942, wR2 = 0.3562	
Restelektronendichte (min./max.) [e/Å-3]	1.199 and -0.610	

 Tabelle 36: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) für sh2788. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

	Х	У	Z	U(eq)
Al(1)	10761(1)	7468(1)	3262(1)	28(1)
Al(2)	10196(1)	6502(1)	3706(1)	30(1)
Al(3)	9126(1)	7115(1)	4243(1)	32(1)
Al(4)	9789(1)	8091(1)	3919(1)	34(1)
Si(1)	12173(1)	6952(1)	3285(1)	41(1)
Si(2)	11706(1)	6058(1)	3854(1)	41(1)
Si(3)	8956(1)	5744(1)	3224(1)	40(1)
Si(4)	7982(1)	6331(1)	3812(1)	40(1)
Si(5)	8847(2)	7580(1)	5410(1)	53(1)
Si(6)	9465(2)	8524(1)	5089(1)	57(1)
Si(7)	9876(2)	8894(1)	3035(1)	54(1)
Si(8)	10563(2)	8241(1)	2246(1)	49(1)
O(1)	10219(3)	6962(2)	3192(2)	29(1)
O(2)	9919(3)	6801(2)	4281(2)	29(2)
O(3)	9170(3)	7630(2)	3818(2)	31(2)
O(4)	10576(3)	7812(2)	3849(2)	31(2)
O(5)	11607(3)	7299(2)	3452(2)	33(2)
O(6)	12187(3)	6451(2)	3614(2)	46(2)
O(7)	10999(3)	6282(2)	3977(2)	37(2)
O(8)	9581(3)	6105(2)	3405(2)	40(2)
O(9)	8240(3)	5940(2)	3396(2)	43(2)
O(10)	8467(3)	6787(2)	3873(2)	38(2)
O(11)	9130(3)	7275(2)	4950(2)	44(2)
O(12)	9168(4)	8105(3)	5442(2)	66(2)

O(13)	9848(3)	8332(2)	4596(2)	44(2)
O(14)	9551(3)	8483(2)	3356(2)	36(2)
O(15)	10217(4)	8686(2)	2520(4)	82(3)
C(10)	13049(5)	7215(5)	2024(2)	$\frac{34(2)}{48(3)}$
C(2)	13628(5)	6931(5)	3670(5)	84(5)
C(3)	14280(7)	7129(7)	3818(6)	105(7)
C(4)	14340(7)	7615(8)	3792(5)	104(7)
C(5)	13773(7)	7894(6)	3619(6)	101(5)
C(6)	13140(6)	7695(6)	3500(5)	76(4)
C(7)	11985(4)	6851(3) 6675(4)	24/1(2) 2201(4)	64(4)
C(8)	11343(4)	6588(4)	1607(4)	118(7) 157(9)
C(10)	11705(7)	6677(4)	1284(2)	175(11)
C(11)	12346(6)	6853(4)	1555(4)	203(12)
C(12)	12486(4)	6940(4)	2148(4)	127(6)
C(13)	11484(5)	5562(3)	3320(3)	62(3)
C(14)	10943(6)	5263(4)	3367(4)	490(40)
C(15)	10/86(6)	4883(3)	2992(5)	133(6)
C(10)	11770(7)	5101(5)	2509(5)	274(18)
C(18)	11869(5)	5481(5)	2897(5)	221(13)
C(19)	12216(5)	5815(4)	4532(4)	48(3)
C(20)	11890(9)	5600(6)	4922(6)	123(7)
C(21)	12160(15)	5393(12)	5425(15)	250(20)
C(22)	12822(18)	5388(7)	5513(7)	178(14)
C(23)	132/0(7)	5586(8)	5224(9)	182(10)
C(24)	8753(5)	5645(3)	4035(3) 2425(4)	45(3)
C(26)	8095(6)	5549(3)	2118(4)	55(3)
C(27)	7935(8)	5506(4)	1513(5)	83(4)
C(28)	8490(9)	5541(4)	1211(5)	90(5)
C(29)	9152(8)	5648(5)	1502(5)	94(5)
C(30)	9281(7)	5698(4)	2098(5)	74(4)
C(31)	9190(5) 8007(5)	5158(3)	3605(4)	64(3) 104(5)
C(32)	9095(6)	4316(3)	3640(6)	104(3) 149(8)
C(34)	9566(7)	4309(4)	4166(6)	181(11)
C(35)	9848(8)	4728(5)	4412(5)	530(50)
C(36)	9660(7)	5152(4)	4132(5)	238(14)
C(37)	7109(4)	6516(3)	3443(4)	60(3)
C(38)	6/55(5)	6856(3) 7014(3)	3690(3)	76(4) 94(5)
C(39)	5828(5)	6832(5)	2850(6)	244(15)
C(41)	6182(7)	6492(5)	2602(5)	970(90)
C(42)	6822(6)	6334(4)	2899(5)	256(16)
C(43)	7992(6)	6058(3)	4539(3)	67(4)
C(44)	8602(5)	5939(5)	4920(5)	222(13)
C(45)	8581(7)	5745(5)	5458(4)	360(20)
C(40) C(47)	7930(9) 7340(7)	5788(6)	5234(6)	143(8) 330(20)
C(48)	7360(5)	5982(6)	4697(6)	370(20)
C(49)	9134(5)	7325(4)	6142(4)	49(3)
C(50)	9128(6)	7576(4)	6644(4)	68(4)
C(51)	9317(7)	7368(6)	7195(4)	85(5)
C(52)	9544(7)	6924(7)	7265(6)	94(5)
C(53)	9354(6)	6840(5)	0/83(0) 6227(5)	95(5) 87(5)
C(55)	7889(6)	7621(6)	5224(4)	80(5)
C(56)	7515(7)	7912(5)	4830(6)	94(5)
C(57)	6810(9)	7891(7)	4653(8)	116(7)
C(58)	6445(10)	7569(10)	4887(7)	148(11)
C(59)	6773(8)	7304(9)	5277(7)	172(10)
C(60)	7510(7)	7283(8)	5462(5)	154(9)
C(01)	8094(5) 8528(6)	8904(3) 9077(4)	4//8(4) 4222(5)	43(3) 57(3)
C(62)	7973(6)	9344(4)	4029(5)	66(3)
C(64)	7524(6)	9433(4)	4387(5)	58(3)
C(65)	7657(6)	9261(4)	4957(5)	64(3)
C(66)	8241(6)	9013(4)	5165(4)	73(4)
C(67)	10102(7)	8887(6)	5607(6)	93(6)
C(68)	10171(11)	8888(9)	6161(8)	208(11)

C(69)	10670(18)	9211(11)	6583(10)	260(20)
C(70)	10961(10)	9497(9)	6325(9)	157(12)
C(71)	10901(10)	9517(9)	5823(12)	233(15)
C(72)	10427(11)	9231(8)	5431(9)	174(11)
C(73)	9191(6)	9301(4)	2688(4) 2434(4)	$\frac{4}{(3)}$
C(74)	8829(7)	$\frac{9710(4)}{10011(4)}$	2434(4) 2136(4)	53(3) 62(3)
C(76)	8148(7)	9904(5)	2100(4)	64(4)
C(77)	7989(6)	9498(4)	2350(5)	59(3)
C(78)	8493(5)	9216(4)	2648(4)	52(3)
C(79)	10566(5)	9192(3)	3590(4)	110(6)
C(80)	10447(5)	9604(4)	3871(5)	138(7)
C(81)	10974(7)	9805(4)	4280(5)	225(14)
C(82)	11622(6)	9595(5)	4407(5)	200(12)
C(83)	11741(4)	9185(5) 8081(3)	4120(0)	240(13) 209(12)
C(85)	10051(6)	8183(6)	1517(6)	90(5)
C(86)	9409(6)	8433(6)	1325(7)	120(7)
C(87)	9013(9)	8374(10)	768(11)	221(17)
C(88)	9224(8)	8095(10)	387(7)	173(13)
C(89)	9826(9)	7804(8)	506(5)	159(9)
C(90)	10252(7)	7844(6)	1099(5)	106(6)
C(91)	11460(6)	8397(4)	2222(5)	67(3)
C(92)	11932(6)	8108(4) 8262(5)	2090(4)	$\frac{6}{(3)}$
C(93)	12013(0)	8202(3) 8694(14)	2047(3)	104(4)
C(95A)	12323(15)	9012(12)	2074(12)	104(4)
C(96A)	11482(15)	8927(11)	2092(13)	104(4)
C(94B)	12907(18)	8655(14)	2233(14)	104(4)
C(95B)	12565(16)	8892(11)	2615(13)	104(4)
C(96B)	11789(16)	8852(11)	2561(13)	104(4)
N(1)	9211(4)	6919(3) 7020(4)	2281(3)	39(2)
C(97)	9369(5)	7039(4)	1//(4)	4/(3)
C(98)	8205(5)	7032(3) 6899(4)	1208(4)	42(3)
C(100)	8040(5)	6781(3)	1239(4) 1796(4)	41(3)
C(101)	8570(6)	6794(3)	2293(4)	46(3)
C(102)	7648(5)	6935(3)	724(3)	35(2)
C(103)	7689(5)	7252(5)	291(4)	76(4)
C(104)	7175(6)	7288(5)	-194(4)	79(4)
C(105)	6577(6)	6698(5)	108(5)	97(5)
C(106) N(2)	/0/6(6)	6649(5) 7020(3)	635(5) 270(2)	88(5)
N(2)	10854(4)	6950(3)	-279(3) 5222(3)	39(2)
C(107)	10761(5)	7283(5)	5596(5)	86(5)
C(108)	11215(6)	7316(6)	6129(5)	101(6)
C(109)	11784(5)	7030(3)	6286(3)	32(2)
C(110)	11839(6)	6707(4)	5880(5)	80(4)
C(111)	11390(7)	6693(5)	5350(4)	82(5)
C(112)	12566(6)	7323(4)	7836(4)	64(4)
C(115)	12072(5)	7269(4)	7342(4) 6847(4)	30(3)
C(114)	12962(5)	6992(3)	6894(4)	37(2)
C(116)	13416(5)	7060(3)	7414(4)	43(3)
N(4)	13226(4)	7216(3)	7887(3)	41(2)
O(17)	663(6)	6421(5)	8523(5)	148(4)
C(117)	1226(10)	6543(7)	8263(8)	141(6)
C(118)	967(12)	5768(9)	7991(9)	188(9)
C(119)	1387(12)	6164(10)	7897(10)	201(9)
C(120)	448(11)	5915(9)	8448(9)	185(9)
C(121) C(122)	870(20) 1344(10)	000(17) 437(14)	2439(19) 2802(16)	195(18)
C(122) C(123)	587(19)	8895(13)	9597(14)	133(14) 141(13)
C(124)	1276(16)	1006(12)	3096(13)	115(10)
C(125)	910(20)	3777(16)	108(18)	196(18)
C(126)	1310(20)	4855(16)	353(19)	187(17)
C(127)	1150(20)	30(17)	1071(18)	197(18)
C(128)	450(30)	9520(20)	9100(20)	250(20)
C(129)	1040(30)	5150(20)	860(20)	250(20)
C(130)	-150(20)	9105(17)	9562(19)	200(18)

Al(1)-O(5)	1.711(6)	C(21)-C(22)	1.28(4)
Al(1)-O(16)	1.723(6)	C(22)-C(23)	1.35(3)
Al(1)-O(1)	1.782(6)	C(23)-C(24)	1.58(2)
Al(1)-O(4)	1.791(6)	C(25)-C(26)	1.38(1)
Al(2)-O(7)	1.705(6)	C(25)-C(30)	1.43(1)
Al(2)-O(8)	1.704(6)	C(26)-C(27)	1.40(1)
Al(2)-O(2)	1.778(5)	C(27)-C(28)	1.43(2)
Al(2)-O(1)	1.790(6)	C(28)-C(29)	1.38(2)
Al(3)-O(10)	1.693(6)	C(29)-C(30)	1.38(1)
Al(3)-O(11)	1.726(6)	C(31)-C(32)	1.3900
Al(3)-O(3)	1.784(6)	C(31)-C(36)	1.3900
Al(3)-O(2)	1.791(6)	C(32)-C(33)	1.3900
Al(4)-O(13)	1.717(6)	C(33)-C(34)	1.3900
Al(4)-O(14)	1.722(6)	C(34)-C(35)	1.3900
Al(4)-O(3)	1.778(6)	C(35)-C(36)	1.3900
Al(4)-O(4)	1.785(6)	C(37)-C(38)	1.3900
Si(1)-O(5)	1.599(6)	C(37)-C(42)	1.3900
Si(1)-O(6)	1.622(7)	C(38)-C(39)	1.3900
Si(1)-C(1)	1.86(1)	C(39)-C(40)	1.3900
Si(1)-C(7)	1.899(6)	C(40)-C(41)	1.3900
Si(2)-O(7)	1.617(6)	C(41)-C(42)	1.3900
Si(2)-O(6)	1.640(7)	C(43)-C(44)	1.3900
Si(2)-C(19)	1.84(1)	C(43)-C(48)	1.3900
Si(2)-C(13)	1.881(7)	C(44)-C(45)	1.3900
Si(3)-O(8)	1.597(6)	C(45)-C(46)	1.3900
Si(3)-O(9)	1.649(6)	C(46)-C(47)	1.3900
S1(3)-C(25)	1.861(9)	C(47)-C(48)	1.3900
$S_1(3)-C(31)$	1.905(7)	C(49)-C(50)	1.38(1)
$S_1(4) - O(10)$	1.601(6)	C(49)-C(54)	1.43(2)
S1(4)-O(9)	1.630(6)	C(50)-C(51)	1.41(2)
S1(4)-C(37)	1.845(7)	C(51)-C(52)	1.34(2)
$S_1(4) - C(43)$	1.8/8(/)	C(52)-C(53)	1.36(2)
S1(5)-O(11) S1(5)-O(12)	1.570(6)	C(55) - C(54)	1.39(2)
S1(5)-O(12) S1(5)-O(12)	1.018(8)	C(55) - C(50)	1.35(2) 1.40(2)
SI(5) - C(49)	1.83(1)	C(55)-C(60)	1.40(2)
Si(5)-C(55) Si(6) O(13)	1.60(1)	C(50)-C(57)	1.37(2) 1.35(2)
Si(6)-O(12)	1.631(8)	C(58)- $C(59)$	1.35(2)
Si(6)-C(67)	1.88(1)	C(59)- $C(60)$	1.20(2) 1.43(2)
Si(6)-C(61)	1.89(1)	C(61)-C(62)	1.38(1)
Si(7)-O(14)	1.598(6)	C(61)-C(66)	1.43(1)
Si(7)-O(15)	1.616(8)	C(62)-C(63)	1.34(1)
Si(7)-C(73)	1.84(1)	C(63)-C(64)	1.37(1)
Si(7)-C(79)	1.887(8)	C(64)-C(65)	1.40(1)
Si(8)-O(16)	1.592(6)	C(65)-C(66)	1.36(1)
Si(8)-O(15)	1.634(8)	C(67)-C(72)	1.28(2)
Si(8)-C(85)	1.81(1)	C(67)-C(68)	1.28(2)
Si(8)-C(91)	1.84(1)	C(68)-C(69)	1.55(3)
C(1)-C(6)	1.38(2)	C(69)-C(70)	1.23(3)
C(1)-C(2)	1.39(1)	C(70)-C(71)	1.17(3)
C(2)-C(3)	1.39(2)	C(71)-C(72)	1.43(2)
C(3)-C(4)	1.39(2)	C(73)-C(74)	1.37(1)
C(4)-C(5)	1.37(2)	C(73)-C(78)	1.39(1)
C(5)-C(6)	1.35(2)	C(74)-C(75)	1.40(1)
C(7)-C(8)	1.3900	C(75)-C(76)	1.37(1)
C(7)-C(12)	1.3900	C(76)-C(77)	1.36(2)
C(8)-C(9)	1.3900	C(77)-C(78)	1.36(1)
C(9)-C(10)	1.3900	C(79)-C(80)	1.3900
C(10)- $C(11)$	1.3900	C(79)-C(84)	1.3900
C(11)- $C(12)$	1.3900	C(80)-C(81)	1.3900
C(13)- $C(14)$	1.3900	C(81)-C(82)	1.3900
C(13)- $C(18)$	1.3900	C(82) - C(83)	1.3900
C(14)-C(15) C(15) $C(16)$	1.3900	C(85) - C(84)	1.3900
C(15)-C(10) C(16) C(17)	1.3900	$C(\delta 3) - C(\delta 0)$	1.45(2)
C(10)-C(17) C(17) $C(19)$	1.3900	C(83) - C(90)	1.49(2)
C(17) - C(10) C(10) - C(20)	1.3700	C(00)-C(07)	1.39(3)
C(19) - C(20) C(19) - C(24)	1.3/(2) 1.38(1)	C(07) - C(00)	1.33(4)
C(20)-C(21)	1 33(3)	C(89)-C(90)	1.43(3)
$\sim (-0) \sim (-1)$	1.00(0)		1.70(2)

 Tabelle 37: Bindungslängen [Å] und Winkel [°] für sh2788.

C(91)-C(92)	1.33(1)	O(6)-Si(1)-C(1)	106.7(4)
C(91)-C(96A)	1.54(3)	O(5)-Si(1)-C(7)	109.8(3)
C(91)-C(96B)	1.59(3)	O(6)-Si(1)-C(7)	109.3(4)
C(92)-C(93)	1.44(1)	C(1)-Si(1)-C(7)	109.7(4)
C(93)-C(94A)	1.28(4)	O(7)-Si(2)-O(6)	112.2(3)
C(93)-C(94B)	1.29(4)	O(7)-Si(2)-C(19)	109.4(4)
C(94A)-C(95A)	1.30(4)	O(6)-Si(2)-C(19)	107.5(4)
C(95A)-C(96A)	1.69(4)	O(7)-Si(2)-C(13)	108.9(4)
C(94B)-C(95B)	1.40(4)	O(6)-Si(2)-C(13)	110.7(4)
C(95B)-C(96B)	1.52(4)	C(19)-Si(2)-C(13)	108.1(4)
N(1)-C(101)	1.32(1)	O(8)-Si(3)-O(9)	112.0(3)
N(1)-C(97)	1.33(1)	O(8)-Si(3)-C(25)	111.2(4)
C(97)-C(98)	1.38(1)	O(9)-Si(3)-C(25)	106.3(4)
C(98)-C(99)	1.39(1)	O(8)-Si(3)-C(31)	109.6(4)
C(99)-C(100)	1.41(1)	O(9)-Si(3)-C(31)	108.5(4)
C(99)-C(102)	1.50(1)	C(25)-Si(3)-C(31)	109.0(4)
C(100)- $C(101)$	1.40(1)	O(10)-Si(4)- $O(9)$	110.5(3)
C(102)- $C(106)$	1.38(1)	O(10)-S1(4)-C(37)	107.3(4)
C(102)- $C(103)$	1.3/(1)	O(9)-SI(4)-C(57)	106.7(4)
C(103)-C(104) C(104) N(2)	1.37(1) 1.20(1)	O(10)-SI(4)-C(43) O(0) Si(4) C(43)	111.1(4)
C(104) - N(2) C(105) N(2)	1.30(1) 1.22(1)	C(37) Si(4)- $C(43)$	106.7(4)
C(105)-C(106)	1.33(1) 1.43(1)	O(11)-Si(5)-O(12)	112.4(3) 110.5(4)
N(3)-C(111)	1.43(1) 1 27(1)	O(11)-Si(5)-O(12) O(11)-Si(5)-C(49)	10.3(4)
N(3)-C(107)	1.27(1) 1 33(1)	O(12)-Si(5)-C(49)	105.9(4) 106.0(4)
C(107)- $C(108)$	1.39(1)	O(12) Si(5) C(49)	111 1(4)
C(108)-C(109)	1 38(1)	O(12)-Si(5)-C(55)	108 9(6)
C(109)-C(110)	1.35(1)	C(49)-Si(5)-C(55)	110.3(5)
C(109)-C(114)	1.48(1)	O(13)-Si(6)-O(12)	113.1(4)
C(110)-C(111)	1.38(1)	O(13)-Si(6)-C(67)	107.7(5)
C(112)-N(4)	1.32(1)	O(12)-Si(6)-C(67)	109.5(7)
C(112)-C(113)	1.37(1)	O(13)-Si(6)-C(61)	112.3(4)
C(113)-C(114)	1.40(1)	O(12)-Si(6)-C(61)	105.6(4)
C(114)-C(115)	1.38(1)	C(67)-Si(6)-C(61)	108.5(5)
C(115)-C(116)	1.38(1)	O(14)-Si(7)-O(15)	111.0(4)
C(116)-N(4)	1.32(1)	O(14)-Si(7)-C(73)	109.8(4)
O(17)-C(117)	1.42(2)	O(15)-Si(7)-C(73)	106.2(4)
O(17)-C(120)	1.50(2)	O(14)-Si(7)-C(79)	107.8(4)
C(117)-C(119)	1.46(3)	O(15)-Si(7)-C(79)	109.3(5)
C(118) - C(119)	1.44(3)	C(73)-S1(7)-C(79)	112.8(5)
C(118)-C(120)	1.68(3)	O(16)-S1(8)-O(15)	110.5(3)
C(121)-C(124)	1.58(5)	O(16)-SI(8)-C(85)	112.2(5)
C(121)-C(122) C(122)-C(124)	1.09(3)	O(15)-SI(8)-C(85) O(16)-SI(8)-C(81)	104.2(0)
C(122)-C(124) C(123)-C(130)	1.78(5)	O(10)-Si(8)-C(91) O(15)-Si(8)-C(91)	108.0(5)
C(126)-C(129)	1.50(5)	C(85)-Si(8)-C(91)	100.0(5) 110.4(5)
O(5)-Al(1)-O(16)	116 1(3)	$A_1(1) - O(1) - A_1(2)$	128 8(3)
O(5)-Al(1)-O(1)	109.6(3)	$A_1(2) - O(2) - A_1(3)$	127.1(3)
O(16)-Al(1)-O(1)	106.9(3)	Al(4)-O(3)-Al(3)	130.0(3)
O(5)-Al(1)-O(4)	107.2(3)	Al(4)-O(4)-Al(1)	129.3(3)
O(16)-Al(1)-O(4)	109.4(3)	Si(1)-O(5)-Al(1)	143.6(4)
O(1)-Al(1)-O(4)	107.4(3)	Si(1)-O(6)-Si(2)	144.0(4)
O(7)-Al(2)-O(8)	116.3(3)	Si(2)-O(7)-Al(2)	148.4(4)
O(7)-Al(2)-O(2)	107.4(3)	Si(3)-O(8)-Al(2)	170.0(4)
O(8)-Al(2)-O(2)	109.2(3)	Si(4)-O(9)-Si(3)	140.2(4)
O(7)-Al(2)-O(1)	111.8(3)	Si(4)-O(10)-Al(3)	151.3(4)
O(8)-Al(2)-O(1)	108.5(3)	Si(5)-O(11)-Al(3)	151.2(4)
O(2)-Al(2)-O(1)	102.7(3)	Si(5)-O(12)-Si(6)	146.0(4)
O(10)-Al(3)-O(11)	119.5(3)	Si(6)-O(13)-Al(4)	148.6(4)
O(10)-Al(3)-O(3)	106.6(3)	Si(7) - O(14) - Al(4)	139.9(4)
O(11)-Al(3)-O(3)	109.5(3)	$S_1(7) - O(15) - S_1(8)$ $S_2(8) - O(16) - A_1(1)$	148.6(5)
O(10)-AI(3)- $O(2)$	107.0(3)	$SI(\delta)-U(10)-AI(1)$	151.4(4)
O(11)-AI(3)- $O(2)$	104.0(3)	C(0)-C(1)-C(2)	119(1)
O(3) - AI(3) - O(2) O(13) - AI(4) - O(14)	107.2(3) 114.4(3)	C(0)-C(1)-SI(1) C(2)-C(1)-SI(1)	120.4(8)
O(13)-A(4)-O(14)	109 4(3)	C(2)- $C(1)$ - $SI(1)C(3)$ - $C(2)$ - $C(1)$	121(1) 120(1)
O(14)-A(4)-O(3)	107.7(3)	C(2)-C(1) C(2)-C(3)-C(4)	119(1)
O(13)-A(4)-O(4)	111 6(3)	C(5) - C(4) - C(3)	121(2)
O(14)-Al(4)-O(4)	108.9(3)	C(6)-C(5)-C(4)	119(2)
O(3)-Al(4)-O(4)	104.4(3)	C(5)-C(6)-C(1)	122(1)
O(5)-Si(1)-O(6)	111.7(3)	C(8)-C(7)-C(12)	120.0
O(5)-Si(1)-C(1)	109.6(4)	C(8)-C(7)-Si(1)	119.2(5)

C(12)- $C(7)$ -Si(1)	120.8(5)	C(66) - C(61) - Si(6)	115 9(8)
C(12)-C(1)-S(1)	120.0(5)	C(63)-C(62)-C(61)	123(1)
C(10)-C(9)-C(8)	120.0	C(62) - C(63) - C(64)	119(1)
C(9)-C(10)-C(11)	120.0	C(63)-C(64)-C(65)	121(1)
C(10)-C(11)-C(12)	120.0	C(66)-C(65)-C(64)	120(1)
C(11)-C(12)-C(7)	120.0	C(65)-C(66)-C(61)	119(1)
C(14)-C(13)-C(18)	120.0	C(72)-C(67)-C(68)	112(2)
C(14)-C(13)-Si(2)	118.9(6)	C(72)-C(67)-Si(6)	122(1)
C(18)-C(13)-Si(2)	121.1(6)	C(68)-C(67)-Si(6)	126(2)
C(13)-C(14)-C(15)	120.0	C(67)-C(68)-C(69)	125(2)
C(14)-C(15)-C(16)	120.0	C(70)-C(69)-C(68)	112(2)
C(17)-C(16)-C(15)	120.0	C(71)-C(70)-C(69)	125(3)
C(16)-C(17)-C(18)	120.0	C(70)-C(71)-C(72)	123(3)
C(17)-C(18)-C(13)	120.0	C(67)-C(72)-C(71)	122(2)
C(20)- $C(19)$ - $C(24)$	120(1)	C(74) - C(73) - C(78)	115(1)
C(20)- $C(19)$ - $Si(2)$	120(1)	C(74)-C(73)-SI(7)	121.7(9)
C(24)- $C(19)$ - $SI(2)$	120.1(9)	C(73) - C(73) - SI(7)	123.7(6)
C(21)-C(20)-C(19)	111(2)	C(75)-C(74)-C(75)	120(1)
C(21)-C(22)-C(23)	132(3)	C(70)-C(75)-C(75)	118(1)
C(22)-C(23)-C(24)	115(2)	C(76)-C(77)-C(78)	121(1)
C(19)-C(24)-C(23)	112(1)	C(77)-C(78)-C(73)	123(1)
C(26)-C(25)-C(30)	116.9(9)	C(80)-C(79)-C(84)	120.0
C(26)-C(25)-Si(3)	123.0(8)	C(80)-C(79)-Si(7)	122.6(7)
C(30)-C(25)-Si(3)	120.0(8)	C(84)-C(79)-Si(7)	117.4(7)
C(25)-C(26)-C(27)	123(1)	C(81)-C(80)-C(79)	120.0
C(26)-C(27)-C(28)	118(1)	C(80)-C(81)-C(82)	120.0
C(29)-C(28)-C(27)	121(1)	C(83)-C(82)-C(81)	120.0
C(30)-C(29)-C(28)	119(1)	C(84)-C(83)-C(82)	120.0
C(29)-C(30)-C(25)	122(1)	C(83)-C(84)-C(79)	120.0
C(32) - C(31) - C(36)	120.0	C(86) - C(85) - C(90)	11/(1)
C(32)- $C(31)$ - $Si(3)$	120.9(7) 110.1(7)	C(80)-C(85)-SI(8)	123(1)
C(33)-C(32)-C(31)	120.0	C(87)-C(85)-C(85)	120.7(9)
C(32)-C(33)-C(34)	120.0	C(88)-C(87)-C(86)	121(2)
C(33)-C(34)-C(35)	120.0	C(87)-C(88)-C(89)	125(2)
C(36)-C(35)-C(34)	120.0	C(88)-C(89)-C(90)	115(2)
C(35)-C(36)-C(31)	120.0	C(89)-C(90)-C(85)	120(2)
C(38)-C(37)-C(42)	120.0	C(92)-C(91)-C(96A)	121(2)
C(38)-C(37)-Si(4)	120.3(6)	C(92)-C(91)-C(96B)	113(1)
C(42)-C(37)-Si(4)	119.6(6)	C(96A)-C(91)-C(96B)	44(1)
C(37)-C(38)-C(39)	120.0	C(92)-C(91)-Si(8)	126(1)
C(40)- $C(39)$ - $C(38)$	120.0	C(96A)-C(91)-S1(8)	108(1)
C(39)- $C(40)$ - $C(41)$	120.0	C(90B)-C(91)-SI(8) C(91)-C(92)-C(93)	123(1)
C(41)- $C(42)$ - $C(37)$	120.0	C(94A)-C(93)-C(94B)	27(2)
C(44)-C(43)-C(48)	120.0	C(94A)-C(93)-C(92)	123(2)
C(44)-C(43)-Si(4)	122.2(7)	C(94B)-C(93)-C(92)	127(2)
C(48)-C(43)-Si(4)	117.8(7)	C(93)-C(94A)-C(95A)	119(4)
C(43)-C(44)-C(45)	120.0	C(94A)-C(95A)-C(96A)	127(3)
C(44)-C(45)-C(46)	120.0	C(91)-C(96A)-C(95A)	102(2)
C(47)-C(46)-C(45)	120.0	C(93)-C(94B)-C(95B)	113(3)
C(48)-C(47)-C(46)	120.0	C(94B)-C(95B)-C(96B)	121(3)
C(47)-C(48)-C(43)	120.0	C(95B)-C(96B)-C(91)	114(2)
C(50)- $C(49)$ - $C(54)$	115(1)	C(101)-N(1)-C(97)	119.3(8)
C(50)-C(49)-SI(5) C(54)-C(49)-Si(5)	123(1) 122.0(8)	$\Gamma(1) - C(97) - C(98)$	121.4(9)
C(49)-C(50)-C(51)	122.0(8)	C(98)-C(99)-C(100)	116 8(8)
C(52)-C(51)-C(50)	122(1)	C(98)-C(99)-C(102)	122.3(8)
C(51)-C(52)-C(53)	118(1)	C(100)-C(99)-C(102)	120.5(8)
C(52)-C(53)-C(54)	122(1)	C(101)-C(100)-C(99)	118.2(9)
C(53)-C(54)-C(49)	121(1)	N(1)-C(101)-C(100)	123.0(8)
C(56)-C(55)-C(60)	116(1)	C(106)-C(102)-C(103)	116.6(8)
C(56)-C(55)-Si(5)	126(1)	C(106)-C(102)-C(99)	121.8(8)
C(60)-C(55)-Si(5)	118(1)	C(103)-C(102)-C(99)	121.7(9)
C(55)-C(56)-C(57)	124(2)	C(104)-C(103)-C(102)	121(1)
C(58)-C(57)-C(56)	120(2)	N(2)-C(104)-C(103) N(2)-C(105)-C(105)	123(1)
C(59)-C(58)-C(57)	118(2)	N(2)-U(105)-U(106) C(102)-C(106)-C(105)	122(1)
C(55) - C(59) - C(00)	120(2)	C(102)- $C(100)$ - $C(103)C(104)$ - $N(2)$ - $C(105)$	118 2/01
C(62)- $C(61)$ - $C(66)$	118 1(9)	C(111)-N(3)-C(107)	118 2(9)
C(62)-C(61)-Si(6)	126.0(8)	N(3)-C(107)-C(108)	120(1)
	N-7	· · · · · · · · · · · · · · · · · · ·	- (- /

Anhang

C(116)-C(115)-C(114) N(4)-C(116)-C(115)	119.9(8) 122 4(0)
N(4)-C(116)-C(115)	122 4(0)
	123.4(9)
C(112)-N(4)-C(116)	116.5(8)
C(117)-O(17)-C(120)	114(2)
O(17)-C(117)-C(119)	111(2)
C(119)-C(118)-C(120)	111(2)
C(118)-C(119)-C(117)	106(2)
O(17)-C(120)-C(118)	97(2)
C(124)-C(121)-C(122)	66(2)
C(121)-C(122)-C(124)	54(2)
C(121)-C(124)-C(122)	60(2)
	C(112)-N(4)-C(116) C(117)-O(17)-C(120) O(17)-C(117)-C(119) C(119)-C(118)-C(120) C(118)-C(119)-C(117) O(17)-C(120)-C(118) C(124)-C(121)-C(122) C(121)-C(122)-C(124) C(121)-C(124)-C(122)

Tabelle 38: Anisotropische Auslenkungsaparameter (Å $^2x 10^3$) für sh2788. Der anisotropische Exponentfaktor des Auslenkungsparameter lautet:
 $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Al(1)	24(1)	34(2)	23(2)	-2(1)	1(1)	-4(1)
Al(2)	34(2)	31(2)	26(2)	-6(1)	6(1)	-4(1)
Al(3)	29(2)	46(2)	20(1)	-10(1)	4(1)	-4(1)
Al(4)	29(2)	35(2)	34(2)	-16(1)	-4(1)	0(1)
Si(1)	32(2)	69(2)	24(1)	4(1)	8(1)	11(2)
Si(2)	45(2)	42(2)	32(2)	-5(1)	-2(1)	15(2)
Si(3)	51(2)	37(2)	32(2)	-7(1)	9(1)	-18(2)
Si(4)	37(2)	48(2)	34(2)	3(1)	7(1)	-17(2)
Si(5)	46(2)	94(3)	18(2)	-8(2)	3(1)	31(2)
Si(6)	50(2)	70(3)	39(2)	-35(2)	-21(1)	30(2)
Si(7)	34(2)	29(2)	94(2)	-2(2)	5(2)	-2(2)
Si(8)	37(2)	49(2)	66(2)	19(2)	21(1)	-2(2)
O(1)	28(3)	35(4)	21(3)	-8(3)	2(2)	-3(3)
O(2)	26(3)	42(4)	19(3)	-9(3)	3(2)	-10(3)
O(3)	35(4)	36(4)	20(3)	-7(3)	0(3)	-2(3)
O(4)	19(3)	42(4)	27(3)	-15(3)	-7(2)	-1(3)
O(5)	21(3)	49(4)	26(3)	1(3)	0(2)	2(3)
O(6)	49(4)	54(5)	39(4)	7(3)	17(3)	22(4)
O(7)	42(4)	37(4)	32(3)	-8(3)	5(3)	5(3)
O(8)	38(4)	43(4)	40(4)	-13(3)	11(3)	-14(3)
O(9)	48(4)	47(5)	35(4)	-9(3)	9(3)	-21(4)
O(10)	32(4)	60(5)	24(3)	-2(3)	6(3)	-22(3)
O(11)	44(4)	70(5)	18(3)	-6(3)	2(3)	7(4)
O(12)	118(7)	54(6)	23(4)	2(3)	2(4)	47(5)
O(13)	42(4)	47(5)	35(4)	-21(3)	-10(3)	13(4)
O(14)	31(4)	31(4)	41(4)	-10(3)	-1(3)	-5(3)
O(15)	81(6)	33(5)	154(7)	27(5)	77(6)	8(5)
O(16)	31(4)	39(4)	30(3)	6(3)	-1(3)	-8(3)
C(1)	29(6)	98(10)	18(5)	19(6)	9(4)	23(7)
C(2)	25(6)	151(14)	80(8)	52(8)	20(6)	32(8)
C(3)	42(9)	200(20)	75(10)	76(12)	15(7)	29(11)
C(4)	40(8)	240(20)	32(7)	30(11)	3(6)	-16(13)
C(5)	64(10)	144(16)	90(10)	-1(9)	6(8)	3(11)
C(6)	33(7)	103(13)	87(9)	-2(8)	3(6)	-24(8)
C(7)	61(8)	94(10)	33(6)	-7(6)	4(6)	45(7)
C(8)	55(8)	227(19)	58(9)	-59(10)	-21(6)	66(10)
C(9)	105(12)	280(20)	52(9)	-71(12)	-52(8)	116(14)
C(10)	260(30)	240(20)	37(10)	-2(12)	57(14)	90(20)
C(11)	350(30)	240(30)	47(11)	21(13)	101(16)	50(20)
C(12)	186(17)	159(17)	54(9)	6(9)	67(10)	5(13)
C(13)	83(9)	57(9)	37(6)	-15(6)	-11(6)	37(7)
C(14)	1250(100)	42(12)	57(12)	4(9)	-110(30)	-190(30)
C(15)	162(17)	83(14)	137(15)	-16(11)	-10(13)	-2(12)
C(16)	130(16)	119(16)	148(16)	-80(13)	23(12)	36(13)
C(17)	310(30)	300(40)	260(30)	-240(30)	180(30)	-130(30)

G (10)		a (a)(a))		1 50 (20)		20/20)
C(18)	156(18)	340(30)	210(20)	-150(20)	123(17)	-30(20)
C(19)	59(8)	44(7)	36(6)	-9(5)	-3(5)	16(6)
C(20)	139(15)	175(18)	55(10)	57(10)	20(10)	83(13)
C(21)	230(30)	270(40)	300(40)	80(30)	200(30)	130(30)
$\dot{C}(22)$	410(40)	91(15)	64(11)	55(9)	110(20)	40(20)
C(23)	49(10)	260(30)	185(19)	-77(19)	-93(11)	51(14)
C(24)	54(8)	240(20)	54(8)	70(10)	28(6)	2(11)
C(24)	54(8)	240(20)	34(8)	/0(10)	-28(0)	5(11)
C(25)	58(7)	31(7)	46(6)	-11(5)	10(5)	-20(6)
C(26)	86(9)	38(7)	39(7)	-7(5)	5(6)	-37(6)
C(27)	137(13)	51(9)	50(8)	-11(6)	-8(8)	-46(9)
C(28)	162(15)	64(10)	42(8)	-27(7)	16(9)	-40(10)
C(29)	155(14)	99(12)	42(8)	-36(7)	52(8)	-61(11)
C(30)	95(10)	60(9)	72(9)	-27(7)	27(7)	-29(8)
C(21)	20(10)	42(8)	60(8)	27(7)	27(7)	10(7)
C(31)	80(9)	42(8)	00(8)	0(0)	-9(6)	10(7)
C(32)	81(10)	57(11)	1/1(15)	31(11)	20(10)	1(9)
C(33)	132(16)	44(11)	300(30)	59(13)	109(17)	-11(11)
C(34)	170(20)	170(20)	190(20)	137(18)	-16(15)	14(17)
C(35)	620(70)	90(20)	670(80)	150(30)	-400(60)	-100(30)
C(36)	320(30)	79(15)	230(20)	97(15)	-140(20)	-82(17)
C(37)	50(7)	63(9)	61(7)	-9(6)	-6(6)	-15(7)
C(38)	52(8)	101(12)	80(0)	12(8)	22(7)	8(8)
C(38)	52(0)	79(12)	15(14)	-12(0)	22(7)	1(0)
C(39)	53(9)	/8(12)	156(14)	15(10)	29(9)	1(9)
C(40)	136(17)	111(18)	380(30)	2(19)	-190(20)	4(14)
C(41)	700(100)	470(80)	1500(200)	-400(100)	-400(110)	540(80)
C(42)	190(20)	110(16)	370(30)	-133(19)	-190(20)	101(15)
C(43)	70(8)	115(11)	25(6)	-16(6)	34(6)	-17(8)
$\mathbf{C}(44)$	250(20)	340(30)	59(11)	90(15)	-20(13)	-170(20)
C(45)	460(40)	480(50)	62(13)	130(20)	-90(19)	-340(40)
C(45)	210(20)	142(17)	02(13)	74(12)	-50(15)	27(15)
C(46)	210(20)	142(17)	99(13)	74(12)	69(14)	-27(15)
C(47)	420(40)	430(50)	220(30)	250(30)	220(30)	190(40)
C(48)	510(50)	450(50)	210(30)	230(30)	220(30)	270(40)
C(49)	29(6)	92(10)	23(6)	-7(6)	2(4)	15(6)
C(50)	104(10)	60(9)	43(8)	-9(6)	22(6)	-17(8)
C(51)	92(11)	150(15)	8(6)	-8(8)	1(6)	-64(11)
C(52)	66(9)	156(18)	54(10)	39(11)	0(7)	24(11)
C(52)	101(11)	122(14)	50(0)	47(0)	14(8)	67(10)
C(53)	101(11)	123(14)	J9(9)	4/(9)	14(0)	51(0)
C(54)	82(9)	129(14)	45(8)	1(8)	2(6)	51(9)
C(55)	37(7)	180(15)	24(6)	-11(7)	5(5)	37(9)
C(56)	56(9)	118(14)	87(10)	-19(9)	-30(7)	23(9)
C(57)	97(16)	129(18)	99(14)	-15(11)	-29(11)	55(13)
C(58)	83(14)	300(30)	50(11)	-42(15)	-20(9)	94(18)
C(59)	64(11)	390(30)	76(12)	20(16)	40(9)	20(16)
C(60)	38(8)	380(30)	49(8)	44(12)	18(7)	35(13)
C(61)	26(6)	21(7)	4)(0) 55(7)	21(5)	8(5)	2(5)
C(01)	50(0)	51(7)	55(7)	-21(3)	-8(3)	2(3)
C(62)	58(8)	44(8)	/0(8)	8(6)	14(6)	15(6)
C(63)	71(9)	63(9)	66(8)	18(6)	15(7)	22(8)
C(64)	53(7)	37(8)	73(9)	-1(6)	-17(6)	13(6)
C(65)	57(8)	63(9)	77(9)	-3(7)	24(6)	33(7)
C(66)	79(9)	86(10)	45(7)	-18(6)	-9(6)	52(8)
C(67)	69(10)	122(15)	68(10)	-74(10)	-33(7)	57(10)
C(68)	230(20)	280(30)	83(14)	-62(16)	-58(13)	-40(20)
C(60)	300(50)	200(30)	67(16)	40(18)	44(10)	150(20)
C(09)	102(14)	250(40)	0/(10)	-40(10)	-44(19)	-130(30)
C(70)	102(14)	250(30)	90(16)	-110(18)	-54(12)	82(18)
C(71)	141(19)	310(30)	230(30)	-200(30)	-2(18)	-80(20)
C(72)	200(20)	160(20)	140(18)	-87(16)	-28(15)	-77(18)
C(73)	62(8)	30(7)	51(7)	-11(5)	16(5)	-7(6)
C(74)	47(7)	49(8)	55(7)	-7(6)	-5(5)	-2(6)
C(75)	88(10)	46(8)	49(7)	9(6)	4(7)	9(8)
C(76)	71(9)	81(11)	39(7)	0(6)	6(6)	21(8)
C(77)	52(8)	50(0)	66(8)	10(7)	14(6)	-2(7)
C(7)	J2(0)	JJ(7)	66(7)	10(7)	12(0)	-2(1)
C(78)	40(7)	49(8)	00(7)	9(6)	13(6)	15(0)
C(79)	59(9)	36(9)	202(16)	28(9)	-54(9)	-26(7)
C(80)	197(19)	48(11)	135(14)	-27(9)	-41(12)	-28(12)
C(81)	270(30)	93(16)	220(20)	17(14)	-160(20)	-76(18)
C(82)	142(18)	160(20)	230(20)	47(18)	-130(16)	-84(17)
C(83)	132(18)	89(17)	420(40)	20(20)	-140(20)	-57(15)
C(84)	59(11)	83(14)	420(30)	30(17)	-89(15)	-21(11)
C(85)	30(7)	140(14)	08(10)	88(10)	31(7)	$\frac{2}{1}$
	57(7)	140(14)	90(10)	00(10)	31(7)	14(0)
	51(8)	105(10)	141(13)	139(12)	10(8)	25(9)
C(87)	62(12)	360(40)	250(30)	280(30)	54(16)	30(17)
C(88)	29(10)	380(40)	96(14)	141(18)	-14(8)	-55(15)
C(89)	99(13)	340(30)	36(9)	22(11)	19(8)	-101(16)

An	hano
All	nang

C(90)	58(9)	196(18)	62(9)	34(10)	8(7)	-25(10)
N(1)	48(5)	34(5)	28(5)	2(4)	-4(4)	-3(4)
C(97)	36(6)	68(8)	37(6)	-4(5)	8(5)	-1(6)
C(98)	48(7)	53(8)	26(6)	4(5)	10(5)	10(6)
C(99)	37(6)	49(7)	44(6)	-4(5)	1(5)	-9(5)
C(100)	40(6)	44(7)	37(6)	20(5)	3(5)	-4(5)
C(101)	70(8)	31(7)	34(6)	7(5)	6(5)	-10(6)
C(102)	42(6)	33(6)	23(5)	4(4)	-8(4)	3(5)
C(103)	54(7)	130(12)	36(7)	18(7)	-13(5)	-49(8)
C(104)	56(8)	139(13)	34(7)	24(7)	-7(6)	-38(9)
C(105)	74(9)	87(11)	100(10)	57(9)	-52(7)	-27(8)
C(106)	49(7)	123(13)	72(8)	71(8)	-32(6)	-8(8)
N(2)	49(6)	54(6)	25(5)	8(4)	-6(4)	6(5)
N(3)	49(5)	46(6)	22(4)	-13(4)	9(4)	-10(5)
C(107)	23(6)	165(15)	63(8)	-47(9)	-9(5)	0(8)
C(108)	42(7)	194(17)	63(8)	-89(9)	-1(6)	13(9)
C(109)	37(6)	42(7)	15(5)	-1(4)	2(4)	2(5)
C(110)	80(9)	89(10)	54(8)	-25(7)	-28(6)	68(8)
C(111)	104(10)	95(11)	35(7)	-25(6)	-15(6)	64(9)
C(112)	49(7)	119(12)	25(6)	-13(6)	7(5)	15(7)
C(113)	47(7)	88(10)	31(6)	-19(6)	4(5)	13(6)
C(114)	36(6)	31(6)	32(6)	7(4)	0(4)	-1(5)
C(115)	49(7)	32(6)	28(5)	-4(4)	1(5)	1(5)
C(116)	34(6)	42(7)	51(7)	5(5)	5(5)	7(5)
N(4)	48(5)	50(6)	24(5)	-1(4)	4(4)	-4(5)

5 Daten zur Molekül- und Kristallstruktur von (Ph₂SiO)₈[AIO(OH)]₄ • 1,5 p-(C₅H₄N)₂N₂ • C₄H₈O <u>7</u>

 $\label{eq:constraint} \textbf{Tabelle 39: } Kristalldaten und Strukturverfeinerungen für (Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O (sh2837) hereiten auf Strukturverfeinerungen für (Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O (sh2837) hereiten auf Strukturverfeinerungen für (Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O (sh2837) hereiten auf Strukturverfeinerungen für (Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O (sh2837) hereiten auf Strukturverfeinerungen für (Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O (sh2837) hereiten auf Strukturverfeinerungen für (Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O (sh2837) hereiten auf Strukturverfeinerungen für (Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O (sh2837) hereiten auf Strukturverfeinerungen für (Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O (sh2837) hereiten auf Strukturverfeinerungen für (Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O (sh2837) hereiten auf Strukturverfeinerungen auf Strukturverfeinerungen für (Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O (sh2837) hereiten auf Strukturverfeinerungen für (Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O (sh2837) hereiten auf Strukturverfeinerungen für (Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O (sh2837) hereiten auf Strukturverfeinerungen für (Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O (sh2837) hereiten auf Strukturverfeinerungen für (Ph_2SiO)_8[AlO(OH)]_4 \bullet 1,5 p-(C_5H_4N)_2N_2 \bullet C_4H_8O (sh2837) hereiten auf Strukturverfeinerungen struktur$

Identifizierungscode Summenformel Molmasse [g/mol] Messtemperatur [K] Wellenlänge [Å] Kristallsystem Raumgruppe Gitterkonstanten

Zellvolumen [Å³] Anzahl der Formeleinheiten Z Dichte (berechnet) [g/cm3] Absorptionskoeffizient [mm⁻¹] F(000) Kristallabmessungen [mm³] Messbereich θ [°] hkl - Indexbereich Gemessene Reflexe Symmetrieunabhängige Reflexe Vollständigkeit des Datensatzes (bis $\theta = 26.85^{\circ}$) Absorptionskorrektur Max. und Min. Transmission Strukturverfeinerungsmethode Daten / Einschränkungen / Parameter Güte des Fit auf F² Endgültige R-Werte [I>2sigma(I)] R-Werte (alle Daten) Restelektronendichte (min./max.) [e/Å-3]

sh2837 C127 H128 Al4 N6 O20 Si8 2390.99 192(2) 0.71073 monoklin P2(1)/n a = 15.7634(10) Å $\alpha = 90^{\circ}$ b = 31.423(2) Å $\beta = 90.211(2)^{\circ}$ $\gamma=90^\circ$ c = 26.3881(13) Å 13070.7(13) 4 1.215 0.175 5024 0.44 x 0.30 x 0.20 1.30 to 26.85 -19<=h<=19, -38<=k<=39, -33<=l<=32 94542 27817 [R(int) = 0.0761] 99.1 % Multiscan 0.9653 and 0.9268 Full-matrix least-squares on F² 27817 / 0 / 1472 1.513 R1 = 0.0757, wR2 = 0.2027R1 = 0.1567, wR2 = 0.22910.997 and -0.590

	X	у	Z	U(eq)
Al(1)		6354(1)	2644(1)	22(1)
Al(2)	406(1)	7308(1)	2342(1)	22(1) 23(1)
Al(3)	1923(1)	6949(1)	1655(1)	24(1)
Al(4)	1873(1)	6094(1)	2324(1)	21(1)
Si(1)	-1902(1)	6520(1)	2212(1)	29(1)
Si(2)	-1596(1)	7499(1)	2179(1)	30(1)
Si(3)	1606(1)	8116(1)	2537(1)	30(1)
Si(4)	2507(1)	7899(1)	1531(1)	32(1)
Si(5)	2497(1)	6374(1)	722(1)	30(1)
Si(6)	2755(1)	5571(1)	1410(1)	30(1)
Si(7)	2034(1)	5694(1)	3423(1)	25(1)
SI(8)	100(1)	5878(1)	3724(1)	27(1) 22(1)
O(1) $O(2)$	545(2) 847(2)	7078(1)	2779(1) 1785(1)	25(1) 25(1)
O(2) $O(3)$	2260(2)	7078(1) 6621(1)	1763(1) 2176(1)	23(1) 24(1)
O(3)	760(2)	6124(1)	2170(1) 2254(1)	24(1) 24(1)
O(4)	-920(2)	6399(1)	2234(1) 2278(1)	27(1)
O(6)	-2023(2)	7028(1)	2270(1) 2112(1)	33(1)
O(7)	-582(2)	7485(1)	2188(1)	31(1)
O(8)	1088(2)	7677(1)	2585(1)	30(1)
O(9)	2014(2)	8164(1)	1976(1)	35(1)
O(10)	2530(2)	7398(1)	1642(1)	33(1)
O(11)	1938(2)	6642(1)	1119(1)	31(1)
O(12)	2721(2)	5903(1)	935(1)	40(1)
O(13)	2247(2)	5739(1)	1890(1)	30(1)
O(14)	2117(2)	6007(1)	2944(1)	28(1)
O(15)	1173(2)	5784(1)	3740(1)	33(1)
O(16)	-134(2)	6078(1)	3198(1)	33(1)
C(1)	-2321(3)	6232(2)	1644(2)	35(1)
C(2)	-1932(3)	5861(2)	1482(2)	48(1)
C(3)	-2199(4)	5651(2)	1047(2)	65(2)
C(4)	-2805(4)	5811(2)	775(2)	00(2)
C(5)	-5205(4)	6170(2)	928(2)	71(2) 54(2)
C(0)	-2511(3)	6367(2)	1300(2) 2790(2)	37(1)
C(8)	-2868(4)	5971(2)	2835(2)	77(2)
C(9)	-3254(5)	5835(3)	3269(3)	103(3)
C(10)	-3311(4)	6097(3)	3673(3)	85(2)
C(11)	-2974(4)	6499(3)	3648(2)	80(2)
C(12)	-2581(4)	6626(2)	3199(2)	63(2)
C(13)	-1980(3)	7726(2)	2792(2)	36(1)
C(14)	-1461(4)	7778(3)	3208(2)	86(2)
C(15)	-1744(5)	7927(3)	3667(3)	106(3)
C(16)	-2571(5)	8024(2)	3730(2)	79(2)
C(17)	-3103(5)	7969(3)	3341(3)	92(3)
C(18)	-2821(4)	7819(2)	2870(2)	75(2)
C(19)	-1982(3)	7820(2)	1638(2)	33(1)
C(20)	-1596(4)	8200(2)	1506(2)	65(2) 77(2)
C(21)	-1803(4) 2548(4)	8320(2)	810(2)	77(2) 50(2)
C(22)	-2953(3)	7948(2)	935(2)	$\frac{39(2)}{46(1)}$
C(24)	-2660(3)	7703(2)	1338(2)	41(1)
C(25)	882(3)	8567(2)	2656(2)	38(1)
C(26)	1138(4)	8948(2)	2872(2)	56(2)
C(27)	579(5)	9282(2)	2961(2)	70(2)
C(28)	-257(5)	9234(2)	2860(3)	89(2)
C(29)	-543(5)	8860(2)	2668(3)	113(3)
C(30)	20(4)	8531(2)	2567(3)	80(2)
C(31)	2499(4)	8144(2)	2997(2)	47(1)
C(32)	2324(5)	8125(2)	3510(3)	91(3)
C(33)	2968(8)	8150(3)	3878(3)	147(5)
C(34)	3801(9)	8192(3)	3721(5)	149(6)
C(35)	3990(5)	8225(2)	3216(4)	119(4)
C(30)	3339(4)	8206(2)	2848(3)	72(2) 28(1)
C(37)	3014(3)	8090(2)	1505(2)	30(1)

Tabelle 40: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) für sh2837. U(eq) wird berechnet als ein Drittel
der Spur des orthogonalisierten U^{ij} Tensors.

C(38)	4285(4)	7821(2)	1608(2)	65(2)
C(20)	5119(4)	7074(2)	1625(2)	80(2)
C(39)	5116(4)	7974(2)	1035(3)	80(2)
C(40)	5288(4)	8400(3)	1557(2)	72(2)
C(41)	4637(4)	8668(2)	1445(2)	67(2)
C(12)	2806(4)	951((2))	1408(2)	40(1)
C(42)	3806(4)	8516(2)	1408(2)	49(1)
C(43)	1932(3)	8015(2)	934(2)	39(1)
$\mathbf{C}(44)$	1360(4)	8349(2)	894(2)	60(2)
	1500(4)	0.122	(2)	00(2)
C(45)	955(5)	8432(2)	436(3)	86(2)
C(46)	1092(5)	8181(2)	12(2)	73(2)
C(47)	1644(4)	7840(2)	45(2)	65(0)
C(47)	1044(4)	7849(2)	43(2)	03(2)
C(48)	2060(4)	7767(2)	501(2)	49(1)
C(49)	1857(3)	6322(2)	129(2)	33(1)
	1057(5)	(522(2))	12)(2)	55(1)
C(50)	1168(3)	6579(2)	41(2)	44(1)
C(51)	660(4)	6540(2)	-376(2)	64(2)
C(52)	838(4)	(22((2))	728(2)	(4(2))
C(32)	828(4)	0230(2)	-728(2)	04(2)
C(53)	1521(4)	5973(2)	-666(2)	56(2)
C(54)	2035(3)	6014(2)	-240(2)	44(1)
	2035(3)	6651(2)	240(2)	44(1)
C(55)	3513(3)	6651(2)	606(2)	35(1)
C(56)	4157(4)	6638(2)	967(2)	67(2)
C(57)	4804(4)	6868(3)	013(3)	81(2)
C(37)	4094(4)	0808(3)	915(5)	01(2)
C(58)	5041(4)	7093(2)	482(3)	75(2)
C(59)	4411(5)	7121(2)	111(3)	84(2)
C(0)	2(49(4))	(905(2))	172(0)	(0(2))
C(60)	3648(4)	6895(2)	1/3(2)	60(2)
C(61)	2310(3)	5063(1)	1174(2)	34(1)
$C(\alpha)$	2165(4)	1982(2)	657(2)	49(1)
C(02)	2105(4)	4)82(2)	057(2)	+)(1)
C(63)	1856(4)	4592(2)	488(2)	63(2)
C(64)	1672(4)	4278(2)	823(3)	67(2)
C(65)	1907(4)	1216(2)	1220(2)	60(2)
C(65)	1807(4)	4346(2)	1330(3)	69(2)
C(66)	2117(3)	4735(2)	1511(2)	48(1)
C(67)	3880(3)	5494(2)	1501(2)	46(1)
	3889(3)	5494(2)	1391(2)	40(1)
C(68)	4147(4)	5512(2)	2081(3)	80(2)
C(69)	5010(7)	5474(3)	2211(5)	131(4)
C(70)	5565(7)	5285(2)	1860(6)	129(6)
C(70)	5505(7)	5585(5)	1800(0)	130(0)
C(71)	5330(6)	5343(3)	1383(6)	151(5)
C(72)	4484(4)	5403(2)	1230(3)	102(3)
0(72)	2020(2)	5105(2)	1250(5)	102(3)
C(73)	2939(3)	5804(2)	3858(2)	36(1)
C(74)	3695(4)	5950(2)	3674(2)	80(2)
C(75)	1257(5)	6056(2)	2097(2)	110(2)
C(73)	4337(3)	0030(3)	3987(3)	119(3)
C(76)	4284(6)	6009(3)	4492(3)	115(3)
C(77)	3537(5)	5885(3)	4691(2)	83(2)
C(79)	2074(4)	57005(5)	1071(2)	(0(2)
C(78)	28/4(4)	5782(2)	43/6(2)	60(2)
C(79)	2011(3)	5135(2)	3201(2)	38(1)
C(90)	2707(5)	4860(2)	2229(2)	72(2)
C(80)	2707(3)	4809(2)	3238(2)	12(2)
C(81)	2685(8)	4452(3)	3053(3)	115(4)
C(82)	1935(9)	4306(2)	2825(3)	115(4)
C(02)	1955(9)	4560(2)	2023(3)	115(4)
C(83)	1257(6)	4561(3)	2793(3)	101(3)
C(84)	1288(4)	4968(2)	2973(2)	67(2)
C(95)	412(2)	5360(2)	2821(2)	27(1)
$C(\delta J)$	-412(3)	5509(2)	3631(2)	57(1)
C(86)	-1188(5)	5287(2)	3617(3)	94(3)
C(87)	-1664(6)	4929(3)	3727(4)	138(4)
C(99)	1240(6)	4628(2)	4022(4)	115(2)
C(88)	-1340(0)	4028(3)	4022(4)	115(5)
C(89)	-564(6)	4686(2)	4254(3)	96(3)
C(90)	-104(4)	5059(2)	4155(2)	61(2)
C(01)	74(2)	(249(1))	4155(2)	01(2)
C(91)	-74(3)	6248(1)	4254(2)	33(1)
C(92)	-783(4)	6510(2)	4241(2)	55(2)
C(02)	088(5)	6761(2)	4660(3)	75(2)
C(93)	-988(3)	6761(2)	4000(3)	73(2)
C(94)	-507(5)	6759(2)	5082(2)	73(2)
C(95)	208(4)	6506(2)	5101(2)	59(2)
C(0C)	401(2)	(250(2))	4(04(2))	47(1)
C(90)	421(3)	0239(2)	4094(2)	4/(1)
N(1)	-227(3)	7102(1)	1040(1)	38(1)
C(97)	-102(4)	7465(2)	806(2)	55(2)
	-172(+)	7403(2)	000(2)	55(2)
C(98)	-805(4)	7582(2)	434(2)	62(2)
C(99)	-1450(3)	7300(2)	344(2)	52(2)
C(100)	1401(4)	(000(2)	592(2)	52(2)
C(100)	-1481(4)	0928(2)	585(2)	57(2)
C(101)	-859(3)	6838(2)	934(2)	51(1)
N(2)	-2201(4)	7381(2)	-18(2)	75(2)
11(2)	-2201(4)	7301(2)	-10(2)	15(2)
N(3)	-2023(3)	7688(2)	-221(2)	62(1)
C(102)	-2770(4)	7772(2)	-598(2)	57(2)
C(102)	2540(4)	0052(2)	055(2)	57(2)
C(103)	-2549(4)	8056(2)	-955(2)	69(2)
C(104)	-3136(4)	8138(2)	-1337(2)	59(2)
C(105)	4107(4)	7609(2)	005(2)	61(2)
C(105)	-4107(4)	7098(2)	-993(2)	01(2)
C(106)	-3549(5)	7589(2)	-599(2)	70(2)

N(5) $320(2)$ $5679(1)$ $1487(1)$ $C(107)$ $387(3)$ $5852(2)$ $1022(2)$ $C(108)$ $239(3)$ $5628(2)$ $577(2)$ $C(109)$ $25(3)$ $5202(2)$ $621(2)$ $C(110)$ $-61(3)$ $5018(2)$ $1098(2)$ $C(111)$ $104(3)$ $5273(2)$ $1524(2)$ $N(6)$ $-138(3)$ $4930(1)$ $1999(1)$ $O(17)$ $3767(3)$ $6774(1)$ $2585(2)$ $C(112)$ $4573(5)$ $6611(3)$ $2386(4)$ 1 $C(113)$ $5230(6)$ $6864(4)$ $2570(5)$ 1 $C(114)$ $4863(6)$ $7162(3)$ $2938(4)$ 1 $C(115)$ $3913(5)$ $7109(3)$ $2913(4)$ 1 $O(18)$ $1038(5)$ $5557(2)$ $8021(3)$ 1 $C(116)$ $1714(9)$ $5291(4)$ $7918(5)$ 1 $C(117)$ $2371(8)$ $5536(5)$ $7706(6)$ 2 $C(118)$ $1943(9)$ $5920(5)$ $7503(6)$ 2 $C(119)$ $1087(8)$ $5922(4)$ $7727(5)$ 1 $O(19)$ $1871(5)$ $9364(3)$ $-84(3)$ 1 $C(120)$ $2667(10)$ $9995(5)$ $-183(5)$ 1 $C(121)$ $3345(8)$ $9316(4)$ $185(4)$ 1 $C(124)$ $109(12)$ $658(6)$ $8619(7)$ 1 $C(143)$ $2939(12)$ $9457(9)$ $587(11)$ 1 $C(143)$ $2939(12)$ $9457(9)$ $887(1)$ 1 $C(145)$ $302(11)$	N(4)	-3889(3)	7964(1)	-1361(1)	40(1)
$\begin{array}{c cccc} (107) & 337(3) & 585(2) & 1022(2) \\ (108) & 239(3) & 5628(2) & 577(2) \\ (109) & 25(3) & 5202(2) & 621(2) \\ (111) & 104(3) & 5273(2) & 1524(2) \\ (111) & 104(3) & 5273(2) & 1524(2) \\ (111) & 104(3) & 5273(2) & 1524(2) \\ (111) & 104(3) & 5273(2) & 1524(2) \\ (112) & 4573(5) & 6611(3) & 2386(4) & 11 \\ (113) & 5230(6) & 6864(4) & 2570(5) & 11 \\ (114) & 4863(6) & 7162(3) & 2938(4) & 11 \\ (115) & 3913(5) & 7109(3) & 2913(4) & 11 \\ (116) & 1714(9) & 5291(4) & 7918(5) & 11 \\ (116) & 1714(9) & 5291(4) & 7918(5) & 11 \\ (117) & 2371(8) & 5556(5) & 7706(6) & 22 \\ (118) & 1938(5) & 5557(2) & 8021(3) & 11 \\ (118) & 1943(9) & 5920(5) & 7503(6) & 22 \\ (119) & 1087(8) & 5922(4) & 7727(5) & 11 \\ (119) & 1087(8) & 5922(4) & 7727(5) & 11 \\ (113) & 23345(8) & 9316(4) & 185(4) & 11 \\ (112) & 23345(8) & 9316(4) & 185(4) & 11 \\ (113) & 2430(20) & 9684(12) & -323(13) & 22 \\ (113) & 1978(14) & 9636(7) & 280(8) & 11 \\ (113) & 1978(14) & 9636(7) & 280(8) & 11 \\ (113) & 1978(14) & 9636(7) & 280(8) & 11 \\ (116) & 1190(20) & 377(10) & 8549(12) & 11 \\ (117) & 351(16) & 1(8) & 8950(10) \\ (118) & 1190(20) & 364(10) & 8956(12) \\ (118$	N(5)	320(2)	5679(1)	1487(1)	35(1)
$\begin{array}{c} C(108) & 239(3) & 5628(2) & 577(2) \\ C(109) & 25(3) & 502(2) & 621(2) \\ C(110) & -61(3) & 5018(2) & 1098(2) \\ C(111) & 104(3) & 5273(2) & 1524(2) \\ N(6) & -138(3) & 4930(1) & 199(1) \\ O(17) & 3767(3) & 6774(1) & 2585(2) \\ C(112) & 4573(5) & 6611(3) & 2386(4) & 1 \\ C(113) & 5230(6) & 6864(4) & 2570(5) & 1 \\ C(114) & 4863(6) & 7162(3) & 2938(4) & 1 \\ C(115) & 3913(5) & 7109(3) & 2913(4) & 1 \\ O(18) & 1038(5) & 5557(2) & 8021(3) & 1 \\ C(116) & 1714(9) & 5291(4) & 7918(5) & 1 \\ C(117) & 2371(8) & 5536(5) & 7706(6) & 2 \\ C(118) & 1943(9) & 5920(5) & 7503(6) & 2 \\ C(119) & 1087(8) & 5922(4) & 7727(5) & 1 \\ O(19) & 1871(5) & 9364(3) & -84(3) & 1 \\ C(120) & 2667(10) & 9095(5) & -183(5) & 1 \\ C(121) & 3345(8) & 9316(4) & 185(4) & 1 \\ C(1A2) & 2822(19) & 9457(9) & 587(11) & 1 \\ C(1A3) & 2430(20) & 9684(12) & -323(13) & 2 \\ C(1B3) & 1978(14) & 9636(7) & 280(8) & 1 \\ O(18) & 1978(14) & 9636(7) & 280(8) & 1 \\ O(143) & 2939(12) & 9745(6) & 303(7) & 1 \\ C(143) & 1978(14) & 9636(7) & 280(8) & 1 \\ O(146) & 970(20) & 377(10) & 8549(12) & 1 \\ C(1A7) & 351(16) & 1(8) & 8950(10) \\ C(124) & 109(12) & 658(6) & 8619(7) & 1 \\ C(1A6) & 970(20) & 377(10) & 8549(12) & 1 \\ C(1A7) & 351(16) & 1(8) & 8950(10) \\ C(124) & 109(20) & 364(10) & 8956(12) \\ C(147) & 311(6) & 1(8) & 8950(10) \\ C(124) & 109(20) & 364(10) & 8956(12) \\ C(125) & 302(11) & 259(6) & 9320(6) & 1 \\ C(124) & 109(20) & 364(10) & 8956(12) \\ C(147) & 311(6) & 1(8) & 8950(10) \\ C(126) & 1190(20) & 364(10) & 8956(12) \\ C(127) & 374(19) & 290(9) & 8441(10) \\ O(21) & 10438(10) & 954(5) & 5689(5) & 1 \\ C(128) & 10180(15) & 673(7) & 5223(8) & 1 \\ C(129) & 9709(11) & 1290(6) & 5771(6) & 1 \\ C(120) & 9397(12) & 683(6) & 5247(6) & 1 \\ \end{array}$	C(107)	387(3)	5852(2)	1022(2)	39(1)
$\begin{array}{cccc} (109) & 25(3) & 520(2) & 621(2) \\ (110) & -61(3) & 5018(2) & 1098(2) \\ (111) & 104(3) & 5273(2) & 1524(2) \\ (111) & 104(3) & 5273(2) & 1524(2) \\ (111) & 104(3) & 5273(2) & 1524(2) \\ (112) & 4573(5) & 6611(3) & 2386(4) & 1 \\ (112) & 4573(5) & 6611(3) & 2386(4) & 1 \\ (113) & 5230(6) & 6864(4) & 2570(5) & 1 \\ (114) & 4863(6) & 7162(3) & 2938(4) & 1 \\ (115) & 3913(5) & 7109(3) & 2913(4) & 1 \\ (115) & 3913(5) & 7109(3) & 2913(4) & 1 \\ (116) & 1714(9) & 5291(4) & 7918(5) & 1 \\ (117) & 2371(8) & 5535(5) & 7706(6) & 2 \\ (118) & 1943(9) & 5920(5) & 7503(6) & 2 \\ (119) & 1087(8) & 5922(4) & 7727(5) & 1 \\ (120) & 2667(10) & 9095(5) & -183(5) & 1 \\ (121) & 3345(8) & 9316(4) & 185(4) & 1 \\ (1A2) & 2822(19) & 9457(9) & 587(11) & 1 \\ (1A3) & 2430(20) & 9684(12) & -323(13) & 2 \\ (1B3) & 1978(14) & 9636(7) & 280(8) & 1 \\ (1A3) & 2430(20) & 9684(12) & -323(13) & 2 \\ (1B3) & 1978(14) & 9636(7) & 280(8) & 1 \\ (1A4) & 109(12) & 558(6) & 8619(7) & 1 \\ (1A5) & 302(11) & 259(6) & 9320(6) & 1 \\ (1A6) & 970(20) & 377(10) & 8549(12) & 1 \\ (1A6) & 970(20) & 377(10) & 8549(12) & 1 \\ (1A6) & 970(20) & 377(10) & 8549(12) & 1 \\ (1A6) & 1190(20) & 364(10) & 8956(12) \\ (128) & 10180(15) & 673(7) & 5223(8) & 1 \\ (128) & 10180(15) & 673(7) & 5223(8) & 1 \\ (129) & 9709(11) & 1290(6) & 5771(6) & 1 \\ (130) & 9397(12) & 683(6) & 5247(6) & 1 \\ \end{array}$	C(108)	239(3)	5628(2)	577(2)	39(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(109)	25(3)	5202(2)	621(2)	35(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(110)	-61(3)	5018(2)	1098(2)	38(1)
N(6)-138(3)4930(1)199(1) $O(17)$ 3767(3)6774(1)2585(2) $O(17)$ 3767(3)6611(3)2386(4)1 $O(112)$ 4573(5)6611(3)2386(4)1 $O(113)$ 5230(6)6864(4)2570(5)1 $O(114)$ 4863(6)7162(3)2938(4)1 $O(115)$ 3913(5)7109(3)2913(4)1 $O(18)$ 1038(5)5557(2)8021(3)1 $O(16)$ 1714(9)5291(4)7918(5)1 $O(16)$ 1714(9)5920(5)7503(6)2 $O(116)$ 1714(9)5920(5)7503(6)2 $O(116)$ 1714(9)5920(5)7503(6)2 $O(19)$ 1871(5)9364(3)-84(3)1 $O(19)$ 1871(5)9364(3)-84(3)1 $O(120)$ 2667(10)9095(5)-183(5)1 $O(121)$ 2345(8)9316(4)185(4)1 $O(122)$ 2822(19)9457(9)587(11)1 $O(124)$ 2830(20)9684(12)-323(13)2 $O(125)$ 302(11)259(6)9320(6)1 $O(124)$ 109(12)658(6)8619(7)1 $O(146)$ 970(20)377(10)8549(12)1 $O(147)$ 351(16)1 (8)8950(10)0 $O(146)$ 190(20)364(10)8956(12)0 $O(147)$ 351(16)1 (8)8950(10)0 $O(146)$ 190(20)364(10)	C(111)	104(3)	5273(2)	1524(2)	41(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(6)	-138(3)	4930(1)	199(1)	40(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(17)	3767(3)	6774(1)	2585(2)	71(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(112)	4573(5)	6611(3)	2386(4)	116(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(113)	5230(6)	6864(4)	2570(5)	160(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(114)	4863(6)	7162(3)	2938(4)	138(4)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(115)	3913(5)	7109(3)	2913(4)	130(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(18)	1038(5)	5557(2)	8021(3)	144(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(116)	1714(9)	5291(4)	7918(5)	178(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(117)	2371(8)	5536(5)	7706(6)	205(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(118)	1943(9)	5920(5)	7503(6)	203(6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(119)	1087(8)	5922(4)	7727(5)	175(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(19)	1871(5)	9364(3)	-84(3)	154(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(120)	2667(10)	9095(5)	-183(5)	191(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(121)	3345(8)	9316(4)	185(4)	155(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1A2)	2822(19)	9457(9)	587(11)	188(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1A3)	2430(20)	9684(12)	-323(13)	259(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1B2)	2939(12)	9745(6)	303(7)	113(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1B3)	1978(14)	9636(7)	280(8)	132(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(20)	460(8)	668(4)	9154(5)	137(4)
$\begin{array}{ccccccc} C(124) & 109(12) & 658(6) & 8619(7) & 1\\ C(1A6) & 970(20) & 377(10) & 8549(12) & 1\\ C(1A7) & 351(16) & 1(8) & 8950(10) \\ C(1B6) & 1190(20) & 364(10) & 8956(12) \\ C(1B7) & 374(19) & 290(9) & 8441(10) \\ O(21) & 10438(10) & 954(5) & 5689(5) & 1\\ C(128) & 10180(15) & 673(7) & 5223(8) & 1\\ C(129) & 9709(11) & 1290(6) & 5771(6) & 1\\ C(130) & 9397(12) & 683(6) & 5247(6) & 1\\ \end{array}$	C(125)	302(11)	259(6)	9320(6)	100(5)
$\begin{array}{ccccccc} C(1A6) & 970(20) & 377(10) & 8549(12) & 1\\ C(1A7) & 351(16) & 1(8) & 8950(10) \\ C(1B6) & 1190(20) & 364(10) & 8956(12) \\ C(1B7) & 374(19) & 290(9) & 8441(10) \\ O(21) & 10438(10) & 954(5) & 5689(5) & 1\\ C(128) & 10180(15) & 673(7) & 5223(8) & 1\\ C(129) & 9709(11) & 1290(6) & 5771(6) & 1\\ C(130) & 9397(12) & 683(6) & 5247(6) & 1\\ \end{array}$	C(124)	109(12)	658(6)	8619(7)	120(6)
$\begin{array}{cccccc} C(1A7) & 351(16) & 1(8) & 8950(10) \\ C(1B6) & 1190(20) & 364(10) & 8956(12) \\ C(1B7) & 374(19) & 290(9) & 8441(10) \\ O(21) & 10438(10) & 954(5) & 5689(5) & 1 \\ C(128) & 10180(15) & 673(7) & 5223(8) & 1 \\ C(129) & 9709(11) & 1290(6) & 5771(6) & 1 \\ C(130) & 9397(12) & 683(6) & 5247(6) & 1 \\ \end{array}$	C(1A6)	970(20)	377(10)	8549(12)	106(9)
$\begin{array}{cccccc} C(1B6) & 1190(20) & 364(10) & 8956(12) \\ C(1B7) & 374(19) & 290(9) & 8441(10) \\ O(21) & 10438(10) & 954(5) & 5689(5) & 1 \\ C(128) & 10180(15) & 673(7) & 5223(8) & 1 \\ C(129) & 9709(11) & 1290(6) & 5771(6) & 1 \\ C(130) & 9397(12) & 683(6) & 5247(6) & 1 \\ \end{array}$	C(1A7)	351(16)	1(8)	8950(10)	91(8)
C(1B7)374(19)290(9)8441(10)O(21)10438(10)954(5)5689(5)1C(128)10180(15)673(7)5223(8)1C(129)9709(11)1290(6)5771(6)1C(130)9397(12)683(6)5247(6)1	C(1B6)	1190(20)	364(10)	8956(12)	62(8)
O(21) 10438(10) 954(5) 5689(5) 1 C(128) 10180(15) 673(7) 5223(8) 1 C(129) 9709(11) 1290(6) 5771(6) 1 C(130) 9397(12) 683(6) 5247(6) 1	C(1B7)	374(19)	290(9)	8441(10)	50(7)
C(128)10180(15)673(7)5223(8)1C(129)9709(11)1290(6)5771(6)1C(130)9397(12)683(6)5247(6)1	O(21)	10438(10)	954(5)	5689(5)	159(5)
C(129)9709(11)1290(6)5771(6)1C(130)9397(12)683(6)5247(6)1	C(128)	10180(15)	673(7)	5223(8)	137(7)
C(130) 9397(12) 683(6) 5247(6) 1	C(129)	9709(11)	1290(6)	5771(6)	104(5)
	C(130)	9397(12)	683(6)	5247(6)	108(5)
C(131) 9075(14) 978(7) 5552(8) 1	C(131)	9075(14)	978(7)	5552(8)	142(7)

Tabelle 41: Bindungslängen [Å] und Winkel [°] für sh2837.

Al(1)-O(5)	1.705(3)	Si(3)-C(31)	1.858(5)
Al(1)-O(16)	1.709(3)	Si(4)-O(10)	1.599(3)
Al(1)-O(4)	1.774(3)	Si(4)-O(9)	1.639(3)
Al(1)-O(1)	1.788(3)	Si(4)-C(37)	1.847(5)
Al(2)-O(7)	1.701(3)	Si(4)-C(43)	1.850(5)
Al(2)-O(8)	1.706(3)	Si(5)-O(11)	1.610(3)
Al(2)-O(1)	1.774(3)	Si(5)-O(12)	1.623(3)
Al(2)-O(2)	1.783(3)	Si(5)-C(55)	1.849(5)
Al(3)-O(10)	1.707(3)	Si(5)-C(49)	1.865(5)
Al(3)-O(11)	1.712(3)	Si(6)-O(13)	1.592(3)
Al(3)-O(2)	1.778(3)	Si(6)-O(12)	1.631(3)
Al(3)-O(3)	1.797(3)	Si(6)-C(61)	1.850(5)
Al(4)-O(14)	1.701(3)	Si(6)-C(67)	1.866(5)
Al(4)-O(13)	1.706(3)	Si(7)-O(14)	1.608(3)
Al(4)-O(4)	1.766(3)	Si(7)-O(15)	1.621(3)
Al(4)-O(3)	1.806(3)	Si(7)-C(79)	1.852(5)
Si(1)-O(5)	1.603(3)	Si(7)-C(73)	1.859(5)
Si(1)-O(6)	1.629(3)	Si(8)-O(16)	1.589(3)
Si(1)-C(7)	1.868(5)	Si(8)-O(15)	1.625(3)
Si(1)-C(1)	1.869(5)	Si(8)-C(91)	1.858(5)
Si(2)-O(7)	1.599(3)	Si(8)-C(85)	1.859(5)
Si(2)-O(6)	1.635(3)	C(1)-C(2)	1.385(7)
Si(2)-C(19)	1.850(5)	C(1)-C(6)	1.387(7)
Si(2)-C(13)	1.871(5)	C(2)-C(3)	1.388(7)
Si(3)-O(8)	1.607(3)	C(3)-C(4)	1.366(8)
Si(3)-O(9)	1.624(3)	C(4)-C(5)	1.356(8)
Si(3)-C(25)	1.848(5)	C(5)-C(6)	1.375(7)

C(7)-C(12)	1.355(7)	C(79)-C(80)	1.383(7)
C(7)-C(8)	1.372(7)	C(79)-C(84)	1.389(8)
C(9) C(0)	1.267(0)	C(90) C(91)	1 40(1)
C(8)-C(9)	1.307(9)	C(80)-C(81)	1.40(1)
C(9)-C(10)	1.35(1)	C(81)-C(82)	1.40(1)
C(10)- $C(11)$	1.37(1)	C(82)-C(83)	1.34(1)
C(11) C(12)	1 209(9)	C(82) C(84)	1 264(0)
C(11)-C(12)	1.398(8)	C(83)-C(84)	1.504(9)
C(13)-C(18)	1.374(7)	C(85)-C(86)	1.370(8)
C(13) - C(14)	1 375(7)	C(85) - C(90)	1 383(7)
	1.575(7)		1.303(7)
C(14)-C(15)	1.375(8)	C(86)-C(87)	1.383(9)
C(15)-C(16)	1.349(9)	C(87)-C(88)	1.33(1)
C(16) C(17)	1 225(0)	C(99) C(90)	1 29(1)
C(10)-C(17)	1.555(9)	C(00) - C(09)	1.56(1)
C(17)-C(18)	1.402(8)	C(89)-C(90)	1.402(9)
C(19)-C(24)	1.378(6)	C(91)-C(92)	1.388(7)
C(10) C(20)	1 296(7)	C(01) C(02)	1.204(7)
C(19)-C(20)	1.380(7)	C(91)-C(96)	1.394(7)
C(20)-C(21)	1.374(7)	C(92)-C(93)	1.396(8)
C(21)- $C(22)$	1 383(8)	C(93) - C(94)	1 347(9)
	1.365(6)		1.202(0)
C(22)- $C(23)$	1.30/(8)	C(94)-C(95)	1.382(9)
C(23)-C(24)	1.391(7)	C(95)-C(96)	1.369(7)
C(25) $C(26)$	1 384(7)	N(1) C(07)	1 208(6)
C(25)-C(20)	1.304(7)	N(1) - C(1)	1.290(0)
C(25)-C(30)	1.383(8)	N(1)-C(101)	1.324(6)
C(26)-C(27)	1.391(8)	C(97)-C(98)	1.424(7)
C(27) $C(28)$	1 353(0)	C(08) C(00)	1 370(8)
C(27) - C(28)	1.555(9)	C(98)-C(99)	1.570(8)
C(28)-C(29)	1.355(9)	C(99)-C(100)	1.329(8)
C(29)-C(30)	1.390(8)	C(99)-N(2)	1.539(7)
C(21) C(22)	1 292(9)	C(100) C(101)	1.276(7)
C(31)-C(32)	1.383(8)	C(100)-C(101)	1.570(7)
C(31)-C(36)	1.396(8)	N(2)-N(3)	1.140(6)
C(32)- $C(33)$	1.40(1)	N(3)- $C(102)$	1.560(7)
C(32) C(33)	1.40(1)	G(102)	1.300(7)
C(33)-C(34)	1.38(2)	C(102)- $C(103)$	1.344(9)
C(34)-C(35)	1.37(1)	C(102)- $C(106)$	1.357(9)
C(25) C(26)	1 414(0)	C(102) C(104)	1 200(7)
C(33)-C(30)	1.414(9)	C(103)-C(104)	1.390(7)
C(37)-C(38)	1.380(7)	C(104)-N(4)	1.30/(7)
C(37)-C(42)	1.396(6)	C(105)-N(4)	1.326(7)
C(29) C(20)	1 400(8)	C(105) C(106)	1 405(8)
C(38) - C(39)	1.400(8)	C(103)- $C(100)$	1.405(8)
C(39)-C(40)	1.380(9)	N(5)-C(111)	1.324(6)
C(40)- $C(41)$	1.361(9)	N(5)-C(107)	1.346(6)
C(41) C(42)	1 207(9)	C(107) C(109)	1 297(6)
C(41)- $C(42)$	1.597(8)	C(107)- $C(108)$	1.587(0)
C(43)-C(44)	1.388(7)	C(108)-C(109)	1.387(6)
C(43)-C(48)	1400(7)	C(109)- $C(110)$	1 391(6)
C(44) $C(45)$	1.100(7)	C(100) N(C)	1.371(0)
C(44)-C(45)	1.390(8)	C(109)-IN(6)	1.426(5)
C(45)-C(46)	1.385(9)	C(110)-C(111)	1.403(6)
C(46) - C(47)	1 362(8)	N(6)-N(6)#1	1 220(7)
C(47) C(47)	1.302(0)	O(17) O(115)	1.220(7)
C(47)-C(48)	1.391(8)	O(17)-C(115)	1.381(8)
C(49)-C(50)	1.371(6)	O(17)-C(112)	1.467(9)
C(49) C(54)	1 403(6)	C(112) $C(113)$	1 30(1)
C(49)-C(34)	1.403(0)		1.39(1)
C(50)-C(51)	1.364(7)	C(113)-C(114)	1.47(1)
C(51)-C(52)	1.360(8)	C(114)-C(115)	1.51(1)
C(52) $C(52)$	1 279(9)	O(18) C(116)	1.29(1)
C(32)-C(33)	1.378(8)	0(18)-0(110)	1.56(1)
C(53)-C(54)	1.388(7)	O(18)-C(119)	1.39(1)
C(55)-C(56)	1.389(7)	C(116)-C(117)	1.41(1)
C(55) C(60)	1.204(7)	C(117) C(118)	1 49(2)
	1.374(7)	C(117) - C(110)	1.40(2)
C(56)-C(57)	1.375(8)	C(118)-C(119)	1.48(1)
C(57)-C(58)	1.359(9)	O(19)-C(1B3)	1.30(2)
C(58) C(59)	1 306(0)	O(10) C(1 A3)	1.48(4)
C(38) - C(38)	1.390(9)	O(19)-C(1A3)	1.40(4)
C(59)-C(60)	1.408(8)	O(19)-C(120)	1.54(1)
C(61)-C(66)	1.396(6)	C(120)-C(121)	1.60(2)
C(61) C(62)	1 405(6)	C(120) C(142)	1.03(4)
C(01)-C(02)	1.403(0)	C(120)- $C(1A5)$	1.92(4)
C(62)-C(63)	1.390(7)	C(121)-C(1A2)	1.42(3)
C(63)-C(64)	1.357(8)	C(121)-C(1B2)	1.53(2)
C(64) C(65)	1 270(9)	C(1D2) C(1D2)	1.55(2)
C(04)-C(03)	1.370(8)	C(1D2)-C(1D3)	1.55(5)
C(65)-C(66)	1.401(7)	O(20)-C(125)	1.38(2)
C(67)-C(68)	1.354(8)	O(20)-C(124)	1.51(2)
C(67) C(72)	1 260(9)	O(20) C(1D6)	1 59(2)
U(0/) - U(12)	1.309(8)	U(20)-U(1B0)	1.58(3)
C(68)-C(69)	1.41(1)	C(125)-C(1A7)	1.27(3)
C(69)-C(70)	1 31(2)	C(125)-C(1B6)	1 73(3)
	1.22(2)		1.75(5)
C(70)-C(71)	1.32(2)	C(124)-C(1B7)	1.32(3)
C(71)-C(72)	1.41(1)	C(124)-C(1A6)	1.63(3)
C(73) - C(74)	1 368(7)	C(1A6)-C(1B7)	1 01(4)
C(73) - C(74)	1.300(7)		1.12(2)
C(73)-C(78)	1.3/2(/)	C(1A6)-C(1B6)	1.13(3)
C(74)-C(75)	1.369(8)	C(1A6)-C(1A7)	1.86(4)
C(75) C(76)	1 35(1)	$C(1 \Lambda 7) C(1 B 7)$	1.62(4)
	1.55(1)		1.02(4)
C(76)-C(77)	1.35(1)	C(1A7)-C(1B6)	1.74(4)
C(77)-C(78)	1.372(8)	C(1B6)-C(1B7)	1.88(4)
		/ / /	
O(21) C(128)	1 57(2)	O(16) Si(8) $O(15)$	112 2(2)
--	----------------------	---	----------------------
O(21) - C(120)	1.57(2)	O(16) - Si(8) - O(15)	112.2(2) 110.7(2)
O(21)- $O(129)$	1.36(2)	O(10)-SI(8)-C(91)	110.7(2) 107.0(2)
C(128) - C(130)	1.24(2)	O(15)-SI(8)-C(91)	107.0(2)
C(129)-C(131)	1.51(2)	O(16)-Si(8)-C(85)	109.4(2)
C(130)-C(131)	1.33(2)	O(15)-Si(8)-C(85)	108.4(2)
		C(91)-Si(8)-C(85)	109.1(2)
O(5)-Al(1)-O(16)	116.5(2)	Al(2)-O(1)-Al(1)	126.1(2)
O(5)-Al(1)-O(4)	106.4(1)	Al(3)-O(2)-Al(2)	128.8(2)
O(16)-Al(1)-O(4)	110.9(2)	Al(3)-O(3)-Al(4)	126.4(2)
O(5)-Al(1)-O(1)	107.9(2)	Al(4)-O(4)-Al(1)	131.4(2)
O(16)-Al(1)-O(1)	109.4(2)	Si(1)-O(5)-Al(1)	150.7(2)
O(4)-Al(1)-O(1)	105.1(1)	Si(1)-O(6)-Si(2)	145.2(2)
O(7)-Al(2)-O(8)	116.2(2)	Si(2)-O(7)-Al(2)	157.8(2)
O(7) - A(2) - O(1)	110.5(2)	Si(3) - O(8) - A1(2)	150.9(2)
O(7)-Al(2)-O(1) O(8) Al(2) O(1)	108.0(2)	$S_1(3) - O(0) - A_1(2)$ $S_2(3) - O(0) - S_2(4)$	130.7(2) 142.7(2)
O(3)-Al(2)- $O(1)$	108.0(2) 107.1(1)	$S_1(3) - O(9) - S_1(4)$ $S_2(4) - O(10) - A_1(2)$	142.7(2) 142.5(2)
O(7)-Al(2)- $O(2)$	107.1(1)	SI(4) - O(10) - AI(3)	143.3(2) 147.2(2)
O(8)-AI(2)- $O(2)$	109.7(2)	S1(5)-O(11)-A1(3)	147.3(2)
O(1)-Al(2)-O(2)	104.7(1)	S1(5)-O(12)-S1(6)	148.9(2)
O(10)-Al(3)-O(11)	116.2(2)	Si(6)-O(13)-Al(4)	158.0(2)
O(10)-Al(3)-O(2)	110.5(2)	Si(7)-O(14)-Al(4)	146.7(2)
O(11)-Al(3)-O(2)	107.7(2)	Si(7)-O(15)-Si(8)	147.5(2)
O(10)-Al(3)-O(3)	109.0(2)	Si(8)-O(16)-Al(1)	156.8(2)
O(11)-Al(3)-O(3)	107.6(1)	C(2)-C(1)-C(6)	117.1(5)
O(2)-Al(3)-O(3)	105.3(1)	C(2)-C(1)-Si(1)	120.0(4)
O(14)-Al(4)-O(13)	117.6(2)	C(6)-C(1)-Si(1)	123.0(4)
O(14)-Al(4)-O(4)	109 3(1)	C(1)-C(2)-C(3)	121 4(5)
O(13) - Al(4) - O(4)	108 2(2)	C(4)-C(3)-C(2)	119 4(6)
O(14) A(4) O(3)	106.2(2) 106.3(1)	C(5) C(4) C(3)	120 5(6)
O(14) - AI(4) - O(3)	100.3(1) 100.7(1)	C(3) - C(4) - C(3)	120.3(0) 120.2(6)
O(13)-Al(4)-O(3)	109.7(1)	C(4) - C(3) - C(6)	120.2(6)
O(4)-AI(4)- $O(3)$	105.4(1)	C(5)-C(6)-C(1)	121.4(5)
O(5)-Si(1)-O(6)	111.2(2)	C(12)-C(7)-C(8)	116.2(5)
$O(5)-S_1(1)-C(7)$	110.4(2)	C(12)-C(7)-Si(1)	122.6(4)
O(6)-Si(1)-C(7)	109.0(2)	C(8)-C(7)-Si(1)	121.1(4)
O(5)-Si(1)-C(1)	108.1(2)	C(9)-C(8)-C(7)	122.8(6)
O(6)-Si(1)-C(1)	107.7(2)	C(10)-C(9)-C(8)	120.0(7)
C(7)-Si(1)-C(1)	110.5(2)	C(9)-C(10)-C(11)	119.9(6)
O(7)-Si(2)-O(6)	112.8(2)	C(10)-C(11)-C(12)	118.4(6)
O(7)-Si(2)-C(19)	110.6(2)	C(7) - C(12) - C(11)	122.7(6)
O(6)-Si(2)-C(19)	106.0(2)	C(18)-C(13)-C(14)	1154(5)
O(7)-Si(2)-C(13)	108.9(2)	C(18) - C(13) - Si(2)	121 7(4)
O(6)-Si(2)-C(13)	107.8(2)	C(14)-C(13)-Si(2)	121.7(4) 122.7(4)
C(10) S(2) $C(13)$	110 6(2)	C(12) C(14) C(15)	122.7(4) 122.2(6)
C(19)-S1(2)-C(15)	110.0(2)	C(15) - C(14) - C(15)	123.2(0)
O(8)-SI(3)-O(9)	110.9(2)	C(16)-C(15)-C(14)	120.2(7)
O(8)-Si(3)-C(25)	109.3(2)	C(17)-C(16)-C(15)	118.6(6)
O(9)-Si(3)-C(25)	109.2(2)	C(16)-C(17)-C(18)	121.7(7)
O(8)-Si(3)-C(31)	111.9(2)	C(13)-C(18)-C(17)	120.8(6)
O(9)-Si(3)-C(31)	106.9(2)	C(24)-C(19)-C(20)	115.2(5)
C(25)-Si(3)-C(31)	108.5(2)	C(24)-C(19)-Si(2)	123.3(4)
O(10)-Si(4)-O(9)	112.3(2)	C(20)-C(19)-Si(2)	121.5(4)
O(10)-Si(4)-C(37)	107.8(2)	C(21)-C(20)-C(19)	123.4(5)
O(9)-Si(4)-C(37)	108.2(2)	C(20)-C(21)-C(22)	119.3(6)
O(10)-Si(4)-C(43)	111.2(2)	C(23)-C(22)-C(21)	119.6(5)
O(9)-Si(4)-C(43)	106 1(2)	C(22) - C(23) - C(24)	1194(5)
C(37) = Si(4) = C(43)	111 2(2)	C(19)-C(24)-C(23)	123 1(5)
O(11) Si(5) $O(12)$	111.2(2)	C(26) C(25) C(30)	125.1(5) 115.2(5)
O(11)-SI(5)-O(12) O(11)-Si(5)-O(55)	111.7(2) 100.8(2)	C(26) - C(25) - C(30)	113.2(3) 122.7(4)
O(11)-S1(5)-C(55)	109.8(2)	C(20)- $C(25)$ - $S1(3)$	123.7(4)
O(12)-S1(5)-C(55)	107.4(2)	C(30)- $C(25)$ - $S1(3)$	121.0(4)
O(11)-S1(5)-C(49)	107.3(2)	C(25)-C(26)-C(27)	122.5(6)
O(12)-S1(5)-C(49)	109.1(2)	C(28)-C(27)-C(26)	120.1(6)
C(55)-Si(5)-C(49)	111.7(2)	C(27)-C(28)-C(29)	119.5(6)
O(13)-Si(6)-O(12)	112.7(2)	C(28)-C(29)-C(30)	120.3(7)
O(13)-Si(6)-C(61)	111.3(2)	C(25)-C(30)-C(29)	122.3(6)
O(12)-Si(6)-C(61)	106.3(2)	C(32)-C(31)-C(36)	118.4(6)
O(13)-Si(6)-C(67)	108.9(2)	C(32)-C(31)-Si(3)	119.0(5)
O(12)-Si(6)-C(67)	108.0(2)	C(36)-C(31)-Si(3)	122.5(5)
C(61)-Si(6)-C(67)	109.6(2)	C(31)-C(32)-C(33)	121.8(9)
O(14)-Si(7)-O(15)	111.7(2)	C(34)-C(33)-C(32)	118.9(9)
O(14)-Si(7)-C(79)	109 4(2)	C(35)-C(34)-C(33)	120 5(8)
O(15)-Si(7)-C(79)	108 2(2)	C(34)- $C(35)$ - $C(36)$	120.3(0)
O(14) Si(7) $O(72)$	107.0(2)	C(31) C(36) C(25)	110 0(9)
O(14) - O(13) O(15) S(7) C(72)	107.7(2) 106.0(2)	C(31)- $C(30)$ - $C(33)$	117.7(0)
O(13) - SI(7) - O(73)	100.9(2) 112.7(2)	C(30)-C(37)-C(42)	117.1(3) 121.1(4)
U(13) - O(1) - U(13)	112.7(2)	U(30)-U(37)-3I(4)	121.1(4)

C(42)-C(37)-Si(4)	121 6(4)	C(96)-C(91)-Si(8)	122 1(4)
C(37)- $C(38)$ - $C(39)$	121.3(1)	C(91)-C(92)-C(93)	120.3(6)
C(40)-C(39)-C(38)	120.5(6)	C(91) = C(92) = C(93)	120.5(0)
C(41)-C(40)-C(39)	110.1(6)	C(93)-C(94)-C(95)	110 3(5)
C(40) C(41) C(42)	120.7(6)	C(96) C(95) C(94)	120.0(6)
C(40) - C(41) - C(42) C(37) C(42) C(41)	120.7(0)	C(95) - C(95) - C(94)	120.0(0) 122.0(6)
C(44) C(42) - C(41)	121.3(0)	C(93)-C(90)-C(91) C(97) N(1) C(101)	122.0(0)
C(44) - C(43) - C(46)	117.0(5)	V(1) C(07) C(08)	110.9(3) 121.7(6)
C(44) - C(43) - SI(4)	122.0(4)	$\Gamma(1) - C(97) - C(98)$	121.7(0)
C(48) - C(43) - SI(4)	121.0(4)	C(99)-C(98)-C(97)	110.9(0)
C(43)-C(44)-C(45)	120.3(6)	C(100)-C(99)-C(98)	121.0(5)
C(46)- $C(45)$ - $C(44)$	121.5(6)	C(100)-C(99)-N(2)	114.3(6)
C(47)- $C(46)$ - $C(45)$	119.1(6)	C(98)-C(99)-N(2)	124.7(6)
C(46)-C(47)-C(48)	119.7(6)	C(99)-C(100)-C(101)	118.2(6)
C(47)-C(48)-C(43)	122.4(5)	N(1)-C(101)-C(100)	123.2(6)
C(50)-C(49)-C(54)	116.7(5)	N(3)-N(2)-C(99)	104.1(6)
C(50)-C(49)-S1(5)	121.0(4)	N(2)-N(3)-C(102)	104.9(6)
$C(54)-C(49)-S_1(5)$	122.3(4)	C(103)-C(102)-C(106)	121.1(6)
C(51)-C(50)-C(49)	123.1(5)	C(103)-C(102)-N(3)	111.2(6)
C(52)-C(51)-C(50)	119.9(6)	C(106)-C(102)-N(3)	127.7(6)
C(51)-C(52)-C(53)	119.7(6)	C(102)-C(103)-C(104)	117.3(6)
C(52)-C(53)-C(54)	120.0(5)	N(4)-C(104)-C(103)	124.1(6)
C(53)-C(54)-C(49)	120.6(5)	N(4)-C(105)-C(106)	122.2(6)
C(56)-C(55)-C(60)	117.8(5)	C(102)-C(106)-C(105)	117.5(6)
C(56)-C(55)-Si(5)	120.3(4)	C(104)-N(4)-C(105)	117.7(5)
C(60)-C(55)-Si(5)	121.9(4)	C(111)-N(5)-C(107)	118.5(4)
C(57)-C(56)-C(55)	121.9(6)	N(5)-C(107)-C(108)	123.6(4)
C(58)-C(57)-C(56)	120.5(7)	C(107)-C(108)-C(109)	117.4(4)
C(57)-C(58)-C(59)	119.8(6)	C(108)-C(109)-C(110)	119.9(4)
C(58)-C(59)-C(60)	119.5(6)	C(108)-C(109)-N(6)	123.9(4)
C(55)-C(60)-C(59)	120.4(6)	C(110)-C(109)-N(6)	116.2(4)
C(66)-C(61)-C(62)	116.7(5)	C(109)-C(110)-C(111)	118.0(4)
C(66)-C(61)-Si(6)	120.4(4)	N(5)-C(111)-C(110)	122.5(4)
C(62)-C(61)-Si(6)	123.0(4)	N(6)#1-N(6)-C(109)	113.1(5)
C(63)-C(62)-C(61)	121.8(5)	C(115)-O(17)-C(112)	110.4(5)
C(64)-C(63)-C(62)	120.5(6)	C(113)-C(112)-O(17)	108.6(7)
C(63)-C(64)-C(65)	119.2(6)	C(112)-C(113)-C(114)	107.4(8)
C(64)-C(65)-C(66)	121.6(6)	C(113)-C(114)-C(115)	107.1(6)
C(61)-C(66)-C(65)	120.2(5)	O(17)-C(115)-C(114)	105.9(6)
C(68)-C(67)-C(72)	118.0(6)	C(116)-O(18)-C(119)	110.3(8)
C(68)-C(67)-Si(6)	121.6(5)	O(18)-C(116)-C(117)	108(1)
C(72)-C(67)-Si(6)	120.4(5)	C(116)-C(117)-C(118)	105(1)
C(67)-C(68)-C(69)	121.1(8)	C(119)-C(118)-C(117)	106(1)
C(70)-C(69)-C(68)	120(1)	O(18)-C(119)-C(118)	106(1)
C(69)-C(70)-C(71)	121(1)	C(1B3)-O(19)-C(1A3)	78(2)
C(70)-C(71)-C(72)	122(1)	C(1B3)-O(19)-C(120)	113(1)
C(67)-C(72)-C(71)	118.7(9)	C(1A3)-O(19)-C(120)	79(2)
C(74)-C(73)-C(78)	116.0(5)	O(19)-C(120)-C(121)	102(1)
C(74)-C(73)-Si(7)	120.7(4)	O(19)-C(120)-C(1A3)	49(1)
C(78)-C(73)-Si(7)	123.1(4)	C(121)-C(120)-C(1A3)	80(1)
C(73)-C(74)-C(75)	122.1(6)	C(1A2)-C(121)-C(1B2)	47(1)
C(76)-C(75)-C(74)	120.1(7)	C(1A2)-C(121)-C(120)	102(2)
C(75)-C(76)-C(77)	119.8(7)	C(1B2)-C(121)-C(120)	103(1)
C(76)-C(77)-C(78)	119.6(7)	O(19)-C(1A3)-C(120)	52(1)
C(77)-C(78)-C(73)	122.2(6)	C(121)-C(1B2)-C(1B3)	102(2)
C(80)-C(79)-C(84)	116.8(5)	O(19)-C(1B3)-C(1B2)	107(2)
C(80)-C(79)-Si(7)	122.5(5)	C(125)-O(20)-C(124)	102(1)
C(84)-C(79)-Si(7)	120.7(4)	C(125)-O(20)-C(1B6)	71(1)
C(79)-C(80)-C(81)	121.6(8)	C(124)-O(20)-C(1B6)	87(2)
C(80)-C(81)-C(82)	118.4(8)	C(1A7)-C(125)-O(20)	110(2)
C(83)-C(82)-C(81)	120.2(8)	C(1A7)-C(125)-C(1B6)	69(2)
C(82)-C(83)-C(84)	120 7(9)	O(20)-C(125)-C(186)	60(1)
C(83)-C(84)-C(79)	122.3(7)	C(1B7)-C(124)-O(20)	104(2)
C(86)-C(85)-C(90)	115.7(5)	C(1B7)-C(124)-C(1A6)	39(2)
C(86)-C(85)-Si(8)	122.1(4)	O(20)-C(124)-C(1A6)	79(2)
C(90)-C(85)-Si(8)	122.1(4)	C(1B7)-C(1A6)-C(1B6)	123(4)
C(85)-C(86)-C(87)	123 4(7)	C(1B7)-C(1A6)-C(124)	54(2)
C(88)-C(87)-C(86)	119 7(8)	C(1B6)-C(1A6)-C(124)	99(3)
C(87)- $C(88)$ - $C(89)$	120 3(7)	C(1B7)-C(1A6)-C(1A7)	60(2)
C(88)- $C(89)$ - $C(90)$	119 1(7)	C(1B6)-C(1A6)-C(1A7)	66(2)
C(85)-C(90)-C(89)	121 6(7)	$C(124)-C(1\Delta 6)-C(1\Delta 7)$	81(2)
C(92)-C(91)-C(96)	116 9(4)	C(125)-C(1A7)-C(1R7)	106(2)
C(92)- $C(91)$ - $Si(8)$	120 9(4)	C(125) - C(1A7) - C(1B7)	68(2)
			00(2)

C(1B7)-C(1A7)-C(1B6)	68(2)
C(125)-C(1A7)-C(1A6)	94(2)
C(1B7)-C(1A7)-C(1A6)	33(1)
C(1B6)-C(1A7)-C(1A6)	36(1)
C(1A6)-C(1B6)-O(20)	94(3)
C(1A6)-C(1B6)-C(125)	107(3)
O(20)-C(1B6)-C(125)	49(1)
C(1A6)-C(1B6)-C(1A7)	78(3)
O(20)-C(1B6)-C(1A7)	82(2)
C(125)-C(1B6)-C(1A7)	43(1)
C(1A6)-C(1B6)-C(1B7)	27(2)
O(20)-C(1B6)-C(1B7)	80(2)
C(125)-C(1B6)-C(1B7)	80(2)
C(1A7)-C(1B6)-C(1B7)	53(1)
C(1A6)-C(1B7)-C(124)	87(3)
C(1A6)-C(1B7)-C(1A7)	87(3)
C(124)-C(1B7)-C(1A7)	101(2)
C(1A6)-C(1B7)-C(1B6)	30(2)
C(124)-C(1B7)-C(1B6)	81(2)
C(1A7)-C(1B7)-C(1B6)	59(2)
C(128)-O(21)-C(129)	107(1)
C(130)-C(128)-O(21)	102(2)
C(131)-C(129)-O(21)	90(1)
C(128)-C(130)-C(131)	116(2)
C(130)-C(131)-C(129)	115(2)

 $\overline{Symmetry\ transformations\ used\ to\ generate\ equivalent\ atoms: \#1\ -x,-y+1,-z}$

Tabelle 42: Anisotropische Auslenkungsaparameter ($\mathring{A}^2 x 10^3$) für sh2837. Der anisotropische Exponentfaktor des Auslenkungsparameter lautet
$-2\pi^2 [h^2 a^{*2} U^{11} + + 2 h k a^{*} b^{*} U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Al(1)	22(1)	22(1)	21(1)	-1(1)	-3(1)	-1(1)
Al(2)	24(1)	22(1)	24(1)	-3(1)	-3(1)	2(1)
Al(3)	27(1)	20(1)	24(1)	2(1)	0(1)	3(1)
Al(4)	25(1)	19(1)	20(1)	0(1)	0(1)	2(1)
Si(1)	24(1)	32(1)	31(1)	-2(1)	-8(1)	-1(1)
Si(2)	26(1)	29(1)	33(1)	-2(1)	-4(1)	7(1)
Si(3)	35(1)	20(1)	34(1)	-1(1)	-7(1)	-2(1)
Si(4)	34(1)	22(1)	41(1)	5(1)	3(1)	0(1)
Si(5)	38(1)	28(1)	22(1)	1(1)	4(1)	5(1)
Si(6)	36(1)	25(1)	27(1)	2(1)	5(1)	8(1)
Si(7)	28(1)	24(1)	23(1)	2(1)	-2(1)	2(1)
Si(8)	31(1)	29(1)	22(1)	2(1)	1(1)	0(1)
O(1)	28(2)	23(2)	20(2)	-4(1)	-3(1)	-1(1)
O(2)	24(2)	27(2)	23(2)	-3(1)	-6(1)	3(1)
O(3)	25(2)	22(2)	24(2)	0(1)	-9(1)	-2(1)
O(4)	26(2)	24(2)	20(2)	-5(1)	-2(1)	0(1)
O(5)	26(2)	27(2)	28(2)	-3(1)	-8(1)	2(1)
O(6)	30(2)	31(2)	39(2)	-2(1)	-6(1)	4(1)
O(7)	25(2)	31(2)	37(2)	-4(1)	-4(1)	5(1)
O(8)	35(2)	24(2)	31(2)	-4(1)	-6(1)	-2(1)
O(9)	39(2)	24(2)	42(2)	3(1)	-2(2)	1(1)
O(10)	35(2)	21(2)	42(2)	4(1)	2(1)	-1(1)
O(11)	38(2)	30(2)	26(2)	2(1)	2(1)	8(1)
O(12)	59(2)	28(2)	33(2)	3(1)	12(2)	12(2)
O(13)	37(2)	24(2)	31(2)	0(1)	5(1)	4(1)
O(14)	33(2)	27(2)	23(2)	1(1)	-3(1)	1(1)
O(15)	33(2)	38(2)	26(2)	2(1)	1(1)	6(2)
O(16)	35(2)	40(2)	24(2)	4(1)	0(1)	0(2)
C(1)	28(3)	41(3)	37(3)	-1(2)	-9(2)	-5(2)
C(2)	39(3)	55(4)	50(3)	-14(3)	-13(2)	4(3)
C(3)	49(4)	75(5)	72(4)	-33(3)	-2(3)	1(3)

C(4)	54(4)	92(5)	52(4)	-24(3)	-12(3)	-17(4)
C(5)	67(5)	78(5)	66(4)	-8(4)	-42(3)	3(4)
C(6)	53(4)	50(4)	60(4)	-9(3)	-33(3)	1(3)
C(7)	25(3)	49(3)	37(3)	2(2)	-3(2)	0(2)
C(8)	88(5)	75(5)	67(4)	-4(4)	22(4)	-34(4)
C(9)	114(7)	101(7)	94(6)	1(5)	32(5)	-47(5)
C(10)	49(4)	131(7)	75(5)	45(5)	15(4)	-15(4)
C(11)	78(5)	110(6)	52(4)	-4(4)	20(4)	5(5)
C(12)	74(5)	67(4)	48(4)	-1(3)	14(3)	-7(3)
C(13)	35(3)	31(3)	42(3)	-4(2)	4(2)	7(2)
C(14)	54(4)	156(7)	47(4)	-33(4)	-10(3)	34(4)
C(15)	76(6)	185(9)	57(5)	-51(5)	-7(4)	28(6)
C(16)	92(6)	100(6)	45(4)	-22(4)	10(4)	23(4)
C(17)	74(5)	130(7)	71(5)	-19(5)	22(4)	40(5)
C(18)	46(4)	111(6)	67(4)	-22(4)	1(3)	27(4)
C(19)	32(3)	33(3)	33(3)	-4(2)	-4(2)	6(2)
C(20)	67(4)	55(4)	73(4)	18(3)	-36(3)	-13(3)
C(21)	/8(5)	68(5)	86(5)	37(4)	-31(4)	-20(4)
C(22)	01(4)	01(4) 55(4)	54(4)	20(3)	-11(3)	15(3)
C(23)	39(3)	55(4) 41(2)	44(5)	1(3)	-10(2)	5(3)
C(24) C(25)	33(3) 48(3)	41(3) 27(3)	40(3)	2(2)	-4(2)	0(2)
C(25)	48(J) 58(A)	27(3)	76(4)	-2(2)	-4(2)	-1(2)
C(20)	85(5)	34(4)	90(5)	-23(3)	18(4)	-2(3)
C(27)	81(6)	52(5)	133(7)	-25(3)	6(5)	$\frac{-2(3)}{26(4)}$
C(29)	69(5)	67(5)	204(9)	-65(6)	-35(5)	25(4)
C(30)	67(5)	43(4)	130(6)	-40(4)	-34(4)	18(3)
C(31)	66(4)	19(3)	57(4)	6(2)	-31(3)	-14(2)
C(32)	135(7)	72(5)	66(5)	26(4)	-50(4)	-64(5)
C(33)	250(14)	83(6)	106(7)	57(5)	-120(8)	-104(8)
C(34)	215(13)	50(5)	182(11)	37(6)	-170(11)	-43(6)
C(35)	83(6)	66(6)	206(11)	-49(6)	-81(7)	20(4)
C(36)	48(4)	59(4)	109(5)	-28(4)	-36(4)	9(3)
C(37)	44(3)	30(3)	39(3)	-4(2)	11(2)	-5(2)
C(38)	45(4)	50(4)	100(5)	14(3)	19(3)	-2(3)
C(39)	40(4)	94(6)	107(6)	10(4)	11(4)	4(4)
C(40)	45(4)	93(6)	77(5)	-25(4)	20(3)	-27(4)
C(41)	78(5)	47(4)	75(4)	-17(3)	36(4)	-31(4)
C(42)	57(4)	33(3)	57(4)	-4(2)	13(3)	-10(3)
C(43)	40(5)	$\frac{27(5)}{41(4)}$	44(5)	10(2)	2(2) 15(2)	0(2)
C(44) C(45)	118(7)	41(4) 58(5)	33(4) 80(5)	5(5) 15(4)	-13(3) -34(4)	10(3) 30(4)
C(45)	96(6)	75(5)	49(4)	18(4)	-17(4)	3(4)
C(40) C(47)	81(5)	72(5)	42(4)	3(3)	7(3)	1(4)
C(48)	55(4)	48(4)	45(3)	4(3)	6(3)	5(3)
C(49)	43(3)	33(3)	22(2)	2(2)	4(2)	-4(2)
C(50)	46(3)	51(3)	35(3)	-1(2)	-4(2)	10(3)
C(51)	56(4)	83(5)	52(4)	2(3)	-13(3)	13(3)
C(52)	68(5)	82(5)	41(4)	9(3)	-19(3)	-18(4)
C(53)	81(5)	54(4)	33(3)	-11(3)	-2(3)	-21(3)
C(54)	62(4)	41(3)	29(3)	-2(2)	5(2)	0(3)
C(55)	40(3)	32(3)	32(3)	-3(2)	3(2)	4(2)
C(56)	44(4)	106(6)	50(4)	6(3)	-2(3)	-2(4)
C(57)	45(4)	124(7)	74(5)	-19(4)	0(3)	-11(4)
C(58)	60(5)	85(5)	81(5)	-15(4)	8(4)	-32(4)
C(59)	97(6)	79(5) 67(4)	/6(5)	6(4)	21(4)	-43(4)
C(60)	07(4) 45(3)	07(4)	47(4) 32(3)	0(3)	4(3)	-20(3)
C(01)	43(3)	20(3) 48(4)	32(3) 36(3)	-2(2)	$\frac{0(2)}{4(3)}$	14(2) 13(3)
C(62)	82(5)	54(4)	53(4)	-27(3)	-10(3)	11(3)
C(64)	92(5)	33(4)	76(5)	-16(3)	-29(4)	2(3)
C(65)	89(5)	33(4)	87(5)	13(3)	-14(4)	-2(3)
C(66)	64(4)	34(3)	44(3)	4(2)	-12(3)	-1(3)
C(67)	39(3)	22(3)	77(4)	11(3)	1(3)	0(2)
C(68)	70(5)	54(4)	116(6)	-23(4)	-44(4)	28(3)
C(69)	99(8)	97(7)	197(11)	-55(7)	-85(8)	45(6)
C(70)	71(7)	56(6)	285(18)	-14(8)	-78(9)	3(5)
C(71)	42(6)	104(8)	308(17)	66(10)	62(8)	10(5)
C(72)	48(4)	115(7)	143(7)	56(5)	46(5)	25(4)
C(73)	39(3)	37(3)	33(3)	6(2)	-12(2)	1(2)
C(74)	46(4)	139(7)	56(4)	16(4)	-17(3)	-20(4)
U(13)	53(5)	204(10)	99(/)	38(0)	-3/(4)	-50(6)

	101(5)	111/0	100/5	0.40		10.00
C(76)	101(7)	144(8)	100(7)	8(6)	-66(6)	-49(6)
C(77)	92(6)	112(6)	46(4)	-5(4)	-34(4)	5(5)
C(78)	59(4)	82(5)	37(3)	0(3)	-15(3)	1(3)
C(79)	56(3)	25(3)	33(3)	4(2)	9(2)	1(2)
C(80)	110(6)	53(4)	52(4)	-5(3)	-8(4)	39(4)
C(81)	217(12)	54(5)	75(6)	-4(4)	12(6)	81(6)
C(82)	249(14)	36(5)	62(5)	-5(4)	58(7)	-26(6)
C(83)	126(8)	68(5)	110(6)	-53(5)	60(6)	-60(5)
C(84)	68(4)	55(4)	77(4)	-27(3)	22(3)	-21(3)
C(85)	42(3)	35(3)	34(3)	1(2)	6(2)	-3(2)
C(86)	82(5)	93(6)	106(6)	39(5)	-37(4)	-44(5)
C(87)	117(8)	113(8)	185(10)	57(7)	-52(7)	-83(7)
C(88)	114(8)	81(7)	149(9)	9(6)	17(7)	-63(6)
C(89)	141(8)	37(4)	113(6)	29(4)	50(6)	0(4)
C(90)	66(4)	51(4)	67(4)	18(3)	9(3)	-2(3)
C(91)	40(3)	33(3)	24(3)	1(2)	3(2)	-4(2)
C(92)	52(4)	66(4)	48(3)	-7(3)	9(3)	17(3)
C(93)	80(5)	76(5)	70(5)	-10(4)	15(4)	34(4)
C(94)	100(6)	62(4)	55(4)	-22(3)	31(4)	-1(4)
C(95)	82(5)	65(4)	30(3)	-13(3)	2(3)	-1(4)
C(95)	52(3)	40(3)	38(3)	-13(3)	$\frac{2(3)}{7(3)}$	-19(4)
U(90)	25(2)	49(3) 52(2)	30(3) 25(2)	-0(3)	7(3) 4(2)	-3(3)
N(1)	33(2)	55(5) 66(4)	23(2) 50(4)	4(2)	-4(2)	1(2)
C(97)	4/(4)	00(4) (1(4)	50(4)	8(3)	-10(5)	1(5)
C(98)	/5(5)	61(4)	48(4)	20(3)	-12(3)	19(3)
C(99)	34(3)	93(5)	29(3)	-1/(3)	-1/(2)	15(3)
C(100)	42(4)	72(5)	57(4)	-6(3)	-14(3)	4(3)
C(101)	45(3)	61(4)	47(3)	-1(3)	-8(3)	6(3)
N(2)	113(5)	68(4)	43(3)	-11(3)	24(3)	-21(3)
N(3)	78(4)	50(3)	59(3)	-8(3)	5(3)	-7(3)
C(102)	71(5)	67(4)	35(3)	-16(3)	-23(3)	34(4)
C(103)	81(5)	51(4)	74(5)	7(3)	-44(4)	7(3)
C(104)	82(5)	39(3)	56(4)	7(3)	-35(3)	-2(3)
C(105)	53(4)	89(5)	41(3)	14(3)	7(3)	20(3)
C(106)	90(5)	90(5)	30(3)	20(3)	9(3)	42(4)
N(4)	54(3)	36(3)	29(2)	-4(2)	-14(2)	15(2)
N(5)	31(2)	40(3)	33(2)	-14(2)	2(2)	-3(2)
C(107)	41(3)	34(3)	42(3)	-12(2)	6(2)	-11(2)
C(108)	44(3)	45(3)	28(3)	-11(2)	3(2)	-11(2)
C(109)	37(3)	39(3)	28(3)	-16(2)	1(2)	-8(2)
C(110)	45(3)	37(3)	33(3)	-11(2)	4(2)	-9(2)
C(111)	45(3)	47(3)	31(3)	-3(2)	-1(2)	-4(2)
N(6)	51(3)	39(3)	31(2)	-10(2)	1(2)	-13(2)
O(17)	48(3)	60(3)	105(3)	0(2)	-33(2)	-10(2)
C(112)	61(5)	121(7)	165(9)	-53(6)	-10(5)	9(5)
C(113)	61(6)	152(10)	268(14)	-76(10)	-31(7)	-11(6)
C(114)	77(6)	132(8)	206(11)	-89(8)	-54(6)	-4(6)
C(115)	74(6)	138(8)	176(9)	-109(7)	-7(6)	-18(5)
O(18)	157(7)	127(6)	148(6)	25(5)	70(5)	-24(5)
C(116)	162(12)	123(10)	250(14)	64(9)	88(11)	42(0)
C(117)	116(10)	175(13)	325(18)	110(13)	43(11)	$\frac{1}{2}(0)$
C(118)	131(11)	107(14)	283(16)	10(13)	79(11)	-1(10)
C(110)	131(11) 128(10)	173(14)	203(10)	02(12)	31(0)	-1(10) 16(8)
C(117)	120(10)	173(12)	223(13)	77(10)	51(7)	10(0)

6 Daten zur Molekül- und Kristallstruktur von (Ph₂SiO)8[AIO(OH)]4 • 2 m-(C₅H4N)2N2 8

Tabelle 43: Kristalldaten und Strukturverfeinerungen für (Ph₂SiO)₈[AlO(OH)]₄ • 2 m-(C₅H₄N)₂N₂ (sh2866)

Identifikationscode Summenformel Molmasse [g/mol] Messtemperatur [K] Wellenlänge [Å] Kristallsystem Raumgruppe sh2866 C140 H148 Al4 N8 O22 Si8 2627.30 100(2) 0.71073 triklin P-1

Gitterkonstanten	a = 15.4342(15) Å b = 18.3260(17) Å c = 25.949(2) Å	$\alpha = 76.243(5)^{\circ}$ $\beta = 82.781(5)^{\circ}$ $\gamma = 84.762(5)^{\circ}$	
Zellvolumen [Å ³] Anzahl der Formeleinheiten Z Dichte (berechnet) [g/cm ³]	7058.2(11) 2 1.236	,	
Absorptionskoeffizient [mm ⁻¹] F(000)	0.169 2768		
Kristallabmessungen [mm ³] Messbereich θ [°] hkl - Indexbereich Gemessene Reflexe Symmetrieunabhängige Reflexe Vollständigkeit des Datensatzes (bis θ = 27.23°) Absorptionskorrektur Max. und Min. Transmission	0.38 x 0.10 x 0.06 1.15 to 27.23 -17<=h<=19, -23<=k<=23, -32<=l<=33 108335 30249 [R(int) = 0.2091] 95.8 % Multiscan 0.9893 and 0.9379		
Strukturverfeinerungsmethode Daten / Einschränkungen / Parameter	Full-matrix least-squares on F 30249 / 0 / 1684	-2	
Güte des Fit auf F ² Endgültige R-Werte [I>2sigma(I)] R-Werte (alle Daten)	1.153 R1 = 0.0903, wR2 = 0.1953 R1 = 0.2950, wR2 = 0.2447		
Restelektronendichte (min./max.) [e/Å ⁻³]	1.237 and -0.470		

Tabelle 44: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) für sh2866. U(eq) wird berechnet als ein Drittel
der Spur des orthogonalisierten U^{ij} Tensors.

	x	у	Z	U(eq)
Al(1)	-524(1)	6200(1)	2015(1)	19(1)
Al(2)	-437(1)	7842(1)	2275(1)	21(1)
Al(3)	1604(1)	7435(1)	2403(1)	21(1)
Al(4)	1383(1)	5709(1)	2411(1)	20(1)
Si(1)	-1582(1)	6997(1)	1027(1)	21(1)
Si(2)	-1896(1)	8400(1)	1535(1)	21(1)
Si(3)	-518(1)	8855(1)	3106(1)	26(1)
Si(4)	1519(1)	8537(1)	3193(1)	27(1)
Si(5)	3229(1)	7265(1)	1487(1)	22(1)
Si(6)	3435(1)	5694(1)	2162(1)	25(1)
Si(7)	567(1)	4156(1)	3038(1)	22(1)
Si(8)	-1291(1)	4615(1)	2727(1)	22(1)
O(1)	-672(3)	6884(2)	2405(2)	19(1)
O(2)	700(3)	7884(2)	2065(2)	21(1)
O(3)	1342(3)	6494(2)	2701(2)	20(1)
O(4)	628(3)	5976(2)	1923(2)	20(1)
O(5)	-851(3)	6561(2)	1389(2)	20(1)
O(6)	-1934(3)	7792(2)	1172(2)	22(1)
O(7)	-955(3)	8367(2)	1744(2)	21(1)
O(8)	-656(3)	8148(2)	2858(2)	24(1)
O(9)	489(3)	8844(2)	3238(2)	27(1)
O(10)	1685(3)	7820(2)	2930(2)	25(1)
O(11)	2470(3)	7466(2)	1924(2)	24(1)
O(12)	3757(3)	6459(2)	1733(2)	22(1)
O(13)	2433(3)	5567(2)	2113(2)	21(1)
O(14)	992(3)	4959(2)	2889(2)	22(1)
O(15)	-503(3)	4223(2)	3090(2)	23(1)
O(16)	-1042(3)	5424(2)	2376(2)	25(1)
C(1)	-1104(4)	7213(4)	322(2)	17(2)
C(2)	-1142(5)	6717(4)	-6(3)	30(2)
C(3)	-775(5)	6864(4)	-534(3)	32(2)
C(4)	-340(5)	7492(4)	-748(3)	33(2)
C(5)	-296(5)	8003(4)	-433(3)	32(2)
C(6)	-674(4)	7861(4)	93(3)	24(2)
C(7)	-2534(4)	6433(4)	1093(2)	18(2)
C(8)	-2422(5)	5650(4)	1188(3)	31(2)
C(9)	-3124(6)	5214(4)	1207(3)	42(2)
C(10)	-3945(6)	5556(5)	1132(3)	46(2)

-				5 0 (5)
C(11)	-4076(6)	6329(5)	1058(3)	50(2)
C(12)	-3377(5)	6749(4)	1029(3)	32(2)
C(13)	-2111(5)	9346(4)	1105(3)	25(2)
C(14)	2607(5)	0.466(4)	719(2)	23(2)
C(14)	-2097(3)	9400(4)	/18(3)	27(2)
C(15)	-2880(5)	10164(4)	399(3)	34(2)
C(16)	-2437(5)	10782(4)	437(3)	33(2)
C(17)	-1848(5)	10684(4)	816(3)	36(2)
C(19)	1694(5)	0076(4)	1142(2)	21(2)
	-1084(3)	9970(4)	1142(3)	51(2)
C(19)	-2766(4)	8177(4)	2114(3)	23(2)
C(20)	-3188(5)	7506(4)	2252(3)	28(2)
$\mathbf{C}(21)$	-3847(5)	7364(4)	2670(3)	34(2)
C(21)	4101(5)	7902(5)	20/0(3)	27(2)
C(22)	-4101(3)	7895(3)	2967(3)	57(2)
C(23)	-3705(5)	8573(5)	2841(3)	37(2)
C(24)	-3040(5)	8715(4)	2419(3)	31(2)
C(25)	-1274(5)	8827(4)	3731(3)	24(2)
C(26)	2142(5)	8701(4)	2744(2)	26(2)
C(20)	-2142(3)	8701(4)	3744(3)	30(2)
C(27)	-2/53(6)	8/69(4)	4169(3)	45(2)
C(28)	-2480(7)	8976(4)	4610(3)	44(2)
C(29)	-1613(6)	9095(4)	4611(3)	41(2)
C(20)	1010(5)	0020(4)	4177(2)	21(2)
C(30)	-1019(3)	9029(4)	4177(3)	51(2)
C(31)	-728(5)	97/6(4)	2624(3)	24(2)
C(32)	-1479(5)	10253(4)	2677(3)	36(2)
C(33)	-1589(5)	10945(4)	2328(3)	42(2)
C(34)	952(5)	11186(4)	1027(3)	36(2)
C(34)	-952(5)	10729(4)	1927(3)	30(2)
C(35)	-196(5)	10/28(4)	1862(3)	33(2)
C(36)	-97(5)	10037(4)	2206(3)	26(2)
C(37)	1825(5)	8253(4)	3890(3)	26(2)
C(29)	1667(5)	8752(5)	4220(2)	40(2)
C(38)	1007(3)	8733(3)	4229(3)	49(2)
C(39)	1895(6)	8527(6)	4/51(3)	65(3)
C(40)	2248(6)	7798(6)	4941(3)	65(3)
C(41)	2400(6)	7294(5)	4606(3)	52(2)
C(42)	2204(5)	7542(4)	4085(3)	34(2)
C(42)	2160(5)	7342(4)	4085(3)	34(2)
C(43)	2169(5)	9301(4)	2762(3)	28(2)
C(44)	1887(5)	10072(4)	2663(3)	35(2)
C(45)	2403(7)	10603(5)	2320(3)	49(2)
C(46)	3188(7)	10/21(5)	2082(3)	56(3)
C(40)	3100(7)	10421(5)	2002(3)	19(3)
C(47)	3492(6)	96/2(5)	21/4(3)	48(2)
C(48)	2990(5)	9127(4)	2506(3)	36(2)
C(49)	4019(5)	8019(4)	1292(3)	24(2)
C(50)	4769(5)	8009(4)	1540(3)	37(2)
C(51)	5284(5)	8617(4)	1419(2)	28(2)
C(51)	5284(5)	8617(4)	1418(3)	38(2)
C(52)	5068(5)	9261(4)	1040(3)	34(2)
C(53)	4323(5)	9286(4)	796(3)	36(2)
C(54)	3804(5)	8671(4)	912(3)	28(2)
C(57)	2772(5)	7010(4)	966(2)	20(2)
C(33)	2772(3)	7212(4)	800(3)	25(2)
C(56)	3324(5)	7097(4)	426(3)	35(2)
C(57)	3008(6)	7070(4)	-45(3)	43(2)
C(58)	2109(6)	7160(4)	-83(3)	46(2)
C(50)	1520(5)	7100(1)	265(3)	20(2)
C(39)	1330(3)	7270(4)	303(3)	39(2)
C(60)	1857(5)	7299(4)	829(3)	33(2)
C(61)	3580(5)	5791(4)	2848(3)	28(2)
C(62)	3806(5)	6456(4)	2960(3)	31(2)
C(63)	3915(5)	6485(5)	3478(3)	41(2)
C((4))	2925(5)	5960(5)	2901(2)	+1(2)
C(64)	3835(5)	5869(5)	3891(3)	44(2)
C(65)	3637(5)	5199(5)	3794(3)	44(2)
C(66)	3513(5)	5161(4)	3270(3)	34(2)
C(67)	4142(5)	4870(4)	2033(3)	27(2)
C(69)	4991(5)	4620(4)	2000(0)	27(2)
C(08)	4881(3)	4039(4)	2291(3)	57(2)
C(69)	5459(5)	4030(5)	2187(4)	53(3)
C(70)	5259(6)	3643(5)	1823(4)	56(3)
C(71)	4528(5)	3853(4)	1561(4)	49(2)
C(72)	3077(5)	1164(4)	1661(2)	25(2)
0(72)	3977(3)	4404(4)	1001(5)	55(2)
C(73)	899(5)	3637(4)	3695(3)	20(2)
C(74)	1622(5)	3855(4)	3870(3)	29(2)
C(75)	1942(5)	3452(4)	4350(3)	36(2)
C(76)	1542(5)	2818(4)	4641(3)	36(2)
C(77)	1372(3)	2010(4)	4469(2)	24(2)
C(11)	822(5)	2585(4)	4408(3)	34(2)
C(78)	499(5)	2997(4)	4005(3)	27(2)
C(79)	951(5)	3596(4)	2529(3)	23(2)
C(80)	1694(5)	3749(4)	2177(3)	37(7)
C(81)	1004(5)	2220(4)	1909(2)	27(2)
C(01)	1994(5)	3320(4)	1808(3)	57(2)
C(82)	1547(6)	2690(4)	1800(3)	36(2)

C(83)	801(5)	2518(4)	2155(3)	33(2)
C(84)	510(5)	2972(4)	2512(3)	26(2)
C(85)	-2290(5)	4674(4)	3206(3)	22(2)
C(86)	-3025(5)	5138(1)	30/(3(3)	36(2)
C(87)	3796(5)	5167(4)	3376(3)	35(2)
C(87)	-3790(3)	J107(4) 4710(4)	2997(2)	33(2)
C(88)	-3803(3)	4719(4)	3007(3)	38(2)
C(89)	-3153(6)	4260(5)	4058(3)	44(2)
C(90)	-2380(5)	4230(4)	3724(3)	36(2)
C(91)	-1512(5)	4001(4)	2286(3)	22(2)
C(92)	-2143(5)	3473(4)	2453(3)	32(2)
C(93)	-2346(5)	3032(4)	2116(3)	36(2)
C(94)	-1916(6)	3128(4)	1607(3)	38(2)
C(95)	-1293(6)	3643(5)	1431(3)	39(2)
C(96)	-1093(5)	4073(4)	1771(3)	32(2)
N(1)	1059(4)	9001(3)	1275(2)	25(1)
N(2)	238(4)	10226(3)	37(2)	32(2)
N(3)	908(4)	6330(3)	3707(2)	24(1)
N(4)	1/36(4)	5118(3)	4970(2)	31(2)
N(4)	1430(4)	5022(2)	5448(2)	31(2) 37(2)
N(J)	1122(4) 1412(4)	3022(3)	5446(2)	27(2)
N(0)	1412(4)	5595(5)	110(2)	23(1)
N(8)	38/(4)	5080(3)	-110(2)	33(2)
N(7)	1186(4)	5540(3)	1042(2)	26(2)
C(97)	313(5)	6831(4)	3858(3)	28(2)
C(98)	46(5)	6818(4)	4391(3)	32(2)
C(99)	386(5)	6262(4)	4784(3)	31(2)
C(100)	1012(5)	5737(4)	4628(3)	27(2)
C(101)	1256(5)	5795(4)	4085(3)	32(2)
C(102)	1141(5)	4197(4)	6300(3)	23(2)
C(103)	1527(5)	4392(4)	5787(3)	23(2)
C(104)	2254(5)	3961(4)	5619(3)	34(2)
C(105)	2543(5)	3338(4)	5991(3)	42(2)
C(106)	2103(5)	3168(4)	6500(3)	32(2)
C(107)	1744(5)	0305(4)	1208(3)	$\frac{32(2)}{24(2)}$
C(107)	1057(5)	10042(4)	024(2)	24(2)
C(108)	1937(3)	10042(4)	924(3)	50(2) 22(2)
C(109)	1446(5)	10305(4)	510(3)	33(2)
C(110)	/51(5)	9904(4)	477(3)	29(2)
C(111)	563(5)	9258(4)	870(3)	25(2)
C(112)	2042(5)	5442(4)	915(3)	29(2)
C(113)	2403(5)	5238(4)	440(3)	40(2)
C(114)	1842(5)	5132(4)	106(3)	31(2)
C(115)	640(5)	5424(4)	721(3)	28(2)
C(128)	961(5)	5212(4)	241(3)	25(2)
O(17)	4019(4)	3647(3)	4873(2)	64(2)
C(116)	4304(7)	3097(7)	4590(4)	96(4)
C(117)	5029(8)	2648(7)	4819(5)	109(4)
C(118)	5022(0) 5082(7)	2890(6)	5321(4)	81(3)
C(110)	1666(6)	2656(5)	5200(2)	52(2)
O(19)	4000(0)	3030(3)	3209(3)	32(2)
0(18)	3510(5)	12/1(3)	482(3)	79(2)
C(120)	3416(6)	2538(5)	520(5)	81(3)
C(121)	43/6(6)	2307(6)	38/(5)	90(4)
C(122)	4364(7)	1512(6)	356(5)	100(4)
C(123)	2921(6)	1900(5)	457(5)	82(4)
O(19)	4867(4)	9013(4)	3922(3)	74(2)
C(125)	3730(7)	9884(6)	3642(4)	76(3)
C(126)	3844(7)	9908(6)	4217(4)	82(3)
C(124)	4193(6)	9147(6)	3597(4)	82(3)
C(127)	4478(10)	9271(8)	4381(5)	137(6)
O(20)	3994(6)	1983(4)	3691(3)	99(3)
C(129)	4304(8)	2579(8)	3281(5)	97(4)
C(130)	3516(8)	2897(7)	2978(5)	109(4)
C(131)	2055(8)	2077(7)	3102(5)	101(4)
C(131)	2)33(8)	1880(7)	3655(5)	90(4)
O(21)	5002(8)	604(5)	1607(5)	50(4) 62(4)
O(21) O(122)	J993(8)	094(3)	109/(3)	02(4)
C(153)	5009(10)	/19(/)	2215(6)	35(4)
C(136)	6260(9)	1543(8)	1435(6)	40(5)
C(135)	5608(11)	1952(7)	1567(5)	35(4)
C(134)	5570(20)	1614(9)	2111(8)	146(13)
O(22)	6580(7)	1355(6)	3208(4)	47(3)
C(137)	6967(13)	1706(11)	3546(6)	67(6)
C(138)	6874(11)	1139(9)	4063(6)	49(5)
C(139)	6058(12)	861(9)	4062(6)	49(5)
C(140)	6061(11)	818(9)	3516(7)	47(5)
· · · · ·				

Anhan	g
	-

O(23)	843(9)	10640(7)	4253(5)	137(6)
C(141)	90(7)	10985(5)	3516(4)	66(3)
C(142)	-475(9)	11006(7)	3990(6)	105(5)
C(143)	985(7)	11079(7)	3692(5)	104(5)
C(144)	40(17)	10703(10)	4408(8)	169(11)

Tabelle 45: Bindungslängen [Å] und Winkel [°] für sh2866.

Al(1)-O(16)	1.710(5)	C(11)-C(12)	1.37(1)
Al(1)-O(5)	1.721(4)	C(13)-C(14)	1.402(9)
Al(1)-O(1)	1.771(4)	C(13)-C(18)	1.409(9)
Al(1)-O(4)	1.787(5)	C(14)-C(15)	1.374(9)
A1(2)-O(8)	1.721(4)	C(15)-C(16)	1 403(9)
Al(2)-O(7)	1 722(4)	C(16) - C(17)	1 39(1)
Al(2) = O(1)	1.722(1) 1.771(4)	C(17)- $C(18)$	1 390(9)
$A_1(2) O(2)$	1.774(5)	C(10) C(20)	1.390(9) 1.305(0)
AI(2) - O(2) AI(3) O(11)	1.774(5)	C(19) - C(20)	1.393(9) 1.410(0)
AI(3)-O(11)	1.702(3)	C(19)-C(24)	1.410(9)
AI(3)-O(10)	1.705(4)	C(20)-C(21)	1.363(9)
AI(3)-O(3)	1.774(4)	C(21)-C(22)	1.38(1)
Al(3)-O(2)	1.775(4)	C(22)-C(23)	1.39(1)
Al(4)-O(14)	1./1/(5)	C(23)-C(24)	1.395(9)
Al(4)-O(13)	1.731(5)	C(25)-C(26)	1.38(1)
Al(4)-O(3)	1.768(4)	C(25)-C(30)	1.404(9)
Al(4)-O(4)	1.780(5)	C(26)-C(27)	1.38(1)
Si(1)-O(5)	1.594(4)	C(27)-C(28)	1.41(1)
Si(1)-O(6)	1.621(4)	C(28)-C(29)	1.38(1)
Si(1)-C(7)	1.840(7)	C(29)-C(30)	1.38(1)
Si(1)-C(1)	1.848(7)	C(31)-C(36)	1.389(9)
Si(2)-O(7)	1.604(5)	C(31)-C(32)	1.399(9)
Si(2)-O(6)	1.631(4)	C(32)-C(33)	1.381(9)
Si(2)-C(13)	1.852(7)	C(33)-C(34)	1.36(1)
Si(2)-C(19)	1.879(7)	C(34)-C(35)	1.39(1)
Si(3)-O(8)	1 619(4)	C(35)-C(36)	1 372(9)
Si(3) - O(9)	1 630(5)	C(37)- $C(42)$	1.372(9) 1 386(9)
Si(3) - C(25)	1.858(7)	C(37) - C(38)	1.300(9)
Si(3) - C(23) Si(3) - C(31)	1.808(7)	C(38) C(30)	1.577(7) 1.40(1)
SI(3)-C(31) Si(4) O(10)	1.073(7)	C(30) - C(39)	1.40(1)
SI(4) - O(10) Si(4) - O(0)	1.000(4) 1.627(5)	C(39)-C(40)	1.40(1) 1.40(1)
SI(4) - O(9)	1.057(5)	C(40)-C(41)	1.40(1)
S1(4)-C(43)	1.857(8)	C(41)-C(42)	1.38(1)
S1(4)-C(37)	1.868(7)	C(43)-C(48)	1.40(1)
Si(5)-O(11)	1.606(5)	C(43)-C(44)	1.413(9)
S1(5)-O(12)	1.648(4)	C(44)-C(45)	1.39(1)
Si(5)-C(49)	1.863(7)	C(45)-C(46)	1.34(1)
Si(5)-C(55)	1.865(7)	C(46)-C(47)	1.38(1)
Si(6)-O(13)	1.610(5)	C(47)-C(48)	1.38(1)
Si(6)-O(12)	1.642(5)	C(49)-C(50)	1.389(9)
Si(6)-C(67)	1.854(7)	C(49)-C(54)	1.400(9)
Si(6)-C(61)	1.871(7)	C(50)-C(51)	1.379(9)
Si(7)-O(14)	1.608(5)	C(51)-C(52)	1.389(9)
Si(7)-O(15)	1.635(5)	C(52)-C(53)	1.37(1)
Si(7)-C(73)	1.855(7)	C(53)-C(54)	1.395(9)
Si(7)-C(79)	1.865(7)	C(55)-C(56)	1.381(9)
Si(8)-O(16)	1.596(5)	C(55)-C(60)	1.42(1)
Si(8)-O(15)	1.641(5)	C(56)-C(57)	1.39(1)
Si(8)-C(91)	1.863(7)	C(57)- $C(58)$	1.00(1) 1.40(1)
Si(8) - C(85)	1.867(7)	C(58)- $C(59)$	1.40(1) 1.42(1)
C(1)- $C(6)$	1.383(9)	C(50) - C(60)	1.42(1) 1.373(0)
C(1) - C(0)	1.303(9)	C(61) C(66)	1.375(7) 1.300(0)
C(1)-C(2)	1.353(8)	C(61) - C(60)	1.390(9)
C(2) - C(3) C(2) - C(4)	1.309(9)	C(01) - C(02)	1.402(9)
C(3)-C(4)	1.352(9)	C(02)-C(03)	1.389(9)
C(4)-C(5)	1.394(9)	C(63)-C(64)	1.36(1)
C(5)-C(6)	1.388(9)	C(64)-C(65)	1.38(1)
C(7)-C(12)	1.388(9)	C(65)-C(66)	1.42(1)
C(7)-C(8)	1.396(8)	C(67)-C(68)	1.377(9)
C(8)-C(9)	1.39(1)	C(67)-C(72)	1.408(9)
C(9)-C(10)	1.38(1)	C(68)-C(69)	1.42(1)
C(10)-C(11)	1.38(1)	C(69)-C(70)	1.39(1)

C(70)-C(71)	1.37(1)	O(20)-C(129)	1.41(1)
C(71) $C(72)$	1.40(1)	O(20) C(122)	1 42(1)
C(71)-C(72)	1.40(1)	O(20)-C(152)	1.42(1)
C(73)-C(74)	1.379(9)	C(129)-C(130)	1.53(1)
C(72) $C(79)$	1.401(0)	C(120) $C(121)$	1 40(1)
C(73)-C(78)	1.401(9)	C(150)-C(151)	1.49(1)
C(74)-C(75)	1.412(9)	C(131)-C(132)	1.47(1)
C(75) $C(76)$	1 38(1)	O(21) C(133)	1 38(2)
C(73)-C(70)	1.30(1)	O(21)-O(155)	1.36(2)
C(76)-C(77)	1.39(1)	O(21)-C(136)	1.61(2)
C(77) C(79)	1 29((0)	C(122) C(124)	1.50(2)
C(77)-C(78)	1.386(9)	C(133)-C(134)	1.59(2)
C(79)-C(80)	1 379(9)	C(136)-C(135)	1.26(2)
	1 20 ((0)	C(126) C(124)	1.0(2)
C(79)-C(84)	1.396(9)	C(136)-C(134)	1.96(3)
C(80)- $C(81)$	1 391(9)	C(135)-C(134)	1.40(2)
	1.40(1)		1.10(2)
C(81)-C(82)	1.40(1)	O(22)-C(140)	1.36(2)
C(82)- $C(83)$	1 39(1)	O(22)-C(137)	1.42(2)
	1.35(1)		1.12(2)
C(83)-C(84)	1.395(9)	C(137)-C(138)	1.49(2)
C(85) - C(90)	1 395(9)	C(138) - C(139)	1.40(2)
C(85)-C(90)	1.393(9)	C(150)-C(159)	1.40(2)
C(85)-C(86)	1.401(9)	C(139)-C(140)	1.44(2)
C(86) $C(87)$	1 386(0)	O(23) C(144)	1 26(2)
C(80) - C(87)	1.360(9)	O(23)-O(144)	1.20(2)
C(87)-C(88)	1.381(9)	O(23)-C(143)	1.49(2)
C(00) C(00)	1 27(1)	C(141) $C(142)$	1 42(1)
C(88) - C(89)	1.5/(1)	C(141)-C(142)	1.42(1)
C(89)-C(90)	1.39(1)	C(141)-C(143)	1.55(1)
C(01) $C(02)$	1 201(0)	C(142) C(144)	1 40(2)
C(91)-C(96)	1.391(9)	C(142)-C(144)	1.40(2)
C(91)-C(92)	1.394(9)		
C(02) $C(02)$	1 401(0)	O(1(2), A1(1), O(5))	114.0(2)
C(92)-C(93)	1.401(9)	O(10)-AI(1)-O(5)	114.9(2)
C(93)-C(94)	1.38(1)	O(16)-A(1)-O(1)	107.4(2)
C(04) C(05)	1.27(1)		111 4/2
C(94)-C(95)	1.37(1)	O(5)-AI(1)-O(1)	111.4(2)
C(95)- $C(96)$	1 39(1)	O(16) - A(1) - O(4)	109.9(2)
0()) 0()0)	1.55(1)	0(10) /11(1) 0(4)	109.9(2)
N(1)-C(107)	1.348(8)	O(5)-Al(1)-O(4)	106.7(2)
N(1) - C(111)	1 349(8)	O(1) - A1(1) - O(4)	1063(2)
N(1)- $C(111)$	1.349(8)	O(1)-AI(1)- $O(4)$	100.3(2)
N(2)-N(2)#1	1.22(1)	O(8)-Al(2)-O(7)	115.6(2)
N(2) C(110)	1 440(0)	O(8) A1(2) O(1)	108 0(2)
N(2)-C(110)	1.449(9)	O(0)-AI(2)- $O(1)$	108.9(2)
N(3)-C(97)	1.328(8)	O(7)-Al(2)-O(1)	110.9(2)
N(3) - C(101)	1 338(8)	O(8) - A1(2) - O(2)	108.6(2)
N(3) - C(101)	1.556(6)	O(0)-AI(2)- $O(2)$	108.0(2)
N(4)-N(5)	1.250(7)	O(7)-Al(2)-O(2)	105.7(2)
N(4) = C(100)	1 427(8)		106 7(2)
N(4)-C(100)	1.427(0)	O(1)-AI(2)- $O(2)$	100.7(2)
N(5)-C(103)	1.422(8)	O(11)-Al(3)-O(10)	118.5(2)
N(6) C(102)	1 222(8)	O(11) $A1(2)$ $O(2)$	111 4(2)
N(0)-C(102)	1.552(6)	O(11)-AI(3)-O(3)	111.4(2)
N(6)-C(106)	1.344(8)	O(10)-Al(3)-O(3)	104.3(2)
NICON NICONTO	1 20(1)	O(11) $A(2)$ $O(2)$	105 7(2)
$\ln(0) - \ln(0) \# 2$	1.29(1)	O(11)-AI(3)- $O(2)$	105.7(2)
N(8)-C(128)	1.421(8)	O(10)-Al(3)-O(2)	109.5(2)
N(7) C(115)	1 221(8)	$O(2) \wedge I(2) O(2)$	107.0(2)
N(7)-C(115)	1.321(8)	O(3)-AI(3)-O(2)	107.0(2)
N(7)-C(112)	1.327(9)	O(14)-Al(4)-O(13)	115.5(2)
C(07) $C(08)$	1 200(0)	O(14) $A1(4)$ $O(2)$	109 6(2)
C(97)-C(98)	1.390(9)	O(14)-AI(4)-O(5)	108.6(2)
C(98)-C(99)	1.377(9)	O(13)-A(4)-O(3)	109.0(2)
C(00) C(100)	1 204(0)	$O(14) \ A1(4) \ O(4)$	109.1(2)
C(99)-C(100)	1.394(9)	O(14)-AI(4)-O(4)	108.1(2)
C(100)-C(101)	1 392(9)	O(13)-A(4)-O(4)	110.8(2)
G(100) $G(100)$	1.2(7(0))	O(2) $A(4)$ $O(4)$	104.2(2)
C(102)- $C(103)$	1.30/(8)	O(3)-AI(4)-O(4)	104.3(2)
C(103)- $C(104)$	1.396(9)	O(5)-Si(1)-O(6)	112.5(2)
G(104) G(105)	1,207(0)	O(5) O(1) O(7)	111 7(2)
C(104)-C(105)	1.587(9)	O(5)-SI(1)-C(7)	111.7(3)
C(105)- $C(106)$	1.386(9)	O(6)-Si(1)-C(7)	107.6(3)
C(107) C(109)	1.277(0)	O(5) O(1) O(1)	108.0(2)
C(107) - C(108)	1.577(9)	O(3)-SI(1)-C(1)	108.9(3)
C(108)-C(109)	1.381(9)	O(6)-Si(1)-C(1)	107.0(3)
C(100) C(110)	1 39(1)	C(7) S:(1) $C(1)$	100.0(2)
C(109)-C(110)	1.30(1)	C(1)-SI(1)- $C(1)$	109.0(3)
C(110)-C(111)	1.392(9)	O(7)-Si(2)-O(6)	112.1(2)
C(112) $C(112)$	1 406(0)	O(7) Si(2) $O(12)$	108 6(2)
C(112)-C(113)	1.400(9)	O(7)- $SI(2)$ - $C(15)$	108.0(5)
C(113)-C(114)	1.357(9)	O(6)-Si(2)-C(13)	107.0(3)
C(114) C(128)	1 264(0)	O(7) S ¹ (2) $O(10)$	110 4(2)
C(114)-C(128)	1.304(9)	O(7)-SI(2)-C(19)	110.4(5)
C(115)-C(128)	1.410(9)	O(6)-Si(2)-C(19)	107.1(3)
O(17) C(116)	1 20(1)	C(12) S(2) C(10)	111.7(2)
O(17)-C(110)	1.59(1)	C(15)-SI(2)-C(19)	111.7(5)
O(17)-C(119)	1.411(9)	O(8)-Si(3)-O(9)	111.0(2)
C(116)C(117)	1 42(1)	0(9) 8:(2) 0(25)	100.0(2)
C(110)-C(117)	1.43(1)	O(0)-O(23)	109.9(3)
C(117)-C(118)	1.49(1)	O(9)-Si(3)-C(25)	109.3(3)
C(118) C(110)	1 47(1)	O(2) S(2) O(21)	111 7(2)
C(118)-C(119)	1.4/(1)	$O(\delta) - S1(3) - C(31)$	111.7(3)
O(18)-C(123)	1.395(9)	O(9)-Si(3)-C(31)	106.0(3)
O(18) C(122)	1 40(1)	C(25) S(2) C(21)	100.0(2)
O(18) - C(122)	1.40(1)	C(25)-S1(3)-C(31)	108.8(3)
C(120)-C(123)	1.50(1)	O(10)-Si(4)-O(9)	112.6(2)
C(120) C(121)	1.50(1)	O(10) S(4) O(42)	107.7(2)
C(120)-C(121)	1.52(1)	O(10)-S1(4)-C(43)	107.7(3)
C(121)-C(122)	1.48(1)	O(9)-Si(4)-C(43)	108.4(3)
O(10) C(124)	1 20(1)	O(10) $G'(4)$ $O(27)$	100.0(2)
O(19) - C(124)	1.39(1)	O(10)-S1(4)-C(3/)	108.8(3)
O(19)-C(127)	1.43(1)	O(9)-Si(4)-C(37)	106.3(3)
C(125) C(124)	1 40(1)	C(A2) S(A) C(27)	112 1(2)
C(123) - C(124)	1.49(1)	C(43)-SI(4)-C(37)	113.1(3)
C(125)-C(126)	1.54(1)	O(11)-Si(5)-O(12)	110.0(2)
C(126) C(127)	1 47(1)	O(11) S(5) O(40)	100.0(2)
U(120) - U(127)	1.4/(1)	O(11)-O(3)-O(49)	109.9(3)

O(12)-Si(5)-C(49)	109.0(3)	C(30)-C(25)-Si(3)	122.2(6)
O(11)-Si(5)-C(55)	111.2(3)	C(25)-C(26)-C(27)	122.8(7)
O(12)-Si(5)-C(55)	109.8(3)	C(26)-C(27)-C(28)	118 8(8)
C(49)-Si(5)-C(55)	106.8(3)	C(29)-C(28)-C(27)	119 6(8)
O(13)-Si(6)- $O(12)$	110.7(2)	C(28) - C(29) - C(30)	120 1(8)
O(13)-Si(6)-C(67)	1094(3)	C(29) - C(30) - C(25)	121.6(8)
O(12) Si(6) $C(67)$	100.5(3)	C(25) - C(30) - C(25)	121.0(0) 116.4(7)
O(12) - Si(0) - C(07)	109.5(3) 111 4(2)	C(36) - C(31) - C(32)	110.4(7) 110.0(5)
O(13)-S1(0)-C(01)	111.4(3)	C(30) - C(31) - SI(3)	119.9(3)
O(12)-S1(6)-C(61)	108.2(3)	C(32)-C(31)-SI(3)	123.5(6)
C(6/)-Si(6)-C(61)	107.6(3)	C(33)-C(32)-C(31)	121.7(7)
O(14)-S1(7)-O(15)	113.4(2)	C(34)-C(33)-C(32)	120.1(7)
O(14)-Si(7)-C(73)	107.7(3)	C(33)-C(34)-C(35)	119.8(7)
O(15)-Si(7)-C(73)	107.4(3)	C(36)-C(35)-C(34)	119.7(7)
O(14)-Si(7)-C(79)	111.5(3)	C(35)-C(36)-C(31)	122.1(7)
O(15)-Si(7)-C(79)	107.4(3)	C(42)-C(37)-C(38)	118.6(7)
C(73)-Si(7)-C(79)	109.4(3)	C(42)-C(37)-Si(4)	120.8(5)
O(16)-Si(8)-O(15)	110.6(2)	C(38)-C(37)-Si(4)	120.6(6)
O(16)-Si(8)-C(91)	110.0(3)	C(39)-C(38)-C(37)	119.7(8)
O(15)-Si(8)-C(91)	110.2(3)	C(40)-C(39)-C(38)	120.3(8)
O(16)-Si(8)-C(85)	112.0(3)	C(39)-C(40)-C(41)	120.2(8)
O(15)-Si(8)-C(85)	106.1(3)	C(42)-C(41)-C(40)	118 3(8)
C(91)-Si(8)- $C(85)$	107 7(3)	C(41) - C(42) - C(37)	122 8(7)
$A_1(2) = O(1) = A_1(1)$	133 5(3)	C(48)-C(43)-C(44)	122.0(7) 115.9(7)
$A_1(2) O(2) A_1(2)$	120.6(2)	C(48) C(43) S(4)	113.9(7)
AI(2) - O(2) - AI(3)	129.0(3)	C(48) - C(43) - SI(4)	120.0(6) 124.2(6)
AI(4) - O(3) - AI(3)	129.7(2)	C(44)-C(43)-S1(4)	124.2(6)
AI(4)-O(4)-AI(1)	128.9(2)	C(45)-C(44)-C(43)	120.1(7)
Si(1)-O(5)-Al(1)	149.1(3)	C(46)-C(45)-C(44)	122.8(8)
Si(1)-O(6)-Si(2)	149.0(3)	C(45)-C(46)-C(47)	118.8(9)
Si(2)-O(7)-Al(2)	136.2(3)	C(48)-C(47)-C(46)	120.1(8)
Si(3)-O(8)-Al(2)	141.0(3)	C(47)-C(48)-C(43)	122.3(8)
Si(3)-O(9)-Si(4)	152.1(3)	C(50)-C(49)-C(54)	117.5(6)
Si(4)-O(10)-Al(3)	148.7(3)	C(50)-C(49)-Si(5)	123.9(5)
Si(5)-O(11)-Al(3)	164.6(3)	C(54)-C(49)-Si(5)	118.3(5)
Si(6)-O(12)-Si(5)	132.0(3)	C(51)-C(50)-C(49)	121.6(7)
Si(6)-O(13)-Al(4)	141.2(3)	C(50)-C(51)-C(52)	120.6(7)
Si(7)-O(14)-Al(4)	149.1(3)	C(53)-C(52)-C(51)	118.7(7)
Si(7)-O(15)-Si(8)	138 8(3)	C(52)-C(53)-C(54)	121.1(7)
Si(8)-O(16)-Al(1)	166 2(3)	C(53)-C(54)-C(49)	120.5(7)
$\Gamma(6) - \Gamma(1) - \Gamma(2)$	116.2(6)	C(56) - C(55) - C(60)	120.5(7) 118 5(7)
C(6) - C(1) - Si(1)	122 A(5)	C(56) = C(55) = Si(5)	120.3(6)
C(2) C(1) S(1)	122.4(5)	C(50) - C(55) - Si(5)	120.3(0) 121.2(5)
C(2) - C(1) - SI(1)	121.5(5)	C(55) C(56) C(57)	121.2(3)
C(3)-C(2)-C(1)	122.2(7)	C(53)-C(50)-C(57)	121.0(0)
C(4) - C(3) - C(2)	120.8(7)	C(50)-C(57)-C(58)	119.8(8)
C(3)-C(4)-C(5)	118.5(7)	C(57)-C(58)-C(59)	119.2(8)
C(6)-C(5)-C(4)	120.6(7)	C(60)-C(59)-C(58)	120.0(8)
C(1)-C(6)-C(5)	121.7(6)	C(59)-C(60)-C(55)	120.6(7)
C(12)-C(7)-C(8)	116.7(6)	C(66)-C(61)-C(62)	117.1(7)
C(12)-C(7)-Si(1)	123.1(5)	C(66)-C(61)-Si(6)	119.0(5)
C(8)-C(7)-Si(1)	120.1(5)	C(62)-C(61)-Si(6)	123.7(6)
C(9)-C(8)-C(7)	121.1(7)	C(63)-C(62)-C(61)	120.8(7)
C(10)-C(9)-C(8)	120.0(7)	C(64)-C(63)-C(62)	121.7(7)
C(9)-C(10)-C(11)	119.8(8)	C(63)-C(64)-C(65)	119.2(7)
C(12)-C(11)-C(10)	119.4(8)	C(64)-C(65)-C(66)	119.8(8)
C(11)-C(12)-C(7)	122.9(7)	C(61)-C(66)-C(65)	121.3(7)
C(14)-C(13)-C(18)	116.7(6)	C(68)-C(67)-C(72)	1167(7)
C(14)-C(13)-Si(2)	121 3(5)	C(68) - C(67) - Si(6)	120 5(6)
C(18)-C(13)-Si(2)	122.0(5)	C(72)-C(67)-Si(6)	122.8(6)
C(15)-C(14)-C(13)	122.5(3)	C(67) - C(68) - C(69)	122.0(0) 122.3(7)
C(14) - C(15) - C(16)	122.3(7) 110.0(7)	C(07) - C(08) - C(09)	122.3(7) 119 7(9)
C(14)-C(15)-C(10)	119.9(7)	C(70)- $C(09)$ - $C(08)$	110.7(0)
C(17)- $C(10)$ - $C(15)$	117.1(7)	C(71)- $C(70)$ - $C(72)$	120.7(8)
C(10)-C(17)-C(10)	120.2(7)	C(70)- $C(71)$ - $C(72)$	119.0(8)
C(17)-C(18)-C(13)	121.5(/)	C(71)-C(72)-C(67)	122.0(7)
C(20)-C(19)-C(24)	11/.1(/)	C(74)-C(73)-C(78)	118.1(6)
C(20)-C(19)-Si(2)	123.1(5)	C(/4)-C(73)-Si(7)	118.3(5)
C(24)-C(19)-Si(2)	119.7(6)	C(78)-C(73)-Si(7)	123.4(5)
C(21)-C(20)-C(19)	122.2(7)	C(73)-C(74)-C(75)	121.1(7)
C(22)-C(21)-C(20)	119.9(7)	C(76)-C(75)-C(74)	119.4(7)
C(21)-C(22)-C(23)	119.9(7)	C(75)-C(76)-C(77)	120.4(7)
C(22)-C(23)-C(24)	120.1(7)	C(78)-C(77)-C(76)	119.6(7)
C(23)-C(24)-C(19)	120.8(7)	C(77)-C(78)-C(73)	121.5(7)
C(26)-C(25)-C(30)	117.1(7)	C(80)-C(79)-C(84)	117.1(6)
C(26)-C(25)-Si(3)	120.2(5)	C(80)-C(79)-Si(7)	122.5(5)
· · / · · / · / · · / · · / · · · ·		· · / · · / · · / · /	

C(84)-C(79)-Si(7)	120.3(6)	C(111)-C(110)-N(2)	125.0(7)
C(79)-C(80)-C(81)	122.6(7)	N(1)-C(111)-C(110)	121.7(7)
C(80)-C(81)-C(82)	119.3(7)	N(7)-C(112)-C(113)	122.8(7)
C(83)-C(82)-C(81)	119.3(7)	C(114)-C(113)-C(112)	117.7(8)
C(82)-C(83)-C(84)	119.6(7)	C(113)-C(114)-C(128)	119.8(7)
C(83)-C(84)-C(79)	122.0(7)	N(7)-C(115)-C(128)	120.4(7)
C(90)-C(85)-C(86)	116.1(7)	C(114)-C(128)-C(115)	119.8(7)
C(90)-C(85)-Si(8)	123.2(6)	C(114)-C(128)-N(8)	118.7(6)
C(86)-C(85)-Si(8)	120.5(5)	C(115)-C(128)-N(8)	121.5(7)
C(87)-C(86)-C(85)	122.4(7)	C(116)-O(17)-C(119)	106.7(7)
C(88)-C(87)-C(86)	120.0(7)	O(17)-C(116)-C(117)	109.9(8)
C(89)-C(88)-C(87)	118.8(7)	C(116)-C(117)-C(118)	104.7(8)
C(88)-C(89)-C(90)	121.3(7)	C(119)-C(118)-C(117)	102.5(8)
C(89)-C(90)-C(85)	121.4(7)	O(17)-C(119)-C(118)	105.7(7)
C(96)-C(91)-C(92)	117.2(7)	C(123)-O(18)-C(122)	108.9(7)
C(96)-C(91)-Si(8)	122.1(6)	C(123)-C(120)-C(121)	105.0(8)
C(92)-C(91)-Si(8)	120.7(5)	C(122)-C(121)-C(120)	103.7(8)
C(91)-C(92)-C(93)	121.3(7)	O(18)-C(122)-C(121)	110.5(8)
C(94)-C(93)-C(92)	119.3(7)	O(18)-C(123)-C(120)	107.5(8)
C(95)-C(94)-C(93)	120.7(7)	C(124)-O(19)-C(127)	102.9(8)
C(94)-C(95)-C(96)	119.4(7)	C(124)-C(125)-C(126)	101.9(8)
C(91)-C(96)-C(95)	122.1(7)	C(127)-C(126)-C(125)	103.5(8)
C(107)-N(1)-C(111)	118.0(6)	O(19)-C(124)-C(125)	107.7(8)
N(2)#1-N(2)-C(110)	111.8(8)	O(19)-C(127)-C(126)	109.3(8)
C(97)-N(3)-C(101)	118.5(6)	C(129)-O(20)-C(132)	110.8(9)
N(5)-N(4)-C(100)	113.1(6)	O(20)-C(129)-C(130)	105.0(9)
N(4)-N(5)-C(103)	113.1(6)	C(131)-C(130)-C(129)	102(1)
C(102)-N(6)-C(106)	117.8(6)	C(132)-C(131)-C(130)	103(1)
N(8)#2-N(8)-C(128)	114.7(7)	O(20)-C(132)-C(131)	105(1)
C(115)-N(7)-C(112)	119.5(6)	C(133)-O(21)-C(136)	103(1)
N(3)-C(97)-C(98)	122.3(7)	O(21)-C(133)-C(134)	96(1)
C(99)-C(98)-C(97)	119.9(7)	C(135)-C(136)-O(21)	105(1)
C(98)-C(99)-C(100)	118.0(7)	C(135)-C(136)-C(134)	45.1(9)
C(101)-C(100)-C(99)	118.7(7)	O(21)-C(136)-C(134)	75.9(9)
C(101)-C(100)-N(4)	114.7(6)	C(136)-C(135)-C(134)	95(1)
C(99)-C(100)-N(4)	126.6(6)	C(135)-C(134)-C(133)	112(1)
N(3)-C(101)-C(100)	122.7(7)	C(135)-C(134)-C(136)	39.8(9)
N(6)-C(102)-C(103)	123.1(6)	C(133)-C(134)-C(136)	82.2(9)
C(102)-C(103)-C(104)	119.9(6)	C(140)-O(22)-C(137)	109(1)
C(102)-C(103)-N(5)	116.0(6)	O(22)-C(137)-C(138)	102(1)
C(104)-C(103)-N(5)	124.0(6)	C(139)-C(138)-C(137)	103(1)
C(105)-C(104)-C(103)	117.1(7)	C(138)-C(139)-C(140)	103(2)
C(106)-C(105)-C(104)	119.5(7)	O(22)-C(140)-C(139)	108(1)
N(6)-C(106)-C(105)	122.6(7)	C(144)-O(23)-C(143)	108(2)
N(1)-C(107)-C(108)	122.9(7)	C(142)-C(141)-C(143)	101.2(9)
C(107)-C(108)-C(109)	119.0(7)	C(144)-C(142)-C(141)	105(1)
C(110)-C(109)-C(108)	118.9(7)	O(23)-C(143)-C(141)	98.3(9)
C(109)-C(110)-C(111)	119.5(7)	O(23)-C(144)-C(142)	113(2)
C(109)-C(110)-N(2)	115.4(7)		()
	× /		

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+2,-z #2 -x,-y+1,-z

Tabelle 46: Anisotropische Auslenkungsaparameter (Å 2 x 10 3) für sh2866. Der anisotropische Exponentfaktor des Auslenkungsparameter lautet: $-2\pi^2$ [$h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Al(1)	22(1)	20(1)	18(1)	-7(1)	-5(1)	-1(1)
Al(2)	25(1)	19(1)	20(1)	-6(1)	-7(1)	2(1)
Al(3)	26(1)	18(1)	22(1)	-8(1)	-7(1)	1(1)
Al(4)	24(1)	18(1)	21(1)	-8(1)	-9(1)	2(1)
Si(1)	26(1)	19(1)	18(1)	-5(1)	-6(1)	1(1)
Si(2)	25(1)	19(1)	20(1)	-4(1)	-6(1)	1(1)
Si(3)	32(1)	23(1)	28(1)	-13(1)	-8(1)	2(1)
Si(4)	30(1)	26(1)	29(1)	-13(1)	-11(1)	1(1)
Si(5)	19(1)	24(1)	25(1)	-6(1)	-5(1)	-1(1)
Si(6)	24(1)	23(1)	29(1)	-6(1)	-8(1)	3(1)

А	nh	an	g
			ĺ

Si(7)	30(1)	17(1)	21(1)	-5(1)	-7(1)	-1(1)
Si(8)	23(1)	22(1)	22(1)	-4(1)	-3(1)	-2(1)
O(1)	27(3)	17(2)	15(2)	-6(2)	-6(2)	-1(2)
O(2)	26(3)	20(3)	17(2)	-1(2)	-7(2)	1(2)
O(3)	29(3)	18(3)	14(2)	-7(2)	-2(2)	-2(2)
O(4)	20(3)	25(3)	14(2)	-6(2)	0(2)	-1(2)
O(5)	22(3)	20(3)	16(2)	-4(2)	-9(2)	6(2)
O(6)	27(3)	19(3)	22(3)	-10(2)	-3(2)	-1(2)
O(7)	21(3)	19(3)	21(3)	-1(2)	-8(2)	3(2)
O(8)	29(3)	20(3)	29(3)	-14(2)	-11(2)	7(2)
O(9)	27(3)	25(3)	34(3)	-15(2)	-10(2)	1(2)
O(10)	31(3)	24(3)	25(3)	-13(2)	-10(2)	2(2)
O(11)	22(3)	24(3)	26(3)	-5(2)	-5(2)	0(2)
O(12)	20(3)	18(3)	27(3)	-1(2)	-4(2)	0(2)
O(13)	23(3)	20(3)	24(3)	-9(2)	-7(2)	3(2)
O(14)	25(3)	21(3)	23(3)	-4(2)	-8(2)	-5(2)
O(15)	25(3)	19(3)	26(3)	-5(2)	-12(2)	1(2)
O(16)	25(3)	23(3)	25(3)	-4(2)	-4(2)	-3(2)
C(1)	16(4)	15(4)	19(4)	-3(3)	-6(3)	0(3)
C(2)	48(6)	12(4)	30(4)	-3(3)	-8(4)	-2(4)
C(3)	56(6)	19(4)	17(4)	-3(3)	5(4)	-2(4)
C(4)	39(5)	32(5)	23(4)	-5(4)	3(4)	3(4)
C(5)	34(5)	24(4)	32(5)	7(4)	-6(4)	-9(4)
C(6)	23(5)	31(5)	22(4)	-10(4)	-4(4)	-3(4)
C(7)	23(5)	18(4)	12(4)	-4(3)	-2(3)	2(3)
C(8)	28(5)	26(5)	39(5)	-9(4)	-5(4)	-1(4)
C(9)	40(6)	33(5)	46(5)	-3(4)	8(5)	-5(5)
C(10)	39(6)	47(6)	55(6) 7((7)	-14(5)	-2(5)	-19(5)
C(11)	30(0) 24(5)	39(0) 25(4)	/0(/)	-19(5)	-0(5)	1(5)
C(12)	34(3) 22(5)	25(4)	39(3) 26(4)	-3(4)	-12(4)	-8(4)
C(13)	22(5)	23(4)	20(4) 33(4)	-6(4)	-7(4)	-4(4)
C(14)	25(5)	22(4) 37(5)	28(4)	-0(4)	-13(4)	-4(4)
C(15)	43(6)	27(4)	30(5)	-1(4) 8(4)	-10(4)	-2(4)
C(17)	40(5)	19(4)	49(5)	-5(4)	-12(5)	2(4) 2(4)
C(18)	27(5)	33(5)	32(5)	-3(4)	-6(4)	-3(4)
C(19)	21(4)	30(4)	18(4)	-3(3)	-5(4)	6(4)
C(20)	29(5)	28(5)	23(4)	-2(4)	-7(4)	4(4)
C(21)	35(5)	23(4)	42(5)	-1(4)	-7(5)	-7(4)
C(22)	25(5)	53(6)	28(5)	1(4)	-3(4)	-4(4)
C(23)	36(5)	52(6)	29(5)	-23(4)	-3(4)	6(5)
C(24)	30(5)	36(5)	29(4)	-10(4)	-5(4)	-5(4)
C(25)	32(5)	23(4)	22(4)	-11(3)	-10(4)	7(4)
C(26)	44(6)	41(5)	25(4)	-20(4)	-1(4)	3(4)
C(27)	42(6)	44(5)	46(6)	-7(5)	-2(5)	6(4)
C(28)	75(8)	27(5)	29(5)	-11(4)	-3(5)	14(5)
C(29)	57(7)	32(5)	38(5)	-12(4)	-15(5)	8(5)
C(30)	41(5)	25(4)	28(4)	-8(4)	-7(4)	6(4)
C(31)	23(5)	25(4)	29(4)	-17(4)	-2(4)	-3(4)
C(32)	28(5)	37(5)	42(5)	-6(4)	3(4)	-7(4)
C(33)	37(0)	24(5)	01(0)	-5(4)	-0(5)	0(4)
C(34)	39(0) 46(6)	21(4)	47(3) 24(4)	-3(4)	-10(3)	-1(4) 11(4)
C(35)	40(0) 36(5)	33(3) 23(4)	24(4) 26(4)	-10(4) 14(4)	-0(4) 16(4)	-11(4)
C(30)	27(5)	23(4) 34(5)	20(4) 22(4)	-14(4)	-9(4)	1(4)
C(38)	53(6)	62(6)	40(5)	-15(4)	-16(5)	16(5)
C(39)	57(7)	111(9)	47(6)	-53(6)	-22(5)	10(5)
C(40)	75(8)	94(8)	28(5)	-8(6)	-28(5)	2(6)
C(41)	64(7)	56(6)	37(5)	-4(5)	-22(5)	-2(5)
C(42)	40(5)	33(5)	30(5)	-8(4)	-10(4)	-4(4)
C(43)	34(5)	27(4)	30(4)	-14(4)	-14(4)	-1(4)
C(44)	36(5)	31(5)	40(5)	-12(4)	-10(4)	6(4)
C(45)	69(7)	26(5)	50(6)	-1(5)	-18(6)	1(5)
C(46)	68(8)	47(6)	48(6)	-2(5)	-4(6)	-13(6)
C(47)	51(6)	56(6)	41(5)	-15(5)	-1(5)	-15(5)
C(48)	37(6)	35(5)	41(5)	-19(4)	-7(5)	-2(4)
C(49)	17(4)	24(4)	32(4)	-6(4)	-8(4)	-1(3)
C(50)	36(5)	22(4)	54(5)	0(4)	-21(5)	0(4)
C(51)	21(5)	31(5)	65(6)	-8(4)	-20(4)	0(4)
C(52)	32(5)	19(4)	49(5)	1(4)	-6(5)	-9(4)
C(53)	41(6)	24(5)	42(5)	0(4)	-11(5)	0(4)
C(54)	23(5)	34(5)	31(4)	-6(4)	-14(4)	-6(4)

C(55)	33(5)	17(4)	18(4)	0(3)	-5(4)	-10(3)
C(56)	40(5)	34(5)	33(5)	-7(4)	-4(4)	-9(4)
C(57)	63(7)	33(5)	33(5)	-11(4)	1(5)	-9(5)
C(58)	71(7)	25(5)	45(6)	-5(4)	-26(6)	-6(5)
C(59)	34(5)	27(5)	55(6)	-3(4)	-17(5)	-1(4)
C(60)	46(6)	28(5)	32(5)	-10(4)	-14(4)	-6(4)
C(61)	28(5)	28(5)	33(4)	-14(4)	-7(4)	0(4)
C(62)	32(5)	31(5)	33(5)	-12(4)	-4(4)	-4(4)
C(63)	44(6)	41(5)	43(5)	-19(5)	-5(5)	-/(4)
C(64)	30(0)	67(7) 59(6)	37(5)	-25(5)	-13(5)	1(5) 9(5)
C(65)	28(5)	33(5)	41(5)	-8(4)	-4(4)	-9(3) 2(4)
C(67)	18(5)	24(4)	37(5)	-2(4)	-5(4)	-5(3)
C(68)	31(5)	29(5)	53(5)	-11(4)	-12(5)	0(4)
C(69)	33(6)	44(6)	75(7)	-4(5)	-15(5)	13(5)
C(70)	45(7)	36(6)	91(8)	-20(5)	-17(6)	13(5)
C(71)	33(6)	45(6)	79(7)	-36(5)	-1(5)	-5(5)
C(72)	26(5)	25(5)	56(5)	-10(4)	-9(4)	-3(4)
C(73)	20(3) 27(5)	14(4) 32(5)	22(4) 25(4)	-9(3)	-1(4)	-1(5) -3(4)
C(74) C(75)	27(5) 29(5)	54(6)	31(5)	-1(4)	-4(4)	-1(4)
C(76)	49(6)	33(5)	21(4)	-1(4)	-5(4)	16(4)
C(77)	52(6)	25(4)	28(4)	-3(4)	-12(4)	-9(4)
C(78)	47(5)	17(4)	19(4)	-5(3)	-9(4)	-1(4)
C(79)	31(5)	18(4)	20(4)	-2(3)	-5(4)	-3(4)
C(80)	42(5)	22(4)	34(5)	-12(4)	1(4)	-5(4)
C(81)	48(6) 52(6)	29(5)	35(5)	-9(4)	7(4) 8(5)	-10(4)
C(82)	33(0) 45(6)	29(3)	32(3) 33(5)	-1/(4)	-8(3)	2(4) 7(4)
C(83)	34(5)	23(4) 24(4)	20(4)	-6(3)	-3(4)	-7(4)
C(85)	24(5)	18(4)	25(4)	-5(3)	-9(4)	-4(3)
C(86)	32(5)	41(5)	31(5)	-4(4)	0(4)	-2(4)
C(87)	27(5)	39(5)	38(5)	-9(4)	-6(4)	4(4)
C(88)	28(5)	59(6)	28(5)	-16(4)	8(4)	-8(5)
C(89)	42(6)	58(6)	25(5)	0(4)	3(5)	0(5)
C(90)	40(6)	37(5)	32(5) 23(4)	-8(4)	-/(5)	1(4)
C(91) C(92)	29(5)	18(4) 29(5)	23(4)	-3(3)	-3(4)	3(3) 3(4)
C(93)	29(5) 28(5)	29(5) 28(5)	55(6)	-13(4)	-13(5)	2(4)
C(94)	51(6)	27(5)	43(6)	-18(4)	-26(5)	14(4)
C(95)	52(6)	43(5)	20(4)	-8(4)	-1(4)	17(5)
C(96)	34(5)	21(4)	42(5)	-5(4)	-12(4)	2(4)
N(1)	23(4)	26(4)	24(3)	-3(3)	-6(3)	0(3)
N(2)	31(5)	37(5)	34(4)	-19(3)	-5(3)	5(3)
N(3) N(4)	52(4)	24(5) 30(4)	10(3) 16(3)	-3(3)	-4(3)	0(3)
N(4) N(5)	41(4)	24(4)	18(3)	-7(3)	-4(3)	-3(3)
N(6)	30(4)	22(3)	26(3)	-9(3)	-6(3)	0(3)
N(8)	33(4)	36(4)	37(4)	-18(3)	-8(4)	-3(4)
N(7)	26(4)	27(4)	25(3)	-6(3)	-8(3)	1(3)
C(97)	36(5)	23(4)	24(4)	-3(3)	-3(4)	0(4)
C(98)	38(5)	33(5)	26(4)	-10(4)	1(4)	-2(4)
C(99)	38(5)	31(5)	25(4)	-8(4)	-5(4)	-1(4) 1(4)
C(100) C(101)	38(5)	23(4) 28(4)	30(5)	-11(4)	-3(4)	0(4)
C(101) C(102)	25(5)	21(4)	25(4)	-12(3)	-4(4)	-2(3)
C(103)	29(5)	24(4)	16(4)	-5(3)	-4(4)	-3(4)
C(104)	36(5)	44(5)	16(4)	1(4)	2(4)	1(4)
C(105)	43(6)	50(5)	22(4)	2(4)	4(4)	17(4)
C(106)	38(5)	31(5)	29(5)	-4(4)	-9(4)	-5(4)
C(107)	22(5)	34(5)	16(4)	-8(4)	-2(4)	7(4) 5(4)
C(108) C(109)	∠3(3) 35(5)	30(3) 37(5)	23(4) 24(4)	-4(4) -6(4)	$\frac{1(4)}{2(4)}$	-5(4) 2(4)
C(110)	29(5)	36(5)	19(4)	-8(4)	-3(4)	2(4) 10(4)
C(111)	23(5)	25(4)	33(5)	-20(4)	1(4)	-5(4)
C(112)	37(6)	26(4)	28(5)	-8(4)	-12(4)	-1(4)
C(113)	40(6)	40(5)	49(5)	-23(4)	-10(5)	-5(4)
C(114)	34(6)	28(5)	34(5)	-14(4)	2(4)	-10(4)
C(115)	24(5)	31(5)	30(4)	-5(4)	-8(4)	0(4)
O(128)	55(5) 62(5)	23(4) 84(5)	∠3(4) 54(4)	-13(3) -38(4)	-3(4) -20(4)	-10(4)
C(116)	90(9)	123(10)	99(9)	-65(8)	-47(8)	33(8)
	* /	- \ - ~ /	· · \ / /	\ - /	· \ ~ /	01

C(117)	105(11)	97(9)	141(12)	-65(9)	-40(9)	49(8)
C(118)	76(8)	90(9)	83(8)	-31(7)	-35(7)	20(7)
C(119)	55(7)	58(6)	45(6)	-11(5)	-8(5)	-6(5)
O(18)	64(5)	51(4)	122(6)	-23(4)	-4(5)	2(4)
C(120)	53(8)	58(7)	132(10)	-29(7)	2(7)	-8(6)
C(121)	56(8)	61(8)	145(11)	2(7)	-13(8)	-21(6)
C(122)	54(8)	97(10)	170(13)	-77(9)	-2(8)	-4(7)
C(123)	54(7)	42(6)	150(11)	-19(7)	-26(7)	12(6)
O(19)	61(5)	90(5)	77(5)	-31(4)	-21(4)	11(4)
C(125)	67(8)	92(8)	82(8)	-47(7)	-26(6)	16(6)
C(126)	96(9)	79(8)	79(8)	-37(7)	-10(7)	8(7)
C(124)	50(7)	108(9)	106(9)	-52(8)	-37(7)	16(6)
C(127)	190(16)	148(13)	75(9)	-36(9)	-68(10)	80(11)
O(20)	112(8)	100(6)	81(6)	-3(5)	-19(6)	-25(6)
C(129)	89(10)	142(12)	71(8)	-46(9)	10(8)	-39(10)
C(130)	86(10)	84(9)	133(12)	3(8)	18(10)	2(8)
C(131)	83(9)	81(9)	126(12)	18(8)	-27(9)	-32(7)
C(132)	72(10)	94(9)	95(10)	-12(8)	13(8)	-6(8)
O(21)	91(10)	22(6)	64(8)	-6(6)	18(8)	4(6)
C(133)	37(10)	24(8)	40(10)	-26(8)	25(8)	0(7)
C(136)	19(9)	29(9)	44(10)	22(8)	27(8)	14(7)
C(135)	85(13)	-1(7)	24(8)	-19(6)	-8(9)	24(8)
C(134)	340(40)	26(11)	86(16)	-70(12)	-70(20)	116(17)
O(22)	32(7)	70(8)	35(7)	1(6)	0(6)	-17(6)
C(137)	76(15)	96(16)	24(10)	18(10)	-11(11)	-49(13)
C(138)	50(13)	57(12)	40(10)	15(9)	-37(10)	-31(10)
C(139)	67(14)	34(10)	34(11)	3(8)	3(10)	16(10)
C(140)	30(11)	31(10)	70(14)	-4(9)	9(10)	2(8)
O(23)	190(12)	152(10)	84(9)	-67(8)	-66(9)	80(10)
C(141)	75(8)	59(7)	61(7)	-3(5)	1(7)	-24(6)
C(142)	104(11)	77(9)	146(13)	-73(10)	67(11)	-55(8)
C(143)	84(9)	126(11)	139(12)	-120(10)	57(9)	-55(8)
C(144)	330(40)	94(15)	103(15)	-31(11)	-40(20)	-90(20)

Tabelle 47: Koordinaten des Wasserstoffs ($x \ 10^4$) und isotrope Auslenkungsparameter (Å $^2x \ 10^3$) für sh2866.

	X	У	Z	U(eq)
H(1)	-931	6696	2758	23
H(2)	846	8192	1720	26
H(3)	1150	6398	3072	23
H(4)	871	6003	1565	23
H(2)	-1428	6264	137	36
H(3)	-830	6518	-747	38
H(4)	-69	7582	-1105	39
H(5)	-6	8454	-579	38
H(6)	-636	8217	301	29
H(8)	-1857	5410	1241	37
H(9)	-3036	4682	1272	50
H(10)	-4420	5261	1132	55
H(11)	-4647	6566	1027	60
H(12)	-3471	7282	962	38
H(14)	-2980	9049	674	32
H(15)	-3304	10228	155	41
H(16)	-2539	11262	206	40
H(17)	-1558	11101	852	43
H(18)	-1275	9917	1396	37
H(20)	-3018	7134	2053	33
H(21)	-4123	6902	2752	40
H(22)	-4547	7794	3258	44
H(23)	-3887	8941	3042	45
H(24)	-2770	9180	2337	37
H(26)	-2329	8561	3448	43
H(27)	-3348	8677	4165	54

Anhang		1		
	· /\ ·	nh	an	$\mathbf{\alpha}$
	\mathbf{n}	ш	an	<u> </u>

H(28)	-2891	9033	4904	53
H(29)	-1422	9224	4910	50
H(30)	-425	9121	4180	38
H(32)	-1925	10097	2959	44
H(33)	-2111	11253	2368	50
H(33) H(24)	1024	11255	2500	42
H(34)	-1024	11005	1091	43
H(35)	250	10893	1582	40
H(36)	420	9727	2155	32
H(38)	1407	9244	4105	59
H(39)	1809	8872	4977	78
H(40)	2386	7643	5299	78
$\Pi(40)$	2500	6704	1722	62
$\Pi(41)$	2051	0794	4/55	05
H(42)	2335	7210	3851	40
H(44)	1342	10228	2831	42
H(45)	2192	11116	2251	59
H(46)	3530	10800	1854	67
H(47)	4047	9533	2008	58
$\mathbf{H}(10)$	3200	9616	2564	42
H(46)	3209	8010	2304	43
H(50)	4931	1513	1/98	45
H(51)	5791	8595	1596	46
H(52)	5428	9676	951	41
H(53)	4158	9729	545	44
H(54)	3300	8694	731	34
H(57)	3037	7034	117	42
H(50)	2402	7034	447	42
H(57)	3402	6990	-342	51
H(58)	1886	7143	-405	55
H(59)	917	7339	344	47
H(60)	1467	7374	1128	40
H(62)	3885	6892	2679	38
H(62)	4040	60/7	3546	40
$\Pi(03)$	2015	5001	4242	49 52
H(04)	3913	3901	4242	55
H(65)	3583	4765	4078	52
H(66)	3381	4697	3205	40
H(68)	5008	4897	2547	44
H(69)	5973	3890	2364	63
H(70)	5633	3228	1754	68
H(70)	4205	2594	1212	50
H(71)	4393	3304	1312	39
H(72)	3476	4611	14/3	42
H(74)	1908	4283	3663	35
H(75)	2430	3617	4472	43
H(76)	1760	2540	4962	44
H(77)	553	2141	4667	41
H(78)	6	28/3	3804	32
11(70)	-0	2045	2100	32
H(80)	2014	4163	2188	38
H(81)	2497	3452	1562	45
H(82)	1751	2385	1556	44
H(83)	491	2094	2154	40
H(84)	-3	2852	2750	31
H(86)	_2003	5445	2691	13
L(07)	4070	5405	2071	40
11(0/) 11(00)	-42/0	J47J	3433	42
П(00) Н(00)	-4394	4/28	4110	45
H(89)	-3191	3958	4412	53
H(90)	-1903	3900	3852	44
H(92)	-2443	3410	2802	38
H(93)	-2774	2670	2237	43
H(94)	-2054	2833	1376	46
H(95)	-1000	3707	1080	47
H(06)	657	1101	1647	20
П(90) Ц(97)	-05/	4420	104/	38
H(97)	62	7211	3591	34
H(98)	-371	7192	4485	38
H(99)	200	6237	5151	37
H(101)	1686	5439	3979	38
H(102)	656	4505	6408	27
H(104)	2527	4000	5766	27 /1
11(104)	2000	4009	5200	41
H(105)	3039	3031	5897	50
H(106)	2298	2732	6748	39
H(107)	2094	9220	1584	29
H(108)	2448	10302	951	35
H(109)	1572	10756	252	39
H(111)	72	8001	851	30
II(111) II(112)	2427	0771	0.01	50
H(112)	2427	5514	1154	55
H(113)	3018	5178	356	48

2061	5001	-221	37
26	5485	814	34
4484	3339	4212	116
3821	2772	4599	116
5576	2741	4576	130
4926	2106	4895	130
4760	2560	5630	97
5698	2892	5392	97
4399	3792	5544	63
5101	4026	5030	63
3306	2608	890	97
3241	2008	272	97
4617	2621	42	108
4720	2021	42 670	108
4729	2355	070	100
4390	1400	-0	120
4750	1192	009	120
2434	1/95	/40	99
20/3	2052	2500	99
5104	9890	3390	91
4005	10308	3381	91
40/5	10390	4229	99
3283	9843	4448	99
3783	8/40	3712	99
4433	9165	3222	99
4937	9432	4557	164
4179	8858	4639	164
4784	2396	3043	116
4524	2968	3430	116
3211	3329	3108	130
3691	3058	2590	130
2332	2413	3073	121
3141	1900	2861	121
2710	2120	3909	109
2997	1338	3735	109
6649	2191	3575	80
7589	1792	3419	80
7347	734	4077	58
6878	1375	4368	58
5574	1208	4165	58
6005	358	4307	58
6293	313	3471	56
5459	907	3411	56
-66	11402	3216	79
81	10499	3413	79
-691	11530	3997	126
-984	10702	4017	126
1477	10855	3485	125
1082	11612	3671	125
-50	11028	4667	202
-158	10200	4595	202
	$\begin{array}{c} 2061\\ 26\\ 4484\\ 3821\\ 5576\\ 4926\\ 4760\\ 5698\\ 4399\\ 5101\\ 3306\\ 3241\\ 4617\\ 4729\\ 4590\\ 4750\\ 2434\\ 2675\\ 3104\\ 4005\\ 4075\\ 3283\\ 3783\\ 4433\\ 4937\\ 4179\\ 4784\\ 4524\\ 3211\\ 3691\\ 2332\\ 3141\\ 2710\\ 2997\\ 6649\\ 7589\\ 7347\\ 6878\\ 5574\\ 6005\\ 6293\\ 5459\\ -66\\ 81\\ -691\\ -984\\ 1477\\ 1082\\ -50\\ -158\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

7 Daten zur Molekül- und Kristallstruktur von (Ph₂SiO)₈[AIO(OH)]₄ • 4 (HO)CH(CH₂)₄CH(OH) <u>9</u>

Identifikationscode Summenformel Molmasse [g/mol] Messtemperatur [K] Wellenlänge [Å] Kristallsystem Raumgruppe Gitterkonstanten sh2750 C141 H156 Al4 O24 Si8 2567.30 120(2) 0.71073 monoklin Cc a = 29.205(4) Å

α= 90°

	b = 17.228(4) Å c = 28.657(5) Å	$\beta = 107.541(13)^{\circ}$ $\gamma = 90^{\circ}$
Zellvolumen [Å ³]	13748(5)	
Anzahl der Formeleinheiten Z	4	
Dichte (berechnet) [g/cm ³]	1.240	
Absorptionskoeffizient [mm ⁻¹] F(000)	0.172 5432	
Kristallabmessungen [mm ³] Messbereich θ [°] hkl - Indexbereich Gemessene Reflexe Symmetrieunabhängige Reflexe Vollständigkeit des Datensatzes (bis θ = 32.92°) Absorptionskorrektur Max. und Min. Transmission	0.95 x 0.49 x 0.49 1.39 to 32.92 -41<=h<=41, -24<=k<=23, - 118965 40210 [R(int) = 0.0516] 81.8 % Multiscan 0.9207 and 0.8538	-40<=1<=40
Strukturverfeinerungsmethode Daten / Einschränkungen / Parameter	Full-matrix-block least-squa 40210 / 2 / 1595	ires on F ²
Güte des Fit auf F ² Endgültige R-Werte [I>2sigma(I)] R-Werte (alle Daten) Absolute Strukturparameter	1.124 R1 = 0.0575, wR2 = 0.1358 R1 = 0.0895, wR2 = 0.1503 0.04(6)	
Restelektronendichte (min./max.) [e/Å ⁻³]	0.762 and -0.384	

Tabelle 49: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) für sh2750. U(eq) wird berechnet als ein Drittel
der Spur des orthogonalisierten U^{ij} Tensors.

	Х	У	L	U(eq)
Al(1)	2636(1)	5993(1)	6931(1)	18(1)
Al(2)	2638(1)	6932(1)	5972(1)	18(1)
Al(3)	1901(1)	8074(1)	6259(1)	18(1)
Al(4)	1553(1)	6575(1)	6726(1)	19(1)
Si(1)	3741(1)	6411(1)	7318(1)	25(1)
Si(2)	3770(1)	6595(1)	6253(1)	26(1)
Si(3)	2065(1)	7368(1)	4860(1)	25(1)
Si(4)	1522(1)	8770(1)	5167(1)	23(1)
Si(5)	1667(1)	9045(1)	7109(1)	27(1)
Si(6)	1072(1)	7679(1)	7364(1)	27(1)
Si(7)	1298(1)	4768(1)	6654(1)	25(1)
Si(8)	2350(1)	4384(1)	7293(1)	27(1)
O(1)	2485(1)	6109(1)	6279(1)	20(1)
O(2)	2495(1)	7740(1)	6299(1)	20(1)
O(3)	1568(1)	7182(1)	6219(1)	21(1)
O(4)	2175(1)	6529(1)	7086(1)	19(1)
O(5)	3167(1)	6473(1)	7179(1)	23(1)
O(6)	3908(1)	6317(1)	6827(1)	32(1)
O(7)	3237(1)	6950(1)	6051(1)	31(1)
O(8)	2248(1)	6967(1)	5388(1)	26(1)
O(9)	1757(1)	8154(1)	4875(1)	29(1)
O(10)	1669(1)	8601(1)	5742(1)	27(1)
O(11)	1923(1)	8517(1)	6796(1)	26(1)
O(12)	1349(1)	8497(1)	7357(1)	37(1)
O(13)	1213(1)	7021(1)	7037(1)	28(1)
O(14)	1388(1)	5650(1)	6520(1)	26(1)
O(15)	1770(1)	4359(1)	7026(1)	35(1)
O(16)	2604(1)	5024(1)	7046(1)	26(1)
C(1)	3953(1)	5550(2)	7721(1)	37(1)
C(2)	3897(2)	4820(2)	7536(1)	54(1)
C(3)	4026(2)	4176(2)	7847(2)	72(1)
C(4)	4215(2)	4302(3)	8356(2)	64(1)
C(5)	4267(2)	5018(3)	8548(2)	59(1)
C(6)	4141(1)	5641(2)	8236(1)	51(1)
C(7)	4022(1)	7307(2)	7664(1)	36(1)
C(8)	3755(1)	7883(2)	7798(1)	46(1)
C(9)	3974(2)	8512(2)	8087(2)	68(1)
C(10)	4466(2)	8565(3)	8251(2)	80(2)
C(11)	4735(2)	8013(3)	8126(1)	72(2)

An	han	σ
1 111	man	5

G(10)	4505(1)	5250(2)	5022(1)	57 (1)
C(12)	4525(1)	7378(3)	7832(1)	57(1)
C(13)	4203(1)	7348(2)	6179(1)	33(1)
C(14)	4695(1)	7270(2)	6389(2)	54(1)
C(15)	5015(1)	7797(3)	6287(2)	68(1)
C(16)	4858(2)	8401(2)	5987(2)	62(1)
C(17)	1367(2)	8408(2)	5763(2)	61(1)
C(17)	4050(1)	0490(2) 7074(2)	5960(1)	01(1)
C(18)	4050(1)	7974(2)	5860(1)	48(1)
C(19)	3838(1)	5729(2)	5891(1)	32(1)
C(20)	3663(2)	5742(3)	5387(1)	69(1)
C(21)	3738(2)	5125(4)	5109(2)	87(2)
C(22)	3972(2)	4475(3)	5320(2)	72(1)
C(22)	4151(2)	4427(2)	5810(2)	72(1) 76(1)
C(23)	4131(2)	4437(3)	5019(2)	70(1)
C(24)	4078(2)	5065(2)	6097(2)	57(1)
C(25)	2575(1)	7670(2)	4632(1)	39(1)
C(26)	2790(1)	8409(2)	4759(1)	53(1)
C(27)	3191(2)	8623(3)	4616(2)	74(1)
C(28)	3374(2)	8130(4)	4349(2)	90(2)
C(29)	3170(2)	7423(4)	4224(2)	98(2)
C(20)	3170(2)	7129(2)	+22+(2)	70(2)
C(30)	2700(2)	/188(3)	4500(2)	/1(1)
C(31)	1645(1)	6688(2)	4427(1)	31(1)
C(32)	1450(1)	6900(2)	3933(1)	49(1)
C(33)	1120(2)	6441(2)	3605(1)	57(1)
C(34)	963(1)	5766(3)	3756(1)	53(1)
C(35)	1154(1)	5534(2)	4247(1)	49(1)
C(35)	1404(1)	5004(2)	4573(1)	$\frac{3}{26(1)}$
C(30)	1494(1)	075((2)	4373(1)	30(1)
C(37)	1/4/(1)	9756(2)	50/1(1)	28(1)
C(38)	1787(1)	10341(2)	5413(1)	43(1)
C(39)	1967(2)	11065(2)	5347(2)	57(1)
C(40)	2109(2)	11222(2)	4943(2)	57(1)
C(41)	2066(2)	10658(2)	4596(1)	54(1)
C(42)	1888(1)	9922(2)	4656(1)	42(1)
C(42)	95 4(1)	8702(2)	4015(1)	$\frac{42(1)}{20(1)}$
C(43)	634(1)	8703(2)	4913(1)	29(1)
C(44)	5/1(1)	8970(2)	5192(1)	42(1)
C(45)	74(1)	8931(2)	5019(2)	58(1)
C(46)	-152(1)	8629(3)	4564(2)	60(1)
C(47)	119(1)	8355(2)	4278(1)	50(1)
C(48)	618(1)	8394(2)	4448(1)	37(1)
C(49)	1276(1)	9818(2)	6734(1)	40(1)
C(50)	799(2)	0721(2)	6512(1)	+0(1) 52(1)
C(50)	700(2)	9751(2)	(312(1))	52(1)
C(51)	518(2)	10346(3)	6224(2)	63(1)
C(52)	744(2)	11023(2)	6180(2)	70(1)
C(53)	1225(2)	11125(2)	6392(2)	66(1)
C(54)	1495(2)	10526(2)	6673(1)	52(1)
C(55)	2141(1)	9521(1)	7615(1)	32(1)
C(56)	2022(2)	0861(2)	8005(1)	46(1)
C(50)	2022(2)	10242(2)	8279(1)	4 0(1)
C(57)	2300(2)	10242(2)	83/8(1)	59(1)
C(58)	2834(2)	10301(2)	8364(1)	63(1)
C(59)	2963(2)	9986(2)	7974(1)	53(1)
C(60)	2612(1)	9592(2)	7606(1)	40(1)
C(61)	420(1)	7900(2)	7140(1)	39(1)
C(62)	255(1)	8600(3)	7298(2)	64(1)
C(62)	-227(2)	8777(3)	7166(2)	84(2)
C(03)	-227(2)	8777(3)	(970(2))	$\frac{0+(2)}{74(1)}$
C(64)	-562(2)	8272(3)	6870(2)	74(1)
C(65)	-415(1)	7596(2)	6698(1)	51(1)
C(66)	77(1)	7426(2)	6830(1)	40(1)
C(67)	1233(1)	7364(2)	8014(1)	41(1)
C(68)	1285(2)	6591(3)	8144(2)	60(1)
C(69)	1369(2)	6347(3)	8624(2)	84(2)
C(70)	1305(2) 1406(2)	6997(4)	8027(2)	09(2)
C(70)	1400(2)	7656(4)	0907(2)	90(2) 107(2)
C(/1)	1303(3)	/050(4)	88/5(2)	10/(2)
C(72)	1277(2)	7897(3)	8389(1)	69(1)
C(73)	811(1)	4710(2)	6948(1)	31(1)
C(74)	515(1)	5321(2)	6951(2)	58(1)
C(75)	140(2)	5255(3)	7159(2)	73(1)
C(76)	61(1)	1576(3)	7360(2)	64(1)
C(77)	352(2)	20/9/2)	7360(2)	64(1)
C(11)	332(2)	3740(3)	7300(2)	04(1)
C(78)	/24(1)	4010(2)	/159(1)	52(1)
C(79)	1126(1)	4180(2)	6077(1)	28(1)
C(80)	894(1)	4527(2)	5624(1)	37(1)
C(81)	749(1)	4090(2)	5193(1)	46(1)
C(82)	833(2)	3303(2)	5207(1)	50(1)
C(83)	1067(2)	2057(2)	56/3(1)	52(1)
0(03)	1007(2)	2931(2)	5045(1)	52(1)

C(84)	1214(1)	3384(2)	6074(1)	44(1)
C(85)	2591(1)	3386(2)	7237(1)	43(1)
C(86)	2384(2)	2741(2)	7358(2)	76(1)
C(87)	2587(2)	1993(2)	7363(3)	95(2)
C(88)	2960(2)	1880(2)	7216(2)	79(2)
C(89)	3189(2)	2509(3)	7067(2)	76(1)
C(90)	3008(2)	3255(2)	7076(2)	57(1)
C(91)	2460(1)	4587(2)	7954(1)	32(1)
C(92)	2935(1)	4660(3)	8248(1)	50(1)
C(93)	3045(2)	4753(3)	8750(1)	69(1)
C(94)	2683(2)	4797(3)	8963(1)	62(1)
C(95)	2208(1)	4740(3)	8681(1)	59(1)
C(96)	2102(1)	4631(2)	8183(1)	47(1)
O(17)	1981(1)	5059(1)	5691(1)	36(1)
C(97)	2163(1)	4343(2)	5556(2)	54(1)
C(98A)	2493(2)	4584(3)	5247(2)	44(1)
C(90A)	2704(2)	3855(3)	5095(2)	47(1)
C(1A1)	2764(2) 2562(2)	3107(3)	5075(2)	$\frac{47(1)}{44(1)}$
C(1A2)	2362(2)	3851(3)	5945(2)	44(1)
C(08R)	2300(2) 2145(4)	4063(6)	5343(2) 5154(4)	44(1) 36(2)
C(90D)	2143(4) 2286(4)	4005(0)	5070(4)	30(2)
C(1P1)	2300(4) 2021(5)	2594(7)	5079(4)	40(3)
C(1D1)	3031(3)	5564(7) 4215(7)	5021(4)	49(3)
C(102)	2/08(4)	4313(7)	5951(4)	47(3)
C(100)	2919(1)	5525(2) 2610(1)	54/2(2)	59(1) 52(1)
0(18)	3101(1)	2610(1)	5542(1)	55(1)
O(19)	3210(1)	86/8(1)	6759(1)	41(1)
C(103)	3416(1)	9254(2)	6514(1)	38(1)
C(104)	3586(2)	9943(2)	6840(1)	53(1)
C(105)	3770(1)	10589(2)	6567(2)	52(1)
C(106)	3419(1)	10794(2)	6092(1)	47(1)
C(107)	3231(2)	10105(2)	5773(1)	58(1)
C(108)	3046(2)	9470(2)	6050(1)	57(1)
O(20)	3621(1)	11361(2)	5838(1)	58(1)
O(21)	975(1)	6720(1)	5368(1)	41(1)
C(109)	458(1)	6823(2)	5237(1)	38(1)
C(110)	194(1)	6305(2)	4816(1)	46(1)
C(111)	-350(1)	6350(2)	4711(1)	47(1)
C(112)	-485(1)	6159(2)	5173(1)	42(1)
C(113)	-228(1)	6696(2)	5587(1)	44(1)
C(114)	314(1)	6649(2)	5696(1)	42(1)
O(22)	-996(1)	6232(2)	5056(1)	53(1)
O(23)	2379(1)	7495(1)	7815(1)	52(1)
C(1A5)	2568(2)	7355(2)	8341(2)	33(1)
C(1A6)	2755(2)	8130(3)	8580(2)	38(1)
C(1A8)	3423(2)	7448(2)	9205(2)	34(1)
C(1A9)	3235(2)	6672(2)	8988(2)	33(1)
C(1B5)	2768(4)	7689(6)	8269(4)	33(2)
C(1B6)	2579(4)	7935(6)	8651(4)	34(2)
C(1B8)	3253(4)	7203(7)	9269(4)	40(2)
C(1B9)	3463(4)	7004(6)	8878(4)	35(2)
C(117)	3005(1)	8027(2)	9131(1)	44(1)
C(120)	2986(2)	6791(2)	8423(1)	49(1)
O(24)	3654(1)	7323(1)	9721(1)	42(1)
C(121)	6078(2)	6390(2)	7876(1)	54(1)
C(122)	5678(2)	6201(3)	7509(2)	78(1)
C(123)	5330(2)	5744(4)	7585(2)	92(2)
C(124)	5380(2)	5425(3)	8047(2)	78(1)
C(125)	5791(2)	5604(2)	8418(2)	66(1)
C(126)	6128(2)	6072(2)	8334(2)	63(1)
C(127)	6451(2)	6896(3)	7778(2)	73(1)
C(128)	-262(3)	6590(5)	8278(3)	123(3)
C(129)	-769(2)	6673(4)	8134(3)	111(2)
C(130)	-965(2)	6237(3)	8394(2)	80(2)
C(131)	-708(3)	5686(4)	8744(3)	127(3)
C(132)	-271(3)	5556(4)	8852(3)	125(3)
C(133)	-36(2)	6005(3)	8621(2)	84(2)
C(134)	-67(6)	7066(12)	8041(4)	338(14)
C(135)	203(2)	8736(3)	9529(2)	74(1)
C(136)	16(2)	8008(2)	9278(2)	80(2)
C(137)	-296(3)	7613(4)	9461(3)	109(2)
C(138)	-432(2)	7878(4)	9847(2)	96(2)
C(139)	-273(3)	8506(5)	10063(3)	116(2)

Anhang	
-	

C(140)	67(3)	8960(4)	9894(2)	107(2)
C(141)	531(2)	9195(3)	9352(2)	95(2)

Tabelle 50: Bindungslängen [Å] und Winkel [°] für sh2750.

Al(1)-O(16)	1.710(2)	C(14)-C(15)	1.397(6)
Al(1)-O(5)	1.711(2)	C(15)-C(16)	1.340(7)
A1(1)-O(4)	1 796(2)	C(16)-C(17)	1 392(6)
$A_{1}(1) O(1)$	1.796(2)	C(17) C(19)	1.392(0) 1.290(5)
AI(1)-O(1)	1.790(2)	C(17)- $C(18)$	1.360(3)
AI(2)-O(7)	1.695(2)	C(19)-C(24)	1.379(5)
Al(2)-O(8)	1.720(2)	C(19)-C(20)	1.380(5)
Al(2)-O(1)	1.795(2)	C(20)-C(21)	1.385(6)
A1(2)-O(2)	1 796(2)	C(21)-C(22)	1 354(8)
$A_1(2) O(10)$	1.604(2)	C(21) C(22)	1.351(0) 1.260(7)
Al(3)-O(10)	1.094(2)	C(22)- $C(23)$	1.309(7)
AI(3)-O(11)	1.703(2)	C(23)-C(24)	1.398(5)
Al(3)-O(2)	1.798(2)	C(25)-C(30)	1.367(5)
Al(3)-O(3)	1.804(2)	C(25)-C(26)	1.418(5)
Al(4)-O(13)	1.704(2)	C(26)-C(27)	1.401(6)
A1(4) - O(14)	1 717(2)	C(27) - C(28)	1 356(8)
$A_1(4) O(4)$	1.700(2)	C(28) C(29)	1 355(0)
A1(4) - O(4)	1.759(2)	C(20)-C(29)	1.333(9)
AI(4)-O(3)	1.800(2)	C(29)-C(30)	1.409(7)
Si(1)-O(5)	1.606(2)	C(31)-C(36)	1.383(4)
Si(1)-O(6)	1.633(2)	C(31)-C(32)	1.405(4)
Si(1)-C(1)	1.867(3)	C(32)-C(33)	1.375(5)
Si(1)-C(7)	1 884(3)	C(33) - C(34)	1 367(6)
Si(2) O(7)	1.610(2)	C(34) C(35)	1.007(0)
SI(2) - O(7)	1.010(2)	C(34) - C(33)	1.406(3)
S1(2)-O(6)	1.041(2)	C(35)-C(36)	1.380(5)
Si(2)-C(19)	1.861(3)	C(37)-C(38)	1.386(4)
Si(2)-C(13)	1.868(3)	C(37)-C(42)	1.402(4)
Si(3)-O(8)	1.601(2)	C(38)-C(39)	1.388(5)
Si(3)-O(9)	1 634(2)	C(39)-C(40)	1 368(6)
Si(3) - C(31)	1.872(3)	C(40) - C(41)	1 369(6)
$S_{1}(3) - C_{1}(31)$	1.872(3)	C(41) C(42)	1.307(0)
SI(5)-C(25)	1.8/1(5)	C(41)-C(42)	1.400(3)
$S_1(4)-O(10)$	1.601(2)	C(43)-C(44)	1.387(4)
Si(4)-O(9)	1.626(2)	C(43)-C(48)	1.410(4)
Si(4)-C(43)	1.867(3)	C(44)-C(45)	1.384(5)
Si(4)-C(37)	1.871(3)	C(45)-C(46)	1.374(6)
Si(5)-O(11)	1 610(2)	C(46) - C(47)	1.384(6)
Si(5) = O(12)	1.630(2)	C(47) - C(48)	1 302(5)
$S_{1}(5) = O(12)$	1.050(2)	C(40) C(50)	1.392(3) 1.292(5)
SI(5)-C(55)	1.80/(3)	C(49) - C(30)	1.582(5)
S1(5)-C(49)	1.869(3)	C(49)-C(54)	1.413(5)
Si(6)-O(13)	1.603(2)	C(50)-C(51)	1.425(5)
Si(6)-O(12)	1.628(2)	C(51)-C(52)	1.366(7)
Si(6)-C(61)	1.856(3)	C(52)-C(53)	1.364(7)
Si(6)-C(67)	1.862(3)	C(53)-C(54)	1.398(5)
Si(7)-O(14)	1 610(2)	C(55)-C(60)	1 390(5)
$S_{1}(7) O(14)$	1.626(2)	C(55) C(56)	1.396(3)
SI(7)-O(13)	1.020(2)	C(55) - C(50)	1.390(4)
$S_1(7)-C(73)$	1.860(3)	C(56)-C(57)	1.391(6)
Si(7)-C(79)	1.877(3)	C(57)-C(58)	1.384(7)
Si(8)-O(16)	1.608(2)	C(58)-C(59)	1.391(6)
Si(8)-O(15)	1.636(2)	C(59)-C(60)	1.405(5)
Si(8)-C(91)	1.857(3)	C(61)-C(66)	1.386(5)
Si(8) - C(85)	1.883(3)	C(61) = C(60)	1.300(5) 1.422(5)
C(1) $C(2)$	1.255(5)	C(61) - C(62)	1.422(3) 1.277(6)
C(1)- $C(2)$	1.555(5)	C(62)- $C(63)$	1.577(0)
C(1)-C(6)	1.418(5)	C(63)-C(64)	1.391(7)
C(2)-C(3)	1.403(5)	C(64)-C(65)	1.382(6)
C(3)-C(4)	1.412(7)	C(65)-C(66)	1.404(5)
C(4)-C(5)	1.341(7)	C(67)-C(68)	1.379(5)
C(5)-C(6)	1.375(5)	C(67)-C(72)	1 389(5)
C(7) C(8)	1 200(5)	C(68) C(60)	1 200(4)
C(7)- $C(0)$	1.300(3)		1.369(0)
C(7)-C(12)	1.405(5)	C(09)-C(70)	1.375(9)
C(8)-C(9)	1.396(5)	C(70)-C(71)	1.360(9)
C(9)-C(10)	1.373(8)	C(71)-C(72)	1.401(6)
C(10)-C(11)	1.349(8)	C(73)-C(74)	1.364(5)
C(11)-C(12)	1.404(6)	C(73)-C(78)	1 406(4)
C(13)-C(14)	1 387(5)	C(74) - C(75)	1 403(5)
C(12) C(19)	1.307(3)	C(75) C(75)	1.405(5)
U(13)-U(18)	1.398(5)	U(73)-U(76)	1.555(6)

C(76)-C(77)	1.378(7)	C(125)-C(126)	1.349(6)
C(77)-C(78)	1.378(5)	C(128)-C(134)	1.30(2)
C(79)- $C(84)$	1 396(4)	C(128) - C(129)	1.42(1)
C(70) $C(80)$	1.300(4)	C(120)- $C(122)$	1.42(1)
C(79)-C(80)	1.404(4)	C(128)-C(153)	1.45(1)
C(80)-C(81)	1.398(5)	C(129)-C(130)	1.307(9)
C(81)-C(82)	1.376(5)	C(130)-C(131)	1.420(8)
C(82)-C(83)	1.366(6)	C(131)-C(132)	1.24(1)
C(83)-C(84)	1 389(5)	C(132)-C(133)	1.33(1)
C(85) C(86)	1 350(5)	C(135) C(140)	1 286(8)
C(85)- $C(80)$	1.339(3)	C(135)-C(140)	1.200(0)
C(85)-C(90)	1.443(6)	C(135)-C(141)	1.448(7)
C(86)-C(87)	1.418(6)	C(135)-C(136)	1.467(8)
C(87)-C(88)	1.294(8)	C(136)-C(137)	1.361(9)
C(88) - C(89)	1 407(7)	C(137)-C(138)	1.36(1)
C(80) C(00)	1 202(6)	C(129) C(120)	1 264(0)
C(89)-C(90)	1.392(0)	C(138)-C(139)	1.204(9)
C(91)-C(92)	1.395(4)	C(139)-C(140)	1.455(9)
C(91)-C(96)	1.396(4)		
C(92)-C(93)	1.387(5)	O(16)-Al(1)-O(5)	119.2(1)
C(93)-C(94)	1 372(6)	O(16)-Al(1)-O(4)	111 54(9)
C(04) C(05)	1.372(0)	O(5) A(1) O(4)	107 57(9)
C(94)- $C(93)$	1.383(0)	O(3)-AI(1)- $O(4)$	107.37(8)
C(95)-C(96)	1.379(5)	O(16)-AI(1)-O(1)	107.34(8)
O(17)-C(97)	1.442(4)	O(5)-Al(1)-O(1)	106.51(8)
C(97)-C(98B)	1.24(1)	O(4)-Al(1)-O(1)	103.46(8)
C(97)- $C(1A2)$	1 381(7)	O(7) - A1(2) - O(8)	118 94(9)
C(07) C(08A)	1.501(7)	O(7) Al(2) O(0)	110.29(0)
C(97)-C(98A)	1.349(6)	O(7)-AI(2)- $O(1)$	110.58(9)
C(9/)-C(1B2)	1.77(1)	O(8)-AI(2)-O(1)	108.35(9)
C(98A)-C(99A)	1.517(7)	O(7)-Al(2)-O(2)	108.0(1)
C(99A)-C(100)	1.411(7)	O(8)-A(2)-O(2)	106.93(9)
C(1A1) - C(1A2)	1 547(7)	O(1) - Al(2) - O(2)	103 01(8)
C(1A1) - C(1A2)	1.547(7)	$O(1)^{-}Ai(2)^{-}O(2)$	116 54(0)
C(1A1)-C(100)	1.595(6)	O(10)-AI(3)- $O(11)$	110.54(9)
C(98B)-C(99B)	1.52(2)	O(10)-Al(3)-O(2)	110.57(9)
C(99B)-C(100)	1.62(1)	O(11)-Al(3)-O(2)	108.22(9)
C(1B1)-C(100)	1.21(1)	O(10)-Al(3)-O(3)	109.61(9)
C(1B1)-C(1B2)	1 50(2)	O(11) - A(3) - O(3)	108 13(0)
C(101) - C(102)	1.30(2)	O(11)-Al(3)- $O(3)$	100.15(7)
C(100)-O(18)	1.432(4)	O(2)-AI(3)-O(3)	102.86(8)
O(19)-C(103)	1.447(4)	O(13)-AI(4)-O(14)	116.79(9)
C(103)-C(108)	1.487(5)	O(13)-Al(4)-O(4)	111.46(9)
C(103)- $C(104)$	1.500(5)	O(14)-Al(4)-O(4)	106.66(9)
C(104)- $C(105)$	1 545(5)	O(13) - A(4) - O(3)	108 66(9)
C(105) C(105)	1.545(5)	O(13)-Al(4)- $O(3)$	100.00())
C(105)-C(106)	1.4/8(5)	O(14)-AI(4)-O(3)	109.50(9)
C(106)-O(20)	1.446(4)	O(4)-AI(4)-O(3)	102.86(8)
C(106)-C(107)	1.498(6)	O(5)-Si(1)-O(6)	110.6(1)
C(107)- $C(108)$	1.543(5)	O(5)-Si(1)-C(1)	109.6(1)
O(21) - C(109)	1 455(4)	O(6)-Si(1)-C(1)	108 9(1)
C(100) C(110)	1,511(5)	O(5) S(1) C(7)	100.5(1)
C(109)-C(110)	1.511(5)	O(3)-SI(1)-C(7)	109.3(1)
C(109)-C(114)	1.526(4)	$O(6)-S_1(1)-C(7)$	109.8(1)
C(110)-C(111)	1.526(5)	C(1)-Si(1)-C(7)	108.4(1)
C(111)-C(112)	1.528(5)	O(7)-Si(2)-O(6)	113.0(1)
C(112)-O(22)	1 435(4)	O(7)-Si(2)-C(19)	111.0(1)
C(112) C(112)	1.133(1)	O(6) Si(2) C(10)	106.9(1)
C(112)- $C(113)$	1.514(5)	O(0)-S(2)-C(19)	100.0(1)
C(113)-C(114)	1.522(4)	O(7)-S1(2)-C(13)	108.0(1)
O(23)-C(1A5)	1.458(5)	O(6)-Si(2)-C(13)	110.3(1)
O(23)-C(1B5)	1.48(1)	C(19)-Si(2)-C(13)	107.7(1)
C(1A5)-C(120)	1.522(5)	O(8)-Si(3)-O(9)	111.3(1)
C(1A5)-C(1A6)	1 526(6)	O(8)-Si(3)-C(31)	108 7(1)
C(1A6) C(117)	1.526(5)	O(0) Si(3) C(31)	106.7(1)
C(1A0)-C(117)	1.330(3)	0(9)-51(5)-0(31)	106.2(1)
C(1A8)-O(24)	1.443(5)	O(8)-Si(3)-C(25)	112.1(1)
C(1A8)-C(1A9)	1.506(6)	O(9)-Si(3)-C(25)	106.4(1)
C(1A8)-C(117)	1.542(5)	C(31)-Si(3)-C(25)	112.0(1)
C(1A9)-C(120)	1 575(5)	O(10)-Si(4)-O(9)	112 8(1)
C(1P5) C(1P6)	1 /2(1)	O(10) S(4) C(42)	100 2(1)
	1.43(1)	O(10) - S1(4) - C(43)	108.2(1)
C(1B5)-C(120)	1.68(1)	O(9)-S1(4)-C(43)	108.3(1)
C(1B6)-C(117)	1.56(1)	O(10)-Si(4)-C(37)	108.6(1)
C(1B8)-C(1B9)	1.47(2)	O(9)-Si(4)-C(37)	107.2(1)
C(1B8)-O(24)	1.48(1)	C(43)-Si(4)-C(37)	111.8(1)
C(1B8)-C(117)	1 50(1)	O(11) Si(1) $O(12)$	100 7(1)
C(1D0) - C(117)	1.37(1)	O(11) - O(12) O(11) - O(12)	109.7(1)
C(1D9)-C(120)	1.04(1)	0(11)-51(5)-C(55)	108.7(1)
C(121)-C(122)	1.355(7)	O(12)-Si(5)-C(55)	107.6(1)
C(121)-C(126)	1.388(5)	O(11)-Si(5)-C(49)	112.9(1)
C(121)-C(127)	1.487(6)	O(12)-Si(5)-C(49)	109.5(1)
C(122)-C(123)	1 352(8)	C(55)-Si(5)-C(49)	108 3(1)
C(123) C(123)	1 400(9)	O(12) Si(6) $O(12)$	112 0(1)
C(123)-C(124)	1.400(8)	O(13) - SI(0) - O(12)	112.9(1)
C(124)-C(125)	1.379(7)	O(13)-S1(6)-C(61)	111.2(1)

O(12)-Si(6)-C(61)	106 4(1)	C(36) - C(31) - C(32)	117.4(3)
O(12) - Si(6) - C(67)	110.2(1)	C(36) - C(31) - C(32)	117.4(3) 122.1(2)
O(15)-SI(0)-C(07)	110.5(1)	C(50)-C(51)-SI(5)	125.1(2)
O(12)-Si(6)-C(67)	106.7(1)	C(32)-C(31)-Si(3)	119.4(2)
C(61)-Si(6)-C(67)	109.2(1)	C(33)-C(32)-C(31)	121.8(4)
O(14)-Si(7)-O(15)	113.5(1)	C(34)-C(33)-C(32)	120.4(3)
O(14)-Si(7)-C(73)	111.2(1)	C(33)-C(34)-C(35)	119.1(3)
O(15)-Si(7)-C(73)	107 1(1)	C(36)-C(35)-C(34)	120 0(4)
O(14) Si(7) C(70)	109.6(1)	C(31) C(35) C(35)	120.0(4) 121.2(2)
O(14)-SI(7)-C(79)	108.0(1)	C(31)-C(30)-C(33)	121.5(3)
O(15)-Si(7)-C(79)	107.0(1)	C(38)-C(37)-C(42)	117.9(3)
C(73)-Si(7)-C(79)	109.4(1)	C(38)-C(37)-Si(4)	121.1(2)
O(16)-Si(8)-O(15)	111.3(1)	C(42)-C(37)-Si(4)	121.1(2)
O(16)-Si(8)-C(91)	111.1(1)	C(37)-C(38)-C(39)	120.8(3)
O(15)-Si(8)-C(91)	108.6(1)	C(40) - C(39) - C(38)	121.1(3)
O(16) - Si(8) - C(85)	110.7(1)	C(39) - C(40) - C(41)	110 3(3)
O(15) = S(0) - C(05)	107.2(1)	C(40) - C(41) - C(42)	117.3(3)
O(13)-SI(8)-C(83)	107.5(1)	C(40)- $C(41)$ - $C(42)$	120.7(5)
C(91)-S1(8)-C(85)	10/./(1)	C(41)-C(42)-C(37)	120.2(3)
Al(2)-O(1)-Al(1)	125.4(1)	C(44)-C(43)-C(48)	117.4(3)
Al(2)-O(2)-Al(3)	125.9(1)	C(44)-C(43)-Si(4)	119.5(2)
Al(4)-O(3)-Al(3)	126.0(1)	C(48)-C(43)-Si(4)	123.1(2)
$A_1(1) - O(4) - A_1(4)$	1257(1)	C(45)-C(44)-C(43)	121 3(3)
$S_{i}(1) O(5) A_{i}(1)$	144.9(1)	C(46) C(45) C(44)	121.0(3) 120.7(3)
S(1) - O(3) - AI(1)	144.9(1)	C(45) - C(45) - C(47)	120.7(3)
S1(1)-O(0)-S1(2)	142.1(1)	C(45)-C(46)-C(47)	119.0(3)
Si(2)-O(7)-Al(2)	152.7(1)	C(46)-C(47)-C(48)	120.0(3)
Si(3)-O(8)-Al(2)	150.3(1)	C(47)-C(48)-C(43)	120.9(3)
Si(4)-O(9)-Si(3)	151.1(1)	C(50)-C(49)-C(54)	118.6(3)
Si(4)-O(10)-Al(3)	155 6(1)	C(50) - C(49) - Si(5)	123 6(3)
$S_{i}(5) - O(11) - A_{i}(3)$	149 2(1)	C(54) - C(49) - Si(5)	1177(3)
Si(5) - O(12) - Ai(5)	149.2(1)	C(40) C(50) C(51)	117.7(3)
51(0)-0(12)-51(5)	148.9(1)	C(49)-C(50)-C(51)	120.0(4)
Si(6)-O(13)-Al(4)	156.7(1)	C(52)-C(51)-C(50)	119.3(4)
Si(7)-O(14)-Al(4)	147.5(1)	C(51)-C(52)-C(53)	122.1(4)
Si(7)-O(15)-Si(8)	148.1(1)	C(52)-C(53)-C(54)	119.2(4)
Si(8)-O(16)-Al(1)	144.4(1)	C(53)-C(54)-C(49)	120.7(4)
C(2)-C(1)-C(6)	118 3(3)	C(60) - C(55) - C(56)	117.8(3)
C(2) C(1) C(0)	121.0(2)	C(60) C(55) C(50)	117.0(3)
C(2)-C(1)-SI(1)	121.0(2)	C(60)-C(55)-SI(5)	122.1(2)
C(6)-C(1)-Si(1)	120.4(3)	C(56)-C(55)-Si(5)	120.1(3)
C(1)-C(2)-C(3)	120.4(4)	C(57)-C(56)-C(55)	121.2(4)
C(2)-C(3)-C(4)	118.8(4)	C(58)-C(57)-C(56)	120.1(3)
C(5)-C(4)-C(3)	121.8(3)	C(57)-C(58)-C(59)	120.3(4)
C(4)-C(5)-C(6)	118 4(4)	C(58) - C(59) - C(60)	118 7(4)
C(5)-C(6)-C(1)	122 2(4)	C(55) - C(60) - C(59)	122 0(3)
C(9) - C(0) - C(1)	122.2(4) 117.4(2)	C(55) - C(60) - C(57)	122.0(3) 117.2(2)
C(0) - C(7) - C(12)	117.4(3)	C(00)-C(01)-C(02)	117.2(3)
C(8)-C(7)-Si(1)	122.6(2)	C(66)-C(61)-Si(6)	124.6(2)
C(12)-C(7)-Si(1)	119.8(3)	C(62)-C(61)-Si(6)	118.3(3)
C(7)-C(8)-C(9)	121.5(4)	C(63)-C(62)-C(61)	121.0(4)
C(10)-C(9)-C(8)	120.0(5)	C(62)-C(63)-C(64)	120.2(4)
C(11) - C(10) - C(9)	119 8(4)	C(65) - C(64) - C(63)	120 4(4)
C(10) C(11) C(12)	121 5(4)	C(64) C(65) C(66)	1180(4)
C(10)-C(11)-C(12)	121.3(4)	C(04)-C(05)-C(00)	110.9(4)
C(7)-C(12)-C(11)	119.8(4)	C(61)-C(66)-C(65)	122.1(3)
C(14)-C(13)-C(18)	116.3(3)	C(68)-C(67)-C(72)	117.0(3)
C(14)-C(13)-Si(2)	122.1(3)	C(68)-C(67)-Si(6)	121.7(3)
C(18)-C(13)-Si(2)	121.1(2)	C(72)-C(67)-Si(6)	121.2(3)
C(13)-C(14)-C(15)	121.2(4)	C(67)-C(68)-C(69)	122.1(5)
C(16)-C(15)-C(14)	121 2(4)	C(70)- $C(69)$ - $C(68)$	1197(5)
C(15) C(16) C(17)	121.2(7) 110 6(2)	C(71) C(70) C(60)	120.0(4)
C(13)-C(10)-C(17)	119.0(3)	C(71)- $C(70)$ - $C(09)$	120.0(4)
C(18)-C(17)-C(16)	119.4(4)	C(70)-C(71)-C(72)	120.1(5)
C(17)-C(18)-C(13)	122.3(4)	C(67)-C(72)-C(71)	121.2(5)
C(24)-C(19)-C(20)	116.2(3)	C(74)-C(73)-C(78)	117.6(3)
C(24)-C(19)-Si(2)	123.5(2)	C(74)-C(73)-Si(7)	122.2(2)
C(20)-C(19)-Si(2)	120 2(3)	C(78) - C(73) - Si(7)	120 1(3)
C(19)-C(20)-C(21)	120.12(0) 121.1(4)	C(73)-C(74)-C(75)	120.1(0) 121.2(4)
C(13)-C(20)-C(21)	121.1(4)	C(75) - C(74) - C(75)	121.2(4)
C(22)- $C(21)$ - $C(20)$	121.7(4)	C(70)-C(73)-C(74)	120.4(4)
C(21)-C(22)-C(23)	119.2(4)	C(75)-C(76)-C(77)	119.7(3)
C(22)-C(23)-C(24)	118.9(5)	C(76)-C(77)-C(78)	120.3(4)
C(19)-C(24)-C(23)	122.9(4)	C(77)-C(78)-C(73)	120.9(4)
C(30)-C(25)-C(26)	117.8(3)	C(84)-C(79)-C(80)	116.8(3)
C(30)-C(25)-Si(3)	122.3(3)	C(84)-C(79)-Si(7)	122.4(2)
C(26) C(25) Si(3)	110.8(2)	C(80) C(70) S(7)	122.7(2) 120.8(2)
C(20) - C(20) - SI(3)	120 4(4)	C(00) - C(77) - SI(7)	120.0(2)
C(27)-C(26)-C(25)	120.4(4)	C(81)-C(80)-C(79)	121.5(3)
C(28)-C(27)-C(26)	120.4(5)	C(82)-C(81)-C(80)	120.0(3)
C(27)-C(28)-C(29)	119.7(4)	C(83)-C(82)-C(81)	119.5(3)
C(28)-C(29)-C(30)	121.5(5)	C(82)-C(83)-C(84)	121.1(3)
C(25)-C(30)-C(29)	120.1(5)	C(83)-C(84)-C(79)	121.1(3)
······································	N- /		- (-)

C(86)-C(85)-C(90)	115.9(3)	O(22)-C(112)-C(113)	111.4(3)
C(86)-C(85)-Si(8)	121.2(3)	O(22)-C(112)-C(111)	107.6(3)
C(90)-C(85)-Si(8)	123.0(2)	C(113)-C(112)-C(111)	110.6(3)
C(85)-C(86)-C(87)	122.0(4)	C(112)-C(113)-C(114)	111.5(3)
C(88)-C(87)-C(86)	121.5(4)	C(113)-C(114)-C(109)	110.7(3)
C(87)-C(88)-C(89)	120.4(4)	C(1A5)-O(23)-C(1B5)	35.1(4)
C(90)-C(89)-C(88)	119.2(5)	O(23)-C(1A5)-C(120)	107.5(3)
C(89)-C(90)-C(85)	120.8(4)	O(23)-C(1A5)-C(1A6)	107.0(3)
C(92)-C(91)-C(96)	117.5(3)	C(120)-C(1A5)-C(1A6)	109.1(4)
C(92)-C(91)-Si(8)	1180(2)	C(1A5)-C(1A6)-C(117)	110.9(4)
C(96)-C(91)-Si(8)	124 5(2)	O(24)-C(1A8)-C(1A9)	106.9(3)
C(93)-C(92)-C(91)	121.0(2)	O(24) - C(148) - C(117)	110.1(3)
C(94)- $C(93)$ - $C(92)$	120.0(4)	C(1A9)-C(1A8)-C(117)	110.1(3) 110.0(4)
C(93)-C(94)-C(95)	120.0(1)	C(148) - C(149) - C(120)	107.9(3)
C(95) - C(95) - C(94)	110 3(3)	C(1R6) - C(1R5) - C(120)	111.6(8)
C(95)-C(96)-C(91)	121 8(3)	C(1B6)-C(1B5)-C(120)	1061(7)
C(08R) C(07) C(1A2)	113 8(6)	O(23) C(1B5) C(120)	08.7(6)
C(98B) - C(97) - C(1A2)	113.8(0)	C(1P5) C(1P6) C(117)	108 4(8)
C(38B)-C(97)-O(17)	132.0(0) 114.0(2)	C(1B0) - C(1B0) - C(117) C(1B0) C(1B0) O(24)	103.4(3) 107.4(0)
C(1A2) - C(97) - O(17)	55 4(5)	C(1D9)-C(1D8)-O(24) C(1D0)-C(1D8)-O(24)	107.4(9) 106.2(9)
C(98B)-C(97)-C(98A)	33.4(3)	C(1D9)-C(1D0)-C(117)	100.5(8)
C(1A2)-C(97)-C(98A)	116.4(4)	O(24)-C(1B8)-C(117)	105.9(7)
O(17)-C(97)-C(98A)	105.5(3)	C(1B8)-C(1B9)-C(120)	102.1(8)
C(98B)-C(97)-C(1B2)	108.1(7)	C(1A6)-C(117)-C(1A8)	109.2(3)
C(1A2)-C(97)-C(1B2)	52.8(5)	C(1A6)-C(117)-C(1B6)	25.8(4)
O(17)-C(97)-C(1B2)	103.9(4)	C(1A8)-C(117)-C(1B6)	116.4(4)
C(98A)-C(97)-C(1B2)	/1.0(5)	C(1A6)-C(117)-C(1B8)	113.5(5)
C(99A)-C(98A)-C(97)	108.5(4)	C(1A8)-C(117)-C(1B8)	26.4(4)
C(100)-C(99A)-C(98A)	116.4(4)	C(1B6)-C(117)-C(1B8)	108.2(6)
C(1A2)-C(1A1)-C(100)	110.5(4)	C(1A5)-C(120)-C(1A9)	110.0(3)
C(97)-C(1A2)-C(1A1)	111.3(4)	C(1A5)-C(120)-C(1B9)	115.6(4)
C(97)-C(98B)-C(99B)	125.0(9)	C(1A9)-C(120)-C(1B9)	36.1(4)
C(98B)-C(99B)-C(100)	106.3(8)	C(1A5)-C(120)-C(1B5)	31.6(4)
C(100)-C(1B1)-C(1B2)	114(1)	C(1A9)-C(120)-C(1B5)	114.2(4)
C(1B1)-C(1B2)-C(97)	114.4(9)	C(1B9)-C(120)-C(1B5)	99.6(5)
C(1B1)-C(100)-C(99A)	115.5(7)	C(1A8)-O(24)-C(1B8)	28.4(4)
C(1B1)-C(100)-O(18)	124.0(7)	C(122)-C(121)-C(126)	117.3(4)
C(99A)-C(100)-O(18)	118.3(4)	C(122)-C(121)-C(127)	120.3(4)
C(1B1)-C(100)-C(1A1)	65.2(7)	C(126)-C(121)-C(127)	122.4(4)
C(99A)-C(100)-C(1A1)	110.9(4)	C(123)-C(122)-C(121)	122.0(5)
O(18)-C(100)-C(1A1)	107.3(3)	C(122)-C(123)-C(124)	120.7(5)
C(1B1)-C(100)-C(99B)	126.9(8)	C(125)-C(124)-C(123)	117.4(5)
C(99A)-C(100)-C(99B)	50.5(5)	C(126)-C(125)-C(124)	120.5(4)
O(18)-C(100)-C(99B)	99.5(5)	C(125)-C(126)-C(121)	122.0(5)
C(1A1)-C(100)-C(99B)	74.3(5)	C(134)-C(128)-C(129)	111.5(9)
O(19)-C(103)-C(108)	108.1(3)	C(134)-C(128)-C(133)	128.5(9)
O(19)-C(103)-C(104)	110.4(3)	C(129)-C(128)-C(133)	119.9(6)
C(108)-C(103)-C(104)	112.0(3)	C(130)-C(129)-C(128)	112.1(6)
C(103)-C(104)-C(105)	110.8(3)	C(129)-C(130)-C(131)	123.9(7)
C(106)-C(105)-C(104)	112.9(3)	C(132)-C(131)-C(130)	126(1)
O(20)-C(106)-C(105)	110.6(3)	C(131)-C(132)-C(133)	114.6(8)
O(20)-C(106)-C(107)	110.9(3)	C(132)-C(133)-C(128)	123.5(6)
C(105)-C(106)-C(107)	113.4(3)	C(140)-C(135)-C(141)	121.5(5)
C(106)-C(107)-C(108)	111.6(3)	C(140)-C(135)-C(136)	119.6(5)
C(103)-C(108)-C(107)	111.4(3)	C(141)-C(135)-C(136)	118.9(5)
O(21)-C(109)-C(110)	112.0(2)	C(137)-C(136)-C(135)	115.7(6)
O(21)-C(109)-C(114)	106.7(2)	C(136)-C(137)-C(138)	122.5(6)
C(110)-C(109)-C(114)	111.4(3)	C(139)-C(138)-C(137)	122.0(6)
C(109)-C(110)-C(111)	112.2(3)	C(138)-C(139)-C(140)	119.0(7)
C(112)-C(111)-C(110)	110.1(3)	C(135)-C(140)-C(139)	121.2(6)
	(0)		(0)

Symmetry transformations used to generate equivalent atoms:

Anhang

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
<u>Al(1)</u>	17(1)	19(1)	16(1)	1(1)	5(1)	1(1)
Al(2)	18(1)	23(1)	16(1)	2(1)	7(1)	4(1)
Al(3)	20(1)	18(1)	17(1)	$\frac{2(1)}{2(1)}$	7(1)	2(1)
Al(4)	17(1)	20(1)	21(1)	3(1)	8(1)	1(1)
Si(1)	17(1)	40(1)	18(1)	0(1)	4(1)	-1(1)
Si(2)	17(1)	43(1)	21(1)	2(1)	9(1)	4(1)
Si(3)	28(1)	31(1)	17(1)	4(1)	9(1)	9(1)
Si(4)	24(1)	24(1)	20(1)	6(1)	9(1)	7(1)
Si(5)	36(1)	24(1)	24(1)	0(1)	14(1)	8(1)
S1(6)	24(1)	37(1)	26(1)	2(1)	15(1)	6(1)
S1(7)	21(1) 24(1)	24(1)	27(1) 20(1)	6(1)	2(1)	-4(1)
O(1)	24(1) 22(1)	22(1) 20(1)	29(1) 16(1)	9(1)	0(1) 5(1)	-2(1)
O(2)	18(1)	20(1) 20(1)	22(1)	0(1)	$\frac{3(1)}{7(1)}$	0(1)
O(2)	21(1)	21(1)	21(1)	2(1)	6(1)	2(1)
O(4)	16(1)	25(1)	18(1)	0(1)	6(1)	2(1)
O(5)	17(1)	29(1)	23(1)	-3(1)	5(1)	-2(1)
O(6)	22(1)	56(1)	19(1)	3(1)	7(1)	10(1)
O(7)	18(1)	49(1)	31(1)	10(1)	13(1)	7(1)
O(8)	28(1)	30(1)	17(1)	2(1)	4(1)	4(1)
O(9)	34(1)	32(1)	24(1)	7(1)	13(1)	11(1)
O(10)	30(1)	29(1)	22(1)	8(1)	9(1)	8(1)
O(11)	30(1)	26(1)	22(1)	-2(1)	$\prod_{i=1}^{n}$	4(1)
O(12)	46(1) 25(1)	33(1) 31(1)	38(1)	-5(1)	26(1)	4(1) 5(1)
O(13)	23(1) 25(1)	31(1) 22(1)	34(1) 29(1)	2(1) 2(1)	8(1)	-2(1)
O(14) O(15)	25(1) 26(1)	22(1) 29(1)	44(1)	$\frac{2(1)}{14(1)}$	-2(1)	-2(1)
O(16)	29(1)	22(1)	25(1)	4(1)	6(1)	1(1)
C(1)	24(1)	56(2)	32(2)	12(1)	12(1)	13(1)
C(2)	71(3)	53(2)	43(2)	12(2)	26(2)	30(2)
C(3)	105(4)	51(2)	72(3)	17(2)	44(3)	42(2)
C(4)	50(2)	94(3)	51(2)	44(2)	19(2)	32(2)
C(5)	50(2)	81(3)	42(2)	21(2)	5(2)	2(2)
C(6)	39(2)	76(2)	31(2)	15(2)	l(1)	-10(2)
C(7)	32(2)	56(2) 42(2)	18(1) 21(2)	1(1) 1(1)	5(1)	-23(1)
C(0)	100(2)	42(2) 43(2)	58(3)	-10(2)	$\frac{3(2)}{19(2)}$	-10(2) -23(2)
C(10)	120(5)	78(3)	39(2)	-10(2)	19(2) 18(2)	-66(3)
C(11)	61(3)	117(4)	31(2)	2(2)	5(2)	-62(3)
C(12)	39(2)	97(3)	37(2)	-7(2)	13(2)	-35(2)
C(13)	24(1)	45(2)	36(2)	-3(1)	17(1)	1(1)
C(14)	31(2)	60(2)	67(2)	-2(2)	8(2)	-8(2)
C(15)	32(2)	75(3)	99(3)	-16(2)	21(2)	-14(2)
C(16)	50(2)	57(2)	91(3)	-7(2)	39(2)	-18(2)
C(17)	60(3)	60(2) 50(2)	73(3)	16(2)	37(2)	-6(2)
C(18) C(10)	$\frac{37(2)}{10(1)}$	59(2) 52(2)	52(2) 28(1)	12(2)	20(2) 10(1)	-3(2)
C(20)	59(3)	114(4)	$\frac{28(1)}{30(2)}$	-0(1)	6(2)	$\frac{-1(1)}{19(2)}$
C(20)	72(3)	145(5)	38(2)	-46(3)	8(2)	5(3)
C(22)	45(2)	99(3)	83(3)	-56(3)	36(2)	-18(2)
C(23)	85(3)	67(3)	90(3)	-21(2)	46(3)	16(2)
C(24)	65(3)	62(2)	48(2)	-6(2)	23(2)	23(2)
C(25)	30(2)	60(2)	31(2)	20(1)	15(1)	17(1)
C(26)	46(2)	65(2)	50(2)	13(2)	17(2)	-3(2)
C(27)	49(2)	106(4)	68(3)	40(3)	21(2)	-6(2)
C(28)	53(3)	126(5)	107(4)	67(4)	51(3)	27(3)
C(29)	88(4) 72(2)	133(3)	104(4)	24(4)	19(4) 56(2)	44(4)
C(30)	$\frac{12(3)}{33(1)}$	00(3) 35(1)	$\frac{62(3)}{21(1)}$	-1(2)	30(3) 3(1)	/(2)
C(31) C(32)	56(2)	55(1)	21(1) 24(2)	-3(1) 2(1)	-5(1)	9(2)
C(32)	58(2)	72(2)	27(2)	-2(2)	-8(2)	13(2)
C(34)	32(2)	83(3)	40(2)	-22(2)	2(1)	4(2)
C(35)	42(2)	62(2)	44(2)	-11(2)	17(2)	-5(2)
C(36)	35(2)	48(2)	26(1)	-6(1)	14(1)	5(1)
C(37)	27(1)	29(1)	29(1)	12(1)	7(1)	4(1)

Tabelle 51: Anisotropische Auslenkungsaparameter (Å 2 x 10³) für sh2750. Der anisotropische Exponentfaktor des Auslenkungsparameter lautet:
 $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

C(38)	61(2)	35(2)	40(2)	4(1)	24(2)	5(2)
C(30)	76(2)	33(2)	+0(2)	+(1)	27(2)	S(2)
C(39)	70(3)	34(2)	03(2) 5((2)	-2(2)	27(2)	-0(2)
C(40)	80(3)	35(2)	56(2)	9(2)	22(2)	-14(2)
C(41)	/4(3)	49(2)	47(2)	15(2)	28(2)	-9(2)
C(42)	53(2)	43(2)	33(2)	5(1)	18(2)	-4(2)
C(43)	25(1)	34(1)	29(1)	9(1)	9(1)	6(1)
C(44)	31(2)	57(2)	40(2)	-1(1)	14(1)	9(1)
C(45)	40(2)	75(3)	65(2)	2(2)	27(2)	16(2)
C(46)	24(2)	89(3)	62(2)	17(2)	7(2)	11(2)
C(47)	37(2)	68(2)	37(2)	6(2)	2(1)	2(2)
C(47)	20(2)	08(2)	37(2)	0(2)	-2(1)	-2(2)
C(48)	39(2)	47(2)	24(1)	8(1)	8(1)	/(1)
C(49)	56(2)	38(2)	29(2)	3(1)	16(1)	21(1)
C(50)	60(2)	60(2)	37(2)	4(2)	14(2)	25(2)
C(51)	62(3)	72(3)	52(2)	1(2)	14(2)	31(2)
C(52)	104(4)	58(2)	46(2)	16(2)	22(2)	46(3)
C(53)	95(4)	45(2)	58(2)	18(2)	23(2)	22(2)
C(54)	69(3)	38(2)	52(2)	9(2)	22(2)	17(2)
C(55)	54(2)	22(1)	22(1)	-2(1)	14(1)	2(1)
C(56)	73(3)	36(2)	$\frac{38(2)}{38(2)}$	-11(1)	29(2)	-5(2)
C(57)	100(3)	$\frac{30(2)}{44(2)}$	36(2)	10(2)	27(2) 27(2)	13(2)
C(57)	100(3)	44(2)	JO(2)	-19(2)	27(2)	-13(2)
C(38)	98(4)	49(2)	40(2)	-10(2)	17(2)	-20(2)
C(59)	63(2)	47(2)	47(2)	-11(2)	14(2)	-20(2)
C(60)	59(2)	28(1)	34(2)	-6(1)	18(2)	-6(1)
C(61)	30(2)	56(2)	35(2)	-4(1)	15(1)	12(1)
C(62)	38(2)	78(3)	76(3)	-29(2)	16(2)	14(2)
C(63)	41(2)	93(3)	119(4)	-47(3)	23(3)	14(2)
C(64)	30(2)	110(4)	79(3)	-21(3)	13(2)	23(2)
C(65)	33(2)	68(2)	52(2)	-8(2)	12(2)	5(2)
C(66)	32(2)	52(2)	41(2)	-4(1)	16(1)	7(1)
C(67)	31(2)	52(2) 66(2)	27(2)	7(1)	10(1) 12(1)	6(1)
C(67)	67(2)	71(2)	$\frac{27(2)}{50(2)}$	7(1) 22(2)	$\frac{12(1)}{20(2)}$	-0(1) 17(2)
C(08)	07(3) 82(4)	107(4)	50(2)	23(2) 50(2)	30(2)	17(2) 16(2)
C(09)	85(4)	107(4)	08(5)	30(3)	55(5)	10(5)
C(70)	87(4)	170(6)	37(2)	34(3)	17(2)	-16(4)
C(71)	128(5)	166(6)	29(2)	-21(3)	26(3)	-62(5)
C(72)	86(3)	92(3)	30(2)	-9(2)	18(2)	-33(3)
C(73)	27(1)	40(1)	24(1)	2(1)	3(1)	-12(1)
C(74)	47(2)	45(2)	92(3)	13(2)	37(2)	1(2)
C(75)	49(2)	77(3)	106(4)	17(3)	44(3)	6(2)
C(76)	38(2)	107(3)	53(2)	16(2)	22(2)	-13(2)
C(77)	63(3)	81(3)	51(2)	20(2)	24(2)	-24(2)
C(78)	$\frac{18(2)}{18(2)}$	58(2)	50(2)	20(2) 21(2)	17(2)	-4(2)
C(70)	+0(2)	36(2)	30(2) 35(1)	$\frac{21(2)}{1(1)}$	17(2) 11(1)	-4(2)
C(19)	20(1)	20(1)	33(1)	1(1)	11(1)	-0(1)
C(80)	32(2)	30(1)	37(2)	-2(1)	4(1)	2(1)
C(81)	46(2)	52(2)	35(2)	-4(1)	4(1)	0(2)
C(82)	60(2)	49(2)	46(2)	-17(2)	20(2)	-13(2)
C(83)	77(3)	28(1)	55(2)	-10(1)	27(2)	-7(2)
C(84)	62(2)	27(1)	46(2)	5(1)	19(2)	-1(1)
C(85)	48(2)	23(1)	47(2)	5(1)	-1(2)	3(1)
C(86)	70(3)	41(2)	129(4)	15(2)	46(3)	4(2)
C(87)	99(4)	35(2)	158(6)	31(3)	51(4)	-6(2)
C(88)	113(4)	29(2)	83(3)	-5(2)	9(3)	17(2)
C(89)	96(4)	54(2)	91(3)	7(2)	47(3)	24(2)
C(90)	70(3)	49(2)	59(2)	5(2)	30(2)	7(2)
C(01)	70(3)	$\frac{4}{25}(1)$	$\frac{39(2)}{28(1)}$	$\frac{J(2)}{14(1)}$	50(2)	(2)
C(91)	29(1)	02(2)	20(1)	14(1) 10(2)	0(1)	0(1)
C(92)	29(2)	93(3)	27(2)	10(2)	0(1)	-3(2)
C(93)	44(2)	131(4)	30(2)	9(2)	8(2)	-6(2)
C(94)	65(3)	94(3)	30(2)	11(2)	19(2)	-10(2)
C(95)	46(2)	91(3)	46(2)	16(2)	24(2)	0(2)
C(96)	31(2)	65(2)	45(2)	17(2)	14(1)	1(2)
O(17)	34(1)	36(1)	42(1)	-13(1)	18(1)	-6(1)
C(97)	48(2)	44(2)	84(3)	-29(2)	43(2)	-15(2)
C(100)	38(2)	37(2)	102(3)	-8(2)	22(2)	5(2)
0(18)	65(2)	41(1)	59(2)	2(1)	28(1)	14(1)
O(19)	41(1)	38(1)	40(1)	7(1)	3(1)	-10(1)
C(103)	35(2)	36(2)	42(2)	3(1)	11(1)	6(1)
C(103)	55(2)	56(2)	+2(2)	0(2)	11(1) 11(2)	-0(1)
C(104)	50(2)	JU(2)	40(2) 50(2)	0(2)	11(2) 16(2)	-10(2)
C(105)	50(2)	48(2)	39(2)	1(2)	10(2)	-16(2)
C(106)	47(2)	40(2)	60(2)	15(2)	25(2)	4(1)
C(107)	62(3)	62(2)	41(2)	12(2)	2(2)	-10(2)
C(108)	53(2)	60(2)	44(2)	14(2)	-6(2)	-21(2)
O(20)	47(2)	55(1)	73(2)	29(1)	22(1)	-3(1)
O(21)	32(1)	62(1)	28(1)	-3(1)	9(1)	-5(1)

A	nhang	

C(109)	29(2)	52(2)	33(2)	0(1)	8(1)	7(1)
C(110)	34(2)	68(2)	31(2)	-11(2)	5(1)	-2(2)
C(111)	30(2)	63(2)	41(2)	-7(2)	0(1)	6(2)
C(112)	26(2)	48(2)	48(2)	4(1)	6(1)	9(1)
C(113)	32(2)	55(2)	46(2)	0(2)	13(1)	3(1)
C(114)	30(2)	60(2)	33(2)	-3(1)	7(1)	6(1)
O(22)	32(1)	57(1)	68(2)	6(1)	10(1)	2(1)
O(23)	64(2)	51(1)	27(1)	-12(1)	-9(1)	18(1)
C(117)	55(2)	42(2)	28(2)	-13(1)	2(1)	11(2)
C(120)	66(2)	48(2)	26(2)	-9(1)	3(2)	26(2)
O(24)	43(1)	48(1)	27(1)	-1(1)	0(1)	0(1)
C(121)	71(3)	50(2)	48(2)	-1(2)	31(2)	18(2)
C(122)	64(3)	121(4)	49(2)	11(3)	18(2)	21(3)
C(123)	58(3)	140(5)	73(3)	9(3)	9(3)	-8(3)
C(124)	80(3)	90(3)	82(3)	-11(3)	51(3)	-2(3)
C(125)	100(4)	56(2)	51(2)	-14(2)	35(2)	-7(2)
C(126)	95(3)	50(2)	44(2)	-9(2)	23(2)	-3(2)
C(127)	101(4)	63(3)	64(3)	7(2)	38(3)	2(3)
C(128)	137(7)	143(6)	99(5)	3(4)	51(5)	-24(5)
C(129)	45(3)	85(4)	186(8)	21(4)	9(4)	1(3)
C(130)	74(3)	69(3)	78(3)	-7(2)	-8(3)	5(2)
C(131)	146(7)	111(5)	91(5)	-16(4)	-16(5)	55(5)
C(132)	136(7)	68(4)	130(6)	-25(4)	-22(5)	-3(4)
C(133)	47(3)	86(4)	110(4)	-24(3)	9(3)	10(2)
C(134)	380(20)	570(30)	140(9)	211(14)	187(12)	310(20)
C(135)	60(3)	66(3)	96(4)	24(3)	23(3)	-8(2)
C(136)	63(3)	48(2)	115(4)	25(2)	3(3)	5(2)
C(137)	106(5)	80(4)	120(5)	-14(4)	3(4)	-22(3)
C(138)	93(4)	109(4)	86(4)	22(3)	26(3)	-31(4)
C(139)	110(5)	158(7)	84(4)	-10(4)	38(4)	-45(5)
C(140)	126(6)	98(4)	92(4)	-20(3)	24(4)	-39(4)
C(141)	86(4)	83(3)	117(5)	-21(3)	29(3)	-32(3)

Tabelle 52: Koordinaten des Wasserstoffs ($x \ 10^4$) und isotrope Auslenkungsparameter (Å² $x \ 10^3$) für sh2750.

	х	У	Z	U(eq)
H(1)	2310	5702	6081	24
H(2)	2757	8016	6512	24
H(3)	1384	7017	5902	25
H(4)	2267	6813	7384	23
H(2)	3769	4745	7192	64
H(3)	3986	3664	7718	87
H(4)	4308	3868	8568	77
H(5)	4388	5093	8892	71
H(6)	4181	6151	8369	61
H(8)	3414	7849	7692	55
H(9)	3783	8905	8169	82
H(10)	4616	8988	8451	97
H(11)	5075	8055	8239	86
H(12)	4721	6998	7747	69
H(14)	4816	6850	6606	65
H(15)	5351	7727	6434	82
H(16)	5080	8761	5927	75
H(17)	4252	8921	5547	73
H(18)	3716	8042	5704	57
H(20)	3488	6182	5228	83
H(21)	3623	5158	4763	104
H(22)	4011	4051	5123	86
H(23)	4322	3991	5973	91
H(24)	4200	5032	6444	68
H(26)	2661	8762	4941	64
H(27)	3335	9117	4707	88
H(28)	3644	8279	4250	108
H(29)	3302	7078	4040	117
H(30)	2625	6694	4262	85

H(32)	1548	7374	3823	59
H(33)	1001	6594	3272	68
H(34)	728	5456	3531	64
H(35)	1051	5062	1256	59
H(35)	1031	5929	4330	50
H(30)	1625	3828	4905	45
H(38)	1691	10246	5090	52
H(39)	1993	11458	5586	69
H(40)	2235	11718	4904	68
H(41)	2158	10768	4312	65
H(42)	1863	9534	4414	50
H(44)	720	9183	5506	51
H(45)	-111	9114	5217	69
H(46)	-493	8609	4447	71
H(47)	-36	8141	3964	61
H(48)	801	8209	4248	45
H(50)	633	9262	6551	63
H(50)	184	10285	6065	75
H(51)	560	11/26	5005	83
H(52)	1275	11430	5995	83 70
H(55)	1375	11598	6349	19
H(54)	1830	10596	6825	63
H(56)	1700	9832	8015	56
H(57)	2279	10461	8644	70
H(58)	3068	10559	8620	76
H(59)	3281	10036	7958	64
H(60)	2700	9366	7342	48
H(62)	482	8952	7498	77
H(63)	-330	9245	7277	101
H(64)	-895	8392	6787	89
H(65)	644	7253	6404	61
11(05)	-044	6071	6702	10
H(00)	179	09/1	0/02	48
H(08)	1264	6213	/89/	12
H(69)	1399	5810	8702	100
H(70)	1462	6724	9316	118
H(71)	1390	8029	9126	129
H(72)	1249	8436	8315	83
H(74)	565	5801	6809	69
H(75)	-61	5689	7159	87
H(76)	-194	4533	7500	77
H(77)	297	3470	7499	76
H(78)	925	3574	7163	62
H(80)	834	5070	5610	44
$\mathbf{H}(00)$	502	4227	4800	
H(01)	393 700	4337	4090	55
H(82)	729	3002	4916	61
H(83)	1131	2416	5651	62
H(84)	1376	3129	6372	53
H(86)	2095	2794	7441	92
H(87)	2447	1564	7477	114
H(88)	3080	1368	7210	95
H(89)	3463	2426	6960	91
H(90)	3161	3682	6976	69
H(92)	3187	4645	8102	60
H(93)	3371	4788	8947	83
H(94)	2760	4867	9307	74
H(95)	1958	4775	8829	71
H(95)	1775	4775	7000	71
H(90)	1775	4380	7990	50
H(1/A)	1/65	4961	5821	54
H(97)	1883	4065	5330	64
H(98A)	2306	4874	4953	53
H(98B)	2754	4924	5442	53
H(99A)	2444	3583	4846	57
H(99B)	2947	4014	4937	57
H(1A1)	2294	2789	5572	53
H(1A2)	2735	2795	6067	53
H(1A3)	2112	3707	6100	52
H(1A4)	2672	4123	6192	52
H(98C)	2022	4470	4978	52
H(98D)	1700	4470	4710	44
H(00C)	1/99	4000	49/3	44
П(99C)	2407	3284	4/41	55
H(99D)	2201	2860	5136	55
H(1B1)	3380	3691	5992	59
H(1B2)	2968	3186	6106	59
H(1B3)	2940	4763	5848	57

H(1B4)	2774	4375	6277	57
H(100)	3198	3597	5702	71
H(18A)	3324	2445	5582	79
H(19)	3431	8412	6947	62
H(103)	3697	9018	6435	46
H(10E)	3848	9783	7133	64
H(10F)	3319	10146	6950	64
H(10G)	3843	11057	6776	63
H(10H)	4071	10414	6510	63
H(106)	3139	11044	6164	57
H(10I)	3490	9888	5655	69
H(10J)	2967	10272	5484	69
H(10K)	2755	9660	6123	68
H(10L)	2956	9005	5839	68
H(20A)	3468	11354	5538	86
H(21A)	1065	6766	5117	61
H(109)	379	7377	5141	46
H(11A)	300	5762	4894	55
H(11B)	278	6459	4519	55
H(11C)	-463	6878	4597	56
H(11D)	-508	5978	4448	56
H(112)	-391	5611	5272	51
H(11E)	-314	6555	5885	53
H(11F)	-335	7237	5499	53
H(11G)	426	6123	5817	50
H(11H)	471	7027	5955	50
H(22A)	-1090	6004	5270	80
H(1A5)	2314	7140	8473	40
H(1A5)	2484	8498	8531	46
H(1A6)	2984	8352	8424	46
H(1A8)	3662	7651	9048	40
H(1A7)	3001	6468	9144	40
H(1A8)	3502	6296	9042	40
H(1B5)	3010	8057	8213	40
H(1B5)	2347	7546	8699	41
H(1B6)	2409	8437	8562	41
H(1B8)	3022	6799	9310	48
H(1B7)	3682	6553	8970	42
H(1B8)	3639	7449	8796	42
H(11K)	2773	7830	9293	53
H(11L)	3129	8533	9280	53
H(12A)	3222	6998	8269	59
H(12B)	2868	6286	8268	59
H(122)	5640	6395	7190	93
H(123)	5049	5638	7321	111
H(124)	5140	5097	8102	93
H(125)	5837	5398	8/3/	80
H(126)	6409	6187	8596	/5
H(12C)	64/8	6779	/452	110
H(12D)	6760	6801	8025	110
H(12E)	0300	7442	7/91	110
H(129)	-944	/00/	/8/8	155
H(130)	-1300	6291 5202	8343	97
H(131)	-880	5392	8910	152
H(132)	-115	5108	9081	150
H(133)	500	5929	8088	101
H(13A) H(12D)	-113	7111	8212	508
H(13D)	211	/111 7577	0212	500
H(13C) H(136)	-219	7071	0023	508
H(130) H(137)	100	/ 024	0314	97 121
H(137) H(138)	-423	/134	9314 0057	151
LI(130)	-033	1301	10322	113
H(139)	-3/3	00/9	10552	139
H(140) H(14A)	190	7431 0716	0265	149
H(1/R)	370 570	9/10	9203	145
H(14C)	570 8/1	0740	9002	145
11(1+C)	041	7234	2000	143

8 Daten zur Molekül- und Kristallstruktur von $(Ph_2SiO)_8[AIO(OH)]_4 \bullet (H_2N(CH_2)C_6H_4(CH_2)NH_2 \bullet 2 C_4H_8O)_2 \underline{10}$

 $\textbf{Tabelle 53:} Kristalldaten und Strukturverfeinerungen für (Ph_2SiO)_8[AlO(OH)]_4 \bullet (H_2N(CH_2)C_6H_4(CH_2)NH_2 \bullet 2 C_4H_8O)_2 (sh2911)$

C128 H140 Al4 N4 O20 Si8 387.08 52(2) .71073 etragonal 4(2)/n = 19.7041(8) Å $\alpha = 90^{\circ}$ = 19.7041(8) Å $\beta = 90^{\circ}$ = 16.5008(9) Å $\gamma = 90^{\circ}$
406.5(5) .237
.177 520
.21 x 0.11 x 0.06 .46 to 27.31 25<=h<=25, -25<=k<=22, -21<=l<=21 7856 142 [R(int) = 0.3541] 8.9 % Aultiscan .9891 and 0.9642
ull-matrix least-squares on F ² 142 / 0 / 382
.054 11 = 0.0767, wR2 = 0.1402 11 = 0.2529, wR2 = 0.1976 389 and -0.461

 Tabelle 54: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) für sh2911. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

	X	у	Z	U(eq)
Al(1)	7614(1)	6334(1)	2517(1)	23(1)
Si(1)	7001(1)	5609(1)	940(1)	31(1)
Si(2)	5666(1)	6486(1)	1087(1)	28(1)
O(1)	8250(2)	6876(2)	2175(2)	24(1)
O(2)	7891(1)	5900(1)	3373(2)	30(1)
O(3)	7422(1)	5772(1)	1742(2)	28(1)
O(4)	6220(2)	5880(2)	982(2)	35(1)
C(1)	6953(2)	4679(2)	769(3)	31(1)
C(2)	6410(3)	4377(3)	365(3)	43(1)
C(3)	6399(3)	3691(3)	198(4)	55(2)
C(4)	6934(3)	3288(3)	434(4)	58(2)
C(5)	7485(3)	3567(3)	835(4)	61(2)
C(6)	7490(3)	4250(3)	995(3)	46(1)
C(7)	7432(3)	5996(3)	38(3)	38(1)
C(8)	7456(3)	5660(3)	-704(3)	58(2)
C(9)	7778(3)	5947(4)	-1369(4)	74(2)
C(10)	8094(3)	6556(3)	-1312(4)	66(2)
C(11)	8089(3)	6902(3)	-593(4)	55(2)
C(12)	7761(3)	6617(3)	80(3)	42(1)
C(13)	5462(2)	6809(2)	57(3)	35(1)
C(14)	5111(3)	7416(3)	-43(3)	43(1)
C(15)	4962(3)	7678(3)	-804(4)	69(2)
C(16)	5151(5)	7312(5)	-1467(5)	137(4)
C(17)	5500(6)	6715(5)	-1396(4)	157(5)

C(18)	5648(4)	6471(3)	-639(4)	81(2)
C(19)	4892(2)	6107(3)	1553(3)	38(1)
C(20)	4421(3)	6538(3)	1908(4)	63(2)
C(21)	3823(3)	6305(5)	2230(5)	103(3)
C(22)	3684(4)	5630(6)	2197(5)	116(4)
C(23)	4133(4)	5181(4)	1866(4)	93(3)
C(24)	4745(3)	5416(3)	1540(3)	58(2)
N(1)	9104(3)	6319(2)	1206(4)	41(1)
C(25)	9064(3)	5570(2)	1177(3)	46(2)
C(26)	9547(3)	5267(2)	560(3)	37(1)
C(27)	9481(3)	5420(3)	-246(4)	50(2)
C(28)	10070(3)	4843(3)	811(3)	49(2)
O(5)	4420(2)	8521(2)	1445(3)	70(1)
C(29)	3853(3)	8612(4)	903(4)	79(2)
C(30)	3272(4)	8831(6)	1390(6)	142(4)
C(31)	3429(6)	8625(7)	2208(7)	197(6)
C(32)	4196(5)	8641(5)	2245(5)	120(3)

Tabelle 55: Bindungslängen [Å] und Winkel [°] für sh2911.

Al(1)-O(3)	1.733(3)	C(31)-C(32)	1.51(1)
Al(1)-O(2)	1.739(3)		
Al(1)-O(1)	1.740(3)	O(3)-Al(1)-O(2)	110.7(2)
Al(1)-O(1)#1	1.744(3)	O(3)-Al(1)-O(1)	108.1(2)
Si(1)-O(3)	1.595(3)	O(2)-Al(1)-O(1)	109.9(2)
Si(1)-O(4)	1.631(3)	O(3)-Al(1)-O(1)#1	109.5(2)
Si(1)-C(1)	1.856(5)	O(2)-Al(1)-O(1)#1	104.9(2)
Si(1)-C(7)	1.876(5)	O(1)-Al(1)-O(1)#1	113.9(2)
Si(2)-O(2)#1	1.586(3)	O(3)-Si(1)-O(4)	112.9(2)
Si(2)-O(4)	1.627(3)	O(3)-Si(1)-C(1)	110.6(2)
Si(2)-C(13)	1.858(5)	O(4)-Si(1)-C(1)	106.4(2)
Si(2)-C(19)	1.863(5)	O(3)-Si(1)-C(7)	109.9(2)
O(1)-Al(1)#2	1.744(3)	O(4)-Si(1)-C(7)	109.1(2)
O(2)-Si(2)#2	1.586(3)	C(1)-Si(1)-C(7)	107.7(2)
C(1)-C(2)	1.394(6)	O(2)#1-Si(2)-O(4)	115.6(2)
C(1)- $C(6)$	1 404(6)	O(2)#1-Si(2)-C(13)	108.1(2)
C(2)-C(3)	1 380(7)	O(4)-Si(2)-C(13)	107.4(2)
C(3)-C(4)	1 376(7)	O(2)#1-Si(2)-C(19)	108.5(2)
C(4)- $C(5)$	1 385(7)	O(4)-Si(2)-C(19)	107.4(2)
C(5)- $C(6)$	1 371(7)	C(13)-Si(2)-C(19)	109.8(2)
C(7)- $C(12)$	1 387(7)	Al(1)-O(1)-Al(1)#2	139.1(2)
C(7)- $C(8)$	1 393(7)	Si(2)#2-O(2)-Al(1)	147.4(2)
C(8)- $C(9)$	1 387(8)	Si(2)=O(2)+Ii(1) Si(1)-O(3)-Al(1)	148.7(2)
C(9)- $C(10)$	1 356(8)	Si(2) - O(4) - Si(1)	1515(2)
C(10)- $C(11)$	1 368(8)	C(2)-C(1)-C(6)	116.6(4)
C(11)- $C(12)$	1.300(0) 1.402(7)	C(2) - C(1) - Si(1)	1222(4)
C(13)-C(18)	1 378(7)	C(6)-C(1)-Si(1)	122.2(1) 121.0(4)
C(13)- $C(14)$	1 390(6)	C(3)-C(2)-C(1)	121.0(1) 121.7(5)
C(14)- $C(15)$	1 390(7)	C(4)-C(3)-C(2)	1197(5)
C(15)- $C(16)$	1 363(9)	C(3)-C(4)-C(5)	120 5(5)
C(16)- $C(17)$	1 368(9)	C(6)-C(5)-C(4)	119 2(5)
C(17)- $C(18)$	1 369(9)	C(5) - C(6) - C(1)	1223(5)
C(19)- $C(20)$	1 389(7)	C(12)-C(7)-C(8)	116 6(5)
C(19)-C(24)	1.392(7)	C(12) - C(7) - Si(1)	122 1(4)
C(20)- $C(21)$	1.372(8)	C(8)-C(7)-Si(1)	122.1(1) 121.3(4)
C(21)- $C(22)$	136(1)	C(9)-C(8)-C(7)	121.3(1)
C(22)- $C(23)$	1 37(1)	C(10)-C(9)-C(8)	121.2(0)
C(23)- $C(24)$	1 398(9)	C(9)-C(10)-C(11)	119.9(6)
N(1)-C(25)	1 477(6)	C(10)-C(11)-C(12)	119.9(0) 119.4(5)
C(25)-C(26)	1 517(6)	C(7)-C(12)-C(11)	121.9(5)
C(26)- $C(27)$	1 370(7)	C(18)-C(13)-C(14)	116 6(5)
C(26) - C(28)	1 389(7)	C(18) - C(13) - Si(2)	1227(4)
C(27)- $C(28)$ #3	1 386(7)	C(14)-C(13)-Si(2)	122.7(1) 120.7(4)
C(28)-C(27)#3	1 386(7)	C(13)-C(14)-C(15)	120.7(4) 122.2(5)
O(5)-C(32)	1.500(7)	C(16)-C(15)-C(14)	118 0(6)
O(5)- $C(29)$	1 443(7)	C(15) - C(16) - C(17)	121.6(7)
C(29)-C(30)	1 464(9)	C(16) - C(17) - C(18)	119 2(7)
C(30)- $C(31)$	1 44(1)	C(17) - C(18) - C(13)	122 3(6)
			122.3(0)

C(20)- $C(19)$ - $C(24)$	117 7(5)	C(28)-C(26)-C(25)	120 2(5)
C(20)-C(19)-Si(2)	118.5(4)	C(26)-C(27)-C(28)#3	120.2(5) 120.7(5)
C(24)-C(19)-Si(2)	123.8(4)	C(27)#3- $C(28)$ - $C(26)$	119.9(5)
C(21)-C(20)-C(19)	122.2(7)	C(32)-O(5)-C(29)	108.4(6)
C(22)-C(21)-C(20)	119.0(7)	O(5)-C(29)-C(30)	107.6(6)
C(21)-C(22)-C(23)	121.3(7)	C(31)-C(30)-C(29)	105.2(8)
C(22)-C(23)-C(24)	119.8(7)	C(30)-C(31)-C(32)	104.3(9)
C(19)-C(24)-C(23)	119.9(6)	O(5)-C(32)-C(31)	105.8(7)
N(1)-C(25)-C(26)	112.5(4)		
C(27)-C(26)-C(28)	119.5(5)		
C(27)-C(26)-C(25)	120.3(5)		

Symmetry transformations used to generate equivalent atoms: #1 y,-x+3/2,-z+1/2 #2 -y+3/2,x,-z+1/2 #3 -x+2,-y+1,-z

Tabelle 56: Anisotropische Auslenkungsaparameter (Å $^2x 10^3$) für sh2911. Der anisotropische Exponentfaktor des Auslenkungsparameter lautet:
 $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2 h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Al(1)	19(1)	20(1)	29(1)	0(1)	-1(1)	0(1)
Si(1)	31(1)	25(1)	36(1)	-6(1)	-4(1)	1(1)
Si(2)	25(1)	25(1)	35(1)	-5(1)	-7(1)	0(1)
O(1)	22(2)	23(2)	29(2)	-6(2)	7(2)	-2(1)
O(2)	27(2)	24(2)	38(2)	10(2)	-5(2)	-2(2)
O(3)	28(2)	23(2)	33(2)	-7(1)	-8(1)	1(1)
O(4)	31(2)	29(2)	46(2)	-10(2)	-5(2)	8(2)
C(1)	26(3)	28(3)	38(3)	-7(2)	-2(2)	-1(2)
C(2)	39(3)	29(3)	60(4)	-6(3)	-8(3)	2(3)
C(3)	51(4)	37(4)	78(5)	-8(3)	-26(3)	-8(3)
C(4)	78(5)	24(3)	73(5)	-12(3)	-17(4)	3(3)
C(5)	64(4)	28(4)	90(5)	-13(3)	-28(4)	10(3)
C(6)	39(3)	35(3)	63(4)	-14(3)	-14(3)	3(3)
C(7)	43(3)	35(3)	35(3)	-6(3)	-1(2)	1(3)
C(8)	72(5)	57(4)	44(4)	-13(3)	15(3)	-15(3)
C(9)	97(6)	79(5)	45(4)	-20(4)	14(4)	-26(4)
C(10)	80(5)	71(5)	47(4)	2(4)	10(3)	-4(4)
C(11)	64(4)	43(4)	58(4)	5(3)	5(3)	-2(3)
C(12)	50(4)	35(3)	40(3)	-4(3)	-3(3)	4(3)
C(13)	34(3)	32(3)	40(3)	-5(2)	-11(2)	0(3)
C(14)	44(4)	36(3)	49(4)	-3(3)	-13(3)	1(3)
C(15)	94(5)	45(4)	68(5)	11(4)	-19(4)	18(4)
C(16)	222(11)	141(8)	47(5)	1(5)	-15(6)	103(8)
C(17)	278(13)	151(9)	41(5)	5(5)	-13(6)	143(9)
C(18)	126(6)	79(5)	39(4)	1(4)	-15(4)	54(5)
C(19)	33(3)	43(3)	38(3)	-7(3)	-5(3)	-7(3)
C(20)	37(4)	89(5)	64(4)	-24(4)	6(3)	-8(4)
C(21)	51(5)	167(9)	92(6)	-60(6)	25(4)	-40(5)
C(22)	97(7)	184(10)	66(5)	-44(6)	42(5)	-97(7)
C(23)	121(7)	98(6)	60(5)	-13(4)	5(5)	-70(6)
C(24)	69(4)	57(4)	48(4)	-3(3)	0(3)	-32(3)
N(1)	45(4)	28(3)	51(4)	-6(3)	13(3)	0(2)
C(25)	39(3)	36(3)	63(4)	-12(3)	19(3)	1(3)
C(26)	34(3)	34(3)	45(4)	-8(3)	12(3)	-2(3)
C(27)	43(4)	47(4)	59(4)	-13(3)	-2(3)	20(3)
C(28)	53(4)	53(4)	42(3)	-3(3)	8(3)	13(3)
D(5)	65(3)	79(3)	67(3)	4(2)	-11(2)	7(2)
C(29)	62(5)	97(6)	79(5)	4(4)	-12(4)	5(4)
C(30)	82(7)	229(12)	116(8)	-1(8)	14(6)	57(7)
C(31)	112(10)	360(20)	114(10)	-31(11)	32(8)	53(10)
C(32)	157(10)	144(8)	59(6)	-6(5)	3(6)	-13(7)

	Х	у	Z	U(eq)
H(2)	6038	4651	199	51
H(3)	6023	3497	-80	66
H(4)	6925	2815	322	70
H(5)	7855	3289	997	73
H(6)	7870	4440	1267	55
H(8)	7248	5227	-756	69
H(9)	7776	5713	-1873	89
H(10)	8320	6742	-1769	79
H(11)	8304	7332	-551	66
H(12)	7764	6857	580	50
H(14)	4969	7658	425	51
H(15)	4735	8101	-860	83
H(16)	5037	7475	-1992	164
H(17)	5637	6472	-1865	188
H(18)	5888	6055	-593	97
H(20)	4515	7011	1928	76
H(21)	3511	6611	2474	124
H(22)	3266	5467	2408	139
H(23)	4031	4710	1857	112
H(24)	5059	5105	1311	69
H(3)	9550(40)	6450(30)	1380(40)	110(30)
H(2)	9010(30)	6500(30)	790(30)	50(20)
H(1)	8520(30)	6660(30)	1850(40)	110(30)
H(25A)	8594	5434	1040	55
H(25B)	9171	5385	1720	55
H(27)	9123	5709	-419	60
H(28)	10120	4734	1369	59
H(29A)	3748	8180	623	95
H(29B)	3962	8959	489	95
H(30A)	3213	9329	1357	171
H(30B)	2850	8609	1199	171
H(31A)	3256	8163	2319	236
H(31B)	3230	8944	2606	236
H(32A)	4356	9089	2440	144
H(32B)	4367	8286	2616	144

Tabelle 57: Koordinaten des Wasserstoffs ($x \ 10^4$) und isotrope Auslenkungsparameter (Å² $x \ 10^3$) für sh2911.

9 Daten zur Molekül- und Kristallstruktur von $(Ph_2SiO)_8[AIO(O)_{0.25}]_4(OH \bullet N(CH_2CH_2)_3N)_2 (OH_2 \bullet N(CH_2CH_2)_3N) \underline{12}$

 $\label{eq:constraint} \textbf{Tabelle 58:} Kristalldaten und Strukturverfeinerungen für (Ph_2SiO)_8 [AlO(O)_{0.25}]_4 (OH \bullet N(CH_2CH_2)_3 N)_2 (OH_2 \bullet N(CH_2CH_2)_3 N) (sh2824) ($

Identifizierungscode Summenformel Molmasse [g/mol] Messtemperatur [K] Wellenlänge [Å] Kristallsystem Raumgruppe Gitterkonstanten

Zellvolumen [Å³] Anzahl der Formeleinheiten Z Dichte (berechnet) [g/cm³] Absorptionskoeffizient [mm⁻¹] F(000)

sh2824 C114 H120 Al4 N6 O16 Si8 x 4 C7 H8 2531.34 153(2) 0.71073 triklin P-1 a = 14.6729(10) Å $\alpha = 81.045(4)^{\circ}$ b = 15.8940(13) Å $\beta = 79.283(3)^{\circ}$ c = 30.772(2) Å $\gamma = 74.773(3)^{\circ}$ 6760.3(9) 2 1.244 0.170 2676 - 236 -

Kristallabmessungen [mm³] 0.57 x 0.31 x 0.18 Messbereich θ [°] 1.34 to 28.38 hkl - Indexbereich Gemessene Reflexe -19<=h<=19, -21<=k<=21, -41<=l<=41 $\begin{array}{c} -19 < -19, -21 < -18 \\ 123752 \\ 33723 \ [R(int) = 0.0324] \end{array}$ Symmetrieunabhängige Reflexe Vollständigkeit des Datensatzes (bis $\theta = 28.38^{\circ}$) 99.5 % Absorptionskorrektur Multiscan Max. und Min. Transmission 0.9693 and 0.9097 Full-matrix-block least-squares on F^2 33723 / 0 / 1622 Strukturverfeinerungsmethode Daten / Einschränkungen / Parameter Güte des Fit auf F^2 1.011 Endgültige R-Werte [I>2sigma(I)] R1 = 0.0441, wR2 = 0.1055R-Werte (alle Daten) R1 = 0.0710, wR2 = 0.1218 Restelektronendichte (min./max.) [e/Å $^{-3}$] 0.632 and -0.609

Tabelle 59: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² x 10³) für sh2824. U(eq) wird berechnet als ein Drittel
der Spur des orthogonalisierten U^{ij} Tensors.

	Х	У	Z	U(eq)
Al(1)	2014(1)	5621(1)	7753(1)	16(1)
Al(2)	2035(1)	4169(1)	8543(1)	17(1)
Al(3)	3206(1)	3749(1)	7639(1)	15(1)
Al(4)	3429(1)	5323(1)	6896(1)	17(1)
Si(1)	-175(1)	5506(1)	7781(1)	21(1)
Si(2)	-241(1)	4746(1)	8792(1)	21(1)
Si(3)	3729(1)	2947(1)	9015(1)	22(1)
Si(4)	5004(1)	3477(1)	8158(1)	20(1)
Si(5)	4019(1)	2290(1)	6958(1)	17(1)
Si(6)	4424(1)	3772(1)	6255(1)	18(1)
Si(7)	2344(1)	7092(1)	6457(1)	20(1)
Si(8)	2190(1)	7614(1)	7395(1)	19(1)
O(1)	2823(1)	4865(1)	7395(1)	16(1)
O(2)	2196(1)	5214(1)	8303(1)	20(1)
O(3)	2318(1)	3573(1)	8083(1)	$\frac{18(1)}{18(1)}$
O(4)	4214(1)	5876(1)	7036(1)	24(1)
O(4)	849(1)	5718(1)	7692(1)	24(1) 24(1)
O(5)	-487(1)	5103(1)	8291(1)	27(1)
O(0)	863(1)	4293(1)	8809(1)	27(1) 24(1)
O(8)	2811(1)	$\frac{42}{3719(1)}$	8930(1)	24(1) 25(1)
O(0)	4654(1)	2010(1)	8622(1)	25(1) 27(1)
O(3)	4054(1)	2919(1)	7810(1)	$\frac{27(1)}{22(1)}$
O(10)	4270(1) 2226(1)	2068(1)	7010(1)	$\frac{22(1)}{10(1)}$
O(11) O(12)	5550(1) 4582(1)	2908(1)	/265(1) 6520(1)	19(1)
O(12)	4385(1)	2794(1)	0330(1)	21(1)
O(15)	4130(1)	4528(1)	05//(1)	23(1)
0(14)	2572(1)	0001(1)	001/(1)	22(1)
0(15)	2322(1)	/6/4(1)	6854(1)	25(1)
O(16)	2331(1)	6620(1)	7622(1)	21(1)
C(1)	-1117(1)	6512(1)	7645(1)	24(1)
C(2)	-903(2)	7154(2)	/308(1)	42(1)
C(3)	-1608(2)	7863(2)	7167(1)	49(1)
C(4)	-2548(2)	7939(1)	7360(1)	37(1)
C(5)	-2781(1)	7317(1)	7696(1)	36(1)
C(6)	-2075(1)	6610(1)	7836(1)	30(1)
C(7)	-226(1)	4698(1)	7412(1)	25(1)
C(8)	-945(2)	4234(1)	7514(1)	33(1)
C(9)	-1031(2)	3672(2)	7230(1)	44(1)
C(10)	-402(2)	3560(2)	6837(1)	48(1)
C(11)	311(2)	4010(2)	6727(1)	42(1)
C(12)	397(2)	4575(1)	7011(1)	32(1)
C(13)	-675(1)	5707(1)	9124(1)	25(1)
C(14)	-943(2)	6569(1)	8930(1)	35(1)
C(15)	-1220(2)	7271(2)	9184(1)	44(1)
C(16)	-1234(2)	7124(2)	9639(1)	43(1)
C(17)	-989(2)	6275(2)	9842(1)	40(1)
C(18)	-720(1)	5578(2)	9587(1)	33(1)
C(19)	-914(1)	3888(1)	9029(1)	27(1)

C(20)	-507(2)	3164(1)	9309(1)	33(1)
C(21)	-963(2)	2493(2)	9478(1)	44(1)
C(22)	1950(2)	2544(2)	0272(1)	54(1)
C(22)	-1830(2)	2344(2)	9373(1)	54(1)
C(23)	-22/1(2)	3251(2)	9103(1)	58(1)
C(24)	-1811(2)	3918(2)	8929(1)	44(1)
C(25)	4132(1)	3059(1)	9540(1)	27(1)
C(26)	5065(2)	2678(2)	9622(1)	38(1)
C(20)	5005(2)	2078(2)	9022(1)	50(1)
C(27)	5349(2)	2743(2)	10018(1)	51(1)
C(28)	4698(2)	3179(2)	10342(1)	55(1)
C(29)	3775(2)	3561(2)	10272(1)	50(1)
C(20)	3406(2)	250((2)	0972(1)	26(1)
C(30)	3496(2)	3506(2)	9873(1)	30(1)
C(31)	3436(1)	1858(1)	9070(1)	26(1)
C(32)	2510(2)	1771(1)	9242(1)	32(1)
C(33)	2278(2)	967(2)	9299(1)	42(1)
C(33)	2270(2)	226(2)	0105(1)	+2(1)
C(34)	2972(2)	226(2)	9185(1)	40(1)
C(35)	3895(2)	290(2)	9015(1)	45(1)
C(36)	4122(2)	1096(1)	8962(1)	34(1)
C(37)	5207(1)	4507(1)	8306(1)	25(1)
C(28)	512((2)	5254(2)	800(1)	20(1)
C(38)	5136(2)	5254(2)	8006(1)	39(1)
C(39)	5343(2)	6008(2)	8100(1)	49(1)
C(40)	5636(2)	6014(2)	8500(1)	43(1)
C(41)	5703(2)	5280(2)	8807(1)	46(1)
C(41)	5/03(2)	5280(2)	8807(1)	40(1)
C(42)	5482(2)	4540(2)	8/11(1)	41(1)
C(43)	6168(1)	2805(1)	7902(1)	23(1)
C(44)	6876(1)	2312(1)	8149(1)	33(1)
C(45)	7733(1)	1817(1)	70/3(1)	41(1)
C(43)	7755(1)	1817(1)	7943(1)	41(1)
C(46)	7894(2)	1812(1)	7488(1)	42(1)
C(47)	7215(1)	2290(1)	7235(1)	36(1)
C(48)	6359(1)	2780(1)	7441(1)	27(1)
C(40)	4074(1)	1467(1)	7224(1)	27(1) 20(1)
C(49)	4974(1)	1407(1)	7224(1)	20(1)
C(50)	4953(1)	1283(1)	/683(1)	24(1)
C(51)	5685(1)	657(1)	7865(1)	30(1)
C(52)	6443(1)	200(1)	7589(1)	31(1)
C(52)	6478(1)	265(1)	7121(1)	20(1)
C(55)	0478(1)	303(1)	/131(1)	30(1)
C(54)	5752(1)	993(1)	6952(1)	25(1)
C(55)	3283(1)	1672(1)	6752(1)	20(1)
C(56)	3416(1)	763(1)	6853(1)	28(1)
C(57)	2850(2)	208(1)	6706(1)	29(1)
C(37)	2839(2)	508(1)	0700(1)	30(1)
C(58)	2157(2)	754(2)	6456(1)	39(1)
C(59)	2006(2)	1650(2)	6355(1)	37(1)
C(60)	2559(1)	2104(1)	6500(1)	28(1)
C(61)	2404(1)	2975(1)	5000(1)	21(1)
C(01)	3494(1)	5875(1)	3900(1)	21(1)
C(62)	2647(1)	4534(1)	5916(1)	28(1)
C(63)	1968(1)	4554(2)	5653(1)	36(1)
C(64)	2122(2)	3921(2)	5370(1)	38(1)
C(65)	2122(2)	2267(2)	5245(1)	25(1)
C(03)	2938(2)	5267(2)	3343(1)	55(1)
C(66)	3637(1)	3243(1)	5608(1)	27(1)
C(67)	5568(1)	3807(1)	5876(1)	20(1)
C(68)	5584(1)	4522(1)	5547(1)	24(1)
C(60)	6402(1)	4572(1)	5242(1)	20(1)
C(09)	6405(1)	4373(1)	5245(1)	50(1)
C(70)	/221(1)	3906(2)	5266(1)	34(1)
C(71)	7226(1)	3197(1)	5587(1)	36(1)
C(72)	6405(1)	3148(1)	5889(1)	28(1)
$\dot{C(73)}$	3201(1)	7374(1)	6006(1)	23(1)
0(73)	3291(1)	(1)	5(51(1)	23(1)
C(74)	3644(1)	6867(1)	5651(1)	29(1)
C(75)	4359(2)	7058(1)	5314(1)	36(1)
C(76)	4737(2)	7760(1)	5329(1)	36(1)
C(77)	4404(2)	8272(1)	5677(1)	35(1)
0(70)	2696(2)	02/2(1)	5077(1)	20(1)
C(78)	3080(2)	0083(1)	0008(1)	30(1)
C(79)	1165(1)	7448(2)	6259(1)	37(1)
C(80)	645(2)	6846(3)	6232(1)	71(1)
C(81)	-238(3)	7144(5)	6083(1)	140(2)
C(92)	500(2)	2000(F)	5051(1)	177(4)
C(02)	-590(3)	6009(5)	3931(1)	1//(4)
C(83)	-96(3)	8598(4)	5979(1)	138(3)
C(84)	780(2)	8319(2)	6132(1)	79(1)
C(85)	3147(1)	8094(1)	7513(1)	23(1)
C(96)	4007(1)	2017(1)	7021(1)	20(1)
	402/(1)	001/(1)	/231(1)	30(1)
C(87)	4736(1)	8371(1)	7318(1)	39(1)
C(88)	4593(2)	8803(2)	7689(1)	44(1)
C(89)	3734(2)	8890(2)	7972(1)	43(1)
C(00)	2020(1)	05/0(2)	7002(1)	+J(1) 21(1)
C(90)	3020(1)	8541(1)	/883(1)	31(1)
C(91)	998(1)	8315(1)	7590(1)	24(1)

C(92)	319(2)	8029(2)	7906(1)	62(1)
C(93)	-573(2)	8582(2)	8027(1)	80(1)
C(94)	-797(2)	9421(2)	7835(1)	53(1)
C(95)	-139(2)	9713(2)	7522(2)	85(1)
C(96)	746(2)	9165(2)	7400(1)	73(1)
N(1)	1564(1)	2314(1)	8024(1)	23(1)
C(97)	749(2)	2421(1)	8396(1)	33(1)
C(98)	188(2)	1737(2)	8391(1)	59(1)
C(99)	2216(2)	1431(1)	8086(1)	33(1)
C(100)	1622(2)	747(2)	8122(1)	50(1)
C(101)	1186(1)	2419(1)	7597(1)	29(1)
C(102)	682(2)	1678(2)	7614(1)	44(1)
N(2)	645(1)	1157(1)	8048(1)	42(1)
N(3)	5984(1)	5796(1)	6678(1)	26(1)
C(103)	6454(2)	4852(1)	6664(1)	40(1)
C(104)	7413(2)	4783(2)	6357(1)	46(1)
C(105)	5912(2)	6231(2)	6218(1)	46(1)
C(106)	6935(2)	6191(2)	5973(1)	50(1)
C(107)	6549(2)	6201(2)	6902(1)	41(1)
C(108)	7577(2)	6028(2)	6649(1)	47(1)
N(4)	7641(1)	5637(1)	6240(1)	44(1)
N(5)	2334(1)	6147(1)	8868(1)	34(1)
C(109)	2658(6)	5635(3)	9259(1)	187(4)
C(110)	2730(4)	6237(2)	9598(1)	119(2)
C(111)	1410(2)	6676(4)	8998(2)	192(4)
C(112)	1436(3)	7260(4)	9348(2)	182(3)
C(113)	2968(3)	6693(3)	8689(1)	102(2)
C(114)	2957(3)	7322(3)	9031(1)	86(1)
N(6)	2392(2)	7127(2)	9438(1)	58(1)
C(115)	6545(2)	9357(2)	5255(1)	49(1)
C(116)	6926(2)	8722(2)	5578(1)	56(1)
C(117)	6603(2)	8791(2)	6026(1)	60(1)
C(118)	5880(2)	9494(2)	6157(1)	56(1)
C(119)	5492(2)	10128(2)	5842(1)	54(1)
C(120)	5824(2)	10054(2)	5397(1)	54(1)
C(121)	6899(2)	9288(2)	4/6/(1)	70(1)
C(122)	8625(2)	974(2)	5467(1)	62(1)
C(123)	8195(2)	845(2)	5907(1)	05(1)
C(124)	8019(3)	926(2)	6253(1)	81(1) 100(2)
C(125)	9467(3)	1134(3) 1257(4)	57/0(1)	109(2)
C(120)	9921(3)	1237(4) 1170(2)	5204(1)	80(1)
C(127)	9500(2)	1179(3) 021(2)	5080(2)	$\frac{30(1)}{101(1)}$
C(120)	3131(3) 3401(2)	921(3)	0.009(2)	52(1)
C(129)	3737(2)	1070(2)	529(1)	52(1)
C(130)	3748(2)	1070(2)	$\frac{329(1)}{245(1)}$	62(1)
C(131)	3/30(2)	-262(2)	243(1) 308(1)	70(1)
C(132)	3102(3)	-422(2)	836(1)	73(1)
C(135)	3084(2)	160(2)	1129(1)	57(1)
C(135)	3406(3)	1537(2)	1301(1)	79(1)
C(135)	10160(4)	250(3)	400(2)	113(2)
C(137)	9248(3)	480(3)	279(2)	104(2)
C(138)	9085(3)	231(3)	-118(2)	112(2)
C(139)	10349(9)	486(6)	856(4)	130(4)
C(140)	352(4)	4244(5)	4648(2)	67(2)
C(141)	217(2)	4948(4)	4764(1)	106(2)
C(142)	447(3)	5691(5)	4483(2)	139(3)
C(143)	71(4)	3589(6)	4937(2)	77(2)
C(144)	272(5)	6310(8)	4638(3)	112(4)

Tabelle 60: Bindungslängen [Å] und Winkel [°] für sh2824.

Al(1)-O(5)	1.719(1)	C(7)-C(8)	1.403(3)
Al(1)-O(16)	1.738(1)	C(8)-C(9)	1.385(3)
Al(1)-O(2)	1.757(1)	C(9)-C(10)	1.383(4)
Al(1)-O(1)	1.801(1)	C(10)-C(11)	1.381(4)
Al(2)-O(7)	1.736(1)	C(11)-C(12)	1.390(3)
Al(2)-O(8)	1.743(1)	C(13)-C(14)	1.393(3)
Al(2)-O(3)	1.750(1)	C(13)-C(18)	1.399(3)
--------------------	----------	-----------------	----------
A1(2) - O(2)	1.767(1)	C(14) - C(15)	1 393(3)
$A_1(2) O(2)$	1.707(1)	C(14) C(15)	1.373(3)
AI(3)-O(10)	1.725(1)	C(15)-C(16)	1.379(3)
Al(3)-O(11)	1.733(1)	C(16)-C(17)	1.382(3)
A1(3) - O(3)	1 747(1)	C(17) - C(18)	1 388(3)
$A_1(2) O(1)$	1.002(1)	C(10) C(24)	1.202(2)
AI(3)-O(1)	1.802(1)	C(19)-C(24)	1.392(3)
Al(4)-O(13)	1.718(1)	C(19)-C(20)	1.396(3)
$A_1(4) O(14)$	1 733(1)	C(20) $C(21)$	1 388(3)
AI(4)-O(14)	1.755(1)	C(20)- $C(21)$	1.388(3)
AI(4)-O(4)	1.767(1)	C(21)-C(22)	1.377(4)
Al(4)-O(1)	1.780(1)	C(22)-C(23)	1.367(4)
$S_{1}(1) O(5)$	1 500(1)	C(22) C(24)	1 200(2)
31(1)-0(3)	1.590(1)	C(23)-C(24)	1.390(3)
Si(1)-O(6)	1.631(1)	C(25)-C(26)	1.395(3)
Si(1)-C(7)	1.865(2)	C(25)-C(30)	1.396(3)
$S_{1}(1) C(1)$	1.960(2)	C(26) C(27)	1 207(2)
SI(1)-C(1)	1.809(2)	C(20)-C(27)	1.387(3)
Si(2)-O(7)	1.597(1)	C(27)-C(28)	1.379(4)
Si(2)-O(6)	1.631(1)	C(28)-C(29)	1.373(4)
$S_{1}(2) = C(10)$	1.970(2)	C(20) C(20)	1 296(2)
SI(2)-C(19)	1.870(2)	C(29)-C(30)	1.380(3)
Si(2)-C(13)	1.875(2)	C(31)-C(36)	1.398(3)
Si(3)-O(8)	1 598(1)	C(31)-C(32)	1 398(3)
Si(2) O(0)	1.626(1)	C(31) C(32)	1.294(2)
S1(3)-O(9)	1.030(1)	C(32)-C(33)	1.384(3)
Si(3)-C(31)	1.866(2)	C(33)-C(34)	1.382(4)
Si(3)-C(25)	1 868(2)	C(34)-C(35)	1.381(4)
$S_{1}(3) = C(23)$	1.500(1)		1.204(2)
S1(4)-O(10)	1.588(1)	C(33)-C(36)	1.384(3)
Si(4)-O(9)	1.632(1)	C(37)-C(38)	1.380(3)
Si(4)-C(43)	1.866(2)	C(37)-C(42)	1.394(3)
	1.000(2)	C(37) C(42)	1.305(3)
$S_1(4) - C(3/)$	1.8/4(2)	C(38)-C(39)	1.395(3)
Si(5)-O(11)	1.600(1)	C(39)-C(40)	1.378(3)
Si(5)-O(12)	1 635(1)	C(40) = C(41)	1 376(4)
51(5)-0(12)	1.055(1)	C(40)-C(41)	1.370(4)
S1(5)-C(49)	1.864(2)	C(41)-C(42)	1.384(3)
Si(5)-C(55)	1.880(2)	C(43)-C(48)	1.397(3)
$S_{1}(6) - O(13)$	1 597(1)	C(43)- $C(44)$	1 308(3)
51(0)-0(15)	1.577(1)	C(+3)-C(++)	1.376(3)
S1(6)-O(12)	1.631(1)	C(44)-C(45)	1.393(3)
Si(6)-C(61)	1.861(2)	C(45)-C(46)	1.377(4)
Si(6) C(67)	1 867(2)	C(46) $C(47)$	1 373(3)
31(0)-C(07)	1.607(2)	C(40) - C(47)	1.373(3)
S1(7)-O(14)	1.600(1)	C(47)-C(48)	1.389(3)
Si(7)-O(15)	1.636(1)	C(49)-C(50)	1.394(3)
$S_{1}(7) C(79)$	1 850(2)	C(49) C(54)	1 401(3)
SI(7)-C(79)	1.039(2)	C(49)-C(34)	1.401(3)
$S_1(7)-C(73)$	1.865(2)	C(50)-C(51)	1.394(3)
Si(8)-O(16)	1.601(1)	C(51)-C(52)	1.378(3)
$S_{1}(0) O(15)$	1 629(1)	C(52) $C(53)$	1.384(3)
51(8)-0(15)	1.029(1)	C(32)-C(33)	1.364(3)
S1(8)-C(91)	1.859(2)	C(53)-C(54)	1.387(3)
Si(8)-C(85)	1.878(2)	C(55)-C(56)	1.399(3)
C(1) $C(2)$	1 200(2)	C(55) C(60)	1 200(2)
C(1)-C(2)	1.590(5)	C(33)-C(60)	1.599(5)
C(1)-C(6)	1.396(2)	C(56)-C(57)	1.395(3)
C(2)-C(3)	1.389(3)	C(57)- $C(58)$	1.377(3)
C(2) C(4)	1.279(2)	C(59) $C(50)$	1 279(2)
C(3)-C(4)	1.578(5)	C(38) - C(39)	1.578(5)
C(4)-C(5)	1.374(3)	C(59)-C(60)	1.386(3)
C(5)-C(6)	1.388(3)	C(61)-C(62)	1.399(3)
C(7) C(12)	1 200(2)	C(61) C(62)	1 401(2)
C(1)-C(12)	1.399(3)	C(01)-C(00)	1.401(5)
C(62)-C(63)	1.388(3)	C(111)-C(112)	1.539(5)
C(63)-C(64)	1.379(3)	C(112)-N(6)	1.435(5)
C(64) - C(65)	1 383(3)	C(113)-C(114)	1 557(4)
C(04)-C(05)	1.565(5)	C(113)-C(114)	1.557(4)
C(65)-C(66)	1.385(3)	C(114)-N(6)	1.409(4)
C(67)-C(72)	1.392(2)	C(115)-C(120)	1.380(4)
C(67) C(68)	1 402(3)	C(115) C(116)	1 385(4)
C(07)- $C(08)$	1.402(3)	C(113)-C(110)	1.363(4)
C(68)-C(69)	1.390(3)	C(115)-C(121)	1.506(4)
C(69)-C(70)	1.382(3)	C(116)-C(117)	1.382(4)
C(70) C(71)	1 279(2)	C(117) C(118)	1.276(4)
C(70)- $C(71)$	1.578(5)		1.370(4)
C(71)-C(72)	1.391(3)	C(118)-C(119)	1.370(4)
C(73)-C(78)	1.397(3)	C(119)-C(120)	1.378(4)
C(73) - C(74)	1 300(3)	C(122) - C(127)	1 377(1)
	1.377(3)	C(122) - C(127)	1.377(4)
C(/4)-C(/5)	1.390(3)	C(122)-C(123)	1.392(4)
C(75)-C(76)	1.380(3)	C(122)-C(128)	1.486(5)
C(76) C(77)	1 383(3)	C(123) C(124)	1 368(5)
C(10)-C(11)	1.303(3)	U(123)-U(124)	1.308(3)
C(77)-C(78)	1.383(3)	C(124)-C(125)	1.367(5)
C(79)-C(84)	1.376(4)	C(125)-C(126)	1.364(5)
C(79) $C(80)$	1 302(4)	C(126) C(127)	1 365(5)
	1.372(4)		1.303(3)
C(80)-C(81)	1.395(5)	C(129)-C(134)	1.378(4)
C(81)-C(82)	1.361(9)	C(129)-C(130)	1.404(4)
C(92) C(92)	1 247(0)	C(120) C(125)	1 404(4)
C(02)-C(03)	1.347(9)	U(129)-U(133)	1.494(4)
C(83)-C(84)	1.390(5)	C(130)-C(131)	1.365(4)
C(85)-C(90)	1.392(3)	C(131)-C(132)	1.367(4)
- (, -(/-)		-() -()	

C(85)-C(86)	1.404(3)	C(132)-C(133)	1.356(4)
C(86)-C(87)	1.389(3)	C(133)-C(134)	1.381(4)
C(87)-C(88)	1.378(3)	C(136)-C(137)	1.397(6)
C(88)-C(89)	1.380(3)	C(136)-C(138)#1	1.402(6)
C(89)-C(90) C(91) $C(96)$	1.393(3)	C(136)-C(138)#1 C(136)-C(139)	1.402(6)
C(91)-C(92)	1.370(3)	C(130)-C(138)	1.00(1) 1 422(7)
C(92)-C(93)	1.392(3)	C(138)-C(136)#1	1.402(6)
C(93)-C(94)	1.354(4)	C(140)-C(141)	1.182(7)
C(94)-C(95)	1.351(4)	C(140)-C(143)	1.36(1)
C(95)-C(96)	1.383(3)	C(141)-C(142)	1.429(7)
N(1)-C(99)	1.484(2)	C(141)-C(141)#2	1.489(8)
N(1)-C(101) N(1)-C(07)	1.48/(2) 1 489(2)	C(142)- $C(144)$	1.11(1) 1.33(1)
C(97)- $C(98)$	1.469(2)	C(143)-C(143)#2	1.33(1)
C(98)-N(2)	1.460(3)	O(5)-Al(1)-O(16)	111.88(6)
C(99)-C(100)	1.542(3)	O(5)-Al(1)-O(2)	110.56(6)
C(100)-N(2)	1.454(3)	O(16)-Al(1)-O(2)	108.55(6)
C(101)-C(102)	1.538(3)	O(5)-Al(1)-O(1)	110.84(6)
C(102)-N(2)	1.458(3)	O(16)-AI(1)-O(1)	107.53(6)
N(3)-C(103) N(3)-C(105)	1.481(3)	O(2)-AI(1)- $O(1)O(7)$ A1(2) $O(8)$	107.31(6) 100.30(7)
N(3)-C(103) N(3)-C(107)	1.464(5)	O(7)-Al(2)-O(8) O(7)-Al(2)-O(3)	109.39(7) 114.47(6)
C(103)-C(104)	1.532(3)	O(8)-Al(2)-O(3)	111.58(6)
C(104)-N(4)	1.457(3)	O(7)-Al(2)-O(2)	108.22(6)
C(105)-C(106)	1.540(3)	O(8)-Al(2)-O(2)	110.11(6)
C(106)-N(4)	1.463(3)	O(3)-Al(2)-O(2)	102.80(6)
C(107)-C(108)	1.540(3)	O(10)-Al(3)-O(11)	111.28(6)
C(108)-N(4) N(5) $C(112)$	1.465(3)	O(10)-AI(3)-O(3)	112.70(6)
N(5)-C(115) N(5)-C(111)	1.410(3)	O(11)-AI(3)-O(3) O(10)-AI(3)-O(1)	107.13(6)
N(5)-C(109)	1.429(4)	O(11)-Al(3)-O(1)	114.21(6)
C(109)-C(110)	1.558(4)	O(3)-Al(3)-O(1)	106.73(6)
C(110)-N(6)	1.412(4)	O(13)-Al(4)-O(14)	112.89(6)
O(13)-Al(4)-O(4)	105.82(6)	Al(3)-O(3)-Al(2)	121.69(7)
O(14)-Al(4)-O(4)	109.97(7)	Si(1)-O(5)-Al(1)	158.23(9)
O(13)-AI(4)-O(1) O(14)-AI(4)-O(1)	111.98(6)	$S_1(2) = O(6) = S_1(1)$ $S_1(2) = O(7) = A_1(2)$	150.27(9) 147.42(9)
O(4)-Al(4)-O(1)	108 64(6)	Si(2)-O(7)-Ai(2) Si(3)-O(8)-Al(2)	147.42(9) 142.20(9)
O(5)-Si(1)-O(6)	113.94(7)	Si(4)-O(9)-Si(3)	140.52(9)
O(5)-Si(1)-C(7)	111.13(8)	Si(4)-O(10)-Al(3)	154.59(9)
O(6)-Si(1)-C(7)	106.96(8)	Si(5)-O(11)-Al(3)	149.18(8)
O(5)-Si(1)-C(1)	110.74(8)	Si(6)-O(12)-Si(5)	137.21(8)
O(6)-Si(1)-C(1) C(7) Si(1) $C(1)$	107.97(8)	$S_1(6)-O(13)-AI(4)$ $S_2(7)-O(14)-AI(4)$	159.42(9)
O(7)-Si(1)-C(1)	113.89(7)	Si(7)-O(14)-Ai(4) Si(8)-O(15)-Si(7)	135.54(8)
O(7)-Si(2)-C(19)	106.71(8)	Si(8) - O(16) - Al(1)	153.26(8)
O(6)-Si(2)-C(19)	107.81(8)	C(2)-C(1)-C(6)	117.1(2)
O(7)-Si(2)-C(13)	111.70(8)	C(2)-C(1)-Si(1)	120.3(1)
O(6)-Si(2)-C(13)	106.70(8)	C(6)-C(1)-Si(1)	122.3(2)
C(19)-Si(2)-C(13)	109.95(8)	C(3)-C(2)-C(1)	121.6(2)
O(8)-Si(3)-O(9) O(8)-Si(2)-O(21)	115.02(7)	C(4)-C(3)-C(2)	120.0(2) 110.7(2)
O(9)-Si(3)-C(31)	106 32(8)	C(4)-C(5)-C(6)	119.7(2) 120.2(2)
O(8)-Si(3)-C(25)	109.70(8)	C(5)-C(6)-C(1)	120.2(2) 121.4(2)
O(9)-Si(3)-C(25)	106.60(8)	C(12)-C(7)-C(8)	117.4(2)
C(31)-Si(3)-C(25)	108.70(9)	C(12)-C(7)-Si(1)	122.1(2)
O(10)-Si(4)-O(9)	113.85(7)	C(8)-C(7)-Si(1)	120.5(2)
O(10)-S1(4)-C(43) O(0) Si(4) C(42)	108.59(8)	C(9)-C(8)-C(7)	121.3(2)
O(9)-SI(4)-C(45) O(10)-Si(4)-C(37)	107.40(8)	C(10)-C(9)-C(8) C(11)-C(10)-C(9)	120.1(2) 119.9(2)
O(9)-Si(4)-C(37)	107.27(8)	C(10)-C(11)-C(12)	120.0(2)
C(43)-Si(4)-C(37)	108.78(8)	C(11)-C(12)-C(7)	121.3(2)
O(11)-Si(5)-O(12)	111.39(7)	C(14)-C(13)-C(18)	117.0(2)
O(11)-Si(5)-C(49)	113.98(7)	C(14)-C(13)-Si(2)	122.9(2)
O(12)-Si(5)-C(49)	105.26(7)	C(18)-C(13)-Si(2)	120.1(2)
U(11)-S1(5)-C(55) O(12)-S1(5)-C(55)	109.36(7)	C(13)-C(14)-C(15) C(16)-C(15)-C(14)	121.3(2)
O(12)-SI(3)-C(33) C(49)-Si(5)-C(55)	108.97(7)	C(10)-C(13)-C(14) C(15)-C(16)-C(17)	120.3(2) 110.6(2)
O(13)-Si(6)-O(12)	112,30(7)	C(16)-C(17)-C(18)	119.7(2)
O(13)-Si(6)-C(61)	111.77(8)	C(17)-C(18)-C(13)	122.0(2)
O(12)-Si(6)-C(61)	107.34(7)	C(24)-C(19)-C(20)	117.1(2)

<u>Anhang</u>

O(13)-Si(6)-C(67)	111.32(7)	C(24)-C(19)-Si(2)	123.0(2)
O(12)-Si(6)-C(67)	106.43(7)	C(20)-C(19)-Si(2)	119.9(2)
C(61)-Si(6)-C(67)	107.37(8)	C(21)- $C(20)$ - $C(19)$	121 9(2)
O(14)-Si(7)-O(15)	112 42(7)	C(22)-C(21)-C(20)	119 5(2)
O(14)-Si(7)-C(79)	109.83(9)	C(22) = C(21) = C(20) C(23) = C(22) = C(21)	119.8(2)
O(15)-Si(7)-C(79)	108.36(9)	C(22) = C(24)	120.8(2)
O(14)-Si(7)-C(73)	11134(7)	C(22) = C(24) = C(19)	120.0(2) 120.8(2)
O(15) S(7) C(73)	104.87(8)	C(25) - C(25) - C(10)	120.0(2) 117.5(2)
O(13)-SI(7)-C(73)	104.87(8)	C(26) - C(25) - C(30)	117.3(2) 121.7(2)
O(16) S(0) O(15)	109.89(9)	C(20)-C(25)-SI(3)	121.7(2) 120.8(2)
O(16)-SI(8)- $O(15)$	111.79(7)	C(30)-C(25)-S1(3)	120.8(2)
O(16)-Si(8)- $C(91)$	112.68(8)	C(27)-C(26)-C(25)	121.3(2)
O(15)-Si(8)-C(91)	10/.9/(8)	C(28)-C(27)-C(26)	119.7(2)
O(16)-S1(8)-C(85)	109.70(7)	C(29)-C(28)-C(27)	120.5(2)
O(15)-Si(8)-C(85)	105.10(8)	C(28)-C(29)-C(30)	119.7(2)
C(91)-Si(8)-C(85)	109.30(8)	C(29)-C(30)-C(25)	121.3(2)
Al(4)-O(1)-Al(1)	117.11(6)	C(36)-C(31)-C(32)	117.1(2)
Al(4)-O(1)-Al(3)	123.73(7)	C(36)-C(31)-Si(3)	122.5(2)
Al(1)-O(1)-Al(3)	116.66(6)	C(32)-C(31)-Si(3)	120.3(2)
Al(1)-O(2)-Al(2)	121.78(7)	C(33)-C(32)-C(31)	121.6(2)
C(34)-C(33)-C(32)	119.8(2)	C(75)-C(76)-C(77)	120.3(2)
C(35)-C(34)-C(33)	120.0(2)	C(78)-C(77)-C(76)	119.8(2)
C(34)-C(35)-C(36)	119.8(2)	C(77)-C(78)-C(73)	121.6(2)
C(35)-C(36)-C(31)	121.6(2)	C(84)-C(79)-C(80)	117.8(3)
C(38)-C(37)-C(42)	117.1(2)	C(84)-C(79)-Si(7)	120.9(2)
C(38)-C(37)-Si(4)	121.0(2)	C(80)-C(79)-Si(7)	120.9(2) 121.4(2)
C(42)-C(37)-Si(4)	121.8(2)	C(79)-C(80)-C(81)	1194(4)
C(37)- $C(38)$ - $C(39)$	121.6(2)	C(82)-C(81)-C(80)	121 3(5)
C(40) - C(30) - C(38)	119.9(2)	C(83)-C(82)-C(81)	121.3(3) 110 7(3)
C(41) C(40) C(30)	119.9(2)	C(82) - C(82) - C(81)	119.7(5)
C(41) - C(40) - C(39)	119.0(2)	C(82)- $C(83)$ - $C(84)$	120.0(3) 121.7(4)
C(40)- $C(41)$ - $C(42)$	119.9(2)	C(79)-C(84)-C(85)	121.7(4) 116.0(2)
C(41)-C(42)-C(37)	121.8(2)	C(90)- $C(85)$ - $C(86)$	116.9(2)
C(48)- $C(43)$ - $C(44)$	117.2(2)	C(90)- $C(85)$ -S1(8)	121.9(1)
C(48)-C(43)-Si(4)	119.7(1)	C(86)-C(85)-S1(8)	121.3(2)
C(44)-C(43)-Si(4)	123.2(2)	C(87)-C(86)-C(85)	121.3(2)
C(45)-C(44)-C(43)	121.2(2)	C(88)-C(87)-C(86)	120.5(2)
C(46)-C(45)-C(44)	119.9(2)	C(87)-C(88)-C(89)	119.4(2)
C(47)-C(46)-C(45)	120.5(2)	C(88)-C(89)-C(90)	120.1(2)
C(46)-C(47)-C(48)	119.6(2)	C(85)-C(90)-C(89)	121.8(2)
C(47)-C(48)-C(43)	121.8(2)	C(96)-C(91)-C(92)	116.4(2)
C(50)-C(49)-C(54)	117.5(2)	C(96)-C(91)-Si(8)	119.3(2)
C(50)-C(49)-Si(5)	123.7(1)	C(92)-C(91)-Si(8)	124.3(2)
C(54)-C(49)-Si(5)	118.8(1)	C(91)-C(92)-C(93)	121.4(2)
C(51)-C(50)-C(49)	121.2(2)	C(94)-C(93)-C(92)	120.8(3)
C(52)-C(51)-C(50)	120.0(2)	C(95)-C(94)-C(93)	118.7(2)
C(51)-C(52)-C(53)	120.0(2)	C(94)-C(95)-C(96)	120.6(3)
C(52)-C(53)-C(54)	119.8(2)	C(91)-C(96)-C(95)	122.1(3)
C(53)-C(54)-C(49)	121.4(2)	C(99)-N(1)-C(101)	109.4(2)
C(56)-C(55)-C(60)	116.8(2)	C(99)-N(1)-C(97)	1102(2)
C(56)- $C(55)$ - $Si(5)$	121 7(1)	C(101) - N(1) - C(97)	109.0(2)
C(60)- $C(55)$ -Si(5)	121.5(1)	N(1)-C(97)-C(98)	109.0(2) 108.5(2)
C(57)- $C(56)$ - $C(55)$	121.5(1)	N(2)-C(98)-C(97)	1114(2)
C(58) - C(57) - C(56)	120.0(2)	N(1)-C(99)-C(100)	107.7(2)
C(57) - C(58) - C(59)	119.6(2)	N(2)-C(100)-C(99)	107.7(2) 111.8(2)
C(58) C(59) C(60)	120 5(2)	N(2) - C(100) - C(102)	107.0(2)
C(50) - C(50) - C(50)	120.5(2)	N(1) - C(101) - C(102) N(2) - C(102) - C(101)	107.9(2) 111.7(2)
C(59)- $C(00)$ - $C(55)$	121.3(2)	N(2)-C(102)-C(101) C(100) N(2) C(102)	111.7(2) 107.0(2)
C(62) - C(61) - C(60)	117.9(2)	C(100) - N(2) - C(102) C(100) - N(2) - C(08)	107.9(2)
C(62)- $C(61)$ - $Si(6)$	125.8(1)	C(100) - N(2) - C(98)	108.7(2)
C(00)- $C(01)$ - $S1(0)$	118.3(1)	C(102) - N(2) - C(105)	109.0(2)
C(63)-C(62)-C(61)	120.8(2)	C(103)-N(3)- $C(105)$	109.7(2)
C(64)-C(63)-C(62)	120.3(2)	C(103)-N(3)-C(107)	109.0(2)
C(63)-C(64)-C(65)	120.0(2)	C(105)-N(3)-C(107)	110.8(2)
C(64)-C(65)-C(66)	120.0(2)	N(3)-C(103)-C(104)	107.7(2)
C(65)-C(66)-C(61)	121.1(2)	N(4)-C(104)-C(103)	111.2(2)
C(72)-C(67)-C(68)	117.5(2)	N(3)-C(105)-C(106)	107.6(2)
C(72)-C(67)-Si(6)	123.9(1)	N(4)-C(106)-C(105)	111.0(2)
C(68)-C(67)-Si(6)	118.6(1)	N(3)-C(107)-C(108)	107.8(2)
C(69)-C(68)-C(67)	121.5(2)	N(4)-C(108)-C(107)	110.8(2)
C(70)-C(69)-C(68)	119.5(2)	C(104)-N(4)-C(106)	107.7(2)
C(71)-C(70)-C(69)	120.3(2)	C(104)-N(4)-C(108)	109.1(2)
C(70)-C(71)-C(72)	120.0(2)	C(106)-N(4)-C(108)	109.5(2)
C(71)-C(72)-C(67)	121.2(2)	C(113)-N(5)-C(111)	109.3(4)
C(78)-C(73)-C(74)	117.3(2)	C(113)-N(5)-C(109)	108.1(4)
	. /		

C(79) C(72) S(7)	122.2(1)	C(111) N(5) $C(100)$	107.6(4)
C(76)-C(73)-SI(7)	122.2(1) 120 5(1)	N(5) C(100) C(110)	107.0(4) 110.7(2)
C(74)-C(73)-SI(7)	120.3(1) 121.5(2)	N(5) - C(109) - C(110)	110.7(3) 110.0(2)
C(75)-C(74)-C(75)	121.3(2)	N(0)-C(110)-C(109)	110.0(3)
C(76)-C(75)-C(74)	119.6(2)	N(5)-C(111)-C(112)	110.7(3)
N(6)-C(112)-C(111)	110.7(3)		
N(5)-C(113)-C(114)	110.0(2)		
N(6)-C(114)-C(113)	110.9(2)		
C(114)-N(6)-C(110)	109.2(3)		
C(114)-N(6)-C(112)	106.9(4)		
C(110)-N(6)-C(112)	109.1(4)		
C(120)-C(115)-C(116)	117.4(3)		
C(120)-C(115)-C(121)	121.1(3)		
C(116)-C(115)-C(121)	121.4(3)		
C(117)-C(116)-C(115)	121.2(3)		
C(118)-C(117)-C(116)	119.9(3)		
C(119)-C(118)-C(117)	119.8(3)		
C(118)-C(119)-C(120)	119.7(3)		
C(119)-C(120)-C(115)	121.9(3)		
C(127)-C(122)-C(123)	117.3(3)		
C(127)-C(122)-C(128)	120.9(3)		
C(123)-C(122)-C(128)	121.7(3)		
C(124)-C(123)-C(122)	121.4(3)		
C(125)-C(124)-C(123)	119.9(3)		
C(126)- $C(125)$ - $C(124)$	119 4(4)		
C(125)-C(126)-C(127)	120.9(4)		
C(126)- $C(127)$ - $C(122)$	121.0(3)		
C(134)- $C(129)$ - $C(130)$	117.5(3)		
C(134)-C(129)-C(135)	121.6(3)		
C(130)- $C(129)$ - $C(135)$	120.9(3)		
C(131)-C(130)-C(129)	120.3(3)		
C(130)- $C(131)$ - $C(132)$	121.0(3)		
C(133)- $C(132)$ - $C(131)$	110 7(3)		
C(132)-C(132)-C(134)	120 3(3)		
C(132)- $C(133)$ - $C(134)$	120.3(3)		
C(127) - C(134) - C(135) C(127) - C(126) - C(128) + 1	121.2(5) 118 4(5)		
C(137)- $C(136)$ - $C(136)$ #1	110.4(5)		
C(137)- $C(130)$ - $C(139)$	121.7(6)		
C(138)#1- $C(130)$ - $C(139)$	119.9(7)		
C(136)-C(137)-C(138)	121.0(5)		
C(136)#1-C(138)-C(137)	120.6(5)		
C(141)-C(140)-C(143)	119.7(7)		
C(140)- $C(141)$ - $C(142)$	124.3(6)		
C(140)-C(141)-C(141)#2	117.1(7)		
C(142)-C(141)-C(141)#2	118.6(7)		
C(144)-C(142)-C(141)	116.1(7)		
C(144)#2-C(143)-C(140)	121.7(9)		
C(142)-C(144)-C(143)#2	127(1)		

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y,-z #2 -x,-y+1,-z+1

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Al(1)	15(1)	15(1)	18(1)	-3(1)	0(1)	-2(1)
Al(2)	17(1)	18(1)	15(1)	-3(1)	-1(1)	-3(1)
Al(3)	16(1)	15(1)	15(1)	-3(1)	-1(1)	-2(1)
Al(4)	19(1)	15(1)	16(1)	-2(1)	1(1)	-3(1)
Si(1)	16(1)	24(1)	21(1)	-2(1)	-1(1)	-4(1)
Si(2)	19(1)	25(1)	18(1)	-2(1)	2(1)	-6(1)
Si(3)	24(1)	26(1)	16(1)	-2(1)	-5(1)	-3(1)
Si(4)	18(1)	23(1)	19(1)	-3(1)	-4(1)	-2(1)
Si(5)	21(1)	14(1)	15(1)	-2(1)	-2(1)	-2(1)
Si(6)	18(1)	17(1)	15(1)	-2(1)	0(1)	-2(1)
Si(7)	22(1)	16(1)	19(1)	-1(1)	-3(1)	-1(1)
Si(8)	19(1)	14(1)	21(1)	-4(1)	-1(1)	-3(1)
O(1)	17(1)	13(1)	16(1)	-2(1)	0(1)	-3(1)

Tabelle 61: Anisotropische Auslenkungsaparameter (Å $^2x 10^3$) für sh2824. Der anisotropische Exponentfaktor des Auslenkungsparameter lautet:
 $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

O(2)	25(1)	18(1)	16(1)	-4(1)	-1(1)	-6(1)
0(2)	20(1)	10(1)	16(1)	2(1)	0(1)	C(1)
O(3)	20(1)	18(1)	10(1)	-3(1)	0(1)	-0(1)
O(4)	23(1)	22(1)	28(1)	-9(1)	3(1)	-8(1)
O(5)	16(1)	25(1)	30(1)	-2(1)	-2(1)	-4(1)
0(6)	24(1)	35(1)	21(1)	1(1)	2(1)	8(1)
0(0)	24(1)	33(1)	21(1)	-1(1)	-2(1)	-8(1)
O(7)	21(1)	27(1)	20(1)	-2(1)	3(1)	-5(1)
O(8)	26(1)	28(1)	19(1)	-3(1)	-6(1)	-3(1)
O(9)	26(1)	30(1)	21(1)	0(1)	-3(1)	-4(1)
0(10)	10(1)	25(1)	22(1)	2(1)	$\frac{3(1)}{4(1)}$	2(1)
0(10)	19(1)	23(1)	22(1)	-2(1)	-4(1)	-3(1)
O(11)	23(1)	16(1)	17(1)	-4(1)	0(1)	-4(1)
O(12)	23(1)	18(1)	18(1)	-2(1)	1(1)	-2(1)
0(13)	26(1)	20(1)	20(1)	-5(1)	3(1)	-3(1)
0(13)	20(1)	20(1)	20(1)	-5(1)	J(1)	-3(1)
O(14)	25(1)	18(1)	21(1)	-2(1)	-4(1)	-4(1)
O(15)	35(1)	17(1)	22(1)	-2(1)	-2(1)	-3(1)
0(16)	22(1)	16(1)	22(1)	-4(1)	-1(1)	-4(1)
C(10)	22(1) 20(1)	25(1)	22(1) 26(1)	4(1)	2(1)	2(1)
C(1)	20(1)	23(1)	20(1)	-4(1)	-3(1)	-2(1)
C(2)	26(1)	40(1)	48(1)	10(1)	4(1)	-3(1)
C(3)	44(1)	35(1)	55(2)	16(1)	-4(1)	-2(1)
$\mathbf{C}(4)$	33(1)	27(1)	49(1)	-8(1)	-16(1)	5(1)
	33(1)	27(1)	4)(1)	-0(1)	-10(1)	5(1)
C(5)	20(1)	38(1)	49(1)	-8(1)	-4(1)	-1(1)
C(6)	20(1)	32(1)	35(1)	-1(1)	-1(1)	-4(1)
$\mathbf{C}(7)$	25(1)	23(1)	26(1)	0(1)	-8(1)	-3(1)
C(8)	21(1)	22(1)	29(1)	0(1)	10(1)	10(1)
C(0)	51(1)	55(1)	30(1)	0(1)	-10(1)	-10(1)
C(9)	48(1)	33(1)	60(2)	-2(1)	-26(1)	-15(1)
C(10)	67(2)	35(1)	49(2)	-12(1)	-34(1)	-1(1)
C(11)	55(1)	40(1)	29(1)	-8(1)	-13(1)	2(1)
C(12)	26(1)	21(1)	25(1)	2(1)	5(1)	4(1)
C(12)	50(1)	51(1)	20(1)	-2(1)	-3(1)	-4(1)
C(13)	18(1)	29(1)	28(1)	-7(1)	0(1)	-5(1)
C(14)	37(1)	32(1)	33(1)	-4(1)	-3(1)	-4(1)
C(15)	48(1)	20(1)	50(2)	0(1)	5(1)	0(1)
C(15)	40(1)	29(1)	30(2)	-9(1)	-J(1)	0(1)
C(16)	42(1)	40(1)	48(1)	-22(1)	-1(1)	-3(1)
C(17)	42(1)	47(1)	31(1)	-16(1)	-2(1)	-6(1)
C(18)	34(1)	35(1)	27(1)	-6(1)	-3(1)	-4(1)
C(10)	26(1)	33(1)	22(1)	0(1)	7(1)	12(1)
C(19)	20(1)	35(1)	22(1)	-9(1)	/(1)	-12(1)
C(20)	40(1)	35(1)	25(1)	-4(1)	4(1)	-15(1)
C(21)	63(2)	36(1)	31(1)	-5(1)	11(1)	-23(1)
C(22)	60(2)	50(2)	57(2)	-11(1)	15(1)	-37(1)
C(23)	40(1)	66(2)	77(2)	-10(2)	0(1)	-32(1)
C(23)	$\frac{40(1)}{24(1)}$	49(1)	52(2)	4(1)	4(1)	10(1)
C(24)	54(1)	48(1)	35(2)	-4(1)	-4(1)	-19(1)
C(25)	30(1)	33(1)	21(1)	-2(1)	-7(1)	-9(1)
C(26)	34(1)	52(1)	27(1)	-10(1)	-9(1)	-2(1)
C(27)	39(1)	76(2)	40(1)	-13(1)	-19(1)	-3(1)
C(28)	56(2)	81(2)	36(1)	-20(1)	-21(1)	-13(1)
C(20)	50(2)	(1(2))	24(1)	-20(1)	-21(1)	-13(1)
C(29)	50(1)	68(2)	34(1)	-24(1)	-5(1)	-8(1)
C(30)	33(1)	44(1)	32(1)	-10(1)	-6(1)	-6(1)
C(31)	32(1)	29(1)	16(1)	0(1)	-7(1)	-5(1)
C(32)	36(1)	35(1)	22(1)	-2(1)	-3(1)	-8(1)
C(32)	30(1)	33(1)	22(1)	-2(1)	-3(1)	-8(1)
C(33)	49(1)	45(1)	33(1)	6(1)	-/(1)	-22(1)
C(34)	68(2)	33(1)	41(1)	5(1)	-16(1)	-22(1)
C(35)	60(2)	30(1)	44(1)	-6(1)	-14(1)	-3(1)
C(36)	37(1)	34(1)	29(1)	-5(1)	-5(1)	-4(1)
C(30)	20(1)	37(1)	$\frac{2}{2}(1)$	-3(1)	-5(1)	
C(37)	20(1)	27(1)	29(1)	-8(1)	-3(1)	-4(1)
C(38)	58(1)	39(1)	26(1)	-6(1)	-5(1)	-21(1)
C(39)	76(2)	38(1)	37(1)	-3(1)	2(1)	-28(1)
C(40)	$\frac{10(2)}{42(1)}$	46(1)	49(1)	22(1)	$\frac{2}{6}(1)$	24(1)
C(40)	43(1)	40(1)	40(1)	-22(1)	0(1)	-24(1)
C(41)	51(1)	47(2)	50(2)	-16(1)	-23(1)	-12(1)
C(42)	53(1)	34(1)	40(1)	-5(1)	-23(1)	-8(1)
C(43)	20(1)	20(1)	30(1)	-4(1)	-4(1)	-5(1)
$\mathbf{C}(44)$	20(1)	20(1)	42(1)	4(1)	_14(1)	_5(1)
C(44)	29(1)	29(1)	42(1)	-4(1)	-14(1)	-3(1)
C(45)	25(1)	26(1)	73(2)	-/(1)	-20(1)	0(1)
C(46)	23(1)	29(1)	72(2)	-17(1)	4(1)	-4(1)
C(47)	30(1)	34(1)	44(1)	-14(1)	8(1)	-10(1)
C(48)	24(1)	25(1)	32(1)	-6(1)	-1(1)	-6(1)
C(40)	24(1)	23(1)	32(1)	-0(1)	= 1(1)	5(1)
C(49)	24(1)	1/(1)	22(1)	-3(1)	-5(1)	-5(1)
C(50)	28(1)	21(1)	23(1)	-3(1)	-5(1)	-4(1)
C(51)	37(1)	29(1)	25(1)	1(1)	-13(1)	-7(1)
C(52)	28(1)	25(1)	40(1)	1(1)	-17(1)	-4(1)
C(53)	24(1)	26(1)	20(1)	4(1)	.3(1)	_1(1)
0(55)	24(1)	20(1)	39(1)	-4(1)	-3(1)	-1(1)
C(54)	28(1)	22(1)	24(1)	-2(1)	-3(1)	-3(1)
C(55)	24(1)	21(1)	16(1)	-5(1)	0(1)	-6(1)
C(56)	32(1)	22(1)	32(1)	-4(1)	-5(1)	-6(1)
C(57)	48(1)	24(1)	47(1)	_9(1)	-4(1)	-14(1)
0.077	40(1)	27(1)	7/(1)	-)(1)		1 (1)

<u>Anhang</u>

C(58)	48(1)	42(1)	30(1)	11(1)	Q (1)	25(1)
C(50)	40(1)	+2(1)	37(1)	-11(1)	-0(1)	-23(1)
C(59)	40(1)	45(1)	34(1)	1(1)	-10(1)	-19(1)
C(60)	32(1)	26(1)	26(1)	1(1)	-/(1)	-10(1)
C(61)	21(1)	23(1)	18(1)	2(1)	-1(1)	-6(1)
C(62)	23(1)	28(1)	28(1)	-2(1)	-1(1)	-3(1)
C(63)	21(1)	42(1)	40(1)	2(1)	-7(1)	-2(1)
C(64)	29(1)	55(2)	34(1)	0(1)	-12(1)	-13(1)
C(65)	36(1)	42(1)	29(1)	-7(1)	-6(1)	-12(1)
C(66)	27(1)	30(1)	$\frac{2}{23(1)}$	-2(1)	-4(1)	-4(1)
C(67)	27(1)	30(1)	$\frac{23(1)}{17(1)}$	-2(1)	-4(1)	
C(67)	22(1)	20(1)	17(1)	-3(1)	-1(1)	-3(1)
C(68)	24(1)	25(1)	22(1)	-1(1)	-2(1)	-5(1)
C(69)	32(1)	35(1)	23(1)	2(1)	-1(1)	-15(1)
C(70)	25(1)	43(1)	32(1)	-8(1)	7(1)	-12(1)
C(71)	22(1)	33(1)	45(1)	-7(1)	3(1)	0(1)
C(72)	24(1)	24(1)	30(1)	-1(1)	-2(1)	-2(1)
C(73)	27(1)	19(1)	21(1)	0(1)	-3(1)	-2(1)
C(74)	37(1)	24(1)	27(1)	-5(1)	-1(1)	-11(1)
C(75)	47(1)	$\frac{2}{34(1)}$	26(1)	-9(1)	7(1)	-12(1)
C(75)	$\frac{4}{(1)}$	26(1)	20(1)	-(1)	7(1)	-12(1)
C(76)	39(1)	30(1)	31(1)	0(1)	/(1)	-14(1)
C(77)	46(1)	29(1)	31(1)	-1(1)	-1(1)	-19(1)
C(78)	42(1)	22(1)	24(1)	-4(1)	-1(1)	-9(1)
C(79)	25(1)	52(1)	25(1)	-3(1)	-5(1)	5(1)
C(80)	38(1)	129(3)	53(2)	-16(2)	-8(1)	-31(2)
C(81)	45(2)	317(8)	74(3)	-25(4)	-16(2)	-65(3)
C(82)	36(2)	395(11)	59(2)	-25(4)	-25(2)	33(3)
C(83)	91(3)	185(5)	66(2)	2(3)	-29(2)	92(3)
C(84)	71(3)	72(2)	63(2)	$\frac{2(3)}{4(2)}$	22(2)	25(2)
C(64)	71(2)	15(2)	03(2)	4(2)	-22(2)	33(2)
C(85)	23(1)	15(1)	30(1)	0(1)	-5(1)	-4(1)
C(86)	24(1)	23(1)	39(1)	-1(1)	-1(1)	-5(1)
C(87)	24(1)	30(1)	60(2)	1(1)	-4(1)	-8(1)
C(88)	34(1)	32(1)	73(2)	-4(1)	-20(1)	-13(1)
C(89)	45(1)	38(1)	53(2)	-16(1)	-16(1)	-11(1)
C(90)	30(1)	28(1)	38(1)	-9(1)	-4(1)	-9(1)
C(91)	21(1)	19(1)	33(1)	-8(1)	-3(1)	-3(1)
C(92)	41(1)	45(2)	68(2)	14(1)	23(1)	12(1)
C(92)	43(2)	70(2)	88(2)	11(2)	$\frac{23(1)}{32(2)}$	12(1) 14(1)
C(03)	+3(2)	70(2)	00(2)	11(2) 27(1)	$\frac{32(2)}{0(1)}$	5(1)
C(94)	20(1)	37(1)	92(2)	-27(1)	0(1)	3(1)
C(95)	36(1)	26(1)	165(4)	9(2)	10(2)	9(1)
C(96)	31(1)	34(1)	125(3)	19(2)	19(2)	5(1)
N(1)	24(1)	21(1)	23(1)	-4(1)	0(1)	-6(1)
C(97)	34(1)	37(1)	31(1)	-13(1)	8(1)	-15(1)
C(98)	58(2)	66(2)	63(2)	-29(2)	26(1)	-42(1)
C(99)	35(1)	26(1)	33(1)	-1(1)	-6(1)	-1(1)
C(100)	70(2)	25(1)	58(2)	2(1)	-19(1)	-13(1)
C(101)	32(1)	31(1)	25(1)	-2(1)	-6(1)	-8(1)
C(102)	55(1)	30(1)	47(1)	$\frac{2(1)}{7(1)}$	20(1)	17(1)
C(102)	52(1)	39(1)	47(1)	-7(1)	-20(1)	-1/(1)
N(2)	33(1)	34(1)	43(1)	-9(1)	-1(1)	-24(1)
N(3)	22(1)	29(1)	29(1)	-5(1)	-2(1)	-/(1)
C(103)	38(1)	31(1)	53(2)	-7/(1)	-9(1)	-6(1)
C(104)	36(1)	48(2)	50(2)	-20(1)	-8(1)	6(1)
C(105)	37(1)	56(2)	36(1)	8(1)	-8(1)	-2(1)
C(106)	50(1)	62(2)	32(1)	2(1)	6(1)	-16(1)
C(107)	35(1)	53(2)	42(1)	-23(1)	3(1)	-19(1)
C(108)	30(1)	66(2)	54(2)	-20(1)	-1(1)	-21(1)
N(4)	27(1)	63(1)	40(1)	-14(1)	5(1)	-9(1)
N(5)	42(1)	35(1)	29(1)	-13(1)	2(1)	-16(1)
C(109)	464(11)	57(2)	72(3)	-2(2)	-133(5)	-61(4)
C(109)	404(11)	$\frac{37(2)}{75(2)}$	12(3)	-2(2)	-133(3)	-01(4)
C(110)	201(0)	73(3)	48(2)	-8(2)	-32(3)	-07(3)
	37(2)	330(8)	257(7)	-268(7)	0(3)	-5(3)
C(112)	71(3)	274(7)	235(6)	-230(6)	-22(3)	13(3)
C(113)	155(4)	153(4)	46(2)	-35(2)	19(2)	-128(3)
C(114)	135(3)	103(3)	53(2)	-18(2)	-12(2)	-85(3)
N(6)	74(2)	65(2)	48(1)	-32(1)	2(1)	-33(1)
C(115)	55(2)	53(2)	45(2)	-4(1)	-2(1)	-27(1)
CILIÓ	52(2)	55(2)	64(2)	-12(1)	-11(1)	-15(1)
C(117)	79(2)	57(2)	54(2)	1(1)	-26(2)	-24(2)
C(118)	82(2)	56(2)	41(2)	-10(1)	-8(1)	-34(2)
C(110)	$\frac{32(2)}{70(2)}$	JU(2)	+1(2)	-10(1)	-0(1)	-34(2)
C(119)	70(2)	44(2)	50(2)	-9(1)	-5(1)	-22(1)
C(120)	70(2)	43(2)	50(2)	2(1)	-9(1)	-20(1)
C(121)	/8(2)	77(2)	54(2)	-13(2)	8(2)	-26(2)
C(122)	52(2)	47(2)	88(2)	-18(2)	-10(2)	-6(1)
C(123)	44(2)	46(2)	97(3)	-12(2)	6(2)	-7(1)

Anhang	z						
C(124)	73(2)	93(3)	72(2)	-23(2)	13(2)	-21(2)	
C(125)	83(3)	180(5)	80(3)	-40(3)	0(2)	-53(3)	
C(126)	65(2)	200(5)	86(3)	-38(3)	7(2)	-64(3)	
C(127)	52(2)	111(3)	76(2)	-21(2)	6(2)	-25(2)	
C(128)	94(3)	106(3)	121(4)	-13(3)	-36(3)	-39(2)	
C(129)	47(1)	60(2)	43(1)	-9(1)	-18(1)	8(1)	
C(130)	67(2)	60(2)	45(2)	4(1)	-13(1)	-13(1)	
C(131)	68(2)	74(2)	35(1)	-1(1)	-9(1)	-2(2)	
C(132)	94(2)	59(2)	56(2)	-6(2)	-30(2)	-6(2)	
C(133)	97(3)	69(2)	59(2)	15(2)	-31(2)	-29(2)	
C(134)	50(2)	78(2)	36(1)	13(1)	-11(1)	-10(1)	
C(135)	88(2)	85(2)	62(2)	-24(2)	-25(2)	3(2)	
C(136)	123(4)	60(2)	153(4)	22(3)	0(3)	-50(3)	
C(137)	94(3)	61(2)	155(4)	13(3)	-6(3)	-41(2)	
C(138)	100(3)	51(2)	170(5)	20(3)	8(3)	-33(2)	
C(139)	192(11)	79(6)	155(9)	14(6)	-89(8)	-64(7)	
C(140)	38(3)	101(5)	67(4)	-28(4)	-27(3)	0(3)	
C(141)	31(2)	191(5)	79(2)	2(3)	-30(2)	8(2)	
C(142)	36(2)	278(8)	76(3)	0(4)	-10(2)	-2(3)	
C(143)	37(3)	141(7)	61(4)	-13(4)	-20(3)	-26(4)	
C(144)	33(4)	201(11)	95(7)	-3(7)	-8(4)	-28(5)	

 $\textbf{Tabelle 62:} Koordinaten des Wasserstoffs (x 10^4) und isotrope Auslenkungsparameter (Å^2 x 10^3) für sh2824.$

	X	у	Z	U(eq)
	4017(19)	6165(18)	7207(9)	55(8)
H(2)	-258	7107	7171	50
H(2)	-1442	8295	6038	58
H(4)	-3032	8419	7262	44
H(5)	-3427	7371	7832	44
H(6)	-2247	6183	8067	36
H(8)	-1382	4307	7783	40
H(0)	-1502	3364	7306	40 52
H(10)	450	3172	6643	58
H(10)	-439	3035	6456	51
H(11) H(12)	288	1884	6031	38
H(12) H(14)	000	4004	0931 8617	30 42
H(14) H(15)	-957	7854	0017	42
H(15) H(16)	-1399	7605	0812	53
H(10) H(17)	-1412	6169	10156	19
$\Pi(17)$ $\Pi(19)$	-1004	4006	0721	40
$\Pi(10)$	-301	4990	9751	39
$\Pi(20)$ $\Pi(21)$	100	2002	9587	40
$\Pi(21)$	-005	2002	9004	52
$\Pi(22)$	-2108	2089	9488	04
$\Pi(23)$	-2003	5260	9034	70 52
$\Pi(24)$	-2112	4402	8740	33
H(20)	5513	2308	9402	40
H(27)	5990	2488	10066	61
H(28)	4888	3214	10616	66
H(29)	3329	3863	10496	60
H(30)	2858	3777	9826	43
H(32)	2028	2275	9322	38
H(33)	1643	924	9415	50
H(34)	2816	-326	9224	55 54
H(35)	4372	-217	8935	54
H(36)	4/61	1132	8848	41
H(38)	4942	5255	7728	47
H(39)	5281	6517	7890	59
H(40)	5790	6522	8563	52
H(41)	5901	5280	9083	56
H(42)	5519	4042	8928	49
H(44)	6772	2316	8463	39
H(45)	8206	1484	8116	49
H(46)	8479	1474	7348	50
H(47)	7329	2287	6921	43

H(48)	5891	3108	7264	32	
H(50)	4430	1589	7876	29	
H(51)	5663	546	8178	35	
H(52)	6940	-227	7712	37	
H(52)	6999	49	6941	37	
H(53) H(54)	5783	1103	6638	30	
H(54)	3897	448	7026	34	
H(50)	2963	-310	6779	16	
H(57) H(58)	1780	-510	6354	40	
H(50)	1520	1060	6184	47	
H(59)	2445	1900	6427	22	
H(60)	2445	2122	6110	22	
H(62)	1305	4974 5006	5667	33 43	
H(03)	1595	2024	5102	45	
H(04)	1655	2924 2925	5192	40	
H(65)	3067	2835	5148	42	
H(00)	4209	2791	5520	33 20	
H(68)	5023	4982	5530	29	
H(69)	6400	5063	5023	36	
H(70)	7782	3936	5059	40	
H(71)	7792	2742	5602	43	
H(72)	6415	2655	6109	33	
H(74)	3389	6381	5639	34	
H(75)	4586	6708	5074	44	
H(76)	5228	7891	5101	44	
H(77)	4667	8753	5687	42	
H(78)	3456	8444	6243	35	
H(80)	890	6238	6314	85	
H(81)	-602	6735	6073	168	
H(82)	-1182	8196	5840	213	
H(83)	-347	9204	5894	165	
H(84)	1123	8742	6148	94	
H(86)	4141	7716	6975	35	
H(87)	5323	8315	7120	46	
H(88)	5082	9040	7749	53	
H(89)	3630	9187	8228	51	
H(90)	2431	8610	8080	38	
H(92)	460	7443	8045	74	
H(93)	-1030	8367	8247	96	
H(94)	-1406	9797	7918	63	
H(95)	-285	10301	7385	102	
11(75)	205				
H(96)	1194	9385	7177	87	
H(96) H(1)	1194 1870(17)	9385 2790(16)	7177 8027(8)	87 46(7)	
H(96) H(1) H(97A)	1194 1870(17) 329	9385 2790(16) 3019	7177 8027(8) 8359	87 46(7) 40	
H(95) H(9) H(1) H(97A) H(97B)	1194 1870(17) 329 990	9385 2790(16) 3019 2338	7177 8027(8) 8359 8683	87 46(7) 40 40	
H(95) H(9) H(1) H(97A) H(97B) H(98A)	1194 1870(17) 329 990 142	9385 2790(16) 3019 2338 1384	7177 8027(8) 8359 8683 8686	87 46(7) 40 40 71	
H(96) H(1) H(97A) H(97B) H(98A) H(98B)	1194 1870(17) 329 990 142 -469	9385 2790(16) 3019 2338 1384 2039	7177 8027(8) 8359 8683 8686 8336	87 46(7) 40 40 71 71	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A)	1194 1870(17) 329 990 142 -469 2500	9385 2790(16) 3019 2338 1384 2039 1365	7177 8027(8) 8359 8683 8686 8336 8336 8361	87 46(7) 40 40 71 71 40	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B)	1194 1870(17) 329 990 142 -469 2500 2739	9385 2790(16) 3019 2338 1384 2039 1365 1349	7177 8027(8) 8359 8683 8686 8336 8336 8361 7830	87 46(7) 40 40 71 71 40 40	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99B) H(10A)	1194 1870(17) 329 990 142 -469 2500 2739 1928	9385 2790(16) 3019 2338 1384 2039 1365 1349 330	7177 8027(8) 8359 8683 8686 8336 8361 7830 7839	87 46(7) 40 40 71 71 40 40 60	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B) H(10A) H(10B)	1194 1870(17) 329 990 142 -469 2500 2739 1928 1615	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410	7177 8027(8) 8359 8683 8686 8336 8361 7830 7839 8421	87 46(7) 40 40 71 71 40 40 60 60	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B) H(10A) H(10B) H(10C)	1194 1870(17) 329 990 142 -469 2500 2739 1928 1615 1716	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344	87 46(7) 40 40 71 71 40 40 60 60 60 35	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B) H(10A) H(10B) H(10C) H(10D)	1194 1870(17) 329 990 142 -469 2500 2739 1928 1615 1716 729	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557	87 46(7) 40 40 71 71 40 40 60 60 35 35	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B) H(10A) H(10B) H(10C) H(10D) H(10E)	$1194 \\ 1870(17) \\ 329 \\ 990 \\ 142 \\ -469 \\ 2500 \\ 2739 \\ 1928 \\ 1615 \\ 1716 \\ 729 \\ 23$	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997 1934	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549	87 46(7) 40 40 71 71 40 40 60 60 60 35 35 53	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B) H(10A) H(10B) H(10C) H(10D) H(10E) H(10F)	$1194 \\ 1870(17) \\ 329 \\ 990 \\ 142 \\ -469 \\ 2500 \\ 2739 \\ 1928 \\ 1615 \\ 1716 \\ 729 \\ 23 \\ 1026 \\ 1026$	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997 1934 1292	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382		
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B) H(10A) H(10B) H(10C) H(10D) H(10C) H(10F) H(2)	$1194 \\ 1870(17) \\ 329 \\ 990 \\ 142 \\ -469 \\ 2500 \\ 2739 \\ 1928 \\ 1615 \\ 1716 \\ 729 \\ 23 \\ 1026 \\ 5372(16)$	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997 1934 1292 5834(14)	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382 6823(7)	87 46(7) 40 40 71 71 40 40 60 60 35 35 53 53 53 53 53 53 53 53 53	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99B) H(10A) H(10B) H(10C) H(10D) H(10C) H(10D) H(10E) H(10F) H(2) H(10G)	1194 $1870(17)$ 329 990 142 -469 2500 2739 1928 1615 1716 729 23 1026 $5372(16)$ 6048	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997 1934 1292 5834(14) 4555	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382 6823(7) 6550	87 46(7) 40 40 71 71 40 40 60 60 35 35 53 5	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B) H(10A) H(10B) H(10C) H(10D) H(10C) H(10C) H(10F) H(2) H(10G) H(10G) H(10H)	$1194 \\ 1870(17) \\ 329 \\ 990 \\ 142 \\ -469 \\ 2500 \\ 2739 \\ 1928 \\ 1615 \\ 1716 \\ 729 \\ 23 \\ 1026 \\ 5372(16) \\ 6048 \\ 6557 \\ 1104 \\ 104 \\ 105 \\ 10$	$\begin{array}{c} 9385\\ 2790(16)\\ 3019\\ 2338\\ 1384\\ 2039\\ 1365\\ 1349\\ 330\\ 410\\ 2385\\ 2997\\ 1934\\ 1292\\ 5834(14)\\ 4555\\ 4568\\ \end{array}$	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382 6823(7) 6550 6967	87 46(7) 40 40 71 71 40 40 60 60 35 35 53 53 53 53 53 53 36(6) 48 48	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B) H(10A) H(10B) H(10C) H(10D) H(10C) H(10D) H(10F) H(2) H(10G) H(10G) H(10H) H(10I)	$1194 \\ 1870(17) \\ 329 \\ 990 \\ 142 \\ -469 \\ 2500 \\ 2739 \\ 1928 \\ 1615 \\ 1716 \\ 729 \\ 23 \\ 1026 \\ 5372(16) \\ 6048 \\ 6557 \\ 7924 \\ $	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997 1934 1292 5834(14) 4555 4568 4372	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382 6823(7) 6550 6967 6507	$\begin{array}{c} 87\\ 46(7)\\ 40\\ 40\\ 71\\ 71\\ 40\\ 40\\ 60\\ 60\\ 35\\ 35\\ 53\\ 53\\ 53\\ 53\\ 53\\ 36(6)\\ 48\\ 48\\ 55\\ \end{array}$	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B) H(10A) H(10B) H(10C) H(10B) H(10C) H(10D) H(10F) H(10F) H(2) H(10G) H(10H) H(10I) H(10I)	$1194 \\ 1870(17) \\ 329 \\ 990 \\ 142 \\ -469 \\ 2500 \\ 2739 \\ 1928 \\ 1615 \\ 1716 \\ 729 \\ 23 \\ 1026 \\ 5372(16) \\ 6048 \\ 6557 \\ 7924 \\ 7386 \\ $	$\begin{array}{c} 9385\\ 2790(16)\\ 3019\\ 2338\\ 1384\\ 2039\\ 1365\\ 1349\\ 330\\ 410\\ 2385\\ 2997\\ 1934\\ 1292\\ 5834(14)\\ 4555\\ 4568\\ 4372\\ 4545 \end{array}$	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382 6823(7) 6550 6967 6507 6082	87 46(7) 40 40 71 71 40 40 60 60 35 35 53 53 53 53 36(6) 48 48 55 55	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B) H(10A) H(10B) H(10C) H(10B) H(10C) H(10D) H(10E) H(10F) H(2) H(10G) H(10H) H(10I) H(10J) H(10J) H(10J) H(10K)	$1194 \\ 1870(17) \\ 329 \\ 990 \\ 142 \\ -469 \\ 2500 \\ 2739 \\ 1928 \\ 1615 \\ 1716 \\ 729 \\ 23 \\ 1026 \\ 5372(16) \\ 6048 \\ 6557 \\ 7924 \\ 7386 \\ 5544 \\ $	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997 1934 1292 5834(14) 4555 4568 4372 4545 6849	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382 6823(7) 6550 6967 6507 6082 6225	87 46(7) 40 40 71 71 40 40 60 60 60 35 35 53 53 53 53 36(6) 48 48 55 55 55 55	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B) H(10A) H(10B) H(10C) H(10D) H(10C) H(10D) H(10E) H(10F) H(2) H(10G) H(10H) H(10I) H(10J) H(10J) H(10J) H(10L)	1194 $1870(17)$ 329 990 142 -469 2500 2739 1928 1615 1716 729 23 1026 $5372(16)$ 6048 6557 7924 7386 5544 5581	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997 1934 1292 5834(14) 4555 4568 4372 4545 6849 5925	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382 6823(7) 6550 6967 6507 6082 6225 6063	87 46(7) 40 40 71 71 40 40 60 60 35 53 53 53 53 53 36(6) 48 48 48 55 57 57 7 70	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B) H(10A) H(10B) H(10C) H(10D) H(10C) H(10D) H(10F) H(2) H(10F) H(2) H(10G) H(10H) H(10I) H(10J) H(10J) H(10L) H(10L) H(10M)	1194 $1870(17)$ 329 990 142 -469 2500 2739 1928 1615 1716 729 23 1026 $5372(16)$ 6048 6557 7924 7386 5544 5581 7016	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997 1934 1292 5834(14) 4555 4568 4372 4545 6849 5925 5953	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382 6823(7) 6550 6967 6507 6082 6225 6063 5685	87 46(7) 40 40 71 71 40 40 60 60 60 35 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 55 57 57 57 70 7	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B) H(10A) H(10B) H(10C) H(10D) H(10C) H(10C) H(10F) H(2) H(10G) H(10H) H(10H) H(10I) H(10I) H(10J) H(10L) H(10L) H(10M) H(10N)	1194 $1870(17)$ 329 990 142 -469 2500 2739 1928 1615 1716 729 23 1026 $5372(16)$ 6048 6557 7924 7386 5544 5581 7016 7041	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997 1934 1292 5834(14) 4555 4568 4372 4545 6849 5925 5953 6791	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382 6823(7) 6550 6967 6507 6082 6225 6063 5685 5909	87 46(7) 40 40 71 71 40 40 60 60 60 35 35 53 53 35 53 35 53 36(6) 48 48 48 55	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B) H(10A) H(10B) H(10C) H(10C) H(10C) H(10C) H(10F) H(2) H(10G) H(10H) H(10I) H(10J) H(10J) H(10J) H(10K) H(10N) H(10N) H(10N)	1194 $1870(17)$ 329 990 142 -469 2500 2739 1928 1615 1716 729 23 1026 $5372(16)$ 6048 6557 7924 7386 5544 5581 7016 7041 6547	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997 1934 1292 5834(14) 4555 4568 4372 4545 6849 5925 5953 6791 5940	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382 6823(7) 6550 6967 6550 6967 6550 6967 6507 6082 6225 6063 5685 5909 7216	87 46(7) 40 40 71 71 40 40 60 60 60 35 35 53 35 53 36(6) 48 48 48 55 59 49 49	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B) H(10A) H(10B) H(10C) H(10D) H(10C) H(10C) H(10F) H(2) H(10G) H(10H) H(10I) H(10J) H(10J) H(10J) H(10M) H(10M) H(10M) H(10O) H(10P)	1194 $1870(17)$ 329 990 142 -469 2500 2739 1928 1615 1716 729 23 1026 $5372(16)$ 6048 6557 7924 7386 5544 5581 7016 7041 6547 6267	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997 1934 1292 5834(14) 4555 4568 4372 4545 6849 5925 5953 6791 5940 6840	7177 8027(8) 8359 8683 8686 8336 8336 7830 7899 8421 7344 7557 7549 7382 6823(7) 6550 6967 5999 7216 6550 6967 7216 6550 6967 7216 6550 6967 7216 6550 6967 7216 6550 6967 7216 6550 7216 6550 7216 6550 7216 7216 7216 7216	87 46(7) 40 40 71 71 40 40 60 60 35 35 53 36(6) 48 48 55 59 49 49 49	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B) H(10A) H(10B) H(10C) H(10B) H(10C) H(10D) H(10C) H(10F) H(2) H(10G) H(10F) H(10G) H(10H) H(10I) H(10I) H(10I) H(10I) H(10I) H(10N) H(10N) H(10O) H(10P) H(10O)	$1194 \\ 1870(17) \\ 329 \\ 990 \\ 142 \\ -469 \\ 2500 \\ 2739 \\ 1928 \\ 1615 \\ 1716 \\ 729 \\ 23 \\ 1026 \\ 5372(16) \\ 6048 \\ 6557 \\ 7924 \\ 7386 \\ 5544 \\ 5581 \\ 7016 \\ 7041 \\ 6547 \\ 6267 \\ 7779 \\ $	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997 1934 1292 5834(14) 4555 4568 4372 4545 6849 5925 5953 6791 5940 6840 6588	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382 6823(7) 6550 6967 6507 6082 6225 6063 5685 5909 7216 6897 6573	87 46(7) 40 40 71 71 40 40 60 60 60 35 35 53 53 53 53 36(6) 48 48 48 55 57 57 57 57 49 49 49 49 57 40	
H(96) H(1) H(97A) H(97B) H(98A) H(98B) H(99A) H(99B) H(10A) H(10B) H(10C) H(10B) H(10C) H(10D) H(10F) H(2) H(10F) H(2) H(10G) H(10F) H(10I) H(10I) H(10I) H(10I) H(10I) H(10I) H(10I) H(10O) H(10P) H(10Q) H(10Q) H(10R)	1194 $1870(17)$ 329 990 142 -469 2500 2739 1928 1615 1716 729 23 1026 $5372(16)$ 6048 6557 7924 7386 5544 5581 7016 7041 6547 6267 7779 8015	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997 1934 1292 5834(14) 4555 4568 4372 4545 6849 5925 5953 6791 5940 6840 6588 5628	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382 6823(7) 6550 6967 6507 6082 6225 6063 5685 5909 7216 6897 6573 6842	87 46(7) 40 40 71 71 40 40 60 60 60 35 53 53 53 53 36(6) 48 48 48 55 57	
H(96) H(1) H(97A) H(97B) H(97B) H(98A) H(98B) H(99B) H(10A) H(10B) H(10B) H(10C) H(10B) H(10C) H(10C) H(10F) H(10F) H(2) H(10F) H(10F) H(10G) H(10H) H(10H) H(10I)	1194 $1870(17)$ 329 990 142 -469 2500 2739 1928 1615 1716 729 23 1026 $5372(16)$ 6048 6557 7924 7386 5544 5581 7016 7041 6547 6267 7779 8015 $2260(20)$	$\begin{array}{c} 9385\\ 2790(16)\\ 3019\\ 2338\\ 1384\\ 2039\\ 1365\\ 1349\\ 330\\ 410\\ 2385\\ 2997\\ 1934\\ 1292\\ 5834(14)\\ 4555\\ 4568\\ 4372\\ 4545\\ 6849\\ 5925\\ 5953\\ 6791\\ 5940\\ 6840\\ 6588\\ 5628\\ 5640(20)\\ \end{array}$	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382 6823(7) 6550 6967 6507 6082 6225 6063 5685 5909 7216 6897 6573 6842 8548(11)	87 46(7) 40 40 71 71 40 40 60 60 35 53 53 53 35 53 35 53 36(6) 48 48 48 55 57 59 59 59 59 57 57 90(11)	
$\begin{array}{c} H(96) \\ H(1) \\ H(97A) \\ H(97B) \\ H(98B) \\ H(98B) \\ H(99A) \\ H(99B) \\ H(10A) \\ H(10B) \\ H(10C) \\ H(10D) \\ H(10C) \\ H(10D) \\ H(10F) \\ H(2) \\ H(10F) \\ H(2) \\ H(10G) \\ H(10H) \\ H(10H) \\ H(10I) \\ H(1$	1194 $1870(17)$ 329 990 142 -469 2500 2739 1928 1615 1716 729 23 1026 $5372(16)$ 6048 6557 7924 7386 5544 5581 7016 7041 6547 6267 7779 8015 $2260(20)$ 3292	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997 1934 1292 5834(14) 4555 4568 4372 4545 6849 5925 5953 6791 5940 6840 6588 5628 5640(20) 5239	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382 6823(7) 6550 6967 6507 6082 6225 6063 5685 5909 7216 6897 6573 6842 8548(11) 9177	87 46(7) 40 40 71 71 40 40 60 60 35 53 53 53 35 53 35 53 36(6) 48 48 48 55 57 59 59 49 49 57 57 90(11) 224	
$\begin{array}{c} H(96) \\ H(1) \\ H(97A) \\ H(97B) \\ H(98A) \\ H(98B) \\ H(99A) \\ H(99B) \\ H(10A) \\ H(10B) \\ H(10C) \\ H(10D) \\ H(10C) \\ H(10D) \\ H(10F) \\ H(2) \\ H(10G) \\ H(10F) \\ H(2) \\ H(10G) \\ H(10H) \\ H(10I) \\ H(1$	$1194 \\ 1870(17) \\ 329 \\ 990 \\ 142 \\ -469 \\ 2500 \\ 2739 \\ 1928 \\ 1615 \\ 1716 \\ 729 \\ 23 \\ 1026 \\ 5372(16) \\ 6048 \\ 6557 \\ 7924 \\ 7386 \\ 5544 \\ 5581 \\ 7016 \\ 7041 \\ 6547 \\ 6267 \\ 7779 \\ 8015 \\ 2260(20) \\ 3292 \\ 2207 \\ $	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997 1934 1292 5834(14) 4555 4568 4372 4545 6849 5925 5953 6791 5940 6840 6588 5628 5640(20) 5239 5268	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382 6823(7) 6550 6967 6507 6082 6225 6063 5685 5909 7216 6897 6573 6842 8548(11) 9177 9398	87 46(7) 40 40 71 71 40 40 60 60 60 35 53 53 53 53 53 36(6) 48 48 48 55 57 90(11) 224	
$\begin{array}{c} H(96) \\ H(1) \\ H(97A) \\ H(97B) \\ H(98A) \\ H(98B) \\ H(99A) \\ H(99B) \\ H(10A) \\ H(10B) \\ H(10C) \\ H(10C) \\ H(10C) \\ H(10C) \\ H(10C) \\ H(10F) \\ H(10F) \\ H(2) \\ H(10G) \\ H(10H) \\ H(10I) \\ H$	$1194 \\ 1870(17) \\ 329 \\ 990 \\ 142 \\ -469 \\ 2500 \\ 2739 \\ 1928 \\ 1615 \\ 1716 \\ 729 \\ 23 \\ 1026 \\ 5372(16) \\ 6048 \\ 6557 \\ 7924 \\ 7386 \\ 5544 \\ 5581 \\ 7016 \\ 7041 \\ 6547 \\ 6267 \\ 7779 \\ 8015 \\ 2260(20) \\ 3292 \\ 2207 \\ 2346 \\ $	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997 1934 1292 5834(14) 4555 4568 4372 4545 6849 5925 5953 6791 5940 6840 6588 5628 5640(20) 5239 5268 6098	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382 6823(7) 6550 6967 6507 6082 6225 6063 5685 5909 7216 6897 6573 6842 8548(11) 9177 9398 9889	87 46(7) 40 40 71 71 40 40 60 60 60 35 35 53 53 36(6) 48 48 48 55 57 59 59 49 49 49 57 57 90(11) 224 142	
$\begin{array}{c} H(96) \\ H(1) \\ H(97A) \\ H(97B) \\ H(98A) \\ H(98B) \\ H(99A) \\ H(99B) \\ H(10A) \\ H(10B) \\ H(10C) \\ H(10D) \\ H(10C) \\ H(10D) \\ H(10C) \\ H(10F) \\ H(10F) \\ H(2) \\ H(10G) \\ H(10H) \\ H(10I) \\ H(11I) \\ H(1I) $	$1194 \\ 1870(17) \\ 329 \\ 990 \\ 142 \\ -469 \\ 2500 \\ 2739 \\ 1928 \\ 1615 \\ 1716 \\ 729 \\ 23 \\ 1026 \\ 5372(16) \\ 6048 \\ 6557 \\ 7924 \\ 7386 \\ 5544 \\ 5581 \\ 7016 \\ 7041 \\ 6547 \\ 6267 \\ 7779 \\ 8015 \\ 2260(20) \\ 3292 \\ 2207 \\ 2346 \\ 3404 \\ $	9385 2790(16) 3019 2338 1384 2039 1365 1349 330 410 2385 2997 1934 1292 5834(14) 4555 4568 4372 4545 6849 5925 5953 6791 5940 6840 6588 5628 5640(20) 5239 5268 6098 6130	7177 8027(8) 8359 8683 8686 8336 8361 7830 7899 8421 7344 7557 7549 7382 6823(7) 6550 6967 6550 6967 6550 6967 6550 6967 6550 6967 6550 6967 6550 6967 6550 6967 6550 6967 6553 6822 5685 5909 7216 6897 6573 6842 8548(11) 9177 9398 9889 9644	87 46(7) 40 40 71 71 40 40 60 60 35 35 53 35 53 36(6) 48 48 48 55 57 59 59 49 49 49 57 57 90(11) 224 142 142	

	1	
Δ	nhai	n σ
11	ma	п <u>с</u>

H(11E)	966	6296	9123	231
H(11F)	1172	7050	8734	231
H(11G)	1192	7884	9238	218
H(11H)	1015	7120	9627	218
H(11I)	2772	7041	8411	123
H(11J)	3623	6327	8616	123
H(11K)	3619	7266	9081	103
H(11L)	2701	7936	8909	103
H(116)	7417	8229	5491	67
H(117)	6880	8354	6243	73
H(118)	5651	9539	6464	67
H(119)	4996	10616	5931	64
H(120)	5547	10497	5182	65
H(12A)	6426	9120	4634	105
H(12B)	7505	8843	4731	105
H(12C)	6997	9856	4619	105
H(123)	7593	697	5968	78
H(124)	8312	838	6551	97
H(125)	9784	1193	6409	131
H(126)	10526	1398	5683	133
H(127)	9816	1267	5098	95
H(12D)	8142	1451	4877	152
H(12E)	7495	871	5201	152
H(12F)	8505	404	4939	152
H(130)	3958	1585	418	70
H(131)	3973	602	-63	75
H(132)	3459	-667	197	84
H(133)	2878	-937	942	88
H(134)	2848	39	1435	69
H(13A)	2837	1576	1529	119
H(13B)	3402	2118	1138	119
H(13C)	3981	1325	1444	119

10 Daten zur Molekül- und Kristallstruktur von (Ph₂SiO)₁₂(Al₂O₂)(AlO₂)₂[AlO(OH)]₄(C₆H₁₂N₂O)₂ <u>13</u>

 $\label{eq:constraint} \textbf{Tabelle 63:} Kristalldaten und Strukturverfeinerungen für (Ph_2SiO)_{12}(Al_2O_2)(AlO_2)_2[AlO(OH)]_4(C_6H_{12}N_2O)_2 (sh2892))$

Identifikationscode	sh2892	
Summenformel	C188 H214 Al8 N8 O35 Si12	
Molmasse [g/mol]	3698.60	
Messtemperatur [K]	132(2)	
Wellenlänge [Å]	0.71073	
Kristallsystem	monoklin	
Raumgruppe	P2(1)/n	
Gitterkonstanten	a = 18.5590(18) Å	$\alpha = 90^{\circ}$
	b = 24.169(3) Å	$\beta = 97.693(7)^{\circ}$
	c = 21.627(2) Å	$\gamma = 90^{\circ}$
Zellvolumen [Å ³]	9613.3(18)	
Anzahl der Formeleinheiten Z	2	
Dichte (berechnet) [g/cm ³]	1.278	
Absorptionskoeffizient [mm ⁻¹]	0.190	
F(000)	3900	
Messbereich θ [°]	1.27 to 27.92	
hkl - Indexbereich	-24<=h<=24, -29<=k<=31, -28<=	l<=28
Gemessene Reflexe	81260	
Symmetrieunabhängige Reflexe	22880 [R(int) = 0.1545]	
Vollständigkeit des Datensatzes (bis $\theta = 27.92^{\circ}$)	99.4 %	
Absorptionskorrektur	Multiscan	
Strukturverfeinerungsmethode	Full-matrix least-squares on F ²	
Daten / Einschränkungen / Parameter	22880 / 0 / 1162	
Güte des Fit auf F ²	1.069	
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0723, wR2 = 0.1727	

R-Werte (alle Daten) Restelektronendichte (min./max.) [e/Å⁻³] R1 = 0.2005, wR2 = 0.2248 1.774 and -0.432

Tabelle 64: Atomkoordinaten (x 10 ⁴) und äquivalente isotrope Auslenkungsparameter ($\mathring{A}^2 x 10^3$) für sh2892. U(eq) wird berechnet als ein Dritte
der Spur des orthogonalisierten U ^{ij} Tensors.

	X	у	Z	U(eq)
Al(1)	772(1)	3611(1)	4814(1)	20(1)
Al(2)	331(1)	4564(1)	5356(1)	19(1)
Al(3)	1323(1)	5210(1)	4421(1)	20(1)
Al(4)	-900(1)	3619(1)	5022(1)	20(1)
Si(1)	939(1)	2398(1)	5497(1)	24(1)
Si(2)	-708(1)	2319(1)	5365(1)	24(1)
Si(3)	1504(1)	3554(1)	3553(1)	24(1)
Si(4)	1545(1)	4749(1)	3037(1)	24(1)
Si(5)	2774(1)	5242(1)	5396(1)	24(1)
Si(6)	-2200(1)	3757(1)	3889(1)	23(1)
O(1)	1204(2)	4132(2)	5322(2)	22(1)
O(2)	-69(1)	3925(1)	4916(1)	18(1)
O(3)	529(2)	5031(1)	4716(1)	20(1)
O(4)	879(2)	2947(1)	5083(2)	24(1)
O(5)	140(2)	2168(1)	5614(2)	26(1)
O(6)	-831(2)	2972(1)	5348(2)	26(1)
O(7)	983(2)	3667(2)	4070(1)	27(1)
O(8)	1554(2)	4075(1)	3088(2)	26(1)
O(9)	1357(2)	5022(2)	3665(2)	28(1)
O(10)	2080(2)	4998(1)	4944(1)	22(1)
O(11)	2498(2)	5634(2)	5936(2)	28(1)
O(12)	1322(2)	5952(2)	4455(2)	22(1)
O(13)	-1469(2)	3612(2)	4326(1)	26(1)
C(1)	1464(2)	2518(2)	6278(2)	29(1)
C(2)	1258(3)	2273(2)	6810(2)	35(1)
C(3)	1663(3)	2335(3)	7392(3)	45(2)
C(4)	2292(3)	2644(3)	7452(3)	48(2)
C(5)	2512(3)	2889(3)	6941(3)	51(2)
C(6)	2095(3)	2839(3)	6360(3)	42(2)
C(7)	1378(3)	1835(2)	5087(2)	28(1)
C(8)	996(3)	1547(3)	4599(3)	42(2)
C(9)	1318(4)	1142(3)	4268(3)	54(2)
C(10)	2038(4)	1021(3)	4433(3)	60(2)
C(11)	2434(3)	1296(3)	4935(3)	60(2)
C(12)	2104(3)	1696(3)	5253(3)	42(2)
C(13)	-937(2)	2008(2)	45/1(2)	28(1)
C(14)	-1167(3)	1466(3)	4499(3)	54(2)
C(15)	-1283(4)	1214(3)	3919(3)	72(2)
C(16)	-1202(4)	1518(3)	3383(3)	60(2)
C(17)	-976(3)	2056(3)	3446(3)	42(2)
C(18)	-840(3)	2292(2)	4035(2)	35(1)
C(19)	-1256(3)	1998(2)	5936(2)	28(1)
C(20)	-964(3)	1624(2)	6388(3)	39(1)
C(21)	-1363(3)	1413(3)	6821(3)	50(2)
C(22)	-20/9(3)	1581(3)	6824(3)	53(2)
C(23)	-2579(5)	1949(3)	0378(3) 5045(2)	4/(2)
C(24)	-19/3(3)	2154(5)	5945(5) 2027(2)	38(2) 28(1)
C(25)	2450(3)	3411(2)	3937(2)	28(1)
C(20)	3040(3)	3707(2)	5792(5)	50(1)
C(27)	3/40(3) 2061/2)	3196(2)	4093(3)	42(2)
C(20)	3001(3) 2270(2)	3100(3) 2882(2)	4554(5)	40(2)
C(29)	3219(3) 2591(2)	2003(3)	4005(5)	40(2) 32(1)
C(30)	2301(3)	2774(2) 2062(2)	4391(2)	32(1) 28(1)
C(31)	1130(2) 1172(3)	2903(2) 2062(2)	2/(2)	20(1) 36(1)
C(32)	062(2)	2702(2)	2403(2)	JU(1) (12(2)
C(33)	702(3) 720(2)	2499(3)	2037(3)	43(2)
C(34) C(35)	120(3) 675(3)	2024(3)	2000(0)	41(2)
C(35)	0/3(3)	2023(3)	2732(3) 2206(2)	$\frac{44(2)}{27(1)}$
C(30)	87/(3)	2488(2) 4802(2)	2222(2)	$\frac{3}{(1)}$
C(3/)	887(3)	4892(2)	2322(2)	28(1)

C(38)	358(3)	4511(3)	2081(3)	40(2)
C(39)	-62(3)	4593(3)	1503(3)	42(2)
C(40)	34(3)	5050(3)	1156(3)	45(2)
C(41)	549(3)	5440(3)	1384(3)	46(2)
C(42)	961(3)	5362(2)	1965(2)	33(1)
C(43)	2449(3)	4991(2)	2852(2)	27(1)
C(44)	2666(3)	4894(3)	2270(2)	37(1)
C(45)	3330(3)	5060(3)	2120(3)	49(2)
C(46)	3802(3)	5335(3)	2556(3)	51(2)
C(47)	3613(3)	5444(3)	3134(3)	60(2)
C(48)	2943(3)	5266(3)	3283(3)	46(2)
C(49)	3402(2) 3164(3)	5008(2) 6147(2)	4970(2)	20(1) 30(1)
C(50)	3637(3)	6494(3)	4000(2)	30(1) 37(1)
C(51)	4364(3)	6361(3)	4400(2)	37(1) 38(1)
C(52)	4613(3)	5887(3)	4746(3)	42(2)
C(54)	4143(3)	5543(2)	5012(3)	33(1)
C(55)	3286(2)	4670(2)	5845(2)	27(1)
C(56)	3282(3)	4127(2)	5645(2)	31(1)
C(57)	3662(3)	3720(3)	6015(3)	37(1)
C(58)	4046(3)	3849(3)	6585(3)	42(2)
C(59)	4059(3)	4387(3)	6791(3)	52(2)
C(60)	3686(3)	4788(3)	6429(3)	43(2)
C(61)	-2939(2)	3239(2)	3966(2)	25(1)
C(62)	-3676(2)	3380(2)	3838(2)	30(1)
C(63)	-4214(3)	2997(3)	3886(3)	42(2)
C(64)	-4034(3)	2456(3)	4056(3)	55(2)
C(65)	-3311(3)	2311(3)	4186(3)	51(2)
C(66)	-2769(3)	2699(3)	4138(3)	38(1)
C(6)	-1983(3)	3//1(2)	30/1(2)	30(1)
C(68)	-2487(3)	3927(3)	2505(5)	40(2)
C(09)	-2320(4) 1670(4)	3693(3)	1937(3)	59(2)
C(71)	-1070(4) -1158(4)	3534(3)	2338(3)	54(2)
C(72)	-1310(3)	3577(3)	2941(3)	39(1)
O(14)	157(2)	4191(1)	6102(1)	22(1)
N(1)	872(2)	5077(2)	6038(2)	25(1)
N(2)	441(2)	4026(2)	7116(2)	35(1)
C(73)	508(2)	4317(2)	6630(2)	26(1)
C(74)	830(3)	4128(3)	7752(2)	47(2)
C(75)	1635(3)	4049(3)	7789(3)	52(2)
C(76)	2020(3)	4531(3)	7527(3)	52(2)
C(77)	1797(3)	4640(3)	6821(3)	40(2)
C(78)	1013(2)	4808(2)	6659(2)	28(1)
O(15)	3379(2)	1345(2)	1587(2)	59(1)
N(3)	4562(3)	1951(2)	1850(2)	38(1)
N(4)	2794(3)	1628(3)	2350(2)	53(2)
C(79)	33/6(3)	164/(3) 1064(2)	2041(2)	36(1) 50(2)
C(80)	2000(3)	1964(3)	2890(3)	59(2) 47(2)
C(81)	3922(3)	2160(3)	3439(3)	47(2) 47(2)
C(82)	4338(3)	1947(3)	2934(2)	41(2)
C(84)	3989(3)	2034(2)	2265(2)	31(1)
O(16)	1473(3)	4995(3)	10031(2)	83(2)
C(87)	1815(4)	4687(4)	10546(4)	81(3)
C(88A)	2416(9)	4417(7)	10362(8)	83(5)
C(89A)	2471(8)	4618(7)	9746(7)	84(5)
C(88B)	2086(12)	4146(9)	10199(10)	93(6)
C(89B)	1979(11)	4296(9)	9577(9)	89(6)
C(90)	1852(5)	4900(4)	9503(4)	87(3)
O(17)	772(2)	6577(2)	9436(2)	74(2)
C(91)	587(3)	6294(4)	9961(3)	67(2)
C(92)	-228(3)	6276(3)	9928(3)	62(2)
C(94)	206(4)	6972(4)	9277(4)	91(3)
C(93)	-474(4)	6720(4)	9439(4)	102(3)
C(95)	325(7)	533(6)	5684(6)	54(3)
C(90)	9/0(10)	455(9)	5999(9)	108(6)
C(97)	820(9)	30/(8) 19/(6)	0022(8) 6012(6)	91(5) 50(4)
O(18)	-110(7) 224(6)	104(0) 01(5)	6575(5)	39(4) 02(4)
0(10)	224(0)	91(3)	0373(3)	92(4)

$A_1(1) O(4)$	1 709(4)	C(22) C(23)	1 373(8)
AI(1)-O(4)	1.709(4)	C(22)- $C(23)$	1.373(8)
AI(1)-O(7)	1.712(3)	C(23)-C(24)	1.372(7)
AI(1)-O(2)	1 774(3)	C(25)-C(26)	1.388(7)
$A_{1}(1) O(1)$	1 709(4)	C(25) C(20)	1.405(7)
AI(1)-O(1)	1./88(4)	C(25)-C(30)	1.405(7)
Al(1)-Al(2)	2.757(2)	C(26)-C(27)	1.402(7)
$A_1(2) = O(3)$	1 861(3)	C(27) - C(28)	1 376(8)
A1(2) - O(3)	1.001(3)	C(27)- $C(20)$	1.370(0)
AI(2)-O(3)#1	1.861(3)	C(28)-C(29)	1.378(8)
Al(2)-O(2)	1.910(3)	C(29)-C(30)	1.390(7)
$A_1(2) = O(14)$	1 913(3)	C(31)- $C(32)$	1 385(7)
A1(2) - O(14)	1.915(3)	C(31)-C(32)	1.303(7)
AI(2)-O(1)	1.937(4)	C(31)-C(36)	1.392(7)
Al(2)-N(1)	2.080(5)	C(32)-C(33)	1.396(8)
A1(2) = A1(2) # 1	2 708(3)	C(33) C(34)	1 386(8)
AI(2)- $AI(2)$ #1	2.798(3)	C(33)-C(34)	1.560(8)
Al(3)-O(9)	1.707(3)	C(34)-C(35)	1.370(8)
$A_{1}(3)-O(3)$	1 738(3)	C(35)-C(36)	1414(8)
$A_1(2) O(10)$	1.757(2)	C(27) C(42)	1 201(7)
AI(5)-O(10)	1.737(3)	C(37)-C(42)	1.591(7)
Al(3)-O(12)	1.793(4)	C(37)-C(38)	1.396(7)
$A_{1}(4)-O(6)$	1.712(4)	C(38)- $C(39)$	1.397(7)
$A_1(4) O(12)$	1.720(2)	C(20) C(40)	1.2(1(0))
AI(4)-0(15)	1.720(5)	C(39)-C(40)	1.501(8)
Al(4)-O(2)	1.754(3)	C(40)-C(41)	1.385(8)
A1(4)-O(12)#1	1 792(4)	C(41)-C(42)	1.394(7)
	1.50((4)	C(12) C(12)	1.397(7)
51(1)-0(4)	1.390(4)	C(43)-C(48)	1.300(7)
Si(1)-O(5)	1.636(3)	C(43)-C(44)	1.391(7)
Si(1)-C(1)	1.855(5)	C(44)-C(45)	1 375(7)
$S_{1}(1) C(7)$	1.000(0)	C(45) C(46)	1.270(9)
SI(1)-U(7)	1.0/1(3)	U(43)-U(40)	1.570(8)
Si(2)-O(6)	1.595(4)	C(46)-C(47)	1.369(8)
Si(2)-O(5)	1 633(3)	C(47) - C(48)	1 393(7)
SI(2) O(3)	1.055(5)	C(40) C(50)	1.393(7)
S1(2)-C(13)	1.869(5)	C(49)-C(50)	1.388(7)
Si(2)-C(19)	1.870(5)	C(49)-C(54)	1.400(6)
Si(3)-O(7)	1 595(3)	C(50) - C(51)	1 386(7)
	1.602(4)	C(51) $C(51)$	1.300(7)
S1(3)-O(8)	1.622(4)	C(51)-C(52)	1.378(7)
Si(3)-C(25)	1.871(5)	C(52)-C(53)	1.369(8)
$S_{i}(3) - C(31)$	1.872(5)	C(53) - C(54)	1 384(7)
	1.501(2)		1.304(7)
S1(4)-O(9)	1.591(5)	C(55)-C(56)	1.382(7)
Si(4)-O(8)	1.633(4)	C(55)-C(60)	1.405(7)
Si(4)-C(37)	1.869(5)	C(56)-C(57)	1.396(7)
$S_{i}(A) - C(A3)$	1 871(5)	C(57) - C(58)	1 376(8)
SI(4) - C(43)	1.671(5)	C(57)-C(58)	1.370(0)
S1(5)-O(10)	1.620(3)	C(58)-C(59)	1.3/1(9)
Si(5)-O(11)	1.639(4)	C(59)-C(60)	1.375(8)
Si(5)-C(55)	1 874(5)	C(61)- $C(66)$	1 382(8)
$S_{1}(5) = C(40)$	1.079(5)	C(61) C(62)	1 400(6)
51(5)-C(49)	1.070(3)	C(01)-C(02)	1.400(0)
Si(6)-O(13)	1.585(3)	C(62)-C(63)	1.377(7)
Si(6)-O(11)#1	1.634(4)	C(63)-C(64)	1.386(9)
$S_{1}(6) C(67)$	1 969(5)	C(64) C(65)	1 279(9)
51(0)-C(07)	1.808(3)	C(04)-C(05)	1.376(8)
$S_1(6)-C(61)$	1.881(5)	C(65)-C(66)	1.390(8)
O(3)-Al(2)#1	1.861(3)	C(67)-C(68)	1.396(7)
O(11) Si(6)#1	1 634(4)	C(67) C(72)	1 307(7)
0(11)-31(0)#1	1.034(4)	C(07)- $C(72)$	1.397(7)
O(12)-AI(4)#1	1.791(4)	C(68)-C(69)	1.384(8)
C(1)-C(2)	1.393(7)	C(69)-C(70)	1.365(9)
C(1)- $C(6)$	1 395(7)	C(70)-C(71)	1 384(9)
C(2) $C(2)$	1 294(7)	C(71) C(72)	1 27(7)
C(2)-C(3)	1.384(7)	C(71)-C(72)	1.376(7)
C(3)-C(4)	1.378(8)	O(14)-C(73)	1.274(5)
C(4) - C(5)	1 363(8)	N(1) - C(78)	1 482(6)
	1.200(7)	N(2) C(72)	1.102(0)
C(3)-C(0)	1.390(7)	N(2)-C(73)	1.285(0)
C(7)-C(8)	1.380(7)	N(2)-C(74)	1.486(7)
C(7)-C(12)	1.388(7)	C(73)-C(78)	1.509(7)
C(8)- $C(9)$	1 393(8)	C(74) - C(75)	1 /08(8)
	1.395(8)	C(74)-C(75)	1.490(0)
C(9)-C(10)	1.308(9)	C(75)-C(76)	1.515(8)
C(10)-C(11)	1.396(9)	C(76)-C(77)	1.549(7)
C(11)- $C(12)$	1 377(8)	C(77) - C(78)	1 506(7)
C(11)- $C(12)$	1.377(0)		1.00(7)
C(13)-C(18)	1.379(7)	O(15)-C(79)	1.226(6)
C(13)-C(14)	1.380(8)	N(3)-C(84)	1.492(7)
C(14)-C(15)	1.386(9)	N(4)-C(79)	1.343(7)
C(15) C(16)	1 300(0)	N(4) C(80)	1 472(9)
	1.377(9)	$\Gamma(+) = C(00)$	1.4/2(8)
C(16)-C(17)	1.367(9)	C(79)-C(84)	1.503(8)
C(17)-C(18)	1.388(7)	C(80)-C(81)	1.499(8)
C(19)-C(24)	1 385(7)	C(81)-C(82)	1 503(8)
C(10) C(20)	1.206(7)	C(01) C(02)	1 400(7)
C(19)-C(20)	1.300(7)	U(02)-U(03)	1.490(7)
C(20)-C(21)	1.370(7)	C(83)-C(84)	1.519(7)
C(21)-C(22)	1.389(8)	O(16)-C(87)	1.417(9)

Tabelle 65: Bindungslängen [Å] und Winkel [°] für sh2892.

O(16) C(00)	1 429(9)	O(5) $S(1)$ $O(7)$	10(7(2))
O(16)-C(90)	1.438(8)	O(5)-S1(1)-C(7)	106.7(2)
C(87)-C(88A)	1.40(2)	C(1)-Si(1)-C(7)	109.6(2)
C(87)-C(88B)	1.62(2)	O(6)-Si(2)-O(5)	110.9(2)
C(88A)-C(89A)	1.44(2)	O(6)-Si(2)-C(13)	111.2(2)
C(89A)-C(90)	1.38(2)	O(5)-Si(2)-C(13)	107.7(2)
C(88B)-C(89B)	1.38(2)	O(6)-Si(2)-C(19)	109.7(2)
C(89B)-C(90)	1.48(2)	O(5)-Si(2)-C(19)	106.0(2)
O(17)-C(91)	1 407(8)	C(13)-Si(2)-C(19)	111.2(2)
O(17) - C(94)	1 428(9)	O(7)-Si(3)-O(8)	1131(2)
C(01) C(02)	1.504(8)	O(7) Si(3) $O(0)$	109.9(2)
C(02) C(02)	1.504(0)	O(8) S(3) - C(25)	105.5(2) 106.0(2)
C(92)- $C(93)$	1.33(1)	O(3)-SI(3)-C(23)	110.9(2)
C(94)-C(93)	1.49(1)	O(7)-S1(3)- $C(31)$	110.4(2)
C(95)-C(96)	1.31(2)	O(8)-S1(3)-C(31)	105.6(2)
C(95)-C(98)	1.43(2)	C(25)-Si(3)-C(31)	110.8(2)
C(96)-C(97)	1.42(2)	O(9)-Si(4)-O(8)	110.9(2)
C(97)-O(18)	1.29(2)	O(9)-Si(4)-C(37)	115.8(2)
C(98)-O(18)	1.32(2)	O(8)-Si(4)-C(37)	103.9(2)
		O(9)-Si(4)-C(43)	111.1(2)
O(4)-Al(1)-O(7)	111.3(2)	O(8)-Si(4)-C(43)	109.0(2)
O(4)-Al(1)-O(2)	115.1(2)	C(37)-Si(4)-C(43)	105.7(2)
O(7)-Al(1)-O(2)	113 5(2)	O(10)-Si(5)-O(11)	109 9(2)
O(4) - Al(1) - O(1)	115.4(2)	O(10) - Si(5) - C(55)	110 6(2)
O(7) $A(1)$ $O(1)$	112 4(2)	O(10) Si(5) C(55)	104.0(2)
O(7)-Al(1)- $O(1)$	97.2(2)	O(11) - SI(5) - C(35)	104.0(2)
O(2)-AI(1)- $O(1)$	07.3(2) 121.9(1)	O(10)-SI(5)-C(49) O(11) S(5) C(49)	115.7(2) 107.6(2)
O(4)-Al(1)-Al(2)	151.8(1)	O(11)-S1(5)-C(49)	107.6(2)
O(7)-AI(1)-AI(2)	116.9(1)	C(55)-S1(5)-C(49)	110.5(2)
O(2)-Al(1)-Al(2)	43.5(1)	O(13)-Si(6)-O(11)#1	110.5(2)
O(1)-Al(1)-Al(2)	44.4(1)	O(13)-Si(6)-C(67)	107.0(2)
O(3)-Al(2)-O(3)#1	82.5(1)	O(11)#1-Si(6)-C(67)	108.9(2)
O(3)-Al(2)-O(2)	102.8(1)	O(13)-Si(6)-C(61)	112.1(2)
O(3)#1-Al(2)-O(2)	96.4(1)	O(11)#1-Si(6)-C(61)	107.9(2)
O(3)-Al(2)-O(14)	170.3(2)	C(67)-Si(6)-C(61)	110.4(2)
O(3)#1-Al(2)-O(14)	94.6(1)	Al(1)-O(1)-Al(2)	95.4(2)
O(2)-Al(2)-O(14)	86.7(1)	Al(4)-O(2)-Al(1)	129.7(2)
O(3)-Al(2)-O(1)	92.8(2)	Al(4)-O(2)-Al(2)	124.4(2)
O(3)#1-Al(2)-O(1)	173.0(2)	Al(1)-O(2)-Al(2)	96.8(1)
O(2)-Al(2)-O(1)	79.4(1)	Al(3)-O(3)-Al(2)	133.3(2)
O(14)-Al(2)-O(1)	90 9(2)	Al(3)-O(3)-Al(2)#1	126 7(2)
O(3)-Al(2)-N(1)	924(2)	Al(2) - O(3) - Al(2) #1	97 5(1)
O(3)#1-Al(2)-N(1)	94 2(2)	Si(1)-O(4)-Al(1)	165.3(2)
O(2)-Al(2)-N(1)	162 5(2)	Si(2) - O(5) - Si(1)	1367(2)
O(14) - A(2) - N(1)	78 6(2)	Si(2) = O(6) = AI(4)	156.3(2)
O(1+)-A(2)-I(1) O(1)-A(2)-I(1)	91.2(2)	Si(2) O(0) Al(1)	150.5(2)
O(1) - AI(2) - II(1) O(2) - AI(2) - AI(1)	91.2(2) 05 2(1)	Si(3) - O(7) - Ai(1) Si(3) O(8) Si(4)	131.8(2)
O(3)-AI(2)-AI(1)	93.2(1) 124.7(1)	SI(3)-O(6)-SI(4) SI(4)-O(0)-A1(2)	144.0(2)
O(3)#1-AI(2)-AI(1)	134.7(1)	SI(4)-O(9)-AI(5)	103.8(2)
O(2)-AI(2)-AI(1)	39.72(9)	SI(5)-O(10)-AI(5)	141.7(2)
O(14)-AI(2)-AI(1)	93.4(1)	S1(6)#1-O(11)-S1(5)	146.4(2)
O(1)-AI(2)-AI(1)	40.2(1)	AI(4)#1-O(12)-AI(3)	127.5(2)
N(1)-Al(2)-Al(1)	131.1(2)	Si(6)-O(13)-Al(4)	153.7(2)
O(3)-Al(2)-Al(2)#1	41.3(1)	C(2)-C(1)-C(6)	116.7(5)
O(3)#1-Al(2)-Al(2)#1	41.3(1)	C(2)-C(1)-Si(1)	121.1(4)
O(2)-Al(2)-Al(2)#1	102.8(1)	C(6)-C(1)-Si(1)	122.1(4)
O(14)-Al(2)-Al(2)#1	135.1(1)	C(3)-C(2)-C(1)	122.0(5)
O(1)-Al(2)-Al(2)#1	133.9(1)	C(4)-C(3)-C(2)	119.6(5)
N(1)-Al(2)-Al(2)#1	94.4(2)	C(5)-C(4)-C(3)	120.1(5)
Al(1)-Al(2)-Al(2)#1	121.90(8)	C(4)-C(5)-C(6)	120.3(6)
O(9)-Al(3)-O(3)	115.3(2)	C(5)-C(6)-C(1)	121.3(5)
O(9)-Al(3)-O(10)	114.2(2)	C(8)-C(7)-C(12)	117.2(5)
O(3)-Al(3)-O(10)	109.6(2)	C(8)-C(7)-Si(1)	121.3(4)
O(9)-Al(3)-O(12)	107.9(2)	C(12)-C(7)-Si(1)	121.5(4)
O(3)-Al(3)-O(12)	103.2(2)	C(7)-C(8)-C(9)	122.4(5)
O(10)-Al(3)-O(12)	105.7(2)	C(10)-C(9)-C(8)	119.2(6)
O(6)-A(4)-O(13)	110.8(2)	C(9)- $C(10)$ - $C(11)$	1197(6)
O(6)-A(4)-O(2)	114 9(2)	C(12)-C(11)-C(10)	120 0(6)
O(13)-A(4)-O(2)	109 7(2)	C(11) - C(12) - C(7)	121 5(6)
O(6)-A(4)-O(12)#1	105.7(2)	C(12) - C(12)	1167(5)
$O(13)_{A}(4)_{O(12)\#1}$	106.3(2)	C(13) = C(13) = C(14)	122.2(A)
$O(2)_{-}\Delta I(A)_{-}O(12)\#1$	107.7(2)	C(13) = C(13) = S(2)	122.2(7) 120.0(4)
O(2) - Ai(4) - O(12) = 1 O(4) - Si(1) O(5)	107.7(2) 111 8(2)	C(14) - C(13) - O(12) C(13) - C(14) - C(15)	120.9(4)
O(4) = O(3)	111.0(2) 111.7(2)	C(13)-C(14)-C(13)	121.7(0)
O(4)-O(1)-O(1)	111./(2)	C(14)-C(15)-C(10)	119.0(/)
O(3)-SI(1)-U(1)	100.9(2)	C(17)-C(10)-C(15)	110.9(0)
O(4)-SI(1)-C(7)	109.9(2)	C(10)-C(17)-C(18)	119.8(0)

C(13)- $C(18)$ - $C(17)$	122 7(6)	C(71)- $C(72)$ - $C(67)$	121 1(6)
	1122.7(0)		121.1(0)
C(24)-C(19)-C(20)	117.0(5)	C(73)-O(14)-AI(2)	121.3(3)
C(24)-C(19)-Si(2)	120.3(4)	C(78)-N(1)-Al(2)	113.0(3)
C(20) C(10) S(2)	120.5(1)	C(72) N(2) C(74)	125.4(5)
C(20)-C(19)-S1(2)	122.0(4)	C(73)-N(2)-C(74)	125.4(5)
C(21)-C(20)-C(19)	122.0(5)	O(14)-C(73)-N(2)	120.6(5)
C(20) C(21) C(22)	110.0(6)	O(14) C(72) C(79)	1177(4)
C(20)- $C(21)$ - $C(22)$	119.9(6)	O(14)-C(73)-C(78)	11/./(4)
C(23)-C(22)-C(21)	119.0(5)	N(2)-C(73)-C(78)	121.6(4)
	100.2(5)	N(2) = O(74) = O(75)	110 ((7)
C(24)-C(23)-C(22)	120.3(5)	N(2)-C(74)-C(75)	112.6(5)
C(23)-C(24)-C(19)	121 8(6)	C(74)-C(75)-C(76)	113 5(5)
C(25) C(24) C(17)	121.0(0)	e(74) e(75) e(70)	115.5(5)
C(26)-C(25)-C(30)	117.3(5)	C(75)-C(76)-C(77)	115.0(5)
C(26)-C(25)-Si(3)	122.2(4)	C(78) - C(77) - C(76)	113.4(4)
C(20) C(25) BI(5)	122.2(4)	e(10) e(11) e(10)	113.4(4)
C(30)-C(25)-Si(3)	120.5(4)	N(1)-C(78)-C(77)	112.1(4)
C(25)-C(26)-C(27)	121 2(5)	N(1)-C(78)-C(73)	105.9(4)
C(25) C(20) C(27)	121.2(5)	11(1) C(70) C(75)	105.7(+)
C(28)-C(27)-C(26)	120.2(5)	C(77)-C(78)-C(73)	111.9(5)
C(27) - C(28) - C(29)	110 7(5)	C(79) - N(4) - C(80)	127 8(6)
C(27)- $C(20)$ - $C(27)$	117.7(5)	$C(7)^{-1}(4)^{-}C(00)$	127.8(0)
C(28)-C(29)-C(30)	120.2(6)	O(15)-C(79)-N(4)	118.0(5)
C(29) - C(30) - C(25)	121 3(5)	O(15) - C(79) - C(84)	122 9(5)
C(2))- $C(30)$ - $C(23)$	121.5(5)	0(13)-C(77)-C(04)	122.7(3)
C(32)-C(31)-C(36)	117.6(5)	N(4)-C(79)-C(84)	119.1(5)
C(32)-C(31)-Si(3)	122 A(A)	N(4) - C(80) - C(81)	114 3(5)
C(32)-C(31)-31(3)	122.4(4)	1((4)-C(00)-C(01)	114.5(5)
C(36)-C(31)-Si(3)	119.8(4)	C(80)-C(81)-C(82)	114.6(5)
C(31)- $C(32)$ - $C(33)$	121 6(6)	C(83)-C(82)-C(81)	115 5(5)
C(31)- $C(32)$ - $C(33)$	121.0(0)	C(05)-C(02)-C(01)	115.5(5)
C(34)-C(33)-C(32)	120.5(5)	C(82)-C(83)-C(84)	116.1(5)
C(35)-C(34)-C(33)	118 8(6)	N(3)-C(84)-C(70)	107 1(4)
	110.0(0)		107.1(4)
C(34)-C(35)-C(36)	120.8(6)	N(3)-C(84)-C(83)	107.9(4)
C(31)- $C(36)$ - $C(35)$	120 7(5)	C(79)- $C(84)$ - $C(83)$	115 3(5)
	120.7(3)		113.3(3)
C(42)-C(37)-C(38)	116.6(5)	C(87)-O(16)-C(90)	109.0(6)
C(42)- $C(37)$ - $Si(4)$	120 5(4)	C(88A) = C(87) O(16)	108 3(8)
$C(\tau_2)^{-}C(37)^{-}SI(4)$	120.3(4)	C(00A)-C(07)-O(10)	100.5(0)
C(38)-C(37)-Si(4)	122.4(4)	C(88A)-C(87)-C(88B)	35.0(9)
C(39) $C(38)$ $C(37)$	121 5(6)	O(16) C(87) C(88B)	101 2(0)
C(39)-C(30)-C(37)	121.3(0)	O(10) - C(07) - C(00D)	101.2(9)
C(40)-C(39)-C(38)	120.7(6)	C(87)-C(88A)-C(89A)	105(1)
C(39) - C(40) - C(41)	119 5(6)	C(90) - C(89A) - C(88A)	111(1)
	117.5(0)		111(1)
C(40)-C(41)-C(42)	119.8(6)	C(89B)-C(88B)-C(87)	103(2)
C(37) - C(42) - C(41)	121 9(5)	C(88B) - C(80B) - C(90)	111(2)
C(37) - C(42) - C(41)	121.9(3)	C(00D)-C(0)D)-C(00)	111(2)
C(48)-C(43)-C(44)	116.3(5)	C(89A)-C(90)-O(16)	104.3(9)
C(48) C(43) Si(4)	122 5(4)	C(80 A) C(00) C(80 B)	50(1)
C(+0)-C(+3)-31(+)	122.3(4)	C(0)A)-C(0)D)	50(1)
C(44)-C(43)-Si(4)	121.1(4)	O(16)-C(90)-C(89B)	99(1)
C(45) C(44) C(43)	122 7(5)	C(01) O(17) C(04)	105 6(6)
C(43) - C(44) - C(43)	122.7(5)	C(91)-O(17)-C(94)	105.0(0)
C(46)-C(45)-C(44)	119.4(5)	O(17)-C(91)-C(92)	109.2(6)
CUS CUG CUT	120 2(5)	C(01) $C(02)$ $C(02)$	102 6(6)
C(43)-C(40)-C(47)	120.2(3)	C(91)-C(92)-C(93)	102.0(0)
C(46)-C(47)-C(48)	119.8(6)	O(17)-C(94)-C(93)	106.8(7)
C(43) C(48) C(47)	121 6(5)	C(94) $C(93)$ $C(92)$	105 4(6)
C(43)-C(40)-C(47)	121.0(3)	C(94)-C(93)-C(92)	105.4(0)
C(50)-C(49)-C(54)	116.9(5)	C(96)-C(95)-C(98)	102(1)
C(50) C(40) S(5)	121 2(2)	C(50) C(55) C(50)	102(1)
C(30)-C(49)-SI(3)	121.3(3)	C(95)-C(96)-C(97)	104(2)
C(54)-C(49)-Si(5)	121.6(4)		
C(51) C(50) C(40)	121 0(5)	O(18)-C(97)-C(96)	106(2)
C(31)-C(30)-C(49)	121.9(3)		100(1)
C(52)-C(51)-C(50)	119.8(6)	O(18)-C(98)-C(95)	109(1)
C(53) $C(52)$ $C(51)$	110 6(5)	C(07) O(19) C(09)	107(1)
	117.0(3)	C(97) - O(10) - C(90)	107(1)
C(52)-C(53)-C(54)	120.6(5)		
C(53)-C(54)-C(40)	121 2(5)		
	121.2(3)		
C(56)-C(55)-C(60)	117.0(5)		
C(56)-C(55)-Si(5)	123.9(4)		
C(60) $C(55)$ $S'(5)$	110 1/4		
C(00) - C(33) - S1(3)	119.1(4)		
C(55)-C(56)-C(57)	120.5(5)		
C(59) $C(57)$ $C(56)$	121 0(6)		
C(38) - C(37) - C(30)	121.0(0)		
C(59)-C(58)-C(57)	119.4(6)		
C(59) $C(50)$ $C(60)$	110.0(6)		
C(38) - C(39) - C(00)	119.9(0)		
C(59)-C(60)-C(55)	122.2(6)		
C(66) C(61) C(62)	117 8(5)		
C(00)-C(01)-C(02)	117.0(3)		
C(66)-C(61)-Si(6)	120.6(4)		
C(62)-C(61) Si(6)	121 6(4)		
2(02)-2(01)-31(0)	121.0(4)		
C(63)-C(62)-C(61)	121.3(6)		
C(62)-C(63) C(64)	120 2(5)		
	120.2(3)		
C(65)-C(64)-C(63)	119.3(5)		
C(64)-C(65) C(66)	120 4(6)		
C(0+)-C(03)-C(00)	120.4(0)		
C(61)-C(66)-C(65)	121.0(5)		
C(68) - C(67) - C(72)	117 1(5)		
	11/.1(3)		
C(68)-C(67)-Si(6)	122.9(4)		
C(72)-C(67) Si(6)	110 7(4)		
C(12)- $C(01)$ - $SI(0)$	117./(4)		
C(69)-C(68)-C(67)	121.5(6)		
C(70)-C(60) C(68)	120 2(6)		
C(10)-C(09)-C(08)	120.2(0)		
C(69)-C(70)-C(71)	119.7(6)		
C(72)-C(71)-C(70)	120 4(6)		
C(12) C(11) C(10)	120.4(0)		

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+1

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
<u></u>	15(1)	24(1)	22/1)	1(1)	2(1)	2(1)
AI(1)	15(1)	24(1)	22(1)	I(1)	2(1)	2(1)
AI(2)	12(1) 12(1)	24(1)	19(1)	0(1) 1(1)	-1(1)	0(1) 1(1)
AI(3)	13(1) 14(1)	24(1) 22(1)	22(1) 24(1)	1(1) 1(1)	2(1) 0(1)	1(1) 2(1)
AI(4) Si(1)	14(1) 10(1)	22(1) 25(1)	24(1) 28(1)	-1(1)	0(1) 1(1)	-2(1)
SI(1)	19(1) 10(1)	25(1)	20(1)	3(1)	1(1) 2(1)	2(1) 1(1)
SI(2) Si(3)	$\frac{19(1)}{21(1)}$	23(1) 20(1)	30(1) 23(1)	1(1) 0(1)	$\frac{2(1)}{4(1)}$	-1(1) 2(1)
Si(3) Si(4)	21(1) 22(1)	29(1) 28(1)	23(1) 23(1)	0(1)	4(1)	2(1) 0(1)
Si(5)	14(1)	28(1)	29(1)	0(1)	-2(1)	0(1)
Si(6)	17(1)	28(1)	23(1)	-2(1)	0(1)	-2(1)
O(1)	12(2)	28(2)	25(2)	1(2)	1(1)	-2(2)
O(2)	13(1)	23(2)	16(2)	0(1)	-1(1)	2(1)
O(3)	13(2)	24(2)	21(2)	-2(2)	0(1)	0(1)
O(4)	18(2)	25(2)	29(2)	5(2)	0(1)	2(1)
O(5)	19(2)	26(2)	33(2)	2(2)	1(1)	2(1)
O(6)	20(2)	26(2)	31(2)	1(2)	3(1)	0(1)
O(7)	23(2)	32(2)	25(2)	0(2)	2(1)	3(2)
O(8)	26(2)	25(2)	27(2)	-1(2)	7(1)	-2(2)
O(9)	25(2)	31(2)	29(2)	-5(2)	8(2)	-1(2)
O(10)	13(2)	24(2)	29(2)	2(2)	-2(1)	0(1)
O(11)	24(2)	29(2)	31(2)	0(2)	3(2)	-3(2)
0(12)	16(2)	28(2)	21(2)	4(2)	4(1)	0(1)
O(13)	16(2)	35(2)	26(2)	-4(2)	-3(1)	0(2)
C(1)	22(2)	32(4) 27(4)	33(3)	3(3)	-2(2)	2(2)
C(2)	50(5)	57(4)	37(3) 31(3)	7(5) 13(3)	0(2) 1(3)	-2(2)
C(3)	38(3)	65(5)	37(3)	10(3)	-1(3)	-1(3)
C(4)	40(3)	68(5)	41(4)	-3(4)	-5(3)	-17(3)
C(6)	36(3)	56(5)	32(3)	9(3)	1(3)	-12(3)
C(7)	26(3)	27(3)	32(3)	3(2)	3(2)	-1(2)
C(8)	37(3)	42(4)	48(4)	-2(3)	5(3)	9(3)
C(9)	62(4)	47(5)	52(4)	-9(4)	2(3)	10(3)
C(10)	66(5)	45(5)	76(5)	-4(4)	31(4)	23(4)
C(11)	40(4)	64(6)	78(5)	-4(4)	11(4)	19(3)
C(12)	29(3)	40(4)	57(4)	-6(3)	7(3)	5(3)
C(13)	18(2)	29(3)	35(3)	-1(3)	-2(2)	2(2)
C(14)	66(4)	58(5)	40(4)	-6(3)	8(3)	-19(4)
C(15)	109(6)	50(5)	56(5)	-16(4)	13(4)	-36(4)
C(10) C(17)	40(3)	/1(0)	39(4)	-13(4)	0(3)	-10(4)
C(17)	40(3) 37(3)	$\frac{47(3)}{31(4)}$	37(3)	-1(3)	1(3) 5(2)	3(3)
C(18)	27(3)	24(3)	33(3)	-2(3)	3(2) 2(2)	-5(2)
C(20)	34(3)	33(4)	53(4)	16(3)	12(3)	5(3)
C(21)	55(4)	45(5)	53(4)	17(3)	11(3)	-2(3)
C(22)	52(4)	57(5)	53(4)	8(4)	22(3)	-15(3)
C(23)	30(3)	63(5)	50(4)	7(4)	11(3)	-8(3)
C(24)	24(3)	53(4)	38(3)	5(3)	5(2)	-5(3)
C(25)	27(3)	31(3)	26(3)	-5(2)	4(2)	5(2)
C(26)	25(3)	41(4)	42(3)	0(3)	10(2)	-1(2)
C(27)	23(3)	55(5)	48(4)	-3(3)	6(3)	0(3)
C(28)	24(3)	49(4)	44(3)	-12(3)	-1(3)	8(3)
C(29)	35(3)	43(4)	40(3)	-2(3)	1(3)	10(3)
C(30)	26(3)	37(4)	31(3)	-4(3)	1(2)	-1(2)
C(31)	20(2)	52(5) 28(4)	31(3)	1(2)	5(2)	4(2)
C(32)	35(3)	38(4)	36(3)	-2(3)	5(2)	-2(3)
C(33)	41(3) 20(3)	30(3) 45(4)	50(5) 48(4)	-12(3)	0(3)	-2(3)
C(34)	29(3)	40(4)	+0(4) 54(4)	-2(3)	9(3)	-4(3)
C(36)	34(3)	42(4)	37(3)	0(3)	10(3)	-7(3)
C(37)	27(3)	37(4)	22(3)	-3(2)	4(2)	2(2)
C(38)	39(3)	44(4)	36(3)	6(3)	-4(3)	-6(3)
C(39)	40(3)	47(4)	36(3)	1(3)	-10(3)	-5(3)
C(40)	44(3)	54(5)	33(3)	2(3)	-3(3)	4(3)
C(41)	46(4)	52(5)	37(3)	9(3)	-5(3)	7(3)

Tabelle 66: Anisotropische Auslenkungsaparameter (Å x 10³) für sh2829. Der anisotropische Exponentfaktor des Auslenkungsparameterlautet: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

C(42)	32(3)	35(4)	32(3)	1(3)	-1(2)	-3(2)
C(43)	29(3)	25(3)	27(3)	1(2)	6(2)	3(2)
C(44)	29(3)	50(4)	32(3)	-5(3)	7(2)	-4(3)
C(45)	46(4)	56(5)	48(4)	-5(3)	19(3)	-2(3)
C(46)	29(3)	64(5)	62(4)	-3(4)	13(3)	-8(3)
C(47)	35(3)	81(6)	65(5)	-26(4)	9(3)	-22(3)
C(48)	35(3)	64(5)	40(3)	-20(3)	8(3)	-15(3)
C(49)	18(2)	32(3)	29(3)	-8(2)	1(2)	-7(2)
C(50)	21(2)	39(4)	30(3)	-1(3)	4(2)	-3(2)
C(51)	36(3)	39(4)	36(3)	5(3)	6(2)	-4(3)
C(52)	24(3)	47(4)	45(3)	-1(3)	10(2)	-11(3)
C(53)	19(3)	50(4)	57(4)	-3(3)	7(3)	-3(3)
C(54)	22(3)	31(4)	47(3)	-2(3)	5(2)	-3(2)
C(55)	17(2)	34(4)	29(3)	1(3)	-4(2)	0(2)
C(56)	26(3)	38(4)	29(3)	-3(3)	3(2)	4(2)
C(57)	33(3)	35(4)	44(3)	5(3)	8(3)	10(3)
C(58)	33(3)	51(5)	42(3)	11(3)	1(3)	13(3)
C(59)	45(4)	58(5)	45(4)	3(4)	-22(3)	11(3)
C(60)	38(3)	40(4)	43(3)	-10(3)	-17(3)	0(3)
C(61)	19(2)	34(3)	20(2)	-2(2)	1(2)	-1(2)
C(62)	20(2)	37(4)	32(3)	-8(3)	0(2)	-3(2)
C(63)	23(3)	60(5)	43(3)	-6(3)	3(2)	-9(3)
C(64)	38(3)	64(5)	61(4)	11(4)	-3(3)	-27(3)
C(65)	47(4)	39(4)	64(4)	17(4)	-4(3)	-10(3)
C(66)	28(3)	41(4)	43(3)	4(3)	-6(2)	-4(3)
C(67)	29(3)	32(3)	28(3)	-1(2)	1(2)	-7(2)
C(68)	38(3)	66(5)	32(3)	7(3)	0(3)	-5(3)
C(69)	54(4)	93(6)	29(3)	2(4)	0(3)	-26(4)
C(70)	81(5)	81(6)	31(3)	-15(4)	21(4)	-39(4)
C(71)	55(4)	66(5)	47(4)	-8(4)	24(3)	-13(4)
C(72)	36(3)	48(4)	34(3)	-5(3)	13(3)	-3(3)
O(14)	16(2)	28(2)	22(2)	1(2)	-1(1)	-2(1)
N(1)	19(2)	29(3)	28(2)	2(2)	2(2)	-3(2)
N(2)	32(2)	46(3)	25(2)	7(2)	-4(2)	-12(2)
C(73)	18(2)	36(3)	23(3)	-1(2)	-1(2)	-1(2)
C(74)	47(4)	63(5)	29(3)	10(3)	-2(3)	-13(3)
C(75)	39(3)	71(5)	41(3)	23(4)	-16(3)	-1(3)
C(76)	36(3)	64(5)	50(4)	24(4)	-15(3)	-9(3)
C(77)	24(3)	52(4)	43(3)	9(3)	-1(2)	-3(3)
C(78)	26(3)	37(4)	20(2)	3(2)	-2(2)	-8(2)
O(15)	61(3)	72(4)	47(3)	-28(3)	22(2)	-27(2)
N(3)	32(3)	44(4)	40(3)	-2(3)	7(2)	-1(2)
N(4)	28(3)	88(5)	42(3)	-16(3)	1(2)	2(3)
C(79)	40(3)	41(4)	26(3)	-5(3)	5(2)	3(3)
C(80)	39(3)	96(6)	42(4)	-18(4)	2(3)	25(4)
C(81)	40(3)	62(5)	41(3)	-9(3)	9(3)	5(3)
C(82)	51(4)	56(5)	34(3)	-8(3)	5(3)	-2(3)
C(83)	37(3)	45(4)	39(3)	-1(3)	-2(3)	-1(3)
C(84)	35(3)	25(3)	33(3)	-2(3)	-3(2)	5(2)
O(16)	79(4)	101(5)	65(3)	-5(3)	-2(3)	29(3)
C(87)	73(5)	104(8)	64(5)	5(5)	1(4)	-34(5)
C(90)	97(6)	106(8)	57(5)	7(5)	4(5)	34(6)
O(17)	56(3)	96(5)	70(3)	11(3)	0(3)	4(3)
C(91)	53(4)	95(7)	51(4)	2(4)	-3(3)	-4(4)
C(92)	49(4)	76(6)	60(4)	0(4)	-1(3)	8(4)
C(94)	54(5)	98(8)	110(7)	37(6)	-31(5)	0(5)
C(93)	71(6)	156(10)	77(6)	37(6)	8(5)	48(6)

Tabelle 67: Koordinaten des Wasserstoffs ($x \ 10^4$) und isotrope Auslenkungsparameter (Å² $x \ 10^3$) für sh2892.

	X	У	Z	U(eq)
H(1)	1510(20)	4270(19)	5217(19)	3(12)
H(2)	1400(30)	6100(20)	4130(20)	38(17)
H(2)	827	2058	6773	42
H(3)	1507	2165	7748	55
H(4)	2572	2687	7850	58
H(5)	2952	3095	6983	61
H(6)	2243	3027	6012	50
H(8)	495	1627	4484	51
H(9)	1041	953	3932	65

H(10)	2268	750	4207	72
H(11)	2931	1207	5058	72
H(12)	2379	1881	5593	50
H(14)	-1248	1260	4858	65
H(15)	-1418	834	3886	86
H(16)	-1302	1354	2981	72
H(17)	-911	2268	3087	50
H(18)	-675	2664	4071	42
H(20)	-472	1512	6397	47
H(21)	-1152	1151	7120	61
H(22)	-2356	1444	7130	63
H(23)	-2871	2061	6369	56
H(24)	-2188	2412	5643	46
H(26)	2977	3987	3482	43
H(27)	4147	3813	3996	50
H(28)	4338	3109	4734	48
H(29)	3356	2597	4986	48
H(30)	2184	2784	4500	38
H(32)	1336	3283	2211	43
H(33)	984	2509	1601	51
H(34)	587	1706	2058	49
H(35)	492	1705	3118	52
H(36)	873	2477	3741	45
H(38)	283	4188	2315	48
H(39)	-419	4327	1350	51
H(40)	-248	5101	760	54
H(41)	620	5761	1145	55
H(42)	1303	5637	2121	40
H(44)	2342	4704	1964	44
H(45)	3460	4985	1719	58
H(46)	4262	5451	2457	61
H(47)	3937	5641	3433	72
H(17) H(48)	2822	5334	3689	55
H(50)	2663	6241	4620	36
H(50)	3461	6823	4020	44
H(51) H(52)	4690	6597	4121	46
H(52)	5113	5792	4200	40 50
H(53)	/326	5217	5223	30 40
H(56)	3010	4020	5223	40
H(50)	3655	4029	5870	11
H(57) H(59)	4200	2560	6825	51
H(50)	4299	3309	7192	51
H(59)	4520	5159	6578	51
H(60)	3099	2749	2715	26
H(02)	-3800	2104	2804	51
$\Pi(03)$	-4/10	2180	3604	51
H(04)	-4404	2169	4082	60
H(05)	-3185	1945	4310	62 46
H(00)	-2275	2391	4224	40
H(68)	-2950	4060	2034	55 71
H(69)	-26/4	4010	1620	/1
H(70)	-1565	3658	1427	/6
H(/1)	-/00	3396	2259	65
H(72)	-951	34/3	3276	4/
H(3)	570(30)	5320(20)	6070(20) 5020(20)	39(18)
H(4)	1280(30)	5220(30)	5930(30)	52(19)
H(4)	100(30)	3640(30)	6990(30)	57(18)
H(5)	790(40)	3680(30)	6860(30)	90(20)
H(/4A)	640	38/3	8050	56
H(74B)	731	4511	7880	56
H(/5A)	1/30	3709	/556	62
H(/5B)	1842	3993	8230	62
H(/6A)	2550	4463	7602	62
H(76B)	1922	4870	7759	62
H(//A)	2111	4936	6686	48
H(//B)	1885	4300	6586	48
H(/8)	884	5072	6982	34
H(6)	4910(30)	2290(30)	1920(30)	60(20)
H(7)	4400(40)	1830(40)	1440(40)	120(30)
H(8)	2330(30)	1500(30)	2240(30)	60(20)
H(80A)	2167	1870	2995	71
H(80B)	2648	2359	2769	71
H(81A)	3282	1485	3529	57
H(81B)	2994	2035	3824	57
H(82A)	3840	2561	3359	57
H(82B)	4226	2115	3837	57
H(83A)	4417	1545	3001	49
H(83B)	4821	2126	2987	49

H(84)	3808	2424	2218	37
H(87A)	1972	4937	10901	97
H(87B)	1470	4413	10680	97
H(88A)	2343	4011	10357	99
H(88B)	2862	4505	10650	99
H(89A)	2896	4868	9762	101
H(89B)	2550	4303	9471	101
H(88C)	2605	4067	10342	112
H(88D)	1792	3817	10274	112
H(89C)	1555	4093	9361	107
H(89D)	2411	4191	9381	107
H(90A)	1553	4675	9182	105
H(90B)	1976	5254	9313	105
H(91A)	801	6485	10347	80
H(91B)	783	5912	9969	80
H(92A)	-383	6368	10336	75
H(92B)	-422	5908	9793	75
H(94A)	156	7058	8826	110
H(94B)	316	7319	9514	110
H(93A)	-758	6552	9066	122
H(93B)	-778	7002	9612	122
H(95A)	311	416	5244	65
H(95B)	174	925	5698	65
H(96A)	1283	784	5973	130
H(96B)	1211	129	5841	130
H(97A)	1226	155	6862	109
H(97B)	775	725	6835	109
H(98A)	-590	366	6040	71
H(98B)	-212	-170	5786	71