
 

 

 

Effects of homonymous visual field defects on  

visuo-spatial perception and performance 

 

 

Dissertation  

zur Erlangung des akademischen Grades eines  

Doktors der Philosophie 

der Philosophischen Fakultät III 

 der Universität des Saarlandes 

 

 

vorgelegt von 

Caroline Thoai Anh Kuhn  

aus 

Ho Chi Minh City, Vietnam 

 

 

Saarbrücken, 2015 



II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dekan: 

Univ.-Prof. Dr. Roland Brünken, Universität des Saarlandes 

 

Berichterstatter: 

Univ.-Prof. Dr. Georg Kerkhoff, Universität des Saarlandes 

Univ.-Prof. Dr. Thomas Schenk, Ludwig-Maximilian-Universität München 

 

Tag der Disputation: 19.06.2015



General Abstract 

 

 
III 

 

General Abstract  

 

Homonymous visual field defects are typically associated with three distinct types 

of visual disorders beyond the field cut: (i) a visual exploration or scanning deficit, (ii) 

reading disturbances (“hemianopic alexia”), and (iii) a contralesional visuospatial bias 

towards the blind field in localizing the midline position (“hemianopic line bisection 

error”, HLBE). While the exploration and reading disorder are well explored and their 

causes often analysed, the origin of the HLBE – although already known for more than 100 

years – have remained largely unclear and are still a matter of debate. The present Ph.D. 

thesis addresses several unresolved issues of the HLBE in three subsequent, already 

published studies.  

 

First, it was investigated, whether and to what extent patients with homonymous 

quadrantranopia display a contralesional visuospatial error when indicating the visual 

midline. Interestingly, in earlier studies the HLBE was almost exclusively found in 

horizontal (left or right) or vertical (altitudinal) hemianopia. All 15 tested patients with 

quadranopia showed distinct and large shifts towards their blind quadrant when estimating 

their visual subjective straight ahead in a bowl perimeter. Moreover, patients with dorsal 

lesions respectively lower quadrantanopia showed the largest errors.  

 

Second, the matter of eccentric fixation as a possible cause of the HLBE was 

analysed in this study and in the subsequent study with patients showing horizontal 

hemianopia by using the technique of perimetric blind spot mapping. The results revealed 

in both studies that static fixation as measured by the position of the blind spot(s) was 

completely normal in nearly all subjects and was neither (cor)related to shifts of the visual 

straight ahead nor the HLBE. In addition, it was found that the capacity to scan the blind 

field with saccadic eye movements (“saccadic search field”) was not related to the HLBE, 

thus ruling out visual scanning deficits as a possible cause of the HLBE.  

 

The last issue that was analysed in this thesis was the question of attention in 

relation to the HLBE. Deficits in line bisection are a frequent finding in patients with 

visual neglect. Many studies in this context have shown that manipulations of visuospatial 
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attention, i.e. via attentional cueing to one side of space, significantly modulate the 

ipsilesional spatial error in patients with visual neglect.  

 

In a similar logic, we evaluated in the second and third study of this thesis, whether 

attentional cueing to the left or right side of the horizontal line that had to be bisected 

modulated the HLBE in hemianopic patients. Surprisingly, cueing had virtually no effect 

on the HLBE in hemianopic subjects while the very same manipulation clearly modulated 

bisection in a small group of patients with left visual neglect, thus showing the principal 

efficacy of the attentional manipulation.  

 

In summary, this thesis reports novel evidence of an oblique contralesional spatial 

error in homonymous quadrantanopia akin to the HLBE in horizontal hemianopia. 

Moreover, the present results in chronic patients with hemianopia do neither support the 

notion of eccentric fixation nor of hypo-/hyperattention to one side of space as possible 

determinants of the HLBE. Furthermore, gross visual exploration deficits do not seem to 

contribute to the HLBE either. Finally, possible limitations of the present studies are 

mentioned and alternative theoretical accounts shortly discussed.   
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Chapter I:   General Introduction  

 

Impaired visual perception due to acquired brain injuries implies far more than the 

partly loss of vision. Associated visual disorders, such as reduced abilities of reading and 

visuo-spatial exploration, have been often described (Zihl & Schütt, 2012). Neurological 

patients with homonymous Hemianopia or Quadrantanopia frequently exhibit further 

uncertainties to live up to requirements on spatial coordination of voluntary motor 

functions, such as avoiding obstacles (doorframes, persons, etc.), climbing stairs, fear of 

falling or reaching for objects. Neurovisually impaired patients often describe those 

irritations as subtle postural or “vestibular” disturbances impairing their mobility and 

spatial orientation. They also report a reduced accuracy in gauging distances or angles 

between their own body and the actually notified target. Theses problems arises especially 

when the visual target is in the peripheral visual field, similar to patients with optic ataxia 

(Perenin & Himmelbach, 2012), but more blandly.  

 

In most cases, explicit neuroanatomic correlates for vestibular disturbances are 

excluded. Neither lesions of the parietoinsular vestibular cortices, nor brainstem affection 

or disruption within the oculormotor systems are present. As a consequence of these 

visuoperceptual and visuomotor deficits patients often develop an anxious avoiding 

behaviour and withdraw themselves from social-communicative and leisure activities, 

which in turn increases their loneliness, anxiety and depression. Although these 

disturbances appear to form a clinically prominent syndrome, impeding processes of 

neurorehabilitation and pandering comorbid affective and anxiety disorders, there are still 

comparatively few studies analysing these visuospatial and visuomotor deficits in 

neurological patients with visual field defects.  

 

Considering the fact that visual perceptual disorders are among the most frequent 

functional disturbances after acquired brain injuries, with an incidence of 20-40% (Clarke, 

2005) and rising up to 40-60% of all stroke patients over age 65 (Rowe et al., 2009), it 

seems worth striving for a better understanding of the visuospatial deficits associated with 

visual field deficits and their possible origins.  
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The present doctoral thesis deals with a well-known, clinically frequent but not 

well-understood visuospatial deficit associated with homonymous visual field defects: the 

horizontal line bisection error (HLBE). Several unsettled issues around the HLBE such as 

the possible role of eccentric fixation, attention and visual exploration deficits will be 

analysed subsequently in three separate studies. The overall aim of this is a better 

understanding of the possible determinants of the HLBE, which hopefully will enable 

novel and better neuropsychological treatments for the affected patients.  

 

Before describing the three studies in greater detail, a very short survey of the visual 

pathways in the brain is given, followed by a description of homonymous visual field 

defects, their phenomenology, and the HLBE.   
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1.1 Visual pathways and acquired homonymous visual field defects  

1.1.1 Cortical visual pathways  

The optic nerve emerges from retinal ganglion cells, the third visual afferents, 

passing through the optic disc. The first visual afferents are generated by the photoreceptor 

cone and rod cells within the retina, which project onto the retinal bipolar cells, the second 

visual afferents.  The optic nerve is the second out-of-twelve cranial nerve, exiting on each 

side the orbit to enter the cranial cavity (Trepel, 2012). The part descending from ganglion 

cells of the nasal hemiretina intersects in the optic chiasm to the opposite optic tract, 

whereas the temporal part straies uncrossed, constituent the ipsilateral part of the optic 

tract. Hereby, each optic tract consists of axons from both the ipsilateral temporal 

hemiretina as well as the contralateral nasal hemiretina, so that axons of each optic tract 

represent the corresponding contralateral visual hemifield (Fig.1).  

 

 

 

 

 

 

 

Abbildung Fig. 1 aus urheberrechtlichen Gründen entfernt! 

 

 

 

 

 

Figure 1 :     Visual pathway from retina to the primary visual cortex with related lesions and visual field defects.  

(1) optic nerve (2) optic chiasm (3)optic tract (4) lateral genicuale nucleus, LGN (5) optic radiation (6) primary visual 

cortex (7) sulcus calcarinus; From: Neuroanatomie. Stuktur und Funktion“by Trepel, M., Ch. 9.7, p. 237, Copyright 

2012 by Elsevier GmbH, Urban & Fischer.  
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The optic tract aims in the corresponding lateral geniculate nucleus (LGN) where 

nearly 90% of its axons switche over to the fourth visual afferents and turn into the optic 

radiation, the geniculo-striate-pathway (Trepel, 2012). The remaining 10% wire up to the 

thalamic superior colliculus, the area pretectalis (pretectum) and tectum of the midbrain as 

well as to the suprachiasmatic nucleus of the hypothalamus (Duus, 2001).  

While the LGN, as the starting point of the optic radiation into the visual cortex, ensures 

the visual perception by projecting retinal visual inputs onto the visual cortical areas, the 

superiores colliculi enable reflexes, like the corneal reflex, and intentional eye movements 

in general. The tectum and pretectum are crucial for  pupillary light reflexes. Circadian 

rhythms and hormonal sways are controlled by the hypothalamic suprachiasmatic nucleus. 

The LGN neurons have different functional properties depending of retinal ganglion cells 

they originate from (Gutnisky & Dragoi, 2008). They respond monocularly, i.e. to 

stimulations of one eye only, and have concentric receptive fields. The LGN neurons are 

segregated into three different cell types which laminate sextuply the fibers of the optic 

tract: Magnocellular (mLGN), parvocellular (pLGN) cells and koniocellular neurons 

(kLGN).  

The mLGN cells are the largest cells and structure the two bottommost layers, the four 

upper layers consist of thinnish pLGN cells and the slimmest kLGN cells form interlayers 

between those thicker principal stratums (Ferrera, 1994).  

The optic tract blends after the LGN into the optic radiation transmitting visual impulses 

through the basal segment of the internal capsule into the receiving areas of the occipital 

lobe. The optic radiation runs to the anterior part of the temporal lobe, belting the inferior 

horn (cornu temporale) and posterior horn (cornu occipital) of the lateral ventricles 

(Meyer’s loop) before ending into the primary visual cortex. This run explains why 

quadrantanopia are quite common after damages to the Meyer’s loop (Chen et al., 2009). 

The primary visual cortex (also V1 or Brodmanm Area 17) is defined by the course of the 

sulcus calcarine, taking up the medial part of the occipital lobe and extending into the 

occipital pole. The axons of the fourth afferents (LGN) terminate retinotopically in V1, 

where visual apperception firstly takes place. Each retinal print is exactly mirrored in a 

certain area of V1.  
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The central fovea takes up 4/5 of the complete primary visual cortex, including the 

occipital pole (Trepel, 2012). Because of the stripe-like structure of its substantia grisea the 

primary visual cortex is also called area striata, whereas Brodman areas 18 and 19 form 

the extrastriate visual cortices, where afferent inputs coming from Area 17 are 

integratively processed. Informations about visually perceiced objects are now fragmented 

into their physical properties as size, shape, color, location and motion. Anon the 

extrastriate cortex sends efferents onto superior areas of the visual association cortex, 

located partly in the parietal as well as in the temporal lobe.  

The parietal and temporal lobe provide with their posterior segment and constitute in each 

case commonly with the anterior part of the extrastriate area this functional group. So there 

is both, a parietal association cortex and a temporal association cortex. The visual 

association cortex is functionally organized in two different neuroanatomic streams, the 

dorsal and the ventral stream.  

The dorsal stream is supplied by neurons from parietal parts of Brodmann areas 7, also 

from the middle and superior temporal segments of Areas 37 and 39. It ensures depth 

vision, spatial orientation, object location, visual motion and movement direction of all 

perceived objects, which is crucial for acquisition of spatial informations.  

The ventral stream receives its afferents from the inferior temporal parts (Brodmann areas 

20, 37 and 39). The temporal visual association cortex affords shape and color recognition, 

as well as it connects all perceived objects with the speech regions (via Gyrus angularis), 

indispensable for object identification. In general, it can be said that the visual association 

cortex has parietal and temporal localizations, with separately working “where” and 

“what” streams, whereat each of them processes type-specifically all object informations, 

coming up from the primary and the extrastriate visual cortices.  

Efferents from all visual cortices stray onto the frontal eye field (Area 8) or onto the 

adjacence between the anterior extrastriate visual cortex and the posterior parietal lobe. 

The former pilots rapid spontaneous (saccadic) eye movements, the latter eye tracking 

movements (Somers, Dragoi & Sur. 2002). 
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1.1.2 Clinical manifestations of homonymous visual field defects 

 The human visual field is defined as the range which is binocularly perceptible 

without head- and eye-motion encompassing the horizontal and vertical dimension. A 

distinction is made between peripheral and central vision. The central visual field extends 

up to 30° in all directions from the fovea, whereas peripheral vision field areas encompass 

over nearly 180° on the pitch axis and 100° on the yaw axis (Zihl & Kennard, 2003). The 

visual field extent can be mapped by manual or automatic perimetry orcampimetry, with 

fixed head-position in a head- and chinrest.  

The most frequent aetiologies of homonymous visual field defects are ischaemic and 

hemorrhaegic cerebral infarctions, traumatic brain injuries, cerebral hypoxiaand finally, 

with a lower percentage, neoplastic disorders (Schütt & Zihl, 2012).   

 

 

 

 

 

 

Abbildung Fig. 2 aus urheberrechtlichen Gründen entfernt! 

 

Figure 2: Rightsided postchiasmatic brain injuries and their variations of uni-and bilateral homonymous vision field.  

1 Hemianopia 2 upper quadrantopia 3 lower quadrantopia 4 paracentral scotoma 5 bilateral hemianopia (tunnel vision)      

6 bilateral upper quadrantopia (“upper hemianopia”) 7 bilateral lower quadrantopia (lower hemianopia) 8 central scotoma  

 
From: „Störungen der visuellen Wahrnehmung” by Schütt, S. & Zihl, J. In: Nervenarzt 2012 · 83:1053–1064  

DOI 10.1007/s00115-012-3487-8 Copyright 2012 by Springer Verlag  

 

Visual field defects are generally subdivided into their uni- or bilateral ocurrence, form and 

magnitude. As shown in figure 2, they can assume a dot-like shape such like paracentral 

scotoma (4), and their sizes usually vary from smaller stains to much more widespread 

flats.  
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 As registered in Chapter VII of ICD-10, the 10
th

 Revision of the International 

Statistical Classification of Diseases and Related Health Problems, published by the World 

Health Organisation (2012), visual field defects (ICD-10 H53.4) can involve every single 

quadrant of the visual field respectively one of its moieties. Homonymous visual field 

defects are unilateral and contralateral by definitioni.e. they impair congruently the 

contralesional parts of both eyes’s vision to one and the same side.Analogously, bilateral 

brain lesions can lead to bilateral homonymous visual field loss. Unilateral visual field loss 

arises in approximately 90% of patients with homonymous visual field defects, wherof 

homonymous hemianopia constitutes 58%, homonymous quadrantanopia 17% and 

paracentral scotoma 10% in all cases of visual field loss (Schütt & Zihl, 2012).  

 Hemianopia (1) denotes vision field loss in one hemifield. Quadrantanopia means 

blindness of the right or left, upper or lower (2, 3) quadrant of the visual field. Resembling 

to hemianopia, bilateral complete quadrantopia is also referred to as “upper” (6) or “lower 

hemianopia” or “altitudinal hemianopia” (7).   

Normally, the foveal region (which has a diameter of  1°) is spared from blindness. 

However, after prolonged cerebral hypoxia a so-called central scotoma (8) with intact  

peripheral visual field regions may occur.  

Tunnel vision (5) exemplifies bilateral homonymous hemianopia, an extreme manifestation 

of visual loss (e.g. after bilateral occlusions or bleedings of both posterior cerebral arteries, 

with partial or complete preserveration of the fovea. For the sake of completeness, cortical 

blindness has to be mentioned.. It occurs as a sequel after destruction of both the laterale 

corpus geniculate (LCG) and the optic tracts in the course of  hypoxic brain damage, for 

instance after cardiac arrest (Hoyt & Walsh, 1958). Those patients lose all neurovisual 

capacities all over the whole visual field. According to Schütt & Zihl (2012) 25-30% of 

patients initially showing a cortical blindness show no remission of their blindness.   

Spontaneous restitution from homonymous field loss is quite rare and depends vastly on 

the size and quality structure of the field loss. The more abrupt  the transition of visual 

sensitivity from the into into the blind field  the worseis the prognosis. According to Zhang 

et al. (2006) the chance of remission declines substantially 3 months after lesion onset, and 

remains quite unlikely after 3 further months.  
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Nearly 50% of homonymous hemianopia results from lesions of the lobus occipitalis, 29% 

are caused by visual pathway injuries and in 21% by lesions of the lateral geniculate 

nucleus (LGN) and the optic tract (Zihl, 2012). 

Visual field defects make up 61.8% of the nosological group of cerebral visual disorders in 

general. According to Schütt & Zihl (2012) the following visual functions are co-morbidly 

affected after acquiredbrain injuries: visual acuity and contrast sensitivity (13.4%), light/ 

dark adaptatation (15.9%), color vision (7.5%), visuospatial perception (30%) and visual 

recognition (1.4%).  
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1.2 Visuo-spatial deficits associated with homonymous visual field 

defects: the horizontal line bisection error (HLBE) 

 

 Spatial disturbances occur in the aftermath of both cortical and subcortical lesions. 

According to Kerkhoff (2012), in 50-70% patients with injuries of the right cerebral 

hemisphere and 30-50% in cases of lefthemispheric damage show deficits in visuospatial 

perception and orientation. Visuospatial deficits impair many daily activities.. One 

particular type of visuospatial error is frequently found in patients with homonymous 

visual field defects: a contralesional spatial bias when bisecting horizontal lines, termed 

here the horizontal line bisection error (HLBE, Figure 3). 

 

 

 

 

 

 

 

 

 

 

Abbildung Fig. 3 aus urheberrechtlichen Gründen entfernt! 

 

Figure 3: Overview of different types of visuospatial deficits after acquired brain damage. The line bisection error is 

described under “Halbierung”. The green mark within the horizontal bar indicates the contralesional bisection error in a 

patient with rightsided hemianopia, the red mark that of a patient with leftsided hemianopia. From: Kerkhoff & Utz, 

(2014).  In: Karnath, H.O., Ziegler, W., Goldenberg, G. Kognitive Neurologie und Klinische Neuropsychologie. Berlin: 

Springer. 
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1.3 Explanations of the horizontal line bisection error 

 

 A recent viewpoint article by Kerkhoff & Schenk (2011) addresses some of the 

unsettled theoretical issues around the HLBE. Three main issues relevant for the present 

thesis will be shortly addressed here. These include the question of oculomotor adaptation 

and eccentric fixation, the role of exploration deficits and of spatial attention as potential 

determinants of the HLBE. 

 

1.3.1 Oculomotor adjustment strategies exemplified by eccentric fixation 

Eccentric fixation is a well circumscribed oculomotor adjustment in patients with 

central scotoma (Guez, Le Gargasson, Rigaudiere & O’Regan. 1993). Affected patients 

develop a new retinal fixation locus (RFL) towards the intact area of the retina in order to 

bypass the field of macular lesion. Further findings even postulate the existence of two loci 

of retinal fixation (Lei & Schuchard, 1997), depending on given lighting conditions. Still, 

the main disadvantage of the eccentric fixation is the lower resolution in comparison with 

the foveal region. Apparently, the problem of remittent visual acuity can be solved by 

using greater stimuli, such like longer text lines. This seems to be a highly functional 

adjustment to regain, at least partly, the ability of reading.  

In contrast to central scotoma, the visual field sparing after unilateral brain lesions usually 

includes the foveal or even macular field area, therefore the visual acuity of those patients 

is quite normal.. Obviously, in this case an eccentric shift of the fovea would not be 

necessary to increase the resolution of the cone cells, but to augment the size of the visual 

search field.  

Compensatory eccentric fixation in heminanopics was already observed in earlier times 

(Fuchs, 1922). Trauzettel-Klosinski showed that patients with homonymous heminanopa 

develop homonymous eccentric fixation as well as the ability to switch between eccentric 

and central fixation, depending on the changing requirement of the ongoing visual tasks 

(Trauzettel-Klosinksi, 1997). The author observed that eccentrically fixating patients shift 

their new retinal fixation locus into the intact hemiretina by aiming their foveal “landing 
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points” outside the text-line when reading. Thereby, the midpoint of the visual field with 

all its coordinates and the visual axis are shifted toward the intact hemifield.  

 

As a consequence, the blind spot is shift and hemianopia appears subjectively 

displaced towards the omitted hemifield. The most interesting finding is the fact, that 

eccentric fixation is a dynamic strategy in sensu of oculomotor adjustments, situationally 

triggered and reversible, back to central fixation. Hence, eccentric fixation cannot be 

considered as a static phenomenon. Even if the development of a new retinal fixation locus 

is proven, it collaborates seemingly with the still active, anatomical fovea. 

 

In light of the author’s finding that all eccentrically fixating patients have a time since 

onset of at least six months supports the assumption that eccentric fixation results from

behiavoral adjustment and compensation.  

 

 

 

 

1.3.2 Deficits of visual exploration 

 

A rather unexplored question in the context of the HLBE is to what extent the 

frequently observed visual exploration deficits in homonymous visual field defects may 

contribute or even cause the HLBE. Especially a patient with a more or less complete 

hemianopia will have difficulties simultaneously seeing the whole horizontal line when 

trying to estimate its length and then place the midpoint of the line. Consequently, the 

patient will have to make multiple saccades and fixations before being able to estimate the 

midpoint. During this process, multiple perceptual errors or distortions may happen. If this 

hypothesis bears some weight, the capacity for visuospatial exploration in the blind field 

should be in some way related to the presence and size of the HLBE. In contrast, if both 

disorders are independent, a null-relationship should be found. To the best of our 

knowledge, this issue has not been examined in patients with homonymous field defects. 
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1.3.3 A possible role of attention  

 

As shown in Fig. 3 above (Utz & Kerkhoff, 2014) the HLBE has its mirrorpart in 

patients with unilateral visuospatial neglect: those patients show an ipsilesional bisection 

error, hence away from the “impaired” hemifield/hemispace.  

This is in direct opposition to the HLBE which is typically directed to the contralesional 

side (there are exceptions when using very short lines). Several studies have documented 

that manipulations of spatial attention, i.e. via spatial cueing to a specific spatial location 

(i.e. the contralesional part of the line in patients with neglect) significantly modulate the 

bisection performance (Humphreys & Riddoch, 1994).  

This spatial cueing can be explicit as in the above mentioned study by Humphreys & 

Riddoch, but it can also take the form of an implicit flickering light adjacent to the end of 

the line or bar which is positioned on the contralesional, left side in patients with left 

visuospatial neglect (Butters et al., 1990).  

The results of these studies have typically been interpreted as evidence in favour of a role 

of spatial attention (deficits) in patients with left visual neglect. In analogy, one might ask 

whether patients with the HLBE but without neglect, may benefit from such spatial cueing 

manipulations when bisecting lines or bars. If so, this would indicate that hypo- or 

hyperattention to one side of space plays a role in the development of the HLBE. 

 

 

 

1.3.4 Topics of the present doctoral thesis 

 

The present thesis addresses several of the above discussed issues in relation to the HLBE 

in three separate, experimental studies with patients suffering from postchiasmatic 

sotomata. These issues are summarized graphically in the following figure and linked to 

the different hypotheses around the HLBE as mentioned above. Afterwards, the three 

studies are described explicitely.  
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  1.4      Synoptic overview of the underlying key topics 

 

Figure 4:  Synoptic view over key topics of the underlying studies this doctoral thesis is based onto. 
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Chapter II:   Studies 

 

 2.1  Study I 

Oblique spatial shifts of subjective visual straight ahead orientation in 

quadrantic visual field defects 

Kuhn, C., Heywood, C.A & Kerkhoff, G. (2010). Neuropsychologia, 48 (11), 3250-3210. 

 

 2.1.1 Introduction and rationale 

   Patients with postchiasmatic visual field defects often show a contralesional bias 

towards the scotoma in line bisection or when indicating their visual subjective straight 

ahead (VSSA). Recent evidence suggests a retinotopic misrepresentation of visual space in 

patients with homonymous quadrantanopia (HQ). We therefore assessed in the present 

study whether patients with HQ show an oblique shift of their VSSA towards their 

scotoma, in addition to the known bias in horizontal line bisection. Moreover, we 

examined whether eccentric fixation contributes to this shift. To this purpose, 15 

nonneglecting stroke patients with HQ and 15 matched healthy control subjects were 

assessed in horizontal line bisection and in the horizontal and vertical dimension of their 

VSSA. Additionally, perimetric blind spot mapping was performed. Eight out of nine 

patients with left quadranopia showed the typical leftsided, horizontal line bisection error, 

while only one out of seven patients with rightsided quadranopia showed a rightsided shift. 

Normal subjects showed a nonsignificant leftward shift in line bisection (pseudoneglect). 

All 15 patients with HQ showed a large oblique shift of their VSSA towards the blind 

quadrants, while normal subjects showed no systematic left-rightward shift, but a small 

downward shift of the VSSA. The position of the blind spot was normal in all testable eyes 

of patients and control subjects, thus excluding eccentric fixation or cyclorotation of the 

eyes. In conclusion, our study reveals a hitherto unreported oblique spatial shift of 

subjective visual body orientation towards the blind quadrants in nonneglecting patients 

with quadranopia.  
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Homonymous hemianopia is a frequent sequel after stroke (Schofield & Leff, 2009). 

Hemianopic patients frequently show a peculiar spatial error besides their impairments in 

reading (Schuett, 2009) and visual scanning (Machner et al., 2009b; Hildebrandt et al., 

1999) termed the “hemianopic line bisection error”. Axenfeld who coined this term  

(Axenfeld, 1894) reported that most of his hemianopic patients misplaced the midpoint 

towards their blind field when bisecting a horizontal line on a sheet of paper. Later 

investigators have in general confirmed Axenfeld´s early observations (Kerkhoff & 

Bucher, 2008). Moreover, a recent large-scale patient study has shown that this horizontal 

spatial error is found in all types of unilateral visual field defects, not only hemianopia 

(Schuett et al., 2010). Until now, most often horizontal deviations in line bisection 

(Hausmann et al., 2003; Zihl et al., 2009; Doricchi et al., 2005; Barton & Black, 1998)  or 

in the visual subjective straight ahead orientation (Ferber & Karnath, 1999) have been 

studied although vertical shifts in altitudinal hemianopia have also been reported 

(Kerkhoff, 1993). While hemianopic patients without neglect show a contralesional, 

horizontal shift of the subjective visual straight ahead towards the blind field (Ferber & 

Karnath, 1999) patients with visual neglect - with or without concurrent field defect - often 

show large ipsilesional shifts of 10-30° (Schindler & Kerkhoff, 2004; Schindler et al., 

2002). 

An open question is whether quadrantic visual field defects - a “hallmark” of 

extrastriate visual cortex lesions (Horton & Hoyt, 1991) - also follow this pattern of results. 

Schuett et al. (Schuett et al., 2010) in their recent study reported that patients with upper or 

lower homonymous quadrantanopia (HQ) without visual neglect also show the typical 

horizontal line bisection error akin to that seen in patients with left- or right-sided 

hemianopia (but see Machner et al., 2009a). However, this may not be the only spatial bias 

that patients with HQ show. Doricchi and co-workers (Doricchi et al., 2003) recently 

reported a striking, retinotopic dependency of spatial misrepresentation in a patient with 

left lower and incomplete upper quadrantanopia with mild neglect. This patient misjudged 

visual distances displayed along different meridians in his blind quadrants. This finding 

suggests, that patients with HQ may show additional visuospatial misrepresentations 

beyond those found in the horizontal (left-right) dimension in line bisection.  

Moreover, it is known that the hemianopic spatial bias in line bisection is often directed 

towards the greatest defect in the scotoma: horizontally in left- or right-sided hemianopia 
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(Barton & Black, 1998; Barton et al., 1998) and a combination of vertical and horizontal 

deviations in patients with altitudinal and lateral visual field defects (Kerkhoff, 1993). If 

this also applies to HQ, such patients might be expected to show an oblique spatial bias 

towards their blind quadrant(s), in addition to their horizontal spatial bias documented 

previously in horizontal line bisection (Schuett et al., 2010).   

Furthermore, an interesting though largely unexplored question is the possible role 

of eccentric fixation in the emergence of the spatial error in line bisection or in the 

subjective visual straight ahead. Eccentric fixation has been occasionally reported in 

hemianopia (Fuchs, 1922; Trauzettel-Klosinski, 1997; Teuber et al., 1960), and discussed 

as a possible adaptive strategy to compensate for the field loss (Fuchs, 1922, Trauzettel-

Klosinski, 1997). As the fixational shift and the line bisection error in hemianopia both are 

typically directed towards the blind field both might be (cor)related, or eccentric fixation 

even might cause or exaggerate the spatial shift observed in line bisection. However, 

bisection judgments, straight ahead judgments and fixation measures were not studied in 

parallel in these previous studies. In the present study we investigated the judgment of the 

VSSA in the horizontal and vertical dimension in 15 patients with perimetrically 

documented HQ, without any sign of visual neglect, and in 15 matched healthy control 

subjects with perimetrically intact visual fields. Horizontal line bisection was also tested in 

order to compare the findings in line bisection and the VSSA. In addition, blind spot 

mapping was performed to explore the role of eccentric fixation.  

 

2.1.2 Methods 

2.1.2.1   Subjects 

Fifteen patients (11 male, 4 female, mean age: 50.1 years, sd: 10.4) with unilateral HQ 

after unilateral stroke (n=12) or haemorrhage (n=3) were investigated. None of the 15 

patients had visual neglect as determined by 5 conventional tests (Table 1). All patients 

had a corrected binocular visual acuity of >0.80 for the near (0.4 m) and far (6 m) viewing 

distance. Fifteen matched healthy control subjects (9 male, 6 female) with normal visual 

acuity (>0.80 decimal acuity for the near and far) and perimetrically intact visual fields 

were recruited (mean age: 45.8 years, range: 18-67).  
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All patients and controls were right-handed according to their verbal report. Neither age 

(Mann-Whitney-Test, U=92, z=0.395, p>0.05), nor gender (Χ
2
 =3.3, df=1, p>0.05) 

differed significantly between both samples. All HQ patients were aware of their field 

defect when asked during the perimetric session, thus excluding anosognosia for their field 

defect (Celesia et al., 1997). None of the patients showed hemiparesis or hemiplegia, and 

all showed good verbal comprehension of the instructions.  

 

2.1.2.2   Visual perimetry 

Kinetic monocular perimetry was performed in all subjects with a Tuebingen perimeter 

(Aulhorn & Harms, 1972; Kerkhoff et al., 1994) with a bright white stimulus (size: 106'', 

luminance: 102 cd/m
2
), a grey stimulus (106'', 1.02 cd/m

2
), a coloured target (green 525 

nm, same size, 320 cd/m
2
), and a form target (white light, same size, rhomboid, 320 

cd/m
2
). Kinetic perimetry was performed along all meridians in a pseudorandom order. 

Visual field sparing was determined for the oblique meridian within the blind quadrants 

(and is indicated in Table 1). Blind spot mapping was performed (monocularly) with a 

small 35'' circular target (white light, 102 cd/m
2
) in both eyes where possible (13 patients), 

or in the ipsilesional eye only (2 patients). The geometric centre of the blind spot of each 

eye was used for statistics and compared with normative values from the literature (Gradle 

& Meyer, 1929; Bixenman & von Noorden, 1982). Furthermore, the visual search field, a 

measure of oculomotor compensation in the visual field, was investigated with the same 

perimeter in the blind and intact, mirror-symmetric quadrants (details see Kerkhoff et al., 

1994). The subject is instructed to search with saccadic eye movements for a circular white 

target (size: 106´´, luminance: 102 cd/m
2
) that is moved by the perimetrist along every 

meridian from the periphery to the centre with a speed of 2°/sec. The sequence of the 

meridians tested was random. The patient pressed the response key as soon as the target 

was detected. This position is scored as the eccentricity of the search field (in °). Here, we 

selected the median of the search field values of the meridians lying in the blind quadrants 

and compared it with the median of those values obtained in the mirror-symmetric intact 

quadrant. A minimum search field size of 30° in every quadrant is the normal cutoff 

(Kerkhoff, 1999), and was applied to all HQ patients as a necessary condition for inclusion 
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in the sample to ensure that they were able to detect the test stimulus in the VSSA test at 

this eccentricity in all four quadrants (see below).  

 

2.1.2.3   Visual Neglect Tests 

Visual neglect was tested with five conventional tests, four of them very similar to those of 

the Behavioural Inattention Test (Wilson et al., 1987; Halligan et al., 1989): visual search 

field in the blind and intact quadrants (see above); horizontal line bisection (20 x 0.5 cm 

long, black horizontal line), cancellation of numerals (30 targets in 200 distracters, 15 in 

each hemifield), clock drawing from memory, and figure copy (star, flower, cube). 

Horizontal line bisection was tested conventionally in 3 separate trials with a black 

horizontal line (20 x 0.5 cm) presented horizontally on a white sheet of paper. All patients 

used their ipsilesional hand for placing the bisection mark. The median of the 3 trials was 

used for statistics. 

Visual search field is significantly reduced in the neglected hemifield of patients 

with hemianopia and visual neglect (< 10°, (Kerkhoff et al., 1992) and is therefore a useful 

screening for visual neglect. All screening tests (including line bisection, but with the 

exception of the search field test) were shown on a 29.7 x 20 cm white paper board and at a 

distance of 0.33 m from the patient´s eyes (for more details see Funk et al., 2010). 
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Table 1: Clinical and demographic data of 15 patients with homonymous quadrantanopia (HQ) without visual neglect.  

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: 

MCA/PCA: middle/posterior cerebral artery infarction; ICB: intracerebral bleeding; L/R: left/right; Lesion: F - Frontal; P - parietal, T - temporal, O – occipital; BG: basal ganglia; Visual 

acuity: decimal letter acuity for near (0.4 m) and far (6 m) viewing condition; Visual Field: Field Sparing is indicated in (°) for the oblique meridian in the blind quadrant. Awareness of 

visual field defect: patient reports visual field defect during the anamnesis when asked by the experimenter; Spatial problems: indication of subjective problems (Score 1) or no subjective 

problems (Score 0) in negotiating a staircase up-/downwards when asked in the anamnesis.   

Neglect screening tests: Visual Search Field: normal cutoff: 30°; ND=Neglect Dyslexia: 180 word reading test, cutoff: max 2 errors, yes/no: neglect dyslexia present/absent; Figure Copy: - 

= omissions or distortions; + = normal performance; Cancellation: number of omissions per hemispace, Normal cutoff: max 1 per hemispace 

Patient 
 

Age/ 
Sex 

Etiology 
Lesion 

Localization 

Months 
since 

Lesion 

Quadrantic Field 
Defect, Field 
Sparing (°) 

Awareness 
of scotoma 

Size of Visual 
Search Field 
(blind/intact 
quadrant,°) 

ND 
Figure Copy 

Left/right side 

Cancellat.   
Omissions 
Left/Right 

side 

Spatial problems 
(staircase) 

1 48,f R-ICB T 4 Left upper, 1° Yes 34/68 no +/+ 0/0 0 

2 60,m R-MCA T, BG 2 Left upper, 2° Yes 33/73 no +/+ 0/0 0 

3 45,m R-PCA O-T 1 Left upper, 2° Yes 39/72 no +/+ 0/0 0 

4 38,m R-MCA P 3 Left lower, 6° Yes 46/68 no +/+ 0/0 1 

5 51,f R-MCA P 2 Left lower, 32° Yes 34/68 no +/+ 0/0 1 

6 57,f R-ICB P 2 Left lower, 22° Yes 37/70 no +/+ 0/0 1 

7 25,m R-MCA P-O 13 Left lower, 28° Yes 38/62 no +/+ 0/0 1 

8 50,m R-PCA P-O 5 Left lower, 10° Yes 34/68 no +/+ 0/0 1 

9 58,m R-MCA P 5 Left lower, 32° Yes 38/70 no +/+ 0/0 1 

10 45,m L-MCA T 7 Right upper, 3° Yes 35/60 no +/+ 0/0 0 

11 55,m L-MCA T 5 Right upper, 5° Yes 40/60 no +/+ 0/0 0 

12 42,m L-MCA T 4 Right upper, 2° Yes 45/60 no +/+ 0/0 0 

13 54,f L-ICB O-P 3 Right lower, 4° Yes 33/70 no +/+ 0/0 1 

14 69,m L-MCA P-T 4 Right lower, 28° Yes 30/65 no +/+ 0/0 1 

15 55,m 
L-

PCA/MC
A 

O-P 3 Right lower, 28° 
Yes 

 
33/60 no +/+ 0/0 1 

Mean 
(N=15) 

50.1 
(25-69) 

-- -- 
4.2 

(1-13) 
13.6° (1-32)  36.6°/66.3° 0/15 -- 0/0 9/15 
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2.1.2.4   Visual Subjective Straight Ahead (VSSA) 

The visual subjective straight ahead (VSSA) was tested in total darkness with the 

same perimeter as used for perimetry but all light sources were extinguished (background 

illumination and fixation spot). A small red spot (656 nm; 35''; 102cd/m
2
) was presented in 

one of the four quadrants. The subject was instructed to inform the examiner verbally, how 

to adjust the position of the spot until it was in the visual subjective straight ahead position, 

both in the horizontal and vertical dimension. Twenty trials were run, 5 each with a starting 

position from 30° eccentricity on the oblique meridian in the four quadrants (45°-meridian 

in the right upper quadrant, 135°-meridian in the left upper quadrant, 225°-meridian in the 

left lower and 315°-meridian in the right lower quadrant). Different starting positions were 

randomly intermingled in order to exclude effects of starting position on performance of 

the VSSA. The subject was positioned with his/her head and body positioned straight 

towards the centre of the perimeter. The head was fixed with a strap to the head- and 

chinrest of the perimeter so that it remained central during all measurements. The median 

of the 20 trials was used for statistical analysis and is displayed in Fig. 5. 

 

 

Fig. 5:  

Individual results in horizontal line bisection (deviations in cm from the true midline position (0)) in all 15 patients with 

homonymous quadrantanopia (HQ) and mean deviation in the 15 normal control subjects tested. HQ: homonymous 

quadranopia. The shaded area indicates the total range of performance in the 15 normal control subjects. 
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2.1.2.5   Statistics 

Nonparametric statistics and one-sample t-tests were computed (SPSS, version 17). The 

adopted alpha-level was 0.05, two-tailed, corrected for the number of tests by Holm´s 

procedure (Holm, 1979). 

 

2.1.3 Results 

2.1.3.1   Visual field and visual neglect testing 

Table 1 summarizes the clinical and demographic patient data. All 15 patients had a 

homonymous quadrantic visual field defect with some degree of visual field sparing in the 

blind quadrant, a visual search field of at least 30° in their blind quadrant, good awareness 

of their visual field defect, and none showed visual neglect according to five conventional 

screening tests.  

 

2.1.3.2   Horizontal line bisection 

Fig. 5 shows the individual results of the 15 patients with HQ, and the mean performance 

of the 15 normal control subjects. Eight out of 9 patients with leftsided HQ showed a 

significant, leftsided shift in horizontal line bisection, while only 1/7 patients with 

rightsided HQ showed the typical shift towards the blind quadrant. Analysis using t-tests 

confirmed that the group of patients with leftsided HQ deviated significantly from 0 to the 

left side (mean: - 14.22 mm, df=8, t=-4.349, p<0.002). In contrast, the patients with 

rightsided HQ showed a mean deviation of 2.66 mm to the right side, which was not 

significantly different from 0 (t=1.896, df=6, p>.05) and lay within the normal range (see 

Fig 5). To test whether visual field sparing on the horizontal meridian within the blind field 

was related to this significant difference between the two groups of quadrantanopic 

patients we performed a comparison using independent t-tests. Mean visual field sparing 

on the horizontal meridian on the blind side was 54.3° (5-77°) in left quadranopia and 

32.7° (5-78°) in right quadranopia. The difference is not significantly different (t=1.489, 

df=13, p>0.05).   
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Moreover, field sparing on the horizontal meridian in the blind field was not significantly 

correlated in the 15 patients with the deviation in horizontal line bisection (Pearson´s r: -

0.3, p>0.05, Spearman´s rho: =-.27, p>0.05). The large field sparing on the horizontal 

meridian is due to the fact that in many patients the scotoma spared the horizontal meridian 

(which enabled us to measure the blind spot in so many patients.)  

 

2.1.3.3   Visual Subjective Straight Ahead (VSSA) 

Fig. 6 shows the results of the VSSA judgments in both subject groups. All 15 HQ patients 

showed a significant shift of their VSSA towards their blind quadrant. In contrast, the 

judgments of all 15 healthy control subjects lay within +/- 2-3° around the true midpoint in 

the horizontal dimension, but were slightly shifted downwards in the vertical dimension 

(Fig. 6).  

 

 

 

Fig. 6: Summary of individual results in all 15 patients with homonymous quadrantanopia (HQ) and 15 healthy control 

subjects in the visual subjective straight ahead task (VSSA, see text for details). The median of all 20 trials is displayed 

graphically for every subject. In addition, the complete range of the centres of the blind spots for the right and left eyes is 

shown for 13 patients and 15 control subjects. See detailed legend in the left upper part of the figure. 
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Unsigned errors were used for statistical analysis as the deviations in the different HQ 

subgroups were in different directions and therefore with different signs. The unsigned 

horizontal error in the VSSA was significantly greater in the HQ patients than in the 

control subjects (mean HQ: 11.6°, mean controls: 0.8°; Mann-Whitney-Test, U=2.5, 

p<0.0001). Likewise, the mean unsigned vertical error in the VSSA was significantly 

greater in the HQ patients than in the controls (mean HQ: 8.6°, mean controls: 1.6°; 

U=28.5, p<0.0001).  Moreover, vertical (t=6.31, df=14, p<0.0001) and horizontal (t=8.1, 

df=14, p<0.0001) deviations of the VSSA were significantly different from the true 

midpoint (0°-position) in the HQ patients (one-sample t-test). Normal subjects did not 

differ horizontally in their VSSA from the true midpoint (t=-1.24, df=14, p>0.05), but 

showed a small, significant downward shift (t=-3.56, df=14, p<0.003). Vertical shifts of 

the VSSA were larger in patients with lower HQ (N=9, mean: 11.1°) vs. upper HQ (N=6, 

mean: 4.9°; U=7.5, p<0.021), and were largest in left lower HQ (mean: 12°, median: 10°, 

Fig. 5). No difference in horizontal shifts of the VSSA between upper and lower HQ 

emerged (U=26.5, p>0.05). Vertical shifts of the VSSA were significantly correlated 

(Kendall´s r: 0.395, p<0.05, one-tailed) with subjective problems in negotiating an up- or 

downwards staircase (Table 1, right column), but horizontal shifts of the VSSA were not 

(r: 0.013, p>0.05). Inspection of Table 1 shows that only patients with lower HQ 

acknowledged subjective problems in using stairs, especially downwards, but none of the 

patients with upper HQ did so. None of the 15 HQ patients was aware of the shift in the 

VSSA, although all were aware of their quadrantic field defect. 

 

2.1.3.4   Intercorrelations of VSSA and horizontal line bisection  

Spearman rank correlations (in the patients) between the horizontal line bisection and the 

horizontal error in the VSSA were highly significant (r= 0.68, p<0.01, two-tailed), but the 

correlation between horizontal line bisection and the vertical error in the VSSA was not (r= 

-0.08, p>0.05). The horizontal and vertical errors in the VSSA were not significantly 

correlated in the patients (r=0.08, p>0.05), nor in the healthy control subjects (r=-0.28, 

p>0.05). Similarly, horizontal line bisection and the horizontal and vertical shift of the 

VSSA were not significantly correlated with each other (all Spearman correlation 

coefficients p>0.05, n.s.). 
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2.1.3.5   Blind spot mapping 

Blind spot mapping in both eyes was possible in 13/15 HQ patients (as a result of field 

sparing around the horizontal meridian) and in all 15 control subjects. The mean horizontal 

and vertical centre of the blind spot in the left and right eyes of both groups were as 

follows: HQ: left eye: horizontal: 15.1° lateral to the fovea, vertical: 0.9° below the 

horizontal meridian. HQ: right eye: 15.0° lateral to the fovea, vertical: 0.7° below the 

horizontal meridian. Controls: left eye: horizontal: 15.0° lateral to the fovea, vertical: 1.1° 

below the horizontal meridian; Controls: right eye: horizontal: 15.1° lateral to the fovea, 

vertical: 0.6° below the horizontal meridian (see Fig. 6). No significant differences were 

found in any of the paired comparisons with respect to the horizontal and vertical position 

of the blind spot centre in the right or left eyes of both samples (Mann-Whitney-Tests, 

smallest p=0.533). Moreover, the position of the blind spot was in the normal range in all 

13 patients and all 15 control subjects according to normative data (Gradle & Meyer, 1929; 

Bixenman & von Noorden, 1982). Hence, eccentric fixation was not present in any case 

and could not have contributed to the oblique shift of the VSSA in HQ. Moreover, the 

normal position of the blind spot in both eyes also rules out cyclorotation of the eyes.  

 

2.1.4 Discussion 

Patients with HQ – without any sign of visual neglect according to a battery of 5 

conventional screening tests comparable to those of the Behavioural Inattention Test 

(Wilson et al., 1987; Halligan et al., 1989) and good awareness of their scotoma - show a 

significant (5-20°), oblique shift of their VSSA towards their blind quadrant. None of the 

patients was aware of this subjective shift, but the downward shift was related to 

subjectively reported problems in visual depth perception during walking up/downstairs. 

The shift of the VSSA is unlikely to result from insufficient scanning in the blind 

quadrants since visual search field size within the blind quadrants was within normal limits 

in all HQ patients (≥30°, Table 1). This is in agreement with recent findings in simulated 

hemianopia where the artificially created field defect impaired eye movements during 

ocular line bisection, but did not induce the typical hemianopic line bisection error  

(Schuett et al., 2009) (but see diverging results in another recent study (Mitra et al., 2010). 
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Together, both observations render a purely oculomotor explanation of the shift of the 

VSSA in our study unlikely.  

 

2.1.4.1   (Ec)Centric fixation 

Similarly, significant eccentric fixation can be ruled out as an explanation for the spatial 

bias in the VSSA, as the horizontal and vertical positions of the blind spot were normal in 

all tested subjects and did not differ between both groups. This also rules out a possible 

cyclorotation of the eyes into the blind quadrant as a hypothetical explanation of the 

oblique shift of the VSSA into this quadrant, as in this case the centre of the blind spots 

should significantly deviate up or downwards from the normal position typically found 

slightly (0.5-3°) below the horizontal axis (Gradle & Meyer, 1929; Bixenman & von 

Noorden, 1982) This however, was not the case in our study (see Fig. 6). As a caveat, it 

should be mentioned that although blind spot mapping provides a rather precise measure of 

(ec)centric fixation during the perimetric mapping procedure, subtle shifts of fixation 

might go undetected with this method. Moreover, we can not exclude the possibility that 

although static eye position was normal in all patients with quadrantanopia, dynamic eye 

position (i.e. during ocular scanning or visual straight ahead judgments) may differ in 

quadranopic patients from healthy control subjects. This question might be addressed in 

subsequent studies using eye-tracking-devices. 

 

2.1.4.2   Multiple spatial misrepresentations in quadrantic field defects 

The horizontal errors observed both in line bisection and in the VSSA were significantly 

correlated with each other, although not completely coincident, especially not in patients 

with rightsided HQ, who showed normal line bisection performance despite a 

contralesional shift of their VSSA. In contrast, horizontal line bisection and the vertical 

shift of the VSSA showed no correlation. This suggests relative independence of both 

types of spatial errors and is corroborated by the lack of any correlation between horizontal 

and vertical errors in the VSSA, both in the patients and control subjects. Hence, the 

vertical spatial error reported here for the VSSA seems to represent an additional, 

independent spatial bias apart from the horizontal errors previously reported for line 
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bisection in HQ (Schuett et al., 2010; Zihl et al., 2009) and the VSSA in hemianopia 

(Ferber & Karnath, 1999). Apparently, both spatial biases are combined into a new, 

hithertho unknown oblique spatial shift of the VSSA into the blind field in HQ. This shift 

is directed contralesionally in nonneglecting patients with HQ  while it is directed 

ipsilesionally in patients with visual neglect (Schindler & Kerkhoff, 2004). The present 

study thus shows that apart from the horizontal bias in line bisection present in many 

(Schuett et al, 2010) but not all patients with quadranopia (cf  Machner et al., 2009a) such 

patients show a hitherto unkown oblique bias in subjective visual body orientation towards 

their blind quadrant. 

In summary, nonneglecting patients with HQ show multiple spatial 

misrepresentations: a) the well-known horizontal line bisection error (Schuett et al., 2010; 

Zihl et al., 2009) which was present in 8/9 of our patients with left HQ, but only in 1/7 of 

those with right HQ, b) the oblique shift of the VSSA described here for the first time, and 

c) the retinotopic-specific spatial misrepresentation of visual distances along different 

meridians in the visual field (Doricchi et al., 2003).  

The significant difference in horizontal line bisection in our patients with left vs. 

right quadranopia deserves some explanation. As visual field sparing on the horizontal 

meridian on the blind side did not differ significantly in both groups and was not correlated 

to the horizontal line bisection error, it is unlikely that the degree of intact field plays a 

significant role. Rather, it appears that patients with right hemisphere lesions and 

subsequently left quadranopia more often show a significant shift in line bisection, possible 

because of the relative dominance of the right cerebral hemisphere, in visuospatial 

judgments. Indirectly, this suggests that extrastriate cortical areas in the right cerebral 

hemisphere are more involved in visuospatial coding than those in the left cerebral 

hemisphere. 

   The manifold spatial deficits mentioned above probably cause multiple deficits in 

daily life, including those reported here in walking downstairs in patients with lower HQ. 

Our findings are compatible with the hypothesis that those extrastriate areas typically 

lesioned in patients with isolated HQ without neglect contribute to the visual coding of 

subjective visual body orientation in space, both in the horizontal and the vertical 

dimension. As patients with lower and upper HQ (respectively dorsal and ventral lesions of 
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the postgeniculate pathway) showed this spatial error both pathways seem to be involved 

in this coding. However, the contribution of the more “dorsally” located postchiasmatic 

pathway seems to be more prominent as patients with lower HQ – subsequent to parietal 

lesions in all cases (Table 1) - showed the largest vertical errors. The downward shift of the 

VSSA in normal subjects may reflect an ecological adaptation that biases spatial attention 

and orientation towards the ground on which we move (Previc, 1990).  

 

2.1.4.3   Conclusions  

Nonneglecting patients with quadrantic field defects show a typical, hitherto unknown 

oblique spatial shift of their VSSA into the blind quadrants which is neither due to 

eccentric fixation or rotation of the eyes, nor impaired scanning in the scotoma, nor 

neglect. It rather reflects impaired visuospatial coding of subjective visual body orientation 

due to the postchiasmatic lesion. 
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2.2. Study II 

Contralesional spatial bias in chronic hemianopia: The role of (ec)centric 

fixation, spatial cueing and visual search  

Kuhn, C., Bublak, P., Jobst, U., Rosenthal, A., Reinhart, S. & Kerkhoff, G. (2012). 

Neuroscience, 210, 118-127. 

 

2.2.1 Introduction and rationale  

 Patients with homonymous hemianopia often show a contralesional shift towards 

their blind field when bisecting horizontal lines (“hemianopic line bisection error”, HLBE). 

The reasons for this spatial bias are not well understood and debated. Eccentric fixation 

and adaptive orienting of eye movements towards the blind field have been suggested as 

hypothetical explanations but were not tested experimentally yet. Moreover, the role of 

spatial attention and visual search in the blind field are unsettled issues. Here, we tested in 

20 stroke patients with chronic homonymous hemianopia (10 left-sided, 10 right-sided) 

without visual neglect, 10 healthy control subjects and 10 neurological control patients 

without hemianopia whether the HLBE is related to a) eccentric fixation and b) is 

influenced by spatial-attentional cueing (left, right) and c) related to the degree of 

oculomotor compensation in the blind field. Perimetric mapping of the blind spot in the 

ipsilesional eye was performed in 39/40 subjects. Both hemianopic patient groups showed 

the typical HLBE towards their blind field, while the two control samples showed only a 

small but significant leftward shift known as pseudoneglect. The horizontal and vertical 

position of the blind spot in the ipsilesional eye was within normal limits in 38 out of 40 

subjects, and did not differ significantly between the four samples. Moreover, the HLBE 

was not significantly correlated to the horizontal or vertical position of the centre of the 

blind spot, thus excluding eccentric fixation as an explanation for this spatial error. 

Furthermore, spatial cueing by manipulating the starting position of the bisection cue (left, 

right) did not affect the HLBE, arguing against attentional cueing effects well known from 

the line bisection error in patients with spatial neglect. Finally, the size of the saccadic 

search field in the scotoma was not significantly correlated to the HLBE in hemianopia. 

We conclude, that neither eccentric fixation nor contralesional hyperattention or 
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ipsilesional hypoattention, nor good or poor oculomotor compensation of the field loss 

itself are likely causes of the HLBE in chronic homonymous hemianopia. Implications of 

these findings and alternative explanations are discussed. 

 

2.2.1.1   Rationale of Hemianopic line bisection error (hlbe) 

Unilateral lesions of the posterior visual pathways in the human brain often cause 

contralateral homonymous visual field defects (Miller et al., 2008). Typically, patients with 

such scotomas show a variety of associated disorders including hemianopic alexia 

(Kerkhoff et al., 1992; Pflugshaupt et al., 2009; Schuett, 2009; Spitzyna et al., 2007), 

inefficient visual search in their scotoma (Keller et al., 2010; Lane et al., 2010; Machner et 

al., 2009) and a peculiar spatial bias towards their blind field when bisecting long 

horizontal lines or indicating the subjective visual straight ahead (for review see (Kerkhoff 

and Schenk, 2011). Although completely forgotten for several decades (Kerkhoff and 

Bucher, 2008) this spatial bias is well known as the hemianopic line bisection error (further 

termed HLBE) since Axenfeld´s seminal description in 1894 (Axenfeld, 1894). Recent 

investigations have largely replicated the HLBE (Doricchi et al., 2005; Kerkhoff and 

Schenk, 2011; Schuett et al., 2010; Zihl et al., 2009) and some showed a relationship to 

foveal/macular field sparing (Barton and Black, 1998a). Moreover, a recent large-scale 

patient study has shown that this horizontal spatial error is found in all types of unilateral, 

postchiastmatic visual field defects, not only hemianopia (Schuett et al., 2010b). Apart 

from horizontal deviations in line bisection (Barton and Black, 1998b; Doricchi et al., 

2005; Hausmann et al., 2003; Zihl et al., 2009)  or in the visual subjective straight ahead 

orientation (Ferber and Karnath, 1999) vertical shifts in altitudinal hemianopia (Kerkhoff, 

1993) or oblique shifts of the subjective visual straight ahead in homonymous 

quadrantanopia (Kuhn et al., 2010) were also found.  

 Despite this convergence of results demonstrating the existence of a contralesional 

spatial-perceptual bias in different types of homonymous visual field defects the precise 

cause(s) of this error are far from clear and debated (Kerkhoff and Schenk, 2011). Early 

researchers of the HLBE suggested several theoretical explanations of this error 

(summarized in Kerkhoff and Bucher, 2008). One prominent account surmised that 

hemianopic patients show an eccentric fixation towards the scotoma, accompanied by the 
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development of a new “pseudofovea” located some degrees apart from the anatomical 

fovea in the blind field (Fuchs, 1922). Although rarely tested experimentally eccentric 

fixation was occasionally observed in patients with homonymous hemianopia and foveal or 

macular field sparing (Teuber et al., 1960; Trauzettel-Klosinski, 1997). Some researchers 

considered this as a kind of compensatory strategy which slightly enlarges the visual field 

on the blind side and thereby may improve reading (Trauzettel-Klosinski, 1997). 

Unfortunately, the HLBE was not measured in these studies.  

 In a similar line of reasoning, the HLBE towards the blind field was viewed as a 

kind of adaptive, oculomotor strategy which helps the patient to orient his eyes and 

attention further towards the blind field, which in turn might improve visual orientation 

and reduce the typical visual problems such as bumping into obstacles or disregarding 

persons on the blind side (Gassel and Williams, 1963). Moreover, while the eccentric 

fixation account implies a direct relationship between the HLBE and eccentric fixation the 

attentional hypothesis that the HLBE is related to attentive or oculomotor orienting to the 

blind field with the final aim of a better compensation of the field loss predicts a significant 

relationship between the HLBE and the oculomotor capacity to explore the blind field 

using scanning eye movements. As we know, that oculomotor compensation clearly 

improves throughout scanning therapy in hemianopia (Kerkhoff et al., 1994; Lane et al., 

2010), and the visual search field in the scotoma is enlarged by about 20° through such 

rehabilitation procedures (Kerkhoff et al., 1994), one might assume a relationship between 

this scanning capacity in the scotoma and the contresional HLBE. If scanning capacity is 

significantly correlated with the HLBE this would suggest a contribution of scanning 

problems to this error. If not, it appears more likely that the HLBE reflects an independent, 

visuospatial disturbance with a different origin.    

 Furthermore, one might argue that if the HLBE reflects attentive orienting towards 

the blind field, experimental manipulations which direct spatial attention to the blind or 

seeing side might modulate the HLBE in hemianopic subjects. Interestingly, manipulations 

of attentional demands during central fixation in a visual field test (perimetry) may induce 

significant changes in the detection rates for visual stimuli in the periphery – both in young 

healthy subjects and hemianopic patients with parieto-temporal lesions (Russell et al., 

2004). Moreover, Lane and co-workers (Lane et al., 2010) have recently shown that pure 

attention training induces the same beneficial treatment effects as conventional visual 
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scanning training in hemianopia. Together, these results indicate a greater role for attention 

in hemianopia (without neglect) than previously assumed. Moreover, several earlier studies 

have shown repeatedly that attentional cueing modulates the ipsilesonal line bisection error 

in neglect patients (Riddoch and Humphreys, 1983, Lin et al., 1996).  

 Finally, the role of brain damage per se may be disputed (or the specificity of the 

HLBE to heminaopia), since the HLBE also occurs in simulated hemianopia without brain 

damage (Mitra et al., 2010). Moreover, any brain damage might result in a less accurate 

judgment of the midline position, regardless of the presence of homonymous hemianopia. 

To our knowledge, these issues have not been investigated jointly in matched samples of 

patients with left versus right-sided hemianopia, control patients with acquired brain 

damage but without a visual field defect, and healthy subjects with intact visual fields. In 

particular, the eccentric fixation hypothesis has not been evaluated empirically in relation 

with the HLBE. If eccentric fixation contributes or even causes the HLBE this would 

indicate the source of the HLBE relatively “early” or on a lower level in the visual 

processing hierarchy. In contrast, if this is not the case, alternate sources of this 

visuospatial error, probably located “later” or on higher visual processing stages must be 

assumed.  Finally, it is an open issue whether the HLBE is independent from visuo-motor 

requirements of the subject. In clinical testing, the hemianopic patient typically bisects 

manually (with a pencil) a horizontal line presented on a sheet of paper (cf (Barton and 

Black, 1998; Schuett et al., 2011). If the HLBE represents a perceptual bias, it should also 

be found in a non-motor bisection task. We therefore employed a computerized line 

bisection task without manual response by the subject to investigate the HLBE in a motor-

free task (see below).  

The present study therefore investigated three issues: a) Is the HLBE associated with or 

caused by (ec)centric fixation?; b) Is the HLBE subject to spatial-attentional manipulations 

(“Cueing”) and c) is it related to the capacity of oculomotor search in the scotoma? 

 

  



Study II 

 
45 

 

2.2.2 Methods  

 

2.2.2.1   Patients and control subjects 

20 patients with perimetrically established unilateral, homonymous scotomata following 

unilateral posterior cerebral lesions (10 left-sided, 10 right-sided; see Table 2, further 

termed hemianopic=HA patients) and 10 patients with unilateral, cerebrovascular lesions, 

but with perimetrically intact visual fields were tested (further termed Brain Damaged 

control patients; Table 2). Stroke was the common aetiology in both the hemianopic 

sample (n=20, 100%) and the Brain Damaged Control Sample (n=10, 100 %). In addition, 

10 normal, dominantly right-handed (handedness-quotient of +100 in all cases) control 

subjects (8 male, 2 female, mean age 50.5 years; range 22-70) were recruited. None of the 

healthy control subjects had evidence of ophthalmological, neurological or psychiatric 

disease. All had perimetrically normal visual fields, and a mean visual acuity of 0.98 

(mean, range 0.7-1.2) for the near visual distance (0.4 m) in a standardized letter acuity 

chart.  

 

2.2.2.2   Handedness questionnaire 

Premorbid handedness was determined in all subjects with the German version of the 

Edinburgh handedness inventory (Salmaso and Longoni, 1985) which measures hand 

preference. This is expressed as a laterality quotient ranging from -100 (=strongly left-

handed) over 0 (=ambidextrous) to +100 (=strongly right-handed; see Table 1).  

 

2.2.2.3   Visual acuity tests 

Visual letter acuity was measured separately for each eye with standardized, high-contrast 

letter charts (Fronhäuser, München, Germany) for the near (0.4 m) viewing distance in all 

3 patient samples, and binocularly in the healthy control subjects.  
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2.2.2.4   Visual perimetry 

Binocular visual fields were mapped perimetrically with a Tübingen perimeter (Aulhorn & 

Harms, 1972) in all patients (for a detailed description see Kuhn et al., 2010), results see 

Table 2. In short, dynamic visual perimetry was performed with a circular white target 

(luminance: 102 cd/m
2
; size: 1.02 °) in a completely dark room. 
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Table 2:  Patient data: L1-L10: Left Homonymous Hemianopia; R1-R10: Right Homonymous Hemianopia  

 

 

 

 

 

No. 

Age (y)/ 

sex 

Aetiology 

TSL 

(months) 

Lesion Side 

Localization 

Visual acuity 

near 

LE/RE (%) 

VisualField  

Sparing (°) 

Visual search 

field (°) 
Handedness 

L1 69/f CVI/120 R-occ 50/60 2 35 +100 

L2 40/f CVI/10 R-occ 100/100 14 66 +100 

L3 68/m CVI/12 R-occ 100/100 22 24 +100 

L4 63/m CVI/13 R-occ 60/50 2 25 +100 

L5 32/f CVI/9 R-occ-temp 60/50 1 30 +100 

L6 31/f CVI/2 R-par-temp 125/125 1 10 +100 

L7 33/m CVI/168 R-occ-temp 100/100 2 10 +100 

L8 37/m CVI/6 R-occ 90/90 3 39 +100 

L9 32/m CVI/96 R-temp 90/90 1 30 +100 

L10 32/m CVI/48 R-occ-temp 100/100 2 38 +100 

Mean 45.6/- 
-/48.4 Md: 

13 
- 87.5/86.5 5.0° Md: 2 30.7 +100 

R1 44/f CVI/15 L-occ-temp 70/70 5 22 +33.3 

R2 66/m CVI/4 L-occ-temp 80/80 15 42 +100 

R3 42/m CVI/36 L-occ-temp 80/80 20 55 +60 

R4 48/m CVI/38 L-occ-temp 80/80 3 44 +100 

R5 29/m CVI/8 L-occ 100/90 2 35 +100 

R6 58/m CVI/7 L-occ 90/90 4 28 +100 

R7 49/m CVI/6 L-occ-temp 80/80 1 33 +100 

R8 69/m CVI/3 L-occ 80/70 2 8 +100 

R9 62/m CVI/17 L-occ 100/60 5 10 +100 

R10 35/f CVI/15 L-occ 70/120 2 25 +100 

Mean 51.7/- -/14.9 Md:8 - 82.0/82.0 5.9° Md: 4 30.2 +89.3 
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TSL: time since lesion onset in months; L/R: left/right; occ: occipital, par: parietal, temp: temporal,  

m/f: male/female; LE/RE: left/right eye; CVI: cerebrovascular insult; L/R: left/right; BG: basal ganglia 

 

 

2.2.2.5   Oculomotor Search in the Scotoma (Visual Search Field) 

We measured the extent of the Visual Search Field - a measure of oculomotor 

compensation - within the blind and intact visual hemifield. As this test has been described 

in detail elsewhere (Kerkhoff et al., 1994) only an abridged account is given here. The 

subject is instructed to search with saccadic eye movements for a circular white target 

(size: 1.02°, luminance: 102 cd/m
2
) that is moved by the perimetrist along every meridian 

from the periphery to the centre with a speed of 2°/sec. The sequence of the meridians 

tested was random. The patient presses the response key as soon as he detects the target. 

This position is scored as the eccentricity of the search field (in °). Here, we selected the 

horizontal meridian lying in the blind hemifield, which was computed as the median of the 

scores of the six meridians lying in the blind field. A minimum search field size of 30° is 

the lower normal cutoff (Kerkhoff et al., 1994).  

Table 3:  Brain damaged control patients  (C1-C10) 

No. 

Age (years) 

Sex 

Etiology 

TSL (months) 

Lesion Side 

Localization 

visual acuity near 

LE/RE (%) 

Handedness 

C1 50/m CVI/6 R-temp-par 90/90 +100 

C2 29/f CVI/7 R-temp 90/90 +100 

C3 49/m CVI/10 diffuse 90/90 +100 

C4 55/m CVI/50 L-BG -/63 +100 

C5 47/m CVI/15 L-BG 100/100 +100 

C6 63/m CVI/2 L-temp 120/120 +100 

C7 59/m CVI/3 R-front-temp 100/100 +100 

C8 48/m CVI/8 L-temp 100/80 +100 

C9 54/m CVI/7 

R-temp 

 

80/80 +100 

C10 42/f CVI/14 L-temp 100/100 +100 

Mean 48.6/- -/12.2 Md: 8 - 96.5/95.0 +100 
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2.2.2.6   Mapping of the Blind Spot  

During monocular visual field testing the size and location of the blind spot was 

determined with a small white circular test target (luminance: 102 cd/m
2
; size: 0.06°) with 

the Tübingen perimeter. In the hemianopic samples the blind spot was registered in the 

ipsilesional eye (it cannot be determined in the contralesional eye because of the field 

defect). In the two other samples the blind spot was measured in half of the cases in the left 

eye, in the other half in the right eye. 20 trials were run in each subject. In each trial the 

target was initially placed within the presumed centre of the blind spot and then moved 

sequentially to the upper, lower, left or right side until the subject responded by button-

press when perceiving the target. The position was then marked as the border of the blind 

spot on the diagram. This procedure was repeated 20 times. The centre of the blind spot 

was determined by inserting a horizontal and vertical axis centrally into the mapping of the 

blind spot. The centre was expressed as a horizontal deviation (in°) from the fovea and as a 

vertical deviation (in° from the horizontal axis) for statistical comparisons, and was 

compared to anatomical data of the normal position of the blind spot in healthy subjects 

(Bixenman and von Noorden, 1982; Gradle and Meyer, 1929; Hopkins, 1941). Fixation 

was continuously inspected through the ocular of the perimeter in all trials.  

 

2.2.2.7   Computerized Horizontal Line Bisection Task 

Subjects were placed in front of a computer screen (17´´) in a distance of 0.45 m. The head 

was positioned in a head- and chinrest mounted on a table in front of the screen to prevent 

head movements during testing. On the screen a white horizontal bar (160 x 10 mm, 

luminance: 400 cd/m
2
) appeared centrally on the black screen. The bar contained a vertical 

slit (size: 5 x 10 mm) that appeared either on the right end of the bar (test 1, 10 mm away 

from the end of the bar) or on its left end (test 2, 10 mm away from the end of the bar). The 

subject was asked to determine verbally when the slit was exactly in the centre of the 

horizontal bar. To this purpose the examiner moved the slit in steps of 1 mm slowly 

towards the other side of the bar until the subject indicated that the slit was exactly in the 

middle of it. Five trials were performed in each test, resulting in a total of 10 trials. 

Constant errors were computed using the method of limits by special software (Kerkhoff 

and Marquardt, 1998; Kerkhoff and Marquardt, 2004) between the objective centre of the 
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bar and the mean position of the slit as determined by the subject. No motor component 

was involved in this bisection task on the subject´s side, nor was there any time limit.  

 

2.2.2.8   Visual neglect test battery  

Five conventional visual neglect tests – comparable to the Behavioural Inattention Test 

(Wilson et al., 1987) - were performed to rule out visual neglect in our samples: horizontal 

line bisection of a 20 x 0.2 cm black line on a white sheet of paper; number cancellation 

(30 targets among 150 distracters, presented on a 29.7 x 21 cm large white paper), drawing 

of a clock face from memory, copying 3 geometrical figures (a star, a daisy, a face; each on 

a different sheet of paper) and an indented reading test of 180 words. Neglect was 

diagnosed when the truncation midline in bisection deviated more than 5 mm to the 

ipsilesional side (Kerkhoff, 1993), when more than 1 target was omitted on one side in 

number cancellation, when numerals were omitted or misplaced on the left side of the 

clock face test, or when the subject committed more than 2 reading errors in the indented 

reading test (Reinhart et al., 2011). 

 

2.2.2.9   Testing conditions 

Visual perimetry, the mapping of the blind spot and the experimental line bisection testing 

took place in a totally darkened room (< 10 Lux room lighting), the only visible stimulus in 

perimetry and blind spot mapping was the background illumination of the perimeter (3.2 

cd/m
2
) and the test stimulus. In line bisection testing the only visible stimulus was the 

horizontal, white bar on the black computer screen. All other (screening) tests took place in 

a day-lit room (mean lighting: approximately 400 Lux). 

 

2.2.2.10   Statistics 

Nonparametric statistics were computed. Paired comparisons were run with Wilcoxon or 

Mann-Whitney-Tests, which were Bonferroni-corrected for the number of statistical tests. 

The alpha-level was 0.05 (two-tailed). 
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2.2.3 Results 

 

2.2.3.1   Comparison of the samples 

Statistical comparisons revealed that neither handedness (Kruskal-Wallis-Test Χ
2
=4.341, 

df=3, p=.227), nor age (Χ
2
=3.097, df=3, p=.377), nor gender (Χ

2
 = 2.88, df=3, p=0.41) 

were significantly different between the four samples. Visual acuities for the near viewing 

distance (0.4m) were examined separately for the left and the right eyes. There were no 

significant differences between the three patient groups in the near viewing distance (left 

eye: Χ
2
=5.838, df=3, p=.054; right eye: Χ

2
=4.046, df=3, p=.132). Moreover, the three 

patient groups did not differ significantly regarding time since lesion (median left HA = 

12.50 months; median right HA = 11.50 months, median control patients= 7.50 months; 

Χ
2
=2.271, df=2, p=.321). None of the patients showed any signs of visual neglect in any of 

the 5 neglect screening tests. 

 

2.2.3.2   Visual field sparing  

Both hemianopia (HA) samples did not differ significantly from each other in visual field 

sparing (mean left HA = 5.0°; mean right HA = 5.9°; Mann-Whitney-test, z=-1.242, 

p=.214). Two out of ten leftsided HA patients showed visual field sparings of 14° and 22°. 

Among the rightsided HA sample one patient had a field-sparing of 15°, the second of 20°.  

 

2.2.3.3   Spatial Cueing direction  

First, we examined whether there was a possible attentional “cueing” effect of the starting 

point from where the vertical slit was moved by the experimenter towards the middle of 

the bar. Separate nonparametric Wilcoxon-Tests (for each group) revealed that the starting 

point of the vertical slit in the 2 bisection tasks had no significant effect on the bisection 

error in any of the 4 groups (Left HA: z=-.357, p=.721; Right HA: z=-.0058, p=.953; Brain 

Damaged Controls: z=-.889, p=.374; Normal Controls: z=-.816, p=.415). Therefore, the 

data of both tasks were collapsed in every subject group and the mean of the two 

experimental bar bisection tests (one with left and the other with right starting point) was 
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used for all further statistical calculations. A significant difference between the four subject 

groups was found for this collapsed bisection error (Kruskal-Wallis-Test, Χ
2
=30.027, df=3, 

p=.000] which was further examined in the following section. 

 

2.2.3.4   Size of the Horizontal line bisection error  

Mann-Whitney- Tests (Bonferroni corrected) revealed that left vs. right hemianopic 

patients differed significantly from each other in their signed bisection errors (z=-3.782, 

p=.000), but not in their unsigned error (z=-.53, p=.631). BD control patients and normal 

controls did not differ significantly from each other in their bisection performance (z=-

.303, p=.796). Left hemianopic patients differed significantly from both control samples 

(BD control subjects: z=-3.177, p=.001, normal controls: z=-3.291, p=.000), and the same 

held true for right hemianopic patients (comparison to BD control subjects: z=-3.782, 

p=.000; comparison to normal controls: z=-3.781, p=.000).   

All left hemianopic patients bisected the lines considerably towards the left of centre 

(mean: -6.31 mm) and all right hemianopic patients towards the right of centre (mean: 

+5.59 mm), hence in both samples towards the blind field (Fig. 7). In contrast, the normal 

control group (mean= -0.84 mm) as well as the brain damaged patient control group 

(mean= -0.72 mm) revealed just a slight, but (marginally) significant leftward shift 

indicative of left pseudoneglect (Jewell and McCourt, 2000). One-sample T-tests (against 

0) confirmed a small but significant leftward shift from the objective midline in the 

bisection test in the healthy control subjects (T(9)=-2.34, p=0.02), and a similar, but 

nonsignificant trend in the BD control patients (T(9)=-1.51, p=0.08). 
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Fig. 7   

Mean deviation (in mm) in horizontal line bisection in the four samples. Each circle represents one subject, 

horizontal black bars reflect the mean of every group. Positive values denote rightward deviations, negative 

values leftward deviations. Left hemianopia (N=10), right hemianopia (N=10), Normal Control (N=10) and 

Brain Damaged Control (BD). 

 

2.2.3.5   Visual field sparing and size of the HLBE 

There was no significant correlation between visual field sparing on the horizontal 

meridian in the blind field and the unsigned HLBE in the two hemianopic samples 

(Spearmans Rho= .04, p=0.87, two-tailed).  

 

2.2.3.6   Position of the centre of the blind spot 

To compare the mean positions of the centre of the blind spot between the experimental 

groups, ANOVAs and nonparametric tests were computed. There was no significant 

difference in the vertical position of the blind spot (Kruskal-Wallis-Test: Χ
2
=3.476, df=3, 

p=.324), nor in the horizontal position of the blind spot (Χ
2
=1.722, df=3, p=.632). Figure 8 

displays all individual scores of the centre of the blind spot in all tested subjects. Note that 

the horizontal position of the blind spot centre lay within a small range of 13.5° to 17° 
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distance to the fixation point in the horizontal domain, which is in accord with previous 

studies where the blind spot was mapped in large samples of healthy subjects (Bixenman 

and von Noorden, 1982; Gradle and Meyer, 1929; Hopkins, 1941). Moreover, the vertical 

position of the blind spot centre was within normal limits (Bixenman and von Noorden, 

1982), ruling out cyclorotation in most of the hemianopic patients. Two left HA patients 

showed an abnormal vertical position of their blind spot (one too high, the other too low in 

relation to the horizontal axis). However, vertical deviations of the blind spot are unlikely 

to influence horizontal line bisection. 

 

 

Fig. 8 Scatterplot of the horizontal and vertical position of the centre of the blind spot (ipsilesional eye) in 10 

left hemianopic patients, 10 right hemianopic patients, 10 brain damaged control subjects and 10 normal 

controls subjects (1 brain damaged control subject excluded due to monocular viewing. 

 

2.2.3.7   Interrelations of the position of the blind spot and the HLBE  

There was no significant correlation of the position of the blind spot (horizontal deviation 

from fixation point) and the HLBE in the two hemianopic samples (Spearmans Rho; r=-

0.16, p= 0.51). 
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2.2.3.8   Interrelations of the line bisection error and visual search field size 

Fig. 10 shows a scatterplot of the relationship between the extent to which the hemianopic 

subjects were able to scan the blind field (visual search field) and their performance in the 

HLBE. Visual search field in the blind field did not differ significantly between the two 

hemianopic groups (mean left HA = 30.7°; mean right HA = 30.2°, Mann-Whitney-test: 

z=0, p=1.0, both lying just within the normal range). Saccadic search field size did not 

correlate significantly with the HLBE (Spearmans Rho = -0.11, p=0.66, two-tailed).  

 

 

 

 

Figure 9: Illustration of the visual search field border in the blind field of two left hemianopic subjects (one 

with 10°, the other with 30°, indexed by the stippled lines). The search field border in the intact, right visual 

hemifield is 45°  
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Figure 10: Scatterplot of the size of the hemianopic line bisection error (HLBE, unsigned errors in mm) and 

the size of the saccadic search field in the scotoma (in °) in 10 patients with left hemianopia and 10 patients 

with right hemianopia. 

 

 

 

2.2.4 Discussion and conclusions 

Our study revealed the following results: hemianopic patients do not show eccentric 

fixation as measured by blind spot mapping. Moreover, all hemianopic patients in our 

sample showed the typical contralesional HLBE, but this was not related to the position of 

the blind spot. Furthermore, the starting position in the experimental bisection task had 

virtually no effect at all on the HLBE, Hence, no spatial cueing effect was observed. As 

found in previous studies, visual field sparing was not related to the HLBE. In fact, 3 HA 

subjects with more than 12° field sparing also showed the HLBE. We will discuss these 

findings in detail below. 
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2.2.4.1   (Ec)-centric fixation 

Significant eccentric fixation can be ruled out as an explanation for the spatial bias in 

horizontal line bisection in our rather chronic hemianopic subjects, as the horizontal and 

vertical positions of the blind spot were within normal limits in the majority of all tested 

subjects and agree with normative values of the position of the blind spot in healthy 

subjects (Bixenman and von Noorden, 1982; Gradle and Meyer, 1929; Hopkins, 1941). 

Moreover, blind spot coordinates did not correlate with the HLBE, and were not 

significantly different in the four samples studied. This also rules out a possible 

cyclorotation of the eyes in the majority of our HA patients, with the exception of 2 left 

HA patients who showed an abnormal vertical position of the blind spot, but normal 

horizontal position (Fig. 8). Since a horizontal shift of eye position would be of much 

greater importance as we examined horizontal line bisection, the vertical shifts in those 2 

patients are most likely an associated, but unrelated phenomenon. As a caveat, it should be 

mentioned that although blind spot mapping provides a rather precise measure of 

(ec)centric fixation during the perimetric mapping procedure, subtle shifts of fixation 

might go undetected with this method. Moreover, we cannot exclude the possibility that 

although static eye position was normal in all hemianopic patients, dynamic eye position 

(i.e. during ocular scanning of the line) may have differentially contributed to the HLBE in 

the 2 hemianopic groups vs. the 2 non-hemianopic control samples.  

In summary, there is no evidence supporting the notion that chronic hemianopic patients 

develop a new pseudofovea in the sense of an eccentric fixation towards their scotoma 

which in turn leads to the HLBE or is in any way related to this spatial error. 

 

2.2.4.2   Spatial-Attentional Cueing 

As the starting point of the slit which served to bisect the horizontal bar on the computer 

screen did not induce any effect on the HLBE, it was obviously irrelevant for all subjects. 

Hence, neither did patients with left or right HA benefit from such a spatial cue that must 

be attended because otherwise the subject cannot perform the bisection task, nor did their 

performance deteriorate in the opposite cue condition. This is in marked contrast to similar 

spatial cueing manipulations in patients with spatial neglect where a contralesional cue in 
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the neglected hemispace typically improves bisection performance while a cue on the 

ipsilesional side of the horizontal bar deteriorates bisection (Riddoch & Humphreys, 1983). 

It might be conjectured that our cueing procedure was simply ineffective in any subject not 

only in those with hemianopia, and therefore did not evoke a differential spatial bias. To 

test this hypothesis we investigated two patients with chronic leftsided visual neglect and 

leftward homonymous hemianopia and tested both in the very same horizontal bar 

bisection tasks as used in the present experiment. In patient 1, with a leftward slit position, 

line bisection was shifted towards the left side (-11.6 mm from the true centre), with a 

rightward cue position line bisection was shifted significantly towards the right 

(ipsilesional) side (+ 45.6 mm from the true centre).  In patient 2, with a leftward slit 

position, line bisection was shifted slightly towards the right side (+6.1 mm from the true 

centre), with a rightward slit position line bisection was shifted markedly towards the right 

(ipsilesional) side (+ 16.0 mm from the true centre). These results clearly show that the 

cueing manipulation employed in our study can produce very profound effects on bisection 

performance, hence probably induced attentional shifts.  

 

2.2.4.3   Oculomotor explanations of the HLBE 

Some theories of the HLBE implicitly assume or explicitly state that the field defect itself 

causes the HLBE because the subject is never able to see the horizontal bar entirely, but 

has to scan it sequentially in parts by bringing his intact hemifield towards the blind side. 

While some studies with simulated hemianopia in healthy subjects (without brain damage) 

were able to induce a similar HLBE (Mitra et al, 2010), others did not find such effects 

(Schuett et al, 2009). We here observed a null relationship between the capacity to scan the 

blind field via saccadic eye movements and the HLBE (Fig.10). Poor oculomotor 

compensation of the field loss itself is a typical finding in acute hemianopia (Lane et al., 

2010; Machner et al., 2009) and improves reliably during treatment of visual scanning and 

exploration (Pambakian et al., 2010), (Lane et al., 2010).  In our sample of rather chronic 

hemianopic patients, all 20 patients showed a significant though admittedly small HLBE, 

irrespective of whether they scanned up to only 10°, 35 or even 66° in his/her blind field 

(see Table 2). In addition, 3 hemianopic patients had a significant contralesional HLBE 

despite a visual field sparing of at least 12° or even more on the blind side. Put differently: 
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these patients could have seen the horizontal line entirely with their intact hemifield and 

the spared visual field on the blind side, but still showed the HLBE. While these 

observations – in our view - render a pure oculomotor explanation of the HLBE in our 

mostly chronic patients unlikely, we must admit that we do not know how these 3 patients 

would have bisected very long lines that could not be seen entirely with the remaining 

visual field on the blind side. Potentially, with such long lines a similar compensatory 

scanning pattern towards the part of the line presented in the blind field would have 

emerged as with shorter lines in those patients who cannot see the line entirely because of a 

small visual field sparing. According to this scenario, the mechanism(s) involved in the 

HLBE might in part depend on the horizontal spatial extent of the perceptual object that is 

to be bisected and the size of the scotoma or the residual field sparing available for 

performing this task. Moreover, problems of oculomotor scanning may very likely 

contribute to the HLBE in acute hemianopia (cf Machner et al., 2009) when patients try to 

adapt to the sudden field loss.  

As a caveat we have to admit that our procedure of measuring the saccadic search field – 

though sensitive and well suited to follow oculomotor compensation in hemianopia 

throughout therapy (Kerkhoff et al, 1992, 1994) may have been too insensitive to detect 

subtle oculomotor discrepancies between hemianopic patients with a marked HLBE and 

those with a small HLBE. Anyway, we find it remarkable that hemianopic subjects who 

are well able to scan up to 50 or 60° in their blind field (see Fig. 9 & 10) may nevertheless 

show a considerable problem in bisecting horizontal lines.  

 

2.2.4.4   Alternative explanations of the HLBE 

While our results suggest that neither eccentric fixation, nor spatial cueing nor oculomotor 

deficits are likely explanations of the contralesional spatial bias observed here in chronic 

hemianopic patients – some 9-12 months after manifestation of their hemianopia – 

alternative explanations of this phenomenon have been suggested (for a more detailed 

discussion see Kerkhoff and Schenk, (2011). The attention-account suggested by Barton 

and Black (1998) – as mentioned earlier - and more recently elaborated by Mitra and co-

workers (Mitra et al., 2010) claims that the HLBE is a direct consequence of the field 

defect itself, because hemianopic patients are forced to view the line in just one hemifield, 
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just as normal subjects with virtual hemianopia are. This may lead to an asymmetrical 

distortion of the spatial representation of the line and consequently produce the well-

known bias in patients’ bisection performance.  Barton & Black (1998) also considered a 

more indirect link between HLBE and visual field defects, arguing that the visual field loss 

in one hemifield leads to a strategic shift of attention into the contralesional hemispace, 

thereby producing the line-bisection bias. This  hypothesis is supported by eye-movement 

recordings during line-bisection in hemianopic patients, which show that the fixation 

pattern is shifted towards the hemianopic side (Barton et al., 1998) (Ishiai et al., 1989) and 

restates an earlier hypothesis proposed by (Williams and Gassel, 1962). In contrast, the 

lesion account (Zihl et al., 2009) rejects this argumentation and states that the HLBE 

results from occipito-temporal brain damage and is therefore relatively independent from 

visual field sparing. According to this account, the HLBE represents an independent 

visuospatial deficit in hemianopia similar to those in reading (Spitzyna et al., 2007) or 

visual scanning (Mannan et al., 2010). Recent evidence (Baier et al., 2010) strengthened 

the anatomical explanation of the HLBE as a direct consequence of lesions to the lingual 

gyrus and cuneus. We have argued recently (Kerkhoff and Schenk, 2011) that - in our view 

- it is premature to finish the discussion about the sources of the HLBE by deciding in 

favor or against one of these hypotheses, because many issues are still unresolved.  

 

2.2.4.5   Unsettled issues 

 

One is the frequent observation that especially patients with left HA and to a smaller extent 

also those with right HA report problems like striking against door frames or boards and 

failure to take notice of people passing by in the blind hemifield (Gassel & Williams, 1963, 

Kerkhoff et al, 1994). To our knowledge, no one has correlated these observations with the 

HLBE. Second, hemianopic patients often report feelings of dizziness and show postural 

deficits, confirmed by posturographic measurements (Rondot et al, 1992), which showed a 

shift of the centre of pressure during standing towards the blind side – just as in line 

bisection. Hence, it appears that the HLBE not only affects perception or manual line 

bisection, but obviously produces more visuomotor deficits which may be quite relevant in 

the clinical setting and in daily life. 
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 A recent study (Hesse et al., 2012) investigated the effects of V1-damage and 

subsequent hemianopia (in 12 patients) on a set of visuospatial and visuomotor tasks which 

all had in common that the patients had to indicate verbally the midline or point to a 

midline position of a distance or a line. Hesse and coworkers replicated the typical HLBE 

in their verbal midline task, but also found a nearly identical contralesional HLBE in their 

second task (pointing to a midline position on a horizontal line shown on a touchscreen) 

and their third (an obstacle avoidance task requiring a pointing response to the midline of a 

horizontal distance). Taken together, this study revealed that the contralesional HLBE in 

hemianopia is very robust, as it was present in perception and action tasks. No differential 

influence of visual field sparing on the spatial error was noted in this study (field sparing 

ranged from 0-4° in all patients). This study shows that the HLBE has widespread effects 

on the perception-action cycle in hemianopia.   

 

2.2.4.6   Conclusions 

We conclude, that neither eccentric fixation nor the degree of oculomotor compensation of 

the field loss itself are sufficient explanations for the contralesional spatial bias (HLBE) 

observed in patients with chronic hemianopia. Moreover, spatial-attentional cueing was 

ineffective in modulating this bias, and therefore attentional impairments or adaptations 

appear unlikely explanations of the HLBE in our HA sample. However, both the 

attentional-cueing and oculomotor compensation account requires further analyses in 

subsequent studies.   
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2.3 Study III 

Does spatial cueing affect line bisection in chronic hemianopia? 

Kuhn, C., Rosenthal, A., Bublak, P., Grotemeyer, K.H., Reinhart, S. & Kerkhoff, G. 

(2012). Neuropychologia, 50(7), 1656-1662. 

 

2.3.1 Introduction and rationale 

 

 Patients with homonymous hemianopia often show a contralesional shift towards 

their blind field when bisecting horizontal lines (“hemianopic line bisection error”, HLBE). 

The reasons for this spatial bias are not well understood and debated. Cueing of spatial 

attention modulates line bisection significantly in patients with visuospatial neglect. 

Moreover, recent evidence showed that attention training significantly improves deficits of 

visual search in hemianopia. Here, we tested in 20 patients with chronic homonymous 

hemianopia (10 left-sided, 10 right-sided) without visual neglect, 10 healthy control 

subjects, 10 neurological control patients, and 3 patients with left visuospatial neglect and 

leftsided hemianopia whether spatial cueing influences the HLBE. Subjects indicated 

verbally the midpoint of horizontal lines in a computerized line bisection task under four 

experimental cue positions (cue far left, mid-left, mid-right or far-right within the 

horizontal line). All 20 hemianopic patients showed the typical HLBE towards their blind 

field, while the two control samples showed only a small but significant leftward shift 

(pseudoneglect). None of the 4 cueing manipulations had a significant effect on the HLBE 

in the hemianopic patients. Moreover, no differential effects of cueing on line bisection 

results were obtained when analysed in lesion subgroups of hemianopic patients with 

circumscribed occipital lesions (N=8) as contrasted with patients having more extended 

(occipito-temporal or temporal) lesions (N=12).  This null-effect contrasts with marked 

cueing effects observed in 3 neglect patients with left hemianopia in the same tasks, 

showing the principal efficacy of our cueing manipulation. These results argue against 

attentional explanations of the HLBE.  
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Unilateral lesions of the posterior visual pathways in the human brain often cause 

contralateral homonymous visual field defects (Miller, Newman, Biousse, & Kerrison, 

2008). Typically, patients with such scotomas show a variety of associated disorders (for 

review see (Lane, Smith, & Schenk, 2008), including hemianopic alexia (Spitzyna et al., 

2007; Schuett, 2009; Kerkhoff, Münbinger, Eberle-Strauss, & Stögerer, 1992; Pflugshaupt 

et al., 2009), inefficient visual search in the scotoma (Machner et al., 2009; Lane, Smith, 

Ellison, & Schenk, 2010; Keller, Lefin-Rank, & G., 2010) and a peculiar spatial bias 

towards their blind field when bisecting long horizontal lines or indicating their subjective 

visual straight ahead. Although completely forgotten for several decades (Kerkhoff & 

Bucher, 2008) this spatial bias is well known as the hemianopic line bisection error (further 

termed HLBE) since Axenfeld´s seminal description in 1894 (Axenfeld, 1894). Recent 

investigations have largely replicated and extended these early findings (Kerkhoff & 

Schenk, 2011; Schuett, Dauner, & Zihl, 2010; Zihl, Sämann, Schenk, Schuett, & Dauner, 

2009; Doricchi et al., 2005). Besides horizontal deviations in line bisection (Hausmann, 

Waldie, Allison, & Corballis, 2003; Zihl et al., 2009; Doricchi et al., 2005; Barton & 

Black, 1998)  or in the visual subjective straight ahead orientation (Ferber & Karnath, 

1999), vertical shifts in altitudinal hemianopia (Kerkhoff, 1993), or oblique shifts of the 

subjective visual straight ahead in homonymous quadrantanopia (Kuhn, Heywood, & 

Kerkhoff, 2010) were found. This contralesional spatial error contrasts with the well-

known ipsilesional spatial error in the same tasks in patients with visuospatial neglect 

(Halligan, Manning, & Marshall, 1990); (Schindler & Kerkhoff, 2004). 

 Despite this convergence of results demonstrating the existence of a contralesional 

spatial-perceptual bias in different types of heminopia (HA) or other types of visual field 

defects, the precise reason(s) for its occurrence are less clear and currently debated 

(Kerkhoff & Schenk, 2011). Early researchers of the HLBE advanced several theoretical 

explanations of this error (Kerkhoff & Bucher, 2008). One prominent account surmised 

that the HLBE towards the blind field reflects a kind of adaptive, oculomotor strategy 

which helps the patient to orient his eyes and attention further towards the blind field, 

which in turn might improve visual orientation and reduce the typical visual complications 

such as bumping into obstacles or disregarding persons on the blind side (Gassel & 

Williams, 1963). A recent study (Machner et al, 2009) reported no contralesional HLBE in 

acute HA and speculated that the HLBE in chronic HA thus may result from slow, 
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strategic, attentional adaptation to the scotoma. However, another recent study found no 

difference in the amount of the HLBE in acute versus chronic HA, and found in nearly all 

patients the typical contralesional error which was causally related to lesions of the lingual 

gyrus and cuneus (Baier et al, 2010). Their data do not support an interpretation of the 

HLBE as an attentional and oculomotor adaptation to the scotoma, but rather interpret it as 

a direct consequence of the extrastriate cortical lesion.  

 If the HLBE reflects or facilitates attentive orienting towards the blind field, 

experimental manipulations which direct spatial attention to or away from the blind side 

should modulate the HLBE in HA, just as they have been shown to modulate the 

ipsilesional line bisection error in patients with visuospatial neglect (Riddoch & 

Humphreys, 1983; Butter, Kirsch, & Reeves, 1990, Lin, Cermak, Kinsbourne, & Trombly, 

1996). To our knowledge, no study so far has investigated the role of spatial cueing in the 

HLBE. We therefore investigated in the present study in matched samples of rather chronic 

patients with left versus right-sided HA – all without unilateral visual neglect - , control 

patients with acquired brain damage but without HA or neglect, and healthy control 

subjects whether spatial cueing modulates the HLBE. In addition we tested the principal 

efficacy of our spatial cueing paradigm in 3 patients with leftsided neglect and leftsided 

hemianopia. 

 

 

2.3.2 Methods 

2.3.2.1   Patients and control subjects 

20 patients with perimetrically established unilateral, homonymous HA following 

unilateral posterior cerebral lesions (10 left-sided, 10 right-sided; see Table 4) and 10 

patients with unilateral or diffuse-disseminated brain lesions, but with perimetrically intact 

visual fields were tested (further termed Brain Damaged control patients; Table 4). Stroke 

was the most frequent aetiology in the HA sample (n=17, 85 %), followed by tumour 

operated (n=2, 10%) and closed head trauma (n=1, 5%). In addition, 10 healthy, 

dominantly right-handed (handedness-quotient of +100 in all cases) control subjects (8 

male, 2 female, mean age 50.5 years; range 22-70) were recruited.  
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None of the healthy control subjects had evidence of ophthalmological, neurological or 

psychiatric disease. All had perimetrically normal visual fields, and a mean visual acuity of 

0.98 (mean, range 0.7-1.2) for the near visual distance (0.4 m) in a standardized letter 

acuity chart.  

 In addition, three patients with leftsided spatial neglect and leftsided hemianopia 

after a right middle cerebral artery stroke (9, 11 and 12 months after stroke, respectively) 

were tested. All three patients were righthanded (+100 laterality quotient) and showed 

symptoms of leftsided visual neglect in several of the 5 neglect screening tests. In manual 

horizontal line bisection, 2 patients showed a rightward shift: Patient 1: + 19 mm, Patient 

2: + 10 mm. Patient 3 showed a leftward shift: -6 mm away from the true centre. In number 

cancellation all 3 patients omitted targets on the left side and to a smaller degree also on 

the right side (Patient 1: 8 left vs. 3 right), Patient 2: 3 vs. 1; Patient 3: 2 vs. 1). Patient 1 

showed leftward omissions when drawing a clock face from memory, patient 2 drew a 

normal clock face from memory, patient 3 showed distortions of the left side of the clock 

face and incorrect placement of the numerals on the left side of the clock face. Patient 1 

and 2 showed signs of leftsided neglect in figure copying, patient 3 not. Patient 1 showed 

11 omissions in the indented reading test, patient 3 showed 2 leftsided omissions, while 

patient 2 scored normally in the reading task. Visual perimetry revealed leftsided HA in all 

three cases (field sparing on the horizontal meridian: 4°, 6° and 2°, respectively). Visual 

search field was 16° in patient 1, and 33° in patient 2 in the left (blind) hemifield (search 

field could not be determined in patient 3 due to use of an automatic perimeter not 

allowing the manual measurement of the search field). In sum, all three patients had 

chronic leftsided HA plus leftsided visuospatial neglect. 

  

 All HA patients received visual exploration training (Kerkhoff et al., 1994)  as 

well as hemianopic reading training (if they showed hemianopic alexia, (Kerkhoff & 

Marquardt, 2009) over a time period of 4-6 weeks. All investigations of the current study 

were carried out before these treatments started, so that the treatments could have no 

differential effect on the current results. Brain damaged control patients did not receive 

visual treatments and were enrolled in the study before receiving any other 

neuropsychological treatment.   
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Figure 10: Schematic illustration of the 4 line bisection tasks. Four different starting positions of the slit in the line 

bisection task (far-left, mid-left, mid-right, far-right) were used to manipulate spatial attention. The arrows depict the 

direction of movement of the bisection slit. Note that the bisection task can only be solved when the subject attends the 

slit that bisects the horizontal bar. 

 

 

2.3.2.2.   Clinical-Neuropsychological tests 

Handedness was determined in all subjects with the German version of the Edinburgh 

handedness inventory (Salmaso & Longoni, 1985) which measures hand preference. This 

is expressed as a laterality quotient ranging from -100 (=strongly left-handed) over 0 

(=ambidextrous) to +100 (=strongly right-handed; results see Table 4). Visual letter acuity 

was measured separately for each eye with standardized, high-contrast letter charts 

(Fronhäuser, München, Germany) for the near (0.4 m) viewing distance in all 4 samples. 

Binocular visual fields were mapped with a Tübingen perimeter in all patients (for a 

detailed description see (Kuhn et al., 2010) results see Table 4). In short, dynamic visual 

perimetry was performed with a circular white target (luminance: 102 cd/m
2
; size: 1.02°) 

using a Tübingen bowl perimeter in a completely dark room. With the same perimeter, the 

extent of the visual search field - a measure of oculomotor capacity in the blind field – was 

measured (details in (Kerkhoff, Münbinger, & Meier, 1994). The subject was instructed to 

search with saccadic eye movements for a circular white target (size: 1.02°, luminance: 

102 cd/m
2
) that was moved by the perimetrist along every meridian from the periphery to 

the centre with a speed of 2°/sec. The sequence of the meridians tested was random. The 

patient presses the response key as soon as she/he detects the target. This position is scored 

as the eccentricity of the search field (in °).  
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Here, we indicate the average of the search field of all 6 meridians lying in the blind 

hemifield; the lower normal cutoff is 30° (Kerkhoff et al., 1994).  

Five conventional visual neglect tests – comparable to the Behavioural Inattention Test 

(Wilson, Cockburn, & Halligan, 1987) - were performed to rule out visual neglect in our 

HA samples and document visual neglect in the 3 additonal patients with neglect: 

horizontal line bisection of a 20 x 0.2 cm black line on a white sheet of paper; number 

cancellation (30 targets among 150 distracters, presented on a 29.7 x 21 cm large white 

paper), drawing of a clock face from memory, copying 3 geometrical figures (a star, a 

daisy, a face; each on a different sheet of paper) and an indented reading test of 180 words. 

Neglect was diagnosed when the truncation midline in bisection deviated more than 5 mm 

to the ipsilesional side (Kerkhoff, 1993), when more than 1 target was omitted on one side 

in number cancellation, when numerals were omitted or misplaced on the left side of the 

clock face test, or when the subject committed more than 2 reading errors in the indented 

reading test (Reinhart, Schindler, & Kerkhoff, 2011). None of the 3 patient groups (HA 

samples, BD control group showed any signs of visual neglect in any of the 5 neglect 

screening tests.  

Visual perimetry and visual search field testing as well as the experimental line bisection 

testing were performed in a totally darkened room (< 10 Lux room lighting), the only 

visible stimulus in perimetry and search field testing was the background illumination of 

the perimeter (3.2 cd/m
2
) and the test stimulus. In line bisection tests the only visible 

stimulus was the horizontal, white bar on the black computer screen. All other (screening) 

tests took place in a day-lit room (mean lighting: approximately 400 Lux). 

 

2.3.2.3   Computerized Horizontal Line Bisection Task 

Subjects were placed in front of a computer screen (17´´) in a distance of 0.45 m. The head 

was positioned in a head- and chinrest mounted on a table in front of the screen to prevent 

head movements during testing. On the screen a white horizontal bar (160 x 10 mm, 

luminance: 100 cd/m
2
) appeared centrally on the black screen. The bar contained a vertical 

slit (size: 5 x 10 mm) that appeared – in different experimental conditions - either on the 

far left end of the bar, in a mid-left position, in a right-mid position or on the far-right 

position of the bar (Fig. 11). The subject was asked to determine verbally when the slit was 
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exactly in the centre of the horizontal bar. To this purpose the examiner moved the slit via 

the software program (Kerkhoff & Marquardt, 2004) in steps of 1 mm slowly towards the 

other side of the bar until the subject indicated that the slit was exactly in the middle of it. 

To ensure patients were fixating the gap during each bisection trial the experimenter asked 

every subject when starting a bisection trial whether he/she could see the gap on the 

left/right side of the bar and and how it changed position according to the verbal 

commands of the subject to the experimenter. The experimenter checked regularly when 

moving the gap along the bar whether the subject re-fixated the new position of the gap 

within the bar. However, no eye tracking control was adapted to measure quantitatively 

whether the subject´s eye in fact fixated the gap. 

 Ten trials were performed within each of the 4 cueing tasks; 5 trials were 

performed en block with the gap starting from the left side and 5 trials were performed en 

block with the gap starting from the right side of the bar. This resulted in a total of 10 trials 

per cueing task. The sequence of the blocks was counterbalanced. Constant errors were 

computed using the method of limits by special software (Kerkhoff & Marquardt, 1998; 

Kerkhoff & Marquardt, 2004) between the objective centre of the bar and the mean 

position of the slit as determined by the subject. No motor component was involved in this 

bisection task on the subject´s side, nor was there any time limit for the subjects.  
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Legend: m/f: male/female; LE/RE: left/right eye; L/R: left/right; Enceph: encephalitis; BG: basal ganglia, Tu: tumour 

operated; CVI: cerebrovascular insult; CHI: closed head injury; TSL: time since lesion onset in months; L/R: left/right; 

occ: occipital, par: parietal, temp: temporal. 

 

 

 

 

 

Table 4   

Patient data: L1-L10: left Homonymous Hemianopia; R1-R10: Right Homonymous Hemianopia;  

C1-C10: Brain damaged control patients 

 

No. 

Age 

(yrs)/ 

Sex 

Aetiology 

TSL 

(months) 

Lesion side 

localization 

Visual acuity near  

LE/RE (%) 

Visual field 

sparing (°) 

Visual 

search field 

(°) 

Handedness 

 

L1 69/f CVI/120 R-occ 50/60 2 35 +100 

L2 40/f CVI/10 R-occ 100/100 14 66 +100 

L3 71/m CVI/24 R-occ 90/- 4 15 +100 

L4 63/m CVI/13 R-occ 60/50 2 25 +100 

L5 32/f CVI/9 R-occ-temp 60/50 1 30 +100 

L6 31/f CVI/2 R-par-temp 125/125 1 10 +100 

L7 33/m CVI/168 R-occ-temp 100/100 2 10 +100 

L8 56/m SHT/5 R-par-temp 90/50 4 42 +100 

L9 32/m CVI/96 R-temp 90/90 1 30 +100 

L10 32/m CVI/48 R-occ-temp 100/100 2 38 +100 

Mean 45.9/- 
-/49.5 Md: 

13 
--- 86.5/80.6 3.3° Md: 2 30.1 +100 

 

No. 

Age 

(yrs)/ 

Sex 

Aetiology 

TSL 

(months) 

Lesion side 

localization 

Visual acuity near  

LE/RE (%) 

Visual field 

sparing (°) 

Visual 

search field 

(°) 

Handedness 

 

R1 44/f CVI/15 L-occ-temp 70/70 5 22 +33.3 

R2 66/m CVI/4 L-occ-temp 80/80 15 42 +100 

R3 42/m CVI/36 L-occ-temp 80/80 20 55 +60 

R4 48/m CVI/38 L-occ-temp 80/80 3 44 +100 

R5 44/m Tu/11 L-occ-temp 80/80 5 34 +100 

R6 58/m CVI/7 L-occ 90/90 4 28 +100 

R7 33/m Tu/19 L-par-occ 100/100 6 45 +100 

R8 69/m CVI/3 L-occ 80/70 2 8 +100 

R9 62/m CVI/17 L-occ 100/60 5 10 +100 

R10 39/f CVI/3 L-occ 125/30 3 26 +100 

 
Mean 

 
50.5/- -/15.3 Md:9 --- 88.5/74.0 6.8° Md: 5 31.4 +89.3 

 

No. 

Age 

(yrs)/ 

Sex 

Aetiology 

TSL 

(months) 

Lesion side 

localization 

Visual acuity near  

LE/RE (%) 

Visual field 

sparing (°) 

Visual 

search field 

(°) 

Handedness 

C1 46/m Enceph./4 L-temp 100/100 --- --- +100 

C2 55/m Sepsis/10 diffuse 120/120 --- --- +100 

C3 49/m CVI/10 diffuse 90/90 --- --- +100 

C4 55/m CVI/50 L-BG -/63 --- --- +100 

C5 47/m CVI/15 L-BG 100/100 --- --- +100 

C6 63/m CVI/2 L-temp 120/120 --- --- +100 

C7 59/m CVI/3 R-front-temp 100/100 --- --- +100 

C8 48/m CVI/8 L-temp 100/80 --- --- +100 

C9 63/f CHI/34 diffuse 100/70 --- --- +100 

   C10 42/f CVI/14 L-temp 100/100 --- --- +100 

Mean 52.7/- -/15.0 Md:10 --- 103.3/94.3   
 

+100 
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2.3.3. Results 

 

2.3.3.1.   Comparison of the samples 

Statistical comparisons revealed that neither handedness ([F(3, 36) = 1.47; p = 0.24]), nor 

age ([F(3, 18.78) = 1.22; p = 0.33]), nor gender [Χ
2
 (3, n=40) = 2.88, p=0.41] were 

significantly different between the four samples. Visual acuities for the near viewing 

distance (0.4m) were examined separately for the left and the right eyes. There were no 

significant differences between the three patient groups ([F(2, 26) = 2.59; p = 0.9] for the 

left eye; [F(2, 26) = 2.16; p = 0.14] for the right eye).  

Moreover, the three patient groups did not differ significantly regarding time since lesion 

(median left HA = 18.50 months; median right HA = 13.00 months, median control 

patients= 10 months; [F(2, 16.12) = 1.62; p = 0.23]).  

 

2.3.3.2. Visual field sparing and saccadic search field 

Both hemianopia (HA) samples did not differ significantly from each other in visual field 

sparing (mean left HA = 3.3°; mean right HA = 6.8°; T(18)= -1.57, p= 0.135). One out of 

ten leftsided HA patients showed a visual field sparing of 14°. Among the rightsided HA 

sample one patient had a field-sparing of 15°, the second of 20°. Visual search field in the 

blind field did not differ significantly between the two HA groups (mean left HA = 30.1°; 

mean right HA = 31.4°, T(18)=-0.18, p=0.86). Saccadic search field did not correlate 

significantly with the HLBE (Spearman correlations: Rho: -0.072, p>0.05, two-tailed).  

 

 

3.3. Spatial cueing direction in hemianopic patients and control subjects  

The vertical slit was moved by the experimenter towards the middle of the bar, starting at 

different positions (far-left, mid-left, mid-right, far-right). To examine if there was a 

possible "cueing" effect due to these starting positions, an ANOVA with the factors group 

(HA left, HA right, normal control, and BD control) and starting position was computed. 

There was no main effect of starting position [F(3, 108)=1.76, p=0.16] and also no 
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significant group × starting position interaction [F(9, 108)= 0.92, p=0.51]. The significant 

effect of group [F(3, 36)= 61.58, p<0.001] indicated the expected line bisection deviation 

error of HA patients to the contralesional, blind field (leftwards in left HA, rightwards in 

right HA; Fig. 2). Subsequent comparisons revealed significant differences between the 

HA groups and the two control groups [left HA: T(36) = -7.46, p < 0.001; right HA: 

T(36)= 8.23, p < 0.001], but no significant difference between the two control groups 

(mean difference = 0.015 mm, p = 0.948). Both control groups showed the expected 

pseudoneglect [normal control: mean leftward shift = -2.92 mm, T(9) = -1.98, p = 0.039; 

BD control: mean leftward shift = -2.98 mm, T(9) = -1.75, p = 0.055, see Fig. 12].  

    

 

 

Fig. 12:  

Mean deviations (signed errors, in mm) of the four experimental groups in the 4 line bisection tasks. Negative or positive 

deviations illustrate leftward or rightward deviations from the physical midline of the line. HA left/right: left vs. 

rightsided hemianopia; N Control/BD Control: normal control subjects vs. brain damaged control subjects. 

 

  



Chapter II  

72 

 

2.3.3.4.   Spatial cueing in relation to lesion anatomy 

 Although we found no evidence of spatial cueing in line bisection in our 

hemianopic patients (see 2.3.3.3 above), this effect might theoretically be due to a mixture 

of a subgroup of patients who indeed may have responded to cueing and those who did not 

respond. One interesting modulating variable in this context that may have influenced 

cueing differentially is lesion anatomy. As we know that cueing in neglect patients with 

temporo-parietal lesions is very effective it might be hypothesized that cueing might also 

work better in HA patients with lesions beyond the occipital lobe, i.e. temporo-occipital 

lesions.  As some of our hemianopic patients had pure occipital lesions while others had 

lesions including occipital brain areas but extending beyond the occipital lobe (in most 

cases into the temporal cortex), the nonsignificant effect of spatial cueing thus may have 

been due to a mixture of these two subgroups. To examine whether the bisection errors 

were different in these two subgroups (irrespective of the side of hemianopia), an ANOVA 

with the factors group (occipital lesion versus extended lesion) and starting position (far-

left, mid-left, mid-right, far-right) was computed on the unsigned HLBE. Again, there was 

no main effect of group [F(1, 108)=0.166, p=0.689], no main effect of starting position 

[F(3, 54)=0.142, p=0.884], and no significant group × starting point interaction [F(3, 

54)=0.668, p=0.530]. Hence, no differential influence of lesion anatomy was found on the 

HLBE under the four different cueing conditions. Fig. 14 summarizes the results. 

 

2.3.3.5   Spatial cueing direction in neglect patients 

The single data from the 3 neglect patients were collapsed for each task and analysed with 

nonparametric statistics across the 4 spatial cueing task conditions. A Friedman-Test 

revealed a highly significant difference between the 4 task conditions (Χ
2
=28.45, df=3, 

p<0.001). Subsequent paired comparisons with Wilcoxon-Tests revealed significant 

differences between the following task/cueing conditions: Far-Left vs. Mid-Right (z=-

3.297, p<0.001); Far-Left vs. Far-Right (z=-3.408, p<0.001); Far-Right vs. Mid-Right (z=-

2.728, p<0.001), and Mid-Left vs. Far-Right (z=-3.448, p<0.001).  
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 All other comparisons did not reach statistical significance (largest z-value: -1.023, 

smallest p=0.306). In summary, four of the 6 possible statistical comparisons between the 4 

spatial cueing conditions revealed a highly significant effect of the cue position on line 

bisection performance.  

In general, leftward cue positions were associated with a leftward shift in line bisection, 

whereas more rightward cue positions led to a more rightward shift in line bisection as 

compared to the more leftward starting positions of the cue (see Fig. 13, averaged results 

on the right side).  

 

 

Fig. 13:  

Mean deviations of 3 patients with leftsided visual neglect and leftsided hemianopia in the line bisection task under four 

different cue conditions (see Fig. 10). Note the different scaling of the y-axis as compared to figure 11, due to the large 

cueing effects in the 3 patients. Same convention of deviations as in Fig. 12 
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2.3.4. Discussion 

 Our study revealed clearly, that 4 different manipulations of spatial cueing had no 

significant effect at all on the HLBE. As the starting point of the slit which served to bisect 

the horizontal bar on the computer screen did not induce any effect on the HLBE, it was 

obviously irrelevant. Hence, neither did patients with left or right HA benefit from such a 

spatial cue that must be attended because otherwise the subject cannot perform the 

bisection task, nor did their performance deteriorate in the opposite cue condition. It might 

be conjectured that this was simply because our spatial cueing manipulation was 

ineffective. However, the very same manipulation revealed significant spatial cueing 

effects in the 3 patients with leftsided HA and left visuospatial neglect (Fig. 13). These 

cueing effects were significant for 4 out of 6 possible comparisons between the 4 cueing 

conditions, thus showing a strong effect of the slit position on bisection performance 

despite the small group of neglect patients. In general, the final bisection performance 

revealed a clear covariation with the initial starting position of the slit. Put differently: the 

more leftward the cue position, the more leftward the bisection and vice versa. These 

observed spatial cueing effects in our 3 neglect patients are largely compatible with earlier 

findings – though achieved with different experimental manipulations - showing that a 

leftsided (contralesional) cue in the neglected hemispace (a letter, a hand movement or a 

moving stimulus, see below) typically shifts bisection towards the cue while a cue on the 

right (ipsilesional) side of the horizontal bar shifts bisection towards this cue was either 

ineffective or even deteriorated performance (Riddoch & Humphreys, 1983; (Butter et al., 

1990; Lin et al., 1996).  

 Our null-finding of spatial cueing in chronic HA (without neglect) may be 

surprising at first glance given that repetitive visual attention training is clearly effective as 

a treatment for the visual search disorder of HA patients (Lane et al., 2010), and in light of 

the robust effects of the same spatial-attentional cues on line bisection in visual neglect. 

However, a recent study by Baier et al (2010) found the HLBE in acute and chronic HA 

indicating no emergence as a kind of compensatory behaviour that facilitates attentive 

orienting to the blind field. Together, their and the current findings suggest that the HLBE 

in chronic HA is not the consequence of hyperattention to the blind or hypoattention to the 

intact visual field. 
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Fig. 14: Mean unsigned line bisection errors (in mm) in the 4 spatial cueing conditions during line bisection (see Fig. 10), 

shown separately for patients with pure occipital lesions vs. patients with lesions extending beyond the occipital lobe 

(extended lesions). Note that left and right hemianopic patients were collapsed into the two lesion subgroups irrespective 

of the side of hemianopia. Positive deviations indicate bisection errors toward the blind field. 
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 Rather, the lesion data of Baier et al (2010) and Zihl et al. (2009) suggest that the 

HLBE is unlikely of attentive origin, but reflects a kind of spatial-perceptual error to the 

contralesional side, that emanates early in the course of hemianopia and may persist for a 

long time. Moreover, the comparable size of the HLBE in acute and chronic HA patients in 

the Baier et al. (2010) study argues against the gradual development of the HLBE in terms 

of a compensatory phenomenon. Furthermore, the null-effect of spatial cueing as analysed 

in different lesion subgroups of our hemianopic patients suggests that the HLBE is a robust 

phenomenon that is not as easily modulated as its counterpart in patients with leftsided 

hemianopia plus neglect (as shown in Fig. 13 of our study). Taken together, all these 

accumulated findings render an explanation of the HLBE in terms of facilitating attentive 

orienting towards the blind field unlikely.  

 Obviously, the HLBE does not “serve” a better compensation of the field loss as 

implicitly assumed in early theories (Gassel & Williams, 1963) or more explicitly stated in 

recent explanations (Mitra, Abegg, Viswanathan, & Barton, 2010). More specifically, 

according to the current results spatial attention does not seem to play a major role in the 

maintenance of the HLBE in chronic hemianopia. Rather, the HLBE represents a type of 

visuospatial disturbance that immediately follows after lesion to some extrastriate cortical 

areas.  

 Finally, a very early account of the HLBE can be rejected as well. The german 

vision researcher W. Poppelreuter (Poppelreuter, 1922) suggested that HA patients develop 

a new “pseudofovea” located some degrees in the contralesional, blind field. Although he 

did – to our knowledge – not explicitly state that the HLBE and the “pseudo-fovea” might 

be connected as both represent a contralesional spatial shift towards the scotoma, it is 

tempting to assume that both might be co-related. More recent studies (Trauzettel-

Klosinski, 1997) have supported this notion with their finding of a small fixational shift to 

the blind field which according to their interpretation facilitates reading. We recently tested 

the eccentric-fixation hypothesis (Poppelreuter, 1922) as a potential explanation of the 

HLBE explicitly by blind spot mapping of the ipsilesional eye in 20 HA patients, 10 

nonhemianopic, but brain-damaged control patients and 10 healthy individuals (Kuhn et 

al., 2012). Importantly, the position of the blind spot was in the normal range in 38 of 40 

tested subjects, did not differ significantly between hemianopic and nonhemianopic 

groups, and did not correlate significantly with the HLBE which was present in all 20 HA 
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patients. Moreover, the HLBE showed no significant correlation to the capacity of the HA 

subjects to explore their blind field with scanning eye movements (“visual search field”) 

which might have been expected if the HLBE reflects a compensatory orienting of eye 

movements to blind field. Together, these recent results show that eccentric fixation plays 

no major role in the emergence of the HLBE. The same conclusion was reached for the 

contralesonal, oblique error in the subjective visual straight ahead observed in 15 

nonneglecting patients with homonymous quadranopia, which was not accompanied by 

any abnormality of horizontal or vertical eye position as determined by blind spot mapping 

(Kuhn et al, 2010).  Moreover, visual scanning capacity in the blind field and the size of 

the HLBE towards the blind field are unrelated phenomena, suggesting that the HLBE 

represents an independent, third feature of HA patients besides their well-established visual 

exploration deficits and hemianopic alexia.  

 Despite our clear results, some caveats have to be mentioned. Firstly, other types of 

spatial cueing, i.e. local or global visual motion cues, which effectively modulate line 

bisection and other visuospatial deficits in patients with spatial neglect (Schindler & 

Kerkhoff, 2004), may be more effective in manipulating spatial attention in HA, and in 

turn may influence the HLBE. Secondly, cues from another modality (acoustic, haptic) 

may prove more effective than cues delivered in the same – “impaired” - visual modality. 

Thirdly, spatial cueing may be very well effective in acute hemianopia, when the patients 

try to adapt to the sudden field loss (Machner et al, 2009), and develop compensatory 

strategies. This effect may have vanished after 9-12 months, when most of our patients 

were examined. This has to be tested in subsequent studies. Finally, repetitive spatial-

attentional training instead of transient spatial cueing – such as recently employed 

elegantly in attention therapy for HA as a treatment for the visual search disorder (Lane et 

al, 2010) - may indeed reduce the HLBE transiently or even permanently. These are future 

issues that may help us to better understand the nature of the HLBE and the mechanisms of 

recovery from HA and associated visuospatial disorders. Finally, solving these issues may 

in the future lead to an effective treatment of the HLBE in HA which is at present not 

within reach. 
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Chapter III:   General Discussion 

 

This doctoral thesis studied the relationships between the HLBE, eccentric fixation, 

oculomotor search behavior, and spatial attention. The present three studies investigate by 

dint of the HLBE, as an appropriate neuropsychological operationalization of 

circumscribed spatial irritations after postchiasmatic brain damage, the contribution of 

these components for its emergence. All three studies showed that this contralesional error 

is a quintessential and exceedingly robust phenomenon in nearly all examined patients with 

homonymous visual field loss. 

Since Axenfeld (1894) a whole slew of researchers has repeatedly approved this 

horizontal deviation (Barton et al., 1998; Doricchi, Onida & Guariglia, 2002, Hausmann et 

al., 2003; Kerkhoff & Schenk, 2011) also with other methods, such as the assessment of 

the visual subjective straight ahead (VSSA, Kuhn, Heywood & Kerkhoff, 2010). All 

authors conjointly documented disturbed spatial perceptions of the contralesional hemifield 

caused by unilateral brain lesions, primarily in hemianopic patients.  

Bisection errors obviously are not just limited to the horizontal dimension, but also could 

be shown for the verticality in patients with altitudinal hemianopia (Kerkhoff, 1993).  

Despite several hypotheses (Kerkhoff & Bucher, 2008) the mechanisms of emergence are 

still unclear. Oculomotor adaptation (Gassel & Williams, 1963) and eccentric fixation 

(Trautzettel-Klosinski, 1997) as well as increasing attention by spatial cueing as 

adjustment strategies, in order to broaden the visual search field, seemed to be promising 

approaches. Therefore their influence on the HLBE was analyzed in all three studies.   
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3.1 Summary

 

Obviously, the horizontal bias (HLBE) is not exclusively observable in cases of 

horizontal or vertical Heminanopia, but also in homonymous Quadrantopia (HQ), as 

shown in study I with 15 subjects with unilateral HQ. Interestingly only leftsided field 

defects deviated significantly from the objective midpoint, while rightsided HQ patient 

performed the linebisecting tasks quite accurately.  

In contrast, irrespective of the affected quadrant, all HQ patients misjudged significantly 

their visual subjective straight ahead (VSSA). All patients deviated into their scotoma, in 

both the horizontal and the vertical orientation. Vertical shifts were larger in lower HQ 

than in upper HQ groups, while no such difference is to be noted for the horizontal shifts.  

The biggest vertical shift was evidenced for the left lower HQ group, which correlates 

highly with subjectively circumscribed spatial uncertainties in judging visual depth when 

taking the stairs (Study I).  

Statistical analyses of the intercorrelations indicated a high significance between the HLBE 

and the horizontal shift of the VSSA in HQ patients. Otherwise there were no significant 

correlations between vertical deviations of the VSSA and the HLBE.  

It may be surmised that the oculomotor system aids in compensating the visual field loss 

by performing fast saccadic eye movements and fixations. Obviously, this degree of 

compensation (operationalized via the size of visual search field) and the HLBE were not 

significantly related to each other, thus rendering oculomotor or scanning deficits an 

unlikely explanation of the HLBE.  

Mapping the blind spot revealed in none of all three studies a significant peculiarity, 

showing that static eccentric fixation was not present in the majority of patients studied. 

Morover, there was no significant correlation between the blind spot and the HLBE or the 

VSSA.  
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In Study II and III the starting position in the line bisecting tasks was systematically 

manipulated. The bisecting slit, moved by the experimenter according to the verbal 

commands of the participants towards the midpoint of the bar, started from 4 different 

positions: right end, left end (Study II, III) or mid-right and mid-left (Study III).  

No significant correlations between the starting position and the HLBE were found, thus 

ruling out a spatial cueing effect on the HLBE with this paradigm.  

Taken together, neither eccentric fixation nor spatial cueing could be detected in all three 

experiments as an assumingly active factor that favors the emergence of spatial-perceptive 

deviations, gaugeable by the HLBE and VSSA.   

Nevertheless, all present studies demonstrated the existence of the HLBE which seems to 

be quite consistent and unswayable. In search of plausible reasons for this phenomenon, 

the applied measurement methods and other approaches should be discussed.  
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3.2 Eccentric fixation and blind spot mapping 

 

The identification of a new retinal fixation locus is only reliably accomplishable 

with laser opthalmoscopes. As it is a question of a minimal displacement about 1-2°, it 

might remain undiscovered within perimetrical routine checkup (Trauzettel-Klosinski, 

1997), especially because standard perimetry does not include eyetrack- and fundus-

control.  

Mapping the blind spot during perimetrical examination is an indirect way to exclude 

foveal shifts, without the complexity of a fundus-controlled assessment. Primarily, the 

blind spot mapping tests whether there is some deviation from the anatomically anticipated 

position of the blind spot in relation to the fovea. It also would allow conclusions about 

eccentric fixation during this testing. Obviously, eccentric fixation as measured by blind 

spot mapping can be ruled out in most of our patients with primarily chronic hemianopia. 

This may be different in acute cases. Moreover, dynamic fixational shifts during the 

performance of a bisection task can not be ruled out with the method of blind spot 

mapping.  

Given that all participants had a time since lesion of at least 6 months (Study II: median for 

HA/right=11.5 months, HA/left=12.5 months, BD-controls=7.5 months; Study III: median 

for HA/right=13.0 months, HA/left=18.5 months, BD-controls=10.0 months) oculomotor 

adjustments subsequently from neurovisual rehabilitation and compensation in daily life 

can be assumed. 

Taken together, the role of eccentric fixation for the emergence of the HLBE does not need 

to be definitely excluded yet. Rather, future studies should have another look at this issue, 

i.e. by studying dynamic fixation and oculomotor functions related to bisection.  
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3.3 Visuo-spatial distortions due to cortical “over-activation”  

 

Another possibly helpful approach to the occurrence of the HLBE could be derived, 

analyzing other visual exploration techniques, required by linebisection tasks. To achieve 

the horizontal judgement patients have to scan permanently the blind hemifield with 

saccadic eyemovents, i. e. they use their fovea to find the “invisible” end of the line. The 

“visible” part of the line has not to be searched actively because it is allways “in sight” by 

the peripheral vision.  

As a consequence neuronal responses in form of an over-activation of cortical 

neurons, which represent the central vision within the V1 region, have to be assumed, in 

sensu of a cortical magnification. This lateralized neuronal amplification could cause an 

asymmetrical activation in both occipital lobes with awkward effects on the spatial 

judgements (Reuter-Lorenz et al., 1990). This could possibly lead to a magnification of 

stimuli, perceived in the affected hemifield. To define the midpoint of a line, its complete 

length has to be measured and two equivalent sections have to be found, without 

underestimation or overestimation of one half. This would also explain why manipulation 

of the starting point did not influence the occurrence of the horizontal bias. No matter 

where the transector starts, in order to survey the whole length of the line, eyemovement 

has repeatedly to be brought into the blind hemifield.  

Nielsen et al. showed in three experiments with faked hemianopia that all subjects 

biased consistently centripetally, which the authors explain as a shift towards the point of 

fixation (Nielsen, Intriligator & Barton, 1999). They assume modified perceptual 

conditions due to the constricted visualfield as the main reason for the upcoming horizontal 

deviation, postulating angle bisection instead of linebisection. This centralpetal 

displacement seems to be a normal phenomenon, provoked by stimulus exposure in only 

one visual hemifield. Apparently, if the line of sight ends into the objective midpoint of the 

stimulus, the performance becomes more accurate.  
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3.4 Mismatch-induced vestibular over-compensation  

 

Given to the findings of reciproque visuo-vestibular inhibition mechanisms in the 

intact brain, the possibility of the HLBE resulting from vestibular overcompensation 

because of missing visual data (due to the field defect), in sensu of a visual deactivation 

(Brandt, 1998), should be discussed.  

The visual field loss displays a persistent irritation in the interplay between the the PIVC 

and the visual cortices. To ensure spatial orientation, despite of the blind fields, affected 

patients have to deploy alternative strategies. Patients’s awareness of their neurovisual 

deficit enforces higher attention and prudence, leading to emplified mental representation 

of the contralesional hemifield. From the clinical view, changes in self-monitoring and 

self-verbalization behavior are well reported by affected people. This would trigger a high 

concentration into the blind field, without visual-perceptive control but stronger analysis of 

only “imagined” spatial informations. Consequently, asked for line bisecting performance 

or other realistic spatial demands, the estimation of the missed vision range is magnified 

and causes spatial misjudgements into the blind hemifield.  

This could be a scenario, explaining how the idea of reciproque visuo-vestibular inhibition 

according to Brandt et al. (2002) worked.  

In consideration of the fact that about 10% of the optic nerve’s axons wire up to the 

thalamic circuitry before running into the lateral geniculate nucleus (LGN) the question has 

to be asked which consequences this has. Theoretically, patients with lesions within the 

optic tract, i. e. pre-geniculate lesions, should show a minor manifestation of the HLBE 

than patients with postgeniculate lesions. This is in agreement with lesion studies of the 

HLBE (Zihl et al, 2009, Baier et al, 2010) who found a rather posterior occipital locus of 

those patients showing the typical HLBE. Moreover, this small portion of thalamic visual 

inputs reaches the parietal lobe via subcortical detours and may distract the occipito-

parietal circuit (Kravitz et al., 2011) and facilitate dysfunctional relearnings of regulatory 

processes within the PIVC system. 
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3.5 Perspectives and clinical implications 

  

 In light of the above discussed ideas a stronger multisensory treatment of patients 

with neurovisual disorders and associated visuo-spatial disturbances, in particular the 

HLBE, seems recommended. This would imply, that simultaneously to conventional 

compensatory interventions, where saccadic eye movements into the blind field are 

extensively trained, the vestibular system could also to be “trained” or stimulated. This 

could for instance include galvanic-vestibular stimulation, a technique that can be easily 

and without side effects be administered (Utz et al., 2011).  

 Interestingly, such stimulation immediately modulates the ipsilesional line 

bisection error in patients suffering from left visuospatial neglect (Utz et al, 2011). Such 

modulatory techniques or other vestibular “trainings” (i.e. postural training) could aim 

towards a better self-awareness of possible overcompensating strategies, so that patients 

might learn to “switch” consciously between the visual or vestibular system to adjust to the 

visual loss. This might also help to reverse the tendency of many patients with visual loss 

to withdraw from life because they fear visual, motor or mental overload, andn because 

they try to avoid psychosocial embarrassement. Some patients with visual field deficits 

also complain about light symptoms of swaying vertigo provoked by the new experience of 

persistent visual insecurity and fast fatigue. Such multisensory treatments as mentioned 

above – which still have to be developed in detail – might also help to reduce anxiety and 

emotional disturbances in patients with homonymous visual field defects.  
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