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It is only natural, of course, that each man
should think his own opinions best: the
crow loves his fledgling, and the ape his
cub.

– Thomas More, Utopia.

Chacun se complait à ses propres idées,
c’est la nature qui en a ainsi décidé. Le
corbeau trouve ses petits charmants et la
vie du jeune singe enchante ses parents.

– Thomas More, Utopia.

Und in der That ist es nur natürlich,
daß die Menschen in die Einfälle ihres
eigenen Geistes verliebt sind. Den Raben
und den Affen dünken ihre Jungen auch
die schönsten Geschöpfe.

– Thomas Morus, Utopia.



Modeling and simulation of the motion of deformable interfaces in a
confined geometry: application to the study of the flow of red blood

cells in microcirculation

Abstract: Vesicles are extensively used as a model for understanding dynamics
and deformation of red blood cells at the individual level but also regarding col-
lective phenomena and rheology. Vesicles’ membranes withstand to bending but
do not have a shear resistance, unlike red blood cells, but they still share several
dynamical properties with red blood cells, like tank-treading and tumbling under
linear shear flow, or parachute and slipper shapes under Poiseuille flow. The red
blood cells are known to form train of cells in the microcirculation attributed to
attractive hydrodynamic interactions. We investigate numerically several kind of
problems such as: (i) the dynamics of isolated cells; (ii) the hydrodynamic coupling
between the red blood cells (by using vesicles as a model) subject to a Poiseuille
flow under different confinements; (iii) the aggregation of red blood cells and for-
mation of rouleaux; and (iv) the contribution of macromolecules in the formation
of clusters under flow condition. The obtained results give a new insight into the
physics of deformable objects under confinement that are transposable to the flow
of red blood cells in the microcirculation.
Keywords: Vesicles, red blood cells, boundary integral method, poiseuille flow,
chaotic dynamics, aggregation, cluster formation, hydrodynamic interactions, basin
of attraction, macromolecules-induced interactions.



Modeling and simulation of the motion of deformable interfaces in a
confined geometry: application to the study of the flow of red blood

cells in microcirculation

Abstract: Les vésicules sont utilisées d’une manière extensive comme modèle
pour comprendre les dynamiques et les déformations des globules rouges au niveau
individuel, mais aussi concernant les phénomènes collectives et la rhéologie. La
membrane de la vésicule résiste à la flexion mais pas au cisaillement, contraire-
ment aux globules rouges, néanmoins elles partagent plusieurs propriétés dy-
namiques avec les globules rouges, comme le tank-treading (mouvement en che-
nille de char) et le tumbling (mouvement de bascule) sous écoulement de cisaille-
ment, ou les formes parachutes et slippers (pantoufles) sous un écoulement de
Poiseuille. Les globules rouges sont connus pour former des trains de cellules
(clusters) dans la microcirculation attribués à la nature attractive des interactions
hydrodynamiques. Nous avons étudié numériquement plusieurs types de prob-
lème comme:(i) les dynamiques de cellules isolées, (ii) le couplage hydrodynamique
entre globules rouges (en utilisant les vésicules comme modèle) soumis à un écoule-
ment de Poiseuille sous différent confinements; (iii) l’agrégation des globules rouges
et la formation de rouleaux; et (iv) le rôle des macromolecules dans la formation
de clusters sous écoulement. les résultats obtenus apportent un nouveau regard
à la physique des objets déformables et sont transposables au cas de l’écoulement
des globules rouges dans la microcirculation.
Mots-clefs: Vésicules, globules rouges, méthode des intégrales de frontières, écoule-
ment de poiseuille, chaos, agrégation, formation de cluster, interactions hydrody-
namiques, bassin d’attraction, interactions dûe aux macromolécules.
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Kurzzusammenfassung: Vesikel werden in der aktuellen Forschung extensiv
als Modelsystem genutzt um die Dynamik und die Deformation von roten Blutzellen
(RBCs) zu verstehen. Dies sowohl auf dem individuellen Level wie auch für kollek-
tive Phänomene und die Rheologie. Die Membran von Vesikel ist nicht dehn-
bar jedoch verformbar und eine Scherung erfolgt widerstandslos. Rote Blutzellen
haben vergleichbare Eigenschaften, auch wenn eine Scherung nicht widerstands-
los erfolgt. So wird unter einem linearen Scherfluss das tank-treading (vergleich-
bar mit der Bewegung einer Panzerkette) oder eine Taumelbewegung beobachtet.
Im Poiseuille-Fluss werden hingegen parachute (fallschirmförmig) oder slipper
(schuhförmig) Konfigurationen angenommen. Es ist bekannt, dass rote Blutzellen
in der Mikrozirkulation zu Aneinanderreihungen neigen. Dies geschieht aufgrund
der anziehenden hydrodynamischen Wechselwirkung. Es wurden verschiedene
Problemstellungen untersucht: (i) die Dynamik einzelner Zellen, (ii) die hydro-
dynamische Kopplung zwischen roten Blutzellen (als Vesikel im Modellsystem)
in einem Poiseuille-Fluss bei verschiedenen geometrischen Einschränkungen, (iii)
die Aggregation und die Bildung von Rollen bei roten Blutzellen und (iv) der
Beitrag von Makromolekülen an der Clusterbildung unter Flussbedingungen. Die
dargestellten Untersuchungen geben neuartige Einblicke in die Physik von ver-
formbaren Objekten in eingeschränkten Geometrien welche bedeutend sind für
das Verständnis der Bewegung von roten Blutzellen in der Mikrozirkulation.
Schlüsselwörter: Vesikel, rote Blutzellen, Randintegralmethode, Poiseuille-Fluss,
chaotische Dynamik, Aggregation, Clusterbildung, hydrodynamische Wechselwirkung,
Hauptattraktor, durch Makromoleküle hervorgerufene Wechselwirkungen.
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CHAPTER 1

General Introduction

Contents

1.1 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Generalities about Blood and its components . . . . . . . . . . . . . 2

1.2.1 Sloppy definition of red blood cells aggregation . . . . . . . . 3

1.2.2 Blood plasma: composition and role on aggregation of red
blood cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Red blood cells: discovery and properties . . . . . . . . . . . . 5

1.2.4 A short note about blood rheology in microcirculation . . . . 14

1.1 Scope of the Thesis

It is known since long that understanding the underlying mechanisms of red blood
cells aggregation and blood flow may be a keystone explaining the etiology of cer-
tain pathological situations. Some of these diseases are closely related to the func-
tioning of red blood cells. It is important to recall the main function of red cells,
oxygen transport from the lungs to the rest of the body. Organs like the heart,
the kidney and the brain have a high demand on oxygen. Oxygen is released by
the red cells in the microcirculation, and more precisely in small and tiny vessels
called the capillaries. The capillaries often have a diameter smaller than the one
of the red blood cells themselves. Therefor the red blood cells are subject to severe
deformations during their flow in these small vessels. In the microcirculation, it is
often observed that the red cells flow in single or multiple files forming small trains
of cells called clusters. The arrangement and organization of the red cells depend
on the diameter of the vessel and the concentration of red cells (hematocrit). Each
red blood cell interacts hydrodynamically with the other cells, and when the cells
are in a close range from one another depletion and/or bridging interactions take
place between the surrounding plasma proteins and the red cells leading to more
persistent clusters. At physiological levels of the different plasma proteins, and
for healthy red cells, clustering is a reversible process. However that might lead
to a partial or total occlusion of the small vessels (ischemia). The tissues depriva-
tion from oxygen might induce a severe pain (due to the lack of oxygen) and may
lead to irreversible damages in these regions. When it occurs in the brain, it might
cause a stroke (cerebrovascular accident), whereas in the heart, it might lead to
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congestive heart failures as a consequence of an overpressure due to the augmen-
tation of blood volume and an incapacity to pump it through the obstructed (or
narrowed in case of partial occlusions) capillaries. Surprisingly, the physics of the
microcirculation is still unclear. This might be explained by the complexity of the
interaction between different sciences leading to the understanding of the neces-
sary minimal ingredients to build a starting model that can be used to describe the
non-trivial coupling between the red cells and the geometry of the vessels from
one side, and the interaction with the plasma proteins from the other side. In or-
der to distinguish the contribution of the hydrodynamic and depletion-bridging
interactions on the formation of clusters, we have investigated in this thesis prob-
lems related to: i)- aggregation in a static fluid due to depletion-bridging, ii)- flow
of single cells, iii)- hydrodynamic interactions between a pair of cells and effect of
the confinement, iv)- role of the depletion-bridging interactions on the formation
of clusters of red cells in microcirculation. Although the main focus of this thesis
is to investigate the flow of cells in the microcirculation, many relevant physical
questions to the understanding of dynamics of flowing soft objects in a confined
geometry will be tackled during the different chapters.

1.2 Generalities about Blood and its components

During the blood flow in the circulatory system, the oxygenated blood is pumped
from the heart into the arteries, which are tubes with a large diameters. It goes then
into smaller vessels, the arterioles, before entering into the capillary bed, where
oxygen and nutrients are delivered to tissues and carbon dioxide and wastes are
expulsed from tissues to the blood. The deoxygenated blood is carried then into
small venules; and then into larger vessels; the veins, back toward the heart. This
is an extremely complex and vital process in which, every parameter must be reg-
ulated and adjusted carefully in order to deliver, in the way that fit the different
conditions, the blood in the different parts of the body. One can imagine what
may happen if the flow velocity of the blood in capillaries was comparable to the
one in the large-diameter vessels such as arteries and veins. In this case, the diffu-
sion of nutrients and oxygen to the tissues, the expulsion of wastes, and the heat
regulation process will not take place properly due to the lack of time. The evo-
lution finds a way to overcome this problem, by dividing the smallest vessels (the
capillaries) where the diffusion process occurs in a dense network of slender cap-
illaries (called capillary bed). By dividing up the blood flow, the same volume of
blood coming from the large vessels can be handled by the capillary bed, but at
slower velocity; slow enough to allow the exchange of nutrients and wastes and
fast enough to avoid any kind of blood sludging. In analogy to a parallel electrical
circuit, this disposition of the capillaries assures the blood circulation even if one
capillary or more is occluded for specific reasons.

Recall that blood is formed by 45% of cells distributed as follow: 98% of these
are red blood cells, 1% are a mixture of platelets and white blood cells. These
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Figure 1.1: Left: Blood components after centrifugation. Right: Micrograph depict-
ing human blood cells. Red blood cells (in red), 3 T-cells (in orange), and activated
platelets (in green). The T-cells are one of the four types of lymphocytes (natural
killer cells, B-cells, T-cells, and suppressor T-cells). In their turn, the lymphocytes
are one of the three types of white cells (granulocytes, lymphocytes, and mono-
cytes). Courtesy of “http://visualsunlimited.photoshelter.com ”.

cellular components are suspended in the plasma, the liquid counterpart of the
blood which is mainly made up of water (93%). One can be tempted to describe
the behavior of blood (rheological properties) by focusing on the flow of red blood
cells in water. This in fact can be the minimum ingredients needed to build a toy
model. Under these conditions, we end up with a system of deformable objects
driven by an external flow in microchannels, and interacting hydrodynamically.
We will focus then on describing the plasma and the red blood cells in the follow-
ing subsections, and give a small overview on platelets and white cells.

1.2.1 Sloppy definition of red blood cells aggregation

In the healthy adult human, the red cells have a tendency to aggregate and form,
under certain conditions, large aggregates called rouleaux. This phenomenon is a
consequence of the presence of certain macromolecules in the plasma such as fib-
rinogen (a plasma protein known to induce aggregation). According to the litera-
ture, the aggregates are supposed to disaggregate under the effect of shear forces.
Currently two models are widely used to explain the mechanism behind RBCs
aggregation: bridging and depletion. In the bridging model, the macromolecules
are believed to adsorb on to the surface of the RBC and make bonds with a close
enough RBC in a range relative to the macromolecule length. The depletion model
states that the exclusion of macromolecules from the depleted area between the
adjacent cells will lead to an osmotic gradient and therefor to a depletion interac-
tion. In both cases the formation of aggregates happens only if the disaggregation
forces are lower than the aggregation forces. RBCs aggregation is a reversible pro-



4 Chapter 1. General Introduction

cess, and should not be confused with clotting. Clotting occurs during a normal
blood coagulation, where the fibrinogen is converted to insoluble strands called
fibrin as a result of a complex cascade of chemical reactions. Platelets and cross-
linked fibrin strands form a blood clot (thrombus) and cover the damaged blood
vessel wall, stopping by the same occasion the bleeding and making possible the
beginning of repair of the injured vessel.

1.2.2 Blood plasma: composition and role on aggregation of red blood
cells

The plasma is considered to be a Newtonian fluid, even though it was proven
recently by experiments [Brust 2013b] that plasma presents a non-Newtonian be-
havior. Indeed, they have reported that the flow resistance of the plasma is more
pronounced than that of water. Therefor, viscoelastic properties of the plasma
should not be ignored in future models aiming the study of blood flow. The
plasma contains a number of solutes: different proteins that form 7% by weight,
ions (e.g. Na+, K+, Cl–, and HCO3

–) and metabolites (e.g. carbohydrates, urea,
amino acids, hormones, vitamins, fats) representing 1-2% of the plasma weight.
These macromolecules are suspended in a water solution. We can classify the pro-
teins by their role on the aggregation of the red blood cells. The first protein of
interest is the fibrinogen. It forms 7% of the total amount of plasma proteins, has
a molecular weight of 340 kDa, a fully extended length of about 475 Å, and is
charged negatively. Its role as an agent inducing aggregation of red blood cells is
well known and accepted in the community. However the role of other proteins
is questionable. An example is the immunoglobulin G (IgG) which forms 22%
of the total plasma protein, has a molecular weight of 150 kDa and a maximum
length in a fully extended state of about 200 Å. Among studies supporting the
positive role of IgG on aggregation we cite [Maeda 1986b], whereas other stud-
ies such as [Madl 1993] reported no effect at all on aggregation. In fact it was not
possible to get more than the abstract of Ref.[Madl 1993], thus the protocol used
by these authors remains unknown. Although these results were also reported
in [Baskurt 2011, p. 12]. Indeed the preparation process and the protocols may
change the effect on aggregation as highlighted in [Maeda 1986a]. A second im-
portant plasma protein is the albumin which is often used to avoid adhesion of red
cells to the walls. It is a relatively small macromolecule in comparison to fibrinogen
or to IgG. It has a molecular weight of 66 kDa, constitutes 55% of the plasma total
proteins, and is the most negatively charged one[Maeda 1986b]. Its fully extended
length is about 150 Å. The role of albumin in the presence of either IgG or fibrino-
gen has been studied in [Maeda 1986b]. The authors have reported that albumin
inhibits the IgG-induced red cells aggregation, whereas it enhances the fibrinogen-
induced red cells aggregation. Moreover, albumin alone can not induce aggrega-
tion of red cells. To elucidate these non-trivial interactions, the authors have added
poly(glutamic acid) (PG) of 20 kDa. In the IgG + albumin solution, the addition
of PG20 drastically inhibited the IgG-induced aggregation. Recall that PG20 alone
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(like the albumin) does not induce any aggregation of red cells, whereas for the
fibrinogen + albumin solution, no effect has been observed on the aggregation.
The authors have discussed the probable difference in the mechanism of interac-
tion in the presence of albumin of IgG and fibrinogen with the surface of the red
cell. This underlines the probable role of the specific and non-specific bending of
the different macromolecules on the surface of the red cells, the affinity (strength
of the chemical bonds), competition on the same bending sites that may ensue if
two or more macromolecules share the same bending sites, their concentrations,
their charge and eventually its strength, their length and shape, and so on. The
non-trivial and unclear origin of these interactions increases drastically the level
of complexity of our problem, and in the meanwhile explains the discrepancy that
can be found in the literature of red blood cells aggregation. Besides, the level of
these plasma proteins is not constant and may vary in case of a pregnancy or under
the effect of some diseases. The normal level of fibrinogen in the plasma ranges be-
tween 1.8 − 4 mg/mL [Comeglio 1996, Baskurt 2011]. Recall that fibrinogen is syn-
thesized mainly in the liver1 and is a precursor of fibrin, a protein that plays an im-
portant role in blood clotting. An increase of the level of fibrinogen was observed
on patients after stroke2, after myocardial infraction3 [Ernst 1993, Di Napoli 2001],
and for diabetics [Kannel 1990, Lee 1993]. It is known that the level of fibrinogen
enhances the aggregation of RBCs, leading to bigger and stronger rouleaux. The
interaction energy between the cells in a rouleaux increase linearly with the con-
centration of fibrinogen [Brust 2014], leading to rouleaux that can not be easily
broke up when entering to the microcirculation. This situation might cause a par-
tial or a complete occlusion of small vessels (ischemia). Aggregation of red cells
is not reduced to the interplay between plasma proteins and the surface of red
cells. The other factors will be discussed in the appropriate sections, and a general
overview of the mechanism of rouleaux formation will be discussed in an other
chapter.

1.2.3 Red blood cells: discovery and properties

1.2.3.1 Historical background

The story of the red blood cells (RBCs) began in the middle of the 17th century
in Amsterdam, when Jan Swammerdam, a Dutch biologist and microscopist, was
the first to observe and describe a human RBC in 1658. Few years later, he re-
nounced to his work and devoted his life to spiritual matter under the influence of
the French-Flemish mystic, Antoinette Bourignon de la Porte. He died few years
later of Malaria, a disease resulting from the infection of the red blood cells by
parasites belonging to the genus Plasmodium. After his death, his observations

1At this level I ignore completely how the level of fibrinogen is regulated in the body.
2Brain attack, resulting from a permanently or momentarily decrease of the cerebral blood flow

leading to a brain ischemia (insufficient delivery of oxygen and glucose to the brain).
3Deficiency of oxygen supply to the myocardium due to a complete blockage or a partial de-

crease of blood flow in coronary arteries.
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Figure 1.2: Formation and morphology of aggregates (rouleaux) of red blood
cells in different solutions (with the same pH 7.4). a) 70% of autologous plasma
and 30% of isotonic phosphate-buffered solution (PBS); b) Dextran 70 in PBS +

0.5 g/dL albumin; c) poly(glutamic acid) 50 in PBS + 0.5 g/dL albumin. Courtesy
of [Maeda 1985].

were publicly disseminated. His work was partially resumed by Antonie Philips
van Leeuwenhoek, another talented Dutch microscopist, who started his career
as a draper in Delft, before opening his own shop in 1654, four years before the
first observation of the red cell by Swammerdam. He then started to develop a
real interest in lens-making and microscopy. He used his improved handcrafted
microscopes to record observations on microorganisms like spermatozoa, bacte-
ria, and single-celled organisms. He did a detailed description of the features of
human RBCs in 1675. He had a regular correspondence with the English Royal
Society, sharing his discoveries and detailed observations. He received the visit of
different European Kings and Queens of that times amused and fascinated by his
discoveries and observations, citing among others the Queen Catherine of Eng-
land (the wife of the King Charles II) as depicted in Fig. 1.3. The Royal Society
published later his remarkable work that covered a large aspect of microscopic
phenomena. Nowadays, van Leeuwenhoek is considered as the father of the mi-
croscopy although he was not the discoverer of the microscope 4, and the father of
the microbiology. The platelets and white cells were discovered around two cen-
turies after the RBCs. Alfred Donné (1801-1878) a French public health physician
discovered the platelets in 1842. The discovery of white cells was reported simul-
taneously in 1843 by Gabriel Andral (1797-1876) a French professor of medicine,
and William Addison (1802-1881) an English country practitioner.

4The microscope was invented earlier in Holland around 1590 by Zacharias Jannsen (the name
of the first inventor is still subject to controversy).
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Figure 1.3: van Leeuwenhoek, considered as the father of microscopy and the dis-
coverer of human red blood cells, exhibiting his microscopes to Queen Catherine
of England. Courtesy from [Surgenor 1974]. Original painting by Pierre Brissaud.

1.2.3.2 Physical properties

RBCs adopt a biconcave shape when they are not subject to external stresses. Their
diameters range between 6 − 8 µm. With a lifespan of about 120 days, RBCs travel
the equivalent of a distance of 400 km (roughly the distance between Paris and
Saarbrücken), and pass through the heart 170000 times. During this time, the RBCs
must carry the oxygen to the living tissues and take away the carbon dioxide. The
gas exchange occurs in the capillaries, small vessels with a mean diameter of 7 µm,
where the RBCs have to deform and squeeze into to guarantee the oxygenation of
the body and therefor the life of the different cells and tissues (see Fig. 1.5). The
brain requires around 15 − 20 % of the oxygen in the blood to perform its usual
tasks. Moreover, the reactions occurring during the gas exchanges between the
tissues and the red blood cells play a key role in the regulation of the pH of the
blood. The equation behind the carbon dioxide transport reads as

H2O + CO2
tissues
−−−−⇀↽−−−

lungs
H2CO3

Carbonic acid

tissues
−−−−⇀↽−−−

lungs
H+

+ HCO3
–

This reaction takes place not only inside the RBCs but also in the plasma. 7% of
the carbon dioxide will be dissolved in the plasma, whereas 70% will be dissolved
inside the RBCs5. The protons H+ are dissociated from the carbonic acid and dif-

5The remaining 23% will bind to the hemoglobin, forming carbaminohemoglobin
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Figure 1.4: a) RBCs flowing in capillaries and subject to deformations when pass-
ing through. b) The stress free biconcave disk shape of a single RBC. c) Each RBC
contains around 200 million molecules of hemoglobin, responsible of transporting
oxygen from the lungs to the tissues and carrying out a part of the carbon dioxide
from the tissues to the lungs. Modified from [Mader 2001].

Figure 1.5: Left: An individual red blood cell entering in a capillary. The ratio be-
tween the diameter of the RBC and the one of the capillary is around unity. Credits:
Science Photo Library. Right: Colored scanning electron micrograph showing red
and white blood cells inside a small blood vessel after freeze fracturing. This tech-
nique consists on freezing quickly the sample by using liquid nitrogen. The inner
structure of the vessel is revealed after fracturing with a microtome, which is a
knife-like instrument for cutting thin tissue slices. From the vessel’s size, it looks
like a tiny vein or a venule. Credits: Steve Gschmeissner, Bedfordshire.

fuse out to the plasma together with the bicarbonate ions (HCO3
–). The pH will be

lowered due to the protons H+. The opposite reaction occurs in the lungs, where
the pH level will increase. These reactions are very important to the homeostasis
(equilibrium and functioning) of the body. The time needed to the hydration of the
carbon dioxide is quite slow. However, and here we can feel the beauty and effi-
ciency of nature, the RBCs contain an enzyme the Carbonic anhydrase, that plays
the role of a catalyst (accelerator) of the reaction in both directions, at least 250
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times faster than in the plasma.
RBCs have no nucleus, thus they can not divide and reproduce like the other
cells. The production of the RBCs occurs in the bone marrow and is controlled
and regulated by the kidney via the secretion of the erythropoietin, a small pro-
tein of 34 kDa which plays the role of a hormone and helps to maintain a rel-
atively constant level of oxygen in the body. The red color of the RBCs comes
from the hemoglobin, an iron-containing protein to which the oxygen can bind.
One molecule of hemoglobin consists of 4 subunits called globins (4 polypep-
tide chains). Each subunit contains a heme group (iron-carrying part), where a
molecule of oxygen can bind. A vessel containing oxygenated RBCs (activated
form of the hemoglobin also called oxyhemoglobin) has a bright red color (e.g. in
the arteries), whereas the color becomes bluish-red after the release of the oxy-
gen by the RBCs (e.g. in the veins). The fresh inhaled oxygen diffuses into the
blood and then into the red cells following a down gradient (alveolar air is richer
in oxygen than the blood entering in the lungs capillaries therefor a diffusion of
O2 toward the poorest region will occur). Inside the RBCs, the oxygen will bind to
the hemoglobin which can carry up to 4 molecules of O2 following the reaction:

Hb + O2 −−→ HbO2

where Hb stands for deoxyhemoglobin and HbO2 for oxyhemoglobin. The inverse
reaction will occur when the oxygen will be delivered in the tissues.

The anatomy of a RBC reveals a bilayer membrane containing 60% of proteins
and 40% of lipids, linked in its inner part to a cytoskeleton composed from a dense
network of spectrin, actin and other proteins that stabilize the structure of the
network. The outer part of the bilayer membrane is covered by a coat of gly-
coproteins called the glycocalyx, where the membrane receptors and ion pumps
(transporters6 and channels7) are located. The glycocalyx is very important for the
mechanotransduction (signalization processes where a mechanical signal or force
is transformed into a cellular biomolecular response) of the RBCs. The spectrin
protein is coupled to the membrane (to the transmembrane proteins Band III) via
the ankyrin proteins. The Band III is where the diffusion of the chloride and spe-
cially the bicarbonate ions across the membrane occurs. Recall that bicarbonate
ions are residues from the respiration process occurring inside the RBCs. Whereas
the actin protein is linked to the glycophorin via the protein Band 4.1. The gly-
cophorin is a glycoprotein (sugar + protein) with a high content of sialic acid
residues. Recall that the sialic acid gives to the RBC membrane its highly nega-
tive charge. The cytoskeleton is believed8 to give to the cell its biconcave shape.
The mechanical properties of the cytoskeleton and the bilayer membrane will be
discussed in the chapter 3. The RBC encloses a liquid, the cytoplasm, which has

6Transporters are pump that requires energy to move molecules across the membrane.
7Channels are selective pumps that allow only a certain type of molecules to pass across the

membrane.
8We will show on chapter 3 that a closed bilayer membrane without a cytoskeleton can also

adopt the biconcave shape at equilibrium.
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a viscosity lying between 5 − 7 cP (for a young rbc), whereas the viscosity of the
plasma is roughly the same as water 1 cP. The value of the cytoplasmic viscosity
is dictated by the mean corpuscular hemoglobin concentration (MCHC). Giving a
fixed value to the cytoplasmic viscosity of the RBC is misleading in the sens that
the volume of the RBC decreases with time whereas the amount of hemoglobin
remains constant. To illustrate this fact by an example, the cytoplasmic viscosity
of a RBC is approximatively 7 cP at a MCHC of 32 g/dL[Chien 1987, Guido 2009].
This value is known to be the typical one for a young red blood cell just released
to the circulation from the bone marrow. At a MCHC of 40 g/dL, the cytoplas-
mic viscosity is nearly quadrupled [Chien 1987]. Besides it has been reported in
[Cokelet 1968] that the value of the cytoplasmic viscosity increases in a non-linear
manner with the MCHC. How can one model then cells that can loose gradually
with time their volume and surface, whereas their inner viscosity will increase in
a non-linear fashion? Unfortunately, we are not going to answer completely to
this question, but elements of answers regarding how the cytoplasmic viscosity
may affect the shape of the RBC will be discussed in the chapter 4. The changes
in the inner viscosity, surface, and volume with age will affect the deformability
of the RBC and alter its ability to pass through narrow capillaries, which explain
the short lifespan of the RBCs, and the reason why a RBC does not have a nucleus.
Some interesting facts about the life of healthy human RBCs are summarized in
table1.1.

The membrane of the RBC is a two dimensional viscoelastic fluid with a sur-

Life data of human RBCs

Production rate 2.4 · 106 per s
Daily loss 2.1 · 1011 per s
Total number of RBCs 2.5 · 1013 per s
Distance traveled during 400 km
the 120 day lifespan
Cell weight 3 · 10−11 g
Cell surface 140 µm2

Cell volume 110 µm3

Table 1.1: Generalities about RBCs. Data reproduced from [Lipowsky 1995, p. 10].

face viscosity ranging from 0.47 − 1 µNs/m[Guido 2009]. The applied forces are
distributed on the side of a surface element due to the fixed thickness, resulting
to the dimension force per unit of length instead of the more intuitive force per
unit of area (notion of stress). Indeed the membrane can not change its thick-
ness due to an in-plane stress. The membrane surface viscosity of the RBC is
three orders of magnitude greater than the viscosity of the lipid components of
the membrane[Evans 1976]. This suggests a small or neglectable contribution of
the lipids to the viscoelasticity of the membrane. Therefor a part of the mechanism
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is not taken into account when vesicles (closed bilayer membranes) are used to
model RBCs. However the notion of membrane surface viscosity as well as shear
resistance (property akin to the cytoskeleton of the rbc) are meaningless in two
dimensions where the membrane is represented by an one dimensional contour.

The biconcave discoid shape of the RBC is common to most mammals with
only one exception: the camelids (such as llama, alpacas, vicuñas, and dromedary)
who have flattened ellipsoid RBC without biconcavity or biconvexity [Reynafarje 1975,
Yagil 1974]. The average diameter of the mammalians RBC ranges from 2.1 to
11.4 µm with no correlations between the size of the animal and the size of the
RBC. Indeed, the average diameters of RBCs of humans, sheep, and rat are namely
8 µm, 4.4 µm, and 7.5 µm. However the mammalian capillaries seem to have
a relatively constant mean diameter9 of 4 µm. A comparative study of the de-
formability of different mammalian RBCs reveals that the deformability is signif-
icantly correlated to cell size: the larger the cell, the more deformable it should
be, yet this generalization fail in the case of the elliptical RBCs of the llama and
the dromedary where no deformation was observed [Smith 1979]. Experiments on
the transit times (TT) required by RBCs from different mammals to pass through
narrow capillaries of 5 µm diameter tend to contradict the previous affirmations
on the relation between deformability and cell size [Baskurt 1996]. Table 1.2 shows
the obvious relation between deformability measured via the TT, the dimension of
the RBC, and the mean corpuscular volume (MCV).
The dimension of the RBCs of the rat and the human is relatively the same, but

Sheep Mouse Rat Human

Shapes BDS BDS BDS BDS
Diameters ( µm) 4.4 6.8 7.5 8
MCV ( fL) 29 41.5 51.6 89.2
Average transit times ( ms) 1.44 1.61 1.94 3.02

Table 1.2: Comparative data of mammalians RBCs passing through capillaries of
5 µm diameter. MCV and BDS stand namely for mean corpuscular volume and
biconcave discoid shape. References for the average transit times and MCV from
[Baskurt 1996]; and for the diameters and shapes from [Smith 1979].

the MCV of the human RBC is roughly the double of the one of the rat. Mean-
while the TT to pass through the channel is significantly slower for the human
RBCs in comparison to rat RBCs. This is reflected by the MCV rather than by the
diameter. Yet, the passage time is also affected by the ratio of cell size/capillary
size, since species with RBCs of small diameter are subject to less deformation
which explains the differences in the TT between sheep RBCs and human RBCs
in the 5 µm channels. Coming back to the shape of the mammalian RBCs, a com-
parison between the camelids family and the other mammalians families is given

9data about cells and capillary diameters are from [Smith 1979]
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in Table1.3. In contrary to human RBCs, camelids (llama and dromedary) RBCs

Llama Dromedary Human

Shape oval oval BDS
MCV ( fL) 24 − 28 28.5 − 33 89 − 90
Dimensions ( µm) 7.4 × 3.3 7.7 × 4.2 8
Thickness ( µm) 1.1 unavailable data 2.4
Fibrinogen ( mg/mL) 1.77 − 3.77 2.63 − 3.57 1.8 − 4
Lifespan (days) 60 unavailable data 120

Table 1.3: Comparative data of camelids (llama and dromedary) and
humans RBCs. MCV stands for mean corpuscular volume. Refer-
ences for Llama [Reynafarje 1975, Khodadad 1983, Welles 1997]; for
dromedary [Banerjee 1962, Yagil 1974, Baghshani 2010]; and for hu-
mans [Comeglio 1996, Baskurt 1996, Baskurt 2011].

show almost no aggregation [Baskurt 2007, p 275-276] even though the concentra-
tion of fibrinogen, one of the inducing agent of aggregation, is roughly the same
between the three mammals. In contrast to mammalians, other species (amphib-
ians, fish, reptiles, and birds) possess a nucleated RBC, typically flattened ellip-
soids like the mammalian family of the camelids but with a biconvexity produced
by bulging in the region of their nucleus (see Fig 1.6). Like for anucleated ellip-
soid mammalian RBCs (i.e. camelids), no aggregation was observed for nonmam-
malian ellipsoid nucleated RBCs [Baskurt 2011, p 269]. Therefor the biconcave
discoid shape is a prerequisite for RBCs aggregation. Nevertheless, not all bicon-
cave disk-shaped mammalian RBCs can aggregate (e.g. sheep, cow, and mouse)
[Baskurt 2011, p 278]. We can be tempted at this level to build assumptions based
on the MCV and the biconcave discoid shape to explain the aggregability of RBCs.
Aggregability of RBCs from different mammalian species is presented in Table 1.4
with the corresponding values of MCV, cell size and plasma fibrinogen levels.
Even though all these species possess a biconcave discoid RBCs, it seems that no
possible correlation between MCV or any other parameter with aggregability can
be made. Thus either is a combination of different parameters that defines RBCs
aggregability, either we should look in an other direction.
Let us stick to the mammalian species and try to compare the mechanical proper-
ties akin to the composition of the RBC membrane of llamas and humans without
taking into account the oval shape of the llama’s RBCs. The first observation is
that the level of sialic acid is more important in the llamas RBCs. We recall that the
negative charge of the RBC depends on the amount of sialic acids, and that aggre-
gation was studied in presence of fibrinogen which is a negatively charged protein
that induce aggregation regardless from the presence of other plasma proteins. The
concentration of the transmembrane protein Band III is three times higher in the
llamas RBCs than in the humans RBCs [Khodadad 1983]. Recall that the spectrin
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Figure 1.6: Size and morphology of vertebrate RBCs. Cells a-g, nonmammals; cells
h-j, mammals. (a) Amphiuma tridactylum (giant salamander); (b) Notophthalmus
viridescens (Eastern newt or salamander); (c) Rana pipiens (leopard frog; face and
edge view); (d) Mustelus canis (smooth dogfish); (e) Anolis carolinensis (anole, a
lizard); (f) Carassius auratus (goldfish); (g) Gallus domesticus (chicken); (h) Mon-
odelphis domestica (gray short-tailed opossum; primitive erythrocyte of neonate);
(i) Camelus dromedarius (camel, adult; face and edge view); (j) Homo sapiens
(human, adult; face and edge view). Reproduced from [Jeon 1992, p. 39].

Diameters MCV Hematocrit Fibrinogen Aggregability
( µm) ( fL) ( %) ( mg/mL)

Sheep 4.4 34 33 2.82 N
Mouse 6.8 45 40 2.83 N
Cow 5.8 52 30 3.09 N
Rat 7.5 47 43 2.33 L
Dog 7.6 61 45 1.82 M
Human 8 90 45 2.9 M
Cat 6.01 40 40 1.86 I

Table 1.4: Comparative data of mammalians biconcave discoid RBCs, fibrino-
gen concentrations, and aggregability. I, M, L and N stands namely for inten-
sive, moderate, low, and no aggregation. References for the average MCV, hema-
tocrit, fibrinogen concentration, and aggregability are from [Windberger 2003,
Baskurt 2011]; and for the diameters from [Smith 1979, Lipowsky 1980].

network is linked to the Band III via the ankyrin protein. Therefor it is more likely
that the more Band III, the strongest the bonds are which lead to more resistance to
deformation. Indeed, both the dromedary and the llama have a higher protein-to-
lipid ratio in the membrane and an unusual osmotic resistance. Their membrane
is more rigid than those of other mammals (humans included) [Smith 1979]. This
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property is common in other nonmammalian species with an elliptical RBCs. The
membrane rigidity of nucleated RBCs from amphibians (frogs, turtles, iguanas,
and amphiuma), reptiles (snakes), birds (turkeys), fish (toadfish, rainbow trouts),
and anucleated RBCs from mammals (humans, and opossum) was measured us-
ing micropipette experiments; which describe the membrane’s resistance to shear
deformation at constant area. The outcomes were that the membrane rigidity of
nucleated RBCs is higher than for anucleated RBCs [Waugh 1976, Nash 1993]. It
is important nevertheless to highlight the difference in the membrane composi-
tion between nucleated elliptical RBCs and the anucleated ones from the camelids.
Without lost of generalities, the origin of the membrane rigidity is not the same.
But regardless this fact, no aggregation is observed for the camelids family and
the nonmammalian species. It is tempting therefor to draw the assumption that
the aggregability is depending from the level of sialic acid, the membrane rigidity
and to a certain extend the biconcave discoid shape. This last point might be sub-
ject to debate, because in the microcirculation, the biconcave RBCs change their
shape and are still able to aggregate under certain conditions (see chapter 6). But
since the interplay between the cell parameters, the membrane composition, and
the plasma proteins remain unclear for a given specie, it is more likely impossible
to decouple this variables by comparative studies between different species.

1.2.4 A short note about blood rheology in microcirculation

In this subsection, we will talk briefly about two important phenomena regarding
the flow of a suspension of RBCs in vessels or tubes of a diameter smaller than
300 µm. The first one is the Fåhraeus effect [Fåhraeus 1929] and states that the
concentration of RBCs in the larger feeding vessel is higher than the one of the
subsequent small vessels. This is the consequence of two important characteristics
of the flow in the microcirculation: i) the lateral migration of the RBCs toward the
centerline of the Poiseuille flow; and ii) the difference of velocities of the different
layers of the plasma due to the parabolic profile of the Poiseuille flow lead to a
slow-moving plasma layer near the walls in opposition to the layers near the cen-
terline of the flow. Concisely the hematocrit in the human capillaries is known to
be lower than 20%, whereas the average hematocrit in the large vessels is around
45%. The hematocrit means the concentration of the red blood cells over the total
volume of the circulating blood in the tube. A set of data for the hematocrit aver-
age in different vessels for golden hamsters is given in table1.5.
The inverse effect is observed for white cells and platelets meaning the concentra-
tion of the cells increase with the decrease of the diameter of the tube and is known
as the inverse Fåhraeus effect [Goldsmith 1999].
The second effect is a consequence of the first one, and describes the decrease of the
relative viscosity with vessel diameter. Indeed the thickness of the slow-moving
peripheral layers of plasma will decrease the energy dissipation near the walls dur-
ing the flow and contribute to the reduction of the relative viscosity. This is known
as the Fåhraeus-Lindqvist effect [Fåhræus 1931]. More details about Fåhraeus and
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Measured hematocrit average

Small arteries of ID=100 − 200 µm 49.4 ± 1.1 %
Arterioles of ID=14.2 ± 1.2 µm 13.9 ± 1.2 %
Capillaries of ID=5.1 ± 0.1 µm 10.4 ± 2.0 %

Table 1.5: Measured hematocrit average in different vessels of the golden ham-
ster [Klitzman 1979]. ID refers to internal diameter of the vessel.

Fåhraeus-Lindqvist effects can be found in this review paper [Goldsmith 1989],
and a very good general introduction to the principles of rheology and the bio-
physical behavior of RBCs in suspensions are given in Ref. [Surgenor 1975, p. 1031].
It has been shown recently that the organization of the cells is going to affect the
normalized effective viscosity, a rheological quantity of interest to understand the
properties of blood flow; a relation between the confinement, the hematocrit and
the viscosity has been proposed in [Thiébaud 2014]. As a consequence, the spa-
tial organization of the cells may be an additional cause leading to the Fåhraeus-
Lindqvist effect.





CHAPTER 2

State of Art

The main results of the previous PhD theses in our group and external contribu-
tions will be summarized in this chapter. This will help to show the link between
the actual work, and what was done before. A proper literature survey will be
given in the beginning of each chapter before expanding the results obtained in
this thesis.

Overview on the previous PhD’s theses:
I. Cantat’s PhD ([Cantat 1999a]): A theoretical model based on vesicles to investi-
gate cell migration was proposed, followed by a numerical study. Two cases were
considered: i) haptotaxis which means a migration driven by an adhesion gradi-
ent [Cantat 1999b, Cantat 2000, Cantat 2003]; and ii) migration of a vesicle near a
wall due to a shear flow [Cantat 1999c]. The theoretical framework that will be
used later on in this thesis was crafted partially here, and used also as a basis in
[Kaoui 2009a, Ghigliotti 2010a].
B. Kaoui’s PhD ([Kaoui 2009a]): A vesicle subject to a shear flow exhibits three dy-
namics: tank-treading, vacillating-breathing or swinging, and tumbling. When
tank-treading, the cell adopts a steady state inclination angle with respect to the
flow direction, whereas each node of the membrane will translocate all the way
around the cell. During the tumbling, the inclination angle with respect to the
flow direction describes periodic rotation cycles over time (wheel-like motion). In
the vacillating-breathing dynamic, the inclination angle with respect to the flow
direction oscillates periodically (without making full rotations) and the membrane
undergoes large deformations. The effect of the viscosity contrast (ratio between
inner and outer viscosities of the two fluids) and the capillary number (dimen-
sionless parameter describing the strength of the flow over the membrane rigidity)
was investigated using dynamical equations (small deformation theory) describ-
ing the evolution of the orientation angle of the vesicle and the deformations of
the membrane. The results were summarized in a phase diagram, with a special
attention given to the study of the vacillating-breathing regime, the less known
of the these three dynamics [Kaoui 2009c]. The effect of confinement on the tank-
treading regime was studied using a Lattice Boltzmann method[Kaoui 2011a]. The
lateral migration of a single vesicle under a shear flow and a Poiseuille flow was
also investigated. Under a shear flow, a vesicle placed in an unbounded geome-
try does not exhibit a lateral migration, whereas in a semi-bounded geometry, a
vesicle located near a wall will migrate away from it. This migration is attributed
to a breaking of the symmetry in the perpendicular axis to the flow direction and



18 Chapter 2. State of Art

to the characteristic upstream-downstream symmetry of the shear flow. Recalling
that a Poiseuille flow is a local shear flow, and that it has a non uniform shear rate
globally (the value of shear rate depends of the position following the perpendic-
ular axis to the flow direction). In this case, the vesicle is subject to different shear
stresses depending on its lateral position. In both unconfined and semi-bounded
geometries, a lateral migration toward the center of the flow was observed. A
law to describe this migration was derived as a function of the intrinsic properties
of the vesicle and the flow parameters [Kaoui 2008, Coupier 2008], and the min-
imum ingredients to observe an asymmetric shape (slipper-like) was discussed
[Kaoui 2009b].
G. Ghigliotti’s PhD ([Ghigliotti 2010a]): The rheological properties of a dilute sus-
pension were studied in a unbounded shear flow [Ghigliotti 2010b]. These prop-
erties were deduced from the dynamics of an isolated vesicle (assumption valid
for a very dilute suspension). The tumbling motion was investigated in the case of
very deflated vesicles [Ghigliotti 2009]. It was shown that this dynamic might oc-
cur also when the viscosity ratio was equal to unity, a result that was not expected
from former studies on quasi-spherical vesicles (e.g. [Kaoui 2009a]). The migra-
tion of a vesicle in a Taylor-Couette geometry (two coaxial cylinders) was studied.
Both cases unbounded and bounded flows were considered. The unbounded case
allows to exclude the effect of the walls on the migration and focuses only on the
flow parameters and the intrinsic properties of the vesicle. It was observed that
the tank-treading vesicles migrated inwards, whereas the tumbling vesicles did
not. This study revealed that the migration velocity is related the first normal
stress difference. Indeed, for a positive normal stresses, the vesicle migrate in-
wards (case of a tank-treading vesicle). Whereas for tumbling vesicles where no
migration was observed, the normal stresses equals zero. The effect of the walls
was considered in the case of a single vesicle with a viscosity ratio set to unity and
for different reduced area1. It was observed that regarding of the initial position
or the reduced area, the vesicle has a tendency to migrate toward the same posi-
tion located between the inner cylinder and the centerline of the flow. Thus the
force driving the inward migration rescales with the reduced area. Then the sys-
tem was extended to investigate the behavior of a set of quasi-spherical vesicles (4
and 7 vesicles). The main result was the observation of a self-organization where
the vesicles keep the same interdistance at steady state [Ghigliotti 2011]. The last
project studied in this thesis was about the formation of trains of cells (clusters)
in an unbounded Poiseuille flow [Tomaiuolo 2012]. The main outcome was that a
cluster has a maximum length above which it become instable and the first cells
start to detach[Ghigliotti 2012].
N. Tahiri’s PhD ([Tahiri 2013a]): In this thesis, the numerical work done in an un-
confined Poiseuille flow for the case of a single vesicle [Kaoui 2009a] was extended
by adding to bounding quasi-rigid walls. A systematic study of the effect of the
capillary number, viscosity ratio and confinement on the shape of the single vesi-

1area of the cell over the area of a disk having the same perimeter as the cell
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cle was performed. The results was summarized in phase diagrams [Kaoui 2011b,
Tahiri 2013b].
P. Steffen’s PhD [Steffen 2012]: Besides the experimental study of some aspects of the
mechanism of thrombus formation and the role of red blood cells in it [Nguyen 2011,
Steffen 2011, Kaestner 2012], a quantification of the adhesion energy between two
red blood cells suspending in a medium containing dextran was performed for
the first time using single cell force spectroscopy technique [Steffen 2013]. This
last project was done in collaboration with the Laboratoire Interdisciplinaire de
Physique in Grenoble (France).
L. Lanotte’s PhD [Lanotte 2013]: The flow of RBCs in microchannels was studied ex-
perimentally. Both hydrodynamic interactions and interaction between the wall’s
glycocalyx and the RBCs have been investigated. The outcomes of this work can
be summarized as follows: i) the hydrodynamic interactions can be considered
as the minimal ingredient leading to the formation of clusters. ii) the polydisper-
sity of the RBCs within the physiological range does not affect the stability of the
clusters [Tomaiuolo 2012]. iii) the presence of the wall’s glycocalyx (via polymer
brushes fixed on the glass capillaries) above a specific brush thickness leads to a
significant decrease of the RBCs velocity. This phenomenon is not observed be-
low this specific brush thickness, and may be explained by a change of shape of
the RBCs to conserve the same velocity as in the absence of the glycocalyx on the
walls [Lanotte 2014].
M. Brust’s PhD [Brust 2013a]: An experimental work was carried out on the rhe-
ological properties of red blood cells, and the previous work of P. Steffen on the
adhesion energy between two red blood cells was extended for the case of fib-
rinogen. Two main topics were investigated: i) the rheological properties of the
plasma; and ii) the aggregation of red blood cells and cluster formation in micro-
circulation in presence and in absence of macromolecules inducing aggregation
(e.g. dextran or fibrinogen). The main findings are: i) the plasma has a viscoelas-
tic behavior [Brust 2013b]; ii) the clusters formed due to macromolecules persists
in the microcirculation even at high shear rates (physiological levels) [Brust 2014].
Both results were unexpected, particularly if we refer to the literature.

External contributions and collaborations:
Prof. Dr. H. Selmi: An applied mathematician at the École Polytechnique de Tunise
(Tunisia) who contributed to implement the quasi-rigid walls used in [Tahiri 2013a].
He also implemented a fast multipole method to speed up the calculation of the
matrix-vector products, helping to reduce the computational cost from O(N2) to
O(N) [Selmi 2011]. He also collaborates in the present work.
Dr. M. Thiébaud: A former Post-doc in the group of C. Misbah in LIPHy who
contributed actively to the actual work, and rederived the two dimensional wall
green’s functions [Thiébaud 2013].
Prof. Dr. T. Biben: Professor in the Institut Lumière Matière at Lyon (France) who
wrote the original code that was modified in the present work, as well as the three
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dimensional code that I used during my master thesis to study the tank-treading
of quasi-spherical vesicles [Farutin 2012].

Contributions of the present work:
Numerical results about clusterization in a unbounded geometry [Ghigliotti 2012]
and preliminary experimental results on the hydrodynamic and macromolecules
induced clusters have motivated the actual work. We therefor developed the nec-
essary tools to study cluster formation in microchannels in the presence of macro-
molecules at different concentrations. The findings were in good agreements with
the experimental results and lead to a join publication [Brust 2014]. However two
important things draw our attention: i) our numerical findings were not in agree-
ment with the unbounded results from [Ghigliotti 2012]; ii) even though the agree-
ment was good with the experiments, we were not yet able to distinguish the exact
contribution of hydrodynamic and macromolecule induced interactions. Indeed
the non-trivial coupling between the hydrodynamic interactions between the cells
and the depletion-bridging effect induced by the surrounding macromolecules
from one hand, and the contribution of the rigid walls of a microchannel on the
total hydrodynamic interactions from the other hand is a challenging problem that
needs to be split up. Thus, we decided to start by studying the effect of rigid walls
on the flow of an isolated vesicle. Then we studied the aggregation between cells
in a static fluid. The next step was to study the pair formation induced only by hy-
drodynamic interactions and the effect of the confinement on it. Each one of this
studies lead to surprising and unexpected results that shed light on the complexity
behind the interplay between the flow parameters, the intrinsic properties of the
vesicle membrane and the confinement.

First contribution:

The dynamics of an isolated vesicle in a confined Poiseuille flow were investi-
gated. In addition to the classical parachute-like and slipper-like shapes, complex
dynamics were observed. A Chaotic motion of the vesicle occurs through a cas-
cade of multiple periodic oscillations. The effect of the capillary number and the
confinement was summarized in a phase diagram. In addition the shape transi-
tion from parachute-like to slipper-like shape in microcirculation was correlated
to one of the intrinsic property of the rbc namely the cytoplasmic viscosity. These
findings are discussed in chapter 4 and published in [Aouane 2014].

Second contribution:

This part was motivated by the discrepancy between the results of the confined
and the unconfined Poiseuille flow on cluster formation. The effect of the geom-
etry on the hydrodynamic interaction and the mechanism of pairing was investi-
gated. the critical confinement leading to the same results as the unbounded case
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was found. A change of sign of the hydrodynamic interaction leading to repul-
sion between the vesicles was observed under certain conditions. The results were
summarized in a phase diagram and are discussed in chapter 5.

Third contribution:

The flow of trains of red blood cells (modeled as vesicles) in confined geometries
(microchannels) and the effect of the concentration of the macromolecules were
studied. A model to describe the interaction induced by the macromolecules was
proposed. The model is used to study aggregation of red blood cells in a static
fluid, then to investigate the effect of macromolecules on RBCs cluster formation
in the microcirculation. The outcomes are detailed in chapter 6 and published in
[Brust 2014].
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The actual mathematical formulation of the fluid motion goes back to almost
two hundred years thanks to the work of the swiss mathematician and physi-
cist Leonhard Euler (1707-1783), the French engineer and physicist Louis Claude
Navier (1785-1836) and the Irish mathematician and physicist Georges Gabriel
Stokes (1819-1903). Euler contributes to the description of the motion of an in-
viscid fluid based on the conservation laws of classical physics. Navier and later
Stokes introduced the viscous transport into Euler equations by relating the stress
tensor to the fluid motion, resulting to a more general set of equations, the so-
called Navier-Stokes equations. This equations constitute the basis of the compu-
tational fluid dynamic (CFD) field. The scope of this chapter is to build a model to
study the motion of a deformable object in a fluid based on the boundary integral
method for Stokes equations. For a general introduction to fluid mechanics, the
reader may refer to [Aris 1989, Batchelor 2000, Morrison 2001].

3.1 Stokes Flows

For an incompressible fluid —the density ρ does not change in space or time —the
continuity equation becomes

∇ · u = 0 (3.1)
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and the so-called equation of motion for incompressible Newtonian fluids is given
by

ρ
Du

Dt
= −∇p + µ∇2u + ρfb (3.2)

which can also be written in a more explicit form

ρ(
∂ui

∂t
+

N

∑
j=1

uj
∂ui

∂xj
) = −

∂p

∂xi
+ µ

N

∑
j=1

(
∂2uj

∂x2
j

+
∂2uj

∂xi∂xj
) + ρ fbi, 1 ≤ i ≤ N (3.3)

where N is the dimension of the problem. Starting from the equations of mass
conservation and linear momentum conservation, thanks to the Newtonian con-
stitutive equation, and using the assumption of incompressibility, we have recon-
structed the so-called Navier-Stokes equations for incompressible Newtonian flu-
ids (3.1) and (3.2).

A more convenient way to write the Navier-Stokes equations is by introducing
a dimensionless parameter, the Reynolds number (Re), that describes the predom-
inance between the inertial forces and the viscous forces. For this purpose, let U be
the characteristic velocity of the flow, L the characteristic length, and T the charac-
teristic time of the flow. In absence of external forcing of the flow (i.e. by imposing
an oscillatory flow), the characteristic time of the flow is usually associated to the
convective time of the flow T = L/U. For creeping motion, it is more intuitive to
use the diffusion time T = ρL2/µ as the characteristic time for the flow to underline
the predominance of the viscous forces. Note that the Reynolds number can also
be defined as the ratio between the diffusion time ρL2/µ and the convective time
L/U of the flow. Then, by introducing the following dimensionless variables

x∗ = x/L, u∗ = u/U, t∗ = t/T, p∗ =
pL

µU
, fb

∗
i =

fbi

|fb|

we write 3.3 in a dimensionless form

∂ui
∗

∂t∗
+Re

N

∑
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u∗
j

∂u∗
i

∂x∗j
= −

∂p∗

∂x∗i
+
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∂2u∗

j

∂x∗2
j

+

∂2u∗
j

∂x∗i ∂x∗j
) +

Re

Fr
fb
∗
i , 1 ≤ i ≤ N (3.4)

Two dimensionless quantities appear in the above equation namely the Reynolds
number (Re = ρLU

µ ), and the Froude number (Fr = U2

L|fb|
) which describes the mag-

nitude of inertial convective forces relative to body forces.
If the rate of change of momentum of a volume V of fluid is small compared

to the sum of all forces acting on this volume of fluid, the motion of the flow is
governed by the balance between the surface force (molecular forces) and the vol-
ume force (body forces). Thus, the nonlinear convective term in the LHS of the
equation of motion vanishes, leading to the linearized Navier-Stokes equations or
Stokes equations. These equations reflect the creeping motion, when the viscous
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forces dominate the inertial forces, underlying a low Reynolds number. The time-
independent (steady motion) Stokes equations for an incompressible Newtonian
fluid take the form

∇ · σ = −∇p + ηo∇
2u = −ρfb (3.5)

∇ · u = 0 (3.6)

The solution of Stokes equations can be written in the form of an integral equation
and then solved numerically.

3.2 Boundary integral equation for Stokes flow

Several textbooks dedicated to the boundary integral technique and its applica-
tions to study microhydrodynamics in viscous flows exist. Books like [Ladyzhenskaya 1969,
Kim 2013, Pozrikidis 1992, Barthès-Biesel 2012] give a full overview of the math-
ematical basis of this technique and discuss the numerical applications. Pseu-
docodes to compute different kind of flows can also be found in [Pozrikidis 2002,
Kim 2013]. In the following section, we summarize the main steps to build an
integral equation for Stokes equations.

3.2.1 Lorentz reciprocal theorem

Let us suppose that the velocity fields u and u′ both satisfy the Stokes equations.
We denote their associated stress fields as σ and σ′ respectively. Assuming that the
two fluids have the same viscosity, the Lorentz reciprocal theorem states that

∇ · (u · σ′ − u′ · σ) = 0 (3.7)

Now by integrating over a closed region of volume V bounded by a surface A, and
using the divergence theorem, the Lorentz identity takes the form

∮

A
u · (σ′ · n)dA =

∮

A
u′ · (σ · n)dA (3.8)

where n is the normal unit vector pointing outside V. Note that u and u′ are
assumed to be regular (i.e. there is no singularity in the domain V). The proof of
the Lorentz identity can be obtained by evaluating the expression:

u′
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− ui

∂σ′
ij
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The sequence of steps are:
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(3.10)
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Thanks to the continuity equation, pδij
∂u′

i

∂xj
= 0, leading to the equation 3.10. Re-

peating now the same steps and interchanging the role of primed and unprimed
variables, we show that

ui

∂σ′
ij

∂xj
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∂xj
(uiσ
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i
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)
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∂xj
(3.11)

By subtracting 3.11 from 3.10, we obtain the general form of the reciprocal theorem
for two Newtonian fluids with the same viscosity

∂

∂xj
[(u′

iσij) − (uiσ
′
ij)] = u′

i

∂σij

∂xj
− ui

∂σ′
ij

∂xj
(3.12)

In a domain without singularities, the RHS of 3.12 vanishes, leading to the simpli-
fied expression of the reciprocal identity ∇ · (v · σ′ − v′ · σ) = 0. This result will be
used later as a starting point to build the integral form of the Stokes equations.

3.2.2 Integral representation of Stokes equations

Let consider two flows u and u′ and their associated stress tensors σ and σ′ occur-
ring in the domain Ω enclosed by ∂Ω, and for sake of simplicity, assume that both
flows have the same viscosity denoted µ. The flow (u′,σ′) is the consequence of a
point-like force f0 located at X0, and its fundamental solutions are given by:

u′(X) =
1

4πµ
G(X, X0)f0(X0) (3.13)

σ′(X) =
1

4π
T(X, X0)f0(X0) (3.14)

where G and T are the green’s function and its associated Stress tensor. We seek to
compute the flow (u,σ), solution of the Stokes equation

∇ · σ = 0 ∇ · u = 0 (3.15)

and obeying to the following boundary conditions:

u = U(X) X ∈ ∂Ω1 (3.16)

f = σ · n̂ X ∈ ∂Ω2 (3.17)

where U and f are supposed to be known a priori, ∂Ω = ∂Ω1 ∪ ∂Ω2, and n̂ is the
inward pointing normal vector (in opposition to the outward pointing normal de-
noted n and used in the Lorentz reciprocal identity). Using the reciprocal identity
3.12, successively integrating over the domain Ω, applying the divergence theo-
rem, and replacing the primed variables by their expression 3.13 and 3.14 leads
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to:

1
4πµ

∫

∂Ω
Gik(X, X0) f0,k(X0)σij(X)n̂j(X)dl

−
1

4π

∫
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ui(X)Tijk(X, X0) f0,k(X0)n̂j(X)dl =

∫

Ω
−ui(X)

∂σ′
ij

∂xj
dA (3.18)

Recalling the motion equation ∇ · σ′ = −f0δ(X − X0), using the properties of the
2D Dirac delta function, and substituting n̂ by n, we rewrite the equation 3.18 as

−
1

4πµ

∫

∂Ω
Gik(X, X0) fi(X)dl

+
1

4π

∫

∂Ω
ui(X)Tijk(X, X0)nj(X)dl =

{

uk(X0) if X0 ∈ Ω

0 if X0 /∈ Ω
(3.19)

where σijnj = fi is the surface force exerted by Ω on ∂Ω. The first and the second
integrals in the LHS are called namely the single and double layer potentials.

The single layer potential is shown to be continuous as the pole X0 approaches
the boundary ∂Ω, however the double layer potential is discontinuous. A demon-
stration can be found in [Barthès-Biesel 2012, p. 145]. Assuming that X0 is on ∂Ω,
the expression of the double layer is

lim
X0→∂Ω

∫

∂Ω
ui(X)Tijk(X, X0)nj(X)dl = ±2πuk(X0) +

∫ PV

∂Ω
ui(X)Tijk(X, X0)nj(X)dl

(3.20)

where PV denotes the principal value of the double layer potential. The ± sign
refers to whether X0 is approaching from inside (plus sign) or from outside (minus
sign). This limit is only valid if the velocity and the normal are smooth across
the boundary ∂Ω (i.e. ∂Ω is a Lyapunov curve, see [Hazewinkel 1990, p. 64] for a
detailed definition of Lyapunov surfaces and curves). Substituting 3.20 into 3.19,
we find that

−
1

4πµ

∫
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Gik(X, X0) fi(X)dl

+
1

4π

∫ PV

∂Ω
ui(X)Tijk(X, X0)nj(X)dl = cuk(X0) (3.21)

where c is a constant that takes the following values depending from the position
of the pole X0

c =















0 if X0 /∈ Ω

1 if X0 ∈ Ω

1/2 if X0 ∈ ∂Ω (X0 approaching from outside ∂Ω)

(3.22)
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Note that the pole and the target points can be switched, by recalling the symmetry
properties of the Green’s function and its associated stress tensor

Gik(X, X0) = Gik(X0, X) (3.23)

Tijk(X, X0) = −Tijk(X0, X) (3.24)

3.2.3 Boundary integral formulation for a single red blood cell in an
unbounded geometry

The rbc will be regarded as a deformable particle enclosing an inner fluid with
viscosity µ2 and suspended in an outer fluid with viscosity µ1. The objective is to
study red blood cells via a simplified model based on vesicles, as will be explained
later. We impose the following boundary condition

u 7→ u∞(X) X 7→ ∞ (3.25)

reading as, far from the rbc the velocity u is assumed to be equal to the velocity
of the unperturbed flow u∞. Recalling X0 as the observation (target) point, and
assuming that X0 is located outside the rbc and meantime inside the domain Ω1,
where Ω = Ω1 ∪Ω2. The boundary equation is given then by

u∞
k (X0) −

1
4πµ1

∫

∂Ω
Gik(X, X0) f1,i(X)dl

−
1

4π

∫

∂Ω
ui(X)Tijk(X, X0)nj(X)dl = u1,k(X0) (3.26)

where

Gik = −δik ln |X − X0|+
(X − X0)i(X − X0)k

|X − X0|
2 (3.27)

Tijk = −4
(X − X0)i(X − X0)j(X − X0)k

|X − X0|
4 (3.28)

are the free space Green’s functions corresponding to an unbounded geometry.
f1 = σ1 · n is the surface force exerted by the outer liquid on the external face of the
rbc. Recalling the reciprocal identity, we write the integral equation for the flow
inside the vesicle (domain Ω2) for a point that is located within the domain Ω1 but
outside the domain Ω2 (where we want to compute the flow)

u∞
k (X0) −

1
4πµ2

∫

∂Ω
Gik(X, X0) f2,i(X)dl

+
1

4π

∫

∂Ω
ui(X)Tijk(X, X0)nj(X)dl = 0 (3.29)

where f2 = σ2 · (−n) is the surface force exerted by the inner liquid on the internal
face of the vesicle. Combining 3.26 and 3.29, introducing ∆f = f1 − f2 = {σ1 −
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σ2} · n as the discontinuity in the interfacial stress force, and recalling λ = µ2/µ1,
we obtain a boundary integral for a point located outside the rbc

u∞
k (X0) −

1
4πµ1

∫

∂Ω
Gik(X, X0)∆ fi(X)dl

+
1 − λ

4π

∫

∂Ω
ui(X)Tijk(X, X0)nj(X)dl = u1,k(X0) (3.30)

Following the same procedure, we show that the flow for a point X0 located inside
the vesicle is

u∞
k (X0) −

1
4πµ1λ

∫

∂Ω
Gik(X, X0)∆ fi(X)dl

+
1 − λ

4πλ

∫

∂Ω
ui(X)Tijk(X, X0)nj(X)dl = u2,k(X0) (3.31)

And finally when X0 7→ ∂Ω from either sides, the boundary integral takes the
following form

2
(1 + λ)

u∞
k (X0) −

1
2πµ1(1 + λ)

∫

∂Ω
Gik(X, X0)∆ fi(X)dl

+
(1 − λ)

2π(1 + λ)

∫ PV

∂Ω
ui(X)Tijk(X, X0)nj(X)dl = uk(X0) (3.32)

The proof and calculation details for a three dimensional flow can be found in
[Pozrikidis 1992, p 240-241], and stay valid for a two dimensional flow as well. We
will in the following section and also in the appendix A, discuss briefly several
constitutive equations to model the mechanical properties of the rbc membrane.

3.3 Red blood cell membrane models

The discontinuity in the interfacial force depend from the intrinsic characteristics
of the interface (mechanical properties of the membrane), as well as from the phys-
ical properties of the inner and outer fluids. In general, for active particles (e.g.

microswimmers), ∆f has a finite value, and contribute actively in the dynamics
of the flow. In contrast, passive particles (e.g. vesicles and red blood cells) are
merely advected by the ambient flow, thus ∆f = 0. The dependency upon the dif-
ferent physical characteristics of the interface and the fluids needs to be expressed
in terms of a constitutive equation. If the inertia of the interface can be neglected,
the contribution of both fluids vanishes, and the interfacial surface force (∆f) de-
pends then solely from the mechanical properties and composition of the interface.
Therefor the differential force balance requires

∆f = −fstruct 7→ f luid (3.33)

where fstruct 7→ f luid is the load exerted by the structure (interface) on the fluid. Sev-
eral constitutive equations can be found in the literature describing different kind
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of interfaces (e.g capsules and vesicles). Some of this models were derived to ulti-
mately depict the mechanical properties of the red blood cell membrane (see Ap-
pendix A). We recall that the rbc is characterized by a nontrivial coupling between
a cytoskeleton that provides to the cell a resistance to both stretch and shear de-
formation, and a bilayer lipid membrane that provide a bending resistance (but no
shear resistance).
In 1963 Brånemark and Lindström reported that rbcs recover from mechanical de-
formations within a fraction of a second after emerging from the microcirculation,
and resume their biconcave shape again [Branemark 1963]. In 1970 Canham used
this indication to draw the assumption that the biconcave shape requires the least
energy to be maintained. Using Cassini ovals, he first showed that constraining
the area and the volume to constant values (e.g. typical values of a rbc) is not suf-
ficient to obtain the biconcave shape, thus the membrane is responsible for the rbc
shape. Indeed, Fung and Tong 1968 pinpointed that the rbc can be deformed to an
infinite number of shapes without tearing or stretching and without change of the
enclosed volume, owing this to the small value of the pressure differential across
the membrane at equilibrium [Fung 1968]. Canham considered each monolayer as

Figure 3.1: Different shapes with the same area and volume. The earthworm shape
appears disproportional because of the inability to project a plane view into three
dimensions. Courtesy from [Canham 1970]

an isotropic material that can resist temporarily to distortion (shearing or bending)
without area changes, but the two monolayers as a membrane are anisotropic, thus
no transfer of material between the two isotropic monolayers is permitted, that is
not in agreement with the fluid nature of the membrane. The process of change of
lipid molecules from one side of the bilayer to the other for closed phospholipids
membranes turns out to be slow, in the order of hours [Homan 1988] whereas the
time scale of the flip-flop exchange process is still unknown for the case of rbcs.
The second assumption stated that the biconcave shape of the rbc corresponds to
the minimum of elastic energy stored in the membrane. The stored elastic energy
was assumed to be zero for a flat element of membrane and different from zero
for a curved element of membrane. The third assumption said that the bilayer is
impermeable, and the area of the membrane is conserved. And last but not least,
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the membrane is supposed to have the same physical properties over the entire
surface. This last assumption does not make unanimity and is in contradiction
with some previous studies, among whom we cite [Fung 1968].
Based on a set of experimental measurements in [Canham 1968], the volume and
the area of 23 rbcs were selected. For each cell, a family of shapes with the same
volume and area was generated using a modified equation of Cassini ovals (3.34 )

Y(x) = B[(C4
+ 4A2x2)0.5 − A2 − x2]0.5 (3.34)

where B is a dimensionless parameter that allows to vary the shape, A and C are
two constants with unit of length. By computing the bending energy using the
equation (3.35)

H =
∮

κ

2
(c1 + c2)2dA (3.35)

where dA is the area element, c1 and c2 are the two principal curvatures, and κ is
the bending stiffness. Canham showed that in each family, the member with the
minimum value of the bending energy was the biconcave shape.
Although some of the hypothesis of Canham remained unproven, the shapes pre-
dicted by the bending energy model are indeed in a good agreement with the un-
stressed shape of a human rbc (see Fig.3.2).

A theory based on electrostatic energy density contained within the rbc surface
was proposed by Adams 1973 in [Adams 1973] to explain the biconcave shape, and
then compared to the minimum bending energy model introduced by Canham
in 1970 [Canham 1970]. Although Adams provided an energy functional for the
shape of the rbc, the exact solution could not be reached due to mathematical com-
plexities. He rather showed that the minimum bending energy of the membrane
leading to the biconcave shape of the rbc corresponded also to the minimum of
the total electrostatic energy. Adams questioned the validity of the assumptions of
Canham, and argued that most biological membranes are not an isotropic linearly
elastic material and therefor the use of the surface integral of the sum of squares
of the principal curvatures (minimum bending energy equation) is not justified.

Helfrich 1973 introduced a new parameter,the spontaneous curvature (called
also the Helfrich spontaneous curvature), which describes the asymmetry of the
two monolayers of the fluid membrane, and derived a free energy for a closed
bilayer membrane (vesicle) reading in its general form as

H =
∮

{
κ

2
(c1 + c2 − c0)2

+ κG(c1c2)}dA +∆P
∫

dV + ζ

∮

dA (3.36)

where c1 = 1/R1 and c2 = 1/R2 are the principal curvatures, c0 is the sponta-
neous curvature, κ and κG are the bending and the Gaussian curvature moduli
[Helfrich 1973]. The first integral in the RSH represents the total elastic energy
stored in the membrane (free energy associated with bending deformations on the
surface). The second integral ∆P

∫

dV expresses the free energy associated to vol-
ume deformations induced by osmotic pressure differences between the inside and
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Figure 3.2: Equilibrium shapes obtained by minimizing the bending energy. Top:
Members from the same family (same volume and area). The biconcave shape
requires the least energy to be maintained. Bottom: Members from different fam-
ilies. Comparison between predicted (straight line) and observed (dashed lines)
shapes. The numbers below each shape correspond to the sphericity index de-
fined as 4.84V

2
3 /A where V is the cell’s volume and A its area. Courtesy from

[Canham 1970].

the outside of the cell. The third integral accounts for the free energy associated to
deformations induced by surface or other interfacial tensions. ∆P and ζ can both
be seen as two Lagrange multiplier to constrain volume and area to fixed values.
The total elastic bending energy can therefor be written in the most simplified form
as the addition of two contributions, the mean and the Gaussian curvatures

H =
κ

2

∮

(c1 + c2 − c0)2dA + κG

∮

c1c2dA (3.37)
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Figure 3.3: Sketch of the bending of an element of membrane. R1 and R2 are the
principal radii of curvature. Courtesy from [Canham 1970].

where the area and volume constraints (or perimeter and area in two dimensions)
can be added separately in the form of two Lagrange multipliers. The spontaneous
curvature corresponds to the value of the mean curvature for an unstressed mem-
brane. By considering only symmetrical membranes, this term can be disregarded
(i.e. c0 = 0). The mean curvature ((c1 + c2)/2) is expressed in a quadratic form
to underline the non dependency of the elastic energy from the sign of the mean
curvature. The Gaussian curvature is a topological invariant owing to the Gauss-
Bonnet theorem. In two dimensions, this term is an irrelevant constant owing to
the property

∮

cds =
∮

dθ
ds ds = 2π.

Helfrich formulation has the convenience to use local Cartesian coordinates on the
membrane. Considering the z axis as parallel to the surface normal vector n(x, y)
on each membrane’s node, the principal curvatures can be defined in term of the
eigenvalues of the following matrix

MH =





∂nx

∂x

∂nx

∂y
∂ny

∂x

∂ny

∂y



 (3.38)

By recalling that n is normal to a uniquely defined surface1, the mixed derivatives
must then vanish (∇× n = 0), and the principal curvatures are expressed as

cx =
∂nx

∂x
, cy =

∂ny

∂y
(3.39)

Taking advantage from the rotational symmetry of the membrane, only the com-
binations of derivatives of n that are independent of the orientation of the x and
y axes appear in the expression of the total curvature elastic energy which can be

1We consider that the membrane constitutes an orientable surface with a normal vector pointing
outward.
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rewritten as
H =

κ

2

∮

(tr(MH) − c0)2dA + κG

∮

det(MH)dA (3.40)

where tr(MH) and det(MH) are the trace and the determinant of the matrix MH.

For our problem, we will consider the following basic assumptions:

1. We assume that membrane is an infinitely thin closed bilayer (a one dimen-
sional contour), encapsulating an inner fluid and suspended in an outer
fluid.

2. The membrane is assumed to be symmetric (i.e. c0 = 0).

3. The membrane is impermeable, therefor the area (volume in three dimen-
sions) must be conserved. This condition is satisfied implicitly by the Green
function. However, accumulative numerical errors at large times might in-
duce a change in the area. Thus we need to use a Lagrange multiplier to
ensure the conservation of the area.

4. The membrane should be inextensible. Condition that must be satisfied by
using a Lagrange multiplier2 to constrain the perimeter (area in three dimen-
sions).

The load exerted by the two dimensional membrane on the fluid is obtained from
the functional derivative3 of the total curvature elastic energy 3.36, which reads in
two dimensions as

fstruct 7→ f luid = −
δH

δX
= κ[

∂2c

∂s2 +
c3

2
]n − cζn +

∂ζ

∂s
t (3.41)

where ∂s is the arclength, n and t are namely the outward normal and the tangent
unit vectors at a position vector X belonging to the membrane, and ζ is a Lagrange
multiplier fulfilling the constraint of area and perimeter conservations. We intro-
duce the following dimensionless quantities:

c∗ = cL, ζ∗ = ζL2/κc , s∗ = s/L, u∗ = uTc/L, µ∗
1 = µ1/µc , κ∗ = κ/κc

, and substitute (3.41) in (3.32), and write the subsequent boundary equation in a
dimensionless form

u∗
k (X0) =

2
(1 + λ)

u∞∗
k (X0) +

1
2πµ∗

1(1 + λ)

∫

∂Ω
G∗

ik(X, X0) f ∗struct 7→ f luid,i(X)dl∗

+
(1 − λ)

2π(1 + λ)

∫ PV

∂Ω
u∗

i (X)T∗
ijk(X, X0)nj(X)dl∗ (3.42)

2The conservation of perimeter and area will be discussed later on in this chapter
3Details of the derivation can be found in the Appendix A of the PhD thesis of B. Kaoui (2009)

[Kaoui 2009a].
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where the stress jump across the membrane reads as

f∗struct 7→ f luid =
1

Ca
{κ∗[

∂2c∗

∂s∗2 +
c∗3

2
]n − c∗ζ∗n +

∂ζ∗

∂s∗
t} (3.43)

We now introduce three dimensionless numbers that will be used hereafter to de-
scribe and study our system:

1. The capillary number Ca = µc L3γ̇
κc

= τc
Tc

, which appears in the RHS of (3.43);
describes the resistance of the membrane to the external flow. It represents
as well the ratio between the characteristic shape relaxation time τc = µcL3

κc

and the time scale of the flow Tc = 1/γ̇, where γ̇ is the shear rate.

2. A second dimensionless number λ = µ2/µ1 defines the viscosity ratio be-
tween the inner and the outer fluids.

3. A third dimensionless number Cn = 2R0/W, describing the degree of con-
finement and reading as the ratio between the diameter of the cell and the
width of the channel.

4. The fourth dimensionless number, the reduced area (ν), is the ratio between
the actual fluid area enclosed by the vesicle contour (S = πR2

0) and the area
of a disk having the same perimeter as the vesicle. For a rbc, the reduced
area is ν = 0.65.
The effective radius of the cell (R0 ≡

√

S/π), and the outer viscosity (µ1 = µc)
are chosen to be the characteristic length and viscosity scales, respectively. κc

is the characteristic membrane rigidity. Time will be measured hereafter in
unit of τc and distances in unit of R0. To avoid overload notations in oncom-
ing formulas, we will consider in the following unstarred variables as scaled.
Unscaled variables will be expressed in real units.

At this level, we have developed a tool to study the flow of vesicles in an un-
bounded flow, as well as the morphology of vesicles in a static fluid (see Fig. 3.4).
The next step will be to add the contribution of rigid walls to the problem.

3.4 Numerical procedure

Our problem reads as
dX

dt
= u(fmem(X)) (3.44)

where fmem = fstruct 7→ f luid, and X is a position vector lying on the interface. The in-
terface can be simply regarded as a collection of Lagrangian nodes advected by the
flow. In order to determine the advection velocity and thus the new position of the
nodes, we need to compute the force exerted by the membrane on the fluid. Once
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Figure 3.4: Shape transformation of a vesicle as a function of the reduced area in a
static fluid computed using 3.42.

it is done, the velocity of each membrane’s discretization points can be deduced,
and the position of each node is updated in time using an explicit Euler scheme.

X(t + dt) = X(t) + u(X(t), t)dt (3.45)
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The advected membrane is a two dimensional incompressible fluid that can de-
form when subject to external stresses. Therefor, to fulfill the incompressibility
condition, an evolution equation coupling the local curvature of each discretiza-
tion node of the membrane with its normal and tangential velocities must be sat-
isfied to keep the distance between two neighboring nodes constant during time.
This may be achieved by the use of a special gauge, introduced in [Csahók 1999] to
study fronts dynamics, and used in [Cantat 2003] to constrain the local arclength
conservation of a two dimensional vesicle4; reading as

unc +
∂ut

∂s
= 0 (3.46)

where s is the curvilinear abscissa and ∂s is the arclength. This gauge is the coun-
terpart of the continuity equation along the membrane (t · ∂u

∂s
= 0). The incom-

pressibility of the membrane (conservation of area and perimeter) implies the use
of a Lagrange multiplier. This approach in addition from being computation-
ally costly, shows some numerical instabilities for our problem as discussed in G.
Ghigliotti PhD thesis [Ghigliotti 2010a, p. 46]. Therefor a tension-like parameter
is introduced as a penalty instead of the Lagrange multiplier accounting for both

tangential (∂ζ

∂s
t) and normal (−cζn) membrane incompressibility, then substituting

this in 3.41 gives

fstruct 7→ f luid = κ[
∂2c

∂s2 +
c3

2
]n + Ktens[(ℓm − ℓ0)tm + (ℓp − ℓ0)tp] (3.47)

where Ktens is a tension-like parameter, ℓm and ℓp are the lengths of namely the
segment Xi−1Xi and XiXi+1. (ℓm − ℓ0) and (ℓp − ℓ0) represent the change of lengths
of the segments Xi−1Xi and XiXi+1 with respect to the reference length ℓ0. tm

and tp are the tangent unit vectors originating from the node Xi and pointing in
the direction of the nodes Xi−1 and Xi+1 respectively. The tension-like parame-
ter should be taken large enough to fulfill the perimeter conservation (for details
see Refs. [Kaoui 2009a, p. 43] and [Ghigliotti 2010a, p. 46]). The use of a penalty-
like function implies choosing a relatively small time step. Indeed, at each time
step the eventual deviation of the perimeter and the reduced area from their ini-
tial values is corrected. Recall that the cell is characterized by a reduced area
ν =

√

S/[π(p(2π))]2 , where S and p are the surface and the perimeter of the cell.
Constraining the perimeter and the reduced area will ensure a constant area over
time, and therefor fulfilling the quasi-incompressibility of the membrane. 5In a
3D system, the local membrane incompressibility can also be expressed using a
spring-like potential ensuring a local conservation of the area. Nevertheless the
spring-like potential alone is not working well, since the membrane can be sub-
ject to high stresses in some cases. A feedback loop on the reduced volume is
used as a complement to avoid variations of the volume and area. In addition,

4A demonstration of the constraint equation can be found in Ref. [Cantat 1999a, p. 124]
5In this thesis, all the simulations were performed in 2D.
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the membrane is remeshed periodically to suppress mesh entanglements. A major
drawback of the spring-like potential model is that the numerical control parame-
ters have to be fixed manually according to the problem investigated. A detailed
description of the numerical scheme can be found in [Biben 2011].
The main steps of the algorithm can be summarized as:

1. Generating an initial shape or starting from a previous one.

2. Computing the tangent and normal unit vectors, and then the local curvature
on each node.

3. Deducing the bending and tension-like forces using (3.47).

4. Computing the velocity on each node using (3.42). Once at this step, the task
is to evaluate the product of a dense Matrix-Vector. The size of the Matri-
ces (Green’s functions) is N × N and the one of the vectors (velocity, force,
normal and tangent unit vectors) is N, where N = Nmem × NV , Nmem is the
number of nodes of the interface, and NV the total number of interfaces.

5. Updating the nodes position via the advection scheme (Eulerian explicit scheme),
and then going back to step 2.

The Green’s functions are known to have a slow spatial decay leading to dense
matrix-vector products (Gfmem and Tu). The size of the matrices depends on the
number of discretization nodes, and can become easily cumbersome in case of
many particle problems. Moreover, a problem involving boundaries will require
the discretization of the walls leading to even larges matrices, that will need to
be inversed at each time step in order to determine the walls’ force that will sat-
isfy the no-slip velocity. To overcome this difficulties, different approaches ex-
ist in the literature. The particle mesh Ewald (PME) proposes to decompose the
Green’s functions into a short and smooth parts, reducing the computation cost
from O(N2) to O(N log N) [Zhao 2010]. The second approach consists to tackle the
matrix-vector product, and uses a fast evaluation technique like the fast multipole
method (FMM), that can reduce the computation cost to O(N) [Selmi 2011]. An al-
ternative, that can be combined with the PME or the FMM consists in deriving the
specific Green’s functions for the considered boundary problem that will satisfy
intrinsically the no-slip condition on the walls.

3.4.1 Image method for a flow confined between two parallel flat walls

First we consider the flow in an unbounded domain due to a Stokeslet with a given
strength F located at X0(x0, y0)), and recalling the two dimensional Oseen tensor

Gik(X, X0) = −δik ln r0 +
r0,ir0,k

r2
0

(3.48)
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where r0 = X − X0, and r0 = |r0|. Then we introduce the notations used in the
Fig.3.5, where rn = |rn|, and Rn = |Rn|. The vectors rn and Rn are defined as
rn = (x − x0, y − y0 − 2nW) and Rn = (x − x0, y + y0 + W − 2nW).
Considering the sum over all the reflections of the Stokeslet with respect to the two
walls, we obtain

GF
ik(X, X0) =

+∞

∑
n=−∞

−δik ln rn +
rn,irn,k

r2
n

−
+∞

∑
n=−∞

−δik ln Rn +
Rn,iRn,k

R2
n

(3.49)

The first term in the RHS of 3.49 represents the sum of the point force and its
images that have the same strength. Whereas the second term corresponds to the
sum of images of the point force with the same strength but with an opposite
sign. Unfortunately an infinite set of reflections is not enough to satisfy the desired
boundary conditions. Indeed the distance from one of the walls; denoted h and
sketched as the distance from the lower wall in Fig.3.5), appears implicitly6 in our
Green’s function GF. To demonstrate that only the diagonal components of the
fundamental Green’s function vanish at the wall, we need to evaluate 3.49 at the
boundaries. The two series diverge when n tends to infinity. This problem can be
bypassed by using a special summation formula to obtain a regular expression of
+∞

∑
n=−∞

ln rn as reported in [Lamb 1945, p. 68]. Next we write

+∞

∑
n=−∞

ln rn =
1
2

ln (cosh (x − x0) − cos (y − y0)) +
1
2

ln 2 (3.50)

where the term 1
2 ln 2 was added so the Green’s function near the source point

reduces to a Stokeslet. This modification was introduced in [Pozrikidis 1992, p. 94].
The fundamental Green’s function is then expressed as

GF(X, X0) =

[

α1(X, X0) − α2(X, XIM
0 ) β1(X, X0) − β2(X, XIM

0 )

β1(X, X0) − β2(X, XIM
0 ) γ1(X, X0) − γ2(X, XIM

0 )

]

(3.51)

where

α1(X, X0) = − 1
2 ln [cosh( π(x−x0)

W ) − cos( π(y−y0)
W )] + 1

2

π(x−x0)
W sinh( π(x−x0)

W )

cosh( π(x−x0)
W )−cos( π(y−y0)

W )
(3.52)

β1(X, X0) = 1
2

π(x−x0)
W sin( π(y−y0)

W )

cosh( π(x−x0)
W )−cos( π(y−y0)

W )
(3.53)

γ1(X, X0) = − 1
2 ln [cosh( π(x−x0)

W ) − cos( π(y−y0)
W )] − 1

2

π(x−x0)
W sinh( π(x−x0)

W )

cosh( π(x−x0)
W )−cos( π(y−y0)

W )
(3.54)

α2(X, XIM
0 ) = − 1

2 ln [cosh( π(x−x0)
W ) − cos( π(y+y0+W)

W )] + 1
2

π(x−x0)
W sinh( π(x−x0)

W )

cosh( π(x−x0)
W )−cos( π(y+y0+W)

W )
(3.55)

β2(X, XIM
0 ) = 1

2

π(x−x0)
W sin( π(y+y0+W)

W )

cosh( π(x−x0)
W )−cos( π(y+y0+W)

W )
(3.56)

γ2(X, XIM
0 ) = 1

2 ln [cosh( π(x−x0)
W ) − cos( π(y+y0+W)

W )] − 1
2

π(x−x0)
W sinh( π(x−x0)

W )

cosh( π(x−x0)
W )−cos( π(y+y0+W)

W )
(3.57)

6y0 = h − W (see Fig. 3.5)
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Figure 3.5: Sketch of a two dimensional Stokeslet in a confined geometry with its
first few images, and other relevant vectors and notations for the description of
the image technique leading to the computation of the specific Green’s function
accounting for two parallel walls. The point force is located at a distance h =
W/2+ y0 from the lower wall X0(x0, y0), and the origin of the coordinates is located
on the center of the channel. The superscript IM stands for the image of the source
point X0(x0, y0) with respect to the lower wall and then the network of reflections
of this image XIM

0 (x0, y0).

At the boundaries (y = ±W/2), we find that only the diagonal elements vanish.

α1(x̂, ŷ+) − α2(x̂, ŷ+IM) = 0 (3.58)

α1(x̂, ŷ−) − α2(x̂, ŷ−IM) = 0 (3.59)

γ1(x̂, ŷ+) − γ2(x̂, ŷ+IM) = 0 (3.60)

γ1(x̂, ŷ−) − γ2(x̂, ŷ−IM) = 0 (3.61)

β1(x̂, ŷ+) − β2(x̂, ŷ+IM) =
πx̂
W cos( πy0

W )
cosh( πx̂

W ) − sin( πy0
W )

(3.62)

β1(x̂, ŷ−) − β2(x̂, ŷ−IM) = −
πx̂
W cos( πy0

W )
cosh( πx̂

W ) + sin( πy0
W )

(3.63)
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where x̂ = x − x0, ŷ+ = W/2 − y0, ŷ− = −W/2 − y0, ŷ+IM = W/2 + y0 + W, and
ŷ−IM = −W/2 + y0 + W.
Therefor we will have to add a counterpart to GF in the form of an additional
correction term that we will call the complementary component Gc, in order to
achieve the no-slip at the walls. Gc must satisfy the following boundary conditions
on the walls:

Gc
ii(x̂, ŷ+) = Gc

ii(x̂, ŷ−) = 0 (3.64)

Gc
ik(x̂, ŷ+) = −GF

ik(x̂, ŷ+) (3.65)

Gc
ik(x̂, ŷ−) = −GF

ik(x̂, ŷ−) (3.66)

The complementary Green’s function is the solution of Stokes equations respect-
ing the following boundary conditions on the walls 3.64, 3.65, and 3.66. For con-
venience, the solution is obtained in the Fourier space (see [Pozrikidis 1992, p. 98])
and the inverse Fourier transform is evaluated numerically using the inverse fast
Fourier transform (IFFT) algorithm. The result is added to the expression given in
3.51 to obtain the desired Green’s function.
Now that we have built our model, we can start studying the flow of RBCs in dif-
ferent situations. One of the advantage of the boundary integral method is that
the external flow is decoupled from the disturbed velocity. In other words, it is
relatively easy to switch from a shear flow to a Poiseuille flow or to a situation
of a resting fluid. The code is validated by reproducing and completing a phase
diagram of the motion of an isolated deformable vesicle past a confined channel
with different confinement ratios and where the contribution of walls was imple-
mented in a different way. We will discuss about this in the upcoming chapter (see
chapter 4).

3.4.2 Alternative to the image technique

The boundary integral method with the proper Green’s function constraining the
boundary conditions provides us with a high accuracy tool to solve Stokes equa-
tions. Besides, the initial two dimensional problem can be reduced to a set of one
dimensional integral equations over the boundaries which is quite convenient nu-
merically. Moreover, the integration over the walls is not required since their con-
tribution is included in the Green’s function. The main drawback of this technique
is that the geometry is fixed to parallel flat walls (in our case) and the boundary
condition must be homogeneous everywhere on the walls (such as no-slip and
impermeability). However it is always possible to model complicated geometries
like the coaxial cylinders (Taylor-Couette) geometry [Ghigliotti 2011] or bifurcat-
ing channels [Calderon 2010], but at a certain price: a numerical discretization of
the walls, additional integrals need to be calculated, and the no-slip velocity on the
walls is not anymore explicitly satisfied. In contrary to the stress jump across the
membrane, the force exerted by the walls on the fluid is unknown a priori, and its
calculation can be done by a posteriori reasoning. In fact, this force acts as a spring
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force that tends to prevent the wall’s nodes from being advected by the flow. The
wall force is the solution of a dense linear system requiring the inversion of the
free space Green’s matrix for each node of the two walls. From our experience,
this technique requests a significant number of discretization nodes, especially in
the region where the cell is located. Another important point is the fact that the
walls are quasi-rigid in the normal direction. This detail can be significantly im-
portant when the cell to tube diameter ratio is close to unity.

3.4.3 Time discretization

Since the computer does not understand the notion of continuous time, we need
a way to discretize the time to N subdivisions. Again, several techniques exist to
realize this task, such as backward and forward Euler schemes, and Runge-Kutta
methods (explicit and implicit). Both classical Runge-Kutta method (RK4), and for-
ward Euler scheme were tested. Since no differences in the outputs were observed,
the more cost efficient method (the forward Euler scheme) was used. Basically we
know the state (positions and velocities of the nodes) at the current time, and we
want to jump to a later time. In a concrete manner, we know the positions of the
nodes at a time t. Using this spatial informations, we have calculated the velocities
at a time t following the procedure explained previously (see equation 3.42), and
now we need to update the node’s positions to the time t + dt.

X(t + dt) = X(t) + u(X, t)dt (3.67)

The procedure is straightforward, once X(t + dt) is known, we can calculate X(t +
2dt) following the same scheme and so on.



CHAPTER 4

Dynamics and morphologies of a

single vesicle in a confined

Poiseuille flow

We have investigated the behavior of a single vesicle in a confined geometry under
a Poiseuille flow. We have studied the effect of three parameters: i) the confine-
ment, ii) the capillary number (strength of the flow), and iii) the viscosity contrast
(ratio between the inner and outer fluids). Interestingly, the vesicles have shown
a rich and complex dynamics, where transitions from a steady shape to chaos
through a cascade of multiple periodic oscillations occurred by changing only one
parameter. This motion actually can be assimilated to a flagella-like motion, where
the vesicle via the tail, undergoes a periodic or a chaotic up-down motion. We per-
formed a systematic scan in the three dimensional parameter space (λ, Ck, Cn), in
order to explore the various intricate behaviors of a vesicle under a Poiseuille flow.
In all simulations, we have set the reduced area ν to 0.6 which is close to the one
of a RBC in 2D. The results are summarized in a phase diagram in the parameter
plane (degree of confinement, flow strength). This finding highlights the level of
complexity of a flowing vesicle in the small Reynolds number where the flow is
laminar in the absence of vesicles and can be rendered turbulent due to elasticity
of vesicles [Aouane 2014].

4.1 Introduction

Under a Poiseuille flow, the situation of interest in this chapter, it is known ex-
perimentally that RBCs exhibit a parachute as well a slipper shape [Skalak 1969,
Schmid-Schönbein 1981, Abkarian 2008a, Tomaiuolo 2009].
Secomb and Skalak [Secomb 1982] have presented a model for the slipper shape
based on a lubrication approximation. The slipper shape was also later observed
in numerical simulations by Pozrikidis [Pozrikidis 2005b]. These authors used a
capsule as a model for RBC. Capsules are shells made of polymers and are en-
dowed with elastic properties, namely the shear elasticity that mimics the RBCs
cytoskeleton, i.e. the spectrin network lying underneath the cell membrane. More
recently, the minimal ingredients for the occurrence of a slipper shape were iden-
tified [Kaoui 2009b]: a two dimensional vesicle even in an unbounded Poiseuille
flow exhibits a slipper solution when the flow strength is comparable to that in
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the microvasculature. The slipper solution occurs as a result of loss of stability of
the symmetric solution (called also parachute). These shapes were further inves-
tigated by including the effect of quasi-rigid bounding walls [Kaoui 2011b]. This
study revealed large variety of shapes and dynamics such as the centered and off-
centered periodic oscillations (called snaking). These oscillations are regular and
stable in time. Subsequent study in 3D has also reported on similar phenomena
[Fedosov 2014, Farutin 2014].

4.2 Description of the model

We consider the RBC in 2D as a vesicle: a closed deformable and non permeable
membrane encapsulating an inner fluid and suspended in an outer fluid. The vesi-
cle membrane withstands to bending but does not have a shear resistance, un-
like RBCs, but they still share several dynamical properties with RBCs, like tank-
treading and tumbling under linear shear flow, or parachute and slipper shapes
under Poiseuille flow [Abkarian 2008b, Vlahovska 2009, Vlahovska 2013]. More-
over the stress free shape of a vesicle with the same surface-to-volume ratio as
the RBC is a biconcave disk. The membrane total force is composed from a bend-
ing force, and a tension force to fulfill the area conservation constraint. The in-
ner and outer fluids obey to Stokes equations. These equations are solved using
the boundary integral formulation with the use of Green’s function for two paral-
lel walls, as described in chapter3. The external flow and confinement introduce
two dimensionless numbers: the so-called capillary number (Ck) to quantify the
flow strength over bending forces, and the confinement (Cn) to describe the ratio
between the effective diameter of the vesicle and the width of the channel. The
imposed Poiseuille flow is written as

{

ux
∞ = u0[1 − ( y

W/2)2]
uy

∞ = 0
(4.1)

The capillary number is defined as

Figure 4.1: Profile of the imposed parabolic Poiseuille flow in absence of the cells.
The colorbar codes for the magnitude of the velocity.

Ck =
ηoutR

4
0

κ

u0

(W/2)2 ≡ τcγ̇ (4.2)
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and the confinement as
Cn =

2R0

W
(4.3)

where R0, W and u0 are the effective radius of the cell, the width of the channel
and the maximum velocity of the unperturbed Poiseuille flow. We define the char-
acteristic shear rate γ̇ as the imposed velocity gradient evaluated at y = R0/2, and
it is equal to R0u0/(W/2)2, and τc = η0R3

0/κ is the characteristic shape relaxation
time. Time will be measured hereafter in unit of τc and distances in unit of R0. In
all simulations, we have set the reduced area τ to 0.6 which is close to the one of a
RBC in 2D (see Fig. 3.4 and Fig. 3.2).

4.3 Results

The present study is a follow-up study to that of Kaoui et al. [Kaoui 2011b] and
reveals a variety of new states. For example, we find that vesicles can first un-
dergo snaking (periodic oscillation of the shape in the form of a snake motion) and
suddenly undergo a new bifurcation showing period-doubling of the temporal os-
cillation upon variation of a control parameter (e.g. degree of confinement). On
further variation of control parameter the system undergoes a subharmonic cas-
cade oscillation before transiting to chaos. Other scenarios than period-doubling
can also occur as we shall show. We investigate the occurrence of chaos using
tools of dynamical systems. We present a full phase diagram in parameter space
showing variety of dynamics (see Fig. 4.11).

4.3.1 Effect of flow strength and confinement on the shape of a vesicle

with no viscosity contrast

We first set the viscosity contrast to λ = 1 and explored the effect of the confine-
ment and the capillary number on the morphology of the cell. In order to test the
new code based on the Green’s function that vanishes at the wall [Thiébaud 2013],
we have first confirmed the previously reported results [Kaoui 2011b, Tahiri 2013b],
namely the existence of six different states: parachutelike shape, the confined
and unconfined slipperlike shape, the centered and off-centered oscillating motion
(called snaking in [Kaoui 2011b]) and peanut-like shape [Tahiri 2013b]). Fig. 4.3
shows the parachutelike and confined slipperlike solutions. The snaking motions
(centered and non centered) recently reported by Kaoui et al. [Kaoui 2011b] and
Tahiri et al. [Tahiri 2013b], have not exhausted all intricate dynamics. By investi-
gating the evolution of solutions under close scrutiny we have discovered a variety
of new states ranging from simple oscillations to complex multi-periodic oscilla-
tions, until chaotic motion prevails, as described below.

4.3.1.1 Transition to chaos via a subharmonic cascade

We have set CkW/R0 = 5 and varied the degree of confinement Cn. The results
are shown in (Fig.4.4) where we represent the vertical position of vesicle center
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Figure 4.2: Different shapes exhibited by a vesicle subject to a Poiseuille flow. The
slipper-like (asymmetric) and parachute-like (symmetric) shapes are observed. In
addition, new dynamics are reported. The midplane velocity as well as the channel
width are given in the figure.

of mass (ycm) as a function of time. Below a first critical value of Cn, the slipper
becomes unstable in favor of a snaking motion (off-centered). This is a Hopf bi-
furcation. Close to bifurcation point the temporal evolution of the amplitude of
lateral excursion of center of mass (ycm) remains constant over time (see Fig. 4.4b).
By reducing further Cn the simple snaking solution undergoes a new bifurcation
whereby the period of oscillation has doubled (Fig. 4.4c) and then quadrupled
for a smaller value of Cn (Fig. 4.4d). By decreasing Cn further, dynamics enter a
chaotic regime (Fig. 4.5).

In Fig. 4.6, we represent the amplitude A of excursion of center of mass in the
y-direction (that is the absolute value of difference between two successive max-
ima). Since a slipper (as well as a parachute solution) moves along a line in the
x-direction (cf. Fig.4.3) the amplitude of lateral excursion is zero above a critical
value of Cn = 0.75 (Fig. 4.6). Fig. 4.6 shows the amplitude as a function of Cn, where
we can see the beginning of a sub-harmonic cascade, and the signature of accumu-
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Figure 4.3: Stationary shape and history of the center of mass vertical position as
a function of time: (a) and (b): slipper solution (CkW/R0 = 6.25 and Cn = 0.8); (c)
and (d): parachute solution (CkW/R0 = 6.25 and Cn = 0.44). The x axis codes for
the lateral position of the mass center ycm of the cell scaled by the effective radius
of the cell (R0).

lation of bifurcation points. This is a universal behavior, as well documented in
chaos textbooks [Schroeder 2012, Ott 2002, Bergé 1992]. The subharmonic cascade
is one of the three generic scenarios of transition to chaos (the two others being
intermittency and quasi-periodicity).

Here we have represented only the main oscillation (period 1), the period doubling
(period 2) and quadrupling (period 4). Because of the universal accumulation in
the sub-harmonic cascade (that is the location points of new bifurcations to higher
order oscillations become closer and closer), the transition to period-8 and 16 for
example requires tuning very carefully the control parameter as well as increasing
numerical precision (a significant reduction of the numerical mesh size leads to
excessive computation time) and it was not our aim to provide a very detailed
analysis of the higher order period-doubling cascade. Starting from the regime of
period-4 oscillation, we found that a quite small variation of Cn (of about 4%) leads
to chaos, as shown in Fig. 4.5.

4.3.1.2 Transition to chaos via a period-tripling bifurcation

The subharmonic cascade is one of the three classical scenarios of transition to
chaos (in addition to intermittency and quasi-periodicity). The sub-harmonic cas-
cade corresponds to a cascade where at each bifurcation point the period is dou-



48

Chapter 4. Dynamics and morphologies of a single vesicle in a confined

Poiseuille flow

0 1000 2000

-0.08

-0.06

-0.04

-0.02

0.00

1500 1750 2000

-0.06

-0.04

-0.02

0.00

0.02

1500 1750 2000

-0.06

-0.04

-0.02

0.00

0.02

1500 1750 2000

-0.06

-0.04

-0.02

0.00

0.02

 

y
c
m

/R
0

(b)

 

(d)(c)

 

 

y
c
m

/R
0

Time (in units of τc)

(a)

 

 

Time (in units of τc)

Figure 4.4: The center of mass vertical position as a function of time. (a) slipper
solution (CkW/R0 = 5 and Cn = 0.769); (b) snaking (CkW/R0 = 5 and Cn = 0.733);
(c) period-doubling (CkW/R0 = 5 and Cn = 0.729); and (d) period-quadrupling
dynamics (CkW/R0 = 5 and Cn = 0.727).
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Figure 4.5: The center of mass vertical position as a function of time. An apparently
chaos regime is found for CkW/R0 = 5 and Cn = 0.689.

bled (or the frequency is halved). By analyzing the dynamics of the initial snaking
motion in other regions of parameter space, we have discovered that the snaking
motion can also loose its stability in favor of a period-tripling bifurcation, which
is a less known scenario as compared to the period doubling one. We show in Fig.
4.7 both a typical temporal signal and the bifurcation diagram.

Period-tripling bifurcations and more complex transitions were also reported in
literature. We take as reference, for instance, the pioneering paper of Li and Yorke
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Figure 4.6: Period-doubling bifurcation diagram. The capillary number is fixed
(CkW/R0 = 5), and only the confinement Cn is changed. The x and y axis stand for
the confinement and the amplitude of the oscillations.
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Figure 4.7: Period-tripling motion of the mass center. (a) temporal behavior for a
period tripling dynamics (CkW/R0 = 4.611 and Cn = 0.71). (b) bifurcation diagram
(CkW/R0 = 4.611).

[Li 1975] where they introduced the first mathematical definition of discrete chaos,
showing the relation between the period three and chaos. Lui [Lui 2013] presented
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sufficient mathematical conditions for period-tripling and period-n bifurcations.
Ze-Hui et al [Ze-Hui 2006] reported subharmonic bifurcations in a granular sys-
tem, in the sequence of period-tripling, period-sextupling, and chaos. Zhusub-
aliyev and Mosekilde [Zhusubaliyev 2003] showed transition from periodic to chaotic
oscillations through period-doubling, -tripling, -quadrupling, -quintupling, etc.,
bifurcations. They also discussed more complex transitions, from a family of cycle
to another family of cycles with multiple periods.

4.3.1.3 Transition to Chaos:

In order to characterize chaotic dynamics we have performed a Poincaré map as
well as Fourier transforms of the temporal evolution of center of mass amplitude.
Fig. 4.8 displays the Poincaré sections relative to the different 1, 2, and 4 periodic
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Figure 4.8: Poincaré sections of different oscillations observed by decreasing the
confinement when the capillary number CkW/R0 has been fixed at 5. The y-axis
stands for the y-component of the mass center of the cell and the x-axis for its
derivative with respect to time. a)- Cn = 0.733. b)- Cn = 0.729. c)- Cn = 0.727. d)-
Cn = 0.689.

oscillations, in addition to the chaotic one. In this case, the gradual decrease of
the confinement under a low capillary number (CkW/R0 = 5 in these simulations)
is responsible of the observed transitions. Snapshots of this motion are shown in
Fig.4.9. Fig. 4.10 shows the Fourier spectrum of different dynamics. We see there
the occurrence of the cascade until the transition to chaos.
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Figure 4.9: Snapshots of a cycle of period-doubling dynamics (CkW/R0 = 5 and
Cn = 0.729). The cell seems to move like a spermatozoon, using its tail-like as a
flagellum. The straight solid blue line indicates the centerline of the channel and
the blue point codes for the mass center of the cell.
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Figure 4.10: Fourier spectrum of different dynamics in linear (a), (c), (e), and (g)
and semi-log (b), (d), (f), and (h) coordinates: a and b snaking (CkW/R0 = 5 and
Cn = 0.733); c and d period-doubling (CkW/R0 = 5 and Cn = 0.729); e and f

period-quadrupling (CkW/R0 = 5 and Cn = 0.727); and g and h chaotic dynamics
(CkW/R0 = 5 and Cn = 0.689). The semi-log scale allows to see more easily the
continuum spectrum characteristic of chaotic regimes. The x axis codes for the
frequency F scaled by the characteristic time τc.
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4.3.2 Phase diagram

We have performed a systematic analysis in order to determine the region of dif-
ferent dynamical manifestation going from order to chaos. The results are shown
in Fig. 4.11. Besides the dynamics and shapes reported earlier [Kaoui 2011b,
Tahiri 2013b], revealing slipper, parachute and snaking, we have identified here
more complex dynamics, ranging from higher order oscillatory motion to chaos.
Surprisingly enough, a simple situation treated here, namely a 2D vesicle under
a Poiseuille flow, has revealed broadly 9 different kinds of motion (actually the
number is even larger, since in Fig. 4.11 we do not specify the kind of multiple
oscillation). This result highlights the complexity of this free boundary problem,
where membrane elasticity that acting only via bending forces can here trigger rich
dynamics.
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Figure 4.11: Phase diagram summarizing the different morphologies and dynam-
ics of a single vesicle with a viscosity contrast set to unity (λ = 1). (a) overview
of the phase diagram. (b) zoom on the region where oscillations occur. The com-
bined effect of the confinement and flow strength leads to 9 distinct regions rep-
resented by different colors in the phase diagram: peanut-like shape (purple);
unconfined slipperlike shape (orange); parachutelike shape (dark red); confined
slipperlike shape (grey); centered oscillations (cyan); multiple periodic oscilla-
tions (dark blue); chaotic oscillations (white); off-centered oscillations (pink); and
pin-like shape (green). Note that three regions are not represented in the legend
namely: the multiple periodic, chaotic, and off-centered oscillations.
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4.3.3 Benchmark

4.3.3.1 Spatial and Time discretizations

Figure 4.12: Stationary slipper-
like shape computed for dif-
ferent values of the time and
space discretizations. Nmem

and dt denote respectively the
number of discretization nodes
and the time step. The capil-
lary number and the confine-
ment were fixed namely to Ck =
10 and Cn = 0.23.

Figure 4.13: Stationary
parachute-like shape com-
puted for different values of
the time and space discretiza-
tions. Nmem and dt denote
respectively the number of
discretization nodes and the
time step. The capillary num-
ber and the confinement were
fixed namely to Ck = 10 and
Cn = 0.40.

4.3.3.2 Initial Position and Shape

The figure 4.14 shows no dependency between the initial shape as well as initial
position, and the oscillatory motion of the vesicle in the micro-channel. This mul-
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a)

b)

c)

Figure 4.14: Shape evolution and lateral migration of a vesicle subject to a
Poiseuille flow in a micro-channel for Cκ = 4.836, Cn = 0.719, τ = 0.6 and
λ = 1. The x-axis codes for the physical time and the y-axis for the position of
the y-component of the mass center of the cell. The stationary solution is reached
later and was not shown in these figures (see figure 4.15). The three simula-
tions converge to the same solution, showing a multiple periodical oscillations
(5-periodical). a)- the vesicle was set in the middle of the channel and initialized
as an ellipse. b)- the vesicle was slightly shifted from the centerline of the channel.
c)- the vesicle was initialized as a parachute and set in the middle of the channel.

tiple periodical oscillations persist also when changing the temporal and spatial
discretizations. The history of the lateral migration of the y-component of the mass
center is plotted in figure 4.15 and show clearly the existence of multiple periodical
oscillations as stationary solution which, to our knowledge, was never reported in
any theoretical or numerical study.
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Figure 4.15: History of the lat-
eral motion of the mass center
of the vesicle for different ini-
tial shapes and positions. Top:
the cell was initialized as an el-
lipse and placed in the center of
the channel. Middle: the cell
was initialized as an ellipse and
slightly shifted from the center
of the channel. Bottom: the cell
was initialized as a parachute
and placed in the center of the
channel.
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4.3.3.3 Pertinence of the Chaotic oscillations

Figure 4.16: History of the lat-
eral motion of the mass center of
the vesicle showing a chaotic os-
cillations that persist even when
changing the time discretization.
The capillary number was fixed
to Ck = 6.25 and the confine-
ment to Cn = 0.656 which cor-
respond to a channel width of
around 9.15 microns. Top: dt =
1.10−4. Bottom: dt = 5.10−5.
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Figure 4.17: Same as figure 4.16
but changing the mesh number
and fixing the time discretization
to dt = 1.10−4. Top: Nmem = 120.
Bottom: Nmem = 180.
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4.3.4 RBC-like vesicles in microcirculation conditions

The complex dynamics discussed above occur at low enough flow strength. We
will examine now what happens at large enough flow strength by exploring other
viscosity contrasts. We will start our study by fixing the viscosity ratio to λ = 5 (≡
a cytoplasmic viscosity of around 5 cP), which corresponds to the one of a young
red cell. Recently Tahiri et al. [Tahiri 2013b] investigated numerically the defor-
mation of a single vesicle bounded by two quasi-rigid walls (walls could deform
slightly) using a boundary integral formulation in two dimensions. They reported,
in addition to the symmetric and asymmetric regions, on a region of parameter
space where there is a coexistence between the symmetric and asymmetric shapes
(parachute and slipper). We have reinvestigated the effect of both confinement
and capillary number on the morphology of a single vesicle for the case of rigid
walls. We have observed two possible solutions for the range of parameters in-
vestigated namely: i)-parachutelike shapes and ii)-slipperlike shapes (Fig. 4.18).
We have summarized the results in a phase diagram in (Fig. 4.19). Similar be-

Figure 4.18: Stationary shapes exhibited by a rbc-like vesicle under the same con-
ditions of flow and confinement (Ck = 120; and Cn = 0.7). Top: λ = 5 (cytoplasmic
viscosity ≈5 cP). Bottom: λ = 10 (cytoplasmic viscosity ≈ 10 cP).

havior was reported experimentally and discussed in [Schmid-Schönbein 1981].
We restrict the use of the word parachute for the strictly symmetrical solutions,
where the word slipper covers the asymmetrical solutions. We have found series of
symmetric-asymmetric-symmetric transitions. This transition was also observed
in the experimental work of Abkarian et al. [Abkarian 2008a] and Tomaiuolo et
al. [Tomaiuolo 2009], but not discussed in details. Tahiri et al. [Tahiri 2013b] re-
port that a change in the inner viscosity of the cell from around 1 cP (viscosity
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of the plasma), to around 5 cP (a typical value for a young red cell) leads to dif-
ferent stationary shapes. Given the importance of this parameter we have also
investigated another larger value. It is important first to underline that (i) the cy-
toplasmic viscosity of the red cell is a variable from one cell to the other (within the
same organism), due to age, and then (ii) its value depends on the mean corpus-
cular hemoglobin concentration (MCHC). The MCHC describes the concentration
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Figure 4.19: Phase diagram of a red cell-like vesicle (λ = 5) in a Poiseuille flow
showing the existence of 3 different regimes at very high capillary number.

of the hemoglobin per unit volume of red cell. Cokelet and Meiselman report that
the value of the cytoplasmic viscosity increases in a non-linear manner with the
MCHC [Cokelet 1968]. During its lifespan, the mean cell volume (MCV) and the
mean surface area of the red blood cell decrease with a constant ratio: the reduced
volume of the cell remains the same [Linderkamp 1982, Guido 2009]. Since the
concentration of the hemoglobin stays constant over time, the MCHC increases as
function of the age of the cell. A typical value of the cytoplasmic viscosity for a
young red blood cell is around 5 − 7 cP, and corresponds to a value of MCHC of
about 32g/dl [Mohandas 2008, Guido 2009]. For MCHC around 40g/dl, the vis-
cosity of the cell nearly quadruples [Chien 1987]. Therefore, one natural question
is the impact of the cytoplasmic viscosity of the red cell on dynamics. We would
like to see how does the phase diagram change (at high enough flow strength, cor-
responding to physiological values) when the viscosity contrast is high enough as
compared to the so-called normal one, λ = 5. To fix the ideas we have set λ = 10,
which corresponds to a cytoplasmic viscosity of around 10 cP . We report the re-
sults in Fig. 4.20. We observe that the slipperlike solution prevails when increasing
the confinement and disappears for a CkW/R0 ≥ 190. The separation region be-
tween the symmetric and asymmetric solutions is more pronounced than for the
case of λ = 5. Indeed, for the range of the explored data, we do not observe any
kind of transition from symmetry-asymmetry-symmetry (as for λ = 5), but rather
a transition from symmetric to asymmetric shapes. We show clearly that the sta-
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tionary solutions are sensitive to inner viscosity changes, as shown in Fig. 4.18.
Considering that in most of the experimental works the cytoplasmic viscosity of
the red cells is an unknown variable and most probably a non uniform one, this
may give a lead about why for a fixed flow and confinement conditions, symmet-
ric and asymmetric shapes can both be observed. Our study regarding this effect
is only indicative and a systematic analysis should be postponed to the future. In-
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Figure 4.20: Phase diagram for λ = 10. The red and blue dots code respectively for
parachutelike and slipperlike shapes.

deed the size, the cytoplasmic viscosity, the membrane mechanical parameters (i.e.

bending stiffness) of a healthy human young red blood cell are not constant, but
rather lie in an interval of values, and change with the age of the RBC.This fact
may make any direct comparison between experiments and numerics a bit diffi-
cult and challenging. As an example, the typical diameter of a red cell is 6 to 8
µm, where the accepted range of values for the bending rigidity of the membrane
lies between 1.7 × 10−19 to 7 × 10−19 J [Dao 2003]. The membrane stiffness may
become higher in some pathological situation (i.e. Malaria).

4.4 Conclusions

The most pronounced result of our study is the discovery of surprisingly com-
plex behavior of vesicles in a Poiseuille flow. This was possible because the effect
of confinement and rigid boundaries was treated carefully for the first time. The
dynamics has revealed 9 major distinct shapes and dynamics, ranging from sym-
metric and non-symmetric solutions, up to chaos. Dynamics of vesicles are treated
here in the Stokes regime. In the absence of inertia, it is a classical result that the
Poiseuille flow is always laminar. The existence of a single elastic object within
the flow, acting only via bending forces, completely destroys the overall picture:
chaotic dynamics take place. It would be interesting to investigate in the future
the behavior of these chaotic regimes in the presence of many vesicles. It is tempt-
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Figure 4.21: Effect of the membrane rigidity on the shape of the RBC. The values
of the membrane stiffness (κ) are: i) 4 × 10−19 J for the red line, 2 × 10−19 J for the
orange circles, and 1 × 10−19 J for the blue triangles. Note that the accepted range
of the membrane stiffness lies between 1.7 × 10−19 to 7 × 10−19 J. The x and y axis
code for the x and y coordinates namely scaled by the typical radius of the cell.

ing to conjecture that the composite fluid would look like chaotic both in time
(as reported here) but also in space. This problem could be viewed as a class of
systems exhibiting the so-called elastic turbulence [Groisman 2000], that is a tur-
bulence caused by the elasticity of the suspending entities when coupled to fluid
flow in the purely Stokes regime. Elastic turbulence is characterized by a cascade
of transfer of energy from large to small scales, akin to the Kolmogorov cascade for
classical turbulence. A systematic analysis should be undertaken before drawing
conclusive answers. The second important point to be discussed is the origin of the
asymmetry in a symmetric problem. The asymmetry is inherited from the proper-
ties of the membrane of the vesicle. At equilibrium (in absence of external stresses),
a vesicle will adopt a preferred shape (equilibrium shape) according to its reduced
area (reduced volume in 3D) that will minimize the Helfrich free energy. By fixing
a reduced area close to that of a red blood cell, Canham shows that the biconcave
shape is the minimum energy of bending associated to constrained volume and
area. When subject to external stresses (e.g. an imposed flow), independent from
their natures, the vesicle’s membrane will withstand deformations (bending and
stretching). This resistance to the external stresses is measured by a dimensionless
number, the Capillary number, which we define as the ratio between relaxation
time of the membrane at rest and the flow time (defined as the inverse of the shear
rate). At high shear rates, corresponding to physiological conditions in microcir-
culation, the flow time is faster than the relaxation time of the membrane, leading
to almost (or completely) axisymmetric parachute-like or bullet-like shapes. The
asymmetry is predominant only at low Capillary numbers. This is the reason why
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in experiments mimicking in vivo conditions in capillary flows, the slipper-like
solutions are almost not present or instable. They may appear in the case of patho-
logical or abnormal conditions affecting the membrane: rigidity for instance in
early stages of malaria, and in cells in an advanced age where the cytoplasmic vis-
cosity may be higher than 20 cP (whereas 5-7 cP is known as the typical value).
Or more likely the asymmetry could be a consequence of hydrodynamic coupling,
defects in the channels, or dust inside the channel where in these cases we may
talk about instable asymmetric shapes. We are planning in the upcoming works to
clarify the stability/instability of the slipper solution based on the elements men-
tioned in this discussion, to explain it in terms of potential or energy dissipation
or other meaningful quantities.





CHAPTER 5

Mechanisms of Hydrodynamic

Clustering

The red blood cells are known to form train of cells in the microcirculation at-
tributed to a positive hydrodynamic interactions. We have investigated numeri-
cally the hydrodynamic coupling between the red blood cells (by using vesicles
as a model) subject to a Poiseuille flow under different geometries. The effect of
the inner viscosity, an intrinsic property of the red blood cell, on the pairing for-
mation has been also studied. Interestingly, we found a stationary interparticle
distance (an attractor) that depend of the channel width toward which the cells
tend to evolve. A regime where a sign’s reverse of the hydrodynamic interaction
(negative coupling1) has been observed that depends from the channel width, and
can be observed also by varying the inner viscosity.

5.1 Introduction

The motion of a linear array of rigid spheres at low Reynolds number (in absence
of inertial effects) in a cylindrical tube under a Poiseuille flow was studied the-
oretically by [Wang 1969, Leichtberg 1976]. Wang and Skalak observed that the
hydrodynamic interaction between the spheres is negligible above an interparticle
distance of the order of the tube diameter. Leichtberg et al. reported that the ve-
locity of the spheres decreases by increasing the array length, and that the outer
spheres move faster than the central ones. The interparticle interactions, quantified
via the relative velocity scaled by the midplane velocity of the imposed Poiseuille
flow; are relatively small at low confinements, reach a maximum at middle con-
finements, and are quickly damped out at high confinement. The wall damping
effect does not play an important role for closely packed arrays, whereas it be-
comes significantly important at larger interparticle spacing.
The hydrodynamic interaction between two drops was investigated experimen-
tally by [Olbricht 1987]. They considered a pair of deformable drops with different
sizes in a pressure-driven flow through a cylindrical capillary tube for a drop to
tube diameter close from unity, and separated by an interparticle spacing greater
than one tube diameter. The hydrodynamic interaction is owned to a difference
in the particle velocities due to the difference in their sizes. The leading drop is
bigger and moves slower than the trailing drop, which results in a decrease of the

1Negative from the sens that the hydrodynamic interactions lead to a repulsion.
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spacing that becomes smaller than one tube diameter allowing then hydrodynamic
interaction and formation of doublets (an array of two drops) before they coalesce
into a single drop. Different combination of drops sizes, capillary numbers, and
ratios between the inner and outer viscosities were taken into account. Among the
results, it has been reported that an increase of the capillary number reduces the
coalescence time in the cases where the trailing drop remains in the centerline of
the channel. Above a critical capillary number and for a given size of the trailing
drop, a lateral migration toward the wall is observed promoting a separation of
the drops instead of an attraction. Indeed, if the size of the trailing drop is below
a critical value, it is followed by a migration toward the wall. This critical size
depends on the value of the capillary number.
Arrays of rigid spheres and deformable drops driven by a Poiseuille flow through
a three dimensional rectangular channel in the Stokes regime was studied numeri-
cally by [Janssen 2012]. The effect of the deformability of the drops through differ-
ent capillary numbers was also investigated. In the case of pairs of rigid spheres
placed in the midplane of the channel, no relative particle motion can be produced
since the particles move with constant and equal velocities. However for pairs
of drops, the hydrodynamic interaction leads to an attraction at large separation
distances and repulsion at small interdistances. The pair of drops tends to a sta-
tionary separation distance independently from the capillary number. In the case
of a linear array of drops, the leading and trailing drops are always faster than
the central ones. Thus, the trailing one catches up with the next one and form a
pair. The pair moves slowly than single drops due to strong dipolar interactions
between the pair drop and its direct neighbor. The same process will be repeated
over time between the newly trailing drop and its neighbor. Meanwhile, the lead-
ing drop will quite the array, and the next drop will become the new leading and
faster moving particle. The spacing between the trailing and leading drops will
tend to increase in a monotonic manner. Nevertheless the repulsive nature of the
short-ranged dipolar interactions does not allow to explain the formation of stable
pairs. Indeed Janssen et al. pinpointed another contribution due to the deforma-
bility of the drops in the form of far-field quadrupolar interactions of an attractive
nature. For complex deformable particles (i.e. biological cells), the effect of the
geometry remains still unclear. Ghigliotti and co-workers studied numerically the
pairing of a diluted suspension of vesicles; a popular model used to investigate red
blood cells (RBCs); in an unconfined two dimensional geometry. They observed
the formation of train of cells (called clusters) attributing this to a positive hydro-
dynamic interaction [Ghigliotti 2012]. McWhirter, Noguchi and Gompper investi-
gated numerically the clustering of RBCs under a parabolic flow in three dimen-
sional cylindrical channels [McWhirter 2011]. They have reported the formation
of a fluid vortex or bolus between neighboring cells when clusters are formed, and
pinpointed the effect of a decrease of velocity on the stability of the clusters. The
formation/breakup of clusters is often observed in the microfluidics experiments
built to depict the behavior of the RBCs in the microcirculation.
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Colloidal particles confined between two parallel plates (quasi 2D geometry)
were studied experimentally and theoretically by [Cui 2002, Cui 2004, Diamant 2005].
The complexity in these systems arises from the difficulty to decouple the effect of
Brownian diffusion from hydrodynamic interactions. An antidrag between the
moving particles attributed to a negative hydrodynamic coupling was reported. A
change of sign of the hydrodynamic coupling in a cylindrical channel was also ob-
served [Cui 2002]. The effect of boundaries on the hydrodynamic interactions has
been studied in the case of water-in-oil droplets in 1D microfluidics [Beatus 2006,
Beatus 2007, Shani 2014], and showed a non-monotonous behavior resulting from
an interplay between the plug flow and the screening of the long-range hydrody-
namic interaction induced by the confinement.

5.2 Description of the method

The present work employs a numerical approach based on the boundary integral
method to solve the Stokes equations. The integral equation 3.42 is generalized
for the case of N interfaces. The specific Green’s functions satisfying the no-slip
boundary at the two plates are calculated using the images method and a Fourier
transform [Liron 1976, Thiébaud 2013]. The velocity along the membrane is given
by

u(X0) =
2

1 + λ
u∞(X0) +

1
2πµ1(1 + λ)

∫

∑i ∂Ωi

G(X, X0)f(X)dl(X)

+
(1 − λ)

2π(1 + λ)

∫

∑i ∂Ωi

u(X) · T(X, X0) · n(X)dl(X) (5.1)

where X and X0 are two position vectors belonging to the membranes (∂Ω =
∂Ω0 ∪ ∂Ω1 ∪ · · · ∪ ∂Ωn). u and u∞ are the membrane’s velocity, and the imposed
velocity. G and T stand for the Green’s function for two parallel walls and its as-
sociated stress tensor. The Helfrich free energy (based on the bending energy) is
used to model the membrane’s response to the external stresses, and a tension-
like energy via a Lagrange multiplier (denoted ζ) is added to fulfill the condition
of inextensibility of the membrane (constant area and perimeter over time). The
force exerted by the membrane on the fluid is then obtained by evaluating the
functional derivative of the Hamiltonian (see chapter 3 for details). The cells are
initially placed in the middle of the channel and subject to a Poiseuille flow.

5.3 Results

We perform simulations of a pair of vesicles flowing in channels with different
widths. In all simulations, we have set the capillary number Ca to 10, the reduced
area ν to 0.65, the viscosity ratio λ to unity, and varied the channel width. Fig. 5.1
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shows the steady state of two cells flowing in channels with different widths. It
comes out that at high and low confinements, the cells have a tendency to form
clusters, when at middle confinement, the cells flow as single objects. Recalling
the classical definition of a cluster of cells as: a train of cells separated by a dis-
tance smaller than 1.5 the diameter of the cell (3R0 in our case). Then it follows
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Figure 5.1: Mass-to mass center interdistance between two cells as a function of
the channel width (W) for τ = 0.65; Ca = 10; and a contrast of viscosity λ = 1. The
solid horizontal black line corresponds to the arbitrary treshold distance of 3R0

introduced in [Tomaiuolo 2012] to define a cluster. The abrupt transition between
W = 10 and 12R0 will be discussed in detail at the end of this chapter.

that clusters are not observed at high confinements, which correspond to situ-
ations studied in microfluidic experiments where cluster formation is reported.
Before commenting this result, it is important to emphasize on the difference be-
tween our findings and those from the previous numerical work of GM where
they disregarded the effect of confinement, by assuming an unbounded flow: sit-
uation where the walls are too far, so their effect on the cells could be neglected
(the walls are not added to the model). This situation corresponds to the low con-
finement case (see Fig. 5.1), where our predicted stationary interdistances agree
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with the one of GM. It is important to recall that in experiments mimicking the
flow of RBCs in microcirculation, the diameter of the cells is roughly the same as
(or smaller than) the one of the channel. Therefor low confinement situations and
unbounded geometries should not be used to explain experimental results as sug-
gested in [Tomaiuolo 2012]. Moreover the notion of an unconfined Poiseuille flow
is rather ambiguous since the effect of the confinement on the hydrodynamic in-
teractions and pair formation is still not yet clear.
The spatial organization of vesicles into clusters similar to the one observed in mi-
crocirculation in the case of RBCs, has been explained by the mean of the hydrody-
namic interactions leading to an attraction [McWhirter 2011, Ghigliotti 2012]. If the
cells are close to each other, boli are created from the overlap of the velocity field
induced by the cells. The cells are trapped and form a cluster (see Fig. 5.2). It is
expected then due to the large interparticle distance at high confinement to do not
observe boli by opposition to the low confinement clusters. Surprisingly at high
confinement, situation of interest in experiments, boli are also observed between
the cells which suggest that the cells are forming a cluster. The boli are more com-
pressed laterally and squeezed horizontally (see Fig. 5.4) due to the confinement
in comparison to low confined case. In the contrary, the experimental definition of
a cluster based on the mass-to-mass center interdistance (i.e. 3R0) does not allow
us to consider the pairs formed at high confinement as clusters strictly speaking.
Therefor they are more likely flowing as single objects and supposed to not inter-
act. It remains now to clarify whether the configuration with large interparticle
distance and boli formed between the cells is a stable solution or not. In which
case, we will have to redefine the notion of a cluster as reported in the literature.
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Figure 5.2: Velocity fields in the comoving frame of the cells: single vesicle (top),
and a cluster of two vesicles (bottom). Two boli (vortices) are formed between
the cells resulting from an overlap of the velocity field. The parameters read as:
channel width W = 20R0, the capillary number Ca = 10, the reduced area τ = 0.65,
and the viscosity ratio λ = 1.
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Figure 5.3: Disturbed velocity field induced by the cells obtained by subtracting
the background velocity from the total velocity. Top: case of a single vesicle. Bot-
tom: case of a cluster of two vesicles. Same parameters as in Fig.5.2.
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Figure 5.4: Velocity fields in the comoving frame of the cells: single vesicle (top),
and a cluster of two vesicles (bottom). Two boli (vortices) are formed between
the cells resulting from an overlap of the velocity field. The parameters read as:
channel width W = 3R0, the capillary number Ca = 10, the reduced area τ = 0.65,
and the viscosity ratio λ = 1.
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Figure 5.5: Disturbed velocity field induced by the cells obtained by subtracting
the background velocity from the total velocity. Top: case of a single vesicle. Bot-
tom: case of a cluster of two vesicles. Same parameters as in Fig.5.4.
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5.3.1 Estimation of the hydrodynamic interaction length

To emphasize more on the intricate relation between confinement and pairing, the
hydrodynamic interaction range was studied as function of the channel width. The
estimation of this quantity is obtained by subtracting from the total dissipation, the
background dissipation due to the imposed flow. Let’s consider the function

f (x) = ln (| D(x) |), x ∈ R

where D is the dissipation induced by the cell near the wall.
The function f has a global maximum ymax at xm such as

ymax = ln (| D(xm) |)

and a global minimum ymin where the dissipation reaches a constant value corre-
sponding to the limit of the hydrodynamic range (see Fig.5.6). Eventually, we can
define the hydrodynamic length by the abscissa corresponding to the global min-
imum of f , but to avoid numerical noises, we add a positive non zero constant ε

such as
ymax + ln (ε) −→ ymin, and | ymax + ln (ε) |<| ymin |

The interaction length (Lint) is defined as

Lint/2 = max(| [ymax + ln (ε)] ∩ f (x) |)

An example of how we define the interaction length of a single cell is given in the
Fig.5.6. The interaction length is calculated from the mass center of the cell.
We found that the hydrodynamic interaction length is linearly proportional to the

channel width (W) and is estimated to 4W.
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Figure 5.6: Interaction length of a single cell counted from its mass center. The
solid red line represents the dissipation induced by the cell near the lower wall for
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define the interaction length. The interaction length is defined as twice the distance
from the mass center of the cell located at x = 0, and max(x1, x2) where x1 and x2
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Figure 5.7: Estimation of the hydrodynamic interaction length induced by a single
cell as a function of the channel width. The dissipation near one of the walls is used
to define the interaction range. The reduced area is τ = 0.65, and the viscosity ratio
is λ = 1. The cell is subject to a Poiseuille flow with Ca = 10. The estimated range
of the hydrodynamic interaction is around 4W, where W is the channel width.
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5.3.2 Phase diagram and basin of attraction

Now that we have an idea about the hydrodynamic interaction length as func-
tion of the confinement, we can evaluate the stability of the pairs by increasing
and/or decreasing the stationary interdistance obtained at the end of the simu-
lations. This is equivalent to adding a noise and checking whether the cells will
tend again to their stationary interdistance or not. In Fig. 5.8, the channel width
is fixed to 14R0, the capillary number to 10, and the cells are placed away from
their stationary interdistance d f = 2.93R0. Starting from an initial interdistance of
10R0, the cells are attracting each other, and then reform a cluster with the same
d f = 2.93R0. However, when the initial interdistance has been set to 11R0, the
cells repeal each other, suggesting a negative hydrodynamic coupling by opposi-
tion to hydrodynamic interaction leading to an attraction. This sign’s reversal is

Figure 5.8: Hydrodynamic interaction between a pair of vesicles leading to two
different scenarios, namely attraction (red), and repulsion (blue). Snapshots at
different time steps are shown, upper and lower figures represent the initial and
stationary configuration. Channel width was 14R0. The other parameters read as
capillary number Ca = 10, reduced area τ = 0.65, and viscosity ratio λ = 1. The
initial mass-to-mass centers interdistance between the vesicles was: (a) Di = 10R0,
and (d) Di = 11R0.

observed by either changing the channel width or the initial interdistance between
the cells. Nonetheless for channel widths below 10R0 and those above 17R0, this
phenomenon is not observed. A phase diagram summarizing these results is pre-
sented in Fig. 5.9. Interestingly, the first observation is that for channel widths
below W = 10R0 the final interdistances between the cells is far bigger than the
threshold introduced by Tomaiuolo et al (TG) in [Tomaiuolo 2012]. Indeed, a typi-
cal distance of 3R0 has been used by TG to define clusters of RBCs experimentally.
This definition is arbitrary and is not based on any theoretical reasoning. Stable
fixed points (attractors) are observed in this region, corresponding to stable clus-
ters. Therefor the clusters in this region has been underlooked in the previous
experimental and theoretical works. The second important feature is the discon-
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Figure 5.9: Phase diagram of the hydrodynamic interaction between two vesicles
as a function of the confinement. The red area depicts the range of the basin of
attraction. The solid black dots are the stable fixed points representing the sta-
tionary interdistances (attractors). The open circles represent unstable fixed points
(repellers). A discontinuity is observed for channel widths 10R0 < W < 12.25R0,
where no stable solution is found. The blue area represents an area where the cells
are repealing each others. The dashed lines represents regions where it was not
possible to estimate the exact solution in a reasonable amount of time.

tinuous evolution of the interdistance as a function of the channel width. No stable
solution is observed for a range of channel widths lying between 10R0 and 12.25R0.
Above W = 12.25R0, both stable and unstable fixed points are found. However, the
unstable fixed points disappear at larger channels (W > 16.25R0). The normalized
relative velocity of the pair defined as the difference of velocities between the front
and the backward cells (u2 − u1) normalized by the background midplane velocity
(u0) gives an insight about the change of sign of the hydrodynamic interaction as
a function of the interparticle distance. The possible cases can be summarized as
follow:

1. (u2 − u1)/u0 > 0: the cells are repealing each other.
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Figure 5.10: Normalized relative velocity as a function of the mass-to-mass center
interdistance between the two cells. a) W = 6R0; b) W = 11R0; c) W = 13R0; and d)
W = 18R0. The solid black dots are stable fixed points, and open circles represent
unstable fixed points.

2. (u2 − u1)/u0 < 0: the cells are attracting each other.

3. (u2 − u1)/u0 = 0: the interdistance corresponds to a stable or unstable fixed
point. If it is a stable fixed point then we are in the presence of a cluster.

The Fig. 5.10 depicts the different cases observed in the phase diagram. Fig. 5.10
(a) and (d) corresponding namely to W = 6 and 18R0 show cases where the initial
interdistance tends towards the stable fixed point representing the stationary dis-
tance of the cluster. Fig. 5.10 (b) corresponds to the case where no stable solution
is reached for W = 11R0. In Fig. 5.10 (c), both stable and unstable fixed points
are observed for W = 13R0. Below the unstable fixed point, the interdistance is
converging to the stable fixed point. Whereas above the unstable fixed point, the
interdistance tends asymptotically to the next stable fixed point.
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5.3.3 Effect of the intrinsic properties of the cells on clustering

5.3.3.1 Viscosity contrast

In Fig. 5.11, we consider a pair of vesicles flowing in a channel with a fixed di-
ameter (W) of 3R0. The inner viscosity (µ2) is varied from 1 cP to 20 cP, and the
effect on clustering is studied. The other parameters read as: 0.65 for the reduced
area, 10 for the capillary number, 1cP for the outer viscosity (µ1). One should
emphasize that for a healthy human RBC the physiological range of cytoplasmic
viscosity µ2 ≥5 cP and increases in a non linear manner with the age of the cell ex-
ceeding the 20 cP. The first remark is the transition from symmetric parachute-like
to asymmetric slipper-like shapes when increasing the inner viscosity. This transi-
tion induces a decrease of the interparticle distance since the slipper are faster than
the parachute shapes. A discontinuity is observed for 7cP ≤ µ2 ≤ 9cP, where we
enter in a repulsion regime. So far these results are still preliminary, and a more
detailed analysis is needed before drawing any conclusions.
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Figure 5.11: Effect of the inner viscosity on the stationary mass-to-mass center
interdistance of a pair of two cells.
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5.3.3.2 Membrane rigidity

The effect of the membrane bending stiffness on the interparticle distance of a pair
of cells is investigated. In these simulations, the typical radius of our vesicles is
R0 = 4µm, the cytoplasmic viscosity is µ2 = 5 cP, and the membrane stiffness is
κ = 4 × 10−19 J. The accepted range of values for the bending rigidity of the mem-
brane lies between 1.7 × 10−19 to 7 × 10−19 J. The reduced area (τ) of the vesicles
is chosen to match the one of a human red blood cell (τ = 0.65). We choose the
flow parameters and confinement in such a way that we can do a comparative
study with the experimental work done by V. Clavería, a PhD student at our lab-
oratory. The main result regarding cluster induced by hydrodynamic interactions
is the apparition of a double pick in the probability density function suggesting
the existence of two stationary interparticle distances as shown in Fig. 5.12. Us-
ing numerical simulations based on these experiments, we find out that the wide
interval of values of the membrane bending rigidity may lead to two different in-
terdistances. This difference arises from the loss of symmetry as a consequence of
an increase of rigidity within the physiological range (see Fig. 5.13).

Figure 5.12: Probability density function of cluster formed by two cells. The figures
on the graphs are representatives snapshots of the most frequent clusters configu-
rations. The two peaks on the graph suggests two possible equilibrium states with
two different interparticle distances. BS refers to the buffer solution without addi-
tion of macromolecules inducing aggregation. The Dextran case is not discussed
in this chapter. Courtesy of V. Clavería experimental work in the group of Prof.
Dr. C. Wagner in Saarland University.
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Figure 5.13: Effect of the membrane stiffness on the interparticle distance of a clus-
ter formed by two cells. Membrane bending stiffness are (a) κ = 4 × 10−19 J and (b)
κ = 7 × 10−19 J.

5.4 Conclusions

The mechanism of pairing is investigated in the presence of bounding walls. The
effects of the confinement and the intrinsic properties of the vesicles is considered.
We observe first that the stationary interdistance between the cells increases with
the increase of the channel width. Above a critical channel width W = 10R0, a
discontinuous transition occurs where no stable solution is found. The system be-
comes stable again at W ≥ 12.25R0, and an opposite effect of the confinement on
the interdistance is observed in this area. Indeed, the interdistance decreases by
increasing the channel width. The observed interdistances are similar to the one
commonly used in the literature to define clusters of RBCs. Then, the stability of
these clusters is studied by perturbing the system, which allow us to determine
the consequent basin of attraction. The observed stationary interdistances corre-
spond to stable fixed points (attractors) toward where the system evolve when
driven out of equilibrium in the limit of the basin of attraction. Unstable fixed
points (repellers) are also observed for a range of channel width lying between
W = 12.25 and 16.25R0. The stable fixed points correspond to the stationary state
of the cluster, and could be used instead of the more arbitrary definition based
on the maximum interdistance of 3R0 proposed in [Tomaiuolo 2012]. In the last
part of this chapter, it comes out from the experimental work on RBCs flowing
in microchannels done in by group that the hydrodynamic interactions may lead
to the formation of clusters with two stable interparticle distances even though
the imposed flow and confinement were the same. This leaves us with the in-
trinsic properties of the RBCs as a probable cause. By investigating two of them
separately (the inner viscosity and the membrane bending stiffness) we observe a
bimodal distribution of the hydrodynamic clusters. Though we have pinpointed
some of the ingredients that can explain the experimental observations on the flow
of RBCs from one hand and showed the versatility of hydrodynamic interactions
under confinement from the other hand, the full understanding of these phenom-
ena cannot be achieved without building an analytical model that includes the
effect of walls on hydrodynamic interactions between soft deformable objects.



CHAPTER 6

Aggregation of Red Blood Cells

and Protein Induced Clusters in

Microcirculation

In this chapter, we present a toy model to study the mechanism of aggregation of
RBCs and cluster formation induced by macromolecules at flow condition. Us-
ing a combined experimental and numerical approach [Brust 2014], we show that,
despite the large shear rate in microcapillaries, either fibrinogen or the synthetic
polymer dextran leads to an enhanced formation of robust and stable clusters of
red cells, even at hematocrit as low as 1%. In addition, a comparative study be-
tween clusters induced by pure hydrodynamic interactions and those formed in
the presence of macromolecules shows a pronounced difference in the morphol-
ogy and the intercellular distances.

6.1 Introduction

Blood performs multiple functions in the body, like oxygen, carbon dioxide and
nutrients transfer or body temperature control by heat transfer. The flow proper-
ties of blood are complex, in opposite to simple fluids such as water or air. This
complexity arises from its inhomogeneous composition: a little less than half of the
blood is made up of cellular compartment suspended in an aqueous fluid (plasma).
The solid part of the blood is mainly formed by erythrocytes, or red blood cells
(98% of the blood cells), and the rest is composed by white cells and platelets.
The plasma itself, is a complex solution of solutes: ions, metabolic molecules (e.g.
glucose and amino acids) and proteins, suspended in water. In the healthy adult
human, the red cells have a tendency to aggregate and form, under certain con-
ditions, large aggregates called rouleaux. This phenomenon is a consequence of
the presence of some kinds of macromolecules in the plasma such as fibrinogen
(a plasma protein known to induce aggregation). According to the literature, the
aggregates are supposed to disaggregate under the effect of shear forces. Under
microcapillaries flow conditions, red cells are known to form small train of cells
called clusters due to hydrodynamical interactions. The role of plasma proteins
was marginalized due to the high shear rate in microcapillaries [Popel 2005]. In
the present work, we investigate the effect of macromolecules on cluster forma-
tion under flow condition and the mechanism of rouleaux formation in a quiescent
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Figure 6.1: RBCs suspended in a phosphate buffer saline solution (PBS). Left: in the
absence of macromolecules inducing aggregation (such as dextran and fibrinogen),
the RBCs do not aggregate due to their surface negative charge. Right: in the
presence of these macromolecules, the RBCs form a 3d aggregate called rouleaux
when the adhesion forces (bridging or depletion) exceed the disaggregation forces.
Courtesy of C. Ruloff (PhD student in Prof. Dr. C. Wagner’s group).

fluid. A toy model is introduced based on experimental measurements of the ad-
hesion energy between two RBCs [Brust 2014, Steffen 2013], and combined to the
theoretical model described in chapter3.

6.2 Cell-cell interaction model

Currently, there are two different and opposite models to explain the aggregation
of RBCs in polymer solutions: the bridging model and the depletion model. In
the bridging model, it is assumed that erythrocyte membrane adsorb surrounding
polymers (fibrinogen or dextran) and form a kind of bridge with the neighbor-
ing erythrocytes[Chien 1975, Maeda 1986b]. The depletion model was introduced
more than half a century ago by Asakura and Oosawa[Asakura 1958], and states
that if the space between two cells reaches a critical distance, the difference of os-
motic pressure due to the lack of macromolecules in the intercellular region and
the bulk will induce an attractive force which tends to minimize the space between
the two cells. Neu and Meiselman have presented a model taking into account
the strong electrostatic repulsion due to the negative charge of RBCs membrane,
and the weak osmotic attractive forces due to the depletion effect induced by the
macromolecules surrounding the RBCs. The depletion force model includes the
effect of the polymer concentration, the polymer physiochemical properties on de-
pletion layer thickness, and the polymer penetration depth into the RBC glycoca-
lyx. Recalling that the glycocalyx refers to glycoproteins covering the membrane of
the RBC, and responsible of its negative charge. Although it is a simplified model
based on a couple of approximations, a good agreement with experimental mea-
sures of cell-cell affinity and RBC aggregation is observed [Neu 2002]. The draw-
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Figure 6.2: Schematic of the mechanism behind the aggregation of RBCs. Left: The
macromolecules are adsorbed by the glycocalyx of the RBC, which may lead to the
formation of bonds or bridges if another cell is close enough (in the range of the
length of the polymer). Right: The macromolecules are depleted from the excluded
region between two neighboring RBCs, leading to a poor polymer region between
the cells, and a rich polymer region around. An osmotic gradient will induce an at-
tractive force pushing the cells toward each other and forming a rouleaux. In both
cases, if the adhesion forces (bridging or depletions) are higher than the disag-
gregation forces (due to electrostatic repulsion, membrane strains and mechanical
shearing), the RBCs will form a rouleaux (a stack of cells) [Steffen 2012].

back of this model is the large number of parameters to tune depending from the
physiochemical properties and the concentration of the polymers. In other words,
a lot of different experimental data are needed in order to use this model for pre-
dictions. Based on a new set of experiments done in our group, the RBC-RBC
adhesion energy has been quantified using the atomic force microscopy-based sin-
gle cell force spectroscopy. The principle of this technique is described in Fig 6.3,
and details are provided in [Steffen 2012, Steffen 2013]. These measurements pro-
vide us with the first direct experimental quantification of dextran and fibrinogen
induced depletion forces between RBCs in their natural discocyte shape. The re-
sults are summarized in Fig 6.4. Knowing the total interaction energy allow us to
use a Lennard-Jones potential to reproduce the intercellular interactions between
the cells in order to mimic the effect of a given concentration of Dextran (70 and
150) or fibrinogen by fixing only one parameter: the intercellular surface energy.
This parameter is deduced directly from the data in Fig 6.4.

φ(r) = 4ε[(
σ

r
)12 − (

σ

r
)6] (6.1)
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Figure 6.3: Sketch of the measurements of the adhesion energy using atomic force
microscopy-based single cell force spectroscopy. One RBC is fixed to the cantilever,
and the other one to the surface of a Petri dish containing a solution of macro-
molecules. Both cells are brought into close contact. Then when withdrawing the
cantilever, the adhesion force is measured via the deflection of the cantilever. The
measurements were performed for different concentrations of the synthetic sugar
polymer dextran with different molecular weights (70 and 150 kDa), and for the
protein fibrinogen [Steffen 2013, Brust 2014].

The weak depletion attractive and strong electrostatic repulsive forces at far and
near distances are the negative derivative of the intercellular interaction potential

fφ(X) = −
∫

∑j 6=i∂Ωj

∂φ(r)
∂r

r

r
ds(Y) (6.2)

where ε and σ denote for the surface energy and the zero force length distance.
r = X − Y, r = ‖X − Y‖, and X and Y are two position vectors belonging to the
i − th and j − th membrane respectively The Stokes equations are solved using the
boundary integral technique introduced in chapter 3.

u(X0) =
2

1 + λ
u∞(X0) +

1
2πµ1(1 + λ)

∫

∑i ∂Ωi

G(X, X0)[f(X) + fφ(X)]dl(X)

+
(1 − λ)

2π(1 + λ)

∫

∑i ∂Ωi

u(X) · T(X, X0) · n(X)dl(X) (6.3)
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Figure 6.4: RBC-RBC adhesion energy as a function of macromolecules concentra-
tions [Brust 2014]. The x-axis codes for the concentration of: (bottom) Dextran 70,
and (top) Fibrinogen.

6.3 Results

The aggregation and flow of RBCs in microcirculation are investigated numeri-
cally. The cell model comprises closed inextensible membranes (giant vesicles)
filled with fluid (modeling hemoglobin) and suspended in a different fluid (mod-
eling plasma). The vesicles can freely deform in response to the imposed Poiseuille
flow. Cells can interact by both hydrodynamic forces and by an additional inter-
action potential with interaction energies that were taken from single cell force
spectroscopy measurements with fibrinogen and dextran.

6.3.1 Rouleaux formation in a quiescent fluid

The aggregation of RBCs is briefly studied and preliminary comparative results
between experiments and numerical simulations are presented. We consider dou-
blets and set of 7 cells placed in the middle of a channel of width 20R0 ≈60 µm.
The reduced area is fixed to 0.65, and the viscosity ratio to unity. The shape of the
doublets and rouleaux of 7 cells as a function of the interaction energy is shown
in Fig. 6.5. The equilibrium shapes of aggregate of RBCs was investigated by the
mean of an adhesion potential where the interaction energies was changed sys-
tematically [Svetina 2008, Zhang 2008, Ju 2013]. Nevertheless, a quantification of
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Figure 6.5: Effect of interaction energy on the morphology of aggregates of RBCs
in case of doublets (top), and rouleaux of 7 cells (bottom).

the interaction energy corresponding to a specific concentration of Dextran or fib-
rinogen was lacking. In the best of our knowledge, our study is the first one where
a correlation between interaction energies and concentration of dextran or fibrino-
gen can be done, leading to a more direct comparison with the experiments. At

Figure 6.6: Comparison between the experimental shapes (top) and the predicted
shapes (bottom) for high (left) and low (right) interaction energies. Note that the
cells share the same mechanical properties and size in the theoretical model, which
is not always the case in experiments.

low interaction energies, the contact area between the cells is flat (line-type). By
increasing progressively the interaction energy, the contact area increases and the



6.3. Results 89

cells adopt a sigmoid shape. To characterize this shape transition, a sine function
is used to fit the contact zone between the cells. The amplitude of the fitting sine
for the case of doublets is plotted as a function of the interaction energy, and then
compared to the experimental results1 obtained as a function of the concentration
of Dex70 and then fibrinogen. In order to fit the theoretical and experimental data,
the maximum interaction energy is fixed by a direct comparison of the contact ar-
eas. The highest amplitude obtained in the theoretical predictions is chosen as the
maximum of the bell-shape curve as depicted in Fig.6.7.

Figure 6.7: Amplitude of the contact zone between two cells as a function of the in-
teraction energy in case of Dex70 (left) and fibrinogen (right). The echinocytes cor-
respond to abnormal shapes (spiky membranes) adopted by healthy RBCs when
they touch the cover slip.

1The experimental work is done by D. Flormann, a PhD student with the group of Prof. Dr. C.
Wagner.
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6.3.2 Flow of RBCs-like vesicles in microcirculation

We take an initial set of five cells in two channels of widths 4.5 and 12 µm, which
are typical values in human capillaries (4.5 µm corresponds to the height of our
experimental channels and 12 mm where we found that the clusters persist even
though they could experience stronger shear stresses out of the center and pass on
top of each other). The velocities explored at the center of the channel are approx-
imately 1 mm/s. The viscosity ratio is set to 5 which corresponds to a cytoplasmic
viscosity of ≈ 5 cP, and the reduced area to 0.65. Theses values are chosen close
to the one of a typical young human RBC. The cells are initially disposed along
a line in the middle of the channel (Fig. 6.8). We progressively increase the in-

Figure 6.8: Sketch depicting the initial configuration of the cells in channel.

teraction energy and analyze the subsequent behavior of the initial configuration.
Fig. 6.9 summarizes our findings. In both experiments and numerics, we observe
a tendency of having bigger clusters while increasing the interaction energy. In
the experimental curves Fig 6.9-left, the increase of the interaction energy leads to
a decrease of the single cells and an increase of the clusters. The size of the clus-
ters (number of cells per cluster) increases with the interaction energy. In Fig. 6.10,

Figure 6.9: Cluster size as a function of the interaction energy. Left: the probability
of having a cluster of a given size (relative occurrence) is plotted as a function of
the interaction energy (experiments). Right: same as left but in the case of two
different channel widths (numerics).

the interaction energy is increased from top to bottom. At low interaction ener-
gies, the cells that are initially arranged in a cluster tend to flow as single cells2

because the disaggregation forces (combination of electrostatic repulsion, mem-
brane strain, and mechanical shearing due to the flow) are still higher than the

2as discussed in the previous chapter, though the interdistance is relatively large, the cells are
still interacting hydrodynamically
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aggregation forces. At normal levels of fibrinogen, clusters of two and three

Figure 6.10: Stationary configuration of the cells as a function of the interaction
energy. From top to bottom, the interaction energy reads as: 0, 1.78, 3.56, and
4.89 µJ/m2, corresponding namely to concentrations of fibrinogen:0, 1, 4 (still in
the physiological range), and 6.5 mg/mL (level of fibrinogen corresponding to
stroke patients [Di Napoli 2001]). The width of the channel is 4.5 µm (left), and
12 µm (right).

cells start to form and persist in time. Approaching concentrations of fibrinogen
within the limit of the physiological range, stable and persistent clusters of 5 cells
are formed. Both numerical and experimental works show cluster size transitions
at the same interaction energies. It is interesting to mention that the experiments
are performed in narrow channels, where the long ranged hydrodynamic interac-
tions effect are minimized (screening), and the cluster formation depends on the
cells’ entrance in the channels since the aggregation forces are short ranged. But
once the cluster is formed mainly due to aggregation forces, it continues flowing
as a stable cluster in the channel. At larger channels, it is expected that the long
ranged hydrodynamic interactions lead to the formation of clusters. The question
is whether there is a difference between hydrodynamic clusters with and without
macromolecules.

Figure 6.11: RBCs in zigzag arrangement flowing in a capillary of 12 µm diameter
in presence of fibrinogen. Left: in vivo human RBCs [Skalak 1969]. Right: in silico
RBCs-like vesicles.
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Experiments are performed in channels of 12 µm diameters in the presence
and absence of Dex70 and then Dex150. The RBCs are driven with an input mid-
plane velocity of around 2.12 mm/s. A part of these results related to pure hy-
drodynamic interactions is discussed in chapter 5. Numerical simulations are per-
formed along with the experiments3. We consider a pair of RBCs-like vesicles with
a membrane rigidity of 4 × 10−19 J, a cytoplasmic viscosity of 5 cP, a reduced area
of 0.65, and a typical radius of 4 µm. The interaction energies used to mimic dex-
tran 70 and 150 are namely ε =4.8 µJ/m2 and ε =12 µJ/m2. Our study revealed a
significant differences in the morphology and the intercellular distances between
the clusters formed with and without macromolecules. To quantify the relation

(a) (b) (c)BS BS+Dex70 BS+Dex150 

Figure 6.12: Numerical simulations depicting the stationary shapes of clusters of
two cells. (a) cluster formed in absence of macromolecules, (b) in presence of
Dex70, and (c) in presence of Dex150.

Figure 6.13: Morphology of the clusters formed in the presence of Dex70 (left),
and Dex150 (right). Top: numerical simulations. Bottom: in vitro experiments on
human RBCs (Courtesy of V. Clavería).

between the interaction energy and the morphology of the clusters, we have mea-
sured the interacting contact zone length, by setting a threshold on the distance
between nodes from different interfaces corresponding to a distance of 21/6σ at
which the minimum potential is reached. The results are reported in Figure 6.15.

Indeed, in addition to the long ranging hydrodynamic interactions initiating
the formation of the cluster, the short ranging adhesion mechanism induced by
the interaction between macromolecules and the cells’ surface helps to compact
the cluster, and hence reducing the intercellular distance. The cells in the clus-
ters formed in presence of macromolecules look almost touching each other. An

3Experimental work performed by V. Clavería, a PhD student with the group of Prof. Dr. C.
Wagner.
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Figure 6.14: Stationary configurations of a pair of cells as a function of the interac-
tion energy (ε). (a)ε = 0; (b) 2.66; (c) = 3.11; (d) = 3.55; (e) = 4.44; (f) = 5.33; (g) = 6.22;
(h) = 7.11; and (i) = 14.22µJ/m2 . The parameters used read as Ca = 10, ν = 0.65,
λ = 1, and W = 4R0.
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Figure 6.15: Effect of the interaction energy on the length of the contact zone.

increase in the intercellular interaction energy leads to a further decrease of the
distance between the cells of the cluster and an increase of the interacting contact
zone (See Fig. 6.14 and Fig. 6.15). Our attention was drawn to the sudden sharpe
increase of the interacting contact zone length by a factor of 12 observed when
the interaction energy went up from 5.33 to 6.22 µJ/m2, whereas this factor went
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down to 1.08 for an increase of interaction energy from 6.22 to 7.11 µJ/m2. This
work is still undergoing while we wrote this chapter; more quantitative results are
expectable in the near future.

6.4 Conclusions

A toy model combined with experimental studies is introduced for the first time
to investigate the mechanism of aggregation in absence and presence of an exter-
nal flow. Aggregates are formed in the larger vessels (in the macrocirculation) and
are destroyed once they enter to the microcirculation where the shear rate is high
enough to induce the disaggregation. Unlike in the macrocirculation, the flow pro-
file in the microcirculation is parabolic. In this condition, it is known that the RBCs
tend to migrate toward the centerline of the flow, where the shear rate is relatively
small. Therefor the effect of the macromolecules should persist in the microcircu-
lation despite the high wall shear rate. Our interest goes first to the formation of
aggregates of RBCs (the so-called rouleaux) in a quiescent fluid. The effect of the
concentration of macromolecules on the morphology of the aggregates is reported.
The concentration of macromolecules is quantified in term of interaction energy
[Steffen 2013, Brust 2014] and then plugged directly in the theoretical model to
mimic the presence of the macromolecules. The contact area between the cells
shows a change from flat contact zone to a pronounced sigmoid while increasing
the interaction energy. The theoretical predictions are in a good agreement with
the experimental results. The main result is that the morphology of the aggregates
can be correlated with a specific interaction energy that corresponds to a given
concentration of macromolecules (e.g. fibrinogen), which can be used as a prog-
nosis to detect eventual diseases such as atherosclerosis [Handa 1989, Sabeti 2005].
The second part of this chapter is dedicated to study the contribution of both hy-
drodynamic and macromolecule induced interactions on the flow of RBCs in the
microcirculation. To achieve this, we combine an experimental and a numerical
approach to study the effect of macromolecules concentration, via their interac-
tion energies quantified with the help of the single cell force spectroscopy mea-
surements, on the clusters formation. Our findings underline the role of macro-
molecules in the formation of more stable and persistent clusters in the microcir-
culation. This should affect not only the local rheology of blood but also the RBC
distribution in the microcirculatory network and the related oxygen delivery to
tissues through the potential impact of clusters on cell distribution at bifurcations.
The mechanism of clustering in presence and absence of macromolecules was in-
vestigated in a dilute suspension. The long ranging hydrodynamic interactions
–when they are positive –lead to an attraction between neighboring cells and the
formation of clusters with clear and visible space between them. In such configu-
rations, the short range adhesion interactions due to the macromolecules can then
take place and enhance the formation of more compact and sticky-type clusters.



CHAPTER 7

Conclusions and Perspectives

7.1 Conclusions

In this thesis, we have studied two-dimensional deformable interfaces driven by
an external flow in confined geometries. In chapter 3, we have introduced the
theoretical background needed to build a boundary integral equation from Stokes
equations. We have employed the image technique to derive the Green’s function
satisfying the proper boundary conditions on the walls. This has provided us with
a powerful tool to study realistic problems related to the flow of red blood cells
in microcirculation, and compare our predictions with experiments performed in
our team. In chapter 4, we have used our model to investigate the dynamical
behavior of a single vesicle subject to a parabolic Poiseuille flow. The vesicles are
inextensible elastic passive interfaces enclosing an inner fluid and suspended in
an outer fluid. They interact with the surrounding fluids only via bending forces
that are derived from the free Helfrich curvature energy. The inextensibility of the
membrane is constrained locally which ensures a global conservation of the area
and the perimeter. In chapter 5, we have extended the boundary formulation for
the case of N interfaces and studied the pairing mechanism due to the intricate
coupling between hydrodynamic interactions and confinement. In chapter 6, we
have introduced a toy model to include the cell-cell interaction forces due to the
presence of macromolecules in the outer fluid.
The main findings can be summarized as follows:

• The dynamic of a single vesicle in a confined geometry under a Poiseuille
flow has revealed 9 major distinct shapes and dynamics, ranging from sym-
metric and non-symmetric solutions, up to chaos. In the absence of inertia
(in the Stokes regime), it is a classical result that the Poiseuille flow is always
laminar. The existence of a single elastic object within the flow, acting only
via bending forces, completely destroys the overall picture: chaotic dynam-
ics take place. Transitions from steady shapes to chaos through a cascade
of subharmonic oscillations occurred by changing only one parameter. This
study was published in [Aouane 2014].

• In the absence of macromolecules, the mechanism of pairing is controlled by
the hydrodynamic interactions. The effects of the confinement have been in-
vestigated. Stable interparticle distances corresponding to stable fixed points
(attractors) toward where the system tend to evolve in the limit of the basin



96 Chapter 7. Conclusions and Perspectives

of attraction have been found. Unstable fixed points as well as a disconti-
nuity have been observed for a given range of channel widths. A change
of the nature of the hydrodynamic interactions leading to repulsion (instead
of attraction) and therefor to the breakup of the clusters has been observed.
An intricate and complex interplay between the confinement, external noises
and intrinsic properties of the cells can trigger this phenomena.
Experiments in our group on purely hydrodynamic clusters at fixed flow
conditions and confinement have shown a bimodal distribution of the inter-
particle distance of the clusters. Our numerical model has confirmed the
same behavior by changing the membrane bending stiffness, an intrinsic
property of the red blood cells, within the physiological range [Claveria 2015].

• The role of the macromolecules on cluster formation has been investigated.
The adhesion energy corresponding to a concentration of a specific macro-
molecule has been quantified by our team, and the values can be plugged
directly in our toy model that depends only on one parameter: the inter-
cellular surface energy. The numerical predictions on aggregation of RBCs
has shown a good agreement with the experimental data from our team,
although it is still an ongoing work [Flormann 2015]. The formation of clus-
ters in presence of plasma protein fibrinogen (or the synthetic sugar polymer
dextran) has been investigated in microchannels. The conditions have been
set to mimic the flow of red blood cells in microcirculation. The numerical
predictions have shown a correlation between the increase of the adhesion
energy and the increase of the size (number of cells) of the cluster. These
transitions occur at the same level of adhesion energy observed in our ex-
periments. We have pinpointed the role of macromolecules in the formation
of more stable clusters that can persist for a long time during the flow in
the microcirculation. These findings have a significant impact on the under-
standing of the rheology of blood, and the distribution of oxygen to tissues
through the potential impact of clusters on cell distribution at bifurcations.
It is worthy to recall that before this study, the macromolecule effect was ne-
glected in most of the theoretical models since it was commonly accepted
that the shear forces are high in the microcirculation. This is an invalid as-
sumption because the RBCs have the tendency to migrate toward the center-
line of the flow where the shear forces are low. Our findings were published
in [Brust 2014].
We have investigated the differences between the purely hydrodynamic clus-
ters and the one formed in presence of macromolecules. Our results have
shown a significant morphological difference suggesting the existence of two
kind of clusters in agreement with the experimental observations. The in-
tricate mechanisms occurring in the presence of macromolecules allow cases
where mixed type of clusters can be observed experimentally [Claveria 2015].



7.2. Perspectives 97

7.2 Perspectives

It would be interesting to investigate in the future:

• The behavior of these chaotic regimes in the presence of many vesicles, and
in more realistic cases by taking into account the presence of macromolecules.

• A simplified theoretical model explaining the nature reversal of the hydro-
dynamic interactions as a function of a set of key parameters.

• The effect of confinement on pair formation to the case of many vesicles. It
would be rather interesting to observe the effect of the number of cells on the
basin of attraction and the reference attractors (the ones predicted for a pair
of two cells).

• The effect of adhesion energy on the rheology of blood in shear and Poiseuille
flows.

• The critical shear rate needed to break a big aggregates into smaller ones.
This can be used in experiments to obtain aggregates with a specific size
(number of cells).





CHAPTER 8

Conclusions et Perspectives

8.1 Conclusions

Dans cette thèse, nous avons étudié le mouvement d’intérfaces déformables sous
écoulements dans une géométrie confinée. Dans le chapitre 3, nous avons dis-
cuté des étapes nécessaire pour construire une formulation intégrale à partir des
équations de Stokes. Nous avons utilisé la technique des images pour dériver
les fonctions de Green satisfaisant les conditions aux limites sur les parois. Nous
avons développé un outil puissant pour étudier des problèmes liés à l’écoulement
des globules rouges dans la microcirculation, puis nous avons comparé nos pré-
dictions avec les résultats experimentaux effectués dans notre équipe. Dans le
chapitre 4, nous avons utilisé notre modèle pour étudier la dynamique d’une vésicule
isolée soumise à un écoulement de Poiseuille. La vésicule est une interface pas-
sive élastique et inextensible, qui englobe un fluide interne et est suspendue dans
un fluide externe. Elle interagit avec les fluides environnant uniquement via les
forces de courbures (qui sont dérivées de l’énergie libre de courbure d’Helfrich).
L’inextensibilité de la membrane est contrainte localement ce qui assure une con-
servation globale de la surface et du périmètre. Dans le chapitre 5, nous avons
étendu le modèle au cas de N interfaces et ensuite étudié les mécanismes de forma-
tion de clusters dûs au couplage complexe entre les interactions hydrodynamiques
et le confinement. Dans le chapitre 6, nous avons introduit un modèle simpli-
fié pour inclure les les forces d’interactions intercellulaires dûes à la présence de
macromolécules. Les principaux résultats peuvent être résumé comme suit:

• la dynamique d’une vésicule isolée dans une géométrie confinée soumise
à un écoulement de Poiseuille a révélée 9 types de formes et dynamiques
distinctes, allant des solutions symétriques et asymétrique, au chaos. En
l’absence d’inertie (dans un régime de Stokes), l’écoulement de Poiseuille
est connu pour être toujours laminaire. Le couplage d’une interface élastique
isolée - interagissant seulement via les forces de courbures - avec l’écoulement,
détruit complétement le tableau: une dynamique chaotique occure. La tran-
sition des formes stationnaires au chaos à travers une cascade oscillations
sous-harmoniques survient en variant seulement un seul paramètre. Cette
étude a été publié dans [Aouane 2014].

• En l’absence des macromolécules, le mécanisme de formation de clusters
est contrôlé par les interactions hydrodynamiques. Les effets du confine-
ment ont été exploré. Des interdistances stationnaires correspondant à des
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points stables fixes (attracteurs) vers lesquelles le système tend à évoluer
dans la limite du bassin d’attraction ont été trouvé. De même, des points
instables fixes et une discontinuité ont été observé pour un certain inter-
valle de confinements. Un changement dans la nature des interactions hy-
drodynamiques menant à une répulsion (au lieu d’une attraction) et donc à
la destruction des clusters a été observé. Une relation complexe entre le con-
finement, les perturbations externes et les propriétés intrinsèque des cellules
peuvent induire ce phénomène.
Des expériences faites dans notre groupe sur les clusters hydrodynamiques
sous des conditiosn d’écoulement et de confinement constants ont montré
une distribution bimodale de l’interdistance des clusters. Le même résultat
a été observé numériquement en variant la rigidité de la membrane, une des
propriétés intrinsèques des globules rouges, dans les limites physiologiques
[Claveria 2015].

• Le rôle des macromolécules dans la formation des clusters a été étudié. L’énergie
d’adhésion correspondant à une concentration d’une certaine macromolécule
a été quantifié expérimentalement par notre équipe. Les valeurs ainsi obtenues
peuvent être directement injecté dans notre modèle qui ne dépend que d’une
seule variable: l’énergie intercellulaires. Les prédictions numériques obtenues
dans le cas de l’étude des agrégations des globules rouges et la formation de
rouleaux concorde assez bien avec les résultats obtenus expérimentalement
dans notre équipe [Flormann 2015]. La formation de clusters dans des mi-
crocanaux mimant l’écoulement des globules rouges dans la microcircula-
tion en présence de fibrinogène (ou de dextran) a été étudié. Les résultats
numériques ont montré une corrélation entre l’augmentation de l’énérgie
d’adhésion et l’augmentation de la taille des clusters (nombre de cellules for-
mant le cluster). Ces transitions occurent pour les mêmes niveaux d’énergie
d’adhésion observée dans nos expériences. Nous avons montré le rôle des
macromolécules dans la formation de clusters plus stable qui peuvent per-
sister longtemps dans la microcirculation. Ces résultats ont un important
impact sur la rhéologie du sang, et sur la distribution de l’oxygène dans les
tissues à travers l’effect possible des clusters sur la distribution des cellules
dans les bifurcations. C’est important de rappeler qu’avant cette étude, l’effet
des macromolécules a été négligé dans la plupart des modèles théoriques
puisqu’il était communément admis que les forces de cisaillement sont très
élevées dans la microcirculation. Ceci est une hypothèse non fondée parce
que les globules rouges ont tendance à migrer vers le centre du canal où les
forces de cisaillement sont trop faibles. Nos résultats ont été publié dans
[Brust 2014].
Nous avons étudié la différence entre les clusters hydrodynamiques et ceux
formés en présence de macromolécules. Nos résultats ont montré une dif-
férence morphologique soulignant l’existance de deux types de clusters en
concordance avec les résultas expérimentaux. Des cas de clusters mixtes té-
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moignant d’un couplage complexe entre les interactions hydrodynamiques
et les interactions induites par la macromolécules ont été observé expérimen-
talement [Claveria 2015].

8.2 Perspectives

Il serait intéressant d’étudier dans le future:

• Le comportement des régimes chaotiques en présence de plusieurs vésicules,
et dans un cas plus proche de la réalité en considérant la présence des macro-
molécules.

• Un simple modèle théorique expliquant le changement de la nature des in-
teractions hydrodynamiques en fonction d’un jeu de paramètres.

• L’effet du confinement sur la formation de clusters dans le cas de plusieurs
vésicules. Il serait intéressant de voir l’effet du nombre de cellules sur le
basin d’attraction et les points stables fixes (ceux prédit dans le cas d’un clus-
ter de deux cellules).

• L’effet de l’énergie d’adhésion sur la rhéologie du sang dans des écoulements
de cisaillement et de Poiseuille.

• Le taux de cisaillement critique pour briser les rouleaux en de plus petits
agrégats. Ce résultat peut-être utilisé pour obtenir des agrégats d’une taille
spécifique (nombre des cellules).





CHAPTER 9

Zusammenfassung und Ausblick

9.1 Zusammenfassung

In der vorliegenden Arbeit wurden verformbare Grenzflächen untersucht, verur-
sacht durch externe Flüsse in einer eingeschränkten Geometrien. Im Kapitel 3
wurde zur Ableitung der Randintegralgleichungen für den zweidimensionalen
Fall aus den Navier-Stokes-Gleichungen der theoretische Hintergrund dargelegt.
Zur Ableitung der Greenschen Funktionen mit den geeigneten Randbedingungen
an den Grenzflächen wurde die Spiegelbildtechnik benutzt. Dieses leistungsstarke
Werkzeug ermöglichte die realistische Untersuchung von Problemstellungen, welche
bei der Bewegung von roten Blutzellen in Mikrozikulationen auftreten. Diese
Ergebnisse wurden mit experimentellen Daten aus der Arbeitsgruppe verglichen.
Im Kapitel 4 wurde das vorgestellte Modell benutzt um das dynamische Verhalten
einzelner Vesikel in einem parabolischen Poiseuille-Fluss zu beschreiben. Vesikel
sind suspendierte, passive, volumenerhaltende, elastische Grenzflächenobjekte,
welche eine innere von einer äußeren Flüssigkeit abgrenzen. Die Wechselwirkung
mit der umgebenden Flüssigkeit wird alleinig durch die Biegekraft gekennzeich-
net. Diese wird aus der Helfrichschen Krümmungsenergie abgeleitet. Die Nich-
tausdehnbarkeit der Membrane ist eine lokale Erhaltungsgröße und führt zur glob-
alen Erhaltung der Oberfläche und des Durchmessers. Im Kapitel 5 wurde der
Randintegralmechanismus erweitert auf den Fall von N gekoppelte Grenzflächen
um die komplizierten hydrodynamischen und durch Randeffekte verursachten
Wechselwirkungen zu untersuchen. Im Kapitel 6 wurde ein einfaches Modell
zur Beschreibung der Zell-Zell Wechselwirkungskräfte vorgestellt um den Einfluss
von vorhandenen Makromolekülen in der äußeren Flüssigkeit zu beschreiben. Die
Hauptergebnisse der vorliegenden Arbeit können zusammengefasst werden zu:

• Die Dynamik eines einzelnen Vesikels in einer eingeschränkten Geometrie
bei einem Poiseuille-Fluss kann eingeteilt werden in 9 verschiedene Formen
und Dynamiken, beginnend bei symmetrischen über unsymmetrischen Lö-
sungen bis hin zum chaotischen Verhalten. Der Poiseulle-Fluss, abgeleitet
von der Stokes-Gleichung welche die Trägheitsterme vernachlässigt, ist grund-
sätzlich laminar. Bei Anwesenheit eines einzelnes elastischen Objektes, welches
lediglich über die Biegekräfte wechselwirkt, wird dieses Bild komplett zer-
stört, sogar ein chaotisches Verhalten kann auftreten. Die Übergänge von
stationären hin zum chaotischen Verhalten, über eine Kaskade von mehreren
harmonischen periodischen Oszillationen, können durch Änderung eines
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einzigen Parameters hervorgerufen werden. Diese Ergebnisse wurden in
[Aouane 2014] publiziert.

• In Abwesenheit von Makromolekülen beruht der Paarbildungsmechanismus
lediglich auf der hydrodynamischen Wechselwirkung. Die Einflüsse von
eingeschränkten Geometrien wurden untersucht. Stabile Abstände zwis-
chen den Partikeln korrespondieren mit stabilen Fixpunkten (Attraktoren)
in Bereichen wo das System sich hin zu einem Grenzzyklus entwickelt. Für
bestimmte Kanalbreiten wurden Instabile Fixpunkte, wie auch Diskontinu-
itäten gefunden. Es wurden Situationen gefunden wo die hydrodynamis-
che Wechselwirkung zur Abstoßung (anstatt zur Anziehung) führte. Dieses
spiegelt das Aufbrechen von Clustern wider und ist das Ergebnisses eines
komplizierten und komplexem Wechselspiels zwischen der geometrischen
Einschränkung, externen Rauschquellen und den intrinsischen Eigenschaften
der Zellen. Experimente in unserer Arbeitsgruppe unter den Bedingungen
einer reinen hydrodynamischen Wechselwirkung bei definierten Flusseigen-
schaften und Geometrien zeigten eine bimodale Verteilung in den Abstän-
den zwischen den Clustern. Das vorgestellte numerische Modell kann dieses
Verhalten erklären, siehe [Claveria 2015]. Es basiert auf verschiedenen Zellmem-
branesteifigkeiten, innerhalb des physiologischen Parameterbereiches. Diese
Steifigkeit ist eine intrinsische Eigenschaft von roten Blutzellen.

• Der Einfluss des Vorhandenseins von Makromolekülen auf die Clusterbil-
dung wurde untersucht. Die Anziehungskraft zwischen zwei roten Blutzellen
als Funktion der Konzentration der Makromoleküle wurde in unserer Ar-
beitsgruppe quantifiziert. Dieser Werte wurden im vorgestellten Minimalmod-
ell benutzt, welche nur von einem Parameter abhängig ist, der Oberfläch-
enenergie zwischen den Zellen. Die numerischen Vorhersagen zur Aggre-
gation von roten Blutzellen waren in guter Übereinstimmung mit ersten ex-
perimentellen Ergebnissen. Diese Untersuchungen sind weiterhin Gegen-
stand der aktuellen Forschung [Flormann 2015]. Die experimentellen Unter-
suchungen zur Clusterbildung in Mikrokanälen sind repräsentativ für den
Fluss von roten Blutzellen in Mikrozirkulation beim Vorhandensein des Plasmapro-
teins Fibrinogen (oder dem synthetischen Zuckerpolymer Dextran). Die nu-
merischen Untersuchungen zeigten eine direkte Korrelation zwischen der
angenommenen Anziehungskraft und der Größe der Cluster (Anzahl der
Zellen im Cluster). Die Übergänge in der Clustergröße bei verschiedenen
Anziehungskräften in den numerischen Simulationen waren in Übereinstim-
mung mit experimentellen Ergebnissen. Somit konnte die wichtige Rolle des
Vorhandenseins von Makromolekülen für die Clusterbildung hin zu stabil-
eren und länger bestehenden Clustern bei der Mikrozirkulation dargelegt
werden. Diese Ergebnisse haben einen signifikanten Einfluss in die Inter-
pretation der rheologischen Daten von Blut und die Verteilung des Sauer-
stoffs im Gewebe aufgrund der Zellverteilung an Abzweigungen. Es soll
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erwähnt werden, dass vor den stattgefundenen Untersuchungen, der Ein-
fluss der Makromoleküle in theoretischen Modellen größtenteils vernach-
lässigt wurde, da allgemein angenommen wurde, dass die Scherraten bei
der Mikrozirkulation groß sind. Diese Annahme ist falsch, da die roten
Blutzellen die Tendenz zeigen sich zur Mittelachse zu bewegen, wo die Scher-
raten klein sind. Die Ergebnisse wurden in [Brust 2014] publiziert. Es wur-
den die Unterschiede herausgestellt zwischen den rein hydrodynamischen
Clustern und denen welche durch das Vorhandensein von Makromolekülen
entstehen. Die Ergebnisse zeigten einen klaren morphologischen Unterschied
womit zwei Arten von Clustern definiert werden konnten. Dies ist in Übere-
instimmung mit experimentellen Ergebnissen. Die komplizierten Mechanis-
men beim Vorhandensein von Makromolekülen führen zu gemischten Clus-
terarten, welche experimentell beobachtet wurden [Claveria 2015].

9.2 Ausblick

In zukünftigen Arbeiten wäre es interessant folgende Punkte zu Untersuchen:

• Die Beschreibung des chaotischen Verhaltens wenn viele Vesikel vorhanden
sind und der mehr realistische Fall mit Berücksichtigung der Anwesenheit
von Makromolekülen.

• Ein einfaches theoretisches Modell, welches die der Umkehrung der hydro-
dynamischen Wechselwirkung als Funktion von Schlüsselparametern beschreibt.

• Der Einfluss von eingeschränkten Geometrien auf die Paarbildung im Fall
von vielen Vesikel. Es wäre interessant den Einfluss der Zellanzahl auf den
Haupattraktor zu untersuchen im Vergleich zum Attraktor hervorgerufen
durch Paare von zwei Zellen.

• Der Einfluss der Anziehungskraft zwischen den Grenzflächen auf die Rhe-
ologie des Blutes in Scher- und Poiseuille-Flüssen.

• Die Bestimmung der kritischen Scherrate um große Cluster in kleinere aufzus-
palten. Diese kann in Experimenten mit spezifizierten Aggregatgrößen (Zel-
lanzahl) Anwendung finden werden.





APPENDIX A

Membrane models

Several constitutive equations can be found in the literature describing different
kind of interfaces (e.g capsules and vesicles). Some of this models were derived to
ultimately depict the mechanical properties of the red blood cell membrane. Differ-
ent approaches exist in the literature (in addition to teh model introduced in chap-
ter 3), we cite among others the Mooney-Rivlin model which is a generalization of
the neo-Hookean law, where the membrane is considered as an isotropic hypere-
lastic thin sheet of a three-dimensional incompressible material [Pozrikidis 2005a,
Liu 2006]. The strain energy function is then expressed as a linear combination of
the first and second invariants namely I1 and I2 of the left Cauchy-Green deforma-
tion tensor (Finger deformation tensor),

WMR = C1(I1 − 3) + C2(I2 − 3) (A.1)

where C1 and C2 are the material constants and are determined empirically. For
a rbc, C1 =2.57 × 106 dyn/cm2 and C2 =0.257 × 106 dyn/cm2, corresponding to a
Young modulus of 107 dyn/cm2 [Liu 2006]. When the deformations of a linear ma-
terial are very small, C2 7→ 0 and the Mooney-Rivlin is reduced to a neo-Hookean
model. Modified versions of the Mooney-Rivlin and Neo-Hookean models have
been adopted by several authors to emphasize more on a specific aspect of the ma-
terial behavior or to express the components of the strain energy function in a more
"handy" way [Skalak 1973, Barthes-Biesel 1981, Eggleton 1998, Pozrikidis 2003]. A
second popular model, the Evans-Skalak model [Evans 1980], proposes a strain en-
ergy function build upon deformation measurements for human rbcs, and given
by

WES = Krbc(λ1λ2 − 1)2
+ αrbc[

λ2
1 + λ2

2

2λ2
1λ2

2
− 1] (A.2)

where λ1,2 are the extension ratios expressed in local in-plane curvilinear coordi-
nates. Krbc =500 dyn/cm is the area dilatation modulus, and αrbc =6 × 10−3 dyn/cm
is the shear modulus. Several studies pinpointed the role of the bending energy in
the equilibrium shape of the rbc [Fung 1965, Canham 1970, Lew 1972] and showed
a non-trivial coupling with the membrane tension (shear stresses): shear stresses
are induced when the membrane is bend even if the tension is isotropic in each
monolayer [Secomb 1988]. Therefor in the absence of terms accounting for the
bending moment, a stress-free shape (biconcave shape for a rbc) needs to be de-
fine. A parametric equation for the unstressed shape of the rbc was proposed by
Evans and Fung 1972 (EF),

D(r) = [1 − (r/R0)2]0.5[C0 + C2(r/R0)2
+ C4(R/R0)4] (A.3)
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where R0 =3.91 µm is the radius of the cell and r is the distance from the axis of
symmetry. C0, C2 and C4 are empirical coefficients defined namely as 0.81 µm,
7.83 µm and −4.39 µm [Evans 1972]. To consider the relation between bending

Figure A.1: Unstressed shape of a rbc obtained from the parametric equation of EF.
The coefficients plugged in the equation were determined on individual rbcs in a
suspension with a tonicity of 300 mO [Evans 1972].

stiffness and the externally imposed bending moment on the membrane, a con-
stitutive linear law was proposed in [Pozrikidis 2010], and then coupled to the
membrane in-plane tension as following

∆f = −(ED
∂λs

∂l
+ EBκ

∂(κ − κR)
∂l

)t + (ED(λs − 1)κ − EB
∂2(κ − κR)

∂l2 )n (A.4)

where ED and EB are the elastic and the bending moduli, λs ≡ ∂l/∂lR is the stretch,
lR is the membrane elementary arclength when the membrane is relaxed, and κ and
κR are the curvature and resting curvature of the membrane.



Bibliography

[Abkarian 2008a] M. Abkarian, M. Faivre, R. Horton, K. Smistrup, C. A Best-
Popescu and H. A Stone. Cellular-scale hydrodynamics. Biomedical Mate-
rials, vol. 3, no. 3, page 034011, 2008.

[Abkarian 2008b] M. Abkarian and A. Viallat. Vesicles and red blood cells in shear

flow. Soft Matter, vol. 4, pages 653–657, 2008.

[Adams 1973] K.H. Adams. A theory for the shape of the red blood cell. Biophysical
journal, vol. 13, no. 10, page 1049, 1973.

[Aouane 2014] O. Aouane, M. Thiébaud, A. Benyoussef, C. Wagner and C. Mis-
bah. Vesicle dynamics in a confined Poiseuille flow: From steady state to chaos.
Phys. Rev. E, vol. 90, page 033011, Sep 2014.

[Aris 1989] R. Aris. Vectors, tensors, and the basic equations of fluid mechanics.
Dover Publications, New York, 1989.

[Asakura 1958] S. Asakura and F. Oosawa. Interaction between particles suspended

in solutions of macromolecules. Journal of Polymer Science, vol. 33, no. 126,
pages 183–192, 1958.

[Baghshani 2010] H. Baghshani, S. Nazifi, M. Saeb and S. Saeb. Influence of road

transportation on plasma concentrations of acute phase proteins, including fib-

rinogen, haptoglobin, serum amyloid A, and ceruloplasmin, in dromedary camels

(Camelus dromedarius). Comparative clinical pathology, vol. 19, no. 2, pages
193–198, 2010.

[Banerjee 1962] S. Banerjee, R.C. Bhattacharjee and T.I. Singh. Hematological studies

in the normal adult Indian camel (Camelus dromedarius). American Journal of
Physiology – Legacy Content, vol. 203, no. 6, pages 1185–1187, 1962.

[Barthes-Biesel 1981] D. Barthes-Biesel and J.M. Rallison. The time-dependent de-

formation of a capsule freely suspended in a linear shear flow. Journal of Fluid
Mechanics, vol. 113, pages 251–267, 1981.

[Barthès-Biesel 2012] D. Barthès-Biesel. Microhydrodynamics and complex fluids.
CRC Press, 2012.

[Baskurt 1996] O.K. Baskurt. Deformability of red blood cells from different species stud-

ied by resistive pulse shape analysis technique. Biorheology, vol. 33, no. 2, pages
169–179, 1996.

[Baskurt 2007] O.K. Baskurt. Handbook of hemorheology and hemodynamics.
Biomedical and health research. IOS Press, 2007.



110 Bibliography

[Baskurt 2011] O. Baskurt, B. Neu and H.J. Meiselman. Red blood cell aggregation.
Taylor & Francis, 2011.

[Batchelor 2000] G.K. Batchelor. An introduction to fluid dynamics. Cambridge
Mathematical Library. Cambridge University Press, 2000.

[Beatus 2006] T. Beatus, T. Tlusty and R. Bar-Ziv. Phonons in a one-dimensional mi-

crofluidic crystal. Nature Physics, vol. 2, no. 11, pages 743–748, 2006.

[Beatus 2007] T. Beatus, R. Bar-Ziv and T. Tlusty. Anomalous microfluidic phonons

induced by the interplay of hydrodynamic screening and incompressibility. Phys-
ical review letters, vol. 99, no. 12, page 124502, 2007.

[Bergé 1992] P. Bergé, Y. Pomeau and C. Vidal. L’ordre dans le chaos. Hermann,
1992.

[Biben 2011] T. Biben, A. Farutin and C. Misbah. Three-dimensional vesicles under

shear flow: Numerical study of dynamics and phase diagram. Phys. Rev. E,
vol. 83, page 031921, Mar 2011.

[Branemark 1963] P.I. Branemark and J. Lindstrom. Shape of circulating blood cor-

puscles. Biorheology, vol. 1, pages 139–142, 1963.

[Brust 2013a] M. Brust. Rheological properties of Red Blood Cells. PhD thesis, Uni-
versität des Saarlandes (Germany) & Université Joseph Fourier, Grenoble
(France), 2013.

[Brust 2013b] M Brust, C Schaefer, R Doerr, L Pan, M Garcia, PE Arratia and
C Wagner. Rheology of human blood plasma: Viscoelastic versus Newtonian be-

havior. Physical review letters, vol. 110, no. 7, page 078305, 2013.

[Brust 2014] M. Brust, O. Aouane, M. Thiébaud, D. Flormann, C. Verdier, L. Kaest-
ner, MW Laschke, H. Selmi, A. Benyoussef, T. Podgorskiet al. The plasma

protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows. Sci-
entific reports, vol. 4, 2014.

[Calderon 2010] A.J. Calderon, B. Eshpuniyani, J.B. Fowlkes and J.L. Bull. A bound-

ary element model of the transport of a semi-infinite bubble through a microvessel

bifurcation. Physics of Fluids (1994-present), vol. 22, no. 6, page 061902,
2010.

[Canham 1968] P.B. Canham and A.C. Burton. Distribution of size and shape in pop-

ulations of normal human red cells. Circulation Research, vol. 22, no. 3, pages
405–422, 1968.

[Canham 1970] P.B. Canham. The minimum energy of bending as a possible explana-

tion of the biconcave shape of the human red blood cell. Journal of Theoretical
Biology, vol. 26, no. 1, pages 61–81, 1970.



Bibliography 111

[Cantat 1999a] I. Cantat. Dynamique de vésicules en adhésion. PhD thesis, Université
Joseph Fourier, Grenoble, 1999.

[Cantat 1999b] I. Cantat and C. Misbah. Dynamics and similarity laws for adhering

vesicles in haptotaxis. Physical review letters, vol. 83, no. 1, page 235, 1999.

[Cantat 1999c] I. Cantat and C. Misbah. Lift force and dynamical unbinding of adher-

ing vesicles under shear flow. Physical review letters, vol. 83, no. 4, page 880,
1999.

[Cantat 2000] I. Cantat, C. Misbah and Y. Saito. Vesicle propulsion in haptotaxis: A

local model. The European Physical Journal E, vol. 3, no. 4, pages 403–412,
2000.

[Cantat 2003] I. Cantat, K. Kassner and C. Misbah. Vesicles in haptotaxis with hy-

drodynamical dissipation. The European Physical Journal E: Soft Matter and
Biological Physics, vol. 10, no. 2, pages 175–189, 2003.

[Chien 1975] S. Chien. Biophysical Behaviour of Suspensions, in" The Red Blood Cell.
pages 1031–1133. D.M. Surgenor, 1975.

[Chien 1987] S. Chien. Red cell deformability and its relevance to blood flow. Annual
review of physiology, vol. 49, no. 1, pages 177–192, 1987.

[Claveria 2015] V. Claveria, O. Aouane, M. Thiébaud, M. Abkarian, G. Coupier,
C. Misbah, T. John and C. Wagner. Clusters of red blood cells in microcapillary

flow: hydrodynamic versus macromolecule induced interaction. Submitted, 2015.

[Cokelet 1968] G.R. Cokelet and H.J. Meiselman. Rheological Comparison of

Hemoglobin Solutions and Erythrocyte Suspensions. Science, vol. 162, no. 3850,
pages 275–277, 1968.

[Comeglio 1996] P. Comeglio, S. Fedi, A.A. Liotta, A.P. Cellai, E. Chiarantini,
D. Prisco, F. Mecacci, E. Parretti, G. Mello and R. Abbate. Blood clotting ac-

tivation during normal pregnancy. Thrombosis research, vol. 84, no. 3, pages
199–202, 1996.

[Coupier 2008] G. Coupier, B. Kaoui, T. Podgorski and C. Misbah. Noninertial lat-

eral migration of vesicles in bounded Poiseuille flow. Physics of Fluids (1994-
present), vol. 20, no. 11, page 111702, 2008.

[Csahók 1999] Z. Csahók, C. Misbah and A. Valance. A class of nonlinear front evo-

lution equations derived from geometry and conservation. Physica D: Nonlinear
Phenomena, vol. 128, no. 1, pages 87–100, 1999.

[Cui 2002] B. Cui, H. Diamant and B. Lin. Screened Hydrodynamic Interaction in a

Narrow Channel. Phys. Rev. Lett., vol. 89, page 188302, Oct 2002.



112 Bibliography

[Cui 2004] B. Cui, H. Diamant, B. Lin and S.A. Rice. Anomalous Hydrodynamic In-

teraction in a Quasi-Two-Dimensional Suspension. Phys. Rev. Lett., vol. 92,
page 258301, Jun 2004.

[Dao 2003] M. Dao, C.T. Lim and S. Suresh. Mechanics of the human red blood cell

deformed by optical tweezers. Journal of the Mechanics and Physics of Solids,
vol. 51, no. 11-12, pages 2259–2280, 2003. Proceedings of a Symposium on
Dynamic Failure and Thin Film Mechanics, honoring Professor L.B. Fre-
und.

[Di Napoli 2001] M. Di Napoli, F. Papa and V. Bocola. C-reactive protein in ischemic

stroke an independent prognostic factor. Stroke, vol. 32, no. 4, pages 917–924,
2001.

[Diamant 2005] H. Diamant, B. Cui, B. Lin and S.A. Rice. Hydrodynamic interaction

in quasi-two-dimensional suspensions. Journal of Physics: Condensed Matter,
vol. 17, no. 31, page S2787, 2005.

[Eggleton 1998] C.D. Eggleton and A.S. Popel. Large deformation of red blood cell

ghosts in a simple shear flow. Physics of Fluids (1994-present), vol. 10, no. 8,
pages 1834–1845, 1998.

[Ernst 1993] E. Ernst and K.L. Resch. Fibrinogen as a cardiovascular risk factor: a meta-

analysis and review of the literature. Annals of Internal Medicine, vol. 118,
no. 12, pages 956–963, 1993.

[Evans 1972] E. Evans and Y.C. Fung. Improved measurements of the erythrocyte ge-

ometry. Microvascular research, vol. 4, no. 4, pages 335–347, 1972.

[Evans 1976] E.A. Evans and R.M. Hochmuth. Membrane viscoelasticity. Biophysi-
cal Journal, vol. 16, no. 1, page 1, 1976.

[Evans 1980] .E Evans, R. Skalaket al. Mechanics and thermodynamics of biomem-

branes. 1980.

[Fåhraeus 1929] R. Fåhraeus. The suspension stability of the blood. Physiological
Reviews, vol. 9, no. 2, pages 241–274, 1929.

[Fåhræus 1931] R. Fåhræus and T. Lindqvist. The viscosity of the blood in narrow

capillary tubes. American Journal of Physiology–Legacy Content, vol. 96,
no. 3, pages 562–568, 1931.

[Farutin 2012] A. Farutin, O. Aouane and C. Misbah. Vesicle dynamics under weak

flows: Application to large excess area. Physical Review E, vol. 85, no. 6, page
061922, 2012.

[Farutin 2014] A. Farutin and C. Misbah. Symmetry breaking and cross-streamline

migration of three-dimensional vesicles in an axial Poiseuille flow. Phys. Rev. E,
vol. 89, page 042709, Apr 2014.



Bibliography 113

[Fedosov 2014] D. A. Fedosov, M. Peltomaki and G. Gompper. Deformation and

dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter,
vol. 10, pages 4258–4267, 2014.

[Flormann 2015] D. Flormann, O. Aouane, L. Kaestner, T. Podgorski, S. Svetina,
C. Misbah and C. Wagner. Contact zones of small and large red blood cell clusters

from low to high dextran and fibrinogen concentrations. In preparation, 2015.

[Fung 1965] Y.C. Fung. Theoretical considerations of the elasticity of red cells and small

blood vessels. In Federation Proceedings, volume 25, pages 1761–1772, 1965.

[Fung 1968] Y.C. Fung and P. Tong. Theory of the sphering of red blood cells. Biophys-
ical journal, vol. 8, no. 2, page 175, 1968.

[Ghigliotti 2009] G. Ghigliotti, H. Selmi, B. Kaoui, G. Biros and C. Misbah. Dynam-

ics and rheology of highly deflated vesicles. In Esaim: proceedings, volume 28,
pages 211–226. EDP Sciences, 2009.

[Ghigliotti 2010a] G. Ghigliotti. Dynamics and rheology of a suspension of vesicles and

red blood cells. PhD thesis, Université Joseph Fourier, Grenoble, 2010.

[Ghigliotti 2010b] G. Ghigliotti, T. Biben and C. Misbah. Rheology of a dilute two-

dimensional suspension of vesicles. Journal of Fluid Mechanics, vol. 653, pages
489–518, 2010.

[Ghigliotti 2011] G. Ghigliotti, A. Rahimian, G. Biros and C. Misbah. Vesicle mi-

gration and spatial organization driven by flow line curvature. Physical review
letters, vol. 106, no. 2, page 028101, 2011.

[Ghigliotti 2012] G. Ghigliotti, H. Selmi, L. El Asmi and C. Misbah. Why and how

does collective red blood cells motion occur in the blood microcirculation? Physics
of Fluids (1994-present), vol. 24, no. 10, page 101901, 2012.

[Goldsmith 1989] H.L. Goldsmith, G.R. Cokelet and P. Gaehtgens. Robin Fahraeus:

evolution of his concepts in cardiovascular physiology. American Journal of
Physiology-Heart and Circulatory Physiology, vol. 257, no. 3, pages H1005–
H1015, 1989.

[Goldsmith 1999] H.L. Goldsmith, D.N. Bell, S. Spain and F.A. McIntosh. Effect of

red blood cells and their aggregates on platelets and white cells in flowing blood.
Biorheology, vol. 36, no. 5, pages 461–468, 1999.

[Groisman 2000] A. Groisman and V. Steinberg. Elastic turbulence in a polymer so-

lution flow. Nature, vol. 405, no. 6782, pages 53–55, 2000.

[Guido 2009] S. Guido and G. Tomaiuolo. Microconfined flow behavior of red blood

cells in vitro. Comptes Rendus Physique, vol. 10, no. 8, pages 751–763, 2009.



114 Bibliography

[Handa 1989] K. Handa, S. Kono, K. Saku, J. Sasaki, T. Kawano, Y. Sasaki, T. Hiroki
and K. Arakawa. Plasma fibrinogen levels as an independent indicator of severity

of coronary atherosclerosis. Atherosclerosis, vol. 77, no. 2, pages 209–213,
1989.

[Hazewinkel 1990] M. Hazewinkel. Encyclopaedia of mathematics. Numeéro
vol. 6 de Encyclopaedia of Mathematics. Springer Netherlands, 1990.

[Helfrich 1973] W. Helfrich. Elastic Properties of Lipid Bilayers: Theory and Possible

Experiments. Z. Naturforsch., vol. 28c, pages 693–703, 1973.

[Homan 1988] R. Homan and H.J. Pownall. Transbilayer diffusion of phospholipids:

dependence on headgroup structure and acyl chain length. Biochimica et Bio-
physica Acta (BBA)-Biomembranes, vol. 938, no. 2, pages 155–166, 1988.

[Janssen 2012] P.J.A. Janssen, M.D. Baron, P.D. Anderson, J. Blawzdziewicz,
M. Loewenberg and E. Wajnryb. Collective dynamics of confined rigid spheres

and deformable drops. Soft Matter, vol. 8, no. 28, pages 7495–7506, 2012.

[Jeon 1992] K.W. Jeon and M. Friedlander. International review of cytology. Nu-
meéro vol. 130. Elsevier Science, 1992.

[Ju 2013] Meongkeun Ju, Swe Soe Ye, Hong Tong Low, Junfeng Zhang, Pedro
Cabrales, Hwa Liang Leo and Sangho Kim. Effect of deformability difference

between two erythrocytes on their aggregation. Physical biology, vol. 10, no. 3,
page 036001, 2013.

[Kaestner 2012] L. Kaestner, P. Steffen, D.B. Nguyen, J. Wang, L. Wagner-Britz,
A. Jung, C. Wagner and I. Bernhardt. Lysophosphatidic acid induced red blood

cell aggregation in vitro. Bioelectrochemistry, vol. 87, pages 89–95, 2012.

[Kannel 1990] W.B. Kannel, R.B. D’Agostino, P.W.F. Wilson, A.J. Belanger and D.R.
Gagnon. Diabetes, fibrinogen, and risk of cardiovascular disease: the Framingham

experience. American heart journal, vol. 120, no. 3, pages 672–676, 1990.

[Kaoui 2008] B. Kaoui, G.H. Ristow, I. Cantat, C. Misbah and W. Zimmermann.
Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow.
Physical Review E, vol. 77, no. 2, page 021903, 2008.

[Kaoui 2009a] B. Kaoui. Modelling vesicle dynamics in extended geometries and in mi-

crofluidic devices. PhD thesis, Université Joseph Fourier, Grenoble & Uni-
versité Hassan II, Casablanca (Morocco), 2009.

[Kaoui 2009b] B. Kaoui, G. Biros and C. Misbah. Why do red blood cells have asym-

metric shapes even in a symmetric flow? Physical review letters, vol. 103,
no. 18, page 188101, 2009.



Bibliography 115

[Kaoui 2009c] B. Kaoui, A. Farutin and C. Misbah. Vesicles under simple shear flow:

Elucidating the role of relevant control parameters. Physical Review E, vol. 80,
no. 6, page 061905, 2009.

[Kaoui 2011a] B. Kaoui, J. Harting and C. Misbah. Two-dimensional vesicle dynamics

under shear flow: Effect of confinement. Physical Review E, vol. 83, no. 6, page
066319, 2011.

[Kaoui 2011b] B. Kaoui, N. Tahiri, T. Biben, H. Ez-Zahraouy, A. Benyoussef,
G. Biros and C. Misbah. Complexity of vesicle microcirculation. Physical Re-
view E, vol. 84, no. 4, page 041906, 2011.

[Khodadad 1983] J.K. Khodadad and R.S. Weinstein. The band 3-rich membrane of

llama erythrocytes: studies on cell shape and the organization of membrane pro-

teins. The Journal of membrane biology, vol. 72, no. 3, pages 161–171, 1983.

[Kim 2013] S. Kim and S.J. Karrila. Microhydrodynamics: Principles and selected
applications. Dover Civil and Mechanical Engineering. Dover Publications,
2013.

[Klitzman 1979] B. Klitzman and B.R. Duling. Microvascular hematocrit and red

cell flow in resting and contracting striated muscle. American Journal of
Physiology-Heart and Circulatory Physiology, vol. 237, no. 4, pages H481–
H490, 1979.

[Ladyzhenskaya 1969] O.A. Ladyzhenskaya and R.A. Silverman. The mathemat-
ical theory of viscous incompressible flow, volume 76. Gordon and Breach
New York, 1969.

[Lamb 1945] H. Lamb. Hydrodynamics. Dover Books on Physics. Dover Publica-
tions, 1945.

[Lanotte 2013] L. Lanotte. Deformation and aggregation of red blood cells and vesicles

flowing in microchannels. PhD thesis, Università degli Studi Federico II di
Napoli & Université Joseph Fourier, Grenoble (France), 2013.

[Lanotte 2014] Luca Lanotte, Giovanna Tomaiuolo, Chaouqi Misbah, Lionel Bu-
reau and Stefano Guido. Red blood cell dynamics in polymer brush-coated

microcapillaries: A model of endothelial glycocalyx in vitro. Biomicrofluidics,
vol. 8, no. 1, page 014104, 2014.

[Lee 1993] A.J. Lee, G.D. Lowe, M. Woodward and H. Tunstall-Pedoe. Fibrinogen

in relation to personal history of prevalent hypertension, diabetes, stroke, intermit-

tent claudication, coronary heart disease, and family history: the Scottish Heart

Health Study. British Heart Journal, vol. 69, no. 4, pages 338–342, 1993.

[Leichtberg 1976] S. Leichtberg, R. Pfeffer and S. Weinbaum. Stokes flow past fi-

nite coaxial clusters of spheres in a circular cylinder. International Journal of
Multiphase Flow, vol. 3, no. 2, pages 147–169, 1976.



116 Bibliography

[Lew 1972] Hyok Sang Lew. Electro-tension and torque in biological membranes mod-

eled as a dipole sheet in fluid conductors. Journal of Biomechanics, vol. 5, no. 4,
pages 399 – 408, 1972.

[Li 1975] T.-Y. Li and J.A. Yorke. Period three implies chaos. American mathematical
monthly, pages 985–992, 1975.

[Linderkamp 1982] O. Linderkamp and H. J. Meiselman. Geometric, osmotic, and

membrane mechanical properties of density- separated human red cells. Blood,
vol. 59, no. 6, pages 1121–1127, 1982.

[Lipowsky 1980] H.H. Lipowsky, S. Usami and S. Chien. In vivo measurements of

apparent viscosity and microvessel hematocrit in the mesentery of the cat. Mi-
crovascular research, vol. 19, no. 3, pages 297–319, 1980.

[Lipowsky 1995] R. Lipowsky and E. Sackmann. Structure and dynamics of mem-
branes: I. from cells to vesicles/ii. generic and specific interactions. Else-
vier, 1995.

[Liron 1976] N. Liron and S. Mochon. Stokes flow for a stokeslet between two parallel

flat plates. Journal of Engineering Mathematics, vol. 10, no. 4, pages 287–
303, 1976.

[Liu 2006] Y. Liu and W.K. Liu. Rheology of red blood cell aggregation by computer

simulation. Journal of Computational Physics, vol. 220, no. 1, pages 139–
154, 2006.

[Lui 2013] S.H. Lui. On Period-tripling and Quadrupling Bifurcations. Journal of
Modern Mathematics Frontier, vol. 2, no. 2, pages 74–77, 2013.

[Mader 2001] S. Mader. Human biology. McGraw-Hill Education, 2001.

[Madl 1993] C Madl, R Koppensteiner, B Wendelin, K Lenz, L Kramer, G Grimm,
A Kranz, B Schneeweiss and H Ehringer. Effect of immunoglobulin admin-

istration on blood rheology in patients with septic shock. Circulatory shock,
vol. 40, no. 4, pages 264–267, 1993.

[Maeda 1985] N. Maeda and T. Shiga. Inhibition and acceleration of erythrocyte aggre-

gation induced by small macromolecules. Biochimica et Biophysica Acta (BBA)
- General Subjects, vol. 843, no. 1-2, pages 128 – 136, 1985.

[Maeda 1986a] N. Maeda, M. Sekiya, K. Kameda and T. Shiga. Effect of im-

munoglobulin preparations on the aggregation of human erythrocytes. European
Journal of Clinical Investigation, vol. 16, no. 2, pages 184–191, 1986.

[Maeda 1986b] N. Maeda and T. Shiga. Opposite effect of albumin on the erythrocyte

aggregation induced by immunoglobulin G and fibrinogen. Biochimica et Bio-
physica Acta (BBA)-Biomembranes, vol. 855, no. 1, pages 127–135, 1986.



Bibliography 117

[McWhirter 2011] J.L. McWhirter, H. Noguchi and G. Gompper. Deformation and

clustering of red blood cells in microcapillary flows. Soft Matter, vol. 7, no. 22,
pages 10967–10977, 2011.

[Mohandas 2008] N. Mohandas and P. G. Gallagher. Red cell membrane: past,

present, and future. Blood, vol. 112, no. 10, pages 3939–3948, 2008.

[Morrison 2001] F.A. Morrison. Understanding rheology. Topics chemical engi-
neering : A series of textbooks and monographs. Oxford University Press,
2001.

[Nash 1993] G.B. Nash and S. Egginton. Comparative rheology of human and trout

red blood cells. The Journal of Experimental Biology, vol. 174, no. 1, pages
109–22, 1993.

[Neu 2002] B. Neu and H.J. Meiselman. Depletion-mediated red blood cell aggregation

in polymer solutions. Biophysical journal, vol. 83, no. 5, pages 2482–2490,
2002.

[Nguyen 2011] D.B. Nguyen, L. Wagner-Britz, S. Maia, P. Steffen, C. Wagner,
L. Kaestner and I. Bernhardt. Regulation of phosphatidylserine exposure in

red blood cells. Cellular Physiology and Biochemistry, vol. 28, no. 5, pages
847–856, 2011.

[Olbricht 1987] W.L. Olbricht and D.M. Kung. The interaction and coalescence of liq-

uid drops in flow through a capillary tube. Journal of Colloid and Interface
Science, vol. 120, no. 1, pages 229 – 244, 1987.

[Ott 2002] E. Ott. Chaos in dynamical systems. Cambridge university press, 2002.

[Popel 2005] A.S. Popel and P.C. Johnson. Microcirculation and hemorheology. An-
nual review of fluid mechanics, vol. 37, page 43, 2005.

[Pozrikidis 1992] C. Pozrikidis. Boundary integral and singularity methods for
linearized viscous flow. Cambridge Texts in Applied Mathematics. Cam-
bridge University Press, 1992.

[Pozrikidis 2002] C. Pozrikidis. A practical guide to boundary element methods
with the software library bemlib. Taylor & Francis, 2002.

[Pozrikidis 2003] C. Pozrikidis. Numerical Simulation of the Flow-Induced Deforma-

tion of Red Blood Cells. Annals of Biomedical Engineering, vol. 31, no. 10,
pages 1194–1205, 2003.

[Pozrikidis 2005a] C. Pozrikidis. Axisymmetric motion of a file of red blood cells

through capillaries. Physics of Fluids (1994-present), vol. 17, no. 3, page
031503, 2005.



118 Bibliography

[Pozrikidis 2005b] C. Pozrikidis. Numerical simulation of cell motion in tube flow.
Ann. Biomed. Eng., vol. 33, pages 165–178, 2005.

[Pozrikidis 2010] C. Pozrikidis. Computational hydrodynamics of capsules and
biological cells. CRC Press, 2010.

[Reynafarje 1975] C. Reynafarje, J. Faura, D. Villavicencio, A. Curaca, B. Reyna-
farje, L. Oyola, L. Contreras, E. Vallenas and A. Faura. Oxygen transport of

hemoglobin in high-altitude animals (Camelidae). Journal of Applied Physiol-
ogy, vol. 38, no. 5, pages 806–810, 1975.

[Sabeti 2005] S. Sabeti, M. Exner, W. Mlekusch, J. Amighi, P. Quehenberger,
H. Rumpold, G. Maurer, E. Minar, O. Wagner and M. Schillinger. Prognostic

impact of fibrinogen in carotid atherosclerosis nonspecific indicator of inflamma-

tion or independent predictor of disease progression? Stroke, vol. 36, no. 7, pages
1400–1404, 2005.

[Schmid-Schönbein 1981] H. Schmid-Schönbein and P. Gaehtgens. What is red cell

deformability? Scandinavian Journal of Clinical & Laboratory Investigation,
vol. 41, no. S156, pages 13–26, 1981.

[Schroeder 2012] M.R. Schroeder. Fractals, chaos, power laws: Minutes from an
infinite paradise. Dover Publications, Incorporated, 2012.

[Secomb 1982] T.W. Secomb and R. Skalak. A two-dimensional model for capillary

flow of an asymmetric cell. Microvascular Research, vol. 24, no. 2, pages 194
– 203, 1982.

[Secomb 1988] T.W. Secomb. Interaction between bending and tension forces in bilayer

membranes. Biophysical journal, vol. 54, no. 4, page 743, 1988.

[Selmi 2011] H. Selmi, L. Elasmi, G. Ghigliotti and C. Misbah. Boundary integral

and fast multipole method for two dimensional vesicle sets in poiseuille flow. Dis-
crete and Continuous Dynamical Systems-Series B (DCDS-B), vol. 15, no. 4,
pages 1065–1076, 2011.

[Shani 2014] I. Shani, T. Beatus, R. H Bar-Ziv and T. Tlusty. Long-range orientational

order in two-dimensional microfluidic dipoles. Nature Physics, vol. 10, no. 2,
pages 140–144, 2014.

[Skalak 1969] R. Skalak and P. I. Branemark. Deformation of Red Blood Cells in Cap-

illaries. Science, vol. 164, no. 3880, pages 717–719, 1969.

[Skalak 1973] R. Skalak, A. Tozeren, R.P. Zarda and S. Chien. Strain energy function

of red blood cell membranes. Biophysical Journal, vol. 13, no. 3, pages 245–264,
1973.



Bibliography 119

[Smith 1979] J.E. Smith, N. Mohandas and S.B. Shohet. Variability in erythrocyte de-

formability among various mammals. American Journal of Physiology - Heart
and Circulatory Physiology, vol. 236, no. 5, pages H725–H730, 1979.

[Steffen 2011] P. Steffen, A. Jung, D.B. Nguyen, T. Müller, I. Bernhardt, L. Kaestner
and C. Wagner. Stimulation of human red blood cells leads to Ca 2+-mediated

intercellular adhesion. Cell calcium, vol. 50, no. 1, pages 54–61, 2011.

[Steffen 2012] P. Steffen. Quantification of Red Blood Cell Adhesion using Holographic

Optical Tweezers and Single Cell Force Spectroscopy. PhD thesis, Universität
des Saarlandes (Germany), 2012.

[Steffen 2013] P. Steffen, C. Verdier and C. Wagner. Quantification of depletion-

induced adhesion of red blood cells. Physical review letters, vol. 110, no. 1,
page 018102, 2013.

[Surgenor 1974] D.M.N. Surgenor. The red blood cell. Numeéro Bd. 1. Elsevier
Science, 1974.

[Surgenor 1975] D.M.N. Surgenor. The red blood cell. Numeéro Bd. 2. Elsevier
Science, 1975.

[Svetina 2008] S. Svetina and P. Ziherl. Morphology of small aggregates of red blood

cells. Bioelectrochemistry, vol. 73, pages 84–91, 2008.

[Tahiri 2013a] N. Tahiri. Simulation de Globules Rouges modèles, et analyse analy-

tique de modèles de suspensions très concentrées. PhD thesis, Université Joseph
Fourier, Grenoble (France) & Université Mohammed V-agdal, Rabat (Mo-
rocco), 2013.

[Tahiri 2013b] N. Tahiri, T. Biben, H. Ez-Zahraouy, A. Benyoussef and C. Misbah.
On the problem of slipper shapes of red blood cells in the microvasculature. Mi-
crovascular research, vol. 85, pages 40–45, 2013.

[Thiébaud 2013] M. Thiébaud and C. Misbah. Rheology of a vesicle suspension with

finite concentration: A numerical study. Phys. Rev. E, vol. 88, page 062707,
Dec 2013.

[Thiébaud 2014] Marine Thiébaud, Zaiyi Shen, Jens Harting and Chaouqi Misbah.
Prediction of anomalous blood viscosity in confined shear flow. Physical review
letters, vol. 112, no. 23, page 238304, 2014.

[Tomaiuolo 2009] G. Tomaiuolo, M. Simeone, V. Martinelli, B. Rotoli and S. Guido.
Red blood cell deformation in microconfined flow. Soft Matter, vol. 5, pages
3736–3740, 2009.

[Tomaiuolo 2012] G. Tomaiuolo, L. Lanotte, G. Ghigliotti, C. Misbah and S. Guido.
Red blood cell clustering in Poiseuille microcapillary flow. Physics of Fluids
(1994-present), vol. 24, no. 5, page 051903, 2012.



120 Bibliography

[Vlahovska 2009] P. M. Vlahovska, T. Podgorski and C. Misbah. Vesicles and red

blood cells: from individual dynamics to rheology. C.R. Physique, vol. 10, no. 1,
page 775, 2009.

[Vlahovska 2013] P.M. Vlahovska, D. Barthes-Biesel and C. Misbah. Flow dynamics

of red blood cells and their biomimetic counterparts. Comptes Rendus Physique,
vol. 14, no. 6, pages 451 – 458, 2013. Living fluids / Fluides vivants.

[Wang 1969] H. Wang and R. Skalak. Viscous flow in a cylindrical tube containing a

line of spherical particles. Journal of Fluid Mechanics, vol. 38, pages 75–96, 8
1969.

[Waugh 1976] R. Waugh and E.A. Evans. Viscoelastic properties of erythrocyte mem-

branes of different vertebrate animals. Microvascular research, vol. 12, no. 3,
pages 291–304, 1976.

[Welles 1997] E.G. Welles, D.G. Pugh, J.G.W. Wenzel, B. Waldridge and R. Hanson.
Liver biopsy in llamas. Equine Practice, vol. 19, pages 24–29, 1997.

[Windberger 2003] U. Windberger, A. Bartholovitsch, R. Plasenzotti, K.J. Korak
and G. Heinze. Whole Blood Viscosity, Plasma Viscosity and Erythrocyte Aggre-

gation in Nine Mammalian Species: Reference Values and Comparison of Data.
Experimental Physiology, vol. 88, no. 3, pages 431–440, 2003.

[Yagil 1974] R. Yagil, U.A. Sod-Moriah and N. Meyerstein. Dehydration and camel

blood. II. Shape, size, and concentration of red blood cells. American Journal of
Physiology – Legacy Content, vol. 226, no. 2, pages 301–304, 1974.

[Ze-Hui 2006] J. Ze-Hui, W. Yun-Ying and W. Jing. Subharmonic motion of granular

particles under vertical vibrations. EPL (Europhysics Letters), vol. 74, no. 3,
page 417, 2006.

[Zhang 2008] J. Zhang, P.C. Johnson and A.S. Popel. Red blood cell aggregation and

dissociation in shear flows simulated by lattice Boltzmann method. Journal of
Biomechanics, vol. 41, pages 47–55, 2008.

[Zhao 2010] H. Zhao, A.H.G. Isfahani, Luke N. Olson and Jonathan B. Freund. A

spectral boundary integral method for flowing blood cells. Journal of Computa-
tional Physics, vol. 229, no. 10, pages 3726 – 3744, 2010.

[Zhusubaliyev 2003] Z.T. Zhusubaliyev and E. Mosekilde. Bifurcations and chaos
in piecewise-smooth dynamical systems. World Scientific series on nonlin-
ear science: Monographs and treatises. World Scientific, 2003.


	1 General Introduction
	1.1 Scope of the Thesis
	1.2 Generalities about Blood and its components
	1.2.1 Sloppy definition of red blood cells aggregation
	1.2.2 Blood plasma: composition and role on aggregation of red blood cells
	1.2.3 Red blood cells: discovery and properties
	1.2.4 A short note about blood rheology in microcirculation


	2 State of Art
	3 Theoretical Framework
	3.1 Stokes Flows
	3.2 Boundary integral equation for Stokes flow
	3.2.1 Lorentz reciprocal theorem
	3.2.2 Integral representation of Stokes equations
	3.2.3 Boundary integral formulation for a single red blood cell in an unbounded geometry

	3.3 Red blood cell membrane models 
	3.4 Numerical procedure
	3.4.1 Image method for a flow confined between two parallel flat walls
	3.4.2 Alternative to the image technique
	3.4.3 Time discretization


	4 Dynamics and morphologies of a single vesicle in a confined Poiseuille flow
	4.1 Introduction
	4.2 Description of the model
	4.3 Results
	4.3.1 Effect of flow strength and confinement on the shape of a vesicle with no viscosity contrast
	4.3.2 Phase diagram
	4.3.3 Benchmark
	4.3.4 RBC-like vesicles in microcirculation conditions

	4.4 Conclusions

	5 Mechanisms of Hydrodynamic Clustering
	5.1 Introduction
	5.2 Description of the method
	5.3 Results
	5.3.1 Estimation of the hydrodynamic interaction length
	5.3.2 Phase diagram and basin of attraction
	5.3.3 Effect of the intrinsic properties of the cells on clustering

	5.4 Conclusions

	6 Aggregation of Red Blood Cells and Protein Induced Clusters in Microcirculation
	6.1 Introduction
	6.2 Cell-cell interaction model
	6.3 Results
	6.3.1 Rouleaux formation in a quiescent fluid
	6.3.2 Flow of RBCs-like vesicles in microcirculation

	6.4 Conclusions

	7 Conclusions and Perspectives
	7.1 Conclusions
	7.2 Perspectives

	8 Conclusions et Perspectives
	8.1 Conclusions
	8.2 Perspectives

	9 Zusammenfassung und Ausblick
	9.1 Zusammenfassung
	9.2 Ausblick

	A Membrane models
	Bibliography

