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Abstract

Composite plates, such as sandwich structures or hybrid laminates, are widely used in
the field of transport industry, due to their outstanding mechanical properties for a rela-
tively reduced weight. However, they show a complex material behaviour, which can not
be properly described by using a simple mixture rule. Moreover, it can be necessary to
model non-linear material behaviour -like for instance plasticity- if dealing with a forming
process. Due to the restriction of most of the plate theories to linear material behaviour,
the development of a numerical multi-scale modelling of composite plates is of interest.

In the presented work, the modelling of the mechanical behaviour of composite plates is
based on a numerical homogenisation, or so-called FE2, for composite plates. The princi-
ple is to split the problem into two characteristic scales: on the one hand, the macroscale,
containing the kinematics of the plates, and on the other hand, a so-called mesoscale,
discretizing the layers stacking order with their individual properties.

In this work, special attention is paid towards the definition of the analytical tangent using
the Multi-Level Newton Algorithm (MLNA) and towards the resolution of the Poisson’s
thickness locking phenomenon, enabling the consideration of the thickness change by an
improved projection strategy. The validity of the proposed method towards linear and
non-linear material behaviour is verified using various numerical experiments.
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Zusammenfasung

Verbundstrukturen finden heutzutage, aufgrund ihrer interessanten mechanischen Eigen-
schaften bei relativ niedrigem Gewicht, immer mehr Anwendung im Bereich der Trans-
portindustrie. Allerdings weisen Verbundstrukturen auch ein komplexes mechanisches
Verhalten auf. Zudem kann die Modellierung von nicht-linearem Materialverhalten notwen-
dig werden, wie zum Beispiel von Plastizität, wenn ein Tiefziehen durchgeführt werden
soll. Aufgrund der Begrenzung der meisten Plattentheorien zu linearem Materialverhal-
ten, wird eine numerische Mehrskalensimulation für Kompositplatten entwickelt.

In dieser Arbeit wird die Modellierung des mechanischen Verhaltens von Kompositplat-
ten mit einer numerischen Homogenisierung, auch FE2 genannt, weiterentwickelt. Das
Prinzip der FE2 für Platten basiert auf der Teilung des Problems in zwei Skalen: einer-
seits wird die Makroskala, die die Plattenkinematik enthält, betrachtet und andererseits
wird die sogenannte Mesoskala, die die Einzelschichten diskretiziert, berücksichtigt.

In der vorliegenden Arbeit soll der Definition der analytischen Tangente mit dem Multi-
Level Newton Algorithm (MLNA) und der Lösung des Poissons Locking besondere Auf-
merksamkeit geschenkt werden, welche die Dickenänderung mit einer verbesserte Projek-
tionsmethode berücksichtigt. Anschließend wird die Verifizierung der Mehrskalenmetho-
de für lineares und nicht-lineares Materialverhalten durchführt, die im Rahmen unter-
schiedlicher numerischer Experimente angewendet wird.
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Résumé

Les matériaux composites, comme par exemple les structures sandwich ou les matériaux
laminaires hybrides, trouvent de nos jours de plus en plus d’utilisations dans l’industrie
du transport, en raison de leurs bonnes propriétés mécaniques pour un poids relative-
ment réduit. Cependant, ce type de structures présente un comportement mécanique
très complexe, qui ne peut être décrit qu’imparfaitement par une loi des mélanges. De
plus, il peut être nécessaire de prendre en considération des lois de comportement non-
linéaire -par exemple la plasticité- comme c’est dans le cas pour un emboutissage. La
plupart des théories des plaques se limitant à des lois de matériaux linéaires, une méthode
multi-échelles numérique est utilisée pour la modélisation du comportement mécanique
de plaques composites.

Dans le cadre de ce travail, la modélisation du comportement mécanique des plaques
composites est effectuée par une méthode d’homogénéisation numérique, ou autrement
appelée FE2, adaptée aux plaques. Le principe consiste en la séparation du problème
en deux échelles: d’une part, l’échelle macroscopique, qui contient la cinématique d’une
plaque, et d’autre part, l’échelle mésoscopique, qui décrit l’ordre des couches avec leurs
différentes propriétés.

Dans le cadre de cette thèse, une attention particulière est donnée à la définition d’une
tangente analytique par l’Algorithme Multi-Level de Newton (MLNA), ainsi qu’à la ré-
solution du problème de locking de Poisson, grâce à une amélioration de la méthode de
projection. Dans une dernière partie, la validité de la méthode pour des lois de matériaux
linéaires et non-linéaires est verifiée dans le cadre d’expériences numériques.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, composite materials and especially composite plates represent a growing in-
terest of many industries, like for instance the transport industry. This is because they
enable the combination of good mechanical properties at a relatively low weight. However,
they show a quite complex mechanical behaviour, which can not be properly described
by a simple mixture rule. Due to the price and the complexity of the composites, the
modelling of this kind of structures is an interesting issue, because it enables a better
understanding of their behaviour and furthermore an optimisation of the layer staking
order can take place.

In the scope of this work, the mechanical behaviour of composite plates, and especially of
sandwich structures and hybrid laminates, as represented in Fig. 1.1, is investigated. The
hybrid laminate is composed of several layers of different materials: at the top, bottom
and in the middle, metal layers are set, which are made of an aluminium or a titan alloy
and exhibit an elasto-plastic material behaviour. In between, some Carbon Fiber Re-
inforced Polymers (CFRPs) are embedded and present an anisotropic elastic behaviour.

10 mm10 mm

Figure 1.1: Hybrid laminates containing metal layers and CFRP (Carbon Fiber Rein-
forced Polymer) layers
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Chapter 1: Introduction

Metal CFRP

Figure 1.2: Structure of the hybrid laminate containing the layer organisation
(metal/CFRP(0◦/90◦/0◦)/metal/CFRP(0◦/90◦/0◦)/metal)

In our case, the matrix material is made of PA 6.6, i. e. Polyamide 6.6 or generally known
as nylon, or of PEEK (Polyether Ether Ketone). The fibers are long fibers and there is
only one family of fibers per layer. Due to the high volume percentage of fibers -almost
50%-, the material behaviour of the CFRP is assumed to be elastic anisotropic and the
viscoelastic part of the matrix material is neglected. The structure of the composite plate
is represented in Fig. 1.2 and a picture of the CFRP layers, taken with a optical micro-
scope, can be seen in Fig. 1.3. The structures represented in Fig. 1.1 are supplied by
the DLR in Cologne (Prof. Dr.-Ing. Marion Bartsch, Dr.-Ing. Joachim Hausmann, Karola
Schulze) and the structure in Fig. 1.3 by the professorship lightweight structures and poly-
mer engineering (Univ.-Prof. Dr.-Ing. habil. Lothar Kroll, Sebastian Nendel), respectively.

200 µm

Figure 1.3: Optical microscopy picture of five CFRP (Carbon Fiber Reinforced Poly-
mer) layers with orientation (0◦/90◦/0◦/90◦/0◦)

This work aims at the modelling of the mechanical behaviour of composites plates. Be-
cause some layers are metallic, it is important to consider non-linear material behaviour
and especially elasto-plasticity. Indeed, a deep drawing of composite plates is nowadays
of interest of the transport industries, cf. [62, 146], and a simulation could enable an
optimisation of the forming process. But which solutions exist, in order to model the
mechanical behaviour of a composite plate containing layers with linear and non-linear
material behaviour?

2



Chapter 1: Introduction

1.2 State of the Art

Basically, there are three types of methods for the modelling of the mechanical behaviour
of composite plates: a three-dimensional FE (Finite Elements) modelling, a FE plate (or
shell respectively) or a homogenisation strategy, as represented in Fig. 1.4. Firstly, the
composite plate can be modelled using a three-dimensional FE modelling (on the left in
Fig. 1.4). Regarding this solution, it is possible to consider a non-linear material behaviour
like for instance elasto-plasticity. However, this solution shows high computational costs,
especially for contact or for large deformation analysis like for instance for a forming pro-
cess, cf. [22, 23]. Moreover, some instabilities can occur for very thin elements: this is the
case for the hybrid laminate.

Composite

a: 3-D FE Modelling b: FE Plate c: Homogenisation strategy

Figure 1.4: The different possibilities to model the behaviour of a composite plate:
a: three-dimensional FE modelling, b: FE (Finite Element) Plate and c:
Homogenisation method

The second possibility is to use a shell or a plate structure, as represented in the middle
of Fig. 1.4. Because of the huge amount of work made in this field, it will not be tried
to write a detailed review of the plate theories. In this case, one may refer to [9, 14, 24]
among others. In the following, the main types of plate and shell theories are described
with the focus on non-linear material behaviour and composite materials. As mentioned
before, a non-linear material behaviour has to be considered, which excludes most of the
"classical"1 plate theories, due to their limitation to linear behaviour. So the zig-zag

1By "classical" plate theories I mean the first plate theories which were discovered and which are
nowadays still often used, contrarily to one of their extensions made thereafter. Under this definition I

3



Chapter 1: Introduction

theories, which are widely used for studying the behaviour of sandwich and composite
laminates (cf. [31, 54, 195]), are also excluded. To the knowledge of the author, the plate
theories are mainly applied to linear material behaviour, cf. [24]. Indeed, most of the plate
theories and most of the plate elements can only consider elastic material behaviour and
encounter the problem of locking [13, 20]. In order to solve these issues, a degenerated
shell or a solid-shell structure can be used.

The principle of a degenerated shell consists in the FE discretisation of a three-
dimensional continuum "with linear shape function in thickness direction", cf. [14], leading
to a shell. The degenerated shells, also called "continuum-based shell elements", cf. [14],
were firstly developed by Ahmad et al. in 1968 [2]. They avoid many locking phenomena
by using a three-dimensional discretisation and, after the discretisation, some assumptions
in the shape functions lead to the shell formulation. Although the computational costs
are high due to the three-dimensional mesh, the degenerated shells have the advantage of
considering a three-dimensional constitutive law without further modifications. As a con-
sequence, also non-linear material behaviour can be considered. However, the degenerated
shells have also drawbacks. Some of them relate to the boundary conditions and in geo-
metrically non-linear cases, to the "complicated update of the rotations", cf. Hauptmann
& Schweizerhof [78]. These issues can be solved by using solid-shell structures, which
are based on the combination of solid elements with shell elements. If using solid-shell
elements, no rotational degrees of freedom are needed but the displacement degrees of
freedom are applied to the upper and lower shell surfaces, cf. [77]. But finally, they show
the problem of locking phenomena again, cf. [69, 136].

Another type of shell is issued from the so-called direct approach or Cosserat shells.
The main idea was firstly described by the brothers Cosserat and Cosserat in 1909 [39]
with the introduction of additional degrees of freedom to the classical theory. In the
classical Cauchy continuum, a solid is composed of an infinite number of points which
can only be submitted to translations. In contrast, in the Cosserat theory, a solid is not
built of an infinite number of points but of small volumes, which can be submitted not
only to translations but also to rotations, cf. [9]. The brothers Cosserat also developed an
extension for shells based on a direct derivation of the classical continuum. This concept
is also known as micropolar theory and was described by Ericksen & Truesdell in 1958
in [51]. The theory is geometrically exact and shows better results in case of very thin
structures, where the length scale of the microstructure is of the same order of magni-
tude as the thickness of the plate, cf. [10]. Nevertheless, the theory encounters criticisms,
cf. [14]. As a consequence, and due to the high level of complexity of these theories, they
will not be studied in this work.

The last type of plates and shells are the so-called plates and shells derivated from
the three-dimensional continuum. The plate theories derivated from the three-
dimensional continuum were the first ones which appeared and their discovery spread
over almost two centuries, as developed in chapter 3.1. The first correct attempt can be
attributed to Love [120] and Kirchhoff [99], which developed the plate theory which now
carries their names. This theory describes the behaviour of thin plates with the help of

mean the plate theories following the Kirchhoff ansatz and the plate theories following the Reissner or
Mindlin ansatz; more information are given in chapter 3.
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Chapter 1: Introduction

three translational degrees of freedom; the two rotations are obtained as the derivatives
of the out-of-plane displacement. As a consequence, the transverse shear vanishes. Later
on, Mindlin [131] and Reissner [156] developed an extension of this theory which solves
its drawbacks. While the Love-Kirchhoff theories do not consider the transverse shear,
and are consequently limited to very thin plates, the Reissner-Mindlin theories take the
transverse shear into account with the introduction of the two more degrees of freedom
accounting for the rotations. Consequently, the Reissner-Mindlin theories can be success-
fully used for thicker plates.

During the last 40 years, many works have been done using the "classical" plate the-
ories or one of their extensions, cf. [5, 6, 24, 154]. The classical plate theories following
the Reissner or Mindlin ansatz have proved to be nowadays frequently used because of
their efficiency and stability: in the work of Kim & Reddy (2012) [98], the formulation of
FE plate elements following the Kirchhoff and the Mindlin concept is proposed. In Vo &
Lee (2011) [186], an extension of the First order Shear Deformation Theory (FSDT)2 is
applied to model the behaviour of fiber reinforced beams. In Hashemi et al. (2012) [72],
an exact solution of a third order shear displacement theory -itself an extension of the
first order shear deformation theory, containing cubic order for the displacement in the
in-plane direction- is presented for thick laminated transversely isotropic plates under
vibration. Maleki et al. (2012) [121] present an analytical solution of the FSDT theory
under dynamic loading. And Janghorban (2012) [87] explains the static analysis of mi-
crobeams under thermomechanical loading.

Unfortunately, most classical plate or shell theories have numeric drawbacks; perhaps
the most important ones are the problems of locking, as already mentioned above. Nowa-
days, most of the locking issues have found a solution with some improved element types,
cf. [13, 20] and this is briedly described in Subsect. 3.4. However, the classical theories
do not consider any deformation in the thickness direction and only an elastic behaviour
can be used [154]. Some extensions to consider viscoelastic material behaviour have to
be mentioned, cf. [3]. But to the knowledge of the author, the classical plate theories are
mainly restricted to linear material behaviour, the constitutive laws are two-dimensional
ones, cf. [3, 9] and the lack of consideration of the deformation in the thickness direction
remains a concerning issue.

However, some extensions of the Mindlin concept were made in order to overcome this
drawback. When considering the Mindlin concept, one or two degrees of freedom can be
added to obtain an out-of-plane displacement of linear or quadratic order, respectively.
The plate theory following the Mindlin concept is usually called the 5-parameters theory,
due to the five degrees of freedom. Considering the Mindlin concept with one or two more
degrees of freedom leads to the 6- or to the 7-parameters theories, respectively, referring
to the number of degrees of freedom. The first idea of the improved Mindlin concept
may be attributed to Hildebrand, Reissner and Thomas in 1949, cf. [13] and later refined
by Kätzig [105]. In the Mindlin concept, the normal deformation in thickness direction
is simply neglected in comparison to the normal strains in the in-plane direction and a
plane stress assumption is followed. In contrast, the normal deformation in thickness

2First Order Shear Deformation Theory (FSDT) is one of the names of the plate theories with five
degrees of freedom following the Mindlin concept adapted to consider the behaviour of laminates.
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Chapter 1: Introduction

direction is constant for the 6-parameters theory. For the plate theory with seven degrees
of freedom, a linear function is obtained for the out-of-plane normal deformation ε33 and
a three-dimensional constitutive law is assumed. This concept can be found in different
papers, among them [13, 162, 180, 181], which propose the so-called (1, 1, 2)-model, named
after the order of the displacement in the three directions respectively and in [13, 122]
with special attention to its numerical treatment.

Another treatment of the seventh degree of freedom is possible, namely with the EAS
(Enhanced Assumed Strain) method, where the last degree of freedom is directly intro-
duced in the out-of-plane normal strain, so that the out-of-plane normal deformation is
described by a linear function, cf. [13, 21, 106, 161]. A FE shell containing a thickness
change within the EAS method and the resolution of locking problems can be found in
the dissertation of Bischoff in 1999 [13], or in the work of Schlebusch in 2005 [165]. In
Bletzinger et al. (2000), another solution, the Discrete Shear Gap (DSG) method, is used
to avoid shear locking, cf. [15]. Other solutions are possible, like for instance considering
higher order elements, as proposed by Rank et. al. [151] or a non-linear strain for a six
degrees of freedom model, cf. [34]. Lastly, it has to be mentioned that extensions includ-
ing non-linear material behaviour, like for instance elasto-plasticity, have been proposed,
e. g. in the work of Roehl & Ramm in 1996 [161] or to include viscoplasticity for the
Timoshenko beam in the dissertation of Matthes [124]. Recently, some authors proposed
other extensions of the method, resulting in a plate theory containing nine degrees of
freedom, e. g. Polit et al. in 2012 [148]. In Carrera & Miglioretti in 2012 [25], a genetic
algorithm is used to determine which plate theory is the most accurate for the description
of a considered bending test, from a FSDT to an extension of it containing twelve degrees
of freedom.

Due to drawbacks especially toward locking, a FE plate can lead to inaccuracy. For
this reason, a homogenisation strategy is studied in this work. The principle of a mul-
tiscale solution, as represented on the right in Fig. 1.4, is to split the problem into two
separate scales: the macroscale and the microscale. The macroscale contains the kine-
matics of the plate, but instead of using the constitutive law of the plate, which leads
in most of the cases to a linear material behaviour, the macroscopic constitutive law is
replaced by a direct consideration of the microstructure in the microscale. For the mul-
tiscale modelling, there are two possibilities: to use an "analytical" multiscale method
or a "numerical" concurrent or computational multiscale strategy. With respect to the
homogenisation, the modelling of three-dimensional structures is first described and in a
second step, the special case of plates is examined.

In the analytical homogenisation, the microstructure is considered in a separate an-
alytical computation of the microscale. This method was firstly proposed by Ponte Cas-
tañeda, cf. [26, 27] and Suquet [177] toward plasticity for composite materials. For the ho-
mogenisation procedure, another possibility is to take into account the effective properties
of the microstructure. A Representative Volume Element (RVE) has to be found, which
is big enough to be "representative" for the microstructure but small enough to enable
computation in a maintainable time scale. By considering, separately to the macroscale,

6



Chapter 1: Introduction

several FE computations for the microscale which are proceeded under different loadings,
the constitutive law can be identified. This method can be applied to heterogeneous ma-
terials, if the length scale of the heterogeneities is much smaller than the length scale of
the macroscale, as applied in [184] for the Perzyna’s elasto-viscoplastic model or by Zohdi
& Wriggers for a matrix containing particles, cf. [200].

Later on, some developments have been proposed [115] to consider composite materials,
with special attention to the history of loading in case of viscoelastic material behaviour.
The numerical homogenisation method proved to be equally efficient for fiber reinforced
materials, cf. [19, 197] and for composite structures including a random repartition of
the fibers, cf. [118]. The multiscale method is very useful for composite materials and so
far, many strategies exist as shown in the review by Kanouté et al. [94]. Recently, some
extensions to include viscoplastic material behaviour were proposed, as made by Segurado
et al. [172] or to consider the mechanical behaviour of solders, cf. Brandmair et al. [18].

The second possibility for a multiscale method is to use the numerical multiscale or
the so-called FE2 method, where the FE computations of the both scale are proceeded
simultaneously. The principle of the FE2 method is not to consider the two scales sep-
arately but to link them during the computation. From each integration point of the
macroscale, the deformations are projected to the microscale, and within the microscale,
a FE computation of the RVE is applied. Then, the macroscopic stresses are identified
with the Hill-Mandel condition, as proposed by Feyel & Chaboche for fiber composites,
cf. [56]. Under the supervision of Miehe, several works on FE2 problems were written with
consideration of a consistent tangent, cf. [127, 129, 130], also for composite materials. As
for the computational homogenisation in practice with ABAQUS R©, it can be referred
to the paper of Yuan & Fish in 2008, cf. [196]. Later on, an adaptive homogenisation,
combining the two types of homogenisation, analytical and numerical, is proposed for a
reduction of the computing time, cf. [53].

However, it may be convenient to incorporate some second order terms for the macroscale,
while the microscale follows a Cauchy theory. The higher order FE2 method enables a
consideration of size effects, as proposed by Feyel in 2003 in [55] for Cosserat media. A
theory of micromorphic media can also be used, as proposed by Forest [58, 59], Forest
& Sab [60], Kanit et al. [93], Neff & Forest [134] or a micropolar theory, as proposed by
Larsson & Diebels [111] for materials with soft inclusions. Randomly distributed voids
were studied by Kouznetsova et al. [103, 104] for elastic and elasto-plastic materials. Later
on, the theory of micromorphic media was used to model the behaviour of cellular ma-
terials, cf. [91, 89, 90]. Further details about a second order numerical homogenisation
can be found in Kouznetsova’s [102] or in Jänicke’s dissertation [88]. For an elasto-plastic
composite, a recent development was introduced by Forest and Trinh in [61]. In 2010,
Larsson and Runesson proposed a local numerical homogenisation, where it is needed, for
elasto-plastic material behaviour with microscopic heterogeneities, cf. [110].

Concerning a multiscale method applied to plates, an analytical homogenisation was pro-
posed in 1989 by Laschet et al. [112] and a numerical homogenisation in 1993 by Fish &
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Chapter 1: Introduction

Wagiman for laminated plates, cf. [57]. The specific case of masonry was studied in [28]
and Hohe [82] proposed a homogenisation scheme for sandwich panels. Recently, some
work has been done on orthotropic sandwich plates, cf. [1] or for elastic thin structures
with particles, cf. [119]. A numerical homogenisation made with ABAQUS R© was pro-
posed by Oskay & Pal in [139] for thin heterogeneous plates, including a damage model.
Some works also consider the modeling of failure in adhesive layers within the frame-
work of cohesive zones, cf. [123] or simulate the behaviour of cohesive zones for multiscale
plates, cf. [193].

A computational homogenisation for plates was published later by Geers et al. in 2007,
cf. [65], for a plate theory following the Mindlin concept. One year later, Landervik &
Larsson proposed a first and a second order numerical homogenisation for shell materials,
and especially for a porous layer, where a plate theory with thickness change was used for
the shell kinematics, cf. [108, 109]. In the same year, Grytz & Meschke came up with a
computational homogenisation for shell problems for a finite shell theory, cf. [68]. Coenen
et al. proposed a computational homogenisation for both Kirchhoff and Reissner-Mindlin
type plates in 2008 [35]. The computational homogenisation following the Kirchhoff kine-
matics was also developed in 2010 in a further paper, cf. [36].

1.3 Objectives of the Work

In the presented work, two solutions for modelling the behaviour of the composite plates
are compared. On the one hand, a simple plate theory with thickness change is consid-
ered. On the other hand, the FE2 method for plates is studied. There is naturally a link
between the two methods, because the numerical homogenisation contains the kinemat-
ics of a plate theory for the macroscale. In this work, the smaller scale is not really a
microstructure but rather a "mesostructure", because a different layer stacking order is
considered and not a structure with a microscopic length scale. In the following, the plate
is referred to as the macroscale and the three-dimensional RVE as "mesoscale".

The objective of this work is to propose a numerical concurrent homogenisation method
for plates. In this framework, the homogenisation is only performed in the two directions
parallel to the midplane, whereas a full discretisation is performed in the thickness direc-
tion. Accordingly, a plate theory is considered for the macroscale, while the mesoscale
contains a three-dimensional boundary value problem. Consequently, the problems of
locking related to the plate have to be solved. In this work, some classical solutions are
used to avoid some of the locking effects, and a special attention is paid towards the
resolution of the Poisson locking. The Poisson locking appears for a plate without consid-
eration of the thickness change, i. e. for the plate theory following the Mindlin concept.
The Poisson locking has an important consequence if the Poisson’s ratio is going to 0.5,
as encountered for plastic incompressibility. An innovative solution to avoid the Poisson
locking in the framework of the numerical homogenisation of plates is investigated, which
enables the consideration of thicker plates and incompressible material behaviour. Conse-
quently, the proposed FE2 method can be successfully applied for thick composite plates
of different types, such as hybrid laminates and sandwich plates.

8
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In the presented work, the numerical homogenisation for plates is compared to the perfor-
mance of a plate theory with thickness change. Both methods enable to solve the Poisson
locking issue. However, the numerical homogenisation shows high computational costs.
Most of the works related to this method use a numerical tangent, which slows down the
computation considerably. In the presented work, the Multi-Level Newton Algorithm,
cf. [70], is used to find an accurate tangent for the FE2 method.

1.4 Outline

The second chapter comprises a summary of continuum mechanics and the description
of isotropic and anisotropic hyperelastic materials, describing the polymer alone and the
fiber reinforced polymer material behaviour, respectively. Then, an elasto-plastic material,
considered as a particular case of an elasto-viscoplastic material behaviour is described.
Special attention is given towards the definition of the analytical tangent. After a short
historical review of the plate theories, the third chapter comprises the description of the
strong and weak formulations of the plate theories considered in this work. Then, a de-
scription of the locking effects and of some aspects related to the convergence of the plate
theory is performed.

The fourth chapter explains the numerical homogenisation scheme. Firstly, a brief sum-
mary of the plate kinematics used for the FE2 method is given, followed by the description
of the projection strategy. In fact, the projection seems to have a critical influence on the
results and an accurate choice of them enables better performances for the FE2 method.
Then, a complete description of the boundary value problem is presented. In a last part,
the meso-macro transition is described. Here, special attention is paid to the definition
of the analytical tangent, which enables a significant reduction of the computational cost.
In the fifth chapter, the performance of the two methods, the plate theory with thickness
change on the one side and the FE2 on the other side, are compared. Finally, conclusions
are drawn and possible improvements are explained in the sixth chapter.

1.5 Notations

In the presented work, the tensors of zero order, commonly known as scalars, are repre-
sented by italic letters like

α, β, i, j...

The vectors or first order tensors are written in small bold letters

b, r,u...,

and the second order tensors are represented by bold letters

ε,σ,γ,P...

9
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For tensors of higher order than the second order, the order of the tensor is explicitly
given for clarity, like for instance

4
C,

4
B ...

In the basis of space with three dimensions, a Cartesian coordinate system is defined with
the basis vectors e1, e2 and e3. The Einstein convention is used, that means that the
symbol "sum" is not written when an index is repeated two times

3∑

i=1

ai ei = ai ei = a1 e1 + a2 e2 + a3 e3.

The tensor products are defined as

A ·B = AikBkl ei ⊗ el,

and

A : B = Aij Bij.

The outer product between two vectors is defined as

u× v =
3

E: (u⊗ v),

with the permutation tensor

3
E= εijk ei ⊗ ej ⊗ ek,

where

εijk =






1 for i , j , k = 1, 2, 3/2, 3, 1/3, 1, 2,
−1 for i , j , k = 1, 3, 2/3, 2, 1/2, 1, 3,
0 else.

The identity tensor is defined as

I = δij ei ⊗ ej ,

and the Kronecker symbol as

δij =

{
1 for i = j ,
0 for i %= j .
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Chapter 2

Continuum Mechanics

Continuum mechanics [73, 154] deals with the description of the motion and deformation
of a material body exposed to forces and torques. It is a phenomenological theory, which
uses mathematical models (in the macroscopic scale) in order to describe the mechanical
behaviour. The macroscopic scale is considered, that means that the discrete structure of
the material (atoms, molecules...) is not considered and continuum mechanics deals with
a macroscopic description of the material behaviour.

At the end of the 18th century, Euler worked on the mechanics of rigid and deformable
bodies and his work can be considered as important for the future continuum mechan-
ics, cf [4]. Later on, Cauchy worked on the elasticity of a deformable body and laid
the foundations for the continuum mechanics by proposing the use of the stress tensor,
cf. [178]. Later in the 20th century and especially in its second part, Rivlin [158, 159, 160]
showed that "illuminating problems for incompressible non-linearly elastic solids and for
incompressible non-Newtonian fluids could be solved for arbitrary non-linear constitutive
equations", cf. Truesdell [182]. Truesdell proposed a synthesis and clarification for the
theory of elasticity and it led to the modern theory of continuum mechanics. In the fa-
mous "Handbuch der Physik" [182], the basis of elasticity, thermodynamics, kinetics and
fluids dynamics was given. Later on, further interpretations were made, among them by
Altenbach & Altenbach [4], Holzapfel [84] and Haupt [73] which were particularly used to
achieve this work and to write this part.

The description of the phenomenological behaviour of a material can be separated in
three parts:

• the kinematics focus on the geometric aspects and describe the relations between
positions, displacements and deformations;

• the balance equations represent the conservation of mass, momentum and moment of
momentum. Also balance relations for energy and entropy are postulated, following
the thermodynamics;

• the constitutive laws, which describe the material behaviour of materials, i. e. the
relation between stress and deformations. In the context of this work and because of
the considered material behaviour, the description of isotropic and also anisotropic
hyperelastic material behaviour, as well as viscoplastic behaviour, is presented.

The topic of this work is limited to the description of the mechanical behaviour of compos-
ites plates; therefore the behaviour of shells will be excluded. As a consequence, the con-
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Chapter 2: Continuum Mechanics

sidered system of coordinates is Cartesian, and the co- and contravariant vectors [100, 157]
are supposed to be identical.

2.1 Kinematics

In continuum mechanics, a deformable solid, composed of a set of material particles, is
named B and it is placed in a three-dimensional space with an Euclidien geometry. In
this case, it is assumed that the solid is composed of an infinite number of material points
continuously distributed in space and that each material point is subjected to only three
translations. This theory forms the classical or Cauchy-type continuum mechanics. It is
to differentiate from the Cosserat theory [39], which assumes that a body is composed
of an infinite set of rigid bodies, which are subjected to translations and rotations and
therefore presents six degrees of freedom, cf. Eringen [52], Altenbach et al. [9].

In order to describe finite deformations, a reference configuration or undeformed configu-
ration, specified as the configuration at an initial time (or for t = 0) is defined. Similarly,
a current or deformed configuration, defined at a time t, is set. A material point X oc-
cupies a unique position X in the reference configuration and a unique position x in the
current configuration, as represented in Fig. 2.1. Therefore, the path χ, describing the
function of motion of the point X during the time t, is also unique and can be written as

x = χ(X, t). (2.1)

The function of motion is uniquely invertible and its inverse with respect to the space
coordinates is the Euler representation as

X = χ−1(x, t). (2.2)

The displacement is defined as the difference between the position of the considered point
X at the current configuration with the position of the point in the reference configuration
as

u = x−X. (2.3)

O
e1

e2

e3

X

Y X

Y

X x

dX

dx

χ(X, t) Current configurationReference configuration

t = t0
t > t0

Figure 2.1: Reference and current configurations
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Two neighbouring points X and Y can be connected by a material line element defined
as dX in the reference configuration and dx in the current configuration. The transport
of a material line element from the undeformed to the deformed configuration is defined
as F, cf. [107, 113]

dx = Gradχ(X, t) · dX = F · dX, (2.4)

or the so-called deformation gradient

F = Gradχ(X, t) =
∂x

∂X
. (2.5)

It is to mention that the deformation gradient is in general an unsymmetric tensor. For
an undeformed configuration, the deformation gradient becomes the identity tensor

GradX =
∂X

∂X
= I. (2.6)

With the definition of the displacement given in Eq. (2.3), the deformation tensor can be
computed as

F =
∂x

∂X
=

∂(X + u)

∂X
= I+Gradu (2.7)

and its inverse F−1 as

F−1 =
∂(x− u)

∂x
= I− gradu, (2.8)

with the gradient

gradX =
∂X

∂x
. (2.9)

The Jacobi-determinant is defined as the determinant of the deformation tensor F

J = det
∂x

∂X
; (2.10)

the Jacobi-determinant describes about the volume change with J = ρ0/ρ; for an incom-
pressible material for instance, the Jacobi-determinant is equal to 1.

The first derivative of the position of the point X in the current configuration with
respect to the time gives the velocity v

ẋ(X, t) =
dχ(X, t)

dt
= v(X, t), (2.11)

and the second derivative the acceleration a

ẍ(X, t) =
d2χ(X, t)

dt2
= a(X, t). (2.12)

Both derivatives are described as material derivatives, because they are defined for a single
fixed material point X. In continuum mechanics, two possible description exist: the first
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one is the material or Lagrangean description, where the position of one point will be
followed during the time, cf. [41], with

a = ã(X, t). (2.13)

The symbol .̃ is used to differentiate the function ã from the acceleration itself. The
second possible description is the spatial or Eulerian description, where the focus is made
on the observation of a spatial area and the passing of particles going through the area,
cf. [42]

a =
≈
a (x, t). (2.14)

The material description is used for the description of a solid body; on the contrary, the
spatial description finds application in fluid mechanics. In order to describe the behaviour
of an hybrid laminate, the material or Lagrangean description is followed.

A surface element is described by the outer product of two non parallel line elements
dX1 and dX2 in the undeformed configuration and, respectively, dx1 and dx2 in the
deformed configuration with

dA = dX1 × dX2,

da = dx1 × dx2. (2.15)

The definition of the deformation gradient (2.5) can be used to draw the relation between
the surface element in the reference configuration and the surface element in the current
configuration with

da = (F · dX1)× (F · dX2) = (detF)FT−1 · dA. (2.16)

In a similar way, the mixed product of three material line elements defines the volume
element in both configuration

dV = (dX1 × dX2) · dX3,

dv = (dx1 × dx2) · dx3. (2.17)

As for the areas, the deformation gradient can be introduced

dv = ((F · dx1)× (F · dx2)) · (F · dx3), (2.18)

and with the definition of its determinant as

detF =
((F · dx1)× (F · dx2)) · (F · dx3)

(dX1 × dX2) · dX3
, (2.19)

the relation for a volume element between undeformed and deformed configuration be-
comes

dv = (detF) dV. (2.20)

As a matter of fact, the deformation gradient is not convenient to illustrate the deforma-
tions applied to a body, because it contains both deformation and rotation, cf. [4, 41].
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For this reason, it can be useful to decompose it in an unique way in an orthogonal and
in a symmetric positive definite tensor

F = R ·U = V ·R. (2.21)

R describes the rotation and is a proper orthogonal tensor, defined as

R ·RT = I, detR = +1. (2.22)

U and respectively V describes the translation and are symmetric positive definite tensors

U = UT , V = VT . (2.23)

U is called the right stretch tensor and V the left stretch tensor, respectively. U and V
have the same eigen vectors and the same eigen values. However, the computation of U
and V is extremely expensive, because it requires the computation of an eigen problem.
For these reasons, the square value of a material line is introduced as

dS2 = dX · dX, (2.24)

for the reference configuration and

ds2 = dx · dx = (F · dX) · (F · dX) = dX ·C · dX, (2.25)

for the current configuration. It defines then the right Cauchy-Green deformation tensor
C as

C = FT · F. (2.26)

Further transformation of the right Cauchy-Green tensor leads to a relation with the
stretch tensor U as

C = FT · F = (R ·U)T · (R ·U)

= UT ·RT ·R ·U = U ·U = U2. (2.27)

In a similar way, the left Cauchy-Green deformation tensor B can be introduced as

dS2 = dX · dX = (F−1 · dx) · (F−1 · dx) = dx ·B−1 · dx. (2.28)

It follows that

B−1 = FT−1 · F−1 ⇔ B = F · FT . (2.29)

Further transformations of B lead to

B = F · FT = V ·R ·RT ·V = V2. (2.30)

It is to notice that in the undeformed state, the deformation tensor, the right and left
Cauchy-Green tensor are equal to the tensor identity

F = I ⇔ C = B = I. (2.31)
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It is convenient to define the strain by the difference between the deformed and unde-
formed deformation state

ds2 − dS2 = dx · dx− dX · dX. (2.32)

Further transformations of Eq. (2.32) lead to the definition of the Green-Lagrangean strain
tensor E in the reference configuration

ds2 − dS2 = dX ·C · dX− dX · dX = dX · (C− I) · dX, (2.33)

with

E =
1

2
(C− I). (2.34)

In the expression of a constitutive law, it can be useful to use E and not F, because in the
undeformed configuration, the Green-Lagrangean strain tensor E is equal to 0 whereas F
is equal to the identity tensor I. In a similar way, the Euler-Almansi strain tensor can be
defined, if the definition of the line element in the current reference is given as a function
of the line element in the reference configuration

ds2 − dS2 = dx · (I−B−1) · dx = dx · 2A · dx. (2.35)

The Almansi tensor is then written as

A =
1

2
(I−B−1). (2.36)

Due to further transformations of the Green-Lagrangean strain tensor E

E =
1

2
(FT · F− I) =

1

2
((I+Gradu)T · (I+Gradu)− I),

E =
1

2
(GradT u+Gradu+GradT u ·Gradu) (2.37)

and in a similar way for the Euler-Almansi strain tensor A

A =
1

2
(I− FT−1 · F−1) =

1

2
(gradu+ gradT u+ gradT u · gradu), (2.38)

the linearisation of both Green-Lagrangean and Euler-Almansi strain tensors for small
deformation gives the value of the engineering strain in the linear case

ε =
1

2
(Gradu+GradT u). (2.39)

The linear deformation theory can be interpreted as a particular case of the continuum
mechanics, because for small displacements, small displacement gradients and small rota-
tions, we have ε ≈ E ≈ A and Gradu ≈ gradu.

The rate of change of a material line element defines the relative velocity of two neigh-
bouring material points X and Y

(dx)· = (F · dX)· = Ḟ · dX, (2.40)
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because the time change of the line element in the reference configuration vanishes. The
material velocity gradient is defined as

Gradv = Ḟ(X, t). (2.41)

Using the definition of the deformation gradient (2.5), Eq. (2.40) becomes

(dx)· = Ḟ · F−1 · dx = L · dx, (2.42)

and the spatial velocity gradient is defined as

L = Ḟ · F−1. (2.43)

The spatial deformation gradient can be split in a symmetric part and in a skew part

L = D+W, (2.44)

where D = DT is the symmetric part and it is called the deformation velocity

D =
1

2
(L + LT ) = DT . (2.45)

W = −WT is the skew part or called the spin tensor

W =
1

2
(L− LT ) = −WT . (2.46)

W describes the rotation velocity of the deformation tensor’s principal axis, cf. [73].

2.2 Balance Relations

The kinematics describe the deformations and the geometry of motion and can be con-
sidered independently from the material behaviour or from the applied loading. The
influence of the "outside world", cf. [73], is taken into account in the balance relations,
which are described in this part. Because of the considered issue, the balance relations are
firstly developed in the thermo-mechanical case, and the section is restricted afterwards
to thermo-mechanical problems and does not include any magnetic or electric properties.

2.2.1 Balance of Mass

The mass is basically defined as the integration of the density over the volume of the body
B with

m =

∫

V

ρ dv, (2.47)

where the volume of the body is defined as V and its surface as A. The time change of the
mass must be zero, because the mass stays constant during the time. This axiom leads
to the formulation

d
dt

∫

V

ρ dv = 0. (2.48)
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In order to obtain the local balance, the order of the time derivative and the integral has
to be changed. To do so, the integral over the initial volume is introduced. This is not
influenced by any temporal change, as illustrated in [41]

d
dt




∫

V0

ρ detF dV



 =

∫

V0

d
dt

(ρ detF )dV = 0, (2.49)

and V0 describes the initial volume of the body or its volume at a time t = t0. Further
transformations lead to

∫

V0

(
ρ̇ detF+ ρ

d
dt

[detF]

)
dV =

∫

V

(ρ̇+ ρ div v) dv = 0. (2.50)

Within further transformations using the material time derivative of the density

ρ̇ =
dρ
dt

=
∂ρ

∂t
+ grad ρ · v, (2.51)

and the product rule, the Eq. (2.50) can be written in its local form as

∂ρ

∂t
+ div(ρv) = 0. (2.52)

Integration in time yields to the relation between the current density and its initial value

ρ = ρ0 (detF)
−1. (2.53)

2.2.2 Balance of Momentum

Basically, the balance of momentum describes the time change of the momentum as set
by the third axiom of Newton. It says that the resulting forces applied to a body cause
a change of the momentum

l̇ = f . (2.54)

The momentum l of a material body V is defined with its velocity and density

l = l(V, t) =

∫

V

ẋ dm =

∫

V

ρ ẋ dv. (2.55)

The applied forces are defined as the sum of the forces applied to its surface (t) and the
force density (ρb), like for instance the gravity

f =

∫

A

t da+
∫

V

ρb dv. (2.56)

After transformation using the Cauchy theorem t = T · n, the balance of momentum
becomes

d
dt

∫

V

ρ ẋdv =

∫

A

T · n da+
∫

V

ρb dv, (2.57)
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with T defined as the Cauchy stress. A further transformation of the time derivative of
the velocity can be applied as

d
dt

∫

V

ρ ẋdv =

∫

V

ρ ẍ dv. (2.58)

With the use of the divergence theorem in the current configuration and excluding the
problem of shock waves, the local form of the balance of momentum can be written as

ρ ẍ = divT+ ρb. (2.59)

Further transformations, as explained in [41], lead to the local form of the balance of
momentum in the reference configuration

ρ0
d2x

dt2
= DivP+ ρ0 b, (2.60)

with x the position of a point in the actual configuration. P is the first Piola-Kirchhoff
stress tensor and it is defined as

P = (detF)T · FT−1. (2.61)

Whereas the Cauchy stress T is related to the applied forces in a surface element da in the
current configuration, the first Piola-Kirchhoff stress is related to the same applied forces,
but in relation with a surface element dA in the reference configuration. The Cauchy
stress T is symmetric, whereas the first Piola-Kirchhoff is generally non-symmetric.

In the linear deformation theory, the stress is also not depending on a specific config-
uration (because they are approximately similar), and only the Cauchy stress is generally
used. In this work, the Cauchy stress for the linear deformation theory is also written as
σ, in order to differentiate it from the Cauchy stress T for finite deformations.

2.2.3 Balance of Moment of Momentum

If no body torque and no surface torque are applied, the moment of momentum is defined
as

hp =

∫

V

x× ρv dv (2.62)

and its change is caused by the moment applied to the body as

ḣp = mp. (2.63)

Similarly as for the balance of momentum, we get the balance of moment of momentum

d
dt

∫

V

(ρx× ẋ) dv =

∫

A

(x× t) da+
∫

V

(x× ρb) dv. (2.64)
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Further transformation of Eq. (2.64) leads to
∫

V

[x× (ρ ẍ− divT− ρb) + I×T] dv = 0 (2.65)

Because of the balance of momentum, given in Eq. (2.59), the former Eq. (2.65) can be
reduced to

I×T = 0. (2.66)

Consequently, the Cauchy stress tensor is symmetric

T = TT . (2.67)

2.2.4 Balance of Energy or First Law of Thermodynamics

The balance of energy, also called the first law of thermodynamics, describes the energetic
state for any volume of the body. The energy density is defined as the sum of the kinetic
and the internal energy, cf. [4, 41, 43, 73]

e =

∫

V

(ρ ε+
1

2
ρ ẋ · ẋ) dv = U +K, (2.68)

with the kinetic energy K

K =
1

2

∫

V

(ρ ẋ · ẋ) dv, (2.69)

and the internal energy U

U =

∫

V

ρ ε dv. (2.70)

ε is the specific internal energy. The first law of thermodynamics describes the temporal
change of the energy e, which can be caused by a heat or a mechanical power

d
dt

(U +K) = P +Q. (2.71)

The mechanical power P is defined as

P =

∫

A

ẋ · t da+
∫

V

ẋ · ρb dv, (2.72)

and the heat power Q as

Q =

∫

A

−q · n da+
∫

V

ρ r dv, (2.73)
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where q is the heat flux and r the heat supply. The balance of energy can be written as

d
dt

∫

V

(ρ ε+
1

2
ρ ẋ · ẋ) dv =

∫

A

(ẋ · t− q · n) da +
∫

V

(ẋ · ρb+ ρ r) dv. (2.74)

By further transformation with the divergence theorem, the balance of energy becomes

ρ ε̇+ ρ ẍ · ẋ = div(ẋ ·T− q) + ẋ · ρb+ ρ r. (2.75)

By multiplication of the balance of momentum (2.59) with ẋ and introduction in the
former Eq. (2.75), we can get the balance of internal energy as

ρ ε̇ = T : D− div q+ ρ r, (2.76)

cf. [107, 113].

2.2.5 Balance of Entropy or Second Law of Thermodynamics

The second law of thermodynamics states the principle of irreversibly, that means that
the "entropy production is never negative", cf. [73]

ρ η̇ + div
(q
θ

)
−

ρ r

θ
= η̂ ≥ 0, (2.77)

where η is the specific entropy, η̂ the entropy production and θ the absolute temperature.
With the introduction of the Legendre transformation (ψ = ε − θ η) and the balance of
internal energy (2.76), the balance of entropy gets

−ρ ψ̇ + ρ η θ̇ −
q

θ
· grad θ +D : T ≥ 0. (2.78)

Eq. (2.78) is known in continuum mechanics as the Clausius-Duhem inequality. In isother-
mal case, the balance of entropy becomes, for the current configuration

−ρ ψ̇ +D : T ≥ 0, (2.79)

and it is called the Clausius-Planck inequality. The Clausius-Planck inequality can be
written in the reference configuration as

−ρ0 ψ̇ + Ė : S ≥ 0, (2.80)

with S the second Piola-Kirchhoff stress.

In order to describe the behaviour of a material, it can be convenient to know the de-
formations or stress in both reference and current configuration. To do so, we can use
the concept of dual variables, developed by Haupt & Tsakmakis [76], which states that
the stress power in the reference configuration must be equal to the stress power in the
current configuration

1

ρ0
S : Ė =

1

ρ
T : D. (2.81)
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With further transformations of Eqs (2.81), a direct relation between the Cauchy stress
in the current configuration and the second Piola-Kirchhoff stress in the reference config-
uration is obtained

S = (detF)F−1 ·T · F−T . (2.82)

It is to mention that both Cauchy stress and second Piola-Kirchhoff stress are symmetric.
On the contrary to the Cauchy stress, the second Piola-Kirchhoff stress has no physical
interpretation in terms of forces but it is the power conjugated quantity to Ė.

2.3 Constitutive Equations

The equations set before are independent from the considered material. However, a
relation between the stress and the deformation is needed and it is defined with the
constitutive equations.

2.3.1 General Considerations

The last part of the chapter "continuum mechanics" is devoted to the description of the
material behaviour of materials, firstly developed by Noll in the nineteen sixties and im-
proved in [138]. Any constitutive equations have to follow some general principle, among
them the principle of determinism, which states that the current stress state of the ma-
terial body depends only on the past history of the body’s motion, cf. [73]. The principle
of local action explains that a state of stress is only determined by the history of motion
of the point’s environment and not by all body particles. The material objectivity or so-
called principle of material frame indifference states that every representation of material
properties have to be independent of the frame of reference. Moreover, the constitutive
law must not violate the balance equations.

As represented in Fig. 2.2, there are basically four types of material behaviour, defined as
material with or without equilibrium hysteresis and as rate dependent or rate independent
material, cf. [73]:

• the simplest material law is the one which is rate independent and without equilib-
rium hysteresis; it is declared as a hyperelastic material;

• a material which is rate independent but has an equilibrium hysteresis is an elasto-
plastic material behaviour;

• a rate dependent material without equilibrium hysteresis is a viscoelastic material;

• the latter type is a rate dependent material with hysteresis; it is called an elasto-
viscoplastic material or abbreviated as a viscoplastic material.

In Fig. 2.2, the plain lines are characteristics for a material behaviour for an arbitrary rate
and the dash lines represent the equilibrium curve, that means that for a slow process,
the material behaviour will follow the dash lines. For instance, a viscoelastic material at
a slow process shows no hysteresis.
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Rate independent

Rate dependent

Without equilibrium hysteresis: elastic With equilibrium hysteresis: elasto-plastic

Without equilibrium hysteresis: viscoelastic With equilibrium hysteresis: elasto-viscoplastic

σ

σ

σ

σ

ε

ε

ε

ε

Figure 2.2: Four categories of material behaviour, adapted from Haupt, Continuum
Mechanics and Theory of Materials, Springer-Verlag, 2000 [73]

In the present work, the composite material is made of carbon fibers reinforced polymers
(CFRP), where the considered polymer is a thermoplastic like Nylon (Polyamide 6.6) or
PEEK (Polyether Ether Ketone). Although the thermoplastic can present a viscoelastic
behaviour, especially at high temperature, the influence of the viscoelastic part is too
small in comparison with the stiffness of the fibers to be considered. For these reasons,
the material behaviour corresponding to the carbon fibers reinforced thermoplastic is an
anisotropic hyperelastic material, as developed in the subsection 2.3.2.

The composite plates are also made of metal layers which are aluminium or titan alloys.
Both show a classical elasto-plastic material behaviour. However, the description of a vis-
coplastic material behaviour will be explained and implemented; and the elasto-plasticity
is considered as a particular case of the viscoplasticity, as developed in subsection 2.3.3.

For both categories of materials, a general description is presented, followed by the de-
tailed description of the chosen model.
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2.3.2 Hyperelasticity

Isotropic Hyperelasticity

A hyperelastic material assumes that a free energy function ψ in a form of potential
exists [73, 84]

ρ0 ψ = Ψ = Ψ(C). (2.83)

Because the principle of material objectivity has to be respected, neither the right nor
the left Cauchy-Green Deformation tensor are accurate, because the free energy function
would be linked to a configuration in this case. To avoid this problem, the invariants are
used, because they are independent from the configurations and identical for B and C.
They were first introduced by Rivlin [158] and are defined for a tensor C as

IC = I1 = tr(C),

IIC = I2 =
1

2
[(trC)2 − trC2],

IIIC = I3 = detC. (2.84)

Because further invariants are needed in case of anisotropy, we use the notation I1, I2, I3
to refer as the first, second and third principal invariant of a tensor. The free energy
function depends further on the three first invariants of C, in case of isotropy

Ψ = Ψ(I1, I2, I3). (2.85)

By introducing the derivative of the free energy function

Ψ̇ =
∂Ψ(I1, I2, I3)

∂C
: Ċ (2.86)

in the Clausius-Planck inequality with respect to the reference configuration (2.80), it
leads to

S = 2
∂Ψ(I1, I2, I3)

∂C
. (2.87)

Using the chain rule of differentiation

S = 2

[
∂Ψ

∂I1

∂I1
∂C

+
∂Ψ

∂I2

∂I2
∂C

+
∂Ψ

∂I3

∂I3
∂C

]
(2.88)

leads to the following expression for the second Piola-Kirchhoff stress

S = 2

[(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
I−

∂Ψ

∂I2
C+ I3

∂Ψ

∂I3
C−1

]
. (2.89)

By applying the concept of dual variables (2.81) or by using an similar development
from the Clausius-Planck inequality with respect to the current configuration (2.79), the
expression of the Cauchy stress can be defined as

T = 2 J−1

[(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
B−

∂Ψ

∂I2
B2 + I3

∂Ψ

∂I3
I

]
, (2.90)
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or similar expressions by using the theorem of Cayley-Hamilton, cf. [84]. In this case, the
invariants implicitly refer to B -although the invariants of B or C are the same.

For incompressible materials (detC = I3 = 1), it can be demonstrate that the balance of
mass (2.52) leads to a further constraint

div v = L : I = D : I = 0, (2.91)

which will be introduced in the Clausius-Planck inequality, cf. [41] driving to the Cauchy
stress

T = −p I+ 2J−1 B ·
∂ρ0 ψ(I1, I2)

∂B
. (2.92)

The Lagrangean multiplicator p is identified as the pressure. In order to implement a
material behaviour, the stiffness or Jacobian is needed, as explained in [126, 175] for the
user subroutine UMAT in ABAQUS R©. In order to avoid a slow down of the computations,
a numerical tangent should not be used but attempts are made to find an analytical one.
In case of hyperelasticity, the stiffness tensor is also the elasticity tensor, and it can be
obtain as

4
C = 4

∂2Ψ

∂C ∂C
, (2.93)

cf. [166, 194]. For a free energy function defined as

Ψ = Ψ1(I1) +Ψ2(I2) +Ψ3(I3), (2.94)

as it is encountered in most cases, the mixed derivatives1 of Ψ vanishes and it leads to
the reduced expression of 4C as

4
C = 4

[(
∂2Ψ

∂I21
+ I21

∂2Ψ

∂I22
+

∂Ψ

∂I2

)
I⊗ I−

∂2Ψ

∂I22
(C⊗ I+ I⊗C)

+
∂2Ψ

∂I22
C⊗C+ I3

(
I3
∂2Ψ

∂I23
+

∂Ψ

∂I3

)
C−1 ⊗C−1 −

∂Ψ

∂I2

4
I −

∂Ψ

∂I3
IC−1

]
, (2.95)

where
4
I is the fourth order identity tensor defined as

∂C

∂C
and IC−1 is defined as −

∂C−1

∂C
;

it can be proved by using the theorem of Cayley-Hamilton that is is equal to C−1 ⊗C−1.

Anisotropic Hyperelasticity

In order to describe the carbon fibers reinforced polymer, an anisotropic constitutive law
is needed. Lots of biological tissues show a transverse isotropic behaviour; as a result,
many researches have been made in this field, cf. [11, 64, 85, 147, 191, 192] or sometimes
for composite materials [114]. Because in each layer, the fibers are -at least theoretically-
continuously distributed in the matrix and because each fiber is oriented in the same
direction and has the same length and properties within one layer, a transverse isotropic

1I mean the form
∂2Ψ

∂Ii∂Ij
= 0, for i %= j.
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material law, as a specific case of the anisotropy, can be used, cf. [84]. Within this as-
sumption, the bonding of the fibers in the matrix is assumed to be perfect.

In case of anisotropy, the stress depends equally from the fibers orientation; consequently,
we introduce preferred directions. For a transverse isotropic material, which contains only
one family of fibers, there is only one preferred direction called the fiber direction a0 in
the reference configuration, cf. [84]. In the current configuration, the preferred direction
becomes a; the fiber direction vectors in both configuration are normalized

|a0| = 1, |a| = 1. (2.96)

Because of the possibility for the fibers to elongate, we define the stretch λ along the
direction a0 as

λ a(x, t) = F(x, t) · a0(X), (2.97)

which means that the stretch defines the ratio between the fibers length in the undeformed
and deformed configuration. The square value of the stretch is given as the following
expression,

λ2 = a0 · F
T · F · a0 = a0 ·C · a0, (2.98)

because the fiber direction vectors are normalized. Similarly as for an isotropic hyper-
elastic material, a transverse isotropic material assumes the existence of a free energy
function depending of the invariants. The extra invariants, needed for the description
of the anisotropy, are introduced by an arbitrary product of the fiber direction and the
Cauchy-Green tensor and are called "mixed invariants", cf. [16], in order to differentiate
them from the "classical" principal invariants I1, I2, I3. Because of the normalization of
the fiber direction, the invariants only involving the fiber direction cannot be differenti-
ated and the following mixed invariants using the fibers direction and the Cauchy-Green
tensor are built

I4 = a0 ·C · a0, I5 = a0 ·C ·C · a0, (2.99)

and the condition of polyconvexity is verified if I4 > 0, cf. [149, 169, 170]. For further
discussion about mixed invariants and polyconvexity, the reader is referred to [169, 170,
174, 187, 188, 189, 190]. The constitutive equation is expressed similarly as for the
isotropic hyperelastic material as

S = 2
∂Ψ(I1, I2, I3, I4, I5)

∂C
. (2.100)

With the derivatives of the mixed invariant

∂I4
∂C

= a0 ⊗ a0;
∂I5
∂C

= a0 ⊗C · a0 + a0 ·C⊗ a0, (2.101)

the constitutive law in the reference configuration for a transverse isotropic material be-
comes

S = 2

[(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
I−

∂Ψ

∂I2
C+ I3

∂Ψ

∂I3
C−1

+ I4
∂Ψ

∂I4
a0 ⊗ a0 +

∂Ψ

∂I5
(a0 ⊗C · a0 + a0 ·C⊗ a0)

]
. (2.102)
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The constitutive law in the current configuration can be obtained with the concept of
dual variables

T = 2

[(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
B−

∂Ψ

∂I2
B2 + I3

∂Ψ

∂I3
I

+ I4
∂Ψ

∂I4
a⊗ a+

∂Ψ

∂I5
(a⊗B · a+ a ·B⊗ a)

]
. (2.103)

It is to notice that a volumetric deviatoric split is also possible, in the scope of anisotropic
hyperelasticity [46, 85] or anisotropic thin shells [45]. Further development to incorporate
orthotropy are possible, among them [125, 166, 185]. In the scope of this work, we are
restrained to hyperelasticity; the reader can refer to further work for isotropic viscoelas-
ticity [37, 38, 75, 83, 155, 171], for anisotropic viscoelasticity [141] or for damage [167].

In case of a numerical homogenisation, the deformations are projected to a three-dimensio-
nal FE problem. The numerical homogenisation method for composite plates can be
successfully employed for finite deformations. However, in the scope of the presented
work, this method is applied to small deformations. Therefore, a practical example of an
anisotropic constitutive law for small deformations is given. For small strains, the first
and second Piola-Kirchhoff stresses are approximately equal to the Cauchy stress and the
stress tensor can be written as σ ≈ T ≈ S, as for the strains ε ≈ E ≈ A.

The free energy function has the form

Ψ(ε, a) =
1

2
λ (tr ε)2 + µT tr ε2 + α (a · ε · a) tr ε

+ 2 (µL − µT ) (a · ε2 · a) +
1

2
β (a · ε · a)2 (2.104)

cf. [166]. The stress is obtained by the derivative of the free energy function as

σ =
∂Ψ(ε, a)

∂ε
= λ tr(ε)I+ 2µT ε+ α [tr ε a⊗ a+ (a · ε · a) I]

+ 2 (µL − µT ) (a⊗ ε · a+ a · ε⊗ a) + β (a · ε · a) a⊗ a. (2.105)

The model contains five parameters, namely λ, µT , µL, α and β.

In continuum mechanics2, the fourth-order elasticity tensor contains 3 × 3 × 3 × 3 = 81
items. However, it can be convenient to use the Voigt notation (appendix 7.1), in order
to enable an easiest representation of the elasticity tensor. Using the Voigt notation,
the stresses and strains, which are tensors of second order for the continuum mechanics
and contains each 3 × 3 = 9 items, are reduced to vectors containing six items, due to
symmetry. Consequently, the elasticity tensor can be expressed as a tensor of second
order containing 6 × 6 items, due to minor symmetries Cijkl = Cjikl = Cijlk and to ma-
jor symmetries Cijkl = Cklij, cf. [84]. It is to mention that in the Voigt notation, the
elasticity tensor is normally defined with the bold letter C; however, in order to avoid
confusion with the right Cauchy-Green deformation tensor, the letter C is used instead.
For clarity, when dealing with stress or strain written in the Voigt notation, an index (.)1

2Although a similar development can be performed for a Cosserat continuum.
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is introduced, as for instance 1σ.

For a transverse isotropic material, where the fiber direction is a0 = e3, the elasticity
tensor, developed in Voigt notation is

2
C =






C11 C12 C12 0 0 0
C12 C22 C23 0 0 0
C12 C23 C22 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C55






=






γ λ+ α λ+ α 0 0 0
λ+ α λ+ 2µT λ 0 0 0
λ+ α λ λ+ 2µT 0 0 0
0 0 0 µT 0 0
0 0 0 0 µL 0
0 0 0 0 0 µL






with γ = λ + 2α + β + 4µL − 2µT . The Voigt convention is here employed with
2C44 ≡ 4C2323, 2C55 ≡ 4C1313 and 2C66 ≡ 4C1212. As consequence, we get the following
correspondence with the constitutive law and the elasticity constants

C11 = λ+ 2α + β + 4µL − 2µT ; C22 = C33 = λ+ 2µT ; C12 = C13 = λ+ α;

C23 = λ; C44 =
1

2
(C22 − C23) = µT ; C55 = C66 = µL.

The constitutive law is applied for a carbon fiber reinforced PEEK3 with the material
constants expressed in the Table 5.1.

E1 = 138 GPa E2 = 10.2 GPa G23 = 5.7 GPa ν12 = 0.3 ν23 = 0.275

Table 2.1: Material constants for the transverse isotropic material

The fiber reinforced polymer is subjected to a tension test, with the boundary conditions
expressed in Fig. 2.3. The same tension test is performed for a transverse isotropic material
with an angle orientation from −90◦ to +90◦.

e1

e2

e3

ū

1©

2©4©

3©

Figure 2.3: Schematic representation of the tension test

The normal stress and the vertical displacement in the points 1© to 4© are represented in
Figs 2.4 and 2.5. It is to mention that the normal stress shows a symmetric distribution

3Polyether Ether Ketone, a thermoplastic polymer
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for the upper points 1© and 4©, as well as for the lower points 2© and 3©, respectively.
For a fiber orientation angle of 0◦, the stress σ11 reaches the maximal value E1/10 for
the tension test of 10%; the stress σ22 reaches the minimal value E2/10 when the fiber
orientation angle is 90◦. The vertical displacement of the bottom points is 0, and it can
be observed that the displacement of the upper points are symmetric to each other.

16000

12000

8000

4000

0
0 40 80−40−80

N
or

m
al

st
re

ss
σ
11

(M
P
a)

Angle (◦)

1©
2©
3©
4©

Figure 2.4: Nodes’s normal stress as a function of the angle and of the position of the
points 1©... 4©
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Figure 2.5: Nodes’s vertical displacement as a function of the angle and of the position
of the points 1©... 4©
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2.3.3 Viscoplasticity

Lots of metals present an elasto-plastic material behaviour; however, we choose to im-
plement an elasto-viscoplastic model. Indeed, an elasto-plastic model can be taken as a
particular case of a viscoplastic model if the viscosity is very small. Moreover, the reso-
lution of the consistency condition is avoided, as explained later in this part.

In the first instance, a general model for finite deformations is described. The numerical
concurrent homogenisation for plates can be applied for finite deformations. However,
in the scope of the presented work, where the numerical homogenisation is applied for
composite plates, the method is performed in the small deformation domain. Therefore
in the second instance, a small strain model is explicitly described. Finally, a method to
find the consistent tangent, the Multi-Level Newton Algorithm (MLNA), is developed.

General Model for Finite Deformations

In this part, a plasticity theory with elastic range is presented, as developed for by Haupt
in case of plasticity or viscoplasticity [73] and by Perzyna for viscoplasticity [143, 144, 145].
An elasto-plastic or an elasto-viscoplastic material shows irreversible deformations and its
behaviour depends on the load history. An elasto-plastic material possesses basically an
elastic part and an inelastic part; for the case of finite deformations, the deformations are
split in a multiplicative way in an elastic part and an inelastic part

F = Fe · Fp, (2.106)

where Fe represents the elastic deformation tensor and Fp is the plastic part of the
deformation tensor, also defined with an index (.)i by some authors in reference to the
inelastic deformations. For plasticity, a full discharge is not possible, because of the
inhomogeneous eigen deformation which stays in the body. For this reason, the body could
be divided in small parts, until these parts are fully discharged. But in this state, the
unloaded pieces of the body don’t match, since they have suffered different deformations;
this deformation state is "locally stress free", cf. [73]. In case of plasticity, an intermediate
deformation is defined, which is locally stress free, as represented in figure 2.6. Within
this framework, the transport of a material line element between the reference (dX),
intermediate (dx̂) and current (dx) configuration are defined as

dx = F · dX,

dx̂ = Fp · dX,

dx = Fe · dx̂. (2.107)

Similarly as for an hyperelastic material, a plastic right Cauchy-Green deformation tensor
can be introduced as

Cp = FT
p · Fp, (2.108)

as well as a plastic Green-Lagrange strain tensor

Ep =
1

2
(FT

p · Fp − I). (2.109)
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Figure 2.6: Schematic representation of the configuration of reference, of the current
configuration and of the intermediate configuration

The Green-Lagrange strain tensor of the total deformations is defined as

E =
1

2
(FT

p · FT
e · Fe · Fp − I), (2.110)

which introduces the deformation tensor of the intermediate configuration as

Γ̂ = FT−1
p · E · F−1

p (2.111)

as the push forward from the reference configuration to the intermediate configuration.
It is to notice that in the intermediate configuration, the strains are divided in a additive
way as

Γ̂ = Γ̂e + Γ̂p, (2.112)

the (̂.) describes the quantities of the intermediate configuration. Therefore, it defines a
purely elastic Green-Lagrange strain tensor

Γ̂e =
1

2
(FT

e · Fe − I), (2.113)

and a purely plastic Euler-Almansi strain tensor as

Γ̂p =
1

2
(I− FT−1

p · F−1
p ). (2.114)

According to the concept of dual variables, the dual stress of Γ̂ is the second Piola-
Kirchhoff stress of the intermediate configuration, cf. Haupt (2008) [73] as

Ŝ = Jp Fp ·T · FT
p = J F−1

e · S · FT−1
e , (2.115)

31



Chapter 2: Continuum Mechanics

where in the case of plastic incompressibility, the Jacobian of the plastic domain reduced
to Jp = 1. A plastic velocity gradient is defined as

L̂p = Ḟp · F
−1
p . (2.116)

By applying the same transformation as for Γ̂ and Ŝ, we define the covariant or lower-
convected Oldroyd rate4

$

Γ̂= FT−1
p · Ė · F−1

p = ˙̂
Γ+ L̂T

p · Γ̂+ Γ̂ · L̂p, (2.117)

and the contravariant or upper-convected Oldroyd rate5 as

%

Ŝ= ˙̂
S− L̂T

p · Ŝ− Ŝ · L̂p. (2.118)

Similarly as for the strain, the strain rate can be divided in a additive split as

$

Γ̂=
$

Γ̂e +
$

Γ̂p = D̂e + D̂p, (2.119)

with the elastic and plastic strain rates of the intermediate configuration as

D̂e =
$

Γ̂e=
˙̂
Γe + L̂T

p · Γ̂e + Γ̂e · L̂p;

D̂p =
$

Γ̂p =
˙̂
Γp + L̂T

p · Γ̂p + Γ̂p · L̂p. (2.120)

With further simplifications within the Eqs (2.114) and (2.116), the Eq. (2.120) becomes

D̂p =
1

2

[
L̂p + L̂T

p

]
. (2.121)

An elastic function is defined, which specifies the behaviour of the material in the elastic
domain as

Ŝ = g1(Γ̂e), (2.122)

where g1 is an isotropic tensor function. Then, a yield function is used; it gives the border
of the elastic domain and plastic domain in the stress space

F = F (Ŝ, X̂, k) = f(Ŝ− X̂, k). (2.123)

It is to mention that a major difference between elasto-plasticity and viscoplasticity lies in
the yield function: for an elasto-plastic material, the yield function can be only negative
or zero. On the contrary for viscoplasticity, the yield function can have a negative, zero
or positive value and the consistency condition is not needed. For elasto-plasticity, the
consistency condition forbids the yield function to have a value greater than zero, and
enables in the same way a determination of the parameter λ. Instead of this, a further
definition of the parameter λ is needed for viscoplasticity. Therefore, the flow rule can be

4known in German as the "obere Lie-Ableitung", cf. [73, 92]
5known in German as the "untere Lie-Ableitung", cf. [73, 92]
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written for either elasto-plasticity or viscoplasticity as

elasto-plasticity: D̂p = λ
∂f

∂S
, ḟ = 0, for F = 0 and loading,

viscoplasticity: D̂p = λ
∂f

∂S
, λ =

1

η
〈f〉m, for F ≥ 0 and loading.

〈·〉 are the Macauley brackets6, expressed as

〈x〉 =

{
x for x ≥ 0
0 for x < 0.

(2.124)

There are two classical hardening: the isotropic hardening and the kinematic hardening,
as represented in Fig. 2.7. The isotropic hardening, represented in the left hand side,
assumes an increase of the radius of the yield surface, but with a conservation of the
position of its center. On the contrary for a kinematic hardening, drawn on the middle,
the radius of the yield surface stays unchanged, but it suffers a translation.

isotropic kinematic

σ1 σ1

σ2 σ2

σ3σ3

Figure 2.7: Representation of the yield surface as a function of the hardening in the
principal stress space (black: initial yield surface, blue: yield surface after
hardening)

For a kinematic hardening, the evolution equation is defined following the Armstrong-
Frederick ansatz as

%

X̂ = c D̂p − b ṡp(t) X̂, (2.125)

where
%

X̂ is the upper-convected Oldroyd rate of the backstress tensor. c and b are ma-
terial parameters: +c D̂p illustrates the production and displacement of dislocations and
−b ṡp(t) X̂ represents the obstacles for the dislocations. The plastic arclength is defined
as

ṡp(t) = ||D̂p||. (2.126)

6known in German as "Föppl Klammer"
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The isotropic hardening is defined as a change in the radius of the yield surface as

k = k(sp). (2.127)

The elasticity tensor is defined as the fourth-order tensor
4
C=

4
C (E) =

d
dE

g1(E) (2.128)

For the model of elasto-plasticity at finite strains, see appendix 7.2. Many other models
are available and in particular the reader can be referred to [74, 128, 117, 168, 12, 30].
It is to mention that some methods have also been developed to incorporate a fiber rein-
forced material behaviour for plasticity, cf. [63], or an orthotropic elasto-plastic material
behaviour, cf. [168].

Small Strain Model

Previously, an elasto-viscoplastic model at finite deformations, considered as one of the
most general case, has been explained. Indeed, the elasto-plastic material model can be
considered as a special case of the viscoplastic material behaviour, if the viscosity η van-
ishes.

A numerical multi-scale modelling can be accurately used for finite strains. However,
in the presented work, the numerical homogenisation is applied to a small deformations
issue. Therefore, an explicit elasto-viscoplastic model, according to [49, 73], is given for
small strains.

The description of the material behaviour at small strains and in one dimension can
be motivated with rheological elements, as explained in [73] among others. A generaliza-
tion of the constitutive laws given by the rheological elements in three dimensions can
lead to the constitutive law for small deformations. In the scope of this work, we will use
the viscoplasticity model developed by [70, 73]. For the geometrically7 linear case, the
deformations are split in an additive way for small deformations

ε = εe + εp. (2.129)

The stress is defined as

σ = K tr(ε) I+ 2G (ε− εp)
D, (2.130)

where (,)D is the deviatoric part of the tensor (,) defined as

(,)D = (,)−
1

3
tr(,) I. (2.131)

K is the bulk modulus, defined as a function of the Young’s modulus E and the Poisson’s

ratio ν as K =
E

3(1− 2 ν)
and G is the shear modulus defined as G = µ =

E

2(1 + ν)
. The

von Mises yield function can be written as

F (σ,X) =
1

2
(σ −X)D : (σ −X)D −

1

3
k2, (2.132)

7It is to differentiate with the physically linear case. Geometric linearity supposes small deformations,
physical linearity is related to the material law: an elasto-plastic for small strains material is physically
non-linear and geometrically linear.
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with X the backstress tensor. Considering a small deformation model, it can be proved
that the intermediate configuration coincides with the reference configuration. Conse-
quently, the notations (̄.), which have been employed to denote the quantities referring
to the intermediate configuration, can be neglected. The lower-convected Oldroyd rate
becomes simply the material derivative.

For a negative yield function, F (ε, εp) < 0, the material is in the elastic state. For
an elasto-plastic material, if the yield function is equal to zero, the plastic domain is
reached. A yield function strictly superior to zero with F > 0 cannot exist for an elasto-
plastic material (this is guaranteed with the consistency condition). On the contrary for
an elasto-viscoplastic material, a positive value of the yield function is possible and defines
the viscoplastic part.

The plastic deformations are written as a function of the normal N

ε̇p = λN = λ
(σ −X)D

||(σ −X)D||
for F ≥ 0 and loading (2.133)

with

N =
(σ −X)D

||(σ −X)D||
. (2.134)

Concerning the hardening, an isotropic hardening law can be written for small deforma-
tions as a function of the plastic strain rate deformations

k̇ = k̇(ṡ), (2.135)

with k the radius of the yield surface in the principal stress space. The accumulated
plastic strain rate ṡ is defined as

ṡ =

(
2

3
ε̇p : ε̇p

)1/2

, (2.136)

cf. [73]. A kinematic hardening can also be considered as

Ẋ = c ε̇p − b ṡX = λ (cN− b
√

2/3X), (2.137)

with the backstress tensor X representing the center of the yield surface in the principal
stress space. In the framework of viscoplasticity with elastic range for small deformations,
we use the formulation introduced in [49, 70] and define the material function λ as

λ(σ,X) =
1

η

〈
F (σ,X)

σ2
0

〉m

. (2.138)

Numerical Aspects

In order to solve the system of equations for the viscoplasticity model, a time discretisation
is applied and the implicit Euler starting values are defined. For a given deformation ε, a
time discretisation of the evolution equation is applied with the plastic deformation Sεp of
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the last increment k. The starting value are the value computed during the last increment
(k − 1). The trial stress Tσ has to be defined, and it depends on the total deformation
and on the starting value of the plastic deformation

Tσ = K tr(ε) I+ 2G (ε− Sεp)
D (2.139)

with ,S defined as starting value of ,. The von Mises yield function is then computed as
a function of the trial stress

F (Tσ,S X) =
1

2
(Tσ −S X)D · (Tσ −S X)D −

1

3
k2. (2.140)

If the von Mises yield function is negative, the elastic domain is considered. However, if
the von Mises yield function is positive or equal to zero, the viscoplastic domain is reached
and both evolution equation and hardening have to be solved for the plastic deformation
with a Newton (or Pegasus) iteration. The main difference with an elasto-plastic model
leads in the resolution of the consistency condition for elasto-plasticity; on the contrary
for viscoplasticity, the material function λ is resolved with

λ(σ,X) =
1

η

〈
F (σ,X)

σ2
0

〉r

⇔ ζ = ∆tλ. (2.141)

Further, the parameter ζ is used instead of λ. The Eq. (2.141) can be solved with a
Newton iteration; however, for efficiency, a Pegasus method is chosen, cf. [49, 70]. The
Pegasus method is a modified Regula Falsi method, and it seems to be more efficient than
the classical Newton iteration in this case, cf. [70]. Its principle, developed by [44, 50],
can be found in the appendix 7.3.

The plastic deformation is then updated using the implicit Euler time discretisation

εp = Sεp +∆tλN = Sεp + ζN, (2.142)

as well as the backstress tensor

X = SX+∆tλ (cN− b
√

2/3X) ⇒ X = µk (
SX+ ζ cN). (2.143)

Lastly, the stress are written as

σ = K tr(ε) I+ 2G (ε− εp)
D, (2.144)

cf. [49, 70]. The physical meaning of this algorithm can be represented in Fig. 2.8, cf. [40].
The circle represents the yield surface. In the first iteration, represented by the first cross
along the blue curve, the material stays in the elastic domain. In the next iteration, the
trial stress is computed, and can be found outside the yield surface. It means that the
viscoplastic domain is reached. Then, the real stress state is computed and the new yield
surface is equally computed (represented by the dot lines).

Consistent Tangent Operator

The consistent tangent operator shows to have a dramatic importance for the FE method.
It is of course possible to try to overcome it with the help of a numerical tangent. However,
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σ1

σ2

σ3

Figure 2.8: Schematic representation of the plasticity algorithm

this method has the drawback to radically slow down the computations. For this reason,
the attempt is made to find an analytical tangent; this is relatively easy for linear elastic
materials, but presents more difficulties for plasticity or viscoelasticity, due to the depen-
dencies of the stress on the elastic and plastic deformations. In this work, we will use a
Multi-Level Newton Algorithm (MLNA), firstly proposed by [150] for electrical issues and
later on by [47, 48, 49, 71, 70] in mechanics for the resolution of viscoelastic, elasto-plastic
or viscoplastic problems. The principle of it is to split the viscoplastic problem in a global
and in a local level. The global level contains the global equilibrium equation, written for
a strong formulation

divσ + f = 0 (2.145)

where the stress σ is defined with the elasticity relation

σ = g(ε, εp), (2.146)

and εp is the plastic deformation, as defined in Eq. (2.133). A discretisation of the domain
is made and the displacement can be expressed with the shape function N

u =
n∑

j=1

Nj uj = Nj uj , (2.147)

as well as the virtual displacements

δu =
n∑

j=1

Nj δuj = Nj δuj . (2.148)

On the global level, the weak formulation of the global equilibrium condition is written
as

∫

V

grad δu : σ dV =

∫

V

δu · f dV = 0 ⇔ G = 0. (2.149)
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The local level comprises the evolution equation, containing the vector of the internal
variables q = (εp,k, ...) as

A q̇− l(u,q) = 0 (2.150)

The following system of non-linear equations has to be solved
{

G(u,q) = 0
l(u,q) = 0

(2.151)

and this will be done using a Newton iteration





∂G
∂u

∂G
∂q

∂l
∂u

∂l
∂q



 ·





du

dq



 = −





Ru

Rq



 , (2.152)

with Ru the residuum of the global level and Rq the residuum of the local level. In
the global level, the quantities are defined for each element, that means that there is
a coupling. Consequently, the matrix ∂G/∂u is a sparse matrix. In contrast, in the
local level, the quantities are related to the integration’s points, and there is no coupling
between the neighbouring elements for this quantity. As a consequence, the matrix ∂l/∂q
is a block diagonal matrix. Therefore, it is more efficient to solve the system using the
MLNA (Multi-Level Newton Algorithm) method, cf. [49, 70], as presented thereafter.

1. In the first step, the local residuum is considered, that means that the displacement
is du = 0 and the second line becomes

∂l

∂q
· dq = −Rq (2.153)

With the Eq. (2.153), the evolution of the internal variables q can be defined for a
given state of the displacement.

2. In a second step, Rq = 0 is considered. In this case, the Eq. (2.152) can be used to
link the variations of the internal variables dq and the global displacement du.

∂l

∂u
· du+

∂l

∂q
· dq = −Rq. (2.154)

Because the global level is considered, the local residuum vanishes Rq = 0 and it
leads to a relation between dq and du

dq =

(
∂l

∂q

)−1

·

(
−

∂l

∂u

)
· du. (2.155)

The plastic internal variable is then known as a function of the displacement as
q = q(u).
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3. In the third step, the global level is again considered, but the first line of the system
is solved and the consistent tangent is identified

∂G

∂u
· du+

∂G

∂q
· dq = −Ru, (2.156)

which can be modified with Eq. (2.155)
(
∂G

∂u
+

∂G

∂q
·
dq
du

)
· du = −Ru. (2.157)

Then, the analytical tangential stiffness can be identified as

K =
∂G

∂u
+

∂G

∂q
·
dq
du

(2.158)

cf. [49, 70]. In the scope of the before presented model, it can be proved that the
analytical tangent stiffness is written as

4
C =

∂g

∂ε
+

∂g

∂εp
·
dεp
dε

, (2.159)

with g defining the elasticity relation.

Further transformations for the considered small strain model leads to

4
C =

d
dε

(
K tr(ε) I+ 2G (ε− Sεp)

D − 2G ζN
)
, (2.160)

cf. [49, 70]. With the computation of the derivative of the norm as function of the total
deformation using N = Ξ/||Ξ||, the analytical tangent can be written as

4
C = 2G

(
K

2G
I⊗ I+ γ1(

4I−
1

3
I⊗ I)− γ2N⊗N+ Γ⊗N

)
(2.161)

with

γ1 = 1− ζ
2G

||Ξ||
;

γ2 =
2G

β
+ ζ

2G

||Ξ||

(

1 +
1

β

√
2

3

(
b µ2 SX

)
·N

)

;

Γ = ζ
2G

β ||Ξ||

√
2

3

(
b µ2 SX

)
,

β = −

√
2

3
b µ2 (sX ·N) +

(

2G+ µ c

[

1− ζ

√
2

3
b µ

])

+
1

√
2 σ2

0

(
ζ η
∆t

)1/m
+ 2

3 k
2

σ2
0 η

m∆t

(
ζ η

∆t

)1/m−1

(2.162)

cf. [70].
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e1

e3
e2

ū

Figure 2.9: Schematic representation of the tension test in three dimensions: one of
the faces with normal e1 is submitted to a tension and the other face is
blocked in the e1-direction with u1 = 0. One of the faces with normal e2 is
blocked in the e2-direction with u2 = 0 and one of the faces with normal e3
is blocked in the e3-direction with u3 = 0 (not represented in the picture)

The model can be illustrated by a tension test of a three-dimensional element, with
the boundary conditions drawn in Fig. 2.9. In a first instance, an elasto-plastic material
is considered; that means that the viscosity is very small. In this case, the influence of
the material parameters c and b is represented in Figs 2.10 and 2.11. In order to define
the influence of c, the parameter b is firstly set to zero, as well as the viscosity. If the
parameter c is equal to zero, the material has an ideal plastic material behaviour and
the tangent of the curve is equal to zero. For a growing parameter c, the slope of the
tangent increases and a larger stress is reached for the same deformation in the plastic
domain. An opposite phenomenon can be observed for the parameter b: for a larger b,
an ideal plastic behaviour is reached. When b is going to zero, the slope of the tangent
increases: it can be explained with the Eq. (2.137), due to the negative sign of b. In a
physical interpretation, the parameter c represents the production of dislocations and b
the obstacles for them.

The influence of the strain rate and of the viscosity parameter can be seen in Figs 2.12
and 2.13. For a high strain rate, the normal stress reaches a higher value; a similar effect
can be seen for a higher viscosity. For a larger viscosity, it can be shown that the plastic
plateau is not instantaneously reached but with a delay, due to the viscoplastic effects.
Indeed, for an ideal plastic material, as observed in the Figs 2.10 and 2.11 or for a viscosity
equal to 1 s, the plastic plateau is reached directly. For a vanishing viscosity (η = 1 s),
the elasto-plastic model can be considered as a specific case of viscoplasticity. In the
following, an elasto-plastic material with hardening is considered.
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Figure 2.10: Normal stress vs. deformation: influence of the parameter c in the normal
stress σ11, for an elasto-plastic material (with η = 1 s, b = 0 [-])

0
0

2 4 6 8 10

2500

2000

1500

1000

500

Deformation ε (%)

N
or

m
al

st
re

ss
(M

P
a) b = 0

b = 10
b = 20
b = 50
b = 100
b = 250
b = 500

Figure 2.11: Normal stress vs. deformation: influence of the parameter b in the normal
stress σ11, for an elasto-plastic material (with η = 1 s, c = 20000 MPa)
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Figure 2.12: Normal stress vs. deformation: influence of the strain rate in the normal
stress σ11
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Figure 2.13: Normal stress vs. deformation: influence of the viscosity in the normal
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Chapter 3

Macroscale: Plate Theory

For a numerical homogenisation for composite plates, a plate is defined as the macroscale
and a three-dimensional FE computation is used for the mesoscale. In this part, the plate
theory with seven degrees of freedom is explained: this theory is proposed for the further
comparison of the results. Nevertheless, the plate theory with five degrees of freedom
used for the numerical homogenisation can be considered as a particular case of the plate
theory with seven degrees of freedom. Firstly, a short historical introduction is presented,
followed by further comments concerning the choice of the plate theory. Then, the strong
formulation of the model equations is described, as well as some aspects of the weak
formulation. Lastly, we introduce a discussion about the convergence and the locking
effects. In the present work, a special attention is given to the resolution of the Poisson
locking, because this locking is of importance for an incompressible material behaviour,
which is the case for plastic incompressibility.

3.1 Short Historic Introduction

When did the history of plate theories actually begin? In fact, the history of the plate
theory cannot be totally different from the history of the beam theory and before this
from the classical mechanics; therefore, we decided to arbitrary start our historical re-
view with some elements related to the development of the beam theory, cf. [13, 178].
The background of the beam theory was given by the work of Galilei, followed by Jakob
Bernoulli (I) and Leonhard Euler. However, the beam theory reached an achievement
with Navier and Cauchy at the beginning of the 19th century.

At the end of the 18th century, the scientist and musician Chladni studied the acous-
tics of plates and their vibration modes. Later on, Jakob Bernoulli (II) tried to find a
mathematical way to describe Chladni’s experiments, but discrepancies arose. For this
reason, the french academy gave a price to whom who find a suitable theory to the exper-
iments; however the closing day had to be postponed twice, because no accurate theories
were found at that time. But finally, the french mathematician Sophie Germain won
the first price with her third work and her essay "Recherches sur la théorie des surfaces
élastiques" was published in an improved version in 1821. She gave the hypothesis that
the forces and work are proportional to the arithmetic average of the main curvature.
Based on that she developed the partial equations for a plate submitted to an oscilla-
tion. It was later improved by Poisson and Navier; but their work suffered shortage, too.
Finally, Kirchhoff’s work, despite some shortage (in the demonstration of the first hypoth-
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esis for example, cf. [178]), gave a certain improvement for the plate theory for thin plates.

Rayleigh (1877) and Love (1888) proposed improvements. For Naghdi, the method used
by Love and Kirchhoff could be called a "derivation from the continuum theory", cf. [132].
The thin plates theory (also called sometimes Love-Kirchhoff plate theory) is based on
the hypothesis that a cross section, straight and normal to the plate’s midplane before
deformations, stays straight and normal to the plate’s midplane after deformations. In
this theory, no consideration of the shear stress is encountered in case of a bending. This
theory shows a good agreement with experiments for thin plates, where the ratio thick-
ness/length is smaller than 1/20. This theory can be set as equivalent to the Bernoulli
beam. An extension to consider the behaviour of laminates was further made and it is
generally called the Classical Laminate Theory (CLT) in the English-speaking literature.

At the beginning of the 20th century, the Ukrainian-American scientist Timoshenko pro-
posed an improvement of the beam theory from Euler and Bernoulli with the insertion
of the transverse shear. The improvement of the classical beam theory from Bernoulli
enables the consideration of thicker beams. An equivalent theory for a thick plate can be
found in the theories proposed independently by Reissner and Mindlin in the middle of the
last century. In both theories, the cross section stays straight after deformations but can
suffer a rotation in reference to the plate’s midplane. The theories enable a consideration
of the shear stresses, and can be applied with success to thicker plates, where the ratio
thickness/length reaches 1/10. It was equally extended to incorporate the behaviour of
laminates and this theory is nowadays called the First order Shear Deformation Theory
(FSDT).

In his work in 1972, Naghdi proposed a reinforcement of the current theories with the con-
sideration of the thermodynamics [132], followed by the work of Zhilin in 1976 [199]. Later
on, Krätzig [105] proposed a shell theory with thickness change, although some authors
[13, 24] propose the hypothesis that the first plate theory, in which the constitutive law is
fully a three-dimensional one, and in which the out-of-plane displacement is of quadratic
order, would probably have been treated by Hildebrand, Reissner and Thomas in 1949,
cf. [81].

In the present work, two different plate theories are used: on the one hand, a plate
theory with five degrees of freedom following the Mindlin concept is regarded for the nu-
merical homogenisation of plates. On the other hand, a plate theory with seven degrees of
freedom [13] is considered for comparison. These methods are issued from the derivation
of the continuum theory. But why is a plate theory with five degrees of freedom used for
the numerical homogenisation and a theory with seven degrees of freedom for the com-
parison using a plate theory?

Other methods to draw the behaviour of plates or shells are also available, like the
Cosserat-type shell, as mentioned in the introduction. The Cosserat shells are mathemati-
cally more difficult because they result from a direct derivation from the three-dimensional
equations. The direct derivation of the shell theory from the three-dimensional equations
was proposed by the brother Cosserat in 1909, cf. [39], in the so-called "Cosserat surfaces"
and later on improved by Ericksen & Truesdell [51]. A review of the Cosserat-types the-
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ories for surfaces can be found in [9, 66, 133]. Although there are some criticisms about
the Cosserat plates, cf. [14], they show to be more accurate for thin structures, especially
if the thickness of the plate is approximately equal to the thickness of the microstructure,
cf. [10].

Another possibility consists in the degenerated concept proposed by Ahmad et al. in
1968, cf. [13]. Its principle consists of a discretisation of a three-dimensional continuum,
after that a two-dimensional shell problem is derivated from the three-dimensional model
by considering a linear ansatz for the shape function in thickness direction, cf. [14]. The
use of any degenerated shell theories, as mentioned before, is avoided because of two
principal reasons. Firstly, the discretisation of a three-dimensional continuum [20] is
computationally more expensive, and there is the necessity to consider several integration
points through the thickness; this point is especially to avoid when a computationally
expensive technique like the FE2 method, is regarded. Secondly, some drawbacks arise
for the boundary conditions and for finite strains in the "complicated update of the ro-
tations", cf. [78]. As a consequence, the use of a degenerate shell theory is avoided, as
well as a Cosserat-like shell because of its complexity. A shell theory "derivat[ed] from
the continuum theory" [132] is used, because of its simplicity and effectiveness.

But there are further differentiations in these theories: the polynomial order of the ap-
proximation of the horizontal displacement can be used to set the order of these theories.
The displacement in the three directions can be approximated with polynomial functions.
In the plate theory derivated from the continuum theory, the both displacements parallel
to the plate’s midplane are approximated with a polynomial function, which gives the
order of the plate theory considered (N), as represented in Fig. 3.2. The Love-Kirchhoff
plate theory is considered as the "zero" order theory, because the displacement of the cross
section (drawn in red) can be approximated by a constant function. Another possibility is
to approximate the horizontal displacements with linear functions, as it is the case in the
plate theory of Reissner or Mindlin, leading to the first order theory (the so-called First
order Shear Deformation Theory). The displacement in direction parallel to the midplane
can be approximated with a quadratic or cubic polynomial function, leading to a plate
theory of second or third order, respectively.

...

0 1 2 3
Reissner-Mindlin 2 order ...

u

u

N

x3

Love-Kirchhoff

Figure 3.1: Schematic representation of the different plate theory, adapted from
M. Bischoff, Theorie und Numerik einer dreidimensionalen Schalenfor-
mulierung, 1999, Ph.D.-thesis, Universität Stuttgart [13]
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However, a homogenisation based on a Kirchhoff plate was already proposed, cf. [29],
based on the plate theories proposed in [33]. In the scope of a numerical homogenisation,
a FE2 model for thin plates was studied by Coenen et al. (2008) [36]. Nevertheless, as
pointed by Lillbacka et al. (2006) in [116], a numerical homogenisation using a plane stress
assumption on the macroscale counts for drawbacks. Therefore, a higher order theory, as
for instance a plate theory with seven degrees of freedom, should be used. Meanwhile, in
the present work, a plate theory following the Mindlin concept is considered for the FE2

method and the drawback related to the plane stress assumption are overcome by using
a modified projection strategy.

In the Mindlin plate theory, the displacements of the cross section can be approximated
with a linear function, as represented in Fig. 3.1. In contrast to the plate theory following
the Kirchhoff concept, for the Mindlin concept, a cross section straight and normal to
the plate’s midplane before deformation stays straight after deformation but can afford a
rotation. An approximation with a higher order polynomial function is also possible, as
explained in [8, 152, 153, 154]. However, it can be shown that these theories are useful
in the case of sandwich plates, and only if the materials composing the different layers
present very different stiffnesses. Nevertheless, these theories do not bring a much better
result for hybrid laminates. Due to the effectiveness and computing time, a plate theory
with a linear displacement in the both directions parallel to the midplane is considered.
It is to mention that other plate theories are also available for the modelling of composite
plates, as described in the review by Carrera [24]. However, as mentioned in the intro-
duction -in Chapt. 1- to the knowledge of the author, most of them are limited to linear
material behaviour, as for instance the zig-zag theories or the layerwise theories. Due to
this drawback, these theories are not considered in this work. Consequently, a numerical
multi-scale modelling of the composite plates is performed.

3.2 Strong Formulation

In this section, a plate theory with seven degrees of freedom is developed, and the plate
theory with five degree of freedom can be seen as one of its particular cases. After
having described the basic assumption for the plate theory, the displacements and de-
formations are given. Then, the balance relations are considered, followed by the defini-
tion of the stress resultants. For this work, the mainly used literature are the works by
Bischoff (1999) [13], Altenbach et al. [5, 6] and Reddy [154].

3.2.1 Assumptions Towards the Plate Theory

A plate is basically defined as a solid with one dimension much smaller than the other
ones. A plate has a relatively limited thickness and the thickness coordinate is per def-
inition defined as the e3 axis, as represented in Fig. 3.2. The plate presents the length
l, the width L and the thickness h. The midplane is defined with x3 = 0. The contact
between the different layers or between the fibers or particles and the matrix is assumed
to be perfect, which can be a limitation because of the delamination.
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Figure 3.2: Basic definition of a plate, with l the length, L the width and h the thick-
ness

Most of the plate theories are limited to small deformations, but this does not represent
a too restrictive drawback, because in practice most of the composite plates cannot en-
counter a large deformation state. Moreover, the material behaviour is assumed to be
linear for most of the plate theories; some exceptions were made for viscoelastic material
behaviour [3] or for an elasto-plastic material law [161], but these extensions are not con-
cerning the plate theory following the Mindlin concept.

In a plate theory following the Mindlin concept, no thickness change is considered and
the deformation ε33 is assumed to be zero, cf. [6], and discrepancies towards the thickness
change can occur. In contrast, a plate theory with seven degrees of freedom enables a con-
sideration of the thickness change. In this case, two more degrees of freedom are added, in
order to obtain a quadratic order for the out-of-plane displacement, resulting in a linear
function for the deformation ε33. It is to mention that other works are also available,
with different treatment of the seventh degree of freedom. As developed by [21, 161, 165]
for the Enhanced Assumed Strain (EAS) method, it is also possible to consider linear
functions for the three displacements, and to add the seventh degree of freedom directly
in the out-of-plane normal deformation ε33.

3.2.2 Kinematics

The displacements parallel to the midplane follow a linear function and the displacement
through the plate’s thickness follows a quadratic function, cf. [13, 105, 162, 180, 181],

u(x1, x2, x3) = u0(x1, x2) + x3 ϕ1(x1, x2),

v(x1, x2, x3) = v0(x1, x2) + x3 ϕ2(x1, x2),

w(x1, x2, x3) = w0(x1, x2) + x3 θ1(x1, x2) + x2
3 θ2(x1, x2), (3.1)

where u0, v0 and w0 are the three translational degrees of freedom, defined at x3 = 0. ϕ1

and ϕ2 are the two rotations along the in-plane axis. θ1 and θ2 are the two extra degrees
of freedom, which give the plate theory the possibility to encounter a thickness change.
The seven degrees of freedom are only depending on the two in-plane coordinates; the
dependency in the thickness coordinate is written explicitly. As mentioned before, this
theory is also called the (1, 1, 2)-model, cf. [13], due to the polynomial order of the three
displacements u, v, w: linear for u and v, quadratic for w. In this work, Kienzler [96]
defines a consistent plate theory if the polynomial order of the displacement in thickness

47



Chapter 3: Macroscale: Plate Theory

direction (w) is smaller than the polynomial order of the displacement in the longitudinal
direction (u and v). This is not the case for the (1, 1, 2)-model. This fact could explain
the convergence problem encountered for the FE2 method based on a plate theory with
seven degrees of freedom. Consequently, the FE2 method employs a plate theory follow-
ing the Mindlin ansatz, which is consistent, cf. Kienzler [96], and the consideration of
the thickness change is performed with a modification of the projection. However, no
convergence problems were met for the FE plate with thickness change for the computed
examples. Because the plate theory with thickness change presents the advantage to con-
sider a three-dimensional constitutive law, it is used in the following for the comparison
using a plate theory.

The in-plane deformations are linear functions of the thickness coordinate x3 and can be
written as

ε11 =
∂u0

∂x1
+ x3

∂ϕ1

∂x1
,

ε22 =
∂v0
∂x2

+ x3
∂ϕ2

∂x2
. (3.2)

The in-plane shear deformation is given as

γ12 =
∂u0

∂x2
+

∂v0
∂x1

+ x3

(
∂ϕ1

∂x2
+

∂ϕ2

∂x1

)
. (3.3)

These fields are the same for the five degrees of freedom plate theory following the Mindlin
ansatz and for the present plate theory with thickness change. However, the deformation
in the thickness direction vanishes for the Mindlin plate; in the plate theory with thickness
change, it takes the value

ε33 = θ1 + 2 x3 θ2. (3.4)

The out-of-plane deformations are quadratic functions of the thickness coordinate and
can be written as

γ13 =
∂w0

∂x1
+ ϕ1 + x3

∂θ1
∂x1

+ x2
3

∂θ2
∂x1

,

γ23 =
∂w0

∂x2
+ ϕ2 + x3

∂θ1
∂x2

+ x2
3

∂θ2
∂x2

. (3.5)

On the contrary for the Mindlin plate, the out-of-plane shear deformations are constants
because the terms depending on the thickness coordinate vanish. A global representation
of the deformation can be written as

ε =




u0,1 u0,2 + v0,1 w0,1 + ϕ1

u0,2 + v0,1 v0,2 w0,2 + ϕ2

w0,1 + ϕ1 w0,2 + ϕ2 θ1



 + x3




ϕ1,1 ϕ1,2 + ϕ2,1 θ1,1

ϕ1,2 + ϕ2,1 ϕ2,2 θ1,2
θ1,1 θ1,2 2 θ2





+x2
3




0 0 θ2,1
0 0 θ2,2
θ2,1 θ2,2 0



 , (3.6)
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and (.),i is the partial derivative of (.) defined as
∂(.)

∂xi
. This can be sum up as

ε = ε0 + x3 κ+ x3Θ. (3.7)

It is to mention that the plate theory following the Mindlin ansatz can be seen as a special
case of the plate theory with thickness change, if the degrees of freedom θ1 and θ2 vanish.

The compatibility condition was previously strongly discussed: some authors states that
this is a necessary condition for the element formulation for the convergence, cf. [176].
Other authors [101] point that the compatibility condition is not necessary for the con-
vergence. The consistency condition

∂2γij
∂xi ∂xj

=
∂2εii
∂x2

j

+
∂2εjj
∂x2

i

, (3.8)

is verified for the considered plate theory with seven degrees of freedom, cf. [180], for
(i, j) = (1, 2), (1, 3), (2, 3).

3.2.3 Stress, Moment and Higher Order Resultants

In the framework of a plate theory with thickness change, no further transformation
of the constitutive law is needed. This point represents one of the advantages of this
theory in comparison with the theories following the Mindlin or the Kirchhoff concept.
The constitutive laws are three-dimensional ones, that means that the engineering stress
resultant N is a tensor of second order

N =




N11 N12 N13

N21 N22 N23

N31 N32 N33



 , (3.9)

as well as the moment resultants M. The conjugated term to the quadratic deformation
is called H and has the size of a vector

HT = [H1, H2]
T . (3.10)

H can be called the "bimoment", cf. [13], because it results from the curvature of the plate
or "hyperstress" following higher order theories. The confusion with the shear resultants
from the First order Shear Deformation Theory has to be avoided.

In the plate theory, the relation between the stresses and the engineering stress resul-
tants NM can be written as

NM = [Nij,Mij , Hα]
T =

∫ h/2

−h/2

[Pij, Pij x3, P3α x
2
3]

T dx3, (3.11)

with P the first Piola-Kirchhoff stress, i, j = 1, 2, 3 and α = 1, 2. The physical meaning
of the hyperstress can be read from Eq. (3.11) as the integration over the thickness of the
plate of the first Piola-Kirchhoff stress multiplied with the square value of the thickness
coordinate.
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In the following, the Voigt notation is employed, as explained in Sect. 2.3 and in Ap-
pendix 7.1. Because the deformation are symmetric, as observed in Eq. (3.6), the stress
resultants and the moment resultants are also symmetric. Consequently, the Voigt nota-
tion can be used, and in this case, the deformations are written in a vector form with six
items as

1ε =






u0,1

v0,2
θ1

u0,2 + v0,1
w0,1 + ϕ1

w0,2 + ϕ2






+ x3






ϕ1,1

ϕ2,2

2 θ2
ϕ1,2 + ϕ2,1

θ1,1
θ1,2






+ x3
3






0
0
0
0
θ2,1
θ2,2






, (3.12)

as well as the stress and moment resultants

1N = [N11, N22, N33, N12, N13, N23]
T ,

1M = [M11,M22,M33,M12,M13,M23]
T . (3.13)

It is to mention that the higher order stress resultants H are not transformed.

The constitutive equation can be defined as

NM = C :




1ε0
1κ
1Θ



 ⇔




1N
1M
1H



 =




C1 C2 C5

C9 C3 C6

C7 C8 C4



 :




1ε0
1κ
1Θ



 (3.14)

with Ci the general stiffness coefficients. C1,C2 and C3 are tensor of second order contain-
ing 6× 6 items; C4 is a tensor of second order containing 2× 2 items; C5,C6 are tensor of
second order containing 2×6 items and C7,C8 are tensor of second order containing 6×2
items. Some simplifications can be performed: in most of the cases the hyperstresses are
only depending on the quadratic deformations Θ and C5, C6, C7 and C8 are set to zero.
Similarly as for the "classical theories" [154], in case of symmetric laminates, the stiffness
coefficient C2 and C9 are set to zero. A constitutive law following the Voigt notation can
be explicitly written for an isotropic elastic material for C1 as

C
1 =






E

1− ν2
h

E ν

1− ν2
h

E ν

1− ν2
h 0 0 0

E ν

1− ν2
h

E

1− ν2
h

E ν

1− ν2
h 0 0 0

E ν

1− ν2
h

E ν

1− ν2
h

E

1− ν2
h 0 0 0

0 0 0 Gh 0 0
0 0 0 0 Gh 0
0 0 0 0 0 Gh






, (3.15)
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for the stress resultants,

C
3 =






E

1− ν2

h3

12

E ν

1− ν2

h3

12

E ν

1− ν2

h3

12
0 0 0

E ν

1− ν2

h3

12

E

1− ν2

h3

12

E ν

1− ν2

h3

12
0 0 0

E ν

1− ν2

h3

12

E ν

1− ν2

h3

12

E

1− ν2

h3

12
0 0 0

0 0 0 G
h3

12
0 0

0 0 0 0 G
h3

12
0

0 0 0 0 0 G
h3

12






, (3.16)

for the moment resultants and

C
4 =






G
h5

60
0

0 G
h5

60




 , (3.17)

for the hyperstress. These results are valid for a one layer material. For a composite plate
containing several layers, the reader is referred to the Appendix 7.4. In Appendix 7.4, the
constitutive law for a composite plate, according to the First order Shear Deformation
Theory, is also developed. A further advantage of the plate theory with seven degrees of
freedom -or of the numerical homogenisation- is that no correction factor is needed for
the shear forces.

3.2.4 Balance Equations

By applying the principle of virtual displacements, it can be proved [154] that the following
equations are obtained






N11,1 +N12,2

N12,1 +N22,2

N13,1 +N23,2 +N (w0) + q
M11,1 +M12,2 −N13

M12,1 +M22,2 −N23

−N33 +M13,1 +M23,2

−2M33 +H13,1 +H23,2






= 0,

in case of a static problem without external forces. The first five equations are similar
as for the plate theory following the Mindlin ansatz; the last two ones result from the
formulation of the thickness change.
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3.3 Weak Formulation

In this part, some details about the FE analysis of plates are explained. For a complete
description, it can be referred to Wriggers [194], for two- and three-dimensional problems
and for plate elements. Some literature specified to the formulation of a FE method for
plates can be found in [97, 179] for a Kirchhoff plate or in [98, 154] for the classical plate
theory and the First order Shear Deformation Theory.

After discretisation of the domain and creation of the mesh, the principle of virtual work
can be applied. It states that the virtual power of the stresses in a volume V is equal to
the virtual power of the forces acting on the boundary S of the volume

∫

V

δu : σ dV = δu0,1N11 + δu0,2N12

+ δv0,1 N12 + δv0,2N22

+ δw0,1N13 + δw0,2N23

+ δϕ1,1M11 + δϕ1,2M12 + δϕ1N13

+ δϕ2,1M12 + δϕ2,2M22 + δϕ2N23

+ δθ1 N33 + δθ1,1M13 + δθ1,2 M23

+ 2 δθ2M33 + δθ2,1H1 + δθ2,2 H2. (3.18)

N,M,H are the resultants of the stress distribution in the surface area. Assuming that
δθ1 = δθ2 = 0 leads to principle of virtual displacement for the plate theory following
the Mindlin concept within the Finite Element Method. In addition to the definition
of the weak form, a discretisation of the geometry in finite elements is needed, which
defines elements and nodes. The field quantities, such as deformations and stresses, are
approximated with ansatz functions, which are defined locally. The kinematic degrees of
freedom can be approximated with an interpolation function, like for example a Lagrange
function

u0(x1, x2) =
n∑

k=1

ψk(x1, x2) u
k
0, ϕ1(x1, x2) =

n∑

k=1

ψk(x1, x2)ϕ
k
1,

v0(x1, x2) =
n∑

k=1

ψk(x1, x2) v
k
0 , ϕ2(x1, x2) =

n∑

k=1

ψk(x1, x2)ϕ
k
2,

w0(x1, x2) =
n∑

k=1

ψk(x1, x2)w
k
0 , θ1(x1, x2) =

n∑

k=1

ψk(x1, x2) θ
k
1 ,

θ2(x1, x2) =
n∑

k=1

ψk(x1, x2) θ
k
2 , (3.19)

where n is the total number of nodes. The interpolations are chosen to be locally quadratic,
in order to avoid locking effects. The vector containing the seven degrees of freedom is
defined as

1u = 1u0 + x3
1u1 + x2

3 θ2 e3

=




u0

v0
w0



+ x3




ϕ1

ϕ2

θ1



+ x2
3 θ2 e3 (3.20)
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The displacements can be written in the form of vectors for the translational displacements
1u0 and the rotations 1u1 as

1u0 =
n∑

k=1

ψk
0(x1, x2) ·

1uk
0,

1u1 =
n∑

k=1

ψk
1(x1, x2) ·

1uk
1. (3.21)

The ψk
i are the matrices containing the shape functions. As for two or three-dimensional

problems, an isoparametric concept has to be followed; as developed by [5, 154, 194].
Finally, the generalised strains can be written as

1ε0 =
n∑

k=1

Dk
0 ·

1uk
0,

1κ =
n∑

k=1

Dk
1 ·

1uk
1,

1Θ =
n∑

k=1

Dk
2
1θk2 , (3.22)

with Dk
i are the matrices representation of the differential operator. It is to mention that,

considering the Voigt notation, the deformations are defined as vectors containing six
items. As a consequence, the matrices representation of the differential operators Dk

0 and
Dk

1 are matrices containing each 6 × 6 items and Dk
2 is a vector defining the differential

operator for the seventh degree of freedom as
[

∂

∂x1
,

∂

∂x2

]T

.

Using the principle of virtual work (3.18) with the generalized displacements (3.21) and
strains (3.22) leads to the following linear system of equations

K ·




u0

u1

u2



 = f , (3.23)

with f the vector of the volume forces and the surface forces. The symmetric stiffness
matrix K is defined as

K =

∫

B

DT · C ·D dv, (3.24)

for a two or three-dimensional problem. For the presented plate theory, the symmetric
stiffness matrix K is developed in appendix 7.5.
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3.4 Convergence and Locking

Unfortunately, many locking or hourglass stiffness effects occur for FE plates, cf. [13, 101,
122, 165]. There is not a single definition of locking [13], but different ways to define
the locking. Bischoff [13] defines three different ways to describe the locking effect: the
mathematical, the numerical and the mechanical point of view. The mathematical point
of view describes the effect of one parameter on the convergence properties of the prob-
lem. However, it does not include all locking effects, as for instance the shear locking
which does not exist according to this definition [101] and the "mathematical point of
view describes more a bad conditioning problem than the locking"1, cf. Braess [17]. The
numerical point of view was shown by Hughes [86] and describes the tendency of one
element to present a too stiff reaction with a parameter, which defines the ratio of the
number of degrees of freedom related to the constraints upon the number of constraints.
This parameter is then compared with the optimal constraint. The mechanical point of
view is defined with the appearance of parasitic stresses, which do not exist in the exact
solution. In the present work, the mechanical point of view is followed and the main types
of locking, which appears for the FE plate, are described, cf. [13, 101].

The shear locking happens for linear elements under bending conditions, where some
parasitic stresses occur, because the elements are too stiff. In our work, quadratic ele-
ments are used to avoid this effect. Furthermore, for FE plates, the transverse shear
locking can take place, also under bending conditions. For a pure bending problem,
there are parasitic shear stresses, which do not appear in a three-dimensional FE com-
putation. In this work, a practical solution is obtained by quadratic elements, since this
effect occurs for bilinear elements. Another solutions for the shear locking and the trans-
verse shear locking consist by using a reduced integration or the ANS (Assumed Natural
Strain) method, cf. [101].

For FE shells or for curved elements, some other locking effects can appear like the
membrane locking or the curvature thickness locking . The membrane locking oc-
curs for curved elements -but not for curved linear or bilinear elements- and for very thin
structures, where some parasitic membrane stresses are observed. The curvature thickness
locking happens for curved elements with thickness change, where some parasitic normal
stresses in thickness direction are observed, due to the bad approximation of the normal
deformation in thickness direction, cf. [165]. It can be solved with an ANS method or a
DSG (Discrete Shear Gap) method. Because these locking effects occur only for shell or
curved elements, they will not be treated in this work, but the reader is referred to the
dissertations by Bischoff [13], Koschnick [101] and Schlebusch [165].

In this work, special attention is paid to the Poisson or volume locking, cf. [13].
It is to mention that no volume locking occurs for a Poisson ratio equal to 0 and that
the volume locking is more important for a Poisson’s ratio tending to 0.5. Because it is
the case for an elasto-plastic material behaviour with plastic incompressibility, a special
attention is given to the solution of the Poisson locking in the present work. The Poisson
locking occurs for a plate theory with five or six degrees of freedom; however, it can be

1"Aus mathematischer Sicht würde man lieber von einem schlecht konditionnierten Problem sprechen
als von Locking", cf. Braess [17], translated by myself
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avoided for a plate theory with thickness change. In the present work, a displacement
field of quadratic order for the displacement in thickness direction is considered for the
comparison using the FE plate; nevertheless it is also possible to consider only a linear
displacement field and to use the EAS (Enhanced Assumed Strain) method, as mentioned
before.

There are mainly two types of solutions for the locking problems [13]: on the one hand,
the parts which are responsible for the locking are remote, as it is the case for the selective
integration, the ANS or the DSG methods. On the other hand, there is the possibility to
equilibrate the behaviour between stress and strain with the insertion of other parts, as
performed in the EAS method for instance. The principle of the ANS (Assumed Natural
Strain) method is not to compute the transverse shear directly as the derivative of the
displacements, because it leads to parasitic stresses in this case. Instead of that, the
discrete deformations are computed from the so-called sampling points and an interpo-
lation to the element is performed using specific ansatz functions. The sampling points
are located in the middle of the edge. For a complete description of the ANS method, it
can be referred to [13, 101, 165], among others. The Discrete Shear Gap (DSG) method,
also defined as the Discrete Strain Gap method [101], was firstly proposed by Bletzinger
et al. [15]. The principle is similar to the ANS method’s principle by the modification of
the distribution of the deformation. Considering the ANS method, the sampling points
have to be chosen for each type of element (form of the element and polynomial order of
the ansatz function), which is not the case for the DSG method. The deformations are
not computed directly using the interpolation of the displacement of the nodes, but the
shear and bending parts are firstly decomposed. The differences between the actual dis-
placements and the displacements related to a pure bending mode define the shear gaps,
which are interpolated and used to compute the shear strains, resulting in an element free
of locking, cf. [15, 13, 101].

The principle of the EAS (Enhanced Assumed Strain) method was firstly described by
Simo & Rifai [173]. Its principle is to enable a linear deformation in thickness direction
with the introduction of an extra degree of freedom, with the difference that the extra
degree of freedom is not globally solved, but in the level of the element. Consequently, it
is not considered in the global consistent tangent and the number of degrees of freedom is
not increased, cf. [13]. The EAS method can be solely used in order to avoid the Poisson
locking. In the present work, a similar principle as the EAS method is used in order to
restraint the Poisson locking. An extra degree of freedom is introduced in the mesoscale,
and is computed during a first iteration as the average value of the normal deformation
in thickness direction. It is then transferred in the macroscale and used for the projection
in the next iteration, which enables a consideration of the thickness change in the level of
the plate and of the three-dimensional RVE.

In order to verify the implemented FE plate model, some tests can be made, like for
instance the patch test, originally proposed by Bazeley et al. (1966), cf. [13]. Although
the patch test is "neither essential nor sufficient"2, cf. Bischoff [13], it will be adopted in
our context for triangle elements, because it gives an indicator for convergence (but not
for locking). The principle consists in the computation of a compression or a shear test

2"weder notwendig noch hinreichend", cf. Bischoff [13], translated by myself
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ū

ū

ū

ū

ū

ū

ūū

Figure 3.3: Boundary conditions for the patch test: compression test on the left, shear
test on the right

Figure 3.4: Result of the patch test for the compression (right: reference, left: patch
test)

Figure 3.5: Result of the patch test for the shear test (right: reference, left: patch
test)

on a square, where some nodes suffer a translation, as can be seen in Fig. 3.3.

56



Chapter 3: Macroscale: Plate Theory

The patch test is obviously validated in our context, because the stresses are homoge-
neous in the square, as can be seen in Fig. 3.4 for the compression test and in Fig. 3.5
for the shear test. In both cases, regular and slightly disturbed meshes are used for the
computations. Both meshes lead to exactly the same results.

In the second example, a Cook’s membrane is computed, cf. [165], as investigated by
many authors since 1990. This problem -as shown in Fig. 3.6- is traditionally computed
for a two-dimensional configuration in the plane stress state. However, a three-dimensional
problem with a thin thickness is set as reference, in order to avoid any error obtained with
the plane stress assumption. The resulting shear stress distribution is shown in Fig. 3.7.
In the presented example only one material layer is considered, to enable an easier com-
parison with the three-dimensional modelling. The Cook’s membrane enables to test the
membrane behaviour of a plate with respect to shear locking. On the left side, the dis-
placements are set to zero and on the right side, a vertical displacement is imposed, as
represented in Fig. 3.6.

e1

e2

e3 (0; 0)

(48; 44)

(48; 60)

(0; 44)

ū

Figure 3.6: Boundary conditions for the Cook’s membrane

The results obtained with the three-dimensional problem, computed by ABAQUS R©, are
represented in Fig. 3.7. They are considered as the reference. The elements are linear with
reduced integration (C3D8R), and the discretisation is made with 32 × 32× 1 elements;
because some authors [165] considered that a discretisation performed with at least 16×16
elements leads to accurate results. The results obtained by the plate theory following the
Mindlin ansatz and the plate theory with thickness change are represented in Fig. 3.8. In
order to obtain a discretisation, which can be accurately compared with the results given
by the three-dimensional results, a "black jack" discretisation is considered. It can be
observed that there are almost no differences between the stress computed for the plate
theory with five and with seven degrees of freedom, due to the reduced thickness change
in this test. In contrast, the difference in the shear stress is less than 1% between the
shear stress given by the plate theories and the three-dimensional solution. It can be
concluded that the considered plate theories gives accurate results for the Cook’s test.
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e1

e2

e3

Figure 3.7: Shear stress for the Cook’s membrane in a three-dimensional FE compu-
tation for ABAQUS R©

e1

e2

e3

Figure 3.8: Shear stress for the Cook’s membrane with for the plate theory (left: plate
theory following the Mindlin ansatz, right: plate theory with thickness
change)
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3.5 Conclusions

In this part, the plate theories used in this work are presented. On the one hand, a plate
theory following the Mindlin concept is employed in the framework of the FE2 method
for plates. This theory can be considered as a particular case of the plate theory with
seven degrees of freedom, when the last two degrees of freedom vanishes. The plate the-
ory with five degrees of freedom is consistent, cf. [96]. However, the constitutive laws
are two-dimensional and the thickness change is not considered. Because of its stability,
the plate theory following the Mindlin concept is further employed in the framework of
the numerical homogenisation; nevertheless, a modified projection enables to consider the
thickness change. On the other hand, the proposed FE2 method is compared to the plate
theory with seven degrees of freedom and with the three-dimensional solution, because
the plate theory with seven degrees of freedom enables a consideration of the thickness
change and of the three-dimensional constitutive material laws.

It is to mention that the presented work is restricted to composites plates; however,
the same method can be used to model the behaviour of shells. For a description of the
shell theories, it can be referred to [68, 140, 198], and further to the work of Matheas et
al. [122] and Coda & Paccola [34] for the FE implementation of a finite shell model with
thickness change.

In the next chapter, the theoretical context of the FE2 method for plates will be de-
scribed; the plate theory used for the macroscale computation is assumed to be the plate
theory without thickness change, that means with only five degrees of freedom, described
in this chapter as a particular case of the plate theory with thickness change.
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Numerical Homogenisation of Plates

In this part, the full description of the proposed numerical homogenisation method is
explained. The numerical homogenisation or so-called FE2 for plates consists in the sepa-
ration of the problem in two scales: the macroscale, where a homogeneous layer is consid-
ered, and the mesoscale, consisting of a three-dimensional FE computation discretizing
the layer organisation. The principle of the FE2 method is summarized in Fig. 4.1 and
consists of four steps, cf. [36, 65, 108].

Macroscale: Plate

Mesoscale: 3-D RVE

1. Plate kinematics

2. Projection of the deformations
on the boundary of the RVE

3. Solution of the BVP (Boundary Value Problem)

Equilibrium equation Constitutive equation

4. Meso-macro-transition

Figure 4.1: Schematic representation of the FE2 method

1. Firstly, an accurate plate kinematic has to be defined. In the macroscale, a first FE
computation of a plate is made, where the plate kinematics are considered. In the
present work, the plate theory following the Mindlin concept is regarded.

2. Then, from each integration point of the macroscale discretisation, the deformations
have to be projected in an accurate manner to the boundary of the RVE (Repre-
sentative Volume Element). This defines a corresponding mesoscale boundary value
problem with Dirichlet type conditions on the the boundaries. The so defined prob-
lems are solved by independent FE computations.
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3. In a third step, the boundary value problem on the mesoscale is solved within the
three-dimensional mesoscopic FE problem. As mentioned before, the RVE has to
be large enough to be representative of the heterogeneities of the mesostructure,
but not too large, in order to avoid extreme large computation time. Furthermore,
gradients of the macroscale solution have to be resolved.

4. Finally, the stress resultants are determined using a meso-macro transition. Due to
the high computational costs of the method, special attention is given towards the
definition of an analytical tangent of the coupled multiscale computation.

The principle of this method can be found in [32]. Considering a homogenisation method,
the principle of the scale separation has to be respected, as developed in [135]. In the
framework of a numerical homogenisation of composite plates, a macro-, meso- and mi-
croscale can be defined. The macroscale defines the whole composite plate, as represented
in Fig. 4.2 on the left, whereas the mesoscale takes into account the different layer organi-
sation, as can be seen in Fig. 4.2 in the middle. As a following, the mesoscale can be

a b c

10 mm 1 mm 50 µm

Figure 4.2: Representation of the three scales: a: picture of the whole composite struc-
ture (macroscale), b: picture of the layers organisation (mesoscale) and c:
optical microscopy picture of the fibers surrounded by the matrix (mi-
croscale)

considered as a thin part of the macroscale. Consequently, the mesoscale is not a plate
but a three-dimensional volume, because the typical length of the mesoscale is of the same
order of magnitude as its width. The microscale defines the microstructure, that means
for the considered composite plates the bounding between the different layers, or the
bounding of the fibers surrounded by the matrix, as shown in Fig. 4.2 on the right. The
composite plates represented in Fig. 4.2 a and 4.2 b are supplied by the DLR in Cologne
(Prof. Dr.-Ing. Marion Bartsch, Dr.-Ing. Joachim Hausmann, Karola Schulze), and the
structure represented in Fig. 4.2 c is given by the professorship lightweight structures and
polymer engineering (Univ.-Prof. Dr.-Ing. habil. Lothar Kroll, Sebastian Nendel).

In the scope of a homogenisation, the principle of the scale separation [135] can be ex-
pressed as

λmacro . λmeso, (4.1)
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that means that the characteristic length scale λmacro of the macroscale has to be much
bigger than the characteristic length scale λmeso of the mesoscale. In the case of a numerical
homogenisation of plates, the assumption (4.1) is only true in the two directions parallel to
the plate midsurface. It is namely not true for the direction normal to the plate’s midplane,
because the mesoscale can be considered as a thin part of the macroscale, which has for
thickness the thickness of the whole composite. For this reason, the homogenisation is
only applied in the two directions parallel to the midplane, and in the thickness direction
a full resolution of the RVE occurs.

4.1 Plate Kinematics

In this part, the plate kinematics used for the FE2 method are briefly described. A plate
theory following the Mindlin concept with five degrees of freedom is considered [5, 6, 154]
and the displacement can be written as

ū(x̄1, x̄2, x3) = ū0(x̄1, x̄2) + x3 ϕ̄1(x̄1, x̄2),

v̄(x̄1, x̄2, x3) = v̄0(x̄1, x̄2) + x3 ϕ̄2(x̄1, x̄2),

w̄(x̄1, x̄2, x3) = w̄0(x̄1, x̄2). (4.2)

ū, v̄, w̄ are the three displacement degrees of freedom and ϕ̄1, ϕ̄2 are the two rotations. The
coordinate in the macroscale are defined with bars, as (x̄1, x̄2); it is to mention that the
macroscopic thickness coordinate is equal to the mesoscopic thickness coordinate, with
x̄3 = x3. The two longitudinal coordinates are expressed with x̄1, x̄2 for the macroscale
and x1, x2 for the three-dimensional mesoscale. The macroscopic displacements are writ-
ten also with bars ,̄, for clarity. The mesoscopic displacements are written by small
letters without bars, e. g. ,. The reference and current configurations are defined for the
macroscale and for the mesoscale in Fig. 4.3.

X̄, x̄ are defined as the position of a point in the macroscale in the reference and current
configurations. The vector of displacement in the macroscale is defined as

ū = x̄− X̄ =




ū0 + x3 ϕ̄1

v̄0 + x3 ϕ̄2

w̄0



 . (4.3)

The relative coordinates in the RVE are defined respectively to the center of the RVE
in the reference and current configurations with X,x. In the mesoscale, the vector of
displacement is described as

u = x−X. (4.4)

The surface of the mesoscale is defined as A0 and its volume as V0 in the reference con-
figuration.
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O

e1

e2

e3

X̄ x̄

X x

ūMacroscale

Mesoscale

Current configurationReference configuration

t = t0 t > t0

A0

V0RVE

Figure 4.3: Reference and current configurations for the FE2 problem: from each inte-
gration points of the macroscale discretisation, the deformations are pro-
jected to the boundary of the RVE (Representative Volume Element) in
the mesoscale

The macroscopic deformations are defined using the Voigt notation as

1ε̄ =






ū0,1

v̄0,2
0

ū0,2 + v̄0,1
w̄0,1 + ϕ̄1

w̄0,2 + ϕ̄2






+ x3






ϕ̄1,1

ϕ̄2,2

0
ϕ̄1,2 + ϕ̄2,1

0
0






, (4.5)

with

1ε̄0 = [ū0,1, v̄0,2, 0, ū0,2 + v̄0,1]
T ; 1κ̄ = [ϕ̄1,1, ϕ̄2,2, 0, ϕ̄1,2 + ϕ̄2,1]

T ;
1γ̄ = [w̄0,1 + ϕ̄1, w̄0,2 + ϕ̄2]

T . (4.6)

Considering the plate theory following the Mindlin concept, the normal deformation in
thickness direction ε033 is considered as insignificant in comparison to the normal defor-
mations in longitudinal directions ε011 and ε022. The mesoscopic volume of the reference
and current configuration are defined as V0 and V, respectively. The mesoscopic surfaces
of the reference and current configuration are defined as A0 and A, respectively. For a
further description of the deformations and of the equilibrium equations, the reader is
referred to Chapt. 3.
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4.2 Projection

4.2.1 General aspects

In the presented work, it will be shown that the kind of projection has a critical influence
on the results. There are several kinds of projection rules: the simplest one is the so-
called Taylor or Voigt assumption, where a homogeneous deformation is projected to the
RVE, cf. [102]. Its opposite is the Sachs or Reuss assumption, where a constant stress is
projected to the mesoscale. However, the Taylor assumption leads to an overestimation
of the results, whereas the Sachs assumption drives to an underestimation of the results.
Furthermore, both Taylor and Sachs assumptions are inadequate for sandwich plates, due
to the heterogeneities of the deformations or resultants. For theses reasons, a projection
of the deformations is restricted to the boundaries of the RVE

u = Grad ū+ ũ, (4.7)

where u represents the total displacement of the mesoscale and ũ are the displacements
which come from the fluctuation field. The fluctuations are also called by some authors
uf or uS for subscale, cf. [110].

4.2.2 Taylor Development of the Macroscopic Field

The variation of the mesoscopic displacement can be written as

∆u = Grad ū ·∆X+∆ũ, (4.8)

with ∆X defined as the difference between the position of one point in the RVE and the
center of the RVE

∆X = X−X0, (4.9)

and X0 is the center of the RVE, as drawn in Fig. 4.4.

O
e1

e2

e3

X

X0

∆X

V0

Mesoscale

Reference configuration

RVE

A+A−

Figure 4.4: Definition of the mesoscopic RVE (Representative Volume Element) in the
reference configuration

With insertion of the macroscopic displacement, defined in Eq. (4.2), the Taylor expansion
of the macroscopic field becomes

Grad ū(x̄1, x̄2, x3) ·∆X =




ū,α∆Xα + x3 ϕ̄1,α∆Xα +∆ϕ̄1∆X3

v̄,α∆Xα + x3 ϕ̄2,α∆Xα +∆ϕ̄2∆X3

w̄,α ∆Xα



 . (4.10)
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The operator ,,α is defined as the partial derivative
∂ ,

∂Xα
of , with respect to Xα, α = 1, 2.

4.2.3 Fluctuations

Due to the scale separation, it has to be assumed that the split u = Grad ū+ ũ is unique,
cf. [110]. In order to impose this condition, it is set that the average of the total mesoscopic
field is equal to the average of the Taylor series

〈u〉 = 〈Grad ū〉, (4.11)

because the average of the fluctuation field is set to zero

〈ũ〉 = 0, (4.12)

cf. [110]. 〈,〉 is defined as the volume integral of , over the domain V0 of the RVE

〈,〉 =
1

|V0|

∫

V0

, dV. (4.13)

Periodic boundary conditions are chosen, i. e. that the part of the displacement coming
from the fluctuations from one side of RVE imposes the same fluctuation displacement
on the other side of the RVE and it results

x+ − x− = F̄ · (X+ −X−) = (I+Grad ū) · (X+ −X−). (4.14)

The index ,+ accounts for one side of the RVE and the index ,− for the opposite side.
The surfaces are defined as A = A+ ∪A−. The principle of the periodicity of the fluctu-
ation can be represented in Fig. 4.5, where the plain blue lines represent the mesoscopic
displacement coming from the macroscopic displacement and the dotted black lines are
the whole displacement. The difference between them, represented by the arrows, are the
fluctuations (which are equal from one side to the other). It is to mention that the dis-
placements are only applied to the surfaces of the RVE with a normal vector tangential to
the midplane. The top and bottom surfaces (defined with a normal vector perpendicular
to the midplane) are left free.

e1e2

e3

V0RVE

A+A−

Figure 4.5: Schematic representation of the displacement fluctuation field
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Firstly, the average of the fluctuations is per definition equal to zero with 〈ũ〉 = 0, in
order to guarantee an unique split, which leads to

〈ũ〉 =
1

|V0|

∫

V0

ũ dV,

〈ṽ〉 =
1

|V0|

∫

V0

ṽ dV,

〈w̃〉 =
1

|V0|

∫

V0

w̃ dV. (4.15)

Secondly, the average of the mesoscopic displacement coming from the Taylor series has
to be equal to the macroscopic field, as written in Eq. (4.11). With the introduction of
the Taylor development (Eq. 4.10), the volume average of Grad ū becomes

〈u〉 =
1

|V0|






∫

V0

ūα(x̄1, x̄2) dV eα +

∫

V0

ūα,β(x̄1, x̄2)∆Xβ dV
︸ ︷︷ ︸

=0

eα

+

∫

V0

x3 ϕ̄α(x̄1, x̄2) dV
︸ ︷︷ ︸

=0

eα +

∫

V0

ϕ̄α(x̄1, x̄2)∆X3 dV
︸ ︷︷ ︸

=0

e3

+

∫

V0

x3 ϕ̄α,β(x̄1, x̄2)∆Xβ dV
︸ ︷︷ ︸

=0

eα +

∫

V0

w̄(x̄1, x̄2) dV e3

+

∫

V0

w̄,β(x̄1, x̄2)∆Xα dV
︸ ︷︷ ︸

=0

e3




 ,

with the indexes α and β equal to 1, 2. Some terms are equal to zero, because the
macroscopic displacements and their derivatives are not depending on the mesoscopic
coordinates but on the macroscopic coordinates (x̄1, x̄2, x3). Furthermore, the integration
of ∆X and of the thickness coordinate x3 over the volume is equal to zero. It leads to

〈u〉 =
1

|V0|

[(∫

V0

dV
)

ūα(x̄1, x̄2) eα +

(∫

V0

dV
)

w̄(x̄1, x̄2) e3

]
,

Consequently, it is then proved that

〈u〉 = ū|X̄0
,

〈v〉 = v̄|X̄0
,

〈w〉 = w̄|X̄0
, (4.16)

and X̄0 is representing one point of the macroscale, which defines the center of the RVE.
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4.2.4 Deformation Modes

Due to the absence of scale separation in the thickness direction, the projections are only
applied to the in-plane faces with normals e1, e2, and the faces with normal e3 are left
free. This can be seen with the projection modes in Fig. 4.6 and 4.7: due to the absence
of projection on the faces of normal x3, the free surfaces are not suffering a straight de-
formation (as observed in Fig. 4.6). In Figs 4.6 and 4.7, the undeformed configurations
are represented with the red lines and the light turquoise colour, while the black lines and
the dark turquoise represent the deformed RVEs.

e1

e2

e3

ε̄11
ε̄12 ε̄13

ε̄21 ε̄22 ε̄23

ε̄31 ε̄32

Figure 4.6: Zero order deformation modes ε̄ of the RVE

Moreover, in the framework of the Mindlin kinematics and with this kind of projection,
no consideration of the thickness change is made

∆u = ∆ũ+




ū,1 ·∆X1 +X3 ϕ̄1,1 ·∆X1 + ū,2 ·∆X2 +X3 ϕ̄1,2 ·∆X2 + ϕ̄1 ·∆X3

v̄,1 ·∆X1 +X3 ϕ̄2,1 ·∆X1 + v̄,2 ·∆X2 +X3 ϕ̄2,2 ·∆X2 + ϕ̄2 ·∆X3

w̄,1 ·∆X1 + w̄,2 ·∆X2



 .

(4.17)

Consequently for a plate theory with five degrees of freedom, a classical projection, as
proposed by some authors, cf. [36, 65, 80], leads to an absence of thickness change for the
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e1

e2

e3

κ̄11 κ̄12

κ̄21 κ̄22

Figure 4.7: First order deformation modes κ̄ of the RVE

projections. To illustrate this, we consider the projections for an elastic isotropic mate-
rial submitted to a tension test. The deformations and rotations of a three-dimensional
element submitted to a tension test are defined as following

ε11 = 0.1; ε22 = −ν 0.1; ε33 = −ν 0.1; εij = 0 for i %= j ,

κij = 0. (4.18)

Using the projection expressed in Eq. (4.17), the displacements applied to the mesoscale,
in absence of fluctuations, can be written as

∆u =




∆u1

∆u2

∆u3



 =




0.1∆X1

−ν 0.1∆X2

0



 . (4.19)

As observed in Eq. (4.19), the information ε33 has not been transmitted from the macroscale
to the mesoscale. It is to mention that if considering a plate theory following the Mindlin
concept, the deformation ε33 vanishes anyway. In order to overcome this drawback, a first
solution could be to consider a plate theory with thickness change for the macroscale, like
for instance a plate theory with six or seven degrees of freedom, as proposed by [79, 108].
However, this solution is computationally more expensive, because of the two extra degrees
of freedom. The FE2 method based on the plate theory with seven degrees of freedom
presents also some convergence problems, which can be related to the fact that the plate
theory with seven degrees of freedom is not consistent, cf. [96]. Another solution is to
use the plate theory following the Mindlin concept for the macroscale, and to introduce
a new projection strategy.

Within the new projection strategy, the displacement is applied in a first iteration ac-
cording to Eq. (4.17), and an additional internal variable is considered describing the
thickness change. During the FE computation of the RVE, the average of the thickness
change 〈ε33〉 is computed, and this value is introduced in the projection for the next
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iteration following

Grad ū ·∆X =




ū,α∆Xα +X3 ϕ̄1,α∆Xα + ϕ̄1∆X3

v̄,α∆Xα +X3 ϕ̄2,α∆Xα + ϕ̄2∆X3

w̄,α∆Xα + 〈ε33〉∆X3



 .

(4.20)

This method can be regarded as similar as the EAS method for plates [13, 21, 165].
Indeed, an extra degree of freedom is applied locally, as proposed by the EAS method,
and allows the consideration of the thickness change. This enables a consideration of a
further deformation mode ε33, as represented in Fig. 4.8. In Fig. 4.8, the undeformed
configuration is drawn with the red lines, and the deformed RVE with the black lines and
the turquoise colour. The result of the first iteration is represented, which explains the
non-homogeneous deformation observed in Fig. 4.8. It is to mention that several iterations
occur until 〈P33〉 = 0 and a homogeneous deformation state is reached.

Figure 4.8: Extra deformation mode accounting for the thickness change ε33 of the
RVE

For the zero order deformation modes, the symmetric shear modes are obtained for ε̄ij+ε̄ji
and a rigid body rotation is obtained for the skew symmetric shear mode with ε̄ij − ε̄ji.
Similar results were observed for a numerical homogenisation for micromorphic media,
cf. [88]. For the sum of the deformations ε̄12 + ε̄21 for instance, the analytical calculation
of the displacement leads to

∆u =




∆u1

∆u2

∆u3



 =




ε̄12∆X2

ε̄21∆X1

0



 , (4.21)

if no fluctuations are considered. In case of a difference ε̄12 − ε̄21, the displacements are

∆u =




∆u1

∆u2

∆u3



 =




ε̄12∆X2

−ε̄21 ∆X1

0



 . (4.22)

Both analytical calculations of the deformation modes ε̄ij− ε̄ji and ε̄ij+ ε̄ji can be drawn,
as done in Fig. 4.9, where the plain black lines represent the undeformed configuration
and the blue lines the deformed configuration. The symmetric shear mode and the skew
symmetric deformation mode ε̄12 + ε̄21 and ε̄12 − ε̄21 are represented in Fig. 4.10, for the
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XiXi

XjXj

ε̄ij + ε̄ij ε̄ij − ε̄ij

Figure 4.9: Analytical computation of the deformation modes ε̄ij − ε̄ij and ε̄ij + ε̄ij of
the RVE

e1

e2

e3

ε̄12 + ε̄21 ε̄12 − ε̄21

Figure 4.10: Symmetric and skew symmetric zero order deformation modes ε̄12 + ε̄21
and ε̄12 − ε̄21 of the RVE

in-plane deformations. The red lines and the light turquoise colour define the undeformed
RVE and the blue lines with the dark turquoise define the deformed RVE.

For the first order deformation modes, the analytical calculation of the bending mode κ̄11

leads to the equation

∆u =




∆u1

∆u2

∆u3



 =




κ̄11 X3∆X1

0
0



 , (4.23)

with the representation in Fig. 4.11. It is to mention that the faces with normal e3 are
left free.

For the first order deformation mode, the sum or difference of the shear deformation modes
drive to a complex shear bending state, as represented in Fig. 4.12. The calculation of
the deformation mode κ12 + κ21 leads to

∆u =




∆u1

∆u2

∆u3



 =




κ̄12 X3∆X2

κ̄21 X3∆X1

0



 , (4.24)
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X1

X3

Figure 4.11: Analytical computation of the deformation modes κ11 of the RVE

e1

e2

e3

κ̄11 κ̄12 + κ̄21

κ̄12 − κ̄21 κ̄22

Figure 4.12: Symmetric and skew symmetric first order deformation mode of the RVE

and the difference κ̄12 − κ̄21 is

∆u =




∆u1

∆u2

∆u3



 =




κ̄12X3∆X2

−κ̄21 X3∆X1

0



 . (4.25)

For these deformation modes, the displacements are depending on both in-plane co-
ordinates and out-of-plane coordinate, which explains the complex modes obtained in
Fig. 4.12.

4.3 Boundary Value Problem of the Mesoscale

In the mesoscale, the balance equations and the constitutive equations are solved, cf. [36].
In the static case, the strong formulation of the balance equation can be written as

DivP = 0 (4.26)

It can be assumed that the boundary conditions are either of Neumann type or of Dirichlet
type with A0 = An

⋃
Ad and An

⋂
Ad = 0, where An is the Neumann boundary and Ad
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is the Dirichlet boundary. The constitutive equation on the mesoscale can be written for
the different materials as

P = F(F), (4.27)

where P is the mesoscopic first Piola-Kirchhoff stress tensor, cf. Coenen et al. [36]. An
important advantage of the FE2 method is that any material behaviour, even non-linear
ones, can be considered, cf. chapter 2.3.

4.4 Meso-Macro Transition

In the FE2 method for plates, two types of information are passed from the mesoscale
to the macroscale: firstly, the macroscopic stress resultants are computed from the meso-
scopic stresses with the help of an accurate averaging rule. Secondly, an analytical tangent
for the macroscale FE model has to be defined.

4.4.1 Hill-Mandel Condition

The Hill-Mandel condition is an energy condition which states that the macroscopic power
is equal to the volume average of the mesoscopic power. For a numerical homogenisation
of a three-dimensional material, the Hill-Mandel condition is given by

1

V0

∫

V0

P : Grad∆u dV = P̄ : Grad∆ū, (4.28)

cf. [56, 59, 88]. It has to be modified in order to consider the plate kinematics, cf. [35, 108]

1

A0

∫

V0

P : Grad∆u dV = N̄ : ∆ε̄0 + M̄ : ∆κ̄+ Q̄ : ∆γ̄, (4.29)

where A0 represents the undeformed midplane of the plate with normal e3. With the split
of the displacement according to Eq. (4.7), the left hand side of Eq. (4.29) becomes

∫

V0

P : Grad∆u dV =

∫

V0

P : Grad(Grad ū ·∆X) dV +

∫

V0

P : Grad∆ũ dV. (4.30)

Firstly, it has to be guaranteed that the fluctuations are not leading to a new term in the
balance equation, that means that the extension of the Hill-Mandel condition stays true
also when fluctuations are considered. To do so, the last term of Eq. (4.30) is modified
using the divergence theorem

∫

V0

P : Grad∆ũ dV =

∫

V0

Div(PT ·∆ũ) dV,

=

∫

A0

p ·∆ũ dA,

= 0, (4.31)

with the traction vector p defined as the product of the first Piola-Kirchhoff stress by
the outer unit vector n, i. e. p = P · n. It is to mention that the projections of the
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displacement are only applied to the surfaces of the RVE with a normal vector tangential
to the midplane. The Eq. (4.31) carries on either p = 0, or ∆ũ = 0, or ∆ũ is periodic
and p is antiperiodic -or vice versa. In this case, the anti-periodicity of the traction vector
is assumed.

Secondly, it has to be proved that the new projection type does not disregard the exten-
sion of the Hill-Mandel condition. In order to prove this, similarly as for the Eq. (4.31),
the use of the divergence theorem leads to

1

A0

∫

V0

P : Grad(Grad ū ·∆X) dV =
1

A0

∫

V0

Div(PT ·Grad ū ·∆X) dV

=
1

A0

∫

A0

p ·Grad ū ·∆X dA. (4.32)

With the insertion of the new projection strategy given by Eq. (4.20), the average of the
mesoscopic stress power results in

∫

A0

p ·Grad ū ·∆X dA =

∫

A0

p · ūα,β ∆Xβ eα dA+

∫

A0

p ·X3 ϕ̄α,β ∆Xβ eα dA

+

∫

A0

p · ϕ̄α∆X3 eα dA +

∫

A0

pT · w̄,α∆Xα e3 dA

+

∫

A0

p · 〈ε33〉∆X3 e3 dA. (4.33)

Because the macroscopic deformations are not depending on the mesoscopic coordinates,
the Eq. (4.33) leads to the relation between the mesoscopic stresses and the macroscopic
engineering stress resultants

N̄αβ =
1

A0

∫

h

(∫

A0

Pαβ dA
)

dx3,

M̄αβ =
1

A0

∫

h

(∫

A0

Pαβ X3 dA
)

dx3,

Q̄α =
1

A0

∫

h

(∫

A0

P3α dA
)

dx3, (4.34)

and the modified Hill-Mandel condition (4.29) is verified for 〈P33〉 ≈ 0 or 〈ε33〉 ≈ 0. It
is to mention that the mesoscopic stress P33 is converging to zero in our case, enabling a
thickness change and in the general case 〈ε33〉 %= 0.

4.4.2 Analytical Tangent: use of the MLNA

For both FE and FE2 method, the tangent has a critical influence on the computing time.
For the numerical homogenisation, most authors use a numerical tangent, which dramat-
ically slows down the computations. In the framework of the numerical homogenisation
for plates, a method to identify an analytical tangent is proposed: the basic idea is to
use a Multi-Level Newton Algorithm (MLNA). As mentioned before, in the first instance,
the MLNA was applied in order to define an accurate tangent for non-linear material
behaviour like elasto-plasticity or viscoplasticity, cf. [70]. The principle of the MLNA is
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to separate the problem into two levels: the macroscopic level, containing the equilib-
rium equation and having the displacements as variables and the local level, containing
the evolution equations and considering the internal variables. A full description of the
method in the scope of viscoplaticity was presented in Subsect. 2.3.3.

The MLNA method can also be applied for the FE2, as firstly proposed by Helfen &
Diebels, cf. [80]: in this case, it is not a question of a viscoplastic material behaviour with
two systems of variables but of a two scales problem. The principle is to consider the
macroscale as global level, containing the equilibrium equation of the plate

G =





N11,1 +N12,2

N12,1 +N22,2

Q1,1 +Q2,2 +N(w0) + q
M11,1 +M12,2 −Q1

M12,1 +M22,2 −Q2




= 0, (4.35)

and as the local level, the three-dimensional boundary value problem of the mesoscale
attached to each integration point of the macro level. A discretisation of both global
and local level has to be performed, i. e. both macroscopic FE plate and mesoscopic FE
three-dimensional volume have to be discretized. In the local level, the variables have
to be split in two types: the variables obtained by the projection of the displacements,
on the boundary of the RVE and the variables inside the RVE, which result from the
equilibrium equation, as represented in Fig. 4.13.

uΓ

uΩ

Figure 4.13: Schematic representation of the split of the variables for the local level

The local level contains the weak form of the boundary value problem for the RVE,
i. e. the equilibrium equation for the mesocale and the constitutive equations for the
different materials. It is sumed up as

l = 0. (4.36)

The displacements inside the element uΩ are defined with the equilibrium equation
∫

V0

P : Grad δuΩdV −
∫

A0

δuΩ · t dA = 0. (4.37)

The displacements on the boundaries of the RVE uΓ are described with the projection

∆uΓ = Grad ū ·∆X+ 〈ε33〉∆X3 +∆ũ, (4.38)
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which defines the coupling between the global and the local level. It is to mention that
the modified projection strategy can be considered similar to the EAS method, because
an extra degree of freedom is locally introduced, which enables the consideration of the
thickness change.

In order to find an equilibrium, both systems of equations have to be solved simultaneously
{

G = 0
l = 0

(4.39)

and the system is solved driving a Newton iteration, as explained in Subsect. 2.3.3





∂G

∂ū

∂G

∂u

∂l

∂ū

∂l

∂u





·






dū

du




 = −






Rū

Ru




 . (4.40)

Rū is the residuum of the global level and Ru the residuum of the local level. Because the
global level is defined for the different macroscopic elements, there is a coupling between
the different elements, and the matrix ∂G/∂ū is a sparse matrix. In contrast, each
mesoscopic RVE is defined in relation to one integration point, that means that there is
no coupling between the RVEs, and that the matrix ∂l/∂u is a block diagonal matrix.
Consequently, it is convenient to use the Multi-Level Newton Algorithm for the solution
of the system (4.40). The Multi-Level Newton Algorithm supposes the solution of the
system in Eq. (4.40) by a decomposition in three steps.

1. Firstly, the local level is considered and this means that the global displacements
are not varying with dū = 0. Considering the second line of the system (4.40), it
leads to

∂l

∂u
· du = −Ru. (4.41)

2. Secondly, the local displacement field is uploaded and the local level is examined
again. A consideration of the second line of the system in Eq. (4.40) is

∂l

∂ū
· dū+

∂l

∂u
· du = −Ru. (4.42)

If the equilibrium is found, the residuum vanishes Ru = 0 and the former equation
can be written as

du =

(
∂l

∂u

)−1

·

(
−

∂l

∂ū

)
· dū, (4.43)

leading to a direct relation between the global and local displacement increments,
or in other words between the macroscopic and mesoscopic displacement increments

du = du(dū). (4.44)
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3. In a last step, the global level is considered again, and the first line of Eq. (4.40)
can be written as

∂G

∂ū
· dū+

∂G

∂u
· du = −Rū, (4.45)

which can be solved with the introduction of the direct relation between the global
and local displacements (4.43) in

(
∂G

∂ū
+

∂G

∂u
·
du
dū

)
· dū = −Rū. (4.46)

In this case, the global equations are not directly depending on the global displace-
ments but only indirectly

∂G

∂ū
= 0. (4.47)

Taking the problem by the end, the boundary value problem is solved, defining a
direct relation between the mesoscopic stresses and the mesoscopic deformations
or displacements. Due to the projection strategy, there is also a direct relation
between the mesoscopic and macroscopic displacements. Then, the macroscopic
force and moment are obtained from the Hill-Mandel condition, leading to a direct
relation between the mesoscopic stresses and the macroscopic resultants by the
homogenisation. These relations can be sumed up as

∂N̄

∂ε̄
=

∂N̄

∂σ

∂σ

∂ε

∂ε

∂ε̄
, (4.48)

with the stress resultants written as N̄ = (N̄, M̄, Q̄). Eq. (4.48) means that the
global resultants depend on the local stresses, which depend on the local variables.
The local variables are obtained by the projection, in other words the local variables
depend on the global variables. Consequently, it cannot be drawn some direct
relations between the global resultants and the global variables and the partial
derivative of the global resultants with respect to the global variables vanishes

∂G

∂ū
= 0. (4.49)

Because of the dependencies expressed in Eqs (4.48) and (4.49), the Eq. (4.46) can
be simplified as

(
∂G

∂u
·
du
dū

)
· dū = −Rū, (4.50)

and the global stiffness matrix can be identified as

K =

(
∂G

∂u
·
du
dū

)
=

∂G

∂N̄
·
∂N̄
∂u

·
du
dū

. (4.51)

In the scope of the multiscale problem, the relation between the mascroscopic and
mesoscopic variables can be expressed as

ε̄ =
1

V0

∫

V0

ε dV, (4.52)
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which leads to the expression of the general stiffness coefficients C with

N̄ = C : ε̄ (4.53)

as

C =
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p
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. (4.54)

It is to mention that in the case of composite plates -sandwich plates or hybrid
laminates- with a symmetric layer stacking order, some of the stiffness coefficients
vanish and the equation can be reduced to

C =





∑
p

2C
p
ijkl h 0 0

0
∑

p
2C

p
ijkl h x

2
3 0

0 0
∑

p
2C

p
3j3l h




. (4.55)

In the next chapter, some simulation results are presented in order to test the proposed
method. In the presented work, the FE modelling of the macroscale is treated with a
non-commercial software, using a plate theory following the Mindlin concept, while the
FE computations of the mesoscale are achieved with ABAQUS R© using an UMAT SUB-
ROUTINE. The numerical results are compared with the plate theory with seven degrees
of freedom, implemented in a non-commercial code, and with the three dimensional FE
computations made with ABAQUS R©.
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Applications

In this chapter, the proposed FE2 method is tested in the framework of different ex-
amples, in order to define an estimation of the method. Whereas the FE computa-
tion of the macroscale is performed with a non-commercial code using a Pardiso solver,
cf. [95, 163, 164], the FE computations of the mesoscale are done with ABAQUS R© with
an UMAT SUBROUTINE. The numerical concurrent homogenisation uses a plate theory
with five degrees of freedom following the Mindlin concept for the macroscale, but with
a modified projection, which enables a further consideration of the thickness change. In
the following, the projection strategy, as defined in Eq. (4.17) is called the "classical"
projection, in order to differentiate it from the innovative projection strategy proposed in
this work and written in Eq. (4.20). A comparison of the two types of projections -the
"classical" one, used by many authors, cf. [36, 65, 80] and the new projection strategy
proposed in this work- is performed with a three-dimensional FE modelling computed
with ABAQUS R© and with a plate theory with seven degrees of freedom, implemented in
the non-commercial code.

In a first instance, only elastic materials are considered and a validation of the method is
proposed using the classical tension, shear and bending tests on a three-layers composite
plate. Because the discretisation and size of the RVE have an influence on the results for
some of the proposed tests; a study of these parameters is proposed in order to define
an optimal RVE for the computations. Then, the numerical multi-scale homogenisation
is also applied to a hybrid laminate containing ten layers showing linear elastic material
behaviour. After the validation of the method for linear material behaviour, a three-layers
composite, containing both linear and non-linear material behaviour, is tested under ten-
sion, shear and bending tests. Finally, the FE2 method is applied to some of the classical
problems for the plates, as the Cook’s membrane, a plate with a hole and a Pagano
problem.

5.1 Validation

In this part, the classical tests (tension, shear and bending) of a three-layers elastic com-
posite plate are computed. In the performed tests, isotropic elastic and transverse isotropic
elastic materials are considered, which may describe the material behaviour of the poly-
mer -or of the metal- and of the fiber reinforced polymer, respectively. For clarity, a
non-linear material behaviour is considered in Sect. 5.2.
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5.1.1 Uniaxial Tension Test

Firstly, a tension test is computed with the boundary conditions expressed in Fig. 5.1.
The plate has a dimension of 10× 10× 1 mm3, and the ratio of his thickness/length is of
1/10. In order to test the method, a sandwich plate consisting of three layers of thickness
0.25 mm, 0.5 mm and 0.25 mm, is computed. In this first example, the material behaviour
of the top panels and of the core material are linear elastic isotropic. The top panels are
supposed to be Aluminium material, whereas the core is a polymer. The Young’s modulus
and the Poisson’s ratio of the top panels are E = 70500 MPa and ν = 0.3; the material
constants of the core material are E = 55000 MPa and ν = 0.4.

e1

e2

e3

ū

Figure 5.1: Schematic representation of the tension test

The results of the tension test of the elastic isotropic materials are represented in Fig. 5.2.
On the left side of the Fig. 5.2, the normal force resultant is represented as a function
of the deformation. In order to enable a comparison between the normal force obtained
by both the FE2 method and the FE plate with the normal stress resulting from the
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Figure 5.2: Normal force for a tension test of a three-layers sandwich plate containing
isotropic elastic layers (relative error on the right)
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three-dimensional computation, the forces obtained by the three-dimensional problem are
computed as functions of the stresses using the Eq. (3.11) with

Pij h = Nij , (5.1)

where h is the thickness of the plate before deformation, Pij is here the first Piola-Kirchhoff
stress, and the product between the first Piola-Kirchhoff stress and the thickness before
deformation leads to the engineering stress resultant Nij . This is applied to the whole
chapter. On the right side in Fig. 5.2, the relative error is computed in percentage. A
three-dimensional model, which is considered as the reference, is computed, as well as a
plate theory with seven degrees of freedom and the FE2 method.

One can observe that the result obtained with a numerical homogenisation using the
Mindlin plate in combination with the "classical" projection (without thickness change),
as proposed by many authors [36, 65, 80], leads to an error of 7%, compared with the three-
dimensional result. This phenomenon can be explained by the neglect of the thickness
change which induces the Poisson locking. On the contrary, a numerical homogenisation
containing the new projection strategy as proposed in this work, solves the Poisson lock-
ing and the error decreases to 0.03% compared with the three-dimensional solution. The
tension test can also be computed using a plate theory with seven degrees of freedom and
it leads to 0.13% error. For the plate theory, the layers stacking order is taken into ac-
count as explained in Appendix 7.4. The average thickness change is of 3.4% for the FE2

using the new projection strategy and of 1.7% for the FE2 method without consideration
of the thickness change, in this example, leading to the mentioned discrepancies. Both
plate theory and FE2 using the new projection strategy offer excellent results for this test.

Then the influence of the discretisation of the macroscale and of the mesoscale are consi-
dered, as represented in Fig. 5.3. Two different macro discretisations containing two and
eight elements1 for the macroscale and two different meso discretisations with 43 and 83

elements, are considered. The macro elements are triangle plate elements with a quadratic
ansatz, while the three-dimensional elements are quadratic bricks elements (C3D20). It
is to mention that the macro discretisation shows to have no influence in this example,
because exactly the same results are obtained for a mesh on the macroscale containing
two or eight elements, and for a fixed discretisation on the mesocale. In contrast, the meso
discretisation has an influence, although this influence is small in this example (the error
is decreasing from 0.03% to 0.008%), because the new projection strategy reduces the edge
effects. The RVE for the different meso discretisations are represented in Fig. 5.4: on the
left side, the meso discretisation with 43 elements is represented, and on the right side,
the RVE contains 83 elements. It is to mention that in this case, there is no difference in
the stress between the RVE obtained for the different macro discretisation. Consequently,
a macro discretisation of two elements and a meso discretisation of 43 elements are used
for the following examples of tension, shear and biaxial tension tests.

1el. is the abbreviation of elements in Fig. 5.3
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Figure 5.3: Influence of the macro and meso discretisations on the normal force for
a tension test of a three-layers sandwich plate containing isotropic elastic
layers

e1

e2

e3

Figure 5.4: Normal stress in the RVE (Representative Volume Element) for the differ-
ent meso discretisation for an uniaxial tension test

In a second numerical experiment, a sandwich plate containing an anisotropic core and
elastic top panels, is submitted to a tension test. The top panels are elastic and have
the Young’s modulus E = 70500 MPa and the Poisson’s ratio 0.3; the core consists of an
elastic transverse isotropic material with the properties expressed in the Table 5.1.

In this example, the fibers are aligned with the tension direction. In the presented work,
the hybrid laminate contains only layers with the fiber orientation of 0◦ and 90◦. There-
fore, only layers with these fiber directions are studied in this work.
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E1 = 138 GPa E2 = 10.2 GPa G23 = 5.7 GPa ν12 = 0.3 ν23 = 0.275

Table 5.1: Material constants for the transverse isotropic material

The normal stress resultants are represented as a function of the deformation on the left
side in Fig. 5.5; on the right side, the relative error is given in percentage.
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Figure 5.5: Normal force for a tension test of a three-layers sandwich plate contain-
ing isotropic and transverse isotropic (fiber orientation 0◦) elastic layers
(relative error on the right)

For the "classical" projection, the error reduces and is of 1.5%. For the FE2 using the
proposed projection strategy and the plate theory with thickness change, the errors are
reduced and do not exceed 0.02%. In this case, we can assume that the fibers prevent a
thickness change, tending to a better result, due to the reduction of the Poisson locking.
The normal deformation in thickness direction reaches the average value of 3% for the
FE2 using the new projection strategy and is less than 1% for the FE2 using the classical
projection method.

The representation of the RVE for the two numerical homogenisations enables an under-
standing of the before mentioned results. In Figs 5.6 and 5.7 the RVE is represented for
the proposed projection strategy on the left and for the "classical" projection without
thickness change on the right. The grey cube represents the RVE before deformations;
the stress distribution and the actual geometry are given in colours.
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e1

e2

e3

Figure 5.6: Normal stress in the RVE for the new projection on the left and the "clas-
sical" projection on the right, for an uniaxial tension test

e1

e3

e2

Figure 5.7: Normal stress in the RVE for the new projection on the left and the "clas-
sical" projection on the right, for an uniaxial tension test

In the framework of a numerical homogenisation of plates, the displacements are only pro-
jected in the surfaces of the RVE with a normal vector tangential to the midplane. Due to
the free surfaces, it is to mention that the converged results are not obtained in one iter-
ation but in more iterations, leading to one of the drawback on the method. Incidentally,
even if considering a linear material behaviour submitted to linear deformations, some
non-linearities are introduced to the linear problem, disturbing the convergence, i. e. the
thickness change is obtained within the iterations of the MLNA. However, the method
is stable enough to compute complicated issues like for instance a Cook’s membrane or
a plate with a hole, as seen further in this chapter. About the "classical" projection, a
representation of the RVE shows that there is no consideration of the thickness change,
as represented on the right side in Fig. 5.7 for a (e1 − e3) plane.

On the opposite, the new projection strategy enables a thickness change, as observed in
Figs 5.7 and 5.6 on the left side. The non-linear deformation state tends to disappear, as
seen on the left side of Fig. 5.6, driving to the before mentioned better results.
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Figure 5.8: Normal force for a tension test of a three-layers sandwich plate contain-
ing isotropic and transverse isotropic (fiber orientation 90◦) elastic layers
(relative error on the right)

The hybrid laminate which has to be studied presents layers with the fiber orientation of
only 0◦ and 90◦. Consequently, a tension test of a three-layers plate containing a trans-
verse isotropic core with these two fiber orientations is studied. The boundary conditions,
the geometry and material properties are the same as for the precedent composite plate,
only the fiber orientation of the core is changing and is of 90◦ -that means that the fibers
are normal to the tension direction. The normal force is represented as a function of the
normal strain on the left side in Fig. 5.8. The error are represented on the right side in
Fig. 5.8.

A comparison of the results of the tension test of the sandwich structure with a transverse
isotropic core with the two fiber orientations of 0◦ and 90◦ can be performed. In the case
of the fiber orientation of 0◦, the normal force reaches N11 = 10425 MPa.mm. If the
fiber orientation is of 90◦, i. e. that the fibers are normal to the tension direction, the
value of the normal force is of N11 = 4227 MPa.mm, because the Young’s modulus is
much smaller in the direction normal to the fiber orientation. As previously, the errors
are larger if the projection does not include any thickness change, as it is the case for the
classical projection. The error given by the plate theory with seven degrees of freedom
and by the FE2 method following the new projection strategy shows a reduced error of
around 1%, because both enables the consideration of the thickness change.
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5.1.2 Shear Test

In a second part, a shear test is computed for the same three-layers plates as before,
i. e. with the ratio thickness/length equal to 1/10. The boundary conditions are repre-
sented in Fig. 5.9.

e1

e2

e3

ū

Figure 5.9: Schematic representation of the shear test

In a first numerical experiment, the three-layers composite is composed of elastic isotropic
materials, with the material constants E = 70500 MPa, ν = 0.3 for the top panels and
E = 55000 MPa, ν = 0.4 for the core material. We assume that a similar convergence as
obtained for the tension test regarding the meso and macro discretisation can be observed
for the shear test. For a three-layers sandwich composite containing only isotropic elas-
tic layers, the results for the different methods -the FE2 method using one or the other
of the projection methods, the FE computation of the plate theory with seven degrees
of freedom and the three-dimensional FE computation with ABAQUS R©- give the same
results. For clarity, only the result from one of the projection strategy is represented.
Fig. 5.10 gives the shear force as a function of the shear deformation. Because a shear
test is isochoric, there is no influence of the Poisson locking in this test. Therefore, the
choice of the projection -the "classical" projection strategy or the projection proposed in
this work- has no influence on the results for the shear test.

For a shear test of a sandwich plate made up of a transverse isotropic core and of elastic
top panels, the results are represented in Fig. 5.11. In this example, the top panels have an
elastic isotropic material behaviour with a Young’s modulus of 70500 MPa and a Poisson’s
ratio of 0.3. The material constants of the transverse isotropic core are given in Table
5.1, and the fiber orientation is 0◦. Similarly as for the shear test of the plate made up of
elastic isotropic materials, very good results are observed for the different methods, due
to the fact that the shear test is free of Poisson locking.
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Figure 5.10: Shear force vs. deformation for a shear test of a three-layers sandwich
plate containing isotropic elastic layers
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Figure 5.11: Shear force vs. deformation for a shear test of a three-layers sandwich
plate containing isotropic and transverse isotropic (fiber orientation 0◦)
elastic layers
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5.1.3 Equi-biaxial Tension Test

In the following, a biaxial tension test is computed and represented in Fig. 5.12. In order
to reduce the computing time, only a quarter of the problem is computed.

e1

e2

e3

ū

ū

Figure 5.12: Schematic representation of the biaxial tension test

In a first numerical experiment, a biaxial tension test of a three-layers plate composed
of elastic isotropic materials, is performed. The sandwich plate contains elastic isotropic
materials, with the material constants E = 70500 MPa, ν = 0.3 for the top panels and
E = 55000 MPa, ν = 0.4 for the core material. On this case, it is assumed that a similar
convergence -regarding the macro and the meso discretisation- is obtained as for the uni-
axial tension test. The normal force is represented as a function of the normal deformation
in Fig. 5.13. Due to the neglect of the thickness change in the "classical" projection strat-
egy, the error reaches 30% in comparison of the three-dimensional solution. In contrast,
the projection strategy proposed in this work leads to an accurate result with an error
of 2.5%. The plate theory with seven degrees of freedom gives an error of approximately
3%. This can be explained by the larger thickness change encounter in this problem: the
average of the normal deformation in thickness direction reaches 10% for the FE2 method
with the new projection strategy enabling the consideration of the thickness change and
6% for the FE2 method with the classical projection strategy. For the FE plate, only
one integration point through the thickness is considered and the layers stacking order is
taken into account as explained in Appendix 7.4, as a function of the relative thickness of
the layers and of theirs material constants. It is to mention that a FE plate with several
integration points may give a better result in this case.

A representation of the RVE enables to draw an explanation on the results observed with
the different projections. As shown in Fig. 5.14 on the right side, the "classical" projection
does not include any thickness change, but the surfaces normal to the thickness direction
are let free. Because the materials are not infinitely compressible, the free surface en-
counters non-linear deformations in order to reduce the volume expansion. Consequently,
the results are quite inaccurate for this method. On the contrary, the results given by
the numerical multi-scale method with the new projection strategy proposed in this work
(represented on the left side in Fig. 5.14) leads to better results, because the projection
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Figure 5.13: Normal force N11 = N22 for a biaxial tension test of a three-layers sand-
wich plate containing isotropic elastic layers (relative error on the right)
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Figure 5.14: Von Mises stress in the RVE for the new projection on the left and the
"classical" projection on the right, for a biaxial tension test

enables a thickness change.

Then, a biaxial tension test of a three-layers plate containing isotropic and transverse
isotropic layers, is computed. In this example, the top panels have an elastic isotropic
material behaviour with a Young’s modulus of 55000 MPa and a Poisson’s ratio of 0.4.
The material behaviour of the core is given in the Table 5.1, and the fiber orientation is
0◦. The results are drawn in Fig. 5.15 for the normal force in fiber direction N11 and in
Fig. 5.16 for the normal force N22 normal to the fiber direction, represented as function
of the deformation ε11 or ε22, respectively.

The engineering stress resultant N11 in direction parallel to the fiber orientation leads
to quite good results. Less than 1% error are obtained for the plate theory with seven
degrees of freedom and with the FE2 using the new projection strategy, compared with
the three-dimensional solution. Even the "classical" projection strategy, which does not
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Figure 5.15: Normal force N11 for a biaxial tension test of a three-layers sandwich
plate containing isotropic and transverse isotropic (fiber orientation 0◦)
elastic layers (relative error on the right)
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Figure 5.16: Normal force N22 for a biaxial tension test of a three-layers sandwich
plate containing isotropic and transverse isotropic (fiber orientation 0◦)
elastic layers (relative error on the right)
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e1

e2

e3

Figure 5.17: Von Mises stress in the RVE for the new projection on the left and the
"classical" projection on the right, for a biaxial tension test

consider the thickness change, leads to 2% error. However, the normal force N22 in direc-
tion normal to the fiber orientation gives another tendency. As represented in Fig. 5.16,
the error is larger for the normal force N22, leading to 15% error for the "classical" pro-
jection and to 6% error for the plate theory. In contrast, the error obtained with the FE2

method and with the projection strategy proposed in this work is less than 2%. As a
consequence, it can be concluded that the FE plate, although taking the thickness change
into account, can lead to incorrect results, if the plate is thick and the thickness change is
large, or if only one integration point through the thickness is considered. In this case, the
proposed solution, that means the numerical homogenisation, using a projection including
the thickness change, shows to be better suited.

A consideration of the RVE leads to some explanations of the before mentioned results,
as seen in Fig. 5.17. On the right hand side, the results of the "classical" projection are
drawn. It can be seen that a non-linear deformation state occurs, as can be seen for the
surfaces with normal e3. On the contrary for the new projection strategy, represented
on the left side, a thickness change is introduced. Due to the presence of a transverse
isotropic material law, which shows a high anisotropy and smaller Poisson’s ratios, the
Poisson locking may be somehow reduced, leading to better results as for isotropic elastic
materials.

Under consideration of the presented examples, it can be observed that the Poisson lock-
ing is an important issue for the modelling of thick composite plates, therefore special
attention is paid towards its resolution in the present work. However, the uniaxial and
the biaxial tension tests, as well as the shear test, are membrane problems. What is
about the out-of-plane deformation state, like it is the case for a bending problem? This
question will be answered in the next part.
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5.1.4 Bending Test

A bending problem of a three-layers sandwich plate is computed as represented in Fig. 5.18.
A vertical displacement is applied to the composite plate on the one side, whereas the
other side is clamped. The composite plate has the dimensions 10 × 1 × 1 mm3, and
contains three elastic isotropic layers with the thickness 0.25 mm, 0.5 mm and 0.25 mm.
The top panels have a Young’s modulus of E = 70500 MPa and a Poisson’s ratio of 0.3,
while the core has the Young’s modulus of E = 55000 MPa and the Poisson’s ratio of 0.4.

e1

e2
e3 ū/f

Figure 5.18: Schematic representation of the bending test

The influence of the discretisation is then considered in case of bending. In this part,
three major influences are studied: firstly, the macro discretisation is studied. Secondly,
the influence of the meso discretisation of the RVE is considered. Finally, the size of the
RVE in the e1 direction is changed.

Influence of the Macro Discretisation

A bending test of the three-layers composite containing only elastic isotropic layers is
performed. The macro discretisation is varying from 20 elements to 320 elements. The
moment distribution is represented in Fig. 5.19, where the results given by the plate the-
ory are drawn on the right side (d,e,f) and the results of the FE2 method on the left side
(a,b,c). It is to mention that 43 elements are considered for the mesoscale. Firstly, only
the influence of the macro discretisation is considered, while the influence of the meso
discretisation is studied thereafter. For clarity, the moment is represented as a function
of the coordinate in the e1-direction in Fig. 5.20. In Fig. 5.20, the moment is represented
for the three different macro discretisations containing 20, 70 and 320 elements, for the
two methods, i. e. for the plate theory and the FE2 method. It can be observed that the
differences between the different macro discretisation are small.

The shear force distribution is represented as a function of the coordinate in e1-direction
in Fig. 5.21, for a macro discretisation from 20 to 320 elements. Both results obtained
by the plate theory and the FE2 method are represented in Fig. 5.21. It can be observed
that, in this case, the error between the value given by the plate theory for the finest mesh
and the results given by the FE2 method for the mesh with 20 elements is acceptable and
shows a precision of approximately 4%. However, the FE2 method is computationally
very expensive, and for these reasons a macro discretisation of 20 elements is used in the
next examples.
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a

b

c

d

e

f

Figure 5.19: Moment distribution for the bending test of a three-layers sandwich plate
containing isotropic elastic layers for the different macro discretisation;
a,b,c: result of the FE2 method; d,e,f: FE plate
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Figure 5.20: Influence of the macro discretisation on the moment distribution for the
bending test of a three-layers sandwich plate containing isotropic elastic
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Figure 5.21: Influence of the macro discretisation on the shear force distribution for the
bending test of a three-layers sandwich plate containing isotropic elastic
layers

Influence of the Meso Discretisation

After the definition of the importance of the macro discretisation, the influence of the
meso discretisation is studied. The same numerical experiment is considered, i. e. a ver-
tical displacement is applied in one extremity of the plate, while the other extremity is
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Figure 5.22: Moment distribution for the bending test of a three-layers sandwich plate
containing isotropic elastic layers

clamped. The moment distribution is drawn in Fig. 5.22, for the different meso discreti-
sations. Firstly, it can be observed that there is only a reduced difference between the
results of the plate theories with five or seven degrees of freedom. Because the extra de-
grees of freedom describe a thickness change, the both plate theories give similar results
for a bending test. Similar observations were made in the Ph.D. thesis by Bischoff [13].
Then, the RVE’s discretisation is changed and the RVE contains 43, 83 and 123 elements.
One could observe that for a finer discretisation, the accuracy of the results is better (from
4.8% to almost 3%). Nevertheless, for a finer RVE’s discretisation, the computations slow
down dramatically. However, it is to mention that a parallelisation could avoid this draw-
back.

A representation of the shear force resultant as a function of the horizontal position is
then drawn in Fig. 5.23. It is to mention that similar results are also obtained for the
shear force for the plate theory with five or with seven degrees of freedom, due to the
absence of Poisson locking for this test. As a consequence, similar results are obtained for
the FE2 based on a plate theory with five or seven degrees of freedom. A relative error of
approximately 5.3% to less than 4% is obtained for the shear force resultant, depending on
the discretisation of the RVE. It is to mention that the projection including the thickness
change leads to the same results as the so-called "classical" projection, without thickness
change, due to the absence of thickness change in the bending test. The same results are
obtained also for a numerical homogenisation based on a plate theory with seven degrees
of freedom, as proposed in [79, 108]; however, the convergence is much quicker if using a
plate theory with five degrees of freedom. It can be related to the work of Kienzler [96],
where a consistent plate theory is defined if the plate formulation presents a polynomial
order of the displacement in thickness direction smaller than the polynomial order of the
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Figure 5.23: Shear force distribution for the bending test of a three-layers sandwich
plate containing isotropic elastic layers

displacement in longitudinal direction.2 A plate theory with seven degrees of freedom,
that means with a polynomial order of the displacement in thickness direction larger than
the one in longitudinal direction, shows to encounter some convergence problem in the
case of a numerical homogenisation. It is to mention that no convergence problem were
observed by the use of the FE plate with thickness change alone in the context of this
work. Moreover, this plate theory has the advantage to consider the thickness change and
presents a three-dimensional constitutive law. As a consequence, a plate theory following
the Mindlin concept and a modified projection strategy, enabling the thickness change,
are used for the numerical homogenisation, while the comparisons are performed with a
three-dimensional problem or with the plate theory with seven degrees of freedom.

Influence of the Length of the RVE

Due to the high computational costs which result if using a finer mesh, another solution
consisting by using a larger RVE is pointed out. The influence of the length of the RVE
in e1-direction is studied in this part, as represented in the Fig. 5.24. The plate has a
length of 10 mm, a width of l = 1 mm and a thickness of 1 mm. In the former case, the
second RVE with the dimensions 1×1×1 mm3 was considered and only the discretisation
was varying. However, this solution is computationally too expensive. Consequently, the
influence of the length of the RVE is studied. In a first RVE, the RVE has a length which
is the half of the thickness of the plate, and it has 2× 4× 4 elements. The second RVE is
cubic and contains 4× 4× 4 elements. The third RVE has a length of 3/2 l and contains
6 × 4 × 4 elements. The length of the RVE varies from a length of l/2 to 3 l with then
12 × 4 × 4 elements. The moment distribution is represented in Fig. 5.25 and the shear

2If the displacement in thickness direction w̄ is of polynomial order n, i. e. the polynomial function
for w̄ is of order n, the polynomial order of the longitudinal displacements ū and v̄ have to be of order
n+ 1, with the displacement ū = [ū, v̄, w̄]T .
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Figure 5.24: Schematic representation of the variation of length of the RVE for the
bending test
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Figure 5.25: Moment distribution for the bending test of a three-layers sandwich plate
containing isotropic elastic layers for different meso discretisation

force distribution in Fig. 5.26, for the different RVEs.

As observed in Fig. 5.25 and 5.26, the length of the RVE has only a reduced influence on
the accuracy of the results. With a larger RVE, the error is smaller, but the improvement
gained is minimal, from 7% for 2 × 4 × 4 elements to 4.2% for the 6 × 4 × 4 elements,
for the moment resultants. The error reaches a value of 3.8% for a RVE with 12× 4 × 4
elements. For the considered composite materials, the RVE is homogeneous in the two
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Figure 5.26: Shear force distribution for the bending test of a three-layers sandwich
plate containing isotropic elastic layers for different meso discretisation

directions parallel to the midplane; as a consequence, the length of the RVE has only a
reduced influence on the results. A much better improvement is obtained for a finer mesh;
however, this represents too high computational costs.

Under the uniaxial or biaxial tension test and under the shear test, the size of the RVE has
almost no influence on the accuracy of the results, because the tension and shear tests are
homogeneous tests. On the contrary for the bending test, the size and the discretisation
of the RVE have an influence on the results. Better results are obtained for a RVE with
a discretisation of 83 or 123 elements; however, because of the high computing time, the
optimal RVE size is set by 43 elements. Another possibility is to use a larger RVE in
the direction parallel to the midplane, but the precision gained is very small, because the
RVE is homogeneous in the two directions parallel to the midplane. However, the edge
effects are reduced by a RVE with a larger length.

In order to test the method, a structure consisting of three-layers was submitted to an
uniaxial and an equi-biaxial tension test, a shear test and a bending test. But can the
numerical multi-scale method be accurately used for the computation of hybrid laminates?
We will answer this question in the next subsection.
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5.1.5 Hybrid Laminate

In the following, the mechanical behaviour of a hybrid laminate, made up of ten layers, is
studied. The hybrid laminate is composed of ten layers, with the following organisation:
(Al/CFRP(0◦/90◦/0◦)/Al)s3. The layer’s organisation is represented on Fig. 5.27. On
the top and on the bottom, Aluminium layers are set (Al). An elastic isotropic material
behaviour is assumed for the Aluminium layers. Then, three layers of CFRP (Carbon
Fibers Reinforced Polymer) are set, with the fibers alignment (0◦/90◦/0◦). The two
layers in the middle are assumed to be elastic. The seventh, eighth and ninth layers are
CFRP layers with the fibers alignment (0◦/90◦/0◦). The last layer is an Aluminium layer.
The Aluminium has a Young’s modulus of 70500 MPa and a Poisson’s ratio of 0.3. The
Carbon Fibers Reinforced Polymer shows a transverse isotropic material behaviour, and
the material constants are given in the Table 5.1.

Metale1

e2e3

CFRP

Figure 5.27: Structure of the hybrid laminate containing the layer organisation
(metal/CFRP(0◦/90◦/0◦)/metal/metal/CFRP(0◦/90◦/0◦)/metal)

In a first instance, a tension test is computed, with the same boundary condition as used
before and represented in Fig. 5.1. The plate has a length and a width of 10 mm, whereas
its thickness is 1 mm. In the Subsect. 5.1.1, it was proved that the macro discretisation
has a small influence on the accuracy of the results. The assumption is then set that the
influence of the macro discretisation is also reduced in this example and two elements are
considered for the macro discretisation. The RVE’s discretisation has also to be defined.
Because ten layers are considered, the smallest discretisation for a cubic RVE discretized
with cubic elements is 103 elements, which shows to be computationally very expensive
in the framework of a numerical homogenisation. Consequently, the discretisation of the
RVE is not further refined.

In Fig. 5.28 on the left side, the normal forces are drawn. On the right side, the rel-
ative error is represented; the three-dimensional computation is considered as the ref-
erence solution. Again, several solutions are computed: the numerical homogenisation
using the "classical" projection strategy -without consideration of the thickness change,
cf. Eq. (4.17)-, the numerical homogenisation using the projection strategy developed in
this work, cf. Eq. (4.20), the plate theory based on seven degrees of freedom and the
three-dimensional modelling. It can be observed in Fig. 5.28 that the errors are globally
very small. For the "classical" projection strategy, which does not include any thickness
change, an error of almost 1.5% is obtained. The error is less than 0.04% for the FE2

method using the new projection strategy and for the plate theory. The reduced error
can be related to the reduction of the thickness change, due to the material behaviour of

3The (,)s is set for a symmetric layer stacking order

98



Chapter 5: Applications

0
0

2 4 6 8 10

10000

8000

6000

4000

2000

Deformation ε (%)

N
or

m
al

fo
rc

e
(M

P
a·

m
m

)

FE2, classical proj.
FE2, new proj.

plate theory
3-D solution

0
0

2 4 6 8 10

1.2

0.8

0.4

Deformation ε (%)

E
rr

or
(%

)

FE2, classical proj.
FE2, new proj.

plate theory
3-D solution

Figure 5.28: Normal force for a tension test of the ten-layers hybrid laminate repre-
sented in Fig. 5.27 (relative error on the right)

the different layers of the hybrid laminate.

The RVE is drawn in Figs 5.29 and 5.30. For both figures, the RVE resulting from the
"new" projection strategy proposed in this work, including a thickness change due to con-
sideration of an extra internal variable, is represented on the left side. The RVE resulting
of the "classical" projection strategy is drawn on the left side. This projection is used by
many authors [36, 65, 80] in the framework of a numerical homogenisation using a plate
theory following the Mindlin ansatz, that means without consideration of any thickness
change. As mentioned before, the "classical" projection does not consider any thickness
change. On the contrary, the projection strategy proposed in this work includes a solution
of the Poisson locking. However, the influence of the projection tends to be reduced for
the hybrid laminate, in comparison with a three layers structure.

In a second instance, a shear test is computed, according to the boundary conditions
expressed in Fig. 5.9. The material constants, the geometry of the plate and the discreti-
sation for the macroscale and for the mesoscale are the same as for the tension test. The
normal shear force is represented in Fig. 5.31 for the different methods.

It can be seen in Fig. 5.31, that, similarly as for the three layers structures, there are no
major differences between the four methods for the shear test of a hybrid laminate. Due
to the fact that a shear test is isochoric, the thickness change vanishes for this test. As
a consequence, the Poisson locking does not take place, leading to no difference between
the different projections. Due to the absence of the thickness changes, the plate theory
of Mindlin type leads also to accurate results.

Then, a bending test of the hybrid laminate is computed, for the numerical homogenisa-
tion and for the plate theory. The moment resultant is represented in Fig. 5.32. It can
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Figure 5.29: Normal stress in the RVE for the new projection on the left and the
"classical" projection on the right, for an uniaxial tension test of a hybrid
laminate
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Figure 5.30: Normal stress in the RVE for the new projection on the left and the
"classical" projection on the right, for an uniaxial tension test of a hybrid
laminate
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Figure 5.31: Shear force vs. deformation for a shear test of the ten-layers hybrid lam-
inate represented in Fig. 5.27
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be observed that there is less than 1% error between the moment distribution given by
the plate theory or by the FE2 method. As for the tension test, the error is reduced if a
composite plate containing several layers is considered.

The shear force can also be represented as a function of the coordinate in e1-direction, as
drawn in Fig. 5.33. There is approximately 2% error between the numerical homogeni-
sation method and the three-dimensional solution. It is to mention that if a composite
containing several layers is modelled, the error tends to be smaller. This can be explained
in different ways: firstly, in order to model the different layers, a finer mesh is needed as
for a three-layers structure, which leads to a reduction of the error. Secondly, a better
result for the ten-layers laminate could be explained by the reduced thickness change re-
sulting from the presence of fibers. The transverse isotropic layers shows a Poisson’s ratio
of 0.3 or 0.275 -depending on the direction- which is smaller than the Poisson’s ratio of the
matrix alone -around 0.4, as used for the tension test of the three-layers isotropic plate.
It can be concluded that the numerical homogenisation is an useful method, enabling the
computation of both the in-plane and the out-of-plane problem of sandwich plates and
of hybrid laminates. However, the former examples consists of linear material behaviour;
but what’s about non-linear material behaviour? The question will be answered in the
next section.

0
0 2 4 6 8 10

25

20

15

10

5

x1 coordinate (mm)

M
om

en
t

(M
P
a·

m
m

2
)

FE2, new proj.

plate theory

Figure 5.32: Moment distribution for a bending test of the ten-layers hybrid laminate
represented in Fig. 5.27
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Figure 5.33: Shear force distribution for a bending test of the ten-layers hybrid lami-
nate represented in Fig. 5.27
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5.2 Non-Linear Material Behaviour

After the validation of the method for linear elastic material behaviour, it has to be tested
for non-linear material behaviours. The plate has a length and a width of 10 mm, and
a thickness of 1 mm. The macro and meso discretisation are the same as chosen before
for the three-layers composite submitted to in-plane problems. Under this framework,
an elasto-plastic material with isotropic hardening is considered. Two types of composite
structures are studied in this part: in the first instance, a structure containing an elastic
isotropic core and elasto-plastic top panels, is studied. The elastic isotropic core has a
Young’s modulus of 55000 MPa and a Poisson’s ratio of 0.4. In the second instance, a
composite plate containing an elastic transverse isotropic core material and elasto-plastic
isotropic top panels is considered. The transverse isotropic elastic core has the properties
expressed in the Table 5.1.

The elasto-plastic material presents an isotropic hardening. Its Young’s modulus is 70500
MPa, with a Poisson’s ratio of 0.3. The yield stress is 200 MPa. In a first instance, an
unixial tension test and a shear test are computed for the elasto-plastic material only.
The boundary conditions are represented in Figs 5.1 and 5.9 for the tension and shear
test, respectively. The loading step is then followed by an unloading step. The displace-
ment as a function of the time for the whole process can be represented in Fig. 5.34. In
Fig. 5.35, the stress-strain curves of the RVE computed with the FE2 method using the
new projection strategy and of the reference solution, obtained with a FE computation of
a three-dimensional model with the commercial software ABAQUS R©, are represented.
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Figure 5.34: Schematic representation of the loading and unloading steps

Firstly, the results of the shear test are considered. The stress-strain curves obtained for
the RVE and for the three-dimensional solution are drawn on the right side in Fig. 5.35.
It can be observed that the stress-strain curves, given by the two methods, are similar
but that a reduced discrepancy can be observed for the unloading step. This may be
explained by the considered kinematics, which might be not sufficient for the description
of the eigenstresses. We can assume that the consideration of the fluctuations could give
better results for the description of the eigenstresses.
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Figure 5.35: Stress-strain curve for the one elasto-plastic material for a tension test
on the left and for the shear test on the right

Secondly, the stress-strain curves obtained for the tension test are considered, on the left
side in Fig. 5.35. As observed in Fig. 5.35, the final state of the both results is similar
for the loading; however, discrepancies arise in the transition between the elastic and
the plastic domain. The plastic domain is reached for a larger stress σ11 for the three-
dimensional composite computed with ABAQUS R© as for the RVE4. It can be explained
by the absence of boundary conditions applied to the surfaces with normal e3 for the
RVE, leading to a parasitic stress in the third direction. As a consequence, the von Mises
function reaches a value of zero, defining the begin of the plastic part, for a lower stress
σ11. It is also observed that this discrepancy vanishes at further deformations in the plas-
tic part during the loading step, because the stress in thickness direction tends to vanish.
Similar results have been observed by Altenbach et al. [7] for a creep-damage problem,
where a discrepancy is observed for the results given by the shell elements and the volume
elements. This discrepancy can be related to the plane stress assumption for the plate or
shell elements and to the distribution of the stress through the thickness.

In a second instance, the composites are submitted to an uniaxial tension test, a shear
test and a biaxial tension test. Finally, a bending test is computed.

5.2.1 Uniaxial Tension Test

In this part, unixial tension tests are considered, with the same boundary conditions as
drawn in Fig. 5.1, which are then followed by an unloading, as represented in Fig. 5.34. A
tension test of a three-layers composite plate containing elasto-plastic and isotropic elastic
material behaviour is computed. The error obtained for the normal stress between the

4The Cauchy stress σ is considered in the following because the numerical experiments are performed
in the small deformation domain.
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FE2 method using the new projection strategy and the three-dimensional computation
is of maximal 1.6%. It is to mention that a maximal error of 6.9% is obtained using
the classical projection strategy, which does not enable the consideration of the thickness
change in the level of the plate. However, due to the non-linearity of one of the material
laws, a representation of the stress -or normal force- as a function of the strain is needed.
As a following, the average of the stress as function of the strain for both RVE and
three-dimensional FE modelling of the composite, considered as the reference solution,
are represented in Fig. 5.36. The three-dimensional computation and the FE2 method
using the new projection strategy lead to similar results for the stress-strain curves, but
discrepancies arise for the stress-strain curve given by the FE2 method using the classical
projection.
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Figure 5.36: Stress-strain curve for a tension test for the three-layers sandwich plate
containing an isotropic elastic core and elasto-plastic top panels

Then, a three-layers composite, made up of transverse isotropic elastic layers and elasto-
plastic layers, is submitted to an uniaxial tension test. The fiber orientation is 0◦, i. e. that
the fibers are aligned with the tension direction. A representation of the average stress
obtained for the RVE and the reference solution is given in Fig. 5.37.

In the presented example, the fibers are parallel to the direction of the tension test. Due
to the anisotropy of the material, the response of the anisotropic layer is much stiffer
than the response of the elasto-plastic layers, resulting in a quasi-linear progression of the
stress, as can be seen in Fig. 5.37. As a consequence, the importance of the non-linear
material behaviour is reduced, as well as the error, in comparison with the former exam-
ple. In this case, almost no difference between the results obtained with the classical or
with the new projection strategy can be observed.
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Figure 5.37: Stress-strain curve for a tension test for the three-layers sandwich plate
containing a transverse isotropic elastic core (fiber orientation 0◦) and
elasto-plastic top panels

5.2.2 Shear Test

In this part, a shear test is computed, using the same boundary condition as before,
(represented in Fig. 5.9). In a first instance, a shear test of a three-layers material,
made up of an isotropic elastic core and elasto-plastic top panels, is computed. The
error between the final shear reached for the FE2 method and for the result of the three-
dimensional modelling is smaller than 0.01% during the loading step. It is to mention
that because the shear test is isochoric, the same results are observed using the classical
or the new projection strategy. For a better comparison, the stress obtained in the RVE
and with the reference solution are given as a function of the strain in Fig. 5.38. It can
be seen that the stress obtained for the different methods are nearly the same, leading to
an insignificant error.

In a second instance, a shear test of a three-layers composite containing both anisotropic
elastic and elasto-plastic materials is computed. The core material has a transverse
isotropic material behaviour with a fiber orientation of 0◦ -but a fiber orientation of
90◦ leads to the same results in this case. The stress resultant obtained for the FE2

method, compared with the stress computed by the three-dimensional solution leads to
a small error. However, due to the non-linearity of the elasto-plastic material law, more
information are given by the stress-strain curve, as represented in Fig. 5.39.

The stress-strain curves obtained for an anisotropic/elasto-plastic composite are very sim-
ilar for the two methods -namely, the FE2 method and three-dimensional modelling. Be-
cause no volume changes occurs during a shear test, the classical projection and the new
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Figure 5.38: Stress-strain curve for a shear test for the three-layers sandwich plate
containing an isotropic elastic core and elasto-plastic top panels
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Figure 5.39: Stress-strain curve for a shear test for the three-layers sandwich plate
containing a transverse isotropic elastic core (fiber orientation 0◦) and
elasto-plastic top panels

projection strategy lead to the same results. It enables to draw the conclusion that the
FE2 method gives accurate results, if no thickness change takes place. A further consider-
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ation of a biaxial tension test brings further information about the validity of the method
if a thickness change occurs.

5.2.3 Biaxial Tension Test

A three-layers material containing transverse isotropic elastic and elasto-plastic layers is
computed under a biaxial tension test, with the boundary condition for the first step given
in Fig. 5.12. A second step is applied, where an unloading takes place, as represented
in Fig. 5.34. Two types of sandwich plates are considered: on the one hand, the core
material presents an isotropic elastic material behaviour and elasto-plastic top panels.
On the other hand, the core material presents a transverse isotropic material behaviour
(with the fiber orientation of 0◦) and elasto-plastic top panels.
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Figure 5.40: Stress-strain curve for a equi-biaxial tension test for the three-layers sand-
wich plate containing a isotropic elastic core and elasto-plastic top panels

Firstly, the composite plate containing an isotropic elastic core and elasto-plastic top
panels is considered. The stress-strain curve obtained for the different methods -namely,
the FE2 method using the classical or the new projection strategy and three-dimensional
modelling- are drawn in Fig. 5.40. The error in the stress between the numerical ho-
mogenisation method enabling the thickness change and the three-dimensional solution
is around 3% in the loading step. The error obtained in the unloading step is larger,
because the numerical homogenisation may not be enable to give an accurate description
of the eigenstresses. It is to mention that a larger error is observed with the FE2 method
using the classical projection strategy than with the FE2 method using the new projection
strategy. Considering the stress-strain curve given by the numerical homogenisation with
the classical projection strategy, the error reaches 26% during the loading step. We can
conclude that the projection strategy proposed in this work, following a similar principle
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as the EAS method, enable better results if incompressible material behaviours are con-
sidered and for the tests involving a large thickness change.

Secondly, the composite sandwich with a transverse isotropic core and elasto-plastic top
panels is considered. The error obtained between the final stress resultant in the loading
step using the FE2 method with the projection strategy proposed in this work, compared
with the three-dimensional solution, in direction parallel to the fibers and normal to the
fibers are smaller than 1%. In contrast, the error observed in the stress resultant in the
loading step using the numerical homogenisation with the classical projection, compared
with the three-dimensional solution, are larger than the one obtained with the FE2 method
using the new projection strategy. The representation of the stress as a function of the
strain, obtained for a RVE and for the reference solution are given in Fig. 5.41. On the
right side, the stress in direction parallel to the fibers alignment is represented; on the
left side, the stress in direction normal to the fibers is shown. It can be observed that,
similarly as for the single material, the error is larger in the unloading step, especially for
the FE2 method using the classical projection strategy.
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Figure 5.41: Stress-strain curve for a equi-biaxial tension test for the three-layers sand-
wich plate containing a transverse isotropic elastic core (fiber orientation
0◦) and elasto-plastic top panels; in the direction parallel to the fibers
alignment on the left and on the direction normal to the fibers alignment
on the right

It can be seen that the influence of the elasto-plastic material law is much smaller in
the stress response for the direction parallel to the fibers alignment. As a consequence,
the error, due to the non-linear material law, is also much smaller for this direction. It
can be observed a reduced difference in the stress using the FE2 method and the new
projection strategy and the global stress answer is considered as accurate. The conclusion
can be drawn that the FE2 method proposed in this work gives good results for membrane
problems, for linear as well as for non-linear material behaviour. Furthermore, the FE2

method using the projection strategy proposed in this work enables a consideration of the
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thickness change and of any material behaviour without any further modification of the
material law.

5.2.4 Bending Test

Finally, a bending test of two composite structures is computed, according to the boun-
dary condition represented in Fig. 5.18. The composite plates consist of elasto-plastic top
panels and of an isotropic or anisotropic elastic core, with the same material constants as
before mentioned in this part. It is to mention that a force is applied to one extremity
of the composite, whereas the other one is blocked. The plate has a length of 10 mm,
whereas its width and thickness is of 1 mm. The same macro and meso discretisation are
used as in Subsect. 5.1.4, that means that the mesh on the macroscale contains 20 plate
elements with quadratic ansatz function. The RVE is meshed with 43 quadratic brick
elements.

The vertical displacements obtained for the two structures are drawn in Fig. 5.42 as a
function of the coordinate in e1-direction, for the result of the numerical homogenisation
and for a three-dimensional computation. Because no thickness change occurs for the
bending test, the results are the same considering the classical projection and the new
projection strategy proposed in this work. It is to mention that for a mesoscopic mesh of 43

elements, an error approximately 1% is observed between the three-dimensional modelling
and the FE2 method, for the composite made up of isotropic linear and non-linear layers.
Considering the sandwich structure composed of a transverse isotropic core and elasto-
plastic top panels, the error in the displacements is of approximately 3%. Therefore, the
numerical multi-scale method can be considered accurate for the modelling of linear and
non-linear materials, under membrane problems but also under bending. Nevertheless,
the FE2 method shows particularly high computational costs, especially when dealing
with non-linear material behaviour.

It can be concluded that the FE2 method is able to describe membrane problems, as
accurate as a plate theory for elastic material behaviour. However, the FE2 method
enables the consideration of any constitutive law without further transformations, as for
instance for an elasto-plastic material behaviour. However, tension, shear and bending
tests are classical problems; is the FE2 method able to describe complicated issues like a
Cook’s membrane, a plate with a hole or a Pagano problem? This will be answered in
the next sections.
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Figure 5.42: Vertical displacement distribution for the bending test of a three-layers
sandwich plate containing an isotropic elastic core and elasto-plastic top
panels (pl.-el.) and of a three-layers sandwich plate containing a trans-
verse isotropic elastic core (fiber orientation 0◦) and elasto-plastic top
panels (pl.-an.)
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5.3 Cook’s Membrane

In this part, the computation of a Cook’s membrane is performed. The applied boundary
conditions are represented in Fig. 5.43. On the left side, the displacement and rotation
degrees of freedom are set to zero, whereas on the right side, a force is applied in the e2
direction. The exact geometry of the Cook’s membrane is given in Fig. 5.43. Its thickness
is 1 mm.

e1

e2

e3 (0; 0)

(48; 44)

(48; 60)

(0; 44)

F

Figure 5.43: Schematic representation of the Cook’s membrane

Firstly, a three-layers composite containing isotropic elastic layers is computed. The
top panels have the following material properties: a Young’s modulus of 70500 MPa
and a Poisson’s ratio of 0.3. The core material presents a Young’s modulus of 55000
and a Poisson’s ratio of 0.4. A force of 1000 N is applied to the right side of the Cook’s
membrane. The core has a thickness of 0.5 mm, and each of the top panels has a thickness
of 0.25 mm. A discretisation of 43 quadratic brick elements is chosen for the RVE. About
the macro discretisation, a computation with 8 and 32 elements using the FE2 method is
performed and the displacements in e2-direction are represented in Fig. 5.44 for the two
macro discretisation. It it to mention that the mesh containing 8 and 32 elements gives
an error of 6.8% and 3.5%, respectively, compared with the maximal displacement given
by the three-dimensional computation. However, due to the high computing time which
takes the FE2 method, a macro discretisation with 32 elements is used thereafter.

In the following, a discretisation with 32 plate elements is used for the macro-discretisation
under the FE2 method and for the plate theory with thickness change, in order to enable
a comparison of the method with the same mesh. The three-dimensional computation
with ABAQUS R© is performed with 1024 quadratic brick elements. Fig. 5.45 represents
the displacement in e2-direction resulting from the numerical homogenisation on the left
(a), the plate theory with thickness change in the middle (b) and the three-dimensional
computation on the right (c). It can be observed that the difference between the three
methods is very small and that the displacement distribution is similar. Considering the
maximal displacement, the error obtained with the plate theory or with the numerical
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a b
e1

e2

e3

Figure 5.44: Displacement in e2-direction for the Cook’s membrane on a three-layers
sandwich plate containing isotropic elastic layers: results for the different
discretisation (a: 8 elements and b: 16 elements)
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Figure 5.45: Displacement in e2-direction for the Cook’s membrane of a three lay-
ers sandwich plate containing isotropic elastic layers: result of the FE2

method on the left (a), of the plate theory in the middle (b) and of the
three-dimensional computation with ABAQUS on the right(c)

homogenisation are around 3.5%, due to the coarse mesh. It is to mention that the plate
theory with thickness change gives an error of 1.2% for a finer mesh with 512 plate ele-
ments.

Then, a non-linear material behaviour can be considered. In the following examples, two
structures composed of an elasto-plastic material behaviour combined with either isotopic
or transverse isotropic elastic core, are computed. The elasto-plastic material behaviour
is the same as exposed in Sect. 5.2, the core material has either an isotropic elastic or a
transverse isotropic elastic material behaviour. The elastic isotropic material presents a
Young’s modulus of 55000 MPa and a Poisson’s ratio of 0.4, while the transverse isotropic
material has the properties expressed in Table 5.1 and a fiber’s orientation of 0◦. A force
of 200 N is applied for the two different sandwich structures containing elasto-plastic top
panels and either an isotropic elastic or a transverse isotropic elastic core. Considering
the composite plate with an isotropic elastic core, the displacements is e2-direction are
drawn in Fig. 5.46 for the FE2 method on the left (a) and for the three-dimensional
computation on the right (b). It is to mention that an error of 5% is obtained for the
maximal displacement. The results of the computation of the three-layers composite
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Figure 5.46: Displacement in e2-direction for the Cook’s membrane of a three lay-
ers sandwich plate containing isotropic elastic and elasto-plastic layers:
result of the FE2 method on the left (a) and of the three-dimensional
computation with ABAQUS on the right(b)
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Figure 5.47: Displacement in e2-direction for the Cook’s membrane of a three layers
sandwich plate containing a transverse isotropic core and elasto-plastic
top panels: result of the FE2 method on the left (a) and of the three-
dimensional computation with ABAQUS on the right(b)

plate containing a transverse isotropic core and elasto-plastic top panels are represented
in Fig. 5.47. In Fig. 5.47, the displacements in e2-direction are represented for the FE2

method on the left (a) and for the three-dimensional computation with ABAQUS on
the right (b). It is to mention that an error of 10% is obtained for the FE2 method, in
comparison with the three-dimensional computation. This can be related to the coarse
mesh used for the FE2 method. In the next part, a plate with a hole is computed under
a tension test.
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5.4 Plate with Hole

In this part, a square plate containing a hole is computed under tension. In order to reduce
the computing time, the quarter of the problem is considered. The boundary conditions
are drawn in Fig. 5.48. The square plate has a length of 10 mm with an hole of diameter
of 5 mm in its center. The displacement is applied on the right side of the plate on the
e1-direction and has the amplitude of 1 mm.

e1

e2

e3

ū

Figure 5.48: Schematic representation of the plate with an hole

In a first instance, a composite plate containing three layers consisting of isotropic elastic
materials are tested under tension. The top panels present a Young’s modulus of 70500
MPa and a Poisson’s ratio of 0.3, while the core has a Young’s modulus of 55000 MPa and
a Poisson’s ratio of 0.4. The RVEs are meshed with 43 quadratic brick elements and the
macro discretisation is performed with 94 elements. The macro discretisation is defined as
a optimum between the computing time and the precision: two other FE2 problems with
a macro discretisation with 21 and 176 elements are computed and the results are drawn
in Fig. 5.49. In Fig. 5.49, the normal force is drawn for the three different discretisations
of the macroscale: for the coarse mesh with 21 elements (a), for the mesh containing 94
elements (b) and for the finer mesh with 174 elements (c). It can be observed that the
results are converging to the values given by the finer mesh; but that the error between
the mesh with 94 elements and the finer mesh is around 7% for the maximal value. This
error is not negligible, but the computing time needed for the FE2 value does not enable
to consider a larger mesh, especially if non-linear material behaviour is considered. Con-
sequently, a macro discretisation with 94 elements is considered further for the different
composite plates.

In Fig. 5.50, the normal force is drawn for the FE2 method proposed in the presented
work on the left and for the plate theory with thickness change on the right. The same
discretisation is applied for the plate for the two methods, in order to enable a comparison
of them. There is a very reduced error of 0.4% between the two results for the maximum
normal force and of 0.6% for the minimal normal force. Moreover, the normal force dis-
tribution is extremely similar for the two methods.

Then, a three-layers composite plate with a hole, containing a transverse isotropic elastic
core and isotropic elastic top panels, is computed under tension. The core material consists
in the transverse isotropic material with the constants expressed in Table 5.1. The elastic
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Figure 5.49: Normal force for a tension test on a plate with a hole of a three-layers
sandwich plate containing isotropic elastic layers: results for the different
discretisation (a: 21 elements, b: 94 elements and c: 174 elements)

top panels have the Young’s modulus of 55000 MPa and a Poisson’s ratio of 0.4. The
distribution of the normal force can be drawn in Fig. 5.51. It can be seen that the
stress repartition is extremely similar for the numerical method and for the plate theory.
Moreover, the error between the two methods is around 0.2% for the maximal and minimal
values of the force.

Then, a non-linear material behaviour is considered. Two composite plates containing
elasto-plastic top panels and an isotropic elastic or a transverse isotropic elastic core are
submitted to the tension test. The elasto-plastic material behaviour is the same as studied
in Sect. 5.2. The core material shows either an isotropic elastic or a transverse isotropic
elastic material behaviour; the elastic isotropic material has a Young’s modulus of 55000
MPa and a Poisson’s ratio of 0.4, while the transverse isotropic material presents the
properties expressed in Table 5.1.

The distribution of the normal force is represented in Fig. 5.52 for the composite composed
of elastic isotropic and elasto-plastic material behaviours. In Fig. 5.53, the tension test of
the three-layers composite plate containing anisotropic elastic and elasto-plastic material
behaviours is represented. It can be observed that the numerical homogenisation enables a
computation of complicated problems, also with non-linear material behaviour like elasto-
plasticity. It is to mention that the advantage of this method leads to the possibility to
include any material behaviour into account, also no linear ones, and without any further
transformations of the material laws.
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Figure 5.50: Normal force for a tension test on a plate with a hole of a three-layers
sandwich plate containing isotropic elastic layers: result of the FE2

method on the left and plate theory on the right

e1

e2

e3

Figure 5.51: Normal force for a tension test on a plate with a hole of a three-layers
sandwich plate containing isotropic and transverse isotropic (fiber orien-
tation 0◦) elastic layers: result of the FE2 method on the left and plate
theory on the right
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Figure 5.52: Normal force for a tension test on a plate with a hole of a three-layers
sandwich plate containing isotropic elastic and elasto-plastic layers
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Figure 5.53: Normal force for a tension test on a plate with a hole of a three-layers
sandwich plate containing transverse isotropic elastic (fiber orientation
0◦) and elasto-plastic layers
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5.5 Pagano Problem

In the following part, a Pagano problem is computed, as illustrated in Fig. 5.54. The prin-
ciple consists on the application of a sinusoidal load on the bottom of a plate of a length
of L = 20 mm and of a width and thickness of 1 mm. The two extremities are blocked. In
order to reduce the computation time, half of the problem is computed in the framework
of the FE2 method. 20 elements are used for the plate. The RVEs are meshed with
43 quadratic brick elements for the single layers and for the three-layers structures. For
the hybrid laminates, the RVEs are meshed with 63 and 103 quadratic brick elements for
the six-layers structure and the ten-layers structure, respectively. The results are com-
pared with the solution of the three-dimensional problem computed with ABAQUS R©.
The three-dimensional FE composites computed with ABAQUS R© are meshed with 640
quadratic brick elements for the one-layer structure and the composite sandwich, and
with 2152 and 104 elements for the six-layers hybrid laminate and the ten-layers hybrid
laminate. The vertical displacement is represented as a function of the coordinate in
e1-direction in Fig. 5.55 for the different elastic material behaviour and the composite
containing elastic material behaviour.

e1

e2e3

L

q̄ = q0 sin(x1 2π/L)

Figure 5.54: Schematic representation of the Pagano problem

As represented in Fig. 5.55, the vertical displacement is represented for different compos-
ite plates submitted to a sinusoidal loading. In a first instance, we can consider the case of
composite plates containing one linear layer, which presents an isotropic or an anisotropic
elastic material behaviour, drawn in red and in dark blue. The elastic isotropic material
is Aluminium and has a Young’s modulus of E = 70500 MPa and a Poisson’s ratio of
0.3. The anisotropic layer is used to simulate the behaviour of a Carbon Fiber Reinforced
Polymer layer, which shows a transverse isotropic material behaviour with the material
constants expressed in Table 5.1. The fiber orientation is 0◦, that means that the fibers
are aligned with the plate length L. In this case, the error obtained between the FE2

method and the three-dimensional solution is of 1.6% to 2.7% for the different material
behaviours, which is considered as accurate. Indeed, the mesoscopic discretisation is per-
formed with 43 elements, and a finer mesh would produce a better precision, but would
also increase the computing time.
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Figure 5.55: Vertical displacement for the composite plates containing linear materials:
computation for one isotropic layer (1 isotropic lay.) in red, computation
for one anisotropic layer (1 an. lay.) in dark blue and computation for
three anisotropic layers (3 an. lay.) in cyan

In a second instance, the computation of a sandwich plate composed of transverse isotropic
layers, with the fiber orientation (0◦ − 90◦)S is performed and the results are represented
in cyan. In this case, an error of 2.5% between the vertical displacement given by the FE2

method and the three-dimensional solution is obtained. The black dot curve with colored
points gives the solution given by the plate theories for the different structures. It is to
mention that the plate theory with thickness change gives a comparable result to the one
given by the FE2 method in this case.

In the following numerical experiments, some composite plates containing linear and non-
linear materials are computed under a sinusoidal loading. The vertical displacements
obtained by the FE2 method and the three-dimensional computation with ABAQUS R©

are drawn in Fig. 5.56. Firstly, a sandwich plate containing elasto-plastic top panels
with the elasto-plastic behaviour described in Subsect. 5.2 and either an isotropic or an
anisotropic elastic core is considered. The elastic isotropic and anisotropic materials have
the same properties as the single materials. The displacements obtained for the two sand-
wich plates are drawn in red and in blue in the Fig. 5.56. With regard to the composite
structure containing an elastic isotropic core and non-linear top panels, the error between
the FE2 method and the three-dimensional computation is around 2.5%. It can be ob-
served that a larger error is obtained for the structure containing a transverse isotropic
elastic core.
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Secondly, some hybrid laminates are submitted to the sinusoidal loading. In a first in-
stance, a hybrid laminate with six layers is considered. It contains Aluminium top panels,
a transverse isotropic core, and between the transverse isotropic and the elasto-plastic
top panels some elastic isotropic layers. The Aluminium layers present an elasto-plastic
material behaviour described in Subsect. 5.2. The transverse isotropic layers has the prop-
erties expressed in Table 5.1 and the fiber orientation of 0◦. The isotropic elastic material
presents a Young’s modulus of 55000 MPa and a Poisson’s ratio of 0.4. The vertical dis-
placement is represented in cyan in Fig. 5.56, and it can be observed that an error of less
than 2% is reached. A hybrid laminate containing ten layers and with an elasto-plastic
metal layer in the middle of the composite is also considered and drawn in green. The
ten-layers hybrid laminate presents the layers organisation (Al/CFRP(0◦/90◦/0◦)/Al)s5.
The Aluminium has the same elasto-plastic behaviour as the single elasto-plastic layer
and the CFRP layers show a transverse isotropic elastic behaviour with the material con-
stants expressed in Table 5.1. It is to mention that the relative error is reduced for a
hybrid laminate and reached 2.6% and it can be concluded that the FE2 method presents
accurate results, for linear and non-linear material behaviours, in the case of the Pagano
problem.
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Figure 5.56: Vertical displacement for the composite plates containing linear and non-
linear materials: computation for the sandwich plate containing elasto-
plastic and isotropic elastic layers (pl.-el.) in red, computation for the
sandwich plate containing elasto-plastic and anisotropic elastic layers (pl.-
an.) in dark blue, computation for the hybrid laminate containing six lay-
ers (6 layers) in cyan and computation for the hybrid laminate containing
ten layers (10 layers) in green

5The (,)s is set for a symmetric layer stacking order
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Conclusions

In the present work, an innovative solution for the modelling of the mechanical behaviour
of composite plates is proposed. The chosen method is a numerical multi-scale modelling
for plates. Its principle is that a first FE computation of the macroscale, containing
the plate kinematics, is performed. But instead of using one of the linear constitutive
laws proposed by most of the plate theories, the deformations are transferred to the RVE
on the mesoscale. Because the scale separation is only true in the two directions paral-
lel to the midplane, i. e. there is no scale separation in the thickness direction between
the macroscale and the mesoscale, the homogenisation is only applied in the two direc-
tions parallel to the midplane. In the thickness direction, a full resolution takes place.
Therefore, the displacements are only projected in the surfaces of the RVE normal to the
midplane. In the mesoscale, a three-dimensional FE computation of the boundary value
problem is solved. The macroscopic force and moment resultants are obtained from the
mesoscopic stresses by using a modified Hill-Mandel condition.

In this work, special attention is given to the resolution of the Poisson locking phe-
nomenon, which occurs for a plate theory following the Mindlin concept. The Poisson
locking appears if the plate theory is not considering any thickness change. Actually, the
Poisson locking is solved by using an innovative projection strategy. In the macroscale, a
plate theory with five degrees of freedom is taken into account, i. e. no thickness change
is considered in the macroscale. However, the thickness change is incorporated within
the projection strategy: during the computation, the displacements are projected to the
RVE. In the RVE, the average value of the thickness change is computed and transferred
back to the macroscale, where it is projected to the RVE in the next iteration. With this
method, the free surfaces (the surfaces normal to the thickness direction, where the scale
separation does not occur) enable the thickness change and a solution of the Poisson lock-
ing is then defined. It is to mention that the plate theory following the Mindlin concept
encounters the problem of Poisson locking; but this plate theory under the framework of
the FE2 method and used with the innovative projection strategy, proposes a solution to
the Poisson locking.

Maybe the critical drawback of the method results from the high computational costs.
Two major solutions can be applied to reduce them: the first one is the parallelisation.
Due to the use of the commercial software ABAQUS R© for the mesoscale, a parallelisation
is not possible, due to the available licence. The second solution is to define the analytical
tangent, which enables an important decrease of the computational costs. Following this
way, the present work considers the Multi-Level Newton Algorithm (MLNA), a method
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which enables the definition of the analytical tangent for a non-linear material behaviour.
For viscoelastic, viscoplastic or elasto-plastic material behaviours, the analytical tangent
can be defined by splitting the problem in two levels: on the global level, the equilibrium
equations are solved, and the local level contains the evolution equations. In contrast,
the FE2 method does not focus on the resolution of a mechanical problem with primary
and internal variables, but on the resolution of a problem split in two scales. Therefore,
the MLNA can be successfully applied: the global level contains the macroscale, that
means the kinematics of the plate and its equilibrium equations. The local level consists
of the mesocale, i.e. the three-dimensional boundary value problem. Consequently, this
innovative method enables the definition of an accurate analytical tangent.

The present work proposes the modelling of the composite plates, considering linear, but
also non-linear material behaviour, like for instance elasto-plasticity. Although some plate
theories enable the treatment of non-linear material behaviour, cf. [161], most of them
are limited to linear material behaviour. Moreover, the plate theories considering elasto-
plastic material behaviour suffer limitations, too. One of them is related to geometrical
linearity, due to the additive split of the deformations. As can be read in the paper of
Roehl et al. from 1996 [161], the "additive form does not satisfy patch incremental test".
Therefore, for a non-linear material behaviour for plates, there is the necessity to consider
a multiplicative split, as done for a non-linear material behaviour for finite deformations.
Concerning linear material behaviour, the computing time for the FE2 method is much
larger than for the FE plates. However, the FE2 method offers more possibilities than
a plate theory, due to the possibility to consider any material behaviour easily, which
does not need to be changed in order to fit into the plate kinematics, as it is the case for
plates. Nevertheless, the numerical multi-scale modelling could enable the consideration
of the fluctuations, resulting in a correct treatment of the different layers, as can be seen
in figure 6.1.

a b

dc

Figure 6.1: Schematic representation of the RVE submitted to a transverse shear de-
formation without fluctuations (a), with fluctuation (b); schematic rep-
resentation of the RVE submitted to a bending without fluctuations (c),
with fluctuation (d)
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In figure 6.1, a RVE is submitted to a shear deformation and to a bending test, without
fluctuations on the left and with fluctuations on the right. It can be observed that the
fluctuations enable a better treatment of the composite layup, due to their capability to
take the rigidity of the different layers into account. To the knowledge of the author,
there is no possibility to incorporate the fluctuations in the plate theory, although there
are some extensions which enable similar behaviour, as for instance the zig-zag theories
or the layerwise theories. But again, both are limited to linear material behaviour. As
a consequence, an interesting future work could be related to the incorporation of the
fluctuations in the present numerical multi-scale method, which may also enable a better
treatment of the eigenstresses.

Then, it may be of interest to develop a FE2 method for plates, where the plate kine-
matics present higher order displacements for the two in-plane directions. For example, a
plate theory with a cubic approximation for the two in-plane displacements may be con-
sidered, leading to a cubic distribution of the deformation for the RVE. Alternatively, a
consideration of the same plate theory with five degrees of freedom, but with an extended
projection, enabling for instance a displacement of cubic order for the projection, could
be drawn.

The present work is limited to plates; similarly as for plates, an introduction of the
shell kinematics in the macroscale could be proposed. Then, another improvement con-
sists in the possibility to consider more integration points through the thickness for the
macroscale, although this could lead to an important increase of the computational costs.

In contrast to the plate theories, the numerical homogenisation is not restricted to hy-
brid laminates, but enables the consideration of any composite plates, like for instance
a sandwich plate containing a foam core or even more complicated structures. Another
improvement of the current method could be to use the constitutive law proposed by the
plate theory, if the material is elastic, but to apply the FE2 method only for the parts of
the composite which present non-linear material behaviours or complex structures.

The numerical multi-scale method for plates could be extended to the treatment of con-
tact, enabling the modelling of a forming process. One of the advantages of the numerical
homogenisation -towards the plate theories- is the possibility to model the interface be-
tween the different layers. This would be possible by the simple introduction of the
interpose in the three-dimensional RVE. It is to mention that dynamic analysis could also
be possible, or the treatment of damage. Because the delamination are important issues
for composite materials, the modelling of the damage for fiber reinforced materials, as
proposed by Schröder et al. [167] and by Nguyen [137] for a FE2 method, could be also
imagined for composite plates. Recently, the modelling of cohesive laws in the framework
of the numerical homogenisation has been studied, cf. [183]; and a transposition to the
numerical multi-scale modelling of plates could also be an interesting issue.
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7.1 Voigt Notation

The Voigt notation is defined as a representation of the stress tensor as vector, that means
as tensor first order, and not as tensor of second order, like it it the case for the classical
continuum mechanics. In classical continuum mechanics, the elasticity relation can be
expressed as

2T = 4
C : 2E, (7.1)

with the stress and strains defined as second order tensors. Because the stress tensor can
be assumed to be symmetric, the stress can be expressed as a tensor

1T = [T11, T22, T33, T23 = T4, T13 = T5, T12 = T6]
T , (7.2)

as well as the strains

1E = [E11, E22, E33, 2E23 = E4, 2E13 = E5, 2E12 = E6]
T . (7.3)

Considering the Voigt notation, the relation between the stress and the strains becomes

1T = 2
C · 1E, (7.4)

with 2C the elasticity tensor, which becomes a tensor of second order containing 6 ·6 = 36
entries. However, some simplifications are needed, because the elasticity tensor is normally
a tensor of fourth order containing 34 = 81 entries. One of the simplification is related
to the major symmetries, which means that there is some redundancies in the elasticity
tensor, cf. [84]

4
Cijkl =

4
Cklij. (7.5)

The minor symmetries are defined as

4
Cijkl =

4
Cjikl =

4
Cijlk. (7.6)

Consequently, the elasticity tensor can be reduced to a tensor of second order.
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7.2 Elasto-Plasticity for Finite Strains

In this part, an elasto-plastic model for finite strains is explicitly given for the interme-
diate or stress free configuration, cf. [73]. Firstly, the elastic function, which defines the
behaviour of the material in the elastic domain is written

Ŝ = g1(Γ̂e), (7.7)

where g1 is an isotropic tensor function.

The yield function has to be defined, following the definition

F = F (Ŝ, X̂, k) = f(Ŝ− X̂, k). (7.8)

It gives the the border between the elastic and elasto-plastic domain.

The associated flow rule defines how the material behaves in the plastic part and is written
as

D̂p =
$

Γ̂p=





λ

∂

∂Ŝ
F (Ŝ, X̂, k), for F = 0 and B > 0 ,

0, otherwise,
(7.9)

Then, the evolution equation has to be given

%

X̂ = c D̂p − b ṡp(t) X̂ (7.10)

In the case of an isotropic hardening we get

k = k(sp), (7.11)

with the plastic arc length defined as

ṡp(t) = ||D̂p||. (7.12)

Then, the consistency condition has to be given.

d
dt

F (Ŝ(t), X̂(t), k(t)) = 0 (7.13)

Its resolution leads to the value of the parameter λ.

7.3 Pegasus Method

The Pegasus method is used to find the root of an equation, following the method ex-
plained in [44, 50].

f(ζ) = 0, ζ ∈ [a, b]. (7.14)
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1. The intersection point of the secant and the x-axis is called ζ3 and it can be compute
as

ζ3 = ζ2 − f(ζ2)
ζ2 − ζ1

f(ζ2)− f(ζ1)
. (7.15)

2. The function of the intersection point f(ζ3) is then computed. If the function f(ζ3)
is equal to zero, the computation ended and ζ3 is the root of the function f .

3. If f(ζ3) f(ζ2) > 0, it means that f reaches a zero between ζ2 and ζ3 and the new
values for the next iteration are

ζ1 := ζ2; f(ζ1) := f(ζ2); ζ2 := ζ3; f(ζ2) := f(ζ3).

On the opposite, if f(ζ3) f(ζ2) < 0, it means that f reaches a zero between ζ1 and
ζ3 and the new values for the next iteration are

ζ1 := ζ1; f(ζ1) :=
f(ζ1) f(ζ2)

f(ζ2) + f(ζ3)
; ζ2 := ζ3; f(ζ2) := f(ζ3).

4. If |ζ2 − ζ1| < ε and ε defining the tolerance, the root is found. For f |(ζ2)| ≤ 0, the
root equals ζ2, otherwise, the root equals ζ1. For |ζ2− ζ1| > ε, we return to the step
1.

The advantage of this method is that it does not need the derivative of the function, that
is of great interest for plasticity.

7.4 Constitutive Law for the Plate Theory

For a composite plate containing several layers, the constitutive law, as proposed by the
First order Shear Deformation Theory, cf. [5, 154], can be developed. The composite
contains n layers, and their thickness coordinates are defined as shown in figure 7.1. As
mentioned before, the plate theory with thickness change is involving a three-dimensional
constitutive law. In contrast, for the plate theory from Love, Kirchhoff, Reissner or
Mindlin, the constitutive law are two-dimensional ones and can be written for instance
for a one-layer elastic isotropic material as






N11

N22

N12

M11

M22

M12





=





E

1− ν2
h

E ν

1− ν2
h 0 0 0 0

E

1− ν2
h

E ν

1− ν2
h 0 0 0 0

0 0 Gh 0 0 0

0 0 0
E

1− ν2

h3

12

E ν

1− ν2

h3

12
0

0 0 0
E ν

1− ν2

h3

12

E

1− ν2

h3

12
0

0 0 0 0 0 G
h3

12





·






ε11
ε22
ε12
κ11

κ22

κ12





,

(7.16)
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e1

e2
e3

x3 = 0

h(0)

h(k)

h(n)

h(k−1)

Figure 7.1: Definition of a composite plate with n layers, adapted from Altenbach, Al-
tenbach and Rikards, Einführung in die Mechanik der Laminat- und Sand-
wichtragwerke: Modellierung und Berechnung von Balken und Platten aus
Verbundwerkstoffen, Deutscher Verlag für Grundstoffindustrie, 1996 [5]

for the force and moment resultants. For the shear forces, the constitutive law is defined
as

[
Q1

Q2

]
=

[
K Gh 0

0 K Gh

]
,

(7.17)

for the extension of the plate following Mindlin concept for laminates. K is the correc-
tion factor; it is equal to 5/6 for the Reissner assumption, or to π2/12 following Mindlin.
The correction factor is obtained for the Reissner assumption if a parabolic function is
assumed for the shear forces, for an isotropic single layer, cf. [5]. For anisotropic plates,
the correction factor may be different in every direction, as explained by [142]. Another
solution consists in the comparison of the strain energy of the average shear stress with
the strain energy obtained by the equilibrium, cf. [67], leading to a dependency on the
Poisson’s ratio.

For a plate theory with thickness change, the constitutive laws for the force and mo-
ment are three-dimensional and can be written as




n∑

k=1

E(k)

1− (ν(k))2

n∑

k=1

E(k) ν(h)

1− (ν(k))2

n∑

k=1

E(k) ν(h)

1− (ν(k))2
0 0 0

n∑

k=1

E(k) ν(h)

1− (ν(k))2

n∑

k=1

E(k)

1− (ν(k))2

n∑

k=1

E(k) ν(h)

1− (ν(k))2
0 0 0

n∑

k=1

E(k) ν(h)

1− (ν(k))2

n∑

k=1

E(k) ν(h)

1− (ν(k))2

n∑

k=1

E(k)

1− (ν(k))2
0 0 0

0 0 0
n∑

k=1

G(h) 0 0

0 0 0 0
n∑

k=1

G(h) 0

0 0 0 0 0
n∑

k=1

G(h)





H,

(7.18)
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where H is defined as

H = h(h) − h(k−1) (7.19)

for the force resultants and as

H =
(h(h))3 − (h(k−1))3

3
(7.20)

for the moment resultants. The hyperstresses are defined as

C
4 =






n∑

k=1

G 0

0
n∑

k=1

G






(h(h))5 − (h(k−1))5

5
. (7.21)

7.5 Symmetric Stiffness for the Plate Theory with Thick-

ness Change

The symmetric stiffness is written in equation (7.22) for the considered plate theory with
thickness change. In this case the plates (laminates or sandwich or hybrid laminates) are
symmetric. The letter α and β are used for the index 1, 2.
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