
Unraveling the impact of
subsurface and surface properties

of a material on biological
adhesion—a multi-scale approach

Dissertation
zur Erlangung des Grades

des Doktors der Naturwissenschaften
der Naturwissenschaftlich-Technischen Fakultät II

- Physik und Mechatronik -
der Universität des Saarlandes

von

Peter Moritz Loskill

Saarbrücken
2012



Tag des Kolloquiums: 29.10.2012

Dekan: Univ.-Prof. Dr. rer. nat. Ch. Wagner

Mitglieder des Prüfungsausschusses:

Vorsitzender: Univ.-Prof. Dr. rer. nat. L. Santen

Gutachter: Univ.-Prof. Dr. rer. nat. K. Jacobs
Univ.-Prof. Dr. med. M. Herrmann
Univ.-Prof. Dr. rer. nat. Ch. Ziegler, TU Kaiserslautern

Akademischer Beisitzer: Dr. J.-B. Fleury



Kurzzusammenfassung

Das Verständnis der Adhäsion biologischer Objekte an anorganischen Materialien ist ein
wichtiges Forschungsziel in der Physik und den Lebenswissenschaften. Um biologische
Adhäsion zu beschreiben, berücksichtigen viele Studien lediglich die Eigenschaften der
Oberfläche; die Materialzusammensetzung unterhalb der Oberfläche wird häufig überse-
hen. Langreichweitige Van der Waals (VdW)-Kräfte werden somit vernachlässigt. Die
vorliegende Arbeit zeigt, dass Unterschiede im Grenzflächenpotential einen Einfluss auf
biologische Objekte (Proteine, Bakterien, Geckos) haben. Mithilfe von Siliziumwafern mit
unterschiedlich dicken Oxidschichten wird der VdW-Anteil des Grenzflächenpotentials un-
abhängig von den Oberflächeneigenschaften variiert. Durch Funktionalisierung der Wafer
mit einer Silan-Monolage wird auch die Oberflächenchemie gesondert verändert. Auf
diesen Modelloberflächen wurden Adhäsions- und Adsorptionsexperimente durchgeführt.
Dabei wurde die Proteinadsorption mittels in situ Röntgenreflektometrie, die Bakterien-
adhäsion mittels AFM-Kraftspektroskopie mit Bakteriensonden und die Geckoadhäsion
mittels einer mechanischen Testplattform charakterisiert. Zudem wurde in der vorliegen-
den Arbeit ermittelt, inwiefern Veränderungen der Oberfläche, wie die Fluorierung von
künstlichen Zähnen oder Umordnungen in der bakteriellen Zellwand, die Bakterienadhä-
sion beeinflussen und inwiefern eine verringerte Quervernetzung der bakteriellen Zellwand
deren Elastizität verändert.
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Abstract

Understanding the adhesion of biological objects to inorganic surfaces is an important
research objective in physics and the life sciences. To characterize biological adhesion,
most studies describe a substrate solely by its surface properties; the composition of the
material beneath the surface is frequently overlooked. That way, long-range van der
Waals (vdW) interactions are disregarded. This work reveals that biological objects of
all scales—nanoscopic proteins, microscopic bacteria, and macroscopic geckos—are influ-
enced by nanoscale differences in the interface potential. By using tailored silicon wafers
with a variable silicon oxide layer thickness, the vdW part of the interface potential is tuned
independently from the surface properties. By modifying the wafers with silane monolay-
ers, the surface chemistry can be varied separately as well. On these model substrates,
adsorption and adhesion experiments were performed. Protein adsorption was investigated
by in situ X-ray reflectometry, bacterial adhesion was explored via AFM force spectroscopy
with bacterial probes, and gecko adhesion was characterized using a mechanical testing
platform. Moreover, this work investigates whether or not bacterial adhesion is influenced
by changes in surface properties such as the fluoridation of artificial teeth or contact-
induced rearrangements in the bacterial cell wall and whether or not a reduction of the
peptidoglycan crosslinking affects the elasticity of the bacterial cell wall.
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1 Introduction

The adhesion of biological objects to artificial materials, also referred to as bioadhe-
sion, is a process that is of major importance in many different areas: Primarily in
medical research, the investigation of bioadhesion is crucial for the performance of im-
plants and catheters or the development of biosensors and biological glues. Yet, many
other branches of industry are also affected: In oil or gas pipelines, in the shipping
industry, and in the food production, for instance, the adhesion of biofilms (bacteria,
proteins) or mussels is a major concern [Kum1998,Zhu2003,Ner2006,Sch2011]. Con-
sequently, it is the objective of various studies to prevent or control the adhesion of
biological objects such as proteins, bacteria and eukariotic cells.

Moreover, the capability of organisms, such as mussels, insects, frogs, or geckos, to ad-
here extremely strong to all kinds of surfaces inspired engineers to mimic the respective
responsible structure [Fed2001,Gei2003,Lee2007b,Bar2011]. The hunt for gecko-like
adhesives, for instance, enjoys great popularity nowadays, especially because gecko
adhesion is self-cleaning and completely reversible [Han2005,Lee2008,Boe2010].

For both purposes, the control and the mimicry of bioadhesion, a comprehensive
understanding of the interface between the artificial materials and biological objects is
necessary. To gain this understanding, researchers from various fields tackle this topic,
situated at the border of physics, chemistry, and biology. Unfortunately, however,
bioadhesion is usually an interplay of multiple different interactions. Hence, the only
way to gain a comprehensive picture of the involved players is to unravel the various
responsible parameters.

The main objective of this thesis is to study single parameters or interactions in terms
of their impact on the adhesion of biological objects. Thereto, selected parameters of
the surface and the subsurface of substrates are independently examined. To cover
a wide range of length scales, different types of biological objects featuring a broad
variety of dimensions were studied: nanoscopic proteins, microscopic bacteria, and
macroscopic geckos. Proteins and bacteria account for the principal components of
most biofilms. Geckos are, as mentioned above, one of the most prominent examples
of nature that engineers try to mimic.

The major focus of this thesis lies on van der Waals (vdW) interactions, especially on
those arising from a material that is hidden by the topmost surface layer. VdW forces
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1 Introduction

are the sole type of intermolecular forces that are present in every system and arise—
unlike most other interactions—not only from the surface, but from the complete
material of which the substrate is constituted. Particularly in the presence of thin
surface coatings, the overall vdW interactions can depend strongly on the underlying
material, a fact that is frequently overlooked. The main objective of the here presented
work is to determine whether a variation in the subsurface characteristics of a substrate
affects the adhesion of biological objects and whether an effect is limited to a specific
scale.

A further parameter focussed on in this thesis is the impact of the fluoridation of
artificial tooth surfaces on bacterial adhesion. It is well known that the application
of fluoride compounds has a cariostatic effect. The origin of this effect, however, is
usually solely attributed to a decreased demineralization of the teeth. Hence, another
objective of the here presented work is to determine whether the fluoridation affects the
strength of the force by which oral bacteria adhere to the tooth surfaces. Such an effect
would account for an additional source of the cariostatic character of fluoridation.

Besides the modification of substrate properties, the characteristics of the interacting
biological objects can be altered. In the case of bacteria, this can be done on different
levels of separation of single characteristics: It is either possible to study

• alive and dead examples of the same type of bacteria,
• different species of one specific bacterial genus,
• different strains of one species, or
• genetically modified bacteria together with the respective wild-type strain.

A combination of the first two options is utilized in this thesis to compare the time
dependence of alive and dead bacteria of the two Staphylococcal species S. aureus and
S. carnosus . The objective, thereby, is to gain insight in the adhesion process and to
examine possible differences for pathogenic and non-pathogenic Staphylococci .

The other two options are also applied in the here presented work, with the aim to
investigate the impact of a reduction in the crosslinking of the cell wall of S. aureus on
the stiffness of the bacterial cell envelope. To determine if the stiffness or a change in it
is correlated with the resistance against antimicrobials, two S. aureus strains featuring
different degrees of resistance and the respective mutants are investigated.

2



2 Overview and Connectivity

The work at hand engulfs six publications, three of them already published in and three
submitted to peer reviewed journals. Although emerged from multiple projects, the
publications are closely connected: In all of them, one parameter of the (sub)surface of
materials is separately studied with respect to their impact on biological adhesion. In
the publications in Addenda II-IV, the van der Waals forces that arise from interac-
tions with the subsurface material are studied. These studies are preluded by a review
of the state of the art in the field of vdW interactions in general and in multilayer sys-
tems in particular in Addendum I. The study presented in Addendum V focusses
on the effect of a fluoridation of tooth surfaces and the publication in Addendum
VI concentrates on the surface properties of bacteria, namely the elasticity of the
cell envelope. The biological objects studied cover a wide range of length scales; the
publication in Addendum II focusses on nanocopic proteins, the ones in Addenda
III, V, VI on microscopic bacteria, and the one in Addendum IV on macroscopic
geckos.

Overall, the thesis is organized in five chapters:

• In the ‘Context and State of the Art’ chapter, the studied objects and applied
concepts are introduced and a general literature review is given. A detailed and
project-tailored overview of the theoretical concepts and the state of the art is
then given in the respective publications.

• The ‘Materials and Methods’ chapter elucidates the primarily utilized meth-
ods and materials that are obligatory for the understanding of the presented
unpublished results. Project specific applied methods and used materials are
accounted for in the respective publications.

• In the two result chapters ‘Influence of Substrate Properties on Surface Pro-
cesses’ and ‘Surface Properties of Bacteria’, a brief review of each attached pub-
lication is given and further unpublished results are presented and discussed.

• The thesis is concluded by the ‘Summary and Outlook’ chapter, comprising a
summary of the presented results and an outlook on possible future and already
ongoing follow-up projects.
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3 Context and State of the Art

3.1 Surface Forces

In principle, solely the four fundamental forces, namely

• strong and weak interactions, acting between elementary particles, and
• gravitational and electromagnetic interactions, acting between atoms and

molecules,

are sufficient to describe all processes in nature. Thereby, the first two interactions
may be classified as ‘sub-atomar’ forces and the latter two as ‘super-atomar’. The role
of the two ‘super-atomar’ interactions, gravitation and electromagnetism, depends on
the scale of the described system. On a macroscopic scale (stellar systems, tides, and
falling bodies), gravitation is the major factor. On a microscopic scale, electromag-
netism plays a key role and is therefore often referred to as the ‘true’ intermolecular
force.

Although all forces between objects on a microscopic scale are essentially of electro-
magnetic origin, it is useful to further classify these forces into distinct categories of
intermolecular forces. Individually, all of these forces are theoretically described, yet
an overall solution for the theoretical description of all electromagnetic interactions
in arbitrary systems (from single atoms to multi atom bodies) has not been achieved
so far. Due to this classification, an interaction (e. g. adhesion or cohesion) between
two objects is the interplay of many different intermolecular forces.

In the following sections, some of the major ‘players’ in the adhesion process are
reviewed. A more comprehensive description of intermolecular forces is given, in
general by the textbooks of Israelachvili [Isr1992] and Lyklema [Lyk1991], focused on
biology by Leckband & Israelachvili [Lec2001], and on nanotechnology by French et
al. [Fre2010].

5



3 Context and State of the Art

Figure 3.1: Van der Waals potentials for different geometries. Adapted from [Isr1992].

3.1.1 Van der Waals Interactions

Van der Waals (vdW) forces describe the interactions between permanent and in-
duced dipoles. Usually, three types of interactions contribute to the vdW interac-
tions [Isr1992]:

Keesom interactions: Dipol-dipol interactions of freely rotating molecules that carry
permanent dipoles.

Debye interactions: Forces between a freely rotating permanent dipole and a non-
polar molecule, wherein a dipole moment is induced by the permanent dipole.

London interactions, also referred to as dispersion interactions: Electrodynamic
forces between instantaneously induced dipoles. They are of quantum mechan-
ical origin [Lon1937].

The common characteristic of all three types of vdW interactions is the scaling with
x−6. Due to this, vdW forces in general are often considered to be of short-range.
Yet, this is only true for molecular systems, since the exponent −6 persists only on

6



3.1 Surface Forces

Table 3.1: Hamakerconstants A123 = A12−32 describing various systems that are of relevance
in this thesis.

Material 1 Material 2 Material 3 Hamaker constant [kBT ]a Source

SiO2
b vacuum SiO2

b 17.4 [Tan2005]c

water SiO2
b 1.9 [Tan2005]c

Si vacuum Si 51.7 [Fre1995]c

α−Al2O3 40.4 [Fre1995]c

Proteind water Proteind 3.1 [Rot1996]c

Quartz 1.65 [Rot1996]e

a at room temperature 10−20 J = 2.4 kBT
b amorphous
c Full spectral method
d BSA
e Hough and White method [Hou1980]

this scale. On a macroscopic scale, however, vdW forces are of long-range and the
exponent of the scaling law increases up to −1 depending on the geometry as depicted
in Figure 3.1 . Between two semi-infinite half slabs, for instance, the interactions
scale with x−2 [Isr1992]. The strength of the vdW interactions is determined by the
Hamaker constant of the system, which depends on the polarizabilties of the involved
materials (cf. Table 3.1).

Van der Waals forces are the only other interactions—besides gravitation—that exist
in every system. They can never be completely shielded and are always attractive1.
Moreover, vdW forces act not only with the surface but with all atoms in the bulk.
This is especially of interest for multilayer systems, since in these, layers below the
surface can interact with a probe object via vdW forces.

A more comprehensive review of the theory and history of vdW interactions in general
and in multilayer systems is given in the publication in Addendum I.

3.1.2 Electrostatic Interactions

Two charged atoms, ions, or surfaces interact by ‘classical’ electrostatic forces. The
Coulomb force can be both attractive or repulsive. It is commonly considered as both

1A repulsion due to vdW forces is indeed also possible. Yet, this repulsive interaction is a result of
a stronger attractive interaction with the medium than between the interacting objects.

7



3 Context and State of the Art

Figure 3.2: Schematic illustration of the electrokinetic double layer overlaid with a typical
potential: Adjacent to the surface, a layer of bound counterions forms the Helmholtz or
Stern layer, followed by the shear layer and the diffuse layer. The potential is usually
described by the ζ-potential. Adapted from [Hof2012].

the strongest and the longest ranging intermolecular force, since, in simple systems,
its potential scales with x−1.

In liquids, however, electrolytes strongly affect the electrostatic interactions. Due to
the ionization or dissociation of surface groups (e. g. carboxylic or amino groups) and
the adsorption of ions, virtually all natural surfaces carry a charge if immersed into
water or any liquid of high dielectric constant [Isr1992]. As described by the Gouy-
Chapman-Stern model [Gou1910,Cha1913,Ste1924], counterions from the solution—if
existent—form an oppositely charged region in the vicinity of the surface to oppose the
surface charge. This layer, often referred to as the Helmholtz or Stern layer, is bound
to the surface. In addition to the bound ions, a diffuse layer, the so-called Gouy-
Chapman layer, is formed by a cloud of further counterions. Both layers together
compose the electrokinetic double layer depicted in Figure 3.2 . The transition layer
in-between Stern and diffuse layer is often also referred to as the shear layer. The
electrokinetic potential at a distance x away from a surface immersed in liquid can be
approximated2 by

VED(x) ≈ ψ0 exκ , (3.1)

with the surface potential ψ0 and the Debye length λD = κ−1. This characteristic
length depends only on the type (monovalent, divalent) and concentration of elec-
trolytes present, and on the temperature via

λD =

√
ε ε0 kB T

e2 I
, (3.2)

2This approximation is only valid for the case of low potentials.
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3.1 Surface Forces

Figure 3.3: The interaction energies of the double layer interaction between two similarly
charged objects for different geometries. The interaction constant Z is dependent on the
involved materials and κ = λ−1D the inverse Debye length. Adapted from [Lec2001].

whereby I =
∑

i ciz
2
i is the ionic strength, which depends on the concentration ci and

valence zi of a specific type of ions i. The surface potential ψ0 can be expressed in
terms of the surface charge density σ via

ψ0 =
λD σ

ε ε0
, (3.3)

the simplified Grahame equation for low potentials.

To characterize the electrokinetic potential, the ζ-potential is commonly employed. It
describes the potential at the shear (slipping) plane, the plane where hydrodynamic
motion becomes possible. It depends on the ion concentration, the pH value, and the
temperature [Kir2004].

If two surfaces are close to each other, their electrokinetic double layers start to
overlap and they interact via the so-called ‘double layer force’. The potential of this
interaction depends on the geometry of the system (cf. Figure 3.3 )—similar to the
vdW potentials in section 3.1.1. The potential between two similarly charged flat

9



3 Context and State of the Art

surfaces in an electrolyte of valence z, for instance, is

VED(x) =
κ

2 π
Ze−κx (3.4)

per unit area, with the interaction constant Z and the inverse Debye length κ = λ−1D .
Similar to the Hamaker constant, the constant Z depends on the properties of the
surfaces (ψ0) and the solvent (ε, z) via

Z = 64π ε ε0 (kb T )2 e−2 tanh2(
z e ψ0

4 kb T
) . (3.5)

3.1.3 Hydrogen Bonds

The strong electropositive nature of hydrogen atoms is the origin of a very strong3,
short-range interaction, the so-called hydrogen bonds. This bonding occurs if asym-
metric molecules—or parts of molecules—such as -OH, -NH, HF, or HCL are involved.
Whenever these groups come into contact with a strong electronegative atom in an-
other molecule, such as oxygen, nitrogen, fluorine, or chlorine, the two molecules
attract each other. Hydrogen bonds are especially important for the properties of
water, since a water molecule possesses two hydrogen as well as an oxygen atom and
is thereby capable of forming a total of three hydrogen bonds.

3.1.4 Hydration and Hydrophobic Forces

Between two objects immersed in water, a further type of interactions is induced due to
the dipole nature of water molecules and their affinity to build hydrogen bonds. These
interactions can be either attractive or repulsive, depending on the hydrophobicity of
the surface:

Two hydrophobic (nonpolar) surfaces immersed in water attract each other because of
the hydrophobic effect. This—purely entropic—effect arises from the lacking ability
of the surfaces to develop hydrogen bonds. Consequently, the water molecules have to
align themselves so as to maintain the maximal possible amount of hydrogen bonds.
Thereby, the mobility of the molecules is constrained, which leads to an increase in
entropy. This produces the hydrophobic force, which can be strong at short sepa-
rations and whose magnitude decreases with decreasing hydrophobicity. The range
of the hydrophobic interaction is a controversial subject [Mey2006]. About twenty
years ago, Israelachvili and Pashley observed hydrophobic forces reaching far into

3The bond enthalpy of a single hydrogen bond is in the range of 10− 40 kJmol−1 [Lyk1991].
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3.1 Surface Forces

the liquid [Isr1982, Isr1984]. Since then, various possible explanations for this ’long-
range’ hydrophobic interaction were published, most of them only indirectly related
to the hydrophobicity of the surfaces. Among them were, for instance, the interaction
between patchy bilayers [Mey2005] or the coalescence of nano bubbles [Ish2000].

Two hydrophilic (polar) surfaces immersed in water repel each other because of the
hydration forces. Caused by the polarity of the surface, the water molecules in the
vicinity of the surface are ordered. Whenever the ’fixed’ water layers of two surfaces
adjacent to each other start to overlap, a repulsive force is induced. This hydration
interaction causes, in the case of perfectly smooth and hard surfaces, an oscillatory
force profile and, in the case of soft—biological—surfaces, an exponential decaying
force that ranges a few nanometers [Pas1982, Isr1996].

In nonpolar liquids, forces exist that are similar to the hydration forces in water.
The so-called repulsive ‘structural forces’ arise due to the confinement of the liquid
molecules at very small separations (≈ 1 nm).

3.1.5 Steric Repulsion

Two atoms brought into ‘close contact’ are subject to a strong repulsive force. This
steric repulsion—also referred to as hard core or Born repulsion—arises from the
overlap of the electron clouds of the two atoms. Due to the Pauli exclusion principle,
this overlap is restricted. A—mathematically convenient—theoretical description of
this interaction in form of a potential, however, is not intuitive. On a molecular
scale, the famous Lennard-Jones-potential [Jon1924] is commonly used. It features a
repulsive power-law term in addition to the attractive vdW term:

VLJ(x) =
C1

x12
− C1

x6
. (3.6)

Between larger bodies, various approximations exist. The hard-sphere potential, for
instance, is described by

VHS(x) =

{
∞ x ≤ σ

0 x > σ
, (3.7)

with the hard sphere diameter σ. Along the same line as the molecular Lennard-
Jones-potential, a combination of a repulsive power-law potential and the geometry
specific vdW term is feasible, leading to a total interaction energy of

VLJ(x) =
C

xn
− A

xm
, (3.8)

whereby n is often adjusted so that n−m = 6 preserving the difference in exponents.
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3 Context and State of the Art

3.1.6 A Thermodynamical Approach: Work of Adhesion,
Interfacial Energy, and Surface Energy

The typical way—as introduced in the preceding sections—to characterize the ad-
hesion between two objects is to describe the involved interactions by potentials.
A different way to describe the adhesion of surfaces is to employ a thermodynamic
approach: This approach characterizes the strength of an adhesive contact by the so-
called ‘work of adhesion’. It is defined as the energy necessary to separate two objects
of material 1 and 2 in medium 3 and can be calculated by

∆GAdh = γ1,3,2 = γ13 + γ23 − γ12 , (3.9)

with the interfacial energies γij. The interfacial energy is the free energy change
per unit area if two materials increase their interfacial area. It can be calculated,
analogous to the work of adhesion, by the Dupré equation

γ12 = γ1 + γ2 −W12 , (3.10)

with the surface energies4 γi. Similar to the interfacial energy, the surface energy is
defined as the free energy change per unit area if the surface area of a material is
increased—basically, the interfacial energy with vacuum. It can also be understood
as half of the work of adhesion γ11 = 1

2
∆G11 needed to separate two alike materials

in vacuum (cohesion).

The major challenge in the thermodynamical approach, however, is to determine the
involved interfacial energies. Usually, they are derived from measured contact angles
of liquids. To do so, multiple different methods exist:

• an equation of state approach [Neu1974];
• a geometric-mean equation that separates the surface energies into a dispersion

and a polar component, neglecting spreading pressures [Owe1969];
• a geometric-mean equation that separates the surface energies into a dispersion

and a polar component and accounts for spreading pressures but assumes them
to be independent of the type of liquid employed [Bus1983];

• an approach5 that splits surface energies into two parts γTotal = γLW+γSR, repre-
senting Lifshitz-vdW (LW) and short-range (SR)—also referred to as acid-base—
interactions, whereby the latter term is further split into hydrogen-accepting and
-denoting parts γSR = 2

√
γ+γ− [VanOss1986].

Depending on the system, these methods are more or less successful. A further restric-
tion of the thermodynamical approach in general is that it is basically only appropriate

4For both surface and interfacial energy, the terms surface and interfacial ‘tension’ are also frequently
used, especially for liquids.

5This approach neglects spreading pressures as well.
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3.1 Surface Forces

Figure 3.4: Schematic illustration of a liquid bridge between two flat objects—hydrophilic
or hydrophobic—with equal contact angles. R1 and R2 are the principal radii of a liquid
bridge.

for zero separation contact, since the equations lack any kind of separation depen-
dence. Due to these limitations, the thermodynamical approach is strictly speaking
only applicable for the interactions of liquids.

3.1.7 Covalent and Chemical bonds

Besides the ‘physical’ interactions introduced in the sections above, covalent or chem-
ical bonds exist. In principle, these bonds are produced by two or more atoms sharing
electrons, an effect that arises from the endeavor of atoms to minimize the energy.
Covalent bonds are of very short-range and extremely strong.

3.1.8 Capillary Forces

Systems that are not completely immersed in water can be nevertheless dominated by
a water-induced interaction, the capillary force. This force can play a key role, even if
the system is seemingly ‘dry’, owing to the fact that at ambient conditions virtually
all surfaces are covered by a layer of water. The thickness of this water layer depends,
inter alia, on the wettability of the surface and the humidity; silicon oxide, for instance,
is usually covered by 1-2 nm of water [Asa2005]. When two bodies are brought into
contact, these water layers can form a capillary bridge, resulting in a capillary force
that is directed normally to the planes of the contact lines on the objects. These
capillary bridge forces can be either attractive or repulsive, depending on whether
the capillary bridge is convex or concave. The strength of a single capillary bridge is

13



3 Context and State of the Art

determined by the sum of the forces arising from the surface tension FTension(x) and
the Laplace pressure FLaplace(x). In the case of two homogeneous flat objects with
equal contact angles Θ separated by a distance x, the capillary bridge force can be
calculated by

FCapillary(x) = FTension(x) + FLaplace(x)

= 2πR(x)γLV sin(Θ) + πR(x)2∆PLaplace ,
(3.11)

with the radius R(x) of the interface between solid and liquid, the surface tension
γLV of the liquid-vapor interface, and the Laplace pressure ∆PLaplace [For1982]. This
pressure is given by

∆PLaplace = γLV

(
1

R1

+
1

R2

)
, (3.12)

whereby R1 and R2 are the two principal radii of a liquid bridge [Lap1806] (cf. Fig-
ure 3.4 ). In the case of two chemically different substrates, the calculation of the
capillary bridge force is not possible without further ado [DeSou2008].

Capillary bridge forces play an important role in many biological and nanotechnolog-
ical systems that are exposed to humid environments6 [Jan2004,Min2008].

3.2 Proteins

Proteins are macromolecules consisting of one or more polypeptides—linear polymers
composed of amino acids. Each amino acid is build up of a central carbon (and a
hydrogen atom), an amino group (NH2), a carboxylic acid group (COOH), and a
specific side chain. A total of twenty different amino acids—featuring different side
chains—are the building blocks for all naturally found proteins. The amino acids are
linked to each other by peptide bonds that form between the carboxyl and amino
groups. The sequence of the amino acids is referred to as the primary structure of
a protein, which unambiguously identifies it. The secondary structure describes the
spatial folding of the polypeptides. Due to hydrogen bonds, the amino acids form
characteristic structures, such as α-helices or β-sheets. Finally, the overall shape of
a protein that usually defines its function is called the tertiary structure. The shape
is mostly stabilized by the hydrophobic effect and can undergo changes if the protein
interacts with another object or if the external conditions (e. g. pH or temperature)
are changed. These so-called conformational changes can be described as transitions
between metastable conformations, visualized by minima in the energy landscape7.

6Obviously, capillary bridge forces do not play a role if the ‘humid environment’ is a complete
immersion into liquid.

7Due to the importance of both the entropy and the potential energy, the free energy is a good
measure for protein folding. It can be visualized in high dimensional free energy landscapes—
similar to geographic landscapes in two dimensions [Abk1994,Din2000].
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3.2.1 Protein Adsorption

If a solution that contains proteins is flushed over a surface, the proteins start to
adsorb onto it. This adsorption of proteins is often the initial step in the forma-
tion of biofilms. Once adsorbed to a surface, the proteins are part of a conditioning
layer, which is the foundation for the evolving biofilm [Cha1983,Bry2008,Gar2008].
If strongly bound to the surface, the proteins can provide a link for bacteria to at-
tach. The adsorption can be both physisorption8 (viz. reversible) or chemisorption9

(viz. irreversible). Both adsorption processes are driven by an interplay of the inter-
actions described in section 3.1. Which interactions dominate, however, depends on
the type of protein, the surface, and the external conditions (e. g. temperature, pH,
ionic strength, and buffer composition) [Rab2011]. In general, the adsorption process
of a single protein is composed of three steps, namely

1. transport (convective or diffusive) towards the surface,
2. attachment, and
3. spreading,

whereby interrupting desorption events can occur in between the second and third
step. Usually, it is not an individual protein that adsorbs, but a collective process
of many proteins. Since not all proteins adsorb simultaneously, it is a continuous
process. During this process, important parameters such as the surface properties
and the concentration change due to already adsorbed proteins, leading to a time-
dependent rate of adsorption. Hence, protein adsorption is commonly characterized
by the adsorption kinetics—the time-dependent increase of the amount of proteins on
the surface.

In the last 40 years, many groups investigated the adsorption of proteins experi-
mentally, theoretically, and via simulations [Rab2011]. The experimental studies
applied a wide range of different methods [Ram1994]: Popular choices are ellip-
sometry [Elw1998], surface plasmon resonance (SPR) [Gre2000], quartz crystal mi-
crobalance (QCM) [Laa1988], and reflectometry methods (Neutron [Lu2007] and X-
ray [Eve2008]). This way, most studies determined the adsorption kinetics. To follow
the adsorption process on a single protein level remains a very difficult task. An indi-
rect way, however, is the use of theoretical models. By assuming rate equations, the
macroscopic results of the experimental works can be traced back to events on the
molecular scale. Rate equations of various degrees of complexity are used. The most
simple and popular model is the Langmuir model, which incorporates only an on-rate
and an off-rate [Lam1916,Lan1918]. Other models include various further rates such as

8Physisorption is adsorption due to classical physical interactions, whereby the chemical nature of
neither the adsorbate nor the surface is changed [Bru1983].

9Chemisorption is a class of adsorption, whereby a chemical bond is formed and the chemical nature
of both the adsorbate and the surface can change [Nor1990].
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exchange or transition rates [Wah1995,Wah1997,Wer2002]. Besides the classical the-
oretical approaches, computational approaches enjoy great popularity in recent years.
Simulations of various complexity are performed to complement experimental studies.
The simulation programmers thereby have to trade off structural detail and precision
against computational costs and simulated timespans. The options range, for instance,
from highly precise quantum mechanical simulations [Cos2008,Rim2008] to molecu-
lar dynamics simulations [Kar2002] to Monte Carlo simulations [Bel2008, Rab2010]
or combinations of those [Zho2004]. Ab initio quantum mechanical simulations al-
low the access of the adsorbate state, the binding mechanisms, or the energies at the
atomic level, but are highly time and scale restricted due to the computational ex-
penses [Eus2004,Lat2008]. Hence, molecular dynamics and Monte Carlo simulations
often apply force fields instead of ab initio theory. In classical molecular dynamics
simulations, all single atoms of the proteins and the solvent are considered. Again, the
drawback is that only a limited time frame can be modeled. On the contrary, Monte
Carlo simulations model single proteins as—spherical—particles. Thereby they can
model processes on large timescales, but have to cut back on detail and precision.
Compromises are made by using groups of atoms as the basic unit, so-called coarse-
grained models, or by the implicit treatment of solvent molecules.

A more comprehensive introduction of proteins and protein adsorption is given in the
thesis and textbook in the references [Mal2003,Häh2011,Bel2012]

3.3 Bacteria

Bacteria exist on pretty much every place on earth. Their total population is esti-
mated to roughly 1030 cells. In one cubic centimeter of near-surface soil, approxi-
mately 200 million single bacteria can be found [Whi1998] and in the human body,
the total number of bacteria is about ten times larger than the number of eukaryotic
cells [Tan1992].

Taxonomically, the domain Bacteria constitutes one of the three domains10—along
with Archaea and Eucarya—in which the life on our planet can be classified [Woe1990].
In principle, the domain Bacteria11 comprises single-celled microorganisms that con-
tain no real cell nucleus. Their genetic material is contained in a specific region in the
cytoplasm, the nucleoid [Tha2005]. Moreover, they lack organelles such as mitochon-
dria and the endoplasmic reticulum.

10Whether or not the domains Bacteria and Archaea may be combined to Procarya is a controversial
topic [May1998,Woe1998].

11In microbiology, the term bacterium(-a) is still employed in different contexts. In this work, it
stands for representatives of the domain Bacteria.
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Figure 3.5: Structure of the cell wall of A) Gram-positive and B) Gram-negative bacteria.

The morphology of bacteria is diverse. They vary widely in shape and in size. Their
typical diameter is in the range of 0.2 µm to 2 µm [Jos2009]. Morphologically, bacteria
can be categorized in three basic shapes: spherical (cocci), rod-shaped (bacilli), and
spiral-shaped (spirilla). Yet, a more practical classification, especially in medical mi-
crobiology, is given by the Gram method [Gra1884]. The Gram staining reveals two
distinct possibilities of the cell wall (CW) structure. Thereby, bacteria can be classi-
fied as either Gram-positive or Gram-negative. Gram-negative bacteria feature a CW
that is composed of an outer and an inner membrane (cf. Figure 3.5B). In between
the membranes is the periplasmic space that contains a thin oligomolecular layer of
peptidoglycan (PG). The outer membrane is typically covered with lipopolysaccha-
rides. On the contrary, the CW of Gram-positive bacteria consists of a much thicker
PG layer but lacks an outer membrane (cf. Figure 3.5A).

Since the bacterial CW is the structure of preeminent importance for all interactions of
bacteria with their environment and acts as a mediator for adhesion, a more detailed
description of its composition is given in the following section. Moreover, as in this
thesis the two Gram-positive genera Staphylococcus and Streptococcus are investigated,
the focus lays on the CW of Gram-positive bacteria12.

12For a more comprehensive overview of the definition and the structure of bacteria, the reader shall
be referred to the corresponding chapter in the established textbooks (cf. [Jos2009]).
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3.3.1 Cell Wall of Gram-positive Bacteria

The major component of the CW of Gram-positive bacteria is peptidoglycan. This
complex polymer is—similar to chitin—composed of long glycan chains of alternat-
ing β-1,4-linked N-acetylglucosamine and N-acetylmuramic acid subunits. The glycan
chains are further crosslinked via peptide bridges to form a strong, but flexible struc-
ture [Sch1972, Vol2008]. The main function of the PG layer is to preserve the cell
integrity by withstanding the turgor pressure and to maintain a defined cell shape.
Moreover, it serves as a scaffold for anchoring other CW components such as proteins
and teichoic acids (cf. Figure 3.5A).

These CW compounds are responsible for all kind of interactions of the bacterium
with the environment. Teichoic acids are strongly negatively charged and thereby
define the electromechanical properties of the cell wall [Neu2003]. Moreover, they
play a key role in the bacterial adhesion process [Gro2001, Hus2001]. CW proteins
feature a wide variety of different functions [Nav1999,Sco2006], including

• the protection of the bacteria from environmental challenges, such as toxic con-
ditions or host immune defense system,

• the maintenance of the CW,
• the contribution to the cell division process (e. g. autolysins), and
• the attachment to different type of environmental components (e. g. adhesins).

The immobilization of the cell wall compounds, however, can vary significantly. Pro-
teins are attached either by covalent binding to the PG or by noncovalent binding to ei-
ther the PG or secondary wall polymers such as teichoic acids. [Nav1999,Sco2006]. Te-
ichoic acids can be further classified into wall teichoic and lipoteichoic acids [Neu2003,
Rei2011], whereby wall teichoic acids are covalently bound to the PG layer and lipote-
ichoic acids are anchored in the membrane. Whether lipoteichoic acids also always
extend into the peptidoglycan layer—strongly affecting their mobility—was recently
challenged [Rei2011].

Furthermore, polymeric cell-surface organelles such as flagella and pili (or fimbriae)
are also frequently found on and in the CW of Gram-positive bacteria [Tel2006,
Des2006].

3.3.2 Bacterial Adhesion

Nowadays, bacterial adhesion is a very active field of research as it is of importance
for various topics concerning nature and human life, such as marine science, plant and
soil ecology, the food industry, and most importantly, the biomedical field [An1998].
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3.3 Bacteria

Figure 3.6: Two different theoretical concepts for the description of unspecific bacterial adhe-
sion: A) The classical DLVO theory incorporates the electrostatic interaction Welectrostatic
and vdW interactions WvdW. The strength of the electrostatic interaction is strongly
dependent on the salt, viz. ion, concentration (cf. inset). The DLVO theory takes only
long-range interactions into account. B) Schematic representation of the thermodynamic
ansatz, whereby the free energy of the interface is calculated.

The adhesion of bacteria is the initial step in the formation of a biofilm [Cos1987].
If the respective substrate is human tissue or an implanted material, however, it is
frequently also the onset of an inflammation [Don2002].

Generally, bacterial adhesion can be classified into specific and unspecific adhesion.

Specific adhesion, also referred to as biological adhesion, combines all kinds of
receptor-ligand bonding [Jon1982]. It usually describes adhesion events of very
short-range that are based on the lock-and-key principle.

Unspecific adhesion, also referred to as physical adhesion, denotes the global inter-
action between a bacterial cell and a substrate. It is usually an interplay of the
interactions described in section 3.1.

Specific adhesion processes are important for intercellular adhesion, both bacterial
cell/bacterial cell and bacterial cell/host interactions [Bea1981, Sha1989]. The re-
sponsible adhesion proteins are either anchored in the CW or anchorless and can be
classified into adhesins and invasins [Kle2000,Chh2002].

Unspecific adhesion plays a major role in the adhesion to inorganic materials. Further-
more, unspecific adhesion prevalently precedes specific adhesion [Gri1987]: In these
cases, the first part—the reversible bacterial attachment— is dominated by unspecific
adhesion. The second part—the irreversible bond strengthening—is due to specific
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bonding. Since this thesis mainly focuses on unspecific adhesion, a brief review of
theoretical concepts and experimental studies is given in the following paragraphs.

To theoretically describe bacterial adhesion, two different physicochemical approaches
are available [vanLoo1990,Her1999]:

A popular ansatz is the application of the DLVO theory [Mar1971,Her1999,Dor2009].
This theory—initally introduced by Derjaguin and Landau [Der1941], and Verwey and
Overbeek [Ver1948] to describe the interaction between rigid colloids and interfaces—
incorporates electrostatic and vdW interactions (cf. Figure 3.6A). The practicability
of the DLVO theory for bacterial adhesion, however, is limited and failed in many
studies [Cam2000,Poo2002], as it neglects many essential properties of the system; it
basically takes only long-range interactions into account. Hence, to account for the
steric repulsion at small separations (cf. section 3.1.5), either cut-off radii or hard
sphere potentials are commonly used.

A second, very common ansatz is based on surface thermodynamics [Abs1983,Bus1984]:
The strength of the adhesive contact is determined by calculating the free energy of
adhesion ∆GAdh introduced in section 3.1.6 using

∆GAdh = γBS − γBL − γSL , (3.13)

with the involved interfaces bacterium/substrate (BS), bacterium/liquid (BL), and
substrate/liquid (SL) (cf. Figure 3.6B). Although this approach is also frequently
applied [Vij2005,Liu2007], it has severe limitations:

• Since it is essentially an equilibrium model, it does not allow any kinetic inter-
pretations [Rij1995].

• It is a stringent contact model. That means, any distance dependence of ∆GAdh

is ignored. The question how much of the cell actually makes contact with the
substrate is thereby especially critical.

• As discussed in section 3.1.6, multiple different methods exist to calculate in-
terfacial energies13. The suitability for bacterial adhesion, however, differs sub-
stantially [Bel1990].

• Moreover, contact angles of bacteria are hardly accessible. They depend, inter
alia, on drying [Bus1990] and growth conditions [Mam1987].

In other words, supposed all necessary parameters are known, this ansatz is still only
valid if the system is in equilibrium and dominated by short-range forces.

A combination of these two approaches is the extended DLVO theory, called XDLVO.
Therein, the classical DLVO interactions are supplemented by short-range interac-
13All of them commonly rely on contact angles of various liquids that are not involved in the actual
adhesion process.
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tions, namely electron-acceptor/electron-donor (also referred to as Lewis acid-base)
and osmotic interactions [VanOss1989,VanOss1990,vanOss2006]. Although the appli-
cations of the XDLVO theory revealed better agreements with experiments as com-
pared to the ‘classical’ DLVO theory [Mei1995,Bay2009], it is still a limited approach,
since it treats bacteria as inert, rigid, and homogeneous solids. In recent years, how-
ever, promising theories were introduced such as the model by Gaboriaud et al. de-
scribing bacteria as soft particles composed of a hard core and a permeable charged
gel-like layer [Gab2008].

To experimentally access the adhesion of bacteria, various methods were applied:

Typically, parallel plate flow chambers were utilized [vanKoo1992,Har2006]. This
macroscopic technique is made up of a flow chamber, which is integrated in a flow
system and in which a laminar flow is assured [vanWag1980]. Usually, one side of
the chamber is sealed by the material of interest and the other side is transparent
to ensure the accessibility by optical means. By flushing bacterial solution through
the flow chamber while monitoring the amount of adsorbed bacteria, the adsorption
kinetics is revealed. A more technical introduction to parallel plate flow chambers is
given in section 4.3.

In recent years, a quartz crystal microbalance (QCM) was frequently applied
to replace optical microscopy for the determination of the adsorbed amount of bac-
teria [Olo2005, Ols2009, Str2009, Ols2010]. In principle, a QCM is composed of an
oscillating quartz crystal on which the substrate is mounted. By tracking the oscil-
lation frequency, a change in the adsorbed mass can be detected. Unfortunately, it
is not possible to access the total number of adsorbed bacteria without further ado,
since the frequency depends on multiple parameters, such as viscosity, flow rate, and
elasticity. This problem, however, is reduced by more advanced QCMs, which allow
for a simultaneous determination of the energy dissipation (QCM-D).

Both flow chambers and QCMs are macroscopic and indirect approaches to charac-
terize bacterial adhesion, since the determined kinetics emerge from an interplay of
adsorption and desorption. Experimental methods to directly determine the adhe-
sion forces exerted by bacteria, are, for instance, optical tweezers and atomic force
microscopy (AFM).

Optical tweezers are based on the formation of an optical trap by a focused laser
beam [Ash1970,Ash1986,Blo1992]. Inside the optical trap, small objects are confined
by the radiation pressure, arising from the refractive index mismatch. Optical tweezers
enable the manipulation and exertion of forces onto biological objects such as bacteria
and viruses [Ash1987,Svo1994,Lia2000,Zha2008,Mof2008]. Yet, since the strength of
the applied forces is limited to the pN-range, optical tweezers are better suited to
study single molecule interactions than to characterize global bacterial adhesion.
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The AFM emerged as a very promising tool to study biological interactions in the
last decade [Duf2002, Duf2008, Wri2010]. The so-called ‘force spectroscopy mode’
allows for a direct measurement of forces. By employing suitable AFM-probes, the
adhesion of biological objects such as bacteria can be studied [Mer1999, Bow2001,
Yon2006,Lee2006,Hel2008]. Since the force ranges of an AFM (10−104 pN) and optical
tweezers (0.1− 100pN) are mostly distinct, these two methods are not competing but
complementary techniques [Neu2008]. In this work, the AFM is the method of choice.
Hence, a detailed technical description is given in section 4.2.

The investigated parameters in the experimental studies are diverse. Many studies ex-
amined the impact of the hydrophobicity and surface energy of the substrate [Dij1987,
Bru2001,Vij2005, Eme2006, Bok2008b, Liu2011] or the bacteria [vanLoo1987] on the
adhesion forces. Other studies concentrated on electrostatic interactions [Cam2000,
Poo2002,Kal2010] or surface parameters such as roughness and topography [Tay1998,
Eme2006,Whi2006, Ans2010, Sin2011]. Yet, only little work has been performed to
investigate the influence of vdW interactions on the adhesion of bacteria [Ste2009].
Moreover, most studies have in common that they did not separate parameters influ-
encing the different interactions independently. For a comprehensive understanding
of the bacterial adhesion process, however, it is necessary to seek quantitative infor-
mation about the single contributions of all involved interactions.

3.3.3 Staphylococci

Staphylococci are Gram-positive cocci that are prevalently found in the microflora of
mammals. They are catalase-positive and usually 0.8−1 µm in diameter. The Staphy-
lococcal genus enfolds various—pathogenic as well as apathogenic—species. In this
work, the species of interest are Staphylococcus aureus and Staphylococcus carnosus,
two of the most commonly found Staphylococcal species in human, which will be de-
scribed in the following paragraphs14.

Staphylococcus aureus was first described by Rosenbach in 1884 [Ros1884] and
named after the golden (latin ‘aureus’) color of their colonies. They inhibit the nares
of nearly 40% of the human population15 [Klu1997]. Yet, S. aureus are opportunistic
bacteria: They are non-pathogenic, as long as the host immune system is intact, but
highly pathogenic if the immune system is lowered. Hence, infections especially occur
in hospitals: S. aureus is the most common cause of nosocomial (hospital acquired;

14A more comprehensive description of the genus Staphylococcus is given in the respective chapters
of textbooks [Mad2006,Gat2009].

15Yet, only 20% of the human population are persistent carriers, that means almost always carry a
S. aureus strain.
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HA) infections and causes high treatment expenses and economical damages. More-
over, community acquired (CA) infections are increasingly often observed, especially
in nursing homes and long-term care facilities [Rub1999].

The biggest threat, however, arises from the resistance against antimicrobial agents.
Today, more than 95% of S. aureus infections are resistant to first-line antibiotics,
e. g. penicillin, ampicillin, and the antipseudomonas penicilins [Neu1992]. Moreover,
methicillin-resistance occurs to an increasing extent. Methicillin-resistant S. aureus
(MRSA) were first reported in 1968 in a hospital in Boston [Bar1968]. In the 1980s,
an upsurge of the frequency of occurrence of MRSA took place, which led to the
occurrence of a resistance in 30% of all S. aureus infections in the beginning of the
1990s [Boy1990, Pan1992]. Nowadays, MRSA is endemic or even epidemic in many
hospitals; Methicillin-resistant S. aureus infections in some US intensive care units
reached nearly 65% [Kle2006].

Yet, even without any resistance, the treatment of S. aureus diseases can be compli-
cated, since it is a multifaceted pathogen [Low1998,Arc1998,Fre2006]. Various types
of diseases—from minor to life-threatening infections—can be caused by S. aureus ,
such as skin and soft tissue infections [Fra2005], endocarditis [Mil2008], pneumo-
nia [Chi1919], and the toxic shock syndrome [Ber1981].

The high level of pathogenicity of S. aureus is due to their abilities to produce multiple
toxins, to evade the host immune system, to adhere to—abiotic and biotic—surfaces,
and to form biofilms. For the latter three properties, the cell wall plays a key role:
As typical for Gram-positive bacteria (cf. section 3.3.1), the cell wall of S. aureus
is mostly composed of peptidoglycan (50% by weight [Low1998]). The S. aureus
peptidoglycan is strongly crosslinked (74% − 92%) and composed of glycan strands,
showing a bimodal length distribution of many (85% − 90%) short (≈ 6 nm) and
fewer (10% − 15%) long (� 26 nm) strands [deJon1992,Bon2000,Vol2010]. Overall,
the S. aureus cell wall comprises three layers (cf. Figure 3.5 ): The typical inner
plasma membrane of 5.4 nm thickness, a 15.8(25) nm thick inner wall zone (IWZ) of
low density (periplasmic space), and a 19(4) nm thick outer wall zone (OWZ) of high
density [Mat2006,Mat2007,Vol2010]. The peptidoglycan in the OWZ is compressed
by the high turgor pressure, as revealed by the finding that, if isolated, it is about
1.7-fold thicker (33.8(54)nm) than in intact cells [Vol2010].

Besides peptidoglycan, proteins are another major compound of the cell wall. Wolff
et al. identified a total of 271 integral membrane proteins in S. aureus [Wol2008].
These proteins have various functions, such as immune evasion [Fos2005] and adhe-
sion [Fos1998].

Cell wall proteins can also be classified by the type of anchoring (cf. Figure 3.7 ),
ranging from ‘covalently integrated in the peptidoglycan’ to ‘secreted’ [Dre2011],
which leads to different degrees of mobility. The proteins of major interest for this
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Figure 3.7: Schematic illustration of different classes of proteins integrated on or in the cell
wall of S. aureus. The grade of anchoring ranges from completely unbound to covalently
bound. Adapted from [Dre2011].

study are those which are exposed on the cell surface—also referred to as the ‘surfa-
come’ [Dre2011]—and especially those which are involved in the adhesion process (ad-
hesins). S. aureus expresses a wide range of surface adhesins. More than twenty differ-
ent covalently bound adhesins are known. Most of them feature a characteristic Leu-
Pro-X-Thr-Gly (LPXTG) motif that anchors them to the cell surface and belong to the
MSCRAMM (microbial surface components recognizing adhesive matrix molecules)
family, e. g. Cna, Spa, ClfA, ClfB, FnBPA and FnBPB [Fos1998,Maz1999,Cla2006].
These proteins bind to various host factors—such as fibronectin, collagen, von Wille-
brand factor, or fibrinogen—and thereby enable the bacterium to adhere to the ex-
tracellular matrix and foster biofilm formation. Further covalently bound proteins
promote the attachment to abiotic surfaces (e. g. Bap [Cuc2001], SasC [Sch2009]).

In addition to the covalently bound adhesins, S. aureus produces several non-covalently
bound surface adhesins called secretable expanded repertoire adhesive molecules (SER-
AMs). Important members of this adhesin family are, for instance, Eap (extracellular
adhesive protein), Efb (extracellular fibrinogen-binding protein), and Emp (extracel-
lular matrix protein) [Bod1992, Bod1994, Pal1998, Pal1999]. Although SERAMs are
secreted and released by the bacterial cell, they are often subsequently rebound to the
cell wall surface and thereby serve as a linkage between host factors and S. aureus .

Apart from their contribution to the bacterial attachment, many SERAMs have ad-
ditional functions such as the interference with the host defense and the immune
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system [Cha2002,Har2003,Cha2005]. Besides the SERAMS, S. aureus features var-
ious other mechanisms to evade the host immune system [Fos2005]: The covalently
bound protein A is able to bind antibodies and thereby inhibits phagocytic engulf-
ment [Kes1975, Sjö1977]). Further mechanisms to ‘hide’ from the immune systems
are, for instance, the formation of a polysaccharide capsule [Wil1979], the clumping of
fibrinogen [Bod1989], and the invasion of host cells [Bay1998]. Additionally to these
‘single bacterial defense mechanisms’, the formation of biofilms provides a protection
from antibiotics and from the immune system [Don2002,Lew2008,Ott2008,Göt2002,
And2008].

Staphylococcus carnosus is an apathogenic member of the Staphylococcus genus.
It is the predominant bacterial species in fermented meat [Sch1982]. Industrially,
S. carnosus is of importance since they are commonly used in the ripening process
of dry sausages and as a starter culture for the fermentation of meat products. For
scientific research, S. carnosus is also of relevance although it produces no toxins,
haemolysins, protein A, coagulase, or clumping factors. Yet, it serves as a host organ-
ism for gene cloning and protein production [Göt1990,Bru1997].

3.3.4 Streptococci

Another genus of Gram-positive bacteria studied in this work is the Streptococcus
genus. Streptococci are easily distinguishable from Staphylococci , because they form
chain-like structures16. These characteristic structures are due to their ability to
divide only along one axis. A further distinguishing feature is the lacking catalase
production of most Streptococci species. As they usually are facultative anaerobes,
Streptococci can survive independent of the oxygen concentration. Although most
species are nonpathogenic, Streptococci can cause a wide range of diseases, such as
meningitis [Sch1996], endocarditis [Rob1979], and pneumonia [Tet2001].

In this work, the species of interest are Streptococcus mutans and Streptococcus oralis,
which are both found in the oral cavity [Kro1999]:

Streptococcus mutans [Cla1924] is one of the major organisms responsible for
dental caries [Ham1980, Loe1986]. S. mutans adheres strongly to surfaces, due to
their capacity to synthesize glucan from sucrose [Gib1975]. Glucan is a sticky ex-
tracellular polysaccharide that binds specifically to cell wall proteins of oral Strep-
tococci [Ban2003]. Thereby, a slime layer is produced that fosters the formation of

16The structures from which the name is derived; Greek ‘streptos’.
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biofilms [Gib1973,Lyn2007]. The actual tooth decaying capacity of S. mutans, how-
ever, arises from the production of lactic acid, which causes the demineralization of
the tooth material [Loe1986,Mad2006].

Streptococcus oralis [Bri1982] is an opportunistic pathogen that belongs to the
mitis phylogenetic group. It is a commensal of the human oral cavity, but can also be
the cause for bacterial endocarditis [Wha2000].

3.4 Geckos

Gekkonoidae, better known under their nontechnical name ‘Geckos’, are a type of
lizards belonging to the Reptilia class. Geckos can be found nearly everywhere in the
world, mostly in warm climates. Their size varies ranging from 16mm (Sphaerodacty-
lus ariasae and Sphaerodactylus parthenopion [Hed2001]) up to 60 cm (Hoplodactylus
delcourti [Bau1986]). Geckos are best recognized by their lack of an eyelid. Moreover,
many Gecko species feature a variety of extraordinary characteristics, such as the
ability to make chirping cries17 and the occurrence of parthenogenesis18 [Mor1983].
Their most outstanding skill, however, is their climbing capability. Geckos are the
largest animal that can walk on the ceiling and are able to stick to almost any surface.
This adhesion skill, which raised the interest of researchers of various fields, shall be
explored in more detail in the following section.

3.4.1 Gecko Adhesion

Initially, the adhesion skill of the gecko was attributed to the sharp points of its claws
taking a hold on slight irregularities of the surface [Mah1941]. Later on, since geckos
are able to stick to almost any—rough as well as extremely smooth—surface, the
claw theory was contested and a remarkable property of the geckos toe was suggested
to be the key adaptation that provides the sticking ability: the hierarchical struc-
ture [Mad1964,Rui1965,Ern1966,Hil1968]. The underside of each toe is divided into
lamellar structures that terminate in arrays of densely packed hair-like protrusions,
called seta (Figure 3.8A). Individual setae are bundles of β-keratin fibrils several hun-
dred µm long [Riz2005]. These fibrils terminate in triangular, wedge-shaped pads
about 150 nm wide at the tip, called spatulae (Figure 3.8B). As a consequence of this
hierarchical structure, the setal arrays have an overall compliance that allows them to

17The sound (Malayan imitation gēkoq) prompted the term ‘gecko’.
18Parthenogenesis is a type of asexual reproduction.
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3.4 Geckos

Figure 3.8: Helium ion microscope [Mor2006] images of the adhesive structure of Gekko
gecko, namely A,B) an array of multiple setae, C) single setae subdividing further into
spatulae, and D) the small pads that terminate each spatula. Images taken by Dr. Jijin
Yang at Carl Zeiss Microscopy and courtesy of Dr. Jonathan Puthoff. Preparation details
are described in Ref. [Yan2011]

closely conform to rough surfaces [Aut2006b]. The large number of nanoscopic con-
tacts that are established at the spatular tips produce considerable overall adhesion
on virtually any surface. This adhesion mechanism is also employed by other animals
such as bugs, spiders, and flies [Arz2003]. Yet, the gecko—the largest and heavi-
est of the mentioned examples—possesses the highest-developed system featuring the
smallest and most densely packed hairs.
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3 Context and State of the Art

Therefore, the gecko adhesion system provoked not only the interest of researchers
in natural science but also of engineers. Since Autumn et al. [Aut2002b] published
the proof of principle that artificial fibrillar arrays reminiscent of setae can gener-
ate high adhesion, multiple promising designs of gecko adhesives have been intro-
duced [Gei2003,Mur2007,Mah2008,Lee2009b].

While the structure of gecko setae is mostly well documented, the mechanisms and
interactions leading to the strong adhesive forces are not yet fully understood. As
the gecko is able to stick even to atomically smooth surfaces [Aut2002b], a mechan-
ical origin of the adhesion, namely a jamming of the appendages in crevices on the
surface, can be ruled out. Due to the very intimate contacts between the terminal
end of the spatulae and a surface, intermolecular forces are relevant. First tries to
describe the Gecko adhesion were based on water contact angles [Hil1968, Hil1969].
In the last decade, however, van der Waals forces were shown to be a main fac-
tor [Aut2002b, Aut2002a, Hub2005]. Furthermore, the impact of humidity on the
adhesion forces was discussed extensively. Several studies showed an increase in adhe-
sion force with increasing humidity [Hub2005, Sun2005,Nie2008,Put2010]. Yet, The
molecular mechanisms leading to this behavior are explained controversially. Sun et
al. concluded only capillary forces to be responsible for gecko adhesion [Sun2005]. By
measuring the same trends on hydrophilic and hydrophobic substrates, Huber et al.
and Puthoff et al. disproved this assumption and gave explanations based on modified
vdW forces [Hub2005] and changes in material properties [Nie2008,Put2010].

3.5 Friction and Contact Mechanics

At the macroscopic scale, the friction force FFriction on an object dragged over a surface
is generally regarded to be independent of the contact area and to scale linearly with
the applied load L (Amonton’s Law)

FFriction = µ · L , (3.14)

where µ is the coefficient of friction. Yet, this assumption is only valid owing to the
fact that the real contact area is usually unknown due to surface roughness and the in-
fluence of other effects, such as wear and tribochemistry. On a microscopic/nanoscopic
scale, viz. in the case of only one or a few single asperities, the friction force is pro-
portional to the contact area A and given by

FFriction = τ · A , (3.15)

where τ is the interfacial shear strength, which corresponds to the shear force per unit
area required to shear the interface [Bow1964,Car1997,Mo2009].
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Figure 3.9: Overview of contact mechanic models. Assumed configurations (insets) and the
resultant interaction potentials of A) the Hertz model, B) the JKR model, C) the DMT
model, and D) the MD model. E) ‘Actual’ (Lennard-Jones like) interaction potential as a
comparison.

Equation 3.15 connects issues of microscale/nanoscale friction with the topic of contact
mechanic and the question of the ‘actual’ contact area of a probe and a surface19. This
question was addressed by Heinrich Hertz already more than a century ago. In his
famous Hertz theory20, the real contact area of a sphere (radius R) pressed against
a surface with a load L is calculated [Her1882]. The contact radius a is given by

aHertz =

(
R

K

) 1
3

· L 1
3 , (3.16)

with the contact modulus K =
(

1−ν21
E1

+
1−ν22
E2

)−1
, whereby νi and Ei are the Poisson’s

ratios and the elastic moduli of the involved materials (1,2). The major shortcoming
19Equation 3.15 transforms into Equation 3.14 if the ‘real contact area’ is proportional to the applied
load, which is often the case for ‘rough’, macroscopic surfaces.

20J. Boussinesq independently presented the same calculations in 1882 as well.
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Figure 3.10: The contact area vs. load curves for the Hertz-, JKR-, and DMT-model and an
MD intermediate case. Axes are scaled with the MD prefactors β and â. Figure adapted
from [Car1999].

of the Hertzian theory, however, is that all kinds of adhesive forces are disregarded
(Figure 3.9A). Therefore, in the presence of an adhesive interaction, the real contact
radius is always larger than the one given by the Hertz theory.

To account for the underestimated contact radius, Johnson et al. incorporated the
effect of adhesion into the Hertzian theory [Joh1971]. In the Johnson-Kendall-
Roberts (JKR) theory, elastic energy, potential energy (of the external load), and
surface energy are balanced and the contact radius is calculated to

aJKR =

(
R

K

) 1
3

·
[
L+ 3πγ1,3,2R +

√
6πγRL+ (3πγ1,3,2R)2

] 1
3

, (3.17)

where γ1,3,2 is the thermodynamic work of adhesion. This is the energy obtained
by a change in contact area of the two surfaces (1,2) surrounded by the medium
3 (cf. section 3.1.6). In this way, the JKR theory only includes short-range forces
that act at a ‘contact distance’ z = z0 and can be represented by a delta function
FJKR = γ1,3,2δ(z− z0) (Figure 3.9B). This assumption is valid for systems featuring

• elastic materials,
• strong adhesion,
• and a ‘larger scale’.
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A huge advantage of the JKR theory was that it explained finite contact radii at
negative loads. A critical load of

FJKR = −3

2
πγR (3.18)

has to be applied to separate the sphere from the surface. The limitation, however, is
that long-range forces are neglected .

To account for long-range forces, Derjaguin et al. introduced a completely different
extension of the Hertzian theory, the Derjaguin-Muller-Toporov (DMT) the-
ory [Der1975]. The basic idea was that long-range forces act in a ring-shaped region
outside of the contact area, but do not deform the Hertzian contact profile (Fig-
ure 3.9C). By superposing these additional forces on the applied load, the contact
radius is modified to

aDMT =

(
R

K

) 1
3

· [L+ 2πγR]
1
3 (3.19)

and the critical load is
FDMT = −2πγR. (3.20)

This model, however, is only valid for systems with

• stiff materials,
• weak adhesion,
• and a ‘smaller scale’.

Hence, the JKR and the DMT model can be seen as two limiting cases of the interac-
tion spectrum. To describe the intermediate regime, Maugis approximated the ‘actual’
potential by a square well Dugdale potential (cf. Figure 3.9D) [Dug1960,Mau1992].
In the Maugis-Dugdale (MD) theory, a transition parameter

λ = 2σ0

(
R

πγK2

) 1
3

(3.21)

is defined, where σ0 matches the minimum adhesive force per unit area in the ‘actual’
potential. In the case of λ −→ 0 the JKR model applies, and in the case of λ −→
∞, the DMT model applies. To predict values for the transition regime, Maugis
introduced three dimensionless prefactors: β, â, and α. Thus, the critical load is
given by

FMD = −βπγR, (3.22)

the contact radius at zero load by

aMD,0 = â

(
πγR2

K

) 1
3

, (3.23)
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Figure 3.11: Correlation between the Maugis transition parameter λ and the dimensionless
MD prefactors: A) β, B) â, and C) α.

and the general contact radius as a function of the applied load by

aMD = aMD,0 ·



α +

√
1− L

FMD

1 + α




2
3

. (3.24)

The prefactors β, â, and α are related to the transition parameter λ. Unfortunately,
there are no analytic expressions for these relations. Carpick et al., however, pro-
vided approximate empirical relations that fit the experimentally determined values
reasonably well (within 1% accuracy or better) [Car1999]:

β =
1

4
·
(

4.04 · λ1.4 − 1

4.04 · λ1.4 + 1

)
− 7

4
, (3.25)

â = 1.54 + 0.279 ·
(

2.28 · λ1.3 − 1

2.28 · λ1.3 + 1

)
, (3.26)

α =
1

1.02
·
[
1− exp

(
λ

−0.924

)]
. (3.27)

As shown in Figure 3.11 , in the DMT-limit (roughly λ < 0.1) the prefactors approach
β −→ −2, â −→ 3

√
2, and α −→ 0 and the Equations 3.22 - 3.24 resemble the DMT

case (Equations 3.19 and 3.20). Contrariwise, in the JKR-limit (roughly λ > 5), the
prefactors become β −→ −3

2
, â −→ 3

√
6, and α −→ 1 and the Equations 3.22 - 3.24

resemble the JKR case (Equations 3.17 and 3.18).
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A more detailed overview of the theory of contact mechanics and single-asperity nan-
otribology is given by the references [Mau1999,Nos2007,Szl2008].

Contact mechanic theories are of relevance for multiple topics in this thesis. On the
one hand, the DMT theory is used to model the nanoscale contact between AFM tips
and samples: Thus, by fitting the force distance curves acquired in PeakForce QNM®

with the DMT model, the local elasticity of the sample, for instance, can be extracted
(cf. section 4.2.4 and section 6.2). On the other hand, the MD model is applied to
model the adhesive contact of the gecko spatulae with a sample (cf. section 5.1.3).
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4 Materials and Methods

4.1 Substrates

4.1.1 Silicon wafers

To allow for a separate variation of surface properties and subsurface composition, a
set of model substrates was utilized (cf. Figure 4.1 ). The model substrates are based
on silicon wafers1 with two different types of oxide layers: ‘type N’ wafers with a
native silicon oxide layer of 1.7(3) nm (Wacker Siltronic AG, Burghausen, Germany
and Si-Mat, Landsberg, Germany) and ‘type T’ wafers with a thick thermally grown
silicon oxide layer with a thickness of 150(1) nm (Silchem, Freiberg, Germany and
Si-Mat, Landsberg, Germany). The surfaces of both wafer types are identical as
shown by a thorough characterization using AFM, ellipsometry, contact angle and ζ-
potential measurements (cf. Table 4.1 and Figure 4.2 ). Furthermore, X-ray reflectivity
and XPS data provided in the publication in Addendum I corroborate that the
native oxide layers do not differ in their density from the thermally grown layers and
that the stochiometry of the uppermost layer is indeed SiO2. Thus, the two types of
silicon wafers in combination feature the targeted characteristics: They differ in the
subsurface composition but resemble each other in terms of their surface properties.

Immediately prior to use, the substrates were cleaned by immersing them for 30min
in freshly prepared ‘piranha solution’, a 1:1 mixture of sulfuric acid H2SO4 (conc.)
and unstabilized hydrogen-peroxide H2O2 (30%). To remove residues of the acids, the
wafers were put in boiling deionized water for 90min, changing the water four times
in between. In addition to the chemical cleaning process, a mechanical cleaning step
was employed, during which the wafers were exposed to a ‘Snow-Jet’—a focused jet
of CO2 crystals that removes micro- and macroscopic particles [She1994].

A second pair of substrates linked by the same characteristics was obtained by hy-
drophobizing both wafers—immediately after the cleaning procedure—using a self-
assembled monolayer of silane molecules with a CH3 tailgroup (octadecyltrichlorosi-

1The silicon wafers are polished and feature a 1-0-0 crystal orientation, a thickness of 525(20) µm,
a specific resistance of 10− 20 Ω cm−1, and a boron (p) doping.

35



4 Materials and Methods

different
subsurface
composition

Si

SiO2 1.7 nm

Si

SiO2
1.7 nm

Si

SiO2

150 nm

Si

SiO2

150 nm

different
surface
properties

hydro-
philic

hydro-
phobic

native SiO2 thick SiO2

Figure 4.1: Model substrates based on silicon wafers with different thicknesses of oxide layers
that allow for a separation of interactions depending on surface parameters and interactions
arising from subsurface materials. The surface chemistry is tuned by a silanization of the
wafers that renders them hydrophobic. The blue droplets illustrate the different water
contact angles.
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Figure 4.2: ζ potentials of hydrophobic (OTS) and hydrophilic (SiO2) type T and type N
wafers as function of pH, giving insight into the strength of electrostatic interactions.
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Table 4.1: Surface properties of the set of tailored Si wafers: root mean square (rms) rough-
ness, advancing (adv) and receding (rec) water contact angles, and Lifshitz-van der Waals
(LW) as well as Lewis acid-base (AB) components of the surface energy γ obtained from
contact angles of three different liquids [Myk2003].

doxide (nm) rms (nm) γLW (mJm−2) γAB (mJm−2) Θadv (◦) Θrec (◦)

OTS T 150(1) 0.19(3) 24(1) 0 111(3) 103(4)

OTS N 1.7(3) 0.17(0) 24(1) 0 111(2) 103(2)

SiO2 T 150(1) 0.13(3) 43(1) 20(1) 5(2) compl. wetting

SiO2 N 1.7(3) 0.09(2) 43(1) 21(1) 7(2) compl. wetting

lane, OTS, Sigma-Aldrich, Germany) following a modified recipe [Les2012] based
on standard procedures [Brz1994,Was1989]. The produced OTS surfaces were also
characterized using AFM, ellipsometry, contact angle and ζ-potential measurements
(cf. Table 4.1 and Figure 4.2 ). Additionally, the high quality of the achieved OTS
monolayers was affirmed by X-ray reflectivity measurements: The obtained values of
the measurements shown in the publication in Addendum II agree well with
literature values [Mez2006]. Altogether, the characterization shows that the OTS
layers feature a thickness of approximately 2.6nm, an rms roughness below 0.2 nm,
and a uniform coverage, whereby a homogenous, dense, almost upright (tilt angles of
4◦−5◦ [Ger2012]) all-trans configuration of the molecules is indicated. In preparation
for experiments, the hydrophobic wafers were cleaned by immersing them subsequently
into ethanol and acetone (5 min each) in an ultrasonic bath. Afterwards, the wafers
were in some cases—if specifically noted in the respective study—rinsed for 30 min in
boiling deionized water in order to remove residues of the solvents.

In summary, the set of tailored Si wafers contains combinations of two different sur-
face chemistries—hydrophilic ‘SiO2’ and hydrophobic ‘OTS’ wafers—and two different
subsurface compositions—‘type N’ wafers with a native thin oxide layer and ‘type T’
wafers with a thick oxide layer. Hence, the set allows for a separate study of in-
teractions depending on surface parameters and interactions arising from subsurface
material.
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Figure 4.3: AFM topography images of 1m × 1m sections of the ‘everyday substrates’ A)
polished stainless steel, B) aluminum, C) copper, D) gold, and E) a part of a yoghurt cup
(PP). Note the different height scales.

Table 4.2: Root mean square (rms) roughness and advancing water contact angles of the
selection of ‘everyday substrates’: stainless steel, aluminum (Al), copper (Cu), gold (Au),
and a part of a yoghurt cup (PP).

stainless
steel

Al Cu Au yoghurt
cup (PP)

rms (nm) 2.20(4) 4(1) 9(2) 5.13(1) 16(1)

Θadv (◦) < 10 < 10 < 10 < 10 65< Θ <110

4.1.2 ‘Everyday Substrates’

Besides the systematic studies using the set of tailored Si wafers, this thesis includes
an applied study on a selection of ‘everyday substrates’2: Stainless steel, aluminum,
copper, and a part of a yoghurt cup (PP) were chosen as ‘everyday substrates’ (cf. Fig-
ure 4.3 ).

To achieve comparable smooth surfaces with a nanometer scale roughness (cf. Ta-
ble 4.2), different preparation and polishing techniques were applied:

2The preparation and characterization of the substrates in this section were performed by Sebastian
Hümbert during his work as a diploma student tutored by Peter Loskill (cf. [Hue2010]).
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The stainless steel, aluminum, and copper samples were treated using abrasive
paper with four different grits. Following the abrasion process, the samples
were cleaned by immersing them subsequently into toluol, acetone, and ethanol
in an ultrasonic bath (5 min each). In between the cleaning steps, the samples
were carefully dried in a nitrogen stream.

The gold surfaces were prepared by a vapor deposition process (UNIVEX, Leybold-
Heraeus GmbH, Cologne, Germany). Silicon wafers—cleaned as described in
section 4.1.1—were coated with a roughly 4 nm thick chromium layer that en-
ables a strong adhesion between the subsequent gold layer and the underlaying
wafer. To prevent any influence of the underlying material on the investigated
surface processes, the gold layer was prepared to achieve a thickness of roughly
100 nm. The thickness of the deposited layer was thereby monitored using a
quartz crystal microbalance (XTM/2 Deposition Monitor, Inficon, New York,
USA).

A yoghurt cup consisting of polypropylene (PP) was selected as a real everyday
sample. The off-the-shelf yoghurt cup was cut up in millimeter sized pieces. The
pieces were then cleaned by immersing them in deionized water and ethanol in
an ultrasonic bath (5 min each) and subsequently dried in a nitrogen stream.

4.2 Atomic Force Microscopy

The first atomic force microscope (AFM) was introduced already more than two
decades ago by Gerd Binnig [Bin1986a,Bin1986b]. Since then, AFMs have developed
to one of the most important microscopy techniques in nanoscience. The fundamental
principle of an AFM is based on the scanning of a small pyramidal tip across a surface.
Since the actual contact between the tip and the surface is made by only a few atoms,
it is possible to achieve atomic resolution with an AFM. The tip itself is placed at
the end of a cantilever, which is moved by piezo motors relative3 to a sample in x, y,
and z direction, whereby the deflection of the cantilever is monitored. The monitor-
ing is commonly achieved using the beam-bounce method: A laser is focused on the
backside of the cantilever and the reflection detected by a four-quadrant photodiode.
Besides, there are several other detection methods available such as interferometry or
scanning tunneling microscopy4. Based on the deflection data, the AFM is operated
using a feedback loop. As feedback signal, several parameters can be used, depending
on the targeted application. In general, two fundamental modi of operation exist:
static AFM and dynamic AFM.

The most common static AFM mode is the contact mode with constant force: While
the tip scans across the sample, the feedback loop keeps the applied force, viz. the

3Depending on the AFM model, either the cantilever, the sample or both are moved.
4In the original design by Binnig, a scanning tunneling microscopy was used.
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deflection of the cantilever, constant. To achieve this, the z-position of the cantilever
is varied by a piezo motor. This variation directly reflects the topography of the
sample and is used as the output signal. The disadvantage of static AFM in general
is that while scanning, a normal and a lateral force are applied to the sample. Thus,
deformations of the sample can occur, possibly inducing imaging artifacts, and both
tip and sample can get damaged.

In dynamic AFM, the cantilever is oscillated close to its resonance frequency. Inter-
actions between tip and sample impose an additional spring and therefore modify the
resonance frequency of the system. Since these interactions, viz. the spring constant
of the ‘extra spring’, are dependent on the distance between the tip and the surface,
the resonance frequency shift5 can be utilized as well to maintain a constant height
above the sample surface. In the most common dynamic AFM mode6, the tapping
mode™ (TM), also referred to as intermittent contact mode or amplitude modulation
atomic force microscopy (AM-AFM), the excitation frequency is kept constant and
the separation between cantilever and substrate decreased until a specified setpoint
for the oscillation amplitude is reached. While scanning, the z-position of the can-
tilever is varied—in an analogous manner as in the contact mode—to maintain the
specified amplitude setpoint. In principle, the z-movement again corresponds to the
topography of the sample7. Benefits of TM-AFM are that no lateral forces are ap-
plied and that normal forces are exerted only when ‘tapping’ onto the sample in the
reversal points of the oscillations8. Thereby, the risk of a deformation or alteration of
the sample is reduced. For this reason, TM-AFM is commonly used to study soft and
damageable samples.

Yet, the biggest advantage of dynamic AFM is the so-called phase image. The energy
dissipated while oscillating induces a phase shift relative to the driving force. Hence,
the phase image is a map of the dissipated energy at the respective point on the sample.
The dissipated energy, however, is influenced inter alia by the properties of the imaged
material (e. g. adhesion, elasticity). Consequently, the phase image reflects a map of
the material properties of the sample—if the setpoint is kept constant throughout
the imaging. This ability to not only image the topography of the sample, but also
to probe its properties provides an unique selling point to AFM that distinguishes it
from other microscopy techniques.

Today, AFM is not only employed in physics or material science; in microbiological
research, AFM has emerged as a very powerful tool in recent years [Duf2002,Duf2004,

5The resonance frequency shift results in a shift in the oscillation amplitude if the excitation fre-
quency is not changed.

6An introduction in dynamic AFM modi in general is given in the reference [Gar2002].
7Yet, this is strictly speaking only true for chemically homogenous samples. Otherwise, if the tip
‘taps’ on the surface, differences in mechanical properties can cause a change in the amplitude as
well and thereby induce an apparent topography.

8Dynamic AFM enables pure non-contact modes as well, preventing even these ‘tapping’ forces.
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Duf2008,Kas2008,Wri2010]. Due to its high-resolution paired with the possibility to
work in buffers and to map material properties, AFM provides considerable advantages
over conventional microscopy techniques. It is, for instance, possible to quantitatively
study the elasticity of bacterial and eukaryotic cells [Mat2001, Tou2003b, Duf2004,
Ric2005] or to image DNA in-situ [Han1992,Mou1995,Lyu1997].

A more comprehensive introduction in AFM is given in the references [Gie2003,
Los2009]. In this work, AFMs of the types BioScope Catalyst™ and Dimension®

Icon® (both Bruker, Santa Barbara, USA) were employed.

4.2.1 Force Spectroscopy

As mentioned above, it is possible to extract data on mechanical properties from
the phase image in TM-AFM. Yet, the informative value of these data is restricted.
The knowledge of the dissipated energy is not directly transferable into quantitative
data on, for instance, elasticity or adhesion. Hence, to gain quantitative data on the
mechanical properties of a sample, the force spectroscopy mode is commonly used.
In this mode, the AFM cantilever is moved solely along the vertical axis and is not
scanned over the sample surface. Thereby, the vertical force field is characterized and
quantitative data on the maximum adhesion force between the tip and the sample
can be extracted (cf. Figure 4.4 ): The maximum negative deflection9, also referred to
as the adhesion peak, can directly be converted to the maximum adhesion force by
means of the cantilever spring constant [Car2007]. Moreover, by pressing the AFM
tip onto the sample up to a specified force threshold, additional information about
the mechanical properties such as the elasticity of the sample are gained [Wei1993,
Heu1995,Vin1998,Nor2006,Den2011].

The drawback of the force spectroscopy mode, however, is that it lacks any lateral
resolution. A straightforward improvement is provided by the force volume mode, in
which multiple force/distance curves are performed on a grid with adjustable spacing.
Thereby, the force field is mapped in three dimensions and hence some kind of lateral
resolution as well as an image of the topography10 are gained. A more comprehensive
disquisition on AFM force spectroscopy is given in the references [But2005,Car2007,
Seo2008].

9The maximum negative deflection is usually obtained at the moment of the breakaway of the tip
from the surface.

10The point of contact in each force/distance curve provides information of the sample height in this
point.
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Figure 4.4: A) Scheme of a force/distance curve, whereby the cantilever deflection S is plot-
ted against the distance d between sample and mounting of the cantilever. B) Typical plot
of the force F acting between the AFM tip and a sample against their separation z. The
blue dashed lines represent the force/deflection relations of an AFM cantilever for selected
(À-Ä) distances d between sample and mounting of the cantilever. For typical deflections,
an AFM cantilever can be described by Hooke’s law (with cantilever spring constant k;
cf. inset). Since the mounting of the cantilever is moved along the z-axis, the zero-point of
its force/deflection relation is shifted as well. At any time, the deflection S can be obtained
from the point of intersection of the respective cantilever force/deflection relation and the
interaction force curve (balance of forces). Usually, two discontinuities exist: During the
approach phase (at a distance da), the deflection of the cantilever increases suddenly (up
to Sa) when the slope of the interaction force curve exceeds the cantilever spring constant
(Á, ‘snap-in contact’). During the retract phase exists a bistable point as well: Often, an
adhesion keeps the tip in contact with the surface until the cantilever force exceeds the
adhesion force. There (at a distance db), the cantilever snaps off the sample, resulting
in the so-called adhesion peak in the force/distance curve (Ä, ‘snap-off contact’). The
transition between approach and retract phase occurs when a specified force threshold,
viz. a maximum positive deflection SM, is reached (Â).

Force Spectroscopy with Surface Delay

In the course of a force/distance curve, the actual time during which the tip is in
contact with the surface is in the range of a few hundreds of milliseconds—in the case
of usual ramp rates of a few Hz. To investigate if the adhesion force is contact time
dependent, measurements with an adjustable surface delay (SD) can be performed.
In this thesis, SDs in the range of 0 s to 10 s are used. 0 s SD thereby stands for a
standard force/distance curve with no break at the trigger threshold, viz. no additional
contact time. In order to compare different experiments that comprise multiple series
of measurements with increasing SD, Boks et al. used

F (tSD) = F0 + (F∞ − F0)

(
1− exp−tSD

τ

)
(4.1)
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to fit their data, whereby F0 is the adhesion force in the case of 0 s SD, F∞ is the maxi-
mum adhesion force after strengthening, and τ is the characteristic time needed for the
adhesion to strengthen [Bok2008a,Mei2009]. However, in the case of force/distance
curves, these parameters have no specific physical or biological meaning and serve
only as a tool for comparison.

Force Spectroscopy with Functionalized Tips

The adhesion forces usually determined in the force spectroscopy mode arise from the
interaction of the sample and the AFM tip, which is typically made of SiO2 [Wol1991,
Ran1994] or Si3N4 [Alb1990]. Yet, in many cases it is necessary to determine the
adhesion between a selected probe material and a sample. Thereto, functionalized
AFM cantilevers are necessary.

The most straightforward type of functionalization is the modification of the sur-
face chemistry of the entire tip: This is usually achieved by the application of self
assembled monolayers (SAMs) of thiols or silanes with defined tail group such as hy-
droxyl (-OH), carboxyl (-COOH), or amino (-NH2) groups [Fri1994,Noy1995,Noy1997,
Cle1999,Dag2007,Dor2008].

A more complicated kind of functionalization is the immobilization of single macro-
molecules on the apex of an AFM tip. By using these types of tips, single molecule
force spectroscopy can be performed and the forces between single molecules can be
measured [Hin2006,Neu2008]. Since the pioneering work of Merkel et al., where they
studied receptor ligand interactions [Mer1999], a wide variety of molecules have been
investigated in terms of their adhesion properties: The adhesion of, for instance, fi-
bronectin to surfaces, cells, or integrins has been studied extensively [Li2003,Vel2008,
Ver2009,Yon2007,Buc2010]. Other studies investigated the adhesion of molecules such
as single amino acids [Lee2006], antigens [Ber2005], antibiotics [Gil2007], or further
proteins [Tou2003a,Dup2005]. Besides measuring adhesion forces, however, the AFM
can also be used to stretch or unfold a protein—or a macromolecule in genera: By
attaching the macromolecule not only to the tip, but also to the substrate, its intrinsic
energy landscape can be explored [Rie1997,Car1999,Car2000,Fis2000].

The complexity of the functionalization, however, is not limited to single molecules.
Complex microscopic objects can also be attached to AFM cantilevers; for instance,
nano- and microparticles of arbitrary material [Yon2006,Ong2007,Gan2007,Bus2008],
air bubbles [Tab2011], and gecko [Hub2005] or abalone setae [Lin2009]. It is even possi-
ble to immobilize alive organisms such as eukariotic cells [Ben2000,Bow2001,Hel2008]
or bacteria [Ong1999,Low2000,Eme2004]. In this thesis, AFM force spectroscopy ex-
periments with bacterial probes play a major role. Hence, the design and preparation
of bacterial probes are described in more detail in the following section.
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Figure 4.5: Examples of typical AFM cantilevers featuring different tip geometries. All types
of cantilevers can be used for the preparation of bacterial probes, thereby displaying differ-
ent advantages and disadvantages. Optical microscopy of A) a bare tipless cantilever and
B) a tipless cantilever coated with S. carnosus, C) SEM image of a spherical probe can-
tilever and D) optical microscopy of a spherical probe cantilever coated with S. carnosus,
E) SEM image of a standard pyramidal tip cantilever and F) confocal fluorescence mi-
croscopy image of a pyramidal tip cantilever coated with fluorescently labeled S. carnosus.

4.2.2 Bacterial Probes for AFM Force Spectroscopy

To perform AFM force spectroscopy experiments with bacterial probes, single bacteria
or clusters of bacteria have to be immobilized onto the AFM cantilever. For the
immobilization, two parameters are of major importance, namely the geometry of the
AFM tip and the selection of an appropriate glue.

The geometry of the tip affects the size of the contact area and—closely related—the
amount of bacteria that makes contact with the sample under study. Various tip
geometries are possible. In the studies in the references [Los2009,Hue2010], the ap-
plicability of multiple different geometries and preparation procedures is investigated.
Figure 4.5 shows some typical examples with standard geometries.

The most common tip geometry is the absence of a tip (cf. Figure 4.5A, B) [Bow2001,
Bok2008a,Mei2009,Kan2009, Zha2011]. These so-called tipless cantilevers feature
a large and accessible contact area. Thereby, they have the advantages of an easy
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Figure 4.6: Specifically designed tip geometries that are especially suitable for the prepa-
ration of bacterial probes: A) SEM image of a cantilever featuring a plateau tip, B)
SEM image of a cantilever featuring a ‘bacteria saddle’ tip, achieved by modification of
a standard pyramidal tip using a focused ion beam (FIB), and C) confocal fluorescence
microscopy image of a single bacterium immobilized in the ‘bacteria saddle’ tip.

functionalization with a glue and of a straightforward fixation of bacteria at suitable
positions. The disadvantage, however, is that the number of bacteria that are in con-
tact with the substrate’s surface is uncertain due to the large contact area. Therefore,
it is not possible to compare measurements with different cantilevers. Measurements
with the same cantilever on different substrates, however, are comparable.

Further common tip geometries utilized as basis for bacterial probes are spherical
probes (cf. Figure 4.5C, D) [Low2000,Low2001] and pyramidal tips (cf. Figure 4.5E,
F) [Raz1998,Eme2006,Cao2006]. Both have the benefit of a controlled contact area
and an accessible and hence controlled number of bacteria that are in contact with the
substrate’s surface. Thus, measurements with different cantilevers are comparable11.
The preparation of bacterial probes based on these types of cantilevers, however, is
much more complicated compared to tipless cantilevers. Both—spherical probes and
pyramidal tips—offer only a small contact area to the bacteria due to the respective—
curved or pointed—geometry. Therefore, a high adhesive strength of the glue holding
the bacteria onto the cantilevers is necessary. Moreover, it is harder to place single
bacteria at the respective spot, the apex of the tip or the topmost part of the sphere
(cf. Figure 4.5D, F).

A compromise between controlled contact area and straightforward preparation is
to employ specifically designed geometries. Commercially available are plateau can-
tilevers (e. g. PL2-CONTR-10, NANOSENSORS™, Neuchâtel, Switzerland), which
provide a flat contact area to a small number of bacteria (cf. Figure 4.6A). An even
more controlled contact area that enables the immobilization of a single bacterium
can be achieved by a modification of standard pyramidal tips. Using a focused ion
beam (FIB), it is possible to remove the apex of the tip and to generate a ‘saddle’-like

11Results from measurements with spherical probes have to be scaled with the probe radius.
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structure (cf. Figure 4.6B). By choosing an adequate12 diameter of the saddle, a single
bacterium can be immobilized in it (cf. Figure 4.6C). Unfortunately, these ‘special’
types of cantilevers are costly in terms of either labor or money. Hence, they are only
restrictedly suitable for experiments that require a certain amount of statistics, such
as AFM force spectroscopy.

The glue selection is especially challenging due to two major requirements: On the one
hand, the bacteria must be firmly attached to the cantilever by a force that exceeds
the adhesion force to the substrate under study. On the other hand, the viability and
the properties of the bacterial cell wall that is not in contact with the cantilever must
not be affected.

Various types of glues based on different binding mechanisms have been presented in
the literature13:

• Positively charged polymer coatings such as polyethyleneimine (PEI) [Raz1998,
Ong1999] and poly-L-lysine (PLL) [Bok2008a,Qu2011] can be used, since the
surfaces of both, the bacterium and the cantilever, are negatively charged at a
physiological pH.

• By using aminosilanes, -thiols [Low2001, Nea2005], or poly(dopamine) (PDA)
[Lee2009a, Kan2009], the cantilevers can be functionalized with amino groups
that form strong, unspecific, covalent bonds with the carboxyl groups in the
bacterial cell wall.

• Specific linkage can be achieved by coating the cantilevers with proteins such as
fibronectin [Kuu1978,Buc2010].

Although approaches such as the use of regular glue have also been reported in the
literature [Bow2001,Bow2002], the general satisfaction of the second requirement—the
prevention of any alteration of the bacterium—is highly doubtful. The same is true for
procedures involving the crosslinking via glutaraldehyde [Raz1998, Ong1999], which
is known to have an effect on the surface properties of the entire bacterium [Vel2002,
Bur2003].

In the experiments presented in this thesis, the employed bacterial probes are all
based on triangular shaped tipless cantilevers (PNP-TR-TL, Nanoworld, Neuchâtel,
Switzerland and NP-0, Bruker, Santa Barbara, USA). The fixation of the bacteria was
achieved primarily using PLL, a polymer with positively charged side chains that is
known to form adhesive interlayers [Voe1995,Wes1997]. In some studies14, however,
PDA was utilized. PDA is produced by the self-polymerization of dopamine [Lee2007a,
12Saddle diameters that are equal to the diameter of the respective type of bacteria or slightly above
give the best chances of success.

13An extensive disquisition on the advantages and disadvantages of various types of glues can be
found in the refs. [Los2009,Hue2010].

14The applied coating is always mentioned in the respective studies.
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Lee2007b]. Dopamine is closely related to the catecholic amino acid 3,4-dihydroxy-
L-phenylalanine (DOPA), which is secreted by mussels and is capable to form strong
coordination bonds with inorganic materials and covalent bonds with organic sur-
faces [Lee2006].

The preparation procedures for both glues were preceded by a cleaning step, during
which the cantilevers were treated with an air plasma.

The PLL coating was then applied by immersing the AFM cantilever in a droplet of
PLL (MP Biomedicals, Solon, USA) solution (0.1mg/ml) for 1 h. Subsequently,
the cantilever was carefully rinsed with phosphate buffered saline (PBS).

The PDA coating was achieved by immersing the cantilever vertically into a solu-
tion of dopamine hydrochloride (Sigma-Aldrich, Steinheim, Germany) in 10mM
tris(hydroxymethyl)aminomethane (TRIS)/HCl-buffer (pH8.3 at 23 ◦C) for 1 h
at 4 ◦C. Following this, the cantilever was rinsed with deionised water and dried
in vacuum for 10min.

Immediately after the preparation of the respective adhesive interlayer, the cantilevers
were placed in a droplet of bacteria solution for 1 h at 4 ◦C. To remove unbound
bacteria, the probes were then rinsed with PBS. In general, bacterial probes were
freshly prepared prior to the experiments.

4.2.3 Implementation of Force Spectroscopy Experiments

The AFM force spectroscopy experiments with bacterial probes in this work consist
of multiple series of force measurements on each substrate under study. Each series
usually15 consists of 50-100 single force/distance curves. In order to avoid inaccuracy
due to local irregularities in the substrate, every single force/distance curve was carried
out at a different spot16 on the surface. If not indicated otherwise, single force/distance
curves were carried out with a ramp size of 1 µm, a ramping speed of 1Hz and a
maximal force trigger threshold of 1 nN.

To convert the measured photodiode signal first into cantilever deflection and then
into force, the deflection sensitivity and the cantilever spring constant of the system
have to be quantified. The deflection sensitivity was determined by a force/distance
curve on a hard substrate: After the tip makes contact with such a surface, the
engaged distance directly translates into a deflection of the cantilever. The cantilever
spring constant is obtained by the thermal tune method [Hut1993,Ser2005]. Since the

15Some series in the SD experiments consist of 30-40 single measurements to decrease the stress on
the bacterial probe.

16The probed surface spots are arranged along a grid with 0.5 µm to 5µm spacing.
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bacterial probe could get damaged in the course of these two calibration steps, the
entire procedure was carried out subsequent to the experiment. Hence, typical values
for the respective system were used as calibration constants prior to the experiment
and afterwards replaced by the obtained values.

An essential task when working with bacterial probes is to ensure the integrity of the
bacterial probe throughout the entire experiment—irrespective of the glue or the type
of cantilever used for the bacterial probes. Therefore, a detaching of bacteria or any
other probe alteration must be detected. In this work, the integrity of the bacterial
probes was controlled either by optical microscopy prior and after the experiment
or by control measurements: Consecutive series of force/distance measurements were
taken alternately on the substrates under study, ending always on the substrate and
with the respective parameters (e. g. surface delay) that had been probed first.

4.2.4 PeakForce QNM®

As can be inferred from the preceding sections, the AFM modes commonly used to
study physical properties of the surface have severe limitations:

• TM-AFM provides a high spatial resolution, but is limited in terms of quanti-
tative analysis.

• The force spectroscopy mode allows for a quantitative analysis, but lacks any
spatial resolution.

• The force volume mode seems to be a good compromise: It produces quantitative
data and enables spatial resolution. The achieved resolution, however, is usually
very low and the imaging time very long.

PeakForce tapping mode with quantitative nanomechanical property mapping (Peak-
Force QNM®) is a recently introduced mode that combines the advantages of the
three classical modes mentioned: It allows for simultaneous quantitative mapping of
topography and multiple mechanical properties (e. g. elasticity, adhesion, deforma-
tion), featuring the typical resolution and scan speed of the tapping mode [Ple2010,
Pit2010,Ber2011]. PeakForce QNM® can be employed for various types of biological
or artificial samples [Ber2010,Ada2011,Su2012,Ple2012,Trt2012,Bit2012].

From a technical point of view, PeakForce QNM® is basically a combination of force
volume mapping and TM-AFM. In contrast to the latter, the drive frequency is far
below the resonance frequency of the cantilever and the feedback loop keeps the max-
imum cantilever deflection and thereby the maximum applied force constant instead
of the vibration amplitude. Thereby, a force/distance curve is produced each time
the tip taps on the surface. By analyzing the force/distance curve in each point
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Figure 4.7: In PeakForce QNM® mode, each time the tip taps on the surface, a
force/distance curve is acquired. Thereby, information about multiple mechanical prop-
erties in each point can be collected. The adhesion force can be extracted as the height
difference between the negative adhesion peak and the zero force baseline. The peak force
is defined as the vertical distance between the baseline and the turn-away point. The
Young’s modulus is obtained by a DMT fit [Der1975,Mau1999] of the retract part of the
force/distance curve (Scheme adapted from [Pit2010]).

(cf. Figure 4.7 ), a map of mechanical properties such as elasticity (Young’s modu-
lus) or adhesion force is achieved. The adhesion forces between tip and sample are
thereby gained the same way as in classical force spectroscopy: The height differ-
ences between the negative adhesion peaks and the respective zero force baselines are
determined for each single force/distance curve. The Young’s moduli are obtained
by a DMT fit [Der1975,Mau1999] of the retract part17 of the force/distance curves
described by

F − FAdh =
4

3

E

(1− ν2)
√
R (d− d0)3/2, (4.2)

with the determined force relative to the adhesion force F −FAdh, the Poisson’s ratio
ν, the radius R of the tip, the deformation d − d0 of the sample, and the targeted
Young’s modulus E.

4.3 Parallel Plate Flow Chambers

In order to study bacterial adhesion on bacteria in a free swimming (planctonic) state
as well, parallel plate flow chamber experiments were conducted in addition to the
17In contrast to typical simple Hertz fits, the DMT fit takes long-range attractive forces into account.
Thus, the reference point is the point of maximum adhesion—in the retract part—and not the point
of zero indentation—in the approach part. The correct determination of the latter is often delicate.
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Figure 4.8: Custom build parallel plate flow chamber used in this work: A) Side view scheme
showing the chamber embedded in the cleanable holder system (1), sealed on the upper
side with a cover slide (2), and pressed with the lower side on the substrate (3); B) optical
top view image of the chamber; C) photograph of the flow chamber and the holder system.

AFM force spectroscopy experiments with bacterial probes. Parallel plate flow cham-
bers are a classical microbiological method commonly employed to investigate the
adhesion of (bacterial) cells on a macroscopic scale [vanKoo1992,Mei1992,Mei1995,
Tho2002,Har2006,Ros2008]. The analysis of flow chamber experiments usually com-
prises solely the counting of the number of bacteria on the substrate. Therefore,
strictly speaking, not the adhesion, but the adsorption process is investigated. The
main requirement on a flow chamber is that an area of constant shear force, viz. a
uniform flow profile, exists. Such a profile is gained if the flow is steady, incompress-
ible, laminar and established, which depends on the geometry of the chamber [van-
Wag1980, Bow1985, vanKoo1992, Usa1993,Mun1994, Bak2003]: A rectangular cham-
ber can be described by the characteristic length

Le = a hRe (4.3)

with a proportionality constant a, the chamber height h, and the Reynolds number
Re. The latter is given by

Re = ρ
Q

η (w + h)
(4.4)

with the fluid density ρ, the viscosity η, the flow rateQ, and the chamber width w. The
value of the proportionality constant a is reported differently to 0.013 [vanWag1980]
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Figure 4.9: Scheme of the flow system in which the flow chamber is embedded. A step motor
(1) pumps the bacteria solution at an adjustable constant flow rate from one syringe (2)
through the chamber (4) into the second syringe (3). The sample in the flow chamber is
thereby monitored by means of an optical microscope (5).

and 0.044 [Bow1985]. In general, an adequate uniform flow profile is achieved if Le is
small enough compared to the chamber length l, described by

Le ≤ b l (4.5)

whereby b is a further proportionality constant. Equation 4.5, however, can also be
interpreted differently in terms of strictness, since different values for b were introduced
in the literature (b = 0.1 [Bow1985] and b = 0.025 [vanWag1980]). To sum up,
the maximum flow rate for which a uniform flow profile is achieved depends on the
dimensions of the flow chamber—for a specified liquid.

The flow chamber system used in this thesis is a custom build parallel plate flow
chamber (cf. Figure 4.8 ). It features a 1.6× 1.6 cm2 base area and an effective height
of 0.2 cm. Due to these dimensions, a uniform flow profile is achieved for flow rates18,
Q ≤ 81.9 µl s−1 (viz. Re ≤ 4.55), according19 to Equation 4.3 and Equation 4.5.
The chamber itself is based on a disposable skeletal structure made of acrylic glass
(poly(methyl methacrylate), PMMA), which is pressed on the sample substrate by
a cleanable holder system made of stainless steel and aluminum. The lower side of
the chamber—the connection with the substrate—is sealed with a standard sealing
band. The upper side of the chamber is covered with a cover slip, which is glued
to the chamber using a biocompatible rubber glue (Reprorubber Thin Pour, Flexbar
Machine Corporation, Islandia, USA).

The chamber is incorporated in a flow system (cf. Figure 4.9 ) consisting of two sy-
ringes (d = 16.22mm, Vmax = 12ml, type Omnifex®, B|BRAUN Melsungen AG,
18For the calculations, η = 1mPa s and ρ = 1 kg l−1 are used as solution properties, similar to the
properties of water at room temperature. This is a reasonably safe assumption, since the bacteria
solution is dilute.

19Thereby, the most rigorous combination of the proportionality constants is used. Using the weakest
combination, the limit increases up to Q ≤ 1.1ml s−1 (viz. Re ≤ 61.1).
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Melsungen, Germany) that are connected with the chamber via polytetrafluorethy-
lene (PTFE) tubes (dinterior = 1mm, dexterior = 1.6mm, Bohlender GmbH, Grünsfeld,
Germany). A stepper motor (KDS Model 200 Serie S, KD Scientific Inc., Holliston,
USA) pumps the bacteria solution with an adjustable constant flow rate through the
system. Measurements on the substrates under study are always carried out using the
same bacteria solution and in random order of the substrates.

During an experiment, the surface of the studied substrate was monitored by optical
microscopy using a 10× objective and images taken at a frame rate of 0.1Hz. Two
different combinations of camera and microscope were employed in this study: a Pix-
elfly CCD-camera (PCO, Kelheim, Germany) on an Axiophot light microscope (Zeiss,
Oberkochen, Germany) and a Cool SNAP™-Pro Digital Kit (Media Cybernetics® Inc.,
Bethesda, USA) on a Laborlux 12 ME S light microscope (Leica Camera AG, Solms,
Germany).

The number of adhering bacteria was determined using an image analysis software
(Image Pro Plus, Media Cybernetics, Bethesda, MD). To circumvent problems arising
from deviations in brightness and contrast close to the edges of the images, an area of
interest (AOI) in the center was chosen. The position and size of the AOI were kept
constant over one experiment.
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on Surface Processes

5.1 The “Subsurface Energy”

As reviewed in the publication in Addendum I, the potential of the vdW in-
teractions between a probe object and a stratified material is composed of a term
describing the interaction with the surface and terms arising from interactions with
the interfaces below the surface. The latter terms will in the following be referred to
as the ‘subsurface energy’. This interaction property features an important character-
istic, namely that two superficially alike samples with the same surface chemistry may
differ strongly in their subsurface energy. Moreover, this disparity can have a notable
influence on the interactions with probe objects, as will be revealed in the following
sections. An elegant way to independently study the impact of the subsurface energy
is the set of tailored Si wafers introduced in section 4.1.1 (cf. the publication in
Addendum I).

Especially in biological systems, researchers predominantly focused on coatings and
surfaces so far. Thus, it is a crucial question to determine the role of the subsurface
energy in these systems. In this thesis, three different types of biological objects were
studied with regard to their adhesion/adsorption behavior onto the set of tailored Si
wafers. By choosing (nanoscopic) proteins, (microscopic) bacteria, and (macroscopic)
geckos, a wide range of scales is covered.

5.1.1 Impact on Protein Adsorption

First, the influence of the subsurface energy of the substrate on the adsorption of pro-
teins was investigated. Previous studies have already shown that changes in the sub-
surface energy affect the kinetics of the protein adsorption process [Bel2008,Qui2008,
Sch2010]. To determine whether these different kinetics implicate differences in the fi-
nal structure of the adsorbed protein films, in situ X-ray reflectivity experiments were
performed. Thereby, the adsorption of three different globular proteins (α-amylase,
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lysozyme, and BSA) onto the set of tailored Si wafers was investigated. The ex-
periments described in the publication in Addendum II reveal that the electron
density profile of the adsorbate—i. e. its structure—varies, dependent on the thickness
of the oxide layer: A different adsorbate structure on the type N and the type T wafer
was observed, regardless of the studied protein and whether or not the substrates were
hydrophobized. That is to say, irrespective of the surface chemistry, the subsurface
energy impacts the protein adsorbate.

5.1.2 Impact on Bacterial Adhesion

Since bacterial adhesion is mediated by proteins, an analogous influence of the subsur-
face energy is conceivable. To probe the adhesion of model bacteria (S. carnosus) onto
the set of tailored Si wafers on a single cell level, AFM force spectroscopy experiments
with bacterial probes were performed. The findings presented in the publication in
Addendum III show that the bacteria adhere stronger to the substrates with the
thin oxide layers. In both cases—hydrophilic and hydrophobic—the adhesion forces
on the type N wafers are roughly twice as high as on the type T wafers. By us-
ing a qualitative theoretical model based on considerations of the different Hamaker
constants, the experimental results were backed up. Moreover, the publication in
Addendum III addressed the question whether the differences in adhesion forces
on a single cell level measurably affect the adsorption process on a macroscale. Ad-
sorption experiments performed with a custom-built parallel plate flow chamber setup
corroborated the AFM experiments: The number of adsorbed bacteria grows faster
on the SiO2 type N than on the SiO2 type T wafers, independent of the concentration
of the bacterial solution. In short, not only nanoscopic proteins but also microscopic
bacteria are affected by variations in the subsurface energy.

5.1.3 Impact on Gecko Adhesion

To test if the subsurface properties of the substrate are relevant for macroscopic ob-
jects as well, isolated gecko setal arrays were used as an adhesion probe. Using the
‘Robotoe’ testing platform [Aut2006a,Gra2010], the setal arrays were dragged across
the surfaces of the model substrates, mimicking a gecko’s footfall. As shown in the
publication in Addendum IV, the adhesion forces are significantly higher on type
N than on type T wafers. Even when the setal array and the oxide layer are sepa-
rated by a hydrophobic OTS monolayer, the adhesion is stronger on the OTS type
N substrates. This trend is independent of humidity, drag speed, and array size. To
support the experimental findings, theoretical approximations were performed. By
incorporating oxide thickness dependent vdW potentials into the MD friction model
(cf. section 3.5) an extensive MD model was developed. Therewith, it was shown that
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the (vdW) pull-off force on Si wafers with oxide layers of thicknesses d in the range of
0.5 nm ≤ d ≤ 5 nm is remarkably higher in comparison to type T wafers. Hence, also
on a macroscopic scale, the subsurface properties have an influence on the adhesion
forces.

5.2 Influence of the Fluoridation of Hydroxyapatite
on Bacterial Adhesion

In the publication in Addendum V the influence of the fluoridation of dental
material on bacterial adhesion was characterized. As therein reviewed, it is known
since many decades that the application of fluoride compounds to dental material has
a cariostatic effect, which is mostly traced back to a change in the demineralization
characteristics of the teeth. However, to address the question whether bacterial ad-
hesion is also affected by the fluoridation, the adhesion forces between bacteria and
hydroxyapatite surfaces—treated and untreated with fluoride solution—were deter-
mined on a single bacterial level. AFM force spectroscopy experiments with bacterial
probes were performed to study the adhesion of the cariogenic pathogens Strepto-
coccus mutans and Streptococcus oralis, and the apathogenic species Staphylococcus
carnosus. As revealed in the publication in Addendum V, all bacterial species
exhibit lower adhesion forces after fluoridation of the surfaces. These findings show
that the adhesion of bacteria is indeed directly affected by the fluoridation of dental
material. Consequently, it seems likely that this decrease of adhesion properties is
another origin of the cariostatic effect of fluoride.

5.3 Bacterial Adhesion to ‘Everyday Surfaces’

The studies presented in the preceding sections investigated surface interactions on
a fundamental level by changing single parameters of model substrates separately.
In this section, however, a more applied work1 is presented: The characterization
of the adhesion of bacteria to various ‘everyday substrates’. For this purpose, AFM
force spectroscopy experiments were performed using bacterial probes based on tipless
cantilevers (PNP-TR-TL) coated with poly(dopamine) and covered with S. carnosus .
As ‘everyday substrates’, stainless steel, aluminum, copper, and a part of a yoghurt
cup (PP) were chosen (details for surface roughness and contact angle cf. section 4.1.2)
and supplemented by the model substrates SiO2 type N and OTS type N.

1The AFM force spectroscopy experiments in this section were performed by Sebastian Hümbert
during his work as a diploma student tutored by Peter Loskill (cf. [Hue2010]).
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� � � � � � � � � � � � � � 
 � � � � � �
�

�

� �

� �

� �

� �

� � �
�  � � � � � � � � � � � � �

� � ! � � � � � � � � 
 � � � � � �

�

�
��


	
��

��
���

�

 � � �  � � � � � � � � � � � � � �

� � ! � � �
� � ! � � � � � � � � � � � �

�  �
� � "
� � �
� � � �
� � �

� � � � � � � � 
 � � � � � � � � � � � �
�

�

� �

� �

� �

� �

� �

� �

��

� � " � � � � � � � 
 � � � �

� � ! � � � � � � � � 
 � � � � � �

�

 � � �  � � � � � � � � � � � � � �
� � � � � � � � � � � � � � 
 � � � � � �
�

� �

� �

� �

� �

� �

� �

	 �


 � �

� � � � � � � � � � � � � � �

 � � �  � � � � � � � � � � � � � �

� � ! � � � � � � � � � � � � � � �

� � � � 
 � � � �
�

� �

� �

� �

� �

� �

� �

	 �


 �

� � � � � � � 
 � � � � � �

� � ! � � � � � � � � � � 	 � � � �

�

�

�
��


	
��

��
���

�

 � � �  � � � � � � � � � � � � � �
� � � � 
 � � � �

�

� �

� �

� �

� �

� �

� �

�

� � � � � � � � � � � � �

�

�

 � � �  � � � � � � � � � � � � � �

� � ! � � � � � � � � � � � � � � �

Figure 5.1: Results of AFM force spectroscopy experiments with bacterial probes
(S. carnosus) on various ‘everyday substrates’. The experiments consist of two series
of measurements on stainless steel separated by a series of measurement on A) Al, B) Cu,
C) SiO2 type N, D) OTS type N, or E) PP. Since the first and last series of the experiments
are comparable, the integrity of the bacterial probes can be granted.

Each experiment consisted of two series of measurements on stainless steel separated
by a series of measurement on one of the other substrates. Thereby, the ratio of the
adhesion forces on stainless steel and all other substrates was determined (cf. Fig-
ure 5.1 ). By normalizing the force values with respect to the corresponding value on
stainless steel, the results of the different experiments—with different cantilevers—can
be compared. The combination of the normalized values of all characterized ‘every-
day substrates’ in Figure 5.2 clearly shows that the bacteria adhere stronger to the
hydrophobic substrates (OTS type N wafer and the yoghurt cup) than to the hy-
drophilic substrates: FOTS N ≈ 6 · FSteel and FPP ≈ 7 · FSteel. Within the hydrophilic
substrates, the variations in adhesion forces are smaller: FAl ≈ 0.5 ·FSteel, FSi ≈ FSteel

and FCu ≈ 2 · FSteel.

An explanation for the strong difference between hydrophobic and hydrophilic sub-
strates is given by the hydrophobic effect. Although the hydrophobicity of bacteria
varies strongly, even for the same strain [Mam1987], a difference in the wettability of
the substrate can change the interaction energy significantly. Within the hydrophilic
and hydrophobic substrates, it is hardly possible to isolate the origin for the differ-
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5.3 Bacterial Adhesion to ‘Everyday Surfaces’
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Figure 5.2: Average adhesion force values between S. carnosus and all characterized ‘every-
day substrates’ normalized with respect to the corresponding value on stainless steel.

ent adhesion forces. The substrates differ in multiple properties such as roughness,
isoelectric point, polarizability, and surface energy (cf. section 4.1.2)—properties that
can all influence bacterial adhesion (cf. section 3.3.2) [Plo2010,An1998].

While this type of study is a demonstrative and straightforward procedure often ap-
plied to compare a limited amount of substrates, the gain of scientific insight is re-
stricted. Moreover, this section highlights the importance of the type of studies pre-
sented in the preceding sections: To achieve a comprehensive understanding of the
involved interactions, single parameters have to be studied independently.
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6 Surface Properties of Bacteria

6.1 Dynamic Adhesion of Different Staphylococci
Species

As soon as a bacterium makes contact with a surface, various processes in- and outside
the cell are initiated (cf. section 3.3.2). Some of these processes directly affect the ad-
hesion force leading to dynamics in the adhesion process. Here, the dynamic adhesion
of bacteria of the genus Staphylococcus was investigated by carrying out AFM force
spectroscopy experiments with bacterial probes using different surface delays (SDs).
The main focus thereby was the comparison of the apathogenic S. carnosus with the
highly pathogenic species S. aureus .

AFM experiments1 with viable S. carnosus , viable S. aureus , and by formaldehyde
inactivated S. aureus on OTS type T substrates were performed under physiological
conditions. Each experiment consisted of series of measurements with a SD of 0 s,
1 s, 5 s, and 10 s, whereby in the course of the experiment, the SD was first gradually
increased from 0 s to 10 s and subsequently decreased to 0 s again. For a better com-
parability, the mean adhesion forces of each experiment were normalized with respect
to the value of the corresponding initial 0 s SD series. Moreover, to allow for a quan-
titative interpretation, the change in the mean adhesion force while increasing the SD
was fitted with a function introduced by Boks et al. [Bok2008a] (cf. section 4.2.1),
hereinafter called ‘Boks-function’.

At first, the dynamic adhesion of viable S. carnosus was investigated. The determined
average force values demonstrate that the adhesion strengthens with increasing SD
(Figure 6.1A). The fit with the Boks-function reveals a saturation value of the adhe-
sion force of F∞S. carnosus/F

0
S. carnosus = 2.30(8) and a characteristic time of the adhesion

strengthening of τS. carnosus = 1.8(3) s. Moreover, the corresponding values in the two
parts of the experiments—the SD increasing and the SD decreasing part—are compa-
rable within the experimental error, inducing a symmetrical shape of the results.

1The SD experiments in this paragraph were performed by Nicolas Thewes during his work as a
diploma student tutored by Peter Loskill (cf. [The2012]).
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Figure 6.1: Results of AFM force spectroscopy experiments with bacterial probes on OTS
type T substrates. The experiments consist of series of measurements with different SDs,
whereby in the first part of the experiment, the SD was gradually increased and in the
second part decreased again. The adhesion dynamics of A) viable S. carnosus, B) viable
S. aureus, and C) by formaldehyde inactivated S. aureus were characterized. The numbers
on the data points denote the order of the measurements taken.
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6.1 Dynamic Adhesion of Different Staphylococci Species

Species F∞/F 0 τ [s]

S. carnosus (viable) 2.30(8) 1.8(3)

S. aureus (viable) 6.1(7) 5(2)

S. aureus (inactive) 1.70(2) 1.2(2)

Table 6.1: Summary of the resulting fit parameters of the Boks-function.

Next, viable S. aureus were characterized in terms of the adhesion dynamics. Analo-
gous to the results for S. carnosus , the adhesion of S. aureus strengthens with increas-
ing SD (Figure 6.1B), with a saturation force value of F∞S. aureus;viable/F

0
S. aureus;viable =

6.1(7) and a characteristic time of τS. aureus;viable = 5(2) s. Yet, for 10 s SD, the de-
termined adhesion force F 10 s

S. aureus;viable = 5.4(8) is still lower than the saturation force
value. Hence, the adhesion never reaches saturation during the measurement. More-
over, combining the first—SD increasing—and the second—SD decreasing—part of the
experiment reveals a major difference between the viable S. aureus and S. carnosus .
The adhesion force of S. aureus in the second part, is always stronger than the corre-
sponding value in the first part, giving the results an asymmetrical shape.

Inactivating the S. aureus with formaldehyde changes the adhesion dynamics notably.
The adhesion still strengthens with increasing SD (Figure 6.1C). The saturation force,
however, dropped down to F∞S. aureus;inactive/F

0
S. aureus;inactive = 1.70(2) and the charac-

teristic time down to τS. aureus;inactive = 1.2(2) s. Moreover, the combination of both
parts of the experiment is redolent of the S. carnosus results and differs from the
viable S. aureus results: The corresponding force values in both parts are comparable
within the experimental error; the shape of the results is symmetrical.

Discussion

Comparing the results of the experiments with the different species, the following
conclusions can be drawn:

• The adhesion forces for viable S. carnosus and inactive S. aureus are roughly
doubled by increasing SD. The adhesion force for viable S. aureus , however,
increases to a much larger extend, to a factor between 5 and 6.

• The characteristic time needed for the adhesion of viable S. aureus to strengthen
is considerably longer than for the adhesion of viable S. carnosus and inactive
S. aureus . A finding that is especially emphasized by the fact that no indications
for a saturation of the force values were observed, in the case of viable S. aureus .
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6 Surface Properties of Bacteria

• The adhesion dynamics of S. aureus reveal a kind of ‘memory effect’: As earlier
noticed, the combination of SD increasing and SD decreasing part is asym-
metrical for the experiments with viable S. aureus : The force values in the
second—SD decreasing—part are always higher than their corresponding values
in the first—SD increasing—part (cf. Figure 6.2B). In the adhesion dynamics
of viable S. carnosus and inactive S. aureus , no such effect was observed: The
experiments resulted in symmetrical dynamics (cf. Figure 6.2A and C).

To sum up, the adhesion dynamics of viable S. carnosus , viable S. aureus , and by
formaldehyde inactivated S. aureus on OTS type T substrates were investigated and
significant differences were observed (cf. Table 6.1): Experiments with viable S. aureus
revealed a strong increase of the adhesion for longer contact times indicating some
kind of adaption of the bacterial cell. Moreover, the existence of a ‘memory effect’ in
S. aureus indicates that this adaption process is not instantly reversible. Treating the
S. aureus with formaldehyde changed the results significantly. Similar to S. carnosus ,
the adhesion of inactive S. aureus increased only weakly and no ‘memory effect’ was
observed. In fact, the increase was just slightly stronger than observed for bare AFM
probes (roughly 50% [Los2009]) suggesting that the dynamics do not arise from a ‘real’
biological origin, but most likely from hydrodynamic and equilibration effects.

To give a possible explanation for the different adhesion dynamics, the structure of
the apathogenic S. carnosus and the highly pathogenic species S. aureus have to be
taken into account. As reviewed in section 3.3.3, S. aureus possess various adhesive
molecules, bound and unbound to the cell wall, which S. carnosus are lacking and
which are inactivated due to the formaldehyde treatment. Based on this, feasible
types of adaption processes are

1. conformational changes of membrane proteins,
2. the secretion of SERAMs by the bacterial cells, or
3. the migration of adhesion ‘amplifying’ cell wall compounds to the contact region.

As the time scale of conformational changes of proteins is typically very fast—usually
in the range of a few ns2 [Bon2004,Hen2007]—these changes would most likely already
occur during the measurements with 0 s SD3. Yet, since protein relaxation processes
on time scales of several minutes have been reported previously as well [Wer1999,
Häh2011, Hof2012], a contribution to the adhesion dynamics can not be ruled out
completely.

2Large scale conformational changes can take ‘longer times’—up to ms [Hen2007]. Yet, this is still
magnitudes below the used SDs in the experiments.

3Even during the 0 s SD measurements, the bacteria are in contact with the surface for a finite time
(range of ms) until the force trigger is reached.
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6.1 Dynamic Adhesion of Different Staphylococci Species
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Figure 6.2: Alternative arrangement of the results of the AFM force spectroscopy exper-
iments presented in Figure 6.1 . Corresponding adhesion force values for the same SD
from both parts—the SD increasing (left, solid symbol) and the decreasing (right, open
symbol) part—of the experiment are combined. A dissimilarity in the ‘memory effect’ of
A) viable S. carnosus, B) viable S. aureus, and C) by formaldehyde inactivated S. aureus
can be observed. This dissimilarity becomes especially evident in D) the absolute value of
the difference between the corresponding adhesion force values. All values are normalized
with the respective first 0 s SD value.
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6 Surface Properties of Bacteria

The secretion of SERAMs can be excluded as a major factor for the dynamic adhe-
sion studied in this section. Although this process would lead to increased adhesion
forces, it usually occurs on a different (much slower) time scale and cannot explain
the ‘memory effect’, since every single measurement is carried out on a different spot
of the surface.

The time scale of the migration of adhesion ‘amplifying’ cell wall compounds to
the contact region, however, can be in the same order of magnitude as the applied
SDs [Cus1997,Til2003]. Moreover, these processes would also explain both the strong
increase in adhesion forces as well as the ‘memory effect’. As reviewed in section 3.3.1,
the bacterial cell wall features relatively mobile compounds such as covalently unbound
proteins and Lipoteichoic acids. Both of these could act as adhesion ‘amplifying’
molecules. Hence, the possibility of cell wall compounds migrating4 to the contact re-
gion should be considered as a factor boosting the adhesion of the highly pathogenic
S. aureus .

6.2 Dependence of the Cell Wall Elasticity on the
Degree of Peptidoglycan Crosslinking

In the publication in Addendum VI, the effect of a reduction in the crosslinking
of the PG on the elasticity of the cell wall of highly virulent and resistant prototype
strains of S. aureus was investigated. Using AFM PeakForce tapping under physio-
logical conditions, the cell wall elasticity of viable, genetically defined cells and their
isogenic mutants was characterized. The mutants lack the non-essential transpepti-
dase PBP4 and thereby feature a modified secondary PG crosslinking, as detected by
high-performance liquid chromatography (HPLC) and fluorescence microscopy. Asso-
ciating these findings with the AFM results reveals that alterations in the secondary
PG crosslinking trigger changes in the mechanical properties of the S. aureus cell
wall: More precisely, the absence of PBP4, and the concomitant reduction of the PG
crosslinking leads to a reduced stiffness of the cell wall.

Furthermore, the publication in Addendum VI compares the effect on community
acquired-MRSA (CA-MRSA) and on hospital acquired-MRSA (HA-MRSA) strains.
PBP4 is essential for beta-lactam resistance in CA-MRSA but not in HA-MRSA. The
reduction in cell wall stiffness due to the absence of PBP4, however, was observed
both in CA- and HA-MRSA strains. This indicates that the requirement of PBP4 for
beta-lactam resistance—as solely observed in CA-MRSA—is not directly related to

4Whether this process is an active cell response or whether it is due to physical long-range in-
teractions cannot be determined based on the herein presented results. Yet, follow-up projects
investigating the dynamic adhesion of S. aureus inactivated by different means (metabolic or
structural) could answer this question.
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6.2 Dependence of the Cell Wall Elasticity on the Degree of Peptidoglycan
Crosslinking

changes in the mechanical properties of the PG. Still, a correlation is conceivable, since
the effect of the reduction of the secondary crosslinking on the mechanical properties
of the cell wall in CA-MRSA strains is stronger than in HA-MRSA strains.
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7 Summary and Outlook

The goal of this thesis is to unravel the influence of different—subsurface and surface—
parameters of a material on biological surface processes. The major focus, thereby, lies
on the impact of vdW forces arising from subsurface layers. Therefore, various biolog-
ical objects covering a wide-range of scales are studied. It is shown that, independent
of the scale, the adhesion process is always affected by differences in the vdW forces
arising from subsurface layers—viz. the subsurface composition of the substrate.

Experimentally, the unravelling of vdW forces arising from subsurface layers from all
other types of interactions is possible by using a set of tailored Si wafers consist-
ing of four different types of substrates that can be classified in a hydrophilic and
a hydrophobic pair. As hydrophilic substrates, silicon wafers with (thin) native and
(thick) thermally grown oxide layers are selected and as hydrophobic substrates, the
same pair of silicon wafers functionalized with an OTS monolayer. As a result, the sur-
face chemistry and the subsurface composition of the substrates are varied separately
in a well-defined manner.

By performing in situ X-ray reflectometry, the structure of protein films adsorbed
on the set of tailored Si wafers is analyzed. The results reveal an influence of the
subsurface material on the protein adsorbates. More precisely, a distinct influence
of the topmost surface layer and the subsurface material is observed. The topmost
surface layer is responsible for the level of denaturation of the proteins and determines
the protein layer thickness. The subsurface material influences the density of the
protein layer and thereby the final adsorbed amount of protein. The trends in the
density and the final adsorbed amount are the same for all studied proteins (BSA,
lysozyme, and α-amylase) and for all pH values tested.

AFM force spectroscopy experiments with bacterial probes in conjunction with flow
chamber experiments demonstrate that bacterial adhesion and adsorption is also in-
fluenced by the subsurface composition of a substrate. The results of the AFM experi-
ments show that the adhesion force of S. carnosus is about a factor of two stronger
on the wafers with the thin oxide layer, irrespective if covered by a molecular-sized
hydrophobic layer or not. The AFM results are corroborated by flow chamber exper-
iments displaying a higher adsorption rate on the wafers with the thin oxide layer.
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7 Summary and Outlook

Using a custom mechanical testing platform (‘Robotoe’), the adhesion of setal arrays
from alive tropical geckos (Gekko gecko) onto the set of tailored Si wafers is tested.
Again, the adhesion force is higher on the wafers with the thinner oxide layer for
both—hydrophilic and hydrophobic—pairs of substrates. The measured trend in ad-
hesion force agrees with theoretical predictions from a modified MD model, in which
vdW potentials with a oxide layer thickness dependency are integrated.

Besides the influence of vdW interactions, the impact of the fluoridation of artificial
tooth material on the attachment of bacteria is studied. The results of AFM force
spectroscopy experiments with bacterial probes show that the adhesion force of oral
bacteria is lowered due to the fluoridation. This finding suggests that the decrease of
bacterial adhesion is another origin of the cariostatic effect of fluoride.

In addition to the properties of the artificial, inorganic substrate, the properties of
the interacting biological objects are investigated:

AFM force spectroscopy experiments with bacterial probes and varied contact times
reveal that the dynamics of the adhesion forces are significantly different for pathogenic
and nonpathogenic Staphylococcal species. Pathogenic S. aureus display a strong
increase in adhesion and a memory effect. Both is absent in the case of nonpathogenic
S. carnosus and dead S. aureus . These findings indicate that during the attachment of
S. aureus a rearrangement process of cell wall compounds takes place that S. carnosus
is lacking.

By employing AFM in peak force tapping mode, the topography and elasticity of live
S. aureus cells is mapped. The results indicate that the mechanical properties of the
S. aureus cell wall are changed due to alterations in the secondary PG crosslinking.
The overall elasticity of both HA and CA-MRSA bacteria is enhanced when lacking
the non-essential transpeptidase PBP4. The effect of the reduction of the secondary
crosslinking on the elasticity of the cell wall is stronger in CA-MRSA strains than in
HA-MRSA strains. Interestingly, this correlates with β-lactam resistance; CA-MRSA
strains require PBP4 for the resistance.

In short, this thesis reveals that the material hidden below the topmost surface layer
can have an influence on biological surface processes, that the fluoridation of artificial
teeth decreases the initial bacterial attachment, that rearrangement processes occur in
bacteria triggered by surface contact, and that a reduced crosslinking of the peptiodg-
lycan results in an increased elasticity of the bacterial cell wall. Furthermore, it is
also demonstrated why a thorough separation of parameters is important to achieve a
comprehensive understanding of biological adhesion. For the future, this thesis opens
up a variety of possible follow-up studies; some of which are already ongoing.

Concerning the influence of vdW interactions on biological systems, a thorough the-
oretical description is necessary. Full spectral methods for complete Lifshitz calcu-
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lations are challenging in the case of biological materials which are too complex to
include all necessary parameters. Yet, a promising starting point could be the use
of spectral data for fixed model proteins (e. g. keratin) representing the gecko sys-
tem. Based on this, the more complex system of mobile single proteins could be
tackled. Finally, a mixture of proteins and polysaccharides, representing the bacterial
cell wall could be addressed. From an experimental point of view, various follow-
up experiments are conceivable: In general, intermediate thicknesses of silicon oxide
layers could be studied to determine a ‘critical’ thickness, necessary to ‘shield’ the
subsurface compound of the vdW interactions. Moreover, different tailored systems
featuring, for instance, a higher clinical relevance are of interest. For the studied bio-
logical systems, follow-up questions arise as well: In the case of the protein adsorption,
a direct observation of the surface mobility on the hydrophilic surfaces is intriguing.
In the case of bacteria, a very applied experiment could be the coating of different
materials (e. g. gold, polymers, ceramics) with thin layers that are reputed to have
antifouling properties and study their efficiency. Additionally, the mixture of protein
adsorption and bacterial adhesion exposes important questions, such as the effect of
different conformations of adsorbed proteins on subsequently adhering bacteria.

Regarding the consequence of the fluoridation of hydroxyapatite surfaces, a necessary
follow-up study should investigate the adsorption of proteins, followed by a combina-
tion with the bacterial adhesion.

The nanoscale mapping of the local elasticity of the bacterial cell wall is a powerful
and novel tool that can be used to tackle many significant questions. Similar to the
herein presented study, the comparison of further mutant/wild-type system could help
answering various questions of microbiology and medicine. As a direct follow-up of
the presented findings, an in-depth analysis of the correlation of cell wall crosslinking,
elasticity and resistance to antimicrobial agents is highly interesting.

In general, the combination of physical tools with biological objects is very promising
and has the potential to help tackling many important questions in microbiology and
medicine.
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only surface parameters are employed to determine the adhesive forces between ma-
terials. Yet, van der Waals forces act not only between atoms in the vicinity of the
surface, but also between atoms in the bulk material. In this review, we describe the
principles of van der Waals interactions and outline experimental and theoretical stud-
ies investigating the influence of the subsurface material on adhesion. In addition, we
present a collection of data indicating that silicon wafers with native oxide layers are
a good model substrate to study van der Waals interactions with coated materials.
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1. Introduction

Stimulating or preventing adhesion is a key issue for researchers
of various fields. To solve these problems, a comprehensive under-
standing of the prevailing adhesion mechanism is indispensable.
Yet, not only various adhesion mechanisms, but also plenty of param-
eters that can affect adhesion exist: nanoscale or microscale rough-
ness [1,2], static charges or the zeta-potential at the interface [3,4],
surface energies [5,6], and contact shapes [7] are a few frequently-
studied examples. All these parameters, however, have in common
that they are describing the surface of a material. Hence, the question
arises whether adhesion is really only ‘superficial’. This question is of
great importance since commonly used photoresists, coatings, adhe-
sion promoters or other functionalized surface layers are often in
the range of just a few nanometers. These dimensions are smaller

than the range of interactions such as van der Waals (vdW) interac-
tions. Hence, the material right underneath the surface might in-
deed have an effect on adhesion mediated by vdW interactions. In
this paper, we review experimental and theoretical studies investi-
gating the influence of subsurface material on vdW forces. Addition-
ally, we provide a collection of experimental data highlighting the
suitability of stratified substrates based on silicon wafers to study
vdW interactions.

2. Van der Waals interactions

Already more than hundred years ago van der Waals introduced
his theory of an attraction between neutral atoms in order to explain
non-ideal gases [8]. Later, three types of interactions were identified
to contribute to the vdW interactions:

• Keesom interactions characterize dipol–dipol interactions of mole-
cules that carry permanent dipoles [9].
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• Debye interactions describe forces between a permanent dipole that
induces a dipole moment in an otherwise unpolar molecule [9].

• London interactions, also called dispersion interactions, describe
forces between instantaneously induced dipoles [10].

All three types have in common that the interaction energy scales
with−1=d6. Hence, the vdW potentials ϕ for the interactions between
two single atoms separated by a distance d can be written as

ϕ dð Þ ¼ −C=d6: ð1Þ

Due to this scaling, vdW interactions are often considered as
short-range.

Hamaker, however, calculated energy–distance relations for mac-
roscopic objects by pairwise summation over all atoms, continuing
the work of Bradley and DeBoer [11–13]. Depending on the geometry,
different scaling laws apply (cf. Fig. 1). To account for the properties
of the involved materials, Hamaker introduced a coefficient A, also
called ‘Hamaker constant’, which he defined to

A ¼ π2Cρ1ρ2 ð2Þ

where ρi are the number of atoms per unit volume of the two mate-
rials. The controversial subject of Hamaker's theory was that he
assumes a pairwise additivity of the vdW interactions, which is gen-
erally speaking not valid. A few years later, Casimir used a completely
different ansatz to calculate the force between two ideally conducting
semi-infinite half-spaces in vacuum [14]. On the basis of Planck's fa-
mous theory, he summed up the allowed electromagnetic modes be-
tween two conducting plates. Lifshitz extended Casimir's idea and
presented a theory for arbitrary materials, based on quantum field
theory [15]. In principle, althoughmany studies differentiate between
Lifshitz-vdW and Casimir interactions, Lifshitz and Casimir essentially
described the same effect, but with different foci [16,17]. By treating
the interacting objects as continuous media, Casimir's and Lifshitz'
theories circumvent the question of pairwise additivity. Interestingly,
Lifshitz' ansatz led to the same scaling laws as the classical Hamaker
ansatz (cf. Fig. 1). Only the way the Hamaker constants are derived
is different. Following Lifshitz' theory, they are calculated from the
optical properties of the involved materials. Thereto, the full optical

spectra over an infinite range of frequencies are necessary. Nowadays,
suitable datasets are available for many different materials, obtained
both experimentally and from ab initio theory [18–23]. Still, in some
systems – especially in biological systems – the full spectra of all in-
volved materials are hardly accessible. In these cases, the Hamaker
constants can be approximated (see Appendix A) by

A12−32≈
3
4
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with the dielectric constants εi, the refractive indices in the visible re-
gime ni, and the main electronic absorption frequency ωe.

The works of Hamaker, Casimir and Lifshitz demonstrate that vdW–

Casimir interactions can indeed be regarded as long-range, since for
mesoscopic and macroscopic objects, the absolute value of the expo-
nent of the scaling law is decreased (the interaction between two
semi-infinite half slabs scales with −1=d2, for instance). Yet, the long-
range character is restricted due to the finite speed of light [24]. This
retardation effect increases the absolute value of the exponent of the
scaling law by up to one (for d≫20 nm). For separations smaller
than 10 nm, however, the retardation can usually be neglected [25,26].

3. Van der Waals interactions with coated substrates

Using the equations given by the theories mentioned above, it is
usually possible to predict the potentials for the interactions of two
uniform objects. Yet, many systems consist of coated substrates. How-
ever, vdW interactions act not only between atoms in the vicinity of
the surface, but also between atoms in the bulk material. Early exper-
iments of Israelachvili and Tabor showed that in the case of mica sub-
strates covered with a monomolecular layer of stearic acids, both the
acids and the mica contribute to the vdW interactions [27]. These
experimental studies were in agreement with theoretical predictions
of Langbein, who postulated that the interactions with the surface
layer dominate for separations d smaller than the layer thickness D
(D≫d) and the interactions with the bulk material dominate in the
opposing limit (D≪d) [28,29]. More recent studies showed that var-
iations in the thickness of a surface layer induce differences in the
vdW potentials and influence e.g. the stability of thin liquid coatings
[30–33]. These thin film dewetting studies moreover demonstrated
quantitatively the impact of the subsurface composition to the effec-
tive interface potential [34]: the impact was measured experimen-
tally by determining the differences in the preferred wavelength of
spinodally dewetting thin films with variable subsurface composition
[30,35].

3.1. Interactions in biological systems

VdW interactions also play a major role in biological systems [36].
Particularly non specific adhesion is governed by vdW interactions in
conjunction with electric double layer interactions, usually described
using the DLVO-theory [3,37] or extended DLVO-theory [38]. Many
biological processes, such as the aggregation of proteins [39], the
unspecific adhesion of cells and bacteria [40–42], the adherence of
abalones [43], and the sticking of geckos [44–46] are influenced and
sometimes dominated by vdW interactions. Moreover, in the case of
biological objects – just as for rough objects, in general – adhesion
does not occur at ‘zero separation’. As a logical consequence, these
processes are also not ‘purely superficial’, viz. not solely dependent
on the properties of the surface. It could be shown that, when inter-
acting with a coated substrate, proteins indeed sense both, the surface

Fig. 1. VdW potentials ϕ(d) for different geometries.
Adapted from [9].
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layer and the underlying material: Adsorption experiments on tai-
lored silicon wafers with differences in the thickness of the oxide
layer on top of the wafers revealed qualitatively different adsorption
kinetics of multiple types of proteins [47,48]. Based on Monte-Carlo
simulations featuring surface processes such as surface mobility and
conformational changes, the distinctions were invoked by the influ-
ence of the vdW-interactions on the time scale of these processes
[49]. X-ray reflectivity experiments corroborated these findings [50].
Recent studies discovered that the influence of the subsurface ma-
terial on adhesion is sensed by larger biological objects, too: the
unspecific adhesion of bacteria from the Staphylococcus genus is
affected by the properties of the subsurface material, as could be
shown by AFM force spectroscopy measurements [51]. Moreover, ad-
hesion experiments with setal arrays of live geckos revealed that the
adhesion force was significantly varied by a change in the substrates
subsurface composition [52].

3.2. Theoretical description of multilayer systems

For a comprehensive theoretical description of the vdW potentials
for systems involving multilayer structures, not only the surface layer,
but also the composition of the entire substrate has to be taken into
account.

Substantial theoretical work has been done in recent years con-
cerning the description of van der Waals interactions in multilayer
systems [53–56] and graded interfaces [57,58]. Still, often experimen-
talists of various fields do not take into consideration that the interac-
tions with coated materials may be affected by the subsurface and
characterize substrates only by their surface properties. Moreover,
by using strict cutoff radii for vdW interactions, most MD simulations
also do not account for interactions with stratified substrates.

In general, the drawback of tailored systems is that the applying
scaling laws are not as simple as the ones in Fig. 1, since the Hamaker
constants depend on the separation. The vdW potential for the inter-
action of two layered semi-infinite half slabs, for instance, must be
modified to

ϕ dð Þ ¼ − A dð Þ
12πd2

ð4Þ

per unit area. For the case of non-retarded interactions between infi-
nite planar coated substrates, however, straightforward approxima-
tions are available that (qualitatively) describe many systems quite
well. For instance, combining rules (geometric mean) may be used
to calculate ‘effective’ Hamaker constants for a multilayer system.
These relations, that are derived from the combining rules for surface
energies, are a common way to find out unknown Hamaker constants
[59]. Yet, these relations break downwhenever the KeesomandDebye

parts (the zero frequency terms) cannot be neglected [9]. Especially in
multilayer systems, where multiple Hamaker constants are necessary,
combining rules are not applicable.

On the basis of the Lifshitz theory, Ninham and Parsegian approx-
imated the potentials for the interactions of symmetrical triple layer
films (cf. Fig. 2A) by [60–62]

ϕvdW dð Þ ¼ − 1
12π ⋅

A23−23

d2
þ 2

A23−12

dþ Dð Þ2 þ
A12−12

dþ 2Dð Þ2
 !

ð5Þ

with Aij−kl the constants for the interactions of the two different in-
terfaces. Using the same ansatz, the vdW potential of the interactions
between a probe material and a substrate coated with a layer of thick-
ness D (cf. Fig. 2B) is given by [61,17]

ϕvdW dð Þ ¼ − 1
12π ⋅

A12−32

d2
þ A12−43

dþ Dð Þ2
 !

: ð6Þ

For larger separations D≪d, however, Eq. (6) is no longer valid.
For the description of an experimental system with a variable D

(e.g. the thickness of a coating), we have previously chosen an alter-
native approximation [30,32]: By assuming a scaling of the interaction
with Ca

d2
þ Cb

dþD2ð Þ and a continuous transition between the boundary

cases D≪d and D≫d, we gained

ϕ dð Þ ¼ − 1
12π ⋅

A12−32

d2
þ A12−42−A12−32

dþ Dð Þ2
 !

; ð7Þ

whereA12−42 stands for the interaction ofmaterial 1 viamedium2with
material 4 in the case that D=0, viz. medium 3 is nonexistent.

4. Silicon wafers as a model system

Most of the studies mentioned above used silicon wafers as a
model system to study vdW interactions with coated materials. This
model system has the advantage of the feasibility to manufacture sil-
icon wafers with defined oxide layer thicknesses that feature all the
same surface properties. Hence, silicon wafers provide the possibility
to tune the composition of the subsurface – viz. the vdW interactions
arising from the subsurface – independent of all other interactions. As
described earlier, vdW interactions are essentially dependent on the
optical properties of the involved materials (Eq. (3)). In the case of
pure SiO2, these properties are well-known for various atomic struc-
tures [21]. The properties of thin silicon oxide films, however, have
been discussed controversially for decades, e.g. in terms of the oxi-
dation state of the silicon atoms. In the following, the term “silicon
oxide” stands for SiOx. The use of SiO2 bulk values for oxide films

A B

Fig. 2. Schemes of two multilayer configurations: A) symmetrical triple layers and B) interaction between a uniform material and a coated material.
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thicker than 100 nm is generally accepted. Yet, the validity of these
values for thin film has been questioned numerous times and espe-
cially the optical properties, such as the refractive index, are disputed.
In general, thin silicon oxide layers may be described by two different
models:

• Single layer model: by assuming a sharp transition between the bulk
Si and the oxide, the latter can be described by a single layer
(cf. Fig. 3A). In this case, the oxide layer may have the same refrac-
tive index as bulk SiO2 or an increased refractive index.

• Double layer model: since a sharp transition between the materials
is highly unphysical, a continuous transition or an interface rough-
ness is very likely. As the thickness of this transition region is of
the same order of magnitude as the oxide layer thickness, a double
layer configuration is an obvious approximation (cf. Fig. 3B).

The van der Waals interactions sensed by a probe object should
differ strongly for these different model configurations (cf. Fig. 3C).

By applying the single layer model,1 Jellison observed an increase
in the refractive index of the whole oxide layer [64]. Using spec-
troscopic polarization modulation ellipsometry, the refractive index
of very thin layers was determined to be 1.5−1.8 (at λ=800 nm).
These findings were later on confirmed by other studies [65,66].

Experimental support for the double layer model, viz. the observa-
tion of an interfacial transition layer, is also given by previous studies.
Experimental studies noticed a thin (≈6−7 Å) region of atomically
mixed Si and O with a refractive index of n≈2.8−3.2 (at 546.1 nm)
[67,68]. High-resolution core-level and XPS spectroscopy [69,70] also
confirmed that “the interface is not abrupt, as evidenced by the high
density of intermediate-oxidation states (about two monolayers of
Si) and by their nonideal distribution” [71]. These findings were mat-
ched by predictions of theoretical models [72,73].

The results of these studies, however, are not contradictory, but
arise from the different methods applied. A problem of optical reflec-
tivity methods, such as ellipsometry, is that they are not able to
determine the density and the thickness of thin films (≤5 nm) inde-
pendently (not to mention to distinguish between two of such films).
Thus, the usage of the single layer model for these methods is the only
possible way. Yet, for thinner silicon oxide films, the transition layer
fraction of the total oxide layer is increased resulting in an observa-
tion of a higher overall refractive index.

Another limitation of all of the mentioned studies is, that they are
performed on silicon wafers with thermally grown silicon oxide layers.
Especially for thin (≤10 nm) films, the process parameters of the artifi-
cial growing process can have a significant influence on the density and
the optical properties of the silicon oxide (decreased vs. increased re-
fractive index) [74,75]. Yet, already without any pretreatment, silicon
wafers are covered with a native oxide layer of 1.5 nm to 2 nm thick-
ness. Since only limited data is available for the optical properties of na-
tive oxide layers, we present a brief summary of the properties of these
layers containing previously unpublished data.

4.1. Properties of thin native oxide layers

The increase in refractive index to values up to n=1.8, as pre-
dicted by several studies [64–66], is highly unlikely for native oxide
layers as polymer dewetting studies have shown via an indirect way

A

B

C

Fig. 3. Properties of thin oxide layers: A) Theoretically expected transition of the refractive index (short dashes) and a proposed double layer oxide model (long dashes). B) Single
layer oxide models whereby the oxide layer has i) SiO2 bulk-like properties (solid line) or ii) properties expected by optical studies with limited resolution (dotted line). C) Calcu-
lated potentials of the van der Waals interactions between a semi-infinite half-space of polystyrene (nvis=1.585,�0=2.6) and a silicon wafer with a thin oxide layer for the three
model configurations (cf. A and B) and a bulk silicon dioxide substrate (nvis=1.46, �0=3.9 [63]) as a comparison (dash-dotted line). To include the short-range repulsive interac-
tion a second term C=d8 (maintaining the difference in exponents of the Lennard–Jones potential) was added. The parameter C was kept constant for all configurations, since the

surface is essentially the same.

1 Jellison indeed assumed a transition layer. Yet, at some point (for thin films) he
started to neglect this layer, whereby the increase in refractive index began exactly
around this point.

Table 1
Surface properties of a native oxide layer and of a thermally grown thick oxide layer as
a comparison: thickness (d), root mean square (rms) roughness (by 1 μm2 AFM scan),
advancing (adv) and receding (rec) water contact angle, and surface energy γ
(obtained from contact angle measurements of three different liquids [77]).

Oxide layer d [nm] rms [nm] Θadv [∘] Θrec [∘] γ [mJ/m2]

Native 1.7 (3) 0.13 (3) 5 (2) Compl. wetting 63 (1)
Thick 150 (1) 0.09 (2) 7 (2) Compl. wetting 64 (1)

4 P. Loskill et al. / Advances in Colloid and Interface Science xxx (2012) xxx–xxx

Please cite this article as: Loskill P, et al, Is adhesion superficial? Silicon wafers as a model system to study van der Waals interactions, Adv
Colloid Interface Sci (2012), doi:10.1016/j.cis.2012.06.006

Addendum I - Is adhesion superficial?! Silicon wafers as a model system to study
van der Waals interactions

105



[30]: thin liquid polystyrene (PS) films prepared on Si wafers with
native oxide layers (DSiO=2.4 nm) were unstable and dewetted
spinodally. Since this process is driven by the minimization of the
free energy determined by the vdW potential [76,9] the refractive
index of the oxide cannot be higher than the one of PS (≈1.59), as
shown by Eq. (3).

Amore direct ansatz is to compare native oxide layers to thick oxide
layers in terms of the material properties, such as surface roughness,
surface chemistry, homogeneity, electron density and stoichiometry:

the surface characterization via atomic force microscopy (AFM) and
contact angle (CA) measurements shows that – within the experimen-
tal error – the roughness and chemical homogeneity of the surface of a
native oxide layer on Si wafers does not differ from the properties of a
thick SiO2 layer (cf. Table 1). The analysis of high energy X-ray reflectiv-
ity measurements on native and thick oxide layers leads to electron
densities that are again similar (Fig. 4). Especially the topmost part
(0–5 Å) of the native oxide layer resembles the density of the thicker
layer.

The stoichiometry of the native oxide layer was studied by X-ray
photoelectron spectroscopy (XPS) combined with Ar ion etching in
order to reveal the depth profiles for different oxidation states/valencies
Sik+ (k=0,…,4). Fig. 5A shows the Si-2p spectra recorded in normal
emission mode (take-off angle 0∘ along the surface normal) with two
components representing Si0 and Si4+ at lower and higher binding en-
ergy, respectively. Contributions from Si1+, Si2+ and Si3+ could not be
resolved, but have to be treated as a third peak in the background be-
tween the Si0 and Si4+ signals. For stepwise ablation of the surface,
the intensity of the Si4+ peak decreases asymmetrically, i.e., it is shifted
towards the Si0 signal, forming a shoulder in the intermediate state be-
fore vanishing (for calibration of ablation see, e.g., Ref. [78]). For abla-
tion of about 1.5 nm, contributions from oxide species can no longer
be observed, which is in accordance with the thickness of the native
oxide measured by other methods (Fig. 4 and Table 1). The asymmetry
in the Si oxide related part of the spectra is characteristic for intensity
contributions from Si4+ and (Si1+, Si2+, Si3+) when distributed in a
double layer model as depicted in Fig. 5B. For this type of stacking, the
simulation of intensity distributions within the Si-2p spectra in Fig. 5C
shows the same characteristics, namely the asymmetric decrease of
the intensity from the oxide species as the experimental data in

A D

E

B

C

Fig. 5. A) XPS core level spectra for Si-2p (Al–Kα radiation, ℏω=1486.6 eV, normal emission) for different stages of surface ablation by Ar ion etching with asymmetric decrease of
intensity contributions from oxide species. B) Double layer oxide model with Si0–(Si1+, Si2+, Si3+)–Si4+ stacking (from bulk to surface). C) Simulation of spectra for the double
layer model from B) with the same asymmetric decrease of oxide intensities as observed in the experiment. D) Simulation of spectra for the single layer model depicted in
E) with uniform decrease of oxide intensities. E) Single layer model with a homogeneous (Si1+, Si2+, Si3+, Si4+) surface layer.

Fig. 4. Electron density profiles of a native (dashed line) and a thick oxide layer (solid
line) determined by high energy X-ray reflectivity. The z-coordinate has been set to
zero at the center of the transition between Si and its oxide. Data from [50].
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Fig. 5A. A similar asymmetry was reported in previous studies on ther-
mally grown oxide layers [70]. For comparison, Fig. 5E shows a second
model with a homogeneous distribution of the oxidation states within
the oxide layer. For this scenario, the simulation in Fig. 5D predicts a
uniform disappearance of the oxide contributions, in contrast to the ex-
perimental observations in Fig. 5A.

In summary, these results show that native silicon oxide layers can
be approximated by a double layer system as depicted in Figs. 3A and
5B, where adjacent to the bulk Si a transition layer and then a bulk-like
SiO2 layer follows. Since all characterized material properties of the
SiO2 part are similar to the properties of thick oxide layers, there are
no hints to assume different optical properties. The transition layer,
however, will most likely display increased polarizability [67,68,73].
That means, differences in the vdW potentials of wafers featuring
native and thick oxide layers arouse indeed from subsurface contribu-
tions, since the uppermost material is the same, namely SiO2. Hence,
silicon wafers with native oxide layers are indeed good model
substrates to study van der Waals interactions with coated materials.
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Appendix A. Calculation of Hamaker constants

Based on the Lifshitz theory, the Hamaker constant can be calcu-
lated by2

A12−32 ¼ 3
2
kT
X∞
n¼0

′
Δ1;2 iξnð ÞΔ3;2 iξnð Þ ðA:1Þ

with

Δa;b iξð Þ ¼ εa iξð Þ−εb iξð Þ
εa iξð Þ þ εb iξð Þ ðA:2Þ

whereby εa(iξ) are the values of the dielectric function of material a at
the imaginary (Matsubara) frequencies

ξn ¼ n⋅2πkBT=h: ðA:3Þ

Using the Ninham–Parsegian approximation it is possible to ob-
tain the ε(iξ) from the adsorption spectrum [79,60], more precisely
the relative strengths and the frequencies of the peaks, by

ε iξð Þ ¼ 1þ
XN
j¼0

Cj

1þ ξ=ωj

� �2 ðA:4Þ

with

Cj ¼
2f j
πωj

ðA:5Þ

where fj is the strength of an oscillator, ωj its relaxation frequency,
and N is the total number of oscillators. For dielectric materials
Eq. (A.4) reduces to [80,81]

ε iξð Þ≈1þ ε 0ð Þ−εðωvisÞ
1þ ðξ=ωrotÞ2

þ εðωvisÞ−1
1þ ξ=ωeð Þ2 ðA:6Þ

with ωrot the molecular rotational relaxation frequency (typically in
the IR regime), ωe the main electronic absorption frequency (typi-
cally ≈3⋅1015 s−1, in the UV regime), and ε(ωvis)=nvis

2 the refrac-
tive index in the visible regime. As usually ξ1≫ωrot (cf. Eq. (A.3))
the first term in Eq. (A.6) can be neglected and Eq. (A.1) may be ap-
proximated by Eq. (3) if the adsorption frequencies of the three ma-
terials are similar [9].
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Abstract - The adsorption process of proteins to surfaces is governed by the mutual
interactions between proteins, solution and substrate. Interactions arising from the
substrate are usually attributed to the uppermost atomic layer. This ‘actual surface’
defines the surface chemistry and hence steric and electrostatic interactions. For a
comprehensive understanding, however, also the interactions arising from the bulk
material have to be considered. Our protein adsorption experiments with globular
proteins (α-amylase, bovine serum albumin, and lysozyme) clearly reveal the influ-
ence of the subsurface material via van der Waals forces. Thereby, the used set of
functionalized silicon wafers enables a distinction between effects of the surface chem-
istry and the subsurface composition of the substrate: Whereas the surface chemistry
controls whether or not the individual proteins are denatured, the strength of the
van der Waals forces affects the final layer density and hence the adsorbed amount of
proteins. The results imply that van der Waals forces mainly influence surface pro-
cesses, which govern the structure formation of the protein adsorbates, such as surface
diffusion or spreading.
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ABSTRACT: The adsorption process of proteins to surfaces
is governed by the mutual interactions among proteins, the
solution, and the substrate. Interactions arising from the
substrate are usually attributed to the uppermost atomic layer.
This actual surface defines the surface chemistry and hence
steric and electrostatic interactions. For a comprehensive
understanding, however, the interactions arising from the bulk
material also have to be considered. Our protein adsorption
experiments with globular proteins (α-amylase, bovine serum
albumin, and lysozyme) clearly reveal the influence of the subsurface material via van der Waals forces. Here, a set of
functionalized silicon wafers enables a distinction between the effects of surface chemistry and the subsurface composition of the
substrate. Whereas the surface chemistry controls whether the individual proteins are denatured, the strength of the van der
Waals forces affects the final layer density and hence the adsorbed amount of proteins. The results imply that van der Waals
forces mainly influence surface processes, which govern the structure formation of the protein adsorbates, such as surface
diffusion and spreading.

■ INTRODUCTION
The unspecific adsorption of proteins on solid/liquid interfaces
is a well-known and often studied phenomenon.1−4 Its
importance in and influence on clinical, biological, and
technical applications is enormous. For instance, biofilm
formation on surfaces adherent to biological solutions (saliva,
blood, etc.) begins with and depends on the primary adsorption
by the proteins. Therefore, to control the biofilm development,
it is desirable to gain control of the protein adsorption process.
Recent studies have shown that the substrate strongly

influences the enzymatic activity of adsorbed proteins,5 their
orientation on the surface,6,7 and the kinetics of the adsorption
process.5,8,9 The latter studies have shown that slight changes in
the substrate’s subsurface composition (i.e., the material
composition below the uppermost surface layer) influence the
kinetics of adsorption. It is the aim of our study to yield
structural information about the adsorption process and the
influence of the subsurface composition of the substrate and
connect the results to kinematical studies.8−10

Parameters that influence protein adsorption are numerous:
the pH value, ionic strength, temperature, protein concen-
tration, and the concentration of cosolvents and additives are
the most prominent properties of the solution.2−4,11−13 The
influence of the substrate on adsorption is in most studies
described by and restricted to the sign and value of the surface

charge, the roughness of the surface, and the surface free energy
(i.e., the chemical composition of the surface).4,14−16

The above-named substrate properties belong to the actual
surface of the offered substrate. Nevertheless, the influence of
the bulk substrate should not be neglected because van der
Waals forces range over tens of nanometers, depending mainly
on the geometry of the interacting objects.17,18 It could already
be shown that van der Waals forces govern the stability of thin
films.19,20 Furthermore, they influence the adhesion strength
even in wet surroundings.21,22 Thus, their influence on protein
adsorbates is expected.
In recent studies, it was shown that the adsorption kinetics of

large, deformable proteins such as α-amylase and bovine serum
albumin (BSA) are affected by different van der Waals forces.8,9

By using silicon wafers with different silicon oxide thicknesses,
the van der Waals forces can be varied while keeping the surface
free energy constant. On thick silicon oxide wafers, regardless
of whether they were hydrophilic or hydrophobic, the proteins
showed Langmuir-like kinetics, whereas on thin silicon oxide
“stepped” kinetics was observed with a distinct change in the
adsorption rate at low coverage. Such behavior was not
recorded for the lysozyme,8 which is generally regarded as a stiff

Received: February 28, 2012
Revised: April 25, 2012
Published: April 25, 2012

Article

pubs.acs.org/Langmuir

© 2012 American Chemical Society 7747 dx.doi.org/10.1021/la300850g | Langmuir 2012, 28, 7747−7756

Reprinted with permission from Hähl et al. Langmuir 28, 7747–7756 
(2012). Copyright 2012 American Chemical Society.
(http://dx.doi.org//10.1021/la300850g)

Publications

110



protein (Gibbs energy for unfolding: 60 kJ/mol).2 On the basis
of this fact, it is expected that the final state of the protein films
also diversifies (e.g., in protein orientation or conformation)
with different subsurface compositions. There are only a few
techniques, however, that allow us to resolve in situ the
structure of films with thicknesses of only a few nanometers. In
this study, we applied X-ray reflectometry at high X-ray energies
to analyze the film structure with angström resolution. In
former studies,23−25 this technique has proven to be able to
resolve the film structure of similar protein films.

■ EXPERIMENTAL SECTION
Materials and Setup. As substrates for protein adsorption, two

types of silicon wafers were used: wafers with a natural silicon oxide
layer of 1.7(3) nm (Wacker Siltronic AG, Burghausen, Germany) and
wafers with a thermally grown amorphous silicon oxide layer with a
thickness of 150(3) nm (Silchem, Freiberg, Germany), as charac-
terized by ellipsometry. Prior to use, the wafers were cleaned for 30
min in a fresh 1:1 H2SO4(conc)/H2O2(30%) solution and
subsequently rinsed in hot deionized water to remove hydrocarbon
residues from the polishing process. After this procedure, the wafers
were hydrophilic with a water contact angle of <5°. The wafers were
stored in deionized water until they were used. Additionally, both
types of wafers could be covered with a self-assembled monolayer of
octadecyltrichlorosilane (OTS, Sigma-Aldrich, Germany) using stand-
ard procedures.26,27 After this treatment, the substrates exhibit
hydrophobic surfaces with water contact angles of 107 to 112° with
a contact angle hysteresis of <5°. The quality of the achieved
hydrophobic layers could additionally be affirmed by X-ray reflectivity
measurements. The obtained values agree well with the literature,28,29

indicating densely packed and homogeneous layers. As the cleaning
procedure for these wafers, sonication in ethanol and acetone turned
out to be fully sufficient.
Thus, a set of four different substrates was obtained: hydrophilic

and hydrophobic wafers (abbreviated as “phil” and “phob”,
respectively) with either a natively thin (called “N”) or a thick (called
“T”) silicon oxide layer. In previous studies, it could be shown by
streaming potential measurements that substrates from this set with
the same surface chemistry also showed the same zeta potential
regardless of their silicon oxide thickness9 and thus have the same
surface charge. The isoelectric points (IEP) of these surfaces are 1.9(2)
for the hydrophilic and 3.0(2) for the hydrophobic surfaces. The
roughness, as measured via atomic force microscopy in a 0.5 × 0.5 μm2

area, was below 0.2 nm for all types of wafers. This set of four wafer
types allows for a separate variation of short- and long-range forces
(i.e., by providing the same surface chemistry, as indicated by identical
zeta potentials,9but different silicon oxide thicknesses, where only
long-range forces arising from the different subsurface compositions
are varied). The hydrophobization process changes only the short-
range forces, as a molecularly thick silane layer affects the van der
Waals interaction only marginally.30

The proteins used in this study were α-amylase from human saliva
(prod. no. A0521), bovine serum albumin (BSA, prod. no. A3059),
and lysozyme from hen egg white (prod. no. 62971, all purchased from
Sigma-Aldrich, Steinheim, Germany). The proteins were received as a
lyophilized powder and used without further treatment. (The α-
amylase powder, however, contains only approximately 10% protein.
The rest of the mass consists, as shown by a crude precipitation test,

mainly of stabilizing salts such as sulfates. This results in final protein
solutions with a consequently decreased protein content and
marginally increased ionic strength of the solution.) BSA and lysozyme
were stored at 2 °C and α-amylase was stored at −20 °C until used.

Their molecular masses and other properties are listed in Table 2. All
are globular proteins and can roughly be described as prolate or, in the
case of BSA, as oblate ellipsoids.31−33 The length of the shortest axis is
thereby similar for BSA and α-amylase and coincides with the long axis
of lysozyme (Table 2). Because of their respective IEP values, the
electric properties of these proteins differ greatly: at pH 7, α-amylase
carries a close to zero net charge, whereas the net charge is negative for
BSA and positive for lysozyme.

As a solution for the proteins, a 10 mM phosphate buffer solution
with a pH of 7 was prepared using ultrapure water. No salt was added,
resulting in a calculated ionic strength of I = 20 mM because of the
buffer components. Additionally, different buffer systems were used to
achieve stable pH values at the respective IEP of the proteins: an
acetate buffer system at pH 4.7 was used for BSA, and CAPS (3-
(cyclohexylamino)-1-propanesulfonic acid) adjusted with NaOH to
pH 11 was utilized for lysozyme. Appropriate amounts of NaCl were
added to obtain the same ionic strength as for the phosphate buffer
solutions.

For the X-ray measurements, the substrates were put into a closed
Teflon sample cell with Kapton windows. Prior to the measurement,
the cell was rinsed and flooded with buffer solution. Subsequently, the
cell was connected to a flow system containing a syringe pump and a
switch with a sample loop (Rheodyne Manual Sample Injector) prior
to the cell. The protein solution was injected into the sample loop,
which could be inserted into the flow system at a specific time by using
the switch. This system allowed for an injection of the protein solution
with a minimum disturbance of the system. The protein concentration
of the solution in the sample loop was chosen to result in a final
concentration inside the sample cell of 0.1 g/L (with a smaller
concentration in the case of α-amylase, see above).

To achieve stable protein film conditions during the measurements,
the films were allowed to equilibrate for at least 1 h before starting the
reflectivity scans. By comparing subsequent scans of the same system,
these stable conditions were affirmed.

X-ray Reflectivity Technique. The X-ray scattering experiments
were conducted at beamline BL9 at synchrotron light source DELTA
(Dortmund, Germany).23 The sample cell was illuminated with a
monochromatic X-ray beam with a wavelength λ of 0.459 Å
(corresponding to a photon energy of 27 keV). The wavelength was
chosen to balance between a high transmission signal through water
and minimal radiation damage on the biological samples.38−40 Specular
reflectivity scans are performed in θ−2θ geometry. The wave vector
transfer is directed perpendicular to the surface and is given by

π
λ θ=q 4 sinz (1)

The angle between the surface and the X-ray beam is denoted as θ. To
obtain the true specular reflectivity, the diffuse scattering has been
measured by longitudinal, diffuse scans with a constant angular

Table 1. Characteristics of the Substrates

N’phob T’phob N’phil T’phil

surface material OTS OTS SiO2 SiO2

surface energy/mJ/m2 24(1) 24(1) 64(1) 64(1)
roughness (rms)/nm 0.12(2) 0.15(2) 0.09(2) 0.13(2)
SiO2 layer thickness/nm 1.7(3) 150(3) 1.7(3) 150(3)
isoelectric point (IEP) 3.0(2) 3.0(2) 1.9(2) 1.9(2)

Table 2. Characteristics of the Proteins Studied

α-amylase31 BSA34 lysozyme32

molar mass/kg/
mol

56.0 66.3 14.3

molar volume/
cm3/mol

38 071 48 600 10 057

electron density/
e/Å3

0.47125a 0.4386634 0.4558224

isoelectric point
(IEP)

6.935 4.736 1137

diameters/Å3 80(2) × 48(2) ×
47(2)

83(2) × 81(2) ×
45(2)

48(2) × 30(2) ×
28(2)

aCalculated from the protein structure.
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detector offset of 0.1°. A typical X-ray reflectivity measurement was
recorded within 0.5 h, including an offset scan reaching a maximum qz
value of 0.5 Å−1 and covering a dynamic range of 6 to 7 orders of
magnitude.
The reflectivity, R(qz), is in the Born approximation given by

∫ρ
ρ=

⎛
⎝⎜

⎞
⎠⎟R q R q z

z
z( ) ( ) 1 d ( )

d
e dz z

q z
F

ref

i
2

z

(2)

RF, ρ(z), and ρref denote the Fresnel reflectivity of a sharp interface,
the electron density profile (EDP), and the electron density of the
subphase (buffer solution), respectively. Hence, X-ray reflectivity
measurements probe the EDP of the sample averaged over the
illuminated area.41,42

Analysis of the X-ray Reflectivity Data. The raw data were
background-corrected, normalized, and scaled as a function of qz.
Because of the rapid decay of the reflected X-ray intensity, it is
common to present reflectivity data in the form R/RF versus qz (cf.

Figure 1) in order to increase the visibility of features stemming from
the molecularly thin layers at the surface (i.e., from the adsorbed
protein films or the OTS structure). To obtain the EDP from the
reflectivity data, a model of the vertical structure of the studied system
is proposed from which a reflectivity is calculated by Parratt’s recursive
method.43 The proposed EDP is varied in such a way that the mean
square variation, χ2, between calculated and observed reflectivity
curves is minimized using a least-squares fitting routine. The EDP is
described in terms of the effective density model, which guarantees for
continuous profiles even if the roughness is not small compared to the
layer thickness.41 In general, the EDP can be described by a stack of
homogeneous layers each with a distinct electron density, ρ, layer
thickness, d, and interfacial roughness, σ.
In our study, one layer is sufficient to explain the structure of the

protein adsorbate film adequately. The EDP structure of the
hydrophilic substrates is described as “silicon/silicon oxide/aqueous
buffer solution”. For the hydrophobic substrates, two layers are
introduced into the model representing the head and the tail of the
OTS film.28,44 Moreover, for the characterization of an OTS/water
interface, an additional layer accounting for the electron density
depletion at the hydrophobic gap has to be introduced,28 yielding an
EDP structure described as “silicon/silicon oxide/OTS head/OTS
tail/gap/aqueous buffer solution” (Figure 2).
To minimize the number of fitting parameters, the following

strategies are applied. First, each substrate is characterized under pure

buffer without protein. Because no changes in the substrate’s
properties are expected during the subsequent protein adsorption,
the EDP structure obtained for the substrate is kept constant when
fitting the data after protein adsorption. Thus, only the parameters of
the adsorbed protein layer and, in the case of hydrophobic substrates,
the parameters of the hydrophobic gap have to be varied when refining
the corresponding reflectivity curves. Furthermore, the electron
density of the silicon substrate, the silicon oxide layer, and the water
subphase are set to the theoretical values of 0.702, 0.663, and 0.334
e−/Å3, respectively.45 To model the structure of the OTS films, values
from the literature28 are used as starting values and varied over a
narrow range. The thickness of the silicon oxide layer is varied
between 10 and 15 Å for native SiO2, and a value of 1500 Å is used as a
starting value for the thickness of the thermally grown SiO2 layer, as
was obtained by ellipsometry.

Typically, when studying protein adsorption phenomena, only the
amount of adsorbed protein per unit area, Γ, is determined. However,
from the X-ray reflectivity data, not only Γ can be obtained but also
the volume fraction profile along the surface normal25,46 ϕ(z) is
defined by subtracting the EDP without protein adsorbate, ρref(z),
from the EDP with protein adsorbate, ρ(z), and dividing this
difference by the contrast between the protein and reference medium

ϕ
ρ ρ
ρ ρ=

−
−z

z z
( )

( ) ( )ref

protein sub (3)

where ρsub is the electron density of the aqueous buffer solution
(subphase, 0.334 e−/Å3) and ρprotein is the electron density of the
protein (Table 2). Thus, the adsorbed amount is given by

∫ ϕΓ = m
v

z z( ) d
(4)

with the molar mass, m, and the molar volume, v, of the proteins as
listed in Table 2. It is important to note that the roughness between
the adsorbed layer (with thickness dads) and the subphase, σsub,
contributes to the effective layer thickness, deff, of the adsorbed protein
film,24,46 which is given by

σ= +d deff ads sub (5)

In the following text, we will use deff for the characterization of the
adsorbate thickness.

Error bars of each fitting parameter are determined by allowing a
variation of 5% from the χ2 of the best fit.24 The error in Γ is assessed
by setting each fitting parameter equal to the value that increases χ2 by
5% and combining these values to the EDP of maximum χ2.

■ RESULTS
Protein Adsorbates in Different Surface Potentials.

The adsorption of α-amylase, BSA, and lysozyme has been
studied on four different types of substrates. Therefore,

Figure 1. X-ray reflectivity data of BSA adsorbates presented as R/RF
vs qz on the four different types of substrates (from top to bottom):
N’phil (blue), T’phil (cyan), N’phob (red), and T’phob (purple).
Open circles represent the reference measurements, and solid symbols
represent the final state with the adsorbed protein layer. The lines
show the calculated reflectivity values as obtained from the respective
model fits. The curves were shifted for clarity.

Figure 2. Electron density profile of an N’phob substrate in buffer
without (red line) and with (black line) an adsorbed lysozyme layer.
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reflectivity measurements of the substrates without and with an
adsorbed protein layer have been performed. The reference
measurements (i.e., scans of a substrate in pure buffer solution)
display the specific features of the different substrates (Figure 1
and Supporting Information, SI): The hydrophobic substrates
in solution exhibit oscillations in the reflectivity curves (Kiessig
fringes) that can be related to the OTS layer and a depletion
layer in the electron density above the OTS coating.28

Furthermore, high-frequency oscillations are observed in the
reflectivities of the thick oxide wafers, which could be
reproduced in the refinement procedure of the model (SI),
yielding the actual layer thickness of the silicon oxide.
When we compare the raw reference data (open symbols)

and final measurements (solid symbols, see Figure 1), the effect
of an additional protein layer is visible on all types of substrates.
On the hydrophilic surfaces, this effect is mainly a reduction of
the reflectivity. On the hydrophobized silicon wafers, however,
measurements before and after adsorption differ more

drastically: the Kiessig fringes are enhanced and the positions
of the extrema are shifted by adsorption.
A detailed analysis and modeling of the data yield the

respective EDPs. The contributions of the respective protein
layers to the final EDPs are depicted in Figures 3 and 4. (The
reflectivity data corresponding to these profiles are shown in
the SI.) Several trends can immediately be extracted from these
volume fraction profiles and hold true for all three studied
proteins: by comparing protein layers on hydrophilic and
hydrophobic surfaces, one notices that the volume fraction
profiles on the hydrophilic surfaces extend to higher z values,
representing higher film thicknesses than on the hydrophobic
surfaces (cf. Figure 5). Additionally, these profiles also decay
more gradually to the buffer phase (Figures 3 and 4), which
indicates a high interfacial roughness.
On the hydrophobic surfaces, the thickness of any of the

protein films does not exceed 25 Å. When comparing this value
with the dimensions of the proteins used, one notices that the

Figure 3. Volume fraction profiles ϕ(z) as given by eq 3 for (a) α-amylase, (b) BSA, and (c) lysozyme on the four different types of substrates at pH
7 as received from the fitting procedure.

Figure 4. Protein volume fraction ϕ(z) of lysozyme on (a) hydrophilic and (b) hydrophobic substrates at its IEP (pH 11) (thick lines). For
comparison, the profiles at pH 7 on the respective substrates are also shown (thin lines).

Figure 5. Adsorbed amount, Γ, (left) and effective film thickness, deff, (right) as obtained from X-ray reflectometry.
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film thicknesses on the hydrophobic surfaces are noticeably
smaller than even the smallest diameter of every protein in this
study, therefore implying changes in the protein structure due
to adsorption. Furthermore, the profiles are nearly symmetrical
with steep flanks and high maximum protein volume fractions.
When we calculate the adsorbed amount Γ (Figure 5),

another tendency becomes visible: in contrasting the values for
Γ of the protein layers on thin and thick silicon oxide wafers,
we notice that trends in the data of hydrophobic and
hydrophilic surfaces differ significantly. On the hydrophobic
surfaces, the adsorbed amount Γ is higher on substrates with a
thin SiO2 layer. This trend in Γ (Figure 5) is inverted when
changing the surface chemistry from hydrophobic to hydro-
philic. On the hydrophilic substrates, thin oxide layers are
covered by less adsorbed proteins compared to the thick oxide
samples.
Upon comparing the different proteins, we find that the

above-described trends exist in every case, although the surface
coverage differs. This fact may be attributed to the different
IEPs of the proteins (Table 2) and surfaces used (pH 1.9(2) for
bare SiO2 and pH 3.0(2) for the OTS surface.9) Thus,
interprotein as well as protein−surface Coulomb forces differ
for every combination of protein and surface. To adjust at least
the interprotein Coulomb interactions, the measurements for
BSA and lysozyme have been repeated at their respective IEPs.
The results of these experiments reveal that the differences
between layers on thin and thick oxide wafers are also
conserved when changing the pH value to the IEP of the
protein.

■ DISCUSSION
The presented results reveal clear trends indicating that the
subsurface composition affects the adsorbing proteins and the
structure of the formed adsorbate. The data moreover contains
a wealth of information that will be discussed in the following
text.
Influence of the Surface Chemistry. The effect of

different surface chemistry is most obvious in the values for the
protein layer thickness: on the hydrophobic surfaces in this
study, we reproducibly observe protein film thicknesses smaller
than 30 Å, whereas on the hydrophilic ones the films are
thicker. The very low film thickness on hydrophobic surfaces
indicates a substantial variation of the shape (i.e., conforma-
tion) of the proteins. For every protein studied, the smallest
diameter of the protein is still larger than the respective layer
thickness of the adsorbate. Furthermore, on the hydrophobic
samples, the protein layers are characterized by a low roughness
for both interfaces as well as a high protein fraction, which
characterizes a dense protein film with little water content. Both
a low film thickness and a high density indicate a strong
denaturation of the proteins adsorbed on the OTS surfaces.
Additionally, the low interfacial roughness, indicated by the
steep slope in the profiles, can be accomplished only by nearly
complete denaturation and proteins that interdigitate into each
other. A similar drastic denaturation was found in neutron
reflectivity studies and in simulations concerning the adsorption
of lysozyme on OTS.47,48

In discussing the leading forces, two aspects can be extracted
from Figures 3−5: (i) Despite the different size, geometry, and
conformational stability of α-amylase, BSA and lysozyme, their
adsorbates on hydrophobic surfaces have remarkably similar,
low film thicknesses. (ii) At pH 7, a similar mass of adsorbed
protein per area is observed for all used proteins, though at this

pH value BSA and lysozyme carry opposing net charges and α-
amylase possesses a net charge that is close to zero. Both
aspects together imply only a secondary role of Coulomb forces
in the adsorption process on the hydrophobic surfaces. Instead,
the hydrophobic effect governs the structure formation of the
protein films. The level of denaturation and hence the deduced
influence of the hydrophobic effect seem to be determined by
the interfacial energy of the surface. This hypothesis is also
supported by a study in which polystyrene (interfacial energy in
between those of hydrophilic and hydrophobic wafers in this
study) was used as a surface material.25

On the hydrophilic surfaces, however, the degree of
conformational changes that can be deduced from the relatively
high film thickness values is much lower than on hydrophobic
surfaces. The thicknesses of BSA and α-amylase films are
roughly twice as high as on hydrophobic samples yet are still
thinner than the smallest diameter of the respective protein (ca.
45 Å). Additionally, the profiles in ϕ(z) are highly asymmetric
for all proteins, reflecting a much higher roughness for the
protein/buffer interface than for the substrate/protein interface.
The profiles can be interpreted by assuming adsorbed protein
molecules that are flattened on the adsorption side and retain a
more native, globular configuration to the solution side. This
interpretation is further corroborated by contrasting the
maximum protein content on hydrophilic and hydrophobic
surfaces. On hydrophilic surfaces, a maximum of ϕ = 0.6 is
observed (lysozyme on T’phil at pH 11), whereas on
hydrophobic surfaces, with denatured proteins, up to ϕ = 0.9
could be recorded (lysozyme on N’phob at pH 11).
What does a measured protein fraction of ϕ = 0.6 mean?

Because in the measurements the hydration shell is
indistinguishable from the surrounding free water molecules,
we consider densely packed (i.e., a surface coverage of ≳90%),
side-on-adsorbed colloids with the typical dimension of native
lysozyme including its hydration shell. To allow for a measured
protein fraction of only 60%, the resulting hydration shell must
be assumed to be only about 2 Å thick. This is below the
thickness of the native hydration shell (up to 10 Å49) and even
below the thickness of a water monolayer (∼3 Å). Thus, the
hydration shells of individual proteins have to overlap.
Assumptions of less-perfect ordering even reduce the calculated
hydration shell thickness, which justifies the above-made
assumption of ordering. It remains open whether this ordering
stems from clustering50,51 or collective effects10,52 on the
surface. Furthermore, the lysozyme film thickness at pH 11 (at
its IEP) is a few angströms larger than even the largest diameter
of the protein (cf. Figure 4). This large film thickness permits
the assumption of bilayer adsorption, which was also found in
other studies (Figure 6).24,53−55 An end-on adsorption of the
lysozyme molecules should not result in a film thickness above
ca. 50 Å, which is the protein’s largest diameter. Additionally,
end-on adsorbed proteins would exhibit a lower protein
fraction because of the lower protein/hydration shell area
fraction of their surface projection compared to that of side-on
adsorbed proteins. At the lower pH value of 7, where a net
electrostatic attraction between a surface and a protein and a
net repulsion between individual proteins exist, thinner films
and lower adsorbed amounts are recorded (cf. Figure 5).
BSA exhibits a much lower protein fraction in the layer than

does lysozyme (Figure 3) on hydrophilic samples. When we
consult the colloidal picture once more, the low maximum
values of ϕ(z) of BSA on hydrophilic surfaces indicate higher
interprotein distances (41 Å if one assumes hexagonal
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ordering) than in the case of lysozyme. This is most probably
due to the repulsive electrostatic forces between the highly
negatively charged BSA molecules.56 In the case of α-amylase,
the overall adsorbed amount on the hydrophilic surfaces is very
low in comparison to the cases of BSA and lysozyme. In
combination with the low electron density contrast, it renders
the electron density profile hard to interpret. Therefore, the
thickness values for the α-amylase adsorbates on N’phil and
T’phil have been omitted in Figure 5. The profiles, however, are
presented because their integral gives the adsorbed amount of
protein, which is, although small, a reliable value. The reason
for the low adsorbed amount is most probably due to the
aforementioned composition of the protein powder. The salts
contained in this powder increase the ionic strength and hence
the screening of the electrostatic forces between the protein
and substrate. Moreover, sulfate ions have kosmotropic
character, stabilizing the native structure of proteins,57 and it
has recently been reported that kosmotropic salts can lead to
reduced protein adsorption.58 Additionally, the protein
concentration in the solution is reduced by about 1 order of
magnitude. When we assume partially reversible adsorption,
this reduction of dissolved proteins reduces the adsorbed
amount. However, because the adsorbed amount is lowered
only on the hydrophilic substrates, it hints at the conclusion
that the adsorption on the hydrophobic substrates is not
affected by dissolved ions and is also completely irreversible.
Nevertheless, the trends in the adsorbed amount resemble the
trends for BSA and lysozyme and are discussed in the next
section.
So far we have reported on the impact of surface chemistry

on protein adsorption. The results for the adsorbed mass and
film thickness are in accordance with recent studies,24,47,48,53−55

yet with the in-layer characterization by the protein fraction
ϕ(z), we are able to obtain further insight into the protein layer
structure. Therefore, it is now possible to go one step further
and probe the effect of subsurface composition, a factor that is
neglected by most recent studies and will be discussed in the
following section.
Influence of the Subsurface Composition. The

influence of the subsurface material on protein adsorbates is
elucidated in this study by contrasting protein layers on samples
with the same surface energy but different silica layer
thicknesses. Thereby, the used set of substrates provides the
possibility to test the influence of long-range forces in
combination with different surface chemistry. The effect of

different subsurface composition is revealed by the final
adsorbed amounts of protein.
Figure 5 (left) presents the adsorbed amount Γ, calculated

via eq 4, of all measurements in this study. This overview
exposes clear trends in the value of the adsorbed amount for
every protein species used. On hydrophobic surfaces, the
adsorbed amount on substrates with thin silica layers (N’phob)
is higher than on substrates with thick silica layers (T’phob),
whereas this tendency is inverted on the hydrophilic, bare silica
substrates.
Because the experimental conditions for adsorption on

substrates with thin and thick SiO2 layers, either hydrophilic or
hydrophobic, were identical, the only difference lies in the
different subsurface composition of the substrate. From these
subsurface differences, varied dispersion forces arise. On thin
SiO2-layer samples, an interaction with the silicon beneath is
possible, at least for molecules in direct contact with the
surface. Here, the screening of the dispersion interactions by
ionic solutes is weakest (if not zero). On samples with a thick
silicon oxide layer, however, the distance to the silicon is too
large for the interaction with the silicon to have a significant
influence. These samples may be regarded as being solely
composed of silicon oxide (with a silane layer in the case of the
hydrophobic samples), thus resembling simple (hydrophob-
ized) glass substrates. Because the polarizability (or relevant
parts of the dielectric function ε(iξ))59 is higher for silicon than
for silica, the strength of the interaction of molecules the size of
proteins with the sample substrate is higher for composite
substrates N’phil and N’phob than for their respective
counterparts T’phil and T’phob.
The calculation of the correct van der Waals interaction

constant (i.e., the Hamaker constant), however, is already
difficult for proteins in solution.60 Additionally, the strength of
the interaction also depends strongly on the geometry of the
interacting objects.59 However, the protein geometry in the
adsorbed state is not known and can only be assumed, which
produces large errors in the estimation of the interaction
energy, especially at short distances. This means in sum that it
is presently not possible to give numbers for the differences in
the protein/substrate interaction between substrates with thin
and thick oxide layers. Instead, a more qualitative approach to
the effect of the variation of dispersion forces is chosen.
Because the variation in the dispersion force has the opposite

effect on the adsorbed amount Γ on hydrophilic and
hydrophobic surfaces, it is clear that different subprocesses of
the entire adsorption process are affected. In ellipsometry
studies,10 qualitatively different adsorption kinetics were
observed on the thin and thick oxide wafers, especially for
large proteins like α-amylase and BSA. These measurements
indicated that the variation in the subsurface composition
changes the time scale of a surface process such that its
influence on the adsorption rate could be seen. With the data
from the present study, however, it becomes obvious that,
although not clearly resolved in the kinetics, the lysozyme
adsorption is also affected and, even more importantly, that the
affected surface processes are of a different type on hydrophilic
and hydrophobic surfaces. The restriction to surface processes
is motivated by the fact that the initial adsorption rate showed
no variation due to subsurfaces changes9 and by the notion that
the dispersion forces and hence their differences are strongest
in direct contact with the surface. Currently, however, we
cannot exclude additional variations in the possibly nonzero
desorption rate by the dispersion forces because these

Figure 6. Schematic representation of the lysozyme molecules in the
adsorbate at pH 7 and 11 according to the interpretation of the
reflectivity data (cf. Su et al.55 and Evers et al.24).
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variations are hardly distinguishable from surface diffusion by a
mere inspection of the determined protein adsorbates.
The surface processes in question are the surface diffusion of

the proteins61 and surface spreading or conformational
changes.48,62 In the case of the latter process, there is even
direct evidence from the data, especially on the hydrophobic
surfaces. On the hydrophilic surfaces in this study, however,
where only small conformational changes in the proteins can be
deduced from the data, we assume the surface diffusivity to be
the relevant process that is affected by changing the substrate’s
subsurface composition.
Nonzero surface diffusivities for proteins are reported in the

literature (Tilton61 and references therein) and are a necessary
condition allowing for high packing densities (e.g., lysozymes
on hydrophilic samples), where protein surface concentrations
that reflect a nearly hexagonal close packing are reached.61,63

Even BSA, which in our study is the protein with the largest
interfacial contact area as a result of its oblate shape, shows
measurable surface diffusion on glassy surfaces.64,65 However, in
most experiments mobile and immobile proteins are found.
The reason for the coexistence of mobile and immobile protein
species is believed to result from different conformations or
orientations of the adsorbed proteins.66

These findings stimulate the following hypothesis for the
explanation of the subsurface influence on the adsorbed
amount on the hydrophilic surfaces: higher attractive forces
to the substrate (as on the N’phil substrate compared to on
T’phil) result in stronger binding to the surface and may also
trigger an augmented flattening of the proteins at the solid
surface. This stronger binding and the small conformational
differences then lead to a reduced surface diffusivity and/or a
higher nonmobile protein fraction. Eventually, higher attractive
surface forces would result in reduced desorption, slower and
less ordering, and hence a higher occupied space per protein
(Figure 7). Thus, the higher amount on T’phil in comparison
to that on N’phil can be understood. Ellipsometry studies9

support this hypothesis because a faster saturation of the
adsorbed layer is reported on the thick oxide.
On the hydrophobic surfaces, conformational changes (we

propose spreading) of the proteins seem to be the dominating
surface process. Protein layers of the same protein on thin and
thick oxide samples differ only in their maximum protein
fraction (Figures 3 and 4). These differences appear for every
protein studied but are most pronounced for the lysozyme.
From the adsorbed amounts and the film thickness values, a
surface coverage can be calculated, which the adsorbed proteins
would have had in their native state (i.e., before spreading). For
BSA and lysozyme on T’phob, values of about 20% can be
calculated, whereas on N’phob values of 30% for BSA and 55%
for lysozyme are found (12 and 20% for α-amylase). Because
these values do not exceed the jamming limit of a random
sequential adsorption model (ca. 55%),67 the assumption of
surface diffusion is not necessary. However, they encourage the
following hypothesis: in the course of the spreading of the
proteins, the interprotein distances will be reduced. Thus, the
repulsive forces between the charged protein molecules
increase and hence promote the desorption of less spread or
later adsorbed proteins. A higher attractive force between the
proteins and substrate would decrease this tendency because of
higher adhesion and by enhancing and accelerating the
spreading process,62 thereby leading to a higher adsorbed
amount (Figure 7).

Remarks on the Behavior of the Hydrophobic Gap.
The hydrophobic gap above an OTS layer submerged in water
has become a topic of many recent studies.28,68,69 Because this
gap is a layer with a low-density contrast, it requires reflectivity
curves up to higher qz values than reached in this study to draw
valid conclusions. However, because it is expected that proteins
tend to expose their hydrophobic residues to the OTS layer,
induced by the hydrophobic effect, we note the following
interesting observation: the depth and width of the depletion
zone seem to be influenced by the quality of the OTS layer, as
was inferred from measurements with a batch of OTS-covered
samples exhibiting a slightly higher water contact angle
hysteresis than usual. The adsorption of proteins can decrease
or increase this depletion zone, depending again on the layer
quality. Thus, the interfacial roughness between the protein and
substrate is also influenced; however, the adsorbed amount is
not, as could be shown in repeated measurements (Figure 5
and SI).
In this section, we have put forward several hypotheses

concerning processes involved in adsorbate formation. To
support these, further experiments are highly desirable (e.g., a
time-resolved characterization of the buildup of the film). In the

Figure 7. Schematic representation of the adsorbates on the four
different wafer types according to the interpretation of the reflectivity
data: flattened proteins on hydrophobic wafers and proteins with only
slight changes in their conformation on hydrophilic wafers. A higher
density is recorded on T’phil compared to that on N’phil and on
N’phob compared to that on T’phob, yielding a higher adsorbed
amount on the respective substrates. The interprotein distances vary
with the protein species (not shown).
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SI, a brief outlook is given as to how this may be achieved in the
future with X-ray reflectivity measurements.

■ CONCLUSIONS
This study analyzed the interfacial structure of adsorbed protein
films by in situ X-ray reflectometry. From the analysis of the
scattering curves, the film structure and the adsorbed amounts
of α-amylase, BSA, and lysozyme on four different types of
substrates are retrieved at high resolution. Silicon wafers with
native and thermally grown oxide layers are chosen as
hydrophilic substrates and coated with an OTS layer to gain
hydrophobic substrates. Thus, the surface chemistry and
subsurface composition of the substrates can be varied
separately in a well-defined manner. The influence of the van
der Waals forces between the substrate and proteins can be
tested by varying the silicon oxide thickness.
Irrespective of the actual surface chemistry, the results clearly

exhibit evidence of the influence of the subsurface material on
the protein adsorbates up to several nanometers below the
solid/liquid interface. More precisely, the properties of the
uppermost surface layer are responsible for the extent of
denaturation of the proteins determining the protein layer
thickness; the subsurface composition, however, influences the
density of the layer and thereby the final adsorbed amount of
protein. When we compare the different surfaces, the trends in
the adsorbed amount are sustained for every protein species
(reflecting different charges, geometries, sizes, and conforma-
tional stabilities) and for all pH values tested. These trends are
inverse on hydrophilic and hydrophobic surfaces and therefore
indicate that surface processes after the initial adsorption are
involved in the structure formation of the protein films.61,62

To conclude, surface processes after the initial adsorption
may vary with the surface chemistry, yet surface processes and
their time constant are sensitive to van der Waals forces arising
from buried layers.
A future challenge will be to directly identify the involved

surface processes and measure and simulate the respective
influence of the attractive surface potential.
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Abstract - Controlling the interface between bacteria and solid materials has be-
come an important task in biomedical science. For a fundamental and comprehensive
understanding of adhesion it is necessary to seek quantitative information about the
involved interactions. Most studies concentrate on the modification of the surface
(chemical composition, hydrophobicity or topography), neglecting, however, the in-
fluence of the bulk material, which always contributes to the overall interaction via van
der Waals forces. In this study, we applied AFM force spectroscopy and flow cham-
ber experiments to probe the adhesion of S. carnosus to a set of tailored Si wafers,
allowing for a separation of short- and long-range forces. We provide experimental ev-
idence that the subsurface composition of a substrate influences bacterial adhesion. A
coarse estimation of the strength of the van der Waals forces via the involved Hamaker
constants substantiates the experimental results. The results demonstrate that the
uppermost layer is not solely responsible for the strength of adhesion. Rather, for all
kinds of adhesion studies, it is equally important to consider the contribution of the
subsurface.
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ABSTRACT: Controlling the interface between bacteria and
solid materials has become an important task in biomedical
science. For a fundamental and comprehensive understanding
of adhesion it is necessary to seek quantitative information
about the involved interactions. Most studies concentrate on
the modification of the surface (chemical composition,
hydrophobicity, or topography) neglecting, however, the
influence of the bulk material, which always contributes to
the overall interaction via van der Waals forces. In this study,
we applied AFM force spectroscopy and flow chamber
experiments to probe the adhesion of Staphylococcus carnosus to a set of tailored Si wafers, allowing for a separation of short-
and long-range forces. We provide experimental evidence that the subsurface composition of a substrate influences bacterial
adhesion. A coarse estimation of the strength of the van der Waals forces via the involved Hamaker constants substantiates the
experimental results. The results demonstrate that the uppermost layer is not solely responsible for the strength of adhesion.
Rather, for all kinds of adhesion studies, it is equally important to consider the contribution of the subsurface.

■ INTRODUCTION
Adhesion and adsorption of proteins and bacteria onto
inorganic surfaces is crucial in various biomedical fields, such
as biofilm formation or DNA arrays.1,2 Thus, it has become an
important task to control the interface between organic
(macro)molecules and solid materials. The relevant interactions
can be tuned by modifying the substrates: Most studies
concentrate on the modification of the surface chemistry, the
hydrophobicity, or the topography. That way, the short-range
interactions are tuned.3,4 The composition beneath the surface,
however, is mostly overlooked and thereby long-range
interactions are disregarded. Previous studies focusing on
polymer dewetting5,6 and liquid nanodroplets7 showed an effect
of differences in long-range van der Waals (vdW) interactions.
These differences had been provoked by a variation of the
subsurface composition. Similar observations have been
reported for biological systems such as the adhesion of geckos8

and the adsorption of proteins.9

Bacterial adhesion is mediated by proteins.10 Hence, an
influence of van der Waals interactions on the bacterial
adhesion is also expected. Previous studies, however, were not
able to separate parameters influencing short-range, electro-
static, and van der Waals interactions independently.11,12 Yet,
for a comprehensive understanding of the bacterial adhesion
process it is necessary to seek quantitative information about
the contributions of the involved interactions. In this study, we
are able to tune van der Waals forces separately from other
forces by using a set of tailored silicon wafers (Figure 1A): The
set consists of wafers with a native oxide layer [“type N”, d =

1.7(2) nm] and wafers with a thermally grown thick oxide layer
[“type T”, d = 150(2) nm]. Another pair of wafers with
different surface properties was obtained by hydrophobizing the
naturally hydrophilic wafers. Short-range interactions do not
depend on the thickness of the silicon dioxide layer, whereas
long-range vdW interactions do.13,14

The adhesion onto synthetic surfaces and the formation of
biofilms is a key factor for the pathogenesis of bacteria from
multiple different species.1,15 Some species of the Staphylococcus
genus, for instance, are known to adhere strongly to surfaces
and are capable of forming biofilms16 that are extremely
resistant to removal and to antimicrobial drugs.17 Here, we
were interested in the unspecific interactions acting between a
bacterium and a surface. Therefore, we concentrated on
Staphylococcus carnosus strain TM300, an apathogenic member
of the genus Staphylococcus and an important organism in food
manufacturing, which usually serves as host organism for gene
cloning.18

To characterize the adsorption of microorganisms to
surfaces, typically parallel plate flow chambers are used.19 In
this macroscopic approach, adsorption, adhesion, and desorp-
tion effects are indistinguishable. In the past decades, some new
tools have been introduced that allow for a quantitative study of
bacterial adhesion, e.g., atomic force microscope (AFM).20

Using the force spectroscopy mode of an AFM it is possible to
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probe a wide range of forces in a biologically relevant
magnitude (pN to μN). A direct method to characterize
bacterial adhesion onto various substrates is to use AFM probes
that are covered with bacteria (“bacterial probes”).4,11,21 In this
study, we used AFM force spectroscopy with bacterial probes to
investigate the adhesion of S. carnosus (TM300) to the set of
tailored silicon wafers. Since bacteria in an already adhered state
(bacterial probes) might react differently as compared to
bacteria in planktonic state, we also performed macroscopic
flow chamber experiments with the same set of Si wafers.

■ MATERIALS AND METHODS
Preparation of the Substrates. The silicon wafers with the native

[type N, d = 1.7(2) nm] silicon oxide layer were purchased from
Wacker Siltronic AG (Burghausen, Germany) and the ones with the
thick thermally grown layer [type T, d = 150(2) nm] were from
Silchem (Freiberg, Germany). The substrates were cleaned by
immersing them for 30 min in fresh 1:1 H2SO4 (conc)/H2O2 (30%)
solution. To remove residues of the acids, the wafers were put in
boiling deionized water for 90 min, the water being changed four times
in between. The hydrophobic substrates were obtained by
functionalizing the cleaned wafers using a liquid phase preparation
of self-assembling silane molecules with a CH3 tailgroup (octadecyltri-
chlorosilane, OTS, purchased from Sigma-Aldrich) following standard
procedures.22 The produced OTS surfaces feature a thickness of ≈2.6
nm, an rms roughness below 0.2 nm, and an uniform coverage,
indicating a homogeneous, dense, upright, all-trans configuration of
the molecules. All types of substrates were characterized by AFM,
ellipsometry, zeta potential, and contact angle measurements (Figure
1B and Table 1).
Bacteria. We took stationary phase cells for the experiments. S.

carnosus strain TM300 was cultured from blood agar plates in 5 mL of

Mueller Hinton broth for 24 h at 37 °C. To remove extracellular
material, bacteria were washed once with 1 mL of NaCl solution (0.9%
w/v) and twice with phosphate-buffered saline (PBS, pH 7.3), each
with 1 mL. Finally, the bacteria were resuspended in 300 μL of PBS
and stored at 4 °C (for typically 2 h and a maximum of 48 h).

Preparation of Bacterial Probes. To immobilize bacteria onto
tipless cantilevers we used poly-L-lysine, PLL (MP Biomedicals, Solon,
OH), a polymer with positively charged side chains. Since the surfaces
of both the bacterium and the cantilever are negatively charged in
buffer (pH 7.3), PLL forms an adhesive interlayer.23 Prior to the
preparation procedure, the cantilevers were cleaned by treating them
with an air plasma. The PLL coating was then applied by immersing
the AFM cantilever in a droplet of poly-L-lysine solution (0.1 mg/mL)
for 1 h. Subsequently, the cantilevers were carefully rinsed with PBS
and placed in a droplet of bacteria solution for 1 h at 4 °C. To remove
unbound bacteria, the probes were rinsed with PBS buffer. All probes
used in this study were prepared immediately before the experiments.

AFM-Force Measurements. Experiments were conducted in PBS
(pH 7.3) at room temperature with a Bioscope Catalyst (Bruker, Santa
Barbara, CA). Each experiment consists of at least five series of 100
single force/distance curves. Every cantilever was calibrated using the
thermal tune technique.24 To avoid systematic errors due to local
irregularities of the surface, every measurement was done on a different
spot on a grid with separations of 5 μm. Single force measurements
were carried out using a z-range of 1 μm, a scan rate of 1 Hz, and a
relative force trigger of 1 nN. Adhesion forces were evaluated with the
Nanoscope software (Bruker, Santa Barbara, CA) by calculating the
difference between the adhesion peak25 and the baseline for every
single curve.26 All single values on each substrate were fitted using a
Gaussian curve. Displayed error bars describe the standard deviation.

Bacterial Probes. The bacterial probes were based on tipless
cantilevers (PNP-TR-TL, Nanoworld, NeuchÃct́el, Switzerland) onto
which bacteria were allowed to adsorb (Figure 2). The restricting issue
of this type of probe is the comparability of serial measurements due to
the uncertainty of the number of bacteria that are in contact with the
substrate’s surface. Therefore, it is not possible to compare
measurements with different cantilevers. Measurements with the
same cantilever on different substrates, however, are comparable as
long as the integrity of the bacterial probe can be granted by, for
example, an optical control or control measurements. We therefore
always carried out the experiments on a type T and a type N wafer
with the identical AFM probe. Within one experiment, consecutive
series of force/distance measurements were taken alternately on the
type N and T substrates, ending always on the substrate that has been
probed first.

Flow Chamber Measurements. Bacteria solution of different
concentrations was pumped through a custom parallel flow chamber
system with dimensions 2 × 1.6 × 3 cm3, chosen to guarantee a

Figure 1. (A) Model substrates based on silicon wafers with different thicknesses of oxide layers that allow for a separation of effects due to short-
and long-range forces. Short-range interactions are tuned by a silanization of the wafers that renders them hydrophobic. The blue droplet illustrates
the different water contact angles. (B) Zeta potentials of hydrophobic and hydrophilic type T and N wafers as function of pH, giving insight into the
strength of electrostatic interactions. Since the zeta potentials are indistinguishable for type T and N wafers with the same surface chemistry,
differences in SiO2 layer thickness are irrelevant for the electrostatic interactions.

Table 1. Parameters of the Model Substrates: Root Mean
Square (rms) Roughness, Advancing (adv) and Receding
(rec) Contact Angles Θ of Water, and the Surface Energy γ

dSiO2

(nm) surface
rms
(nm)

Θadv
(deg) Θrec (deg)

γ
(mJ/m2)

151(1) hydrophobic 0.15(2) 112(1) 108(4) 24(1)
1.7(3) hydrophobic 0.12(2) 111(1) 107(2) 24(1)
151(1) hydrophilic 0.13(3) 5(2) compl

wetting
63(1)

1.7(3) hydrophilic 0.09(2) 7(2) compl
wetting

64(1)
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uniform flow profile.27 Measurements on type T and N substrates
were always carried out using the same bacteria solution and in
random order. The images were taken with a CCD-camera (Pixelfly,
PCO, Kelheim, Germany), through a light microscope (Axiophot,
Zeiss, Oberkochen, Germany) at a frame rate of 0.1 Hz. The number
of adhering bacteria was determined using image analysis software
(Image Pro Plus, Media Cybernetics, Bethesda, MD).

■ RESULTS
To determine whether the subsurface composition has an effect
on bacterial adhesion, AFM force spectroscopy experiments
with bacterial probes were carried out on all four wafer types.
To distinguish from effects due to the surface chemistry, we
compare the results of the two hydrophilic substrates and of the
two hydrophobic substrates separately.

AFM Force Spectroscopy on Hydrophilic Substrates.
Force/distance measurements on the two hydrophilic wafer
types (Figure 3A) reveal a higher adhesion force on the type N
than on the type T wafers. The distribution of the determined
adhesion forces on the hydrophilic SiO2 surfaces is shown in
Figure 3B in the form of a histogram. We determined an
average adhesion force on the hydrophilic type N wafer of FN =
0.65(18)28 nN and on the type T wafer of FT = 0.30(10) nN.
The integrity of the bacterial probes (detaching bacteria or
other probe alteration) is controlled by two means:
(i) optical microscopy prior to and after the experiment;
(ii) control measurements, where consecutive series of force/

distance measurements were taken alternately on the
type N and type T substrates, ending always on the
substrate that has been probed first.

In this case, (i) no detaching of bacteria was observed and
(ii) the comparison of the force distribution of the different
series is shown in Figure 3C,D. The means of each single series
on type T wafers (I, III, V) and on type N wafers (II, IV) are
identical within the experimental error.

AFM Force Spectroscopy on Hydrophobic Substrates.
The determined adhesion forces on the hydrophobic substrates
exhibit the same trend. The identical type of measurements
including the test of the integrity of the bacterial probes was
performed on the hydrophobic OTS-coated wafers. The force/
distance curves (Figure 4A) resemble the ones on the
hydrophilic wafers, whereby the bacterial probes stayed also
intact. The average adhesion force (Figure 4B) on the
hydrophobic type N wafer is FN = 5.2(10) nN and on the
type T wafer is FT = 3.2(12) nN. Experiments with different
bacterial probes lead to different absolute values (due to
different densities of the bacterial layer), but the ratio is always
similar (Figure 4C). The average forces on the hydrophobic
substrates, however, are about one magnitude higher than the
corresponding forces on the hydrophilic wafers. This

Figure 2. Optical microscopy image of S. carnosus immobilized by
poly-L-lysine on a tipless cantilever.

Figure 3. Results of AFM force spectroscopy experiments on bare hydrophilic substrates: (A) Retract parts of two typical force/distance
measurements between a bacterial probe and a type N and a type T wafer, respectively. For a clearer display, the curve on the type N wafer is shifted
by −1 nN. (B) Distribution of the determined adhesion forces. (C, D) Data of part B are shown as separated series. Odd series were performed on
type T (C) and even series on type N wafers (D).
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comparison supports the findings of previous studies, namely
that increased hydrophobicity typically boosts adhesion.
Flow Chamber Experiments. Macroscopic adsorption

experiments corroborate the results of the microscopic
adhesion measurements. Using a custom-built parallel plate
flow chamber setup, the growth of the number of bacteria
adsorbed to the set of substrates was determined for multiple
concentrations. The number of adsorbed bacteria grows faster
on the type N than on the type T wafers (Figure 5A). The
adsorption rates, i.e., the slopes of linear fits, are always higher
on the type N than on the type T substrates independent of the
concentration (Figure 5B).

■ DISCUSSION
The force spectroscopy results show that on both the
hydrophilic and the hydrophobic wafers the bacterial adhesion
force to the native SiO2 layer is about twice as high as to the
thick SiO2 layer. Since the measurements were taken with the
identical cantilever, the determined forces are reliable. This
difference in adhesion forces is also observed for the adsorption

of planktonic bacteria, as shown by the parallel plate flow
chamber experiments. The surface properties that specifically
influence the short-range interactions, e.g., hydrophobicity,
roughness, and surface energy (Table 1), are independent of
the thickness of the oxide layer. Hence, the difference in
adhesion cannot be attributed to short-range forces. Also an
effect of electrostatic interactions can be excluded for the
explanation of the different adhesion forces, since the zeta
potentials (Figure 1B) are identical within the experimental
error on type T and N wafers. Therefore, only differences in
van der Waals forces can explain the results. van der Waals
forces are present in every system and cannot be completely
shielded.13,14,29 Often, vdW interactions are disregarded since
they decrease proportional to d−6 with distance d, which yet is
only correct for two interacting pointlike objects such as single
atoms or molecules. For two macroscopic bodies, however, one
obtains a lower exponent:13,14 the nonretarded free energy
between, for example, a sphere of radius R and a semifinite half-
space is

Figure 4. Results of AFM force spectroscopy experiments on hydrophobic substrates: (A) Retract parts of two typical force/distance measurements
between a bacterial probe and a type N and a type T wafer, respectively. For a clearer display, the curve on the type N wafer is shifted by −4 nN. (B)
Distribution of the determined adhesion forces. (C) Average force values (scaled with FT) of multiple experiments with different cantilevers.

Figure 5. Results of the flow chamber experiments on the hydrophilic substrates: (A) number of the adsorbed bacteria in the field of view on type N
and on type T wafers. (B) Adsorption rates of multiple experiments with different concentrations of the bacteria solution.
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= −W R A
d6vdW (1)

and between two semifinite half-spaces (Figure 6A) is

π
= −w A

d12vdW 2 (2)

per unit area, where A is the Hamaker constant of the system. It
can be derived from the optical properties of the involved
materials using the Lifschitz approach.30 In the following we
present a rough theoretical description of the system under
study.
In principle, a bacterium can be described as a sphere of

radius R consisting of two main components: the cytoplasm
and the cell wall. Since the cytoplasm consists mainly of water,
it has almost the same optical properties as the medium. The
cell wall merely differs in its composition and consequently in
its optical properties from the surrounding medium.31 For small
separations d ≪ R, we use eq 2 and describe the system by
three layers, namely, the cell wall, medium (buffer), and the
substrate. In this study, the substrate is not a uniform bulk
material but consists of multiple layers. In general, the vdW
energy for a system (Figure 6B) consisting of a uniform half-
space (M1), a medium (M2), and a half-space (M4) coated
with a layer (M3) of thickness D can be calculated by14,32

π= − +
+

− −⎛
⎝⎜

⎞
⎠⎟w

A
d

A
d D

1
12 ( )vdW

12 32
2

12 43
2

(3)

where A12−32 (as well as A12−43) are the Hamaker constants
describing the interactions between the two interfaces M1/M2
and M2/M3 (as well as M1/M2 and M3/M4). In the system
under study, the interacting interfaces are cell wall/buffer and
buffer/silicon dioxide as well as cell wall/buffer and silicon
dioxide/silicon. Since the cell wall features a nonuniform
composition and barely accessible optical properties, we are not
able to give exact theoretical values for the Hamaker constants.
Nevertheless, as the polarizability of silicon dioxide (n = 1.46, ε
= 3.9) is smaller than that of silicon (n = 4.13, ε = 11.8), we
expect A12−43 > 0.33 For this case, the second term in eq 3
increases the strength of the overall vdW interactions yet
converges to zero for high layer thicknesses D (as on the type T
substrates).
Hence, even without a comprehensive quantitative calcu-

lation, the experimental results can already be qualitatively
explained by the fact that the bacterium on the type N wafer is
“closer” to the strongly attractive Si bulk than if placed on a
type T wafer. In other words, due to the stronger van der Waals
attraction of the silicon, the bacteria experience higher adhesion

forces on the wafers with a thin oxide layer. On the
hydrophobic set of silicon wafers, the identical argumentation
holds true, yet the contribution of an additional layer (the
silane monolayer) has to be taken into account in a similar way
as presented above for the oxide layer. Moreover, the results
can be applied to clinical situations, where bacterial adhesion is
preceded or accompanied by an adsorption of proteins, which
may form a so-called conditioning layer.34 This layer changes
the surface properties of the substrate. Yet, since the thickness
of the layer is usually on a nanometer scale, the unspecific
adhesion forces will still be affected by the composition of the
subsurface material. (The condition layer then acts like the
OTS layer on the type N and T wafers.)

■ CONCLUSIONS
We have demonstrated that bacterial adhesion is influenced by
the subsurface composition of a substrate. The reason for this is
the strength of the vdW forces, which is given by (a) the type of
geometry of two interacting objects (atom/atom or sphere/
sphere), (b) their separation, (c) the composition of a stratified
substrate, and (d) the polarizabilities of the involved materials.
Keeping surface properties of the substrates constant, the
influence of the van der Waals forces were probed by varying
the subsurface composition. On Si wafers with different oxide
layer thicknesses, the adhesion of S. carnosus was found to be
about a factor of 2 stronger on the wafers with the thin oxide
layer, no matter if covered by a molecular-sized hydrophobic
layer or not. Consequently, for all types of adhesion studies,
e.g., for the development of antibacterial substrates, it is
important to characterize not only the surface properties but
also the subsurface composition and to consider this in the
analysis of the data. Particularly, thin coatings that promise to
be antibacterial will have different effects depending on the
underlying substrate! The effects could also explain inconsistent
results of previous studies due to the different bulk substrates
used.
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Abstract - Surface energies are commonly employed to determine the adhesive forces
between materials. However, the component of surface energy derived from long-range
forces, such as van der Waals forces, depends on the material’s structure below the
outermost atomic layers. Prior theoretical results and indirect experimental evidence
suggest that the van der Waals energies of subsurface layers will influence interfa-
cial adhesion forces. We discovered that nanometerscale differences in the oxide layer
thickness of silicon wafers result in significant macroscale differences in the adhesion
of isolated gecko setal arrays. Si/SiO2 bilayer materials exhibited stronger adhesion
when the SiO2 layer is thin (approx. 2 nm). To further explore how layered materials
influence adhesion, we functionalized similar substrates with an octadecyltrichlorosi-
lane (OTS) monolayer and again identified a significant influence of silicon dioxide
layer thickness on adhesion. Our theoretical calculations describe how variation in
the silicon dioxide layer thickness produces differences in the van der Waals interac-
tion potential, and these differences are reflected in the adhesion mechanics. Setal
arrays employed as tribological probes provide evidence that the ‘subsurface energy’
of inhomogeneous materials influences the macroscopic surface forces.
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Abstract
Surface energies are commonly employed to deter-
mine the adhesive forces between materials. How-
ever, the component of surface energy derived
from long-range forces, such as van der Waals
forces, depends on the material’s structure below
the outermost atomic layers. Prior theoretical re-
sults and indirect experimental evidence suggest
that the van der Waals energies of subsurface lay-
ers will influence interfacial adhesion forces. We
discovered that nanometer-scale differences in the
oxide layer thickness of silicon wafers result in
significant macroscale differences in the adhesion
of isolated gecko setal arrays. Si/SiO2 bilayer
materials exhibited stronger adhesion when the
SiO2 layer is thin (approx. 2 nm). To further ex-
plore how layered materials influence adhesion,
we functionalized similar substrates with an oc-
tadecyltrichlorosilane (OTS) monolayer and again
identified a significant influence of silicon dioxide
layer thickness on adhesion. Our theoretical calcu-
lations describe how variation in the silicon diox-
ide layer thickness produces differences in the van
der Waals interaction potential, and these differ-
ences are reflected in the adhesion mechanics. Se-
tal arrays employed as tribological probes provide
evidence that the ‘subsurface energy’ of inhomo-

∗To whom correspondence should be addressed
†Saarland University
‡Lewis & Clark College
¶Universität Erlangen-Nürnberg

geneous materials influences the macroscopic sur-
face forces.

Introduction
When describing adhesion between two materials,
it is common to refer to the strength of the con-
tribution of each material using their surface en-
ergies γ1 and γ2, which are the extra free energies
(per unit area) possessed by atoms at a surface rel-
ative to atoms in the bulk.1 The well-known Dupré
equation gives the work of adhesion ∆γ , the en-
ergy required to separate the dissimilar materials,
as ∆γ = γ1 + γ2 − γ1,2, where γ1,2 is the interfa-
cial energy of the two contacting surfaces. The
surface energy of solids typically cannot be mea-
sured directly and is usually estimated from liq-
uid drop contact angle measurements.2 The sur-
face energy is largely a property of the outermost
atomic layers (. 1 nm deep), yet van der Waals
(vdW) forces act over distances greater than 1 nm
in many cases.3–5 Thin industrial coatings like ad-
hesion promotors, self-assembled monolayers of
thiols or silanes as well as photoresists are also
in the range of a few nanometers. The van der
Waals forces of the underlying material should—
theoretically—reach through the thin layer and in-
fluence adhesion.

Previous experiments indeed identified a signifi-
cant influence of the long-range component of the
interaction potential on the dewetting of thin liq-
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uid films,6,7 their liquid front profiles,8,9 and the
mesoscopic organization of magnetic nanocrys-
tals.10 Recently, a similar influence was detected
on the adsorption kinetics of proteins11–13 and
the adhesion of bacteria.14 These experiments em-
ployed materials whose contribution to the poten-
tial had been tuned by means of surface stratifica-
tion. In layered systems, the contributions of the
different materials can be tuned by modifying the
layer thicknesses.15 Early work by Israelachvili
and Tabor16 measured the forces between crossed
cylinders, one of which was covered with a mono-
layer of stearic acid, and found that the resulting
dispersion forces were sensitive to the presence of
the surface layer at small separations, on the order
of the layer thickness. An analogous effect will
apply when two materials are brought into con-
tact, and the layer thickness is varied. The question
presents itself: can stratification be used to modify
the macroscopic adhesion of materials?

To tackle this question, we employed the gecko
to probe adhesion and the underlying surface
forces. Although the gecko is essentially a macro-
scopic ‘object’1, it makes use of intermolecu-
lar forces. The outstanding climbing ability of
the gecko has impressed observers for hundreds
of years and a technical replication is a active
area of research nowadays.18 The key adaptation
that provides this ability is the hierarchical struc-
ture of a gecko foot. The underside of each toe
is divided into lamellar structures that terminate
in arrays of densely-packed hair-like protrusions,
called seta.19,20 Individual setae are bundles of β -
keratin fibrils several hundred µm long.21 These
fibrils terminate in triangular, wedge-shaped pads
about 150 nm wide at the tip, called spatulae. As
a consequence of this hierarchical structure, the
setal arrays have an overall compliance that al-
lows them to closely conform to rough surfaces.22

The nanoscopic contacts that are established at
the spatular tips produce considerable overall ad-
hesion on virtually any surface by vdW interac-
tions.23–25 These structures are positioned at the
correct scale to establish uniform, single-asperity
contacts on substrates with limited roughness be-
low 100 nm.

1Tokay geckos (Gekko gecko) can produce an adhesion
force of roughly 20 N.17

Mounted array

220 µm

(a)

Engage Retract

Drag

2 Axis force sensor
Flateral

Fnormal

(b)

Figure 1: (a) Scanning electron microscope image of
a mounted setal array. (b) A schematic diagram of the
test setup for determining the adhesion (normal) forces
and friction (lateral) forces between an array and a sub-
strate.

In this study, we measured the adhesion of iso-
lated gecko setal arrays to substrates that differed
only in their subsurface composition: We used
a Si wafer surface with a native (‘N’, 1.7(3) nm
thick) oxide layer and surfaces with a thermally
grown (‘T’, 151(1) nm thick) amorphous SiO2
layer. In addition, we functionalized T- and
N-type wafers with an octadecyltrichlorosilane
(OTS) self-assembled monolayer. The OTS mono-
layer has optical properties that are similar to those
of SiO2, but is strongly hydrophobic. Using this
set of substrates, we characterize the influence of
the subsurface composition independent of surface
interactions, since the latter are identical within the
substrate pairs featuring the same surface chem-
istry.26 A comparison between the substrates fea-
turing different chemistries, however, is not the
aim of this study, since hydrophilic and hydropho-
bic substrates differ in short range interactions, the
characterization of which is not simply covered by
one parameter (e.g. the surface energy). Compar-
ing, however, pairs of wafers with identical short
range forces, yet different thicknesses of the sur-
face layers, will reveal the impact of van der Waals
interaction and allow for a theoretical description.
Our tribological probe was an isolated setal array
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from a species of tropical gecko (Gekko gecko;
Figure 1). Although the forces between each nano-
hair and the surface are slight, the scaling of forces
implied by the ‘contact-splitting effect’24,27 yields
considerable adhesion when the number of hairs
packed on the array is large.

Surface forces for layered media
We address the question of whether or not sub-
surface differences influence the adhesion between
bodies by calculating the surface interaction po-
tential and the resulting effect on adhesion in a
simple model system. Qualitatively, we expect a
larger adhesive force between a probe object and a
wafer with a thin oxide layer: Since Si possesses
a higher index of refraction and a higher polariz-
ability than SiO2, the van der Waals interactions
between a probe object and Si are stronger than
between a probe object and SiO2.3 The probe will
‘feel’ the subsurface bulk silicon more in a type
N wafer than in a type T wafer. The interaction
φ between two bodies at a distance x can be de-
scribed by a modified Lennard-Jones-type poten-
tial consisting of a short-range (SR) part and an
long-range (LR) part

φ(x) = φSR(x)+φLR(x)

=
CSR

xm −CC,E ·Θ(x0− x)−CLR

xn ,
(1)

where CSR and CLR are constants and m is typically
chosen to be n+6 to represent the powerful repul-
sion between overlapping electron clouds. Short
range chemical or entropic forces that act only at
some separation x0 are approximated by a Heav-
iside step function Θ(x) with constant strength
CC,E.

In the absence of charges, the LR part is deter-
mined exclusively by the vdW interactions φvdW.
For two infinite planes interacting2 through a
medium M, the exponent n = 2 and the interac-
tion energy per unit area is given by φLR(x) =
φvdW(x) = − Ai/M/j

12πx2 , where Ai/M/j is the Hamaker
constant for the interaction of two materials i and j
through a medium (M) and can be derived from the
optical properties of the materials using the Lifs-

2In this study only separations of a few nanometers are
of interest. Hence, retardation can be neglected.

chitz approach.3,28,29 In the case of a probe ma-
terial (P) interacting with a substrate that consists
of a bulk material (L2) and a thin coating (L1) of
thickness d, the vdW part of the interface potential
can be modified as6,7

φvdW(x) =− 1
12π

[
AP/M/L1

x2

+
AP/M/L2−AP/M/L1

(x+d)2

]
.

(2)

Hence, the relative contribution of different lay-
ers of an inhomogeneous substrate to the total
LR vdW potential can be tuned by varying the
thickness d of the layer L1. The second term in
Eq. (2), incorporating the contribution from the
lower layer, might be thought of as the ‘subsurface
energy’ of the system. In the following, we use
this term for energies that arise from vdW contri-
butions to the interface potential due to a variable
subsurface composition.

Material and Methods

Adhesion Performance Testing
We measured the tribological performance of the
mounted setal arrays using a custom mechani-
cal testing platform (‘Robotoe’).30 Robotoe in-
corporates a 2-axis positioning stage (Aerotech,
Pittsburg, PA, USA) and a piezoelectric load cell
(Kistler, Amherst, NY, USA) (with a resolution of
1.3 and 2.6 mN in shear and normal forces, respec-
tively). The mounted array is attached to the ter-
minal end of the force sensor assembly, and the
layered Si/SiO2/OTS substrates are held rigidly in
a mount on the motion stage opposite the setal ar-
ray specimen chuck. All of the components are en-
closed in a controlled-environment chamber. Dur-
ing a test, the tips of the setal arrays are dragged
across the substrate in a displacement-controlled
motion designed to resemble a gecko’s footfall30

(cf. Figure 1). Reported adhesion and friction val-
ues are taken from the force sensor readout dur-
ing the steady-state portion of each test.31 We can
specify parameters such as the drag velocity v and
approach distance during the experiment, as well
as the temperature and humidity in the chamber.

3
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Table 1: Surface properties of the substrates used in this study: root mean square (rms) roughness, advancing (adv)
and receding (rec) water contact angle, surface energy γ and Lifshitz-van der Waals γLW and Lewis acid-base γAB

components obtained from contact angles of three different liquids.39 The number in brackets gives the error bar of
the last digit.

rms (nm) γ (mJ m−2) γLW (mJ m−2) γAB (mJ m−2) Θadv (◦) Θrec (◦)
OTS T 0.19(3) 24(1) 24(1) 0 111(3) 103(4)
OTS N 0.17(0) 24(1) 24(1) 0 111(2) 103(2)
SiO2 T 0.13(3) 63(1) 43(1) 20(1) 5(2) complete wetting
SiO2 N 0.09(2) 64(1) 43(1) 21(1) 7(2) complete wetting

Preparation and cleaning of substrates
The silicon wafers were purchased from Si-Mat
(Landsberg, Germany). We removed residues
leftover from the polishing process, as well as
contaminants deposited by the atmosphere, by
submerging the as-received wafers for 30 min
in fresh 1:1 H2SO4(conc.)/H2O2 (30%) solution.
The wafers were subsequently rinsed in boil-
ing deionized water for 90 min, which was ex-
changed three times within that time. We pro-
duced a second pair of type T/type N substrates
with different surface properties by hydropho-
bizing a series of cleaned wafers using self-
assembling silane molecules with a CH3 tail-
group (octadecyl-trichlorosilane, OTS, purchased
from Sigma-Aldrich, Germany) following stan-
dard procedures.32,33 All wafer types were char-
acterized using atomic force microscopy, ellip-
sometry and water contact angle measurements
(cf. Table 1, further characterization data avail-
able in refs.13,34). Immediately prior to the ex-
periments, the substrates were cleaned by immers-
ing them subsequently into ethanol and acetone
(5 min each) in a ultrasonic bath and rinsing them
for 30 min in boiling DI water.

Setal Array Collection and Preparation
The setal arrays of Gekko gecko grow from lamel-
lar strips of tissue on the ventral side of each
toe. We collected entire arrays from live, unanaes-
thetized animals following the methods described
in;24 the keratin backing layer to which the hairs
are attached can be peeled from the lamella easily.
(The animal’s loss of adhesive function in this digit
is recovered at the next molt.) After some trim-
ming, we affix the detached arrays to aluminum

Table 2: Optical properties of the relevant materi-
als35–38

n ε
β -keratin 1.56 20

SiO2 1.46 3.9
Si 4.1 11.8

OTS 1.46 2

stubs, hairs facing upward at their natural resting
angle, with a thin layer of cyanoacrylate glue (cf.
Figure 1). These stubs are then mounted on the
force sensor in Robotoe, the setal arrays facing the
substrates mounted on the translation stage. The
size of the arrays varies in the range of a few mil-
limetres. The larger arrays were chosen for the ex-
periments on the hydrophobic samples, the smaller
ones for experiments on hydrophilic samples re-
spectively.

Results

Calculation of microscopic van der
Waals potentials
The optical properties of Si and SiO2 are well-
known, but only limited data on the optical prop-
erties of β -keratin is available, and, to the au-
thors’ knowledge, no studies have been done on
β -keratin from geckos. Furthermore, the constant
CSR in the repulsive part of Eq. (1) is hardly acces-
sible, so we cannot give rigorous theoretical values
for the forces without some assumptions. We take
the optical constants of β -keratin as those deter-
mined for horn keratin35,36 (cf. Table 2). We also
assume that the repulsive constant CSR and CC,E
are independent of oxide layer thickness; this is
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Figure 2: (a) Calculated effective interface potentials for the interaction between a keratin layer and a silicon wafer
(type T and type N). The short-range constant was assumed as CSR = 1 · 10−77 J m6 resulting in maximal forces of
Fmax ≈ 10−2 nN nm−2. (b) Relative difference in van der Waals forces on type T and type N wafers as determined
using Eq. (4). (c) Estimated pull-off forces for a β -keratin sphere of radius R = 150 nm on a Si/SiO2 bilayer material
with layer thickness d making use of Eq. (6).

a safe assumption since the surface properties of
the substrates do not differ significantly (Table 1).
Using the indices of reflection and the dielectric
constants of the involved materials (cf.
refTabOptProp) the Hamaker constants were cal-
culated to ASi = 61.5 kBT and ASiO2 = 17.8 kBT ,
confer chapter 11, Eq. 11.13 of Ref.3 Inserting
these values into Eq. (1) and Eq. (2) produces
the potentials φN and φT in Figure 2a. As ex-
pected from the qualitative considerations before,
the global minimum in the interaction potential is
lower for the type N than for the type T sample.
For these potentials we used CSR = 10−77 J m6, a
value that reflects the typical magnitude given in
other experiments.6 The term CC,E, i. e. the chem-
ical and entropic forces can be neglected in force
differences because they would contribute—if sig-
nificantly present at all—in the same way for type
N and type T samples due to their identical sur-
face properties. Altogether, this results in maximal
forces comparable to previous experimental stud-
ies.23 The work of adhesion for these potentials is
given by ∆γ = φ(∞)−φ(x0).

Avoiding all of the above assumption that espe-
cially concern the SR forces, it is instructive to
evaluate the system in terms of LR vdW forces
only. Of significant interest is the manner in which
the vdW forces differ between the N and T sub-
strates. This difference, on a per unit area basis,

is

∆F(x) = FN(x)−FT(x)

∝
AP/M/Si−AP/M/SiO2

(x+d)3 .
(3)

This leads to a relative difference in vdW forces of

∆FRel.(x) =
∆F(x)
FT(x)

=
RA

(d
x +1)3

, (4)

where RA = AP/M/Si
AP/M/SiO2

− 1 is the shifted ratio of the
Hamaker constants. The parameter RA is useful
for comparing vdW force differences between sub-
strates with different materials or structure. The
relative difference in van der Waals forces on type
T and type N wafers for different separations is
shown in Figure 2b whereby RA = 2.5. Variation
in the values of the refractive index and dielectric
constant of β -keratin does not change these ratios
significantly (c.f. supplementary material).

Influence of the potentials φN and φT on
adhesion forces
Adhesion between bodies involves more phenom-
ena than just those represented by the interaction
potential. For instance, the separation of adhered
structures is also influenced by the mechanical
properties of the materials involved. More inclu-
sive mechanical pictures of contact and adhesion
include the Johnson-Kendall-Roberts (JKR) the-
ory40 and the Derjaguin-Muller-Toparov (DMT)
theory41 of contacting spheres. These models
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Figure 3: Results of multiple different experiments on the hydrophobic samples with different setal arrays and
substrate pairs: Mean adhesion forces are plotted as a function of (a) the drag speed (at 75%RH) and (b) the humidity
(with v = 50 mm s−1). By convention, adhesive forces are negative. The stars indicate the level of significance.

make specific predictions of the contact areas and
pull-off forces for a number of different simple
contact geometries (sphere/sphere, sphere/plane)
based on materials properties and surface interac-
tions.

We investigate the influence of the interaction
potential of Eq. (2) on the adhesion of a sphere
of radius R to a plane using the same approach
as these theories, but it is important to note that
(i) Eq. (2) was derived for two facing half-spaces
of material and (ii) the scaling of the adhesion
forces will not be exactly linear with the changes
in γ or F . We address these issues by transform-
ing the interaction potential φ to a new form V
amenable for contact between curved bodies us-
ing the Derjaguin approximation.42 For contact
between a body of principal curvatures κ1,κ2 and
a plane, this gives

V (l) =−α(λ )π√
κ1κ2

∫ ∞

l
φ(x)dx (5)

where l is the minimum approach distance be-
tween the sphere and the plane, κ1 = κ2 = 1

R for
the sphere, and 3

2 ≤ α ≤ 2. The Maugis param-

eter λ = 2σ0

(
R

π∆γK2

)1/3
describes the transition

between the JKR and DMT limiting behaviors us-
ing an approximate, square force-separation curve
of depth σ0 and integrated area ∆γ .43 Use of this
parameter makes the adhesion properties respon-
sive to changes in the shape of the potential V in
a manner that neither the JKR or DMT solutions
can capture individually. The parameter λ also in-
troduces the elastic constants Ei,νi of the sphere
(1) and surface (2) into the problem through the

contact modulus K = 3
4

(
1−ν2

1
E1

+
1−ν2

2
E2

)−1
. While

there is no analytical expression that relates the
prefactor α to λ , there is a simple fit developed
by Carpick44 that suffices.

From Eq. (5), we can find the adhesive or ‘pull-
off’ force for the sphere on the layered substrate.
Since F(l) = −dV

dl = −απRφ(l) and the bodies
are in contact at l ≈ x0, we have

Fpull-off(d) =−α(λ (d))πRφ(x0,d)
=−α(λ (d))πR∆γ(d).

(6)

This is the typical form for pull-off forces in ad-
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Figure 4: Results of multiple experiments (drag speed: 0.5 mm s−1; humidities: 10, 30, 50, 70%RH) on the hy-
drophilic samples with different setal arrays and substrate pairs: (a) Mean adhesion forces of the single experiments.
(b) Aggregation of the experiments on the hydrophilic samples: Mean differences in adhesion forces of ‘concurrent’
single tests on the type N and type T wafers ∆F = FN−FT are plotted as a function of the humidity.

hesion problems, but all of the information about
the potential in Eq. (1) and Eq. (2), such as the
layer thickness d, is included in a consistent man-
ner. The d-dependence enters into Eq. (6) not only
in ∆γ , but also in λ as well. Figure 2c shows how
the pull-off forces will vary with layer thickness
d. For large layer thicknesses, the influence of the
second term in Eq. (2) on adhesion is negligible
and the forces asymptote to the value F∞. How-
ever, in the range 0.5 nm ≤ d ≤ 5 nm, the force is
significantly higher.

Adhesion forces on hydrophobic OTS-
Surfaces
The predicted influence of differences in the thick-
ness of the SiO2 layer on adhesion forces was ob-
servable in drag experiments of setal arrays on
the hydrophobic wafers. We performed multiple
experiments, consisting of hundreds of individual
drag tests, at five different speeds (5, 8.9, 15.8,
28.1, 50 mm s−1) and three humidities (30, 50,
75%RH), incorporating a number of different ar-

rays and substrate pairs. The order of individual
tests in an experiment were randomized within the
constant-humidity groups. The results of typical
experiments are shown in Figure 3: The mean ad-
hesion forces of multiple different measurements
at 75%RH with different setal arrays and substrate
pairs are plotted as a function of drag speed (Fig-
ure 3a) and as a function of humidity (Figure 3b).
The data demonstrate a clear influence of the oxide
layer thickness on the adhesion force; the force on
the type N substrate is always larger than the force
on the type T substrate. The trend is independent
of humidity and drag speed. Because of the dif-
ferent specimen sizes and slight variations in setal
organization between individuals, absolute force
values in different experiments depend on the setal
array used.

Adhesion forces on hydrophilic SiO2
Surfaces
Next, we examined whether the adhesion forces
on the bare SiO2 surfaces are also affected by
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the SiO2 layer thickness. Slow drag speeds of
0.5 mm s−1 were used to avoid damage to the
gecko arrays from the high overall forces on the
hydrophilic surfaces3. The experiments were per-
formed at four different humidities (10, 30, 50,
70%RH). Similar to the results on the hydropho-
bic surfaces, the adhesion force on type N wafers
is consistently larger than on type T wafers (Fig-
ure 4a). In spite of the slow drag speed, it was not
entirely possible to prevent degradation of the ar-
ray performance during an experiment (no degra-
dation was observed on the hydrophobic samples).
To minimize the influence of this effect in our N/T
comparisons, we always carried out tests on both
substrates in pairs (in a randomized order) and
calculated the difference between ‘concurrent’ N
and T measurements. The means of these differ-
ences ∆F in various experiments across multiple
arrays and substrate pairs are always negative (Fig-
ure 4b). Therefore, the adhesion forces on the bare
SiO2 surfaces are also affected by the SiO2 layer
thickness.

Discussion
The experiments demonstrate that the subsurface
energy influences macroscopic adhesion. Varia-
tion in oxide layer thickness, which causes subtle
differences in the subsurface energy-distance rela-
tionship, significantly affects the force of adhesion
between gecko setal arrays and Si wafers.

By using two pairs of tailored substrates, we
were able to vary subsurface and surface proper-
ties independently. On the bare Si/SiO2 substrates,
the adhesion force is higher on the wafers with the
thinner SiO2 layer. This trend in adhesion force
agrees with the theoretical predictions presented in
Figure 2. Comparing the Fpull-off(d) at d = 1.7 nm
for the hydrophilic N-type wafer with the value at
d = 151 nm for the T-type wafer, the pull-off force
is - in absolute values - higher on the N-type sam-
ple.

On the hydrophobic Si/SiO2/OTS materials, the
overall adhesion force is lower, but the trend cor-
roborates the results on the hydrophilic substrates.
To plot Fpull-off(d) for the hydrophobic wafers,

3On the hydrophobic samples, an effect of wear was not
observed.

it is not necessary to reformulate Eq. (2) with a
third layer, rather, the thickness of the OTS layer
(dOTS≈ 2.6 nm)4 is added to that of the SiO2 layer,
since both layers feature similar indexes of refrac-
tion and polarizabilities. As the top layer is still on
a nanometer scale, the difference in Fpull-off is still
resolvable.

It is significant that we can distinguish these
slight force differences in an essentially macro-
scopic experiment with the gecko material. The
contact splitting effect implies that if we replace
a large contact with N smaller ones,45 the overall
contact force will be multiplied by a factor of ∼√

N.27 Applying this principle magnifies the slight
force differences between the N and T substrates
to the point that they can be resolved macroscopi-
cally. Tokay geckos possess ≈ 14000 seta/mm2 46

and there are ≈ 100 terminal spatulae on each
seta.21

Furthermore, our data clearly show that adhe-
sion is enforced with increasing drag speed and
increasing humidities—on hydrophilic as well as
on hydrophobic substrates—corroborating previ-
ous studies.25,47,48 A comparison of the adhesion
forces on the hydrophobic and the hydrophilic sub-
strates is not the objective of this study; there are
too many variables involved to make any specific
inferences. The correlation between water contact
angles and gecko adhesion was the focus of previ-
ous studies.19,24,49–51

Our theoretical approximations have two limita-
tions: First, the small size, the internal structure
and the unknown optical properties of the wedge-
shaped β -keratin pads limit the calculations via the
Lifshitz theory, which is based on continuum prop-
erties of semi-infinite parallel slabs. However, a
more comprehensive and detailed theory will be
able to predict more exact values for the subsur-
face energies of type N and type T wafers, but will
not differ from our approximations in the predicted
sign of the difference between the surface poten-
tials. Second, the gecko adhesive system does not
obey the idealized mechanics of the sphere-plane
system. Nevertheless, the JKR/DMT solution in-
cludes all of the relevant physical concepts. The
variation in the force values in Figure 2c derives
from the difference between the surface potentials

4determined by ellipsometry and X-Ray reflectometry.
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φN and φT rather than geometrical considerations,
so we expect an analogous response in the gecko
system. Thus, we are not able to theoretically
match the absolute force values, but we were able
to explain the measured differences in adhesion
force on type N and type T wafers.

Conclusions
By using gecko setae as a macroscopic adhesion
probe, we found evidence that differences in the
interaction potential associated with the subsur-
face energy can produce macroscale differences
in surface forces. Hence, it is indeed possible to
modify the adhesion of materials by stratification.
As a consequence, (i) for adhesion and adsorption
experiments and simulations, van der Waals forces
have to be considered and (ii) in stratified systems,
subsurface and surface energies must be included
accordingly.
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Abstract
The mechanisms of action of fluoride have been
discussed controversially for decades. The caries-
preventive effect is often traced back to effects
on demineralization. However, an effect on bac-
terial adhesion was indicated by indirect macro-
scopic studies. To characterize adhesion on fluori-
dated samples on a single bacterial level, we used
AFM force-spectroscopy with bacterial probes to
measure adhesion forces directly. We tested the
adhesion of Streptococcus mutans, Streptococcus
oralis and Staphylococcus carnosus onto smooth,
high density hydroxyapatite surfaces, treated and
untreated with fluoride solution. All bacteria
species exhibit lower adhesion forces after fluori-
dation of the surfaces. These findings suggest that
the decrease of adhesion properties is another ori-
gin of the cariostatic effect of fluoride.

Introduction
The campaign against caries is an always highly
topical issue. Since more than seven decades it is
known that the application of fluoride compounds
has an cariostatic effect.1 However, the underly-
ing mechanisms of action of fluoride have been
discussed controversially for decades and are not
yet completely revealed.2 The cariostatic impact

∗To whom correspondence should be addressed
†Saarland University
‡Saarland University

of fluoridation is often traced back to a decreased
demineralization of the teeth: Compared to hy-
droxyapatite (HAP), fluoroapatite (FAP) exhibits a
higher resistance to acids leading to a lower dem-
ineralization (demineralization of HAP and FAP
starts at pH 5.5 and pH 4.6, respectively3). New
studies, however, showed that in the course of the
fluoridation of HAP, the penetration depth of F is
much lower than the previously reported micron
range: FAP layer thicknesses are in the range of
10 nm.4 In the oral cavity, chewing can shortly
remove such nanometer-sized layers, which ques-
tions the explanation of the cariostatic effect of flu-
oridation by a decreased demineralization. Bac-
teria, however, are also influenced by fluorida-
tion: The release of fluoride ions affects the bac-
terial metabolism,5 the development of biofilms6

and the behaviour of osteoplastic cells.7 Further-
more, an effect on bacterial adhesion has been in-
dicated by indirect macroscopic studies: Fluorap-
atite cement as compared to natural enamel,8 flu-
oridated hydroxyapatite beads,9 and fluoroapatite
coatings10 displayed a reduced number of adher-
ing cells. Since fluoroapatite coatings showed to
be biocompatible,11 their antibacterial effects are
not only of interest for the dental science but for
all kind of implant science.

To study bacterial adhesion, classically paral-
lel plate flow chambers are used.12 In the past
decade, however, atomic force microscopy (AFM)
has been established as a powerful tool in bacterial
research.13 By means of AFM force spectroscopy
with bacterial probes it is possible to study the
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adhesion force between bacteria and surfaces on
a single bacterium level.14 This microscopic ap-
proach is direct and quantitative in contrast to the
classical macroscopic flow chamber studies.

The application of AFM force spectroscopy on
enamel is problematic due to the rough and inac-
cessible surface. As the main compound of enamel
is hydroxyapatite, we use high-density HAP pel-
lets that feature smooth surfaces with micrometer
sized patches of nanoscale roughness.

To determine whether the indicated effect of flu-
oridation on bacterial adhesion can be observed
on a single bacterial level, we used AFM force-
spectroscopy with bacterial probes to measure ad-
hesion forces directly. We tested the adhesion
of the cariogenic pathogens Streptococcus mutans
and Streptococcus oralis, and of the apathogenic
Staphylococcal species S. carnosus onto hydroxy-
apatite surfaces, treated and untreated with fluo-
ride solution.

Experimental section

HAP and fluoridation
Using a field assisted sintering technique (FAST),
commercially available hydroxyapatite (Sigma-
Aldrich, Steinheim, Germany) was pressed into
HAP pellets of a diameter of about 20 mm, a
thickness of 5 mm and an overall density of 96%
compared to a single crystal. In order to get a
smooth sample surface, one side of the pellet was
repeatedly treated with wet abrasive paper of in-
creasing grain size (Struers, Willich, Germany).
Subsequently, the surface was polished with dia-
mond suspensions (DiaPro-3 µm; Struers, Willich,
Germany and MSY0-0.03; Microdiamant, Leng-
wil, Switzerland) containing grains of 3 and 0.03
µm diameter. The procedure was performed until
an RMS roughness of below 5 nm was achieved,
which was determined by (1 µm)2 AFM topogra-
phy scans. The pellet was then etched in a dilute
acetic acid solution for 5 s with a pH of 4 in order
to remove the residuals of the polishing procedure.
By this step, the RMS roughness is slightly in-
creased to 10 nm, yet the achieved surface is clean
of foreign particles.4 Fluoridation took place at pH
9, which is achieved by a fluoride solution (NaF in

in de-inoized water) of 1000 ppm F−. By thermal
evaporation of Au through a mask, a strip of about
4 mm width and 100 nm thickness was prepared
on the polished HAP pellet, separating it in two
halves. One half was immersed into the fluoride
solution for 5 min. Subsequently, the pellet was
rinsed and then sonicated for 5 min in de-inoized
water, in order to remove remainders of the fluo-
ride solution.

Bacterial strains and culture conditions
The Streptococcus mutans and Streptococcus
oralis clinical isolates used in this study were
obtained from the Clinic of Operative Dentistry,
Periodontology and Preventive Dentistry (Saar-
land University Hospital, Homburg/Saar, Ger-
many). Staphylococcus carnosus strain TM300,
used in this study as a non-pathogenic control,
was obtained from the German Resource Centre
for Biological Material (DSMZ, Braunschweig,
Germany). The bacteria were maintained at -
80 ◦C in tryptone soy broth (TSB; BD Biosciences,
Heidelberg, Germany) containing 15% glycerol.
For culturing, strains were incubated on TSB-
sheep blood agar plates overnight at 37 ◦C. Sub-
sequently, bacterial colonies were precultured in
5-ml MÃijller-Hinton (MH; BD Biosciences, Hei-
delberg, Germany) batch cultures for 6 h at 150
rpm and 37 ◦C. 300 µl of each preculture was
used to inoculate a main culture in 10 ml MH.
After 16 h of growth at 150 rpm and 37 ◦C, bac-
teria were harvested by centrifugation at 1900 g
for 10 min at 20 ◦C and washed twice with 10 ml
of phosphate-buffered saline (PBS) (10 mM potas-
sium phosphate, 0.15 M NaCl; pH 7). The bacteria
were subsequently resuspended in PBS to obtain a
concentration of 1x109 cells per ml.

Preparation of bacterial probes
The bacteria were immobilized onto tipless can-
tilevers (PNP-TR_TL; Nanoworld, NeuchÃćtel,
Switzerland) by means of poly-L-lysine, PLL (MP
Biomedicals, Solon, USA). Prior to the prepara-
tion procedure, the cantilevers were cleaned by
treating them with an air plasma. The PLL coat-
ing was then applied by immersing the AFM
cantilever in a droplet of poly-L-lysine solution
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Figure 1: Results of an AFM force spectroscopy experiment with Streptococcus oralis and untreated or
fluoridated hydroxyapatite substrates: A) Distribution of the measured adhesion forces. B) Mean adhesion
forces of three subsequent series of measurements, each consisting of 50-100 force/distance curves. To
assure the integrity of the bacterial probes, experiments were always started and terminated with a series
of measurements on the same substrate.

(0.1 mg/ml) for 1 hour. Subsequently, the can-
tilevers were carefully rinsed with PBS and placed
in a droplet of bacteria solution for 1 hour at
4◦C. To remove unbound bacteria, the probes were
rinsed with PBS buffer. All probes used in this
study were prepared immediately before the exper-
iments.

Force spectroscopy
AFM force spectroscopy experiments were per-
formed in PBS buffer using a Bioscope Catalyst
and a Dimension Icon (both: Bruker, Santa Bar-
bara, USA). The force measurements were per-
formed using a z-range of 1 µm, a scan rate of
1 Hz and a relative force trigger of 1 nN. An en-
tire experiment consists of at least 100 single mea-
surements per substrate type. Thereby, every mea-
surement was performed on a different spot. To
control for an alteration of the bacterial probe, ev-
ery experiment was terminated and started with
a series of measurements on the same type of
substrate. Adhesion forces were evaluated with
the Nanoscope software (Bruker, Santa Barbara,
USA) by calculating the difference between the
adhesion peak and the baseline for every single
curve.15

Results and discussion
To determine whether the adhesion force is influ-
enced by fluoridation of the hydroxyapatite sub-
strates, we carried out AFM force spectroscopy
experiments with three different bacterial species.

In the case of Streptococcus oralis, the deter-
mined adhesion forces are lower on the fluori-
dated than on the untreated part of the sample (Fig-
ure 1A). The integrity of the bacterial probe can
be guaranteed, since the first and the last series of
measurements were performed on the same type of
substrate (in this case the untreated part, cf. Fig-
ure 1B) and the respective adhesion forces were
identical within the experimental error.

Further experiments with Streptococcus mutans
and Staphylococcus carnosus reveal the same
trend (cf. Figure 2). All bacteria species exhibit
lower adhesion forces on the fluoridated part of
the hydroxyapatite substrate. That is to say, fluori-
dation reduces the adhesion between bacteria and
hydroxyapatite pellets by a factor of two, indepen-
dent of the studied species and the amount of bac-
teria in contact.16

Our findings corroborate the results of sim-
ple, macroscopic counting experiments in previous
studies:8–10 Moreover, the macroscopic difference
in the amount of adhering bacteria on fluoridated
and untreated surfaces can now be traced back to
microscopic differences in the adhesion force of
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Figure 2: Aggregation of the mean adhesion forces
of multiple experiments with different cantilevers
and bacterial species. Consistently, the mean ad-
hesion force is reduced by roughly 50%. Due to
a different amount of bacteria in contact, indepen-
dent experiments with the same species show dif-
ferent absolute values. The ratios, however, are
consistent.

single bacteria.
The advantage of AFM force spectroscopy with

bacterial probes is the possibility to directly mea-
sure adhesion forces on a microscopic scale. A
restricting issue, however, is the susceptibility to
local heterogeneities in the surface. By using
nanoscopically smooth substrates, we circumvent
problems due to topography. To account for the
heterogeneity in crystallite orientation, every sin-
gle measurement is carried out on a different spot
on the surface. By this, we gain orientation-
averaged mean adhesion forces but have to accept
larger error bars. However, the observed trend is
consistent and reproducible over multiple various
experiments.

As all three bacterial species show the same ad-
hesion reduction, we do not expect a specific adhe-
sion effect or an active response of the bacterium.
Especially the results for S. carnosus, corroborate
this assumption, due to the fact that this bacterial
species lacks adhesins.

Furthermore, since fluoridation only affects the
outermost layer,4 the origin of the adhesion-
reducing effect of fluoride must be due to surface
properties. Topography or the roughness cannot
be responsible for the change in adhesion: AFM
scans reveal that there are no significant differ-
ences in RMS roughness due to the fluoridation

Figure 3: AFM images of a hydroxyapatite surface
spot (A) before and (B) after fluoridation. The to-
pography and RMS roughness are not affected by
the fluoridation.

process (Figure 3).
The zeta-potential, however, is very likely af-

fected by the fluoridation. At a physiological pH,
the zeta-potential of HAP is negative,17 just like
the potential of most bacteria.18 Since bacterial
adsorption takes place despite this electrostatic re-
pulsion, the adhesion process cannot be governed
by the electrostatic interaction.19 Rather, long-
range attractive van der Waals forces are domi-
nating. The overall adhesion, however, could still
be reduced by a stronger electrostatic repulsion
caused by a decreased zeta-potential of the sub-
strate. Previous studies showed that the applica-
tion of fluoride ions can decrease the zeta-potential
of HAP19,20 and reported an increase in the ad-
sorbed amount of positively charged proteins.21

Furthermore, it was shown that the adhesion of S.
mutans to HAP was reduced by the adsorption of
proteins causing an increase in surface net nega-
tive charge.22 Consequently, a reduced zeta poten-
tial due to fluoridation should lead to a reduced
adhesion force of the bacteria, since the electro-
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static repulsion between bacteria and substrate is
increased.

Another apparent reason for the reduction in ad-
hesion force is a change in surface energy. The lit-
erature values for surface energies of apatites dif-
fer strongly dependent on the used methods23 and
the crystallite plane.24 Nevertheless, since the sur-
face energy is correlated with the zeta-potential,
a change due to fluoridation is expected and has
been reported previously.7,23,24 Consequently, the
determined reduce in adhesion forces could also
be an effect of a fluoridation induced variation in
surface energy.

Conclusions
AFM force spectroscopy with bacterial probes
revealed that fluoridation of hydroxyapatite sub-
strates reduces the adhesion force of S. oralis, S.
mutans and S. carnosus by a factor of two. Since S.
carnosus lacks adhesins, the origin for this general
trend is likely due to an unspecific, yet surface-
related effect. Fluoridation changes surface en-
ergy as well as zeta potential, which both could
cause lower adhesion forces. In accordance with
other studies, we expect the zeta potential and/or
the surface energy to be the origin of the adhesion-
reducing effect of fluoride. These findings suggest
that the decrease of bacterial adhesion is another
origin of the caries-preventive effect of fluoride.
As a consequence, this effect could be utilized in
the design of implants, potentially exceeding the
oral cavity.
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Abstract - We have used atomic force microscopy (AFM) to probe the effect of pep-
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wall. PBP4 is a non-essential transpeptidase, required for the high levels of peptido-
glycan crosslinking characteristic of S. aureus. Importantly, this protein is essential
for beta-lactam resistance in community acquired-methicillin resistant S. aureus (CA-
MRSA) strains but not in hospital acquired-MRSA (HA-MRSA) strains. Using peak
force tapping AFM we observed that the absence of PBP4, and the concomitant re-
duction of the peptidoglycan crosslinking, resulted in a reduction in stiffness of the
S. aureus cell wall. Importantly, the reduction in cell wall stiffness in the absence of
PBP4 was observed both in CA- and HA-MRSA strains indicating that high levels
of PG crosslinking modulate the overall structure and mechanical properties of the S.
aureus cell envelope in both types of clinically relevant strains.
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We have used atomic force microscopy (AFM) to probe the effect of peptidoglycan crosslinking 
reduction on the elasticity of the Staphylococcus aureus cell wall. PBP4 is a non-essential 
transpeptidase, required for the high levels of peptidoglycan crosslinking characteristic of S. 
aureus. Importantly, this protein is essential for beta-lactam resistance in community acquired-
methicillin resistant S. aureus (CA-MRSA) strains but not in hospital acquired-MRSA (HA-
MRSA) strains. Using peak force tapping AFM we observed that the absence of PBP4, and the 
concomitant reduction of the peptidoglycan crosslinking, resulted in a reduction in stiffness of 
the S. aureus cell wall. Importantly, the reduction in cell wall stiffness in the absence of PBP4 
was observed both in CA- and HA-MRSA strains indicating that high levels of PG crosslinking 
modulate the overall structure and mechanical properties of the S. aureus cell envelope in both 
types of clinically relevant strains. 

 
 

Introduction 
 
The cell wall (CW) is critical for cell survival in 
most bacteria; it functions as a protection against 
mechanical and osmotic lysis in addition to 
maintaining cell shape [1]. Furthermore, the CW 
controls the tactile response of bacteria, 
influencing a wide range of behaviours such as 
cell adhesion, environmental sensing or host 
defence evasion [2,3,4]. The major component of 
the CW is peptidoglycan (PG), a complex 
polymer composed of long glycan chains of 
alternating ß-1,4-linked N-acetylglucosamine 
(NAG) and N-acetylmuramic acid (NAM) 
subunits, that are cross-linked via peptide bridges 
to form a strong but flexible structure [5]. The last 
stages of PG biosynthesis are catalysed by a group 
of proteins called penicillin-binding proteins 
(PBPs), which have both transglycosylase and 
transpeptidase activities, required for the 
elongation of the glycan chains and the formation 
of peptide bonds, respectively [6]. 
As the name suggests, PBPs are the target of beta-
lactam antibiotics, molecules that block the 
transpeptidase active site. Bacterial pathogens 
have evolved different mechanisms to resist the 
action of beta-lactams, mainly by destroying the 
antibiotic molecule, through the action of beta-
lactamases, or by modifying its target, i.e., the 
PBPs. Staphylococcus aureus is a Gram-positive 
clinical pathogen which has developed a 

remarkable ability to resist the action of virtually 
all beta-lactam antibiotics. Methicillin-Resistant S. 
aureus (MRSA) strains are currently one of the 
major causes of antibiotic-resistant hospital 
acquired infections, and can also cause infections 
among healthy individuals in the community. 
Therefore the study of the S. aureus cell envelope 
is of particular importance for the development of 
new strategies for antimicrobial chemotherapy [7].  
The CW of S. aureus contains not only a thick 
layer of PG (around 20 nm), but also other 
polymers like the anionic wall teichoic acids 
(WTA) and lipoteichoic acids (LTA), secondary 
modifications such as O-acetylation and several 
proteins attached to the PG, resulting in a 
structure with a total width of approximately 35 
nm [3,8,9]. Studies over the last decades have 
focused on the biochemistry of PG biosynthesis 
and most steps in this pathway are now well 
characterized [5,10]. However, much less is 
known about the 3D architecture and mechanical 
properties of this complex polymer. In recent 
years, atomic force microscopy (AFM) has 
provided valuable information on the structure 
and mechanical properties of the CW in numerous 
biological samples [11,12,13,14,15,16]. AFM can 
be used not only to obtain topological information 
on the cell surface and the organization of the PG 
[13,15,16,17], but it is also a powerful tool for 
quantitative studies of physical properties of the 
surface, such as the elasticity of the bacterial CW 
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[18,19,20,21,22,23,24]. Classical AFM modes, 
such as tapping or force volume mode are limited 
in terms of either spatial resolution, imaging time 
or quantitative analysis. The recently introduced 
PeakForce tapping mode with its quantitative 
nanomechanical property mapping (PeakForce 
QNM), however, allows for simultaneous 
mapping of topography and multiple mechanical 
properties, featuring the typical resolution and 
scan speed of the tapping mode [25,26,27]. 
We are interested in studying the mechanical 
properties of the PG of live S. aureus cells and in 
identifying key enzymes essential for the final 
structure of this polymer. One of the 
characteristics of the staphylococcal PG is its very 
high degree of crosslinking, as up to 90% of its 
muropeptides are linked to adjacent glycan chains 
in the PG mesh. This crosslinking can be 
classified as (i) primary crosslinking, responsible 
for the first level of cross-links between different 
glycan chains, which is necessary in most bacteria 
to preserve cell integrity, and includes 
muropeptide species with a polymerization degree 
lower or equal than pentamers (see Figure 1B, 
peaks I to V in the HPLC chromatogram) [5]; (ii) 
secondary crosslinking, which is the result of 
same transpeptidase chemical reaction, but leads 
to higher levels of linkage of the PG layers, and 
includes muropeptide species with a 
polymerization degree higher than pentamers 
(Figure 1B, arrow) [5]. This secondary 
crosslinking is mainly the result of the action of S. 
aureus PBP4, a non-essential transpeptidase 
[28,29]. We therefore hypothesized that PBP4 
could have a major role in defining the 
mechanical properties of S. aureus PG. 
Interestingly, although it is not essential for 
normal cell growth, PBP4 has been associated 
with resistance mechanisms against two major 
classes of antibiotics: glycopeptides, considered 
the last resort antibiotic to treat MRSA infections, 
where its absence was associated with low level 
resistance in vancomycin intermediate (VISA) S. 
aureus strains [30]; and beta-lactams, where PBP4 
was shown to be required for expression of high 
level beta�lactam resistance in community-
acquired MRSA (CA-MRSA) strains but not in 
hospital-acquired (HA-MRSA) strains [31]. 
In this work we employed AFM PeakForce QNM 
with viable, genetically defined prototypes of HA- 
and CA-MRSA strains and their pbp4 mutants to 
show that the absence of PBP4 and the 
concomitant decrease in PG crosslinking has an 
effect on the overall structure and mechanical 
properties of the S. aureus CW. This effect was 

observed both in HA- and CA-MRSA, suggesting 
that the requirement of PBP4 for beta-lactam 
resistance - as solely observed in CA-MRSA - is 
not related to changes in the mechanical 
properties of the PG that would occur exclusively 
in these strains.  
 
Results and Discussion  
 
PBP4 localization and function is conserved in 
both CA-MRSA and HA-MRSA strains 
 
The aim of this work is to study the change of the 
mechanical properties of the PG of live S. aureus 
cells, namely its elasticity, upon reduction of 
secondary PG crosslinking that results from pbp4 
deletion. Given that deletion of pbp4 results in 
loss of beta-lactam resistance in CA-MRSA 
strains, such as MW2, but not in HA-MRSA 
backgrounds, such as COL, we wanted to test if 
lack of PBP4 had more influence on the structure 
of the cell surface of MW2 than of COL.  
One possible source of variation in studies of PG 
elasticity may result from obtaining measurements 
on newly synthesized cell wall as well as on 
mature cell wall, which may have different levels 
of crosslinking. In the rod-shaped gram-positive 
model organism B. subtilis, cell wall synthesis 
occurs both at the septum, for cell division, and at 
the lateral wall, for cell elongation [5,6]. 
Although, the septum of live cells is not 
accessible to the AFM cantilever before 
separation of daughter cells,, in B. subtilis, 
measurements made at the lateral wall (side of the 
cylindrical cell) would include the mature PG as 
well as helical bands of newly synthesized PG 
[32]. The use of S. aureus as a model organism 
avoids this source of variation in PG composition, 
as round S. aureus cells do not elongate and 
therefore only synthesize cell wall at the division 
septum. In accordance, we determined the 
localization of the PG synthetic enzyme PBP4 
fused to yellow fluorescent protein (YFP), 
expressed from its native chromosomal locus, in 
both MW2 and COL strains, and showed that it is 
localized specifically at the division septum 
(Figure 1A), similarly to what was previously 
shown for other S. aureus strains [33]. It follows 
that elasticity measurements in S. aureus cell 
surface reflect the structure of the mature CW, 
away from the sites of PBPs localization, i.e., the 
sites of synthesis of new PG. Importantly, PBP4 
localization was identical in CA-MRSA and HA-
MRSA backgrounds, despite its different role in 
beta-lactam resistance.  
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Figure 1: Localization and function of PBP4 are conserved 
in CA-MRSA and HA-MRSA strains. A) PBP4 is recruited 
to the division septa of COL and MW2 strains. Microscopy 
images of BCBPM161 (MW2) and BCBPM162 (COL) 
strains, expressing a C-terminal YFP fusion to PBP4 from its 
native chromosomal locus and under the control of its native 
promoter, show that PBP4 is recruited to the division septa in 
these MRSA strains. The protein can be seen as a line 
corresponding to a septum perpendicular to the plane of the 
slide, or as a ring when the septum is forming at different 
angles relatively to the plane of the slide (Scale bar: 1 µm). 
B) Chromatogram of HPLC of the muropeptide composition 
of PG in MW2, MW2Δpbp4, COL and COLΔpbp4, showing 
that deletion of pbp4 reduces the secondary crosslinking of 
the PG. Arrow points to highly cross-linked muropeptide 
species present in MW2 and COL strains but reduced in pbp4 
mutants (MW2Δpbp4 and COLΔpbp4 respectively); I–V 
muropeptide species from monomers to pentamers.  

After cell separation, the mature septum of S. 
aureus becomes one hemisphere of each daughter 
cell [34]. Therefore, in this organism, the entire 
cell surface should correspond to mature PG 
(although of different ages) with the possible 
exception of a single band around the division site 
corresponding to the outer edge of the septum, 
which can be identified on the AFM height 
images of dividing S. aureus cells [20,35] and has 
been shown to have different mechanical 
properties, such as adhesion [35]. Thus, our 
experimental set up enables us to map the 
elasticity of mature CW, in order to assess the 
effect of the reduction of secondary crosslinking 
on the mechanical properties of the S. aureus CW.  
In order to correlate the AFM elasticity 
measurements with the CW structure of the S. 
aureus CA-MRSA and HA-MRSA strains, we 
purified the PG from parental strains COL and 
MW2 and their respective pbp4 deletion mutants 
and analysed its composition by HPLC. We 
confirmed that, as previously shown [31], pbp4 

gene deletion results in significant decrease of the 
highly cross-linked muropeptide species that 
typically elute as a broad peak at the end of the 
HPLC chromatogram (Fig. 1B, arrow). We 
therefore used these isogenic pairs of bacterial 
strains differing in the PG crosslinking degree for 
AFM analysis.  
  
Absence of secondary crosslinking contributes to 
a reduction in CW stiffness 
 
Although the S. aureus CW is a complex 
heterogeneous structure composed of several 
polymers and proteins [3,9],  it is its main 
component, the PG, that is thought to provide 
rigidity to bacterial cells, crucial for the cell to 
withstand the high internal osmotic pressure (20 
to 30 bar) [5,8]. As stated above, PBP4 is 
responsible for the secondary crosslinking of the 
S. aureus PG [5]. Thus we used PBP4 mutants to 
test if highly cross-linked PG was in fact required 
for increased mechanical resistance of live S. 
aureus cells. For this purpose, we used AFM in 
PeakForce QNM, a method that detects material 
variations (such as elasticity or adhesion) at high 
resolution across a topographic image [25,26,27]. 
We used experimental conditions in which the 
cantilever indentation was in the range of 5-10 nm 
during the elasticity measurements, and therefore 
less than the proposed thickness of the cell wall, 
which is in the range of 35 nm [8]. Using this 
methodology, we mapped the elasticity profiles of 
the cell envelope of two MRSA strains, the HA-
MRSA COL and the CA-MRSA MW2, as well as 
of the respective pbp4 mutants COLΔpbp4 and 
MW2Δpbp4. Live cells of these strains were 
immobilized in porous membranes (Figure 2, 
Panels A and C), and Young’s modulus values 
(which reflect cell surface elasticity, and are lower 
for material with greater elasticity) were then 
measured in individual cells and mapped onto the 
height image. Only the top of each bacterium was 
analysed to avoid additional influence of a change 
in topography.  
The first conclusion that can be obtained from our 
data is that the Young modulus of the cell 
envelope is homogeneous throughout the analysed 
cell surface in all strains, a finding expected given 
our experimental setting designed to analyse 
solely the mature CW and not the septal CW 
undergoing division.  
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Figure 2: Young’s modulus is reduced upon a reduction of 
secondary crosslinking. A) Height images overlaid with the 
distribution map of the Young’s modulus values of a single 
COL (Top) and COLΔpbp4 (Bottom) cell trapped in a 
membrane pore. The increase in elasticity of the CW is 
homogeneous throughout the cell surface of the COLΔpbp4 
mutant in comparison with the wt COL strain. B) Histogram 
with all the single values from each force curve obtained 
from all bacteria analysed. This shows that the COLΔpbp4 
mutant is more elastic than the COL wt strain. Approximately 
50000 single elasticity values were obtained from 
measurements on 11-13 single cells per strain. C) Height 
images with the distribution map of the Young’s modulus 
values of a single MW2 (Top) and MW2Δpbp4 (Bottom) 
bacterium trapped in a membrane pore. The increase in 
elasticity of the MW2Δpbp4 mutant CW is homogeneous 
throughout the cell surface. D) Histogram with all the single 
values from each force curve obtained from all bacteria 
analysed. The MW2 wt strain is less elastic than the 
MW2Δpbp4 strain. Approximately 70000 to 130000 single 
elasticity values were obtained from measurements on 11-24 
single bacteria per strain. E) All single values for each strain 
were fitted using a Gaussian curve and averages, with the 
respective errors, were calculated for each group of values, 
showing that the CW of mutants lacking PBP4 is more elastic 
than the CW of the parental strains. To avoid artifacts due to 
topography, only the topmost part (about 300 nm x 300 nm) 
of each bacterium was analysed. 

  
The second and main conclusion of the AFM 
measurements relates to the significant reduction 
in the Young modulus of the CW in both CA-
MRSA and HA-MRSA strains lacking PBP4, 
compared to the parental strains (MW2 4.49±2.01 
MPa Vs MW2Δpbp4 1.30±0.54 MPa; and COL 
5.93±2.47 MPa Vs COLΔpbp4 2.98±0.92 MPa; 
Figure 2). As the Young modulus is lower for 
material with greater elasticity, this data suggests 
that a decrease in secondary crosslinking results in 
increased CW elasticity (or reduced CW stiffness) 
both in COL and in MW2 backgrounds. This is 
consistent with the idea that a reduction of the 
number of bonds linking adjacent glycan chains 
results in a more pliable CW/PG structure. 
Accordingly, when Francius and coworkers used 
AFM to study the effect of lysostaphin in live S. 
aureus cells, they observed a 9.3 fold decrease in 
CW stiffness of lysostaphin treated cells [20]. 
Lysostaphin cleaves all pentaglycine bridges that 
crosslink S. aureus PG, effectively destroying 
both primary and secondary PG crosslinking [20]. 
As seen in figure 1B, the pbp4 deletion mutants 
show a reduction in the levels of secondary 
crosslinking, but maintain PG primary 
crosslinking, due to the action of the other PBPs 
present in the cell, which justifies the fact that we 
observed a smaller decrease in CW stiffness (3.5 
fold and 2.5 fold for MW2 and COL, respectively) 
compared to the action of lysostaphin. However, 
we cannot formally exclude the possibility that the 
alterations in CW stiffness are due to additional 
changes in the CW surface (in addition to 
secondary crosslinking reduction) that might 
result from the absence of PBP4. 
Interestingly, although PG is not a rigid structure 
and it can withstand severe changes without 
compromising the overall cell envelope integrity 
[8,36], our data also suggest that there is a lack of 
a compensatory mechanism able to maintain the 
overall stiffness of the CW in the absence of 
PBP4.  
 
Concluding remarks 
 
We have used AFM, namely the recently 
introduced peak force tapping mode, to image live 
S. aureus cells, showing that alterations in the 
secondary PG crosslinking, caused by a lack of 
the non-essential transpeptidase PBP4, trigger 
changes in the mechanical properties of the S. 
aureus CW, enhancing the overall elasticity of 
staphylococcal cells both in HA and CA-MRSA 
strains.  Interestingly, we observed a stronger 
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effect of the reduction of the secondary 
crosslinking on the mechanical properties of the 
CW in CA-MRSA strains (which require PBP4 
for beta-lactam resistance) than in HA-MRSA 
strains. Thus, it might be interesting to investigate 
the role that these properties might play in the 
context of beta-lactam resistance.  
 
Material and Methods 
 
Staphylococcus aureus strains and growth 
conditions 
S. aureus strains used in this study are listed in 
table 1. S. aureus strains were grown on tryptic 
soy agar (TSA, Difco) at 37ºC or in tryptic soy 
broth (TSB, Difco) at 37ºC with aeration. The 
medium was supplemented, when necessary, with 
50 µg/ml of Kanamycin and 50 µg/ml of 
Neomycin (Sigma).  
 
Table 1: S. aureus strains used in this study. 

S. aureus 
strain Relevant characteristics Origi

n 
COL HA-MRSA strain, wild-type [37] 

COLΔpbp4 HA-MRSA strain;  
pbp4 null mutant  [31] 

MW2 CA-MRSA strain, wild-type [38] 

MW2 Δpbp4 CA-MRSA strain;  
pbp4 null mutant [31] 

RNPBP4YFP RN4220 expressing PBP4-YFP C-
terminal fusion; Kanr [33] 

BCBPM161 MW2 expressing PBP4-YFP 
C-terminal fusion; Kanr 

This 
study 

BCBPM162 COL expressing PBP4-YFP 
C-terminal fusion Kanr 

This 
study 

 
 
Construction of S. aureus strains 
For localization studies of PBP4 in HA-MRSA 
and CA-MRSA backgrounds, the gene encoding a 
PBP4-YFP fusion was transduced, using phage 
80α, from strain RNPBP4YFP [33] into MW2 and 
COL strains, as previously described [39]. 
 
Fluorescence Microscopy  
S. aureus strains were grown to mid-exponential 
phase, placed on a thin layer of 1% agarose in 
phosphate buffered saline (PBS; 137 mM NaCl, 
10 mM phosphate, 2.7 mM KCl, pH 7.4) and 
analysed by fluorescence microscopy. Images 
were acquired using a Zeiss Axio Observer.Z1 
microscope equipped with a Photometrics 
CoolSNAP HQ2 camera (Roper Scientific) and 
using Metamorph software (Meta Imaging series 
7.5). 
 

Peptidoglycan purification and HPLC Analysis 

Peptidoglycan was prepared  from exponentially 
growing cultures of COL and MW2 parental 
strains and corresponding pbp4 deletion mutants, 
as previously described [40]. Muropeptides were 
obtained from purified PG digested with the 
muramidase mutanolysin M1 (Sigma-Aldrich), an 
N-acetylmuramidase that cuts glycan strands 
between the N-acetylmuramic and N-
acetylglucosamine residues of both O-acetylated 
and unmodified peptidoglycan, as previously 
described [40]. The resulting muropeptides were 
reduced with sodium borohydride (Sigma) and 
analysed by reversed-phase HPLC using a 
HypersilODS column (Thermo Electron). The 
eluted muropeptides were detected and quantified 
by determination of their UV absorption at 206 
nm, using the Shimadzu LC Solution software.  
 
AFM Elasticity mapping 

 

 
Figure 3: A single value of elasticity is obtained from each 
force curve acquired. By eliminating the time variable, one 
can plot the force versus the tip-sample distance, from which 
much information can be obtained. The maximum adhesion 
force between the tip and the sample can be extracted as the 
step height between the base line and the pull-off point. The 
peak force is defined as the vertical distance between the base 
line and the turn-away point. By analysing the retraction of 
each single force/distance curve, the Young’s modulus can be 
determined using a DMT fit [42,43] (adapted from Pittenger, 
B et al.; 2010 [44]). 

For AFM experiments, S. aureus strains were 
grown in 12 ml of TSB at 37ºC with aeration until 
mid-exponential phase (optical density OD600nm = 
0.6). Cells were harvested and concentrated in one 
third of the initial volume in fresh media. After 
concentration, the cell suspension was gently 
filtered, so that cells were immobilized by 
mechanical trapping into porous polycarbonate 
membranes with a pore size of 1.2µm (Millipore) 
[41]. The filter was gently rinsed with PBS, the 
excess of cells was removed by gently cleaning 
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with powder free tissue, the filter was inverted 
and attached to a glass slide with double-face 
adhesive tape. A silicone cover was used to create 
a hydrophobic area around the filter, which was 
then filled with 1:10 TSB/PBS solution.  
AFM measurements were performed in the 
TSB/PBS solution at room temperature using a 
Bioscope Catalyst (Bruker, Santa Barbara, USA) 
in Peak Force QNM mode. The bacterial samples 
were freshly prepared for each series of 
measurements. Immediately prior to each 
experiment, the AFM probes (Scanasyst-Fluid+, 
Bruker, Santa Barbara, USA) were calibrated. 
Single measurements were carried out with a scan 
rate of 0.5 Hz, amplitude of 100-200 nm, a gain of 
0.1, and a peak force threshold of 1 nN. Young’s 
modulus mapping was obtained by a Derjaguin-
Muller-Toporov (DMT) fit [42,43] of the retract 
part of each single force/distance curve (Figure 3) 
described by  

   , 

where  is the determined force relative to 
the adhesion force, ν is the Poisson’s ratio (for 
bacteria usually 0.5 [18,19]), R is the tip-radius (≈ 

10 nm),   is the deformation of the sample, 
and E is the Young’s modulus. To avoid artifacts 
due to topography, only the topmost part (about 
300 nm x 300 nm) of each bacterium was taken 
into account. A total of 50000 - 150000 single 
elasticity values were obtained from 
measurements on 10-25 single bacteria per strain. 
Multiple experiments using different bacterial 
cultures and AFM probes were performed for 
each strain.  
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