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Zusammenfassung

Kolloidale Kristalle können neuartige Eigenschaften aus der Kombination von Partikeleigen-

schaften und kollektiven Phänomenen der Partikelpackung aufweisen. Besondere Bedeu-

tung kommen kolloidalen Kristallen aus Nanopartikeln zu, wegen den außergewöhnlichen

Eigenschaften von nanoskaligen Objekten und wegen der Bildung von dreidimensionalen

Strukturen auf Größenordnungen, die mit etablierten Methoden nur mit großem techni-

schem Aufwand herzustellen sind.

Ziel dieser Arbeit war es, geeignete Wege zur Herstellung der Kristalle zu entwickeln.

Es wurden zwei Ansätze gewählt. Im ersten Ansatz wurden Kolloidpartikel in einem dem

Tauchbeschichten ähnlichen Verfahren auf Oberflächen aufgebracht. Es gelang, durch

Optimieren der Abscheidegeometrie großflächig kristalline Partikelfilme mit geringer De-

fektdichte aufzubringen. Im zweiten Ansatz wurden attraktive Wechselwirkungen zwischen

den Partikeln genutzt, um durch Reduzieren der thermischen Energie ein Agglomerieren

der Partikel herbeizuführen. Dieser Ansatz erlaubte es, ein breites Spektrum an Partikel-

strukturen herzustellen. Neben dem erwarteten Ergebnis, der Ausbildung hexagonaler

Partikelpackungen, führten die Ansätze auch zu unerwarteten Ergebnissen. So wurde im

ersten Ansatz eine Überlagerung von zwei Kristallisationsmechanismen, die eine robuste

Ausbildung von hexagonalen Partikelpackungen sicherstellten, im zweiten Ansatz das Aus-

bleiben von hexagonaler Ordnung bei rein thermischer Agglomeration gefunden.
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Abstract

Colloidal crystals can exhibit novel properties arising from the combination of particle

properties and collective phenomena of particle packings. Particular colloidal crystals

composed of nanoparticles are interesting, because of the unique properties of nanoscale

objects, and because of the formation of three-dimensional structures on scales that can be

manufactured using established methods only with great technical effort.

The aim of this work was to develop appropriate ways to produce the crystals. Two ap-

proaches were chosen. In the first approach, colloid particles were deposited on surfaces in

a process similar to dip coating. Large-area crystalline particle films with low defect density

were obtained by an optimized deposition geometry. In the second approach attractive inter-

actions between particles were used. Reducing the thermal energy induced agglomeration

of the particles. This approach allowed production of a variety of particle structures. Besides

the expected result, formation of hexagonal particle packings, unexpected results were

obtained. In the first approach a superposition of two crystallization mechanisms ensured

a robust formation of hexagonal particle packings. In the second approach crystallization

among the particles was suppressed in a pure thermally induced agglomeration.
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Part I.

Introduction
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1. Motivation

Crystals made out of colloidal nanoparticles (fig. 1.1 a, b) introduce novel functionalities to

condensed matter: their properties stem both from properties of individual nanoparticles

and from collective properties. Examples for nanoparticle properties contributing to the

functionality of colloidal crystals are plasmon frequencies of metal nanoparticles, band

gap tuning in semiconducting nanoparticles and superparamagnetic behavior of magnetic

nanoparticles.1, 2 Examples for the collective properties are photonic bandgaps due to the

three-dimensional periodicity on the order of the wavelength of light3, 4 and the generation

of minibands as collective states of ordered arrays of quantum dots,5 but also selectively

electric or thermal conductivity due to the high connectivity in close-packed structures.

The recent availability of nanoparticles with narrow shape, size and composition dispersity

nourishes the fast introduction of colloidal crystals into applications such as optical circuits,

photovoltaics and thermoelectrics.

The production of functional materials using nanoparticles as building blocks requires a

paradigm shift. In a conventional approach each particle would be positioned like a brick

in a wall. Instruments like optic tweezers or scanning probe microscopes can provide this

precision. However, even if it would take only a tenth of a second to put a single particle in

its place, it would take more than 900 years to fill a square centimeter with a monolayer of

hexagonally packed nanoparticles with a radius of 10 nm. Practical production of colloidal

crystals thus can only proceed through self-assembly of the particles. This initiated a search

for suitable approaches and conditions to induce self-assembly of particles in the past

decade. In a long-term perspective even complex structures like conducting paths and

transistors can be expected to be fabricated from particles by self-assembly. Self-assembly

could then be used to support established technology in the generation of nanostructures.

However, the application of crystals made out of colloidal nanoparticles is limited today

by several factors. Reproducible preparation of large crystals beyond tens of micrometers

with controlled dimensions and small packing defect densities remain challenging. Con-

trolling the morphology of colloidal crystals and their placement, important factors for

device integration, also are not yet solved tasks. The problems with optimization of crystal
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1. Motivation

formation arise from the limited access to in-situ information on the crystallization process

and, to some extent, from uncertainties about the dominant interaction among the particles.

Consequently, the fundamental questions to be solved in research on crystallization of

nanoscaled colloids are: how can large defect-free colloidal crystals with defined dimensions

be grown, and how can structure formation be controlled beyond dense packing of hard

spheres? Growing colloidal crystals by rational choice of external conditions into defined

morphologies might render colloidal self-assembly a competitor to techniques such as

lithography or molding. The example of a snowflake (fig. 1.1 c) suggests that complex

structures are not only defined by the minimal free energy of the constituting objects but

also by the kinetics of the assembly process, which can be set by external conditions like

temperature and humidity.

Two approaches are used in this work to tackle formation of high quality colloidal crystals

from nanoparticles and investigate structure formation beyond close-packing. The first is

an approach proven applicable to large colloidal particles with several hundred nanometer

diameter. The particles assemble in a convective fluid stream. This technique is first opti-

mized to form high quality large-area crystalline packings. Subsequently, the crystallization

process is observed in-situ with light microscopy to develop a detailed understanding of the

crystallization mechanism and to predict parameters for the production of crystals from

nanoscaled colloids. In the second approach directly nanoscaled particles are used in the ex-

periments. A condensation of the nanoparticles is induced by cooling. The second approach

requires investigative methods suitable to gain information on packings and interactions of

the nanoparticles. For example, in this size dimension between molecules and microscaled

objects, light and X-ray diffraction are close to and beyond their lower and upper resolution

limit, respectively.

This work is composed of four parts: this introductory part, two experimental parts and a

final concluding part. In this introductory part motivation for the experiments performed

is given. Terms used throughout the work are defined, basic interactions and mechanisms

present in colloidal suspensions and leading to crystals are discussed and, finally, the

experiments are rationalized. The experimental parts are divided into two chapters. The

first chapters each introduce a route towards colloidal crystals and the possibility to produce

structured materials is investigated. In the second chapters the underlying crystallization

mechanisms are investigated in detail. In the concluding part the insights from the different

experiments are summarized and an outlook on future experiments is given.

3



1. Motivation

Figure 1.1.: a) and b) colloidal crystals. a) Atomic force micrograph of convectively assem-
bled 500 nm polystyrene particles. b) Transmission electron micrograph of precipitated
crystal of 6 nm gold particles. c) A snowflake,6 exemplifying the high complexity of crystal
morphology obtainable beyond the dense packing of the constituting molecules.

4



2. Definitions, Interactions, and Basic

Principles

The selection or development of routes towards the crystallization of nanoscaled colloids

require a basic understanding of interactions present in colloids, comparison of present

approaches to this problem and clarity of the used terms. Terms such as self-organization,

self-assembly, colloids and crystals are used in distinct fields including biology, chemistry,

physics and material science, but also in psychology, ecology and computer science, with

varying meaning and focus. To avoid misunderstandings, the main terms are defined in

the first section of this chapter. The second section gives a brief overview over mechanisms

acting in colloids, from which the basic principles of colloidal crystallization are deduced.

This allows to categorize results on colloidal crystallization in the literature and, in the last

section, rationalizing the experiments in this work in the last section.

2.1. Definitions

Colloids are defined as “small objects suspended in liquids”.7–10 The small objects can be

solid particles, macromolecules or molecular assemblies. Examples for the first category are

gold nanoparticles or clays, polymer latices or polymer chains fall in the second category,

and micelles are representative for the last category. “Small” implies characteristic sizes of

the objects from few nanometers up to several micrometers. The lower limit requires that

the objects are significantly larger than the solvent molecules. The upper limit ensures that

the objects perform BROWNIAN motion and gravitational settling is not dominant.

The lack of sharp boundaries creates gray zones. The upper limit is used to distinguish

colloids from granular matter. Granular objects do not perform BROWNIAN motion, and

external forces like gravitation and contact forces like friction are dominant.11 But both

colloid and granulate are only idealized extremes of the same class of many-body systems

interacting by short-range interactions but not by interactions arising from overlapping

electron wave-functions. This differentiates colloids and granulates from atoms, which

5



2. Basic Principles

have short-ranged, often highly directional and specific strong interactions, and from sys-

tems with long-ranged interactions like planets or plasmas that interact through gravity

or unscreened electrostatic interactions. The underlying similarities between colloids and

granulates and the continuous transition between them suggest that phenomena dominant

in one system may still play a subtle role in the other.

The restriction of the experiments presented here to solid particles suspended in liq-

uids render the terms particle suspension, colloidal suspension and colloid synonymous

throughout this work.

Nanoscaled colloids are colloids with the diameters of the suspended particles below

100 nm.

Crystalline packing is defined as an “infinite [periodic] repetition of identical subunits

in three dimensions” in atomic systems.12 This definition cannot be used unmodified for

colloids for three reasons. First, colloids often consist of a very limited number of consti-

tuting objects, thus they cannot form infinite repetitions. Second, the constituting objects

of colloids exhibit finite dispersity in size, shape and sometimes even composition, thus

identical subunits cannot be formed by colloids. Finally, two-dimensional regular particle

packings may have common genesis and properties with three-dimensional packings, and

should be included in the definition.

A robust definition of colloidal crystals is still lacking; therefore a phenomenological

definition is used in the presented work. A structure or packing made out of particles is

called a crystal when it exhibits an obvious six-fold symmetry and a periodicity over several

particle diameters in imaging techniques such as electron microscopy or BRAGG-peaks in

scattering techniques such as small-angle X-ray scattering. The restriction throughout the

experiments described in this thesis to spherical particles with low size and shape dispersity

render this definition useful. In future work a more general definition of colloidal crystals

should be developed.

Crystalline packings, crystals and regular packings are used as synonyms throughout the

text.

Amorphous packings are not crystalline packings. They do not exhibit sixfold symmetry

and periodicity over several particle diameters or BRAGG-peaks. Amorphous packings and

irregular packings are used as synonyms.

Structure formation denotes all processes that lead to deviations from uniform distribu-

tions. The formation of a colloidal crystal is structure formation, as the colloidal particles

are arranged in a crystalline lattice instead of being distributed throughout the suspension.

Self-organization processes are structure forming processes that rely on the interactions

6



2. Basic Principles

of the constituting objects. In case a colloidal crystal is not formed by putting each particle

in its lattice site extrinsically but by the interactions among the objects, it is a self-organized

structure. Self-organization is meant to cover all structure forming processes relying on

the interactions of the constituting objects including self-assembly, whether they form

dynamic or static structures and whether may the structure formation takes place during

equilibration or in processes far from equilibrium.

Self-assembly focuses on the assembly of materials by self-organization processes. Fol-

lowing the idea of ‘self-assembly’ or ‘static self-assembly’ given by WHITESIDES and co-

workers,13, 14 which represents a chemist’s perspective on the topic, ‘assembled’ structures

like liquid crystals, phase separated metal alloys and colloidal crystals can be distinguished

from other ‘organized’ structures like a school of fishes, chemical oscillations during the

BELOUSOV–ZHABOTINSKY reaction or the morphogenesis of multicellular organisms. Self-

assembly is therefore a subset of self-organization.

2.2. Interactions and mechanisms in colloids

Comprehensive textbooks on basic principles in colloids are available, for example by W.

B. RUSSEL, D. A. SAVILLE and W. R. SCHOWALTER,7 J. LYKLEMA,8 P. N. PUSEY,9 D. F. EVANS and H.

WENNERSTRÖM10 and J. N. ISRAELACHVILI.15 To aid the reading and rationalize the experiments,

a brief overview of colloidal interactions and mechanisms is given at this point.

The most prominent feature of colloids is the constant erratic BROWNIAN motion of the

components. It is caused by fluctuating momentum transfer from solvent molecules to the

suspended particles. The root-mean-square displacement
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2 of the particles in time t

due to the random walk can be quantified using the STOKES-EINSTEIN diffusion coefficient

D0 = kT/6πηr :7

¬

r 2
¶

1
2 =
�

2kT

6πηr
· t
�

1
2

= (2 D0 · t )
1
2 , (2.1)

where k is BOLTZMANN’s constant, T the absolute temperature, η the solvent viscosity and

r the particle radius. BROWNIAN motion is a crucial factor in particle assembly. The mass

transport from a source, the bulk colloid, to a drain, the pattern, can be accomplished by

diffusion. After assembly, the particles have to be trapped to prevent further random motion.

The exchange of energy and momentum between the liquid and the particles occurs

on a timescale short compared to that of significant motions of the particles. The solvent

thus can be approximated to simply provide a heat bath that defines the temperature. The

7
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BOLTZMANN-distribution P(v ) applies to the particle velocities v :8

P(v ) =

Ç

2

π

�m

kT

�
3
2

v 2 e−
m v 2

2kT , (2.2)

where m denotes the mass of the particles. The standard deviation of the BOLTZMANN

distribution is proportional to 1/m. Already very fine nanoparticles of 1 nm3 volume contain

approximately 100 atoms, and the particle energy distribution width becomes a 100th of the

width of the corresponding atomic distribution. In practical colloids, virtually all particles

have the same velocity and energy. Effects like sublimation and evaporation thus will not

play significant roles in colloidal particle assemblies. The probability of a particle having

enough energy to overcome the attractive interactions in an assembly is very low unless the

whole assembly is heated to the melting or boiling temperature.

Besides providing energy and mobility, the solvent dampens the motion of the particles.

This is expressed in the STOKES drag, the force experienced by a sphere of radius r moving

with velocity v through a solvent at rest:7

F (v ) = 6πηr v. (2.3)

In addition, the particles interact with each other. We restrict the particle interactions

to attractive and repulsive potentials. Velocity-dependent interactions like hydrodynamic

interactions are neglected, as they are expected not to effect the structure of static particle

packings.

Attraction among the particles is due to the VAN DER WAALS- or dispersion interactions

among the particles. The magnitude of the attraction depends on the difference in dielectric

permittivities of the interacting bodies and the surrounding media, which is approximated

by the HAMAKER coefficient A. For equal spheres, the VAN DER WAALS-attraction takes the

form:16

Vv d W =−
1

3
A

�

r 2

s 2−4 r 2
+

r 2

s 2
+

1

2
ln

�

1−4
r 2

s 2

��

, (2.4)

where s is the center-to-center distance between particles of radius r . Dispersion forces

can be repulsive, but for chemically equal particles as used in this work they generate an

omnipresent attraction. Two important approximations of the VAN DER WAALS-attraction can

be given. For particle surface separation d = s −2r small compared to the particle radius r ,

the potential takes the form

Vv d W =−
A

6

r

d
. (2.5)

8
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For particles at large separations, s � r , the potential takes the well-known s−6 dependency:

Vv d W =−
16A

9

r 6

s 6
. (2.6)

A particle suspension has to be stabilized against this omnipresent attraction to prevent

agglomeration and precipitation of the particles. Two basic principles have been developed

to prevent agglomeration. First, charges on the particle surfaces create a repulsive inter-

action. In the approximation of saturated surfaces the electrostatic potential of a sphere

screened by counterions in the solvent can be approximated as7

Vc ha r g e ≈Ψ0
r

s
e−κ·d . (2.7)

Ψ0 is the potential at the particle surface (d = 0) and κ−1 indicates the thickness of the

diffuse layer of ions around the charged particles. κ= 2e 2z 2n i/εε0kT is called the DEBYE

screening length, with e denoting the elementary charge, ε and ε0 the relative and the

vacuum permittivity and z and n i the valence and concentration of the ionic species,

respectively. Importantly, the screened electrostatic repulsions do not diverge for s → r

or alternatively d → 0 as the VAN DER WAALS-attraction does (eq. 2.5). The electrostatic

stabilization thus only creates a kinetic barrier against agglomeration, and the particles

overcome the repulsive barrier with a probability Pa ≈ e−
Vc ha r g e ,m a x

k T upon collision, where

Vc ha r g e ,m a x is the height of the repulsive barrier.

Second, polymeric chains grafted on the particle surfaces can create repulsion between

the particles. The repulsion arises from steric effects of the chains. A close proximity of two

particles would increase the chain density between the particles. This restricts the motion of

the chains and lowers the entropy, thus raises the free energy of the particles. The repulsive

potential generated between two polymer coated particles per unit area can be written in

two approximative forms as17

Vs t e r i c =
Np kT

As





π2l L

6d 2
+ ln d

�

3

8πl L

�
1
2





d 2

l L
≤ 3 (2.8)

=
Np kT

As
2 e

−3d 2

2l L
d 2

l L
≥ 3, (2.9)

where Np/As denotes the number of polymer chains per surface area, and l and L the

polymer’s segment length and chain length, respectively. Importantly, the steric repulsion

diverges faster than the VAN DER WAALS-attraction for short distances (eq. 2.5). At short

9



2. Basic Principles

distances sterically stabilized particles therefore are repulsive. At long distances the steric

repulsion decays exponentially, with little interaction above the chain length of the polymer,

and the dispersion interactions may become prevailing, depending on the exact parameter

values.

In the derivation of eq. 2.9 random-flight polymers are assumed. This holds true only for

certain solvents and temperatures. The influence of the solvent can be approximated with

the FLORY-HUGGINS-parameter χ ,18

χ =
z

kT

�

u s p −
u s s +u p p

2

�

. (2.10)

The coordination number z counts the solvent molecules or segments each polymer seg-

ment interacts with. The parameter u s s , u p p and u s p indicate the interactions among solvent

molecules (s s ), among segments in the polymer chain (p p ) and between solvent molecules

and segments (s p ) in units of kT. A value of χ of 1/2 indicates random-flight polymers, the

respective temperature T and solvent are termed θ -temperature and θ -solvent. For values

of χ < 1/2, the polymer chains will expand into the solvent, for χ > 1/2 the polymer chains

attract and collapse. The steric stabilization thus will fail for less than θ -conditions. Solvents

with χ < 1/2 are called good solvents, solvents with χ > 1/2 bad solvents.

For the sake of completeness, two mechanisms have to be mentioned. First, free polymer

chains dissolved in the particle suspension can cause attraction between the particles.

This effect is termed depletion interaction, as volumes depleted of polymer chains are

formed around the particles. This volume is minimized by close contact among the particles

and causes an effective attraction between the particles. Second, the two stabilization

mechanisms, electrostatic by charges on the particle surfaces and steric by grafted polymer

chains, can be combined to form an electrosteric stabilization. Both mechanisms are not

exploited in this work.

Finally, by definition colloidal particles are suspended in a solvent. Dry structures are

needed frequently for characterization and application of formed particle packing struc-

tures. This requires a transfer step with removal of the solvent by evaporation, draining

or absorption. At some stage of the transfer step the particles will protrude through the

solvent-air interface and experience capillary interactions. The attractive force Fi generated

by supported particles deforming a liquid surface, often termed immersion force,19 can be

approximated by

Fi = 2πγl g r 2
l g (sinΘ)2

1

d
. (2.11)

γl g is the surface tension of the solvent,Θ the contact angle of the solvent on the particle

10
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surface and rl g is the radius of the three-phase contact line at the particle surface. With an

1/d -dependency capillary interactions are long-ranged attractions, whose influence must

be considered when investigating dried particle packings.

2.3. Principles of colloidal crystallization

A full overview of all techniques to produce colloidal crystals is certainly beyond the scope

of this introduction, and reviews are available.4, 5, 20–25 However, using the particle interac-

tions introduced in the previous section and basic thermodynamic ideas a classification of

approaches to colloidal crystallization by self-assembly is given in the following.

Using the simple lattice model described by KEN A. DILL and SARINA BROMBERG,18 the basic

crystallization models for spheres can be worked out. In this lattice model each of the N

spheres occupies a site on a regular lattice and interacts with an energy of u N N per bond only

with particles present on the n N N neighboring sites on a regular lattice. The total energy U

of the particles on the lattice is easily calculated by the number of bonds m formed between

neighboring particles,

U =m · u N N . (2.12)

If the particles perform random thermal motion on the lattice, they experience translational

entropy S. The free energy of the lattice model is then given by

F =U − TS. (2.13)

The particles are free to move on the lattice and will occupy the state with the lowest free

energy. Three implicit assumptions are made in this model. The spheres are assumed to be

hard and cannot overlap and occupy the same lattice site. Additionally, their interactions

are assumed isotropic with respect to the neighboring lattice sites. Finally, the range of

the interactions between the particles must be smaller than their diameter so that only

neighboring particles will interact.

In order to gain a classification of crystallization mechanisms we distinguish two extremes:

T = 0 and U = 0. The first extreme is the case of granular matter, whose constituting objects

do not perform random motion, but ballistic motion. The second extreme could be called

an ideal gas or a hard-sphere-system, as the spheres on the lattice do not interact beside

their hard bodies.

In the first extreme, T = 0, three crystallization mechanisms can be identified. The first

mechanism occurs for u N N < 0, i.e. attractive spheres. The minimal total energy is then

11
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given by

Um i n =m · u N N =
N n N N

2
· u N N , (2.14)

a full occupation of the neighborhood of each sphere. This implies closest-packing and the

formation of a crystal.

The opposite case of repulsive spheres, u N N > 0, requires a full depletion of neighboring

lattice sites for energy minimization:

Um i n =m · u N N = 0 · u N N = 0. (2.15)

Above a certain concentration of spheres on the lattice this condition can only be fulfilled

by a regular or crystalline arrangement, any deviation would lead to a positive energy

contribution. For example, in the simple case of a 3-dimensional cubic lattice a lattice

site occupation of 50 % without energy penalty can only be realized by a perfect regular

arrangement of the particles. This crystallization mechanism is very sensitive to the range

of the interactions. With the repulsive interaction ranging further, more lattice sites would

be unavailable to the spheres and they are forced to take a regular packing already at lower

concentrations.

Finally, in case of no interaction among the particles besides the exclusion from occupied

lattice sites, an externally applied potential can direct the packing of the spheres. The energy

of each sphere u i then becomes a function of a global distance parameter h, for example

the height of the spheres in case of gravity as external potential. The total energy becomes

the sum over the potential energies of the N particles. In the simple case of a monotonously

attractive external potential the minimal total energy requires a minimal average h:

Um i n =
N
∑

i=1

u i (h)

�

�

�

�

�

h→m i n

. (2.16)

If the base area is fixed, a minimal h requires a minimal volume of the sphere packing and a

maximal sphere concentration in the packing. The maximal sphere concentration occurs for

the occupation of all lattice sites and the formation of a crystal. This captures both repulsive

and attractive external potentials, because one can be transformed to another by inversion

of the coordinates.

The second extreme, U = 0, is a fully entropy dominated regime. According to the

equation of SACKUR-TETRODE,18 the entropy of an ideal gas is proportional to the natural
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logarithm of the volume per gas particle:

S =N k ln

�

Vt

N
· T

3
2

�

+ cons t . (2.17)

The space filling of a packing defines the volume available to the spheres. In hexagonal

close-packing 74 % of the total volume Vt is available to the spheres, in body-centered

cubic packing 68 %, and in a dense random packing (BERNAL-glass) only 64 %. Regular

arrangements thus provide the highest volume per sphere and, somewhat counterintuitive,

maximizing the entropy requires an regular arrangement. A regular arranging of hard spheres

with thermal motion is indeed predicted by simulations and found in experiments at 49 %

volume concentration.26 This entropy-driven crystallization is often termed WAINWRIGHT-

ALDER-transition.27

In summary, there are four principles of crystallization: minimization of the free energy

• by energy minimization under action of particle attraction,

• by energy minimization under action of particle repulsion,

• by energy minimization under action of an external potential,

• by entropy maximization.

This classification is less clear-cut in physical systems. The basic assumptions made, T = 0

or U = 0, will not be realized in a real colloid, and entropic and energetic effects might

both be present at the same time. For instance, colloidal particles may sediment and form

a crystalline packing because of the external gravitation, or they may form a crystal be-

cause the settling increases the concentration at the bottom of the container until entropic

crystallization sets in. This still may be distinguished by the interparticle distance in the

crystal. If the particles formed a crystal by entropy maximization, they will try to keep a

maximal interparticle spacing, while under the action of the gravitation alone the particle

will pack with maximal density. In experiments, in which the volume available to the parti-

cles is continuously decreased until maximal density is reached, as in LANGMUIR-BLODGETT

troughs or evaporating droplets, it is even less clear which mechanism originally induced

formed crystallinity. The concentration increase in the suspension may lead to entropic

ordering, to crystallization due to a possible repulsive potential and a reduction of the

mean particle distance, or to crystallization by a possible attraction of the particles and a

reduced entropic contribution to the free energy. As in most publications no statement on

the underlying mechanism is made, the dominant contribution to the crystallization has to

13
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be assumed. For example, large particles with diameters of several hundred nanometers

and low HAMAKER-coefficients like polymer latices and charge stabilization in an experiment

with concentration increase are assumed to exhibit entropy dominated crystallization. Steri-

cally stabilized metal nanoparticles in a precipitation experiment are assumed attraction

dominated, and so forth.

By comparing the used colloid, the experimental procedure and the produced packing

density, most experiments could be sorted to one of the crystallization mechanisms:

Crystallization by internal attraction. The dispersion interactions cause an omnipresent at-

traction among the particles. Increasing the dispersion interactions thus could be used to in-

duce crystallization. However, it is cumbersome to increase the VAN DER WAALS-interactions,

as it requires adjusting the permittivities of solvent and particles. Thus, typically either

additional attractions are induced or the repulsion among the particles is reduced to gain

an effective increase in attraction. Additional attractions were produced by addition of free

polymers to induce depletion interactions,28–30 mixing of oppositely charge colloids,31–33 use

of DNA-linkers34 or photo-ionizable ligands35 attached to the particles, or capillary interac-

tions of particles in thin solvent films.36–39 Repulsion was suppressed by lowering the solvent

quality of sterically stabilized suspensions.4, 5, 40–42 Adding a polar solvent to an unpolar sus-

pension reduced χ until the steric stabilization failed. Suppression of charge-stabilization,

e.g. by addition of ions to the suspension, usually leads to formation of low-density and

fractal agglomerates rather than crystals.43–51

Crystallization by internal attraction may not only be induced by effectively increasing

the attraction, but also by reduction of the entropic contribution to the free energy of a

moderately attractive colloid. The entropy can be reduced by reducing the volume per

particle (compare eq. 2.17). Reduction of the volume per particle is gained by evaporation of

the solvent52–63 or compressing floating particles in LANGMUIR-BLODGETT troughs.64–66

The entropic contribution can also be reduced by lowering the temperature (eq. 2.13).

In case of steric stabilization lowering the temperature additionally reduces the repulsion

(eq. 2.9). Thus several effects potentially contribute when trying to induce crystallization by

lowering the temperature. These effects are investigated in the second experimental part of

this thesis.

Crystallization by internal repulsion. The range of the repulsive interactions has to be

increased for crystallization by internal repulsion. Charge-stabilized suspensions are ideally

suited for this purpose. The range of the interactions is defined by the DEBYE screening

length (eq. 2.9), which can be adjusted by the concentration of ions or the pH of the solvent.

Removal of ions by osmosis or resins increases the range of the repulsions, which eventually
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induces crystallization.67–72

Crystallization in an external potential. An easy way to produce colloidal crystals is

sedimentation of the particles.73–75 This method is restricted to large colloidal particles,

which exhibit significant settling. Other approaches include electrodynamic, electrostatic

and magnetic potentials,76–78 or assembly in solvent flow fields.79–98

The latter approach represents the interesting case of a non-conservative force field

associated with a potential-like energy of the particles. This is investigated in the first

experimental part of this work.

Crystallization by entropy maximization. Entropy maximization is a common way to

produce colloidal crystals. It requires well-stabilized suspensions where the range of the

particle repulsion is small compared to the particle diameter and renders the particles hard-

sphere like. The suspensions can be directly prepared with particle concentrations suitable

for crystallization.30, 99–101 Alternatively, the particle concentration is continuously increased

by evaporation until crystallization is gained, often inside of emulsion droplets.102–106

Notwithstanding the mentioned ambiguities, the presented classification of crystallization

methods aids selecting appropriate approaches and development of new approaches. The

crystallization by internal repulsion of the particles and the entropic crystallization lead

to a low density packing of the particles, while the crystallization by internal attraction or

an external potential leads to close-packed structures. For the production of materials by

self-assembly the latter two approaches thus are advantageous. They potentially produce

mechanically stable packings which can by dried without altering the structure. The crystals

with maximal spacing between the particles require an additional fixation of the packing

structure to be extracted from the suspension.

In contrast to the simple schemes of crystal formation, no general description of the

mechanisms preventing crystallization is available. Attempts to solve this problem are made

using phase diagrams in analogy to jamming phase diagrams known from granular mat-

ter.107, 108 Factors generally assumed to hinder formation of crystals are a high polydispersity

of the particles109–111 and a competing glass transition of the particles.9, 112

The variety of ready-to-use concepts for crystallization brings about the question of

remaining frontiers in colloidal crystallization. Beyond the present limitations of the appli-

cability of colloidal crystals mentioned in the motivation, several issues arise from deviations

from the assumptions underlying the discussion presented in this chapter. The colloidal

particles are assumed spherical, hard, possessing isotropic short interactions, and perform-

ing ballistic motion superimposed with random thermal motion. Numerous theoretical

publications focus on colloids deviating from these assumptions. The minimal free-energy

15



2. Basic Principles

packings of non-spherical particles are investigated by simulations.113, 114 The phase behav-

ior of soft colloids are investigated using the example of star-polymers.115–117 Non-isotropic

interactions are common situation in protein suspensions118 or model patchy particles.119, 120

Thermodynamic phase diagrams and colloidal crystallization are predicted to strongly de-

pend on the range of the interparticle interactions.121, 122 Finally the assumption of pure

ballistic and diffusive motion might break down for colloids in close contact. Contact

friction, an effect known from granular matter, may become significant.123
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The aim of this work is to find principles for the formation of high-quality colloidal crystals

from nanoparticles with control of structure formation beyond hexagonal close-packing.

Suitable approaches could be selected from the overview presented in the last chapter. The

crystallization by attraction among the particles and by confinement in an external potential

offer to form mechanically stable structures, reducing the complexity of the investigation

especially with ex-situ methods like electron microscopy.

The assembly in solvent flow fields has the least restrictions and requirements in terms of

particle material, particle size, substrate and setup compared to the other crystallization

approaches using external potentials. Particle assembly in convective fluid flows is poten-

tially continuous, fast, and can be designed to directly deposit the particles on substrates.

This makes this approach useful for applications. However, this approach does not yet

provide the production of large-area high quality particle packings needed for application.

The quality of the particle packings is limited by small-grained polycrystallinity, thickness

transitions, holes and drying cracks. Additionally, there are uncertainties on the underlying

assembly mechanisms, and the approach is only established for large particles with diam-

eters of several hundred nanometers. Consequently, improving the quality of the formed

particle packings and clarify the assembly mechanisms are the areas where further research

appears necessary. In this work a deposition setup is constructed which allows investigation

of the arrangement process of individual particles and of the liquid meniscus in which

the assembly takes place. As model suspension charge-stabilized emulsion-polymerized

polystyrene particles are used. They are available with very low size dispersities over a large

range of sizes. In chap. 4 relations between meniscus geometry and particle film quality are

developed and results of interference microscopy measurements on the meniscus geometry

are presented. In chap. 5 the arrangement process is investigated down to a single-particle

level using particle image velocimetry and particle tracking.

Crystallization by internal attraction has been proven feasible by several approaches.

However, thermal induction and control of crystallization in sterically stabilized suspen-

sions has not been tested yet. Thermal induction and control of crystallization is seemingly
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simple, as it does not involve foreign solvents like in precipitation experiments, moving

phase boundaries like in solvent evaporation driven experiments, or even altering the par-

ticles to bear linkers like DNA-molecules on the surface. It also promises to be a robust

approach, as lowering the temperature reduces the solvent quality (eq. 2.9), reduces the

repulsive potential generated by the ligand chains (eq. 2.10), and reduces the entropic

contribution counteracting the energetic contribution to the free energy (eq. 2.13). Suffi-

ciently lowering the temperature thus should always lead to a minimal energy packing of

the particles, independent of particle size and material. Analogies of this cooling approach

to colloidal crystallization to the condensation of molecular or atomic gases by cooling

including formation of kinetically controlled morphologies of crystalline packings may be

expected (compare fig. 1.1). Consequently, comprehensive experiments on such a new

approach including assembly kinetics, structure formation, and crystallization mechanisms

appear necessary. Gold nanoparticles with alkyl thiol ligands in unpolar solvents are used

as model systems. These particles can be synthesized with sub-10 nm diameter with low

size dispersities. Their high HAMAKER-coefficient and stabilization with short alkyl-chains

promise to provide interparticle attractions with practical transition temperatures. The

much smaller size of the particles compared to the polymer particles used in the first experi-

mental part of this work requires a different set of experimental techniques. In chap. 6 the

kinetics of the agglomeration process are investigated with dynamic light scattering and

compared with results on the formed particle packings gained by small-angle X-ray scatter-

ing and transmission electron microscopy. In chap. 7 crystallization is induced by combining

temperature and foreign solvent to steer the packing. In addition to electron microscopy

and X-ray scattering, differential scanning calorimetry and diffusing wave spectroscopy are

used to evaluate mechanism hindering colloidal crystallization.

The underlying question as stated in chap. 1 is common in both approaches: under which

external conditions do colloidal crystals form and how can the packing and morphology

be controlled beyond the particle shape? The apparent disparities between the two used

approaches and model suspensions enables additionally to look for common principles

enforcing or hindering colloidal crystallization and for structure formation processes by

self-assembly beyond hexagonal hard sphere packing, spanning two orders of magnitude.
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4. Role of Meniscus Shape in Large-Area

Convective Particle Assembly

The results presented in this chapter were published in Langmuir 2011, 27, 8621–8633.1

Abstract — Dense and uniform particle films are deposited using a robust version of the

convective particle assembly process. We analyze how the shape of the gas-liquid interface

and the three-phase contact line govern the stability of convective deposition and thus, the

achievable quality of films. Interference microscopy indicates that a highly curved meniscus

cannot compensate for the ubiquitous perturbation during deposition. A moderately curved

meniscus provides flexibility to compensate and localize perturbation and enables reliable

homogeneous deposition. We analyze which setup geometry and meniscus velocity yield

appropriate meniscus shapes. The quality of the resulting films is analyzed and compared

to the deposition conditions. Uniform films over areas beyond the centimeter range are

accessible using the optimized process, which is suitable for functional particle coatings

and templates for microstructured materials.

4.1. Introduction

Convective particle assembly2 yields dense films of microparticles and nanoparticles. The

process has found applications in the deposition of functional materials, patterning of

surfaces and many other fields. The reliable deposition of homogeneous particle films over

macroscopic areas beyond millimeters remains challenging, however. Further research

is necessary to make convective assembly sufficiently robust and reliable for the many

applications that require high-quality particle films:

Optical coatings, which include plasmonic structures,3 photonic bandgap materials4–7 and

microlens arrays on top of light emitting diodes8 manipulate light depending on structure pe-

riodicity. Deviations from this periodicity drastically change the reflection and transmission

properties - defects scatter light, locally increased particle distances or distortion change
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4. Large-Area Convective Assembly

optical bandgaps or disturb the alignment with underlying structures. Other applications

require constant thickness without voids to guarantee a constant, low dielectric constant so

that the layers can be used as a low-k interlayer materials,9 protect an underlying surface, as

in antireflective and self-cleaning coatings on solar cells10 or enhance analytical methods,

as in layers for surface enhanced Raman spectroscopy11, 12 and nanocavity arrays for surface

assisted mass spectroscopy.13 Finally, when particle layers are used as masks for nanosphere

lithography,14 defects propagate to the final structured material.

Research on convective particle assembly has focused on the application of convectively

assembled films as optical active material,4–8, 10, 15 on the characterization of the microscopic

structure of the films4, 6, 8, 16–21 and on the role of solvent flow in the assembly process.3, 22–25

A limited number of studies focus on the aspect of setup geometry and meniscus shape.8

The simplest setup for the convective assembly of particles is an evaporating suspension

droplet on a solid substrate,26 but more sophisticated setups have been developed to provide

precise control over the deposition parameters and assemble particle films on large areas.

These setups can be divided into three principal types:

First, setups with static substrates immersed vertically or at an angle into an evaporating

suspension bath (fig. 4.1 a)).4, 5, 15, 19, 20, 22–24 This type of setup is easily realized and allows

the production of bulk colloidal crystals. It requires larger sample volumes and longer

production times than other setups and provides limited control over the film thickness

because the particle volume fraction progressively increases during deposition.

The second type of setup resembles conventional dip coating where a substrate is with-

drawn vertically from a suspension reservoir (fig. 4.1 b)).6, 7, 18, 21, 27, 28 In this geometry particle

films can be deposited on substrates of almost arbitrary sizes within minutes or hours. The

film thickness is set by the withdrawal velocity. Observation of the process is possible in

situ using a horizontally mounted long working distance microscope objective. Drawbacks

again include the large sample volume needed and limited access for in situ observation.

The third type of setup replaces the reservoir bath by a small amount of suspension

held by capillary forces between the substrate and a blade (fig. 4.1 c)). This small reservoir

is moved over the entire substrate by moving the blade and the substrate against each

other.3, 8, 12, 25, 29, 30 Deposition rates similar to those in dip-coating can be reached, with

several advantages: The required sample volume is minimized to tens of microliters. The

substrate size is unlimited. The suspension reservoir forms a capillary bridge independent

of gravity that can be tilted arbitrarily, which facilitates integration into light microscopes.

In-situ observation of particle assembly via microscopy allows precise control over the film

thickness. The setup is also ideally suited to experimentally explore deposition parameters.
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Figure 4.1.: The different types of deposition setups for convective particle assembly (a-c)
and the common underlying process (d). a) Deposition on an immersed static substrate
(II.): the film (III.) forms as liquid evaporates from a reservoir (I.), gradually lowering its
surface. b) Deposition in dip-coating geometry: a motor (IV.) pulls a substrate (II.) from a
reservoir (I.). c) Blade-coating-geometry: the reservoir (I.) is held between a substrate (II.)
and a blade (V.) which is pulled by a motor (IV.). d) The microscopic process is identical in
all setups: pronounced evaporation from the wet particle film (III.) induces a convective flux
(VI.) from the bulk reservoir (I.) into the film. The suspended particles are dragged along and
are wedged into a densely packed film. The symbols je , jw and jp denote the evaporative,
the water and the particle flux, respectively, h f indicates the height of the film and l e the
length of wet film from which evaporation occurs.
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For example, temperature control of the substrate is straightforward via the back side of

the substrate,25 the compact configuration is readily integrated into small chambers with

controlled air flow over the evaporating area3 and AC fields can be applied between blade

and substrate to induce electrowetting.30

Common to all described configurations is the convective assembly process that takes

place in a meniscus at the edge of a suspension reservoir. The geometry of the meniscus

resembles a curved wedge between the bulk reservoir and a microscopically thin solvent film

on the wetted substrate. Pronounced evaporation from this liquid film induces a convective

flow from the bulk liquid into the thin film that transports and confines the particles (fig. 4.1

d)). The meniscus height limits the film growth in the surface-normal direction.

While the assembly principle is identical for all setups, the shape of the gas-liquid interface

is markedly different. The substrate either rests or moves with respect to the reservoir so that

the meniscus exhibits either its static shape or a dynamic shape depending on the relative

velocity. The meniscus is either constrained or unconstrained, depending on whether the

setup imposes (for example, by a blade) a certain shape on it or the meniscus can freely

adapt to the substrate. The substrate is either fully immersed into the suspension or the

suspension rest on the substrate and forms a long contact line on it. So far, the influences

of the meniscus shape on the formation of defects in the deposited films have rarely been

addressed in research. Macroscopic defects of the deposited films are caused by contact

line depinning, local growth rate variations and variations in the thickness of the grown

film. These mechanisms depend on contact line dynamics, the particle flux and the space

available for assembly, all of which are connected to the meniscus shape. In this study,

we aim to identify relations between meniscus shape and defect formation so that a setup

geometry can be chosen that leads to a meniscus depositing defect-free films.

Section 4.2 briefly reviews some of the basic equations that describe the meniscus ge-

ometry and the particle fluxes during convective particle assembly. The equations suggest

links between meniscus geometry and the defect formation during particle deposition. This

motivates the experiments described in sec. 4.3, where we systematically varied the setup

geometry used for convective self-assembly and observed the effects on meniscus geom-

etry and particle assembly. The results, discussed in sec. 4.4, indicate a strong correlation

between meniscus geometry and defect formation processes as predicted by theory. In

particular, a flat and deformable meniscus proves highly beneficial for robust deposition.
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Figure 4.2.: The meniscus geometry in convective particle assembly between a substrate a)
and a blade b). The suspension reservoir c) leaves a wet particle film d) as it moves between
barriers e) that prevent evaporation flux to the sides (arrow II.). Evaporation occurs at the
linear segment of the contact line (arrow I.) and at the curved segment of the contact line
(arrow III.). The geometry is characterized by the radius of curvature of the contact line on
the substrate R‖, the radius of curvature of the meniscus perpendicular to the substrate R⊥
and the contact angle of the meniscus on the substrate Θ. The crossection of the meniscus’
surface between blade and substrate is a circular segment of length L’. The dotted arrow
indicates the relative motion of the blade with respect to the substrate.
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4.2. Theoretical considerations

Convective particle assembly is, as first approximation, the transport of particles from a bulk

suspension into a dense film. It takes place inside a meniscus on a wetting substrate that

has a shape and properties which we will discuss in sec. 4.2.1. The equations that describe

the transport of liquid and particles during assembly are discussed in sec. 4.2.2. In sec. 4.2.3,

relations between assembly and meniscus geometry are established.

In the following, we will use three parameters to characterize the meniscus shape: The

curvature of the contact line on the substrate 1/R‖, the curvature of the meniscus surface

perpendicular to the substrate 1/R⊥ and the contact angle of the meniscus,Θ (fig. 4.2). We

analyze how they depend on the constraints that the setup imposes and how they affect the

quality of assembled films.

4.2.1. The shape of a meniscus on a wetting substrate

General shape. The general shape of a static liquid meniscus on a wetting substrate has

been evaluated by SUJANANI and WAYNER using interference microscopy.31 They describe

three regions: First, a flat adsorbed film with a thickness on the order of tens of nanometers

which is mainly governed by disjoining pressure and the dynamics of condensation and

evaporation. There follows a highly curved segment which connects the thin film region to a

region dominated by capillary forces. This transition segment features the highest curvature

of the meniscus, at a liquid thickness of about 100 nm. The meniscus ends with the central

region that is dominated by capillary forces and exhibits a low, constant curvature 1/R⊥. The

conventional, macroscopic contact line is obtained by extending the constant-curvature

segment to the substrate so that it forms a macroscopic contact angleΘ. In this work, we

focus on regions of the meniscus that are thicker than 100 nm. We assume that the general

description of the meniscus shape holds true for this part of the meniscus during particle

deposition. Exceptions where the dynamic meniscus is pinned during certain perturbations

of the deposition are discussed below.

Contact angle. The contact angle Θ formed by the static meniscus in contact with the

substrate is described by the law of YOUNG-LAPLACE,32

γl g cos (Θs ) = γs g −γs l , (4.1)

where γl g is the liquid-gas interfacial energy, γs g the solid-gas interfacial energy, γs l the

solid-liquid interfacial energy and Θs the static contact angle. As indicated by eq. 4.1,
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the equilibrium value of the contact angle is sensitive to changes in the surface energies.

Temperature changes affect the surface energies, as estimated by EÖTVÖS’ law33

γ= γ0−γT ·T, (4.2)

where γ0 and γT are material parameters and T the absolute temperature. This law implies a

linear decline in surface energy with increasing temperature. As all involved surface energies

are altered, the change of the contact angle with temperature cannot be generally derived

using above equations and has to be determined experimentally for the involved substrate

and solvent pairs.

In addition, the contact angle is sensitive to the velocity of the substrate. When the

substrate is withdrawn from the suspension reservoir, the contact line is dragged over the

substrate. Viscous dissipation inside the meniscus hinders an instant reconfiguration of

the meniscus shape and the liquid surface assumes a dynamic contact angle. This dynamic

contact angle Θd has been described by DE GENNES34–36 using the equation

Θd (Θ2
s −Θ

2
d ) =

η

γl g
·6 ln

S

a
·vc l , (4.3)

where η is the viscosity of the solvent, S is a typical length scale or size of the meniscus, vc l

is the velocity of the contact line with respect to the substrate and a is a length related to the

HAMAKER coefficient A, a ≡
p

A/6πγl g .

Application of eq. 4.3 requires some caution. First, slippage effects had been neglected

in eq. 4.3. Thus the equation is valid only for menisci with small static contact angle,

Θs � 1 rad ≈ 57◦, an assumption that is fulfilled by the wetting substrates used in convective

assembly. Second, the substrate velocity vc l has to be small compared to a maximal velocity

vm of the contact line. At this velocity the difference betweenΘs andΘd is maximal, the con-

tact line vanishes and a continuous film is left on the substrate by the receding contact line.

For water on a substrate with a static contact angle of 2◦ the minimal dynamic contact angle

and the maximum velocity can be estimated using eq. 4.3 toΘd ≈ 1.15◦ and vm ≈ 200µm/s.34

This maximal velocity of the contact line also sets a maximal velocity for convective particle

assembly, because the contact line velocity must be matched by the substrate withdrawal

velocity, as discussed below. Third, eq. 4.3 again describes the macroscopic contact angle

determined by the central uniformly curved part of the meniscus.

In the boundaries set by these assumptions, eq. 4.3 predicts a decrease of the contact angle

with vc l . Thus, in setups with moving substrates, the deposition generally takes place in

menisci with lower contact angles than in setups with static substrates, where the meniscus
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assumes the static contact angle.

Meniscus curvature. The meniscus intersects with the substrate at the contact line, where

it assumes a defined contact angle Θ. In a dip-coating geometry, the transition from the

reservoir’s liquid surface to the substrate surface imposes a curvature on the liquid surface.

The curvature of the surface is determined by the liquid surface tension. For unconstrained

menisci the radius of curvature R⊥ is on the order of the capillary length κ−1 =
p

γl g /ρl g of

the solvent (where ρl is the density of the liquid and g the gravitational acceleration).34

In a confined geometry, the blade sets boundary conditions that can only be fulfilled by a

curved meniscus. In setups where the reservoir is held by capillary interactions between a

blade and a substrate, the distance between blade and substrate H has to be smaller than

the capillary length κ−1. At distances H larger than the capillary length, the anchoring of

the reservoir between the blade and the substrate would fail. The curvature of the reservoir

is a function of the lower and upper contact angles and the distance H between blade and

substrate. For an ideal capillary bridge between two wetting substrates, the curvature scales

with the inverse distance H between the two anchoring plates,34

1

R⊥
∝

1

H
≥

1

κ−1
. (4.4)

Thus, the curvature 1/R⊥ is larger for setups with a blade than in setups without a blade.

Contact line curvature. LAPLACE’S equation applies for all points on the meniscus surface

if it is in equilibrium with a reservoir: 1/R1+1/R2 =∆p/γl g = cons t . Pressure differences

∆p may arise from hydrostatic pressure inside the meniscus. We have shown above that

the meniscus in convective particle assembly is curved with 1/R⊥. Thus, the meniscus must

exhibit a second principle curvature with opposite sign to compensate. The meniscus is

curved not only about an axis that is parallel to the substrate with a radius R⊥ but also about

an axis normal to the substrate with a radius R‖. Since the contact line is the intersection of

the meniscus with the substrate, it follows this curvature. Since both curvatures compensate

for each other, the curvature of the contact line reflects the setup geometry in the same way

as the meniscus curvature does.

Meniscus deformability. Above relations describe the influence of substrate velocity and

blade height on the meniscus geometry, namely, meniscus curvature and contact angle.

Meniscus geometry not only sets the space that is available for particle motion, it also

governs the meniscus’ deformability: The force required to locally deform the meniscus

depends on its overall shape. DE GENNES and coworkers developed a model for the de-

formability by distortions that can be described with low wavenumber harmonics.34, 35, 37, 38
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Figure 4.3.: Deformation of the contact line by a surface inhomogeneity of size d . The
undisturbed meniscus moves over the inhomogeneity in x-direction and gets pinned. The
contact line deforms to the new shape ξ(d ).

They found distorted and undistorted solutions for LAPLACE’S condition of vanishing total

curvature and used the area added by the distortion to calculate a restoring force. This

force can be expressed in terms of the line shape ξ(d ) that a defect of size d imposes on the

contact line of the meniscus (fig. 4.3) and a "spring constant" k of the contact line,

k =
πγl gΘ2

ln L
d

. (4.5)

The constant L describes the macroscopic distance between adjacent anchor points of the

contact line. The energy Ud e f added by the larger area of the distorted meniscus is given by:

Ud e f =
1

2
·k ·ξ2(d ). (4.6)

Note the dependence of the spring constant on the contact angle Θ and on ln(L/d ). A

meniscus with a small contact angle and a long distance L between the anchor points of

the contact line will exhibit a small spring constant and a high deformability. One might

call such a meniscus "slack" and a meniscus with large contact angle and small distance

between anchor points "taut".

DE GENNES et al. derive the spring constant considering only anchor points along the

contact line. However, their derivation is general enough to describe a meniscus that is

pinned not only on the substrate, but also perpendicular to it as occurs in deposition setups

with blades. The height of the blade above the substrate is generally much smaller than the

width of the substrate and even smaller than the capillary length. The relevant distance to

the next anchor point that restricts the deformation of the meniscus L is then given by the

distance L′ along the meniscus surface from the defect to the blade. If we can approximate

this path by a circular segment with radius R⊥ between substrate and blade (fig. 4.2), the
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relevant distance calculates to

L′ ∝ 2π ·R⊥. (4.7)

A meniscus with large R⊥ will thus be slack, while a highly curved meniscus with low R⊥ is

taut. Both R⊥ and contact angle Θ depend on setup geometry and assembly velocity. Setups

without constraints (with weakly curved menisci) and assembly at high velocities (at low

dynamic contact angles) provide slack menisci. Constraints or low velocities provide taut

menisci.

DE GENNES’ model explains an additional effect of the blade. When L′ is the distance

between the contact line and the blade’s edge, measured along the meniscus surface, eq. 4.5

predicts a diverging spring constant k when the deformation size d reaches the order of the

characteristic distance L. In setups with blades, we can assume L = L′. The blade therefore

restricts the curvature 1/R‖ and forces a straight contact line. In contrast, the meniscus is

curved along the full contact line for unconstrained menisci.

4.2.2. Growth rate of convectively assembled particle films

The shape of the meniscus sets the space that is available for the particles to move and

assemble into a film. Their net motion has been described by DIMITROV and NAGAYAMA in

1995.27 In their work, they balance the liquid flows and connect them with the particle fluxes

to obtain simple transport equations. The evaporative flow of the solvent, Je =w f · l e · je ,

and the solvent flow from the bulk suspension, Jw =w f · l f · jw , must balance in steady state:

l e je = l f jw , (4.8)

where w f , l e , h f , and j denote the width of the deposited film, the length of wet film

measured from the deposition front, the height of the film and the solvent flux densities,

respectively (fig. 4.1). The particle flux density jp is then linked to the solvent flux density by

a coupling parameter, β , and the particle volume fraction in the liquid,φ:

jp =
βφ

1−φ
jw . (4.9)

The particle flux to the film growth front, Jp =w f ·h f · jp , matches the increase in particle

volume of the film, which is the product of the film growth rate v f , the film thickness h f , the

film width w f and the film density (1−ε) (where ε is the porosity), Jvol =w f ·h f ·v f · (1−ε),
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so that we obtain a connection between growth rate and particle flux:

v f (1−ε) = jp . (4.10)

Combining equations 4.8, 4.9 and 4.10 yield an equation for the film growth rate:

v f =
l eβ jeφ

h f (1−ε)(1−φ)
(4.11)

If the meniscus does not move, these transport conditions only lead to an accumulation of

particles at the contact line. For a continuous deposition of a film with constant thickness,

the contact line must move at the same rate as the film grows: vc l = v f . The motion of

the contact line can either result from an actively moved substrate or from an evaporating

reservoir on a static substrate. Note that relation 4.11 is to some extent self-equilibrating. For

a given velocity vc l , the particle film thickness h f increases or decreases until equilibrium is

reached.

4.2.3. Relations between film growth and meniscus shape

The balance of fluxes that yields equation 4.11 does not fully describe the assembly process.

Evaporation length, evaporative flux and deposited film thickness are variables that depend

on the geometry of the meniscus in which assembly takes place. Perturbations of the assem-

bly process lead to unbalanced fluxes that are not covered by the theory. In the following, we

will discuss how the meniscus geometry sets some of the variables in equations 4.8, 4.9, 4.10

and 4.11. We also analyze the effects of perturbations, which in fact are dependent on the

meniscus shape.

Thickness variations and meniscus slope. The thickness of the deposited film h f is not

a continuous value but an integer multiple of the thickness of a single particle layer. The

film thickness depends on the height of the meniscus above the growth front, hm , which

therefore equals m times the thickness of a single particle layer plus a fraction of a particle

diameter (fig. 4.4). If the front of the growing particle film is at an x -position of the meniscus

that can accommodate a maximum of m particle layers, a film of just this thickness will

grow. The distance between x -positions that can accommodate different m depends on

the shape of the meniscus. Its height hm grows from the contact line towards the reservoir

depending on the contact angle Θ at the edge and on the meniscus’ curvature normal to the

substrate 1/R⊥.

If the meniscus is steep, the deposition will show a high tendency to switch between film
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Figure 4.4.: The relation between the thickness of the deposited film and the meniscus height.
The suspension (S) forms a meniscus with a defined gas-liquid interface (M) terminated by
a contact line on the moving substrate at xc l . The convective fluxes lead to an accumulation
of particles in the meniscus and initiate the growth of a particle monolayer at xmono , where
the height of the meniscus hm equals the particle diameter. If the monolayer grows faster
than the substrate moves, the film front moves into positive x direction, towards the bulk
suspension. When it reaches xdou b l e , where hm equals the height of a particle double layer
hdou b l e , the assembly of a double layer begins.

thicknesses if the assembly fronts moves inside the meniscus. The deposition then has a low

“buffer length” lb u f f e r that can compensate for mismatches∆v = |vc l |−
�

�v f

�

� between contact

line velocity and growth velocity. This sets a "buffer time" tb u f f e r = lb u f f e r /∆v , which is the

time between the onset of a mismatch and a change in deposited layer thickness (with all its

consequences). Large buffer lengths prevent local variations in particle or solvent flux from

changing the layer geometry and let random variations cancel out over time. Long buffer

times also give the operator more time to readjust parameters such as the substrate velocity

to minimize∆v . A large buffer length requires a low contact angle Θ and a low curvature

1/R⊥. We have previously seen that a high withdrawal speed and a large substrate-blade

distance provide both.

Growth rate and contact line curvature. The evaporative flux density je drives the assembly

process. Strong evaporation causes a large water flux, a large particle flux and a high film

growth rate. The evaporative flux depends on two ambient parameters, temperature and

humidity, and on the local curvature of the liquid surface. DEEGAN and coworker described

the relation between the curvature of a spherical droplet of radius R and the evaporation

rate by treating the purely diffusive evaporative flux as an electrostatic potential emerging

from a charged conductor.26, 39, 40 Diffusion-limited evaporation leads to a steady-state

concentration profile u (r ) of vapor in air so that the diffusion equation is reduced to a

Laplace equation, D∆u = ∂t u = 0, where D is the diffusion constant for the vapor in air and
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u the mass of vapor per unit volume of air. The boundary conditions impose saturation of

the air above the liquid surface at u (0) and ambient vapor concentration u (∞) at a large

distance from the drop, a boundary value problem identical to that of a charged conductor.

The evaporative flux density from the surface of a sessile drop with a contact line that is

curved at a radius R‖ thus depends on the distance r from the axis of rotational symmetry

according to

je ∝
1

(R‖− r )λ
. (4.12)

where λ = (π− 2Θ)/(2π− 2Θ) takes the contact angle into account. For any point at a

constant distance r from the axis, the evaporative flux will increase as the radius of curvature

decreases. It diverges in the wedge near the contact line at r ≈R‖.

If the particle film growth front is situated at a constant r , the radius of curvature of the

associated contact line segment determines the evaporation rate. Comparing this relation

between contact line curvature 1/R‖ and the evaporative flux density je to the equation

describing the growth rate of the film (eq. 4.11), we expect an increased growth rate at curved

segments of the contact line.

The length of the contact line affects deposition, too. If the contact line is curved, its

full length exceeds its length projected onto the film growth front. This surplus in the

actual length compared to the length projected onto the film growth front tends to increase

deposition. The surplus is given by a factor sinα, if α is the angle between contact line and

growth direction.

Local differences in contact line geometry will therefore influence the local growth rate.

In any real (finite) setup, the contact line is curved, so that the deposition will be inhomoge-

neous over the full substrate width, an effect that cannot be compensated by the choice of

withdrawal velocity. It is possible to avoid contact line curvature at the initial stage of depo-

sition using structured substrates.41 However, the contact line will relax to its equilibrium

shape as the meniscus moves away from the surface relief. It is therefore desirable to have a

setup where the contact line exhibits little curvature over most of the substrate. This is the

case for setups with blades that pin the meniscus, force a straight appearance of the contact

line perpendicular to the growth direction and thus deposit more homogeneously.

Evaporation length and meniscus deformability. Holes form in the deposited layer when

the thin liquid film ruptures and the contact line jumps to a new position without depositing

particles. Holes perturb the deposition process because the evaporation length l e drops

to zero behind them (fig. 4.5 (a)). A vanishing evaporation length leads to a minimal film

growth velocity v f (eq. 4.11) and continuously induces new holes in the film (fig. 4.5 (b)).
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Figure 4.5.: Light microscopy images of the deposition process (a) and a dried film (b) of a
500 nm polystyrene particle film with defects. The meniscus of the suspension (I) guides
particles into a wet particle film (II), which dries at a distance from the meniscus (III) that
defines the evaporation length (IV). The evaporation length l e decreases when holes (V)
form in the film, for example behind double layers (VI). This induces the nucleation of new
holes and leads to a film with chains of holes (b).

An additional buffer that helps preventing this defect propagation is set by the "depinning

length". During normal deposition, the contact line is pinned at the film’s growth front. If the

film’s growth velocity is insufficient and the growth front moves in negative x direction, away

from the equilibrium position of the contact line, the contact line will be dragged along up

to a maximum displacement that we call depinning length l d e p . The time that passes before

the contact line detaches from the growth front and a hole forms is td e p = l d e p/∆v . Similar

to the buffer length, a long depinning length is beneficial because it increases the stability

against perturbations. If the growth rate v f fluctuates during deposition, for example due to

an increased evaporation length l e or due to changes in the particle volume fractionφ, it

needs to be constantly readjusted by the operator. A slack meniscus with large l d e p gives the

operator additional time to readjust the system. Moderate fluctuations cancel out without

intervention.

A slack meniscus also limits the size of defects. Both contact line curvature and local

defects (dust particles, holes or the local deposition of additional particle layers) violate the

balance of eq. 4.11. To maintain continuous deposition despite of such perturbations, the

meniscus must adapt locally. If the meniscus is sufficiently deformable, defects due to the

violated balance will remain localized. Figure 4.6 shows how a taut meniscus propagates

defects over large distances, while a slack meniscus adapts and localizes the holes. Both

depinning length and deformability depend on the spring constant k of the meniscus. Low

spring constants are achieved at high withdrawal speeds and for large blade-substrate
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Figure 4.6.: Interference microscopy shows the deposition of films from suspensions of
500 nm polystyrene particles under different process conditions. The meniscus (I) is ter-
minated by a contact line (II) which moves toward the bottom of the images and deposits
particle films (III). Common defects in the films are gaps (IV) and multilayer (V). In (a),
the deposition takes place at 1 µm/s withdrawal velocity and 160 µm blade height. The
meniscus is straight and stiff and the contact line detaches over large segments from the
particle film. In (b), deposition takes place at 10 µm/s withdrawal velocity and 1 mm blade
height. The meniscus is deformable and the contact line stays pinned at the film front so
that defects remain localized.

distance.

Evaporation at substrate sides. Substrates pin the suspension at their edges. At the pinning

edges, menisci form, strong evaporation occurs and particles accumulate. This leads to

enhanced deposition of particles at the substrate edges. For setups with substrates fully

immersed into the suspension this is a marginal problem, but for setups with the suspension

confined under a blade this leads to significant loss of particles and unwanted deposits at

the sides of the substrate (fig. 4.7 a)). Diffusion barriers that prevent evaporation to the sides

(fig. 4.2) provide an effective remedy (fig. 4.7 b)).

4.3. Results

We used a setup for convective self-assembly from a restricted meniscus inside a light mi-

croscope to capture the geometry of the meniscus during assembly. Height information

was obtained via interference light microscopy illuminated by a monochromatic light emit-

ting diode (fig. 4.16). Reflection light microscopy yielded the shape of the projection of

the meniscus on the substrate and thus, the shape of the contact line. Interference light

microscopy allowed precise measurement of the height of the meniscus and calculation of

45



4. Large-Area Convective Assembly

Figure 4.7.: Light microscopy images showing the edge of dry particle films deposited with-
out (a) and with (b) a barrier to prevent evaporation to the sides. The dark lines indicate
the shapes of the contact lines during deposition. Region I, directly at the edge, shows a
pileup of particles (a), which is minimized by introducing the barrier (b). Region II shows
multilayer that were deposited from the curved segment of the contact line and could not
be prevented by the evaporation barriers.

contact angle and curvature. In section 4.3.1 to 4.3.4, we show how contact line curvature,

contact angle, meniscus curvature and meniscus deformability depend on blade height and

substrate withdrawal velocity. The results guide our choice of blade heights and velocities

for deposition experiments in section 4.3.5, where we evaluate the effects of geometry on the

convective deposition of particles. Finally, we present parameters that yield homogeneous

films from 500 nm particles.

4.3.1. Effect of blade height on contact line curvature

The static, particle-free meniscus exhibits several properties that are important during

assembly. In our experimental setup, the shape of the contact line was fixed by three edges,

two at the sides of the substrate and one at the front of the blade (fig. 4.2). The pinning at

the front edge of the blade forced the contact line on the substrate into a virtually straight

line parallel to the blade that was terminated by two curved transition segments towards the

edges of the substrate. The width of the curved segments depended on the setup geometry

and grew with increasing blade height H as measured by light microscopy (fig. 4.8 a)). When

increasing the blade height from 20µm to 1 mm, the width of the curved segments increased

from roughly half a millimeter to 3.5 mm each, shortening the straight contact line from both

sides. This increase is due to the larger L′ at higher blade height H which reduce the effect

of the blade. At the same time, the curvature 1/R‖ of the curved segments of the contact line

dropped to one quarter of its original magnitude. This decrease implies a reduced curvature
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Figure 4.8.: Shape of the static meniscus depending on the blade-substrate-distance as mea-
sured by interference light microscopy. Graph (a) shows the curvature 1/R‖ and extension
of the curved segments of the contact line on the substrate. Graph (b) shows the curvature
1/R⊥ of the meniscus perpendicular to the substrate. Lines between the points in (a) are
guidelines for the eyes only, lines between the points in (b) are a least-squares fit of eq. 4.4,
neglecting the leftmost point.

1/R⊥ of the meniscus.

Increasing the blade height lowered the curvature and reduced the difference in evapora-

tion rates between the curved segments and the straight segments of the contact line, thereby

reducing differences in film growth rates. This improvement in deposition uniformity comes

at the cost of straight contact line length.

4.3.2. Effect of blade height and substrate velocity on meniscus

curvature

The curvature of the meniscus 1/R⊥ that is normal to the contact line curvature also depends

on the blade height (fig. 4.8 b)). We find a good fit when describing the relationship using

the equation
1

R⊥
=

1

2 ·H
. (4.13)

derived from eq. 4.4 with a proportionality factor of two. The values for the two curvatures

1/R‖ and 1/R⊥ match within the experimental errors, both drop from ∼ 2 · 10−3 µm−1 to

∼ 4 ·10−4 µm−1 with raising the blade height.

Film deposition requires a moving meniscus. The dynamic shape of a particle-free menis-

cus captures further aspects of the deposition process. We reconstructed the shape of a water
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Figure 4.9.: Shape of the dynamic meniscus on a withdrawn substrate as measured by inter-
ference light microscopy. The curvature 1/R⊥ of the meniscus perpendicular to the substrate
and its contact angle Θ with the substrate were measured as functions of the withdrawal
velocity for two blade heights. The lines are meant to guide the eyes.

meniscus while the substrate was withdrawn and determined its curvature as a function

of velocity (fig. 4.9). For low velocities, the curvature 1/R⊥ did not change with withdrawal

velocity. This is consistent with the geometrical considerations in section 4.2.1. For velocities

above 50 µm/s, the curvature decreased. At such velocities, viscous effects gain influence.

The segment of the meniscus under investigation takes an intermediate shape between the

static shape and the limiting dynamic case predicted by eq. 4.3, where a flat, continuous

film is extracted from the liquid meniscus at very high velocities.

4.3.3. Effect of substrate velocity on contact angle

The response of the contact angle to changing substrate velocity is shown in fig. 4.9. The

dynamic contact angle drops by two orders of magnitude in the measured velocity range

below 100 µm/s, more than expected from eq. 4.3. The experimental contact angle is

calculated from the interference fringes, which are measured down to heights below 100 nm.

These heights are at the border of the central segment, for which eq. 4.3 is valid, to the

proximal highly curved segment of the meniscus. The proximal segment thus exhibits much

stronger deformation than the central segment during the transition from the static contact

angle to the continuous film extraction. This effect can influence the convective assembly

process at least of small particles.
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Figure 4.10.: Meniscus depins as it moves over an obstacle at a substrate speed of 100 µm/s
and at a blade height of 160 µm. Dry substrate (I) is exposed as the meniscus (II) moves
over the obstacle (III). The depinning length l d e p is measured as the distance between the
unperturbed contact line and the obstacle just after depinning (indicated in the center
image).

4.3.4. Effects of blade height and substrate velocity on meniscus

deformability

We investigated the effect of changing curvature and contact angle on disturbances of

the meniscus by measuring the depinning length l d e p of the contact line at an artificial

defect. A microscopic epoxy obstacle was placed on the substrate and moved from the

solvent reservoir through the meniscus at different blade heights and substrate velocities, an

experiment similar to that of NADKARNI and GAROFF.42 The distance between the obstacle’s

edge and the undisturbed contact line was measured at the moment of depinning (fig. 4.10)

to obtain l d e p . Figure 4.11 shows an increase of the depinning length with withdrawal speed,

in particular at large blade heights. The results match the expectations from eq. 4.5. The

lower dynamic contact angle Θd and the larger distance to the anchor points L′ at high

withdrawal velocities and large blade distances led to a smaller spring constant and a greater

depinning length.

4.3.5. Effect of blade height and substrate velocity on deposition

homogeneity

Theoretical considerations and the results above indicate an influence of the setup geometry

on the homogeneity of deposited particle films. To characterize this influence, depositions at

various blade heights and substrate velocities were made. The blade height can be set freely

for any given deposition. The withdrawal velocity, however, must match the growth velocity

v f of the particle film and is tied to at least one other parameter. NAGAYAMA’S equation

(eq. 4.11) offers two ways to increase the growth velocity of a film with fixed thickness h f :
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Figure 4.11.: Depinning lengths of a dynamic meniscus, measured by video microscopy as a
function of withdrawal velocity for two blade heights. The lines are meant to guide the eyes.

Figure 4.12.: Temperature dependence of the contact angle, measured during deposition via
interference microscopy. The lines are guides to the eyes.
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increasing the particle volume fraction in the suspensionφ or increasing the evaporative flux

je . The evaporative flux is adjustable via the environmental pressure,3 the environmental

humidity17 and the substrate temperature.25 Substrate temperature is easily changed, but

has unwanted side effects: fig. 4.12 shows the increase of the contact angle with substrate

temperature. Thus, increasing the evaporation flux by raising the temperature to achieve a

high growth velocity and a low contact angle was not possible. Adjusting the environmental

pressure and humidity is cumbersome.

Surfactants can also tune the contact angle. However, surfactants are usually non-volatile

and will co-deposit on the particle film, changing its structure and chemical nature. In

addition, the local variations of surfactant concentration cause MARANGONI flows which

compromise the convective assembly process.

Instead, we used a high particle volume fraction φ of the suspension, which led to the

desired increase in growth velocity v f . Together, a moderate assembly temperature and high

particle concentration prove a good strategy for particle assembly. We obtained high-quality

particle monolayer from an aqueous suspension of 500 nm polystyrene particles with c0 =

2.6 % solid content and 1 mm blade height at room temperature using a withdrawal rate

of 10 µm/s. A dynamic contact angle of 1◦ and a curvature of 8 ·10−4 µm−1 were measured.

They match the values determined for pure water menisci.

The optimized conditions were used to assess the influence of the substrate-blade distance

and substrate velocity on the homogeneity of the deposited film. Thus, we reduced the

blade-surface distance in one experiment and lowered the particle concentration in the

other. The withdrawal velocity was chosen to produce a monolayer in all cases.

The film homogeneity was analyzed using a video scan with a low-magnification mi-

croscope objective under white light transmission illumination. Any heterogeneity in the

film, such as holes, gaps or multilayer, appeared as variations in brightness. The standard

deviation of the pixel gray values across the image gave an estimate for the film homogeneity

(compare supporting material for details of the evaluation process). It was calculated for

every frame to analyze the homogeneity over the full film length. A consistently low standard

deviation over several frames indicates a homogeneous film.

Figure 4.13 shows that the film is most uniform at 1 mm blade height and high particle

concentration. High initial standard deviations in the first ten millimeters are caused by

static deposition before the actual process started. They are followed by low deviations over

the rest of the 35 millimeter deposition length. We expect that the homogeneous film is only

limited by the setup.

In contrast, deposition at a low blade-substrate distance or at low particle concentrations
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Figure 4.13.: Homogeneity analysis of films that were deposited using different conditions.
A combination of large blade height and high deposition velocity (set by the high particle
concentration c0) yielded the most homogeneous film. The insets show two examples for
the microscopy images that were analyzed for the graph, scale bar represents 1 mm.
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Figure 4.14.: Polarization light microscopy image and scanning electron microscopy image
of a film that was convectively assembled from 500 nm diameter polystyrene particles. The
dark spots (I) are holes in the film. They nucleate the growth of a small-grained polycrys-
talline film (II) that differs from the otherwise homogeneous single-crystal film (III). The
film was grown from top to bottom.

lead to consistently high standard deviations, indicating that these parameters were not

suitable for high-quality film deposition.

4.3.6. Effect of deposition homogeneity on the microscopic quality of

the particle film

Figure 4.14 shows a convectively assembled particle film that highlights the importance of

macroscopic film homogeneity for microscopic deposition quality. The film exhibits a row

of holes that formed concurrently. The polarization contrast highlights how these relatively

small holes (below 100 µm in width) nucleate large regions of deviating microstructure,

with the range of the perturbations extending over much longer distances than the holes

themselves. Electron microscopy reveals that the holes disrupt the single crystalline particle

film, which becomes polycrystalline in the perturbed region.

Figure 4.15 a) shows two representative electron micrographs of the films that were

characterized optically in fig. 4.13. Electron microscopy proves the absence of thickness

variations or holes in the film deposited under optimized conditions. The only observable

defects are few single-particle voids and sub-particle diameter wide drying-cracks, not

visible in optical microscopy. In the film deposited at low particle concentration the electron

micrograph reveals thickness variations, small holes and grain boundaries. Figure 4.15 b) I

shows a high-magnification electron micrograph of a height transition in the particle film.

The nucleation of a polycrystalline region in the particle film is clearly visible behind the
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Figure 4.15.: Scanning electron micrographs of films that were convectively assembled from
500-nm-diameter polystyrene particles. The top row (a) shows overviews (scale bars corre-
spond to 30µm), the bottom row (b) shows high magnification images of the films (scale bars
correspond to 5 µm). The films deposited from suspension with 0.1 c0 (denoted as I) exhibit
large inhomogeneities such as holes and double layers which cause growth of polycrystalline
film. The film deposited under optimal conditions (denoted as II) is perfectly crystalline
with microscopic voids and drying cracks. The insets show Fourier transformations that
indicate long-range translational order in the film deposited under optimal conditions (II).
All films shown here were grown from the top to the bottom of the images.
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step edge.

The long-range translational order was investigated using FOURIER transformations of the

electron micrographs. The Fourier image of the homogeneous film features reflexes that

indicate long-range hexagonal order that is unaffected by the drying cracks. The FOURIER

image of the inhomogeneous film with thickness variations features rings that indicate a

polycrystalline structure.

The local order of particle packing is characterized by the average number of nearest

neighbors. For a perfect two-dimensional hexagonal close packing, every particle should

touch 6 nearest neighbors. In a typical homogenous particle film (fig. 4.15 a) II), we find an

average number of nearest neighbors of 5.9, limited by the drying cracks. In the inhomoge-

neous film (fig. 4.15 a) I) the average number of nearest neighbors is around 5.3, indicating

the higher number of particles at sites with distorted local packing.

4.4. Discussion and Conclusion

The meniscus shape depends on the setup and influences film deposition. We found that

contact line curvature, meniscus curvature and contact angle change with blade height and

substrate velocity as expected from theory. We also found that these geometrical features

affect assembly:

• A contact line with small curvature provides uniform evaporation over the substrate

width.

• A flat meniscus has a weak tendency to jump between particle film heights during

deposition.

• Contact angle and meniscus curvature together govern the deformability of the menis-

cus. A deformable, slack meniscus can accommodate different deposition conditions,

prevents defects from spreading and has a low tendency to de-pin and form holes

in the particle film. The deposition thus becomes robust against the ubiquitous

perturbations of process conditions.

We used optimized conditions to deposit homogeneous films over five square centimeters

that were limited only by the width of the substrate and the travel distance of the stage. The

quality of these films was compared to other films in terms of optical homogeneity, long-

range and short-range order using a combination of optical and electron microscopy. Under

optimized conditions the films grew out initial defects and turned into single crystalline
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particle monolayer. Under other conditions the density of defects stayed high and the

crystalline structure was continuously disrupted.

All deposition setups face a trade-off between robustness and homogeneity of the de-

position. A blade is advantageous because it straightens the contact line, but it imposes

a curvature on the meniscus and on the contact line at the sides of the substrate. Setups

without blade have menisci with minimal curvatures. However, in such setups the curvature

of the contact line will extend over the entire substrate and the evaporation rate will vary

over the substrate. We expect an optimum for setups where the blade-substrate distance is

close to the capillary length such that meniscus curvature is small, but the contact line is

straight.

A moving substrate aids deposition in all setups because it provides a low, dynamic contact

angle and the film thickness can be controlled by the withdrawal velocity. We suggest

studying high withdrawal velocities in setups with a confined meniscus. Balance then

requires an increased influx of particles, for example due to increased particle concentration

or evaporation rate. The low dynamic contact angle and the flat meniscus at high velocities

will contribute to an increased homogeneity and stability of the deposition. At very high

withdrawal velocities (say, above 100µm/s) viscous dissipation deforms the meniscus, which

becomes long and flat as we have shown. This geometry should be optimal for convective

particle assembly according to above discussion. However, effects not considered in this

study such as hydrodynamic instabilities occurring at that high velocity might be limiting.43

4.5. Experimental

All experiments were performed in a climate-controlled laboratory at a temperature of

22◦C ±1◦C and a relative humidity of 40 %±5%.

4.5.1. Substrates and particles

Substrates for the measurement of meniscus profiles and for the deposition of particle films

were either silicon wafers (Asahi Kasei, Tokyo, Japan,<100>-oriented) with a native oxide

layer or standard microscopy slides (Marienfeld, Lauda-Königshofen, Germany, pure white

glass), if transparent substrates were required. The substrates were cleaned in an ultrasonic

bath using isopropanol (Sigma-Aldrich, Deisenhofen, Germany, puriss. p. a.) and deionized

water (ultrapure quality from a Millipore unit). Immediately before use, the substrates

were hydrophilized by oxygen plasma treatment at a pressure of 0.3 mbar and RF power of
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Figure 4.16.: Experimental setup. A linear stage with stepper motor (a) moves a temperature-
controlled sample holder (b) on which the substrate (c) is clamped under a blade (d) which
holds the suspension reservoir (e). The process is observed using a light microscope with
CCD camera (f) under the illumination of a blue LED (g).

100 W for 5 minutes in the quartz tube of a commercial plasma reactor (low-pressure reactor

PICO, RF source at 13.56 MHz, Diener electronic, Ebhausen, Germany). All substrates were

spontaneously wetted by water after this step.

Aqueous suspensions of emulsion-polymerized polystyrene microspheres with specified

diameters of 457±10 nm were obtained from Polysciences (Polysciences Europe GmbH,

Eppelheim, Germany), with a solid content of 2.6%. The concentration was adjusted by

dilution with ultrapure water. Before deposition, the suspensions were filtered by pressing

them through 0.8 µm cellulose acetate syringe filters (Whatman, Dassel, Germany).

4.5.2. Setup

The setup used in this study is shown schematically in fig. 4.16. It provides a restricted

meniscus.29 We used this setup geometry because its meniscus has well-defined geometry

and is accessible to interference microscopy. The geometrical constraints (blade height) and

the substrate velocity were varied in wide intervals, allowing extrapolations of the results to

setups with static substrates or without geometrical constraints. All substrates were fixed on

a temperature-controlled sample holder that could be moved by a motorized translational

stage. Temperature was controlled within ±0.5◦C by a refrigerated circulator (Lauda RE

204, Lauda-Königshofen, Germany) and measured using a thermocouple mounted on the
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holder. The substrate was left to equilibrate on the holder for at least 5 minutes after each

temperature change. For experiments with evaporation barriers, the substrate was enclosed

in a Teflon trough with side walls of 2 mm height. The blade holding the liquid reservoir was

mounted such that its distances to the substrate could be varied. A volume of roughly 100 µl

of liquid was placed between the blade and the substrate. Relative motion between the

blade and the substrate was controlled by a precision linear stage (PLS-85, Micos, Eschbach,

Germany), which assured steady motion of the stage under the blade (a maximal deviation

of 30 nm/s from the target velocity was measured by the manufacturer via interferometry).

The entire setup was mounted on the stage of a conventional optical microscope (AxioIm-

ager.A1m, Zeiss, Oberkochen, Germany), which enabled video microscopy and interference

microscopy, but limited the travel distance of the linear stage to 35 mm. Videos were taken

using a greyscale high-speed camera (Zeiss AxioCam) and evaluated using the Zeiss AxioVi-

sion software. Interference microscopy was performed using the same setup with a blue

high-power LED (460 nm emission, FWHM 20 nm) for illumination.

4.5.3. Interference microscopy

We used optical microscopy in reflection mode under the illumination of monochromatic

light to obtain interference microscopy images. The light reflected from the substrate and

the gas-liquid interface created interference patterns that were depending on the local

thickness of the liquid, which were recorded using the microscope’s camera. Line scans in

x -direction over the images displayed characteristic brightness oscillations with minima

and maxima related to the thickness hm of the liquid as in,

hm =
mλ

4n w a t e r
, (4.14)

where λ is the wavelength of the light, n w a t e r = 1.33 the refractive index of water and m

the order of the interference, where odd m give dark fringes and even m give bright fringes.

The brightness oscillations in the microscope image were analyzed using this equation to

reconstruct the shape of the gas-liquid interface in the x − z -plane to an accuracy of 4%.

The error originates from uncertainties in defining the exact position of the fringes in the

interference pattern during analysis.

After reconstructing the shape of the gas-liquid interface of a meniscus, we fitted the

obtained profile to a second order polynomial f (x ) with a regression coefficient better than

0.999. The first interference minimum for pure solvent is expected at a film thickness of

86.47 nm. During deposition, the particles’ diameter sets the minimum thickness. Thus, the
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first observable interference minimum during deposition was at 605.26 nm. The contact

angle Θ of the meniscus on the substrate could then be derived from the slope of the profile

at the intersection with the x -axis using following equation:

Θ= arctan

�

d f (x )
dx

�

�

�

�

hm=0

�

. (4.15)

The height profile also yields the curvature of the gas-liquid interface, which we calculated

using

1

R
=

d2 f (x )
dx 2

h

1+
�

d f (x )
dx

�2
i

3
2

. (4.16)

Error bars indicate the scattering of the experimental values for contact angles and curva-

tures measured in the same region of the meniscus around the given average.

4.5.4. Video microscopy

The depinning length was measured using a small droplet of the epoxy glue that was placed

on the substrate using a needle tip, followed by the standard procedure for substrate hy-

drophilization. The substrate was fixed on the sample holder and was withdrawn from a

water reservoir with different withdrawal velocities and at different blade heights. After

calibration, the depinning distances were measured in the Zeiss AxioVision software.

For film quality analysis the video scans of the particle films were saved from the AxioVi-

sion software as image sequences and loaded with ImageJ.44 After background subtraction

(rolling ball algorithm, light background, 50 pixel radius,45) the standard deviation of the

grey values of the pixels for each frame was calculated.

Videos were taken with a 5x magnification objective which corresponds to frame sizes of

2.08×1.56 mm2.

4.5.5. Polarization light microscopy and scanning electron microscopy

Polarization light microscopy of particle films on standard microscope slides was performed

using a Leitz Orthoplan-Pol microscope (Ernst Leitz Wetzlar GmbH, Wetzlar, Germany) with

transmission illumination. Electron micrographs were obtained using a FEI Quanta 400F

scanning electron microscope (FEI Europe, Eindhoven, Netherlands). A thin gold film was

sputtered on the particle films to minimize charging effects during electron microscopy.

Electron micrographs were transformed by the Fast FOURIER Transformation algorithm pro-
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vided by the ImageJ software. Additionally, the number of nearest neighbors was calculated

using the particle tracking algorithm published in ref.46 to extract the individual particles’

coordinates. Roughly 6500 particles per image were then analyzed using a simple script

which counts all particles within a distance of two radii as nearest neighbors. The average

number of nearest neighbors was then calculated by averaging the results.
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5. Crystallization Mechanisms in

Convective Particle Assembly

The results presented in this chapter were submitted to Langmuir for publication in 2011.1

Abstract — Colloidal particles are continuously assembled into crystalline particle coat-

ings using convective fluid flows. Assembly takes place inside a meniscus on a wetting

reservoir. The shape of the meniscus defines the profile of the convective flow and the

motion of the particles. We use optical interference microscopy, particle image velocimetry

and particle tracking to analyze the particles’ trajectory from the liquid reservoir to the film

growth front and inside the deposited film as a function of temperature. Our results indicate

a transition from assembly at a static film growth front at high deposition temperatures to

assembly in a precursor film with high particle mobility at low deposition temperatures. A

simple model that compares the convective drag on the particles to the thermal agitation

explains this behavior. Convective assembly mechanisms exhibit a pronounced tempera-

ture dependency and require a temperature that provides sufficient evaporation. Capillary

mechanisms are nearly temperature independent and govern assembly at lower tempera-

tures. The model fits the experimental data with temperature and particle size as variable

parameters and allows prediction of the transition temperatures. While the two mechanisms

are markedly different, dried particle films from both assembly regimes exhibit hexagonal

particle packings. We show that films assembled by convective mechanisms exhibit greater

regularity than those assembled by capillary mechanisms.

5.1. Introduction

Two-dimensional lattices of sub-micron particles are useful surface coatings: they induce

well-defined roughnesses, curvatures and periodicities to the interface. Surface roughness

affects the interaction with biological systems like cells2, 3 and arthropods4 and the contact

angles on superhodrophobic5 and self-cleaning surfaces.6 Curvature is an important pa-
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rameter for magnetic high density data storage7 or microlens arrays.8, 9 Periodic surfaces

modulate sound and light e.g. in planar waveguides,10 diffraction gratings,11 coatings with

bandgaps for certain frequencies12 and in anti-reflective coatings.13 Metal particle layers

provide plasmonic wave guides.14 Particle films can be used as sacrificial layer in particle

lithography.15, 16 Most of the applications exploit the tendency of the particles to form regular

close-packed structures, often referred to as colloidal crystallization.17

A convenient bottom-up fabrication process of colloidal crystals is the convective particle

assembly technique.11 Large-area films with a high degree of order can be deposited by

convective assembly in simple experimental setups.18–25 The basic principle of convective

assembly is the transport of particles from a reservoir into a meniscus that forms on a

wetting substrate. Particles are confined at the contact line and deposited onto the substrate.

When the substrate is slowly withdrawn, the meniscus moves and the accumulated particles

are continuously deposited as a film. Crystallization occurs in a transition region between

the meniscus and the dried particle film (see fig. 5.1).

Macroscopically, convective assembly relies on a solvent flow that increases the particle

concentration in the meniscus at the rim of the reservoir.11 In the beginning, evaporation

is enhanced by the divergence of the evaporation at the contact line of the meniscus.26, 27

Particles are driven towards the three-phase boundary line, where they accumulate. The

accumulated particles eventually pin the boundary line. If the meniscus moves — either

due to the reduction of the liquid volume or due to active motion of the substrate relative

to the liquid reservoir — a liquid film is drawn out. Evaporation continuously thins this

film. When its thickness drops below the particle diameter, the liquids surface is deformed

by the particles, which increases the pressure gradient from the meniscus into the wet

particle film.11 The particles are then pulled together by capillary forces. If the velocity of

the meniscus is equal to the growth of the particle film, continuous deposition ensues —

convective particle assembly sets in. The deposited film stays wet; its increasing surface area

increases the evaporation rate, the convective flow rate, and the particle deposition rate. At a

certain distance l e from the three-phase boundary line, the particle film dries in completely.

When the deposited film becomes longer than l e , convective assembly enters a steady state

where evaporation rate, convective flow rate and particle deposition rate stay constant. Only

macroscopic defects or thickness variations in the film disturb the flow profile and lead to a

breakdown of the steady-state particle deposition (see chap. 4).

Microscopically, regular particle assembly requires guiding the particles to lattice po-

sitions. Transport towards the film is necessary, but insufficient, to create order. Two

well-developed theories describe the microscopic assembly mechanisms that arrange parti-
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Figure 5.1.: a) The three regions of convective particle assembly: In region I, the meniscus,
free particles are convectively transported to the particle film. In region II, the particles are
arranged to the particle film structure. In region III, the particles form a wet particle film with
pronounced evaporation. A deposition in blade coating geometry as used in the experiments
is shown. In this geometry a blade fixes the reservoir and straightens the meniscus. b) and c)
illustrate the crystallization mechanisms. b) Scheme of convective steering. The particles
are transported by the convective solvent flow Jc into niches that define a crystalline packing.
c) Scheme of capillary crystallization. The particles are transported into a thin solvent film.
The deformation of the liquid surface induces attractive immersion forces Fi , which drag
the particles into a crystalline packing.

68



5. Convective Crystallization

cles during convective particle assembly: convective steering28–30 and capillary crystalliza-

tion.17, 31, 32

The capillary crystallization model was developed by NAGAYAMA et al. to explain the assem-

bly of particles in thinning liquid films17 (see fig. 5.1 c)). The authors identified an attractive

capillary interaction, the “immersion force”, between particles that are deforming the liquid

surface. It is much stronger than thermal agitation even for very small particles down to

a few nanometers if a substrate supports the particles during deformation of the liquid

surface.33 Under this strong attraction, small hexagonal packed nuclei form and grow into

continuous polycrystalline, two-dimensional, close-packed particle films. Convective flow

is neglected in this model of the assembly process, it merely ensures transport of particles

from a reservoir to the assembly region of the liquid film. Capillary crystallization processes

are temperature-dependent only in so far as the solvent’s surface tension depends on tem-

perature. The surface tension of water drops almost linearly in the relevant temperature

range, by ≈ 6 % between 10◦C to 40◦C.34

The convective steering mechanism depends on the exact motion of the solvent (see

fig. 5.1 b)). NORRIS et al. performed a network analysis of the fluid flow through a regular

arrangement of particles to explain the striking yield of face-centered cubic particle pack-

ings that occur in the convective assembly of bulk crystals and far surpass the fraction of

hexagonal close-packed or random close-packed particle arrangements.30 They assumed

that previously deposited particles form a scaffold for the placement of incoming particles.

The solvent flows into the niches of this scaffold and drags the particles with them. Particles

are predominantly transported to and fixed in niches with the strongest influx. The au-

thors showed that niches without underlying particles have the greatest influx, which favors

particle stacking in an ABCABC. . . -sequence, the structure of face-centered cubic crystals.

The temperature dependence of this mechanism stems from the evaporation process. The

evaporation rate is proportional to the vapor pressure of the solvent which exponentially

depends on temperature. The vapor pressure of water drops by≈ 84 % between 40◦C and

10◦C.34

It is yet unknown which of these mechanisms prevails in the convective assembly of

two-dimensional crystalline films from a meniscus. Interference microscopy has shown

that the liquid film at the film growth front is slightly thicker than the particle diameter

(chap. 4), which indicates assembly without deformation of the liquid surface and suggests

convective steering. As the film dries, however, the particle arrangement often changes, a

process surely related to capillary crystallization. Our goal in this study is to clarify the role

of both mechanisms in the deposition of regular monolayer.
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A better understanding of the assembly mechanism will aid the control of convective

particle assembly. Presently, only the thickness of the particle film18, 24 and the areal fraction

of sub-monolayer9 can be precisely controlled in pure convective assembly. Control over the

crystalline domain size is a subject of ongoing research.25, 35, 36 Moreover, little control of layer

structure is possible today. One would like to switch between amorphous and crystalline

packings or between fine-grained and coarse-grained crystalline packings during assembly

because amorphous films can tailor optical properties37 and have found applications as

anti-reflective coatings6 and in Bragg mirrors.38 Adjustment of the dielectric constant of

particle films39 or the structures formed by colloidal lithography15 is also desirable. Sufficient

structural control over the films presently requires the use of different particles (e.g. low and

high size dispersities18) or templates.21

In the next section, we develop a simple model to estimate the work required to move

particles from their position back into the bulk suspension. We divide the convective

particle assembly process into three regions (see fig. 5.1): Region III is the capillary pump,

a wet particle film. Region II is the rim of the liquid meniscus, the region where particles

are confined and are attached to the film and where the structure formation takes place.

Region I is the liquid meniscus in which the particles are transported from the reservoir to

the rim. The action of the capillary pump has already been analyzed before.24 The shape of

the meniscus in region I and its effects on film formation is also known9 (compare chap. 4).

In this paper, we focus on the processes in region II. Our model describes how much work is

required to remove particles from this region to the bulk suspension.

Random thermal agitation counteracts the directing forces that cause convective parti-

cle assembly. Successful assembly requires sufficient transport to the particle film and a

force that is strong enough to hold the particles in their lattice positions until they loose

mobility. Thermal agitation is linearly temperature-dependent. The different temperature

dependencies of the two assembly mechanisms described above allow to distinguish their

roles. The exponential decay of the evaporation rate and the linear behavior of the thermal

energy predict a regime where convective steering fails while capillary interactions still

lead to regular assembly. In the next section, we compare the thermal energy scale to the

work required to move a particle from its position in the convective assembly region. Then

we experimentally determine the liquid flow profile at different temperatures, analyze the

temperature dependency and identify the assembly mechanism.
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5.2. Model

Thermal agitation works against the forces exerted by the convective flow. Here we develop a

model for the flow profile, calculate the drag force on the particles and the work required to

move a particle quasi-statically against the flow. Other interactions are neglected. In steady

state, the force field generated by the fluid flow becomes conservative, and an equivalent

potential field is introduced. This representation is particularly convenient when analyzing

the strength of the particles’ attachment to their lattice position in the growing film in

section 5.2.2.

5.2.1. Transport

We use Cartesian coordinates with the x -axis parallel to the substrate pointing towards the

reservoir, the y -axis parallel to the growth front and the z -axis perpendicular to the substrate

(fig. 5.1). The deposition process is approximated by a quasi-static two-dimensional problem

in the x -z -plane. The particle film is withdrawn from the meniscus at the same rate as the

film grows so that the relative position of the growth front and l e are constant. Note that

the finite curvature of the three-phase contact line in the actual assembly leads to slightly

varying geometries of the x -y -plane; they are neglected here.

Figure 5.2 illustrates the modeling steps that lead from the meniscus geometry to the

velocity profile, the drag force, and, finally, the work required to drag a particle back through

the convective stream into the reservoir. We start with the parabolic height profile h(x ) of

the meniscus’ liquid-air interface above the substrate at a distance x from the growth front

(see chap. 4):

h(x ) = a ′+b ′ ·x + c ′ ·x 2. (5.1)

Volume conservation implies an inverse parabolic shape of the z -averaged velocity of the

liquid in the meniscus:

v (x , T ) =−
1

a (T )+b ·x + c ·x 2
. (5.2)

The actual flow profile is parabolic in z -direction due to the non-slip boundary condition

imposed by the substrate. However, the particle size in most of the experiments is compara-

ble to the height of the meniscus at least up to a few particle diameter distance to the film

growth front. The particles thus only experience an effective flow, in which the gradient in

z -direction is averaged out. We thus omit the z -component of the flow profile. Note that our

choice of coordinates leads to negative velocities of liquid flowing into the film. Parameter b

and c depend on the setup geometry, in particular on the position of the blade’s edge that
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Figure 5.2.: Modeling steps from the meniscus geometry to the work required to move a
particle back into the reservoir. The parabolic shape of the meniscus h(x ) impresses an
inverse parabolic velocity profile v (x , T ). Using STOKES drag the force profile F (x , r, T ) is
derived. Finally, by integration over the force the work Φ(x , r, T ) is calculated. See text for
details.
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pins the meniscus (chap. 4). Parameter a is equal to the inverse fluid velocity at the film

growth front at x = 0. The fluid’s flow rate is proportional to the evaporation rate from the

particle film,11 which we assume to be proportional to the vapor pressure of the solvent here.

The vapor pressure follows the law of CLAUSIUS-CLAPEYRON, which leads to an exponential

dependency of the solvent velocity on the temperature for a fixed liquid geometry:

v (0, T ) =−
1

a (T )
≈ d · e−

e
T . (5.3)

The particles transported by the convective flow have negligible inertia (REYNOLDS numbers

and STOKES numbers are both on the order of 10−4 for the measured velocities). We can

therefore use their velocities (obtained from particle image velocimetry, sec. 5.3) to estimate

the solvent velocity. A fit of the particle velocities to eq. 5.2 yields the parameters a , b and c .

Measurements a different temperatures provide a (T ), which can be fit to eq. 5.3 and yields

the parameters d and e .

A particle with radius r that is held at a constant position experiences STOKES drag exerted

by the moving solvent:

F (v,x , r, T ) = 6πη · r · v (x , T ), (5.4)

where η is the solvent’s viscosity. The work required to move a particle quasi-static from the

film edge back into the reservoir therefore equals

Φ(x , r, T ) =−
∫ ∞

0

F (x , r, T )d x = 6πη · r ·
∫ ∞

0

1

a (T )+b ·x + c ·x 2
d x . (5.5)

The integral in eq. 5.5 over the inverse parabolic function can be solved analytically40 to yield

∫

1

a (T )+b ·x + c ·x 2
d x =

2
p

4 c a (T )−b 2
arctan

 

2 c x +b
p

4 c a (T )−b 2

!

. (5.6)

The asymptotic behavior of the arc tangent, arctan(x )
x*∞−→ π

2
, and arctan(0) = 0 ensure a

vanishing force far away from the assembly region in the reservoir and the normalization of

the potential.

The solvent flow causes the transport of particles from the reservoir to the assembly

region. This convective transport surpasses diffusive transport if the work required to move

particles away from the assembly region is larger than their thermal agitation:

Φt (x , r, T ) =−
∫ ∞

0

F (x , r, T )d x >
3

2
kT, (5.7)
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where k is BOLTZMANN’s constant and T the absolute temperature. Within the assumptions

made in the derivation, the force F (x ) created by the fluid flow being one-dimensional and

conservative, the work of removal Φt (x , r, T ) defines a potential. This implies a considerable

abstraction of the assembly process. The effects of the convective fluid flow are split into a

potential that forces the particles into the particle film, and a viscous medium that dissipates

the particles kinetic energy and acts as a heat bath. This abstraction makes the similarities

between convective particle assembly and particle assembly in external potentials clearer.

Assembly of particles by sedimentation, for example, requires the external gravitation to

transport and confine the particles, and the solvent to provide dissipation and thermal

agitation of the particles. We will use the terms “potential energy” or “potential” in the

following to acknowledge the mathematical analogy and to emphasize the similarity between

convective particle assembly and particle assembly by sedimentation or other external

potentials.41

5.2.2. Assembly

If the potential difference between reservoir and assembly region is smaller than 3
2

kT,

particles can diffuse back into the reservoir. However, even a much larger potential differ-

ence does not guarantee regular deposition of the particles. Microscopic ordering requires

microscopic potential energy minima, as we show in the following.

The force generated by the flow field in the above proposed model only acts in x direction

and does not affect the lateral displacement of the particles. Without any further constraints,

the particles would be deposited in a random manner. In case of capillary crystallization,

the attractions by neighboring particles form local potential energy minima that bind and

arrange the particles.17 When convective steering governs the assembly, the required con-

straints originate from particles already attached to the growth front. They form ’niches’

into which the free particles are transported by the solvent flow.28 We can extend our model

to account for this mechanism.

The energy required to remove a particle from its niche must be larger than thermal

agitation to ensure regular arrangement. If it was smaller, the film growth front would be

constantly reconfigured (see fig. 5.3), and the convective steering must break down. We

define the ’binding potential’ as the work needed to move a particle one diameter away from

the film growth front:

Φb (x , r, T )≡−
∫ 2r

0

F (x , r, T )d x . (5.8)
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Figure 5.3.: Schematic top view of convective particle assembly. In region I the solvent
stream advects free particles, in region II the particles arrange due to the force created by
the convective stream and the restrictions by neighboring particles, and in region III the
deposited particles form a scaffold for the addition of new particles. d = 2r is the distance
particles must be able to diffuse against the solvent stream to become unrestricted in lateral
motion.

Regular assembly can only take place if the binding potential Φb (x , r, T ) exceeds 3
2

kT.

Determining the shape of the potential from particle velocity measurements would enable

predictions on the existence of a critical temperature Tc , defined as the temperature at

which the binding energy of the particles decay below their thermal energy. At Tc , the

arrangement of the particles would then change from a regime where convective steering

ensures colloidal crystallization to a regime where capillary interactions solely control the

arrangement process.

5.3. Experimental

All experiments were performed in a climate-controlled laboratory at a temperature of

22±1◦C and a relative humidity of 40±5 %.

5.3.1. Particles, solvents and substrates

Silicon wafers (Asahi Kasei, Tokyo, Japan, 〈100〉-oriented) were used as substrates. The

substrates were cleaned using isopropanol (Sigma-Aldrich, Deisenhofen, Germany, puriss.

p. a.) and deionized water (ultrapure quality from a Millipore unit), subsequently, in an

ultrasonic bath. Immediately before use, the substrates were hydrophilized by oxygen
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plasma treatment at a pressure of 0.3 mbar and RF power of 100 W for 5 min in the quartz

tube of a commercial plasma reactor (low-pressure reactor PICO, RF source at 13.56 MHz,

Diener electronic, Ebhausen, Germany). All substrates were spontaneously wetted by water

after this step.

Aqueous suspensions of emulsion-polymerized polystyrene microspheres with specified

diameters of 457±10 nm (’PS500’) and 110±5 nm (’PS100’) were obtained from Polysciences

(Polysciences Europe GmbH, Eppelheim, Germany), the solid content was specified as 2.6 %

and 4 %, respectively. Before deposition, the suspensions were filtered by pressing them

through 0.8 µm cellulose acetate syringe filters (Whatman, Dassel, Germany).

Barium titanate powders (’BTO’) with mean particle diameter of 300 nm and a relative

permittivity of 809 were obtained from Inframat Advanced Materials (Willington, CT, USA).

Aqueous suspensions with a solid content of≈ 0.1 % were obtained from the powders by a

route described by LI et al.42

Suspensions of 1 µm silica particles (’SiO1000’) were prepared according to NOZAWA et

al.43 Briefly, a solution of 5 ml TEOS (Si(OC2H5)4, 98 %, Sigma-Aldrich)in 30 ml ethanol

(99.9 %, Eckvos) were added to a solution of 9.5 ml ammonia (NH4OH, 28 %) in 50 ml of

ethanol under constant stirring at 500 rpm. Addition rate was kept constant at 0.05 ml/min.

5.3.2. Experimental setup, film deposition and video microscopy

The setup was described in chapter 4. It was designed for horizontal convective particle

assembly in blade-coating like geometry with concurrent observation by light microscopy.

It consisted of a temperature-controlled sample holder that was moved by a precision linear

stage. The suspension reservoir was formed by a capillary bridge between the substrate

and a blade mounted above the substrate. The entire setup was mounted on the stage of

conventional light microscope to enable video microscopy.

For film deposition, approximately 100 µl of particle suspension were injected into the

gap between the blade and the substrate. The suspensions was allowed to equilibrate

its temperature with the substrate for 5 min. Depositions were made in the temperature

interval from 8◦C to 40◦C. The withdrawal rate of the substrate was chosen to deposit particle

monolayer, which required withdrawal velocities of 10 - 20 µm/s at room temperature and

down to 50 nm/s for depositions below 10◦C. The film growth front remained at a steady

position within the field of view of the objective under these conditions.

Videos of the depositions, either of the particle transport on the meniscus side of the

growth front or of the particle film side of the growth front, were taken at frame rates of

30 s-1 and at roughly 500x magnification (frame size 210×170 µm2). Videos consisting of
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600 frames (20 s length) were used for evaluation with particle image velocimetry or particle

tracking. Prior to evaluation the video frames were adjusted in brightness and contrast using

the ImageJ software.44

5.3.3. Particle image velocimetry

A particle image velocimetry algorithm was used to analyze the velocity of particles when

suspended in the solvent or embedded in the particle film. The videos were imported

into Matlab.45 Our algorithm selects rectangular interrogation areas and calculates the

cross-correlation between each pair of interrogation areas of two subsequent frames. The

maxima in correlation are used to estimate the displacement of the particles between the

frames. More detailed descriptions of particle image velocimetry by cross-correlation can

be found in the literature.46, 47 We used the equation given by Pust48 for calculating the

cross-correlation coefficient R between the interrogation areas A and B for an offset [m , n ]:

RA B (m , n ) =

∑

i

∑

j [A(i , j )−A] · [B (i +m , j +n )− B ]
Æ

∑

i

∑

j [A(i , j )−A]2 ·
∑

i

∑

j [B (i +m , j +n )− B (m , n )]2
. (5.9)

A and B denote the interrogation area mean values and i and j the pixel indexes.

Averaged velocity profiles for the entire movie were obtained by averaging the displace-

ments obtained for each interrogation area over all frames. The flow profile is symmetrical;

we averaged over interrogation areas with the same distance from the film edge to obtain a

1-dimensional flow profile. Figure 5.4 illustrates the evaluation process. Finally, an inverse

parabola was fit to the flow profile using the Origin software:49

v (x ) =−
1

a +b ·x + c ·x 2
. (5.10)

Parameter b and c only depend on the setup geometry, which was constant. They were

averaged over all measured velocity profiles. An exponential function derived from the law

of CLAUSIUS-CLAPEYRON was fit to parameter a (T ):

a (T ) =−
1

v (0, T )
=−

1

d · e−
e
T

. (5.11)

The isolated particles in moving suspension provided sufficient optical contrast for parti-

cle image velocimetry. In the dense packing of the assembled film, however, single particles

could not be resolved anymore. We therefore used BTO tracer particles to analyze particle
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mobility in the films. Their high refractive index causes strong light scattering so that the

tracers appear as bright spots in dark field imaging of the particle film during deposition.

The size difference between BTO particles and PS100 particles probably causes differences

in their motion, but we believe that the tracer particles’ motion characterize the overall

mobility in the assembled film well.

The evaluation of the tracers’ motion followed the scheme described above with two

exceptions: to compensate for the much slower dynamics in the particle film, cross-cor-

relations were calculated not for subsequent frames but with twenty frames spacing. The

motion of tracer particles does not represent a steady state. We therefore did not average

over the entire movies but calculated trajectories of the tracers as they move through the

film.

5.3.4. Particle tracking

A particle tracking algorithm by KOUMOUTSAKOS et al.50 was used to reconstruct the trajec-

tories of single particles in the liquid volume during deposition. This algorithm tracks the

positions of bright spots in image series. The high particle concentrations of convective

particle assembly and the two-dimensional imaging of the meniscus make the tracking of

individual particles difficult. Lower particle concentrations would require a lower deposition

rate, which impairs particle film quality (compare chap. 4). We therefore used BTO particles

as tracers. Particle tracking was performed only for PS500 particles which match the size of

the tracer particles.

5.3.5. Film quality analysis

The quality of particle films was evaluated by counting the next neighbors of each particle.

Electron micrographs were obtained using a FEI Quanta 400F scanning electron microscope

(FEI, Europe, Eindhoven, Netherlands). The particle tracking algorithm was used to extract

the coordinates and count the individual particles’ centers from the micrographs. The

particles’ projected Ap area was estimated from the number of particles N and the area of

a single particle with average diameter: Ap =N ·π · r̄ 2. The coverage of the substrate was

calculated by dividing the substrate area by the particles’ area. Next neighbors for each

particle were then counted by counting the number of particle centers within a distance

of two radii from the particle’s center. Roughly 2500 particles per image were analyzed to

obtain the number distribution of next neighbors.
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Figure 5.4.: The process of particle image velocimetry: From two subsequent video frames
(a) shifts in the correlation maximum for each interrogation area are calculated (b), which
leads to the velocity profile after calibration to the magnification and the frame rate of the
video (c). The example shows SiO1000 particles at 25◦C.

5.4. Results

In the following, we analyze the velocity of particles during their convective assembly

using the potential model. We find that the transport potential describes the migration

of particles from the bulk to the assembly region well. In the assembly region, depending

on temperature, one of the two different assembly mechanisms occurs. Mobility analysis

proves that formation of a regular arrangement proceeds via an intermediate arrangement

with high mobility in capillary crystallization.

5.4.1. Transport and binding potentials

The velocity distribution of particles that are transported from the bulk to the assembly

region is strongly temperature-dependent. Figure 5.4 illustrates experimentally measured

velocity profiles. Such profiles were obtained for SiO1000-particles at substrate temperatures
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Figure 5.5.: The velocities v (0, T ) of the convective fluid stream calculated for x = 0 at film
growth front. The solid line is the result of the fit with eq. 5.11. The trend follows the
predictions by the model, the fluid velocity increases with temperature. The labels indicate
the tracer particles used in the measurements.

of 25◦C, 33◦C and 40◦C and for the PS500 particles at substrate temperatures of 15◦C, 19◦C,

25◦C, 33◦C and 40◦C. In all cases, the particles were found to accelerate towards the assembly

region, as expected.

All particle velocity profiles fit eq. 5.10 with regression coefficients better than 0.95 (fig. 5.5).

Transport of particles to the assembly region in our experiments is described by eq. 5.10 with

b = 1.6 ·10−19 s/µm2 (with a standard deviation of 1.9 ·10−18 s/µm2) and c = 9.4 ·10−7 s/µm3

(with a standard deviation of 1.4 ·10−6 s/µm3) from averaging over all measurements. The

variations in the linear and quadratic term of the flow profile indicate that the assumption

of a static meniscus shape is critical over the full range of temperatures and withdrawal

velocities tested in the experiments. The error in the binding potential calculated below

caused by the uncertainties in b and c , however, stays below 0.9 % for all evaluated particle

sices.

All particles reach their maximum velocity when they arrive at the film growth front.

Maximal velocities from PIV v (0, T ) =−1/a (T ) are plotted in fig. 5.5. They fit the predictions

of eq. 5.11 with a regression coefficient of 0.8 and parameters d = 1.27 ·1010 µm/s (standard

error of 5.73 ·109 µm/s) and e = 5376 K (standard error of 1453 K) (errors estimated from

the goodness of the fit). As discussed in sec. 5.5, there may be additional parameters not

included in the model contributing to v (0), which limit the goodness of the fit.

We are now in a position to recover the force F (v,x , r, T ) that would act on a stagnant
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Figure 5.6.: Plot of the depth of the binding potential in units of kT as calculated from
eq. 5.8. The plot is truncated at 100 kT to maintain resolution at lower energies. A distinct
dependency on the particle radius and the temperature can be found, below ≈ 250 nm and
≈ 20◦C the potential energy rapidly decays to kT.

particle in the fluid with velocity v (x , T ) and construct the corresponding potential. The

derived fluid velocity v (x , T ) depends only on the distance from the film growth front and

the temperature, integration over the drag force F (v,x , r, T ) yields the potential. Here, we

are mainly interested in the magnitude of the binding potential, i.e., the potential directly

at the film growth front. To ease applicability in the laboratory we give the results of the

calculations in units of ◦C instead of K.

Figure 5.6 is a color-coded map of the binding potential Φb as a function of the particle

radius and the substrate temperature. The binding potential shows a strong dependency

on particle radius and temperature and diverges for large particles and high temperatures,

where Φb takes values of several hundred kT. Below a particle radius of≈ 250 nm and below

a temperature of ≈ 20◦C, Φb rapidly decays to kT. This is insufficient to confine the particles

at the film growth front and maintain order there: assembly requires Φb exceeding 3/2 kT.

Particles have enough thermal energy to leave shallower potential wells and escape from

their lattice position.

The effect of particle size is highlighted in fig. 5.7. As temperature increases, the depth

of the potential well rapidly grows beyond 3/2 kT for 500-nm-diameter particles, by more

than 50 kT in the range from 5◦C to 18◦C. In contrast, the depth of the potential well only

increases by 2.8 kT between 5◦C and 20◦C for 100-nm-diameter particles.

Critical temperatures at which the potential well reaches 3/2 kT are shown in fig. 5.8. Note
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Figure 5.7.: Plot of the depth of the binding potential as a function of the substrate tempera-
ture for two particle diameters. In the case of 500-nm-diameter particles the depth of the
binding potential well increases by more than 50 kT in the given temperature range, while it
increases only by 2.8 kT in the case of 100-nm-diameter particles.

Figure 5.8.: Plot of the critical temperature Tc at which the potential well reaches 3/2 kT as
a function of the particle radius. For large particles this temperature coincides with the
dew point in the laboratory, while it diverges for particles below 100 nm. The inset gives an
expanded plot of the sub-100 nm region.
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Figure 5.9.: Trajectories of BTO particles co-deposited with PS500 particles at 20◦C (left) and
at 8◦C (right). The convective stream transported the particles from the right to the film
growth edge. At 20◦C, the particle is build into the film and follows the withdrawn substrate
without lateral displacement, while the particle at 8◦C stays mobile and diffuses along the
film growth edge.

that only small particles (with radii below 100 nm) exhibit critical temperatures above the

dew point. For large particles, critical temperatures are around the dew point which is close

to 5◦C for the ambient conditions in the laboratory.

A second important result is the magnitude of the transporting potential (eq. 5.7). Our

model predicts that even small particles are transported and held in the meniscus. For

example, a particle with a radius of 5 nm at a substrate temperature of 10◦C still encounters

a potential difference of ≈ 50 kT between the film growth front and the reservoir. An

accumulation of particles in the meniscus thus will happen at all practical temperatures.

5.4.2. Assembly mechanisms

Assembly cannot take place if particles are not transported to the assembly region. Crys-

tallization at the film growth front cannot take place if the binding potential well at this

position is too shallow. In the following, we analyze the trajectories of particles outside and

inside the deposited film at various temperatures to find how they assume regular lattice

positions.

We used barium titanate (BTO) tracer particles to analyze particle trajectories above and

below the critical temperature. Figure 5.9 shows two representative trajectories of BTO

particles that were co-deposited with PS500 particles at 20◦C and and 8◦C. For such particles,

the binding potential well is too shallow to enforce crystallization below 10◦C; at 8◦C the

binding potential Φb becomes 0.6 kT.

The particle trajectories at 20◦C hardly deviate from the smooth stream lines of the solvent.

They end at the growth front of the particle film, where all independent motion of tracer

particles ceases and they merely follows the substrate. In contrast, at 8◦C the transport of the

particles is much slower. Trajectories are still directed towards the growth front but jagged

by random detours. They do not end at the film growth front: particles diffuse along the
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Figure 5.10.: Video frame showing the deposition of a 100 nm polystyrene particles and BTO
particles. The BTO particles aid the observation of mobility in the particle films by their high
contrast in refractive indexes.

front as predicted by the model.

If particles can diffuse along the growth front, convective steering cannot be the prevailing

mechanism of crystallization. We find, however, that ordered films still emerge. Capillary

forces must be responsible for this crystallization. As KRALCHEVSKY et al. pointed out,33 the

immersion forces even of very small particles are stronger than thermal agitation. When the

liquid film enclosing the particles’ film thins beyond the diameter of the particles at some

distance from the growth edge, strong capillary interactions pull the particles into hexagonal

close packed structures.

We investigated the motion of particles inside the film by PIV to analyze this second as-

sembly mechanism. A monolayer of PS100 particles was deposited. The critical temperature

for 100-nm-diameter particles is sufficiently above the dew point to avoid condensing water.

For such particles, the binding potential Φb is expected to be 0.7 kT at 13◦C and 2 kT at 17◦C,

the temperatures we chose for deposition. Figure 5.10 shows one frame of the dark field

videos of the PS100 particle film with BTA tracer particles. It is easy to observe mobility inside

the film by observing the BTA particles’ displacements. Figure 5.11 indicates directions and

magnitudes of the tracer displacement from one video frame to another with 0.6 s delay.

Little mobility is seen at 17◦C. The particles merely follow the substrate. The particle film

at 13◦C exhibits much greater mobility, in particular at the first 100 µm behind the film

growth front. Random rearrangement of the particles occurs directly behind the front, while

the particles further away from the front increasingly follow the withdrawn substrate. Root

mean square displacements shown in fig. 5.12 quantify this trend. The displacements were

obtained by averaging over all interrogation areas with the same distance from the film
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Figure 5.11.: Displacements between two video frames with 0.6 s lag observed in 100-nm-
diameter polystyrene particle films with BTO tracer particles at 13◦C and at 17◦C. The
particles in the film deposited at 13◦C exhibit especially in the first 100 µm from the film
growth front random displacements, whereas the particles in the film deposited at 17◦C
merely follow the withdrawn substrate.

growth edge and correcting for the steady withdrawal of the substrate.

The observed displacements probably indicate the effect of rearrangement by capillary

interactions. In the following we show that the assembled films have characteristic features

that indicate their assembly mechanism.

Films of PS100 particles without the addition of BTO tracer particles were deposited at

13◦C and 17◦C. Figure 5.13 shows electron micrographs of the resulting particle arrange-

ments. Both exhibit hexagonal dense packing of the polystyrene spheres. The surface

coverage was 69.4 % for the film deposited at 13◦C and 74.3 % for the film deposited at 17◦C,

both similar and far below the theoretical maximum of 90.7 %. Pronounced differences in

the particle packing between the two depositions are quantified by next-neighbors-analysis

(fig. 5.14). While most particles deposited at 17◦C have 6 next neighbors, most particles

deposited at 13◦C have only 4 next neighbors. At 17◦C, most particles have a complete

hexagonal neighborhood, while at 13◦C, most particles sit at edges of hexagonal grains. The

differences in assembly mechanism above and below Tc lead to different particle particle

packings in the deposited film. Below the critical temperature, small-grained particle films

are formed.
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Figure 5.12.: Averaged root mean square values of the displacements within 100 nm particle
films deposited at 13◦C and 17◦C. The particles in the film deposited at 13◦C exhibit high
initial average displacements, while the film deposited at 17◦C keeps a static structure. At
17◦C the particles are held in position by the convective stream.

Figure 5.13.: Electron micrographs of 100 nm particle films deposited at 13◦C (left) and 17◦C
(right)
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Figure 5.14.: Distribution of the numbers of next neighbors for 100 nm particle films de-
posited at 13◦C and 17◦C. Most particles have an incomplete neighborhood at 13◦C, thus sit
at edges of crystallites, while at 17◦C most particles have a complete neighborhood and are
situated within crystalline packings.

5.5. Discussion

Convective flows can fulfill two tasks in convective particle assembly: first, they transport

particles from the reservoir to the assembly region. Second, they can assemble the particles

into regular lattices, but only at high evaporation rates.

The simplified model of the flow derived above immediately suggests that

1. convective flows efficiently transport and assemble particles larger than 500 nm under

all realistic conditions,

2. particles below 500 nm are efficiently transported to the assembly region, but the

convective flow is only strong enough to assemble them into regular packings above a

critical temperature Tc that is higher than the dew point of the solvent.

This behavior is reflected in the trajectories of single particles and the final packing. We

find that

1. for T > Tc , particles are transported to the film growth front, attached to it and are

immobilized,

2. for T < Tc , particles are transported to the film growth edge, but merely diffuse along

it.
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3. for T < Tc , particles remain mobile even in the deposited film, with decreasing mobility

with the distance from the growth edge,

4. above and below Tc , the dried film exhibits hexagonal close-packing,

5. for T < Tc , deposition leads to films with smaller crystalline grains.

The results indicate a transition of the assembly mechanism around Tc :

Above Tc , assembly proceeds mainly in two distinctly different regions. Region III, the

wet particle film, is static with no particle rearrangement. Region II only represents the

boundary between freely suspended particles and the static particle film. All dynamics of

the assembly process take place in region I, the liquid meniscus. In this region, particles are

transported from the bulk to the growth front and distributed into the available niches. The

previously deposited particle film forms a static scaffold that modulates the solvent flow

and thus defines the trajectory of incoming particles.

Below Tc , the regions are less clearly delineated. In region I particles are transported

towards the film growth front, but their motion is only weakly constrained when they arrive

there. In region II, the particles constantly leave their binding sites and rearrange. A static

scaffold as required for convective steering cannot form and the particle film exhibits a

random, loose structure. This random arrangement crystallizes in Region III due to capillary

bridges.

This capillary-induced crystallization probably starts at several nucleations sites with

approximately uniform distance from the growth front, a mechanism that finally leads to

the fine-grained structure of the packing we observe. The random precursor film in region

II is less dense than the hexagonal packing and the capillary attraction produces cracks in

the particle film. However, further particles can be added during the crystallization due to

the high mobility in region II. Consequently, capillary-crystallized films exhibit more cracks

than those assembled by convective steering but only little less density.

The simple model introduced here is easily extended. We discuss some limitations in the

following.

Presently, in the model the particle radius only is considered when calculating the Stokes’

drag. Experimentally we find size-dependent fluid velocities v (0) (fig. 5.5) particularly at

high temperatures. Such deviations can originate from particle size effects on the meniscus

geometry and on the evaporation rate of the drying particle film. The latter may also depend

on the exact contact angle on the particles and thus, the particle material, just as the pressure

gradient generated in the wet particle film.
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Interactions between particles beyond hard exclusion are entirely neglected in our model.

The repulsive interactions of the charge-stabilized particles result in a finite distance be-

tween the particles in the wet deposited films even above Tc . They are overcome only in

the last stages of drying, which causes the observed drying cracks. Possibly, the distance

between the assembled particles can be derived from the magnitude of the binding potential

and the cracking be predicted.

In summary, we believe our model to be a good approximation. Care must be taken

when interpreting the data for small particles. Further measurements of v (x ) with particles

below 100 nm in diameter, possibly using fluorescent labels, could reveal the exact shape of

Tc (r ). The potential introduced here is a convenient parameter to plot against properties of

the film such as surface coverage or long-range order. If necessary, it is easily extended to

cover the gravitation potential in vertical depositions or additional frictional terms due to

particle-particle or particle-substrate interactions.

5.6. Conclusion

Convective particle assembly was described with a potential energy model. The model

based on the flow profile of the convective flow and the drag acting on the particles. By

applying microscopic particle image velocimetry a parabolic flow profile and an exponential

temperature dependency of the fluid velocity was determined. From the temperature

dependency a transition temperature was predicted, below which the convective flow does

not confine the particles anymore at the film growth front. The trajectories of traces particles

deposited below and above the predicted transition temperature proved a failing confining

and a diffusion of particles along the film growth front.

Hexagonal crystalline particle films formed in either case, albeit with different surface

coverages. The transition temperature thus marks the transition between two assembly

mechanisms, convective steering and capillary crystallization. Convective steering assem-

bles free particles to a static particle film. Capillary crystallization assembles the particles

after they have been deposited in a sparse, dynamic film region with high particle mobility.

Hexagonal crystallinity thus can be expected to always be formed from well-stabilized,

monodisperse particle suspensions in a stable convective process. Isotropic, amorphous

particle coatings could never form because one of the two assembly mechanisms ensures

crystallization at every temperature that leads to film deposition at all. Film structures

ranging from ordered monocrystalline films to small-grained percolating coatings with

low surface coverages are accessible, however, by adjusting the deposition conditions. In
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future experiments, amorphous coatings may be introduced by additional quenching of

the assembly process at a defined stage. Quenching could be achieved by tailored particle-

surface interactions, particle-particle interactions or switchable external fields.
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Part III.

Temperature-Induced Particle Assembly
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6. Growth Kinetics in

Temperature-Induced Agglomeration

Parts of the results presented in this chapter were published in the Journal of Physics and

Chemistry of Solids, 2010, 71, 95 - 99.1

Abstract — The short ligand chain length and the strong VAN DER WAALS-attraction of the

cores among alkyl thiol-stabilized metal nanoparticles bring the question about whether the

interaction among the particles is core- or ligand-dominated. The details of the interaction

determine the agglomeration kinetics and therefore the assembly behavior of the particles.

In this chapter, the interaction and agglomeration kinetics of monodisperse alkyl thiol-

stabilized gold nanoparticles are investigated. A ligand-dominated interaction among the

particles and a temperature-sensitive stability of the suspension is found. We find that

agglomeration can be induced by cooling the suspension. The agglomeration kinetics of the

suspension follows diffusion-limited or reaction-limited mechanisms. The kinetics control

the morphology of the formed agglomerates, offering a tool to design the agglomerates.

Surprisingly, crystallization is fully suppressed in temperature-induced agglomeration.

6.1. Introduction

The assembly of colloidal particles into regular particle packings, so-called colloidal crystals,

has attracted attention because of collective optical and electronic properties.2–11 Conve-

nient suspensions for self-assembly colloidal crystallization experiments are alkyl thiol-

stabilized metal nanoparticles suspended in unpolar solvents. They can be synthesized

in large quantities with low size dispersity.12 The self-assembly usually occurs during ag-

glomeration of the particles in precipitation10, 13–15 or evaporation16–20 experiments. The

formed agglomerates are investigated after agglomeration in terms of packing structure and

morphology.

However, the agglomeration kinetics of alkyl thiol-stabilized nanoparticles are surprisingly
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poorly investigated. Agglomeration kinetics are known to be a structure directing parameter.

In atomic or molecular crystallization the kinetics are known to generate inspiring and

complex patterns like the unlimited number of snowflake geometries.21 In charge-stabilized

particle suspensions depending on the kinetics dense or ramified structures or fractal or reg-

ular morphologies are formed in a predictable manner.22–26 An influence of agglomeration

kinetics on the quality of formed colloidal crystals from sterically stabilized nanoparticles

has also already been observed.10, 13

Agglomeration kinetics can be sorted into two main regimes: diffusion-limited agglom-

eration (DLA) and reaction-limited agglomeration (RLA).25 The first category, also termed

fast, rapid, BROWNIAN or SMOLUCHOWSKIAN agglomeration, is characterized by a fast agglom-

eration process where every particle collision leads to aggregation. The latter category,

also termed slow agglomeration, is characterized by lower agglomeration rates and a finite

probability of aggregation upon particle collision.

The differences between the two regimes are well-known for charge-stabilized suspen-

sions. Charge-stabilized suspensions are intrinsically unstable, the repulsive potential

barrier created by the charged surfaces merely provides a kinetic stabilization of the sus-

pensions.25 The height of the potential barrier defines the agglomeration kinetics of the

suspension. If the potential barrier is lower than the thermal energy of the particles, every

collision between particles will lead to agglomeration. The suspension will rapidly flocculate.

For potential barriers higher than the thermal energy of the particles only a finite chance for

particles to overcome the barrier upon collision exists. The probability is given by the BOLTZ-

MANN factor e−
Vm a x

kT , where Vm a x denotes the height of the potential barrier, k BOLTZMANN’s

constant and T the absolute temperature.

The differences between the two regimes can be quantified using rate constants and

stability ratios. In the early stage of agglomeration the depletion rate of free particles by

collision of primary particles can be expressed as

d n

d t
=−k11 ·n 2, (6.1)

where n is the concentration of primary particles and k11 is the rate constant for doublet

formation.27 Following SMOLUCHOWSKI’S seminal theory on agglomeration, the rate constant

for diffusion-limited agglomeration can be calculated as

k Smol
11 =

8kT

3η
, (6.2)
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where η denotes the solvent viscosity.28 In reaction-limited agglomeration, the depletion

rate is reduced due to the finite chance of overcoming the potential barrier, thus k11 ≤ k Smol
11 .

The stability ratio W , defined as the ratio between the maximal rate constant and a measured

rate constant, contains information about the height of the potential barrier Vm a x ,

W =
k Smol

11

k11
≈

2

κr
e

Vm a x
kT (6.3)

where κ gives the thickness of the electrical double layer around the particles with radius r .28

The stability ratio is a convenient tool to determine the kinetics. In a diffusion-limited regime

the temperature dependency cancels out and the stability ratio turns constant. In reaction-

limited conditions the stability ratio depends strongly on parameters like temperature, pH

and ion concentration. A plot of W against one of these parameters maps the agglomeration

behavior of the suspension.

In the later stages of agglomeration coalescence of agglomerates dominate the agglom-

eration rates. This implies a declining rate in diffusion-limited agglomeration as the grow-

ing agglomerates continuously diffuse slower.29, 30 In reaction-limited agglomeration, the

agglomerate-agglomerate coalescence probability increases with growing agglomerates due

to the higher number of points of contact and the agglomeration rate increases.31, 32 The

reaction-limited agglomeration process therefore slows down only in its final stage, when the

slow diffusion of large agglomerates limits the processes more than the finite coalescence

probability: the agglomerations becomes diffusion-limited.31

Sterically stabilized suspensions are usually described by their flocculation point rather

than by their agglomeration kinetics. The stability arises from the ligand-solvent interactions,

which can be described by a θ -temperature. Above the θ -temperature of a solvent-polymer

combination, the polymer chains stretch out, while below the respective θ -temperature

the chains collapse. For good solvents above the θ -temperature the ligands thus provide

stabilization. Lowering the quality of the solvent or lowering the temperature below the

θ -temperature will turn the interaction between the ligand chains attractive and cause ag-

glomeration.25 The dispersion interactions between the particle cores are typically assumed

to contribute only marginally to the interparticle interactions.33–35

However, for short ligand chains and particle materials with high HAMAKER coefficients

this assumption may break down. The steric repulsion generated decays quickly when the

surface separation d reaches values comparable to the chain length L. According to DOLAN

and EDWARDS36 the repulsive interaction potential Vs t e r i c created by end-grafted polymers
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decays as

Vs t e r i c = 2
Np kT

As
e−

3d 2

2l L , (6.4)

where Np/As is the number of polymer chains per surface area and l is the length of a linker

segment of the polymer chain, for alkanes ≈ 0.11 nm.37 The rapidly decaying repulsive

potential will have an even softer appearance for small nanoparticles due the high surface

curvature leading to a radially decreasing ligand number density.

The range of the VAN DER WAALS-interaction potential Vv d W can be calculated using the

HAMAKER form,38

Vv d W =−
1

3
A

�

r 2

s 2−4 r 2
+

r 2

s 2
+

3

2
ln

�

1−4
r 2

s 2

��

, (6.5)

where s = 2r+d is the center-to-center distance of particles with radius r and A the HAMAKER

coefficient. With A ≈ 50 kT for gold particles39 and a particle radius of 4 nm the dispersion

interaction decays only at a surface separation d of ≈ 2.04 nm to -3/2 kT. This corresponds

to the thickness of a self-assembled monolayer of tetradecane chains.37

The exact shape of the total potential certainly depends on the exact value of A, for

which literature values differ from 25 kT to 100 kT,38, 39 on the actual value of the polymer

density n p , and on the surface curvature of the particles. It is thus not entirely clear how the

two interactions, core-core and ligand-ligand, contribute to the total interaction potential

for small metal nanoparticles with high HAMAKER coefficient stabilized by alkane chains

with 10 to 20 segments (decane to eicosan). Detailed investigations on stearyl alcohol-

stabilized silica particle suspensions have shown the ligand-ligand interactions to dominate

agglomeration.40–45 The onset of flocculation has been shown to correlate with a structural

transition in the ligand shell.35, 46 An universal feature of the formed agglomerates is the

glass-like arrest in the particle packing.47 However, silica exhibits an at least one order of

magnitude lower HAMAKER coefficient than gold, thus gold nanoparticle suspensions may

still exhibit a significant core contribution to the interparticle attraction.

The difference between a core-dominated suspension and a ligand-dominated suspen-

sion is mainly the dependency of the interaction on temperature and ligand length. The

core-dominated suspension will exhibit a temperature-independent dispersion attraction

and thus possibly agglomeration even above the θ -temperature of the solvent-ligand chain

combination, and longer ligand chain length L will provide better stability (compare eq. 6.4).

A core-dominated suspension thus will behave like a VAN DER WAALS-gas. In a ligand-

dominated suspensions the particles are purely repulsive above the θ -temperature of the

solvent-ligand pair, and turn attractive below the θ -temperature. A ligand-dominated
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suspension is comparable to a polymer solution as described by the FLORY-HUGGINS-theory.

In either case, agglomeration in sterically stabilized suspensions is driven by attractive

interaction potentials without a repulsive barrier.36 The suspensions can reach thermal

equilibrium. From a stable state the suspension can be cooled into a metastable or binodal

state with finite chances of forming stable and growing clusters. Further cooling leads to

an unstable or spinodal state where growth of agglomerates is only limited by diffusion.44

The agglomeration rates of sterically stabilized suspensions thus exhibit a temperature

dependency opposite to that of charge-stabilized suspensions.

The unclear particle interactions in small sterically stabilized metal particles hinders

predictive optimization of colloidal crystallization processes and the purposeful use of

kinetics to control the morphology of formed agglomerates. We therefore seek to clarify

the particle-particle interaction mechanisms. Using transmission electron microscopy,

dynamic light scattering and small-angle X-ray scattering model alkyl thiol-stabilized gold

nanoparticles were characterized, agglomeration temperatures were determined using

dynamic light scattering and from small-angle X-ray scattering interaction potentials of the

suspended nanoparticles could be gained. The results indicate a prevalence of ligand-ligand

interactions in the evaluated range of ligand lengths. Using this results the kinetics of the

thermally induced agglomeration could be recorded with dynamic light scattering. The

found kinetics follow the growth laws reported for charge-stabilized suspensions. Finally,

the kinetics are compared to the produced agglomerate morphologies. A distinct difference

in morphology between agglomerates grown in diffusion-limited processes and reaction-

limited processes was observed. Particularly interesting for particle self-assembly is the

absence of order among the particle packing despite the low size dispersity of the primary

particles and the huge variation of agglomeration kinetics among the different experiments.

6.2. Experimental

The experiments aimed at clarifying the dominant interaction among the particles, the

agglomeration kinetics and the structure formation in the suspensions. Therefore three gold

nanoparticle suspensions with varying ligand chain length were synthesized, characterized,

and destabilized by cooling. The dependency of the agglomeration kinetics on the tempera-

ture was tested. Finally, the agglomeration kinetics are compared to the structures formed

in the suspension.
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6.2.1. Particles and solvents

A synthetic route adapted from ZHENG et al.12 was used in this work. Gold nanoparticles

were formed in a one-pot reduction of a gold source by an amine–borane complex in the

presence of an alkyl thiol. In a typical synthesis, 0.31 g chlorotriphenylphosphine gold

(AuPPh3Cl, ABCR 98 %) was stirred in 50 ml benzene (Riedel-de-Hahn >99.5 %) forming

a colorless solution. A mixture of 0.53 g tert-butylamineborane (Fluka 97 %) and 0.34 g

hexadecyl thiol (Fluka>98 %) was added to the AuPPh3Cl solution and reacted at 55◦C for

2 h. Following completion of the reduction reaction the deep red solution was cooled to

room temperature, precipitated by the addition of ethanol and washed by centrifugation

and subsequent resuspension in toluene. Finally, the particles were resuspended in heptane.

Gold nanoparticles with dodecyl thiol (C12), hexadecyl thiol (C16) and octadecyl thiol

(C18) ligands in heptane were produced by using the respective thiol during the synthesis.

6.2.2. Particle characterization

The gold concentration of the suspensions was measured by inductively coupled plasma-

atomic emission spectroscopy (ICP-AES) on a Horiba Jobin Yvon Ultima 2 instrument.

Results from diluted suspensions of the gold colloid were compared to a standard gold salt

solutions concentration curve for quantitative analysis.

Information about the ligand shell of the particles was obtained by infrared-spectroscopy

(IR). A Bruker Tensor 27 FT-IR spectrometer and a thermostated sample cell with 0.2 mm

path length and CaF2 windows were used. For IR measurements the suspensions were dried

and resuspended in deuterated chloroform (d-chloroform). The absorption was determined

by measuring against pure d-chloroform as a standard.

The size of the metal core of the particles was measured using transmission electron

microscopy (TEM) and small-angle X-ray scattering (SAXS).

TEM was performed using a Philips CM200 TEM operating at 200 keV with a point-to-point

resolution of 0.24 nm and a lattice resolution of 0.14 nm. For particle characterization, 10 µl

suspension was dried on a copper TEM grid with amorphous carbon coating. To determine

the mean size and size distribution of the gold cores of the particles, approximately 400

particles were analyzed per sample using the ImageJ-software.48

SAXS measurements were performed at the beamline BW4 of the DORIS III synchrotron

at DESY, Hamburg, using radiation of a wavelength λ = 0.138 nm. The suspensions were

measured in glass capillaries with nominal 2 mm outer diameter (Hilgenberg). Before

measuring, all samples were filtered by pressing them through 0.2 µm PTFE syringe filters
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(Whatman). The capillaries were sealed with glue after filling to prevent evaporation of

the solvent. The samples were placed in a thermostated sample holder connected to an

external water recirculator (Lauda-Königshofen) with a temperature stability better than

±0.5◦C. Prior to measurements, the samples were homogenized at elevated temperatures

(35◦C-40◦C). The sample-detector distance was set to cover q-ranges from 1.3·10−1 nm−1 to

3.5 nm−1 with the marCCD165 detector (Marresearch). The scattered x-rays were integrated

over 10 min. The obtained two-dimensional intensity patterns were azimuthally averaged to

obtain the one-dimensional I (q ) profile. The curves were subsequently normalized using

the synchrotron ring current and background corrected by subtraction of pure solvent

measurements. Size and size dispersity of the particle metal cores were determined by fitting

a polydisperse particle form factor to I (q ) profiles of dilute samples. The details of the SAXS

data evaluation can be found in the appendix of this chapter.

The effective particle interaction potential was derived from the structure factor S(q ) of

the suspensions measured with SAXS. S(q ) was obtained by dividing the I (q ) curves by a

scaled curve obtained from a dilute sample. S(q ) was determined in 2◦C-steps from 30◦C

to 10◦C in a q range from 1.3·10−1 nm−1 to 3.5 nm−1. The radial pair distribution function

g (s )was derived by FOURIER-transform of S(q ). The depth of the effective pair interaction

potential Vm i n was estimated by applying g (s )≈ e V (s )/k B T .43

The hydrodynamic radius of the samples was measured using dynamic light scattering

(DLS). DLS analysis was performed using a Wyatt Technology DynaPro Titan operating at a

wavelength of 831.2 nm. The temperature in the sample chamber could be varied between

-7◦C and 40◦C with humidity control to avoid condensation of vapor. All samples were filtered

by pressing them through 0.2 µm PTFE syringe filters and were homogenized at 40◦C before

measuring. The scattered light intensity was recorded for 10 s. The obtained autocorrelation

curves were averaged over 10 measurements and evaluated using the cumulant expansion

to the exponential decay fit model and the DynaLS-algorithm of the manufacturer. The

details of the data evaluation can be found in the appendix of this chapter.

DLS was used to determine the temperature TA , which marks the onset of agglomeration.

To determine TA the samples were cooled in 1◦C-steps from elevated temperatures. At

each temperature two measurements with 10 s duration were averaged. The setup allowed

cooling down to -7◦C. When the size distribution of the measured hydrodynamic radius had

tripled, the samples were heated again in single degree increments with two measurements

at each temperature. Heating continued until the original size distribution was reached

again. The resulting hysteresis loop of the hydrodynamic radius versus the temperature

was used to find the onset temperatures of agglomerate growth and decay and thus the
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agglomeration temperature TA .

6.2.3. Agglomeration kinetics

The kinetics of the agglomeration processes were monitored by quenching samples with

cooling rates of ≈ 10 K/min from elevated temperatures to agglomeration temperatures

below TA in the DLS setup. At the target temperature the hydrodynamic radius was measured

for 1 h or until the radius had exceeded the detection limit. An overshoot in cooling of ≈ 2◦C

for≈ 30 s was observed. The initial slope of the increase in hydrodynamic radius was used

to determine the agglomeration rate constant k11 and the stability ratio W . The later stages

of agglomeration were characterized by fitting power laws and exponential equations to the

growth in hydrodynamic radius using Origin.49 The exponent of the power laws allowed

estimation of the fractal dimension of the formed agglomerates31 (see appendix for details.)

6.2.4. Structure formation

After DLS measurements, 10 µl of suspension were dropped onto TEM grids and dried at

ambient conditions to analyze the morphology and particle packing in the agglomerates.

The morphology of the agglomerates was also derived from the I (q ) profile at low q-values

in SAXS measurements. The suspension was quenched to 18◦C and 10◦C with≈ 30 K/min

and virtually no overshoot. After resting for 1 hour at the target temperature, scattered

intensities from the formed sediment were measured. The detector distance was set to

cover a q-range from 8.7·10−2 nm−1 to 2.3 nm−1. The excess scattering at low q-values from

formed agglomerates can be expressed as an additional power law term (’cluster-term’) in

the structure factor. From this cluster-term the fractal dimension of the formed agglomerates

can be determined.47 The details of the data evaluation can be found in the appendix of this

chapter.

6.3. Results

In the following, we characterize the particles, measure agglomeration temperatures and

agglomeration kinetics, and investigate the formed structures. We find identical metal cores

in the suspensions, but varying agglomeration temperatures and temperature-dependent

interaction potentials. These results are in agreement with a ligand-dominated interaction

among the particles. The agglomeration kinetics are found to be consistent with diffusion-

limited and reaction-limited mechanisms. The formed particle structures reflect the dif-
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Figure 6.1.: Characterisation of the particles. a) The scattered intensity Iq in SAXS spectra of
dilute particle suspensions stabilized with C12, C16 and C18. The solid lines represent fits of
a polydisperse particle form factor. b) The autocorrelation functions in DLS experiments of
the same suspensions. The solid lines represent the results of cumulant fits. The curves are
offset by the indicated factors or addends for clarity. The inset in a) shows a representative
TEM image, the scale bar is 20 nm.

ferent agglomeration kinetics, as open, fractal structures are formed in diffusion-limited

agglomeration and dense, globular structures in reaction-limited agglomeration.

6.3.1. Particle characterization

The analysis of the gold concentration in the suspensions by ICP-AES resulted in an average

value of 353 ±53 mg/l. Using a gold density of 19.3 g/cm3 50 and the measured average

radius of the gold core, a particle concentration of (1.3± 0.2) · 1014 ml−1 can be expected.

This 30 % uncertainty in particle concentration from gold concentration measurements is

further increased by factors like different storage times and filtering of the samples before

the different experiments. Spectroscopy measurements on the plasmon resonance of the

particles (not shown) indicated reduction of particle concentrations by filtering in some

instances of more than a factor of 10. Absolute particle concentrations and all values derived

from it below are therefore subject to considerable uncertainties.

The particle size was determined using TEM, SAXS and DLS. Figure 6.1 gives the measured

scattered intensities and autocorrelation functions of diluted samples (number density

≈ 1012 ml−1) at 35◦C. The results of the fits of eq. 6.14 and eq. 6.18 and the result from

digital evaluation of the TEM images are given in tab. 6.1. The data obtained by TEM and

SAXS are in excellent agreement. The metal cores of the particles exhibit similar sizes and
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Table 6.1.: Results of the particle characterization by TEM, SAXS and DLS. r core radius,σ
root mean square deviation (TEM and SAXS), rH hydrodynamic radius,σPD polydispersity
index (DLS). The particles exhibit identical metal cores, the ligand shell thickness growth
with ligand chain length.

Ligand TEM SAXS DLS
r [nm] σ [nm] r [nm] σ [nm] rH [nm] σPD %

C12 3.2 0.29 3.1 0.28 4.5 3.3
C16 3.2 0.31 3.2 0.29 5.2 5.6
C18 3.2 0.32 3.1 0.28 5.3 5.4

size distribution irrespective of the ligand used in the synthesis. DLS measurements give

larger radii, a consequence of the sensitivity to the hydrodynamic radius rather than to

the core size. The hydrodynamic radii increase for longer ligands and give a measure of

the thickness of the ligand shell that is in good agreement with literature values for self-

assembled monolayers.37 From the data it is obvious that at least at elevated temperatures

the filtered suspensions are agglomerate-free.

The IR spectra of the akyl thiol ligands in d-chloroform exhibit four peaks (insets in fig. 6.2).

These corresponds to the asymmetric and symmetric methylene stretching modes and the

asymmetric in-plane and symmetric stretching modes of the terminal methyl group.51 While

the asymmetric stretching mode of the C18 ligands at 2928 cm−1 reproduces the value of

liquid alkyl thiol, the value for C16 ligands is shifted to 2927.6 cm−1. This suggests that the

ligands form liquid-like alkyl layers, albeit with slightly constrained motion in the case of C16

ligands. Upon cooling the d-chloroform suspensions of C18 particles and C16 particles below

30◦C and 24◦C, respectively, the peaks of the asymmetric stretching modes in the IR sprectra

shift in their position by 1 cm−1 to lower wavenumbers, indicating a higher restriction in the

motion of the chains. However, the observed peak shift is minute compared to the expected

shift of the peak from free alkyl thiols at 2928 cm−1 to fully frozen peak positions measured

on self-assembled monolayer on planar gold surfaces at 2919 cm−1.52 A possible explanation

for this is the high curvature of the nanoparticle surface that keeps the bundles of ligand

chains from forming well-ordered packings.

From the I (q ) curves obtained by SAXS measurements the static structure factor S(q )

(eq. 6.9), the radial pair distribution function g (s ) (eq. 6.10) and the mean potential V (s )

(eq. 6.11) were determined for the C16 sample. Figure 6.3 a) shows the evolution of the

structure factor S(q ) when cooling from 30◦C to 10◦C. At the highest temperatures S(q ) is

almost at unity, indicating an uncorrelated distribution of particles in the suspension. This

is reflected by an interparticle potential with a depth of around -1 kT (fig. 6.4). Upon cooling
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Figure 6.2.: The asymmetric methylene stretching modes measured in d-chloroform sus-
pensions of C16 and C18 alkyl thiol gold particles at elevated and lowered temperatures. The
vibration shifts towards lower wavenumber upon cooling of the suspensions. The insets give
the full IR spectra, showing the characteristic vibrations of methyl and methylene groups.
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Figure 6.3.: Evolution of the structure factor S(q ) of a C16-suspension upon cooling. The
curves were obtained by division of the respective Iq -curve by an Iq -curve of a dilute sample.
The structure factor indicates an uniform distribution of particles at elevated temperatures.
Upon cooling structures form in the suspension, leading to oscillations in the structure
factor.

below 24◦C structure formation occurs in the colloidal suspension, indicated by the peak

evolving at 0.74 nm−1. The interparticle potential deepens below -3/2 kT, the interparticle

potential thus exceeds the equalizing thermal agitation. Below 16◦C remarkable higher

oscillations S(q ) evolve, resulting in a step in V (s ), at which the interparticle potential

deepens by 80 %. The absolute values of Vm i n have to be used with some care, as the particle

concentration is a prefactor in the calculation. But the tendency indicates a strong deepening

of the potential well with little cooling, proving that the particle-particle interaction is

temperature-dependent.

Upon cooling the suspensions, agglomeration of the particles can be observed (fig. 6.5).

Cooling a C18 suspension below ≈ 32◦C and a C16 suspension below ≈ 24◦C induces a

rapid increase in measured hydrodynamic radius. Accordingly, the hydrodynamic radius

decays when heating the suspension above these temperatures, marking the respective

agglomeration temperatures TA . The C12 sample does not agglomerate in the temperatures

accessible in our the setup. Storing the C12 sample in a freezer at -25◦C results in an

agglomerated sample, TA for C12 thus can be estimated between -7◦C and -25◦C. A batch-

to-batch variation of the determined TA of a few degree Celsius have been observed. These

shifts might be attributed to synthesis-to-synthesis variations in ligand coverage or to
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Figure 6.4.: Trend of the depth of the effective mean interparticle potential obtained from
the structure factors in fig. 6.3. The potential decays below 3

2
kT upon temperature decrease,

leading to the observed structuring in the suspension. Note the distinct drop in the potential
below 15◦C.

Figure 6.5.: The hydrodynamic radius measured in C12, C16 and C18 suspensions as func-
tion of temperature. The arrows indicate the heating/cooling cycle. The increase of the
hydrodynamic radius with cooling indicates the onset of agglomeration, the decay with
heating the disassembling of agglomerates. The temperature of agglomeration onset grows
markedly with the ligand chain length.
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Figure 6.6.: The initial agglomeration kinetics of C16 samples below TA . a) The first hydro-
dynamic radii measured after quenching the sample to target temperatures. The lines are
linear least square fits to each temperature’s data points. The growth rate increases with
decreasing temperatures. b) The stability ratio calculated from the growth rates and the
theoretical SMOLUCHOWSKY rate constant. The lines are linear least square fits to the leftmost
three data points and the rightmost four data points, respectively. Below 15◦C the particle
agglomeration becomes much less temperature sensitive. Even the highest experimental
rate constants is at 1/1000 of the theoretical maximum rate constant (see text for values).

remnant solvents from synthesis or washing present in the sample, as observed in stearyl

alcohol-stabilized silica particles.47

6.3.2. Agglomeration kinetics

The initial agglomeration kinetics of C16 samples quenched to temperatures below TA as

measured by DLS are displayed in fig. 6.6 a). Above 14◦C the agglomeration rate increases

with decreasing agglomeration temperature, below 14◦C the increase in agglomeration rate

stagnates. Calculating the stability ratio (fig. 6.6 b)) using eq. 6.22 and eq. 6.25, the transition

from temperature-dependent agglomeration to nearly temperature-independent agglom-

eration becomes apparent. The absolute value of the largest determined rate constant

k11 calculates to 2.9 · 107 nm/s using the measured particle concentration. This is three

orders of magnitude lower than the theoretical limit of diffusion-limited agglomeration

k Smol
11 = 2.7 ·1010 nm/s (eq. 6.24). This might be an effect of the shallower attractive well in

the sterically stabilized suspension compared to the infinitely deep potential well assumed

for SMOLUCHOWSKIAN agglomeration. The uncertainty in the particle concentration used

for calculating the rate constants might contribute as well to the deviation. Despite the
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Figure 6.7.: The intermediate growth kinetics of C16 samples. The difference in agglomer-
ation kinetics can be seen from the agglomerate growth: at 16◦C the agglomerates grow
exponentially (solid line), at 14◦C power-law-like (solid line). The inset is a double logarith-
mic plot of the data at 14◦C that illustrates the power law behavior.

uncertainties, two different regimes in agglomeration kinetics are clearly resolved.

The intermediate growth kinetics are characterized by the transition from particle-particle

to agglomerate-agglomerate aggregation. The measurements supports a difference in

growth mechanism between the temperature-dependent agglomeration above and the

temperature-independent agglomeration below 15◦C. At 14◦C the increase in hydrodynamic

radius follows a power law, while at 16◦C the increase is exponential (fig. 6.7). The exponen-

tial growth is characteristic for reaction-limited growth, whereas power-law kinetics indicate

diffusion-limited growth (eq. 6.27 and eq. 6.26). An exponent of 0.56 can be obtained from

the power law fit to the data at 14◦C using eq. 6.26. This indicates a fractal dimension of 1.79

of the formed agglomerates.

The exponential growth of the agglomerates at temperatures above 15◦C finally changes

to power-law like growth (fig. 6.8). This indicates the consumption of primary particles so

that the agglomeration becomes limited by the slow diffusion of large agglomerates. A very

low fractal dimension of the agglomerates of ≈ 1.25 can be derived from the power-law fit.
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Figure 6.8.: The final growth kinetics of C16 samples above 15◦C. a) Evolution of the agglom-
erate growth. b) Double logarithmic plot of the final growth regime, emphasizing that the
growth approximately follows a power law. The solid lines are least-square fit of power laws.

Figure 6.9.: Scattered intensities Iq from SAXS measurements of the dilute suspension of
C16 particles at 35◦C, and suspensions that rested for 1 h at the denoted temperatures. The
samples at lower temperatures exhibit altered profiles due to scattering from agglomerates.
The solid lines represent fits to the profiles using the form factor alone for the dilute sample
and the form factor and a cluster term for the samples at the lower temperatures. The curves
are offset by the indicated factors for clarity.
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Figure 6.10.: TEM micrographs of agglomerates of C16 particles. a) and b) Agglomerates
formed at 10◦C after 5 min growth, exhibiting filamentous structures after diffusion-limited
growth, b) agglomerates formed at 16◦C after 5 min growth, showing the formation of
globular structures after reaction-limited growth, and c) agglomerates at 16◦C after 30 min
growth, showing coalescence of agglomerates.

6.3.3. Structure formation

In fig. 6.9 the scattered intensities from a dilute suspension are compared to the intensity

profiles of samples that were kept for one hour at 10◦C and 18◦C. A change of the profiles

at low temperatures for small q-values is observable. The fit of the profiles using a particle

form factor F (q ) (eq. 6.14) and a power-law cluster-term Sc (q ) (eq. 6.15) yields the exponents

and the fractal dimension of the formed agglomerates. At 18◦C the profile is best fit with an

exponent of 1.3, indicating dense structures with smooth surfaces and a fractal dimension

of 2.6. In contrast, at 10◦C the best fit has an exponent of 0.788, thus the cluster have much

more rough surface, represented by a low fractal dimension of 1.58. Peaks in the intensity

profile arising from BRAGG diffraction from crystalline packings are not observable.

TEM micrographs underline the a markedly different morphology of the agglomerates
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at the respective temperatures (fig. 6.10). At temperatures below 15◦C, the agglomerates

have an open filamentous or network-like structure. At temperatures above 15◦C, the

agglomerates are rather dense and globular. At later stages of the growth process, the

agglomerates join to form more open superstructures again. The packing of the particles

inside the agglomerates is dense and irregular. Ordered packings were not observable at any

of the investigated temperatures.

6.4. Discussion

The particle characterization with TEM and SAXS prove identical metal cores for the three

syntheses with C12, C16 and C18 ligands. The contribution to the particle interaction

originating from the cores is virtually identical for all samples.

The stability of the particle suspensions, in contrast, strongly deviates. The agglomer-

ation temperatures of the samples depend on the chain length; the suspension with the

longest ligands is destabilized at the highest temperature. The temperature at which a C12

sample agglomerates is≈ 45◦C lower than the agglomeration temperature of a C18 sample.

The longer the ligands are, the stronger the attraction among the particles appears to be.

Additionally, the interaction potential between the particles is temperature-dependent.

The depth of the interparticle potential measured with SAXS in a C16 sample growths by

≈ 350 % from 24◦C to 14◦C. It is reasonable to assume the gold cores to be unchanged in this

temperature regime. The shift in the interaction must therefore be a result of a change in the

ligand shell.

From this results we conclude that the ligand-ligand interactions dominate and solubility

is the main mechanism in particle assembly. The alkyl thiol ligand shells form a thin layer

of highly concentrated polymer solution around the particles. This polymer solution then

follows the predictions of the FLORY-HUGGINS-theory.53 Entropic effects prevail in the thin

polymer shell above the θ -temperature of the respective polymer-solvent pair, the chains

effectively repel each other and stabilize the suspension. Cooling below the θ -temperature,

the polymer chains attract each other and the particles become attractive. In the example of

the C16 particles a θ -temperature of slightly above 22◦C can be expected, and the attraction

suffices to cause agglomeration at 22◦C.

The jump in the interaction potential at 15◦C, however, is not consistent with a smooth

variation in the polymer chain solubility with temperature. A transition in the particle

ligand shells seems likely. Such a transition has been measured for stearyl alcohol stabilized

silica particle suspensions.35, 46 The ligands change their conformation upon cooling from a
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Table 6.2.: Characteristic temperatures: melting temperatures Tm of bulk alkane and bulk
alkyl thiol,50 melting temperatures Tm of alkyl thiols anchored on 2 nm gold nanoparticles,54

and the measured agglomeration temperatures TA of alkyl thiol-stabilized suspension. All
temperatures are given in ◦C.

chain Tm alkane Tm alkyl Tm alkyl TA gold
length thiol thiol ligands nanoparticles
C12 -10 -7 ≈ 3 between -25 and -7
C16 18 19 ≈ 41 ≈ 22
C18 28 30 ≈ 51 ≈ 32

random, solvated orientation to densely packed, straight chains. This increase in packing

density is assumed to be accompanied by an increase of the VAN DER WAALS-attraction

between the shells.35, 46 We assume therefore that the temperature evolution of the particle

interaction can be described by two temperatures, the θ -temperature of the polymer-solvent

pair, below which the particles turn attractive, and the phase-transition temperature of the

ligand shell, below which the ligand shell undergo a packing transition and increase the

attraction.

Both temperatures depend on the magnitude of the interactions among the ligand chains.

A good indicator for the interactions among the chains is their bulk melting temperature.

Table 6.2 gives the melting temperatures of bulk alkanes and of bulk alkyl thiols, the melting

temperatures of the respective alkyl thiol ligand shell on gold nanoparticles and the mea-

sured agglomeration temperatures. The melting temperatures of the alkyl thiol ligand shells

measured in air are increased compared to their bulk alkyl thiol counterparts due to the

immobilization on the gold surfaces. The agglomeration temperatures of the particles in sus-

pension nevertheless coincide well with the melting temperatures of the bulk counterpart

of the ligands. The melting point of the bulk compound can thus be used to characterize

the stability of alkyl thiol-stabilized suspensions. An interesting question is how far this

behavior can be extrapolated to shorter chain lengths. A particle suspension stabilized with

heptyl thiol should be stable down to unrealistic -91◦C, where the solvent freezes.

For the sake of completeness it has to be added that the measured agglomeration tem-

perature of the octadecyl thiol (C18) stabilized sample in heptane is ≈ 20◦C higher than the

reported agglomeration temperatures of stearyl alcohol stabilized silica particles suspended

in hexane or heptane which agglomerate below 10◦C.42, 45 This might be due to the attractive

contribution of the gold cores, although the even lower agglomeration temperature of C12

gold nanoparticles render this explanation unlikely. More likely this is an effect of the differ-

ent surface coverage with ligands. Self-assembled monolayer (SAM) on silica are known to
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form less dense packings than alkyl thiol-SAM on gold.55 The ligand shells of silica particles

in suspension therefore resemble less dense polymer solutions with a lower free energy of

mixing compared to the thiol counterpart. Additional charge stabilization from unsaturated

surface groups on the silica particles are also discussed.56

The kinetics of the agglomerate growth reflect the evolution of the interparticle potential

and the particle solubility with temperature. When cooling the suspension below the

θ -temperature of the solvent-ligand pair, the particles start to agglomerate with reaction-

limited characteristics. Further cooling lowers the solubility of the ligands, causing an

increase of the agglomeration rate and a decrease in the stability ratio. The transition in

the ligand shell deepens the attractive potential such that every encounter of particles

leads to aggregation, which turns diffusion-limited. Importantly, this transitions from a

stable suspension via reaction-limited agglomeration to diffusion-limited agglomeration

depends only on the solubility and packing of the ligand chains on the individual particles.

This is not fully equivalent to phase transitions in systems with temperature-independent

interactions like VAN DER WAALS-interactions. In such systems phase transition by bimodal or

spinodal mechanisms can be observed, which might lead to similar agglomeration kinetics.

However, the binodal and spinodal transitions are highly particle concentration depended.

In the suspensions considered in this work the stability is independent of the particle

concentration, but dependent on the concentration in the polymer solution formed by the

ligand shell of each particle.

The increase of the stability ratio with temperature, opposite to the behavior expected

for charge-stabilized suspension, indicates the absence of kinetic repulsive barriers. The

continued growth of the agglomerates, however, follows the rules developed for charge-

stabilized suspensions. In the diffusion-limited regime the agglomerates grow power-law

like, in the reaction-limited regime they grow exponentially. Eventually, the slow diffusion of

large agglomerates turns the reaction-limited agglomeration diffusion-limited. From the

agglomeration kinetics measured with DLS already some information on structure formation

processes can be gained. From the exponent of the power-law fit to the diffusion-limited

growth a fractal dimension of 1.79 can be estimated. The low fractal dimension indicate the

formation of open agglomerate structures with rough surfaces. The value of 1.79 is similar to

values measured on charge-stabilized gold nanoparticle suspensions29, 32 but smaller than

the values reported for sterically stabilized silica.45, 47

The fit to the SAXS scattering curves of agglomerated suspensions supports the formation

of two different structures in the two different agglomeration kinetics. A fractal dimension

of 1.58 is calculated for the agglomerates grown at 10◦C, in contrast to the smoother and
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denser agglomerates formed at 18◦C, as indicated by the a fractal dimension of 2.6. TEM

images finally show that different agglomerate structures are preserved even during sample

preparation, which involves pipetting and drying of the suspension. The difference in the

agglomerate morphologies formed in the two different growth kinetics is remarkably. Be-

low 15◦C the agglomerates are interconnected filamentous structures, similar to structures

formed by spinodal decomposition.57 Above 15◦C the formed agglomerates are globular,

suggesting a nucleation-and-growth mechanism. The formed globular agglomerates co-

alesce with continuing agglomeration and form interconnected structures. The typical

length scale of these structures is ten times larger than the sizes of the structures grown

with diffusion-limited kinetics. The agglomeration kinetics can thus be used to direct the

structure formation in agglomeration of sterically stabilized suspension.

Puzzling is the absence of sharp BRAGG-peaks in the structure factors measured with

SAXS, which are characteristic for colloidal crystals.51, 58 In TEM, no indication for colloidal

crystallization was found in the micrographs, too. At this point we can only speculate over

the absence of crystallization in monodispere particle suspensions, which have already been

reported to form colloidal crystals upon precipitation or evaporation.12

The agglomeration of the particles marks a phase separation between a stable particle

suspension and a condensed particle phase. This phase separation might be between a

stable ’gas-like’ low particle density fluid phase and a ’liquid-like’ high particle density

fluid phase, rather than between a fluid and a solid phase. The drying of the agglomerated

suspension would then vitrify the liquid-like phase, and the TEM shows snapshots of the

unordered liquid agglomerates. However, simulations have already shown that in thermody-

namic phase diagrams of suspensions with short-ranged interactions the fluid-fluid phase

separation line is buried under the fluid-solid phase separation line and a glass transition

line.59–61 The attractions present below the θ -temperature stem from a lowering of the

solubility of the ligand chains. The particles thus lower their surface energy upon contact

below the θ -temperature, what causes a short-ranged attraction, which is limited to the

length of the ligands. The phase separation thus can be assumed to be between a fluid and a

solid phase of the particle suspension. More likely, the absence of order is an effect of the

overlap in ligand shell upon contact. Due to the attraction of the ligands the ligand shells

will interdigitate upon contact. The entangled ligand chains form an interlock against fast

rearrangement, and the solidification of the condensed phase preserve the stochastic pack-

ing of the particles. The mechanisms preventing crystallization and differences between the

experiments presented here and the precipitation experiments leading to crystallinity will

be evaluated in chapter 7.
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6.5. Conclusion

This work reveals three important features of alkyl thiol-stabilized metal particle suspensions.

First, the particle characterization shows that the contribution of the ligand chains to the

interparticle potential prevails over the contribution of the metal core at least in the range

of ligand chain lengths investigated. The stability of the suspension can be deduced from

the melting temperature of the bulk compound of the ligands, whereas a low melting point

provides a good stability. Second, the kinetics of the agglomeration follow the laws developed

for diffusion-limited and reaction-limited agglomeration in charge-stabilized suspensions.

The agglomeration kinetics define the morphology of the formed agglomerates. In diffusion-

limited agglomeration filamentous networks of particles are formed, in reaction-limited

agglomeration globular structures. Third, by inducing agglomeration by cooling alkyl thiol-

stabilized metal nanoparticle suspensions no colloidal crystals are formed, irrespective of

the growth kinetics.

6.6. Appendix

6.6.1. Small-angle X-ray scattering data evaluation

The scattered intensity Is measured in a small-angle scattering experiment at each detector

element defining an solid angle∆Ω is given by62

Is = I0 ·ε ·Tt ·∆Ω ·As · l s ·
dΣ
dΩ

, (6.6)

where I0 is the incident photon intensity per unit area per unit time, ε the detector efficiency,

Tt = It

I0
the sample transmission with I t the transmitted intensity per unit area per unit

time, As the cross section of the beam and l s is the sample thickness. The quantity dΣ
dΩ

is the differential scattering cross section per unit volume and contains the information

about the structure of the sample. The quantitative evaluation of the measured intensities

therefore requires a normalization of the data to dΣ
dΩ . But ε ·Tt · l s is a quantity unknown a

priori in our experiments which limited evaluation possibilities. To still gain information, we

kept parameters influencing ε ·Tt · l s constant during the experiments, leaving the incident

intensity I0 and dΣ
dΩ the only variables, and only used the information contained in the

relative intensity:

Ir =
Ĩs ,1

Ĩs ,2
=

�

dΣ
dΩ

�

1
�

dΣ
dΩ

�

2

, (6.7)
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where Ĩs = Is

I0
is the scattered intensity normalized by the incident photon intensity.

The differential cross section of a suspension of spherical particles with narrow size

distribution can be expressed as a product of a form factor F (q ) and a structure factor S(q )

using a scattering vector q :63

dΣ
dΩ
=% · F (q ) ·S(q ), (6.8)

where the factor % accounts for the particle volume fraction and the scattering contrast

between the particles and the solvent. The norm of the scattering vector q is given by

4π/λ · sin(Θ/2) with λ the wavelength of the scattered light and Θ the scattering angle.

F (q ) describes the scattering by individual particles and contains information about size

and shape of the particles. S(q ) describes the interference by light scattered from different

particles and contains information about the interparticle interactions. In dilute suspensions

S(q ) ≈ 1. By calculating the relative intensity using the scattered intensity from a dilute

sample as denominator, the structure factor can be extracted:

Ir =
Ĩs

Ĩs ,d i l u t e
=
% · F (q ) ·S(q )
%d i l u t e · F (q )

=
%

%d i l u t e
·S(q ). (6.9)

The pair correlation function g (s ), the probability of finding a particle at a distance s from

another particle, can be calculated from S(q ) by a FOURIER-transform:64

g (s ) = 1+
1

2πsρ

∫ ∞

0

q (S(q )−1)sin(qs )d q , (6.10)

where ρ is the particle number density. With g(s) it is possible to obtain information about

the interparticle interaction:43

g (s ) = e V (s )/kT, (6.11)

where V (s ) is the so-called “potential of mean force”, the potential of two particles in the

field of all other particles.

An alternative approach to extract information from Is is to fit analytical expressions to

the intensity profile. Merging the experimental factors in eq. 6.6 and % in eq. 6.8 to a single

prefactor or fit parameter yields:

Is = ξ · F (q ) ·S(q ). (6.12)

Again, for dilute samples S(q ) becomes ≈ 1, and the profile of the scattered intensity I (q )

becomes solely a function of the particle size and shape. Assuming a profile for the form
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factor and fitting it to the measured intensity yields information on the particle size and size

distribution. For homogeneous spherical particles a mathematical expression for the form

factor is long known:65

F (qr ) =
�

3 ·
sin(qr −qr ) · cos(qr )

(qr )3

�2

, (6.13)

where r is the radius of the particles. For polydisperse particles, the size distribution

(n (r )/n t ot a l ) has to be considered:66

Is = ξ ·
∫ ∞

0

�

n (r )
n t ot a l

�

F (qr )r 6d r (6.14)

An analytical expression for eq. 6.14 is available for a SCHULTZ-distribution of the particle

sizes.63

When the particles become sufficiently attractive, they form clusters which give rise to

excess scattering at low q . The excess scattering can be considered in the fitting procedure

by adding a power-law term:47

Sc (q ) =
a

(1+b ·q 2)p
, (6.15)

where a and b are fit parameters linked to the mass and size of the clusters. The exponent p

of the power-law is related to the fractal dimension of the clusters d f :

p ≈ d f /2. (6.16)

The actual fitting of the size and size distribution of the particle form factor and the exponent

of the cluster term was performed using the SAXS-utilities software developed by M. SZTUCKI

at ESRF.67

6.6.2. Dynamic light scattering and agglomeration kinetics

The temporal fluctuation of the intensity of light scattered by a colloidal suspension from a

coherent laser beam measured by a photo multiplier can be characterized by the intensity

autocorrelation function

C (q ,τ) =



n (q , t )n (q , t +τ)
�

, (6.17)

where q is the scattering vector, n is the number of photon counts in a time interval between

t and t +δt and τ a delay time. The brackets indicate averaging over the total sampled

time. Following the derivation given by BERNE and PERCORA68 the autocorrelation function
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for GAUSS-distributed scattered light intensities takes the form

C (q ,τ) = 〈n〉2
h

1+ f · e
−2τ
τD

i

≡ 〈n〉2
�

1+ f · g 2
1

�

, (6.18)

where 〈n〉2 is the average number of counts in the time interval δt , f a spatial coherence

factor which depends on the detector area and the sampling interval δt . τD is a relaxation

time connected to the diffusion coefficient D of the colloidal particles:

τD =
1

q 2 ·D
. (6.19)

From the diffusion coefficient a representative particle radius rm e a n can be determined

using the STOKES-EINSTEIN relation:

D =
kT

6πηrm e a n
, (6.20)

where η is the solvent viscosity. As real colloids always exhibit a size distribution, the radius

rm e a n determined from eq. 6.19 and eq. 6.20 gives an average radius of all species present

in the scattering volume. To gain information on the size distribution in the sample, a

cumulant analysis can be applied.69 Expanding the exponential function g 1 in a power

series in τ yields

g 1 = e (
−τ
τD
)(1+ k2

2! ·τ
2− k3

3! ·τ
3+... ), (6.21)

where τD gives the average diffusion coefficient and k2 ·τ2
D the polydispersity index of the

suspension. For a GAUSSIAN distribution of colloid sizes all higher cumulants are equal to

zero.

The agglomeration rate constant k11 for the formation of doublets from initial singlets

(free particles) from SMOLUCHOWSKI’S theory of particle agglomeration27 is defined in eq. 6.1.

VIRDEN and BERG70 have developed the relation between the growth of the mean radius

measured with dynamic light scattering rm e a n and the agglomeration rate constant k11:

−k11 =
1

rm e a n ,0n 0α

d rm e a n (t )
d t

, (6.22)

where rm e a n ,0 is the initial mean radius of the particles, n 0 the initial particle number concen-

tration and α is an optical factor, which the authors derive from RAYLEIGHT-DEBYE scattering

theory. A possibility to determine k11 without the use of optical factors requires the combi-

121



6. Temperature-Induced Agglomeration

nation of static and dynamic light scattering:71, 72

1

I (0)
d I (t )

d t
=
�

1−
r1

r2

�−1 1

rm e a n ,0

d rm e a n (t )
d t

−k11 ·n 0, (6.23)

where I (0) is the initial scattered intensity and r1/r2 is the ratio between the hydrodynamic

radius of a singlet and a doublet. Both methods require a precise knowledge of the initial

particle number concentration n 0, which can be cumbersome for real colloidal suspensions.

The determined rate constant can be compared to the rate constant of purely diffusion

controlled, fast, or SMOLUCHOWSKIAN agglomeration:

k Smol
11 = 16πr D =

8k T

3η
(6.24)

The ratio W between the experimental rate constant and the fast rate constant is called the

stability ratio of the suspension, and contains information on the particle interaction.28

W =
k Smol

11

k11
(6.25)

For charge-stabilized suspensions, where the agglomeration rate is solely determined by

the rate of particles hopping over an energy barrier of height Vm a x into an infinite deep

potential well, so no back-reaction of desorbing particles, the stability ratio can be written

as W ≈ e
Vm a x

kT .

WEITZ and LIN et al. have investigated in a series of publication the relation between the

mean radius rm e a n measured by DLS and the fractal dimension of formed agglomerates

and with the growth kinetics in the suspension.23, 29–32, 73–75 For diffusion-limited or fast

agglomeration, they found a power-law like growth of the mean radius with time

rm e a n ∝ t α, (6.26)

where α is the inverse fractal dimension d f = 1/α. The power-law shape with an exponent

smaller 1 can be understood qualitatively as diffusion is the limiting parameter for fast

coagulation. Every collision leads to sticking, and reduces the diffusion coefficient of the

formed object. The decreasing diffusion slows down the reaction. The relation to the fractal

dimension can be derived from the definition of fractality. The mass M of an agglomerate

is given by the radius of gyration, the radius of a single particle and the fractal dimension:

M ∝ (Rg /r1)d f . For a solid object d f would equal 3. From SMOLUCHOWSKI’S theories a linear

growth of the average agglomerate mass with time is predicted, M = 1+ t /t0, whereas
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t0 is determined by the rate constant k Smol
11 and the initial particle concentration. With

rm e a n ∝Rg above relation follows.

For reaction-limited or slow agglomeration, they found an exponential dependency of the

mean radius with time

rm e a n ∝ e t /t0 , (6.27)

where t0 is a sample dependent time constant. The exponential behavior can be understood

in a qualitative sense as the sticking probability upon contact of particles limits slow ag-

glomeration. Larger objects have a higher number of touching points upon collision. The

sticking probability will therefore increase with object size and increase the reaction rate.

This exponential growth is ultimately limited by the slowing down of the diffusion with

growing object size, rendering the agglomeration diffusion-limited for long agglomeration

times.
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7. Origin of Order in Alkyl

Thiol-Stabilized Nanoparticle Packings

A manuscript containing results presented in this and the previous chapter is in preparation.

Abstract — The self-assembly of colloidal nanoparticles into regular, crystalline lattices

requires the transition from a dispersed fluid state to close-packed solid state of the parti-

cles. In charge-stabilized suspensions such a transition leads to the formation of irregular

packings. In this chapter we describe a mechanism that allows sterically stabilized nanopar-

ticles to form regular packings. The main requirement is a high mobility of the particles in

the agglomerate, allowing them to diffuse and to reach crystalline lattice sites. Mobility is

provided in the suspensions used here by a fluid lubricant ligand layer between the particles.

This makes the crystalline agglomeration a function of the melting point of the ligand layer

of the particles.

7.1. Introduction

The self-assembly of sterically stabilized nanoparticles into regular functional materials

also known as colloidal crystals has left the state of being an academic curio. Standardized

methods for the production of colloidal crystals by precipitation or evaporation have been

developed.1–4 Research has advanced to explore collective electronic, optical or mechanical

properties of the assemblies.5–9 This fact is in stark contrast to the little consensus on the re-

lation between the agglomeration mechanism and the colloidal crystallization. The colloidal

crystallizations in sterically stabilized nanoparticle suspensions have been attributed to: an

entropic WAINWRIGHT-ALDER transition of hard spheres upon concentration increase,1, 10 a

crystallization of spherical particles under the action of VAN DER WAALS-attraction among

particle cores,11, 12 an effect of alignment of attracting ligand bundles on the particle sur-

faces13, 14 or an effect of the alignment of particle facets.15, 16 These arguments are based
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on the assumption that the particles take and reach their thermodynamic equilibrium.

Under these preassumption all particle suspensions with low size dispersity should exhibit

crystallization upon agglomeration.

However, suspensions of stearyl alcohol-stabilized silica particle suspensions and alkyl

thiol-stabilized gold particle suspensions have shown to form amorphous agglomerates17–22

(see chap. 6). In these experiments agglomeration was induced by cooling the suspension, in-

dicating an attraction among the particles, and the used particles were narrowly distributed

in size.23, 24 The absence of crystallization in these suspension demonstrates that thermal

equilibrium arguments are incomplete for describing colloidal crystallization of sterically

stabilized nanoparticles.

Conclusions on mechanisms hindering formation of colloidal crystals might be drawn

from theories on growth of atomic clusters, despite some limitations in the analogy between

atoms and colloids. Deviations of atomic cluster structures from predicted thermal equilib-

rium structures has led to the inclusion of the growth process in cluster formation theories.

Two models are used in simulations on cluster growth: solid-like growth and liquid-like

growth.25 In both models the clusters grow by the addition of single atoms.

In liquid-like growth the cluster solidifies after its growth is completed, that is, in a fur-

ther cooling stage. In this case, the final cluster structure does not depend on the details

of the growth process, but rather on the cooling process. Depending on the cooling rate,

metastable configurations can be solidified.25 The suppression of the liquid phase in col-

loidal agglomerates for interaction ranges small compared to the particle diameter26–28

render the liquid-like growth model unlikely to occur in colloidal suspensions. However,

liquid-like behavior should still be considered for small nanoparticles. A mobilization of

nanoparticles by suitable solvent vapor is reported.29, 30 Thus the particles may assume

a highly mobile phase in presence of solvent, and solidify only upon full evaporation of

solvent.

In the second cluster-growth model, solid-like growth, the growing cluster takes a static

structure. The number and stability of certain adsorption sites define the growth process.25

DIXIT and ZUKOSKI have developed a local description of a solid-like growth model for

colloids.31 In their description the formed agglomerates take a static structure. Agglomerates

grow by the adsorption of single particles after BROWNIAN encounters. After adsorption to the

agglomerate, the particle can perform three processes. First, it can desorb to become a free

particle again. Second, it can diffuse on the agglomerate surface until it finds a crystalline

lattice site. And third, another particle can adsorb to the first one what hinders the surface

diffusion. The last process would cause the formation of a locally amorphous packing.

132



7. Temperature-Induced Crystallization

Lowering particle concentrations reduces the probability of two-particle collisions on

the agglomerate surface. According to DIXIT’S and ZUKOSKI’S model, sufficient reduction

of the concentration guarantees the formation of colloidal crystals upon agglomeration.

Only if additional mechanism prevent diffusion on the agglomerate surface, or at least slow

down surface diffusion so strongly that for all practical particle concentration two-particle

collision occur on the agglomerate surface, agglomeration may form amorphous packings.

The colloidal crystallization of alkyl thiol-stabilized gold nanoparticles is investigated

in this chapter with emphasis on the mobility of the particles on the agglomerates fol-

lowing above considerations. The particles are characterized using transmission electron

microscopy and small angle X-ray scattering, proving a low size dispersity of the particles.

The mobility of the particles is expected to depend on the temperature. In precipitation

experiments the influence of the temperature and the ligand chain length on the crystalliza-

tion behavior is evaluated. A distinct minimal temperature for the formation of colloidal

crystals is found. Using differential scanning calorimetry and a variation of diffusing-wave

spectroscopy a steep increase in particle mobility on the agglomerate surface at the melting

point of the ligand shell is found. This increase in mobility coincides with the onset of

colloidal crystallization. A liquid-like ligand shell thus lubricates particle diffusion and

allows formation of colloidal crystals.

7.2. Experimental

The experiments seek to clarify mechanisms preventing or enforcing formation of colloidal

crystals in sterically stabilized particles. The influence of temperature is tested by precipita-

tion experiments at various temperatures. The formation of colloidal crystals is compared

to measurements on the interactions among the ligands and mobility measurements.

7.2.1. Particle synthesis and characterization

Gold nanoparticles with dodecyl thiol (C12), hexadecyl thiol (C16) and octadecyl thiol (C18)

ligands suspended in heptane were available from the experiments described in chapter 6.

For agglomeration experiments 1-propanol was used as incompatible solvent. 1-propanol

was chosen as it mixes well with heptane and has a matching boiling point. This minimizes

changes in the solvent constitution during evaporation of the solvent for electron microscopy

evaluations.

The metal cores of the particles were characterized with transmission electron microscopy
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Figure 7.1.: Scheme of the precipitation experiments. The suspensions were equilibrated
at the target temperature, the alcohol was added, and finally the structures of the formed
agglomerates were investigated.

(TEM, Philips CM200, 200 keV) and small-angle X-ray scattering (SAXS, beamline BW4 of

DORIS III at DESY, Hamburg, λ = 0.138 nm).

The calorimetric behavior of the ligands was investigated with differential scanning

calorimetry (DSC) using a Mettler Toledo DSC822e. Approximately 20 ml of suspension were

centrifuged and dried to form dense pellets of particles with a mass of ≈ 8 µg. The pellets

were transferred to open alumina crucibles. The energy uptake was measured against an

empty crucible as standard in a nitrogen stream with a scan rate of 10◦C/min.

7.2.2. Precipitation experiments

Agglomeration experiments followed the scheme depicted in fig. 7.1. The particle sus-

pensions were homogenized at elevated temperatures and subsequently pressed through

syringe filters that had been heated to 45◦C in an oven. Without heating the filter the suspen-

sion would be quenched below the agglomeration temperature for the longer akyl ligands

resulting in a strong particle capture by the filter membrane. The suspensions were diluted

to particle concentrations of ≈ 1011 ml−1. The suspensions and 1-propanol were separately

thermally equilibrated in a Eppendorf Thermomixer Comfort. After equilibration at the

respective target temperature the suspension and the alcohol were mixed in a 1:1 ratio and

let rest for two hours at the respective target temperature. The formed sediments were

collected, pipetted onto a TEM grid and left to dry. For SAXS measurements the same route

was applied, with the suspension contained in capillaries in a thermostated water bath. After

resting for two hours, scattering measurements were performed on the formed sediment.

These agglomeration experiments were performed at temperatures starting from -20◦C in

5◦C steps up to 60◦C.
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7.2.3. Mobility measurements

A conventional setup for dynamic light scattering (DLS) was used (ALV CGS-3, λ = 633 nm)

for measurements of the mobility of C16 and C18 particles on agglomerate surfaces. The

setup is equipped with a cuvette rotation unit for non-ergodic samples and an index match-

ing, thermostated solvent bath for temperature control. Roughly 25 ml of suspension were

centrifuged and dried to form dense pellets of particles with an mass of≈ 10 µg. The pellets

were transferred to the cylindrical DLS glas cuvettes. The pellets were resuspended in 0.2 ml

heptane using an ultrasonic bath. The dense suspensions were rapidly dried under reduced

pressure of 30 mbar while constantly rotating the horizontal cuvette. This procedure yielded

porous metallic-golden particle films with amorphous particle packings on the inside of

the glass cuvettes. The cuvettes were subsequently mounted in the cuvette rotation unit

rotating at 7.5 rpm, leading to an echoed scattering signal. The scattered light was recorded

at an angle of 145◦ for 24 h with a time resolution of 102.4 µs. The autocorrelation of the

time trace of the scattered light was fit with an exponential decay to quantify the particles’

mobility. Measurements were performed at temperatures from 30◦C to 60◦C.

Details of the experimental approach and the data analysis can be found in the appendix

of this chapter.

7.3. Results

In the following, we characterize the particles and investigate the formation of ordered col-

loidal crystal upon precipitation. We find a ligand length-dependent minimal temperature

to form colloidal crystals. This transition temperature corresponds to melting transitions in

the particles’ ligand shell and to an increased particle mobility. A restriction of the motion of

the particles by solid-like ligand shells can be assumed.

7.3.1. Particle characterization

Results of the particle characterization can be found in chapter 6. In summary, gold nanopar-

ticles with a core radius of 3.2 nm and low size dispersity were produced. The use of C12,

C16 and C18 thiols lead to corresponding increase in ligand shell thicknesses.

DSC measurements revealed endothermal reactions in the nanoparticle pellets for the

C16 and the C18 sample (fig. 7.2). The onset of the reactions were≈ 40◦C for the C16 sample

and ≈ 50◦C for the C18 sample, and the reactions continued for ≈ 20◦C. No reaction was

detectable in the C12 sample.
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Figure 7.2.: DSC curves of C12-C18 particles. The curves are offset by the indicated amounts.
An endothermal reaction in the C16 and the C18 sample is detected by an energy consump-
tion∆E of the samples, indicating a melting of the ligand shell.

7.3.2. Precipitation experiments

The TEM investigations revealed a remarkable dependency of the formation of crystalline

packings in the agglomerates on temperature and ligand chain length (fig. 7.3). The transi-

tion from amorphous packings to crystalline packings occured between -10◦C and -5◦C for

the C12 sample, between 40◦C and 45◦C for the C16 sample, and between 50◦C and 55◦C for

the C18 sample.

The morphologies of the crystallites varied considerably within a batch and a precipitation

experiment. Morphologies including hexagons, truncated triangles, slabs and spheres

are observed above the onset of the regular packings (fig. 7.4). A reason might be that

the nucleation of agglomerates and the adsorption kinetics of free particles were not well

controlled in the experiments. Agglomerates that had nucleated at early times experienced

a much higher free particle concentration than agglomerates formed at later stage, which

also had less time to rearrange to find the morphology with the smallest free energy.

SAXS measurements show a minimal temperature for the formation of crystalline pack-

ings, too. Figure 7.5 shows S(q )-curves obtained from sediments formed at the respective

highest temperature where no regular packing were observed and the lowest temperature at

which TEM indicated regular packings. At temperatures without observable regular pack-

ings, S(q ) shows only the wavy shape of irregular fluids or amorphous solids. At temperatures
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Figure 7.3.: Electron micrograph series of agglomerates grown at the temperatures given
below. Crystalline packings were only observed at the temperatures where hexagonal ag-
glomerates are displayed. The temperatures at which crystalline packings are observed
increase with ligand chain length. All scale bars correspond to 50 nm.
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Figure 7.4.: A provisional classification of crystalline agglomerate morphologies. The variety
of morphologies, from irregular, globular, slabs, truncated triangles to hexagons, stem from
probably varying agglomeration kinetics experienced by the agglomerates.

Figure 7.5.: S(q) curves obtained from scattering from sediments formed at the given tem-
peratures. Curves at the respective higher temperature are shifted by the denoted amount.
Sharp BRAGG peaks are only observable at elevated temperatures, proving the suppression
of crystalline packings at lower temperatures.
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Figure 7.6.: Results of light scattering measurements on a solid C16 (left) and a solid C18
(right) sample. For aid of interpretation, the energy consumption∆E measured with DSC of
the respective samples are plotted in the same graph. The decay of the autocorrelation func-
tion R , indicator for the particle mobility, increases steeply with increasing the temperature.
The increase in mobility coincides with the onset of melting of the ligand shell.

with regular packings, sharp intense peaks evolve in S(q ). However, a clear indexing of the

peaks to a specific crystalline lattice is not possible. The chosen precipitation route provided

a very rapid agglomeration within minutes. This apparently results not only in a variety of

morphologies but also in varying internal packing structures explaining the various peaks.

7.3.3. Mobility measurements

In the introduction of this chapter a link between the mobility of the particles in agglomerate

surfaces and the possibility to form crystalline particle packings is established. We quantify

this mobility with the decay of the autocorrelation of scattered light from particle films.

Due to the low penetration depth of light and high reflectivity of metals this method is very

sensitive to surface reconstructions of the films, which stem from motion of the particles.

The autocorrelation of the scattered light signal is fit using an exponential decay. The decay

constant exhibits a strong increase at temperatures coinciding with the melting of the ligand

shell and the temperatures needed for forming crystalline agglomerates. The increase is

more pronounced for the C18 particles, where it increases from 1.8 · 10−7 sec−1 at 30◦ to

3.1 ·10−6 sec−1 at 60◦. The increase measured with C16 particles from 3.6 ·10−7 sec−1 at 30◦ to

2.2 ·10−6 sec−1 at 60◦ is still more than 500 %.
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Table 7.1.: Temperatures of onset of melting of alkyl thiol ligands Tm and of formation of
colloidal crystals Tc . (* The melting temperature of the C12 ligands is estimated on the basis
of results in literature,33 see text for details.)

chain Tm alkyl thiol Tc gold nano-
length ligands [◦C] particles [◦C]
C12 ≈ -10* ≈ -7.5
C16 ≈ 40 ≈ 42.5
C18 ≈ 50 ≈ 52.2

7.4. Discussion

TEM and SAXS measurements confirmed uniform particle cores for all syntheses. Differ-

ences in properties of the suspensions must therefore arise from the varying length of the

ligand shells.

The DSC measurements revealed an endothermal reaction depending on the chain length

of the ligands in the nanoparticle pellets. This reaction can be attributed to a melting

transition in the ligand shell of the nanoparticles.32 A comprehensive study of melting

transitions of alkyl thiol ligands with 12 to 20 C-atoms on gold nanoparticles was performed

by BADIA et al.33 They report a melting transition for C12 samples beginning at -20◦C,

albeit 5 times less intense than the transition in their C18 sample. Our instrument could

probably not detect this existing transition in our C12 sample, because its resolution was

insufficient. The reported melting temperatures of the C16 and the C18 samples in BADIA’s

study are shifted by 10◦C to lower temperatures compared to our results. This might be

explained by the smaller metal cores of the particles used in their experiments, which exhibit

1.5 nm average radius compared to 3.2 nm average radius of our particles. The greater

surface curvature of the smaller particles might reduce interactions among the chains and

induce stresses in the ligand shell and, consequently, lower the melting point (which is also

consistent with the high melting points above 100◦C of self-assembled alkyl thiol monolayer

on planar gold34). From this considerations an onset of melting of the ligand shell of our

C12 particles can be expected around -10◦C.

The onset of crystallization of particle agglomerates coincides with the onset of melting of

the ligand shell (tab. 7.1). The longer the alkyl chain is, the higher are melting temperature

and crystallization temperature. DSC measurements of ligand shell melting rather than bulk

alkane melting thus allows prediction of temperatures needed to produce colloidal crystals.

The link between the DSC results and the crystallization behavior of the agglomerates
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is given by the light scattering results. The mobility of the particles increase by more than

one order of magnitude at the melting temperature of the ligands. The solid-like ligand

chains on the particles most likely form bundles, which align and coalesce upon contact of

the particles, and restrict further motion of the particles. Above the melting temperature,

the ligands form viscous layer around the particles, which still can coalesce upon particle

contact and only slow down but do not prevent the diffusion of particles.

In summary, an adjusted growth model for sterically stabilized particles can be obtained.

According to the SAXS results the particles obtain their crystalline structure already in the

suspension, a liquid-like growth model for the agglomerates thus can be ruled out. However,

the growth is fully solid-like only at temperatures below the melting point of the ligands on

the particles. In this case the adsorption of a particle on the agglomerate surface can be

visualized as a solid-solid sintering of the ligand shells, leaving the particle immobilized on

the agglomerate surface. At temperatures above the melting point the adsorption process is

rather a liquid-liquid coalescence of the molten ligand-shells. The entanglement of chains

may slow down the particles, but does not prevent “sliding” and “rolling” of the particles.

Compared to a direct contact of the core surfaces or the contact of solid-like ligand shells,

the motion is essentially lubricated. The particles can perform surface diffusion and arrange

into a crystalline lattice after an BROWNIAN encounter. This lubrication effect of the ligand

chains becomes obvious when comparing to the well-investigated agglomeration of charge-

stabilized colloids. The agglomeration in these suspensions varies from fast diffusion-limited

agglomeration within minutes to very slow reaction-limited agglomeration on the order of

days or weeks. Still, in all agglomeration regimes, low-density ramified agglomerates with

varying fractal dimensions are formed.35–42 The development of models for formation of

amorphous packings in colloidal suspensions should be possible in analogy to models for

granular matter. In these macroscopic many-particle systems friction among the particles is

often governing the packing.43–48

The precipitation experiments shown here were performed at low particle concentrations

of n ≈ 1011 ml−1. An initial collision rate J = 4kT/3η · n ≈ 1 s−1 can be estimated from

Smoluchowski’s theory.49 η denotes the solvent viscosity, kT the thermal energy. A negligible

influence of many-particle effects on the crystallization can be expected at this low collision

rate. Further experiments should evaluate whether increasing the particle concentration

delays the onset of crystallization to higher temperatures because higher mobilities are

needed to ensure a higher chance of the particles to diffuse into a crystalline site than

being captured by a second particle. It may be that with liquid ligand shells the mobility is

sufficient to have surface diffusion even on crowded surfaces, and the particles can rearrange
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and crystallize at particle concentrations up to the hard-sphere glass transition limit.50, 51

Further, the role of the solvent is not yet clear. The melting transitions of the ligands

were determined by DSC on dried samples in air. The increase of mobility of the particles

also was measured by light scattering in air. The precipitation experiments were performed

in suspension. Stability analysis of alkyl thiol-stabilized gold nanoparticle suspensions

indicated molten ligand shells down to the freezing temperature of the respective bulk

alkane (chap. 6). Thus following above argumentation, crystalline agglomerates should

be produced upon precipitation down to the freezing temperature of the respective bulk

alkane. We believe that this depression of the melting temperatures of the ligand shells

from the measured melting temperatures in air down to the alkane freezing temperature

in suspension is present only in good solvents like heptane. Addition of the alcohol lowers

solvent quality, raises the freezing temperature and causes precipitation of the unpolar

particles.

7.5. Conclusion

In precipitation experiments, the formation of crystalline agglomerates of alkyl thiol-stabi-

lized gold nanoparticles coincides with the melting temperature of the ligands of the par-

ticles. We explain this behavior with the ligand shell forming a liquid lubricant layer for

the rearrangement of the particles. Upon contact, the particles ligand shells merge, but do

not prevent rearrangement of the particles and reaching the crystalline lattice sites. The

formation of crystalline packings even under rapid agglomeration of the particles by precipi-

tation indicate an inferior role of the agglomeration kinetics on the formation of crystalline

packings.

7.6. Appendix

7.6.1. Mobility measurements using light scattering

Dynamic light scattering as presented in the appendix of chap. 6 is an ideal method to gain

information on the motion of particles. The method averages a great number of particles in

suspension, is non-destructive and applicable in-situ. However, when applied to the diffu-

sion of particles on agglomerate surfaces, three problems arise. First, a typical assumption in

the evaluation of dynamic light scattering data is that every photon experiences only a single

scattering event, as is the case in dilute suspensions but not in agglomerates. Second, light
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scattering probes length scales on the order of the wavelength of light. In surface diffusion

particle mobility may be very low and displacements over hundreds of nanometer may take

very long or never occur. Finally, the diffusion process may be non-ergodic, becuase not all

particles experience the same particle film surface morphology and consequently the same

mobility. The measurement thus depends on the volume of the sample probed during the

measurement.

To make dynamic light scattering applicable to dense particle suspensions, the evaluation

of the scattered light signal has been extended to account for multiple scattering in the

suspension by a technique termed diffusing wave spectroscopy (DWS).52 It is assumed that

the photons diffuse through the sample. The autocorrelation (eq. 6.17) thus turns into a

product of the i independent correlation functions of i scattering events in the sample

averaged over scattering vector q so as to reflect the average scattering event in the path:

C (q ,τ)i =



n (q , t )n (q , t +τ)
�i

q . (7.1)

This diffusing wave approach enables evaluation of data gained from samples with high

concentrations. Contributions by small rearrangements of particles accumulate due to

the multiple scattering of a photon and the method becomes sensitive even to motion on

scales much smaller than the wavelength of the incident light. However, the method only

partially solves the problem of non-ergodic samples: more particles are probed compared to

conventional DLS, but the probed sample volume is still limited to the illuminated volume.

Also, fast processes such as dust particles diffusing in the pathway of the illuminating laser

beam or air bubbles in the thermostating solvent bath overlay the autocorrelation of slow

particle surface diffusion, creating problems determining the contribution of the particles.

A method developed to render DLS applicable to non-ergodic samples and minimize

unwanted contributions of dust and bubbles is echoed dynamic light scattering (eDLS).53 In

this method, the sample is rotated at a constant velocity while recording the scattered light.

After each rotation the detector ’sees’ the same sample volume again. The autocorrelation

of the scattered light thus exhibits peaks termed ’echoes’ in correlation at every integer

multiple of the rotation period. A slow decay in correlation due to particle rearrangement

causes a decay of the envelope of the peaks. Processes with correlation times shorter than

the rotation period of the cuvette are not detected. With little additional computational work

to filter the envelope of the peaks, this method allows suppression of dust contributions to

the autocorrelation and multiplies the probed volume to gain an ensemble average of the

sample. Imperfections in the rotation are shown to cause a broadening of the peaks, but for
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7. Temperature-Induced Crystallization

Figure 7.7.: Macroscopic appearance of the particle films inside the DLS-cuvettes used for
mobility measurements in the solid phase.

fluctuations in angular speed and wobbling of the cuvette about a fixed mean the envelope

reproduces the slow decay due to particle rearrangements.

Combined, DWS and eDLS should provide the tools to measure particle mobilities on

particle agglomerate surfaces. However, two problems of sample preparation arise. The

agglomerates have to be fixed such that settling or diffusion of the agglomerates in sus-

pension do not cause a decay of the autocorrelation. The limited penetration of light into

metals ensures a sensitivity of the scattered light signal to surface diffusion of particles rather

than bulk diffusion, but hinders transmission measurement on bulk particle agglomerate

sediments as used in conventional DWS measurements. Sample preparation thus has to

ensure an exposure of particle agglomerate surfaces to the incident laser light in a geometry

suited to cause multiple scattering between surfaces.

We approached this problems as described in section 7.2.3. A slurry of alkyl thiol-stabilized

gold nanoparticles was produced in the DLS cuvette, from which the solvent was rapidly

evaporated under constant rotation of the cuvette. This procedure lead to macroscopically

homogeneous golden particle films on the inner side of the cuvette (fig. 7.7). On a micro-

scopic scale, the particles agglomerated to form sponge-like structures (fig. 7.8). We assume

that light enters the pores and is trapped, i.e. scattered multiple times prior to leaving the

sample, allowing to detect small rearrangements.

The echoed signal was produced by rotation of the cuvette. The scattered light was

detected at an angle of 145◦. The autocorrelation of the signal and the envelope to the

correlation peaks was computed using our own Matlab54-algorithm. An exponential decay

was fit to the envelope using Origin.55 For calculation of diffusion coefficients the value of

the transport mean free path of the photons, l ∗, and the thickness of the sample that the

photons have traveled through, L, is needed.52 These values are presently unknown; thus

only the decay constants as a measure of the mobility are presented.
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7. Temperature-Induced Crystallization

Figure 7.8.: Microscopic appearance of the particle films used for mobility measurements in
the solid phase.
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8. Conclusion

The presented work aimed at the formation of high-quality colloidal crystals from nanopar-

ticles and investigated structure formation processes beyond the close-packing. These

problems were tackled with two approaches, convective particle assembly and temperature-

induced particle assembly. The first approach started with the assembly of micron and

sub-micron sized particles and tried to expand the identified mechanisms to nanoparticles.

The second approach started with the assembly of nanoparticles. The two used methods

also represented two different crystallization principles. The convective assembly was ex-

pected to produce dense packings of particles by minimization of free energy under the

action of an external potential. The temperature-induced particle assembly was expected to

produce dense packings of particles by minimization of free energy under the action of an

attractive interparticle potential.

The convective particle assembly process was optimized to form high quality large-area

colloidal crystals in this work. Deposition parameters controlling the formation and spread-

ing of defects in the packing were determined. Under optimized conditions, the formation

of crystalline films was only limited by the setup and substrate size. Convective assembly

thus could be used in future for masks, templates or functional coatings. The underlying

assembly mechanism was found to rely on two mechanisms, one based on drag forces acting

on the particles and another one originating from capillary interactions among the particles.

The transition between crystallization by convective and by capillary mechanisms depended

on particle size and temperature. For temperatures below 20◦C and particles smaller than

100 nm the attractive capillary crystallization dominated. The two mechanisms ensured

formation of crystalline packings for all tested particle sizes and temperatures. However, the

crystallization mechanisms were found to affect the packing of the particles and could be

used to tune the structure. Convective crystallized particle films exhibit large grains, under

optimized conditions up to square millimeters large. Capillary crystallized particle films

exhibited small grains only few particle diameters large. These results suggest, that colloidal

crystals of nanoparticles can be produced using convective assembly at ambient conditions

only by the capillary mechanism.
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8. Conclusion

The temperature-induced particle assembly surprisingly failed to produce colloidal crys-

tals. Although the results indicated attraction among the nanoparticles, no crystalline pack-

ings were formed upon agglomeration. To achieve crystals, precipitation of the nanoparticles

by polar solvents at elevated temperatures was required. The temperature needed for achiev-

ing crystalline packings depended on the melting temperature of the surface ligands of the

particles. With molten ligand shells the particles in the close-packing of an agglomerate are

lubricated and the particles can diffuse to crystalline lattice sites. The kinetics of the agglom-

eration process were shown to be either diffusion-limited or reaction-limited, depending

on temperature. The kinetics could be used as a structure-directing parameter: both the

formation of low-density fractal structures in diffusion-limited agglomeration and the for-

mation of dense globular structures and of agglomerate superstructures in reaction-limited

agglomeration could be induced.

The two approaches used are still very different. The first assembles large charge-stabi-

lized particles in water by an external potential into two-dimensional crystals, the second

assembles small, unpolar nanoparticles purely by internal attraction into three-dimensional

structures. However, temperature acted as a structure-directing parameter in both ap-

proaches. The packing and the morphology of the formed particle packings could be

adjusted by small temperature variations. In convective assembly, depending on tempera-

ture the assembly is dominated by capillary mechanisms or by convective mechanisms. This

affects the packing density and the grain size of the formed crystals. In temperature-induced

assembly, the temperature controls the morphology of the assemblies. In combination with

precipitation by polar solvents, the suspension temperature could even be used to switch

between formation of amorphous and crystalline packings. These possibilities to control

the assembly processes by temperature are new aspects in colloidal crystallization research.

The formation of a specific packing was assumed so far to be a function of the particle shape

and interaction. We could show that the same particles in the same assembly approach

can be directed into diverse structures. This is an important step towards manufacturing of

materials: one particle type with its particle-specific properties can be used to create various

structures with different structure-specific properties.

In conclusion, in this work we developed fundamental aspects of both approaches to

colloidal crystals, convective particle assembly and temperature-induced particle assembly.

The approaches are applicable for production of nanostructures and functional materials.

Processes leading to structures and packings beyond hexagonal packings even from spheres

were demonstrated.
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9. Outlook

Functional particles can be arranged using the methods developed here. This requires the

identification of useful particles and adapting of the methods investigated in this work to the

requirements of applications. The technique developed in this work to produce large-area

high quality crystalline particle films by convective assembly is applicable to the production

of masks, templates or functional coatings. The results on temperature-induced assembly

should help improving electrically or thermally conductive pastes and aid the development

of responsive materials, as the particle mobility and hence the adaptability of the bulk

material can be controlled via temperature. The results also pose several fundamental

questions that justify further investigations. In particular:

Chapter 4 - Large-Area Convective Assembly. Large-area two-dimensional colloidal crystals

of charge-stabilized particles can be produced by convective assembly. The shape of the

meniscus in which the assembly takes place determines the robustness of the deposition

against perturbations and hence the quality of the crystals. The withdrawal rate of the

substrate plays a key role in shaping the meniscus. It was found that at withdrawal rates

above≈ 50 µ/s a very thin sub-meniscus was extracted (fig. 9.1 a). According to the results

of this section, such a flat meniscus should lead to most perfect films. However, extremely

high particle concentrations are needed for film deposition and additionally the substrate

withdrawal becomes similar to the velocity of the particles measured in chap. 5. The assem-

bly of the particles in such a flat-meniscus configuration might differ significantly from the

presented mechanisms.

This work did not focus on the crystallography of the particle films. The relation between

crystallographic axes and deposition direction, the formation of crystal defects, the motion

of dislocations in the crystalline packings, the growth, decay and sudden complete reorien-

tation of single-crystalline domains observed during deposition provide interesting future

experiments.

The strongest limitation to the film quality are presently drying cracks. Minimizing

the distance between the particles during the initial assembly by adjusting the particle

stabilization will hinder additional rearrangement under the action of capillary interactions.
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9. Outlook

Figure 9.1.: Promising future directions in convective particle assembly: a) Withdrawing
the substrate with velocities around 100 µm/s generates an extremely flat sub-meniscus
with surface slopes of 1 nm/µm (inset shows height measurement). Such a meniscus shape
should be optimal for particle deposition, but requires very high particle concentrations. b)
Lowering the pH-value in the suspension reduces the ζ-potential of the particles. At pH 4
amorphous particle packings of 500 nm polystyrene spheres are deposited with convective
assembly.

Finally, the presented models for convective particle assembly rely on a meniscus confin-

ing the particle during assembly. Using very fine particles with diameters smaller than the

height of the flat adsorbate film preceding the main meniscus may lead to a qualitatively

different deposition and assembly characteristics.

Chapter 5 - Convective Crystallization. Two mechanisms compete in the crystallization

in convective assembly, convective steering and immersion forces. The results indicate

that these two mechanisms assure crystallization at all temperatures and particle sizes.

However, fine nanoparticles were only used in preliminary experiments not presented

in this work. Limited packing quality was found, with pronounced dependency of the

crystallinity on the particle material. Again, the assembly mechanisms in suspensions of

small particles combined with the effect of the particle material and particle stabilization

should be investigated further.

In analogy to the temperature-induced particle assembly, contact mechanics among

the particles provide the tool to switch between amorphous and crystalline packings. The

repulsive barrier must be removed to encounter contact among the particles. Precise tuning

of the pH could provide an interaction potential in which the particles do not agglomerate

in the suspension, but get into contact only in the assembly region. Preliminary results show

the feasibility of such a route to deposit amorphous particle films (fig. 9.1 b).
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9. Outlook

Chapter 6 - Temperature-induced Agglomeration. Alkyl thiol-stabilized particles undergo

a glass transition upon cooling. The different growth kinetics in the reaction-limited and the

diffusion-limited regimes allow production of morphologies that range from filamentous

structures on a single particle level and globular structures to filamentous superagglomer-

ates. Crystallization is effectively suppressed. It would be interesting to evaluate whether

the observed mechanisms can be found using other stabilizing ligands, especially unsatured

alkenyl ligands, which are commonly used for nanoparticle stabilization.

The genesis of the different morphologies requires further experiments. Up to now the

kinetics are assumed to depend on the state of the ligand shell and to be independent of

particle concentration. However, particle concentration will affect nucleation and growth

of agglomerates; thus, size and shape of the agglomerates will depend on the particle

concentration. Properties like mechanical stability or conductivity may vary for different

morphologies.

Chapter 7 - Temperature-induced Crystallization. Formation of crystalline packings of

alkyl thiol-stabilized particles requires precipitation of the particles at elevated temperatures.

The interactions of the ligand chains, best represented by the melting point of the ligands,

determine the temperature needed for crystallization. Below the melting point of the ligands

the particle have poor mobility within agglomerates. Particles of different materials and

with different ligands should be considered for future experiments to test the universality of

these results.

Particularly interesting would be the behavior of particles with shorter chains. Figure 9.2

a) summarizes the experimental findings for the ligand-dominated particles. At the C12-

ligand length, the agglomeration line and the crystallization line nearly meet. As the ligand

length gets shorter, the ligands should not shield the attractions of the cores anymore, and

the suspension should behave like a VAN DER WAALS-gas with temperature independent

interactions. The agglomeration temperature should increase with shorter ligands. At the

same time, shorter ligand chains will stay liquid at lower temperatures. This implies that the

agglomeration kinetics and the particle packing become fully separated. In such a regime

spinodal-like agglomerates with crystalline packings might become feasible, as indicated by

agglomerates from precipitation experiments with C12 particles (fig. 9.2 b).

Combining particles with different ligand length could be a versatile approach to the

design of new structures. As an example, cooling a combination of particles with long ligand

chains and particles with short ligand chains may initially lead to forming an amorphous

spinodal backbone on which the particle with short chains could condense with further

cooling, forming a crystalline coating.
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9. Outlook

Figure 9.2.: Promising future directions in temperature-induced particle assembly: a) A
hypothetical chart of agglomeration and crystallization temperatures vs. ligand chain
lengths. Triangles denote experimental determined temperatures at which crystals formed
upon crystallization, circles denote amorphous agglomeration. The red line indicates
the evolution of the agglomeration temperature upon cooling. Above 12 C-atoms, the
agglomeration temperature increases due to ligand-ligand interactions. Below 12 C-atoms it
may increase again due to unshielded core-core-interactions. The blue line indicates the
temperature required to induce crystalline agglomeration. Below 12 C-atoms it may increase
slower than the agglomeration temperature, as the ligands stay molten. A crystallization
temperature below the agglomeration temperature will allow for crystalline temperature-
induced agglomeration. b) Indications of spinodal decomposition leading to crystalline
packings included in amorphous filaments in a C12 sample. Agglomeration was induced by
1-propanol at 20◦C.
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