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Abstract

The present thesis focuses on large (macroscopic) systems that consist of a sequence
of identical building blocks (units) in one dimension and are exposed to an external
perturbation.

In the first part of the study is shown the implementation of a Vector Potential Ap-
proach (VPA) in an ab initio PLH (Polymer Linear Helical) code, which computes band
structures of regular and helical polymers. This part of the work is a first step towards a
full ab initio treatment of periodic systems in external electrostatic fields.

The second part deals with surface effects in electric field polarization of periodic
systems. It is shown that by modifying the surface of large regular system, the polarization
can be modified in units of a lattice vector times the elemental charge. Calculations on
quasi-one-dimensional (quasi-1D) model system, exposed to an electrostatic field, show
first that different terminations of identical chains lead to different responses, and second
that the structural responses of a finite chain can be exactly reproduced by an infinite

periodic treatment of the same system.
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Zusammenfassung

Die vorliegende Arbeit konzentriert sich auf grofe (makroskopische) Systeme, die aus ein-
dimensionalen identischen Bildungseinheiten bestehen und einer externen Storung (exter-
nem Feld) ausgesetzt sind.

Im ersten Teil dieser Forschung ist die Implementierung von der Vektor Potential Me-
thode (VPA) in einem ab initio Polymer Linear Helical (PLH) Code dargestellt. Diese
Arbeit ist ein erster Schritt in Richtung eines neuen ab initio Verfahrens zur Untersu-
chung von periodischen Systemen in externen elektrostatischen Feldern.

Der zweite Teil dieser Arbeit bezieht sich auf die Auswirkung der Oberfléche auf die
Polarisation von endlichen und periodischen Systemen wenn ein externes elektrisches Feld
eingeschaltet ist. Es wird gezeigt, dass die Modifizierung der Oberfliche eines grofen re-
guliren Systems zur Polarisationsinderung des selben Systems fiihrt. Diese Anderung
entspricht genau dem Gittervektor multipliziert mit der Elementarladung. Untersuchun-
gen zeigen, dass unterschiedliche Endreste zu verschiedenen Ergebnissen fiihren und dass
die strukturelle Anderung von einer endlichen Kette genau durch die Anderung der selben

Kette, wenn sie als unendlich and periodisch betrachtet wird, reproduziert werden kann.

Hartree-Fock, Ab Initio, Elektrostatisches Feld, Periodische Systeme, Dipolmoment,

Polarisation, Polarisierbarkeit



Abstract

The present work deals with large (macroscopic) systems that consist of a sequence of
identical building blocks (units) in one dimension and are exposed to an external pertur-
bation.

In the first part of the study is shown the implementation of a Vector Potential Ap-
proach (VPA), that allows for determining the combined electronic and structural response
of an extended system to a finite electrostatic field, in an ab initio PLH (Polymer Lin-
ear Helical) code. It is known that the presence of a field (of an external perturbation)
leads to an extra term (E - /i) to the Hamiltonian, where E is the field vector and fi is
the dipole moment of the system of interest. In the case of infinite periodic system the
various properties are studied per repeated unit and the dipole moment () translates
into the polarization (15) The main goal of this part of our project was to find out how
a real polymer chain responds to the electric field, i.e., to calculate the dipole moment
per repeated unit (i.e., the polarization). For this purpose, the mentioned extra term,
which contains a charge and a current term for the polarization is added to an ab initio
LCAO-SCF algorithm, which computes band structures of regular and helical polymers
taking into account the one-dimensional translational symmetry. The current term of the
polarization expression involves the derivatives of the orbital coefficient with respect to
the wave vector k£ and the numerical differentiation is possible using an efficient so-called
smoothing procedure. Linear and nonlinear responses of infinite hydrogen and lithium
hydride chains to an external electric field are shown for different field strength and com-
pared with previous results. The agreements show the successful implementation of the
VPA in the PLH code, which is the first step towards a full ab initio treatment of periodic
systems in external electrostatic fields.

The second part of the present study deals with surface effects in electric field polariza-
tion of periodic systems. It is shown that by modifying the surface of large regular system,
e.g., by changing the end substituent and transferring the electrons from the donor (D)
to acceptor (A) ends, the polarization of the macroscopic system can be modified in units
of a lattice vector times the elemental charge. For the infinite periodic case, where the
surfaces are neglected by construction, the effect of the terminations is indirectly included
in the definition of the dipole moment per unit through an undefined integer n associated
with the phase of the crystal orbitals. Calculations on quasi-one-dimensional (quasi-1D)
model system, exposed to an electrostatic field, show first that different terminations of

identical chains lead to different responses, and second that the structural responses of



a finite chain can be exactly reproduced by an infinite periodic treatment of the same

system.

Hartree-Fock, Ab Initio, Electrostatic Field, Periodic Systems, Dipole Moment, Polar-

ization, Polarizability



Zusammenfassung

Die vorliegende Arbeit beschiftigt sich mit grofen (makroskopischen) Systemen, die aus
eindimensionalen identischen Bildungseinheiten bestehen und einer externen Stérung (ex-
ternem Feld) ausgesetzt sind.

Im ersten Teil unserer Forschung ist die Implementierung von der Vektor Potential Me-
thode (VPA) in einem ab initio Polymer Linear Helical (PLH) Code dargestellt. Die VP
Methode ermoglicht die Bestimmung von dem elektronischen und strukturellen Verhal-
ten von erweiterten Systemen in einem endlichen elektrostatischen Feld. Es ist bekannt,
dass die Anwesenheit von einem Feld (von einer duferen Stérung) zu einem zusitzlichen
Ausdruck (E - /i) zu dem Hamilton-Operator fiihrt. In diesem Fall ist £ der Feldvek-
tor und i das Dipolmoment von dem betrachteten System. Das Hauptziel von diesem
Projektteil war es herauszufinden wie eine echte Polymerkette auf ein elektrisches Feld
reagiert, d.h. das Dipolmoment pro Einheit (die Polarisation P) zu berechnen. Zur Errei-
chung dieses Ziels wurde der schon erwdhnten zusdtzlichen Ausdruck (E . ]3), der einen
Ladungs- und einen Strombeitrag zu der Polarisation enthélt, einem ab initio LCAO-
SCF Algorithmus hinzugefiigt. Mit Hilfe von dem LCAO-SCF Algorithmus kann man die
Bandstrukturen von reguldren und spiralférmigen Polymeren ausrechnen, indem die ein-
dimensionale Translationssymmetrie in Betracht gezogen wird. Da der Strombeitrag zu
der Polarisation die Ableitungen der Orbitalkoeffizienten beinhaltet, ist die numerische
Differentation nur mit Hilfe von einem effizienten sogenannten Glattungsverfahren mog-
lich, bei dem die Koeffizienten als glatte Funktionen des Wellenvektors gemacht werden.
In unseren Ergebnissen zeigen wir fiir verschiedene Feldstarken wie eine Wasserstoff- und
eine Lithiumhydridkette auf das #ufiere elektrische Feld reagiert. Die Ubereinstimmung
von unseren Ergebnissen mit friitheren Studien zeigt die erfolgreiche Implementierung von
der VPA Methode in dem PLH Code. Deshalb ist unsere Arbeit ein erster Schritt in
Richtung eines neuen ab initio Verfahrens zur Untersuchung von periodischen Systemen
in externen elektrostatischen Feldern.

Der zweite Teil dieser Arbeit bezieht sich auf die Auswirkung der Oberfliche auf die
Polarisation von endlichen und periodischen Systemen wenn ein externes elektrisches Feld
eingeschaltet ist. Es wird gezeigt, dass die Modifizierung der Oberfliche eines grofen re-
guldren Systems, zum Beispiel indem die Reste auf den beiden Enden der Kette geéindert
werden, zur Polarisationséinderung des selben Systems fiihrt. Diese Anderung entspricht
genau dem Gittervektor multipliziert mit der Elementarladung. Fiir ein unendliches und
periodisches System wird die Oberfliche grundsétzlich vernachléssigt, deshalb sind die

Effekte von den Endresten indirekt in die Definition von dem Dipolmoment pro Einheit



einbezogen. Das geschieht durch eine undefinierte ganze Zahl n, die mit der Phase der
Kristallorbitale zusammenhéngt. Untersuchungen von einem quasi eindimensionalen Mo-
delsystem, das sich in einem elektrostatischen Feld befindet, zeigen, dass unterschiedliche
Endreste zu verschiedenen Ergebnissen fithren und dass die strukturelle Anderung von
einer endlichen Kette genau durch die Anderung der selben Kette, wenn sie als unendlich

and periodisch betrachtet wird, reproduziert werden kann.

Hartree-Fock, Ab Initio, Elektrostatisches Feld, Periodische Systeme, Dipolmoment,

Polarisation, Polarisierbarkeit
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Chapter 1
Introduction

The present study deals with systems that are extended and regular in one dimension,
but finite in the other two dimensions and are exposed to external perturbation. Since the
systems are composed of three-dimensional atoms and materials, they are called quasi-
one-dimensional (quasi-1D). As extended systems we will consider those that contain a
central region, far from any surface, which presence is not felt by the electrons, and as
regular those that, except for near the surface, consist of a large number of identical units.
In theoretical studies extended and regular systems are most conveniently modelled as
being infinite and periodic, since the number of units in the surface region relative to the
total number is very small. Such large molecules have very large molecular mass and are
known for instance as polymers (derived from the Greek words poly meaning "many" and
meros meaning "part"). Fig. 1.1 shows three models of polymeric chains, from which the
first one, the hydrogen chain, will be used as a test system in our study. Chain compounds,
surfaces, films and crystals are examples for other infinite and periodic systems.

Since the variety of synthetic methods enables the production of polymeric materi-
als with specific mechanical, optical, thermal and electronic properties, they have re-
placed nowadays the conventional materials in many areas, e.g., in informatics, medicine,
clothing, packaging, cooking. Biopolymers, like nucleic acids (DNA and RNA), proteins,
polysaccharides, lipids, play vital roles for human beings.

At the same time the properties of many new materials are unknown and characterizing
them is crucial for their applications. To use the variety of spectroscopic methods for
the characterization, the behaviour of the materials in external electromagnetic fields
should be investigated and understood. Thus, to know how matter responds to external
perturbation is of great fundamental and practical interest. Different procedures |5, 6, 7, 8|

have been proposed, however, they tend to make serious assumptions regarding structure



(a)

(b)

----- CH—CH~—CH—CH—CH=CH ---

(c)

""" CHZ - CH2 = CH2 = CHZ = CH2 - cHz -

Figure 1.1: Model of a hydrogen (a), polyacetylene (b) and polyethylene (c) chain [1].

and are numerically tedious.

Whether the response is entirely electronic, or electrons and nuclei will both respond
to the field, depends on the field frequency. If it is sufficiently high the first case is valid
and at lower frequencies additionally nuclear degrees of freedom need to be considered.
The interaction between the system and the field can be described through scalar or
vector potential. The former one, normally used in atomic and molecular calculations,
is proportional to the quantum-mechanical operator 7 (i.e., the electronic position),
which is non-periodic and unbound. Thus, when an infinite and periodic systems are
considered, the translational symmetry is destroyed using the scalar interaction potential.
In [9] Springborg and Kirtman introduced two different approaches that result in the same
single-particle Schrodinger-type equation for the crystal orbitals. The more general one
employs the vector potential for the interaction between the system and the field |10, 11],
retains the translational symmetry and is a numerically stable and efficient method that
allows for the combined (non)linear electronic and structural response of infinite periodic
systems to finite (static) electric fields [12, 9].

For a long, but finite, regular chain the presence of the field leads to an additional term

(ﬁDC - 1) to the Hamiltonian

H— H—Epc- T, (1.1)



and to the total energy.

~ ~ —
Etot - <\Ij|Htot|\Ij> - <‘II‘Htot,0|\Ij> - EDC : ﬁtota (12)

where ]:Itot and f{tot,o are the total Hamiltonian with and without the external field,

ﬁ
respectively, Ep¢ is the field strength and ﬂ)wt the dipole moment of the system

Wior = /?ptot(?)d? = Un— He (1.3)

that is split into a nuclear and an electronic part. In Fig. 1.2 are shown two finite, regular
chains from which the lower one contains one extra unit, i.e., the size of the central part
of the second chain has increased and automatically also the distance between the ends.

Then, the total dipole moment

ﬁtot - ﬁ)center - ﬁ)ends (14)

will change due to the two increases. The first term on the right site of the last equation
is equivalent to the static charge distribution for the central part of a large finite chain,
and the second one corresponds to the flow of charge from one to the other end of the
chain. For this reason the dipole moment contains a contribution from the terminations
(ends) that is not negligible in the thermodynamic limit, since it grows with the size of

the system.

Left part Central part Right part

Left part Central part Right part

Figure 1.2: Two finite, regular chains split into three parts: left, central and right. Each
filled circle, placed along the z axis, represents a building block containing one or more

atoms. The lower chain consists one additional unit more.



In the case of infinite periodic system that consists of identical building blocks, the
various properties are studied per repeated unit and the dipole moment, 77, translates
into the polarization, ? Then, the polarization, which does not depend on the size of
the system (intensive property), can be determined through the extensive quantity dipole

moment in the following way

P = lim 2o = lim [ (N +1) = (V). (1.5)
with the total number of units N. Since the effect of the surfaces is by construction
neglected, we assume that the polarization depends only on the central region of the
system, i.e., that the dipole moment per unit is a bulk property independent of the
surfaces. Then, the question arises: what happens with the charge contribution from the
terminations?

During the last two decades a mathematically correct description of the polarization has
been obtained through the so-called Modern Theory of Polarization (MTP) [13, 14, 15, 16],
which has its roots in earlier works of Blount [17]|. In [18, 19] Springborg and co-workers
show in details how one can arrive at different polarization expressions, including those
related to the MTP, when one begins from the same starting point, i.e., from Blount
formulation. Here, we will mention only one of the forms for the electronic part of the

polarization that was suggested from King-Smith and Vanderbilt [13|

2 e B,
Pxsy = N Z Z(un(k)‘%un(k»’ (1.6)

where B is the number of doubly occupied bands, u,(k) a function that has the lattice
periodicity and there is a gap between occupied and empty orbitals. Using symmetry-
adapted basis functions, called Bloch waves and constructed through linear combination
of atom-centred ones of different unit cells [20] (see also Chapter 2), we may write Pksy

as

Pxsy = Z Z Z ethal Z |Cpn(k Xp\z — la]xq)

k: 1 n=1
N B
2i . . d (1.7)
1530 9) DD SEHBITIBRGHTS
k=1 n=1 l pq



The total polarization is split into two terms - a charge (P,) and a current term (F;).
The first one is related to the charge distribution along the central part of a large, finite
chain, and the second is the answer of the question what happens with the part of the
dipole moment from the charges at the terminations. Thus, the current contribution
to the polarization is a consequence of approximating the system as being infinite and
periodic. The evaluation of the charge term is normally not problematic and can be done
through standard matrix multiplications involving known quantities, whereas to calculate
the current term is not a trivial task, since it involves the [(d)/(dk)| operator. An efficient
smoothing procedure was developed within the vector potential approach [12, 9|, that
makes the occupied orbitals a smooth function of the wave vector k and is a numerically
stable solution of the derivative problem. The parametrized model Hamiltonian, that was
constructed to prove the method, contains all essential elements of an ab initio Hartree-
Fock (or Kohn-Sham) Hamiltonian and therefore we could implement it in the ab initio
LCAO-SCF algorithm that has been developed in Namur, Belgium [1, 2].

Electronic structure calculations for polyatomic molecules using a linear combination
of atomic orbital (LCAO) scheme were already being carried out in the 1950s, whereas
the first applications of quantum chemistry to polymers appeared in the second part
of the 1960s |21, 22, 23, 24|. Ab initio programs for polymers are available and are
currently applied in several groups, for example Erlangen [25], Vienna [26], Budapest
[27], Torino [28], Kingston [29, 30|, and Namur [31, 32]. The PLH (Polymer Linear
Helical) code is an efficient program, designed for polymers through implementing fast
techniques for evaluating integrals over Gaussian-type functions, and taking into account
long-range electrostatic effects and the helical symmetry of the system. Some of the
limitations, imposed in the algorithm, are that the chain is isolated, infinite, perfectly
stereoregular and chain end effects are not considered. The stereoregularity allows to
take into account the translational symmetry and enables the applications of concepts
encountered in condensed matter physics in order to get a complete description of the

electronic structure of polymers.

The starting theory in the ab initio LCAO-SCF algorithm is the Hartree-Fock method
[33, 34, 35| where every electron moves in the field of the fixed nuclei and in the mean
Coulombic and exchange fields of all the other electrons. The one-electron wavefunctions
are the so-called Bloch’s functions and together with the orbital energies are functions
of the quasi-momentum, k, of the particle. The k-dispersion curves of the latter (one-
electron energies) form the band structure of the regular polymer. There are different

band structure calculations at the Hiickel level of approximation, which enable the in-



terplay between the opening of a gap between the occupied and unoccupied levels and
the bond length or electron density alternation [36, 37|, whereas to treat polyethylene
and polyacetylene extended Hiickel was used [38, 39]. Also semiempirical techniques
[40, 41, 42] and valence effective Hamiltonian (VEH) approach [43] are used to calculate
the band structure of polymers, and electron correlations are taken into account using the
semiempirical mw-electron Pariser-Parr-Pople (PPP) method [23, 24, 44].

Band structure calculations can also be carried out using the Density Functional Theory
(DFT) |45, 46] and a broad range of exchange-correlation functionals. At the beginning of
the 1980s Mintmire and White [47, 48, 49| used the Local Density Approximation (LDA)
for the exchange-correlation potential (V,.) and expressed the charge density as a linear
combinations of auxiliary Gaussian basis sets [50]. At the end of the 1980s Springborg and
co-workers developed a parameter-free, density functional, full-potential Linear Mulffin-
Tin Orbital (LMTO) method for calculating structural and electronic properties of infinite
periodic systems [51, 52, 53, 54, 55, 56].

One of the limitations, considered in both methods that we used, is the absence of a
surface, i.e., the influence of the surface (or of the terminations) on the dipole moment per
unit is not taken into account and the polarization is a bulk quantity when infinite and
periodic systems are studied. This statement has its origin in the work of Vanderbilt and
King-Smith [14], whereas the discussions about the surface effects have already started in
the 70’s [57, 58, 59, 60, 61]. In our work we will show that for a long but finite system in
the presence of field different chain ends can change the polarization, i.e., the electronic
response will depend on the surface and neglecting it is not a very good approximation.
On the other hand the dipole moment per unit depends upon the lattice constant, i.e., the
latter will be affected from the surface and will change, and since it is coupled mechanically
with internal structural parameters of the unit cell, they will change also. Model one-
dimensional calculations will demonstrate that the measurable structural responses of the
finite chain to an electrostatic field can be exactly reproduced by an infinite periodic
treatment of the same system [62].

In the present study we consider that the quasi-1D chain and the field are parallel to
the z axis, and in addition neglect spin polarization. Therefore, only the z component of
the polarization is discussed and the vector symbol is omitted. However, the basic ideas
of the method are transferable to 2D and 3D systems and to spin-polarized case.

This work is organized as follows: in Chapter 2, the most important concepts of the
polymer quantum chemistry (e.g., Born-von Karméan periodic boundary conditions, Bril-

louin zone, Bloch functions) are shortly introduced. Chapter 3, involves the first part of



our study, i.e., the implementation of a Vector Potential Method in an ab initio Hartree-
Fock program. The two different approaches and first ab initio results are presented.
Comparison with previous results for the linear and nonlinear responses is made. The
second part of the present work is introduced in Chapter 4. Results for model Hamil-
tonian calculations are listed and the role of the surface in electric field polarization of

periodic systems is discussed. In Chapter 5, we summarise and conclude our work.






Chapter 2
Theoretical background

It is known that the polymer quantum chemistry is the bridge between condensed matter
physics and molecular quantum chemistry. Although it deals with one-dimensional peri-
odic systems, it is not a reduction of the solid-state physics to a single dimensional space,
since the orbitals are truly three-dimensional. The following Chapter introduces briefly
some of the main features of the polymer quantum chemistry only for the 1D case, but
they are readily transferable to the 2D and 3D cases. Detailed information can be found
in [20].

2.1 Born-von KArman periodic boundary conditions

To illustrate some of the fundamentals of polymer quantum chemistry, a periodic and an
infinite chain, as shown in Fig. 2.1, is considered. The larger the molecule (the chain)
is (the larger the value of N), the more difficult becomes solving the matrix eigenvalue

equation

H-C =¢-

IS

yes (2.1)

since the dimension of the matrix equation increases with the number of the basis functions
K, eg., if K =20 a 20 x 20 equation has to be solved. Such equation could be simplified
considerably by constructing a new symmetry-adapted basis functions using symmetry

operations

K
- 1
k _ ikj

= — e " 2.2

X ~ ]-E:l X; (2.2)

9
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where the indices k specify different irreducible representations.
When a rotation operation of n- (27 /N) about the Cy axis passing through the centre
of the ring molecule from Fig. 2.1 (a) and perpendicular to the plane of the molecule is

applied, the molecule and the symmetry-adapted orbitals are mapped into themselves

RoxF = e*nyk, (2.3)

The same will happen when a translation operation is applied to the infinite chain from

Fig. 2.1 (b) and the symmetry-adapted basis function X]; obeys

T = e y*. (2.4)

Consequently, the values of the wavefunctions at the (N + 1)st site in both cases are
identical to those at the first site. These are the so-called Periodic Boundary Conditions
(PBC). In addition, the ring molecule may be considered a finite approximation to an
infinite linear chain. The size of the ring molecule defines a fragment of the infinite linear

chain, which is known as the Born-von Karman zone.

-1 011 2 3 N-2 N-1 N |N+1 N+2

Figure 2.1: A periodic (ring) molecule consisting of N identical atoms (a) and an infinite

linear chain containing a infinite set of equivalent atoms (b).
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Dealing with extended and regular systems allows us to take into account the trans-
lational symmetry and to introduce the so called Born-von Karman periodic boundary

conditions.

2.2 Brillouin zones

The translation operation mentioned in the last section can be measured instead of number
of units in a length unit. Then, the operator T., can be described as translating the system

by n - a, with a being the lattice constant, and

Tnxfc _ einafc/axk (25)
or
Tnxk _ 6inakxk7 (26)
where
k
k=— 2.7
! (2.7

is the wavevector and has the dimension of length~!. If k is restricted to

—r<k<m, (2.8)

since the replacement k — k + 27 leads to no changes, then the so-called first Brillouin

zone is defined through

Ter< i (2.9)
a a

To restrict the wavevector k£ to lie inside the first Brillouin zone is enough, since all
information needed is contained within this interval.

The same can be applied to the 2D and 3D case. For instance, crystalline materials are
supposed to be periodic in all three dimensions and the symmetry-adapted basis functions
obey

T k iR nymck
—e RO
na,nb,ncx

X", (2.10)
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where

— -

By niyme = Nat + b + nec (2.11)

and the basis vectors @, b and ¢ have to be linearly independent.

2.3 Bloch functions

The symmetry-adapted basis functions, already mentioned in the previous two sections,
were constructed from equivalent atom-centred ones of different unit cells using the sym-
metry of the system. They are called Bloch functions or Bloch waves and can be written

in the form

Xp(k, 7) = D ety (). (2.12)

Then, it applies

Ny
Ua(k, ) =Y Con(k)xp(k, 7)
p=1
Y N (2.13)
= =2 Cnlk) 3 ™)
\/N p=1 =1
Here N, denotes the number of basis functions per unit, p = 1, 2, 3, ..., Ny, [ is the unit

cell index, n is the so-called band index, a is the lattice constant and al corresponds to
translation from the reference cell (origin cell, cell 0) along the z axis. The [ sum is over
the number of unit cells NV in the Born-von Karméan zone and k is one of the equidistant

k points in the first Brillouin zone, [—7/a; 7/a], with the spacing

2
Ak = =1

= (2.14)

By means of another Bloch formulation, any electronic eigenfunction can be expressed

through a function u, (k, ) that has the lattice periodicity

> Conlk)xg (e, (2.15)
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2.4 Band structures

For an infinite periodic quasi-one-dimensional system the electronic structure calculation
proceeds almost as for a molecule. The important difference is that symmetry-adapted
basis functions, characterized by the wavevector k, should be constructed in the polymer

case. Thereby, the problem of solving the oo x oo secular equation

H-C,=e¢,-

IS

.G, (2.16)

is transformed into finite ones

H(k) - Cp(k) = en(k) - O(k) - Cp(k) (2.17)

with the N, x N, dimension.
When the number of k points in the first Brillouin zone, [—m/a; 7 /al, tends to infinity,
a whole continuum of £ values exists, and the single-particle eigenvalue ¢, becomes a

function of the wavevector

Since €,(—k) = €,(k) (it is shown in [20]), only the k values in the half first Brillouin zone
[0;7/a] can be considered. If all energy values are plotted as a function of k, the band
structure of the correspondent system is obtained. The difference between the highest
and the lowest energy level gives the band dispersion (band width). The smaller the
distance between the atoms is, i.e., the stronger the interaction between the atoms, the
bigger is the band dispersion. The highest occupied energy level is called HOMO (Highest
Occupied Molecular Orbital) and the lowest unoccupied one - LUMO (Lowest Unoccupied
Molecular Orbital). Then,

Be — €HOMO -21— €LUMO (2.19)

is the so called F'erm: boundary or Ferma level. If the Fermsi level lies within the band,

the system is metallic.
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2.5 Polymer Quantum Chemistry in comparison with

Molecular Quantum Chemistry

In the following we will introduce the basic formulae used in polymer quantum chemistry
and compare them with those used in molecular quantum chemistry. In general, when
using the LCAO Hartree-Fock methodology the molecular orbital is expanded in terms of
basis functions, the eigenvalues, €, of the secular systems of equations and determinants
are the orbital energies, and from the LCAO coefficients, charges and bond orders are
calculated. The convention adopted in the following formulae and maintained throughout
the text is that lower indices (p, ¢, , s) refer to the labelling of a given orbital (x,, X4, X7
or Xs), while the superscript indices (0,1, h, j) refer to the position of a given unit cell,
corresponding to translations la, ha and ja from the reference cell 0 (or origin cell). The

first formulae are used in molecular- and the second in polymer quantum chemistry.

Orbital

Gl ?) = —=3 Coulk) 3 e (7) (2.20)

Secular system

Z Con (k) {Z e [hpg — En(k)qu]}
p:le = (2.21)
= Z Con(k) [lpg (k) — €0(K)Spqg(K)] = 0

Overlap matrix

Spq = <Xp|Xq>

N N

Spe(k) = Z eik“lS;)ql = Z el <X2‘Xfl> (2.22)

=1 =1
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Fock matrix

Fpg = <Xp‘ F|Xq> = Hpg + Gy
N N
Fpy = Z eZkale?ql = Z that <Xp| F|Xq> = Hpqql + Gpofj (2-23)

=1 =1

One electron part of the Fock matrix

Hpq = qu + qu
HY =TV + VY (2.24)

Two electron part of the Fock matrix

Ghars = Zsz (palrs) — (prlgs)]

G = > > > > DI [2 (pg"|rs") — (pr™gs”)] (2.25)
h yi T s

Electron repulsion integrals

(palrs) = :
Palrs) =  XoXa| Ty [XrXs
oly,..hj 0.1 1 ki
(pg"|rs") = ( xox,, e (2.26)
Density matrix
Drs - Z C:nosn
n
DY = %/ k| c gikia (2.27)
T a n

Kinetic energy term
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1
Ty = ) <Xp‘v2‘Xq>

1
0l 0 v2 l

Electron nuclear attraction

1
VO = (O ———X! 2.29
pq <Xp I — Ryl Xq (2.29)
Results

— €1,€2,€3, ...

— e1(k), e2(k), e3(k), ... (2.30)

Since in our study the translational symmetry of the polymer is taken into account,
the lattice periodicity can be exploited and lattice summations can be introduced. It is
obvious that in polymer quantum chemistry the orbitals, the systems of equation and the
determinants have imaginary components. The results from the LCAO-SCF procedure
are the eigenvalues, €,(k), of the Hartree-Fock equation as a function of the wavevector

k, which plot gives the band structure of the corresponding system:.



Chapter 3

Ab initio treatment of periodic systems

1n external electrostatic fields

3.1 Introduction

In this Chapter, we will show how a numerically stable and efficient Vector Potential
Approach (VPA) is implemented in an ab initio Linear Combination of Atomic Orbitals
Self-Consistent Field (LCAO-SCF) algorithm.

Based on the work of Genkin and Mednis [63|, Kirtman and co-workers [10, 11] devel-
oped the VPA, which enables to obtain the electronic response of the system to a finite field
and has been used to determine the linear and nonlinear polarizabilities |64, 65, 66, 67|
of quasi-one-dimensional (quasi-1D) systems.

Springborg and Kirtman extended the VPA to one [12, 9] that allows, additionally
to the electronic response, the structural response of infinite periodic systems to finite
(static) electric field. In [9], the method and a model calculation results are presented in
detail. Since the constructed model Hamiltonian contains all essential elements of an ab
initio Hartree-Fock one, it was possible to implement the VPA in the ab initio LCAO-
SCF method, which computes band structures of regular and helical polymers taking into
account the one-dimensional translational symmetry.

As already mentioned, for extended and periodic systems exposed to an external elec-

trostatic field the presence of the field leads to an extra term (E - P) to the Hamiltonian

- =
H—H-FE. P, (3.1)

and to the total energy

17
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A~ A~ — —
Etot — <\I"Htot"lj> - <q]’HtOt,O’q]> - E . P, (32)

where Htot and Htot,o are the total Hamiltonian with and without external field, respec-
tively, E is the field vector and P the polarization of the system of interest. In order to find
out how a polymer chain responds to an external electric perturbation, the polarization

expression

Pxsy = Z Z Z ethal Z |Cpn(k Xp\z — la]xq)

klnl

2 o & ol d
DD NI WEATTENFTHE
l

k=1 n=1

(3.3)

2 |

EPp+P[,

with the charge (P,) and the current (P;) term, is taken from the VPA and added to the ab
initio Hartree-Fock Hamiltonian. Since the charge flow contribution to the polarization
involves the derivatives of the orbital coefficients with respect to the wavevector k, to
calculate it self-consistently, a smoothing procedure for the numerical differentiation was
developed.

The Chapter is organized as follows: in Subchapters 3.2 and 3.3, the VPA and the ab
initio LCAO-SCF algorithm are briefly introduced. Some difficulties and characteristics
of the implementation are mentioned in Subchapter 3.4. Our first results for electronic
responses of hydrogen (Hsy) and lithium hydride (LiH) chains in a presence of an external
electrostatic field are introduced, discussed and compared with available previous theo-
retical and experimental results in Subchapter 3.5. All results are in atomic units (a.u.).
Detailed information about the methods can be found in [12, 9, 10, 19, 1].
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3.2 Vector Potential Approach (VPA)

3.2.1 The Hartree-Fock equation

Here we will shortly introduce the VPA single-particle Schrodinger-type equation for the
electrons of an infinite periodic system in an external electrostatic field and discuss its
self-consistent field (SCF) solution.

Using the polarization expression suggested by King-Smith and Vanderbilt [13]

N B
B = 4
KSV = N Z ; Un c% )> (3 )
the molecular orbital expression
Ny
Un(k,7) = Con(k)xp(k, 7) (3.5)
p=1
where
;N
’ ezkal l 36
X N Z (3.6)

=1

are symmetry-adapted Bloch waves, constructed through linear combination of atom-
centered basis functions of different unit cells, and a Hartree-Fock approximation, the

orbital coefficients may be obtained by solving

5 Bl B | M0+ 80 5| o) = 0(6) 2 S8, (3.7

p p

Here,

SPQ(k) - Z eiklasz())é - Z Zkla<Xp‘Xq> (38)

l l

Mpq(k) _ Z €iklaM£é _ Z Zkla<Xp‘Z . la‘Xq> Z Zkla<Xp|Z‘Xq> (39)

l l l
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Fpg(k) =" eMapil = et (\ 0 L) (3.10)

l l

are the overlap, the unit cell dipole and the Fock matrix elements, respectively. ng], MOl
and Fgé are the corresponding direct space matrices between the atomic orbitals x,, of the
reference cell (0) and y, of the Ilth cell. Due to the 9/0k term, Eq. (3.7) is not a standard

matrix-eigenvalue problem. Using the normalization condition

1= CH(k)- S(k) - C (), (3.11)

the 0C,,(k)/0k term can be converted to a desired multiplicative form

S(0) e k) = |80 € ) s | e .12

Then, the quantity in the square brackets can be treated self-consistently in the same

manner as the Fock matrix and Eq. (3.7) takes the form

{£0) = Foe- |yt + 15w (50®) - <) 50| |- €

— ca(k) - S(R) - C, (k).

If we compare the two terms in the square brackets of the last equation with the polariza-
tion expression of Eq. (3.3), we see that the first one corresponds to the charge distribution

along the central part of a large finite chain

N B
%ZZZ ikal Z |Cpn (k) Xp|Z — la|Xq> =P, (3.14)

k=1 n=1

and the second one is related to the current contribution to the polarization

[N~}

N B
d
NZ Z Zzelkal Z Xp‘Xq dkcqn(k) =N (3.15)

k=1 n=1

Then, the electronic polarization, P, can be written as:
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Fo=2i0 2 (n(Ble™ 9 e ()
ZQE:E:E:[QQ%X%AMA@AM+4O%Mﬁ%i?%A@ (3.16)

EPp+P].

The total polarization, P, is written as a sum of the self-consistent electronic polarization

(P.) and of the classical polarization contribution from the nuclei (P,)

Ptot :P€+PTL' (317)

To calculate the charge term (P,) from Eq. (3.16) is an easy task, since it involves known
quantities, whereas the current term (F;) requires the numerical differentiation of the
coefficients, that is problematic since C'(k) contains an arbitrary (random) k-dependent
phase factor. To compensate the randomness, a numerically stable approach, which makes

the coefficients a smooth function of k& was developed [12, 9].

3.2.2 The smoothing procedure

The smoothing procedure, as described in [9], is based on adding an extra phase factor

Cyn(k) = Cyn(k)een ), (3.18)

which is chosen so that the change in the coefficients from one k point to the next is
minimized. Starting with the field-free expansion coefficients {C,,(k)} obtained by solving
the single-particle equation, Springborg and Kirtman arrived at the following multistep

procedure:

1) The first step is to identify band crossings. Assuming that orbitals for the same
band have very similar expansion coefficients, band crossings are identified for each band

n and k value using the relation

)Clyn (ke + Ak) < 6., (3.19)
Z

where ¢, is a chosen threshold. If this inequality is fulfilled, the orbitals are taken as
belonging to two different, crossing bands, n and n + 1, and the coefficients C,,(k + Ak)
and Cy n+1(k + Ak) are interchanged.
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2) If two band orbitals are degenerate at given k point, a linear combination that makes

the coefficients maximally similar to the two orbitals at k + Ak is made.
3) All coefficients are made real at k = 0.

4) Considering positive k points and starting from & = 0 and ¢, (0), the quantity is

minimized
Qn(k + Ak) = " [Cou(k + Ak)e'omFE80 — O (k) eten®)]2. (3.20)
q

For negative k it is assumed that

Con(—k)e#mF) = Cx (k)e on®), (3.21)

This choice is always possible and it leads to coefficients that are smooth function of £ for

ekt (3.22)
a a

but large jumps may occur at the zone boundaries k = +7/a.

5) In order to remove this discontinuities, the quantity

@n = Z Z |Con(k + Ak)ewn(kJrAk) - an(k)ewn(k)F
kg

- | (3.23)
+ A Z Z |an(k -+ 2Al€)€w”(k+2Ak) _ an(k)ewn(k)‘Q
kE q

is minimized for each band n under the constraint

Pn (—q = ¥n <E> ; (3.24)

and with ¢, (0) fixed.

By means of the five steps, one arrives at a set of smooth coefficients for the field-free
case, that are used to calculate the polarization for Epc = 0 according to Eq. (3.16).
The first four steps are necessary to provide good initial guess. The fifth step is the
time-consuming one since it involves a nonlinear optimization carried out using conjugate

gradients.
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For the Epc # 0 case it is assumed that the field does not remove band crossings
by lowering the symmetry and does not change the orbitals significantly. Therefore one

starts with steps 2 and 3 and, then, skip to step 6 below.

6) The coefficients are made maximally similar to those of the field-free case, i.e., for

each band and k value the quantity is minimized

Qu(k) = D 1Cqu (k)™ — Con(R)”. (3.25)

7) Finally, only for aesthetic reason, all phases are modified by a k-independent but
band-dependent constant so that the coefficients at £ = 0 are all real.
Model calculations show [12, 9] that the smoothing procedure is numerically stable and

enables the differentiation of the orbital coeflicients.

3.2.3 Derivatives of the coefficients

After the coefficients are made a smooth function of the wave vector, is easy to obtain

numerically stable derivatives. For this purpose the following equation is used

OC,u (k)
ok

N
1 _ .
~ > win, [Con (k+j - Ak) = Cyu (k — j - Ak)] (3.26)
j=1
with

Con (k; + %”) = Cyn(k). (3.27)

Here, N}, is the number of points used in the numerical differentiation. In our calculations
we used NV = 20, which leads to more accurate results than when using Ny = 1. The

coefficients {w; n, } are taken from Dvornikov [68].

3.2.4 Total energy expression

To get the total energy of the system of interest in the presence of external electrostatic

field the polarization energy expression
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. ikz a —ikz
By = Eoe B = Boci 303wt e Jot)
k n
=Epcy Y. > (k) Con () My (k) +iC, (k) =22 Spq (k) (3.28)
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charge term current term

should be added to the Hartree-Fock contribution

No
Bror = (U|Hyot| W) = (¥|Hyor,0|¥) — Epc - Prow — Epc Y 21, (3.29)

i=1
with z; being the equilibrium position of the ith atom and Ng the number of atoms.
The last term in the equation above gives the classical contributions from the external
electrostatic field acting on the nuclear charges. FEi is the quantity that is minimized

during a geometry optimization procedure.

3.2.5 The Hiickel-type model

The constructed modified Hiickel-type model for the Hartree-Fock Hamiltonian in the
VPA treatment [12, 9, 62| allows for the basis function flexibility and self-consistency and
enables a realistic electronic-structure simulations, to perform many calculations on large,
but finite and on infinite periodic systems and to present first ab initio results on realistic
systems. The model calculations of Springborg and co-workers show that the approach for
the infinite periodic systems is able to reproduce the results for the large finite systems.

A linear chain —A = B— with alternating atoms and bond lengths is considered. The
system has N unit cells, two atoms per cell, two orthonormal atom-centered functions
per atom denoted by x;x,, with p being the basis function on atom X of the /th unit,
ie,p=1,2and X = A or B. Corresponding to each spatial orbital x;x,, there are two
spin-orbitals y;x,c and x;x,0. The nuclear charges are 2|e|. @ is the lattice constant and
ug describes the bond-length alternation, so that alternating atoms are displaced by +ug
and —uy away from the equidistant positions. Thus, the two atoms of the nth unit cell

are placed at

z::F%jLn-aiuo, (3.30)
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where the upper (lower) sign is used for the A (B) atoms, and the two bond lengths have
the values § + 2uy.

Predetermined values for the field-free structural constants uy and a are obtained by
adding an elastic contribution to the electronic energy. This contribution contains terms

of 2nd and 4th order in the nearest and next-nearest bond lengths,

d d
Eelastic = ﬁ Z(Zz — Zi-1 — —0)2 + é Z(Zz — Zi—1 — —0)4

2 £ 2 4 2
1 ’ I ’ (3.31)
+ E Z(Zl — Zi—2 — d0)2 -+ Z Z(Zl — Zj—2 — d0)4.

7 7

Here z; is the z coordinate of the A atom of the %th unit cell for odd 7 and of the B
atom of the %th unit cell for even i. The parameters of this function (i.e., f1, fo, f3, fa,
and dy) are varied so that the field-free optimized geometry gives the desired values for
a and ug. In the finite chain calculations the structure of the central part of the chain
containing N units is used for comparison with the infinite periodic chain as follows [the

notation is the same as in Eq. (3.31)]

1
a= 3 [(2n41 — 2n-1) + (2n42 — 2n)]

+1
Uy = ? [ZN+2 —32n41 + 32y — ZN—l] )

(3.32)

with the upper (lower) sign in the 2nd identity for odd (even) N. When the finite chain
is sufficiently long the values of a and wug, so obtained, agree with those of the infinite
periodic chain. The origin of the coordinate system is chosen as the arithmetic average of
all nuclear positions for the finite chains and as that of all nuclei in the Born von Karman
zone for the infinite periodic chains.

Two-center matrix elements of the field-free Hamiltonian are nonvanishing only between
functions on neighboring atoms and vary linearly as a function of the interatomic distance.
The one-electron contribution (xix;o|ho|xix;o) to the one-center matrix elements, where
ho is the field-free one-electron operator, is non-zero only for ¢ = j. From the two-electron
matrix elements the only retained are (x;x;01Xixi02|v|Xixi01Xixi02), where U is the field-
free two-electron operator.

For the finite chain the DC field is included in the electronic Hamiltonian through the
term — . Epcz;, where z; is the z coordinate of the ith electron, Epc is the amplitude

of the DC field, and we have set the magnitude of the elementary charge |e| = 1. It turns
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out to be important for this term that the matrix elements of the dipole moment operator
are consistent with the overlap matrix elements. This is most conveniently achieved by

fixing the spatial form of the basis functions, which for simplicity are chosen to be

1
— 3.33
xixi(2) — (3.33)
for
2=z < =%, (3.34)
and zero elsewhere;
()= — (3.35)
Xix2 = \/w_XQ .
for
w w
% <z =20l < % (3.36)
and
() = — (3.37)
Xix2 = % .
for
|2 — 2| < %, (3.38)

and zero elsewhere, where z; is the position of the atom X in the /th unit. The widths, w
(wx1 > wxz), are kept sufficiently small so that functions on non-neighboring atoms do
not overlap.

The constructed parametrized model allows for extensive exploratory calculations and
contains all essential elements of an ab initio Hartree-Fock (or Kohn-Sham) Hamiltonian
including band orbitals with phases that may vary randomly from one k£ point to the next.
Model calculations have demonstrated [12, 69, 62] that large finite chains and infinite
periodic chains lead to the same results for polarization and structure as a function of
field strength.
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3.3  Ab initio LCAO-SCF algorithm

In this Subchapter we will give a short overview of the ab initio Linear Combination
of Atomic Orbitals Self-Consistent Field (LCAO-SCF) method that is implemented in
the so-called PLH (Polymer Linear Helical) code, one of the several existing ab initio

programs for polymers, developed from the group in Namur, Belgium [1, 2, 31, 32].

3.3.1 LCAO basic principles

As already mentioned, the ab initio LCAO-SCF algorithm is based on the Hartree-Fock
method and the one-electron wavefunctions are Bloch’s functions. The Born-von Karmén
periodic boundary conditions impose that the Bloch’s functions are identical in the Oth
and 2N + 1th unit cells (as implemented in the PLH code), with N tending to co. The

crystalline orbitals are built as a linear combination of atom-centred basis functions

N, N N,
= 1 ikal 1 (=
k) = 3 Cnlh) iy 32 0 =3 Gkl (339)
where the discrete k values have the spacing
2m
ANk = —-—. 3.40
(2N +1)a (3.40)

N defines the short-range region consisting of 2N + 1 unit cells.

The orbital coefficients, C,,,(k), and the orbital energies, €,(k), depend on the wavevec-
tor k and the k-dispersion curves of the latter form the band structure of the regular
polymer. They are generally plotted in the half of the first Brillouin zone from k = 0 to

k = 7/a, since

en(—k) = €, (k) (3.41)

and

Un(—=k) = p (k). (3.42)

The first Brillouin zone, [—7/a, w/a], is the equivalent of the Wigner-Seitz unit cell in the
direct space. The C,, (k) are obtained from the iterative solution (SCF) of the Hartree-

Fock equation
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E(k) - Co(k) = en(k) -

[

(k) - Cu(), (3.43)

where n is the band index and the k-dependent matrices S(k) and F(k) are given by
Eq. (3.8) and Eq. (3.10), respectively. Since long-range electrostatic effects are taken into
account, we will show here only the direct space Fock matrix element between the atomic

orbitals y, of the reference cell (0) and x, of the lth cell

CEED D IS WL TR D W MWL

h=—00 —N h=—
v 2 YD !
Xp ‘Xq 9 Z Xp Ir — R4 — hae.] Xq
N h—foo A=1 (344)
kinetic energy term N~

nuclear attraction

+ Z 2.2.0% > - Z > 2.2 PG

h=—00 —N h=—N
- N -
Vv Vv

electron repulsion exchange term

with Q4 and R, being the nuclear charge and the position in the reference unit cell of
atom A. Nc is the number of atoms in the reference unit cell, D% is the density matrix
element obtained by integration over the first Brillouin zone according to Eq. (2.27), and
the two electron integrals can be expressed as in Eq. (2.26). The sum over 4 in the nuclear
attraction and electron repulsion terms (the Coulomb terms) runs from —oo to oo (long-
range interaction), whereas it is restricted to N (short-range interaction) in the exchange

term (see Fig. 3.1).
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Complete Hamiltonian
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Approximate Coulomb terms

Figure 3.1: Sketch of the Namur threshold scheme for band structure calculations [2].
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3.3.2 Specific aspects of the Hartree-Fock LCAO-SCF algorithm
Translational symmetry

One of the limitations, usually imposed in standard quantum chemical polymeric calcula-
tions, is the perfect stereoregularity of the infinite linear chain, which allows translational
symmetry to be taken into account. This has the advantage that a lot of integral for-
mulae are significantly simplified and the number of two-electron integrals to be stored
decreases. For example, using the identities between translationally equivalent density

matrix elements

Dyl = D", (3.45)

the electron density for polymers can be defined by

ZZZZQD’” {r)
= ;;ZZM " (r)x(r),

(3.46)

where D% ~" is the density matrix element between atomic orbital y, in the origin cell 0
and atomic orbital xs in cell j —h. When using a new index m = j — h, the equation for

the electron density becomes

D ODDRLINEEE
- z I RLAUET]

(3.47)

The use of the translational symmetry is a considerable speed-up of the integral and
SCF parts of the PLH program.

Integration of the density matrix

As it will be mentioned later, two procedures for integrating the density matrix from
reciprocal to real space using Eq. (2.27) are implemented in the PLH code. The first
one, called Gauss-Legendre (GL) [70], is a part of the so-called nonoscillatory techniques,

which integrate the product of the density matrix elements by the exponential as a whole.
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In the GL procedure the DY are integrated at 12 non-equidistant & points in the half of

the first Brillouin zone

6ikja

D%:g/zdk
™ J)_x

12
— Z W;
=1

> Cr (k) Can(k)
" (3.48)

ezki]a7

> Cr (k) Can(k)

with k; and W; being the abscissas and the weights 1] of the Gauss-Legendre procedure.
The second integration possibility, part of the oscillatory techniques and implemented
in PLH, is the so-called Filon quadrature [71]. In

g _ @ . * ikja
DY =~ / dk ;cm(k)om(k) e
S / " dkD,,(k)e™i (3.49)
™, J)_x
) @
- dk{R[D,s(k)] cos(kja) — I [D,s(k)] sin(kja)}
T Jo

the numerical integration over half of the first Brillouin zone considers the trigonometric
functions. This is a big adventure compared with the GL technique, which affords accurate
results only for small number of unit cells. The Filon scheme is very efficient for slowly
varying density matrix elements but requires the use of many integration points to reach
high accuracies. In our calculation the density matrices are integrated using the Filon
procedure.

There are other strategies [72] for dealing with the oscillation of DY when a large
number of unit cells is used. Their pros and cons as a function of the accuracy and the

computational resources are compared from D. Jacquemin et al. in [73].

Quasi-linear dependencies

Quasi-linear dependencies, also called pseudolinear dependencies, may occur when the
eigenvalues of the overlap matrix S(k) are of the order of magnitude of 1072 or smaller
and, therefore, make the convergence of the SCF procedure difficult. For comparison, in
molecular calculations linear dependence problems start when the eigenvalues are smaller

than 1076, The reason of this different behaviour is the different truncation of the infinite
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lattice sums. Beside the properly truncation of the latter, another way to remove the
linear dependencies is through the canonical orthogonalization procedure of Lowdin [74].
The transformation matrix 7'(k), which is used to transform the generalized eigenvalue

problem (Eq. (3.43)) into the classical eigenvalue equation

F (k)U(k) = U(k)e(k), (3.50)
where
F (k) = T (k)F(k)T(k) (3.51)
and
U(k) = T ' (k)C(k), (3.52)
must obey
T (k)S(k)T(k) = 1. (3.53)

In the Lowdin’s canonical procedure T(k) is defined as

T(k) = W(k)s™2(k), (3.54)

where W (k) and s(k) are the eigenvector and the eigenvalue matrices of the overlap matrix

S(k), respectively,

S(k)YW (k) = W (k)s(k). (3.55)

If given eigenvalues s;(k) are very small, the matrix T(k) has columns with very large
values, the inaccuracies in the Fock matrix elements increase cycle after cycle and the
SCF procedure can oscillate that leads to a very slow convergence or nonconvergence. A
possibility to circumvent this problem will be to eliminate the columns with the large
values, i.e., those corresponding to small s;(k), in the matrix W (k) and to use a reduced
transformed orthonormal Bloch basis set. These new functions will span the same region

of space as the original one if the eliminated eigenvalues were exactly zero.
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SCF convergence

There are several ways to stabilize and accelerate the convergence of the iterative SCF
procedure, for instance through extrapolation, damping or level shifting. In the PLH

code, this is done using a damping factor and can be expressed as

DY (i™iteration) = (1 — d) x DY (i™iteration) +d x D% (i — 1™iteration),  (3.56)

i.e., the new density matrix includes a percentage of the previous one. The damping
factor is specified at the beginning and all iterations are "damped" until the end of the
SCF procedure. To ensure the idempotency of the density matrix an iteration with d = 0
is needed [75].

3.3.3 Longitudinal polarizability and second hyperpolarizability

Theoretical descriptions of the linear (polarizability o) and nonlinear (first 5 and second ~y
hyperpolarizability) properties of materials provide important complementary information
to the experimental studies, therefore, in the last years there is an intense research activity
in this field. According to the quantities required to compute the polarizability, there are
two classes of methods. In the first, one needs to know the field-perturbed wavefunctions
and energies, whereas in the second the polarizabilities can be obtained directly without
any knowledge of these field-perturbed wavefunctions.

In the presence of electric field, a dipole moment is induced in the system and the total

dipole moment is given by

p(E) = po + "™ (E), (3.57)

where E is the field strength Epc, o is the permanent dipole moment per unit cell in the

absence of electric field and

, 1 1
p"(E) = oE + aﬁEQ + §7E3 + ... (3.58)

The last expression is consistent with the definition of u as the derivative of the energy,
&€ = FEi, with respect to the field

p(E) = —— (3.59)
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In our case the field is applied in the z-direction along the polymer axis

E = E.e., (3.60)

and the total energy of the system can be expressed as

d& 1 [ d*€
E,)) = B+ — == E?
e =a (i), 2w (i), Lo

1.(@5) , jl(#ﬁ) \
+— o E!+
31 \dE2 ), _, A \dEt) ,

Using the Hellmann-Feynman theorem [76] and procedures that are variational with re-

(3.61)

spect to all parameters in the case of Hartree-Fock approximation, the following relations

can be stated. For the dipole moment

d&
= 62
. (dE)E (3.62)

and for the polarizability

i), (if)
a,=— (== - : (3.63)
(dEg E.=0 dEZ E.=0

i.e., the polarizability can be considered as the second-order term in the perturbation
expansion of the electronic energy with respect to the field or as the linear response of

the dipole moment to an external electric field.

For the first and second hyperpolarizability one can respectively apply

a3& d*u

dE? ) 1o dEZ ) .o
&5) (ﬁu)
dE? ) 5. dE? ) 5.

These double equalities lead to two ways to compute [3,,, and 7,...; either as the negative
of the third- and fourth-order perturbation term of the energy with respect to the applied
field or as the second- and third-order response of the dipole moment to this field.

In our results and discussions we will concentrate on the polarizability and the second

hyperpolarizability, therefore, here we will show how they can be calculated using the two
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classes of methods mentioned above. In the case of centrosymmetric systems, like the
hydrogen chain, the first hyperpolarizability, (..., is zero.

In the first class, the most simple method to use is the numerical Self-Consistent
Field Finite-Field method (SCF-FF) of Cohen and Roothaan [77], which is equivalent to
a coupled Hartree-Fock (CHF) scheme and can always be used if there is no analytical
procedure available. The FF technique consists of computing the energy of the system and
the dipole moment per unit (corresponds to the polarization in the case of infinite periodic
systems) for different field strengths and considering the finite-difference formulae. For

the polarizability using the field-dependent energy one can apply

B d*E(E.) L E(E,) + E(—E,) —2£(0)

z

and when centrosymmetric systems are considered

a,, = — <d25(Ez)> = lim QM. (3.67)

Using the dipole moment per unit the following relation is valid

. — (duz) iy Pe(B2) — pa(=E) (3.68)

and for centrosymmetric systems

d z . z EZ
a,, = ( a ) = lim “ ( ) (3.69)
B.=0

dEZ E.—0 EZ

If the Hellmann-Feynman theorem is not satisfied the expressions Eq. (3.66) and Eq.
(3.68) and for centrosymmetric compounds Eq. (3.67) and Eq. (3.69) will provide different
solutions. When dealing with methods including electron correlation where the dipole
moment is not directly available, Eq. (3.66) and Eq. (3.67) are often used. Electron
correlation can be investigated in the framework of Mgller-Plesset partitioning [78] at the
second (MP2), third (MP3) or fourth (MP4) level of electron correction or dealing with
the coupled-cluster (CC) ansatz [79] including all double (CCD), all single and double
excitations (CCSD), and all single and double as well as a perturbational estimate of
the connected triple excitations (CCSDT). Champagne and co-workers investigated the
effects of electron correlations on the static longitudinal polarizability [3, 4] and on the
static longitudinal second hyperpolarizability [80], using all the methods mentioned above,
together with the uncoupled (UCHF) (equivalent to the SOS method described bellow)
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and coupled Hartree-Fock (CHF) (equivalent to the FF technique) calculations. In our
investigations electron correlations are not taken into account.

The second hyperpolarizability can also be calculated using the FF procedure

dE(E.) . 8E(E.) — 28(2E.) — 6£(0)
e~ (S Ly~ B ! e

where the field amplitude has to be sufficiently small to satisfy the £, — 0 condition,
since the contaminations from the higher-order hyperpolarizabilities increase as the even
powers of the field amplitude.

In the absence of an external electric field, the linear and non-linear properties of the
system can be calculated with a method based on the Sum Over States (SOS) perturba-
tion expansion of the Roothaan-Hartree-Fock wavefunction. Then, the polarizability is

expressed through wavefunctions and state energies as

\DO‘,UUMI M‘UV’\II())
=2 Z et , (3.71)

where the sum is over the excited states m, and ¥y and W,, are the ground and excited
states Hartree-Fock wavefunctions associated with the energies & and &,,, respectively.

The relation can be transformed to

422 wz’:ua’zﬁa _ﬁa‘uu‘w» (372)

v; and v, represent the doubly-occupied and unoccupied molecular orbitals with the
corresponding energies &; and &,.
Then, the longitudinal polarizability per unit cell in the case of infinite periodic systems

1S written as

1/)1‘ k/ z ¢a k 2
SPIB)B) A ie &)

where the summations ¢ and a are over the occupied and unoccupied molecular orbitals
and the other two summations over the quasimomenta k and k', respectively. In [1] is
shown how the dipole integrals can be expressed through the so-called dipole transition
strengths or oscillator strengths, €2;,(k), between the occupied and unoccupied crystal

orbitals ¢ and a. Here we will give only the end formula for the longitudinal polarizability
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Qo (k)2
o :422;% (3.74)

where

0ull) = 02 Colk) | 5 Sm(h) = iMalh) + SpB) 5| Conth). (375)

The k-dependent dipole matrix elements are defined as

N N

Myg(k) = Y ™My = >~ e™ (x| xh) (3.76)
I=—N I=—N

and the derivatives of the overlap matrices

N
Spak) = Y eMesil (3.77)
l=—N
as
8 N
o7 Spa(k) = i > tetktesil. (3.78)
lI=—N

The derivatives of the orbital coefficients with respect to the wavevector k£ are calculated
analytically using procedure developed by Pople [81] and shortly introduced in [1]. It

involves the differentiation of the generalized eigenvalue problem

F(k)C(k) = S(k)C(k)E(k)

3.79
F'C(k) + F(k)C (k) =S'(k)C(k)E(k) + S(k)C (k)E(k) + S(k)C(k)E (k) (3.79)
and of the orthogonalization condition
) _
| C (k)Sl(k)C(k) =1 | (3.50)

C"(k)S(k)C(k)+C'(k)S (k)C(k) + CI(k)S(k)C (k) = 0.

The derivative of the Fock matrix F (k) is obtained in the same way as S (k). Assuming
that

C'(k) = C(k)U(k) (3.81)
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and multiplying the above equations on the left by C'(k), after some manipulations it

follows that

G(k) + E(k)U(k) = R(k)E(k) + U(k)E(k) + E (k)

and

where

(3.82)

(3.83)

(3.84)

One arrives to the following equation for the elements of the dipole oscillator strength

matrix

ull) = Uall) + 32 37 Gl g 5mlh) = 24| ol

with

when ¢ # a and

ol

2

(k) = Gii(k) — Rii(k)Ei(k).

(3.85)

(3.86)

(3.87)

The equation for calculating the longitudinal second hyperpolarizabiliy using the SOS

method is more complicated since 7, is related to the fourth-order energy term. Starting

from the standard time-independent perturbation theory, it can be written as [80]

‘IJO‘ML"I’ m’ﬂL’qj ><‘I’ ’ML“I’ ><‘I’ ’NL’qj0>
DD R R Yl

(U & )(‘90 - 517)(‘90 - 5q)

n 242 ‘1’0|ML\‘1’ Wl | Vo) Z (Wolpr W) (Vo |z [ Vo)

—&) (&0 — &m)?

m

(3.88)
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where U, and W, are the ground and the mth excited state wavefunctions, respectively,

with the corresponding energies &y, and &,,. ur, is the longitudinal dipole moment and

(Wonlpar[Wp) = (Wil |Wp) = (Wolpr[Wo) drmp. (3.89)

The SOS method for calculating directly the longitudinal polarizability per unit cell
of infinite systems is implemented in the PLH package. Since field-induced electron re-
organizational effects are not considered and the wave functions are constructed from
Hartree-Fock occupied and unoccupied one-electron spin orbitals, the Sum Over States

technique is equivalent to an uncoupled Hartree-Fock (UCHF) scheme.

3.3.4 The PLH (Polymer Linear Helical) package

The PLH program is a Fortran coding of different techniques, developed, mainly in the
Namur group, for the calculation of the electron band structures of regular or helical

polymers and their polarizabilities. It consists of five consecutive program modules:
1) PLHO: input geometry and basis set.
2) PLH1: computation of one-electron integrals.
3) PLLD: test of possible linear dependence effects.
4) PLH2: calculation of two-electron integrals.

5) PLH3: self-consistent field (SCF) iterations, printing of energy bands and a short

population analysis.

A preliminary program is added in order to test the input geometry:
PLMDIS: generates input file used in molecular graphics programs.

and an additional module:

PLHSOS: calculates longitudinal polarizabilities per unit cell and per unit length using
the Sum Over States (SOS) method.

The results obtained from running PLH can be represented graphically using:

BANDDOS: a highly interactive graphics package, which permits the ordering of the

band structure and the display of the density of states and their convolution.
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The present version of the package accepts s, p and d atomic orbitals and the total
number of atoms and shells in the unit cell are limited to 50 and 80, respectively. A
maximum of 6 primitive Gaussians are allowed to represent the atomic orbital and the

number of basis functions per unit cell is limited to 255. Some notable features include:
- Extension of the multipole expansion to the helical case [82].

- The use of compact Coulomb integrals formalism, which drastically reduces the stor-

age required for the two-electron integrals of the Coulomb contribution [83, 32, 84].

- The numerical integration of the density matrices using 12-point Gauss-Legendre

quadrature, allowing a numerically precise integration over the first Brillouin zone [85].

- The possibility of using a Filon-like quadrature procedure to perform the integration

of the density matrices [71].

- The Lowdin canonical orthogonalization procedure to treat the possible basis linear

dependence problems [74].

- The direct calculation of the first derivative of the energy bands required for getting
the correct indexing and labelling of bands in the density of states (DOS) calculations
[86, 87].

- The calculation of the longitudinal SOS (Sum Over States) polarizability per unit
cell [88].

For the computation of the two-electron integrals, two separate algorithms are imple-
mented - the Pople and Hehre method [89] and the McMurchie-Davidson scheme [90]. For
basis sets including just s and p orbitals, the two-electron integrals are calculated using
the first method and when d orbitals are included in the basis set, the second one is used.
The choice of the algorithm to use is decided internally by the program.

The input file of PLH consists of two "data groups", $GEOM and $BASIS, and optional
"keyword cards", e.g., $AU, SNOLONG, $ONEINT, $TWOINT, $SCF and $SOS. An
example for a polyacetylene input file is given in Fig. (3.2).

Each "data group" begins with a card, which has an & (Ampersand) or a $ (Dollar)
sign as its first character and ends with a "blank" card or card with the keywords & END
or $END. Each "data group" can be located anywhere in the input data file, however, the

data must be introduced in the order indicated within each "data group". A "keyword
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$GEOM
Polyacetylene STO-3G GEOM SUHAT

21 2.47709 41 0 O

C 0.33065 0.000000 0.59614
C -0.33065 0.000000 -0.59614
H 1.41772 0.000000 0.57926
H -1.41772 0.000000 -0.57926
$BASIS
33033030309
12
1s S 3 5.67
2.227660 0.154329 0.0
0.405771 0.535328 0.0
0.109818 0.444635 0.0
2Sp SP 3 1.72
0.9942030 -0.0999672 0.155916
0.2310310 0.3995130 0.607684
0.0751386 0.7001150 0.391957
*kk Kk
34
1s S 3 1.24
2.22766 0.154329 0.0
0.405771 0.535328 0.0
0.109818 0.444635 0.0
*kk Kk
$SEND
$SCF PRINT 3 DEPTHR 4 FILON
&END

Figure 3.2: Example for an input file for a polyacetylene chain when a STO — 3G basis

set is used.

card" begins also with an & or $ sign in the first column, followed by the keyword card
name and eventually some keywords. It can occur anywhere in the input data file, except
inside a "data group", and can be absent. The "keyword cards" are optional and the
order in which they appear is not important.

In our example (Fig. (3.2)) the following data are evident:

"Data group" $GEOM

CARD 0
$GEOM - in the program the geometry is default to be given in Angstom. If there is the
optional keyword <AU>, then the nuclear coordinates and the cell length are expressed

in atomic units.
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The following three cards are intended for title designation. Or like in Fig. (3.2):

CARD 1
Blank card.

CARD 2
Title format: "Polyacetylene STO-3G GEOM SUHAT"

CARD 3
Blank card.

CARD 4
NUMCEL, CEL, NCELH, <IALPHA, ITURN (or FALPHA)>

NUMCEL - the total number of cells used in the lattice summations. Maximum allowed

value is 21 (like in our example).
CEL - the length of the unit cell (=2.47709).

NCELH - the number of cells defining the short and intermediate regions in the calcula-
tions of the long-range Coulomb interactions. The default and minimal value is (4% N+1),
where N = (NUMCEL — 1)/2. In these regions, the two-electron integrals are explicitly

computed. Outside these regions, the third-order multipole expansion technique is used.

<IALPHA, ITURN (or FALPHA)> - are defined when helical symmetry is used. In

our example this is not the case, therefore, they are zero.

CARD 5
LABEL, X, Y, Z - define the atomic symbols and the coordinates of the atoms in the

unit cell.

CARD 6
Blank line or &END or $END keyword defining the end of the list of atoms.

"Data group" $BASIS - defines the atomic basis set and is read in the PLHO program.

CARD 0
$BASIS

CARD 1
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ISHELL(I) - number of Gaussian functions (degree of contraction) in each shell. The
maximum permitted degree of contraction is 6. The order of the atomic centers must
correspond to the order of the center definition in "data group" GEOM. The centers
are delimited by a contraction of 0 and the list by a 9. In our example the sequence
33033030309 has the following meaning:

- The first center (the first carbon atom) has 3 Gaussians to describe the atomic
orbital(s) in the first shell and 3 for the second shell

- The second center (the second carbon atom) has also 3 contracted Gaussians for each
of the two shells.

- The third center (the first hydrogen atom) has a single shell formed by 3 Gaussians.

- The fourth center (the second hydrogen atom) has also a single shell with 3 Gaussians.

CARD 2
ICENT(I) - gives the center serial numbers (1 and 2 for the two carbon atoms or 3 and

4 for the two hydrogen atoms).

CARD 3
IORB, ITYPE, NGAUSS, SC define:

IORB - the orbital used in printing (1S, 2SP),

ITYPE - the type of shell (S, P, D),

NGAUSS - the number of Gaussians (3) (degree of contraction),
SC - a scale factor (5.76, 1.72 and 1.24) for the current shell.

CARD 4

* % %% in columns 1-4.

The cards 2, 3 and 4 are repeated for each different shell definition block corresponding

to each type of atom.

CARD 5
Ends the input of the atomic basis set with a blank card or &END or $END keyword.
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"Keyword cards" - their specification is optional and they are used to modify the

default execution of the program.

In (Fig. (3.2)) the following "keyword cards" are used:

$SCF PRINT 3 DEPTHR 4 FILON - change the default value in the SCF program
and are read in the PLH3.

PRINT 3 - prints eigenvalues and MO coefficients for each iteration in the SCF proce-

dure.

DEPTHR 4 - threshold 10~ used in the test of possible near linear dependence in the

basis set.

FILON - the Filon quadrature procedure is used, instead of the Gauss-Legendre, to

compute the density matrix elements.
Another optional modifications in this card could be:

THRESHOLD n - the SCF is assumed to converge when density matrix elements do
not differ by a value greater than 107".

NKP k - the number (2% + 1) defines the number of equidistant k-points in the first

Brillouin zone used in the printing of the band structure.

EPS n - threshold for the convergence of the Filon quadrature. It is assumed to
converge when the difference between the values obtained when using 2¢ and 20~ points

do not differ by a value greater than 10~ at the ¢th iteration.

ISUBMX - fixes the number of iterations in the Filon procedure. Default value is
ISUBMX = 6.

DAMPING na - an integer that corresponds to the percentage of the density matrix
calculated at the (n — 1)th iteration used in the calculation of the density matrix at the
nth iteration. The default value is zero, corresponding to no damping. The use of a small
damping factor can stabilize the iterative procedure in the case of convergence problems.

The input files for the investigated systems are similar to those in (Fig. (3.2)) and will

be shown later.
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3.4 From VPA to ab initio LCAO-SCF as implemented
in the PLH code

The goal of this part of our study is twofold: (1) to calculate the dipole moment per unit,
i.e., the polarization, of a real polymer in absence of electric field and (2) to find out
how such infinite periodic chain responds to external perturbation, i.e., to determine the
polarization but in the presence of electrostatic field. For these purposes, the required
expressions are taken from the vector potential approach (VPA) and implemented in the
self-consistent field (SCF) procedure of the ab initio PLH code, which is run two times -
without and with external field. Fig. (3.3) shows a flowchart of a typical SCF algorithm
together with the additional quantities and the places where they should be implemented.

At the first run the polarization of the system in absence of electric field is calculated
at each SCF iteration {(1)}. After convergence the SCF procedure is run again and
the polarization energy expression (E,q) is added to the Fock matrix direct at the first
iteration {(2)}. A new convergence provides the total polarization (Pyy) and the total
energy (Fi) of the system in the case of external perturbation.

In the following the main steps of the SCF algorithm are briefly discussed.

"Ray, Zay Ny @’

At the beginning the input geometry of the system is specified (R4 - nuclear coordi-
nates, Z - atomic numbers, N - number of electrons) and the basis set ¢ is defined.
All this is done in PLHO. For a very small set of functions per atom a Slater-type func-
tions are used. In polyatomic calculations and for a large number of functions per atom

Gaussian-type functions are utilized.

’Calculate Sy, H5™, pql|rs’

The one- (H5™) and two-electron (pq|rs) integrals are evaluated in PLH1 and PLH2
by means of Eq. (2.24) and Eq. (2.26), respectively, and the overlap matrix (S,,) is
determined using Eq. (2.22). The three quantities are calculated only once, since they

remain constant during the iterative calculation.

’Diagonalize S to get X’

The overlap matrix is diagonalized and the transformation matrix X is obtained.

’First guess for D’
The simplest possible guess for the density matrix is to use a zero matrix, which is

equivalent to approximating F as H and neglecting all electron-electron interactions in
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Start

A

Ra,ZAN, ¢

A 4

Calculate S,q, Hpg™™", (pqlrs)

A 4

Diagonalize S and get X

A 4

First guess for D

A 4

Calculate G from D and (pqlrs)

A 4

(2)

F=H"+G

y

F =X'FX

A 4

Diagonalize F to get C and &

A 4

Cc=XC

(1

A 4

New D with C

Diew = Do ?

Calculate the total energy

A 4

Stop

Figure 3.3: Flowchart of the self-consistent field (SCF) procedure. On the right in red

are shown the additional quantities that should be implemented.
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the first iteration, since G=0 (see Eq. (2.25) and Eq. (2.23)).

’Calculate G from D and pq|rs’
The two-electron part of the Fock matrix is calculated using Eq. (2.25). At the first

iteration G is zero since the first guess of the density matrix is the zero matrix.

7F — HCOI‘B _|_ G’
G is added to the core-Hamiltonian to obtain the Fock matrix. At the first iteration
F — HCOI‘e‘

F = XTFX?
The transformed Fock matrix (F') is calculated by means of the transformation one
(X).

’Diagonalize F’ to get C’' and ¢’
F’ is diagonalized to obtain the transformed orbital coefficients matrix (C’) and the

eigenvalues €.

C = XC”
The orbital coefficient matrix is evaluated using the transformation (X) and the trans-

formed orbital coefficients matrix (C’).

Before calculating the new density matrix, the additional steps {(1)}, shown in the red
box on the right of Fig. (3.3), are added to the SCF procedure. First, the orbital coeffi-
cients are made a smooth function of the wavevector k using the implemented smoothing
80%’];(]“) ), the current (/) and the charge
(P,) contributions to the polarization, and at the end the total polarization (Pi) of the

procedure, then the derivatives of the coefficients (

system in the case when there is no field are calculated.

'New D with C’
The new density matrix is formed from the orbital coefficients using Eq. (2.27). The
utilized smoothing procedure do not affect D, i.e., the density matrix calculated with the

smooth coefficients is equal to the one evaluated using the nonsmooth coefficients.

"Dyew = Doig 7
The new formed density matrix is compared with the old one if it is the same within
a specified criterion in order to check if the procedure has converged. If D, # Dyyq i.e.,

if there is no convergence, one returns to the step ’Calculate G from D and pq|rs’,
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where the two-electron part of the Fock matrix is calculated using D,., and the second
iteration is starting. The next steps are repeated till convergence, i.e., till Dy, = Dyg

within a specified criterion.

’Calculate E..’
The quantities C, D, F calculated at the last iteration are the final ones and are used
to evaluate the total energy (Fio) of the system via Eq. (3.29) and other quantities of

interest.

At the second run of the SCF procedure the polarization energy expression (E,q) is
added to the Fock matrix {(2)} directly at the first iteration. The field strength is different
from zero and the two terms in the square brackets (see also Eq. (3.13)) correspond to the
field free P, and F, respectively, calculated at the first SCF run. Again steps ’Calculate
G from D and pg|rs’ to "Dy, = Dgqg 77 are repeated till the new density matrix is
equal to the old one within a specified criterion. At each iteration the orbital coefficients
are smoothed and the total polarization is calculated. After convergence the total energy
of the system in the case of field is determined.

Our calculations show that for larger field strength (Epc > 0.001 a.u.) the second run
of the SCF procedure converges more slowly than the first one, whereas when the field is

weak the field free case requires more iterations till convergence.
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3.5 Hydrogen chain

In order to highlight our first ab initio results, we use model hydrogen systems, which
have already been used many times in atomic, molecular, polymeric and solid state forms
to demonstrate new quantum chemical techniques and features. Fig. (3.4) shows different
chain models for N from 1 to 4. Adding more and more unit cells, an infinite chain with

N — oo can be achieved.

N gecn
H—H------H—H
H—H- - H—H---"=~ H—H
H—H------ H— H-=nee- H— H------ H—H
- = — =
':[unuJ.:za-u- d:m,,,=3u.u.

Figure 3.4: Space representation of the different hydrogen chain models [3].

In our calculations we use the minimal (STO — 3G) and the double-zeta (3 — 21G)
atomic basis sets and compare the results with experimental and previous theoretical
investigations. Fig. (3.5) and Fig. (3.6) show the input files for the STO — 3G and the
3—21G basis sets, respectively. In both cases the intermolecular (intramolecular) distances
are 3.0 a.u. (2.0 a.u.) that correspond to unit cell lengths of @ = 5.0 a.u. and H — H
bond lengths of dy_pg = 2.0 a.u. The single shell (s) (STO — 3G) of the two hydrogen
atoms is formed by 3 contracted Gaussians with the corresponding exponents, and the s
and p shells (3 — 21G) by 2 and 1 Gaussians, respectively. For the minimal basis set we
evaluated all the quantities in the field range of 0 < Fpc < 0.01 a.u. and for the larger
one in the range 0 < Epc < 0.006 a.u.

The results for the hydrogen chain model with the two basis sets are shown in parallel
and organized as follows: first the successful implementation of the smoothing procedure
is demonstrated (3.5.1) through the change of the phases ¢, with the wavevector k.
Then, we investigated the dependence of the total energy, Ei., of the system and of the
polarization, P, on the applied electric field, Epc; calculated the polarizability, «, and
compared our results with previous ones (3.5.2). How Eiy, P and a change with the
H — H distance, dy_g (3.5.3), and with the unit cell length, a (3.5.4), is also explored. At
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$GEOM AU
HYDROGEN
H2 : bond length alternation 2/3 a.u.

21 5.0 41 00

H 0.00000000 0.00000000 1.00000000
H 0.00000000 0.00000000 —-1.00000000
SBASIS
3039

12

1S S 3 1.24
2.227660584, 0.1543289673, 0.0
0.4057711562, 0.5353281423, 0.0
0.1098175104, 0.4446345422, 0.0

* ok Kk k

$SEND
$SCF PRINT 3 DEPTHR 4 FILON NKPRT 5

Figure 3.5: Input file for a hydrogen chain in the case of ST'O — 3G basis set. The distance
between the two hydrogen atoms in the unit cell is 2.0 a.u. and the unit cell length is 5.0

a.u.

SGEOM AU
HYDROGEN
H2 : bond length alternation 2/3 a.u.

21 5.0 41 00

H 0.00000000 0.00000000 1.00000000
H 0.00000000 0.00000000 -1.00000000
SBASIS
210219

12

18 s 2 1.10
4.50180, 0.156285, 0.0
0.681444, 0.904691, 0.0

28 S 1 1.10
0.151398, 1.000000, 0.0

Kok ok ok

SEND
$SCF PRINT 3 DEPTHR 4 FILON NKPRT 5

Figure 3.6: The same like in Fig. (3.5) but in the case of 3 — 21G basis set.



ol

the end the second hyperpolarizability is calculated and compared with previous results.
Due to the symmetrical placed hydrogen atoms in the unit cell, the nuclear contribution
to the polarization (P,) is zero and P,y = P.. For the same reason, all quantities are

calculated only for Epc > 0.

3.5.1 The change of the phases ¢, with the wavevector £

To check the implementation of the smoothing procedure in the PLH code, we calculated
the change of the phases from one k point to the next one and plotted the distribution
toward ka/m. If the orbital coefficients are successfully smoothed at each iteration in the
SCF procedure, the ¢, should change smoothly with the wavevector in the first Brillouin
zone. Discontinuities may occur at the zone boundaries, ¥ = 7. The following formula

was used to evaluate the ¢p,

¢ a
. N pn

Ppn = arcsin - — = arccos - —, (3.90)
pn pn

where the trigonometrical functions arcsin and arccos are multi-valued and non-unique.
ap, and c,, are the real and the imaginary part of the orbital coefficients, respectively,

and

Apn = (a2, + )" (3.91)

the amplitude that should not change before and after smoothing. Fig. (3.7) and Fig.
(3.8) show the results with the minimal basis set for Fpc = 0 and Epc = 0.001 a.u.,
respectively.

In the case of ST'O — 3G basis set, we have two basis functions per unit cell and two
molecular orbitals (MO), each built as a linear combination of two atomic orbitals (AO).
The two graphics on the left show respectively the first and the second MO without
smoothing the coefficients, and the two on the right are the corresponding MO after
smoothing. Comparing both figures, without and with field, it becomes evident that the
effect of the external perturbation is negligible, but the effect of the smoothing is major,
especially in the case of the first molecular orbital. However the 27 jump at £ = 0 remains

also after smoothing.
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Figure 3.7: The change of the phases for the two orbitals of Hy chain using STO — 3G

basis set in the case of EFpc = 0. The two graphics on the left show the phases without

using the smoothing procedure and the two on the right the phases with the smooth

coefficients. ka/m = —1 and ka/m = 1 define the first Brillouin zone.
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ka/x ka/x
1.0 05 0.0 05 10 -1.0 05 0.0 05 1.0
3t 40.15
Jo.10
2F
Jo.05
1t "9y 1 L]
—e—0, 10.00 o,
@ Ofs
i J-0.05
b |
J010
2 kvk 1015
3 — 71t | 3
2 12
1t TR 01 M T )] 1
—o—y0, T
T —, |
Pon O ——— 0 P
At 1} -1
2} 1} ]2
3 A | | 4-3
10 05 0.0 0.5 70 -10 05 0.0 0.5 10
ka/x ka/r

Figure 3.8: The same like in Fig. (3.7) but in the case of Epc = 0.001 a.u.
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The next four pictures show the results when dealing with 3 — 21G basis set. In this
case four basis functions per unit are available and accordingly four molecular orbitals.
Fig. (3.9) and Fig. (3.10) illustrate the findings in the case of Epc = 0 for the first and
second, and for the third and fourth MO, respectively, and Fig. (3.11) and Fig. (3.12) the

corresponding orbitals when Epc = 0.001 a.u.

ka/x ka/x
1.0 0.5 0.0 05 10 -1.0 0.5 0.0 05 1.0
3l i ' ' Jo.1s
1
_._WZW
i Jo.10
2 3 P34
1} M ﬁ 10.05
Do 0 | l | 0.00 ¢,
At . 1-0.05
-2} 1-0.10
3t

1-0.15

3| - N. - ]t ' —" 3
2} 1t 12

Ppn 0
oy

At o 1
——y, e,

-2t T 0y | [ T 7|42
P3p P

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
ka/n ka/n

Figure 3.9: The change of the phases for the first and the second orbital of Hs chain using
3 — 21G basis set without field. The two graphics on the left show the phases without
using the smoothing procedure and the two on the right the phases with the smooth

coefficients. ka/m = —1 and ka/m = 1 define the first Brillouin zone.

The two graphics on the left in each figure show the first and the second, and the
third and the fourth MO without smoothing the coefficients, and the two on the right
are the corresponding MO after smoothing. Again, there are almost no changes in the
phases when an electric field is applied, but the crucial effect of the smoothing procedure
is evident. The large 27 jumps at £ = 0, =7 remain also after smoothing, however, they

do not affect the derivatives of the coefficients.
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ka/r ka/x
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
3t 13
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1 3 41
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Figure 3.10: The change of the phases for the third and the fourth orbital of Hy chain
using 3 — 21G basis set without field. The two graphics on the left show the phases
without using the smoothing procedure and the two on the right the phases with the

smooth coefficients. ka/m = —1 and ka/m = 1 define the first Brillouin zone.
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Figure 3.11: The same like in Fig. (3.9) but for Epc = 0.001 a.u.
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Figure 3.12: The same like in Fig. (3.10) but for Epc = 0.001 a.u.
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It can be conclude that the smoothing procedure was successfully implemented in the

PLH code. Results for a lithium hydride chain will confirm this statement.

3.5.2 The electric field (Epc) dependency

After implementing the electric field expression in the SCF part of the PLH code, we
were interested in the effect of the external perturbation on the total energy and on the
polarization of the investigated system. Therefore, they were calculated as a function of
Epc. The polarizability of the hydrogen chain was also determined and compared with

previous results.

Total energy (Eiq)

In Table 3.1 are shown the total energies of our system in atomic units for the ST O — 3G
and the 3 — 21G basis sets when the field strength is zero. The 3 — 21G results afford
more stable chain than the ST O — 3G results, which will be confirmed later when the
change of Fi, with the unit cell length is investigated.

Epc | Bt (STO = 3G) | Ew(3 — 21G)
0 -1.04513 -1.07604

Table 3.1: The total energy in atomic units without field using the two basis sets.

The total energy of the system in the case of Fpc # 0 was calculated by means of Eq.
(3.29). The findings for the two basis sets are plotted in Fig. (3.13), the top panel for
the minimal and the bottom one for the larger basis set. The two curves have the same
tendency, while the values for 3 — 21G are lying under those from STO — 3G.

For the sake of simplicity the two curves are plotted in one graph, Fig. (3.14), where the
STO —3G curve has been shifted by a constant value. For weaker fields (0 < Epc < 0.001
a.u.) the total energy does not change significantly, whereas for Epc > 0.001 a.u. the

decrease is rapidly.
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Figure 3.13: The total energy as a function of the field strength using the minimal ST'O —
3G (top graph) and the 3 — 21G basis set (bottom one). In the first case Epc < 0.01 a.u.
and in the second Epc < 0.006 a.u.
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Figure 3.14: The total energy as a function of the field strength for the both cases, using
the minimal STO — 3G basis set (red curve) and the 3 — 21G basis set (black curve), in

comparison. The STO — 3G curve is shifted by a constant value.
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Polarization (P)

The total polarization (P;.) was determined via Eq. (3.17).

In Fig. (3.15), the results from the STO — 3G basis set calculations for the total
polarization, together with its two contributions, are plotted against the electric field
strength. In the top graph the distribution in the whole field range ( 0.00002 < Ep¢ < 0.01
a.u.) is shown, and in the bottom one only in the range 0.00002 < Epc < 0.001 a.u. The
polarization values from the 3 — 21G calculations are presented in Fig. (3.16).

The linear dependency of P, P, and P, on the field is evident. For small external
perturbations the changes in the polarization are slight, whereas for Epc > 0.001 a.u. P
increase rapidly. Furthermore, the contribution from the current term, which is equivalent
to the charge flow in the chain, is relatively large and neglecting it will be not a good

approximation.
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Figure 3.15: The change of the polarization with the field for the ST'O — 3G case. The
black curve shows the total electronic polarization (Py), the red the charge (P;) and the
green one the current contribution (FP) to P. The bottom panel shows the results for
1074 < Fpc <1072 a.u.
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Figure 3.16: The change of the polarization with the field for the 3 —21G case. The black
curve shows the total electronic polarization (P,), the red the charge (P;) and the green

one the current contribution (Ps) to Piot-
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Polarizability («)

To calculate the longitudinal polarizability per unit cell (i.e., the polarizability along the
polymer chain axis, in our case along the z axis), we utilize the already mentioned Finite

Field (FF) technique. For the two basis sets o was determined via the polarization values

. P(Epc)
= 1 — 3.92
&P EchI:ILO EDC ’ ( )
and via the field-dependent energy
Eio — FEiot (B
OB = lim 2 ‘ t(O) 2 ‘ t( DC)' (393)
Epc—0 EDC

For simplicity the zz symbols are omitted. Our results for ap and ag,, for the two basis
sets are listed in Table 3.2. Three field amplitudes (0.0004,0.0006 and 0.0008 a.u.) were
employed.

Epc | ap (STO - 3G) | ag,, (STO —3G) | ap (3 —-21G) | ag,, (3 —21G)
0.0004 14.611 14.610 28.330 28.325
0.0006 14.612 14.610 28.332 28.333
0.0008 14.612 14.610 28.333 28.334

Table 3.2: The longitudinal polarizability as calculated using Eq. (3.92) (ap) and Eq.

(3.93) (ag,,). The values are in a.u.

Atomic basis set | here | CHF [3]
STO — 3G 14.61 14.60
3—-21G 28.33 | 28.31

Table 3.3: Longitudinal polarizabilities of infinite hydrogen chain computed at the CHF
level of approximation by means of STO — 3G and 3 — 21G atomic basis set. The values

are given in a.u.

To prove our results we compare them with those from [3|, where electron correlation
effects on the static longitudinal polarizability of polymeric chains were investigated,
amongst others. Champagne and co-workers calculated the asymptotic a per unit cell of

molecular hydrogen model chains at various levels of approximation (UCHF, CHF, MP2,
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MP3, MP4, CCD, CCSD and CCSDT) by using different atomic basis sets (S70O — 3G,
3—21G, 6 —31G™* and 6 — 311G™*) through extrapolation procedure. The comparison
is made in Table 3.3. It is obvious that our findings are in excellent agreement with

previous theoretical investigation on polymeric hydrogen chain.

3.5.3 The dependence on the H — H distance (dp_p)

In order to pursue the changes in the quantities, characterizing our system, when the
distance between the two hydrogen atoms in the Hy molecule is varying and an electric
field is applied, we defined a large unit cell, for instance a > 20 a.u. The latter is necessary
if one wants to be sure that two intermolecular hydrogen atoms are enough far away from
each other and the two H atoms in one unit cell can be considered as a single molecule.
For our calculations a was chosen to be 20 a.u., the intramolecular distance was changed
in the range from dy_y = 0.50 a.u. to dg_g = 8.0 a.u. and the field strength was set to
Epc = 0.0002 a.u.

Of the total energy (Fi)

The dependence of the total energy of the system on the distance between the two atoms
in the hydrogen molecule will give its equilibrium geometry with the equilibrium distance
deq in the case of field. The results from the two sets of calculations are depicted in Fig.
(3.17) and Fig. (3.18) and summarized in Table 3.4.

With the minimal basis set an equilibrium minimum was found at deq = 1.35 a.u. and
with 3 — 21G at deq = 1.39 a.u. This can be seen in the lower panel of Fig. (3.18), where
the STO — 3G curve is shifted by a constant value.

Comparing with the experimental value of dq = 1.40 a.u., is evident that the deviation
in the first case is around 3.7 % and in the second case around 0.7 %. The total energies
from the both basis sets, corresponding to the two minima, are also comparable with

previous ones [91].
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Figure 3.17: The total energy as a function of the bond distance with STO — 3G (upper
graph) and 3 — 21G (lower graph) basis sets.
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Figure 3.18: The upper panel shows the two curves from Fig. (3.17) in comparison. In

the lower graph the ST'O — 3G total energy values around the minimum are shifted by a

constant and plotted together with the 3 —21G values against the intramolecular distance

in the range of 1.30 < dy_yg < 1.45 a.u.
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Table 3.4: The total energy in atomic units as a function of the intramolecular distance

for both basis sets.

di_11 | By (STO = 3G) | Ewy (3 —21G)
0.50 -0.40333 -0.45091
0.70 -0.83713 -0.86029
1.00 ~1.06000 -1.07195
1.35 -1.11750 11.12264
1.39 -1.11697 -1.12296
2.00 -1.04917 -1.08027
2.50 -0.96579 -1.02693
3.00 -0.88527 -0.97585
4.00 -0.76108 -0.89138
5.00 -0.68642 -0.83125
6.00 -0.64508 0.79114
7.00 -0.62275 -0.76625
8.00 -0.61004 -0.75145
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Of the polarization (P)

Again, the total polarization (P;.) was determined via Eq. (3.17). However, here, due to

the large unit cell length (@ = 20.0 a.u.), the charge flow term from Eq. (3.16) is zero

e 0Cyn
P=2) > ) chn(k)a—]:qu(k) =0 (3.94)
k- n  pg
since
0Coqn

ST 0. (3.95)

Then,
Ptot - Pp. (396)

0.030F —a—STO-3G
—e—3-21G
0.025¢

0.020¢

0.015¢

Ptot

0.010¢

0.005¢

0.000f

Figure 3.19: The increase of the total polarization with the bond length distance for the
both basis sets, STO — 3G (black curve) and 3 — 21G (red curve). P, =0 and Py = P;.

Our results are depicted in Fig. (3.19). The 3 —21G provides larger polarization, which

increases rapidly with the bond distance dy_g.
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Of the polarizability («)

The third quantity determined as a function of the intramolecular distance was the polar-
izability per unit cell. Eq. (3.92) was used for this purpose, where again the field strength
was fixed to Epc = 0.0002 a.u. The results are listed in Table 3.5 and plotted in Fig.
(3.20).

dy-n | a (STO - 3G) | a (3 —21G)
0.50 1.0850 2.0690
0.70 1.3460 2.7330
1.00 1.9205 4.0085
1.35 2.9060 5.9385
1.39 3.0425 6.1905
2.00 0.8325 10.9240
2.50 9.2815 16.1055
3.00 13.8645 22.5635
4.00 26.0965 39.5545
5.00 41.6260 61.9625
6.00 59.9495 89.4530
7.00 81.0935 121.7310
8.00 105.5180 159.1190

Table 3.5: The change of the polarizability in a.u. with the intramolecular distance.

The two curves have the same tendency and corresponding to the polarization findings
the 3 — 21G basis set provides larger polarizability, which increases rapidly with the bond

distance dy_g.
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Figure 3.20: The increase of the polarizability with the bond length distance for the both
basis sets, STO — 3G (black curve) and 3 — 21G (red curve).



72

3.5.4 The change with the unit cell a

At the end, we investigated the effect of the bond-length alternation on the total energy
of the system, on the polarization and on the polarizability in the presence of external
electric perturbation. The intramolecular distance and the field amplitude were kept
constant, dg_y = 2.0 a.u. and Epc = 0.0002 a.u., respectively, and the intermolecular
was changed from 2.5 a.u. to 98.0 a.u. Fig. (3.21) represents three hydrogen chain models
with different unit cell length, in type A chain a = 4.5 a.u., in type B a = 5.0 a.u. and in
type C a = 6.0 a.u. In addition we explored other 8 models to achieve clear convergence

of the investigated quantities.

T— Ho— 1 Ho— 0 Ty
—-——
25um

H Typa: H

TUAAk LI

i He—— H Tyt

| H——id H

dilam '-—1——+
than

R — |

Figure 3.21: Sketch of three molecular hydrogen models with different bond-length alter-
nation, 2.5/2.0 a.u. (type A), 3.0/2.0 a.u. (type B) and 4.0/2.0 a.u. (type C) [4].

How does total energy (FE,) change with the unit cell a?

The answer of the question can be found in Table 3.6 and in Fig. (3.22) and Fig. (3.23).
For both atomic basis sets the total energy decreases rapidly at the beginning from a = 4.5
a.u. to a = 12.0 a.u. and then converges to a value, which corresponds to the total energy
of a single hydrogen molecule.

To visualised the STO — 3G and 3 — 21G findings in the same diagram (Fig. (3.23)),
we shifted the first by a constant value. It is evident that the double-(3 — 21G basis set

curve converges at lower energy.
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Figure 3.22: The change of the total energy in atomic units as a function of the unit cell
length. a changes from 4.5 a.u. to 100.0 a.u. The top graph is for the minimal STO — 3G
and the bottom one for the 3 — 21G basis set. The both inner graphs show the results in
the range of a = 20.0 — 100.0 a.u.



0 | B (STO —3G) | B, (3—21G)
4.50 -1.04070 -1.07145
5.00 -1.04513 -1.07605
6.00 -1.04839 -1.07937
8.00 -1.04912 -1.08026
12.00 -1.04915 -1.08026
20.00 -1.04917 -1.08027
30.00 -1.04917 -1.08027
40.00 -1.04917 -1.08027
50.00 -1.04917 -1.08027
70.00 -1.04917 -1.08027

100.00 -1.04917 -1.08027

Table 3.6: The change of the total energy in a.u. with the unit cell length.
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Figure 3.23: The results from the both basis sets in comparison.
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How does polarization (P) change with the unit cell a?

The change of the total polarization and its two electronic contributions with increasing
unit cell length was also pursued in our work. P, P, and P, were computed using Eq.
(3.14), Eq. (3.15) and Eq. (3.17), respectively, where P, = 0. The current contribution
to the polarization decreases when a increases and becomes zero for long cells, since it
contains the term JC/0k that goes to zero when a — oco. Our results are summarized in
Table 3.7 using STO — 3G and in Table 3.8 using 3 — 21G atomic basis sets.

a Py Py Pt
4.50 | 0.00263880 | 0.00359280 | 0.00623160
5.00 | 0.00179510 | 0.00112710 | 0.00292220
6.00 | 0.00139270 | 0.00020790 | 0.00160060
8.00 | 0.00123510 | 0.00000690 | 0.00124190
12.00 | 0.00118200 0 0.00118200
20.00 | 0.00116650 0 0.00116650
30.00 | 0.00116360 0 0.00116360
40.00 | 0.00116290 0 0.00116290
50.00 | 0.00116270 0 0.00116270
70.00 | 0.00116250 0 0.00116250

100.00 | 0.00116250 0 0.00116250

Table 3.7: The values for the charge (P;) and current (P,) term and for the total polar-
ization (Pyo) from the minimal STO — 3G basis set.

It can be seen that the minimal basis set affords larger current term for a = 4.5 a.u.,
i.e., the charge flow in the chain is larger when the intermolecular hydrogen atoms are
not far away from each other, i.e., when the bond-length alternation is small (2.0/2.5 a.u.
in this case). For the 3 — 21G basis set P, and P, are almost equal at @ = 4.5 a.u. In
both cases the polarization changes rapidly for the small unit cells and for a > 12.0 a.u.
P, becomes zero and P, = P;. The values from the two tables are plotted in Fig. (3.24).

Fig. (3.25) shows the total polarization for both atomic basis sets in comparison.
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Figure 3.24: The polarization distribution with increasing unit cell length. The upper
graph is for the minimal STO — 3G and the lower one for the 3 — 21G basis set.



a P Py Piot
4.50 | 0.00547650 | 0.00531040 | 0.01078680
5.00 | 0.00367950 | 0.00198630 | 0.00566580
6.00 | 0.00286270 | 0.00058920 | 0.00345180
8.00 | 0.00244430 | 0.00005570 | 0.00250010
12.00 | 0.00224010 0 0.00224010
20.00 | 0.00218480 0 0.00218480
30.00 | 0.00217470 0 0.00217470
40.00 | 0.00217220 0 0.00217220
50.00 | 0.00217130 0 0.00217130
70.00 | 0.00217080 0 0.00217080

100.00 | 0.00217050 0 0.00217050

7

Table 3.8: The values for the charge (P;) and current (P,) term and for the total polar-
ization (P,) from the double-(3 — 21G atomic basis set.
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Figure 3.25: The total polarization in atomic units for both basis sets in comparison.
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How does polarizability («) change with the unit cell a?

The polarizability of the model hydrogen chain obeys the same tendency like the total

energy and the polarization. The results from Table 3.9 are plotted separately in Fig.
(3.26) and for two basis sets in Fig. (3.27). For the small unit cells (¢ < 12.0 a.u.) «

decreases fast and achieves convergence for a > 20.0 a.u., where the values correspond to

those of a single hydrogen molecule, H.

a a (STO —3G) | a (3 —21G)
4.50 31.1580 53.9340
5.00 14.6110 28.3290
6.00 8.0030 17.2590
8.00 6.2095 12.5005
12.00 5.9100 11.2005
20.00 5.8325 10.9240
30.00 5.8180 10.8735
40.00 5.8145 10.8610
50.00 5.8135 10.8565
70.00 5.8125 10.8540

100.00 5.8125 10.8525

Table 3.9: The polarizability values in a.u. with increasing unit cell length.

In Table 3.10, we compare our polarizability results for a single hydrogen molecule with

those of Champagne et al. [3], where the calculations are done at Epc = 0.0016 a.u. and

EDC = (0.0032 a.u.

Atomic basis set

here (a = 100 a.u.)

CHF [3]

STO — 3G
3 —21G

5.813
10.853

5.812
10.852

Table 3.10: Longitudinal polarizabilities of a single hydrogen molecule computed at the

CHEF level of approximation by means of STO — 3G and 3 — 21G atomic basis set.
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3.5.5 Second hyperpolarizability

The longitudinal second hyperpolarizability per unit cell (see Eq. (3.61) and Eq. (3.65))
is important quantity for the nonlinear optics applications of the materials. To prove
further the implementation of the vector potential approach (VPA) in the PLH code, we
computed ~; (I for longitudinal) of a model hydrogen chain with bond-length alternation
of 2.0 a.u./3.0 a.u., using the Finite Field technique, which required the knowledge of the
total energy of the system at different field amplitudes. Then,

d*Eioi(E S8Eiot (Epc) — 2Bt (2Epc) — 640t (0
= (—éég DC)) = lim —— «(Fc) fE;( po) = 6B (®) 3 47)
DC Epc=0 bpe— DC

The adopted field amplitudes are 0.001 a.u., 0.002 a.u., 0.003 a.u. and 0.004 a.u. Larger
amplitudes lead to large contaminations that increase as the fourth power of Epc. They
could be removed by using the so-called Romberg’s procedure [92] that was utilized in [80].
Additionally we determined v at the amplitudes 0.0016 a.u., 0.0032 a.u. and 0.0064 a.u.,
as was already done from Champagne et al. Our results for the second hyperpolarizability

are presented and compared with those from [80] in Table 3.11.

Atomic basis set | y; here | v, CHF [80]
STO — 3G 14 197 13 515
3—-21G 56 430 55 674

Table 3.11: Longitudinal second hyperpolarizability in a.u. of a infinite hydrogen chain
with STO — 3G and 3 — 21G atomic basis set.

Here, like in the case of the polarizability per unit, the values of Champagne et al. are
asymptotic values, received through ~ extrapolation of increasingly large hydrogen model

chains containing up to 30 atoms.
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3.6 Lithium hydride chain

Our second test system is the lithium hydride quasilinear chain. There are a lot of
experimental and theoretical studies [93, 94, 95, 96, 97, 98, 99, 100, 101, 102], however, on
the LiH molecule. Most of them are concentrated on ground and excited states properties
investigated by means of different methods. For instance, Mo and Zhang [102| explored
the bonding features of LiH using 3 and 6 so-called bonded tableaus (BTs) functions in
the framework of the valence bond self-consistent field (VBSCF) method and found that
the LiH bond is covalent instead of ionic.

Linear and nonlinear properties of LiH chain are presented in [11]. Bishop et al.
apply a new theory for the direct and analytical band structure determination of the
coupled-perturbed Hartree-Fock dipole moment (), polarizability («), first (§) and sec-
ond hyperpolarizability () on five quasilinear polymers: (LiH )y, (FH)y, (H2O)y, trans-
polymethineimine ((—C'NH —)y) and trans-polyacetylene ((—-CH = CH—)y). Compar-
ison with finite oligomer findings confirms the validity of their method.

For our test calculations on lithium hydride we adopt a structure used already in [11].
The input file for the used lithium hydride chain is given in Fig. (3.28). The Clementi’s
minimum basis set [103] was employed. The intramolecular distance is dp;_g = 4.0 a.u.
and the unit cell is @ = 10.0 a.u., which corresponds to bond-length alternation of 4.0
a.u./6.0 a.u. The single shell (s) of the hydrogen atom is formed by 4 contracted Gaussians
with the corresponding exponents, and the two shells (s and p) of the lithium atom by 5

and 2 Gaussians, respectively.



SGEOM AU
LIH
21 10.00 41 00
H 0.00000000 0.00000000
Li 0.00000000 0.00000000
$BASIS
40529
1
1s S 4 1.00
13.013400, 0.019678, 0.0
1.962500, 0.137952, 0.0
0.444569, 0.478313, 0.0
0.121953, 0.501131, 0.0
* kKK
2
1s s 5 1.00
270.881090, 0.006271, 0.0
40.760906, 0.046050, 0.0
9.212495, 0.196771, 0.0
2.491427, 0.471694, 0.0
0.732905, 0.433397, 0.0
A s 2 1.00
0.075307, 0.368683, 0.0
0.030339, 0.664881, 0.0
* ok kK
$END

$SCF PRINT 3 DEPTHR 4 FILON NKPRT 5

0.00000000
4,00000000
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Figure 3.28: Input file for a lithium hydride chain using the Clementi’s minimum basis

set. The distance between the atoms in the unit cell is 4.0 a.u. and the unit cell length

1s 10.0 a.u.
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3.6.1 The change of the phases ¢, with the wavevector &

Using Eq. (3.90) and Eq. (3.91), we calculated the phases ¢, of the LiH chain in the first
Brillouin zone and plotted the results against ka/m in order to check the implementation
of the smoothing procedure in the PLH program. The distribution of the three phases
corresponding to the three molecular orbitals is shown in Fig. (3.29) and Fig. (3.30) with
and without field, respectively. The three graphs on the left in each figure show the
three original molecular orbitals and the three on the right the corresponding orbitals
after smoothing. Comparing the left with the right side, is obvious that the effect of the
smoothing is major, and only 27 jumps at £ = 0 and at the boundaries £ = +7 remain
after smoothing. However, as already mentioned, they do not affect the differentiation of
8an(k))

the orbital coefficients with respect to the wavevector (=2-=).
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Figure 3.29: The change of the phases for the three orbitals of LiH chain without field.
The three graphics on the left show the phases without using the smoothing procedure
and the three on the right the phases with the smooth coefficients. ka/m = —1 and
ka/m = 1 define the first Brillouin zone.
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Figure 3.30: The same like in Fig. (3.29) but for Epc = 0.0002 a.u.
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3.6.2 The dependence on the electric field (FEpc)

In the following subsection the external perturbation dependency of the total energy
and of the polarization of the investigated system is shown. The electric field changes
from Epc = —0.0008 a.u. to Epc = 0.0008 a.u. The polarizability was calculated and

compared with previous results.

Of the total energy (FEio)

The total energy of the system in the case of Epc # 0 was calculated by means of Eq.
(3.29). The results are presented in Fig. (3.31). A linear dependency is evident and Fi
decreases with the field.
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Figure 3.31: The total energy in atomic units as a function of the field amplitude.
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Of the polarization (P)

The total polarization (P,;) was determined by means of Eq. (3.17). In Fig. (3.32) the
two contributions to the electronic polarization are plotted as a function of the electric
field, from which P, (the lower graph) has very small values in comparison to P; (upper
graph). However, they are not negligible, since the nonlinear distribution of the charge
term (P;) becomes linear for the total polarization (Fig. (3.33) upper panel) after addition
of the current term.

In the lower panel of Fig. (3.33) the total polarization together with its charge distri-
bution are shown in comparison. It can be seen that P, increases faster than P; due to

the existence of a charge flow in the periodic system.
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polarization as a function of Epc.
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Of the polarizability («)

To calculate the polarizability along the polymer chain axis, in our case along the z axis,
we utilized again the Finite Field (FF) technique and determined « via the already known
polarization values at the following field amplitudes: £0.00006, £0.00008, +0.0001a.u.

dP P(Epc) — P(—E
o= < ) _ fim ZPpc) = P(=Fb) (3.98)
E o FPpc—0 2Epc

In Table 3.12, our findings are compared with those of Bishop and co-workers [11]. The
small difference is because of the fact that in [11] convergence of a was not achieved when
using 21k points in the first half of the Brilloiun zone and 9 neighboring unit cells on

either side of the central unit cell.

« (here) | o (|11])
73.05 73.28

Table 3.12: Longitudinal polarizability in a.u. of a infinite lithium hydride chain compared
with the results of Bishop et al.

3.6.3 Li— H bond distance (dr;_p)

To pursue how total energy, polarization and polarizability change with the distance
between the Li and H atoms in the LiH molecule, we fixed the unit cell length to be 50.0
a.u. and changed dr;_g from 0.5 a.u. to 9.0 a.u. at two field amplitudes, Fpc = +0.0001

a.u.

The dependence of the total energy (FEio)

The dependence of the total energy of the system on the distance between the two atoms
in the lithium hydride molecule will give the equilibrium geometry with the equilibrium
distance deq in the case without and with field. The results are summarized in Table
3.13 and depicted in Fig. (3.34). At the three field amplitudes we found an equilibrium
geometry at dp;_y = 3.051 a.u.

The accuracy of our finding is confirmed through earlier theoretical and experimental

investigation on the equilibrium bond length in Li:H. Comparison is shown in Table 3.14.
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drini | Erot (Epc = —0.0001) | Eyee (Epc = 0.0000) | By (Epc = 0.0001)
0.50 -5.40368 -5.40884 -5.40900
1.00 -7.13032 -7.13056 ~7.13080
1.50 -7.66382 -7.66413 -7.66444
2.00 ~7.87006 -7.87048 -7.87091
2.50 -7.93767 -7.93823 ~7.93879
3.05 ~7.95270 -7.95342 -7.95413
3.50 -7.94722 -7.94807 -7.94891
4.00 -7.93378 -7.93477 -7.93576
4.50 -7.91739 -7.91852 -7.91965
5.00 ~7.90031 -7.90158 -7.90286
6.00 -7.86792 -7.86947 -7.87103
7.00 -7.84027 -7.84210 -7.84394
8.00 -7.81804 -7.82015 _7.82227
9.00 ~7.80082 -7.80321 ~7.80560

Table 3.13: The total energy values in a.u. with the change of the intramolecular distance
at the three field amplitudes.

deq (a.u.)
here 3.051
[96] 3.065
(98] 3.021
[99] 3.038

3BTSCF [102] | 3.105
6BTSCF [102] | 3.063
exp. [95,97] | 3.015

Table 3.14: Comparison of our results with previous theoretical investigation and with

the experiment.
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Figure 3.34: The total energy in atomic units as a function of dp;_y. The inner graph

shows the distribution from dr;_g = 1.5 a.u. to 9.0 a.u.



94

The dependence of the polarization (P)

Here also, due to the large unit cell length (¢ = 50.0 a.u.), the charge flow term of the

electronic polarization is zero

npq

and

l;;n Spq(k) =0

Py = 22227;0;”(1«)%

(3.99)

(3.100)

24
21}

18}

12} e

Ptot
| |

15¢ /

—=—E,.=0.0001
—e— E_=-0.0001

6 7 8 9

Figure 3.35: The polarization in a.u. as a function of the distance between L:i and H at

two field amplitudes.

As can be seen in Fig. (3.35), the polarization of a LiH molecule with different bond

lengths does not depends significantly on the field amplitude, but depends on the in-

tramolecular distance.
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The polarizability was computed as before at Epc = +£0.0001 a.u. The results are listed
in Table 3.15 and plotted in Fig. (3.36) for dg_g from 0.5 a.u. to 9.0 a.u. At equilibrium

a = 19.6935 a.u.

dri—m a
0.50 1.8000
1.00 2.6590
1.50 4.7625
2.00 6.6300
2.00 | 11.5825
3.05 | 19.6935
3.00 | 27.9475
4.00 | 38.7315
4.50 | 51.1950
5.00 | 65.3765
6.00 | 98.9845
7.00 | 139.3935
8.00 | 185.9375
9.00 | 237.7875

Table 3.15: The polarizability values in a.u. with the change of the intramolecular dis-

tance.
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Figure 3.36: Polarizability as a function of the intramolecular distance.
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3.6.4 The unit cell (a) length

In order to explore the effect of the unit cell length on the total energy, on the polarization
and on the polarizability of a lithium hydride chain, we fixed the intramolecular distance
at dri_yg = 4.0 a.u. and changed a from 9.0 a.u. to 100.0 a.u. The quantities were
computed at Epc = +0.0001 a.u.

How does total energy (Ei,) change?

How the total energy changes with the unit cell is shown in Fig. (3.37). The increase for
a < 18.0 a.u. is very fast, then changes slowly and at the end E}.; converges to -7.9337067
Hartree when Epc = —0.0001 a.u. and to -7.9356860 Hartree when Epc = 0.0001 a.u.

-7.93
—a—na—0 ] ] ] ] ]
x;._—o——o—o—o—o—o—o—o
o
794t W
?
- -1.95}
]
m i
-7.96}
l —s—E_=-0.0001
-797F ¢ —e—E_=0.0001
0 20 40 60 80 100
a

Figure 3.37: The total energy in a.u. as a function of the unit cell length at Fpc = +0.0001

a.u.
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How does polarization (P,,) change?

The current contribution to the electronic polarization will decrease with increasing a and
becomes zero for long cells, then P, = P;. Here we show (Fig. (3.38)) only the distribution
of the total polarization with the unit cell. For a < 14.0 a.u. P, increases very fast, then

slowly and converges for a > 34.0 a.u.

10.0
e ) s e ) L R R &
9.6}
_ 92}
o
Q
8.8}
—a—E__=-0.0001
oal —e— E,=0.0001 | |
20 40 60 80 100
a

Figure 3.38: The polarization in a.u. as a function of the unit cell length at Fpc = +0.0001

a.u.
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The behaviour of the polarizability with increasing a, shown in Table 3.16 and in Fig.

(3.39), is opposite to the behaviour of the polarization, i.e., a decreases very fast for the

smaller a and then slowly till convergence.

a

«

9.0
10.0
12.0
14.0
18.0
26.0
34.0
42.0
50.0
60.0
70.0
80.0
90.0

100.0

79.1085
73.0525
48.2415
40.8730
39.0390
38.8240
38.7650
38.7425
38.7315
38.7250
38.7220
38.7205
38.7190
38.7185

Table 3.16: The polarizability values in atomic units with the change of the unit cell.
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Figure 3.39: The polarizability in atomic units as a function of the unit cell length at
Epc = £0.0001 a.u. The inner panel show the distribution for 18.0 < a < 100.0 a.u.
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3.6.5 Band structures

The band structures of the lithium hydride chain were calculated at the following field
strength: Epc = 0.0000 and £0.0005 a.u. The results are shown only for the highest oc-
cupied (HOMO) and the lowest unoccupied molecular orbital (LUMO). Without external
perturbation (Fig. (3.40)) we got a very large energy gap, Eg,, = 0.3010 a.u., and Fermi
level at Ep = —0.0942 a.u. Table 3.17 presents the Er and Eg,,, values for the three
field amplitudes, and the band structures in the case of field are shown in Fig. (3.41)
(for Epc = £0.0005 a.u.). It is obvious that Eg,, decreases with increasing Epc. This
observation was confirmed after we determined the energy gap of the system at different
field strength (—0.0008 < Epc < 0.0008 a.u.). In Fig. (3.42) the almost linear reduction

of Fg,p can be seen.

Epc Ey Egap
-0.0005 | -0.0867 | 0.3303 (8.99)
0.0000 | -0.0942 | 0.3010 (8.19)
0.0005 | -0.1017 | 0.2718 (7.39)

Table 3.17: Fermi energy (Er) and energy gap (FEg,p,) for three field amplitudes. The

values in the parentheses are for Fg,, in eV. All other values are in a.u.



102

0.1\0.1
~ 0.0} Jo.o
S
W
>N A AL o o e o e e e e e e e e e e e e e e e e e e e e
> 0.1 0.1
—
()]
[
L
0.2 02
-0.3_/’/”_'-0.3
5.0 0.5 1.0

ka/rx

Figure 3.40: The band structure of Li H without field. Only the highest occupied (HOMO)
and the lowest unoccupied molecular orbital (LUMO) are shown. ka/m = 0 and ka/7m =1

are the center and the edge of the first Brillouin zone, respectively, and the dashed line

marks the Fermi level.
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Figure 3.41: The band structures at two different amplitudes, EFpc = £0.0005 a.u. Only
the highest occupied (HOMO) and the lowest unoccupied molecular orbital (LUMO) are
shown. ka/m = 0 and ka/m = 1 are the center and the edge of the first Brillouin zone,

respectively, and the dashed lines mark the Fermi level.
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Figure 3.42: The energy gap as a function of the field strength.
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Chapter 4

Surface effects in electric field

polarization of periodic systems

In this Chapter we will present the second part of our study, which concerns the termina-
tion effects in electric field polarization of periodic systems. Only quasi-one-dimensional
(quasi-1D) systems are taken into account, but the results may be extended to 2D films
and 3D solids. The fundamentals and findings, presented below are taken from [62], where

our last results were recently published.

4.1 Introduction

The question of whether terminations or surfaces influence the polarization has been the
subject of discussion for several decades [57, 58, 59, 60, 61, 104, 105, 14]. A rigorous
formulation establishing that polarization is a bulk property was, finally, presented by
Vanderbilt and King-Smith [14]. Nonetheless, there remains a sense in which it is surface-
dependent. Thus, as we will demonstrate here, the termination of 1D chains can influence
experimental observables determined by the polarization. Specifically, we show that the
lattice constant in the inner part of an extended 1D system exposed to a uniform longitu-
dinal electrostatic field may be altered by changing the terminations. The same is true of
internal structural parameters as well. Most importantly, we also present a procedure for
determining this effect from calculations on the corresponding infinite periodic system.
An experimental realization of the surface-dependent case may be obtained by con-
sidering a long chain like that of Fig. 4.1, placed between two electrodes. Applying a
potential between the two electrodes, the length of the chain will change. This change

is monitored during the experiment and may, in general, be partly due to changes in the

105
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length of the bulk region and partly due to changes in the lengths of the units in the
terminations. Often the change in length due to the terminations can be neglected in
comparison with the macroscopic effect arising from the change in the bulk lattice con-
stant, a. Sometimes, however, we have found that such will not be the case. In either
event the contribution from the terminations can be accounted for by determining the
chain length dependence of the structural response. Then, a plot of the change in length
per bulk unit versus the fixed field strength, Ep¢, can be used to obtain the zero field

limit

da

ploaes P (4.1)

We shall demonstrate that this change, which can be experimentally obtained [106], de-

pends on the terminations.

Oieninsssresss aadO

L C R

Figure 4.1: Schematic representation of a long, but finite, regular chain. Each filled circle,
placed regularly along the chain axis (the z axis), represents a building block containing
one or more atoms. Donor and acceptor groups (D and A) may be included at the
terminations. The separation into a central (C') and two terminal (L and R) regions is

indicated by the vertical lines.

4.2 Theory and Computational Approach

A schematic representation of a long, but finite, 1D chain is shown in Fig. 4.1. Tt is useful
to split this system into three distinct spatial parts, a perfectly regular central region (C')
where the electrons do not feel the finite size of the system, and two terminal regions (L
and R). The response of the system to an electrostatic field is most conveniently quantized
through the dipole moment per unit, which component along the (z) chain axis can be
defined as

p= lim (N +1) — u(N)], (4.2)

N—o0
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where N is the number of units in the chain and pu is the z component of the total dipole

moment. With the spatial separation above we have [107, 108]

u:/Lp(f”)zdf%—/cp(?)zdf’—i-/p(F)zdF

R

= Nopc + {ZR/Rp(F)dFJr zL/Lp(F)dF} (4.3)
" [ [ o016z =i+ [ ootz - zR>df} |

in which p(7) is the total charge density, uc is the z component of the dipole moment of a
(neutral) central unit and N¢ is the number of units in C. Finally, zz and 2z, describe the
centers of nuclear charge in the R and L regions, respectively. Assuming that the entire

system is neutral, a combination of Eqgs. (4.2) and (4.3) gives (see Ref. [107])

p=pc+Qr-a, (4.4)

where Qr (= —Qr) is the total charge in R (L), and a is the unit cell lattice constant
of C'. According to this expression the dipole moment per unit depends on the charge
accumulated in the terminal regions which, at first glance, can vary widely.

There are, however, restrictions on the surface charges as Vanderbilt and King-Smith
[14] have shown. They write the electronic part of the dipole moment in terms of localized

orbitals wy,

=325 [ tontraar (4.5

where wy,, the pth orbital localized to the ith unit, is obtained by a unitary transformation
of the occupied canonical orbitals. Then, using the idempotency of the density matrix,
it is proved that the number of electrons associated with the terminal regions must be
integral. On this basis, the dipole moment per unit (and, consequently, the polarization)
is essentially a bulk property, with quantized values that differ from one another only
by lattice vectors [107, 109|. It follows that this property is accessible (modulo a lattice
vector) through a conventional band-structure calculation on an infinite periodic system,
even though there are no terminations (per construction) in the latter case.

For a 1D periodic system the electronic orbitals may be written as

U (k, 7) = e, (k,7), (4.6)
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where n is a band index and w,(k, 7) is lattice periodic. Usually, a finite set of N equidis-
tant k points in the interval [~7; 7] is employed in a band structure calculation. According
to both the MTP and VPA treatments one may write the electronic part of the static
dipole moment per unit as [15, 9, 110]

N B

(i) a1 @)

k=1 n=1

In Eq. (4.7) B is the number of singly occupied bands (we assume that there is a gap
between occupied and empty orbitals and allow for spin-up and spin-down orbitals to be
different). The total dipole moment per unit is obtained by adding the contribution from
the nuclei in the Oth unit cell.

In Eq. (4.6) the orbitals may be modified by band and &k dependent phase factors,

Uk, 7) — €0 P, (k, 7). (4.8)
in which
Pn(+m/a) = dn(=7/a) = ity - 2m (4.9)
since
ion(+m/a) _ gidn(~m/a) (4.10)

Thus, ;1 contains an unknown, additive constant, 7 - a, with 7. =) 7.

For both the extended, but finite, system and the infinite periodic model for this system
the dipole moment per unit may be changed by an integer multiple of the unit cell lattice
constant. However, the origin of the integer is quite different in the two cases. For the
finite chain it has a physical origin determined by the terminations which govern the charge
accumulated at the chain ends. Accordingly, the integer is fixed by the electronic structure.
For the infinite periodic model the integer is related to a mathematical ambiguity in the
phase of a complex number and is completely arbitrary. Here, we demonstrate that a
fixed choice of the integer for the infinite periodic system corresponds to modelling a
finite chain with a specific charge in the terminal region. We do this by considering a
long finite oligomeric chain with different terminations (see Fig. 4.1) and, as a result,
different charge accumulation at the chain ends. When exposed to electrostatic (DC)

fields different electronic and structural response properties are obtained. It is, then,
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shown that all such properties can be reproduced by maintaining an appropriate fixed
value of n in corresponding model infinite periodic chain calculations.

In order to perform extensive calculations, and to avoid truncation and other numerical
errors, we use the model Hamiltonian as described in Subsection 3.2.5 and employed in
earlier studies [12, 9, 62]. In doing so we emphasize that no attempt is made to reproduce
results for any real system, but that the model Hamiltonian contains all important features
of a parameter-free electronic structure calculation.

As already introduced, for the finite chain the DC field is included in the electronic
Hamiltonian through the term — ). Epcz;, where z; is the z coordinate of the ith electron,
Epc is the amplitude of the DC field, and we have set the magnitude of the elementary
charge |e|] = 1. And for the infinite periodic chains the DC field is included by means of
the VPA methodology [10, 11]. If the crystal orbitals are written in the form

Gull, ) = 3 ox,p,n<k>%ﬁ S ety (7) (4.11)

then the orbital coefficients are obtained by solving the equations [9, 10, 11, 108, 12]

{gk) ~ B - {ﬂ(k) - z§<k>d%} } Ok = elk) - S)-Cu (R, (412)

where Sy, (k), M,,(k), and F,,(k) are the overlap, unit cell dipole, and Fock (or Kohn-
Sham) matrix elements, respectively. In other words, the finite chain dipole moment
matrix is replaced by the quantity in square brackets in Eq. (4.12). The dipole moment
per unit of the infinite periodic system, which is determined by the operator in square
brackets in the last equation, will lie in a certain range of length a. In order to modify
this range by an integer times a, the orbitals of one or more bands are given additional
phase factors, e* with 7, being an integer. Then, the phases become discontinuous
across the boundary of the Brillouin zone, although the phase factors remain continuous.

This leads to an additional term,

—Epc Y i, = —Epci, (4.13)

in the derivative of the total energy with respect to the lattice parameter a.
For the finite chain Eq. (4.2) is used to determine the dipole moment per unit. We
found that chains of length N = 40 and N = 41 were sufficient to achieve convergence.

For the infinite periodic chains N = 80 k points were used. Finally, in order to obtain
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different terminations for the finite chains we modified the on-site energies (x; AiVLO’ X1A:)
and <XNBi‘;LO’XNBi> for i = 1,2. In the calculations below this allowed us to change the

charge at the chain ends by 42 electrons.

4.3 Results

In the next two figures, Fig. 4.2 and Fig. 4.3, the different symbols in each panel correspond
to periodic chain calculations for different values of the integer n. The full lines are finite
chain values for charge accumulation of either 0 or 42 electrons as compared to the case
where the charge in the chain terminations is similar to that of the central region.

Fig. 4.2 shows the results for the optimized lattice constant a (top panel) and the
internal structural parameter u (bottom panel) from the model Hamiltonian calculations
for finite chains with N = 40 units and for periodic chains with 80 k& points. Both
parameters show a clear dependence on the value of n, i.e., on the range inside which the
dipole moment per unit is required to lie. This is consistent with the differing chemical
nature of the finite chain that is being simulated. The corresponding finite chain results
(solid lines) obtained from Eq. (3.32) once more agree with the periodic chain values.

The lower panel in Fig. 4.3 shows the field-dependent dipole moment per unit at the
optimized geometry. In the periodic chain calculations the integer was chosen so that
the dipole moment coincides with the finite chain value at zero field. For different 7 (or
different charge) there is a large difference in the dipole moment. In order to fit all our
results in one panel we have shifted the calculated values by a constant, namely an integer
multiple of the field free lattice constant ay. Evidently, the periodic and representative
finite chain results coincide (within numerical accuracy) at all fields. The upper panel
of the same figure gives the number of electrons (i.e., the Mulliken gross populations) on
one of the central A atoms obtained for the same set of calculations. Again, the infinite

periodic chain results and the finite chain values are identical at all fields.
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Figure 4.2: Results for the optimized lattice constant a (top panel) and the internal

structural parameter u (bottom panel) from the model Hamiltonian calculations for finite

chains with N = 40 units (full lines) and for periodic chains with 80 k£ points. For the

periodic chains the different symbols represent results for different values of the integer n.
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Figure 4.3: Results for the number of electrons ny on the central A atom relative to the
neutral case (upper panel) and the adjusted dipole moment per unit x (lower panel) from
the model Hamiltonian calculations for finite chains with N = 40 units (full lines) and for
periodic chains with 80 k points. For the periodic chains the different symbols represent
results for different values of the integer n. In the bottom panel we have added an integer
(m) times the field-free lattice constant in order to facilitate a comparison between the

different results.
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The fact that the structure depends on n can easily be seen by expanding the total
energy per unit, Fj., about the field-free value through second-order in terms of the

lattice constant (a), internal structural parameter (u), and Epc

OF 1 0* L
Etot = Etot(a7u7 EDC) ~ Etot,O + EDC aE;; + é(a — CL())2 aa; t
1 50 By 0 Eror
U= w) =5 5= + (w =)l —a0)Fom e
1 0? Byt 0 B O o
_E2 o E — — % E - 70
+ 5 DC OE2, + Epc(a ao)@EDca& + Epc(u UO)QEDcﬁu

Here the field, rather than the voltage (see later), is considered as the independent variable.
This corresponds to an experimental setup where different materials that may possess
different macroscopic changes in size due to the electrostatic field are experiencing the
same field strength.

With the expansion of Eq. (4.14) one may derive an approximate expression for the

change in the lattice parameter due to a given electrostatic field by setting the derivative

aEﬂtot
da

—0 (4.15)

at the field value, and the same may be done for the internal structural parameter. The
result of solving this pair of coupled simultaneous equations can be expressed in terms of

the piezoelectric-like coefficients

da

da - m Epc=0 (416)
and
du
du == m Epc=0 : (417)
d _ 82E'tot aQEtot - aQEtot aQEtot
“ OFEpcOu Ouda  OEpcda Ou?
(4.18)

a2£?‘co‘c 82Etot . 82Etot 1
da?  Ou? OJuda
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d o aQEtot a2£?‘co‘c a2E’to‘c aQEtot
| OEpcda duda da? OFEpcou

-1 4.19
82E"cot aQEtot . aQEtot ? ( )
da?  Ou? Juda
Since the dipole moment per unit,
aEﬁtot
= _ 4.20
Yo (4.20)
contains a contribution equal to na, the partial derivative
O?FEi,
ot (4.21)
aEDCaCL

depends upon n. Hence, both piezoelectric-like coefficients will depend upon this integer.
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Figure 4.4: Results for the internal structural parameter u from model Hamiltonian cal-

culations with fixed lattice parameter.

The dependence of the bulk quantities on the surfaces is solely due to the fact that
the lattice parameter depends on n. This can be seen by repeating the periodic chain

calculations of Fig. 4.2 and Fig. 4.3 but with this parameter fixed at the field-free value,
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Figure 4.5: Results for the number of electrons na on the central A atom relative to

the neutral case from model Hamiltonian calculations with fixed lattice parameter. The

upper panel is for the initial structure, and the bottom one after relaxing u.
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Figure 4.6: Results for the adjusted dipole moment per unit p from model Hamiltonian
calculations with fixed lattice parameter. The upper panel is for the initial structure, and

the bottom one after relaxing .
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ag. In Fig. 4.4, Fig. 4.5 and Fig. 4.6 are shown the results for the internal structural
parameter u, for the number of electrons na on the central A atom relative to the neutral
case and for the adjusted dipole moment per unit u, respectively. It is evident that all
symbols fall on the same curve. Thus, all values of n lead to the same results. Moreover,
by comparing with Fig. 4.2 and Fig. 4.3 it is seen that relaxing a leads, in general, to
considerably stronger property variations, as a function of field strength, than just relaxing
u.

So far we have considered how the structural parameters change as a function of the
field strength. In particular, the analogue of da/dFEpc for thin films can be determined
by phase modulation measurements [106]. Alternatively, one may determine the variation
of the structural parameters as a function of the voltage. Assuming that the length of
the macroscopic chain in the absence of the field equals L (L > ag), the total potential

across the sample, Ve is given by

L La
Vext = —Vpe = — Epc. (4.22)
Qo Qo

Here, Vpc is the potential drop over one unit cell, i.e., a - Epc. In an experiment where
different samples are exposed to the same external voltage, V. or Vpc, the field strength
will generally be different. For that case, we express Fi in terms of the independent

variables Vp¢, a, and u. This leads to the piezoelectric-like coefficients defined as

da
da,V = aom Voo=0 (423)
and
d du (4.24)

vV = ag——— e
“ dVDC Vbc=0

These coefficients have the same dimension as those of Eq. (4.18) and Eq. (4.19). After
transforming the analogue of Eq. (4.14) to the same set of partial derivatives that appear

in the latter, it turns out that d,v and d, v are given by the same expressions as in Eq.
(4.18) and Eq. (4.19) except for the replacement

8EDcc9a - 8ED08a Qo 8EDC

da a

(4.25)

0? Eyo 0?Fot, 1 OBt _ (0u M)

a=agp

This term is independent of n and, consequently, the dependence of the responses
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d da
a,V - aO dVDC VDC—O
and
du
duy = ag dVoc ‘VDCfO

on the surfaces is removed.

(4.26)

(4.27)



Chapter 5
Summary and Conclusions

In the present work we have investigated the electronic and structural responses of mate-
rials to external electrostatic field.

The first part of our study introduced a new way for ab initio calculations of the dipole
moment per unit, i.e., of the polarization of quasi-one-dimensional infinite and periodic
systems. In order to achieve this, two different methods were used - a Vector Potential
Approach (VPA) and an ab initio Linear Combination of Atomic Orbitals-Self Consistent
Field (LCAO-SCF) method. The first one is a very efficient for determining the electronic
and nuclear responses of infinite periodic systems to finite electric field, and the second
enables the computation of band structures of regular and helical polymers, taking into
account the one-dimensional translational symmetry. This part of the present research
deals only with the electronic responses. The model Hamiltonian constructed within the
VPA contains an additional polarization energy term (FEpc-P) when the system is exposed
to external field, and all essential elements of an ab initio Hartree-Fock (or Kohn Sham)
Hamiltonian including band orbitals with phases that may vary randomly from one &
point to the next. Thus, it was possible to take the polarization energy expression from
the VPA Hamiltonian and to implement it in the ab initio Hartree-Fock Hamiltonian,
which was the first step towards a full ab initio treatment of periodic system in external
electrostatic fields.

To show the accuracy of our results we used two test systems - infinite hydrogen and
infinite lithium hydride chains. In the first case minimal STO — 3G and double-zeta
3 —21G basis sets were used, and in the second case the Clementi’s minimum basis set. In
both cases we investigated: 1). The change of the band orbital phases with the wavevector
k; 2). The dependence of the total energy (Ei.) and of the polarization (P) on the electric

field strength (Epc), on the intramolecular distance (dy_p and dp;_g) and on the unit cell
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length (a). The polarizabilities («) of the two chains were calculated and compared with
previous values. Furthermore, the change of a with the distance between the hydrogen
atoms in H, and between the lithium and hydrogen atom in L:H, and with the unit cell
of the both chains was investigated. The second hyperpolarizability () in the case of Hs
chain was calculated, and band structures for the LiH chain at Fpc = 0 and Epc # 0

were introduced.

To check the implementation of the smoothing procedure, which is used for the nu-
merical differentiation of the orbital coefficients, in order to calculate self-consistently the
charge flow contribution to the polarization, the change of the band orbital phases with
the wavevector k before and after smoothing was investigated. For both test systems, the
correct implementation of the smoothing in the PLH code was shown through comparison
of the non smooth and smooth phases. The effect of the field on the band orbital phases
is only for the LiH chain evident and discontinuities at the boundaries k = 0, £7 after
smoothing exist in both cases. Since these jumps in the curve distributions are equal to

n2m, they are irrelevant and do not affect the derivatives of the coefficients.

The 3 — 21G basis set results afford more stable Hy chain than the minimal STO — 3G
ones in absence and presence of electric field. The change of the total energy with the field
follows the same tendency using both basis sets and for EFpc > 0.001 a.u. Fi decreases
rapidly. The total electronic polarization was calculated as a sum of charge (P, or P;) and
current (P} or P») contributions and changes linearly with the electric field strength for
both test systems. Furthermore, it is evident that the contribution from the current term,
which is equivalent to the charge flow in the chain, is important and neglecting it is not
a good approximation. The polarizability along the polymer chain axis (the longitudinal
polarizability per unit cell) was evaluated by means of the Finite Field (FF) technique
via the polarization and via the total energy for the Hs chain and for the Li:H one only
using the calculated polarization values. The average value of a for the hydrogen chain
is in very good agreement with previous results of Champagne et al. [3|, and this for the
lithium hydride chain with the theoretical results of Bishop et al. [11].

To investigate the dependence of Ei, P and « on the intramolecular distance (dy_n
and dp;_p), single molecules were considered. For this purpose, the unit cell was chosen
to be 20.0 a.u. for Hy and 50.0 a.u. for LiH. The distance between the two atoms
was changed in the range from 0.5 a.u. to 8.0 a.u. at field strength Epc = 0.0002 a.u.
in the first case and from 0.5 a.u. to 9.0 a.u at Epc £ 0.0001 a.u. in the second case.
For the Hy molecule an equilibrium structure was found at deq = 1.35 a.u. (STO — 3G)
and deq = 1.39 a.u. (3 — 21G). Compared with the experimental value of deq = 1.40
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a.u. a deviation of 3.7% and 0.7%, respectively, was found. For the LiH molecule an
equilibrium geometry was found at deq = 3.051 a.u. at the three field amplitudes, which
is in good agreement with experimental and previous theoretical results. Due to the
large unit cell lengths (¢ = 20.0 a.u. and a = 50.0 a.u.) the current contribution to
the polarization (P;) becomes zero and only the charge term contributes to the total
electronic polarization (Pt = P;). The results show that P, increases rapidly for larger
intramolecular distances and that the 3 — 21G basis set provides larger polarization than
the minimal one in the case of Hy,. The change of the polarizability with the distance
between the two atoms in the Hs molecule follows the same tendency like the polarization
for STO — 3G and 3 —21G basis sets. A perfect agreement with the results of Champagne
et al. confirms the accuracy of our results. The tendency of a of the lithium hydride single

molecule is different from the polarization tendency and at equilibrium a = 19.69 a.u.

In order to explore the effect of the bond-length alternation on the total energy of the
system, on the polarization and on the polarizability in the presence of external electric
perturbation, the intramolecular distances were fixed at dy_iy = 2.0 a.u. and dp;_y = 4.0
a.u. The intermolecular distances were changed from 2.5 a.u. to 98.0 a.u. at Epc = 0.0002
a.u. for the H, chain and from 5.0 a.u. to 96.0 a.u. at Epc = £0.0001 a.u. for the LiH
chain. The total energies of the two systems converged to values that correspond to these
of a single molecule. However, before convergence Fi of the Hy chain decreased (at
the beginning rapidly) and of LiH chain increased (also rapidly at the beginning), i.e.,
a single hydrogen molecule is more stable than the hydrogen chain and a single lithium
hydride molecule is less stable than the chain. According to this the total polarization
of the first test system decreased with the unit cell length and of the second test system
increased till convergence. The polarizability of both systems showed the same behaviour
with the change of the unit cell length, namely it decreased rapidly for the smaller a and
converged for a > 40.0 a.u.

Important for the nonlinear optics applications of materials is their second hyperpolar-
izability 7. Using the FF technique we determined the longitudinal second hyperpolariz-
ability per unit cell, 7;, of the hydrogen chain at different field amplitudes and got values
that are in good agreement with previous results.

Band structures of the L¢H chain were calculated at three different field strength and
the change of the energy gap (Egap) in the range —0.0008 < Epc < 0.0008 a.u. was
investigated. With increasing field Fg,, decreased almost linearly.

Our results confirm the successful implementation of the VPA in the ab initio PLH

code. The next step will be the ab initio treatment of larger periodic systems in exter-
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nal electrostatic fields, where not only the electronic but also the nuclear responses are

investigated.

The second issue in the present work was to investigate the effect of the surface in
electric field polarization of periodic systems. We have demonstrated that, for a long
finite chain with repeated units, the structural responses to an external applied field of
fixed strength depends upon the charge at the chain ends which, in turn, is governed
by the terminations. Different terminations of an otherwise identical chain can lead to
different responses. In passing we note that different responses will be observed only if the
field is held constant rather than the potential drop over a unit cell. Although an infinite
periodic chain does not have terminations, the effect of introducing such terminations is
indirectly included in the MTP/VPA crystal orbital treatment through an (undefined)
integer, n, that appears in the boundary conditions for the crystal orbitals. Thus, this
arbitrary integer has now been linked to a physical observable.

The dependence of the structural responses to an electrostatic field described above
arises because the general expression for the electronic dipole moment per unit contains
a term given by the integer, n, multiplied by the lattice constant, and the latter cou-
ples mechanically with the internal structural parameters of the unit cell. If the lattice
parameter is fixed, then the internal structural responses are suppressed. By chemically
modifying the terminations (for example, by attaching specifically designed ligands) one
can modify the integer and thereby observe an effect on the piezoelectric properties.

Theoretical arguments show that the dipole moment per unit cannot be changed arbi-
trarily, but only by an integer multiple of a lattice vector (times the elementary charge).
This is borne out here by calculations on a model system, i.e., long, but finite, chains. In
simulating the same system through an infinite periodic treatment we have shown that
all physical effects can be reproduced ’exactly’ by making a specific choice for an integer
related to a mathematical phase ambiguity that occurs in determining the crystal orbitals.
Thus, an integer quantity, previously considered to be unphysical, has been related to an

observable physical surface effect.

It has been shown elsewhere [11] that (hyper)polarizabilities of infinite periodic systems
do not depend upon surface charge if the structure is fixed. They will do so, however, due
to structural changes induced by an electrostatic field. Moreover, the effects of the latter
on experimental properties can be quite large (see, for example, [111] and references cited
therein). Finally, even the charge distribution in the central region (also experimentally
accessible and here quantified through the net number of electrons on atom A) depends

on n for Fpc # 0. Our numerical model studies have shown that piezoelectric surface
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effects can be quite significant.
In the present study only 1D systems were considered. A future purpose is to translate
our 1D results to a 2D films and 3D solids.
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