Neue Arten von Alumosiloxanen durch Reaktion der bicyclischen Verbindung Al₂[(OSiPh₂)₂O]₃ - 2 O(C₂H₅)₂ mit Wasser in Gegenwart von Donor-Liganden

Dissertation

Zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich - Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes

vorgelegt von

Fadime Şahin

Saarbrücken, 2014

Tag des Kolloquiums: 16. April 2014

Dekan:	Prof. Dr. Volkhard Helms
Berichterstatter:	Prof. Dr. Dr. h. c. Michael Veith
	Prof. Dr. Kaspar Hegetschweiler
Vorsitz:	Prof. Dr. Uli Kazmaier
Akad. Mitarbeiter:	PD Dr. Ralf Kautenburger

Meiner Familie

Meinem verehrten Lehrer, Herrn **Prof. Dr. Dr. h.c. Veith** gilt mein besonderer Dank für die interessante Themenstellung, für seine Geduld, für die stete Diskussionsbereitschaft, seinem Vertrauen und die wissenschaftliche Freiheit, sowie für die wertvollen Ratschläge, die zum Gelingen der vorliegenden Arbeit beigetragen haben. An dieser Stelle möchte ich mich recht herzlich bei allen Mitarbeitern des Instituts für Anorganische und Allgemeine Chemie (i. bes. Arbeitskreis von Herrn Prof. M. Veith) für ihre Unterstützung, die auf verschiedene Art und Weise zum Gelingen dieser Arbeit beigetragen haben, bedanken.

Herrn Dr. Andreas Rammo danke ich für seine Betreuung, den interessanten Fachdiskussionen, seine steten hilfreichen Ratschläge und seiner fachlichen Kompetenz, sowie für das aufmerksame und kritische Korrekturlesen dieser Arbeit, die bedeutend für den Erfolg dieser Arbeit waren.

Herrn Dr. Volker Huch möchte ich für das Messen der Röntgenstrukturanalysen, seiner allgemeinen Hilfsbereitschaft und Geduld, sowie für das geduldige und gewissenhafte Korrekturlesen herzlich danken.

Herrn Dr. Michael Zimmer danke ich für die Aufnahme von NMR-Messungen und seiner Hilfe bei der Interpretation der NMR-Spektren. Ebenso bedanke ich mich bei Herrn Armin Kempf für seine Hilfsbereitschaft bei den NMR-Messungen.

Herrn Dr. Peter König möchte ich für seine Aufmunterungen und das aufmerksame und gewissenhafte Korrekturlesen bedanken.

Frau Iris Wahlster (Sekretariat), Herrn Günther Müller und Frau Eveline Altmeyer (Chemikalienausgabe), Herrn Hermann Recktenwald und Frau Silvia Beetz (Werkstatt), Herrn Hans Conrad und Herrn Günter Berlin (Glasbläserwerkstatt), Frau Susanne Harling und Frau Helga Feuerhake (Durchführung der CHN-Analysen) sowie Herrn Andreas Adolf und Herrn Mathias Gasthauer danke ich für ihre ständige Hilfsbereitschaft.

Frau Dr. Tatjana Kirs, Herrn Dr. David Kolano, Herrn Dr. Omid Yazdani und Frau Dipl. Lebensmittelchem. Dorothea Loytved danke ich für ihre zahlreichen Hilfestellungen und das sehr angenehme Zusammenarbeiten, sowie wertvollen Hinweise und zahlreichen Anregungen.

Meinen ehemaligen Laborkollegen Herrn Dr. Carsten Bubel, Herrn Dr. Michael Bender, Frau Dipl. Chem. Sandra Nadig und Frau Dr. Celine Belot danke ich ganz herzlich für das angenehme und freundliche Arbeitsklima.

Ich möchte mich auch bei allen Mitarbeitern des Arbeitskreises Veith bedanken, die mir mit Rat und Tat hilfreich zur Seite standen und für das sehr gute Arbeitsklima sorgten.

Ich möchte mich ebenso bei der CVD/Biooberflächengruppe des Leibniz-Instituts für Neue Materialien unter Leitung von Herrn Dr. Cenk Aktaş in Saarbrücken für ihre Aufmunterungen und Unterstützungen während dem Verfassen der vorliegenden Arbeit bedanken.

Zum Schluss möchte ich meinen herzlichsten Dank meinen lieben Eltern und meiner Familie aussprechen, die immer an mich geglaubt und unermüdlich auf meinem Lebensweg bis hierher unterstützt haben. Ein besonderer Dank geht an meine Schwester Hüsne Şahin... Meinen Freunden, im Besonderen Ayşegül Doğan, danke ich dafür, dass sie immer hinter mir standen und mich in dieser Zeit aufgemuntert haben.

Vor allem aber danke ich recht herzlich meinem Ehemann Lütfi Ayçin für seine Liebe, Geduld und Unterstützung, was mit zum Gelingen dieser Arbeit führte.

Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Untersuchung und der Modifikation der bicyclischen Verbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \mathbf{3}$ durch verschiedene Lewis-Basen. In Abwesenheit von Wasser führen Reaktionen mit Lewis-Basen zu Verbindungen, die die ursprüngliche Gerüststruktur der Verbindung <u>3</u> beibehalten. Bei Umsetzungen von 3 mit Donor-Lösungsmitteln in Gegenwart von Wasser können selektive Synthesen von neuen Arten von Alumosiloxanen erhalten werden. So führt eine Reaktion mit THF zu dem polycyclischen Addukt [(Ph₂SiO)₈(AlO_{1.5})₄] · 2 THF <u>11</u>, mit Aceton wird das polycyclische Alumosiloxan [(Ph₂SiO)₈(AlO(OH))₄] · 4 OC(CH₃)₂ 10 isoliert. Reaktionen der Verbindung 3 mit Aminen führen zu Verbindungen mit spirocyclischen Grundgerüsten. Je nach Basizität und sterischer Raumbeanspruchung der Amine können Ringgrößen von sechs- bis zwölfgliedrigen Ringen erhalten werden. Temperaturunterschiede während des Reaktionsführung haben ebenso einen Einfluss auf die Ringgrößen der Produkte. So führt beispielsweise die Reaktion mit Triethylamin bei mittleren Temperaturen zu der dispirocyclischen Verbindung [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N(CH₂CH₃)₃]₂ **6**, unter Rückfluss reagiert die bicyclische Verbindung 3 mit Triethylamin zu der spirocyclischen Verbindung [(Ph_2SiO)₂O]Al[(Ph_2SiO)₂OH · N(CH_2CH_3)₃] <u>7</u>. Die Charakterisierung der erhaltenen Produkte erfolgt Anhand verschiedener Analysemethoden (XRD, NMR, IR, Elementaranalysen).

Summary

The subject of this work is the study and modification of the bicyclic compound $Al_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \ 3$ by various lewis-acids. The reactions of the bicyclic compound $\underline{3}$ with lewis acids lead in absence of water to compounds in which the skeletal structure of $\underline{3}$ is retained. The selective synthesis of new types of alumosiloxanes can be achieved by the reaction of $\underline{3}$ with water in donor solvents. The reaction with THF leads to the polycyclic THF adduct $[(Ph_2SiO)_8(AIO_{1,5})_4] \cdot 2$ THF $\underline{11}$, with acetone the polycyclic alumosiloxane $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2$ $\underline{10}$ is isolated. Compound $\underline{3}$ reacts of with amines to compounds with spirocyclic skeletal structure. In dependence of the base strength and the different sterics of the

amines it is possible to get compounds with different chain sizes, which differ from six-membered to twelve-membered chain compounds. Different temperatures during the reaction have also an influence on the chain sizes of the products. The reaction with triethylamine at medium temperatures lead to the dispiro compound $[(Ph_2SiO)_2O]_2[AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]]_2 \mathbf{6}$. At higher temperatures under reflux with triethylamine to the spirocyclic compound 3 reacts compound $[(Ph_2SiO)_2O]AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]$ 7. The characterization of the formed products were done by various analytic methods (XRD, NMR, IR, elemental analysis).

Abkürzungsverzeichnis

Å	Ångström	Me	Methyl
		mg	Milligramm
Abb	Abbildung	MHz	Megahertz
AI	Aluminium	ml	Milliliter
Äq.	Äquivalent	mmol	Millimol
ber.	berechnet	NMR	Nuclear Magnetic Resonance
Bu	Butanol	p-	para
bzw.	beziehungsweise	PA	Protonenaffinität
cm	Zentimeter	Ph	Phenyl
d	Dublett	ppm	parts per million
d. Th.	der Theorie	Pr	Propanol
EDX	Energie Dispersive	Ру	Pyridin
Röntg	enspektroskopie	R	organischer Rest
Et	Ethyl	RT	Raumtemperatur
g	Gramm	S	Singulett
gef	gefunden	S.	siehe
gem	gemessen	Si	Silicium
Glg	Gleichung	t	Triplett
h	Stunden	Tab.	Tabelle
IR	Infrarot	<i>t</i> Bu	<i>tert</i> -Butyl
K	Kelvin	tert	tertiär
KBr	Kaliumbromid	THF	Tetrahydrofuran
kJ	Kilojoule	vgl.	vergleiche
m	Multiplett	z.B.	zum Beispiel
m-	meta		
Μ	Metall	°C Gra	ad Celsius

Verbindungsverzeichnis

Verbindung <u>1</u>: $(Ph_2SiO)_8[AIO(OH)]_4 \cdot 4 O(CH_2CH_3)_2$ Verbindung <u>2</u>: $(Ph_2Si(OH))_2O$ Verbindung <u>3</u>: $AI_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2$ Verbindung <u>4</u>: $AI_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_3$ Verbindung <u>5</u>: $AI_2[(OSiPh_2)_2O]_3 \cdot 2 C_5H_5N$ Verbindung <u>6</u>: $[(Ph_2SiO)_2O]_2\{AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]\}_2$ Verbindung <u>7</u>: $[(Ph_2SiO)_2O]_2\{AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]$ Verbindung <u>8</u>: $[(Ph_2SiO)_2O]_2\{AI[(Ph_2SiO)_2OH \cdot N((CH_2)_2)_3N]\}_2$ Verbindung <u>9</u>: $[(Ph_2SiOH)_2O]_2\{AI[(Ph_2SiO)_2OH \cdot N((CH_2)_2)_3N]\}_2$ Verbindung <u>10</u>: $[(Ph_2SiOH)_2O]_2AI_2O[(Ph_2SiO)_2O] \cdot 2 HN(CH_2CH_3)_2$ Verbindung <u>10</u>: $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2$

Inhaltsverzeichnis

1. Einleitung Alumosiloxane, Alumosilicate und Silicone	1
2. Aufgabenstellung und Ziel der Arbeit	21
3. Diskussion und Ergebnisse	22
3.1 Reaktionsverhalten der Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> mit Lewis- mit Donor-Lösungsmitteln	Basen bzw. 22
3 1 1 Reaktionsverhalten der Verbindung Al-[(OSiPh_)_O], + 2 O(CH_CH_), 3 mit den l	ewis-
Basen Triethylamin und Pyridin	
3.1.1.1 Synthese von Al ₂ [(OSiPh ₂) ₂ O] ₃ · 2 N(CH ₂ CH ₃) ₃ 4	
3.1.1.2 Einkristallstrukturanalyse und Kristalldaten von Al ₂ [(OSiPh ₂) ₂ O] ₃ · 2 N(CH ₂ CH ₃) ₃ 4	
3.1.1.3 Beschreibung und Diskussion der Molekülstruktur von Al ₂ [(OSiPh ₂) ₂ O] ₃ · 2 N(CH ₂ (CH ₃) ₃ 4 32
3.1.1.4 Synthese von Al ₂ [(OSiPh ₂) ₂ O] ₃ · 2 NC ₅ H ₅ 5	
3.1.1.5 Einkristallstrukturanalyse und Kristalldaten von Al ₂ [(OSiPh ₂) ₂ O] ₃ · 2 NC ₅ H ₅ 5	40
3.1.1.6 Beschreibung und Diskussion der Molekülstruktur von $Al_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5$	<u>5</u> 43
3.2 Reaktionsverhalten der Verbindung Al ₂ [(OSiPh ₂) ₂ O] ₃ · 2 O(CH ₂ CH ₃) ₂ $\underline{3}$ in Gegenv	vart von
Wasser	50
3.2.1 Reaktionen von Al ₂ [(OSiPh ₂) ₂ O] ₃ · 2 O(CH ₂ CH ₃) ₂ $\underline{3}$ mit Aminen	54
3.2.1.1 Synthese von [(Ph ₂ SiO) ₂ O] ₂ {Al[(Ph ₂ SiO) ₂ OH · N(CH ₂ CH ₃) ₃]} ₂ <u>6</u>	
3.2.1.2 Einkristallstrukturanalyse und Kristalldaten von [(Ph ₂ SiO) ₂ O] ₂ {Al[(Ph ₂ SiO) ₂ OH · N(-	$CH_2CH_3)_3]_2$
	61
3.2.1.3 Beschreibung der Molekulstruktur von [(Ph_2SiO) ₂ $OJ_2(All(Ph_2SiO)2OH \cdot N(CH_2CH_3)$	₃]} ₂ <u>6</u> 64
3.2.1.4 Synthese von [(Ph_2SiO) ₂ O]AI[(Ph_2SiO) ₂ OH · N(CH_2CH_3) ₃] <u>/</u>	
3.2.1.5 Einkristalistrukturanalyse und Kristalidaten von [(Ph ₂ SiO) ₂ O]Al[(Ph ₂ SiO) ₂ OH · N(C =	H ₂ CH ₃) ₃]
3.2.1.6 Beschreibung der Molekulstruktur von $[(Pn_2SiO)_2O]Ai[(Pn_2SiO)_2OH \cdot N(CH_2CH_3)_3]$	<u>1</u>
3.2.1.7 Synthese von [(Ph ₂ SiO) ₂ O] ₂ {Al[(Ph ₂ SiO) ₂ OH \cdot N(CH ₂ CH ₂) ₃ N]} ₂ 8	
3.2.1.7 Synthese von [(Ph ₂ SiO) ₂ O] ₂ {Al[(Ph ₂ SiO) ₂ OH \cdot N(CH ₂ CH ₂) ₃ N]} ₂ 8 3.2.1.8 Einkristallstrukturanalyse und Kristalldaten von [(Ph ₂ SiO) ₂ O] ₂ {Al[(Ph ₂ SiO) ₂ OH \cdot N(82 (CH ₂) ₂) ₃ N]} ₂
3.2.1.7 Synthese von [(Ph ₂ SiO) ₂ O] ₂ {Al[(Ph ₂ SiO) ₂ OH \cdot N(CH ₂ CH ₂) ₃ N]} ₂ 8 3.2.1.8 Einkristallstrukturanalyse und Kristalldaten von [(Ph ₂ SiO) ₂ O] ₂ {Al[(Ph ₂ SiO) ₂ OH \cdot N(8	82 (CH ₂) ₂) ₃ N]} ₂ 85
 3.2.1.7 Synthese von [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N(CH₂CH₂)₃N]}₂ <u>8</u> 3.2.1.8 Einkristallstrukturanalyse und Kristalldaten von [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N(<u>8</u>	82 (CH ₂) ₂) ₃ N]} ₂ 85 DH ·
3.2.1.7 Synthese von $[(Ph_2SiO)_2O]_2{AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_2)_3N]}_2 \underline{8}$. 3.2.1.8 Einkristallstrukturanalyse und Kristalldaten von $[(Ph_2SiO)_2O]_2{AI[(Ph_2SiO)_2OH \cdot N(\underline{8})]}_2$ 3.2.1.9 Beschreibung und Diskussion der Molekülstruktur von $[(Ph_2SiO)_2O]_2{AI[(Ph_2SiO)_2O]}_2$ $N((CH_2)_2)_3N]_2 \underline{8}$.	82 (CH ₂) ₂) ₃ N]} ₂ 85 DH ·
 3.2.1.7 Synthese von [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N(CH₂CH₂)₃N]}₂ <u>8</u>	82 (CH ₂) ₂) ₃ N]} ₂ 85 DH ·
3.2.1.7 Synthese von $[(Ph_2SiO)_2O]_2$ {Al[$(Ph_2SiO)_2OH \cdot N(CH_2CH_2)_3N]$ } ₂ 8 3.2.1.8 Einkristallstrukturanalyse und Kristalldaten von $[(Ph_2SiO)_2O]_2$ {Al[$(Ph_2SiO)_2OH \cdot N(8)_3$ 3.2.1.9 Beschreibung und Diskussion der Molekülstruktur von $[(Ph_2SiO)_2O]_2$ {Al[$(Ph_2SiO)_2O]_2$ {Al}	82 (CH ₂) ₂) ₃ N]} ₂ 85 DH ·

3.2.1.12 Beschreibung und Diskussion der Molekülstruktur von [(Ph ₂ SiOH) ₂ O] ₂ Al ₂ O[(Ph ₂ SiO) ₂ O] · 2	2
HN(CH ₂ CH ₃) ₂ <u>9</u>	101

3.2.2 Reaktionen von Al ₂ [(OSiPh ₂) ₂ O] ₃ · 2 O(CH ₂ CH ₃) ₂ <u>3</u> mit Aceton und THF	107
3.2.2.1 Synthese von [(Ph ₂ SiO) ₈ (AlO(OH)) ₄] · 4 OC(CH ₃) ₂ <u>10</u>	107
3.2.2.2 Einkristallstrukturanalyse und Kristalldaten von $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2 10$	111
3.2.2.3 Beschreibung und Diskussion der Molekülstruktur von [(Ph ₂ SiO) ₈ (AlO(OH)) ₄] · 4 OC(CH ₃)	2
<u>10</u>	114
<u>10</u> 3.2.2.4 Synthese von [(Ph₂SiO) ₈ (AlO _{1,5})₄] · 2 THF <u>11</u>	114 121
<u>10</u> . 3.2.2.4 Synthese von [(Ph₂SiO) ₈ (AlO _{1,5})₄] · 2 THF <u>11</u> 3.2.2.5 Einkristallstrukturanalyse und Kristalldaten von [(Ph₂SiO) ₈ (AlO _{1,5})₄] · 2 THF <u>11</u>	114 121 123

4. Zusammenfassung und Ausblick......131

137
138
139
139
140
141
141
142
143
143
-

6. Literaturverzeichnis......145

7. Anhang	151
7.1 Daten zur Molekül- und Kristallstruktur von $Al_2[(OSiPh_2)_2O]_3 \cdot 2 N(CH_2CH_3)_3 $ 4	151
7.2 Daten zur Molekül- und Kristallstruktur von $Al_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5 $	156
7.3 Daten zur Molekül- und Kristallstruktur von [(Ph_2SiO)_2 O] ₂ {Al[(Ph_2SiO)_2 $OH \cdot N(CH_2CH_3)_3$] ₂ <u>6</u> .	164
7.4 Daten zur Molekül- und Kristallstruktur von [(Ph_2SiO) ₂ O]Al[(Ph_2SiO) ₂ OH · N(CH_2CH_3) ₃] 7	171
7.5 Daten zur Molekül- und Kristallstruktur von $[(Ph_2SiO)_2O]_2$ {Al[(Ph_2SiO)_2OH · N((CH_2)_2)_3N]}_2 <u>8</u> .	181
7.6 Daten zur Molekül- und Kristallstruktur von [(Ph ₂ Si(OH)) ₂ O] ₂ Al ₂ O[(Ph ₂ SiO) ₂ O] · 2 HN(CH ₂ CH ₃	3)2
<u>9</u>	191
7.7 Daten zur Molekül- und Kristallstruktur von $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2 10$	208
7.8 Daten zur Molekül- und Kristallstruktur von [(Ph ₂ SiO) ₈ (AlO _{1,5}) ₄] · 2 THF <u>11</u>	211
7.9 Daten zur Molekül- und Kristallstruktur von [Al ₆ (OH) ₈ (H ₂ O) ₂ {(Ph ₂ SiO) ₂ O} ₄ {(Ph ₂ SiO) ₂ OH} ₂ (H ₂ O)4]
<u>12</u>	218
7.10 Daten zur Molekül- und Kristallstruktur von $[(Ph_2SiO)_8(AIO_{1,5})_4]^{-2}$ NaO ^t Bu <u>13</u>	227

Alumosiloxane, Alumosilicate und Silicone

Die Synthese und die Modifizierung des bicyclischen Alumosiloxans <u>3</u> und sein Verhalten gegenüber Lewis-Basen bzw. Donor-Lösungsmitteln in Gegenwart und in Abwesenheit von Wasser werden in der vorliegenden Arbeit behandelt.

Aufgrund seiner Sauerstoffaffinität kommt das Silicium in der Natur fast ausschließlich in Silicatgesteinen vor, entweder in Form von Siliciumdioxid oder in Form silicatischer Minerale. Siliciumdioxid kann in sehr vielfältiger Form vorliegen, je nach Reinheitsgrad und Kristallhabitus kann es sowohl als Sand, Quarz, Kiesel oder Feuerstein, als auch in Form von Halbedelsteinen oder Edelsteinen wie Achat, Jaspis und Opal auftreten^[1,2]. Die Lithosphäre besteht zu 90 % aus Silicaten^[1]. Chemisch betrachtet sind Silicate Salze der Kieselsäure, die ebenso wie seine Phosphor, Schwefel und Chlor Periodennachbarn tetraedrisch gebaute sauerstoffhaltige lonen bildet, entsprechend das Monosilication [SiO₄]⁴⁻. Das Siliciumatom hat hier die Koordinationszahl vier. Die Vielfalt der Silicatstrukturen ist durch die zahlreichen Anordnungsmöglichkeiten der [SiO₄]⁴-Tetraeder bedingt. Sie stellen meist einheitlich gebaute, räumlich begrenzte acyclische oder cyclische (Nesosilicate) [SiO4⁴⁻], Gruppensilicate (Sorosilicate) [Si₂O₇⁶⁻], (Inselsilicate Ringsilicate (Cyclosilicate) $[SiO_3^{2-}]_n$ (n = 3, 4, 6, 8)) bzw. räumlich unbegrenzte ketten-, band-, schicht- oder gerüstartige (Inosilicate, Phyllosilicate [Si2O52-]... oder Tectosilicate $[Al_vSi_{1-v}O_2^{v-}]$ (y = 0 - 0,5)) Silicatanionen dar, die durch die zugeordneten Metallkationen (M = Magnesium, Calcium, Aluminium oder Eisenionen) zu größeren Komplexen verbunden sind ^[1,3,4]. Die Tectosilicate lassen sich wiederum in die drei Gruppen Pyknolite, Clathrasile und in die Zeolithe einteilen ^[5]. In Anhängigkeit vom Bau der anionischen Verbindungsteile zeigen Silicate unterschiedliche Eigenschaften auf. Silicate mit einer Ketten- oder Bandstruktur haben eine gute Spaltbarkeit zur Ketten- oder Bandrichtung. Die graphitähnliche Weichheit des Talks, welches zu den Schichtsilicaten gehört, lässt sich durch seine leichte Verschiebung seiner Schichten gegeneinander erklären. Die Insel-, Gruppen-, Ring- sowie Gerüstsilicate stellen kompakte Kristalle dar. Feldspäte z.B., die zu den Tectosilicaten gehören haben eine Härte, die dem Quarz ähnlich ist^[1].

Werden die Siliciumatome in den Silicaten statistisch oder regelmäßig gegen dreiwertige Aluminiumatome ersetzt, werden Verbindungen der Alumosilicate erhalten. Mit jeder Substitution wird die negative Ladung des Gitteranions um eine Einheit erhöht, begründet in der dreifach positiven Ladung des Aluminiumatoms, im Gegensatz zu dem vierfach positiv geladenen Siliciumatom. Daher sind zu einer Neutralisation der Verbindungen zusätzliche Kationen notwendig, die meistens Alkalioder Erdalkalimetalle darstellen^[1].

In der Natur kommen Alumosilicate, als Schicht- oder Gerüstsilicate vor (wie z. B. Glimmer oder Feldspäte und Zeolithe (vgl. Abbildung 1). In den Zeolithen existieren große Hohlräume mit einem bestimmten Durchmesser und Zugangsöffnungen, die durch kleinere Kanäle verbunden sind. Synthetische Zeolithe finden Verwendung als Ionenaustauscher, Molekularsiebe, Adsorptionsmittel, Säure-Base-Katalysatoren oder als Träger für Metallkatalysatoren ^[1,6-9,45].

Abbildung 1: Funktionsweise des Zeolith A als Ionenaustauscher^[138].

Durch Kondensation der niederen Siliciumsäuren, den Silantriolen, Silandiolen und Verbindungsklasse Silanolen gelangt man zu der der Siloxane. Die Kondensationsprodukte der organisch substituierten Hydroxide des Siliciums $R_n Si(OH)_{4-n}$ (n 1,2,3) führen zu den sogenannten Siliconen, den Polyorganosiloxanen. Das dreifach substituierte Silanol R₃SiOH bildet die Gruppe der Disiloxane. Das Silandiol R₂Si(OH)₂ führt zu den Verbindungen mit der allgemeinen Formel (R₂SiO)_n, die abhängig von n Ringe oder Kettenstrukturen bilden. Die allgemeine Formel (RSiO_{1.5})_n der Silsesquioxane werden durch die Kondensation von Silantriolen $R_3Si(OH)_3$ erhalten. Mit kleineren Werten für n (n = 8,10,12,...) werden Käfigstrukturen, und mit größeren Werten für n werden Schichtstrukturen erhalten. Durch Variieren der Mischungsverhältnisse der niederen Siliciumsäuren und der Orthokieselsäure kann der mittlere Polymerisationsgrad gesteuert werden.

Dadurch können bestimmte Silikonstrukturen mit bestimmten Eigenschaften hergestellt werden ^[1]. Ebenso kann die Kondensationsreaktion durch sperrige Liganden an den Siliciumatomen beeinflusst werden ^[10]. Unvollständig kondensierte Silsesquioxane können eine Reihe von Reaktionen eingehen, u.a. mit Metallen, wodurch Metallsilsesquioxane erhalten werden, die auch katalytisch wirksam sind ^[11,12,24,37-41,46]. Wird als Metall das Aluminiumatom gewählt, gelangt man zu den sogenannten Alumosilsesquioxanen ^[13,24,25]. Hierbei können zwischen den geschlossenen kubischen Silsesquioxanverbindungen ^[10,14-18] und denen mit geöffnetem Gerüst unterschieden werden ^[19-23]. Die Aluminiumatome sind tetraedrisch koordiniert.

Silicone haben eine hohe thermische und chemische Beständigkeit. Daher finden sie breite Anwendungsmöglichkeiten als Kunst- und Werkstoffe, wie beispielsweise als Siliconöle, -harze oder -kautschuke, als auch in der Biomedizin und der Kosmetikbranche finden synthetische Silicone Verwendung ^[1-3,6,26,27,42-44].

Alumosiloxane gehören zu den Verbindungen der Metallsiloxane, die unter dem Sammelbegriff Heterosiloxane zusammengefasst werden ^[28]. Sie können als molekulares Gegenstück zu den Alumosilicaten betrachtet werden ^[29-31]. Metallsiloxane sind bedeutende Verbindungen für Chemiker, Physiker und Materialwissenschaftler, da sie u.a. eine hohe thermische Stabilität besitzen ^[11,19,32-36]. In Abbildung 2 ist der allgemeine Aufbau von acyclischen und cyclischen Metallsiloxanen gezeigt.

Abbildung 2: Allgemeiner Aufbau von Metallsiloxanen

Aufgrund der Ähnlichkeit zu den Zeolithen, die einen breiten Anwendungsbereich haben ^[1,6-9,45], wurden in den letzten Jahren viele Anstrengungen unternommen, um lösliche Alumosiloxane darzustellen, die beispielsweise als Precursorverbindungen in der Sol-Gel-Chemie Verwendung finden ^[11,14-18,25,36]. Insbesondere ist es der Arbeitsgruppe um H. W. Roesky gelungen, durch Umsetzen von kinetisch stabilen Silantriolen mit Alanen in gängigen Lösemitteln, wie beispielsweise Diethylether, Toluol oder THF, lösliche Alumopolysiloxane überraschend einfach darzustellen. In Abhängigkeit von der Temperatur und der Stöchiometrie konnten die Alumosilicate mit Al₂Si₂O₄- und Al₄Si₂O₆-Gerüststrukturen erhalten werden (siehe Abbildung 3) ^[18,47,48].

Abbildung 3: Ergebnisse der Arbeitsgruppe um H. W. Roesky^[47].

Die erste Struktur für ein Alumopolysiloxan seiner Art wurde 1966 von Bonamico et al. beschrieben ^[49-51]. Verbindung (Me₂SiO)₄(OAIBr₂)₂(AIBr) besteht aus einem zwölfgliedrigen Ring, das spirocyclisch über eine Al-Br-Einheit verbrückt ist. Erst im Jahre 2000 konnte das isotypische Chlorderivat beschrieben werden ^[52]. In beiden Verbindungen sind die Silicium- und Aluminiumatome vierfach von Sauerstoffatomen koordiniert. Durch die weitere Koordinierung eines Brom- bzw. Chloratoms im spirocyclischen Zentrum, erfolgt eine fünffach Koordinierung am Al-Atom (siehe Abbildung 4). Die Geometrie der Aluminiumatome in diesen Verbindungen liegt zwischen der Geometrie der tetragonalen Pyramide und der einer trigonalen Bipyramide.

Abbildung 4: Umsetzungsprodukt von AlBr₃ mit Octamethylcyclotetrasiloxan^[48].

In der Arbeitsgruppe von V. C. Kessler wurden 2001 zwei weitere cyclische Alumosiloxane aus der Reaktion von Diphenylsilandiol mit Aluminiumchlorid in Gegenwart von Pyridin erhalten und beschrieben ^[53]. Verbindung (Ph₂SiO)₄O₂(AlCl · THF)₂ besteht aus einem zwölfgliedrigen Si₄Al₂O₆-Ring. Da das Aluminiumatom in dieser Verbindung intermolekular durch eine Donor-Bindung mit THF elektronisch abgesättigt ist, liegt keine weitere Bindung innerhalb des Moleküles vor (siehe Abbildung 5) ^[53].

(Ph₂Si)₄O₆(AICI * THF)₂

Abbildung 5: Molekülstruktur von (Ph₂Si)₄O₆(AICI * THF)₂^[53].

In dem $[(Ph_2SiO)_6(AIO_2)]^-$ -Anion erfolgt der Ladungsausgleich durch ein Pyridiniumkation. Das Aluminiumatom ist hier tetraedrisch von vier Sauerstoffatomen

umgeben und verbindet spirocyclisch zwei achtgliedrige Si₃AlO₄-Ringsysteme (siehe Abbildung 6)^[53].

 $[(Ph_2SiO)_6(AIO_2)]^{-}$

Abbildung 6: Molekülstruktur von [(Ph₂SiO)₆(AlO₂)]⁻PyH^[53].

In der Arbeitsgruppe um M. Veith konnte 1997 ein weiteres Alumopolysiloxan durch Reaktion von tert-Butoxyaluminiumdihydrid ^[54] und Diphenylsilandiol in Diethylether als Reaktionsmedium isoliert werden. Während der Reaktion werden Wasserstoff und tert-Butanol freigesetzt (siehe Abbildung 7) ^[55a,b].

Abbildung 7: Darstellung des pentacyclischen Alumopolysiloxan $[Ph_2SiO]_8[AIO(OH)]_4 \cdot 4$ $O(C_2H_5)_2 \mathbf{1}^{[55a,b]}$.

Es wird angenommen, dass zwei Ph₂Si(OH)₂-Moleküle zu einem Disiloxandiolmolekül durch katalytische Wirkung der in der Reaktionslösung vorliegenden Al-Spezies kondensieren. Das Wasser geht als OH-Gruppe an das Al-Atom ^[54]. Das so erhaltene Alumopolysiloxan [Ph₂SiO]₈[AlO(OH)]₄, welches sich an

die allgemeine Formel (R₂SiO)_n(AIOX)_m hält, kann als ein 24-gliedriger Si₈Al₄O₁₂-Ring beschrieben werden. Aufgrund der sich gegenüber den OH-Gruppen als Lewis-Säuren verhaltenden Al-Atome, werden vier weitere Al-O-Bindungen gebildet, woraus letztendlich ein zentraler Al₄(OH)₄-achtgliedriger Ring resultiert. Die achtgliedrigen Si₂Al₂O₄-Cyclen teilen sich jeweils eine Aluminiumecke mit ihrem Nachbarring. Die (Ph₂SiO)O-Einheiten sind alternierend ober- und unterhalb der Ebene des zentralen Al₄(OH)₄-achtgliedrigen Ringes angeordnet ^[55a,b,56]. In Verbindung [Ph₂SiO]₈[AlO(OH)]₄ · 4 O(C₂H₅)₂ <u>1</u> sind aus Platzgründen nur drei Diethylethermoleküle über Wasserstoffbrückenbindungen an die OH-Gruppen im zentralen Al₄(OH)₄-Ring gebunden (mit O-H^{···}O Wasserstoffbrückenbindungslängen, die zwischen 2.60 Å und 2.70 Å variieren), das vierte Diethylethermolekül befindet sich im Van der Waals Gitter, wodurch sich eine annähernde *S*₄-Symmetrie für Verbindung <u>1</u> ergibt (siehe Abbildung 8). Insgesamt stellt Verbindung <u>1</u> mit dem zentralen Al₄(OH)₄-Achtring ein Oligoalumosiloxangerüst aus fünf annelierten Achtringen dar ^[55a,b,56].

Abbildung 8: Intramolekulare Sättigung des Elektronendefizites am Al-Atom in Verbindung [(Ph₂SiO)₈(AlO(OH))₄] · 4 O(C₂H₅)₂ $\underline{1}^{[55a,b,56]}$.

Reaktionen des Oligoalumosiloxan <u>1</u> mit weiteren Lewis-Basen und seine Supramolekulare Chemie

Die Diethylethermoleküle in Verbindung [(Ph₂SiO)₈(AlO(OH))₄] · 4 O(C₂H₅)₂ $\underline{1}$ können aufgrund der hohen Acidität der H-Atome der OH-Gruppen durch weitere Lewis-Basen substituiert werden, ohne dass dabei die Grundstruktur von Verbindung 1 verändert wird ^[56-59]. Hierbei spielt neben der Basenstärke die sterische Raumbeanspruchung der eingesetzten Basen eine Rolle, wie viele OH-Gruppen in Verbindung 1 durch die Lewis-Basen koordiniert werden können. Gemäß der sterischen Größe und der Basenstärke können zwei bis vier Basenmoleküle über Wasserstoffbrückenbindungen an die vier Hydroxylgruppen des Alumopolysiloxans $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 O(C_2H_5)_2$ 1 koordinieren. Entsprechend finden zwei, drei bzw. vier Moleküle Triethylamin, Diethylether bzw. Pyridin (sterische Raumbeanspruchung $NC_5H_5 < O(C_2H_5)_2 < N(C_2H_5)_3$) Platz, obwohl die Basizität der Basen eine Koordinierung an allen vier OH-Gruppen ermöglichen sollte (mit PA (N(C₂H₅)₃) 981.8 $kJ/mol > PA (NC_5H_5) 930 kJ/mol > PA (O(C_2H_5)_2) 828.4kJ/mol^{[60]}) (vgl. Abbildung 9)$ ^[54]. Während sich die Pyridinmoleküle sandwichartig zwischen die Lücken der sich parallel zueinander anordnenden peripheren Phenylgruppen der Siolxaneinheiten arrangieren, finden die Ethylgruppen in N(C₂H₅)₃ nur für zwei Moleküle Platz. Zwei Triethylaminmoleküle koordinieren hierbei an zwei gegenüberliegende OH-Gruppen, die Ethylgruppen nehmen so viel Platz in Anspruch, dass die Phenylgruppen den Zugang zu den anderen beiden OH-Gruppen für die Aminmoleküle versperren müssen. Obwohl das N(C₂H₅)₃-Molekül also eine höhere Protonenaffinität im Vergleich zu Pyridin hat, finden lediglich zwei Aminmoleküle Zugang zu den Hydroxylgruppen, Pyridin hingegen koordiniert viermal, wodurch sich für das Pyridinaddukt eine S₄-Symmetrie ergibt. Hierbei spiegeln die Al-OH-Abstände die Basenstärken der koordinierenden Lewis-Basen an den OH-Einheiten wider. Je stärker die koordinierende Base ist, umso stärker zieht sie die Wasserstoffatome an. Dies führt zu einer negativen Partialladung an den Sauerstoffatomen, was sich folglich an den kürzeren Al-OH-Abständen zeigt. Die Längen der Wasserstoffbrückenbindungen hingegen zeigen diesen Effekt nicht, da hier die räumliche Beanspruchung der Basen eine wesentlichere Rolle spielt [56,58,59].

 $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 2 N(C_2H_5)_3 \quad [(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 O(C_2H_5)_2 \quad [(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 NC_5H_5 = 0.000 \text{ M}_2 (10000 \text{ M}_2)_4 + 0.0000 \text{ M}_2 (10000 \text{ M}_2)_4 + 0.0000 \text{ M}_2 (10000 \text{ M}_2)_4 + 0.0000 \text{ M}_$

Abbildung 9: Triethylamin (• 2), Diethylether (• 3) bzw. Pyridin-Addukte (• 4) von $[(Ph_2SiO)_8(AIO(OH))_4] \underline{1}^{[56,58,59]}.$

Werden anstatt der sterisch großen Basen die kleinen protonenaktiven Basen H₂O oder NH₃ mit dem Alumosiloxan <u>1</u> umgesetzt, so erfolgt nicht nur eine Koordination an den OH-Gruppen des zentralen Ringes, sondern das Lewis-Saure Aluminium kann ebenso als Angriffspunkt für die sterisch kleineren Basen dienen. Bei der Reaktion von <u>1</u> mit Wasser (s. Gleichung 1) bzw. Ammoniak wird eine völlige Änderung und Neuordnung der Gerüststruktur der Ausgangsverbindung <u>1</u> zu den Verbindungen [(Ph₂SiO)₁₂[AlO(OH)]₆[Al(OH)₃] · 3 O(C₂H₅)₂ bzw. mit NH₃ zu {(Ph₂SiO)₁₂[Al₅O₇(OH)][Al(OH)₂(NH₃)₂] · 3 O(C₂H₅)₂⁻ beobachtet ^[58,61]. Aus Abbildung 10 sind die Strukturen der Produkte der Umsetzungen von <u>1</u> mit Wasser bzw. mit Ammoniak zu entnehmen.

 $3/2 \left[(Ph_2SiO)_8 (AIO(OH))_4 \right] + H_2O + \{AIO(OH)\} + 3 O(C_2H_5)_2 \longrightarrow \left[(Ph_2SiO)_{12} (AIO(OH))_6 (AI(OH)_3) \right] \cdot 3 O(C_2H_5)_2 = 0$

Gleichung (1): Reaktion von $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 O(C_2H_5)_2$ <u>1</u> mit Wasser in Diethylether ^[58].

Abbildung 10: Molekülstrukturen von a) $[(Ph_2SiO)_{12}[AIO(OH)]_6[AI(OH)_3] \cdot 3 O(C_2H_5)_2^{[58]}$ bzw. b) $\{(Ph_2SiO)_{12}[AI_5O_7(OH)][AI(OH)_2(NH_3)_2] \cdot 3 O(C_2H_5)_2\}^{-[61]}$.

Reaktionen von [(Ph₂SiO)₈(AIO(OH))₄] · 4 O(C₂H₅)₂ 1 mit Alkyldiaminen

Bei Umsetzung des Oligoalumosiloxan $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 O(C_2H_5)_2 \mathbf{1}$ mit zweizähnigen Alkyldiaminen können molekulare oder polymere Verbindungen erhalten werden. Je nach Kettenlänge der Liganden kann eine intra- bzw. intermolekulare Wechselwirkung mit dem Grundgerüst der Ausgangsverbindung $\mathbf{1}$ ohne Änderung der Grundstruktur beobachtet werden (vgl. Abbildung 11) ^[56,62-64]. Während mit NH₂(CH₂)₃NH₂ nur intramolekulare Koordinierungen zu beobachten sind (s. Abbildung 12), können mit 1,7-Diaminoheptan ausschließlich Verbindungen mit intermolekularer Koordinierung beobachtet werden, wodurch ein 3-dimensionales Netzwerk erhalten wird (s. Abbildung 13) ^[56,62-64]. Ab einer C4-Kettenlänge können neben intramolekularen auch intermolekulare Koordinationen erhalten werden ^[56,62]. Mit der Diaminbase $NH_2(CH_2)_3NH_2$ ist bereits ansatzweise erkennbar, dass eine Tendenz zu intermolekularer Verknüpfung vorliegt, die C3-Kettenlänge allerdings nicht ausreicht, um zwei OH-Gruppen aus zwei [(Ph₂SiO)₈(AlO(OH))₄]-Molekülen miteinander zu verbinden (vgl. Abbildung 12) ^[56,64].

Abbildung 11: intra- bzw. intermolekulare Koordinierungsmöglichkeiten von zweizähnigen Alkyldiaminen ^[56].

Abbildung 12: intramolekulare Koordinierung von $NH_2(CH_2)_3NH_2$ an $[Ph_2SiO]_8[AIO(OH)]_4$; links: zweifache Koordinierung; rechts: drei koordinierende $NH_2(CH_2)_3NH_2$ -Einheiten an das Grundgerüst von <u>1</u>^[56,64].

Abbildung 13: dreidimensinales Netzwerk von [Ph₂SiO]₈[AlO(OH)]₄ · 2 H₂N (CH₂)₇NH₂, jedes 1,7-Diaminoheptan verbindet zwei Moleküle ^[56,63].

Reaktionen von [(Ph₂SiO)₈(AlO(OH))₄] · 4 O(C₂H₅)₂ 1 mit Bipyridinen

Mit den zweizähnigen Basen 4,4'-Bipyridin, 4,4'-Azobipyridin und 3,3'-Azobipyridin, in denen die N-Atome einen festen Abstand zueinander haben, werden die supramolekularen und polymeren Strukturen $(Ph_2SiO)_8[AIO(OH)]_4 \cdot 2 p - (C_5H_4N)_2$ 1.5 C_4H_8O $(Ph_2SiO)_8[AIO(OH)]_4$ $p-(C_5H_4N)_2N_2$ bzw. Verbindung [65,66] 2 $m-(C_5H_4N)_2N_2$ erhalten (Ph₂SiO)₈[AlO(OH)]₄ Supramolekulare • Verbindungen stellen allgemein "Wirt-Gast-Komplexe" dar, worin ein "Wirt"-Molekül mit einem "Gast"-Molekül in Wechselwirkung tritt. Neben Ion-Ion-, Ion-Dipol oder van der Waals-Wechselwirkungen stellen die Wasserstoffbrückenbindungen einen Teil von Supramolekularen Bindungsarten dar. Das Ziel dieses Teilgebietes der Chemie ist die Kontrolle über die intermolekularen Bindungsarten, um Supramolekulare Verbindungen mit bestimmten Eigenschaften herzustellen. Die Arten der Bindungen zwischen den Molekülen erklärt der Nobelpreisträger J.-M. Lehn mit der sogenannten "Molekularsoziologie", der Wissenschaft vom molekularen Zusammenleben und von deren zwischenmolekularen Beziehungen, in Anlehnung zu zwischenmenschlichen "Wechselwirkungen", der Human-Soziologie [67-71]. Die Koordinierung verschiedener

Basen an das Grundgerüst von Verbindung <u>1</u> stellen demnach erste Supramolekulare Verbindungen des Polyalumosiloxan <u>1</u> dar. Die Darstellung von zwei- oder dreidimensionalen Strukturen mit $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 O(C_2H_5)_2 \underline{1}$ stellen aufgrund der zwischenmolekularen Wasserstoffbrückenbindungen Supramolekulare Verbindungen dar.

In Verbindung $(Ph_2SiO)_8[AIO(OH)]_4 \cdot 2 p \cdot (C_5H_4N)_2$ koordinieren an jedes Grundgerüst von <u>1</u> zwei 4,4'-Bipyridinliganden, die wiederum an ein weiteres Grundgerüst von <u>1</u> koordinieren, wodurch ein zweidimensionaler Strang entsteht (s. Abbildung 14). In den Verbindungen $(Ph_2SiO)_8[AIO(OH)]_4 \cdot 1.5 p \cdot (C_5H_4N)_2N_2 \cdot C_4H_8O$ und $(Ph_2SiO)_8[AIO(OH)]_4 \cdot 2 m \cdot (C_5H_4N)_2N_2$ werden dreidimensionale Schichtstrukturen erhalten, die in den Abbildungen 15 bzw. 16 gezeigt sind ^[66].

Abbildung 14: Ausschnitt aus der linearen Struktur von $[Ph_2SiO]_8[AIO(OH)]_4 \cdot 2 p \cdot (C_5H_4N)_2$, die Siloxaneinheiten wurden zur besseren Übersicht nicht dargestellt ^[66].

Abbildung 15: Ausschnitt der Schichtstruktur von $[Ph_2SiO]_8[AIO(OH)]_4 \cdot 1.5 p-(C_5H_4N)_2N_2 \cdot C_4H_8O$, lediglich die Al₄(OH)₄-Einheiten des Moleküles sind eingezeichnet, die Siloxaneinheiten und die THF-Moleküle wurden für eine bessere Übersicht nicht dargestellt^[66].

Abbildung 16: Schematischer Aufbau der gebildeten Schichtstruktur von [Ph₂SiO]₈[AlO(OH)]₄ · 2 m-(C₅H₄N)₂N₂, die Siloxaneinheiten wurden zur besseren Übersicht nicht dargestellt ^[66].

Umsetzungen von [(Ph₂SiO)₈(AIO(OH))₄] · 4 O(C₂H₅)₂ $\underline{1}$ unter Neuordnung der Gerüststruktur

Die Reaktion von $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 O(C_2H_5)_2 \mathbf{1}$ mit Hexamethyldisilazan führt über die Verbindung $[Ph_2SiO]_8[AIO_2]_2[AIO(O-SiMe_3)]_2[NH_4 \cdot THF]_2 \cdot 2$ THF zu der Verbindung $[Ph_2SiO]_8[AIO_{1,5}]_4 \cdot 2$ NC₅H₅ (s. Abbildung 17) ^[72]. Verbindung $[Ph_2SiO]_8[AIO_{1,5}]_4$ ist ebenso durch Reaktion des Monochloralans H₂AICI · 2 C₆H₁₃N mit dem Alumosiloxan $\mathbf{1}$ zu erhalten, wobei an die exocyclischen Al-Atome N-Methylpiperidinmoleküle koordinieren (s. Abbildung 17) ^[73].

b)

Abbildung 17: Darstellung von a) $[Ph_2SiO]_8[AIO_{1,5}]_4 \cdot 2 NC_5H_5^{[72]}bzw. b) [Ph_2SiO]_8[AIO_{1,5}]_4 \cdot 2 C_6H_{13}N^{[73]}; c)$ Grundstruktur von $[Ph_2SiO]_8[AIO_{1,5}]_4 \cdot 2 D$

Reaktionen von [(Ph₂SiO)₈(AlO(OH))₄] · 4 O(C₂H₅)₂ $\underline{1}$ mit mono- und divalenten Metallverbindungen

Weiterhin sind die H-Atome der OH-Gruppen im zentralen achtgliedrigen Ring durch elektropositive Metallatome, wie die monovalenten Li- und Na-Atome ^[57-59,74] oder die divalenten Zn(II)-, Ge(II)-, Sn(II)- und Pb(II)-Metallatome ^[74,75] substituierbar, wodurch "molekulare Alumosilicate" entstehen. Dabei können alle vier H-Atome durch die

monovalenten Metalle Lithium bzw. Natrium ausgetauscht werden, um die Verbindungen [Ph₂SiO]₈[LiAlO₂]₄ bzw. [Ph₂SiO]₈[NaAlO₂]₄ zu bilden (siehe Abbildung 19) [57-59,74]. Mit divalenten Metallen können zum einen zwei Metallatome in die 1 koordinieren wie beispielsweise den Struktur von in Verbindungen [Ph₂SiO]₈[AIO₂]₄Sn₂, [Ph₂SiO]₈[AIO₂]₄Pb₂ bzw. [Ph₂SiO]₈[AIO(OH)]₂[AIO₂]₂(Zn(OH))₂, zum anderen können in den Verbindungen [Ph2SiO]8[AIO(OH)]2[AIO2]2Ge und $[Ph_2SiO]_8[AIO(OH)]_2[AIO_2]_2Sn$ lediglich jeweils ein Metallatom an der [74,75] Alumopolysiloxanstruktur Bei diesen 1 gefunden werden allen Metallsubstitutionen bleibt die Struktur des Grundgerüstes von 1 intakt (s. Abbildung 18). Es werden Metalle mit sperrigen Liganden für die Umsetzungen verwendet, wie beispielsweise Cyclopentadienide ^[76] oder (Me₃Si)N-Liganden.

Abbildung 18: Umsetzungen von <u>1</u> mit mono- ^[57-59,74] bzw. divalenten Metallliganden ^[74,75]. Mit Li ergibt sich bei der Reaktion von [(Ph₂SiO)₈(AIO(OH))]₄ <u>1</u> mit Phenyllithium die in Abbildung 19 aufgeführte Struktur mit vier Li-Atomen im zentralen Ring.

Abbildung 19: Umsetzung und Molekülstruktur von (Ph₂SiO)₈(LiAlO₂)₄^[57-59].

Als Beispiel für eine Verbindung mit einem divalenten Metallatom sei Verbindung $[Ph_2SiO]_8[AIO(OH)]_2[AIO_2]_2Ge \cdot 2 C_4H_8O_2$ gezeigt (Abbildung 20)^[75]:

Abbildung 20: Molekülstruktur von [Ph₂SiO]₈[AlO(OH)]₂[AlO₂]₂Ge · 2 C₄H₈O₂^[75].

Das Al³⁺-Ion wird mit einem Ionenradius von 0.53 Å als eine sehr harte Lewis-Säure eingestuft ^[6,77,78]. Mit Natriumethanolat, das ein zum Cyclopentadienid des Natriums vergleichsweise ein kleineres Molekül ist, kann durch Angriff an den Lewis-Aciden Al-Atomen eine Insertion von zwei NaO(C₂H₅)₂-Molekülen in den zentralen Ring des Grundgerüstes von Verbindung <u>1</u> beobachtet werden, wobei der zentrale achtgliedrige Al₄(OH)₄-Ring zu einem zwölfgliedrigen Cyclus expandiert ^[79,80]. Die Reaktionsgleichung zu dieser Umsetzung ist in Abbildung 21 gezeigt.

Abbildung 21: Reaktion von $[(Ph_2SiO)_8(AIO(OH))_4] \mathbf{1}$ mit NaO(C₂H₅)₂^[79].

Neben den Alumosiloxanen, sind auch weitere Metallsiloxane bekannt, die ein anderes Metallatom anstatt des Aluminiums enthalten, wie beispielsweise Titan-, Vanadium- oder Chromatome^[52,81-90,95-97].

Alternativsynthesen zur Darstellung des Alumopolysiloxan $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 O(C_2H_5)_2 \underline{1}$

Eine Alternativsynthese der Verbindung $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 O(C_2H_5)_2 \mathbf{1}$ stellt die Reaktion von $[(^tBuO)_3AI]_2$ mit Diphenylsilandiol anstelle des tert-Butoxyaluminiumdihydrids dar (s. Gleichung (2))^[91].

 $8 \text{ Ph}_{2}\text{Si}(\text{OH})_{2} + 2 [\text{Al}(\text{O}^{t}\text{Bu})_{3}]_{2} \longrightarrow [(\text{Ph}_{2}\text{SiO})_{8}(\text{AlO}(\text{OH}))_{4}] \cdot 2.5 \text{ O}(\text{C}_{2}\text{H}_{5})_{2} \cdot 1 \text{ HO}^{t}\text{Bu}$

Gleichung (2): Umsetzung von Diphenylsilandiol und tert-Butoxyaluminium <u>1</u>^[91].

Wird jedoch nicht das tert-Butoxyaluminiumdihydrid gegen andere Alane ausgetauscht, sondern mit dem Kondensationsprodukt von zwei Diphenylsilandiolmolekülen, dem 1,1,3,3-Tetraphenyldisiloxan-1,3-diol **2** und $[H_2AI(O^tBu)]_2$ eine Umsetzung durchgeführt, wird Verbindung $AI_2[(OSiPh_2)_2O]_3 \cdot 2$ $O(CH_2CH_3)_2$ **3** isoliert (s. Abbildung 22) ^[92].

Abbildung 22: Molekülstruktur von <u>3</u>, die Phenylgruppen an den Si-Atomen und die an den Al-Atomen koordinierenden Diethylethermoleküle sind nicht eingezeichnet ^[92,131].

Verbindung <u>3</u> hat ein 17-gliedriges, bicyclisches Grundgerüst, in dem zwei Al-Atome über drei O-Ph₂Si-O-SiPh₂-O-Einheiten miteinander verbunden sind. Das Lewis-Saure Aluminiumatom in <u>3</u> wird durch Koordinierung von Diethylethermolekülen stabilisiert.

In der Literatur wurde bereits 1993 eine ähnliche Verbindung mit Bariumatomen beschrieben. Durch Reaktion von Diphenylsilandiol mit Barium in ammoniakalischer Toluollösung als Reaktionsmedium und anschließender Zugabe von Tetraglyme bzw. Verbindungen [Ba₃(OSiPh₂OSiPh₂O)₃(tetraglyme)₂] hmpa wurden die bzw. [Ba₃(OSiPh₂OSiPh₂O)₃(hmpa)₅(H₂O)] isoliert ^[93]. Beide Verbindungen haben die gleiche Grundstruktur. Die Grundstruktur von 3 ist ähnlich zu diesen beiden Grundstrukturen gebaut, wobei zwei Ba-Atome ähnliche Stellungen wie die Al-Atome in Alumosiloxan 3 haben. Zwei Ba-Atome werden über drei O-SiPh₂-O-SiPh₂-O-Einheiten miteinander verbunden. Das dritte Ba-Atom koordiniert an sieben der neun O-Atome der Disiloxaneinheiten und liegt nahezu im Zentrum des durch die anderen beiden Ba-Atome und der drei Disiloxangruppen gebildeten "Käfigs". In Abbildung 23 ist die Grundstruktur der Ba-Verbindungen gezeigt^[93].

Abbildung 23: Ba₃O₇-Einheit, die in den Verbindungen [Ba₃(OSiPh₂OSiPh₂O)₃(tetraglyme)₂] bzw. [Ba₃(OSiPh₂OSiPh₂O)₃(hmpa)₅(H₂O)] vorliegt. An jedem Si-Atom sind zwei Phenylgruppen gebunden, diese und die zur Stabilisierung der Ba-Atome dienenden tetraglyme bzw- hmpa und Wassermoleküle sind zur besseren Übersicht nicht eingezeichnet^[93].

Im selben Jahr 1993 konnte die Borverbindung $[B(OSiPh_2OSiPh_2O)_3B]$ durch eine Dehydrierungsreaktion von Borsäure mit Tetraphenyldisiloxandiol in Toluol isoliert werden. Zwei Boratome werden durch drei Disiloxaneinheiten verbrückt, wobei zwei planare und zueinander nahezu parallele BO₃-Einheiten vorliegen. Verbindung <u>3</u> hat die gleiche Struktur wie die Borverbindung. Im Gegensatz zum Alumosiloxan <u>3</u> brauchen die Boratome in [B(OSiPh₂OSiPh₂O)₃B] keine Stabilisierung durch Lewis-Basen (s. Abbildung 24) ^[94].

Abbildung 24: Molekülstruktur von [B(OSiPh₂OSiPh₂O)₃B], zur besseren Übersicht wurden die Phenylgruppen an den Si-Einheiten nicht dargestellt ^[94].

2. Aufgabenstellung und Ziel der Arbeit

Die Darstellungen der Ausgangsverbindungen $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 O(C_2H_5)_2 \mathbf{1}$ und $Al_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 3$ wurden im Kapitel Einleitung beschrieben. Wobei in Verbindung 1 die Koordinierung von Diethylether und anderen Basen unter Ausbildung von Wasserstoffbrückenbindungen erfolgt, liegt in Verbindung 3 eine Lewis-Säure – Lewis-Base – Wechselwirkung zwischen den Diethylethermolekülen und dem Al-Atom vor. Die Verbindungen 1 und 3 werden durch Reaktion von tert-Butoxyaluminiumdihydrid mit Diphenylsilandiol bzw. seinem Kondensationsprodukt 1,1,3,3-Tetraphenyldisiloxan-1,3-diol dargestellt. Im Rahmen dieser Arbeit soll das Reaktionsverhalten der bicyclischen Alumosiloxanverbindung Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ 3 gegenüber weiteren Sauerstoff- und Stickstoffhaltigen Lewis-Basen untersucht werden. Da das Wassermolekül in vielen Reaktionen zu Umorientierungen in den Grundstrukturen von Molekülen führt, soll ebenso die Reaktion von Verbindung <u>3</u> mit Lewis-Basen in Gegenwart von Spuren von Wasser beobachtet werden. Dabei ist auch interessant zu sehen, inwiefern beispielsweise Temperaturunterschiede während der Reaktionsführung eine Rolle spielen, da bereits in der Literatur bekannt ist, dass Änderungen in der Stöchiometrie bzw. in der Temperatur zu unterschiedlichen Produkten führen (vgl. Abbildung 25).

Abbildung 25: Schematische Übersicht über mögliche Reaktionen von Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u>.

3. Diskussion und Ergebnisse

3.1 Reaktionsverhalten der Verbindung $AI_2[(OSiPh_2)_2O]_3 \cdot 2$ O(CH₂CH₃)₂ <u>3</u> mit Lewis-Basen bzw. mit Donor-Lösungsmitteln

Die bicyclische Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> zeigt in Gegenwart und in Abwesenheit von Wasser ein unterschiedliches Reaktionsverhalten mit Lewis-Basen bzw. mit Donor-Lösungsmitteln auf. In diesem ersten Teil der Arbeit soll das Reaktionsverhalten von Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> in Abwesenheit von Wasser wiedergegeben werden.

Darstellung des bicyclischen Alumosiloxan Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ 3

Die Ausgangsverbindung, das bicyclische Alumosiloxan <u>3</u>, kann in einfacher Weise in einer Zwei-Stufen-Reaktion erhalten werden. In einem Lösungsmittelgemisch von Aceton und Toluol werden zunächst die Chloratome in 1,3-Dichlor-1,1,3,3-Tetraphenyldisiloxan durch Hydroxylgruppen substituiert, wodurch das 1,3-Dihydroxy-1,1,3,3-Tetraphenyldisiloxan <u>2</u> erhalten wird. Zur Bildung der Hydroxylgruppen wird Natriumhydrogencarbonat (ohne zusätzliche Gabe von Wasser) verwendet (Gleichung (3)) ^[vgl. 98,99].

Gleichung (3)

Das 1,3-Dihydroxy-1,1,3,3-Tetraphenyldisiloxan <u>2</u> lässt sich in kristalliner Form durch Konzentration der Mutterlauge nach Entfernen des Lösungsmittels unter reduziertem Druck erhalten.

In dem zweiten Schritt wird das 1,3-Dihydroxy-1,1,3,3-Tetraphenyldisiloxan $\underline{2}$ mit tert-Butoxyaluminiumdihydrid ^[54] bei Raumtemperatur umgesetzt. Das in Diethylether gelöste Alan [H₂AlO^tBu]₂ wird tropfenweise zu einer Lösung von Disiloxandiol $\underline{2}$ in Diethylether gegeben. Dabei ist eine starke Wasserstoffgasentwicklung zu beobachten (Gleichung (4)). Bereits nach wenigen Minuten beginnt sich Verbindung $AI_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \mathbf{3}$ als weißer Feststoff aus der etherischen Lösung auszuscheiden. Der Reaktionsansatz wird weitere zwei Stunden bei Raumtemperatur gerührt ^[92].

Gleichung (4)

Die größte Ausbeute an Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> (60 % d. Th.) wird erhalten, wenn die Reaktion nicht wie angegeben in stöchiometrischen Mengen wie in Gleichung (4) gezeigt, durchgeführt wird, sondern in zweifachem Überschuss von Verbindung <u>2</u> erfolgt.

In Abbildung 26 ist die Molekülstruktur der bicyclischen Alumosiloxanverbindung $AI_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \mathbf{3}$ gezeigt ^[92].

Abbildung 26: Molekülstruktur von Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ 3 ^[92], die organischen Reste sind in der Stäbchenform dargestellt, zur besseren Übersicht wurden die H-Atome nicht eingezeichnet.

3.1.1 Reaktionsverhalten der Verbindung $AI_2[(OSiPh_2)_2O]_3 \cdot 2$ O(CH₂CH₃)₂ <u>3</u> mit den Lewis-Basen Triethylamin und Pyridin

In wasserfreien Medien können beide an den lewissauren Aluminiumatomen koordinierenden Diethylethermoleküle (Protonenaffinität: PA $(O(CH_2CH_3)_2)$ 828.4kJ/mol ^[60]) in Al₂[$(OSiPh_2)_2O$]₃ · 2 $O(CH_2CH_3)_2$ **3** unter Erhalt der bicyclischen Gerüststruktur, durch die basischeren stickstoffhaltigen Lewis-Basen Triethylamin (Protonenaffinität: PA (N(CH_2CH_3)_3) 981.8 kJ/mol ^[60]) bzw. Pyridin (Protonenaffinität: PA (NC₅H₅) 930 kJ/mol ^[60]) substituiert werden (Gleichung (5)).

Gleichung (5)

Ähnliches Verdrängen von sauerstoffhaltigen Lewis-Basen durch stickstoffhaltige Lewis-Basen, sind in der Literatur bereits beschrieben, wie beispielsweise bei Umsetzungen des Alumopolysiloxan $[Ph_2SiO]_8[AIO(OH)]_4 \cdot 4 O(CH_2CH_3)_2 \mathbf{1}$ mit Pyridin, Dimethylamin oder Triethylamin^[55-59]. Hierbei koordinieren die Basen durch Ausrichtung von Wasserstoff-Brücken-Bindungen an die Hydroxylgruppen des Al₄(OH)₄-Ringes des Grundgerüstes in $[(Ph_2SiO)_8(AIO(OH))_4] \mathbf{1}$. Der Basenaustausch in Verbindung $\mathbf{1}$ mit Sauerstoff oder Stickstoff als Donoratom erfolgt dabei nach Gleichung (6)^[91].
{[Ph₂SiO]₈[Al(O)OH]₄ · x Donor A} + y Donor B _____ {[Ph₂SiO]₈[Al(O)OH]₄ · y Donor B} + x Donor A

Gleichung (6)^[91]

Es wird angenommen, dass ein vergleichbares Gleichgewicht auch dem Basenaustausch in Verbindung <u>3</u> zugrunde liegt (s. Gleichung (7)). Die koordinierenden Basen verschieben durch Variieren der Reaktionsbedingungen die Lage des Gleichgewichtes bevorzugt in eine Richtung. Demnach lassen sich die koordinierenden Basen, die über ein Sauerstoff- bzw. ein Stickstoffatom als Donoratom verfügen, einfach gegen andere Basen austauschen.

 $\{ Al_2[(OSiPh_2)_2O]_3 \cdot 2 \text{ Donor } A \} + 2 \text{ Donor } B \longrightarrow \\ \{ Al_2[(OSiPh_2)_2O]_3 \cdot 2 \text{ Donor } A \} + 2 \text{ Donor } A \}$

Gleichung (7)

Hierbei spielt bei der Substitution des Donors zum einen die Basenstärke eine Rolle, zum anderen ist eine Substitution abhängig von der Basenkonzentration. Durch Variieren dieser beiden genannten Faktoren kann bereits ein bevorzugter Verlauf der Reaktion impliziert werden ^[91].

Um einen eventuell konkurrierenden Reaktionsverlauf bei der Umsetzung von <u>3</u> mit den Lewis-Basen Triethylamin bzw. Pyridin zu unterbinden, wie beispielsweise eine Koordinierung eines polaren Lösungsmittels, wurde das unpolare Lösungsmittel Toluol als Reaktionsmedium verwendet.

Es erfolgt eine Basenaustauschreaktion nach Gleichung (5). Die an den lewissauren Aluminiumatomen koordinierenden Diethylethermoleküle werden durch die eingesetzten Lewis-Basen Triethylamin bzw. Pyridin, in Gleichung (5) und Gleichung (7) als "D" ("Elektronen-Donor") gekennzeichnet, substituiert. Es werden die beiden modifizierten Verbindungen $Al_2[(OSiPh_2)_2O]_3 \cdot 2 N(CH_2CH_3)_3 \mathbf{4}$ bzw. $Al_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5 \mathbf{5}$ erhalten.

3.1.1.1 Synthese von Al₂[(OSiPh₂)₂O]₃ · 2 N(CH₂CH₃)₃ 4

Um die beiden Diethylethermoleküle an den Aluminiumatomen in Verbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \mathbf{3}$ durch jeweils ein Triethylaminmolekül zu verdrängen, wird die bicyclische Verbindung $\mathbf{3}$ mit zwei Äquivalenten Triethylamin bei Raumtemperatur in Toluol umgesetzt. Nach Zugabe des Amins N(CH_2CH_3)_3 zu der in Toluol vorgelegten $Al_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \mathbf{3}$ -Lösung beginnt sich nach wenigen Minuten ein weißer Feststoff aus der Reaktionslösung auszuscheiden. Der Reaktionsansatz wird weitere 2 Stunden bei Raumtemperatur gerührt. Der entstandene weiße Niederschlag wird abfiltriert und unter Erwärmen in wenig Toluol umkristallisiert (Gleichung (8)). Die Ausbeute der neuen Verbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2 N(CH_2CH_3)_3 \mathbf{4}$ beträgt 76 % (d. Th.).

$$Al_{2}[(OSiPh_{2})_{2}O]_{3} \cdot 2 O(C_{2}H_{5})_{2} \xrightarrow{+ 2 N(C_{2}H_{5})_{3}, \text{ Toluol, RT}}{- 2 O(C_{2}H_{5})_{2}} \rightarrow Al_{2}[(OSiPh_{2})_{2}O]_{3} \cdot 2 N(C_{2}H_{5})_{3} \xrightarrow{4}$$

Gleichung (8)

Das bicyclische Grundgerüst von Verbindung <u>3</u> bleibt bei dieser Umsetzung erhalten. Es erfolgt eine Substitution der Diethylethermoleküle durch Triethylaminmoleküle. Der Basenaustausch kann durch die unterschiedlichen Basenstärken der anwesenden Lewis-Basen erklärt werden. Mit einer Protonenaffinität von 828.4kJ/mol^[60] lässt sich das Diethylethermolekül relativ einfach durch das basischere Triethylaminmolekül mit einer Protonenaffinität von 981.8 kJ/mol^[60] substituieren.

In Abbildung 27 ist die Molekülstruktur der Verbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2$ N(CH₂CH₃)₃ <u>4</u> gezeigt.

Abbildung 27: Molekülstruktur von Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 N(CH₂CH₃)₃ <u>4</u>.

Für die Aufnahme von NMR-Spektren wurden wenige Kristalle von Verbindung <u>4</u> erneut in Toluol gelöst. Im ¹H-NMR-Spektrum kann das Multiplett bei 6.94 ppm – 7.11 ppm den Protonen an den Phenylringen an den Siliciumatomen (60 H-Atome) zugeordnet werden. Das Triplett bei 0.92 ppm wird den Methylgruppen im Triethylamin zugeschrieben (18 H-Atome), wobei den Methylengruppen des N(CH₂CH₃)₃-Moleküls das Quartett bei 2.36 ppm zugeordnet wird (12H-Atome).

Im ¹³C-NMR-Spektrum wird das Signal bei 138.9 ppm dem Si-C-Atom, und bei 135.5 ppm bzw. 135.2 ppm den ortho-C-Atomen der Phenylringe zugeordnet.

Aufgrund der symmetrischen Molekülstruktur von Verbindung $AI_2[(OSiPh_2)_2O]_3 \cdot 2$ N(CH₂CH₃)₃ <u>4</u> wird dem ²⁹Si-NMR-Spektrum eine Verschiebung bei -47.4 ppm entnommen.

3.1.1.2 Einkristallstrukturanalyse und Kristalldaten von $Al_2[(OSiPh_2)_2O]_3 \cdot 2 N(CH_2CH_3)_3 \underline{4}$

Für die Röntgenstrukturanalyse geeignete Kristalle der Verbindung $AI_2[(OSiPh_2)_2O]_3 \cdot 2 N(CH_2CH_3)_3 \mathbf{4}$ konnten aus einer Toluol-Lösung erhalten werden. Nach Bestimmung und Verfeinerung der Gitterkonstanten ergab sich die Raumgruppe C2/c im monoklinen Kristallsystem. Sämtliche Nichtwasserstoffatome wurden gefunden und anisotrop verfeinert. Zur Berechnung der Wasserstoffatome an den organischen Resten wurden die entsprechenden idealisierten Geometrien verwendet. Nach der letzten Verfeinerung betrug der Zuverlässigkeitsfaktor R = 0.057.

Die Daten zu dem Kristall und ausgewählte Bindungslängen bzw. –winkel zu Verbindung $AI_2[(OSiPh_2)_2O]_3 \cdot 2 N(CH_2CH_3)_3 \mathbf{4}$ sind in den nachfolgenden Tabellen 1 und 2 aufgeführt.

Tabelle 1: Kristalldaten und Strukturverfeinerungen für Verbindung $Al_2[(SiOPh_2)_2O]_3 \cdot 2$ $N(CH_2CH_3)_3$ **4**.

Identifikationscode	sh2722		
Summenformel	C84 H90 Al2 N2 O9 Si6		
Molmasse [g/mol]	1494.08		
Messtemperatur [K]	173(2)		
Wellenlänge [Å]	0.71073		
Kristallsystem	Monoclinic		
Raumgruppe	C2/c		
Gitterkonstanten	a = 25.3630(7) Å	α= 90°.	
	b = 14.5394(3) Å	β= 114.818(2)°.	
	c = 23.3481(7) Å	$\gamma = 90^{\circ}.$	
Zellvolumen [ų]	7814.7(4)		
Anzahl der Formeleinheiten Z	4		
Dichte (berechnet)	1.270 Mg/m ³		
Absorptionskoeffizient [mm ⁻¹]	0.188		
F(000)	3160		
Kristallabmessungen [mm ³]	0.55 x 0.39 x 0.33		
Messbereich θ [°]	1.66 to 29.30		
hkl - Indexbereich	-34<=h<=34, -19<=k<=20, -32<=l<=32		
Gemessene Reflexe	74509		
Symmetrieunabhängige Reflexe	10626 [R(int) = 0.0316]		
Vollständigkeit des Datensatzes (bis θ = 2	9.30°)	99.6 %	
Absorptionskorrektur	Multiscan		
Strukturverfeinerungsmethode	Full-matrix least-squares on F ²		
Daten / Einschränkungen / Parameter	10626 / 0 / 480		
Güte des Fit auf F ²	1.066		
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0568, wR2 = 0.1540		
R-Werte (alle Daten)	R1 = 0.0728, wR2 = 0.1669		
Restelektronendichte (min./max.) [e/Å ⁻³]	0.757 and -0.581		

Tabelle 2: Ausgewählte Bindungslängen [Å] bzw. –winkel [°] für Verbindung $AI_2[(OPh_2Si)_2O]_3 \cdot 2 N(CH_2CH_3)_3$ **4**.

Al(1)-O(2)	1.700(2)	Si(2)-O(2)	1.593(2)
Al(1)-O(1)	1.702(2)	Si(2)-O(5)	1.619(1)
AI(1)-O(3)	1.706(2)	Si(3)-O(3)	1.596(2)
Al(1)-N(1)	2.002(2)	Si(3)-O(4)#1	1.624(2)
Si(1)-O(1)	1.601(2)	O(4)-Si(3)#1	1.624(2)
Si(1)-O(4)	1.615(2)	O(5)-Si(2)#1	1.619(1)
O(2)-Al(1)-O(1)	114.70(8)	O(2)-Si(2)-O(5)	111.5(1)
O(2)-Al(1)-O(3)	114.03(8)	O(3)-Si(3)-O(4)#1	110.91(9)
O(1)-Al(1)-O(3)	113.85(8)	Si(1)-O(1)-AI(1)	166.5(1)
O(2)-Al(1)-N(1)	103.45(9)	Si(2)-O(2)-AI(1)	171.6(1)
O(1)-Al(1)-N(1)	105.35(9)	Si(3)-O(3)-AI(1)	156.2(1)
O(3)-Al(1)-N(1)	103.78(9)	Si(1)-O(4)-Si(3)#1	173.1(1)
O(1)-Si(1)-O(4)	111.46(9)	Si(2)-O(5)-Si(2)#1	168.5(2)

3.1.1.3 Beschreibung und Diskussion der Molekülstruktur von $Al_2[(OSiPh_2)_2O]_3 \cdot 2 N(CH_2CH_3)_3 \underline{4}$

Die Umsetzung von $Al_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \underline{3}$ mit Triethylamin führt unter Substitution der Diethylethermoleküle von $\underline{3}$ zu der Verbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2$ $N(CH_2CH_3)_3 \underline{4}$. Die Gerüststruktur von $\underline{3}$ bleibt dabei erhalten.

Das Grundgerüst der Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 N(CH₂CH₃)₃ <u>4</u> kann von dem Bicyclo[2.2.2]octan abgeleitet werden. Die Aluminiumatome nehmen dabei verbrückende Positionen ein und sind über drei Disiloxan-Einheiten miteinander verbunden. Die in Abbildung 28 gezeigte Struktur wird durch die Koordination des freien Elektronenpaares des Stickstoffatoms der Lewis-Base Triethylamin in das leere sp³-Orbital des Aluminiumatomes erhalten. Aluminium gelangt hierbei durch seinen Übergang in den sp³-Hybridzustand zu einem Elektronenoktett.

Abbildung 28: Molekülstruktur von Al₂[(OSiPh₂)₂O]₃ · 2 N(CH₂CH₃)₃ <u>4</u>; zur besseren
 Übersicht sind die Phenylringe an den Siliciumatomen und die Ethylgruppen des Amins in
 Stäbchenform dargestellt. Die Wasserstoffatome sind nicht eingezeichnet.

Insgesamt ergibt sich die Raumgruppe C2/c-Symmetrie für Verbindung <u>4</u>. Die zweizählige Achse verläuft durch das O5-Atom und überführt O4 in O4' und Al1 in Al1' (vgl. Abbildung 28 bzw. 32).

In Abbildung 29 ist eine Polyederdarstellung der Verbindung $AI_2[(OSiPh_2)_2O]_3 \cdot 2$ N(CH₂CH₃)₃ <u>4</u> abgebildet. Hier ist zu erkennen, dass die gebildeten Tetraeder der Sauerstoff- und Kohlenstoffatome um die Siliciumatome der Siloxaneinheiten eckenverknüpft vorliegen. Die Tetraeder der Disiloxaneinheiten sind stark verdrillt zueinander angeordnet. Die von den Sauerstoff- bzw. Stickstoffatomen gebildeten Tetraeder um die Aluminiumatome sind mit den Tetraedern um die Siliciumatome ebenso eckenverknüpft. Durch die Verdrillung der Disiloxaneinheiten sind diese Tetraeder um die Aluminiumatome nicht deckungsgleich auf einer Ebene (siehe auch Abbildung 30).

Abbildung 29: Polyederdarstellung von Al₂[(OSiPh₂)₂O]₃ • 2 N(CH₂CH₃)₃ <u>4</u>, die Phenylgruppen sind zur besseren Übersicht im Stäbchenmodell dargestellt, sowie deren Wasserstoffatome weggelassen.

Die Pheylgruppen an den Siliciumatomen ordnen sich alternierend axial und äquatorial an. Somit ergibt sich eine minimale gegenseitige sterische Hinderung der Phenylgruppen und den drei Ethylgruppen der koordinierenden Aminmoleküle zueinander. Auch die Phenylgruppen untereinander erreichen so eine sterisch optimierte Packung (s. Abbildung 30).

Abbildung 30: Polyederdarstellung von Al₂[(OSiPh₂)₂O]₃ • 2 N(CH₂CH₃)₃ <u>4</u> mit äquatorial und axial angeordneten Phenylringen. Zur besseren Übersicht sind die Phenylringe in Stäbchenform gezeichnet, die Wasserstoffatome sind nicht abgebildet.

Deutlich erkennbar ist die "Lücke" im Zentrum der bicyclischen Verbindung in Abbildung 31 zu sehen. Hier wird die Ähnlichkeit der Gerüststruktur des Bicyclus zu den bereits in der Einleitung erwähnten Zeolithen (S.2) erkennbar. Dank ihrer Hohlräume finden Zeolithe u.a. Anwendung als Ionenaustauscher und Katalysatoren [1-9].

Abbildung 31: Polyederdarstellung von Verbindung Al₂[(OSiPh₂)₂O]₃ • 2 N(CH₂CH₃)₃ <u>4</u>, mit deutlich erkennbarer Hohlstruktur. Die Wasserstoffatome sind nicht eingezichnet, die Phenylgruppen sind in der Stäbchenform dargestellt.

Eine ähnliche Verbindung mit dem leichteren homologen Boratom an den Positionen der Aluminiumatome wurde in der Literatur bereits beschrieben ^[94]. Wie erwartet, liegen die wichtigsten Unterschiede in den Koordinationssphären der homologen Atome Bor und Aluminium vor. Beide Elemente weisen als Elemente der dritten Hauptgruppe ein Elektronendefizit auf. Bor ist in der Lage mit seinen benachbarten Sauerstoffatomen intramolekulare Rückbindungen einzugehen, die zu einer trigonalplanaren Koordination der BO₃-Einheiten führt. Für das Boratom ist keine weitere Basenstabilisierung notwendig, da es seinen stabilen Zustand des Elektronenoktetts durch die Rückbindung bereits erreicht hat. Das Aluminiumatom hingegen geht keine

Rückbindungen ein. Die Stabilisierung des Aluminiumatoms erfolgt durch Ausbildung einer zusätzlichen Koordination durch elektronengebende Verbindungen, den Lewis-Basen. Die Aluminiumatome kompensieren ihr Elektronendefizit in Verbindung <u>4</u> mit Triethylamin unter Bildung einer verzerrt tetraedrischen Koordinationssphäre.

Die O-Al-O-Winkel in Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 N(CH₂CH₃)₃ <u>4</u> haben einen durchschnittlichen Wert von114.19(8)° (vergleiche Abbildung 7 und Tabelle 2). Der vergleichbare Winkel in Verbindung <u>3</u> beträgt 115.6(7)°. Der sterische Effekt der dritten Ethylgruppe am Triethylamin, sowie die größere Basizität des Triethylamins ^[60.101], das zu einer Abstoßung mit den Sauerstoffatomen der Disiloxaneinheiten führt, ergibt für die Koordinationsfigur des Aluminiums eine Annäherung an den Tetraeder. Hinzu kommt, dass Stickstoff eine kleinere Elektronenaffinität als Sauerstoff hat, d.h. das Stickstoffatom gibt sein Elektronenpaar leichter in koordinierende Bindungen (Donor-Akzeptor) ab. Darüber hinaus sind die basischen Eigenschaften der Stickstoffatome durch die +I-Effekte der CH₂CH₃-Gruppen verstärkt ^[62].

Abbildung 32: Molekülstruktur von Al₂[(OSiPh₂)₂O]₃ • 2 N(CH₂CH₃)₃ <u>4</u>, zur besseren Übersicht ohne Phenylgruppen an den Siliciumatomen und ohne Wasserstoffatome der Ethylgruppen der Aminmoleküle.

Die Al-O-Bindungslängen in der bicyclischen Verbindung <u>4</u> liegen mit durchschnittlich 1.703(2) Å im vergleichbaren Bereich literaturbekannter Al-O-Bindungslängen ^[53,100]. In Verbindung <u>3</u> hingegen ist der Al-O-Abstand mit durchschnittlich 1.681(13) Å deutlich kürzer. Die kürzeren Si-O-Abstände in Verbindung <u>4</u>, mit einem durchschnittlichen Wert von 1.597(2) Å, liegen in den Al-O-Si-Einheiten vor (Si1-O1, Si2-O2, Si3-O3), während die längeren Si-O-Bindungslängen mit durchschnittlich 1.620(2) Å in den Si-O-Si-Fragmenten zu finden sind (Si1-O4, Si2-O5, Si3-O4) (vergleiche Abbildung 32 und Tabelle 2).

Die O-Si-O-Si-O-Ketten liegen in beiden Verbindungen $\underline{3}$ und $\underline{4}$ stark verdrillt vor. In Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 N(CH₂CH₃)₃ $\underline{4}$ haben die besten Ebenen durch die Atome Al1-Si1-Si3-Al1 bzw. durch die Atome Al1-Si2-Si2-Al1 einen Winkel von 59.05° zueinander. Der Winkel der besten Ebenen durch die Atome Al1-Si3-Si1-Al1 hat eine Größe von 63.40°.

Die Si-O-Si-Winkel in Verbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2 N(CH_2CH_3)_3 \mathbf{4}$ haben einen mittleren Wert von 170.8(2)°. Eine Näherung zu einer linearen Verbindungsachse ist deutlich zu erkennen, die bei zwölf-gliedrige Siloxanverbingungen vorkommt ^[52,53,84].

Die Ethylgruppen der Triethylamindonormoleküle nehmen in Verbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2 N(CH_2CH_3)_3 \mathbf{4}$ eine gestaffelte Konformation zueinander ein. Die Al1-N1-Bindungsabstände betragen 2.002(2) Å und sind vergleichbar mit Al-N-Abständen in der Literatur ^[102].

3.1.1.4 Synthese von $AI_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5 5$

Zur Darstellung der Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 NC₅H₅ <u>5</u> wird zu der bicyclischen Ausgangsverbindung Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> in Toluol Pyridin in zweifachem molaren Überschuss gegeben und 2 Stunden bei RT gerührt. Der entstandene Niederschlag wird abfiltriert und in Toluol gelöst Ausbeute: 41 % (d. Th.) (Gleichung (9)).

$$Al_{2}[(OSiPh_{2})_{2}O]_{3} \cdot 2 O(C_{2}H_{5})_{2} \xrightarrow{+ 2 NC_{5}H_{5}, \text{ Toluol, RT}}{- 2 O(C_{2}H_{5})_{2}} \rightarrow Al_{2}[(OSiPh_{2})_{2}O]_{3} \cdot 2 NC_{5}H_{5}$$

$$\underbrace{3}{5}$$

Gleichung (9)

Die Molekülstruktur der neuen Verbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5 \mathbf{5}$ kann aus Abbildung 33 entnommen werden.

Abbildung 33: Molekülstruktur von Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 NC₅H₅ 5.

Die Substitution der Diethylethermoleküle durch die Pyridinmoleküle kann mit der höheren Basizität des Pyridins im Vergleich zu Diethylether erklärt werden ^[60,101]. Für die NMR-spektroskopischen Untersuchungen von $Al_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5$ werden die erhaltenen Kristalle in Toluol gelöst. Die Signale der in Toluol aufgenommenen Spektren können wie folgt zugeordnet werden: Im ¹H-NMR-Spektrum können die Signale bei 7.72 ppm den para-ständigen H-Atomen des Pyridinmoleküles zugeordnet werden. Die Phenyl-H-Atome von Verbindung <u>5</u> liegen im Aromatenbereich 6.97 ppm bis 7.16 ppm.

Das Signal der chemischen Verschiebung bei 124.9 ppm im ¹³C-NMR-Spektrum kann dem para-C-Atom des Pyridinmoleküls zugeordnet werden. Das ²⁹Si-NMR zeigt ein für Verbindung <u>5</u> charakteristisches Signal bei -48.1 ppm. Aufgrund der Symmetrie im Molekül von Verbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5$ <u>5</u> ist im ²⁹Si-NMR-Spektrum lediglich ein Signal zu finden.

3.1.1.5 Einkristallstrukturanalyse und Kristalldaten von $AI_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5 5$

Für die Einkristallstrukturanalyse von Verbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5 5$ wurden Kristalle aus einer Toluol-Lösung bei Raumtemperatur gewonnen. Ein geeigneter Einkristall wurde der Einkristallstrukturanalyse zugeführt und vermessen. Struktur wurde mittels direkter Methoden bestimmt, Die in der alle Nichtwasserstoffatome gefunden wurden und anisotrop verfeinert werden konnten. Die Lage der Wasserstoffatome wurden durch Verwendung entsprechender idealisierter Geometrien berechnet. Nach Bestimmung der Gitterkonstanten und Verfeinerung der erhaltenen Daten ergab sich für Verbindung 5 die Raumgruppe C2/c im monoklinen Kristallsystem. Die Struktur hat einen Zuverlässigkeitsfaktor von R1 = 0.082.

Die Werte der Kristalldaten, sowie ausgewählte Bindungslängen und –winkel sind in den folgenden Tabellen 3 und 4 zu finden.

Tabelle 3: Kristalldaten und Strukturverfeinerung für Verbindung $AI_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5$ **5**.

Identifikationscode	sh2568		
Summenformel	C85.50 H74 Al2 N2 O9 Si6		
Molmasse [g/mol]	1495.97		
Messtemperatur [K]	130(2)		
Wellenlänge [Å]	0.71073		
Kristallsystem	Monoclinic		
Raumgruppe	C2/c		
Gitterkonstanten	a = 24.7042(7) Å	α= 90°.	
	b = 14.1960(3) Å	β = 98.053(3) °	
	c = 45.1013(11) Å	$\gamma = 90^{\circ}.$	
Zellvolumen [ų]	15661.1(7)		
Anzahl der Formeleinheiten Z	8		
Dichte (berechnet)	1.269 Mg/m ³		
Absorptionskoeffizient [mm ⁻¹]	0.188		
F(000)	6264		
Kristallabmessungen [mm ³]	0.45 x 0.3 x 0.28		
Messbereich θ [°]	1.66 to 28.39		
hkl - Indexbereich	-32<=h<=32, -18<=k<=18, -60<=l<=60		
Gemessene Reflexe	119128		
Symmetrieunabhängige Reflexe	19484 [R(int) = 0.0900]		
Vollständigkeit des Datensatzes (bis θ = 2	8.39°) 99.4 %		
Absorptionskorrektur	Multiscan		
Strukturverfeinerungsmethode	Full-matrix least-squares on F ²		
Daten / Einschränkungen / Parameter	19484 / 0 / 1077		
Güte des Fit auf F ²	1.175		
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0824, wR2 = 0.1645		
R-Werte (alle Daten)	R1 = 0.1148, wR2 = 0.1756		
Restelektronendichte (min./max.) [e/Å-3]	0.768 and -0.431		

Tabelle 4: Ausgewählte Bindungslängen [Å] bzw. –winkel [°] von Verbindung
Al ₂ [(OSiPh ₂) ₂ O] ₃ • 2 NC ₅ H ₅ <u>5</u> .

AI(1)-O(1)	1.697(3)	Si(2)-O(3)	1.596(2)
Al(1)-O(4)	1.699(3)	Si(2)-O(2)	1.631(3)
AI(1)-O(7)	1.705(2)	Si(3)-O(4)	1.597(3)
Al(1)-N(1)	1.979(3)	Si(3)-O(5)	1.623(3)
AI(2)-O(9)	1.698(2)	Si(4)-O(6)	1.598(3)
AI(2)-O(3)	1.704(2)	Si(4)-O(5)	1.631(3)
AI(2)-O(6)	1.705(3)	Si(5)-O(7)	1.600(2)
AI(2)-N(2)	1.968(3)	Si(5)-O(8)	1.627(2)
Si(1)-O(1)	1.593(3)	Si(6)-O(9)	1.599(2)
Si(1)-O(2)	1.621(3)	Si(6)-O(8)	1.630(2)
O(1)-AI(1)-O(4)	116.9(1)	O(4)-Si(3)-O(5)	112.0(1)
O(1)-Al(1)-O(7)	113.6(1)	O(6)-Si(4)-O(5)	112.3(1)
O(4)-Al(1)-O(7)	114.9(1)	O(7)-Si(5)-O(8)	111.7(1)
O(1)-Al(1)-N(1)	103.3(1)	O(9)-Si(6)-O(8)	112.5(1)
O(4)-Al(1)-N(1)	101.5(1)	Si(1)-O(1)-AI(1)	176.4(2)
O(7)-Al(1)-N(1)	104.1(1)	Si(1)-O(2)-Si(2)	152.3(2)
O(9)-Al(2)-O(3)	116.4(1)	Si(2)-O(3)-AI(2)	169.8(2)
O(9)-Al(2)-O(6)	115.5(1)	Si(3)-O(4)-Al(1)	157.1(2)
O(3)-AI(2)-O(6)	114.0(1)	Si(3)-O(5)-Si(4)	153.5(2)
O(9)-AI(2)-N(2)	102.0(1)	Si(4)-O(6)-AI(2)	160.9(2)
O(3)-Al(2)-N(2)	102.7(1)	Si(5)-O(7)-Al(1)	154.4(2)
O(6)-AI(2)-N(2)	103.4(1)	Si(5)-O(8)-Si(6)	143.9(2)
O(1)-Si(1)-O(2)	111.6(1)	Si(6)-O(9)-AI(2)	164.3(2)
O(3)-Si(2)-O(2)	112.6(1)		

3.1.1.6 Beschreibung und Diskussion der Molekülstruktur von $Al_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5 5$

Die Reaktion der Startverbindung <u>3</u> mit zwei Äquivalenten Pyridin in Toluol als Reaktionsmedium liefert Verbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5$ <u>5</u>. Das bicyclische Grundgerüst der Ausgangsverbindung <u>3</u> bleibt bei dieser Umsetzung erhalten.

Abbildung 34 zeigt die erhaltene Molekülstruktur von $Al_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5 \mathbf{5}$, in der die Phenylringe zur besseren Übersicht in Stäbchenform dargestellt sind. Die Aluminiumatome in Verbindung $\mathbf{5}$ sind durch drei –O-Si-O-Si-O-Ketten miteinander verbunden. Die Disiloxan-Einheiten treten stark verdrillt auf. Die in Verbindung $\mathbf{3}$ an den beiden Aluminiumatomen koordinierenden Diethylethermoleküle wurden in der neuen Verbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5 \mathbf{5}$ durch jeweils ein Pyridinmolekül substituiert.

Abbildung 34: Molekülstruktur von Al₂[(OSiPh₂)₂O]₃ · 2 NC₅H₅ <u>5</u>, zur besseren Übersicht wurden die Phenylringe sowie die Kohlenstoffatome der Pyridinmoleküle im Stäbchenmodell dargestellt, die Wasserstoffatome vernachlässigt.

Durch Koordination der freien Elektronenpaare der Stickstoffatome der Lewis-Base Pyridin in die leeren sp³-Orbitale der Aluminiumatome erhalten die lewis-sauren Aluminiumatome eine verzerrt-tetraedrische Koordination und gelangen auf diese Weise zum formalen stabilen Elektronenoktett ^[1,2]. Die Kristallstruktur von Verbindung <u>5</u> besitzt ein flächenzentriertes Kristallgitter mit der Raumgruppe C2/c. Da Verbindung <u>5</u> nicht auf der zweizähligen Drehachse liegt, wird nur eine annähernde Punktsymmetrie erreicht. Weiterhin sind im Kristallgitter von Verbindung <u>5</u> Toluolmoleküle mit eingebaut.

In Abbildung 35 ist eine Polyederdarstellung von Verbindung <u>5</u> gezeigt. Die Siliciumatome erhalten durch die Sauerstoffatome und die Kohlenstoffatome der Phenylringe eine verzerrt tetraedrische Umgebung. Die gebildeten Tetraeder um die Silicium- und Aluminiumatome sind eckenverknüpft. Die starke Verdrillung der O-Si-O-Si-O-Einheiten ist ebenso in Abbildung 35 zu erkennen. Die Winkel der besten Ebenen durch die Silicium- und Aluminiumatome zueinander varieren von 58.77° bis 64.58°.

Abbildung 35: Polyederdarstellung des Pyridin-Adduktes Al₂[(OSiPh₂)₂O]₃ • 2 NC₅H₅ <u>5</u>, zur besseren Übersicht sind die Phenylringe an den Siliciumatomen sowie die Pyridinmoleküle in Stäbchenform gezeigt. Wasserstoffatome sind nicht aufgeführt.

Die Pyridinringe arrangieren sich mit den in axialer und äquatorialer Anordnung geordneten Phenylringen an den Siliciumatomen, und fügen sich gut in die Lücken ein.

Die O-Si-O-Winkel an den Si-Atomen variieren in der Verbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2$ $NC_5H_5 \ 5$ von 111.6(1)° (O1-Si1-O2) bis 112.6(2)° (O3-Si2-O2) (O-Si-O Durchschnitt 112.1(1)°), und sind somit größer als die entsprechenden Winkel in Verbindung $B_2[(OSiPh_2)_2O]_3$ mit durchschnittlich 109.13°, der näher an der Tetraederform liegt ^[94]. Die Mittelwerte der O-Si-O Winkel der bicyclischen Verbindungen $Al_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \ 3$ mit 112.54(7)°, Verbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2$ $N(CH_2CH_3)_3 \ 4$ mit 111.28(9)° und Verbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5 \ 5$ mit 112.1(1)° sind gut miteinander vergleichbar.

Die Al-O(Si)-Bindungslängen zu den Siloxanketten liegen im Bereich von 1.697(3) Å für die Al1-O1-, bis 1.705(2) Å für die Al1-O7- bzw. 1.705(3) Å für die Al2-O6-Bindung (s. Abbildung 36). Mit einem Mittelwert von 1.701(3) Å liegen sie zwischen den Al-O-Abständen in dem Pyridinsalz [PyH][Al{OSiPh₂(OSiPh₂)₂O}₂] mit durchschnittlich 1.738(3) Å und dem zwölfgliedrigen Aluminosilicat [{Ph₂SiO}₂O}AlCl(THF)]₂ mit 1.654(17) Å für den mittleren Al-O-Abstand im Ring ^[53]. Die Al-O-Bindungslängen in <u>5</u> sind jedoch gut vergleichbar mit den mittleren Al-O(Si)-Bindungsabständen in dem Alumopolysiloxan [(Ph₂Si)₂O₃]Al₄(OH)₄ · 4 C₅H₅N mit 1.703(2) Å ^[56-59] und in Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 N(CH₂CH₃)₃ <u>4</u> mit 1.703(2) Å.

Abbildung 36: Molekülstruktur von Verbindung Al₂[(OSiPh₂)₂O]₃ - 2 NC₅H₅ <u>5</u>. Die Phenylringe und die Wasserstoffatome der Pyridinringe wurden zur besseren Übersicht weggelassen.

Die mittleren Si-O(Al)-Bindungslängen in Al₂[(OSiPh₂)₂O]₃ · 2 NC₅H₅ <u>5</u> sind mit 1.597(3) Å kürzer als die mittleren Bindungslängen der Si-O(Si)-Bindungen mit 1.627(3) Å. Beide Bindungsabstände sind gut vergleichbar mit den entsprechenden Bindungsabständen in Verbindung <u>4</u> (s. Kap. 3.1.1.2 und 3.1.1.3, Mittelwerte: Si-O(Al): 1.597(2) Å und Si-O(Si): 1.620(2) Å). Die Si-O(Si)-Abstände sind etwas länger als die entsprechenden Bindungslängen in (Ph₃Si)₂O mit 1.616(1) Å ^[103], in [PyH][Al{OSiPh₂(OSiPh₂)₂O}₂] mit 1.619 Å ^[53] oder als die durchschnittliche idealisierte Si-O-Bindungslänge von 1.603 Å in natürlichen tetraedrischen Alumosilikaten ^[100]. Die Unterschiede in den Si-O-Bindungsabständen in Verbindung <u>5</u> kann mit der Koordination der Lewis-Base an das Al-Atom erklärt werden.

In Verbindung B₂[(OSiPh₂)₂O]₃ ist eine umgekehrte Beobachtung zu machen: Die Si-O(B)-Abstände sind hier mit einer durchschnittlichen Bindungslänge von 1.631(2) Å länger als die Si-O(Si)-Bindungslängen mit durchschnittlich 1.615(2) Å ^[94]. In Tabelle 5 sind einige Bindungslängen und –winkel zu den Verbindungen <u>4</u> und <u>5</u> und Literaturwerte zum Vergleich aufgelistet.

Der mittlere Al-N(C_5H_5)-Abstand in Verbindung **5** liegt mit 1.974(3) Å (Al1-N1 1.979(3) Å und Al2-N2 1.968(3) Å) im Bereich literaturbekannter Al-N(C_5H_5)-[19,72] Abstände Vergleicht man die Bindungsabstände zwischen den Aluminiumatomen und den Stickstoffatomen der Lewis-Basen in den Verbindungen 4 und 5, so stellt man fest, dass wider Erwarten der Al-N-Bindungsabstand in Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 N(CH₂CH₃)₃ 4 mit 2.002(2) Å länger ist im Vergleich zu 1.974(3) Å (Mittelwert) in Verbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5$, obwohl Triethylamin die stärkere Base im Vergleich zu Pyridin ist ^[60,101]. Offenbar spielt die Sterik der verwendeten Basen eine größere Rolle als deren Basizität. Das Pyridinmolekül kann sich durch seine flache Form besser mit den Phenylringen an den Siliciumatomen arrangieren, im Gegensatz zu den drei frei beweglichen Ethylgruppen des Triethylaminmoleküls. Ein ähnliches Verhalten der Abhängigkeit von der Sterik neben der Basizität, konnte auch in der Literatur beobachtet werden: In den beiden Alumopolysiloxanverbindungen $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 NC_5H_5$ und $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 2 N(CH_2CH_3)_3$ sind die O(H)...N-Wechselwirkungen in Verbindung [(Ph₂SiO)₈(AlO(OH))₄] \cdot 2 N(CH₂CH₃)₃ länger (O(H)^{...}N(CH₂CH₃)₃ 2.72 Å) als in Verbindung [(Ph₂SiO)₈(AlO(OH))₄] \cdot 4 NC₅H₅ (O(H)^{...}NC₅H₅ 2.548(3) Å), wobei bei diesen beiden Verbindungen die Lewis-Basen Triethylamin und Pyridin über Wasserstoffbrückenbindungen an die OH-Gruppen im zentralen Al₄(OH)₄-Ring gebunden sind. Dass die Sterik der Lewis-Basen eine große Rolle spielen, spiegelt sich v.a. darin wider, dass lediglich zwei Triethylamin-Moleküle in das [(Ph₂SiO)₈(AlO(OH))₄] Gerüst eingebaut werden können, obwohl es rein formell möglich sein sollte, vier Moleküle Triethylamin an die OH-Gruppen des zentralen Rings zu koordinieren, wie es in Verbindung $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 NC_5H_5$ der Fall ist. ^[57-59].

In den mittleren O-Al-O-Winkeln mit 115.2(1)° im Pyridin-Addukte $Al_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5 \mathbf{5}$ kann diese sterische Wechselwirkung ebenso beobachtet werden. Der Mittelwert der O-Al-O-Winkel von Verbindung $\mathbf{5}$ ist vergleichbar mit dem mittleren Wert für die O-Al-O-Winkel in der bicyclischen Ausgangsverbindung $\mathbf{3}$ (115.64(7)°) (siehe Tabelle 5). Der Raumanspruch der beiden Lewis-Basen (Diethylether und

Pyridin) ist vergleichbar. Der sterische Effekt von Triethylamin in Verbindung 4 hingegen führte zu einem kleineren O-Al-O-Winkel (114.19(8)°, vgl. Kapitel 3.1.1.2, 3.1.1.3). Obwohl das Amin N(CH₂CH₃)₃ basischer als Pyridin ist, ähneln sich die O-Al-O-Winkel von Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> und <u>5</u> mehr als mit Verbindung 4, da sich der sterische Effekt der verwendeten Lewis-Basen stärker auswirken als deren Basizität. Der kleinere Winkel in Verbindung 4 kann sowohl mit der sterischen Größe, der größeren Platzeinnahme des Triethylaminmoleküles, als auch mit seiner größeren Basizität, somit der Abstoßung mit den Sauerstoffatomen der Disiloxan-Einheiten begründet werden.

In Tabelle 5 sind Bindungslängen und -winkel der Verbindungen Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u>, Al₂[(OSiPh₂)₂O]₃ · 2 N(CH₂CH₃)₃ <u>4</u> und Al₂[(OSiPh₂)₂O]₃ · 2 NC₅H₅ <u>5</u> im Vergleich zueinander und zu Literaturwerten gezeigt.

Tabelle 5: Vergleich der durchschnittlichen Größen ausgewählter Winkel [°] und Bindungslängen [Å] der Verbindungen Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u>, Al₂[(OSiPh₂)₂O]₃ · $2 N(CH_2CH_3)_3 \underline{4}$, und $Al_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5 \underline{5}$ miteinander und mit Literaturwerten.

	<u>5</u>	<u>4</u>	<u>3</u>	<u>A</u> ¹⁾	<u>B</u> ²⁾
M-O(Si)	1.701(3)	1.703(2)	1.68(1)	1.356(3)	1.738
Si-O(M)	1.597(3)	1.597(2)	1.60(1)	1.631(2)	1.619(3)
Si-O(Si)	1.627(3)	1.620(2)	1.59(1)	1.617(2)	1.619(3)
0-М-О	115.2(1)	114.19(8)	115.64(7)	120.00(25)	109.45(13)
O-Si-O	112.1(1)	111.28(9)	112.54(7)	109.12(11)	-
Si-O-Si	149.9(2)	170.8(2)	163.64(9)	161.91(17)	-

1) $\underline{\mathbf{A}}$: B₂[(OSiPh₂)₂O]₃^[94] 2) $\underline{\mathbf{B}}$: [PyH][Al{OSiPh₂(OSiPh₂)₂O}₂]^[53]

M: Al bzw. B

Wie aus den Abbildungen 26, 28 und 34 zu erkennen ist, sind die O-Si-O-Si-O-Einheiten in allen drei Verbindungen, dem Dietyhlether- 3, dem Triethylamin- 4 und dem Pyridin-Addukt 5 des bicyclischen Alumosiloxans wie auch in der Bor-Verbindung ^[94] stark verdrillt angeordnet, das u.a. auf die gegenseitige sterische Beeinflussung der Phenylgruppen an den Siliciumatomen zurückgeführt werden kann.

Die Si-O-Si-Winkel in Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 NC₅H₅ <u>5</u> sind durchschnittlich 149.9(2)° groß, wobei zwei Winkel in vergleichbarer Größenordnung vorliegen (152.3(2)° für Si1-O2-Si2 bzw. 153.5(2)° für Si3-O5-Si4) und ein Winkel (143.9(2)° für Si5-O8-Si6) um etwa 10° von den anderen beiden Winkeln abweicht. Der mittlere Si-O-Si-Winkel in Verbindung ist kleiner als die mittleren Werte der entsprechenden Winkel in Verbindung <u>3</u> mit 163.64(9)° und in Verbindung <u>4</u> mit 170.8(2)°. Eine Abweichung von der Linearität ist in Verbindung <u>5</u> am deutlichsten zu erkennen.

3.2 Reaktionsverhalten der Verbindung $AI_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 3$ in Gegenwart von Wasser

Wasser ist ein zentrales Thema in biologischen Systemen und Biomolekülen, da sie durch Ausbildung von Wasserstoffbrückenbindungen zu Aminosäuren zu einer Selbstorganisation von supramolekularen Anordnungen führen. Die O-H...O und O-H-N-Wechselwirkungen sind bedeutend in der O-H-Bindungsaktivierung. In der metallorganischen Chemie hingegen wird dem Wasser eine andere Rolle zugeschrieben. Durch Aktivierung der O-H-Bindungen in metallorganischen Hydroxiden, können durch intermolekulare Wechselwirkungen der O-H-Bindungen neue Strukturen durch Selbstorganisationen erhalten werden ^[106-113]. Die Alkyle der Gruppe 13 im PSE können mit anderen Substraten in Gegenwart von geringen Mengen von Wasser interessante Käfigstrukturen bilden ^[104]. Die bewusste Zugabe an stöchiometrischen Mengen an Wasser zu den im Überschuss vorliegenden Trialkyl-Verbindungen des Aluminiums und Galliums, zeigt einen interessanten Aspekt der Gruppe 13 und seiner metallorganischen Chemie ^[105]. Auch die Umsetzung der Polyalumosiloxanverbindung 1 mit Wasser führt durch Selbstorganisation zu einer neuen Struktur^[58].

In dem vorangehenden Kapitel 3.1 wurden Basenaustauschreaktionen mit Verbindung $AI_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \underline{3}$ in Abwesenheit von Wasser besprochen. In diesem Kapitel sollen die synthetisierten und isolierten Verbindungen der Reaktion der bicyclischen Verbindung <u>3</u> mit verschiedenen Lewis-Basen in Gegenwart von Wasser in der Reaktionsführung vorgestellt und diskutiert werden.

Bei Umsetzung der Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> mit Lewis-Basen, wobei Spuren von Wasser zugegen sind, findet eine Selbstorganisation und Umorientierung der bicyclischen Ausgangsverbindung <u>3</u> zu neuen Molekül- und Gerüststrukturen statt. In den Abbildungen 37a und 37b sind diese neu erhaltenen Verbindungen aufgeführt. Bei den Umsetzungen wird die Ringgröße in Verbindung <u>3</u> verändert, wobei eine Reihe verschiedener Ringgrößen erhalten werden: von sechsgliedrigen Ringen bis hin zu zwölfgliedrigen Ringen, zu Spiroverbindungen oder zu Verbindungen mit annelierten Ringen sind nahezu alle Ringgrößen für Alumosiloxanverbindungen zu finden.

Abbildung 37a: Reaktionsprodukte der Reaktion von Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> mit verschiedenen Lewis-Basen in Gegenwart von Wasser.

HO

HO

a: + 2 H₂O; - (Ph₂Si(OH))₂O; RT; Toluol

10.111

 \mathbf{C}

c: + N(C₂H₅)₃; - H₂O;Rückfluss; Toluol

Ph₂Si

Ó

Ph₂Si

SiPh₂

iHPh₂

. SiPh₂

SiPh₂

റ

 $--> [(Ph_2SiO)_2O]AI[(Ph_2SiO)_2OH \cdot N(C_2H_5)_3] \mathbf{7}$

O

0

--> Al2[(OSiPh2)2O]2(OH)2 3a

b: +2 (Ph₂Si(OH))₂O; + 2 N(C₂H₅)₃; - 2 H₂O; 50-60°C; Toluol --> [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH \cdot N(C₂H₅)₃]}₂ <u>6</u>

d: +2 $(Ph_2Si(OH))_2O$; + 2 $N(C_2H_4)_3N$; - 2 H_2O ; 50-60°C; Toluol --> [(Ph_2SiO)₂O]₂{Al[(Ph_2SiO)₂OH · N(C_2H_4)₃N]}₂ **8**

f: x 2; RT; Aceton --> [(Ph₂SiO)₈Al(AlO(OH))₄] · 4 OC(CH₃)₂ 10

- SiPh₂ ò SiPh₂ Ĥ $\dot{N}(C_2H_5)_3$
- e: + (Ph₂Si(OH))₂O; + 2 HN(C₂H₅)₃; H₂O; RT; Toluol --> [(Ph₂Si(OH))₂O]₂Al₂O[(Ph₂SiO)₂O] · 2 HN(CH₂CH₃)₂ 9

g: x2; RT; THF --> [(Ph₂SiO)₈(AlO_{1,5})₄] · 2 THF<u>11</u>

52

Die erfolgten strukturellen Neuorientierungen werden auf die höhere Acidität des Wassermoleküles und auf die hohe Ladungsdichte des kleinen Al³⁺-Ions zurückgeführt ^[6,77-80]. Es werden neue Molekülgerüste erhalten, die nicht zuletzt auch wegen der unterschiedlichen Basizität und sterischen Raumbeanspruchung der koordinierenden Lewis-Basen unterschiedliche Grundstrukturen aufzeigen.

Es wird angenommen, dass bei der Bildung der neuen Verbindungen <u>6</u> bis <u>11</u> ein Übergangszustand $[(Ph_2SiO)_2O]_2[AI(OH)]_2$ <u>3a</u> durchlaufen wird, welches die Bildung der verschiedenen Reaktionsprodukte erklären könnte. Die Neuordnungsreaktionen von Verbindung <u>3</u> zu den neuen Verbindungen kann durch die Präsenz von Wasser verstanden werden. Zunächst wird ein Disiloxan-1,3-Diolmolekül <u>2</u> von dem Grundgerüst der Verbindung <u>3</u> abgespalten und durch jeweils eine Hydroxylgruppe an jedem Aluminiumatom substituiert. Ausgehend von diesem Übergangszustand <u>3a</u> können die Stöchiometrien und Strukturen der nachfolgend gebildeten Verbindungen <u>6</u> bis <u>11</u> verstanden werden (vgl. Abbildung 38).

Abbildung 38: Mögliche Bildung eines Übergangszustandes 3a.

Durch Umlagerung, Kondensation bzw. Dimerisierung werden die unter Abbildung 37a und 37b aufgeführten Produkte erhalten. Auf den folgenden Seiten werden diese Verbindungen vorgestellt.

3.2.1 Reaktionen von Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ 3 mit Aminen

Umsetzungen von Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> mit Aminen in Gegenwart von Wasser führen unter Zerstörung des bicyclischen Grundgerüstes der Ausgangsverbindung <u>3</u> zu neuen spirocyclischen Verbindungen. Bei Umsetzung von Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> mit Triethylamin kann eine Reaktion zu zwei unterschiedlichen Produkten beobachtet werden, die durch die Temperaturunterschiede während der Reaktionsführung bedingt sind. Während bei leichter Erwärmung, 50 - 60 °C, eine Umsetzung der bicyclischen Verbindung <u>3</u> mit Triethylamin zu der Dispiroverbindung [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N(CH₂CH₃)₃]₂ <u>6</u> führt, entsteht bei einer Reaktion von Verbindung <u>3</u> mit Triethylamin bei höheren Temperaturen unter Rückfluss des Lösungsmittels die spirocyclische Verbindung [(Ph₂SiO)₂O]Al[(Ph₂SiO)₂OH · N(CH₂CH₃)₃]<u>7</u> (vgl. Abbildung 39).

Lässt man Verbindung <u>3</u> mit der Lewis-Base Tris(ethylen)diamin N((CH₂)₂)₃N reagieren, wird über eine Neuorientierung des Grundgerüstes der Ausgangsverbindung $\underline{3}$ eine weitere Dispiroverbindung, die neue Verbindung $[(Ph_2SiO)_2O]_2[AI[(Ph_2SiO)_2OH \cdot N((CH_2)_2)_3N]]_2$ 8, erhalten. Die Gerüststruktur von zu Gerüststruktur Verbindung 8 ist identisch der von Verbindung $[(Ph_2SiO)_2O]_2[AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]]_2$ 6 (s. Abbildung 39).

Eine Umsetzung von Alumosiloxan <u>3</u> mit Diethylamin $HN(CH_2CH_3)_2$ führt ebenso unter Neuordnung des bicyclischen Grundgerüstes von Verbindung <u>3</u> unter Selbstorganisation zur Bildung der neuen Verbindung $[(Ph_2Si(OH))_2O]_2AI_2O[(Ph_2SiO)_2O] \cdot 2 HN(CH_2CH_3)_2$ <u>9</u> (s. Abbildung 39).

Abbildung 39: Reaktion von $Al_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \underline{3}$ mit verschiedenen Aminen in Gegenwart von Wasser.

In allen vier neuen Verbindungen $[(Ph_2SiO)_2O]_2[AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]]_2 \underline{6}$, $[(Ph_2SiO)_2O]AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3] \underline{7}$, $[(Ph_2SiO)_2O]_2[AI[(Ph_2SiO)_2OH \cdot N((CH_2)_2)_3N]]_2 \underline{8}$ und $[(Ph_2Si(OH))_2O]_2AI_2O[(Ph_2SiO)_2O] \cdot 2 HN(CH_2CH_3)_2 \underline{9}$ erfolgt zunächst eine Zerstörung der bicyclischen Ausgangsverbindung $\underline{3}$, gefolgt von einer Neuordnung des Grundgerüstes der Startverbindung.

Dabei sind in allen Verbindungen neben den neuen stabilen mehrgliedrigen Ringgrößen (≥ achtgliedrige Ringe), sechsgliedrige Ringe enthalten. Die Charakterisierung der Verbindungen erfolgt mittels Einkristallröntgenstrukturanalyse und mit spektroskopischen Methoden, sowie der C-, H-, und N-Elementaranalyse. Verbindung [(Ph₂SiO)₂O]AI[(Ph₂SiO)₂OH · N(CH₂CH₃)₃] **7** stellt die erste Verbindung ihrer Art mit zwei spirocyclisch verbundenen sechsgliedrigen Ringen dar, worin Aluminium und Silicium über Sauerstoff miteinander verbunden sind. Zwölfgliedrige Ringe, wie sie in den Verbindungen [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N(CH₂CH₃)₃]}₂ 6 und $[(Ph_2SiO)_2O]_2[AI[(Ph_2SiO)_2OH \cdot N((CH_2)_2)_3N]]_2$ **8** zu sehen sind, sind hingegen [52,53,84] literaturbekannt Die Ringspannungsenergie von sechsaliedrigen Cvclosiloxanringen beträgt 16 – 21 kJ*mol⁻¹, während Cyclotetrasiloxane und größere Ringe nahezu keine Ringspannungsenergie besitzen ^[81,82]. Gewöhnlich bilden Metallsiloxane mindestens achtgliedrige Ringe, um die Ringspannungsenergie zu umgehen ^[47,53,55,56,72-74,81-83,88,90,91,95]. Verbindung <u>9</u> besitzt somit die bekannteste und u.a. stabilste Ringgröße für Metallsiloxane mit acht Atomen im Ring. Abgesehen [49-51,114] wenigen Halogen substituierten Alumosiloxanen sind höchst von angespannte fünf- und sechsgliedrige Ringe mit Sauerstoff-, Aluminium- und Silicium-Atomen in der Regel nur unter Verwendung von Di- und Trisilaneinheiten bekannt ^[50,51,115]. Dabei sind die sechsgliedrigen Ringe deformiert und haben eine irreguläre Sattelkonfiguration.

Um eine Wechselwirkung oder eine konkurrierende Reaktion des Lösungsmittels mit den Lewis-Basen zu vermeiden, werden die Reaktionen in dem Lösungsmittel Toluol durchgeführt.

In diesem Teil der Arbeit werden die durch Reaktion von Alumosiloxan $Al_2[(SiOPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \mathbf{3}$ mit verschiedenen Aminen synthetisierten und isolierten Alumosilicate $[(Ph_2SiO)_2O]_2\{Al[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]\}_2 \mathbf{6}$, $[(Ph_2SiO)_2O]Al[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3] \mathbf{7}$, sowie die Verbindungen $[(Ph_2SiO)_2O]_2\{Al[(Ph_2SiO)_2OH \cdot N((CH_2)_2)_3N]\}_2 \mathbf{8}$ und $Al_2O[(OPh_2Si)_2O]_3 \cdot 2 H_2N(CH_2CH_3)_2 \mathbf{9}$ vorgestellt.

3.2.1.1 Synthese von [(Ph₂SiO)₂O]₂{AI[(Ph₂SiO)₂OH \cdot N(CH₂CH₃)₃]₂ <u>6</u>

Zur Darstellung von Verbindung $[(Ph_2SiO)_2O]_2[Al[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]]_2$ **<u>6</u>** wird die Startverbindung **<u>3</u>** mit zwei Äquivalenten N(CH_2CH_3)_3 und wenigen Tropfen destilliertes Wasser umgesetzt. Der Reaktionsansatz wird eine Stunde bei 50-60 °C gerührt. (s. Gleichung (10)).

$$Al_{2}[(OSiPh_{2})_{2}O]_{3} \cdot 2 O(C_{2}H_{5})_{2} \xrightarrow{+ H_{2}O} + 2 N(C_{2}H_{5})_{3}, \text{ Toluol,} \\ \underline{2 \ h \ 50-60^{\circ}C, 12 \ h \ RT} \\ \underline{- 2 \ O(C_{2}H_{5})_{2}} \xrightarrow{} [(Ph_{2}SiO)_{2}O]_{2}\{Al[(Ph_{2}SiO)_{2}OH \cdot N(C_{2}H_{5})_{3}]\}_{2} \\ \underline{3} \qquad \underline{3} \qquad \underline{6}$$

Gleichung (10)

Nach Reduzieren des Lösungsmittels um die Hälfte seines Ausgangsvolumens kristallisiert Verbindung <u>6</u> nach 12 Stunden bei Raumtemperatur aus Toluol als farblose Kristalle mit einer Ausbeute von 57 % (d. Th.) aus. In Abbildung 40 ist die Molekülstruktur von Verbindung <u>6</u> zu sehen.

Abbildung 40: Molekülstruktur von $[(Ph_2SiO)_2O]_2$ {Al[$(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3$]}₂ <u>6</u>.

Die Bildung von Verbindung 6 kann durch eine Ringöffnungsreaktion des bicyclischen Ringes von 3 und unter Addition eines weiteren 1,3-Dihyrdoxo-1,1,3,3tetraphenyldisiloxanes 2 in Gegenwart von Triethylamin und Wasser erklärt werden. Es wird angenommen, dass die Bildung der Verbindung 6 über den in Abbildung 41 gezeigten Mechanismus verlaufen sein könnte. Demnach führen zwei Moleküle der Ausgangsverbindung den postulierten Übergangszustand 3 über $[(Ph_2SiO)_2O]_2[AI(OH)]_2$ 3a Bildung der Alumosilicatverbindung zur neuen

 $[(Ph_2SiO)_2O]_2[AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]]_2$ 6. Hierbei wird angenommen, dass zunächst ein Triethylaminmolekül am Sauerstoffatom O¹ des durch Hydrolyse abgespaltenen Disiloxandiolmoleküles 2 koordiniert (Schritt 1). Dadurch wird dieses Sauerstoffatom basischer (O⁻) und greift am elektropositiven Aluminiumatom Al¹ zur Sättigung dessen Elektronenmangels an (Schritt2). Das Sauerstoffatom der Hydroxylgruppe O²H am anderen frei beweglichen Ende des nun am Al¹-Atom koordinierten Disiloxandiolmoleküles greift ebenso am Al¹-Atom an (Schritt 3). Dabei spaltet sich das Proton dieser Hydroxylgruppe mit der OH-Gruppe am Al¹-Atom, als Wassermolekül ab (Schritt 4). Die Schritte 1-4 finden ebenso an dem Al²-Atom statt, so dass die dispirocyclische Verbindung 6 mit einem mittleren zwölfgliedrigen Ring und zwei sechsgliedrigen Ringen an jedem der Al-Atome gebildet wird. Der zwölfgliedrige Ring, der auch in der angenommenen Übergangsverbindung 3a vorliegt, und ebenso bereits in der Ausgangverbindung 3 vorhanden war, bleibt erhalten. Das Triethylamin in dem Endprodukt 6 fungiert nicht mehr als Lewis-Base, als Elektronendonator, sondern als Brønsted-Base, als Protonenakzeptor. Während das $N(CH_2CH_3)_3$ in der in Kapitel 3.1.1 besprochenen Verbindung <u>4</u> mit dem Aluminiumatom eine Lewis-Säure-Lewis-Base-Wechselwirkung eingeht, liegt in Verbindung 6 eine Wechselwirkung in Form von Wasserstoffbrückenbindungen vor.

Der starke basische Charakter des Triethylamins begünstigt neben der Gegenwart von Wasser die Umlagerungsreaktion zu Verbindung <u>6</u>.

Das ²⁹Si-CP-MAS-Festkörper-NMR-Spektrum weist zwei Signale bei -39.3 ppm und bei -53.6 ppm auf, die den Siliciumatomen im sechs-gliedrigen-Ring bzw. den Siliciumatomen im zwölf-gliedrigen-Ring zugeordnet werden.

Im aufgenommenen ¹³C-CP-MAS-Festkörper-NMR-Spektrum erwartet man Signale im Aromatenbereich für die Phenyl-C-Atome in Verbindung <u>6</u>. Die Signale bei 140.5 ppm werden den ipso C-Atomen am Silicium zugeordnet, das Signal bei 135.0 ppm den ortho-ständigen C-Atomen und das Signal bei 128.1 ppm den para-ständigen C-Atomen.

Die Aufnahme von IR-Spektren von Verbindung $[(Ph_2SiO)_2O]_2{AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]_2 \underline{6}}$ erfolgte ebenfalls als Feststoff in diffuser Reflexion auf KBr. Die Bande bei 2720 cm⁻¹ kann dem $[(CH_2CH_3)_3NH]^+$ -Ion zugeordnet werden, während die Banden bei 3323 cm⁻¹ und 3460 cm⁻¹ den N-H-Valenzschwingungen bzw. Wasser zugeschrieben werden.

3.2.1.2 Einkristallstrukturanalyse und Kristalldaten von $[(Ph_2SiO)_2O]_2{AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]}_2 6$

Für Einkristallröntgenstrukturanalyse dispirocyclischen die der Verbinduna $[(Ph_2SiO)_2O]_2[AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]]_2$ 6 konnten geeignete Kristalle nach Einengen der Mutterlösung bei Raumtemperatur erhalten und isoliert werden. Die Struktur wurde mittels direkter Methoden bestimmt, in der alle Nichtwasserstoffatome gefunden und anisotrop verfeinert werden konnten. Die Lage der Wasserstoffatome wurden durch Verwendung entsprechender idealisierter Geometrien berechnet. Nach Bestimmung und anschließender Verfeinerung der erhaltenen Daten der Gitterkonstanten ergab sich die trikline Raumgruppe P-1 für Verbindung 6. Der Zuverlässigkeitsfaktor für die so erhaltene Struktur hat einen Wert von R = 0.045.

Die nachstehenden Tabellen 6 und 7 enthalten die Daten zu dem vermessenen Einkristall sowie ausgewählte Bindungsabstände und –winkel zu Verbindung $[(Ph_2SiO)_2O]_2$ {Al[(Ph_2SiO)_2OH · N(CH_2CH_3)_3]}_2 <u>6</u>.
Tabelle 6: Kristalldaten und Strukturverfeinerung für Verbindung $[(Ph_2SiO)_2O]_2{AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]}_2 6$

Identifikationscode	sh2461		
Summenformel	C108 H112 AI2 N2 O12 Si8		
Molmasse [g/mol]	1908.68		
Messtemperatur [K]	100(2)		
Wellenlänge [Å]	0.71073		
Kristallsystem	Triclinic		
Raumgruppe	P-1		
Gitterkonstanten	a = 13.8375(3) Å	α= 91.1520(10)°.	
	b = 16.3265(4) Å	β= 91.5570(10)°.	
	c = 23.4351(5) Å	γ = 107.2190(10)°.	
Zellvolumen [Å ³]	5053.0(2)		
Anzahl der Formeleinheiten Z	2		
Dichte (berechnet)	1.254 Mg/m ³		
Absorptionskoeffizient [mm ⁻¹]	0.185		
F(000)	2016		
Kristallabmessungen [mm ³]	0.5 x 0.3 x 0.25		
Messbereich θ [°]	1.31 to 30.82		
hkl - Indexbereich	-19<=h<=19, -23<=k<=2	3, -33<=l<=33	
Gemessene Reflexe	98220		
Symmetrieunabhängige Reflexe	31084 [R(int) = 0.0440]		
Vollständigkeit des Datensatzes (bis θ = 3	0.82°)	98.0 %	
Absorptionskorrektur	Multiscan		
Strukturverfeinerungsmethode	Full-matrix least-squares	on F ²	
Daten / Einschränkungen / Parameter	31084 / 0 / 1203		
Güte des Fit auf F ²	1.004		
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0446, wR2 = 0.09	993	
R-Werte (alle Daten)	R1 = 0.0817, wR2 = 0.11	56	
Restelektronendichte (min./max.) [e/Å-3]	0.479 and -0.354		

Tabelle7:AusgewählteBindungslängen[Å]bzw.-winkel[°]fürVerbindung $[(Ph_2SiO)_2O]_2{Al[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]}_2$ **6**.

Molekül 1		Molekül 2	
Al(1)-O(6)#1	1.724(1)	AI(2)-O(12)#2	1.717(1)
AI(1)-O(2)	1.726(1)	AI(2)-O(8)	1.725(1)
AI(1)-O(3)	1.744(1)	AI(2)-O(11)	1.757(1)
AI(1)-O(5)	1.788(1)	AI(2)-O(9)	1.793(1)
Si(1)-O(6)	1.599(1)	Si(5)-O(12)	1.589(1)
Si(1)-O(1)	1.631(1)	Si(5)-O(7)	1.630(1)
Si(2)-O(2)	1.593(1)	Si(6)-O(8)	1.601(1)
Si(2)-O(1)	1.626(1)	Si(6)-O(7)	1.628(1)
Si(3)-O(3)	1.604(1)	Si(7)-O(9)	1.628(1)
Si(3)-O(4)	1.647(1)	Si(7)-O(10)	1.635(1)
Si(4)-O(5)	1.626(1)	Si(8)-O(11)	1.605(1)
Si(4)-O(4)	1.637(1)	Si(8)-O(10)	1.648(1)
O(6)-Al(1)#1	1.724(1)	O(12)-AI(2)#2	1.716(1)
O(6)#1-Al(1)-O(2)	108.94(6)	O(12)#2-AI(2)-O(8)	110.09(6)
O(6)#1-AI(1)-O(3)	111.67(6)	O(12)#2-AI(2)-O(11)	110.78(6)
O(2)-AI(1)-O(3)	111.81(6)	O(8)-AI(2)-O(11)	111.44(5)
O(6)#1-Al(1)-O(5)	108.95(6)	O(12)#2-AI(2)-O(9)	108.76(6)
O(2)-AI(1)-O(5)	110.17(6)	O(8)-AI(2)-O(9)	111.46(6)
O(3)-Al(1)-O(5)	105.22(6)	O(11)-AI(2)-O(9)	104.15(6)
O(6)-Si(1)-O(1)	110.78(6)	O(12)-Si(5)-O(7)	112.76(6)
O(2)-Si(2)-O(1)	113.22(6)	O(8)-Si(6)-O(7)	114.22(6)
O(3)-Si(3)-O(4)	110.93(6)	O(9)-Si(7)-O(10)	110.26(6)
O(5)-Si(4)-O(4)	110.17(6)	O(11)-Si(8)-O(10)	110.29(6)
Si(2)-O(1)-Si(1)	159.59(8)	Si(6)-O(7)-Si(5)	157.78(8)
Si(2)-O(2)-Al(1)	157.58(8)	Si(6)-O(8)-Al(2)	154.12(7)
Si(3)-O(3)-Al(1)	130.82(7)	Si(7)-O(9)-Al(2)	125.60(7)
Si(4)-O(4)-Si(3)	131.29(7)	Si(7)-O(10)-Si(8)	131.90(7)
Si(4)-O(5)-Al(1)	129.86(7)	Si(8)-O(11)-Al(2)	129.52(7)
Si(1)-O(6)-AI(1)#1	156.73(8)	Si(5)-O(12)-Al(2)#2	163.58(8)

3.2.1.3 Beschreibung der Molekülstruktur von $[(Ph_2SiO)_2O]_2{AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]}_2 6$

Bei Umsetzung von Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> Triethylamin wird Verbindung [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N(CH₂CH₃)₃]}₂ <u>6</u> erhalten. In der Kristallstruktur liegen zwei Moleküle der Verbindung <u>6</u> vor, die sich leicht voneinander unterscheiden. Im Folgenden wird lediglich auf Molekül 1 (vgl. Tabelle 7) Bezug genommen.

In Verbindung <u>6</u> liegt eine binukleare tetrakoordinierte Aluminium-Spezies vor. Die Molekülstruktur von $[(Ph_2SiO)_2O]_2{Al[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]}_2$ <u>6</u> ist in Abbildung 42 gezeigt. Verbindung <u>6</u> besteht aus drei spirocyclisch aneinander verknüpften Ringen, mit einem mittleren zwölfgliedrigen Al₂Si₄O₆-Ring, und zwei weiteren sechsgliedrigen AlSi₂O₃-Ringen, die jeweils über ein Aluminiumatom verknüpft sind (s. Abbildung 16). Die beiden verbrückenden Aluminiumatome liegen in verzerrt tetraedrischer Anordnung vor, mit Bindungswinkeln von 105.22(6)° für O3-Al1-O5 und 111.81(6)° für O2-Al1-O3. Der Mittelwert der O-Al-O-Winkel liegt bei 109.46°.

Abbildung 42: Molekülstruktur von [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N(CH₂CH₃)₃]}₂ 6, zur besseren Übersicht sind die organischen Reste in Stäbchenform dargestellt. Die Wasserstoffatome der Phenyl- und Ethylgruppen sind nicht eingezeichnet.

Während die sechs-gliedrigen Ringe nahezu planar vorliegen (Winkelsumme: 718.30°), ist der zwölf-gliedrige Alumosiloxanring nicht planar, wie es auch aus höheren Siloxanringsystemen bekannt ist [53,84]. Jedoch ist eine Aufweitung des zwölfgliedrigen Ringes im Vergleich zu dem zwölfgliedrigen Ring in der Ausgangsverbindung **3** zu erkennen. Durch das Verbinden von zwei Aluminiumatomen durch zwei (Ph₂Si)₂O₃²⁻-dianionische Disiloxandiolat-Liganden wird das zwölfgliedrige metallocyclische Fragment erhalten, welches eine pseudo-Sesselkonformation aufweist (vgl. Abbildung 43). An den Aluminiumatomen ist jeweils ein (Ph₂Si)₂O₂(OH)⁻-Anion gebunden, woraus die beiden AlSi₂O₃-Ringe hervorgehen. Verbindung 6 lässt sich als eine zweifach negativ geladene ionische Verbindung beschreiben, deren Ladungskompensation durch zwei Triethylammonium-Kationen erfolgt. Wie auch aus Abbildung 43 zu entnehmen ist, liegen die beiden Si1-O1-Si2-Elemente des Moleküls nahezu auf einer Ebene, zu der sich die O₂Al(OSiPh₂)₂O-Fragmente ober- bzw. unterhalb anordnen. Auch in anderen zwölfgliedrigen Disiloxan-Einheiten beinhaltenden Verbindungen sind solche nahezu Si-O-Si-Einheiten sehen, lineare zu wie zum Beispiel in Verbindung [Cr(=O)₂{(OSiPh₂)₂O}]₂ ^[84]. Wird eine Bestebene durch die Atome Si1, O1 und Si2 des zwölfgliedrigen Ringes und durch die Al1, Si3, Si4, O3, O4 und O5 Atome der sechsgliedrigen Ringe gezeichnet, so ist die nahezu senkrechte Anordnung der Ringe zueinander zu erkennen, mit einem Diederwinkel von 88.48° der beiden Ebenen zueinander (s. Abbildung 43, Tabelle 8). Die O3-Atome in den kleineren Ringen berühren die Ebene durch die Si1, O1 und Si2 Atome mit einem Abstand von +/- 0.1108 Å zu der Bestebene. Die Stickstoffatome der Triethylaminmoleküle liegen nahe an der Ebene durch die sechsgliedrigen Ringe mit einem Abstand von +/-0.6053 Å.

Abbildung 43: Molekülstruktur von [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N(CH₂CH₃)₃]}₂ 6 in der pseudo-Sesselkonformation dargestellt, unten: mit eingezeichneten Ebenen; zur besseren Übersicht wurden die Phenylringe und die Wasserstoffatome der Phenylringe und der Triethylaminmoleküle vernachlässigt ^[116].

Tabelle 8: Kleinste Fehlerquadrate der Ebenen und Abweichungen [Å] der einzelnen Atome. Die Gleichungen der Ebenen sind in der Form $m1^*x + m2^*y + m3^*z = d$, wobei x,y und z fraktionierte Koordinaten sind.

Ebene gelb[#] ("zwölfgliedriger Ring"): 0.6904 * x + (-0.7191) * y + (-0.0790) * z = -2.4989.

Si1	0.0132 Å	Si1 [#]	-0.0132 Å
Si2	0.0135 Å	Si2 [#]	-0.0135 Å
O1	-0.0243 Å	O1 [#]	0.0243 Å

Ebene rot [#]	("sechsaliedriger	Ring"): -0.1654	* x + (-0.0137)	* y + (-0.9861) * z = -0.8513.
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				,

Al1	-0.0458 Å	AI1 [#]	0.0458 Å
Si3	0.0171 Å	Si3 [#]	-0.0171 Å
Si4	-0.0275 Å	Si4 [#]	0.0275 Å
O3	-0.1226 Å	O3 [#]	0.1226 Å
O4	0.1660 Å	O4 [#]	-0.1660 Å
O5	-0.0859 Å	O5 [#]	0.0859 Å

Flächenwinkel [°] zwischen den Ebenen:

Ebene gelb[#] - Ebene rot[#] 88.48° [#] in Bezug auf Abbildung 17

Die Phenylringe an den Siliciumatomen in Verbindung <u>6</u>, befinden sich in der Betrachtungsebene der Sesselkonformation oberhalb bzw. unterhalb der Zwölfringebene, so dass eine gegenseitig geringe sterische Hinderung besteht (vgl. Abbildung 44). Verbindung <u>6</u> hat die Raumgruppe P-1 und besitzt als einziges Symmetrieelement ein Inversionszentrum, das sich im Zentrum der Ebene durch die Si1, Si2 und O1 Atome befindet.

Abbildung 44: Molekülstruktur von [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N(CH₂CH₃)₃]}₂ 6, die
Phenylringe an den Siliciumatomen, ordnen sich ober- und unterhalb der Zwölfringebene an.
Für eine bessere Übersicht sind die Wasserstoffatome der Phenylringe, sowie der
Triethylaminmoleküle nicht gezeigt.

Im Einkristall von Verbindung <u>6</u> konnten zwei N(CH₂CH₃)₃-Moleküle in unmittelbarer Nachbarschaft zu der Bispiroverbindung gefunden werden. Dabei ist jeweils ein Triethylaminmolekül über Wasserstoffbrückenbindung an ein O5-Atom in jeweils einem sechsgliedrigen AlSi₂O₃-Ring gebunden. Der O5^{...}H^{...}N-Wechselwirkungsabstand mit 2.8048(1) Å, ist ähnlich zu literaturbekannten O-H-N-[19,21,22,53,115] Wasserstoffbrückenbindungen Die Länge der Wasserstoffbrückenbindung legt nahe, dass sich das Proton, das zur Wasserstoffbrückenbindung beiträgt, näher am Stickstoffatom liegt als am Sauerstoffatom O5. Werden die Daten der NMR- und IR-Analysen herangezogen, bekräftigt, dass der wird die Annahme Ligand an Verbindung 6 mit Die Ausbildung Ammoniumcharakter vorliegt. der 05^{...}H^{...}N-Wasserstoffbrückenbindungen führt zu bedeutenden Änderungen in den AI-O-Bindungslängen: Während der Al1-O5-Abstand 1.788(1) Å ist, ist der Al1-O3-Abstand ohne koordinierendes Amin mit 1.744(1) Å kürzer. Der Mittelwert der Al-O-Bindungslängen im zwölfgliedrigen Ring ist 1.725(1) Å lang. Die Koordination des Trietyhlammonium-Ions führt ebenso zu einer Streckung der Si4-O5(AI)-Bindung mit 1.626(1) Å, im Vergleich zu 1.604(1) Å für die Si3-O3(AI)-Bindung im sechsgliedrigen Alumosiloxanring. Die Streckung der Al1-O5- und Si4-O5-Abstände sprechen

Der elektropositivere Einfluss des Aluminiumatoms (EN nach Pauling: 1.61) im Vergleich zum Siliciumatom (EN nach Pauling: 1.90), spiegelt sich in den Bindungslängen in den sechs- und zwölfgliedrigen Ringen wider. Die Si-O(Al) Bindungen in den sechs-gliedrigen Ringen (Si3-O3, Si4-O5) haben eine durchschnittliche Länge von 1.615(1) Å, während die Si-O-Bindungslängen in den Si-O-Si-Disiloxaneinheiten (Si3-O4, Si4-O4) durchschnittlich 1.642(1) Å betragen. Denselben Effekt kann man in dem größeren Zwölfring beobachten. Während Si-O(Al)-Bindungen (Si1-O6, Si2-O2) sehr kurze mittlere Bindungslängen von 1.596(1) Å aufweisen, sind die Si-O-Bindungslängen in den Si1-O1-Si2-Gruppen wesentlich länger (durchschnittlich 1.628(1) Å). Diese Si-O-Bindungsabstände für die Siloxaneinheiten, wie sie in Verbindung <u>6</u> vorliegen, sind typisch für strukturmäßig nicht angespannte Siloxane [^{117]}.

Die Si1-O1-Si2-Einheiten tendieren zur Linearität mit einem Bindungswinkel von 159.59(8)°. Während die Si3-O4-Si4-Bindungswinkel der sechsgliedrigen Ringe mit 131.29(7)° gut vergleichbar sind mit den mittleren Werten für die Si-O-Si-Winkeln in Hexaphenyltrisiloxan mit durchschnittlich 132-133° ^[118], ist der Si1-O1-Si2-Winkel mit einem Wert von 159.59(8)° größer im Vergleich zu den Si-O-Si-Winkel in zwölfgliedrigen Cyclosiloxanverbindungen mit durchschnittlich 153.8° ^[117]. Der räumliche Aufbau der Siloxanfunktionen ist für seine Flexibilität bekannt, um einer Vergrößerung der sterischen Anspannung entgegen zu wirken. Diese aufgeweiteten

Si-O-Si-Winkel und auch die generell eher planare Konformation in Verbindung <u>6</u> verhindert eine unvorteilhafte sterische Wechselwirkung der raumbeanspruchenden Phenylsubstituenten an den Siliciumatomen untereinander und mögliche Wechselwirkungen mit den Ethylgruppen in den Triethylaminmolekülen. Die Beobachtung mit den aufgeweiteten Si-O-Si-Bindungswinkeln ist vergleichbar mit ähnlichen zwölfgliedrigen Metallsiloxanverbindungen ^[84,90].

Die Siliciumatome in Verbindung <u>6</u> liegen ebenso wie die Aluminiumatome in Verbindung <u>6</u> in verzerrt tetraedrischer Anordnung vor, mit mittleren Winkeln von 111.99(6)° für die O-Si-O-Winkel um die Si1- und Si2-Atome im zwölfgliedrigen Ring, und mit mittleren Winkel von 110.55(6)° für die O-Si-O- Winkel um die Si3- und Si4-Atome in den sechsgliedrigen Ringen. In Abbildung 45 sind Polyederdarstellungen von Verbindung <u>6</u> gezeigt. Darin sind die eckenverknüpften Tetraeder, die die Sauerstoffatome und die Kohlenstoffatome der Phenylringe um die Siliciumatome bzw. die Sauerstoffatome um die Aluminiumatome bilden, zu sehen.

Abbildung 45: Polyederdarstellungen von [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N(CH₂CH₃)₃]}₂ <u>6</u> aus verschiedenen Perpektiven, zur besseren Übersicht wurden die Phenylringe und die Wasserstoffatome vernachlässigt.

3.2.1.4 Synthese von [(Ph₂SiO)₂O]AI[(Ph₂SiO)₂OH · N(CH₂CH₃)₃] 7

Die Reaktion von Verbindung <u>3</u> mit zwei Äquivalenten Triethylamin und wenigen Tropfen destilliertem Wasser wird in Toluol als Reaktionsmedium durchgeführt. Der Reaktionsansatz wird 20 Minuten unter Rückfluss des Lösungsmittels erhitzt und anschließend weitere zwei Stunden bei Raumtemperatur gerührt. Nach Einengen des Reaktionsansatzes auf die Hälfte des Ausgangsvolumens (unter reduziertem Druck) (s. Gleichung (11)), werden nach 12 Stunden bei RT farblose Kristalle von Verbindung [(Ph₂SiO)₂O]AI[(Ph₂SiO)₂OH · N(CH₂CH₃)₃] <u>7</u> erhalten (Ausbeute: 77 % d. Th.).

$$\begin{array}{c} \begin{array}{c} & + H_2 O \\ & + 2 \ N(C_2 H_5)_3, \ \text{Toluol} \\ \hline 20 \ \text{min Rückfluss}, \ 12 \ h \ RT \\ \hline & - 2 \ O(C_2 H_5)_2 \end{array} \end{array} \begin{array}{c} (Ph_2 SiO)_2 O] \text{Al}[(Ph_2 SiO)_2 O H \cdot N(C_2 H_5)_3] \\ \hline & I \end{array}$$

Gleichung (11)

Die Molekülstruktur der Verbindung 7 ist in Abbildung 46 dargestellt.

Abbildung 46: Molekülstruktur von $[(Ph_2SiO)_2O]Al[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3] \mathbf{7}$.

Es wird angenommen, dass die Bildung von der Verbindung 7 wie folgt abgelaufen ist: Zunächst koordiniert ein Triethylaminmolekül an einer der OH-Gruppen des im ersten Kondensationsschritt abgespaltenen Disiloxandiolmoleküles (Schritt 1). Das Sauerstoffatom der genannten OH-Gruppe wird in der schematischen Darstellung als O¹ beschrieben. Das durch diese Koordination negativierte Sauerstoffatom O¹ greift nun am Al¹-Atom des Übergangszustandmoleküls [(Ph₂SiO)₂O]₂[Al(OH)]₂ **3a** an O²-Atom Das am anderen Ende des koordinierenden (Schritt 2). Disiloxandiolmoleküles greift ebenso am Al¹-Atom an (Schritt 3), wobei sich ein Wassermolekül abspaltet (Schritt 4). Vermutlich werden aufgrund der erhöhten Temperatur in der Reaktionsführung die Al¹-O- bzw. die Al²-O-Bindungen aufgebrochen, gefolgt von einer neuen Orientierung der O-Atome der Siloxaneinheiten an jeweils das andere Al-Atom (Schritt 5). Zuvor laufen alle Schritte 1-4 an beiden Al-Atomen ab, gefolgt von Schritt 5. In Abbildung 21 wurden zur besseren Übersicht nur die Vorgänge an Al¹ gezeigt. Folglich entstehen aus einem Alumosiloxanmolekül <u>3</u> und zwei Molekülen Disiloxandiol zwei Moleküle von Verbindung <u>7</u> (s. Abbildung 47).

Abbildung 47: Postulierter Mechanismus zur Darstellung von $[(Ph_2SiO)_2O]AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3] \mathbf{7}.$

Das ¹³C-CP-MAS-NMR-Spektrum zeigt Peaks im Aromatenbereich für die Phenyl-C-Atome. Die Signale bei 140.5 ppm werden den quartären C-Atomen an den Siliciumatomen, bei 135.0 ppm den ortho-ständigen C-Atomen und bei 128.2 ppm den para-ständigen C-Atomen der Phenylringe zugeordnet.

²⁹Si-CP-MAS-NMR-Spektrum Das zeigt für [(Ph₂SiO)₂O]AI[(Ph₂SiO)₂OH N(CH₂CH₃)₃] 7 drei Signale bei -35.7 ppm, -39.2 ppm und ein Signal bei -53.3 ppm. Der Peak bei -35.7 ppm wird dem Siliciumatom zugeordnet, das als nächstes am Sauerstoffatom lieat. an welchem das Triethylaminmolekül durch Wasserstoffbrückenbindung koordiniert. Das Signal bei -39.2 ppm wird dem zweiten Siliciumatom in demselben Ring zugeordnet. Die Siliciumatome in dem zweiten Sechsring sind sterisch gesehen gleich, und zeigen daher gemeinsam ein Signal bei -53.3 ppm.

Die Aufnahme der IR-Spektren von Verbindung <u>7</u> erfolgt an Feststoffen in diffuser Reflexion auf KBr. Die beiden Banden bei 2720.58 cm⁻¹ und bei 1475.95 cm⁻¹ im Fingerprint Bereich deuten auf das Vorliegen von NH-Valenz- bzw. NH-Deformationsschwingungen eines Triethylammoniumions hin.

3.2.1.5 Einkristallstrukturanalyse und Kristalldaten von $[(Ph_2SiO)_2O]AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3] 7$

Nach Einengen der Mutterlösung von Verbindung <u>7</u> konnten geeignete Kristalle erhalten und isoliert werden, um anschließend eine Röntgenkristallstrukturanalyse durchzuführen. Nach Bestimmung und Verfeinerung der Gitterkonstanten ergab sich die trikline Raumgruppe P-1. Sämtliche Nichtwasserstoffatome wurden gefunden und anisotrop verfeinert. Die Lagen der Wasserstoffatome wurden durch Verwendung entsprechender idealisierter Geometrien berechnet. Für die Struktur ergab sich ein Zuverlässigkeitsfaktor von R = 0.057.

Die Daten zum Kristall und zur Strukturbestimmung sowie ausgewählte Bindungslängen und -winkel sind in den folgenden Tabellen 9 und 10 zusammengefasst. **Tabelle 9:** Kristalldaten und Strukturverfeinerung von [(Ph_2SiO)₂O]Al[(Ph_2SiO)₂OH ·N(CH_2CH_3)₃] **7**.

Identifikationscode	sh2784		
Summenformel	C54 H56 AI N O6 Si4		
Molmasse [g/mol]	954.34		
Messtemperatur [K]	203(2)		
Wellenlänge [Å]	0.71073		
Kristallsystem	Triclinic		
Raumgruppe	P-1		
Gitterkonstanten	a = 14.4359(3) Å	α= 90.7510(10)°.	
	b = 18.7978(4) Å	β= 90.0050(10)°.	
	c = 18.9746(4) Å	$\gamma = 94.9100(10)^{\circ}.$	
Zellvolumen [ų]	5129.67(19)		
Anzahl der Formeleinheiten Z	4		
Dichte (berechnet)	1.236 Mg/m ³		
Absorptionskoeffizient [mm ⁻¹]	0.182		
F(000)	2016		
Kristallabmessungen [mm ³]	0.37 x 0.29 x 0.15		
Messbereich θ [°]	1.09 to 28.43		
hkl - Indexbereich	-19<=h<=19, -25<=k<=2	5, -23<=l<=25	
Gemessene Reflexe	93905		
Symmetrieunabhängige Reflexe	25526 [R(int) = 0.0434]		
Vollständigkeit des Datensatzes (bis θ = 2	8.43°)	98.8 %	
Absorptionskorrektur	Multiscan		
Max. und Min. Transmission	0.9735 and 0.9362		
Strukturverfeinerungsmethode	Full-matrix least-squares	on F ²	
Daten / Einschränkungen / Parameter	25526 / 0 / 1198		
Güte des Fit auf F ²	1.087		
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0573, wR2 = 0.14	154	
R-Werte (alle Daten)	R1 = 0.1068, wR2 = 0.17	703	
Restelektronendichte (min./max.) [e/Å-3]	1.422 and -0.747		

Tabelle 10: Ausgewählte Bindungslängen [Å] bzw. –winkel [°] für Verbindung $[(Ph_2SiO)_2O]AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]$ **7**.

Molekül 1		Molekül 2	
Al(1)-O(5)	1.740 (2)	AI(2)-O(9)	1.732(2)
AI(1)-O(1)	1.744(2)	AI(2)-O(10)	1.737(2)
AI(1)-O(3)	1.745(2)	AI(2)-O(11)	1.744(2)
AI(1)-O(4)	1.773(2)	AI(2)-O(7)	1.765(2)
Si(1)-O(1)	1.605(2)	Si(5)-O(7)	1.625(2)
Si(1)-O(2)	1.645(2)	Si(5)-O(8)	1.643(2)
Si(2)-O(3)	1.606(2)	Si(6)-O(9)	1.602(2)
Si(2)-O(2)	1.647(2)	Si(6)-O(8)	1.637(2)
Si(3)-O(5)	1.602(2)	Si(7)-O(10)	1.601(2)
Si(3)-O(6)	1.636(2)	Si(7)-O(12)	1.648(2)
Si(4)-O(4)	1.628(2)	Si(8)-O(11)	1.607(2)
Si(4)-O(6)	1.635(2)	Si(8)-O(12)	1.650(2)
O(5)-AI(1)-O(1)	110.89(9)	O(9)-AI(2)-O(10)	112.0(1)
O(5)-Al(1)-O(3)	113.24(9)	O(9)-AI(2)-O(11)	111.7(1)
O(1)-Al(1)-O(3)	105.89(9)	O(10)-AI(2)-O(11)	106.42(9)
O(5)-Al(1)-O(4)	106.55(9)	O(9)-Al(2)-O(7)	107.08(9)
O(1)-Al(1)-O(4)	110.71(9)	O(10)-AI(2)-O(7)	109.9(1)
O(3)-Al(1)-O(4)	109.61(9)	O(11)-AI(2)-O(7)	109.70(9)
O(1)-Si(1)-O(2)	109.5(1)	O(7)-Si(5)-O(8)	109.2(1)
O(3)-Si(2)-O(2)	109.9(1)	O(9)-Si(6)-O(8)	109.89(9)
O(5)-Si(3)-O(6)	109.79(9)	O(11)-Si(8)-O(12)	109.8(1)
O(4)-Si(4)-O(6)	109.3(1)	Si(4)-O(6)-Si(3)	133.9(1)
Si(1)-O(1)-AI(1)	131.4(1)	Si(5)-O(7)-Al(2)	128.7(1)
Si(1)-O(2)-Si(2)	130.9(1)	Si(6)-O(8)-Si(5)	133.5(1)
Si(2)-O(3)-Al(1)	129.5(1)	Si(6)-O(9)-Al(2)	129.1(1)
Si(4)-O(4)-Al(1)	128.0(1)	Si(7)-O(10)-Al(2)	130.5(1)
Si(3)-O(5)-Al(1)	129.5(1)	Si(8)-O(11)-AI(2)	127.6(1)
		Si(7)-O(12)-Si(8)	129.7(1)

3.2.1.6 Beschreibung der Molekülstruktur von $[(Ph_2SiO)_2O]AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3] \underline{7}$

In der Kristallstruktur liegen zwei Moleküle der Verbindung $[(Ph_2SiO)_2O]AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]$ 7 vor. Da ihre Abweichung zueinander gering ist, wird lediglich Molekül 1 (vgl. Tabelle 10) betrachtet. Die Verbindung 7 ist spirocyclisch aufgebaut, worin zwei (Ph₂SiO)₂O-Ketten über ein zentrales Al-Atom verbrückt sind. Der Diederwinkel der beiden sechs-gliedrigen Ringe zueinander beträgt nahezu 90° (88,61°). Neben der Spiroverbindung 7 befindet sich ein Triethylaminmolekül in direkter Nachbarschaft zu dem Spirocyclus, welches über eine N^{...}H^{...}O-Wasserstoffbrückenbindung an das Sauerstoffatom O4 gebunden ist (s. Abbildung 48). Die Struktur der spirocyclischen Verbindung 7 kann daher ebenso als ein über die (Ph₂Si)₂O₃²- und (Ph₂Si)₂O₂(OH) - Anionen chelatgebundenes Al³⁺-Ion beschrieben werden.

Abbildung 48: Molekülstruktur von [(Ph₂SiO)₂O]Al[(Ph₂SiO)₂OH · N(CH₂CH₃)₃] <u>7</u>, zur besseren Übersicht sind die organischen Reste in Stäbchenform dargestellt. Die Wasserstoffatome der Phenylringe sowie die der Triethylaminmoleküle sind nicht abgebildet.

Verbindung [(Ph_2SiO)₂O]Al[(Ph_2SiO)₂OH · N(CH_2CH_3)₃] <u>7</u> stellt eine spirocyclische "Alumosilicat"-Verbindung dar. Die negative Ladung des anionischen Spirocyclus [(O- SiPh₂-O-SiPh₂-O)₂Al]⁻ wird durch ein Triethylammonium-Kation $[HN(C_2H_5)_3]^+$ über Ausbildung einer Wasserstoffbrückenbindung zu dem Sauerstoffatom O4 kompensiert. Die Bindungslänge der Wasserstoffbrückenbindung ist N1^{...}O4 = 2.8423(1) Å lang und ist länger als der O^{...}H^{...}N-Abstand in Verbindung <u>6</u> (2.8048(1) Å) als auch literaturbekannter O^{...}H^{...}N-Bindungslängen ^[19,21,22,53,115].

In Verbindung <u>**7**</u> erhält das Aluminiumatom durch die Koordination von vier Sauerstoffatomen aus den beiden cyclischen Disiloxaneinheiten eine leicht verzerrt tetraedrische Anordnung. Die O-AI-O-Winkel schwanken von 105.89(9)° (O1-AI1-O3) bis zu 113.24(9)° (O3-AI1-O5) (Mittelwert: 109.48(9)°) und sind vergleichbar mit den entsprechenden Winkeln in anderen Silicatverbindungen wie beispielsweise [PyH]{Al[OSiPh₂(OSiPh₂)₂O]₂}, mit Trisiloxaneinheiten ^[53], oder [HNEt₃]{Al[(Cy₇Si₇O₁₂(SiMe₃))]₂} ^[21].

Die Koordination des Triethylaminmoleküles führt zu Änderungen in den Al-O(Si)-Bindungsabständen. Die Bindungslänge Al1-O4(H) ist mit 1.773(2) Å im Vergleich zu dem Mittelwert 1.743(2) Å der übrigen Al-O(Si)-Bindungsabständen länger, die von 1.740(2) bis 1.745(2) Å für Al1-O(1,3,5) variieren (vgl. Abbildung 49). Der Mittelwert aller Al-O(Si)-Bindungslängen in Verbindung 7 mit 1.751(2) Å ist deutlich länger als der durchschnittliche tetraedrische Al-O-Abstand in Alumosilicaten (1.761 Å)^[100]. In ähnlichen, aber nicht-anionischen Alumosiloxanen variieren die Al-O-Bindungslängen voneinander, wie beispielsweise Verbindung nicht SO stark in [(c-C₆H₁₁)₇Si₇O₁₂AI(OPPh₃)] mit Bindungslängen von 1.714(4) bis 1.718(4) Å ^[25]. In anionischen Alumosiloxanen sind diese unterschiedlichen Bindungslängen durch das Vorliegen eines Amin-Aduktes ebenso zu beobachten ^[21,53,57]. Die längere Bindungslänge von Al1-O4 weist auch auf einen koordinativen Charakter der Bindung hin.

Die Koordination des Triethylamins wird ebenso von einer leichten Dehnung der Si4-O4-Bindung begleitet. Während die Si4-O4-Bindungslänge 1.628(2) Å beträgt, sind die übrigen Si-O(Al)-Bindungen kürzer, mit 1.602(2) Å für Si3-O5, 1.605(2) Å für Si1-O1 und 1.606(2) Å für die Si2-O3-Bindung. Der Mittelwert der Si-O(Al)-Bindungen ist 1.604(2) Å. Die durchschnittliche Si-O(Al)-Bindungslänge in Verbindung [(Ph₂SiO)₂O]Al[(Ph₂SiO)₂OH · N(CH₂CH₃)₃] <u>7</u> ist gut vergleichbar mit den idealisierten Si-O-Bindungslängen in Alumosilicaten mit durchschnittlich 1.603 Å^[100]. Die Si4-O4-Bindungslänge wurde hierbei nicht mit einbezogen. Diese wegen der Koordination des Triethylaminmoleküls verlängerten Al1-O4- und Si4-O4-Bindungen, sind in vergleichender Weise ebenso in der ionischen Verbindung [PyH]{Al[OSiPh₂(OSiPh₂)₂O]₂}, als auch in weiteren ähnlichen anionischen Verbindungen zu beobachten ^[22,53]. Ebenso ist zu sehen, dass die Al1-O5- und Si3-O5 die kürzeren Bindungsabstände in den restlichen Al-O- bzw. Si-O-Bindungen haben.

Abbildung 49: Molekülstruktur von [(Ph₂SiO)₂O]Al[(Ph₂SiO)₂OH · N(CH₂CH₃)₃] <u>7</u>, zur besseren Übersicht wurden die Phenylringe sowie die Wasserstoffatome der Ethylgruppen des Amins vernachlässigt.

Die Siliciumatome nehmen ebenso wie das Aluminiumatom eine nahezu tetraedrische Anordnung ein, deren O-Si-O-Winkel von 109.3(1)° für O4-Si4-O6 bis 109.9(1)° für O3-Si2-O2 weit sind, mit einem durchschnittlichen Wert von 109.6(1)°. Im Vergleich zu ähnlichen Verbindungen sind die O-Si-O-Winkel in Verbindung <u>7</u> nahezu ideal mit dem Tetraederwinkel vergleichbar. In den meisten Verbindungen, die eine Disiloxaneinheit beinhalten, schwanken die O-Si-O-Winkel in der Größenordnung von etwa 106° bis 112° ^[84,88,132,133].

Der Mittelwert der Si-O-Si-Bindungswinkel in $[(Ph_2SiO)_2O]Al[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]$ <u>7</u> ist mit 132.4(1)° (Si1-O2-Si2 mit 130.9(1)° und Si3-O6-Si4 mit 133.9(1)°) etwas kleiner im Vergleich zu den Si-O-Si-Winkeln in Hexaphenyltrisiloxan mit durchschnittlich 132-133° ^[118].

In Abbildung 50 ist das Alumosilicat <u>7</u> mit eingezeichneten Tetraedern um die Aluminium- bzw. Siliciumatome, mit Sauerstoff- bzw. Kohlenstoffatomen an den Ecken der Polyeder, gezeigt.

Abbildung 50: Polyederdarstellung von $[(Ph_2SiO)_2O]AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]$ **7**, zur besseren Übersicht wurden die Phenylgruppen, sowie die H-Atome der Ethylgruppen des Amins vernachlässigt.

Wie bereits in der Einführung in dieses Kapitel erwähnt wurde, stellt Verbindung $[(Ph_2SiO)_2O]AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]$ **7** nach bestem Wissen die erste sechsgliedrige Verbindung von Disiloxanen mit vierbindigem und dadurch nahezu tetraedrisch koordiniertem Aluminium dar. Sechsgliedrige Ringe mit Almuminium und Disiloxan-Einheiten sind in der Literatur lediglich mit fünfach-koordiniertem Aluminiumatom bekannt ^[49,50,52]. In Verbindung C₈H₂₄Al₃Br₅O₆Si₄ ^[49,50], beispielsweise, koordiniert an das zentrale Aluminiumatom ein Bromatom.

3.2.1.7 Synthese [(Ph₂SiO)₂O]₂{AI[(Ph₂SiO)₂OH · N(CH₂CH₂)₃N]}₂ <u>8</u>

Die Reaktion der Startverbindung <u>3</u> mit zwei Äquivalenten Tris(ethylen)diamin in Gegenwart von Wasser liefert Verbindung $[(Ph_2SiO)_2O]_2{Al[(Ph_2SiO)_2OH \cdot N(CH_2CH_2)_3N]}_2$ <u>8</u>. Die Reaktion wird in Toluol als Reaktionsmedium durchgeführt. Der Reaktionsansatz wird zwei Stunden bei 50-60°C gerührt. Anschließend wird unter reduziertem Druck die Reaktionslösung auf die Hälfte ihres Ausgangsvolumens vermindert. Nach 12 Stunden bilden sich bei 4 °C Kristalle der neuen Verbindung <u>8</u>. (Ausbeute: 0,29 g; 43 % d. Th.) (Gleichung (12)).

$$\begin{array}{c} & \begin{array}{c} & + H_2O \\ & + 2 N(C_2H_4)_3N, \text{ Toluol} \\ & 2 h 50 - 60^\circ C, 12 h RT \\ \hline & 2 N(C_2H_5)_2 \end{array} \xrightarrow{} & [(Ph_2SiO)_2O]_2\{AI[(Ph_2SiO)_2OH \cdot N(C_2H_4)_3N]\}_2 \\ & \underline{3} \end{array}$$

Gleichung 12

In Abbildung 51 ist die Molekülstruktur der Verbindung [(Ph_2SiO)₂O]₂{Al[(Ph_2SiO)₂OH · N(CH_2CH_2)₃N]}₂ **8** dargestellt.

Abbildung 51: Molekülstruktur von [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N((CH₂)₂)₃N]}₂ 8.

von

Verbindung <u>8</u> hat die gleiche Gerüststruktur wie die in Kapitel 3.2.1.3 diskutierte Verbindung $[(Ph_2SiO)_2O]_2{Al[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]}_2$ <u>6</u>. Daher liegt es nahe, dass die Bildung von Verbindung <u>8</u> nach dem gleichen Mechanismus verläuft, der auch zu Verbindung <u>6</u> führte. In Abbildung 52 ist der Mechanismus zur Bildung von Verbindung <u>8</u> gezeigt. Es wird angenommen, dass zunächst das Tris(ethylen)diamin N(CH₂CH₂)₃N an die O¹H-Gruppe des Disiloxan-1,3-diolmoleküles <u>2</u> koordiniert und eine Wasserstoffbrückenbindung ausbildet (Schritt 1). Das dadurch negativierte O¹-Atom greift nun nukleophil am elektropositiven Al¹-Atom des Übergangszustandes <u>3a</u> an (Schritt 2). Das O²-Atom am anderen Ende des Disiloxan-1,3-diolmoleküles <u>2</u> macht einen zweiten Angriff auf das Al¹-Atom und schließt somit den sechsgliedrigen Ring (Schritt 3). Dabei wandert das Proton am O²-Atom an die OH-Gruppe am Al¹-Atom und spaltet als Wassermolekül ab (Schritt 4). Der beschriebene Mechanismus läuft ebenso am Al²-Atom mit einem weiteren Disiloxan-1,3-diol <u>2</u> ab, was schließlich zur Bildung von Verbindung [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N((CH₂)₂)₃N]}₂ <u>8</u> führt.

Abbildung 52: Postulierter Mechanismus zur Darstellung von $[(Ph_2SiO)_2O]_2$ {Al[(Ph_2SiO)_2OH $\cdot N((CH_2)_2)_3N]$ } <u>8</u>.

Das ²⁹Si-NMR zeigt drei Signale bei den chemischen Verschiebungen -35.9 ppm, -36.8 ppm und bei -51.3 ppm. Die Signale bei -36.8 ppm und bei -51.3 ppm können den Siliciumatomen in den sechsgliedrigen Ringen zugeordnet werden. Die chemische Verschiebung bei -35.9 ppm kann den Siliciumatomen im zwölfgliedrigen Ring zugeordnet werden.

Im ¹H-NMR-Spektrum lässt sich lediglich ein Signal bei 2.41 ppm für das Tris(ethylen)diaminmolekül finden.

3.2.1.8 Einkristallstrukturanalyse und Kristalldaten von $[(Ph_2SiO)_2O]_2{AI[(Ph_2SiO)_2OH \cdot N((CH_2)_2)_3N]}_2 8$

Für die Röntgenkristallstrukturanalyse geeignete Einkristalle von Verbindung <u>8</u> wurden aus einer Toluol-Lösung bei 4 °C erhalten und isoliert. Die Struktur wurde nach direkten Methoden bestimmt. Sämtliche Nichtwasserstoffatome wurden gefunden und anisotrop verfeinert. Die Berechnung der Lage der Wasserstoffatome erfolgte durch Verwendung entsprechender idealisierter Geometrien. Die Bestimmung der Gitterkonstanten und die anschließende Verfeinerung der erhaltenen Daten führte zu der Raumgruppe P2(1)/c im monoklinen Kristallsystem. Der Zuverlässigkeitsfaktor der ermittelten Struktur erreichte einen Wert von R1 = 0.051.

Die Daten zum Kristall und zur Strukturbestimmung von $[(Ph_2SiO)_2O]_2$ {Al[$(Ph_2SiO)_2OH \cdot N((CH_2)_2)_3N]$ } **8**, sowie ausgewählte Bindungslängen und -winkel sind in den folgenden Tabelle 11 und 12 zusammengestellt.

Identifikationscode	sh3111		
Summenformel	C108 H106 Al2 N4 O12 Si8 x 2 C7 H8		
Molmasse [g/mol]	2114.92		
Messtemperatur [K]	122(2)		
Wellenlänge [Å]	0.71073		
Kristallsystem	Monoclinic		
Raumgruppe	P2(1)/c		
Gitterkonstanten	a = 22.9874(4) Å	α= 90°.	
	b = 24.7312(4) Å	$\beta = 92.6920(10)^{\circ}.$	
	c = 19.7939(3) Å	$\gamma = 90^{\circ}.$	
Zellvolumen [Å ³]	11240.5(3)		
Anzahl der Formeleinheiten Z	4		
Dichte (berechnet)	1.250 Mg/m ³		
Absorptionskoeffizient [mm ⁻¹]	0.174		
F(000)	4464		
Kristallabmessungen [mm ³]	0.41 x 0.27 x 0.17		
Messbereich θ [°]	1.21 to 32.09		
hkl - Indexbereich	-30<=h<=34, -36<=k<=36	6, -29<=l<=29	
Gemessene Reflexe	155952		
Symmetrieunabhängige Reflexe	39233 [R(int) = 0.0591]		
Vollständigkeit des Datensatzes (bis $\theta = 3$	2.09°)	99.7 %	
Absorptionskorrektur	Multiscan		
Max. und Min. Transmission	0.9702 and 0.9323		
Strukturverfeinerungsmethode	Full-matrix least-squares	on F ²	
Daten / Einschränkungen / Parameter	39233 / 0 / 1343		
Güte des Fit auf F ²	1.023		
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0512, wR2 = 0.108	85	
R-Werte (alle Daten)	R1 = 0.1065, wR2 = 0.128	82	
Restelektronendichte (min./max.) [e/Å-3]	0.531 and -0.358		

Tabelle	12:	Ausgewählte	Bindungslängen	[Å]	bzw.	-winkel	[°]	für	Verbindung
[(Ph ₂ SiO)	₂ O] ₂ {	AI[(Ph ₂ SiO) ₂ OH	$\cdot N((CH_2)_2)_3N]_2 \underline{8}.$						

AI(1)-O(1)	1.716(1)	Si(3)-O(4)	1.592(1)
AI(1)-O(6)	1.725(1)	Si(3)-O(5)	1.622(1)
AI(1)-O(7)	1.738(1)	Si(4)-O(6)	1.591(1)
AI(1)-O(9)	1.782(1)	Si(4)-O(5)	1.619(1)
AI(2)-O(3)	1.716(1)	Si(5)-O(7)	1.600(1)
AI(2)-O(4)	1.717(1)	Si(5)-O(8)	1.650(1)
AI(2)-O(10)	1.742(1)	Si(6)-O(9)	1.626(1)
AI(2)-O(12)	1.784(1)	Si(6)-O(8)	1.636(1)
Si(1)-O(1)	1.588(1)	Si(7)-O(12)	1.627(1)
Si(1)-O(2)	1.624(1)	Si(7)-O(11)	1.641(1)
Si(2)-O(3)	1.590(1)	Si(8)-O(10)	1.600(1)
Si(2)-O(2)	1.623(1)	Si(8)-O(11)	1.653(1)
O(1)-Al(1)-O(6)	111.71(6)	O(7)-Si(5)-O(8)	109.61(5)
O(1)-Al(1)-O(7)	112.95(5)	O(9)-Si(6)-O(8)	109.85(6)
O(6)-Al(1)-O(7)	113.16(5)	O(12)-Si(7)-O(11)	109.30(6)
O(1)-Al(1)-O(9)	108.62(6)	O(10)-Si(8)-O(11)	109.20(5)
O(6)-Al(1)-O(9)	105.55(6)	Si(1)-O(1)-Al(1)	164.96(8)
O(7)-Al(1)-O(9)	104.19(5)	Si(2)-O(2)-Si(1)	150.03(7)
O(3)-Al(2)-O(4)	112.61(6)	Si(2)-O(3)-Al(2)	166.47(8)
O(3)-Al(2)-O(10)	111.71(5)	Si(3)-O(4)-Al(2)	159.82(7)
O(4)-Al(2)-O(10)	112.44(5)	Si(4)-O(5)-Si(3)	158.88(8)
O(3)-Al(2)-O(12)	107.26(6)	Si(4)-O(6)-Al(1)	161.48(8)
O(4)-Al(2)-O(12)	107.93(6)	Si(5)-O(7)-Al(1)	130.47(7)
O(10)-AI(2)-O(12)	104.34(5)	Si(6)-O(8)-Si(5)	130.69(7)
O(1)-Si(1)-O(2)	111.19(6)	Si(6)-O(9)-Al(1)	129.25(6)
O(3)-Si(2)-O(2)	111.90(6)	Si(8)-O(10)-AI(2)	129.78(7)
O(4)-Si(3)-O(5)	111.07(6)	Si(7)-O(11)-Si(8)	128.72(7)
O(6)-Si(4)-O(5)	111.69(6)	Si(7)-O(12)-AI(2)	127.35(6)

3.2.1.9 Beschreibung und Diskussion der Molekülstruktur von $[(Ph_2SiO)_2O]_2{AI[(Ph_2SiO)_2OH \cdot N((CH_2)_2)_3N]}_2 8$

Die Reaktion des bicyclischen Alumosiloxans <u>3</u> mit Tris(ethylen)diamin in Gegenwart von Spuren von Wasser führt zu der in Abbildung 53 abgebildeten Verbindung $[(Ph_2SiO)_2O]_2{Al[(Ph_2SiO)_2OH \cdot N((CH_2)_2)_3N]}_2$ <u>8</u>.

Die Verbindung <u>8</u> stellt das Tris(ethylen)diamin-Salz von Verbindung <u>6</u> dar (vgl. Kap. 3.2.1.1 bis Kap. 3.2.13). Beide Verbindungen haben das gleiche bispirocyclische $[(Ph_2SiO)_2O]_2{AI[(Ph_2SiO)_2OH]_2-Grundgerüst mit einem mittleren zwölfgliedrigen Fragment und zwei weiteren sechsgliedrigen Ringen, die über zwei Spirozentren miteinander verknüpft sind. Zwei Al-Atome nehmen dabei die Spirozentren ein und sind über zwei O-Si-O-Si-O-Ketten miteinander verbunden, wodurch der mittlere [AI[(OSiPh_2)_2O]_2-Zwölfring gebildet wird. Der mittlere zwölfgliedrige Ring kommt in natürlichen Alumosilicaten vor ^[134]. Zählt man nur die tetraedrischen Al- und Si-Atome des zwölfgliedrige mittleren Ringes, wie in der Zeolithchemie üblich, kann dieser als sechsgliedrig betrachtet werden ^[53,134]. An jedem dieser Al-Atome ist jeweils eine [(OSiPh_2)_2O]-Gruppe gebunden, wodurch die dispirocyclische Verbindung <u>8</u> resultiert.$

Abbildung 53: Molekülstruktur von [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N((CH₂)₂)₃N]}₂ 8, zur besseren Übersicht sind die organischen Reste in Stäbchenform dargestellt, deren Wasserstoffatome sind nicht dargestellt.

Zwei Tris(ethylen)diaminmoleküle befinden sich in unmittelbarer Nachbarschaft zu Grundgerüst von Verbindung 8. Die Amine sind jeweils dem über Wasserstoffbrückenbindungen an die Sauerstoffatome O9 bzw. O12 in den Sechsringen gebunden (vgl. Abbildung 54). Beide Verbindungen 6 und 8 haben tertiäre Amine als koordinierende Base. Die mittlere O.H. N-Bindungslänge in Verbindung 8 ist 2.691 Å lang, mit 2.688(0) Å für N1-O9 und 2.695() Å für N3-O12. Somit ist der O.H.N-Bindungsabstand etwas kleiner im Vergleich zu der entsprechenden Bindungslänge in Verbindung 6, mit 2.8048(1) Å. Obwohl Tris(ethylen)diamin mit einer Protonenafiinität von PA = 963,4 kJ/mol ^[101] im Vergleich zu Triethylamin die schwächere Base ist (Triethylamin PA = 981,8 kJ/mol ^[101]), ist die O[…]H[…]N-Bindungslänge kürzer. Die kürzere Wasserstoffbindung in **8** im Vergleich zu 6 kann mit der größeren sterischen Raumbeanspruchung von Triethylamin, aufgrund der frei beweglichen Ethyl-Substituenten, erklärt werden.

Die dispirocyclische Verbindung <u>8</u> liegt als zweifach negativ geladenes Anion vor, dessen Ladungsausgleich mit zwei HN((CH₂CH₂)₃)N⁺-Kationen erfolgt. Verbindung <u>8</u> hat ein monoklines Kristallgitter mit der Raumgruppe P2(1)/c. Außerdem liegen zwei Toluolmoleküle im Kristallgitter von [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N((CH₂)₂)₃N]}₂ <u>8</u> vor. Die Aluminiumatome in dem Anion sind von vier Sauerstoffatomen aus zwei cyclischen Siloxanfragmenten koordiniert und erhalten dadurch eine verzerrt tetraedriche Anordnung. Die Winkel am Al-Atom reichen von 104.19(5)° für O7-Al1-O9 bis 113.16(5)° für O6-Al1-O7 (Mittelwert: 109.59(6)°). Die O-Al-O-Winkel mit den Wasserstoffbrückenbindunge ausbildenden Sauerstoffatomen O9 und O12 sind mit einem mittleren Winkel von 106.32(6)° kleiner als der Mittelwert der restlichen O-Al-O-Winkel mit 112.43(5)°.

Die Al-O-Bindungslängen im mittleren Ring der Dispiroverbindung <u>8</u> variieren von 1.716(1) Å für Al1-O1 bis 1.725(1) Å für Al1-O6. Der mittlere Al-O-Abstand im zwölfgliedrigen Ring ist 1.719(1) Å) lang. Die Al-O-Abstände der mittleren Ringe der Verbindungen <u>8</u> und <u>6</u> sind gut miteinander vergleichbar. Auffallend unterschiedlich sind die Al-O-Bindungslängen in den sechsgliedrigen Ringen. Während die Al-O-Abstände ohne Koordination der N-Base einen mittleren Bindungsabstand von 1.740(1) Å haben, sind hierzu im Vergleich die Abstände mit koordinierenden Basen an den Sauerstoffatomen O9 und O12 mit durchschnittlich 1.783(1) Å länger. Ein

ähnliches Verhältnis der Al-O-Bindungslängen in den sechsgliedrigen Ringen wurde auch in den Verbindungen <u>6</u> und <u>7</u> beobachtet. Die Al-O-Bindungslänge ohne Lewis-Basenkoordinierung sind vergleichbar mit Literaturwerten in spirocyclischen Alumosiloxanen ^[22,53,115].

Die Siliciumatome in Verbindung 8 haben ebenso eine verzerrt tetraedrische Umgebung, die von umgebenden Sauerstoffatomen bzw. den Kohlenstoffatomen der Phenylringe gebildet werden. Die Bindungswinkel an den Si-Atomen haben einen mittleren Wert von 111.46(6)°. In den sechsgliedrigen Ringen variieren die Bindungswinkel von 109.20(5)° für O10-Si8-O11, bis 109.85(6)° für den O9-Si6-O8-Winkel, und sind mit einem Mittelwert von 109.49(6)° sehr nah am Tetraederwinkel. 54 eine Polyederdarstellung In Abbildung ist von Verbindung $[(Ph_2SiO)_2O]_2[AI[(Ph_2SiO)_2OH \cdot N((CH_2)_2)_3N]]_2$ **8** gezeigt, in der deutlich die Lücke der eckenverknüpften Tetraeder um die Al- und Si-Atome zu erkennen ist.

Abbildung 54: Polyederdarstellung der Verbindung [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N(C₂H₄)₃N]}₂ <u>8</u>, zur besseren Übersicht wurden die Phenylringe und die Wasserstoffatome vernachlässigt der Tris(ethylen)diaminmoleküle nicht abgebildet. Deutlich zu erkennen ist die gebildete sechseckige Lücke in der Mitte. Die Si-O(Al)-Bindungsabstände im zwölfgliedrigen Ring sind mit einem Mittelwert von 1.590(1) Å kürzer als die Si-O(Si)-Bindungsabstände mit einem Mittelwert von 1.622(1) Å, die im Rahmen literaturbekannter zwölfgliedriger Verbindungen liegen^[53,84]. Der Mittelwert aller Si-O-Abstände im mittleren Ring ist mit 1.606(1) Å gut dem idealisierten Si-O-Abstand (1.603 Å) vergleichbar mit in natürlich vorkommenden tetraedrischen Alumosilicaten ^[100]. In den kleineren sechsgliedrigen Ringen reichen die Si-O(AI)-Abstände von 1.600(1) Å für Si8-O10 bis 1.627(1) Å für Si7-O12. Die längeren Si-O(Al)-Abstände sind in den durch die Amin-Base koordinierten O(9,12)-Atomen zu finden, mit einem Mittelwert von 1.627(1) Å. Die Si-O(AI)-Abstände ohne koordinierende Base haben einen mittleren Bindungsabständ von 1.600(1) Å. Die Si-O(Si)-Abstände sind durchschnittlich 1.645(1) Å, die aut mit den entsprechenden Si-O(Si)-Bindungslängen in den Verbindungen 6 und 7vergleichbar sind.

Die über Wasserstoffbrückenbindungen an die O9 und O12 Atome koordinierenden Tris(ethylen)diaminmoleküle führen zu einer Streckung Al-O(9,12)- und Si-O(9,12)- Bindungen.

Der mittlere zwölfgliedrige Ring hat eine annähernde Sesselkonformation, wobei die O2 und O5 Atome -0.3814 Å bzw. 0.2951 Å ober- bzw. unterhalb der von den Si1, Si2, Si3 und Si4 Atomen gebildeten Bestebene liegen. Sesselkonformationen sind neben der Struktur in Verbindung **6**, auch in literaturbekannten zwölfgliedrigen und achtgliedrigen Ringen zu sehen ^[53,84]. In Abbildung 55 ist die Pseudo-Sesselform und die Bestebenen (s. Tabelle13) des mittleren Ringes bzw. der sechsgliedrigen Ringe abgebildet. Die beiden sechsgliedrigen Ringe ordnen sich gemäß der Struktur des mittleren Ringes jeweils oberhalb bzw. unterhalb des zwölfgliedrigen Ringes an. Die sechsgliedrigen Ringe liegen nahezu senkrecht zu dem mittleren Ring vor, mit einem Diederwinkel von 85.20° der besten Ebenen zueinander. In der Literatur sind senkrechte Anordnungen von spirocyclischen Ringen zueinander bekannt ^[53,81,82,95].

Abbildung 55: Molekülstruktur von [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N((CH₂)₂)₃N]}₂ 8 in der
Pseudo-Sesselform dargestellt, zur besseren Übersicht wurden die Phenylringe entfernt und die sechsgliedrigen Ringe im Stäbchenmodell dargestellt; die H-Atome der
Tris(ethylen)diaminmoleküle sind nicht eingezeichnet. Oben: Bestebenen durch die sechsbzw. zwölfgliedrigen Ringe.

Tabelle 13: Kleinste Fehlerquadrate der Ebenen und Abweichungen [Å] der einzelnenAtome.

Die Gleichungen der Ebenen sind in der Form $m1^*x + m2^*y + m3^*z = d$, wobei x,y und z fraktionierte Koordinaten sind.

Ebene gelb[#] ("zwölfgliedriger Ring"): 0.5004 * x + 0.2624 * y + (-0.08251) * z = 5.0443.

Si1	0.0660 Å	Si3	0.0656 Å
Si2	-0.0667 Å	Si4	-0.0648 Å

Ebene rot[#] ("sechsgliedriger Ring"): -0.8996 * x + 0.0256 * y + (-0.4360) * z = -6.5427.

Al1	-0.0392 Å	AI2	-0.0222 Å
Si6	-0.0759 Å	Si8	0.1110 Å
Si5	0.1117 Å	Si7	-0.0855 Å

Flächenwinkel [°] zwischen den Ebenen:

Ebene gelb[#] - Ebene rot[#] 85.20°

[#]in Bezug auf Abbildung 17

3.2.1.10 Synthese [(Ph₂SiOH)₂O]₂Al₂O[(Ph₂SiO)₂O] · 2 HN(CH₂CH₃)₂ <u>9</u>

Die Reaktion der Startverbindung <u>3</u> mit Diethylamin wird in Toluol als Reaktionsmedium unter Zugabe von wenigen Tropfen Wasser durchgeführt. Der Reaktionsansatz wird zwei Stunden bei RT gerührt. Unter reduziertem Druck wird der Reaktionsansatz auf die Hälfte seines Ausgangsvolumens eingeengt. Nach 12 h bei 4 °C werden Kristalle der Verbindung [(Ph₂SiOH)₂O]₂Al₂O[(Ph₂SiO)₂O] · 2 HN(CH₂CH₃)₂ <u>9</u> erhalten (Ausbeute: 0,116 g; 38 % (d. Th.) (s. Gleichung (13)).

+ H₂O
+ 2 HN(CH₂CH₃)₂,
Toluol, 2 h RT
Al₂[(OPh₂Si)₂O]₃ · 2 O(CH₂CH₃)₂
$$\longrightarrow$$
 [(Ph₂SiOH)₂O]₂Al₂O[(Ph₂SiO)₂O] · 2 HN(CH₂CH₃)₂
-2 O(CH₂CH₃)₂ $\underbrace{\mathbf{3}}$ $\underbrace{\mathbf{9}}$

Gleichung (13)

In Abbildung 56 ist die Molekülstruktur von Verbindung <u>9</u> abgebildet.

Abbildung 56: Molekülstruktur von [(Ph₂SiOH)₂O]₂Al₂O[(Ph₂SiO)₂O] · 2 HN(CH₂CH₃)₂ 9.

Das ¹H-NMR-Spektrum zeigt chemischen Verschiebungen bei 1.12 ppm (Triplett) für die Methylgruppen des Amins, und ein Quartett bei 3.25 ppm für die Methylengruppe des Amins.

Im ¹³C-CP-MAS-NMR-Spektrum ist ein Signal bei 11.38 ppm der Methylgruppe des Amins zuzuordnen.

von

Im ²⁹Si-NMR-Spektrum sind zwei Signale bei -35.9 ppm, für die Si-Atome in den sechsgliedrigen Ringen und ein Signal bei -47.5 ppm, für die Si-Atome im achtgliedrigen Ring zu finden.

Entstehung von Verbindung <u>9</u> wird die bicyclische Zur Struktur der Ausgangsverbindung 3 neugeordnet. Es findet eine Reduzierung der Ringgröße der Startverbindung 3 statt. Die Entstehung von Verbindung 9 könnte nach dem Mechanismus, der in Abbildung 57 gezeigt ist, abgelaufen sein. Es wird angenommen, dass zunächst ein Dietyhlaminmolekül an der O¹H-Gruppe des Disiloxan-1,3-diols 2, unter Ausbildung einer Wasserstoffbrückenbindung, angreift (Schritt 1). Das negativierte Sauerstoffatom O¹ greift im folgenden Schritt 2 am Al¹-Atom des Übergangszustandes <u>3a</u> an. Es folgt unter Wasserabspaltung (Schritt 4) eine Orientierung des O-Atoms am anderen Ende des Disiloxan-1,3-diols an das Al¹-Atom (Schritt 3). Das Diethylaminmolekül bildet aufgrund der räumlichen Gegebenheiten eine weitere Wasserstoffbrückenbindung zu dem O²-Atom aus (Schritt 5), gefolgt von einer Trennung der Al¹-O²-Bindung und Ausbildung einer neuen Al²-O²-Koordination (Schritt 6). Durch diese Neuorientierung der Siloxankette, greift das O³-Atom der Hydroxylgruppe am Al²-Atom am Al¹-Atom an (Schritt 7), gefolgt von einer Protonenwanderung von O^3 nach O^4 (Schritt 8). An diese Hydroxylgruppe (O⁴H) koordiniert ein weiteres Dietyhlaminmolekül (Schritt 9), das eine weitere Wasserstoffbrückenbindung mit seinem H-Atom ausbildet (Schritt 10), wodurch eine höhere Symmetrie im Molekül erreicht wird. Mit diesem letzten Schritt wird die dispirocyclische Verbindung $[(Ph_2SiOH)_2O]_2Al_2O[(Ph_2SiO)_2O] = 2$ $HN(CH_2CH_3)_2$ 9 erhalten.

Abbildung 57: Postulierter Reaktionsmechanismus zur Entstehung von $[(Ph_2SiOH)_2O]_2AI_2O[(Ph_2SiO)_2O] \cdot 2 HN(CH_2CH_3)_2$ **9**, die Phenylgruppen an den Si-Atomen sind nicht eingezeichnet.

3.2.1.11 Einkristallstrukturanalyse und Kristalldaten von Verbindung [(Ph₂SiOH)₂O]₂Al₂O[(Ph₂SiO)₂O] \cdot 2 HN(CH₂CH₃)₂ <u>9</u>

Für die Röntgenkristallstrukturanalyse geeignete Kristalle der Verbindung $[(Ph_2SiOH)_2O]_2Al_2O[(Ph_2SiO)_2O] \cdot 2 HN(CH_2CH_3)_2$ **9** wurden bei 4 °C aus Toluol erhalten. Nach Bestimmung und Verfeinerung der Gitterkonstanten ergab sich die Raumgruppe zu P-1 im triklinen Kristallsystem. Die Strukturauflösung erfolgte mittels direkter Methoden. Sämtliche Nichtwasserstoffatome wurden gefunden und anisotrop verfeinert. Der Berechnung der Wasserstoffatome liegen idealisierte Geometrien zugrunde. Die Moleküldarstellung wurde mit dem Programm DIAMOND angerfertigt ^[116]. Der Zuverlässigkeitsfaktor der so ermittelten Struktur erreichte einen Wert von R1 = 0.051.

Die nachstehenden Tabellen 14 und 15 enthalten die Kristalldaten und ausgewählte Bindungslängen und –winkel für Verbindung $[(Ph_2SiOH)_2O]_2Al_2O[(Ph_2SiO)_2O] \cdot 2 HN(CH_2CH_3)_2 \mathbf{9}.$
Tabelle 14: Kristalldaten und Strukturverfeinerung von $[(Ph_2SiOH)_2O]_2AI_2O[(Ph_2SiO)_2O] \cdot 2$ $HN(CH_2CH_3)_2$ **9**.

Identifikationscode	sh3110	
Summenformel	C80H84 Al2 N2 O10 Si6 x 1.25 C7 H8	
Molmasse [g/mol]	1571.16	
Messtemperatur [K]	122(2)	
Wellenlänge [Å]	0.71073	
Kristallsystem	Triclinic	
Raumgruppe	P-1	
Gitterkonstanten	a = 14.3602(5) Å	α= 88.189(2)°.
	b = 24.2059(8) Å	β= 82.243(2)° .
	c = 25.3231(8) Å	$\gamma = 74.939(2)^{\circ}.$
Zellvolumen [Å ³]	8422.2(5)	
Anzahl der Formeleinheiten Z	4	
Dichte (berechnet)	1.239 Mg/m ³	
Absorptionskoeffizient [mm ⁻¹]	0.179	
F(000)	3322	
Kristallabmessungen [mm ³]	0.56 x 0.21 x 0.10	
Messbereich θ [°]	1.48 to 27.17	
hkl - Indexbereich	-18<=h<=18, -31<=k<=2	6, -32<=l<=32
Gemessene Reflexe	139076	
Symmetrieunabhängige Reflexe	37226 [R(int) = 0.0383]	
Vollständigkeit des Datensatzes (bis θ =	27.17°)	99.5 %
Absorptionskorrektur	Multiscan	
Max. und Min. Transmission	0.9817 and 0.9064	
Strukturverfeinerungsmethode	Full-matrix least-squares	on F ²
Daten / Einschränkungen / Parameter	37226 / 0 / 1997	
Güte des Fit auf F ²	1.018	
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0510, wR2 = 0.11	96
R-Werte (alle Daten)	R1 = 0.0802, wR2 = 0.13	57
Restelektronendichte (min./max.) [e/Å-3]	1.582 und -0.748	

Tabelle 15: Ausgewählte Bindungslängen [Å] bzw. –winkel [°] für Verbindung $[(Ph_2SiOH)_2O]_2AI_2O[(Ph_2SiO)_2O] \cdot 2 HN(CH_2CH_3)_2$

Molekül 1		Molekül 2	
Al(1)-O(1)	1.708(2)	Al(3)-O(13)	1.696(2)
AI(1)-O(4)	1.718(2)	AI(3)-O(14)	1.728(2)
AI(1)-O(7)	1.758(2)	AI(3)-O(17)	1.768(2)
AI(1)-O(5)	1.764(2)	AI(3)-O(15)	1.777(2)
AI(2)-O(1)	1.706(2)	AI(4)-O(13)	1.698(2)
AI(2)-O(2)	1.714(2)	AI(4)-O(12)	1.718(2)
AI(2)-O(8)	1.765(2)	AI(4)-O(20)	1.769(2)
AI(2)-O(10)	1.768(2)	AI(4)-O(18)	1.771(2)
Si(1)-O(2)	1.588(2)	Si(7)-O(12)	1.582(2)
Si(1)-O(3)	1.635(2)	Si(7)-O(11)	1.626(2)
Si(2)-O(4)	1.589(2)	Si(8)-O(14)	1.589(2)
Si(2)-O(3)	1.636(2)	Si(8)-O(11)	1.629(2)
Si(3)-O(5)	1.610(2)	Si(9)-O(17)	1.617(2)
Si(3)-O(6)	1.637(2)	Si(9)-O(16)	1.642(2)
Si(4)-O(7)	1.610(2)	Si(10)-O(15)	1.624(2)
Si(4)-O(6)	1.638(2)	Si(10)-O(16)	1.639(2)
Si(5)-O(8)	1.614(2)	Si(11)-O(20)	1.606(2)
Si(5)-O(9)	1.643(2)	Si(11)-O(19)	1.649(2)
Si(6)-O(10)	1.613(2)	Si(12)-O(18)	1.612(2)
Si(6)-O(9)	1.636(2)	Si(12)-O(19)	1.643(2)
O(1)-Al(1)-O(4)	113.09(9)	O(13)-AI(3)-O(14)	113.58(8)
O(1)-Al(1)-O(7)	106.7(1)	O(13)-AI(3)-O(17)	108.67(8)
O(4)-Al(1)-O(7)	112.3(1)	O(14)-AI(3)-O(17)	110.76(8)
O(1)-Al(1)-O(5)	108.9(1)	O(13)-AI(3)-O(15)	109.64(8)
O(4)-Al(1)-O(5)	110.74(9)	O(14)-AI(3)-O(15)	108.51(8)
O(7)-Al(1)-O(5)	104.57(8)	O(17)-Al(3)-O(15)	105.36(7)
O(1)-AI(2)-O(2)	113.48(9)	O(13)-AI(4)-O(12)	114.75(8)
O(1)-AI(2)-O(8)	109.6(1)	O(13)-AI(4)-O(20)	108.83(9)
O(2)-AI(2)-O(8)	110.32(9)	O(12)-AI(4)-O(20)	108.64(9)
O(1)-AI(2)-O(10)	108.8(1)	O(13)-AI(4)-O(18)	108.38(8)
O(2)-AI(2)-O(10)	110.03(8)	O(12)-AI(4)-O(18)	110.28(9)
O(8)-Al(2)-O(10)	104.18(8)	O(20)-AI(4)-O(18)	105.56(8)
O(2)-Si(1)-O(3)	112.37(9)	O(12)-Si(7)-O(11)	112.39(9)
O(4)-Si(2)-O(3)	114.03(9)	O(14)-Si(8)-O(11)	113.49(9)
O(5)-Si(3)-O(6)	109.36(9)	O(17)-Si(9)-O(16)	109.63(8)

Molekül 1		Molekül 2
O(7)-Si(4)-O(6)	110.18(9)	O(15)-Si(10)-O(16) 108.13(8)
O(8)-Si(5)-O(9)	109.74(9)	O(20)-Si(11)-O(19) 110.38(8)
O(10)-Si(6)-O(9)	109.28(9)	O(18)-Si(12)-O(19) 109.40(8)
AI(2)-O(1)-AI(1)	142.9(1)	Si(7)-O(11)-Si(8) 158.8(1)
Si(1)-O(2)-AI(2)	157.5(1)	Si(7)-O(12)-Al(4) 152.5(1)
Si(1)-O(3)-Si(2)	143.2(1)	AI(3)-O(13)-AI(4) 155.2(1)
Si(2)-O(4)-AI(1)	167.1(1)	Si(8)-O(14)-Al(3) 150.2(1)
Si(3)-O(5)-Al(1)	130.6(1)	Si(10)-O(15)-Al(3) 127.84(9)
Si(3)-O(6)-Si(4)	131.1(1)	Si(10)-O(16)-Si(9) 133.9(1)
Si(4)-O(7)-Al(1)	130.8(1)	Si(9)-O(17)-Al(3) 129.70(9)
Si(5)-O(8)-AI(2)	130.7(1)	Si(12)-O(18)-Al(4) 127.99(9)
Si(6)-O(9)-Si(5)	130.8(1)	Si(12)-O(19)-Si(11) 132.0(1)
Si(6)-O(10)-AI(2)	128.4(1)	Si(11)-O(20)-Al(4) 129.9(1)

Symmetrieoperationen zur Erzeugung äquivalenter Atome: #1 -x,-y,-z+2

3.2.1.12 Beschreibung und Diskussion der Molekülstruktur von $[(Ph_2SiOH)_2O]_2AI_2O[(Ph_2SiO)_2O] \cdot 2 HN(CH_2CH_3)_2 9$

Die Reaktion der Startverbindung <u>3</u> mit Diethylamin in Gegenwart von Wasser liefert Verbindung [(Ph₂SiOH)₂O]₂Al₂O[(Ph₂SiO)₂O] · 2 HN(CH₂CH₃)₂ <u>9</u>. Es liegen zwei Moleküle der Verbindung <u>9</u> in der Kristallstruktur vor, die sich leicht voneinander unterscheiden. Im Folgenden wird lediglich Molekül 2 (vgl. Tabelle 15) beschrieben.

Die Verbindung [(Ph_2SiOH)₂O]₂Al₂O[(Ph_2SiO)₂O] · 2 HN(CH_2CH_3)₂ **9** besitzt eine dispirocyclische Gerüststruktur. Die Al₂O[(Ph₂SiO)₂O]-achtgliedrige Einheit stellt den mittleren Ring dar. Darin sind die beiden Aluminiumatome einmal über ein verbrückendes Sauerstoffatom und einmal über eine (Ph₂SiO)₂O-Kette miteinander verbunden. An jedem Aluminiumatom ist eine weitere (Ph₂SiO)₂O-Einheit gebunden, die zur Bildung von zwei sechsgliedrigen Ringen führen. Die Al-Atome nehmen die spirocyclischen Zentren ein. In direkter Nachbarschaft zu dem Grundgerüst von 9 konnten zwei Dietyhlaminmoleküle gefunden werden. Diese bilden jeweils zwei Wasserstoffbrückenbindungen zu den O-Atomen der sechsgliedrigen Ringe aus, wodurch formal zwei weitere achtgliedrige Ringe zu erkennen sind. Die zweifach negative Ladung von Verbindung 9 wird durch diese koordinierenden Dietyhlammoniumkationen kompensiert.

Die zugehörige Molekülstruktur aus der Einkristallröntgenstrukturanalyse ist Abbildung 58 zu entnehmen.

Abbildung 58: Molekülstruktur von [(Ph₂SiOH)₂O]₂Al₂O[(Ph₂SiO)₂O] · 2 HN(CH₂CH₃)₂ 9, zur besseren Übersicht sind die organischen Reste in Stäbchenform gezeigt, ihre Wasserstoffatome sind nicht eingezeichnet.

Die Aluminiumatome werden von vier Sauerstoffatomen aus zwei cyclischen Siloxaneinheiten koordiniert, und erhalten dadurch eine verzerrt tetraedrische Anordnung. Die Winkel an den Al-Atom reichen von 105.36(7)° für O17-Al3-O15 bis 114.75(8)° für den O13-Al4-O12-Winkel. Der Mittelwert aller O-Al-O-Bindungswinkel ist 109.42(9)°, und ist gut mit dem theoretischen Tetraederwinkel vergleichbar ist ^[5,6]. Die Tetraeder um die Al-Atome sind über das O13-Atom eckenverknüpft.

Die mittlere Al-O(Si)-Bindungslänge im achtgliedrigen Ring in Verbindung <u>9</u> ist mit 1.723(2) Å hat eine vergleichbare Länge zu Al-O(Si)-Bindungsabständen in Verbindung [(Ph₂SiO)₈(AlO(OH))₄] \cdot 2 N(CH₂CH₃)₃^[55].

Der Si-O(Al)-Bindungsabstand des achtgliedrigen Ringes in Verbindung [(Ph₂SiOH)₂O]₂Al₂O[(Ph₂SiO)₂O] · 2 HN(CH₂CH₃)₂ **9** ist im Durchschnitt 1.585(2) Å lang und somit kürzer als der entsprechende Abstand in Verbindung **1** oder in Verbindung [(Ph₂SiO)₈(AlO(OH))₄] · 2 N(CH₂CH₃)₃ mit einem Mittelwert von 1.604(4) Å ^[55]. Der mittlere Si-O(Si)-Bindungsabstand im achtgliedrigen Ring ist mit 1.627(2) Å liegt im Rahmen von Si-O(Si)-Bindungslängen cyclischer Tetrasiloxane ^[119,120] und ist wiederum gut vergleichbar mit dem entsprechenden Mittelwert in Verbindung $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 2 N(CH_2CH_3)_3$ (Mittelwert Si-O(Si): 1.625(5) Å) ^[55] (vgl. Abbildung 59).

Abbildung 59: Molekülstruktur von [(Ph₂SiOH)₂O]₂Al₂O[(Ph₂SiO)₂O] · 2 HN(CH₂CH₃)₂ 9, zur besseren Übersicht der Gerüststruktur sind die Phenylgruppen und die H-Atome der Ethylgruppen des Diethylamins nicht eingezeichnet.

Der mittlere Al-O(H)-Bindungsabstand im sechsgliedrigen Ring der Dispiroverbindung <u>9</u> ist mit 1.772(2) Å sehr gut vergleichbar mit dem mittleren Al-O(H)-Bindungsabstand in Verbindung <u>7</u>, mit 1.773(2) Å. Die Si-O(H)-Abstände in den sechsgliedrigen Ringen in Verbindung <u>9</u> sind mit einem Mittelwert von 1.615(2) Å kürzer als der Si-O(H)-Abstand in Verbindung <u>7</u> mit 1.628(2) Å.

Der mittlere O[…]H[…]N-Abstand in Verbindung <u>9</u> ist mit 2.9118(1) Å länger im Vergleich zu den entsprechenden Abständen in den Verbindungen <u>6</u>, <u>7</u> bzw. <u>8</u> (2.8048(1) Å in <u>6</u>, 2.8423(1) Å in <u>7</u> bzw. 2.691 Å in <u>8</u>). Dies könnte mit der kleineren Protonenaffinität und somit der schwächeren Basizität des Diethylamins (PA = 952.4 kJ/mol ^[60]) im Vergleich zu Triethylamin (PA = 981.8 kJ/mol ^[60]) bzw. Tris(ethylen)diamin (963.4 kJ/mol ^[60]) begründet werden. Hinzu kommt, dass die zweifache Koordinierung des Diethylaminmoleküles zu einer Verlängerung der Wasserstoffbrückenbindungen in Verbindung <u>9</u> führt.

Die Siliciumatome erlangen durch Koordination von zwei Sauerstoffatomen und zwei Kohlenstoffatomen der Phenylringe ebenso wie die Al-Atome eine verzerrt tetraedrische Anordnung. Die Winkel an den Si-Atomen variieren von 108.13(8)° für O15-Si10-O16 bis 113.49(9)° für O14-Si8-O11, mit einem Mittelwert aller O-Si-O-Winkel in Verbindung 9 mit 110.57(8)°. Die Winkel an den Si-Atomen in den sechsgliedrigen Ringen (Si9, Si10, Si11 und Si12) sind besser mit dem Tetraederweinkel vergleich bar (Mittelwert: 109.39(8)°). Die größeren O-Si-O-Winkel liegen im achtgliedrigen Ring von Verbindung 9 (Mittelwert: 112.94(9)°). Alle Tetraeder in Verbindung 9 sind eckenverknüpft, wie auch der aus Polyederdarstellung in Abbildung 60 zu sehen ist.

Abbildung 60: Polyederdarstellung von [(Ph₂SiOH)₂O]₂Al₂O[(Ph₂SiO)₂O] · 2
 HN(CH₂CH₃)₂ 9, zur besseren Übersicht sind die Ethylgruppen in Stäbchenform und ohne Wasserstoffatome gezeigt. Die Phenylgruppen wurden ebenso vernachlässigt.

Die Si-O-Si-Winkel in dem achtgliedrigen Ring in Verbindung <u>9</u> haben einen Mittelwert von 158.8(1)°. Der Al3-O13-Al4-Winkel ist 155.2(1)° groß, und wesentlich größer als der entsprechende Mittelwert der Winkel in Verbindung <u>1</u> (Mittelwert Al-O-Al: 130.8°) bzw. dessen Derivaten ^[55,56,58,59,72]. Durch die größeren Winkel wird eine Abflachung des achtgliedrigen Ringes erreicht, und die Ausbildung eines Sessel-

oder Bootsforms vermieden. Eine nahezu planare Anordnung der Moleküle in achtgliedrigen Ringen kann auch in der Literatur beobachtet werden ^[47,82]. Wird eine "Bestebene" durch die Atome der sechsgliedrigen Ringe und des achtgliedrigen Ringes gelegt, ergibt sich eine nahezu rechtwinklige Anordnung der sechsgliedrigen Ringe zu dem mittleren achtgliedrigen Ring mit einem Winkel von 89.12° (Mittelwert) der Ebenen zueinander (vgl. auch Abbildung 61 und Tabelle 16).

Abbildung 61: Bestebenen durch die cyclischen Ringe: Die sechsgliedrigen Ringe in [(Ph₂SiOH)₂O]₂Al₂O[(Ph₂SiO)₂O] · 2 HN(CH₂CH₃)₂ 9 liegen nahezu senkrecht zu dem mittleren achtgliedrigen Ring; zur besseren Übersicht sind die Phenylgruppen an den Siliciumatomen nicht eingezeichnet, die Ethylreste an den N-Atomen sind in Stäbchenform dargestellt, außer den in die Wasserstoffbrückenbindungen involvierten H-Atome sind keine Wasserstoffatome eingezeichnet ^[116].

Die beiden Sauerstoffatome O(H)15 und O(H)18 in den sechsgliedrigen Ringen haben die größten Abweichungen von den Bestebenen (Abweichung von O15: 0.170 Å; von O18: 0.160 Å).

Tabelle 16: Kleinste Fehlerquadrate der Ebenen und Abweichungen [Å] der einzelnen Atome.

Die Gleichungen der Ebenen sind in der Form $m1^*x + m2^*y + m3^*z = d$, wobei x,y und z fraktionierte Koordinaten sind.

AI3	0.0553 Å	O11	0.1824 Å
Al4	-0.0224 Å	O12	-0.0819 Å
Si7	-0.0398 Å	O13	0.0873 Å
Si8	-0.0154 Å	O14	-0.1654 Å

Ebene blau[#] (achtgliedriger Ring): -0.2563 * x + (-0.0457) * y + (-0.9655) * z = -7.7166

Ebene rot[#] (sechsgliedriger Ring): -0.0071 * x + 0.9974 * y + (-0.0721) * z = 4.8357

AI3	-0.1067 Å	O15	0.1700 Å
Si9	0.0350 Å	O16	0.0052 Å
Si10	-0.1134 Å	017	-0.0098 Å

Ebene grün[#] (sechsgliedriger Ring): 0.9192 * x + 0.2930 * y + (-0.2630) * z = 5.3602

Al4	-0.0802 Å	O18	0.1604 Å
Si11	0.0492 Å	O19	0.0116 Å
Si12	-0.1199 Å	O20	-0.0209 Å

Flächenwinkel [°] zwischen zwei Ebenen:

Ebene blau [#] - Ebene rot [#]	88.52°
Ebene blau [#] - Ebene grün [#]	89.72°
Ebene rot [#] - Ebene grün [#]	72.26°

[#]in Bezug auf Abbildung 34

3.2.2 Reaktionen von Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ $\underline{3}$ mit Aceton und THF

3.2.2.1 Synthese von [(Ph₂SiO)₈(AIO(OH))₄] · 4 OC(CH₃)₂ 10

Zur Darstellung von Verbindung $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2 10$ wird die bicyclische Ausgangsverbindung 3 in Toluol gelöst und mit einem quantitativen Überschuss an Aceton versetzt. Der Reaktionsansatz wird zwei Stunden bei Raumtemperatur gerührt. Nach 12 h werden bei RT Kristalle der Verbindung 10 erhalten (Ausbeute: 0,117 g; 33 % d. Th.). Die Bruttogleichung zu dieser Umsetzung ist in Gleichung (14) zu sehen.

$$\begin{array}{c} \begin{array}{c} + H_2O \\ Toluol, 3 h RT, \\ \underline{20 \min R\"{u}ckfluss} \end{array} \end{array} \hspace{0.5cm} \begin{array}{c} (Ph_2SiO)_8AI(AIO(OH))_4] \cdot 4 OC(CH_3)_2 \\ \underline{3} & - 2 O(C_2H_5)_2 \end{array} \end{array}$$

Gleichung (14)

Das neue Alumopolysiloxan $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2 \mathbf{10}$ stellt das Aceton Addukt des bereits literaturbekannten Polysiloxans $\mathbf{1}$ dar ^[55]. In Abbildung 62 ist die Molekülstruktur des neuen Alumopolysiloxan Adduktes **10** dargestellt.

Abbildung 62: Molekülstruktur von $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2 10$.

Es wird angenommen, dass die Bildung von Verbindung 10 über den Übergangszustand [(Ph₂SiO)₂O]₂[Al(OH)]₂ <u>3a</u> verläuft. Die Abbildung 63 zeigt einen möglichen Mechanismus, nach dem Verbindung 10 entstanden sein könnte. Aus zwei Molekülen der bicyclischen Ausgangsverbindung 3 entsteht demnach ein Molekül der Alumopolysiloxanverbindung $[(Ph_2SiO)_8(AIO(OH))_4] - 4 OC(CH_3)_2$ **10**. Nach diesem postulierten Mechanismus in Abbildung 63 koodinieren Acetonmoleküle an die OH-Gruppen von zwei Moleküle des Übergangszustandes 3a (Schritt 1). Das durch diese Koordination negativierte Sauerstoffatom greift nun am gegenüberliegenden Al-Atom im selben Molekül an und bildet eine Al-O(H)-Al-Einheit (Schritt 2), wobei sich eine Al-O-Bindung öffnet (Schritt3). Das nun nukleophile O-Atom greift an einem Al-Atom eines zweiten Moleküles an (Schritt 4). Gleichzeitig zu diesen neuen Verknüpfungen findet eine Koordination des Sauerstoffatomes O(H) an das Al-Atom statt (Schritt 5). Es resultiert Verbindung [(Ph_2SiO)₈(AlO(OH))₄] · 4 OC(CH₃)₂ <u>10</u> unter Neuordnung des bicyclischen Grundgerüstes <u>3</u>.

Abbildung 63: Postulierter Mechanismus zur Darstellung von $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4$ OC(CH₃)₂ <u>10</u>.

Der tatsächliche Reaktionsverlauf der Synthese des Polysiloxan <u>1</u> aus den Edukten $Ph_2Si(OH)_2$ und dem tert-Butoxyaluminiumdihydrid ist nicht eindeutig geklärt ^[55,56]. Es liegt nahe, dass die Entstehung dieses Polysiloxans <u>1</u> möglicherweise über die Bildung der bicyclischen Verbindung <u>3</u> verlaufen könnte. Es scheint ein Gleichgewicht im Gesamtsystem vorzuliegen. Eine Reaktion in umgekehrter Richtung jedoch, das heißt, ausgehend von dem Alumopolysiloxan <u>1</u> zu der bicyclischen Verbindung <u>3</u>, konnte bislang nicht gezeigt werden. Offenbar ist die Entstehung des Grundgerüstes der Verbindung <u>1</u> ausgehend von Verbindung <u>3</u> irreversibel.

Verbindung <u>10</u> wurde ebenfalls mittels NMR- und IR- Spektroskopie untersucht. Für die Aufnahme des ¹H-NMR-Spektrums wurde Verbindung $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4$ OC(CH₃)₂ <u>10</u> in Toluol gelöst. Die in den Festkörper-NMR aufgenommenen ¹³C-CP-MAS-NMR-Spektren zeigen das Vorliegen des Acetonmoleküls. Das Signal bei 27.9 ppm wird dem C-Atom der CH₃-Gruppe zugeschrieben. Das Signal bei 212.7 ppm gehört zu dem sp²-hybridisierten Carbonyl-C-Atom. Eine mögliche Keto-Enol-Tautomerie bei Ketonen mit alpha-ständigem H-Atom bleibt in diesem Fall aus. Auch in Lösung wird das Vorliegen der Keto-Form im Gegensatz zu der Enol-Form bevorzugt ^[121,122].

Die Signale für die Phenylgruppen im Aromatenbereich sind dem ¹³C-CP-MAS-NMR-Spektrum ebenso zu entnehmen. Das ²⁹Si-NMR-Spektrum weist aufgrund der Symmetrie im Molekül ein Singulett bei -45.6 ppm auf, das im Bereich für die Signale ähnlicher Verbindungen liegt ^[55-58]. Verbindung [(Ph₂SiO)₈(AIO(OH))₄] · 4 OC(CH₃)₂ <u>10</u> wurde auf Kaliumbromid in diffuser Reflexion mit Hilfe eines IR-Spekrometers vermessen und zeigt bei 1689 cm⁻¹ eine typische C=O-Valenzschwingungsbande, die das Vorliegen des Acetonmoleküls bestätigt. Desweiteren ist die Bande für die OH-Gruppen dem IR-Spektrum zu entnehmen.

3.2.2.2 Einkristallstrukturanalyse und Kristalldaten von $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2 \underline{10}$

Für die Röntgenkristallstrukturanalyse der Reaktion von Verbindung <u>3</u> mit Aceton konnten nach Einengen der Mutterlösung unter verminderten Druck geeignete Kristalle der Verbindung [(Ph₂SiO)₈(AlO(OH))₄] · 4 OC(CH₃)₂ <u>10</u> erhalten werden. Die Strukturauflösung erfolgte mittels direkter Methoden. Sämtliche Nichtwasserstoffatome wurden gefunden und anisotrop verfeinert. Zur Berechnung der Lage der Wasserstoffatome wurden entsprechende idealisierte Geometrien verwendet. Nach Bestimmung und Verfeinerung der Gitterkonstanten ergab sich die Raumgruppe I-4 im tetragonalen Kristallsystem. Der Zuverlässigkeitsfaktor der so ermittelten Struktur erreichte einen Wert von R1 = 0.027.

Die nachstehenden Tabellen 17 und 18 enthalten die Daten zum Kristall und zur Strukturbestimmung, sowie ausgewählte Bindungsabstände und -winkel von Verbindung [(Ph₂SiO)₈(AlO(OH))₄] · 4 OC(CH₃)₂ <u>10</u>.

Tabelle 17: Kristalldaten und Strukturverfeinerung von $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2$ <u>10</u>.

Identifikationscode	sh2705	
Summenformel	C108 H108 Al4 O20 Si8	
Molmasse [g/mol]	2058.58	
Messtemperatur [K]	150(2)	
Wellenlänge [Å]	0.71073	
Kristallsystem	Tetragonal	
Raumgruppe	I-4	
Gitterkonstanten	a = 18.850(3) Å	α= 90°.
	b = 18.850(3) Å	β= 90° .
	c = 15.460(4) Å	$\gamma = 90^{\circ}$.
Zellvolumen [ų]	5493.1(19)	
Anzahl der Formeleinheiten Z	2	
Dichte (berechnet)	1.245 Mg/m ³	
Absorptionskoeffizient [mm ⁻¹]	0.195	
F(000)	2160	
Kristallabmessungen [mm ³]	0.48 x 0.46 x 0.32	
Messbereich θ [°]	1.53 to 30.40	
hkl - Indexbereich	-26<=h<=26, -26<=k<=26	6, -21<=l<=21
Gemessene Reflexe	52727	
Symmetrieunabhängige Reflexe	8184 [R(int) = 0.0385]	
Vollständigkeit des Datensatzes (bis $\theta = 3$	30.40°)	99.5 %
Absorptionskorrektur	Multiscan	
Max. und Min. Transmission	0.9404 and 0.9124	
Strukturverfeinerungsmethode	Full-matrix least-squares	on F ²
Daten / Einschränkungen / Parameter	8184 / 0 / 322	
Güte des Fit auf F ²	1.029	
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0265, wR2 = 0.06	58
R-Werte (alle Daten)	R1 = 0.0307, wR2 = 0.06	85
Absolute Strukturparameter	-0.03(5)	
Restelektronendichte (min./max.) [e/Å-3]	0.274 and -0.161	

$[(Ph_2SiO)_8(AIO(OH))_4]$	• 4 OC(CH ₃) ₂ <u>10</u> .		-
Al(1)-O(2)	1.6984(9)	Si(1)-O(4)#2	1.6346(9)
AI(1)-O(3)	1.7072(9)	Si(2)-O(3)	1.6020(9)
Al(1)-O(1)	1.7915(9)	Si(2)-O(4)	1.6341(9)
Al(1)-O(1)#1	1.7956(9)	O(1)-Al(1)#2	1.7956(9)
Si(1)-O(2)	1.5957(9)	O(4)-Si(1)#1	1.6345(9)
O(2)-AI(1)-O(3)	117.10(5)	O(2)-Si(1)-O(4)#2	111.53(5)
O(2)-AI(1)-O(1)	108.85(4)	O(3)-Si(2)-O(4)	113.15(5)
O(3)-AI(1)-O(1)	106.66(5)	AI(1)-O(1)-AI(1)#2	131.37(5)
O(2)-AI(1)-O(1)#1	105.95(5)	Si(1)-O(2)-Al(1)	170.25(6)
O(3)-AI(1)-O(1)#1	112.38(4)	Si(2)-O(3)-Al(1)	158.01(6)
O(1)-Al(1)-O(1)#1	105.27(6)	Si(2)-O(4)-Si(1)#1	147.87(6)

Tabelle 18: Ausgewählte Bindungslängen [Å] bzw. –winkel [°] für Verbindung $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2 10$.

Symmetrieoperationen zur Erzeugung äquivalenter Atome: #1 -y+1,x,-z+2 #2 y,-x+1,-z+2

3.2.2.3 Beschreibung und Diskussion der Molekülstruktur von $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2 \underline{10}$

Die Umsetzung des bicyclischen Alumosiloxan <u>3</u> mit Aceton führt zu Bildung der Verbindung [(Ph₂SiO)₈(AlO(OH))₄] \cdot 4 OC(CH₃)₂ <u>10</u>.

Die Struktur des neuen Alumopolysiloxanes $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2 10$ stellt das Aceton-Addukt der literaturbekannten Verbindung $[(Ph_2SiO)_8(AIO(OH))_4] 1$ ^[55] dar. Das Grundgerüst der neuen Verbindung <u>10</u> ist gleich aufgebaut wie das Grundgerüst von Verbindung <u>1</u>, und besteht somit aus fünf annelierten achtgliedrigen Ringen, wobei ein achtgliedriger $[AI(OH)]_4$ -Ring im Zentrum des Moleküls liegt. Jede AI-O(H)-AI-Kante dieses zentralen Achtrings ist von jeweils einer O-Si-O-Si-O-Einheit umspannt (siehe Abbildung 64). Dabei liegen jeweils zwei gegenüberliegenden O-Si-O-Si-O-Einheiten ober- bzw. unterhalb des zentralen $[AI(OH)]_4$ -Ringes (siehe Abbildung 65). In der pentacyclischen Verbindung $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4$ $OC(CH_3)_2$ <u>10</u> wird über die Protonen der vier OH-Gruppen im zentralen Ring jeweils ein Acetonmolekül über Wasserstoffbrückenbindungen koordiniert. Wie auch in der zugrundeliegenden Verbindung <u>1</u>, stellt auch in Verbindung <u>10</u> der mittige Ring mit den vier aciden Wasserstoffatomen das Reaktionszentrum des Moleküles dar.

Abbildung 64: Molekülstruktur von [(Ph₂SiO)₈(AlO(OH))₄] · 4 OC(CH₃)₂ <u>10</u>; zur besseren Übersicht wurden die Wasserstoffatome der Phenylringe vernachlässigt, die organischen Reste sind in der Stäbchenform dargestellt.

Abbildung 65: Molekülstruktur von $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2 \underline{10};$ zur besseren Übersicht wurden die Phenylgruppen vernachlässigt.

Die hohe Symmetrie im Molekül führt zu der Punktgruppe S₄, mit einer vierzähligen Drehspiegelachse in einem tetragonalen Kristallgitter. Die Aluminiumatome werden tetraedrisch von vier Sauerstoffatomen umgeben. Ebenso liegen die Siliciumatome tetraedrisch umgeben von zwei Sauerstoff- und zwei Kohlenstoffatomen der Phenylringe vor. Alle Tetraeder in der Kristallstruktur von $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4$ OC(CH₃)₂ <u>10</u> sind eckenverknüpft angeordnet (vgl. Abbildung 66). Die Sauerstoffatome des zentralen Ringes liegen in trigonal planarer Anordnung vor (Abbildung 67).

Abbildung 66: Polyederdarstellung von $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2 \underline{10}$; zur besseren Übersicht wurden die Phenylgruppen in Stäbchenform dargestellt.

Die Al-O(Si)-Abstände in [(Ph₂SiO)₈(AlO(OH))₄] · 4 OC(CH₃)₂ <u>**10**</u> sind mit 1.6984(9) Å für Al1-O2 bzw. mit 1.7072(9) Å für Al1-O3 (Mittelwert: 1.6983(9) Å) vergleichbar ähnlich zu denen in Verbindung [(Ph₂SiO)₈(AlO(OH))₄] · 4 NC₅H₅ mit einem mittleren Al-O(Si)-Bindungsabstand von 1.709 Å ^[57,59]. Das Grundgerüst von Verbindung <u>**10**</u> lässt sich gut mit dem von Verbindung [(Ph₂SiO)₈(AlO(OH))₄] · 4 NC₅H₅ vergleichen, da in dieser Verbindung vier Pyridinmoleküle an den zentralen OH-Gruppen über

Wasserstoffbrückenbindungen gebunden sind. Der mittlere C=O···H···O-Abstand in Verbindung <u>10</u> ist 2.627(6) Å lang und liegt im Bereich literaturbekannten Aceton-OH-Wechselwirkungen ^[53,115,123-127]. Der Mittelwert für die Al-(OH)-Abstände in <u>10</u> liegt mit 1.7942(9) Å im Bereich der Al-O(H)-Abstände des Alumosiloxans $[(Ph_2SiO)_8(AIO(OH))_4]$ mit koordinierenden O-Liganden, wie beispielsweise koordinierenden THF-, iso-Propanol oder Diethylethermolekülen (Al-O(H) in THF-Addukt: 1.801(6) Å, im i-Propanol-Addukt: 1.794(6) Å und 1.796(4) Å in Verbindung <u>1</u>) ^[56].

Abbildung 67: Molekülstruktur von $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2 <u>10</u>; mit eingetragenen Bindungslängen bzw. Bindungswinkeln.$

Betrachtet man die Protonenaffinitäten dieser koordinierenden Basen, so wird man feststellen, dass die Al-(OH)-Abstände ein Indiz auf die Basenstärke bzw. auf die Protonenaffinität der verwendeten Basen geben. So ist der Al-O(H)-Bindungsabstand in $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2$ <u>10</u> mit durchschnittlich 1.7942(9) Å länger als die entsprechenden Abstände mit 1.769(3) Å bei einer Koordination von vier Pyridinmolekülen, oder mit 1.729(4) Å bei koordinierenden Triethylaminen an den zentralen OH-Gruppen. Daraus lässt sich folgern, dass mit abnehmender Protonenaffinität der Base die Al-(OH)-Bindungslängen zunehmen. Somit gibt die

Basenstärke bzw. die Protonenaffinität demnach einen Zusammenhang zwischen diesen beiden Größen wider. Während die Protonenaffinität von Triethylamin mit 981.8 kJ*mol⁻¹ um 51.8 kJ*mol⁻¹ größer ist als die Protonenaffinität von Pyridin mit 930 kJ*mol⁻¹ ist, und sich diese Differenz auch in den Al-(OH)-Abständen bemerkbar macht (vgl. Abbildung 68), sind die Al-(OH)-Abstände in den Verbindungen $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 O(CH_2CH_3)_2 \mathbf{1}$ und $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2 \mathbf{10}$ nahezu gleich. Die Protonenaffinitäten von Diethylether und Aceton liegen nahe beieinander, die Differenz beträgt "lediglich" 16.4 kJ*mol⁻¹, bei einer Protonenaffinität von Diethylether mit 828.4 kJ*mol⁻¹ und 812 kJ*mol⁻¹ für Aceton ^[60]. Die Protonenaffinitäten der O-Liganden THF, Diethylether, Aceton und iso-Propanol liegen alle im selben Bereich (793 kJ/mol für iso-Propanol, 822.1 kJ/mol für THF ^[60]). Auch die Al-O(H)-Abstände liegen im selben Bereich (s.o.) ^[56]. In Abbildung 68 ist dieser Sachverhalt zum besseren Verständnis nochmals graphisch dargestellt, in der der weitgehend lineare Zusammenhang zwischen den Protonenaffinitäten und den Al-(OH)-Abständen zu erkennen ist.

Abbildung 68: Darstellung der Abhängigkeit der Basenstärke der koordinierenden Basen zu den Al-(OH)-Bindungslängen.

Allerdings ist nicht unbedingt eine Korrelation zwischen den Protonenaffinitäten und den Längen der Wasserstoffbrückenbindungen zwischen den koordinierenden Basen und OH-Gruppen des zentralen Al₄(OH)₄-achtgliedrigen Ringes zu erkennen. Die sterischen Größen der Basen nehmen eine wesentliche Rolle bei der Anzahl der koordinierenden Basen an das Grundgerüst der Moleküle ein. So koordinieren beispielsweise lediglich zwei Triethylaminmoleküle an das Grundgerüst [(Ph₂SiO)₈(AlO(OH))₄], obwohl es basischer als Diethylether ist und somit eigentlich an alle vier OH-Gruppen des zentralen [Al(OH)]₄-Ringes unter Substitution der drei Diethylethermoleküle (das vierte Diethylethermolekül befindet sich im van der Waals Gitter) koordinieren sollte. Die Wasserstoffbrückenbindung zwischen dem Stickstoffatom des Triethylaminmoleküles und der OH-Gruppe ist beispielsweise trotz der höheren Basizität des Amins im Vergleich zu Pyridin ^[60,101], größer als der N-H^{...}O-Abstand des Pyridins und der OH-Gruppe^[58,59].

Die Al-O-Al-Bindungswinkel in Verbindung <u>**10**</u> sind mit einem Wert von 131.342(6)° gut vergleichbar mit den mittleren Al-O-Al-Bindungswinkel in Verbindung <u>**1**</u> mit 130.8° bzw. mit 132.4(1)° in [(Ph₂SiO)₈(AlO(OH))₄] · 4 NC₅H₅ ^[56,57].

Der Diederwinkel der Disiloxanebenen zu der Ebene des zentralen achtgliedrigen [AI(OH)]₄-Ringes ist 46.98°.

Dass der koordinierende Ligand in Verbindung <u>10</u> als Keton koordiniert und nicht als Enolgruppe, ist aus der Kohlenstoff-Sauerstoff-Bindungslänge ersichtlich (C25-O5) mit einer Länge von 1.214(2) Å, die typisch für C=O-Doppelbindungen in koordinierenden Acetonmolekülen ist. Zusammen mit den NMR- und IR-Daten kann davon ausgegangen werden, dass das Aceton als Keton an den OH-Gruppen im zentralen [Al(OH)]₄-Ring koordiniert.

In Tabelle 19 sind zum Vergleich die AI-O(H)-Abstände mit den Protonenaffinitäten der verwendeten Lewis-Basen in den Verbindungen <u>6</u>, <u>7</u>, <u>8</u>, <u>9</u> und <u>10</u> aufgelistet. Eine Abhängigkeit der AI-O(H)-Bindungslängen und der Basenstärken ist in diesen Verbindungen aufgrund der unterschiedlichen Gerüststrukturen nicht nachzuvollziehen.

Tabelle 19: Protonenaffinitäten der eingesetzten Basen in den Verbindungen <u>6</u>, <u>7</u>, <u>8</u>, <u>9</u> und <u>10</u> die zugehörigen Al-(OH)-Abstände in den Verbindungen.

Verbindung	Molekülstruktur	koordinierende	AI-O(H)-	s. ab
		Lewis-Base mit	Abstand [Å]	Seite
		PA [kJ/mol] []		
<u>6</u>		N(C₂H₅) ₃ (981.8)	1.787(1)	57
<u>Z</u>	SI1 05 04 SI4 02 03 01 05 04 SI4	N(C₂H₅) ₃ (981.8)	1.773(2)	72
<u>8</u>		N(C₂H₄)₃N (963.4)	1.783(1)	82
<u>9</u>	014 0012 017 013 0012 016 015 013 000 018 0015 018 0019 018 0019 015 018 019	HN(C₂H₅)₂ (952.4)	1.772(2)	94
10	SI2 05 05 05 05 05 05 05 05 05 05 05 05 05	Aceton (812)	1.7942(9)	107

3.2.2.4 Synthese von [(Ph₂SiO)₈(AIO_{1,5})₄] · 2 THF <u>11</u>

Zur Darstellung von Verbindung [(Ph₂SiO)₈(AlO_{1,5})₄] · 2 THF <u>11</u> wird zu der in Toluol gelösten Verbindung <u>3</u> THF getropft und zwei Stunden bei Raumtemperatur gerührt. Nach Einengen des Lösungsmittels unter reduziertem Druck auf die Hälfte seines Ausgangsvolumens, konnten nach 12 h Kristalle von Verbindung [(Ph₂SiO)₈(AlO_{1,5})₄] · 2 THF <u>11</u> in 44 %-iger Ausbeute aus der Reaktionslösung erhalten werden (siehe Gleichung (15)).

$$Al_{2}[(OSiPh_{2})_{2}O]_{3} \cdot 2 O(C_{2}H_{5})_{2} \xrightarrow{+ H_{2}O} IHF, 3 h RT \qquad [(Ph_{2}SiO)_{8}(AlO_{1,5})_{4}] \cdot 2 THF$$

$$\underline{3} \xrightarrow{- 2 O(C_{2}H_{5})_{2}} \underbrace{11}$$

Gleichung (15)

In Abbildung 69 ist die Molekülstruktur zu Verbindung 11 gezeigt.

Abbildung 69: Molekülstruktur von [(Ph₂SiO)₈(AlO_{1,5})₄] · 2 THF 11

Bei Umsetzung von Verbindung <u>3</u> mit Tetrahydrofuran erfolgt eine Umlagerung und Neuorientierung aus zwei Molekülen der bicyclischen Ausgangsverbindung <u>3</u>. Der postulierte Mechanismus zur Entstehung des neuen Alumosiloxan $[(Ph_2SiO)_8(AIO_{1,5})_4] \cdot 2$ THF <u>11</u> ist in Abbildung 70 gezeigt. Es wird angenommen, dass sich zunächst ein THF-Molekül am Al-Atom des Übergangszustandes $[(Ph_2SiO)_2O]_2[AI(OH)]_2$ <u>3a</u> koordiniert. Es folgt eine weitere Koordination mit dem Angriff des O¹-Atoms an das Al¹-Atom (Schritt 1), wodurch die erste Al-O-Al-Bindung gebildet wird. Dabei bricht die Al¹-O²-Bindung auf (Schritt 2), das negative O²-Atom koordiniert im nächsten Schritt an das Al²-Atom (Schritt 3). Es folgt eine weitere Koordination des O¹-Atomes an das Al³-Atom (Schritt 4). Die Hydroxylgruppe an Al³ spaltet sich mit dem Proton der O¹H als Wassermolekül ab (Schritt 5). Das O³-Atom koordiniert sich nun an das Al²-Atom (Schritt 6), gefolgt von einer Al²-O⁴-Bindungsspaltung (Schritt 7). Das negative O⁴-Atom greift am Al¹-Atom an (Schritt 8). Anschließend folgt eine weitere Koordination des O³-Atoms an das Al⁴-Atom (Schritt 9). Nach Abspaltung eines weiteren Wassermoleküles (Schritt 10) resultiert Verbindung [(Ph₂SiO)₈(AlO_{1,5})₄] • 2 THF <u>11</u>.

Abbildung 70: Postulierter Reaktionsmechanismus zur Darstellung von Verbindung $[(Ph_2SiO)_8(AIO_{1,5})_4] \cdot 2 \text{ THF } \underline{11}.$

Zur Aufnahme von NMR-Spektren wurden Kristalle der Verbindung <u>11</u> in Toluol gelöst. Im ²⁹Si-NMR-Spektrum konnte ein Signal bei -47.5 ppm der Verbindung <u>11</u> zugeordnet werden.

Im 13-C-NMR-Spektrum sind die Signale bei 26.2 ppm und bei 68.22 ppm den THF-Molekülen zuzuordnen.

3.2.2.5 Einkristallstrukturanalyse und Kristalldaten von $[(Ph_2SiO)_8(AIO_{1.5})_4] \cdot 2 \text{ THF } \underline{11}$

Geeignete Einkristalle von Verbindung $[(Ph_2SiO)_8(AIO_{1,5})_4] \cdot 2$ THF <u>11</u> konnten der Röntgenkristallstrukturanalyse zugeführt werden. Die Struktur wurde mittels direkter Methoden bestimmt, wobei alle Nichtwasserstoffatome gefunden und anisotrop verfeinert werden konnten. Die Lage der Wasserstoffatome wurden anhand idealisierter Geometrien berechnet. Die Gitterkonstanten wurden bestimmt und die Daten anschließend verfeinert. Für Verbindung <u>11</u> ergab sich die trikline Raumgruppe P-1. Die Struktur besitzt einen Zuverlässigkeitsfaktor von 0.064.

Die Kristalldaten und ausgewählte Bindungslängen und –winkel zu Verbindung $[(Ph_2SiO)_8(AIO_{1,5})_4] \cdot 2$ THF <u>11</u> sind in den folgenden Tabellen 20 und 21 zusammengestellt.

Tabelle 20: Kristalldaten und Strukturverfeinerung von $[(Ph_2SiO)_8(AIO_{1,5})_4] \cdot 2 \text{ THF } \underline{11}.$

Identifikationscode	sh2719	
Summenformel	C112 H120 Al4 O18 Si8	
Molmasse [g/mol]	2086.72	
Messtemperatur [K]	150(2)	
Wellenlänge [Å]	0.71073	
Kristallsystem	Triclinic	
Raumgruppe	P-1	
Gitterkonstanten	a = 13.1656(15) Å	α= 69.616(4)°.
	b = 15.1942(17) Å	β= 80.353(5)° .
	c = 15.6210(18) Å	$\gamma = 66.087(4)^{\circ}.$
Zellvolumen [Å ³]	2676.5(5)	
Anzahl der Formeleinheiten Z	1	
Dichte (berechnet)	1.295 Mg/m ³	
Absorptionskoeffizient [mm ⁻¹]	0.200	
F(000)	1100	
Kristallabmessungen [mm ³]	0.46 x 0.33 x 0.21	
Messbereich θ [°]	1.39 to 27.30	
hkl - Indexbereich	-16<=h<=14, -19<=k<=1	9, -19<=l<=20
Gemessene Reflexe	39619	
Symmetrieunabhängige Reflexe	11685 [R(int) = 0.0529]	
Vollständigkeit des Datensatzes (bis θ =	27.30°)	97.1 %
Absorptionskorrektur	Multiscan	
Max. und Min. Transmission	0.9593 and 0.9138	
Strukturverfeinerungsmethode	Full-matrix least-squares	s on F ²
Daten / Einschränkungen / Parameter	11685 / 0 / 628	
Güte des Fit auf F ²	1.518	
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0639, wR2 = 0.17	751
R-Werte (alle Daten)	R1 = 0.0852, wR2 = 0.18	397
Restelektronendichte (min./max.) [e/Å-3]	0.719 and -1.003	

Al(1)-O(7)	1.692(2)	Si(1)-O(4)	1.634(2)
AI(1)-O(3)	1.695(2)	Si(2)-O(2)	1.608(2)
AI(1)-O(1)	1.743(2)	Si(2)-O(4)	1.642(2)
AI(1)-O(8)	1.847(2)	Si(3)-O(5)	1.602(2)
AI(2)-O(5)	1.698(2)	Si(3)-O(6)#1	1.637(2)
AI(2)-O(2)	1.712(2)	Si(4)-O(7)	1.601(2)
AI(2)-O(1)	1.804(2)	Si(4)-O(6)	1.633(2)
AI(2)-O(1)#1	1.804(2)	O(1)-AI(2)#1	1.804(2)
AI(2)-AI(2)#1	2.647(2)	O(6)-Si(3)#1	1.637(2)
Si(1)-O(3)	1.604(2)		
O(7)-Al(1)-O(3)	118.0(1)	O(1)#1-AI(2)-AI(2)#1	42.79(6)
O(7)-Al(1)-O(1)	113.49(9)	O(3)-Si(1)-O(4)	110.6(1)
O(3)-Al(1)-O(1)	110.81(9)	O(2)-Si(2)-O(4)	110.7(1)
O(7)-Al(1)-O(8)	105.12(9)	O(5)-Si(3)-O(6)#1	110.4(1)
O(3)-Al(1)-O(8)	106.58(9)	O(7)-Si(4)-O(6)	113.0(1)
O(1)-AI(1)-O(8)	100.89(8)	AI(1)-O(1)-AI(2)	127.7(1)
O(5)-AI(2)-O(2)	115.4(1)	AI(1)-O(1)-AI(2)#1	137.2(1)
O(5)-Al(2)-O(1)	113.87(9)	AI(2)-O(1)-AI(2)#1	94.40(8)
O(2)-AI(2)-O(1)	112.02(9)	Si(2)-O(2)-AI(2)	139.5(1)
O(5)-Al(2)-O(1)#1	114.44(9)	Si(1)-O(3)-AI(1)	167.6(1)
O(2)-AI(2)-O(1)#1	112.02(9)	Si(1)-O(4)-Si(2)	135.7(1)
O(1)-Al(2)-O(1)#1	85.60(8)	Si(3)-O(5)-AI(2)	156.3(1)
O(5)-Al(2)-Al(2)#1	123.90(8)	Si(4)-O(6)-Si(3)#1	140.9(1)
O(2)-Al(2)-Al(2)#1	120.72(8)	Si(4)-O(7)-AI(1)	155.5(1)
O(1)-Al(2)-Al(2)#1	42.81(6)		

Tabelle 21: Ausgewählte Bindungslängen [Å] bzw. –winkel [°] für $[(Ph_2SiO)_8(AlO_{1,5})_4] \cdot 2 THF$ <u>11</u>.

Symmetrieoperationen zur Erzeugung äquivalenter Atome: #1 -x+1,-y,-z+1

3.2.2.6 Beschreibung und Diskussion der Molekülstruktur von $[(Ph_2SiO)_8(AIO_{1,5})_4] \cdot 2 \text{ THF } \underline{11}$

Die Umsetzung von Verbindung $\underline{3}$ mit THF führt zu Verbindung [(Ph₂SiO)₈(AlO_{1,5})₄] · 2 THF $\underline{11}$.

Die neue polycylclische Verbindung $[(Ph_2SiO)_8(AIO_{1,5})_4] \cdot 2$ THF <u>11</u> weist in seinem Zentrum einen viergliedrigen Al₂O₂-Ring auf, wobei an jedes dieser beiden Sauerstoffatome ein weiteres Aluminiumatom gebunden ist, so dass insgesamt vier Aluminiumatome im Molekül von Verbindung <u>11</u> eingebunden sind. Diese beiden "unterschiedlichen" Al-Atome (Al1, Al2), die über die trigonal koordinierten Sauerstoffatome verbunden sind, werden über jeweils eine O-Si-O-Si-O-Disiloxaneinheit überbrückt. Insgesamt sind somit vier Al₂O₄Si₂-achtgliedrige Ringe im Molekül enthalten (s. Abbildung 71).

Abbildung 71: Molekülstruktur von $[(Ph_2SiO)_8(AIO_{1,5})_4] \cdot 2$ THF <u>11</u>; zur besseren Übersicht sind die organischen Rest in Stäbchenform und die Wasserstoffatome nicht dargestellt.

Die zentrale Al₄O₂-Einheit liegt planar vor. Jeweils zwei gegenüber liegende Al₂O₄Si₂-Achtringe liegen oberhalb bzw. unterhalb der Al₄O₂-Einheit (Abbildung 72). Die an den äußeren beiden Al-Atomen (Al1, Al1´) koordinierenden THF-Moleküle sind so gerichtet, dass die geringste sterische Wechselwirkung mit den Phenylringen der Disiloxaneinheiten vorliegt (vgl. Abbildung 71).

Abbildung 72: $[(Ph_2SiO)_8(AIO_{1,5})_4] \cdot 2$ THF <u>11</u>; zur besseren Übersicht wurden die Phenylringe vernachlässigt.

Die zentrosymmetrische Verbindung $[(Ph_2SiO)_8(AIO_{1,5})_4] \cdot 2$ THF <u>11</u> stellt ein Polyalumosiloxan der Punktsymmetrie i (1) dar, weshalb im Zentrum des Moleküles ein Inversionszentrum sitzt. Der planare viergliedrige Al₂O₂-Ring liegt um den Mittelpunkt des Moleküles (s. Abbildung 72). Dieser zentrale Vierring ist oft auch als verbrückende Einheit in Silsesquioxanen vertreten ^[14,20]. Weiterhin kann Verbindung <u>11</u> als ein Polycyclus beschrieben werden, in welchem vier achtgliedrige Ringe über zwei gemeinsame "Aluminiumecken" verbunden sind, wobei gleichzeitig immer zwei Ringe an einer Al-O-Kante vereint sind (vgl. Abbildung 72). Verbindung $[(Ph_2SiO)_8(AIO_{1.5})_4] \cdot 2$ THF <u>11</u> hat ein isostrukturelles Grundgerüst zu den literaturbekannten Verbindungen [Ph₂SiO]₈[AlO_{1.5}]₄ · 2 NC_5H_5 und $[Ph_2SiO]_8[AIO_{1,5}]_4 \cdot 2 C_6H_{13}N$ mit an den Aluminiumatomen koordinierenden [72,73] Pyridinmolekülen bzw. mit koordinierenden N-Methylpiperidinmolekülen Abgesehen von den unterschiedlichen Donormolekülen, weisen alle drei Verbindungen vergleichbar ähnliche Bindungslängen und Bindungswinkel auf. Betrachtet man die Bindungslängen und Bindungswinkel im zentralen viergliedrigen Ring, so lässt sich erkennen, dass der O1-Al2-O1-Winkel in Verbindung 11 mit 85.59(7)° etwas kleiner ist im Vergleich zu dem entsprechenden Winkel in Verbindung [Ph₂SiO]₈[AlO_{1.5}]₄ · 2 NC₅H₅, mit 86.3(2)°. Der Bindungswinkel am O1-Atom, mit 94.40(8)° (Al2-O1-Al2') ist vergleichbar mit dem entsprechenden Winkel in Verbindung $[Ph_2SiO]_8[AIO_{1.5}]_4 \cdot 2 NC_5H_5$ mit 93.7(1)°. Die größte Spannung in Molekül **11** herrscht ohne Zweifel in dem zentralen viergliedrigen Al₂O₂-Ring vor. Die durchschnittliche Bindungslänge zwischen Al2-O1 und Al2'-O1 beträgt 1.804(2) Å, wohingegen der Al1-O1-Abstand einen Wert von 1.743(2) Å besitzt und kürzer ist (vgl. Abbildung 73). In Verbindung [Ph₂SiO]₈[AlO_{1.5}]₄ · 2 NC₅H₅ liegt ein ähnliches Verhalten der beiden Bindungslängen vor, mit 1.802(4) Å bzw. 1.775(4) Å für die entsprechenden Bindungsabstände ^[72]. Die Bindungslänge der Donor-Akzeptor-Wechselwirkung des Aluminiumatoms und dem Sauerstoffatom des THF-Moleküls 1.847(2) Å und liegt im Bereich literaturbekannter AI-O(THF)beträgt Wechselwirkungen ^[10,53,128-130]. Die endocyclischen Sauerstoffatome (O1 und O1') liegen mit einer trigonal-planaren Geometrie im Zentrum eines formal von Al1, Al2 und Al2[´] dargestellten Dreiecks (Winkelsumme 359.2(1)°).

Abbildung 73: Kristallstruktur von Verbindung [(Ph₂SiO)₈(AlO_{1,5})₄] * 2 THF <u>11</u>, mit eingetragenen Bindungsabständen; die organischen Reste wurden einer besseren Übersichtlichkeit wegen vernachlässigt.

In Abbildung 74 ist die Polyederdarstellung von Verbindung $[(Ph_2SiO)_8(AIO_{1,5})_4] * 2$ THF <u>11</u> gezeigt. Hier ist zu erkennen, dass die beiden Aluminiumatome im zentralen Al₂O₂-Vierring miteinander kantenverknüpft vorliegen. Alle anderen Tetraeder im Molekül liegen eckenverknüpft vor.

Abbildung 74: Polyederdarstellung von Verbindung [(Ph₂SiO)₈(AlO_{1,5})₄] * 2 THF <u>11</u>; zur besseren Übersicht wurden die Phenylringe vernachlässigt.

Anhand der eingezeichneten Polyeder in Abbildung 75 ist die räumliche Anordnung der Disiloxaneinheiten oberhalb bzw. unterhalb der Al₄O₂-Ebene deutlich zu erkennen. Entsprechend der räumlichen Anordnungen der Disiloxaneinheiten haben sich die THF-Moleküle in den "freien Ecken" im Kristall arrangiert.

Abbildung 75: Polyederdarstellung von [(Ph₂SiO)₈(AlO_{1,5})₄] * 2 THF <u>11</u>; zur besseren Übersicht wurden die Phenylringe vernachlässigt. Die Disiloxaneinheiten arrangieren sich ober- bzw. unterhalb der Al₄O₂-Ebene.

4. Zusammenfassung und Ausblick

Es wurde die Reaktivität des bicyclischen Alumosiloxanverbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \mathbf{3}$ gegenüber Lewis-Basen untersucht. Es lassen sich gezielt die an die Aluminiumatome in den Alumosiloxankäfigen koordinierenden Diethylethermoleküle durch die stickstoffhaltigen Basen Triethylamin bzw. Pyridin substituieren und die Verbindungen $Al_2[(OSiPh_2)_2O]_3 \cdot 2 N(CH_2CH_3)_3 \mathbf{4}$ bzw. $Al_2[(OSiPh_2)_2O]_3 \cdot 2 NC_5H_5 \mathbf{5}$ entstehen. In beiden Verbindungen bleibt die bicyclische Grundstruktur der Ausgangsverbindung $\mathbf{3}$ erhalten. Die Reaktion wird bei Raumtemperatur mit einem zweifachen Überschuss der jeweiligen Base in Toluol als Reaktionsmedium durchgeführt. Die Reaktionen erfolgten unter striktem Ausschluss von Wasser. In Abbildung 76 sind die Strukturen der Verbindungen $\mathbf{4}$ bzw. $\mathbf{5}$ gezeigt.

Abbildung 76: Molekülstrukturen der Verbindungen Al₂[(OSiPh₂)₂O]₃ · 2 N(CH₂CH₃)₃ <u>4</u> bzw. Al₂[(OSiPh₂)₂O]₃ · 2 NC₅H₅ <u>5</u>. Zur besseren Übersicht ohne den Phenylgruppen an den Si-Atomen bzw. ohne H-Atome am Pyridinring.

Bei Umsetzung von Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> mit Triethylamin in Gegenwart von Spuren von Wasser werden unter Neuordnung der Gerüststruktur von <u>3</u> zwei neue Verbindungen [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N(CH₂CH₃)₃]}₂ <u>6</u> und [(Ph₂SiO)₂O]Al[(Ph₂SiO)₂OH · N(CH₂CH₃)₃] <u>7</u> isoliert, die als Alumosilicate betrachtet werden können. Während bei mittleren Temperaturen (50-60°C) Verbindung $\underline{6}$ gebildet wird, entsteht unter Rückfluss Verbindung $[(Ph_2SiO)_2O]Al[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]$ $\underline{7}$. In beiden Reaktionen wird in zweifachem Überschuss des Triethylamins und in Toluol als Reaktionsmedium gearbeitet. Verbindung $[(Ph_2SiO)_2O]_2{Al[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]}_2$ $\underline{6}$ stellt eine bispirocyclische Verbindung dar, worin zwei Al-Atome die spirocyclischen Zentren besetzen. Die Al-Atome werden über zwei O-Ph_2Si-O-Ph_2Si-O-Einheiten miteinander verbunden, wodurch der zwölfgliedrige mittlere Ring entsteht. An beiden Al-Atomen sind darüber hinaus jeweils eine O-Ph_2Si-O-Ph_2Si-OH-Einheit gebunden, die mit dem Al-Atom sechsgliedrige Ringe bilden. An den OH-Gruppen der sechsgliedrigen Ringe ist jeweils über eine Wasserstoffbrückenbindung ein Triethylaminmolekül koordiniert, wodurch die zweifach negative Ladung des Grundgerüstes von Verbindung $\underline{6}$ kompensiert wird (s. Abbildung 77).

Verbindung $[(Ph_2SiO)_2O]_2[AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3]]_2$ <u>6</u> stellt die erste sechsgliedrige spirocyclische Alumosilicatverbindung dar. Auch hier nimmt das Al-Atom das spirocyclisch verbrückende Zentrum ein und verbrückt zwei O-SiPh_2-O-SiPh_2-OH-Einheiten miteinander. An der OH-Gruppe ist weiterhin ein Triethylaminmoleül koordiniert. Die Strukturen der beiden Verbindungen <u>6</u> und <u>7</u> sind der Abbildung 77 zu entnehmen.

Abbildung 77: Molekülstrukturen der Verbindungen [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH \cdot N(CH₂CH₃)₃]₂ <u>6</u> bzw. [(Ph₂SiO)₂O]Al[(Ph₂SiO)₂OH \cdot N(CH₂CH₃)₃] <u>7</u>.

Bei gleichen Reaktionsbedingungen wird durch Reaktion von Verbindung 3 mit der Diazabicyclo[2,2,2]octan, starken Distickstoffbase die eine vergleichbare Protonenaffinität wie das Triethylamin hat (PA ($N(C_2H_5)_3$) = 981.8 kJ/mol; PA $(N(C_2H_4)_3)N) = 963.4 \text{ kJ/mol}^{[60]}, \text{ Verbindung } [(Ph_2SiO)_2O]_2[Al[(Ph_2SiO)_2OH \cdot$ N((CH₂)₂)₃N]}₂ 8 erhalten. Die Grundstrukturen der Verbindungen 8 und 6 sind gleich aufgebaut. Sie unterscheiden sich ledialich in Basen, die über Wasserstoffbrückenbindungen an das Grundgerüst koordiniert sind. Während in Verbindung 6 Tritehylamin koordiniert, erfolgt der Ladungsausgleich in Verbindung $[(Ph_2SiO)_2O]_2$ {AI[(Ph_2SiO)_2OH • $N((CH_2)_2)_3N]_2$ <u>8</u> über zwei Diaza[2,2,2]bicyclooctan Tris(ethylen)diammoniumionen (oder Kationen). In Abbildung 78 ist die Molekülstruktur von 8 zu sehen.

Abbildung 78: Molekülstruktur von Verbindung [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N((CH₂)₂)₃N]}₂ 8. Zur besseren Übersicht sind die Phenylgruppen an den Siliciumatomen und die Wasserstoffatome der Tris(ethylen)diaminmoleküle nicht dargestellt.

Bei Reaktion des Alumosiloxans <u>3</u> mit zwei Äquivalenten Diethylamin wird in Gegenwart von Wasser Verbindung [(Ph₂Si(OH))₂O]₂Al₂O[(Ph₂SiO)₂O] · 2 HN(CH₂CH₃)₂ <u>9</u> synthetisiert. Mit einer Protonenaffinität von 952.4 kJ/mol liegt die Basenstärke von Diethylamin im Bereich der Basenstärke der beiden N-Basen Triethylamin und Diaza[2,2,2]bicyclooctan. Die sterische Raumbeanspruchung hingegen ist bei Diethylamin kleiner im Gegensatz zu den anderen beiden genannten Basen. Das führt dazu, dass zwar auch hier eine bispirocyclische Verbindung entsteht, jedoch mit einem kleineren mittleren Ring. Zwei Al-Atome sind in
Verbindung [(Ph₂Si(OH))₂O]₂Al₂O[(Ph₂SiO)₂O] · 2 HN(CH₂CH₃)₂ **9** über eine O-SiPh₂-O-SiPh₂-O-Disiloxaneinheit und einem verbrückenden O-Atom miteinander verbunden, wodurch ein achtgliedriger Ring entsteht, der auch in dem Oligoalumosiloxan **1** zu sehen ist. Die Al-Atome bilden mit jeweils einer weiteren O-SiPh₂-O-SiPh₂-OH-Einheit zwei sechsgliedrige Ringe. Insgesamt verfügt Verbindung **9** über zwei OH-Gruppen. Jeweils eine dieser OH-Gruppen und ein weiteres O-Atom der sechsgliedrigen Ringe bilden zwei Wasserstoffbrückenbindungen zu den Diethylaminmolekülen. Zwei Diethylaminmoleküle sind an das Grundgerüst von [(Ph₂Si(OH))₂O]₂Al₂O[(Ph₂SiO)₂O] · 2 HN(CH₂CH₃)₂ **9** koordiniert. Die Molekülstruktur der Verbindung **9** ist Abbildung 79 zu entnehmen.

Abbildung 79: Molekülstruktur der Verbindung [(Ph₂Si(OH))₂O]₂Al₂O[(Ph₂SiO)₂O] • 2 HN(CH₂CH₃)₂ <u>9</u>, ohne Phenylgruppen an den Siliciumatomen und ohne Wasserstoffatome der Ethylgruppen.

Mit Umsetzungen von Verbindung $Al_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \underline{3}$ mit sauerstoffhaltigen Lewis-Basen werden die Verbindungen $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4$ $OC(CH_3)_2 \underline{10}$ bzw. $[(Ph_2SiO)_8(AIO_{1,5})_4] \cdot 2$ THF $\underline{11}$ erhalten. Wird Verbindung $\underline{3}$ bei Raumtemperatur in Aceton gerührt, erfolgt eine Umstrukturierung des Grundgerüstes von Ausgangsverbindung $Al_2[(SiOPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \underline{3}$ zu Verbindung $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2 \underline{10}$, deren Grundgerüst die bereits literaturbekannten Verbindung $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 O(CH_2CH_3)_2 \underline{1}$ darstellt. Das Oligoalumosiloxan $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2 \underline{10}$ besteht aus fünf annelierten achtgliedrigen Ringen mit einem zentralen Al₄(OH)₄-achtgliedrigen Ring. Durch Koordinierung von vier Acetonmolekülen an den OH-Gruppen des mittleren Ringes erhält Verbindung $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2 \underline{10}$ eine S₄-Symmetrie (siehe Abbildung 80).

In THF wird eine Neuordnung der Startverbindung Al₂[(SiOPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ **3** zu der Verbindung [(Ph₂SiO)₈(AlO_{1,5})₄] · 2 THF **11** beobachtet. In Verbindung **11** liegt ein zentraler Al₂O₂-Vierring vor, wobei an den beiden O-Atomen jeweils ein weiteres Al-Atom gebunden ist, wodurch die O-Atome eine trigonal-planare Anordnung erhalten. Die endo-und exocyclischen Al-Atome (in Bezug auf den mittleren Al₂O₂viergliedrigen Ring) sind weiterhin über O-SiPh₂-O-SiPh₂-O-Disiloxaneinheiten verbrückt. Insgesamt liegen vier Disiloxaneinheiten in Verbindung **11** vor. Die elektronische Sättigung der beiden aciden exocyclischen Al-Atome erfolgt durch Koordinierung von THF-Molekülen, die sich gut mit den Phenylgruppen an den Si-Atomen arrangieren können. In Abbildung 80 sind die Molekülstrukturen der beiden Verbindungen [(Ph₂SiO)₈(AlO(OH))₄] · 4 OC(CH₃)₂ **10** und [(Ph₂SiO)₈(AlO_{1,5})₄] · 2 THF **11** zu sehen.

Abbildung 80: Molekülstrukturen der Verbindungen [(Ph₂SiO)₈(AlO(OH))₄] • 4 OC(CH₃)₂ <u>10</u> und [(Ph₂SiO)₈(AlO_{1,5})₄] • 2 THF <u>11</u>. Zur besseren Übersicht ohne Phenylgruppen an den Si-Atomen und ohne H-Atome an den koordinierenden Basen.

Die Grundstruktur von Verbindung <u>11</u> ist ebenso bereits literaturbekannt. Bei Umsetzung der Alumopolysiloxanverbindung $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 O(CH_2CH_3)_2 \mathbf{1}$ mit Hexamethyldisilazan bzw. mit dem Monochloralan H₂AICI · 2 C₆H₁₃N wird die Grundstruktur von Verbindung <u>11</u> erhalten, lediglich die stabilisierenden Basen sind das Pyridin- bzw. das N-Methylpiperidinmolekül. Somit lässt sich ein Gleichgewicht zwischen den Alumosiloxanen $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 O(CH_2CH_3)_2 \mathbf{1}$ und $\mathbf{3}$ erkennen. Umsetzungen von Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ $\mathbf{3}$ mit Sauerstoffhaltigen Lewis-Basen führen zu Verbindungen, die eine gleiche Gerüststruktur haben, wie Produkte, die bereits bei Umsetzungen von Verbindung $\mathbf{1}$ teilweise gebildet werden.

Wie gesehen, zeigt das Alumopolysiloxan Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> ein großes reaktives Spektrum, so dass eine Fortführung dieser "Chemie" sicherlich weitere interessante Reaktionen, Verbindungen und Molekülstrukturen verspricht. Neben weiteren einfachen Aminen könnten Untersuchungen zu der Reaktivität von <u>3</u> mit Diaminen durchgeführt werden. Es liegt nahe, dass auch hier Supramolekulare Verbindungen erhalten werden könnten. Verbindung <u>3</u> und seine Derivate könnten auf Grund der Lewis-Säure-Lewis-Base-Wechselwirkungen mit dem Al-Atom als "Wirt"-Molekül in "host-guest"-Reaktionen fungieren. Die Verwendung der hier erhaltenen Verbindungen als Precursorverbindungen für weitere Alumosiloxane oder Polyalumosiloxane wäre ebenso denkbar.

5. Experimenteller Teil

Die Reaktionen wurden an einer modifizierten Stock'schen Hochvakuumsapparatur durchgeführt. Es wurde unter Ausschluss von Luft und Feuchtigkeit und mit über CaCl2, sowie Phosphorpentoxid (Sicapent) getrocknetem Stickstoff als Inertgas gearbeitet. Die in den Versuchen verwendeten Lösungsmittel (Toluol, Diethylether, Aceton, THF) wurden durch Destillation gereinigt und über gepresstem Natriumdraht in Stickstoffatmosphäre aufbewahrt.

Die aufgenommenen ¹H- und ¹³C-NMR-Spektren wurden mit einem NMR– Spektrometer AC200F der Fa. Bruker durchgeführt. Die ²⁹Si-NMR-Spektren wurden mit Hilfe Inept Pulsfrequenz an einem NMR–Spektrometer AC200P der Fa. Bruker aufgenommen. Die Messungen der NMR-Spektren erfolgten mit einem Volumenanteil C₆D₆ von etwa 5%. TMS diente als interner Standard.

Eichungen und Messfrequenzen: ¹H-NMR: Messfrequenz: 39,7 MHz Standard Benzol: 7,15 ppm ¹³C-NMR: Messfrequenz: 50,32 MHz Standard Benzol: 128 ppm ²⁹Si-NMR: Messfrequenz: 200,13 MHz

Die IR-Spektren wurden an einem FT–IR Spektrometer Varian 2000 unter Verwendung einer Spiegeleinheit für diffuse Reflexion aufgenommen. Die C-, H-, N-Analysen erfolgten mit einem CHN-900 Elemental Analysator der Firma

Leco Corporation (St. Joseph, Mi, USA).

Mit einem Image Plate Diffraktometer der Firma Stoe (IPDS I) wurden die Daten der Strukturanalysen erstellt und mit Hilfe der Programme SHELXS-86,97 ^[135,136] und SHELXL-93,97 ^[137] die Molekülstrukturen bestimmt. Die Darstellung der Strukturen erfolgte mit dem Programm Diamond 3 ^[116].

Experimenteller Teil

Erworbene Chemikalien:

- Tris(ethylen)diamin, 98 % (CAS: 280-57-9, Aldrich)
- Triethylamin, ≥99.5%, CAS: 121-44-8, Aldrich
- -Pyridin, anhydrous, 99.8% , CAS: 110-86-1
- Aceton, ACS reagent, ≥99.5%, CAS: 67-64-1
- NaOtBu 97% CAS: 865-48-5.

5. 1 Darstellung von [Ph₂Si(OH)]₂O 2

Versuchsdurchführung:

In 100 ml eines 1:1-Gemisches aus Aceton und Toluol werden 11,253 g (0,134 mol) NaHCO₃ bei 50 °C vorgelegt. Innerhalb von 40 Minuten werden hierzu 20,160 g (0,0447 mol) Dichlordisiloxandiol in 40 ml Aceton zugetropft. Nach beendeter Zugabe wird der Reaktionsansatz weitere 20 min zum Rückfluss erhitzt und anschließend weitere 12 h bei RT gerührt. Der gebildete NaCl-Niederschlag wird abfiltriert, das Produkt wird als weißer Feststoff aus dem Filtrat isoliert. (Molmasse: 414,60 g/mol).

Ausbeute: 17,57 g (42,378 mmol; 95 %)

 $M (C_{24}H_{22}Si_2O_3) = 414.61 \text{ g/mol g/mol}$

¹H-NMR: 4,10 (2 H, b, OH); 7.20 – 7.56 (20 H, m, C_6H_5) ^[99] ²⁹Si-NMR: -36.0 ppm ^[99] **C,H-Analyse** für $C_{24}H_{22}Si_2O_3$: berechnet: C, 69,53%; H, 5,35%. gefunden: C, 72,28%; H, 4.71%. Experimenteller Teil

5.2 Darstellung von Al₂[(OSiPh₂)₂O]₃ · 2 N(CH₂CH₃)₃ 4

 $Al_{2}[(OSiPh_{2})_{2}O]_{3} \cdot 2 O(C_{2}H_{5})_{2} \xrightarrow{+ 2 N(C_{2}H_{5})_{3}, \text{ Toluol, RT}}{- 2 O(C_{2}H_{5})_{2}} \rightarrow Al_{2}[(OSiPh_{2})_{2}O]_{3} \cdot 2 N(C_{2}H_{5})_{3}$ $\underline{3} \xrightarrow{4}$

Versuchsdurchführung:

In 10 ml Toluol werden 0,304 g (0,2111 mmol) Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> Kristalle unter Erwärmen gelöst und vorgelegt. Hierzu werden unter Rühren 0,1 ml Triethylamin zugegeben, wobei die Reaktionslösung einen "Gelbstich" erhält. Nach beendeter Zugabe fällt ein weißer Feststoff aus. Der Ansatz wird weitere 2 Stunden bei RT gerührt. Anschließend wird der weiße Feststoff abfiltriert und i. Vak. (10⁻² Torr) getrocknet. Reinigung durch Umkristallisation aus Toluol, Erhalt farbloser, rautenförmiger Kristalle.

Ausbeute: 0,240 g (0,1606 mmol; 76 % d. Th.).

M $(C_{84}H_{90}Si_6AI_2O_9N_2) = 1494,08 \text{ g/mol}.$

¹H-NMR: 0.92 ppm (t, *CH*₃CH₂N); 2.36 ppm (q,CH₃*CH*₂N); 6.94-7.11 ppm (H-Phenyl)
 ¹³C-NMR: 135.2, 135.5 ppm (o-C-Phenyl), 138.9 ppm (Si-C-Phenyl)
 ²⁹Si-NMR: -47.4 ppm.

5.3 Darstellung von Al₂[(OSiPh₂)₂O]₃ · 2 NC₅H₅ 5

$$AI_{2}[(OSiPh_{2})_{2}O]_{3} \cdot 2 O(C_{2}H_{5})_{2} \xrightarrow{+ 2 NC_{5}H_{5}, \text{ Toluol, RT}} AI_{2}[(OSiPh_{2})_{2}O]_{3} \cdot 2 NC_{5}H_{5}$$

$$\underline{3} \qquad \underline{5}$$

Versuchsdurchführung:

In 20 ml Toluol werden 0,509 g (0,3535 mmol) $Al_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \underline{3}$ unter Erwärmen gelöst und vorgelegt. Hierzu werden unter Rühren 0,114 ml (1,4139 mmol) frisch destilliertes Pyridin getropft. Der Ansatz wird 2 Stunden bei RT gerührt. Es fällt ein weißer Niederschlag aus. Anschließend wird der weiße Feststoff abfiltriert und i. Vak. (10⁻² Torr) getrocknet. Reinigung erfolgt durch Umkristallisation aus Toluol.

Ausbeute: 0,247 g (0,1651 mmol; 48 % d. Th.).

M $(C_{82}H_{70}Si_6Al_2O_9N_2 \cdot \frac{1}{2}C_7H_8) = 1495,97 \text{ g/mol.}$

¹H-NMR: 7.72 ppm (p-H-Pyridin); 6.97-7.16 ppm (H-Phenyl)
 ¹³C-CP-MAS-NMR: 124.9 ppm (C-Pyridin); 127.4-139.1 (C-Phenyl); 147.0 ppm (Pyridin)
 ²⁹Si-NMR: -48.1ppm

C,H,N-Analyse für C₈₂H₇₀Al₂N₂O₉Si₆: berechnet: C, 67.93%; H, 4.87%; N, 1.93%.

gefunden: C, 68.49%; H, 4.53%; N, 2.12%.

5.4 Darstellung von [(Ph₂SiO)₂O]₂{AI[(Ph₂SiO)₂OH · N(CH₂CH₃)₃]}₂ 6

Versuchsdurchführung:

In 20 ml Toluol werden 0,4 g (0,2778 mmol) $Al_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \underline{3}$ unter Erwärmen gelöst. Hierzu werden nach Zugabe von 0,1 ml Triethylamin fünf Tropfen (Pasteur Pipette) destilliertes Wasser getropft. Der Reaktionsansatz wird 1 h bei 50-60 °C gerührt. Nach 12 Stunden entstehen bei RT farblose Kristalle.

Ausbeute: 0,302g (0,1583mmol; 57% d. Th.)

M $(C_{108}H_{112}Si_8AI_2O_{12}N_2) = 1908,68 \text{ g/mol}$

¹H-NMR: 0.47 ppm (t, *CH*₃CH₂N); 2.24 ppm (q,CH₃*CH*₂N); 6.89-7.21 ppm (H-Phenyl)
 ¹³C-CP-MAS-NMR: 7.92 ppm (s,*CH*₃CH₂N); 44.91 ppm (s,CH₃*CH*₂N); 128.1 ppm (p-C-Phenyl), 135.0 ppm (o-C-Phenyl), 140.5 ppm (Si-C-Phenyl)
 ²⁹Si-NMR: -39.3, -53.6 ppm
 C,H,N-Analyse für C₁₀₈H₁₁₂Si₈Al₂O₁₂N₂: berechnet: C, 67.96%; H, 5.91%; N, 1.47%. gefunden: C, 67.83%; H, 6.22%; N, 1.54%.

IR-Spektroskopie [cm⁻¹]: 2720 [(CH₃CH₂)₃NH]⁺

3323 und 3460 Wasser und N-H – Valenzschwingung.

5.5 Darstellung von [(Ph₂SiO)₂O]AI[(Ph₂SiO)₂OH · N(CH₂CH₃)₃] 7

 $\begin{array}{c} \text{Al}_2[(\text{OSiPh}_2)_2\text{O}]_3 \cdot 2 \text{ O}(\text{C}_2\text{H}_5)_2 & \overbrace{\begin{array}{c}12 \text{ h RT}\\ +2 \text{ N}(\text{C}_2\text{H}_5)_3\\ \hline & -2 \text{ O}(\text{C}_2\text{H}_5)_2 \end{array}}^{\text{Toluol, 20 min Rückfluss,}} & [(\text{Ph}_2\text{SiO})_2\text{O}]\text{Al}[(\text{Ph}_2\text{SiO})_2\text{OH} \cdot \text{N}(\text{C}_2\text{H}_5)_3] \\ \hline & \underline{3} & -2 \text{ O}(\text{C}_2\text{H}_5)_2 \end{array}$

Versuchsdurchführung:

Zu 0,463 g (0,3215 mmol) Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> gelöst in 15 ml Toluol werden unter Rühren 0,09 ml (0,6431 mmol) Triethylamin und 2 Tropfen destilliertes Wasser (Pasteur-Pipette) getropft. Der Ansatz wird 20 min zum Rückfluss erhitzt, danach wird 2 h bei RT gerührt. Die Reaktionslösung wird unter reduziertem Druck bis auf die Hälfte ihres Ausgangsvolumnes eingeengt. Nach 12 h bei RT werden farblose Kristalle erhalten.

Ausbeute: 0,236 g (0,2475mmol; 77 %).

 $M (C_{54}H_{55}Si_4AIO_6N) = 953,35 \text{ g/mol}$

¹H-NMR: 0.92 ppm (t, *CH*₃CH₂N); 2.43 ppm (q,CH₃*CH*₂N); 6.96-7.36 ppm (H-Phenyl) ¹³C-CP-MAS-NMR: 8.16 ppm (s,*CH*₃CH₂N); 128.2 ppm (p-C-Phenyl), 135.1 ppm (o-C-Phenyl), 140.5 ppm (Si-C-Phenyl) ²⁹Si-NMR: -35.7 ppm, -39.2, -53.3 ppm C,H,N-Analyse für C₅₄H₅₅Si₄AlO₆N: berechnet: C, 67.96%; H, 5.91%; N, 1.47%. gefunden: C, 67.18%; H, 5.98%; N, 1.60%. IR-Spektroskopie [cm⁻¹]: 2720.58 N-H-Valenzschwingung

1475.95 N-H-Deformationsschwingung.

5.6 Darstellung von [(Ph₂SiO)₂O]₂{AI[(Ph₂SiO)₂OH · N((CH₂)₂)₃N]}₂ 8

$$\begin{array}{c} \mbox{Toluol, 2 h 50-60 °C,} \\ Al_2[(OSiPh_2)_2O]_3 \cdot 2 \ O(C_2H_5)_2 & \longrightarrow \\ \hline 12 \ h \ RT \\ \hline + 2 \ N(C_2H_4)_3N \\ \hline 3 & - 2 \ O(C_2H_5)_2 \end{array} \begin{array}{c} \mbox{[(Ph_2SiO)_2O]_2{Al[(Ph_2SiO)_2OH \cdot N(C_2H_4)_3N]}_2} \\ \hline 8 \\ \hline 8 \\ \hline \end{array}$$

Versuchsdurchführung:

Zu 0,503 g (34.93 mmol) von Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> in 20 ml Toluol werden unter Rühren bei Raumtemperatur 0,2 g Tris(ethylen)diamin und vier Tropfen Wasser (Pasteur-Pipette) gegeben. Der Reaktionsansatz wird zwei Stunden bei 50-60°C gerührt. Anschließend wird die Reaktionslösung auf die Hälfte ihres Ausgangsvolumens reduziert. Bei 4 °C werden wenige Kristalle von Verbindung [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N((CH₂)₂)₃N]}₂ <u>8</u> erhalten.

Ausbeute: 0,29 g (43 % d. Th.)

M ($C_{108}H_{106}Si_8O_{11}AI_2N_4$) = 1914,70 g/mol

¹H-NMR: 2.41 ppm (CH₂CH₂N); 7.05-7.24 ppm (H-Phenyl)
 ¹³C-CP-MAS-NMR: 125.5-137.6 ppm (C-Phenyl)
 ²⁹Si-NMR: -35.9 ppm, -36.8, -51.3 ppm.

5.7 Darstellung von $[(Ph_2Si(OH))_2O]_2AI_2O[(Ph_2SiO)_2O] \cdot 2$ HN(CH₂CH₃)₂ <u>9</u>

+ 2 HN(CH₂CH₃)₂,
Toluol, 2 h RT
Al₂[(OPh₂Si)₂O]₃ · 2 O(CH₂CH₃)₂
$$\longrightarrow$$
 [(Ph₂SiOH)₂O]₂Al₂O[(Ph₂SiO)₂O] · 2 HN(CH₂CH₃)₂
-2 O(CH₂CH₃)₂

Versuchsdurchführung:

Zu 0,495 g (0,3438 mmol) von Verbindung Al₂[(OSiPh₂)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> in 15 ml Toluol werden unter Rühren 15 ml Diethylamin und drei Tropfen destilliertes Wasser (Pasteurpipette) getropft und zwei Stunden bei Raumtemperatur gerührt. Die gelbliche Reaktionslösung wird anschließend bis zur Trockne eingeengt und in 5 ml Toluol unter Erwärmen gelöst. Nach 12 Stunden werden bei 4 °C farblose Kristalle von Verbindung [(Ph₂Si(OH))₂O]₂Al₂O[(Ph₂SiO)₂O] · 2 HN(CH₂CH₃)₂ <u>9</u> erhalten.

Ausbeute: 0,116 g (0,1306 mmol; 38 % d. Th.)

 $M (C_{44}H_{54}A_2N_2O_7Si_4) = 889,23 \text{ g/mol}$

¹H-NMR: 1.12 ppm (t, *CH*₃CH₂N); 3.25 ppm (q,CH₃*CH*₂N); 6.96-7.17 ppm (H-Phenyl)
 ¹³C-CP-MAS-NMR: 11.38 ppm (s,*CH*₃CH₂N); 125.6-135.4 ppm (C-Phenyl)
 ²⁹Si-NMR: -35.9 ppm, -47.5 ppm.

5.8 Darstellung von [(Ph₂SiO)₈(AIO(OH))₄] · 4 OC(CH₃)₂ 10

In 12 ml Aceton und 10 ml Toluol werden 0,25 g (0,1736 mmol) $Al_2[(OSiPh_2)_2O]_3 \cdot 2$ $(CH_2CH_3)_2$ <u>3</u> Kristalle unter Erwärmen gelöst und 2 h bei RT gerührt. Anschließend wird der Reaktionsansatz bei vermindertem Druck auf die Hälfte ihres Ausgangsvolumens reduziert. Nach 12 h bei RT werden farblose Kristalle erhalten.

Ausbeute: 0,117 g (0,0573 mmol; 33 % d. Th.)

M ($C_{108}H_{108}Si_8AI_4O_{20}$) = 2058,58 g/mol

¹³C-CP-MAS-NMR: 27.9 ppm (CH₃-Aceton); 212,7 ppm (sp²-C-Aceton); 127.15-139.5 (Phenyl)
²⁹Si-NMR: -45.6 ppm
C,H,N-Analyse für (C₁₀₈H₁₀₈Si₈Al₄O₂₀): berechnet: C, 63.01 %; H, 5.29% gefunden: C, 69.59%; H, 4.54%.
Die berechneten und gefundenen Werte für die C- und H-Atome der

IR-Spektroskopie [cm⁻¹]: 1689 cm⁻¹ C=O (Keto).

Elementaranalyse weichen stark voneinander ab.

5.9 Darstellung von [(Ph₂SiO)₈(AlO_{1,5})₄] · 2 THF <u>11</u>

 $\begin{array}{c|c} \mathsf{Al}_2[(\mathsf{OSiPh}_2)_2\mathsf{O}]_3 \cdot 2 \ \mathsf{O}(\mathsf{C}_2\mathsf{H}_5)_2 & \xrightarrow{\mathsf{THF}, \ 3 \ h \ \mathsf{RT}} & (\mathsf{Ph}_2\mathsf{SiO})_8(\mathsf{AlO}_{1,5})_4] \cdot 2 \ \mathsf{THF} \\ \underline{\mathbf{3}} & - 2 \ \mathsf{O}(\mathsf{C}_2\mathsf{H}_5)_2 & \underline{\mathbf{11}} \end{array}$

Versuchsdurchführung:

Zu der Lösung aus 0,501 g (0,3479 mmol) $Al_2[(OSiPh_2)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \underline{3}$ in 10 ml Toluol werden 0,12 ml THF zugetropft und 2 h bei RT gerührt. Nach Einengen des Reaktionsansatzes bei reduziertem Druck auf die Hälfte seines Ausgangsvolumens werden nach 12 Stunden bei RT farblose Kristalle erhalten.

```
Ausbeute: 0,319 g (0,1531 mmol; 44% d. Th.).
```

C112H120Si8Al4O18 (Momasse: 2086,72 g/mol)

¹H-NMR: 3.3 ppm (THF); 6.96-7.22 ppm (Phenyl)
 ¹³C-NMR: 26.2 ppm (THF); 68.22 ppm (THF); 127.9, 128.4, 128.9 (C-Phenyl)
 ²⁹Si-NMR: -47.5 ppm
 C,H-Analyse für C₁₁₂H₁₂₀Si₈Al₄O₁₈: berechnet: C, 64,57%; H, 5,00%. gefunden: C, 64,38%; H, 5,34%.

6. Literaturverzeichnis

[1] Holleman, A. F.; Wiberg, E.; Wiberg, N. *Lehrbuch Der Anorganischen Chemie*, de Gruyter: Berlin u.a. **1995**.

[2] Riedel, R.; Janiak, C. Anorganische Chemie, de Gruyter: Berlin u.a. 2002.

[3] Greenwood, N. N.; Earnshaw, A. *Chemistry of the Elements*, Elsevier Ltd. (Butterworth Heinemann) **2006**.

[4] Barth, J. A. Z. anorg. Allg. Chem. 1987, 548, 193.

[5] Müller, U. Anorganische Sturkturchemie, B. G. Teubner: Stuttgart 1996.

[6] Huheey, J.; Keiter, E. A.; Keiter, R. L. *Anorganische Chemie*, de Gruyter: Berlin u.a. **1995**.

[7] Budd, P. M.; Makhseed, S. M.; Ghanem, B. S.; Msayib, K. J.; Tattershall, C. E.;

McKeown, N. B. materials today 2004, 40.

[8] Schüth, F.; Schmidt, W. Adv. Eng. Mater. 2002, 4, 269.

[9] Ihlein, G.; Junges, B.; Junges, U.; Laeri, F.; Schüth, F.; Vietze, U. *Appl. Organometal. Chem.* **1998**, *12*, 305.

[10] Klemp, A.; Hatop, H.; Roesky, H.W.; Schmidt, H.-G.; Noltemeyer, M. *Inorg. Chem.* **1999**, *38*, 5832.

[11] Murugavel, R.; Chandrasekhar, V.; Roesky, H. W. Acc. Chem. Res. 1996, 29, 183.

[12] Lovat, S.; Mba, M.; Abbenhuis, H. C. L.; Vogt, D.; Zonta, C.; Licini, G. *Inorg. Chem.***2009**, *48*, 4724.

[13] Cordes, D. B.; Lickiss, P. D.; Rataboul, F. Chem. Rev. 2010, 110, 2081.

[14] Feher, F. J.; Budzichowski, T. A.; Weller, K. J. J. Am. Chem. Soc. 1989, 111, 7288.

[15] Feher, F. J.; Weller, K. J.; Ziller, J. W. J. Am. Chem. Soc. 1992, 114, 9686.

[16] Feher, F. J.; Weller, K. J. Organometallics 1990, 9, 2638.

[17] Ritter, U.; Winkhofer, N.; Murugavel, R.; Voigt, A.; Stalke, D.; Roesky, H. W. *J. Am. Chem. Soc.* **1996**, *118*, 8580.

[18] a) Montero, M. L.; Voigt, A.; Teichert, M.; Usón, I.; Roesky, H. W. Angew. Chem. Int. Ed. Engl. 1995, 34, 2504; b) Montero, M. L.; Voigt, A.; Teichert, M.; Usón, I.; Roesky, H. W. Angew. Chem.1995, 107, 2761.

[19] Skowronska-Ptasinska, M. D.; Duchateau, R.; van Santen, R. A.; Yap, G. P. A. *Organometallics* **2001**, *20*, 3519.

[20] Skowronska-Ptasinska, M. D.; Duchateau, R.; van Santen, R. A.; Yap, G. P. A. *Eur. J. Inorg. Chem.* 2001, *1*, 133.

[21] Edelmann, F. T.; Gun'ko, Y. K.; Giessman, S.; Olbrich, F. *Inorg. Chem.* **1999**, *38*, 210.

Literaturverzeichnis

- [22] Duchateau, R.; Harmsen, R. J.; Abbenhuis, H. C. L.; van Santen, R. A.; Meetsma,
- A.; Thiele, S. K. H.; Kranenburg, M. Chem. Eur. J. 1999, 5, 3130.
- [23] Feher, F. J.; Phillips, S. H. J. Organomet. Chem. 1996, 521, 401.
- [24] Gerritsen, G.; Duchateau, R.; van Santen, R. A.; Yap, G.P.A. *Organometallics* **2003**, 22, 100.
- [25] Feher, F. J.; Budzichowski, T. A.; Weller, K. J. Polyhedron 1993, 12, 591.
- [26] Lautenschläger, H.; Kosmetische Praxis 2010, 6, 12.
- [27] Ackermann, J.; Damrath, V.; Chemie in unserer Zeit 23 1989, 3, 86.
- [28] Schmidbauer, H. Angew. Chem. 1965, 5, 206.
- [29] Cundy, C. S.; Cox, P. A. Chem. Rev. 2003, 103, 663.
- [30] Turro, N. J. Acc. Chem. Res. 2000, 33, 637.
- [31] Jones, C.W.; Science 2003, 439.
- [32] Feher, F. J.; Budzichowski, T. A. Polyhedron 1995, 14, 3239.
- [33] Struchkov, Y. T.; Lindeman, S. V. J. Organomet. Chem. 1995, 9, 488.
- [34] Shakir, M.; Roesky, H. W. Phosphorus, Sulfur, Silicon Relat. Elem. 1994, 13, 93.
- [35] Abrahams, I.; Motevalli, M.; Shah, S. A.; Sullivan, A. C. *J. Organomet. Chem.* **1995**, *492*, 99.
- [36] Duchateau, R. Chem. Rev. 2002, 102, 3525.
- [37] Feher, F. J.; Newman, D. A. J. Am. Chem. Soc. 1990, 112, 1931.
- [38] Feher, F. J.; Budzichowski, T. A.; Rahimian, K.; Ziller, J. W. *J. Am. Chem. Soc.* **1992**, *114*, 3859.
- [39] Feher, F. J.; Newman, D. A.; Walzer, J. F. J. Am. Chem. Soc. 1989, 111, 1741.
- [40] Hambley, T. H.; Maschmeyer, T.; Masters, A. F. *Appl. Organomet. Chem.* **1992**, *6*, 253.
- [41] Feher, F. J.; Budzichowski, T. A.; Blanski, R. L.; Weller, K. J.; Ziller, J. W. *Organometallics* **1991**, *10*, 2526.
- [42] Brown, S. S.; Kendrick, T. C., McVie, J. Thomas, D. R. *Silicones in Comprehensive Organometallic Chemistry II*, ed. A. G. Davies, Pergamon, Oxford, **1995**, *Vol.2*.
- [43] Veith, M.; Rammo, A.; Huppert, J.; David, J. C. R. Chimie 2003, 6, 117.
- [44] Noll, W. Chemie und Technologie der Silicone, Verlag Chemie GmbH,
- Weinheim/Bergstr. 1960.
- [45] Cundy, C. S.; Cox, P. A. Microporous Mesoporous Mater. 2005, 82, 1.
- [46] Lorenz, V.; Blaurock S.; Görls, H.; Edelmann, F. T. Organometallics 2006, 25, 5922.
- [47] a) Montero, M. L.; Uson, I.; Roesky, H. W. Angew. Chem. Int. Ed. Engl. 1994, 33,
- 2103; b) Montero, M. L.; Uson, I.; Roesky, H. W. Angew. Chem. 1994, 105, 2198.

[48] Murugavel, R.; Walawalkar, M. G.; Dan, M.; Roesky, H. W.; Rao, C. N. R. Acc.

- Chem. Res. 2004, 37, 763.
- [49] Bonamico, M. Chem. Commun. 1966. 5, 135.
- [50] Ercolani, C.; Camilii, A.; Sartori, G. J. Chem. Soc. 1966, A, 606.
- [51] Bonamico, M.; Dessy, G. Inorg. Phys. Theor., J. Chem. Soc. 1968, A, 291.
- [52] McMahon, C. N.; Obrey, S. J.; Keys, A.; Bott, S. G.; Barron, A. R. J. Chem. Soc. ,
- Dalton Trans. 2000, 2151.
- [53] Gun'ko, Y. K.; Reilly, R.; Kessler, V. G. New J. Chem. 2001, 25, 528.
- [54] Veith, M.; Faber, S.; Wolfanger, H.; Huch, V. Chem. Ber. 1996, 129, 381.
- [55] a) Veith, M.; Jarzyk, M.; Huch, V. Angew. Chem. 1997, 109, 140; b) Veith, M.;
- Jarzyk, M.; Huch, V. Angew. Chem. Int. Ed. 1997, 36, 117.
- [56] Veith, M. Adv. Organomet. Chem. 2006, 54, 49.
- [57] a) Veith, M.; Jarczyk, M.; Huch, V. Angew. Chem. 1998, 110, 109; b) Veith, M.;
- Jarczyk, M.; Huch, V. Angew. Chem. Int. Ed. 1998, 37, 105.
- [58] Veith, M.; Jarczyk, M.; Huch, V. *Phosphorus, sulfur and silicon and the related elements* **1997**, *124*, 213.
- [59] Veith, M.; Rammo, A.; Jarczyk, M.; Huch, V. Monatshefte für Chemie 1999, 130, 15.
- [60] Hunter, E. P. L.; Lias, S. G. J. Phys. Chem. Ref. Data. 1998, 413.
- [61] Veith, M. ChemInform 2007, 38, i.
- [62] Hreleva-Carparrotti, H. Dissertation, Universität des Saarlandes: Saarbrücken, 2006.
- [63] Veith, M.; Hreleva, H.; Biegler, J.; Huch, V.; Rammo, A. *Phosphorus, Sulfur and Silicon and the related elements* **2004**, *179*, 651.
- [64] Veith, M.; Carparrotti, H.; Huch, V. Organometallics 2010, 29, 5269.
- [65] Kolano, D. Dissertation, Universität des Saarlandes: Saarbrücken, 2011.
- [66] Veith, M.; Kolano, D.; Huch, V.; Sutter, J. P. Z. Anorg. Allg. Chem. 2011, 637, 1922.
- [67] Suhm, M. Vierteljahrsschr. Naturforsch. Gesellsch. Zürich 1997, 142, 133.
- [68] Lehn, J.-M. Rep. Prog. Phys. 2004, 67, 249.
- [69] Lehn, J.-M. Supramolecular Chemistry VCH, 1995, 2.
- [70] Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem. 2000, 112, 3484.
- [71] Kimizuka, N. Adv. Polym. Sci. 2008, 219, 1.
- [72] Veith, M.; Rammo, A.; Huch, V.; Biegler, J. Z. Anorg. Allgem. Chem. 2007, 633, 246.
- [73] Veith, M.; Kolano, D.; Kirs, T.; Huch, V. J. Organomet. Chem. 2010, 695, 1074.
- [74] Veith, M.; Hreleva-Carparrotti, H.; Huch, V. J. Organomet. Chem. 2007, 692, 2784.
- [75] Veith, M.; Hreleva, H.; Gasthauer, M.; Rammo, A.; Huch, V. *Z. Anorg. Allgem. Chem.* **2006,** *632,* 985.
- [76] Panda, T. K.; Gamer, M. T.; Roesky, P. W. Organometallics 2003, 22, 877.

[77] Krishnamurty, S.; Roy, R. K.; Vetrivel, R.; Iwata, S.; Pal, S. *J. Phys. Chem. A* **1997**, *101*, 7253.

[78] Puskar, L.; Tomlins, K.; Duncombe, B.; Cox, H.; Stace, A. J. *J. Am. Chem. Soc.* **2005**, *127*, 7559.

[79] Veith, M.; Smail, H.; Huch, V. Z. Anorg. Allgem. Chem. 2008, 634, 2867.

[80] Smail, H. Dissertation, Universität des Saarlandes: Saarbrücken, 2008.

[81] Hossain, M.A.; Hursthouse, M.B.; Mazid, M.A.; Sullivan, A.C. J. Chem. Soc., Chem. Commun. **1988**, 1305.

[82] Hossain, M.A.; Hursthouse, M.B.; Ibrahim, A.; Mazid, M.A.; Sullivan, A.C. *J. Chem. Soc., Dalton Trans.* **1989**, 2347.

[83] Laermann, B.; Lazell, M.; Motevalli, M.; Sullivan, A. C. *J. Chem. Soc., DaltonTrans.* **1997**, 1263.

[84] Abbenhuis, H. C. L.; Vorstenbosch, M. L. W.; van Santen, R. A.; Smeets, W. J. J.;

Spek, A. L. Inorg. Chem. 1997, 36, 6431.

[85] Davies, R. P.; Less, R. J.; Lickiss, P. D.; Robertson, K.; White, A. J. P. *Inorg. Chem.* **2008**, *47*, 9958.

[86] Hoebbel, D.; Nacken, M.; Schmidt, H.; Huch, V. Veith, M. *J. Mat. Chem.* **1998**, *1*; 171.

[87] Hursthouse, M. B.; Mazid, M. A.; Motevalli, M.; Sanganee, M.; Sullivan, A. C. J. Organomet. Chem. **1990**, 381, C43.

[88] Motevalli, M.; Shah, D.; Shah, S. A. A.; Sullivan, A. C. *J. Chem. Soc., Chem. Commun.* **1994**, 2427.

[89] Adrianov, K. A.; Kurasheva, N. A.; Kuteinikova, L. I. *Bull. Acad. Scien. USSR*_1977, 26, 2150.

[90] Hursthouse, M. B.; Hossain, M. A. Polyhedron 1984, 3, 95.

[91] Veith, M.; Rammo, A.; Huch, V. Z. Anorg. Allgem. Chem. 2009, 635, 1110.

[92] Sahin, F. Dipolomarbeit, Universität des Saarlandes: Saarbrücken, 2006.

[93] Darr, J. A.; Drake, S. R.; Williams, D. J.; Slawin, A. M. Z. *J. Chem. Soc., Chem. Commun.* **1993**, 866.

[94] O'Dowd, A.T.; Spalding, T.R.; Ferguson, G.; Gallagher, J.F.; Reed, D. *J. Chem. Soc., Chem. Commun.* **1993**, 1816.

[95] Veith, M.; Vogelgesang, H.; Huch, V. Organometallics 2002, 21, 380.

[96] King, L.; Sullivan, A. C. Coord. Chem. Rev. 1999, 189, 19.

[97] Beckmann, J.; Jurkschat, K. Coord. Chem. Rev. 2001, 267, 267.

[98] Pawlenko, S. Silanole, 135.

[99] Behbehani, H.; Brisdon, B. J.; Mahon, M. F.; Molloy, K. C. *J. Organomet. Chem.* **1993**, *4*63, 41.

[100] Jones, J.B. Acta Crystallogr. 1968, B24, 355.

[101] Perrin, D.D.; Dempsey, B.; Serjeant E.P. (Eds.) *pKa Prediction of Organic Acids and Bases*, Chapman & Hall, London, **1981**, 130.

[102] Su, W.; Kim, Y.; Ellern, A.; Guzei, I. A.; Verkade, J. G. *J. Am. Chem. Soc.* **2006**, *128*, 13727.

[103] Glidewell, C.; Liles, D. C. Acta Crystallogr., Sect B 1978, 34, 124.

[104] Wallawalker, M. G.; Roesky, H. W.; Murugavel, R. Acc. Chem. Res. 1999, 32, 117.

[105] Barron, A. R. Comments Inorg. Chem. 1993, 14, 123.

[106] Roesky, H. W.; Walawalker, M. G.; Murugavel, R. Acc. Chem. Res. 2001, 34, 201.

[107] Lehn, J.-M. Angew. Chem. 1988, 100, 91.

[108] Casey, W. H.; Olmstead, M. M.; Phillips, B. L. Inorg. Chem. 2005, 44, 4888.

[109] Schmitt, W.; Baissa, E.; Mandel, A.; Anson, C. E.; Powell, A. K. *Angew. Chem. Int. Ed.* **2001**, *40*, 3578.

[110] Yang, Y.; Chan, T. H. J. Am. Chem. Soc. 2000, 122, 402.

[111] Murugavel, R.; Kuppuswamy, S. Chem. Eur. J. 2008, 14, 3869.

[112] Ward, D. E., Gai, Y. Tetrahedron Letters **1992**, 33, 1851.

[113] Wipf, P.; Lim, S. Angew. Chem. Int. Ed. Engl. 1993, 32, 1068.

[114] Shlover, V.E.; Struchkov, Y.T.; Levitskii, M.M.; Zhdanov, A.A. *Zh. Strukt. Khim.* **1986**, *27*, 129.

[115] Krempner, C.; Reinke, H.; Weichert, K. Organometallics 2007, 26 1386.

[116] K. Brandenburg, Diamond Version 3.1d, Crystal and Molecular Structure Visualization, Copyright Crystal Impact GbR, **1997-2006**.

[117] Tacke, R.; Burschka, C.; Heermann, J.; Richter, I.; Wagner, B.; Willeke, R. *Eur. J. Inorg. Chem.* **2001**, *9*, 2211.

[118] Tomlins, P. E.; Lydon; J. E.; Akrigg, D.; Sheldrick, B. Acta Cryst. 1985, C41, 292.

[119] Hossain, M. A.; Hursthouse, M. B.; Malik, K. M. A. Acta Cryst. 1979, B35, 522.

[120] a) Ovchinnikov, Y. E.; Shklover, V. E.; Struchkov, Y. T.; Lavrukhin, B. D.; Astapova,

T. V.; Zhdanov, A. A. J. Struc. Chem. 1986, 27, 120; b) Ovchinnikov, Y. E.; Shklover, V.

E.; Struchkov, Y. T.; Lavrukhin, B. D.; Astapova, T. V.; Zhdanov, A. A. *Zhur. Struk. Khim.* **1986**, *27*, 134.

[121] Latscha, H. P.; Kazmaier, U.; Klein, H. A. *Organische Chemie* Springer: Berlin u.a. **2002**.

[122] Hänssgen, D.; Eicher, T. *Chemie für Pharmazeuten und Naturwissenschaftler* Gustav Fischer Stuttgart u.a. **1997**.

[123] Shchegolikhina, O. I.; Pozdnyakova, Y. A.; Molodtsova, Y. A.; Korkin, S. D.;

Bukalov, S. S.; Leites, L. A.; Lyssenko, K. A.; Peregudov, A. S.; Auner, N.; Katsoulis, D. E. *Inorg. Chem.* **2002**, *41*, 6892.

[124] Valle, G.C.; Bombi, G.G.; Corain, B.; Favarato, M.; Zatta, P. *J. Chem. Soc., Dalton Trans.* **1989**, 1513.

[125] Csöregh, I.; Brehmer, T.; Nitsche, S. I.; Seichter, W.; Weber, E. J. Inclusion Phenom. Macrocycl. Chem. 2003, 47, 113.

[126] Weber, E.; Seichter, W.; Skobridis, K.; Alivertis, D.; Theodorou, V.; Bombicz, P.; Csöregh, I. *J. Inclusion Phenom. Macrocycl. Chem.* **2006**, *55*, 131.

[127] Draffin, S.P.; Duggan, P.J.; Fallon, G.D. Acta Crystallogr. 2004, E60, o1520.

[128] Obrey, S.J.; Bott, S.G.; Barron, A.R. Organometallics 2001, 20, 5119.

[129] Zhu, H.; Chen, E.Y.-X. Inorg. Chem. 2007, 46, 1481.

[130] Pietryga, J.M.; Gorden, J.D.; Macdonald, C.L.B.; Voigt, A.; Wiacek, R.J.; Cowley,

A.H. J. Am. Chem. Soc. 2001, 123, 7713.

[131] Veith, M.; Sahin, F.; Rammo, A.; Huch, V. Comptes rendus chimie 2009, 12, 1181.

[132] Hursthouse, M. B.; Motevalli, M.; Sanganee, M.; Sullivan, A. C. *J. Chem. Soc.; Chem. Comm.* **1991**, *24*, 1709.

[133] Lazell, M.; Motevalli, M.; Shah, S. A. A.; Simon, C. K. S.; Sullivan, A. C. *J. Chem. Soc., Dalton Trans.* **1996**, 1449.

[134] Smith, J. V. Chem. Rev. 1988, 88, 149.

[135] Sheldrick, G. *Programm for Crystal Structure Determination, Version SHELXL86*, Göttingen, **1990**

[136] Sheldrick, G. *Programm for Crystal Structure Determination, Version SHELXL97*, Göttingen, **1990**

[137] Sheldrick, G. *Programm for Crystal Structure Determination, Version SHELXL93*, Göttingen, **1990**

[138] http://daten.didaktikchemie.uni-

bayreuth.de/umat/ionenaustauscher/ionenaustauscher.htm

7. Anhang

7.1 Daten zur Molekül- und Kristallstruktur von Al₂[(OSiPh₂)₂O]₃ · 2 N(CH₂CH₃)₃ <u>4</u>

Tabelle 22: Kristalldaten und Strukturverfeinerungen für Al₂[(OSiPh₂)₂O]₃ · 2 N(CH₂CH₃)₃ <u>4</u> (sh2722)

Identifikationscode Summenformel Molmasse [g/mol] Messtemperatur [K] Wellenlänge [Å] Kristallsystem Raumgruppe Gitterkonstanten	sh2722 C84 H90 Al2 N2 O9 Si6 1494.08 173(2) 0.71073 Monoclinic C2/c a = 25.3630(7) Å b = 14.5394(3) Å c = 23.2481(7) Å	a= 90°. b= 114.818(2)°.
Zellvolumen [Å ³] Anzahl der Formeleinheiten Z	7814.7(4) 4	g = 90 .
Dichte (berechnet) Absorptionskoeffizient [mm ⁻¹] F(000) Kristallabmessungen [mm ³] Messbereich θ [°] hkl - Indexbereich Gemessene Reflexe Symmetrieunabhängige Reflexe Vollständigkeit des Datensatzes (bis θ = 29.30°) Absorptionskorrektur	1.270 Mg/m ³ 0.188 3160 0.55 x 0.39 x 0.33 1.66 to 29.30 -34<=h<=34, -19<=k<=20, -32< 74509 10626 [R(int) = 0.0316] 99.6 % Multiscan	= <=32
Strukturverfeinerungsmethode Daten / Einschränkungen / Parameter Güte des Fit auf F ² Endgültige R-Werte [I>2sigma(I)] R-Werte (alle Daten) Restelektronendichte (min./max.) [e/Å ⁻³]	Full-matrix least-squares on F^2 10626 / 0 / 480 1.066 R1 = 0.0568, wR2 = 0.1540 R1 = 0.0728, wR2 = 0.1669 0.757 and -0.581	

Tabelle 23: Atomkoordinaten ($x \ 10^4$) und äquivalente isotrope Auslenkungsparameter (Å² $x \ 10^3$) für sh2722. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

	х	У	Z	U(eq)
AI(1)	573(1)	7584(1)	3754(1)	23(1)
Si(1)	1354(1)	8451(1)	3067(1)	25(1)
Si(2)	128(1)	5498(1)	3237(1)	24(1)
Si(3)	-544(1)	8909(1)	3397(1)	25(1)
O(1)	1009(1)	8120(1)	3468(1)	33(1)
O(2)	393(1)	6484(1)	3501(1)	29(1)
O(3)	0(1)	8238(1)	3716(1)	32(1)
O(4)	918(1)	8648(1)	2340(1)	38(1)
O(5)	0	5387(2)	2500	33(1)
N(1)	1059(1)	7442(2)	4681(1)	41(1)
C(1)	1747(1)	9552(2)	3400(1)	32(1)
C(2)	2122(1)	9624(2)	4034(1)	57(1)
C(3)	2403(2)	10450(2)	4297(2)	62(1)
C(4)	2326(1)	11202(2)	3922(2)	54(1)

Anhang

C(5)	1972(2)	11155(2)	3300(2)	63(1)	
C(6)	1678(1)	10341(2)	3040(2)	50(1)	
C(7)	1880(1)	7530(2)	3103(1)	32(1)	
C(8)	1718(1)	6606(2)	3063(2)	60(1)	
C(9)	2093(2)	5897(2)	3079(2)	84(1)	
C(10)	2643(2)	6100(2)	3157(2)	79(1)	
C(11)	2810(1)	6996(2)	3173(2)	63(1)	
C(12)	2430(1)	7707(2)	3138(2)	50(1)	
C(13)	659(1)	4569(1)	3669(1)	28(1)	
C(14)	726(1)	4261(2)	4265(1)	36(1)	
C(15)	1130(1)	3591(2)	4591(1)	45(1)	
C(16)	1472(1)	3209(2)	4326(2)	49(1)	
C(17)	1418(1)	3494(2)	3744(2)	48(1)	
C(18)	1016(1)	4173(2)	3416(1)	38(1)	
C(19)	-557(1)	5317(2)	3339(1)	33(1)	
C(20)	-854(1)	6047(2)	3462(2)	51(1)	
C(21)	-1360(1)	5901(2)	3548(2)	69(1)	
C(22)	-1578(1)	5027(2)	3508(2)	67(1)	
C(23)	-1295(1)	4298(2)	3386(2)	58(1)	
C(24)	-787(1)	4438(2)	3307(1)	42(1)	
C(25)	-1034(1)	8791(2)	3808(1)	36(1)	
C(26)	-820(2)	8788(3)	4457(2)	65(1)	
C(27)	-1191(2)	8707(3)	4764(2)	83(1)	
C(28)	-1785(2)	8635(2)	4402(2)	71(1)	
C(29)	-1999(2)	8623(2)	3777(2)	71(1)	
C(30)	-1632(1)	8693(2)	3479(2)	54(1)	
C(31)	-286(1)	10122(1)	3447(1)	28(1)	
C(32)	-572(1)	10857(2)	3577(1)	42(1)	
C(33)	-392(1)	11762(2)	3573(2)	48(1)	
C(34)	82(1)	11947(2)	3450(1)	45(1)	
C(35)	384(1)	11233(2)	3338(2)	50(1)	
C(36)	200(1)	10331(2)	3335(1)	40(1)	
C(37A)	1547(2)	8123(3)	4956(2)	52(1)	
C(37B)	1063(2)	8393(3)	4953(2)	98(6)	
C(38)	1310(2)	9078(2)	4929(3)	101(2)	
C(39A)	725(2)	7468(2)	5086(2)	54(1)	
C(39B)	901(2)	6673(2)	4959(2)	62(3)	
C(40)	285(2)	6720(2)	4964(2)	89(1)	
C(41A)	1376(1)	6487(2)	4849(2)	54(1)	
C(41B)	1672(1)	7262(2)	4803(2)	67(3)	
C(42)	1778(2)	6322(3)	4530(2)	70(1)	

 Tabelle 24:
 Bindungslängen [Å] und Winkel [°] für sh2722.

AI(1)-O(2)	1.7001(15)	N(1)-C(39A)	1.511(4)	
AI(1)-O(1)	1.7025(15)	N(1)-C(37B)	1.519(5)	
AI(1)-O(3)	1.7062(15)	N(1)-C(41A)	1.570(4)	
AI(1)-N(1)	2.002(2)	C(1)-C(2)	1.388(4)	
Si(1)-O(1)	1.6009(16)	C(1)-C(6)	1.389(3)	
Si(1)-O(4)	1.6146(17)	C(2)-C(3)	1.400(4)	
Si(1)-C(7)	1.867(2)	C(3)-C(4)	1.364(5)	
Si(1)-C(1)	1.873(2)	C(4)-C(5)	1.350(5)	
Si(2)-O(2)	1.5932(15)	C(5)-C(6)	1.395(4)	
Si(2)-O(5)	1.6187(6)	C(7)-C(12)	1.387(3)	
Si(2)-C(19)	1.868(2)	C(7)-C(8)	1.397(3)	
Si(2)-C(13)	1.875(2)	C(8)-C(9)	1.391(4)	
Si(3)-O(3)	1.5960(16)	C(9)-C(10)	1.361(5)	
Si(3)-O(4)#1	1.6243(17)	C(10)-C(11)	1.366(5)	
Si(3)-C(25)	1.867(2)	C(11)-C(12)	1.392(4)	
Si(3)-C(31)	1.869(2)	C(13)-C(18)	1.396(3)	
O(4)-Si(3)#1	1.6243(17)	C(13)-C(14)	1.403(3)	
O(5)-Si(2)#1	1.6187(6)	C(14)-C(15)	1.387(3)	
N(1)-C(39B)	1.432(4)	C(15)-C(16)	1.377(4)	
N(1)-C(41B)	1.482(4)	C(16)-C(17)	1.370(4)	
N(1)-C(37A)	1.502(4)	C(17)-C(18)	1.397(3)	

C(19)-C(24) C(19)-C(20) C(20)-C(21) C(21)-C(22) C(22)-C(23) C(23)-C(24) C(25)-C(26) C(25)-C(30) C(26)-C(27) C(27)-C(28) C(28)-C(29) C(29)-C(30) C(31)-C(32) C(31)-C(36) C(32)-C(33) C(33)-C(34) C(34)-C(35) C(37A)-C(38) C(28)	$\begin{array}{c} 1.394(3)\\ 1.400(3)\\ 1.395(4)\\ 1.373(5)\\ 1.375(4)\\ 1.390(3)\\ 1.379(4)\\ 1.390(4)\\ 1.408(5)\\ 1.387(6)\\ 1.327(6)\\ 1.381(4)\\ 1.395(3)\\ 1.395(3)\\ 1.394(3)\\ 1.373(4)\\ 1.379(4)\\ 1.392(3)\\ 1.504(6)\\ 1.400(5)\end{array}$	$\begin{array}{c} C(41B)-N(1)-C(41A)\\ C(37A)-N(1)-C(41A)\\ C(39A)-N(1)-C(41A)\\ C(37B)-N(1)-C(41A)\\ C(37B)-N(1)-Al(1)\\ C(37B)-N(1)-Al(1)\\ C(37A)-N(1)-Al(1)\\ C(37A)-N(1)-Al(1)\\ C(37B)-N(1)-Al(1)\\ C(37B)-N(1)-Al(1)\\ C(2)-C(1)-C(6)\\ C(2)-C(1)-Si(1)\\ C(6)-C(1)-Si(1)\\ C(1)-C(2)-C(3)\\ C(4)-C(3)-C(2)\\ C(5)-C(4)-C(3)\\ C(4)-C(5)-C(6)\\ C(1)-C(6)-C(5)\\ C(1)-C(6)-C(5)\\ C(12)-C(7)-C(8)\\ C(12)-C(12)-C(7)\\ C(12)-C(7)\\ C(12)-C(7)-C(8)\\ C(1$	$\begin{array}{c} 53.79(13)\\ 103.4(2)\\ 103.2(2)\\ 141.9(3)\\ 114.03(19)\\ 110.22(18)\\ 114.6(2)\\ 114.95(19)\\ 104.6(2)\\ 112.33(18)\\ 116.0(2)\\ 120.96(19)\\ 122.99(19)\\ 121.8(3)\\ 119.8(3)\\ 120.1(3)\\ 120.3(3)\\ 121.9(3)\\ 116.3(2)\\ 140.02\\ 140.$
C(39A)-C(40) C(41A)-C(42)	1.499(5) 1.513(5)	C(12)-C(7)-Si(1) C(8)-C(7)-Si(1)	123.44(18) 120.24(18)
	1.010(0)	C(9)-C(8)-C(7)	122.2(3)
O(2)-Al(1)-O(1)	114.70(8)	C(10)-C(9)-C(8)	119.6(3)
O(1)-Al(1)-O(3)	113.85(8)	C(10)-C(11)-C(12)	120.5(3)
O(2)-AI(1)-N(1)	103.45(9)	C(7)-C(12)-C(11)	121.4(3)
O(1)-AI(1)-N(1)	105.35(9)	C(18)-C(13)-C(14)	117.2(2)
O(3)-AI(1)-N(1)	103.78(9)	C(18)-C(13)-Si(2)	121.08(17)
O(1)-Si(1)-O(4) O(1) Si(1) $C(7)$	111.46(9)	C(14)-C(13)-S(2) C(15)-C(14)-C(13)	121.66(16)
O(1)-Si(1)-C(7) O(4)-Si(1)-C(7)	100.23(9)	C(16)-C(14)-C(13)	119 8(3)
O(1)-Si(1)-C(1)	109.90(9)	C(17)-C(16)-C(15)	120.3(2)
O(4)-Si(1)-C(1)	107.17(10)	C(16)-C(17)-C(18)	120.2(2)
C(7)-Si(1)-C(1)	110.44(10)	C(13)-C(18)-C(17)	121.0(2)
O(2)-Si(2)-O(5)	111.46(10)	C(24)-C(19)-C(20)	117.2(2)
O(2)-Si(2)-C(19) O(5) Si(2) C(10)	109.91(9)	C(24)-C(19)-S(2) C(20)-C(19)-S(2)	120.88(17)
O(2)-Si(2)-C(13)	110 44(9)	C(20)-C(19)-S(2)	121.94(17)
O(5)-Si(2)-C(13)	106.12(9)	C(22)-C(21)-C(20)	119.9(3)
C(19)-Si(2)-C(13)	108.99(10)	C(21)-C(22)-C(23)	119.8(2)
O(3)-Si(3)-O(4)#1	110.91(9)	C(22)-C(23)-C(24)	120.5(3)
O(3)-Si(3)-C(25)	109.65(10)	C(23)-C(24)-C(19)	121.1(2)
O(4)#1-SI(3)- $O(25)$	107.77(11)	C(26)-C(25)-C(30)	116.1(3)
O(3)- $Si(3)$ - $O(31)O(4)$ #1- $Si(3)$ - $O(31)$	109.07(9)	C(30)-C(25)-Si(3)	121.0(2)
C(25)-Si(3)-C(31)	110.21(10)	C(25)-C(26)-C(27)	121.4(4)
Si(1)-O(1)-Al(1)	166.47(12)	C(28)-C(27)-C(26)	119.0(4)
Si(2)-O(2)-AI(1)	171.57(10)	C(29)-C(28)-C(27)	120.5(3)
Si(3)-O(3)-Al(1)	156.25(11)	C(28)-C(29)-C(30)	120.2(4)
Si(1)-O(4)-Si(3)#1	173.09(13)	C(29)-C(30)-C(25)	122.7(3)
SI(2)-O(5)-SI(2)#1 C(30B)-N(1)-C(41B)	108.47(16)	C(32)-C(31)-C(30)	117.1(2)
C(39B)-N(1)-C(37A)	131.2(3)	C(36)-C(31)-Si(3)	120.49(16)
C(41B)-N(1)-C(37A)	54.8(2)	C(33)-C(32)-C(31)	121.2(2)
C(39B)-N(1)-C(39A)	53.12(13)	C(34)-C(33)-C(32)	120.3(2)
C(41B)-N(1)-C(39A)	134.6(3)	C(33)-C(34)-C(35)	119.8(2)
C(37A)-N(1)-C(39A)	107.1(3)	C(34)-C(35)-C(36)	119.9(2)
C(39B) - N(1) - C(37B)	118.4(3)	U(35)-U(35)-U(31) N(1)-C(27A) C(29)	121.7(2)
C(37A)-N(1)-C(37B)	50,38(14)	C(40)-C(39A)-N(1)	115 5(3)
C(39A)-N(1)-C(37B)	67.9(2)	C(42)-C(41A)-N(1)	113.4(3)
C(39B)-N(1)-C(41A)	53 7(2)		

Symmetry transformations used to generate equivalent atoms: #1 - x, y, -z + 1/2

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
AI(1)	22(1)	19(1)	30(1)	-2(1)	13(1)	-2(1)
SI(1) Si(2)	22(1)	22(1)	32(1)	2(1)	13(1)	-1(1)
Si(2) Si(3)	24(1) 24(1)	22(1)	32(1)	-3(1)	15(1)	0(1)
O(1)	24(1)	22(1)	32(1)	-3(1)	22(1)	-5(1)
O(2)	32(1)	29(1)	40(1)	$\frac{2(1)}{-1(1)}$	17(1)	-1(1)
O(2)	29(1)	26(1)	40(1)	-2(1)	18(1)	-1(1) -4(1)
O(4)	39(1)	34(1)	36(1)	5(1)	12(1)	5(1)
O(5)	35(1)	30(1)	34(1)	0	15(1)	0
N(1)	39(1)	46(1)	38(1)	-12(1)	16(1)	-10(1)
C(1)	28(1)	31(1)	43(1)	-4(1)	21(1)	-6(1)
C(2)	65(2)	53(2)	46(2)	-1(1)	18(1)	-29(2)
C(3)	65(2)	66(2)	53(2)	-17(2)	22(2)	-31(2)
C(4)	52(2)	37(1)	82(2)	-19(1)	36(2)	-14(1)
C(5)	68(2)	30(1)	82(2)	2(1)	22(2)	-11(1)
C(6)	53(2)	30(1)	57(2)	2(1)	15(1)	-8(1)
C(7)	26(1)	29(1)	42(1)	3(1)	15(1)	3(1)
C(8)	45(2)	35(1)	110(3)	-3(2)	43(2)	-1(1)
C(9)	67(2)	35(2)	166(4)	-3(2)	65(3)	5(2)
C(10)	52(2)	44(2)	150(4)	-2(2)	52(2)	15(1)
C(11)	33(1)	53(2)	106(3)	-4(2)	34(2)	8(1)
C(12)	30(1)	37(1)	85(2)	2(1)	28(1)	3(1)
C(13)	26(1)	19(1)	39(1)	2(1)	14(1)	-2(1)
C(14)	42(1)	20(1)	40(1)	3(1)	10(1)	2(1)
C(16)	47(1) 32(1)	33(1)	43(1)	14(1)	9(1)	8(1)
C(10) C(17)	32(1)	39(1)	76(2)	14(1)	29(1)	12(1)
C(17)	32(1)	34(1)	55(2)	7(1)	23(1)	6(1)
C(19)	28(1)	28(1)	49(1)	3(1)	23(1)	0(1)
C(20)	43(1)	32(1)	94(2)	-2(1)	44(2)	1(1)
C(21)	52(2)	53(2)	127(3)	-6(2)	62(2)	4(1)
C(22)	47(2)	63(2)	115(3)	7(2)	57(2)	-2(1)
C(23)	43(1)́	42(2)	100(3)	13(Ź)	43(2)	-5(1)
C(24)	37(1)	28(1)	70(2)	8(1)	32(1)	0(1)
C(25)	43(1)	26(1)	52(1)	6(1)	32(1)	8(1)
C(26)	69(2)	83(2)	59(2)	17(2)	42(2)	27(2)
C(27)	121(4)	84(3)	78(3)	29(2)	77(3)	31(3)
C(28)	91(3)	47(2)	119(3)	19(2)	87(3)	14(2)
C(29)	65(2)	56(2)	123(3)	0(2)	71(2)	-5(2)
C(30)	47(2)	51(2)	82(2)	-7(2)	44(2)	-6(1)
C(31)	28(1)	24(1)	32(1)	-4(1)	13(1)	0(1)
C(32)	40(1)	28(1)	67(2)	-11(1)	31(1)	-2(1)
C(33)	50(2)	26(1)	73(2)	-13(1)	31(1)	-1(1)
C(34)	49(1)	26(1)	60(2)	-6(1)	22(1)	-9(1)
U(35)	48(2)	34(1) 29(4)	80(2)	U(1)	38(2)	-7(1)
C(30)	40(1)	20(1) 55(2)	01(Z) 45(2)	-2(1) 5(2)	30(1)	0(1)
C(37R)	49(Z) 93(0)	52(Z)	40(∠) 80(8)	-3(∠) -40(6)	14(∠) _31(7)	-14(Z) 26(6)
C(38)	122(A)	52(0) 72(2)	116(<i>1</i>)	-49(0) -49(0)	-31(7) 55(2)	∠0(0) -26(3)
$C(30\Delta)$	50(2)	78(3)	36(2)	-30(3) 0(2)	20(2)	-20(3)
C(39B)	77(7)	74(7)	29(4)	14(4)	17(4)	18(6)
C(40)	84(3)	136(4)	64(2)	4(2)	47(2)	-24(3)
C(41A)	52(2)	58(3)	41(2)	14(2)	10(2)	3(2)
C(41B)	57(6)	54(6)	59(6)	3(5)	-7(5)	6(5)
C(42)	53(2)	72(2)	76(2)	13(2)	19(2)	19(2)

Tabelle 25: Anisotropische Auslenkungsaparameter (Å²x 10³) für sh2722. Der anisotropischeExponentfaktor des Auslenkungsparameter lautet: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	х	У	Z	U(eq)
H(2)	2190	9098	4297	68
H(3)	2647	10486	4736	75
H(4)	2521	11761	4098	65
H(5)	1922	11679	3039	76
H(6)	1423	10325	2604	60
H(8)	1340	6456	3023	72
H(9)	1966	5276	3037	101
H(10)	2910	5618	3200	95
H(11)	3188	7135	3208	75
H(12)	2550	8326	3139	60
H(14)	490	4518	4450	43
H(15)	1170	3396	4996	54
H(16)	1/4/	2746	4547	59
H(17)	1656	3228	3564	58
	904 700	4300	3014	40
$\Pi(20)$ $\Pi(21)$	-709	6406	3636	83
H(22)	-1923	4926	3564	80
H(23)	-1447	3694	3355	69
H(24)	-594	3925	3229	50
H(26)	-413	8841	4702	78
H(27)	-1038	8703	5211	99
H(28)	-2041	8594	4604	86
H(29)	-2406	8566	3534	85
H(30)	-1794	8673	3031	65
H(32)	-896	10738	3670	51
H(33)	-597	12252	3656	58
H(34)	201	12565	3443	55
H(35)	717	11357	3262	60
H(36)	410	9845	3256	48
H(37A)	1789	8103	4716	62
H(3/B)	1795	7958	5399	62 117
$\Pi(37C)$	040	0009	4/0/	117
$H(38\Delta)$	1067	0203	0410 //80	152
H(38B)	1632	9515	5108	152
H(38C)	1076	9099	5173	152
H(39A)	1007	7436	5534	65
H(39B)	524	8069	5022	65
H(39C)	1193	6613	5400	74
H(39D)	922	6108	4732	74
H(40A)	-10	6764	4528	133
H(40B)	99	6786	5255	133
H(40C)	478	6120	5029	133
H(41A)	1604	6451	5312	64
H(41B)	1081	5992	4725	64
H(41C)	1910	7268	5264	80
H(41D)	1810	7770	4619	80
H(42A)	1569	6442	4077	105
H(42B)	1912	5683	4596	105
H(42C)	2113	6736	4710	105

Tabelle 26: Koordinaten des Wasserstoffs ($x \ 10^4$) und isotrope Auslenkungsparameter (Å $^2x \ 10^3$)für sh2722.

7.2 Daten zur Molekül- und Kristallstruktur von Al₂[(OSiPh₂)₂O]₃ · 2 NC₅H₅ <u>5</u>

Tabelle 27: Kristalldaten und Strukturverfeinerungen für Al₂[(OSiPh₂)₂O]₃ · 2 NC₅H₅ 5

Identifikationscode Summenformel Molmasse [g/mol] Messtemperatur [K] Wellenlänge [Å] Kristallsystem Raumgruppe Gitterkonstanten	sh2568 C85.50 H74 Al2 N2 O9 Si6 1495.97 130(2) 0.71073 Monoclinic C2/c a = 24.7042(7) Å b = 14.1960(3) Å c = 45.1013(11) Å	α= 90°. β= 98.053(3)°. γ = 90°
Zellvolumen [Å ³] Anzahl der Formeleinheiten Z	15661.1(7) 8	7 - 00 .
Dichte (berechnet) Absorptionskoeffizient [mm ⁻¹] F(000) Kristallabmessungen [mm ³] Messbereich θ [°] hkl - Indexbereich Gemessene Reflexe Symmetrieunabhängige Reflexe Vollständigkeit des Datensatzes (bis θ = 28.39°) Absorptionskorrektur	1.269 Mg/m ³ 0.188 6264 0.45 x 0.3 x 0.28 1.66 to 28.39 -32<=h<=32, -18<=k<=18, -60< 119128 19484 [R(int) = 0.0900] 99.4 % Multiscan	=l<=60
Strukturverfeinerungsmethode Daten / Einschränkungen / Parameter Güte des Fit auf F ² Endgültige R-Werte [I>2sigma(I)] R-Werte (alle Daten) Restelektronendichte (min./max.) [e/Å ⁻³]	Full-matrix least-squares on F^2 19484 / 0 / 1077 1.175 R1 = 0.0824, wR2 = 0.1645 R1 = 0.1148, wR2 = 0.1756 0.768 and -0.431	

Tabelle 28: Atomkoordinaten ($x\ 10^4$) und äquivalente isotrope Auslenkungsparameter (Å $^2x\ 10^3$) für sh2802a. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

	x	у	Z	U(eq)
AI(1)	5865(1)	2769(1)	1766(1)	16(1)
AI(2)	5718(1)	2394(1)	782(1)	16(1)
Si(1)	6796(1)	1168(1)	1687(1)	20(1)
Si(2)	6941(1)	1538(1)	1012(1)	19(1)
Si(3)	4639(1)	1924(1)	1682(1)	20(1)
Si(4)	4770(1)	1162(1)	1036(1)	18(1)
Si(5)	6014(1)	4822(1)	1483(1)	16(1)
Si(6)	5593(1)	4682(1)	805(1)	16(1)
N(1)	6101(1)	3237(2)	2177(1)	29(1)
N(2)	5531(1)	2035(2)	359(1)	27(1)
O(1)	6351(1)	1962(2)	1716(1)	26(1)
O(2)	6982(1)	1161(2)	1356(1)	26(1)
O(3)	6338(1)	1873(2)	880(1)	22(1)
O(4)	5230(1)	2353(2)	1795(1)	26(1)
O(5)	4628(1)	1327(2)	1374(1)	25(1)
O(6)	5205(1)	1908(2)	947(1)	23(1)
O(7)	5879(1)	3745(2)	1546(1)	21(1)
O(8)	5872(1)	5081(2)	1129(1)	20(1)

O(9)	5716(1)	3589(2)	762(1)	21(1)
C(1)	7428(2)	1409(3)	1959(1)	29(1)
C(2)	7872(2)	1880(3)	1868(1)	44(1)
C(3)	8315(2)	2127(4)	2077(2)	74(2)
C(4)	8330(3)	1909(4)	2373(1)	72(2)
C(5)	7903(2)	1430(5)	2407(1)	64(Z) 44(1)
C(0)	6523(2)	-11(2)	1764(1)	$\frac{44(1)}{22(1)}$
C(8)	6874(2)	-766(3)	1841(1)	35(1)
C(9)	6668(2)	-1659(3)	1888(1)	45(1)
C(10)	6120(2)	-1809(3)	1861(1)	41(1)́
C(11)	5762(2)	-1075(3)	1789(1)	36(1)
C(12)	5962(2)	-180(3)	1745(1)	27(1)
C(13)	7141(1)	506(2)	793(1)	21(1)
C(14)	7205(2)	-393(3)	915(1)	26(1)
C(15)	7350(2)	-1153(3)	751(1) 455(1)	30(1)
C(17)	7370(2)	-143(3)	328(1)	41(1)
C(18)	7231(2)	621(3)	494(1)	34(1)
C(19)	7422(2)	2534(3)	1004(1)	45(1)
C(20A)	7224(8)	3411(14)	884(4)	58(5)
C(21A)	7572(5)	4165(9)	841(5)	81(6)
C(22A)	8125(5)	3982(8)	859(4)	73(5)
C(23A)	8323(4)	3102(8)	926(3)	47(3)
C(20P)	7959(8)	2380(13)	965(3)	37(4)
C(20B)	7200(7) 7624(5)	3400(11) 4230(7)	1033(3)	39(3) 56(3)
C(22B)	8177(4)	4065(7)	1141(3)	59(3)
C(23B)	8373(4)	3136(7)	1145(3)	53(3)
C(24B)	8014(6)	2387(12)	1098(3)	42(3)
C(25)	4136(2)	2917(2)	1623(1)	22(1)
C(26)	4303(2)	3858(3)	1607(1)	28(1)
C(27)	3916(2)	4583(3)	1553(1)	38(1)
C(28)	3366(2)	4385(3)	1508(1)	37(1)
C(29)	3188(2)	3464(3)	1520(1)	35(1)
C(30)	4436(1)	1067(2)	1958(1)	22(1)
C(32)	4401(2)	106(3)	1906(1)	40(1)
C(33)	4271(2)	-520(3)	2122(1)	55(1)
C(34)	4167(2)	-205(4)	2392(1)	52(1)
C(35)	4191(2)	733(4)	2454(1)	54(1)
C(36)	4324(2)	1370(3)	2239(1)	46(1)
C(37)	4108(1)	1262(2)	779(1)	24(1)
C(30)	3011(2)	1420(3)	602(1)	34(1) 73(1)
C(40)	3114(2)	1375(3)	390(1)	41(1)
C(41)	3597(2)	1223(4)	276(1)	47(1)
C(42)	4090(2)	1169(3)	471(1)	37(1)
C(43)	5038(1)	-68(2)	1014(1)	21(1)
C(44)	4709(2)	-839(3)	1053(1)	34(1)
C(45)	4905(2)	-1762(3)	1047(1)	38(1)
C(46)	5432(2) 5765(2)	-1925(3)	998(1)	32(1)
C(47)	5574(2)	-262(3)	964(1)	28(1)
C(49)	5592(1)	5619(2)	1692(1)	19(1)
C(50)	5141(2)	6125(3)	1554(1)	28(1)
C(51)	4820(2)	6666(3)	1717(1)	35(1)
C(52)	4940(2)	6695(3)	2026(1)	37(1)
C(53)	5377(2)	6201(3)	2168(1)	36(1)
U(54)	5703(2)	5682(3)	2004(1)	25(1)
C(55) C(56)	0102(2) 6011(2)	5076(3)	1671(1)	20(1) 54(2)
C(57)	0344(∠) 7488(2)	6181(4)	1746(2)	0 4 (∠) 68(2)
C(58A)	7841(6)	5538(9)	1851(3)	43(3)
C(59A)	7664(5)	4628(9)	1853(3)	49(3)
C(60A)	7103(5)	4395(10)	1739(2)	37(3)
C(58B)	7862(11)	5324(19)	1745(7)	90(11)
C(59B)	7673(8)	4461(14)	1673(5)	75(7)
C(60B)	7152(9)	4333(15)	1598(6)	68(8)

Anhang

C(61) C(62)	5895(1) 6263(2)	5402(2) 6135(3)	522(1) 597(1)	20(1) 28(1)
C(63)	6483(2)	6639(3)	379(1)	36(1)
C(64)	6347(2)	6406(3)	77(1)	37(1)
C(65)	5982(2)	5684(3)	-2(1)	38(1)
C(66)	5757(2)	5188(3)	216(1)	32(1)
C(67)	4837(1)	4863(2)	770(1)	20(1)
C(68)	4491(2)	4126(3)	828(1)	26(1)
C(69)	3931(2)	4268(3)	818(1)	32(1)
C(70)	3711(2)	5149(3)	752(1)	35(1)
C(71)	4041(2)	5883(3)	693(1)	36(1)
C(72)	4601(2)	5747(3)	699(1)	28(1)
C(73A)	6601(6)	3236(11)	2307(3)	42(3)
C(74A)	6748(11)	3660(20)	2588(5)	69(7)
C(75A)	6360(20)	4130(30)	2719(8)	68(13)
C(76A)	5800(10)	4096(18)	2594(7)	39(5)
C(73B)	6707(10)	3430(19)	2230(6)	41(5)
C(74B)	6879(9)	3870(16)	2509(4)	58(5)
C(75B)	6500(20)	4180(30)	2692(9)	63(12)
C(76B)	5978(10)	4030(20)	2615(6)	46(7)
C(77)	5732(2)	3610(3)	2335(1)	40(1)
C(78A)	5709(7)	1222(16)	256(5)	32(4)
C(79A)	5547(8)	881(11)	-35(4)	50(4)
C(80A)	5156(13)	1362(15)	-219(6)	54(6)
C(78B)	5863(8)	1421(16)	224(5)	37(4)
C(79B)	5722(7)	1199(10)	-67(4)	48(4)
C(80B)	5289(13)	1644(16)	-243(7)	56(6)
C(81)	4961(2)	2238(4)	-112(1)	49(1)
C(82)	5127(2)	2485(3)	181(1)	30(1)
C(83)	8410(11)	2326(19)	106(6)	89(7)
C(84)	7684(7)	1854(11)	-143(3)	75(4)
C(85)	7240(6)	1566(11)	-306(3)	82(4)
C(86)	8355(10)	3081(17)	294(5)	74(6)
C(87)	8023(6)	2107(10)	-20(3)	82(3)
C(88)	7583(8)	2673(12)	87(3)	86(4)
C(89)	8238(6)	1545(11)	-134(3)	86(4)
C(90)	8029(12)	2761(19)	195(6)	85(7)

Tabelle 29: Bindungslängen $[{\rm \AA}]$ und Winkel $[^{\circ}]$ für sh2568.

Al(1)-O(1)	1.697(3)	Si(5)-O(7)	1.600(2)
Al(1)-O(4)	1.699(3)	Si(5)-O(8)	1.627(2)
Al(1)-O(7)	1.705(2)	Si(5)-C(55)	1.866(4)
Al(1)-N(1)	1.979(3)	Si(5)-C(49)	1.879(4)
Al(2)-O(9)	1.698(2)	Si(6)-O(9)	1.599(2)
Al(2)-O(3)	1.704(2)	Si(6)-O(8)	1.630(2)
Al(2)-O(6)	1.705(3)	Si(6)-C(61)	1.869(4)
Al(2)-N(2)	1.968(3)	Si(6)-C(67)	1.871(4)
Si(1)-O(1)	1.593(3)	N(1)-C(73A)	1.292(17)
Si(1)-O(2)	1.621(3)	N(1)-C(77)	1.342(6)
Si(1)-C(7)	1.856(4)	N(1)-C(73B)	1.51(2)
Si(1)-O(1)	1.593(3)	N(1)-C(73A)	1.292(17)
Si(1)-O(2)	1.621(3)	N(1)-C(77)	1.342(6)
Si(1)-C(7)	1.856(4)	N(1)-C(73B)	1.51(2)
Si(1)-C(1)	1.878(4)	N(2)-C(78A)	1.34(2)
Si(2)-O(3)	1.596(2)	N(2)-C(78B)	1.351(5)
Si(2)-O(2)	1.631(3)	C(1)-C(6)	1.392(2)
Si(2)-C(19)	1.851(4)	O(1)-C(6)	1.393(6)
Si(2)-C(13)	1.870(4)	C(1)-C(2) $C(2)-C(3)$ $C(3)-C(4)$ $C(4)-C(5)$ $C(5)-C(6)$ $C(7)-C(8)$ $C(7)-C(12)$ $C(8)-C(9)$ $C(9)-C(10)$	1.395(6)
Si(3)-O(4)	1.597(3)		1.386(6)
Si(3)-O(5)	1.623(3)		1.367(9)
Si(3)-C(31)	1.860(4)		1.365(9)
Si(3)-C(25)	1.873(4)		1.382(7)
Si(4)-O(6)	1.598(3)		1.392(5)
Si(4)-O(5)	1.631(3)		1.396(5)
Si(4)-C(37)	1.874(4)		1.394(6)
Si(4)-C(43)	1.876(3)		1.359(7)

C(10)-C(11)	1.375(6)	C(69)-C(70)	1.380(6)
C(11)-C(12)	1.389(5)	C(70)-C(71)	1.371(6)
C(13)-C(14)	1.390(5)	C(71)-C(72)	1.394(5)
C(13)-C(18)	1.409(5)	C(73A)-C(74A)	1.40(3)
C(14)-C(15)	1.385(5)	C(74A)-C(75A)	1.37(6)
C(15)-C(16)	1.393(6)	C(75A) - C(76A)	1.41(5)
C(10)-C(17)	1.371(0)	C(73R) - C(74R)	1.35(3)
C(19)-C(24A)	1.38(2)	C(74B)-C(75B)	1.42(4) 1 40(6)
C(19)-C(20A)	1.42(2)	C(75B)-C(76B)	1.32(6)
C(19)-C(20B)	1.428(15)	C(76B)-C(77)	1.45(3)
C(19)-C(24B)	1.479(15)	C(78A)-C(79A)	1.40(3)
C(20A)-C(21A)	1.40(2)	C(79A)-C(80A)	1.36(4)
C(21A)-C(22A)	1.382(17)	C(80A)-C(81)	1.44(3)
C(22A)-C(23A)	1.361(16)	C(78B)-C(79B)	1.35(3)
C(23A)-C(24A)	1.39(2)	C(79B) - C(80B)	1.39(4)
C(21B) - C(22B)	1.399(19)	C(81) - C(82)	1.30(3)
C(22B)-C(23B)	1 404(14)	C(83)-C(87)	1.09(3)
C(23B)-C(24B)	1.383(18)	C(83)-C(90)	1.24(3)
C(25)-C(26)	1.403(5)	C(83)-C(86)	1.39(3)
C(25)-C(30)	1.408(5)	C(83)-C(89)	1.57(3)
C(26)-C(27)	1.403(6)	C(84)-C(88)#1	0.999(19)
C(27)-C(28)	1.375(6)	C(84)-C(87)	1.003(16)
C(28)-C(29)	1.382(6)	C(84)-C(85)	1.298(19)
C(29)-C(30)	1.392(5)	C(84)- $C(89)$	1.43(2)
C(31) - C(32)	1.386(5)	C(84) - C(88)	1.60(2)
C(37)-C(30)	1.390(0)	C(85)-C(90)#1	1.03(3)
C(33)-C(34)	1.358(8)	C(85)-C(88)#1	1.49(2)
C(34)-C(35)	1.360(7)	C(85)-C(86)#1	1.56(3)
C(35)-C(36)	1.398(6)	C(86)-C(90)	0.98(3)
C(37)-C(42)	1.393(6)	C(86)-C(85)#1	1.56(3)
C(37)-C(38)	1.397(5)	C(87)-C(89)	1.121(18)
C(38)-C(39)	1.394(6)	C(87)-C(90)	1.34(3)
C(39)- $C(40)$	1.367(7)	C(87)- $C(88)$	1.49(2)
C(40)-C(41)	1.302(7)	$C(88)_{-}C(88)_{+}1$	1.52(2)
C(43)-C(44)	1 389(5)	C(88)-C(84)#1	0.97(3)
C(43)-C(48)	1.401(5)	C(88)-C(90)	1.15(3)
C(44)-C(45)	1.398(5)	C(88)-C(85)#1	1.49(2)
C(45)-C(46)	1.370(6)	C(88)-C(87)#1	1.52(2)
C(46)-C(47)	1.365(6)	C(88)-C(90)#1	1.94(4)
C(47)-C(48)	1.393(5)	C(90)-C(85)#1	1.30(3)
C(49)- $C(50)$	1.396(5)	C(90)-C(84)#1	1.83(3)
C(49)- $C(54)$	1.398(5)	C(90)-C(88)#1	1.94(4)
C(51)-C(52)	1 384(6)	O(1)-AI(1)-O(4)	116 95(13)
C(52)-C(53)	1.368(6)	O(1)-Al(1)-O(7)	113.58(13)
C(53)-C(54)	1.383(5)	O(4)-Al(1)-O(7)	114.88(13)
C(55)-C(60A)	1.364(13)	O(1)-AI(1)-N(1)	103.27(14)
C(55)-C(56)	1.373(6)	O(4)-Al(1)-N(1)	101.48(14)
C(55)-C(60B)	1.45(2)	O(7)-Al(1)-N(1)	104.10(13)
C(56)-C(57)	1.391(6)	O(9)-Al(2)-O(3)	116.40(13)
C(57)- $C(58A)$	1.306(16)	O(9)-Al(2)-O(6)	115.49(13)
C(57)-C(50D)	1.365(17)	O(3) - AI(2) - O(6) O(0) - AI(2) - N(2)	102 05(13)
C(59A)- $C(60A)$	1 446(16)	O(3)-Al(2)-N(2)	102.03(13)
C(58B)-C(59B)	1.33(3)	O(6)-Al(2)-N(2)	103.37(14)
C(59B)-C(60B)	1.30(3)	O(1)-Si(1)-O(2)	111.60(14)
C(61)-C(62)	1.393(5)	O(1)-Si(1)-C(7)	110.41(16)
C(61)-C(66)	1.406(5)	O(2)-Si(1)-C(7)	108.97(15)
C(62)-C(63)	1.389(5)	O(1)-Si(1)-C(1)	109.74(15)
C(63)-C(64)	1.393(6)	O(2)-Si(1)-C(1)	106.57(17)
	1.378(6)	C(7)-SI(1)-C(1) C(2) Si(2) $C(2)$	109.46(17)
C(67)- $C(68)$	1 397(5)	O(3)-O(2)-O(2) O(3)-Si(2)-O(10)	100 /R(14)
C(67)-C(72)	1.401(5)	O(2)-Si(2)-C(19)	108.3(2)
C(68)-C(69)	1.394(5)	O(3)-Si(2)-C(13)	109.73(14)

O(2)-Si(2)-C(13)	105.03(15)	
C(19)-Si(2)-C(13)	111.70(19)	
O(4)-Si(3)-O(5)	112.03(14)	
O(4)-Si(3)-C(31)	110.92(15)	
O(5)-Si(3)-C(31)	104.92(15)	
O(4)-Si(3)-C(25)	108.52(15)	
O(5)-Si(3)-C(25)	109.79(15)	
C(31)-Si(3)-C(25)	110.65(16)	
O(6)-Si(4)-O(5)	112.33(14)	
O(6)-Si(4)-C(37)	110.78(15)	
O(5)-Si(4)-C(37)	106.46(16)	
O(6) - Si(4) - C(43)	110.40(15)	
C(3) - Si(4) - C(43)	107.00(15)	
O(37) = O(4) = O(43)	100.00(10)	
O(7)-Si(5)- $O(6)$	110.06(15)	
O(8)-Si(5)-C(55)	109 17(16)	
O(7)-Si(5)-C(49)	110 01(14)	
O(8)-Si(5)-C(49)	107 28(14)	
C(55)-Si(5)-C(49)	108.57(17)	
O(9)-Si(6)-O(8)	112.49(13)	
O(9)-Si(6)-C(61)	110.38(14)	
O(8)-Si(6)-C(61)	105.30(14)	
O(9)-Si(6)-C(67)	109.10(15)	
O(8)-Si(6)-C(67)	108.62(14)	
C(61)-Si(6)-C(67)	110.91(15)	
C(73A)-N(1)-C(77)	115.8(7)	
C(73A)-N(1)-C(73B)	20.5(10)	
C(77)-N(1)-C(73B)	125.2(12)	
C(73A)-N(1)-AI(1)	124.4(7)	
C(77)-N(1)-AI(1)	119.8(3)	
C(73B)-N(1)-AI(1)	111.4(11)	
C(78A) - N(2) - C(82)	117.1(10)	
C(78A) - N(2) - C(78B)	21.5(10)	
C(02) - N(2) - C(70D)	120.0(11)	
C(70A) - N(2) - AI(2) C(82) - N(2) - AI(2)	120.9(10)	
$C(78R)-N(2)-\Delta I(2)$	120.3(3)	
Si(1) - O(1) - Al(1)	176 37(19)	
Si(1) - O(2) - Si(2)	152 28(18)	
Si(2)-O(3)-Al(2)	169.79(18)	
Si(3)-O(4)-Al(1)	157.13(18)	
Si(3)-O(5)-Si(4)	153.55(18)	
Si(4)-O(6)-AI(2)	160.88(17)	
Si(5)-O(7)-AI(1)	154.40(17)	
Si(5)-O(8)-Si(6)	143.92(16)	
Si(6)-O(9)-Al(2)	164.29(18)	
C(6)-C(1)-C(2)	117.6(4)	
C(6)-C(1)-Si(1)	121.5(3)	
C(2)-C(1)-Si(1)	120.7(3)	
C(3)-C(2)-C(1)	119.9(5)	
C(4)-C(3)-C(2)	121.3(6)	
C(5)-C(4)-C(3)	119.8(5)	
C(4)- $C(5)$ - $C(6)$	119.9(5)	
C(3) - C(0) - C(1)	121.0(3)	
C(8)-C(7)-C(12)	120 7(3)	
C(12)-C(7)-Si(1)	120.7(3)	
C(7)-C(8)-C(9)	120.7(4)	
C(10)- $C(9)$ - $C(8)$	120.6(4)	
C(9)-C(10)-C(11)	120.2(4)	
C(10)-C(11)-C(12)	119.8(4)	
C(11)-C(12)-C(7)	121.3(4)	
C(14)-C(13)-C(18)	117.4(3)	
C(14)-C(13)-Si(2)	122.3(3)	
C(18)-C(13)-Si(2)	120.3(3)	
C(15)-C(14)-C(13)	121.9(4)	
C(14)-C(15)-C(16)	119.5(4)	
C(17)-C(16)-C(15)	119.9(4)	

C(16)-C(17)-C(18)	120 5(4)
C(17)- $C(18)$ - $C(13)$	120.8(4)
C(24A)-C(19)-C(20A)	112.1(11)
C(24A)-C(19)-C(20B)	117.7(10)
C(20A)-C(19)-C(20B)	27.5(8)
C(24A)-C(19)-C(24B)	23.7(8)
C(20A)-C(19)-C(24B)	120.5(10)
C(20B)-C(19)-C(24B)	113.7(10)
C(24A)-C(19)-Si(2)	120.9(8)
C(20A)-C(19)-Si(2)	119.4(8)
C(20B)-C(19)-Si(2)	121.4(7)
C(24B)-C(19)-Si(2)	119.9(7)
C(21A)-C(20A)-C(19)	122.6(15)
C(22A)-C(21A)-C(20A)	120 5(10)
C(22A)-C(22A)-C(21A)	119 0(12)
C(19)-C(24A)-C(23A)	123.4(14)
C(21B)-C(20B)-C(19)	121.9(13)
C(22B)-C(21B)-C(20B)	121.2(11)
C(21B)-C(22B)-C(23B)	119.6(̈́9) ́
C(24B)-C(23B)-C(22B)	120.4(10)
C(23B)-C(24B)-C(19)	121.6(13)
C(26)-C(25)-C(30)	117.1(3)
C(26)-C(25)-Si(3)	121.9(3)
C(30)- $C(25)$ - $SI(3)$	120.9(3)
C(27)- $C(26)$ - $C(25)$	120.5(4)
C(27)-C(28)-C(29)	120.0(4)
C(28)-C(29)-C(30)	119 6(4)
C(29)-C(30)-C(25)	121.9(4)
C(32)-C(31)-C(36)	116.2(4)
C(32)-C(31)-Si(3)	123.1(3)
C(36)-C(31)-Si(3)	120.7(3)
C(31)-C(32)-C(33)	121.7(5)
C(34)-C(33)-C(32)	120.8(5)
C(33)-C(34)-C(35)	119.7(4)
C(34)-C(35)-C(30) C(35)-C(36)-C(31)	120.0(3)
C(33)=C(30)=C(31) C(42)=C(37)=C(38)	116.9(4)
C(42)-C(37)-Si(4)	120.9(3)
C(38)-C(37)-Si(4)	122.2(3)
C(39)-C(38)-C(37)	121.4(4)
C(40)-C(39)-C(38)	120.5(4)
C(39)-C(40)-C(41)	119.8(4)
C(40)- $C(41)$ - $C(42)$	119.8(4)
C(37) - C(42) - C(41) C(44) - C(43) - C(48)	121.7(4)
C(44)-C(43)-Si(4)	120 7(3)
C(48)-C(43)-Si(4)	122.6(3)
C(43)-C(44)-C(45)	121.7(4)
C(46)-C(45)-C(44)	120.0(4)
C(47)-C(46)-C(45)	119.8(4)
C(46)-C(47)-C(48)	120.5(4)
C(47)-C(48)-C(43)	121.3(4)
C(50)- $C(49)$ - $C(54)$	116.6(3)
C(50)-C(49)-Si(5) C(54)-C(49)-Si(5)	123.4(3)
C(51)-C(50)-C(49)	121 8(4)
C(52)-C(51)-C(50)	119.5(4)
C(53)-C(52)-C(51)	120.0(4)
C(52)-C(53)-C(54)	120.2(4)
C(53)-C(54)-C(49)	121.8(4)
C(60A)-C(55)-C(56)	115.1(7)
C(60A)-C(55)-C(60B)	27.4(10)
	116.9(10)
C(56)-C(55)-Si(5)	122.4(0) 121 1/3)
C(60B)-C(55)-Si(5)	119.7(11)
C(55)-C(56)-C(57)	122.3(5)

C(58A)-C(57)-C(56)	122.9(7)
C(58A)-C(57)-C(58B)	21.5(13)
C(57)-C(58A)-C(59A)	117.7(12)
C(58A)-C(59A)-C(60A)	120.4(12)
C(55)-C(60A)-C(59A)	120.8(11)
C(59B)-C(58B)-C(57)	123(2)
C(60B)-C(59B)-C(58B)	120(2)
C(59B)-C(60B)-C(55)	123(2) 117 $4(3)$
C(62)-C(61)-Si(6)	123.4(3)
C(66)-C(61)-Si(6)	119.1(3)
C(63)-C(62)-C(61)	121.2(4)
C(62)-C(63)-C(64)	120.4(4)
C(65)-C(64)-C(63)	119.2(4)
C(65)-C(66)-C(61)	121.3(4)
C(68)-C(67)-C(72)	117.9(3)
C(68)-C(67)-Si(6)	120.7(3)
C(72)-C(67)-Si(6)	121.3(3)
C(69)-C(68)-C(67)	121.1(4) 119.7(4)
C(70)- $C(09)$ - $C(00)C(71)$ - $C(70)$ - $C(69)$	120.4(4)
C(70)-C(71)-C(72)	120.3(4)
C(71)-C(72)-C(67)	120.6(4)
N(1)-C(73A)-C(74A)	121.4(17)
C(75A)-C(74A)-C(73A)	119(3)
C(74A)-C(75A)-C(76A)	121(3)
C(74B)-C(73B)-N(1)	113(2)
C(75B)-C(74B)-C(73B)	122(3)
C(76B)-C(75B)-C(74B)	120(4)
C(75B)-C(76B)-C(77)	125(3)
N(1)-C(77)-C(76A) N(1)-C(77)-C(76B)	130.6(11)
C(76A)-C(77)-C(76B)	17.7(17)
N(2)-C(78A)-C(79A)	123.6(18)
C(80A)-C(79A)-C(78A)	118.7(19)
C(79A)- $C(80A)$ - $C(81)$	118(2)
C(78B)-C(79B)-C(80B)	121(2)
C(81)-C(80B)-C(79B)	120(2)
C(80B)-C(81)-C(82)	117.4(13)
C(80B)-C(81)-C(80A)	21.9(16)
C(82)- $C(81)$ - $C(80A)$	118.2(13)
C(87)-C(83)-C(90)	70(2)
C(87)-C(83)-C(86)	113(3)
C(90)-C(83)-C(86)	43.3(17)
C(87)-C(83)-C(89)	45.7(14)
C(90)- $C(83)$ - $C(89)$	116(3)
C(88)#1- $C(84)$ - $C(87)$	98.6(19)
C(88)#1-C(84)-C(85)	79.5(15)
C(87)-C(84)-C(85)	177(2)
C(88)#1-C(84)-C(89)	150(2)
C(87)- $C(84)$ - $C(89)$	51.2(12)
C(88)#1- $C(84)$ - $C(88)$	34.9(16)
C(87)-C(84)-C(88)	64.9(12)
C(85)-C(84)-C(88)	113.5(16)
C(89)-C(84)-C(88)	116.0(14)
C(87)-C(84)-C(90)#1	34.1(13) 132 7(18)
C(85)-C(84)-C(90)#1	45.4(11)
C(89)-C(84)-C(90)#1	174.3(15)
C(88)-C(84)-C(90)#1	68.4(14)
C(84)-C(85)-C(90)#1	89.3(17)
C(84)-C(85)-C(88)#1	41.3(9)

0(00) #4 0(05) 0(00) #4	10 0/1 1)
C(90)#1-C(85)-C(88)#1	48.0(14)
C(84)-C(85)-C(86)#1	127 3(16)
	127.0(10)
C(90)#1-C(85)-C(86)#1	38.6(14)
C(88)#1-C(85)-C(86)#1	86.3(14)
C(00) C(00) C(02)	60(2)
C(90)- $C(80)$ - $C(83)$	60(Z)
C(90)-C(86)-C(85)#1	56(2)
C(92) C(96) C(95) #1	116(2)
C(03)- $C(00)$ - $C(03)$ #1	110(2)
C(84)-C(87)-C(83)	175(3)
C(84)	84 5(17)
C(04)- $C(07)$ - $C(09)$	04.0(17)
C(83)-C(87)-C(89)	90(2)
C(84) $C(87)$ $C(90)$	125(2)
C(0+)-C(07)-C(30)	123(2)
C(83)-C(87)-C(90)	60.1(19)
C(89) - C(87) - C(90)	150(2)
O(03) = O(07) = O(30)	100(2)
C(84)-C(87)-C(88)	77.4(14)
C(83)-C(87)-C(88)	107 6(19)
C(00) C(07) C(00)	404 5(47)
C(89)-C(87)-C(88)	161.5(17)
C(90)-C(87)-C(88)	47.5(13)
C(04) C(07) C(00) # 4	10 6(11)
C(04)-C(07)-C(00)#1	40.6(11)
C(83)-C(87)-C(88)#1	145(2)
C(80) - C(87) - C(88) + 1	125 0(16)
0(03)-0(07)-0(00)#1	123.0(10)
C(90)-C(87)-C(88)#1	85.0(16)
C(88)-C(87)-C(88)#1	37 6(11)
	400(0)
C(88)#1-C(88)-C(84)#1	109(3)
C(88)#1-C(88)-C(90)	132(3)
C(04)#1 C(00) C(00)	447(0)
U(04)#1-U(88)-U(90)	117(Z)
C(88)#1-C(88)-C(85)#1	164(3)
C(84)#1 - C(88) - C(85)#1	50 1(13)
C(0+)#1-C(00)-C(00)#1	53.1(15)
C(90)-C(88)-C(85)#1	57.6(16)
C(88)#1-C(88)-C(87)	73(2)
O(00)#1- $O(00)$ - $O(07)$	13(2)
C(84)#1- $C(88)$ - $C(87)$	170(2)
C(90)- $C(88)$ - $C(87)$	59 7(18)
C(05) # 4 C(00) C(07)	440 7(44)
C(85)#1-C(88)-C(87)	116.7(14)
C(88)#1-C(88)-C(87)#1	69(2)
C(0,1) #1 $C(0,0)$ $C(0,7)$ #1	10 0(12)
C(04)#1-C(00)-C(07)#1	40.0(12)
C(90)-C(88)-C(87)#1	157(2)
C(85)#1-C(88)-C(87)#1	
$O(03)$ $\pi^{-}O(00)^{-}O(07)$ π^{-}	33.3(17)
C(87)-C(88)-C(87)#1	142.4(11)
C(88)#1-C(88)-C(84)	36,1(17)
C(0.4)#4 $C(0.0)$ $C(0.4)$	445 4(40)
C(84)#1-C(88)-C(84)	145.1(16)
C(90)-C(88)-C(84)	97(2)
C(95)#1 C(99) C(94)	15/ 1/17)
C(05)#1-C(06)-C(04)	104.1(17)
C(87)-C(88)-C(84)	37.6(8)
C(87) # 1 - C(88) - C(84)	105 1(10)
O(07) # 1 O(00) = O(04)	100.1(10)
C(88)#1-C(88)-C(90)#1	26.0(19)
C(84)#1-C(88)-C(90)#1	84.1(17)
C(00) C(00) C(00) #1	150.2(16)
C(90)-C(86)-C(90)#1	156.3(10)
C(85)#1-C(88)-C(90)#1	142.9(16)
C(87) - C(88) - C(90) + 1	08 8(11)
O(07) = O(00) = O(30) # 1	30.0(11)
C(87)#1-C(88)-C(90)#1	43.7(10)
C(84)-C(88)-C(90)#1	61.4(10)
C(97) C(90) C(94)	44.0(10)
C(07)- $C(09)$ - $C(04)$	44.Z(10)
C(87)-C(89)-C(83)	44.0(13)
င္က ဖို႔ ကို	88 2(15)
0(04)-0(09)-0(03)	00.2(13)
C(86)-C(90)-C(88)	158(4)
C(86)-C(90)-C(83)	76(3)
O(00) O(00) O(00)	10(0)
C(88)-C(90)-C(83)	122(3)
C(86)-C(90)-C(85)#1	85(3)
C(99) C(00) C(95)#1	74.4(10)
0(00)-0(30)-0(00)#1	74.4(19)
C(83)-C(90)-C(85)#1	160(3)
C(86) - C(90) - C(87)	125(2)
	120(3)
C(88)-C(90)-C(87)	73(2)
C(83)- $C(90)$ - $C(87)$	49 7(17)
C(05) = (00) = C(07)	+0.7(17)
U(85)#1-U(90)-U(87)	146(3)
C(86)-C(90)-C(84)#1	130(3)
C(99) C(00) C(94) + 4	20 2(42)
C(00)-C(90)-C(84)#1	29.2(12)
C(83)-C(90)-C(84)#1	150(3)
C(85) #1 - C(90) - C(84) #1	45 2(12)
C(87)-C(90)-C(84)#1	101.6(19)
C(86)-C(90)-C(88)#1	165(3)

C(88)-C(90)-C(88)#1	21.7(16)	C(87)-C(90)-C(88)#1	51.3(12)
C(83)-C(90)-C(88)#1	101(2)	C(84)#1-C(90)-C(88)#1	50.3(12)
C(85)#1-C(90)-C(88)#1	95(2)		

Symmetry transformations used to generate equivalent atoms: #1 -x+3/2,-y+1/2,-z

Tabelle 30: Anisotropische Auslenkungsaparameter (Å $^2x 10^3$) für sh2568. Der anisotropischeExponentfaktor des Auslenkungsparameter lautet: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
AI(1)	18(1)	13(1)	17(1)	0(1)	2(1)	-2(1)
AI(2)	17(1)́	16(1)	16(1)	-1(1)	2(1)	4(1)
Si(1)	20(1)	16(1)	21(1)	-1(1)	-3(1)	3(1)
Si(2)	15(1)	17(1)	25(1)	4(1)	4(1)	2(1)
Si(3)	19(1)	19(1)	22(1)	-1(1)	7(1)	-2(1)
Si(4)	16(1)	16(1)	23(1)	-4(1)	2(1)	0(1)
Si(5)	17(1)	14(1)	16(1)	2(1)	1(1)	-1(1)
Si(6)	19(1)	15(1)	15(1)	2(1)	3(1)	3(1)
N(1)	42(2)	20(2)	24(2)	0(1)	-5(1)	-3(1)
N(2)	33(2)	27(2)	18(2)	-5(1)	-2(1)	11(1)
O(1)	24(1)	21(1)	33(1)	0(1)	1(1)	4(1)
O(2)	27(1)	28(1)	22(1)	0(1)	-1(1)	3(1)
O(3)	18(1)	23(1)	25(1)	2(1)	0(1)	7(1)
O(4)	25(1)	25(1)	29(1)	2(1)	4(1)	-6(1)
O(5)	28(1)	24(1)	26(1)	-6(1)	9(1)	-2(1)
O(6)	20(1)	18(1)	32(1)	0(1)	6(1)	-1(1)
O(7)	25(1)	16(1)	23(1)	2(1)	4(1)	-1(1)
O(8)	25(1)	17(1)	18(1)	4(1)	1(1)	0(1)
O(9)	25(1)	17(1)	24(1)	2(1)	5(1)	5(1)
C(1)	26(2)	24(2)	32(2)	-6(2)	-10(2)	8(2)
C(2)	35(2)	40(2)	50(3)	1(2)	-14(2)	-6(2)
C(3)	41(3)	67(4)	103(5)	1(4)	-32(3)	-14(3)
C(4)	63(4)	69(4)	70(4)	-22(3)	-46(3)	5(3)
C(5)	61(4)	81(4)	42(3)	-13(3)	-26(3)	19(3)
C(6)	41(3)	57(3)	32(2)	-3(2)	-5(2)	7(2)
C(7)	30(2)	19(2)	16(2)	-1(1)	-4(1)	2(1)
C(8)	31(2)	22(2)	48(3)	2(2)	-2(2)	5(2)
C(9)	52(3)	18(2)	63(3)	4(2)	-1(2)	6(2)
C(10)	52(3)	22(2)	47(3)	-1(2)	3(2)	-11(2)
C(11)	35(2)	34(2)	38(2)	-3(2)	5(2)	-7(2)
C(12)	30(2)	22(2)	28(2)	1(2)	1(2)	3(2)
C(13)	15(2)	23(2)	23(2)	3(1)	2(1)	7(1)
C(14)	25(2)	24(2)	27(2)	2(2)	0(2)	2(2)
C(15)	35(2)	25(2)	43(2)	-3(2)	2(2)	6(2)
C(16)	32(2)	40(2)	43(3)	-14(2)	0(2)	11(2)
C(17)	45(3)	54(3)	26(2)	-2(2)	10(2)	17(2)
C(18)	38(2)	39(2)	28(2)	9(2)	12(2)	19(2)
C(19)	27(2)	22(2)	90(4)	2(2)	23(2)	-1(2)
C(20A)	19(6)	35(9)	121(17)	25(11)	15(11)	1(5)
C(21A)	25(6)	29(6)	190(20)	33(10)	25(10)	-1(5)
C(22A)	28(6)	26(6)	167(16)	17(8)	20(8)	-13(4)
C(23A)	19(5)	38(6)	83(9)	9(7)	4(6)	-16(4)
C(24A)	24(6)	18(5)	66(11)	4(7)	-6(8)	-1(4)
C(20B)	31(6)	22(4)	71(8)	-11(6)	27(7)	-4(4)
C(21B)	44(6)	26(4)	105(9)	-6(6)	41(7)	0(4)
C(22B)	32(5)	44(5)	109(9)	-19(6)	33(6)	-19(4)
C(23B)	16(4)	47(5)	98(9)	4(6)	14(5)	1(4)
C(24B)	13(5)	43(6)	69(9)	17(7)	6(6)	-4(4)
C(25)	25(2)	23(2)	20(2)	-2(1)	8(1)	1(1)
C(26)	34(2)	25(2)	24(2)	2(2)	1(2)	-1(2)
C(27)	47(3)	26(2)	37(2)	5(2)	-2(2)	5(2)
C(28)	43(3)	33(2)	35(2)	1(2)	1(2)	15(2)

Anhang

C(29)	30(2)	38(2)	37(2)	-3(2)	2(2)	8(2)
C(30)	29(2)	29(2)	37(2)	-3(2)	9(2)	5(2)
C(31)	14(2)	22(2)	32(2)	2(2)	4(1)	-3(1)
C(32)	44(3)	22(2)	61(3)	1(2)	25(2)	0(2)
C(33)	60(3)	26(2)	84(4)	14(2)	26(3)	-4(2)
C(34)	54(3)	52(3)	50(3)	28(3)	7(2)	-9(2)
C(35)	69(4)	60(3)	34(3)	12(2)	10(2)	-20(3)
C(36)	73(3)	38(2)	29(2)	-2(2)	16(2)	-14(2)
C(37)	20(2)	17(2)	34(2)	-2(1)	0(2)	-3(1)
C(38)	25(2)	38(2)	39(2)	-11(2)	2(2)	4(2)
C(39)	20(2)	40(2)	64(3)	-16(2)	-6(2)	8(2)
C(40)	33(2)	26(2)	57(3)	0(2)	-19(2)	2(2)
C(41)	41(3)	62(3)	33(2)	1(2)	-13(2)	-8(2)
C(42)	29(2) 21(2)	52(3)	29(2)	-6(2)	-4(2)	-7(Z) 2(1)
C(43)	21(2)	19(2)	22(2) 60(2)	-3(1)	U(1) 12(2)	3(1)
C(44)	23(2)	22(2) 18(2)	65(3)	-6(2)	9(2)	-1(2)
C(46)	36(2)	18(2)	41(2)	-2(2)	3(2)	- 4 (2) 6(2)
C(47)	24(2)	28(2)	49(3)	-1(2)	8(2)	8(2)
C(48)	23(2)	25(2)	38(2)	-3(2)	8(2)	0(2)
C(49)	22(2)	16(2)	19(2)	0(1)	4(1)	-4(1)
C(50)	30(2)	30(2)	24(2)	1(2)	4(2)	7(2)
C(51)	35(2)	33(2)	39(2)	1(2)	9(2)	13(2)
C(52)	51(3)	32(2)	34(2)	-3(2)	23(2)	7(2)
C(53)	47(3)	39(2)́	23(2)	-2(2)	14(2)	-1(2)
C(54)	31(2)	23(2)	20(2)	2(1)	2(2)	-2(2)
C(55)	20(2)	26(2)	36(2)	7(2)	4(2)	-2(2)
C(56)	21(2)	37(3)	106(5)	-18(3)	9(2)	-5(2)
C(57)	25(2)	56(3)	124(6)	-23(4)	16(3)	-17(2)
C(58A)	27(5)	39(7)	58(6)	9(5)	-5(5)	-19(5)
C(59A)	18(4)	44(7)	79(8)	17(6)	-18(5)	-4(4)
C(60A)	10(4)	38(5)	63(7)	20(5)	2(4)	-2(3)
C(58B)	24(8)	61(13)	170(30)	-39(15)	-37(14)	-1(8)
C(59B)	26(8)	41(9)	150(20)	7(13)	-16(13)	-5(6)
C(60B)	32(8)	23(7)	160(20)	21(13)	40(14)	7(5)
C(61)	24(2) 21(2)	17(2)	ZI(Z) 26(2)	3(1)	5(1) 4(2)	0(1)
C(62)	30(2)	27(2)	20(2)	5(2)	+(<i>L</i>)	-2(2)
C(64)	$\frac{39(2)}{41(2)}$	$\frac{33(2)}{40(2)}$	34(2)	5(2) 15(2)	12(2)	-0(2)
C(65)	55(3)	43(2)	17(2)	5(2)	5(2)	1(2)
C(66)	40(2)	32(2)	22(2)	6(2)	2(2)	-5(2)
C(67)	20(2)	21(2)	18(2)	-1(1)	2(1)	6(1)
C(68)	27(2)	28(2)	23(2)	5(2)	7(2)	4(2)
C(69)	26(2)	41(2)	32(2)	4(2)	9(2)	-2(2)
C(70)	22(2)	47(3)	37(2)	-4(2)	7(2)	9(2)
C(71)	32(2)	29(2)	47(3)	-3(2)	0(2)	15(2)
C(72)	26(2)	26(2)	33(2)	-1(2)	4(2)	6(2)
C(73A)	44(7)	55(8)	26(5)	-10(5)	-2(4)	-9(5)
C(74A)	69(13)	104(18)	29(10)	-19(9)	-4(7)	-21(10)
C(75A)	120(40)	59(12)	20(9)	-17(7)	11(13)	-10(16)
C(76A)	61(15)	24(6)	33(9)	-5(5)	15(10)	1(8)
C(73B)	23(10)	43(11)	51(16)	0(10)	-18(9)	2(8)
C(74B)	55(11)	64(11) 46(11)	47(12)	-25(8)	-25(8)	14(9)
	100(30) 61(16)	40(11)	31(10) 10(6)	-3(9)	-27(15)	0(14)
C(70B)	66(3)	31(2)	28(2)	-3(7)	22(2)	-27(11)
$C(78\Delta)$	22(8)	45(9)	26(6)	-7(6)	-1(6)	16(6)
C(79A)	75(12)	39(8)	31(6)	-22(6)	-5(7)	4(6)
C(80A)	83(16)	47(12)	27(8)	-25(8)	-10(8)	15(9)
C(78B)	31(10)	44(10)	36(7)	-15(6)	6(7)	16(7)
C(79B)	58(10)	46(9)	37(6)	-16(7)	-4(6)	18(7)
C(80B)	78(14)	56(14)	28(6)	-9(9)	-19(8)	6(10)
C(81)	60(3)	57(3)	26(2)	1(2)	-9(2)	2Ò(3)
C(82)	33(2)	31(2)	24(2)	1(2)	-2(2)	9(2)

7.3 Daten zur Molekül- und Kristallstruktur von [(Ph₂SiO)₂O]₂{Al[(Ph₂SiO)₂OH · N(CH₂CH₃)₃]}₂ <u>6</u>

Tabelle 31: Kristalldaten und Strukturverfeinerungen für $[(Ph_2SiO)_2O]_2$ {Al[$(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3$]}**6** (sh2461)

Identifikationscode Summenformel Molmasse [g/mol] Messtemperatur [K] Wellenlänge [Å] Kristallsystem Raumgruppe	sh2461 C108 H112 Al2 N2 O12 Si8 1908.68 100(2) 0.71073 Triclinic P-1	
Gitterkonstanten	a = 13.8375(3) A b = 16.3265(4) Å c = 23.4351(5) Å	$\alpha = 91.1520(10)^{\circ}.$ $\beta = 91.5570(10)^{\circ}.$ $\gamma = 107.2190(10)^{\circ}.$
Zellvolumen [Å ³] Anzahl der Formeleinheiten Z	5053.0(2) 2	
Dichte (berechnet) Absorptionskoeffizient $[mm^{-1}]$ F(000) Kristallabmessungen $[mm^3]$ Messbereich θ [°] hkl - Indexbereich Gemessene Reflexe Symmetrieunabhängige Reflexe Vollständigkeit des Datensatzes (bis θ = 30.82°) Absorptionskorrektur	1.254 Mg/m ³ 0.185 2016 0.5 x 0.3 x 0.25 1.31 to 30.82 -19<=h<=19, -23<=k<=23, -33< 98220 31084 [R(int) = 0.0440] 98.0 % Multiscan	=l<=33
Strukturverfeinerungsmethode Daten / Einschränkungen / Parameter Güte des Fit auf F ² Endgültige R-Werte [I>2sigma(I)] R-Werte (alle Daten) Restelektronendichte (min./max.) [e/Å ⁻³]	Full-matrix least-squares on F ² 31084 / 0 / 1203 1.004 R1 = 0.0446, wR2 = 0.0993 R1 = 0.0817, wR2 = 0.1156 0.479 and -0.354	

Tabelle 32: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å²x 10³) für sh2461. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

	x	у	Z	U(eq)
AI(1)	6600(1)	6740(1)	-95(1)	14(1)
Si(1)	4242(1)	4335(1)	1283(1)	15(1)
Si(2)	6371(1)	5754(1)	1111(1)	15(1)
Si(3)	8719(1)	7907(1)	-304(1)	18(1)
Si(4)	7074(1)	8713(1)	-100(1)	18(1)
O(1)	5335(1)	5074(1)	1319(1)	20(1)
O(2)	6241(1)	6147(1)	507(1)	19(1)
O(3)	7903(1)	7005(1)	-185(1)	20(1)
O(4)	8191(1)	8689(1)	-296(1)	22(1)
O(5)	6335(1)	7743(1)	-26(1)	18(1)
O(6)	4074(1)	3825(1)	681(1)	19(1)
C(1)	3209(1)	4835(1)	1413(1)	18(1)
C(2)	3036(1)	5068(1)	1972(1)	25(1)
C(3)	2264(2)	5425(1)	2089(1)	33(1)
C(4)	1649(2)	5562(1)	1651(1)	33(1)
C(5)	1799(1)	5334(1)	1091(1)	29(1)
C(6)	2570(1)	4971(1)́	978(1)	21(1)
C(7)	4242(1)	3602(1)	1886(1)́	18(1)

C(8)	3421(1)	2865(1)	1932(1)	24(1)
C(9)	3402(2)	2286(1)	2360(1)	29(1)
C(10) C(11)	5017(2)	3161(1)	2726(1)	30(1)
C(12)	5027(1)	3748(1)	2301(1)	24(1)
C(13)	7388(1)	5205(1)	1082(1)	18(1)
C(14)	7536(1)	4668(1)	1514(1)	23(1)
C(15)	8297(1)	4276(1)	1496(1)	26(1)
C(10)	8821(2)	4410(1)	1044(1) 615(1)	20(1) 32(1)
C(18)	8057(1)	5341(1)	635(1)	24(1)
C(19)	6752(1)	6619(1)	1680(1)	22(1)
C(20)	7626(1)	7302(1)	1625(1)	29(1)
C(21)	7924(2)	7961(1)	2040(1)	41(1)
C(22)	7347(Z) 6480(2)	7938(2)	2514(1)	45(1) 42(1)
C(24)	6190(2)	6614(1)	2170(1)	32(1)
C(25)	9238(1)	7873(1)	-1028(1)	21(1)
C(26)	9562(2)	8600(1)	-1359(1)	32(1)
C(27)	9942(2)	8551(1)	-1899(1)	39(1)
C(28)	10012(2)	7777(1)	-2112(1)	36(1)
C(29) C(30)	9301(1)	7096(1)	-1259(1)	26(1)
C(31)	9733(1)	8152(1)	267(1)	22(1)
C(32)	10081(1)	7498(1)	490(1)	31(1)
C(33)	10831(2)	7656(2)	917(1)	37(1)
C(34)	11270(2)	8487(2)	1127(1)	38(1)
C(36)	10934(2)	9137(1) 8972(1)	924(1) 503(1)	4 I (I) 34(1)
C(37)	6539(1)	9253(1)	-671(1)	20(1)
C(38)	5839(2)	9688(1)	-544(1)	28(1)
C(39)	5342(2)	10007(1)	-969(1)	35(1)
C(40)	5564(2)	9916(1)	-1535(1)	33(1)
C(41)	6276(2) 6756(1)	9511(1) 9182(1)	-1671(1)	33(1) 26(1)
C(42)	7203(1)	9370(1)	576(1)	20(1)
C(44)	7714(2)	10251(1)	571(1)	28(1)
C(45)	7835(2)	10768(1)	1063(1)	33(1)
C(46)	7446(2)	10414(1)	1569(1)	32(1)
C(47)	6943(Z) 6828(1)	9549(1) 9030(1)	1586(1)	29(1)
N(1)	4222(1)	7353(1)	-126(1)	27(1)
C(49)	3911(1)	6936(1)	-706(1)	29(1)
C(50)	4150(2)	7560(1)	-1190(1)	35(1)
C(51)	3993(2)	6673(1)	318(1)	30(1)
C(52)	4299(2)	7028(1)	922(1)	45(1) 51(1)
C(54)	2621(2)	7750(2)	-5(2)	96(1)
AI(2)	1546(1)	6681(1)	4679(1)	14(1)
Si(5)	-1731(1)	3956(1)	4019(1)	14(1)
Si(6)	401(1)	5257(1)	3708(1)	13(1)
SI(7) Si(8)	2022(1) 3647(1)	8625(1) 7838(1)	4734(1)	18(1) 18(1)
O(7)	-713(1)	4558(1)	3733(1)	17(1)
O(8)	726(1)	5873(1)	4264(1)	17(1)
O(9)	1235(1)	7669(1)	4626(1)	18(1)
O(10)	3178(1)	8617(1)	4616(1)	23(1)
O(11)	2789(1)	6929(1) 3603(1)	4438(1)	19(1) 20(1)
C(55)	-2331(1)	3052(1)	3501(1)	20(1)
C(56)	-3149(1)	2376(1)	3673(1)	19(1)
C(57)	-3666(1)	1712(1)	3297(1)	22(1)
C(58)	-3379(1)	1714(1)	2734(1)	24(1)
C(59)	-2568(1)	2369(1)	2553(1)	23(1)
C(60)	-2052(1) -2649(1)	3031(1) 4595(1)	2931(1) 4089(1)	19(1)
C(62)	-3045(1)	4735(1)	4612(1)	24(1)
C(63)	-3730(1)	5209(1)	4655(1)́	31(1)
C(64)	-4039(1)	5550(1)	4173(1)	33(1)

Anhang

C(65)	-3672(2)	5412(1)	3645(1)	33(1)
C(66)	-2989(1)	4940(1)	3609(1)	27(1)
C(67)	1335(1)	4654(1)	3584(1)	18(1)
C(68)	1059(1)	3837(1)	3326(1)	28(1)
C(69)	1777(2)	3415(1)	3214(1)	37(1)
C(70)	2786(2)	3801(1)	3358(1)	34(1)
C(71)	3081(1)	4608(1)	3619(1)	28(1)
C(72)	2366(1)	5029(1)	3730(1)	21(1)
C(73)	318(1)	5955(1)	3096(1)	17(1)
C(74)	1056(1)	6750(1)	3050(1)	23(1)
C(75)	973(2)	7324(1)	2637(1)	30(1)
C(76)	132(2)	7121(1)	2264(1)	32(1)
C(77)	-598(2)	6333(1)	2292(1)	31(1)
C(78)	-500(1)	5754(1)	2700(1)	24(1)
C(79)	1945(1)	9011(1)	5483(1)	21(1)
C(80)	1288(1)	8510(1)	5866(1)	27(1)
C(81)	1237(2)	8798(1)	6424(1)	35(1)
C(82)	1854(2)	9594(1)	6611(1)	33(1)
C(83)	2521(2)	10098(1)	6242(1)	33(1)
C(84)	2564(1)	9813(1)	5684(1)	27(1)
C(85)	1753(1)	9403(1)	4223(1)	24(1)
C(86)	2120(2)	9450(1)	3668(1)	30(1)
C(87)	1913(2)	10007(1)	3277(1)	42(1)
C(88)	1343(2)	10536(1)	3431(1)	48(1)
C(89)	978(2)	10509(1)	3976(1)	45(1)́
C(90)	1186(2)	9953(1)	4368(1)	32(1)
C(91)	4091(1)	8044(1)	3683(1)	21(1)
C(92)	4677(2)	8856(1)	3520(1)	31(1)
C(93)	4960(2)	9014(1)	2959(1)	37(1)
C(94)	4657(2)	8368(1)	2547(1)	34(1)
C(95)	4079(2)	7559(1)	2692(1)	32(1)
C(96)	3811(1)	7400(1)	3255(1)	26(1)
C(97)	4702(1)	7891(1)	4953(1)	23(1)
C(98)	4947(1)	7149(1)	5099(1)	30(1)
C(99)	5695(2)	7161(2)	5510(1)	41(1)
C(100)	6226(2)	7927(2)	5779(1)	47(1)
C(101)	6003(2)	8668(2)	5646(1)	45(1)
C(102)	5244(2)	8656(1)	5239(1)	34(1)
N(2)	-814(1)	7484(1)	4300(1)	23(1)
C(103)	-1260(1)	6590(1)	4504(1)	27(1)
C(104)	-1110(2)	6503(1)	5140(1)	41(1)
C(105)	-1187(2)	8139(1)	4610(1)	37(1)
C(106)	-2315(2)	7985(2)	4529(1)	53(1)
C(107)	-979(1)	7485(1)	3660(1)	26(1)
C(108)	-553(2)	8361(1)	3411(1)	32(1)

 Tabelle 33:
 Bindungslängen [Å] und Winkel [°] für sh2461.

AI(1)-O(6)#1	1.7243(12)	Si(3)-C(25)	1.8663(17)
AI(1)-O(2)	1.7265(12)	Si(4)-O(5)	1.6261(12)
AI(1)-O(3)	1.7436(12)	Si(4)-O(4)	1.6370(12)
AI(1)-O(5)	1.7876(11)	Si(4)-C(43)	1.8673(16)
Si(1)-O(6)	1.5993(11)	Si(4)-C(37)	1.8687(17)
Si(1)-O(1)	1.6312(12)	O(6)-AI(1)#1	1.7243(12)
Si(1)-C(7)	1.8708(16)	C(1)-C(6)	1.394(2)
Si(1)-C(1)	1.8728(16)	C(1)-C(2)	1.403(2)
Si(2)-O(2)	1.5931(12)	C(2)-C(3)	1.392(2)
Si(2)-O(1)	1.6257(12)	C(3)-C(4)	1.379(3)
Si(2)-C(19)	1.8695(17)	C(4)-C(5)	1.394(3)
Si(2)-C(13)	1.8815(16)	C(5)-C(6)	1.394(2)
Si(3)-O(3)	1.6043(12)	C(7)-C(8)	1.396(2)
Si(3)-O(4)	1.6470(12)	C(7)-C(12)	1.401(2)
Si(3)-C(31)	1.8617(18)	C(8)-C(9)	1.389(2)

C(9)-C(10)	1.387(3)	C(57)-C(58)	1.390(2)
C(10)-C(11)	1.381(3)	C(58)-C(59)	1.384(2)
C(11)-C(12)	1.394(2)	C(59)-C(60)	1.391(2)
C(13)-C(18)	1.394(2)	C(61)-C(62)	1.398(2)
C(13)-C(14)	1.401(2)	C(61)-C(66)	1.399(2)
C(14)-C(15)	1.387(2)	C(62)-C(63)	1.394(2)
C(15)-C(10) C(16) C(17)	1.301(3)	C(63)-C(64)	1.303(3)
C(10)-C(17)	1 395(2)	C(65)-C(66)	1 389(2)
C(19)-C(20)	1.393(3)	C(67)- $C(68)$	1.395(2)
C(19)-C(24)	1.404(2)	C(67)-C(72)	1.404(2)
C(20)-C(21)	1.394(3)	C(68)-C(69)	1.394(2)
C(21)-C(22)	1.381(3)	C(69)-C(70)	1.380(3)
C(22)-C(23)	1.370(3)	C(70)-C(71)	1.383(3)
C(23)-C(24)	1.388(3)	C(71)-C(72)	1.388(2)
C(25)-C(26)	1.397(2)	C(73)-C(78)	1.399(2)
C(25)-C(30)	1.398(2)	C(73)-C(74)	1.403(2)
C(26)-C(27)	1.395(3)	C(74)-C(75)	1.386(2)
C(27) - C(28)	1.379(3)	C(75)-C(76)	1.391(3)
C(20) - C(29)	1.371(3)	C(76)-C(77)	1.304(3)
C(29)-C(30) C(31)-C(36)	1.393(3)	C(79)- $C(80)$	1.390(2)
C(31)-C(32)	1.398(3)	C(79)- $C(84)$	1 400(2)
C(32)-C(33)	1.384(3)	C(80)-C(81)	1.393(3)
C(33)-C(34)	1.387(3)	C(81)-C(82)	1.382(3)
C(34)-C(35)	1.367(3)	C(82)-C(83)	1.379(3)
C(35)-C(36)	1.391(3)	C(83)-C(84)	1.387(2)
C(37)-C(38)	1.396(2)	C(85)-C(90)	1.398(3)
C(37)-C(42)	1.399(2)	C(85)-C(86)	1.404(3)
C(38)-C(39)	1.391(3)	C(86)-C(87)	1.387(3)
C(39)- $C(40)$	1.385(3)	C(87)-C(88)	1.381(3)
C(40)-C(41) C(41)-C(42)	1.379(3)	C(80)-C(00)	1 380(3)
C(41)-C(42) C(43)-C(48)	1.300(3)	C(99)-C(90)	1 399(2)
C(43)-C(44)	1.403(2)	C(91)-C(92)	1.400(2)
C(44)-C(45)	1.392(2)	C(92)-C(93)	1.389(3)
C(45)-C(46)	1.380(3)	C(93)-C(94)	1.378(3)
C(46)-C(47)	1.379(3)	C(94)-C(95)	1.381(3)
C(47)-C(48)	1.394(2)	C(95)-C(96)	1.388(3)
N(1)-C(53)	1.496(2)	C(97)-C(98)	1.396(3)
N(1)-C(49)	1.502(2)	C(97)-C(102)	1.398(3)
N(1)-C(51)	1.507(2)	C(98) - C(99)	1.391(3)
C(49)- $C(50)$	1.516(3)	C(99)-C(100)	1.378(3)
C(51)-C(52) C(53)-C(54)	1.517(3)	C(100)-C(101)	1.374(4)
AI(2)-O(12)#2	1,7166(12)	N(2)-C(103)	1.500(2)
AI(2)-O(8)	1.7247(11)	N(2)-C(105)	1.501(2)
AI(2)-O(11)	1.7571(12)	N(2)-C(107)	1.512(2)
AI(2)-O(9)	1.7933(12)	C(103)-C(104)	1.513(3)
Si(5)-O(12)	1.5890(12)	C(105)-C(106)	1.511(3)
Si(5)-O(7)	1.6298(12)	C(107)-C(108)	1.511(3)
SI(5)-C(55)	1.8666(15)		400.04(0)
SI(5) - C(61)	1.8773(16)	O(6)#1-AI(1)-O(2)	108.94(6)
Si(6) - O(7)	1.6009(11)	O(0) = A(1) - O(3)	111.07(0)
Si(6)-C(67)	1.8675(16)	$O(6) \pm 1 - O(3)$	108 95(6)
Si(6)-C(73)	1.8709(16)	O(2)-Al(1)-O(5)	110.17(6)
Si(7)-O(9)	1.6279(12)	O(3)-Al(1)-O(5)	105.22(6)
Si(7)-O(10)	1.6349(13)	O(6)-Si(1)-O(1)	110.78(6)
Si(7)-C(79)	1.8682(17)	O(6)-Si(1)-C(7)	111.18(7)
Si(7)-C(85)	1.8710(18)	O(1)-Si(1)-C(7)	106.75(7)
Si(8)-O(11)	1.6049(12)	O(6)-Si(1)-C(1)	111.53(7)
SI(8)-O(10)	1.6484(12)	O(1)-Si(1)-C(1)	109.61(7)
SI(8)-C(97)	1.8656(19)	U(7) - SI(1) - U(1)	106.80(7)
$O(12) \cdot O(91)$	1.0703(17)	O(2)-O(2)-O(1) O(2)-O(2)-O(10)	113.22(0) 110 60(7)
C(55)-C(56)	1 401(2)	O(1)-Si(2)-C(19)	106.03(7)
C(55)-C(60)	1.403(2)	O(2)-Si(2)-C(13)	109.91(7)
C(56)-C(57)	1.389(2)	O(1)-Si(2)-C(13)	108.81(7)

Anhang

0(40) 0:(0) 0(40)	407 00(7)	0(40) 0(07) 0:(4)	404.04(40)
C(19)-S(2)-C(13)	107.98(7)	C(42)-C(37)-SI(4)	121.91(13)
O(3)-Si(3)-O(4)	110.93(6)	C(39)-C(38)-C(37)	121.84(17)
O(3)-Si(3)-C(31)	109.28(7)	C(40)-C(39)-C(38)	119.57(18)
O(4)-Si(3)-C(31)	107.94(7)	C(41)-C(40)-C(39)	119.76(18)
O(3)-Si(3)-C(25)	109 82(7)	C(40)-C(41)-C(42)	120 35(17)
O(4) S(2) O(25)	107.02(7)	C(44) C(42) C(27)	120.00(17)
O(4) - S(3) - O(25)	107.02(7)	C(41)-C(42)-C(37)	121.37(17)
C(31)-Si(3)-C(25)	111.82(7)	C(48)-C(43)-C(44)	117.32(15)
O(5)-Si(4)-O(4)	110.17(6)	C(48)-C(43)-Si(4)	123.55(13)
O(5)-Si(4)-C(43)	111.38(7)	C(44)-C(43)-Si(4)	119.13(13)
O(4) - Si(4) - C(43)	109.77(7)	C(45) - C(44) - C(43)	121 44(17)
O(5) S(4) C(27)	100.96(7)	C(46) C(45) C(44)	110.02(10)
O(3) - O(37)	109.00(7)	O(40) - O(40) - O(44)	119.02(10)
O(4)-SI(4)-C(37)	107.53(7)	C(47)-C(46)-C(45)	120.03(17)
C(43)-Si(4)-C(37)	108.02(7)	C(46)-C(47)-C(48)	120.12(17)
Si(2)-O(1)-Si(1)	159.59(8)	C(47)-C(48)-C(43)	121.27(17)
Si(2)-O(2)-AI(1)	157.58(8)	C(53)-N(1)-C(49)	112.62(17)
Si(3) - O(3) - AI(1)	130 82(7)	C(53)-N(1)-C(51)	113 14(15)
Si(4) O(4) Si(2)	121 20(7)	C(40) N(1) C(51)	100.22(14)
S(4) - O(4) - S(3)	101.29(7)	O(49) - N(1) - O(51)	109.23(14)
SI(4)-O(5)-AI(1)	129.86(7)	N(1)-C(49)-C(50)	113.63(15)
Si(1)-O(6)-Al(1)#1	156.73(8)	N(1)-C(51)-C(52)	113.39(16)
C(6)-C(1)-C(2)	117.33(15)	N(1)-C(53)-C(54)	112.6(2)
C(6)-C(1)-Si(1)	123.03(12)	O(12)#2-AI(2)-O(8)	110.09(6)
C(2)-C(1)-Si(1)	119 62(13)	O(12)#2-AI(2)- $O(11)$	110 78(6)
C(2) C(1) C(1)	121 41(17)	O(12)/(2) O(11)	111 44(5)
C(3) - C(2) - C(1)	121.41(17)	O(0)-AI(2)- $O(11)$	111.44(3)
C(4)- $C(3)$ - $C(2)$	120.19(17)	O(12)#2-AI(2)-O(9)	108.76(6)
C(3)-C(4)-C(5)	119.71(17)	O(8)-AI(2)-O(9)	111.46(6)
C(4)-C(5)-C(6)	119.76(18)	O(11)-AI(2)-O(9)	104.15(6)
C(5) - C(6) - C(1)	121.59(16)	O(12)-Si(5)-O(7)	112.76(6)
C(8)- $C(7)$ - $C(12)$	117 34(15)	O(12)-Si(5)-C(55)	110 73(7)
C(0) C(7) C(12)	110.07(12)	O(7) S(5) C(55)	107 52(6)
C(0) - C(7) - S(1)	119.07(13)	O(7)- $S(5)$ - $O(55)$	107.55(6)
C(12)-C(7)-SI(1)	123.59(13)	O(12)-Si(5)-C(61)	110.94(7)
C(9)-C(8)-C(7)	121.24(17)	O(7)-Si(5)-C(61)	108.21(7)
C(10)-C(9)-C(8)	120.35(18)	C(55)-Si(5)-C(61)	106.39(7)
C(11)-C(10)-C(9)	119.61(17)	O(8)-Si(6)-O(7)	114.22(6)
C(10)-C(11)-C(12)	119 90(17)	O(8)-Si(6)-C(67)	110.61(7)
C(11) - C(12) - C(7)	121 46(17)	$O(7)_{-}Si(6)_{-}C(67)$	107 58(7)
C(11) - C(12) - C(1)	121.40(17)	O(1) - O(0) - O(01)	107.30(7)
C(18)-C(13)-C(14)	116.88(15)	O(8)-SI(6)-C(73)	106.96(7)
C(18)-C(13)-SI(2)	120.94(12)	O(7)-Si(6)-C(73)	105.63(7)
C(14)-C(13)-Si(2)	122.15(12)	C(67)-Si(6)-C(73)	111.80(7)
C(15)-C(14)-C(13)	121.86(16)	O(9)-Si(7)-O(10)	110.26(6)
C(16)-C(15)-C(14)	120 21(16)	O(9)-Si(7)-C(79)	110 18(7)
C(17)- $C(16)$ - $C(15)$	110 21(16)	O(10)-Si(7)-C(79)	100.81(7)
C(17) - C(10) - C(13)	100 = 4(17)	O(10) - S(7) - O(79)	109.01(7)
C(10) - C(17) - C(10)	120.54(17)	O(9)-S(7)-C(85)	111.30(7)
C(13)-C(18)-C(17)	121.28(16)	O(10)-Si(7)-C(85)	105.65(7)
C(20)-C(19)-C(24)	117.54(16)	C(79)-Si(7)-C(85)	109.55(8)
C(20)-C(19)-Si(2)	119.78(13)	O(11)-Si(8)-O(10)	110.29(6)
C(24)-C(19)-Si(2)	122.68(14)	O(11)-Si(8)-C(97)	111.23(7)
C(19) - C(20) - C(21)	121 1(2)	O(10)-Si(8)-C(97)	106 16(7)
C(22) C(21) C(20)	121.1(2)	O(11) S(0) C(01)	100.10(7)
C(22) - C(21) - C(20)	119.7(2)	O(11)-S(0)-C(91)	109.32(7)
C(23)-C(22)-C(21)	120.46(19)	O(10)-Si(8)-C(91)	107.03(7)
C(22)-C(23)-C(24)	119.9(2)	C(97)-Si(8)-C(91)	112.68(8)
C(23)-C(24)-C(19)	121.2(2)	Si(6)-O(7)-Si(5)	157.78(8)
C(26)-C(25)-C(30)	117.65(16)	Si(6)-O(8)-AI(2)	154.12(7)
C(26)-C(25)-Si(3)	122 53(13)	Si(7)-O(9)-AI(2)	125 60(7)
C(20) - C(25) - Si(3)	110 81(13)	$S_{i}(7) = O(10) = S_{i}(8)$	131 00(7)
C(30) - C(23) - S((3))	119.01(13)	Si(7) - O(10) - Si(8)	131.90(7)
C(27) - C(26) - C(25)	121.01(18)	SI(8)-O(11)-AI(2)	129.52(7)
C(28)-C(27)-C(26)	119.96(19)	SI(5)-O(12)-AI(2)#2	163.58(8)
C(29)-C(28)-C(27)	120.23(18)	C(56)-C(55)-C(60)	117.07(14)
C(28)-C(29)-C(30)	120.09(18)	C(56)-C(55)-Si(5)	119.11(11)
C(29) - C(30) - C(25)	121.04(17)	C(60)-C(55)-Si(5)	123.71(12)
C(36)-C(31)-C(32)	116 60(17)	C(57)- $C(56)$ - $C(55)$	121 70(15)
$C(36)_C(31) = O(32)$	122 83(14)	$C(56)_C(57) C(59)$	110 77(16)
	122.03(14)	O(50) - O(57) - O(58)	113.11(10)
U(32)-U(31)-SI(3)	120.56(14)	C(59)-C(58)-C(57)	119.80(15)
C(33)-C(32)-C(31)	122.14(19)	C(58)-C(59)-C(60)	120.11(15)
C(32)-C(33)-C(34)	119.6(2)	C(59)-C(60)-C(55)	121.45(15)
C(35)-C(34)-C(33)	119.5(2)	C(62)-C(61)-C(66)	116.79(15)
C(34)-C(35)-C(36)	120 6(2)	C(62)-C(61)-Si(5)	122 44(13)
$C(35)_{C}(36) C(36)$	121 //(10)	$C(66)_C(61) S(6)$	120 75(10)
C(30) - C(30) - C(31)	121.44(13)	C(00)- $C(01)$ - $S(0)$	120.10(12)
U(38) - U(37) - U(42)		C(63)-C(62)-C(61)	121.57(17)
C(38)-C(37)-SI(4)	120.83(13)	C(64)-C(63)-C(62)	120.08(17)

C(82)-C(81)-C(80)120.03(19)C(103)-N(2)-C(107)109.20(14)C(83)-C(82)-C(81)119.64(17)C(105)-N(2)-C(107)112.83(15)C(82)-C(83)-C(84)120.15(18)N(2)-C(103)-C(104)114.02(15)	$\begin{array}{l} C(63)-C(64)-C(65)\\ C(64)-C(65)-C(66)\\ C(65)-C(66)-C(61)\\ C(68)-C(67)-C(72)\\ C(68)-C(67)-Si(6)\\ C(72)-C(67)-Si(6)\\ C(72)-C(67)-Si(6)\\ C(69)-C(68)-C(67)\\ C(70)-C(69)-C(68)\\ C(69)-C(70)-C(71)\\ C(70)-C(71)-C(72)\\ C(71)-C(72)-C(67)\\ C(73)-C(73)-C(74)\\ C(78)-C(73)-Si(6)\\ C(74)-C(73)-Si(6)\\ C(74)-C(73)-Si(6)\\ C(74)-C(73)-Si(6)\\ C(74)-C(73)-Si(6)\\ C(74)-C(73)-Si(6)\\ C(74)-C(73)-Si(6)\\ C(77)-C(76)-C(73)\\ C(74)-C(75)-C(76)\\ C(77)-C(76)-C(73)\\ C(76)-C(77)-C(78)\\ C(77)-C(78)-C(73)\\ C(80)-C(79)-C(84)\\ C(80)-C(79)-Si(7)\\ C(84)-C(79)-Si(7)\\ C(79)-C(80)-C(81)\\ C(82)-C(81)-C(80)\\ C(83)-C(82)-C(84)\\ \end{array}$	$\begin{array}{c} 119.74(17)\\ 119.58(18)\\ 122.22(17)\\ 117.08(15)\\ 122.36(13)\\ 120.52(12)\\ 121.34(18)\\ 120.35(18)\\ 119.61(17)\\ 120.03(17)\\ 121.59(16)\\ 117.32(15)\\ 122.91(13)\\ 119.56(12)\\ 121.58(17)\\ 119.81(18)\\ 119.81(17)\\ 120.03(18)\\ 121.38(17)\\ 117.20(16)\\ 121.62(13)\\ 121.18(13)\\ 121.48(18)\\ 120.03(19)\\ 119.64(17)\\ 120.15(18)\\ \end{array}$	C(86)-C(85)-Si(7) C(87)-C(86)-C(85) C(88)-C(87)-C(86) C(88)-C(89)-C(90) C(88)-C(89)-C(90) C(89)-C(90)-C(85) C(96)-C(91)-C(92) C(96)-C(91)-Si(8) C(92)-C(91)-Si(8) C(93)-C(92)-C(91) C(94)-C(93)-C(92) C(93)-C(94)-C(95) C(94)-C(95)-C(96) C(95)-C(96)-C(91) C(98)-C(97)-Si(8) C(102)-C(97)-Si(8) C(102)-C(97)-Si(8) C(100)-C(99)-C(98) C(101)-C(100)-C(99) C(100)-C(101)-C(102) C(100)-C(101)-C(102) C(103)-N(2)-C(107) C(105)-N(2)-C(107) N(2)-C(103)-C(104)	120.26(14) $121.4(2)$ $120.0(2)$ $119.9(2)$ $120.1(2)$ $121.39(19)$ $116.86(16)$ $121.23(13)$ $121.85(13)$ $121.48(17)$ $120.09(18)$ $119.99(18)$ $119.72(18)$ $121.84(17)$ $117.18(18)$ $120.66(14)$ $122.07(15)$ $122.0(2)$ $119.4(2)$ $120.6(2)$ $120.6(2)$ $120.6(2)$ $120.7(2)$ $113.34(14)$ $109.20(14)$ $112.83(15)$ $114.02(15)$
C(82)-C(81)-C(80)120.03(19)C(103)-N(2)-C(107)109.20(14)C(83)-C(82)-C(81)119.64(17)C(105)-N(2)-C(107)112.83(15)C(82)-C(83)-C(84)120.15(18)N(2)-C(103)-C(104)114.02(15)C(83)-C(84)-C(79)121.50(18)N(2)-C(105)-C(106)113.16(17)C(90)-C(85)-C(86)117.19(17)C(108)-C(107)-N(2)113.25(14)	C(82)-C(81)-C(80)	120.03(19)	C(103)-N(2)-C(107)	109.20(14)
	C(83)-C(82)-C(81)	119.64(17)	C(105)-N(2)-C(107)	112.83(15)
	C(82)-C(83)-C(84)	120.15(18)	N(2)-C(103)-C(104)	114.02(15)
	C(83)-C(84)-C(79)	121.50(18)	N(2)-C(105)-C(106)	113.16(17)
	C(90)-C(85)-C(86)	117.19(17)	C(108)-C(107)-N(2)	113.25(14)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z #2 -x,-y+1,-z+1

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
AI(1)	16(1)	14(1)	13(1)	0(1)	1(1)	6(1)
Si(1)	15(1)	17(1)	12(1)	0(1)	1(1)	5(1)
Si(2)	14(1)	18(1)	12(1)	0(1)	-1(1)	4(1)
Si(3)	16(1)	16(1)	23(1)	1(1)	4(1)	5(1)
Si(4)	20(1)	14(1)	20(1)	-1(1)	2(1)	7(1)
O(1)	18(1)	24(1)	17(1)	3(1)	2(1)	3(1)
O(2)	18(1)	24(1)	15(1)	4(1)	2(1)	7(1)
O(3)	16(1)	17(1)	29(1)	2(1)	5(1)	5(1)
O(4)	21(1)	16(1)	29(1)	2(1)	5(1)	5(1)
O(5)	19(1)	16(1)	21(1)	0(1)	3(1)	7(1)
O(6)	22(1)	23(1)	14(1)	-2(1)	-1(1)	9(1)
C(1)	18(1)	16(1)	19(1)	0(1)	4(1)	4(1)
C(2)	30(1)	27(1)	21(1)	0(1)	5(1)	13(1)
C(3)	39(1)	34(1)	33(1)	3(1)	16(1)	18(1)
C(4)	27(1)	29(1)	48(1)	4(1)	14(1)	16(1)
C(5)	22(1)	25(1)	43(1)	5(1)	-1(1)	10(1)
C(6)	20(1)	19(1)	25(1)	1(1)	-1(1)	5(1)
C(7)	21(1)	22(1)	13(1)	1(1)	3(1)	10(1)
C(8)	30(1)	21(1)	19(1)	1(1)	0(1)	6(1)
C(9)	43(1)	20(1)	24(1)	4(1)	7(1)	7(1)
C(10)	48(1)	32(1)	19(1)	9(1)	10(1)	25(1)
C(11)	31(1)	47(1)	19(1)	6(1)	1(1)	23(1)
C(12)	21(1)	35(1)	17(1)	5(1)	2(1)	11(1)
C(13)	16(1)	19(1)	17(1)	-1(1)	-2(1)	4(1)
C(14)	22(1)	27(1)	22(1)	4(1)	0(1)	7(1)

Tabelle 34: Anisotropische Auslenkungsaparameter (Å $^2x 10^3$) für sh2461. Der anisotropisch	е					
Exponentfaktor des Auslenkungsparameter lautet: $-2\pi^2$ [h ² a ^{*2} U ¹¹ + + 2 h k a [*] b [*] U ¹²]						
C(15)	24(1)	28(1)	28(1)	7(1)	-6(1)	9(1)
----------------	----------------	-----------------------	----------------	----------------	-----------------	---------------
C(16)	21(1)	32(1)	35(1)	3(1)	-2(1)	13(1)
C(17)	27(1)	45(1)	31(1)	11(1)	9(1)	20(1)
C(18)	22(1)	31(1)	23(1)	8(1)	3(1)	12(1)
C(19)	23(1)	24(1)	20(1)	-3(1)	-7(1)	11(1)
C(20)	28(1)	24(1)	35(1)	-4(1)	-10(1)	9(1)
C(21)	39(1)	25(1)	56(1)	-11(1)	-22(1)	9(1)
C(22)	61(2)	42(1)	41(1)	-23(1)	-28(1)	32(1)
C(23)	25(1) 25(1)	33(1) 42(1)	20(1) 21(1)	-10(1)	-11(1)	31(1)
C(24)	15(1)	$\frac{42(1)}{23(1)}$	21(1) 24(1)	-3(1)	-4(1)	10(1) 4(1)
C(26)	39(1)	23(1)	29(1)	2(1)	5(1)	5(1)
C(27)	47(1)	37(1)	27(1)	10(1)	5(1)	4(1)
C(28)	36(1)	52(1)	19(1)	1(1)	4(1)	11(1)
C(29)	37(1)	38(1)	29(1)	-5(1)	5(1)	16(1)
C(30)	26(1)	27(1)	28(1)	3(1)	6(1)	10(1)
C(31)	20(1)	23(1)	22(1)	3(1)	6(1)	3(1)
C(32)	26(1)	31(1)	38(1)	1(1)	2(1)	11(1)
C(33)	36(1)	47(1)	34(1)	7(1)	3(1)	19(1)
C(34)	31(1)	54(1) 25(1)	27(1)	0(1)	-5(1)	9(1)
C(35)	40(1)	35(1)	34(1) 31(1)	-4(1) 3(1)	-7(1)	0(1) 6(1)
C(37)	25(1)	15(1)	20(1)	-1(1)	-3(1)	6(1)
C(38)	40(1)	28(1)	22(1)	0(1)	1(1)	20(1)
C(39)	51(1)	34(1)	30(1)	-2(1)	-4(1)	29(1)
C(40)	48(1)	28(1)	27(1)	3(1)	-8(1)	17(1)
C(41)	42(1)	37(1)	21(1)	-1(1)	2(1)	12(1)
C(42)	28(1)	29(1)	23(1)	-3(1)	2(1)	10(1)
C(43)	22(1)	18(1)	23(1)	-1(1)	-1(1)	10(1)
C(44)	38(1)	21(1)	25(1)	-1(1)	2(1)	7(1)
C(45)	45(1)	20(1)	33(1)	-6(1)	-3(1)	9(1) 16(1)
C(40)	30(1)	38(1)	27(1)	-1(1)	-2(1) 3(1)	10(1)
C(47) C(48)	25(1)	24(1)	22(1)	-1(1)	0(1)	8(1)
N(1)	25(1)	$2^{-1}(1)$	35(1)	-1(1)	6(1)	6(1)
C(49)	21(1)	27(1)	40(1)	-5(1)	-2(1)	7(1)
C(50)	32(1)́	35(1)	37(1)	-3(1)	3(Ì)	8(1)
C(51)	25(1)	23(1)	42(1)	7(1)	3(1)	4(1)
C(52)	51(1)	35(1)	38(1)	5(1)	5(1)	-3(1)
C(53)	84(2)	29(1)	51(1)	12(1)	36(1)	31(1)
C(54)	92(2)	82(2)	151(3)	71(2)	88(2)	72(2)
AI(Z) Si(5)	14(1)	14(1)	12(1)	-1(1)	-1(1)	∠(1) 4(1)
Si(5) Si(6)	14(1)	15(1)	12(1)	-2(1) -2(1)	-1(1)	4(1)
Si(7)	19(1)	14(1)	18(1)	-1(1)	-1(1)	3(1)
Si(8)	16(1)	17(1)	19(1)	0(1)	3(1)	1(1)
O(7)	16(1)	17(1)	16(1)	-3(1)	0(1)	2(1)
O(8)	16(1)	18(1)	14(1)	-4(1)	0(1)	2(1)
O(9)	18(1)	15(1)	21(1)	0(1)	-1(1)	3(1)
O(10)	21(1)	17(1)	27(1)	-3(1)	4(1)	1(1)
O(11)	16(1)	17(1)	22(1)	0(1)	3(1)	2(1)
C(55)	22(1) 17(1)	25(1)	13(1)	-1(1)	-1(1)	6(1) 6(1)
C(56)	19(1)	20(1)	18(1)	0(1)	1(1)	5(1)
C(57)	19(1)	18(1)	27(1)	-1(1)	0(1)	2(1)
C(58)	27(1)	19(1)	24(1)	-8(1)	-7(1)	6(1)
C(59)	29(1)	23(1)	16(1)	-4(1)	0(1)	7(1)
C(60)	20(1)	18(1)	16(1)	0(1)	1(1)	3(1)
C(61)	15(1)	18(1)	22(1)	-4(1)	-2(1)	3(1)
C(62)	22(1)	25(1)	27(1)	1(1)	5(1)	7(1)
C(63)	22(1)	33(1)	41(1)	-3(1)	11(1)	10(1)
C(65)	∠1(1) 21(1)	30(1)	51(1)	-b(1)	-1(1) _12(1)	13(1)
C(66)	28(1)	31(1)	25(1)	-6(1)	-nz(1) -6(1)	15(1)
C(67)	19(1)	21(1)	14(1)	0(1)	0(1)	8(1)
C(68)	26(1)	31(1)	30(1)	-11(1)	-7(1)	15(1)
C(69)	40(1)	37(1)	41(1)́	-17(1)	-10(1́)	24(1)
C(70)	35(1)	46(1)	30(1)	-9(1)	-2(1)	29(1)
C(71)	20(1)	41(1)	25(1)	-1(1)	0(1)	14(1)

C(72)	21(1)	26(1)	19(1)	0(1)	2(1)	10(1)
C(73)	18(1)	20(1)	15(1)	0(1)	3(1)	9(1)
C(74)	21(1)	28(1)	22(1)	4(1)	2(1)	7(1)
C(75)	31(1)	26(1)	31(1)	8(1)	8(1)	6(1)
C(76)	41(1)	33(1)	27(1)	12(1)	5(1)	19(1)
C(77)	35(1)	34(1)	25(1)	3(1)	-9(1)	15(1)
C(78)	25(1)	24(1)	22(1)	1(1)	-4(1)	8(1)
C(79)	20(1)	22(1)	21(1)	0(1)	-2(1)	9(1)
C(80)	29(1)	25(1)	26(1)	3(1)	3(1)	7(1)
C(81)	43(1)	41(1)	24(1)	8(1)	7(1)	17(1)
C(82)	45(1)	44(1)	20(1)	-3(1)	0(1)	25(1)
C(83)	41(1)	29(1)	27(1)	-9(1)	-6(1)	11(1)
C(84)	31(1)	24(1)	23(1)	-3(1)	2(1)	6(1)
C(85)	28(1)	16(1)	23(1)	-1(1)	-5(1)	1(1)
C(86)	33(1)	26(1)	25(1)	2(1)	-3(1)	-1(1)
C(87)	52(1)	36(1)	28(1)	9(1)	-4(1)	-1(1)
C(88)	72(2)	28(1)	40(1)	9(1)	-20(1)	9(1)
C(89)	72(2)	26(1)	43(1)	-4(1)	-19(1)	25(1)
C(90)	46(1)	23(1)	29(1)	-6(1)	-10(1)	13(1)
C(91)	17(1)	22(1)	22(1)	2(1)	2(1)	3(1)
C(92)	36(1)	25(1)	25(1)	1(1)	4(1)	0(1)
C(93)	46(1)	27(1)	30(1)	9(1)	8(1)	0(1)
C(94)	41(1)	35(1)	25(1)	7(1)	9(1)	7(1)
C(95)	36(1)	32(1)	25(1)	-3(1)	7(1)	4(1)
C(96)	25(1)	24(1)	26(1)	-1(1)	7(1)	3(1)
C(97)	17(1)	30(1)	18(1)	0(1)	5(1)	-2(1)
C(98)	24(1)	40(1)	26(1)	0(1)	3(1)	9(1)
C(99)	30(1)	68(2)	31(1)	8(1)	4(1)	22(1)
C(100)	23(1)	90(2)	22(1)	8(1)	0(1)	9(1)
C(101)	32(1)	59(2)	25(1)	-5(1)	-1(1)	-16(1)
C(102)	32(1)	34(1)	26(1)	1(1)	3(1)	-6(1)
N(2)	22(1)	24(1)	22(1)	-2(1)	-1(1)	7(1)
C(103)	22(1)	22(1)	35(1)	3(1)	-2(1)	5(1)
C(104)	33(1)	41(1)	39(1)	14(1)	-8(1)	-6(1)
C(105)	56(1)	24(1)	30(1)	-4(1)	15(1)	12(1)
C(106)	56(2)	41(1)	74(2)	11(1)	39(1)	29(1)
C(107)	22(1)	33(1)	22(1)	-7(1)	-2(1)	9(1)
C(108)	27(1)	40(1)	25(1)	2(1)	-2(1)	5(1)

7.4 Daten zur Molekül- und Kristallstruktur von [(Ph₂SiO)₂O]Al[(Ph₂SiO)₂OH · N(CH₂CH₃)₃] <u>7</u>

Tabelle 35: Kristalldaten und Strukturverfeinerungen für $[(Ph_2SiO)_2O]AI[(Ph_2SiO)_2OH \cdot N(CH_2CH_3)_3] \underline{7}$ (sh2784)

Identifikationscode Summenformel Molmasse [g/mol] Messtemperatur [K] Wellenlänge [Å] Kristallsystem Raumgruppe Gitterkonstanten

Zellvolumen [Å³] Anzahl der Formeleinheiten Z

Dichte (berechnet)	1.236 Mg/m ³
Absorptionskoeffizient [mm ⁻¹]	0.182
F(000)	2016
Kristallabmessungen [mm ³]	0.37 x 0.29 x 0.15
Messbereich θ [°]	1.09 to 28.43
hkl - Indexbereich	-19<=h<=19, -25<=k<=25, -23<=l<=25
Gemessene Reflexe	93905
Symmetrieunabhängige Reflexe	25526 [R(int) = 0.0434]
Vollständigkeit des Datensatzes (bis θ = 28.43°)	98.8 %
Absorptionskorrektur	Multiscan
Max. und Min. Transmission	0.9735 and 0.9362
Strukturverfeinerungsmethode	Full-matrix least-squares on F ²
Daten / Einschränkungen / Parameter	25526 / 0 / 1198
Güte des Fit auf F ²	1.087
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0573, wR2 = 0.1454
R-Werte (alle Daten)	R1 = 0.1068, wR2 = 0.1703
Restelektronendichte (min./max.) [e/Å ⁻³]	1.422 and -0.747

Tabelle 36: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter (Å $^{2}x 10^{3}$) fürsh2784. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

	х	У	Z	U(eq)
AI(1)	5554(1)	5485(1)	2682(1)	27(1)
Si(1)	7045(1)	4555(1)	2146(1)	28(1)
Si(2)	6736(1)	4720(1)	3698(1)	29(1)
Si(3)	5019(1)	6948(1)	2286(1)	28(1)
Si(4)	3599(1)	5685(1)	2140(1)	28(1)
O(1)	6255(1)	5099(1)	2061(1)	31(1)
O(2)	7149(1)	4356(1)	2983(1)	33(1)
O(3)	5871(1)	5161(1)	3498(1)	32(1)
O(4)	4363(1)	5225(1)	2517(1)	30(1)
O(5)	5685(1)	6412(1)	2637(1)	32(1)
C(1)	6744(2)	3716(1)	1628(1)	30(1)
C(2)	6223(2)	3736(2)	1014(2)	39(1)
C(3)	6064(2)	3143(2)	575(2)	49(1)
C(4)	6418(2)	2514(2)	749(2)	47(1)
C(5)	6926(2)	2472(2)	1359(2)	47(1)
C(6)	7086(2)	3070(1)	1795(2)	38(1)
C(7)	8179(2)	4965(1)	1801(1)	33(1)
C(8)	8853(2)	4553(2)	1521(2)	44(1)
C(9)	9665(2)	4864(2)	1223(2)	55(1)
C(10)	9819(2)	5593(2)	1195(2)	57(1)
C(11)	9173(3)	6011(2)	1466(2)	62(1)
C(12)	8366(2)	5700(2)	1767(2)	49(1)
C(13)	7668(2)	5329(1)	4131(1)	33(1)
C(14)	8262(2)	5091(2)	4634(2)	45(1)
C(15)	8936(2)	5547(2)	4967(2)	55(1)
C(16)	9033(2)	6256(2)	4804(2)	58(1)
C(17)	8460(3)	6507(2)	4310(2)	65(1)
C(18)	7777(3)	6054(2)	3976(2)	53(1)
C(19)	6358(2)	3982(1)	4307(1)	33(1)
C(20)	6557(2)	3280(2)	4185(2)	45(1)
C(21)	6258(3)	2741(2)	4652(2)	62(1)
C(22)	5749(3)	2889(2)	5232(2)	62(1)
C(23)	5529(3)	3574(2)	5363(2)	59(1)
C(24)	5838(2)	4115(2)	4909(2)	46(1)
C(25)	4798(2)	7701(1)	2895(1)	30(1)
C(26)	3935(2)	7960(2)	2974(2)	41(1)
C(27)	3812(3)	8551(2)	3404(2)	51(1)
C(28)	4556(3)	8893(2)	3751(2)	50(1)
C(29)	5421(2)	8653(2)	3680(2)	49(1)
C(30)	5538(2)	8056(2)	3265(2)	43(1)

C(31)	5574(2)	7332(1)	1470(2)	35(1)
C(32)	5292(3)	7944(2)	1161(2)	58(1)
C(33)	5721(3)	8226(2)	563(2)	74(1)
C(34)	6720(3)	7918(2)	208(2)	69(1) 72(1)
C(36)	6298(3)	7021(2)	1149(2)	72(1) 56(1)
C(37)	2527(2)	5697(1)	2687(2)	33(1)
C(38)	1669(2)	5335(2)	2513(2)	45(1)
C(39)	887(3)	5420(2)	2920(2)	66(Ì)
C(40)	946(3)	5842(2)	3509(2)	77(1)
C(41)	1787(3)	6193(2)	3705(2)	70(1)
C(42)	2568(3)	6126(2)	3296(2)	49(1)
C(43)	3354(2)	5291(1)	1243(1)	34(1)
C(44)	2006(2) 2306(3)	5392(Z) 5075(2)	000(Z)	43(1) 54(1)
C(46)	3033(3)	4653(2)	-82(2)	60(1)
C(47)	3829(3)	4552(2)	281(2)	68(1)
C(48)	3989(2)	4872(2)	930(2)	54(1)
N(1)	3848(2)	3810(2)	2966(2)	49(1)
C(49)	4698(3)	3464(2)	2710(2)	63(1)
C(50)	4755(3)	2712(2)	2922(3)	85(1)
C(51)	3896(3)	3868(2)	3762(2)	73(1)
C(52)	2063(3)	4209(3)	4071(2) 2724(3)	93(2) 83(1)
C(54)	2891(4)	3379(3)	1953(3)	107(2)
AI(2)	334(1)	441(1)	2352(1)	27(1)
Si(5)	1239(1)	-854(1)	2907(1)	31(1)
Si(6)	2343(1)	576(1)	2800(1)	28(1)
Si(7)	-1236(1)	1330(1)	2779(1)	28(1)
Si(8)	-876(1)	1044(1)	1257(1)	29(1)
O(6)	4021(1)	6517(1) -468(1)	2079(1)	33(1)
O(8)	2135(1)	-263(1)	3016(1)	33(1)
O(9)	1458(1)	843(1)	2404(1)	33(1)
O(10)	-413(1)	832(1)	2929(1)	34(1)
O(11)	-136(1)	508(1)	1511(1)	34(1)
O(12)	-1502(1)	1281(1)	1935(1)	31(1)
C(55)	849(2)	-1209(2)	3782(2)	39(1)
C(56) C(57)	188(3)	-867(Z)	4162(2)	59(1) 73(1)
C(57)	-123(3)	-1702(2)	5096(2)	68(1)
C(59)	888(3)	-2043(2)	4736(2)	60(1)
C(60)	1192(2)	-1799(2)	4089(2)	48(1)
C(61)	1599(2)	-1560(1)	2294(2)	34(1)
C(62)	1311(2)	-2286(2)	2333(2)	43(1)
C(63)	1565(3)	-2774(2)	1834(2)	54(1)
C(64)	2109(3)	-2548(2)	1270(2)	62(1)
C(65)	2400(3)	-1350(2)	1716(2)	46(1)
C(67)	3390(2)	665(2)	2230(1)	34(1)
C(68)	4036(2)	160(2)	2173(2)	48(1)
C(69)	4846(2)	296(2)	1766(2)	63(1)
C(70)	5005(2)	929(2)	1425(2)	57(1)
C(71)	4381(2)	1430(2)	1464(2)	54(1)
C(72)	3580(2)	1302(2)	1858(2)	43(1)
C(73)	2010(2)	1661(2)	3812(2)	52(1)
C(75)	2289(3)	2121(2)	4377(2)	73(1)
C(76)	3100(3)	2064(2)	4740(2)	76(1)
C(77)	3679(3)	1557(3)	4540(2)	76(1)
C(78)	3437(2)	1100(2)	3974(2)	54(1)
C(79)	-2294(2)	1030(1)	3296(2)	34(1)
C(80)	-2211(2)	(43(2)	3957(2)	56(1)
C(82)	-2300(3) -3856(3)	00(∠) 620(2)	4309(∠) ⊿113(2)	73(1) 68(1)
C(83)	-3962(3)	909(2)	3463(2)	72(1)
C(84)	-3190(2)	1104(2)	3059(2)	56(1)
C(85)	-874(2)	2280(1)́	3010(1)́	33(1)
C(86)	-1316(2)	2641(2)	3529(2)	45(1)

C(87)	-1039(3)	3342(2)	3715(2)	59(1)
C(88)	-302(3)	3699(2)	3385(2)	69(1)
C(89)	142(4)	3357(2)	2864(3)	98(2)
C(90)	-133(3)	2652(2)	2686(2)	82(2)
C(91)	-245(2)	1857(2)	878(2)	36(1)
C(92)	-718(2)	2376(2)	554(2)	53(1)
C(93)	-267(3)	2998(2)	298(2)	69(1)
C(94)	688(3)	3107(2)	353(2)	73(1)
C(95)	1175(3)	2602(2)	667(2)	65(1)
C(96)	718(2)	1981(2)	929(2)	47(1)
C(97)	-1700(2)	596(1)	605(1)	30(1)
C(98)	-2656(2)	544(2)	698(2)	39(1)
C(99)	-3253(2)	192(2)	214(2)	50(1)
C(100)	-2905(2)	-123(2)	-376(2)	47(1)
C(101)	-1963(2)	-85(2)	-487(2)	46(1)
C(102)	-1366(2)	272(2)	-1(2)	41(1)
N(2)	-1268(2)	-1241(2)	2099(2)	53(1)
C(103)	-1234(4)	-1213(3)	1277(3)	103(2)
C(104)	-418(4)	-1504(3)	992(2)	94(2)
C(105)	-1973(3)	-752(3)	2317(4)	116(2)
C(106)	-2882(6)	-896(4)	2060(4)	173(3)
C(107)	-1325(6)	-1928(3)	2562(9)	391(11)
C(108)	-1880(7)	-2402(6)	2433(7)	304(5)

Tabelle 37: Bindungslängen [Å] und Winkel [°] für sh2784.

$\Delta I(1) - O(5)$	1 7/02(18)	C(16) - C(17)	1 365(5)
AI(1) - O(1)	1 7437(19)	C(17)-C(18)	1.303(5)
AI(1) - O(3)	1 7452(19)	C(19)-C(20)	1.389(4)
AI(1) - O(4)	1 7731(19)	C(19) - C(24)	1.398(4)
Si(1)-O(1)	1 6054(19)	C(20)-C(21)	1.396(5)
Si(1)-O(2)	1 6446(19)	C(21)-C(22)	1.362(5)
Si(1) - C(1)	1.867(3)	C(22)-C(23)	1.372(5)
Si(1)-C(7)	1.872(3)	C(23)-C(24)	1.387(4)
Si(2)-O(3)	1.6058(19)	C(25) - C(26)	1.383(4)
Si(2)-O(2)	1.6468(19)	C(25)-C(30)	1.395(4)
Si(2)-C(19)	1.863(3)	C(26)-C(27)	1.393(4)
Si(2)-C(13)	1.873(3)	C(27)-C(28)	1.368(5)
Si(3)-O(5)	1.6023(19)	C(28)-C(29)	1.369(5)
Si(3)-O(6)	1.6365(19)	C(29)-C(30)	1.385(4)
Si(3)-C(25)	1.865(3)	C(31)-C(36)	1.378(4)
Si(3)-C(31)	1.869(3)	C(31)-C(32)	1.390(4)
Si(4)-O(4)	1.6284(19)	C(32)-C(33)	1.383(5)
Si(4)-O(6)	1.6347(18)	C(33)-C(34)	1.376(6)
Si(4)-C(37)	1.865(3)	C(34)-C(35)	1.365(6)
Si(4)-C(43)	1.869(3)	C(35)-C(36)	1.385(5)
C(1)-C(6)	1.389(4)	C(37)-C(38)	1.399(4)
C(1) - C(2)	1.391(4)	C(37)-C(42)	1.399(4)
C(2)-C(3)	1.387(4)	C(38)-C(39)	1.387(5)
C(3)-C(4)	1.372(5)	C(39)-C(40)	1.359(6)
C(4)-C(5)	1.376(5)	C(40)-C(41)	1.379(6)
C(5)-C(6)	1.392(4)	C(41)-C(42)	1.382(5)
C(7)-C(12)	1.386(4)	C(43)-C(48)	1.387(4)
C(7)-C(8)	1.396(4)	C(43)-C(44)	1.392(4)
C(8)-C(9)	1.388(4)	C(44)-C(45)	1.377(4)
C(9)-C(10)	1.370(5)	C(45)-C(46)	1.371(5)
C(10)-C(11)	1.367(5)	C(46)-C(47)	1.368(5)
C(11)-C(12)	1.385(5)	C(47)-C(48)	1.375(5)
C(13)-C(14)	1.387(4)	N(1)-C(53)	1.456(5)
C(13)-C(18)	1.394(4)	N(1)-C(49)	1.515(4)
C(14)-C(15)	1.388(4)	N(1)-C(51)	1.514(5)
C(15)-C(16)	1.367(5)	C(49)-C(50)	1.484(5)

C(51)-C(52)	1.438(6)	C(101)-C(102)	1.387(4)
C(53)-C(54)	1.472(6)	N(2)-C(107)	1.567(11)
AI(2)-O(9)	1.7325(19)	N(2)-C(105)	1.485(6)
AI(2)-O(10) AI(2)-O(11)	1.7375(19)	N(2)-C(103) C(103)-C(104)	1.301(0)
Al(2)-O(7)	1.7655(19)	C(103)-C(104) C(105)-C(106)	1.403(8)
Si(5)-O(7)	1.6246(19)	C(107)-C(108)	1.170(11)
Si(5)-O(8)	1.6429(19)		
Si(5)-C(61)	1.861(3)	O(5)-AI(1)-O(1)	110.89(9)
Si(5)-C(55)	1.866(3)	O(5)-Al(1)-O(3)	113.24(9)
SI(6)-O(9) Si(6)-O(8)	1.6023(19)	O(1)-AI(1)-O(3) O(5)-AI(1)-O(4)	105.89(9)
Si(6)-C(67)	1.856(3)	O(1)-AI(1)-O(4)	110.71(9)
Si(6)-C(73)	1.863(3)	O(3)-AI(1)-O(4)	109.61(9)
Si(7)-O(10)	1.6015(19)	O(1)-Si(1)-O(2)	109.52(10)
Si(7)-O(12)	1.6476(19)	O(1)-Si(1)-C(1)	110.85(11)
Si(7)-C(85)	1.864(3)	O(2)-Si(1)-C(1)	109.02(11)
Si(7) - C(79) Si(8) - O(11)	1.6072(19)	O(1)-S(1)-C(7) O(2)-Si(1)-C(7)	110.06(11)
Si(8)-O(12)	1.6496(19)	C(1)-Si(1)-C(7)	107.27(12)
Si(8)-C(97)	1.860(3)	O(3)-Si(2)-O(2)	109.87(10)
Si(8)-C(91)	1.865(3)	O(3)-Si(2)-C(19)	110.32(12)
C(55)-C(60)	1.387(4)	O(2)-Si(2)-C(19)	107.45(11)
C(55)-C(56)	1.392(4)	O(3)-Si(2)-C(13)	109.80(11)
C(50)- $C(57)C(57)$ - $C(58)$	1.393(5)	C(19)-Si(2)-C(13)	109.00(11)
C(58)-C(59)	1.373(5)	O(5)-Si(3)-O(6)	109.79(9)
C(59)-C(60)	1.374(5)	O(5)-Si(3)-C(25)	111.71(11)
C(61)-C(62)	1.396(4)	O(6)-Si(3)-C(25)	108.53(11)
C(61)-C(66)	1.405(4)	O(5)-Si(3)-C(31)	109.61(12)
C(62)-C(63)	1.381(4)	U(6)-SI(3)-C(31) C(25)-Si(3)-C(31)	109.02(11)
C(63)- $C(64)$	1.378(5)	O(4)-Si(4)-O(6)	100.12(12) 109.34(10)
C(65)-C(66)	1.374(4)	O(4)-Si(4)-C(37)	110.99(11)
C(67)-C(68)	1.389(4)	O(6)-Si(4)-C(37)	106.06(11)
C(67)-C(72)	1.406(4)	O(4)-Si(4)-C(43)	107.94(11)
C(68)-C(69)	1.408(5)	O(6)-Si(4)-C(43)	110.22(11)
C(69)-C(70) C(70)-C(71)	1.305(5)	C(37)-SI(4)-C(43) Si(1)-O(1)-Al(1)	112.27(13)
C(71)-C(72)	1.383(4)	Si(1)-O(2)-Si(2)	130.92(11)
C(73)-C(74)	1.385(4)	Si(2)-O(3)-AI(1)	129.49(11)
C(73)-C(78)	1.391(4)	Si(4)-O(4)-AI(1)	128.00(11)
C(74)-C(75)	1.393(5)	Si(3)-O(5)-Al(1)	129.48(11)
C(75)-C(76) C(76)-C(77)	1.370(6)	C(6)-C(1)-C(2) C(6)-C(1)-Si(1)	117.3(2)
C(77)- $C(78)$	1.392(5)	C(2)-C(1)-Si(1)	119.8(2)
C(79)-C(80)	1.381(4)	C(3)-C(2)-C(1)	121.7(3)
C(79)-C(84)	1.388(4)	C(4)-C(3)-C(2)	119.7(3)
C(80)-C(81)	1.390(5)	C(3)-C(4)-C(5)	120.1(3)
C(81)- $C(82)$	1.368(6)	C(4)- $C(5)$ - $C(6)$	119.9(3)
C(82)- $C(83)$	1.380(5)	C(12)-C(3)-C(3)	116 5(3)
C(85)-C(86)	1.377(4)	C(12)-C(7)-Si(1)	121.3(2)
C(85)-C(90)	1.377(4)	C(8)-C(7)-Si(1)	122.0(2)
C(86)-C(87)	1.385(4)	C(9)-C(8)-C(7)	121.5(3)
C(87)-C(88)	1.365(5)	C(10)-C(9)-C(8)	120.1(3)
C(88)-C(89)	1.362(6)	C(11)-C(10)-C(9) C(10)-C(11)-C(12)	119.7(3)
C(91)-C(92)	1.387(4)	C(11)-C(12)-C(7)	122.0(3)
C(91)-C(96)	1.393(4)	C(14)-C(13)-C(18)	116.8(3)
C(92)-C(93)	1.382(5)	C(14)-C(13)-Si(2)	122.1(2)
C(93)-C(94)	1.381(6)	C(18)-C(13)-Si(2)	121.1(2)
C(94)-C(95)	1.371(6)	C(13)-C(14)-C(15) C(16)-C(15) C(14)	122.0(3)
C(97)-C(98)	1.387(4)	C(15)-C(16)-C(17)	119 2(3)
C(97)-C(102)	1.398(4)	C(16)-C(17)-C(18)	121.1(3)
C(98)-C(99)	1.382(4)	C(13)-C(18)-C(17)	120.8(3)
C(99)-C(100)	1.374(4)	C(20)-C(19)-C(24)	117.0(3)
C(100)-C(101)	1.372(4)	C(20)-C(19)-Si(2)	122.6(2)

C(24)-C(19)-Si(2)	120 4(2)	O(11)-Si(8)-C(97)	110 68(11)
C(19)-C(20)-C(21)	120.9(3)	O(12)-Si(8)-C(97)	106 85(11)
C(22) - C(21) - C(20)	120.6(3)	O(12) O(0) O(01) O(11) - Si(8) - C(01)	100.00(11)
C(22) - C(21) - C(20)	110 0(3)	O(12) Si(8) C(91)	109.37(12)
C(21) - C(22) - C(23)	119.9(3)	O(12)-O(0)-O(01)	109.00(11)
C(22)- $C(23)$ - $C(24)$	119.8(3)	C(97) - S(6) - C(91)	110.96(13)
C(23)-C(24)-C(19)	121.7(3)	SI(4)-O(6)-SI(3)	133.95(12)
C(26)-C(25)-C(30)	117.1(3)	SI(5)-O(7)-AI(2)	128.75(11)
C(26)-C(25)-Si(3)	123.3(2)	Si(6)-O(8)-Si(5)	133.54(12)
C(30)-C(25)-Si(3)	119.5(2)	Si(6)-O(9)-AI(2)	129.06(11)
C(25)-C(26)-C(27)	121.3(3)	Si(7)-O(10)-AI(2)	130.52(12)
C(28)-C(27)-C(26)	120.0(3)	Si(8)-O(11)-AI(2)	127.65(11)
C(29)-C(28)-C(27)	120.1(3)	Si(7)-O(12)-Si(8)	129.68(11)
C(28)-C(29)-C(30)	119 9(3)	C(60)- $C(55)$ - $C(56)$	117 0(3)
C(29)- $C(30)$ - $C(25)$	121 6(3)	C(60)- $C(55)$ - $Si(5)$	123 7(2)
C(36)- $C(31)$ - $C(32)$	116 7(3)	C(56)-C(55)-Si(5)	110 3(2)
C(36) - C(31) - C(32)	121 1(2)	C(55) = C(55) = O(57)	121.0(2)
C(30) - C(31) - S(3)	121.1(2)	C(53) - C(50) - C(57)	121.1(4)
C(32)- $C(31)$ - $S(3)$	122.3(2)	C(50)-C(57)-C(50)	120.1(4)
C(33)-C(32)-C(31)	121.4(4)	C(57) - C(58) - C(59)	120.0(4)
C(34)-C(33)-C(32)	120.6(4)	C(58)-C(59)-C(60)	120.0(4)
C(35)-C(34)-C(33)	118.7(4)	C(59)-C(60)-C(55)	121.8(3)
C(34)-C(35)-C(36)	120.5(4)	C(62)-C(61)-C(66)	116.3(3)
C(31)-C(36)-C(35)	122.0(3)	C(62)-C(61)-Si(5)	125.3(2)
C(38)-C(37)-C(42)	117.4(3)	C(66)-C(61)-Si(5)	118.2(2)
C(38)-C(37)-Si(4)	124.6(2)	C(63)-C(62)-C(61)	122.1(3)
C(42)-C(37)-Si(4)	117.9(2)	C(64)-C(63)-C(62)	120.0(3)
C(39)-C(38)-C(37)	120.8(3)	C(65)-C(64)-C(63)	119.5(3)
C(40)-C(39)-C(38)	120.5(4)	C(66)-C(65)-C(64)	120.4(3)
C(39)-C(40)-C(41)	120.2(4)	C(65)-C(66)-C(61)	121.8(3)
C(40) - C(41) - C(42)	120.0(4)	C(68)-C(67)-C(72)	116.9(3)
C(41)-C(42)-C(37)	121.1(4)	C(68)-C(67)-Si(6)	124.7(2)
C(48)- $C(43)$ - $C(44)$	116.6(3)	C(72)-C(67)-Si(6)	118.3(2)
C(48)- $C(43)$ - $Si(4)$	119 5(2)	C(67)-C(68)-C(69)	1207(3)
C(44)- $C(43)$ -Si(4)	123 9(2)	C(70)- $C(69)$ - $C(68)$	120.0(3)
C(45) - C(44) - C(43)	121 7(3)	C(70) C(00) C(00)	120.0(0)
C(45)-C(45)-C(45)	110 0(3)	C(70)-C(71)-C(72)	120.7(3)
C(40)- $C(43)$ - $C(44)$	119.9(3)	C(70) - C(71) - C(72)	101 0(0)
C(45) - C(40) - C(47)	120.0(2)	C(74) C(72) C(07)	121.0(3)
C(40)- $C(47)$ - $C(40)$	120.0(3)	C(74) - C(73) - C(78)	101 4(0)
C(47)- $C(46)$ - $C(43)$	121.9(3)	C(74)-C(73)-S(0)	121.4(2)
C(53)-N(1)- $C(49)$	115.0(3)	C(78)-C(73)-S(6)	121.3(2)
C(53)-N(1)-C(51)	111.9(3)	C(73)-C(74)-C(75)	121.2(4)
C(49)-N(1)-C(51)	108.1(3)	C(76)-C(75)-C(74)	120.4(4)
C(50)-C(49)-N(1)	115.6(3)	C(75)-C(76)-C(77)	119.7(3)
C(52)-C(51)-N(1)	114.0(4)	C(76)-C(77)-C(78)	119.9(4)
N(1)-C(53)-C(54)	113.9(4)	C(77)-C(78)-C(73)	121.7(3)
O(9)-AI(2)-O(10)	112.01(10)	C(80)-C(79)-C(84)	116.7(3)
O(9)-AI(2)-O(11)	111.75(10)	C(80)-C(79)-Si(7)	120.4(2)
O(10)-Al(2)-O(11)	106.42(9)	C(84)-C(79)-Si(7)	122.9(2)
O(9)-AI(2)-O(7)	107.08(9)	C(79)-C(80)-C(81)	121.6(3)
O(10)-AI(2)-O(7)	109.91(10)	C(82)-C(81)-C(80)	119.8(4)
O(11)-AI(2)-O(7)	109.70(9)	C(83)-C(82)-C(81)	120.1(4)
O(7)-Si(5)-O(8)	109.23(10)	C(82)-C(83)-C(84)	119.8(4)
O(7)-Si(5)-C(61)	109.57(11)	C(83)-C(84)-C(79)	122 0(4)
O(8)-Si(5)-C(61)	107 58(12)	C(86)-C(85)-C(90)	1164(3)
O(7)-Si(5)-C(55)	108.05(12)	C(86) - C(85) - Si(7)	121 7(2)
O(8) Si(5) C(55)	100.00(12)	C(00) = C(00) = C(17)	121.7(2)
C(61) Si(5) - C(55)	112 80(12)	C(95) - C(85) - S(7)	121.0(2)
O(0) S(0) O(0)	100.80(0)	C(00) - C(00) - C(07)	122.2(3)
O(9) - Si(6) - O(6)	109.89(9)		120.3(3)
O(9)-SI(6)-C(67)	111.16(12)	C(89)-C(88)-C(87)	118.8(3)
O(8)- $Si(6)$ - $C(67)$	108.64(11)	C(88)-C(89)-C(90)	120.6(4)
O(9)-SI(6)-C(73)	109.79(12)	C(85)-C(90)-C(89)	121.7(4)
U(8)-SI(6)-C(73)	110.54(12)	C(92)-C(91)-C(96)	117.2(3)
C(67)-Si(6)-C(73)	106.77(12)	C(92)-C(91)-Si(8)	121.4(2)
O(10)-Si(7)-O(12)	109.16(9)	C(96)-C(91)-Si(8)	121.3(2)
O(10)-Si(7)-C(85)	110.95(11)	C(93)-C(92)-C(91)	122.3(3)
O(12)-Si(7)-C(85)	108.37(11)	C(94)-C(93)-C(92)	119.4(4)
O(10)-Si(7)-C(79)	110.73(12)	C(95)-C(94)-C(93)	119.6(4)
O(12)-Si(7)-C(79)	108.46(11)	C(94)-C(95)-C(96)	120.8(4)
C(85)-Si(7)-C(79)	109.11(12)	C(95)-C(96)-C(91)	120.7(4)
O(11)-Si(8)-O(12)	109.84(10)	C(98)-C(97)-C(102)	116.9(2)

C(98)-C(97)-Si(8)	122.8(2)	C(107)-N(2)-C(105)	111.3(6)
C(102)-C(97)-Si(8)	120.3(2)	C(107)-N(2)-C(103)	126.8(6)
C(99)-C(98)-C(97)	121.6(3)	C(105)-N(2)-C(103)	105.7(4)
C(100)- $C(99)$ - $C(98)$	120.2(3)	C(104)- $C(103)$ - $N(2)$	112.3(4)
C(100)-C(100)-C(102)	119.7(3)	C(108)-C(103)-N(2)	119.9(12)
C(101)-C(102)-C(97)	121.6(3)	- () - (-) - (-)	()

Symmetry transformations used to generate equivalent atoms:

Tabelle 38: Anisotropische Auslenkungsaparameter (Å2x 103) für sh2784. Der anisotropischeExponentfaktor des Auslenkungsparameter lautet: $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
AI(1)	28(1)	24(1)	29(1)	1(1)	-1(1)	6(1)
Si(1)	31(1)	26(1)	27(1)	-1(1)	1(1)	6(1)
Si(2)	36(1)	26(1)	25(1)	2(1)	-1(1)	6(1)
Si(3)	30(1)	23(1)	31(1)	2(1)	0(1)	3(1)
Si(4)	27(1)	27(1)	30(1)	0(1)	-1(1)	3(1)
O(1)	37(1)	32(1)	27(1)	2(1)	1(1)	11(1)
O(2)	40(1)	30(1)	29(1)	1(1)	-1(1)	13(1)
O(3)	38(1)	33(1)	26(1)	2(1)	1(1)	11(1)
O(4)	31(1)	25(1)	36(1)	1(1)	-2(1)	4(1)
O(5)	31(1)	24(1)	41(1)	2(1)	-3(1)	4(1)
C(1)	28(1)	31(1)	30(1)	-1(1)	5(1)	3(1)
C(2)	44(2)	34(1)	40(2)	-1(1)	-4(1)	6(1)
C(3)	54(2)	50(2)	41(2)	-8(2)	-9(2)	0(2)
C(4)	53(2)	34(2)	52(2)	-14(1)	7(2)	-4(1)
C(5)	52(2)	30(2)	58(2)	-2(1)	6(2)	9(1)
C(6)	42(2)	32(1)	40(2)	2(1)	0(1)	6(1)
C(7)	32(2)	33(1)	33(1)	1(1)	-5(1)	3(1)
C(8)	35(2)	42(2)	57(2)	-4(1)	0(1)	3(1)
C(9)	33(2)	65(2)	65(2)	-11(2)	5(2)	0(2)
C(10)	34(2)	67(2)	67(2)	15(2)	1(2)	-11(2)
C(11)	48(2)	43(2)	95(3)	13(2)	1(2)	-6(2)
C(12)	44(2)	35(2)	70(2)	2(2)	1(2)	6(1)
C(13)	39(2)	31(1)	28(1)	-2(1)	6(1)	3(1)
C(14)	46(2)	38(2)	50(2)	-11(1)	-7(2)	11(1)
C(15)	42(2)	62(2)	61(2)	-25(2)	-13(2)	11(2)
C(16)	47(2)	63(2)	61(2)	-24(2)	2(2)	-9(2)
C(17)	87(3)	41(2)	62(2)	-2(2)	10(2)	-21(2)
C(18)	76(2)	38(2)	43(2)	4(1)	-3(2)	-4(2)
C(19)	36(2)	33(1)	30(1)	4(1)	-6(1)	0(1)
C(20)	55(2)	34(2)	47(2)	4(1)	1(2)	6(1)
C(21)	90(3)	31(2)	65(2)	10(2)	-5(2)	-1(2)
C(22)	84(3)	54(2)	43(2)	19(2)	-6(2)	-19(2)
C(23)	68(2)	75(3)	30(2)	8(2)	1(2)	-11(2)
C(24)	60(2)	46(2)	32(2)	2(1)	1(1)	3(2)
C(25)	35(2)	25(1)	30(1)	6(1)	1(1)	2(1)
C(26)	43(2)	38(2)	44(2)	-2(1)	-9(1)	13(1)
C(27)	56(2)	46(2)	56(2)	-7(2)	-6(2)	27(2)
C(28)	76(3)	32(2)	42(2)	-6(1)	3(2)	10(2)
C(29)	54(2)	44(2)	47(2)	-10(1)	1(2)	-11(2)
C(30)	35(2)	43(2)	48(2)	-7(1)	5(1)	-3(1)
C(31)	38(2)	32(1)	34(2)	-1(1)	-1(1)	-2(1)
C(32)	71(3)	51(2)	56(2)	20(2)	16(2)	16(2)
C(33)	98(3)	61(2)	63(3) 48(2)	32(2)	15(2)	8(2)
C(34)	85(3) 82(2)	71(3)	48(2)	14(2)	10(2)	-11(2)
C(35)	ŏ∠(3)	10(3)	6U(Z)	0(2) 0(2)	37(2)	8(2) 12(2)
	69(2)	48(2)	51(2)	9(2)	21(2)	12(2)
U(37)	35(2)	29(1)	36(2)	8(1)	2(1)	7(1)

C(38) C(39)	37(2) 40(2)	48(2) 79(3)	49(2) 80(3)	15(2) 33(2)	5(1) 20(2)	0(1) 5(2)
C(40)	72(3)	86(3)	79(3)	36(3)	52(3)	33(2)
C(41)	107(4)	59(2) 43(2)	50(2) 40(2)	10(2)	38(2)	30(2) 10(2)
C(42) C(43)	36(2)	35(1)	32(1)	2(1)	-1(1)	1(1)
C(44)	43(2)	45(2)	41(2)	0(1)	-3(1)	6(1)
C(45)	57(2)	64(2)	41(2)	2(2)	-17(2)	4(2)
C(40) C(47)	78(3)	39(2) 85(3)	45(2)	-18(2)	-7(2)	4(Z) 31(2)
C(48)	47(2)	74(2)	44(2)	-12(2)	-3(2)	22(2)
N(1)	52(2) 52(2)	40(2)	52(2)	0(1)	5(1)	-11(1)
C(49) C(50)	52(2) 92(3)	53(2) 55(2)	04(3) 108(4)	-3(2) -17(2)	-23(3)	4(∠) 13(2)
C(51)	84(3)	77(3)	56(2)	1(2)	7(2)	-11(2)
C(52)	129(4)	81(3)	70(3)	-17(2)	28(3)	17(3)
C(53) C(54)	152(5)	83(3)	82(3)	-3(3)	-46(3)	-13(2)
AI(2)	21(1)	27(1)	34(1)	-2(1)	-1(1)	5(1)
Si(5)	29(1)	26(1)	38(1)	1(1)	-1(1)	4(1)
Si(0) Si(7)	23(1)	31(1)	32(1)	-2(1)	1(1)	5(1)
Si(8)	25(1)	34(1)	29(1)	-5(1)	-2(1)	5(1)
O(6)	31(1) 25(1)	28(1)	41(1) 45(1)	5(1) -1(1)	-4(1) -2(1)	2(1)
O(7) O(8)	27(1)	29(1)	43(1)	2(1)	-5(1)	3(1)
O(9)	26(1)	28(1)	45(1)	6(1)	-2(1)	1(1)
O(10)	30(1) 28(1)	41(1)	32(1) 34(1)	-3(1) -7(1)	-1(1) -3(1)	11(1)
O(11) O(12)	25(1)	37(1)	31(1)	-6(1)	-2(1)	9(1)
C(55)	41(2)	38(2)	38(2)	-2(1)	1(1)	-3(1)
C(56) C(57)	67(2) 77(3)	60(2) 93(3)	52(2) 52(2)	2(2)	11(2) 22(2)	17(2) 22(2)
C(58)	75(3)	84(3)	43(2)	11(2)	6(2)	-9(2)
C(59)	71(3)	61(2)	48(2)	12(2)	2(2)	2(2)
C(60) C(61)	54(2) 35(2)	47(2) 30(1)	44(2) 39(2)	8(2) 1(1)	4(2) -5(1)	5(2) 8(1)
C(62)	48(2)	30(1)	52(2)	3(1)	-5(2)	6(1)
C(63)	68(2) 70(2)	29(2)	67(2)	-7(2)	-18(2)	12(2)
C(64) C(65)	79(3)	52(2) 59(2)	49(2)	-19(2)	-0(2)	20(2) 14(2)
C(66)	56(2)	38(2)	43(2)	-1(1)	2(2)	4(1)
C(67)	25(1)	44(2) 64(2)	31(1)	-8(1)	-3(1)	0(1)
C(68) C(69)	35(2)	97(3)	60(2)	-7(2)	2(1) 2(2)	26(2)
C(70)	32(2)	87(3)	51(2)	-9(2)	9(2)	-9(2)
C(71)	52(2) 39(2)	57(2) 42(2)	47(2)	-12(2)	16(2) 10(1)	-17(2) -6(1)
C(72)	32(2)	38(1)	32(1)	-1(1)	7(1)	-4(1)
C(74)	47(2)	54(2)	55(2)	-17(2)	7(2)	5(2)
C(75) C(76)	83(3) 80(3)	65(2) 89(3)	70(3) 53(2)	-31(2) -36(2)	21(2) 8(2)	4(2) -20(2)
C(77)	58(2)	113(4)	52(2)	-24(2)	-11(2)	-13(2)
C(78)	44(2)	71(2)	46(2)	-14(2)	-4(2)	4(2)
C(79) C(80)	31(2) 42(2)	31(1) 67(2)	39(2) 59(2)	-6(1) 20(2)	4(1) 5(2)	2(1) -4(2)
C(81)	70(3)	84(3)	62(3)	23(2)	12(2)	-17(2)
C(82)	51(2)	73(3)	75(3)	-10(2)	27(2)	-22(2)
C(83) C(84)	32(2) 34(2)	86(3)	48(2)	-11(2) -5(2)	4(2)	-6(2) 3(2)
C(85)	30(1)	36(1)	31(1)	-4(1)	-3(1)	2(1)
C(86)	53(2)	31(1)	53(2)	-6(1)	11(2)	4(1)
C(88)	99(3)	41(2)	62(2)	-5(2)	-13(2)	4(∠) -22(2)
C(89)	110(4)	80(3)	90(3)	-29(3)	37(3)	-63(3)
C(90)	76(3) 34(2)	80(3)	82(3) 32(2)	-41(2) -5(1)	40(2) 3(1)	-40(2)
C(92)	48(2)	47(2)	64(2)	7(2)	5(2)	2(2)
C(93)	82(3)́	49(2)́	74(3)́	16(2)	15(2)	3(2)

0(04)	00(0)		co/o)	0(0)	00(0)	20(2)
C(94)	93(3)	58(Z)	63(3)	U(Z)	26(2)	-26(2)
C(95)	51(2)	88(3)	50(2)	-6(2)	14(2)	-24(2)
C(96)	37(2)	64(2)	39(2)	-4(2)	5(1)	-4(2)
C(97)	31(1)	31(1)	28(1)	-1(1)	-2(1)	5(1)
C(98)	32(2)	44(2)	40(2)	-15(1)	1(1)	3(1)
C(99)	33(2)	61(2)	55(2)	-18(2)	-3(2)	-5(2)
C(100)	51(2)	49(2)	39(2)	-13(1)	-9(2)	-5(2)
C(101)	56(2)	50(2)	33(2)	-12(1)	1(1)	7(2)
C(102)	35(2)	58(2)	32(2)	-7(1)	2(1)	10(1)
N(2)	41(2)	43(2)	73(2)	-5(1)	-5(2)	-10(1)
C(103)	98(4)	121(4)	85(4)	-15(3)	-25(3)	-23(3)
C(104)	89(4)	123(4)	69(3)	-34(3)	-3(3)	12(3)
C(105)	42(2)	90(4)	216(7)	-11(4)	-30(3)	12(2)
C(107)	152(7)	38(3)	980(30)	-9(7)	-219(12)	-24(3)
C(108)	256(11)	305(11)	361(15)	-94(10)	36(11)	97(9)

Tabelle 39: Koordinaten des Wasserstoffs ($x \ 10^4$) und isotrope Auslenkungsparameter (Å $^2x \ 10^3$) fürsh2784.

	X	у	Z	U(eq)
H(2)	5970	4168	891	47
H(3)	5711	3171	155	59
H(4)	6312	2106	449	56
H(5)	7167	2035	1481	56
H(6)	7437	3037	2215	46
H(8)	8754	4047	1535	53
H(9)	10114	4572	1038	66
H(10)	10372	5806	987	68
H(11)	9278	6517	1449	75
H(12)	7927	5999	1956	59
H(14)	8205	4600	4755	53
H(15)	9332	5366	5310	66
H(16)	9494	6569	5031	69
H(17)	8527	6999	4193	78
H(18)	7381	6242	3638	64
H(20)	6901	3166	3778	54
H(21)	6410	2266	4564	75
H(22)	5546	2518	5546	74
H(23)	5166	3677	5763	70
H(24)	5693	4590	5009	55
H(26)	3415	7730	2730	49
H(27)	3212	8717	3455	62
H(28)	4473	9298	4042	60
H(29)	5939	8895	3916	59
H(30)	6137	7885	3231	51
H(32)	4793	8174	1365	70
H(33)	5501	8637	354	88
H(34)	6776	8124	-130	83
H(35)	7238	7082	351	87
H(36)	6501	6596	1340	67
H(38)	1621	5026	2112	54
H(39)	305	5182	2786	79
H(40)	408	5895	3785	92
H(41)	1829	6480	4121	85
H(42)	3142	6375	3431	59
H(44)	2115	5687	1045	51
H(45)	1844	5148	-49	65
H(46)	2921	4430	-530	72
H(47)	4273	4262	83	82
H(48)	4550	4804	1172	65
H(1)	3940(20)	4268(18)	2814(17)	48(9)

H(49A)	4713	3482	2188	76
H(49B)	5259	3751	2887	76
H(50A)	4738	2683	3437	127
H(50B)	5336	2542	2747	127
H(50C)	4227	2414 3380	2722	127
H(51B)	4514	4096	3899	88
H(52A)	3319	4775	3958	140
H(52B)	3193	4212	4584	140
H(52C)	2581	4093	3882	140
H(53A)	2456	3744	2892	100
H(53B)	2870	2984	2939	100
H(54A)	2855	3848	1740	161
H(54B) H(54C)	2331	3070	1832	161
H(56)	-55	-456	3972	71
H(57)	-578	-880	5065	88
H(58)	11	-1874	5540	82
H(59)	1136	-2447	4934	72
H(60)	1650	-2041	3846	58
H(62)	927	-2450	2715	52
H(63)	1365	-3266	1880	65 74
H(65)	2270	-2001	922	74
H(66)	2379	-861	1671	55
H(68)	3929	-281	2410	58
H(69)	5282	-54	1730	76
H(70)	5558	1021	1158	69
H(71)	4495	1867	1220	64
H(72)	3146	1654	1877	51
H(74) H(75)	1480	1705	3568	63
H(76)	3260	2375	5127	91
H(77)	4244	1517	4787	91
H(78)	3844	751	3839	64
H(80)	-1610	677	4135	68
H(81)	-2911	363	4826	88
H(82)	-4388	488	4390	82
H(83)	-4567	970	3288	86
H(86)	-3274 -1827	2/01	2004	55
H(87)	-1362	3575	4075	71
H(88)	-103	4177	3516	82
H(89)	645	3603	2621	117
H(90)	200	2420	2330	99
H(92)	-1374	2301	505	64
H(93)	-612	3347	86	82
H(94)	1832	2678	706	00 78
H(96)	1066	1636	1146	57
H(98)	-2907	756	1104	46
H(99)	-3905	167	289	60
H(100)	-3316	-367	-707	57
H(101)	-1720	-302	-894	56
H(102)	-715	297	-82	50
$\Pi(Z)$ $H(10\Delta)$	-730(20) -1796	-1010(17)	1082	47(9) 124
H(10R)	-1242	-711	1128	124
H(10C)	137	-1197	1131	141
H(10D)	-462	-1528	477	141
H(10E)	-374	-1985	1176	141
H(10F)	-2002	-749	2839	139
П(10G) Н(10Н)	-1/4/	-264 _000	2172	139
H(101)	-2014 -3079	-000 -532	1044 2230	209 250
H(10J)	-3134	-1368	2218	259
H(10K)	-707	-2119	2546	469
H(10L)	-1428	-1775	3055	469
H(10M)	-2502	-2260	2544	455

H(10N)	-1755	-2816	2716	455
H(10O)	-1849	-2528	1931	455

7.5 Daten zur Molekül- und Kristallstruktur von [(Ph₂SiO)₂O]₂{AI[(Ph₂SiO)₂OH · N((CH₂)₂)₃N]}₂ <u>8</u>

 $\label{eq:constraint} \begin{array}{l} \textbf{Tabelle 40:} \ Kristalldaten und Strukturverfeinerungen für [(Ph_2SiO)_2O]_2 \{Al[(Ph_2SiO)_2OH \cdot N((CH_2)_2)_3N]\}_2 \ \underline{\textbf{8}} \ (sh3111). \end{array}$

Identifikationscode	sh3111	
Summenformel	C108 H106 Al2 N4 O12 Si8 x 2	2 C7 H8
Molmasse [g/mol]	2114.92	
Messtemperatur [K]	122(2)	
Wellenlänge [Å]	0.71073	
Kristallsystem	Monoclinic	
Raumgruppe	P2(1)/c	
Gitterkonstanten	a = 22.9874(4) Å	α= 90°.
	b = 24.7312(4) Å	β= 92.6920(10)°.
	c = 19.7939(3) Å	$\gamma = 90^{\circ}$.
Zellvolumen [Å ³]	11240.5(3)	•
Anzahl der Formeleinheiten Z	4	
Dichte (berechnet)	1.250 Mg/m ³	
Absorptionskoeffizient [mm ⁻¹]	0.174	
F(000)	4464	
Kristallabmessungen [mm ³]	0.41 x 0.27 x 0.17	
Messbereich θ [°]	1.21 to 32.09	
hkl - Indexbereich	-30<=h<=34, -36<=k<=36, -29	<=l<=29
Gemessene Reflexe	155952	
Symmetrieunabhängige Reflexe	39233 [R(int) = 0.0591]	
Vollständigkeit des Datensatzes (bis $\theta = 32.09^{\circ}$)	99.7 %	
Absorptionskorrektur	Multiscan	
Max. und Min. Transmission	0.9702 and 0.9323	
Strukturverfeinerungsmethode	Full-matrix least-squares on F ²	
Daten / Einschrankungen / Parameter	392337071343	
Gule des Fil aul F	1.023 D1 0.0512 wD2 0.1085	
P Worte (alle Daten)	$R_1 = 0.0012$, $WR2 = 0.1000$	
Restelektronendichte (min /max) $[e/Å^{-3}]$	$R_1 = 0.1000$, $WR2 = 0.1202$	
	0.001 and -0.000	

Tabelle 41: Atomkoordinaten (x 104) und äquivalen	te isotrope Auslenkungsparameter (Å ² x 10 ³) für
sh3111. U(eq) wird berechnet als ein Drittel der Spu	Ir des orthogonalisierten U ^{ij} Tensors.

	х	У	Z	U(eq)
AI(1)	2683(1)	11114(1)	2234(1)	12(1)
AI(2)	2357(1)	8761(1)	2887(1)	13(1)
Si(1)	3517(1)	10622(1)	3474(1)	15(1)
Si(2)	3608(1)	9387(1)	3137(1)	15(1)
Si(3)	1583(1)	9288(1)	1633(1)	14(1)
Si(4)	1414(1)	10516(1)	2069(1)	15(1)
Si(5)	3126(1)	11486(1)	892(1)	15(1)
Si(6)	2856(1)	12322(1)	1920(1)	14(1)

Si(7)	2239(1)	7553(1)	3182(1)	15(1)
Si(8)	1804(1)	8357(1)	4151(1)	14(1)
O(1)	3043(1)	10814(1) 9967(1)	2914(1) 3511(1)	22(1) 21(1)
O(2) O(3)	3009(1)	9064(1)	3111(1)	22(1)
O(4)	2048(1)	9012(1)	2146(1)	19(1)
O(5)	1570(1)	9938(1)	1738(1)	22(1)
O(6)	1970(1)	10899(1)	2142(1)	20(1)
O(7)	3056(1) 2989(1)	11062(1)	1493(1) 1164(1)	16(1)
O(9)	2645(1)	11823(1)	2386(1)	17(1)
O(10)	1880(1)	8776(1)	3546(1)	15(1)́
O(11)	2059(1)	7761(1)	3931(1)	18(1)
O(12)	2498(1)	8059(1)	2765(1)	18(1)
C(1)	3297(1) 2948(1)	10837(1)	4333(1) 4706(1)	18(1)
C(3)	2724(1)	10661(1)	5311(1)	35(1)
C(4)	2842(1)	11173(1)	5557(1)	35(1)
C(5)	3191(1)	11518(1)	5205(1)	32(1)
C(6)	3416(1)	11352(1)	4599(1)	24(1)
C(7)	4246(1)	10913(1)	3307(1) 2661(1)	23(1)
C(9)	4918(1)	11313(1)	2539(1)	46(1)
C(10)	5335(1)	11361(1)	3056(1)	49(1)
C(11)	5219(1)	11188(1)	3698(1)	44(1)
C(12)	4680(1)	10964(1)	3822(1)	32(1)
C(13) C(14)	4163(1)	9003(1) 9255(1)	3629(1)	20(1)
C(15)	5130(1)	8969(1)	4229(1)	38(1)
C(16)	5075(1)	8425(1)	4321(1)	56(1)
C(17)	4583(1)	8164(1)	4072(1)	66(1)
C(18)	4142(1)	8449(1)	3728(1)	43(1)
C(19)	3439(1)	9718(1)	1767(1)	22(1)
C(21)	3575(1)	9764(1)	1093(1)	27(1)
C(22)	4110(1)	9587(1)	888(1)	28(1)
C(23)	4511(1)	9367(1)	1353(1)	27(1)
C(24)	4373(1)	9321(1)	2027(1)	22(1)
C(26)	1758(1)	8676(1)	430(1)	24(1)
C(27)	1973(1)	8588(1)	-206(1)	30(1)
C(28)	2227(1)	9006(1)	-545(1)	36(1)
C(29)	2262(1)	9514(1)	-253(1)	34(1)
C(30)	2048(1) 847(1)	9602(1) 8988(1)	383(1) 1740(1)	24(1) 18(1)
C(32)	448(1)	8911(1)	1196(1)	24(1)
C(33)	-94(1)	8678(1)́	1277(1)	31(1)
C(34)	-248(1)	8517(1)	1914(1)	33(1)
C(35)	140(1)	8587(1)	2464(1) 2376(1)	32(1) 24(1)
C(37)	830(1)	10834(1)	1513(1)	29(1)
C(38)	442(1)	10521(1)	1118(1)	31(1)
C(39)	-20(1)	10751(1)	742(1)	42(1)
C(40)	-102(1)	11302(1)	751(1)	46(1)
C(41)	282(1) 742(1)	11625(1)	1132(1) 1504(1)	47(1)
C(43)	1126(1)	10402(1)	2929(1)	18(1)
C(44)	592(1)́	10606(1)	3117(1)	24(1)́
C(45)	402(1)	10539(1)	3770(1)	32(1)
C(46) C(47)	/44(1) 1278(1)	10265(1)	4245(1) 4076(1)	34(1) 37(1)
C(48)	1466(1)	10127(1)	3424(1)	26(1)
C(49)	3881(1)	11481(1)	585(1)	20(1)
C(50)	4127(1)	11922(1)	267(1)	41(1)
C(51)	4688(1)	11896(1)	29(1)	45(1)
C(52)	5000(1) 4777(1)	11432(1) 10908(1)	94(1) 419(1)	36(1) 71(1)
C(54)	4222(1)	11026(1)	666(1)	32(1)
C(55)	2584(1)	11321(1)	188(1)	19(1)

C(56)	2014(1)	11191(1)	348(1)	26(1)
C(57)	1588(1)	11063(1)	-141(1)	35(1)
C(58)	1724(1)	11054(1)	-816(1)	38(1)
C(59)	2284(1)	11173(1)	-990(1)	35(1)
C(60)	2711(1)	11307(1)	-496(1)	26(1)
C(61)	2248(1)	12818(1)	1827(1)	17(1)
C(62)	2236(1)	13304(1)	2100(1)	21(1)
C(63)	1285(1)	13040(1)	2133(1)	29(1)
C(04) C(65)	1285(1)	13032(1)	1365(1)	36(1)
C(66)	1756(1)	12690(1)	1/15(1)	27(1)
C(67)	3504(1)	12648(1)	2343(1)	21(1)
C(68)	3747(1)	12432(1)	2939(1)	49(1)
C(69)	4203(1)	12687(1)	3284(2)	88(1)
C(70)	4428(1)	13164(1)	3035(2)	84(1)
C(71)	4200(1)	13382(1)	2454(1)	59(1)
C(72)	3741(1)	13127(1)	2114(1)	39(1)
C(73)	1610(1)	7257(1)	2686(1)	20(1)
C(74)	1355(1)	6765(1)	2856(1)	31(1)
C(75)	898(1)	6541(1)	2466(1)	42(1)
C(76)	683(1)	6814(1)	1900(1)	44(1)
C(77)	920(1)	7301(1)	1719(1)	40(1)
C(78)	1377(1)	7520(1)	2106(1)	28(1)
C(79)	2829(1)	7042(1)	3317(1)	17(1)
C(80)	3281(1)	7143(1)	3794(1)	24(1)
C(81)	3749(1)	6795(1)	3884(1)	32(1)
C(02)	3774(1)	6215(1)	3494(1)	31(1)
C(84)	2864(1)	6568(1)	2025(1)	20(1)
C(85)	2004(1)	8608(1)	2933(1) 4927(1)	20(1)
C(86)	1984(1)	8562(1)	5569(1)	26(1)
C(87)	2270(1)	8780(1)	6140(1)	35(1)
C(88)	2790(1)	9045(1)	6082(1)	38(1)
C(89)	3028(1)	9100(1)́	5454(1)	36(1)
C(90)	2740(1)	8885(1)	4883(1)	27(1)
C(91)	1030(1)	8271(1)	4369(1)	20(1)
C(92)	646(1)	8706(1)	4313(1)	30(1)
C(93)	88(1)	8666(1)	4546(1)	44(1)
C(94)	-92(1)	8192(1)	4841(1)	46(1)
C(95)	273(1)	7760(1)	4896(1)	42(1)
C(96)	834(1)	7795(1)	4661(1)	31(1)
N(1)	1966(1)	12007(1)	3430(1)	22(1)
C(97)	1919(1)	11400(1)	3790(1)	20(1)
C(90)	1378(1)	12108(1)	4302(1) 3207(1)	20(1)
C(100)	1048(1)	12328(1)	3850(1)	47(1)
C(100)	2263(1)	12410(1)	3887(1)	38(1)
C(102)	1918(1)	12448(1)	4535(1)	37(1)
N(2)	1370(1)	12142(1)	4457(1)	24(1)
N(3)	3191(1)	7876(1)	1728(1)	25(1)
C(103)	3114(1)	8367(1)	1297(1)	30(1)
C(104)	3401(1)	8258(1)	626(1)	30(1)
C(105)	2963(1)	7394(1)	1358(1)	54(1)
C(106)	3335(1)	7305(1)	738(1)	58(1)
C(107)	3821(1)	7805(1)	1911(1)	44(1)
C(108)	4141(1)	7780(1)	1243(1)	47(1)
N(4) C(100)	3730(1)	7756(1)	652(1) 2102(1)	31(1)
C(109)	1727(1)	5224(1)	2193(1)	30(1)
C(111)	1252(1)	5108(1)	2007(1)	44(I) ⊿0(1)
C(112)	753(1)	4932(1)	2886(1)	49(1) 48(1)
C(113)	741(1)	4882(1)	2186(1)	40(1)
C(114)	1229(1)	5007(1)	1829(1)	36(1)
C(115)	1217(1)	4960(1)	1069(1)	56(1)
C(116)	3295(1)	4650(1)	2888(1)	44(1)́
C(117)	3270(1)	4634(1)	2190(1)	49(1)
C(118)	3736(1)	4804(1)	1840(1)	49(1)
C(119)	4230(1)	4992(1)	2190(1)	43(1)
C(120)	4255(1)	5005(1)	2889(1)	35(1)

C(121)	3788(1)	4832(1)	3250(1)	35(1)
C(122)	3814(1)	4849(1)	4012(1)	58(1)

Tabelle 42: Bindungslängen [Å] und Winkel [°] für sh3111.

AI(1)-O(1)	1.7157(11)	C(19)-C(24)	1.400(2)
AI(1)-Q(6)	1.7252(11)	C(19) - C(20)	1.401(2)
$\Delta I(1) - O(7)$	1 738/(10)	C(20)- $C(21)$	1 389(2)
$A_{1}(1) O(0)$	1 7920(11)	C(21) C(22)	1.202(2)
AI(1) - O(3)	1.7020(11)	C(21) - C(22)	1.303(2)
AI(2)-O(3)	1.7165(11)	C(22) - C(23)	1.383(3)
AI(2)-O(4)	1.7169(11)	C(23)-C(24)	1.390(2)
AI(2)-O(10)	1.7424(10)	C(25)-C(30)	1.397(2)
AI(2)-O(12)	1.7845(11)	C(25)-C(26)	1.399(2)
Si(1)-O(1)	1.5885(11)	C(26)-C(27)	1.392(2)
Si(1)-O(2)	1.6236(12)	C(27)-C(28)	1.377(3)
Si(1)-C(7)	1.8678(17)	C(28)-C(29)	1.384(3)
Si(1)-C(1)	1 8738(16)	C(29)-C(30)	1.389(2)
Si(2)-O(3)	1 5899(11)	C(31)-C(32)	1 395(2)
$S_{1}(2) O(3)$	1 6227(12)	C(31) C(36)	1.000(2)
S(2) - O(2)	1.0227(12)	C(31)- $C(30)$	1.390(2)
S(2) - C(13)	1.0040(10)	C(32) - C(33)	1.300(2)
SI(2)-C(19)	1.8741(15)	C(33)-C(34)	1.384(3)
Si(3)-O(4)	1.5921(11)	C(34)-C(35)	1.386(3)
Si(3)-O(5)	1.6216(12)	C(35)-C(36)	1.387(2)
Si(3)-C(25)	1.8686(15)	C(37)-C(38)	1.392(2)
Si(3)-C(31)	1.8706(16)	C(37)-C(42)	1.395(2)
Si(4)-O(6)	1.5907(11)	C(38)-C(39)	1.388(3)
Si(4)-Q(5)	1 6192(12)	C(39)-C(40)	1 376(3)
Si(4)-C(37)	1 8691(16)	C(40)-C(41)	1.385(3)
Si(A) - C(A3)	1 8768(15)	$C(41)_{-}C(42)$	1.386(3)
$S_{1}(4) - C_{1}(43)$	1,6002(11)	C(47) - C(42)	1.300(3)
S(5) - O(7)	1.0002(11)	C(43) - C(44)	1.390(2)
S(5) - O(6)	1.0499(11)	C(43)-C(46)	1.396(2)
SI(5)-C(49)	1.8643(16)	C(44)- $C(45)$	1.394(2)
SI(5)-C(55)	1.8711(16)	C(45)-C(46)	1.375(3)
Si(6)-O(9)	1.6264(11)	C(46)-C(47)	1.384(3)
Si(6)-O(8)	1.6362(11)	C(47)-C(48)	1.390(2)
Si(6)-C(67)	1.8583(16)	C(49)-C(54)	1.378(2)
Si(6)-C(61)	1.8611(16)	C(49)-C(50)	1.392(2)
Si(7)-O(12)	1.6270(11)	C(50)-C(51)	1.395(3)
Si(7)-O(11)	1.6408(11)	C(51)-C(52)	1.357(3)
Si(7)-C(73)	1.8602(17)	C(52) - C(53)	1.364(3)
Si(7)-C(79)	1 8626(16)	C(53)-C(54)	1.389(2)
Si(8) - O(10)	1 5997(11)	C(55)-C(60)	1 399(2)
Si(8) - O(11)	1 6530(11)	C(55) = C(56)	1.000(2)
$S_{1}(0) = O(11)$	1.0000(11)	C(56) - C(57)	1.700(2)
S(0) - C(91)	1.0025(10)	C(50)-C(57)	1.300(2)
S(0)- $C(05)$	1.0000(10)	C(57) - C(58)	1.365(3)
C(1)-C(2)	1.400(2)	C(58) - C(59)	1.380(3)
C(1) - C(6)	1.400(2)	C(59)-C(60)	1.391(3)
C(2)-C(3)	1.389(2)	C(61)-C(62)	1.398(2)
C(3)-C(4)	1.379(3)	C(61)-C(66)	1.400(2)
C(4)-C(5)	1.381(3)	C(62)-C(63)	1.389(2)
C(5)-C(6)	1.392(2)	C(63)-C(64)	1.374(3)
C(7)-C(12)	1.397(2)	C(64)-C(65)	1.383(3)
C(7)-C(8)	1.400(2)	C(65)-C(66)	1.384(2)
C(8) - C(9)	1.388(3)	C(67)-C(68)	1.388(2)
C(9)-C(10)	1.375(3)	C(67)-C(72)	1.389(2)
C(10)-C(11)	1 378(3)	C(68)- $C(69)$	1.377(3)
C(11) - C(12)	1 301(3)	C(69) - C(70)	1 387(1)
C(12) C(12)	1 290(2)	C(70) C(71)	1.307(4)
C(13) - C(10)	1.303(2)	C(70)-C(71)	1.304(3)
O(13) - O(14)	1.397(2)	O(71) - O(72)	1.378(3)
C(14)-C(15)	1.383(3)	U(73) - U(74)	1.398(2)
C(15)-C(16)	1.365(3)	C(73)-C(78)	1.403(2)
C(16)-C(17)	1.372(3)	C(74)-C(75)	1.389(3)
C(17)-C(18)	1.387(3)	C(75)-C(76)	1.381(3)

C(76)-C(77)	1.378(3)	O(2)-Si(1)-C(1)	104.84(6)
C(77)-C(78)	1.382(3)	C(7)-Si(1)-C(1)	109.47(7)
C(79)-C(80)	1.395(2)	O(3)-Si(2)-O(2)	111.90(6)
C(79)-C(84)	1.400(2)	O(3)-Si(2)-C(13)	110.67(7)
C(80)-C(81)	1.383(2)	O(2)-Si(2)-C(13)	106.30(7)
C(81)-C(82)	1.385(3)	O(3)-Si(2)-C(19)	108.50(6)
C(82)- $C(83)$	1.381(3)	O(2)-Si(2)-C(19)	109.60(6)
C(83)-C(84)	1.388(2)	O(13) - O(2) - O(19)	109.85(7)
C(85) - C(80)	1.400(2)	O(4) = Si(3) - O(3)	100.87(6)
C(86)-C(87)	1.402(2)	O(5)-Si(3)-C(25)	105.57(0)
C(87)-C(88)	1.372(3)	O(4)-Si(3)-C(31)	109.90(6)
C(88)-C(89)	1.389(3)	O(5)-Si(3)-C(31)	110.88(7)
C(89)-C(90)	1.390(2)	C(25)-Si(3)-C(31)	109.47(7)
C(91)-C(92)	1.393(2)	O(6)-Si(4)-O(5)	111.69(6)
C(91)-C(96)	1.395(2)	O(6)-Si(4)-C(37)	110.84(7)
C(92)-C(93)	1.389(3)	O(5)-Si(4)-C(37)	107.42(7)
C(93)-C(94)	1.379(3)	O(6)-Si(4)-C(43)	108.79(6)
C(94)-C(95)	1.361(3)	O(5)-Si(4)-C(43)	109.17(6)
C(95)-C(96)	1.393(3)	C(37)-Si(4)-C(43)	108.88(7)
N(1)-C(99)	1.480(2)	O(7)-Si(5)-O(8)	109.61(5)
N(1)-C(101)	1.489(2)	O(7)-Si(5)- $O(49)$	111.43(7)
N(1)-C(97)	1.489(2)	O(8)-SI(5)-C(49)	107.91(7)
C(97) - C(96) C(98) - N(2)	1.533(2)	O(7) - SI(5) - C(55)	108.93(7)
C(90) - C(100)	1.403(2)	C(49)-Si(5)-C(55)	100.19(0) 110.71(7)
C(100)-N(2)	1 456(2)	O(9)-Si(6)-O(8)	109.85(6)
C(101)-C(102)	1.543(2)	O(9)-Si(6)-C(67)	109.12(7)
C(102)-N(2)	1.471(2)	O(8)-Si(6)-C(67)	112.06(7)
N(3)-C(105)	1.482(2)	O(9)-Si(6)-C(61)	108.33(6)
N(3)-C(107)	1.489(2)	O(8)-Si(6)-C(61)	107.42(6)
N(3)-C(103)	1.489(2)	C(67)-Si(6)-C(61)	109.98(7)
C(103)-C(104)	1.536(2)	O(12)-Si(7)-O(11)	109.30(6)
C(104)-N(4)	1.453(2)	O(12)-Si(7)-C(73)	109.19(7)
C(105)-C(106)	1.544(3)	O(11)-Si(7)-C(73)	112.15(6)
C(106) - N(4)	1.452(3)	O(12)-Si(7)-C(79) O(11) Si(7) C(70)	108.26(6)
C(107) - C(106) C(108) N(4)	1.543(3)	O(11)-O(7)-O(79) O(73) Si(7) O(79)	107.22(0)
C(100)-N(4) C(100)-C(110)	1.470(3)	O(10)-Si(8)-O(11)	10.03(7)
C(109)-C(114)	1.386(3)	O(10)-Si(8)-C(91)	112 73(7)
C(110) - C(111)	1.365(3)	O(11)-Si(8)-C(91)	108.23(7)
C(111)-C(112)	1.378(3)	O(10)-Si(8)-C(85)	109.53(7)
C(112)-C(113)	1.390(3)	O(11)-Si(8)-C(85)	110.05(6)
C(113)-C(114)	1.389(3)	C(91)-Si(8)-C(85)	107.07(7)
C(114)-C(115)	1.508(3)	Si(1)-O(1)-Al(1)	164.96(8)
C(116)-C(117)	1.380(3)	Si(2)-O(2)-Si(1)	150.03(7)
C(116)-C(121)	1.387(3)	Si(2)-O(3)-AI(2)	166.47(8)
C(117)-C(118)	1.369(3)	Si(3)-O(4)-Al(2)	159.82(7)
C(118)- $C(119)$	1.381(3)	Si(4) - O(5) - Si(3)	158.88(8)
C(119)-C(120) C(120) $C(121)$	1.303(3)	SI(4) - O(0) - AI(1) SI(5) O(7) AI(1)	101.40(0)
C(120) - C(121) C(121) - C(122)	1.505(5)	Si(3)-O(7)-Ai(7) Si(6)-O(8)-Si(5)	130.47(7)
0(121)-0(122)	1.566(5)	Si(6)-O(9)-Al(1)	129 25(6)
O(1)-Al(1)-O(6)	111.71(6)	Si(8)-O(10)-Al(2)	129.78(7)
O(1)-Al(1)-O(7)	112.95(5)	Si(7)-O(11)-Si(8)	128.72(7)
O(6)-AI(1)-O(7)	113.16(5)	Si(7)-O(12)-AI(2)	127.35(6)
O(1)-AI(1)-O(9)	108.62(6)	C(2)-C(1)-C(6)	117.32(15)
O(6)-Al(1)-O(9)	105.55(6)	C(2)-C(1)-Si(1)	119.50(12)
O(7)-AI(1)-O(9)	104.19(5)	C(6)-C(1)-Si(1)	122.86(12)
O(3)-AI(2)-O(4)	112.61(6)	C(3)-C(2)-C(1)	121.28(17)
O(3)-Al(2)-O(10)	111.71(5)	C(4)-C(3)-C(2)	120.21(18)
O(4)-AI(2)-O(10)	112.44(5)		119.89(16)
O(3) - AI(2) - O(12) O(4) - AI(2) - O(42)	107.20(0)	C(4)-C(3)-C(0) C(5) C(6) C(1)	120.04(17)
$O(10) - \Delta I(2) - O(12)$	104 34(5)	C(12)-C(12)-C(12)	117 20(17)
O(1)-Si(1)-O(2)	111.19(6)	C(12)-C(7)-Si(1)	121.46(13)
O(1)-Si(1)-C(7)	110.71(7)	C(8)-C(7)-Si(1)	121.15(14)
O(2)-Si(1)-C(7)	110.40(7)	C(9)-C(8)-C(7)	121.12(19)
O(1)-Si(1)-C(1)	110.07(̀6)́	C(10)-Č(9)-Č(8)	120.2(2)

C(9)- $C(10)$ - $C(11)$	120.06(19)	C(66)-C(61)-Si(6)	119 47(12)
C(10) - C(11) - C(12)	110 0(2)	C(63)- $C(62)$ - $C(61)$	121 /2(16)
C(10)- $C(11)$ - $C(12)$	119.9(2)	C(03) - C(02) - C(01)	121.43(10)
C(11)-C(12)-C(1)	121.27(10)	C(04) - C(03) - C(02)	119.03(17)
C(18) - C(13) - C(14)	110.00(10)	C(03)-C(04)-C(05)	120.16(17)
C(18) - C(13) - S(2)	121.66(13)	C(64)-C(65)-C(66)	120.01(17)
C(14)-C(13)-Si(2)	121.63(13)	C(65)-C(66)-C(61)	121.24(17)
C(15)-C(14)-C(13)	121.97(18)	C(68)-C(67)-C(72)	117.21(16)
C(16)-C(15)-C(14)	119.94(18)	C(68)-C(67)-Si(6)	119.87(13)
C(15)-C(16)-C(17)	119.66(19)	C(72)-C(67)-Si(6)	122.77(13)
C(16)-C(17)-C(18)	120.6(2)	C(69)-C(68)-C(67)	120.8(2)
C(17)-C(18)-C(13)	121.15(19)	C(68)-C(69)-C(70)	120.1(2)
C(24)-C(19)-C(20)	117.40(14)	C(71)-C(70)-C(69)	120.3(2)
C(24)-C(19)-Si(2)	122.75(12)	C(70)-C(71)-C(72)	119.4(2)
C(20)-C(19)-Si(2)	119.70(12)	C(71)-C(72)-C(67)	122.26(18)
C(21)-C(20)-C(19)	121.28(15)	C(74)-C(73)-C(78)	116.98(16)
C(22)-C(21)-C(20)	119.95(16)	C(74)-C(73)-Si(7)	122.58(12)
C(23)-C(22)-C(21)	120.17(15)	C(78)-C(73)-Si(7)	120.43(13)
C(22)-C(23)-C(24)	119,69(16)	C(75)-C(74)-C(73)	121.85(17)
C(23)-C(24)-C(19)	121 51(16)	C(76)-C(75)-C(74)	119 25(19)
C(30)-C(25)-C(26)	117 28(14)	C(77)- $C(76)$ - $C(75)$	120 55(19)
C(30)-C(25)-Si(3)	120 69(12)	C(76)-C(77)-C(78)	119 85(18)
C(26)-C(25)-Si(3)	121 89(12)	C(77)-C(78)-C(73)	121 51(18)
C(27)- $C(26)$ - $C(25)$	121 51(16)	C(80)-C(79)-C(84)	117 11(15)
C(28)- $C(27)$ - $C(26)$	110 03(17)	C(80)- $C(79)$ - $Si(7)$	110 3/(12)
C(27) - C(28) - C(20)	110.33(17)	C(84)-C(79)-Si(7)	173.04(12)
C(28) C(20) C(20)	120 24(17)	C(81) C(80) C(70)	123.44(12)
C(20) - C(20) - C(30)	120.24(17)	C(80) = C(80) - C(79)	121.09(10)
C(29) - C(30) - C(25)	121.21(17)	C(00) - C(01) - C(02)	120 14(16)
C(32) - C(31) - C(30)	117.22(13)	C(03) - C(02) - C(01)	120.14(10)
C(32)- $C(31)$ - $S(3)$	122.20(12)	C(02) - C(03) - C(04)	119.00(10)
C(30) - C(31) - S((3))	120.37(12)	C(86) - C(84) - C(79)	147.02(10)
C(33)-C(32)-C(31)	121.88(16)	C(86) - C(85) - C(90)	117.22(15)
C(34)-C(33)-C(32)	119.02(10)	C(00) - C(05) - Si(0)	121.01(13)
C(33)-C(34)-C(35)	119.79(16)	C(90)-C(85)-SI(8)	120.82(12)
C(34)-C(35)-C(36)	120.03(17)	C(87)-C(86)-C(85)	121.60(17)
C(35)-C(36)-C(31)	121.47(16)	C(88)-C(87)-C(86)	119.94(18)
C(38)-C(37)-C(42)	117.00(16)	C(87)-C(88)-C(89)	120.17(17)
C(38)-C(37)-SI(4)	121.38(13)	C(88)-C(89)-C(90)	119.85(18)
C(42)-C(37)-SI(4)	121.53(13)	C(89)- $C(90)$ - $C(85)$	121.21(17)
C(39)- $C(38)$ - $C(37)$	121.79(18)	C(92)- $C(91)$ - $C(96)$	117.95(15)
C(40)-C(39)-C(38)	120.00(19)	C(92)-C(91)-SI(8)	120.10(13)
C(39)-C(40)-C(41)	119.58(18)	C(96)-C(91)-Si(8)	121.58(13)
C(40)- $C(41)$ - $C(42)$	120.0(2)	C(93)-C(92)-C(91)	120.67(19)
C(41)-C(42)-C(37)	121.59(18)	C(94)-C(93)-C(92)	120.1(2)
C(44)-C(43)-C(48)	117.33(15)	C(95)-C(94)-C(93)	120.30(18)
C(44)-C(43)-Si(4)	122.60(12)	C(94)-C(95)-C(96)	120.1(2)
C(48)-C(43)-Si(4)	119.98(12)	C(95)-C(96)-C(91)	120.88(19)
C(45)-C(44)-C(43)	121.40(17)	C(99)-N(1)-C(101)	110.82(16)
C(46)-C(45)-C(44)	119.99(17)	C(99)-N(1)-C(97)	109.61(14)
C(45)-C(46)-C(47)	119.98(16)	C(101)-N(1)-C(97)	109.02(14)
C(46)-C(47)-C(48)	119.91(17)	N(1)-C(97)-C(98)	107.71(14)
C(47)-C(48)-C(43)	121.39(17)	N(2)-C(98)-C(97)	111.45(14)
C(54)-C(49)-C(50)	116.82(16)	N(1)-C(99)-C(100)	107.19(15)
C(54)-C(49)-Si(5)	120.08(13)	N(2)-C(100)-C(99)	111.39(15)
C(50)-C(49)-Si(5)	123.11(13)	N(1)-C(101)-C(102)	107.85(14)
C(49)-C(50)-C(51)	121.20(19)	N(2)-C(102)-C(101)	110.61(14)
C(52)-C(51)-C(50)	120.10(19)	C(98)-N(2)-C(100)	109.27(15)
C(51)-C(52)-C(53)	120.02(17)	C(98)-N(2)-C(102)	108.07(14)
C(52)-C(53)-C(54)	120.0(2)	C(100)-N(2)-C(102)	108.92(16)
C(49)-C(54)-C(53)	121.80(18)	C(105)-N(3)-C(107)	110.09(17)
C(60)-C(55)-C(56)	116.95(15)	C(105)-N(3)-C(103)	110.09(16)
C(60)-C(55)-Si(5)	124.33(13)	C(107)-N(3)-C(103)	108.82(15)
C(56)-C(55)-Si(5)	118.70(11)	N(3)-C(103)-C(104)	107.99(14)
C(57)-C(56)-C(55)	122.26(16)	N(4)-C(104)-C(103)	111.24(14)
C(56)-C(57)-C(58)	119.72(18)	N(3)-C(105)-C(106)	108.13(16)
C(59)-C(58)-C(57)	119.48(17)	N(4)-C(106)-C(105)	110.88(16)
C(58)-C(59)-C(60)	120.71(17)	N(3)-C(107)-C(108)	107.01(16)
C(59)-C(60)-C(55)	120.86(17)	N(4)-C(108)-C(107)	111.74(16)
C(62)-C(61)-C(66)	117.31(15)	C(106)-N(4)-C(104)	109.47(16)
C(62)-C(61)-Si(6)	123.08(12)	C(106)-N(4)-C(108)	108.63(17)

$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(118)-C(117)-C(116) C(117)-C(118)-C(119) C(118)-C(119)-C(120) C(119)-C(120)-C(121) C(120)-C(121)-C(121) C(120)-C(121)-C(122) C(116)-C(121)-C(122)	120.0(2) 119.7(2) 120.2(2) 120.8(2) 117.92(19) 120.8(2) 121.27(19)
--	--	--

Symmetry transformations used to generate equivalent atoms:

Tabelle 43: Anisotropische Auslenkungsaparameter (Å²x 10³) für sh3111. Der anisotropischeExponentfaktor des Auslenkungsparameter lautet: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
AI(1)	13(1)	13(1)	11(1)	0(1)	1(1)	0(1)
AI(2)	12(1)	13(1)	13(1)	1(1)	1(1)	0(1)
Si(1)	17(1)	16(1)	13(1)	1(1)	0(1)	1(1)
Si(2)	13(1)	15(1)	16(1)	0(1)	0(1)	-1(1)
Si(3)	15(1)	15(1)	12(1)	0(1)	0(1)	0(1)
Si(4)	14(1)	15(1)	15(1)	0(1)	1(1)	-2(1)
Si(5)	17(1)	16(1)	12(1)	0(1)	4(1)	3(1)
Si(6)	16(1)	13(1)	14(1)	-1(1)	3(1)	-2(1)
Si(7)	18(1)	13(1)	15(1)	1(1)	3(1)	0(1)
Si(8)	14(1)	16(1)	13(1)	0(1)	3(1)	0(1)
O(1)	23(1)	28(1)	16(1)	5(1)	0(1)	4(1)
O(2)	28(1)	17(1)	18(1)	-1(1)	2(1)	2(1)
O(3)	17(1)	26(1)	23(1)	5(1)	-2(1)	-6(1)
O(4)	17(1)	26(1)	15(1)	4(1)	0(1)	0(1)
O(5)	27(1)	17(1)	22(1)	-2(1)	4(1)	0(1)
O(6)	18(1)	20(1)	22(1)	0(1)	1(1)	-4(1)
O(7)	19(1)	16(1)	13(1)	1(1)	4(1)	3(1)
O(8)	24(1)	16(1)	15(1)	0(1)	6(1)	1(1)
O(9)	22(1)	14(1)	16(1)	-2(1)	7(1)	-2(1)
O(10)	15(1)	18(1)	14(1)	2(1)	3(1)	2(1)
O(11)	22(1)	16(1)	17(1)	2(1)	7(1)	0(1)
O(12)	25(1)	13(1)	18(1)	0(1)	9(1)	0(1)
C(1)	20(1)	19(1)	15(1)	0(1)	-4(1)	3(1)
C(2)	32(1)	25(1)	19(1)	1(1)	4(1)	0(1)
C(3)	42(1)	41(1)	23(1)	1(1)	12(1)	0(1)
C(4)	41(1)	46(1)	20(1)	-10(1)	6(1)	9(1)
C(5)	39(1)	30(1)	27(1)	-13(1)	-6(1)	6(1)
C(6)	25(1)	23(1)	23(1)	-2(1)	-3(1)	0(1)
C(7)	21(1)	20(1)	27(1)	-2(1)	5(1)	0(1)
C(8)	30(1)	37(1)	34(1)	5(1)	10(1)	-1(1)
C(9)	39(1)	46(1)	56(1)	3(1)	25(1)	-8(1)
C(10)	30(1)	46(1)	72(2)	-15(1)	21(1)	-15(1)
C(11)	25(1)	51(1)	56(1)	-20(1)	0(1)	-9(1)
C(12)	24(1)	37(1)	35(1)	-7(1)	2(1)	-5(1)
C(13)	19(1)	20(1)	19(1)	0(1)	0(1)	0(1)
C(14)	23(1)	30(1)	28(1)	5(1)	-5(1)	-6(1)
C(15)	23(1)	51(1)	40(1)	7(1)	-11(1)	-4(1)
C(16)	42(1)	47(2)	75(2)	19(1)	-27(1)	9(1)
C(17)	59(2)	28(1)	108(2)	20(1)	-44(2)	1(1)
C(18)	39(1)	23(1)	64(1)	10(1)	-22(1)	-4(1)
C(19)	17(1)	15(1)	19(1)	-2(1)	1(1)	-4(1)
C(20)	21(1)	22(1)	23(1)	0(1)	2(1)	0(1)
C(21)	33(1)	26(1)	21(1)	3(1)	0(1)	0(1)
C(22)	38(1)	26(1)	20(1)	-1(1)	8(1)	-2(1)
C(23)	26(1)	30(1)	26(1)	-4(1)	9(1)	0(1)

C(24)	18(1)	25(1)	24(1)	-2(1)	1(1)	-1(1)
C(25)	16(1)	21(1)	14(1)	0(1)	-1(1)	3(1)
C(26)	28(1)	24(1)	20(1)	-3(1)	-1(1)	1(1)
C(27)	36(1)	33(1)	22(1)	-10(1)	-1(1)	6(1) 6(1)
C(28)	38(1)	52(1) 41(1)	17(1)	-5(1) 5(1)	6(1) 11(1)	6(1) -5(1)
C(29) C(30)	30(1)	24(1)	19(1)	0(1)	4(1)	-3(1) 0(1)
C(31)	18(1)	17(1)	18(1)	-1(1)	0(1)	2(1)
C(32)	21(1)	30(1)	21(1)	-2(1)	-2(1)	-2(1)
C(33)	22(1)	43(1)	28(1)	-8(1)	-5(1)	-6(1)
C(34)	19(1)	43(1)	37(1)	-5(1)	4(1)	-11(1)
C(35)	25(1)	45(1)	27(1)	2(1)	5(1)	-6(1)
C(36)	18(1)	33(1)	21(1)	0(1)	0(1)	-2(1)
C(37)	20(1)	24(1) 29(1)	33(1)	2(1) 7(1)	4(1) -8(1)	-7(1)
C(39)	33(1)	51(1)	40(1)	12(1)	-17(1)	-11(1)
C(40)	33(1)	62(2)	41(1)	14(1)	-11(1)	14(1)
C(41)	58(1)	39(1)	42(1)	0(1)	-16(1)	21(1)
C(42)	42(1)	28(1)	28(1)	-2(1)	-9(1)	8(1)
C(43)	19(1)	16(1)	18(1)	-4(1)	0(1)	-6(1)
C(44)	20(1)	31(1)	22(1)	-1(1) 7(1)	4(1) 10(1)	-4(1) 8(1)
C(45)	29(1) 51(1)	33(1)	19(1)	-7(1)	10(1)	-0(1)
C(47)	55(1)	27(1)	19(1)	4(1)	-2(1)	-1(1)
C(48)	33(1)	20(1)	24(1)	2(1)	1(Ì)	2(1)
C(49)	20(1)	25(1)	15(1)	-3(1)	5(1)	0(1)
C(50)	38(1)	34(1)	52(1)	12(1)	23(1)	4(1)
C(51)	39(1)	48(1)	48(1)	7(1)	24(1)	-8(1)
C(52)	19(1) 24(1)	58(1) 47(1)	30(1) 54(1)	-16(1)	10(1)	-8(1) 9(1)
C(54)	22(1)	31(1)	44(1)	2(1)	10(1)	3(1)
C(55)	26(1)	16(1)	15(1)	1(1)	1(1)	4(1)
C(56)	29(1)	26(1)	22(1)	6(1)	-3(1)	-6(1)
C(57)	35(1)	33(1)	35(1)	11(1)	-12(1)	-14(1)
C(58)	51(1)	26(1)	34(1)	-1(1)	-19(1)	-2(1) 10(1)
C(59) C(60)	34(1)	28(1)	18(1)	-2(1)	-4(1)	13(1)
C(61)	18(1)	19(1)	14(1)	2(1)	4(1)	0(1)
C(62)	26(1)	19(1)	20(1)	-2(1)	2(1)	1(1)
C(63)	36(1)	22(1)	29(1)	-2(1)	9(1)	8(1)
C(64)	25(1)	35(1)	40(1)	6(1)	5(1)	12(1)
C(65) C(66)	23(1)	44(1) 28(1)	41(1) 27(1)	-2(1) -6(1)	-o(1) -2(1)	5(1) 1(1)
C(67)	19(1)	17(1)	25(1)	0(1)	-2(1)	0(1)
C(68)	50(1)	44(1)	50(1)	18(1)	-25(1)	-20(1)
C(69)	94(2)	79(2)	85(2)	37(2)	-66(2)	-44(2)
C(70)	77(2)	52(2)	114(2)	18(2)	-71(2)	-30(2)
C(71)	47(1)	34(1)	93(2) 51(1)	23(1)	-34(1)	-20(1)
C(72) C(73)	21(1)	18(1)	20(1)	-1(1)	-17(1)	-12(1) 3(1)
C(74)	28(1)	27(1)	37(1)	6(1)	-7(1)	-5(1)
C(75)	33(1)	31(1)	60(1)	2(1)	-12(1)	-9(1)
C(76)	33(1)	42(1)	54(1)	-8(1)	-20(1)	-1(1)
C(77)	40(1)	42(1)	37(1)	2(1)	-17(1)	3(1)
C(78)	33(1)	26(1)	26(1)	3(1)	-4(1) 5(1)	2(1)
C(80)	20(1)	22(1)	25(1)	-1(1)	-1(1)	-1(1)
C(81)	23(1)	35(1)	37(1)	5(1)	-6(1)	0(1)
C(82)	24(1)	32(1)	38(1)	7(1)	7(1)	11(1)
C(83)	36(1)	23(1)	25(1)	-1(1)	8(1)	10(1)
C(84)	27(1)	21(1)	17(1) 16(1)	-1(1) 1(1)	1(1)	4(1)
C(86)	23(1)	26(1)	19(1)	1(1)	-∠(⊺) 1(1)	4(1) 5(1)
C(87)	51(1)	33(1)	19(1)	-2(1)	-5(1)	7(1)
C(88)	59(1)	27(1)́	27(1)́	-3(1)	-20(1)	3(1)
C(89)	40(1)	28(1)	38(1)	3(1)	-17(1)	-9(1)
C(90)	29(1)	27(1)	24(1)	3(1)	-4(1)	-5(1)
C(91) C(92)	18(1) 20(1)	29(1) 40(1)	14(1) 29(1)	-2(1) -3(1)	3(1)	-∠(1) 5(1)
- ()			(-)	~(')	~(')	2(1)

C(93)	23(1)	72(2)	36(1)	-9(1)	4(1)	14(1)
C(94)	19(1)	95(2)	24(1)	-10(1)	8(1)	-12(1)
C(95)	33(1)	65(2)	27(1)	-1(1)	9(1)	-25(1)
C(96)	29(1)	36(1)	28(1)	0(1)	7(1)	-9(1)
N(1)	26(1)	21(1)	21(1)	-4(1)	10(1)	-1(1)
C(97)	34(1)	18(1)	34(1)	-2(1)	12(1)	0(1)
C(98)	34(1)	22(1)	29(1)	2(1)	11(1)	-1(1)
C(99)	38(1)	68(2)	26(1)	13(1)	10(1)	19(1)
C(100)	39(1)	67(2)	36(1)	15(1)	14(1)	28(1)
C(101)	47(1)	31(1)	37(1)	-15(1)	24(1)	-18(1)
C(102)	48(1)	31(1)	34(1)	-14(1)	20(1)	-14(1)
N(2)	27(1)	22(1)	23(1)	-1(1)	10(1)	2(1)
N(3)	32(1)	20(1)	25(1)	-4(1)	14(1)	-3(1)
C(103)	36(1)	25(1)	30(1)	0(1)	8(1)	7(1)
C(104)	32(1)	29(1)	30(1)	4(1)	11(1)	4(1)
C(105)	82(2)	35(1)	46(1)	-20(1)	36(1)	-33(1)
C(106)	98(2)	32(1)	47(1)	-17(1)	40(1)	-21(1)
C(107)	40(1)	60(2)	31(1)	9(1)	9(1)	20(1)
C(108)	36(1)	65(2)	42(1)	14(1)	15(1)	22(1)
N(4)	39(1)	26(1)	28(1)	0(1)	16(1)	5(1)
C(109)	41(1)	27(1)	47(1)	6(1)	5(1)	3(1)
C(110)	58(2)	30(1)	44(1)	4(1)	-11(1)	2(1)
C(111)	74(2)	40(1)	33(1)	6(1)	1(1)	13(1)
C(112)	53(1)	38(1)	56(1)	13(1)	22(1)	15(1)
C(113)	34(1)	30(1)	54(1)	-1(1)	-3(1)	10(1)
C(114)	43(1)	27(1)	36(1)	2(1)	1(1)	11(1)
C(115)	73(2)	58(2)	38(1)	-7(1)	0(1)	15(1)
C(116)	41(1)	35(1)	59(1)	7(1)	11(1)	-6(1)
C(117)	50(1)	36(1)	59(2)	-1(1)	-11(1)	2(1)
C(118)	68(2)	38(1)	40(1)	3(1)	4(1)	17(1)
C(119)	45(1)	31(1)	54(1)	9(1)	20(1)	13(1)
C(120)	29(1)	26(1)	51(1)	2(1)	4(1)	7(1)
C(121)	40(1)	26(1)	40(1)	4(1)	5(1)	3(1)
C(122)	72(2)	57(2)	44(1)	9(1)	8(1)	-8(1)

Tabelle 44: Koordinaten des Wasserstoffs ($x \ 10^4$) und isotrope Auslenkungsparameter (Å $^2x \ 10^3$) fürsh3111.

	x	У	Z	U(eq)
H(2)	2864	10140	4542	30
H(3)	2488	10423	5555	42
H(4)	2685	11288	5969	42
H(5)	3276	11869	5377	39
H(6)	3655	11592	4360	29
H(8)	4094	11059	2299	40
H(9)	4999	11433	2097	56
H(10)	5704	11513	2971	58
H(11)	5507	11222	4055	53
H(12)	4605	10843	4265	38
H(14)	4732	9634	3832	33
H(15)	5470	9151	4398	46
H(16)	5375	8227	4557	67
H(17)	4545	7785	4136	80
H(18)	3806	8261	3558	51
H(20)	3071	9841	1904	26
H(21)	3301	9917	774	32
H(22)	4201	9617	426	33
H(23)	4879	9248	1212	33
H(24)	4650	9170	2343	27

H(26)	1579	8386	657	29
H(27)	1945	8239	-407	37
H(28)	2377	8946	-977	43
H(29)	2432	9804	-488	41
H(30)	2070	9953	575	29
H(32)	549 357	9021	/5/	29
П(33) Н(34)	-557	0020 8360	090 1075	37
H(35)	37	8475	2902	39
H(36)	942	8869	2757	29
H(38)	494	10140	1106	37
H(39)	-279	10528	479	50
H(40)	-419	11460	498	55
H(41)	229	12006	1137	56
H(42)	1005	11618	1759	39
H(44)	351	10795	2792	29
H(45)	37	10682	3887	39
H(40)	013	10216	4689	41
H(48)	1832	9075	3311	31
H(50)	3909	12247	211	49
H(51)	4851	12204	-179	54
H(52)	5375	11410	-87	43
H(53)	5001	10677	477	50
H(54)	4075	10722	897	38
H(56)	1916	11190	809	31
H(57)	1204	10982	-16	42
H(58)	1434	10967	-1156	45
H(59)	2380	11164	-1451	42
H(60)	2566	13401	-020	32 26
H(63)	1763	13977	2383	35
H(64)	958	13747	1689	40
H(65)	949	12937	1084	43
H(66)	1748	12362	1164	32
H(68)	3597	12104	3111	59
H(69)	4364	12536	3693	106
H(70)	4744	13338	3274	100
H(71)	4355	13707	2282	71
H(72)	3081	13284	1708	47
П(74) Н(75)	736	6203	2588	50
H(76)	369	6664	1632	53
H(77)	769	7487	1329	48
H(78)	1538	7856	1977	34
H(80)	3268	7460	4065	29
H(81)	4052	6873	4212	38
H(82)	4096	6092	3553	38
H(83)	3347	5896	2753	33
H(84)	2561	0485 0277	2609	26
П(00) Н(87)	2106	8746	6569	31 42
H(88)	2987	9192	6473	46
H(89)	3388	9284	5415	43
H(90)	2904	8926	4454	32
H(92)	768	9034	4114	36
H(93)	-171	8964	4503	52
H(94)	-472	8168	5006	55
H(95)	146	7434	5094	50
H(96)	1086	(491	4699	37
П(I) Н(07А)	∠194(9) 2209	1130Z(8)	3041(10)	40(0) 24
H(97B)	2300 1757	11202	3489	34 34
H(98A)	1152	11364	4297	34
H(98B)	1707	11441	4808	34
H(99A)	1170	11914	2938	52
H(99B)	1406	12525	2922	52
H(10A)	987	12723	3879	56
H(10B)	662	12151	3820	56

H(10C)	2274	12767	3662	45
H(10D)	2668	12294	4000	45
H(10E)	2157	12302	4923	44
H(10F)	1832	12832	4631	44
H(2)	2971(8)	7928(8)	2117(10)	38(6)
H(10G)	3299	8683	1527	36
H(10H)	2695	8445	1214	36
H(10I)	3097	8238	256	36
H(10J)	3665	8561	526	36
H(10K)	2550	7451	1209	64
H(10L)	2986	7072	1656	64
H(10M)	3563	6967	798	69
H(10N)	3077	7266	326	69
H(10O)	3886	7467	2172	52
H(10P)	3968	8113	2191	52
H(10Q)	4391	8103	1208	57
H(10R)	4395	7457	1247	57
H(109)	2068	5254	1960	46
H(110)	2082	5339	3126	53
H(111)	1257	5150	3709	59
H(112)	418	4843	3126	58
H(113)	396	4761	1950	48
H(11A)	1434	5261	881	85
H(11B)	812	4971	889	85
H(11C)	1396	4617	942	85
H(116)	2968	4533	3125	53
H(117)	2929	4505	1952	58
H(118)	3720	4793	1360	59
H(119)	4553	5113	1949	51
H(120)	4597	5134	3125	42
H(12A)	4221	4830	4181	86
H(12B)	3598	4542	4186	86
H(12C)	3640	5187	4164	86

7.6 Daten zur Molekül- und Kristallstruktur von $[(Ph_2Si(OH))_2O]_2Al_2O[(Ph_2SiO)_2O] \cdot 2 HN(CH_2CH_3)_2 9$

Tabelle 45: Kristalldaten und Strukturverfeinerungen für $[(Ph_2Si(OH))_2O]_2Al_2O[(Ph_2SiO)_2O] \cdot 2$ HN(CH₂CH₃)₂ **9** (sh3110).

Identifikationscode	sh3110		
Summenformel	C80H84 Al2 N2 O10 Si6 x 1.25 C7 H8		
Molmasse [g/mol]	1571.16		
Messtemperatur [K]	122(2)		
Wellenlänge [Å]	0.71073		
Kristallsystem	Triclinic		
Raumgruppe	P-1		
Gitterkonstanten	a = 14.3602(5) Å	α= 88.189(2)°.	
	b = 24.2059(8) Å	β= 82.243(2)°.	
	c = 25.3231(8) Å	$\gamma = 74.939(2)^{\circ}$.	
Zellvolumen [Å ³]	8422.2(5)	,	
Anzahl der Formeleinheiten Z	4		
Dichte (berechnet)	1.239 Mg/m ³		
Absorptionskoeffizient [mm ⁻¹]	0.179		
F(000)	3322		
Kristallabmessungen [mm ³]	0.56 x 0.21 x 0.10		
Messbereich θ [°]	1.48 to 27.17		

hkl - Indexbereich	-18<=h<=18, -31<=k<=26, -32<=l<=32
Gemessene Reflexe	139076
Symmetrieunabhängige Reflexe	37226 [R(int) = 0.0383]
Vollständigkeit des Datensatzes (bis $\theta = 27.17^{\circ}$)	99.5 %
Absorptionskorrektur	Multiscan
Max. und Min. Transmission	0.9817 and 0.9064
Strukturverfeinerungsmethode Daten / Einschränkungen / Parameter Güte des Fit auf F ² Endgültige R-Werte [I>2sigma(I)] R-Werte (alle Daten) Restelektronendichte (min./max.) [e/Å ⁻³]	Full-matrix least-squares on F ² 37226 / 0 / 1997 1.018 R1 = 0.0510, wR2 = 0.1196 R1 = 0.0802, wR2 = 0.1357 1.582 und -0.748

Tabelle 46: Atomkoordinaten ($x \ 10^4$) und äquivalente isotrope Auslenkungsparameter (Å² $x \ 10^3$) für sh3110. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

	Х	у	Z	U(eq)
AI(1)	6775(1)	7493(1)	2184(1)	23(1)
AI(2)	6014(1)	7472(1)	3445(1)	26(1)
Si(1)	4343(1)	6901(1)	3152(1)	19(1)
Si(2)	4811(1)	7139(1)	1947(1)	22(1)
Si(3)	7637(1)	8305(1)	1434(1)	24(1)
Si(4)	8784(1)	7096(1)	1526(1)	27(1)
Si(5)	5793(1)	8241(1)	4420(1)	23(1)
SI(6)	6720(1)	6991(1)	4488(1)	21(1)
O(1)	6718(2)	7538(1)	2860(1)	68(1)
0(2)	4982(1)	7272(1)	3362(1)	22(1)
O(3)	4234(1)	7008(1)	2520(1)	20(1)
O(4) O(5)	DOU7(1)	7294(1)	1990(1)	21(1)
0(5)	9614(1)	7770(1)	1257(1)	34(1) 29(1)
O(0)	7896(1)	7770(1) 7014(1)	1055(1)	20(1)
O(8)	5712(1)	8119(1)	3807(1)	34(1)
O(9)	6421(1)	7658(1)	4686(1)	21(1)
O(10)	6722(1)	6971(1)	3852(1)	29(1)
C(1)	4859(2)	6115(1)	3243(1)	23(1)
C(2)	5113(2)	5721(1)	2826(1)	33(1)
C(3)	5511(2)	5142(1)	2914(1)	42(1)
C(4)	5655(2)	4948(1)	3421(1)	42(1)
C(5)	5411(2)	5328(1)	3840(1)	40(1)́
C(6)	5017(2)	5905(1)	3752(1)	31(1)
C(7)	3132(2)	7106(1)	3574(1)	23(1)
C(8)	2942(2)	7531(1)	3963(1)	32(1)
C(9)	2108(2)	7640(1)	4332(1)	43(1)
C(10)	1435(2)	7329(1)	4319(1)	47(1)
C(11)	1604(2)	6905(1)	3945(1)	46(1)
C(12)	2437(2)	6797(1)	3578(1)	35(1)
C(13)	5073(2)	6490(1)	1514(1)	25(1)
C(14)	5964(2)	6306(1)	1190(1)	32(1)
C(15)	6164(Z) 5484(2)	5834(1)	858(1)	44(1)
C(10)	0401(3) 4502(2)	5526(1) 5607(1)	000(1)	40(1)
C(17)	4093(3)	5097(1) 6179(1)	1401(1)	40(1) 24(1)
C(10)	4391(2)	7726(1)	1491(1)	20(1)
C(19)	1087(3)	7830(1)	1003(1)	29(1) 59(1)
C(21)	3447(3)	8259(1)	844(1)	66(1)
C(22)	2636(3)	8579(2)	1131(2)	62(1)
C(23)	2469(3)	8489(2)	1660(2)	103(2)
C(24)	3120(3)	8061(2)	1914(2)	78(1)
C(25)	7122(2)	8476(1)	796(1)	39(1)
C(26)	7709(3)	8613(1)	346(1)	58(1)
C(27)	7338(4)	8813(2)	-121(2)	76(1)

C(28)	6369(4)	8877(2)	-141(2)	82(2)
C(29)	5775(3)	8725(2)	277(2)	92(2)
C(30)	6159(2)	8523(2)	756(1)	69(1)
C(31)	8000(2)	8954(1)	1614(1)	35(1)
C(32)	8835(4)	8036(2)	1821(2)	99(2)
C(32)	9010(6)	0330(2)	1021(2)	1/0(2)
C(33)	9010(0)	0056(2)	1990(3)	122(2)
C(34)	7590(4)	9950(2)	1904(2)	123(3)
C(30)	7300(4)	9904(Z) 0404(1)	1722(2)	91(2)
C(30)	7391(3)	9494(1)	1557(1)	00(1)
C(37)	8927(2)	6647(1)	922(1)	32(1)
C(38)	9419(2)	6783(1)	440(1)	36(1)
C(39)	9615(2)	6420(1)	3(1)	50(1)
C(40)	9323(3)	5920(2)	34(2)	57(1)
C(41)	8837(2)	5776(1)	499(2)	57(1)
C(42)	8634(2)	6137(1)	942(1)	44(1)
C(43)	9955(2)	6871(1)	1817(1)	29(1)
C(44)	10371(2)	7247(1)	2048(1)	40(1)
C(45)	11231(2)	7054(2)	2271(1)	53(1)
C(46)	11697(2)	6482(2)	2260(1)	53(1)
C(47)	11312(2)	6099(2)	2032(1)	50(1)
C(48)	10455(2)	6293(1)	1814(1)	39(1)
C(49)	6452(2)	8805(1)	4464(1)	25(1)
C(50)	5965(2)	9384(1)	4472(1)	35(1)
C(51)	6470(2)	9806(1)	4459(1)	42(1)
C(52)	7468(2)	9651(1)	4442(1)	42(1)
C(53)	7968(2)	9082(1)	4439(1)	41(1)
C(54)	7462(2)	8663(1)	4454(1)	34(1)
C(55)	4570(2)	8461(1)	4819(1)	28(1)
C(56)	3735(2)	8695(1)	4580(1)	38(1)
C(57)	2829(2)	8872(1)	4882(2)	49(1)
C(58)	2741(2)	8810(1)	5428(2)	51(1)
C(59)	3551(2)	8578(1)	5677(1)	46(1)
C(60)	4455(2)	8408(1)	5372(1)	36(1)
C(61)	7971(2)	6648(1)	4641(1)	24(1)
C(62)	8489(2)	6944(1)	4903(1)	30(1)
C(63)	9434(2)	6693(1)	4997(1)	38(1)
C(64)	9884(2)	6140(1)	4830(1)	39(1)
C(65)	9388(2)	5834(1)	4572(1)	35(1)
C(66)	8441(2)	6087(1)	4479(1)	28(1)
C(67)	5831(2)	6628(1)	4854(1)	24(1)
C(68)	6121(2)	6098(1)	5101(1)	31(1)
C(69)	5450(2)	5825(1)	5359(1)	38(1)
C(70)	4469(2)	6080(1)	5376(1)	39(1)
C(71)	4154(2)	6606(1)	5137(1)	38(1)
C(72)	4829(2)	6876(1)	4881(1)	30(1)
$\Delta I(3)$	3993(1)	2234(1)	2228(1)	17(1)
$\Delta I(A)$	17/3(1)	2204(1)	2502(1)	20(1)
Si(7)	985(1)	1021(1)	2502(1) 27/1(1)	20(1)
Si(8)	3162(1)	1135(1)	2/96(1)	20(1)
Si(9)	5628(1)	2227(1)	1313(1)	21(1)
Si(10)	6022(1)	2250(1)	2/51(1)	18(1)
Si(10) Si(11)	660(1)	/138(1)	1073(1)	24(1)
Si(12)	835(1)	41/3(1)	31/3(1)	24(1) 24(1)
O(12)	2004(1)	$\frac{1}{4}$	2553(1)	25(1)
O(11)	2004(1)	2556(1)	2000(1)	23(1)
O(12)	2040(1)	2550(1)	2075(1)	31(1) 27(1)
O(13)	2949(1)	1569(1)	2012(1)	27(1)
O(14)	4850(1)	2299(1)	2411(1)	20(1)
O(15)	4050(1)	2300(1)	2000(1)	24(1)
O(10)	4525(1)	2237(1)	1600(1)	24(1)
O(17)	4020(1) 1607(1)	2231(1)	1000(1)	20(1)
O(10)	F20(4)	3029(1) 4420(4)	3030(1) 2572(4)	20(1)
O(19)	⊃∠U(1) 1040(4)	4420(1) 2474(4)	2012(1)	30(1)
O(20)	1242(1)	3474(1)	19//(1)	27(1)
O(73)	55U(2)	1/98(1)	3434(1)	27(1)
O(74)	-443(2)	1936(1)	3643(1)	35(1)
O(75)	-1/4(2)	18/8(1)	4179(1)	44(1)
C(70)	-122(3)	1081(1)	4533(1)	53(1)
U(11)	859(3)	1538(2)	4361(1)	59(1)
U(18)	1192(2)	1599(1)	3826(1)	43(1)

C(79)	108(2)	1796(1)	2308(1)	25(1)
C(80)	-588(2)	2245(2)	2121(1)	46(1)
C(81)	-1213(2)	2148(3)	1785(1)	82(2)
C(82)	-1156(3)	1618(3)	1622(1)	105(2)
C(83)	-487(3)	1167(2)	1796(2)	86(2)
C(84)	136(2)	1253(1)	2149(1)	47(1)
C(85)	3409(2)	620(1)	1927(1)	26(1)
C(86)	2685(2)	539(2)	1650(1)	62(1)
C(87)	2874(3)	117(2)	1260(2)	82(1)
C(88)	3789(3)	-222(1)	1136(1)	60(1)
C(80)	4524(2)	-130(1)	1377(1)	54(1)
C(90)	4340(2)	288(1)	1767(1)	42(1)
C(91)	3368(2)	715(1)	3120(1)	24(1)
C(97)	2914(2)	271(1)	3232(1)	2-7(1) 32(1)
C(92)	2935(2)	-11(1)	3715(1)	41(1)
C(94)	3/15(2)	1/6(1)	4100(1)	/3(1)
C(95)	3878(2)	578(1)	4002(1)	40(1)
C(95)	3855(2)	850(1)	$\frac{4002(1)}{3514(1)}$	$\frac{1}{32(1)}$
C(90)	6202(2)	1570(1)	0.08(1)	24(1)
C(97)	7117(2)	1/10(1)	606(1)	24(1) 32(1)
C(90)	7554(2)	QQ1(1)	318(1)	40(1)
C(33)	7071(2)	572(1)	313(1)	40(1)
C(100)	6151(3)	6/6(1)	596(1)	4 0(1) 55(1)
C(101)	5729(2)	1130(1)	804(1)	41(1)
C(102)	5627(2)	2880(1)	800(1)	-41(1) 24(1)
C(103)	5606(2)	2888(1)	351(1)	24(1)
C(104)	5537(2)	2000(1)	50(1)	30(1)
C(105)	5520(2)	3887(1)	300(1)	38(1)
C(100)	5520(2)	2204(1)	309(1) 850(1)	30(1)
C(107)	5582(2)	3397(1)	11/3(1)	37(1) 31(1)
C(100)	6528(2)	281/(1)	2715(1)	22(1)
C(109)	6634(2)	2815(1)	2713(1)	22(1)
C(110)	7079(2)	2013(1)	3450(1)	38(1)
C(112)	7424(2)	3576(1)	3132(1)	38(1)
C(112)	7306(2)	3596(1)	2603(1)	44(1)
C(114)	6869(2)	3216(1)	2307(1)	37(1)
C(115)	6623(2)	1562(1)	2738(1)	23(1)
C(116)	7581(2)	1437(1)	2857(1)	28(1)
C(117)	8007(2)	922(1)	3086(1)	37(1)
C(118)	7480(2)	523(1)	3211(1)	47(1)
C(119)	6532(2)	638(1)	3102(1)	48(1)
C(120)	6113(2)	1145(1)	2864(1)	34(1)
C(121)	1378(2)	4522(1)	1493(1)	27(1)
C(122)	2394(2)	4380(1)	1455(1)	46(1)
C(123)	2945(2)	4640(2)	1088(2)	62(1)
C(124)	2503(2)	5049(2)	751(2)	55(1)
C(125)	1503(2)	5199(1)	774(1)	45(1)
C(126)	953(2)	4936(1)	1140(1)	31(1)
C(127)	-573(2)	4252(1)	1765(1)	25(1)
Č(128)	-814(2)	3855(1)	1456(1)	44(1)
C(129)	-1712(2)	3967(1)	1267(1)	52(1)
C(130)	-2381(2)	4480(1)	1385(1)	41(1)
C(131)	-2182(2)	4873(1)	1697(1)	41(1)
C(132)	-1284(2)	4760(1)	1884(1)	34(1)
C(133)	-257(2)	4072(1)	3604(1)	28(1)
C(134)	-372(2)	3539(1)	3781(1)	34(1)
C(135)	-1150(2)	3491(1)	4155(1)	40(1)
C(136)	-1834(2)	3972(1)	4359(1)	42(1)
C(137)	-1752(2)	4504(1)	4183(1)	43(1)
C(138)	-973(2)	4553(1)	3814(1)	35(1)
C(139)	1424(2)	4634(1)	3449(1)	27(1)
C(140)	1910(2)	4983(1)	3136(1)	44(1)
C(141)	2451(3)	5297(1)	3353(1)	55(1)
C(142)	2485(2)	5283(1)	3897(1)	48(1)
C(143)	2001(2)	4949(1)	4217(1)	36(1)
C(144)	1485(2)	4622(1)	3996(1)	28(1)
N(1)	6230(3)	8808(1)	2887(1)	71(1)
C(145)	6934(3)	9114(1)	3033(1)	56(1)
C(146)	7921(4)	8676(2)	3074(2)	88(1)

C(147)	5319(3)	9168(2)	2831(2)	85(1)
C(148)	4575(3)	8884(2)	2637(2)	70(1)
N(2)	8384(2)	6588(1)	3090(1)	40(1)
C(149)	9299(2)	6694(2)	3226(1)	59(1)
C(150)	9153(3)	7295(2)	3375(2)	93(2)
C(151)	8473(2)	5997(1)	2931(1)	49(1)
C(152)	7506(2)	5892(1)	2886(1)	52(1)
N(3)	3612(2)	3264(1)	3281(1)	30(1)
C(153)	4002(2)	3778(1)	3241(1)	42(1)
C(154)	4093(2)	3977(1)	2673(1)	54(1)
C(155)	3526(2)	3018(1)	3828(1)	42(1)
C(156)	3157(3)	2495(1)	3830(1)	52(1)
N(4)	2744(2)	2781(1)	1141(1)	32(1)
C(157)	2735(3)	3114(1)	639(1)	49(1)
C(158)	3191(3)	2759(2)	153(1)	68(1)
C(159)	2377(2)	2256(1)	1167(1)	38(1)
C(160)	1350(2)	2366(2)	1057(1)	50(1)
C(161)	8297(2)	2782(2)	9541(1)	46(1)
C(162)	8853(2)	2258(2)	9362(1)	51(1)
C(163)	9398(3)	1877(2)	9684(2)	63(1)
C(164)	9392(2)	2018(2)	10208(2)	58(1)
C(165)	8844(2)	2543(2)	10394(1)	56(1)
C(166)	8290(2)	2915(2)	10068(1)	52(1)
C(167)	7721(2)	3194(2)	9178(1)	74(1)
C(168)	9273(3)	894(2)	6577(2)	69(1)
C(169)	9460(2)	893(2)	6029(2)	59(1)
C(170)	9715(3)	399(2)	5735(2)	88(1)
C(171)	9753(3)	-115(2)	5982(3)	112(2)
C(172)	9542(3)	-121(3)	6533(4)	114(3)
C(173)	9308(3)	364(3)	6828(2)	98(2)
C(174)	9028(4)	1434(2)	6891(2)	112(2)
C(1A9)	584(6)	345(4)	10213(5)	72(2)
C(1A0)	421(6)	309(4)	9600(5)	69(2)
C(1A1)	-67(9)	0(6)	9361(6)	98(3)
C(1B9)	9(9)	-16(6)	10253(5)	72(3)
C(1B0)	620(12)	262(7)	10617(7)	80(4)
C(1B1)	516(5)	323(3)	9904(4)	68(2)
C(1C9)	213(14)	289(8)	9248(8)	94(5)
C(1C0)	1010(20)	585(15)	10470(13)	90(9)
C(1C1)	-274(12)	54(7)	9091(7)	83(5)

Tabelle 47: Bindungslängen [Å] und Winkel [°] für sh3110.

AI(1)-O(1)	1.7078(19)	Si(4)-O(6)	1.6383(18)
AI(1)-O(4)	1.7177(16)	Si(4)-C(37)	1.862(3)
AI(1)-O(7)	1.7577(19)	Si(4)-C(43)	1.870(3)
AI(1)-O(5)	1.7644(19)	Si(5)-O(8)	1.6144(17)
AI(2)-O(1)	1.7059(19)	Si(5)-O(9)	1.6430(17)
AI(2)-O(2)	1.7140(16)	Si(5)-C(55)	1.859(3)
AI(2)-O(8)	1.7650(18)	Si(5)-C(49)	1.865(2)
AI(2)-O(10)	1.7679(19)	Si(6)-O(10)	1.6126(16)
Si(1)-O(2)	1.5878(16)	Si(6)-O(9)	1.6365(16)
Si(1)-O(3)	1.6348(16)	Si(6)-C(61)	1.861(2)
Si(1)-C(7)	1.869(2)	Si(6)-C(67)	1.863(2)
Si(1)-C(1)	1.873(2)	C(1)-C(2)	1.392(3)
Si(2)-O(4)	1.5887(16)	C(1)-C(6)	1.397(3)
Si(2)-O(3)	1.6362(17)	C(2)-C(3)	1.392(4)
Si(2)-C(19)	1.868(3)	C(3)-C(4)	1.376(4)
Si(2)-C(13)	1.872(2)	C(4)-C(5)	1.374(4)
Si(3)-O(5)	1.6100(18)	C(5)-C(6)	1.387(4)
Si(3)-O(6)	1.6367(17)	C(7)-C(12)	1.394(3)
Si(3)-C(25)	1.856(3)	C(7)-C(8)	1.395(3)
Si(3)-C(31)	1.866(3)	C(8)-C(9)	1.387(4)
Si(4)-O(7)	1.6097(18)	C(9)-C(10)	1.376(4)

C(10)-C(11)	1.369(4)	AI(4)-O(18)	1.7713(16)
C(11)-C(12)	1.384(4)	Si(7)-O(12)	1.5819(18)
C(13)-C(18)	1.390(3)	Si(7)-O(11) Si(7) C(70)	1.6260(16)
C(13)-C(14) C(14)-C(15)	1.384(4)	Si(7)-C(73)	1.871(2)
C(15)-C(16)	1.375(4)	Si(8)-O(14)	1.5888(16)
C(16)-C(17)	1.378(5)	Si(8)-O(11)	1.6288(16)
C(17)-C(18)	1.393(4)	Si(8)-C(91)	1.868(2)
C(19)-C(24)	1.355(4)	Si(8)-C(85)	1.871(2)
C(19)-C(20)	1.395(4)	SI(9) - O(17) SI(0) O(16)	1.6174(16)
C(20)-C(21) C(21)-C(22)	1.350(4)	Si(9)-C(97)	1.857(2)
C(22)-C(23)	1.349(6)	Si(9)-C(103)	1.868(2)
C(23)-C(24)	1.407(5)	Si(10)-O(15)	1.6243(15)
C(25)-C(30)	1.375(4)	Si(10)-O(16)	1.6390(16)
C(25)-C(26)	1.408(5)	Si(10)-C(115) Si(10)-C(109)	1.858(2)
C(20)-C(21) C(27)-C(28)	1.367(6)	Si(10)-C(103) Si(11)-O(20)	1.6065(16)
C(28)-C(29)	1.370(7)	Si(11)-O(19)	1.6493(16)
C(29)-C(30)	1.420(5)	Si(11)-C(127)	1.864(2)
C(31)-C(32)	1.362(5)	Si(11)-C(121)	1.869(3)
C(31)-C(36)	1.385(4)	Si(12)-O(18) Si(12) O(10)	1.6121(16)
C(32)-C(33)	1.361(9)	Si(12)-O(19) Si(12)-C(139)	1.0434(17)
C(34)-C(35)	1.312(8)	Si(12)-C(133)	1.866(3)
C(35)-C(36)	1.373(5)	C(73)-C(78)	1.393(4)
C(37)-C(38)	1.400(4)	C(73)-C(74)	1.398(3)
C(37)-C(42)	1.403(4)	C(74)-C(75)	1.392(4)
C(30)-C(39) C(39)-C(40)	1.390(4)	C(75)-C(76) C(76)-C(77)	1.309(5)
C(40)-C(41)	1.370(5)	C(77)-C(78)	1.392(4)
C(41)-C(42)	1.396(5)	C(79)-C(84)	1.376(4)
C(43)-C(44)	1.392(4)	C(79)-C(80)	1.391(4)
C(43)-C(48)	1.397(4)	C(80)-C(81)	1.384(5)
C(44)-C(45) C(45)-C(46)	1.390(4)	C(87)-C(82)	1.337(7)
C(46)-C(47)	1.372(5)	C(83)-C(84)	1.404(5)
C(47)-C(48)	1.381(4)	C(85)-C(90)	1.383(3)
C(49)-C(50)	1.395(3)	C(85)-C(86)	1.387(4)
C(49)-C(54)	1.398(4)	C(86)-C(87)	1.393(4)
C(50)-C(51) C(51)-C(52)	1.395(4)	C(87)-C(88)	1.357(5)
C(52)-C(53)	1.378(4)	C(89)-C(90)	1.386(4)
C(53)-C(54)	1.389(4)	C(91)-C(96)	1.392(3)
C(55)-C(56)	1.394(3)	C(91)-C(92)	1.398(3)
C(55)-C(60)	1.396(4)	C(92)-C(93)	1.381(4)
C(57)- $C(57)$	1.380(5)	C(94)-C(95)	1.379(4)
C(58)-C(59)	1.380(4)	C(95)-C(96)	1.392(4)
C(59)-C(60)	1.386(4)	C(97)-C(102)	1.389(4)
C(61)-C(62)	1.396(3)	C(97)-C(98)	1.399(3)
C(61)-C(66)	1.398(3)	C(98)-C(99)	1.387(4)
C(63)-C(64)	1.380(4)	C(100)-C(101)	1.384(5)
C(64)-C(65)	1.382(4)	C(101)-C(102)	1.384(4)
C(65)-C(66)	1.388(3)	C(103)-C(104)	1.393(3)
C(67)-C(68)	1.396(3)	C(103)-C(108)	1.397(3)
C(67)-C(72) C(68)-C(69)	1.401(3)	C(104)-C(105) C(105)-C(106)	1.390(4)
C(69)-C(70)	1.379(4)	C(106)-C(107)	1.376(4)
C(70)-C(71)	1.384(́4)́	C(107)-C(108)	1.388(4)
C(71)-C(72)	1.386(4)	C(109)-C(114)	1.390(3)
AI(3)-O(13)	1.6958(16)	C(109)-C(110)	1.398(3)
AI(3)-O(14) AI(3)-O(17)	1.7203(17) 1.7683(16)	C(110)-C(111) C(111)-C(112)	1.390(3)
AI(3)-O(15)	1.7775(15)	C(112)-C(113)	1.370(4)
AI(4)-O(13)	1.6984(16)	C(113)-C(114)	1.389(4)
AI(4)-O(12)	1.7181(18)	C(115)-C(120)	1.399(3)
AI(4)-O(20)	1.7691(17)	C(115)-C(116)	1.402(3)

C(116)-C(117)	1.385(4)	C(1A0)-C(1A1)	1.352(17)
C(117)-C(118)	1.379(4)	C(1A0)-C(1B9)	1.897(17)
C(118)-C(119)	1.380(4)	C(1A0)-C(1C1)	1.94(2)
C(119)-C(120) C(121) C(126)	1.378(4)	C(1A1)-C(1C1)	0.776(18)
C(121)-C(120) C(121)-C(122)	1.396(3)	$C(1\Delta 1)-C(1C9)$	0.914(19)
C(122)-C(122)	1.381(5)	C(1A1)-C(1B0)#1	1.135(18)
C(123)-C(124)	1.371(5)	C(1A1)-C(1A9)#1	1.569(17)
C(124)-C(125)	1.380(4)	C(1A1)-C(1B1)	1.979(16)
C(125)-C(126)	1.383(4)	C(1B9)-C(1A1)#1	0.993(14)
C(127)-C(132)	1.391(3)	C(1B9)-C(1A0)#1	1.081(14)
C(127)-C(128)	1.397(4)	C(1B9)-C(1B9)#1	1.29(2)
C(120)-C(129) C(120)-C(130)	1.393(4)	C(1B9)-C(1B1)#1 C(1B9)-C(1B1)	1.293(13)
C(130)-C(131)	1.366(4)	C(1B9)-C(1C9)#1	1.44(2)
C(131)-C(132)	1.391(4)	C(1B9)-C(1B0)	1.62(2)
C(133)-C(134)	1.397(4)	C(1B9)-C(1C1)#1	1.75(2)
C(133)-C(138)	1.402(3)	C(1B9)-C(1A9)#1	1.855(17)
C(134)-C(135)	1.391(4)	C(1B0)-C(1C0)	1.10(3)
C(135)-C(136) C(136) $C(137)$	1.375(4)	C(1B0)-C(1C1)#1	1.135(18)
C(130)-C(137) C(137)-C(138)	1.376(4)	C(1B0)-C(1C1)#1 C(1B0)-C(1B1)	1.20(2)
C(139)-C(140)	1.395(4)	C(1B0)-C(1C9)#1	2.01(2)
C(139)-C(144)	1.398(3)	C(1B1)-C(1B9)#1	1.292(15)
C(140)-C(141)	1.392(4)	C(1B1)-C(1C9)	1.78(2)
C(141)-C(142)	1.383(4)	C(1B1)-C(1C0)	1.87(3)
C(142)- $C(143)$	1.376(4)	C(1C9)-C(1C1)	1.13(2)
O(143)-O(144) N(1)-O(147)	1.393(3)	C(1C9)-C(1B9)#1 C(1C9)-C(1B0)#1	1.44(Z) 2.01(2)
N(1)-C(145)	1.488(4)	C(1C1)-C(1B0)#1	1.20(2)
C(145)-C(146)	1.547(6)	C(1C1)-C(1B9)#1	1.75(2)
C(147)-C(148)	1.550(6)	C(1C1)-C(1A9)#1	2.03(2)
N(2)-C(151)	1.467(4)		((0, 0, 0))
N(2)-C(149) C(149)-C(150)	1.488(4)	O(1)-AI(1)-O(4) O(1)-AI(1)-O(7)	113.09(9)
C(151)-C(152)	1.494(4)	O(4)-A(1)-O(7)	112.34(10)
N(3)-C(153)	1.485(3)	O(1)-AI(1)-O(5)	108.90(11)
N(3)-C(155)	1.491(4)	O(4)-AI(1)-O(5)	110.74(9)
C(153)-C(154)	1.502(4)	O(7)-Al(1)-O(5)	104.57(8)
C(155)-C(156)	1.494(4)	O(1) - AI(2) - O(2)	113.48(9)
N(4)-C(157) N(4)-C(159)	1.404(3)	O(2) - AI(2) - O(8)	110.32(9)
C(157)-C(158)	1.496(4)	O(1) - AI(2) - O(10)	108.81(12)
C(159)-C(160)	1.491(4)	O(2)-AI(2)-O(10)	110.03(8)
C(161)-C(162)	1.364(5)	O(8)-AI(2)-O(10)	104.18(8)
C(161)-C(166)	1.381(4)	O(2)-Si(1)-O(3)	112.37(9)
C(161)-C(167) C(162)-C(163)	1.497(4) 1.371(5)	O(2)-Si(1)-C(7) O(3)-Si(1)-C(7)	106.11(9)
C(163)-C(164)	1.379(5)	O(2)-Si(1)-C(1)	112.30(9)
C(164)-C(165)	1.369(5)	O(3)-Si(1)-C(1)	107.37(10)
C(165)-C(166)	1.372(4)	C(7)-Si(1)-C(1)	107.28(10)
C(168)-C(169)	1.377(5)	O(4)-Si(2)-O(3)	114.03(9)
C(168) - C(173) C(168) - C(173)	1.406(6)	O(4) - SI(2) - C(19) O(3) Si(2) - C(19)	112.36(10)
C(169)-C(174)	1.469(6)	O(4)-Si(2)-C(13)	108 45(10)
C(170)-C(171)	1.368(7)	O(3)-Si(2)-C(13)	108.28(10)
C(171)-C(172)	1.387(8)	C(19)-Si(2)-C(13)	107.60(10)
C(172)-C(173)	1.354(8)	O(5)-Si(3)-O(6)	109.36(9)
C(1A9)-C(1B1)	0.807(10)	O(5)-Si(3)-C(25)	112.00(13)
C(1A9)-C(1B0) C(1A9)-C(1C0)	1.041(10)	U(0)-31(3)-U(25) O(5)-Si(3)-C(31)	110.88(10) 110.41(10)
C(1A9)-C(1B9)	1.343(15)	O(6)-Si(3)-C(31)	108.15(12)
C(1A9)-C(1A1)#1	1.569(17)	C(25)-Si(3)-C(31)	105.93(12)
C(1A9)-C(1A0)	1.609(13)	O(7)-Si(4)-O(6)	110.18(9)
C(1A9)-C(1B9)#1	1.855(17)	O(7)-Si(4)-C(37)	111.40(12)
C(1A9)-C(1C1)#1 C(1A0)₋C(1B1)	2.03(2)	O(0)-SI(4)-O(37) O(7)-Si(4)-O(42)	109.86(10)
C(1A0)-C(1C9)	0.985(18)	O(6)-Si(4)-C(43)	107.91(11)
C(1A0)-C(1B9)#1	1.081(14)	C(37)-Si(4)-C(43)	107.02(11)

O(8)-Si(5)-O(9)	109 74(9)	C(35)- $C(36)$ - $C(31)$
O(8)-Si(5)-C(55)	111 15(11)	C(38)-C(37)-C(42)
O(0)-Si(5)-C(55)	108 28(10)	C(38)-C(37)-Si(4)
O(8)-Si(5)-C(49)	110 82(10)	C(32)-C(37)-Si(4)
O(0) Si(5) C(40)	107 10(10)	C(30) C(38) C(37)
C(55) Si(5) C(49)	100 64(11)	C(39)- $C(30)$ - $C(37)$
O(10) S(6) O(0)	109.04(11)	C(40)- $C(39)$ - $C(30)$
O(10) - S(6) - O(9)	109.20(9)	C(41)- $C(40)$ - $C(39)$
O(10) - S(6) - C(61)	108.48(9)	C(40)- $C(41)$ - $C(42)$
O(9)-SI(6)-C(61)	108.46(9)	C(41)-C(42)-C(37)
O(10)-Si(6)-C(67)	111.88(10)	C(44)-C(43)-C(48)
O(9)-Si(6)-C(67)	108.17(9)	C(44)-C(43)-SI(4)
C(61)-Si(6)-C(67)	110.51(11)	C(48)-C(43)-Si(4)
AI(2)-O(1)-AI(1)	142.89(12)	C(45)-C(44)-C(43)
Si(1)-O(2)-AI(2)	157.48(11)	C(46)-C(45)-C(44)
Si(1)-O(3)-Si(2)	143.25(11)	C(47)-C(46)-C(45)
Si(2)-O(4)-Al(1)	167.12(11)	C(46)-C(47)-C(48)
Si(3)-O(5)-Al(1)	130.57(10)	C(47)-C(48)-C(43)
Si(3)-O(6)-Si(4)	131.11(10)	C(50)-C(49)-C(54)
Si(4)-O(7)-Al(1)	130.83(11)	C(50)-C(49)-Si(5)
Si(5)-O(8)-Al(2)	130.74(11)	C(54)-C(49)-Si(5)
Si(6)-O(9)-Si(5)	130.83(10)	C(49)-C(50)-C(51)
Si(6)-O(10)-AI(2)	128.40(10)	C(52)-C(51)-C(50)
C(2) - C(1) - C(6)	117.2(2)	C(53)-C(52)-C(51)
C(2)-C(1)-Si(1)	123.53(19)	C(52)-C(53)-C(54)
C(6)-C(1)-Si(1)	119.24(18)	C(53)-C(54)-C(49)
C(1)-C(2)-C(3)	121 1(2)	C(56)-C(55)-C(60)
C(4)-C(3)-C(2)	120.3(3)	C(56)- $C(55)$ - $Si(5)$
C(5)-C(4)-C(3)	119 7(3)	C(60)- $C(55)$ - $Si(5)$
C(4) - C(5) - C(6)	120 1(3)	C(57)- $C(56)$ - $C(55)$
C(5)-C(6)-C(1)	120.1(3)	C(57) - C(50) - C(55)
C(12) C(7) C(8)	116 1(2)	C(50) = C(51) = C(50)
C(12) - C(7) - C(0)	122 95(19)	C(59)- $C(50)$ - $C(57)$
C(12) - C(7) - S((1))	122.00(10)	C(50)- $C(50)$ - $C(60)$
C(0) - C(7) - S((1))	120.33(17)	C(59)- $C(60)$ - $C(55)$
C(9)-C(8)-C(7)	122.0(2)	C(62)- $C(61)$ - $C(66)$
C(10) - C(9) - C(8)	120.0(3)	C(62)- $C(61)$ - $S(6)$
C(11)-C(10)-C(9)	119.4(2)	C(66) - C(61) - SI(6)
C(10)-C(11)-C(12)	120.4(2)	C(63)-C(62)-C(61)
C(11)-C(12)-C(7)	122.0(2)	C(64)-C(63)-C(62)
C(18)-C(13)-C(14)	117.2(2)	C(63)-C(64)-C(65)
C(18)-C(13)-Si(2)	121.94(19)	C(64)-C(65)-C(66)
C(14)-C(13)-Si(2)	120.87(18)	C(65)-C(66)-C(61)
C(15)-C(14)-C(13)	121.8(3)	C(68)-C(67)-C(72)
C(16)-C(15)-C(14)	119.6(3)	C(68)-C(67)-Si(6)
C(15)-C(16)-C(17)	120.4(3)	C(72)-C(67)-Si(6)
C(16)-C(17)-C(18)	119.6(3)	C(69)-C(68)-C(67)
C(13)-C(18)-C(17)	121.5(3)	C(70)-C(69)-C(68)
C(24)-C(19)-C(20)	116.1(3)	C(69)-C(70)-C(71)
C(24)-C(19)-Si(2)	123.4(2)	C(70)-C(71)-C(72)
C(20)-C(19)-Si(2)	120.6(2)	C(71)-C(72)-C(67)
C(21)-C(20)-C(19)	122.6(3)	O(13)-Al(3)-O(14)
C(22)-C(21)-C(20)	119.7(3)	O(13)-Al(3)-O(17)
C(23)-C(22)-C(21)	119.5(3)	O(14)-AI(3)-O(17)
C(22)-C(23)-C(24)	120.9(4)	O(13)-AI(3)-O(15)
C(19)-C(24)-C(23)	121.2(3)	O(14)-AI(3)-O(15)
C(30)-C(25)-C(26)	118.0(3)	O(17)-AI(3)-O(15)
C(30)-C(25)-Si(3)	122.5(3)	O(13)-AI(4)-O(12)
C(26)-C(25)-Si(3)	119.3(2)	O(13)-AI(4)-O(20)
C(27)-C(26)-C(25)	122.2(4)	O(12)-AI(4)-O(20)
C(28)-C(27)-C(26)	118.4(4)	O(13)-AI(4)-O(18)
C(27)-C(28)-C(29)	121.8(4)	O(12)-AI(4)-O(18)
C(28)-C(29)-C(30)	119.4(4)	O(20)-AI(4)-O(18)
C(25)-C(30)-C(29)	120.1(4)	O(12)-Si(7)-O(11)
C(32)-C(31)-C(36)	116.0(3)	O(12)-Si(7)-C(79)
C(32)-C(31)-Si(3)	123 8(3)	O(11)-Si(7)-C(79)
C(36)-C(31)-Si(3)	120.1(2)	O(12)-Si(7)-C(73)
C(31)- $C(32)$ - $C(32)$	120.4(5)	O(11)-Si(7)-C(73)
$C(34)_{C}(32)_{C}(32)_{C}(32)$	120.7(0)	$C(70)_S(7)_C(73)$
$C(35)_{C}(34)_{C}(32)$	110 0(1)	O(13) - O(1) - O(13) O(14) - O(2) - O(14)
C(33) - C(34) - C(33)	1.13.3(4)	O(14) - O(0) - O(11)
0(34)-0(33)-0(30)	120.4(3)	0(14)-31(0)-0(91)

122.8(4)

117.5(3) 120.4(2)

121.8(2) 120.7(3)

120.6(3)

120.1(3)

120.1(3)

121.1(3)

116.3(2)

124.1(2) 119.6(2)

121.7(3)

119.9(3) 120.1(3)

119.6(3)

122.3(3)

117.5(2)

121.27(19) 121.09(18)

121.2(3)

119.8(3) 120.3(2)

119.8(3)

121.4(3) 117.2(2)

121.7(2)

121.01(19) 121.4(3)

119.9(3)

120.3(3)

119.3(3)

121.9(3)

117.5(2)

121.70(19)

120.77(17) 121.3(2)

120.1(2)

120.0(2)

119.8(3)

121.3(2)

117.0(2)

122.45(17)

120.50(18)

121.8(2)

119.6(3) 120.2(2)

119.7(2)

121.6(2)

113.58(8) 108.67(8)

110.76(8)

109.64(8)

108.51(8)

105.36(7)

114.75(8)

108.83(9) 108.64(9)

108.38(8)

110.28(9)

105.56(8)

112.39(9)

110.30(10)

105.53(10)

109.13(10)

109.67(10)

109.76(10)

113.49(9)

110.45(10)

O(11)-Si(8)-C(91) O(14)-Si(8)-C(85) O(11)-Si(8)-C(85) O(17)-Si(9)-O(16) O(17)-Si(9)-C(97) O(16)-Si(9)-C(103) O(16)-Si(9)-C(103) O(16)-Si(9)-C(103) O(15)-Si(10)-C(115) O(15)-Si(10)-C(115) O(15)-Si(10)-C(109) O(15)-Si(10)-C(109) O(16)-Si(10)-C(109) O(16)-Si(10)-C(109) O(16)-Si(10)-C(109) O(20)-Si(11)-C(127) O(20)-Si(11)-C(127) O(20)-Si(11)-C(121) O(19)-Si(12)-C(139) O(19)-Si(12)-C(139) O(18)-Si(12)-C(133) O(19)-Si(12)-C(133) O(19)-Si(12)-C(133) O(19)-Si(12)-C(133) O(19)-Si(12)-C(133) O(19)-Si(12)-C(133) O(19)-Si(12)-C(133) O(19)-Si(12)-C(133) Si(7)-O(11)-Si(8) Si(7)-O(11)-Si(8) Si(7)-O(11)-Si(8) Si(10)-O(16)-Si(9) Si(10)-O(16)-Si(9) Si(10)-O(16)-Si(9) Si(12)-O(18)-AI(4) AI(3)-O(13)-AI(4) Si(10)-O(16)-Si(9) Si(12)-O(18)-AI(4) Si(12)-O(18)-AI(4) Si(12)-O(18)-AI(4) Si(12)-O(18)-AI(4) Si(12)-O(18)-AI(4) Si(12)-O(19)-Si(11) Si(11)-O(20)-AI(4) C(78)-C(73)-C(74) C(76)-C(77)-C(78) C(76)-C(77)-C(78) C(76)-C(77)-C(78) C(76)-C(77)-C(78) C(77)-C(78)-C(73) C(76)-C(77)-C(78) C(77)-C(78)-C(73) C(76)-C(77)-C(78) C(77)-C(78)-C(73) C(76)-C(77)-C(78) C(77)-C(78)-C(73) C(76)-C(79)-Si(7) C(84)-C(9)-C(83) C(84)-C(9)-C(83) C(84)-C(9)-C(83) C(84)-C(83)-C(83) C(84)-C(83)-C(83) C(84)-C(83)-C(83) C(83)-C(83)-C(84) C(79)-C(84)-C(83) C(83)-C(83)-C(84) C(79)-C(84)-C(83) C(83)-C(80)-C(87) C(83)-C(80)-C(87) C(83)-C(80)-C(87) C(83)-C(80)-C(87) C(83)-C(80)-C(87) C(83)-C(80)-C(87) C(83)-C(80)-C(87) C(83)-C(80)-C(87) C(83)-C(80)-C(87) C(83)-C(80)-C(87) C(83)-C(80)-C(87) C(83)-C(80)-C(87) C(83)-C(80)-C(87) C(83)-C(80)-C(87) C(83)-C(80)-C(87) C(83)-C(80)-C(87) C(83)-C(80)-C(87) C(83)-C(90)-C(80) C(83)-C(90)-C(80) C(83)-C(90)-C(80) C(83)-C(90)-C(80) C(83)-C(90)-C(80) C(83)-C(90)-C(80) C(83)-C(90)-C(80) C(90)-C(91)-S(8) C(90)-C(91)-S(8) C(90)-C(91)-S(8) C(90)-C(91)-S(8)	106.28(9) 111.91(10) 106.20(10) 108.19(11) 109.63(8) 110.28(10) 110.00(9) 109.77(10) 106.56(9) 110.53(10) 108.13(8) 109.71(9) 111.48(9) 112.36(9) 107.27(10) 110.38(8) 112.96(10) 107.58(10) 108.32(10) 109.31(10) 108.22(11) 109.40(8) 109.00(10) 108.07(10) 110.65(10) 110.65(10) 110.53(10) 109.13(11) 155.18(11) 152.47(11) 155.18(11) 150.24(11) 127.99(9) 132.02(10) 129.95(10) 117.1(2) 122.04(19) 120.77(19) 121.3(3) 120.0(3) 120.2(3) 119.9(3) 121.5(3) 117.0(3) 120.3(4) 120.3(4) 120.5(3) 120.5(3) 121.7(3) 120.7(18) 121.7(3) 120.7(18) 121.7(3) 120.5(3) 121.7(3) 120.7(18) 120.7(19) 121.7(3) 120.7(19) 121.7(3) 120.3(4) 120.5(3) 121.7(3) 120.5(3) 121.7(3) 120.7(18) 121.7(3) 120.7(18) 121.7(3) 120.7(19) 121.7(3) 120.5(3) 121.7(3) 120.5(3) 121.7(3) 120.7(18) 123.72(18) 12
$\begin{array}{l} C(89)\text{-}C(88)\text{-}C(87)\\ C(88)\text{-}C(89)\text{-}C(90)\\ C(88)\text{-}C(90)\text{-}C(89)\\ C(96)\text{-}C(91)\text{-}C(92)\\ C(96)\text{-}C(91)\text{-}C(92)\\ C(96)\text{-}C(91)\text{-}Si(8)\\ C(92)\text{-}C(91)\text{-}Si(8)\\ C(93)\text{-}C(92)\text{-}C(91)\\ C(93)\text{-}C(92)\text{-}C(91)\\ C(94)\text{-}C(93)\text{-}C(92)\\ C(95)\text{-}C(94)\text{-}C(93)\\ C(94)\text{-}C(95)\text{-}C(96)\\ \end{array}$	119.6(3) 120.5(3) 121.7(3) 117.3(2) 123.72(18) 118.55(18) 121.7(3) 119.7(3) 120.3(3) 119.6(3)

C(05) $C(0c)$ $C(04)$	404 4(0)
C(95)-C(96)-C(91)	121.4(2)
C(102)-C(97)-C(98)	117.4(2)
C(102) C(07) C(00)	100 70(10)
C(102) - C(97) - SI(9)	120.79(19)
C(98)-C(97)-Si(9)	121.79(18)
C(00) C(00) C(07)	101 1(2)
C(99)-C(90)-C(97)	121.4(3)
C(100)-C(99)-C(98)	119.8(3)
C(00)(C(1)0)(C(101))	120 1(3)
0(33)-0(100)-0(101)	120.1(3)
C(102)-C(101)-C(100)	120.0(3)
C(101)-C(102)-C(97)	121 3(3)
O(101) O(102) O(01)	147.4(0)
C(104)- $C(103)$ - $C(108)$	117.1(Z)
C(104)-C(103)-Si(9)	122.76(19)
C(109) C(102) Si(0)	110.06(17)
C(100) - C(100) - SI(9)	119.90(17)
C(105)-C(104)-C(103)	121.4(2)
C(106) - C(105) - C(104)	110 0(2)
C(100) - C(103) - C(104)	119.9(2)
C(105)-C(106)-C(107)	120.2(3)
C(106)-C(107)-C(108)	119.8(3)
C(100) C(100) C(100)	101 5(0)
C(107)- $C(108)$ - $C(103)$	121.5(2)
C(114)-C(109)-C(110)	116.6(2)
C(114) C(100) Si(10)	100 E7(10)
C(114)- $C(109)$ - $SI(10)$	123.37(10)
C(110)-C(109)-Si(10)	119.68(18)
C(111) - C(110) - C(100)	121 1(2)
O(111)=O(110)=O(100)	121.7(2)
C(112)-C(111)-C(110)	120.4(2)
C(111)-C(112)-C(113)	119 7(2)
O(111) O(112) O(110)	100.0(2)
C(112)-C(113)-C(114)	120.2(3)
C(113)-C(114)-C(109)	121.7(2)
C(120) C(115) C(116)	117 1(2)
C(120) - C(115) - C(116)	117.1(Z)
C(120)-C(115)-Si(10)	120.57(18)
C(116) - C(115) - Si(10)	122 30(18)
C(110)-C(113)-S(10)	122.30(10)
C(117)-C(116)-C(115)	121.6(2)
C(118)-C(117)-C(116)	119 9(2)
C(110) C(110) C(110)	110.0(2)
C(117) - C(118) - C(119)	119.7(3)
C(120)-C(119)-C(118)	120.6(3)
C(110) - C(120) - C(115)	121 2(2)
O(113)=O(120)=O(113)	121.2(2)
C(126)-C(121)-C(122)	116.6(2)
C(126)-C(121)-Si(11)	123.02(18)
C(122) C(121) S(11)	120.2(2)
C(122) - C(121) - S((11))	120.3(2)
C(123)-C(122)-C(121)	121.5(3)
C(124) - C(123) - C(122)	120 3(3)
O(124) O(120) O(122)	120.0(0)
C(123)- $C(124)$ - $C(125)$	120.0(3)
C(124)-C(125)-C(126)	119.6(3)
C(125) C(126) C(121)	100 0(0)
C(125) - C(120) - C(121)	122.0(2)
C(132)-C(127)-C(128)	116.5(2)
C(132)-C(127)-Si(11)	120 98(18)
O(102) O(127) O(11)	120.00(10)
C(128)-C(127)-SI(11)	122.42(18)
C(129)-C(128)-C(127)	121.8(3)
C(130) - C(120) - C(128)	110 6(3)
O(130)=O(123)=O(120)	113.0(3)
C(131)-C(130)-C(129)	120.3(3)
C(130)-C(131)-C(132)	119.9(3)
C(121) C(122) C(127)	121 0(2)
O(131) - O(132) - O(127)	121.3(2)
C(134)-C(133)-C(138)	116.7(2)
C(134)-C(133)-Si(12)	121 62(19)
C(101) C(100) C(12)	404 C(0)
C(138) - C(133) - SI(12)	121.6(2)
C(135)-C(134)-C(133)	121.3(2)
C(126) C(125) C(124)	120 6(2)
C(130) - C(133) - C(134)	120.0(3)
C(135)-C(136)-C(137)	119.5(3)
C(136)-C(137)-C(138)	120 1(3)
O(100) O(101) O(100)	120.1(0)
U(137) - U(138) - U(133)	121.9(3)
C(140)-C(139)-C(144)	117.2(2)
C(140) - C(130) - S(12)	121 22(10)
	121.00(19)
C(144)-C(139)-Si(12)	121.16(19)
C(141)-C(140)-C(139)	121.7(3)
C(4.40) C(4.44) C(4.40)	140 7(0)
C(142)-C(141)-C(140)	119.7(3)
C(143)-C(142)-C(141)	119.9(3)
C(1/2) - C(1/2) - C(1/4)	120 2(2)
$O(1+2)^{-}O(1+3)^{-}O(1+4)$	120.2(3)
C(143)-C(144)-C(139)	121.2(3)
C(147) - N(1) - C(145)	113 6(3)
$\mathbf{N}(4) \mathbf{O}(4 d\mathbf{C}) \mathbf{O}(4 d\mathbf{C})$	10.0(0)
IN(1)-C(145)-C(146)	109.2(3)
N(1)-C(147)-C(148)	116.3(4)
C(151) - N(2) - C(140)	111 5(2)
$O(101)^{-1}(2)^{-}O(143)$	114.3(3)

C(150)-C(149)-N(2)	111.2(3)
N(2)-C(151)-C(152) C(153)-N(3)-C(155)	112.0(2)
N(3)-C(153)-C(154)	110.1(2)
N(3)-C(155)-C(156)	111.0(́2)́
C(157)-N(4)-C(159)	118.7(2)
N(4)-C(157)-C(158) C(160)-C(159)-N(4)	113.7(3)
C(162)-C(161)-C(166)	117.3(3)
C(162)-C(161)-C(167)	121.1(3)
C(166)-C(161)-C(167)	121.7(3)
C(161)-C(162)-C(163)	122.3(3)
C(162)-C(163)-C(164) C(165)-C(164)-C(163)	118.9(3)
C(164)-C(165)-C(166)	120.4(3)
C(165)-C(166)-C(161)	121.4(3)
C(169)- $C(168)$ - $C(173)$	117.3(5)
C(173)-C(168)-C(174)	121.3(4)
C(170)-C(169)-C(168)	122.2(4)
C(171)-C(170)-C(169)	120.2(5)
C(170)-C(171)-C(172) C(173)-C(172)-C(171)	118.3(5)
C(172)-C(173)-C(168)	122.0(5)
C(1B1)-C(1A9)-C(1B0)	163.6(18)
C(1B1)-C(1A9)-C(1C0)	137(2)
C(1B0)-C(1A9)-C(1C0) C(1B1)-C(1A0)-C(1B0)	58.2(18)
C(1B0)-C(1A9)-C(1B9)	84.9(13)
C(1C0)-C(1A9)-C(1B9)	143(2)
C(1B1)-C(1A9)-C(1A1)#1	118.9(13)
C(1B0)-C(1A9)-C(1A1)#1 C(1C0)-C(1A9)-C(1A1)#1	46.3(11)
C(1B9)-C(1A9)-C(1A1)#1	38.9(7)
C(1B1)-C(1A9)-C(1A0)	1.4(8)
C(1B0)-C(1A9)-C(1A0)	163.5(14)
C(1C0)-C(1A9)-C(1A0) C(1B9)-C(1A9)-C(1A0)	137.6(19) 79.4(8)
C(1A1)#1-C(1A9)-C(1A0)	118.3(9)
C(1B1)-C(1À9)-Ć(1B9)#1	36.0(9)
C(1B0)-C(1A9)-C(1B9)#1	128.6(14)
C(1C0)-C(1A9)-C(1B9)#1 C(1B9)-C(1A9)-C(1B9)#1	173(2)
C(1A1)#1-C(1A9)-C(1B9)#1	82.8(9)
C(1A0)-C(1À9)-Ć(1B9)#1	35.5(5)
C(1B1)-C(1A9)-C(1C1)#1	137.4(12)
C(1C0)-C(1A9)-C(1C1)#1	26.8(12)
C(1B9)-C(1A9)-C(1C1)#1	58.1(8)
C(1A1)#1-C(1A9)-C(1C1)#1	20.0(7)
C(1A0)-C(1A9)-C(1C1)#1	137.0(8)
$C(1B_{3})$ $C(1A_{3})$ $C(1C_{3})$ $C(1C_{3})$ $C(1C_{3})$	172.1(19)
C(1B1)-C(1A0)-C(1B9)#1	85.3(13)
C(1C9)-C(1A0)-C(1B9)#1	88.5(16)
C(1B1)-C(1A0)-C(1A1)	131.8(14)
C(1B9)#1-C(1A0)-C(1A1)	42.5(12)
C(1B1)-C(1A0)-C(1A9)	1.4(8)
C(1C9)-C(1A0)-C(1A9)	170.9(15)
C(1B9)#1-C(1A0)-C(1A9) C(1A1)-C(1A0)-C(1A9)	84.8(11)
C(1B1)-C(1A0)-C(1B9)	44.7(9)
C(1C9)-C(1A0)-C(1B9)	128.8(16)
C(1B9)#1-C(1A0)-C(1B9)	40.6(11)
C(1A1)-C(1A0)-C(1B9) C(1A9)-C(1A0)-C(1B9)	87.2(11) 47.1(5)
C(1B1)-C(1A0)-C(1C1)	148.3(13)
C(1C9)-C(1A0)-C(1C1)	25.1(14)

C(1B9)#1-C(1A0)-C(1C1)	63.4(10)
C(1A1)-C(1A0)-C(1C1)	18.1(8)
C(1A9)-C(1A0)-C(1C1)	147.6(9)
C(1C1)-C(1A0)-C(1C1)	103.8(9)
C(1C1)-C(1A1)-C(1B9)#1	161(2)
C(1C9)-C(1A1)-C(1B9)#1	98(2)
C(1C1)-C(1A1)-C(1B0)#1	75(2)
C(1C9)-C(1A1)-C(1B0)#1	156(2)
C(1B9)#1-C(1A1)-C(1B0)#1	99.3(18)
C(1C9)-C(1A1)-C(1A0)	46.7(15)
C(1B9)#1-C(1A1)-C(1A0)	52.2(11)
C(1B0)#1-C(1A1)-C(1A0)	150.8(17)
C(1C1)-C(1A1)-C(1A9)#1	116(2)
C(1C9)-C(1A1)-C(1A9)#1 C(1B9)#1-C(1A1)-C(1A9)#1	100(2) 58 2(12)
C(1B0)#1-C(1A1)-C(1A9)#1	41.6(10)
C(1A0)-C(1À1)-Ć(1À9)#1	110.4(11)
C(1C1)-C(1A1)-C(1B1)	145(2)
C(1C9)-C(1A1)-C(1B1) C(1B0)#1 C(1A1) C(1B1)	64.2(17)
C(1B0)#1-C(1A1)-C(1B1)	133.8(14)
C(1A0)-C(1A1)-C(1B1)	17.6(6)
C(1A9)#1-C(1A1)-C(1B1)	92.8(8)
C(1A1)#1-C(1B9)-C(1A0)#1	81.3(14)
C(1A1)#1-C(1B9)-C(1B9)#1 C(1A0)#1-C(1B9)-C(1B9)#1	106 2(17)
C(1A1)#1-C(1B9)-C(1B1)#1	119.4(16)
C(1A0)#1-C(1B9)-C(1B1)#1	38.2(̈́7) ́
C(1B9)#1-C(1B9)-C(1B1)#1	68.0(12)
C(1A1)#1-C(1B9)-C(1A9) C(1A0)#1-C(1B9)-C(1A9)	82.9(14)
C(1B9)#1-C(1B9)-C(1A9)	89.7(14)
C(1B1)#1-C(1B9)-C(1A9)	157.6(12)
C(1A1)#1-C(1B9)-C(1B1)	116.4(16)
C(1A0)#1-C(1B9)-C(1B1)	162.3(13)
C(1B9)#1-C(1B9)-C(1B1) C(1B1)#1-C(1B9)-C(1B1)	124 2(10)
C(1A9)-C(1B9)-C(1B1)	33.5(5)
C(1A1)#1-C(1B9)-C(1C9)#1	38.8(12)
C(1A0)#1-C(1B9)-C(1C9)#1	43.0(9)
C(1B9)#1-C(1B9)-C(1C9)#1 C(1B1)#1-C(1B9)-C(1C9)#1	149(Z) 81 2(12)
C(1A9)-C(1B9)-C(1C9)#1	121.1(14)
C(1B1)-C(1B9)-C(1C9)#1	154.2(14)
C(1A1)#1-C(1B9)-C(1B0)	43.6(12)
C(1B0)#1-C(1B9)-C(1B0) C(1B9)#1-C(1B9)-C(1B0)	124.5(13)
C(1B3)#1-C(1B3)-C(1B0)	162.6(13)
C(1A9)-C(1B9)-Ć(1B0)	39.7(8) [′]
C(1B1)-C(1B9)-C(1B0)	73.0(9)
C(1C9)#1- $C(1B9)$ - $C(1B0)$	81.4(12)
C(1A0)#1-C(1B9)-C(1C1)#1	83.0(11)
C(1B9)#1-C(1B9)-C(1C1)#1	168.6(17)
C(1B1)#1-C(1B9)-C(1C1)#1	121.1(12)
C(1A9)-C(1B9)-C(1C1)#1	81.2(10)
C(1C9) = C(1C9) = C(1C1) = 1 C(1C9) = C(1C1) = 1	40 0(10)
C(1B0)-C(1B9)-C(1C1)#1	41.5(8)
C(1A1)#1-C(1B9)-C(1A9)#1	141.0(16)
C(1A0)#1-C(1B9)-C(1A9)#1	59.8(9)
C(1B9)#1-C(1B9)-C(1A9)#1 C(1B1)#1-C(1B9)-C(1A9)#1	40.4(10) 21 6(5)
C(1A9)-C(1B9)-C(1A9)#1	136.1(9)
C(1B1)-C(1B9)-C(1A9)#1	102.6(8)
C(1C9)#1-C(1B9)-C(1A9)#1	102.6(12)
U(1DU)-U(1B9)-U(1A9)#1	174.4(11)

C(1C1)#1-C(1B9)-C(1A9)#1	142.3(10)	C(1A0)-C(1B1)-C(1C0)	155.2(16)
C(1A1)#1-C(1B9)-C(1A0)	139.4(16)	C(1A9)-C(1B1)-C(1C0)	25.9(14)
C(1A0)#1-C(1B9)-C(1A0)	139.3(11)	C(1B9)#1-C(1B1)-C(1C0)	148.3(15)
C(1B9)#1-C(1B9)-C(1A0)	33.2(9)	C(1B9)-C(1B1)-C(1C0)	92.4(13)
C(1B1)#1-C(1B9)-C(1A0)	101.1(8)	C(1C9)-C(1B1)-C(1C0)	158.2(13)
C(1A9)-C(1B9)-C(1A0)	56.5(7)	C(1B0)-C(1B1)-C(1C0)	34.5(11)
C(1B1)-C(1B9)-C(1A0)	23.0(5)	C(1A0)-C(1B1)-C(1A1)	30.6(10)
C(1C9)#1-C(1B9)-C(1A0)	174.9(12)	C(1A9)-C(1B1)-C(1A1)	148.3(12)
C(1B0)-C(1B9)-C(1A0)	96.1(10)	C(1B9)#1-C(1B1)-C(1A1)	25.9(̈́7) ́
C(1C1)#1-C(1B9)-C(1A0)	137.3(10)	C(1B9)-C(1B1)-C(1A1)	81.7(9)
C(1A9)#1-C(1B9)-C(1A0)	79.6(6)	C(1C9)-C(1B1)-C(1A1)	27.5(6)
C(1A9)-C(1B0)-C(1C0)	68(2)	C(1B0)-C(1B1)-C(1A1)	139.7(7)
C(1A9)-C(1B0)-C(1A1)#1	92.1(16)	C(1C0)-C(1B1)-C(1A1)	174.2(13)
C(1C0)-C(1B0)-C(1A1)#1	158(3)	C(1A1)-C(1C9)-C(1A0)	91(2)
C(1A9)-C(1B0)-C(1C1)#1	130(2)	C(1A1)-C(1C9)-C(1C1)	43.2(14)
C(1C0)-C(1B0)-C(1C1)#1	162(3)	C(1A0)-C(1C9)-C(1C1)	133(2)
C(1A1)#1-C(1B0)-C(1C1)#1	38.7(11)	C(1A1)-C(1C9)-C(1B9)#1	42.9(14)
C(1A9)-C(1B0)-C(1B9)	55.4(10)	C(1A0)-C(1C9)-C(1B9)#1	48.5(11)
C(1C0)-C(1B0)-C(1B9)	123(2)	C(1C1)-C(1C9)-C(1B9)#1	84.7(17)
C(1A1)#1-C(1B0)-C(1B9)	37.1(10)	C(1A1)-C(1C9)-C(1B1)	88.3(19)
C(1C1)#1-C(1B0)-C(1B9)	74.7(14)	C(1A0)-C(1C9)-C(1B1)	3.5(9)
C(1A9)-C(1B0)-C(1B1)	7.2(8)	C(1C1)-C(1C9)-C(1B1)	130.4(19)
C(1C0)-C(1B0)-C(1B1)	75(2)	C(1B9)#1-C(1C9)-C(1B1)	45.7(8)
C(1A1)#1-C(1B0)-C(1B1)	85.8(13)	C(1A1)-C(1C9)-C(1B0)#1	13.1(14)
C(1C1)#1-C(1B0)-C(1B1)	123.3(15)	C(1A0)-C(1C9)-C(1B0)#1	101.7(17)
C(1B9)-C(1B0)-C(1B1)	48.9(7)	C(1C1)-C(1C9)-C(1B0)#1	31.5(12)
C(1A9)-C(1B0)-C(1C9)#1	100.8(14)	C(1B9)#1-C(1C9)-C(1B0)#1	53.2(10)
C(1C0)-C(1B0)-C(1C9)#1	168(2)	C(1B1)-C(1C9)-C(1B0)#1	98.9(11)
C(1A1)#1-C(1B0)-C(1C9)#1	10.5(11)	C(1B0)-C(1C0)-C(1A9)	53.6(18)
C(1C1)#1-C(1B0)-C(1C9)#1	29.4(11)	C(1B0)-C(1C0)-C(1B1)	71(2)
C(1B9)-C(1B0)-C(1C9)#1	45.3(9)	C(1A9)-C(1C0)-C(1B1)	17.1(9)
C(1B1)-C(1B0)-C(1C9)#1	94.1(10)	C(1A1)-C(1C1)-C(1C9)	53.7(17)
C(1A0)-C(1B1)-C(1A9)	177.2(17)	C(1A1)-C(1C1)-C(1B0)#1	66.1(19)
C(1A0)-C(1B1)-C(1B9)#1	56.5(10)	C(1C9)-C(1C1)-C(1B0)#1	119(2)
C(1A9)-C(1B1)-C(1B9)#1	122.4(13)	C(1A1)-C(1C1)-C(1B9)#1	10.4(14)
C(1A0)-C(1B1)-C(1B9)	112.3(12)	C(1C9)-C(1C1)-C(1B9)#1	55.3(14)
C(1A9)-C(1B1)-C(1B9)	66.6(10)	C(1B0)#1-C(1C1)-C(1B9)#1	63.8(13)
C(1B9)#1-C(1B1)-C(1B9)	55.8(10)	C(1A1)-C(1C1)-C(1A0)	32.7(16)
C(1A0)-C(1B1)-C(1C9)	4.3(11)	C(1C9)-C(1C1)-C(1A0)	21.7(12)
C(1A9)-C(1B1)-C(1C9)	173.1(12)	C(1B0)#1-C(1C1)-C(1A0)	97.4(14)
C(1B9)#1-C(1B1)-C(1C9)	53.1(9)	C(1B9)#1-C(1C1)-C(1A0)	33.6(6)
C(1B9)-C(1B1)-C(1C9)	108.7(10)	C(1A1)-C(1C1)-C(1A9)#1	43.9(17)
C(1A0)-C(1B1)-C(1B0)	170.3(13)	C(1C9)-C(1C1)-C(1A9)#1	96.1(16)
C(1A9)-C(1B1)-C(1B0)	9.2(10)	C(1B0)#1-C(1C1)-C(1A9)#1	23.1(9)
C(1B9)#1-C(1B1)-C(1B0)	113.9(10)	C(1B9)#1-C(1C1)-C(1A9)#1	40.8(6)
C(1B9)-C(1B1)-C(1B0)	58.1(8)	C(1A0)-C(1C1)-C(1A9)#1	74.4(8)
C(1C9)-C(1B1)-C(1B0)	166.8(9)		

 $\overline{ Symmetry \ transformations \ used \ to \ generate \ equivalent \ atoms: \ \#1 \ \text{-}x, \text{-}y, \text{-}z+2 }$

Tabelle 48: Anisotropische Auslenkungsaparameter (Å²x 10³) für sh3110. Der anisotropische Exponentfaktor des Auslenkungsparameter lautet: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²].

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
AI(1)	24(1)	35(1)	14(1)	-3(1)	1(1)	-14(1)
AI(2)	29(1)	41(1)	13(1)	-1(1)	1(1)	-23(1)
Si(1)	18(1)	20(1)	21(1)	0(1)	0(1)	-7(1)
Si(2)	24(1)	25(1)	20(1)	1(1)	-6(1)	-9(1)
Si(3)	28(1)	24(1)	19(1)	-2(1)	1(1)	-8(1)
Si(4)	23(1)	30(1)	24(1)	8(1)	1(1)	-5(1)
Si(5)	34(1)	20(1)	18(1)	3(1)	-6(1)	-12(1)
Si(6)	18(1)	23(1)	21(1)	-6(1)	0(1)	-5(1)
O(1)	79(2)	144(2)	16(1)	-9(1)	6(1)	-93(2)

O(2)	22(1) 26(1)	23(1) 31(1)	24(1) 22(1)	2(1)	-2(1)	-9(1) -9(1)
O(3) O(4)	29(1)	33(1)	23(1)	2(1)	-8(1)	-13(1)
O(5)	33(1)	23(1)	42(1)	-8(1)	15(1)	-10(1)
O(6) O(7)	26(1) 26(1)	30(1) 41(1)	24(1) 46(1)	6(1) 25(1)	5(1) 5(1)	-6(1)
O(8)	64(1)	25(1)	22(1)	8(1)	-16(1)	-22(1)
O(9)	28(1)	20(1)	16(1)	-1(1)	-2(1)	-7(1)
O(10) C(1)	20(1)	42(1) 20(1)	23(1)	-14(1)	0(1) 1(1)	-3(1) -7(1)
C(2)	43(2)	25(1)	30(1)	-2(1)	-2(1)	-9(1)
C(3)	52(2)	26(1)	45(2)	-9(1)	1(1)	-7(1)
C(4) C(5)	47(2) 47(2)	22(1)	53(2) 39(2)	5(1) 11(1)	-2(1) -7(1)	-3(1) -9(1)
C(6)	38(1)	26(1)	28(1)	0(1)	-2(1)	-9(1)
C(7)	20(1)	22(1)	26(1)	2(1)	-2(1)	-7(1)
C(8)	26(1) 37(2)	29(1)	42(2)	-9(1) -18(1)	4(1) 12(1)	-10(1)
C(10)	31(1)	50(2)	56(2)	-11(2)	20(1)	-14(1)
C(11)	30(1)	46(2)	63(2)	-10(2)	9(1)	-22(1)
C(12) C(13)	30(1) 30(1)	34(2) 26(1)	44(2) 20(1)	-12(1) 4(1)	2(1) -11(1)	-15(1) -8(1)
C(14)	33(1)	29(1)	33(1)	0(1)	-8(1)	-2(1)
C(15)	47(2)	33(2)	44(2)	-8(1)	-10(1)	9(1)
C(16) C(17)	75(2) 75(2)	22(1) 34(2)	38(2) 41(2)	-2(1) 8(1)	-25(2) -29(2)	3(1) -29(2)
C(18)	41(2)	39(2)	28(1)	2(1)	-9(1)	-19(1)
C(19)	33(1)	27(1)	32(1)	0(1)	-12(1)	-12(1)
C(20) C(21)	84(3) 101(3)	45(2) 43(2)	35(2) 45(2)	-3(1) -2(2)	-20(2) -37(2)	14(2) 11(2)
C(22)	58(2)	47(2)	83(3)	27(2)	-37(2)	-6(2)
C(23)	59(2)	102(4)	100(4)	49(3)	20(2)	42(2)
C(24) C(25)	59(2) 51(2)	82(3) 28(1)	58(2) 36(2)	34(2) -11(1)	-17(1)	24(2) 3(1)
C(26)	91(3)	55(2)	38(2)	12(2)	-26(2)	-28(2)
C(27)	128(4)	59(2)	47(2) 50(2)	10(2)	-39(2)	-24(2)
C(28) C(29)	62(2)	113(4)	74(3)	-23(2) -56(3)	-34(2)	45(2)
C(30)	46(2)	97(3)	50(2)	-42(2)	-19(2)	19(2)
C(31) C(32)	55(2) 131(4)	36(2) 73(3)	21(1) 135(4)	3(1) 43(3)	1(1) -86(4)	-26(1) -70(3)
C(33)	221(7)	122(5)	181(6)	62(5)	-131(6)	-135(5)
C(34)	260(8)	94(4)	64(3)	5(3)	-17(4)	-137(5)
C(35) C(36)	174(5) 82(2)	43(2) 31(2)	58(2) 62(2)	-19(2) -12(2)	34(3) 10(2)	-54(3) -16(2)
C(37)	27(1)	31(1)	38(2)	5(1)	-12(1)	-6(1)
C(38)	42(2)	39(2)	30(1)	2(1)	-10(1)	-12(1)
C(39) C(40)	57(2) 61(2)	55(2) 53(2)	36(2) 59(2)	-5(1)	-18(1) -35(2)	-5(2) -3(2)
C(41)	53(2)	34(2)	93(3)	-6(2)	-40(2)	-8(2)
C(42)	37(2)	35(2)	63(2)	11(1)	-20(1)	-10(1)
C(43) C(44)	27(1) 44(2)	39(2) 46(2)	29(1)	0(1)	-6(1)	-4(1) -8(1)
C(45)	49(2)	78(3)	38(2)	3(2)	-14(1)	-25(2)
C(46)	30(2)	89(3) 59(2)	29(2) 33(2)	6(2) 2(1)	-4(1) -3(1)	0(2) 13(2)
C(47) C(48)	38(2)	41(2)	32(1)	0(1)	-4(1)	1(1)
C(49)	38(1)	23(1)	18(1)	2(1)	-6(1)	-14(1)
C(50)	43(2) 61(2)	26(1) 23(1)	39(2)	7(1) 8(1)	-12(1) -14(1)	-13(1) -19(1)
C(52)	62(2)	37(2)	42(2)	11(1)	-18(1)	-33(2)
C(53)	45(2)	43(2)	44(2)	11(1)	-12(1)	-25(1)
C(54) C(55)	41(2) 32(1)	28(1) 16(1)	35(1) 39(1)	5(1) 4(1)	-5(1) -8(1)	-14(1) -10(1)
C(56)	40(2)	29(1)	52(2)	4(1)	-18(1)	-12(1)
C(57)	33(2)	34(2)	85(3)	2(2)	-20(2)	-10(1)
U(58) C(59)	30(2) 43(2)	28(2) 33(2)	91(3) 54(2)	2(2) 8(1)	7(2) 11(1)	-10(1) -7(1)
C(60)	34(1)	31(1)	39(2)	10(1)	-1(1)	-4(1)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 12(1) \\ 19(1) \\ 6(1) \\ 2(1) \\ 6(1) \\ 6(1) \\ 6(1) \\ 12(1) \\ 16(1) \\ 16(1) \\ 6(1) \\ 5(1) \\ 4(1) \\ 2(1) \\ 3(1) \\ 2(1) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6(1) 2(1) 6(1) 6(1) 12(1) 16(1) 16(1) 5(1) 5(1) 4(1) 2(1) 2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2(1) \\ 6(1) \\ 6(1) \\ 6(1) \\ 12(1) \\ 16(1) \\ 6(1) \\ 5(1) \\ 4(1) \\ 0(1) \\ 3(1) \\ 2(1) $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6(1) 6(1) 12(1) 16(1) 6(1) 5(1) 4(1) 0(1) 3(1) 2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6(1) 12(1) 16(1) 6(1) 5(1) 4(1) 0(1) 3(1) 2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 12(1) \\ 16(1) \\ 6(1) \\ 5(1) \\ 4(1) \\ 0(1) \\ 3(1) \\ 2(1) \end{array}$
C(71) $20(1)$ $39(2)$ $51(2)$ $5(1)$ $0(1)$ -	6(1) 5(1) 4(1) 0(1) 3(1) 2(1)
	5(1) 4(1) 0(1) 3(1) 2(1)
C(72) 25(1) 26(1) 38(1) 2(1) 0(1) -	4(1) 0(1) 3(1) 2(1)
AI(3) 16(1) 17(1) 18(1) 1(1) -2(1) - AI(4) 19(1) 15(1) 24(1) -3(1) -6(1)	3(1) 2(1)
Si(7) 14(1) 22(1) 22(1) -2(2(1)
Si(8) 17(1) 15(1) 26(1) 1(1) -3(1) -	
Si(9) 20(1) 31(1) 14(1) 3(1) -4(1) - Si(10) 19(1) 21(1) 15(1) 1(1) -4(1) -	10(1)
Si(10) $13(1)$ $21(1)$ $10(1)$ $10(1)$ $10(1)$ $10(1)$ $10(1)$	3(1)
Si(12) 29(1) 18(1) 24(1) -5(1) -10(1)	2(1)
$\begin{array}{cccc} O(11) & 19(1) & 26(1) & 28(1) & -2(1) & -4(1) \\ O(12) & 25(1) & 24(1) & 42(1) & -7(1) & 3(1) \\ \end{array}$	1(1) 6(1)
O(12) 23(1) 24(1) 42(1) -7(1) 3(1) -7(1	2(1)
O(14) 25(1) 19(1) 33(1) 4(1) -6(1) -	7(1)
O(15) 18(1) 22(1) 18(1) -1(1) -3(1) - O(16) 22(1) 38(1) 16(1) 4(1) -4(1) -1(1)	5(1) 14(1)
O(17) 22(1) 39(1) 16(1) 4(1) -4(1) -7(1	12(1)
O(18) 29(1) 18(1) 26(1) -4(1) -11(1)	1(1)
O(19) 40(1) 20(1) 24(1) -6(1) -12(1) O(20) 35(1) 18(1) 25(1) -6(1) -12(1)	7(1) 5(1)
C(73) $27(1)$ $27(1)$ $26(1)$ $-4(1)$ $-1(1)$	6(1)
C(74) 29(1) 41(2) 34(1) -5(1) 3(1) -	10(1)
C(75) 44(2) 42(2) 43(2) -7(1) 18(1) -7 C(76) 75(2) 43(2) 27(2) -2(1) 15(2) -	14(1) 1(2)
C(77) $69(2)$ $68(2)$ $26(2)$ $1(2)$ $-6(2)$	6(2)
C(78) 36(2) 57(2) 27(1) -5(1) -4(1)	3(1)
C(79) 17(1) 38(1) 21(1) 1(1) 2(1) - C(80) 24(1) 75(2) 37(2) 22(2) -6(1) -	10(1) 9(1)
C(81) 26(2) 188(5) 31(2) 24(3) -11(1) -2	26(2)
C(82) 41(2) 259(8) 32(2) -33(3) 7(2) -7	74(4)
C(83) $62(2)$ $141(4)$ $74(3)$ $-68(3)$ $30(2)$ $-7C(84)$ $34(2)$ $57(2)$ $54(2)$ $-24(2)$ $10(1)$ -7	26(1)
C(85) 26(1) 19(1) 32(1) 0(1) 2(1)	5(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14(2)
C(87) $62(2)$ $97(3)$ $93(3)$ $-65(3)$ $7(2)$ $-50(3)$ $7(2)$ $7(2)$ $-50(3)$ $7(2)$ $-50(3)$ $7(2)$ $-50(3)$ $7(2)$ $-50(3)$ $7(2)$ $-50(3)$ $7(2)$ $-50(3)$ $7(2)$ $-50(3)$ $7(2)$ $7(2)$ $-50(3)$ $7(2)$ $7($	30(2) 18(2)
C(89) 49(2) 42(2) 55(2) -15(2) 15(2)	6(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1(1)
C(91) $C(91)$ $C(91)$ $C(91)$ $C(91)$ $C(92)$ $C(92)$ $C(91)$ $C(91)$ $C(92)$ $C(92)$ $C(91)$ $C(91$	6(1)
C(93) $35(1)$ $35(2)$ $54(2)$ $18(1)$ $-6(1)$ -7	12(1́)
C(94) 42(2) 42(2) 40(2) 19(1) -6(1) - C(95) 40(2) 43(2) 38(2) 10(1) -16(1) -	2(1)
C(96) 28(1) 30(1) 40(2) 5(1) -8(1) -	5(1)
C(97) 28(1) 30(1) 17(1) 5(1) -9(1) -	8(1)
C(98) 32(1) 38(2) 25(1) 1(1) -4(1) - C(99) 40(2) 42(2) 30(1) -1(1) -3(1)	8(1) 3(1)
C(100) = 59(2) = 33(2) = 46(2) = -9(1) = -13(2)	4(1)
C(101) 60(2) 32(2) 75(2) -7(2) -10(2) -	15(2)
C(102) 38(2) 35(2) 51(2) 0(1) -3(1) - C(103) 20(1) 32(1) 20(1) 3(1) -3(1) -	14(1) 8(1)
C(104) 38(1) 34(1) 23(1) 3(1) -4(1) -4(1)	12(1)
C(105) 50(2) 42(2) 23(1) 8(1) -5(1) -	12(1)
C(105) 42(2) 34(2) 39(2) 12(1) -8(1) -7 C(107) 41(2) 31(2) 42(2) 1(1) -13(1) -7	10(1) 10(1)
C(108) $34(1)$ $35(1)$ $26(1)$ $0(1)$ $-9(1)$	6(1)
C(109) 20(1) 23(1) 25(1) 0(1) -6(1) - C(110) 20(1) 20(1) -6(1) -	5(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14(1) 15(1)

C(112)	36(1)	30(1)	52(2)	-8(1)	-18(1)	-11(1)
C(113)	53(2)	35(2)	57(2)	15(1)	-27(2)	-26(1)
C(114)	45(2)	40(2)	35(2)	12(1)	-21(1)	-22(1)
C(115)	22(1)	23(1)	21(1)	1(1)	-1(1)	-4(1)
C(116)	22(1)	31(1)	28(1)	4(1)	0(1)	-4(1)
C(117)	24(1)	38(2)	42(2)	9(1)	-3(1)	3(1)
C(118)	$\frac{1}{40(2)}$	29(2)	62(2)	17(1)	-1(1)	5(1)
C(119)	42(2)	26(2)	74(2)	14(1)	-5(2)	-8(1)
C(120)	27(1)	27(1)	47(2)	5(1)	-6(1)	-6(1)
C(121)	27(1)	22(1)	33(1)	-9(1)	-8(1)	-4(1)
C(122)	33(2)	32(2)	76(2)	-3(2)	-18(2)	-7(1)
C(123)	31(2)	48(2)	109(3)	-6(2)	0(2)	-18(2)
C(124)	50(2)	51(2)	70(2)	-3(2)	8(2)	-29(2)
C(125)	51(2)	45(2)	43(2)	5(1)	-6(1)	-22(2)
C(126)	31(1)	32(1)	32(1)	-1(1)	-8(1)	-8(1)
C(127)	26(1)	24(1)	22(1)	2(1)	-4(1)	-1(1)
C(128)	$\frac{-9(1)}{39(2)}$	$\frac{1}{43(2)}$	43(2)	-18(1)	-18(1)	9(1)
C(129)	46(2)	59(2)	48(2)	-18(2)	-24(1)	-2(2)
C(130)	30(1)	49(2)	45(2)	13(1)	-16(1)	-6(1)
C(131)	24(1)	28(1)	65(2)	7(1)	-7(1)	0(1)
C(132)	$\frac{2}{29(1)}$	23(1)	49(2)	-1(1)	-5(1)	-4(1)
C(133)	29(1)	29(1)	28(1)	-8(1)	-12(1)	-3(1)
C(134)	$\frac{1}{30(1)}$	33(2)	40(2)	-8(1)	-14(1)	-6(1)
C(135)	34(1)	45(2)	49(2)	-1(1)	-15(1)	-20(1)
C(136)	29(1)	63(2)	41(2)	-11(1)	-8(1)	-20(1)
C(137)	27(1)	52(2)	48(2)	-19(1)	-5(1)	-5(1)
C(138)	$\frac{2}{34(1)}$	30(1)	39(2)	-10(1)	-9(1)	-1(1)
C(139)	31(1)	19(1)	28(1)	-6(1)	-7(1)	2(1)
C(140)	72(2)	28(2)	36(2)	2(1)	-13(1)	-17(2)
C(141)	76(2)	32(2)	63(2)	5(2)	-12(2)	-26(2)
C(142)	56(2)	25(2)	68(2)	-7(1)	-28(2)	-11(1)
C(143)	37(1)	30(1)	39(2)	-10(1)	-18(1)	2(1)
C(144)	26(1)	26(1)	28(1)	-6(1)	-7(1)	1(1)
N(1)	106(3)	45(2)	54(2)	-6(1)	21(2)	-21(2)
C(145)	105(3)	41(2)	40(2)	6(1)	-15(2)	-45(2)
C(146)	116(4)́	105(4)	55(2)	9(2)	-16(2)	-52(3)
C(147)	65(3)	91(3)	78(3)	34(Ź)	12(2)	1(2)
C(148)	56(2)	56(2)	86(3)	-14(2)	6(2)	-3(2)
N(2)	22(1)	64(2)	27(1)	-11(1)	0(1)	-2(1)
C(149)	28(2)	127(3)	28(2)	10(2)	-4(1)	-31(2)
C(150)	59(2)	170(5)	67(3)	-64(3)	28(2)	-71(3)
C(151)	40(2)	38(2)	54(2)	12(1)	16(1)	4(1)
C(152)	51(2)	45(2)	54(2)	-14(2)	15(2)	-11(2)
N(3)	28(1)	31(1)	30(1)	-12(1)	-11(1)	0(1)
C(153)	34(1)	36(2)	58(2)	-17(1)	-14(1)	-7(1)
C(154)	52(2)	36(2)	74(2)	-7(2)	2(2)	-16(2)
C(155)	42(2)	49(2)	26(1)	-12(1)	-10(1)	5(1)
C(156)	67(2)	46(2)	32(2)	3(1)	0(1)	1(2)
N(4)	35(1)	37(1)	26(1)	5(1)	-12(1)	-9(1)
C(157)	69(2)	49(2)	30(2)	11(1)	-16(1)	-14(2)
C(158)	92(3)	98(3)	28(2)	-4(2)	-3(2)	-51(2)
C(159)	38(2)	41(2)	34(2)	-5(1)	-5(1)	-10(1)
C(160)	41(2)	65(2)	45(2)	-8(2)	-5(1)	-14(2)
C(161)	31(1)	70(2)	36(2)	8(2)	-1(1)	-16(2)
C(162)	52(2)	65(2)	44(2)	-4(2)	-5(2)	-28(2)
C(163)	62(2)	51(2)	75(3)	3(2)	1(2)	-17(2)
C(164)	48(2)	66(2)	61(2)	27(2)	-9(2)	-18(2)
C(165)	58(2)	74(3)	38(2)	11(2)	-9(2)	-21(2)
C(166)	49(2)	64(2)	36(2)	2(2)	3(1)	-6(2)
C(167)	43(2)	118(4)	46(2)	22(2)	-1(2)	-1(2)
C(168)	49(2)	85(3)	/3(3)	14(2)	-15(2)	-18(2)
C(169)	54(2)	54(2)	65(2)	11(2)	-2(2)	-10(2)
U(170)	67(3)	73(3)	120(4)	-20(3)	-5(3)	-11(2)
U(1/1)	51(3)	58(3)	231(8)	-14(4)	-32(4)	-15(2)
C(1/2)	48(3)	85(4)	221(8)	//(5) 74/4)	-57(4)	-28(3)
U(1/3)	71(3)	114(4)	120(4)	71(4)	-43(3)	-38(3)
C(174)	112(4)	129(5)	88(4)	-32(3)	-4(3)	-22(4)

Tabelle 49: Koordinaten des Wasserstoffs (x 10⁴) und isotrope Auslenkungsparameter (Å ^{2}x 10 3) für sh3110.

	x	y	Z	U(eq)
H(2)	5014	5850	2474	39
H(3)	5684	4881	2624	51
H(4)	5922	4552	3481	50
H(5)	5513	5195	4190	48
H(6)	4850	6163	4045	37
H(8)	3398	7752	3975	39
H(9)	2002	7931	4593	52
H(10)	858	7407	4567	57
H(11)	1147	6685	3938	55
H(12)	2538	6503	3321	43
H(14)	6444	6510 5721	1196	39
П(15) Н(16)	5622	5200	631	55
H(17)	/122	5/86	1160	54
H(18)	3774	6297	1701	41
H(20)	4655	7618	886	71
H(21)	3576	8322	473	79
H(22)	2187	8865	962	74
H(23)	1904	8718	1864	124
H(24)	2988	8006	2287	93
H(26)	8382	8567	363	70
H(27)	7747	8903	-420	91
H(28)	6101	9032	-453	99
H(29)	5112	8754	246	110
H(30)	5750	8421	1048	83
H(32)	9301	8581	1848	119
H(33)	9589	9427	2148	178
H(34)	8400	10293	2092	147
П(30) Н(36)	/ 140 6817	0526	1007	71
H(38)	9622	7128	412	43
H(39)	9952	6517	-321	40 60
H(40)	9460	5674	-268	68
H(41)	8638	5430	520	69
H(42)	8293	6035	1262	53
H(44)	10060	7644	2054	48
H(45)	11496	7319	2431	63
H(46)	12287	6351	2410	63
H(47)	11633	5703	2025	60
H(48)	10196	6024	1657	47
H(50)	5277	9494	4485	42
H(51)	6128 7912	10199	4463	51
H(32)	2655	9930	4432	31 40
H(54)	7810	8272	4420	49
H(56)	3788	8735	4204	46
H(57)	2270	9036	4712	40 59
H(58)	2118	8927	5634	61
H(59)	3491	8536	6054	55
H(60)	5012	8250	5545	43
H(62)	8187	7326	5020	36
H(63)	9773	6902	5176	46
H(64)	10534	5969	4891	47
H(65)	9694	5451	4460	43
H(66)	8105	5874	4301	34
H(68)	6795	5920	5091	37
H(69)	5666	5465	5524	45
H(70)	4007	5895	5552	47
H(71)	3478	6781	5148	45
H(72)	4607	(237	4/19	37
H(74)	-902	2071	3400	42
-------------------------------	----------------	----------------------	--------------	----------
H(75)	-1452	1975	4299	53
H(76)	-349	1643	4899	63
H(77)	1309	1398	4607	70
H(78)	1873	1504	3711	51
H(80)	-636	2625	2227	56
H(81)	-000 -1680	2025	1668	08
H(82)	-1581	1558	1385	126
	-1301	701	1677	120
	-440	022	2280	103
	2042	933	2200	50
⊓(00) ⊔(07)	2043	111	1/20	74
$\Pi(07)$	2303	00	1060	99
H(88)	3914	-522	882	12
H(89)	5170	-354	1278	64
H(90)	4866	348	1927	50
H(92)	2584	160	2970	39
H(93)	2621	-311	3782	49
H(94)	3425	-46	4433	52
H(95)	4211	684	4266	49
H(96)	4179	1155	3447	39
H(98)	7447	1784	598	38
H(99)	8186	939	126	47
H(100)	7367	230	116	58
H(101)	5811	360	584	66
H(102)	5104	1182	1092	49
H(104)	5639	2542	172	38
H(105)	5503	3388	-313	46
H(106)	5489	4228	109	46
H(107)	5543	4238	1022	45
H(108)	5574	3408	1518	38
H(110)	6398	2552	3489	36
H(111)	7144	3185	3828	46
H(112)	7743	3826	3270	45
H(113)	7524	3870	2377	53
H(114)	6801	3233	2028	44
H(116)	7946	1712	2778	34
H(117)	8661	845	3158	45
H(118)	7768	171	3372	57
H(119)	6167	365	3191	58
H(120)	5465	1212	2783	41
H(122)	2712	4099	1688	55
H(123)	3634	4534	1069	74
H(124)	2885	5229	501	66
H(125)	1195	5482	540	54
H(126)	265	5041	1151	38
H(128)	-354	3499	1373	53
H(129)	-1859	3689	1058	62
H(130)	-2987	4562	1248	49
H(131)	-2655	5224	1786	49
H(132)	-1154	5038	2100	41
H(134)	90	3201	3642	41
H(135)	-1210	3123	4271	48
H(136)	-2358	3938	4619	51
H(137)	-2231	4838	4314	51
H(138)	_022	4000	3701	42
H(140)	1870	5007	2764	53
H(140)	2706	5521	2104	66
H(147)	2130	5503	1048	57
H(1/2)	2042	1012	4501	43
H(144)	1162	1342	/001	22
$H(1\Delta)$	6/83	4000 861 <i>1</i>	7570	33 QE
H(1B)	6156	Q5/14	2012	00
$H(1/\Delta)$	6683	0041	2272	60 00
н(14R)	7004	0402	00750	00
H(14C)	1 UZ 1 7027	9403 0404	21:00	00
LI(140)	1001	0404	330U 21E1	131
$\frac{1}{1} \frac{140}{14E}$	0090	0010	0104 0705	101
II(14⊑) ⊔(14⊑)	0100 E440	04/U	2130	131
⊓(14 F) ⊔(14C)	5412	94/4	20//	102
11(140)	5033	9303	3160	102

H(14H)	4913	8588	2372	104
H(14I)	4083	9174	2476	104
H(14j)	4258	8709	2941	104
H(3)	7940(30)	6654(16)	3358(15)	70(11)
H(4)	8180(20)	6829(14)	2827(14)	52(10)
H(14K)	9520	6445	3526	71
H(14I)	9811	6597	2916	71
$H(15\Delta)$	8028	7542	3070	130
H(15R)	0768	7355	3454	130
H(15C)	8664	7388	3601	130
	970 <i>4</i>	5722	2107	50
H(15D) H(15E)	0794 9900	5016	2592	59
H(15E)	7077	5910	2000	70
	7077	5990	3223	70
	7092	0400 6104	2010	/0 70
	1210	0124	2097	/ O 40(0)
H(5)	4050(20)	2981(13)	3053(12)	43(8)
	3020(20)	3362(12)	3164(11)	39(8)
H(151)	4647	3684	3367	50
H(15J)	3560	4087	3469	50
H(15K)	4548	3675	2449	80
H(15L)	4337	4321	2652	80
H(15M)	3454	4066	2547	80
H(15N)	3076	3307	4074	50
H(15O)	4171	2919	3955	50
H(15P)	2495	2599	3735	78
H(15Q)	3153	2325	4186	78
H(15R)	3582	2218	3571	78
H(7)	3320(30)	2665(14)	1210(13)	56(10)
H(8)	2330(20)	3058(14)	1420(13)	59(10)
H(15S)	3084	3413	667	59
H(151)	2053	3310	596	59
H(15U)	3845	2534	207	102
H(15V)	3235	3009	-156	102
H(15VV)	2792	2501	91	102
H(15\$)	2799	1974	905	45
H(15)	2427	2086	1526	45 75
H(16A)	931	2001	1302	/5 75
H(10B)	1138	2013	1109	/5 75
H(16C)	1307	2490	0002	/5 60
H(162)	0002	2100	9002	02 76
H(103)	9779	1310	9040	70
H(104)	9702	1700	10430	67
	0040	2001	10751	67
H(100)	1093	3271	10200	03
	0100	3337 2515	0913	110
	7200	3010	9307	110
	7330	2999	0990	71
H(109)	9411	1240	5049	106
$\Pi(170)$	9000	414	5309	100
ц(171) Ц(172)	9920	476	6709	127
L(172)	0166	-+/0	7205	117
H(173)	0/2/	1685	6730	167
H(17B)	0161	13/5	7258	167
H(17C)	8337	1626	6802	167
	0001	1020	0032	107

7.7 Daten zur Molekül- und Kristallstruktur von [(Ph₂SiO)₈(AIO(OH))₄] · 4 OC(CH₃)₂ <u>10</u>

Tabelle 50: Kristalldaten und Strukturverfeinerungen für $[(Ph_2SiO)_8(AIO(OH))_4] \cdot 4 OC(CH_3)_2$ <u>10</u> (sh2705)

Identifikationscode	sh2705	
Summenformel	C108 H108 Al4 O20 Si8	
Molmasse [g/mol]	2058.58	
Messtemperatur [K]	150(2)	
Wellenlänge [A]	0.71073	
Kristallsystem	Tetragonal	
Raumgruppe	I-4 。	
Gitterkonstanten	a = 18.850(3) A	α= 90°.
	b = 18.850(3) Å	β= 90°.
	c = 15.460(4) Å	$\gamma = 90^{\circ}$.
Zellvolumen [Å ³]	5493.1(19)	
Anzahl der Formeleinheiten Z	2	
Dichte (berechnet)	1.245 Mg/m ³	
Absorptionskoeffizient [mm ⁻¹]	0.195	
F(000)	2160	
Kristallabmessungen [mm ³]	0.48 x 0.46 x 0.32	
Messbereich θ [°]	1.53 to 30.40	
hkl - Indexbereich	-26<=h<=26, -26<=k<=26, -21<	:=l<=21
Gemessene Reflexe	52727	
Symmetrieunabhängige Reflexe	8184 [R(int) = 0.0385]	
Vollständigkeit des Datensatzes (bis $\theta = 30.40^{\circ}$)	99.5 %	
Absorptionskorrektur	Multiscan	
Max. und Min. Transmission	0.9404 and 0.9124	
Strukturverfeinerungsmethode	Full-matrix least-squares on F ²	
Daten / Einschränkungen / Parameter	8184 / 0 / 322	
Güte des Fit auf F ²	1.029	
Endgültige R-Werte [I>2sigma(I)]	R1 = 0.0265, wR2 = 0.0658	
R-Werte (alle Daten)	R1 = 0.0307, wR2 = 0.0685	
Absolute Strukturparameter	-0.03(5)	
Restelektronendichte (min./max.) [e/Å-3]	0.274 and -0.161	
F(000) Kristallabmessungen [mm ³] Messbereich θ [°] hkl - Indexbereich Gemessene Reflexe Symmetrieunabhängige Reflexe Vollständigkeit des Datensatzes (bis θ = 30.40°) Absorptionskorrektur Max. und Min. Transmission Strukturverfeinerungsmethode Daten / Einschränkungen / Parameter Güte des Fit auf F ² Endgültige R-Werte [I>2sigma(I)] R-Werte (alle Daten) Absolute Strukturparameter Restelektronendichte (min./max.) [e/Å ⁻³]	2160 0.48 x 0.46 x 0.32 1.53 to 30.40 -26<=h<=26, -26<=k<=26, -21< 52727 8184 [R(int) = 0.0385] 99.5 % Multiscan 0.9404 and 0.9124 Full-matrix least-squares on F^2 8184 / 0 / 322 1.029 R1 = 0.0265, wR2 = 0.0658 R1 = 0.0307, wR2 = 0.0685 -0.03(5) 0.274 and -0.161	≍=l<=21

Tabelle 51: Atomkoordinaten ($x \ 10^4$) und äquivalente isotrope Auslenkungsparameter (Å²x 10³) for sh2705. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

	Х	У	Z	U(eq)
AI(1)	3781(1)	4891(1)	9930(1)	14(1)
Si(1)	3065(1)	5712(1)	8274(1)	15(1)
Si(2)	2899(1)	3908(1)	11279(1)	15(1)
O(1)	4279(1)	5569(1)	10472(1)	17(1)
O(2)	3387(1)	5250(1)	9044(1)	22(1)
O(3)	3239(1)	4517(1)	10688(1)	20(1)
O(4)	3493(1)	3409(1)	11751(1)	20(1)
C(1)	2079(1)	5767(1)	8429(1)	20(1)
C(2)	1758(1)	5506(1)	9181(1)	32(1)
C(3)	1019(1)	5515(1)	9277(1)	44(1)
C(4)	594(1)	5773(1)	8622(1)	43(1)
C(5)	897(1)	6027(1)	7864(1)	35(1)
C(6)	1633(1)	6035(1)	7778(1)	26(1)
C(7)	3242(1)	5304(1)	7191(1)	18(1)
C(8)	2734(1)	4864(1)	6803(1)	28(1)
C(9)	2833(1)	4578(1)	5981(1)	38(1)
C(10)	3444(1)	4720(1)	5532(1)	38(1)

C(11) C(12) C(13) C(14) C(15) C(16) C(17) C(18) C(19) C(20) C(21) C(22) C(21) C(22) C(23) C(24) O(5) C(25)	3965(1) 3866(1) 2332(1) 2535(1) 2115(1) 1489(1) 1268(1) 1268(1) 2336(1) 2269(1) 1819(1) 1431(1) 1435(1) 1935(1) 3902(1) 2436(1)	5142(1) 5431(1) 3318(1) 2632(1) 2216(1) 2474(1) 3149(1) 3567(1) 4313(1) 3986(1) 4264(1) 4876(1) 5204(1) 4929(1) 55994(1)	5905(1) 6729(1) 10592(1) 10363(1) 9815(1) 9497(1) 9718(1) 10263(1) 12148(1) 12960(1) 13597(1) 13432(1) 12632(1) 12632(1) 12000(1) 12108(1)	36(1) 26(1) 20(1) 29(1) 35(1) 37(1) 46(1) 37(1) 20(1) 27(1) 37(1) 37(1) 37(1) 36(1) 27(1) 38(1) 41(1)
C(23) C(24) O(5) C(25) C(26) C(27)	1435(1) 1935(1) 3902(1) 3476(1) 3218(1) 3204(2)	4929(1) 5594(1) 5839(1) 5839(2) 6619(2)	12032(1) 12000(1) 12108(1) 12448(1) 13353(1) 11992(2)	27(1) 38(1) 41(1) 67(1) 82(1)

Tabelle 52: Bindungslängen [Å] und Winkel [°] für sh2705.

AI(1)-O(2)	1.6984(9)	O(2)-Al(1)-O(3)	117.10(5)
AI(1)-O(3)	1.7072(9)	O(2)-AI(1)-O(1)	108.85(4)
AI(1)-O(1)	1.7915(9)	O(3)-AI(1)-O(1)	106.66(5)
AI(1)-O(1)#1	1.7956(9)	O(2)-AI(1)-O(1)#1	105.95(5)
Si(1)-O(2)	1.5957(9)	O(3)-AI(1)-O(1)#1	112.38(4)
Si(1)-O(4)#2	1.6346(9)	O(1)-AI(1)-O(1)#1	105.27(6)
Si(1)-C(7)	1.8715(12)	O(2)-Si(1)-O(4)#2	111.53(5)
Si(1)-C(1)	1.8772(12)	O(2)-Si(1)-C(7)	112.07(5)
Si(2)-O(3)	1.6020(9)	O(4)#2-Si(1)-C(7)	106.57(5)
Si(2)-O(4)	1.6341(9)	O(2)-Si(1)-C(1)	108.13(5)
Si(2)-C(13)	1.8723(12)	O(4)#2-Si(1)-C(1)	110.20(5)
Si(2)-C(19)	1.8741(12)	C(7)-Si(1)-C(1)	108.30(5)
O(1)-Al(1)#2	1.7956(9)	O(3)-Si(2)-O(4)	113.15(5)
O(4)-Si(1)#1	1.6345(9)	O(3)-Si(2)-C(13)	109.32(5)
C(1)-C(2)	1.3990(18)	O(4)-Si(2)-C(13)	107.60(5)
C(1)-C(6)	1.4062(17)	O(3)-Si(2)-C(19)	110.07(5)
C(2)-C(3)	1.402(2)	O(4)-Si(2)-C(19)	107.58(5)
C(3)-C(4)	1.381(3)	C(13)-Si(2)-C(19)	109.02(5)
C(4)-C(5)	1.388(3)	AI(1)-O(1)-AI(1)#2	131.37(5)
C(5)-C(6)	1.3941(19)	Si(1)-O(2)-AI(1)	170.25(6)
C(7)-C(12)	1.3964(17)	Si(2)-O(3)-AI(1)	158.01(6)
C(7)-C(8)	1.4013(17)	Si(2)-O(4)-Si(1)#1	147.87(6)
C(8)-C(9)	1.3937(19)	C(2)-C(1)-C(6)	117.63(12)
C(9)-C(10)	1.370(2)	C(2)-C(1)-Si(1)	120.98(9)
C(10)-C(11)	1.390(2)	C(6)-C(1)-Si(1)	121.31(9)
C(11)-C(12)	1.3977(19)	C(1)-C(2)-C(3)	120.84(14)
C(13)-C(14)	1.3940(18)	C(4)-C(3)-C(2)	120.28(15)
C(13)-C(18)	1.3980(19)	C(3)-C(4)-C(5)	120.11(13)
C(14)-C(15)	1.399(2)	C(4)-C(5)-C(6)	119.61(14)
C(15)-C(16)	1.368(2)	C(5)-C(6)-C(1)	121.49(14)
C(16)-C(17)	1.381(3)	C(12)-C(7)-C(8)	117.26(11)
C(17)-C(18)	1.397(2)	C(12)-C(7)-Si(1)	122.49(9)
C(19)-C(20)	1.4044(17)	C(8)-C(7)-Si(1)	120.24(9)
C(19)-C(24)	1.4051(18)	C(9)-C(8)-C(7)	121.81(13)
C(20)-C(21)	1.4023(18)	C(10)-C(9)-C(8)	119.97(14)
C(21)-C(22)	1.388(2)	C(9)-C(10)-C(11)	119.70(13)
C(22)-C(23)	1.387(2)	C(10)-C(11)-C(12)	120.42(14)
C(23)-C(24)	1.394(2)	C(7)-C(12)-C(11)	120.82(13)
O(5)-C(25)	1.214(2)	C(14)-C(13)-C(18)	117.20(12)
C(25)-C(27)	1.474(3)	C(14)-C(13)-Si(2)	122.59(10)
C(25)-C(26)	1.508(2)	C(18)-C(13)-Si(2)	120.18(10)
		C(13)-C(14)-C(15)	121.20(13)

C(16)-C(15)-C(14)	120 40(14)	C(22)- $C(21)$ - $C(20)$	120 04(13)
C(15)-C(16)-C(17)	119.91(13)	C(23)-C(22)-C(21)	119.74(13)
C(16)-C(17)-C(18)	119.82(15)	C(22)-C(23)-C(24)	120.22(14)
C(17)-C(18)-C(13)	121.45(14)	C(23)-C(24)-C(19)	121.40(13)
C(20)-C(19)-C(24)	117.41(11)	O(5)-C(25)-C(27)	121.12(18)
C(20)-C(19)-Si(2)	120.87(9)	O(5)-C(25)-C(26)	120.0(2)
C(24)-C(19)-Si(2)	121.63(9)	C(27)-C(25)-C(26)	118.9(2)
C(21)-C(20)-C(19)	121.19(13)		

Symmetry transformations used to generate equivalent atoms:

#1 -y+1,x,-z+2 #2 y,-x+1,-z+2

Tabelle 53: Anisotropische Auslenkungsaparameter (Å²x 10³) for sh2705. Der anisotropischeExponentfaktor des Auslenkungsparameter lautet: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
AI(1)	14(1)	15(1)	13(1)	2(1)	-1(1)	0(1)
Si(1)	16(1)	16(1)	14(1)	1(1)	-3(1)	0(1)
Si(2)	14(1)	17(1)	14(1)	1(1)	1(1)	-1(1)
O(1)	19(1)	19(1)	14(1)	-1(1)	1(1)	-3(1)
O(2)	22(1)	24(1)	18(1)	6(1)	-5(1)	1(1)
O(3)	19(1)	21(1)	20(1)	4(1)	3(1)	-3(1)
O(4)	19(1)	23(1)	19(1)	3(1)	1(1)	2(1)
C(1)	18(1)	20(1)	23(1)	-3(1)	-2(1)	1(1)
C(2)	25(1)	40(1)	32(1)	5(1)	4(1)	0(1)
C(3)	30(1)	49(1)	54(1)	5(1)	16(1)	-2(1)
C(4)	19(1)	34(1)	75(1)	-11(1)	3(1)	1(1)
C(5)	23(1)	29(1)	54(1)	-11(1)	-12(1)	8(1)
C(6)	24(1)	23(1)	32(1)	-3(1)	-5(1)	4(1)
C(7)	19(1)	17(1)	17(1)	1(1)	-1(1)	2(1)
C(8)	25(1)	32(1)	27(1)	-11(1)	0(1)	-2(1)
C(9)	36(1)	44(1)	33(1)	-20(1)	-3(1)	0(1)
C(10)	50(1)	42(1)	23(1)	-9(1)	5(1)	9(1)
C(11)	40(1)	35(1)	33(1)	1(1)	16(1)	5(1)
C(12)	24(1)	25(1)	29(1)	-1(1)	4(1)	0(1)
C(13)	21(1)	22(1)	17(1)	-1(1)	0(1)	-4(1)
C(14)	32(1)	26(1)	29(1)	-3(1)	-5(1)	0(1)
C(15)	51(1)	25(1)	29(1)	-6(1)	-5(1)	-6(1)
C(16)	43(1)	41(1)	28(1)	-5(1)	-10(1)	-15(1)
C(17)	39(1)	50(1)	51(1)	-11(1)	-25(1)	2(1)
C(18)	33(1)	32(1)	46(1)	-11(1)	-17(1)	5(1)
C(19)	17(1)	22(1)	20(1)	-2(1)	1(1)	-2(1)
C(20)	28(1)	35(1)	19(1)	2(1)	4(1)	6(1)
C(21)	39(1)	52(1)	21(1)	-1(1)	9(1)	5(1)
C(22)	33(1)	46(1)	32(1)	-12(1)	10(1)	5(1)
C(23)	32(1)	34(1)	43(1)	-7(1)	4(1)	11(1)
C(24)	29(1)	26(1)	28(1)	0(1)	2(1)	4(1)
O(5)	42(1)	50(1)	21(1)	-6(1)	5(1)	-12(1)
C(25)	34(1)	57(1)	33(1)	-17(1)	5(1)	-16(1)
C(26)	60(1)	107(2)	34(1)	-31(1)	19(1)	-38(1)
C(27)	73(2)	87(2)	86(2)	-8(2)	1(2)	27(1)

Tabelle 54: Koordinaten des Wasserstoffs ($x \ 10^4$) und isotrope Auslenkungsparameter (Å²x 10³) for sh2705.

x	У	Z	U(eq)

4220(12)	5609(12)	10926(15)	54(7)
2046	5321	9633	39
810	5342	9795	53
93	5777	8689	51
604	6195	7408	42
1838	6225	7267	31
2310	4758	7109	34
2478	4285	5731	45
3511	4530	4969	46
4392	5235	5599	43
4227	5717	6978	31
2966	2443	10583	35
2266	1752	9662	42
1206	2190	9126	45
833	3329	9501	56
1532	4030	10412	44
2534	3568	13080	33
1779	4035	14142	45
1130	5068	13865	44
1215	5619	12515	44
1971	5163	11457	33
2704	5767	13346	101
3333	6242	13728	101
3451	5411	13574	101
3439	6662	11429	123
3302	7044	12338	123
2691	6572	11907	123
	$\begin{array}{r} 4220(12)\\ 2046\\ 810\\ 93\\ 604\\ 1838\\ 2310\\ 2478\\ 3511\\ 4392\\ 4227\\ 2966\\ 2266\\ 1206\\ 833\\ 1532\\ 2534\\ 1779\\ 1130\\ 1215\\ 1971\\ 2704\\ 3333\\ 3451\\ 3439\\ 3302\\ 2691\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

7.8 Daten zur Molekül- und Kristallstruktur von [(Ph₂SiO)₈(AlO_{1,5})₄] · 2 THF <u>11</u>

 Tabelle 55:
 Kristalldaten und Strukturverfeinerungen für [(Ph₂SiO)₈(AlO_{1,5})₄] · 2 THF <u>11</u> (sh2719).

Identifikationscode Summenformel Molmasse [g/mol] Messtemperatur [K] Wellenlänge [Å] Kristallsystem	sh2719 C112 H120 Al4 O18 Si8 2086.72 150(2) 0.71073 Triclinic	
Raumgruppe Gitterkonstanten	P-1 a = 13.1656(15) Å b = 15.1942(17) Å c = 15.6210(18) Å	$\alpha = 69.616(4)^{\circ}$ $\beta = 80.353(5)^{\circ}$ $\gamma = 66.087(4)^{\circ}$
Zellvolumen [Å ³] Anzahl der Formeleinheiten Z	2676.5(5) 1	
Dichte (berechnet) Absorptionskoeffizient $[mm^{-1}]$ F(000) Kristallabmessungen $[mm^{3}]$ Messbereich θ [°] hkl - Indexbereich Gemessene Reflexe Symmetrieunabhängige Reflexe Vollständigkeit des Datensatzes (bis $\theta = 27.30^{\circ}$) Absorptionskorrektur	1.295 Mg/m ³ 0.200 1100 0.46 x 0.33 x 0.21 1.39 to 27.30 -16<=h<=14, -19<=k<=19, -19< 39619 11685 [R(int) = 0.0529] 97.1 % Multiscan	<=l<=20

Max. und Min. Transmission	0.9593 and 0.9138
Strukturverfeinerungsmethode Daten / Einschränkungen / Parameter Güte des Fit auf F ² Endgültige R-Werte [I>2sigma(I)] R-Werte (alle Daten) Pastelektronendichte (min (max) [e/Å ⁻³]	Full-matrix least-squares on F^2 11685 / 0 / 628 1.518 R1 = 0.0639, wR2 = 0.1751 R1 = 0.0852, wR2 = 0.1897 0.719 and -1.003

Tabelle 56: Atomkoordinaten ($x \ 10^4$) und äquivalente isotrope Auslenkungsparameter (Å² $x \ 10^3$) for sh2719. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

	х	У	Z	U(eq)
AI(1)	7247(1)	-39(1)	4298(1)	15(1)
AI(2)	4918(1)	-200(1)	4260(1)	16(1)́
Si(1)	7323(1)	-182(1)	2240(1)	18(1)
Si(2)	4849(1)	1078(1)	2204(1)	20(1)
Si(3)	5089(1)	-2428(1)	4406(1)	19(1)
Si(4)	7298(1)	1841(1)	4771(1)	18(1)
O(1)	5960(1)	-70(1)	4771(1)	17(1)
O(2)	4464(2)	758(1)	3262(1)	24(1)
O(3)	7429(2)	-130(1)	3227(1)	24(1)
O(4)	6018(2)	205(1)	2006(1)	25(1)
O(5)	5251(2)	-1386(1)	4216(1)	24(1)
O(6)	5970(2)	2475(1)	4887(1)	23(1)
O(7)	7553(2)	865(1)	4471(1)	22(1)
O(8)	8197(2)	-1252(1)	5030(1)	22(1)
C(1)	8003(2)	-1514(2)	2207(2)	24(1)
C(2)	9142(3)	-2019(3)	2310(2)	44(1)
C(3)	9676(4)	-2998(3)	2264(3)	60(1)
C(4)	9092(4)	-3486(3)	2109(2)	53(1)
C(5)	7967(4)	-3010(3)	2006(3)	49(1)
C(6)	7422(3)	-2030(2)	2063(2)	39(1)
C(7)	8003(2)	619(2)	1364(2)	27(1)
C(8A)	8680(5)	314(5)	639(4)	36(1)
C(9A)	9262(5)	873(5)	36(4)	36(1)
C(8B)	7760(6)	853(5)	404(5)	36(1)
C(9B)	8232(6)	1449(5)	-280(5)	36(1)
C(10)	9071(S)	1790(3)	73(3)	87(2)
C(11)	8788(5)	1898(4)	875(3)	78(2)
C(12)	8288(5)	1297(4)	1528(3)	75(2)
C(13)	5114(2)	2268(2)	1902(2)	24(1)
C(14)	5318(2)	2608(2)	2554(2)	30(1)
C(15)	5652(3)	3416(3)	2310(2)	39(1)
C(16)	5785(3)	3924(3)	1389(3)	43(1)
C(17)	5566(3)	3607(3)	726(2)	43(1)
C(18)	5245(3)	2798(2)	978(2)	32(1)
C(19)	3807(2)	1225(2)	1442(2)	25(1)
C(20)	4069(4)	844(4)	752(3)	81(2)
C(21)	3272(4)	970(4)	198(4)	109(3)
C(22)	2203(3)	1507(3)	299(2)	53(1)
C(23A)	1878(5)	2184(5)	900(4)	34(1)
C(24A)	2703(5)	2041(5)	1438(4)	34(1)
C(23B)	1964(6)	1506(5)	1080(5)	34(1)
C(24B)	2726(6)	1381(5)	1688(5)	34(1)
C(25)	6336(2)	-3558(2)	4960(2)	23(1)
C(26)	6241(3)	-4265(2)	5787(2)	40(1)
C(27)	7168(3)	-5101(3)	6175(2)	50(1)
C(28)	8183(3)	-5256(2)	5739(2)	42(1)
C(29)	8294(3)	-4573(3)	4911(2)	40(1)
C(30)	7372(2)	-3729(2)	4526(2)	31(1)
C(31)	4863(2)	-2562(2)	3312(2)	22(1)
C(32)	5068(3)	-3514(2)	3256(2)	36(1)
C(33)	4874(3)	-3635(3)	2473(3)	54(1)

4476(4)	-2804(4)	1717(3)	61(1)
4267(3)	-1853(4)	1755(2)	56(1)
4464(3)	-1729(3)	2544(2)	34(1)
7844(2)	2740(2)	3863(2)	23(1)
7431(3)	3764(2)	3782(2)	34(1)
7846(3)	4424(3)	3104(3)	49(1)
8662(3)	4065(3)	2505(3)	53(1)
9097(3)	3047(3)	2580(2)	49(1)
8684(3)	2385(2)	3254(2)	33(1)
7959(2)	1410(2)	5895(2)	25(1)
7925(2)	2113(2)	6296(2)	26(1)
8367(3)	1796(3)	7141(2)	42(1)
8868(5)	779(3)	7595(3)	83(2)
8911(5)	82(3)	7206(3)	103(2)
8456(4)	391(3)	6364(3)	59(1)
7848(3)	-2103(2)	5582(2)	32(1)
8936(3)	-2971(2)	5886(2)	39(1)
9730(3)	-2748(2)	5096(3)	41(1)
9404(2)	-1630(2)	4834(2)	32(1)
1190(3)	4384(3)	1594(3)	103(1)
2508(5)	5136(6)	1213(6)	135(3)
2056(4)	4438(4)	1970(4)	90(2)
2260(15)	4597(14)	266(12)	97(2)
2307(9)	5138(8)	429(8)	97(2)
1150(15)	4344(14)	775(13)	97(2)
1165(8)	5107(8)	567(7)	97(2)
	$\begin{array}{c} 4476(4)\\ 4267(3)\\ 4464(3)\\ 7844(2)\\ 7431(3)\\ 7846(3)\\ 8662(3)\\ 9097(3)\\ 8684(3)\\ 7959(2)\\ 7925(2)\\ 8367(3)\\ 8684(5)\\ 8911(5)\\ 8456(4)\\ 7848(3)\\ 8936(3)\\ 9730(3)\\ 9404(2)\\ 1190(3)\\ 2508(5)\\ 2056(4)\\ 2260(15)\\ 2307(9)\\ 1150(15)\\ 1165(8)\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Tabelle 57: Bindungslängen [Å] und Winkel [°] für sh2719.

1.6921(18)	C(3)-C(4)	1.360(6)
1.6948(18)	C(4)-C(5)	1.368(6)
1.7432(18)	C(5)-C(6)	1.395(4)
1.8471(19)	C(7)-C(12)	1.340(5)
1.6980(18)	C(7)-C(8A)	1.408(6)
1.712(2)	C(7)-C(8B)	1.474(7)
1.8036(18)	C(8A)-C(9A)	1.388(8)
1.8044(18)	C(9A)-C(10)	1.332(7)
2.6472(15)	C(8B)-C(9B)	1.382(9)
1.6040(18)	C(9B)-C(10)	1.631(9)
1.634(2)	C(10)-C(11)	1.294(6)
1.863(3)	C(11)-C(12)	1.386(5)
1.868(3)	C(13)-C(14)	1.395(4)
1.6084(19)	C(13)-C(18)	1.408(4)
1.6419(19)	C(14)-C(15)	1.380(4)
1.860(3)	C(15)-C(16)	1.395(5)
1.864(3)	C(16)-C(17)	1.395(5)
1.6022(19)	C(17)-C(18)	1.369(4)
1.6370(19)	C(19)-C(20)	1.328(4)
1.874(3)	C(19)-C(24B)	1.354(7)
1.884(3)	C(19)-C(24A)	1.479(6)
1.6005(18)	C(20)-C(21)	1.383(6)
1.6329(19)	C(21)-C(22)	1.326(6)
1.871(3)	C(22)-C(23B)	1.208(8)
1.875(3)	C(22)-C(23A)	1.517(7)
1.8044(18)	C(23A)-C(24A)	1.387(8)
1.6370(19)	C(23B)-C(24B)	1.409(10)
1.472(3)	C(25)-C(30)	1.383(4)
1.482(3)	C(25)-C(26)	1.387(4)
1.384(4)	C(26)-C(27)	1.388(5)
1.387(4)	C(27)-C(28)	1.362(5)
1.387(5)	C(28)-C(29)	1.378(5)
	$\begin{array}{c} 1.6921(18)\\ 1.6948(18)\\ 1.7432(18)\\ 1.7432(18)\\ 1.8471(19)\\ 1.6980(18)\\ 1.712(2)\\ 1.8036(18)\\ 1.8044(18)\\ 2.6472(15)\\ 1.6040(18)\\ 1.634(2)\\ 1.863(3)\\ 1.868(3)\\ 1.6084(19)\\ 1.6419(19)\\ 1.860(3)\\ 1.864(3)\\ 1.6022(19)\\ 1.6370(19)\\ 1.874(3)\\ 1.884(3)\\ 1.6005(18)\\ 1.6329(19)\\ 1.871(3)\\ 1.875(3)\\ 1.8044(18)\\ 1.6370(19)\\ 1.472(3)\\ 1.482(3)\\ 1.387(4)\\ 1.387(4)\\ 1.387(4)\\ 1.387(5)\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

	4.000(4)		400.07(44)
C(29)-C(30)	1.388(4)	O(7)-SI(4)- $C(37)$	109.37(11)
C(31)-C(36)	1.390(4)	O(6)-Si(4)-C(37)	105.86(11)
C(31)-C(32)	1.392(4)	O(7)-Si(4)-C(43)	108.31(11)
C(32)-C(33)	1.376(5)	O(6)-Si(4)-C(43)	108.49(11)
C(33)-C(34)	1 376(6)	C(37)-Si(4)-C(43)	111 83(12)
C(24) C(25)	1.270(6)	$\Delta I(1) \Theta(1) \Phi I(2)$	107 70(10)
C(34)- $C(35)$	1.379(0)	AI(1) - O(1) - AI(2)	127.70(10)
C(35)-C(36)	1.389(5)	AI(1)-O(1)-AI(2)#1	137.17(10)
C(37)-C(42)	1.393(4)	AI(2)-O(1)-AI(2)#1	94.40(8)
C(37)-C(38)	1.390(4)	Si(2)-O(2)-AI(2)	139.55(12)
C(38)-C(39)	1.392(4)	Si(1)-Q(3)-AI(1)	167.61(13)
C(39) - C(40)	1 367(5)	Si(1) = O(4) - Si(2)	135 73(12)
C(39) - C(40)	1.307(3)	Si(1) - O(4) - Si(2) Si(2) O(5) AI(2)	155.75(12)
C(40) - C(41)	1.384(5)	SI(3)-O(5)-AI(2)	156.32(13)
C(41)-C(42)	1.389(4)	Si(4)-O(6)-Si(3)#1	140.90(13)
C(43)-C(48)	1.383(4)	Si(4)-O(7)-AI(1)	155.47(12)
C(43)-C(44)	1.397(4)	C(52)-O(8)-C(49)	110.3(2)
C(44) - C(45)	1.380(4)	C(52) - O(8) - AI(1)	121 62(16)
C(45) = C(46)	1 375(5)	C(49) - O(8) - AI(1)	123.35(16)
C(43) - C(40)	1.373(3)	C(+3)-O(0)-A(1)	123.33(10)
C(46)-C(47)	1.372(6)	C(6)-C(1)-C(2)	117.4(3)
C(47)-C(48)	1.383(5)	C(6)-C(1)-Si(1)	122.8(2)
C(49)-C(50)	1.510(4)	C(2)-C(1)-Si(1)	119.8(2)
C(50)-C(51)	1.515(5)	C(3)-C(2)-C(1)	121.2(3)
C(51)-C(52)	1 490(4)	C(4)-C(3)-C(2)	120.5(4)
O(0) C(56A)	1 212(19)	C(3) C(4) C(5)	110 7(2)
O(9)-C(30A)	1.312(10)	C(3)-C(4)-C(3)	119.7(3)
O(9)-C(54)	1.409(7)	C(4)-C(5)-C(6)	120.1(3)
O(9)-C(56B)	1.594(11)	C(1)-C(6)-C(5)	121.1(3)
C(53)-C(55B)	1.294(12)	C(12)-C(7)-C(8A)	108.9(4)
C(53)-C(54)	1.510(8)	C(12)-C(7)-C(8B)	114.9(4)
C(53)-C(55A)	2 05(2)	C(8A)-C(7)-C(8B)	48 5(4)
C(55)=C(55A)	2.00(2)	C(12) C(7) - C(0D)	400.0(7)
C(55A)-C(55B)	0.966(17)	C(12)-C(7)-S(1)	123.2(2)
C(55A)-C(56B)	1.421(19)	C(8A)-C(7)-SI(1)	122.8(3)
C(55A)-C(56A)	1.66(2)	C(8B)-C(7)-Si(1)	116.2(3)
C(55B)-C(56B)	1.499(13)	C(9A)-C(8A)-C(7)	122.5(5)
C(56A)-C(56B)	1.097(17)	C(10)-C(9A)-C(8A)	118.7(5)
		C(9B)-C(8B)-C(7)	110 2(6)
O(7) $AI(1)$ $O(2)$	119 02(10)	C(9P) C(0P) C(10)	114.7(6)
O(7)-Al(1)- $O(3)$	110.03(10)		114.7(0)
O(7)-AI(1)-O(1)	113.49(9)	C(11)-C(10)-C(9A)	114.8(5)
O(3)-AI(1)-O(1)	110.81(9)	C(11)-C(10)-C(9B)	112.8(4)
O(7)-Al(1)-O(8)	105.12(9)	C(9A)-C(10)-C(9B)	52.9(4)
O(3)-AI(1)-O(8)	106.58(9)	C(10)-C(11)-C(12)	121.0(4)
O(1) - AI(1) - O(8)	100 89(8)	C(7)-C(12)-C(11)	123 3(4)
$O(5)_{A}(2)_{C}O(2)$	115 37(10)	C(14) = C(13) = C(18)	117 1(3)
O(5) - A(2) - O(2)	112.37(10)	C(14) - C(13) - C(10)	102.0(2)
O(5)-AI(2)-O(1)	113.87(9)	C(14) - C(13) - S(2)	122.9(2)
O(2)-AI(2)-O(1)	112.02(9)	C(18)-C(13)-Si(2)	119.6(2)
O(5)-AI(2)-O(1)#1	114.44(9)	C(15)-C(14)-C(13)	121.8(3)
O(2)-AI(2)-O(1)#1	112.02(9)	C(14)-C(15)-C(16)	120.0(3)
O(1)-AI(2)-O(1)#1	85.60(8)	C(15)-C(16)-C(17)	119.1(3)
O(5)-A(2)-A(2)#1	123 90(8)	C(18)-C(17)-C(16)	120 3(3)
O(2) A(2) A(2) #1	120.30(0)	C(17) C(19) C(13)	120.0(0)
O(2)-AI(2)-AI(2)#1	120.72(8)	C(17) - C(10) - C(13)	121.7(3)
O(1)-AI(2)-AI(2)#1	42.81(6)	C(20)-C(19)-C(24B)	108.2(4)
O(1)#1-AI(2)-AI(2)#1	42.79(6)	C(20)-C(19)-C(24A)	117.3(3)
O(3)-Si(1)-O(4)	110.65(10)	C(24B)-C(19)-C(24A)	38.0(3)
O(3)-Si(1)-C(7)	109.06(11)	C(20)-C(19)-Si(2)	123.6(3)
O(4)-Si(1)-C(7)	110.25(12)	C(24B)-C(19)-Si(2)	124.2(3)
O(3)-Si(1)-C(1)	110 68(11)	C(24A)-C(19)-Si(2)	116 6(3)
O(4) S(1) O(1)	106.80(11)	C(10) C(20) C(21)	122.0(4)
O(4) - O(1) - O(1)	100.00(12)	C(19) - C(20) - C(21)	122.0(4)
C(7)-S(1)-C(1)	109.37(12)	C(22)-C(21)-C(20)	122.4(4)
O(2)-SI(2)-O(4)	110.72(10)	C(23B)-C(22)-C(21)	111.3(5)
O(2)-Si(2)-C(19)	111.67(11)	C(23B)-C(22)-C(23A)	37.9(4)
O(4)-Si(2)-C(19)	106.61(11)	C(21)-C(22)-C(23A)	118.2(4)
O(2)-Si(2)-C(13)	109.85(11)	C(24A)-C(23A)-C(22)	116.4(5)
O(4)-Si(2)-C(13)	106 94(11)	$C(23\Delta)-C(24\Delta)-C(10)$	110 8(5)
C(10) S(2) C(10)	110.00(12)	C(22) C(23) C(24)	100(0)
O(13) - O(2) - O(13)	110.90(13)	U(ZZ)-U(Z3B)-U(Z4B)	123.3(7)
0(5)-51(3)-0(6)#1	110.39(10)	C(19)-C(24B)-C(23B)	122.0(6)
U(5)-Si(3)-C(31)	110.56(11)	C(30)-C(25)-C(26)	118.0(3)
O(6)#1-Si(3)-C(31)	109.57(11)	C(30)-C(25)-Si(3)	120.3(2)
O(5)-Si(3)-C(25)	111.68(11)	C(26)-C(25)-Si(3)	121.6(2)
O(6)#1-Si(3)-C(25)	106 34(11)	C(27)-C(26)-C(25)	120 6(3)
$C(31)_{S}(2) C(25)$	100.0-(11)	C(29) C(27) C(26)	120.0(0)
O(3) = O(2)	100.17(12)		120.3(3)
U(1)-SI(4)-U(6)	113.01(10)	U(27)-U(28)-U(29)	119.8(3)

C(28)-C(29)-C(30)	119.8(3)	C(52)-C(51)-C(50)	103.6(2)
C(25)-C(30)-C(29)	121.2(3)	O(8)-C(52)-C(51)	103.9(2)
C(36)-C(31)-C(32)	117.8(3)	C(56A)-O(9)-C(54)	128.2(9)
C(36)-C(31)-Si(3)	122.0(2)	C(56A)-O(9)-C(56B)	43.0(8)
C(32)-C(31)-Si(3)	120.1(2)	C(54)-O(9)-C(56B)	103.2(5)
C(33)-C(32)-C(31)	121.6(3)	C(55B)-C(53)-C(54)	109.6(9)
C(34)-C(33)-C(32)	120.1(4)	C(55B)-C(53)-C(55A)	21.5(7)
C(33)-C(34)-C(35)	119.4(3)	C(54)-C(53)-C(55A)	91.0(7)
C(36)-C(35)-C(34)	120.6(4)	O(9)-C(54)-C(53)	106.3(5)
C(35)-C(36)-C(31)	120.5(3)	C(55B)-C(55A)-C(56B)	75.1(13)
C(42)-C(37)-C(38)	118.8(3)	C(55B)-C(55A)-C(56A)	110.4(17)
C(42)-C(37)-Si(4)	119.9(2)	C(56B)-C(55A)-C(56A)	40.7(8)
C(38)-C(37)-Si(4)	121.3(2)	C(55B)-C(55A)-C(53)	29.4(10)
C(39)-C(38)-C(37)	120.7(3)	C(56B)-C(55A)-C(53)	76.4(9)
C(40)-C(39)-C(38)	119.8(3)	C(56A)-C(55A)-C(53)	97.5(10)
C(39)-C(40)-C(41)	120.6(3)	C(55A)-C(55B)-C(53)	129.0(17)
C(40)-C(41)-C(42)	119.8(3)	C(55A)-C(55B)-C(56B)	66.4(13)
C(41)-C(42)-C(37)	120.3(3)	C(53)-C(55B)-C(56B)	103.6(9)
C(48)-C(43)-C(44)	118.2(3)	C(56B)-C(56A)-O(9)	82.3(13)
C(48)-C(43)-Si(4)	121.1(2)	C(56B)-C(56A)-C(55A)	57.7(11)
C(44)-C(43)-Si(4)	120.7(2)	O(9)-C(56A)-C(55A)	100.9(12)
C(45)-C(44)-C(43)	120.7(3)	C(56A)-C(56B)-C(55A)	81.6(13)
C(46)-C(45)-C(44)	120.2(3)	C(56A)-C(56B)-C(55B)	114.6(13)
C(45)-C(46)-C(47)	119.5(4)	C(55A)-C(56B)-C(55B)	38.5(7)
C(46)-C(47)-C(48)	120.7(4)	C(56A)-C(56B)-O(9)	54.7(11)
C(43)-C(48)-C(47)	120.6(3)	C(55A)-C(56B)-O(9)	99.6(10)
O(8)-C(49)-C(50)	103.2(2)	C(55B)-C(56B)-O(9)	102.2(8)
C(49)-C(50)-C(51)	102.9(3)		

 $\overline{\mbox{Symmetry transformations used to generate equivalent atoms:}\ \#1 \ -x+1, -y, -z+1$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
AI(1)	15(1)	15(1)	13(1)	-2(1)	0(1)	-6(1)
AI(2)	16(1)	17(1)	13(1)	-3(1)	-1(1)	-6(1)
Si(1)	19(1)	20(1)	14(1)	-4(1)	2(1)	-8(1)
Si(2)	19(1)	24(1)	14(1)	-3(1)	-2(1)	-6(1)
Si(3)	18(1)	18(1)	18(1)	-5(1)	-1(1)	-5(1)
Si(4)	19(1)	17(1)	17(1)	-3(1)	-1(1)	-8(1)
O(1)	17(1)	18(1)	13(1)	-2(1)	-1(1)	-7(1)
O(2)	21(1)	26(1)	15(1)	-3(1)	-2(1)	-3(1)
O(3)	26(1)	29(1)	14(1)	-7(1)	2(1)	-9Ì1)
O(4)	20(1)	29(1)	26(1)	-11(1)	0(1)	-8(1)
O(5)	23(1)	22(1)	29(1)	-10(1)	1(1)	-9(1)
O(6)	21(1)	23(1)	21(1)	-5(1)	0(1)	-7(1)
O(7)	20(1)	22(1)	25(1)	-7(1)	0(1)	-11(1)
O(8)	18(1)	18(1)	24(1)	0(1)	-2(1)	-7(1)
C(1)	30(2)	22(1)	14(1)	-3(1)	3(1)	-9(1)
C(2)	39(2)	39(2)	52(2)	-24(2)	-15(2)	2(2)
C(3)	57(3)	39(2)	61(3)	-24(2)	-23(2)	17(2)
C(4)	87(3)	22(2)	35(2)	-9(2)	4(2)	-7(2)
C(5)	74(3)	32(2)	48(2)	-17(2)	22(2)	-33(2)
C(6)	39(2)	35(2)	46(2)	-17(2)	18(2)	-21(2)
C(7)	34(2)	24(1)	22(1)	-8(1)	5(1)	-12(1)
C(10)	114(4)	55(3)	78(3)	-12(2)	65(3)	-50(3)
C(11)	112(4)	92(3)	53(3)	20(2)	-24(3)	-89(3)
C(12)	137(4)	106(4)	24(2)	0(2)	-7(2)	-102(4)
C(13)	19(1)	27(2)	22(1)	-6(1)	-2(1)	-4(1)
C(14)	29(2)	33(2)	26(2)	-8(1)	-4(1)	-10(1)
C(15)	38(2)	40(2)	44(2)	-20(2)	-6(2)	-12(2)

Tabelle 58: Anisotropische Auslenkungsaparameter (Å $^2x 10^3$) für sh2719. Der anisotropischeExponentfaktor des Auslenkungsparameter lautet: $-2\pi^2$ [$h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$].

C(16) C(17) C(18) C(20) C(21) C(22) C(25) C(26) C(27) C(28) C(29) C(30) C(31) C(32) C(33) C(33) C(34) C(35) C(36) C(37) C(38) C(39) C(39) C(40) C(41) C(42) C(43) C(44)	$\begin{array}{c} 45(2) \\ 62(2) \\ 45(2) \\ 24(1) \\ 54(3) \\ 90(4) \\ 59(2) \\ 23(1) \\ 34(2) \\ 52(2) \\ 38(2) \\ 25(2) \\ 27(2) \\ 21(1) \\ 39(2) \\ 61(3) \\ 65(3) \\ 58(2) \\ 33(2) \\ 24(1) \\ 33(2) \\ 52(2) \\ 64(3) \\ 53(2) \\ 39(2) \\ 24(1) \\ 24(1) \end{array}$	32(2) 37(2) 31(2) 34(2) 94(3) 109(4) 74(3) 18(1) 33(2) 32(2) 29(2) 42(2) 29(2) 34(2) 69(3) 113(4) 93(3) 42(2) 22(1) 25(2) 28(2) 49(2) 67(3) 34(2) 29(2) 29(2) 29(2)	55(2) 31(2) 21(1) 14(1) 85(3) 122(5) 34(2) 24(1) 31(2) 34(2) 42(2) 44(2) 31(2) 20(1) 38(2) 54(2) 22(2) 26(2) 24(1) 43(2) 60(2) 46(2) 36(2) 29(2) 20(1) 28(2)	$\begin{array}{c} -11(2)\\ -4(2)\\ -6(1)\\ 1(1)\\ -70(3)\\ -92(4)\\ 6(2)\\ -7(1)\\ 1(1)\\ 6(2)\\ -11(2)\\ -16(2)\\ -8(1)\\ -10(1)\\ -16(2)\\ -8(1)\\ -10(1)\\ -16(2)\\ -39(2)\\ 4(2)\\ -1(1)\\ 1(1)\\ -2(1)\\ 9(2)\\ 13(2)\\ -9(2)\\ -7(1)\\ -5(1)\\ -10(1)\end{array}$	$\begin{array}{c} 4(2)\\ 4(2)\\ 1(1)\\ -3(1)\\ -47(2)\\ -80(3)\\ -21(2)\\ -5(1)\\ 2(1)\\ -4(2)\\ -15(2)\\ -4(2)\\ -15(2)\\ -4(1)\\ -3(1)\\ 1(1)\\ -1(1)\\ 6(2)\\ 10(2)\\ -8(2)\\ -3(1)\\ -5(1)\\ -5(1)\\ -5(1)\\ -5(2)\\ 4(1)\\ -5(1)\\ 0(1)\\ \end{array}$	$\begin{array}{c} -20(2)\\ -26(2)\\ -17(1)\\ -13(1)\\ 35(2)\\ 44(3)\\ -46(2)\\ -1(1)\\ -3(1)\\ 2(2)\\ 10(1)\\ -1(1)\\ -7(1)\\ -12(1)\\ -13(1)\\ -31(2)\\ -54(3)\\ -48(2)\\ -21(2)\\ -14(1)\\ -13(1)\\ -24(2)\\ -43(2)\\ -41(2)\\ -22(2)\\ -8(1)\\ -12(1)\end{array}$
C(40)	64(3)	49(2)	46(2)	13(2)	-3(2)	-43(2)
C(41)	53(2)	67(3)	36(2)	-9(2)	15(2)	-41(2)
C(42)	39(2)	34(2)	29(2)	-7(1)	4(1)	-22(2)
C(43)	24(1)	29(2)	20(1)	-5(1)	-5(1)	-8(1)
C(44)	24(1)	29(2)	28(2)	-10(1)	0(1)	-12(1)
C(45)	42(2)	48(2)	42(2)	-25(2)	-12(2)	-10(2)
C(46)	126(4)	54(3)	49(3)	-18(2)	-57(3)	8(3)
C(47)	182(6)	32(2)	67(3)	-6(2)	-87(4)	11(3)
C(48)	102(3)	24(2)	42(2)	-7(2)	-38(2)	-4(2)
C(49)	34(2)	18(1)	35(2)	6(1)	-2(1)	-11(1)
C(50)	38(2)	20(2)	49(2)	3(1)	-14(2)	-6(1)
C(51)	25(2)	30(2)	59(2)	-14(2)	-7(2)	1(1)
C(52)	18(1)	30(2)	39(2)	-4(1)	-2(1)	-5(1)
O(9)	64(2)	128(3)	120(4)	-53(3)	27(2)	-39(2)
C(53)	65(4)	134(6)	132(6)	28(5)	16(4)	-30(4)
C(54)	65(3)	96(4)	91(4)	-2(3)	1(3)	-37(3)

Tabelle 59: Koordinaten des Wasserstoffs ($x\ 10^4$) und isotrope Auslenkungsparameter (Å $^2x\ 10\ ^3$)für sh2719.

	х	У	Z	U(eq)
H(2)	9564	-1687	2415	53
H(3)	10456	-3330	2340	72
H(4)	9463	-4155	2074	64
H(5)	7557	-3348	1895	58
H(6)	6639	-1710	2002	46
H(8A)	8739	-298	559	44
H(9A)	9788	607	-395	44
H(8B)	7285	596	258	44
H(9B)	8079	1645	-907	44
H(10)	9136	2323	-450	104
H(11)	8926	2397	1019	94
H(12)	8140	1369	2121	90
H(14)	5225	2273	3183	36
H(15)	5792	3628	2768	47
H(16)	6020	4478	1215	52
H(17)	5641	3954	97	52
H(18)	5106	2588	517	39
H(20)	4828	473	635	97

H(21)	3499	660	-272	131
H(22)	1654	1470	2	63
H(23A)	1150	2679	906	41
H(24A)	2559	2467	1804	41
H(23B)	1221	1594	1297	41
H(24B)	2475	1406	2289	41
H(25)	5708	-2974	4700	28
H(26)	5535	-4175	6090	48
H(27)	7095	-5568	6750	60
H(28)	8812	-5835	6006	51
H(29)	9000	-4678	4604	47
H(30)	7453	-3260	3955	37
H(31)	4990	-2484	3857	27
H(32)	5349	-4095	3771	43
H(33)	5015	-4293	2454	64
H(34)	4346	-2886	1175	73
H(35)	3986	-1277	1237	67
H(36)	4326	-1070	2558	41
H(37)	7558	2291	4325	28
H(38)	6860	4016	4194	41
H(39)	7563	5122	3056	58
H(40)	8933	4519	2034	64
H(41)	9676	2800	2170	59
H(42)	8976	1687	3301	39
H(43)	7649	1626	5315	30
H(44)	7593	2817	5982	32
H(45)	8326	2281	7411	50
H(46)	9181	561	8174	100
H(47)	9257	-621	7518	123
H(48)	8486	-101	6107	71
H(49A)	7441	-2256	5209	38
H(49B)	7369	-1948	6113	38
H(50A)	8881	-3629	5981	47
H(50B)	9173	-2978	6459	47
H(51A)	10511	-3109	5288	49
H(51B)	9639	-2948	4582	49
H(52A)	9794	-1455	5201	38
H(52B)	9573	-1345	4178	38

7.9 Daten zur Molekül- und Kristallstruktur von $[AI_6(OH)_8(H_2O)_2\{(Ph_2SiO)_2O\}_4\{(Ph_2SiO)_2OH\}_2(H_2O)_4]$ <u>12</u>

Darstellung von $[AI_6(OH)_8(H_2O)_2\{(Ph_2SiO)_2O\}_4\{(Ph_2SiO)_2OH\}_2(H_2O)_4]$ 12

Zu 0,504 g (0,3500 mmol) von $Al_2[(OPh_2Si)_2O]_3 \cdot 2 O(CH_2CH_3)_2 \underline{3}$ in 20 ml Toluol werden unter Rühren bei Raumtemperatur 0,03 ml destilliertes Wasser getropft. Das Reaktionsgemisch wird weitere 12 Stunden gerührt, anschließend auf die Hälfte ihres Ausgangsvolumens reduziert. Bei 4 °C werden nach etwa 30 Tagen wenige Kristalle von Verbindung [$Al_6(OH)_8(H_2O)_2\{(Ph_2SiO)_2O\}_4\{(Ph_2SiO)_2OH\}_2(H_2O)_4\}$] <u>13</u> erhalten.

Abbildung 81: Molekülstruktur von Al₆(OH)₈(H₂O)₂{(Ph₂SiO)₂O}₄{(Ph₂SiO)₂OH}₂(H₂O)₄] <u>12</u>; die Phenylgruppen an den Siliciumatomen sind zur besseren Übersicht mit jeweils einem Kohlenstoffatom (Farbe: grau) angedeutet. Die Wasserstoffatome sind in hellgrauer Farbe abgebildet.
 Tabelle 60:
 Kristalldaten und Strukturverfeinerungen für

$AI_{6}(OH)_{8}(H_{2}O)_{2}\{(Ph_{2}SiO)_{2}O\}_{4}\{(Ph_{2}SiO)_{2}OH\}_{2}(H_{2}OH)_{2}OH\}_{2}(H_{2}OH)_{2}OH\}_{2}(H_{2}OH)_{2}OH\}_{2}(H_{2}OH)_{2}OH)_{2}OH_$	20) ₄] <u>12</u> (sh2819).		
Identifikationscode Summenformel Molmasse [g/mol] Messtemperatur [K] Wellenlänge [Å] Kristallsystem Raumgruppe	sh2819 C144 H138 Al6 O32 Si12 x 6 C 3432.31 143(2) 0.71073 Triclinic P-1	7 H8	
Gitterkonstanten Zellvolumen [Å ³]	a = 14.6841(13) Å b = 18.2171(7) Å c = 19.7203(8) Å 4415.6(5)		
Dichte (berechnet) Absorptionskoeffizient [mm ⁻¹] F(000) Kristallabmessungen [mm ³] Messbereich θ [°] hkl - Indexbereich Gemessene Reflexe Symmetrieunabhängige Reflexe Vollständigkeit des Datensatzes (bis θ = 26.42°) Absorptionskorrektur Max. und Min. Transmission	1 1.291 Mg/m ³ 0.190 1804 0.35 x 0.19 x 0.05 1.23 to 26.42 -18<=h<=18, -22<=k<=22, -24<=l<=24 64443 18074 [R(int) = 0.0735] °) 99.6 % Multiscan		
Strukturverfeinerungsmethode Daten / Einschränkungen / Parameter Güte des Fit auf F ² Endgültige R-Werte [I>2sigma(I)] R-Werte (alle Daten) Restelektronendichte (min./max.) [e/Å ⁻³]	Full-matrix least-squares on F^2 18074 / 0 / 1038 1.019 R1 = 0.0626, wR2 = 0.1475 R1 = 0.1241, wR2 = 0.1770 0.928 and -0.563		

Restelektronendichte (min./max.) [e/Å ⁻³]	0.928 and -0.563
Fabelle 61: Atomkoordinaten ($x \ 10^4$) und äquiv	valente isotrope Auslenkungsparameter (Å 2 x 10 ³

	х	У	Z	U(eq)
AI(1)	4998(1)	5230(1)	816(1)	17(1)
AI(2)	3935(1)	3405(1)	-583(1)	19(1)
AI(3)	6960(1)	4879(1)	1910(1)	19(1)
Si(1)	5194(1)	2238(1)	-73(1)	22(1)
Si(2)	7315(1)	3163(1)	593(1)	22(1)
Si(3)	7142(1)	4744(1)	3528(1)	22(1)
Si(4)	4981(1)	4964(1)	3325(1)	23(1)
Si(5)	1650(1)	2803(1)	-1293(1)	24(1)
Si(6)	8561(1)	6484(1)	2468(1)	21(1)
O(1)	4025(2)	4275(2)	369(2)	20(1)
O(2)	5943(2)	6195(2)	1235(2)	19(1)
O(3)	5512(2)	4528(2)	32(1)	20(1)
O(4)	4291(2)	5912(2)	1457(2)	23(1)
O(5)	4762(2)	2750(1)	-538(1)	23(1)
O(6)	6366(2)	2475(2)	313(2)	27(1)
O(7)	7146(2)	4110(2)	1046(1)	24(1)
O(8)	7113(2)	4619(2)	2666(1)	24(1)
O(9)	6097(2)	4916(2)	3667(2)	26(1)
O(10)	4606(2)	4485(2)	2314(2)	25(1)
O(11)	5725(2)	4990(2)	1610(2)	20(1)
O(12)	2786(2)	2825(2)	-997(1)	24(1)
O(13)	8610(2)	6598(2)	1705(1)	26(1)
O(14)	7587(2)	5852(1)	2200(1)	23(1)
O(15)	4606(3)	7497(2)	1851(2)	36(1)
O(16)	2953(2)	4802(2)	1430(2)	37(1)
C(1)	4858(3)	1094(2)	-797(2)	27(1)

Tabelle 61: Atomkoordinaten (x 10⁴) und äquivalente isotrope Auslenkungsparameter ($Å^2x$ 10³) für sh2819. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U^{ij} Tensors.

C(2)	5325(3)	520(3)	-625(3)	48(1)
C(3)	5023(4)	-338(3)	-1119(3)	57(2)
C(4)	4233(3)	-646(3)	-1802(3)	52(1)
C(5)	3771(4) 4076(4)	-99(3)	-1995(3)	68(Z) 56(1)
C(0) C(7)	4729(3)	2437(2)	771(2)	25(1)
C(8)	3733(3)	2374(2)	659(2)	34(1)
C(9)	3384(3)	2424(3)	1258(3)	40(1)
C(10)	4004(3)	2541(2)	1988(3)	39(1)
C(11)	4987(3)	2622(2)	2118(3)	37(1)
C(12)	5344(3)	2573(2)	1525(2)	30(1)
C(13)	8318(3)	2950(2)	1259(2)	26(1)
C(14)	8405(3)	2131(3)	1102(2)	35(1)
C(15)	9109(3) 9851(3)	1909(3) 2623(3)	2240(3)	40(1)
C(10)	9782(3)	3435(3)	2414(3)	40(1)
C(18)	9033(3)	3595(3)	1925(2)	30(1)
C(19)	7563(3)	2960(2)	-349(2)	28(1)
C(20)	7823(3)	3605(3)	-493(2)	36(1)
C(21)	7973(3)	3435(3)	-1211(3)	49(1)
C(22)	7871(4)	2612(4)	-1803(3)	60(2)
C(23)	7627(4)	1964(4)	-1675(3)	61(2)
C(24)	8069(3)	2130(3)	-902(3) /36/(2)	47(1) 24(1)
C(26)	8003(3)	6477(2)	4456(2)	32(1)
C(27)	8707(3)	7169(3)	5032(3)	40(1)
C(28)	9507(3)	7078(3)	5545(3)	42(1)
C(29)	9596(3)	6301(3)	5475(3)	41(1)
C(30)	8884(3)	5604(3)	4887(2)	32(1)
C(31)	7383(2)	3785(2)	3613(2)	22(1)
C(32)	7692(3)	3130(2)	3047(2)	29(1)
C(33)	7009(3)	2420(2)	37/19(3)	34(1)
C(35)	7441(3)	2980(3)	4312(3)	38(1)
C(36)	7267(3)	3689(3)	4251(2)	32(1)
C(37)	4791(3)	6058(2)	3608(2)	26(1)
C(38)	5263(3)	6549(2)	3389(2)	29(1)
C(39)	5088(3)	7335(3)	3545(2)	37(1)
C(40)	4424(4)	7660(3)	3924(3)	51(1)
C(41)	3900(4)	7201(3) 6/11(3)	4155(4)	63(Z) 47(1)
C(42) C(43)	4131(3)	4428(2)	3614(2)	27(1)
C(44)	3206(3)	4299(3)	3277(3)	40(1)
C(45)	2587(3)	3868(3)	3442(3)	49(1)
C(46)	2949(4)	3544(3)	3943(3)	47(1)
C(47)	3925(4)	3651(3)	4281(3)	43(1)
C(48)	4546(3)	4094(3)	4123(2)	35(1)
C(49)	1020(3)	1698(2)	-2052(2)	30(1)
C(50)	-439(4)	653(3)	-2847(3)	70(2)
C(52)	70(4)	71(3)	-3254(3)	65(2)
C(53)	1030(4)	302(3)	-3077(3)	52(1)
C(54)	1502(3)	1107(2)	-2483(3)	37(1)
C(55)	1187(3)	3245(2)	-417(2)	26(1)
C(56)	886(3)	4016(3)	-156(2)	34(1)
C(57)	579(3)	4367(3)	512(3)	40(1)
C(58) C(59)	572(3) 860(4)	3180(3)	930(3) 695(3)	40(1) 51(1)
C(60)	1167(3)	2836(3)	25(3)	40(1)
C(61)	9695(3)	6133(2)	2805(2)	24(1)
C(62)	10471(3)́	6170(̀3)́	2535(2)́	37(1)́
C(63)	11343(3)	5993(3)	2852(3)	47(1)
C(64)	11466(3)	5768(3)	3448(3)	46(1)
C(65)	10721(3)	5719(3)	3723(3)	40(1)
C(00) C(67)	9040(J) 2516(2)	2090(3) 7517(2)	3400(∠) 3316(2)	35(1) 24(1)
C(68)	7691(3)	7765(2)	3439(2)	33(1)
C(69)	7690(3)	8538(3)	4067(3)	42(1)
C(70)	8551(3)	9085(3)	4592(3)	42(1)

C(71)	9406(3)	8856(2)	4485(2)	38(1)
C(72)	9404(3)	8085(2)	3862(2)	29(1)
C(73)	6251(4)	188(3)	4400(3)	56(1)
C(74)	6355(4)	117(3)	5083(3)	58(1)
C(75)	7103(4)	620(4)	5793(3)	61(2)
C(76)	7767(4)	1208(3)	5829(4)	63(2)
C(77)	7682(4)	1280(3)	5151(4)	65(2)
C(78)	6923(4)	772(3)	4444(4)	60(1)
C(79)	5453(4)	-369(4)	3620(3)	78(2)
C(80)	9418(6)	9347(5)	510(5)	108(2)
C(81)	9066(5)	9594(4)	1127(4)	86(2)
C(82)	8148(7)	9806(5)	1075(6)	123(3)
C(83)	7560(6)	9831(5)	429(5)	115(3)
C(84)	7915(7)	9599(6)	-230(6)	138(3)
C(85)	8806(7)	9301(6)	-250(6)	138(3)
C(86)	10369(7)	9073(6)	571(6)	146(3)
C(87)	3932(8)	1299(6)	3372(7)	141(3)
C(88)	3527(7)	1489(5)	4041(5)	118(3)
C(89)	2579(8)	1319(6)	3781(7)	135(3)
C(90)	1981(12)	1107(10)	3048(12)	223(6)
C(91)	2229(15)	904(12)	2451(12)	272(8)
C(92)	3284(10)	937(8)	2576(8)	185(5)
C(93)	4960(9)	1666(8)	3612(7)	187(5)

Tabelle 62: Bindungslängen [Å] und Winkel [°] für sh2819.

AI(1)-O(3)	1.866(3)	Si(6)-C(67)	1.858(4)
AI(1)-O(11)	1.871(3)	Si(6)-C(61)	1.857(4)
AI(1)-O(3)#1	1.883(3)	O(2)-AI(2)#1	1.790(3)
AI(1)-O(4)	1.892(3)	O(3)-AI(1)#1	1.883(3)
AI(1)-O(2)	1.893(3)	O(13)-Si(5)#1	1.631(3)
AI(1)-O(1)	1.894(3)	C(1)-C(6)	1.380(6)
AI(1)-AI(1)#1	2.931(2)	C(1)-C(2)	1.384(5)
AI(2)-O(12)	1.723(3)	C(2)-C(3)	1.380(6)
AI(2)-O(5)	1.738(2)	C(3)-C(4)	1.366(6)
AI(2)-O(1)	1.777(3)	C(4)-C(5)	1.355(6)
AI(2)-O(2)#1	1.790(3)	C(5)-C(6)	1.382(6)
AI(3)-O(8)	1.721(3)	C(7)-C(12)	1.406(5)
AI(3)-O(14)	1.732(3)	C(7)-C(8)	1.410(5)
AI(3)-O(7)	1.739(3)	C(8)-C(9)	1.382(6)
AI(3)-O(11)	1.790(3)	C(9)-C(10)	1.384(6)
Si(1)-O(5)	1.615(3)	C(10)-C(11)	1.384(6)
Si(1)-O(6)	1.627(3)	C(11)-C(12)	1.379(5)
Si(1)-C(1)	1.852(4)	C(13)-C(14)	1.394(5)
Si(1)-C(7)	1.861(4)	C(13)-C(18)	1.394(5)
Si(2)-O(7)	1.600(2)	C(14)-C(15)	1.391(6)
Si(2)-O(6)	1.629(3)	C(15)-C(16)	1.371(6)
Si(2)-C(13)	1.859(4)	C(16)-C(17)	1.369(6)
Si(2)-C(19)	1.864(4)	C(17)-C(18)	1.380(6)
Si(3)-O(8)	1.596(3)	C(19)-C(20)	1.398(6)
Si(3)-O(9)	1.647(3)	C(19)-C(24)	1.407(5)
Si(3)-C(31)	1.863(4)	C(20)-C(21)	1.387(6)
Si(3)-C(25)	1.868(4)	C(21)-C(22)	1.380(7)
Si(4)-O(9)	1.609(3)	C(22)-C(23)	1.375(7)
Si(4)-O(10)	1.672(3)	C(23)-C(24)	1.378(6)
Si(4)-C(43)	1.846(4)	C(25)-C(26)	1.395(5)
Si(4)-C(37)	1.858(4)	C(25)-C(30)	1.398(5)
Si(5)-O(12)	1.597(3)	C(26)-C(27)	1.378(6)
Si(5)-O(13)#1	1.631(3)	C(27)-C(28)	1.388(6)
Si(5)-C(49)	1.867(4)	C(28)-C(29)	1.370(6)
Si(5)-C(55)	1.871(4)	C(29)-C(30)	1.393(6)
Si(6)-O(14)	1.605(3)	C(31)-C(32)	1.400(5)
Si(6)-O(13)	1.632(3)	C(31)-C(36)	1.404(5)

C(32)-C(33)	1.381(5)	O(11)-AI(1)-O(2)	89.85(12)
C(33)-C(34)	1.389(6)	O(3)#1-AI(1)-O(2)	83.72(12)
C(34)-C(35)	1.373(6)	O(4)-AI(1)-O(2)	89.35(13)
C(35)-C(36)	1.375(5)	O(3)-AI(1)-O(1)	85.08(12)
C(37)-C(42)	1.373(5)	O(11)-AI(1)-O(1)	92.31(12)
C(37) - C(38)	1.398(5)	O(3)#1-AI(1)- $O(1)$	94.17(11)
C(30)-C(39)	1.307(5)	O(4)-AI(1)-O(1)	90.39(14) 177.84(13)
C(39)- $C(40)$	1.377(0)	O(2)-A(1)-O(1) O(3)-A(1)-A(1)#1	38 77(8)
C(41)- $C(42)$	1.384(6)	O(11)-AI(1)-AI(1)#1	132 82(10)
C(43)-C(44)	1.387(5)	O(3)#1-AI(1)-AI(1)#1	38.36(8)
C(43)-C(48)	1.389(5)	O(4)-Al(1)-Al(1)#1	132.49(10)
C(44)-C(45)	1.384(6)	O(2)-AI(1)-AI(1)#1	89.05(9)
C(45)-C(46)	1.365(6)	O(1)-AI(1)-AI(1)#1	89.55(9)
C(46)-C(47)	1.366(6)	O(12)-AI(2)-O(5)	108.76(12)
C(47)-C(48)	1.390(6)	O(12)-AI(2)-O(1)	107.57(13)
C(49)-C(50)	1.374(6)	O(5)-Al(2)-O(1)	114.67(12)
C(49)-C(54)	1.385(6)	O(12)-AI(2)-O(2)#1	107.09(13)
C(50)-C(51)	1.392(6)	O(5)-AI(2)-O(2)#1	110.47(13)
C(51)-C(52)	1.303(0)	O(1) - AI(2) - O(2) + I O(8) AI(3) O(14)	107.99(12)
C(52)-C(53)	1.337(7)	O(8)-A(3)-O(7)	11/ 07(12)
C(55)- $C(56)$	1.388(5)	O(14)-AI(3)-O(7)	109 88(12)
C(55)- $C(60)$	1.388(5)	O(8)-AI(3)-O(11)	106.61(13)
C(56)-C(57)	1.386(6)	O(14)-AI(3)-O(11)	102.90(12)
C(57)-C(58)	1.368(6)	O(7)-AI(3)-O(11)	106.59(12)
C(58)-C(59)	1.380(6)	O(5)-Si(1)-O(6)	112.05(13)
C(59)-C(60)	1.389(6)	O(5)-Si(1)-C(1)	109.39(15)
C(61)-C(66)	1.389(5)	O(6)-Si(1)-C(1)	107.85(15)
C(61)-C(62)	1.399(5)	O(5)-Si(1)-C(7)	112.98(15)
C(62)-C(63)	1.376(6)	O(6)-Si(1)-C(7)	106.86(15)
C(63)-C(64) C(64)-C(65)	1.363(6)	O(7)-Si(7)-O(6)	107.49(17) 112.24(13)
C(65)- $C(66)$	1 384(5)	O(7)-Si(2)-O(0)	111 59(15)
C(67)- $C(68)$	1.393(5)	O(6)-Si(2)-C(13)	106.36(16)
C(67)-C(72)	1.399(5)	O(7)-Si(2)-C(19)	109.59(16)
C(68)-C(69)	1.382(5)	O(6)-Si(2)-C(19)	106.40(16)
C(69)-C(70)	1.382(6)	C(13)-Si(2)-C(19)	110.51(16)
C(70)-C(71)	1.374(6)	O(8)-Si(3)-O(9)	110.89(13)
C(71)-C(72)	1.376(5)	O(8)-Si(3)-C(31)	111.35(15)
C(73)-C(74)	1.378(7)	O(9)-Si(3)-C(31)	106.64(15)
C(73)-C(78)	1.387(7)	O(8) - SI(3) - C(25)	110.86(15)
C(73)-C(79) C(74)-C(75)	1.301(7)	C(31)-Si(3)-C(25)	110.07(15)
C(74)-C(75)	1.393(8)	O(9)-Si(4)-O(10)	109 97(14)
C(76)-C(77)	1.375(7)	O(9)-Si(4)-C(43)	111.43(16)
C(77)-C(78)	1.387(7)	O(10)-Si(4)-C(43)	107.30(16)
C(80)-C(81)	1.347(9)	O(9)-Si(4)-C(37)	112.48(15)
C(80)-C(85)	1.478(11)	O(10)-Si(4)-C(37)	102.79(16)
C(80)-C(86)	1.489(11)	C(43)-Si(4)-C(37)	112.39(17)
C(81)-C(82)	1.401(10)	O(12)-Si(5)-O(13)#1	111.39(13)
C(82)-C(83)	1.344(10)	O(12)-Si(5)-C(49)	109.24(16)
C(83)-C(84)	1.423(11)	O(13)#1-SI(5)- $O(49)$	109.02(15)
C(84)- $C(85)$	1.433(12)	O(12)-SI(5)-C(55) O(12)+1 Si(5) C(55)	111.08(15)
C(87)-C(92) C(87)-C(93)	1 400(14)	C(49)-Si(5)-C(55)	111 37(17)
C(87) - C(88)	1 498(12)	O(14)-Si(6)-O(13)	109 63(13)
C(88)-C(89)	1.315(11)	O(14)-Si(6)-C(67)	108.24(15)
C(89)-C(90)	1.327(17)	O(13)-Si(6)-C(67)	109.77(15)
C(90)-C(91)	1.23(2)	O(14)-Si(6)-C(61)	114.94(15)
C(91)-C(92)	1.49(2)	O(13)-Si(6)-C(61)	106.07(15)
	- · · - · - ·	C(67)-Si(6)-C(61)	108.11(16)
O(3)-Al(1)- $O(11)$	94.45(12)	AI(2)-O(1)-AI(1)	118.34(15)
O(3)-AI(1)- $O(3)$ #1 O(11) AI(1) $O(2)$ #4	17.14(13)	AI(2)#1-U(2)-AI(1)	119.28(15)
O(3)-A(1)-O(3)#1	160.00(13)	AI(1)-O(3)-AI(1)#1 Si(1)-O(5)-AI(2)	102.00(13)
O(11)-AI(1)-O(4)	94 65(12)	Si(1)-O(6)-Si(2)	145 (01(17)
O(3)#1-Al(1)-O(4)	94.33(12)	Si(2)-O(7)-Al(3)	145.16(16)
O(3)-AI(1)-Ó(2)	94.84(12)	Si(3)-O(8)-AI(3)	156.81(17)

Si(4)-O(9)-Si(3)	150.09(17)	C(48)-C(43)-Si(4)	124.0(3)
AI(3)-O(11)-AI(1)	132 59(16)	C(45)-C(44)-C(43)	122 1(4)
Si(5)-O(12)-Al(2)	147 67(16)	C(46)-C(45)-C(44)	1201(4)
Si(5)#1-O(13)-Si(6)	142 52(16)	C(45)-C(46)-C(47)	119.5(4)
Si(6)-O(14)-AI(3)	152 34(16)	C(46)-C(47)-C(48)	120 2(4)
C(6)- $C(1)$ - $C(2)$	116 2(4)	C(43)-C(48)-C(47)	121.6(4)
C(6)-C(1)-Si(1)	122 1(3)	C(50)-C(49)-C(54)	117.5(4)
C(2)-C(1)-Si(1)	121 5(3)	C(50)-C(49)-Si(5)	121 1(3)
C(3)-C(2)-C(1)	122.3(4)	C(54)-C(49)-Si(5)	121.1(0)
C(4)- $C(3)$ - $C(2)$	119 9(4)	C(49)-C(50)-C(51)	121.2(0)
C(5)-C(4)-C(3)	119 1(4)	C(52)-C(51)-C(50)	119 6(5)
C(4)- $C(5)$ - $C(6)$	121 0(4)	C(53)-C(52)-C(51)	119 7(5)
C(1)- $C(6)$ - $C(5)$	121.5(4)	C(52)-C(53)-C(54)	120 2(5)
C(12)-C(7)-C(8)	116 8(4)	C(53)-C(54)-C(49)	121 6(4)
C(12) - C(7) - Si(1)	121 5(3)	C(56)-C(55)-C(60)	116 7(4)
C(8)-C(7)-Si(1)	121 4(3)	C(56)-C(55)-Si(5)	121 6(3)
C(9)- $C(8)$ - $C(7)$	121 0(4)	C(60)-C(55)-Si(5)	121.6(3)
C(8)- $C(9)$ - $C(10)$	120.9(4)	C(55)-C(56)-C(57)	122.2(4)
C(9)- $C(10)$ - $C(11)$	119.0(4)	C(58)-C(57)-C(56)	119.7(4)
C(12)-C(11)-C(10)	120.6(4)	C(57)-C(58)-C(59)	119.9(4)
C(11)-C(12)-C(7)	121.5(4)	C(58)-C(59)-C(60)	119.7(4)
C(14)-C(13)-C(18)	116.7(3)	C(55)-C(60)-C(59)	121.7(4)
C(14)-C(13)-Si(2)	121.4(3)	C(66)-C(61)-C(62)	116.7(3)
C(18)-C(13)-Si(2)	121.9(3)	C(66)-C(61)-Si(6)	121.1(3)
C(15)-C(14)-C(13)	121.5(4)	C(62)-C(61)-Si(6)	121.9(3)
C(16)-C(15)-C(14)	119.9(4)	C(63)-C(62)-C(61)	121.5(4)
C(15)-C(16)-C(17)	120.0(4)	C(62)-C(63)-C(64)	120.0(́4)́
C(16)-C(17)-C(18)	120.1(4)	C(65)-C(64)-C(63)	120.1(4)
C(17)-C(18)-C(13)	121.8(4)	C(64)-C(65)-C(66)	119.4(4)
C(20)-C(19)-C(24)	116.8(4)	C(65)-C(66)-C(61)	122.3(4)
C(20)-C(19)-Si(2)	122.8(3)	C(68)-C(67)-C(72)	116.8(3)
C(24)-C(19)-Si(2)	120.5(3)	C(68)-C(67)-Si(6)	122.2(3)
C(21)-C(20)-C(19)	121.5(4)	C(72)-C(67)-Si(6)	121.0(3)
C(22)-C(21)-C(20)	120.1(5)	C(69)-C(68)-C(67)	121.6(4)
C(23)-C(22)-C(21)	119.8(4)	C(68)-C(69)-C(70)	120.0(4)
C(22)-C(23)-C(24)	120.4(5)	C(71)-C(70)-C(69)	119.7(4)
C(23)-C(24)-C(19)	121.5(5)	C(70)-C(71)-C(72)	120.2(4)
C(26)-C(25)-C(30)	117.1(3)	C(71)-C(72)-C(67)	121.8(4)
C(26)-C(25)-Si(3)	120.4(3)	C(74)-C(73)-C(78)	118.3(5)
C(30)-C(25)-Si(3)	122.4(3)	C(74)-C(73)-C(79)	121.2(5)
C(27)-C(26)-C(25)	121.9(4)	C(78)-C(73)-C(79)	120.5(5)
C(26)-C(27)-C(28)	119.8(4)	C(73)-C(74)-C(75)	120.8(5)
C(29)-C(28)-C(27)	120.0(4)	C(74)-C(75)-C(76)	120.3(6)
C(28)-C(29)-C(30)	119.9(4)	C(77)-C(76)-C(75)	119.8(5)
C(29)-C(30)-C(25)	121.4(4)	C(76)-C(77)-C(78)	119.1(6)
C(32)- $C(31)$ - $C(36)$	116.8(3)	C(77)-C(78)-C(73)	121.9(6)
C(32)-C(31)-SI(3)	121.8(3)	C(81)-C(80)-C(85)	118.3(8)
C(30) - C(31) - SI(3)	121.3(3)	C(01)-C(00)-C(00)	120.0(0)
C(33) - C(32) - C(31)	121.7(4)	C(80) - C(80) - C(80)	120.0(0)
C(32) - C(33) - C(34) C(35) - C(34) - C(32)	110.4(4)	C(83) C(82) C(81)	122.0(7) 122 7(0)
C(36) C(34) C(33)	120 8(4)	C(83) - C(82) - C(81)	125.7(9)
C(30)- $C(30)$ - $C(34)$	120.0(4)	C(82)-C(83)-C(84)	123 0(0)
C(33) = C(30) = C(31) C(42) = C(37) = C(38)	116 6(4)	C(84)-C(85)-C(80)	115 5(0)
C(42)-C(37)-Si(4)	122 2(3)	C(92)-C(87)-C(03)	123 7(12)
C(38)-C(37)-Si(4)	121 1(3)	C(92)-C(87)-C(88)	118 1(12)
C(39)-C(38)-C(37)	122 1(4)	C(93)-C(87)-C(88)	117 0(10)
C(38)- $C(39)$ - $C(40)$	119.6(4)	C(89)-C(88)-C(87)	112 5(9)
C(41)- $C(40)$ - $C(39)$	119.9(4)	C(88)-C(89)-C(90)	127 9(13)
C(40)- $C(41)$ - $C(42)$	119.7(4)	C(91)-C(90)-C(89)	124 4(19)
C(37)-C(42)-C(41)	122.0(4)	C(90)-C(91)-C(92)	116.9(19)
C(44)-C(43)-C(48)	116.3(4)	C(87)-C(92)-C(91)	118.6(14)
C(44)-C(43)-Si(4)	119.6(3)		

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z

Tabelle 63: Anisotropische Auslenkungsaparameter ($Å^2x \ 10^3$) für sh2819. Der anisotropische
Exponentfaktor des Auslenkungsparameter lautet: $-2\pi^2$ [h ² a* ² U ¹¹ + + 2 h k a* b* U ¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Δ (1)	18(1)	18(1)	1/(1)	R(1)	2(1)	A(1)
AI(2)	21(1)	18(1)	17(1)	9(1)	2(1)	3(1)
AI(3)	19(1)	20(1)	15(1)	9(1)	3(1)	5(1)
Si(1)	24(1)	18(1)	21(1)	9(1)	2(1)	4(1)
Si(2)	23(1)	23(1)	19(1)	10(1)	6(1)	7(1)
Si(3)	20(1)	29(1)	21(1)	15(1)	4(1)	7(1)
SI(4) Si(5)	22(1)	27(1)	24(1)	15(1)	8(1)	7(1) 2(1)
Si(6)	19(1)	21(1)	17(1)	8(1)	2(1)	2(1)
O(1)	18(1)	24(1)́	19(1)	11(1)	6(1)́	4(1)
O(2)	18(1)	22(1)	15(1)	9(1)	0(1)	3(1)
O(3)	20(1)	23(1)	17(1)	11(1)	5(1)	10(1)
O(4) O(5)	25(2)	24(2) 20(1)	22(1)	10(1)	9(1) 5(1)	6(1)
O(6)	22(1)	23(1)	31(2)	14(1)	1(1)	5(1)
O(7)	27(1)	23(1)	23(1)	11(1)	9(1)	8(1)
O(8)	24(1)	31(1)	21(1)	16(1)	7(1)	9(1)
O(9)	19(1) 30(2)	35(2)	27(1)	18(1)	6(1) 8(1)	7(1)
O(10) O(11)	20(1)	23(1)	17(1)	11(1)	4(1)	2(1)
O(12)	21(1)	25(1)	23(1)	12(1)	3(1)	2(1)
O(13)	31(2)	26(1)	22(1)	13(1)	8(1)	6(1)
O(14)	18(1)	22(1)	20(1)	8(1)	1(1)	1(1)
O(15) O(16)	45(Z) 24(2)	32(2) 55(2)	35(∠) 38(2)	29(2)	10(2)	9(2)
C(1)	30(2)	19(2)	29(2)	11(2)	9(2)	6(2)
C(2)	51(3)	22(2)	47(3)	14(2)	-12(2)	3(2)
C(3)	58(3)	22(2)	68(4)	19(2)	-7(3)	6(2)
C(4) C(5)	54(3) 71(4)	20(2) 35(3)	53(3) 44(3)	3(2)	3(Z) -25(3)	3(Z) 5(3)
C(6)	66(3)	28(2)	44(3)	13(2)	-15(2)	9(2)
C(7)	34(2)	16(2)	22(2)	10(2)	3(2)	3(2)
C(8)	31(2)	38(2)	30(2)	19(2)	5(2)	3(2)
C(9)	40(3) 56(3)	42(3)	41(3) 37(3)	21(2)	17(2)	5(2)
C(10) C(11)	51(3)	27(2)	29(2)	15(2)	8(2)	5(2)
C(12)	35(2)	26(2)	25(2)	13(2)	5(2)	5(2)
C(13)	23(2)	33(2)	23(2)	13(2)	9(2)	7(2)
C(14)	34(2)	31(2)	30(2)	13(2)	4(2)	7(2)
C(15) C(16)	43(3) 30(3)	44(3) 65(3)	43(3)	37(3)	0(2) 1(2)	14(2)
C(17)	27(2)	51(3)	33(2)	20(2)	0(2)	1(2)
C(18)	25(2)	35(2)	30(2)	16(2)	9(2)	4(2)
C(19)	28(2)	34(2)	23(2)	15(2)	8(2)	15(2)
C(20) C(21)	29(2)	50(3) 83(4)	30(2) 45(3)	22(2) 43(3)	20(2)	9(2) 19(3)
C(22)	62(4)	99(5)	39(3)	39(3)	34(3)	44(3)
C(23)	80(4)	71(4)	35(3)	21(3)	31(3)	46(3)
C(24)	65(3)	44(3)	34(3)	18(2)	19(2)	29(2)
C(25)	24(2) 29(2)	33(2)	17(2)	15(2) 20(2)	7(2) 7(2)	5(2) 6(2)
C(20) C(27)	43(3)	35(2)	37(3)	17(2)	10(2)	1(2)
C(28)	34(3)	43(3)	33(3)	11(2)	2(2)	-7(2)
C(29)	33(3)	48(3)	29(2)	17(2)	-3(2)	3(2)
C(30)	30(2)	39(2)	26(2)	17(2)	5(2)	9(2)
C(31) C(32)	10(2) 24(2)	∠⊎(∠) 36(2)	∠∪(∠) 28(2)	15(<i>2)</i> 17(2)	⊺(∠) 7(2)	३(८) ३(२)
C(33)	34(2)	28(2)	35(2)	15(2)	8(2)	7(2)
C(34)	37(3)	30(2)	42(3)	23(2)	3(2)	0(2)
C(35)	48(3)	43(3)	30(2)	27(2)	9(2)	7(2)
U(36)	34(2)	41(2)	28(2)	22(2)	10(2)	9(2)

C(37)	24(2)	30(2)	28(2)	17(2)	8(2)	7(2)
C(38)	30(2)	33(2)	23(2)	14(2)	7(2)	6(2)
C(39)	42(3)	31(2)	37(2)	17(2)	12(2)	2(2)
C(40)	55(3)	35(3)	75(4)	30(3)	31(3)	21(2)
C(41)	69(4)	44(3)	99(5)	34(3)	58(3)	31(3)
C(42)	46(3)	35(3)	72(3)	28(2)	35(3)	16(2)
C(43)	28(2)	29(2)	30(2)	15(2)	14(2)	8(2)
C(44)	33(3)	48(3)	58(3)	37(2)	19(2)	13(2)
C(45)	29(3)	56(3)	76(4)	41(3)	20(2)	7(2)
C(46)	50(3)	49(3)	53(3)	27(3)	28(3)	1(2)
C(47)	61(3)	42(3)	32(2)	24(2)	14(2)	2(2)
C(48)	37(2)	37(2)	26(2)	15(2)	5(2)	-2(2)
C(49)	26(2)	33(2)	26(2)	16(2)	-1(2)	1(2)
C(50)	35(3)	39(3)	47(3)	10(2)	-1(2)	0(2)
C(51)	39(3)	58(4)	69(4)	15(3)	-14(3)	-16(3)
C(52)	67(4)	38(3)	47(3)	3(2)	-8(3)	-16(3)
C(53)	67(4)	36(3)	36(3)	10(2)	9(2)	4(2)
C(54)	41(3)	29(2)	36(2)	14(2)	7(2)	4(2)
C(55)	22(2)	31(2)	26(2)	16(2)	5(2)	1(2)
C(56)	31(2)	44(3)	33(2)	24(2)	12(2)	13(2)
C(57)	32(2)	50(3)	40(3)	23(2)	12(2)	15(2)
C(58)	42(3)	64(3)	36(3)	24(2)	21(2)	7(2)
C(59)	65(3)	54(3)	44(3)	28(3)	24(3)	-1(3)
C(60)	52(3)	37(2)	37(3)	20(2)	19(2)	5(2)
C(61)	22(2)	23(2)	18(2)	6(2)	3(2)	3(2)
C(62)	31(2)	57(3)	29(2)	24(2)	13(2)	16(2)
C(63)	33(3)	72(3)	42(3)	29(3)	19(2)	25(2)
C(64)	34(3)	60(3)	39(3)	22(2)	8(2)	27(2)
C(65)	38(3)	49(3)	38(3)	28(2)	7(2)	17(2)
C(66)	28(2)	47(3)	37(2)	27(2)	11(2)	8(2)
C(67)	25(2)	23(2)	23(2)	13(2)	6(2)	3(2)
C(68)	32(2)	26(2)	32(2)	10(2)	7(2)	5(2)
C(69)	40(3)	35(3)	43(3)	12(2)	15(2)	16(2)
C(70)	59(3)	23(2)	35(3)	5(2)	19(2)	8(2)
C(71)	43(3)	24(2)	32(2)	6(2)	6(2)	-2(2)
C(72)	28(2)	28(2)	27(2)	12(2)	7(2)	1(2)
C(73)	66(4)	40(3)	62(4)	24(3)	23(3)	22(3)
C(74)	65(4)	55(3)	66(4)	31(3)	37(3)	27(3)
C(75)	64(4)	71(4)	54(4)	27(3)	30(3)	32(3)
C(76)	56(4)	57(3)	61(4)	16(3)	19(3)	21(3)
C(77)	67(4)	55(3)	76(4)	36(3)	22(3)	22(3)
C(78)	68(4)	52(3)	66(4)	34(3)	20(3)	15(3)
C(79)	86(5)	59(4)	69(4)	27(3)	6(3)	-4(3)

Tabelle 64: Koordinaten des Wasserstoffs ($x \ 10^4$) und isotrope Auslenkungsparameter (Å²x 10³) für sh2819.

	Х	у	Z	U(eq)
	E 972	704	150	50
$\Pi(Z)$	5673	724	-150	0C
H(3)	5364	-714	-983	69
H(4)	4010	-1235	-2138	62
H(5)	3230	-310	-2475	81
H(6)	3741	1129	-1653	67
H(8)	3294	2297	164	40
H(9)	2710	2378	1168	48
H(10)	3759	2566	2394	47
H(11)	5419	2713	2621	44
H(12)	6021	2632	1628	36
H(14)	7931	1674	654	42
H(15)	9219	1405	1463	55

H(16)	10371	2513	2574	53
H(17)	10251	3888	2871	48
H(18)	9003	4161	2047	36
H(20)	7898	4174	-90	43
⊓(∠⊺) H(22)	0140 7060	2004 2/05	-1290	59 72
H(23)	7560	1398	-2080	73
H(24)	7313	1674	-883	57
H(26)	7456	6548	4111	38
H(27)	8646	7707	5078	47
H(28)	9992	7554	5945	51
H(29)	10144	6239	5825	49
H(30)	8954	5067	4841	39
H(32)	7783	3176	2609	35
H(33)	8078	1984	2719	41
H(34)	7860	1856	3795	44
H(35)	7353	2930	4749	46
П(30) Ц(39)	7003	41ZZ	4000	30 35
H(30)	5424	7655	3123	33 44
H(40)	4290	8202	4026	62
H(41)	3499	7424	4420	76
H(42)	3832	6103	4175	56
H(44)	2941	4514	2922	49
H(45)	1908	3796	3207	59
H(46)	2524	3247	4056	57
H(47)	4181	3422	4626	51
H(48)	5223	4169	4369	42
H(50)	-305	1857	-1968	58
П(ЭТ) Н(52)	-1114	-486	-2976	04 78
H(53)	1378	-480	-3363	62
H(54)	2175	1258	-2366	45
H(56)	890	4312	-445	40
H(57)	374	4895	673	48
H(58)	369	4192	1400	55
H(59)	848	2886	985	62
H(60)	1369	2308	-135	48
H(62)	10393	6321	2124	44
H(63)	11861	6024	2660	56
П(04) Н(65)	10803	2040 5562	3000 /131	22 48
H(66)	9332	5859	3592	40
H(68)	7095	7394	3082	40
H(69)	7097	8693	4138	50
H(70)	8553	9616	5025	51
H(71)	9999	9232	4843	45
H(72)	10002	7933	3801	35
H(74)	5906	-283	5064	69
H(75)	7165	565	6259	74
H(76) H(77)	8276	1559	6321 5166	76 77
H(78)	6861	825	3977	72
H(79A)	4877	-488	3737	117
H(79B)	5657	-898	3319	117
H(79C)	5302	-84	3296	117
H(1)	3610(30)	4290(30)	500(30)	34(14)
H(2)	4650(30)	4000(30)	2130(20)	28(12)
H(4)	2380(40)	4520(30)	1300(30)	61(16)
H(3)	3300(30)	4620(30)	1730(30)	39(14)
H(6)	4400(30)	6480(30)	1600(30)	64(16)
п(5) H(7)	388U(3U)	576U(3U)	1500(30)	44(17)
H(8)	5900(30)	4330(20)	110(20)	25(13)
H(9)	6390(30)	6230(30)	1510(30)	33(14)
H(10)	5410(30)	4830(30)	1770(30)	33(14)
H(11)	5190(40)	2560(30)	-1380(40)	90(20)

7.10 Daten zur Molekül- und Kristallstruktur von [(Ph₂SiO)₈(AlO_{1,5})₄] [·] 2 NaO^tBu <u>13</u>

Darstellung von [(Ph₂SiO)₈(AlO_{1,5})₄] · 2 NaO^tBu 13

Zu 0,562 g (0,3902 mmol) von Verbindung Al₂[(OPh₂Si)₂O]₃ · 2 O(CH₂CH₃)₂ <u>3</u> in 25 ml Toluol werden unter Rühren bei Raumtemperatur 0,075g (0,7804 mmol) Natriumtertbutoxylat, in 5 ml Toluol gelöst, getropft. Der Reaktionsansatz wird drei Stunden bei Raumtemperatur gerührt. Anschließend wird der Reaktionsansatz auf 1/3 ihres Ausgangsvolumens eingeengt. Nach etwa 20 Tagen werden wenige Kristalle von Verbindung [(Ph₂SiO)₈(AlO_{1,5})₄] * 2 NaO^tBu <u>12</u> erhalten.

Abbildung 82: Molekülstruktur von [(Ph₂SiO)₈(AlO_{1,5})₄] · 2 NaOtBu <u>13</u>; zur besseren Übersicht: die von den Natriumatomen koordinierten Phenylringe sowie die tert-Butoxygruppen in der Stäbchenform dargestellt, die restlichen Phenylringe an den Siliciumatomen sind mit jeweils einem Kohlenstoff (Farbe: grau)angedeutet, die Wasserstoffatome sind nicht eingezeichnet.

Tabelle 65: Kristalldaten und Strukturverfeinerungen für $[(Ph_2SiO)_8(AIO_{1,5})_4]$ · 2 NaO^tBu 13 (sh3112).

Identifikationscode Summenformel Molmasse [g/mol] Messtemperatur [K] Wellenlänge [Å] Kristallsystem Raumgruppe Gitterkonstanten	sh3112 C59 H57 Al2 Na O8 Si4 1083.36 122(2) 0.71073 Monoclinic P2(1)/n a = 15.8963(7) Å b = 20.1837(11) Å	α= 90°. β= 107.001(2)°.
Zellvolumen [Å ³] Anzahl der Formeleinheiten Z	5630.1(5) 4	$\gamma = 90$.
Alizani del Formeleinneiten 2 Dichte (berechnet) Absorptionskoeffizient [mm ⁻¹] F(000) Kristallabmessungen [mm ³] Messbereich θ [°] hkl - Indexbereich Gemessene Reflexe Symmetrieunabhängige Reflexe Vollständigkeit des Datensatzes (bis θ = 27.16°) Absorptionskorrektur Max. und Min. Transmission	4 1.278 Mg/m ³ 0.198 2272 0.46 x 0.21 x 0.12 1.54 to 27.16 -20<=h<=18, -25<=k<=24, -22< 46706 12373 [R(int) = 0.0775] 99.0 % Multiscan 0.9766 and 0.9149	=l<=23
Strukturverfeinerungsmethode Daten / Einschränkungen / Parameter Güte des Fit auf F ² Endgültige R-Werte [I>2sigma(I)] R-Werte (alle Daten) Restelektronendichte (min./max.) [e/Å ⁻³]	Full-matrix least-squares on F ² 12373 / 0 / 704 1.009 R1 = 0.0497, wR2 = 0.1072 R1 = 0.1024, wR2 = 0.1330 0.625 and -0.436	

Fabelle 66: Atomkoordinaten ($ m x~10^4$) und äquivalente isotrope Auslenkungsparameter (Å $^2 m x~10^3$)
or sh3112. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U ^{ij} Tensors.

	x	у	Z	U(eq)
Si(1)	3599(1)	4357(1)	6415(1)	19(1)
Si(2)	2383(1)	3809(1)	4856(1)	19(1)
Si(3)	5430(1)	2677(1)	4561(1)	21(1)
Si(4)	3081(1)	6342(1)	4619(1)	19(1)
AI(2)	3978(1)	3878(1)	4073(1)	17(1)
AI(1)	4367(1)	5111(1)	5310(1)	16(1)
Na	4067(1)	5225(1)	3182(1)	28(1)
O(1)	4512(1)	4614(1)	4542(1)	17(1)
O(2)	4393(1)	4671(1)	6128(1)	20(1)
O(3)	2769(1)	4178(1)	5679(1)	23(1)
O(4)	3101(1)	3740(1)	4413(1)	25(1)
O(5)	4694(1)	3228(1)	4275(1)	25(1)
O(6)	3678(1)	7005(1)	4864(1)	23(1)
O(7)	3566(1)	5695(1)	5055(1)	21(1)
O(8)	3716(1)	4133(1)	3126(1)	23(1)
C(1)	3207(2)	4976(2)	6992(2)	23(1)
C(2)	2546(2)	4819(2)	7324(2)	52(1)
C(3)	2236(2)	5283(2)	7736(2)	68(2)
C(4)	2575(3)	5917(2)	7822(2)	57(1)
C(5)	3242(3)	6075(2)	7515(2)	52(1)
C(6)	3555(2)	5612(2)	7108(2)	37(1)
C(7)	4005(2)	3593(2)	6982(2)	24(1)
C(8)	4062(2)	3541(2)	7753(2)	35(1)
C(9)	4354(2)	2964(2)	8156(2)	48(1)
C(10)	4607(2)	2432(2)	7801(2)	48(1)

C(11)	4559(2)	2472(2)	7042(2)	42(1)
C(12)	4258(2)	3046(2)	6636(2)	33(1)
C(13)	1435(2)	4301(1)	4270(2)	22(1)
C(14)	1040(2)	4801(2)	4570(2)	30(1)
C(15)	334(2)	5160(2)	4121(2)	38(1)
C(16)	4(2)	5016(2)	3359(2)	40(1)
C(17)	375(2)	4517(2)	3043(2)	44(1)
C(18)	1093(2)	4171(2)	3495(2)	35(1)
C(19)	1996(2)	2972(1)	5039(2)	20(1)
C(20)	1886(2)	2800(2)	5742(2)	27(1)
C(21)	1552(2)	2194(2)	5864(2)	32(1)
C(22)	1327(2)	1733(2)	5284(2)	33(1)
C(23)	1426(2)	1886(2)	4583(2)	34(1)
C(24)	1758(2)	2499(1)	4462(2)	27(1)
C(25)	5032(2)	2004(2)	5073(2)	27(1)
C(26)	4145(2)	1033(2)	5025(2)	27(1)
C(20)	3854(2)	1/0/(2)	5369(2)	53(1)
C(28)	4435(3)	0/0(2)	5768(2)	62(1)
C(20)	5210(3)	9 4 0(2)	5820(2)	66(1)
C(29)	5607(2)	990(Z) 1526(2)	5494(2)	46(1)
C(30)	5702(2)	1020(2)	2724(2)	40(1)
C(31)	5703(2)	2291(1)	3734(Z) 2246(2)	20(1)
C(32)	5060(2)	1602(2)	3240(Z)	32(1)
C(33)	5217(2)	1003(2)	2602(2)	30(1)
C(34)	5993(2)	1725(2)	2431(2)	37(1)
C(35)	6629(2)	2123(2)	2908(2)	36(1)
C(36)	6478(2)	2405(2)	3549(2)	30(1)
C(37)	2013(2)	6490(1)	4814(2)	22(1)
C(38)	1836(2)	6244(2)	5466(2)	28(1)
C(39)	1063(2)	6408(2)	5629(2)	34(1)
C(40)	453(2)	6817(2)	5148(2)	32(1)
C(41)	610(2)	7065(2)	4499(2)	34(1)
C(42)	1388(2)	6905(2)	4338(2)	29(1)
C(43)	2908(2)	6246(1)	3570(2)	23(1)
C(44)	2234(2)	5840(2)	3121(2)	31(1)
C(45)	2109(2)	5770(2)	2348(2)	40(1)
C(46)	2657(2)	6098(2)	2001(2)	42(1)
C(47)	3336(2)	6488(2)	2428(2)	38(1)
C(48)	3453(2)	6568(2)	3200(2)	29(1)
C(49)	3437(2)	3729(2)	2448(2)	27(1)
C(50)	2949(3)	3118(2)	2604(2)	39(1)
C(51)	4246(2)	3515(2)	2227(2)	36(1)
C(52)	2833(3)	4146(2)	1836(2)	45(1)
C(53)	3237(4)	4994(2)	218(3)	72(1)
C(54)	2492(4)	4696(3)	-229(3)	100(2)
C(55)	2482(4)	4081(3)	-472(3)	82(2)
C(56)	3253(3)	3723(2)	-239(3)	61(1)
C(57)	4020(3)	3975(2)	224(3)	64(1)
C(58)	4028(4)	4650(3)	470(3)	76(2)
C(59)	4816(4)	4941(4)	959(3)	121(3)
	. ,			

Tabelle 67: Bindungslängen [Å] und Winkel [°] für sh3112.

Si(1)-O(3)	1.630(2)	Si(3)-C(31)	1.866(3)
Si(1)-O(2)	1.6317(19)	Si(4)-O(7)	1.606(2)
Si(1)-C(1)	1.857(3)	Si(4)-O(6)	1.625(2)
Si(1)-C(7)	1.866(3)	Si(4)-C(37)	1.860(3)
Si(2)-O(4)	1.5889(19)	Si(4)-C(43)	1.873(3)
Si(2)-O(3)	1.633(2)	AI(2)-O(5)	1.705(2)
Si(2)-C(19)	1.862(3)	AI(2)-O(4)	1.7089(19)
Si(2)-C(13)	1.862(3)	AI(2)-O(8)	1.742(2)
Si(3)-O(5)	1.587(2)	AI(2)-O(1)	1.8009(19)
Si(3)-O(6)#1	1.632(2)	AI(2)-Na	3.1960(14)
Si(3)-C(25)	1.865(3)	AI(1)-O(7)	1.6977(19)

AI(1)-O(2)	1.735(2)	C(54)-C(55)	1.317(7)
AI(1)-O(1)	1.7988(19)	C(55)-C(56)	1.379(6)
AI(1)-O(1)#1	1.8083(19)	C(56)-C(57)	1.364(6)
AI(1)-AI(1)#1	2.6231(15)	C(57)-C(58)	1.434(7)
AI(1)-Na#1	3.2066(14)	C(58)-C(59)	1.435(7)
Na-O(8)	2.267(2)	O(2) S(1) O(2)	100 49(10)
Na - O(2) # 1 Na O(1)	2.414(2)	O(3) - Si(1) - O(2) O(3) - Si(1) - O(2)	109.46(10)
Na-C(48)	2.003(2)	O(2)-Si(1)-C(1)	110 06(12)
Na-C(47)	2 972(4)	O(3)-Si(1)-C(7)	110.00(12) 110.03(12)
Na-C(43)	2.986(3)	O(2)-Si(1)-C(7)	109.02(11)
Na-Al(1)#1	3.2065(14)	C(1)-Si(1)-C(7)	110.94(13)
O(1)-ÀI(1)#1	1.8084(18)	O(4)-Si(2)-O(3)	112.36(10)
O(2)-Na#1	2.414(2)	O(4)-Si(2)-C(19)	109.69(12)
O(6)-Si(3)#1	1.6316(19)	O(3)-Si(2)-C(19)	107.55(12)
O(8)-C(49)	1.445(3)	O(4)-Si(2)-C(13)	109.46(12)
C(1)-C(6)	1.391(4)	O(3)-Si(2)-C(13)	108.22(12)
C(1)-C(2)	1.397(4)	C(19)-Si(2)-C(13)	109.50(12)
C(2) - C(3)	1.382(5)	O(5) - Si(3) - O(6)#1	110.85(11)
C(3)-C(4)	1.379(6)	O(5)-SI(3)-O(25)	110.54(12)
C(4) - C(5)	1.375(5)	O(5)-Si(3)-C(25)	110 30(12)
C(7) - C(12)	1.391(4)	O(6) #1-Si(3)-C(31)	108 98(12)
C(7) - C(8)	1.396(4)	C(25)-Si(3)-C(31)	107.43(14)
C(8)-C(9)	1.386(5)	O(7)-Si(4)-O(6)	112.05(10)
C(9)-C(10)	1.375(5)	O(7)-Si(4)-C(37)	111.50(12)
C(10)-C(11)	1.374(5)	O(6)-Si(4)-C(37)	107.81(11)
C(11)-C(12)	1.385(4)	O(7)-Si(4)-C(43)	109.49(12)
C(13)-C(14)	1.384(4)	O(6)-Si(4)-C(43)	105.58(12)
C(13)-C(18)	1.390(4)	C(37)-Si(4)-C(43)	110.23(12)
C(14)-C(15)	1.387(4)	O(5) - AI(2) - O(4)	111.00(10)
C(15)-C(16) C(16) C(17)	1.375(5)	O(5)-AI(2)- $O(8)$	113.20(10)
C(10)-C(17) C(17)-C(18)	1.377(5)	O(4) - AI(2) - O(6)	100.80(0)
C(17)-C(18) C(19)-C(24)	1.393(4)	O(4)-A(2)-O(1)	106.33(9)
C(19) - C(20)	1.396(4)	O(8)-Al(2)-O(1)	100.02(9)
C(20)-C(21)	1.379(4)	O(5)-AI(2)-Na	129.75(8)
C(21)-C(22)	1.378(5)	O(4)-AI(2)-Na	119.24(8)
C(22)-C(23)	1.376(4)	O(8)-Al(2)-Na	43.26(7)
C(23)-C(24)	1.388(4)	O(1)-AI(2)-Na	57.13(6)
C(25)-C(30)	1.389(4)	O(7)-Al(1)-O(2)	114.82(10)
C(25)-C(26)	1.394(4)	O(7)-AI(1)-O(1)	115.41(9)
C(20) - C(27)	1.369(5)	O(2)-AI(1)-O(1) O(7) AI(1) $O(1)$ #1	114.05(10)
C(27) - C(20) C(28) - C(29)	1 382(5)	O(2)-A(1)-O(1)#1	104 70(9)
C(29) - C(30)	1.387(5)	O(1)-AI(1)-O(1)#1	86.70(9)
C(31)-C(36)	1.390(4)	O(7)-Al(1)-Al(1)#1	127.44(8)
C(31)-C(32)	1.398(4)	O(2)-AI(1)-AI(1)#1	117.45(8)
C(32)-C(33)	1.382(4)	O(1)-AI(1)-AI(1)#1	43.49(6)
C(33)-C(34)	1.380(5)	O(1)#1-Al(1)-Al(1)#1	43.20(6)
C(34)-C(35)	1.384(5)	O(7)-Al(1)-Na#1	135.64(8)
C(35)-C(36)	1.390(4)	O(2)-Al(1)-Na#1	47.85(6)
C(37)-C(42)	1.394(4)	O(1)-AI(1)-Na#1	108.25(7)
C(37) - C(38)	1.397(4)	O(1)#1-AI(1)-Na#1 AI(1)#1-AI(1)-Na#1	56.85(6)
C(30)-C(39)	1.300(4)	AI(1)#1-AI(1)-INA#1 $O(8)-N_2-O(2)#1$	00.07(4) 107.86(8)
C(40)-C(41)	1.380(5)	O(8)-Na-O(1)	65.87(7)
C(41)-C(42)	1.391(4)	O(2)#1-Na-O(1)	66.52(6)
C(43)-C(48)	1.406(4)	O(8)-Na-C(48)	146.54(9)
C(43)-C(44)	1.407(4)	O(2)#1-Na-C(48)	101.93(̈́9)́
C(44)-C(45)	1.382(4)	O(1)-Na-C(48)	114.77(8)
C(45)-C(46)	1.389(5)	O(8)-Na-C(47)	139.06(10)
C(46)-C(47)	1.380(5)	O(2)#1-Na-C(47)	111.56(9)
C(47)-C(48)	1.384(4)	O(1)-Na-C(47)	141.97(9)
C(49)- $C(52)$	1.503(5)	U(48)-Na- $U(47)$	27.28(9)
C(49)-C(31) C(49)-C(50)	1.321(4) 1.528(1)	O(0)-INd- $O(43)O(2)#1_Na_O(42)$	121.42(9)
C(53)-C(54)	1.320(+)	O(2) + - Na- $O(43)$	96 26(8)
C(53)-C(58)	1.392(7)	C(48)-Na-C(43)	27.64(8)
· · · · /	N /	· · · · · · · ·	(- <i>)</i>

C(47)-Na-C(43)	48.25(9)	C(21)-C(20)-C(19)	121.8(3)
O(8)-Na-Al(2)	31.78(5)	C(22)-C(21)-C(20)	120.0(3)
O(2)#1-Na-Al(2)	89.76(6)	C(23)-C(22)-C(21)	119.7(3)
O(1)-Na-Al(2)	34.28(4)	C(22)-C(23)-C(24)	120.1(3)
C(48)-Na-Al(2)	136.71(7)	C(23)-C(24)-C(19)	121.4(3)
C(47)-Na-Al(2)	153.98(8)	C(30)-C(25)-C(26)	117.2(3)
C(43)-Na-Al(2)	110.06(7)	C(30)-C(25)-Si(3)	120.9(2)
O(8)-Na-Al(1)#1	87.28(6)	C(26)-C(25)-Si(3)	121.8(2)
O(2)#1-Na-Al(1)#1	32.19(5)	C(27)-C(26)-C(25)	121.0(3)
O(1)-Na-Al(1)#1	34.32(4)	C(28)-C(27)-C(26)	120.5(3)
C(48)-Na-Al(1)#1	111.63(7)	C(27)-C(28)-C(29)	120.0(4)
C(47)-Na-Al(1)#1	133.02(8)	C(28)-C(29)-C(30)	119.3(4)
C(43)-Na-Al(1)#1	108.53(7)	C(29)-C(30)-C(25)	122.0(3)
AI(2)-Na-AI(1)#1	61.21(3)	C(36)-C(31)-C(32)	117.0(3)
AI(1)-O(1)-AI(2)	133.14(10)	C(36)-C(31)-Si(3)	124.3(2)
AI(1)-O(1)-AI(1)#1	93.30(9)	C(32)-C(31)-Si(3)	118.6(2)
AI(2)-O(1)-AI(1)#1	129.13(10)	C(33)-C(32)-C(31)	121.9(3)
Al(1)-O(1)-Na	114.39(9)	C(34)-C(33)-C(32)	119.8(3)
Al(2)-O(1)-Na	88.58(7)	C(33)-C(34)-C(35)	119.8(3)
AI(1)#1-O(1)-Na	88.83(7)	C(34)-C(35)-C(36)	119.8(3)
SI(1)-O(2)-AI(1)	130.78(11)	C(31)-C(36)-C(35)	121.6(3)
SI(1)-O(2)-Na#1	128.83(10)	C(42)- $C(37)$ - $C(38)$	117.7(3)
AI(1)-O(2)-INA#1 Si(4) O(2) Si(2)	99.95(8)	C(42)- $C(37)$ - $SI(4)$	119.9(2)
S(1) - O(3) - S(2) S(2) - O(4) - A(2)	149.59(13)	C(30) - C(37) - SI(4) C(30) - C(38) - C(37)	122.1(2)
Si(2) = O(4) = Ai(2) Si(3) = O(5) = Ai(2)	172 28(14)	C(39)-C(30)-C(37)	120.0(3)
Si(3)-O(3)-Ai(2) Si(4)-O(6)-Si(3)#1	146 05(13)	C(39)-C(40)-C(41)	119 9(3)
Si(4) - O(7) - AI(1)	156 01(13)	C(40)- $C(41)$ - $C(42)$	119 7(3)
C(49)-O(8)-Al(2)	127 98(18)	C(41)-C(42)-C(37)	121 4(3)
C(49)-O(8)-Na	126.69(17)	C(48)-C(43)-C(44)	117.2(3)
AI(2)-O(8)-Na	104.96(9)	C(48)-C(43)-Si(4)	121.4(2)
C(6)-C(1)-C(2)	117.2(3)	C(44)-C(43)-Si(4)	121.3(2)
C(6)-C(1)-Si(1)	121.6(2)	C(48)-C(43)-Na	72.19(16)
C(2)-C(1)-Si(1)	121.1(2)	C(44)-C(43)-Na	82.86(17)
C(3)-C(2)-C(1)	121.4(4)	Si(4)-C(43)-Na	113.58(12)
C(4)-C(3)-C(2)	120.1(4)	C(45)-C(44)-C(43)	121.2(3)
C(5)-C(4)-C(3)	119.3(3)	C(44)-C(45)-C(46)	120.0(3)
C(4)-C(5)-C(6)	120.7(4)	C(47)-C(46)-C(45)	120.3(3)
C(5)-C(6)-C(1)	121.3(3)	C(46)-C(47)-C(48)	119.7(3)
C(12)-C(7)-C(8)	117.5(3)	C(46)-C(47)-Na	84.8(2)
C(12)-C(7)-Si(1)	120.0(2)	C(48)- $C(47)$ -Na	72.89(18)
C(8)-C(7)-S(1)	122.4(2)	C(47) - C(48) - C(43)	121.0(3)
C(9) - C(0) - C(7)	121.1(3)	C(47)- $C(40)$ -INA C(42) $C(49)$ No	79.03(19)
C(10)-C(9)-C(0)	110 0(3)	O(8) - C(40) - C(52)	107.2(3)
C(10)-C(11)-C(12)	120 2(3)	O(8)-O(49)-O(52)	108.6(2)
C(10) = C(11) = C(12) C(11) = C(12) = C(7)	121 2(3)	C(52)-C(49)-C(51)	111 5(3)
C(14)-C(13)-C(18)	117 2(3)	O(8)-C(49)-C(50)	109 8(2)
C(14)- $C(13)$ - $Si(2)$	122.9(2)	C(52)-C(49)-C(50)	110.2(3)
C(18)-C(13)-Si(2)	119.8(2)	C(51)-C(49)-C(50)	109.6(3)
C(13)-C(14)-C(15)	121.9(3)	C(54)-C(53)-C(58)	121.3(5)
C(16)-C(15)-C(14)	119.6(3)	C(55)-C(54)-C(53)	122.8(6)
C(15)-C(16)-C(17)	120.1(3)	C(54)-C(55)-C(56)	117.8(5)
C(16)-C(17)-C(18)	119.7(3)	C(57)-C(56)-C(55)	123.4(5)
C(17)-C(18)-C(13)	121.5(3)	C(56)-C(57)-C(58)	118.3(5)
C(24)-C(19)-C(20)	116.9(3)	C(53)-C(58)-C(57)	116.5(4)
C(24)-C(19)-Si(2)	121.0(2)	C(53)-C(58)-C(59)	122.8(6)
C(20)-C(19)-Si(2)	121.9(2)	C(57)-C(58)-C(59)	120.8(6)

 $\overline{ Symmetry \ transformations \ used \ to \ generate \ equivalent \ atoms: \ \#1 \ -x+1, -y+1, -z+1 }$

Слропк		Ausienkungsp			0 1 12	
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Si(1)	17(1)	20(1)	20(1)	0(1)	7(1)	-2(1)
Si(2)	15(1)	21(1)	21(1)	-1(1)	7(1)	-2(1)
Si(3)	18(1)	18(1)	27(1)	-2(1)	8(1)	0(1)
Si(4)	15(1)	20(1)	23(1)	-1(1)	6(1)	1(1)
AI(2)	14(1)	17(1)	19(1)	-2(1)	6(1)	-1(1)
AI(1)	14(1)	17(1)	18(1)	-1(1)	6(1)	0(1)
Na	24(1)	24(1)	33(1)	2(1)	3(1)	-1(1)
O(1)	16(1)	16(1)	19(1)	-1(1)	7(1)	-1(1)
O(2)	18(1)	22(1)	21(1)	2(1)	8(1)	-2(1)
O(3)	20(1)	24(1) 28(1)	24(1) 22(1)	-3(1)	7(1) 12(1)	U(1) 5(1)
O(4)	22(1)	20(1)	32(1)	-3(1)	7(1)	-3(1)
O(6)	18(1)	22(1)	30(1)	-1(1)	6(1)	-1(1)
O(7)	15(1)	20(1)	26(1)	1(1)	6(1)	1(1)
O(8)	27(1)	22(1)	21(1)	-5(1)	6(1)	-5(1)
C(1)	20(1)	30(2)	20(2)	-3(1)	6(1)	0(1)
C(2)	37(2)	66(3)	62(3)	-42(2)	30(2)	-26(2)
C(3)	33(2)	103(4)	78(3)	-60(3)	33(2)	-22(2)
C(4)	48(2)	72(3)	49(2)	-35(2)	12(2)	14(2)
C(5)	92(3)	31(2)	37(2)	-13(2)	28(2)	-1(2)
	57(2)	29(2)	29(2)	-8(2)	21(2)	-6(2)
C(8)	19(1)	25(2)	20(2)	$\frac{4(1)}{7(2)}$	11(2)	-2(1)
C(9)	57(2)	54(2)	35(2)	21(2)	16(2)	7(2)
C(10)	43(2)	37(2)	61(3)	26(2)	12(2)	7(2)
C(11)	43(2)	27(2)	55(2)	5(2)	11(2)	6(2)
C(12)	32(2)	32(2)	36(2)	6(2)	10(1)	6(2)
C(13)	17(1)	20(2)	30(2)	0(1)	8(1)	-4(1)
C(14)	28(2)	30(2)	33(2)	-3(1)	9(1)	3(1)
C(15)	30(2)	28(2)	53(2)	1(2)	10(2)	6(1) 2(1)
C(10) C(17)	25(2) 45(2)	20(2) 46(2)	31(2)	0(2)	-2(2)	$\frac{2(1)}{3(2)}$
C(18)	37(2)	34(2)	31(2)	-4(2)	3(1)	10(2)
C(19)	13(1)	22(2)	24(2)	0(1)	5(1)	1(1)
C(20)	24(2)	33(2)	25(2)	2(1)	10(1)	1(1)
C(21)	31(2)	34(2)	35(2)	13(2)	15(1)	2(1)
C(22)	30(2)	23(2)	49(2)	8(2)	17(2)	-1(1)
C(23)	38(2)	26(2)	41(2)	-6(2)	16(2)	-5(2)
C(24)	32(2) 23(1)	24(2) 26(2)	28(2) 31(2)	U(1) -3(1)	8(1)	-4(1)
C(25)	26(2)	39(2)	40(2)	5(2)	7(1)	-2(2)
C(27)	34(2)	66(3)	55(2)	16(2)	8(2)	-20(2)
C(28)	51(2)	59(3)	68(3)	29(2)	3(2)	-27(2)
C(29)	48(2)	50(3)	89(3)	40(2)	6(2)	-6(2)
C(30)	28(2)	39(2)	67(3)	19(2)	7(2)	0(2)
C(31)	25(2)	19(2)	29(2)	0(1)	7(1)	5(1)
C(32)	27(2)	32(2)	40(2)	-8(2)	12(1)	2(1)
C(33)	30(2) 47(2)	34(Z) 34(2)	39(2)	-13(2)	0(∠) 17(2)	2(2) 8(2)
C(34) C(35)	47(2) 40(2)	35(2)	42(2)	1(2)	23(2)	2(2)
C(36)	31(2)	26(2)	33(2)	-3(1)	10(1)	0(1)
C(37)	16(1)	21(2)	27(2)	-6(1)	5(1)	0(1)
C(38)	23(1)	31(2)	30(2)	2(1)	8(1)	2(1)
C(39)	30(2)	42(2)	36(2)	-4(2)	16(1)	-5(2)
C(40)	19(2)	38(2)	41(2)	-11(2)	14(1)	1(1)
C(41)	23(2)	35(2)	42(2)	-3(2)	8(1)	10(1)
C(42)	∠3(∠) 20(1)	∠∋(∠) 21(2)	30(∠) 28(2)	3(1) -1(1)	11(1) 7(1)	0(1) 5(1)
C(44)	26(2)	35(2)	32(2)	-6(2)	10(1)	0(1)
C(45)	36(2)	48(2)	31(2)	-10(2)	3(2)	0(2)
C(46)	55(2)	51(2)́	21(2)́	0(2)	10(Ź)	10(Ź)
C(47)	51(2)	38(2)	28(2)	8(2)	18(2)	7(2)

Tabelle 68: Anisotropische Auslenkungsaparameter (Å $^2x 10^3$) für sh3112. Der anisotropischeExponentfaktor des Auslenkungsparameter lautet: $-2\pi^2$ [$h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

0(40)	00(0)	00(0)	04(0)	0(4)	0(4)	0(4)
C(48)	30(2)	26(2)	31(2)	2(1)	9(1)	2(1)
C(49)	30(2)	29(2)	20(2)	-7(1)	7(1)	-8(1)
C(50)	43(2)	38(2)	39(2)	-14(2)	16(2)	-17(2)
C(51)	42(2)	39(2)	32(2)	-9(2)	18(2)	-6(2)
C(52)	51(2)	48(2)	28(2)	-4(2)	-1(2)	1(2)
C(53)	104(4)	30(2)	70(3)	1(2)	5(3)	-2(3)
C(54)	128(5)	63(4)	85(4)	4(3)	-5(4)	14(4)
C(55)	104(4)	64(3)	71(3)	-7(3)	16(3)	2(3)
C(56)	71(3)	54(3)	67(3)	-3(2)	32(2)	8(2)
C(57)	76(3)	60(3)	72(3)	-1(3)	45(3)	-3(3)
C(58)	91(4)	97(4)	43(3)	4(3)	26(3)	-43(3)
C(59)	128(5)	162(7)	76(4)	5(4)	35(4)	-86(5)

Tabelle 69: Koordinaten des Wasserstoffs ($x\;10^4)$ und isotrope Auslenkungsparameter (Å $^2x\;10\;^3)$ für

		5115112	•	
	x	У	Z	U(eq)
H(2)	2304	4385	7265	62
H(2)	1788	5165	7200	81
H(3)	2351	62/1	8002	68
H(5)	3/88	6507	758/	62
H(6)	4018	5731	6003	44
H(8)	3897	3908	8006	43
H(9)	4381	2935	8679	58
H(10)	4801	2000	8079	57
H(11)	4733	2105	6796	51
H(12)	4700	3066	6110	40
H(14)	1259	4900	5097	36
H(15)	79	5504	4340	45
H(16)	-480	5260	3040	40
H(17)	140	4410	2518	53
H(18)	1358	3837	3270	42
H(20)	2045	3111	6149	32
H(21)	1476	2093	6346	39
H(22)	1106	1312	5368	30
H(23)	1267	1571	4181	41
H(24)	1824	2598	3975	33
H(26)	3734	2252	4751	42
H(27)	3246	1363	5328	63
H(28)	4231	580	6003	75
H(29)	5726	675	6105	79
H(30)	6216	1563	5530	56
H(32)	4546	1788	3361	39
H(33)	4779	1329	2277	45
H(34)	6089	1537	1988	45
H(35)	7168	2202	2797	44
H(36)	6915	2683	3868	36
H(38)	2251	5962	5802	33
H(39)	952	6236	6074	41
H(40)	-75	6929	5263	38
H(41)	188	7343	4163	40
H(42)	1497	7083	3895	34
H(44)	1859	5611	3354	37
H(45)	1647	5497	2053	48
H(46)	2565	6054	1468	51
H(47)	3722	6701	2192	45
H(48)	3912	6847	3487	35
H(53)	3215	5445	359	87
H(54)	1960	4943	-371	120
H(55)	1960	3890	-797	98
H(56)	3251	3278	-410	74
· /		-	-	

sh3112.

H(57)	4536	3710	379	77
H(59A)	5048	5265	670	182
H(59B)	5255	4594	1153	182
H(59C)	4682	5162	1387	182
H(49)	2710(20)	2858(18)	2150(20)	45(10)
H(55)	2290(20)	4314(17)	2006(19)	45(10)
H(53)	4110(20)	3261(18)	1760(20)	46(10)
H(51) H(52) H(57)	2470(20) 4620(20) 2660(20) 2350(20)	3271(17) 3291(18) 3922(18) 2821(10)	2630(20) 1370(20)	40(10) 44(11) 47(10) 52(11)
H(56) H(56) H(54)	3160(20) 4600(20)	4560(20) 3930(20)	1740(20) 2120(20)	59(12) 58(11)

Die Standardabweichungen wurden wie in der Rechnung abgedruckt.