
Design and Synthesis of Novel Quinazoline-

based EGFR kinase Inhibitors and Dual 

EGFR/NF-κB Inhibitors as potential anti-cancer 

drugs with enhanced efficacy 

 

 

Dissertation 

 

 

 

zur Erlangung des Grades 

des Doktors der Naturwissenschaften 

der Naturwissenschaftlich-Technischen Fakultät III 

Chemie, Pharmazie, Bio- und Werkstoffwissenschaften 

der Universität des Saarlandes 

 

 

von 

Master-Pharmazeut 

Mostafa Mohamed Mostafa Hamed 

Saarbrücken 

2013 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Tag des Kolloquiums: 13.08.2013 
 
Dekan:   Prof. Dr. Volkhard Helms 
Berichterstatter: Prof. Dr. Rolf W. Hartmann 

Prof. Dr. Ashraf H. Abadi 
Vorsitz:  Prof. Dr. Claus Jacob 
Akad. Mitarbeiter:  Dr. Jessica Hoppstädter 

 



- I - 

Diese Arbeit entstand unter der Anleitung von Prof. Dr. R.W. Hartmann in der 
Fachrichtung 8.2 Pharmazeutische und Medizinische Chemie der Naturwissenschaftlich-
Technischen Fakultät III der Universität des Saarlandes von Juni 2010 bis Juli 2013. 



- II - 

Acknowledgements 

I would like to express my sincere gratitude to Prof. Dr. Rolf W. Hartmann, for giving me 
the opportunity to prepare my thesis as a member of his research group. His endless 
support has been a great help during these years. 
 
I am deeply indebted to Prof. Dr. Ashraf Abadi, for partly suggesting the point of the 
research, constructive supervision, great support and valuable advices throughout the 
whole work. His guidance helped me all the time, I will always be grateful for that. 
 
I am deeply grateful to Dr. Matthias Engel, for partly suggesting the point of the research, 
valuable guidance during the lab work, fruitful discussions, writing of scientific papers, 
and the endless support during these years. 
 
I would like also to acknowledge Prof. Dr. Dalal Abou El Ella for the suggestions and 
help during the chemistry work. 
 
I like to thank Prof. Dr. Gary Piazza, Dr. Adam Keeton and their group for performing 
part of the cellular assays. 
 
I wish to thank also Dr. Jennifer Hermann for the help with some biological assays. 
 
I would like to thank Nadja Weber and Tamara Paul for their great help and assistance in 
performing the biological tests, Dr. Joseph Zapp for the NMR measurements, Dr. Stefan 
Boettcher for running the mass experiments, Dr. Wolfgang Fröhner for the help during 
the chemistry work. 
 
I would like to thank Mohammad Abdel-Halim, Ahmed Saad, and all the members of 
Prof. Hartmann group for their help and support. 
 
I also wish to thank the laboratory staff, especially Martina Schwarz, Katrin Schmitt and 
Lothar Jager for their sympathy and their pleasant service. 
 
Finally, I would like to thank my family, especially my mother, wife and my children for 

their support. 



- III - 

Abbreviations  

(CD3)2CO  deuterated acetone 
µM   micromolar 
Abl   Abelson murine leukemia viral oncogene homolog  
AKT   v-akt murine thymoma viral oncogene homolog 
ALK   anaplastic lymphoma kinase 
aPK   atypical protein kinase 
AR   amphiregulin 
ATP   adenosine triphosphate 
BAFF   B-cell activating factor 
Bcl-2   B-cell lymphoma 2 
BSA   bovine serum albumin 
BTC   betacellulin 
CAMK  calcium/calmodulin dependent protein kinase   
CD3OD  deuterated methanol 
CDCl3    deuterated chloroform 
CDKs   cyclin-dependent kinases    
cGMP   cyclic guanosine monophosphate 
CK1   casein kinase 1 
CLK   CDK-like kinases 
CML   chronic myelogenous leukemia 
Cys (C)  cysteine 
DM   double mutated (T790M/L858R) EGFR 
DMEM  Dulbecco’s modified Eagle's medium 
DMF   dimethylformamide 
DMSO   dimethylsulfoxide 
DTT   dithiothreitol 

DUB   deubiquitinating enzymes 
EDTA   ethylenediaminetetraacetic acid 
EGF   epidermal growth factor  
EGFR   epidermal growth factor receptor “also named ErbB1” 
ePK   conventional protein kinase 
EPR   epiregulin 
FADD   fas-associated protein with death domain 
FBS   fetal bovine serum 
FGF   fibroblast growth factor 
GFP   green fluorescent protein 
GIST   gastrointestinal stromal tumor 
GPCR   G protein coupled receptors 
GSK   glycogen synthase kinase 
GTP   guanosine triphosphate 
HB-EGF  heparin-binding EGF-like growth factor 
HER (ErbB)  Human Epidermal Growth Factor Receptor  
Hz   hertz 



- IV - 

IAP   Inhibitors of apoptosis 
IC50   half maximal inhibitory concentration 
IKK   IκB kinase 
IL-1β   Interleukin-1 beta 
IκB   Inhibitors of κB 
JAK   janus kinase   
JAMM   JAB1/MPN/Mov34 enzymes 
Km   Michaelis constant 
Lys   lysine 
mabs   monoclonal antibodies 
MAP   mitogen-activated protein 
MAPK/ERK  mitogen-activated protein/extracellular-signal-regulated kinases   
Met (M)  methionine 
MHz   megahertz 

MJD   Machado Joseph Disease proteases 
MOE    molecular operating environment 

MOPS   3-(N-morpholino)propanesulfonic acid 

MTT   thiazolyl blue tetrazolium bromide 
MVB   multivesicular bodies 
NEMO   nuclear factor-kappa B essential modulator 
NF-κB   nuclear factor kappa-light-chain-enhancer of activated B cells 
NGF   nerve growth factor    
NIK   NF-κB-inducing kinase 
nM   nanomolar 

NMR   nuclear magnetic resonance 
NRTKs  non-receptor tyrosine kinases 
NSCLC  non-small cell lung cancer 
OUT   otubain proteases 
PBS   phosphate-buffered saline 

PDB   protein data bank 
PDGF   platelet-derived growth factor 
PDGFR  platelet-derived growth factor receptor 
PDHK   pyruvate dehydrogenase kinase 
PI3K   phosphoinositide 3-kinase 
PIKK   phosphatidylinositol 3-kinase-related kinase 
PKA   protein kinase A 
PKC   protein kinase C 
PKG   protein kinase G 
ppm   part per million 
PTKs   protein tyrosine kinases 
PTMs   posttranslational modifications  
RAS   rat sarcoma viral oncogene homolog 
RET   rearranged during transfection 
RGC   receptor guanylate cyclases 
RHD   Rel homology domain 



- V - 

RIO   right open reading frame 
rt   room temperature 
RTKs   receptor tyrosine kinases 
SDS   sodium dodecyl sulphate 
Syk   spleen tyrosine kinase 
TEA   triethylamine 
TGFα   transforming growth factor alpha 
Thr (T)   threonine  
TK   tyrosine kinase 
TKIs   tyrosine kinase inhibitors 
TKL   tyrosine kinase-like kinases 
TNF   tumor necrosis factor 
TNFR   tumor necrosis factor receptor 
TNF-α   tumor necrosis factor alpha 
TRADD  tumor necrosis factor receptor type 1-associated death domain 
TRAF2  TNF receptor-associated factor 2 
TRAF3  TNF receptor-associated factor 3 
Ub   ubiquitin 
UBC   ubiquitin-conjugating enzyme 
Ubl   ubiquitin-like 
UCHs   ubiquitin C-terminal hydrolases 
ULPs   Ubl-specific proteases 
UPS   ubiquitin/proteasome system 
USPs   ubiquitin specific proteases  
VEGF   vascular endothelial growth factor 
VEGFR  vascular endothelial growth factor receptor 

Wt   wild-type 

 

 



- VI - 

Abstract 

The inhibition of signal transduction pathways, e.g. of EGFR kinase signaling, is a 

proven strategy in the treatment of cancers with several drugs clinically approved. 

Treatment with EGFR inhibitors suffers some limitations such as that certain cancers are 

originally insensitive or mutations emerge that cause drug resistance. The NF-κB 

pathway is also known to play a role in cell proliferation and survival and therefore, the 

inhibition of the NF-κB activation could be used in the treatment of cancer. Herein, a new 

class of quinazoline derivatives have been designed and synthesized to realize two 

strategies to overcome the above mentioned drawbacks. The first strategy included 

structural modifications which resulted in compounds that retain potency towards mutant 

EGFR. In addition, several compounds were identified to be more potent than Gefitinib 

towards cancer cell lines with wild-type and mutant EGFR. The second strategy involved 

the synthesis of compounds with dual inhibitory activity towards the EGFR and the NF-

κB pathway. These compounds act as potent anticancer agents that are able to overcome 

the problem of cancers which are insensitive or resistant to the EGFR inhibitors. Several 

derivatives were obtained with enhanced potency towards both targets. The main 

structural requirements essential for activity for each target has been identified and the 

cellular mechanism of action was discovered for one of the potent compounds. The 

presented inhibitors open up new approaches to overcome the limitations associated with 

clinically approved EGFR inhibitors. 
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Zusammenfassung 

Die Hemmung von Signaltransduktionswegen, z.B. der EGFR-Kinase-Signalweges, ist 

eine bewährte Strategie für die Krebstherapie und hat bereits einige klinisch zugelassene 

Medikamente hervorgebracht. Die Behandlung mit EGFR-Inhibitoren stößt oft an ihre 

Grenzen, so sprechen z.B. nicht alle Tumore an und einige werden aufgrund von 

Mutationen resistent. Der NF-kB-Signalweg spielt ebenfalls eine wichtige Rolle bei 

Zellproliferation und –überleben, so dass er ebenfalls ein vielversprechender 

Angriffspunkt bei Krebs sein könnte. In dieser Arbeit wurde eine neue Klasse von 

Chinazolinderivaten entworfen und synthetisiert, um zwei neue Strategien zur 

Überwindung der o.g. Nachteile umzusetzen. Die erste Strategie zielte auf die Einführung 

von Modifikationen ab, die auf eine Steigerung der Hemmaktivität gegenüber mutierter 

EGFR-Kinase abzielten. Dieses Ziel wurde erreicht, und zusätzlich wurde im Vergleich 

zu Gefitinib eine potentere Hemmung des Wachstums von Krebszellen mit Wildtyp- und 

mutierter EGFR-Kinase beobachtet. Die zweite Strategie beinhaltete die Synthese von 

Derivaten mit dualer Hemmwirkung sowohl auf den EGFR- als auch auf den NF-kB-

Signalweg. Diese neuen Verbindungen versprechen eine gesteigerte Anti-Tumor-

Wirkung und sind möglicherweise in der Lage, auch die gegen reine EGFR-Inhibitoren 

unempfindlichen oder resistenten Tumore zu bekämpfen. Einige Derivate mit 

verbesserter Wirksamkeit bei beiden Targets konnten entwickelt werden. Die wichtigsten 

strukturellen Voraussetzungen für die Aktivität bei jedem Target konnten identifiziert 

und der zelluläre Wirkmechanismus für eines der Derivate nachgewiesen werden. Die 

vorgestellten Inhibitoren könnten neue Wege zur Überwindung der eingeschränkten 

Wirksamkeit der bisherigen EGFR-Hemmstoffe aufzeigen. 
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1 Introduction 

1.1 Kinases  

A kinase is a type of enzyme that catalyze the transfer of phosphate groups from 

high-energy donor molecules, such as ATPs to specific substrates, a process referred to as 

phosphorylation.1, 2 Kinases are part of the larger family of phosphotransferases which is 

a subclass of transferases.2 Kinases are used extensively to transmit signals and control 

complex processes in cells. One of the largest groups of kinases is protein kinases, which 

act on and modify the activity of specific proteins. Various other kinases act on small 

molecules such as lipids, carbohydrates, amino acids, and nucleotides, either for signaling 

or to prime them for metabolic pathways. Kinases are often named after their substrates.1, 

3 

1.2 Protein Kinases 

A protein kinase is a kinase enzyme that catalyze the transfer of the γ phosphate of a 

purine nucleotide triphosphate (i.e. ATP and GTP) to the protein substrate4 (Figure 1)5. 

Protein kinases mediate most of the signal transduction in eukaryotic cells and also 

control many other cellular processes, including metabolism, transcription, cell cycle 

progression, cytoskeletal rearrangement and cell movement, apoptosis, and 

differentiation. Protein phosphorylation also plays a critical role in intercellular 

communication during development, in physiological responses and in homeostasis, and 

in the functioning of the nervous and immune systems.6 They are among the largest 

families of genes in eukaryotes6-10 with more than 500 members within the human 

genome.3, 6 Mutations and dysregulation of protein kinases play fundamental roles in 

human disease, therefore, protein kinases is a very attractive target class for therapeutic 

interventions in many disease states such as cancer, diabetes, inflammation, and 

arthritis.11 Accordingly, targeting the protein kinases could be used successfully in 

disease therapy3, 6, 11, 12 with over a hundred different protein kinase inhibitor already 

entered clinical trials.13 

 
 

Figure 1: Protein phosphorylation (taken from Ref.5). 
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1.2.1 Protein Kinase Groups 

The protein kinases are generally classified depending on the receiving amino acid of 

their substrates into serine/threonine or tyrosine or dual substrate kinases.14 Also, the 

eukaryotic protein kinase superfamily could be split into two groups: “conventional” 

(ePK) and “atypical” protein kinases (aPKs). The largest group are the ePKs which have 

been further sub-classified into 8 groups by examining sequence similarity between 

catalytic domains, the presence of accessory domains, and by considering any known 

modes of regulation15 (Figure 2)8. 

 

Figure 2: Conventional protein kinase groups (taken from Ref.8) 

1.2.1.1 Conventional Protein Kinases 

The 8 ePK groups are:15 

i) AGC: Named after the Protein Kinase A, G, and C families (PKA, PKC, PKG).16, 

17 

ii) CAMK: Best known for the Calmodulin/Calcium regulated kinases (CAMK) in 

CAMK1 and CAMK2 families, this also has several families of non-calcium 

regulated kinases.17, 18 

iii) CK1: Casein kinases are named after the use of casein as a convenient substrate 

for experimental examination of kinase activity. The CK1s represent a 

typically small but essential ePK group found in all eukaryotes.19  

iv) CMGC: The CMGC including cyclin-dependent kinases (CDKs), mitogen-

activated protein kinases (MAP kinases), glycogen synthase kinases (GSK) 

and CDK-like kinases (CLK) are an essential and typically large group of 

kinases found in all eukaryotes.20-23 

v) RGC: Receptor Guanylate Cyclases. This small group contains an active 

guanylate cyclase domain, which generates the cGMP second messenger, and 
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a catalytically inactive kinase domain, which appears to have a regulatory 

function.24 

vi) STE: The STE group includes many protein kinases involved in MAP kinase 

cascades, transducing signals from the surface of the cell to the nucleus.17, 25 

vii) TK: Tyrosine Kinase (TK) group members phosphorylate tyrosine residues 

specifically and so are different from dual specificity kinases which 

phosphorylate serine/threonine as well as tyrosine.26, 27 

viii) TKL: Tyrosine kinase-like kinases are serine-threonine protein kinases named 

so because of their close sequence similarity to tyrosine kinases.28, 29 

ix) Other: This group consists of several families, and some unique kinases that are 

clearly ePKs but do not fit into the other ePK groups. 

1.2.1.2 Atypical Protein Kinases 

The aPKs are a small set of protein kinases that do not share clear sequence 

similarity with ePKs. To date, four groups of aPKs have been shown to display protein 

kinase activity,15 and these groups are:6, 11 

alpha,30 PIKK (phosphatidyl inositol 3-kinase-related kinases),31 PDHK (pyruvate 

dehydrogenase kinases)32 and RIO (right open reading frame).33 

1.2.2 Protein Kinase Inhibitors 

Protein kinases have now become the second most important group of drug targets, 

after G-protein-coupled receptors, and this increased the interest in developing orally 

active protein kinase inhibitors.11 

Small-molecule inhibitors of protein kinases typically prevent either 

autophosphorylation of the kinase or subsequent phosphorylation of other protein 

substrates.13 Protein kinases have well formed binding sites for adenosine triphosphate 

(ATP), the phospho-donor for the phosphorylation of protein substrates, and this 

contributed to their high druggability.13 In the beginning, the discovery of small 

molecules that inhibit protein kinase through targeting the ATP site was criticized 

regarding their ability to achieve cellular potency and target selectivity.13 The first 

argument was that the inhibitor at the ATP binding site would not be able to potently 

block the protein kinase activity and signal transduction due to the ineffective 

competition against the high intracellular ATP concentration.13 This was based on the 

fact of the great intracellular concentration of ATP (around 1-2 mM), whereas most 

protein kinases have affinities for ATP in the 10-300 µM range.13 The second argument 

was the difficulty of development of a selective ATP-competitive inhibitor due to the 

overall sequence homology for the amino acid residues within the kinase ATP binding 

sites.13 

Development of the first protein kinase inhibitors took place in the early 1980’s and 

they were naphthalene sulphonamides such as N-(6-aminohexyl)-5-chloro-1-

naphthalenesulphonamide (W7).11, 34 These derivatives were already developed as 
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antagonists of the calcium-binding protein calmodulin, and were also found to inhibit 

several protein kinases at higher concentrations.11 It was seen that replacing the 

naphthalene ring by isoquinoline caused the derivatives to lose their calmodulin 

antagonistic activity, while retained the protein kinases inhibitory activity such as in 

compound “H8” (Figure 3).11 Fasudil hydrochloride (Figure 3) is an 

isoquinolinesulphonamide that progressed to human clinical trials in the early 1990s 

although being of relatively low potency and inhibit several protein kinases.11  

 
Figure 3: Isoquinoline derivatives as protein kinase inhibitors 

The bisindolyl maleimide derivatives have been of great interest after the discovery 

that staurosporine (Figure 4)13 was a nanomolar inhibitor of PKC.11, 35 Staurosporine is a 

natural antifungal agent that is produced by bacteria of the genus Streptomyces. 

Although, several bisindolyl maleimides were shown to lack specificity, and inhibited 

several other protein kinases,36, 37 yet some have progressed to human clinical trials.11 

Other staurosporine-derived kinase inhibitors that are in clinical testing include 7-

hydroxystaurosporine (UCN-01; Figure 4) and N-benzoyl staurosporine (PKC412; Figure 

4).11, 13  

Other examples of natural products that are potent inhibitors of protein kinases 

include the alkaloid the flavonoid rohitukine,13, 38 the purine olomoucine,13, 39 and their 

structurally related cyclin-dependent kinases inhibitors flavopiridol13, 40 and R-

roscovitine13, 41 (Figure 4).13 
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Figure 4: Natural product based protein kinase inhibitors.13 

To date, thirteen small-molecule therapeutic protein kinase inhibitors have been FDA 

approved within the US4 (Figure 5). All are indicated for the treatment of oncological 
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diseases. These compounds can be generally classified depending on the protein kinase 

that they target which include BCR-ABL fusion protein kinase (an oncogene for chronic 

myeloid leukemia), EGFR (human epidermal growth factor receptor tyrosine kinases),13 

VEGFR (vascular endothelial growth factor receptor tyrosine kinase), ALK (anaplastic 

lymphoma kinase), B-Raf and  JAK (Janus kinase) (Table 1).4 Some of the compounds 

also inhibit other kinases in addition to those described above (Table 1). Understanding 

of how these drugs bind to their target kinases has facilitated their discovery and many 

other kinase inhibitors in clinical development.13 

Figure 5: US FDA-approved, small-molecule protein kinase inhibitors. 

Table 1:
 US FDA-approved direct kinase inhibitors by competing for the ATP-binding 

pocket.4 

Agents Target for therapeutic activity US FDA-approved indication 
Imatinib BCR–ABL, PDGFR and KIT CML and GIST 
Dasatinib BCR–ABL CML 
Nilotinib BCR–ABL CML 
Gefitinib EGFR Non-small cell lung cancer 
Erlotinib EGFR Non-small cell lung cancer and pancreatic cancer 
Lapatinib EGFR and ErbB2 Breast cancer 
Sunitinib VEGFR2, PDGFR and KIT Renal cell carcinoma, GIST, pancreatic cancer 
Sorafenib  VEGFR2 and PDGFR Renal cell carcinoma and hepatocellular carcinoma 
Pazopanib VEGFR2, PDGFR and KIT Renal cell carcinoma 
Crizotinib ALK/c-MET Non-small cell lung cancer 
Vemurafenib BRAF Melanoma 
Vandetanib VEGFR-2, EGFR, and RET  Medullary thyroid cancer 
Ruxolitinib JAK1/JAK2 Myelofibrosis 
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1.2.3 Classification of Protein Kinase Inhibitors 

Small-molecule protein kinase inhibitors can be categorized into three classes 

according to their binding mode: type I, type II, and type III.42-45 

1.2.3.1 Type I inhibitors:  

Type I inhibitors are ATP-competitive compounds targeting the ATP binding site in 

the active form of a kinase. Type I inhibitors bind to the hinge region through at least one 

hydrogen bond donor or acceptor group (Figure 6).45, 46 Although, type I inhibitors 

usually face problems to achieve high selectivity yet some selectivity is gained by 

targeting the hydrophobic back pocket whose access is controlled by the gatekeeper 

residue. Examples of marked drugs which are type I inhibitors include gefitinib, erlotinib, 

sunitinib, and dasatinib (Figure 5).45  

 
Figure 6: (a) Pharmacophore model for type I inhibitors shown with ATP in the PKA binding site (PDB 
1ATP) (taken from Ref.45). (b) Schematic representation showing the binding of ATP to the hinge region 

and the ATP binding site divided into subregions (taken from Ref.44).  

1.2.3.2 Type II inhibitors:  

Type II inhibitors are ATP-competitive compounds which also target the ATP 

binding site but in the inactive form of a kinase. Binding to the hinge region in type II 

inhibitors is not essential.47 All type II compounds target an extended hydrophobic deep 

pocket created by conformational changes in the protein which is not available in an 

activated kinase (Figure 7).45  

Type II inhibitors can achieve higher selectivity than type I compounds, since the 

deep pocket is only known so far in few kinases. A type II inhibitor can act as type I 

inhibitor in another kinase, such as with imatinib which acts as a type II inhibitor of Abl 

kinase, and as a type I inhibitor for Syk.48 Examples of marked drugs which are type II 

inhibitors include imatinib, sorafenib, and nilotinib (Figure 5).45 

(a) (b) 
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Figure 7: Pharmacophore model for type II inhibitors shown with Imatinib (Figure 5) in the binding site of 

Abl kinase (PDB 1IEP) (taken from Ref.45).  

1.2.3.3 Type III inhibitors:  

Type III inhibitors are allosteric inhibitors which are not ATP-competitive since they 

bind to binding sites that are far from the ATP binding site. Type III inhibitors bind to the 

kinase despite its activation state and don’t target the hinge region.45 High selectivity and 

potency is expected with type III inhibitors due to the high specificity of the allosteric 

sites for a certain kinase. Only few examples of type III inhibitors are known since only 

few kinases may have allosteric binding sites.45, 49-51
 

1.3 Protein Tyrosine Kinases 

Protein tyrosine kinases (PTKs) are a class of enzymes involved in tyrosine 

phosphorylation through the transfer of the γ-phosphate of ATP to tyrosine residues on 

protein substrates.52, 53 PTKs activity is essential in multiple cellular signaling pathways 

that are responsible for critical functions in the cell such as growth, proliferation, 

migration, synthesis and apoptosis.52 Tyrosine phosphorylation modulates enzymatic 

activity and creates binding sites to be engaged in downstream signaling proteins. The 

cells include two classes of PTKs which are the transmembrane receptor PTKs and the 

nonreceptor PTKs.53 

1.3.1 Receptor tyrosine kinases (RTKs) 

Receptor tyrosine kinases (RTKs) are cell surface glycoproteins which play an 

important role in transmitting the extracellular signal to the cytoplasm.52, 53 RTKs require 

binding of their cognate ligands to be activated.53 The activation takes place on two 

stages; the first stage involves a dimerization of the receptor leading to conformational 

changes.  This is followed by tyrosine phosphorylation on the receptors themselves 

(autophosphorylation).52 These processes will further initiate a cascade of 

phosphorylations which activate successive proteins until the signal reaches the nucleus 

leading to the expression of the specific genes52 (Figure 8)54. Several fundamental 

cellular processes are controlled by RTKs including cell cycle, cell migration, cell 
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metabolism and survival, as well as cell proliferation and differentiation.55 The RTK 

family includes the receptors for insulin and for many growth factors, such as epidermal 

growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor 

(PDGF), vascular endothelial growth factor (VEGF), and nerve growth factor (NGF).53  

RTKs can be divided into 20 subfamilies sharing a domain for the catalytic tyrosine 

kinase function.56, 57 In all the RTKs, the extracellular portion is separated from the 

intracellular tyrosine kinase region through a single transmembrane domain.57, 58  
 

 
Figure 8: Activation of the receptor tyrosine kinase. Figure shows the dimerization, autophosphorylation 

and then initiation of signaling cascades to finally produce a cellular response (taken from Ref.54).  

1.3.2 Nonreceptor tyrosine kinases (NRTKs) 

The NRTKs are cytoplasmic enzymes which are essential components of the 

signaling cascades triggered by cell surface receptors such as RTKs, G protein-coupled 

receptors and immune system receptors. NRTK’s includes several kinases such as Src, 

the Janus kinases (JAKs) and Abl.53 

1.4 Epidermal growth factor receptor (EGFR) family 

The epidermal growth factor receptor (EGFR) family is a RTK which comprises four 

members: the EGFR/ErbB1 (the first molecularly cloned RTK),59 HER2/ErbB2, 

HER3/ErbB3 and HER4/ErbB4. All receptors have a two cysteine-rich domains 

extracelluarly and a tail of long C-terminal having nearly all the autophosphorylation 

sites in the intracellular portion.57 EGFR family receptors can form various homo- or 

heterodimers, depending on the activating ligand, to generate a complex signal 

transduction network.57, 60, 61 Examples of EGF-related growth which activate the EGFR 

family include EGF, transforming growth factor-α (TGFα), epiregulin (EPR), betacellulin 
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(BTC), heparin-binding EGF-like growth factor (HB-EGF), amphiregulin (AR) and the 

large family of alternatively-spliced neuregulins.57, 62 The different growth factors have 

diverse binding specificities and affinities to EGFR, HER3 and HER4, with no identified 

ligand for HER2 yet57 (Figure 9)63. 

 
Figure 9: The 4 members of the ErbB receptor family with their activating ligands. Green and red arrows 
show the possible different dimers formed between the family members during the activation (taken from 

Ref.63).  

1.4.1 EGFR 

The epidermal growth factor receptor (EGFR) which is also known as HER-1 or 

ErbB-1, was the first member of the EGFR family.64 EGFR is involved in signal 

transduction pathways concerned with various processes, including cell cycle 

progression, inhibition of apoptosis, tumor cell motility and invasion65 (Figure 10)66.  

EGFR is a glycoprotein of 170-kd and with a normal expression range in cells from 

40,000 to 100,000 receptors per cell.64, 67 EGFR tyrosine kinase function is present in the 

intracellular domain, alongside EGFR also consists of an extracellular domain and a 

transmembrane region.64 The most important ligands that bind and activate the EGFR are 

the epidermal growth factor (EGF) and the transforming growth factor–α. Other ligands 

which also bind to EGFR include amphiregulin, heparin-binding EGF, and betacellulin.64, 

68 Receptor homo- or heterodimerization at the cell surface results from ligand binding 

with EGFR, this is followed by internalization of the dimerized receptor and then 

autophosphorylation of the intracytoplasmic EGFR tyrosine kinase domains.64, 69 

Phosphorylated tyrosine kinase residues will then stimulate intracellular signal 

transduction cascade by acting as binding sites for signal transducers and activators of 

intracellular substrates such as Ras.64  
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Figure 10: Schematic representation showing the involvement of EGFR in the transmission of signals 

regulating cell growth and metastasis. Green boxes indicate the different methods for inhibition of EGFR 
either by mAb “monoclonal antibodies” or TKI “Tyrsoine kinase inhibitors” (taken from Ref.66).  

1.4.1.1 EGFR mutation  

It was discovered in 2004 that a group of somatic mutations take place in the EGFR 

kinase domain which results in higher possibility of response to TKIs which was 

observed in a subpopulation of NSCLC patients.70-72 

Patients with EGFR mutations was found to respond favorably to EGFR TKIs beside 

having clinically remarkable results, with rapid, nearly complete reduction of their 

cancers. EGFR mutations were more common in TKI-responsive NSCLC patients, i.e., 

females, never-smokers, Asians, and those with adenocarcinoma histology.70, 73, 74 

Nearly 90% of the EGFR mutations observed were of either types:70-72, 75, 76 (Figure 11) 

1) small, inframe deletions in exon 19 clustered around the catalytic site of the receptor. 

2) the single point mutation L858R, which lies within the TK activation loop in exon 21.  

Mutations were seen to preserve the ligand dependence of receptor activation while 

modifying the downstream signaling pattern. Whereas, the antiapoptotic downstream 

activation signals (via Akt) is greatly enhanced in EGFR mutated cells with minimal 

effect on proliferative signals (via MAPK/ERK).70, 77, 78  

Enhanced inhibition of biochemical signaling by small molecule TKIs is seen in 

NSCLC cells with mutated EGFR than with wild type receptors.70, 78, 79 This is because 

the mutations taking place in critical residues of the catalytic domain near the ATP 

binding site, causes change in the physical structure and enhanced drug binding.70, 80 

Clinical significance appears since low doses of TKIs are needed for complete 

suppression of the mutated EGFR signaling, in contrast to the wild type receptor which 

needs higher plasma drug levels.70    
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Figure 11: Different EGFR kinase domain mutations in NSCLC with frequencies indicated (taken from 

Ref.81).  

Other reported rare types of mutations in EGFR TK domain, which is not clear yet if 

they are TKI-sensitizing as the common types, include exon 20 insertions, exon 18 point 

mutations, and exon 20 point mutations. On the contrary, at least some of the minor 

mutations are associated with resistance to TKI agents.70, 82, 83 

The mechanism by which EGFR mutations cause rapid and remarkable responses to 

EGFR TKI therapy include at least two hypotheses. 

1) The “oncogene addiction” hypothesis states that the cancer with mutated receptor and 

constantly transducing high levels of antiapoptotic (prosurvival) signals, become solely 

dependent on this signaling and loses its flexibility to adapt to signaling via other parallel 

pathways.70, 84, 85 Accordingly, sudden interruption of EGFR signaling by TKIs for EGFR 

mutated cells that are “addicted” to EGFR prosurvival signaling, causes massive cell 

death.70 

2) The “oncogenic shock” hypothesis states that some quantity of EGFR-generated 

proapoptotic signals are still present even if prosurvival signals dominate in cells.70, 86 

Accordingly, both signals are inhibited when TKIs block the receptor signaling. Since the 

prosurvival signals decay much more rapidly than proapoptotic signals, a proapopotic 

signaling predominate temporarily leading to irreversible apoptotic cascade causing cell 

death.70 

1.4.1.2 EGFR resistance  

Most of the patients responding to EGFR TKI treatments will eventually develop 

resistance and suffer a clinical relapse.  Nearly 50% of the acquired TKI resistance cases 

are attributed to a secondary EGFR mutation, the point mutation T790M in exon 20 at the 

“gatekeeper” threonine residue.70, 82, 87 Mutations at the gatekeeper threonine residue 

usually lead to kinase-targeted drug resistance.70, 88 In the T790M EGFR mutation, there 

is an exchange of a threonine residue by a bulkier methionine residue which causes steric 
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hindrance and blocking of the ATP-catalytic pocket for the binding of gefitinib or 

erlotinib (Figure 12).89  

 
Figure 12: Crystal structure of wild type EGFR complexed with the reversible ATP competitive drug 

Erlotinib (PDB 1M17).90 (a) Show hydrogen bonds (dotted lines) formed between the quinazoline core of 
the drug and the enzyme. (b) Modeled drug resistance mutation T790M (magenta) showing steric clash 

with the drug. The T to M mutation prevented the formation of the water-mediated hydrogen bond between 
N3 of the quinazoline and the side chain (taken from Ref.89).  

A second mechanism of EGFR TKI resistance is the MET amplification which offers 

a comparable pathway for activation of intracellular proliferation signals and so can 

prevent the blocking effect of the EGFR TKI.70, 91 Other mechanisms proposed to be 

involved in developing TKIs resistance include signaling via parallel redundant 

pathways, constitutive activation of downstream mediators, altered receptor trafficking, 

efflux of the drug from the cell, and mutation of the drug target itself.70, 92, 93 
 

1.4.1.3 EGFR and cancer 

EGFR overexpression was observed in many solid tumors such as breast cancer (up 

to 2 x 106 EGFR molecules per cell),64, 94, 95 head-and-neck cancer, non–small-cell lung 

cancer (NSCLC), renal cancer, ovarian cancer, and colon cancer.64, 96 Smaller percentage 

of bladder cancers, pancreatic cancers, and gliomas were also found to overexpress 

EGFR.64, 68 EGFR overexpression results in more aggressive growth and invasiveness 

characteristics of cells due to intense signal generation and activation of downstream 

signaling pathways.64, 97 EGFR overexpression is found in about 40-80% of the NSCLC 

cases.64 It is also reported that 84% of squamous cell tumors,69 68% of large cell and 65% 

of adenocarcinomas are positive for EGFR.64 

Generally, EGFR overexpression is associated with late stage of disease progression 

and is usually correlated with high metastatic rate, poor tumor differentiation, and 

increased rate of tumor proliferation.57, 64 98, 99 The main mechanism leading to EGFR 
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overexpression is the gene amplification with more than 15 copies per certain tumor 

cell.57, 100 

Tumorigenic mutations can change the EGFR activity through receptor activation 

without ligand binding. Human cancer mutations have seen to cause EGFR deletions 

leading to change in the extracellular receptor ligand binding domain which result in a 

constantly active EGFR kinase function.57, 101 

Autocrine stimulation via growth factor loops is a potent mechanism for constitutive 

EGFR activation in several cancers. TGFα is the main ligand involved in the activation of 

the autocrine growth receptor.57, 102, 103 Glioblastomas and squamous cell carcinomas of 

the head and neck were found to coexpress the TGFα and EGFR which is correlated with 

poor prognosis.57, 104 

EGFR transactivation and EGFR-related signaling in cancer cells was found to take 

place through G protein-coupled receptor (GPCR)-induced cleavage of EGF-like growth 

factors.57, 105 This takes place through a metalloprotease activation by GPCR stimulation 

leading to the cleavage of a transmembrane EGF-like ligand precursor allowing EGFR 

transactivation by the released growth factor.57, 106  

1.4.1.4 EGFR as a target for anti-cancer therapies 

EGFR is considered as an excellent target for anti-cancer therapy since abnormal 

EGFR signaling is implicated in many cancers and appears to be correlated with poor 

prognosis.57, 107 Inhibition of the oncogenic EGFR tyrosine kinase activity takes place by 

two main approaches. The first one is the use of monoclonal antibodies “mabs” which is 

directed to block the extracellular receptor domain. The second approach is the use of 

small-molecule compounds which inhibit the intracellular EGFR tyrosine kinase activity 

(TKI; also known as “nibs”) through interacting with the ATP-binding domain52, 64 

(Figure 10). 

Cetuximab (IMC-C225) is an example of anti-EGFR monoclonal antibody which 

binds to the EGFR and prevents the receptor tyrosine kinase activation, thus causing an 

antiproliferative effect on several cancer cells including pancreatic, renal and breast 

carcinomas.57, 64, 108, 109 The most important small-molecule EGFR inhibitors that block 

EGFR activation are ATP analogues of the quinazoline and pyridopyrimidine family.57, 

110, 111 Gefitinib (Iressa) is an example of a quinazoline derivative showing significant 

anti-tumor effect on human breast and colon cancer cells.57, 112  

1.4.1.5 Development of small molecule EGFR Inhibitors 

In 1995 a SAR study was conducted on a series of compounds derived from ten-

membered nitrogen-containing bicyclic scaffolds and it concluded that the quinazoline 

nucleus was the best scaffold for developing EGFR inhibitors.113, 114 It was found that any 

modification in the nitrogen substitution pattern in the bicyclic ring resulted in less active 

compounds, especially when the quinazoline (I) is replaced by a quinoline (II) ring which 

resulted in 200-fold drop in affinity (Figure 13).113, 114 This was explained by a hypothesis 

based on modeling studies that there is water-mediated hydrogen bond formed between 
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the N3 of the quinazoline and the side chain of the gatekeeper Thr790 residue of 

EGFR113, 115 (Figure 14a). This provided a rationale for the importance of the N3 of the 

quinazoline core for activity and helped in the development of another series of 

compounds where the quinazoline N3 is replaced by C-CN group (III, Figure 13).113, 116 

This modification replaced the hypothetical water molecule and acted as a hydrogen bond 

acceptor for the Thr790 hydroxyl group (Figure 14b).113  

 
Figure 13:113 Replacing the quinazoline nucleus in I by the quinoline nucleus in II resulted in 200-fold 

drop in affinity of the EGFR inhibitory activity. While replacing the quinazoline II by a 3-cyanoquinoline 
III results in equipotent compounds.  

 

 
Figure 14: Binding modes of 4-anilinoquinazoline- and 3-quinolinecarbonitriles-based EGFR inhibitors. 
(a) Proposed binding mode of a 4-anilinoquinazoline to the ATP-binding site of EGFR showing hydrogen 

bonding interactions (dotted lines) of the inhibitor with the hinge region and via a mediated water molecule 
(W). (b) Binding mode of 3-quinolinecarbonitriles to displace the proposed water molecule and to form a 

direct hydrogen bond to the side chain of gatekeeper residue (Thr790). (c) The irreversible inhibitor 
Neratinib in complex with drug resistant EGFR-T790M (PDB code: 2JIV). The compound forms a 

covalent bond with the side chain of Cys797 of the ATP pocket (taken from Ref.113).  

A second generation of EGFR TKIs has then been developed to overcome the 

resistance caused by T790M mutation and other acquired resistance mechanisms to 

gefitinib and erlotinib. At least one of two strategies is employed by the second 

generation EGFR TKIs to achieve better effectiveness over the first generation 

compounds which include: 

1) Introduce in the compounds certain groups that are able to form covalent, irreversible 

bonds with EGFR which will prolong the inhibition of EGFR signaling resulting in an 

enhanced efficacy.70 Cells with acquired resistance to first generation TKIs were 

effectively killed by using the irreversible TKIs.70, 117  
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2) The use of drugs able to target several kinases and block multiple signaling pathways 

in the cancer cell by using either a combination of agents or a single multitargeted drug.70, 

118 Cells are flexible in having a variety of possible signal transduction routes but in the 

same time, this could help the appearance of resistant clones that could bypass the 

inhibited receptor in case of cancer cells treated with targeted anticancer agents.70, 117 

HER-2 and vascular endothelial growth factor receptor (VEGFR) are secondary targets 

combined with EGFR inhibition by novel NSCLC drugs.70 

1.5 NF-κB signaling in health and disease 

1.5.1 Introduction to NF-κB protein family 

Nuclear factor kappa beta (NF-κB) is a protein family consisting of five members of 

highly regulated dimeric transcription factors. The five proteins are Rel (c-Rel), RelA 

(p65), RelB, NF-κB1 (p50), and NF-κB2 (p52) and all of them share a common Rel 

homology domain (RHD)119 (Figure 15)120. NF-κB exists in an inactive form and are 

activated through homo-119, 121 and hetero-dimerization119, 122 in response to pro-

inflammatory stimuli such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-

1β).123 The active transcription factors are able to bind to DNA at specific promoter 

sequences.119 

The NF-κB nuclear translocation is blocked in the cytosol of unstimualted cells since 

the inactive dimers of NF-κB are held in complex with inhibitors of κB (IκB).119, 124 

Seven members of the IκB family are identified which are IκBα, IκBβ, Bcl-3, IκBε, IκBζ 

and the precursor proteins p100 and p105 (Figure 15)120. Post translational processes of 

the large proteins p105 and p100 results in the formation of p50 and p52 proteins 

respectively.119 The release and translocation of active NF-κB into nucleus takes place 

when an outside signaling induces IκB degradation, phosphorylation, and 

polyubiquitination123, 125-129 (Figure 16). The actively translocated NF-κB transcribes then 

the sets of genes according to the activated NF-κB dimer.130  

NF-κB play critical roles in response to inflammation and in immunological 

reactions131-134 as well as being involved in regulating cell proliferation, apoptosis and 

migration.135-138  

On the other hand, several inflammatory disorders, such as bowel disease, psoriasis, 

asthma, rheumatoid arthritis, and sepsis can result from the excessive activation of NF-

κB.123, 139-141 In addition, the constitutive activation of NF-κB has been involved in 

cancer.119 
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Figure 15: The mammalian protein families of NF-κB, IκB and IKK with their relevant domains and 
alternative nomenclatures (provided in parenthesis). The precursor proteins p100 and p105 function as 

family member of both IκB and NF-κB (after proteasomal processing) (taken from Ref.120).  

1.5.2 The NF-κB signaling pathways 

Activation of NF-κB can take place mainly through two signaling pathways known 

as the canonical pathway (or classical) and the non-canonical pathway (or alternative 

pathway)142-145 depending on whether activation involves IκΒ degradation or p100 

processing.146 Upon stimulation, both pathways will induce phosphorylation of the IκB 

kinase (IKK) complex, consisting of two catalytically active kinases, IKKα and IKKβ, 

and the regulatory subunit IKKγ (NEMO) “NF-kappa B essential modulator”. This is 

followed by the phosphorylation of IκB proteins which are targets for ubiquitination and 

proteasomal degradation, leading to the translocation of the NF-κB dimers to the nucleus 

to stimulate the expression of the target gene (Figure 16).147 Post translational 

modifications (PTMs) further regulate transcriptional activity of nuclear NF-κB.147, 148  

In the canonical pathway, which is the predominant NF-κB signaling pathway,146 upon 

stimulation by binding of certain ligands, signaling pathways will cause the activation of 

the IKKβ which leads to the phosphorylation, polyubiquitination and degradation of IκB 

proteins.147, 148 

In the non-canonical pathway, which operates mainly in B-cells,146 activation of NF-

κB through this pathway occurs by fewer stimuli such as BAFF (B cell activating factor) 

and lymphotoxin-β.147, 148 Upon stimulation, the protein kinase NIK is activated which in 

turns activate the IKKα complex through phosphorylation which then phosphorylates 

p100 causing its processing and the liberation of p52/RelB active heterodimer.147, 148 
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Figure 16: The canonical and non-canonical NF-κB pathways. In the canonical pathway, the IKK 

complexes containing NEMO are activated which in turn leads to the phosphorylation and degradation of 
IκBα releasing NF-κB dimers (including p65/p50). In the non-canonical pathway, NEMO-independent 

activation of IKKα through the kinase NIK. IKKα induces the phosphorylation and processing of p100 to 
p52 resulting in the activation of predominantly p52/RelB complexes.120 (diagram taken from Ref.147).    

1.5.3 The Ubiquitin/Proteasome System (UPS) 

Addition of ubiquitin (Ub) and ubiquitin-like (Ubl) modifiers to proteins helps to 

modulate function and is considered a key step in protein degradation, epigenetic 

modification and intracellular localization.149 Ubiquitination regulates several steps in the 

NF-κB pathway, where the ubiquitin–proteasome pathway plays a crucial role in both the 

canonical and non-canonical pathways of NF-κB activation. Ubiquitin targets IκΒ for 

degradation, processing of NF-κΒ precursors, p105 and p100, by proteasome to the 

mature forms and activation of the IκB kinase (IKK).146 In addition, recent studies 

revealed that ubiquitination play a key role in activating protein kinases in the NF-κΒ 

pathway through a degradation-independent mechanism.146, 150, 151  

Ubiquitination is a reversible covalent modification that is catalysed by three 

enzymatic steps. In the first step, an ATP-dependent reaction takes place where the 

ubiquitin is activated by a ubiquitin-activating enzyme (E1). In the second step, 

transferring of the activated ubiquitin to a ubiquitin-conjugating enzyme (E2 or UBC) 

takes place to form an E2-Ub thioester. Finally, the ubiquitin-protein ligase (E3) mediates 

the attachment of ubiquitin to a target protein through an isopeptide bond formed 
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between the ubiquitin C terminus and the ε-amino group of a lysine residue in the target 

protein146 (Figure 17)152. Ubiquitin contains seven lysine residues that can be attached to 

other ubiquitins to form a polyubiquitin chain.146 A polyubiquitin chain that targets a 

protein for degradation by the proteasome is linked mainly through Lys 48 and Lys 11 of 

ubiquitin. While, Lys-63-linked polyubiquitin chains function as scaffolds to assemble 

signaling complexes participating in diverse cellular processes ranging from DNA repair 

to activation of NF-κB signaling (Figure 17).152 

 
Figure 17: The ubiquitin/proteasome system (taken from Ref.152).  

1.5.4 Deubiquitinating enzymes (DUB) 

Protein ubiquitination and subsequent degradation by the proteasome require the 

participation of both ubiquitinating enzymes and deubiquitinating enzymes.153 

Deubiquitinating enzymes (DUBs) and Ubl-specific proteases (ULPs) are proteases that 

counteract Ub/Ubl ligases and serve to deconjugate the Ub/Ubl-modified substrates.149 

The DUBs encoded by the human genome are approximately 100 and can be grouped 

based on their sequence homology within the catalytic domain into five classes. These 

include 4 classes of cysteine proteases: the Ubiquitin C-terminal Hydrolases (UCHs; 4 

members), the Ubiquitin Specific Proteases (USPs; 57 members), the Machado Joseph 

Disease proteases (MJD; 4 members), and the Otubain proteases (OTU; 13 members). 

The fifth class is composed of the JAB1/MPN/Mov34 enzymes (JAMM; 8 members), 

which are metalloproteases.154 DUBs function at multiple steps in the ubiquitin system: 

(1) DUBs are required to generate free Ub monomers from ubiquitin precursors, (2) 

DUBs counter the action of ubiquitin ligases, (3) DUBs function at the proteasome to edit 

ubiquitin chains, to remove ubiquitin prior to substrate degradation in the proteasome, 

and to recycle monomeric ubiquitin, and (4) DUBs function at the MVB to promote 

recycling of monomeric ubiquitin by removing ubiquitin prior to internalization of 

substrates into the MVB154, 155 (Figure 18)154.  
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Figure 18: DUBs function at multiple steps in the ubiquitin system (taken from Ref.154).  

Recently, several studies revealed the involvement of deubiquitinating enzymes in 

cancers as well as in other diseases. Several types of deubiquitinating enzymes were 

found to be upregulated in cancer cells.153 In addition, certain DUBs mutation in cases of 

human cancers demonstrates their involvement as true oncogenes and tumor 

supressors.156 

The ubiquitination-proteasome pathway play vital role in cancer development and 

progression due to its proteolytic involvement in the regulation of protein turnover.153 It 

has been reported that the ubiquitination-proteasome pathway play a critical role in the 

pathogenesis of breast cancer by affecting the downregulation of growth factor receptors, 

such as EGFR/ErbB-1, Neu/ErbB-2, and ErbB- 3/HER3.153, 157 Also, the Nuclear factor-

kappa B (NF-κB) plays a pivotal role in many aspects of tumor development, 

progression, and therapy, and its activation relies primarily on the ubiquitination-

mediated degradation of its inhibitor IκB.153, 158 

1.5.5 NF-κB role in cancer 

NF-κB-dependent transcription regulates key cellular processes such as cell growth, 

proliferation, and survival, therefore dysregualtion of NF-κB pathways could result in 

cancer.159 It has been reported that some cancer cells such as breast, liver, prostate, 

pancreatic and gastric cancer have been found to involve constitutive activation of NF-

κB.135, 160-164 

The role of NF-κB in cancer is thought to be related to the transcription control of 

key antiapoptotic genes that encode B-cell lymphoma-2 (Bcl-2) and inhibitor of apoptosis 

(IAP) family proteins.119, 165 These antiapoptic genes upon overexpression can prevent the 

tumor cells from undergoing programmed cell death and as a result contribute in 
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tumorigenesis and resistance to therapies.119, 166 In addition, NF-κB is also involved in the 

regulation of proliferation through cyclins and growth factors.159 

1.5.6 NF-κB inhibition 

Inhibition of the NF-κB activity is through several strategies which could be direct or 

indirect. Direct strategies are to prevent the function of one or more of the NF-κB family 

proteins by inhibitors which may prevent the NF-κB family members dimerization or 

DNA binding. Indirect strategies include the inhibitors that affect NF-κB function such as 

molecules upstream of NF-κB e.g. IKK, cytokines and cytokine receptors or prevent NF-

κB degradation, such as proteasome inhibitors.119, 167 

Certain chemical classes such as the triazine, coumarin, and quinazoline are known 

to possess an NF-κB inhibitory activity which is predicted to be due to preventing DNA 

binding through direct interaction with p50.119, 168-170 

1.5.7 Small molecules as NF-κB inhibitors 

Several compounds have been reported to have inhibitory activities toward NF-κB-

mediated transcriptional activation. Low-molecular-weight compounds, such as MG-132 

(1),171, 172 BAY 11-7085 (2),173 and an indane derivative (3), as well as natural products, 

such as caffeic acid phenylethyl ester (4)174 and the sesquiterpene lactone helenalin 

(5),175, 176 have been shown to inhibit NF-κB activation (Figure 19).170 This was followed 

by Tobe et al.170 reporting quinazoline derivatives (6) as new structural class of NF-κB 

activation inhibitors.170 

 

Figure 19:170 Some low molecular weight compounds shown to inhibit NF-кB activation. 

1.6 Combination Therapy for cancer 

Targeted anticancer therapy which specifically targets key molecules of cancer cells, 

was successfully developed with an aim of achieving tumor selectivity and limiting non-

specific toxicities.65, 177  

However, an important overall limitation of target-based monotherapy is that the 

strict specificity of agents used can be overcome by alternative hyper-activated survival 

pathways in cancer cells.177, 178 Accordingly, monotherapy treatment could sometimes be 
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hindered by patient insensitivity and development of resistance.177, 179 Therefore, research 

now also supports combinations of agents as significant cancer treatments to overcome 

resistance and synergistically produce a greater and more durable degree of response for 

more cancer patients.177, 180-182 

1.7 Link between EGFR and NF-κB pathway 

A number of studies demonstrated a link between the EGFR receptors and the NF-

κB activation pathway in different types of cancer.183-185 The activation of EGFR 

receptors leads to the activation of downstream signalling cascades including the 

RAS/extracellular signal regulated kinase (ERK) pathway, the phosphatidylinositol 3-

kinase/AKT (PI3K/AKT) pathway and the Janus kinase/Signal transducer and activator 

of transcription (JAK/ STAT) pathway (Figure 20).186 Accordingly, it has been reported 

that EGFR can activate NF-κB through the PI3K/Akt pathway which leads to the 

phosphorylation of IκBα.184 

It has also been reported that using a combination of specific inhibitors of NF-κB 

and the EGFR family receptors blocks proliferation synergistically at concentrations 

which are ineffective when used individually.183, 187 This significantly demonstrates the 

major advantage that would be achieved in the cancer therapy through inhibiting both 

pathways simultaneously. 

 
Figure 20: Activation of the the EGFR receptors leads to the activation of downstream signalling cascades 

which involves the NF-κB activation (taken from Ref.186). 
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2 Outline of this thesis 

2.1 Scientific goal 

Targeted cancer therapy is a type of cancer treatment which interferes with specific 

targeted key molecules needed for tumorigenesis, cancer progression and metastasis. 

Targeted therapy was applied to decrease the side effects on the normal cells than the 

traditional chemotherapy. Epidermal growth factor receptor was among the first receptors 

proposed for targeted cancer therapy as being involved in cancer cell proliferation and 

found to be overexpressed in several types of cancer. Although several EGFR inhibitors 

such as Gefitinib and Erlotinib have been clinically approved in the treatment of cancer, 

yet several limitations such as the development of resistance due to mutations or being 

originally insensitive may hinder their application. 

It is also generally accepted that simultaneous blocking of two major signaling 

pathways would have synergistic anti-tumor effects and might decrease the development 

of mutations. Accordingly, co-application of EGFR inhibitors with other specific agents 

having identified complementary cancer pathways, such as NF-κB, would enhance the 

efficacy of clinically approved EGFR inhibitors even towards previously insensitive 

tumor cells. While co-administration of anti-tumor therapeutics has proven to be 

beneficial in several cases, yet could still suffer from certain limitations such as increased 

toxic side effects and individual pharmacokinetic properties of the drugs. Therefore, a 

single molecule with dual inhibitory activity is considered more beneficial and 

advantageous in treatment of several types of cancers. 

Accordingly, the main goal of this thesis was the development of new potent 

anticancer agents that could be effective against cancers that are originally insensitive or 

resistant to the clinically approved EGFR inhibitors. This was achieved through applying 

two general strategies. 

2.2 Working Strategy 

The first strategy (A) was to introduce structural modifications to the molecules 

which were expected to result in more potent EGFR inhibitors, especially towards the 

mutant EGFR. This strategy will help mainly to overcome the problem of cancers that 

have or develop resistance towards the EGFR inhibitors due to mutation.  

The second strategy (B) was through seeking additional target sites such as the NF-

κB signaling pathway besides the EGFR kinase activity. The resulting dual inhibitory 

activity would lead to the suppression of two major complementary signaling pathways in 

cancer cells at the same time. This would have significant clinical advantage in producing 

a synergistic potent anticancer activity towards several types of cancer that are originally 

insensitive or resistant to the clinically approved EGFR inhibitors. 
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A) The first strategy was applied by making structural modifications that were 

expected to result in enhanced activity towards the mutant EGFR. To begin, we started 

the modifications from the 6-substitued 4-anilinoquinazoline scaffold (I) which was 

known to possess a significant EGFR inhibitory activity. This first strategy involved two 

parts:  1) Variation of the position 4 substituents and the quinazoline nucleus. 2) 

Modification of the position 6 side chain. 

 

A.1) Modifications of the position 4 substituents and the main nucleus (Chapter 3.I) 

The first part of the work included the synthesis of irreversible inhibitors by adding 

to scaffold (I) a Michael acceptor group in position 6 (R2= acrylamide) while doing 

several modifications in position 4 (II). The acrylamide group was known to form a 

covalent interaction with the enzyme. The compounds were then tested against wild-type 

and mutant EGFR containing cancer cell lines. This part of the work also included testing 

the effect of replacing the main quinazoline core with the tetrahydropyridothieno[2,3-

d]pyrimidine nucleus (III). 

 

A.2) Modifications of position 6 side chain (Chapter 3.II) 

The second part of the work included the modifications in the position 6 side chain 

of the quinazoline while using a m-bromo aniline in position 4 (IV). These modifications 

were done with an intention to offer chances for extra possible interactions that could 

take place with the mutant enzyme  

2) Modifications of the 

position 6 side chain 

1) Modifications of the 

position 4 substituents 

and the quinazoline 

nucleus 
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B) The second strategy was to seek an additional inhibitory activity towards the NF-

κB pathway beside the EGFR kinase activity. To reach this goal we started by screening 

most of the previously synthesized compounds for an additional activity towards the NF-

κB using the U937 cells reporter gene assay. 

Hit identification, Hit optimization and trials for identification of the exact 

molecular target for the inhibition of the NF-κB pathway (Chapter 3.III) 

This part of the work included screening of most of our synthesized compounds for 

the NF-κB inhibitory activity which resulted in a Hit compound. The Hit compound was 

the benzylthiourea derivative (V) which showed a 97% inhibition at 10µM for the NF-κB 

pathway in addition to an IC50 of 17.2nM towards the EGFR enzyme. Further 

optimization was done to the Hit compound guided by the NF-κB activity. The 

optimization included 3 parts: 1) Modification of the substituents on the 4 anilino ring 

while keeping the benzylthiourea moiety. 2) Replacing the thiourea linker with a urea. 3) 

Modification of the benzyl part linked to the thiourea through removal of the methylene 

spacer, varying the substituents on the aromatic ring and the use of different heterocyclic 

rings. Several trials were also done to identify the molecular target for the inhibition of 

the NF-κB pathway which included testing against different kinases or steps involved in 

the pathway. 

 

 

 

 

3) Modifications of 

the benzyl part 

1) Modifications of 

the substituents 

on 4 anilino ring 

2) Replacing the 

thiourea with a urea 
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Paper I 

Abstract 

Herein, we describe new quinazoline and tetrahydropyridothieno[2,3-d]pyrimidine 

derivatives with an acrylamido group at positions 6 and 7 respectively; and with variable 

anilino, sulfonamido and cycloalkylamino substituents at position 4. The lipophilic and 

steric properties of the position 4 substituent seem crucial for activity. Several 

compounds were more active than gefitinib in inhibiting the wild type EGFR enzyme, the 

autophosphorylation of the mutant EGFR expressing cell line (H1975), and the growth of 

cell lines with wild type and mutant EGFR tyrosine kinase. Moreover, novel synthesis of 

the quinazoline nucleus from the formimidate derivative is described. 

Introduction 

Members of the epidermal growth factor receptor (EGFR) family were found to play 

a vital role in lung tumorigenesis being overexpressed in 40-80% of non-small cell lung 

carcinoma (NSCLC) tumors.1-4 A series of downstream signaling events results from 

EGFR activation and can mediate cancer cell growth, proliferation, motility, adhesion, 

invasion, apoptosis inhibition and metastasis as well as resistance to chemotherapy. 

Accordingly, EGFR inhibitors would be valuable in cancer treatment.1, 2 Gefitinib, 

erlotinib, and lapatinib (Figure 1) are examples of small molecules, acting as kinase 

inhibitors, that have been approved in cancer treatment.5 They are used clinically in the 

treatment of EGFR/HER2-dependent tumors which occur in non-small cell lung cancer 

(NSCLC) or breast cancer.6 They belong to a class of compounds known as 4- 

anilinoquinazolines which are designed mainly to target the ATP binding pocket of the 

kinase domain.6 



RESULTS                                                                                                                                            - 26 -  

The quinazoline core is reported to be among the best scaffolds for the development 

of EGFR inhibitors.7 This was justified by a hypothesis explaining the importance of the 

quinazoline N3 in the formation of a water-mediated hydrogen bond to the side chain of 

the gatekeeper Thr790 of EGFR.8, 9 This aided successfully in designing reversible and 

irreversible EGFR and HER2 kinase inhibitors.10-13 The tetrahydropyridothieno[2,3-

d]pyrimidine nucleus is also among the scaffolds showing EGFR inhibitory activity.4 The 

4-(phenylamino) quinazoline core have also been used to develop several irreversible 

EGFR inhibitors by introducing a Michael acceptor functional group such as the 

acrylamide group attached at the C-6 or C-7 positions, e.g. I & II (Figure 1). These 

groups form a covalent linkage with the sulfhydryl group of the Cys797 of EGFR and 

these compounds proved to be potent inhibitors of tumor growth relying on 

overexpression of EGFR.14-15 

 

Figure 1. Reversible and irreversible EGFR tyrosine kinase inhibitors 

Drug resistance was found to develop in approximately half of NSCLC cases that 

showed an initial response to reversible EGFR tyrosine kinase inhibitors. This was 

associated with the emergence of a secondary mutation leading to the substitution of a 

single amino acid threonine 790 by methionine (T790M) in the ATP binding pocket of 

EGFR.16-18 Several other mechanisms of resistance to reversible EGFR inhibitors have 

also been reported.19, 20 The Thr790 residue in EGFR is present at the entrance of the 

deep hydrophobic pocket of the ATP binding site. Therefore, its substitution with the 

bulkier methionine residue caused resistance towards the reversible tyrosine kinase 

inhibitors such as gefitinib and erlotinib and this had been attributed to an increased 

enzyme affinity for ATP.21 Several studies reported that the irreversible inhibitors22-24 are 

able to overcome this mutation-associated drug resistance.18, 25-28  

Although the T790M mutation takes place in the Thr790 which is present in the deep 

pocket that is occupied mainly by the position 4 substituents of quinazoline derivatives, 

yet the introduction of a Michael acceptor group in position 6 of the quinazoline has 

proven to overcome this mutation-associated drug resistance. While, the role of the 
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Michael acceptor groups in overcoming this resistance is justified and clear, yet the 

significant role of the position 4-substituents in the inhibition of the mutant EGFR in 

presence of Michael acceptor groups is still not clear. 

Therefore, we strived to investigate the effect of position 4 substituents on the 

potency of our potential irreversible inhibitors. In this study we aimed to provide a better 

understanding about the significant role, nature and size of the position 4 substituents - 

that can be attached to a quinazoline scaffold in the presence of a potential covalent 

interaction - on the inhibition of the mutant as well as the wild type EGFR kinase. In 

addition, the importance of the quinazoline core was also tested by replacing it with a 

tetrahydropyridothieno[2,3-d]pyrimidine nucleus. Accordingly, to apply our study we 

synthesized quinazoline derivatives having an acrylamido substituent at position 6 and 

with diverse substituents at position 4. The acrylamido substituent is intended to 

potentially alkylate cysteine (C797) in the ATP binding site of EGFR, to help in 

overcoming the mutation-associated drug resistance. Varied substituents at position 4 

were added, namely haloanilines, alicyclic amines, alkylanilines, alkoxyanilines, and 

sulfonamide containing aniline derivatives 4a-4o. Furthermore, a new cost-effective 

modification for the synthesis of quinazoline nucleus is described. In addition, another 

series of compounds 10a-10f was synthesized by replacing the quinazoline nucleus with a 

tetrahydropyridothieno[2,3-d]pyrimidine scaffold with also the same acrylamido 

substituent at position 7 while keeping the position 4 substituents showing potent 

inhibitory activity with the quinazoline nucleus. All acrylamido derivatives 4a-4o and 

10a-10f have been tested for their inhibitory activity on the recombinant wild type EGFR 

kinase as well as cell growth inhibition versus cancer cell lines, with mutant EGFR 

(H1975) and with wild type (SKBR3). In addition, cell based autophosphorylation 

inhibition was done for selected compounds. 

Chemistry 

Synthesis of the quinazoline nucleus started by refluxing of 2-amino-5-

nitrobenzonitrile with triethyl orthoformate in presence of drops of acetic anhydride to 

yield the formimidate derivative 1 (Scheme 1). Compound 1 was confirmed from its IR 

spectrum showing a band at 2228.6 cm-1 indicating the existence of the (C≡N) group. 1H-

NMR spectrum of 1 in DMSO-d6 revealed signals at 8.22 ppm (N=CH-) as singlet, 

quartet at 4.36 ppm (CH2) and triplet at 1.35 ppm (CH3). 

The second step in scheme 1 shows a novel modification for the synthesis of the 

quinazoline nucleus, whereby the formimidate derivative 1, was refluxed in acetic acid 

with different amines to yield the nitroquinazoline derivatives 2a-2o and the cyclization 

was confirmed from the IR spectrum by the disappearance of the band for the cyano 

group. This novel modification is cost-effective since the quinazoline nucleus is 

synthesized from the formimidate derivative which is prepared from the much cheaper 

triethyl orthoformate instead of the usual N,N-dimethylformimidamide derivative 

prepared from the more expensive DMF-dimethyl acetal.29 
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Scheme 1. Reagents and conditions: (i) TEOF, (Ac)2O, reflux, 24h; (ii) R-NH2, CH3COOH, reflux, 1h; (iii) 
SnCl2, MeOH, reflux, 1h; (iv) CH2=CHCOCl, NaHCO3, acetone or DMF, 0°C, 30 min. 

The suggested mechanism for the formation of the quinazoline nucleus from the 

formimidate derivative 1 is described in scheme 2 as reported in literature for a similar 

derivative.30 It is assumed that the aromatic amines or the cyclohexylamine firstly attacks 

the carbon of the ethoxy resulting into ejection of the ethoxy group. An amidine 

intermediate is then formed which cyclizes into the quinazoline skeleton via Dimroth 

rearrangement where the endocyclic and exocyclic nitrogen atoms switched place to 

afford the 4-substituted aminoquinazoline.  

Reduction of the nitroquinazoline derivatives was done by refluxing with SnCl2 in 

methanol to yield the aminoquinazoline derivatives 3a-3o, which were then reacted with 

acryloyl chloride in acetone or DMF at 0º C in the presence of NaHCO3 to yield the 

acrylamide derivatives 4a-4o (Scheme 1). 

 
Scheme 2. Suggested mechanism for the formation of the quinazoline nucleus 

Synthesis of the tetrahydropyridothieno[2,3-d]pyrimidine derivatives is outlined in 

scheme 3 according to the reported procedure.4 It started by condensing the 4-oxo-

piperidine-1-carboxylic acid tert-butyl ester with ethyl cyanoacetate under basic 

conditions followed by cyclization through a Gewald reaction31 to construct the 

thiophene core. The construction of the thieno[2,3-d]pyrimidine ring system 6 was done 
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using a modified Niementowski quinazoline synthesis by condensation of 5 with 

formamidine acetate. This was followed by chlorination of pyrimidone 6 with phosphorus 

oxychloride which gave the intermediate 7. Nucleophilic reaction of 7 with appropriate 

amines gave 8 a-f, which were then subjected to Boc deprotection using TFA resulting in 

the intermediates 9 a-f. The desired compounds 10 a-f were obtained by reacting the 

intermediates 9 a-f with acryloyl chloride in acetone at 0º C in the presence of sodium 

bicarbonate to yield the acrylamide derivatives 10 a-f. 
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Scheme 3. Reagents and conditions: (i) NCCH2COOEt, S8, Et3N, rt, 16h; (ii) formamidine acetate, DMF, 
100 °C, 16h; (iii) POCl3, Et3N, 60°C, 3h; (iv) R-NH2, EtOH, reflux, 8h; (v) TFA, CH2Cl2, 0°C→rt, 2h; (vi) 

CH2=CHCOCl, NaHCO3, acetone, 0°C, 30min. 

Biological Results and Discussion 

All synthesized acrylamide derivatives 4a-4o and 10a-10f were tested for their 

ability to inhibit isolated recombinant wild type EGFR kinase. This was followed by 

testing the cell growth inhibitory activity on cancer cell lines with wild type EGFR 

(breast cancer cell line SKBR3) and the gefitinib-resistant (H1975) NSCLC cell line 

harboring the L858R and T790M mutations. In addition, to correlate the cell growth 

inhibition with the mutant EGFR kinase inhibition, selected compounds were tested for 

their ability to inhibit EGFR autophosphorylation in mutant EGFR expressing cell line 

(H1975) (Table 1). 

From the results, it can be seen that several compounds show significant inhibitory 

activity on the wild type as well as the mutant EGFR kinase which is correlated to the 

cell growth inhibition. Compounds like 4a, 4b and 4f were the most potent versus both 

cancer cell lines having mutant and wild type EGFR. 

Concerning the inhibitory activity on the recombinant wild type EGFR enzyme, it 

was generally observed that the potent activity was accompanied with di-substitution on 

the 4-aniline ring, either with dihalo or alkyl halo groups as in 4a, 4b and 4e. In addition, 

it is the first time to report that replacing the usual aniline derivatives with a cyclohexyl 

amine as in compound 4o resulted in an active and potent compound on the wild type 

EGFR. 
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Table 1. IC50 for the inhibition of recombinant EGFR (active) kinase, cell growth 
inhibitory activity, EGFR autophosphorylation inhibition in mutant EGFR-expressing 
cell line.a 

 

Cpd. 

IC50 (nM) 

IC50 (µM) 

Growth 

inhibition 

IC50 (µM) 

Autophosphorylation 

inhibition 

Recombinant 

EGFR kinase 

SKBR3 

cells 

H1975 

cells 

Mutant EGFR 

(H1975) 

4a 2.2 0.23 0.26 N.D. 

4b 2.1 0.51 0.28 0.036 

4c 2.2 0.63 1.86 N.D. 

4d 2.3 1.42 1.82 N.D. 

4e 1.5 1.86 0.39 0.111 

4f 2.5 0.36 0.40 N.D. 

4g 53.6 6.89 13.87 0.931 

4h 18.9 7.70 15.96 2.0 

4i 2.7 2.82 0.68 0.275 

4j 3.2 1.14 15.69 N.D. 

4k 76.5 2.50 >40 N.D. 

4l 53.3 >40 >40 N.D. 

4m 43.7 4.00 >40 N.D. 

4n 9.8 0.39 >40 4.39 

4o 3.4 0.40 >40 2.8 

10a 3.95 1.4 33.8 0.28 

10b 3.71 2.3 >40 N.D. 

10c 4.40 >40 >40 N.D. 

10d 8.73 3.2 23.8 N.D. 

10e 7.38 6.2 15.2 0.13 

10f >150 >40 >40 >5.0 

Gefitinib 4 5.36 11.39 13.98 

I 3.5 0.20 0.44 0.028 

aSE ≤ 5%, N.D.: Not determined. 

It has also been found that ortho substitution on the 4-phenyl ring with fluorine is 

tolerable as in 4b and 4e which are the most potent compounds. Bulkier groups like “Br” 

or “Me” in the ortho position, as in 4a and 4c, is still also tolerable while the potency 

decreased by further increasing the chain length like with the ethyl or methoxy groups, as 
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in 4h and 4g. In addition, extended substituents in the para position like ethyl, methoxy, 

sulfonamide or substituted sulfonamide generally lead to decrease in activity. This 

indicates that steric hindrance is a limiting factor to substituents at the ortho or para 

positions. Similarly, compounds with a sole ethyl substitution at the meta position, gave a 

more potent compound than in the para or ortho position.  

Polar substituents such as the sulfonamide group was found to significantly decrease 

the activity, but when substituted with heterocylic rings such as the pyridine, the activity 

increased and resulted in highly potent compound. Furthermore, replacing the 

quinazoline nucleus with tetrahydropyridothieno[2,3-d]pyrimidine nucleus resulted in 

less potent compounds. 

Concerning the activity on the mutant EGFR, several substituents significantly 

enhanced the activity such as dihalo in 4a and 4b, fluoro methyl in 4e, bromo methoxy in 

4f and m-ethyl in 4i. Some other substituents were found to affect the mutant EGFR 

potency and should be avoided. This includes substituents such as sulfonamide or 

substituted sulfonamide anilines as well as the cyclohexylamine which destroy the 

activity, while bulky substitutents in the para or ortho positions such as 2,4-dimethoxy, 

p-ethyl or o-ethyl as well as the tetrahydropyridothieno[2,3-d]pyrimidine derivatives 

significantly decrease the activity towards the mutant EGFR. 

Generally, concerning the cell growth inhibitory activity, it was found that the dihalo 

substituted anilines at position 4 as 4a and 4b are the most potent compounds. Also it was 

clear that replacing the methyl group in 4d by methoxy group in 4f enhanced the activity 

on the cellular level against both cell lines. The 3-ethyl group in 4i was also optimum in 

producing potent compound towards mutant EGFR-expressing cell line. 

Docking of the most active compounds 4a, 4b, 4e together with gefitinib and 

compound I, was done to give a better understanding about their binding modes in the 

ATP binding site of the double mutated and wild type EGFR. Figure 2 clearly 

demonstrates that gefitinib as well as the most active compounds exhibit a similar 

binding mode as the co-crystallized ligand I towards the wild type EGFR. The 4-anilino 

substituent of all compounds accommodates the deep hydrophobic pocket of the ATP-

binding site. The Michael acceptor group at position 6 of 4a, 4b, 4e and I form a covalent 

interaction with the Cys797, while the side chain of gefitinib extends towards the surface 

of the pocket. 

Figure 3 shows that compounds 4a, 4b, 4e and I, having a Michael acceptor group 

that can potentially form a covalent interaction with Cys797, exhibit a similar binding 

mode while gefitinib exhibit a totally different binding mode which could explain being 

very less active towards the double mutated EGFR. The figure also demonstrates that in 

the presence of a covalent interaction the 4-anilino substituent can still accommodate the 

back hydrophobic pocket of the mutated EGFR which was not the case with gefitinib.   
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Figure 2. Docked pose of compounds 4a “cyan”, 4b “magenta”, 4e “yellow”, gefitinib “green” and the co-
crystallized ligand I “red” in the ATP binding site of wild type EGFR (PDB entry 2J5F). All compounds 

exhibit a similar binding mode as the co-crystallized ligand I. The 4-anilino moiety of all compounds 
accommodates the deep hydrophobic pocket of the ATP-binding site of wild type EGFR. The position 6 
side chain of compounds 4a, 4b, 4e and I form a covalent interaction with residue Cys797 “grey” while 

that of gefitinib extends to the surface of the pocket.  

 

 
Figure 3. Docked pose of compounds 4a “cyan”, 4b “magenta”, 4e “yellow”, gefitinib “green” and the co-

crystallized ligand I “red” in the ATP binding site of double mutated EGFR (PDB entry 3W2P). All 
compounds with a Michael acceptor group 4a, 4b, 4e, I, and  potentially form a covalent interaction with 

Cys797 “grey” exhibit a similar binding mode while gefitinib exhibits a totally different binding mode. The 
4-anilino moiety of all Michael acceptor group containing compounds accommodate the deep hydrophobic 

pocket of the ATP-binding site of the double mutated EGFR, while this didn’t take place in case of 
gefitinib. 

Conclusions 

A series of 6-acrylamide-4-substituted quinazoline derivatives and a series of 7-

acrylamide-4-substituted tetrahydropyridothieno[2,3-d]pyrimidine derivatives have been 
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synthesized. Several potent compounds were obtained and were able to overcome the 

mutation associated drug resistance. Compounds 4a, 4b and 4f were the best compromise 

showing potent growth inhibitory activities towards cancer cells with mutant or wild type 

EGFR kinase. Although it is clear that the presence of a potential covalent interaction is 

the limiting factor and responsible for retaining the activity towards the mutant EGFR, 

yet the modifications in the substituents on position 4 still have significant influence 

towards this inhibitory activity which should be taken into consideration to achieve 

highly potent compounds. Several substituents showed potent inhibitory activity against 

both mutant and wild type EGFR containing cancer cell lines. While, others seemed to be 

more potent towards either cell lines such as the m-ethyl in 4i or fluoro methyl in 4e were 

more potent towards mutant EGFR expressing cell line. Among the new findings is that 

substituents like the cyclohexyl amine in 4o as well as the pyridyl sulfonamide aniline in 

4n resulted in active and potent compounds towards the wild type EGFR while they were 

not active towards the mutant EGFR. The quinazoline nucleus still remains to be among 

the best scaffolds since replacing it with a tetrahydropyridothieno[2,3-d]pyrimidine 

scaffold didn’t seem to be beneficial towards the EGFR inhibitory activity. 

Supporting information 

Experimental 

Chemistry 

Solvents and reagents were obtained from commercial suppliers and used as 

received. 1H and 13C NMR spectra were recorded on a Bruker DRX 500 spectrometer. 

Chemical shifts are referenced to the residual protonated solvent signals. The purities of 

the tested compounds 4a-4p and 10a-10e were determined by HPLC coupled with mass 

spectrometry and were higher than 95% in all cases. Mass spectrometric analysis (HPLC-

ESI-MS) was performed on a TSQ quantum (Thermo Electron Corporation) instrument 

equipped with an ESI source and a triple quadrupole mass detector (Thermo Finnigan). 

The MS detection was carried out at a spray voltage of 4.2 kV, a nitrogen sheath gas 

pressure of 4.0 x 105 Pa, an auxiliary gas pressure of 1.0 x 105 Pa, a capillary temperature 

of 400 ºC, a capillary voltage of 35 V, and a source CID of 10 V. All samples were 

injected by an autosampler (Surveyor, Thermo Finnigan) with an injection volume of 10 

µL. An RP C18 NUCLEODUR 100-3 (125 x 3 mm) column (Macherey-Nagel) was used 

as the stationary phase. The solvent system consisted of water containing 0.1% TFA (A) 

and 0.1% TFA in acetonitrile (B). HPLC-Method: flow rate 400 µL/min. The percentage 

of B started at an initial of 5%, was increased up to 100% during 16 min, kept at 100% 

for 2 min, and flushed back to 5% in 2 min. Melting points are uncorrected and were 

determined on Buchi melting point apparatus (B-540). The IR spectra were measured on 

Nicolet 380 FT-IR spectrometer. 
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Ethyl N-(2-cyano-4-nitrophenyl)formimidate (1). 5g (30.6 mmol) of 2-amino-5-

nitrobenzonitrile was refluxed in 50ml of triethyl orthoformate for 24 hours in the 

presence of 10 drops of acetic anhydride. The reaction was then concentrated under 

vacuum and the remaining residue was poured on ice water where a precipitate has been 

formed. The ppt. was filtered under vacuum and left to dry to give compound 1. Yield 

82% (5.5 g, solid); IR: 2228.6 cm-1 (C≡N); 1H NMR (500 MHz, DMSO-d6): δ 8.67 (d, J 

= 2.6 Hz, 1H), 8.43 (dd, J = 8.9, 2.7 Hz, 1H), 8.22 (s, 1H), 7.46 (d, J = 8.9 Hz, 1H), 4.36 

(q, J = 7.0 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H).  

 

General procedure for the synthesis of N-(substituted)-6-nitroquinazolin-4-amine 

(2a-2o). Compound 1 (5 mmol) was refluxed for 1 hour with the respective amine 

derivative (5 mmol) in 8ml glacial acetic acid. A precipitate is formed during the reaction 

which is filtered on hot and the precipitate is then washed with diethyl ether to give the 

corresponding nitroquinazoline derivatives 2a-2o. If a precipitate is not formed, the 

solution is poured on ice water and the formed precipitate is filtered followed by washing 

with diethyl ether to give the corresponding nitroquinazoline derivative. 

 

N-(2-bromo-6-fluorophenyl)-6-nitroquinazolin-4-amine (2a). Yield 67% (1.21 g, 

solid); 1H NMR (500 MHz, DMSO-d6): δ 10.70 (s, 1H), 9.49 (s, 1H), 8.56 (dd, J = 8.9, 

1.7 Hz, 2H), 7.90 (s, 1H), 7.78 (dd, J = 8.2, 6.1 Hz, 1H), 7.46 (s, 1H), 7.16 (s, 1H). 

LC/MS (+ESI): m/z = 362.75 (M + H). 

 

N-(4-bromo-2-fluorophenyl)-6-nitroquinazolin-4-amine (2b). Yield 71% (1.28 g, 

solid); 1H NMR (500 MHz, (CD3)2CO): δ 9.71 (s, 1H), 9.38 (d, J = 1.6 Hz, 1H), 8.70 (s, 

1H), 8.60 (dd, J = 9.2, 2.1 Hz, 1H), 8.01 (d, J = 9.1 Hz, 1H), 7.83 (t, J = 8.3 Hz, 1H), 

7.54 (d, J = 10.0 Hz, 1H), 7.48 (d, J = 8.5 Hz, 1H). 13C NMR (126 MHz, (CD3)2CO) δ 

160.60, 158.60, 157.48 (d, 1
JC-F = 254.2 Hz), 154.40, 146.12, 131.02, 129.90, 128.47 (d, 

4
JC-F = 3.4 Hz), 127.45, 120.90, 120.28 (d, 2JC-F = 23.3 Hz), 119.47, 118.37 (d, 3JC-F = 9.2 

Hz). 115.26. LC/MS (+ESI): m/z = 362.99 (M + H). 
 

N-(4-bromo-2-methylphenyl)-6-nitroquinazolin-4-amine (2c). Yield 62% (1.11 g, 

solid); 1H NMR (500 MHz, (CD3)2CO) δ 9.61 (s, 1H), 9.35 (d, J = 1.7 Hz, 1H), 8.58 (dd, 

J = 9.2, 2.4 Hz, 2H), 7.97 (d, J = 9.2 Hz, 1H), 7.54 (s, 1H), 7.48 – 7.32 (m, 2H), 2.32 (s, 

3H). 13C NMR (126 MHz, (CD3)2CO): δ 161.08, 158.93, 154.46, 153.48, 145.91, 138.83, 

138.82, 134.16, 130.83, 130.82, 130.21, 127.24, 120.95, 115.20, 18.22. LC/MS (+ESI): 

m/z = 359.02 (M + H). 

 

N-(4-bromo-3-methylphenyl)-6-nitroquinazolin-4-amine (2d). Yield 65% (1.16 g, 

solid); 1H NMR (500 MHz, DMSO-d6) δ 10.41 (s, 1H), 9.61 (d, J = 2.4 Hz, 1H), 8.70 (s, 

1H), 8.52 (dd, J = 9.2, 2.4 Hz, 1H), 7.90 (d, J = 9.2 Hz, 1H), 7.81 (d, J = 2.4 Hz, 1H), 

7.69 (dd, J = 8.6, 2.5 Hz, 1H), 7.58 (d, J = 8.7 Hz, 1H), 2.37 (s, 3H). 13C NMR (126 
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MHz, DMSO-d6) δ 158.53, 157.48, 152.96, 144.50, 138.02, 137.21, 131.95, 129.34, 

126.56, 124.87, 122.02, 120.74, 118.81, 114.39, 22.59. LC/MS (+ESI): m/z = 358.86 (M 

+ H). 

  

N-(2-fluoro-3-methylphenyl)-6-nitroquinazolin-4-amine (2e). Yield 67% (0.99 g, 

solid); 1H NMR (500 MHz, DMSO-d6) δ 10.49 (s, 1H), 9.58 (s, 1H), 8.61 (s, 1H), 8.55 

(dd, J = 9.2, 2.4 Hz, 1H), 7.93 (d, J = 9.1 Hz, 1H), 7.35 (t, J = 6.4 Hz, 1H), 7.24 (t, J = 

6.9 Hz, 1H), 7.16 (t, J = 7.7 Hz, 1H), 2.30 (s, 3H). 13C NMR (75 MHz, DMSO-d6) δ 

159.85, 157.94, 155.39 (d, 1
JC-F = 245.9 Hz), 152.95, 144.50, 129.48, 129.40 (d, 4

JC-F = 

4.8 Hz), 126.68, 125.87, 125.24 (d, 3
JC-F = 7.8 Hz), 125.05 (d, 2

JC-F = 11.2 Hz), 123.80 

(d, 4
JC-F = 4.5 Hz), 120.94, 113.94, 14.22 (d, 4

JC-F = 4.0 Hz). LC/MS (+ESI): m/z = 

298.95 (M + H). 

 

N-(4-bromo-3-methoxyphenyl)-6-nitroquinazolin-4-amine (2f). Yield 75% (1.4 g, 

solid); 1H NMR (500 MHz, DMSO-d6) δ 10.39 (s, 1H), 9.62 (d, J = 2.4 Hz, 1H), 8.74 (s, 

1H), 8.54 (dd, J = 9.2, 2.4 Hz, 1H), 7.93 (d, J = 9.2 Hz, 1H), 7.67 (d, J = 2.0 Hz, 1H), 

7.58 (d, J = 8.6 Hz, 1H), 7.55 (dd, J = 8.6, 2.1 Hz, 1H), 3.89 (s, 3H). 13C NMR (126 

MHz, DMSO-d6) δ 158.59, 157.46, 155.19, 152.99, 144.55, 139.35, 132.37, 130.59, 

129.57, 129.36, 126.62, 120.67, 115.88, 107.08, 56.14. LC/MS (+ESI): m/z = 374.73 (M 

+ H). 

 

N-(2,4-dimethoxyphenyl)-6-nitroquinazolin-4-amine (2g). Yield 70% (1.14 g, solid); 
1H NMR (500 MHz, DMSO-d6): δ 10.12 (s, 1H), 9.57 (d, J = 2.4 Hz, 1H), 8.52 (dd, J = 

9.1, 2.6 Hz, 2H), 7.88 (d, J = 9.2 Hz, 1H), 7.29 (d, J = 8.6 Hz, 1H), 6.70 (d, J = 2.6 Hz, 

1H), 6.59 (dd, J = 8.6, 2.7 Hz, 1H), 3.81 (s, 3H), 3.76 (s, 3H). 13C NMR (126 MHz, 

DMSO-d6): δ 160.40, 159.11, 158.16, 155.24, 153.04, 144.24, 129.24, 128.88, 126.40, 

120.90, 119.02, 114.01, 104.62, 99.24, 55.60, 55.40. LC/MS (+ESI): m/z = 327.15 (M + 

H). 

 

N-(2-ethylphenyl)-6-nitroquinazolin-4-amine (2h). Yield 66% (0.97 g, solid); 1H NMR 

(500 MHz, DMSO-d6) δ 10.38 (s, 1H), 9.58 (s, 1H), 8.54 (dd, J = 9.2, 2.4 Hz, 1H), 8.50 

(s, 1H), 7.90 (d, J = 9.2 Hz, 1H), 7.37 (d, J = 6.7 Hz, 1H), 7.31 (dd, J = 8.2, 3.5 Hz, 1H), 

7.28 (d, J = 3.7 Hz, 2H), 2.56 (q, J = 7.6 Hz, 2H), 1.09 (t, J = 7.6 Hz, 3H). 13C NMR (126 

MHz, DMSO-d6): δ 160.51, 158.20, 153.07, 144.49, 140.91, 135.94, 129.40, 128.90, 

128.29, 127.43, 126.70, 126.55, 120.98, 114.02, 24.11, 14.35.  

 

N-(3-ethylphenyl)-6-nitroquinazolin-4-amine (2i). Yield 69% (1.01 g, solid); 1H NMR 

(500 MHz, (CD3)2CO) δ 9.70 (s, 1H), 9.37 (d, J = 2.3 Hz, 1H), 8.74 (s, 1H), 8.56 (dd, J = 

9.2, 2.4 Hz, 1H), 7.96 (d, J = 9.2 Hz, 1H), 7.80 (dd, J = 8.1, 1.2 Hz, 1H), 7.75 (t, J = 1.6 

Hz, 1H), 7.32 (t, J = 7.8 Hz, 1H), 7.05 (dd, J = 7.6, 0.6 Hz, 1H), 2.68 (q, J = 7.6 Hz, 2H), 

1.25 (t, J = 7.6 Hz, 3H). 13C NMR (126 MHz, (CD3)2CO): δ 159.95, 158.71, 154.53, 
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145.94, 145.60, 139.63, 130.90, 129.40, 127.13, 125.00, 122.80, 120.90, 120.67, 115.60, 

29.48, 15.97.  

 

N-(4-ethylphenyl)-6-nitroquinazolin-4-amine (2j). Yield 67% (0.98 g, solid); 1H NMR 

(500 MHz, DMSO-d6): δ 10.35 (s, 1H), 9.58 (d, J = 2.4 Hz, 1H), 8.62 (s, 1H), 8.49 (dd, J 

= 9.2, 2.4 Hz, 1H), 7.86 (d, J = 9.2 Hz, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.5 Hz, 

2H), 2.60 (q, J = 7.6 Hz, 2H), 1.19 (t, J = 7.6 Hz, 3H). 13C NMR (126 MHz, DMSO-d6): 

δ 158.88, 157.83, 153.12, 144.48, 140.30, 136.00, 129.44, 127.85, 126.57, 123.15, 

120.86, 114.40, 27.81, 15.74.  

 

4-((6-nitroquinazolin-4-yl)amino)benzenesulfonamide (2k). Yield 78% (1.34 g, solid); 
1H NMR (500 MHz, DMSO-d6): δ 10.61 (s, 1H), 9.67 (d, J = 2.4 Hz, 1H), 8.78 (s, 1H), 

8.57 (dd, J = 9.2, 2.4 Hz, 1H), 8.07 (d, J = 8.8 Hz, 2H), 7.96 (d, J = 9.2 Hz, 1H), 7.88 (d, 

J = 8.8 Hz, 2H), 7.32 (s, 2H). 13C NMR (126 MHz, DMSO-d6): δ 158.72, 157.40, 153.03, 

144.68, 141.53, 139.28, 129.63, 126.76, 126.30, 122.17, 120.83, 114.44. LC/MS (+ESI): 

m/z = 346.09 (M + H). 

 

N-carbamimidoyl-4-((6-nitroquinazolin-4-yl)amino)benzenesulfonamide (2l). Yield 

75% (1.45 g, solid); 1H NMR (500 MHz, DMSO-d6) δ 10.58 (s, 1H), 9.66 (d, J = 1.9 Hz, 

1H), 8.77 (s, 1H), 8.56 (dd, J = 9.2, 2.5 Hz, 1H), 8.00 (d, J = 8.6 Hz, 2H), 7.95 (d, J = 9.2 

Hz, 1H), 7.83 – 7.81 (m, 1H), 7.81 – 7.79 (m, 1H), 6.72 (s, 4H). 13C NMR (126 MHz, 

DMSO-d6) δ 158.71, 158.13, 157.47, 153.04, 144.66, 141.00, 139.86, 129.62, 126.77, 

126.23, 122.07, 120.87, 114.46. LC/MS (+ESI): m/z = 387.87 (M + H). 

 

4-((6-nitroquinazolin-4-yl)amino)-N-(thiazol-2-yl)benzenesulfonamide (2m). Yield 

73% (1.56 g, solid); 1H NMR (500 MHz, DMSO-d6) δ 12.72 (s, 1H), 10.60 (s, 1H), 9.66 

(d, J = 2.2 Hz, 1H), 8.77 (s, 1H), 8.55 (dd, J = 9.2, 2.4 Hz, 1H), 8.06 (d, J = 8.7 Hz, 2H), 

7.95 (d, J = 9.2 Hz, 1H), 7.88 – 7.86 (m, 1H), 7.86 – 7.84 (m, 1H), 7.26 (d, J = 4.6 Hz, 

1H), 6.84 (d, J = 4.6 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ 168.80, 158.66, 157.40, 

153.04, 144.69, 141.82, 137.32, 129.66, 126.80, 126.55, 124.51, 122.06, 120.87, 114.47, 

108.19. LC/MS (+ESI): m/z = 428.79 (M + H). 

 

4-((6-nitroquinazolin-4-yl)amino)-N-(pyridin-2-yl)benzenesulfonamide (2n). Yield  

75% (1.58 g, solid); 1H NMR (500 MHz, DMSO-d6): δ 11.90 (s, 1H), 10.59 (s, 1H), 9.66 

(d, J = 2.3 Hz, 1H), 8.78 (s, 1H), 8.56 (dd, J = 9.2, 2.4 Hz, 1H), 8.07 (d, J = 8.8 Hz, 2H), 

8.03 (dd, J = 5.5, 1.1 Hz, 1H), 7.96 (d, J = 9.2 Hz, 1H), 7.95 – 7.91 (m, 2H), 7.73 (ddd, J 

= 8.9, 7.2, 1.9 Hz, 1H), 7.19 (d, J = 8.7 Hz, 1H), 6.88 (ddd, J = 7.0, 5.5, 0.9 Hz, 1H). 13C 

NMR (126 MHz, DMSO-d6): δ 158.64, 157.35, 153.03, 144.70, 141.98, 140.23, 140.21, 

136.69, 136.67, 129.65, 127.35, 126.79, 121.94, 120.84, 115.72, 114.48, 113.65. LC/MS 

(+ESI): m/z = 423.09 (M + H). 
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N-cyclohexyl-6-nitroquinazolin-4-amine (2o). Yield 55% (0.74 g, solid); 1H NMR (500 

MHz, (CD3)2CO): δ 9.10 (d, J = 2.5 Hz, 1H), 8.60 (s, 1H), 8.47 (dd, J = 9.2, 2.5 Hz, 1H), 

7.84 (d, J = 9.2 Hz, 1H), 4.51 – 4.15 (m, 1H), 2.16 – 2.10 (m, 2H), 2.09 (s, 1H), 1.86 – 

1.79 (m, 2H), 1.73 – 1.67 (m, 1H), 1.50 – 1.41 (m, 4H), 1.29 – 1.18 (m, 1H). 13C NMR 

(126 MHz, (CD3)2CO) δ 160.76, 159.34, 154.42, 145.33, 130.43, 126.73, 120.63, 115.20, 

51.30, 33.05, 26.39, 26.04. LC/MS (+ESI): m/z = 273.17 (M + H). 

General procedure for the synthesis of compunds (3a-3o). According to the reported 

procedure,1 a mixture of the respective nitroquinazoline derivative 2a-2o (3 mmol) and 

stannous chloride (15 mmol) in MeOH (20 ml) was stirred at reflux for 1 h under 

nitrogen atmosphere. The excess MeOH was removed under reduced pressure; the 

remaining residue was dissolved in ethyl acetate (200 ml) and basified with aqueous 

NaHCO3 solution. The resulting mixture was filtrated under vacuum followed by 

separation of the organic phase from the aqueous phase. The aqueous phase was extracted 

with ethyl acetate (2 x 20 ml), these organic fractions were combined, dried over 

anhydrous MgSO4 and concentrated under reduced pressure to obtain the corresponding 

aminoquinazoline derivatives 3a-3o.  

 

N
4
-(2-bromo-6-fluorophenyl)quinazoline-4,6-diamine (3a). Yield 75% (0.75 g, solid); 

1H NMR (500 MHz, DMSO-d6): δ 9.19 (s, 1H), 8.18 (s, 1H), 7.72 (dd, J = 8.8, 6.0 Hz, 

1H), 7.65 (s, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.23 (d, J = 15.8 Hz, 2H), 7.04 (d, J = 6.7 Hz, 

1H), 5.66 (s, 2H). LC/MS (+ESI): m/z = 332.85 (M + H). 

 

N
4
-(4-bromo-2-fluorophenyl)quinazoline-4,6-diamine (3b). Yield 78% (0.78 g, solid); 

1H NMR (300 MHz, DMSO-d6) δ 9.29 (s, 1H), 8.22 (s, 1H), 7.61 (dd, J = 9.9, 2.2 Hz, 

1H), 7.55 (dd, J = 8.7, 6.4 Hz, 2H), 7.43 (dd, J = 8.6, 1.3 Hz, 1H), 7.27 (d, J = 2.2 Hz, 

1H), 7.24 (s, 1H), 5.63 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 156.47, 156.39 (d, 1JC-F 

= 251.5 Hz), 149.85, 147.34, 142.55, 128.89 (d, 5
JC-F = 2.4 Hz), 128.61, 127.35 (d, 4

JC-F 

= 3.5 Hz), 126.97 (d, 3JC-F = 11.8 Hz), 123.87, 119.12 (d, 2JC-F = 23.7 Hz), 116.95 (d, 3JC-

F = 9.2 Hz). 116.35, 100.82. LC/MS (+ESI): m/z = 332.84 (M + H). 

 

N
4
-(4-bromo-2-methylphenyl)quinazoline-4,6-diamine (3c). Yield 78% (0.77 g, solid); 

1H NMR (500 MHz, (CD3)2CO): δ 8.28 (s, 1H), 8.26 (s, 1H), 7.60 (t, J = 8.4 Hz, 2H), 

7.47 (d, J = 1.8 Hz, 1H), 7.39 (dd, J = 8.5, 2.1 Hz, 1H), 7.34 – 7.29 (m, 2H), 5.12 (s, 2H), 

2.31 (s, 3H). 13C NMR (126 MHz, (CD3)2CO): δ 157.84, 151.60, 148.04, 144.58, 138.37, 

137.05, 133.76, 130.29, 129.87, 128.81, 124.41, 118.54, 117.41, 101.75, 18.21. LC/MS 

(+ESI): m/z = 329.0 (M + H). 

 

N
4
-(4-bromo-3-methylphenyl)quinazoline-4,6-diamine (3d). Yield 80% (0.79 g, solid); 

1H NMR (500 MHz, DMSO-d6) δ 9.34 (s, 1H), 8.35 (s, 1H), 7.86 (d, J = 2.4 Hz, 1H), 

7.71 (dd, J = 8.7, 2.6 Hz, 1H), 7.54 (d, J = 6.7 Hz, 1H), 7.52 (d, J = 6.5 Hz, 1H), 7.35 (d, 
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J = 2.3 Hz, 1H), 7.25 (dd, J = 8.9, 2.4 Hz, 1H), 5.57 (s, 2H), 2.36 (s, 3H). 13C NMR (126 

MHz, DMSO-d6): δ 155.80, 149.68, 147.26, 142.65, 139.54, 136.84, 131.74, 128.67, 

123.79, 123.68, 120.98, 116.91, 116.68, 100.96, 22.68.  

 

N
4
-(2-fluoro-3-methylphenyl)quinazoline-4,6-diamine (3e). Yield 82% (0.66 g, solid); 

1H NMR (500 MHz, DMSO-d6) δ 9.17 (s, 1H), 8.21 (s, 1H), 7.52 (d, J = 8.8 Hz, 1H), 

7.40 (td, J = 7.5, 2.1 Hz, 1H), 7.27 (d, J = 2.2 Hz, 1H), 7.24 (dd, J = 8.8, 2.4 Hz, 1H), 

7.15 – 7.07 (m, 2H), 5.59 (s, 2H), 2.27 (d, J = 1.9 Hz, 3H).  13C NMR (126 MHz, DMSO-

d6) δ 156.88, 155.13 (d, 1JC-F = 245.4 Hz), 150.11, 147.20, 142.48, 128.57, 127.85 (d, 4JC-

F = 4.6 Hz), 126.92 (d, 3
JC-F = 12.7 Hz), 125.26, 124.61 (d, 2

JC-F = 16.2 Hz), 123.66, 

123.49 (d, 4
JC-F = 4.2 Hz), 116.34, 101.00, 14.28 (d, 4

JC-F = 4.0 Hz). LC/MS (+ESI): m/z 

= 268.97 (M + H). 

 

N
4
-(4-bromo-3-methoxyphenyl)quinazoline-4,6-diamine (3f). Yield 83% (0.86 g, 

solid); 1H NMR (500 MHz, DMSO-d6) δ 9.97 (s, 2H), 8.48 (s, 1H), 7.95 (s, 1H), 7.70 (d, 

J = 2.1 Hz, 1H), 7.61 (d, J = 8.9 Hz, 1H), 7.55 (d, J = 8.6 Hz, 1H), 7.52 (dd, J = 8.6, 2.1 

Hz, 1H), 7.46 (d, J = 2.3 Hz, 1H), 7.33 (dd, J = 8.9, 2.4 Hz, 1H), 3.86 (s, 3H). 13C NMR 

(126 MHz, DMSO-d6) δ 156.48, 155.17, 148.32, 148.12, 140.05, 138.45, 132.28, 126.07, 

124.36, 116.33, 115.63, 106.92, 104.50, 101.23, 56.09. LC/MS (+ESI): m/z = 344.88 (M 

+ H). 

 

N
4
-(2,4-dimethoxyphenyl)quinazoline-4,6-diamine (3g). Yield 80% (0.70 g, solid); 1H 

NMR (500 MHz, DMSO-d6): δ 8.53 (s, 1H), 8.18 (s, 1H), 7.66 (d, J = 8.7 Hz, 1H), 7.49 

(d, J = 9.3 Hz, 1H), 7.26 – 7.15 (m, 2H), 6.68 (d, J = 2.6 Hz, 1H), 6.56 (dd, J = 8.7, 2.6 

Hz, 1H), 5.53 (s, 2H), 3.80 (s, 3H), 3.79 (s, 3H). 13C NMR (126 MHz, DMSO-d6): δ 

157.45, 156.80, 153.54, 150.29, 147.10, 142.16, 128.58, 126.49, 123.24, 121.01, 116.26, 

104.29, 100.56, 99.01, 55.72, 55.33. LC/MS (+ESI): m/z = 297.19 (M + H). 

 

N
4
-(2-ethylphenyl)quinazoline-4,6-diamine (3h). Yield 79% (0.62 g, solid); 1H NMR 

(500 MHz, DMSO-d6): δ 9.10 (s, 1H), 8.09 (s, 1H), 7.49 (d, J = 8.8 Hz, 1H), 7.33 – 7.26 

(m, 3H), 7.26 – 7.19 (m, 3H), 5.52 (s, 2H), 2.55 (q, J = 7.5 Hz, 2H), 1.08 (t, J = 7.5 Hz, 

3H). 13C NMR (126 MHz, DMSO-d6): δ 157.69, 150.40, 147.01, 142.17, 140.61, 137.17, 

128.47, 128.39, 128.18, 126.27, 126.11, 123.36, 116.07, 101.16, 24.08, 14.09. 

 

N
4
-(3-ethylphenyl)quinazoline-4,6-diamine (3i). Yield 77% (0.61 g, solid); 1H NMR 

(300 MHz, DMSO-d6) δ 9.27 (s, 1H), 8.32 (s, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.66 (s, 1H), 

7.52 (d, J = 8.9 Hz, 1H), 7.37 (d, J = 2.3 Hz, 1H), 7.27 (d, J = 7.5 Hz, 1H), 7.22 (d, J = 

2.4 Hz, 1H), 6.91 (d, J = 7.5 Hz, 1H), 5.57 (s, 2H), 2.62 (q, J = 7.6 Hz, 2H), 1.21 (t, J = 

7.6 Hz, 3H). 13C NMR (75 MHz, DMSO-d6) δ 156.08, 149.93, 147.22, 143.85, 142.55, 

139.93, 128.64, 128.24, 123.54, 122.42, 121.06, 119.27, 116.72, 101.16, 28.34, 15.63. 

LC/MS (+ESI): m/z = 265.02 (M + H). 
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N
4
-(4-ethylphenyl)quinazoline-4,6-diamine (3j). Yield 78% (0.62 g, solid); 1H NMR 

(500 MHz, DMSO-d6) δ 9.25 (s), 8.29 (s), 7.73 (d, J = 8.5 Hz), 7.51 (d, J = 8.8 Hz), 7.36 

(d, J = 2.3 Hz), 7.23 (dd, J = 8.9, 2.4 Hz), 7.18 (d, J = 8.5 Hz), 5.53 (s), 2.59 (q, J = 7.6 

Hz), 1.19 (t, J = 7.6 Hz). 13C NMR (126 MHz, DMSO-d6): δ 156.09, 149.95, 147.10, 

142.51, 138.35, 137.51, 128.57, 127.53, 123.43, 121.95, 116.61, 101.16, 27.66, 15.78.  

 

4-((6-aminoquinazolin-4-yl)amino)benzenesulfonamide (3k). Yield 82% (0.77 g, 

solid); 1H NMR (500 MHz, DMSO-d6): δ 9.63 (s, 1H), 8.40 (s, 1H), 8.07 (d, J = 8.7 Hz, 

2H), 7.80 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 8.9 Hz, 1H), 7.37 (d, J = 2.2 Hz, 1H), 7.28 (dd, 

J = 8.9, 2.2 Hz, 1H), 7.23 (s, 2H), 5.64 (s, 2H). 13C NMR (126 MHz, DMSO-d6): δ 

155.64, 149.45, 147.46, 143.17, 142.82, 137.43, 128.73, 126.24, 123.98, 120.52, 116.82, 

100.81. LC/MS (+ESI): m/z = 316.15 (M + H). 

 

4-((6-aminoquinazolin-4-yl)amino)-N-carbamimidoylbenzenesulfonamide (3l). Yield 

85% (0.91 g, solid); 1H NMR (500 MHz, DMSO-d6): δ 9.56 (s, 1H), 8.39 (s, 1H), 8.00 (d, 

J = 8.8 Hz, 2H), 7.73 (d, J = 8.9 Hz, 2H), 7.56 (d, J = 8.9 Hz, 1H), 7.36 (d, J = 2.3 Hz, 

1H), 7.27 (dd, J = 8.9, 2.4 Hz, 1H), 6.68 (s, 4H), 5.62 (s, 2H). 13C NMR (126 MHz, 

DMSO-d6): δ 158.04, 155.66, 149.52, 147.40, 142.82, 142.60, 138.03, 128.73, 126.12, 

123.90, 120.41, 116.81, 100.86. 

 

4-((6-aminoquinazolin-4-yl)amino)-N-(thiazol-2-yl)benzenesulfonamide (3m). Yield 

79% (0.94 g, solid); 1H NMR (500 MHz, DMSO-d6): δ 9.67 (d, J = 4.9 Hz, 1H), 8.39 (s, 

1H), 8.04 (d, J = 8.8 Hz, 2H), 7.85 (s, 1H), 7.80 – 7.75 (m, 2H), 7.56 (d, J = 8.9 Hz, 1H), 

7.35 (d, J = 2.3 Hz, 1H), 7.24 (d, J = 4.6 Hz, 1H), 6.85 – 6.82 (m, 1H), 6.81 (d, J = 4.6 

Hz, 1H), 5.64 (s, 2H). 13C NMR (126 MHz, DMSO-d6): δ 155.60, 149.36, 147.48, 

144.70, 135.47, 128.61, 126.49, 124.41, 124.00, 122.07, 121.54, 120.47, 116.83, 108.00, 

100.82. 

 

4-((6-aminoquinazolin-4-yl)amino)-N-(pyridin-2-yl)benzenesulfonamide (3n). Yield 

83% (0.97 g, solid); 1H NMR (500 MHz, DMSO-d6) δ 11.73 (s, 1H), 9.66 (s, 1H), 8.40 

(s, 1H), 8.06 (d, J = 1.8 Hz, 1H), 8.05 (d, J = 5.2 Hz, 2H), 7.88 – 7.83 (m, 2H), 7.71 (ddd, 

J = 8.7, 7.2, 1.9 Hz, 1H), 7.56 (d, J = 8.9 Hz, 1H), 7.34 (d, J = 2.3 Hz, 1H), 7.28 (dd, J = 

8.9, 2.4 Hz, 1H), 7.17 (dt, J = 8.6, 0.9 Hz, 1H), 6.88 (ddd, J = 7.1, 5.4, 0.9 Hz, 1H), 5.68 

(s, 2H). 13C NMR (126 MHz, DMSO-d6) δ 155.56, 152.86, 149.34, 147.54, 143.71, 

142.72, 139.89, 134.51, 128.66, 127.42, 124.07, 122.00, 120.39, 116.88, 116.06, 113.31, 

100.79. LC/MS (+ESI): m/z = 392.92 (M + H). 

 

N
4
-cyclohexylquinazoline-4,6-diamine (3o). Yield 80% (0.58 g, solid); 1H NMR (500 

MHz, (CD3)2CO): δ 8.23 (d, J = 42.6 Hz, 1H), 7.44 (dd, J = 42.8, 8.8 Hz, 1H), 7.13 (td, J 

= 33.1, 16.5 Hz, 2H), 6.49 (d, J = 32.5 Hz, 1H), 4.84 (d, J = 36.6 Hz, 2H), 4.21 (s, 1H), 
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2.02 – 1.94 (m, 2H), 1.82 – 1.57 (m, 3H), 1.48 – 1.27 (m, 4H), 1.25 – 1.08 (m, 1H). 13C 

NMR (126 MHz, (CD3)2CO): δ 158.45, 152.40, 147.24, 143.95, 129.83, 123.51, 102.34, 

84.10, 50.28, 33.49, 26.52, 26.09. LC/MS (+ESI): m/z = 243.21 (M + H). 

 

General procedure for the synthesis of compounds (4a-4j, 4o). A mixture of the 

corresponding aminoquinazoline derivative 3a-3j, 3o (1 mmol) and NaHCO3 (1.3 mmol) 

was stirred at 0°C in acetone (10 ml) under nitrogen atmosphere. This is then followed by 

dropwise addition of acryloyl chloride (1.3 mmol) and then was stirred for 30 min. at 

0°C. Excess solvent was then removed under reduced pressure and the remaining residue 

was neutralized using NaHCO3 solution. The formed solid was then filtered and the 

purified using column chromatography with ethylacetate as eluent.  

 

General procedure for the synthesis of compounds (4k-4n). 

Same above procedure except that the solvent used in the reaction was DMF instead of 

acetone and the eluent in column chromatography was Dichloromethane:Methanol 100:5. 

 

N-(4-((2-bromo-6-fluorophenyl)amino)quinazolin-6-yl)acrylamide (4a). Yield 56% 

(0.21 g, solid); m.p. 303-304°C; 1H NMR (500 MHz, DMSO-d6): δ 10.52 (s, 1H), 9.78 (s, 

1H), 8.81 (s, 1H), 8.46 (s, 1H), 7.92 (d, J = 8.3 Hz, 1H), 7.85 – 7.72 (m, 2H), 7.63 (s, 

1H), 7.14 (s, 1H), 6.53 (dd, J = 16.5, 10.4 Hz, 1H), 6.34 (d, J = 16.9 Hz, 1H), 5.83 (d, J = 

10.1 Hz, 1H). LC/MS (+ESI): m/z = 386.99 (M + H). 

 

N-(4-((4-bromo-2-fluorophenyl)amino)quinazolin-6-yl)acrylamide (4b). Yield 58% 

(0.22 g, solid); m.p. 234-236°C; 1H NMR (500 MHz, DMSO-d6): δ 10.50 (s, 1H), 9.91 (s, 

1H), 8.81 (s, 1H), 8.40 (s, 1H), 7.89 (dd, J = 8.9, 2.1 Hz, 1H), 7.77 (d, J = 8.5 Hz, 1H), 

7.67 – 7.57 (m, 1H), 7.49 (s, 1H), 7.45 (dd, J = 8.3, 1.6 Hz, 1H), 6.52 (dd, J = 17.0, 10.1 

Hz, 1H), 6.34 (dd, J = 17.0, 1.9 Hz, 1H), 5.83 (dd, J = 10.1, 1.9 Hz, 1H). LC/MS (+ESI): 

m/z = 386.99 (M + H). 

 

N-(4-((4-bromo-2-methylphenyl)amino)quinazolin-6-yl)acrylamide (4c). Yield 59% 

(0.22 g, solid); m.p. 261-262°C; 1H NMR (500 MHz, DMSO-d6): δ 10.46 (s, 1H), 9.66 (s, 

1H), 8.78 (d, J = 2.1 Hz, 1H), 8.36 (s, 1H), 7.87 (dd, J = 9.0, 2.2 Hz, 1H), 7.76 (d, J = 8.9 

Hz, 1H), 7.53 (d, J = 1.9 Hz, 1H), 7.42 (dd, J = 8.4, 2.1 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 

6.53 (dd, J = 17.0, 10.2 Hz, 1H), 6.34 (dd, J = 17.0, 1.9 Hz, 1H), 5.83 (dd, J = 10.1, 1.9 

Hz, 1H), 2.17 (s, 3H). 13C NMR (126 MHz, DMSO-d6): δ 163.29, 158.44, 153.60, 

146.55, 137.62, 137.14, 136.40, 132.77, 131.59, 129.38, 128.96, 128.33, 127.29, 126.93, 

118.41, 115.00, 112.28, 17.77. LC/MS (+ESI): m/z = 383.03 (M + H). 

 

N-(4-((4-bromo-3-methylphenyl)amino)quinazolin-6-yl)acrylamide (4d). Yield 63% 

(0.24 g, solid); m.p. 296-297°C; 1H NMR (500 MHz, DMSO-d6): δ 10.47 (s, 1H), 9.83 (s, 

1H), 8.80 (d, J = 2.0 Hz, 1H), 8.54 (s, 1H), 7.89 (dd, J = 9.0, 2.2 Hz, 1H), 7.82 (d, J = 2.4 



RESULTS                                                                                                                                            - 41 -  

Hz, 1H), 7.79 (d, J = 8.9 Hz, 1H), 7.66 (dd, J = 8.6, 2.5 Hz, 1H), 7.56 (d, J = 8.7 Hz, 1H), 

6.53 (dd, J = 17.0, 10.2 Hz, 1H), 6.35 (dd, J = 17.0, 1.9 Hz, 1H), 5.84 (dd, J = 10.1, 1.9 

Hz, 1H), 2.37 (s, 3H). 13C NMR (126 MHz, DMSO-d6): δ 163.30, 157.37, 153.23, 

146.73, 138.97, 136.96, 136.51, 131.81, 131.55, 128.43, 127.39, 127.15, 124.57, 121.71, 

117.73, 115.44, 112.38, 22.65. LC/MS (+ESI): m/z = 383.05 (M + H). 

 

N-(4-((2-fluoro-3-methylphenyl)amino)quinazolin-6-yl)acrylamide (4e). Yield 65% 

(0.21 g, solid); m.p. 229-231°C; 1H NMR (500 MHz, DMSO-d6): δ 10.48 (s, 1H), 9.75 (s, 

1H), 8.81 (d, J = 1.8 Hz, 1H), 8.42 (s, 1H), 7.88 (dd, J = 9.0, 2.1 Hz, 1H), 7.78 (d, J = 8.9 

Hz, 1H), 7.37 (t, J = 7.0 Hz, 1H), 7.17 (t, J = 6.7 Hz, 1H), 7.12 (t, J = 7.7 Hz, 1H), 6.53 

(dd, J = 17.0, 10.1 Hz, 1H), 6.34 (dd, J = 17.0, 1.8 Hz, 1H), 5.83 (dd, J = 10.2, 1.8 Hz, 

1H), 2.29 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 163.31, 158.37, 155.30 (d, 1
JC-F = 

246.1 Hz), 153.57, 146.55, 136.47, 131.58, 128.41, 128.36, 127.32, 126.96, 126.49 (d, 
3
JC-F = 12.7 Hz), 125.46, 124.72 (d, 2

JC-F = 16.1 Hz), 123.56 (d, 4
JC-F = 4.1 Hz). 115.06, 

112.22, 14.25 (d, 4JC-F = 3.9 Hz). LC/MS (+ESI): m/z = 323.18 (M + H). 

 

N-(4-((4-bromo-3-methoxyphenyl)amino)quinazolin-6-yl)acrylamide (4f). Yield 62% 

(0.25 g, solid); m.p. 268-269°C; 1H NMR (500 MHz, DMSO-d6): δ 10.49 (s, 1H), 9.85 (s, 

1H), 8.81 (d, J = 2.1 Hz, 1H), 8.58 (s, 1H), 7.91 (dd, J = 9.0, 2.2 Hz, 1H), 7.80 (d, J = 8.9 

Hz, 1H), 7.69 (d, J = 2.0 Hz, 1H), 7.56 (dd, J = 8.7, 2.1 Hz, 1H), 7.54 (d, J = 8.6 Hz, 1H), 

6.53 (dd, J = 17.0, 10.2 Hz, 1H), 6.35 (dd, J = 17.0, 1.9 Hz, 1H), 5.84 (dd, J = 10.1, 1.9 

Hz, 1H), 3.87 (s, 3H). 13C NMR (126 MHz, DMSO-d6): δ 163.33, 157.28, 155.13, 

153.16, 146.74, 140.38, 136.58, 132.22, 131.53, 128.49, 127.45, 127.18, 115.50, 115.35, 

112.27, 106.60, 103.98, 56.04. LC/MS (+ESI): m/z = 399.02 (M + H). 

 

N-(4-((2,4-dimethoxyphenyl)amino)quinazolin-6-yl)acrylamide (4g). Yield 68% (0.24 

g, solid); m.p. 178-180°C; 1H NMR (500 MHz, DMSO-d6): δ 10.45 (s, 1H), 9.13 (s, 1H), 

8.68 (d, J = 2.0 Hz, 1H), 8.36 (s, 1H), 7.89 (dd, J = 9.0, 2.2 Hz, 1H), 7.73 (d, J = 8.9 Hz, 

1H), 7.49 (d, J = 8.6 Hz, 1H), 6.69 (d, J = 2.6 Hz, 1H), 6.57 (dd, J = 8.7, 2.7 Hz, 1H), 

6.52 (dd, J = 17.0, 10.2 Hz, 1H), 6.33 (dd, J = 17.0, 1.9 Hz, 1H), 5.82 (dd, J = 10.1, 1.9 

Hz, 1H), 3.80 (s, 3H), 3.77 (s, 3H). 13C NMR (126 MHz, DMSO-d6): δ 163.32, 158.46, 

158.10, 154.31, 153.77, 146.38, 136.29, 131.62, 128.28, 127.40, 127.25, 126.68, 120.47, 

115.04, 111.94, 104.41, 99.13, 55.68, 55.35. LC/MS (+ESI): m/z = 351.18 (M + H). 

 

N-(4-((2-ethylphenyl)amino)quinazolin-6-yl)acrylamide (4h). Yield 61% (0.19 g, 

solid); m.p. 148-150°C; 1H NMR (500 MHz, DMSO-d6) δ 10.49 (s, 1H), 9.66 (s, 1H), 

8.73 (s, 1H), 8.31 (s, 1H), 7.90 (dd, J = 8.9, 1.8 Hz, 1H), 7.74 (d, J = 8.9 Hz, 1H), 7.33 

(d, J = 4.3 Hz, 1H), 7.26 (d, J = 4.1 Hz, 3H), 6.52 (dd, J = 17.0, 10.2 Hz, 1H), 6.33 (dd, J 

= 17.0, 1.5 Hz, 1H), 5.82 (dd, J = 10.2, 1.4 Hz, 1H), 2.55 (q, J = 7.5 Hz, 2H), 1.08 (t, J = 

7.5 Hz, 3H). 13C NMR (126 MHz, DMSO-d6): δ 163.84, 159.56, 154.32, 146.90, 141.22, 
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137.33, 136.77, 132.01, 129.05, 128.68, 127.89, 127.42, 127.11, 126.70, 115.38, 112.90, 

112.87, 24.54, 14.60. LC/MS (+ESI): m/z = 319.21 (M + H). 

 

N-(4-((3-ethylphenyl)amino)quinazolin-6-yl)acrylamide (4i). Yield 65% (0.21 g, 

solid); m.p. 216-217°C; 1H NMR (500 MHz, DMSO-d6): δ 10.45 (s, 1H), 9.74 (s, 1H), 

8.79 (d, J = 2.1 Hz, 1H), 8.52 (s, 1H), 7.90 (dd, J = 8.9, 2.2 Hz, 1H), 7.77 (d, J = 8.9 Hz, 

1H), 7.69 (dd, J = 8.1, 1.1 Hz, 1H), 7.63 (t, J = 1.6 Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H), 6.97 

(dd, J = 7.6, 0.5 Hz, 1H), 6.53 (dd, J = 17.0, 10.2 Hz, 1H), 6.35 (dd, J = 17.0, 1.9 Hz, 

1H), 5.83 (dd, J = 10.1, 1.9 Hz, 1H), 2.63 (q, J = 7.6 Hz, 2H), 1.22 (t, J = 7.6 Hz, 3H). 
13C NMR (126 MHz, DMSO-d6): δ 163.28, 157.56, 153.41, 146.71, 143.88, 139.34, 

136.36, 131.58, 128.34, 128.22, 127.32, 127.05, 123.03, 121.68, 119.88, 115.45, 112.58, 

28.23, 15.50. LC/MS (+ESI): m/z = 319.19 (M + H). 

 

N-(4-((4-ethylphenyl)amino)quinazolin-6-yl)acrylamide (4j). Yield 63% (0.20 g, 

solid); m.p. 229-230°C; 1H NMR (500 MHz, DMSO-d6) δ 10.45 (s, 1H), 9.74 (s, 1H), 

8.77 (d, J = 1.3 Hz, 1H), 8.48 (s, 1H), 7.89 (dd, J = 8.9, 1.8 Hz, 1H), 7.76 (d, J = 8.9 Hz, 

1H), 7.70 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 6.53 (dd, J = 17.0, 10.2 Hz, 1H), 

6.34 (dd, J = 17.0, 1.5 Hz, 1H), 5.83 (dd, J = 10.2, 1.5 Hz, 1H), 2.61 (q, J = 7.5 Hz, 2H), 

1.20 (t, J = 7.6 Hz, 3H). 13C NMR (126 MHz, DMSO-d6): δ 163.28, 157.59, 153.44, 

146.68, 139.05, 136.95, 136.32, 131.58, 128.31, 127.58, 127.31, 127.00, 122.60, 115.40, 

112.56, 27.67, 15.71. MS (+ESI): m/z = 319.2 (M + H). 

 

N-(4-((4-sulfamoylphenyl)amino)quinazolin-6-yl)acrylamide (4k). Yield 59% (0.22 g, 

solid); m.p. 269-271°C; 1H NMR (500 MHz, DMSO-d6): δ 10.52 (s, 1H), 10.09 (s, 1H), 

8.84 (d, J = 1.9 Hz, 1H), 8.61 (s, 1H), 8.04 (d, J = 8.8 Hz, 2H), 7.93 (dd, J = 9.0, 2.1 Hz, 

1H), 7.83 (d, J = 8.7 Hz, 3H), 7.27 (s, 2H), 6.53 (dd, J = 17.0, 10.1 Hz, 1H), 6.35 (dd, J = 

17.0, 1.7 Hz, 1H), 5.85 (dd, J = 10.1, 1.7 Hz, 1H). 13C NMR (126 MHz, DMSO-d6): δ 

163.38, 157.32, 153.06, 146.86, 142.61, 138.19, 136.72, 131.50, 128.54, 127.52, 127.32, 

126.23, 121.40, 115.57, 112.24. LC/MS (+ESI): m/z = 370.09 (M + H). 

 

N-(4-((4-(N-carbamimidoylsulfamoyl)phenyl)amino)quinazolin-6-yl)acrylamide (4l). 
Yield, 55% (0.23 g, solid); m.p. 282-284°C; 1H NMR (500 MHz, DMSO-d6): δ 10.51 (s, 

1H), 10.03 (s, 1H), 8.82 (d, J = 1.8 Hz, 1H), 8.59 (s, 1H), 7.97 (d, J = 8.7 Hz, 2H), 7.94 

(dd, J = 9.0, 2.0 Hz, 1H), 7.82 (d, J = 8.9 Hz, 1H), 7.75 (d, J = 8.7 Hz, 2H), 6.69 (s, 4H), 

6.54 (dd, J = 17.0, 10.1 Hz, 1H), 6.35 (dd, J = 17.0, 1.7 Hz, 1H), 5.84 (dd, J = 10.2, 1.7 

Hz, 1H). 13C NMR (126 MHz, DMSO-d6): δ 163.35, 158.07, 157.32, 153.11, 146.84, 

142.02, 138.80, 136.68, 131.53, 128.50, 127.46, 127.28, 126.11, 121.28, 115.55, 112.30. 

LC/MS (+ESI): m/z = 412.10 (M + H). 

 

N-(4-((4-(N-(thiazol-2-yl)sulfamoyl)phenyl)amino)quinazolin-6-yl)acrylamide (4m). 
Yield 60% (0.27 g, solid); m.p. 279-280°C; 1H NMR (500 MHz, DMSO-d6): δ 10.29 (s, 
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2H), 9.86 (s, 2H), 8.62 (s, 2H), 8.38 (s, 2H), 7.81 (d, J = 8.3 Hz, 4H), 7.71 (dd, J = 9.2, 

2.2 Hz, 3H), 7.60 (d, J = 8.8 Hz, 6H), 7.03 (s, 4H), 6.30 (dd, J = 17.0, 10.1 Hz, 2H), 6.12 

(dd, J = 17.0, 1.7 Hz, 2H), 5.62 (dd, J = 10.2, 1.7 Hz, 2H). 13C NMR (126 MHz, DMSO- 

d6): δ 163.36, 162.27, 157.31, 153.04, 146.86, 142.64, 138.18, 136.74, 131.52, 128.54, 

127.48, 127.30, 126.23, 121.39, 116.20, 116.17, 115.59, 112.28. LC/MS (+ESI): m/z = 

453.13 (M + H). 

 

N-(4-((4-(N-(pyridin-2-yl)sulfamoyl)phenyl)amino) quinazolin-6-yl)acrylamide (4n). 

Yield 63% (0.28 g, solid); m.p. 210-212°C; 1H NMR (500 MHz, DMSO-d6): δ 8.78 (s, 

1H), 8.57 (s, 1H), 8.04 (d, J = 8.7 Hz, 2H), 8.01 (d, J = 5.4 Hz, 1H), 7.95 (d, J = 8.8 Hz, 

2H), 7.82 – 7.76 (m, 2H), 7.75 – 7.69 (m, 1H), 7.28 (d, J = 8.7 Hz, 1H), 6.90 (t, J = 6.3 

Hz, 1H), 6.50 (s, 1H), 6.49 – 6.47 (m, 1H), 5.85 (dd, J = 8.4, 3.4 Hz, 1H). 13C NMR (126 

MHz, DMSO-d6): δ 166.25, 159.27, 154.50, 147.75, 144.40, 144.22, 141.75, 141.69, 

138.32, 137.38, 132.07, 129.07, 128.90, 128.79, 128.44, 122.63, 117.20, 117.03, 115.83, 

112.73. LC/MS (+ESI): m/z = 447.14 (M + H). 

 

N-(4-(cyclohexylamino)quinazolin-6-yl)acrylamide (4o). Yield 68% (0.20 g, solid); 

m.p. 182-184°C; 1H NMR (500 MHz, DMSO-d6) δ 10.34 (s, 1H), 8.49 (d, J = 2.1 Hz, 

1H), 8.37 (s, 1H), 7.83 – 7.78 (m, 2H), 7.64 (d, J = 8.9 Hz, 1H), 6.50 (dd, J = 17.0, 10.1 

Hz, 1H), 6.31 (dd, J = 17.0, 1.9 Hz, 1H), 5.80 (dd, J = 10.1, 1.9 Hz, 1H), 4.24 – 4.13 (m, 

1H), 1.92 (d, J = 12.2 Hz, 2H), 1.77 (d, J = 12.9 Hz, 2H), 1.65 (d, J = 12.8 Hz, 1H), 1.46 

– 1.32 (m, 4H), 1.21 – 1.14 (m, 1H). 13C NMR (126 MHz, DMSO-d6): δ 163.13, 158.25, 

154.10, 146.21, 135.58, 131.62, 127.94, 127.06, 126.52, 114.99, 112.82, 49.35, 31.89, 

25.37, 25.07. LC/MS (+ESI): m/z = 297.21 (M + H). 

 

6-tert-butyl 3-ethyl 2-amino-4,5-dihydrothieno[2,3-c]pyridine-3,6(7H)-dicarboxylate 

(5). According to the reported procedure.2 

tert-butyl 4-oxo-3,4,5,6-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine-7(8H)-

carboxylate (6). According to the reported procedure.2 

tert-butyl 4-chloro-5,6-dihydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine-7(8H)-

carboxylate (7). According to the reported procedure.2 

General procedure for the synthesis of compounds (8a-8f). 

A mixture of 7 (3 mmol) and the corresponding amine (3.2 mmol) in 1ml ethanol was 

refluxed for 8 h. The reaction mixture was concentrated, and the residue was partitioned 

between water and dichloromethane; the organic layer separated, dried over anhydrous 

MgSO4, and concentrated. The crude product was purified by silica gel column 

chromatography using a mixture of Dichloromethane:Methanol (100:3) to give 

compounds 8a-8e. 
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tert-butyl 4-((2-fluoro-3-methylphenyl)amino)-5,6-dihydropyrido[4',3':4,5]thieno[2,3 

-d]pyrimidine-7(8H)-carboxylate (8a). Yield 53% (0.66 g, solid); LC/MS (+ESI): m/z = 

414.65 (M + H).  

 

tert-butyl 4-((4-bromo-2-fluorophenyl)amino)-5,6-dihydropyrido[4',3':4,5]thieno[2,3 

-d]pyrimidine-7(8H)-carboxylate (8b). Yield 50% (0.72 g, solid); 1H NMR (300 MHz, 

CDCl3) δ 8.61 (t, J = 8.7 Hz, 1H), 8.57 (s, 1H), 7.35 (s, 1H), 7.34 – 7.27 (m, 2H), 4.72 (s, 

2H), 3.87 (t, J = 5.7 Hz, 2H), 3.15 (t, J = 5.4 Hz, 2H), 1.51 (s, 9H). LC/MS (+ESI): m/z = 

478.62 (M + H).  

 

tert-butyl 4-((4-bromo-3-methylphenyl)amino)-5,6-dihydropyrido[4',3':4,5]thieno[2, 

3-d]pyrimidine-7(8H)-carboxylate (8c). Yield 46% (0.65 g, solid); 1H NMR (300 MHz, 

DMSO-d6) δ 8.42 (s, 1H), 8.20 (s, 1H), 7.61 (s, 1H), 7.51 (d, J = 1.2 Hz, 2H), 4.67 (s, 

2H), 3.69 (t, J = 5.4 Hz, 2H), 3.20 (s, 2H), 2.34 (s, 3H), 1.45 (s, 9H). LC/MS (+ESI): m/z 

= 474.61 (M + H).  

 

tert-butyl 4-((3-ethylphenyl)amino)-5,6-dihydropyrido[4',3':4,5]thieno[2,3-d] 

pyrimidine-7(8H)-carboxylate (8d). Yield 48% (0.59 g, solid); 1H NMR (500 MHz, 

DMSO-d6) δ 8.40 (s, 1H), 8.15 (s, 1H), 7.53 (dd, J = 8.1, 1.2 Hz, 1H), 7.25 (t, J = 7.8 Hz, 

1H), 6.95 (dd, J = 7.6, 0.5 Hz, 1H), 4.67 (s, 2H), 3.69 (s, 2H), 3.21 (t, J = 5.6 Hz, 2H), 

2.61 (q, J = 7.6 Hz, 2H), 1.45 (s, 9H), 1.20 (t, J = 7.6 Hz, 3H). LC/MS (+ESI): m/z = 

410.67 (M + H).  

 

tert-butyl 4-((4-ethylphenyl)amino)-5,6-dihydropyrido[4',3':4,5]thieno[2,3-d] 

pyrimidine-7(8H)-carboxylate (8e). Yield 47% (0.57 g, solid); 1H NMR (500 MHz, 

CDCl3) δ 8.49 (s, 1H), 7.50 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.5 Hz, 2H), 6.92 (s, 1H), 

4.71 (s, 2H), 3.85 (t, J = 5.6 Hz, 2H), 3.14 (s, 2H), 2.66 (q, J = 7.6 Hz, 2H), 1.51 (s, 9H), 

1.25 (t, J = 7.6 Hz, 3H). LC/MS (+ESI): m/z = 410.72 (M + H).  

 

tert-butyl 4-(cyclohexylamino)-5,6-dihydropyrido[4',3':4,5]thieno[2,3-d]pyrimidine-7 

(8H)-carboxylate (8f). Yield 42% (0.49 g, solid); 1H NMR (300 MHz, CDCl3) δ 8.39 (s, 

1H), 5.07 (d, J = 7.0 Hz, 1H), 4.65 (s, 2H), 4.28 – 4.08 (m, 1H), 3.80 (t, J = 5.7 Hz, 2H), 

2.99 (s, 2H), 2.15 – 1.97 (m, 2H), 1.83 – 1.60 (m, 4H), 1.50 (s, 9H), 1.35 – 1.17 (m, 4H). 

LC/MS (+ESI): m/z = 388.66 (M + H). 

 

General procedure for the synthesis of compounds (9a-9f). 

To a mixture of the corresponding intermediate 8a-8f (1.5 mmol) in dichloromethane 

(2mL) at 0°C was added trifluoroacetic acid (TFA) (1mL) and then warmed to room 

temperature. The reaction mixture was stirred for 2 h, removed the solvent under vacuum, 

and neutralized the residue by slow addition of sodium bicarbonate solution and then 
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extracted with ethyl acetate. The organic layer separated, dried over anhydrous MgSO4, 

and concentrated to give 9a-9f and they were used directly for the next step without 

further purification. 

Compound 9a 9b 9c 9d 9e 9f 

% Yield 89 82 86 94 83 85 

Amount (g) 0.42 0.46 0.48 0.43 0.38 0.36 

Physical State solid solid solid solid solid solid 

LC/MS(+ESI): 

m/z (M + H)= 
314.80  378.48  374.59  310.80   310.89  288.97  

 

General procedure for the synthesis of compounds (10a-10f). 

A mixture of the corresponding intermediate 9a-9f (1 mmol) and NaHCO3 (1.3 

mmol) was stirred at 0°C in acetone (10 ml) under nitrogen atmosphere. This is then 

followed by dropwise addition of acryloyl chloride (1.3 mmol) and then was stirred for 

30 min. at 0°C. Excess solvent was then removed under reduced pressure and the 

remaining residue was neutralized using NaHCO3 solution. The formed solid was then 

filtered and the purified using column chromatography using a mixture of 

dichloromethane:methanol (100:1) as eluent. 

 

1-(4-((2-fluoro-3-methylphenyl)amino)-5,6-dihydropyrido[4',3':4,5]thieno[2,3-

d]pyrimidin-7(8H)-yl)prop-2-en-1-one (10a). Yield 25% (92 mg, solid); m.p. 189-

190°C; 1H NMR (500 MHz, CDCl3) δ 8.56 (s, 1H), 8.45 (d, J = 7.6 Hz, 1H), 7.31 (d, J = 

23.4 Hz, 1H), 7.08 (t, J = 7.8 Hz, 1H), 6.92 (t, J = 7.3 Hz, 1H), 6.74 – 6.53 (m, 1H), 6.45 

– 6.29 (m, 1H), 5.81 (d, J = 9.6 Hz, 1H), 4.90 (d, J = 44.8 Hz, 2H), 4.04 (d, J = 49.4 Hz, 

2H), 3.23 (s, 2H), 2.32 (d, J = 2.0 Hz, 3H). LC/MS (+ESI): m/z = 368.73 (M + H). 

 

1-(4-((4-bromo-2-fluorophenyl)amino)-5,6-dihydropyrido[4',3':4,5]thieno[2,3-

d]pyrimidin-7(8H)-yl)prop-2-en-1-one (10b). Yield 28% (121 mg, solid); m.p. 231-

233°C; 1H NMR (500 MHz, CDCl3) δ 8.60 (s, 1H), 8.57 (s, 1H), 7.36 – 7.30 (m, 2H), 

7.22 (s, 1H), 6.78 – 6.52 (m, 1H), 6.38 (t, J = 14.4 Hz, 1H), 5.82 (d, J = 9.5 Hz, 1H), 4.91 

(d, J = 44.8 Hz, 2H), 4.05 (d, J = 44.3 Hz, 2H), 3.22 (s, 2H). LC/MS (+ESI): m/z = 

432.46 (M + H). 

 

1-(4-((4-bromo-3-methylphenyl)amino)-5,6-dihydropyrido[4',3':4,5]thieno[2,3-

d]pyrimidin-7(8H)-yl)prop-2-en-1-one (10c). Yield 30% (128 mg, solid); m.p. 216-

218°C; 1H NMR (500 MHz, CDCl3) δ 8.52 (s, 1H), 7.51 (d, J = 8.6 Hz, 1H), 7.48 (d, J = 

2.4 Hz, 1H), 7.37 (s, 1H), 6.87 (d, J = 38.4 Hz, 1H), 6.73 – 6.53 (m, 1H), 6.37 (t, J = 14.2 

Hz, 1H), 5.81 (d, J = 10.4 Hz, 1H), 4.90 (d, J = 45.1 Hz, 2H), 4.03 (d, J = 43.8 Hz, 2H), 

3.20 (s, 2H), 2.42 (s, 3H). LC/MS (+ESI): m/z = 428.63 (M + H). 
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1-(4-((3-ethylphenyl)amino)-5,6-dihydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-

7(8H)-yl)prop-2-en-1-one (10d). Yield 22% (80 mg, solid); m.p. 105-107°C; 1H NMR 

(500 MHz, CDCl3) δ 8.51 (s, 1H), 7.49 (s, 1H), 7.38 (s, 1H), 7.31 (t, J = 7.8 Hz, 1H), 

7.01 (dd, J = 7.6, 0.6 Hz, 1H), 6.92 (d, J = 37.2 Hz, 1H), 6.75 – 6.53 (m, 1H), 6.44 – 6.27 

(m, 1H), 5.80 (d, J = 10.6 Hz, 1H), 4.90 (d, J = 45.0 Hz, 2H), 4.03 (d, J = 46.7 Hz, 2H), 

3.21 (s, 2H), 2.68 (q, J = 7.6 Hz, 2H), 1.27 (t, J = 7.6 Hz, 3H). LC/MS (+ESI): m/z = 

364.70 (M + H). 

 

1-(4-((4-ethylphenyl)amino)-5,6-dihydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-

7(8H)-yl)prop-2-en-1-one (10e). Yield 26% (94 mg, solid); m.p. 201-202°C; 1H NMR 

(500 MHz, CDCl3) δ 8.49 (s, 1H), 7.49 (d, J = 7.9 Hz, 2H), 7.22 (d, J = 8.3 Hz, 2H), 6.89 

(d, J = 36.7 Hz, 1H), 6.74 – 6.52 (m, 1H), 6.44 – 6.27 (m, 1H), 5.80 (d, J = 10.8 Hz, 1H), 

4.89 (d, J = 44.7 Hz, 2H), 4.02 (d, J = 45.9 Hz, 2H), 3.19 (s, 2H), 2.65 (q, J = 7.6 Hz, 

2H), 1.25 (t, J = 7.6 Hz, 3H). LC/MS (+ESI): m/z = 364.75 (M + H). 

 

1-(4-(cyclohexylamino)-5,6-dihydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-7(8H)-

yl)prop-2-en-1-one (10f). Yield 23% (78 mg, solid); m.p. 150-152°C; 1H NMR (500 

MHz, MeOD) δ 8.24 (s, 1H), 6.86 (ddd, J = 38.8, 16.8, 10.6 Hz, 1H), 6.28 (dd, J = 16.6, 

9.3 Hz, 1H), 5.83 (t, J = 11.9 Hz, 1H), 4.95 – 4.67 (m, 2H), 4.16 – 4.07 (m, 1H), 4.01 (t, J 

= 5.6 Hz, 2H), 3.15 (d, J = 25.2 Hz, 2H), 2.04 (d, J = 9.6 Hz, 2H), 1.80 (dd, J = 9.4, 3.3 

Hz, 2H), 1.68 (d, J = 12.6 Hz, 1H), 1.47 – 1.40 (m, 4H), 1.32 – 1.27 (m, 2H). LC/MS 

(+ESI): m/z = 342.95 (M + H). 

Biological screening 

Cell Culture and Plating 

Cancer cell lines cultured included cell lines with wild type EGFR (SKBR-3 

mammary carcinoma) and with mutant EGFR (H1975). Both cell lines were maintained 

in RPMI-1640 media supplemented with 10% fetal bovine serum in a 37°C humidified 

incubator with 5% CO2 and subcultured twice weekly. Only cultures exhibiting greater 

than 95% viability were used in any experiment (determined by trypan blue exclusion). 

Cells were seeded in 96-well standard assay plates at a density of 5,000 cells/well for 

growth assays and 10,000 cells/well in optical quality PerkinElmer ViewPlate for 

immunofluorescence, then allowed to acclimate overnight before compound addition or 

stimulation with EGF. 

Cytoblot Assay
3 

Serial dilutions of each compound were added to at least 3 replicate wells each 30 

min prior to EGF stimulation (200 ng/mL). Each plate included a positive control (Iressa, 

20µm) and negative control (DMSO). Cytoblot assays were conducted in H1975 (EGF 

mutant) cell line. Phosphorylated EGFR was specifically detected (Cell Signaling 

Technology anti-PY1068 rabbit monoclonal antibody) to quantify the level of receptor 
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autophosphorylation in response to EGF stimulation.  Secondary goat anti-rabbit 

conjugate labeled with horseradish peroxidase enzyme was added, followed by addition 

of enhanced chemiluminescence reagent (ECL; Pierce Pico West).  The resulting 

luminescence was quantitated using a Molecular Devices Paradigm multilabel microplate 

reader. Raw luminescence data were plotted to generate dose response curves and IC50 

values. 

Growth Assay 

SKBR3 and H1975 cells were treated with 8 concentrations of inhibitors ranging from 50 

µM to 8 nM (specifially, the doses tested were 50uM, 25uM, 10uM, 5uM, 1uM, 0.2uM, 

0.04uM, and 0.008uM) followed by EGF stimulation (100 ng/mL) 1 h later. Cells were 

incubated for an additional 72 h at 37°C. Relative cell growth was determined by addition 

of Promega CellTiter Glo luciferase-based measure of ATP content, and the resulting 

luminescence was measured using a Molecular Devices Spectramax Paradigm microplate 

reader in luminescence mode. Growth inhibition data were analyzed using DMSO as a 

baseline (negative control equal to 0% growth inhibition) with GraphPad Prism curve 

fitting software. IC50 values are representative of the results at least two independent 

concentration-response experiments with three replicates per concentration. 

EGFR kinase phosphorylation assay  

Phosphorylation assays were performed in a final volume of 20 µl containing 8 mM 

MOPS (pH 7.0), 0.2 mM EDTA, 10 mM MnCl2, 200 µM substrate peptide, 0.25 mM 

DTT, 0.1 mg/ml BSA, 10 ng EGFR-Kinase (Cat. No. 40187, BPS Bioscience), 10 mM 

magnesium acetate, 100 µM γ–[32P]ATP, and inhibitors at different concentrations or 

DMSO control (1.25% v/v). Reactions were started by the addition of the magnesium 

acetate/ATP mixture. After 30 min incubation at 30°C, 5 µl of each reaction was spotted 

on phosphocellulose P81 paper (Whatman). The P81 paper was then washed 5 times with 

50 mM phosphoric acid for 15 min, dried and exposed to a phosphorimager screen, which 

was scanned and densitometrically analyzed the next day. The sequence of the substrate 

peptide was derived from phospholipase C-γ1 and had the sequence 

“KHKKLAEGSAYEEV”, according to Fry et al.
4 

Molecular modeling 

The proteins used for the docking was downloaded from the protein data bank (PDB 

2J5F, 3W2P). The proteins were first prepared for docking using MOE software where 

the proteins were protonated and saved for docking. The ligands were drawn on MOE 

and energy minimized and then saved as “mol2” file. Docking was done using GOLD 

software, where the proteins are first prepared by removing the water molecules and 

extracting the co-crystallized ligands. The docking of the compounds included a covalent 

interaction which was done by specifying the atoms in the ligand and the protein that will 

covalently bind together and then docking was done using CHEMPLP as the scoring 
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function and Goldscore as a rescoring function. The viewing of the results was done 

using PyMOL software and the side chains from the docked molecules were hidden to 

facilitate the viewing process. 
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Paper II 

Abstract 

A group of novel anilinoquinazoline derivatives, with variable aryl and heterocyclic 

substituents at position 6, have been synthesized and tested for their EGFR inhibitory 

activity. The aryl and heterocyclic rings have been attached to the quinazoline scaffold 

through different linkages such as an imine, amide and thiourea. Most of the aryl and 

heterocyclic derivatives showed potent inhibition of wild-type EGFR with IC50’s in the 

low nanomolar range. Among these, the thiourea derivatives 6a, 6b and compound 10b 

retained significant activity also towards the Gefitinib-insensitive EGFRT790M/L858R 

mutant, displaying an up to 24-fold stronger potency than Gefitinib. In addition, cell 

growth inhibitory activity has been tested versus cancer cell lines with wild-type (KB 

cells) and mutant EGFR (H1975). Several compounds such as 6a, 11e, 11i and 11j were 

more potent than the reference compound Gefitinib towards both cell lines, and 10b 

towards H1975 cells. Hence, in particular 6a and 10b might serve as new leads for the 

development of inhibitors effective against wild-type EGFR and Gefitinib-resistant 

mutants. 

Introduction 

The epidermal growth factor receptor (EGFR) is a membrane bound tyrosine kinase 

involved in cellular signaling transduction pathways that regulate essential functions such 

as proliferation, differentiation and apoptosis.1 EGFR was observed to be overexpressed 

in several types of cancers such as the non-small cell lung carcinoma (NSCLC) which is 

among the most common causes of cancer-related death.2, 3  Therefore, EGFR inhibition 

has been approved as an important target in cancer therapy.4-6 

Several small molecules inhibiting the EGFR kinase activity such as Gefitinib, Erlotinib 

and Lapatinib (Figure 1), were designed to bind to the ATP binding pocket and have been 

used in cancer therapy.7 These molecules belong to the 4-anilinoquinazoline class,8, 9 

along with 4-anilino-3-quinolinecarbonitrile scaffold are the best known classes for the 
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development of EGFR inhibitors.10, 11 In addition, several irreversible inhibitors having a 

Michael acceptor functional group such as I (Figure 1) were designed to bind covalently 

with the sulfhydryl group of the Cys 797 of EGFR.12, 13 Although some irreversible 

kinase inhibitors have been advanced to clinical studies, the clinical usefulness of these 

compounds has been hampered mainly by toxicity and pharmacokinetic problems.14 Also, 

the emergence of resistant EGFR mutants limits their efficacy. Therefore, the search of 

new potent inhibitors which retain activity towards mutated EGFR kinase remains an 

important and challenging goal. 

 

Figure 1. Reversible and irreversible EGFR tyrosine kinase inhibitors 

In order to develop EGFR inhibitors with improved efficacy, we designed and 

synthesized novel quinazoline derivatives with several modifications in the position 6 

side chain. These modifications included the introduction of different aryl and 

heterocyclic rings with different linkages to the 4-anilinoquinazoline scaffold. The 

different linker types included the imine, amide and thiourea function. We aimed at 

testing the effect of different aryl groups attached to the linkers at position 6 on the 

efficacy in EGFR -wild-type and -mutant tumor cell lines and towards the corresponding 

recombinant EGFR kinases. 

Results and Discussion 

Chemistry 

Synthesis of the quinazoline nucleus was done through the formimidate derivative 1 

which was obtained by refluxing of 2-amino-5-nitrobenzonitrile with triethyl 

orthoformate in the presence of drops of acetic anhydride (Scheme 1). Compound 1 was 

confirmed from its IR spectrum showing a band at 2228.6 cm-1 indicating the existence of 

the (C≡N) group.  
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The formimidate derivative 1, was refluxed in acetic acid with 3-bromoaniline to 

yield the nitroquinazoline derivative 2. The cyclization was confirmed from the IR 

spectrum by the disappearance of the (C≡N) group. The suggested mechanism for the 

formation of the quinazoline nucleus from the formimidate derivative 1 is through 

Dimroth rearrangement as reported for a similar derivative.15 Reduction for the 

nitroquinazoline derivative 2 was done by refluxing it with stannous chloride in methanol 

to yield the aminoquinazoline derivative 3 (Scheme 1).  
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Scheme 1. Reagents and conditions: (i) TEOF, (Ac)2O, reflux, 24h; (ii) 3-bromoaniline, CH3COOH, reflux, 

1h; (iii) SnCl2, MeOH, reflux, 1h. 

Different side chains have been introduced to position 6 of the quinazoline scaffold 

through different linkages. Several imine derivatives were synthesized by refluxing 

different aryl aldehydes with compound 3 in ethanol. A precipitate was formed during the 

reaction which was filtered while hot, yielding compounds 4a-4e. Reaction of compound 

3 with thiophosgene gave the isothiocyanate derivative 5 which was stirred in DMF with 

different amines to give compounds 6a and 6b (Scheme 2).  

 
Scheme 2. Reagents and conditions: (i) Ar-CHO, Ethanol, reflux, 8h; (ii) S=C(Cl)2; (iii) R-NH2, DMF, rt, 

16h. 
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  Upon stirring of compound 3 with chloroacetyl chloride or chloropropionyl chloride 

in acetone at 0°C, the intermediates 7 or 8, respectively, were formed. Compounds 9a-b 

were obtained upon refluxing compound 7 in methanol with the respective amine, while 

compounds 10a-b were synthesized by refluxing the intermediate 8 in ethanol with the 

respective amine in presence of TEA. In addition, different amide derivatives 11a-k were 

obtained by stirring of the respective aryl or heterocyclic acid chloride with compound 3 

in acetone at 0°C. (Scheme 3) 

 
Scheme 3. Reagents and conditions: (i) ClCH2COCl or Cl(CH2)2COCl, NaHCO3, acetone, 0°C, 30 min; (ii) 

R-NH2, MeOH or EtOH, TEA, reflux, 8h; (iii) R-COCl, NaHCO3, acetone, 0°C, 30 min. 

Biological screening 

All final compounds 4a-4e, 6a-b, 9a-b, 10a-b and 11a-k were tested for their 

inhibitory potency towards isolated recombinant wild-type and double mutated 

(T790M/L858R) EGFR kinase as well as towards cell lines growing dependent on either 

wild-type EGFR (KB cells) or the same double mutant EGFR (H1975 cells). The new 

compounds were screened at 150 nM towards the recombinant wild-type EGFR kinase, 

and IC50s were determined for compounds showing more than 85% inhibition in the 

primary screening. In the case of the Gefitinib-insensitive mutant, the primary screening 

concentration had to be raised to 8 µM. The primary screening dose versus the cell lines 

was 40 µM, and compounds reaching more than 60% inhibition were selected for the 

determination of exact IC50 values. 

From the results in Table 1, it can be seen that the presence of aryl or heterocylic 

rings in the side chain at position 6 of the quinazoline can give rise to potent EGFR 
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inhibitors. Concerning the wild-type cell free assay for the aryl imine derivatives, it was 

observed that ortho and meta substitutions on the phenyl ring gave slightly more potent 

derivatives than those having a para substitution, as exemplified by the o-methoxy 4e and 

the m-nitro-compound 4c. However, the structure-activity relationships (SAR) of the 

substitution pattern in the cell free assay were found to be rather flat for this compound 

class; interestingly, though, there were substantial differences in the cell-based assays 

(Table 2 and see below). 

Table 1. IC50 for the % inhibition of recombinant wild-type and double mutated EGFR 
(active) kinase.[a] 

Comp. 

Recombinant wild-type 

EGFR kinase 

Recombinant double mutated 

(T790M/L858R)  EGFR kinase 

% inhibition at 
150 nM [b] 

IC50 
(nM) [c] 

% inhibition at 
8 µM [b] 

IC50 (nM) [c] 
 

4a 92.2 15.3 9.6 N.D. 
4b 90.9 17 10.3 N.D. 
4c 90.4 13.3 13.5 N.D. 
4d 91.8 16.2 10.2 N.D. 
4e 91 10.7 1.9 N.D. 
6a 86.1 17.2 95.3 290 
6b 91.8 10.7 86.4 1020 
9a 96 5.2 14.8 N.D. 
9b 64.2 N.D. 0 N.D. 
10a 91 11.8 22.0 N.D. 
10b 90.1 23.1 93.1 480 
11a 93.5 11.9 0 N.D. 
11b 84.5 N.D. 0 N.D. 
11c 92.6 12.8 3.7 N.D. 
11d 85.6 61.8 0 N.D. 
11e 80.9 N.D. 0 N.D. 
11f 83.8 N.D. 0 N.D. 
11g 88.7 19.5 0 N.D. 
11h 89.6 25.3 0.9 N.D. 
11i 96.9 8.4 6.4 N.D. 
11j 88.7 19.8 0 N.D. 
11k 91.1 17.5 0 N.D. 

Gefitinib 93.2 4 53.6 7200 
[a] IC50 values are representative of at least two independent 
concentration-response experiments performed in triplicate per 
concentration. [b] S.E. ≤ 7%.  [c] S.E. ≤ 5%. [d] N.D.: Not determined. 

For the amide derivatives 11a-k, it was found that the most potent was the 5-

membered heterocyclic furyl derivative 11i; however, phenyl derivatives with polar 

substituents were also tolerated with only little loss of potency toward the purified 
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enzyme (cf. 11a and 11c). The 6-membered heterocyclic derivatives showed further 

reduced potency while the least active were the heterocylcoalkyl 11h and the phenyl 

derivatives with rather lipophilic substituents 11d-f. 

Table 2. IC50 for the cell growth inhibitory activity. 

Comp. 

Cell Growth Inhibition IC50 (µM)
[a]

 

 KB cells  H1975 cells 

4a 17.8 ±1.3 16 ± 1.1 

4b 50.4% ± 4.5% @ 25 µM[b] >40 

4c 66.7% ± 11.6% @ 50 µM[b] >40 

4d >40 >40 

4e 47.2% ± 4.6% @ 50 µM[b] >40 

6a 9.02 ± 1.03 18 ± 1.1 

6b 29.8  ± 1.2 35  ± 1.1 

9a 14.6 ± 1.1 27.9 ± 1.2 

9b 24.8 ± 1.1 >40 

10a N.D.[c] N.D.[c] 

10b 33.6  ± 1.2 20.8  ± 1.1 

11a 16.4 ± 1.2 >40 

11b 26.02 ± 1.3 >40 

11c 39.9 ± 1.1 >40 

11d 26.2 ± 1.1 >40 

11e 14.7 ± 1.0 17.9 ± 1.1 

11f >40 >40 

11g >40 >40 

11h >40 >40 

11i 12.3  ± 1.1 14.3  ± 1.2 

11j 12.04 ± 1.1 22.35 ± 1.1 

11k 19.8 ± 1.2 >40 

Gefitinib 19.5 ± 1.1 31.2 ± 1.0 

[a] IC50 values (± S.D.) are representative of the results at 

least two independent concentration-response experiments 

performed in triplicate per concentration. [b] Full curves 

could not be established.  Maximum % inhibition ± S.D. [c] 

N.D.: Not determined. 

By introducing some extensions at the position 6 side chain through the thiourea 

linkage, it became evident that the heterocycloalkyl derivative 6b was more potent than 

the aryl derivative 6a in the biochemical testing. Furthermore, the amino alkyl amide 

linker type was very well accepted by the enzyme in spite of its increased length; in this 
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compound class, the unsubstituted benzyl derivative 9a was the most potent followed by 

the heterocycloalkyl derivative 10a and finally the substituted aryl derivatives 9b and 

10b.  

Next we wanted to test whether the high potencies against wild-type EGFR observed 

for some of the new compounds in the biochemical assay would also translate in a 

corresponding inhibition of cell-growth. Indeed, as can be seen from Table 2, the 

presence of aryl or heteroaryl groups in the position 6 side chain resulted in compounds 

showing higher potency than Gefitinib towards both the EGFR wild-type (KB) and the 

double mutant cancer cell line (H1975). This was clearly observed with the amide 

derivatives having heterocyclic rings such as 11i and 11j, the nitrophenyl amide 

derivative 11e and the benzylthiourea derivative 6a. It was generally observed that in 

spite of sometimes comparable cell free potencies, both the type of the linker and the aryl 

or heterocycle in the position 6 side chain greatly determined the activity in the EGFR 

wild-type and the mutant cancer cell line. Of note, we were able to identify combinations 

which led to efficient growth inhibition of both cell lines; with respect to the linker, the 

amide and thiourea function yielded those inhibitors which preserved best their cell free 

potencies even in the EGFR mutant cell line (cf. 6a, 11i and 11j). However, the nature of 

the aryl or heterocyclic ring was at least equally important, as it controlled the cellular 

activity in general but also the ratio of growth inhibition between the wild-type and 

mutant cell line (compare 4a with 4c, 11a with 11i). The most favorable scaffolds with 

respect to cell growth inhibition in both cell lines comprised the amide derivatives linked 

to heterocyclic rings (11i and 11j). 

Since it was an important goal of the present study to identify novel lead compounds 

which preserve efficacy against Gefitinib-insensitive mutated EGFR as a major biological 

activity, we screened all compounds against recombinant EGFRL858R/T790M double mutant. 

In agreement with earlier findings,16 a considerable loss of potency was noted for 

Gefitinib towards this clinically relevant mutant; under the conditions of our kinase 

assay, the IC50 increased from 4 nM to more than 7 µM (Table 1). Since our 

diversification at the quinazoline 6-position was expected to provide additional functions 

to interact with residues outside the ATP-binding site or with hydrophobic areas within 

(cf. docking results below), we anticipated that the potency of at least some compounds 

would be less strongly affected by the T790M mutation. It turned out that the activity 

screening against the EGFR double mutant functioned as a highly stringent filter, clearly 

identifying the most promising modifications of the quinazoline scaffold. These 

comprised both thiourea derivatives (6a and 6b), and 10b, which carried a thiazole 

sulfonamide moiety (Table 1). Although 6a exhibited a 17-fold reduction of potency 

towards the double mutated EGFR relative to the wild-type, this was moderate compared 

to the 1800-fold reduction observed with Gefitinib. Consistent with the relative potencies 

of the three active compounds towards the purified EGFRL858R/T790M double mutant, 6a 

conserved best the growth inhibitory activity in the H1975 cells, closely followed by 10b 

(Table 2). 6b was clearly less potent than its congener 6a in this cell line, but since this 
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was also observed before in the EGFR wild-type cells, it might be attributable to a lower 

cell permeability of 6b. Altogether, the preliminary SAR clearly suggest that 

modifications in the position 6 side chain can have a significant role in modulating the 

activity towards the mutant enzyme. The thiourea linker was more effective in retaining 

the activity when bound to the benzyl group (6a) than to the hydrophilic morpholine (6b) 

(Table 1), which suggests that hydrophobic interactions involving this molecule part 

could contribute to the binding affinity. In addition, 10b, possessing a more hydrophilic 

side chain which might reach to other interaction sites, might represent an interesting 

alternative scaffold.  

However, it became also evident that all other compounds of our series were nearly 

inactive towards the double mutated EGFR kinase, suggesting that inhibition of H1975 

cell growth by some compounds such as 4a and 11i is due to off-target effects. The 

targets remain to be identified but might comprise e.g. further kinases. It might be the 

goal of future studies to identify the potentially interesting biological activity spectrum of 

these compounds which enables inhibition of cancer cell growth independent of the 

EGFR mutation status. 

 

Figure 2. 3D Molecular surface map showing the docked poses of the most active compounds 9a (yellow) 
and 11i (blue) in the wild-type EGFR complexed with the reversible ATP competitive drug Gefitinib (red) 
(PDB entry 2ITY). All compounds show a similar binding mode for the 4-anilino quinazoline core. While 

the 4-anilino substituent is accommodated by the deep hydrophobic pocket, the position 6 side chain is 
interacting with hydrophobic regions at the exterior border of the ATP binding site. Surface color codes: 

green, hydrophobic areas; pink, hydrophilic regions. 

An in silico docking of the most potent compounds 9a and 11i in the active site of 

the wild-type EGFR complexed with the reversible ATP competitive drug Gefitinib 

(PDB entry 2ITY)17 predicted that the compounds might exhibit a binding conformation 

similar to that of Gefitinib (Figure 2). Thus it seems clear that the presence of aryl or 

heterocyclic rings in the position 6 side chain is tolerable and does not affect the binding 

mode of the quinazoline-based compounds while offering chances for additional 
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hydrophobic interactions with hydrophobic and/ or polar regions extending to the surface 

of the pocket. 

 

Figure 3. Docked poses of the most active compounds 6a (blue), 6b (green), 10b (yellow) and Gefitinib 
(red) in the active site of the double mutated EGFR (PDB entry 3W2O). The docking results suggest that in 

particular 6a and 6b exhibit binding modes different from that obtained with wild-type EGFR.  

Furthermore, comparative docking studies were also performed with compounds 6a, 

6b and 10b, which had shown markedly higher activities than Gefitinib towards the 

mutant EGFR kinase. The goal was to investigate whether this particular property could 

be explained by distinct binding modes. Firstly, using the wild-type EGFR kinase crystal 

structure, similar poses as with 9a and 11i were obtained (data not shown). In contrast, 

when the docking simulation was repeated using the 3D structure of the EGFRL858R/T790M 

double mutant, all three compounds exhibited binding modes different from those 

obtained with the wild-type EGFR kinase. In the binding poses of 6a and 6b, the 

molecules seemed to flip in a way that the entire structures including the side chains were 

placed much deeper in the pocket (Figure 3). This could be facilitated by the wider ATP 

binding cleft in the mutated enzyme which is due to a conformational shift of the N-lobe 

in the mutated EGFR catalytic domain. This shift is necessary to accommodate the bulky 

side chain of M790 adjacent to the regulatory αC-helix, in addition to a slight outward 

shift of the αC-helix.18 It should be noted that essentially the same poses were 

consistently obtained for 6a and 6b in all docking runs with the EGFR double mutant, 

while in the case Gefitinib, no preferred binding mode was observed; poses were either 

similar to that in Figure 3 (red molecule) or to that in wild-type EGFR. Compound 10b 

(Figure 3, yellow molecule) was docked more similarly to the Gefitinib pose shown in 

Figure 3 with respect to the bromophenylamino quinazoline part, while the side chain at 

position 6 contacted regions outside the ATP-binding pocket as anticipated.  
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The simulated binding poses provided a preliminary clue that in the EGFRL858R/T790M 

double mutant, compounds 6a and 6b might exploit an additional hydrophobic cleft 

which is only formed in the presence of the T790M mutation; further studies involving co-

crystallography are required to experimentally confirm the potentially interesting binding 

mode. 

Conclusion 

We designed and synthesized new quinazoline derivatives having aryl and 

heterocyclic substituents at position 6 linked through an imine, amide or thiourea to the 

quinazoline nucleus. Many of the new compounds inhibited wild-type EGFR kinase with 

IC50’s in low nanomolar range. Among these, 6a, 11i and 11j were equally effective 

towards two model cell lines which grow dependent on wild-type and mutant EGFR, 

respectively, and displayed a more potent cell growth inhibition than the reference 

compound Gefitinib. However, at least in the case of 11i and 11j, the enhanced potency 

towards the H1975 cells harboring the EGFRL858R/T790M double mutant might be due to 

biological activities unrelated to EGFR kinase, because these compounds were inactive 

towards the purified double mutant. However, our diversification strategy at position 6 

yielded two novel derivatives of quinazoline-based EGFR kinase inhibitors which 

retained significant activity towards the clinically relevant EGFRL858R/T790M mutant, one 

of which (compound 6a) displayed a 24-fold stronger potency than Gefitinib. Because 6a 

also retained a higher activity than Gefitinib in the H1975 cells, it represents the most 

promising lead compound of this study. Since our SAR clearly indicated that the cyclic 

substituent at the position 6 side chain is crucial for the biological activity of all linker 

chemotypes, replacement of the benzyl in 6a by substituted derivatives or five- and six-

membered heterocycles would likely result in optimized EGFR kinase inhibitors which 

are equally potent towards the wild-type enzyme and Gefitinib-resistant mutants. 

Experimental Section 

Solvents and reagents were obtained from commercial suppliers and used as 

received. 1H and 13C NMR spectra were recorded on a Bruker DRX 500 spectrometer. 

Chemical shifts are referenced to the residual protonated solvent signals. The purities of 

the tested compounds 4a-4e, 6a-b, 9a-b, 10a-b and 11a-k were determined by HPLC 

coupled with mass spectrometry and were higher than 97.5% except when mentioned. 

Mass spectrometric analysis (HPLC-ESI-MS) was performed on a TSQ quantum 

(Thermo Electron Corporation) instrument equipped with an ESI source and a triple 

quadrupole mass detector (Thermo Finnigan). The MS detection was carried out at a 

spray voltage of 4.2 kV, a nitrogen sheath gas pressure of 4.0 x 105 Pa, an auxiliary gas 

pressure of 1.0 x 105 Pa, a capillary temperature of 400 ºC, a capillary voltage of 35 V, 

and a source CID of 10 V. All samples were injected by an autosampler (Surveyor, 

Thermo Finnigan) with an injection volume of 10 µL. An RP C18 NUCLEODUR 100-3 
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(125 x 3 mm) column (Macherey-Nagel) was used as the stationary phase. The solvent 

system consisted of water containing 0.1% TFA (A) and 0.1% TFA in acetonitrile (B). 

HPLC-Method: flow rate 400 µL/min. The percentage of B started at an initial of 5%, 

was increased up to 100% during 16 min, kept at 100% for 2 min, and flushed back to 5% 

in 2 min. Melting points are uncorrected and were determined on Buchi melting point 

apparatus (B-540). The IR spectra were measured on Nicolet 380 FT-IR spectrometer. 

The elemental analysis was measured using an analyzer Model: Euro EA 3000 (Italy) 

done in the Regional Center for Mycology and Biotechnology, Al Azhar 

University, Cairo, Egypt. 

 

Ethyl N-(2-cyano-4-nitrophenyl)formimidate (1). 5g (30.6 mmol) of 2-amino-5-

nitrobenzonitrile was refluxed in 50ml of triethyl orthoformate for 24 hours in the 

presence of 10 drops of acetic anhydride. The reaction was then concentrated under 

vacuum and the remaining residue was poured on ice water where a precipitate has been 

formed. The ppt. was filtered under vacuum and left to dry to give compound 1. Yield 

82% (5.5 g, yellow solid); 1H NMR (500 MHz, [D6]DMSO): δ = 1.35 (t, J = 7.1 Hz, 3H), 

4.36 (q, J = 7.0 Hz, 2H), 7.46 (s, J = 8.9 Hz, 1H), 8.22 (s, 1H), 8.43 (dd, J = 8.9, 2.7 Hz, 

1H), 8.67 ppm (d, J = 2.6 Hz, 1H); 13C NMR (126 MHz, [D6]DMSO): δ = 13.87, 63.65, 

114.95, 115.56, 122.20, 128.84, 130.58, 143.50, 156.08, 156.31 ppm; IR: ν˜ = 2228.6 cm-

1 (C≡N).  

 

N-(3-bromophenyl)-6-nitroquinazolin-4-amine (2).
19

 Compound 1 (5 mmol) was 

refluxed for 1 hour with 3-bromo aniline (5 mmol) in 8ml glacial acetic acid. A 

precipitate is formed during the reaction which is filtered on hot and the precipitate is 

then washed with diethyl ether to give the corresponding nitroquinazoline derivative 2. 

N
4
-(3-bromophenyl)quinazoline-4,6-diamine (3).

19
 According to the reported 

procedure,20 a mixture of the nitroquinazoline derivative 2 (5 mmol) and stannous 

chloride (25 mmol) in MeOH (20 ml) was stirred at reflux for 1 h under nitrogen 

atmosphere. The excess MeOH was removed under reduced pressure; the remaining 

residue was dissolved in ethyl acetate (200 ml) and basified with aqueous NaHCO3 

solution. The resulting mixture was filtrated under vacuum followed by separation of the 

organic phase from the aqueous phase. The aqueous phase was extracted with ethyl 

acetate (2 x 20 ml), these organic fractions were combined, dried over anhydrous MgSO4 

and concentrated under reduced pressure to obtain the corresponding aminoquinazoline 

derivative 3. 

 

General procedure for the synthesis of compounds (4a-4e). A mixture of compound 3 

(0.65 mmol) and the corresponding benzaldehyde derivative (0.65 mmol) were refluxed 

for 8h in ethanol (15 ml). The precipitate formed was filtered while hot and washed with 

ethanol to give the corresponding imine derivatives 4a-4e. 
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4-(((4-((3-bromophenyl)amino)quinazolin-6-yl)imino)methyl)phenol (4a). Yield 42% 

(115 mg, yellow solid); m.p. 264-266 °C; 1H NMR (500 MHz, [D6]DMSO) δ = 6.91 – 

6.95 (m, 2H), 7.29 (ddd, J = 8.0, 1.9, 1.0 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H), 7.81 (dd, J = 

8.8, 1.9 Hz, 1H), 7.82 – 7.83 (m, 1H), 7.83 – 7.88 (m, 2H), 7.97 (ddd, J = 8.2, 2.0, 1.0 

Hz, 1H), 8.28 (t, J = 2.0 Hz, 1H), 8.34 (d, J = 1.4 Hz, 1H), 8.64 (d, J = 2.3 Hz, 2H), 9.82 

(s, 1H),10.23 ppm (s, 1H); 13C NMR (126 MHz, [D6]DMSO) δ = 113.44, 115.65, 115.82, 

120.45, 121.21, 123.94, 125.86, 127.31, 127.67, 128.92, 130.39, 130.94, 141.07, 147.96, 

150.08, 153.32, 157.37, 161.01, 161.37 ppm; Anal. calcd for C21H15BrN4O: C 60.16, H 

3.61, N 13.36, found: C 60.28, H 3.68, O 13.49.  

4-(((4-((3-bromophenyl)amino)quinazolin-6-yl)imino)methyl)benzene-1,3-diol (4b). 
Yield 39% (110 mg, orange solid); m.p. 241-243 °C; 1H NMR (500 MHz, [D6]DMSO) δ 

= 6.35 (d, J = 2.3 Hz, 1H), 6.46 (dd, J = 8.5, 2.3 Hz, 1H), 7.31 (ddd, J = 7.9, 1.7, 0.9 Hz, 

1H), 7.37 (t, J = 8.0 Hz, 1H), 7.51 (d, J = 8.6 Hz, 1H), 7.86 (d, J = 8.9 Hz, 1H), 7.95 

(ddd, J = 5.5, 2.8, 1.5 Hz, 2H), 8.25 (t, J = 1.9 Hz, 1H), 8.47 (d, J = 2.1 Hz, 1H), 8.64 (s, 

1H), 8.97 (s, 1H), 9.85 (s, 1H), 10.40 (s, 1H), 11.89 ppm (s, 1H); 13C NMR (126 MHz, 

[D6]DMSO) δ = 102.46, 108.19, 112.12, 114.64, 115.63, 120.61, 121.19, 124.09, 126.01, 

126.81, 129.18, 130.39, 134.47, 140.90, 146.35, 148.30, 153.69, 157.39, 162.84, 162.95, 

163.32 ppm; MS (+ESI): m/z = 434.55 (M+); Anal. calcd for C21H15BrN4O2: C 57.95, H 

3.47, N 12.87, found: C 57.98, H 3.52, O 13.02.  

N
4
-(3-bromophenyl)-N

6
-(3-nitrobenzylidene)quinazoline-4,6-diamine (4c). Yield 23% 

(47 mg, pale yellow solid); m.p. 238-239 °C; 1H NMR (500 MHz, [D6]DMSO) δ = 7.23 – 

7.27 (m, 1H), 7.33 (t, J = 8.0 Hz, 1H), 7.83 (d, J = 8.8 Hz, 1H), 7.84 – 7.90 (m, 2H), 7.92 

(dd, J = 8.8, 2.2 Hz, 1H), 8.22 (t, J = 1.9 Hz, 1H), 8.38 – 8.44 (m, 2H), 8.49 (d, J = 2.1 

Hz, 1H), 8.59 (s, 1H), 8.78 – 8.86 (m, 1H), 9.01 (s, 1H), 9.89 ppm (s, 1H); 13C NMR (126 

MHz, [D6]DMSO) δ = 114.01, 115.69, 116.37, 120.78, 121.16, 122.57, 124.20, 125.38, 

125.82, 126.48, 128.83, 130.26, 130.67, 134.79, 137.46, 147.79, 148.29, 148.88, 154.19, 

157.71, 159.44 ppm; Anal. calcd for C21H14BrN5O2: C 56.27, H 3.15, N 15.62, found: C 

56.33, H 3.19, O 15.74.  

N
4
-(3-bromophenyl)-N

6
-(4-nitrobenzylidene)quinazoline-4,6-diamine (4d). Yield 

35% (100 mg, pale yellow solid); m.p. 254-255 °C; 1H NMR (500 MHz, [D6]DMSO) δ = 

7.29 (d, J = 8.1 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H), 7.87 (d, J = 8.8 Hz, 1H), 7.89 – 8.00 

(m, 2H), 8.26 (d, J = 8.9 Hz, 3H), 8.41 (d, J = 8.8 Hz, 2H), 8.51 (d, J = 2.1 Hz, 1H), 8.64 

(s, 1H), 9.00 (s, 1H), 9.91 ppm (s, 1H); 13C NMR (126 MHz, [D6]DMSO) δ = 115.42, 

115.85, 120.65, 121.18, 124.11, 124.16, 125.78, 126.86, 129.02, 129.73, 130.35, 141.29, 

141.50, 148.17, 148.86, 149.00, 154.09, 157.63, 159.89 ppm; Anal. calcd for 

C21H14BrN5O2: C 56.27, H 3.15, N 15.62, found: C 56.37, H 3.19, O 15.76.  

N
4
-(3-bromophenyl)-N

6
-(2-methoxybenzylidene)quinazoline-4,6-diamine (4e). Yield 

29% (82 mg, pale yellow solid); m.p. 263-264 °C; 1H NMR (500 MHz, [D6]DMSO) δ = 
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3.93 (s, 3H), 7.11 (t, J = 7.5 Hz, 1H), 7.21 (d, J = 8.3 Hz, 1H), 7.26 (d, J = 8.5 Hz, 1H), 

7.33 (t, J = 8.0 Hz, 1H), 7.51 – 7.61 (m, 1H), 7.73 – 7.83 (m, 2H), 7.90 (d, J = 8.0 Hz, 

1H), 8.10 (dd, J = 7.7, 1.7 Hz, 1H), 8.22 (s, 1H), 8.35 (d, J = 1.6 Hz, 1H), 8.59 (s, 1H), 

9.03 (s, 1H), 9.88 ppm (s, 1H); 13C NMR (126 MHz, [D6]DMSO) δ = 55.80, 112.11, 

113.43, 116.12, 116.19, 117.32, 120.76, 121.14, 123.71, 124.18, 125.50, 126.88, 127.64, 

128.78, 130.26, 133.57, 148.31, 149.82, 153.69, 156.48, 157.58, 159.43 ppm; Anal. calcd 

for C22H17BrN4O: C 60.98, H 3.95, N 12.93, found: C 61.12, H 3.94, O 13.02. 

N-(3-bromophenyl)-6-isothiocyanatoquinazolin-4-amine (5). Compound 3 (2 mmol) 

was added to a water solution (20ml) upon which conc. HCl (1 ml) was then added and 

stirred at 0ºC. Thiophosgene (2.2 mmol) was then added dropwise to the stirred solution 

and left stirring for 3 hours after which the formed precipitate is filtered and washed with 

diethyl ether to give compound 5. Yield 81% (580 mg, yellow solid); 1H NMR (500 

MHz, [D6]DMSO) δ = 7.46 (d, J = 8.0 Hz, 1H), 7.51 (ddd, J = 8.0, 1.9, 1.1 Hz, 1H), 7.78 

(ddd, J = 8.0, 2.0, 1.1 Hz, 1H), 7.99 (d, J = 8.9 Hz, 1H), 8.06 (t, J = 1.9 Hz, 1H), 8.32 

(dd, J = 9.0, 2.1 Hz, 1H), 8.88 (d, J = 2.0 Hz, 1H), 8.95 (s, 1H),11.29 ppm (s, 1H); 13C 

NMR (126 MHz, [D6]DMSO) δ = 113.97, 118.78, 120.53, 121.17, 123.39, 126.99, 

128.96, 130.59, 130.64, 134.52, 138.59, 139.28, 150.55, 159.32, 181.28 ppm; MS 

(+ESI): m/z = 357.03 (M + H). 

General procedure for the synthesis of compounds (6a and 6b). A mixture of 

compound 5 (0.7 mmol) and the corresponding amine derivative (0.7 mmol) were stirred 

at room temperature for 16h in DMF (10 ml). The solution was then poured on iced water 

where a precipitate was formed which was then filtered. The solid was then purified 

using column chromatography using (Ethylacetate/Hexane 8:2) as eluent to give 

compounds 6a and 6b. 

1-benzyl-3-(4-((3-bromophenyl)amino)quinazolin-6-yl)thiourea (6a). Yield 52% (168 

mg, pale brown solid); purity 95.73%; m.p. 197-198 °C; 1H NMR (500 MHz, 

[D6]DMSO) δ = 4.79 (d, J = 5.1 Hz, 2H), 7.25 (t, J = 7.1 Hz, 1H), 7.30 (ddd, J = 7.9, 1.9, 

1.0 Hz, 1H), 7.31 – 7.38 (m, 5H), 7.78 (d, J = 8.9 Hz, 1H), 7.85 (dd, J = 8.9, 2.1 Hz, 1H), 

7.93 (ddd, J = 8.2, 1.9, 0.9 Hz, 1H), 8.25 (t, J = 1.9 Hz, 1H), 8.42 (s, 1H), 8.47 (d, J = 1.3 

Hz, 1H), 8.64 (s, 1H), 9.83 (s, 1H), 9.91 ppm (s, 1H); 13C NMR (126 MHz, [D6]DMSO) 

δ = 47.51, 115.26, 117.77, 120.43, 121.21, 123.89, 125.86, 126.83, 127.41, 128.21, 

130.41, 131.80, 131.83, 136.98, 139.00, 141.07, 147.51, 153.66, 157.11,181.56 ppm; MS 

(+ESI): m/z = 464.09 (M + H); Anal. calcd for C22H18BrN5S: C 56.90, H 3.91, N 15.08, 

found: C 56.97, H 3.95, O 15.16. 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-(2-morpholinoethyl)thiourea  (6b). 

Yield 52% (175 mg, pale yellow solid); m.p. 149-151 °C; 1H NMR (500 MHz, 

(CD3)2CO)) δ = 2.41 (s, 4H), 2.58 (s, 2H), 3.47 (s, 4H), 3.71 (s, 2H), 7.29 (ddd, J = 7.9, 

1.6, 1.1 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.44 (s, 1H), 7.83 – 7.89 (m, 2H), 7.95 (ddd, J 
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= 8.0, 1.8, 1.0 Hz, 1H), 8.32 – 8.41 (m, 2H), 8.68 ppm (s, 1H), 9.15 (s, 2H); 13C NMR 

(126 MHz, [D6]DMSO) δ = 40.94, 53.06, 56.34, 66.14, 115.21, 117.13, 120.44, 121.18, 

123.90, 125.87, 128.33, 130.39, 131.49, 136.92, 141.01, 147.40, 153.64, 157.04, 180.71 

ppm; MS (+ESI): m/z = 487.16 (M + H); Anal. calcd for C21H23BrN6OS: C 51.75, H 

4.76, N 17.24, found: C 51.87, H 4.80, O 17.41. 

General procedure for the synthesis of compounds (7 and 8). A mixture of 

intermediate 3 (2 mmol) and NaHCO3 (2.2 mmol) was stirred at 0ºC in acetone (10 ml) 

under nitrogen atmosphere. This is then followed by dropwise addition of choroacetyl 

chloride (2.2 mmol) or chloropropionyl chloride (2.2 mmol) and then was stirred for 30 

min. at 0ºC to give compounds 7 and 8, respectively. Excess solvent was then removed 

under reduced pressure and the remaining residue was neutralized using NaHCO3 

solution. The formed solid was then filtered and the purified using column 

chromatography with ethylacetate as eluent.  

 N-(4-((3-bromophenyl)amino)quinazolin-6-yl)-2-chloroacetamide (7). Yield 75% 

(590 mg, yellow solid); 1H NMR (400 MHz, [D6]DMSO) δ = 4.43 (s, 2H), 7.43 (t, J = 7.9 

Hz, 1H), 7.48 (dt, J = 8.0, 1.4 Hz, 1H), 7.70 – 7.78 (m, 1H), 7.96 (d, J = 9.0 Hz, 1H), 

8.02 (t, J = 1.9 Hz, 1H), 8.06 (dd, J = 9.0, 2.1 Hz, 1H), 8.84 (s, 1H), 8.98 (d, J = 2.0 Hz, 

1H), 11.15 (s, 1H),11.27 ppm (s, 1H); 13C NMR (101 MHz, [D6]DMSO) δ = 43.41, 

112.99, 114.43, 121.14, 122.71, 123.16, 126.73, 128.46, 129.07, 130.58, 137.88, 138.13, 

139.12, 150.57, 159.13, 165.28 ppm; MS (+ESI): m/z = 391.05 (M + H).  

N-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-chloropropanamide (8) Yield 79% 

(640 mg, yellow solid); 1H NMR (500 MHz, [D6]DMSO) δ = 2.92 (t, J = 6.2 Hz, 2H), 

3.94 (t, J = 6.2 Hz, 2H), 7.26 – 7.30 (m, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.80 (d, J = 8.9 Hz, 

1H), 7.87 (dt, J = 10.3, 5.2 Hz, 2H), 8.16 (s, 1H), 8.58 (d, J = 4.3 Hz, 1H), 8.72 (d, J = 

1.6 Hz, 1H), 9.93 (s, 1H), 10.42 ppm (s, 1H); 13C NMR (126 MHz, [D6]DMSO) δ = 

39.11, 40.66, 111.76, 115.46, 120.88, 121.08, 124.31, 125.82, 127.09, 128.49, 130.25, 

136.65, 141.18, 146.68, 153.03, 157.29, 168.21 ppm; MS (+ESI): m/z = 405.02 (M + H).   

General procedure for the synthesis of compounds (9a and 9b). A mixture of the 

intermediate 7 (0.5 mmol) and the corresponding amine derivative (0.6 mmol) were 

refluxed for 8h in methanol (15 ml) in the presence of 5 drops triethyl amine. Excess 

solvent was then removed under reduced pressure and the remaining residue was purified 

using column chromatography with (Dichloromethane/Methanol 100:5) as eluent to yield 

compounds 9a and 9b.  

2-(benzylamino)-N-(4-((3-bromophenyl)amino)quinazolin-6-yl)acetamide  (9a). 

Yield 50% (115 mg, pale brown solid); purity 96.02%; m.p. 189-191 °C; 1H NMR (500 

MHz, [D6]DMSO) δ = 3.36 (s, 2H), 3.81 (s, 2H), 7.25 (t, J = 7.3 Hz, 1H), 7.27 – 7.38 (m, 

5H), 7.40 (d, J = 7.4 Hz, 2H), 7.79 (d, J = 8.9 Hz, 1H), 7.88 (d, J = 7.8 Hz, 1H), 8.06 (d, 
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J = 8.9 Hz, 1H), 8.18 (s, 1H), 8.58 (s, 1H), 8.65 (d, J = 1.5 Hz, 1H), 9.86 (s, 1H),10.12 

ppm (s, 1H); 13C NMR (126 MHz, [D6]DMSO) δ = 51.87, 52.64, 111.70, 115.40, 120.77, 

121.12, 124.21, 125.83, 126.76, 126.98, 128.05, 128.22, 128.45, 130.30, 136.48, 140.14, 

141.14, 146.59, 153.00, 157.18, 170.39 ppm; MS (+ESI): m/z = 462.13 (M + H); Anal. 

calcd for C23H20BrN5O: C 59.75, H 4.36, N 15.15, found: C 59.86, H 4.39, O 15.21. 

N-(4-((3-bromophenyl)amino)quinazolin-6-yl)-2-((4-(N-(thiazol-2-yl)sulfamoyl) 

phenyl)amino)acetamide (9b). Yield 40% (120 mg, pale orange solid); purity 96%; m.p. 

297-298 °C; 1H NMR (500 MHz, [D6]DMSO) δ = 4.90 (s, 2H), 5.81 (s, 2H), 6.45 – 6.55 

(m, 2H), 6.85 (d, J = 4.7 Hz, 1H), 7.28 (ddd, J = 8.0, 1.8, 1.1 Hz, 1H), 7.33 (t, J = 8.0 Hz, 

1H), 7.38 (d, J = 4.7 Hz, 1H), 7.40 – 7.44 (m, 2H), 7.81 (d, J = 2.0 Hz, 2H), 7.83 – 7.87 

(m, 1H), 8.16 (t, J = 1.9 Hz, 1H), 8.59 (s, 1H), 8.72 (s, 1H), 9.93 (s, 1H), 10.73 ppm (s, 

1H); 13C NMR (126 MHz, [D6]DMSO) δ = 49.67, 105.50, 111.68, 112.37, 115.47, 

120.97, 121.06, 124.40, 125.86, 126.86, 127.39, 127.78, 128.68, 129.01, 130.23, 136.20, 

141.13, 146.81, 152.30, 153.17, 157.30, 164.82, 166.05 ppm; MS (+ESI): m/z = 610.08 

(M + H); Anal. calcd for C25H20BrN7O3S2: C 49.18, H 3.30, N 16.06, found: C 49.22, H 

3.28, O 16.22. 

General procedure for the synthesis of compounds (10a and 10b). A mixture of the 

intermediate 8 (0.5 mmol) and the corresponding amine derivative (0.6 mmol) were 

refluxed for 8h in ethanol (15 ml) in the presence of 5 drops triethyl amine. Excess 

solvent was then removed under reduced pressure and the remaining residue was purified 

using column chromatography with (Dichloromethane/Methanol 100:5) as eluent to yield 

compounds 10a and 10b.  

N-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-((2-morpholinoethyl)amino) 

propanamide (10a) Yield 64% (160 mg, semisolid); purity 95.42%; 1H NMR (500 MHz, 

[D6]DMSO) δ = 1.77 (s, 1H), 2.34 (s, 4H), 2.38 (t, J = 6.4 Hz, 2H), 2.53 (t, J = 6.6 Hz, 

2H), 2.65 (t, J = 6.4 Hz, 2H), 2.87 (t, J = 6.6 Hz, 2H), 3.50 – 3.53 (m, 4H), 7.27 (d, J = 

8.0 Hz, 1H), 7.33 (t, J = 8.0 Hz, 1H), 7.76 (d, J = 9.0 Hz, 1H), 7.92 (d, J = 8.1 Hz, 1H), 

7.96 – 8.03 (m, 1H), 8.22 (s, 1H), 8.56 (s, 1H), 8.83 (s, 1H), 9.96 (s, 1H), 10.72 ppm (s, 

1H); MS (+ESI): m/z = 499.02 (M + H); Anal. calcd for C23H27BrN6O2: C 55.32, H 5.45, 

N 16.83, found: C 55.39, H 5.48, O 17.01. 

N-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-((4-(N-(thiazol-2-yl)sulfamoyl) 

phenyl)amino)propanamide (10b). Yield 67% (210 mg, yellow solid); m.p. 262-264 

°C; 1H NMR (500 MHz, [D6]DMSO) δ = 2.88 (t, J = 6.7 Hz, 2H), 4.21 (t, J = 6.7 Hz, 

2H), 5.85 (s, 2H), 6.57 (d, J = 8.6 Hz, 2H), 6.81 (d, J = 4.7 Hz, 1H), 7.29 (d, J = 8.2 Hz, 

1H), 7.31 – 7.37 (m, 2H), 7.48 (d, J = 8.6 Hz, 2H), 7.79 (d, J = 8.9 Hz, 1H), 7.84 (dd, J = 

14.5, 5.4 Hz, 2H), 8.17 (t, J = 1.8 Hz, 1H), 8.58 (s, 1H), 8.65 (d, J = 1.6 Hz, 1H), 9.87 (s, 

1H),10.41 ppm (s, 1H); 13C NMR (126 MHz, [D6]DMSO) δ = 34.12, 43.76, 105.96, 

112.10, 112.44, 115.40, 120.81, 121.10, 124.25, 125.82, 127.30, 127.32, 127.91, 128.48, 
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128.64, 130.28, 136.46, 141.15, 146.69, 152.31, 153.07, 157.25, 165.22, 168.58 ppm; 

MS (+ESI): m/z = 624.04 (M + H); Anal. calcd for C26H22BrN7O3S2: C 50.00, H 3.55, N 

15.70, found: C 50.14, H 3.59, O 15.82. 

General procedure for the synthesis of compounds (11b-k). A mixture of intermediate 

3 (0.65 mmol) and NaHCO3 (0.8 mmol) was stirred at 0ºC in acetone (10 ml) under 

nitrogen atmosphere. This is then followed by dropwise addition of corresponding acid 

chloride derivative (0.8 mmol) and then was stirred for 30 min. at 0ºC to yield 

compounds 11b-k. Excess solvent was then removed under reduced pressure and the 

remaining residue was neutralized using NaHCO3 solution. The formed solid was then 

filtered and the purified using column chromatography with ethylacetate as eluent. 

4-amino-N-(4-((3-bromophenyl)amino)quinazolin-6-yl)benzamide (11a). Compound 

11a was synthesized from its nitro derivative 11d through the same procedure of 

compound 3. Yield 30% (84 mg, yellow solid); m.p. 288-289 °C; 1H NMR (500 MHz, 

[D6]DMSO) δ = 5.81 (s, 2H), 6.64 (d, J = 8.7 Hz, 2H), 7.28 (ddd, J = 8.0, 1.7, 0.9 Hz, 

1H), 7.34 (t, J = 8.0 Hz, 1H), 7.80 (t, J = 8.5 Hz, 3H), 7.87 – 7.92 (m, 1H), 8.02 (dd, J = 

9.0, 2.2 Hz, 1H), 8.21 (t, J = 1.9 Hz, 1H), 8.59 (s, 1H), 8.86 (d, J = 2.0 Hz, 1H), 9.87 (s, 

1H), 10.12 ppm (s, 1H); 13C NMR (126 MHz, [D6]DMSO) δ = 112.63, 112.96, 115.36, 

120.45, 120.66, 121.11, 124.12, 125.71, 128.04, 128.36, 129.42, 130.28, 137.55, 141.26, 

146.49, 152.40, 152.86, 157.21, 165.31 ppm; MS (+ESI): m/z = 433.99 (M + H); Anal. 

calcd for C21H16BrN5O: C 58.08, H 3.71, N 16.13, found: C 58.21, H 3.79, O 16.26. 

N-(4-((3-bromophenyl)amino)quinazolin-6-yl)-4-cyanobenzamide (11b). Yield 27% 

(77 mg, white solid) ; m.p. 347-349 °C; 1H NMR (500 MHz, [D6]DMSO) δ = 7.46 (t, J = 

8.0 Hz, 1H), 7.52 (ddd, J = 8.0, 1.9, 1.0 Hz, 1H), 7.75 (ddd, J = 8.0, 1.9, 1.0 Hz, 1H), 

8.02 (t, J = 1.9 Hz, 1H), 8.05 – 8.09 (m, 3H), 8.24 – 8.27 (m, 2H), 8.29 (dd, J = 9.1, 2.1 

Hz, 1H), 8.94 (s, 1H), 9.24 (d, J = 2.0 Hz, 1H), 11.25 (s, 1H),11.61 ppm (s, 1H); 13C 

NMR (126 MHz, [D6]DMSO) δ = 114.01, 114.35, 114.64, 118.20, 120.89, 121.13, 

123.62, 127.22, 128.71, 129.05, 130.62, 130.76, 132.60, 136.12, 137.89, 138.52, 138.60, 

149.96, 159.62,164.41 ppm; MS (+ESI): m/z = 444.08 (M + H); Anal. calcd for 

C22H14BrN5O: C 59.47, H 3.18, N 15.76, found: C 59.61, H 3.14, O 15.82. 

4-acetamido-N-(4-((3-bromophenyl)amino)quinazolin-6-yl)benzamide (11c). Yield 

25% (76 mg, pale yellow solid); m.p. 338-340 °C; 1H NMR (500 MHz, [D6]DMSO) δ = 

2.10 (s, 3H), 7.29 (d, J = 8.6 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H), 7.76 (d, J = 8.7 Hz, 2H), 

7.83 (d, J = 8.9 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.99 – 8.07 (m, 3H), 8.21 (s, 1H), 8.61 

(s, 1H), 8.90 (d, J = 1.8 Hz, 1H), 9.93 (s, 1H), 10.24 (s, 1H),10.49 ppm (s, 1H); 13C NMR 

(126 MHz, [D6]DMSO) δ = 24.12, 113.52, 115.33, 117.54, 118.21, 120.71, 121.12, 

124.17, 125.78, 128.21, 128.42, 128.64, 130.29, 136.98, 141.20, 142.52, 146.80, 153.14, 

157.28, 164.96,168.79 ppm; MS (+ESI): m/z = 476.1 (M + H); Anal. calcd for 

C23H18BrN5O2: C 58.00, H 3.81, N 14.70, found: C 58.13, H 3.79, O 14.84. 
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N-(4-((3-bromophenyl)amino)quinazolin-6-yl)-4-nitrobenzamide (11d). Yield 62% 

(188 mg, orange solid); purity 95.77%; m.p. 310-312 °C; 1H NMR (500 MHz, 

[D6]DMSO) δ = 7.36 – 7.47 (m, 2H), 7.79 (dt, J = 7.0, 2.0 Hz, 1H), 7.96 (d, J = 9.0 Hz, 

1H), 8.08 (d, J = 1.8 Hz, 1H), 8.19 (dd, J = 9.0, 2.1 Hz, 1H), 8.27 – 8.34 (m, 2H), 8.36 – 

8.45 (m, 2H), 8.81 (s, 1H), 9.10 (d, J = 2.0 Hz, 1H), 10.94 (s, 1H),11.18 ppm (s, 1H); 13C 

NMR (126 MHz, [D6]DMSO) δ = 114.39, 114.51, 121.14, 122.55,123.67, 126.10, 

127.87, 129.35, 129.84, 130.51, 137.64, 139.57, 139.69, 146.99, 149.41, 151.30, 158.70, 

160.05, 164.10 ppm; MS (+ESI): m/z = 464.08 (M + H); Anal. calcd for C21H14BrN5O3: 

C 54.33, H 3.04, N 15.08, found: C 54.36, H 3.10, O 15.21. 

N-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3,5-dinitrobenzamide (11e). Yield 

51% (167 mg, yellow solid); m.p. 351-352 °C; 1H NMR (500 MHz, [D6]DMSO) δ = 7.43 

(t, J = 8.0 Hz, 1H), 7.48 (ddd, J = 8.0, 1.8, 1.1 Hz, 1H), 7.78 (ddd, J = 7.9, 1.9, 1.1 Hz, 

1H), 8.02 – 8.10 (m, 2H), 8.33 (dd, J = 9.0, 2.1 Hz, 1H), 8.91 (s, 1H), 9.02 (t, J = 2.1 Hz, 

1H), 9.18 (d, J = 2.0 Hz, 1H), 9.27 (d, J = 2.1 Hz, 2H), 11.54 (s, 1H),11.68 ppm (s, 1H); 
13C NMR (126 MHz, [D6]DMSO) δ = 114.12, 115.15, 121.11, 121.43, 121.62, 123.33, 

126.87, 128.19, 128.70, 130.52, 136.59, 137.81, 138.83, 139.55, 148.13, 149.55, 150.41, 

159.34, 161.72 ppm; MS (+ESI): m/z = 509.05 (M + H); Anal. calcd for C21H13BrN6O5: 

C 49.53, H 2.57, N 16.50, found: C 49.61, H 2.52, O 16.73. 

N-(4-((3-bromophenyl)amino)quinazolin-6-yl)-4-methoxybenzamide (11f). Yield 

62% (180 mg, yellow solid); purity 95.12%; m.p. 331-333 °C; 1H NMR (500 MHz, TFA-

D) δ = 4.15 (s, 3H), 7.31 (d, J = 8.9 Hz, 2H), 7.58 (t, J = 8.1 Hz, 1H), 7.70 (d, J = 9.0 Hz, 

1H), 7.81 (d, J = 8.1 Hz, 1H), 7.95 (s, 1H), 8.15 (d, J = 8.9 Hz, 2H), 8.23 (d, J = 9.0 Hz, 

1H), 8.33 (dd, J = 9.1, 1.7 Hz, 1H), 9.11 (s, 1H), 9.81 ppm (d, J = 1.4 Hz, 1H); 13C NMR 

(126 MHz, TFA-D) δ = 57.61, 116.27, 116.59, 117.24, 123.63, 125.85, 126.43, 126.92, 

131.06, 132.36, 133.57, 134.05, 135.38, 136.73, 137.23, 142.34, 151.54, 162.02, 

166.22,172.54 ppm; MS (+ESI): m/z = 449.08 (M + H); Anal. calcd for C22H17BrN4O2: C 

58.81, H 3.81, N 12.47, found: C 58.89, H 3.88, O 12.55. 

N-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3,4-dimethoxybenzamide (11g). Yield 

46% (143, yellow solid); purity 95.54%; m.p. 257-258 °C; 1H NMR (500 MHz, TFA-D) 

δ = 4.22 (s, 3H), 4.23 (s, 3H), 7.33 (d, J = 8.6 Hz, 1H), 7.62 (t, J = 8.1 Hz, 1H), 7.74 

(ddd, J = 8.0, 2.0, 0.8 Hz, 1H), 7.80 (d, J = 2.1 Hz, 1H), 7.85 (ddd, J = 8.1, 1.8, 0.9 Hz, 

1H), 7.91 (dd, J = 8.5, 2.1 Hz, 1H), 8.00 (t, J = 1.9 Hz, 1H), 8.20 (d, J = 9.0 Hz, 1H), 

8.31 (dd, J = 9.0, 2.1 Hz, 1H), 9.08 (s, 1H), 9.83 ppm (d, J = 2.0 Hz, 1H); 13C NMR (126 

MHz, TFA-D) δ = 55.76, 56.02, 111.73, 114.29, 114.60, 116.52, 121.46, 122.88, 123.79, 

124.41, 125.16, 129.06, 131.52, 131.86, 133.26, 134.96, 135.50, 140.12, 149.24, 149.84, 

154.06, 160.60, 170.37 ppm; MS (+ESI): m/z = 479.09 (M + H); Anal. calcd for 

C23H19BrN4O3: C 57.63, H 4.00, N 11.69, found: C 57.76, H 4.03, O 11.85. 
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N-(4-((3-bromophenyl)amino)quinazolin-6-yl)morpholine-4-carboxamide (11h). 

Yield 24% (65 mg, pale brown solid); purity 95.33%; m.p. 281-283 °C; 1H NMR (500 

MHz, [D6]DMSO) δ = 3.46 – 3.54 (m, 4H), 3.61 – 3.69 (m, 4H), 7.27 (ddd, J = 7.9, 1.8, 

0.9 Hz, 1H), 7.33 (t, J = 8.0 Hz, 1H), 7.73 (d, J = 8.9 Hz, 1H), 7.84 (dd, J = 9.0, 2.2 Hz, 

1H), 7.88 (d, J = 7.9 Hz, 1H), 8.19 (s, 1H), 8.50 (d, J = 2.0 Hz, 1H), 8.56 (s, 1H), 8.91 (s, 

1H), 9.81 ppm (s, 1H); 13C NMR (126 MHz, [D6]DMSO) δ = 44.14, 66.01, 112.12, 

115.37, 120.60, 121.11, 124.05, 125.67, 127.78, 128.16, 130.27, 138.45, 141.27, 145.71, 

152.43, 155.09,157.05 ppm; MS (+ESI): m/z = 428.05 (M + H); Anal. calcd for 

C19H18BrN5O2: C 53.28, H 4.24, N 16.35, found: C 53.37, H 4.22, O 16.52. 

N-(4-((3-bromophenyl)amino)quinazolin-6-yl)furan-2-carboxamide (11i). Yield 43% 

(115 mg, white solid); m.p. 334-336 °C; 1H NMR (500 MHz, [D6]DMSO) δ = 6.76 (dd, J 

= 3.5, 1.7 Hz, 1H), 7.46 (t, J = 8.0 Hz, 1H), 7.52 (ddd, J = 8.0, 1.9, 1.0 Hz, 1H), 7.59 (dd, 

J = 3.5, 0.7 Hz, 1H), 7.74 (ddd, J = 8.0, 1.9, 1.0 Hz, 1H), 7.99 – 8.03 (m, 2H), 8.05 (d, J 

= 9.0 Hz, 1H), 8.31 (dd, J = 9.1, 2.1 Hz, 1H), 8.93 (s, 1H), 9.18 (d, J = 2.0 Hz, 1H), 10.93 

(s, 1H),11.61 ppm (s, 1H); 13C NMR (126 MHz, [D6]DMSO) δ = 112.32, 113.99, 114.37, 

115.78, 120.62, 121.13, 123.64, 127.24, 129.08, 130.63, 130.66, 135.62, 138.43, 138.57, 

146.42, 146.85, 149.71, 156.43,159.62 ppm; MS (+ESI): m/z = 408.99 (M + H); Anal. 

calcd for C19H13BrN4O2: C 55.76, H 3.20, N 13.69, found: C 55.80, H 3.24, O 13.78. 

N-(4-((3-bromophenyl)amino)quinazolin-6-yl)nicotinamide (11j). Yield 50% (135 

mg, pale brown solid); purity 96.52%; m.p. 280-281 °C; 1H NMR (500 MHz, 

[D6]DMSO) δ = 7.29 (ddd, J = 8.0, 1.8, 1.0 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H), 7.62 (ddd, J 

= 8.0, 4.8, 0.8 Hz, 1H), 7.85 (d, J = 8.9 Hz, 1H), 7.90 (ddd, J = 8.2, 1.9, 1.0 Hz, 1H), 8.02 

(dd, J = 9.0, 2.2 Hz, 1H), 8.20 (t, J = 1.9 Hz, 1H), 8.34 – 8.42 (m, 1H), 8.62 (s, 1H), 8.81 

(dd, J = 4.8, 1.6 Hz, 1H), 8.92 (d, J = 2.1 Hz, 1H), 9.21 (dd, J = 2.3, 0.7 Hz, 1H), 9.95 (s, 

1H),10.80 ppm (s, 1H); 13C NMR (126 MHz, [D6]DMSO) δ = 113.75, 115.31, 120.80, 

121.12, 123.62, 124.26, 125.88, 128.33, 128.42, 130.07, 130.30, 135.44, 136.41, 141.13, 

147.07, 148.70, 152.39, 153.37, 157.34, 164.16 ppm; MS (+ESI): m/z = 420.05 (M + H); 

Anal. calcd for C20H14BrN5O: C 57.16, H 3.36, N 16.66, found: C 57.28, H 3.33, O 

16.78. 

N-(4-((3-bromophenyl)amino)quinazolin-6-yl)isonicotinamide (11k). Yield 35% (94 

mg, white solid); m.p. 255-256 °C; 1H NMR (500 MHz, [D6]DMSO) δ = 7.27 – 7.32 (m, 

1H), 7.35 (t, J = 8.0 Hz, 1H), 7.86 (d, J = 8.9 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.95 (dd, 

J = 4.4, 1.6 Hz, 2H), 8.02 (dd, J = 8.9, 2.1 Hz, 1H), 8.20 (s, 1H), 8.63 (s, 1H), 8.84 (dd, J 

= 4.4, 1.6 Hz, 2H), 8.92 (d, J = 1.7 Hz, 1H), 9.96 (s, 1H), 10.86 ppm (s, 1H); 13C NMR 

(126 MHz, [D6]DMSO) δ = 114.02, 115.29, 120.82, 121.12, 121.50, 124.28, 125.90, 

128.38, 128.45, 130.31, 136.15, 141.11, 141.42, 147.18, 150.43, 153.47, 157.35, 164.07 

ppm; MS (+ESI): m/z = 420.02 (M + H); Anal. calcd for C20H14BrN5O: C 57.16, H 3.36, 

N 16.66, found: C 57.25, H 3.37, O 16.80. 



RESULTS                                                                                                                                            - 70 -  

Biological screening 

Cell Culture and Plating 

Cancer cell lines cultured included cell line with wild-type EGFR (KB-HeLa 

variant), and (H1975) with mutant EGFR. Both cell lines were maintained in RPMI-1640 

media supplemented with 10% fetal bovine serum in a 37°C humidified incubator with 

5% CO2 and subcultured twice weekly. Only cultures exhibiting greater than 95% 

viability were used in any experiment (determined by trypan blue exclusion). Cells were 

seeded in 96-well standard assay microplates at a density of 5,000 cells/well for growth 

assays, then allowed to acclimate overnight before compound addition or stimulation 

with EGF. 

Growth Assay 

KB and H1975 cells were treated with 8 concentrations of inhibitors ranging from 50 

µM to 8 nM (Specifially, the doses tested (in µM) were 50, 25, 10, 5, 1, 0.2, 0.04, and 

0.008) followed by EGF stimulation (100 ng/mL) 1 h later. Cells were incubated for an 

additional 72 h at 37°C. Relative cell growth was determined by addition of Promega 

CellTiter Glo luciferase-based measure of ATP content, and the resulting luminescence 

was measured using a Molecular Devices Spectramax Paradigm microplate reader in 

luminescence mode. Growth inhibition data were analyzed using DMSO as a baseline 

(negative control equal to 0% growth inhibition) with GraphPad Prism curve fitting 

software. IC50 values are representative of the results at least two independent 

concentration-response experiments with three replicates per concentration. 

EGFR kinase phosphorylation assay.  

Phosphorylation assays were performed in a final volume of 20 µl containing 8 mM 

MOPS (pH 7.0), 0.2 mM EDTA, 10 mM MnCl2, 200 µM substrate peptide, 0.25 mM 

DTT, 0.1 mg/ml BSA, 10 ng wild-type EGFR-Kinase (Cat. No. 40187, BPS Bioscience) 

or 30 ng mutant EGFR kinase (Cat. No. PV4879, Life Technologies), 10 mM magnesium 

acetate, 100 µM γ–[32P]ATP, and inhibitors or DMSO control (1.25% v/v). For IC50 

curves with the wild-type enzyme, the following concentrations of the compounds (in 

nM) were tested in triplicates: 150, 100, 50, 25, 15, 10, 7.5, 5, 2.5. In the case of the 

mutant enzyme, concentrations (in µM) of 10, 8, 4, 2, 1, 0.75, 0.5, 0.35, 0.2, and 0.1 were 

used. The assays were repeated at least once. Reactions were started by the addition of 

the magnesium acetate/ATP mixture. After 30 min incubation at 30°C, 5 µl of each 

reaction was spotted on phosphocellulose P81 paper (Whatman). The P81 paper was then 

washed 5 times with 50 mM phosphoric acid for 15 min, dried and exposed to a 

phosphorimager screen, which was scanned and densitometrically analyzed the next day. 

The sequence of the substrate peptide was derived from phospholipase C-γ1 and had the 

sequence “KHKKLAEGSAYEEV”, according to Fry et al.
9 
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Molecular modeling 

The proteins used for the docking were downloaded from the protein data bank (PDB 

2ITY and 3W2O). The proteins were first prepared for docking using MOE software in 

which the proteins were protonated and saved for docking. The ligands were drawn on 

MOE and energy minimized and then saved as “mol2” file. Docking was done using 

GOLD software, where the proteins were first prepared by deleting the water molecules 

and extracting the co-crystallized ligand. The docking was done for compounds 9a and 

11i with 2ITY and compounds 6a, 6b and 10b with 3W2O using CHEMPLP as the 

scoring function and Goldscore as a rescoring function. The viewing of the results was 

done using MOE and PyMOL softwares. 
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3.III Targeting two pivotal cancer pathways with 

one molecule: first bispecific inhibitors of the 

Epidermal Growth factor receptor kinase and the 

NF-κB pathway 

 
Major part of this chapter will be published in Journal of Medicinal Chemistry 

 

Paper III 

Abstract 

Although, the use of clinically approved EGFR inhibitors, like Gefitinib, is well 

known in the treatment of cancer, yet they still suffer certain limitations such as 

emergence of resistance or presence of cancers being originally insensitive to the EGFR 

inhibitors. Therefore, treatment with a single, specific agent does not seem particularly 

promising because of the multigenic alterations of tumors. Hence, the use of a 

combination therapy during cancer treatment could sufficiently decrease the development 

of resistance and give at least an additive if not a synergistic effect. Accordingly, in this 

work we present new thiourea quinazoline derivatives which act as dual inhibitors 

towards the EGFR and the NF-κB activation pathway which are two complementary 

signaling pathways in cancer cells. This dual inhibitory activity proved to produce a 

synergistically potent inhibitory activity towards cells lines which are not very sensitive 

to Gefitinib. Starting from an identified hit compound 4b, several modifications have 

been done to it resulting in highly potent compounds, such as 6c and 6h, towards both 

targets. The hit compound was found to inhibit the NF-κB pathway most likely through 

affecting the deubiquitination step. In addition, one of the most potent compounds 6c 

showed much higher selectivity towards EGFR than Gefitinib. 

Introduction 

Inhibition of the EGF receptor kinase-mediated signaling is a well established 

strategy for the treatment of advanced stage non-small cell lung cancer. However, drugs 

used for the treatment, such as Gefitinib and Erlotinib respond more favorably if the 

tumor cells harbour a specific activating EGFR mutation which appear to preserve the 

ligand dependence of receptor activation but alter the pattern of downstream signaling.1 

This EGFR mutation includes mainly small, in-frame deletions in exon 19, or the single 

point mutation L858R,1 and are found in ~10-50% of lung cancer patients, of which 

∼75% show a response to the TKI inhibitors compared to ∼10% in wild-type case.1, 2 

Hence, only a minor proportion of lung cancer patients can actually profit from the 

treatment with EGFR inhibitors. 
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In addition, tumors responsive to initial treatment with EGFR inhibitors often 

become resistant due to acquisition of a mutation in the ATP binding pocket of EGFR 

(T790M) which mainly decreases the Km for ATP, thus out-competing the binding of 

Gefitinib.1, 3 Even within the same tumor, genetic heterogeneity4 might account for a 

minor population of cells in which EGFR signaling is not essential for cell growth and/or 

survival, thus resuming cell growth after initial shrinking of the tumor volume. 

Alternatively, tumor cells might activate distinct pro-survival signaling pathways, as 

exemplified by the amplification of MET in lung cancers treated with epidermal growth 

factor receptor (EGFR) inhibitors.5 Selective pressures that are exerted by cytotoxic 

therapy can lead to the expansion of resistant clones that either existed before the onset of 

treatment or that formed as a result of new alteration that were gained during the 

treatment. Whereas sampling and detection sensitivity issues often limit the ability to 

distinguish between these two possibilities, multiple reports have demonstrated that 

relapsed clones could be traced to variants present as minor clones before the start of 

therapy.6-8 Therefore, the degree of genetic heterogeneity of a tumor might also 

contribute to the activation of alternative pro-survival pathways.9 At any rate, clinical 

experience suggests that at least with advanced stage solid tumors, inhibition of only one 

cancer-relevant signaling pathway is not sufficient to achieve long term remission of the 

patients. It is generally accepted that simultaneous blocking of two major signaling 

pathways should have synergistic anti-tumor effects and might counteract the 

development of mutations.10-13 In particular the NF-κB pathway represents another major 

signaling pathway active in many cancer types such as leukemia, lymphoma, colon 

cancer and ovarian cancer,14, 15 where it induces anti-apoptotic proteins and mediates 

resistance to anticancer drugs and radiation.16  

Importantly, in lung cancer cell lines, a large siRNA screen identified the NF-κB 

pathway activity as a key factor that determined the sensitivity towards EGFR inhibitors. 

Knock down of several components of the NF-κB pathway enhanced cell death induced 

by EGFR inhibition in cell lines such as EGFR-mutant lung cancer cells.17 Validation 

studies confirmed that activation of NF-κB signaling conferred resistance to EGFR 

inhibitors in EGFR dependent tumor models and, conversely, that NF-κB inhibition 

enhanced sensitivity to EGFR inhibitors.17 Therefore, co-inhibition of NF-κB signaling in 

NSCLC is expected to enhance response rates to EGFR inhibitors and extend the 

response duration. 

While co-administration of anti-tumor therapeutics is a common strategy in several 

current cancer trials and has proven to be beneficial in some cases, toxic side effects 

could increase by the number of different agents.18 Moreover, the individual 

pharmacokinetic properties render it difficult to deliver effective amounts of both 

therapeutics to the tumor cells in a concerted manner to achieve maximum efficacy. 

Therefore, it would be a major advantage to combine in a single agent two distinct, 

but specific inhibitory activities which suppress two major, synergistic signaling 

pathways in cancer cells at the same time, such as EGFR/NF-κB in lung cancer cells. 
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In the following, we describe the development of dual EGFR and NF-κB signaling 

inhibitors based on the quinazoline-4-aminophenyl scaffold. We also provide evidence at 

least for one compound that suppression of NF-κB activation occurs most likely at the 

level of deubiquitinating (DUB) enzymes. 

Results and Discussion 

Strategy for Hit identification  

With respect to EGFR kinase inhibition, it was known from previous studies that the 

quinazoline-4-aminophenyl motif is both essential and sufficient to mediate strong 

inhibition of the kinase in the nM range.19, 20 On the other hand, the 6- and 7-positions of 

the quinazoline scaffold offered possibilities for substitutions without strongly 

compromising the EGFR-directed potency, because these positions pointed towards the 

outside of the ATP binding pocket (compare e.g., PDB 2ITY). Furthermore, the 

quinazoline heterocycle was successfully used as a scaffold for the synthesis of potent 

inhibitors for a range of enzymes beside protein kinases, including endothelin converting 

enzyme,21 Thymidylate synthase,22 trypanothione reductase,23  Cyclic GMP 

phosphodiesterase inhibitors,24 PDE7,25 Pin1,26 CDK,27 NADH-ubiquinone 

oxidoreductase,28 glucocerebrosidase,29 and G9a-like protein lysine methyltransferase.30  

The quinazoline system could therefore be considered a privileged scaffold, 

potentially suitable to serve as an affinity anchor for inhibitors of diverse enzymes – 

without evidence of promiscuous properties. Thus, our concept envisaged the expansion 

of the quinazoline core by suitable moieties in order to confer an additional 

pharmacologic activity to the resulting compounds while retaining EGFR kinase 

inhibitory activity. Accordingly, and to achieve the intended dual activity, several 

quinazoline derivatives with potential EGFR inhibitory activity prepared by us were 

screened for their inhibitory activity on the NF-κB activation pathway using a reporter 

gene assay. The compounds selected for screening featured at the 6-position different 

combinations of linkers, potentially acting as a H-bond donor/acceptor pair, and aliphatic 

or (hetero)aromatic moieties which may be accommodated in potential hydrophobic 

binding pockets of new target proteins. Furthermore, we included derivatives with 

variable substitutions at the 4-position of the quinazoline nucleus. The first group of 

screened compounds included variations in position 4 with an acrylamide moiety at 

position 6. The position 4 variations included substituents such as haloanilines, 

alkylanilines, alkoxyanilines, sulfonamide containing anilines and alicyclic amines I-III 

(Chart 1). The second group of screened compounds included variations at position 6 in 

presence of a m-bromoaniline at position 4. Position 6 variations included different 

substituents linked through several linkages to the quinazoline nucleus such as an imine 

IV, amide V, amino alkyl amide VI and thiourea VII (Chart 1). 
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Chart 1. General structures of the quinazoline derivatives selected for screening towards 
the NF-κB inhibitory activity. 
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Screening of the quinazoline derivatives shown in Chart 1, resulted in several 

compounds which suppressed the NF-κB activation at 10 µM (e.g. in Table 1), while the 

most potent hit was the benzylthiourea derivative 4b, exhibiting an almost 100 % 

reduction of the luciferase read out (Table 1). In comparison, the reference compound 

Gefitinib showed a considerably weaker inhibition of about 50 % at 10 µM, suggesting 

that the structural modifications had created a significant inhibitory activity on the NF-κB 

pathway. Importantly, 4b still retained a nM activity with respect to EGFR inhibition, 

though it was about 4-times reduced compared with Gefitinib (Table 1). 

Screening of hit compound (4b) against kinases directly involved in TNF-α Receptor 

signalling  

To rule out that 4b was a non-selective kinase inhibitor on the one hand, but also to 

test whether selective inhibition of one of the kinases specifically involved in NF-κB 

activation in U937 cells was responsible for the novel activity, the hit compound 4b was 

screened against the panel of kinases shown in Table 2. Only one kinase, RIPK-2, was 

weakly inhibited by 4b; however, with the estimated IC50 being above 10 µM, RIPK-2 

was unlikely to be the actual target of this compound in the U937 cells, because the 

higher cellular ATP concentrations tend to reduce the potency further and the IC50 for the 

NF-κB suppression was 4.1 µM (Table 1). Thus we could conclude that compound 4b 

did not affect a kinase which is directly involved in TNFα receptor signaling. 

Furthermore, the hit compound did not exhibit non-selective kinase inhibition, which 

encouraged us to carry out an optimization of the potency guided by the NF-κB reporter 

gene assay. 
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Table 1. Recombinant EGFR kinase IC50, % inhibition and IC50 of U937 reporter gene 
assay at 10 µM concentration for some of the screened quinazoline derivatives that 
showed suppression of the NF-κB activation. 

Comp. 

Recombinant 

EGFR kinase 

U937 reporter gene 

assay 

IC50 (nM) 

% 

inhibition 

at 10µM 

IC50 

(µM) 

 

17.2 97 4.1 

 

2.1 73.6 N.D. 

 

1.5 70 N.D. 

 

8.4 39.4 N.D. 

 

N.D. 33.2 N.D. 

Gefitinib 4.0 51.3 9.7 

Table 2. Selectivity profiling of compound 4b against the kinases associated with the 
TNF-α receptor complex in U937 cells.31 

Kinase 
% activity 

at 10 µM
a
 

Kinase 
% activity 

at 10 µM
a
 

IKKα(h) 117 RIPK2(h) 54 
IKKβ(h) 100 SAPK2a(h) 78 
PKCι(h) 106 TAK1(h) 106 
PKCζ(h) 92 TBK1(h) 92 

a Values represent the mean of two experiments, S.D. < 5 %. All kinases were tested 
using ATP concentrations at the respective Km values.  

Chemistry 

The identified hit compound 4b was subjected to further optimization by a targeted 

synthesis of analogues. The optimization, using the following schemes, involved 
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modifications in the substituents at the 4 anilino ring, the side chain attached to the 

thiourea linker and the thiourea linker itself. 

Synthesis of the quinazoline nucleus was done by refluxing of 5-nitro-2-

aminobenzonitirile with triethyl orthoformate in presence of drops of acetic anhydride to 

yield the formimidate derivative 1. Cyclization to form the quinazoline nucleus took 

place by refluxing of 1 with different anilines in acetic acid to yield the nitroquinazoline 

derivatives 2a-q. Reduction of the nitro intermediates 2a-q to their amino derivatives 3a-

q was done by refluxing the nitro derivatives with stannous chloride in methanol under 

nitrogen atmosphere. The benzyl thiourea derivatives 4a-4q were obtained by stirring the 

aminoquinazoline derivatives 3a-q with benzylisothiocyante in DMF.  (Scheme 1) 

Scheme 1.
a
 

 

Comp. X R Comp. X R 

a C 2-Br m C 4-OH 
b C 3-Br 

n C 

 
c C 4-Br 
d C 3-Cl 
e C 3-Methyl 

o C 

 
f C 2,3-Dimethyl 
g C 3-Ethyl 
h C 4-isopropyl 

p C 

 
i C 4-t-butyl 
j C 4-phenyl 
k C 4-phenoxy q N - 
l C 3-OH    

aReagents and conditions: (i) TEOF, (Ac)2O, reflux, 16h; (ii) R-NH2, CH3COOH, reflux, 
1h; (iii) SnCl2, MeOH, reflux, 30 min; (iv) PhCH2-NCS, DMF, rt, 5h. 

Reaction of compound 3b with thiophosgene yielded the isothiocyanate derivative 5 

which upon stirring with different amines in DMF gave the thiourea derivatives 6a-q and 

7a-e (Scheme 2). The thiourea derivatives 6r-u were obtained by reacting the 
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aminoquinazoline derivatives 3i-k with the corresponding isothiocyanate derivatives in 

DMF at room temperature (Scheme 3). The urea derivatives 8a-b were obtained by 

stirring compound 3b with different isocyanate derivatives in DMF (Scheme 2). 

Scheme 2.
a
 

 

Comp. R Comp. R 

6a H 
7a 

 6b 2-Cl 
6c 3-Cl 

7b 
 

6d 4-Cl 
6e 2,4-dichloro 
6f 3,4-dichloro 

7c 

 
6g 3,5-dichloro 
6h 3-Cl,4-F 
6i 3-CF3,4-Cl 

7d 

 

6j 2-F,3-CF3 
6k 4-CF3 
6l 3-CF3 

6m 3,5-di-trifluoromethyl 
7e 

 6n 4-Br 
6o 4-OH 

6p 

 
8a Benzyl 

6q 

 
8b 4-Chlorophenyl 

aReagents and conditions: (i) S=C(Cl)2, HCl (ii)Ar-NH2, DMF, rt, 5h (iii) R-NH2, DMF, 
rt, 5h (iv) R-NCO, DMF, rt, 5h 
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Scheme 3. 

 

Comp. R R1 

6r 3-CF3,4-Cl 4-t-butyl 
6s 3-CF3,4-Cl 4-phenoxy 
6t 3-CF3,4-Cl 4-phenyl 
6u 3,5-di-trifluoromethyl 4-phenyl 

Identification and validation of quinazoline derivatives displaying NF-κB inhibitory 

activity 

To identify compounds endowed with new desired NF-κB inhibitory properties, we 

chose a reporter gene assay using the lymphoma cell line U937. Due to its origin from 

tissue macrophages,32 this cell line responds with a strong activation of the NF-κB 

pathway after stimulation by LPS or TNFα. Inhibition of any of the essential components 

of the conserved classical (canonical) NF-κB pathway would be expected to result in a 

decrease of the final luciferase activity-based read out. As potential targets, protein 

kinases and adaptor proteins of the TNFα receptor complex, IκB kinase, and components 

of the ubiquitinylation and proteasome complex were conceivable. All of these stages of 

the NF-κB activation process had been proposed independently as potential targets for 

pharmacological intervention. Moreover, it was of importance that the U937 lymphoma 

cell type lacks expression of EGFR, thus excluding any interference due to the intrinsic 

EGFR inhibitory activity of the compounds. 

Optimization of the hit compound (4b)  

With respect to the optimization strategy of the hit compound 4b, we hypothesized 

that the benzyl function might interact with a lipophilic binding pocket of a new target 

protein; thus, one strategy was to synthesize and test analogues with different 

hydrophobic substituents linked to the thiourea moiety while keeping the 3-bromoaniline 

at position 4. These substituents included halobenzyl, phenyl, substituted phenyl, 

heterocyclic and alkyl groups. In addition, the 4-anilino moiety at the quinazoline was 

considered as another adjustable position to optimize binding to a putative new target 

without compromising affinity toward EGFR kinase. Therefore we also decided to 

include several modifications in the substituents at position 4 while keeping the 

benzylthiourea part at position 6 of the quinazoline. Eventually, we planned to exchange 

the thiourea function by urea to investigate whether the thion sulfur played a major role. 

In the cell-based NF-κB reporter gene assay, a primary screening dose of 10 µM was 
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used, after which the IC50 was calculated for the compounds showing more than 80% 

inhibition (Table 3). 

The optimization started by testing the importance of the methylene spacer between 

the thiourea and the aromatic ring, this was done by replacing the benzyl group as in (4b 

and 7c) with their phenyl analogues (6a and 6d). The results of this modification showed 

that the phenyl derivatives were more potent than their benzyl analogues. The next step 

was to confirm the importance of the thiourea group. Accordingly, the thiourea 

derivatives (4b and 6d) were compared with their urea analogues (8a and 8b). A direct 

comparison suggested that the presence of the thiourea moiety is important in order to 

retain the activity towards the NF-κB pathway. The following step was to know if the 

aromatic ring linked to the thiourea moiety was essential for activity. Therefore, the 

aromatic ring was replaced by a methyl group (7a), a morpholine (7e) and an ethyl 

morpholine (7d). As indicated by the loss of NF-κB suppression, the aromatic system 

was found to be essential for the activity (Table 3). 

Next, several substituents were further added to the phenyl thiourea side chain to 

achieve an enhanced potency for the compounds. Firstly, we introduced several polar 

groups or heteroatoms on the phenyl ring as in (6o, 6p, 6q and 7b) which resulted in a 

decrease in the activity towards the NF-κB pathway in the U973 cells. This was then 

followed by adding several lipophilic substituents on the phenyl thiourea side chain 

which resulted in variable potencies depending on the size and the position of the 

substituents. This finally resulted in compounds 6c and 6h which potently inhibited the 

activation of NF-κB in the reporter gene assay (Table 3). 

Structure activity relationship for the NF-κB inhibitory activity 

Concerning the modifications of the position 4 anilines in the presence of the benzyl 

thiourea at position 6, it was found that the aniline moiety should have lipophilic 

substituents as the presence of polar groups destroys the activity. This was clearly seen 

with polar substituents such as the hydroxy 4l and 4m, sulfonamide 4n, substituted 

sulfonamide 4o and 4p or even heterocyclic 4q, which all led to loss of activity (Table 3). 

Although the findings might be influenced by differences in cell permeability, the 

uniform reduction of activity by the more polar moieties suggests that the 4-aminophenyl 

is not only important for the affinity to EGFR kinase (see below) but also seemed to 

interact with the novel target(s) in the NF-κB pathway. Fortunately, the SAR for this 

position showed the same tendency for both targets (see below). 

For the lipophilic meta-substituents on the aniline ring, it was found that the most 

potent were the halogens with the chlorine 4d showing the best activity. This was 

followed by bromine 4b, ethyl 4g, methyl 4e and finally the 2,3-dimethyl 4f. For the Br 

substituent, it was found to be more tolerable and more potent when present in the para 

position 4c followed by the meta 4b and finally the ortho 4a. For the para position, it was 

found that bulky groups are tolerated with the alkyl or aryl groups being less potent than 
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the halogens. The best group in the para position after the bromine was the isopropyl 4h 

followed by phenyl 4j then t-butyl 4i and finally phenyloxy 4k was the least active. 

Modifications of the position 6 side chain in the presence of m-bromaniline in 

position 4, showed that the lipophilic substituents are optimal. Accordingly, any polar, 

heterocyclic or alkyl groups in this side chain such as sulfonamide 6p, substituted 

sulfonamide 6q, pyridyl 7b or morpholine 7d and 7e; lead to loss of activity while the 

only tolerable group was the p-hydroxy 6o. 

Table 3. % inhibition, IC50 of Recombinant EGFR kinase and U937 reporter gene assay 
and IC50 for MDA-MB 231 cell growth inhibition. 

Comp. 

Recombinant EGFR 

Kinase 

U937 reporter gene 

assay 

MDA cell 

growth 

% inhibition 

at 150 nM 

IC50 

(nM) 

% inhibition 

at  10µM 

IC50 

(µM) 

IC50 

(µM) 

4a 13.1 >150 85.7 6.5 >30 
4b 86.1 17.2 97 4.1 9.5 
4c 47.7 >150 92.1 3.8 15.1 
4d 84.8 11.4 89.7 3.7 7.3 
4e 68.5 36.8 76.4 N.D. 19.5 
4f 40.0 >150 71.5 N.D. 28.7 
4g 41.7 >150 92.5 4.8 10.5 
4h 4.2 >150 95.7 4.3 12.8 
4i 0.9 >150 91.9 5.51 8.7 
4j 14.5 >150 89.1 4.4 8.4 
4k 21.9 >150 73.7 N.D. 6.8  
4l 60.8 63.6 44.3 N.D. >30 

4m 44.1 >150 24.1 N.D. 27 
4n 17.7 >150 19.2 N.D. >30 
4o 6.7 >150 21.7 N.D. >30 
4p 20.9 >150 6.6 N.D. >30 
4q 38.5 >150 7.7 N.D. 17.9 

N.D.: Not Determined 
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Table 3. cont. 

Comp. 

Recombinant EGFR 

Kinase 

U937 reporter gene 

assay 

MDA cell 

growth 

% inhibition 

at 150 nM 

IC50 

(nM) 

% inhibition at  

10µM 

IC50 

(µM) 

IC50 

(µM) 

6a 86.5 15.8 90.7 5.2 27.9  
6b 84.3 15.8 95.8 3.5 8.5 
6c 74.8 20.6 97.4 1.9 2.1 
6d 79.6 19.5 89.5 4.9 >30  
6e 66 48.9 93.1 2.9 12.2 
6f 52.9 133.1 97.2 1.9 4.8 
6g 50.9 146.3 99.6 1.8 3.0 
6h 74.1 25.3 100 1.0 0.3 
6i 44.0 >150 99.0 1.7 1.1 
6j 55.6 112.4 98.0 1.3 0.4 
6k 38.1 >150 94.8 1.7 12.2 
6l 57.5 60.7 96.5 1.0 1.4 

6m 32.3 >150 100 1.9 0.8 
6n 70.4 35.4 96.7 2.0 >30  
6o 91.5 8.9 85.3 6.4 >30 
6p 92.3 9.5 29.0 N.D. >30 
6q 81.7 22.0 16.5 N.D. >30 
6r 8.7 >150 68.8 N.D. 2.1 
6s 15.8 >150 100 0.97 0.2 
6t 12.1 >150 74.1 N.D. 2.5 
6u 10.2 >150 91.7 3.8 3.7 
7a 92.2 9.1 3.0 N.D. >30 
7b 90.4 10.2 42.4 N.D. >30 
7c 77.5 28.3 78.6 N.D. 23 
7d 91.8 10.7 20.9 N.D. >30 
7e 84.0 26.9 40.1 N.D. >30 
8a 89.9 8.9 42.6 N.D. >30 
8b 69.0 19.3 50.3 N.D. <10 

Gefitinib 93.2 4.0 51.3 9.7 14.2 

Bortezomib   
100% at 1µM; 

84,4% at 0,2 µM 
  

N.D.: Not Determined 

Structure activity relationship for the EGFR cell free assay 

Since the goal of this study was to identify novel compounds that exhibited dual 

inhibitory activity both against EGFR and NF-κB signaling, we next determined the 

potencies of all compounds against recombinant EGFR kinase. A primary screening dose 

of 150 nM was done after which the IC50 for the compounds was calculated. Firstly, 

concerning the modifications in the aniline at position 4 in presence of the benzyl 

thiourea at position 6, it was clear that the nature, position and the size of the substituents 



RESULTS                                                                                                                                            - 85 -  

greatly affect the activity. It was found that meta position was the optimum for the 

substitution with a hydrophobic group. The groups which offered the most potent activity 

are the halogens especially medium sized halogen like chlorine 4d which was more 

potent than the bromine 4b. Replacing the halogen with alkyl group such as the methyl 4e 

decreased the activity which further decreased with the polar hydroxy group 4l and the 

least active was the more bulky ethyl 4g. In addition, any substitutions in the ortho-

position as in 4a or 4f resulted in significant decrease in activity. Furthermore, all the 

para-substitutions on the aniline also significantly decreased the activity irrespective to 

the nature of the substituent. 

Replacing the thiourea linkage with a urea gave a more potent derivative in case of 

the benzyl substituent (4b with 8a) while, the urea and thiourea were equipotent in case 

of the phenyl substituent (6d with 8b).  

Modifying the position 6 side chain in presence of m-bromoaniline at position 4 

showed that several substituents are tolerable either lipophilic or hydrophilic with the 

hydrophilic or heterocyclic ones being more potent such as 6o, 6p, 7b and 7d. In 

addition, multiple and/or bulky lipophilic substituents on the phenyl ring (as in 6i, 6m 

and 6r-6u) decreased or abolished the activity. The latter SAR were conflicting with the 

requirements for potent inhibition of NF-κB activation, thus it was not possible to 

optimize both biological activities in parallel to the same degree. 

Cellular Effects on the MDA-MB-231 cells 

To confirm that the dual inhibitory activity towards the EGFR and NF-κB activation 

pathway offers a synergistic effect and thus a potential advantage in the cancer therapy 

over the EGFR inhibitors alone, further testing was performed using the MDA-MB-231 

cancer cell line which is known to be rather insensitive to the clinically approved EGFR 

inhibitor Gefitinib (literature: IC50=15-20 µM)33-35 (Table 3). As a general conclusion, it 

was observed that the potency towards the MDA cells was mainly controlled by the NF-

κB inhibitory activity of the compounds (Table 3). This seemed reasonable since the 

potent EGFR inhibitor (Gefitinib) was not sensitive towards this cell line (IC50 = 14.2 

µM). The correlation of the MDA cell growth inhibition with the activity of the reporter 

gene assay provided evidence that tumor cells which are non-responsive towards EGFR 

inhibition can successfully be defeated by the novel NF-κB suppressive activity. 

Effects on A549 cell growth 

The potency of the best compounds to inhibit the cell growth of the lung cancer cell 

line A549 was also tested. This assay was done to corroborate if the compounds with dual 

inhibitory activity still offer an advantage towards a cell line which is intermediately 

sensitive to the potent EGFR inhibitor (Gefitinib). The results showed that the dual 

inhibitors are more potent than Gefitinib in inhibiting the growth of A549 cancer cell line 

(Table 4).  
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Table 4. A549 cell growth inhibitory assay.  

Comp. 
IC50 (µM)

a
 

A549 cells 

4b 2.1 
6c 1.6 
6h 1.0 

Gefitinib 9.3 
a S.D. ≤ 12% 

 

In vitro kinase selectivity profile 

Since the novel dual inhibitors were developed based on a kinase inhibitor scaffold, 

it was straightforward to test whether the suppression of the NF-κB activation was also 

due to inhibition of a kinase. To this end, an in vitro selectivity profile test on a panel of 

106 protein kinase was performed.  For the profiling we selected 6c, an optimized 

compound which had shown potent inhibitory activity against both targets and a slightly 

stronger EGFR kinase inhibition than 6h. The screening concentration was 5 µM, and the 

percentage of activity was calculated and shown in Table 5 (Supporting information). It 

was found that compound 6c exhibited an excellent selectivity for the EGFR kinase, with 

only a weak inhibition towards two other kinases, namely Mnk2 and the Pim-1. The 

IC50’s for these two kinases were further determined and are presented in Table 6 

(Supporting information). It is clear from the IC50’s that compound 6c is a highly potent 

and selective EGFR kinase inhibitor. Compound 6c was more selective than Gefitinib36 

and nearly 29-fold more potent against EGFR kinase than against the second most 

inhibited kinase, Pim-1. 

Role of EGFR, Mnk2 and Pim-1 on the NF-κB pathway 

In order to verify whether the additional targets identified for compound 6c -  though 

being affected only weakly - were the crucial targets for inhibition of NF-κB activation, 

three selective inhibitors (CGP 57380, SMI-4a and Gefitinib) of the three respective 

kinases were tested in the U937 reporter gene assay. They were assayed separately in 3 

different concentrations “5, 2.5 and 1 µM” (Table 7, Supporting information), and also 

applied to the cells in different combinations “1µM compound each” (Table 8, 

Supporting information) to detect potential synergistic effects of the distinct inhibitory 

activities. 

Testing of these specific inhibitors did not reveal any significant inhibition of NF-κB 

activation, either alone or in combination. In some cases, a weak inhibition was seen, 

however, without a clear concentration-dependency; thus it was rather a non-specific 

effect, maybe due to the lack of clear selectivity of the compounds used, so that several 

kinases in the TNFα signaling pathway might have been weakly affected. The 

combination of the inhibitors did not lead to additive or synergistic effects either. Thus, 
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these kinases could be excluded as potential new targets or a target combination in the 

U973 cell NF-κB activation pathway.  

Given the remarkable selectivity of compound 6c, it was rather unlikely that the new 

biological target was another protein kinase, although it could not be fully excluded since 

not the complete kinome was screened, only some representative kinases from each 

branch. However, if it was a kinase, then it would be from an unknown NF-κB activation 

pathway induced by TNFα, because all kinases identified as part of the TNF-α receptor 

complex31 had been included in the kinase screen, also all other kinases which had been 

mentioned in literature before to play a role in NF-κB activation. In addition, all growth 

factor dependent kinase pathways were silenced in the U937 cells because of the serum 

starvation, e.g. the PI3 kinase pathway in which many NF-κB kinases are activated. 

Hence, targeting of such inactive kinases by our inhibitor 6c would not have produced an 

effect in the reporter gene assay. 

Elucidation of the mechanism of action responsible for NF-κB suppression 

Having developed novel dual inhibitors, we aimed at investigating the cellular 

mechanism of action which was responsible for the observed suppression of NF-κB 

activation in the reporter gene assay, assuming that it was not the inhibition of another 

kinase. For this purpose we selected two different sets of test compounds. On the one 

hand, we included 6c and 6h displaying a markedly enhanced activity against the NF-κB 

and still potent EGFR inhibitory activity. On the other hand, the original hit compound 

4b possessed an advantageous potency towards EGFR kinase – probably due to the lack 

of lipophilic substituents at the benzyl residue (cf. SAR discussion above) – while it was 

less potent in the NF-κB reporter gene assay. Because of these somewhat distinct 

properties and the slightly different chemotype, both groups of compounds, 6c/6h and 4b, 

were selected for investigation of the new biological activity. The most obvious 

biological activity to test was the potential inhibition of the proteasome. The prototype of 

proteasome inhibitors, Bortezomib, inhibits two of the three distinct proteolytic activities 

and prevents the degradation of the IκB protein, thus blocking the release of the NF-κB 

dimer.37 

For each of the three proteolytic activities, the trypsin-like, the chymotrypsin-like, 

and the caspase-like, we used a specific fluorigenic peptide and total protein extract from 

MDA-MB-231 cells as a source of proteasomal activities, basically as described.38 

However, whereas Bortezomib used as a positive control inhibited all three proteolytic 

activites, including the caspase-like activity at higher concentrations, none of the three 

test compounds showed any inhibitory activity even at 50 µM (data not shown). Thus, the 

three main proteolytic activities of the proteasome could be excluded as molecular 

targets.  
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NF-κB translocation assay  

As an alternative approach to unravel the mechanism involved in NF-κB 

suppression, we analysed whether the translocation of the RelA subunit of NF-κB (p65) 

was inhibited by the compounds. To this end, we used a high-content screening system 

employing a CHO cell line stably expressing a GFP-p65 fusion protein. A cytoplasmic 

retention of this construct in the presence of the test compounds, as indicated by a diffuse 

cytoplasmic fluorescence, would signify an inhibition of the upstream NF-κB activation. 

The system automatically quantifies the ratio of cytoplasmic vs. nuclear fluorescence and 

provides microphotographs of each well. The cells were first stimulated for 30 min by 25 

ng/ml IL-1β after which the translocation of the GFP-NFκB-p65 fusion protein from the 

cytoplasm to the nucleus was visualized; Bortezomib was used as a positive control, and 

Gefitinib was also included for comparison. Intriguingly, compound 4b repeatedly 

showed a clear concentration-dependent inhibition of the NF-κB-p65 translocation 

(Figures 1 and 2). Since 4b suffered from solubility problems in the serum-free F12 

medium, Pluronic F-127 was added in some experiments to increase the solubility at 

higher concentrations, however, inhibition was noted already starting at 5 µM also in the 

absence of Pluronic F-127. In contrast, Gefitinib was inactive even at high concentrations 

(30µM), and so were the phenylthiourea derivatives 6c and 6h. Even in the presence of 

Pluronic F-127, which successfully prevented the precipitation that was observed before 

in the microphotographs, neither of the compounds prevented the migration of the NF-κB 

construct to the nucleus. This finding was unexpected given the high similarity of 

compounds 6c and 6h with compound 4b.  

Analysis of the compound´s effect on protein ubiquitinylation  

To corroborate the results from the NF-κB translocation assay by a different 

experimental approach, we examined the effect of the test compounds on the 

polyubiquitinylation level of the cellular proteins. To this end, we incubated HeLa cells 

with our test compounds for 6 h, isolated the cellular proteins and analyzed the amount of 

polyubiquitinylated proteins by Western Blotting. Indeed, we observed that compound 4b 

produced a significant accumulation of polyubiquitinylated proteins already at 7.5 µM 

(Figure 1B). The positive control compound Bortezomib caused the strongest increase, 

whereas Gefitinib was again completely ineffective in this assay. These results correlated 

well with the findings from the NF-κB translocation assay. We obtained similar results 

for compound 4b in MDA-MB-231 cells (data not shown); however, in this cell type, 

Bortezomib was not suitable as a positive control, so that we used HeLa cells instead that 

were previously reported to show the desired polyubiquitinylation response when treated 

with Bortezomib.39, 40 Also in this assay, compounds 6c and 6h failed to show any effect. 

Altogether, our results indicate that the benzylthiourea derivative 4b and the two 

phenylthiourea analogues 6c and 6h have qualitatively distinct biological activities with 

respect to the suppression of the NF-κB activation. At least for compound 4b, we could 

clearly show that this compound leads to an accumulation of polyubiquitinylated 
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proteins, which probably blocks the degradation step of the IκB proteins, so that NF-κB 

is retained in the cytoplasm. Deubiquitinating enzymes are a large family of enzymes that 

play essential roles at multiple levels of the proteasome degradation pathway, and 

dysregulation of the ubiquitin-proteasome system has been implicated in the pathogenesis 

of many human diseases, including cancer.41 In particular the effectiveness of the 

proteasome inhibitor Bortezomib in the treatment of multiple myeloma validated the 

ubiquitin-proteasome system as a promising anti-cancer therapeutic target.42 However, 

extended treatment with Bortezomib was associated with toxicity and drug resistance, 

limiting its efficacy.43 

In contrast, therapeutic strategies that target specific aspects of the ubiquitin-

proteasome pathway upstream of the proteasome, were discussed to have lower 

toxicity.44 Therefore, our new compound 4b, which interferes with the deubiquitinating 

enzyme level, might display lower mechanism-related toxicity than in the case of 

proteasome inhibition. 

Since compounds 6c and 6h did not block the translocation of NF-κB-p65 to the 

nucleus, we wanted to verify that these compounds did not exhibit general cytotoxicity, 

e.g. via inhibition of the mRNA or protein synthesis machinery, which would have 

resulted in decreased luciferase read-out in the reporter gene assay as well. Therefore we 

tested our most potent compounds in another cytotoxicity assay using CHO cells as a 

non-tumor cell line, again comparing with Gefitinib. The IC50 values with this cell line 

were considerably higher than that obtained previously with either of the two cancer cell 

lines (Table 9). The selectivity factors calculated for the growth inhibition of the tumor 

cell vs. the non-tumor cell line were for all compounds, including 4b, was substantially 

higher than for Gefitinib opening a large potential therapeutic window for this new class 

of compounds. Thus, a general cytotoxicity could clearly be ruled out. Rather, we were 

able to demonstrate a pronounced tumor-selectivity for the novel biological activity, 

although it could not be identified yet for compounds 6c and 6h. Future studies will show 

whether these compounds interfere with the NF-κB dimer directly or disturb the 

complexation with co-factors which are required for efficient transcriptional activity 

particularly in tumor cells. 
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Figure 1. Results of the NF-κB translocation assay. 
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Figure 2. Images of the NF-κB translocation assay where a sharp fluorescent nucleus indicates 

translocation of the GFP-NFκB, while the diffuse cytosolic staining indicates that the GFP-NFκB resides in 
the cytoplasm.  

Table 9. Cytotoxicity assay using CHO cells (non-tumor) and calculation of selectivity 
factor in comparison to the tumor cells A549. 

Compound 
IC50 (µM)a 

A549 cells 

IC50 (µM)  

CHO-K1 cells 

Fold selectivity 

non-tumor vs. 

tumor cell line 

4b 2.1 34,8 16,6 

6c 1.6 25,7 16,1 

6h 1.0 52,1 52,1 

Gefitinib 9.3 43,7 4,7 

Bortezomib 0.07 < 0.06 N.A. 

N.A.: not applicable. 

 

Conclusion 

A series of thiourea quinazoline derivatives have been synthesized in order to 

achieve a dual inhibitory activity towards the EGFR and NF-κB activation pathway. 

These two complementary pathways are essential for the growth and survival of the 

cancer cells. Therefore, the dual inhibitory activity would offer a synergistic effect that 

could be used for cancer cells that are not sensitive or intermediately sensitive to the 

clinically approved EGFR inhibitors alone. We have been able to identify compound 4b 

as a good hit (among others that were weaker).  Optimization of the hit compound 

resulted in 6c and 6h as best compounds for NF-κB inhibition with IC50s in the low 

micromolar and submicromolar range, respectively. The best compounds 6c, 6h and 4b 
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were investigated for their mechanism of NF-κB inhibition. For compound 4b we 

identified a mechanism mainly involving the deubiquitination step, whereas for 6c and 6h 

it remains elusive. There is no inhibition of the proteasome nor do the compounds inhibit 

the translocation of NF-κB to the nucleus and they don’t inhibit the deubiquitination step. 

However, we can exclude a general cytotoxicity; rather, the compounds display a tumor-

cell selective cytotoxic effect, which was very promising. Compound 6c also showed 

much higher selective towards EGFR kinase than Gefitinib. 

Experimental 

Chemistry 

Solvents and reagents were obtained from commercial suppliers and used as 

received. 1H and 13C NMR spectra were recorded on a Bruker DRX 500 spectrometer. 

Chemical shifts are referenced to the residual protonated solvent signals. The purities of 

the tested compounds 4a-4q, 6a-6u, 7a-7e and 8a-8b were determined by HPLC coupled 

with mass spectrometry and were higher than 95% in all cases. Mass spectrometric 

analysis (HPLC-ESI-MS) was performed on a TSQ quantum (Thermo Electron 

Corporation) instrument equipped with an ESI source and a triple quadrupole mass 

detector (Thermo Finnigan). The MS detection was carried out at a spray voltage of 4.2 

kV, a nitrogen sheath gas pressure of 4.0 x 105 Pa, an auxiliary gas pressure of 1.0 x 105 

Pa, a capillary temperature of 400 ºC, a capillary voltage of 35 V, and a source CID of 10 

V. All samples were injected by an autosampler (Surveyor, Thermo Finnigan) with an 

injection volume of 10 µL. An RP C18 NUCLEODUR 100-3 (125 x 3 mm) column 

(Macherey-Nagel) was used as the stationary phase. The solvent system consisted of 

water containing 0.1% TFA (A) and 0.1% TFA in acetonitrile (B). HPLC-Method: flow 

rate 400 µL/min. The percentage of B started at an initial of 5%, was increased up to 

100% during 16 min, kept at 100% for 2 min, and flushed back to 5% in 2 min. Melting 

points are uncorrected and were determined on Buchi melting point apparatus (B-540). 

The IR spectra were measured on Nicolet 380 FT-IR spectrometer. 

 

1-benzyl-3-(4-((3-bromophenyl)amino)quinazolin-6-yl)thiourea (4b). Yield 52%; 

197-198; 1H NMR (500 MHz, DMSO-d6) δ 9.91 (s, 1H), 9.83 (s, 1H), 8.64 (s, 1H), 8.47 

(d, J = 1.3 Hz, 1H), 8.42 (s, 1H), 8.25 (t, J = 1.9 Hz, 1H), 7.93 (ddd, J = 8.2, 1.9, 0.9 Hz, 

1H), 7.85 (dd, J = 8.9, 2.1 Hz, 1H), 7.78 (d, J = 8.9 Hz, 1H), 7.38 – 7.31 (m, 5H), 7.30 

(ddd, J = 7.9, 1.9, 1.0 Hz, 1H), 7.25 (t, J = 7.1 Hz, 1H), 4.79 (d, J = 5.1 Hz, 2H). 13C 

NMR (126 MHz, DMSO-d6) δ 181.56, 157.11, 153.66, 147.51, 141.07, 139.00, 136.98, 

131.83, 131.80, 130.41, 128.21, 127.41, 126.83, 125.86, 123.89, 121.21, 120.43, 117.77, 

115.26, 47.51. MS (+ESI): m/z = 464.09 (M + H). 

 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-(3-chlorophenyl)thiourea (6c). Yield 

62%; m.p. 180-182°C; 1H NMR (500 MHz, DMSO-d6) δ 10.19 (s, 1H), 10.06 (s, 1H), 
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9.84 (s, 1H), 8.65 (s, 1H), 8.49 (d, J = 1.8 Hz, 1H), 8.23 (t, J = 1.8 Hz, 1H), 7.94 – 7.84 

(m, 2H), 7.80 (d, J = 8.8 Hz, 1H), 7.70 (t, J = 2.0 Hz, 1H), 7.43 (d, J = 9.0 Hz, 1H), 7.36 

(td, J = 8.0, 4.1 Hz, 2H), 7.30 (d, J = 8.7 Hz, 1H), 7.20 (ddd, J = 7.9, 2.0, 1.0 Hz, 1H). 
13C NMR (126 MHz, DMSO-d6) δ 180.49, 157.15, 153.80, 147.66, 140.96, 140.89, 

137.09, 132.49, 132.03, 130.40, 130.00, 128.10, 125.95, 124.34, 124.05, 123.52, 122.43, 

121.18, 120.59, 118.36, 115.13. MS (+ESI): m/z = 483.34 (M + H). 

 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-(3-chloro-4-fluorophenyl)thiourea 

(6h). Yield 53%; m.p. 206-208°C; 1H NMR (500 MHz, DMSO-d6) δ 10.19 (s, 1H), 9.98 

(s, 1H), 9.84 (s, 1H), 8.65 (s, 1H), 8.49 (d, J = 2.1 Hz, 1H), 8.24 (t, J = 2.0 Hz, 1H), 7.91 

(ddd, J = 8.1, 2.0, 1.0 Hz, 1H), 7.86 (dd, J = 8.9, 2.2 Hz, 1H), 7.80 (d, J = 8.9 Hz, 1H), 

7.77 (dd, J = 6.8, 2.5 Hz, 1H), 7.44 (ddd, J = 8.9, 4.6, 2.5 Hz, 1H), 7.41 (d, J = 9.0 Hz, 

1H), 7.36 (dd, J = 14.2, 6.1 Hz, 1H), 7.30 (ddd, J = 8.0, 1.9, 1.0 Hz, 1H). 13C NMR (126 

MHz, DMSO-d6) δ 180.77, 157.17, 154.42 (d, 1JC-F = 244.6 Hz), 153.87, 147.75, 140.98, 

137.00, 136.59, 132.07, 130.41, 128.21, 126.43, 125.97, 125.20 (d, 3
JC-F = 7.2 Hz), 

124.05, 121.21, 120.59, 118.71 (d, 2
JC-F = 18.6 Hz), 118.46, 116.47 (d, 2

JC-F = 21.8 Hz), 

115.18. MS (+ESI): m/z = 501.83 (M + H). 

Biology screening 

EGFR kinase phosphorylation assay. Phosphorylation assays were performed in a final 

volume of 20 µl containing 8 mM MOPS (pH 7.0), 0.2 mM EDTA, 10 mM MnCl2, 200 

µM substrate peptide, 0.25 mM DTT, 0.1 mg/ml BSA, 10 ng wild-type EGFR-Kinase 

(Cat. No. 40187, BPS Bioscience), 10 mM magnesium acetate, 100 µM γ–[32P]ATP, and 

inhibitors or DMSO control (1.25% v/v). For IC50 curves with the wild-type enzyme, the 

following concentrations of the compounds (in nM) were tested in triplicates: 150, 100, 

50, 25, 15, 10, 7.5, 5, 2.5. The assays were repeated at least once. Reactions were started 

by the addition of the magnesium acetate/ATP mixture. After 30 min incubation at 30°C, 

5 µl of each reaction was spotted on phosphocellulose P81 paper (Whatman). The P81 

paper was then washed 5 times with 50 mM phosphoric acid for 15 min, dried and 

exposed to a phosphorimager screen, which was scanned and densitometrically analyzed 

the next day. The sequence of the substrate peptide was derived from phospholipase C-γ1 

and had the sequence “KHKKLAEGSAYEEV”, according to Fry et al.
45 

 

Reporter Gene Assay. The NF-κB reporter gene assay was performed in U937 cells 

exactly as previously described.46 

 

MDA-MB-231 and A549 cell growth assay. Cells were seeded in 96-well standard 

assay microplates at a density of 45,000 cells/well for growth assays, then allowed to 

acclimate overnight before compound addition. After 24 hours cells were treated with the 

different concentrations of the compounds. Cells were incubated for an additional 48 

hours at 37 °C, after which 50µl of MTT reagent (prepared as 5mg/ml PBS) are added 
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and then incubated for additional 4 hours. After that 80µl SDS (prepared as 10% in 0.01N 

HCl) are then added and incubated for additional 1 hour. Absorbance is then measured at 

wavelength 570nm in a plate reader (PolarStar, BMG Labtech, Freiburg, Germany). 

 

Cytotoxicity assay for CHO cells. CHO-K1 cells (ACC-110) were obtained from the 

from the German Collection of Microorganisms and Cell Cultures (Deutsche Sammlung 

für Mikroorganismen und Zellkulturen, DSMZ) and were cultured under conditions 

recommended by the depositor. Cells were seeded at 6 x 103 cells per well of 96-well 

plates in 180 µl complete medium (F12, 10% FBS) and treated with compounds at the 

indicated concentrations after 2 h of equilibration. Each compound was tested in 

duplicate. After 5 d incubation, 20 µl of 5 mg/ml MTT (Thiazolyl blue tetrazolium 

bromide) in PBS was added per well and it was further incubated for 2 h at 37°C. The 

medium was then discarded and cells were washed with 100 µl PBS before adding 100 µl 

2-propanol/10 N HCl (250:1) in order to dissolve formazan granules. The absorbance at 

570 nm was measured using a microplate reader (SpectraMax M5e, Molecular Devices) 

and cell viability was expressed as percentage relative to the control. IC50 values were 

determined by sigmoidal curve fitting. 

 

High-Content Screening Analysis. The stable CHO/NFκBp65-GFP cell line was 

obtained from Affymetrix and cultivated as recommended by the distributor. For 

screening, cells were seeded into 96-well imaging plates (BD Falcon) at 5x103 cells/well 

in F12K medium (GIBCO, Invitrogen) containing 10% FBS Gold (v/v; PAA) and 100 

µg/mL hygromycin B (Roche Applied Science) and were incubated for 2 days. The 

medium was exchanged to F12K medium containing 1% FBS. Cells were incubated with 

test compounds at the indicated concentrations for 3.5 h. For induction of NFκB 

translocation, 25 ng/mL IL-1β was added and the cells were further incubated for 0.5 h. 

Cells were washed twice with PBS and nuclei were stained with Hoechst33342 (5 

µg/mL, 10 min). The translocation of NFĸBp65 was analyzed by measuring the GFP 

fluorescence on an automated microscope (BD Pathway855). Nuclei and cytoplasmic 

segments were defined in subsequent analyses (AttoVision v1.6.2) and GFP fluorescence 

intensities were calculated within these segments. The ratio of GFP fluorescence intensity 

in nuclei and cytosplasm was used as a measure to describe the degree of NFκB nuclear 

translocation. 

 

Kinase selectivity assay. All kinases were tested using ATP concentrations at the 

respective Km values and was performed by Merck Millipore Kinase Profiler Service. 

 

Polyubiquitinylation assay. HeLa cells were cultured in DMEM (10% FCS and 

antibiotics), seeded in 12 well plates, and after confluency starved overnight in DMEM 

containing 0,1% FCS. The next day, test compounds or DMSO control were added and 

the cells incubated for 6h at 37°C, 5% CO2. Supernatants were then removed and the 
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cells lysed using 200 µL SDS PAGE buffer. The soluble fraction was subject to Western 

Blotting, and the membranes were incubated with anti-ubiquitin antibody (Cell 

Signaling, cat. #3933, dilution 1:250) as a primary antibody at 4°C overnight. 

The following day, the Blot was developed using RDY686 labeled goat anti-rabbit 

secondary antibody and the fluorescence signals detected in a LI-COR Odyssey 

apparatus. 

 

Supporting information 

Table 5. Kinase inhibition selectivity profile for compound 6c at 5 µM concentration. 

Kinase % Activity Kinase % Activity Kinase % Activity 

Abl(h) 142 IGF-1R(h) 77 PKA(h) 107 

ACK1(h) 72 IKKα(h) 122 PKBα(h) 112 

ALK(h) 71 IKKβ(h) 101 PKCα(h) 102 

AMPKα1(h) 103 IRAK1(h) 96 PKCδ(h) 96 

ASK1(h) 115 JAK2(h) 115 PKCθ(h) 86 

Aurora-A(h) 83 JNK1α1(h) 96 PKCζ(h) 96 

Axl(h) 93 JNK2α2(h) 103 PKD2(h) 99 

Blk(h) 91 JNK3(h) 88 Plk1(h) 99 

BRK(h) 89 KDR(h) 90 PRAK(h) 68 

BrSK1(h) 39 Lck(h) 71 PRK2(h) 95 

BTK(h) 99 LKB1(h) 75 RIPK2(h) 80 

CaMKI(h) 82 LOK(h) 68 ROCK-II(h) 106 

CDK2/cyclinA(h) 99 Lyn(h) 74 Rse(h) 90 

CDK5/p25(h) 99 MAPK1(h) 82 Rsk1(h) 126 

CDK9/cyclin T1(h) 95 MAPKAP-K2(h) 100 SAPK2a(h) 93 

CHK1(h) 93 MEK1(h) 100 SAPK2b(h) 101 

CHK2(h) 65 MARK1(h) 96 SAPK3(h) 95 

CK1γ1(h) 72 Met(h) 96 SAPK4(h) 110 

CK2(h) 93 MINK(h) 72 SGK(h) 100 

CSK(h) 106 MKK4(m) 74 SRPK1(h) 89 

c-RAF(h) 77 MKK6(h) 98 STK33(h) 100 

cSRC(h) 96 MKK7β(h) 112 Syk(h) 99 

DDR2(h) 85 MLCK(h) 83 TAK1(h) 99 

DRAK1(h) 77 MLK1(h) 86 TAO1(h) 55 

eEF-2K(h) 140 Mnk2(h) 22 TBK1(h) 91 

EGFR(h) -14 MSK1(h) 117 TGFBR1(h) 100 

EphA5(h) 101 MSK2(h) 100 Tie2 (h) 115 

EphB4(h) 90 MST1(h) 107 TLK2(h) 101 

ErbB4(h) 46 MST2(h) 77 TrkA(h) 60 

FGFR1(h) 65 NEK2(h) 97 Txk(h) 77 

Flt1(h) 81 NEK6(h) 112 ULK2(h) 91 

Flt3(h) 101 p70S6K(h) 61 VRK2(h) 103 

Fyn(h) 82 PAK4(h) 96 Yes(h) 78 

GCK(h) 56 PDGFRβ(h) 112 ZAP-70(h) 105 

GSK3α(h) 82 PhKγ2(h) 101   

HIPK1(h) 95 Pim-1(h) 29   
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Table 6. IC50 for compound 6c against EGFR, Mnk2 and Pim-1. 

Kinase IC50 (µM) 
EGFR (h) 0.041 
Mnk2(h) 2.7 
Pim-1(h) 1.2 

 

 

Table 7. % inhibition of U937 reporter gene assay for CGP 57380, SIM-4a and Gefitinib 
at different concentrations 

 % Inhibition 

Conc. CGP 57380 SIM-4a Gefitinib 

5µM 40.4 -0.4 37.6 
2,5µM 37.5 -6.2 32.6 
1µM 30.3 17.5 24.8 

0,5µM N.D. N.D. 21.2 
N.D.: Not Determined 

Table 8. % inhibition of U937 reporter gene assay using different combinations of CGP 
57380, SIM-4a and Gefitinib at 1uM concentration. 

Comp. 

Combination 
% Inhibition 

C+S 11.5 

C+G 13.4 

S+G 16.4 

C+S+G 28.8 

C= CGP 57380 
S= SIM-4a 

G= Gefitinib 
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Experimental 

Chemistry 

Ethyl N-(2-cyano-4-nitrophenyl)formimidate (1). 5g (30.6 mmol) of 2-amino-5-

nitrobenzonitrile was refluxed in 50ml of triethyl orthoformate for 24 hours in the 

presence of 10 drops of acetic anhydride. The reaction was then concentrated under 

vacuum and the remaining residue was poured on ice water where a precipitate has been 

formed. The ppt. was filtered under vacuum and left to dry to give compound 1. Yield 

82%; IR: ν˜ = 2228.6 cm-1 (C≡N); 1H NMR (500 MHz, DMSO-d6): δ 8.67 (d, J = 2.6 Hz, 

1H), 8.43 (dd, J = 8.9, 2.7 Hz, 1H), 8.22 (s, 1H), 7.46 (s, J = 8.9 Hz, 1H), 4.36 (q, J = 7.0 

Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H). 13C NMR (126 MHz, DMSO-d6): δ 156.31, 156.08, 

143.50, 130.58, 128.84, 122.20, 115.56, 114.95, 63.65, 13.87.  

 

General procedure for the synthesis of N-(substituted)-6-nitroquinazolin-4-amine 

(2a-2q). Compound 1 (5 mmol) was refluxed for 1 hour with the respective amine 

derivative (5 mmol) in 8ml glacial acetic acid. A precipitate is formed during the reaction 

which is filtered on hot and the precipitate is then washed with diethyl ether to give the 

corresponding nitro quinazoline derivatives (2a-2p). If a precipitate is not formed, the 

solution is poured on ice water and the formed precipitate is filtered followed by washing 

with diethyl ether to give the corresponding nitroquinazoline derivative. 

 

N-(2-bromophenyl)-6-nitroquinazolin-4-amine (2a). Yield 71%; 1H NMR (500 MHz, 

DMSO-d6) δ 10.64 (s, 1H), 9.61 (s, 1H), 8.56 (d, J = 8.4 Hz, 2H), 7.94 (d, J = 8.0 Hz, 

1H), 7.77 (d, J = 7.8 Hz, 1H), 7.60 – 7.43 (m, 2H), 7.31 (s, 1H). 13C NMR (126 MHz, 

DMSO-d6) δ 160.10, 157.89, 152.99, 144.50, 136.73, 132.95, 130.13, 129.47, 128.81, 

128.44, 126.75, 122.11, 120.83, 113.79. MS (+ESI): m/z = 344.80 (M + H). 

 

N-(3-bromophenyl)-6-nitroquinazolin-4-amine (2b) 

As reported.1  

 

N-(4-bromophenyl)-6-nitroquinazolin-4-amine (2c). Yield 82%; 1H NMR (300 MHz, 

DMSO-d6) δ 10.48 (s, 1H), 9.64 (d, J = 2.4 Hz, 1H), 8.73 (s, 1H), 8.55 (dd, J = 9.2, 2.4 

Hz, 1H), 7.93 (d, J = 9.2 Hz, 1H), 7.89 – 7.80 (m, 2H), 7.66 – 7.56 (m, 2H). 13C NMR 

(75 MHz, DMSO-d6) δ 159.09, 158.01, 153.50, 145.03, 138.33, 131.83, 130.04, 127.17, 

125.08, 121.30, 116.77, 114.88. MS (+ESI): m/z = 344.79 (M + H). 

 

N-(3-chlorophenyl)-6-nitroquinazolin-4-amine (2d). Yield 75%; 1H NMR (300 MHz, 

DMSO-d6) δ 10.43 (s, 1H), 9.61 (d, J = 2.2 Hz, 1H), 8.75 (s, 1H), 8.53 (dd, J = 9.2, 2.3 

Hz, 1H), 8.05 (d, J = 1.8 Hz, 1H), 7.92 (d, J = 9.2 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.43 

(t, J = 8.1 Hz, 1H), 7.22 (dd, J = 8.0, 1.1 Hz, 1H). 13C NMR (75 MHz, DMSO-d6) δ 
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159.13, 157.95, 153.47, 145.10, 140.49, 133.25, 130.64, 130.10, 127.20, 124.45, 122.47, 

121.33, 121.25, 114.86. MS (+ESI): m/z = 300.94 (M + H). 

 

6-nitro-N-(m-tolyl)quinazolin-4-amine (2e). Yield 70%; 1H NMR (500 MHz, DMSO-

d6) δ 10.34 (s, 1H), 9.63 (d, J = 2.4 Hz, 1H), 8.68 (s, 1H), 8.51 (dd, J = 9.2, 2.4 Hz, 1H), 

7.89 (d, J = 9.2 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.63 (s, 1H), 7.29 (t, J = 7.8 Hz, 1H), 

7.00 (d, J = 7.5 Hz, 1H), 2.35 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 158.77, 157.72, 

153.07, 144.43, 138.29, 137.73, 129.42, 128.34, 126.49, 125.23, 123.32, 120.82, 120.05, 

114.35, 21.13. MS (+ESI): m/z = 280.94 (M + H). 

 

N-(2,3-dimethylphenyl)-6-nitroquinazolin-4-amine (2f). Yield 64%; 1H NMR (300 

MHz, DMSO-d6) δ 10.42 (s, 1H), 9.60 (d, J = 2.4 Hz, 1H), 8.57 – 8.51 (m, 2H), 7.90 (d, J 

= 9.2 Hz, 1H), 7.19 – 7.12 (m, 3H), 2.31 (s, 3H), 2.07 (s, 3H). 13C NMR (75 MHz, 

DMSO-d6) δ 160.60, 158.63, 153.55, 144.78, 137.86, 136.78, 134.15, 129.80, 128.78, 

126.97, 126.13, 125.73, 121.46, 114.42, 20.56, 14.84. MS (+ESI): m/z = 294.98 (M + H). 

 

N-(3-ethylphenyl)-6-nitroquinazolin-4-amine (2g) Yield 69%; 1H NMR (500 MHz, 

(CD3)2CO) δ 9.70 (s, 1H), 9.37 (d, J = 2.3 Hz, 1H), 8.74 (s, 1H), 8.56 (dd, J = 9.2, 2.4 

Hz, 1H), 7.96 (d, J = 9.2 Hz, 1H), 7.80 (dd, J = 8.1, 1.2 Hz, 1H), 7.75 (t, J = 1.6 Hz, 1H), 

7.32 (t, J = 7.8 Hz, 1H), 7.05 (dd, J = 7.6, 0.6 Hz, 1H), 2.68 (q, J = 7.6 Hz, 2H), 1.25 (t, J 

= 7.6 Hz, 3H). 13C NMR (126 MHz, (CD3)2CO): δ 159.95, 158.71, 154.53, 145.94, 

145.60, 139.63, 130.90, 129.40, 127.13, 125.00, 122.80, 120.90, 120.67, 115.60, 29.48, 

15.97.  

 

N-(4-isopropylphenyl)-6-nitroquinazolin-4-amine (2h). Yield 65%; 1H NMR (500 

MHz, DMSO-d6) δ 10.38 (s, 1H), 9.62 (d, J = 2.4 Hz, 1H), 8.65 (s, 1H), 8.51 (dd, J = 9.2, 

2.4 Hz, 1H), 7.88 (d, J = 9.2 Hz, 1H), 7.75 – 7.66 (m, 2H), 7.33 – 7.21 (m, 2H), 2.90 

(hept, J = 6.9 Hz, 1H), 1.23 (s, 3H), 1.22 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 

158.76, 157.74, 153.08, 144.74, 144.36, 135.99, 129.37, 126.45, 126.23, 123.02, 120.78, 

114.30, 32.97, 23.90. MS (+ESI): m/z = 309.02 (M + H). 

 

N-(4-(tert-butyl)phenyl)-6-nitroquinazolin-4-amine (2i). Yield 72%; 1H NMR (300 

MHz, DMSO-d6) δ 10.38 (s, 1H), 9.62 (d, J = 2.4 Hz, 1H), 8.65 (s, 1H), 8.51 (dd, J = 9.2, 

2.4 Hz, 1H), 7.88 (d, J = 9.2 Hz, 1H), 7.71 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 8.7 Hz, 2H), 

1.31 (s, 9H). 13C NMR (75 MHz, DMSO-d6) δ 159.27, 158.23, 153.58, 147.47, 144.87, 

136.18, 129.88, 126.95, 125.63, 123.17, 121.29, 114.81, 34.64, 31.65. MS (+ESI): m/z = 

323.00 (M + H). 

 

N-([1,1'-biphenyl]-4-yl)-6-nitroquinazolin-4-amine (2j). Yield 68%; 1H NMR (500 

MHz, DMSO-d6) δ 10.37 (s, 1H), 9.75 (d, J = 2.3 Hz, 1H), 8.74 (s, 1H), 8.51 (dd, J = 9.2, 

2.4 Hz, 1H), 7.97 – 7.92 (m, 2H), 7.91 (d, J = 9.2 Hz, 1H), 7.67 – 7.60 (m, 4H), 7.47 – 



RESULTS                                                                                                                                            - 99 -  

7.42 (m, 2H), 7.34 (ddd, J = 8.5, 2.3, 1.1 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ 

158.31, 157.00, 152.66, 143.83, 139.41, 136.95, 136.24, 128.70, 127.96, 126.28, 126.13, 

125.78, 125.34, 122.36, 120.20, 114.18. MS (+ESI): m/z = 342.90 (M + H). 

 

6-nitro-N-(4-phenoxyphenyl)quinazolin-4-amine (2k). Yield 66%; 1H NMR (300 

MHz, DMSO-d6) δ 10.48 (s, 1H), 9.65 (d, J = 2.4 Hz, 1H), 8.69 (s, 1H), 8.55 (dd, J = 9.2, 

2.4 Hz, 1H), 7.92 (d, J = 9.2 Hz, 1H), 7.83 (d, J = 9.0 Hz, 2H), 7.41 (dd, J = 8.5, 7.5 Hz, 

2H), 7.18 – 7.01 (m, 5H). 13C NMR (75 MHz, DMSO-d6) δ 159.24, 158.25, 157.46, 

156.59, 153.57, 144.94, 134.39, 130.54, 129.94, 127.10, 125.20, 123.78, 121.31, 119.37, 

118.77, 114.82. MS (+ESI): m/z = 358.87 (M + H). 

 

3-((6-nitroquinazolin-4-yl)amino)phenol (2l). Yield 73%; 1H NMR (300 MHz, DMSO-

d6) δ 10.30 (s, 1H), 9.64 (d, J = 2.4 Hz, 1H), 9.50 (s, 1H), 8.70 (s, 1H), 8.52 (dd, J = 9.2, 

2.4 Hz, 1H), 7.90 (d, J = 9.2 Hz, 1H), 7.37 (t, J = 1.9 Hz, 1H), 7.22 (dt, J = 15.8, 8.1 Hz, 

2H), 6.60 (ddd, J = 7.7, 2.2, 1.2 Hz, 1H). 13C NMR (75 MHz, DMSO-d6) δ 159.22, 

158.15, 157.92, 153.56, 144.92, 139.84, 129.89, 129.59, 126.98, 121.36, 114.89, 114.05, 

112.16, 110.45. MS (+ESI): m/z = 283.03 (M + H). 

 

4-((6-nitroquinazolin-4-yl)amino)phenol (2m). Yield 79%; 1H NMR (300 MHz, 

DMSO-d6) δ 10.29 (s, 1H), 9.58 (d, J = 2.4 Hz, 1H), 9.41 (s, 1H), 8.59 (s, 1H), 8.50 (dd, 

J = 9.2, 2.4 Hz, 1H), 7.85 (d, J = 9.2 Hz, 1H), 7.60 – 7.48 (m, 2H), 6.84 – 6.78 (m, 2H). 
13C NMR (75 MHz, DMSO-d6) δ 159.28, 158.42, 155.13, 153.58, 144.75, 130.01, 

129.73, 126.84, 125.42, 121.23, 115.48, 114.76. MS (+ESI): m/z = 282.92 (M + H). 

 

4-((6-nitroquinazolin-4-yl)amino)benzenesulfonamide (2n) Yield 78%; 1H NMR (500 

MHz, DMSO-d6): δ 10.61 (s, 1H), 9.67 (d, J = 2.4 Hz, 1H), 8.78 (s, 1H), 8.57 (dd, J = 

9.2, 2.4 Hz, 1H), 8.07 (d, J = 8.8 Hz, 2H), 7.96 (d, J = 9.2 Hz, 1H), 7.88 (d, J = 8.8 Hz, 

2H), 7.32 (s, 2H). 13C NMR (126 MHz, DMSO-d6): δ 158.72, 157.40, 153.03, 144.68, 

141.53, 139.28, 129.63, 126.76, 126.30, 122.17, 120.83, 114.44. MS (+ESI): m/z = 

346.09 (M + H). 

 

N-carbamimidoyl-4-((6-nitroquinazolin-4-yl)amino)benzenesulfonamide (2o) Yield 

75%; 1H NMR (500 MHz, DMSO-d6) δ 10.58 (s, 1H), 9.66 (d, J = 1.9 Hz, 1H), 8.77 (s, 

1H), 8.56 (dd, J = 9.2, 2.5 Hz, 1H), 8.00 (d, J = 8.6 Hz, 2H), 7.95 (d, J = 9.2 Hz, 1H), 

7.83 – 7.81 (m, 1H), 7.81 – 7.79 (m, 1H), 6.72 (s, 4H). 13C NMR (126 MHz, DMSO-d6) δ 

158.71, 158.13, 157.47, 153.04, 144.66, 141.00, 139.86, 129.62, 126.77, 126.23, 122.07, 

120.87, 114.46. MS (+ESI): m/z = 387.87 (M + H). 

 

4-((6-nitroquinazolin-4-yl)amino)-N-(pyridin-2-yl)benzenesulfonamide (2p) Yield  

75%; 1H NMR (500 MHz, DMSO-d6): δ 11.90 (s, 1H), 10.59 (s, 1H), 9.66 (d, J = 2.3 Hz, 

1H), 8.78 (s, 1H), 8.56 (dd, J = 9.2, 2.4 Hz, 1H), 8.07 (d, J = 8.8 Hz, 2H), 8.03 (dd, J = 
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5.5, 1.1 Hz, 1H), 7.96 (d, J = 9.2 Hz, 1H), 7.95 – 7.91 (m, 2H), 7.73 (ddd, J = 8.9, 7.2, 

1.9 Hz, 1H), 7.19 (d, J = 8.7 Hz, 1H), 6.88 (ddd, J = 7.0, 5.5, 0.9 Hz, 1H). 13C NMR (126 

MHz, DMSO-d6): δ 158.64, 157.35, 153.03, 144.70, 141.98, 140.23, 140.21, 136.69, 

136.67, 129.65, 127.35, 126.79, 121.94, 120.84, 115.72, 114.48, 113.65. MS (+ESI): m/z 

= 423.09 (M + H). 

 

6-nitro-N-(pyridin-3-yl)quinazolin-4-amine (2q). Yield 60%; 1H NMR (300 MHz, 

DMSO-d6) δ 10.51 (s, 1H), 9.59 (d, J = 2.2 Hz, 1H), 8.99 (d, J = 2.2 Hz, 1H), 8.71 (s, 

1H), 8.53 (dd, J = 9.2, 2.4 Hz, 1H), 8.38 (dd, J = 4.7, 1.4 Hz, 1H), 8.26 (d, J = 8.3 Hz, 

1H), 7.91 (d, J = 9.2 Hz, 1H), 7.46 (dd, J = 8.3, 4.7 Hz, 1H). 13C NMR (75 MHz, DMSO-

d6) δ 159.39, 157.96, 153.44, 145.62, 145.02, 144.57, 135.68, 130.37, 130.05, 127.17, 

123.83, 121.22, 114.76. MS (+ESI): m/z = 268.01 (M + H). 

 

General procedure for the synthesis of compunds (3a-3q).
2 A mixture of the 

respective nitroquinazoline derivative (2a-2q) (5 mmol) and stannous chloride (25 mmol) 

in MeOH (20 ml) was stirred at reflux for 1 h under nitrogen atmosphere. The excess 

MeOH was removed under reduced pressure; the remaining residue was dissolved in 

ethyl acetate (200 ml) and basified with aqueous NaHCO3 solution. The resulting mixture 

was filtrated under vacuum followed by separation of the organic phase from the aqueous 

phase. The aqueous phase was extracted with ethyl acetate (2 x 20 ml), these organic 

fractions were combined, dried over anhydrous MgSO4 and concentrated under reduced 

pressure to obtain the corresponding aminoquinazoline derivatives (3a-3q).  

 

N
4
-(2-bromophenyl)quinazoline-4,6-diamine (3a). Yield 80%; 1H NMR (500 MHz, 

DMSO-d6) δ 9.18 (s, 1H), 8.18 (d, J = 6.2 Hz, 1H), 7.71 (dd, J = 8.0, 1.3 Hz, 1H), 7.66 

(dd, J = 7.9, 1.4 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.44 (td, J = 7.7, 1.3 Hz, 1H), 7.27 – 7.18 

(m, 3H), 5.62 (s, 2H). 13C NMR (126 MHz, DMSO-d6) δ 156.83, 149.98, 147.26, 142.46, 

138.00, 132.66, 128.95, 128.61, 128.13, 127.20, 123.67, 121.14, 116.20, 100.69. MS 

(+ESI): m/z = 314.9 (M + H). 

 

N
4
-(3-bromophenyl)quinazoline-4,6-diamine(3b) 

As reported.1 

 

N
4
-(4-bromophenyl)quinazoline-4,6-diamine (3c). Yield 83%; 1H NMR (300 MHz, 

DMSO-d6) δ 9.43 (s, 1H), 8.35 (s, 1H), 7.88 (d, J = 8.9 Hz, 2H), 7.57 – 7.52 (m, 2H), 

7.52 – 7.49 (m, 1H), 7.35 (d, J = 2.3 Hz, 1H), 7.26 (dd, J = 8.9, 2.3 Hz, 1H), 5.60 (s, 2H). 
13C NMR (75 MHz, DMSO-d6) δ 156.21, 150.09, 147.81, 143.13, 139.92, 131.56, 

129.18, 124.23, 123.79, 117.19, 114.74, 101.41. MS (+ESI): m/z = 314.87 (M + H). 

 

N
4
-(3-chlorophenyl)quinazoline-4,6-diamine (3d). Yield 81%; m.p. °C; 1H NMR (300 

MHz, DMSO-d6) δ 9.45 (s, 1H), 8.39 (s, 1H), 8.12 (t, J = 1.9 Hz, 1H), 7.84 (dd, J = 8.2, 
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1.2 Hz, 1H), 7.56 (d, J = 8.9 Hz, 1H), 7.43 – 7.33 (m, 2H), 7.27 (dd, J = 8.9, 2.3 Hz, 1H), 

7.09 (dd, J = 7.6, 1.7 Hz, 1H), 5.62 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 156.17, 

150.02, 147.87, 143.21, 142.09, 133.16, 130.41, 129.23, 124.33, 122.66, 121.06, 120.08, 

117.20, 101.32. MS (+ESI): m/z = 270.89 (M + H). 

 

N
4
-(m-tolyl)quinazoline-4,6-diamine (3e). Yield 75%; 1H NMR (300 MHz, DMSO-d6) 

δ 9.24 (s, 1H), 8.32 (s, 1H), 7.66 (d, J = 6.7 Hz, 2H), 7.52 (d, J = 8.9 Hz, 1H), 7.37 (d, J = 

2.3 Hz, 1H), 7.28 – 7.17 (m, 2H), 6.88 (dd, J = 7.3, 0.5 Hz, 1H), 5.54 (s, 2H), 2.32 (s, 

3H). 13C NMR (75 MHz, DMSO-d6) δ 156.53, 150.38, 147.64, 143.05, 140.33, 137.88, 

129.09, 128.64, 124.07, 123.99, 122.70, 119.43, 117.16, 101.62, 21.73. MS (+ESI): m/z 

= 250.98 (M + H). 

 

N
4
-(3,4-dimethylphenyl)quinazoline-4,6-diamine (3f). Yield 79%; 1H NMR (300 MHz, 

DMSO-d6) δ 9.15 (s, 1H), 8.10 (s, 1H), 7.49 (d, J = 8.8 Hz, 1H), 7.31 (d, J = 2.3 Hz, 1H), 

7.21 (dd, J = 8.9, 2.3 Hz, 1H), 7.15 – 7.06 (m, 3H), 5.50 (s, 2H), 2.29 (s, 3H), 2.04 (s, 

3H). 13C NMR (75 MHz, DMSO-d6) δ 157.52, 153.27, 150.45, 146.95, 142.34, 137.79, 

136.91, 133.55, 128.46, 127.32, 125.32, 123.31, 116.18, 101.35, 20.16, 14.36. MS 

(+ESI): m/z = 264.8  (M + H). 

 

N
4
-(3-ethylphenyl)quinazoline-4,6-diamine (3g) Yield 77%; 1H NMR (300 MHz, 

DMSO-d6) δ 9.27 (s, 1H), 8.32 (s, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.66 (s, 1H), 7.52 (d, J = 

8.9 Hz, 1H), 7.37 (d, J = 2.3 Hz, 1H), 7.27 (d, J = 7.5 Hz, 1H), 7.22 (d, J = 2.4 Hz, 1H), 

6.91 (d, J = 7.5 Hz, 1H), 5.57 (s, 2H), 2.62 (q, J = 7.6 Hz, 2H), 1.21 (t, J = 7.6 Hz, 3H). 
13C NMR (75 MHz, DMSO-d6) δ 156.08, 149.93, 147.22, 143.85, 142.55, 139.93, 

128.64, 128.24, 123.54, 122.42, 121.06, 119.27, 116.72, 101.16, 28.34, 15.63. MS 

(+ESI): m/z = 265.02 (M + H). 

 

N
4
-(4-isopropylphenyl)quinazoline-4,6-diamine (3h). Yield 81%; 1H NMR (500 MHz, 

DMSO-d6) δ 9.26 (s, 1H), 8.29 (s, 1H), 7.78 – 7.69 (m, 2H), 7.52 (d, J = 8.8 Hz, 1H), 

7.36 (d, J = 2.4 Hz, 1H), 7.25 – 7.21 (m, 2H), 7.21 – 7.20 (m, 1H), 5.54 (s, 2H), 2.86 (dq, 

J = 13.9, 7.1 Hz, 1H), 1.21 (d, J = 6.9 Hz, 6H). 13C NMR (126 MHz, DMSO-d6) δ 

156.10, 149.95, 147.09, 142.99, 142.52, 137.56, 128.58, 126.01, 123.43, 121.96, 116.60, 

101.13, 32.90, 23.99. MS (+ESI): m/z = 278.90 (M + H). 

 

N
4
-(4-(tert-butyl)phenyl)quinazoline-4,6-diamine (3i). Yield 86%; 1H NMR (500 

MHz, DMSO-d6) δ 9.27 (s, 1H), 8.29 (s, 1H), 7.77 – 7.70 (m, 2H), 7.52 (d, J = 8.8 Hz, 

1H), 7.40 – 7.32 (m, 3H), 7.23 (dd, J = 8.8, 2.4 Hz, 1H), 5.54 (s, 2H), 1.29 (s, 9H). 13C 

NMR (126 MHz, DMSO-d6) δ 156.10, 149.94, 147.10, 145.22, 142.52, 137.24, 128.57, 

124.91, 123.44, 121.62, 116.61, 101.13, 33.99, 31.24. MS (+ESI): m/z = 293.06 (M + H). 
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N
4
-([1,1'-biphenyl]-4-yl)quinazoline-4,6-diamine (3j). Yield 72%; 1H NMR (300 MHz, 

DMSO-d6) δ 9.44 (s, 1H), 8.37 (s, 1H), 8.06 – 7.93 (m, 2H), 7.72 – 7.62 (m, 4H), 7.55 (d, 

J = 8.9 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.40 (d, J = 2.3 Hz, 1H), 7.36 – 7.29 (m, 1H), 

7.26 (dd, J = 8.9, 2.3 Hz, 1H), 5.59 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 156.38, 

150.30, 147.74, 143.16, 140.39, 140.01, 134.84, 129.36, 129.17, 127.37, 127.00, 126.70, 

124.12, 122.29, 117.26, 101.55. MS (+ESI): m/z = 312.96 (M + H). 

 

N
4
-(4-phenoxyphenyl)quinazoline-4,6-diamine (3k). Yield 74%; 1H NMR (300 MHz, 

DMSO-d6) δ 9.36 (s, 1H), 8.31 (s, 1H), 7.92 – 7.79 (m, 2H), 7.53 (d, J = 8.8 Hz, 1H), 

7.42 – 7.34 (m, 3H), 7.24 (dd, J = 8.9, 2.3 Hz, 1H), 7.14 – 7.07 (m, 1H), 7.07 – 7.03 (m, 

2H), 7.03 – 6.98 (m, 2H), 5.56 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 157.95, 156.47, 

152.00, 150.35, 147.64, 143.01, 136.25, 130.41, 129.10, 124.00, 123.94, 123.36, 119.58, 

118.29, 117.06, 101.55. MS (+ESI): m/z = 328.93 (M + H). 

 

3-((6-aminoquinazolin-4-yl)amino)phenol (3l). Yield 80%; 1H NMR (300 MHz, 

DMSO-d6) δ 9.34 (s, 1H), 9.18 (s, 1H), 8.33 (s, 1H), 7.52 (d, J = 8.8 Hz, 1H), 7.44 (t, J = 

2.1 Hz, 1H), 7.36 (d, J = 2.3 Hz, 1H), 7.30 – 7.19 (m, 2H), 7.12 (t, J = 8.0 Hz, 1H), 6.54 

– 6.41 (m, 1H), 5.54 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 157.81, 156.46, 150.33, 

147.63, 143.05, 141.44, 129.36, 129.09, 123.98, 117.20, 112.93, 110.49, 109.23, 101.66. 

MS (+ESI): m/z = 252.96 (M + H). 

 

4-((6-aminoquinazolin-4-yl)amino)phenol (3m). Yield 84%; 1H NMR (300 MHz, 

DMSO-d6) δ 9.22 (s, 1H), 9.12 (s, 1H), 8.22 (s, 1H), 7.57 – 7.50 (m, 2H), 7.48 (d, J = 8.8 

Hz, 1H), 7.32 (d, J = 2.3 Hz, 1H), 7.20 (dd, J = 8.8, 2.3 Hz, 1H), 6.81 – 6.71 (m, 2H), 

5.47 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 156.80, 153.99, 150.67, 147.43, 142.81, 

131.63, 128.97, 124.62, 123.70, 116.94, 115.30, 101.72. MS (+ESI): m/z = 252.97 (M + 

H). 

 

4-((6-aminoquinazolin-4-yl)amino)benzenesulfonamide (3n) Yield 82%; 1H NMR 

(500 MHz, DMSO-d6): δ 9.63 (s, 1H), 8.40 (s, 1H), 8.07 (d, J = 8.7 Hz, 2H), 7.80 (d, J = 

8.8 Hz, 2H), 7.57 (d, J = 8.9 Hz, 1H), 7.37 (d, J = 2.2 Hz, 1H), 7.28 (dd, J = 8.9, 2.2 Hz, 

1H), 7.23 (s, 2H), 5.64 (s, 2H). 13C NMR (126 MHz, DMSO-d6): δ 155.64, 149.45, 

147.46, 143.17, 142.82, 137.43, 128.73, 126.24, 123.98, 120.52, 116.82, 100.81. MS 

(+ESI): m/z = 316.15 (M + H). 

 

4-((6-aminoquinazolin-4-yl)amino)-N-carbamimidoylbenzenesulfonamide (3o) Yield 

85%; 1H NMR (500 MHz, DMSO-d6): δ 9.56 (s, 1H), 8.39 (s, 1H), 8.00 (d, J = 8.8 Hz, 

2H), 7.73 (d, J = 8.9 Hz, 2H), 7.56 (d, J = 8.9 Hz, 1H), 7.36 (d, J = 2.3 Hz, 1H), 7.27 (dd, 

J = 8.9, 2.4 Hz, 1H), 6.68 (s, 4H), 5.62 (s, 2H). 13C NMR (126 MHz, DMSO-d6): δ 

158.04, 155.66, 149.52, 147.40, 142.82, 142.60, 138.03, 128.73, 126.12, 123.90, 120.41, 

116.81, 100.86. 
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4-((6-aminoquinazolin-4-yl)amino)-N-(pyridin-2-yl)benzenesulfonamide (3p) Yield 

83%; 1H NMR (500 MHz, DMSO-d6) δ 11.73 (s, 1H), 9.66 (s, 1H), 8.40 (s, 1H), 8.06 (d, 

J = 1.8 Hz, 1H), 8.05 (d, J = 5.2 Hz, 2H), 7.88 – 7.83 (m, 2H), 7.71 (ddd, J = 8.7, 7.2, 1.9 

Hz, 1H), 7.56 (d, J = 8.9 Hz, 1H), 7.34 (d, J = 2.3 Hz, 1H), 7.28 (dd, J = 8.9, 2.4 Hz, 1H), 

7.17 (dt, J = 8.6, 0.9 Hz, 1H), 6.88 (ddd, J = 7.1, 5.4, 0.9 Hz, 1H), 5.68 (s, 2H). 13C NMR 

(126 MHz, DMSO-d6) δ 155.56, 152.86, 149.34, 147.54, 143.71, 142.72, 139.89, 134.51, 

128.66, 127.42, 124.07, 122.00, 120.39, 116.88, 116.06, 113.31, 100.79. MS (+ESI): m/z 

= 392.92 (M + H). 

 

N
4
-(pyridin-3-yl)quinazoline-4,6-diamine (3q). Yield %; 1H NMR (300 MHz, DMSO-

d6) δ 9.55 (s, 1H), 9.02 (d, J = 2.4 Hz, 1H), 8.35 (s, 1H), 8.33 – 8.28 (m, 1H), 8.26 (dd, J 

= 4.6, 1.3 Hz, 1H), 7.55 (d, J = 8.9 Hz, 1H), 7.38 (q, J = 5.1 Hz, 2H), 7.27 (dd, J = 8.9, 

2.3 Hz, 1H), 5.63 (s, 2H). 13C NMR (75 MHz, DMSO-d6) δ 156.45, 150.08, 147.88, 

144.01, 143.69, 143.16, 137.17, 129.18, 128.98, 124.36, 123.65, 117.13, 101.39. MS 

(+ESI): m/z = 238.05 (M + H). 

 

General procedure for the synthesis of compounds (4a-4q). A mixture of the 

corresponding derivative (3a-3q) (1 mmol) and benzylisothiocyante (1.2 mmol) was 

stirred at room temperature in 10 ml DMF “Dimethylformamide”. Excess solvent was 

then removed under reduced pressure and the remaining residue purified using column 

chromatography with ethylacetate as eluent. 

 

1-benzyl-3-(4-((2-bromophenyl)amino)quinazolin-6-yl)thiourea (4a). Yield 53%; m.p. 

207-209°C; 1H NMR (500 MHz, DMSO-d6) δ 9.86 (s, 1H), 9.75 (s, 1H), 8.41 (s, 1H), 

8.37 (s, 2H), 7.88 (dd, J = 8.9, 2.1 Hz, 1H), 7.79 – 7.72 (m, 2H), 7.58 (dd, J = 7.9, 1.3 

Hz, 1H), 7.47 (td, J = 7.6, 1.4 Hz, 1H), 7.39 – 7.31 (m, 4H), 7.29 – 7.22 (m, 2H), 4.78 (d, 

J = 4.8 Hz, 2H). 13C NMR (126 MHz, DMSO-d6) δ 181.63, 158.42, 154.06, 147.43, 

138.96, 137.46, 136.99, 132.84, 131.73, 129.75, 128.27, 128.24, 128.03, 127.95, 127.40, 

126.85, 121.81, 117.47, 114.74, 47.40. MS (+ESI): m/z = 463.76 (M + H). 

 

1-benzyl-3-(4-((4-bromophenyl)amino)quinazolin-6-yl)thiourea (4c). Yield 59%; m.p. 

210-212°C; 1H NMR (500 MHz, DMSO-d6) δ 9.86 (s, 1H), 9.81 (s, 1H), 8.59 (s, 1H), 

8.46 (d, J = 1.6 Hz, 1H), 8.38 (s, 1H), 7.91 – 7.87 (m, 2H), 7.84 (dd, J = 8.9, 2.1 Hz, 1H), 

7.77 (d, J = 8.8 Hz, 1H), 7.60 – 7.56 (m, 2H), 7.35 (dt, J = 15.1, 4.6 Hz, 4H), 7.24 (t, J = 

7.1 Hz, 1H), 4.79 (d, J = 5.0 Hz, 2H). 13C NMR (126 MHz, DMSO-d6) δ 181.53, 157.12, 

153.71, 147.51, 138.99, 138.75, 136.84, 131.74, 131.70, 131.23, 128.20, 127.38, 126.82, 

123.74, 117.87, 115.27, 115.11, 47.50. MS (+ESI): m/z = 463.77 (M + H). 

 

1-benzyl-3-(4-((3-chlorophenyl)amino)quinazolin-6-yl)thiourea (4d). Yield 61%; m.p. 

200-202°C; 1H NMR (500 MHz, DMSO-d6) δ 9.87 (d, J = 11.7 Hz, 2H), 8.65 (s, 1H), 



RESULTS                                                                                                                                            - 104 -  

8.47 (s, 1H), 8.39 (s, 1H), 8.13 (s, 1H), 7.86 (dd, J = 8.9, 2.2 Hz, 2H), 7.79 (d, J = 8.8 Hz, 

1H), 7.42 (t, J = 8.1 Hz, 1H), 7.38 – 7.30 (m, 4H), 7.25 (t, J = 7.1 Hz, 1H), 7.17 (ddd, J = 

8.0, 2.1, 0.9 Hz, 1H), 4.79 (d, J = 5.0 Hz, 2H). 13C NMR (126 MHz, DMSO-d6) δ 181.53, 

157.14, 153.59, 147.32, 140.87, 138.97, 136.99, 132.74, 131.81, 130.09, 128.20, 128.07, 

127.39, 126.82, 123.00, 121.09, 120.05, 117.80, 115.23, 47.49. MS (+ESI): m/z = 419.69 

(M + H). 

 

1-benzyl-3-(4-(m-tolylamino)quinazolin-6-yl)thiourea (4e). Yield 49%; m.p. 191-

193°C; 1H NMR (500 MHz, DMSO-d6) δ 10.13 (s, 1H), 9.76 (s, 1H), 8.65 (t, J = 5.6 Hz, 

1H), 8.56 (s, 1H), 8.49 (d, J = 1.8 Hz, 1H), 7.87 (dd, J = 8.8, 2.0 Hz, 1H), 7.74 (d, J = 8.9 

Hz, 1H), 7.67 (d, J = 7.2 Hz, 2H), 7.39 – 7.31 (m, 4H), 7.26 (ddd, J = 14.0, 10.1, 4.3 Hz, 

2H), 6.95 (ddd, J = 3.3, 1.3, 0.7 Hz, 1H), 4.80 (d, J = 5.4 Hz, 2H), 2.34 (s, 3H). 13C NMR 

(126 MHz, DMSO-d6) δ 181.70, 157.44, 153.72, 146.97, 139.11, 139.02, 137.57, 137.03, 

131.64, 128.27, 128.20, 127.59, 127.36, 126.79, 124.37, 122.71, 119.44, 117.69, 115.20, 

47.31, 21.20. MS (+ESI): m/z = 399.81 (M + H). 

 

1-benzyl-3-(4-((2,3-dimethylphenyl)amino)quinazolin-6-yl)thiourea (4f). Yield 55%; 

m.p. 161-163°C; 1H NMR (500 MHz, DMSO-d6) δ 9.82 (s, 1H), 9.63 (s, 1H), 8.36 (s, 

1H), 8.35 (s, 1H), 8.33 (s, 1H), 7.82 (dd, J = 8.9, 2.2 Hz, 1H), 7.72 (d, J = 8.9 Hz, 1H), 

7.38 – 7.31 (m, 4H), 7.27 – 7.23 (m, 1H), 7.17 – 7.10 (m, 3H), 4.78 (d, J = 4.8 Hz, 2H), 

2.30 (s, 3H), 2.06 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 181.61, 158.73, 154.42, 

147.42, 139.02, 137.14, 137.06, 136.54, 133.61, 131.57, 128.21, 127.92, 127.75, 127.38, 

126.82, 125.46, 125.37, 118.11, 114.84, 47.47, 20.12, 14.35. MS (+ESI): m/z = 413.84 

(M + H). 

 

1-benzyl-3-(4-((3-ethylphenyl)amino)quinazolin-6-yl)thiourea (4g). Yield 59%; m.p. 

196-197°C; 1H NMR (500 MHz, DMSO-d6) δ 9.85 (s, 1H), 9.67 (s, 1H), 8.56 (s, 1H), 

8.47 (d, J = 1.7 Hz, 1H), 8.36 (s, 1H), 7.82 (dd, J = 8.9, 2.1 Hz, 1H), 7.75 (d, J = 8.8 Hz, 

2H), 7.67 (t, J = 1.7 Hz, 1H), 7.39 – 7.28 (m, 5H), 7.24 (t, J = 7.2 Hz, 1H), 6.98 (dd, J = 

7.6, 0.6 Hz, 1H), 4.79 (d, J = 5.0 Hz, 2H), 2.64 (q, J = 7.6 Hz, 2H), 1.23 (t, J = 7.6 Hz, 

3H). 13C NMR (126 MHz, DMSO-d6) δ 181.55, 157.37, 153.97, 147.52, 143.97, 139.23, 

139.03, 136.64, 131.58, 128.31, 128.19, 128.12, 127.38, 126.79, 123.09, 121.38, 119.59, 

118.11, 115.29, 47.50, 28.26, 15.55. MS (+ESI): m/z = 413.88 (M + H). 

 

1-benzyl-3-(4-((4-isopropylphenyl)amino)quinazolin-6-yl)thiourea (4h). Yield 63%; 

m.p. 184-186°C; 1H NMR (500 MHz, DMSO-d6) δ 9.84 (s, 1H), 9.69 (s, 1H), 8.53 (s, 

1H), 8.44 (d, J = 1.5 Hz, 1H), 8.35 (s, 1H), 7.81 (dd, J = 8.9, 2.1 Hz, 1H), 7.74 (dd, J = 

8.8, 2.3 Hz, 3H), 7.38 – 7.30 (m, 4H), 7.28 – 7.22 (m, 3H), 4.79 (d, J = 5.1 Hz, 2H), 2.93 

– 2.86 (m, 1H), 1.23 (s, 3H), 1.22 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 181.57, 

157.41, 154.02, 147.50, 143.78, 139.04, 136.88, 136.59, 131.59, 128.19, 128.09, 127.38, 
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126.80, 126.16, 122.35, 118.16, 115.24, 47.48, 32.94, 23.97. MS (+ESI): m/z = 427.87 

(M+). 

 

1-benzyl-3-(4-((4-(tert-butyl)phenyl)amino)quinazolin-6-yl)thiourea (4i). Yield 51%; 

m.p. 173-175°C; 1H NMR (500 MHz, DMSO-d6) δ 9.84 (s, 1H), 9.70 (s, 1H), 8.53 (s, 

1H), 8.44 (d, J = 1.6 Hz, 1H), 8.35 (s, 1H), 7.81 (dd, J = 8.9, 2.1 Hz, 1H), 7.78 – 7.71 (m, 

3H), 7.43 – 7.39 (m, 2H), 7.38 – 7.30 (m, 4H), 7.24 (t, J = 7.1 Hz, 1H), 4.78 (d, J = 5.3 

Hz, 2H), 1.31 (s, 9H). 13C NMR (126 MHz, DMSO-d6) δ 181.57, 157.41, 154.02, 147.53, 

146.00, 139.03, 136.64, 136.57, 131.62, 128.19, 128.08, 127.38, 126.80, 125.06, 122.00, 

118.15, 115.25, 47.49, 34.07, 31.22. MS (+ESI): m/z = 441.63 (M + H). 

 

1-(4-([1,1'-biphenyl]-4-ylamino)quinazolin-6-yl)-3-benzylthiourea (4j). Yield 43%; 

m.p. 208-210°C; 1H NMR (500 MHz, DMSO-d6) δ 9.88 (s, 1H), 9.84 (s, 1H), 8.61 (s, 

1H), 8.50 (s, 1H), 8.39 (s, 1H), 8.01 (d, J = 8.7 Hz, 2H), 7.84 (dd, J = 8.8, 2.0 Hz, 1H), 

7.78 (d, J = 8.8 Hz, 1H), 7.71 (t, J = 8.6 Hz, 4H), 7.47 (t, J = 7.7 Hz, 2H), 7.35 (dt, J = 

14.4, 7.5 Hz, 5H), 7.25 (t, J = 7.2 Hz, 1H), 4.80 (d, J = 4.8 Hz, 2H). 13C NMR (126 MHz, 

DMSO-d6) δ 181.54, 157.25, 153.90, 147.56, 139.76, 139.03, 138.81, 136.79, 136.74, 

135.09, 131.67, 128.90, 128.20, 127.40, 127.03, 126.82, 126.62, 126.29, 122.23, 118.02, 

115.36, 47.53. MS (+ESI): m/z = 461.91 (M + H). 

 

1-benzyl-3-(4-((4-phenoxyphenyl)amino)quinazolin-6-yl)thiourea (4k). Yield 48%; 

m.p. 205-207°C; 1H NMR (500 MHz, DMSO-d6) δ 9.85 (s, 1H), 9.78 (s, 1H), 8.55 (s, 

1H), 8.45 (s, 1H), 8.37 (s, 1H), 7.90 – 7.85 (m, 2H), 7.82 (dd, J = 8.9, 2.1 Hz, 1H), 7.75 

(d, J = 8.8 Hz, 1H), 7.42 – 7.35 (m, 4H), 7.33 (t, J = 7.5 Hz, 2H), 7.25 (t, J = 7.1 Hz, 1H), 

7.13 (tt, J = 7.6, 1.1 Hz, 1H), 7.10 – 7.06 (m, 2H), 7.05 – 7.01 (m, 2H), 4.79 (d, J = 4.8 

Hz, 2H). 13C NMR (126 MHz, DMSO-d6) δ 181.56, 157.32, 157.28, 153.95, 152.17, 

147.47, 139.02, 136.67, 134.99, 131.63, 129.97, 128.20, 128.11, 128.08, 127.39, 126.81, 

123.88, 123.04, 119.07, 117.99, 115.21, 47.51. MS (+ESI): m/z = 477.70 (M + H). 

 

1-benzyl-3-(4-((3-hydroxyphenyl)amino)quinazolin-6-yl)thiourea (4l). Yield 66%; 

m.p. 229-231°C; 1H NMR (500 MHz, DMSO-d6) δ 9.84 (s, 1H), 9.60 (s, 1H), 9.42 (s, 

1H), 8.57 (s, 1H), 8.46 (s, 1H), 8.36 (s, 1H), 7.82 (dd, J = 8.9, 2.0 Hz, 1H), 7.75 (d, J = 

8.8 Hz, 1H), 7.44 (t, J = 2.1 Hz, 1H), 7.39 – 7.30 (m, 4H), 7.30 – 7.22 (m, 2H), 7.16 (t, J 

= 8.1 Hz, 1H), 6.54 (ddd, J = 8.1, 2.3, 0.8 Hz, 1H), 4.79 (d, J = 4.9 Hz, 2H). 13C NMR 

(126 MHz, DMSO-d6) δ 181.51, 157.38, 157.30, 153.90, 147.51, 140.27, 139.02, 136.63, 

131.55, 129.01, 128.19, 128.09, 127.38, 126.80, 118.08, 115.33, 112.79, 110.70, 109.13, 

47.51. MS (+ESI): m/z = 401.73 (M + H). 

 

1-benzyl-3-(4-((4-hydroxyphenyl)amino)quinazolin-6-yl)thiourea (4m). Yield 54%; 

m.p. 136-137°C; 1H NMR (500 MHz, DMSO-d6) δ 9.81 (s, 1H), 9.57 (s, 1H), 9.31 (s, 

1H), 8.46 (s, 1H), 8.39 (s, 1H), 8.33 (s, 1H), 7.78 (dd, J = 8.9, 1.8 Hz, 1H), 7.71 (d, J = 
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8.8 Hz, 1H), 7.55 (d, J = 8.8 Hz, 2H), 7.34 (dt, J = 15.0, 7.4 Hz, 4H), 7.24 (t, J = 7.0 Hz, 

1H), 6.79 (d, J = 8.8 Hz, 2H), 4.78 (d, J = 4.5 Hz, 2H). 13C NMR (126 MHz, DMSO-d6) 

δ 181.55, 157.50, 154.20, 153.97, 147.41, 139.04, 136.41, 131.40, 130.45, 128.19, 

128.00, 127.37, 126.79, 124.35, 118.17, 115.16, 114.91, 47.47. MS (+ESI): m/z = 401.89 

(M + H). 

 

4-((6-(3-benzylthioureido)quinazolin-4-yl)amino)benzenesulfonamide (4n). Yield 

40%; m.p. 238-240°C; 1H NMR (500 MHz, DMSO-d6) δ 10.01 (s, 1H), 9.89 (s, 1H), 8.66 

(s, 1H), 8.50 (s, 1H), 8.41 (s, 1H), 8.10 (d, J = 8.8 Hz, 2H), 7.92 – 7.74 (m, 4H), 7.44 – 

7.31 (m, 4H), 7.29 (s, 2H), 7.25 (t, J = 7.1 Hz, 1H), 4.79 (d, J = 4.6 Hz, 2H). 13C NMR 

(126 MHz, DMSO-d6) δ 181.53, 157.14, 153.58, 147.55, 142.44, 138.97, 138.25, 137.06, 

131.90, 131.86, 128.20, 127.39, 126.83, 126.31, 121.14, 117.79, 115.34, 47.49. MS 

(+ESI): m/z = 464.88 (M + H). 

 

4-((6-(3-benzylthioureido)quinazolin-4-yl)amino)-N-carbamimidoylbenzene 

sulfonamide (4o). Yield 38%; m.p. 231-233°C; 1H NMR (500 MHz, DMSO-d6) δ 9.95 

(s, 1H), 9.89 (s, 1H), 8.63 (s, 1H), 8.49 (s, 1H), 8.40 (s, 1H), 8.06 – 7.97 (m, 2H), 7.86 

(dd, J = 8.9, 2.1 Hz, 1H), 7.82 – 7.71 (m, 3H), 7.42 – 7.30 (m, 4H), 7.24 (t, J = 7.1 Hz, 

1H), 6.70 (s, 4H), 4.79 (d, J = 4.5 Hz, 2H). 13C NMR (126 MHz, DMSO-d6) δ 181.55, 

158.08, 157.15, 153.67, 147.62, 141.89, 138.99, 138.83, 137.01, 131.85, 128.33, 128.22, 

127.40, 126.84, 126.22, 121.03, 117.85, 115.36, 47.50. MS (+ESI): m/z = 506.84 (M + 

H). 

 

4-((6-(3-benzylthioureido)quinazolin-4-yl)amino)-N-(pyridin-3-yl)benzene 

sulfonamide (4p). Yield 46%; m.p. 163-165°C; 1H NMR (500 MHz, DMSO-d6) δ 11.80 

(s, 1H), 9.98 (s, 1H), 9.89 (s, 1H), 8.64 (s, 1H), 8.47 (s, 1H), 8.40 (s, 1H), 8.10 – 8.06 (m, 

2H), 8.04 (d, J = 4.5 Hz, 1H), 7.92 – 7.88 (m, 2H), 7.86 (dd, J = 8.9, 2.1 Hz, 1H), 7.80 (d, 

J = 8.9 Hz, 1H), 7.72 (ddd, J = 9.0, 7.2, 1.9 Hz, 1H), 7.33 (dt, J = 15.0, 7.3 Hz, 4H), 7.23 

(t, J = 7.2 Hz, 1H), 7.18 (d, J = 8.6 Hz, 1H), 6.92 – 6.85 (m, 1H), 4.78 (d, J = 5.0 Hz, 

2H). 13C NMR (126 MHz, DMSO-d6) δ 181.49, 170.30, 157.02, 153.52, 152.93, 147.61, 

142.95, 139.99, 138.95, 137.07, 135.39, 131.86, 131.83, 128.24, 128.19, 127.43, 127.39, 

126.81, 120.90, 117.70, 115.37, 113.51, 47.50. MS (+ESI): m/z = 541.83 (M + H). 

 

1-benzyl-3-(4-(pyridin-3-ylamino)quinazolin-6-yl)thiourea (4q). Yield 40%; m.p. 146-

148°C; 1H NMR (500 MHz, DMSO-d6) δ 9.90 (d, J = 9.5 Hz, 2H), 9.02 (d, J = 2.1 Hz, 

1H), 8.60 (s, 1H), 8.47 (s, 1H), 8.40 (s, 1H), 8.32 (dt, J = 10.5, 5.2 Hz, 2H), 7.86 (dd, J = 

8.9, 2.1 Hz, 1H), 7.79 (d, J = 8.9 Hz, 1H), 7.43 (dd, J = 8.1, 4.7 Hz, 1H), 7.39 – 7.30 (m, 

4H), 7.25 (t, J = 7.2 Hz, 1H), 4.79 (d, J = 4.8 Hz, 2H). 13C NMR (126 MHz, DMSO-d6) δ 

181.58, 157.41, 153.70, 147.51, 144.26, 143.48, 138.98, 136.99, 136.03, 131.87, 131.85, 

129.02, 128.20, 127.39, 126.83, 123.30, 117.86, 115.20, 47.48. MS (+ESI): m/z = 386.83 

(M + H). 
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N-(3-bromophenyl)-6-isothiocyanatoquinazolin-4-amine (5). Yield 85%; 1H NMR 

(500 MHz, DMSO-d6) δ 11.29 (s, 1H), 8.95 (s, 1H), 8.88 (d, J = 2.0 Hz, 1H), 8.32 (dd, J 

= 9.0, 2.1 Hz, 1H), 8.06 (t, J = 1.9 Hz, 1H), 7.99 (d, J = 8.9 Hz, 1H), 7.78 (ddd, J = 8.0, 

2.0, 1.1 Hz, 1H), 7.51 (ddd, J = 8.0, 1.9, 1.1 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H). 13C NMR 

(126 MHz, DMSO-d6) δ 181.28, 159.32, 150.55, 139.28, 138.59, 134.52, 130.64, 130.59, 

128.96, 126.99, 123.39, 121.17, 120.53, 118.78, 113.97.  

 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-phenylthiourea (6a). Yield 68%; 

m.p. 167-169°C; 1H NMR (500 MHz, DMSO-d6) δ 10.01 (s, 1H), 9.97 (s, 1H), 9.85 (s, 

1H), 8.64 (s, 1H), 8.49 (d, J = 2.0 Hz, 1H), 8.23 (s, 1H), 7.93 – 7.84 (m, 2H), 7.79 (d, J = 

8.8 Hz, 1H), 7.50 (dd, J = 8.5, 1.0 Hz, 2H), 7.38 – 7.33 (m, 3H), 7.30 (ddd, J = 7.9, 1.9, 

1.0 Hz, 1H), 7.19 – 7.12 (m, 1H). 13C NMR (126 MHz, DMSO-d6) δ 180.48, 157.14, 

153.68, 147.50, 140.99, 139.24, 137.42, 132.18, 130.39, 128.47, 127.86, 125.92, 124.78, 

124.14, 124.02, 121.18, 120.56, 118.26, 115.08. MS (+ESI): m/z = 449.41 (M + H). 

 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-(2-chlorophenyl)thiourea (6b). Yield 

57%; m.p. 172-174°C; 1H NMR (500 MHz, DMSO-d6) δ 10.20 (s, 1H), 9.86 (s, 1H), 9.63 

(s, 1H), 8.65 (s, 1H), 8.48 (d, J = 2.0 Hz, 1H), 8.25 (t, J = 1.9 Hz, 1H), 7.96 (dd, J = 8.9, 

2.1 Hz, 1H), 7.91 (dd, J = 8.1, 1.0 Hz, 1H), 7.80 (d, J = 8.9 Hz, 1H), 7.65 (dd, J = 8.0, 1.5 

Hz, 1H), 7.53 (dd, J = 8.0, 1.4 Hz, 1H), 7.39 – 7.34 (m, 2H), 7.32 – 7.25 (m, 2H). 13C 

NMR (126 MHz, DMSO-d6) δ 181.19, 157.16, 153.81, 147.73, 141.02, 137.16, 136.25, 

132.35, 130.40, 130.20, 129.91, 129.48, 127.94, 127.75, 127.24, 125.90, 123.95, 121.19, 

120.50, 118.41, 115.12. MS (+ESI): m/z = 483.65 (M + H). 

 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-(4-chlorophenyl)thiourea (6d). Yield 

55%; m.p. 173-175°C; 1H NMR (500 MHz, DMSO-d6) δ 10.11 (s, 1H), 10.02 (s, 1H), 

9.86 (s, 1H), 8.65 (s, 1H), 8.50 (d, J = 2.0 Hz, 1H), 8.23 (s, 1H), 7.90 (d, J = 8.0 Hz, 1H), 

7.87 (dd, J = 8.9, 2.2 Hz, 1H), 7.79 (d, J = 8.9 Hz, 1H), 7.56 – 7.50 (m, 2H), 7.42 – 7.38 

(m, 2H), 7.36 (dd, J = 9.7, 6.4 Hz, 1H), 7.30 (ddd, J = 8.0, 1.9, 1.1 Hz, 1H). 13C NMR 

(126 MHz, DMSO-d6) δ 180.55, 157.18, 153.71, 147.43, 140.94, 138.31, 137.24, 132.11, 

130.40, 128.66, 128.32, 127.91, 125.99, 125.79, 124.07, 121.18, 120.61, 118.36, 115.10. 

MS (+ESI): m/z = 483.37 (M + H). 

 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-(2,4-dichlorophenyl)thiourea (6e). 

Yield 50%; m.p. 162-164°C; 1H NMR (500 MHz, DMSO-d6) δ 10.26 (s, 1H), 9.87 (s, 

1H), 9.66 (s, 1H), 8.65 (s, 1H), 8.48 (d, J = 2.0 Hz, 1H), 8.24 (t, J = 1.9 Hz, 1H), 7.97 – 

7.89 (m, 2H), 7.81 (d, J = 8.9 Hz, 1H), 7.70 (d, J = 2.4 Hz, 1H), 7.65 (d, J = 8.7 Hz, 1H), 

7.46 (dd, J = 8.6, 2.4 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.30 (ddd, J = 8.0, 1.9, 1.0 Hz, 

1H). 13C NMR (126 MHz, DMSO-d6) δ 181.21, 162.27, 157.18, 153.86, 147.75, 140.99, 
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137.03, 135.56, 132.33, 131.46, 131.18, 130.40, 128.96, 128.00, 127.43, 125.93, 123.98, 

121.19, 120.52, 118.53, 115.12. MS (+ESI): m/z = 517.72 (M + H). 

 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-(3,4-dichlorophenyl)thiourea (6f). 

Yield 47%; m.p. 133-135°C; 1H NMR (500 MHz, DMSO-d6) δ 10.27 (s, 1H), 10.10 (s, 

1H), 9.84 (s, 1H), 8.65 (s, 1H), 8.50 (d, J = 1.7 Hz, 1H), 8.23 (s, 1H), 7.92 – 7.88 (m, 

2H), 7.86 (dd, J = 8.9, 2.1 Hz, 1H), 7.81 (d, J = 8.8 Hz, 1H), 7.60 (d, J = 8.7 Hz, 1H), 

7.49 (dd, J = 8.8, 2.5 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.32 – 7.28 (m, 1H). 13C NMR 

(126 MHz, DMSO-d6) δ 180.49, 157.16, 153.87, 147.73, 140.94, 139.59, 136.92, 131.99, 

130.43, 130.39, 130.16, 128.20, 126.38, 125.97, 125.39, 124.10, 124.06, 121.18, 120.59, 

118.46, 115.15. MS (+ESI): m/z = 517.58 (M + H). 

 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-(3,5-dichlorophenyl)thiourea (6g). 

Yield 59%; m.p. 177-179°C; 1H NMR (500 MHz, DMSO-d6) δ 10.37 (s, 1H), 10.13 (s, 

1H), 9.84 (s, 1H), 8.65 (s, 1H), 8.49 (d, J = 1.6 Hz, 1H), 8.23 (t, J = 1.8 Hz, 1H), 7.90 (d, 

J = 8.9 Hz, 1H), 7.85 (dd, J = 8.9, 2.0 Hz, 1H), 7.81 (d, J = 8.8 Hz, 1H), 7.64 (d, J = 1.8 

Hz, 2H), 7.39 – 7.33 (m, 2H), 7.30 (d, J = 8.7 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) 

δ 180.42, 157.16, 153.92, 147.79, 141.95, 140.93, 136.79, 133.41, 131.95, 130.40, 

128.28, 125.99, 124.09, 123.65, 122.04, 121.18, 120.62, 118.48, 115.16. MS (+ESI): m/z 

= 517.71 (M + H). 

 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-(4-chloro-3-(trifluoromethyl) 

phenyl)thiourea (6i). Yield 42%; m.p. 128-130°C; 1H NMR (500 MHz, DMSO-d6) δ 

10.37 (s, 1H), 10.18 (s, 1H), 9.84 (s, 1H), 8.66 (s, 1H), 8.53 (d, J = 1.8 Hz, 1H), 8.23 (t, J 

= 2.0 Hz, 1H), 8.10 (d, J = 2.5 Hz, 1H), 7.91 (ddd, J = 8.1, 2.0, 1.0 Hz, 1H), 7.87 – 7.80 

(m, 3H), 7.69 (d, J = 8.7 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.30 (ddd, J = 8.0, 1.9, 1.0 Hz, 

1H). 13C NMR (126 MHz, DMSO-d6) δ 180.55, 157.18, 153.95, 147.83, 140.95, 139.10, 

136.73, 131.89, 131.52, 130.41, 129.05, 128.39, 126.19 (q, 2
JC-F = 30.8 Hz), 126.00, 

125.54, 124.08, 123.01, 122.70 (q, 1JC-F = 273.0 Hz), 121.20, 120.60, 118.51, 115.22. MS 

(+ESI): m/z = 551.59 (M + H). 

 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-(2-fluoro-3-(trifluoromethyl) 

phenyl)thiourea (6j). Yield 49%; m.p. 179-180°C; 1H NMR (500 MHz, DMSO-d6) δ 

10.41 (s, 1H), 9.89 (s, 1H), 9.78 (s, 1H), 8.66 (s, 1H), 8.52 (d, J = 2.0 Hz, 1H), 8.24 (t, J 

= 1.8 Hz, 1H), 7.93 – 7.88 (m, 3H), 7.82 (d, J = 8.8 Hz, 1H), 7.65 (t, J = 6.6 Hz, 1H), 

7.42 (t, J = 8.0 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.31 (ddd, J = 8.0, 1.9, 1.1 Hz, 1H). 13C 

NMR (126 MHz, DMSO-d6) δ MS (+ESI): m/z = 535.61 (M + H). 

 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-(4-(trifluoromethyl)phenyl)thiourea 

(6k). Yield 59%; m.p. 180-181°C; 1H NMR (500 MHz, DMSO-d6) δ 10.29 (s, 1H), 10.27 

(s, 1H), 9.85 (s, 1H), 8.65 (s, 1H), 8.53 (d, J = 2.0 Hz, 1H), 8.23 (t, J = 1.9 Hz, 1H), 7.92 
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– 7.86 (m, 2H), 7.80 (dd, J = 12.4, 8.7 Hz, 3H), 7.71 (d, J = 8.7 Hz, 2H), 7.36 (t, J = 8.0 

Hz, 1H), 7.30 (ddd, J = 8.0, 1.8, 1.0 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ 180.58, 

157.22, 153.80, 147.53, 143.24, 140.94, 137.14, 132.07, 130.42, 128.00, 126.03, 125.59, 

124.34 (q, 1JC-F = 271.7 Hz), 124.13, 123.40, 123.03, 121.20, 120.66, 118.47, 115.14. MS 

(+ESI): m/z = 517.77 (M + H). 

 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-(3-(trifluoromethyl)phenyl)thiourea 

(6l). Yield 44%; m.p. 82-84°C; 1H NMR (500 MHz, DMSO-d6) δ 10.29 (s, 1H), 10.14 (s, 

1H), 9.86 (s, 1H), 8.65 (s, 1H), 8.53 (d, J = 1.8 Hz, 1H), 8.23 (s, 1H), 7.97 (s, 1H), 7.91 

(d, J = 8.1 Hz, 1H), 7.86 (dd, J = 8.9, 2.1 Hz, 1H), 7.83 – 7.78 (m, 2H), 7.58 (t, J = 7.9 

Hz, 1H), 7.50 – 7.47 (m, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.30 (ddd, J = 8.0, 1.9, 1.0 Hz, 

1H). 13C NMR (126 MHz, DMSO-d6) δ 180.65, 157.22, 153.82, 147.56, 140.94, 140.34, 

136.97, 131.98, 130.42, 129.49, 128.98 (q, 2
JC-F = 31.7 Hz), 128.15, 127.88, 126.04, 

124.13, 124.06 (q, 1JC-F = 272.3 Hz), 121.21, 120.98, 120.65, 120.40, 118.44, 115.19. MS 

(+ESI): m/z = 517.68 (M + H). 

 

1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-((3-bromophenyl)amino)quinazolin-6-

yl)thiourea (6m). Yield 49%; m.p. 142-144°C; 1H NMR (500 MHz, DMSO-d6) δ 10.57 

(s, 1H), 10.32 (s, 1H), 9.84 (s, 1H), 8.66 (s, 1H), 8.55 (s, 1H), 8.29 (s, 2H), 8.23 (t, J = 

2.0 Hz, 1H), 7.90 (ddd, J = 8.1, 2.0, 1.1 Hz, 1H), 7.84 (d, J = 1.9 Hz, 2H), 7.82 (s, 1H), 

7.36 (t, J = 8.0 Hz, 1H), 7.30 (ddd, J = 8.0, 1.9, 1.1 Hz, 1H). 13C NMR (126 MHz, 

DMSO-d6) δ 180.51, 157.18, 154.02, 147.91, 141.70, 140.88, 136.39, 131.75, 130.39, 

129.95 (q, 2JC-F = 33.0 Hz), 128.58, 126.03, 124.08, 124.05, 123.20 (q, 1JC-F = 272.7 Hz), 

121.18, 120.61, 118.60, 117.27, 115.25. MS (+ESI): m/z = 585.56 (M + H). 

 

1-(4-bromophenyl)-3-(4-((3-bromophenyl)amino)quinazolin-6-yl)thiourea (6n). 

Yield 62%; m.p. 173-175°C; 1H NMR (500 MHz, DMSO-d6) δ 10.12 (s, 1H), 10.01 (s, 

1H), 9.84 (s, 1H), 8.64 (s, 1H), 8.50 (d, J = 1.9 Hz, 1H), 8.24 (t, J = 1.8 Hz, 1H), 7.93 – 

7.83 (m, 2H), 7.80 (d, J = 8.9 Hz, 1H), 7.56 – 7.51 (m, 2H), 7.51 – 7.47 (m, 2H), 7.36 (t, 

J = 8.0 Hz, 1H), 7.30 (d, J = 8.7 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ 180.48, 

157.14, 153.78, 147.64, 140.98, 138.75, 137.19, 132.07, 131.24, 130.39, 128.05, 126.08, 

125.93, 124.02, 121.18, 120.56, 118.36, 116.82, 115.13.MS (+ESI): m/z = 527.56 (M + 

H). 

 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-(4-hydroxyphenyl)thiourea (6o). 

Yield 58%; m.p. 208-210°C; 1H NMR (500 MHz, DMSO-d6) δ 9.81 (s, 1H), 9.72 (d, J = 

15.7 Hz, 2H), 9.41 (s, 1H), 8.63 (s, 1H), 8.44 (s, 1H), 8.24 (t, J = 1.8 Hz, 1H), 7.95 – 7.84 

(m, 2H), 7.76 (d, J = 8.9 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.20 

(d, J = 8.7 Hz, 2H), 6.75 (d, J = 8.7 Hz, 2H). 13C NMR (126 MHz, DMSO-d6) δ 180.61, 

157.10, 155.16, 153.62, 147.50, 141.05, 137.63, 132.32, 130.38, 127.72, 126.67, 125.85, 
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123.95, 121.18, 120.50, 118.23, 117.55, 115.10, 115.03. MS (+ESI): m/z = 465.54 (M + 

H). 

 

4-(3-(4-((3-bromophenyl)amino)quinazolin-6-yl)thioureido)benzenesulfonamide 

(6p). Yield 32%; m.p. 181-183°C; 1H NMR (500 MHz, DMSO-d6) δ 10.26 (d, J = 18.6 

Hz, 2H), 9.93 (s, 1H), 8.67 (s, 1H), 8.54 (s, 1H), 8.22 (s, 1H), 7.89 (d, J = 7.9 Hz, 2H), 

7.80 (dd, J = 13.6, 9.0 Hz, 3H), 7.73 (d, J = 8.6 Hz, 2H), 7.36 (t, J = 8.0 Hz, 1H), 7.31 (s, 

3H). 13C NMR (126 MHz, DMSO-d6) δ 180.53, 162.27, 157.28, 153.67, 142.48, 140.83, 

139.44, 137.24, 132.17, 130.42, 127.71, 126.13, 124.20, 123.18, 121.19, 120.73, 118.46, 

117.19, 115.07. MS (+ESI): m/z = 528.30 (M + H). 

 

4-(3-(4-((3-bromophenyl)amino)quinazolin-6-yl)thioureido)-N-(thiazol-2-yl)benzene 

sulfonamide (6q). Yield 28%; m.p. 158-160°C; 1H NMR (500 MHz, DMSO-d6) δ 12.69 

(s, 1H), 10.24 (d, J = 11.5 Hz, 2H), 9.86 (s, 1H), 8.65 (s, 1H), 8.51 (d, J = 1.9 Hz, 1H), 

8.22 (s, 1H), 7.91 – 7.85 (m, 2H), 7.80 (d, J = 8.9 Hz, 1H), 7.78 – 7.75 (m, 2H), 7.71 – 

7.67 (m, 2H), 7.36 (t, J = 8.0 Hz, 1H), 7.30 (ddd, J = 8.0, 1.8, 1.0 Hz, 1H), 7.25 (d, J = 

4.6 Hz, 1H), 6.83 (d, J = 4.6 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ 180.43, 168.75, 

167.50, 162.27, 157.17, 153.79, 147.57, 142.70, 140.94, 137.55, 137.16, 132.08, 130.40, 

126.36, 125.98, 124.43, 124.08, 123.00, 121.18, 120.62, 118.42, 108.15. MS (+ESI): m/z 

= 611.22 (M + H). 

 

1-(4-((4-(tert-butyl)phenyl)amino)quinazolin-6-yl)-3-(4-chloro-3-(trifluoromethyl) 

phenyl)thiourea (6r). Yield 43%; m.p. 114-116°C; 1H NMR (500 MHz, DMSO-d6) δ 

10.34 (s, 1H), 10.15 (s, 1H), 9.73 (s, 1H), 8.54 (s, 1H), 8.50 (d, J = 2.0 Hz, 1H), 8.11 (d, J 

= 2.6 Hz, 1H), 7.85 – 7.79 (m, 2H), 7.77 (d, J = 8.8 Hz, 1H), 7.74 – 7.71 (m, 2H), 7.68 

(d, J = 8.7 Hz, 1H), 7.42 – 7.39 (m, 2H), 1.30 (s, 9H). 13C NMR (126 MHz, DMSO-d6) δ 

180.55, 157.50, 154.27, 147.76, 146.18, 139.14, 136.45, 136.41, 131.64, 131.50, 129.03, 

128.21, 126.16 (q, 2JC-F = 30.9 Hz), 125.50, 125.10, 122.98, 122.71 (q, 1JC-F = 272.8 Hz), 

122.19, 118.72, 115.22, 34.10, 31.22. MS (+ESI): m/z = 529.69 (M + H). 

 

1-(4-chloro-3-(trifluoromethyl)phenyl)-3-(4-((4-phenoxyphenyl)amino)quinazolin-6-

yl)thiourea (6s). Yield 40%; m.p. 129-131°C; 1H NMR (500 MHz, MeOD) δ 8.45 (s, 

1H), 8.45 (s, 1H), 8.38 – 8.34 (m, 1H), 8.04 (d, J = 2.6 Hz, 1H), 7.88 (dd, J = 8.9, 2.3 Hz, 

1H), 7.78 – 7.72 (m, 2H), 7.67 – 7.63 (m, 2H), 7.54 (d, J = 8.7 Hz, 1H), 7.37 – 7.32 (m, 

3H), 7.12 – 7.08 (m, 1H), 7.05 – 6.99 (m, 5H).   13C NMR (126 MHz, MeOD) δ 182.75, 

159.87, 158.95, 155.80, 155.37, 148.31, 140.06, 138.53, 135.10, 132.80, 132.74, 130.88, 

129.87, 129.06 (q, 2
JC-F = 31.6 Hz), 128.62, 126.40, 126.28, 124.47, 124.33, 124.17 (q, 

1
JC-F = 272.4 Hz), 120.24, 119.64, 119.03, 116.73. MS (+ESI): m/z = 565.98 (M + H). 

 

1-(4-([1,1'-biphenyl]-4-ylamino)quinazolin-6-yl)-3-(4-chloro-3-(trifluoromethyl) 

phenyl)thiourea (6t). Yield 38%; m.p. 168-170°C; 1H NMR (500 MHz, DMSO-d6) δ 
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10.37 (s, 1H), 10.18 (s, 1H), 9.87 (s, 1H), 8.63 (s, 1H), 8.56 (d, J = 1.7 Hz, 1H), 8.11 (d, J 

= 2.5 Hz, 1H), 7.99 (d, J = 8.7 Hz, 2H), 7.85 (dd, J = 8.8, 2.2 Hz, 2H), 7.81 (d, J = 8.8 

Hz, 1H), 7.73 – 7.72 (m, 1H), 7.72 – 7.67 (m, 4H), 7.51 – 7.43 (m, 2H), 7.38 – 7.30 (m, 

1H). 13C NMR (126 MHz, DMSO-d6) δ 180.56, 157.35, 154.15, 147.77, 139.76, 139.13, 

138.67, 136.57, 135.28, 131.77, 131.52, 129.06, 128.91, 128.26, 127.07, 126.66, 126.32, 

126.06, 125.53, 122.71 (q, 1JC-F = 272.9 Hz), 123.00, 122.44, 118.68, 115.32. MS (+ESI): 

m/z = 549.73 (M + H). 

 

1-(4-([1,1'-biphenyl]-4-ylamino)quinazolin-6-yl)-3-(3,5-bis(trifluoromethyl) 

phenyl)thiourea (6u). Yield 48%; m.p. 143-145°C; 1H NMR (500 MHz, DMSO-d6) δ 

10.57 (s, 1H), 10.33 (s, 1H), 9.88 (s, 1H), 8.64 (s, 1H), 8.59 (s, 1H), 8.30 (s, 2H), 7.98 (d, 

J = 8.6 Hz, 2H), 7.89 – 7.80 (m, 3H), 7.75 – 7.66 (m, 4H), 7.47 (t, J = 7.7 Hz, 2H), 7.35 

(t, J = 7.4 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ 180.54, 157.36, 154.23, 147.85, 

141.74, 139.72, 138.60, 136.24, 135.31, 131.66, 129.95 (q, 2
JC-F = 32.9 Hz), 128.89, 

128.44, 127.06, 126.63, 126.30, 124.05, 123.21 (q, 1
JC-F = 272.7 Hz), 122.46, 118.79, 

117.25, 115.35. MS (+ESI): m/z = 583.79 (M + H). 

 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-methylthiourea (7a). Yield 39%; 

m.p. 207-209°C; 1H NMR (500 MHz, DMSO-d6) δ 9.80 (s, 2H), 8.63 (s, 1H), 8.43 (s, 

1H), 8.24 (s, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.89 (s, 1H), 7.77 (s, 2H), 7.36 (t, J = 8.0 Hz, 

1H), 7.30 (d, J = 8.0 Hz, 1H), 2.96 (d, J = 4.1 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) 

δ 181.48, 157.06, 153.60, 147.41, 141.02, 136.81, 131.31, 130.38, 128.43, 125.87, 

123.94, 121.18, 120.50, 117.53, 115.30, 31.58. MS (+ESI): m/z = 387.43 (M + H). 

 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-(pyridin-3-yl)thiourea (7b). Yield %; 

m.p. 152-153°C; 1H NMR (500 MHz, DMSO-d6) δ 10.28 (s, 1H), 10.03 (s, 1H), 9.87 (s, 

1H), 8.68 – 8.61 (m, 2H), 8.53 (d, J = 2.0 Hz, 1H), 8.35 (dd, J = 4.7, 1.5 Hz, 1H), 8.23 (s, 

1H), 7.95 (ddd, J = 8.3, 2.5, 1.5 Hz, 1H), 7.92 – 7.84 (m, 2H), 7.81 (d, J = 8.9 Hz, 1H), 

7.41 – 7.37 (m, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.30 (ddd, J = 8.0, 1.9, 1.1 Hz, 1H). 13C 

NMR (126 MHz, DMSO) δ 181.10, 157.19, 153.80, 147.58, 145.84, 145.56, 140.93, 

137.00, 136.20, 132.07, 131.92, 130.41, 128.08, 126.00, 124.07, 123.15, 121.18, 120.62, 

118.48, 115.15. MS (+ESI): m/z = 450.59 (M + H). 

 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-(4-chlorobenzyl)thiourea (7c). Yield 

47%; m.p. 140-142°C; 1H NMR (500 MHz, DMSO-d6) δ 9.93 (s, 1H), 9.82 (s, 1H), 8.64 

(s, 1H), 8.46 (s, 1H), 8.41 (s, 1H), 8.25 (t, J = 1.9 Hz, 1H), 7.96 – 7.88 (m, 1H), 7.83 (dd, 

J = 8.9, 2.1 Hz, 1H), 7.79 (d, J = 8.8 Hz, 1H), 7.39 (d, J = 5.4 Hz, 4H), 7.35 (d, J = 8.1 

Hz, 1H), 7.30 (ddd, J = 8.0, 1.8, 1.0 Hz, 1H), 4.77 (d, J = 5.6 Hz, 2H). 13C NMR (126 

MHz, DMSO) δ 181.57, 157.12, 153.71, 147.57, 141.05, 138.17, 136.82, 131.76, 131.33, 

130.41, 129.25, 128.25, 128.10, 125.88, 123.88, 121.22, 120.42, 117.92, 115.29, 46.78. 

MS (+ESI): m/z = 497.80 (M + H). 
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1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-(2-morpholinoethyl)thiourea  (7d). 

Yield 52%; 149-151; 1H NMR (500 MHz, (CD3)2CO) δ 9.15 (s, 2H), 8.68 (s, 1H), 8.41 – 

8.32 (m, 2H), 7.95 (ddd, J = 8.0, 1.8, 1.0 Hz, 1H), 7.89 – 7.83 (m, 2H), 7.44 (s, 1H), 7.34 

(t, J = 8.0 Hz, 1H), 7.29 (ddd, J = 7.9, 1.6, 1.1 Hz, 1H), 3.71 (s, 2H), 3.47 (s, 4H), 2.58 (s, 

2H), 2.41 (s, 4H). 13C NMR (126 MHz, DMSO-d6) δ 180.71, 157.04, 153.64, 147.40, 

141.01, 136.92, 131.49, 130.39, 128.33, 125.87, 123.90, 121.18, 120.44, 117.13, 115.21, 

66.14, 56.34, 53.06, 40.94. MS (+ESI): m/z =  487.16 (M + H). 

 

N-(4-((3-bromophenyl)amino)quinazolin-6-yl)morpholine-4-carbothioamide (7e). 

Yield 54%; m.p. 240-242°C; 1H NMR (500 MHz, DMSO-d6) δ 9.82 (s, 1H), 9.73 (s, 1H), 

8.64 (s, 1H), 8.35 (d, J = 1.9 Hz, 1H), 8.26 (t, J = 2.0 Hz, 1H), 7.93 (ddd, J = 8.2, 2.0, 1.0 

Hz, 1H), 7.79 (dd, J = 8.9, 2.1 Hz, 1H), 7.75 (d, J = 8.8 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H), 

7.29 (ddd, J = 8.0, 1.9, 1.0 Hz, 1H), 3.98 – 3.92 (m, 4H), 3.72 – 3.66 (m, 4H). 13C NMR 

(126 MHz, DMSO-d6) δ 182.06, 157.10, 153.64, 147.56, 141.08, 139.19, 133.41, 130.37, 

127.45, 125.83, 123.93, 121.18, 120.44, 118.71, 114.89, 65.80, 48.41. MS (+ESI): m/z = 

443.47 (M + H). 

 

1-benzyl-3-(4-((3-bromophenyl)amino)quinazolin-6-yl)urea (8a). Yield 68%; m.p. 

235-237°C; 1H NMR (500 MHz, DMSO-d6) δ 9.79 (s, 1H), 8.88 (s, 1H), 8.53 (s, 1H), 

8.42 (d, J = 2.2 Hz, 1H), 8.18 (t, J = 2.0 Hz, 1H), 7.91 – 7.82 (m, 2H), 7.73 (d, J = 9.0 

Hz, 1H), 7.35 (d, J = 1.9 Hz, 2H), 7.34 (s, 2H), 7.32 (d, J = 8.0 Hz, 1H), 7.28 – 7.23 (m, 

2H), 6.89 (t, J = 6.0 Hz, 1H), 4.37 (d, J = 5.9 Hz, 2H). 13C NMR (126 MHz, DMSO-d6) δ 

156.91, 155.15, 152.14, 145.53, 141.32, 140.20, 138.53, 130.25, 128.33, 128.31, 127.11, 

126.75, 126.35, 125.61, 124.07, 121.10, 120.66, 115.69, 109.13, 42.81. MS (+ESI): m/z 

= 447.42 (M + H). 

 

1-(4-((3-bromophenyl)amino)quinazolin-6-yl)-3-(4-chlorophenyl)urea (8b). Yield 

65%; m.p. 255-257°C; 1H NMR (500 MHz, DMSO-d6) δ 9.84 (s, 1H), 9.02 (d, J = 12.9 

Hz, 2H), 8.57 (s, 1H), 8.51 (d, J = 2.0 Hz, 1H), 8.20 (t, J = 1.8 Hz, 1H), 7.88 (dd, J = 9.1, 

1.9 Hz, 2H), 7.78 (d, J = 8.9 Hz, 1H), 7.55 (d, J = 8.9 Hz, 2H), 7.34 (t, J = 8.5 Hz, 3H), 

7.28 (d, J = 8.6 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ 156.98, 152.53, 152.50, 

145.95, 141.22, 138.53, 137.51, 130.27, 128.65, 128.51, 126.65, 125.73, 125.58, 124.16, 

121.11, 120.74, 119.87, 115.60, 110.30. MS (+ESI): m/z = 467.51 (M + H). 
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4 Overall Discussion  
This chapter summarizes the main results and the best compounds obtained from the 

whole work as well as the future improvements that could be implemented. The aim of 

the present thesis was the development of a novel group of potent anticancer compounds 

that are effective towards cancers that are insensitive or resistant to the clinically 

approved EGFR inhibitors. This was done using 2 strategies: firstly by doing several 

structural modifications in the compounds that were expected to enhance the activity 

against the mutant EGFR which causes resistance towards the EGFR inhibitors (Chapters 

3.I and 3.II). The second strategy (Chapter 3.III) was by synthesizing compounds having 

dual inhibitory activity towards the EGFR kinase and the NF-κB activation pathway. This 

would result in a synergistic anticancer activity that would be effective towards a wide 

range of cancer cells that are less sensitive or resistant towards the clinically approved 

EGFR inhibitors such as Gefitinib and Erlotinib. To reach our goal we started from the 6-

substituted 4-anilinoquinazoline scaffold (I) which was known to possess potent EGFR 

inhibitory activity.  

 
The first strategy included two parts of modifications that were expected to enhance 

the activity towards the mutant EGFR. Chapter 3.I deals with the first part of these 

modifications which included several diverse variations taking place in position 4 of the 

quinazoline scaffold (I) while using a Michael acceptor group in position 6 such as the 

acrylamide group (II). The acrylamide group is added to form a covalent interaction with 

the Cys 797 of the ATP binding pocket of the EGFR enzyme (Figure 21). This covalent, 

irreversible binding with the EGFR enzyme may increase effectiveness by prolonging the 

inhibition of EGFR signaling to the entire lifespan of the drug-bound receptor molecule. 

In cell culture models, irreversibly binding EGFR inhibitors can produce potent 

anticancer activity that would be effective towards cells that have acquired resistance to 

reversible EGFR inhibitors.  

 
The resistance caused by the T790M mutation takes place at the gatekeeper amino 

acid that is near the deep pocket within which the 4-anilino moiety accommodates 

(Figure 21). Therefore, we managed to make modifications in the portion of the molecule 
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which is directed towards this point mutation site in a trial to increase the chance of 

finding such a mutant EGFR-selective ligand. Accordingly, we tested the effect of the 

modifications of the position 4 substituents - in presence of a Michael acceptor group - on 

the inhibitory activity of the wild-type and mutant EGFR containing cancer cell lines.  

 
Figure 21: Cocrystal structure of wt EGFR complexed with an irreversible inhibitor which forms a 

covalent interaction with Cys797 of the enzyme (PDB 2J5F). 

The modifications firstly included variable substituents on the aniline ring such as 

with different dihalo, alkyl halo, alkoxy halo, dialkoxy and alkyl groups (III). This was 

then followed with the use of free sulfonamide or substituted sulfonamide groups (IV). 

The last modification in position 4 was replacing the aniline ring with the alicyclic 

cyclohexyl group (V). 

 
The synthesized compounds were tested for their inhibitory activity towards the 

purified EGFR kinase and towards cancer cell lines with wild-type EGFR (SKBR3 cells) 

and double mutated EGFRT790M/L858R (H1975) (Table 2). The modifications resulted in 

two compounds I.4e
* and I.4i -with alkyl substituents- showing about 4 fold selectivity 

towards the mutant EGFR containing cell line than the wild-type. The results also showed 

that the presence of a Michael acceptor group alone -to form an irreversible covalent 

interaction- is not enough to achieve potent inhibitory activity towards the mutant as well 

as the wild-type EGFR containing cell lines. And it was clear that the position 4 

                                                           
* For the sake of clarity, all compounds that are referred to in chapter 4 are presented as a combination of a 
Roman numeral (I-III) and an Arabic numeral with an alphabetical letter. The Roman numeral indicates in 
which result part they are enclosed and the Arabic numeral with alphabetical letter corresponds to the 
compound number in the chapter. (e.g. I.4a is compound 4a described in chapter I of the results). 
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substituents have a significant role in modulating the activity of these compounds 

especially for the cellular activity. Among the conclusions that were obtained from the 

modifications done in position 4, was that larger more bulky residues such as the pyridyl 

sulfonamide aniline in I.4n seemed to be accepted better by the cells growing dependent 

on wild-type (wt) EGFR than those dependent on double mutated (DM) EGFR. The di-

substituted anilines at position 4 -especially with halogens- are the most potent. 

Compounds I.4a, I.4b and I.4f were the best compromise showing potent growth 

inhibitory activities towards both cancer cells with mutant or wt EGFR kinase. Also, 

among the new findings was that substituents like the cyclohexyl amine in I.4o resulted 

in an active and potent compound towards the wt EGFR while was not as active towards 

the mutant EGFR. Further modifications such as introducing different alkyl substituents 

to the phenyl ring could result in a more shifting of the selectivity towards the mutant cell 

lines. In addition, further testing against the purified mutant enzyme would exclude any 

role for off-targets in the cellular activity. 

Table 2. Influence of the modifications at the ring in 4-position of the quinazoline 
nucleus on EGFR inhibitory potency and cell growth. 

Comp. Fm R 

Recombinant 

EGFR Kinase 

IC50 (µM) 

Cell Growth inhibition 

IC50 (nM) SKBR3 H1975 

I.4a III 2-Br, 6-F 2.2 0.23 0.26 

I.4b III 4-Br, 2-F 2.1 0.51 0.28 

I.4e III 2F, 3Me 1.5 1.86 0.39 

I.4f III 4-Br, 3-OMe 2.5 0.36 0.40 

I.4i III 3-Et 2.7 2.82 0.68 

I.4n IV 
 

9.8 0.39 >40 

I.4o V - 3.4 0.40 >40 

Gefitinib - - 4 5.36 11.39 

Chapter 3.I also covered the modification taking place in the main scaffold by 

replacing the quinazoline nucleus with the tetrahydropyridothieno[2,3-d]pyrimidine 

nucleus (VI). The same acrylamido group was present at position 7 while using in 

position 4 the most potent substituents that were obtained with the quinazoline 

derivatives (I.4a-I.4o). The results of this modification didn’t show significant 

improvement in the activity over the quinazoline nucleus towards the wt or mutant EGFR 

containing cell lines. Further trials with smaller scaffolds rather than the big ones could 

result in an enhanced activity.  
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Chapter 3.II deals with the second part of modifications which include the variations 

taking place at position 6 of compound (I) -with non-reactive moieties- while using a m-

bromoaniline in position 4. These modifications were done with an aim to offer chances 

for extra possible interactions that could take place with the mutant enzyme without 

covalent binding, in addition to the chance of modulating the cellular activity. 

The modifications in the position 6 side chain included several aryl and heterocyclic 

substituents attached through different linkers to the quinazoline core. The linkers 

included an imine (VII), amide (VIII), amino alkyl amide (IX) and a thiourea (X) 

linkage.   
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All the compounds were tested for their inhibitory activity towards the recombinant 

wt and DM (L858R/T790M) EGFR as well as towards cancer cell lines with wt (KB 

cells) and double mutated EGFR (H1975) (Table 3). Interestingly, the results confirmed 

that the presence of aryl or heterocylic rings in the side chain at position 6 of the 

quinazoline is essential in modulating the activity especially towards the mutant EGFR 

and also for the cellular activity. Most of the compounds showed significant potency 

towards the wt EGFR, while only some compounds such as II.6a, II.6b, II.10b only 

showed potent activity towards the EGFR double mutant which functioned as a highly 

stringent filter, clearly identifying the most promising modifications of the quinazoline 

scaffold. Several compounds showed enhanced cellular activity than Gefitinib towards 

both cell lines. This was clearly observed with the amide derivatives having heterocyclic 

rings such as II.11i and the benzylthiourea derivative II.6a. The benzylthiourea 

derivative II.6a retained potent cellular activity in addition to the potent activity towards 

wt and the DM purified enzymes, representing the most promising lead compound of this 

study. The furyl derivative II.11i also retained the highest activity in cells beside the 

potent activity towards only the wt purified enzyme, suggesting that inhibition of H1975 
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cell growth by II.11i and some other compounds is due to off-target effects. As a major 

achievement of our study, we were able to identify compounds that show potent 

inhibition of the mutant enzyme without covalent binding. In addition, we were also able 

to identify combinations which led to efficient growth inhibition of both cell lines. 

Further optimization of the aryl substituents at position 6 by replacing the benzyl in II.6a 

by substituted derivatives or five- and six-membered heterocycles would likely result in 

optimized EGFR kinase inhibitors which are equally potent towards the wild-type 

enzyme and Gefitinib-resistant mutants. 

Table 3. Influence of the modifications at the position 6 of the quinazoline nucleus on 
EGFR inhibitory potency and cell growth. 

Comp. Fm R 

EGFR 

enzyme assay 

IC50 (nM) 

Cell Growth 

inhibition 

IC50 (µM) 

Wt DM KB H1975 

II.11i VII 2-furyl 8.4 N.D. 12.3 14.3 

II.9a 
VIII 

n=1  
5.2 N.D. 14.6 27.9 

II.10b 
VIII 

n=2  
23.1 480 33.6 20.8 

II.6a IX 
 

17.2 290 8.5 18.0 

II.6b IX 
 

10.7 1020 29.8 35.0 

Gefitinib - - 4 7000 17.5 30 

N.D.: Not Determined 

Chapter 3.III deals mainly with a second strategy to treat cancers that are originally 

insensitive or resistant to the clinically approved EGFR inhibitors. This is done through 

the dual inhibition of two complementary pathways involved in cancer such as the EGFR 

and NF-κB using a single molecule. In order to achieve this dual inhibitory activity we 

started by screening most of our previously synthesized compounds -that originally 

showed an EGFR inhibition- for an NF-κB inhibitory activity using a U937 cells reporter 

gene assay. The screening resulted in a Hit compound (III.4b) which showed potent 

activity towards both EGFR and NF-κB, in addition to some other compounds but with 

lower potencies towards the NF-κB. The Hit compound was the benzylthiourea derivative 

(III.4b), showing a 97% inhibition for the NF-κB at 10 µM, in addition to an IC50 of 17.2 

nM for the wt EGFR.    

The Hit compound was further subjected to optimization which was mainly guided 

by the NF-κB activity. The optimization of the Hit compound included three parts. The 

first part was concerned with the modifications of the substituents on the 4-anilino ring 
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while keeping the benzylthiourea at position 6 of the quinazoline (XI). The second part 

was to make modifications in the side chain linked to the thiourea moiety while keeping 

the 3-bromoaniline at position 4 of the quinazoline (XII). The last part was to confirm the 

importance of the thiourea group by replacing it with the urea moiety (XIII). Chapter 

3.III deals also with the different trials done to identify the molecular target with which 

these compounds inhibit the NF-κB pathway. 
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All the newly optimized compounds were then tested for their inhibitory activity 

towards the recombinant EGFR kinase and the NF-κB pathway. In addition, to test the 

effectiveness of the dual inhibitory activity on the anticancer potency, all the compounds 

were further tested for their cellular growth inhibitory activity towards the MDA-MB-23l 

cell line. This cell line was chosen as it overexpresses the EGFR and is not highly 

sensitive to the clinically approved EGFR inhibitor “Gefitinib” and so would be a good 

model to prove that the enhanced anticancer activity of the synthesized compounds is due 

to the dual activity. 

A clear structure activity relationship was observed from the modifications taking 

place at the 4-anilino ring of the quinazoline. The SAR showed that the optimum 

substituents for the EGFR activity were the lipophilic groups at the meta position. And it 

was also clear that the presence of polar hetero atoms on the 4-anilino ring significantly 

decrease the activity towards the NF-κB pathway. Accordingly, the compounds that are 

able to show dual inhibitory activity should have a medium sized halogen in the meta 

position of the 4-anilino ring such as in compound III.4d. 

 

Recombinant 

EGFR Kinase 

U937 reporter gene 

assay 

% inhibition  
at 150 nM 

IC50 
(nM) 

% inhibition  
at 10µM 

IC50 
(µM) 

84.8 11.4 89.7 3.7 
    

The next step was to confirm the importance of the presence of the methylene spacer 

between the thiourea linker and the aromatic ring. This was done by replacing the benzyl 
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side chain by a phenyl side chain where it was found that the phenyl derivatives are better 

than their benzyl analogues (Table 4). 
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Table 4. Influence of the methylene spacer on the EGFR and NF-κB inhibitory potencies. 

Comp. 

Recombinant 

EGFR Kinase 

U937 reporter gene 

assay 

% inhibition 
at 150 nM 

IC50 
(nM) 

% inhibition  
at 10µM 

IC50 
(µM) 

III.4b 86.1 17.2 97 4.1 
III.6a 86.5 15.8 90.7 5.2 
III.7c 77.5 28.3 78.6 N.D. 
III.6d 79.6 19.5 89.5 4.9 

N.D.: Not Determined 

This was followed by testing the importance of the thiourea linker by replacing it 

with a urea moiety. It was significantly clear from the results that the thiourea was 

essential to retain the activity towards the NF-κB pathway (Table 5).  

 

Table 5. Influence of the replacement of the thiourea linker by a urea, on the EGFR and 
NF-κB inhibitory potencies. 

Comp. 

Recombinant EGFR 
Kinase 

U937 reporter gene 
assay 

% inhibition 
at 150 nM 

IC50 
(nM) 

% inhibition  
at 10µM 

IC50 
(µM) 

III.4b 86.1 17.2 97 4.1 
III.8a 89.9 8.9 42.6 N.D. 
III.6d 79.6 19.5 89.5 4.9 
III.8b 69.0 19.3 50.3 N.D. 

N.D.: Not Determined 

After that it was to confirm the importance of the presence of an aromatic ring in the 

side chain. This was done by replacing it with a methyl, morpholine and an ethyl 
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morpholine. The results showed that an aromatic ring is essential in the side chain for 

retaining the activity towards the NF-κB (Table 6). 

 

Table 6. Influence of the presence of aromatic ring in the side chain on the EGFR and 
NF-κB inhibitory potencies. 

Comp. 

Recombinant 

EGFR Kinase 

U937 reporter gene 

assay 

% inhibition 
at 150 nM 

IC50 
(nM) 

% inhibition 
at 10µM 

IC50 
(µM) 

III.4b 86.1 17.2 97 4.1 
III.7a 92.2 9.1 3.0 N.D. 
III.7e 84.0 26.9 40.1 N.D. 
III.7d 91.8 10.7 20.9 N.D. 

N.D.: Not Determined 

Next, several substituents were further added to the phenyl thiourea side chain to 

achieve an enhanced potency for the compounds..  
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Table 7. Most potent derivatives obtained from the modifications on the phenyl ring of 
the position 6 side chain. 

Comp. 

Recombinant 

EGFR Kinase 

U937 reporter gene 

assay 

MDA cell 

growth 

% inhibition 
at150 nM 

IC50 
(nM) 

% inhibition 
at  10µM 

IC50 
(µM) 

IC50 
(µM) 

III.6c 74.8 20.6 97.4 1.9 2.1 
III.6h 74.1 25.3 100 1.0 0.3 
Gef. 93.2 4.0 51.3 9.7 14.2 

The modifications of the position 6 side chain in presence of m-bromoaniline at 

position 4 showed that several substituents are tolerable either lipophilic or hydrophilic 

with the hydrophilic or heterocyclic ones being more potent towards the EGFR kinase. 

This was the opposite in case of the NF-κB activity which showed that the lipophilic 

substituents are the optimum ones. And any polar groups or heterocyclic rings in this side 
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chain lead to loss of activity. So in order to keep the dual activity, a lipophilic substituent 

is essential in this side chain. Several compounds showed variable significant activities 

against both targets with compounds III.6c and III.6h being the most potent against both 

targets (Table 7). 

The best compounds III.6c, III.6h and III.4b were investigated for their  

mechanism of NF-κB inhibition. For III.4b we were able to identify a mechanism which 

is mainly affecting the deubiquitination step, whereas for the other 2 compounds it still 

remains elusive. There is was no inhibition of the proteasome nor do the compounds 

inhibit the translocation of NF-κB to the nucleus and they don’t inhibit the 

deubiquitination step. However, we can exclude a general cytotoxicity; rather, the 

compounds display a tumor-cell selective cytotoxic effect, which was very promising. 

Further testing to identify the molecular target of the other compounds is to be 

implemented. In addition, some modifications that would result in better solubility of the 

compounds, such as replacing the aromatic ring in the side chain by heteroaryl rings, are 

to be tested.  

Conclusion 

Finally, as a general conclusion we have been able to achieve the intended goals by 

synthesizing compounds effective against cancers that are originally insensitive or 

resistant to the clinically approved EGFR inhibitors. Chapter 3.I showed that the 

irreversible inhibitors are effective towards the wild-type and mutant EGFR containing 

cancer cell lines and that position-4 substituents were important to possibly shift the 

selectivity towards the mutant EGFR containing cancer cell lines. A higher degree of 

selectivity might attenuate toxic effects that may be attributed to the irreversible blockage 

also of the wild type EGFR. Chapter 3.II also represents a success of being able to 

identify compounds that are potent inhibitors for the mutant EGFR without the 

requirement for covalent binding. Hence, the modifications done in Chapters 3.I and 3.II 

have achieved the intended aim of being able to overcome the cancers that are resistant to 

the EGFR inhibitors. Chapter 3.III also represents a highly successful outcome being 

able to identify first group of compounds with dual inhibitory activity -towards the EGFR 

and NF-κB- that is expected to significantly increase efficacy towards cancers that are 

less sensitive or resistant to the present generation of EGFR inhibitors. 
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