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Abstract

Automatic speech recognition is becoming increasingly more important, with
commercial applications such as call steering, dictation or voice-enabled personal
assistance systems. Although successful in many respects, the performance of such
systems can significantly degrade in noisy environment such as a crowded restau-
rant. This is due to the fact that noise introduces a mismatch between the clean
speech features, which the ASR system has been trained with, and the noisy speech
features that are encountered in the operational environment.

This dissertation tries to mitigate the degradation in performance using two princi-
pally different approaches: speech feature enhancement (SFE) techniques, which
minimize the mismatch between clean and noisy features, and missing feature
reconstruction (MFR) techniques, which infer the values of noise-corrupted fre-
quency bins from non-corrupted ones. Particular contributions include (1) a
phase-averaged model of how noise corrupts clean speech features, (2) better noise
estimation with a Monte Carlo variant of the expectation maximization algorithm,
(3) an adaptive level of detail transform that allows for more accurate transforma-
tions of Gaussian random variables, and (4) a bounded conditional mean imputa-
tion technique.

In addition to the above, it is shown that both SFE and MFR techniques can be
derived within the same mathematical framework, just using different models of
how noise corrupts clean speech features.





Deutsche Zusammenfassung

Automatische Spracherkennung nimmt einen zusehends wichtigeren Stellenwert
ein. Kommerzielle Anwendungen beinhalten Call Steering, Diktieren und sprach-
gesteuerte Assistenzsysteme. Obwohl derartige Anwendungen durchaus erfolgre-
ich sein können, so leiden sie doch an der Tatsache, dass sich die Spracherken-
nungsgenauigkeit in geräuschbehafteten Umgebungen verschlechtert. Das rührt
daher, dass Hintergrundgeräusche eine Unstimmigkeit zwischen klaren Sprach-
merkmalen im Training und geräsuchbehafteten Merkmalen im Einsatz verur-
sachen.

Diese Dissertation untersucht zwei verschiedene Herangehensweisen an dieses
Problem: Methoden zur Sprachmerkmalsverstärkung (SMV), welche Unstimmig-
keiten zwischen Merkmalen minimieren, und Methoden zur Vervollständigung
fehlender Merkmale (VFM), welche stark geräuschgestörte Frequenzen mittels
weniger gestörter Frequenzen restaurieren. Spezifische Beiträge umfassen: (1) ein
phasengemitteltes Modell dafür, wie Geräusche klare Sprachmerkmale korrum-
pieren, (2) verbesserte Geräuschschätzung durch einen Monte Carlo Expectation
Maximization Algorithmus, (3) genauere Transformationen gaußscher Zufallsvari-
ablen durch einen adaptiven Detailgrad, (4) eine Vervollständigungstechnik, die
auf dem beschränkten, bedingten Mittelwert beruht.

Zusätzlich zu obigem wird gezeigt, dass SMV und VFM Methoden sich im gleichen
mathematischen Rahmenwerk herleiten lassen, nur eben unter Verwendung ver-
schiedener Modelle für die Korrumpierung von Sprachmerkmalen.
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1
Introduction

In the last decade, automatic speech recognition (ASR) technology has advanced to the point

where economically viable real world applications are possible. Commercially successful prod-

ucts include interactive voice response (IVR) systems for customer self-service or call steering,

transcription services for medical records (using e.g. Nuance SpeechMagicT M or M*Modal’s

SpeechQ) as well as direct voice input (DVI) for high-performance fighter aircraft (e.g. the Eu-

rofighter Typhoon). There are other areas of application such as voice indexing of multimedia

files, quality monitoring for call centers, voice search and and dictation. Nonetheless, ASR tech-

nology has so far failed to be accepted as a general user interface for computer systems [1, 2]-

The reason identified in [1] is that

“Speech systems introduce an additional layer between the user and their under-

standing of the application because of the step of interpreting the acoustic signal as

text.”

This can cause confusion on the user-side about how to appropriately convey their intent. If

the system does not respond as expected, users are often puzzled whether they should (1) pro-

nounce words more clearly, (2) simplify the sentence to ease interpretation, or (3) give more

details in order to specify the intent [3]. Of course there are ways to cope with these problems,

such as giving appropriate user feedback [1], making use of context-awareness [2], or letting the

user repeat a request when the ASR confidence score is too low [3]. Appropriate training also

seems to make a big difference [4]. But it is usually impeded by the fact that home users are not

willing to spend up to 50 hours of effort before enjoying the benefits of a new technology. This

stands in contrast to professional users, e.g. in the healthcare sector [4, 5].

1



2 CHAPTER 1. INTRODUCTION

Nonetheless, ASR technology is now finding its way into home consumer products, in par-

ticular since the introduction of Siri1 – Apple’s voice-enabled electronic personal assistant that

seems to solve some of the above mentioned issues. A remaining problem is that of bad ASR

accuracy in noisy environments, which, among other things, triggers Siri to give answers like

“I’m not sure what you said” or “I don’t know what you mean by [...] but I can search the web

for you”. This worsens if the user does not speak directly into the microphone but speaks from

some distance, e.g. in order to see the information shown on the display. According to [3],

“Fausto Marasco, CEO of Premier Technologies, indicated that his company’s

market research showed that half of all complaints about spoken language dialogue

systems concerned recognition errors.”

Although Lee and Lai [6] arrived at a much more positive conclusion, only 64% of their users

responded that their utterances were understood either very well or somewhat well (at a recog-

nition error rate of 20 to 25%). These numbers can be expected to look worse in a noisy envi-

ronment, where a recognition error rate of under 1% for clean speech digits can easily increase

to 66% at 5 dB car noise [7].

1.1 The Approach Taken in This Thesis

The work in this thesis tries to reduce the error rate in noisy environments to a more reasonable

number, ideally below the threshold of 15% where spoken dialogue systems are considered

usable [6]. Research in this direction started about thirty years ago, with classical frequency

domain noise reduction approaches such as spectral subtraction [8] and Wiener filtering [9, 10],

which estimate the clean speech signal in a minimum mean square error fashion. More recent

work, such as Acero’s codeword-dependent cepstral normalization (CDCN) [11], has tried to

optimize noise reduction specifically for speech recognition. Picking up on this idea, this thesis

takes a Bayesian approach, which

1. uses prior knowledge of how clean speech “looks like” in order to more accurately sup-

press the noise.

2. estimates noise based on the clean speech prior, using e.g. the expectation maximization

(EM) algorithm or a particle filter.

3. works on log-Mel spectra (see Section 5) in order to perform noise reduction in a domain

that is of relevance to speech recognition.

Next to elaborating on the theoretical underpinnings of this approach, including a transfor-

mation-centric view of Bayesian state estimation, this work also extends the existing theory.

That is accomplished by introducing an adaptive level of detail transform [12, 13] which more

1 see e.g. http://en.wikipedia.org/wiki/Siri_(software)

http://en.wikipedia.org/wiki/Siri_(software)
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accurately treats nonlinearities. The probably most intriguing aspect of the work is a unified

derivation of two major noise reduction approaches that have so far been considered indepen-

dently:

1. speech feature enhancement techniques, which try to stochastically map noisy speech

to clean speech features (see Section 6).

2. missing feature reconstruction techniques, which try to infer the values of noise cor-

rupted parts of the spectrum from non-corrupted ones (see Section 7).

It is shown in particular that both these approaches can be viewed as a special case of Bayesian

estimation theory, using the same equations, just different models of how noise affects clean

speech features. The most important practical contributions include the development of a

phase-averaged model for how noise corrupts clean speech features [14], improvements to

noise estimation algorithms [15, 16] as well as the bounded conditional mean imputation tech-

nique from [17].

1.2 Chapter-by-Chapter Review

The following again gives a chapter-by-chapter review of this thesis with a more complete list

of the individual contributions.

Chapter 2 starts with a brief introduction to basic concepts of probability theory, including

a derivation of the fundamental transformation law of probability, conditional and marginal

Gaussian distributions, the expectation maximization algorithm and Monte Carlo methods.

Where possible, we also try to cover the historical development.

Chapter 3 forms one of the central chapters of this thesis. It shows how Bayesian state estima-

tion can be viewed as a two step procedure, in which the first step predicts the joint distribu-

tion of state and observation, and in which the second step conditions the predicted distribu-

tion on the received observation (Section 3.1). As the first step requires a possibly nonlinear

transformation of random variables (for which there mostly is no analytical solution), we try to

find suitable approximations to such transformations. This leads to new approaches such as

the extensive unscented transform [18], which tries to preserve statistical independence of the

random variables (see Section 3.6), and the adaptive level of detail transform (ALoDT) [12, 13],

which adapts the number of Gaussian components in a mixture to minimize the total lineariza-

tion error during transformation (see Section 3.7). This involves new techniques for estimating

the degree of nonlinearity as well as for splitting Gaussians in regions of high nonlinearity. The

performance of the proposed methods is finally evaluated in Section 3.8.

Chapter 4 takes the Bayesian state estimation framework to the sequential level. This naturally

leads to tracking algorithms such as Kalman, Gaussian mixture and particle filters, which are
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here all derived from a transformation-centric point of view (Sections 4.4 - 4.7). Apart from

theoretic contributions such as a general principle behind sequential Bayesian estimation (see

Section 4.3), the chapter introduces two new nonlinear tracking algorithms, namely: the exten-

sive unscented Kalman filter [18] (4.5) and the adaptive Gaussian mixture filter [19, 16] (Section

4.6.3). Section 4.8 concludes with a performance comparison.

Chapter 5 briefly explains the feature extraction steps of modern ASR systems and then derives

a phase-averaged model (interaction function) for the effect of noise to clean speech features

[14] (Section 5.2). This allows us to predict noisy speech features in a minimum mean square

error (MMSE) fashion and therewith more accurately than with previous models that have been

used in the literature (see Section 5.2.5 for an experimental comparison). The chapter closes

with a derivation of the inverse phase-averaged model, which essentially provides a noise sup-

pression rule in the feature domain (see Section 5.3).

Chapter 6 uses the Bayesian state estimation framework to suppress background noise in

speech features. This is achieved by first constructing the joint distribution of clean and noisy

speech, as described in Section 6.3, and then conditioning on the observed noisy speech fea-

ture. The result is a minimum mean square error clean speech estimate (see Section 6.3.1),

which can efficiently be approximated as explained in Section 6.3.2. The remaining part of the

chapter explores different noise estimation techniques with a particular focus on expectation

maximization (EM) based approaches. This includes: the derivation of a general EM algorithm

for noise estimation [15, 16] (Section 6.4.1), a Gaussian mixture implementation [15] (Section

6.4.4), a Monte-Carlo implementation [16] (Section 6.4.5), as well as theoretical comparisons

to other approaches that have been used in the literature (Section 6.4.3). The last section of the

chapter presents a particle filter based noise tracking algorithm that avoids stability issues due

to the relative phase [14] (Section 6.5.3).

Chapter 7 presents an alternative approach to removing noise from noisy speech features. It

is based on the fact that noise actually masks those portions of the clean speech spectrum in

which noise is significantly stronger than speech. Consequently, heavily noise-corrupted re-

gions are assumed to be missing, and missing data theory (MDT) is used to reconstruct these

regions based on a prior model of how clean speech “looks like”. The chapter starts with a

brief review of classical methods, in Section 7.1, and then proceeds with extending them by

(1) a bounded reconstruction technique [17] (Section 7.3), which makes use of the fact that

the missing part is actually bounded above by the noise, (2) the introduction of box-truncated

Gaussian distributions along with approximations to their means and normalizing constants

[17] (Section 7.3.1) as well as (3) a particle filter based mask estimation technique [20] (Section

7.4). Section 7.2 shows how MDT techniques are related to the speech feature enhancement

approach from Chapter 6.
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Chapter 8 evaluates the performance of the proposed feature enhancement and reconstruc-

tion techniques by means of automatic speech recognition experiments. This is achieved by

(a) extracting speech features from a noisy speech corpus, (b) cleaning the speech features with

the noise reduction methods to be evaluated, and then (c) comparing the resulting word error

rates (WERs) to those obtained with a baseline recognizer (without noise reduction). The most

important outcomes are:

1. under ideal conditions2, the bounded conditional mean imputation (BCMI) technique

from Section 7.3 outperforms all other feature domain noise reduction approaches at a

relative improvement of 45% in WER compared to the baseline (see Section 8.4.4).

2. the speech feature enhancement approach from Section 6.3 achieves almost the same

performance – i.e. a 42% reduction in WER – without making use of prior knowledge

about the noise3 (see Section 8.4.7).

3. both approaches reduce the total computing time of speech recognition, as they facilitate

stronger pruning in the decoder (see Sections 8.4.4. 8.4.6 and 8.4.7).

4. noise estimation with the Monte-Carlo (MC) EM implementation (Section 6.4.5) comes

very close to perfectly knowing the noise (see Sections 8.4.6 and 8.4.7).

In addition to these results with artificially added noise, we show that speech feature enhance-

ment also works in a real noise environment, i.e. in a car driving along a highway with up to 55

miles per hour (Section 8.5).

Chapter 9 concludes this thesis by giving a short summary of the main results. This is followed

by a brief outline of the remaining problems along with possible extensions.

2 i.e. when it is perfectly known, which parts of the speech spectrum are masked by noise
3 meaning this result is much more realistic than the BCMI result from above
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2
Basics

As a motivation for the use of probabilistic methods in the framework of this thesis, this chapter

starts with the following quote from Pierre Simon Laplace’s “A Philosophical Essay on Proba-

bilities” [21]:

“The present state of the universe ought to be regarded as the effect of its anterior

state and as the cause of the one which is to follow. Hence, given for one instant an

intellect which could comprehend all the forces by which nature is animated and the

respective situation (state) of all items of which nature is composed – an intellect so

vast that it could also submit these data to analysis – it would embrace in a single

formula the movements of the greatest bodies of the universe and those of the tiniest

atom; for such an intellect nothing would be uncertain and the future just like the

past would be present before its eyes.”

The “intellect” of which Laplace is speaking in this paragraph is often referred to as “Laplace’s

demon”. But as mythical creatures seem a little antiquated in the modern world of today, one

might rather consider it a giant supercomputer, which has once been initialized to a specific

start state – before the big bang – and which is now, ever since, simulating the universe. Interest-

ingly, Laplace does not stop at this point but rather explains why, nevertheless, to us everything

seems probabilistic [21]:

“All these efforts in the search for truth (discovery of the laws of physics) tend to

lead humanity back continually to the vast intellect which we have just mentioned,

but from which it will always remain infinitely removed.”

7
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So, Laplace is saying that the limited human mind is incapable of such an intellect; that we

perceive only a small fraction of the universe, of which the unseen parts inevitably introduce

uncertainty. This gives a very strong motivation for the use of probabilistic models and it puts

Laplace not only into the often alleged role as a proponent of determinism, but also into the

role of a strong proponent for a probabilistic description of the universe [21]:

“Strictly speaking it may even be said that nearly all our knowledge is problem-

atical; ... even in the mathematical sciences themselves, the principal means for as-

certaining truth – induction and analogy – are based on probabilities;”

In particular, Laplace attributes the existence of probabilities not to an intrinsically haphazard

universe but to a lack of knowledge in the eye of the beholder. The same, of course, applies

to technical devices, such as computers, which motivates the use of statistical signal process-

ing techniques in the framework of this thesis. The details are explained in more detail in the

following, starting with an introduction to the basic concepts of probability theory.

2.1 An Introduction to Probability Theory

The following sections give a brief introduction to the concepts of probability theory, starting

with basics like random variables and vectors but also treating more advanced concepts such

as hidden variables, Markov processes and the fundamental transformation law of probability.

2.1.1 Random Variables and Vectors

A random variable X is, as the name hints, a variable. This means X assumes values x from a

given domain of definition, in this work the domain of real numbers,R, or a subset thereof. The

specifier “random” indicates that there is a likelihood associated with the event of a particular

value being assumed. This likelihood is specified by a probability density function (pdf) pX – a

non-negative, real-valued function that integrates to 1. The concept of a pdf is useful as it allows

for both evaluating the likelihood pX (x ) of the variable X taking a value x and determining the

probability
P (a ≤ X ≤ b ) =

∫ b

a

pX (x )d x (2.1)

of X taking a value in an interval [a , b ]. As the event of a particular value being assumed is

usually the outcome of a physical process in which one of many possible alternatives is realized,

an instance x is also called a realization of the random variable. Besides continuous random

variables of the above type, we will occasionally encounter discrete random variables K with

values in N. For discrete random variables, the distribution pK (k ) is called a probability mass

function. In this case, pK is required to sum to one, i.e.
∑

k∈N pK (k ) = 1, and the probability

P (a ≤ X ≤ b ) is evaluated by replacing the integral in (2.1) by a sum1.

1 Note that a discrete random variable K can be identified with a continuous random variable X , simply by
setting pX (x ) =

∑

k∈N pK (k )δ(k − x )where δ denotes the Dirac delta function.
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With this defined, it is straightforward to move on to random vectors. A random vector X is a

multivariate, i.e. vector-valued random variable [X1 · · ·Xn ]. It takes values x = [x1 · · · xn ] in an

n-dimensional real vector space, Rn , according to a multivariate probability density function

pX :Rn → (R+ ∪{0}) that allows for the calculation of the probability of x being in the areaA :

P (x ∈A ) =
∫

A
pX (x )d x .

In analogy to the univariate case, p (x ) must be ≥ 0 and the integral over the total space

[−∞,∞]× · · ·× [−∞,∞]must be 1. In the following, the terms random variable and random

vector will be used interchangeably. All random variables will be either real-valued or discrete.

In order to unify the notation, both probability density functions and probability mass func-

tions will be called distributions as it is often done by engineers.

2.1.2 Marginal and Conditional Random Variables

Marginal and conditional random variables naturally arise when the realization of a multivari-

ate (i.e. vector-valued) random variable is in part observable only. To explain this in a more

formal setting, let Z = [Z1, . . . , Zm ]T be an m-dimensional random variable with distribution

pZ (z ) = pZ1,...,Zm
(z1, . . . , zm ). Further assume that only a part of the realization [z1, . . . , zm ]T –

without loss of generality [zn+1, . . . , zm ]T with n <m – is observable, as portrayed below:

Z= Z Z Z[ ]n n+1 m
...Z1

...

unobservable observable

T

Then the unobservable part [Z1, . . . , Zn ]T of Z is itself a random variable X ¬ [X1, . . . , Xn ]T with

X i = Zi . Its distribution pX is obtained by integrating out the observable variables Zn+1, . . . , Zm :

pX (x ) = pZ1,...,Zn
(x1, . . . , xn ) =

∫

· · ·
∫

pZ1,...,Zm
(x1, . . . , xn , zn+1, . . . zm )d zn+1 · · ·d zm (2.2)

The process of calculating the integral in (2.2) is called marginalization; pX is called a marginal

distribution of pZ . In order to introduce conditional random variables, let Y be the random

variable which consists of the observable components of Z , i.e. Y = [Zn+1, . . . , Zm ]T . Then

we obviously have Z = [X T Y T ]T with both X and Y being marginal random variables of Z .

Further assuming that a realization y of Y is available, the distribution of the unobservable

part X can be constrained by the knowledge of y . This is achieved by fixing Y = y in the joint

distribution pX ,Y (x , y ) and then normalizing by dividing by
∫

pX ,Y (x , y )d x = p (y ):

pX |y (x ) =
pX ,Y (x , y )

pY (y )
=

pZ

�

x1, . . . , xn , y1, . . . , ym−n

�

pY

�

y1, . . . , ym−n

� . (2.3)

The resulting pdf is called the conditional distribution of X given y . The corresponding random

variable X |y is referred to as a conditional random variable. A special case occurs if X and Y
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are statistically independent – that is, pX ,Y (x , y ) = pX (x ) · pY (y ). In this case, the conditional

distribution pX |y of X given y is obviously equal to the marginal distribution of X , i.e. pX |y =

pX . If the variables are dependent, the conditional distribution will be “sharper” (i.e. more

concentrated in some area) than the marginal one, as shown in Figure 2.1.

(a) marginal distribution. (b) conditional distribution.

Figure 2.1: The image to the left shows the marginal distribution of the 3-rd to 8-th Mel fre-

quency bins (left to right) of the phoneme “A”. The image to the right shows the same distribution

conditioned on an observation of the remaining bins (bins 1,2 and 9-30).

2.1.3 Hidden Variables and Bayes Equation

In the previous section, X was considered to be a variable, which cannot directly be observed

but which is statistically tied to an observable variable Y . Such a variable X is, in general,

called a hidden variable. Its introduction might seem somewhat academic. Nevertheless hid-

den variables are quite relevant in practice, as physical processes can often only indirectly be

observed through related measurements. In the case of a physical process, the hidden variable

X corresponds to the system state – that is, the state in which the physical system resides. The

associated observation variable Y corresponds to measurements related to that state.

Then, given a realized measurement Y = y , the likelihood that the system resides in a par-

ticular state x can be obtained by evaluating the conditional distribution pX |y (x ). In contrast

to expressing pX |y (x ) in dependence of pX ,Y (x , y ) and pY (y ), as in the previous section, it is

here expressed in terms of pY |x (y ) and pX (x ). That is achieved by applying (2.3) in order to ob-

tain pX |y (x ) = pX ,Y (x , y )/pY (y ) and pY |x (y ) = pX ,Y (x , y )/pX (x ), rewriting the latter equation as

pX ,Y (x , y ) = pY |x (y )pX (x ), plugging it back into the first equation, and then using marginaliza-

tion (2.2) to express pY (y ) in terms of pY |x (y ) and pX (x ). These steps lead to Bayes equation,

pX |y (x ) =
pY |x (y )pX (x )

pY (y )
=

pY |x (y )pX (x )
∫

pY |x (y )pX (x )d x
, (2.4)

which has drawn considerable attention in the literature, as it allows for the incorporation of

prior knowledge about the distribution pX (x ) of the system state. Funnily enough, it also trig-

gered a lengthy dispute with “frequentist” mathematicians who strongly rejected priors [22].
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2.1.4 Stochastic Processes

In order to account for the fact that the state of a physical system usually varies in time, the

evolution of the system state might be modeled as a (discrete time) stochastic process – that is,

a sequence (X t )t ∈N of random variables X t where t denotes time. In the context of a physical

system, (X t )t ∈N is called the state process. Its realizations (xt )t ∈N describe all possible state

sequences along with associated likelihoods pX0,X1,... (x0, x1, . . .). Corresponding measurement

variables Yt form an associated observation process (Yt )t ∈N, which is interlocked with the state

process as portrayed in Figure 2.2.

X
t+1

observation

process
hidden

process
X

t-1

Y
t+1

Y
t-1

System

X
t Y

t

Figure 2.2: Interlocking of the hidden state process with the observation process.

The interlocking of the processes can be regarded to be a causal relationship in which system

states cause observations. Jointly “pulling” the gray straps in Figure 2.2 in the direction indi-

cated by the thick, black arrows shows how the doubly stochastic process evolves in time. Now

given a partial realization y1:τ ¬
�

y0, . . . , yτ
�

of the observation sequence, the likelihood that the

corresponding state sequence was x0:τ = [x0, . . . , xτ] can be evaluated as

pX0:τ|y0:τ
(x0:τ) =

pX0:τ,Y0:τ
(x0:τ, y0:τ)

pY0:τ
(y0:τ)

=
pY0:τ|x0:τ

(y0:τ)pX0:τ
(x0:τ)

∫

· · ·
∫

pY0:τ|x0:τ
(y0:τ)pX0:τ

(x0:τ)d x0 · · ·d xτ
(2.5)

This is a natural extension of Bayes equation (2.4). Further, making use of the fact that accord-

ing to (2.3) pX0,X1
(x0, x1) can be written pX0,X1

(x0, x1) = pX1|x0
(x1)pX0

(x0) and then extending this

factorization to three variables, pX0,X1,X2
(x0, x1, x2) = pX2|x0,x1

(x2)pX1|x0
(x1)pX0

(x0), and so on, it

becomes clear that pX0,...,Xτ (x0, . . . , xτ) in the nominator of (2.5) can be written

pX0:τ
(x0:τ) =

τ
∏

t=0

pX t |x0:t−1
(xt ) with pX0|x0:−1

¬ pX0
.

2.1.5 The Hidden Markov Process

General processes are difficult to work with, as all the variables are dependent on each other.

Therefore simplifying assumptions are being made, such as the Markov assumption, which
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consists in the idea that the current state contains all the information necessary for predicting

the next all the information necessary for predicting the next state. This implies that the past

trajectory is irrelevant. In other words, given the current state xt the next state xt+1 is depen-

dent on xt only, not on x0:t−1. Put into equations this gives pX t+1|x0:xt
(xt+1) = pX t+1|xt

(xt+1) or,

equivalently,

pX0:τ
(x0:τ) =

τ
∏

t=0

pX t |xt−1
(xt ), (2.6)

for all τ. A process for which (2.6) holds is called a Markov process. In order to also simply the

relationship pY0:τ|x0:τ
(y0:τ) between the state and observation processes, it is common to use the

output independence assumption. This assumption states that, given the current state xt , the

current observation yt is independent of all other states and observations:

pY0:τ|x0:τ
(y0:τ) =

τ
∏

t=0

pYt |xt
(yt ). (2.7)

With this, we can now define the hidden Markov process as a Markov process (X t )t ∈N whose

stochastic relationship pY0:τ|x0:τ
(y0:τ) to the associated observation process (Yt )t ∈N follows the

output independence assumption (2.7).

Xt+1

observation

process
hidden

process
Xt-1

Yt+1

Yt-1

System

Xt Yt
p y x( | )t        t

Figure 2.3: Hidden Markov Process. The output independence assumption is indicated by yellow
coloring.

2.1.6 The Fundamental Transformation Law of Probability

In the context of hidden variables, it can be useful to “transform” random variables. Consider

the case, for example, where X is a random variable whose distribution pX (x ) is known and Y

is a random variable whose distribution is not known. Then given there is a functional relation

Y = f (X ) between X and Y the distribution pY (y ) of Y can be obtained as follows:

pY (y ) = pX

�

f −1(y )
�

�

�

�

�

det

�

d f −1(y )
d y

��

�

�

�

. (2.8)
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In this equation, which is generally referred to as the fundamental transformation law of proba-

bility [23], f −1(y ) is the origin of y and the multiplication by the absolute Jacobian determinant

|det(d f −1(y )/d y )| is due to the change of variables, from x = f −1(y ) to y . The explanation for

why the above constitutes a change of variables comes by going one step further – to the cal-

culation of a probability according to (2.1): PY =
∫

A pY (y )d y . The point is that the pdf has no

meaning outside the context of being that function which is integrated in order to calculate a

probability. And that is where the integral occurs, due to which we have the change of vari-

ables. Things become a bit more complicated if the transformation is not a monotonic func-

tion. In this case, f has to be decomposed into a sum of monotonic functions f (x ) =
∑n

i=1 fi (x )

which are defined on disjunct areasAi : fi = f |Ai
. Then, instead of transforming the variable

according to f , it is transformed individually for each fi , which results in n non-normalized

probability density functions p (i )Y (y ), i = 1, . . . , n . In case f −1
i (y ) is the empty set, p (i )Y (y ) is set to

zero. Subsequently, the total distribution of the transformed random variable can be recovered

as the sum over all p (i )Y (y ):

pY (y ) =
n
∑

i=1

p (i )Y (y ) with p (i )Y (y )¬

(

pX

�

fi
−1(y )

�

�

�

�det
�

d fi
−1(y )

d y

�
�

�

� , fi
−1(y ) 6= ;

0, otherwise

2.2 Probability Distributions

In order to work with random variables, it is necessary to specify the probability distributions

according to which the variables assume their values. Ideally the distributions can be derived

from theoretical considerations about the underlying physical process. But even if this not pos-

sible the true distribution can be approximated with a parametric standard distribution whose

parameters are estimated on a data set. The following sections introduce the distributions,

which are used in this thesis, along with the concept of moments - a powerful tool for describ-

ing the characteristics of a probability distribution.

2.2.1 Moments and Expectations

It often is of interest to characterize the shape of a probability distribution pX . This can be

achieved by calculating its moments, which – for the case of an n-dimensional, multivariate

distribution – are defined as

M (k )
X (i1, . . . , ik ) =

∫ k
∏

j=1

xi j
pX (x )d x (2.9)

for k = 1, . . . ,∞. The k -th momentM (k )
X consists of all the integralsM (k )

X (i1, . . . , ik ), i1, . . . , ik ∈
{1, . . . , n}, of the distribution pX multiplied by any possible monomial of order k ,

∏n
i=1 x ki

i

with ki ∈ N and
∑n

i=1 ki = k . The first moment M (1)
X (i1) =

∫

xi1
pX (x )d x is called the

mean. It indicates the center of the probability distribution; and it is usually written µ =
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�

M (1)
X (1) · · · M

(1)
X (n )

�T
. After calculation of the mean, the other moments can be expressed in

their centralized form,

M̃ (k )
X (i1, . . . , ik ) =

∫ k
∏

j=1

�

xi j
−µi j

�

pX (x )d x , (2.10)

which is invariant under translations of the distribution. The second centralized moment M̃ (2)
X

is called variance for n = 1; it is called covariance matrix for n > 1; and it specifies the spread

of the probability mass around the mean of the distribution as well as the correlation between

the dimensions. The name covariance matrix stems from the notation

Σ=







M (2)
X (1, 1) · · · M (2)

X (1, n )
...

...
...

M (2)
X (n , 1) · · · M (2)

X (n , n )






,

with off-diagonal elements describing covariances σi , j = M
(2)
X (i , j ) and with diagonal ele-

ments describing variancesσ2
i =M

(2)
X (i , i ). In general, the moments {Mk |k = 1, . . . ,∞} do not

uniquely determine the distribution, unless the distribution has bounded support [24, 25]. The

concept of moments can be generalized to expectations – that is, the expected values EpX
{h (x )}

a random variable X has under an arbitrary function h (x ) =
�

h1(x ) · · · hm (x )
�

:

EpX
{h (x )}=

∫

h (x )pX (x )d x . (2.11)

Calculating an expectation EpX
{h (x )} essentially consists of averaging hi (x ) for all possible val-

ues x , weighted with the likelihood p (x ) that the value is taken.

2.2.2 Empirical and Weighted Empirical Distributions

The most natural way of representing a probability density function probably is to use an the

empirical distribution. That is because the empirical distribution directly reflects the samples,

which have been obtained through the repetition of a physical process, by placing equal prob-

ability mass on each of the samples x (i ), i = 1, . . . , N :

p (x ) =
1

N

N
∑

i=1

δ
�

x − x (i )
�

(2.12)

withδ denoting the Dirac delta. Obviously, this representation exactly captures the sample dis-

tribution. But it does not generalize as a second sample distribution obtained from the same

process will “almost certainly” have zero likelihood under the first. Nevertheless, the empiri-

cal distribution captures where approximately the probability mass is concentrated; and it is

exactly this property which will later be exploited in Monte Carlo methods (see Section 2.5).
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Let us now consider the case where we have samples x (i ) with associated weightsω(i ) that tell

us the likelihood of x (i ) being a typical sample. Then we may construct an empirical distribu-

tion in which the samples are weighted with the normalized likelihood ω̃(i ) = ω(i )
∑N

j=1ω
( j ) instead

of with 1/N :

p (x ) =
N
∑

i=1

ω̃(i )δ
�

x − x (i )
�

. (2.13)

This distribution is called a weighted empirical distribution. The following sections introduce

parametric distributions – that is, “off-the-shelf” distributions whose parameters can be fitted

to the data. The family or type of distribution used would ideally be chosen out of theoretical

considerations about the underlying (generating) physical process. In practice, however, it is

mostly determined through “eyeballing”.

2.2.3 The Uniform Distribution

If every value of a random variable has the same “chance” of being assumed then the behav-

ior of the random variable is well described by a uniform distribution. In the discrete case, the

underlying physical process of a uniform distribution can be imagined to be similar to that of

throwing a dice, where each of the 6 sides shows up with the same probability. In the continu-

ous case, the uniform distribution assigns an equal likelihood of 1/(b −a ) to all possible values

on a given interval [a , b ] and zero likelihood to all other values:

U[a ,b ](x )¬
1

b −a

¨

1, a ≤ x ≤ b

0, otherwise
(2.14)

The uniform distribution is used, for example, to model the phase of an audio signal where

every possible phase from the interval [0, 2π] occurs with the same likelihood: 1/(2π). This can

be extended to the multivariate case by replacing the interval [a , b ] by an areaA :

UA (x )¬
1

∫

A d x

¨

1, x ∈A
0, otherwise

(2.15)

2.2.4 The Gaussian Distribution

If a random variable describes the outcome of a physical process in which many different influ-

ences add up, then the variable can be expected to have a Gaussian distribution. The Gaussian

distribution was originally discovered by Abraham de Moivre [26], who found it while looking

for an approximation to binomial distributions with large sample sizes. Nevertheless, the merit

is due to Pierre-Simon de Laplace and Carl Friedrich Gauss for establishing it as the probability

distribution which measurement errors typically follow. In his seminal work on the “Theory

of the Motion of the Heavenly Bodies” [27, 28], Gauss derived it as the likelihood of deviations
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that independent observations have from their empirical mean. That directly led him to

p (x ) =
1

p
2πσ2

e −
1
2 (x−µ)2/σ2

, (2.16)

which is now known as the Gaussian distribution. In this equation, e denotes Euler’s constant.

The parameters µ andσ2 specify the mean and variance of the distribution. Due to its ubiqui-

tousness, the Gaussian distribution is also called the “normal” distribution, which is reflected

in the notation by writingN (x ;µ,σ) for (2.16). The multivariate case is obtained by replacing

the quadratic form (x −µ)2/σ2 in the exponent by the vector quadratic form (x −µ)TΣ−1(x −µ):

N (x ;µ,Σ) =
1

p

(2π)n det(Σ)
e −

1
2 (x−µ)T Σ−1(x−µ). (2.17)

Here, x is a vector value, µ is the mean vector and Σ is the positive-definite covariance matrix.

Using the eigen decomposition UΛU T ofΣwith a unitary matrix U and a diagonal matrix Λ, it

can be shown that the multivariate Gaussian distribution is a rotated and translated version of

the axis-parallel product of one-dimensional Gaussians:

1
q

(2π)n
∏n

i=1Λi ,i

exp

�

−
1

2

n
∑

i=1

xiΛ
−1
i ,i xi

�

=
n
∏

i=1

1
p

2πΛi ,i
exp

�

−
1

2
x 2

i /Λi ,i

�

. (2.18)

While Λ specifies the variance Λi ,i in each direction, U specifies the rotation. In the special

case where all off-diagonal elements of the covariance matrix are zero, Λ is identical to Σ and

U is the identity matrix. In this case, the distribution is called a diagonal Gaussian distribution

and (2.17) can be written as a product of univariate Gaussians as in (2.18).

2.2.5 Conditional and Marginal Gaussian Distributions

If Z = (X , Y ) is a joint Gaussian random variable of which Y = y is observed then the unob-

served part X |y has a conditional Gaussian distribution. In order to show this, let X and Y be

and nX and nY dimensional random vectors with joint distribution

pX ,Y

�

x , y
�

=
1

p

(2π)n det(Σ)
exp

 

−
1

2

�

x −µX

y −µY

�T �
ΣX X ΣX Y

ΣY X ΣY Y

�−1 �
x −µX

y −µY

�

!

, (2.19)

where n = nX + nY , ΣX X is the covariance matrix of X , ΣY Y the covariance matrix of Y and

ΣX Y =ΣT
Y X is the cross-covariance matrix between X and Y . Then the main idea of the follow-

ing proof can be formulated as to factorize the joint distribution pX ,Y (x , y ) into pX |y (x ) ·pY (y ),

by forcing the lower left and upper right blocks of the covariance matrix in 2.19 to zero without

modifying ΣY Y . This is achieved by first subtracting from the first column the second column
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multiplied by Σ−1
Y Y ΣY X from the right (which can be written as a matrix multiplication):

�

ΣX X ΣX Y

ΣY X ΣY Y

�

︸ ︷︷ ︸

¬Σ

·

�

I 0

−Σ−1
Y Y ΣY X I

�

︸ ︷︷ ︸

¬A

=

�

ΣX X −ΣX Y Σ
−1
Y Y ΣY X ΣX Y

0 ΣY Y

�

.

Subsequently, the upper right part of the resulting matrix is forced to zero by subtracting from

the first row the second row multiplied by AT =ΣX Y Σ
−1
Y Y from the left:

�

I −ΣX Y Σ
−1
Y Y

0 I

�

︸ ︷︷ ︸

=AT

·

�

ΣX X −ΣX Y Σ
−1
Y Y ΣY X ΣX Y

0 ΣY Y

�T

=

�

ΣX X −ΣX Y Σ
−1
Y Y ΣY X 0

0 ΣY Y

�

︸ ︷︷ ︸

¬Σ̃

Combining these two multiplications gives ATΣA = Σ̃with Σ̃ having block-diagonal form. The

matrix A is invertible as it obviously has full rank, no matter what values
�

−Σ−1
Y Y ΣY X

�

assumes.

Thus, the joint covariance matrix Σ can be written Σ= A−T Σ̃A−1, which when substituted into

(2.19) gives:

pX ,Y

�

x , y
�

=
1

p

(2π)n det(Σ)
exp

 

−
1

2

�

x −µX

y −µY

�T

AΣ̃−1AT

�

x −µX

y −µY

�

!

=
1

p

(2π)n |Σ|
exp











−
1

2

�

AT

�

x −µX

y −µY

��T

︸ ︷︷ ︸

=z̃ T

�

Σ−1
X X |y 0

0 Σ−1
Y Y

�

︸ ︷︷ ︸

=Σ̃−1

�

AT

�

x −µX

y −µY

��

︸ ︷︷ ︸

=z̃











,

where ΣX X |y ¬ ΣX X −ΣX Y Σ
−1
Y Y ΣY X and where the inverse of the block diagonal matrix Σ̃ was

constructed as the block diagonal matrix consisting of the inverse individual blocks. Now ex-

panding z̃ , it is found that:

z̃ = AT

�

x −µX

y −µY

�

=

�

I −ΣX Y Σ
−1
Y Y

0 I

�

·

�

x −µX

y −µY

�

=

�

x −µX −ΣX Y Σ
−1
Y Y (y −µY )

y −µY

�

Defining µX |y ¬ µX +ΣX Y Σ
−1
Y Y (y −µY ) and making use of the block diagonal structure of Σ̃−1

as well as the fact that det(Σ) = det(AT )−1 det(Σ̃)det(A)−1 = det(Σ̃) = det(ΣX X |y )det(ΣY Y ), it be-

comes clear that the joint distribution from (2.19) can be written:

pX ,Y

�

x , y
�

=
1

p

(2π)n det(Σ)
exp

�

−
1

2
(x −µX |y )

TΣ−1
X X |y (x −µX |y )−

1

2
(y −µY )

TΣ−1
Y Y (y −µY )

�

=
exp

�

− 1
2 (x −µX |y )TΣ−1

X X |y (x −µX |y )
�

Æ

(2π)nX det(ΣX X |y )
·

exp
�

− 1
2 (y −µY )TΣ−1

Y Y (y −µY )
�

p

(2π)nY det(ΣY Y )
(2.20)
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So, we have arrived at the factorization pX ,Y (x , y ) = pX |y (y ) ·pY (y ) that we have been looking

for. In particular, the factorization is the product of two Gaussians:

pX ,Y (x , y ) =N (x ;µX |y ,ΣX X |y ) ·N (y ;µY ,ΣY Y ). (2.21)

Marginalizing (2.21) over x shows that Y has a Gaussian distribution with pY (y ) =

N (y ;µY ,ΣY Y ), as the integral over pX |y is obviously 1. Dividing (2.21) by pY (y ) shows that

the conditional random variable of X |y has a conditional Gaussian distribution with pX |y (x ) =

N (x ;µX |y ,ΣX X |y ), as summarized again in the following:

Conditional Gaussian distribution

Let X , Y have a joint Gaussian distribution with parameters specified as in (2.19). Then the

conditional distribution of X given y is pX |y (x ) =N (x ;µX |y ,ΣX X |y )with

µX |y =µX +ΣX Y Σ
−1
Y Y (y −µY ), ΣX X |y =ΣX X −ΣX Y Σ

−1
Y Y ΣY X . (2.22)

2.2.6 Linearly Transformed Gaussian Distributions

If a Gaussian random variable is linearly transformed then the result is again a Gaussian ran-

dom variable. In order to show this, let A be a full-rank n × n matrix, such that A is invert-

ible. Furthermore, let X be an n-dimensional Gaussian random variable with distribution

pX (x ) =N (x ;µ,Σ). Then the distribution of the transformed random variable Y = A ·X can be

obtained by applying the fundamental transformation law of probability from Section 2.1.6:

pY (y ) = pX

�

A−1 y
�

·
�

�det
�

A−1
��

�

=
1

p

(2π)n det(Σ)
exp

�

−
1

2
(A−1 y −µ)TΣ−1(A−1 y −µ)

�

·
1

|det(A)|

=
1

p

(2π)n det(Σ)
exp

�

−
1

2
(y −Aµ)T A−TΣ−1A−1(y −Aµ)

�

·
1

p

|det(A)||det(AT )|

=
1

p

(2π)n det(AΣAT )
exp

�

−
1

2
(y −Aµ)T (AΣAT )−1(y −Aµ)

�

,

In this equation, it was used that det
�

A−1
�

= 1/det (A), det
�

AT
�

= det (A) and det
�

AΣAT
�

=

det (A) · det(Σ)det
�

AT
�

. So, we can conclude that the linearly transformed random variable

Y = A ·X has a multivariate Gaussian distribution with

pY (y ) =N
�

y ; Aµ; AΣAT
�

. (2.23)

2.2.7 Gaussian Mixture Distributions

Gaussian mixture distributions are typically used if the exact parametric form of a distribution

cannot be derived from theory but samples of the random variable are available. In this case,
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the samples can be used for estimating a mixture of Gaussians that approximates the true dis-

tribution of the random variable. Formally, a Gaussian mixture is defined as a weighted sum of

Gaussians:

p (x ) =
K
∑

k=1

ckN
�

x ;µ(k )X ,Σ(k )X

�

︸ ︷︷ ︸

=pX |k (x )

(2.24)

where ck , µ(k )X and Σ(k )X are the weight, mean and covariance matrix of the k -th Gaussian com-

ponent, respectively. As the weight ck actually corresponds to the prior probability pK (k )

that a sample originated from the k -th Gaussian, the sum of the weights has to be one, i.e.
∑K

k=1 ck = 1, in order for (2.24) to be a valid distribution. The widespread use of Gaussian mix-

ture distributions is due to the fact that Gaussian mixtures can in principle – with the number of

components approaching infinity – approximate arbitrary probability density functions with

an arbitrary degree of accuracy. In most cases, however, a relatively small number of compo-

nents2 is sufficient for a “reasonable” quality of approximation.

2.2.8 Transformations of Gaussian Mixture Distributions

Transforming a Gaussian mixture variable X according to a function f reduces to transforming

the individual Gaussian components. In order to show this, the Gaussian mixture distribution

from (2.24) may be rewritten as follows:

pX (x ) =
κ
∑

k=1

pK (k )
︸ ︷︷ ︸

=ck

pX |k (x ) =
κ
∑

k=1

pX ,K (x , k )

Then using the fundamental transformation law of probability, it is found that the distribution

pY of the transformed random variable Y = f (X ) can be expressed as:

pY (y ) = pX

�

f −1(y )
�

�

�

�

�

det

�

d f −1(y )
d y

��

�

�

�

=
κ
∑

k=1

pX ,K

�

f −1(y ), k
�

�

�

�

�

det

�

d f −1(y )
d y

��

�

�

�

=
κ
∑

k=1

pK (k )
︸ ︷︷ ︸

=ck

pX |k
�

f −1(y )
�

�

�

�

�

det

�

d f −1(y )
d y

��

�

�

�

︸ ︷︷ ︸

=pY |k (y )

. (2.25)

Hence, the transformation of a Gaussian mixture variable can be accomplished by transform-

ing the individual Gaussian components. In the particular case where the transformation is

linear, each single pY |k can be obtained as described in Section 2.2.6 and the result is again a

Gaussian mixture distribution.

2 up to a couple of thousands
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2.3 Parameter Estimation

The use of parametric distributions consists in choosing a distribution prototype whose pa-

rameters are then fitted to the data. In order to formalize the latter, the parameters to be es-

timated are here denoted by θ . The data samples that are used for estimation are denoted by

y ¬
�

y (1), . . . , y (N )
	

. Then, an estimator δ of the parameters is defined as a function θ̂ = δ(y )

of the samples, which is chosen in such a way that the parameters are optimal with respect to

some criterion.

2.3.1 Maximum Likelihood Parameter Estimation

The most common criterion in parameter estimation is that of maximum likelihood. As the

name hints, this criterion consists in choosing that parameter θ , which maximizes the data

likelihood L (θ ; y ) = pY |θ (y ). This procedure goes back to Johann Heinrich Lambert (1760)

and Daniel Bernoulli (1778), although it was also used by Gauss [27] and later formalized by

Edgeworth [29, 30]. The resulting estimator is formally described as:

θ̂ =δM L (y )¬ argmax
θ

pY |θ (y ). (2.26)

It is worth noting that this estimate does not change if the logarithm is taken on the right hand

side, simply because the application of a monotonic function does not change the maximum.

Further assuming the samples y (1), . . . , y (N ) are independent and identically distributed (i.i.d.),

the total data likelihood can be written as the product of individual likelihoods. The application

of the logarithm converts this product into a sum:

argmax
θ

N
∏

i=1

pY |θ
�

y (i )
�

= argmax
θ

log

�

N
∏

i=1

pY |θ
�

y (i )
�

�

= argmax
θ

N
∑

i=1

log pY |θ
�

y (i )
�

.

This was well-known even at Gauss’s time and it was implicitly used in [27].

2.3.2 The Expectation Maximization Algorithm

Unfortunately, the maximum likelihood method cannot directly be applied if the parameters

are dependent on hidden variables. This problem occurs in the context of hidden Markov pro-

cesses where observations are dependent on the underlying hidden states, but also in the con-

text of Gaussian mixture distributions where the component index needs to be regarded as a

hidden variable on which the parameters of the individual Gaussians are dependent. In such

cases, an approximate maximum likelihood solution can be found by iterating between esti-

mating the values of the hidden variables and estimating the distribution parameters. A first

proof of convergence of this method was given by Baum et al. [31], at the example of hidden

Markov processes. Nevertheless, the merit is due to Dempster et al. [32] for (1) recognizing the

general applicability of this solution to maximum likelihood estimation with hidden variables,
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(2) formalizing the procedure as a simple algorithm and, finally, (3) giving it the name “expecta-

tion maximization (EM) algorithm”. The main idea behind this algorithm is that the estimation

problem would be easier to solve if, in addition to the observed samples y =
�

y (1), . . . , y (N )
	

, cor-

responding samples h =
�

h (1), . . . , h (N )
	

of the hidden variables were available. Then, declaring

the augmented set
�

y , h
	

“complete” and the original set y “incomplete”, an approximate so-

lution to the estimation problem can be constructed by iterating between two steps:

(A) an expectation step, in which the auxiliary functionQ(θ |θ (l )) is constructed as the expec-

tation EpH |y ,θ (l )

�

log pY ,H |θ (y , h )
	

of the log likelihood of θ under the complete data
�

y , h
	

,

given the incomplete data y as well as the current parameter estimate θ (l ):

Q(θ |θ (l )) =
∫

log
�

pY ,H |θ (y , h )
�

·pH |y ,θ (l ) (h )d h (2.27)

(B) a maximization step in which θ (l+1) is chosen to be a value θ that maximizes the auxiliary

function:

θ (l+1) = argmax
θ

Q(θ |θ (l )) (2.28)

The heuristic idea behind this procedure is to calculate an approximation to the log likelihood

function log pY |θ (y ), based on a previous parameter estimate θ (l ). This is done in the expec-

tation step. In the maximization step, the obtained approximation to log p (y |θ ) is maximized

in order to refine the parameter estimate. Iterating these steps causes the parameter θ to con-

verge to a local maximum of the likelihood function [32]. In the special case whereQ is convex,

it is even guaranteed that the global maximum is found.

2.4 Minimum Mean Square Error Estimation

In statistics, it often is of interest to estimate the value of a hidden variable based on a corre-

sponding observation. This is typically done in such a fashion that the estimate is optimal with

respect to a certain criterion, such as minimization of the mean squared error (MSE). In order

to formalize the estimation framework, let X bet the hidden variable to be estimated and let

Y = y be the observation on which we would like to base our estimation. Furthermore, let

x̂ = δ(y ) be an arbitrary estimator for x given y , i.e. a function that maps from Y to X . Then,

the expected mean squared error which is introduced by using the estimate x̂ = δ(y ) instead

of the true x is

M S E
�

δ|y
	

¬ EpX |y (x )

¦


δ(y )− x




2©

=

∫



δ(y )− x




2 ·pX |y (x )d x

=


δ(y )




2
∫

pX |y (x )d x

︸ ︷︷ ︸

δ(y )T δ(y )

+

∫

‖x‖2 ·pX |y (x )d x

︸ ︷︷ ︸

EpX |y (x ){x
T x }

− 2δ(y )T
∫

x ·p (x |y )d x

︸ ︷︷ ︸

2δ(y )T EpX |y (x ){x }
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where it was used that ‖δ(y )− x‖2 = (δ(y )− x )T · (δ(y )− x ). Now, the mean squared error may

be minimized by taking the derivative with respect toδ(y ) and then equating the result to zero.

Using the above expansion, we obviously get d M S E {δ|y }
dδ(y ) = 2δ(y )− 2EpX |y (x ) {x }, which, when

equated to zero and solved for δ(y ), gives the general minimum mean squared error (MMSE)

estimate:

δM M S E (y ) = EpX |y (x ) {x } . (2.29)

As practical implementations of (2.29) require knowledge of pX |y , the following chapters will

put quite some effort into constructing this distribution. This will be done based on a prior

distribution of X as well as a statistical model for how the hidden variable X is related to ob-

servations (see Chapter 3 for the details).

2.5 Monte Carlo Methods

For some problems that occur in statistics, closed form analytic solutions are either unwieldy

or simply not available. After transformation of a random variable, for example, an originally

parametric distribution might no longer have a parametric form. Similarly, if expectations of

a random variable are to be calculated, it might happen that there is no analytic solution to

the occurring integrals. In such cases, it can be useful to work with empirical distributions

rather than with parametric ones, as then all integrals are converted into sums and the dis-

tributions of transformed random variables can simply be obtained by transforming samples.

This is the principal idea behind Monte Carlo (MC) methods, whose history began in 1946 in Los

Alamos with a secret project in which the use of such methods was investigated during the de-

velopment of the thermonuclear bomb. Incidentally, the code name of the project was “Monte

Carlo”, which leaves little room for speculation as to where the name stems from. According

to Metropolis [33], “the work was triggered by Stanislav Ulam recognizing that the ENIAC –

a computer that was originally conceived for calculating artillery firing table solutions – could

be used to resuscitate statistical sampling techniques. These techniques had been used before,

but they had fallen into desuetude due to the length and tediousness of the calculations”.

Ulam’s idea consisted in generating the required samples on a computer, which can be per-

formed much more efficiently than real random experiments. Figure 2.4-(a) depicts sampling

from a Gaussian distribution. The dashed lines with black, filled circles on top indicate the

Dirac deltas with which the empirical distribution places discrete probability mass at the lo-

cations of the samples. The solid black line shows the continuous Gaussian density function

for comparison. A visual comparison might not reveal that the empirical distribution provides

a good approximation to the parametric one (and for calculating likelihoods it surely is not).

Nevertheless, the empirical distribution approximately captures where the probability mass is

concentrated, as samples are more likely to be drawn from regions of high probability mass.

This becomes clear by looking at the cumulative density functions, P (X ≤ x ) =
∫ x

−∞pX (x ′)d x ′,

which are shown in Figure 2.4-(b).
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(a) probability density functions (b) cumulative density functions

Figure 2.4: Empirical versus parametric distributions at the example of a Gaussian distribution.

2.5.1 Monte Carlo Integration

The probably most well known Monte Carlo method is Monte Carlo integration (MCI). This

method uses the empirical distribution of a random variable in order to approximate the ex-

pectation EpX
{h (x )}under a function h . This is achieved by (1) simulating samples x (1), . . . , x (N )

form the parametric distribution pX of the random variable; (2) constructing the correspond-

ing empirical distribution

p̂X (x ) =
1

N

N
∑

i=1

δ
�

x − x (i )
�

;

and then (3) replacing the parametric distribution in the integral EpX
{h (x )} by its empirical

counterpart. As a result, the expectation integral EpX
{h (x )} is turned into a sum:

∫

h (x ) ·pX (x )d x ≈
∫

h (x )p̂X (x )d x =
1

N

N
∑

j=1

h (x ( j )). (2.30)

The error of this approximation in general decreases with N . By the strong law of large

numbers, it is even guaranteed that Ep̂X
{h (x )} = 1

N

∑N
j=1 h (x ( j )) “almost surely” converges to

EpX
{h (x )} [23]. According to [33], Enrico Fermi, a world-renowned physicist and Nobel prize

laureate, reportedly used this technique to astonish his colleagues with remarkably accurate

“too-good-to-believe” predictions of experimental results. In particular, it is said that he per-

formed the necessary computations with a small mechanical adding machine only [33]; and

that was long before Stanislav Ulam actually published the method.

2.5.2 Monte Carlo Transformation

In the Monte Carlo integration technique from the previous section, expectations were approx-

imated by evaluating a function at simulated values of a random variable. Monte Carlo trans-

formation, in contrast, tries to approximate the distribution of a transformed random variable

Y = f (X ) by transforming simulated values (samples) x (1), . . . , x (N ) of the variable X . This can

be regarded as the Monte Carlo equivalent to the fundamental transformation law of probabil-



24 CHAPTER 2. BASICS

ity, and it results in the following (empirical) approximation of pY :

p̂Y (y ) =
1

N

N
∑

j=1

δ
�

y − y ( j )
�

with y ( j ) = f
�

x ( j )
�

. (2.31)

A heuristic argument for the validity of this approximation is that the samples x (1), . . . , x (N ) form

pX capture where the probability mass of X is concentrated. Hence, transforming the samples

moves the probability mass according to the function f and consequently simulates the dis-

tribution of f (X ). This can be formally proven by considering expectations EpX

�

h ( f (x ))
	

of X

under functions h of f (x ). Then, performing a change of variables from x to y = f (x ) yields:

EpX

�

h ( f (x ))
	

=

∫

h
�

f (x )
�

pX (x )d x =

∫

h (y )pX

�

f −1(y )
�

�

�

�

�

det

�

d f −1(y )
d y

��

�

�

�

︸ ︷︷ ︸

=pY (y )

d y = EpY

�

h (y )
	

.

This shows that the moments of pY are identical to those of f (X ). Now using EpY

�

h (y )
	

=

EpX

�

h ( f (x ))
	

and further approximating EpX

�

h ( f (x ))
	

by Monte Carlo integration, it follows

that

EpY

�

h
�

y
�	

= EpX

�

h
�

f (x )
�	

≈ Ep̂X

�

h
�

f (x )
�	

=
1

N

N
∑

j=1

h
�

f
�

x ( j )
��

= Ep̂Y

�

h (y )
	

.

So, we have shown that p̂Y approximates all moments of pY , from which it follows that p̂Y ap-

proximates the distribution of the transformed random variable Y = f (X ). For completeness, it

should be noted that the latter actually only holds if pX and pY have bounded support [24, 25].

But this does not mater in practice, as the support can always be truncated at some remote

point of the tail (as an arbitrarily accurate approximation of pX and pY with bounded support).

2.5.3 Sample Generation

Monte Carlo methods require generating a larger number of samples from the random vari-

ables of interest. But this is complicated by the fact that computers are inherently deterministic

machines that can by no means generate true random numbers of whatever kind. Hence, we

have to resort to deterministic algorithms that produce seemingly unpredictable sequences of

so-called pseudo-random numbers. Such algorithms are called random number generators and

they are typically designed in an engineering-like fashion, by starting with a simple standard

generator to produce uniformly distributed samples and then applying inversion or rejection

methods [34] in order to obtain samples of the desired type. A popular choice for a standard

generator is George Marsaglia’s KISS [35] whose C source code is shown in Algorithm 2.1. The

KISS algorithm is based on simultaneously running one congruential generator in the variable

i as well as two shift register generators in the variables j and k, whose outputs are subsequently

combined. The C code uses 32-bit unsigned integer variables i, j and k as an internal represen-

tation. The output is a floating point number simulating a sample from the standard uniform

distribution on the interval [0, 1].
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f l o a t k i s s 3 2 ( ) {
i = (69069∗ i ) + 23606797;
j = j ^ ( j << 1 7 ) ;
k = ( k ^ ( k << 1 8 ) ) & 0x7FFFFFFF ;
j = j ^ ( j >> 1 5 ) ;
k = k ^ ( k >> 1 3 ) ;
return ( f l o a t ) ( i + j + k ) / MAX_INT ;

}

Algorithm 2.1: “C” code of the KISS generator which generates uniformly distributed samples.

2.5.3.1 Sampling from the Standard Normal Distribution

The probably most efficient way to generate a sample from the standard normal distribution is

to use Marsaglia and Tsang’s Ziggurat method [36]. It covers the normal pdf with a set of equal-

area rectangles plus a remainder consisting of a smaller rectangle as well as the tail. Figure 2.5-

(a) shows this at the example of 3 rectangles, R1, R2 and R3. The remainder R4 covers the same

area as each of these rectangles. Hence, a sample of the distribution can be simulated by first

selecting (by random, with equal probability) a region Ri to sample from and then generating

a sample from that particular region.

−4 −2 0 2 4
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0.3

0.4

0.5

R1

R2

R3

(a) Gaussian distribution covered by rectangles
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0.2

0.3

0.4

0.5

(b) different areas used by the Ziggurat

Figure 2.5: The Zigurrat. The picture to the left shows where the method draws its name from:
terraced step pyramids of ancient Mesopotamia such as the Neo-Sumerian Great Ziggurat of Ur.

Rejection Sampling

If the region selected for sampling is one of the rectangles, rejection sampling is performed. In

this case, a sample u is drawn from the uniform distribution and scaled to fit the width w (Ri ) of

the rectangle: x =w (Ri )(u− 1
2 ). Consequently, x is uniformly distributed along the x -direction

of Ri . But we would like it to follow the Gaussian curve. Hence, we reject x with probability

Pr = 1 −
min

�

y2 (Ri ) , f (x )
	

− y1(Ri )

y2(Ri )− y1(Ri )

where y2(Ri ) is the upper y -coordinate of the rectangle, y1(Ri ) is the lower y -coordinate and
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f is the Gaussian density function: f (x ) = 1p
2π

exp
�

− 1
2 x 2

�

. The rejection procedure causes

that samples x for which f (x ) is close to y1(Ri ) will be rejected with high probability. Samples

for which f (x ) is close to y2(Ri ) will mostly be accepted. This is indicated through the dashed

areas in Figure 2.5-(b), which show the percentage of accepted samples for each rectangle in

dependence of the x -coordinate. The solid gray areas mark regions where samples can directly

be accepted due to min
�

y2 (Ri ) , f (x )
	

= y2(Ri ). These areas are precomputed in order to avoid

the evaluation3 of f at runtime (and it is exactly this, which makes the Ziggurat so efficient).
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(a) efficiency with 3 rectangles

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

(b) efficiency with 31 rectangles

Figure 2.6: Efficiency of the Zigurrat. The smaller the white area between the Gaussian curve
and the pile of gray rectangles the fewer samples are rejected. With 255 rectangles 99.33% of the
samples reside in the solid gray areas and can directly be accepted [36].

Simulating from the Remainder

In case the remainder was selected for sampling, we have to figure out whether to draw a sample

from the gray area sitting on the x -axis of Figure 2.5-(b) or whether to draw a sample from

the tail, which is marked in solid black. This is done by first selecting one of the two areas by

random (with a probability corresponding to the relative probability mass of each area) and

then either drawing a sample from the gray area as described above or generating a sample

from the tail as described in more detail in [37, 36].

2.5.3.2 Sampling from Multivariate Gaussian Distributions

Sampling from a univariate Gaussian distribution can easily be extended to the multivariate

case. For that, let pY (y ) = N (y ;µ,Σ) denote the n-dimensional Gaussian distribution from

which we would like to sample; and let Σ = R T R be the Cholesky decomposition of its covari-

ance matrix with an upper triangular matrix R . Then, a sample y from pY can be simulated by

drawing x from pX (x ) =N (x ; 0, I) and subsequently transforming x according to:

X 7−→ Y = f (X ) with y = f (x ) =R T x +µ. (2.32)

3 Note that the evaluation of the Gaussian density function f (x ) is computationally expensive as it requires the
calculation of the exponential function.
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The claim that the resulting samples y follow the desired Gaussian distribution is easily verified

through application of Sections 2.2.6 and 2.5.2 because, according to these, the transformed

samples y have a Gaussian distribution with

pY (y ) =N
�

x ; µ+R T ·0, R T IR
�

where I is the identity matrix and where R T IR = R T R is by definition equal to Σ. Due to the

choice of I as a covariance matrix, samples x fromN (0, I) can easily be simulated by indepen-

dently drawing the individual xi from the standard normal distribution N (0, 1), for example

through use of the Ziggurat method from Section 2.5.3.1.

2.5.3.3 Sampling from Gaussian Mixture Distributions

Sampling from a Gaussian mixture distribution is achieved by (1) selecting one of the Gaus-

sian components, with a probability corresponding to the component weight ck (see Section

2.2.7), and then (2) generating a sample from that Gaussian. In order to do this, let us first of

all calculate the cumulative weights

C0 ¬ 0, Ck ¬
k
∑

i=1

ci , k = 1, . . . , K .

Then, the probabilityP (Ck−1 ≤ u <Ck ) that a sample u from the standard uniform distribution

is located in the k -th interval Ik ¬ [Ck−1 Ck ] is equal to Ck−Ck−1 = ck . Hence, we draw a sample

u fromU[0,1], select the k -th Gaussian if u ∈ Ik and then draw a sample from this Gaussian as

described in Section 2.5.3.2.

2.5.4 Importance Sampling

In some cases it is not possible to directly simulate samples from the distribution of a random

variable. Such a case occurs, for example, if X |y is a conditional random variable whose distri-

bution pX |y (x )was obtained from Bayes’ equation,

pX |y (x ) =
pY |x (y )pX (x )

pY (y )
=

pY |x (y )pX (x )
∫

pY |x (y )pX (x )d x
,

with only pY |x (y ) and pX (x ) being known. In this case, generating a sample from X |y becomes

problematic if the integral in the denominator, i.e. pY (y ) =
∫

pY |x (y )pX (x )d x , cannot be cal-

culated analytically. The idea behind importance sampling is to resolve this issue by

(1) simulating samples x (1), . . . , x (N ) from pX .

(2) evaluating pY |x ( j ) (y ) for every sample.

(3) weighting the samples byω( j ) ¬
p

Y |x ( j ) (y )
pY (y )

, respectively.
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The weighting in the last step essentially matches the sample distribution of the X ( j ) to that of

pX |y . This does not solve the problem of pY (y ) being non-analytic. But it allows us to approx-

imate pY (y ) by Monte Carlo integration: p̂Y (y ) ≈ 1
N

∑N
i=1 pY |x ( j ) (y ). The result is a weighted

empirical distribution of X |y :

p̃X |y =
N
∑

j=1

ω̃( j )x ( j ) with ω̃( j ) ¬
pY |x ( j ) (y )

∑N
i=1 pY |x (i ) (y )

where the normalized weights ω̃( j ) are equal to 1
N ω

( j ) as the sum over theω( j ) =
p

Y |x ( j ) (y )
p̂Y (y )

is N for

the above approximation of p (y ). In order to generalize this procedure, let pX be a distribution

that is to be sampled from; let π(x ) be an arbitrary proposal or importance distribution whose

support includes the support4 of pX ; and assume thatπ is easy to sample from, so that samples

x ( j ) from π are available. Then making use of the importance sampling fundamental identity

[23],

pX (x ) =
pX (x )
π(x )
︸ ︷︷ ︸

¬ω(x )

π(x ) =ω(x )π(x ), (2.33)

it becomes clear that the distribution of X can be approximated by samples x ( j ) fromπ if these

samples are weighted with ω( j ) = pX

�

x ( j )
�

/π
�

x ( j )
�

. This procedure is called importance sam-

pling. The resulting weighted empirical distribution p̃X =
∑N

i=1 ω̃
( j )x ( j ) can be used in the con-

text of Monte Carlo methods if the concerned methods are modified. This is straight forward:

simply replace pX by p̃X instead of replacing it by p̂X (as it has been done in Sections 2.5.1 and

2.5.2). The validity can be shown in analogy to the proofs for empirical distributions.

2.5.5 Importance Resampling

Any weighted empirical density can be converted to an empirical density by simply sampling

from it. This is of particular interest when importance sampling is performed in an iterative

fashion, as it is the case in a particle filter (see chapter 4.7). In such a case, it may happen that

some of the weights get increasingly smaller over time, as a consequence of which the sam-

ples corresponding to these weights effectively become irrelevant. To alleviate this problem, it

has been proposed to occasionally convert the weighted empirical distribution to an equally-

weighted empirical distribution. This is achieved by drawing (with replacement) samples x̃ (k ),

k = 1, . . . , N from the weighted empirical density

p̃ (x ) =
N
∑

i=1

ω̃(i )x (i )

This is performed as described in Algorithm 2.2. In order to verify that this algorithm returns

x̃ (k ) = x (i ) with probability ω̃(i ), it should be noted that the probability of a sample u from the

4 i.e. it is required that π(x ) 6= 0 when p (x ) 6= 0
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standard uniform distribution being located in the interval [Ci−1, Ci ] is equal to Ci −Ci−1 =ω(i ).

Every sample u is located in one of the intervals, as C0 = 0 and CN = 1 (the latter holds due to

the fact that the sum over the normalized weights ω̃(i ) is 1).

Importance Resampling

1. draw a sample u from the standard uniform distributionU[0,1]

2. look up in which interval [Ci−1, Ci ], i ∈ 1, . . . , N with Ci =
∑i

j=1 ω̃ j it is located

3. return the corresponding x (i ) as x̃ (k ).

Algorithm 2.2: Importance Resampling

As depicted in Figure 2.7, the algorithm essentially multiplies samples with a high relative

weight and removes samples with a low relative weight. The name “importance resampling”

stems from the facts that (1) sampling is performed from a sample distribution and (2) that the

samples are drawn with the relative frequency of their normalized importance weights. Inter-

estingly, Rubin [38] originally proposed this method in a comment to Tanner and Wong’s data

augmentation algorithm [39], although in retrospect it would have surely deserved a stand-

alone publication.

(a) weighted empirical density (b) resampled empirical density

Figure 2.7: Importance Resampling. The picture to the left shows the original weighted empirical
density. The picture to the right shows how importance resampling mimics weighted samples by
putting several equally-weighted samples in the same place.
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3
Bayesian State Estimation

This chapter deals with the problem of estimating the state of a physical system based on a

corresponding observation. To have a concrete scenario, consider the system state to be the

location of a speaker in a room. Further, consider the observation to be the time delay which

emitted sound waves introduce at an array of microphones (as portrayed in Figure 3.1). Then,

the estimation problem can be described as localizing the speaker based on measured time

delays. In order to account for uncertainties in measurements as well as the physical model, the

Figure 3.1: Speaker Localization.

system states and observations may be modeled as random variables X and Y . Subsequently,

the estimation problem can be formulated as constructing the conditional distribution pX |y of

the state given the realized (i.e. measured) observation Y = y . Particular estimates x̂ =δ(y ) are

31
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obtained by applying a criterion of optimality, such as minimum mean squared error (MMSE)

or maximum a-posteriori (MAP):

δM M S E (y ) = EpX |y (x ) {x } , δM AP (y ) = argmax
x

pX |y (x ). (3.1)

The remaining part of the chapter is concerned with the central aspect of this estimation frame-

work: constructing pX |y . This will be done in a Bayesian fashion, through use of a prior distri-

bution of the system state.

3.1 The Bayesian Approach

Using a prior distribution for the state to be estimated is generally referred to as the “Bayesian

approach”. That is, because the prior pX can be factored into the conditional distribution pX |y

by making use of Bayes rule:

pX |y (x ) =
pY |x (y )pX (x )

∫

pY |x (y )pX (x )d x
. (3.2)

Following the developments in [18], the Bayesian approach is here viewed from a slightly dif-

ferent perspective: as a two step procedure, which

(1) constructs the joint distribution pX ,Y of state X and observation Y , based on the prior

distribution of the state as well as a model for how states and observations are related.

(2) conditions the joint distribution pX ,Y on a realization Y = y of the observation variable

in order to obtain the posterior distribution pX |y .

The intuition behind this formulation is that the joint distribution pX ,Y contains all statistical

knowledge about the relationship between the variables X and Y . Conditioning pX ,Y on y can

be interpreted as using this statistical relationship to constrain the prior distribution pX of the

state by the knowledge obtained through reception of Y = y .

3.1.1 Observation Model

In order to develop a formal observation model that describes the relationship between states

and observations, let us revisit the example of localizing a speaker in a room. In this case, the

relationship between speaker position x and measured time delay yi at the i -th microphone is

the distance of the speaker from the microphone, divided by the speed of sound:

yi = g i (x )¬
‖x −mi ‖

c

The mi in this equation denotes the position of the i -th microphone; c denotes the speed of

sound. In order to account for uncertainties in the measurements, the observation yi might
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be made dependent not only on the system state X but also on random influences U during

measurement. This leads to the following observation model:

yi = g i (x ) +u , u ∼N (µU ,ΣU )

where u denotes a sample from the Gaussian distribution of random influences, pU (u ) =

N (u ;µU ,ΣU ). This example can easily be extended to a general observation model that is fully

specified by the following two items:

General Observation Model

• a prior distribution pU of random influences during observation

• an observation function y = g (x , u )

3.1.2 A General Method for Constructing the Joint

After introduction of this observation model, the joint distribution of state and observation can

be constructed by transforming the random variables X and U according to:

�

X

U

�

7−→

�

X

Y

�

= g̃

��

X

U

��

with g̃

��

x

u

��

=

�

x

g (x , u )

�

. (3.3)

In this equation, g̃ is called the augmented observation function; g denotes the observation

function from Section 3.1.1; and U denotes the variable of random influences during observa-

tion. While the transformation in 3.3 can generally be performed with the fundamental trans-

formation law of probability, practical implementations are given in Sections 3.3 - 3.7. In the

following, it is in particular assumed that the state is statistically independent of random influ-

ences during observation, as a consequence of which: pX ,U (x , u ) = pX (x ) ·pU (u ).

3.1.3 A Transformation-Centric View

The above developments reveal that Bayesian state estimation can be viewed as a two step

approach, in which

1. the joint distribution pX ,Y of state and observation is constructed by transforming the

random variables X and U according to the augmented observation function g̃ .

2. the posterior distribution pX |y is obtained by conditioning pX ,Y on the measured obser-

vation Y = y .

This formulation is transformation-centric, as it solves the construction of pX ,Y through a gen-

eral transformation of random variables. The following section (Section 3.2) shows practical

implementations for cases in which the joint distribution is Gaussian (Section 3.2.1), a Gaus-

sian mixture (Section 3.2.2) or a semi-empirical distribution (Section 3.2.3). The remaining part
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of the chapter (Sections 3.3 - 3.7) derives particular transformations for constructing pX ,Y . This

includes standard methods such as linear-Gaussian transforms (Sections 3.3 and 3.4) as well

as the unscented transform (Section 3.5). But it also introduces novel methods which more

accurately treat nonlinearities in the observation function, namely: the extensive unscented

transform (Section 3.6) and the adaptive level of detail transform (Section 3.7).

3.2 Particular Implementations

3.2.1 The Gaussian Case

The most well-known implementation of Bayesian estimation is based on the assumption that

the distribution of X and Y is jointly Gaussian. This approach can be applied whenever both

the distributions of state X and random influences U during observation are Gaussian. In this

case, pX ,Y may be constructed as described in Sections 3.3 - 3.5 and it may be written:

pX ,Y (x , y ) =N

��

x

y

�

;

�

µX

µY

�

,

�

ΣX X ΣX Y

ΣY X ΣY Y

��

. (3.4)

Then applying Section 2.2.5, it becomes clear that the conditional distribution pX |y of X given

y is a conditional Gaussian distribution:

pX |y (x ) =N (x ;µX |y ,ΣX X |y ) (3.5)

with µX |y and ΣX X |y being defined as:

µX |y =µX +ΣX Y Σ
−1
Y Y (y −µY ), ΣX X |y =ΣX X −ΣX Y Σ

−1
Y Y ΣY X . (3.6)

This is what is used in the Kalman filter [40, 41] [42, 43, 44] but also in other estimation ap-

proaches such as the Vector Taylor Series approach for Environment-Independent Speech

Recognition [45, 46].

3.2.2 The Gaussian Mixture Case

Another popular implementation of Bayesian state estimation is based on the assumption that

the joint distribution of X and Y can be approximated as a Gaussian mixture. This is of inter-

est in the context of nonlinear or non-Gaussian estimation problems for which the true joint

distribution is usually difficult to obtain. In these cases, a Gaussian mixture approximation

pX ,Y (x , y ) =
κ
∑

k=1

ck N

��

x

y

�

;

�

µX |k

µY |k

�

,

�

ΣX X |k ΣX Y |k

ΣY X |k ΣY Y |k

��

︸ ︷︷ ︸

=pX ,Y |k (x ,y )

(3.7)

of the joint distribution may be obtained as described in Section 3.7. Subsequently, the condi-

tional distribution of the state X given the realized observation y can be calculated by dividing
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pX ,Y (x , y ) =
∑κ

k=1 pX ,Y ,K (x , y , k ) by the observation likelihood pY (y ):

pX |y (x ) =

∑κ
k=1 pX ,Y ,K (x , y , k )

pY (y )
=

κ
∑

k=1

pX ,K |y (x , k ) =
κ
∑

k=1

pX |y ,k (x )pK |y (k ).

This is obviously a mixture of conditional Gaussian distributions:

pX |y (x ) =
κ
∑

k=1

c +k N
�

x ;µX |y ,k ,ΣX |y ,k

�

︸ ︷︷ ︸

=pX |y ,k (x )

(3.8)

where the c +k denote the posterior probabilities pK |y (k )of the individual Gaussian components,

pK |y (k ) =
ck pY |k (y )

∑κ
k ′=1 c ′k pY |k ′ (y )

=
ckN

�

y ;µY |k ,ΣY |k
�

∑κ
k ′=1 ck ′N

�

y ;µY |k ′ ,ΣY |k ′
� , (3.9)

and where the µX |y ,k and ΣX |y ,k denote their conditional means and covariance matrices, re-

spectively, which can be calculated in analogy to (3.6):

µX |y ,k =µX |k +ΣX Y |kΣ
−1
Y Y |k (y −µY |k ), ΣX X |y ,k =ΣX X |k −ΣX Y |kΣ

−1
Y Y |kΣY X |k . (3.10)

This implementation forms the basis of Alspach and Sorenson’s Gaussian mixture filters [47, 48]

as well as the speech feature enhancement approaches in [49, 50].

3.2.3 The Semi-Empirical Case

Yet another way to approach nonlinear and non-Gaussian estimation problems is to approxi-

mate the prior distribution of the state by samples. This is done in the context of Monte Carlo

methods, such as particle filters (see Section 4.7), which approximate the distribution of X as

an empirical distribution

pX (x ) =
1

N

N
∑

j=1

δ
�

x − x ( j )
�

, (3.11)

with N samples
�

x (1), . . . , x (N )
	

. This is advantageous, as it imposes no restrictions on the es-

timation problem other than that it must be possible to sample from X . Now using this ap-

proximation, the joint distribution pX ,Y of state and observation can be constructed according

to:

pX ,Y (x , y ) =

 

1

N

N
∑

j=1

δ
�

x − x ( j )
�

!

︸ ︷︷ ︸

=pX (x )

pY |x (y ) =
1

N

N
∑

j=1

δ
�

x − x ( j )
�

pY |x ( j ) (y ) (3.12)

where the observation density pY |x ( j ) (y ) of the j -th sample x ( j ) is obtained by transforming the

variable U of random influences according to Y |x ( j ) = g
�

x ( j ),U
�

. This is achieved by using the

fundamental transformation law of probabilities from Section 2.1.6. The resulting distribution
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(3.12) is semi-empirical, as it is empirical in X and arbitrary in Y . Hence, the name of this

section. Now, given the joint distribution from (3.12), the conditional distribution of X given y

can be obtained by fixing Y = y and then dividing the result by pY (y ):

pX |y (x ) =
pX ,Y (x , y )

pY (y )
=

1

N

N
∑

j=1

δ
�

x − x ( j )
� pY |x ( j ) (y )

pY (y )
. (3.13)

This can be further simplified by calculating the normalizing constant pY (y ) as a marginal dis-

tribution of pX ,Y (x , y ):

pY (y ) =

∫

1

N

N
∑

j=1

δ
�

x − x ( j )
�

pY |x ( j )
�

y
�

︸ ︷︷ ︸

=pX ,Y (x ,y )

d x =
1

N

N
∑

j=1

pY |x ( j )
�

y
�

. (3.14)

Finally plugging (3.14) back into (3.13), it turns out that the conditional distribution pX |y (y )

can be approximated as a weighted empirical distribution:

p̃X |y =
1

N

N
∑

j=1

�

pY |x ( j ) (y )
1
N

∑N
i=1 pY |x (i ) (y )

�

δ
�

x − x ( j )
�

=
N
∑

j=1

ω̃( j )δ
�

x − x ( j )
�

(3.15)

where the weights ω̃( j ) are defined as

ω̃( j ) ¬
pY |x ( j ) (y )

∑N
i=1 pY |x (i ) (y )

. (3.16)

3.3 The Kalman-Type Linear Transform

As stressed at the start of this chapter, all Bayesian estimation approaches require constructing

the joint distribution pX ,Y . This can generally be achieved by transforming the prior distri-

bution pX ,U of X and U according to the augmented observation function g̃ from (3.3). This

section treats the particular case in which

(1) the observation function g is a linear function of the form g (x , u ) = B x + C u with an

arbitrary n ×n matrix B and a non-singular m ×m matrix C

(2) the variables X and U are n- and m-dimensional Gaussian random variables that have

a joint Gaussian distribution

pX ,U (x , u ) =N

��

x

u

�

;

�

µX

µU

�

,

�

ΣX X ΣX U

ΣU X ΣU U

��

This class of transformations has been established through Kalman’s seminal work on linear

filtering and prediction problems [40]. Hence, it is here called the Kalman-type linear transform

[18]. In order to show that the above restrictions lead to a joint Gaussian distribution of state
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and observation, let Z be the random variable, which results from the transformation of X ,U

according to the augmented observation function:

Z = g̃

��

X

U

��

=

�

X

g (X ,U )

�

=

�

In ,n 0n ,m

B C

�

︸ ︷︷ ︸

¬A

�

X

U

�

. (3.17)

Here In ,n denotes a n ×n identity matrix; 0n ,m denotes a n ×m zero matrix. As a consequence

of C being non-singular, the matrix A defined in (3.17) has full rank. Hence, the distribution of

Z can be obtained according to Section 2.2.6:

pZ (z ) =N

�

z ; A

�

µX

µU

�

, A

�

ΣX X ΣX U

ΣU X ΣU U

�

AT

�

.

In particular, Z again has a Gaussian distribution. Further expanding A according to its defini-

tion in (3.17), it is found that the mean and covariance of this distribution can be written:

µZ =

�

In ,n 0n ,m

B C

��

µX

µU

�

=

�

µX

BµX +CµU

�

,

ΣZ =

�

In ,n 0n ,m

B C

��

ΣX X ΣX U

ΣU X ΣU U

��

In ,n B T

0n ,m C T

�

=

�

ΣX X ΣX X B T +ΣX U C T

BΣX X +CΣU X BΣX X B T +BΣX U C T +CΣU X B T +CΣU U C T

�

.

The joint distribution of X and Y is finally obtained by defining Y ¬ g (X ,U ) and then rewriting

pZ (z ) as

pX ,Y (x , y ) =N

��

x

y

�

;

�

µX

µY

�

,

�

ΣX X ΣX Y

ΣY X ΣY Y

��

(3.18)

with ΣX ,Y =ΣT
Y ,X and

µY = BµX +CµU , ΣY ,X = BΣX X +CΣU X ,

ΣY ,Y = BΣX X B T +BΣX U C T +CΣU X B T +CΣU U C T .
(3.19)

This is the most general form of the Kalman-type linear transform. In most practical applica-

tions, the variables X and U can be assumed to be statistically independent, as a consequence

of which the cross covariance matrices ΣX U and ΣU X are 0 and (3.19) simplifies to:

µY = BµX +CµU , ΣY ,X = BΣX X , ΣY ,Y = BΣX X B T +CΣU U C T . (3.20)
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3.4 Local Linearization

As the Gaussian case results in a highly desirable closed-form solution to the Bayesian esti-

mation problem, it is of interest to reduce the limitations brought about by the Kalman-type

linear transform. Hence, this section investigates how the results from the previous section can

be extended to nonlinear functions g (x , u ) by locally linearizing g around the means of X and

U . For that, let ∇x g (x , u ) and ∇u g (x , u ) denote the Jacobians of g with respect to x and u ,

respectively:

∇x g (x , u ) =







d g1(x ,u )
d x1

· · · d g1(x ,u )
d xn

...
...

...
d gm (x ,u )

d x1
· · · d gm (x ,u )

d xn






, ∇u g (x , u ) =







d g1(x ,u )
d u1

· · · d g1(x ,u )
d um

...
...

...
d gm (x ,u )

d u1
· · · d gm (x ,u )

d um






(3.21)

Then g (x , u ) can be linearized around µX , µU by evaluating ∇x g (x , u ) and ∇u g (x , u ) at
�

µX ,µU

�

and then forcing a plane with slope B ¬ ∇x g (µX ,µU ) in x -direction and slope C ¬
∇u g (µX ,µU ) in u-direction through the point g (µX ,µU ):

g (x , u ) ≈ B x +C u + g (µX ,µU )−BµX −CµU .
︸ ︷︷ ︸

¬b

(3.22)

This is equivalent to a first-order Taylor series expansion around
�

µX ,µU

�

. After subtraction of

b , the Kalman-type linear transform can be used to approximate the transformation of X ,U

according to g . Hence, the total transformation can be written in analogy to (3.17),

Z =

�

In ,n 0n ,m

B C

�

︸ ︷︷ ︸

¬A

�

X

U

�

+

�

0

b

�

. (3.23)

This shows that the joint distribution of X and Y can be calculated according to (3.18) and

(3.19) but with µY being translated by b : µY = BµX +CµU +b = g (µX ,µU ). Doing so results in

a joint Gaussian approximation of pX ,Y (x , y ):

pX ,Y (x , y )≈N

��

x

y

�

;

�

µX

µY

�

,

�

ΣX X ΣX Y

ΣY X ΣY Y

��

(3.24)

where µY , ΣY Y and ΣY X =ΣT
X Y are calculated according to:

µY = g (µX ,µU ), ΣY X = BΣX X +CΣU X ,

ΣY Y = BΣX X B T +BΣX U C T +CΣU X B T +CΣU U C T
(3.25)

and where B =∇x g (µX ,µU ) and C =∇u g (µX ,µU ). It is important to note that this procedure

becomes problematic if the Jacobian of g with respect to u becomes singular at (µX ,µU ).
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3.5 The Unscented Transform

As an alternative to approximating the nonlinear transformation of a Gaussian random variable

through local linearization, the transformation can be captured by using Julier and Uhlmann’s

unscented transform (UT) [51]. This transformation essentially

(1) represents the initial Gaussian distribution by a finite number of points, which are chosen

in such a way that they have the same mean and covariance as the original distribution.

(2) transforms each of the points according to the nonlinear function.

(3) re-estimates the mean and covariance matrix from the transformed points in order to

reobtain a Gaussian fit.

This makes the UT similar in principle to the Monte Carlo transformation from Section 2.5.2,

except that (a) the UT is an inherently deterministic method and (b) the re-estimation step

converts the point mass representation back to a continuous distribution. In order to give a

more formal description, let X be an n-dimensional Gaussian random variable with mean µX

and covariance matrix ΣX , such that

pX (x ) =N (x ;µX ,ΣX ).

Moreover, let R T R be the Cholesky decomposition of ΣX . Then, the point set used by the un-

scented transform can be described as a weighted empirical distribution

p̃X (x ) =
2n
∑

i=0

Wiδ(x −Xi ) (3.26)

where δ denotes the Dirac delta and where the pointsXi and weights Wi are given by

X0 = µX W0 = κ/λ

X2i+1 = µX +
p
λRi W2i+1 = 1/(2λ)

X2i+2 = µX −
p
λRi W2i+2 = 1/(2λ)

(3.27)

for i = 0, . . . , (n−1). In this equation, Ri denotes the i -th row of R , λ is defined as λ¬ n+κ, and

κ ∈ R specifies how much weight is placed on the mean, X0. Choosing a value of 1/2 results

in an equal weight for each of the points. Setting κ to 3−n minimizes the error in the fourth

moment [52]. The resulting point set is shown in Figure 3.2 at the example of a two-dimensional

Gaussian distribution.
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Figure 3.2: Point mass representation used by the unscented transform.

Given this point set, we can now proceed with the next step – transforming the points according

to the function X 7−→
f

Y = f (X ):

Yi = f (Xi ),

which can be interpreted as moving the weight Wi placed atXi to f (Xi ) =Yi . Consequently,

the distribution of Y is approximated as the weighted empirical distribution:

p̃Y (y ) =
2n
∑

i=0

Wiδ(y −Yi ). (3.28)

The last step of the unscented transform consists in calculating the mean and covariance of

p̃Y (y ) in order to reobtain a Gaussian approximation p̂Y (y ) =N (Y ; µ̂Y , Σ̂Y ) of pY with

µ̂Y =
2n
∑

i=0

WiYi , Σ̂Y =
2n
∑

i=0

Wi (Yi −µY )(Yi −µY )
T . (3.29)

These estimates are accurate up to the second order term of the Taylor series expansion [52].

Hence, for linear transformations the unscented transform is exact – i.e. the Gaussian fit it

provides is not an approximation but the true distribution of the transformed variable. For

nonlinear transformations, the unscented transform is at least as accurate1 as a first order Tay-

lor series approximation (see Section 3.4), without necessitating the computation of Jacobians

and Hessians [52, 53, 54] and without increasing the computational cost [53]. Apart from these

properties, the unscented transform can be interpreted as weighted statistical linear regres-

sion [55]; and for a certain choice of κ it can even be shown to performs partial Gauss-Hermite

1 even if second order correction terms are used
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quadrature [56] of the expectation integrals:

µY =

∫

y pY (y )d y , ΣY Y =

∫

y y T pY (y )d y . (3.30)

In [56] it was further shown that full Gauss-Hermite quadrature gives slightly better results than

the unscented transform. This was, however, achieved at an exponential computational ex-

pense with regard to the dimension of state space.

3.5.1 Estimating the Degree of Nonlinearity

Regarding the unscented transform, it should be noted that only linear transformations of a

Gaussian random variable result in a Gaussian random variable. Nonlinear transformations

inevitably lead to non-Gaussian distributions, which cause approximation errors in the Gaus-

sian fits. This triggered the idea of developing a novel measure [19, 12] for the appropriateness

of the unscented transform based on the approximation error of the Gaussian fits. This mea-

sure is here called the “degree of nonlinearity”; and it is based on the fact that, in the unscented

transform, each triple {X2i+1,X0,X2i+2} forms a set of equidistant points on a line, as portrayed

below:

line 1

line 2
X2i+1

X2i+2 X0

If the transformation Y = g (X ) is linear, the triple {Y2i+1,Y0,Y2i+2} of transformed points will

also form a set of equidistant points on a line. This observation motivates the idea of determin-

ing the degree of nonlinearity by

(1) fitting to eachY (i ) = {Y2i+1,Y0,Y2i+2} a setZ (i ) = {Z2i+1,Z0,Z2i+2} of equidistant points

on a line.

(2) calculating the degree of nonlinearity of each triple as the squared error that is introduced

by the linear fit.

(3) summing the degrees of nonlinearities of the individual triples.

In order to obtain an equidistant linear fit, the points of each linearized triple {Z2i+1,Z0,Z2i+2}
may (without loss of generality) be written:

Z0 = b , Z2i+1 = b +ai , Z2i+2 = b −ai . (3.31)
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Then the linearized set Z of points can be determined by minimizing the squared error be-

tween the two sets,Y (i ) andZ (i ). This is achieved by taking the derivatives of the squared error

ERR
�

Z (i ),Y (i )
�

¬ (Z0−Y0)
2+ (Z2i+1−Y2i+1)

2+ (Z2i+2−Y2i+2)
2

= (b −Y0)
2+ (b +ai −Y2i+1)

2+ (b −ai −Y2i+2)
2

with respect to ai and b and then equating the result to zero. Doing so gives ai =
1
2 (Y2i+1−Y2i+2)

and b =Y (i ) ¬ 1
3 (Y0+Y2i+1+Y2i+2), which when plugged back into 3.31 yields:

Z0 = Y (i )

Z2i+1 = Y (i )+ 1
2 (Y2i+1−Y2i+2)

Z2i+2 = Y (i )− 1
2 (Y2i+1−Y2i+2)

(3.32)

for i = 0, . . . , (n − 1). Now defining the degree of nonlinearity ηi of this triple Z (i ) =
{Z0,Z2i+1,Z2i+2} as the linearization errorηi ¬ ERR

�

Z (i ),Y (i )
�

betweenZ (i ) andY (i ), we arrive

at:

ηi =




Y0−Y (i )






2
+

1

2





Y2i+1+Y2i+2−2Y (i )






2
=

1

6
‖Y2i+1+Y2i+2−2Y0‖2 . (3.33)

Further normalizing this term by the empirical variance of Y (i ) = {Z0,Z2i+1,Z2i+2} yields a

normalized measure for the degree of nonlinearity:

η′i =
1
6 ‖Y2i+1+Y2i+2−2Y0‖2





Y0−Y (i )






2
+




Y2i+1−Y (i )






2
+




Y2i+2−Y (i )






2 , (3.34)

The nominator of this equation accounts for the variance or modeling error introduced by the

linear fit. The denominator normalizes that term by the variance of the points. It can be shown

in particular that (3.34) takes values in the range [0, 1], as it has the following relationship to the

R 2 measure2 from linear regression: η′i = 1−R 2. Subsequently, the total degree of nonlinearity

is obtained by averaging the ηi or η′i for i = 0, . . . , (n −1):

η¬
1

n

n−1
∑

i=0

ηi . (3.35)

If this value is close to zero the transformation is approximately linear and the Gaussian ap-

proximation of pY (y ) is justified. For larger values, the parametric Gaussian fit might not well

represent the true distribution.

2 The R 2 measure is a measure for the “goodness of fit”. It is commonly used in linear regression; it is also known
as coefficient of determination; and it takes values between zero and one [57].
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Extension to Other Transformations

Note that both the normalized and non-normalized measure for the degree of nonlinearity

can easily be extended to related approaches such as the extensive unscented transform (see

Section 3.6) or Gauss-Hermite quadrature [56]. Just consider lines in one variable or coefficient

and then average over all possible values that the other variables or coefficients can assume.

This is demonstrated in Section 3.6.3 at the example of the extensive unscented transform.

3.5.2 Stacking of Variables / Augmentation

In order to use the unscented transform for Bayesian state estimation, the UT needs to be ex-

tended to the transformation of several Gaussian random variables at a time. Let X (1), . . . , X (m )

denote statistically independent variables that are to be transformed, with

pX (i )
�

x (i )
�

=N
�

x (i );µX (i ) ,ΣX (i )
�

,

and let Y = f (X (1), . . . , X (m ))denote the transformation. Then, the individual X (i ) can be written

as a single, joint Gaussian random variable Z ¬
�

X (1)
T · · · X (m )

T
�T

with distribution

pZ

























x (1)

x (2)

...

x (m )

























=N

























x (1)

x (2)

...

x (m )













;













µX (1)

µX (2)

...

µX (m )













,













ΣX (1) 0 · · · 0

0 ΣX (2)
...

...
...

...
... 0

0 · · · 0 ΣX (m )

























. (3.36)

After “stacking” the variables as described above, the unscented transform can be applied as

in the case of a single variable. This can be used for Bayesian state estimation, in order to

construct the joint distribution of state and observation through transformation of X ,U ac-

cording to g̃ (see Section 3.1.2). Figure 3.3 depicts the resulting point set at the example of two

2-dimensional Gaussian random variables X (1) and X (2). Each of the 5 points chosen for X (1) is

augmented with the mean of X (2); conversely, each of the 5 points chosen for X (2) is augmented

with the mean of X (1). Following the naming convention in [18], the unscented transform of

stacked variables is here called augmented unscented transform3 (AUT).

3.5.3 Estimating the Degree of Nonlinearity for Stacked Variables

When the unscented transform is applied to a stacked variable, as described in the previous

section, the degree of nonlinearity may be calculated individually for each of the variables [12].

In order to explain this, let X ( j ) be an n j -dimensional Gaussian random variable with distribu-

tion

p (x ( j )) =N (x ( j ),µX ( j ) ,ΣX ( j ) ),

3 The inspiration for this name was that Julier and Uhlman [51, 52] call the procedure of stacking “augmentation”.
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Z0 =
�

µT
U µT

V

�T

Z2i+1 =
�

(µU +
p
λAi )T µT

V

�T

Z2i+2 =
�

(µU −
p
λAi )T µT

V

�T

Z2(n+ j )+1 =
�

µT
U (µV +

p
λB j )T

�T

Z2(n+ j )+2 =
�

µT
U (µV −

p
λB j )T

�T

Figure 3.3: Points (crosses) used by the augmented unscented transforms along with rescaled
covariance ellipses of the corresponding Gaussians (dashed lines). Note that the originally 4-
dimensional picture has been projected to a 2-dimensional one. The dark blue crosses indicate
the points chosen for U = X (1), augmented with the mean of V = X (2). The light blue crosses
indicate the points chosen for V = X (2), augmented with the mean of U = X (1), µU . A and B
denote the Cholesky factors of ΣU and ΣV .

for j = 1, . . . , m . Furthermore, let the X ( j ) be statistically independent and let Z denote the

stacked variable Z ¬
�

X (1)
T · · · X (m )

T
�T

. Then the joint covariance matrixΣZ of the variables

has block-diagonal form, with the blocks being the covariance matrices ΣX ( j ) of the individual

variables:

ΣZ =













ΣX (1) 0 · · · 0

0 ΣX (2)
...

...
...

...
... 0

0 · · · 0 ΣX (m )













. (3.37)

Consequently, the Cholesky factorization R of ΣZ has block-diagonal form, with the blocks

being the right Cholesky factors R ( j ) of the individual ΣX ( j ) . This means the points considered

for X ( j ),

{X2a j−1, . . . ,X2b j
}, with a j = 1+

j−1
∑

i=1

ni , b j =
j
∑

i=1

ni ,

differ only in the coordinates a j to b j . All the other points Xk , k /∈ [2a j − 1, 2b j ], have these

coordinates fixed to µX ( j ) . Hence, the degree of nonlinearity contributed by X ( j ) may be calcu-

lated as

η( j ) =
1

n

b j
∑

i=a j

ηi . (3.38)

3.6 The Extensive Unscented Transform

As an alternative to the augmented unscented transform from Section 3.5.2, the transforma-

tion of several statistically independent random variables may be performed by representing
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the variables as separate point-sets and then considering all possible combinations4 thereof.

The motivation for this procedure is to preserve statistical independence of the variables. This

stands in contrast to the augmented unscented transform (where the independence is notably

not preserved) [18]. The name extensive unscented transform (XUT) [18] refers to the fact that

the procedure uses all possible combinations of points from different variables.

3.6.1 Description of the Transform

Let X and U be n and m dimensional Gaussian random variables as in the Kalman-type linear

transform from section 3.3. In particular, let X and U be statistically independent. Then, the

distributions of X and U can both be approximated with an unscented point-mass represen-

tation:

p̃X (x ) =
2n
∑

i=0

W (X )
i δ(x −Xi ), p̃U (u ) =

2m
∑

j=0

W (U )
j δ(u −U j )

where the points and weights,Xi , W (X )
i , i = 1, . . . , (2n +1) andU j , W (U )

j , j = 1, . . . , (2m +1), are

chosen as in (3.27), respectively. These individual point mass representations of X and U can

obviously be used to approximate the joint distribution pX ,U (x , u ) = PX (x )pU (u ) as the product

of p̃X (x ) and p̃U (u ):

p̃X ,U (x , u ) =
2n
∑

i=0

2m
∑

j=0

W (X )
i W (U )

j δ(x −Xi )δ(u −U j ). (3.39)

Consequently, the joint distribution of X and Y can be approximated by transform-

ing the points
�

X T
i U T

j

�T
according to the augmented observation function g̃ (x , u ) =

�

x T g (x , u )T
�T

from Section 3.1. This leads to the weighted empirical distribution

p̃X ,Y (x , y ) =
2n
∑

i=0

2m
∑

j=0

W (Y )
i , j δ(x −Xi )δ(y −Yi , j )

whereYi , j = g (Xi ,U j ) and W (Y )
i , j =W (X )

i W (U )
j . Estimating the mean µ̂X ,Y and covariance Σ̂X ,Y

of the transformed points finally gives a Gaussian approximation p̂X ,Y [13]with

µ̂X ,Y =
2n
∑

i=0

2m
∑

j=0

W (Y )
i , j

�

Xi

Yi , j

�

, Σ̂X ,Y =
2n
∑

i=0

2m
∑

j=0

W (Y )
i , j

�

X T
i Y T

i , j

�

�

Xi

Yi , j

�

. (3.40)

3.6.2 Comparison to the Augmented Unscented Transform

Figure 3.4 shows the difference between the augmented and extensive unscented transforms.

The AUT augments each of the (2n+1)points chosen for X with the mean of U and, conversely,

each of the (2m + 1) points chosen for U with the mean of X . This results in the points on the

4 i.e. the Cartesian product of the point sets
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(a) augmented (b) extensive

Figure 3.4: Augmented versus Extensive Unscented Transform. The pictures to the left and to the
right show the points (crosses) used by the augmented and extensive unscented transforms along
with covariance ellipses (dashed lines). The dark blue crosses indicate the 2n+1= 5 points chosen
for X , augmented with the mean of U . The light blue crosses indicate the points chosen for U ,
augmented with the mean of X (left) or with each of the points chosen for X (right), respectively.

two ellipses in Figure 3.4-(a). The XUT uses all possible combinations of points that the AUT

considers for X and U individually. Hence, the XUT considers (2n+1)·(2m+1)points instead of

the 2(n +m )+1 points used by the AUT. This increase in the number of points causes a growth

of the computational expense to roughlyO
�

max{n , m}4
�

, up fromO
�

max{n , m}3
�

. But this in-

crease is still low compared to full Gauss-Hermite quadrature [56] for which the computational

expense grows exponentially with the dimension.

Statistical Independence

On the first look it might be a puzzling why the augmented unscented transform should violate

the statistical independence of variables. The stacking procedure of the augmented unscented

transform sets all the cross-variable covariance terms of the joint covariance matrix to zero (see

(3.36)), which obviously preserves the uncorrelatedness of the variables. In the Gaussian case,

this even implies statistical independence. The point where things go awry is the point selec-

tion mechanism of the unscented transform. As shown in Appendix II of [52], this mechanism

changes the higher-order moments between the variables. In particular, for n = m = 1 and

even integers k , l ≥ 2, the higher order expectations EpX ,U (x ,u )
�

x k u l
	

are approximated as

Ep̃X ,U (x ,u )
�

x k u l
	

=W0µ
k
Xµ

l
U +

∑2n
i=1 WiX k

i
︸ ︷︷ ︸

=Ep̃X (x ){x k }

µl
U +µ

k
X

∑2(n+m )
i=2n+1 WiU l

i
︸ ︷︷ ︸

=Ep̃U (u ){u l }

, (3.41)

This clearly violates Ep̃X ,U (x ,u )
�

x k u l
	

= Ep̃X (x )
�

x k
	

Ep̃U (u )
�

u l
	

, which we should have in the

case of independent variables. The extensive unscented transform does not have this problem

as its points set is designed to get these moments right by definition. This means that approx-
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imation errors stay confined to the individual variables. The higher order moments between

the variables are not changed [18].

Other Properties

Apart from preserving the statistical independence of the point-sets, the extensive unscented

transform correctly captures the mean and covariance of pX ,U (x , u ). Hence, it is exact up to

the second order term of the Taylor series expansion, just as the UT is [52]. In the particular

case where n = m = 1 and κ from Section 3.5 is set to 2, the XUT coincides with the 3-point

Gauss-Hermite quadrature rule [56]. For higher dimensional cases, its accuracy is somewhere

between the unscented transform and full Gauss Hermite quadrature [18].

3.6.3 Estimating the Degree of Nonlinearity

As mentioned in Section 3.5.1, the degree of nonlinearity can be extended to the extensive un-

scented transform, by simply considering lines in one variable and then averaging the degree

of nonlinearity over all possible values that the other variables can assume. This gives the fol-

lowing estimates ν(X ) and ν(U ) for X and U :

ν(X ) =
1

n · (2m +1)

n
∑

i=1

2m
∑

j=0

1

6



Y2i+1, j +Y2i+2, j −Y0, j





︸ ︷︷ ︸

ν(X )i , j

, (3.42)

ν(U ) =
1

(2n +1) ·m

2n
∑

i=0

m
∑

j=1

1

6



Yi ,2 j+1+Yi ,2 j+2−Yi ,0





︸ ︷︷ ︸

ν(U )i , j

, (3.43)

if the degree of nonlinearity is calculated individually for each of the variables (see Section

3.5.2). The total degree of nonlinearity is obtained by averaging ν(X ) and ν(U ).

3.7 The Adaptive Level of Detail Transform

The transformation methods considered so far were all based on the assumption that the dis-

tribution of a transformed random variable can be well approximated by a Gaussian. This as-

sumption is perfectly reasonable for linear and approximately linear transformations. But it

may be very inappropriate in the presence of considerable nonlinearities, especially if the true

transformed distribution is multimodal. Hence, Alspach and Sorenson [48] proposed to ap-

proximate the distribution of the variable to be transformed by a mixture of Gaussians, under

the rationale that this way the variances might be chosen small enough for the local lineariza-

tions to be valid for each of the Gaussians. Consequently, a more accurate approximation of the

transformed distribution was obtained by individually transforming the Gaussian components

and then recombining the transformed distributions to a Gaussian mixture.
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In the framework of this thesis, that approach has been extended by a method which adapts

the level of detail of the Gaussian mixture distribution to the nonlinearities present in the trans-

formation [19, 12, 13]. “Adapting the level of detail”, in this context, means keeping more Gaus-

sians (with smaller variances) in regions where the linearization error is high and fewer Gaus-

sians (with larger variances) in regions where it is low. This concept is explained in more detail

in the following, starting with Alspach and Sorenson’s approach.

3.7.1 Alspach and Sorenson’s Approach

In Alspach and Sorenson’s approach [48], the original distribution pX (x ) =N (x ,µX ,ΣX ) of the

random variable, X , to be transformed is approximated as a mixture of Gaussian distributions:

pX (x )≈
K
∑

k=1

ckN (x ;µ(k )X ,Σ(k )X )
︸ ︷︷ ︸

=pX |k (x )

(3.44)

where ck , µ(k )X and Σ(k )X denote the weights, means and covariance matrices of the Gaussians.

With this representation, a transformation Y = f (X ) of the variable X can be approximated

by individually transforming the mixture components X |k and then recombining the resulting

distributions to a Gaussian mixture. In the original work [48], each of these individual transfor-

mations

X |k 7−→
f

Y |k = f (X |k )

was approximated with the method of local linearization. This thesis uses the unscented trans-

form [19, 12, 13] for which the resulting Gaussian mixture approximation of Y may be written

pY (y )≈
K
∑

k=1

ck UT{pX |k , f }(y )
︸ ︷︷ ︸

=pY |k (y )

(3.45)

where UT{pX |k , f } denotes the unscented transform of the Gaussian random variable X |k with

respect to the function f . This can be used to construct the joint Gaussian mixture distribution

for the Bayesian state estimation approach from Section 3.2.2. Simply choose f to be the aug-

mented observation function g̃ from Section 3.1.2 and use it to transform the stacked variable

of X and U .

3.7.2 Adapting the Level of Detail

As mentioned before, the idea behind Alspach and Sorenson’s approach is to use a sufficiently

large number of mixture components such that the individual variances can be chosen small

enough for f to be approximately linear for each of the transformations. In order to achieve

this, the Gaussians are typically arranged on an equidistant grid with equal covariance matrices

and the mixture weights are optimized so as to minimize the mean squared error to the true
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distribution pX [48]. Such a replacement of a Gaussian by an equidistant grid of Gaussians can

be regarded as increasing the level of detail in a uniform fashion:

1

2 3

4 1

2

3

4

true transformed
distribution (MC)

Gaussian mixture 
approximation 

splitting a Gaussian 
into a mixture of 
equidistant Gaus-
sians 

transformation

This is beneficial in nonlinear regions as it decreases the variances and thereby the nonlin-

earities to which the Gaussians are subject during transformation. In linear regions, however,

the Gaussian mixture approach cannot improve over a single unscented transform, as the un-

scented transform is exact in the linear Gaussian case. Hence, the aim should be to keep fewer

Gaussians in relatively linear regions where the transformation is accurate and more Gaussians

in nonlinear regions where the linearization error is higher:

1

2

3 4

1

2

3 4

true transformed
distribution (MC)

Gaussian mixture 
approximation 

The adaptive level of detail transform (ALoDT) [12] tries to achieve this in an iterative fashion,

by starting with a single Gaussian and then iteratively splitting that Gaussian component which

is subject to the highest degree of nonlinearity. This procedure is visualized in Figure 3.5 and

and more formally described in Algorithm 3.1. The algorithm shown there accepts, as an in-

put argument, the Gaussian distribution pX of the random variable to be transformed as well

as the function f , which specifies the transformation. It returns a Gaussian mixture approxi-

mation pY of the distribution of the transformed random variable Y = f (X ). UT{pX , f } again

denotes the unscented transform of the distribution pX according to f , and dnl{pX , f } denotes

the corresponding degree of nonlinearity, which is calculated according to (3.35).
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split 1
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split 3

UT
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 ALoDT, iteration 2

 ALoDT, iteration 3
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Figure 3.5: Visualization of the adaptive level of detail transform (ALoDT). The transformation
starts with a single Gaussian and then refines the result by iteratively splitting that Gaussian for
which the linearization error (degree of nonlinearity) is largest. The name ALoDT is motivated
by the fact that the above procedure can be viewed as adapting the level of detail of the Gaussian
mixture representation to the degree of nonlinearity of the transformation.
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The Adaptive Level of Detail Transform – pY =ALoDT(pX , f )

1. initialize the algorithm with the original Gaussian distribution pX of X by

(a) setting the listSX of non-transformed Gaussians toSX = {pX }
(b) setting the listSc of weights toSc = {1}
(c) setting the listSY of transformed Gaussians toSY =

�

UT{pX , f }
	

(d) setting the listSη of splitting priorities toSη = {dnl{pX , f }}

2. identify the Gaussian component with the highest degree of nonlinearity by:

(a) calculating i = argmax j∈{1,...,length(Sη)}Sη[ j ]
(b) setting g i to the i -th component ofSX : g i =SX [i ]
(c) setting ci to the i -th component ofSc : ci =Sc [i ]
(d) setting ηi to the i -th component ofSη: ηi =Sη[i ]

3. remove the i -th element fromSX ,Sc ,SY andSη

4. split g i into n Gaussians g i ,1, . . . , g i ,n with associated weights ci ,1, . . . , ci ,n as described in
Section 3.7.3

5. for each j ∈ {1, . . . , n}:

(a) compute the new weight c ′i , j = ci · ci , j

(b) compute the transformed distribution g ′i , j =UT{g i , j , f }
(c) compute the degree of nonlinearity ηi , j = dnl{g i , j , f }
(d) add g i , j , c ′i , j , g ′i , j and ηi , j toSX ,Sc ,SY andSη, respectively

6. while the number of Gaussians, i.e. length(SX ), is smaller than N and the maximum de-
gree of nonlinearity ηi is larger than a threshold τ: go back to step 2

7. construct the Gaussian mixture approximation of Y as pY (y ) =
∑length(SX )

i=1 Sc [i ]SY [i ](y )

Algorithm 3.1: Adaptive Level of Detail Transform

Modified Splitting for Stacked Variables

4. split g i into n Gaussians g i ,1, . . . , g i ,n by

(a) un-stacking X by separating the stacked distribution g i of X (1), . . . , X (m ) into variable-

dependent distributions g (1)i , . . . , g (m )i , which is possible if the variables are statisti-
cally independent

(b) setting kma x to the index of the variable X (k ) for which the degree of nonlinearity is

highest: kma x = argmaxk η
(k )
i (see (3.38))

(c) splitting the variable X (kma x ) with the highest degree of nonlinearity by splitting

g (kma x )
i into n Gaussians g (kma x )

i ,1 , . . . , g (kma x )
i ,n with associated weights ci ,1, . . . , ci ,n as de-

scribed in Section 3.7.3
(d) re-stacking X by setting g i , j = stack

¦

g (1)i , . . . , g (kma x−1)
i , g (kma x )

i , j , g (kma x+1)
i , . . . , g (m )i

©

,
where the stack-operator creates a joint Gaussian distribution by stacking the means
and building the canonical block-diagonal covariance matrix as in Section 3.5.2

Algorithm 3.2: ALoDT - Modified Splitting Procedure for Stacked Variables
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3.7.2.1 Splitting Priority

Selecting the mixture component to be split based only on its degree of nonlinearity can result

in repeated splits of components whose weights are getting smaller and smaller. This is not

desirable, as components with a very low weight represent only a small amount of probability

mass and thereby do not contribute much to the transformation. Hence, in this thesis it has

been proposed to replace the splitting criterion from the previous section – the component’s

degree of nonlinearity dnl(g , f ) – by the splitting priority spp(g , f , c ) [12]:

spp(g , f , c )¬ c ·dnl(g , f ) (3.46)

where c denotes the mixture weight of the Gaussian component g . The advantage of this cri-

terion is that it captures the total linearization error which a component contributes to the

transformation, rather than just the linearization error of the individual Gaussian. Its integra-

tion into the adaptive level of detail transform (Algorithm 3.1) requires the following changes:

(1) in step 1d, the degree of nonlinearity, dnl{pX , f } needs to be replaced by spp(pX , f , 1)

(2) in step 5c, dnl{g i , j , f } needs to be replaced by spp(g i , j , f , c ′i , j ).

3.7.2.2 Treatment of Stacked Variables

For the transformation of m statistically independent random variables X (1), . . . , X (m ), Algo-

rithm 3.1 needs to be modified. Firstly, the variables have to be stacked before transformation,

as described in Section 3.5.2; and the degree of nonlinearity in step 1d has to be calculated

individually for each of the variables (according to (3.38)). Consequently, the scalar degree of

nonlinearity, η, is replaced by a vector of degrees of nonlinearity with one component for each

variable:

η=
�

η(1) η(m )
�T

.

The splitting step (step 4 of Algorithm 3.1) is modified to split only that variable X (kmax) which

has the highest degree of nonlinearity: kmax = argmaxk η
(k )
i . This is done as described in Algo-

rithm 3.2. All the other variables X (k ), k 6= kmax remain unchanged. Regarding the comparison

in the “while” instruction of Step 6, the scalar degree of nonlinearity, ηi , is replaced with the

maximum of the vector ηi : maxk η
(k )
i .

3.7.2.3 Other Extensions

The adaptive level of detail transform can easily be extended to transforming Gaussian mixture

random variables, simply by initializing Algorithm 3.1 with a Gaussian mixture instead of a sin-

gle Gaussian. For that, each individual Gaussian is transformed with the unscented transform

and its degree of nonlinearity is calculated. After the transformation, the complexity of the

Gaussian mixture approximation can be reduced with Gaussian mixture reduction techniques
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[58, 59, 60, 61]. This is of particular interest in sequential Bayesian estimation (see Chapter 4)

where the number of mixture components increases exponentially in time.

3.7.3 Splitting Gaussian Distributions

Another important implementation aspect of the adaptive level of detail transform concerns

how multivariate Gaussians can be “split” into a mixture of Gaussians with smaller variances.

In contrast to earlier approaches, which have been based on the use of splitting libraries [62, 63]

or a slight displacement of the means [64, 62], this work considers a moment matching based

approach that makes use of the symmetry of the Gaussian distribution [19, 13]. In order to avoid

problems with indefinite covariance matrices, splitting is considered in the direction of eigen-

vectors only. The direction in which the Gaussian distribution is split might be given by the

eigenvector corresponding to the largest eigenvalue – that is, the direction of the largest vari-

ance – or by the eigenvector to which the direction of nonlinearity is most similar (see Section

3.7.4 for details). This thesis proceeds by first showing how the standard normal distribution

can be split into mixtures of two and three components, and by then extending this approach

to splitting general multivariate Gaussian distributions.

3.7.3.1 Splitting into Two Components

In order to split the standard normal distribution N (x ; 0, 1) into two components, g1(x ) and

g2(x ), let us first of all use its symmetry. The symmetry tells us that if we displace one of the

Gaussians by ν from the origin then the other Gaussian must be placed at −ν. For the same

reason, the two components must have the same mixture weight α and the same varianceσ2,

which constrains the parameter optimization problem to finding the displacement as well as

the variance of the two components,

g1(x ) =N (x ;ν,σ2) and g2(x ) =N (x ;−ν,σ2). (3.47)

From the law of total probability it is clear that the mixture weights must be one half. As a

consequence, splitting the normal distributions is tantamount to replacing it by the mixture

m (x ) = 0.5g1(x ) +0.5g2(x ). (3.48)

The second moment Em

�

x 2
	

=
∫

x 2m (x )d x of this mixture is obtained by first using the lin-

earity property of integration, in order to get separate integrals over g1(x ) and g2(x ), and then

performing a change of variables from x to y = x −ν and y = x +ν, respectively. This yields:

Em

�

x 2
	

= ν2 +σ2. Now matching the second moment of the mixture to that of the normal

distribution (i.e. 1) the variance can be expressed in dependence of the displacement:

σ2 = 1−ν2. (3.49)
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Figure 3.6: Splitting into two Gaussians with a displacement of 0.5. The picture to the left shows
the original distribution (solid line, highlighted area) along with the mixture of split components
(dashed line). The picture to the right shows the individual components.

In order for this equation to be valid ν must be in the range [−1, 1]. Further, it can be shown

that the absolute (L 1) error in the fourth moment is 2ν4, which is clearly minimal for the trivial

solution ν= 0 and which monotonically increases with |ν| until it takes its maximum, 2, at |ν|=
1. This meansν should be kept as a design parameter, as there is no point in optimizing it based

on the other moments. A value of 0.5 seemed to give a good trade-off between displacement

and accuracy of approximation [19, 13].

3.7.3.2 Splitting into Three Components

The splitting approach from the previous section can easily be extended to the case of splitting

a Gaussian into three components, g1(x ), g2(x ) and g3(x ) [13]. Making use of the symmetry

of the normal distribution, the first Gaussian is again displaced by ν, the second one by −ν.

The third Gaussian is centered at zero as portrayed in Figure 3.7-b. Then choosing a weight

α ≤ 0.5 for each of the displaced components uniquely determines the weight of the center

component, as 1−2α. Hence the mixture can be written

m (x ) =αg1(x ) +αg2(x ) + (1−2α)g3(x ). (3.50)

The Gaussians in this mixture are further parameterized by the variance σ2 of the displaced

components, as well as the variance τ2 of the center component. In the following, it will be as-

sumed thatτ is equal toσ, which greatly simplifies the optimization problem in that it does not

require matching the sixth moment of the distributions. With this simplification, the mixture
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Figure 3.7: Splitting into three Gaussians with a displacement of 0.5. The picture to the left shows
the original distribution (solid line, highlighted area) along with the mixture of split components
(dashed line). The picture to the right shows the individual components.

components can be specified as follows:

g1(x ) =N (x ;ν,σ2), g2(x ) =N (x ;−ν,σ2),

g3(x ) =N (x ; 0,σ2).
(3.51)

Similar to the case of splitting a Gaussian into two components, α andσ2 may be expressed in

dependence of the displacement ν. For that, let us match the second and fourth moment of

the mixture to those of the normal distribution:

Em

�

x 2
	

= 2αν2+σ2 = 1

Em

�

x 4
	

= 2αν4+12ασ2ν2+3σ4 = 3

Then solving this system of equations and discarding the trivial solutionσ2 = 1 yields

α=
1

6
, σ2 = 1−

1

3
ν2. (3.52)

These equations are valid for displacements ν in the range [−
p

3,
p

3]. As for the case of two

Gaussians, the splitting introduces errors in the higher order moments – for the sixth moment,

it is 2
9ν

6 [13]. Figure 3.8-(b) shows the deviation of the Gaussian mixture approximation from

the original Gaussian distribution. Figure 3.8-(a) gives a comparison to the “two component”

approach from the previous section.

3.7.3.3 Multivariate Splitting

This section shows how splitting a multivariate Gaussian distributionN (x;µ;Σ) in direction of

an eigenvector can be reduced to splitting a standard normal distribution. For that, let U TΛU
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Figure 3.8: Difference between original and split distributions for a displacement of 0.5. Not
that the scale of the image to the right is one hundredth of that of the image to the left.

be the eigen decomposition of the covariance matrix Σ, with a diagonal matrix Λ containing

the eigenvalues λi and a unitary matrix U containing the corresponding eigenvectors ui :

Λ=













λ1 0 · · · 0

0 λ2
...

...
...

...
... 0

0 · · · 0 λn













, U =











uT
1uT
1

...

uT
nuT
n











.

Using the exponentiation identity exp(x + y ) = exp(x ) ·exp(y ) and the fact that the determinant

of Σ can be factored as det(Σ) =
∏

i λi , the probability density function can be written

p (x) =
n
∏

i=1

N
�

uT
i x; uT

i µ, λi

�

︸ ︷︷ ︸

¬ fi (x)

. (3.53)

Now let g̃k (x ) = N (x ; µ̃k ,σ̃2
k ), k = 1, . . . , K , be the components resulting from a split of the

standard normal distribution. Then the multivariate distribution p (x) can be split in direction

of the j -th eigenvector by simply performing the following steps:

(1) Scaling the components, g̃k (x ), by 1/
Æ

λ j in x -direction in order to match the variance

λ j of p (x) in direction of the eigenvector u j .

(2) Projecting the rescaled components with distribution ḡk (x ) =N (x ;
Æ

λ j µ̃k ,λ j σ̃
2
k ) onto

u j and then adding the mean uT
j µ, which gives:

f̃ j ,k (x)¬N
�

uT
j x; uT

j µ+
q

λ j µ̃k , λ j σ̃
2
k

�

.
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Splitting into Two Gaussians

ω1 =
1
2 µ1 =µ+ν

p
λu Σ1 =Σ−ν2λuuT

ω2 =
1
2 µ2 =µ−ν

p
λu Σ2 =Σ−ν2λuuT

Splitting into Three Gaussians

ω1 =
1
6 µ1 =µ+ν

p
λu Σ1 =Σ− 1

3ν
2λuuT

ω2 =
1
6 µ2 =µ−ν

p
λu Σ2 =Σ− 1

3ν
2λuuT

ω3 =
4
6 µ3 =µ Σ3 =Σ− 1

3ν
2λuuT

Table 3.1: Mixture parameters for splittingN (µ,Σ) into two and three Gaussians with displace-
ment ν in the direction of eigenvector u with corresponding eigenvalue λ.

(3) Replacing f j (x) in (3.53) by f̃ j ,k (x) for k = 1, . . . , K in order to obtain the split components

of the multivariate distribution:

gk (x) =







n
∏

i=1
i 6= j

fi (x)






f̃ j ,k (x), (3.54)

From this, the mean µk of the k -th component gk can be recovered as

µk =
n
∑

i=1
i 6= j

ui

�

uT
i µ

�

+u j

�

uT
j µ+

q

λ j µ̃k

�

= µ+
q

λ j µ̃k u j . (3.55)

The corresponding covariance matrix Σk can be expressed by means of its eigenvectors and

eigenvalues:

Σk =
n
∑

i=1
i 6= j

λi ui uT
i + σ̃

2
kλ j u j uT

j =
n
∑

i=1

λi ui uT
i

︸ ︷︷ ︸

=Σ

−
�

1− σ̃2
k

�

λ j u j uT
j , (3.56)

which is a simple rank-1 downdate5. Table 3.1 concludes this section by explicitly giving the

mixture weightsωk , meansµk and covariance matricesΣk for splittingN (x;µ,Σ) into two and

three Gaussian components.

3.7.4 Splitting in Direction of the Nonlinearity

The previous section considered splitting Gaussian distributions in the direction of an eigen-

value. Using the eigenvector corresponding to the largest eigenvalue of the covariance matrix

obviously gives the greatest reduction in variance [63, 19, 12]. As motivated in [13], however,

5 This means the Cholesky factor of Σk can efficiently be obtained through a Cholesky downdate if the Cholesky
factor of Σ is available, as it is the case for the square root implementation of the unscented transform [53].
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(a) ALoDT-4[v] (b) ALoDT-4[n] (c) true density

Figure 3.9: Contour plots of the transformed distributions obtained with the ALoDT using 4
Gaussians, for splitting in direction of the largest variance [v] and splitting in direction of the
nonlinearity [n].

this approach is suboptimal if we regard the fact that the reason for splitting is actually the

nonlinearity to which the distribution is subject during transformation. To illustrate this issue,

consider the following example of a transformation f (X ) of a Gaussian random variable X with

distribution pX (x ) =N (x ;µX ,ΣX ):

µX =

�

0

3

�

, ΣX =

�

9 0

0 1

�

, f

��

x1

x2

��

=

�

x1

x 2
2

�

.

For this example, the adaptive level of detail transform from Section 3.7.2 cannot improve over

the unscented transform – at least not in the first couple of iterations. That is because the dis-

tribution of X is split in x1-direction where the variance is largest but where f is linear. In this

case, splitting increases the approximation error. But, it does not provide a better approxima-

tion of the transformation. This becomes clear by looking at Figure 3.9, which shows the trans-

formed distributions for the case of splitting into the direction of the largest variance and the

direction of nonlinearity, respectively. For the largest variance, the distribution is almost iden-

tical to the one obtained with a single unscented transform. For the direction of nonlinearity,

it is obviously closer to the true density from Figure 3.9-(c). Hence, in the framework of this

thesis [13] it has been proposed to split the distribution in direction of the nonlinearity. Bear-

ing in mind that in the unscented transform the i -th triple {X2i+1,X0,X2i+2} of points forms a

set of equidistant points on a line, the nonlinearity in direction of this triple can obviously be

approximated by the degree of nonlinearity, ηi , associated with these points.

X2i+1

X2i+2 X0

Y2i+2 Y0

Y2i+1

Φi

ηi

f
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This means, if we determine the direction of the i -th triple as

φi =
X2i+1−X0

‖X2i+1−X0‖
, (3.57)

the direction of nonlinearity can be defined as the eigenvectorψ corresponding to the largest

eigenvalue of the covariance matrix Ψ that is described by the vectorsφi , weighted with the ηi

[13]:

Ψ =
n−1
∑

i=0

ηiφiφ
T
i . (3.58)

The resulting eigenvector obviously indicates the direction in which the nonlinearity is

strongest. As a computationally less demanding alternative, the direction of nonlinearity may

be approximated as the average over theφi , weighted with the corresponding ηi [13]:

ψ′ =

∑n−1
i=0 ηiφi







∑n−1
i=0 ηiφi







. (3.59)

Now,ψ orψ′ may be used for splitting the Gaussian to be transformed in direction of the non-

linearity. When implementing this, it should be noted that splitting a Gaussian distribution in

an arbitrary directionψ turns out to be difficult, unlessψ coincides with one of the principal

axes of the covariance matrix. Hence, it is here split in the direction of that eigenvector ui which

ψ is most similar to. That is the one for which uT
i ψ is maximal: i = argmax j

�

uT
j ψ

�

[13].

3.8 Performance Evaluation of Nonlinear Transforms

This section compares the performance of the proposed transformation methods – namely, the

adaptive level of detail transform [12, 13] and the extensive unscented transform [18] – to that

of state of the art methods such as the unscented transform. For this comparison, we chose

the nonlinear transformation problem which arises if clean speech features are contaminated

by additive noise [45, 46, 50].

f

noise
speech noisy speech

This transformation requires approximating the distribution pY (y ) of noisy speech Y , given

the distributionN (x ;µX ,ΣX ) of clean speech X , the distributionN (n ;µN ,ΣN ) of noise N as
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well as the following interaction function:

y = log(exp(x ) +exp(n ))
︸ ︷︷ ︸

= f (x ,n )

, (3.60)

which specifies the relationship between these variables in the speech feature (logarithmic Mel

spectra) domain. Motivated by the fact that the frequency bands can be treated independently

if the Gaussians have6 diagonal covariance matrices, the transformation Y = f (X , N ) is here

simulated for one dimension only.

3.8.1 Experimental Setup

For the simulation, it was assumed that clean speech has a Gaussian distribution with a mean

of 8.9 and a standard deviation of 0.6. The noise was assumed to have a Gaussian distribution

with mean 6.3 and standard deviation 3.0. In order to have a reference for the transformed dis-

tribution, we generated 10 million samples from the speech and noise distributions and then

transformed these samples according to (3.60). The resulting empirical distribution was used

to “train” a mixture distribution of 20 Gaussian components, whose weights, means and vari-

ances were found by performing 50 iterations of the EM algorithm [65]. The means for the first

iteration were initialized with the k-Means algorithm [65]. In order to calculate the Kullback-

Leibler divergence (KLD) between this reference distribution p
(r e f )
Y and a given approximation

p
(a p p )
Y , we used the following Monte Carlo approximation:

DK L

�

p
(r e f )
Y





p
(a p p )
Y

�

≈
1

N

N
∑

i=1

log

 

p
(r e f )
X

�

y (i )
�

p
(a p p )
Y

�

y (i )
�

!

with N = 10 million samples y (i ) drawn from p
(r e f )
Y . Note that this approximation is necessary

as the KLD between Gaussian mixtures cannot be calculated in an analytic fashion [66].

3.8.2 Results

Figure 3.10 shows the Kullback-Leibler divergence (KLD) between the reference and approxi-

mations obtained with the adaptive level of detail transform. The plot to the left compares dif-

ferent splitting criteria – namely, component weight (weight), degree of nonlinearity (dnl), the

splitting priority from Section 3.7.2.1 (spp) and the normalized splitting priority7 (spp(n)). The

plot to the right compares the augmented (AUT) and extensive unscented transforms (XUT).

For the considered transformation problem, the latter is an XUT with n = m = 1 and κ = 2.

Hence, the plot actually shows a comparison to Gauss-Hermite quadrature. The exact num-

bers are given in Tables 3.2 and 3.3.

6 This is commonly assumed in the area of automatic speech recognition.
7 That is the splitting priority using the normalized measure for the degree of nonlinearity.
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0.0025
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1 2 4 8 16 32

weight

dnl

spp

spp(n)

number of Gaussians

0.0025

0.025

0.25

1 2 4 8 16 32

AUT

XUT

number of Gaussians

Figure 3.10: Kullback-Leibler divergence between the reference distribution and Gaussian mix-
ture approximations obtained with the adaptive level of detail transform. The plot to the left
shows results for different splitting criteria. The plot to the right gives a comparison between the
augmented (AUT) and extensive unscented transform (XUT) under use of the splitting priority.

In general, an increase in the number of Gaussians led to a decrease of the approximation

error8. Among the splitting criteria, the splitting priority gave the best results. The normalized

splitting priority performed the worst. Regarding the comparison between augmented and ex-

tensive unscented transform, the XUT (Gauss Hermite quadrature) consistently outperformed

the AUT. Note that Tables 3.2 and 3.3 also give a comparison to the standard UT, as the ALoDT

with one Gaussian (ALoDT-1) is identical to a single unscented transform. So, the ALoDT with

16 Gaussians reduced the Kullback-Leibler divergence of the UT by a factor of 28. With 128

Gaussians it was a factor of 75.

Table 3.5 shows results for the Monte Carlo (MC) approach, which was used in Section 3.8.1

in order to obtain the reference for the true transformed distribution. This approach is similar

in principle to the one proposed in [54]. For the results given here, we used a lower number

of samples (between 100 and 1 million instead of 10 million) and performed only 10 and 20

iterations, respectively, of clustering and EM training. As can be seen, the approximation error

decreased with the number of samples. After 20 iterations with 100,000 samples, the approxi-

mation error was 0.00127, which compares to a value of 0.00238 for the ALoDT-128.

The computation times in Tables 3.4 and 3.6 reveal the major advantage of the ALoDT over

the Monte Carlo approach: computational efficiency. For a reasonable accuracy of approxima-

tion – i.e. a KLD of 0.00518 with 16 Gaussians — the ALoDT took 0.8329 milliseconds to com-

pute. The Monte Carlo approach necessitated 10 iterations of EM training with 10,000 samples

in order to get a comparable number. Its computational expense was 1.1 seconds, which is

about 1300 times that of the ALoDT. Even with 128 Gaussians, the ALoDT took only 4 to 8 mil-

liseconds to compute. This compares to 10 milliseconds for the Monte Carlo approach with

100 samples, for which the approximation error is 200 times as high.

8 at least for a displacement of ν= 0.5 during splitting (see Section 3.7.3)
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(a) ALoDT-1 (b) ALoDT-4 (c) ALoDT-16

Figure 3.11: Transformed Distribution. The dashed curve shows the true distribution. The solid
curves show approximations obtained with the adaptive level of detail transform (ALoDT) with
1, 4 and 16 Gaussians, using the splitting priority (spp) as a splitting criterion.

splitting number of Gaussians
criterion 1 2 4 8 16 32 64 128
weight 0.19079 0.07825 0.04009 0.01997 0.00958 0.00526 0.00344 0.00273

dnl 0.19079 0.07825 0.02556 0.01637 0.00874 0.00539 0.00323 0.00290
spp 0.19079 0.07825 0.02556 0.01744 0.00661 0.00387 0.00310 0.00253

spp(n) 0.19079 0.07825 0.04009 0.01997 0.01416 0.01228 0.00811 0.00606

splitting number of Gaussians
criterion 1 2 4 8 16 32 64 128
weight 0.19079 0.07825 0.04009 0.01997 0.00958 0.00526 0.00344 0.00273

dnl 0.19079 0.07825 0.02556 0.01637 0.00874 0.00539 0.00323 0.00290
spp 0.19079 0.07825 0.02556 0.01744 0.00661 0.00387 0.00310 0.00253

spp(n) 0.19079 0.07825 0.04009 0.01997 0.01416 0.01228 0.00811 0.00606

Table 3.2: Approximation error (in KLD) for the adaptive level of detail transform. The rows
show results for different splitting criteria: component weight (weight), degree of nonlinearity
(dnl), splitting priority (spp), normalized splitting priority (spp(n)).

splitting number of Gaussians
criterion 1 2 4 8 16 32 64 128

AUT 0.19079 0.07825 0.02556 0.01744 0.00661 0.00387 0.00310 0.00253
XUT 0.18677 0.07265 0.02059 0.01464 0.00518 0.00336 0.00287 0.00238

splitting number of Gaussians
criterion 1 2 4 8 16 32 64 128

AUT 0.19079 0.07825 0.02556 0.01744 0.00661 0.00387 0.00310 0.00253
XUT 0.18677 0.07265 0.02059 0.01464 0.00518 0.00336 0.00287 0.00238

Table 3.3: KLD for two versions of the ALoDT. One is using the augmented unscented transform
(AUT) for transforming the individual Gaussian components as well as for calculating their de-
grees of nonlinearity. The other is using the extensive unscented transform (XUT).

splitting number of Gaussians
criterion 1 2 4 8 16 32 64 128

AUT 0.0148 0.0368 0.0792 0.1691 0.3590 0.7590 1.6635 4.0592
XUT 0.0297 0.0830 0.1893 0.3989 0.8329 1.7346 3.6538 7.9937

splitting number of Gaussians
criterion 1 2 4 8 16 32 64 128

AUT 0.0148 0.0368 0.0792 0.1691 0.3590 0.7590 1.6635 4.0592
XUT 0.0297 0.0830 0.1893 0.3989 0.8329 1.7346 3.6538 7.9937

Table 3.4: Computation times in milliseconds for the ALoDT using the augmented (AUT) and
extended unscented transform (AUT). The increase is approximately linear with respect to the
number of Gaussians.

#(iterations EM) number of samples
100 1,000 10,000 100,000 1,000,000

10 0.49325 0.02692 0.00499 0.00342 0.00318
20 0.53045 0.03207 0.00346 0.00127 0.00157

#(iterations EM) number of samples
100 1,000 10,000 100,000 1,000,000

10 0.49325 0.02692 0.00499 0.00342 0.00318
20 0.53045 0.03207 0.00346 0.00127 0.00157

Table 3.5: Approximation error (in KLD) for the Monte Carlo transformation approach with
EM-based Gaussian mixture recovery. This is essentially the approach taken in [54].
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#(iterations EM) number of samples
100 1,000 10,000 100,000 1,000,000

10 0.01 0.11 1.10 11.19 110.35
20 0.02 0.24 2.26 22.58 233.70

#(iterations EM) number of samples
100 1,000 10,000 100,000 1,000,000

10 0.01 0.11 1.10 11.19 110.35
20 0.02 0.24 2.26 22.58 233.70

Table 3.6: Computation times in seconds for the Monte Carlo transformation approach with
EM-based Gaussian mixture recovery. When comparing these results to Table 3.4, note that the
units here are seconds whereas those used in Table 3.4 are milliseconds.

3.9 Contributions of this Chapter

The following list again gives an overview of the individual contributions of this thesis to

Bayesian state estimation:

1. A unified view of Bayesian state estimation approaches based on a simple but general

transformation principle (Section 3.1).

2. The extensive unscented transform – a modification of the unscented transform which

preserves the statistical independence of the variables (Section 3.6) [18].

3. The degree of nonlinearity – a measure for estimating the linearization error of the un-

scented transform (Sections 3.5.1 and 3.5.3) [19, 12].

4. The adaptive level of detail transform with its refinements (Section 3.7) [19, 12, 13].

5. Splitting Gaussians in direction of the nonlinearity (Section 3.7.4) [13].
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4
Sequential Bayesian Estimation

The previous chapter dealt with estimating the state of a physical system based on a corre-

sponding observation. That was done in a Bayesian fashion, by (a) considering a prior distri-

bution for the state, (b) using this prior to construct the joint distribution of state and observa-

tion, and (c) calculating the posterior by conditioning on the realized (measured) observation.

This chapter extends that approach to estimating a time-varying system state xt , t ∈N, based

on a sequence y1:t = {y1, . . . , yt } of corresponding observations. The main idea is to (1) use the

last last posterior pX t−1|y1:t−1
for constructing a prior distribution pX t |y1:t−1

at time t and to then

(2) perform a Bayesian estimation step in order to obtain the new posterior pX t |y1:t
.

p( | )x yt-1        1:t-1

construct

prior
p( | )x yt        1:t-1 p( | )x yt        1:t

Bayesian

estimation

steplast posteriorprior

posterior

time t

While the Bayesian estimation step can be performed with any of the methods from Chapter

3, the construction of the prior distribution necessitates further explanation. In order to get a

start on this, let us first of all assume that the state has not changed from time t − 1 to time t .

Then the last posterior (i.e. the distribution of the “state estimate” under the measurements

observed so far) could be used as a prior for the state at time t : pX t |y1:t−1
(xt ) = pX t−1|y1:t−1

(xt−1).

This is the simplest possible case. A more accurate prior is obtained by predicting pX t |y1:t−1
from

pX t−1|y1:t−1
based on a process model that describes the evolution in time of the physical system.

65
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4.1 Example of a Process Model

To exemplify the use of a process model, consider the case of a football being kicked as por-

trayed in Figure 4.1-(a). Let the system state xt = [pt ,1 pt ,2 vt ,1 vt ,2]T describe the ball’s current

position pt = [pt ,1 pt ,2]T as well as its velocity vt = [vt ,1 v2,t ]T .

(a) without uncertainty (b) with uncertainty

Figure 4.1: A simple process model. Flightpath of a football with and without uncertainty.

Let us further denote the difference in time between the t -th and (t + 1)-st measurements by

∆t . Then each increment of t decreases the velocity vt ,2 in direction of the height by the accel-

eration g of gravity times∆t . Similarly, each increment of t changes the position of the ball by

∆t times the current velocity. Hence, we have:

xt =











pt ,1

pt ,2

vt ,1

vt ,2











7−→ xt+1 =











pt ,1+∆t vt ,1

pt ,2+∆t vt ,2

vt ,1

vt ,2−∆t g











, (4.1)

This model gives a deterministic description of the flightpath. The variables that were not

taken into consideration – such as the speed of wind, variations in air pressure and gravity,

etc. – however introduce uncertainties, i.e. “random effects” that would more accurately be

described probabilistically. Hence, (4.1) may be extended by an additive Gaussian noise1 term

wt =
�

wt ,1, . . . , wt ,4

�T ∼N (µWt
,ΣWt

), which describes these uncertainties:

xt =











pt ,1

pt ,2

vt ,1

vt ,2











7−→ xt+1 =











pt ,1+∆t vt ,1

pt ,2+∆t vt ,2

vt ,1

vt ,2−∆t g











+











wt ,1

wt ,2

wt ,3

wt ,4











. (4.2)

This idea of “explicitly accounting for uncertainties in a physical system” is now generalized to

dynamic state space models.

1 Note that Gaussian noise is a good choice as uncertainties in macroscopic systems tend to consists of many
different influences that add up (see the central limit theorem [67]).
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4.2 Dynamic State Space Models

A dynamic state space model (DSSM) describes states and observations as a doubly stochastic

system (X t , Yt )t ∈N, i.e. a system which consists of two processes:

1. a hidden state process (X t )t ∈N that describes the evolution of the systems state.

2. a related measurement process (Yt )t ∈N that describes the corresponding observations.

For sequential Bayesian estimation, the state process X t is considered to be a Markov process.

The observations Yt are considered to follow the output independence assumption (Section

2.1.5). Hence, (X t , Yt ) describes a hidden Markov model, which is fully specified by giving a

process model along with a corresponding measurement model.

Process Model

The process model consists of a prior distribution pWt
(wt ), which describes random influ-

ences in the physical system, as well as a process equation which describes the transition of

the state from time (t −1) to time t :

xt = f (xt−1, wt ). (4.3)

Measurement Model

The measurement model consists of a prior distribution pVt
(vt ), which describes random

influences during measurement, as well as a measurement equation which describes the

relationship between states and observations:

yt = h (xt , vt ). (4.4)

In the above context, the term wt is typically referred to as “process noise”. The term vt is re-

ferred to as “measurement noise”. In particular, the wt and vt are statistically independent at

all times (due to the Markov assumption as well as the output independence assumption). Af-

ter the specification of a DSSM, sequential Bayesian estimation can be performed by (1) using

the process equation in order to construct a prior pX t |y1:t−1
at time t , and then (2) performing

a Bayesian state estimation step which uses the measurement equation as an an observation

model (see Section 3.1.1). This is explained in more detail in the following.

4.3 The General Principle Behind Sequential Bayesian Estimation

Given a particular DSSM – specified by a process model along with an associated measurement

model – the prior distribution pX t |y1:t−1
can be constructed from the last posterior pX t−1|y1:t−1

.

That is achieved by transforming the joint random variable of X t−1|y1:t−1 and Wt according to

the process equation (4.3):

X t |y1:t−1 = f
�

X t−1|y1:t−1, Wt

�

. (4.5)
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This prediction step is followed by a Bayesian state estimation step in which the joint predic-

tive distribution pX t ,Yt |y1:t−1
of state X t |y1:t−1 and observation Yt is constructed by transforming

X t |y1:t−1 and Vt according to the augmented measurement equation:

X t , Yt |y1:t−1 = h̃
�

X t |y1:t−1, Vt

�

with h̃ (xt , vt )¬

�

xt

h (xt , vt )

�

. (4.6)

The new posterior pX t |y1:t
, which is also referred to as filtering density, is subsequently obtained

by conditioning pX t ,Yt |y1:t−1
on the realized observation Yt = yt , in analogy to Section 3.1. After

the Bayesian estimation step, a particular estimate x̂t |y1:t of the state can be calculated by ap-

plying a criterion of optimality, such as the minimum mean squared error criterion for which

x̂t |y1:t = EpXt |y1:t (xt ) {xt }. This is the principle behind sequential Bayesian estimation, which is

again summarized in the following figure and formalized in Algorithm 4.1.

p( | )x yt-1        1:t-1

construct

prior

p( | )x yt        1:t-1 p( | )x yt        1:t

last posteriorprior

posterior
time t

construct

joint

p( | )y yt        1:t-1xt ,

condition on

observation

1

2
3

A General Algorithm for Sequential Bayesian Estimation

1. Predict the distribution pX t |y1:t−1
(xt ) of the next state from pX t−1|y1:t−1

(xt−1), based on the

process model.

2. Construct the joint predictive distribution pX t ,Yt |y1:t−1
(xt , yt ) of state and observation ac-

cording to the measurement model.

3. Condition the joint distribution of X t and Yt on the realized observation Yt = yt in order

to update the filtering density to time t : pX t |y1:t
(xt ).

4. Calculate the current state estimate x̂t |y1:t . Then increase t , wait for the arrival of a new

measurement yt and subsequently go back to step 1.

Algorithm 4.1: Sequential Bayesian Estimation (SBE)

The following again explains this algorithm in more detail: The first step creates a prior by

predicting the distribution of the state from the last posterior. This generally “widens” the dis-

tribution due to an increase in uncertainty. The second step constructs the joint distribution

of state and observation. This (1) predicts the likelihood for receiving particular observations
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and (2) captures the statistical relationship that states and observations have according to the

measurement model. The third step uses this relationship by conditioning the joint distribu-

tion on the realized observation. This can be interpreted as constraining (or “correcting”) the

predicted distribution of the state based on the received observation.

The remaining part of the chapter considers several implementations of this general proce-

dure. This includes most of the common tracking algorithms, such as the Kalman filter (Section

4.4), the unscented Kalman filter (Section 4.5), Gaussian mixture filters (Section 4.6) and parti-

cle filters (Section 4.7). Section 4.6.3 introduces a novel Gaussian mixture filter, which adapts

the number of Gaussians based on the degree of nonlinearity. Section 4.8 closes the chapter

with a numerical comparison of the described tracking algorithms.

4.4 The Kalman Filter

The first and probably most well known implementation of sequential Bayesian estimation

was developed by Rudolph E. Kalman [40]. His implementation, which is nowadays known as

the Kalman filter, is based on the assumption that the filtering density is Gaussian at all times.

This requires firstly, that the functions f and h are linear, and secondly, that the process and

measurement noise distributions are Gaussian:

pWt
(wt ) = N (wt ;µWt

,ΣWt Wt
), (4.7)

pVt
(vt ) = N (vt ;µVt

,ΣVt Vt
), (4.8)

Here, µWt
and ΣWt Wt

denote the mean and covariance matrix of Wt ; µVt
and ΣVt Vt

denote the

mean and covariance matrix of Vt , respectively. Now making use of the first requirement – i.e.

the linearity of f and g – the process and measurement equations can be written

f (xt−1, wt ) = F xt−1+wt and h (xt , vt ) =H xt + vt

where F and H are matrix representations of f and h . This in combination with the second

requirement – i.e. Gaussianity – implies that all the required transformations of random vari-

ables can be performed with the Kalman-type linear transform (see Section 3.3), as described

in more detail in the following.

4.4.1 Prediction (Step 1)

Following the developments in Section 4.3, sequential Bayesian estimation starts with predict-

ing the distribution pX t |y1:t−1
(xt ) of the next state. This is in general achieved by transforming

the random variables X t−1|y1:t−1 and Wt according to (4.5): X t |y1:t−1 = f
�

X t−1|y1:t−1, Wt

�

. In

the particular case of the Kalman filter, both X t−1|y1:t−1 and Wt are Gaussian Random variables.

Hence, the Kalman-type linear transform can be used in order to obtain the joint Gaussian dis-
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tribution pX t−1,X t
of last and current state under the observation history y1:t−1:

pX t−1,X t |y1:t−1
(xt−1, xt ) =N

��

xt−1

xt

�

;

�

µX t−1

µ−X t

�

,

�

ΣX t−1X t−1
Σ−X t−1X t

Σ−X t X t−1
Σ−X t X t

��

. (4.9)

This just requires us to apply Section 3.3 with X = X t−1|y1:t−1, U = Wt , Y = X t |y1:t , g = f

and B = F . The µX t−1
and ΣX t−1X t−1

in (4.9) denote the mean and covariance matrix of the last

posterior, pX t−1|y1:t−1
. The other parameters (µ−X t

,Σ−X t X t
andΣ−X t X t−1

) are calculated according to

(3.19), under the assumption that the X t−1 and Wt are uncorrelated:

µ−X t
= F µX t−1

+µWt
, Σ−X t X t−1

= F ΣX t−1X t−1
, Σ−X t X t

= F ΣX t−1X t−1
F T +ΣWt Wt

. (4.10)

Now given the joint distribution from (4.9), the predicted distribution pX t |y1:t−1
of the state can

be obtained by marginalizing over xt−1. This yields:

pX t |y1:t−1
(xt ) =N (xt ;µ−X t

,Σ−X t X t
) (4.11)

where µ−X t
andΣ−X t X t

are calculated according to (4.10) and where the superscript “-” indicates

that the parameters concern a prior distribution.

4.4.2 Constructing the Joint (Step 2)

After prediction according to (4.11), we need to construct the joint Gaussian distribution of

state and observation pX t ,Yt |y1:t−1
by transforming X t |y1:t−1 and Vt according to the augmented

measurement equation (4.6): X t , Yt |y1:t−1 = h̃
�

X t |y1:t−1, Vt

�

. In case of the Kalman filter, both

X t |y1:t−1 and Vt are Gaussian random variables. Hence, the transformation can again be per-

formed with the Kalman-type linear transform – just this time with X = X t |y1:t−1, U = Vt ,

Y = Yt , g = h and B =H . This gives:

pX t ,Yt |y1:t−1
(xt , yt ) =N

��

xt

yt

�

;

�

µ−X t

µYt

�

,

�

Σ−X t X t
ΣX t Yt

ΣYt X t
ΣYt Yt

��

(4.12)

where µ−X t
and Σ−X t X t

are as in (4.11). Assuming uncorrelated process and measurement noise,

i.e. ΣX t Vt
= 0 (as required in Section 4.2 by asking for wt and vt to be statistically independent),

the other distribution parameters of (4.12) can be calculated according to:

µYt
=Hµ−X t

+µVt
, ΣX t Yt

=Σ−X t X t
H T , ΣYt Yt

=HΣ−X t X t
H T +ΣVt Vt

. (4.13)

The term ΣYt X t
does not need to be calculated as it can be obtained by transposition:

ΣYt X t
=
�

ΣX t Yt

�T
.
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4.4.3 Conditioning on the Observation (Step 3)

The posterior distribution pX t |y1:t
at time t is finally obtained by conditioning the joint predic-

tive distribution pX t ,Yt |y1:t−1
of state and observation on the realized (i.e. measured) observation

Yt = yt . In case of the Kalman filter, this step consists in calculating the parameters of a condi-

tional Gaussian distribution from a joint Gaussian distribution, as described in Section 3.2.1.

This gives

pX t |y1:t
(xt ) =N (xt ;µ+X t

,Σ+X t X t
) (4.14)

where the conditional mean µ+X t
and covariance Σ+X t X t

are calculated according to

µ+X t
= µ−X t

+ΣX t Yt
Σ−1

Yt Yt
(yt −µYt

),

Σ+X t X t
= Σ−X t X t

−ΣX t Yt
Σ−1

Yt Yt
ΣYt X t

.
(4.15)

The terms µ−X t
, Σ−X t X t

, ΣX t Yt
, ΣYt Yt

and µYt
are obtained from (4.10) and (4.13); and superscript

“+” indicates that the parameters concern a posterior distribution (i.e. a distribution that is

conditioned on y1:t ). Regarding the above, it is interesting to note that the equations in (4.15)

are generally called the Kalman filter update equations. But they are typically expressed by

means of the Kalman gain Kt ¬ΣX t Yt
Σ−1

Yt Yt
[42, 68, 43, 65, 44], which gives:

µ+X t
= µ−X t

+Kt (yt −µYt
),

Σ+X t X t
= Σ−X t X t

−KtΣYt Yt
K T

t .
(4.16)

After this conditioning step, the minimum mean squared error estimate of the system state can

be obtained as the mean of the posterior distribution. In case of the Kalman filter, this is just:

x̂t |y1:t =µ+X t
.

4.4.4 Kalman’s Contribution and the Bayesian Interpretation

The origin of the Kalman filter update equations from (4.16) is without doubt Rudolph E.

Kalman seminal work on linear filtering and prediction problems [40]. But, as Kalman him-

self acknowledges [40], the statistical literature of that time [69] was well aware of the fact that

the Wiener Problem (MMSE estimation) could be approached from the point of view of con-

ditional distributions and expectations. This included knowledge of the advantages that the

use of Gaussian processes brings to least square error estimation [69]. In this light, Kalman’s

main contribution can be regarded to consist in (1) making the theory of conditional Gaussian

estimation accessible to engineers and in (2) combining it with the concept of dynamic state

space models, which was at that time developed in control systems theory [70, 71, 72]. Just four

years after Kalman’s original publication, Ho and Lee [73] showed that the Kalman filter can be

interpreted in a Bayesian fashion. This Bayesian interpretation is explained in more detail in

[74], and it forms the basis of the transformation-centric view that has been taken in this work.
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4.5 Kalman Filter Extensions

The Kalman filter (KF) provides a very attractive and, particularly important, tractable formula-

tion to sequential Bayesian estimation. However, it also requires the process and measurement

functions to be linear, which severely limits the practical applicability of the KF. That motivated

the development of extensions, such as the extended Kalman filter (EKF) [41], which “locally”

linearizes f and h around the current state estimate, as described in Section 3.4 and again por-

trayed in the graph below.

f(x)

f(x)
x0

In this graph, f̄ (x ) denotes a linearized version of f which has been obtain with a first order

Taylor series approximation around x0. Apart from the linearization, the EKF works exactly like

the original Kalman filter: it constructs a joint Gaussian distribution of X t , Yt |y1:t−1 and then

conditions this joint distribution on the new observation yt . This works surprisingly well in

most practical situations, although the EKF also has its shortcomings:

(1) the local linearizations can produce highly unstable filters if the assumption of local lin-

earity is violated.

(2) the first-order Taylor series expansion requires the calculation of Jacobian matrices,

which are often tedious to implement.

“These reasons”, as some guys form the British defense industry put it in a personal communi-

cation, “led some Americans to believe that the extended Kalman filter stinks”. The Americans

mentioned were, of course, no one less than Julier and Uhlman who came up with the idea of an

“unscented” Kalman filter (UKF) [51]. This filter supposedly avoids the above mentioned prob-

lems by replacing the Kalman-type linear transforms with the augmented unscented transform

(AUT) from Section 3.5.2. That is done as indicated in Algorithm 4.2. The required augmented

unscented transform of two Gaussian random variables is performed as described in Algorithm

4.3. As an alternative to the AUT, the extensive unscented transform (Section 3.6) may be used

[18]. In both cases, the resulting filter is at least as accurate2 as a second order EKF [75], with-

out the need for computing Jacobians or Hessians [54, 52, 53] and without greatly increasing

the computational cost [53].

2 That is because both the augmented and extensive unscented transforms are accurate at least up to the second
order term of the Taylor series expansion.
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The Unscented Kalman Filter

1. Predict State: Use the augmented unscented transform from section 3.5.2 in order to

approximate the predicted distribution pX t |y1:t−1
(xt ) of the next state according to (4.5):

pX t |y1:t−1
(xt ) =AUT2

�

pX t−1|y1:t−1
, pW ; f

	

, where AUT2 is given by Algorithm 4.3.

2. Construct the Joint: Use the augmented unscented transform in order to construct the

joint distribution pX t ,Yt |y1:t
of state and observation according to (4.6): pX t ,Yt |y1:t−1

(xt ) =

AUT2

�

pX t |y1:t−1
, pV ; h̃

	

. This gives the joint Gaussian distribution

pX t ,Yt |y1:t−1
(xt ) =N

��

xt

yt

�

;

�

µ−X t

µYt

�

,

�

Σ−X t X t
ΣX t Yt

ΣYt X t
ΣYt Yt

��

.

3. Condition (Update): As in the Kalman filter, calculate µ+X t
= µ−X t

+ΣX t ,Yt
Σ−1

Yt ,Yt
(yt −µYt

)

and Σ+X t X t
=Σ−X t X t

−ΣX t Yt
Σ−1

Yt Yt
ΣYt X t

. Then set pX t |y1:t
=N (µ+X t

,Σ+X t ,X t
).

Algorithm 4.2: Unscented Kalman Filter

pY =AUT2

�

pX , pV ; f
	

:

1. Calculate the right Cholesky factors A and B of the covariance matrices ΣX and ΣV of the
nX - and nV -dimensional Gaussian input distributions.

2. Generate points
�

X T
k V

T
k

�T
and weights Wk , k = 0, . . . , N − 1 with N = 2(nX +nW ) + 1, in

order to approximate the joint distribution of X and V . This is done according to (3.27):

X0 =µX V0 =µV W0 = κ/λ
X2i+1 =µX +

p
λAi V2i+1 =µV W2i+1 = 1/(2λ)

X2i+2 =µX −
p
λAi V2i+2 =µV W2i+2 = 1/(2λ)

X2(n+ j )+1 =µX V2(n+ j )+1 =µV +
p
λB j W2(n+ j )+1 = 1/(2λ)

X2(n+ j )+2 =µX V2(n+ j )+2 =µV −
p
λB j W2(n+ j )+2 = 1/(2λ)

(4.17)

for i = 0, . . . , (nX −1), j = 0, . . . , (nV −1). The Ai and B j denote the i -th and j -th rows of A
and B , respectively, and λ= nX +nW +κ.

3. Transform the points
�

X T
k V

T
k

�T
according to (3.28): Yk = f (Xk ,Vk )

4. Estimate the mean and covariance matrix of the transformed random variable Y accord-
ing to: µY =

∑N−1
k=0 WkYk and ΣY =

∑N−1
k=0 Wk

�

Yk −µY

� �

Yk −µY

�T
.

5. Return pY (y ) =N (y ;µY ,ΣY )

Algorithm 4.3: Augmented Unscented Transform for 2 independent Variables
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4.6 Gaussian Mixture Filters

The Kalman filter extensions from the previous section provide a suitable solution if the as-

sumption of local linearity is approximately valid. But the Gaussian fits of the EKF and UKF

may no longer provide a reasonable approximation of the true filtering density if there are con-

siderable nonlinearities or if there is non-Gaussian process or measurement noise. The idea

behind Gaussian mixture filters is to treat such cases (of nonlinear and non-Gaussian tracking

problems) by approximating the filtering density as a Gaussian mixture. This is beneficial as a

sufficiently large number of mixture components can approximate any density of interest with

an arbitrary accuracy. The original implementation by Alspach and Sorenson [47, 48] achieved

that by maintaining a bankK 1
t , . . . ,K Nt

t of Kalman filters in order to

(1) treat Gaussian mixture process and measurement noise by operating one unscented

Kalman filter per Gaussian noise component [47].

(2) treat nonlinear tracking problems by choosing the variances of the individual Kalman

filters small enough for the local linearizations to be approximately valid for each of the

filters [48] (also see Section 3.7).

In both cases, propagating the Kalman filters as well as their posterior probabilities through

time gives a Gaussian mixture filtering density, where the filters’ individual densities are Gaus-

sian components and where the posterior probabilities are their weights. In order to formally

derive this, let pX t |K n
t ,y1:t

(xt ) denote the Gaussian filtering density of the n-th Kalman filterK n
t

at time t , with y1:t ¬ {y1, . . . , yt }. Then the overall filtering density pX t |y1:t
(xt ) can be expressed

as marginal density of pX t ,Kt |y1:t
(xt ,K n

t ):

pX t |y1:t
(xt ) =

Nt
∑

n=1

pX t |K n
t ,y1:t

(xt ) ·pKt |y1:t
(K n

t )
︸ ︷︷ ︸

=pXt ,Kt |y1:t (xt ,K n
t )

. (4.18)

Here, pX t |K n
t ,y1:t

(xt ) is a Gaussian component and pKt |y1:t
(K n

t ) is the corresponding posterior

probability (or weight), which can be calculated according to Bayes’ rule:

p (K n
t |y1:t ) =

p (yt |K n
t , y1:t−1) ·p (K n

t |y1:t−1)
∑Nt

n ′=1 p (yt |K n ′
t , y1:t−1) ·p (K n ′

t |y1:t−1)
. (4.19)

This is the main principle behind Gaussian mixture filters. For the sake of notational simplic-

ity, the dependency on y1:t will be dropped in the following. So, we will write p (K n
t ) instead of

p (K n
t |y1:t ) and pX t |K n

t
(xt ) instead of pX t |K n

t ,y1:t
(xt ). Also note that (4.18) and (4.19) are the se-

quential equivalents to (3.8) and (3.9) from the Gaussian mixture implementation of Bayesian

estimation (see Section 3.2.2). Just replace the component index k by the filter indexK n
t and

replace the observation y by the set y1:t of past observations. This result will be used in the

upcoming sections in order to
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(A) construct an unscented Gaussian mixture filter for non-Gaussian process and measure-

ment noise (Section 4.6.1) [19].

(B) develop a Gaussian mixture filter for nonlinear tracking problems based on the adaptive

level of detail transform (Section 4.6.3) [13].

As, for these filters, the number of mixture components grows exponentially in time, Section

4.6.2 introduces Gaussian mixture reduction techniques.

4.6.1 The Unscented Gaussian Mixture Filter for non-Gaussian Noise

For the derivation of the Kalman filter and its extensions, the process and measurement noise

distributions were assumed to be Gaussian. This allowed for an analytically tractable conju-

gate prior solution in which both the prior and posterior distributions remained Gaussian at

all times. Although this Gaussian assumption is supported by the fairly generally accepted fact

that the errors of macroscopic systems tend to have a Gaussian distribution [40], there are prac-

tical scenarios in which the noise distributions are non-Gaussian. In acoustics, for example, it

is well known that the relative phase between two independent signals has a uniform distribu-

tion on the interval [0, 2π] (see [76] for example). In such a case, the process and measurement

noise distributions may be approximated as Gaussian mixtures [47]:

pWt
(wt ) ≈

∑K
k=1 c (k )W N (wt ;µ(k )W ,Σ(k )W ), (4.20)

pVt
(vt ) ≈

∑L
l=1 c (l )V N (vt ;µ(l )V ,Σ(l )V ), (4.21)

whereN denotes the Gaussian distribution, and where c (l )V , µ(l )V , Σ(l )V and c (k )W , µ(k )W , Σ(k )W denote

the prior probability, mean, and covariance, respectively, of the l -th and k -th Gaussian com-

ponents.

Gaussian mixture
approximation

uniform 
distribution

These process and measurement noise approximations can now be treated within the Gaus-

sian mixture filter framework by operating one unscented Kalman filter per Gaussian noise

component. Algorithm 4.4 describes this at the example of the unscented Gaussian mixture fil-

ter (UGMF), which achieves the above by first splitting each Kalman filter into K and L filters,

respectively, and then assigning one filter to each of the Gaussian noise components, as visual-

ized in Figure 4.2. After the splitting step, all the filters are updated with the current observation

yt and their posterior probabilities are calculated according to (4.19).
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The Unscented Gaussian Mixture Filter

1. Predict State: Split each filter K n
t−1 into K identical filters K n ,1

t−1 , . . . ,K n ,K
t−1 . Assign each

K n ,k
t−1 to the k -th process noise component pWt |k (wt ) = N (wt ;µ(k )W ,Σ(k )W ). Then predict

each filter’s state distribution with the augmented unscented transform: pX t |K
n ,k

t−1
(xt ) =

AUT2

�

pX t−1|K n
t−1

, pWt |k ; f
	

, where f is the state transition function from (4.3). Finally, up-

date each filter’s probability by multiplying it by the probability of the assigned noise com-

ponent: pKt−1
(K n ,k

t−1 ) = c (k )W pKt−1
(K n

t−1).

2. Construct the Joint: In analogy to state prediction, split each filter K n ,k
t−1 into L filters

K n ,k ,1
t−1 , . . . ,K n ,k ,L

t−1 and assignK n ,k ,l
t−1 to the l -th observation noise component. Proceed by

predicting the joint distribution of state and observation with the augmented unscented

transform: pX t ,Yt |K
n ,k ,l

t−1
(xt , yt ) = AUT2

¦

pX t |K
n ,k

t−1
, pVt |l ; h̃

©

, where pVt |l (vt ) =N (vt ;µ(l )V ,Σ(l )V )

and where h̃ is the augmented observation function from (4.6). Then update the corre-

sponding probabilities pKt−1
(K n ,k ,l

t−1 ) = c (l )V pKt−1
(K n ,k

t−1 ).

3. Condition (Update): Update the filtering density of each filter K n ,k ,l
t−1 by conditioning

the joint distribution on the realized observation, as in the update step of the unscented

Kalman filter (Algorithm 4.2, step 3). Then calculate the filters’ posterior probabilities ac-

cording to (4.19):

pKt
(K n ,k ,l

t ) =
pYt |K

n ,k ,l
t−1
(yt )pKt−1

(K n ,k ,l
t−1 )

∑Nt
n ′=1

∑K
k ′=1

∑L
l ′=1 pYt |K

n ,k ,l
t−1
(yt )pKt−1

(K n ′,k ′,l ′
t−1 )

.

Algorithm 4.4: Unscented Gaussian Mixture Filter

Gaussian Mixture Reduction

1. Select the filterK n
t with the lowest posterior probability pKt

(K n
t ) and determine its sim-

ilarity ρ
�

pX t |K m
t

, pX t |K n
t

�

to all other filtersK m
t , m 6= n , as described in Section 4.6.2.2.

2. MergeK n
t with the most similar filterK m

t by

(a) merging the Gaussian filtering densities of K n
t and K m

t as described in Section
4.6.2.1, with

g1 = pX t |K n
t
(xt ), c1 = pKt

(K n
t )/

�

(pK n
t
(K n

t ) +pK n
t
(K m

t )
�

,

g2 = pX t |K m
t

, c2 = pKt
(K m

t )/
�

(pK n
t
(K n

t ) +pK n
t
(K m

t )
�

.

(b) initializing K n
t with the merged filtering density, setting the corresponding poste-

rior probability pKt
(K n

t ) to pKt
(K n

t ) + pKt
(K m

t ), and then discarding K m
t by first

swappingK m
t withK Nt

t and subsequently decreasing the number of filters (Nt ) by
one.

3. If Nt >M go back to step 1.

Algorithm 4.5: Gaussian Mixture Reduction
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Figure 4.2: Schematic diagram of the unscented Gaussian mixture filter. In the first splitting

step, the Kalman filters are split for each process noise component. In the second splitting step,

they are split for each measurement noise component.

At the end of each iteration, the filter indices are relabeled by settingK n ′
t =K n ,k ,l with n ′ =

n K L + k L + l , for n = 1, . . . , Nt−1, k = 1, . . . , K , l = 1, . . . , L and then updating the number of

filters to Nt =Nt−1K L . Subsequently, the minimum mean squared error estimate x̂t |y1:t of the

state can be obtained as the conditional mean:

µX t
=

∫ Nt
∑

n=1

pKt
(K n

t )pX t |K n
t ,y1:t

(xt )d xt =
Nt
∑

n=1

cK n
t
µX t |K n

t
, (4.22)

with µX t |K n
t

denoting the mean of the n-th Kalman filter and with cK n
t

denoting the posterior

probability pKt
(K n

t ) of the n-the Kalman filter at time t .

4.6.2 Gaussian Mixture Reduction

The relabeling step at the end of the previous paragraph shows that the number of filters in-

creases by a factor of K · L at every time instant t . This leads to an exponential growth in

the number of filters, which quickly becomes intractable from a computational point of view.

Hence, Alspach and Sorenson [47] proposed to reduce the number of filters after each iteration

by removing components with low posterior probability and merging components with simi-

lar means [47, 48]. This approach was further advanced by Salmond who investigated Gaussian

mixture reduction techniques in the context of multi-target tracking in clutter [58, 59] (where

the problem of an exponentially growing number of filters arises due to the data association

problem3). But this topic is not a main focus of this thesis. Hence, the reader is referred to

[60, 61, 77] for an in-depth discussion of more recent techniques.

3 that is, uncertainty regarding from which target a specific observation originated.
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In this thesis, mixture reduction is performed as described in Algorithm 4.5. The algorithm

given there is similar to Salmond’s joining algorithm [59]. It merges components successively

in pairs until a predefined number of M components has been reached. In every iteration, the

component with the smallest weight is selected and then merged with that Gaussian which

it is most similar to. That is achieved by calculating the similarity as the cosine between the

Gaussians as described in Section 4.6.2.2. Merging is performed with the moment matching

based approach from Section 4.6.2.1. As an alternative to Section 4.6.2.2, the similarity may be

determined with the proximate Kullback-Leibler divergence from Section 4.6.2.3. Preliminary

experiments, however, indicated that this gives inaccurate results. This was later confirmed in

a personal communication with the authors of [66].

4.6.2.1 Merging Two Gaussians

Let g1(x ) = N (x ;µ1,Σ1) and g2(x ) = N (x ;µ2,Σ2) be Gaussian distributions with weights c1

and c2 such that c1 + c2 = 1. Then g1 and g2 can be merged to a single GaussianN (x ; µ̃, Σ̃) by

estimating the mean µ̃ and covariance Σ̃ of their mixture m (x ) = c1g1(x )+c2g2(x ) [59, 18]. That

is achieved by calculating of the expectation integrals Em (x ) {x } and Em (x )
�

(x −µ)(x −µ)T
	

:

µ̃ = c1µ1+ c2µ2, (4.23)

Σ̃ = c1

�

Σ1+µ1µ
T
1

�

+ c2

�

Σ2+µ2µ
T
2

�

− µ̃µ̃T . (4.24)

4.6.2.2 Similarity Measure Based on Cosine

In this work, the similarity of two Gaussians g1(x ) = N (x ;µ1,Σ1) and g2(x ) = N (x ;µ2,Σ2) is

determined by calculating the cosine between g1 and g2:

ρ(g1, g2)¬

∫

g1(x )g2(x )d x
q

∫

g1(x )g1(x )d x
∫

g2(x )g2(x )d x
. (4.25)

To simplify (4.25), let us make use of the fact that the product of two Gaussians, g i and g j , is a

scaled single Gaussian: g i (x )g j (x ) =αi , jN (x ;µi , j ,Σi , j )with

αi , j =
N (0;µi ,Σi )N (0;µ j ,Σ j )

N (0;µi , j ,Σi , j )
,

µi , j =Σi , j

�

Σ−1
i µi +Σ−1

j µ j

�

, Σi , j =
�

Σ−1
i +Σ

−1
j

�−1
.

(4.26)

Using this representation, it is clear that the integrals
∫

g i (x )g j (x )d x in the nominator and

denominator of (4.25) evaluate to αi , j , as

∫

g i (x )g j (x )d x =

∫

αi , jN (x ;µi , j ,Σi , j )d x =αi , j

∫

N (x ;µi , j ,Σi , j )d x

︸ ︷︷ ︸

=1

=αi , j .
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Especially, for i = j we have αi ,i = N (0;µi ,Σi )2/N
�

0;µi , 1
2Σi

�

. Hence, the similarity of g1(x )

and g2(x ) can be calculated as

ρ(g1, g2) =

q

N
�

0;µ1, 1
2Σ1

�

N
�

0;µ2, 1
2Σ2

�

N (0;µ1,2,Σ1,2)
(4.27)

with µ1,2 and Σ1,2 being defined as in (4.26) [18].

4.6.2.3 Similarity Measure Based on Proximate Kullback-Leibler Divergence

As an alternative to the above, the similarity between two Gaussians g1 and g2 with associated

weights c1 and c2 = 1− c1 can be calculated as the Kullback-Leibler (KL) divergence D
�

m ||g̃
�

between the mixture m (x ) = c1g1(x ) + c2g2(x ) and the Gaussian g̃ (x ) =N
�

x ; µ̃, Σ̃
�

that would

result from merging g1 and g2 according to Section 4.6.2.1. This approach is complicated by the

fact that there is no analytic solution to the occurring integrals. Nevertheless, the KL divergence

can be approximated by using the point mass representation from the unscented transform

[78, 79]. This works as follows. Let f (x ) be a Gaussian mixture distribution,

f (x ) =
K
∑

k=1

ckN (x ;µk ,Σk )
︸ ︷︷ ︸

¬ f (x |k )

,

and let g (x ) be an arbitrary distribution. Then the KL divergence D ( f ||g ) of f and g can be

written

D ( f ||g ) =
∫

f (x ) log
§

f (x )
g (x )

ª

d x =
K
∑

k=1

ck

∫

f (x |k ) log
§

f (x )
g (x )

ª

d x (4.28)

and each of the integrals in (4.28) can be approximated by replacing f (x |k )with its unscented

point mass representation:

∫

f (x |k ) log
§

f (x )
g (x )

ª

d x ≈
2n
∑

i=0

Wi log

(

f
�

X (k )i

�

g
�

X (k )i

�

)

(4.29)

where the W0, . . . , W2n as well as theX (k )0 , . . . ,X (k )2n are defined as specified in Section 3.5.

4.6.3 The Adaptive Gaussian Mixture Filter for Nonlinear Tracking

Now that the problem of Gaussian mixture reduction has been addressed, let us revisit the

Gaussian mixture filter from Section 4.6.1. The idea of that filter was to handle non-Gaussian

process and measurement noise by first approximating the noise distributions as Gaussian

mixtures and then operating one Kalman filter for each of the Gaussian noise components.

Alspach and Sorenson [48] discovered that this principle can also be used to cope with nonlin-

ear process and measurement equations. That is achieved by
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(1) approximating the Gaussian noise distributions as Gaussian mixtures.

(2) treating potential nonlinearities by choosing the variances of the individual Gaussians

small enough for the local linearizations to be valid for each of the Kalman filters.

This procedure gives more accurate results for nonlinear tracking problems. But it also intro-

duces density approximation errors, which may be harmful in regions where the linearization

error is smaller than the error of approximating a Gaussian by a Gaussian mixture. In particu-

lar, the procedure does not guarantee that the variances of the filtering densities remain small

enough for the local linearizations to be valid throughout time. Hence, this thesis discards

the idea of running a bank of Kalman filters and, instead, focuses on approximating the joint

predictive distribution of state and observation as accurately as possible. That is achieved by

using the adaptive level of detail transform from Section 3.7 for both predicting the state and

constructing the joint distribution of state and observation:

�

X t−1|y1:t−1

Wt

�

ALO D T−−−−−−−−→
f

X t |y1:t−1 and

�

X t |y1:t−1

Vt

�

ALO D T−−−−−−−−→
h̃

�

X t |y1:t−1

Yt |y1:t−1

�

.

This effectively approximates each involved random variable – i.e. X t−1|y1:t−1, Wt and Vt – by

a Gaussian mixture distribution, however, in such a fashion that the linearization error is min-

imized during transformation. The result is a Gaussian mixture approximation of pX t ,Yt |y1:t−1
,

from which the new posterior can be extracted by conditioning on the realized observation.

p(x |y )t-1 1:t-1 p(x |y )t 1:t-1 p(x |y )t 1:t

last posteriorprior
posterior

time t

p( y |y )t 1:t-1x ,t 

condition on
observation

1

2 3ALODT

ALODT

Putting these steps together yields the adaptive Gaussian mixture filter [13], which is described

in Algorithm 4.6. It was developed in the framework of this thesis, starting with [19] where the

idea was to split Kalman filters in likely regions of state space and to merge them in unlikely

regions. The motivation for this approach was to adapt the level of detail of the filtering density

according to the posterior probability of the modes, similar as it is done in the resampling stage

of particle filters by multiplying and removing samples. Unfortunately, this approach cannot

improve the results in linear regions of state space, where the Kalman filter is optimal4. Hence,

in the framework of this thesis [19], it has been proposed to use a split control technique that

prevents filters from being split if they operate in relatively linear regions of state space. This

4 under the assumption of Gaussian process and measurement noise
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The Adaptive Gaussian Mixture Filter

1. Predict State: Use the adaptive level of detail transform from section 3.7 in order to ap-

proximate the predicted distribution pX t |y1:t−1
of the next state according to (4.5):

pX t |y1:t−1
=ALoDT2

�

pX t−1|y1:t−1
, pW ; f

	

.

Here, ALoDT2 is the adaptive level of detail transform of two stacked variables.

2. Construct the Joint: Use the adaptive level of detail transform in order to construct the

joint distribution pX t ,Yt |y1:t
of state and observation according to (4.6):

pX t ,Yt |y1:t−1
=ALoDT2

�

pX t |y1:t−1
, pV ; h̃

	

.

This gives a joint Gaussian mixture distribution as in Section 3.2.2:

pX t ,Yt |y1:t−1
(xt , yt ) =

κ
∑

k=1

ckN

��

xt

yt

�

;

�

µ−X t |k

µYt |k

�

,

�

Σ−X t X t |k
ΣX t Yt |k

ΣYt X t |k ΣYt Yt |k

��

.

3. Condition (Update): As in Section 3.2.2, condition the joint Gaussian mixture distribution

of X t and Yt on the realized observation yt . This is done in analogy to (3.8):

pX t |y1:t
(xt ) =

κ
∑

k=1

c +k N
�

xt ;µ+X t |k ,Σ+X t X t |k

�

whereµ+X t |k
=µ−X t |k

+ΣX t ,Yt |kΣ
−1
Yt ,Yt |k

(yt −µYt |k ) andΣ+X t X t |k
=Σ−X t X t |k

−ΣX t Yt |kΣ
−1
Yt Yt |k

ΣYt X t |k

and where c +k is calculated according to (3.9):

c +k =
ck pY |k (y )

∑κ
k ′=1 ck ′pY |k ′ (y )

=
ckN

�

yt ;µYt |k ,ΣYt Yt |k
�

∑κ
k ′=1 ck ′N

�

yt ;µYt |k ′ ,ΣYt Yt |k ′
� .

4. Simplify: Simplify the filtering density through Gaussian mixture reduction, as described

in Section 4.6.2.

Algorithm 4.6: Adaptive Gaussian Mixture Filter
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approach was further extended in [12], which introduced a splitting criterion that considers

both the component’s mixture weight and its degree of nonlinearity. And it eventually led to

the splitting priority from Section 3.7.2.1, which constitutes a suitable splitting criterion, as it

reflects the total linearization error that a component contributes to the transformation. The

work in [13] further refined this approach by splitting Gaussians in the direction of nonlinearity

instead of splitting them in the direction of the largest variance (see Section 3.7.4).

4.6.4 Other Gaussian Mixture Filters

Over the recent years, there has been a surge of interest in Gaussian mixture filters. The lo-

cal linearizations of Alspach and Sorenson’s original implementation [48] have been replaced

by numerical integration techniques such as the unscented transform [80], Gauss-Hermite

quadrature [56, 81], cubature [82] as well as Monte Carlo integration [83]. There have been

innovative approaches like progressive Bayes [62, 84, 85] where Gaussians are split based on

their L 2 distance measure to the true density, and the sliced Gaussian mixture filter [86], which

uses a Dirac mixture in the nonlinear subspace and a Gaussian mixture in the linear subspace.

Aside from these theoretical extensions, Gaussian mixture filters have successfully been ap-

plied to radar target tracking [87], integrated INS / GPS navigation [80], simultaneous localiza-

tion and mapping (SLAM) [88] as well as terrain aided navigation [89]. Also, it has been shown

that Gaussian mixture filters can outperform particle filters on certain tasks [19, 89], even when

compared to state of the art methods such as the unscented particle filter [90].

4.7 Particle Filters

The sequential Bayesian estimation approaches discussed so far were all based on analytic,

continuous density function approximations of the posterior distribution. As an alternative to

these, the posterior may by approximated as an empirical, sample based distribution. This has

the advantage that (1) prediction can easily be handled through the transformation of samples,

and (2) the conditioning step can be performed by simply reweighing the transformed samples

in dependence of the realized observation. These two steps form the basis of Gordon et al.’s

bootstrap filter [91], which is described in more detail in Section 4.7.1. Its advantages are that

it imposes no restrictions on the process and measurement noise distributions5; nor does it

impose restrictions on potential nonlinearities in the process and measurement equations. On

the downside, it may, however, require maintaining a large number of samples to achieve a

good accuracy of approximation, especially if

(a) the process and measurement equations are not “well-behaved”.

(b) the observation likelihood pYt |xt
is peaked.

5 as long as it is possible to sample from these distributions
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(c) the tails of the distributions do matter.

(d) the measurement noise is low.

These issues triggered the combination of the bootstrap filter with analytic filtering techniques

[92, 90], the theoretical basis for which relies on the fact that the sampling stage of the bootstrap

filter can be extended to importance sampling from arbitrary distributions. This leads to the

generalized particle filtering framework, which is described in Section 4.7.2 and discussed in

more detail in the monographs by Liu [93] and Doucet [94] as well as Arulampalam et al.’s IEEE

tutorial on particle filters [95].

4.7.1 The Bootstrap Filter

The main idea of the bootstrap filter [91] consists in representing the filtering density as an

empirical distribution of N state samples x
( j )
t−1, j = 1, . . . , N :

pX t−1|y1:t−1
(xt−1) =

1

N

N
∑

j=1

δ
�

xt−1− x
( j )
t−1

�

These samples are propagated in time by iterating steps 1 - 4 of Algorithm 4.7. In step 1, the em-

pirical distribution of the state is predicted by first drawing N noise samples w
( j )
t from the pro-

cess noise distribution pWt
and then transforming each tuple

�

x
( j )
t−1, w

( j )
t

�

according to the state

transition function (4.3). This effectively approximates the prior state distribution through

Monte Carlo transformation (see Section 2.5.2):

pX t |y1:t−1
(xt ) =

1

N

N
∑

j=1

δ
�

xt − x
( j )
t

�

with x
( j )
t ¬ f

�

x
( j )
t−1, w

( j )
t

�

. (4.31)

In step 2, the joint distribution of state and observation is constructed by predicting the ob-

servation density p
Yt |x

( j )
t

of each state sample x
( j )
t . That is achieved by first transforming6 the

tuples
�

x
( j )
t , Vt

�

according to the measurement equation (4.4),

Yt |x
( j )
t = h

�

x
( j )
t , Vt

�

, (4.32)

and then multiplying each δ
�

xt − x
( j )
t

�

by the observation distribution that results from (4.32).

This gives the semi-empirical density (see Section 3.2.3)

pX t ,Yt |y1:t−1
(xt , yt ) =

1

N

N
∑

j=1

δ
�

xt − x
( j )
t

�

p
Yt |x

( j )
t
(yt ), (4.33)

where the samples x
( j )
t can be regarded to be possible state hypotheses and where the p

Yt |x
( j )
t

are

predicted observation densities that correspond to the x
( j )
t . Step 3 of the bootstrap filter con-

6 This transformation is again achieved with the fundamental transformation law of probability.



84 CHAPTER 4. SEQUENTIAL BAYESIAN ESTIMATION

The Bootstrap Filter

1. Predict State: Construct the prior distribution for the estimation problem at time t by

first simulating N samples w 1
t , . . . , w N

t from the process noise distribution and then trans-

forming the empirical distribution pX t−1|y1:t−1
(xt−1) =

1
N

∑N
j=1δ

�

xt−1− x
( j )
t−1

�

of the last

posterior according to the process equation (4.3). This gives:

pX t |y1:t−1
(xt ) =

1

N

N
∑

j=1

δ
�

xt − x
( j )
t

�

with x
( j )
t ¬ f

�

x
( j )
t−1, w

( j )
t

�

.

2. Construct the Joint: Construct the joint distribution pX t ,Yt |y1:t
of state and observation

by first predicting the observation distribution p
Yt |x

( j )
t ,y1:t−1

of each state sample x
( j )
t and

then multiplying each δ
�

xt − x
( j )
t

�

by the corresponding p
Yt |x

( j )
t ,y1:t−1

. This gives the semi-

empirical distribution (see Section 3.2.3)

pX t ,Yt |y1:t−1
(xt , yt ) =

1

N

N
∑

j=1

δ
�

xt − x
( j )
t

�

p
Yt |x

( j )
t
(yt ). (4.30)

In the above, the prediction of p
Yt |x

( j )
t

is achieved by fixing X t = x
( j )
t and then transforming

�

x
( j )
t , Vt

�

according to the measurement equation (4.4):

p
Yt |x

( j )
t ,y1:t−1

(yt ) = h
�

x
( j )
t , Vt

�

.

3. Condition (Update): Condition the semi-empirical density from (4.30) on the realized

observation yt , as described in Section 3.2.3:

pX t |y1:t
(xt ) =

N
∑

j=1

ω
( j )
t δ

�

xt − x
( j )
t

�

with ω
( j )
t ¬

p
Yt |x

( j )
t
(yt )

∑N
i=1 pYt |x

(i )
t
(yt )

.

4. Resample: Use importance resampling (Section 2.5.5) in order to convert the weighted

empirical distribution from Step 3 to an (equally-weighted) empirical distribution:

p̂X t |y1:t
(xt ) =

1

N

N
∑

i=1

δ
�

xt − x̃ (i )t

�

.

Here, x̃ (i )t denotes a sample drawn from x
( j )
t with probabilityω

( j )
t , j = 1, . . . N .

Algorithm 4.7: The Bootstrap Filter
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ditions the joint distribution from (4.33) on the realized observation. That is done according to

Section 3.2.3, by first evaluating all the observation densities p
Yt |x

( j )
t

at the realized observation

Yt = yt , and then weighting each sample x
( j )
t by its relative observation likelihood w

( j )
t :

pX t |y1:t
(xt ) =

N
∑

j=1

ω
( j )
t δ

�

xt − x
( j )
t

�

with ω
( j )
t ¬

p
Yt |x

( j )
t
(yt )

∑N
i=1 pYt |x

(i )
t
(yt )

. (4.34)

The last step of the bootstrap filter consists in converting this weighted empirical approxi-

mation of the filtering density back to an (equally-weighted) empirical distribution. That is

achieved by means of an importance resampling step (step 4 of Algorithm 4.7) which effectively

multiplies samples that have a high relative weight and which removes samples that have a low

relative weight. This resampling step greatly increases the efficiency of the filter, as it causes

that the state space is explored more thoroughly in likely regions and less thoroughly in un-

likely regions. A similar effect can be achieved by using the accept / reject procedure from [96]

or the clustering approach from [97], which have both been proposed before the bootstrap fil-

ter.

4.7.2 Generalized Particle Filtering

The Bootstrap filter is based on first drawing samples x
( j )
t from the predicted state variable

X t |x
( j−1)
t = f

�

x
( j )
t−1, Wt

�

and then weighting each of these samples with ω
( j )
t . This procedure

can be interpreted as importance sampling (see Section 2.5.4) with p
X t |x

( j−1)
t

as a proposal dis-

tribution [94, 93]. Using this interpretation, the idea behind generalized particle filtering can

be formulated as extending the bootstrap filter to importance sampling from arbitrary distri-

butions. That may be achieved as follows. Let

pX t−1|y1:t−1
(xt ) =

1

N

N
∑

j=1

δ
�

xt−1− x
( j )
t−1

�

be the empirical approximation of the last posterior distribution and let π
( j )
t be a proposal

distribution for the sample x
( j )
t . Then the predictive distribution pX t |y1:t−1

of the state can be

approximated by first drawing one x
( j )
t from π

( j )
t , for j = 1 . . . , N , and then re-weighting each

sample by its corresponding importance weight:

w̆
( j )
t ¬

1

N

p
X t |x

( j )
t−1
(x ( j )t )

π
( j )
t (x

( j )
t )

.

Normalizing these weights gives a weighted empirical approximation of the prior distribution.

Hence, we can now perform a Bayesian estimation step, in analogy to steps 2-4 of the bootstrap

filter. This gives the generalized particle filter that is described in more detail in Algorithm 4.8.
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Generalized Particle Filtering

1. Predict State: Construct a proposal distributionπ
( j )
t for each sample x

( j )
t−1 of the last poste-

rior distribution. Then draw one sample x
( j )
t from eachπ

( j )
t . Weight the resulting samples

with normalized importance weights in order to match their empirical distribution to the

distribution of X t :

pX t |y1:t−1
(xt ) =

N
∑

j=1

w̆
( j )
t

∑N
i=1 w̆ (i )

t
︸ ︷︷ ︸

w̃
( j )
t

δ
�

xt − x
( j )
t

�

with w̆
( j )
t ¬

1

N

p
X t |x

( j )
t−1

�

x
( j )
t

�

π
( j )
t

�

x
( j )
t

� . (4.35)

Here, p
X t |x

( j )
t−1

�

x
( j )
t

�

denotes the likelihood of a transition from x
( j )
t−1 to x

( j )
t according to the

process equation.

2. Construct the Joint: Construct the joint distribution pX t ,Yt |y1:t
of state and observation by

first predicting the observation distribution p
Yt |x

( j )
t ,y1:t−1

of each state sample x
( j )
t , and then

multiplying each
�

xt − x
( j )
t

�

by its corresponding p
Yt |x

( j )
t ,y1:t−1

. This gives:

pX t ,Yt |y1:t−1
(xt , yt ) =

N
∑

j=1

w̃
( j )
t δ

�

xt − x
( j )
t

�

p
Yt |x

( j )
t
(yt ). (4.36)

3. Condition (Update): Condition the semi-empirical density from (4.36) on the realized

observation yt , as described in Section 3.2.3:

pX t |y1:t
(xt ) =

N
∑

j=1

ω
( j )
t δ

�

xt − x
( j )
t

�

with ω
( j )
t ¬

w̃
( j )
t p

Yt |x
( j )
t
(yt )

∑N
i=1 w̃ (i )

t pYt |x
(i )
t
(yt )

.

4. Resample: Use importance resampling in order to convert the weighted empirical distri-

bution from Step 3 to an (equally-weighted) empirical distribution:

p̂X t |y1:t
(xt ) =

1

N

N
∑

i=1

δ
�

xt − x̃ (i )t

�

.

Here, x̃ (i )t denotes a sample drawn from x
( j )
t with probabilityω

( j )
t , j = 1, . . . N .

Algorithm 4.8: Generalized Particle Filtering
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4.7.2.1 Choice of the Proposal Distribution

The proposal distributions π
( j )
t are simply distributions that the samples x

( j )
t are drawn from.

They can be chosen almost arbitrarily, with the only restriction being that their support

sup
¦

π
( j )
t

©

¬
n

xt

�

�

�π
( j )
t (xt )> 0

o

includes the support of the predicted state density p
X t |x

( j )
t−1

. Choosing π
( j )
t = p

X t |x
( j )
t−1

yields the

bootstrap filter from the Section 4.7.1. Other proposal distributions that have been discussed

in the literature are based on

• local linearization of the state space model [98].

• using the posterior distribution of an extended Kalman filter [92, 99].

• using the posterior distribution of an unscented Kalman filter [90].

The last two approaches show certain similarities to Gaussian mixture filters, which raises the

question whether the sampling framework is really necessary. And it is exactly this question

which motivated the development of the adaptive Gaussian mixture filter in the framework of

this thesis [19, 12, 13], which tries to achieve the same with analytical approximations.

4.8 Performance Evaluation of Nonlinear Filters

This section compares the performance of different nonlinear filters at the example of tracking

a maneuvering object based on polar measurements. This is done in form of a simulation in

which an object moves along the synthetic trajectory which is portrayed in Figure 4.3. The

trajectory is formally described by:

xt = 10
�

sin(st ) +1 (cos(st ) +1)sin( st
2 ) cos(2st )st

�T
with st =

4πt

500

for t = 1, . . . , 500. The object moving along it is observed by virtual sensors, which are are lo-

cated at [0 0 0]T and which provide measurements in polar coordinates. Additive measurement

noise is simulated from a Gaussian whose covariance matrix is chosen at random – once for

each of the 50 experiments that were performed. This gives a standard deviation of 0.27 on

average for the distance and an angular accuracy of 3.8◦.

Process Model: As a process model, this section uses a zeroth-order linear dynamic model, xt =

xt−1 +wt , with zero-mean Gaussian process noise wt . The process noise covariance ΣW was

estimated on the synthetic trajectory and further scaled by a factor of two in order to increase

stability. At time 0, the filters were initialized with a Gaussian distribution around the true state,

x1, with process noise covariance.
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Figure 4.3: Plot of the trajectory, which was used in the simulations (solid blue line). The location
of the sensor is indicated by an orange-filled circle. Its minimum distance from the trajectory is
3.99 at t = 156.

Measurement Model: The polar measurement model used in the experiments is formally spec-

ified by the measurement equation yt = h (xt )+vt where vt denotes additive Gaussian measure-

ment noise and where h denotes the function which converts Cartesian to polar coordinates:

h
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with

θ = atan2 (x2/x1)

φ = atan2 (cos(θ ) · x3/x1)

r =
q

x 2
1 + x 2

2 + x 2
3

.

The terms θ , φ and r denote the azimuth, elevation and distance, respectively. The measure-

ment noise covariance ΣV during filtering was the same as in the simulated measurements.

4.8.1 Results for the Adaptive Gaussian Mixture Filter

Table 4.1 shows the mean squared errors (MSEs) that have been obtained with the adaptive

Gaussian mixture filter from Sections 4.6.3. The numbers are averaged over 50 simulations

and correspond to 500 point trajectories. The first row of the table shows results for splitting

in direction of the largest variance. The other rows show the mean squared errors that were

obtained by splitting in direction of the nonlinearity. In row two, the direction of nonlinearity

was estimated as the eigenvector corresponding to the largest eigenvalue of (3.58). In row three,

it was estimated according to (3.59). All the results are shown in dependence of the number of

filters (#Gaussians). Splitting was always performed with the “two component” approach from

Section 3.7.3.1. The best result was obtained in row 3, with 64 filters. In this case, splitting was

performed in the direction of nonlinearity. The MSE was 573, which is 40% lower than that
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Mean Square Error Computation Time
direction #Gaussians #Gaussians

of split 2 4 8 16 32 64 2 4 8 16 32 64
variance 779 774 768 765 764 762 0.13 0.27 0.61 1.50 4.24 12.9

nonlinearity#1 935 770 688 632 621 608 0.12 0.26 0.57 1.37 3.59 11.1
nonlinearity#2 1104 825 703 628 595 573 0.11 0.23 0.51 1.26 3.40 10.1

Mean Square Error Computation Time
direction #Gaussians #Gaussians

of split 2 4 8 16 32 64 2 4 8 16 32 64
variance 779 774 768 765 764 762 0.13 0.27 0.61 1.50 4.24 12.9

nonlinearity#1 935 770 688 632 621 608 0.12 0.26 0.57 1.37 3.59 11.1
nonlinearity#2 1104 825 703 628 595 573 0.11 0.23 0.51 1.26 3.40 10.1

Table 4.1: Mean square error (MSE) and computation times in seconds of the adaptive Gaussian
mixture filter. The numbers correspond to 500 point tracks. Splitting was either performed in the
direction of the largest variance or in the direction of nonlinearity. The given results compare to
an MSE of 927 for a single unscented Kalman filter, at a computation time of 0.02 seconds.
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Figure 4.4: Deviation from the true trajectory for the unscented Kalman filter as well as the
adaptive Gaussian mixture filter with 32 Gaussians. The black curve shows the true trajectory.
The yellow curve shows the tracking result. The red lines indicate the deviation.

of the unscented Kalman filter (the UKF had an MSE of 927) and roughly 25% lower than for

splitting in the direction of the largest variance (in this case the MSE was 762). The right-hand

side of Table 4.1 shows computation times in seconds for the adaptive Gaussian mixture filter

(AGMF). With 64 Gaussians it took between 10 and 13 seconds to process a 500 point track.

This compares to 0.11 - 0.13 seconds for the AGMF with 2 Gaussians and to 0.02 seconds for a

single unscented Kalman filter.

4.8.2 Results for the Bootstrap Filter

Table 4.2 shows the results that have been obtained with the bootstrap (particle) filter from Sec-

tion 4.7.1. The numbers are again averaged over 50 simulations; they correspond to 500 point

tracks; and they are given in dependence of the number of particles (#particles). With 1,000

(1K) particles, the mean squared error was 70% higher than that of the unscented Kalman filter

(UKF). At the same time, the computation time was comparable to that of an adaptive Gaussian

mixture filter (AGMF) with 12 filters. With 100,000 (100K) particles, the MSE was similar to that
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Mean Square Error Computation Time
#Particles #Particles

1K 5K 10K 50K 100K 500K 1K 5K 10K 50K 100K 500K
1610 1139 1068 967 945 926 0.93 8.93 19.47 111.7 239.5 1477

Mean Square Error Computation Time
#Particles #Particles

1K 5K 10K 50K 100K 500K 1K 5K 10K 50K 100K 500K
1610 1139 1068 967 945 926 0.93 8.93 19.47 111.7 239.5 1477

Table 4.2: Mean square error (MSE) and computation times in seconds for the bootstrap (parti-
cle) filter from Section 4.7.1. The results are shown in dependence of the number of particles.

Figure 4.5: Comparison between the bootstrap filter (PF) with 100,000 particles, the unscented
Kalman filter (UKF) as well as the adaptive Gaussian mixture filter (AGMF) with 8 and 64 Gaus-
sians, respectively.

of the UKF. But the computation time was 20 times higher than for the AGMF with 64 filters.

Figure 4.5 finally gives a graphical comparison between the different filters.

4.9 Contributions of this Chapter

The following list again gives an overview of the individual contributions of this thesis to se-

quential Bayesian estimation:

1. A transformation-centric view on sequential Bayesian estimation (Section 4.3).

2. Derivations for all commonly used tracking algorithms – Kalman, Gaussian mixture and

particle filters – based on the above point of view (Sections 4.4, 4.5, 4.6.3, 4.7 and [18]).

3. A variant of the unscented Kalman filter that makes use of the extensive unscented trans-

form [18] (Section 4.5).

4. A novel Gaussian mixture filter which adapts the level of detail (i.e. the number of Gaus-

sians) of all concerned probability distributions (predicted state, process noise and mea-

surement noise) in order to minimize the linearization error [19, 13] (Section 4.6.3).



5
ASR Basics & Speech Features

In order to give the necessary background for the upcoming chapters, this chapter briefly

sketches the basic architecture of automatic speech recognition (ASR) systems and then in-

vestigates the effect that noise has on clean speech features. Turning to the former, an ASR

system may be described as a device that converts an acoustic speech signal to text. Such a de-

vice typically consist of two components: a front end and a decoder, which process the speech

signal as portrayed in the architectural overview in Figure 5.1.

Figure 5.1: Overview of a typical ASR System.

While the front-end extracts speech features from the audio signal, the decoder performs a

Viterbi “search” [100] in order to find that sentence1 which is the most likely explanation for the

1 i.e. path through a network of acoustical states

91
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observed sequence of speech features. This requires two stochastic models, the combination

of which defines a hidden Markov process:

1. a recognition network that contains all possible sentences as sequences of acoustical

states (st ) along with associated transition probabilities pSt |st−1
(st ).

2. an acoustic model that specifies the distributions pX t |st
(xt ) that the extracted speech fea-

tures (xt ) have in the acoustical states.

Practical (i.e. computationally viable) implementations approximate the full Viterbi search by

dropping unlikely state sequences at run time. This is done in relation to the best hypothesis,

in a procedure which is generally referred to as beam search [101]. More detailed descriptions

of state of the art ASR systems can be found in [101, 102].

5.1 Speech Feature Extraction

The features of modern ASR systems are mostly based on Mel frequency cepstral coefficients

(MFCCs). Hence, feature extraction typically starts with calculating MFCCs according to the

processing chain in Figure 5.2. In this chain, the digitized 16 kHz audio signal is firstly cut

Figure 5.2: Processing chain for Mel frequency cepstral coefficients.

into overlapping frames of 256 samples. The samples of each frame are further multiplied by

a Hamming window in order to reduce leakage of spectral energy into neighboring frequency

bands. After the windowing step, perceptual spectral estimation is performed according to the

processing chain in Figure 5.3. This chain starts with calculating the power spectrum by first

Figure 5.3: Processing chain for perceptual spectral estimation.

performing a Fourier transform and then taking the magnitude square | · |2 of each frequency

bin. Due to the fact that the power spectrum is symmetric around the 129-th frequency bin,

it is sufficient to keep the lower half of the power spectrum. In the next step, the logarithmic

frequency perception of the human auditory systems is emulated by mapping the frequencies
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of the power spectrum to the Mel scale. This is achieved by multiplying the power spectrum

with a 30×129 Mel filterbank matrix W whose individual rows are triangular shaped as shown in

Figure 5.4-(a). Figure 5.4-(b) shows all the rows in one figure. After applying the Mel filterbank,
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Figure 5.4: Frequency Response of the Mel Filterbank

the logarithm of each individual frequency bin is taken in order to also mimic the logarithmic

intensity perception of the human auditory system. This results in a so-called log-Mel spectrum

Multiplying it by a 30× 30 discrete cosine transform (DCT-II) matrix and then taking the first

13 elements of the resulting vector finally gives MFCC features. The DCT-II matrix used in this

work is shown in Figure 5.5. Its elements cn ,k are given by cn ,k = c o s
�

π
30

�

n + 1
2

�

k
�

.
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Figure 5.5: Discrete Cosine Transform.

MFCCs are perceptually relevant, dimensionally reduced and approximately decorrelated.

They do not, however, capture the dynamic properties of speech. Hence, MFCC features are
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typically augmented with so-called delta and delta-delta features [101], which are essentially

their first and second order derivatives with respect to time [103, 104]. Another way to incorpo-

rate the dynamic properties of speech is to use LDA features [105, 106, 107]. These are obtained

by stacking 15 adjacent MFCC features – that is, combining the current MFCC vector with 7 pre-

ceding and 7 succeeding MFCC vectors, as shown in Figure 5.6 – and then performing a linear

Figure 5.6: Stacking Adjacent MFCCs.

discriminant analysis (LDA) [108] on these super-features by first calculating an LDA matrix on

a training corpus; and then multiplying the extracted and stacked MFCC vectors by this ma-

trix [105, 106, 107]. For completeness, it should be mentioned that the rows of the LDA matrix

are actually eigenvectors which are found as the solution of a generalized eigenvalue problem

[108, 107]. Hence, truncating the LDA matrix to the largest eigenvectors (i.e. the ones which

correspond to the largest eigenvalues) reduces the dimension without sacrificing too much

on discriminability. The ASR system used in this thesis performs cepstral mean and variance

normalization [109, 110, 111] before calculating LDA features. This decreases the variability

between different speakers and microphones and, hence, increases robustness. As the LDA

matrix is truncated to 42 eigenvectors, the final features are 42-dimensional.

Figure 5.7: Dynamic Features through Linear Discriminant Analysis.

5.2 The Effect of Noise to Speech Features

This section studies the effect that noise has on clean speech features, starting with the re-

lationship of speech and noise at the wave level. At this level, sound is a disturbance of air

molecules propagating as a wave front of compressed air followed by decompressed air. Waves

from different sources add up at each point of the space (superposition principle), as portrayed

in Figure 5.8.
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(a) Wave Propagation. (b) Superposition Principle.

Figure 5.8: Sound Propagation

This implies that, whenever a microphone is used to pick up the sound from a particular source,

the resulting audio signal will also contain sound from other sources, such as environmental

noise or reverberation (due to reflections off the walls). This is formally captured by modeling

the received signal y (t ) as:

y (t ) = h (t ) ∗ x (t ) +n (t ) (5.1)

where x (t ) denotes the original speech signal, n (t ) denotes the noise signal and h (t ) denotes

the room impulse response, which accounts for reflections off the walls. The “∗” symbol de-

notes the convolution operator. To emphasize the fact that the propagation of the audio signal

from the speaker to the microphone can be described as a communication channel, the func-

tion h (t ) is also referred to as “channel”.

5.2.1 The Effect of Noise in the log-Mel Domain

We would now like to bring the relationship from (5.1) to the log-Mel domain, i.e. the domain

of logarithmic frequency / logarithmic intensity spectra. This is achieved by translating (5.1)

through all of the individual feature extraction steps, starting with the translation from the time

(5.1) to the frequency domain:

Y (ω) =H (ω) ·X (ω) +N (ω) (5.2)

where Y (ω), H (ω), X (ω) and N (ω) denote the short-time Fourier transforms of y (t ), h (t ), x (t )

and n (t ). Moving to the power spectral domain, by taking the magnitude square on both sides,

gives:

|Y (ω)|2 = (H (ω)X (ω) +N (ω)) · (H (ω)X (ω) +N (ω))∗

= H (ω)H (ω)∗X (ω)X (ω)∗+N (ω)N (ω)∗+H (ω)X (ω)N (ω)∗+N (ω)H (ω)∗X (ω)∗

= |H (ω)|2|X (ω)|2+ |N (ω)|2+H (ω)X (ω)N (ω)∗+ (H (ω)X (ω)N (ω)∗)∗
︸ ︷︷ ︸

¬err(ω)
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where |Y (ω)| =
p

Y (ω)Y (ω)∗ denotes the spectral magnitude. The error term err(ω) consists

of a complex value plus the conjugate of the same complex value. Hence, it is 2 times the real

part of H (ω)X (ω)N (ω)∗, which can be further simplified through use of the cosine:

err(ω) = 2R
�

H (ω)X (ω)N (ω)∗
	

= 2c o s (θω)|H (ω)||X (ω)||N (ω)|

where θω denotes the phase or “argument” of H (ω)X (ω)N (ω)∗. Given this equation, we can

conclude that the relationship between speech x (t ), channel h (t ) and noise n (t ) in the power

spectral domain is:

|Y (ω)|2 = |H (ω)|2|X (ω)|2+ |N (ω)|2+2c o s (θω)|H (ω)||X (ω)||N (ω)|. (5.3)

The angle θω corresponds to the relative phase between speech |H (ω)X (ω)| and noise |N (ω)|.
Depending on the value of θω, speech is either amplified or attenuated as indicated below:

Figure 5.9: Effect of the Relative Phase. The blue and red curves on the left-hand side of the
arrow show speech and noise signals, respectively. The violet curves on the right-hand side show
the resulting noisy speech signals.

Now discretizing the signal and performing a windowed Fourier transforms, as it is done in

speech feature extraction, we obtain the following approximation of (5.3):

|Yk |2 = |Hk |2|Xk |2+ |Nk |2+2c o s (θk )|Hk ||Xk ||Nk |, (5.4)

where the k = 1, ..., ds denote discrete frequencies and where ds is the spectral dimension. The

use of a windowed Fourier transform, however, truncates the room impulse response h (t ) to

the window length. This essentially cuts the reverberation tails and thereby makes (5.4) un-

suitable for reverberant environments [112, 113, 114]. We nevertheless proceed by denoting

the Mel spectrum of clean speech x (t ) by

X̃k =
�

Wk ,1 · · · Wk ,ds

�

︸ ︷︷ ︸

¬Wk

·
�

|X1|2 . . . |Xds
|2
�T

︸ ︷︷ ︸

¬|X |2

,
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k = 1, . . . , dm , where Wk denotes the k -th row of the Mel Matrix W , i.e. the k -th Mel filter.

Then the relationship in the power spectral domain can be translated to the Mel domain by

multiplying both sides of (5.4) by the Mel matrix W . This gives:

Ỹk = H̃k X̃k + Ñk +2αk

Æ

H̃k X̃k Ñk (5.5)

with Ỹk = Wk · |Y |2, H̃k = Wk · |H |2, X̃k = Wk · |X |2, Ñk = Wk · |N |2 and with αk denoting the

so-called phase factor [76],

αk =

∑ds
i=1 Wk ,i c o s (θi )|Hi ||X i ||Ni |

Æ

H̃k X̃k Ñk

, (5.6)

which assumes values in the range [−1, 1]. It is interesting to note that αk is introduced simply

because it allows us to write (5.5) in terms of the variables H̃k , X̃k and Ñk . This becomes clear by

verifying that the nominator of (5.6) is just the multiplication of the k -th row of the Mel matrix

with the vector of cross terms:

�

Wk ,1 · · · Wk ,ds

�

·







cos(θ1)|H1||X1||N1|
. . .

cos(θds
)|Hds

||Xds
||Nds

|






.

So, the nominator of (5.6) is the actual cross term in the Mel domain and the denominator of

(5.6) is only introduced in order to cancel the
Æ

H̃k X̃k Ñk in (5.5). Aside from this, it should

be mentioned that (5.5) is actually an approximation unless the frequency response |Hk | of

the channel is 1 for all k . That is because H̃ � X̃ =
�

W |H |2
�

�
�

W |X |2
�

6= W
�

|H |2� |X |2
�

,

where � operator denotes the component-wise multiplication of the vectors. Further defin-

ing yk = log
�

Ỹk

�

, xk = log
�

X̃k

�

, hk = log
�

H̃k

�

and nk = log
�

Ñk

�

, equation (5.5) can be written in

dependency of the log-Mel spectra y , x , h and n :

e yk = e xk e hk + e nk +2αk

p

e xk e hk e nk

= e xk+hk
�

1+ e nk−xk−hk +2αk

p

e nk−xk−hk

�

Taking the logarithm on both sides finally gives the following relationship in the log-Mel do-

main [115, 76]:

yk = xk +hk + l o g
�

1+ e nk−xk−hk +2αk

p

e nk−xk−hk

�

︸ ︷︷ ︸

¬ f (xk ,hk ,nk ,αk )

. (5.7)

This is the so-called interaction function [116]. It allows for the calculation of noisy speech y ,

given clean speech s , noise n and channel h (all in the log-Mel domain) along with a vector of

phase factorsα=
�

α1, . . . ,αdm

�

. Unfortunately, theαk are difficult to estimate in practice as they

are volatile and almost uncorrelated in different frequency bins. Hence, Deng et al. [115, 76]

proposed to keep the phase factors as random terms in order to explicitly account for their
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uncertainty. This was done under the assumption that the αk follow a Gaussian distribution.

Deviating from that approach, this work takes a Monte Carlo approach which averages the in-

teraction function from (5.7) with respect to the true distribution of the αk [14]. This is done in

Section 5.2.3, right after the distribution of the phase factors has been determined.

5.2.2 Distribution of the Phase Factors

In Deng et al. [76], it was assumed that the phase factors follow a zero-mean Gaussian distri-

bution. This assumption was based on the reasoning that the relative phases θk are uniformly

distributed on [−π,π] and that, consequently, the phase factor of each Mel filter is a weighted

sum of cosines of the uniform distribution. This means, in higher Mel frequencies bins many

of the cos(θk ) are added, as can be seen from Figure 5.4. The authors of [76] deduced from this

that the central limit theorem can be applied and that, consequently, it would be reasonable

to approximate the distribution of the phase factors by a Gaussian. Unfortunately, this is not

entirely true for lower Mel frequency bins, especially not for the lowermost 3-4 bins where the

distribution actually becomes bimodal [14]. Hence, this thesis uses the empirical phase factor

distribution (see Figure 5.10). It is obtained by (1) adding known speech and noise signals and

then (2) computing the phase factors of the corresponding Mel spectra according to:

αk =
Ỹk − X̃k − Ñk

2
Æ

X̃k Ñk

. (5.8)

In this equation, which is essentially (5.5) solved forαk , Ỹ denotes the Mel spectrum which has

been calculated from the noisy speech signal; X̃ and Ñ denote the Mel spectra which have been

calculated from the individual clean speech and noise signals. Figure 5.10 shows the resulting

phase factor distribution at the example of the multi-channel Wall Street Journal audio visual

(MC-WSJ-AV) corpus [117]with added factory noise from the NOISEX-92 database [118].
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Figure 5.10: Empirical distribution of the phase factors.
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As an alternative to experimentally determining the αk on a training corpus, the phase factors

can also be obtained through simulation [14]. For this, it is assumed that the relative phase

is uniformly and independently distributed in the power spectral bins. Then, the vector θ of

relative phases can be simulated by (1) drawing samples θ
( j )
k from a uniform distribution on

[0, 2π] for k = 1, . . . , ds , j = 1, . . . , N , and then (2) converting these samples by first taking the

cosine of each θ
( j )
k and then multiplying the cos

�

θ ( j )
�

by the Mel filterbank matrix W :

α
( j )
i ≈

∑

k

Wi ,k cos
�

θ
( j )
k

�

. (5.9)

This is an approximation, as (5.9) implicitly assumes that the spectra of speech and noise are

constant over the spectral bins covered by each of the individual Mel filters. Deviating from

this theoretical result, better results were obtained in practice by first multiplying the θ ( j ) with

W and then taking the cosine of the components, respectively:

α
( j )
i ≈ cos

�

∑

k

Wi ,kθ
( j )
k

�

. (5.10)

Figure 5.11 shows the variance and kurtosis2 of the resulting phase factor distribution in com-

parison to the experimentally determined one, where the latter was obtained from the MC-

WSJ-AV corpus with added tank (leopard) and factory noise.
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Figure 5.11: Variance and kurtosis of the phase factors distribution, for the simulation-based ap-
proach (solid line) (5.10) as well as for the experimental approach (5.8) with added tank (dashed)
and factory noise (dotted).

Interestingly, Figure 5.11 also reveals that the empirical distribution does not strongly vary for

different noise types. In general, the variance seems to be decreasing with the Mel frequency

bins whereas the kurtosis seems to be increasing. The phase factors are bimodal in the low-

est four bins, with a kurtosis smaller than 1.8 (that is the kurtosis of the uniform distribu-

2 Note that we compute the kurtosis as the fourth central moment divided by the variance square.
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tion). The phase factors are approximately Gaussian in the highest five bins where the kurtosis

approaches 3.0. These experimental results have been confirmed in more recent work [119],

through an analytic approximation of the moments of the phase factor distribution.

5.2.3 A Phase-Averaged Model for the Effect of Noise

Now that the phase factor distributions is known, the noisy speech spectrum in the log-Mel

domain can be modeled as a conditional random variable Yk |xk , hk , nk where the randomness

is due to uncertainty about which values the phase factors assume (in particular note that Yk

here denotes a random variable and not a Fourier coefficient). Using this model, the minimum

mean square error (MMSE) estimate of noisy speech is the expectation EpYk |xk ,hk ,nk
(yk )

�

yk

	

of yk

under the distribution pYk |xk ,hk ,nk
. In order to calculate it, let us rewrite equation (5.7) as

yk = xk +hk + f̃αk
(zk ) (5.11)

where the function f̃αk
(zk ) is defined as log

�

1+ e zk +2αk
p

e zk
�

with zk ¬ (nk − xk −hk ). Then,

the expectation EpYk |xk ,hk ,nk
(yk )

�

yk

	

can be calculated by averaging f̃αk
(zk )with respect to αk :

EpYk |xk ,hk ,nk
(yk )

�

yk

	

= xk +hk +EpAk
(αk )

�

f̃αk
(nk − xk −hk )

	

= xk +hk +

∫

f̃αk
(nk − xk −hk )pAk

(αk ) dαk (5.12)

where pAk
(αk ) denotes the phase factor distribution. Unfortunately, the integral in (5.12) can-

not be calculated analytically. But it can be approximated by Monte Carlo integration [14] or

by means of a Taylor series expansion [119]. The former has been proposed in the framework

of this thesis [14]; and it approximates the expectation with a setM of phase factor samples

α( j ) =
�

α
( j )
1 · · · α( j )dm

�T
:

EpYk |xk ,hk ,nk
(yk )

�

yk

	

≈ xk +hk +
1

|M |

∑

α( j )∈M

f̃ (zk ,α
( j )
k ). (5.13)

This gives a phase-averaged model for the effect of noise in the log-Mel domain [14]. In par-

ticular, the expectation EpAk
(αk )

�

f̃αk
(zk )

	

≈ 1
|M |

∑

α( j )∈M f̃ (zk ,α
( j )
k ) in (5.13) is dependent on

Phase Averaged Interaction Function: yk = interact(xk , hk , nk )

if zk < -50dB
return yk = xk +hk ;

if zk > 50dB
return yk = nk ;

return yk = xk +hk +EpAk
(αk )

�

f̃αk
(zk )

	

;

Algorithm 5.1: Evaluating the Phase Averaged Interaction Function
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zk = (nk − xk −hk ) only. For small zk , it is approximately 0. For large zk it is approximately

id(zk ), as shown in Figure 5.12. Hence, (5.13) can be calculated by tabulating EpAk
(αk )

�

f̃αk
(zk )

	

in a relatively small area (e.g. [−50, 50] dB) and then calculating the phase-averaged interaction

function according to Algorithm 5.1.

5.2.4 The Zero-Phase Factor Model

Deviating from the above, most authors [120, 121, 45, 122, 123, 124, 125, 126, 127] average the

relative phase in the power spectral domain. This has its origin in power spectral subtraction

[120, 128], and it results in the following relationship between clean and noisy speech:

yk = xk +hk + log
�

1+ e nk−xk−hk
�

︸ ︷︷ ︸

= f̃0(zk )

. (5.14)

Equation (5.14) was originally derived by Van Compernolle [120], in 1987, and it was later used

in a large variety of approaches, starting with Acero’s codeword dependent cepstral normaliza-

tion [11] and Moreno’s vector Taylor series approach [45]. Due to the fact that (5.14) is obtained

by setting αk in (5.11) to zero, it is here called the zero-phase factor model. Figure 5.12 shows
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Figure 5.12: Noisy speech, y , as a function of the noise power, n, in the log-Mel domain. The
plot shows the interaction function of the zero-phase factor (zpf) model (5.14) in comparison to
the phase-averaged (pa) model (5.13),which is dependent on the frequency bin. The clean speech
power has been fixed to 50dB.

this model in comparison to the minimum mean square error (MMSE) solution from the pre-

vious section. Obviously, (5.14) provides a good approximation in higher Mel frequency bins,

not however in lower bins where the MMSE solution is closer to the log-max approximation

[129, 130, 131, 132],

yk =max (xk +hk , nk ) , (5.15)

which is used in missing feature reconstruction (see Chapter 7).
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5.2.5 Performance Comparison

This section compares the performance of the phase-averaged and zero-phase factor models.

That is achieved by adding known speech and noise signals in order to simulate noisy speech.

After individually extracting the log-Mel spectrograms of clean speech x , noise n and noisy

speech y , the models from Sections 5.2.3 and 5.2.4 are used to predict the noisy speech spec-

trogram ŷ from x and n . The quality of prediction is evaluated as the mean square error (MSE)

between y and ŷ :

M S E
�

y − ŷ
	

=
τ
∑

t=1

K
∑

k=1

�

yt ,k − ŷt ,k

�2
.

Figure 5.13 shows the result for the zero-phase factor (zpf) model in comparison to the phase

averaged model (pa) from Section 5.2.3. In the latter case, the error is shown both for the closest

table entry (without interpolation) and for linear interpolation (+li) between table entries. The

error of the phase-averaged model obviously drops with the table size and it saturates at a value

of around 300. With a table size of 250, the phase-averaged model outperforms the zero-phase

factor model with a relative improvement of up to 7% (see Table 5.1). In the lowest frequency

(62.5 Hz), the relative improvement is 16% and hence twice as large as the average.
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Figure 5.13: Error for predicting noisy speech with the zero-phase factor and phase-averaged
models. The results are shown in dependency of the table size, with and without interpolation.

interpolation table size
50 100 150 200 250 300 350 400 450 500

none -0.49 5.39 6.51 6.90 7.08 7.18 7.24 7.27 7.30 7.32
linear -1.61 5.12 6.38 6.83 7.04 7.15 7.21 7.26 7.29 7.31

interpolation table size
50 100 150 200 250 300 350 400 450 500

none -0.49 5.39 6.51 6.90 7.08 7.18 7.24 7.27 7.30 7.32
linear -1.61 5.12 6.38 6.83 7.04 7.15 7.21 7.26 7.29 7.31

Table 5.1: Relative improvement of the phase-averaged model over the zero-phase factor model.
Note that the improvements are measured as the relative reduction in MSE when predicting noisy
speech spectrograms from clean speech and noise spectrograms.
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5.3 Reverting the Effect of Noise

The previous section was concerned with developing models for the effect that noise has on

clean speech features. This is useful for simulating noisy speech. In the context of speech fea-

ture enhancement, however, it might be of interest to also perform the opposite, i.e. revert the

effect of noise in order to get back to clean speech features. That is done in this section by

deriving the inverses of the models from Section 5.2.

5.3.1 The Inverse Interaction Function

Starting with the inversion of the interaction function from (5.7), let us firstly rewrite the rela-

tionship (5.5) between noisy speech, clean speech and noise in the Mel domain by using the

method of “completion of the squares”:

Ỹk = H̃k X̃k + Ñk +2αk

Æ

H̃k X̃k Ñk

=
�Æ

H̃k X̃k +αk

Æ

Ñk

�2
+ (1−α2

k )Ñk .

Then subtracting (1−α2
k )Ñk on both sides and subsequently taking the square root gives:

Æ

H̃k X̃k +αk

Æ

Ñk = ±
q

Ỹk − (1−α2
k )Ñk .

This can be solved for clean speech X̃k by first subtracting αk

Æ

Ñk , again squaring both sides

and then dividing by H̃k . Doing so yields

X̃k =

�

±
q

Ỹk + (α2
k −1)Ñk −αk

Æ

Ñk

�2

H̃k
,

which can be translated to the log-Mel domain by replacing X̃k , Ỹk , Ñk and H̃k by e xk , e yk , e nk

and e hk , respectively:

e xk =
�

±
q

e yk + (α2
k −1)e nk −αk

p
e nk

�2
e −hk

= e yk−hk
�q

1+ (α2
k −1)e nk−yk ±αk

p

e nk−yk

�2
.

Taking the logarithm on both sides finally gives the inverse of the interaction function from

(5.7):

x±k = yk −hk + log
�q

1+ (α2
k −1)e nk−yk ±αk

p

e nk−yk

�2

︸ ︷︷ ︸

¬g ±k (yk ,hk ,nk ,αk )

. (5.16)

This solution was firstly given in equation (5) of [14]. But in that work (5.16) was rewritten by

means of uk ¬ 1+ (α2
k −1)e nk−yk and vk ¬αk

p
e nk−yk :

x±k = yk −hk + log
�
p

uk ± vk

�2
. (5.17)
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It is also important to note that there is a typing error in [14], which consists in the “±” appearing

in front of the logarithm instead of in front of
p

vk . This typo does not, however, concern the

experiments in [14], as (5.17) has been implemented correctly. Having a closer look at (5.17), it

becomes clear that the solutions x+k and x−k exist only if uk ≥ 0 and, in case of x−k , if (puk−vk ) 6=
0. Otherwise yk , hk , nk andαk form a physically impossible configuration for which there exists

no clean speech solution xk (see [14, 133]).

5.3.2 The Inverse Phase-Averaged Model

In order to calculate the inverse of the phase-averaged model from Section 5.2.3, let us rewrite

the log term in (5.16) as a function of zk = nk − yk :

x±k = yk −hk + log
�q

1+ (α2
k −1)e nk−yk ±αk

p

e nk−yk

�2

︸ ︷︷ ︸

¬g̃ ±k (zk ,αk )
︸ ︷︷ ︸

=g ±k (yk ,hk ,nk ,αk )

. (5.18)

Then, the minimum mean square error (MMSE) clean speech estimate x̂±k is obtained by cal-

culating the expectation EpAk
(αk )

�

g ±k (yk , hk , nk ,αk )
	

= yk −hk +EpAk
(αk )

�

g̃ ±k (zk ,αk )
	

of (5.18) in

analogy to (5.12) and (5.13). During Monte Carlo integration, however, only those samples αk

are to be considered which result in valid solutions of (5.17). This means, a different subset

M±
k ⊆M of samples needs to be considered for each considered Mel frequency bin k . Conse-

quently, we get the following approximation [14]:

x̂±k = yk −hk +
1

�

�M+
k

�

�+
�

�M−
k

�

�





∑

αk∈M+
k

g̃ +k (zk ,αk ) +
∑

αk∈M−
k

g̃ −k (zk ,αk )



 (5.19)

As the expectation EpAk
(αk )

�

g̃ ±k (zk ,αk )
	

calculated in the two sums of (5.19) is dependent on zk

only, it may be tabulated in analogy to section 5.2.3.

5.3.3 The Inverse Zero-Phase Factor Model

The inverse of the zero-phase factor model from Section 5.2.4 is obtained by either solving

(5.14) for xk or by setting the phase factor αk in (5.16) to 0. In both cases, the result is:

x̂k = yk −hk + log
�

1− e nk−yk
�

.
︸ ︷︷ ︸

=g ±k (yk ,hk ,nk ,0)

(5.20)

But this solution exists only if nk < yk . Hence, the zero-phase factor model does not allow

noise hypotheses to exceed the observed noisy speech spectrum [133, 134]. This issue will be

discussed in more detail in the following, at the hand of Figure 5.14-(a) which shows a plot of

(5.20) in dependency of the noise intensity nk .
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(a) inverse of the zero-phase factor model
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(b) inverse of the phase averaged model

Figure 5.14: Inverse interaction functions at a constant noisy speech power yk of 50dB.

With the noise intensity approaching noisy speech yk (from below), the clean speech estimate

x̂k approaches minus infinity as the term in the logarithm of (5.20) tends towards zero. For

nk > yk , we have a negative value in the logarithm. So, x̂k does not exist. This is due to the fact

that the zero-phase factor model ignores the relative phase between speech and noise [133, 134]

and therewith ignores the fact that noise can attenuate or cancel certain portions of the speech

signal (see Figure 5.9). Figure 5.14-(b) shows the phase-averaged model for comparison. Al-

though the estimated clean speech intensity tends towards minus infinity with nk approach-

ing yk , x̂k again rises after this point. This can be explained by the fact that the intensity of the

noise can only exceed that of noisy speech when attenuation occurs. But this requires (1) that

the clean speech and noise intensities are comparable, and (2) that the phase factor is closer to

minus one. The first point is responsible for the rise in clean speech intensity. The second point

means with nk increasing there will be fewer and fewer phase factors αk , which give a valid so-

lution according to (5.17). The statistical effect of the latter is compensated in the upcoming

section.

5.3.4 Jacobian of the Inverse Phase-Averaged Model

Some speech feature enhancement approaches [135, 127, 133, 136, 134]necessitate calculating

the Jacobian of the inverse interaction function with respect to yk . In order to do so, let us

rewrite (5.16) by pulling yk back into the square roots:

g ±k (yk , hk , nk ,αk ) =−hk + log
�q

e yk + (α2
k −1)e nk ±αk

p
e nk

�2
.
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Then the derivative of g +k with respect to yk can be calculated by first using the chain rule and

then extracting an e yk from each additive term in the denominator:

d g +k (yk , hk , nk ,αk )

d yk
=

2
q

e yk + (α2
k −1)e nk +αk

p
e nk

�q

e yk + (α2
k −1)e nk +αk

p
e nk

�2 ·

 

e yk

2
q

e yk + (α2
k −1)e nk

!

=
e yk

�q

e yk + (α2
k −1)e nk +αk

p
e nk

�q

e yk + (α2
k −1)e nk

=
e yk

e yk + (α2
k −1)e nk +αk

p
e nk

q

e yk + (α2
k −1)e nk

=
1

1+ (α2
k −1)e nk−yk +αk

p
e nk−yk

q

1+ (α2
k −1)e nk−yk

.

Now calculating the derivative of g −k in analogy to the above, we find that d g ±k /d yk can be

expressed in a single equation:

d g ±k (yk , hk , nk ,αk )

d yk
= γ±k (zk ,αk )¬

1

1+ (α2
k −1)e zk

︸ ︷︷ ︸

uk

±αk
p

e zk
︸ ︷︷ ︸

vk

q

1+ (α2
k −1)e zk

︸ ︷︷ ︸

p
uk

(5.21)

with zk = nk − yk and with uk and vk being defined as in Section 5.3.2. The derivatives with

respect to other variables, yl , l 6= k , are 0. Hence, the Jacobian of g =
�

g1 · · · gdm

�T
with

respect to y =
�

y1 · · · ydm

�T
is a diagonal matrix:

Jα(y , h , n )¬













γ±1 (n1− y1,α1) 0 · · · 0

0 γ±2 (n2− y2,α2)
...

...
...

...
... 0

0 · · · 0 γ±dm
(ndm

− ydm
,αdm

)













. (5.22)

The Jacobian J (y , h , n ) of the inverse phase-averaged model (5.19) is obtained by calculating

the expectation of Jα(y , h , n )with respect α:

J (y , h , n ) = diag
�

�

EpA1 (α1)
�

γ±1 (n1− y1,α1)
	

· · · EpAdm
(αdm )

¦

γ±dm
(ndm

− ydm
,αdm

)
©�T

�

(5.23)

where diag(·) denotes the operator which translates a vector to a diagonal matrix. The individ-

ual EpAk
(αk )

�

γ±k (zk ,αk )
	

are approximated with Monte Carlo integration,

EpAk
(αk )

�

γ±k (zk ,αk )
	

≈
1

|M+
k |+ |M

−
k |





∑

αk∈M+
k

γ+k (zk ,αk ) +
∑

αk∈M−
k

γ−k (zk ,αk )



 , (5.24)
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in analogy to Section 5.3.2. If the Jacobian is calculated in order to evaluate the likelihood of a

noisy speech spectrum through use of the fundamental transformation law of probability,

pY (y ) = pX

�

EpA (α)
�

g ±(y , h , n ,α)
	� �

�det J (y , h , n )
�

� ,

(as in [135, 127, 133, 136, 134]) then the Jacobian needs to be further multiplied by the likelihood

of obtaining a valid clean speech solution (see Section 5.3.2):

βk (zk )¬
|M+

k |+ |M
−
k |

2|M |
(5.25)

It is interesting to note that this multiplication by βk (zk ) is equivalent to setting γ±k (zk ,αk ) = 0

for invalidαk . That is consistent with previous work in which the Jacobian of invalid arguments

was set to zero [133, 134]. In order to efficiently implement the evaluation of det J (y , h , n ), the

EpAk
(αk )

�

γ±k (zk ,αk )
	

and βk (zk )may be stored in a table. Subsequently, the appropriate values

may be retrieved at runtime and det J (y , h , n )may be calculated according to:

det J (y , h , n ) =
dm
∏

k=1

EpAk
(αk )

�

γ±k (nk − yk ,αk )
	

βk (nk − yk ). (5.26)

5.3.5 Jacobian of the Inverse Zero-Phase Factor Model

The Jacobian of the inverse zero-phase factor model is obtained by taking the derivative of

(5.20) with respect to y . Alternatively, the αk in (5.21) and (5.23) may be set to 0. In both cases

we get:
d g ±k (yk , hk , nk , 0)

d yk
=

1

1− e nk−yk
= γ±k (nk − yk , 0) (5.27)

and d gk (yk , hk , nk )/d yl = 0 for all l 6= k . Following [133], (5.27) is further set to zero if nk ≥ yk .

This is justifiable by the fact that the inverse zero-phase factor model does not allow the noise

to exceed the noisy speech power (see [133, 137, 136] and Section 5.3.3). So, the total Jacobian

may be written:

d g (y , h , n )
d y

=













γ±1 (z1, 0) ·1{z1<0} 0 · · · 0

0 γ±2 (z2, 0) ·1{z2<0}
...

...
...

...
... 0

0 · · · 0 γ±dm
(zdm

, 0) ·1{zdm<0}













(5.28)

where zk = nk − yk , k = 1, . . . , dm , and where 1 denotes the indicator function. Figure 5.15-(a)

shows a plot of γ±k (zk , 0) ·1{zk<0} in dependence of the noise intensity nk . The curve obviously

tends towards infinity with nk approaching yk . But it sharply drops to zero when nk exceeds yk .

This can cause severe stability issues [133, 134]with speech feature approaches that are based

on [135]. Hence, in the framework of this thesis [14] it has been proposed to replace the zero-
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phase factor model by the phase-averaged model. This alleviates the problem by allowing noise

to exceed the noisy speech power. Figure 5.15-(b) shows the resultant Jacobian in dependence

of the Mel frequency bin.
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(a) zero-phase factor model
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Figure 5.15: Jacobian of the inverse interaction functions for a noisy speech power of 50dB. The
plot to the left shows γ±k (zk , 0) · 1{zk<0} in dependence of the noise power. The plot to the right
shows EpAk

(αk )
�

γ±k (zk ,αk )
	

·βk (zk ) for different frequency bins k.

5.4 Contributions

The following list again gives an overview of the individual contributions of this chapter:

1. Derivation of a phase-averaged (minimum mean square error) model for the effect of

noise to clean speech features [14] (Section 5.2).

2. Calculation of the inverse of the phase-averaged model plus its Jacobian [14] (Section

5.3).

3. Efficient implementations through use of tables.

4. A numerical comparison between the zero-phase factor and phase-averaged models

(Section 5.2.5).



6
Speech Feature Enhancement

This is the first of two applications chapters which demonstrate the effectiveness of Bayesian

estimation theory in the area of robust speech recognition. The chapter starts with a brief moti-

vation for speech feature enhancement, including a discussion of possible alternatives. This is

followed by a rough outline of the approach taken in this thesis plus the actual content sections.

6.1 Motivation

As shown in Section 5.2, environmental noise and reverberation change the distribution of ex-

tracted speech features. Figure 6.1 portrays this at the example of added factory noise. While

high-energy regions appear to remain intact, spectral valleys are obviously “filled” with noise.

50 100 150 200 250
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(a) clean speech (headset)
50 100 150 200 250

10

20

30

(b) with added factory noise

Figure 6.1: Log-Mel spectrograms of clean and noisy speech. The y-axis values represent Mel
frequency bins (1-30). The x-axis represents time. Dark-blue areas indicate spectral valleys, i.e.
regions of low energy whereas red areas indicate spectral peaks, i.e. regions of high energy. Green
and yellow indicate medium-low and medium-high energies.
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This causes a mismatch between the clean speech features that the acoustic models were

trained with and the noisy speech features that are encountered in the operational environ-

ment. This mismatch eventually leads to a degradation of the speech recognition performance.

To give an example of just how bad it can get: the word error rate (WER) for connected digit

recognition is below 1% for clean speech; it is 66% when car noise is added at a signal-to-noise

ratio of 5 decibels (dB) [7]. In the first case, most (99%) of the digits are recognized correctly. In

the second case, the automatic speech recognition (ASR) system only gets every 3-rd digit right.

This discrepancy gives a strong motivation for techniques that reduce the mismatch between

training and testing conditions [11]. Such techniques are discussed in the upcoming sections

and they can be roughly grouped into the following categories:

6.1.1 Speech Enhancement

The most straightforward approach to reduce the mismatch between clean and noisy speech

features consists in preprocessing the speech signal with standard speech enhancement tech-

niques such as spectral subtraction [138, 139, 140, 8] or Wiener filtering [141, 9, 10]. Such ap-

proaches began to be of interest in the early 1980th, starting with Neben, McAulay and Wein-

stein [142] as well as Porter and Boll [143, 144]. More recent work employs a two-stage Wiener

filter [145] or Ephraim and Malah’s log-spectral amplitude estimator [146, 147]. The average

noise spectrum (which needs to be known for these enhancement methods) can be estimated

with minimum statistics [148, 149], histograms [150] or energy based voice activity detectors

[147]. In general, the improvements obtained through speech enhancement can be substan-

tial.

Nevertheless, there is a fundamental point of criticism with preprocessing-based approaches

[11]: speech enhancement methods have primarily been developed with the aim of improving

the subjective quality and intelligibility of speech rather than with the aim of achieving optimal

speech recognition performance. This claim is substantiated through [151], which gives an in-

depth analysis of the issues with spectral subtraction, including an experimental evaluation of

the effect that these issues have on the word error rate.

6.1.2 Retraining the Acoustic Model

Another approach to reduce the mismatch between training and testing conditions consists in

retraining the acoustic models with data that has been collected “in the same acoustic environ-

ment as that of the anticipated operating (testing) conditions” [152]. This approach has been

investigated in early studies on voice control interfaces for military cockpits (with helicopter

cockpit noise) [153, 154] as discussed in more detail in a 1984 National Research Council report
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by Flanagan et al. [152]. The Flanagan report in particular suggests that, although retraining has

the potential of significantly improving the speech recognition performance, it is impractical

to retrain a system for each specific noise condition [152]. This especially holds for state-of-

the-art large vocabulary systems, which require a large amount of training data for estimating

the distribution parameters of a couple of thousand acoustic states.

6.1.3 Multi-Condition Training

As an alternative to retraining the acoustic model for each particular speaking style or envi-

ronmental condition, Lippmann et al. [155, 156] proposed to train the ASR system with a mix

of speech data that has been collected under different conditions. This type of training makes

the system less sensitive to changes of the environmental conditions. But it cannot achieve

the same accuracy as retraining for a particular condition [11]. Another disadvantage of multi-

condition training is that it tries to capture the large variability of noise in the acoustic model

[11].

This might work for relatively small, specific scenarios. But it cannot be considered a generic

solution because the variability of noise in different environments is some magnitudes higher

than that of speech. A non-exhaustive list of noise types includes noise from engines, facto-

ries, trains and air conditioning systems, fan noise from computers, wind, rain, waves at the

sea, scratching, clicking, rustling, dripping, boiling, footsteps, doors slamming, glass breaking,

dishes clanking, water dripping, metal sounds, ringing, beeping, birds singing, shots, explo-

sions, different categories of musical instruments, just to name a few. The problem of variabil-

ity is worsened by the fact that noise can mask the speech spectrum1 if the power of the noise

is significantly stronger than that of speech (see Chapter 7).

1 At moderate signal-to-noise ratios this might concerns some spectral regions only. But these regions may vary
in time (due the non-stationarity of speech).
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6.1.4 MLLR Adaptation

Another popular approach consists in estimating an affine, linear transform f (x ) = Ax + b

that minimizes the mismatch between features of the operating (testing) and training envi-

ronments. This approach was originally developed for speaker adaptation [157], in the early

1980th. But it would not become popular until the minimum mean square error (MMSE) esti-

mate from [157]was replaced by maximum likelihood (ML) estimation, with one [158] or mul-

tiple [159, 160, 161] regression classes. The latter also coined the term under which the method

is known today: maximum likelihood linear regression (MLLR) [160].

As firstly mentioned by Gales [161] and later demonstrated by Parikh, Raj and Stern [162], MLLR

adaptation is not only useful for adapting to a particular speaker but also for adapting to a noisy

acoustic environment. This result was confirmed in other work [163, 164], partly under sub-

stantial improvements of the speech recognition performance. Nevertheless, the usefulness

of MLLR adaptation is limited in noisy environments because noise has a non-linear effect on

clean speech features (see Section 5.2 or [120, 165, 121, 11]) while MLLR adaptation can only

compensate for linear distortions.

6.1.5 Decoder Modification and Model Combination

An entirely different way to handle the effect of noise is to modify the decoder. Early approaches

in this direction were the works of Klatt [129]and Bridle et al. [130]who found that noise actually

tends to mask the spectral valleys of speech. Based on this observation, the main idea behind

[129, 130] can be described as “telling the decoder to ignore the masked spectral bins”. Holmes

and Sedgwick [131] formulated this idea more concisely as “marginalizing over those spectral

bins which are masked by noise”. In addition to this, Holmes and Sedgwick proposed to use

the observed noise as an upper bound. This laid the groundwork for the bounded marginal-

ization technique, which would later be investigated in more detail by Josifovski et al. [166].

Nadas et al. [132] took a similar approach by using the log-max approximation (see (5.15) in

Section 5.2.4) as a model for how noise corrupts clean speech features. And, instead of using

masks for identifying “missing parts of the spectrum”, they proposed to approximate noise as

a Gaussian distribution in the log-spectral domain. This led to a solution which adequately

treats uncertainties in the mask estimates [132]. Just one year after the publication of [132],

Varga and Moore generalized Nadas’s work in their hidden Markov model (HMM) decomposi-

tion [167] of speech and noise. The central idea of this approach is to use separate HMMs for
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speech and and noise. The decoder is modified to search the joint state space2. The output

distribution of each joint (speech/noise) state is calculated with a combination operator that

approximates the distribution of noisy speech. Gales and Young [168, 169, 170] developed a

particular implementation of this general procedure. It goes by the name of parallel model

combination; it works in the cepstral domain rather than on log-Mel spectra; and it uses the

log-normal approximation for combining speech and noise distributions.

Although this approach drew quite some attention, it has been shown [123] that better results

can be obtained by replacing the log-normal approximation [168, 169, 170]with the vector Tay-

lor series approach by Moreno, Raj and Stern [45]. Alternatively, a Monte Carlo approximation

may be used [171, 172].

6.1.6 Speech Feature Enhancement

Regarding the previous section, it should be mentioned that masking-based techniques such as

[129, 130, 131, 166]work with log-spectral features only. That is because the masking principle

cannot easily be translated to Mel frequency cepstral coefficients (i.e. the features which are

used in modern ASR systems) [173]. Model combination approaches [132, 167, 170, 123, 172]

do not suffer from this problem. But they are computationally expensive as they require trans-

forming each and every Gaussian of the acoustic model. This can be detrimental for large vo-

cabulary systems which tend to use some ten to a couple of hundred thousand Gaussians. One

way to avoid transforming all the Gaussians is to project the transformation back to the feature

space. And this is exactly what all speech feature enhancement approaches do in principle.

The credit for the first such approach is probably due to Van Compernolle, who translated

the spectral subtraction rule to logarithmic filterbank energies [120] and then devised a min-

imum mean square error estimate for clean speech features [165]. This was done under the

simplifying assumption that clean speech has a uniform distribution over the frequency bins.

Erell and Weintraub [174] extended that approach by modeling the clean speech distribution

as a Gaussian mixture. In addition to this, they proposed to jointly minimize the mean squared

error in the frequency bands rather than individually optimizing each band.

2 i.e. the Cartesian product of the speech and noise states from the individual HMMs
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Just one year later, Acero and Stern used elements of both these approaches ([120]and [174])

to develop a codeword-dependent cepstral normalization (CDCN) technique [121, 11]. This

technique introduced a number of important novelties. In particular: (a) the spectral subtrac-

tion rule was translated to the cepstral domain; (b) the authors added a term for the channel in

order to account for differences in the acoustic transfer function; and (c) the parameters of the

Gaussian noise distribution as well as the channel were jointly estimated in the framework of

the expectation maximization algorithm [32]. This essentially laid the foundation for modern

speech feature enhancement approaches, such as Moreno, Raj and Stern’s vector Taylor series

(VTS) [45] approach as well as various extensions thereof: Frey et al.’s ALGONQUIN [175], Deng,

Droppo and Acero’s phase-sensitive model [76], Stouten, Van Hamme and Wambacq’s Higher

Order VTS [176], Leutnant and Haeb-Umbach’s work [119] just to name a few.

6.2 The Approach Taken in this Chapter

The approach taken in this chapter is a direct extension of Moreno’s vector Taylor series ap-

proach [45]. It uses prior knowledge of how clean speech looks like in order to more accurately

suppress the noise; it estimates the distribution of noise with an expectation maximization

algorithm; and it works in the log-Mel domain in order to perform noise reduction in a do-

main that is of relevance to speech recognition. More specifically, the approach taken here is a

Bayesian state estimation approach which

• models the distribution of clean speech as a Gaussian mixture.

• models the distribution of noise as a single Gaussian.

• uses the interaction function from Section 5.2 in order to predict the effect of noise to

clean speech features.

Speech feature enhancement is performed by:

1. constructing the joint distribution of clean and noisy speech features as described in Sec-

tion 6.3.3.

2. conditioning the resulting distribution on an observed noisy speech spectrum as de-

scribed at the start of Section 6.3.

3. calculating the minimum mean square error (MMSE) estimate of clean speech as the

mean of this distribution, as described in Section 6.3.1.

Deviating from [45], the distribution of noisy speech is predicted with the unscented trans-

form rather than with a Taylor series expansion. This closely follows the work by Shinohara

[50], which is here extended by a computationally efficient approximation of the MMSE clean

speech estimate (in Section 6.3.2).
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The novel aspects in this thesis mostly concern noise estimation. Particular contributions in-

clude:

• the derivation of a general EM algorithm for estimating noise from noisy speech features

(Section 6.4.1).

• two new EM implementations which are based on the unscented transform (Sections

6.4.2 and 6.4.4) and Monte Carlo transformation (Section 6.4.5), respectively.

• a detailed theoretical comparison to the vector Taylor series implementations by Kim

[124] and Li et al. [177].

Section 6.5 investigates an alternative approach, which tracks the noise with a particle filter

and then estimates clean speech with the inverse model from Section 5.3. The usefulness of

the proposed methods is finally evaluated by means of ASR experiments, in Chapter 8.

6.3 The Bayesian Solution to Speech Feature Enhancement

In order to explain Bayesian speech feature enhancement in more detail, let X t denote the ran-

dom variable of the hidden clean speech spectrum at time t . Furthermore, let Yt denote the

random variable of the corresponding observation (i.e. the observed noisy speech spectrum).

Then the joint distribution pX t ,Yt
contains all statistical knowledge about the relationship be-

tween X t and Yt . Following [178, 179, 49, 180, 50], this relationship is here modeled as a Gaus-

sian mixture,

pX t ,Yt
(xt , yt ) =

κ
∑

k=1

ck N

��

xt

yt

�

;

�

µX |k

µY |k

�

,

�

ΣX X |k ΣX Y |k

ΣY X |k ΣY Y |k

��

, (6.1)

whose parameters are either learned from a joint clean /noisy speech corpus as in SPLICE [181]

and stereo-based stochastic mapping [49, 180]; or constructed from the prior distributions of

clean speech, channel and noise [50, 45], as described in Section 6.3.3. The posterior distribu-

tion pX t |yt
of X t given yt is easily obtained according to Section 3.2.2. The result is a mixture of

conditional Gaussian distributions:

pX t |yt
(xt ) =

κ
∑

k=1

ck |yt
N

�

xt ;µX t |yt ,k ,ΣX t |yt ,k

�

(6.2)

whereµX t |yt ,k andΣX t |yt ,k are the conditional mean and covariance matrix of the k -th Gaussian,

µX t |yt ,k =µX |k +ΣX Y |kΣ
−1
Y Y |k (yt −µY |k ) and ΣX t |yt ,k =ΣX X |k −ΣX Y |kΣ

−1
Y Y |kΣY X |k , (6.3)

and where ck |yt
is its posterior probability

ck |yt
¬ pKt |yt

(k ) =
ckN

�

yt ;µY |k ,ΣY Y |k
�

∑κ
k ′=1 ck ′N

�

yt ;µY |k ′ ,ΣY Y |k ′
� . (6.4)
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Particular clean speech estimates are obtained by applying a criterion of optimality, such as the

maximum a posteriori (MAP) criterion for which the optimal estimate consists in selecting that

clean speech spectrum xt which maximizes the likelihood function: x̂t = argmaxxt

�

pX t |yt
(xt )

�

[180]; or the minimum mean square error criterion, which is discussed in more detail in the

following.

6.3.1 The Minimum Mean Square Error Solution

The minimum mean square error (MMSE) clean speech estimate consists in calculating the

conditional mean x̂t = EpXt |yt (xt ) {xt } of the hidden variable X t given a realization yt of the ob-

servable variable Yt (see Section 2.4). So, given the joint Gaussian mixture distribution pX t ,Yt

from (6.1) as well as a realized noisy speech spectrum yt , the MMSE estimate of the clean

speech spectrum xt can be calculated according to:

x̂t =

∫

xt

κ
∑

k=1

ck |yt
N

�

xt ;µX t |yt ,k ,ΣX t |yt ,k

�

d xt

=
κ
∑

k=1

ck |yt

∫

xtN
�

xt ;µX t |yt ,k ,ΣX t |yt ,k

�

d xt

︸ ︷︷ ︸

µXt |yt ,k

(6.5)

where the posterior ck |yt
of the k -th Gaussian mode is obtained according to (6.3) and where

the conditional mean µX t |yt ,k is calculated according to (6.4). This solution has been used in a

large variety of approaches, starting with Acero’s codeword dependent cepstral normalization

(CDCN) [121], Moreno’s vector Taylor series (VTS) approach [45] and Kim’s statistical linear ap-

proximation (SLA) [122]. Its popularity is due to its analytically tractability, in contrast to the

MAP approach from [180]which requires an approximation with the EM algorithm.

6.3.2 Mode-Dependent Bias Correction

Some approaches, such as stereo-based piecewise linear compensation for environments

(SPLICE) [181, 182], approximate the above MMSE solution by

x̂t ≈
κ
∑

k=1

ck |yt

�

µX |k + yt −µY |k
�

= yt −
κ
∑

k=1

ck |yt

�

µY |k −µX |k
�

︸ ︷︷ ︸

¬∆k

, (6.6)

where ∆k denotes the bias which the noise introduces to the k -th Gausssian mode. This esti-

mate is equivalent to the 0-th order Taylor series expansion form [121, 45], but it can also be

interpreted3 as approximating ΣX Y |k by ΣY Y |k [180]. Following [13], (6.6) is here referred to as

mode dependent bias correction (MDBC), as it corrects (i.e. subtracts) the bias which is intro-

duced at each mode, weighted with the probability of being in that mode.

3 simply compare (y −∆k ) to the true conditional mean from (6.3).
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6.3.3 Constructing the Joint

Both the general Bayesian approach to speech feature enhancement and its MMSE implemen-

tation from Section 6.3.1 require a Gaussian mixture approximation of pX ,Y . This section ex-

plains how such an approximation can be constructed by transforming the prior distributions

of clean speech, channel and noise according to the interaction function from Section 5.2. That

is done under the assumption [121, 45] that clean speech features (in the log-Mel domain) can

be modeled as a Gaussian mixture random variable X , whose prior probabilities ck , means

µX |k and covariance matrices ΣX X |k have been learned on a clean speech training corpus:

pX (x ) =
κ
∑

k=1

ckN (x ;µX |k ,ΣX X |k ). (6.7)

Regarding the choice of κ, it should be mentioned that a relatively small number (about 128

Gaussians) is usually sufficient for speech feature enhancement. Following Rose [183] and

Moreno [45], the noise is modeled as a Gaussian random variable Nt (in the log-Mel domain)

with mean4 µN and covariance matrix ΣN N :

pN (n ) =N (n ;µN ,ΣN N ) (6.8)

In order to also account for convolutive distortions of speech spectra, Acero [121] and Moreno

[45] proposed to model the channel H as a one point distribution pH (h ) = δ(h −µH ). This is

here extended by a covariance matrix ΣH . Hence, we arrive at a Gaussian distribution for the

channel (as originally proposed in Frey [175] and Faubel [15]):

pH (h ) =N (h ;µH ,ΣH H ). (6.9)

This model allows for all the variables to be treated in a uniform fashion, so that the distribu-

tions of clean speech, channel and noise can be combined in one “large” joint Gaussian mixture

distribution

pX ,H ,N (x , h , n ) =
κ
∑

k=1

ck pX ,H ,N |k (x , h , n ) (6.10)

where pX ,H ,N |k (x , h , n ) denotes the k -th Gaussian component. If we further assume that X ,

H and N are statistically independent, each component pX ,H ,N |k (x , h , n ) of the joint Gaussian

mixture can be written pX |k (x )pH (h )pN (n ) or, equivalently:

pX ,H ,N |k (x , h , n ) =N













x

h

n






;







µX |k

µH

µN






,







ΣX X |k 0 0

0 ΣH H 0

0 0 ΣN N












(6.11)

4 Note that these noise distribution parameters can be estimated from a noisy utterance by using the expectation
maximization algorithm [121, 45], a sequential variant thereof [123], or a bank of interacting Kalman filters [184].
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And as pX ,H ,N |k is considered to be time-invariant, we in particular have pX t ,Ht ,Nt |k = pX ,H ,N |k

for all t . Hence, the joint distribution pX t ,Yt
= pX ,Y of clean and noisy speech is obtained by

transforming the variables X , H and N according to Section 3.1:

�

X

Y

�

= f̃













X

H

N












with f̃













x

h

n












=

�

x

f (x , h , n )

�

. (6.12)

In this equation, f is the nonlinear interaction function from Section (5.2). The transformation

from 6.12 can in particular be performed5 by transforming each individual Gaussian compo-

nent (X , N , H |k )while keeping the weights ck fixed:

pX ,Y (x , y ) =
κ
∑

k=1

ck pX ,Y |k (x , y ),

�

X |k
Y |k

�

= f̃













X |k
H

N












. (6.13)

Due to the nonlinearity of f , the resulting variables (X , Y )|k have a non-Gaussian distribution

in general. This is portrayed in Figure 6.2, which shows the noisy speech distribution that is

obtained by transforming one-dimensional clean speech and noise distributions according to

the interaction function from Section 5.2.4.

(a) ALoDT-1 (b) ALoDT-4 (c) ALoDT-16

Figure 6.2: Transformed Distribution. The dashed curve shows the true distribution. The solid

curves show approximations obtained with the adaptive level of detail transform (ALoDT) with

1, 4 and 16 Gaussians (see [12] for details). Also note that these result have been obtained under

a Gaussian assumption of the original (i.e. non-transformed) distributions.

Nevertheless, in most of the literature pX ,Y |k is approximated as a single Gaussian. That is

achieved through local linearization with a 1-st order vector Taylor series approximation [45],

through a vector Taylor series expansion of higher order [176, 185, 186], through statistical lin-

ear approximation [122], or through use of the unscented transform [50, 15]. After this approx-

imation, MMSE and MAP estimation can be performed as described at the start of Section 6.3.

Algorithm 6.1 again subsumes this approach at the example of the unscented transform.

5see Section 2.2.8 for a proof
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Bayesian Speech Feature Enhancement with the Unscented Transform

1. Preparation: For each clean speech mode X |k , k = 1, . . . ,κ, build the joint distribution of

clean speech X |k , channel H and noise N according to:

pX ,H ,N |k (x , h , n ) =N













x

h

n






;







µX |k

µH

µN






,







ΣX X |k 0 0

0 ΣH H 0

0 0 ΣN N












. (6.14)

2. Constructing the Joint: Construct the joint distribution of clean and noisy speech by

transforming each Gaussian mode pX ,H ,N |k , k = 1, . . . ,κ, according to the augmented in-

teraction function:

�

X |k
Y |k

�

= f̃













X |k
H

N












with f̃













x

h

n












=

�

x

f (x , h , n )

�

. (6.15)

This is achieved with the augmented unscented transform from Section 3.5.2; and it re-

sults in the following Gaussian mixture approximation (with pX t ,Yt
= pX ,Y ):

pX t ,Yt
(xt , yt ) =

κ
∑

k=1

ck N

��

xt

yt

�

;

�

µX |k

µY |k

�

,

�

ΣX X |k ΣX Y |k

ΣY X |k ΣY Y |k

��

. (6.16)

3. Mode Probabilities: Calculate the posterior probability pK |yt
(k ) of each mode pX t ,Yt |k ac-

cording to:

ck |yt
¬ pK |yt

(k ) =
ckN

�

yt ;µY |k ,ΣY Y |k
�

∑κ
k ′=1 ck ′N

�

yt ;µY |k ′ ,ΣY Y |k ′
� . (6.17)

4. Clean Speech Estimation: For mode-dependent bias correction, calculate the estimated

clean speech spectrum x̂t as

x̂t = yt −
κ
∑

k=1

ck |yt
δk with δk =

�

µY |k −µX |k
�

. (6.18)

For the full-conditional expectation, calculate

x̂t =
κ
∑

k=1

ck |yt
µX t |yt ,k with µX t |yt ,k =µX |k +ΣX Y |kΣ

−1
Y Y |k

�

yt −µY |k
�

. (6.19)

Algorithm 6.1: Bayesian Speech Feature Enhancement with the Unscented Transform



120 CHAPTER 6. SPEECH FEATURE ENHANCEMENT

noise
speech

noise
speech

Figure 6.3: Local linearization of the interaction function without consideration of the channel.
The plot shows the one-dimensional case for the zero-phase factor model.

6.3.4 Discussion

It is interesting to note that the above procedure is implicitly used in most MMSE approaches

to speech feature enhancement. This includes the original vector Taylor series approach

[45], Kim’s sequential expectation maximization and interacting multiple model (IMM) ap-

proaches [123, 184], Segura’s Model-based compensation [187], Frey’s ALGONQUIN [175],

Deng’s Bayesian approach to speech feature enhancement [115] as well as more recent work

[176, 186, 50, 119]. Indeed, even the Wiener filter can be interpreted as doing the same. It con-

structs the joint covariance matrix of clean and noisy speech spectra, X and Y , as

Σ=

�

σX X (ω) σX Y (ω)

σY X (ω) σY Y (ω)

�

=

�

σ2
X (ω) σ2

X (ω)

σ2
X (ω) σ

2
X (ω) +σ

2
N (ω)

�

.

This is done under the assumption that speech and noise are uncorrelated, i.e. σX Y =σX X =

σ2
X . Furthermore, it is assumed that the speech and noise signals are zero-mean, from which

it follows that their joint (circularly symmetric complex) Gaussian distribution can be written:

pX ,Y

��

X (ω)

Y (ω)

��

= N

��

X (ω)

Y (ω)

�

;

�

0

0

�

,

�

σ2
X (ω) σ2

X (ω)

σ2
X (ω) σ

2
X (ω) +σ

2
N (ω)

��

(6.20)

In this case, the MMSE (i.e. Wiener) solution is obtained by conditioning (6.20) on a realized

noisy speech spectrum Y (ω). This gives (according to Section 3.2.1):

X̂ t (ω) = 0+σX Y (ω)σY Y (ω)
−1 (Yt (ω)−0) =

σ2
X (ω)

σ2
X (ω) +σ

2
N (ω)

Yt (ω). (6.21)

As it turns out that σ2
X (ω) and σ2

N (ω) are not easy to obtain in practice, Lim and Oppenheim

[188]proposed an iterative approach which determinesσ2
X (ω) andσ2

N (ω) by iterating between

Wiener filtering and LPC parameter estimation. This procedure was later [189] shown to be

an instance of the EM algorithm. More recent work [45, 124, 15] uses a strong prior model

for the distribution of clean speech features and estimates the noise distribution with the EM

algorithm. This idea is elaborated in more detail in the upcoming section.
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6.4 Expectation Maximization Based Noise Estimation

Methods for compensating the statistical effects of noise either directly enhance speech fea-

tures based on the approach from Section 6.3 or they adapt the acoustic models as described

in [170, 124]. As both cases require an accurate estimate of the noise distribution, it is often

assumed that (a) the noise distribution is known a priori or (b) that it can reliably be estimated

from “suspected” noise only frames (e.g. at the start of an utterance). Acero [121] and Moreno

[45]went one step further and proposed to estimate it from the entire utterance. This approach

is explained in more detail in the following. In particular, it is here derived in a generalized fash-

ion which allows for several extensions that have been proposed in the framework of this thesis

[15, 16]. Following [183] and [124], noise spectra are modeled as a Gaussian random variable N

with distribution
pN (n ) =N (n ;µN ,ΣN N ). (6.22)

With this model, the noise estimation problem consists in estimating the noise mean µN and

covariance matrix ΣN N from a sequence ȳ ¬ (y1, . . . , yτ) of noisy speech features. This can be

achieved in a maximum likelihood fashion by finding that parameter θ = {µN ,ΣN N } which

maximizes the likelihoodL (θ ; ȳ ) = pY |θ ( ȳ ):

θM L ¬ argmax
θ

τ
∏

t=1

pYt |θ (yt ) = argmax
θ

log
τ
∏

t=1

pYt |θ (yt ) = argmax
θ

τ
∑

t=1

log pYt |θ (yt ).

As direct maximization of the likelihood turns out to be difficult, Rose [183]proposed to use the

EM algorithm [32], with the rationale in mind that the estimation problem would be easier to

solve if noise spectra were introduced as a hidden variable. This can be achieved by augment-

ing the observed noisy speech spectra ȳ = (y1, . . . , yτ) with unobserved, i.e. unknown, noise

spectra n̄ ¬ (n1, . . . , nτ). Subsequently declaring the augmented data { ȳ , n̄} complete and the

observed data ȳ incomplete, we have a maximum likelihood problem with incomplete data,

i.e. a scenario in which the EM algorithm can be applied. The EM algorithm solves this problem

by iterating between two steps:

1. an expectation step, in which the auxiliary function Q(θ |θ (l )) is constructed as the ex-

pectation of the log likelihood functionL (θ ; ȳ , n̄ ) of the complete data { ȳ , n̄}, given the

incomplete data ȳ as well as the current parameter estimate θ (l ):

Q(θ |θ (l ))¬
∫

log pY ,N |θ ( ȳ , n̄ )pN | ȳ ,θ (l ) (n̄ )d n̄ (6.23)

2. a maximization step in which the next parameter estimate θ (l+1) is chosen to be a value

θ which maximizes the auxiliary function:

θ (l+1) = argmax
θ

Q(θ |θ (l )) (6.24)
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Iterating these two steps causes the parameter θ to converge to a local maximum of the likeli-

hood function [32].

6.4.1 The General Solution

In order to derive a general EM algorithm for noise estimation, let θ (l ) = {µ(l )N ,Σ(l )N N } be the

current parameter estimate of the noise distribution. Then, the expectation step requires con-

structing the auxiliary functionQ(θ |θ (l )) for the current iteration, with θ = {µN ,ΣN N }. This is

done under the assumption of statistical independence of the complete data samples (yt , nt ),

for t = 1, . . . ,τ, so that the auxiliary function (6.23) simplifies to:

Q(θ |θ (l )) =
τ
∑

t=1

∫

log pYt ,Nt |θ (yt , nt )pNt |yt ,θ (l ) (nt )d nt . (6.25)

Further using the fact that noisy speech spectra yt are not dependent on the noise parameter

θ once the noise spectrum nt is known, pYt ,Nt |θ (yt , nt ) can be written:

pYt ,Nt |θ (yt , nt ) = pYt |nt ,θ (yt )
︸ ︷︷ ︸

pYt |nt (yt )

pNt |θ (nt )
︸ ︷︷ ︸

N (nt ;µN ,ΣN N )

,

i.e. log
�

pYt ,Nt |θ (yt , nt )
�

= log
�

pYt |nt
(yt )

�

+ log
�

pNt |θ (nt )
�

. Substituting this into (6.25) gives:

Q(θ |θ (l )) =
τ
∑

t=1

∫

log pYt |nt
(yt )pNt |yt ,θ (l ) (nt )d nt

+
τ
∑

t=1

∫

log pNt |θ (nt )pNt |yt ,θ (l ) (nt )d nt . (6.26)

That is the expectation step. In the maximization step, we have to take the derivative of this

equation with respect to θ = {µN ,ΣN N } in order to find that parameter which maximizes the

auxiliary functionQ(θ |θ (l )). Having a closer look at (6.26), it becomes clear that the sum in the

first line is independent of θ . Hence, the derivative with respect to µN is:

dQ(θ |θ (l ))
dµN

=
τ
∑

t=1

∫

−
1

2
Σ−1

N N

�

nt −µN

�

pNt |yt ,θ (l ) (nt )d nt

= −
1

2
Σ−1

N N

τ
∑

t=1

�∫

nt pNt |yt ,θ (l ) (nt )d nt −µN

�

where it was used that (1) the term (− 1
2Σ
−1
N N ) is not dependent on the integration variable nt and

(2) that the integral
∫

pNt |yt ,θ (l ) (nt )d nt over a pdf is 1. Equating the derivative dQ(θ |θ (l ))/dµN

to zero and further solving for µN gives:

µ(l+1)
N =

1

τ

τ
∑

t=1

∫

nt pNt |yt ,θ (l ) (nt )d nt . (6.27)
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In order to also find the covariance matrixΣN N that maximizesQ(θ |θ (l )), let us take the deriva-

tive of (6.26) with respect to Σ−1
N N . This gives:

dQ(θ |θ (l ))
dΣ−1

N N

=
τ
∑

t=1

∫

�

1

2
ΣN N −

1

2

�

nt −µN

�

·
�

nt −µN

�T
�

pNt |yt ,θ (l ) (nt )d nt

where it was used that, firstly, the derivative of (nt −µN )TΣ−1
N N (nt −µN ) with respect to Σ−1

N N

is (nt − µN )(nt − µN )T ; secondly, the log of the inverse of the normalizing constant can be

written log ((2π)n det(ΣN N ))
−1/2 = 1/2 log det(Σ−1

N N )− n/2 log(2π); thirdly the derivative of the

determinant det(Σ−1
N N ) with respect to Σ−1

N N is the adjunct, i.e. det(Σ−1
N N )ΣN N ; and fourthly,

that as a consequence of this: d log(det(Σ−1
N N ))/dΣ

−1
N N = ΣN N . Finally equating the derivative

dQ(θ |θ (l ))/dΣ−1
N N to zero and solving for ΣN N yields:

Σ(l+1)
N N =

1

τ

τ
∑

t=1

∫

nt n T
t pNt |yt ,θ (l ) (nt )d nt −µ

(l )
N

�

µ(l )N

�T
. (6.28)

This shows that the general EM algorithm for noise estimation consist in iteratively updating

the noise parameters θ (l ) according to (6.27) and (6.28), for l = {1, 2, 3, . . .} [16]. As particular

implementations differ only in how they approximate the occurring integrals, the differences

rely mainly on which approximation of the instantaneous noise distribution pNt |yt ,θ (l ) is used.

Based on this criterion, existing approaches can be grouped into two categories: ones that are

based on Gaussian mixture approximations [45, 124, 177, 15] and ones that are based on Monte

Carlo approximations [16].

6.4.2 Gaussian Mixture Approximations

The majority of approaches [45, 124, 177, 15] is based on Gaussian mixture approximations of

the instantaneous noise distribution pNt |yt ,θ (l ) . This has its origin in Moreno et al’s vector Taylor

series (VTS) approach [45, 46] in which the distribution pX of clean speech features is modeled

as a mixture of Gaussians:

pX (x ) =
K
∑

k=1

ckN
�

x ;µX |k ,ΣX X |k
�

. (6.29)

Using this model, Moreno et al. introduced the index k of the clean speech component as a

hidden variable and then wrote the instantaneous noise distribution pNt |yt ,θ (l ) as a marginal

distribution of pNt ,K |yt ,θ (l ) :

pNt |yt ,θ (l ) (nt ) =
K
∑

k=1

pNt |yt ,k ,θ (l ) (nt )pK |yt ,θ (l ) (k )
︸ ︷︷ ︸

=pNt ,K |yt ,θ (l ) (nt ,k )

. (6.30)

This has the advantage that the instantaneous noise distribution can be estimated individu-

ally for each clean speech modeN
�

x ;µX |k ,ΣX X |k
�

if it is further weighted with the probability
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pK |yt ,θ (l ) (k ) of being in that mode. This is possible as pK |yt ,θ (l ) (k ) can be evaluated with Bayes

rule, with ck = pK (k ) = pK ,θ (l ) (k ):

pK |yt ,θ (l ) (k ) =
pYt |k ,θ (l ) (yt )ck

∑K
k ′=1 pYt |k ′,θ (l ) (yt )ck ′

. (6.31)

6.4.2.1 Constructing the Required Distributions

The evaluation of (6.31) requires predicting the noisy speech distribution Y |k ,θ (l ) from (1)

the clean speech mode X |k and (2) the noise estimate N |θ (l ) from the last iteration. This is

achieved by transforming the joint distribution of N |θ (l ) and X |k ,

pN ,X |k ,θ (l ) (n , x ) =N

��

n

x

�

;

�

µ(l )N

µX |k

�

,

�

Σ(l )N N 0

0 ΣX X |k

��

, (6.32)

according to the interaction function f from Section 5.2. As noise parameter estimation also

requires knowledge of the relationship between noisy speech Y and noise N , the transforma-

tion N , X |k ,θ (l ) 7−→ Y |k ,θ (l ) is extended to [15]:

X̃ ¬

�

N |θ (l )

X |k

�

7−→̃
f

�

N |θ (l )

Y |k ,θ (l )

�

¬ Ỹ with f̃

��

n

x

��

¬

�

n

f (x , 0, n )

�

. (6.33)

The result is a joint distribution pN ,Y |k ,θ (l ) of N |θ (l ) and Y |k ,θ (l ) from which both the instan-

taneous noise distributions pNt |yt ,k ,θ (l ) and the observation likelihoods pYt |k ,θ (l ) (yt ) can be ob-

tained as conditional and marginal distributions. Note again that X , Y and N are considered

to be time-invariant, such that pN ,Y |k ,θ (l ) = pNt ,Yt |k ,θ (l ) and so on.

6.4.2.2 Vector Taylor Series Expansion

Due to the nonlinearity of f , the transformed random variables (N , Y )|k ,θ (l ) are no longer

Gaussian. This greatly complicates the evaluation of the instantaneous noise distribution

pNt |yt ,k ,θ (l ) as well as the corresponding observation likelihood pYt |k ,θ (l ) (yt ). And it led Moreno

et al. [45, 46] to approximate (6.33) through local linearization of f̃ around the means of the

clean speech and noise distributions, µX |k and µ(l )N (see Section 3.4). The result is a Gaussian

approximation of the joint distribution pN ,Y |k ,θ (l ) :

pN ,Y |k ,θ (l )
�

n , y
�

≈N

��

n

y

�

;

�

µ(l )N

µY |k ,θ (l )

�

,

�

Σ(l )N N ΣN Y |k ,θ (l )

ΣY N |k ,θ (l ) ΣY Y |k ,θ (l )

��

(6.34)

where the mean and covariance matrix are calculated according to Section 3.4:

µY |k ,θ (l ) = f
�

µX |k , 0,µ(l )N

�

, ΣY N |k ,θ (l ) =CkΣ
(l )
N N ,

ΣN Y |k ,θ (l ) =Σ
T
Y N |k ,θ (l ) , ΣY Y |k ,θ (l ) =CkΣ

(l )
N N C T

k +BkΣX X |k B T
k .

(6.35)
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In these equations, Bk = ∇x f (µX |k , 0,µ(l )N ) and Ck = ∇n f (µX |k , 0,µ(l )N ) denote the Jacobians of

the interaction function f (x , 0, n )with respect to x and n , evaluated at the meanµX |k of the k -

th clean speech component as well as the meanµ(l )N of the current noise estimate. Marginalizing

pN ,Y |k ,θ (l ) = pNt ,Yt |k ,θ (l ) with respect to Nt leads to a Gaussian approximation of the observation

likelihood:

pYt |k ,θ (l ) (yt )≈N
�

yt ;µY |k ,θ (l ) ,ΣY Y |k ,θ (l )
�

. (6.36)

The corresponding approximation of the instantaneous noisy distribution pNt |yt ,k ,θ (l ) is ob-

tained by conditioning pNt ,Yt |k ,θ (l ) on the realized noisy speech spectrum yt . This gives:

pNt |yt ,k ,θ (l ) (nt )≈N
�

nt ;µNt |k ,yt ,θ (l ) ,ΣNt |k ,yt ,θ (l )
�

, (6.37)

where µNt |k ,yt ,θ (l ) and ΣNt |k ,yt ,θ (l ) are calculated as described in Section 2.2.5 [15]:

µNt |k ,yt ,θ (l ) = µ(l )N +ΣN Y |k ,θ (l )Σ
−1
Y Y |k ,θ (l ) (yt −µY |k ,θ (l ) ), (6.38)

ΣNt |k ,yt ,θ (l ) = Σ(l )N N −ΣN Y |k ,θ (l )Σ
−1
Y Y |k ,θ (l )ΣY N |k ,θ (l ) . (6.39)

Substituting these Gaussian approximations of pNt |yt ,k ,θ (l ) and pYt |k ,θ (l ) back into (6.30) and

(6.31) gives a Gaussian mixture approximation of the instantaneous noise distribution.

6.4.2.3 Gaussian Mixture Implementation of the EM Algorithm

To subsume: the Gaussian mixture implementation of the EM algorithm uses the noise pa-

rameters θ (l ) =
¦

µ(l )N ,Σ(l )N N

©

from the previous iteration in order to transform each clean speech

Gaussian mode X |k according to (6.32) and (6.33). Performing these transformation with the

vector Taylor series (VTS) approach from Section 6.4.2.2 results in joint Gaussian approxima-

tions pN ,Y |k ,θ (l ) = pNt ,Yt |k ,θ (l ) of noise and noisy speech. The marginal density pYt |k ,θ (l ) simulates

how the noise estimate θ (l ) changes the k -th clean speech mode. Hence, the probability that

the noisy speech spectrum yt at time t originated from the k -th clean speech Gaussian can be

evaluated as:

pK |yt ,θ (l ) (k ) =
pYt |k ,θ (l ) (yt )ck

∑

k ′ pYt |k ′,θ (l ) (yt )ck ′
. (6.40)

The corresponding instantaneous noise distribution pNt |yt ,k ,θ (l ) can be calculated according to

(6.37). Plugging these pK |yt ,θ (l ) and pNt |yt ,k ,θ (l ) into (6.30) and substituting the result into (6.27)

and (6.28) gives the noise parameter set θ (l+1) =
¦

µ(l+1)
N ,Σ(l+1)

N N

©

for the next iteration:

µ(l+1)
N =

1

τ

τ
∑

t=1

κ
∑

k=1

pK |yt ,θ (l ) (k )µNt |k ,yt ,θ (l ) (6.41)

Σ(l+1)
N N =

1

τ

τ
∑

t=1

κ
∑

k=1

pK |yt ,θ (l ) (k )
�

ΣNt |k ,yt ,θ (l ) +µNt |k ,yt ,θ (l )µ
T
Nt |k ,yt ,θ (l ) −µ

(l+1)
N µ(l+1)

N

T �

(6.42)
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where µNt |k ,yt ,θ (l ) and ΣNt |k ,yt ,θ (l ) denote the mean and covariance of the instantaneous noise

distribution from (6.38) and (6.39). These re-estimation equations can be interpreted as accu-

mulating statistics of the instantaneous noise distributions pNt |yt ,k ,θ (l ) , weighted with the prob-

ability pK |yt ,θ (l ) (k ) that yt was generated by the k -th clean speech mode.

6.4.3 Historical Perspective & Discussion

Regarding the results from the preceding sections, it should be mentioned that the noise esti-

mation equations given here differ from those given in other work in the literature [46, 124, 177].

Before discussing this in more detail, with theoretical comparisons to Kim [124] and Li’s [177]

approaches in Sections 6.4.3.2 and 6.4.3.3, let us briefly sketch the historical development of EM

based noise estimation. This approach had its beginnings in the early nineties, with Acero and

Stern’s seminal work on “Environmental Robustness in Automatic Speech Recognition” [121].

More precisely: with the codeword-dependent cepstral normalization (CDCN) technique pub-

lished therein, which used a clean speech Gaussian mixture model in order to estimate noise

based on the cepstral bias that it introduces at the individual modes6. Six years after the pub-

lication of [121], Moreno, Raj and Stern extended the CDCN approach by a vector Taylor series

expansion [45, 46] which more accurately captures the statistical relationship between clean

and noisy speech. This was in turn extended by Kim et al. [124] who gave the first proper

derivation of an EM algorithm which also estimates the noise covariance matrix rather than

just the mean [121, 46]. Kim’s extension was based on modifying the auxiliary function from

[46] by introducing noise samples as a hidden variable (similar as it had been done before by

Rose et al. [183]). After the publication of [124], there was a period of relative silence until Li et

al. [177] (some 10 years later) revived Moreno’s approach with some slight modifications.

6.4.3.1 Discussion

In the following, it will be shown that all of the above mentioned approaches can be viewed

as special cases of the results from Section 6.4.2.3. Starting from this point, the approxima-

tions made in [124, 177] are investigated regarding stability issues and bias in estimation. This

analysis reveals in particular that

1. Kim et al’s [124] parameter estimates of the instantaneous noise distribution can become

unstable.

2. Li, Deng and Acero [177] implicitly use the noise variance in their mean estimate, al-

though they claim not to use it.

3. Li, Deng and Acero’s approach [177] tends to overestimate the variance of the instanta-

neous noise distribution.

6 Note that both mode and codeword here refer to the very same thing: a Gaussian component of the clean
speech Gaussian mixture distribution.
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In order to prove these statements, let us first expand the parameters of the instantaneous noise

distribution from Section 6.4.2.2. For this, the Jacobians of the interaction function f (x , 0, n )

with respect to x and n are again denoted by Bk =∇x f (µX |k , 0,µ(l )N ) and Ck =∇n f (µX |k , 0,µ(l )N ).

Then combining (6.38) and (6.35), the mean of the instantaneous noise distribution can be

written

µNt |k ,yt ,θ (l ) ≈µ
(l )
N +Σ

(l )
N N C T

k
︸ ︷︷ ︸

ΣN Y |k ,θ (l )

�

CkΣ
(l )
N N C T

k +BkΣX X |k B T
k

�

︸ ︷︷ ︸

ΣY Y |k ,θ (l )

−1 �

yt − f (µX |k , 0,µ(l )N )
�

. (6.43)

The covariance matrix of the instantaneous noise distribution can be expanded analogously,

by combining (6.39) and (6.35):

ΣNt |k ,yt ,θ (l ) ≈Σ
(l )
N N −Σ

(l )
N N C T

k
︸ ︷︷ ︸

ΣN Y |k ,θ (l )

�

CkΣ
(l )
N N C T

k +BkΣX X |k B T
k

�

︸ ︷︷ ︸

ΣY Y |k ,θ (l )

−1
CkΣ

(l )
N N

︸ ︷︷ ︸

ΣY N |k ,θ (l )

. (6.44)

In order to conform to the notation used in [124, 177], let us further rewrite the update equa-

tions (6.41) and (6.42) from Section 6.4.2.3 by expressing τ by means of the posterior mode

probabilities pK |yt ,θ (l ) (k ):

τ=
τ
∑

t=1

κ
∑

k=1

pK |yt ,θ (l ) (k ). (6.45)

This equality holds as the sum over the pK |yt ,θ (l ) (k ), k = 1, . . . ,κ is 1. Then, plugging (6.45) into

(6.41) and (6.42), we get a formulation that is compatible with Kim [124] and Li’s [177] noise

update equations:

µ(l+1)
N =

∑τ
t=1

∑κ
k=1 pK |yt ,θ (l ) (k )µNt |k ,yt ,θ (l )

∑τ
t=1

∑κ
k=1 pK |yt ,θ (l ) (k )

, (6.46)

Σ(l+1)
N N =

∑τ
t=1

∑κ
k=1 pK |yt ,θ (l ) (k )

�

ΣNt |k ,yt ,θ (l ) +µNt |k ,yt ,θ (l )µ
T
Nt |k ,yt ,θ (l )

�

∑τ
t=1

∑κ
k=1 pK |yt ,θ (l ) (k )

−µ(l+1)
N µ(l+1)

N

T
(6.47)

which can now be directly compared to [124] and [177].

6.4.3.2 Comparison to Kim’s Approach

Starting with Kim et al’s approach, it should be mentioned that [124] uses different approxima-

tions for the mean and the covariance of the instantaneous noise distribution. Regarding the

mean, [124] implicitly assumes that ΣX X |k = 0. This claim is verified by substituting ΣX X |k = 0

into (6.43),

µNt |k ,yt ,θ (l ) ≈µ
(l )
N +Σ

(l )
N N C T

k C −T
k

�

Σ(l )N N

�−1
C −1

k
︸ ︷︷ ︸

=C −1
k

�

yt − f (µX |k , 0,µ(l )N )
�

,
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and then pulling µ(l )N into
�

yt − f (µX |k , 0,µ(l )N )
�

, which directly gives the solution from [124]:

µNt |k ,yt ,θ (l ) ≈C −1
k

�

yt − f (µX |k , 0,µ(l )N ) +Ckµ
(l )
N

�

. (6.48)

A quick analysis reveals that the inverse of Ck (i.e. the Jacobian of f with respect to n) becomes

numerically unstable if Ck does not have full rank. This can easily happen if the speech power

is significantly stronger than that of noise, even if it just happens in one spectral bin. In order

to also compare the covariance matrices of the instantaneous noise distributions, let us first

rewrite the predicted noisy speech covariance from (6.35) by means of the variables A, B , C

and D :

ΣY Y |k ,θ (l ) =CkΣ
(l )
N N C T

k
︸ ︷︷ ︸

A

+ Bk
︸︷︷︸

B

ΣX X |k
︸ ︷︷ ︸

C

B T
k

︸︷︷︸

D

Then, making use of the Sherman-Morrison-Woodbury (matrix inversion) formula, we find

that Σ−1
Y Y |k ,θ (l )

can be written:

�

C −T
k Σ−1

N N C −1
k

�

︸ ︷︷ ︸

A−1

+
�

C −T
k Σ−1

N N C −1
k

�

︸ ︷︷ ︸

A−1

Bk
︸︷︷︸

B



Σ−1
X X |k

︸ ︷︷ ︸

C −1

+ B T
k

︸︷︷︸

D

�

C −T
k Σ−1

N N C −1
k

�

︸ ︷︷ ︸

A−1

Bk
︸︷︷︸

B





−1

B T
k

︸︷︷︸

D

�

C −T
k Σ−1

N N C −1
k

�

︸ ︷︷ ︸

A−1

where the superscript (l ) has been dropped for better readability. Substituting this into (6.44)

gives:

ΣNt |k ,yt ,θ (l ) =C −1
k Bk

�

Σ−1
X X |k +B T

k C −T
k

�

Σ(l )N N

�−1
C −1

k Bk

�−1
B T

k C −T
k , (6.49)

which when compared to [124] reveals that Kim et al’s derivation of the instantaneous noise

distribution assumes that B T
k C −T

k Σ−1
N N C −1

k Bk = 0. This gives the following estimate:

ΣNt |k ,yt ,θ (l ) =C −1
k BkΣX X |k B T

k C −T
k , (6.50)

which again becomes unstable if Ck does not have full rank, i.e. if speech dominates, as ex-

plained above for (6.48).

6.4.3.3 Comparison to Li’s Approach

In order to understand the approximations made in Li et al’s approach [177, 190], let us first

combine (6.43) and (6.46) in one equation and then pull out7 theµ(l )N andΣ(l )N N from the double

sum in (6.46). This obviously gives:

µ(l+1)
N =µ(l )N + Σ(l )N N

 ∑τ
t=1

∑κ
k=1 pK |yt ,θ (l ) (k )C T

k Σ
−1
Y Y |k ,θ (l )

�

yt − f (µX |k , 0,µ(l )N )
�

∑τ
t=1

∑κ
k=1 pK |yt ,θ (l ) (k )

!

. (6.51)

7 This is possible as µ(l )N and Σ(l )N N are obviously independent of k and t .



6.4. EXPECTATION MAXIMIZATION BASED NOISE ESTIMATION 129

If we now compare this result to equation (20) in [177], it becomes clear that Li et al. approxi-

mate Σ(l )N N as:

Σ(l )N N ≈

�
∑τ

t=1

∑κ
k=1 pK |yt ,θ (l ) (k )C T

k Σ
−1
Y Y |k ,θ (l )

Ck
∑τ

t=1

∑κ
k=1 pK |yt ,θ (l ) (k )

�−1

. (6.52)

This can be interpreted as accumulating the inverse covariance matrices Σ−1
Nt |k ,yt ,θ (l )

of the in-

stantaneous noise distributions and then obtaining Σ(l )N N through inversion:

Σ(l )N N ≈

 ∑τ
t=1

∑κ
k=1 pK |yt ,θ (l ) (k )Σ−1

Nt |k ,yt ,θ (l )
∑τ

t=1

∑κ
k=1 pK |yt ,θ (l ) (k )

!−1

with Σ−1
Nt |k ,yt ,θ (l ) ≈C T

k Σ
−1
Y Y |k ,θ (l )Ck . (6.53)

This obviously is more stable than directly accumulating the ΣNt |k ,yt ,θ (l ) , as it does not require

inverting the individual Ck . But it is of interest to understand the assumptions which are made

when Σ−1
Nt |k ,yt ,θ (l )

is approximated by C T
k Σ

−1
Y Y |k ,θ (l )

Ck . For that, let us solve the equation for

ΣY Y |k ,θ (l ) in (6.35) for the noisy speech covariance matrix Σ(l )N N . This yields:

ΣNt |k ,yt ,θ (l ) =C −1
k ΣY Y |k ,θ (l )C

−T
k −C −1

k BkΣX X |k B T
k C −T

k .

Comparing this equation to the above approximation of Σ−1
Nt |k ,yt ,θ (l )

, we find that Li et al. [177,

190] assume that C −1
k BkΣX X |k B T

k C −T
k is 0 in order to get:

Σ−1
Nt |k ,yt ,θ (l ) ≈

�

C −1
k ΣY Y |k ,θ (l )C

−T
k

�−1
=C T

k Σ
−1
Y Y |k ,θ (l )Ck .

This avoids the stability issues associated with the inversion of Ck . But it causes an overesti-

mation of the noise covariance matrix, as the Σ−1
Nt |k ,yt ,θ (l )

≈ C T
k Σ

−1
Y Y |k ,θ (l )

Ck are underestimated

in regions where speech dominates (due to Ck ≈ 0 and, hence, Σ−1
Nt |k ,yt ,θ (l )

≈ 0). The estimate in

this work instead “backs off” to the prior noise distribution if speech is dominant – just verify

that (6.43) and (6.44) reduce to µ(l )N and Σ(l )N N , respectively, if Ck ≈ 0.

6.4.4 Estimation with the Unscented Transform

Instead of using the vector Taylor series approximation from Section 6.4.2.2, the joint distri-

bution of noise and noisy speech pN ,Y |k ,θ (l ) can also be obtained with the unscented trans-

form [15]. This is achieved8 by transforming pN ,X |k ,θ (l ) according to the augmented interac-

tion function f̃ from (6.33). Subsequently, the observation likelihood pYt |k ,θ (l ) and the instan-

taneous noise distribution pNt |yt ,k ,θ (l ) are obtained as marginal and conditional distributions of

pNt ,Yt |k ,θ (l ) = pN ,Y |k ,θ (l ) , in analogy to (6.36) and (6.37); and the total noise estimate θ (l ) is up-

dated according to Section 6.4.2.3. All these steps are again summarized in Algorithm 6.2. The

resulting noise estimates are accurate up to the second order term of the Taylor series expan-

sion [15], just as is the unscented transform [52].

8 see the generalized derivation of EM-based noise estimation, which has been developed in the framework of
this thesis [15, 16] (and Sections 6.4.1 and 6.4.2.1).
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EM-Based Noise Estimation with the Unscented Transform

1. Preparation: For each clean speech mode X |k , k = 1, . . . ,κ, build the joint distribution of

noise N and clean speech X |k according to:

pN ,X |k ,θ (l ) (n , x ) =N

��

n

x

�

;

�

µ(l )N

µX |k

�

,

�

Σ(l )N N 0

0 ΣX X |k

��

.

2. Constructing the Joint: Construct the joint distribution of noise and noisy speech by

transforming each pN ,X |k ,θ (l ) (n , x ) according to the augmented interaction function:

�

N

Y |k

�

= f̃

��

N

X |k

��

with f̃

��

n

x

��

=

�

n

f (x , 0, n )

�

.

This is achieved with the augmented unscented transform from Section 3.5.2; and it re-

sults in the following Gaussian mixture approximation:

pN ,Y |θ (l ) (n , y ) =
κ
∑

k=1

ck N

��

n

y

�

;

�

µ(l )N

µY |k ,θ (l )

�

,

�

Σ(l )N N ΣN Y |k ,θ (l )

ΣY N |k ,θ (l ) ΣY Y |k ,θ (l )

��

.

3. Mode Probabilities: Calculate the posterior probability pK |yt
(k ) of each mode pX ,Y |k ,θ (l )

according to:

pK |yt ,θ (l ) (k ) =
ckN

�

yt ;µY |k ,θ (l ) ,ΣY Y |k ,θ (l )
�

∑κ
k ′=1 ck ′N

�

yt ;µY |k ′,θ (l ) ,ΣY Y |k ′,θ (l )
� .

4. Noise Re-estimation: Calculate the means µNt |k ,yt ,θ (l ) and covariance matricesΣNt |k ,yt ,θ (l )

of the instantaneous noise distribution:

µNt |k ,yt ,θ (l ) = µ(l )N +ΣN Y |k ,θ (l )Σ
−1
Y Y |k ,θ (l ) (yt −µY |k ,θ (l ) ),

ΣNt |k ,yt ,θ (l ) = Σ(l )N N −ΣN Y |k ,θ (l )Σ
−1
Y Y |k ,θ (l )ΣY N |k ,θ (l )

for k = 1, . . . ,κ. Then update the noise parameters θ (l+1) =
¦

µ(l+1)
N ,Σ(l+1)

N N

©

for the next

iteration according to

µ(l+1)
N =

1

τ

τ
∑

t=1

κ
∑

k=1

pK |yt ,θ (l ) (k )µNt |k ,yt ,θ (l )

Σ(l+1)
N N =

1

τ

τ
∑

t=1

κ
∑

k=1

pK |yt ,θ (l ) (k )
�

ΣNt |k ,yt ,θ (l ) +µNt |k ,yt ,θ (l )µ
T
Nt |k ,yt ,θ (l ) −µ

(l+1)
N µ(l+1)

N

T �

.

Algorithm 6.2: EM-Based Noise Estimation with the Unscented Transform
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6.4.5 Monte Carlo Approximation

As an alternative to the Gaussian mixture approximations from Section 6.4.2, the instantaneous

noise distribution pNt |yt ,θ (l ) can be approximated through samples [16]. This idea can be for-

mulated more concisely as (1) drawing samples n
( j )
t , j = 1, . . . , L , from the prior distribution

pNt |θ (l ) = pN |θ (l ) of the noise, and then (2) converting these prior samples to posterior samples by

weighting them with the appropriate importance9 weightsω
( j )
t = pNt |yt ,θ (l )

�

n
( j )
t

�

/pNt |θ (l )
�

n
( j )
t

�

.

The results is a weighted empirical approximation of the instantaneous noise distribution:

p̃Nt |yt ,θ (l ) (nt ) =
L
∑

j=1

ω̃
( j )
t δ

�

nt −n
( j )
t

�

with ω̃
( j )
t ¬

ω
( j )
t

∑L
i=1ω

(i )
t

,

Plugging p̃Nt |yt ,θ (l ) (nt ) into (6.27) and (6.28) gives a Monte Carlo approximation of the next noise

parameter estimate θ (l+1) =
¦

µ(l+1)
N ,Σ(l+1)

N N

©

where µ(l+1)
N and Σ(l+1)

N N are calculated according to:

µ(l+1)
N =

1

τ

τ
∑

t=1

L
∑

j=1

ω̃
( j )
t n

( j )
t , (6.54)

Σ(l+1)
N N =

1

τ

 

τ
∑

t=1

L
∑

j=1

ω̃
( j )
t n

( j )
t

�

n
( j )
t

�T

!

−µ(l+1)
N

�

µ(l+1)
N

�T
. (6.55)

The advantage of this Monte Carlo approach is that is shifts the whole complexity of EM-based

noise estimation to the calculation of importance weights. In particular, it avoids the local

Gaussian fits of both the vector Taylor series expansion and the unscented transform. To pro-

ceed with the weight calculation, let us rewrite pNt |yt ,θ (l ) through use of Bayes rule:

pNt |yt ,θ (l )

�

n
( j )
t

�

=
pYt ,Nt |θ (l )

�

yt , n
( j )
t

�

pYt |θ (l ) (yt )
=

p
Yt |n

( j )
t
(yt )pNt |θ (l )

�

n
( j )
t

�

∫

pYt |nt
(yt )pNt |θ (l ) (nt )d nt

.

Substituting this expansion back into ω
( j )
t = pNt |yt ,θ (l )

�

n
( j )
t

�

/pNt |θ (l )
�

n
( j )
t

�

and further using a

remark in [191] that 1
L

∑L
i=1 pYt |n

(i )
t
(yt ) provides a consistent estimator for the denominator

pYt |θ (l ) (yt ) in Bayes equation, it is found that theω
( j )
t can be approximated as:

ω
( j )
t =

p
Yt |n

( j )
t
(yt )

∫

pYt |nt
(yt )pNt |θ (l ) (nt )d nt

≈
p

Yt |n
( j )
t
(yt )

1
L

∑L
i=1 pYt |n

(i )
t
(yt )

Normalization of the weights finally yields [16]:

ω̃
( j )
t ≈

p
Yt |n

( j )
t
(yt )

∑L
i=1 pYt |n

(i )
t
(yt )

. (6.56)

9 see Section 2.5.4 on importance sampling
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EM-Based Noise Estimation with the Monte Carlo Method

1. Sample: For each time t ∈ {1, . . . ,τ}, draw L noise samples n
( j )
t from the prior noise distri-

bution pN |θ (l ) and M clean speech samples x (i )t from the Gaussian mixture clean speech

distribution pX from (6.29):

n
( j )
t ∼ N

�

n ;µ(l )N ,Σ(l )N N

�

, j = 1, . . . , L ,

x (i )t ∼
κ
∑

k=1

ckN
�

x ;µX |k ,ΣX X |k
�

, i = 1, . . . , M .

2. Simulate Noisy Speech: Predict the empirical distribution of noisy speech by transform-

ing all pairs
�

x (i )t , n
( j )
t

�

of speech/noise samples according to the interaction function f .

For the zero-phase factor model from Section 5.2.4 this gives:

y
(i , j )

t = log
�

exp
�

x (i )t

�

+exp
�

n
( j )
t

��

.

for i = 1, . . . , M , j = 1, . . . , L .

3. Calculate Importance Weights: Approximate the normalized importance weight ω
( j )
t of

each noise sample n
( j )
t according to:

ω̃
( j )
t ≈

p
Yt |n

( j )
t
(yt )

∑L
l=1 pYt |n

(l )
t
(yt )

with p
Yt |n

( j )
t
(yt )≈

1

M

M
∑

i=1

N
�

yt ; y
(i , j )

t ,Σ
�

.

4. Update Noise Estimate: Update the noise parameter estimate θ (l+1) =
¦

µ(l+1)
N ,Σ(l+1)

N N

©

by

calculating µ(l+1)
N and Σ(l+1)

N N according to:

µ(l+1)
N =

1

τ

τ
∑

t=1

L
∑

j=1

ω̃
( j )
t n

( j )
t ,

Σ(l+1)
N N =

1

τ

 

τ
∑

t=1

L
∑

j=1

ω̃
( j )
t n

( j )
t

�

n
( j )
t

�T

!

−µ(l+1)
N

�

µ(l+1)
N

�T
.

Algorithm 6.3: EM-Based Noise Estimation with the Monte Carlo Method
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In order to calculate these weights, it is still necessary to determine the noise sample likeli-

hoods p
Yt |n

( j )
t
(yt ) under the observation yt . For that, let us first draw M clean speech sam-

ples
¦

x (1)t , . . . , x (M )t

©

from a previously learned clean speech distribution and then transform all

pairs
�

x (i )t , n
( j )
t

�

of speech/noise samples according to the interaction function in the log-Mel

domain, e.g. the zero-phase factor model from Section 5.2.4:

y
(i , j )

t = f
�

x (i )t , 0, n
( j )
t

�

= log
�

exp
�

x (i )t

�

+exp
�

n
( j )
t

��

.

Then, the set
¦

y
(i , j )

t , i = 1, . . . , M
©

simulates how noisy speech would look like under the j -th

noise sample. Consequently, Parzen-window density estimation [192] can be applied, by ap-

proximating pYt |n
(i )
t

with Gaussian kernels around the y
(i , j )

t . This allows for the noise sample

likelihoods to be evaluated according to:

p
Yt |n

( j )
t
(yt )≈

1

M

M
∑

i=1

N (yt ; y
(i , j )

t ,Σ). (6.57)

Following [16], the Kernel covariance matrix Σ is considered to be radial: Σ = α · I where α ∈
R and where I denotes the identity matrix. With this, the noise parameter estimate θ (l+1) =
¦

µ(l+1)
N ,Σ(l+1)

N N

©

can now be updated according to (6.54) and (6.55).

6.5 Particle Filter Based Noise Tracking

In the expectation maximization approach from the previous Section, the distribution of noise

is estimated from a longer sequence of noisy speech features (such as a complete utterance

of 5-10 seconds). This guarantees a good accuracy of estimation. But it also leads to a large

noise variance if the noise is changing during that time. This triggered research efforts towards

non-stationary noise estimation, i.e. methods which “track” the noise, such as Kim’s sequential

expectation maximization [123] and interaction multiple model (IMM) [184] approaches, Yao

[193] and Raj’s [127] particle filter approach as well as several extensions thereof – see e.g. the

work of Fujimoto [194, 195], Haeb-Umbach [133], Faubel and Wölfel [136, 134, 196, 197, 198]. As

[137] gives a thorough introduction to Raj’s work, this section just briefly restates that approach

before it is further extended in Section 6.5.3. The main idea is to approximate the instantaneous

noise distribution pNt |y1:t
(nt ) by a weighted empirical distribution:

p̃Nt |y1:t
(nt ) =

L
∑

j=1

ω̃
( j )
t δ

�

nt −n
( j )
t

�

(6.58)

where the n
( j )
t constitute possible noise hypotheses at time t and where the ω̃

( j )
t are their rel-

ative (i.e. normalized) likelihoods under all past observations y1:t =
�

y1, . . . , yt

	

. This distribu-

tion is propagated forward in time by (1) sampling noise hypotheses n
( j )
t+1 for time t +1, as de-
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scribed in Section 6.5.1; (2) evaluating their observation likelihoods p
Yt+1|n

( j )
t+1
(yt+1) as described

in Section 6.5.2 and then (3) updating the weights ω̃
( j )
t+1 according to:

ω̃
( j )
t+1 =

p
Yt+1|n

( j )
t+1
(yt+1)

∑N
j ′=1 p

Yt+1|n
( j ′)
t+1
(yt+1)

. (6.59)

The minimum mean square error (MMSE) estimate of clean speech is subsequently obtained

by Monte Carlo integration [137, 136]:

x̂t+1 =
L
∑

j=1

ω
( j )
t+1 g

�

yt+1, 0, n
( j )
t+1

�

︸ ︷︷ ︸

=x̂t+1|yt+1,n
( j )
t+1

(6.60)

where g denotes the inverse interaction function from Section 5.3.3. Section 6.5.3 shows how

this approach can be combined with the phase-averaged model from Section 5.3.2.

6.5.1 A Process Model for the Evolution of Noise Spectra

Following Raj et al. [127], the evolution of log-Mel noise spectra is modeled as a first-order

autoregressive process that is exited by correlated Gaussian [197] noise:

nt+1 = f (nt ,εt ) = Ant +εt . (6.61)

In this equation, nt is the dm -dimensional noise spectrum at time t , A is a dm×dm dimensional

linear prediction matrix and εt ∼N (µε,Σε) denotes excitation noise. The εt are assumed to be

statistically independent of each other. Hence, the noise samples
¦

n (1)t , . . . , n (L )t

©

can be propa-

gated to time t +1 by drawing L excitation noise samples ε
( j )
t fromN (µε,Σε) and then updating

the noise samples n
( j )
t according to

n
( j )
t+1 = f

�

n
( j )
t ,ε

( j )
t

�

. (6.62)

In order to learn the parameters of the above noise model, the linear prediction matrix A is

typically estimated in a minimum mean square error fashion, as described in [127]:

Â =

�

τ
∑

t=2

nt n T
t−1

��

τ
∑

t=2

nt−1n T
t−1

�−1

, (6.63)

whereas the excitation noise parameters θ =
�

µε,Σε
	

are estimated with the maximum likeli-

hood method:

µ̂ε =
1

τ−1

τ
∑

t=2

(nt −Ant−1) , Σ̂ε =
1

τ−1

τ
∑

t=2

(nt −Ant−1) (nt −Ant−1)
T − µ̂εµ̂T

ε . (6.64)

These parameters can also be estimated in an online fashion, as described in [198].
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6.5.2 Calculating the Observation Likelihoods

Next to the propagation of noise samples, particle filter based noise tracking approaches re-

quire the calculation of observation likelihoods p
Yt |n

( j )
t
(yt ). In Raj et al.’s approach [127], that is

achieved by using the interaction function from Section 5.2.4 as a measurement equation:

yt = h (xt , nt )¬ log
�

e xt + e nt
�

where nt denotes the noise spectrum to be tracked and where the clean speech spectrum xt is

“measurement noise”. Then, p
Yt |n

( j )
t

can be obtained with the fundamental transformation law

of probability by transforming the clean speech variable X according to Yt |n
( j )
t = h

�

X , n
( j )
t

�

:

p
Yt |n

( j )
t
(yt ) = pX

�

h−1
�

yt , n
( j )
t

��

�

�

�

�

�

�

det

 

d h−1
�

yt , n
( j )
t

�

d yt

!

�

�

�

�

�

�

. (6.65)

In this equation, h−1
�

yt , nt

�

= g
�

yt , 0, n
( j )
t

�

denotes the inverse interaction function from Sec-

tion 5.3.3, whose Jacobian d g
�

yt , 0, n
( j )
t

�

/d yt with respect to yt has been given in Section 5.3.5.

Further substituting (5.20) and (5.28) into (6.65), it becomes clear that the observation likeli-

hood can be evaluated according to:

p
Yt |n

( j )
t
(yt ) =

pX

�

yt + log
�

1− e n
( j )
t −yt

��

∏dm
k=1

�

1− e n
( j )
t ,k−yt ,k

� (6.66)

where k denotes the log-Mel bin and where the log operation in (6.66) is performed

component-wise, on the elements of the vector. As the inverse zero-phase factor model as-

sumes that speech and noise are strictly additive (see Sections 5.3.3 and 5.3.5), p
Yt |n

( j )
t
(yt ) is set

to 0 if n
( j )
t ,k exceeds yt ,k in any of the spectral bins. This is justified by the fact that n

( j )
t ,k > yt ,k is

physically impossible10 according to (6.5.2), which translates to zero likelihood [133, 134]. The

clean speech distribution pX , which is required for evaluating (6.66), is typically modeled as a

Gaussian mixture distribution whose parameters have been trained on a clean speech training

corpus:

pX (x ) =
κ
∑

k=1

ckN
�

x ;µX |k ,ΣX X |k
�

.

Following [137, 136, 134, 196], this work uses diagonal covariance matrices.

6.5.3 Combination with the Phase-Averaged Model

The zero-phase factor model from the outset excludes attenuation and cancellation of the clean

speech spectrum. Consequently, it assigns a weight of zero if a noise hypothesis exceeds the

10 that is because yt = log(e xt + e nt )≥ log(e nt ) = nt due to the monotonicity of the logarithm.



136 CHAPTER 6. SPEECH FEATURE ENHANCEMENT

observed noisy speech spectrum (see Section 5.2). This can lead to a severe decimation of the

particle (i.e. noise hypothesis) population, up to its complete annihilation if all weights are zero

[133, 137]. In [134], it was found that the latter happens in about 4-6% of all cases. But even

if it does not come to that, the decimation causes a considerable degradation of the tracking

performance. Previous work tried to ameliorate this problem by introducing a reinitialization

procedure [137] as well as a fast acceptance test (FAT) [134]. This thesis avoids the problem

from the outset. That is achieved by using the phase-averaged model from Section 5.2.3, for

which the observation likelihoods p
Yt |n

( j )
t
(yt ) are calculated as follows [14]:

p
Yt |n

( j )
t
(yt ) = pX

�

yt +EpA (α)

¦

g̃ ±(n ( j )t − yt ,α)
©�

·det J
�

yt , 0, n
( j )
t

�

. (6.67)

Here,
�

yt +EpA (α)
�

g̃ ±(nt − yt ,α)
	�

denotes the component-wise evaluation of the MMSE clean

speech estimate from (5.19). The Jacobian determinant

det J
�

yt , 0, n
( j )
t

�

=
dm
∏

k=1

EpAk
(αk )

¦

γ±k (n
( j )
t ,k − yt ,k ,αk )

©

βk

�

n
( j )
t ,k − yt ,k

�

is calculated according to (5.24), (5.25), (5.26). The main advantage of the phase-averaged

model is that the Jacobian determinant does not immediately drop to zero when a noise hy-

pothesis exceeds the observed noisy speech spectrum. This effect can be seen in Figure 5.15.

Another advantage consists in the fact that the phase-averaged model is the minimum mean

square error solution. Hence, the above approach also gives more accurate clean speech esti-

mates, as illustrated in Figure 6.4. A more detailed experimental analysis can be found in [14].

0 5 20 15 20 25 30
0 

10

20

30

40

50

60

70

 

 

clean speech
estimated clean speech

(a) zero-phase factor model

0 5 10 15 20 30
0 

10

20

30

40

50

60

70

 

 

clean speech
estimated clean speech

(b) phase averaged model

Figure 6.4: True and estimated clean speech spectra for the zero-phase factor as well as the phase-
averaged model from Sections 5.3.3 and 5.3.2, respectively, at an SNR of 0 dB. Note that the figure
shows an extreme example in which most of the speech spectrum is covered by noise.



6.5. PARTICLE FILTER BASED NOISE TRACKING 137

Particle Filter Based Noise Tracking

1. Propagate Noise Hypotheses: For each noise hypothesis n
( j )
t−1 from time t − 1, draw a

process noise sample ε
( j )
t fromN (µε,Σε) and then predict the noise sample n

( j )
t at time t

according to:

n
( j )
t = An

( j )
t−1+ε

( j )
t

where A is the linear prediction matrix from Section 6.5.1.

2. Calculate Weights: For each noise hypothesis n
( j )
t , calculate the observation likelihood

p
Yt |n

( j )
t
(yt ) according to (6.66) or (6.67). In case (6.66) is used, p

Yt |n
( j )
t
(yt ) is set to zero if

n
( j )
t ,k > yt ,k for any bin k ∈ {1, . . . , dm}. After calculating the observation likelihoods, the

normalized weights ω̃
( j )
t are obtained as:

ω̃
( j )
t =

p
Yt |n

( j )
t
(yt )

∑N
j ′=1 p

Yt |n
( j ′)
t
(yt )

.

3. Estimate Clean Speech: Calculate the minimum mean square error estimate of clean

speech according to (6.60):

x̂t =
L
∑

j=1

ω
( j )
t g

�

yt , 0, n
( j )
t

�

,

where g is the inverse interaction function from (5.20) or (5.19), respectively.

4. Resample: Prune the noise hypotheses by importance resampling. This essentially mul-

tiplies hypotheses that have a high relative weight and it removes hypotheses that have a

low relative weight. The result is an (equally-weighted) empirical distribution:

p̂Nt |y1:t
(nt ) =

1

L

L
∑

i=1

δ
�

nt − ñ (i )t

�

,

where ñ (i )t denotes a sample drawn from n
( j )
t with probability ω̃

( j )
t , j = 1, . . . L .

Algorithm 6.4: Particle Filter Based Noise Tracking
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6.6 On the Use of Log-Mel Features

Regarding the use of log-Mel features in this thesis it should be emphasized that speech feature

enhancement in the log-Mel domain [45, 175, 76, 119] is more exact than working with MFCC

features [121, 176]. That is because it avoids further smoothing of the spectrum through the

pseudo-inverse of the DCT [119]. In particular, it has no disadvantages compared to MFCC

features – at least not if the enhancement is integrated into the feature extraction chain, as

shown in Figure 6.5.

Figure 6.5: Integration of log-Mel feature enhancement into the MFCC feature extraction chain.
The resulting MFCC features may be further processed as indicated in Figure 5.7.

6.7 Contributions of this Chapter

The following list again gives an overview of the individual contributions of this thesis to speech

feature enhancement:

1. A generalized derivation of expectation maximization (EM) based noise estimation [15,

16], including theoretical comparisons to the approaches by Kim [124] as well as Li et al.

[177, 190] (Section 6.4).

2. An algorithm for EM-based noise estimation with the unscented transform (Section

6.4.4) [15].

3. A Monte Carlo variant of the EM algorithm for estimating noise from noisy speech fea-

tures (Section 6.4.5) [16].

4. A noise-tracking particle filter that uses the phase-averaged model in order to avoid sta-

bility issues due to the relative phase [14] (Section 6.5).



7
Missing Feature Reconstruction

The clean speech estimates of the particle filter approach from Section 6.5 can strong vary for

adjacent frames. This becomes particularly pronounced in spectral valleys and it can be ex-

plained by the fact that inverse models fail to give accurate estimates if the noise power is com-

parable to that of speech (see Sections 5.3 and 6.5.3 and, in particular, Figure 6.4). In cases

where the noise power is even stronger, the noise spectrum might actually mask parts of the

clean speech spectrum, as shown in Figure 7.1.
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Figure 7.1: Masking - in regions where the noise is over 10dB louder than speech (bins 13-18),
the observed noisy speech spectrum is essentially independent of the clean speech spectrum.
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Conversely, noise has practically no effect on the observed spectrum if the speech power is 10

dB stronger than that of the noise. This means, in the limit, the effect of noise to log-Mel speech

features can be approximated1 by the log-max model:

yi =max(xi , ni ), (7.1)

where y denotes a noisy speech spectrum and where x and n denote corresponding clean

speech and noise spectra in the log-Mel domain. To discuss (7.1) in more detail, let us have a

look at Figure 7.2, which again illustrates the effect of masking for a single frequency bin.
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Figure 7.2: Effect of additive noise to a clean speech spectral bin of 25 (solid curve), 20 (dashed
curve), 15 (dotted dashed curve) and 0 dB (dotted curve), according to the zero-phase factor
model from Section 5.2.4.

The four curves show how clean speech at a power of 0, 15, 20 and 25 dB, respectively, is affected

by additive noise of increasing intensity, starting with 0dB on the left and going up to 50dB on

the right. At an observed power of 35 dB – marked by a dotted horizontal line – the curves

are very close. Thus, a slight misestimation of the noise power, and be it as low as 1 dB, will

cause the clean speech estimate to vary between 0 and 25 dB. This led Cooke, Morris and Green

[199, 200] to consider the masked part missing and to then apply missing data theory in order to

impute the masked spectral bins from non-masked ones. For this, the clean speech spectrum

x (in the log-Mel domain) was reordered to form a partitioning

x =
�

x T
m x T

o

�T
(7.2)

with a masked part xm and an observable part xo . This reordering of x is essentially a permu-

tation which is obtained as shown in Figure 7.3.

1 Note that (7.1) is in particular justified in lower frequencies where the phase-averaged model is very close to
the log-max approximation (see the discussion at the end of Section 5.2.4).
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Figure 7.3: Reordering the spectral bins partitions the clean speech spectrum into a missing and
observable part. An “m” denotes a masked spectral bin while an “o” denotes an observable one.

As the masking changes in time, the reordering needs to be done dynamically (once for each

frame), based on the current “mask” θ = [θ1 · · · θd ]whose components θi identify which bins

are subject to masking:

θi =







1, xi is masked

0, xi is observable
(7.3)

After reordering the bins, the masked part can be reconstructed as described in Section 7.1. The

remaining part of the chapter consists of a theoretical comparison to Bayesian speech feature

enhancement (Section 7.2) as well as the introduction of bounded estimates in Section 7.3.

Section 7.4 finally presents a simple mask estimation technique, based on the noise tracking

approach from Section 6.5.

7.1 Classical Missing Data Theory

Methods for the treatment of incomplete or missing data problems historically arose in the

area of statistical data analysis [201, 202], out of the necessity to handle incompletely answered

questionnaires or due to a general unavailability of data during the analysis of surveys and ex-

perimental studies. With the advancement of pattern recognition in the early 1990s, missing

data techniques became of interest in computer vision [203] and automatic speech recogni-

tion [204], for handling visual occlusion as well as masking of speech by noise. This led to the

emergence of two principally different approaches:

1. Marginalization Techniques that treat the missing data problem during classification by

marginalizing over the missing portions of the feature vector [130, 131, 203, 205].

2. Imputation Techniques that estimate the missing portions of the feature vector prior to

classification [199, 200, 206, 207].

This chapter focuses on the latter, with the aim of “reconstructing” the masked part xm of a

clean speech spectrum given the observable part xo . Following [199, 200], this goal is here

achieved with the method of conditional mean imputation.
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7.1.1 Conditional Mean Imputation

Conditional mean imputation (CMI) originally refers to a work by Buck [208, 201, 202] in which

the missing portion of the data was estimated based on linear regression. Motivated by the fact

that this approach can be shown to minimize the mean square error if the data has a Gaus-

sian distribution, the term “conditional mean imputation” is here used in a generalized sense

for the minimum mean square error (MMSE) estimate. In order to derive this estimate, let us

reformulate missing data imputation as a Bayesian estimation problem (see Chapter 3) where

xm denotes the hidden state to be estimated and where xo denotes the corresponding obser-

vation. Then making use of (3.1), it turns out that the MMSE solution consists in calculating

the conditional mean:

bxm =δM M S E (xo ) = EpXm |xo (xm ) {xm} . (7.4)

If we further assume that the joint distribution pXm ,Xo
of the observable and missing parts of

the spectrum can be approximated as a Gaussian mixture,

pXm ,Xo
(xm , xo ) =

κ
∑

k=1

ck N

��

xm

xo

�

;

�

µXm |k

µXo |k

�

,

�

ΣXm Xm |k ΣXm Xo |k

ΣXo Xm |k ΣXo Xo |k

��

︸ ︷︷ ︸

=pXm ,Xo |k (xm ,xo )

, (7.5)

then (7.4) can be calculated according to Section 3.2.2 by simply conditioning pXm ,Xo
on Xo =

xo . This gives the solution presented by Cooke, Morris and Green [199, 200]:

bxm =
κ
∑

k=1

c +k µXm |xo ,k (7.6)

where µXm |xo ,k denotes the conditional mean µXm |xo ,k = µXm |k +ΣXm Xo |kΣ
−1
Xo Xo |k

�

xo −µXo |k
�

of

the k -th Gaussian component and where c +k denotes the corresponding posterior probability:

c +k =
ckN

�

xo ;µXo |k ,ΣXo Xo |k
�

∑κ
k ′=1N ck ′

�

xo ;µXo |k ′ ,ΣXo Xo |k ′
� . (7.7)

7.1.2 Mean Imputation

If the missing part of the data is assumed to be statistically independent of the observable part

then the conditional distribution of pXm |xo
reduces to pXm

. In this case, the conditional mean

EpXm |xo
{xm} consists only of the mean EpXm (xm ) {xm}=µXm

of the missing part and the estimate

from (7.6) reduces to:

bxm =
κ
∑

k=1

c +k µXm
. (7.8)

This particularly simple estimate is generally referred to as mean imputation [200].
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7.1.3 Partitioning the Mean and Covariance Matrices

Mean imputation and conditional mean imputation rely on the partitioned Gaussian mixture

from (7.5). This partitioned distribution can be obtained from a general (i.e. non-partitioned)

Gaussian mixture model of clean speech,

pX (x ) =
κ
∑

k=1

ck N
�

x ;µX |k ,ΣX X |k
�

︸ ︷︷ ︸

=pX |k (x )

, (7.9)

by first reordering the means in analogy to (7.2) and then using the same reordering to permute

the rows and columns of the covariance matrices [199]. This procedure is illustrated in Figures

7.4 and 7.5; and it needs to be performed for each frame.

Figure 7.4: Partitioning the Mean

(a) original covariance matrix. (b) partitioned covariance matrix.

Figure 7.5: Partitioning the Covariance Matrix
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7.2 The Relationship to Bayesian Speech Enhancement

The conditional mean imputation (CMI) estimate from (7.6) obviously looks quite similar to

the MMSE solution (6.5) of Bayesian speech feature enhancement (see Section 6.3). This moti-

vates a theoretical comparison between these two approaches. The surprising result is that in

the limit, i.e. with the interaction function from Section 5.2 approaching the log-max approx-

imation (7.1), both methods actually do give a very similar estimate. In order to show this, let

us partition the clean and noisy speech spectra, x and y , in analogy to (7.2):

x =

�

xm

xo

�

, y =

�

ym

yo

�

=

�

nm

xo

�

(7.10)

where xo and xm again denote the observed and missing part of the clean speech spectrum and

where yo and ym denote the corresponding parts of the noisy speech spectrum. The term nm

denotes the part of the noise which masks the clean speech spectrum; and the equality on the

right hand side of (7.10) is due to the use of the log-max model (7.1). Now, the joint distribution

of X and Y can be constructed as described in Section 6.3, just with f (xi , 0, ni ) =max(xi , ni ),

and the MMSE estimate of the k -th Gaussian component can be calculated according to (6.5):

µX |y ,k =µX |k +ΣX Y |kΣ
−1
Y Y |k (y −µY |k ). (7.11)

This is the MMSE estimate of the Bayesian speech feature enhancement approach from Section

6.3. Now dropping the dependency on k for ease of notation, the mean µY of noisy speech can

be expressed as

µY ≈EpNm ,Xo

¨�

nm

xo

�«

=

�

µNm

µXo

�

. (7.12)

Further making use of the fact that speech and noise are uncorrelated, i.e. ΣNm Xo
= 0, the co-

variance matrix ΣY Y of noisy speech may be written:

ΣY Y ≈EpNm ,Xo

¨�

nm

xo

�

�

nm xo

�

«

=

�

ΣNm Nm
ΣNm Xo

ΣXo Nm
ΣXo Xo

�

=

�

ΣNm Nm
0

0 ΣXo Xo

�

(7.13)

and the cross-covariance matrix between speech and noisy speech may be calculated as:

ΣX Y ≈E

¨�

xm

xo

�

�

nm xo

�

«

=

�

ΣXm Nm
ΣXm Xo

ΣXo Nm
ΣXo Xo

�

=

�

0 ΣXm Xo

0 ΣXo Xo

�

. (7.14)

With these approximations, the regression term
�

ΣX Y Σ
−1
Y Y

�

in (7.11) becomes:

ΣX Y Σ
−1
Y Y ≈

�

0 ΣXm Xo

0 ΣXo Xo

��

Σ−1
Nm Nm

0

0 Σ−1
Xo Xo

�

=

�

0 ΣXm Xo
Σ−1

Xo Xo

0 I

�

, (7.15)
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as a consequence of which µX |y =µX +ΣX Y Σ
−1
Y Y (y −µY ) evaluates to:

µX |y ≈

�

µXm

µXo

�

+

�

0 ΣXm Xo
Σ−1

Xo Xo

0 I

���

xm

xo

�

−

�

µNm

µXo

��

=

�

µXm
+ΣXm Xo

Σ−1
Xo Xo

(xo −µXo
)

xo

�

. (7.16)

Comparing this result to (7.6), we find that the upper partµXm
+ΣXm Xo

Σ−1
Xo Xo

(xo−µXo
)of the vec-

tor corresponds to the conditional mean imputation estimateµXm |xo
whereas the lower part xo

is simply the observable part of the clean speech spectrum. Hence, for a single Gaussian, the

Bayesian speech feature enhancement approach from Section 6.3 approximates conditional

mean imputation when the noise is significantly stronger than speech. For the Gaussian mix-

ture case, it remains to be shown that the posterior weights c +k from (6.4) are equivalent to the

posterior weights ck |y from (7.7). In order to do this, let us factorize pY |k (y ) as:

pY |k (y ) ≈ N

��

nm

xo

�

;

�

µNm

µXo |k

�

,

�

ΣNm Nm
0

0 ΣXo Xo |k

��

= N
�

nm ;µNm
,ΣNm Nm

�

·N
�

xo ;µXo |k ,ΣXo Xo |k
�

.

Then, making use of the fact that the noise likelihood N
�

nm ;µNm
,ΣNm Nm

�

is independent of

the index k of the clean speech component, the posterior weight calculation in (6.4) reduces to

(7.7):

ck |y ≈
ck pY |k (y ))

∑κ
k ′=1 ck ′pY |k ′ (y )

=
ckN

�

nm ;µNm
,ΣNm Nm

�

N
�

xo ;µXo |k ,ΣXo Xo |k
�

∑κ
k ′=1 ck ′N

�

nm ;µNm
,ΣNm Nm

�

N
�

xo ;µXo |k ′ ,ΣXo Xo |k ′
�

=
N

�

nm ;µNm
,ΣNm Nm

�

N
�

nm ;µNm
,ΣNm Nm

�

︸ ︷︷ ︸

=1

·
ckN

�

xo ;µXo |k ,ΣXo Xo |k
�

∑κ
k ′=1 ck ′N

�

xo ;µXo |k ′ ,ΣXo Xo |k ′
� = c +k .

This shows the equivalence of Bayesian speech feature enhancement and conditional mean

imputation under the approximations from (7.12) - (7.14). For diagonal covariance matrices,

the cross-covariance termΣXm Xo
in (7.16) becomes zero and the conditional mean imputation

estimate from (7.16) reduces to the mean imputation estimate from (7.8):

µX |y ≈

�

µXm

xo

�

.

It is interesting to note that (7.12) - (7.14) implicitly assume that (a) for the missing part, the

clean speech Gaussians are entirely buried below the noise Gaussian, and (b) for the observable

part, the noise Gaussian is entirely buried below the clean speech Gaussians. Those are the

assumptions that are made in missing feature reconstruction.
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7.3 Bounded Conditional Mean Imputation

While classical missing data approaches assume that the masked parts of the clean speech

spectrum are entirely missing, Holmes and Sedgwick [131]made use of the fact that the noisy

speech spectrum also constitutes an upper bound, i.e. xm ≤ ym = nm (this is so because the

coefficients of xm would not be masked if they were larger than the corresponding coefficients

of ym = nm ). Consequently, the distribution of the masked part can be modeled by truncating

the original clean speech distribution from (7.5) above at ym and below at 0:

pXm
(xm ) =

κ
∑

k=1

ckN
�

xm ;µXm |k ,ΣXm Xm |k
� �

�

ym
0 .

This led to the bounded marginalization technique from [131], which would later be investi-

gated in more detail by Josifovski et al. [166]. Almost 20 years after the publication of [131],

Raj and Singh [209] translated Holmes and Sedgwick’s approach to missing data imputation by

deriving a bounded minimum mean square error (MMSE) estimate. The use of diagonal co-

variance matrices in that work allowed for each masked bin to be treated independently, as a

doubly truncated Gaussian distribution [20, 210]. But it also restricted the approach to mean

imputation, due to the fact that diagonal covariance matrices imply statistical independence

of the observable and masked parts (see Section 7.1.2). This work shows how Raj and Singh’s

approach can be extended to full covariance matrices. This leads to the bounded conditional

mean imputation estimate [17] which is described in Section 7.3.2. Its derivation requires the

introduction of box-truncated Gaussian distributions.

(a) original distribution (b) truncated distribution

Figure 7.6: Example of a 2-dimensional box-truncated multivariate Gaussian distribution

7.3.1 The Box-Truncated Multivariate Gaussian Distribution

Following [17], the box-truncated Gaussian distribution is here defined as a multivariate Gaus-

sian distribution that is truncated to a D -dimensional box [L1,U1]× · · · × [LD ,UD ] with upper

and lower bounds Ui and L i , i = 1, . . . , D . This distribution can be formally described as

N [L ,U ](x ;µ,Σ)¬
1

c [L ,U ]
N (x ;µ,Σ)

�

�

U

L
(7.17)
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where c [L ,U ] is the normalization constant derived in Section 7.3.1.1 and where

N (x ;µ,Σ)
�

�

U

L
¬







N (x ;µ,Σ), x ∈
⊗D

i=1 [L i ,Ui ]

0, otherwise

For the imputation of masked spectral bins, the upper bound U will be set to the observed

noise nm = ym while the lower bound L will be set to 0 [17]. Next to calculating the normalizing

constant in Section 7.3.1.1, the mean µ[L ,U ] of the box-truncated Gaussian distribution is also

derived in Section 7.3.1.2, as this is necessary for bounded conditional mean imputation.

7.3.1.1 Normalizing Constant

As the truncation of a Gaussian distribution removes all probability mass outside the D -

dimensional box given by L and U , we need to recompute the normalizing constant

c [L ,U ] ¬
∫ U

L

1
p

(2π)D |Σ|
e −

1
2 (x−µ)

T
Σ−1(x−µ)d x . (7.18)

This, however, is complicated by the fact that the integral over a multivariate Gaussian distri-

bution cannot be calculated analytically. One solution would be to use Genz’s Monte Carlo

approach [211]. But that proved to be too slow for speech feature imputation where a couple of

thousand integrals have to be calculated for each second of input data, and that in an up to 30-

dimensional space. Hence, this thesis resorts to computationally less demanding alternatives

[17]: a diagonal covariance approximation that is obtained by zeroing off-diagonal elements;

and an axis-parallel box approximation that is described in more detail in the following. In or-

der to proceed, let us denote the Cholesky decomposition of the inverse covariance matrix by

Σ−1 = AT A, with an upper triangular matrix A. Then substituting A(x−µ) by z , the normalizing

constant from (7.18) can be approximated as:

c [L ,U ] =

∫ U

L

1
p

(2π)D |Σ|
e −

1
2 (x−µ)T AT A(x−µ)d x ≈

∫ U ′

L ′

1
p

(2π)D |Σ|
e −

1
2 z T z

p

|Σ|d z , (7.19)

where L ′ = A(L −µ), U ′ = A(U −µ), where | · | denotes the determinant and where the multipli-

cation by the Jacobian determinant

�

�

�

�

d x

d z

�

�

�

�

= |A−1|=
p

|A−1||A−T |=
p

|Σ|

is due to the change of variables from x to z . This change of variables simplifies the integration

as it causes a translation and rotation of the variable X such that the distribution is aligned with

the axes, as shown in Figure 7.7-(b). The assumption made here is that the rotated integration

region (i.e. the dashed quadrilateral in Figure 7.7-(b)) can reasonably be approximated by an

axis-parallel box which is given by the transformed lower and upper bounds, L ′ and U ′. This
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(a) original distribution (b) change of variables (c) axis-parallel box approx.

Figure 7.7: Effect of the change of variables, including the axis parallel box approximation.

axis-parallel box approximation is again illustrated in Figure 7.7-(c). Now proceeding by first

canceling the
p

|Σ| in the nominator and denominator of (7.19) and then writing the sum in

the exponent as a product of exponentials, (7.19) can be written:

c [L ,U ] ≈
∫ U ′

L ′

1
p

(2π)D
e −

1
2

∑D
i=1 z 2

i d z =

∫ U ′

L ′

D
∏

i=1

�

1
p

2π
e −

1
2 z 2

i

�

d z

Finally, pulling the product over i out of the integral, it is found that the normalizing constant

from (7.18) can be approximated as

c [L ,U ] ≈
D
∏

i=1

∫ U ′
i

L ′i

1
p

2π
e −

1
2 z 2

i d zi =
D
∏

i=1

�

C (U ′
i )−C (L

′
i )
�

, (7.20)

where C denotes the cumulative density function of the standard (zero mean, unit variance)

normal distribution. This result is exact (i.e. not an approximation) if the covariance matrix is

diagonal. For general Σ, the accuracy of (7.20) is dependent on how diagonally dominant the

corresponding coherence matrix

Γ =









σ1,1p
σ1,1σ1,1

· · · σ1,Dp
σ1,1σD ,D

...
...

...
σD ,1p
σD ,Dσ1,1

· · · σD ,Dp
σD ,DσD ,D









(7.21)

is, whose (i , j )-th element is the correlation coefficient ρi , j ¬ σi , j /
Ç

σ2
iσ

2
j between the vari-

ables X i and X j .

7.3.1.2 Mean

This section approximates the mean of the box-truncated Gaussian distribution in analogy to

the normalizing constant from Section 7.3.1.1. In order to get a start on this, let us first write
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down the formal definition of the mean [17]:

µ[L ,U ] ¬
1

c [L ,U ]

∫ U

L

x
1

p

(2π)D |Σ|
e −

1
2 (x−µ)

T
Σ−1(x−µ)d x . (7.22)

Then substituting A(x − µ) by z , as in Section 7.3.1.1, and again using the axis-parallel box

approximation, we arrive at:

µ[L ,U ] ≈
1

c [L ,U ]

∫ U ′

L ′
(A−1z +µ)

1
p

2π
D e −

1
2 z T z d z

= µ
1

c [L ,U ]

∫ U ′

L ′

1
p

2π
D e −

1
2 z T z d z

︸ ︷︷ ︸

=c [L ,U ]

− A−1 1

c [L ,U ]

∫ U ′

L ′

1
p

2π
D (−z )e −

1
2 z T z d z

︸ ︷︷ ︸

¬m

. (7.23)

So the “truncated mean”µ[L ,U ] can be approximated as
�

µ−A−1m
�

. But for evaluating this term

we still need to compute the integral in m . Let us start by breaking m into its components, by

first writing z as a linear combination of standard basis vectors ei and then pulling the sum

over the basis vectors out of the integral:

m =
1

c [L ,U ]

∫ U ′

L ′

D
∑

i=1

(−zi )ei
1

p
2π

D e −
1
2 z T z d z

=
n
∑

i=1

ei
1

c [L ,U ]

∫ U ′

L ′
(−zi )

D
∏

j=1

1
p

2π
e −

1
2 z 2

j d z

︸ ︷︷ ︸

=mi

.

Now using the fact that the integral of the product of two independent factors, f1(x1) and f2(x2),

can be calculated as the product of the integrals of the individual factors, i.e.

∫∫

f1(x1) f2(x2)d x1d x2 =

∫

f1(x1)d x1

∫

f2(x2)d x2,

the i -th component of m can be calculated as:

mi =
1

c [L ,U ]

∫ U ′
i

L ′i

(−zi )
1
p

2π
e −

1
2 z 2

i d zi

︸ ︷︷ ︸

=N (U ′
i )−N (L

′
i )

D
∏

j=1
j 6=i

∫ U ′
j

L ′j

1
p

2π
e −

1
2 z 2

j d z j

︸ ︷︷ ︸

=C (U ′
j )−C (L

′
j )

where N denotes the standard normal density with zero mean and unit variance and where

C denotes the corresponding cumulative density function. Further substituting c [L ,U ] by the

approximation
∏n

j=1

�

C (U ′
j )−C (L

′
j )
�

from (7.20) and then canceling the
�

C (U ′
j )−C (L

′
j )
�

in

the nominator and denominator, it is found that m can be written:

m =
h

N (U ′
1 )−N (L

′
1)

C (U ′
1 )−C (L

′
1)
· · · N (U ′

D )−N (L
′
D )

C (U ′
D )−C (L

′
D )

iT
. (7.24)
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So, in total we have the following approximation of the mean:

µ[L ,U ] ≈µ−A−1
h

N (U ′
1 )−N (L

′
1)

C (U ′
1 )−C (L

′
1)
· · · N (U ′

D )−N (L
′
D )

C (U ′
D )−C (L

′
D )

iT
. (7.25)

This is consistent with standard theory on one-dimensional, doubly truncated Gaussian dis-

tributions [14, 210], as in the one-dimensional case Σ=σ2, A−1 =σ and hence

µ[L ,U ] ≈µ−σ
N (U ′)−N (L ′)
C (U ′)−C (L ′)

. (7.26)

The equality of (7.26) with the equations in [14, 210] shows that the above approximation is

exact in the one-dimensional case. The same obviously holds for diagonal covariance matri-

ces [17]. In the general case, the accuracy of approximation is dependent on how diagonally

dominant the coherence matrix Γ is (see the end of Section 7.3.1.1).

7.3.2 Bounding the Conditional Mean Imputation Estimate

Now that the box-truncated Gaussian distribution has been introduced, it can be used to bound

the conditional mean imputation estimate from Section 7.1.1. This is achieved by calculating

the expectation of Xm |xo ,

bxm = EpXm |xo
{xm}=

∫ ym

0

xm pXm |xo
(xm )d xm (7.27)

with U = ym and L = 0 as lower and upper bounds. These bounds are motivated by the facts

that (1) the missing part xm is bounded above by the noisy speech spectrum, i.e. xm ≤ ym = nm ,

and (2) the log-Mel spectra used here cannot assume negative values (see [17]).

7.3.2.1 The Gaussian Case

Under the simplistic assumption that clean speech spectra follow a Gaussian distribution, the

conditional distribution of Xm |xo is obtained by conditioning the partitioned joint distribution

pXm ,Xo
(xm , xo ) =N

��

xm

xo

�

;

�

µXm

µXo

�

,

�

ΣXm Xm
ΣXm Xo

ΣXo Xm
ΣXo Xo

��

(7.28)

on Xo = xo . This gives pXm |xo
(xm ) =N

�

xm ;µXm |xo
,ΣXm |xo

�

where µXm |xo
and ΣXm |xo

are calcu-

lated according to Section 2.2.5:

µXm |xo
=µxm

+ΣXm Xo
Σ−1

Xo Xo

�

xo −µXo

�

, ΣXm |xo
=ΣXm Xm

−ΣXm Xo
Σ−1

Xo Xo
ΣXo Xm

.

Plugging this distribution back into (7.27), we find that the bounded conditional mean impu-

tation estimate is just the mean µ[L ,U ] of a box-truncated Gaussian distribution:

bxm =

∫ ym

0

xm pXm |xo
(xm )d xm =

∫

xmN [0,ym ]
�

xm ;µXm |xo
,ΣXm |xo

�

d xm . (7.29)
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Approximating the mean according to Section 7.3.1.2 finally gives the following estimate for the

missing part [17]:

bxm ≈ µXm |xo
−A−1

Xm |xo

hN (y ′m ,1)−N (l
′
m ,1)

C (y ′m ,1)−C (l
′
m ,1)

· · · N (y ′m ,D )−N (l
′
m ,D )

C (y ′m ,D )−C (l
′
m ,D )

iT
(7.30)

where l ′m = AXm |xo
(0−µXm |xo

), y ′m = AXm |xo
(ym −µXm |xo

) and where AXm |xo
denotes the upper

triangular matrix of the Cholesky decomposition of Σ−1
Xm |xo

. For the diagonal covariance ap-

proximation (see the start of Section 7.3.1.1),ΣXm |xo
is diagonalized before AXm |xo

is calculated.

This is achieved by setting all non-diagonal elements to zero.

7.3.2.2 The Gaussian Mixture Case

The Gaussian case from the previous section can easily be extended to Gaussian mixture dis-

tributions. In order to do so, let us partition the clean speech Gaussian mixture distribution as

described in Section 7.1.1:

pXm ,Xo
(xm , xo ) =

κ
∑

k=1

ck N

��

xm

xo

�

;

�

µXm |k

µXo |k

�

,

�

ΣXm Xm |k ΣXm Xo |k

ΣXo Xm |k ΣXo Xo |k

��

︸ ︷︷ ︸

=pXm ,Xo |k (xm ,xo )

. (7.31)

Then, the MMSE estimate of the missing part xm is obtained by first calculating the conditional

distribution of Xm |xo according to Section 3.2.2, plugging the result back into (7.27) and then

making use of (7.29). This gives [17]:

bxm =

∫ ym

0

xm

κ
∑

k=1

c +k N
�

xm ;µXm |xo ,k ;ΣXm |xo ,k

�

d xm

=
κ
∑

k=1

c +k

∫

xmN [0,ym ]
�

xm ;µXm |xo ,k ;ΣXm |xo ,k

�

d xm

︸ ︷︷ ︸

¬bxm |k

(7.32)

where the conditional mean and covariance matricesµXm |xo ,k andΣXm |xo ,k of the Gaussians are

calculated according to (3.10):

µXm |xo ,k =µxm |k +ΣXm Xo |kΣ
−1
Xo Xo |k

�

xo −µXo |k
�

, ΣXm |xo ,k =ΣXm Xm |k −ΣXm Xo |kΣ
−1
Xo Xo |kΣXo Xm |k .

Further approximating the individual estimates bxm |k in (7.32) in analogy to (7.30), we arrive at:

bxm ≈
κ
∑

k=1

c +k

�

µXm |xo ,k −A−1
Xm |Xo ,k

hN (y ′m ,k ,1)−N (l
′
m ,k ,1)

C (y ′m ,k ,1)−C (l
′
m ,k ,1)

· · ·
N (y ′m ,k ,D )−N (l

′
m ,k ,D )

C (y ′m ,k ,D )−C (l
′
m ,k ,D )

iT �

(7.33)

where l ′m ,k = AXm |xo ,k (0−µXm |xo ,k ), y ′m ,k = AXm |xo ,k (ym −µXm |xo ,k ) and where AXm |xo ,k denotes

the upper triangular matrix of the Cholesky decomposition of Σ−1
Xm |xo ,k . In order to calculate
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Bounded Conditional Mean Imputation

1. For each k ∈ {1, ...,κ} do:

(a) Calculate the meanµXm |xo ,k and covariance matrixΣXm |xo ,k of the conditional Gaus-

sian distribution pXm |xo ,k according to

µXm |xo ,k = µxm |k −ΣXm Xo |kΣ
−1
Xo |k

�

xo −µXo |k
�

,

ΣXm |xo ,k = ΣXm Xm |k −ΣXm Xo |kΣ
−1
Xo Xo |kΣXo Xm |k .

(b) In case of the diagonal covariance approximation, set all non-diagonal elements of

ΣXm |xo ,k to 0. In case of the axis-parallel box approximation: do nothing.

(c) Calculate the right Cholesky factor AXm |xo ,k of the inverse covariance matrixΣ−1
Xm |xo ,k .

Then calculate the transformed upper and lower bounds

l ′m ,k = AXm |xo ,k · (0−µXm |xo ,k ), y ′m ,k = AXm |xo ,k (ym −µXm |xo ,k ).

(d) Calculate the observation likelihood pXo |ym ,k (xo ) of the k -th Gaussian component as

pXo |ym ,k (xo ) =N
�

xo ;µXo |k ,ΣXo Xo |k
�

D
∏

i=1

�

C (y ′m ,k ,i )−C (l
′
m ,k ,i )

�

.

(e) Calculate the bounded conditional mean imputation estimate bxm |k of the k -th Gaus-

sian component according to:

bxm |k =µXm |xo ,k −A−1
Xm |Xo ,k

�

N
�

y ′m ,k ,1

�

−N
�

l ′m ,k ,1

�

C
�

y ′m ,k ,1

�

−C
�

l ′m ,k ,1

� · · ·
N
�

y ′m ,k ,D

�

−N
�

l ′m ,k ,D

�

C
�

y ′m ,k ,D

�

−C
�

l ′m ,k ,D

�

�T

.

where N and C denote the probability density function and cumulative density

function of the standard Gaussian distribution.

2. Calculate the total observation likelihood L =
∑κ

k=1 ck p (xo |ym , k ).

3. Calculate the final bounded conditional mean imputation estimate bxm according to:

bxm =
κ
∑

k=1

�

ck p (xo |ym , k )
L

�

︸ ︷︷ ︸

=c +k

bxm |k .

Algorithm 7.1: Bounded Conditional Mean Imputation



7.4. MASK ESTIMATION 153

the posterior probabilities c +k = pK |y (k ) in (7.33), let us first make use of Bayes rule with y =

[y T
m x T

o ]
T , ck = pK (k ) = pK |ym

(k ),

c +k = pK |xo ,ym
(k ) =

ck pXo |ym ,k (xo )
∑κ

k ′=1 ck ′pXo |ym ,k ′ (xo )
, (7.34)

and then calculate the pXo |ym ,k (xo ) in this equation according to [173, 17]:

pXo |ym ,k (xo ) =

∫ ym

0

pXo |k (xo ) ·pXm |xo ,k (xm )
︸ ︷︷ ︸

=pXm ,Xo |k (xm ,xo )

d xm = pXo |k (xo )

∫ ym

0

pXm |xo ,k (xm )d xm .

This gives:

pXo |ym ,k (xo ) =N
�

xo ;µXo |k ,ΣXo Xo |k
�

∫ ym

0

N (xm ;µXm |xo ,k ,ΣXm |xo ,k )d xm

︸ ︷︷ ︸

=C
[0,ym ]
k

(7.35)

where the term C
[0,ym ]
k is the normalizing constant of a box-truncated Gaussian distribution,

which can be approximated according to (7.20):

C
[0,ym ]
k ≈

D
∏

i=1

�

C (y ′m ,k ,i )−C (l
′
m ,k ,i )

�

. (7.36)

Algorithm 7.1, again summarizes this result with a compact description of the bounded condi-

tional mean imputation technique.

7.4 Mask Estimation

The imputation methods from the previous sections are all based on partitioning the clean

speech feature vectors xt into an observable part xt ,o and a missing part xt ,m . This is gen-

erally achieved by reordering the coefficients according to a mask θt , whose components θt ,i

identify which bins are “missing” due to masking by the noise (see the start of this chapter).

These masks are sometimes considered to be “known” in order to compare different imputa-

tion methods under ideal conditions [207]. In practice, however, they need to be estimated

with a mask estimation algorithm. Examples in the literature here include computational au-

ditory scene analysis (CASA) [199], the neg-energy criterion [212], the difference between cube

root signal and noise energy [213], Bayesian classifiers [214] or the soft Max-VQ algorithm from

[209]. The approach taken in this chapter combines mask estimation with the particle filter

based noise tracking framework from Section 4.7. More specifically, it uses the empirical noise

distribution

pNt |y1:t
(nt )≈

L
∑

j=1

ω
( j )
t δn

( j )
t
(nt ), (7.37)
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i.e. the filtering density from (6.58), in order to approximate the implied clean speech distribu-

tion pX t |y1:t
. This is achieved by individually transforming the noise samples n

( j )
t according to

the inverse interaction function from Section 5.3, x
( j )
t ¬ g

�

yt , 0, n
( j )
t

�

, and then constructing an

empirical approximation of pX t |y1:t
according to:

pX t |y1:t
(xt )≈

L
∑

j=1

ω
( j )
t δx

( j )
t
(xt ). (7.38)

With this approximation, the probability that the i -th clean speech bin xt ,i is masked by noise,

i.e. P (nt ,i masks xt ,i ), can be evaluated as

P (nt ,i ≥ xt ,i +τ) =

∫ ∞

−∞

�

∫ ∞

xt ,i+τ
p (nt ,i )d nt ,i

�

p (xt ,i )d xt ,i

≈
L
∑

j=1

L
∑

j ′=1

ω
( j )
t ω

( j ′)
t u (n ( j )t ,i − x

( j )
t ,i −τ) (7.39)

where u denotes the unit step function which is 1 for xt ,i ≥ 0 and 0 otherwise; τ is the masking

threshold [212], i.e. the difference in power at which masking is assumed to occur. The masking

probability (7.39) can now directly be used as a soft-mask estimate θ̂i = P (nt ,i ≥ xt ,i +τ), in

combination with a soft-decision approach [20], or it may be quantized to a binary mask [17]

θ̂t ,i =







1, P (nt ,i > xt ,i )≥ 0.5

0, P (nt ,i > xt ,i )< 0.5
(7.40)

for use with any the missing feature reconstruction approaches that have been described in

this chapter. A detailed comparison of other mask estimation techniques is found in [215, 216].

7.5 Contributions of this Chapter

The following list again gives an overview of the individual contributions of this thesis to miss-

ing feature reconstruction:

1. Introduction of the box-truncated Gaussian distribution, including two approximations

for its mean and normalization constant (Section 7.3.1) [17].

2. The bounded conditional mean imputation technique from Section 7.3.2 [17].

3. Particle filter based mask estimation (Section 7.4) [20].

4. An analysis of the relationship between conditional mean imputation and Bayesian

speech feature enhancement (Section 7.2).



8
Speech Recognition Experiments

This chapter evaluates the usefulness of the proposed speech feature enhancement and recon-

struction techniques. That is done by means of an experimental comparison in which a clean

speech corpus is contaminated with prerecorded noise and then processed with an automatic

speech recognition (ASR) system. The detailed results are presented in Sections 8.4.1 - 8.4.6,

right after the ASR system has been described along with the used corpora. As it is well known

that artificially added noise differs from a true noisy speech corpus (see e.g. the Lombard effect

[217, 218]), the most important experiments are finally repeated on a real in-car corpus. This

is done in Section 8.5.

8.1 Measuring ASR Performance

In order to compare the performance of different feature enhancement and reconstruction

techniques at the hand of speech recognition results, we need to specify a quantitative measure

for ASR performance. The most widely accepted measure for this purpose is the word error rate

(WER). It is formally defined [101] as the minimum edit distance – by means of the number of

word insertions, deletions and substitutions – between an ASR hypothesis and the correspond-

ing reference transcription. This distance is further divided by the number of words:

WER =
#(insertions)+#(deletions)+#(substitutions)

#(words in reference transcription)
×100%

where #(·) denotes the counting symbol. The reference transcription is the text which was really

said in the utterances. In practice, the WER is calculated with standard tools such as the “HRe-

155
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sults” program which is provided along with the Hidden Markov Model Toolkit (HTK) [219] or

the “sclite” engine of the National Institute of Standards (NIST) Scoring Toolkit (SCTK).

8.1.1 Standard Error

When comparing word error rates, it is of interest to know whether a difference in WER is sta-

tistically significant. In order to do so, the standard error [220, 221] of each measured WER is

calculated according to [222]:

S E =

√

√ (W E R/100) · (100−W E R )/100

#(words in reference transcription)
.

Then, the probability that the true WER lies in the interval [W E R −S E , W E R +S E ] is 68.3%

(under certain assumptions [222]). In particular, if two intervals I1 = [W E R1−S E1, W E R1+S E1]

and I2 = [W E R2 −S E2, W E R2 +S E2] do not overlap then the difference between the word er-

ror rates W E R1 and W E R2 is considered to be statistically significant with 1-sigma (68.3%)

confidence. In practice, the significance is checked by plotting standard error bars which cor-

respond to the intervals. For a more thorough justification the reader is referred to [222].
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(a) WERs with 68.3% confidence intervals
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(b) WERs with 95.4% confidence intervals

Figure 8.1: Bar plots of word error rates with corresponding error bars (black vertical lines).
While WER 2 and WER 3 are significantly lower than WER 1 - even with 95.4% (2-sigma) confi-
dence, i.e. with intervals I = [W E R −2 ·S E1, W E R +2 ·S E1] that have been extended to 2 times
the standard deviation - there is no significant difference between WER 2 and WER 3.

8.2 Description of the ASR System

The ASR experiments, which are reported in the following, have all been performed with the

“Millennium” toolkit [223]. This toolkit is described in more detail in [102]. It supports several

speech feature extraction schemes, monophone and triphone acoustic models, n-gram and

grammar-based language models, lattice rescoring as well as various speaker adaptation tech-

niques. The toolkit is implemented as a set of C++ libraries that have been compiled for use
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in python [224]. Training, decoding and adaptation can all be performed with relatively short

python scripts (that are about 500 to 1000 lines long).

8.2.1 WFST Decoder

The decoder is implemented as suggested by Saon et al. [225], including fast on-the-fly compo-

sition [226], [102, §7.4] of weighted finite state transducers (WFSTs). It generates word lattices

which are then optimized with WFST operations, as described in [227]. The resulting word

lattices can be used for lattice rescoring as well as for forced alignments during speaker adap-

tation. In order to get as meaningful results as possible, the dynamic beam width (see [102]) is

rather wide. It is 160 on the first pass (without adaptation) and 180 on the second pass (with

CMLLR adaptation – see Section 8.2.4). There is no maximum number of expandable states.

8.2.2 Lexicon and Phone-Set

As a pronunciation lexicon, the freely available CMU SPHINX [228] dictionary is used. This

lexicon is based on the standard ARPA phone-set (ARPAbet) [229].

8.2.3 Acoustic Models

For digits recognition tasks, a simple monophone [101] acoustic model is used with a 3 state

left-to-right hidden Markov model (HMM) for each phone. Such an HMM is shown in Figure

8.2 at the example of the phoneme AH. For mid-size vocabulary tasks, such as the 5000 (5k)

word American wall street journal corpus [230] and its British counterpart [231], 1,743 context-

clustered triphone states [101], [102, §7.3.4] are used with the same 3 state left-to-right model.

Silence between words (SIL) and an optional breath (+BREATH+) symbol are separately mod-

eled as simple one-state HMMs. The output densities are Gaussian mixture distributions with

up to 46 Gaussians per state. The Gaussians have diagonal covariance matrices and they are

trained with a variant of the split and merge EM algorithm [64]

AH-B AH-M AH-E

0.5 0.5 0.5

0.5 0.5 0.5

Figure 8.2: Example of a 3 state left-to-right model for the monophone AH with begin, middle
and end states AH-B/-M/-E. The transition probabilities are not trained but statically set to 0.5.

8.2.4 Speaker Adaptation

State-of-the-art ASR systems can typically adapt their acoustic models to new speakers or en-

vironments (see Section 6.1.4). Millennium provides two adaptation methods for this purpose:

constrained MLLR (CMLLR) adaptation [158, 232] (with a single regression class) and full MLLR
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adaptation [232] (with multiple regression classes). This work uses CMLLR adaptation only.

This is done in an unsupervised fashion, by (1) performing a first (unadapted) speech recog-

nition pass in order to obtain an initial word lattice; (2) using the decoder to obtain a forced

alignment of the lattice; and (3) estimating the CMLLR parameters based on that alignment.

The implementation used here re-estimates the parameters three times with realignment (i.e.

steps 2 and 3 are repeated three times). Subsequently, the estimated CMLLR parameters are

used for a final speech recognition pass.

8.2.5 Feature Extraction

In the ASR experiments which are reported below, the feature extraction is performed as de-

scribed in Section 5.1. It starts with calculating 13 dimensional Mel frequency cepstral coeffi-

cients (MFCCs) with a 30 bin triangular Mel filterbank. After cepstral mean subtraction (CMS)

[233, 234, 235]with variance normalization (CVN) [109, 110, 111], 15 consecutive frames of 13-

coefficient MFCCs are concatenated and subsequently reduced by linear discriminant anal-

ysis (LDA). The resulting 42-dimensional features are used for recognition (unless explicitly

stated otherwise). For CMS and CVN, the cepstral mean and variance are estimated on speech

frames only (as determined by an energy based voice activity detector). This was found to give

better results in practice than estimating them on the entire utterance [236]. Speech Feature

enhancement is performed in the log-Mel domain and it is succeeded by the remaining feature

extraction steps (DCT, CMS, etc.).

8.3 Description of the Corpora

The following describes the corpora, which are used in the experiments, including specifica-

tions of the test and training sets as well as an outline of the key features of the used acoustic

and language models.

8.3.1 MC-WSJ-AV

The Multi-Channel Wall Street Journal Audio-Visual corpus [117]provides an intermediate task

between simple digits recognition and large vocabulary conversational speech recognition. It

consists of read sentences from the Wall Street Journal which have been recorded under three

different conditions: (A) single stationary speaker; (B) single moving speaker; and (C) two

speakers speaking at the same time. All the data was captured simultaneously using headsets,

lapel microphones and two circular 8-channel microphone arrays. The reason for choosing

this somewhat unusual corpus for speech enhancement experiments is simply that a readily

trained ASR system was available [226, 237, 238] for this corpus. This ASR system has a perfor-

mance comparable to that of other state-of-the-art systems [117, 239]. The triphone acoustic

model was trained with 30 hours WSJ0 [230] and 12 hours WSJCAM0 [231] data, as described
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earlier in [237, 238]. It has 1,743 fully continuous codebooks with a total of 67,017 Gaussians.

The much smaller (128 component) auxiliary clean speech model, which is used for speech

feature enhancement and reconstruction, has been trained on the same data set. As a test set

for speech recognition experiments, this work uses the headset recordings of the 5000-word

sub-corpus of the MC-WSJ-AV data – more specifically: the single stationary speaker condition

of the EVAL-1 and DEV-1 sets. Following Kumatani et al. [237, 238], the following utterances

were excluded from the corpus:

• AMI_WSJ16-∗_T6c020u (1 utterance)

• AMI_WSJ17-∗_T7c020[o-z] (11 utterances)

• AMI_WSJ17-∗_T7c021[0-3] (4 utterances)

This left a total of 352 clean speech utterances – 189 in the EVAL-1 set and 163 in the DEV-1

set – which amounts to approximately 40 minutes of speech. All the experiments, which are

reported on this corpus, use a full trigram language model that has been trained on the tran-

scriptions of the WSJ0 and WSJCAM0 corpora. The recognition network is composed at run-

time, as described in [226].

8.3.2 NOISEX-92

In some of the experiments, noisy environments are simulated by adding noise to clean speech

signals. This is done using the NOISEX-92 database [118] which provides recordings of vari-

ous noise types that might be encountered in a military context, including cockpit noise from

fighter jets (Buccaneer, F-16), destroyer engine and operations room noise, cabin noise from

tanks (leopard, m109), babble, machine gun and factory noise as well as car noise from a Volvo

340. The original audio data was captured at a sampling rate of 19.98 kHz. Hence, all audio files

were downsampled to 16kHz in order to match the sampling of the MC-WSJ-AV corpus.

8.3.3 AVICAR

In addition to artificially adding noise to the MC-WSJ-AV corpus, this thesis also considers ex-

periments on a real noisy speech corpus. The corpus used for these experiments is the AVICAR

corpus [240]. It was recorded in different cars driving with up to 55 miles per hour with a mi-

crophone array1 mounted on the sun visor. The signal to noise ratio varies from 15dB to -10dB,

where the latter value is assumed when the windows are open. Next to adverse noise conditions

there are sporadic outages of microphones in about 15% of the utterances, due to defective con-

tacts in the recording equipment [242]. Hence, the corpus was cleaned by running a script that

automatically detects damaged utterances by their lower average power signature as well as by

the signal bias, which occurs in some of the damaged recordings [16]. For ASR experiments,

1 Note that this work uses the first channel of the array as a single distant microphone. Results for multiple
channels are reported in [241].
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the AVICAR corpus was split into one training set and two test sets. The training set consisted

of the “IDL” condition of the digits and phone number tasks, in which the car is standing still

with the engine running (idle). This set was used to train a monophone acoustic model with

62 states (and a total of 2,742 Gaussians) as well as an auxiliary clean speech model for speech

feature enhancement. Decoding was performed with a grammar-based language model that

allows arbitrary sequences of numbers with optional pauses (silence) in between. The test set

consists of the “35U” and “35D” conditions of the phone number task. In these conditions, the

car is driving at 35 miles per hour with the windows being up (U) or down (D). This comprises

1324 and 1265 10-digit phone numbers, spoken by 79 different speakers. The total recording

lengths are 114 and 108 minutes. There are several noise sources present, including noise from

the engine, wind blowing into the microphones and cars passing by.

8.4 Experiments with Added Noise

This section compares all the feature enhancement and reconstruction techniques from Chap-

ters 6 and 7 under the same conditions. That is achieved by (1) contaminating the MC-WSJ-AV

corpus [117] (headset data) with noise from the NOISEX-92 database [118], and then (2) per-

forming experiments on the resulting, contaminated recordings. The used noise types are de-

stroyer engine (destroyereng) and factory (factory2) noise at signal-to-noise-ratios (SNRs) of 5,

10, 15 and 20 dB.

8.4.1 The Baseline

Figure 8.3 shows the baseline word error rates for clean speech training as well as for multi-

condition (multi-style) training [155, 156], averaged over all 8 noise conditions. Note that these

results were obtained with the standard Millennium front end, without speech feature en-

hancement and reconstruction.
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Figure 8.3: Baseline ASR results for clean speech training and multi-style training. The word

error rates are shown with and without CMLLR adaptation and with 2 sigma (95.4%) error bars.
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The plot to the left shows the first, unadapted pass. The plot to the right shows the more rele-

vant second pass – after CMLLR adaptation (see Section 8.2.4). In both cases, multi-condition

training gave significantly better speech recognition results than clean speech training, with

relative improvements of 29.3% and 34.0%, respectively, on the first and second pass. Table 8.1

shows the exact WERs in dependence of the noise condition.

training speaker destroyer engine factory site average
method adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

clean none 89.56 74.54 55.21 37.17 63.06 42.86 28.62 22.56 51.70
multistyle none 66.06 51.28 39.23 32.78 36.79 25.12 21.27 19.98 36.56

clean CMLLR 76.69 49.01 26.37 16.70 45.75 24.50 15.40 12.18 33.33
multistyle CMLLR 44.22 28.20 18.80 13.96 27.97 17.81 13.12 11.86 21.99

training speaker destroyer engine factory site average
method adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

clean none 89.56 74.54 55.21 37.17 63.06 42.86 28.62 22.56 51.70
multistyle none 66.06 51.28 39.23 32.78 36.79 25.12 21.27 19.98 36.56

clean CMLLR 76.69 49.01 26.37 16.70 45.75 24.50 15.40 12.18 33.33
multistyle CMLLR 44.22 28.20 18.80 13.96 27.97 17.81 13.12 11.86 21.99

Table 8.1: Word error rate under different noise conditions.

Note that for multi-condition training, the training data (consisting of the WSJ0 and WSJCAM0

corpora [230, 231]) was contaminated with 5, 10, 15 and 20 dB destroyer engine room (destroy-

ereng), destroyer operations room (destroyerops), factory (factory2) and tank (leopard) noise.

This led to a 4-fold increase of the training corpus; and it resulted in an acoustic model with

80178 Gaussians, compared to 67017 Gaussians for clean speech training. This increase can

be explained by the fact that the split and merge EM algorithm [64], which has been used for

Gaussian mixture training, automatically selects the most suitable number of Gaussians.

8.4.2 Comparison to ETSI-AFE features

Figure 8.4 gives a comparison between Millennium LDA features (see Section 8.2.5) and the

16 kHz version of the ETSI Advanced Front End (AFE) [243]. This comparison is of interest as

the advanced front end includes noise reduction techniques such as two-stage Wiener filtering

[145], SNR-dependent waveform processing [244] and blind equalization [243].
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Figure 8.4: Baseline ASR results for Millennium features and the ETSI advanced front end (AFE).
The WERs are shown with 2 sigma (95.4%) error bars. Training was performed on clean speech.
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The plots again show the first, unadapted pass and a second pass with CMLLR adaptation. In

both cases, Millennium features were slightly better than the ETSI-AFE, with 95.4% (2 sigma)

significance on the second pass but just 68.3% (1 sigma) significance on the first pass. Table 8.2

shows the exact numbers in dependency of the noise condition. This table reveals that

(1) in non-stationary factory noise, Millennium features gave better results in general.

(2) with stationary destroyer engine room noise, the AFE did better on the first pass.

(3) in combination with CMLLR adaptation, Millennium features constantly outperformed

the AFE except for 5dB destroyer engine noise.

feature speaker destroyer engine factory site average
extraction adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

Millennium none 89.56 74.54 55.21 37.17 63.06 42.86 28.62 22.56 51.70
ETSI-AFE none 87.12 72.37 54.78 41.17 68.06 50.10 36.91 28.04 54.82

Millennium CMLLR 76.69 49.01 26.37 16.70 45.75 24.50 15.40 12.18 33.33
ETSI-AFE CMLLR 73.60 51.04 33.05 22.15 51.62 31.63 21.19 16.88 37.65

feature speaker destroyer engine factory site average
extraction adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

Millennium none 89.56 74.54 55.21 37.17 63.06 42.86 28.62 22.56 51.70
ETSI-AFE none 87.12 72.37 54.78 41.17 68.06 50.10 36.91 28.04 54.82

Millennium CMLLR 76.69 49.01 26.37 16.70 45.75 24.50 15.40 12.18 33.33
ETSI-AFE CMLLR 73.60 51.04 33.05 22.15 51.62 31.63 21.19 16.88 37.65

Table 8.2: WERs for Millennium features as well as for the ETSI-AFE. In both cases, training
was performed on clean speech. The training and decoding parameters were identical.

Also note that with AFE features the decoding times were almost 3 times higher on the first pass

(622 hours compared to 230 hours) and over 4 times higher on the second pass (1438 hours

compared to 336 hours). This might indicate a higher overlap of the triphone distributions, as

the decoder automatically determines the search space (dynamic beam width) based on the

current best hypothesis [102]. In these experiments, both systems (the one with Millennium

features and the one with ETSI-AFE features) were trained with the same training scripts and

parameters, including 63 iterations of split and merge EM training with a maximum of 46 Gaus-

sians per state. The decoding parameters were identical. In case of the AFE, feature extraction

was performed with the following commands (see [243]):

AdvFrontEnd <rawFile> <mfccFile> -F RAW -fs 16 -swap

derivCalc -COMB <mfcFile> <featFile>

This means: MFCC quantization (-q) and frame dropping (-FD) were disabled. The results were

significantly worse when these switches were enabled.

8.4.3 Particle Filter Experiments

Proceeding in the chronological order of this thesis, the next experiments evaluate speech fea-

ture enhancement with the particle filter approach from Section 6.5. Figure 8.5 shows the re-

sulting word error rates for the zero-phase factor model (ZPF) [127, 133] – including the fast

acceptance test (FAT) [136, 134] – as well as for the phase-averaged model (PA), which has been

introduced in Section 6.5.
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Figure 8.5: Average word error rates for particle filter (PF) based speech feature enhancement.

The bar plots show results with the zero-phase factor (ZPF) model (see Section 6.5.2) as well

as with the phase-averaged (PA) model from Section 6.5.3. The “baseline” is the clean speech

(training) baseline from Section 8.4.1.

These experiments were again performed on the MC-WSJ-AV corpus, with added factory and

destroyer room engine noise at SNRs of 5, 10, 15 and 20 dB. The plot to the left shows the first,

unadapted pass. The plot to the right shows results after CMLLR adaptation. In both cases,

both the PA-PF and the ZPF-PF performed significantly2 better than the baseline, with relative

WER reductions of 12.9% and 16.3% on the first pass, 7.5% and 11.6% on the second pass. The

PA-PF performed slightly better. But this difference was just 68.3% (1-sigma) significant on the

first pass; it was not significant on the second pass. Table 8.3 shows the exact word error rates

in dependency of the noise condition.

enhancem. speaker destroyer engine factory site average
method adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

none none 89.56 74.54 55.21 37.17 63.06 42.86 28.62 22.56 51.70
ZPF-PF none 85.34 66.30 44.21 30.25 56.43 35.27 23.70 18.66 45.02
PA-PF none 82.11 62.25 42.28 29.56 56.53 33.00 22.92 17.41 43.26

none CMLLR 76.69 49.01 26.37 16.70 45.75 24.50 15.40 12.18 33.33
ZPF-PF CMLLR 70.95 43.10 23.89 15.19 43.71 23.62 14.58 11.55 30.82
PA-PF CMLLR 68.01 40.98 22.15 14.90 42.04 22.21 13.82 11.60 29.46

enhancem. speaker destroyer engine factory site average
method adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

none none 89.56 74.54 55.21 37.17 63.06 42.86 28.62 22.56 51.70
ZPF-PF none 85.34 66.30 44.21 30.25 56.43 35.27 23.70 18.66 45.02
PA-PF none 82.11 62.25 42.28 29.56 56.53 33.00 22.92 17.41 43.26

none CMLLR 76.69 49.01 26.37 16.70 45.75 24.50 15.40 12.18 33.33
ZPF-PF CMLLR 70.95 43.10 23.89 15.19 43.71 23.62 14.58 11.55 30.82
PA-PF CMLLR 68.01 40.98 22.15 14.90 42.04 22.21 13.82 11.60 29.46

Table 8.3: Word error rates for particle filter (PF) based speech feature enhancement.

Having a closer look at this table, we find that the PA-PF performed better in almost every single

experiment, with the exception of factory noise at 5dB (1st pass) and factory noise at 20dB (2nd

pass). Figure 8.6 shows the computation times on a 3.0 GHz Intel Xeon CPU. The times are given

in hours; they correspond to processing the whole corpus under all noise conditions; and they

comprise the computation times of both speech feature enhancement and decoding.

2 Note that the difference between PA-PF and baseline is 95.4% (2 sigma) significant. The difference between
ZPF-PF and baseline is 94.5% significant on the first pass but just 68.3% on the second pass.
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Figure 8.6: Computation times of the particle filter based speech feature enhancement experi-
ments. The times are given in hours and comprise both enhancement and decoding.

These plots reveal that the PA-PF slightly increases the computation time of the first pass (by

about 8% relative). Nevertheless, it lowers the computation time of the more relevant second

pass, especially when compared to the ZPF-PF (relative reduction of 20.6%).

8.4.4 Missing Feature Reconstruction Experiments

This section evaluates the performance of the missing feature reconstruction techniques from

Chapter 7. In order to have a balanced comparison, the methods are first compared under ideal

conditions, by using so-called oracle masks [207, 214], i.e. masks that would be produced by an

optimal mask estimation algorithm. This is achieved [207, 214] by calculating the oracle mask

θt at time t from the true clean speech and noise spectra3, xt and nt :

θt ,i =







1, nt ,i ≥ xt ,i

0, nt ,i < xt ,i

(8.1)

Figure 8.7 shows the resulting word error rates for conditional mean imputation (CMI) [199,

200], bounded conditional mean imputation (BCMI) [17] as well as for the diagonal covariance

matrix bounded mean imputation (DBMI) technique from [209, 20]. The first thing to notice

is that all the feature reconstruction methods clearly outperform the baseline, with relative

reductions of 15.3%, 45.6% and 33.3% in WER on the unadapted pass. These results almost

completely translate to the second pass, with reductions of 19.7%, 40.1%, 33.0% after CMLLR

adaptation. BCMI clearly performs the best. It is followed by DBMI, which performs 18.4% and

11.2% (relative) worse than BCMI but still 21.2% and 16.6% better than CMI (on the first and

second pass, respectively).

3 In our case, the true clean speech and noise spectra are known because we artificially add the noise. The result-
ing masks should be regarded for what they are: a hypothetical tool for comparing missing feature reconstruction
methods under ideal conditions. They have no practical relevance.
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Figure 8.7: Averaged word error rates for conditional mean imputation (CMI), bounded condi-
tional mean imputation (BCMI) and diagonal (covariance) bounded mean imputation (DBMI),
all using oracle masks. The results are shown for both the first, unadapted pass as well as for the
second, adapted pass, with 95.4% (2 sigma) error bars, respectively.

enhancem. speaker destroyer engine factory site average
method adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

none none 89.56 74.54 55.21 37.17 63.06 42.86 28.62 22.56 51.70
CMI none 79.97 61.84 41.08 28.93 57.89 35.68 24.91 19.89 43.77

BCMI none 54.51 35.27 23.34 17.41 34.21 24.33 19.40 16.66 28.14
DBMI none 68.01 47.95 32.33 25.10 35.97 26.38 20.08 19.99 34.48
none CMLLR 76.69 49.01 26.37 16.70 45.75 24.50 15.40 12.18 33.33
CMI CMLLR 57.72 36.14 21.29 14.22 38.41 21.22 13.60 11.59 26.77

BCMI CMLLR 41.44 23.56 15.91 12.97 24.64 16.70 12.15 11.24 19.83
DBMI CMLLR 51.79 30.49 18.25 13.43 24.93 16.54 12.41 10.70 22.32

enhancem. speaker destroyer engine factory site average
method adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

none none 89.56 74.54 55.21 37.17 63.06 42.86 28.62 22.56 51.70
CMI none 79.97 61.84 41.08 28.93 57.89 35.68 24.91 19.89 43.77

BCMI none 54.51 35.27 23.34 17.41 34.21 24.33 19.40 16.66 28.14
DBMI none 68.01 47.95 32.33 25.10 35.97 26.38 20.08 19.99 34.48
none CMLLR 76.69 49.01 26.37 16.70 45.75 24.50 15.40 12.18 33.33
CMI CMLLR 57.72 36.14 21.29 14.22 38.41 21.22 13.60 11.59 26.77

BCMI CMLLR 41.44 23.56 15.91 12.97 24.64 16.70 12.15 11.24 19.83
DBMI CMLLR 51.79 30.49 18.25 13.43 24.93 16.54 12.41 10.70 22.32

Table 8.4: Detailed word error rates of the missing feature construction experiments, in depen-
dency of the noise condition.
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Figure 8.8: Computation times of the missing feature reconstruction experiments. The times
are shown in hours, comprise both decoding and feature reconstruction and correspond to
processing the whole corpus under all noise conditions.
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All the differences in WER are 95.4% (2 sigma) significant, except for the difference between

BCMI and DBMI, which is only 68.3% (1 sigma) significant on the second pass. Table 8.4 shows

the exact word error rates in dependency of the noise condition. Having a closer look at these

numbers, we find that BCMI significantly outperforms DBMI on destroyer engine room noise,

while with factory noise both methods perform equally well. This discrepancy may be analyzed

at the hand of Figure 8.9, which shows time-frequency representations of destroyer engine and

factory noise. Turning to the surface plot on the left, we find that there are two main peaks in

the 14th and 17th Mel frequency bins, with center frequencies of 1531 and 2125 Hz, respec-

tively. These peaks explain the higher general WER in case of destroyer engine noise, as the

range of 1200-2000 Hz is most important for speech recognition [245]. Now, having a look at

Figure 8.10-(a), we see that it is exactly these critical frequencies, which are most often masked

by noise. On average, 85.3% of the bins are missing, which leaves us with only 4.4 bins for re-

(a) destroyer engine room noise (b) factory site noise

Figure 8.9: Time frequency representations of the used noise types. The x-axes represent Mel
frequency bins (1-30). The y-axes represent the noise intensity in dB. The z-axes represent time in
100 millisecond ticks (1-400).
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Figure 8.10: Percentage of time in which a Mel frequency bin was reliable, i.e. not masked by
noise. The plots correspond to a signal-to-noise ratio of 5 dB.
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constructing 30-bin speech spectra. This compares to 6.5 bins with 5 dB factory noise (see Fig-

ure 8.10-(b)). Another difference between the two noise types is that for destroyer engine noise

there are much fewer reliable (non-masked) values in the uppermost 20 frequency bins. This

means, most of the reconstruction is based on a few low frequency bins; and it seems BCMI

works better under such conditions. Figure 8.8 at the bottom of page 165 finally shows the

computation times of the used feature reconstruction techniques in comparison to the base-

line. Interestingly, CMI, BCMI and DBMI speed up the recognition by a factor 2.0, 3.4 and 5.6,

respectively, on the first pass. On the second pass, the recognition is 2.0, 4.4 and 6.5 times faster.

These speed-ups can be explained by the fact that better acoustic separability leads to better

pruning during beam-search and, therewith, reductions in decoding time. This is a surpris-

ing result, especially regarding the fact that BCMI is computationally by far the most expensive

technique, which has been considered in this thesis. It is about 6 times more expensive than

CMI and over 50 times more expensive than DBMI.

8.4.5 Particle Filter +Missing Feature Reconstruction

This section considers a combination of the particle filter from Section 8.4.3 with a missing

feature reconstruction (MFR) post-processing stage [20]. In this approach, the particle filter

is used for both enhancing noisy speech spectra and for estimating masks for the subsequent

MFR stage. This is done as described in Section 7.4. Figure 8.11 shows the resulting word error

rates in comparison to the phase-averaged particle filter. The first pass results (bar plot to the

left) indicate that the additional MFR stage gives relative improvements of 4.7%, 3.6% and 6.9%

for CMI, BCMI and DBMI. But these results do not translate well to the second pass (bar plot

to the right) where the improvements decrease to 2.1%, -7.1% and -1.0%, respectively.
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Figure 8.11: Average WERs for the phase-averaged particle filter (PA-PF) with a missing fea-

ture reconstruction (MFR) post-processor. The masks for MFR were estimated with the approach

from Section 7.4. The first bar shows results for the PA-PF only. The other bars show results for

combinations with the indicated MFR techniques.
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The difference between CMI and the baseline (the PA-PF) is 1-sigma significant on the first

pass and not significant on the second pass. The same holds for DBMI. In case of BCMI, the

difference to the baseline is not significant on the first pass but 1-sigma significant on the sec-

ond pass. These results should not be used to conclude that BCMI performs worse in general

with estimated masks, especially not in the light of a more recent study [215, 216], which found

that BCMI outperforms all the other methods – even sparse imputation [246] – when mask es-

timation is performed with the negative energy criterion [212, 166]. Table 8.5 again shows the

detailed results.

MFR speaker destroyer engine factory site average
method adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

none none 82.11 62.25 42.28 29.56 56.53 33.00 22.92 17.41 43.26
CMI none 80.28 59.67 37.68 26.35 55.16 32.42 22.56 16.93 41.38

BCMI none 83.70 59.89 37.80 24.06 57.16 33.71 22.23 16.52 41.88
DBMI none 79.75 57.21 37.51 25.10 53.93 31.73 21.50 16.75 40.44

none CMLLR 68.01 40.98 22.15 14.90 42.04 22.21 13.82 11.60 29.46
CMI CMLLR 65.81 38.35 22.30 14.37 41.71 22.56 13.93 11.65 28.84

BCMI CMLLR 71.92 43.90 24.28 15.16 46.60 24.08 14.35 12.06 31.54
DBMI CMLLR 66.75 40.11 22.54 14.95 42.33 23.10 14.32 12.00 29.51

MFR speaker destroyer engine factory site average
method adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

none none 82.11 62.25 42.28 29.56 56.53 33.00 22.92 17.41 43.26
CMI none 80.28 59.67 37.68 26.35 55.16 32.42 22.56 16.93 41.38

BCMI none 83.70 59.89 37.80 24.06 57.16 33.71 22.23 16.52 41.88
DBMI none 79.75 57.21 37.51 25.10 53.93 31.73 21.50 16.75 40.44

none CMLLR 68.01 40.98 22.15 14.90 42.04 22.21 13.82 11.60 29.46
CMI CMLLR 65.81 38.35 22.30 14.37 41.71 22.56 13.93 11.65 28.84

BCMI CMLLR 71.92 43.90 24.28 15.16 46.60 24.08 14.35 12.06 31.54
DBMI CMLLR 66.75 40.11 22.54 14.95 42.33 23.10 14.32 12.00 29.51

Table 8.5: Word error rates for the phase-averaged particle filter (PA-PF) with a missing feature
reconstruction post-processing stage. The table shows results for conditional mean imputation
(CMI), bounded conditional mean imputation (BCMI) and diagonal bounded mean imputation
(DBMI) in comparison to the plain PA-PF (none).

8.4.6 Bayesian Speech Feature Enhancement - Oracle Experiments

The more recent part of this thesis [15, 16] is concerned with the Bayesian speech feature en-

hancement approach from Section 6.3. This approach necessitates prior knowledge of the

clean speech and noise distributions and it uses the assumption that these distributions can

be modeled as a Gaussian mixture and a single Gaussian, respectively. In order to evaluate the

performance under ideal conditions, let us begin with a set of oracle experiments in which

(1) the channel difference of each speaker from the test corpus to the total average of the

training corpus is perfectly known.

(2) the noise distribution of each individual utterance of the test corpus is perfectly known,

in contrast to estimating it as in Section 8.4.7.

Throughout this section, the auxiliary clean speech model has been trained after application

of an utterance-wise normalization procedure. This normalization procedure ensures that the

average spectrum of each utterance in the training corpus coincides with the average spec-

trum of the total training corpus. This has a similar effect as cepstral mean subtraction (CMS)

[233, 234] inasmuch as it decreases the variance due to inter-utterance differences. The dif-

ferences to CMS are that (1) the method works in the log-Mel domain rather than on cepstra;
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and (2) the spectra are normalized to the average clean speech spectrum instead of to zero.

Figure 8.12 shows the resulting word error rates for the true MMSE estimate, i.e. the full condi-

tional expectation (FCE) from (6.5), as well as for the mode-dependent bias correction (MDBC)

approach from (6.6). In both cases, the joint distribution is constructed with the unscented

transform [50], using the zero-phase factor model (Section 5.2.4) as an interaction function.

The clean speech model as well as the oracle noise distributions have diagonal covariance ma-

trices.

10 

20 

30 

40 

50 

60 

none FCE MDBC 

(a) without speaker adaptation

10 

20 

30 

40 

50 

60 

none FCE MDBC 

(b) with CMLLR adaptation

Figure 8.12: Word error rates for the Bayesian speech feature enhancement approach from 6.3.
Results are shown for the full conditional expectation (FCE) as well as for the mode-dependent
bias correction (MDBC) approach from (6.6).

The first thing to notice is that FCE and MDBC perform greatly better than the baseline system,

with relative reductions of 37.0% and 44.4% on the first pass and with reductions of 23.5% and

31.4% on the second pass. All the differences in WER are 2-sigma significant, except for the

difference between MDBC and FCE, which is only 1-sigma significant on the second pass. The

fact that MDBC outperforms FCE comes a little bit as a surprise but we assume that this is a

result of stability issues4, possibly due to a mismatched joint distribution. Table 8.6 again shows

the detailed word error rates.

estimation speaker destroyer engine room factory site average
type adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

— none 89.56 74.54 55.21 37.17 63.06 42.86 28.62 22.56 51.70
FCE none 60.10 38.88 25.91 19.82 48.60 29.55 20.08 17.91 32.61

MDBC none 55.28 34.88 23.48 18.66 39.15 24.50 18.22 15.65 28.73

— CMLLR 76.69 49.01 26.37 16.70 45.75 24.50 15.40 12.18 33.33
FCE CMLLR 50.31 30.90 20.08 13.79 37.85 23.10 14.87 13.17 25.51

MDBC CMLLR 46.67 27.63 18.01 13.33 33.48 19.26 13.72 10.94 22.88

estimation speaker destroyer engine room factory site average
type adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

— none 89.56 74.54 55.21 37.17 63.06 42.86 28.62 22.56 51.70
FCE none 60.10 38.88 25.91 19.82 48.60 29.55 20.08 17.91 32.61

MDBC none 55.28 34.88 23.48 18.66 39.15 24.50 18.22 15.65 28.73

— CMLLR 76.69 49.01 26.37 16.70 45.75 24.50 15.40 12.18 33.33
FCE CMLLR 50.31 30.90 20.08 13.79 37.85 23.10 14.87 13.17 25.51

MDBC CMLLR 46.67 27.63 18.01 13.33 33.48 19.26 13.72 10.94 22.88

Table 8.6: Mode-dependent bias correction (MDBC) versus full conditional expectation (FCE).

4 This claim is supported by the fact that FCE performed significantly worse than the baseline when full covari-
ance matrices were used. The detailed results of these experiments are not reported here, however.
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This table in particular reveals that MDBC outperforms FCE in every single experiment. Hence,

only MDBC will be used from now on. In order to justify the use of full covariance matrices in

[15, 16], a second set of experiments was performed. In these experiments, all the Gaussians

of the clean speech and noise distributions had either diagonal or full covariance matrices.

Figure 8.13 shows the results. Although diagonal covariance matrices are marginally better on

the first pass, this trend reverses on the second pass. As neither of the differences is statistically

significant, we can safely use full covariance matrices – possibly without any benefit but surely

without harm either. Table 8.7 again shows the detailed results.
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Figure 8.13: Word error rates for mode-dependent bias correction (MDBC), with full and diago-
nal (diag) covariance matrices, respectively.

covariance speaker destroyer engine room factory site average
type adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

— none 89.56 74.54 55.21 37.17 63.06 42.86 28.62 22.56 51.70
diag none 55.28 34.88 23.48 18.66 39.15 24.50 18.22 15.65 28.73
full none 54.70 34.95 24.49 19.33 37.44 24.85 18.90 17.00 28.96

— CMLLR 76.69 49.01 26.37 16.70 45.75 24.50 15.40 12.18 33.33
diag CMLLR 46.67 27.63 18.01 13.33 33.48 19.26 13.72 10.94 22.88
full CMLLR 45.03 26.16 17.05 13.04 32.98 17.94 13.23 11.18 22.08

covariance speaker destroyer engine room factory site average
type adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

— none 89.56 74.54 55.21 37.17 63.06 42.86 28.62 22.56 51.70
diag none 55.28 34.88 23.48 18.66 39.15 24.50 18.22 15.65 28.73
full none 54.70 34.95 24.49 19.33 37.44 24.85 18.90 17.00 28.96

— CMLLR 76.69 49.01 26.37 16.70 45.75 24.50 15.40 12.18 33.33
diag CMLLR 46.67 27.63 18.01 13.33 33.48 19.26 13.72 10.94 22.88
full CMLLR 45.03 26.16 17.05 13.04 32.98 17.94 13.23 11.18 22.08

Table 8.7: Detailed word error rates for the Bayesian speech feature enhancement experiments
with full and diagonal (diag) covariance matrices.

8.4.7 Bayesian Speech Feature Enhancement with Noise Estimation

This section performs experiments with estimated noise distributions while still maintaining

the ideal channel. The noise is estimated on an utterance-by-utterance basis, through use of

an energy-based voice activity detector (VAD), the Gaussian mixture expectation maximization

(GM-EM) approach from Section 6.4.2 or the Monte Carlo EM (MC-EM) approach from Section

6.4.5. In contrast to [15, 16], the 0-th iteration of the EM algorithm is initialized with a VAD-
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based noise estimate. Figures 8.14 and 8.15 show the resulting word error rates in dependency

of the iteration where the 0-th iteration indicates the VAD result. Having a closer look at Figure

8.14-(a) reveals that the Monte-Carlo EM algorithm significantly improves the results over voice

activity detection. The WER drops continuously until it settles down in the 7-th iteration, with

a relative improvement5 of 15.5%, 17.0%, 14.8% and 7.4%, respectively, for 5, 10, 15 and 20 dB

destroyer engine noise. Figure 8.15-(a) shows the corresponding results for factory noise. Here,

we get an improvement of 12.1% at 5 dB but no significant improvements at other SNRs. Figures

8.14-(b) and 8.15-(b) indicate that the Gaussian mixture EM algorithm does not really improve

the results over voice activity based noise estimation.
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Figure 8.14: Word error rates (after CMLLR adaptation) for estimating destroyer engine room
noise with the Monte Carlo (MC-EM) and Gaussian mixture EM (GM-EM) algorithms, respec-
tively. Results are shown in dependency of the iteration (0, 1, 4, 7, 10), with the 0th iteration
indicating the VAD based noise estimate. Feature enhancement has been performed with the
MDBC approach. The joint distribution has been constructed with the unscented transform.
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Figure 8.15: Word error rates (after CMLLR adaptation) for estimating factory site noise with the
Monte Carlo (MC-EM) and Gaussian mixture EM (GM-EM) algorithms.

5 Note that we here measure the improvements in relation to VAD.
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It is quite probable that the bad convergence behavior of the Gaussian mixture EM algorithm is

related to the use of full covariance matrices, especially if we regard the fact that speech feature

enhancement with FCE performed significantly worse than the baseline when full covariance

matrices were used (see footnote on page 168). One explanation for this might be that full

covariance matrices are more sensitive to model mismatches (such as neglecting the relative

phase) as the full conditional expectation spreads the error across dimensions. On the other

hand, there also were good reasons for using full covariance matrices in the first place:

(a) Full covariance matrices should be better in theory as they more accurately model the

speech and noise distributions.

(b) Using full covariance matrices is closer to working in the cepstral domain6, which most

of the other authors are doing [123, 177].

The latter point suggests that the problem with full covariance matrices may also apply to

cepstral-based approaches such as [123, 177]. Table 8.8 again shows the detailed word error

rates in dependency of the noise condition and iteration.

noise iteration destroyer engine room factory site average
estimation number 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

none — 76.69 49.01 26.37 16.70 45.75 24.50 15.40 12.18 33.33
VAD — 55.13 33.34 20.83 14.63 38.84 20.73 13.55 11.47 26.07

MC-EM 1 51.06 31.13 19.40 13.93 37.61 20.47 13.70 11.45 24.84
MC-EM 4 48.19 28.55 18.22 13.29 33.54 19.74 14.00 11.60 23.39
MC-EM 7 46.60 27.65 17.74 13.55 33.00 20.03 13.79 11.18 22.94
MC-EM 10 47.62 27.97 18.06 13.16 34.13 19.89 14.37 11.48 23.34

GM-EM 1 54.25 34.24 20.90 14.76 38.04 21.98 14.61 11.69 26.31
GM-EM 4 57.43 34.64 21.24 14.75 38.64 22.57 14.88 12.17 27.04
GM-EM 7 57.18 35.71 21.00 15.29 39.17 22.90 15.19 12.27 27.34
GM-EM 10 57.59 35.87 21.96 16.03 39.08 23.15 15.41 12.10 27.65

noise iteration destroyer engine room factory site average
estimation number 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

none — 76.69 49.01 26.37 16.70 45.75 24.50 15.40 12.18 33.33
VAD — 55.13 33.34 20.83 14.63 38.84 20.73 13.55 11.47 26.07

MC-EM 1 51.06 31.13 19.40 13.93 37.61 20.47 13.70 11.45 24.84
MC-EM 4 48.19 28.55 18.22 13.29 33.54 19.74 14.00 11.60 23.39
MC-EM 7 46.60 27.65 17.74 13.55 33.00 20.03 13.79 11.18 22.94
MC-EM 10 47.62 27.97 18.06 13.16 34.13 19.89 14.37 11.48 23.34

GM-EM 1 54.25 34.24 20.90 14.76 38.04 21.98 14.61 11.69 26.31
GM-EM 4 57.43 34.64 21.24 14.75 38.64 22.57 14.88 12.17 27.04
GM-EM 7 57.18 35.71 21.00 15.29 39.17 22.90 15.19 12.27 27.34
GM-EM 10 57.59 35.87 21.96 16.03 39.08 23.15 15.41 12.10 27.65

Table 8.8: Detailed word error rates for noise estimation with the Monte Carlo and Gaussian
mixture EM algorithms. The results refer to the second pass, after CMLLR adaptation.

As Gaussian mixture based noise estimation performs significantly worse than the Monte Carlo

approach, it is no longer considered in the following. Hence, we proceed by comparing the re-

maining noise estimation techniques to the oracle noise from Section 8.4.6. This is done at the

hand of Figure 8.16, which shows word error rates for MDBC based speech feature enhance-

ment with (1) VAD-based noise estimation (2) MC-EM based noise estimation and (3) oracle

noise. The first thing to notice is that VAD-based noise estimation gives a decent reduction

of the WER, with relative improvements of 35.8% and 21.8% over the baseline on the first and

second pass. The MC-EM approach further improves the results. In particular, it comes very

close to oracle noise where the relative reductions were 44.0% and 33.8%, respectively.

6 That is because the translation to the cepstral domain consists in a linear transformation. So, if we translate
diagonal Gaussians in the cepstral domain back to the log-Mel domain, the Gaussians have full covariance matrices.
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Figure 8.16: WERs for MDBC using different noise estimation schemes. The bar plots show re-
sults for energy based voice activity detection (VAD), the Monte Carlo EM algorithm (MC-EM)
and oracle noise. The first bar shows the baseline (none), without speech feature enhancement.

noise speaker destroyer engine room factory site average
estimation adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

none none 89.56 74.54 55.21 37.17 63.06 42.86 28.62 22.56 51.70
VAD none 64.22 42.17 28.21 21.09 44.75 28.40 20.03 16.71 33.26

MC-EM none 56.41 36.57 24.47 19.05 40.74 25.46 18.66 16.66 29.75
oracle none 54.70 34.95 24.49 19.33 37.44 24.85 18.90 17.00 28.96

none CMLLR 76.69 49.01 26.37 16.70 45.75 24.50 15.40 12.18 33.33
VAD CMLLR 55.13 33.34 20.83 14.63 38.84 20.73 13.55 11.47 26.07

MC-EM CMLLR 46.60 27.65 17.74 13.55 33.00 20.03 13.79 11.18 22.94
oracle CMLLR 45.03 26.16 17.05 13.04 32.98 17.94 13.23 11.18 22.08

noise speaker destroyer engine room factory site average
estimation adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

none none 89.56 74.54 55.21 37.17 63.06 42.86 28.62 22.56 51.70
VAD none 64.22 42.17 28.21 21.09 44.75 28.40 20.03 16.71 33.26

MC-EM none 56.41 36.57 24.47 19.05 40.74 25.46 18.66 16.66 29.75
oracle none 54.70 34.95 24.49 19.33 37.44 24.85 18.90 17.00 28.96

none CMLLR 76.69 49.01 26.37 16.70 45.75 24.50 15.40 12.18 33.33
VAD CMLLR 55.13 33.34 20.83 14.63 38.84 20.73 13.55 11.47 26.07

MC-EM CMLLR 46.60 27.65 17.74 13.55 33.00 20.03 13.79 11.18 22.94
oracle CMLLR 45.03 26.16 17.05 13.04 32.98 17.94 13.23 11.18 22.08

Table 8.9: Detailed word error rate for MDBC-based speech feature enhancement using different
noise estimation techniques.
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Figure 8.17: Computation times in hours. The times comprise both decoding and speech
feature enhancement; and they correspond to processing the whole corpus, under all noise
conditions.
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While the difference between VAD and MC-EM is almost 2-sigma significant7, the difference

between MC-EM and oracle noise is not significant at all. A comparison of the computation

times in Figure 8.9 shows that speech feature enhancement with either VAD or MC-EM based

noise estimation speeds up the decoding time by a factor of 4.3 on the first pass compared to

the baseline. On the second pass, it is a factor of 3.2. With oracle noise, the speed-up is 5.3

and 4.5, respectively. These results clearly demonstrate that speech feature enhancement has

advantages with respect to both the word error rate and computational cost. Figure 8.18 finally

gives a direct comparison to the multi-style system from Section 8.4.1. This system has been

trained on noisy speech, using the noise types which are present in the test set plus two further

noise types (see Section 8.4.1 for details).
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Figure 8.18: MDBC in direct comparison to the multi-style trained system from Section 8.4.1.
MDBC was using the MC-EM noise estimate. The multi-style system was trained on noisy speech
only (without enhancement).

Obviously, the multi-style system performs well, with a relative reduction of more than 30%

over the clean speech training baseline. Nevertheless, the multi-style system cannot compete

with MDBC based speech feature enhancement – at least not on the first pass. This changes

after CMLLR adaptation where the multi-style system is slightly (4.1%) but not significantly

better than MDBC. Regarding these results, it is important to note that MDBC just used the

baseline system, which has been trained on clean speech (i.e. the baseline system from Section

8.4.1). The noise was estimated with the MC-EM algorithm. The auxiliary clean speech model

which was used in all speech feature enhancement and reconstruction experiments had only

128 Gaussian components. This compares to 67017 Gaussians for the clean speech acoustic

model and to 80178 Gaussians for the multi-style acoustic model.

8.4.8 Validation on a Larger Set

In order to validate the results from the previous section on a larger set, the most important

experiments are finally reported under additional noise conditions. In particular, the noise

7 It is definitely bigger than 1-sigma.
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conditions are grouped into two categories: a “stationary” category, which consists of tank

(leopard) and destroyer engine room (destroyereng) noise; and a “non-stationary” category,

which consists of factory (factory2) and destroyer operations room (destroyerops) noise. Fig-

ure 8.19 shows the results on the second pass, after CMLLR adaptation. As expected, the base-

line WER (none) is 11.1% higher with non-stationary noise than it is with stationary noise. At

the same time, the relative improvement through speech feature enhancement is much lower:

13.4%, 19.7%, 23.7% with non-stationary noise compared to 20.0%, 29.4%, 31.2% with station-

ary noise, both respectively for MDBC with VAD, MC-EM and oracle noise estimation. In both

cases, MC-EM based noise estimation performs significantly better than VAD with 1-sigma sig-

nificance (with stationary noise it is almost 2-sigma). The difference between oracle noise and

MC-EM noise estimation is not significant. The detailed results in tables 8.10 and 8.11 reveal

that with tank noise MC-EM even outperforms oracle noise – at least on the first pass.
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Figure 8.19: Comparison of word error rates in stationary and non-stationary noise conditions.
Results are shown for the second pass only and they are averaged over the sub-conditions of each
category. The bars labeled with VAD, MC-EM and oracle again show MDBC results for the indi-
cated noise estimation method. The first bar (none) shows the baseline.

noise speaker destroyer engine room tank interior average
estimation adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

none none 89.56 74.54 55.21 37.17 30.98 19.94 15.72 14.08 42.15
VAD none 64.22 42.17 28.21 21.09 24.73 18.13 16.11 14.05 28.59

MC-EM none 56.41 36.57 24.47 19.05 22.78 17.91 14.97 14.66 25.85
oracle none 54.70 34.95 24.49 19.33 24.08 18.46 16.29 14.88 25.90

none CMLLR 76.69 49.01 26.37 16.70 17.46 11.76 9.76 9.13 27.11
VAD CMLLR 55.13 33.34 20.83 14.63 17.63 11.55 10.27 10.20 21.70

MC-EM CMLLR 46.60 27.65 17.74 13.55 15.53 11.26 10.77 10.03 19.14
oracle CMLLR 45.03 26.16 17.05 13.04 15.93 11.23 10.73 10.03 18.65

noise speaker destroyer engine room tank interior average
estimation adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

none none 89.56 74.54 55.21 37.17 30.98 19.94 15.72 14.08 42.15
VAD none 64.22 42.17 28.21 21.09 24.73 18.13 16.11 14.05 28.59

MC-EM none 56.41 36.57 24.47 19.05 22.78 17.91 14.97 14.66 25.85
oracle none 54.70 34.95 24.49 19.33 24.08 18.46 16.29 14.88 25.90

none CMLLR 76.69 49.01 26.37 16.70 17.46 11.76 9.76 9.13 27.11
VAD CMLLR 55.13 33.34 20.83 14.63 17.63 11.55 10.27 10.20 21.70

MC-EM CMLLR 46.60 27.65 17.74 13.55 15.53 11.26 10.77 10.03 19.14
oracle CMLLR 45.03 26.16 17.05 13.04 15.93 11.23 10.73 10.03 18.65

Table 8.10: Detailed word error rates in stationary noise conditions. Results are shown without
speech feature enhancement (none) as well as with MDBC. In the latter case, the noise estimate
is obtained through VAD, MC-EM and oracle noise estimation.
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noise speaker destroyer operations room factory site average
estimation adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

none none 81.27 56.22 33.71 20.71 63.06 42.86 28.62 22.56 43.63
VAD none 66.64 43.49 26.86 19.19 44.75 28.40 20.03 16.71 33.26

MC-EM none 68.63 43.73 26.11 17.91 40.74 25.46 18.66 16.66 32.24
oracle none 60.65 37.10 23.58 17.62 37.44 24.85 18.90 17.00 29.64

none CMLLR 70.86 40.74 21.29 13.16 45.75 24.50 15.40 12.18 30.49
VAD CMLLR 59.67 34.31 19.28 13.40 38.84 20.73 13.55 11.47 26.41

MC-EM CMLLR 55.35 31.94 17.84 12.66 33.00 20.03 13.79 11.18 24.47
oracle CMLLR 52.48 29.73 16.80 11.64 32.98 17.94 13.23 11.18 23.25

noise speaker destroyer operations room factory site average
estimation adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

none none 81.27 56.22 33.71 20.71 63.06 42.86 28.62 22.56 43.63
VAD none 66.64 43.49 26.86 19.19 44.75 28.40 20.03 16.71 33.26

MC-EM none 68.63 43.73 26.11 17.91 40.74 25.46 18.66 16.66 32.24
oracle none 60.65 37.10 23.58 17.62 37.44 24.85 18.90 17.00 29.64

none CMLLR 70.86 40.74 21.29 13.16 45.75 24.50 15.40 12.18 30.49
VAD CMLLR 59.67 34.31 19.28 13.40 38.84 20.73 13.55 11.47 26.41

MC-EM CMLLR 55.35 31.94 17.84 12.66 33.00 20.03 13.79 11.18 24.47
oracle CMLLR 52.48 29.73 16.80 11.64 32.98 17.94 13.23 11.18 23.25

Table 8.11: Detailed word error rates in non-stationary noise conditions. Results are shown
without speech feature enhancement (none) as well as with MDBC. In the latter case, the noise
estimate is obtained through VAD, MC-EM and oracle noise estimation.

8.4.9 Using Gaussian Mixture Noise Distributions

So far, it has been presumed that the distribution of noise can be well approximated as a sin-

gle Gaussian. But that is clearly violated in non-stationary environments where noise is time-

varying. This section challenges the Gaussian approximation and demonstrates that better

results can be achieved through use of a Gaussian mixture approximation. This is done at the

hand of oracle experiments, in which a Gaussian mixture noise distribution is trained on the

true noise signal (once for each utterance). Figure 8.20-(a) shows the resulting word error rates

in dependency of the number of Gaussians (1, 2, 4, 8, 16). Roughly, whenever the number of

Gaussians is doubled the WER undergoes a relative drop of 3.3% (on average), with the largest

drop (of 5.0%) occurring when the number of Gaussians is increased from 8 to 16. In particu-

lar, with 16 Gaussians the total reduction is 12.6% compared to using a single Gaussian. This

1 2 4 8 16

WER 28,96 28,2 27,3 26,64 25,3

15

20

25

30

35

(a) word error rate

1 2 4 8 16

hours 43,38 39,38 35,46 34,67 37,17

25

30

35

40

45

50

(b) computation time in hours

Figure 8.20: Word error rates and computation times for speech feature enhancement with ora-
cle Gaussian mixture noise distributions. The results refer to the first pass. The errors bars indi-
cate the 68.3% (1-sigma) confidence intervals.



8.5. EXPERIMENTS WITH REAL NOISE 177

indicates that we have not yet tapped the full potential of the MDBC approach. Figure 8.20-(b)

shows the corresponding computation times in hours. The bar plot reveals that the total com-

putational cost – including both speech feature enhancement and decoding – is decreasing

with the number of Gaussians; and that although the cost of MDBC linearly increases with the

number of Gaussians. The minimum computation time seems to be reached at 8 Gaussians.

Table 8.12 again shows the detailed word error rates of the individual experiments. There ob-

viously are large improvements at lower SNRs, especially at 5 dB destroyer engine noise where

the relative reduction is 23.1% with 16 Gaussians compared to a single Gaussian. And the fact

that we get such large improvements with relatively stationary noise indicates that some of the

gains might be due to other factors, such as a a better treatment of the nonlinear interaction

function. This reasoning is supported by the fact that a Gaussian mixture approximation of

the noise results in more Gaussians with smaller variances, which subsequently leads to lower

approximation errors during construction of the joint distribution of speech and noise (see

Section 3.8).

number of speaker destroyer operations room factory site average
Gaussians adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

1 none 60.65 37.10 23.58 17.62 37.44 24.85 18.90 17.00 29.64
2 none 54.07 33.82 23.80 19.63 35.90 23.34 18.61 16.44 28.20
4 none 52.02 33.30 23.19 18.01 34.23 23.36 18.56 15.74 27.30
8 none 50.85 31.77 22.61 17.72 32.43 23.55 17.93 16.25 26.63

16 none 46.65 29.99 21.29 17.36 29.90 22.23 18.46 16.54 25.30

number of speaker destroyer operations room factory site average
Gaussians adaptation 05dB 10dB 15dB 20dB 05dB 10dB 15dB 20dB WER

1 none 60.65 37.10 23.58 17.62 37.44 24.85 18.90 17.00 29.64
2 none 54.07 33.82 23.80 19.63 35.90 23.34 18.61 16.44 28.20
4 none 52.02 33.30 23.19 18.01 34.23 23.36 18.56 15.74 27.30
8 none 50.85 31.77 22.61 17.72 32.43 23.55 17.93 16.25 26.63

16 none 46.65 29.99 21.29 17.36 29.90 22.23 18.46 16.54 25.30

Table 8.12: Detailed word error rates with Gaussian mixture noise distributions. The given
results refer to the first pass; and they are shown in dependency of the number of Gaussians.

8.5 Experiments with real Noise

This section validates the usefulness of Bayesian speech feature enhancement under real con-

ditions. That is achieved by performing experiments on the AVICAR corpus [240], which has

been recorded in several cars driving along a highway with up to 55 miles per hour (see Section

8.3.3 for the details). Based on the results from the previous sections, the noise is estimated

with voice activity detection (VAD) or with the Monte-Carlo EM approach from Section 6.4.5.

Feature enhancement is performed with mode-dependent bias correction (MDBC). Figure 8.21

shows the resulting word error rates on the connected digits (phone number) task of the “35D”

condition. In this condition the cars are driving at 35 miles per hour with the windows down.

The signal-to-noise ratio varies between 15 and -10 dB. The bar plots show results for two dif-

ferent feature sets: the LDA features which Millennium uses as a default (see Section 5.1) as well

as 13-dimensional Mel frequency cepstral coefficients (MFCCs) with concatenated Delta and

Delta-Delta features, which are essentially the first and second order derivatives of the MFCCs

with respect to time [103, 104].
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Figure 8.21: Word error rates for MDBC based speech feature enhancement with 68.3% (1-sigma)
error bars. The noise has been estimate with voice activity detection (VAD) or with the Monte
Carlo EM algorithm (MC-EM). The first bar shows the baseline (none), without speech feature
enhancement.
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Figure 8.22: Word error rates for MDBC based speech feature enhancement with MC-EM based
noise estimation. The plots show the results for the individual iterations.

Without speech feature enhancement (none), LDA features perform equally well as MFCC +

Delta and Delta-Delta features. This, however, changes after MDBC based speech feature en-

hancement. Here, LDA features8 lead to a significant reduction of the word error rate, with

relative improvements of 22.8% and 33.2% for VAD and MC-EM based noise estimation. The

use of Delta features, on the other hand, increases the word error rate by 7.8% and 19.2%, re-

spectively. This behavior might be explained by the fact that the LDA projects discriminatory

irrelevant parts of the feature space to null. Plain MFCC features, on the other hand, can be ex-

pected to be more sensitive to inter-frame fluctuations – such as those introduced by log-Mel

speech feature enhancement (see time ticks 10 to 65 in Figure 8.23-(b)). This sensitivity may

be reduced by bandpass-filtering the MFCCs [187] or by re-synthesizing the speech signal with

a spectral envelope Wiener filter [247]which smoothes the clean speech estimate in time.

8 Note that this is consistent with the previous sections in which LDA features have been used exclusively.
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Figure 8.23: Time-frequency representation of a noisy utterance. The x-axis represents time in 10
millisecond ticks. The y-axis represents Mel frequency bins. The color indicates the intensity in
dB, with red marking high energy, yellow and green marking medium energy and blue marking
low energy.

Turning back to Figure 8.21-(a), we see that MC-EM based noise estimation outperforms VAD-

based noise estimation. Although the difference between the two methods is not statistically

significant, MC-EM gives a 2-sigma significant improvement over the baseline whereas VAD

gives a 1-sigma significant improvement only. These results demonstrate that MDBC based

speech feature enhancement works in practice. Figure 8.24 shows the computation times in

minutes. In case of LDA features, speech feature enhancement with VAD and MC-EM based

noise estimation gives a relative speed-up of 7.5% and 16.0%, respectively, compared to the

baseline. With MFCC + Delta features, the speed-up is 57.6% and 54.6% (see Figure 8.24-(b)),

although the WER does not improve in this case. Regarding the above experiments, it should

be mentioned that the ideal channel is not known in this section (in contrast to the experi-

ments with added noise from Section 8.4.6). Hence, speech feature enhancement is performed

without channel compensation, using an auxiliary clean speech model that has been trained

without the utterance-wise normalization procedure from Section 8.4.6.
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Figure 8.24: Computation time in minutes for the baseline (none) as well as for MDBC based
speech feature enhancement with VAD and MC-EM based noise estimation. Note that the times
comprise both decoding and speech feature enhancement.
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8.5.1 Comparison to ETSI AFE Features

Table 8.13 again shows the detailed word error rates for LDA and Delta features in comparison

to the ETSI AFE features that have been proposed by the European Telecommunications Stan-

dards Institute [243]. In particular note that the table shows results for both the 35D and 35U

conditions in which the car is driving at 35 miles per hour with the windows down (D) or up

(U). In both cases, the combination of LDA features with MDBC based speech feature enhance-

ment gave significant improvements. ETSI AFE features [243] performed by far the worst – and

that although the AFE includes speech enhancement steps such as two-stage Wiener filtering

[145] and waveform processing [244]. The results are again subsumed in Figure 8.25; and they

stand in contrast to the good performance that the AFE gave on the training corpus, i.e. the

IDL condition of the AVICAR corpus for which the WER was 1.28% for the AFE compared to a

WER of 2.57% for LDA features.

ASR condi- base- VAD MC-EM, iteration VAD +MC-EM, iteration
features tion line 1 2 4 6 1 2 4 6

AFE 35D 24.78 — — — — — — — — —
Delta 35D 15.25 16.44 16.70 16.74 17.34 18.18 19.30 19.36 19.29 19.29
LDA 35D 15.54 12.00 12.85 11.27 10.64 10.38 11.91 11.16 10.70 10.72
AFE 35U 12.82 — — — — — — — — —

Delta 35U 7.94 8.97 9.83 9.71 9.65 10.01 9.18 9.29 9.32 9.56
LDA 35U 7.35 5.79 6.47 6.03 5.51 5.30 5.52 5.26 5.07 5.01

ASR condi- base- VAD MC-EM, iteration VAD +MC-EM, iteration
features tion line 1 2 4 6 1 2 4 6

AFE 35D 24.78 — — — — — — — — —
Delta 35D 15.25 16.44 16.70 16.74 17.34 18.18 19.30 19.36 19.29 19.29
LDA 35D 15.54 12.00 12.85 11.27 10.64 10.38 11.91 11.16 10.70 10.72
AFE 35U 12.82 — — — — — — — — —

Delta 35U 7.94 8.97 9.83 9.71 9.65 10.01 9.18 9.29 9.32 9.56
LDA 35U 7.35 5.79 6.47 6.03 5.51 5.30 5.52 5.26 5.07 5.01

Table 8.13: Detailed word error rates with the ETSI AFE [243], MFCC+Delta and LDA features.
Results are shown for the 35D and 35U conditions of the AVICAR corpus, in which the car is driv-
ing at 35mph with the windows up (U) or down (D). The VAD column shows WERs for MDBC
based speech feature enhancement with VAD based noise estimation. The MC-EM columns show
the corresponding results with MC-EM based noise estimation with and without VAD based ini-
tialization.
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Figure 8.25: Word error rates on the 35D and 35U conditions of the AVICAR corpus, using ETSI
AFE features, baseline LDA features and LDA features with MDBC based speech feature enhance-
ment and MC-EM based noise estimation.
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8.6 Summary of the Speech Recognition Results

Regarding the mid-size (5000 word) vocabulary MC-WSJ-AV corpus [117]with artificially added

noise from the NOISEX-92 database [118], is has been shown that:

1. Millennium LDA features (see Section 5.1) perform slightly better on noisy speech than

the ETSI AFE (Section 8.4.2).

2. particle filter based speech feature enhancement improves the ASR results by≥ 10% (rel-

ative) on the first pass (Section 8.4.3).

3. the phase-averaged model from Section 5.2.3 performs a little better than the zero-phase

factor model (Section 8.4.3).

4. with oracle masks, the proposed bounded conditional mean imputation (BCMI) tech-

nique from Section 7.3 significantly outperforms the other (considered) missing feature

reconstruction techniques (Section 8.4.4).

5. in particular, BCMI reduces the baseline word error rate by 45% (relative) on the first pass

and by 40% on the second pass (with CMLLR adaptation); this compares to 33% (on both

passes) for bounded mean imputation (DBMI) [209, 20] (Section 8.4.4).

6. at the same time, BCMI lowers the total computation time of speech recognition (includ-

ing feature reconstruction) by more than 70% (Section 8.4.4).

7. BCMI and DBMI significantly outperform particle filter based speech feature enhance-

ment (with oracle masks).

8. the combination of particle filtering and missing feature reconstruction gives a slight im-

provement on the first pass only; hence, is not really worthwhile (Section 8.4.4).

9. mode-dependent bias correction (MDBC) from (6.6) performs better than the full condi-

tional expectation (FCE) from (6.5); both perform significantly better than particle filter

based speech feature enhancement (Section 8.4.6).

10. for MDBC there is no big difference between using full and diagonal covariance matrices;

FCE, however, does not seem to work with full covariance matrices (Section 8.4.6).

11. noise estimation with the Monte Carlo expectation maximization (MC-EM) algorithm

from Section 6.4.5 improves the ASR results by more than 10% compared to voice activity

(VAD) based noise estimation (Section 8.4.7).

12. MC-EM noise estimation performs almost as well as oracle (perfectly known) noise; in

particular, it performs better than the Gaussian mixture EM algorithm from Section 6.4.2

(with full covariance matrices).
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13. MDBC performs significantly better than multi-style training on the first pass; it is only

a little worse than multi-style training on the second pass.

14. MDBC reduces the total computation time of speech recognition (including feature en-

hancement) by up to 81% (Section 8.4.7).

15. MDBC with MC-EM noise estimation performs 42.5% and 31.2% (1st and 2nd pass) bet-

ter than the baseline and therewith performs almost as well as BCMI with oracle masks

(although it does not make use of prior knowledge about the noise such as BCMI).

16. BCMI (with oracle masks) and MDBC (with MC-EM based noise estimation) give better

ASR results than (unsupervised) speaker-wise CMLLR adaptation, and that at a much

lower computation time.

17. combining any of the feature enhancement and reconstruction techniques with CMLLR

adaptation further improves the results; in particular, it always results in a lower WER

than CMLLR adaptation only.

18. the ASR results and computation times, which are obtained with MDBC based speech

feature enhancement, can be further improved by using Gaussian mixture noise distri-

butions (Section 8.4.9).

enhancement feature training noise /mask word error rate computation time
method type type estimation abs. impr. abs. impr.

none LDA clean none 51.70 0% 230h 0%

none LDA multi-style none 36.56 29.3% N/A N/A
CMLLR LDA clean CMLLR 33.33 35.5% 567h -147%

AFE AFE clean AFE 54.82 -6.0% 622h -170%

PA-PF LDA clean PF 43.26 16.3% 249h -8.3%
PA-PF+DBMI LDA clean PF 40.44 21.8% 282h -22.6%

CMI LDA clean oracle 43.77 15.3% 117h 49.1%
BCMI LDA clean oracle 28.14 45.6% 67h 70.9%
DBMI LDA clean oracle 34.48 33.3% 41h 82.2%

FCE (diag) LDA clean oracle 32.61 36.9% N/A N/A
MDBC LDA clean oracle 28.96 44.0% 43h 81.3%

16G-MDBC LDA clean oracle 25.31 51.1% 37h 83.9%

MDBC LDA clean VAD 33.26 35.7% 53h 77.0%
MDBC LDA clean MC-EM 29.75 42.5% 54h 76.5%

enhancement feature training noise /mask word error rate computation time
method type type estimation abs. impr. abs. impr.

none LDA clean none 51.70 0% 230h 0%

none LDA multi-style none 36.56 29.3% N/A N/A
CMLLR LDA clean CMLLR 33.33 35.5% 567h -147%

AFE AFE clean AFE 54.82 -6.0% 622h -170%

PA-PF LDA clean PF 43.26 16.3% 249h -8.3%
PA-PF+DBMI LDA clean PF 40.44 21.8% 282h -22.6%

CMI LDA clean oracle 43.77 15.3% 117h 49.1%
BCMI LDA clean oracle 28.14 45.6% 67h 70.9%
DBMI LDA clean oracle 34.48 33.3% 41h 82.2%

FCE (diag) LDA clean oracle 32.61 36.9% N/A N/A
MDBC LDA clean oracle 28.96 44.0% 43h 81.3%

16G-MDBC LDA clean oracle 25.31 51.1% 37h 83.9%

MDBC LDA clean VAD 33.26 35.7% 53h 77.0%
MDBC LDA clean MC-EM 29.75 42.5% 54h 76.5%

Table 8.14: Summary of the speech recognition results (first pass) with added noise, compared to
speaker-wise noise adaptation (CMLLR), multi-style training and the ETSI AFE. The table shows
the absolute (abs.) WER and the improvement (impr.) in relation to the baseline (first row).
The last two columns show the corresponding computation times in hours. 16G-MDBC denotes
MDBC with a 16-component Gaussian mixture noise distribution.
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Regarding the phone number task of the AVICAR corpus [240], which was recorded under real

noise conditions, it has been shown that:

1. LDA features and MFCC + Delta features perform equally well without speech feature

enhancement, although LDA features result in a lower computation time.

2. in combination with LDA features, MDBC based speech feature enhancement signifi-

cantly improves the speech recognition results; with MFCC + Delta features, however, it

increases the WER.

3. although VAD based noise estimation already gives good results in practice, the proposed

MC-EM algorithm further improves the results.

4. the baseline LDA features significantly outperform AFE features on noisy speech (35D

and 35U conditions) although, on the training corpus (IDAL condition), the AFE per-

forms twice as well as baseline LDA features.

5. on noisy speech, the total computation time with MBFE (on top of LDA features) is com-

parable to the computation time with the ETSI-AFE.

enhancement feature training noise /mask word error rate computation time
method type type estimation abs. impr. abs. impr.

none LDA clean none 15.54 0% 37.5m 0%
MDBC LDA clean VAD 12.00 22.8% 34.7m 7.5%
MDBC LDA clean MC-EM 10.72 31.0% 31.2m 16.8%

none Delta clean none 15.25 1.9% 99.1m -164%
MDBC Delta clean VAD 16.44 -5.8% 42.0m -12.0%
MDBC Delta clean MC-EM 19.29 -24.1% 44.9m -19.7%

AFE AFE clean AFE 24.78 -59.5% 30.3m 19.2%

enhancement feature training noise /mask word error rate computation time
method type type estimation abs. impr. abs. impr.

none LDA clean none 15.54 0% 37.5m 0%
MDBC LDA clean VAD 12.00 22.8% 34.7m 7.5%
MDBC LDA clean MC-EM 10.72 31.0% 31.2m 16.8%

none Delta clean none 15.25 1.9% 99.1m -164%
MDBC Delta clean VAD 16.44 -5.8% 42.0m -12.0%
MDBC Delta clean MC-EM 19.29 -24.1% 44.9m -19.7%

AFE AFE clean AFE 24.78 -59.5% 30.3m 19.2%

Table 8.15: Word Error rates and computation times in minutes for the 35D condition. The
improvement (impr.) is measured in comparison to baseline LDA features (first row).

enhancement feature training noise /mask word error rate computation time
method type type estimation abs. impr. abs. impr.

none LDA clean none 2.57 0% 9.2m 0%
none Delta clean none 2.89 -12.5% 42.9m -366%
AFE AFE clean AFE 1.28 50.2% 8.8m 4.3%

enhancement feature training noise /mask word error rate computation time
method type type estimation abs. impr. abs. impr.

none LDA clean none 2.57 0% 9.2m 0%
none Delta clean none 2.89 -12.5% 42.9m -366%
AFE AFE clean AFE 1.28 50.2% 8.8m 4.3%

Table 8.16: Word Error rates and computation times in minutes for the IDL condition. The
improvement (impr.) is measured in comparison to baseline LDA features (first row).



184 CHAPTER 8. SPEECH RECOGNITION EXPERIMENTS



9
Conclusions

This work has shown how the problem of speech recognition in noise can be treated within

the framework of Bayesian state estimation. That started with Chapter 3, which systematically

introduced the Bayesian state estimation framework. Next to developing a transformation-

centric view, which shifts the whole complexity of estimation to the transformation of random

variables, the chapter presented two new transformation methods, namely: the adaptive level

of detail transform (Section 3.7) and the extensive unscented transform (Section 3.6). These

transformations were shown be more accurate for nonlinear estimation problems, especially

those which occur in the context of speech feature enhancement (Section 3.8). Chapter 4 ex-

tended this approach to the sequential level. Apart from deriving all standard tracking algo-

rithms from the transformation-centric point of view, the chapter also described a novel Gaus-

sian mixture filter (Section 4.6.3). This filter was based on the adaptive level of detail transform

and it was shown to have a superior performance compared to other nonlinear tracking algo-

rithms (Section 4.8).

Chapter 5 took the first steps towards speech recognition by investigating the effect of noise to

clean speech features (Section 5.2.1). This led to the development of a phase-averaged model

(Section 5.2.3) which more accurately describes the interaction between speech and noise (see

the experimental comparison in Section 5.2.5). Section 5.3.2 also derived the inverse of this

model and therewith provided a noise-reduction rule in the feature domain. Chapters 6 and 7

are the main content sections of this thesis. They describe two principally different approaches

for removing noise from noisy speech features, namely:

1. Bayesian speech feature enhancement, which tries to stochastically map noisy speech to

185
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clean speech features (Chapter 6)

2. missing feature reconstruction, which tries to infer the values of noise corrupted fre-

quency bins from non-corrupted ones (Chapter 7).

These approaches are related in that they can both be derived within the framework of

Bayesian state estimation, just under different models of how noise affects clean speech fea-

tures (see Section 7.2). Chapter 6 started by giving the minimum mean square error estimate

of speech feature enhancement (Section 6.3), as well as a computationally efficient approxi-

mation thereof. The remaining part of the chapter mostly focused on noise estimation. This

included the derivation of a general EM algorithm for noise estimation as well as two new im-

plementations thereof: a Gaussian mixture implementation, which uses the unscented trans-

form (Section 6.4.4), and a Monte Carlo implementation with Parzen window density estima-

tion (Section 6.4.5). Section 6.4.3 showed that these implementation avoid some of the stability

issues which are encountered in other work in the literature. In addition to stationary noise es-

timation with the EM algorithm, Section 6.5 presented a particle filtering approach that uses

the phase-averaged interaction function. This approach avoids stability problems due to the

relative phase. Chapter 7 introduced classical missing feature reconstruction methods (Sec-

tion 7.1) and then went on with deriving a bounded conditional mean imputation technique

(Section 7.3). This required the introduction of box-truncated Gaussian distributions (Section

7.3.1).

The experimental evaluation in Chapter 8 demonstrated that both speech feature enhance-

ment and reconstruction techniques can significantly reduce the word error rate (WER) in

noisy environments. The most important outcomes with added noise were:

1. under ideal conditions1, the bounded conditional mean imputation (BCMI) technique

from Section 7.3 outperforms all other feature domain noise reduction approaches at a

relative improvement of 45% in WER compared to the baseline (see Section 8.4.4).

2. the speech feature enhancement approach from Section 6.3 achieves almost the same

performance – i.e. a 42% reduction in WER – without making use of prior knowledge

about the noise2 (see Section 8.4.7).

3. both approaches reduce the total computing time of speech recognition, as they facilitate

better pruning during decoding (see Sections 8.4.4. 8.4.6 and 8.4.7).

4. noise estimation with the Monte-Carlo (MC) EM implementation (Section 6.4.5) comes

very close to perfectly knowing the noise (see Sections 8.4.6 and 8.4.7).

Experiments in a real noise environment showed improvements of 33% relative in WER (Sec-

tion 8.5). Apart from the above, there are some lessons to be learned from the experimental

1 i.e. when it is perfectly known, which parts of the speech spectrum are masked by noise
2 meaning this result is much more realistic than the BCMI result from above
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chapter. Firstly, the use of full covariance matrices appears to cause stability issues in combina-

tion with the minimum mean square error solution from speech feature enhancement (Section

6.3). This result may be explained by the fact that the correlation (which is introduced through

full covariance matrices) allows errors to translate across frequency bands. That claim is sup-

ported by the fact that the problem is avoided by (a) using the mode-dependent bias correction

technique from Section 6.3.2, which essentially throws away the covariance information, or (b)

using diagonal covariance matrices instead of full covariance matrices (see the experiments in

Section 8.4.6). It is further supported3 by the good performance of Monte Carlo based noise

estimation (Section 8.4.7) compared to the bad performance of Gaussian mixture based noise

estimation (with full covariance matrices). Another lesson to be learned from Chapter 8 is that

the use of a Gaussian mixture noise distribution can significantly improve the performance

of speech feature enhancement (see Section 8.4.9). This approach is, however, hampered by

the fact that the Gaussian mixture noise distribution is not so easy to estimate in practice. In

principle, the Monte Carlo EM algorithm from Section 6.4.5 could be extended to (1) sample

from a Gaussian mixture noise distribution and (2) re-estimating the Gaussian mixture noise

distribution from the importance weighted samples by using a second EM algorithm (similar

as in [54]). But an initial implementation in the framework of this thesis did not significantly

improve the performance compared to a single Gaussian. Hence, Gaussian mixture noise esti-

mation remains an open problem.

3 Note that EM-based noise estimation essentially uses the same conditional expectation as the MMSE clean
speech estimate.
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