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Abstract

In this thesis we investigate the interactions between ultracold atoms confined by

a periodic potential and a mode of a high-finesse optical cavity whose wavelength

is incommensurate with the potential periodicity. The atoms are driven by a probe

laser and can scatter photons into the cavity field. When the von-Laue condition

is not satisfied, there is no coherent emission into the cavity mode. We consider

this situation and identify conditions for which different nonlinear optical processes

can occur. We characterize the properties of the light when the system can either

operate as a degenerate parametric amplifier or as a source of antibunched light.

Moreover, we show that the stationary entanglement between the light and spin-

wave modes of the array can be generated. In the second part we consider the regime

in which the zero-point motions of the atoms become relevant in the dynamics of

atom-photon interactions. Numerical calculations show that for large parameter

regions, cavity backaction forces the atoms into clusters with a local checkerboard

density distribution. The clusters are phase-locked to one another so as to maximize

the number of intracavity photons.

Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Wechselwirkung ultrakalter Atome mit

der Mode eines optischen Resonators hoher Güte. Die Atome sind dabei in einem

periodischen Potenzial gefangen, dessen Periodizität nicht kommensurabel mit der

Wellenlänge des Resonators ist. Ein Laser regt die Atome an und sie streuen Pho-

tonen in die Resonatormode, wobei die Emission inkohärent ist, falls die Laue-

Bedingung nicht erfüllt ist. Dieser Fall wird betrachtet und es werden Bedingungen

ermittelt, für welche nichtlineare optische Prozesse auftreten können. Die Eigen-

schaften des Lichtes werden untersucht, wenn sich das System entweder wie ein

parametrischer Verstärker verhält oder wie eine Lichtquelle mit "Antibunching"-

Statistik. Weiterhin kann eine stationäre Verschränkung zwischen Licht und Spin-

wellen der Atome erzeugt werden. Im zweiten Teil wird die Situation betrachtet,

in der die Nullpunktsbewegung der Atome für die Atom-Licht-Wechselwirkung rel-

evant ist. Für große Parameterbereiche zeigen numerische Berechnungen, dass die

Rückwirkung des Resonators die Formierung eines lokalen Schachbrettmusters in

der atomaren Dichteverteilung erzeugt. Die einzelnen Atomgruppe dieses Musters

stehen zueinander in fester Phasenbeziehung, was zur Erhöhung der Zahl der Res-

onatorphotonen führt.
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Introduction

Ultracold atoms in cavity quantum electrodynamics (CQED) setups offer

possibilities to investigate basic processes in the interaction of atoms and

electromagnetic fields [1–3]. For example, Rabi oscillations with a single

photon are observed in a so-called strong coupling regime in which atom and

cavity can exchange a single photon many times before the photon is lost

from the cavity by dissipative processes. A high-finesse cavity mode inter-

acting with ultracold atoms may enhance Bragg scattering of light into one

spatial direction, and increase the collection efficiency and thereby suppress

a diffusion related to photon scattering [3,4]. In this thesis, we focus on vari-

ous physical phenomena emerging from scattering of light into a high-finesse

cavity mode, in particular, we study quantum properties of a light emit-

ted outside the cavity, an stationary entanglement between the scattered

light and a collective excitation mode of the atoms, and quantum ground

state properties of the medium when the light scattering into the cavity is

enhanced.

Bragg diffraction of light by ultracold atoms in optical lattices may reveal

the microscopic crystalline structures of the medium [5,6]. For a regular array

of the atoms, at the solid angles for which the von-Laue condition is not

satisfied [5], the light is scattered inelastically [7–10]. It has been shown that

in this case the scattered light in far field can exhibit vacuum squeezing [10].

The nonlinear response of the atomic medium can be enhanced when the

atoms of the array strongly interact with a mode of a high-finesse cavity. In

this case, the nonlinearity of the light can be controlled by the angle between

laser and the cavity fields wave-vectors and by the intra-atomic distance.

When the geometry of the setup is such that the von-Laue condition is not

satisfied, photons can only be inelastically scattered into the cavity mode.

The smaller system size for which coherent scattering is suppressed, is found

1



2 Introduction

for two atoms inside the resonator. The properties of the light at the cavity

output for this specific case have been studied in Refs. [11, 12]. To the best

of our knowledge, however, the scaling of the dynamics with the number of

atoms N is still largely unexplored in this regime. In Chapter 2 of this thesis,

we characterize the coherence properties of the light at the cavity output

when the light is scattered from a laser into the resonator by a periodic array

of atoms and the geometry of the system is such that coherent scattering is

suppressed. For the phase-matching conditions, at which in free space the

light is in a squeezed-vacuum state [10], we find that inside a resonator and

at large N the system behaves as an optical parametric oscillator, which in

certain regimes can operate above threshold [13]. For a small number of

atoms N , on the contrary, the medium can act as a source of antibunched

light. In this case it can either behave as single-photon or, for the saturation

parameters here considered, two-photon “gateway” [14]. The latter behaviour

is found for a specific phase-matching condition. We identify the parameter

regimes which allow one to control the specific nonlinear optical response of

the medium.

Following the famous gedanken experiment by Einstein, Podolsky, and

Rosen (EPR) in 1935 [15] on the completeness of quantum mechanics, it

has been realized by Schrödinger [16, 17] that the EPR paradox was closely

related to the concept of entanglement. A realization of the EPR pair by

means of a non-degenerate down-conversion scheme has been studied both

theoretically and experimentally [18–21]. These schemes generate entangled

pairs by means of a two-mode squeezed light. Recent experiments have been

focused on the generation of entanglement by the quantum interference be-

tween light and atomic ensembles [22] which can be used as a resource for the

quantum teleportation [23]. Moreover it has been shown that collective spin

mode of an ensemble of atoms inside an optical cavity can be squeezed [24–27]

and hence can be a resource for generating entangled states. Our system of

atomic array in a high-finesse cavity, can be used as an alternative source

for generating entanglement for applications in quantum communication. In

Chapter 3 of the thesis, we discuss that by controlling the system parame-

ters, a collective spin-wave mode of the atomic array and the cavity mode

can be two-mode squeezed. We obtain the stationary state entanglement

between the two modes and we evaluate the two-mode squeezing spectrum

for the output fields.
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So far, we described the cases for which the mechanical effects of the

scattered light on the atomic state are negligible. Domokos and Ritsch pro-

posed in Ref. [28] a model of dynamical self-generated optical lattice by cold

atoms inside a cavity. They realized that two-level atoms interacting with a

single-mode cavity and a pump laser oriented transverse to the cavity axis,

can be self-organized such that the scattering into the cavity mode is en-

hanced [29, 30]. Self-organization has been observed in the experiment for

cold [31,32] and ultracold [33–36] atoms in a cavity. At ultralow temperatures

the system dynamics can undergo the Dicke quantum phase transition [37]

and the self-organized medium is a supersolid [33,35,38,39], while for larger

laser intensities incompressible Mott insulator phases are expected [40]. The

emergent crystallinity has been proposed for Bose-Einstein condensate in-

teracting with multimode cavities [41, 42]. It has been discussed that this

kind of system can be reduced to a spin chain model with frustration and

a quantum phase transition from a ferromagnet to a spin-glass phase can

be realized [43], as for a multimode Dicke model [44]. Multimode cavities

interacting with Bose-Einstein condensate may be also mapped to a bosonic

model which exhibits phase transition from a superfluid phase to a Bose-glass

or a random-singlet glass phases [43]. All of these interesting phenomena are

due to the backaction of the cavity field on the atomic medium, which is

usually negligible in free-space. In Chapter 4 of this thesis, we consider a

single-mode cavity interacting with bosonic ultracold atoms and a transverse

pump laser, and we discuss that the quantum fluctuation emerging from a

cavity backaction can lead to a Bose-glass insulating phase for the trapped

medium. The formation of this Bose-glass phase is such that the coherent

scattering into the cavity mode is enhances, which is significantly different

from the glassy phases realized by bichromatic lattices in free-space in the

absence of a cavity [45–49]. We propose how to measure non-destructively

the Bose-glass phase at the cavity output.

At the end of the thesis, overall concluding remarks are drawn.
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Atom-photon interactions

inside a cavity: Basics

CQED investigates the interaction of light and atoms and molecules in the

regime where a single photon already significantly modifies the radiative

properties of the scattering particles. These conditions are achieved by a

high-finesse resonator, which act as an effective trap for photons thereby

increasing the interaction strength of a single photon with a single atom

to the point. The technology of experiments with optical and microwave

cavities has reached a level of control, that has led to the observation of

predictions at the core of quantum mechanics as well as the realization of

basic elements of quantum information processing [2, 50–52]. These results

follow theoretical models, which have been developed few decades ago and

which provide a reliable theoretical framework for the description of the

dynamics of these systems [3, 53, 54].

The purpose of this chapter is to provide a brief overview of the basic

concepts and equations of atom-photon dynamics inside a high-finesse optical

cavity. The equations here derived constitute the bases of the theoretical

models used throughout this thesis. In the last section of this chapter we

then introduce the system whose dynamics are analyzed in the rest of this

thesis: an array of atoms with a dipolar transition which is strongly coupled

to a high-finesse cavity mode. We give the corresponding equation of motions

which are the starting points of the studies persued in the following chapters.

5



6 1. Atom-photon interactions inside a cavity: Basics

1.1 Coherent dynamics of an atom coupled to a

cavity field

In this section we introduce the Hamiltonian which governs the coupled

dynamics of a single atom and a single cavity mode. The cavity is a high-

finesse optical resonator, where a mode interacts quasi-resonantly with the

optical transition of an atom. The atom scatters radiation in the visible

region and is typically an alkali-metal atom, thus it possesses a single valence

electron. In the situations we consider the atom interacts with light at a

well-defined frequency and polarization, such that the frequency is quasi-

resonant with a dipolar transition involving two electronic states, a ground

state and an excited state. In this regime the relevant internal atomic degrees

of freedom are these two levels, which form a pseudo-spin with a ground state

and an excited state denoted by |1〉 and |2〉, respectively. The Hamiltonian

for the internal degrees of freedom of the atom is thus reduced to the form

Ĥat = ~ω0 σ̂
†σ̂ , (1.1)

where ω0 is the atomic transition frequency, while σ̂ = |1〉〈2| and σ̂† =

|2〉〈1| are the lowering and raising operators, respectively. The electric dipole

operator is defined by d̂ = er̂e where e is the electron charge and r̂e is the

position operator of the valence electron with respect to the center of mass

of the atom. In the reduced Hilbert space composed by {|1〉, |2〉} the dipole

operator can be cast in the form

d̂ = d21

(
σ̂† + σ̂

)
, (1.2)

where the matrix element d21 = 〈2|d̂|1〉 is taken to be real (without loss of

generality). We now include the external atomic degrees of freedom of the

atom and denote by r̂ and p̂ the position and the canonically conjugated

momentum of the atomic center of mass. For non-relativistic velocities,

external and internal degrees of freedom are decoupled in absence of external

fields and the Hamiltonian for the external degrees of freedom reads

Ĥext =
p̂2

2m
+ V (r̂) , (1.3)

where m is the mass and V (r̂) is a potential which will be specified later on.
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1.1.1 The cavity field

We consider an optical cavity constituted by two reflecting mirrors separated

by the linear distance L. The boundary conditions at the mirrors of the

cavity impose a discrete spectrum of field modes along the cavity axis, such

that the mode frequencies are equi-spaced and at distance ∆ω = πc/L, with

c the speed of light in the vacuum. Very good optical cavities as in [33, 55]

can realize ∆ω = 2π× 10 THz, so that an atomic transition at frequency ω0

can be close to the frequency of one cavity mode, say at frequency ωc, and

very far-detuned from other modes. In this limit one can talk of a “single-

mode” cavity. We denote by â and â† the annihilation and creation operators

of a cavity photon with energy ~ωc, with [â, â†] = 1. The Hamiltonian for

the cavity mode in second quantization reads

ĤC = ~ωc

(
â†â+

1

2

)
, (1.4)

where it here includes the zero-point energy of the cavity mode. In this limit

the cavity electric field can be reduced to the component due to the resonant

cavity mode, and it reads

Ê(r) =

√
~ωc

2ε0V0
v(r) e

(
â+ â†

)
, (1.5)

where e is the polarization of the cavity mode, ε0 is the vacuum permittivity,

the function v(r) is the mode function at position r, and V0 =
∫
dr|v(r)|2 is

the quantization volume.

1.1.2 Atom-cavity field interaction: Jaynes-Cumming model

Let us now assume that the dipolar transition |1〉 → |2〉 at a position r̂

couples quasi-resonantly with the mode ωc of the resonator. In the electric-

dipole approximation the interaction Hamiltonian can be cast in the form

Ĥint = −d̂ · Ê(r̂) . (1.6)

Under the assumption that only one cavity mode interacts resonantly with

the atomic transition, we use Eqs. (1.2) and (1.5) in Eq. (1.6) and obtain

Ĥint = ~ g(r̂)
(
σ̂†â+ â†σ̂

)
(1.7)
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where we applied the rotating-wave approximation [56]. Here g(r̂) = g v(r̂)

with

g =

√
ωc

2~ε0V0
|d21 · e| , (1.8)

the so-called vacuum Rabi frequency [57, 58]. This expression shows that

strong coupling between a single photon and a single atom can be realized

by means of small mode volumes.

The Hamiltonian governing the coupled dynamics of atom and cavity

mode now reads

Ĥ = Ĥext + ĤJC ,

where

ĤJC = ~ω0 σ̂
†σ̂ + ~ωc â

†â+ ~ g(r̂)
(
σ̂†â+ â†σ̂

)
(1.9)

and is known in the literature as Jaynes-Cumming Hamiltonian [59].

The dynamics of the closed system composed by atom and cavity mode

is described by Schrödinger equation

i~
∂|Ψ(t)〉
∂t

= Ĥ|Ψ(t)〉 , (1.10)

where |Ψ(t)〉 is the quantum state of the system at time t.

1.1.3 An external pump: a laser driving the atoms

Energy is usually pumped in the atom-cavity system by injecting photons

into the cavity field via the mirrors, which corresponds to a pump on the

cavity, or by driving the atomic transition via an external field: in this case

the atom scatters photon into the cavity mode. The latter situation is the

one we consider in the rest of this thesis. The external field is here assumed

to be a laser, which is described by a classical field at frequency ωp and wave

vector kp. The Hamiltonian describing the coupling between laser and atom

takes the form

ĤL = i~Ω
(
σ̂†ei(kp ·̂r−ωpt) − σ̂e−i(kp ·̂r−ωpt)

)
(1.11)

where Ω is the Rabi frequency, determining the strength of the coupling

between classical field and atomic transition, and the total Hamiltonian now

reads

Ĥtot = Ĥext + ĤJC + ĤL . (1.12)



1.2. Dissipative dynamics 9

The explicit time dependence in the Hamiltonian can be removed by writing

Ĥtot in the frame rotating at frequency ωp (which corresponds to an inter-

action picture with respect to Ĥ0 = ~ωp

(
σ̂†σ̂ + â†â

)
. In this rotating frame

Ĥtot → ˆ̄Htot with

ˆ̄Htot = Ĥext + ~ωz σ̂
†σ̂ + ~ δc â

†â+ ~ g(r̂)
(
σ̂†â+ â†σ̂

)

+i~Ω
(
σ̂†eikp ·̂r − σ̂e−ikp ·̂r

)
, (1.13)

where ωz = ω0 − ωp and δc = ωc − ωp are the detuning of the laser with

respect to the atomic transition frequency and the cavity mode frequency,

respectively.

1.2 Dissipative dynamics

So far we have considered a coherent dynamics. The physical processes

considered in this thesis include also radiative decay of the atomic excited

state and cavity losses, so that photons are emitted outside the cavity, as

sketched in Fig. 1.1. The inclusion of these processes is usually sufficient

to provide a realistic description. In quantum optics, noise and dissipation

can be often described by means of a master equation for the density matrix

ρ̂ of the atomic internal and external degrees of freedom and the cavity

mode. The master equation is based on the Born-Markov approximation

and reads [60, 61]
∂ρ̂

∂t
= − i

~
[ ˆ̄Htot, ρ̂] + Lρ̂ , (1.14)

where L is Lindbladian describing noise and dissipation. In the rest of this

thesis we will consider that noise and dissipation are due to the radiative

instability of the excited state which decays with a rate γ, and a cavity loss

at rate κ. Then, L = Lκ + Lγ , where the superoperators Lκ and Lγ are the

Liouvillians accounting for the effect of the reservoir for the cavity and the

atom, respectively. They read [60, 61]

Lκρ̂ = κ
(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
, (1.15)

Lγ ρ̂ =
γ

2

(
2σ̂ρ̂σ̂† − σ̂†σ̂ρ̂− ρ̂σ̂†σ̂

)
. (1.16)
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Figure 1.1: Schematic picture of an atom inside a Fabry-Pérot cavity, which
is driven by a transverse laser field at Rabi frequency Ω. The wiggled lines
symbolize cavity decay at rate κ and spontaneous emission at rate γ, with
which photons are emitted outside of the system. The inset shows a sketch
of the internal degrees of freedom of the atom, where ground and excited
state of the atoms are denoted by |1〉 and |2〉, respectively, while ω0 is the
atomic transition frequency. Here we assume that one of the cavity mirrors
(left mirror) has zero transmittivity.

Note that in Eq. (1.16) we have ignored the recoil effect due to the emission

of the photon into a free-space. The form can be found for instance in

Ref. [61]. This effect will be neglected in this thesis since the parameters will

be so chosen, that the main source of dissipation occurs via cavity decay.

It is useful to consider the corresponding Heisenberg-Langevin equations,

which provide the equivalent description to the master equation but for the

system operators [13, 61]. They read

d â(t)

dt
= − i

~
[â(t), ˆ̄Htot]− κ â(t) +

√
2κ âin(t) , (1.17)

d σ̂(t)

dt
= − i

~
[σ̂(t), ˆ̄Htot]−

γ

2
σ̂(t) +

√
γ σ̂in(t) , (1.18)

where σ̂in = −σ̂z b̂in, and âin and b̂in denote the input fields with mean values

〈âin〉 = 〈b̂in〉 = 0, and

[âin(t), â
†
in(t

′)] = δ(t− t′) , (1.19)

[b̂in(t), b̂
†
in(t

′)] = δ(t− t′) . (1.20)
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The output fields can be written in terms of the input fields and the system

operators, so that one can obtain

âout(t) =
√
κ â(t)− âin(t) , (1.21)

σ̂out(t) =

√
γ

2
σ̂(t)− σ̂in(t) , (1.22)

for the cavity and the spin output fields, respectively. The Eqs. (1.21),(1.22)

will be used later on to evaluate the correlation functions of the output fields.

Noise and dissipation tend to wash away cavity quantum electrodynamics

effects: if the loss rates are too large, the dissipative dynamics dominates

over the coherent part. The so-called strong coupling regime, in which the

dynamics of an atom is significantly modified at the single-photon level, can

be reached provided that the so-called cooperativity parameter

Cs =
g(r̂)2

κγ
(1.23)

is larger than unity [62]. This parameter is found in the equation of mo-

tion for the cavity field, when one formally integrate the atomic degrees of

freedom and expresses them in terms of the cavity variable, and scales the

nonlinearity due to the atom-photon coupling. In the strong coupling regime

in which Cs ≫ 1, to provide an example, nonlinear dynamics such as optical

bistability are observed [13, 61, 63].

1.3 The system of this thesis: an atomic array in a

cavity

The physical system we consider throughout this thesis is composed by N

identical atoms which are regularly distributed along the cavity axis. The

focus of our investigation is to characterize the cavity field as a function of

the spatial periodicity of the atomic array in the strong coupling regime.

In the second part of the thesis we then analyze how the atomic state is

modified by the cavity field when the atoms scatter photon into the cavity

mode.

We denote by z the cavity axis. The atoms are located about at the
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(a) (b)

Figure 1.2: (a) A periodic array of atoms, with interparticle distance d, is
confined along the axis of a standing-wave optical cavity at frequency ωc

and is transversally driven by a laser, whose wave vector forms the angle
Θ with the cavity axis. The atomic internal transition and the relevant
frequency scales are given in (b), with |1〉 and |2〉 ground and excited state
of an optical transition with frequency ω0 and natural linewidth γ. The
frequencies ωz = ω0−ωp and δc = ωc−ωp denote the detunings between the
laser frequency ωp and the atomic and cavity frequency, respectively. The
other parameters are the laser Rabi frequency Ω, the atom-cavity coupling
strength g, and the decay rate κ of the optical cavity.

positions zj = jd where j = 1, . . . , N and d is the interparticle distance 1.

An optical dipole transition of the confined atoms interacts with the mode of

a standing wave cavity, whose wave vector k is parallel to the atomic array,

as illustrated in Fig. 1.2. Moreover, the atoms are transversally driven by

a laser and scatter photons into the cavity mode. Cavity and laser modes

couple to the atomic dipolar transition at frequency ω0 with ground and

excited states |1〉 and |2〉.
The state of the system, composed by the internal and external degrees of

freedom of the N atoms and by the cavity mode, is described by the density

matrix ˆ̺, whose dynamics is governed by the master equation

∂ ˆ̺

∂t
= − i

~
[H, ˆ̺] + Lκ ˆ̺+

N∑

j=1

Lγ,j ˆ̺, (1.24)

where Lγ,j describes spontaneous decay of the atom j. The Hamiltonian

1This configuration can be achieved by means of an optical lattice trapping the atoms
at the minima of the corresponding standing wave, see e.g. [64].



1.3. The system of this thesis: an atomic array in a cavity 13

governing the coherent dynamics reads

H =
∑

i

(
p̂2i
2m

+ V (r̂i)

)
+ ~ωcâ

†â+ ~ω0

N∑

j=1

Sz
j

+ ~g

N∑

j=1

cos (kzj + ϕ)(S†
j â+ â†Sj)

+ i~Ω
N∑

j=1

(S†
je

−iωptei(kpzj cosΘ−φL) −H.c.) , (1.25)

where p̂i is the momentum of i-th atom which feels a potential V (r̂i) at

its position r̂. The operators Sj = |1〉j〈2| and S†
j indicate the lowering and

raising operators for the atom at the position zj, and Sz
j = 1

2(|2〉j〈2|−|1〉j〈1|)
is the z component of the pseudo-spin operator. In Eq. (1.25) we have

introduced the angle ϕ, which is the phase offset of the standing wave at

the atomic positions, the phase of the laser φL, and the angle Θ between

the laser and the cavity wave vector. For simplicity we will set k = kp:

The difference between the laser and cavity wave numbers can in fact be

neglected for quasi-resonant radiation.

Equation (1.24) is the starting point of the theoretical studies presented

in this thesis.





15

Part I

Pointlike atoms in a periodic array

inside a cavity
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2

Quantum light by an atomic

array in a cavity

Nonclassical light, namely, radiation with properties which have no classi-

cal analogue, can be observed in the resonance fluorescence from a single

atom [65, 66]. It is due to the quantum nature of the scatterer, such as

the discrete spectrum of the electronic bound states of the scattering atom.

When the number of scatterers is increased, the quantum properties, such

as antibunching, are usually suppressed [67]. The situation can be different

when the atoms form a regular array [7–10]. A recent work predicted that

when the light is scattered at the solid angles which satisfy the von-Laue

condition, the light in the far field is in a squeezed coherent state, while for a

large number of atoms it can exhibit vacuum squeezing at scattering angles,

for which the elastic component of the scattered light is suppressed [10].

When the atoms of the array are strongly coupled with the mode of a

high-finesse resonator, emission into the cavity mode is in general enhanced.

The properties of the light at the cavity output will depend on the phase-

matching conditions, determined by the angle between laser and cavity wave

vector and by the periodicity of the atomic array. The coherence properties

of the light at the cavity output may however be significantly different from

the ones predicted in free space. An interesting example is found when the

geometry of the setup is such that the atoms coherently scatter light into

the cavity mode. In this case the intracavity field intensity becomes inde-

pendent of the number of atoms N as N increases, while inelastic scattering

is suppressed over the whole solid angle in leading order in 1/N [68]. These

dynamics have been confirmed by experimental observations [31,32,69], and

clearly differ from the behaviour in free space [10].

17
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In this chapter we characterize the coherence properties of the light at

the cavity output when the light is scattered from a laser into the resonator

by an array of atoms and the geometry of the system is such that coherent

scattering is suppressed: In this regime the light is inelastically scattered,

while the coherent component is suppressed. Our starting point is the master

equation in Eq. (1.24) and the Heisenberg-Langevin equations in Eqs. (1.17)

and (1.18). From this model we derive some coherence properties of the light

emitted at the cavity output, and show that for some parameter regimes an

array of two-level atoms behave as nonlinear optical medium, whose response

can be switched: We will show that the medium can generate antibunched

or squeezed light on demand. For sake of completeness, in the next section,

Sec. 2.1, we first review some basic properties of nonclassical light which are

relevant for our study.

2.1 Some properties of nonclassical light

The quantum state of the light can be determined by full tomography [70].

Nevertheless, some salient properties can be accessed by measuring moments

of the distribution, such as the first and the second order correlation func-

tions (clearly, the knowledge of all moments allows one to reconstruct the

density matrix of the field). For instance, the n-th order correlation function

measured at a detector at position r determines the correlations of detection

events at times t1, · · · , tn for a photon field described by operator â(r, t) and

reads

g(n)(r; t1, · · · , tn) =
〈â†(r; t1) · · · â†(r; tn)â(r; tn) · · · â(r; t1)〉[
〈â†(r; t1)â(r; t1)〉 · · · 〈â†(r; tn)â(r; tn)〉

] , (2.1)

where the average 〈.〉 is taken over the density matrix of the field at time

t = 0, which is the state to characterize. The times of the operators in (2.1)

can be all different, as is the case for the first-order correlation function,

g(1)(r; t). In our treatment we are particularly interested in the second-order

correlation function, g(2)(r; t, t + τ), which measures the joint photocount

probability of detecting a photon at time t and another photon at time

t+ τ . This correlation function is particularly interesting as one can identify

features which cannot be reproduced by means of the classical theory of radi-

ation. The classical theory, in fact, predicts that the second-order correlation
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Figure 2.1: Plots of the probability P of finding n photons at a detector
for a coherent light with Poissonian (red solid curve), anti-bunched light
with sub-Poissonian (blue dott-dashed curve), and bunched light with super-
Poissonian (brown dashed curve) statistics. The average photon number
nav = 100.

function at zero-time delay must always be larger than unity, g(2)(t, t) ≥ 1,

while in quantum theory one finds states, for which g(2)(t, t) < 1. Some sta-

tistical properties of the photon distributions can be inferred depending on

the value of the second-order correlation function at zero-time delay. When

g(2)(t, t) = 1, the light is coherent. For a fully coherent light beam the prob-

ability P (n) of measuring n photons with average mean-photon number nav

follows the Poissonian distribution

P (n) =
nnav
n!
e−nav (2.2)

for n = 0, 1, 2, · · · . When g(2)(t, t) > 1 the light is bunched with super-

Poissonian statistics, namely, the variance is larger than the mean number

of photons nav [13,71]. On the other hand, for g(2)(t, t) < 1, which is usually

denoted by antibunching, the light possesses sub-Poissonian statistics, with

the variance smaller than nav [13,71]. The different behaviors are illustrated

in Fig. 2.1 for nav = 100. Antibunching of light has been observed in the

resonance fluorescence of a single atom or ion, the first experiment has been

reported in Ref. [72], and is a characteristic of single emitters.

In this thesis we will identify the conditions when antibunched light is

generated by an array of atoms which scatter light inelastically into the cav-

ity. Another situation we will analyze is when the array generates squeezed

light [13]. This is usually generated by nonlinear devices such as optical para-
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metric amplifiers [73]. Here, a nonlinear medium is pumped by a classical

field of a frequency ωpump, which is converted into pairs of identical photons

of frequency ωph = ωpump/2. The dynamics of such process is governed by

the Hamiltonian [13, 73]

H = ~ωphâ
†â− i~

α

2

(
â2eiωpumpt − â†2e−iωpumpt

)
(2.3)

where α is a real parameter. The Heisenberg equations of motion lead to the

solution

â(t) = â(0) cosh(αt) + â(0)† sinh(αt) , (2.4)

with â(t)† its adjoint. After introducing the quadratures

x̂1 = â+ â† , (2.5)

x̂2 = −i
(
â− â†

)
, (2.6)

one finds that

x̂1(t) = eαtx̂1(0) , (2.7)

x̂2(t) = e−αtx̂2(0) . (2.8)

In order to satisfy the requirement of the minimum-uncertainty relation

V (x̂1)V (x̂2) = 1, with V (x̂i) = 〈x̂2i 〉 − 〈x̂i〉2 being the variance, the noise

in one quadrature is less and on the other quadrature is greater than the

standard quantum limit, namely, the quadrature of the coherent state. The

amount of the squeezing of one quadrature, or noise reduction, depends thus

on α, which is proportional to the strength of nonlinearity and the pump

amplitude, and on the interaction time.

Noise and dissipation introduce a threshold in the process. When the

nonlinear medium is inside a cavity, the interaction time is determined by

the cavity linewidth κ. The Heisenberg-Langevin equation of motion now

take the form

dâ

dt
= Aâ+

√
2κ âin (2.9)
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for â = (â, â†)T and âin = (âin, â
†
in)

T , where

A =

(
κ −α
−α κ

)
. (2.10)

From Eq. (2.9) the solution of â(t) reaches the steady state when α is below

a threshold value defined by αth = κ. We will focus on situations in which

the nonlinear medium operates below threshold and evaluate the squeezing

spectrum at steady state. The squeezing spectrum is determined by the

expression [13]

Sout
i (ω) =

∫
dt〈x̂outi (t), x̂outi (0)〉e−iωt , (2.11)

where x̂out1 = âout + â†out and x̂out2 = −i(âout + â†out), in which 〈Â, B̂〉 =

〈ÂB̂〉 − 〈Â〉〈B̂〉. The emitted light at a frequency ω (in rotating frame of

the pump laser) is squeezed when Sout
i (ω) < 1. The spectrums for the two

quadratures at the threshold (α = κ) are reduced to

Sout
1 (ω) = 1 +

(
2κ

ω

)2

, (2.12)

Sout
2 (ω) = 1− 4κ2

4κ2 + ω2
. (2.13)

Figure 2.2 displays the squeezing spectrum of Sout
2 (ω) at the threshold, for

which the noise is maximally reduced at the resonant frequency with the

pump laser, i.e., when ω = 0.

Before analyzing the nonlinear optical response of an atomic array inside

an optical resonator, we shortly review the basics of nonlinear optics. In lin-

ear optics, the polarization of a medium induced by an electric field depends

linearly upon the field amplitude, but in fact, this is just an approximation.

In reality the optical response of a medium is a nonlinear function of the

electric field amplitude [73], and for lossless and dispersionless materials, the

polarization can be written as [73]

P̂(t) = χ(1)Ê(t) + χ(2)Ê(t)2 + χ(3)Ê(t)3 + · · · (2.14)

where χ(j) is the electric susceptibility of jth order. This response origi-

nates from the microscopic response of the individual molecules forming the
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Figure 2.2: The squeezing spectrum Sout
2 (ω) at the cavity output related to

the quadrature x̂out2 = −i(âout + â†out) is plotted at the threshold, i.e. when
α = κ, in units of the cavity decay rate κ. The spectrum is obtained from
the Eq. (2.13). The dashed line shows the (classical) shot-noise limit for
which Sout(ω) = 1.

medium, which undergo multi-photon processes. In nonlinear optical crystals

the different orders of the susceptibilities are controlled through the proper-

ties of the material, which either enhance or suppress the light emitted by

each single component. An optical parametric amplifier is thus realized in a

medium where the response given by χ(2) is dominant, whereby for a Kerr

medium the χ(3) susceptibility is dominant [13, 73].

In the following we will show that an array of two-level atoms in a cavity

can behave as a nonlinear medium. In the regime in which the relevant

atomic transition is a two-level, dipolar transition, we will show that the

nonlinear optical processes giving rise to different collective responses are

due to excitations of atomic Dicke states, which are enhanced or suppressed

by the geometry of the setup, here controlled by the interparticle distance

in relation with the wave-length of the resonator.

2.2 Atomic array in a cavity: effective dynamics

We now turn to the physical system, whose nonlinear optical properties we

intend to characterize. We consider the light scattered by an atomic array

inside a resonator which is transversally pumped by a laser. Our starting

point is Hamiltonian (1.25) in the limit in which quantum fluctuations about

the spatial points where the atoms are localized can be neglected.
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In this section we will introduce and discuss the approximations, which

allow us to solve the dynamics obtained by the Hamiltonian (1.25) and de-

termine the properties of the cavity field. In order to do so, we consider the

low saturation limit and resort to the Holstein-Primakoff representation for

the spin operators. This allows us to determine an effective Hamiltonian,

with which we can predict the state of the cavity field.

2.2.1 Weak excitation limit

We now consider the low saturation limit for the spins of the atomic array

and resort to the Holstein-Primakoff representation for the spin operators

entering in Eq. (1.25), according to the relation 1 [74]

S†
j = b†j(1− b†jbj)

1/2 , (2.15)

Sj = (1− b†jbj)
1/2bj ,

Sz
j = b†jbj −

1

2
,

where bj (b†j) is the bosonic operator annihilating (creating) an excitation of

the atom at zj , such that [bj , b
†
j′ ] = δjj′. In the limit in which the atomic

dipoles are driven below saturation, we treat saturation effects in the lowest

non-vanishing order of a perturbative expansion, whose small parameter is

the total excited-state population of the atoms, denoted by Ntot. We denote

the detuning of the laser from the atomic transition by

ωz = ω0 − ωp , (2.16)

and by γ the natural linewidth. In the low saturation limit, |ωz + iγ/2| ≫√
NΩ, then Ntot ≪ N and we can expand the operators on the right-hand

side of the equations (2.15) in second order in the small parameter 〈b†jbj〉 ≪ 1,

obtaining

S†
j ≈ b†j −

1

2
b†jb

†
jbj ,

Sj ≈ bj −
1

2
b†jbjbj .

(2.17)

1From now on, we drop the hat symbolˆfor operators.
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For N ≫ 1 the dynamics is expected to be irrelevantly affected by the as-

sumptions on the boundaries. Therefore, we take periodic boundary condi-

tions on the lattice, such that zN+1 = z1. The atomic excitations are studied

in the Fourier transformed variable q, quasi-momentum of the lattice, which

is defined in the Brillouin zone (BZ) q ∈ (−G0/2, G0/2] with G0 = 2π/d

the primitive reciprocal lattice vector. Correspondingly, we introduce the

operators bq and b†q, defined as

bq =
1√
N

N∑

j=1

bje
−iqjd , (2.18)

b†q =
1√
N

N∑

j=1

b†je
iqjd , (2.19)

which annihilate and create, respectively, an excitation of the spin wave

at quasimomentum q and fulfilling the commutation relation [bq, b
†
q′ ] = δq,q′ .

After rewriting the Hamiltonian in Eq. (1.25) in terms of spin-wave operators,

we find

H ≈ −N~ωz

2
+Hpump +H(2) +H(4) , (2.20)

where the first term on the Right-Hand Side (RHS) is a constant and will

be discarded from now on, while

Hpump = i~Ω
√
N
(
b†Q′e

−i(ωpt+φL) − bQ′ei(ωpt+φL)
)

(2.21)

is the linear term describing the coupling with the laser. Term

H(2) =~ωca
†a+ ~ω0

∑

q∈BZ

b†qbq

+
~g

√
N

2

[
(b†Q eiϕ + b†−Q e−iϕ)a+H.c.

]
(2.22)

determines the system dynamics when the linear pump is set to zero and

the dipoles are approximated by harmonic oscillators (analog of the classical
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model of the elastically bound electron), while

H(4) =− ~g

4
√
N

∑

q1,q2∈BZ

(b†q1b
†
q2bq1+q2−Qa e

iϕ

+ b†q1b
†
q2bq1+q2+Qa e

−iϕ +H.c.)

− i
~Ω

2
√
N

∑

q1,q2∈BZ

(b†q1b
†
q2bq1+q2−Q′e−i(ωpt+φL) −H.c.) (2.23)

accounts for the lowest-order corrections due to saturation. In Eqs. (2.22)

and (2.23) we have denoted by ±Q and Q′ the quasimomenta of the spin

waves which couple to the cavity and laser mode, respectively, and which

fulfill the phase matching conditions

Q = k +G , (2.24)

Q′ = k cosΘ +G′ , (2.25)

with reciprocal vectors G,G′ such that Q,Q′ ∈ BZ. The atoms scatter coher-

ently into the cavity mode when the von-Laue condition is satisfied, namely

one of the two relations is fulfilled:

2k sin2(Θ/2) = nG0 , (2.26)

2k cos2(Θ/2) = n′G0 , (2.27)

with n, n′ integer numbers. In free space, the von-Laue condition corre-

sponds to Eq. (2.26): for these angles one finds squeezed-coherent states in

the far field [10]. When the scattered mode for which the von-Laue condition

is fulfilled corresponds to a cavity mode, superradiant scattering enhances

this behaviour, until the number of atoms N is sufficiently large such that

the cooperativity exceeds unity. In this limit one observes saturation of the

intracavity field intensity, which reaches an asymptotic value whose ampli-

tude is independent of N as N is further increased. In the limit N ≫ 1 the

light at the cavity output is in a coherent state, while inelastic scattering is

suppressed at leading order in 1/N [68].

When the von-Laue condition is not satisfied, classical mechanics pre-

dicts that there is no scattering into the cavity mode. These modes of the

electromagnetic fields are solely populated by inelastic scattering processes.
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Moreover, in free space, when

2k sin2(Θ/2) = (2n + 1)G0/2 , (2.28)

then the inelastically scattered light is in a vacuum-squeezed state [10]. In-

side a standing-wave resonator, on the other hand, the mode is in a vacuum-

squeezed state provided that either Eq. (2.28) or an additional relation,

2k cos2(Θ/2) = (2n + 1)G0/2 , (2.29)

is satisfied.

In the following we will study the field at the cavity output as determined

by the dynamics of Hamiltonian (2.20) when Q′ 6= ±Q, namely, when the

scattering processes which pump the cavity are solely inelastic. We remark

that throughout this treatment we do not make specific assumptions about

the ratio between the array periodicity d and the light wavelength λ (and

therefore also consider the situation in which λ 6= 2d. This situation has

been experimentally realized for instance in Refs. [64, 69, 75–77]).

2.2.2 Linear response: polaritonic modes

We first solve the dynamics governed by Hamiltonian H(2) in Eq. (2.22). In

the diagonal form the quadratic part can be rewritten as

H(2) =

2∑

j=1

~ωjγ
†
jγj +

∑

q 6=Qs,q∈BZ

~ω0b
†
qbq , (2.30)

where Qs labels the spin wave which couples with the cavity mode, such that

bQs = bQ if Q = 0, G0/2 , (2.31)

bQs =
bQ e−iϕ + b−Q eiϕ√

2
otherwise . (2.32)

The resulting polaritonic eigenmodes are

γ1 = −a cosX + bQs sinX , (2.33)

γ2 = a sinX + bQs cosX , (2.34)
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with respective eigenfrequencies

ω1,2 =
1

2
(ωc + ω0 ∓ δω) , (2.35)

δω =

√
(ω0 − ωc)

2 + 4g̃2N , (2.36)

and

tanX = g̃
√
N/(ω0 − ω1) , (2.37)

which defines the mixing angle X. The parameter g̃ is proportional to the

coupling strength. In particular, g̃ = g cosϕ when Q = 0, G0/2 and the

cavity mode couples with the spin wave bQs = bQ, otherwise g̃ = g/
√
2 and

the spin wave is given in Eq. (2.32).

Hamiltonian (2.21) describes the coupling of the pump with the spin

wave Q′. When Q′ 6= ±Q, photons are pumped into the cavity via inelastic

processes, which in our model are accounted for by the Hamiltonian term in

Eq. (2.23). On the other had, when the dynamics is considered up to the

quadratic term (hence, inelastic processes are neglected), only the mode Q′

is pumped and the Heisenberg equation of motion for bQ′ reads

ḃQ′ = −iωzbQ′ − γ

2
bQ′ +Ω

√
Ne−iφL +

√
γbq,in(t) , (2.38)

that has been written in the reference frame rotating at the laser frequency

ωp. Here, γ is the spontaneous decay rate and bq,in(t) is the corresponding

Langevin force operator, such that 〈bq,in(t)〉 = 0 and 〈bq,in(t)b†q,in(t′)〉 =

δ(t − t′) [13]. The general solution reduces, in the limit in which |ωz| ≫ γ,

to the form

bQ′ ≃ −i
Ω
√
N

ωz
e−iφL (2.39)

which is consistent with the expansion to lowest order in Eq. (2.17) provided

that Ω2N ≪ ω2
z . In the reference frame rotating at the laser frequency

the explicit frequency dependence of the Hamiltonian terms is dropped, and

ω1 → ω1 − ωp, ω2 → ω2 − ωp, ω0 → ωz, and ωc → ωc − ωp ≡ δc.

2.2.3 Effective Hamiltonian

Under the assumptions discussed so far, we derive from Hamiltonian (2.20)

an effective Hamiltonian for the polariton γ1. The effective Hamiltonian is

obtained by adiabatically eliminating the coupling with the other polaritons,
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according to the procedure sketched in Appendix A, and reads

Heff =~δω1γ
†
1γ1

+
~

2

(
αγ†21 e

2iφL + α∗γ21e
−2iφL

)
+ ~χγ†1γ

†
1γ1γ1

+ i~(νγ†21 γ1e
iφL − ν∗γ†1γ

2
1e

−iφL) , (2.40)

where 2

δω1 = ω1 − ωp +
2Ω2

ωz

(
S̃2 +

g̃
√
N

ωz
S̃C̃

)
, (2.41)

α = −Ω2

ωz

(
S̃2 +

g̃
√
N

ωz
S̃C̃
) (
δQ′,G/2 + Ck 6=G/2

α

)
, (2.42)

χ =
g̃√
N
S̃3C̃

[
1 + Ck 6=G/2

χ

]
, (2.43)

ν = − Ω

4
√
N

(
S̃3 +

3g̃
√
N

ωz
S̃2C̃

)
Ck 6=G/2
ν , (2.44)

with S̃ = sinX and C̃ = cosX. The terms C k 6=G/2
j do not vanish when

k 6= G/2, and their explicit form is

Ck 6=G/2
χ =

(
1

2
+

1

2
δQ,±G0/4 cos (4ϕ)

)
(1− δk,G/2),

Ck 6=G/2
α =

1

2

(
δQ′,Q+G/2e

−2iϕ + δQ′,−Q+G/2e
2iϕ
)
(1− δk,G/2),

Ck 6=G/2
ν =

1√
2

(
δQ′,3Qe

−3iϕ + δQ′,−3Qe
3iϕ
)
(1− δk,G/2) .

The coefficients have been evaluated under the requirement Q′ 6= ±Q.

We now comment on the condition Ω2N ≪ ω2
z , on which the validity

of Eq. (2.39) is based. When this is not fulfilled, such that |〈bQ′〉| ∼ 1,

Eq. (2.38) must contain further non-anharmonic terms from the expansion

of Eq. (2.15) and which account for the saturation effects in bQ′ . Since this

spin mode is weakly coupled to the other modes, which are initially empty,

we expect that the polaritons γ1 and γ2 will remain weakly populated and

the structure of their effective Hamiltonian will qualitatively not change.

2To be precise, the frequency ωz in the denominator of the various coefficients should
be replaced by (ω2

z + γ2/4)/ωz, which reduces to ωz in the limit |ωz| ≫ γ/2 and which
we are going to introduce later on. The coefficients do not include the cavity decay rate
in the denominator, under the assumption that it is much smaller than ωz.
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We also note that in the resonant case, when ωz = 0, the form of Hamil-

tonian in Eq. (2.40) remains unchanged, while in the coefficients δω1, α, ν,

χ the following substitution ωz → (ω2
z + γ2/4)/ωz must be performed . A

first consequence is that α = 0, which implies that there are no processes

in this order for which polaritons are created (annihilated) in pairs. A fur-

ther consequence is that spontaneous decay plays a prominent role in the

dynamics. We refer the reader to Sec. 2.2.5 for a discussion of the related

dissipative effects.

2.2.4 Discussion

Let us now discuss the individual terms on the RHS of Eq. (2.40). For this

purpose it is useful to consider multilevel schemes, which allow one to illus-

trate the relevant nonlinear processes. The multilevel schemes are depicted

in Fig. 2.3: state |ñ〉 is the polariton number state with ñ excitations. The

blue arrows indicate transitions which are coupled by the laser, for which

the polariton state is not changed; The red arrows denote transitions which

are coupled by the cavity field, for which the polariton state is modified by

one excitation.

Using this level scheme, one can explain the dynamical Stark shift δω1

of the polariton frequency in Eq. (2.41) as due to higher-order scattering

processes, in which laser- and cavity-induced transition creates and then

annihilates, in inverse sequential order, a polariton.

The second term on the RHS has coupling strength given in Eq. (2.42),

it generates squeezing of the polariton and does not vanish provided that

Q′ = G/2 or Q′ = ±Q + G/2. The latter condition is equivalent to the

free-space condition (2.28), while the first arises from the fact that the cav-

ity mode couples with the symmetric superposition bQs in Eq. (2.31). The

corresponding phase-matched scattering event is a four-photon process, in

which two laser photons are absorbed (emitted) and two polaritonic quanta

are created (annihilated). For Q′ = G/2 and Q′ 6= ±Q the polaritons are

created in pairs with quasi-momentum Q and −Q (the relation Q = G/2

corresponds to b−Q = bQ). This specific term is also present when the geom-

etry of the setup is such that von-Laue condition is fulfilled, and at this order

is responsible for the squeezing present in the light at the cavity output.

The Kerr-nonlinearity (third term on the RHS) gives rise to an effec-

tive interaction between the polaritons and emerges from processes in which
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Figure 2.3: Schematic diagram of transitions which fulfill the phase-matching
condition till fourth order. State |ñ〉 denote the number state of the polariton
mode γ1. The blue arrows denote the laser-induced couplings and the red
arrows denote the creation (annihilation) of polaritons due to the coupling
with the cavity field. See text for a detailed discussion.



2.2. Atomic array in a cavity: effective dynamics 31

polaritons are absorbed and emitted in pairs. It is depicted in Fig. 2.3(b)

for a generic case. This term is directly proportional to the cavity coupling

strength and inversely proportional to
√
N . In this order, it is the term that

gives rise to anti-bunching.

The last term on the RHS, finally, is a nonlinear pump of the polariton

mode, whose strength depends on the number of polaritonic excitations. It

is found when the phase-matching condition Q′ = ±3Q + G is satisfied,

which is equivalent to the relation cos θ = (3+nλ/d) when laser and optical

resonator have the same wavelength, as in the case here considered. This

relation can be fulfilled for n 6= 0 and specific ratios λ/d. This term vanishes

over the vacuum state, and it pumps a polariton at a time with strength

proportional to the number of polariton excitations.

In general, photons into the cavity mode are pumped provided that ei-

ther (i) Q′ = ±Q or (ii) (for Q′ 6= ±Q) one of the two conditions are

satisfied: Q′ = G/2 or Q′ = ±Q + G/2. We note that the strength of

the Rabi frequency and of the cavity Rabi coupling may allow one to tune

the relative weight of the various terms in Hamiltonian (2.40). Their ra-

tio scales differently with the number of atoms in different regimes, which

we will discuss below. Moreover, the interparticle distance of the atomic

array constitutes an additional control parameter over the nonlinear opti-

cal response of the medium. Further phase-matching conditions are found

when considering higher-order terms in the expansion of the spin operators

in harmonic-oscillator operators from Eq. (2.15). Their role in the dynamics

will be relevant, as long as they compete with the dissipative rates, here

constituted by the cavity loss rate and spontaneous emission.

2.2.5 Cavity input-output formalism

We consider the full system dynamics, including the atomic spontaneous

emission and the cavity quantum noise due to the coupling to the external

modes of the electromagnetic field via the finite transmittivity of the cavity

mirrors. The Heisenberg-Langevin equations for the operator bq according

to Eq. (1.18) reads

ḃq =
1

i~
[bq,H]− γ

2
bq +

√
γbq,in(t) , (2.45)
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where bq,in is the Langevin operator and fulfills the relations 〈bq,in(t)〉 = 0

and 〈bq,in(t)b†q,in(t′)〉 = δ(t − t′). Here, the average 〈·〉 is taken over the

density matrix at time t = 0 of the system composed by the atomic spins

and by the electromagnetic field. The output field aout at the cavity mirror

is given by the relation in Eq. (1.21).

Let us now consider the scattering processes occurring in the system.

They can be classified into three types: (i) a laser photon can be scattered

into the modes of the external electromagnetic field (emf) by the atoms, with-

out the resonator being pumped in an intermediate time; (ii) a laser photon

can be scattered into the cavity mode by the atom and then dissipated by

cavity decay; (iii) a laser photon can be scattered into the cavity mode by

the atom, then been reabsorbed and emitted into the modes of the external

emf. Processes of kind (i) include elastic scattering. They can be the fastest

processes, but do not affect the properties of the light at the cavity output.

Processes of kind (ii) are the ones which outcouple the intracavity field, but

need to be sufficiently slow in order to allow for the build-up of the intra-

cavity field. Processes of kind (iii) are detrimental for the nonlinear optical

dynamics we intend to observe, as they introduce additional dissipation (see

for instance [78,79] for an extensive discussion and [11] for a system like the

one here considered but composed by two atoms).

Processes (iii), i.e., reabsorption of cavity photons followed by sponta-

neous emission, can be neglected assuming that the laser and cavity mode

are far-off resonance from the atomic transition. In this limit, the cavity is

pumped by coherent Raman scattering processes and an effective Heisenberg-

Langevin equation for the polariton γ1 can be derived assuming that its effec-

tive linewidth κ1 = κ cos2X + (γ/2) sin2X fulfilling the inequality κ1 ≪ δω

(that corresponds to the condition for which the vacuum Rabi splitting is

visible in the spectrum of transmission [58, 75–77,80, 81]). We find

γ̇1 =
1

i~
[γ1,Heff ]− κ1γ1 +

√
2κC̃ain(t) +

√
γS̃bq,in(t) , (2.46)

which determines the dissipative dynamics of the polariton. The field at the

cavity output is determined using the solution of the Heisenberg Langevin

equation (2.46) with Eqs. (2.33)-(2.34) in Eq. (1.21). In some calculations,

when appropriate we solved the corresponding master equation for the den-

sity matrix of the polaritonic modes γ1 and γ2.
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Some remarks are in order at this point. Nonlinear-optical effects in

an atomic ensemble, which is resonantly pumped by laser fields, have been

studied for instance [82], where the nonlinearity is at the single atom level and

is generated by appropriately driving a four-level atomic transitions [83–85].

It is important to note, moreover, that Eq. (2.46) is valid as long as the

loss mechanisms occur on a rate which is of the same order, if not smaller,

than the inelastic processes. This leads to the requirement that the atom-

cavity system be in the strong-coupling regime.

2.3 Results

We now study the properties of the light at the cavity output as a function of

various parameters, assuming that Q′ = G/2 and that the relations Q′ 6= ±Q
and Q′ 6= ±3Q +G hold. Under these conditions the effective Hamiltonian

in Eq. (2.40) contains solely the squeezing and the Kerr-nonlinearity terms,

while ν = 0. Moreover, we assume the condition κ1 ≃ κ > γ.

The possible regimes which may be encountered can be classified accord-

ing to whether the ratio

ε = |α/χ|

is larger or smaller than unity. In the first case the medium response is

essentially the one of a parametric amplifier. In the second case the Kerr non-

linearity dominates, and polaritons can only be pumped in pairs provided

that the emission of two polaritons is a resonant process.

Let us now focus on the regime in which the system acts as a parametric

amplifier, namely, ε≫ 1. In this case one finds that the number of photons

at the cavity output at time t is

〈a†outaout〉t ≃ 2κC̃2〈γ†1γ1〉t ,

with

〈γ†1γ1〉t =
1

2

α2

κ21 − α2
+ e−2κ1t sinh2(αt) (2.47)

+
e−2κ1t

2

(
1− κ1

κ1 cosh(2αt) + α sinh(2αt)

κ21 − α2

)
.

Depending on whether α > κ1 or α < κ1, one finds that the dynamics of the
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intracavity polariton corresponds to a parametric oscillator above or below

threshold, respectively. In the following we focus on the case below threshold

and evaluate the spectrum of squeezing. We first observe that the quadrature

x(θ) = γ1e
−iθ + γ†1e

iθ has minimum variance for θ = π/4 and reads [11]

〈∆x(π4 )2〉st =
κ1

κ1 + |α| , (2.48)

where the subscript st refers to the expectation value taken over the steady-

state density matrix. The squeezing spectrum of the maximally squeezed

quadrature is

Sout(ω) =1 +

∫ +∞

−∞
〈: x(

π
4
)

out (t+ τ), x
(π
4
)

out (t) :〉ste−iωτdτ (2.49)

=1− 4κC̃2|α|
(κ1 + |α|)2 + ω2

, (2.50)

where 〈: :〉st indicates the expectation value for the normally-ordered opera-

tors over the steady state, with

x
(θ)
out = aoute

−iθ + a†oute
iθ .

We now discuss the parameter regime in which these dynamics can be

encountered. The relation ε ≫ 1 is found provided that Ω ≫ g. When

|ωz| ≫ Ω
√
N , in this limit |α| ≃ Ω2g2N/ω3

z , and squeezing can be observed

only for very small values of κ. Far less demanding parameter regimes can

be accessed when relaxing the condition on the laser Rabi frequency, and

assuming that Ω
√
N ∼ |ωz|. In this case squeezing in the light at the cavity

output can be found provided that Ω ≫ κ when g
√
N ∼ |ωz| 3.

Figures 2.4(a) and (b) display the spectrum of squeezing when the system

operates as a parametric amplifier below threshold. Here, one observes that

squeezing increases with N . Comparison between Fig. 2.4(a) and 2.4 (b)

shows that squeezing increases also as the single-atom cooperativity increases

(provided the corresponding phase-matching conditions are satisfied and the

laser Rabi frequency Ω ≫ g). These results agree and extend the findings in

Ref. [11], which were obtained for an array consisting of 2 atoms.

Let us now focus on the regime when ε≪ 1. Here, the polaritons may be

3In this limit, the dependence on the number of atoms is contained in the mixing angle
X, Eq. (2.37), and is such that tanX → 1 as N is increased.
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Figure 2.4: Squeezing spectrum for the maximum squeezed quadrature when
k = G/2, Q′ = G/2 and Q′ 6= Q for ϕ, φL = 0. The parameters are
Ω = 200κ, ωz = 103κ and N = 10, 50, 100 atoms (from top to bottom) for
(a) g = 4κ and (b) g = 10κ. The detuning δc is chosen such that δω1 is
zero. The curves are evaluated from Eq. (2.49) by numerically calculating
the density matrix of the polariton field for a dissipative dynamics, whose
coherent term is governed by the effective Hamiltonian in Eq. (2.40). The
value g = 4κ is consistent with the experimental data of Ref. [86, 87].
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only emitted in pairs into the resonator. In order to characterize the occur-

rence of these dynamics we evaluate the second-order correlation function at

zero-time delay in the cavity output defined by [13]

g(2)(0) =
〈a†2outa2out〉st
〈a†outaout〉2st

. (2.51)

Function g(2)(0) quantifies the probability to measure two photon at the

cavity output at the same time. Therefore, sub-Possonian (super-Possonian)

statistics are here connected to the value of g(2)(0) smaller (larger) than one,

while for a coherent state g(2)(0) = 1.

Sub-Possonian photon statistics at the cavity output can be found as a

result of the dynamics of Eq. (2.40). Here, for phase-matching conditions

leading to ν = 0 and α 6= 0, polaritons can only be created in pairs. When the

Kerr-nonlinearity is sufficiently large, however, the condition can be reached

in which only two polaritons can be emitted into the cavity, while emission of

a larger number is suppressed because of the blockade due to the Kerr-term.

This is reminiscent of the two-photon gateway realized in Ref. [14], where

injection of two photons inside a cavity, pumped by a laser, was realized

by exploiting the anharmonic properties of the spectrum of a cavity mode

strongly coupled to an atom. In the case analysed in this Chapter, the

anharmonicity arises from collective scattering by the atomic array, when

this is transversally driven by a laser. Moreover, we note that the observation

of these dynamics requires Ω
√
N ≪ |ωz|, g

√
N and |α| > κ, which reduces

to the condition Ω2/ωz > κ when g
√
N ∼ ωz.

Figure 2.5(a) displays g(2)(0) as a function of the pump frequency ωp for

the phase matching conditions giving ν = 0 and α 6= 0. Function g(2)(0) is

evaluated by numerically integrating the master equation with cavity decay,

where the coherent dynamics is governed by an effective Hamiltonian which

accounts for the effect of both polariton modes and is reported in Eq. (A.1)

in the Appendix. Antibunching is here observed over an interval of values of

ωp, about which the cavity mode occupation has a maximum (blue curve in

Fig. 2.5(b)). The maximum corresponds to the value of ωp for which the

emission of two polaritons γ2 is resonant. Note that the spin-wave excitation,

red curve in Fig. 2.5(b), is still sufficiently small to justify the perturbative

expansion at the basis of our theoretical model. Figure 2.5(c) displays the

amplitudes |χ|, determining the strength of the Kerr-nonlinearity, and |α|,
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scaling the squeezing dynamics, in units of |δω1| and as a function of ωp. One

observes that for the chosen parameters |χ| > |α|. Maximum antibunching

is here found when the cavity mean photon number is maximum.

It is important to notice that emission of polaritons in pairs is possible

when the collective dipole of the atomic array is driven. For fixed values of

Ω and g, we expect that this effect is washed away as N is increased: this

behaviour is expected from the scaling of the ratio ε withN . Taking k = G/2

and mixing angles X ≪ 1, for instance, one finds ε ∼
√
N, indicating that

the strength of the Kerr nonlinearity decreases relative to the coupling α

as N grows. This is also consistent with the results reported in Fig. 2.4.

In this context, the expected dynamics is reminiscent of the transition from

antibunching to bunching observed as a function of the number of atoms in

atomic ensembles coupled with CQED setups [67].

For the results here presented we have assumed the spontaneous emis-

sion rate to be smaller than κ. In general, the predicted nonlinear effects can

be observed in cavities with a large single-atom cooperativity and in the so-

called good cavity regime [80]. The required parameter regimes for observing

squeezing have been realized in recent experiments [86,87]. The parameters

required in order to observe a two-photon gateway are rather demanding for

the regime in which the atoms are driven well below saturation. Neverthe-

less, a reliable quantitative prediction with an arbitrary number of atoms

would require a numerical treatment going beyond the Holstein-Primakoff

expansion here employed.

2.4 Summary and outlook

An array of two-level atoms coupling with the mode of a high-finesse res-

onator and driven transversally by a laser can operate as controllable non-

linear medium. The different orders of the nonlinear responses correspond

to different nonlinear processes exciting collective modes of the array. De-

pending on the phase-matching condition and on the strength of the driving

laser field a nonlinear process can prevail over others, determining the domi-

nant nonlinear response. These dynamics are enhanced for large single-atom

cooperativities. We have focussed on the situation in which the scattering

into the resonator is inelastic, and found that at lowest order in the sat-

uration parameter the light at the cavity output can be either squeezed or



38 2. Quantum light by an atomic array in a cavity

130 132 134 136 138 140
0

0.5

1

1.5

2

2.5

3

(ω0 − ωp)/κ

g
(2

)
(0

)

(a)

130 132 134 136 138 140
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(ω0 − ωp)/κ

〈a
†
a
〉,

〈b
† Q

b Q
〉

(b)

130 132 134 136 138 140
0

0.5

1

1.5

2

2.5

(ω0 − ωp)/κ

|χ
/δ

ω
1
|,
|α

/δ
ω

1
|

(c)

Figure 2.5: (a) Second order correlation function at zero-time delay g(2)(0)
versus ωp (in units of κ) when the cavity is solely pumped by inelastic pro-
cesses (here, k = G/2, Q′ 6= Q, 3Q and Q′ = G′/2 for ϕ, φL = 0). The
correlation function is evaluated numerically solving the master equation for
the polaritons in presence of cavity decay, with the coherent dynamics given
by Hamiltonian (A.1) (solid line) and by Hamiltonian (2.40) (dashed line).
(b) Corresponding average number of intracavity photons 〈a†a〉 (blue line)

and spin wave occupation 〈b†QbQ〉 (red line). (c) Ratios |χ/δω1| (blue line)
and |α/δω1| (red line) versus ωp. The parameters are g = 80κ, Ω = 30κ,
ωz − δc = 70κ, and N = 2 atoms. At the minimum of g(2)(0), ωz ≃ 137κ
and δc ≃ 67κ.
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antibunched. In the latter case, it can either operate as single-photon or two-

photon gateway, depending on the phase-matching conditions. Our analysis

permits one to identify the parameter regimes, in which a nonlinear-optical

behaviour can prevail over others, thereby controlling the medium response.

In view of recent experiments coupling ultracold atoms with optical res-

onators [31–33,55,68,69,75–77,81,86–91], these findings show that the coher-

ence properties at the cavity output can be used for monitoring the spatial

atomic distribution inside the resonator. A related question is how the prop-

erties of the emitted light depend on whether the atomic distribution is bi- or

multi-periodic [92]. In this case, depending on the characteristic reciprocal

wave vectors one expects a different nonlinear response at different pump

frequency and possibly also wave mixing. When the interparticle distance

is uniformly distributed, then coherent scattering will be suppressed. Nev-

ertheless, the atoms will pump inelastically photons into the cavity mode.

While in free space the resonance fluorescence is expected to be the incoher-

ent sum of the resonance fluorescence from each atom, inside a resonator one

must consider the backaction due to the strong coupling with the common

cavity mode.

A further outlook is to consider these dynamics in order to create entan-

glement between cavity mode and spin-wave modes. Such entanglement can

be a resource for quantum communication. A protocol for entangling cavity

and spins based on this setup is discussed in Chapter 3 of this thesis.

Finally, in this Chapter we neglected the atomic kinetic energy, assum-

ing that the spatial fluctuations of the atomic center of mass at the po-

tential minima are much smaller than the typical length scales determining

the coupling with radiation [11]. It is important to consider, that when

the mechanical effects of the scattered light on the atoms is taken into ac-

count, conditions could be found where selforganized atomic patterns are

observed [28,33,38,40–42,55,89,90,93,94]. In Chapter 4 we will analyze the

quantum ground state of the atomic array in lowest order in the saturation

parameter when quantum fluctuations about the equilibrium position are

not negligible. In this case we will show that quantum fluctuations support

the formation of an intracavity field, which itself modifies the quantum state

of the atoms.





3

Two-mode squeezing by an

atomic array in a cavity

In the latest decade hot atomic ensembles in cells have been the physical

system, with which milestone experiments have been performed [22]. The key

element of this remarkable progress has been the detailed knowledge of atom-

photon interactions, which permitted the engineering of the dynamics leading

to the demonstration of the building blocks of a quantum network. These

and analogous dynamics are being explored for atoms in optical resonators

with the objectives of exploiting the strong atom-photon coupling in order to

realize efficient quantum interfaces [24–26,95–103] and high-precision optical

clocks [104,105].

One important requirement for a quantum interface is a controlled non-

linear dynamics capable of generating entanglement [22,106–108]. With this

objective in mind, in this chapter, we analyze the dynamics of an atomic

array coupled with the mode of a high-finesse optical cavity, as in Chap-

ter 2, and identify parameter regimes for which a collective spin excitation

is entangled with the cavity field at steady state. We will show that this

entanglement is found at the stationary state of the system, and is robust

against noise and dissipation due to cavity decay.

We first start this chapter by giving a sketchy review of a coherent non-

linear dynamics generating entanglement between two harmonic oscillators

in Sec. 3.1, which is the one of a non-degenerate parametric oscillator [13].

Here, we will also introduce entanglement measure for Gaussian states. This

is particular relevant for our study, since starting from Hamiltonian (1.25),

we will identify analogous dynamics leading to entanglement between light

and a collective spin excitation of the atomic array. We will then character-

41
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ize the final state of the system. The study on the specific physical system,

which is the object of this thesis, is performed starting from Sec. 3.2.

3.1 Non-degenerate parametric amplifier and En-

tanglement

In nonlinear optics the non-degenerate parametric amplifier is a device in

which a classical pump laser with frequency 2ω in a nonlinear optical medium

generates two photons of frequency ωA and ωB (ωA 6= ωB) where 2ω =

ωA + ωB . The dynamics of the two oscillators A and B is governed by the

Hamiltonian [13]

Ĥ = ~ωAâ
†
AâA + ~ωBâ

†
B âB + i~η

(
â†Aâ

†
Be

−2iωt − âAâBe
2iωt
)

(3.1)

with η the two-mode squeezing parameter proportional to the amplitude

of the pump laser and the second-order susceptibility of the medium (see

χ(2) in Eq. (2.14)). In (3.1) operators âA and âB annihilate a photon of

the mode with frequency ωA and ωB , respectively, while â†A and â†B are the

corresponding self-adjoint. In interaction picture the Hamiltonian is reduced

to the form Ĥ ′ = i~η(â†Aâ
†
B − âAâB). The unitary operator determining the

system evolution at time t is Us(t) = exp
[
ηt(â†Aâ

†
B − âAâB)

]
which is the

two-mode squeezing operator [13]. In particular,

âA(t) = âA(0) cosh(ηt) + â†B(0) sinh(ηt) ,

âB(t) = âB(0) cosh(ηt) + â†A(0) sinh(ηt) . (3.2)

If the two oscillators are initially in the vacuum state, their initial state reads

|Φ(0)〉 = |0, 0〉, and the mean occupation number grows with time according

to the relation 〈â†A(t)âA(t)〉 = 〈â†B(t)âB(t)〉 = sinh2(ηt). Correspondingly,

the state of the oscillators at time t is given by |Φ(t)〉 = Us(t)|0, 0〉 and in

the Fock-state basis reads [13]

|Φ(t)〉 = 1

cosh(ηt)

∞∑

n=0

(
tanh(ηt)

)n
|n, n〉 , (3.3)

where |n, n〉 = |n〉A|n〉B is the state with n photons in each mode. State

|Φ(t)〉 is the two-mode squeezed state and it is an entangled state: In



3.2. Parametric amplifier based on an atomic array in a cavity 43

Ref. [109] it was shown that this is a realization of Einstein-Podolsky-Rosen

(EPR) entangled state [15].

To use entanglement as a resource for quantum information processing,

one needs to identify a way to quantify it. In this respect the two-mode

squeezed state is particularly important in quantum information processing

with continuous variables since the degree of two-mode squeezing, here ζ =

ηt, can be related to a measure of entanglement [110–113]. One entanglement

measure for Gaussian states, which we are going to use in this thesis, is the

logarithmic negativity [114]. For a density matrix ρ̂ describing two systems

A+B, the logarithmic negativity is defined as

EN (ρ̂) = log2 ||ρ̂TA || (3.4)

where ||.|| denotes the trace norm and ρ̂TA is the partial transpose of ρ̂ with

respect to the subsystem A. Further details are provided in Appendix B.

In general when the logarithmic negativity EN (ρ̂) is larger than zero, ρ̂ is

entangled. For bipartite Gaussian states, the logarithmic negativity is a

measure of entanglement and it provides a necessary and sufficient criterion

for entangled states [114,115]. For non-Gaussian states, on the other hand,

there is to date no general measure which quantifies entanglement [113]: In

this case, the logarithmic negativity is only a witness. This means that, while

for EN > 0 there is entanglement in the system, for EN = 0 one cannot make

any statement on whether A and B are entangled.

3.2 Parametric amplifier based on an atomic array

in a cavity

We now turn to the physical system which is the object of this thesis, an

array of atoms, whose dipolar transition couples with a mode of a high-

finesse resonator. The cavity is a standing wave and is pumped by the

photons scattered by the atoms, which are driven by a laser illuminating

them from the side. The Hamiltonian of the model is given in Eq. (1.25). As

in Chapter 2, we assume that the array is periodic and that the geometry

of the setup is fixed so that coherent scattering into the cavity mode is

suppressed.

The atomic transitions are driven well below saturation, corresponding
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to the choice of parameters Ω ≪ |ωz + i γ/2|. We then perform the Holstein-

Primakoff transformation for the atomic spins and expand in the bosonic

operators up to third order, as in Eqs. (2.17). The procedure follows the

same steps as in Chapter 2, and is detailed in Appendix A. Hamiltonian

(1.25) is reduced to a form, describing the nonlinear coupling of oscillators

with the cavity field, where the nonlinearity are due to saturation effects,

and which reads H = H(2) +H(4). Here 1

H(2) = ~δca
†a+ ~ωz(b

†
QbQ + b†Q′bQ′)

+ ~g̃
√
N(b†Qa+H.c.) + i~Ω

√
N(b†Q′ −H.c.) ,

(3.5)

with g̃ = g cos(ϕ), accounts for the atom-field linear interactions, Q the laser

wave vector, Q′ 6= Q, and

H(4) =
−~g̃

2
√
N

(
b†Q′b

†
Q′bQ δQ′,G/2 + 2b†Q′b

†
QbQ′ + b†Qb

†
QbQ

)
a

− i
~Ω

2
√
N

(
2b†Q′b

†
QbQ + b†Qb

†
QbQ′ δQ′,G/2

)
+H.c. ,

(3.6)

describes the lowest order inelastic processes. This form holds when Q = G/2

with G some reciprocal lattice vector. Consistently with the low-saturation

limit, we make use of the approximation bQ′ ≈ −iΩ
√
Ne−iφL/ωz in H and

derive the effective Hamiltonian

Heff = ~δca
†a+ ~δbb

†
QbQ + ~αBS(a

†bQ +H.c.)

+ ~χ
(
b†Qb

†
QbQa+H.c.

)

+ ~(αQ,aa
†b†Q +H.c.) + ~(αQb

†2
Q +H.c.) ,

(3.7)

1From here on, we drop the hat symbolˆfor operators.
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with the parameters

δb = ωz +
2Ω2

ωz
,

αBS = g̃
√
N

(
1− Ω2

ω2
z

)
,

χ =
g̃

2
√
N
,

αQ,a = g̃
√
N

Ω2

2ω2
z

δQ′,G′/2 ,

αQ = − Ω2

2ωz
δQ′,G′/2 .

(3.8)

The parameter δb accounts for the spin resonance frequency which is modified

by the dynamical Stark shift due to the interaction with the laser light. The

third term in Eq. (3.7) describes the linear interaction between spins and

cavity and its strength, αBS, is modified by the nonlinear interaction with

the spin mode Q′.

The remaining three terms in Eq. (3.7), accounts for the inelastic pro-

cesses. The fourth term, whose coefficient is χ (see Eq. (3.8)) describes

four-wave mixing processes involving cavity field and the spin wave mode

Q. Its strength is inversely proportional to
√
N , hence its effect is negligible

for sufficiently large number of atoms. The last two terms with coefficients

αQ,a and αQ, describe squeezing of the spins and of the cavity field. These

two terms are present only when the phase-matching condition Q′ = G′/2,

with G′ reciprocal lattice vector, is satisfied. Together with the assumption

Q 6= Q′ and Q = G/2, these relations imply that either Q′ is at the edge of

the Brillouin zone and Q at the center, or, vice-versa Q′ is at the center and

Q at the edge.

When δc ∼ 0, such that the cavity mode is resonant with the driving field,

the last two terms of (3.7) are responsible for the squeezing of the cavity light

as discussed in Chapter 2. Here we are interested in parameters regime for

which the light is strongly entangled with the spins. This is obtained when

δc ∼ −δb . (3.9)

Under this condition, in fact, the Hamiltonian term proportional to αQ,a
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in Eq. (3.7) is resonant. This term describes the correlated emission and

absorption of excitations of spin-wave and cavity modes, which are typical

of non-degenerate parametric oscillations.

Dissipation processes for the dynamics of the cavity field coupled with

the spin-wave mode Q include two channels: (i) through the cavity mirrors

described by the cavity line-width κ and (ii) through the coupling of the spin-

wave mode Q to the external electromagnetic fields determined by the atomic

transition line-width Γ. Therefore the master equation (1.14) describing the

system dynamics takes the form

˙̺ = − i

~
[Heff , ̺] + L̺ (3.10)

where

L̺ =κ(2 a̺a† − a†a̺− ̺a†a) + Γ(2 bQ̺b
†
Q − b†QbQ̺− ̺b†QbQ). (3.11)

Here we consider the situation in which the detuning of the pump laser fields

from the atomic transition is much larger than the atomic line-width, i.e.,

|ωz| ≫ Γ.

Let us now discuss the validity of the low-saturation assumption, on

which the effective Hamiltonian we derived is based. This can be checked

by estimating the atomic excited state population
〈
S†
jSj

〉
∼
〈
b†jbj

〉
which

has to be much smaller than unity. Since the mode Q′ is not coupled to the

cavity and is only weakly coupled, non-resonantly, to the other modes, then

the populations of the other modes remain always very small. The only spin

mode that can be relevantly populated is the mode Q. This mode, in fact,

can be driven resonantly by the nonlinear processes involving also the cavity.

Therefore the condition over the atomic excited state population can be

written as

〈
b†jbj

〉
≃ 1

N

∑

q

〈
b†qbq

〉
≃ 1

N

[〈
b†Q′bQ′

〉
+
〈
b†QbQ

〉]

≃ Ω2

ω2
z

+

〈
b†QbQ

〉

N
≪ 1. (3.12)

Here we have neglected the populations of the spin modes different form Q

and Q′, and also the correlations between spin modes.
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Figure 3.1: (a) Logarithmic negativity EN in (3.4) is evaluated as a function
of time t (in units of 1/g), in the absence of dissipations. The solid lines
are evaluated numerically by solving the Schrödinger equation of motion
using the Hamiltonian (3.7), according to the App. D, whereby the dash-
dotted lines are the corresponding results for χ = 0. The corresponding
plots for the minimum variance of a composite quadrature min {∆X(θa, θb)}
(see Eq. (3.13)) with respect to the angles θa and θb, are shown in panel
(b). The value of ∆X = 1 corresponds to the shot-noise limit. The curves

in (c) display the field modes population na = 〈a†a〉 and nb = 〈b†QbQ〉 as a
function of time in which the two curves for na and nb are superimposed. The
parameters are ωz = 100g,Ω = 5g,N = 50, δc = −100.55g and the decay
rates κ and Γ are set to zero. Here δb = 100.5g. The oscillatory behaviour
for the curves is due to non-resonance condition δc 6= −δb (see App. C). The
initial state is the vacuum for both modes.

3.3 Results: stationary entanglement between mat-

ter and light

In this section we study the system dynamics and we identify the regimes in

which light and collective atomic modes are efficiently squeezed. We charac-
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Figure 3.2: The same plots as in Fig. 3.1 with δc = −δb = −100.5g.

terize the system in terms of the population of the modes, the logarithmic

negativity, which measure the entanglement between the two modes (see

Appendix D), and the minimum of the variance

∆X(θa, θb) =
〈
X(θa, θb)

2
〉
− 〈X(θa, θb)〉2 , (3.13)

with respect to the quadrature angles θa and θb, where

X(θa, θb) =
1√
2

(
a eiθa + a†e−iθa + bQ eiθb + b†Qe

−iθb
)
, (3.14)

are generic composite quadratures. According to these definitions the shot-

noise level is set to ∆X(θa, θb) = 1. When ∆X(θa, θb) < 1 the system is

two-mode squeezed [13, 20].

Entanglement and two-mode squeezing are two related features. In fact,

in case the Hamiltonian is symmetric under the exchange of the two modes,

the quadrature variance ∆X can be used to construct entanglement mea-

sures [113]. In our case, however the dynamics of the two modes a and bQ
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Figure 3.3: The same plots as in Fig. 3.1 with ωz = 100g,Ω = 30g,N =
1000, δc = −125g and the decay rates κ and γ are set to zero. The corre-
sponding δb = 118g. Here, due to a large value of N , the non-quadratic term
in (3.7) due to four-wave mixing is negligible.

described by the Hamiltonian (3.7) are not symmetric under the exchange

of the modes, and the squeezing is only a sufficient condition for entangle-

ment. For this reason we resort to the logarithmic negativity to detect the

entanglement shared by atoms and light.

We first consider the Hamiltonian evolution with no dissipation. The re-

sults describe correctly the system dynamics for sufficiently short times such

that the effects of dissipation are negligible. We also identify the parameters

regime in which the non-quadratic term in the Hamiltonian is negligible.

For a sufficiently large number of atoms N and small number of excita-

tions, the term proportional to χ in Eq. (3.7) is negligible. In this case, the

Hamiltonian is quadratic in the field operators. The system dynamics can

be determined by studying the normal modes. These can be found diago-

nalizing the matrix of coefficient of the Heisenberg equations for the field

modes (see App. C). When the corresponding eigenvalues are purely imagi-
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Figure 3.4: The same plots as in Fig. 3.3, but with δc = −123.3g. The
populations of the two-modes get larger with respect to Fig. 3.3 and hence for
larger time, the effect of the four-wave mixing gets relevant in the dynamics.

nary the populations of the two modes oscillate in time and remain always

finite. If on the other hand the eigenvalues are complex with a finite real

part then the population of spin and cavity modes increases with time. This

second regime is accessed when δc = −δa (see App. C). In this case, when the

population become sufficiently large then the four wave mixing term, whose

strength is χ, become relevant. It leads to a shift of the resonance condition,

hence to a reduction of the absorption of laser photons. Correspondingly the

populations of the spin modes and of the cavity field remain finite.

In Figs. 3.1 and 3.2 we consider parameters regime for which the non-

quadratic term in (3.7) has a significant effect in the dynamics. In Fig. 3.1

the detuning δb is not resonant with −δc, whereby for Fig. 3.2 we choose

δb = −δc. Panels (a) display the logarithmic negativity (3.4) as a function

of time which is evaluated by the Schrödinger equation using the Hamilto-

nian (3.7). The logarithmic negativity in calculated terms of the covariance

matrix as discussed in App. D. In Fig. 3.1(a), for which δc 6= −δb, the eigen-
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Figure 3.5: The same plots as in Fig. 3.3 with δc = −120g. The populations
increases in a smaller time-scale than Fig. 3.4.

values of the Hamiltonian (3.7) are imaginary (see App. C) and therefore

the logarithmic negativity oscillates as a function of time. The similar os-

cillating behaviors are observed in Figs. 3.1(b),(c). Panels (b) displays the

minimum variance of composite quadratures defined in (3.13) with respect

to the angles θa and θb. We see in (b) that an squeezed composite quadra-

ture with ∆X < 1 is found, when the two modes are entangled, i.e, EN > 0.

The populations of the cavity and the spin-wave modes are shown in (c):

As time t goes, the populations of the two modes increase, and therefore

the effect of the non-quadratic term becomes relevant. In these figures the

initial state is the vacuum for both modes. In Figs. 3.1 the oscillations of the

populations and correspondingly of the entanglement and of the squeezing

increases in intensity when the four-wave mixing (non-quadratic) term is ne-

glected, meaning that photons are more efficiently pumped into the system.

In Fig. 3.2, the populations increase under the effect of the quadratic Hamil-

tonian (dash-dotted lines). However, the non-quadratic term is responsible

for the reduction of the populations and correspondingly of the two-mode
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squeezing (solid lines). In particular, in this limit, at large times the spin-

wave and the cavity modes, under the effect of coherent dynamics, result to

be not entangled.

The system parameters can be chosen such that the effect of non-quadratic

term is not relevant in the dynamics. In Figs. 3.3, 3.4 and 3.5, for the pa-

rameters and the time interval that we are able to simulate 2, the effect of

the non-quadratic term is negligible. We show in Figs. 3.3 and 3.5 that for a

chosen parameters, there is no discrepancy for the curves with and without

the non-quadratic term of the Hamiltonian (3.7). In the oscillating regime,

in Fig. 3.4, when the population is not very small and the time is large then

a small discrepancy between the results with and without the non-quadratic

term is observed. When the non-quadratic term is negligible (see Fig. 3.5)

we observe almost perfect suppression of the quadrature fluctuation for large

times.

We include now the decay rates in the dynamics and consider the param-

eters regime in which the four-wave mixing term in Eq. (3.7) is negligible.

The dynamics is therefore Gaussian and we can evaluate the results accord-

ing to Appendix C. Including dissipation, the system dynamics, is charac-

terized by two regimes determined by the relative strength of coherent and

incoherent processes. At sufficiently large decay rates, the system admits a

steady state. Below threshold values for the decay rates, no steady state is

reached. Here we are interested in the steady state of the system. Similar

to a non-degenerate parametric oscillator, when the decay rates approach

the threshold values, the variance of a composite quadrature is reduced of

∼50% below the shot-noise limit, and correspondingly, the two-mode squeez-

ing spectrum of the emitted field (i.e. the field lost by the cavity and the field

scattered by the atoms out of the cavity) shows almost perfect suppression

of the quadrature fluctuation at the central frequency [18,19]. We obtain the

steady-sate solution by the master equation (3.10) in Figs. 3.6-3.9 when the

dissipations are included. Figs. 3.6 and 3.7 display the steady-state solution

as a function of the decay rates κ and Γ above the steady-sate threshold. The

vertical dotted lines indicate the threshold values for the decay rates which

separate the two regimes. At smaller values of the decay rates, the system

admits no steady state. In Fig. 3.6 maximum values of the population of

2At larger time the populations in Fig. 3.5 become to large and out of our numerical
capabilities.
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Figure 3.6: (a) Logarithmic negativity EN is plotted at the steady state as a
function of the decay rates κ = Γ in units of g. In (b) the minimum variance
of a composite quadrature min {∆X(θa, θb)} (see Eq. (3.13)) with respect to
the angles θa and θb at the steady states is evaluated, whereby in (c) the

corresponding populations of the field modes na = 〈a†a〉 and nb = 〈b†QbQ〉
(the two curves are superimposed) are shown as a function the decay rates
κ = Γ (in units of g). Note that here the two decay rates are varied together.
The dotted lines determine the threshold for the steady state. The results
are evaluated using the master equation (3.10) with χ = 0. The parameters
are ωz = 100g,Ω = 30g,N = 1000, δc = −δb = −118g.

the two modes (plots (c)), and corresponding maximum entanglement (plot

(a)) and squeezing (plots (b)) are obtained at the threshold. The minimum

variance is min{∆X(θa, θb)} is slightly smaller than 0.5 (in the case of a

non-degenerate parametric oscillator at the threshold it is exactly 0.5). This

discrepancy is due to the spin-mode squeezing amplitude αQ in the Hamil-

tonian (3.7). In Fig. 3.6 κ = Γ and the two decay rates are varied together.

On the other hand in Fig. 3.7 κ is kept fixed. In this case maximum squeez-

ing and entanglement is not obtained at the threshold. In general optimum

two-mode squeezing is obtained when the two decay rates are equal. Fig. 3.8
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Figure 3.7: The same plots as in Fig. 3.6 with κ = 5g. In (c) the populations
for the two modes are not equal and the two curves are not superimposed:
the dark blue lines represent na and the light green lines represent nb. Note
that here, close the threshold value, the two-modes are entangled but the
composite quadrature is not squeezed.

shows that maximum populations and entanglement, is obtained when the

resonance condition δc = −δb is satisfied. At last, in Fig. 3.9 one observes

that the two mode squeezing increases with the number of atoms N . The

parameters used for this results are similar to that of recent CQED exper-

iments. In particular g,κ, and Γ in Fig. 3.9 correspond to that discussed

in [24–26]: (g, κ,Γ)/2π ≃ (0.4, 1, 3) MHz.

The field emitted by the cavity and the field scattered by the atoms out

of the cavity are entangled as well. The squeezing spectrum for composite

output fields read

S(θa, θb, ω) = lim
δω→0

∫ −ω+δω/2

−ω−δω/2
dω′ ∆̃X

(θa,θb)
(ω, ω′) ,

(3.15)
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Figure 3.8: The same plots as in Fig. 3.6, as a function of δc (in units of g)
for κ = Γ = 2.5g. In panel (b), the minimum variance shows more than 50%
reduction of the noise, which is due to the single-mode squeezing amplitude
αQ in (3.7).

where ∆̃X
(θa,θb)

(ω, ω′) are the Fourier transform of the variance of composite

quadratures (3.14) and are derived rigorously in App. E. It is shown in

Fig. 3.10 that maximum entanglement and almost perfect suppression of the

fluctuations are expected at zero frequency, for the parameters of Fig. 3.8.

These predictions can be tested in experiments by homodyne detections (see

App. E) [20]. When the detection efficiency is not unit, the squeezing and

the entanglement of the detected modes are reduced as described by the

dashed and dot-dashed lines of Fig. 3.10. In case of asymmetric detection

efficiency (dot-dashed lines of Fig. 3.10) the detected fields are not symmetric

and the corresponding squeezing is not maximum at the central frequency.

Nevertheless the amount of entanglement as measured by the logarithmic

negativity is always maximum at the ω = 0.
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Figure 3.9: The same plots as in Fig. 3.6, as a function of the number of
atoms N for κ = 2.5g and Γ = 7.5g. In (c) the dark blue lines represent na
and the light green lines represent nb.

3.4 Summary and outlook

In this Chapter we have studied the dynamics of an array of atoms inside

an optical cavity transversally driven by a laser field and we have identified

the regimes in which an atomic spin wave mode and the cavity field mode

are efficiently two-mode squeezed.

Two-photon scattering processes in which one laser photons is absorbed

or emitted by the collective atomic spin, and the other one is scattered into

the cavity or form the cavity field, can be selected resonantly when the

laser field drives the system at the intermediate frequency between cavity

and atomic transition frequencies. In this regime the system behaves as a

non-degenerate parametric oscillator, where the roles of signal and idler are

played by the cavity mode and by the spin-wave mode of the atomic ar-

ray. In this way EPR-like correlations are created between atom and light.

Spin-light entanglement can be obtained either at the steady state, or in a
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Figure 3.10: (a) Two-mode squeezing spectrum of the emitted fields is eval-

uated for maximally squeezed composite quadratures ∆̃X
(θa,θb)

in Eq (3.15)
with respect to the angles θa and θb (for details see App. E). (b) Corre-
sponding logarithmic negativity EN (ω) as a function of the frequency of the
emitted field, is plotted (see App. E). Different curves correspond to the
results for the fraction of modes which are detected when the detection ef-
ficiencies ηa and ηb (see App. E) are set to: ηa = ηb = 1 for the blue solid
lines, ηa = ηb = 0.5 for the red dashed lines and ηa = 1, ηb = 0.1 for the
yellow dot-dashed lines. The parameters are κ = Γ = 2.5g, ωz = 100g
and δc = −δb = −118g and Ω = 30g, N = 1000; θa and θb are set to
the values which mainimizes the squeezing spectrum at each frequency ω.
∆a and ∆b (see App. E) are set to the frequencies of the normal modes:
∆a = −∆b = −121.3g.
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transient regime. We note that steady state entanglement involving collec-

tive atomic spins have been discussed and experimentally demonstrated in

Refs. [108,116]. In Ref. [108] it is shown that for an infinite optical depth of

the atomic sample, complete suppression of the collective spin fluctuations

can be achieved. For reasonable optical depth (∼30) the expected optimal

suppression is ∼50% below the fluctuations of a coherent spin state. These

dynamics, although of different nature is comparable with the steady state

reduction of quadrature fluctuation that we have demonstrated in our sys-

tem.

Finally we note that the atom-cavity system has a potential application

to generate an atomic spin-squeezed state at the steady state using a so-called

quantum bath engineering [27]. This system can be more robust against noise

as compared to existing methods [22] that produce short-lived spin-squeezed

states, which can be destroyed due to dissipation or decoherence.
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Part II

Quantum ground state of

atoms due to cavity backaction
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4

Quantum ground state of

ultracold atoms in a cavity

Bragg diffraction is a manifestation of the wave-properties of light and a

powerful probe of the microscopic structure of a medium: Bragg peaks

are intrinsically related to the existence of spatial order of the scatter-

ers composing a medium and provide a criterion for the existence of long-

range order [6]. Bragg diffraction of light by atoms in optical lattices has

been measured for various geometries and settings, from gratings of laser-

cooled atoms [69, 117–120] to ultracold bosons in the Mott-Insulator (MI)

phase [121]. In most of these setups the backaction of light on the atomic

medium, due to the mechanical effects of atom-photon interactions, is usually

negligible, while photon recoil can give rise to visible effects in the spectrum

of the diffracted light [92]. Recent work proposed to use high-finesse optical

resonators to enhance light scattering into one spatial direction, increasing

the collection efficiency and thereby suppressing diffusion related to photon

scattering [4]. As it is discussed in Chapter 2, for appropriate geometries,

properties of the medium’s quantum state can be revealed by measuring the

light at the cavity output [4,92]. These proposals assume that backaction of

the cavity field on the atoms can be discarded. Such an assumption is, how-

ever, not valid in the regime considered in Refs. [28,30–35,39,55]: Here, the

strong coupling between cavity and atoms can induce the formation of stable

Bragg gratings in cold [28,31,32] and ultracold atomic gases [30,33–35,39,55]

that coherently scatter light from a transverse laser into the cavity mode.

When the intensity of the pump exceeds a certain threshold, the atoms

organize themselves such that the collective scattering into the cavity is en-

hanced [29–33]. At ultralow temperatures the self-organized medium is a

61
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supersolid [33, 39], while for larger pump intensities incompressible phases

are expected [40].

In Chapter 2, 3 we have studied the dynamics of ultracold atoms in an

array interacting with a mode of an optical cavity, when the geometry is

such that the photons are pumped into the cavity via incoherent processes.

In this Chapter we include the atomic motion and we study the quantum

ground state properties of the medium inside the cavity. More specifically,

we focus on a regime in which the effect of cavity backaction on the atomic

state provides coherent emission into the cavity. We show that the cavity

backaction provides an effective long-range interaction between the atoms

and can substantially modify the quantum ground state.

In Section 4.1 we give some basics of the Bose-Hubbard model, which

will be the starting points of our physical model. In particular, we will

review the basics of the MI to superfluid (SF) phase transition, which we

will partly recover in our analysis. Starting from Sec. 4.2, we obtain the

effective dynamics of trapped atoms inside an optical cavity in presence of

cavity backaction, which can be described by the Bose-Hubbard Hamiltonian,

and we discuss the quantum ground state properties of this system.

4.1 Bose-Hubbard model and disorder

Let us consider ultracold bosonic atoms which are trapped by a two-dimensional

optical lattice as shown in Fig. 4.1. The two-dimensional optical lattice is

generated by counterpropagating laser fields along two orthogonal directions

in a two-dimensional plane. A conceptually simple model that gives an ap-

proximate physical description for ultracold bosonic atoms trapped by an

optical lattice, and interacting via s-wave scattering, is the Bose-Hubbard

model [122, 123] and is described by the Hamiltonian

H =
U

2

∑

i

n̂i(n̂i − 1)−
∑

i

µi n̂i − t
∑

〈i,j〉
(b̂†i b̂j +H.c.) (4.1)

in which U > 0 is a repulsive onsite interacting strength between the bosonic

particles, and n̂i = b̂†i b̂i is the bosonic number operator where b̂i (b̂†i ) anni-

hilates (creates) a boson at lattice site i. The onsite energy µi = µ + δµi

in which µ is a chemical potential and δµi is an energy offset of each lattice

site. The tunneling rate t in (4.1), which is determined by the atomic ki-
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Figure 4.1: Ultracold atoms in a two-dimensional optical lattice which is
generated by two counterpropagating laser strongly confined in the third
dimension.

netic energy, has been considered only over the neighbor lattice sites i and j

(denoted by 〈i, j〉). In fact due to the tight-binding approximation, tunnel-

ings to next-nearest neighbors can be neglected [124]. For ultracold atoms

trapped by an optical lattice, the tunneling rate can be tuned by the lattice

potential depth: The deeper the lattice potential, the smaller the tunneling

rate’s is [123, 124].

The quantum ground state properties of the Bose-Hubbard Hamiltonian

(4.1) have been first studied by Fisher et al. in Ref. [125] using mean-field

approach, and have been discussed in other seminal works in the literature

(for a review, see [124]). In the spatial homogeneous case when there is no

energy offset between different lattice sites, i.e., µi = µ, ∀i, and in the limit of

zero tunneling t/U → 0, the ground state of the Bose-Hubbard Hamiltonian

at commensurate atomic densities n̄ = 0, 1, 2, · · · are MI states [124]

|ΨMI(n̄)〉 =
K∏

i=1

(
b̂†i

)n̄
√
n̄!

|0〉 (4.2)

for a lattice with K sites, where |0〉 denotes the vacuum state. The MI

state is gapped, meaning that adding or removing a particle to this state

costs energy. The compressibility defined by χ = ∂n̄
∂µ , vanishes for the MI

state. As the tunneling t increases, the atoms start to delocalize over several

lattice sites and the system encounters a phase transition from MI to SF
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(a) (b)

Figure 4.2: Qualitative phase diagram for (a) a pure and (b) a disordered
system (with a random disorder) described by the Bose-Hubbard Hamilto-
nian (4.1). In (a) MI lobes with integer densities n̄ = 1, 2, 3 for low values
of the tunneling and SF for larger values of tunneling are shown, whereby in
(b) the MI-SF transition passes through the BG phase. Here ǫ = max |µi|/U
which is zero when there is no energy offset at different lattice sites. Solid
lines indicate phase transition from MI to compressible phases, and dashed
lines separate insulator phases from SF. The phase transition points highly
depend on a lattice dimensionality, and a method used to be obtained.
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at certain values of t/U and µ. In the limit of vanishing onsite interaction,

U/t → 0, the ground state of the Bose-Hubbard Hamiltonian is SF and has

a form [124]

|ΨSF(n̄)〉 =
1

N̄

(
K∑

i=1

b̂†i

)N

|0〉 (4.3)

with the number of atoms N and the normalization factor N̄ . The transition

to SF is accompanied by a change in the excitation energy spectrum of the

system, where in the SF the system becomes gapless and compressible. In

the intermediate region between the states introduced in (4.2), (4.3) there

is a value of t/U at any specific µ, for which a phase transition occurs,

which has been observed in experiments for optical lattices [126, 127]. The

superfluidity in two- and three-dimensions is characterized by nonvanishing

values of SF density [124], or SF order parameter
∑

i〈b̂i〉/K. The diagram of

Fig. 4.2 shows the distinct phases in the thermodynamic limit at equilibrium.

Depending on the values of t, U and the chemical potential µ, the particle

density n̄ varies, and the system ground state is either MI or SF. Fig. 4.2(a)

displays the phase diagram of the Bose-Hubbard Hamiltonian (4.1) when

µi = µ, ∀i, as a function of the chemical potential µ versus the tunneling t in

units of the onsite interaction U . One observes that a lobe structure appears

for the MI states with integer densities n̄ = 1, 2, 3, · · · . Outside the lobes

the system is SF. At t → 0 MI with a commensurate density n̄ is found for

the values of the chemical potential (n̄ − 1)U < µ < n̄U . As the tunneling

increases, the MI phase with a density n̄ gets smaller until vanishing [128],

and the phase becomes SF.

In the spatial inhomogenous case for which there is an energy offset

between all lattice sites, that is, δµi 6= δµj for any two lattice sites i, j, the

onsite energy of the Bose-Hubbard Hamiltonian is disordered over the lattice.

The disorder effects the ground state properties of the atomic system. It has

been shown that in presence of disorder, the MI-SF phase transition occurs

through a Bose-glass (BG) phase with no long-range coherence [125, 129].

In this case the MI regions in the phase diagram shrink according to the

amplitude of the disorder ǫ = max |µi|/U (see Fig. 4.2(b)). The BG phase

is an insulating phase with vanishing seperfluidity, but compressible and

gapless which makes it distinguished from the MI and SF.

Disordered potentials for cold atoms can be produced by different ap-
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Figure 4.3: The quasi-periodic lattice potential Vtot(z) = Vmain(z)+Vpert(z)
which includes a main lattice potential Vpert(z) = V0 cos

2(k0z) and a pertur-
bative incommensurate lattice with Vpert(z) = V0

10 cos
2(
√
2k0z) are plotted.

The perturbative potential generates disorder to the main potential.

proaches like speckle patterns [130–132], or bichromatic lattices [45–49]. In

this Chapter we discuss the disorder generated by means of incommensu-

rate bichromatic lattices. In the framework of the interacting Bose-Hubbard

Hamiltonian (4.1) the phase diagrams obtained by the two different kinds of

disorder, i.e., speckle patterns and bichromatic lattices, are qualitatively the

same but quantitatively different [48,49,133]. As shown in Fig. 4.3 by means

of two incommensurate optical lattices in one spatial direction, where one of

them is a main lattice and the other one is a perturbation, a quasi-periodic

bichromatic optical lattice can be generated. The perturbative lattice po-

tential generates an energy offset δµi to every lattice site of the main optical

lattice creating disorder. When the main potential is much deeper than the

perturbative potential, the Wannier functions for such a lattice are well-

approximated by the ones obtained for the main potential [45, 48]. In the

Appendix F we describe how to find the Wannier functions of a periodic

potential Vmain(z) shown in Fig. 4.3, which will be used in the following to

obtain the parameters of the Bose-Hubbard Hamiltonian.

In the rest of this Chapter we derive the effective Hamiltonian which

describes our system dynamics. In particular, we derive the effective Bose-

Hubbard Hamiltonian for ultracold atoms trapped by an optical lattice and
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interacting with the incommensurate potential of a cavity. The cavity po-

tential is generated by the scattering of light by ultracold atoms into the

cavity, and includes the infinitely-ranged cavity potential. We study the BG

phase emerging from a disordered Bose-Hubbard Hamiltonian of our system

which is here due to the cavity backaction.

4.2 Trapped atoms in a cavity: effective dynamics

Following the model introduced in Sec. 1.3, the system we consider is com-

posed by N ultracold identical atoms of mass m which obey Bose-Einstein

statistics. The atoms are tightly confined by a two-dimensional optical lat-

tice of wave number k0 = 2π/λ0, with λ0 the wave length, such that the

typical length scale is d0 = λ0/2. An optical dipole transition of the atoms

is driven by a laser and scatters photons into a mode of a high-finesse res-

onator, according to the geometry shown in Fig. 4.4(a). The resonator field

is a standing wave of wave length λ which is incommensurate with the wave

length λ0 of the external potential confining the atoms. As discussed in the

Chapters 2, 3 when quantum fluctuations can be neglected, i.e., deep in the

MI phase of the external potential, the cavity field is in the vacuum. Kinetic

energy, on the other hand, induces photon scattering into the cavity field,

giving rise to the formation of patterns which maximize scattering into the

cavity mode.

In order to provide an appropriate description we consider the Hamilto-

nian of the system in second quantization, where atomic and field degrees

of freedom are described by operators. We derive an effective Hamiltonian

for the atomic external degrees of freedom, which can be reduced to a Bose-

Hubbard model. This Bose-Hubbard model is the starting point of the nu-

merical investigations in Sec. 4.3.

4.2.1 Coherent dynamics

The atoms are prepared in an electronic ground state which we denote by

|1〉 (see Fig. 4.4(b)). We assume that the atoms are confined on the x − z

plane by an external potential, and motion along the y axis is frozen out.

For an atom at position r = (x, z) the external potential reads

Vcl(r) = V0{cos2(k0z) + β cos2(k0x)} , (4.4)
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(a) (b)

Figure 4.4: (a) Ultracold atoms are tightly confined by an optical lattice
of periodicity λ0/2. They are driven by a weak transverse laser at Rabi
frequency Ω and strongly coupled to the mode of a standing-wave cavity
both at wavelength λ. The level structure of the atoms is shown in panel
(b) where the transition between internal levels |1〉 and |2〉 is driven by the
transverse laser which is close to resonance with the cavity mode, while
the optical lattice field whose depth is determined by an amplitude ηtrap is
close to resonance with the atomic transition |1〉 → |3〉. Since λ and λ0 are
incommensurate, one would expect no coherent scattering into the cavity
mode. The mechanical effects due to multiphoton scattering, however, give
rise to an incommensurate quantum potential, which mediates an effective
long-range interaction between the atoms and modifies the properties of the
quantum ground state. As a result, the intracavity photon number can be
large. The corresponding ground state can show features typical of a BG.
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where V0 is the potential depth along the z direction and βV0 the potential

depth along x. The atoms are at ultralow temperature T and tightly bound

to the potential minima. The quantum gas density also spatially overlaps

with the field of an optical resonator: an atomic dipole transition with ground

state |1〉 and excited state |2〉 at frequency ω0 couples strongly with a cavity

mode at frequency ωc, wave length λ, and wave number k = 2π/λ such that

the wave vector is along the z axis. The intracavity field is pumped by the

photons that the atoms scatter, when these are driven by a transverse laser

at frequency ωL close to ωc such that it has effectively the same wave length

λ as the cavity mode. The setup is shown in Fig. 4.4(a).

The coherent dynamics of the cavity field and the atomic internal and

external degrees of freedom is governed by Hamiltonian Ĥ, which we decom-

pose into the sum of the Hamiltonian for the cavity, the atoms, and their

mutual interaction:

Ĥ = ĤA + ĤC + Ĥint .

The Hamiltonian for the cavity mode reads

ĤC = ~ωcâ
†â , (4.5)

where â and â† are the annihilation and creation operators of a cavity photon,

respectively, and obey the bosonic commutation relation.

The Hamiltonian for the atomic degrees of freedom ĤA (in absence of

the resonator) takes the form

ĤA =
∑

j=1,2

∫
d2rΨ̂†

j(r)Ĥj(r)Ψ̂j(r)

+U12

∫
d2rΨ̂†

1(r)Ψ̂
†
2(r)Ψ̂2(r)Ψ̂1(r) , (4.6)

and is written in terms of the atomic field operator Ψ̂j(r, t), which destroys

an atom in the internal state |j = 1, 2〉 at position r and time t, and obeys

the commutation relations [Ψ̂i(r, t), Ψ̂
†
j(r

′, t)] = δij δ(r − r′). Here,

Ĥj(r) = −~
2∇2

2m
+ V

(j)
cl (r) +

Ujj

2
Ψ̂†

j(r)Ψ̂j(r) + ~ω0δj,2 , (4.7)

where V
(j)
cl (r) is the optical potential of the atoms in state j = 1, 2, which

for the ground state, j = 1, coincides with Vcl(r) in Eq. (4.4), δj,2 is the
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Kronecker delta, and Uj,l is the strength of the contact interaction between

atoms in states j and l, with j, l = 1, 2.

Finally, the Hamiltonian describing the interaction between the atomic

dipoles and the electric fields reads

Ĥint = ~g0

∫
d2r cos (kz)

(
â†Ψ̂†

1(r)Ψ̂2(r) + H.c.
)

+~Ω

∫
d2r cos(k x)

(
Ψ̂†

2(r)Ψ̂1(r)e
−iωLt +H.c.

)
, (4.8)

where g0 is the cavity vacuum Rabi frequency, while the term in the second

line describes the coherent coupling between the dipolar transition and a

standing-wave laser along the x direction with Rabi frequency Ω.

4.2.2 Heisenberg-Langevin equation and weak-excitation limit

Throughout this Chapter we assume that the photon scattering processes

are elastic. This regime is based on assuming that the detuning between

fields and atoms is much larger than the strength with which they are mu-

tually coupled. The large parameter is the detuning ∆a = ωL − ω0 be-

tween the pump and the atomic transition frequency, which is chosen so

that |∆a| ≫ γ, where γ the radiative linewidth of the excited state, and so

that |∆a| ≫ Ω, g0
√
nc, namely, the detuning is much larger than the strength

of the coupling between the ground and excited state, where, nc = 〈â†â〉 is

the intracavity photon number. In this regime the population of the excited

state is neglected.

Photons are elastically scattered into the resonator when the laser is

quasi resonant with the cavity field, which here requires that |∆a| ≫ |δc|
with δc = ωL − ωc. In this limit the field operator Ψ̂2(r, t) is a function of

the cavity field and atomic field operator Ψ̂1(r, t) at the same instant of time

according to the relation [40, 93, 94]

Ψ̂2(r, t) =
g0
∆a

cos(kz)Ψ̂1(r, t) â(t) +
Ω

∆a
cos(k x)Ψ̂1(r, t) , (4.9)

which is here given to lowest order in the expansion in 1/|∆a|, in the rotating

frame of the pump laser. Using Eq. (4.9) in the Heisenberg equation of
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motion for the field operator Ψ̂1(r, t) results in the equation

˙̂
Ψ1 = − i

~
[Ψ̂1, ĤA]

− i
Ω2

∆a
cos2(k x)Ψ̂1 − iU0 cos

2(kz)â†Ψ̂1â

− iS0 cos(kz) cos(k x)
(
â†Ψ̂1 + Ψ̂1â

)
, (4.10)

which determines the dynamics of the system together with the Heisenberg-

Langevin equation for the cavity field:

˙̂a =− κâ+ i(δc − U0Ŷ)â− iS0Ẑ +
√
2κâin , (4.11)

where κ is the cavity linewidth and âin(t) is the cavity input noise operator

described in Sec. 1.2 and satisfies the relation (1.19). The other parameters

are the frequency U0 = g20/∆a, which scales the depth of the intracavity po-

tential generated by a single photon, and the frequency S0 = g0Ω/∆a, which

is the Raman scattering amplitude with which a single photon is scattered

by a single atom between the cavity and the laser mode [134]. Moreover, in

Eq. (4.11) we have introduced the operators

Ẑ =

∫
d2r cos(kz) cos (kx) n̂(r) ,

Ŷ =

∫
d2r cos2(kz) n̂(r) , (4.12)

where

n̂(r) = Ψ̂†
1(r)Ψ̂1(r) (4.13)

is the atomic density. The operators in Eq. (4.12) count the number of

atoms, weighted by the spatial-mode function of the fields and the corre-

sponding intensity. In the limit in which the atoms can be considered point-

like, then n̂(r) ≈ ncl(r) =
∑

j δ(r − rj) and Zcl =
∑

j cos(kzj) cos (kxj),

Ycl =
∑

j cos
2(kzj). Hence, when the atoms are randomly distributed in the

cavity field potential then Zcl → 0, and no photon is elastically scattered

into the cavity mode and the cavity field is in the vacuum. This behavior

can be also found in the situation we consider in this work, where the atoms

are ordered in an array with periodicity which is incommensurate with the

periodicity of the pump and cavity standing wave. The focus of this work is
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to analyze the effect of cavity backaction on this behaviour.

4.2.3 Adiabatic elimination of the cavity field

We now derive an effective Hamiltonian governing the motion of the atoms

inside the resonator by eliminating the cavity degrees of freedom from the

atomic dynamics. This is performed by assuming that the cavity field fol-

lows adiabatically the atomic motion. Formally, this consists in a time-scale

separation. We identify the time-scale ∆t over which the atomic motion does

not significantly evolve while the cavity field has relaxed to a state which

depends on the atomic density at the given interval of time. This requires

that |δc + iκ|∆t ≫ 1 while κBT ≪ ~/∆t, with kB Boltzmann constant [40].

Moreover, the coupling strengths between atoms and fields, which determine

the time-scale of the evolution due to the mechanical effects of the interac-

tion with the light, are much smaller than 1/∆t. In this limit, we identify

the "stationary" cavity field operator âst, which is defined by the equation

∫ t+∆t

t
â(τ)dτ/∆t ≈ âst ,

such that
∫ t+∆t
t

˙̂a(τ)dτ = 0, with ˙̂a given in Eq. (4.11). The "stationary"

cavity field is a function of the atomic operators at the same (coarse-grained)

time, and in particular takes the form

âst =
S0Ẑ

(δc − U0Ŷ) + iκ
+

i
√
2κ ¯̂ain

(δc − U0Ŷ) + iκ
, (4.14)

with ¯̂ain the input noise averaged over ∆t. The quantum noise term (second

term on the RHS of (4.14)) can be neglected when the mean intracavity

photon number is larger than its fluctuations, that corresponds to taking

|S0〈Ẑ〉| ≫ κ. In this limit, similar to the relation (1.21) the field at the

cavity output

âout =
√
2κâst − ¯̂ain , (4.15)

allows one to monitoring the state of the atoms [4, 13]. Using Eq. (4.14) in

place of the field â in Eq. (4.10) leads to an equation of motion for the atomic

field operator which depends solely on the atomic variables [40, 93, 94].
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4.2.4 Effective Bose-Hubbard Hamiltonian

Denoting the number of lattice sites by K, a well-defined thermodynamic

limit is identified assuming the cavity parameters scale with K according to

the relations S0 = s0/
√
K and U0 = u0/K [29, 40]. Under the assumption

that the atoms are tightly bound by the external periodic potential in Eq.

(4.4), we make the single-band approximation and perform the Wannier

decomposition of the atomic field operator,

Ψ̂1(r) =
∑

i,j

wi,j(r)b̂i,j , (4.16)

with the Wannier function wi,j(r) centered at a lattice site with coordinate

(xi, zj) (with xi = id0, zj = jd0 and d0 = λ0/2 the lattice periodicity), while

b̂i,j and b̂†i,j are the bosonic operators annihilating and creating, respectively,

a particle at the corresponding lattice site. The details for evaluation of the

Wannier function is given in Appendix F. The decomposition is performed

starting from the equation of motion of the atomic field operator, obtained

from Eq. (4.10) with the substitution â → âst, Eq. (4.14). The details of

the procedure are similar to the ones reported in Refs. [40, 93, 94], and are

summarized in the following.

We first substitute the cavity field operator (4.14), after neglecting the

quantum noise term, into the equation for the quantum field operator in Eq.

(4.10). Using the Wannier decomposition, we obtain the equations of motion

for operators b̂l,m, that read

˙̂
bl,m =

1

i~
[b̂l,m, Ĥ0 + Ĥp]− iĈl,m , (4.17)

where 1

Ĥ0 =
U

2

∑

i,j

n̂i,j(n̂i,j − 1) + (E0 + V0X0)N̂ + (E1 + V0X1)B̂ , (4.18)

is the Bose-Hubbard Hamiltonian in the absence of the cavity field and of

1Note that the Hamiltonian (4.18) is valid for a symmetric tw-dimensional lattice with
β = 1, and for a one-dimensional lattice, i.e., when β ≫ 1.
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the transverse laser, with

Xs =

∫
d2rwi,j(r)

[
cos2(k0x) + β cos2(k0z)

]
wi′,j′(r) , (4.19)

Es = − ~
2

2m

∫
d2rwi,j(r)∇2wi′,j′(r) , (4.20)

such that for s = 0 then (i, j) = (i′, j′), while for s = 1 then (i′, j′) is a

nearest-neighbour site. The onsite interaction is reduced to

U = U11

∫
d2rwi,j(r)

4 , (4.21)

for which the atoms are in internal ground states. In Eq. (4.18) B̂ =

B̂x + B̂z is the hopping term, where B̂x =
∑

i,j(b̂
†
i+1,j b̂i,j + b̂†i,j b̂i+1,j) de-

scribes tunneling between neighbouring sites of the lattice along x and B̂z =
∑

i,j(b̂
†
i,j+1b̂i,j + b̂†i,j b̂i,j+1) describes tunneling between neighbouring sites of

the lattice along z. Hamiltonian Ĥp contains the terms due to the pumping

laser propagating along the x direction and reads

Ĥp = V1
∑

i,j

J
(i,j)
0 n̂i,j + V1

∑

i,j

J
(i,j)
1 B̂x

i,j , (4.22)

with V1 = ~Ω2/∆a, where

J
(i,j)
0 =

∫
d2rwi,j(r) cos

2(k x)wi,j(r) , (4.23)

J
(i,j)
1 =

∫
d2rwi,j(r) cos

2(k x)wi+1,j(r) , (4.24)

are site-dependent parameters along the x direction, namely, in the direction

of propagation of the transverse field, while it is constant along the z direction

when x is fixed. Finally, operator Ĉl,m in Eq. (4.17) is due to the coupling

with the cavity field and reads

Ĉl,m = S0

(S0Ẑ
D̂†

P̂l,m + P̂l,m
S0Ẑ
D̂

)
+ U0

(
S2
0

Ẑ
D̂†

Q̂l,m
Ẑ
D̂

)
, (4.25)
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where we have introduced operators D̂ = (δc − U0Ŷ) + iκ and

P̂l,m = [b̂l,m, Ẑ]

≈ Z
(l,m)
0,0 b̂l,m + Z

(l,m)
0,1 b̂l,m+1 + Z

(l,m)
1,0 b̂l+1,m

+Z
(l−1,m)
1,0 b̂l−1,m + Z

(l,m−1)
0,1 b̂l,m−1 ,

Q̂l,m = [b̂l,m, Ŷ]
≈ Y

(l,m)
0 b̂l,m + Y

(l,m)
1 b̂l,m+1 + Y

(l,m−1)
1 b̂l,m−1 ,

(4.26)

where

Y
(i,j)
0 =

∫
d2rwi,j(r) cos

2(kz)wi,j(r) ,

Z
(i,j)
0,0 =

∫
d2rwi,j(r) cos(kz) cos(kx)wi,j(r) , (4.27)

are the overlap integrals due to the cavity optical lattice and the mechani-

cal potential associated with the scattering of cavity photons, respectively.

Operator Ĉl,m cannot be generally cast into the form of the commutator be-

tween b̂l,m and a Hermitian operator. However, in the thermodynamic limit

(very large K) the term 1
D̂

in (4.25) commutes with b̂l,m (up to the order of

1/K), and hence âst commutes with b̂l,m when U0/|δc+iκ| is a small number

to allow for an expansion, and one can cast Ĉl,m ≈ [b̂l,m, Ĥ1/~], where

Ĥ1 = ~S2
0Ẑ
( δ̂eff

δ̂2eff + κ2
Ẑ +

U0Ẑ
δ̂2eff + κ2

Ŷ
)
, (4.28)

with δ̂eff = δc − U0Ŷ. Here the Wannier functions are independent of the

cavity mean photon number and therefore the effective Hamiltonian reduces

to Ĥ = Ĥ0+Ĥ1. The effective Hamiltonian Ĥ is reduced to a Bose-Hubbard

Hamiltonian which can be cast into the sum of two terms,

ĤBH = Ĥ0 + Ĥ(1)
BH , (4.29)

where

Ĥ(1)
BH =

∑

i,j

(
δǫ̂i,j n̂i,j + δt̂xi,jB̂

x
i,j + δt̂zi,jB̂

z
i,j

)
, (4.30)

is different from zero when the pump laser is on, Ω > 0. Due to the incom-
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mensurate wavelength of laser and cavity mode with respect to the lattice

spacing, the coefficients of the Hamiltonian Ĥ(1)
BH are site-dependent. The

site-dependent onsite energy reads

δǫ̂i,j =V1J
(i,j)
0 +

~s20

δ̂2eff + κ2
Φ̂
(
δ̂effZ

(i,j)
0,0 + u0Φ̂Y

(i,j)
0

)
, (4.31)

while the site-dependent tunneling terms read

δt̂xi,j = − 2~
s20δ̂eff

δ̂2eff + κ2
Φ̂Z

(i,j)
1,0 − V1J

(i,j)
1 ,

δt̂zi,j =
−~s20

δ̂2eff + κ2
Φ̂
(
2δ̂effZ

(i,j)
0,1 + u0Φ̂Y

(i,j)
1

)
. (4.32)

Note that the collective operator

Φ̂ =
∑

i,j

Z
(i,j)
0,0 n̂i,j/K , (4.33)

appears in the site-dependent parameters which includes a global effect over

the whole lattice. In the regime of the parameters we consider (see Sec. 4.2.5)

for which max |〈δǫ̂i,j〉| ∼ U and |V0| ≫ max |〈δǫ̂i,j〉| (hence the validity of a

single-band approximation) δt̂xi,j and δt̂zi,j are at least 8 order of magnitude

smaller than t(0). Therefore the disorder (site-dependent coefficient) is con-

siderable only in the onsite energy δǫ̂i,j of the Bose-Hubbard Hamiltonian.

Hence the resulting Bose-Hubbard Hamiltonian reads

ĤBH = −
∑

〈i′j′,ij〉
t(0)(b̂†i,j b̂i′,j′ + b̂†i′,j′ b̂i,j) +

U

2

∑

i,j

n̂i,j(n̂i,j − 1) +
∑

i,j

ǫ̂i,jn̂i,j

(4.34)

where the 〈i′j′, ij〉 in the sum denotes the nearest neighbors of the corre-

sponding lattice site. The onsite energy is defined as

ǫ̂i,j = ǫ(0) + δǫ̂i,j , (4.35)

which the sum of a constant term ǫ(0), and of a term which depends on the
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lattice site and is due to the cavity field. In detail, the constant terms read

ǫ(0) = E0 + V0X0 ,

t(0) = −E1 − V0X1 .

The terms with Es and Xs given in Eqs. (4.19) are due to the dynamics

in absence of the cavity field. The first term in the right-hand side (RHS)

of (4.31) is due to the standing wave of the classical transverse pump. The

other terms on the RHS of Eq. (4.31) are due to the cavity field, while

δ̂eff = δc − u0
∑

i,j

Y
(i,j)
0 n̂i,j/K (4.36)

is an operator, whose mean value gives the shift of the cavity resonance due

to the atomic distribution [93, 94]. All these terms are multiplied by the

operator Φ̂ defined in (4.33) which is the sum of the atomic density over the

lattice mediated by the Raman scattering amplitude.

4.2.5 Discussion

The Hamiltonian we have derived reduces, when the pump is off, Ω = 0, to

the typical Bose-Hubbard Hamiltonian. The latter exhibits a SF-MI quan-

tum phase transition which is either controlled by changing the potential

depth V0, and hence the hopping coefficient t, or the onsite interaction

strength U [122, 124]. In this thesis we assume U to be constant so that

t is varied by varying the potential depth V0.

When the transverse laser drives the cavity field by means of elastic scat-

tering processes, the Hamiltonian depends on the nonlocal opeator (4.33),

which originates from the long-range interaction between the atoms medi-

ated by the cavity field. The physical observable which is associated with

this operator is the cavity field amplitude,

âst ≈
S0KΦ̂

δ̂eff + iκ
, (4.37)

as is visible by using Eq. (4.33) in Eq. (4.14), and after discarding the noise

term, assuming this is small. It can be measured by homodyne detection

of the field at the cavity output [135]. The intracavity photon number,
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n̂cav = â†stâst, reads

n̂cav ≈ S2
0K

2

δ̂2eff + κ2
Φ̂2 ≡ K

s20

δ̂2eff + κ2
Φ̂2 , (4.38)

and the intensity of the field at the cavity output provides a measurement

of operator Φ̂2, where the second expression on the RHS uses the chosen

scaling of the cavity parameters with the number of sites. The intracavity

photon number vanishes when the atomic gas forms a MI state: In this case

〈Φ̂2〉MI ∝ (
∑

i,j Z
(i,j)
0,0 )2 = 0, since there is no coherent scattering into the

cavity mode. Also deep in the SF phase 〈Φ̂〉SF → 0.

It is interesting to note that, using definitions (4.33) and (4.36), Hamil-

tonian (4.34) can be cast in the form

ĤBH = −
∑

〈i′j′,ij〉
t (b̂†i,j b̂i′,j′ + b̂†i′,j′ b̂i,j) +

U

2

∑

i,j

n̂i,j(n̂i,j − 1)

+
∑

i,j

ǫ(0)n̂i,j − V1
∑

i,j

J
(i,j)
0 n̂i,j +

~s20δc

δ̂2eff + κ2
KΦ̂2 , (4.39)

where we have neglected the site-dependence of the tunneling parameter,

t ≈ t(0), which is a negligible correction. In this form the Bose-Hubbard

Hamiltonian depends explicitly on the operator corresponding to the num-

ber of intracavity photons, see Eq. (4.38), showing the long-range inter-

acting potential due to the cavity field. This potential either decreases or

increases the total energy depending on the sign of δc: Its sign hence criti-

cally determines whether "disordered" (i.e., aperiodic) density distributions

are energetically favourable. In particular, when δc < 0, disordered density

distribution are expected when the density is not an integer number. The

dependence of the chemical potential on operator Φ̂ is a peculiar property

of our model, that makes it differ from the case of a bichromatic optical

lattice [45,136], in which the strength of the incommensurate potential is an

external parameter, independent of the phase of the ultracold atomic gas.

4.3 Results

The Bose-Hubbard model of Eq. (4.34) is at the basis of the results of this

section. We first consider a one-dimensional lattice along the cavity axis by
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taking the aspect ratio β ≫ 1 in Vcl(r) and briefly discuss the phase diagram

which has been evaluated by means of quantum Monte Carlo simulation by

André Winter [137]. We then analyse the situation where the atoms are

ordered in a two-dimensional optical lattice inside the cavity and determine

the phase diagram by using a mean-field approach. In both cases, the phase

diagram is found by evaluating the ground state |φG〉 of the free-energy, such

that it fulfills the relation

min
{
〈φG|ĤBH − µN̂ |φG〉

}
, (4.40)

where µ is the chemical potential.

In the following the ratio between the typical interparticle distance d0 and

the wave length of the cavity is chosen to be d0/λ = 83/157, which is close

to 1/2. Although this ratio is a rational number, nevertheless, for sufficiently

small system sizes (here between 100 and 300 sites per axis) the emerging

dynamics simulates the incommensurate behaviour. We remark that, for the

chosen number of sites, the number of intracavity photon is zero for pointlike

scatterers when the density is uniform. We refer the reader to Refs. [48,49],

where the phase diagram of bichromatic potentials in systems of finite-size

is discussed.

The parameters for the cavity field, which determine the coefficients of

the Bose-Hubbard Hamiltonian in Eq. (4.34), are extracted from the exper-

imental values g0/2π = 14.1 MHz, κ/2π = 1.3 MHz, and γ/2π = 3 MHz for
87Rb atoms [33, 138]. From these values, after fixing the size of the lattice,

we get u0 and the range of parameters within which we vary the rescaled

pump strength s0. Finally, the onsite interaction in the one-dimensional

case is U/~ ∼ 50 Hz (U11/~ = 6.4 × 10−6 Hzm) and has been taken from

Ref. [139]. For the two-dimensional optical lattice, U/~ varies between 1 and

3 kHz (U11/~ = 5.5 × 10−11 Hzm2), see Ref. [140]. A detailed discussion on

the validity of Eq. (4.34) for this choice of parameters is reported in Sec. 4.4.

4.3.1 One-dimensional lattice

We focus here on atoms confined in the lowest band of a one-dimensional

lattice along the cavity axis. For this geometry the first term of the RHS

of Eq. (4.31) is a constant energy shift along the cavity axis and can be

reabsorbed in the chemical potential. The one-dimensional Hamiltonian can
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Figure 4.5: Mean density n̄ as a function of the chemical µ (in units of U)
at t = 0 in a one-dimensional lattice. The curves have been obtained by a
diagonalization of Hamiltonian (4.41) for (dashed line) δc = 5κ and (solid
line) δc = −5κ, both for K = 100. The diagonalization, is based on the
iterative calculation of the evaluating the value of Φ̂, which has been treated
in a mean-field way, i.e., Φ̂2 ≈ 〈Φ̂2〉 + 2〈Φ̂〉Φ̂. The other parameters are
s0 = 0.006κ (with κ = 2π × 1.3 MHz), u0 = 0.8κ, and U/~ = 50 Hz. Here,
the chemical potential is reported without the constant shift ǫ(0), µ→ µ−ǫ(0).
The dash-dotted line has been evaluated for the same parameters of the solid
line, except with K = 200. It shows that the results remain invariant as the
system size is scaled up.

be thus written as

Ĥ(1D)
BH = −

∑

〈i′,i〉
t (b̂†i b̂i′ + b̂†i′ b̂i) +

U

2

∑

i

n̂i(n̂i − 1)

+(ǫ(0) − V1J0)
∑

i

n̂i +
~s20δc

δ̂2eff + κ2
KΦ̂2 , (4.41)

where i labels the lattice site along the lattice and J0 is the value of integral

(4.23) at the position of one-dimensional lattice. Here, the onsite energy

term depends on the sites only through cavity QED effects.

4.3.1.1 Tunneling coefficient t→ 0

We first analyse the case in which the tunneling t→ 0, where the atoms are

classical pointlike particles localized at the minima of the external potential.

We determine the mean density n̄ =
∑K

i=1〈n̂i〉/K as a function of the chem-

ical potential µ by diagonalizing the Hamiltonian (4.41) setting t = 0. The
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Figure 4.6: Mean density per site, 〈n̂i〉, as a function of the site i for the
two distributions corresponding to δc = −5κ here for µ = 0. The other
parameters are the same as in Fig. 4.5. The filled stripes correspond to
〈n̂i〉 = 1, the white stripes to 〈n̂i〉 = 0.

curves for different parameters are shown in Fig. 4.5. The derivative of the

curve gives the compressibility χ = ∂n̄/∂µ.

The two curves in Fig. 4.5 correspond to two behaviours that are de-

termined by the sign of δc in Eq. (4.41), namely, on whether the laser

frequency is tuned to the red or of the blue of the cavity frequency (the pa-

rameter choice is discussed in Sec. 4.4). When δc > 0, for a finite intracavity

photon number the cavity-induced interaction energy is positive. Hence, the

configurations minimizing the energy are thus the ones with 〈n̂cav〉 = 0, for

which Hamiltonian (4.41) reduces to the Bose-Hubbard model for atoms in

a periodic potential.

For δc < 0, on the other hand, the cavity-induced interaction energy is

negative. In this case it is energetically favourable that the atomic density

organize so to maximize the intracavity field. The interval of values of the

incompressible phase at n̄ = 1 is reduced, while for fractional densities the

compressibility is different from zero and the intracavity field is significantly

different from zero. For incommensurate densities, in particular, the quan-

tum ground state is doubly-degenerate. Figure 4.6 displays the density as a

function of the lattice site for the case δc < 0 and µ = 0, for which n̄ < 1.

Each configuration corresponds to either particle occupation at the lattice

sites with Z
(i,j)
0 > 0 (hence 〈Φ̂〉 > 0) or with Z

(i,j)
0 < 0 (hence 〈Φ̂〉 < 0). The

two configurations correspond to two phases of the cavity field which differ

by π. This behaviour is analogous to the one encountered in selforganization
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of ultracold atoms in optical potentials [32,39]. We remark that, while in the

system of Ref. [39] the atomic patterns are periodic and maximize scattering

into the resonator, here scattering into the cavity is maximized by aperiodic

density distributions.

It is interesting to draw a comparison between the results found in our

model and the curves predicted for a one-dimensional bichromatic lattice

with incommensurate wave lengths [48, 49]. For this purpose we display the

curves of the density as a function of the chemical potential by substituting

the operator Φ̂ with a scalar in Eq. (4.41) taking the value Φ̂ → 1/4. This

choice is made in order to obtain similar curves at commensurate densities

n̄ = 0, 1, 2 for s0 = 0.004κ. Figure 4.7(a) displays the corresponding density

as a function of the chemical potential for different strengths of the cavity

field and δc < 0. For this case we observe that, by increasing s0 in the "clas-

sical model" (where Φ̂ is a scalar) the parameter regions for which the gas is

incompressible rapidly shrink2. This trend is significantly slower for the case

in which cavity backaction is taken into account, as can be observed in Fig.

4.7(b). In addition, when cavity backaction is considered, discontinuities in

the values of the compressibility are encountered and seem to correspond

to the first order phase transition. This behaviour qualitatively differs from

the one encountered in Fig. 4.7(a) in which the cavity backaction is artifi-

cially removed. For the largest value of the laser intensity here considered,

s0 = 0.008κ, the incompressible phases disappear.

4.3.1.2 Phase diagram for t > 0

The results obtained at t > 0 for the one-dimensional lattice are evaluated

using a quantum Monte Carlo (QMC) approach [141–143] by André Winter

[137]. Here, for the sake of completeness, we mention the main QMC results

for a one-dimensional lattice.

In the QMC approach, the phase diagram is extrapolated by tracking

the behavior of the density n̄ versus the chemical potential for different

tunneling values. Figure 4.8(a) displays the resulting phase diagram in the

µ − t parameter plane. The grey regions indicate the MI states at densities

2In Fig. 4.6(a) we do not observe the plateaus with fractional filling, which were instead
found in Roux et al. [48], which is justified since our parameter regime is different from
the one considered in Ref. [48]. We have verified that these plateaus are found in our
model by increasing s0 → 10s0 and U → 100U .
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Figure 4.7: Mean density n̄ as a function of µ (in units of µ for a one-
dimensional lattice of K = 100 sites for t = 0, δc = −5κ, u0 = 0.8κ,
U/~ = 50 Hz (with κ/2π = 1.3 MHz), while the values of s0 are reported
in the legend. The curves in (a) are evaluated by diagonalizing Eq. (4.41)
after setting 〈Φ̂〉 = 1/4 (i.e., by artificially removing cavity backaction). The
curves in (b) are found for the corresponding parameters by diagonalizing
the full quantum model of Eq. (4.41). The other parameters are as described
in Fig. 4.5.
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Figure 4.8: Results of QMC simulations for a one-dimensional lattice (β ≫
1) with 100 sites and periodic boundary conditions. (a) The phase diagram is
obtained by QMC calculation for a one-dimensional lattice with 100 sites for
s0 = 0.004κ. The results are compared with the pure case (dotted curves).
(b) Linear density n̄ and (c) 〈Φ̂〉 as a function of µ for t = 0.053U and
s0/κ = 0.003 (triangles), s0/κ = 0.004 (circles), and s0 = 0 (squares): The
number of photons is different from zero for the parameters corresponding
to the blue regions in (a). The inset of (b) displays the Fourier transform
of the pseudo current-current correlation function J(ω) [141–143] for the
parameters indicated by the arrows in the curve of (b): the extrapolated
value at zero frequency is proportional to the SF density. (d) Local density
distribution 〈n̂i〉 (empty points joined by the blue curve) and local density
fluctuations 〈n̂2i 〉−〈n̂i〉2 (filled points joined by the red curve) as a function of
the site for µ = 0 and s0 = 0.004κ. The other parameters are as in Fig. 4.5.
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n̄ = 1, 2, the blue regions the compressible phase with vanishing SF density,

where the number of intracavity photon is large, while outside these shaded

region the phase is SF. The effect of cavity backaction is evident at low

tunneling, where 〈Φ̂〉 > 0: Here the size of the MI regions is reduced and one

observes a direct transition between MI and BG phase. At larger tunneling a

direct MI-SF transition occurs and the MI-SF phase boundary merges with

the one found for s0 = 0: In fact, for larger quantum fluctuations 〈Φ̂〉 → 0

in the thermodynamic limit. This feature is strikingly different from the

situation in which the incommensurate potential is classical [48, 49]: There,

the MI lobes shrink at all values of t with respect to the pure case. The

SF density is obtained by extrapolating the Fourier transform of the pseudo

current-current correlation function J(ω) [141–143] to zero frequency (see

inset of panel (b)). The atomic density and corresponding value of 〈Φ̂〉 are

displayed in Fig. 4.8(b) and (c) as a function of µ for different values of the

transverse laser intensity (thus s0): The incommensurate potential builds in

the blue region of the diagram, which we label by BG, where the number

of intracavity photons does not vanish. Panel (d) displays the local density

distribution 〈n̂i〉 and the local density fluctuations in the BG region: the

density oscillates in a quasi-periodic way over clusters in which the atoms

scatter in phase into the cavity mode. The fluctuations are larger at the

points where Z
(i)
0 , which oscillates at the cavity mode wave length, becomes

out of phase with the trapping potential. In this way the density distribution

maximizes scattering into the cavity mode. This distribution is reminiscent

of a density-wave 3 [48], which is characterized by zero order parameter and

non-vanishing compressibility. We denote the corresponding region by BG,

which stands for Bose glass, using the terminology applied in Refs. [48,49] to

similar density distributions found in the bichromatic Bose-Hubbard model.

4.3.2 Two-dimensional lattice

We now analyze the phase diagram of a two-dimensional lattice, of which

one axis coincide with the cavity axis while in the perpendicular direction

the atoms are pumped by the standing wave laser which is quasi resonant

with the cavity field. In this situation, hence, the site-dependent term pro-

portional to the laser intensity (V1) in Eq. (4.31) is relevant and significantly

3A density-wave phase is an insulating phase which is gapped in the excitation spec-
trum, that makes it distinguished from a BG phase.
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affects the phase diagram, such that even in the absence of the cavity field,

the effects due to this classical field, with wavelength incommensurate with

the confining optical lattice, modify the properties of the ground state.

Before we discuss the results, some consideration on the parameters is in

order. The size of the lattice is fixed to vary about the value K ∼ 100×100,

then for the parameters we choose the expectation value of operator δ̂eff in

Eq. (4.36) is such that the operator can be approximated by

δ̂eff ∼ −u0
∑

i,j

Y
(i,j)
0 n̂i,j/K .

A check of the parameter shows, moreover, that the effect of the classical

incommensurate potential proportional to V1 dominates over the cavity in-

commensurate field in determining the value of the onsite energy, Eq. (4.31),

whose sign is determined by ∆a.

We first analyse the behaviour of the mean density as a function of the

chemical potential when t → 0 for opposite signs of ∆a, which is found by

diagonalizing the two-dimensional Hamiltonian in Eq (4.39) after setting the

tunneling coefficient t = 0. The corresponding curves are displayed in Fig.

4.9. For the considered set of parameters the appearance of incompressible

phases is observed. To a very good approximation they are in the interval

of values determined by the classical incommensurate potential V1, which

takes either positive or negative values depending on whether ∆a is positive

or negative. For commensurate density n̄ = 1 and ∆a < 0, for instance,

an incompressible phase is found in the interval 0 < µ ≤ µ1 < U , where

µ1 depends on V1. For ∆a > 0, instead, the incompressible phase is in

the interval 0 < µ1 ≤ µ < 1. Different from the one-dimensional case, we

do not observe shrinking on both sides of the incommensurate phase since

for t → 0 the cavity potential is a small correction to the term due to the

classical pump (i.e., for ∆a > 0 in Fig. 4.9 we have δǫi,j > 0, ∀i, j). The

dominant effect of the classical field is also visible when analysing the curve

in the parameter regime where the phase is compressible: The inset shows a

zoom of the curve for ∆a > 0, which exhibits various discontinuities in the

compressibility. The finite compressibility is here due to the classical field.

However, the jump visible for µ′, with 0 < µ′ < 0.5 is due to the cavity

quantum potential. For 0 < µ < µ′, in particular, the intracavity photon

number vanishes.
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Figure 4.9: Mean density n̄ versus µ (in units of U) for a two-dimensional
lattice. The curves are evaluated by a diagonalization of Hamiltonian (4.39)
for t = 0, in the mean-field approximation when Φ̂2 ≈ 〈Φ̂2〉 + 2〈Φ̂〉Φ̂, when
K = 70 × 70 and ∆a < 0 (dashed line), and K = 70 × 70 and ∆a > 0
(solid line). The parameters are |∆a| = 2π× 58GHz, s0 = 0.15κ, δc = −5κ,
u0 = 237κ (κ = 2π×1.3 MHz). Inset: Zoom of the curve at K = 70×70 and
∆a > 0 in the compressible phase. The dashed-dotted line for K = 100×100
and ∆a > 0 shows, when compared with the solid line, that the qualitative
behaviour of the curves remain invariant as the system size is scaled up.
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We now determine the behaviour at finite t for the two-dimensional lattice

taking ∆a > 0 by means of a local mean-field calculation. This is performed

by setting b̂i,j = ψi,j + δb̂i,j where ψi,j = 〈b̂i,j〉 is a scalar giving the local SF

order parameter and δb̂i,j are the fluctuations with zero mean value. The

new form is substituted in Eq. (4.34) and the second order fluctuations of

the hopping term, namely, the terms δb̂i,j δb̂i′,j′ , are discarded [144]. The

resulting Bose-Hubbard Hamiltonian in the mean-field approximation takes

the form Ĥ(MF )
BH =

∑
i,j Ĥi,j, where

Ĥi,j =

{
−tηi,j

(
b̂†i,j −

ψ∗
i,j

2

)
+H.c.

}
+
U

2
n̂i,j(n̂i,j − 1) + ǫ̂i,jn̂i,j , (4.42)

and ηi,j = ψi+1,j +ψi−1,j +ψi,j+1+ψi,j−1 is the sum of the local SF param-

eters of the neighbouring sites. We remark that cavity backaction makes

Hamiltonian Ĥi,j in (4.42) non-local in the density, since it depends on

the collective operator Φ̂ appearing in ǫ̂i,j. The local SF order parame-

ters ψi,j are found by solving the coupled set of self-consistency equations

ψi,j = 〈φ(MF )
G |b̂i,j |φ(MF )

G 〉, where |φ(MF )
G 〉 = ⊗K

j=1|φj〉 is the ground state in

the mean-field approximation, and is thus the direct product of the single-

site states |φj〉. In our numerical implementation the evaluation of ground

state is repeated till the averaged SF order parameter ψ =
∑

i,j ψi,j/K con-

verges up to a tolerance of 0.005. The recursive calculation of the ground

states of the self-consistent Hamiltonian Ĥ(MF )
BH is terminated once the value

of n̄ converges with an accuracy of 2× 10−4.

Figure 4.10 displays the mean density as a function of the chemical poten-

tial for the same parameters of the solid curve in Fig. 4.9 but for t = 0.01U .

The curve has been determined by means of the local mean-field approach.

The zoom on the region of parameters where the compressibility is different

from zero shows that also at finite t the curve is discontinuous. The jumps

indicate the interval of values in which there is an intracavity field (see green

crosses in Figure 4.10). The inset displays the corresponding curve when

the pump is far detuned from the cavity field: the compressibility does not

present jumps in the compressible phase and the mean intracavity field is at

least 3 orders of magnitude smaller.

Figure 4.11(a) displays the mean SF order parameter in the µ − t plane

and for density n̄ ≤ 1. Here, the dotted lines identify the regions where the

order parameter takes values below 0.02. The solid curve indicates where
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Figure 4.10: Mean density n̄ (blue line) and 〈Φ〉 (green line with crosses)
versus µ (in units of U) for a two-dimensional lattice. The curves are evalu-
ated using local mean-field for t = 0.01U and K = 70× 70. The parameters
are ∆a = 2π × 58GHz, s0 = 0.15κ, δc = −5κ, u0 = 237κ (κ = 2π × 1.3
MHz). Inset: Same curves but for δc = −300κ. Note that the maximum
value of 〈Φ〉 is 3 orders of magnitude smaller than for δc = −5κ.

the gap in the spectrum is different from zero, corresponding to vanish-

ing density fluctuations ∆̺ = (n2 − n2)1/2 where n =
∑

i,j〈n̂i,j〉/K and

n2 =
∑

i,j〈n̂2i,j〉/K (the threshold is set at 0.02). For comparison, Fig. 4.11(b)

displays the corresponding diagram when the cavity is pumped far from res-

onance, so that the effect of cavity back action is very small and practically

negligible. We note that the curve delimiting the MI phase has a very similar

behaviour in presence and in absence of cavity backaction, showing that for

the considered parameters the existence of incompressible phases is deter-

mined by the transverse optical lattice. The behaviour of the compressible

phase with vanishing order parameter, which we here denote by BG phase,

varies instead significantly in presence of the cavity potential, as one can

observe by comparing Fig. 4.11(a) and (b). We finally point out the region

delimited by the dashed line, which appears only in the subplot (a): This

indicates the parameters for which the mean value of Φ̂ is at least two orders

of magnitude larger than outside. In this region there is an intracavity field,

which is constructed and supported by the scattering of the atoms.

The typical onsite density encountered in this parameter region, and in

particular for the parameters indicated by the squared point in (a), is shown
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Figure 4.11: (a), (b) Order parameters in µ-t plane (in units of U) obtained
by the mean-field calculation for a 70 × 70 lattice with periodic boundary
conditions. The dotted lines separate the region with vanishing order pa-
rameters, while the solid line identifies the border for the incompressible MI
state at density n̄. The regions with finite compressibility and vanishing
order parameters correspond to BG phases. The dashed line separates the
region where the photon number is 2 order of magnitude larger than outside.
The parameters are s0 = 0.15κ, u0 = 237κ, ∆a = 2π × 58 GHz, whereas (a)
δc = −5κ and (b) δc = −300κ. In the latter case the effect of the cavity
potential is expected to be small. The local densities 〈n̂i,j〉 of the phase
diagram at µ = 0.092U and t = 0.01κ are shown in (c) for δc = −5κ and
n̄ = 0.5 (squared point in (a)) and in (d) for δc = −300κ and n̄ = 0.446
(squared point in (b)).
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in subplot (c). It is first instructive to consider the case without cavity

backaction: the density corresponding to the squared point in (b) is displayed

in subplot (d). Here, one observes dark stripes along the vertical direction at

which the density is minimum. The stripes are almost regularly distributed

and are due to the classical incommensurate potential along the x axis.

When cavity back action becomes relevant, an incommensurate potential also

appears along the z direction. This intracavity potential is associated with

the appearance of clusters within which the density exhibit a checkerboard

distribution, as shown in Fig. 4.11(c). These clusters are the two-dimensional

analogy of the density-wave like behaviour observed in a one-dimensional

lattice [48]: they maximize scattering into the cavity field and their size is

determined by the length due to the beating between the lattice wave length

and the incommensurate cavity potential.

We now analyse the signal at the cavity output which can be observed

as a function of the tunneling coefficient at fixed incommensurate density.

The corresponding intensity is evaluated by calculating nout = 〈â†outâout〉,
where âout is given in Eq. (4.15) where â is a function of the quantum gas,

see Eq. (4.14). The intensity as a function of the tunneling coefficient t

is reported in Fig. 4.12(a): By increasing the trapping potential depth V0

(decreasing the tunneling) a sudden increase of the cavity photon number

is observed. This corresponds to the transition to density distributions ac-

cording to checkerboard clusters, as the subplots (b) and (d) show in detail.

Before this sudden increase the density distribution is almost flat along the

cavity axis: the atoms delocalize over the lattice sites and there is no coherent

scattering of photons into the resonator.

4.4 Experimental Parameters

The Bose-Hubbard Hamiltonian in Eq. (4.34) has been derived by perform-

ing a series of approximations which have been discussed in detail in the

previous section. In this section we show that existing experimental setups,

like the one of Ref. [33,138] can observe the phases predicted by Eq. (4.34).

Moreover, we identify here the parameters which are then used in the nu-

merical plots presented in Sec. 4.3.

The parameters for the cavity field, which determine the coefficients of

the Bose-Hubbard Hamiltonian in Eq. (4.34), are extracted from the exper-
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Figure 4.12: (a) Intensity at the cavity output, nout = 〈â†outâout〉 as a function
of t (in units of U) for the parameters of Fig. 4.11(a) and by fixing n̄ = 0.5.

Here, nout is in units of n
(0)
out = κn

(max)
cav where n

(max)
cav = s20K/(δ̂

2
eff + κ2)

is the maximum number of intracavity photons, obtained when all atoms
scatter in phase into the cavity mode. The curve with circles (right y-axis)
gives the corresponding order parameter. Subplot (b) displays the countour
plot of the local density distributions at point (I) in panel (a), where t =
0.034U , µ = 0.106U , 〈Φ̂〉 = 0.136. Subplot (c) displays the local density
distributions at point (II) in panel (a), where t = 0.039U , µ = 0.122U , while
〈Φ̂〉 ≃ 0. Subplot (d) displays the local density 〈n̂i,j〉 as a function of the
site numbers along z for the lattice site 20 along x. The blue squares (red
circles) correspond to the parameters of panel (b) (panel (c), respectively).
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imental values g0/2π = 14.1 MHz, κ/2π = 1.3 MHz, and γ/2π = 3 MHz

for 87Rb atoms [33,138]. The detuning between atoms and the cavity mode

at wavelength λ = 785 nm is about ∆a/2π = 58 GHz. For these parame-

ters U0/π ≈ 3.4 kHz. The corresponding value of S0 depends on the Rabi

frequency of the transverse laser. For instance, for Ω/2π = 3.08 MHz then

S0/2π = 0.74 kHz. An external optical lattice trapping the atoms such that

the ratio d0/λ ≃ 83/157 is realized can be made by pumping the mode at

wave length 830 nm.

Parameters. We now check that these values are consistent with the

approximations we made in deriving Eq. (4.34). For this purpose we must fix

the number of sites, and thus the number of atomsN , since the total shift and

the total scattering amplitude must be properly rescaled by N . For densities

n̄ = 1 the number of sites is equal to the number of atoms. For a one-

dimensional lattice with K ≃ 300 sites one finds u0/2π = U0K/2π ≈ 1.02

MHz and s0/2π = S0
√
K/2π ≈ 0.013 kHz, or alternatively u0 ≃ 0.8κ and

s0 = 0.01κ. Other values are obtained by accordingly changing the Rabi

frequency Ω. We set |δc| = 5κ and observe that for this value |δc−u0| ≈ |δc|.
We shall now check the order of magnitude of the coefficients of the Bose-

Hubbard model for these parameters. Here, s20K|δc|/(δ2c + κ2) ≃ 0.004κ ≃
2π × 5.75kHz. For these parameters the onsite energy due to the cavity

field exceeds the MI gap when 〈Φ̂2〉 ≥ 10−3. For a two-dimensional lattice

with K = 300× 300 sites then u0 = U0K ≃ 2π× 308.5 MHz or alternatively

u0 = 237κ. For Ω/2π = 2.6 MHz, for instance, then s0 = S0
√
K ≃ 0.15κ and

V1 = Ω2/∆a ≃ 0.78 kHz. For these parameters, typical values of the density

distribution give |δeff | ≃ 88κ ≫ κ, such that s20Kδeff/(δ
2
eff + κ2) ≃ 1.3κ.

Here, already for 〈Φ2〉 ≥ 10−4 cavity backaction has a significant effect.

Spontaneous emission rate. Both in the one-dimensional and two-dimensional

cases, the parameters give a very small occupation of the excited state: The

probability that an atom is excited scales with Pexc ∼ Kmax(g20ncav,Ω
2)/∆2

a,

where ncav is the mean intracavity photon number. For the considered pa-

rameters Pexc . 10−3 ≪ 1. The corresponding spontaneous emission rate

following an excitation due to the cavity field reads γ′c = γg20ncav/∆
2
a ≃

2π × 0.17ncav Hz, while the spontaneous decay rate of an excitation due to

the transverse laser scales with γ′L = γΩ2/∆2
a ≃ 2π × 0.08 Hz.

Adiabatic elimination of the cavity mode. We now check the conditions

for the adiabatic elimination of the cavity mode for a one-dimensional lat-
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tice with 300 sites. The adiabatic elimination of the cavity field from the

atomic equations of motion requires that one neglects the coupling with the

atoms over the time-scale over which the cavity reaches a “stationary” value

which depends on the instantaneous density distribution. This introduces

a time-scale ∆t = 1/|δc + iκ|, for which the following inequalities shall be

fulfilled: S0
√
ncav∆t ≪ 1 and U0ncav∆t ≪ 1. These relations are satisfied

for the typical numbers of intracavity photons we encounter. In addition,

since the atoms must move slowly over this time-scale, their kinetic energy

(temperature) must be such that kBT ≪ ~/∆t, where kB is the Boltzmann

constant. This latter condition is satisfied for atoms at T ≃ 1µK, which is

achieved in Bose-Einstein condensates.

Neglecting quantum noise. Quantum noise in Eq. (4.14) can be neglected

when Ks20〈Φ̂2〉 ≫ κ2, which corresponds to a depth of the lattice created

by photon scattering which is much larger than single photon fluctuations.

For the parameters here discussed one needs a lattice with sites K ≫ 104,

which corresponds to the two-dimensional situation we analyse. The one-

dimensional lattice we numerically consider contains K ≃ 100 sites, however

the scaling of the behaviour with the number of particles show that our pre-

dictions remain valid for larger numbers, where one can discard fluctuations

in the intracavity photon number.

Single-band approximation. In the derivation of the Bose-Hubbard Hamil-

tonian in Eq. (4.34) we have performed an expansion of the field operator

(4.16) into Wannier functions of the lowest band of the external lattice. Dis-

carding the higher bands is correct as the long as the energy gap between

a lowest and a first excited Bloch band ∆E =
√
4ER|V0| is much larger

than the interaction energy Vint, which is here Vint = U +max |δǫi,j | between

the particles [122], where ER = ~
2k20/2m is the recoil energy. Figure 4.13

displays the ratio ∆E/Vint in the limit of zero tunneling t → 0. We have

checked that this ratio remains smaller than unity for the parameters here

chosen. Increasing the laser amplitude Ω, i.e., increasing of s0 (and hence δǫ)

leads to an increase of Vint and thus forces one to take into account higher

Bloch bands.

Finally, at the remaining of this Chapter we discuss the ground state

of the one-dimensional Hamiltonian in (4.41) when the short-range contact

interaction U is absent. We show that for a sufficiently large amplitude of

disorder, a localized state of matter in a cavity can be realized which is an
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Figure 4.13: Ratio between the energy gap between the two Bloch bands,
∆E =

√
4ER|V0|, and the interaction energy, Vint = U + max |δǫi,j |, as a

function of the chemical potential µ (in units of U)and at zero tunneling.
The single-band approximation is valid ∆E/Vint ≫ 1. The green curve with
crosses shows the maximum values of 〈δǫ̂i,j〉 at the corresponding values of
µ/U . The parameters are as same as in Fig. 4.11(a).

analogous to Anderson localization in a disordered systems.

4.5 Anderson glass

Localization of electrons in a disordered potential of a crystal was initially

proposed by Anderson for weakly-interacting bosonic systems [145]. It has

been shown that for a two-dimensional lattice, when the disorder ampli-

tude reaches a critical value, the state of matte localizes in space. After-

wards, a localization of matter for non-interacting bosons in incommensu-

rate bichromatic potentials has been observed experimentally [146–148] in a

one-dimensional tight-binding André-Aubry model [149]. The André-Aubry

model is a single-particle (non-interacting) model which exhibits a local-

ization transition in one dimension. In this Chapter we discuss the one-

dimensional case of the system of ultracold atoms inside a cavity, in which

the short-range s-wave scattering strength Gs is tuned to zero by means of

the Feshbach resonance. Therefore the Hamiltonian (4.41) reduces to

Ĥ =
∑

i

ǫ̂i n̂i − t
∑

〈i,j〉
(b̂†i b̂j +H.c.) . (4.43)
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In Eq. (4.43) as a result of the collective scattering effect, the onsite energy

ǫ̂i depends on the atomic density distribution which differs from the André-

Aubry model. In the André-Aubry model because of the absence of the

onsite interaction, the ground state for a single particle and for N particles

are the same. When the parameters ǫi are density-independent, the Hamilto-

nian is quadratic and can be diagonalized exactly. In the presence of cavity

backaction and for a density-dependent ǫ̂i, here we study the single-atom

case. Similar to the BG phases due to the cavity backaction, the particles

accumulate at lattice sites such that scattering into the cavity is enhanced.

It has been shown that for the one-dimensional André-Aubry model, in

contrary to the random disordered cases, when the disorder amplitude ∆ is

above the critical value, i.e., ∆ > 2t, there is a phase transition from an

extended-state to a localized-state [146–149]. This behaviour is shown in

Fig. 4.14. In presence of the cavity backaction, we observe quite different

behavior for the phase transition. In Fig. 4.15 we show how by increasing the

amplitude of the transverse pump (or s0) we encounter a phase transition

from an extended state to a localized state. In the presence of the cavity

backaction, as the laser amplitude Ω increases, in the vicinity of the critical

value of the transition from extended to localized state, the system encoun-

ters a discontinuity in the disorder amplitude ∆. This is due to the fact

that near the phase transition, photon scattering into the cavity is enhanced

and the cavity backaction is more pronounced, and hence the critical value

for the transition does not exist. This shows the fact that similar to the

Anderson glass in a random disordered potential in one-dimensional lattice,

there is no critical value for extended-localized phases in the presence of the

cavity backaction for quasi-periodic bichromatic lattices.

4.6 Summary and outlook

In this Chapter we have studied the quantum ground state when the cav-

ity mode has wave length which is incommensurate with the interparticle

distance d0 due to the external lattice. Ultracold atoms confined in tight

classical lattices and strongly coupled with a standing-wave cavity mode

selforganize in order to maximize the number of intracavity photons. This

selforganization takes place when the atoms are driven by a transverse laser

field which is quasi-resonant with the cavity mode and whose intensity ex-
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(a)

(b)

Figure 4.14: Anderson localization in absence of cavity backaction. (a) Plot
of local densities 〈n̂i〉 as a function of ∆ = max |δǫi| and position z for a one-
dimensional lattice for 0 ≤ s0 ≤ 0.005κ. (b) Local densities are plotted for a
localized state when ∆ = 2.5t (blue curve) and for an extended state when
∆ = 1.5t (purple curve) on the left y-axis, as well the value of C = cos(kz)
where k = β̃k0 and β̃ =

√
5 − 1 is taken from Ref. [146]. We chose u0 = 0

and Φ̂ = 1. The other parameters are as in Fig. 4.5 for δc = −5κ.
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Figure 4.15: (a) The maximum amplitude of disorder ∆ = max |δǫi| (in
units of t) in the presence of cavity backaction is plotted as a function of the
laser amplitude which is proportional to s0 (in units of κ). The right y-axis
shows the corresponding value of 〈Φ̂〉. The dashed line shows the disorder
amplitude in the absence of backaction when we artificially set u0 = 0 and
〈Φ̂〉 = 1/K. (b) Plot of the local densities as for two values of disorder
amplitude ∆ = 1.74 t (extended state) and ∆ = 4.8 t (localized state) which
is varied for 0 ≤ s0 ≤ 0.085κ. Here k/k0 = 785/830, δc = −5κ and the other
parameters are as in Fig. 4.5.
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ceeds a threshold value. We have shown that the atomic density forms

clusters, within which the atoms form density-waves that locally maximize

scattering into the cavity mode. The clusters have mean size corresponding

with the beating wave length between the two overlapping field and are phase

locked with one another, so that the intracavity field is maximum. These

quantum phases are often characterized by vanishing order parameter and

finite compressibility, so that they share several analogies with a BG phase.

In our theoretical model, the atomic dynamics are described by a Bose-

Hubbard type Hamiltonian, where the effect of the cavity field enters by

means of a non-local term, which depends on the density at all sites. This

term is the cavity-mediated potential, which depends on the atomic distri-

bution and whose sign is determined by the detuning between atoms and

fields, which thus controls whether self-organized structures are energeti-

cally favourable. When the sign of the detuning is appropriately chosen, the

cavity field gives rise to a long-range interaction between the atoms and to

new phases, where the atomic density selforganize in order to maximize the

intracavity photon number. Our calculations show that in absence of short-

range interaction, the ground state of the system has properties similar to

the Anderson glass. Future investigations shall identify the properties of the

light at the cavity output.





5

Concluding remarks

In this thesis we studied CQED effect for ultracold atoms confined by an

optical lattice potential. The atoms are strongly coupled with a single-mode

cavity and driven by a transverse laser. In the MI phase for which the

spatial degrees of freedom for the atoms are frozen, the cavity backaction

is negligible and the atoms are considered as pointlike scatterers. When

the ratio between the cavity mode and optical lattice wavelengths are such

that the von-Laue condition is not fulfilled, the coherent scattering from

the atoms into the cavity is suppressed and photons are pumped into the

cavity only through inelastic scattering processes. In this regime, we studied

the quantum properties of light at the cavity output which can be either

squeezed or antibunched. Moreover we have shown that the cavity mode

and a collective excitation of the atomic array can be entangled at steady

state of the dynamics.

We then considered the case when the atoms can self-organize themselves

due to the cavity backaction. We found quantum ground state properties of

the system when the cavity wavelength is incommensurate with the optical

lattice periodicity. In this case, the ground state is not necessarily MI. We

discussed the resulting phase supported by the cavity backaction on the state

of the matter, which self-organizes the matter in checkerboard clusters. The

formation of these clusters enhance photons scattered by the atoms into

the cavity mode. These ground states lack superfluidity and possess finite

compressibility, typical of a Bose-glass phase. We proposed how to measure

non-destructively these states of the matter emitted outside the cavity.

At the end of this thesis, we provide some general outlooks to the works of

this thesis. An interesting perspective that trapped ultracold atoms inside

a cavity may open is an enhancement of antibunching of light by chang-

101
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ing the geometry of the setup. This may be achieved when the photon

mediated atom-atom interaction is involved, which can be controlled to be

repulsive, in analogy with antibunching realized in strongly interacting Ry-

dberg atoms [150–152]. Another interesting question which one can address

is studying quantum ground state properties of ultracold atoms, when the

atoms are trapped by the cavity potential generated by themselves, as dis-

cussed in Ref. [40] but rather outside MI regions. For a situation in which

the atoms are driven by a laser with a tilded angle with respect to the cav-

ity axis, one can realize a disordered self-induced cavity potential. In this

case, one may expect a new exotic quantum phase, appearing in the phase

diagram, due to the long-range cavity mediated interaction. As a further

outlook, one can investigate whether it is possible to non-destructively mon-

itor Anderson localization of a single atom induced by the cavity backaction

by measuring the light emitted outside the cavity. Moreover, the behaviour

of localized state of matter can be explored when the number of atoms in-

creases, and hence the infinitely-ranged cavity-mediated interaction becomes

more relevant.
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A

Derivation of the effective

Hamiltonian (2.40)

From the general form of the Hamiltonian in Eq. (2.20) for the case in which

there is no coherent scattering (Q′ 6= ±Q), in the weak excitation limit one

can obtain the effective dynamics for the polariton described by γ1. We focus

on the regime in which Ω
√
N ≪ |ωz|. As we are interested in the dynamics

of the mode bQs and of the cavity mode a, the relevant terms determining

their dynamics are given in lowest order by

Heff = Hpump + ~ωQ′b†Q′bQ′ + ~

∑

σ=1,2

ωσγ
†
σγσ +H′

(A.1)
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with

H′ = − ~g

4
√
N

{
b†Q′b

†
Q′

(
b−Qe

iϕ + bQe
−iϕ
)
δQ′,G/2

+2b†Q′

(
b†Qe

iϕ + b†−Qe
−iϕ
)
bQ′

+
(
b†Qb

†
QbQe

iϕ + b†−Qb
†
−Qb−Qe

−iϕ
)

+(1− δk,G/2)
[
2b†Qb

†
−Qb−Q + δQ,±G0/4b

†
−Qb

†
−QbQ

+2δ3Q,Q′b†−Qb
†
Q′bQ + δ−3Q,Q′b†−Qb

†
−QbQ′

+δQ′,Q+G/2b
†
Q′b

†
Q′bQ

]
eiϕ

+(1− δk,G/2)
[
2b†Qb

†
−QbQ + δQ,±G0/4b

†
Qb

†
Qb−Q

+2δ−3Q,Q′b†Qb
†
Q′b−Q + δ3Q,Q′b†Qb

†
QbQ′

++ δQ′,−Q+G/2b
†
Q′b

†
Q′b−Q

]
e−iϕ

}
a

−i
~Ω

2
√
N

e−iφL

{
2b†Q′b

†
QbQ + 2(1− δk,G/2)b

†
−Qb

†
Q′b−Q

+δQ′,G/2b
†
Qb

†
−QbQ′

[
1 + (1− δk,G/2)

]

+(1− δk,G/2)
[
δ3Q,Q′b†Qb

†
Qb−Q + δ−3Q,Q′b†−Qb

†
−QbQ

+δQ′,Q+G/2b
†
Qb

†
QbQ′ + δQ′,−Q+G/2b

†
−Qb

†
−QbQ′

]}

+H.C. .

By substituting bQ′ with its mean value in Eq. (2.39), which corresponds

to neglect the backaction on the mode Q′ due to the nonlinear coupling,

one obtains closed equations of motion for the modes bQs and a (where we

thereby discard the effect of the nonlinear coupling with the other modes,

which are initially empty and which gives rise to higher order corrections).

In this limit the effective Hamiltonian (2.40) for the polariton γ1 is derived

provided that the detuning of the laser from the polariton γ2 is much larger

than the strength of the nonlinear coupling with polariton γ1.



B

Positivity

For bipartite systems, a density matrix ρ is separable if there exist pi ≥ 0

such that

ρ =
∑

i

pi ρ
(A)
i ⊗ ρ

(B)
i (B.1)

with
∑

i pi = 1 where ρ
(A)
i and ρ

(B)
i are density matrices of subsystems A and

B, respectively. ρ is entangled if it cannot be written as a convex sum in the

form of (B.1). Peres [153] and Horodeckis [154] showed that for 2 × 2 (two

qubits) and 2×3 (one qubit and one qutrit) systems the positive partial trans-

position is a necessary and sufficient criterion for separability. The partial

transpose of a general bipartite density matrix ρ =
∑

i,j,k,lw
kl
ij |i〉A〈j|⊗|k〉B〈l|

with respect to the subsystem A is defined by

ρTA =
∑

i,j,k,l

wkl
ij

(
|i〉A〈j|

)T
⊗ |k〉B〈l| =

∑

i,j,k,l

wkl
ij |j∗〉A〈i∗| ⊗ |k〉B〈l| , (B.2)

where here wkl
ij ’s are not necessarily non-negative and

∑
i,k w

kk
ii = 1. This

concept has been used by Vidal and Werner for introducing the logarithmic

negativity [114].
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C

Gaussian dynamics

When the four-wave mixing term in the Hamiltonian (3.7) is negligible (χ =

0), then the the effective Hamiltonian is quadratic, and the corresponding

dynamics is Gaussian. Hence, complete informations about the system are

contained in the equations for the averages and for the correlations of the

field operators. We introduce the vector of operators a =
(
a, bQ, a

†, b†Q

)T
,

and the correlation matrix A =
〈
aaT

〉
whose elements are Aj,k = 〈ajak〉,

then the corresponding equations take the form

〈ȧ〉 = Z 〈a〉 ,
Ȧ = ZA+AZT +N , (C.1)

where

Z = −i




δc − iκ αBS 0 αQ,a

αBS δb − iΓ αQ,a 2αQ

0 −αQ,a −δc − iκ −αBS

−αQ,a −2αQ −αBS −δb − iΓ




(C.2)

and

N =




0 0 2κ 0

0 0 0 2Γ

0 0 0 0

0 0 0 0



. (C.3)

If the initial state is Gaussian, then these equations fully describe the system

dynamics and are equivalent to the master equation in Eq. (3.10) when χ = 0.

The normal modes of the systems are defined by the eigenvectors of the

matrix Z
∣∣∣
κ=0,Γ=0

at zero dissipation rates. The corresponding eigenvalues
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are

λ1± = ∓i

√
X +

√
Y ,

λ2± = ∓i

√
X −

√
Y , (C.4)

with

X =
δ2c + δ2b

2
+ α2

BS − α2
Q,a − 2α2

Q , (C.5)

Y = 4

[(
α2
Q +

δ2c − δ2b
4

)2

− 2αBSαQ,aαQδc

+α2
Q,a

(
α2
Q − (δc − δb)

2

4

)
− α2

BS

(
α2
Q − (δc + δb)

2

4

)]
.

It is possible to distinguish two regimes in the dynamics of the system:

If the eigenvalues of are imaginary then the populations of the two modes

oscillate, in time, and remain finite. If on the other hand, the eigenvalues

have a finite real part, then the population of the two modes explode with

time. Moreover, if initially 〈a〉j = 0 ∀j, then it remains zero at all times;

if, on the other hand, initially the field is not zero than it is amplified with

time when the eigenvalues have a finite real part.

In our system the energies δc and δb are the largest parameters; in par-

ticular they have opposite sign and similar amplitude, hence X > 0. Under

these conditions, the eigenvalues have a finite real part when Y < 0.

If we introduce the detunings sum and difference d± = δb ± δc then, at

lowest relevant order in 1/d−, we find

λ1± = ∓ i

2

[
d− +

√
d2+ − 4α2

Q,a

]
+O (1/d−) ,

λ2± = ∓ i

2

[
d− −

√
d2+ − 4α2

Q,a

]
+O (1/d−) , (C.6)

and the eigenvalues have a finite real part when |δb + δc| < 2 |αQ,a|. In

particular this is true when the two-mode squeezing term of the Hamiltonian

is resonant.



D

Covariance matrix and

logarithmic negativity

The logarithmic negativity EN in (3.4) can be expressed in terms of the

covariance matrix of the system [113], C =
[〈
xxT

〉
+
〈
xxT

〉T ]
/2−〈x〉 〈x〉T ,

where x is the vector of quadrature operators, which in our case is given by

x = (xa, pa, xb, bb)
T = Π a with a introduced in App. C, and

Π =




1 0 1 0

−i 0 i 0

0 1 0 1

0 −i 0 i




(D.1)

In the case of Gaussian states,

C = Π
A+AT

2
ΠT −Π 〈a〉 〈a〉T ΠT. (D.2)

The logarithmic negativity for bipartite Gaussian states is then defined as

EN = max{0,− log2(ν−)} (D.3)

where ν− is the smallest symplectic eigenvalue of the partially transposed

covariance matrix C̃ = T CT . Here the matrix

T =




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1



. (D.4)
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performs the partial transposition. The system is entangled when EN is

non-zero (ν− < 1).

The expression in Eq. (D.3) has been applied to the the covariance matrix

of the system, which has been computed using the solution of Eq. (C.1), in

order to compute the logarithmic negativity for the results in which we have

neglected the non-quadratic term of Eq. (3.7).



E

Two-mode squeezing spectrum

of the emitted field

The field emitted by the cavity and scattered by the atoms can be described

using the input-output formalism [13] which connect the output field to the

system and input noise operators

aout(t) =
√
2κa(t)− ain(t),

bout(t) =
√
2Γ bQ(t)− bin(t), (E.1)

where the input field operators ain and bin are decorrelated from each other,

have zero average values and the only non zero correlations are
〈
ain(t), a

†
in(t

′)
〉
=

〈
bin(t), b

†
in(t

′)
〉

= δ(t − t′). The system operators satisfy the quantum

Langevin equations ȧ(t) = Z a(t) +Qain(t), where we have introduced the

vectors of operators aout(t) =
(
aout(t), bout(t), a

†
out(t), b

†
out(t)

)T
and similar

for the input noise, and where Z is defined in Eq. (C.2) and Q is a diagonal

matrix whose diagonal elements are
(√

2κ,
√
2Γ,

√
2κ,

√
2Γ
)
.

E.1 Spectral properties of the emitted field

In Fourier space defined by a(ω) =
(
a(ω), b(ω), a†(ω), b†(ω)

)T
= 1√

2π

∫
dteiωta(t)

and similar for the input and output operators, the input operators satisfy〈
ain(ω), a

†
in(ω

′)
〉
=
〈
bin(ω), b

†
in(ω

′)
〉
= δ(ω + ω′) and

aout(ω) = Qa(ω)− ain(ω), (E.2)

−iω a(ω) = Z a(ω) +Qain(ω). (E.3)
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Form these equations we find aout(ω) = −W(ω)ain(ω), with

W(ω) = Q (Z + iω)−1 Q+ 1. (E.4)

Therefore the spectrum of the correlation matrix of the output field, whose

elements are Aj,k(ω, ω
′) =

〈
aoutj (ω)aoutk (ω′)

〉
, is

A(ω, ω′) =
〈
aout(ω)aout(ω′)T

〉
= δ(ω + ω′)A0(ω) (E.5)

where

A0(ω) = W(ω)GWT (−ω) (E.6)

with

G =

(
0 1

0 0

)
. (E.7)

We are interested in the correlations between different spectral compo-

nents of the output field. We consider two modes of the output field at

frequency ωa and ωb, such that the first corresponds to one mode coupled

to the cavity and the other to one coupled to the atoms. The correspond-

ing annihilation and creation operators are aout(ωa), a
†
out(−ωa) and bout(ωb),

b†out(−ωb). We define the vector of operators

c(ωa, ωb) =
(
aout(ωa), bout(ωb), a

†
out(−ωa), b

†
out(−ωb)

)T
,

and the vectors Ω = (ωa, ωb,−ωa,−ωb) and Ω′ = (ω′
a, ω

′
b,−ω′

a,−ω′
b), then

the corresponding correlation matrix can be written in terms of Eq. (E.5) as

Cj,k
[
Ω,Ω′] =

〈
cj(ωa, ωb)ck(ω

′
a, ω

′
b)
〉
= δ(Ωj +Ω′

k)A0j,k(Ωj).

(E.8)

This matrix can be used to determine the entanglement between the two

modes, by calculating, for example, the logarithmic negativity (See. App. D).
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It can be also used to determine the variance of a composite quadrature

X(θa,θb)(ωa, ωb) =
1√
2

[
aout(ωa)e

iθa + a†out(−ωa)e
−iθa

+ bout(ωb)e
iθb + a†out(−ωb)e

−iθb
]

≡ uT (θa, θb) c(ωa, ωb) (E.9)

with u(θa, θb) = 1√
2

(
eiθa , eiθb , e−iθa , e−iθb

)T
. Therefore, the corresponding

variance is

∆X(θa,θb)(ωa, ωb, ω
′
a, ω

′
b) =

〈
Xθa,θb(ωa, ωb)X

θa,θb(ω′
a, ω

′
b)
〉

−
〈
Xθa,θb(ωa, ωb)

〉2
. (E.10)

In the case in which the average of the quadrature is zero
〈
Xθa,θb(ωa, ωb)

〉
=

0, which is the relevant case for our work, we find

∆X(θa,θb)(ωa, ωb, ω
′
a, ω

′
b) = uT (θa, θb)C(Ω,Ω′)u(θa, θb) . (E.11)

E.2 Measurement of the squeezing spectrum

The spectral properties of the emitted field can be measured by homodyne

detection with two local oscillator, at frequencies ωLOa and ωLOb respectively,

used to independently homodyne-detect the field lost by the cavity and the

field scattered by the atoms in a set-up similar to the one discussed in [18,19].

By this means it is possible to measure the composite quadrature

X̃(θa,θb)(ω) =
1− δω,0√

2

[
X(θa,θb)(ω +∆a, ω +∆b)

+X(θa,θb)(−ω +∆a,−ω +∆b)
]

+δω,0X
(θa,θb)(∆a,∆b) (E.12)

where ∆a = ωLOa − ωp and ∆b = ωLOb − ωp indicate the frequencies of the

local oscillators relative to the driving laser frequency. The corresponding
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variance can be expressed in terms of the correlation matrix

C̃(∆a,∆b)(ω, ω′) =
1− δω,0

2
×

{
C
[
Ω∆(ω),Ω∆(ω

′)
]
+ C

[
Ω∆(−ω),Ω∆(ω

′)
]

+C
[
Ω∆(ω),Ω∆(−ω′)

]
+ C

[
Ω∆(−ω),Ω∆(−ω′)

] }

+δω,0 C [Ω∆(0),Ω∆(0)]

(E.13)

where we have introduced the vector function

Ω∆(ω) = (ω +∆a, ω +∆b,−ω −∆a,−ω −∆b) ,

and C [Ω∆(ω),Ω∆(ω
′)] is defined in Eq. (E.8). Hence the variance takes the

form

∆̃X
(θa,θb)

(ω, ω′) = uT (θa, θb)C̃(∆a,∆b)(ω, ω′)u(θa, θb) . (E.14)

The corresponding spectral density, i.e. the two-mode squeezing spec-

trum, is obtained by integrating Eq. (E.14) over a small range of frequency

ω′ around −ω

S(θa, θb, ω) = lim
δω→0

∫ −ω+δω/2

−ω−δω/2
dω′ ∆̃X

(θa,θb)
(ω, ω′) .

(E.15)

If we introduce the quantities

Sj,k(ω) = uj(θa, θb)A0j,k(ω)uk(θa, θb) (E.16)

with A0(ω) defined in Eq. (E.6), then

S(θa, θb, ω) =
1

2

[
S̃(ω) + S̃(−ω)

]
(E.17)
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where

S̃(ω) = S1,3(ω +∆a) + S3,1(−ω −∆a)

+S2,4(ω +∆b) + S4,2(−ω −∆b)

+δ∆a,−∆b
[S1,2(ω +∆a) + S3,4(−ω −∆a)

+S2,1(ω +∆b) + S4,3(−ω −∆b)]

+δ∆a,0 [S1,1(ω +∆a) + S3,3(−ω −∆a)]

+δ∆b,0 [S2,2(ω +∆b) + S4,4(−ω −∆b)]

+δ∆a,∆b
[S1,4(ω +∆a) + S3,2(−ω −∆a)

+ S2,3(ω +∆b) + S4,1(−ω −∆b)] .

In the case in which only a fraction of the emitted field is detected, with

a detection efficiencies ηa and ηb ∈ [0, 1] for the measurement of the field

lost by the cavity and the field emitted by the spins respectively, then the

Eqs. (E.2) and (E.3) become

aoutd (ω) = Q′ a(ω)− aind (ω), (E.18)

−iω a(ω) = Z a(ω) +Q′ aind (ω) +Q′′ ainnd(ω), (E.19)

where the labels d and nd indicate the external modes which are detected

and that which are not detected respectively. The matrix Q′ is diagonal

and its diagonal elements are
(√

2ηaκ,
√
2ηbΓ,

√
2ηaκ,

√
2ηbΓ

)
, and Q′′ =√

Q2 −Q′2. In this way aoutd (ω) = −W ′(ω)aind (ω)−W ′′(ω)ainnd(ω), with

W ′(ω) = Q′ (Z + iω)−1Q′ + 1 ,
W ′′(ω) = Q′ (Z + iω)−1Q′′ , (E.20)

and correspondingly Eq. (E.6) becomes

A0(ω) = W ′(ω)GW ′T (−ω) +W ′′(ω)GW ′′T (−ω) , (E.21)

where we have used the fact that the modes aind (ω) and ainnd(ω) are decorre-

lated.



F

Wannier function for a periodic

potential

Here we discuss a derivation of a localized Wannier function for a single atom

in a periodic optical lattice potential.

According to the Bloch’s theorem [5,155] the eigenstates of a single par-

ticle Hamiltonian

Ĥ1 =
p̂2

2m
+ V (z) (F.1)

with a mass m confined in a periodic one-dimensional trapping potential

V (z) = V0 cos
2(k0z), can be described by a plane-wave times a function

which has a periodicity of the lattice, i.e.,

ψn,q(z) = eiqzun,q(z) (F.2)

where un,q(z) = un,q(z + R) for a Bravais lattice vector R = ni
π
k0

(ni ∈ Z)

and a Bloch band n. Hence we get

ψn,q(z +R) = eiqRψn,q(z) . (F.3)

On the other hand the boundary condition ψn,q(z +R) = ψn,q(z) (so-called

Born-von Karman boundary condition) allows the certain values for q such

that

eiqR = 1 −→ q =
mi

ni
k0 (F.4)

for mi ∈ Z. The solution of the Schrödinger equation Ĥ1φn(z) = Enφn(z)
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is the set of all plane-waves which satisfy Eq. (F.4) and has the form

φn(z) =
∑

q

φn,q(z) =
∑

q

cn,q e
iqz (F.5)

in which cn,q’s form orthonormal bases. An equivalent set of functions are

Wannier functions

wn(z −R) =
1√
K

∑

q∈BZ

φn,q(z) e
iqR (F.6)

defined at a lattice position R for a Bloch band n. The Wannier functions in

(F.6) are the discrete Fourier transform of the Bloch functions. The sum in

(F.6) is taken over the first Brillouin zone (BZ) which contains the values of

the quasi-momentum q ∈ [−G0

2 ,
G0

2 ) for a primitive reciprocal lattice vector

G0 = 2π/d where d = π/k0 is a lattice constant, and K is the number of

primitive cells in the lattice. The localized Wannier functions wn(z −R) in

(F.6) at different lattice site position R are equivalent.

To obtain the Bloch functions φn,q one can evaluate the coefficients cn,q

in the following way. Consider the Schrödinger equation of motion

(
− ~

2

2m
∇2

z + V (z)

)
φn(z) = Eφn(z) . (F.7)

Substituting φn(z) of (F.5) in Eq. (F.7) and expanding the potential in re-

ciprocal space as

V (z) =
∑

G

VG e
iGz (F.8)

for a reciprocal lattice vector G = nG0, we get the central equation relation

(
~
2

2m
q2 − En

)
cn,q +

∑

G

VG cn,q−G = 0 (F.9)

where

VG =
1

d

∫ d/2

−d/2
dzV (z)e−iGz (F.10)

and VG = V−G. Hence, for Eq. (F.9) one obtains the eigenenergies En
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corresponding to the eigenvectors

cn =




cn,q−NG0

...

cn,q
...

cn,q+NG0




. (F.11)

Due to the fact that in this thesis, we work in the energy-scale well-below

the energy gap between the first and the second Bloch bands, we focus on

the Wannier function of the first Bloch band, that is when n = 1, and we

show that this assumption is consistent in the purpose of our studies.
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