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Abstract 

 

Skills of argument play a pivotal role in many aspects of our lives. To persuade 

others from our opinions we require the ability to construct convincing arguments. 

But argumentation is not only a means of effective communication. It is also central 

to our thinking processes to make sound judgments and decisions. In particular, 

when situations are complex, when information is unclear, incomplete, and 

contradictory, or when conflicting values, interests, and objectives must be 

reconciled, it is essential to carefully weigh the arguments for and against available 

alternatives. We are continually facing situations of this type, be it in our jobs, in our 

private lives, or as citizens who form an opinion on political issues and critically and 

actively participate in public discussions.  

Despite the fact that argumentation is one of the most fundamental skills, research 

consistently shows that people struggle with sound argumentative reasoning in 

everyday situations, and likewise, exhibit remarkable deficiencies in professional and 

academic argumentation. It has been criticized that our schools and universities are 

responsible for a large share in this disappointing result. It is said that education 

largely neglects this important set of skills, thus, fails not only in imparting 

argumentation skills as such but also in fostering a positive attitude and appreciation 

towards argumentation as a social practice and way of knowing.  

Given this need to place more emphasis on argumentation, it is not surprising that 

approaches to fostering argumentation learning have been a considerable focus of 

educational research. In particular, state of the art computer technologies may offer 

new opportunities to significantly improve current practices in teaching and learning 

of argumentation skills. Adaptation technologies hold promise for a new generation 

of systems that adjust to individual differences of learners and flexibly respond to 

situational demands, thereby equally improving user experience and learning 

effectiveness. While research has achieved impressive advances over the last three 

decades, many crucial aspects in designing and developing effective argumentation 

learning technologies are still not sufficiently understood, which is a key reason 

preventing an uptake of such technologies on a broader scale.  

This dissertation thesis seeks to make a contribution to this important research 

area at the intersection of computer science and the learning sciences. The thesis is 

the result of an interdisciplinary research program that addresses four issues of 
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pivotal importance in realizing the promises of adaptive argumentation learning 

systems: 

1. User interface: How can argumentation user interfaces be designed to 

effectively structure and support problem solving, peer interaction, and 

learning? 

2. Software architecture: How can software architectures of adaptive 

argumentation learning systems be designed to be employable across 

different argumentation domains and application scenarios in a flexible and 

cost-effective manner? 

3. Diagnostics: How can user behavior be analyzed, automatically and 

accurately, to drive automated adaptations and help generation? 

4. Adaptation: How can strategies for automated adaptation and support be 

designed to promote problem solving, peer interaction, and learning in an 

optimal fashion?  

Regarding issue (1), this dissertation investigates argument diagrams and structured 

discussion interfaces, two areas of focal interest in argumentation learning research 

during the past decades. The foundation for such structuring approaches is given by 

theories of learning and teaching with knowledge representations (theory of 

representational guidance) and collaboration scripts (script theory of guidance in 

computer-supported collaborative learning). This dissertation brings these two 

strands of research together and presents a computer-based learning environment that 

combines both approaches to support students in conducting high-quality discussions 

of controversial texts. The diagrams help learners prepare for the discussion by 

providing a tool to graphically organize, and consequently better understand, the 

relationships between claims and arguments of given texts. Moreover, during the 

discussions, the diagrams are available as graphical agendas and material collections, 

which stimulate new discussion contributions and to which references may be made. 

The structuring of the discussions through a collaboration script helps students 

engage in critical-constructive forms of dialog. An empirical study confirms that this 

combined approach has positive impact on the quality of discussions, thus, underpins 

the theoretical basis of the approach. Beyond that, the present approach lays the 

foundation for subsequent research. In particular, anecdotal evidence suggests that 

combining the two structuring elements may lead to positive synergistic effects, an 

observation that calls for future research on combining different structuring 

approaches more generally. 
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Regarding issue (2), this dissertation presents a software framework for enhancing 

argumentation systems with adaptive support mechanisms. Adaptive support 

functionality of past argumentation systems has been tailored to particular domains 

and application scenarios. A novel software framework is presented that abstracts 

from the specific demands of different domains and application scenarios to provide 

a more general approach. The approach comprises an extensive configuration 

subsystem that allows the flexible definition of intelligent software agents, that is, 

software components able to reason and act autonomously to help students engage in 

fruitful learning activities. The behavior of these agents can be configured by 

defining pedagogically relevant patterns, feedback messages, and feedback 

strategies. Four showcase applications highlight specific capabilities and design 

options offered by the software framework; together, they demonstrate the generality 

and breadth of the approach. Thus, the present approach makes an important 

contribution to the software design of adaptive argumentation systems. The 

development of adaptive learning technologies is generally complex and time-

consuming and requires technical, domain-specific, and pedagogical expert 

knowledge. Therefore, a graphical authoring tool has been conceptualized and 

implemented to simplify the process of defining and administering software agents 

beyond what has been achieved with the provided framework system. Among other 

things, the authoring tool allows, for the first time, specifying relevant patterns in 

argument diagrams using a graphical language. Empirical results indicate the high 

potential of the authoring approach but also challenges for future research.  

Regarding issue (3), the dissertation investigates two alternative approaches to 

automatically analyzing argumentation learning activities: the knowledge-driven and 

the data-driven analysis method. The knowledge-driven approach utilizes a pattern 

search component to identify relevant structures in argument diagrams based on 

declarative pattern specifications. The capabilities and appropriateness of this 

approach are demonstrated through three exemplary applications, for which 

pedagogically relevant patterns have been defined and implemented within the 

component. The approach proves particularly useful for patterns of limited 

complexity in scenarios with sufficient expert knowledge available. The data-driven 

approach is based on machine learning techniques, which have been employed to 

induce computational classifiers for important aspects of graphical online 

discussions, such as off-topic contributions, reasoned claims, and question-answer 

interactions. Validation results indicate that this approach can be realistically used 

even for complex classification tasks involving natural language. This research 

constitutes the first investigation on the use of machine learning techniques to 



viii  Abstract 

 

analyze diagram-based educational discussions. It thus provides a solid foundation 

for future research and practical use of adaptation technologies in the field of 

computer-supported collaborative learning. All in all, the knowledge-driven and 

data-driven approaches to analyze argumentation learning activities can be 

considered complementary. The dissertation brings up and discusses the still largely 

unexplored topic of capitalizing on a combination of both approaches. The developed 

framework system offers the required technical infrastructure to explore this question 

in greater detail in future research and to implement corresponding practical 

solutions.  

The dissertation concludes with discussing the four addressed research challenges 

in the broader context of existing theories and empirical results. The pros and cons of 

different options in the design of argumentation learning systems are juxtaposed; 

areas for future research are identified. This final part of the dissertation gives 

researchers and practitioners a synopsis of the current state of the art in the design of 

argumentation learning systems and its theoretical and empirical underpinning. 

Special attention is paid to issue (4), with an in-depth discussion of existing 

adaptation approaches and corresponding empirical results. In closing, the non-

adaptive argumentation environment, which was designed and researched in context 

of issue (1), is revisited. Prospects for enhancing this environment with automated 

feedback are elaborated. In particular, ways to enable the automated analysis and 

support of online discussions both on the content level and the social level are 

discussed. A key to success may be the exploitation of machine interpretable user 

inputs with explicit semantics, such as typed diagram elements, pre-structured 

discussion contributions, and explicit references between diagram elements and 

discussion contributions. The dissertation presents initial insights on the feasibility of 

such an approach, gained from an exploratory data analysis.  
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Zusammenfassung 

 

Argumentationsfähigkeiten nehmen eine herausragende Stellung in vielen Bereichen 

des Lebens ein. Um andere von unseren Ansichten zu überzeugen, brauchen wir die 

Fähigkeit, überzeugend zu argumentieren. Argumentation ist jedoch nicht nur ein 

Mittel zur effektiven Kommunikation, sondern spielt auch eine wesentliche Rolle 

innerhalb unserer Denkprozesse, um Urteile und Entscheidungen in rationaler Weise 

treffen zu können. Insbesondere wenn Situationen sich komplex gestalten, wenn 

Informationen unklar, unvollständig und widersprüchlich sind, oder wenn 

gegensätzliche Werte, Interessen und Ziele in Einklang zu bringen sind, müssen 

Argumente und Gegenargumente sorgfältig abgewogen werden. Wir stehen solchen 

Situationen ständig gegenüber, sei es in unserem Beruf, in unserem Privatleben oder 

auch als Bürger, die sich zu politische Fragen eine Meinung bilden und sich kritisch 

und aktiv an öffentlichen Diskussionen beteiligen.  

Nichtsdestotrotz zeigen Forschungsergebnisse übereinstimmend, dass 

bemerkenswerte Schwächen sowohl bei informellen, beruflichen als auch 

akademischen Formen der Argumentation weit verbreitet sind. Einen großen Anteil 

an diesem Missstand wird unseren Schulen und Universitäten zugeschrieben, welche 

die Ausbildung von Argumentationskompetenzen sträflich vernachlässigten. Damit 

werde nicht nur die Vermittlung von Argumentationsfähigkeiten an sich versäumt, 

sondern ebenso die Förderung einer positiven Einstellung und Wertschätzung 

gegenüber Argumentation als soziale Praxis und Erkenntnismethode.  

Es ist daher nicht weiter überraschend, dass die Bildungsforschung Ansätze zum 

Erlernen von Argumentationsfähigkeiten verstärkt in den Blick genommen hat. 

Insbesondere moderne Computertechnologien bieten neue Möglichkeiten, die 

aktuelle Praxis des Lehrens und Lernens von Argumentationsfähigkeiten in 

entscheidender Weise zu verbessern. Adaptionstechnologien versprechen eine neue 

Generation von Systemen, welche sich an individuelle Unterschiede von Lernenden 

anpassen und flexibel auf situative Anforderungen reagieren, um gleichermaßen 

Nutzererlebnis und Lernerfolg zu verbessern. Obwohl die Forschung in den letzten 

drei Jahrzehnten beeindruckende Fortschritte erreicht hat, sind wesentliche Aspekte 

hinsichtlich des Designs effektiver Lerntechnologien für Argumentation immer noch 

nicht hinreichend verstanden, was einem Einsatz solcher Systeme auf breiterer Basis 

entgegensteht.  
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Diese Dissertationsschrift widmet sich diesem wichtigen Bereich in der 

Schnittmenge zwischen informatischer und bildungswissenschaftlicher Forschung. 

Sie behandelt im Rahmen eines interdisziplinären Forschungsprogramms die 

folgenden vier Fragestellungen, welche bei der Realisierung adaptiver 

Argumentationssysteme von zentraler Bedeutung sind: 

1. Benutzerschnittstelle: Wie müssen Benutzerschnittstellen beschaffen sein, 

um Problemlöse-, Kooperations- und Lernprozesse effektiv zu strukturieren 

und zu unterstützen? 

2. Softwarearchitektur: Wie können die Funktionalitäten eines adaptiven 

Argumentationslernsystems in eine Softwarearchitektur abgebildet werden, 

welche flexibel und mit angemessenem Aufwand in verschiedenen 

Bereichen und Szenarien einsetzbar ist? 

3. Diagnostik: Wie kann Benutzerverhalten automatisch und mit hoher 

Genauigkeit analysiert werden, um automatisierte Anpassungen und 

Hilfestellungen effektiv zu steuern? 

4. Adaption: Wie sollten automatisierte Anpassungen und Hilfestellungen 

ausgestaltet werden, um Problemlöse-, Kooperations- und Lernprozesse 

optimal zu unterstützen? 

Hinsichtlich Fragestellung (1) untersucht diese Arbeit Argumentationsdiagramme 

und strukturierte Onlinediskussionen, zwei Schwerpunkte der Forschung zu 

Lernsystemen für Argumentation der vergangenen Jahre. Die Grundlage solcher 

Strukturierungsansätze bilden Theorien zum Lehren und Lernen mit 

Wissensrepräsentationen (theory of representational guidance) und 

Kooperationsskripten (script theory of guidance in computer-supported collaborative 

learning). Diese Arbeit führt beide Forschungsstränge in einer neuartigen 

Lernumgebung zusammen, die beide Ansätze vereint, um Lernende beim 

Diskutieren kontroverser Texte zu unterstützen. Die Diagramme dienen, zum einen, 

zur Diskussionsvorbereitung, um die Beziehungen zwischen den Aussagen und 

Argumenten der Texte zu analysieren und dadurch besser zu verstehen. Zum anderen 

stehen die Diagramme während der Diskussion als grafische Agenden und 

Stoffsammlungen zur Verfügung, welche Diskussionsbeiträge anregen und auf die 

Bezug genommen werden kann. Die Strukturierung der Diskussionen mittels eines 

Kooperationsskriptes unterstützt Lernende in kritisch-konstruktiven Formen des 

Dialogs. Eine empirische Untersuchung zeigt, dass sich dieser kombinierte Ansatz 

positiv auf die Diskussionsqualität auswirkt und bekräftigt damit die zu Grunde 

liegenden theoretischen Annahmen. Der vorgestellte Ansatz legt darüber hinaus den 
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Grundstein für weiterführende Forschung. Es ergaben sich insbesondere 

vielversprechende Anhaltspunkte für positive Effekte der Verzahnung beider 

Strukturierungselemente, was zur Frage der Kombination verschiedener 

Strukturierungsansätze im Allgemeinen führt.  

Hinsichtlich Fragestellung (2) stellt diese Arbeit ein Software-Rahmensystem zur 

Bereitstellung adaptiver Unterstützungsmechanismen in Argumentationssystemen 

vor. Während die Unterstützungsmechanismen vorheriger Argumentationssysteme 

auf bestimmte Domänen und Anwendungsszenarien zugeschnitten waren, abstrahiert 

das hier vorgestellte Rahmensystem von domänen- und anwendungsspezifischen 

Besonderheiten und stellt damit einen generelleren Ansatz dar. Der Ansatz umfasst 

ein umfangreiches Konfigurationssystem zur Definition intelligenter 

Softwareagenten, d. h. Softwarekomponenten, die eigeständig schlussfolgern und 

handeln, um Lernprozesse zu unterstützen. Die Konfiguration des Verhaltens der 

Agenten erfolgt durch die Festlegung pädagogisch relevanter Muster, 

Rückmeldungsnachrichten und Rückmeldungsstrategien. Vier beispielhafte 

Anwendungen heben bestimmte Fähigkeiten und Möglichkeiten des Rahmensystems 

hervor; in ihrer Gesamtheit demonstrieren sie die Allgemeinheit und Breite des 

Ansatzes. Damit liefert diese Arbeit einen wichtigen Beitrag zur Frage der 

softwaretechnischen Gestaltung adaptiver Argumentationssysteme. Das Erstellen 

adaptiver Lernsysteme ist im Allgemeinen komplex und zeitaufwändig und erfordert 

sowohl technisches, inhaltliches als auch pädagogisches Fachwissen. Um das 

Definieren und Administrieren von Softwareagenten über das bereitgestellte 

Rahmensystem hinaus zu vereinfachen, wurde ein grafisches Autorenwerkzeug 

konzipiert und entwickelt. Unter anderem erlaubt dieses erstmals, relevante Muster 

in Argumentationsdiagrammen ohne Programmierung mittels einer grafischen 

Sprache zu spezifizieren. Empirische Befunde zeigen neben dem hohen Potential des 

Ansatzes auch die Notwendigkeit weiterführender Forschung. 

Hinsichtlich Fragestellung (3) untersucht diese Arbeit zwei alternative Ansätze 

zur automatisierten Analyse von Lernaktivitäten im Bereich Argumentation: die 

wissensbasierte und die datenbasierte Analysemethodik. Der wissensbasierte Ansatz 

wurde mittels einer Softwarekomponente zur Mustersuche in 

Argumentationsdiagrammen umgesetzt, welche auf Grundlage deklarativer 

Musterbeschreibungen arbeitet. Die Möglichkeiten und Eignung des Ansatzes 

werden anhand von drei Beispielszenarien demonstriert, für die verschiedenartige, 

pädagogisch relevante Muster innerhalb der entwickelten Softwarekomponente 

definiert wurden. Der Ansatz erweist sich insbesondere als nützlich für Muster 

eingeschränkter Komplexität in Szenarien, für die Expertenwissen in ausreichendem 
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Umfang verfügbar ist. Der datenbasierte Ansatz wurde mittels maschineller 

Lernverfahren umgesetzt. Mit deren Hilfe wurden Klassifikationsroutinen zur 

Analyse zentraler Aspekte von Onlinediskussionen, wie beispielsweise 

themenfremde Beiträge, begründete Aussagen und Frage-Antwort-Interaktionen, 

algorithmisch hergeleitet. Validierungsergebnisse zeigen, dass sich dieser Ansatz 

selbst für komplexe Klassifikationsprobleme eignet, welche die Berücksichtigung 

natürlicher Sprache erfordern. Dies ist die erste Arbeit zum Einsatz maschineller 

Lernverfahren zur Analyse von diagrammbasierten Lerndiskussionen. Der 

vorgestellte Ansatz liefert damit wichtige Grundlagen zur weiteren Erforschung und 

praktischen Umsetzung von Adaptionsmechanismen im Bereich des 

computerbasierten kooperativen Lernens. Insgesamt können der wissensbasierte und 

der datenbasierte Analyseansatz als komplementär betrachtet werden. Mit der 

Möglichkeit, beide Ansätze sinnvoll zu kombinieren, diskutiert diese Arbeit eine 

wichtige, bisher weitgehend unerforschte Fragestellung. Das entwickelte 

Rahmensystem bietet die notwendige technische Infrastruktur, diese Frage zukünftig 

tiefgehender zu untersuchen und entsprechende Lösungen praktisch umzusetzen.  

Die Arbeit schließt mit einer Diskussion des aktuellen Forschungsstands 

hinsichtlich der vier Fragestellungen im breiteren Kontext existierender Theorien 

und empirischer Befunde. Die Vor- und Nachteile verschiedener Optionen für die 

Gestaltung von Lernsystemen für Argumentation werden gegenübergestellt und 

zukünftige Forschungsfelder vorgeschlagen. Dieser letzte Teil der Arbeit bietet 

Forschern und Anwendern einen umfassenden Überblick des aktuellen 

Forschungsstands bezüglich des Designs computerbasierter 

Argumentationslernsysteme und den zugrunde liegenden lehr- und lerntheoretischen 

Erkenntnissen. Insbesondere wird auf Fragestellung (4) vertiefend eingegangen und 

bisherige Adaptionsansätze einschließlich entsprechender empirischer Befunde 

erörtert. Schließlich wird näher auf Möglichkeiten eingegangen, die unter 

Fragestellung (1) entwickelte Argumentationsumgebung mit automatisiertem 

Feedback zu erweitern. Es werden mögliche Ansätze zur automatischen Analyse und 

Unterstützung von Onlinediskussionen sowohl auf der inhaltlichen als auch der 

sozialen Ebene diskutiert. Ein Schlüssel zum Erfolg könnte in der Nutzung 

maschinell interpretierbarer Benutzereingaben mit expliziter Semantik liegen, wie 

beispielsweise typisierte Diagrammelemente, vorstrukturierte Diskussionsbeiträge 

oder explizit vom Benutzer erstellte Bezüge zwischen Diagrammelementen und 

Diskussionsbeiträgen. Erste Einblicke in die Umsetzbarkeit dieser Optionen werden 

anhand der Ergebnisse einer Erkundungsstudie erläutert. 
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Overview 

 

It is widely recognized that critical thinking skills play an important role in today’s 

knowledge societies. Being able to understand and critically evaluate arguments of 

others, and, likewise, to produce arguments in a well-reasoned way, is crucial in 

many professions (e.g., science, the law, politics), in the private sphere, and in 

participating in democratic societies. Despite the ubiquity and importance of 

argumentation skills across many aspects of human life, the educational system 

largely fails to pay due respect to this important set of skills (Driver et al. 2000; 

Osborne 2010; Sampson and Blanchard 2012; Simon et al. 2006). As a result, 

research on professional and everyday reasoning consistently shows that people 

struggle in producing sound and valid arguments, judging the quality of arguments of 

others, weighing arguments to make well-reasoned decisions, and engaging in 

productive forms of collaborative argumentation (e.g., Kuhn 1991; Stark and Krause 

2006; Weinberger and Fischer 2006). 

Computer-based tools specifically designed to leverage the quality of 

argumentation have the potential to make an important contribution to improve this 

situation. During the past three decades, many such tools have been developed to 

support argumentation, the acquisition of argumentation skills, and learning through 

argumentation (overviews are provided in: Andriessen et al. 2003; Kirschner et al. 

2003; Scheuer et al. 2010; Schneider et al. 2013). Although much progress has been 

made in recent years, there are still many open research questions regarding the 

design of such tools. The building of educational argumentation systems is generally 

not a trivial matter, since technological, pedagogical, and human-computer 

interaction aspects must be taken into account in creating tools that effectively 

support argumentation learning. In particular, the question of how systems can guide 

and support the learning process of groups of learners has become an important 

research focus. Based on the body of empirical results available so far, theories of 

guidance in computer-supported collaborative learning (CSCL) have been proposed 

(Fischer et al. 2013; Suthers 2003). Although these theories constitute important 
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theoretical groundwork, new questions are now emerging, calling for further 

empirical investigation and theory refinement. One logical next step is to further our 

knowledge of how different guidance approaches can be fruitfully combined—

whether the different approaches complement, reinforce, or inhibit one another 

(Tabak 2004). Perhaps the most visionary research challenge is whether 

collaborative learning systems can provide guidance in an adaptive fashion (Fischer 

et al. 2013). While a relatively comprehensive body of research exists for intelligent 

tutoring systems (e.g., VanLehn 2006; Woolf 2008)—which traditionally focus on 

individual learners—corresponding research for collaborative learning systems is 

still sparse, let alone a systemic and comprehensive theory of adaptive guidance in 

CSCL. 

This dissertation explores key aspects in the design of argumentation learning 

systems. A special focus is placed on the two issues mentioned above, combining 

different forms of guidance and imbuing systems with adaptivity mechanisms. The 

present work is based on a series of peer-reviewed journal articles that have been 

written as part of the dissertation project. Besides re-presenting the content of these 

articles, the dissertation contains a considerable number of additional illustrations, 

research results, and conclusions not published yet. The specific research 

contributions are preceded by an extensive discussion of the relevant background to 

clarify the intellectual roots and theoretical foundations of the present work. Finally, 

the individual findings and conclusions are related to one another and discussed in 

the broader context of existing theories and empirical results. 

The work presented in this dissertation is based on an interdisciplinary research 

program, which equally draws from and contributes to the learning sciences (in 

particular, learning with knowledge representations and collaboration scripts) and 

computer science research (in particular, adaptive software systems, rule-based 

analysis, and machine learning). While the computer science part is more applied in 

nature, with practical contributions to our knowledge base of how to design adaptive 

learning technologies, the learning science part builds upon and advances current 

theoretical frameworks of learning, more specifically, the theory of representational 

guidance (Suthers 2003) and the currently emerging script theory of guidance in 

computer-supported collaborative learning (Fischer et al. 2013).  

Figure 1 illustrates the overall structure of the dissertation thesis. The blue shaded 

area shows the overarching question and guiding theme—How to design adaptive 

argumentation learning systems?—together with the four central sub-aspects 

investigated as part of the dissertation. In particular, I have researched questions 
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regarding argumentation user interfaces, software architectures for adaptive support, 

approaches to the automated analysis of argumentation, and approaches to the 

adaptive support of argumentation-based learning activities. The yellow shaded areas 

represent the three main parts of the dissertation, each consisting of several chapters. 

The red solid arrows indicate to which research aspect the different parts and 

chapters primarily contribute (contributions to other aspects may exist as well yet to 

a lesser extent). The chapters of Part B, Research Components, mainly focus on three 

sub-aspects: the design of argumentation learning user interfaces (Chapter 4), 

software architectures to adaptively support argumentation learning (Chapter 5), and 

approaches to automatically analyze argumentation (Chapter 5 and Chapter 6). The 

chapters of Part A, Background, and Part C, Research Synthesis, do essentially 

equally contribute to all research aspects, with the exception of Chapter 9, which is 

mainly concerned with ways to adaptively support argumentation learning activities. 

Red boxes in Figure 1 represent published essays in which parts of the research 

discussed have been reported. 

 

 
Figure 1: Structure of the dissertation thesis. 

Part A discusses the research background of this dissertation by reviewing 

argumentation from different disciplinary angles. Chapter 1 starts with an overview 
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of philosophical treatments of argumentation and linguistic studies of discourse. 

Corresponding theories provide a conceptual framework of how argumentation can 

be conceived of and help understand how argumentation unfolds in real-world 

conversations. This foundational work had, and still has, a strong influence on 

research on argumentation in the learning sciences. Chapter 2 reviews argumentation 

research in psychology and education, covering crucial aspects such as the skills of 

argument, cognitive and social theories of argumentation, the development of 

argumentation skills, and educational approaches to supporting the learning of and 

through argumentation. A special focus is placed on social learning theories and their 

relation and application to argumentation. Chapter 3 covers computer-based 

approaches to supporting argumentation learning. The main focus of this chapter is 

research undertaken in the areas of computer-supported collaborative learning and 

intelligent tutoring systems. The chapter draws from a review of the state of the art of 

computer-based argumentation systems, which was originally published in Article 1 

[Scheuer, Loll, Pinkwart, and McLaren (2010)]. The results are based on an 

extensive review of published literature and available systems, covering more than 

50 computer-based argumentation systems developed over the past 25 years. The 

article has been well appreciated by the research community with 198 citations by 

June 14, 2015, according to Google Scholar (7
th

 most cited article of the 

International Journal of Computer-Supported Collaborative Learning (IJCSCL), 

note that all articles with more citations were published earlier).
1
 Additional crucial 

information not available in published work was elicited directly from researchers 

involved in the development of those systems. Other relevant input to this chapter 

comes from the background sections of Article 2 [Scheuer, McLaren, Weinberger, 

and Niebuhr (2013)], which provide an in-depth discussion of two particularly 

relevant methods to support argumentation learning: argument diagramming and 

scripted discussions. The chapter also reviews corresponding theories of guidance 

through representational support and collaboration scripts. 

Part B presents the specific research components of this dissertation. Chapter 4 

discusses aspects relevant to the design of user interfaces of argumentation learning 

systems. It draws from Article 2 [Scheuer, McLaren, Weinberger, and Niebuhr 

(2014)], which reports on an empirical study that investigated an approach to 

scaffold student interaction and learning through a specifically designed user 

interface. This user interface combines two existing and already successfully used 

                                                        
1 Google Scholar web address: http://scholar.google.com; query URL for top cited publication in 

IJCSCL: http://scholar.google.com/scholar?as_publication=international+journal+of+computer-

supported+collaborative+learning 

http://scholar.google.com/
http://scholar.google.com/scholar?as_publication=international+journal+of+computer-supported+collaborative+learning
http://scholar.google.com/scholar?as_publication=international+journal+of+computer-supported+collaborative+learning
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methods—argument diagrams and discussion scripts—to optimally scaffold 

reasoning and discussion on both the content level (i.e., support for better 

understanding subject matter content) and the social level (i.e., support for 

productive forms of interaction among students). The user interface is designed 

based upon theoretical assumptions regarding the effects of graphical argument 

representations and collaboration scripts on the quality of problem-solving, 

collaboration, and learning, and can be seen as a vehicle for empirically testing 

elements of its underlying theories. The study compares a treatment condition, in 

which students used a discussion script in addition to argument diagrams, with a 

control condition, in which students used argument diagrams but no discussion 

script. The results show that the combination of both methods was effective in terms 

of higher-quality discussions (measured through the analysis of the discussion 

protocols) and improved argumentation learning (according to students’ self-

assessments after the intervention). On the other hand, there was no difference in 

terms of acquired factual knowledge about covered subject matter. Overall, the study 

contributes to the shaping of a new theory of scripted collaborative learning. First, 

the analysis confirms previous results achieved with collaboration scripts in a new 

instructional settings. Second, an exploration of the collected data suggests that 

representational and script-based scaffolds may be systematically attuned to one 

another to achieve synergistic effects on the quality of discussion and collaboration 

processes. This observation raises the more general question of the interplay of 

differently targeted scripting elements, a topic only marginally explored (Schellens 

and Fischer 2013; Tabak 2004).  

Chapter 5 focuses on software architectures for the automated analysis and 

support of argumentation learning. The presented research mainly draws from 

Article 3 [Scheuer and McLaren (2013)]. It starts with a short introduction to the 

LASAD project (Learning to argue: Generalized support across domains),
2
 which 

provides the context of the presented research. The LASAD project aimed at 

developing a generalized software framework for argumentation systems, which 

allows building specific argumentation learning applications for different domains 

and learning arrangements with relatively little effort. The LASAD system played a 

twofold role with respect to our research. First, the development of the LASAD 

system itself raised a number of interesting research questions regarding the design 

of computer-based learning systems. Second, by its capacity to provide guidance on 

                                                        
2
 LASAD was a research project funded by the German Research Foundation (DFG). Project runtime: 

November 1, 2008 – October 31, 2012. Principle investigators: Prof. Dr. Bruce M. McLaren (then: 

DFKI / Saarland University) and Prof. Dr. Niels Pinkwart (then: Clausthal University of Technology). 
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several levels (diagrams, sentence openers, and adaptive feedback), the LASAD 

system was an ideal vehicle to investigate research questions in the learning sciences. 

My colleague Dr. Frank Loll designed and developed the basic LASAD system, a 

highly configurable, web-based, multi-user argumentation learning system, which is 

described in his doctoral dissertation (Loll 2012). I extended and used the basic 

LASAD system for the empirical study mentioned above (and reported in detail in 

Chapter 4). Furthermore, I designed and developed a software framework for 

adaptive support called CASE (Configurable Argumentation Support Engine), which 

can connect to the basic LASAD system and deploy learning-support agents to 

sessions in LASAD. Analogously to the design of the basic LASAD system, one of 

the main concerns was to achieve a broad applicability across different 

argumentation domains and learning settings. This goal has been achieved through a 

highly configurable and extensible software architecture, which allows the definition 

of learning-support agents and their deployment to sessions in LASAD. The software 

framework entails a configurable component to automatically analyze argument 

diagrams. This component utilizes handcrafted analysis rules, defined by human 

experts, to identify pedagogically relevant patterns in argument diagrams, e.g., 

circular arguments. The generality and breadth of applicability of the CASE engine 

is demonstrated through four showcase applications, each illustrating specific 

capabilities of the CASE engine. This chapter finally discusses the design and 

evaluation of a novel graphical authoring tool to facilitate the implementation of 

adaptive support. 

Chapter 6 also addresses the automated analysis of argumentation learning but 

focuses on a different analysis approach. While the approach in Chapter 5 is based 

on patterns defined by human experts, the approach in Chapter 6 makes use of 

computer algorithms to automatically extract relevant patterns from existing data. 

The chapter summarizes relevant parts of Article 4 [McLaren, Scheuer, and 

Mikšátko (2010)], which describes how artificial intelligence techniques can be used 

to automatically analyze qualitative aspects of student discussions (e.g., off-topic 

contributions, question-answer sequences). The described work was conducted in the 

context of the Argunaut project (De Groot et al. 2007).
3
 The main goal in Argunaut 

was to develop a computer-based environment to support moderators of electronic 

educational discussions through awareness displays, alerts, and intervention 

functions. Discussions in Argunaut were based on a graphical format, similar to 

argument diagrams in LASAD. That is, students posted new messages by creating 

                                                        
3

 Argunaut was a multinational research and development project funded by the European 

Commission (FP6-IST). Project runtime: December 1, 2005 – August 31, 2008. 
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boxes in a shared workspace, and replied to contributions of others by connecting 

their response boxes to existing boxes through graphical links. Under the supervision 

of Prof. Dr. Bruce McLaren, two approaches to automatically identify salient 

patterns in the emerging argument graphs have been developed. While my colleague 

Jan Mikšátko developed a novel AI-based graph-matching algorithm, I carried out 

machine learning experiments to induce discussion classifiers from coded data. I 

achieved favorable evaluation results on six coding dimensions (e.g., topic focus, 

reasoned claims), and integrated these classifiers later into the LASAD system. 

Chapter 6 discusses the machine learning experiments in greater detail.  

Finally, Part C discusses and synthesizes the findings presented in the preceding 

chapters. Chapter 7 summarizes the main results of the individual research 

components. Chapter 8 systematically analyzes different options in the design of 

argumentation systems with respect to the user interface, automated analysis, and 

adaptive support. In particular, the pros and cons of different design options are 

discussed, considering potential pedagogical benefits and limitations, the feasibility 

of implementation, development costs and risks, and scope and conditions of 

applicability. The overarching goal of Chapter 8 is to give a synopsis of the field 

with a special focus on opportunities and challenges in imbuing argumentation 

learning systems with adaptive support mechanisms. Notably, the different design 

options are not independent but partly necessitate and facilitate one another. The 

presented analysis identifies and discusses such dependencies as well. In particular, 

the question is addressed how a prestructuring of user inputs at the level of the user 

interface can be exploited to improve and enhance an automated analysis of student 

activities. Chapter 9 takes this ideas one step further. It describes a scenario that 

brings the different pieces of the dissertation thesis together in a concrete way. 

Building upon the learning environment presented in Chapter 4, which comprises 

argument diagraming activities and scripted discourse, Chapter 9 sketches how the so 

obtained structured user inputs can be used to enable or facilitate automated analyses 

of discussion contents and processes, and gives hints how this information can be 

utilized to provide adaptive support to students. Based on an exploratory data 

analysis, possible obstacles in implementing such an approach are identified and 

ways to overcome potential problems discussed. Finally, Chapter 10 presents the 

main conclusions that can be drawn regarding the investigated research questions 

and proposes how the field can be advanced more generally. 
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Chapter 1  

Argumentation Theory and the Study 

of Discourse  

Argumentation theory is an interdisciplinary academic field concerned with the study 

of argumentation, with contributions of scholars from disciplines such as philosophy, 

linguistics, psychology, political science, communication, artificial intelligence, and 

the law. Argumentation theorists are interested in the production, interpretation, and 

evaluation of both written and oral arguments (Van Eemeren and Grootendorst 2004, 

p. 2). Argumentation theories lay the conceptual foundation of many approaches in 

educational argumentation research.  

This chapter sets out with a description of the basic notions in the study of 

arguments (section 1.1). Then, a brief overview of relevant argumentation-theoretical 

groundwork is given, from Aristotle’s studies of argumentation (section 1.2), which 

shape the understanding of argumentation to the present day, to the formal logical 

approach (section 1.3), which was dominant until the middle of the 20
th

 century, to 

seminal work by Toulmin (1958; section 1.4), which, among other things, brought 

forth his still widely used model of argumentation. Section 1.5 discusses relevant 

contributions in philosophy and linguistics on the practical use of language in 

discourse, such as Grice’s principles for cooperativeness in conversations, speech act 

theory, and the theory of grounding in communication. These lines of research have 

had a large impact on newer developments in argumentation theory and a direct 

bearing on educational research on discussion and argumentation. Section 1.6 and 

section 1.7 discuss influential current argumentation-theoretical work by Van 

Eemeren and Grootendorst (2003; section 1.6) and Walton (2008; section 1.7), which 

take a strong pragmatic stance in the study of argumentation. Finally, section 1.8 

summarizes the main points of this chapter. 

1.1 Basic Notions in the Study of Argumentation 

Broadly defined, an argument can be described as any attempt to increase or decrease 

the acceptability of some standpoint or position. Depending on the specific 
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theoretical stance and analytical goal, one may further restrict this definition, e.g., by 

requiring arguments to be rational or verbal, or emphasizing the social and/or 

pragmatic context of argumentation. The first part of this section focuses on the basic 

framework and vocabulary used by argument theorists to describe the structure and 

organization of arguments, drawing from an introduction given in Van Eemeren et al. 

(1996). The second part is concerned with categories typically employed when 

evaluating the quality of arguments. This part discusses the basic terminology taught 

in introductory philosophy courses on logic, which can be found in corresponding 

text books (e.g., Hurley 2008). 

An argument comprises a conclusion, which is the statement one is arguing for 

(or against), and a set of premises, which are statements used to support (or oppose) 

the conclusion. Conclusions and premises of arguments may be explicitly stated or 

implicitly assumed, which requires re-constructing the argument in its full and 

explicit form when analyzing it.  

 

 
Figure 2: Basic argumentation structures: Multiple (independent) argumentation (top), coordinatively 

compound argumentation (middle), subordinatively compound argumentation (bottom). Adapted from 

Van Eemeren et al. (1996, pp. 17–19). 
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An argumentation in its most basic form comprises only one pro or con argument 

(single argumentation). More complex argumentations consist of multiple pro or con 

arguments, which may be independent of one another (multiple or convergent 

argumentation, see Figure 2, top), mutually reinforce one another (coordinatively 

compound or linked argumentation see Figure 2, middle), or arranged in a chain of 

reasons (subordinatively compound or serial argumentation see Figure 2, bottom). 

Individual single arguments can also be analyzed regarding the specific type of 

inference made. Argumentation schemes are general inference patterns that can be 

used to classify arguments in broader categories. For instance, an argument may be 

based on an expert opinion, empirical evidence, or an analogy. Many real-world 

arguments satisfy expectations regarding rationality only at their face value. If one 

looks deeper, one recognizes serious deficiencies that may have detrimental effects 

on the quality of argumentative discourse. Such deficient arguments are called 

fallacies, which constitute an important topic of research in argumentation theory. 

For instance, a well-known fallacy is the fallacy of circular arguments, also called 

the fallacy of begging the question. Argumentation schemes and fallacies are 

discussed in more detail below in context of Douglas Walton’s work. 

Besides questions of structure and organization of arguments, another important 

topic is the evaluation of arguments, that is, how to judge the quality of inference and 

the acceptability of the conclusion. Standard text books on introductory philosophy 

(see, for instance, Hurley 2008, one of the leading text books) typically use the 

following (or similar) definitions: A deductive argument is an argument that entails 

the claim that the conclusion follows necessarily from the premises. If the argument 

has a logical form that this claim is actually true (i.e., the conclusion does actually 

follow necessarily from the premises), the argument is referred to as a valid 

argument; otherwise it is referred to as an invalid argument. A valid argument is 

called sound if all of its premises are actually true. An inductive argument entails the 

claim that the conclusion follows with high probability, rather than necessarily, from 

its premises (e.g., one of the premises may take the form “Most Germans …” or 

“95% of all Germans …”).
4
 If the argument has a logical form that this claim is 

actually true (i.e., the conclusion does actually follow with high probability from the 

premises) the argument is referred to as a strong argument; otherwise it is referred to 

as a weak argument. A strong argument is called cogent if all of its premises are 

                                                        
4
 Note that the notion described here is just one kind of inductive inference, which is based on the 

application of an inductive generalization. Other inductive inferences are about inducing 

generalizations from examples. Inductive arguments can, but not need to, employ formal-statistical 

reasoning patterns. 
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actually true. Applying these definitions to real-world arguments is not 

straightforward. Some possible questions that may arise are: Which criteria to use to 

decide whether a premise is actually true or not? How to determine the level of 

probability of an inference if it is not explicitly expressed? And: What level of 

probability of an inference is good enough to classify an inductive argument as a 

strong argument?  

Generally, the question arises who has the authority to judge the acceptability of 

arguments. For instance, as discussed in Van Eemeren and Grootendorst (2004, pp. 

127–131), requiring that each premise itself needs further justification would lead 

into an infinite regress. So, the justificatory process has to stop at some point. Some 

criterion is in order to decide the most basic premises that are acceptable without 

further justification. One possibility here is to require that premises must be accepted 

by the addressed audience. Another is to require that dedicated representatives of the 

field in which the argumentation takes place decide (i.e., a panel, or forum, of 

experts). 

1.2 Aristotelian Studies of Argumentation 

One of the first systematic and comprehensive (Western) treatments of 

argumentation can be found in the work of Aristotle, which, to date, exerts a major 

influence on our thinking in philosophy and science. The following summary is 

based on an overview of Aristotle’s work on argumentation provided by Van 

Eemeren et al. (1996). 

In former times, the world was considered as predetermined. Natural events were 

controlled by the gods, so there was no need to ask for any further explanation. 

Things began to change in ancient Greece when people started to devise their own 

explanations of natural phenomena, for instance, asking questions of cause and effect 

(before, the will of a God was considered as the only acceptable cause of an event). 

Greek philosophers came up with different kinds of, partly contradictory, 

explanations to make sense of the world; different schools of thinking emerged. The 

question of which explanation or approach is the right one arose. Similarly, questions 

regarding the organization of the community came up, for instance, should everyone 

have an equal vote, or should the elite (i.e., the wisest and/or strongest) be in charge 

to steer the community? To systematically explore such issues and to convince others 

from one’s own position, it was now essential to be a skilled arguer. Therefore, 
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ancient Greeks became interested in the study of argumentation. A major 

contribution can be found in the work of Aristotle.  

Aristotle distinguished two kinds of arguments: deductive syllogisms (the 

conclusion follows necessarily from the premises by means of logical entailment) 

and inductive syllogisms (the conclusion is derived from a number of specific cases 

by means of generalization). Furthermore, Aristotle classified arguments according 

to their purpose of use into three categories: demonstrative, dialectical, and rhetorical 

arguments. For each category he developed a theory: analytics, dialectic, and 

rhetoric, respectively. Table 1 summarizes the most relevant aspects regarding 

Aristotle’s three categories of arguments.  

Table 1 

Argument categories distinguished by Aristotle: Demonstrative, dialectical, and rhetorical arguments 

 Demonstrative 

arguments 

Dialectical arguments Rhetorical arguments 

Objective Certainty Acceptability Persuasiveness 

Status of the 

premises 

Evidently true Acceptable Persuasive to the audience 

Inference Valid Valid Persuasive to the audience 

Theory Analytics (logic) Dialectic Rhetoric 

Note. Adapted from Van Eemeren et al. (1996, p. 33). 

Analytics essentially refers to what is called nowadays logic and is concerned with 

demonstrative (or apodictic) arguments. The purpose of a demonstrative argument is 

to prove some conclusion with absolute certainty. The premises of a demonstrative 

argument are evidently true; the inference is logically valid. In his treatment of 

analytics, Aristotle focused on the examination of deductive syllogisms, and in 

particular, categorical syllogisms, that is, syllogisms concerned with the application 

of general categories. Table 2 shows the famous “Socrates” example. 

Table 2  

Socrates example of a deductive syllogism 

(1) All humans are mortal. (major premise) 

(2) Socrates is a human. (minor premise) 

(3) Socrates is mortal. (conclusion) 

Propositions (1) and (2) are the premises of the syllogism; proposition (3) is its 

conclusion. Each proposition is composed of a subject [“all humans” in (1), 
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“Socrates” in (2) and (3)] and a predicate [“are / is mortal” in (1) and (3), “is a 

human” in (2)]. The major premise is the one that contains the predicate of the 

conclusion; the other premise, the minor premise, contains the subject of the 

conclusion. Major and minor premise share a middle term [“human(s)”] in the 

example), which bridges both premises to make the inference step possible. There 

are different syllogism variations. First, propositions may contain negation and a 

universal (“all”) or existential (“some”) qualifier. The resultant variations are called 

syllogism moods. Second, the middle term of the syllogism may be the predicate or 

the subject of minor and major premise. The resultant variations are called syllogism 

figures. All in all, Aristotle described 18 syllogism types based on different 

combinations of mood and figure. This systemization of syllogism types can be used 

as an analytic device to study deductive arguments in a uniform way. 

 Dialectic is concerned with dialectical arguments. Rather than rigorously 

demonstrating that some conclusion is true, dialectical arguments aim at defending 

one’s standpoint and attacking the standpoint of an opponent in a debate situation. 

Analogously to demonstrative arguments, the inference step of a dialectical argument 

must be logically valid. Yet, the premises do not necessarily have to be evidently true 

but may just be generally accepted assumptions (i.e., “acceptable to all of the wise or 

to the majority or the most famous and distinguished from them”). The status of 

presented premises is often not immediately clear. Therefore, in the course of an 

argument, debaters try to bring the other party to make concessions, meaning that the 

opposing debater accepts premises presented by oneself. Aristotle describes general 

rules for conducting orderly debates and proposes a system of moves a discussant 

may undertake or parry in order to win the debate. Dialectics may also be exercised 

as a mental activity to systematically investigate the pros and cons of a given thesis. 

Overall, and in contrast to analytics, dialectic may be defined as “the art to argue for 

and against.” 

Rhetoric is concerned with rhetoric arguments. Aristotle’s rhetoric studies 

investigate how to persuade an audience based on an orally held monologue. He 

distinguishes three relevant genres for rhetoric: before the court, in the political 

arena, and at ceremonial occasions. Arguers may employ means of three categories 

to be persuasive: ethos (practical wisdom, virtue, and good will), pathos (appeal to 

sentiment, e.g., joy, sorrow, love, hate), and logos (arguments). In his treatment of 

logos, Aristotle describes two kinds of rhetoric arguments: enthymemes (rhetorical 

deductive syllogisms) and examples (rhetorical inductive syllogisms). To be 

successful, the speech must take the specific type of audience into account. For 

instance, an arguer should rely on deductive reasoning to persuade a group of 
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experts, while inductive, example-based reasoning may be more effective for an 

uneducated audience. Premises must be chosen to be acceptable by the audience, a 

looser standard as is used for analytic and dialectic arguments. Typically, premises 

are chosen to be at least plausible to the audience. In order to not annoy or waste the 

time of the audience, obvious premises may be omitted. In fact, the term enthymeme 

is often used in logic to specifically refer to an argument with missing premises or 

conclusion (Walton et al. 2006, p. 18). 

1.3 Formal-logical Approaches to Argumentation 

For a long time, formal logic was the method of choice to study arguments. The 

formal-logical approach requires that arguments are represented as expressions of a 

formal language, for instance, as sentences of propositional calculus. These 

sentences can be analyzed in terms of their logical properties, for instance, whether a 

given argument represents a deductively valid inference. To analyze natural language 

arguments using the formal-logical approach, one has to apply a number of 

abstractions to ultimately arrive at a formal expression. Table 3 demonstrates the 

process based on an example from van Eemeren et al. (1996). 

The example demonstrates that formal logic deals with expressions that are 

reduced to their bare logical core. Many aspects that may be of interest to an 

argument analyst are stripped of from the original natural language statement or 

dialogue in the process of abstraction (e.g., linguistic, contextual, social, and 

psychological aspects are lost).  

Besides this traditionally-oriented approach, other formal-logical approaches exist 

nowadays that are specifically tailored to model and analyze argumentative 

discourse. For instance, Barth and Krabbe’s (1982) approach of formal dialectics 

yields a formalism to model a critical dialogue between a proponent and opponent in 

terms of general dialogue rules, an initial thesis, initial (and ongoing) concessions 

made by the discussants, attacking and defending moves, and conditions for winning 

the dialogue game. The presented calculus allows proving, with mathematical rigor, 

that an initial thesis can (or cannot) be established in light of a set of initial 

concessions made by an opponent (equivalent to the existence of a winning strategy 

of the proponent). The approach has been criticized to reduce dialogues to existing 

formal systems, rather than extending existing formal systems with pragmatic 

notions to better account for real-world dialogues (Stock 1982). 
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Table 3 

Formal-logical analysis: From natural language argument to propositional argument form 

Analysis step 

description 

Example analysis Comment 

(1) Original transcript 

of conversation 

Dale: Mary said she was going to get beef 

or cod. Do you know what we’re eating 

tonight? 

Sally: No, but if she’s already done the 

shopping it’ll probably be in the fridge. I’ll 

have a quick look in the fridge … It’s 

stacked full. But I can’t smell fish, 

anyway. 

Dale: O.K., as I see it, it is beef tonight 

since it was either that or cod and there is 

no fish. (*) 

The statement to be analyzed 

is marked with an asterisk (*) 

   

(2) Make reasoning 

explicit including all 

implicit elements 

Dale: It was either beef or cod. There is no 

fish. If there is no fish, we are not going to 

eat cod. Therefore, it is beef tonight. 

Makes the argument complete 

and self-contained 

   

(3) Standardize 

representation  by 

omitting references to 

persons, using uniform 

wording, and marking 

of premises and 

conclusion 

premise: We are going to eat beef or we 

are going to eat cod. 

premise: There is no fish. 

premise: If there is no fish, we are not 

going to eat cod. 

conclusion: We are going to eat beef. 

 

   

(4) Replace natural 

language clauses with 

sentence constants 

while keeping words 

that define the 

sentence logic (or, not, 

and) 

premises: B or C, not F, if not F then not C 

conclusion: B  

B = We are going to eat beef 

C = We are going to eat cod 

F = There is fish 

   

(5) Replace logic-

related keywords with 

logical constants 

 

 𝐵 ⋁ 𝐶 

 ¬ 𝐹 

 ¬ 𝐹 →  ¬ 𝐶 

 /∴ 𝐵 

⋁ = or 

¬ = not 

X → Y = if X then Y 

/∴ = therefore (conclusion) 

   

(6) Determine whether 

a valid general 

argument form exists, 

which the specific 

argument is an 

substitution instance of 

 𝑝 ∪  𝑞 

 ¬ 𝑟 

 ¬ 𝑟 →  ¬ 𝑞 

 /∴ 𝑝 

Argument is valid since 

corresponding valid argument 

form exists 

Note: Adapted from Van Eemeren et al. (1996, pp. 5–12). 
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Other more recent developments include the field of computational dialectics 

(Gordon 1996), which tries to formalize argumentative reasoning, e.g., to implement 

conflict-resolution behavior in multi-agent systems or support strategies in mediation 

systems for online discussions. One particular class of logical systems, non-

monotonic logics, has been identified as particularly relevant to model argumentation 

(Gordon et al. 2007). In classical, monotonic logic, the set of sentences entailed by a 

theory (or knowledge base) does monotonically increase when new axioms are added 

to the theory. Adding axioms that do not contradict the theory only allows inferring 

new sentences; adding axioms that contradict the theory makes the theory 

inconsistent, meaning that any sentence can be inferred. Non-monotonic logic 

systems, on the other hand, allow defeasible inferences. Adding new sentences to a 

theory can defeat existing inferences, that is, previously, prima facie, justified 

sentences may be withdrawn again. Similarly, argumentation may be considered as a 

non-monotonic process since statements and inferences accepted at one point can be 

withdrawn again when new arguments or evidence are presented. Gordon et al. 

(2007) criticize the static nature of non-monotonic models of argumentation and 

propose their own formal model, Carneades, which takes procedural aspects into 

account. In particular, Carneades allows modeling, on a statement-by-statement 

basis, the current dialectical status (i.e., statement is stated, questioned, accepted, or 

rejected), the allocation of the burden of proof (i.e., which party is obliged to 

substantiate a statement), and the proof standard that applies (i.e., the rules that 

decide whether a statement is acceptable or not; e.g., “scintilla of evidence,” or “best 

argument”). This information can be employed to model important procedural 

aspects, such as the overall procedural context (e.g., in criminal trials, a defendant’s 

guilty must be proven with evidence “beyond reasonable doubt”), the current 

procedural stage (e.g., at the beginning of a deliberation dialogue, when 

brainstorming ideas, one may apply a low standard of proof), changing dialectical 

statuses (e.g., conceding to a statement of the other party alters its dialectical status 

to “accepted”), and changing obligations of involved parties (e.g., questioning an 

implicit assumption of an argument typically shifts the burden of proof back to the 

originator of the argument). 

1.4 Toulmin: The Uses of Argument 

A very influential and highly cited treatment of argumentation is the book The Uses 

of Argument by the British philosopher Stephen Toulmin (2003; original version 

published in 1958). Toulmin criticized that the at that time prevalent approaches to 
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study argumentation using rigid deductive methods of formal logic were not suitable 

to analyze and judge significant real-world arguments. Strictly logical deductions, 

based on the concept of logical necessity, are only "an unrepresentative and 

misleadingly simple sort of argument" (p. 135). With his criticism, Toulmin had a 

major influence on current approaches to argumentation, such as informal logic, 

which focuses specifically on real world arguments and uses a broader conception of 

argumentation. In particular, informal logic understands argumentation as inherently 

social (argumentation as a social practice), dialectical (argumentation as an actual or 

anticipated dialogue to resolve a conflict of opinion in a rational way), and pragmatic 

(argumentation as an event in a meaningful context) (Van Eemeren et al. 1996, p. 

164). Most arguments in informal logic are not deductively valid but defeasible, 

meaning that their conclusions are only provisionally accepted until doubts are raised 

or new negative evidence comes in. (Note that newer formal-logical approaches can 

partly accommodate for the shortcomings criticized by Toulmin, see the discussion 

of more recent formal approaches above.) 

A second important contribution of Toulmin is the notion of field dependence of 

argumentation. He observed that, depending on the specific type of assertion made, 

people use different kinds of reasons and different standards for assessing the reasons 

brought forward by others. For instance, arguments may take quite different forms 

depending on whether a legal decision, a moral judgment, a scientific theory, a 

mathematical theorem, or an assertion about the aesthetic qualities of a piece of art is 

justified. Accordingly, arguments can be categorized into different logical types 

depending on the nature of conclusion and data. Toulmin used the term fields of 

argument to distinguish such different logical types. An important question, 

according Toulmin, is which aspects of arguments are field-invariant and which ones 

are field-dependent. While criteria to judge the quality and sufficiency of an 

argument essentially depend on the specific field of argument, there is a baseline set 

of components that may be considered in the analysis of any rational argument, 

across different fields. Toulmin proposed a specific layout, later referred to as the 

Toulmin model, which encompasses these components. The Toulmin model of 

argument has been widely adopted by scholars across different academic branches, 

including education, and is still cited in much research and analysis of argumentation 

today. 

1.4.1 Toulmin model of argument 

Toulmin considered the classical Aristotelian syllogism “minor premiss, major 

premiss, so conclusion” as overly simplistic and misleading and therefore not 
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suitable to represent and analyze the structure of arguments. Based on reflections on 

a typical legal procedure, he proposed a richer model of argument, claiming that an 

analysis of the logical process more generally requires “a pattern of argument no less 

sophisticated than is required in the law” (p. 89). The Toulmin model distinguishes 

the following components: 

 Claim: A proposition or conclusion one wants to establish. 

 Data: The facts or information one brings forward in order to establish the 

claim. Essentially, what one would answer when asked “Why?” in response to 

one’s claim.  

 Warrant: Statements, typically of a more general nature, that establish the step 

from data to the claim. Essentially, what one would answer when asked “How 

do you get there?” in response to the presented claim and data. The warrant 

determines how relevant the data is with respect to the claim.  

 Qualifier: Modal qualifiers (e.g., necessarily, probably, and presumably) used 

to express the force of the warrant to authorize the inference from data to claim.  

 Rebuttal: Exceptional conditions under which the warrant does not legitimate 

the inference from data to claim.  

 Backing: Assurance why the general rule expressed in the warrant is legitimate. 

The nature of the backing typically depends on the specific field of argument 

(e.g., a legal claim may be backed by a legal statute; a claim regarding the 

genus of some animal may be backed by a system of taxonomic classifications). 

Figure 3 shows the Toulmin model and its application to an example argument. An 

important limitation of the Toulmin model is its focus on the structure of a single 

argument. The voice of a possible opponent is not explicitly represented in the 

model. So the dialectical aspect of argumentation, the weighing of pro and con 

arguments to make a decision about the acceptability of a claim, is not reflected in 

the model (Van Eemeren and Grootendorst 2004, p. 47). 
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Figure 3: General layout of Toulmin model (upper part) and Bermuda example (lower part). Adapted 

from Toulmin (2003, p. 97). 

1.5 Philosophical and Linguistic Theories of Language Use in 

Dialogue 

As discussed, real-world argumentation may considerably differ from what formal 

logical approaches are currently able to represent and model. Therefore, 

argumentation theorists have opened up to other fields and perspectives that may 

enhance the understanding of practical argumentation. Since argumentation is 

primarily a phenomenon of natural language, research in the fields of philosophy of 

language and linguistics had a major influence on argumentation theory. 

To analyze natural language expressions, one may look at different aspects of 

language. On a shallow level, one may be interested in how individual words can be 

combined in order to yield well-formed sentences. A set of rules, or grammar, may 

be employed to systematically describe the regularities that determine which 

combinations are permissible in a given language and which ones not. The field of 

study concerned with such kinds of analysis is referred to as syntax. Languages are 

sign systems; signs stand for something other than themselves; signs have a meaning. 
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So, on a deeper level, one may ask about the meaning of words and sentences. The 

field of study concerned with such kinds of analysis is referred to as semantics. For 

instance, the formal-logical analysis presented in section 1.3 can be considered as a 

semantic analysis. Finally, to get a proper understanding of real world 

communication, it is often not sufficient to confine the analysis to the literal meaning 

of language expressions. It requires knowledge of the broader context in which 

communication takes place. Table 4 illustrates this point using an example from 

Levinson (1983; pp. 97–98). As can be seen, the literal meaning of sentences often 

largely departs from human understanding of language expressions. 

Table 4 

Formal-logical analysis of dialogue contrasted with human understanding 

Level of interpretation Example 

(1) Original transcript of 

conversation 

A: Can you tell me the time? 

B: Well, the milkman has come 

  

(2) Interpretation on a 

purely semantic level, 

what is literarily expressed 

A: Do you have the ability to tell me the time? 

B: [particle] the milkman came at some time prior to the time of 

speaking 

  

(3) Likely human-

understanding of 

conversation moves, what 

is communicated 

(materials in italics are 

likely to be  implicitly 

added by human 

inference) 

A: Do you have the ability to tell me the time of the present moment, as 

standardly indicated on a watch, and if so please do so tell me 

B: No, I don’t know the exact time of the present moment, but I can 

provide some information from which you may be able to deduce the 

approximate time, namely the milkman came at some time prior to the 

time of speaking 

Note: Example from Levinson (1983, pp. 97–98). 

Other examples include the use of irony and metaphors, which can only be 

understood when going beyond the literal meaning of words and sentences. The 

province of such analyses is the field of pragmatics. Linguistic pragmatics is 

concerned with the meaning of natural language expressions in context, beyond what 

is literary said or written.
5
 To emphasize the context aspect, the term utterance may 

                                                        
5
 The borderline between semantics and pragmatics is not as clear as it may initially seem. The 

question is how the “literal” or semantic meaning of language expressions should be defined. A 

semantic interpretation also involves background knowledge not contained in the natural language 

expressions themselves, e.g., to map, in a consistent way, sentences and sentence fragments to logical 

propositions. Pragmatic aspects may also be accounted for by semantic theories, although this may 
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be employed with the meaning “sentence in context.” Levinson (1983) discusses 

several focal areas of study in pragmatics.  

 The study of conversational implicatures is about conveyed but not explicitly 

expressed aspects of message content. The omission of such aspects in 

utterances is based on the sender’s assumption that the receiver will implicitly 

infer those aspects. The conversation in Table 4 is an example for 

conversational implicature.  

 The study of deixis is concerned with grammaticalized references to the context 

of speaking. For instance, the word now may be used as a reference to a point 

in time, the word you as a reference to a person, and the word here as a 

reference to a place. Sentences containing such expressions cannot be fully 

understood out of context (what point in time? what person? what place?). 

 The study of presuppositions is about implicit assumptions required for the 

meaningful interpretation of utterances. For instance, the utterance “the King of 

France is wise” presupposes the existence of a King of France. 

 The study of speech acts holds the perspective that linguistic expressions used 

in practice must be conceived of more broadly, as intentional actions, rather 

than mere declarative, truth-bearing sentences.  

This section focuses on two aspects: the principle of cooperativeness, which explains 

the role of conversational implicatures in discourse, and the theory of speech acts. 

Both theories are foundational for the pragma-dialectical theory of argumentation 

discussed below. Moreover, this section discusses the theory of grounding in 

communication, which is a process considered pivotal to the success or the failure of 

discourse (including argumentation). 

1.5.1 Principle of cooperativeness 

As illustrated in Table 4, the proper understanding of language requires inferences 

that cannot be made on the sole basis of the propositional content (or literal meaning) 

of uttered sentences. Likewise, speakers seem to know which inferences they can 

expect their hearers to make. Grice (1975) proposed that a general principle of 

cooperativeness, which can be subdivided into more specific behavioral maxims, 

governs the production and interpretation of language. In particular, the overarching 

cooperative principle is: 

                                                                                                                                                             
blow up the complexity and reduce the conceptual coherence of the theory. The issue is discussed in 

detail in Levinson (1983, pp. 1–35). 
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“Make your conversation contributions such as required, at the stage at 

which it occurs, by the accepted purpose or direction of the talk 

exchange in which you are engaged.” 

The more specific maxims are: 

 Maxim of quantity 

1. “Make your contribution as informative as required (for the current purpose 

of the exchange).” 

2. “Do not make your contribution more informative than is required.” 

 Maxim of quality: “Try to make your contribution one that is true.” 

1. “Do not say what you believe to be false.” 

2. “Do not say that for which you lack adequate evidence.” 

 Maxim of relevance: “Be relevant.” 

 Maxim of manner: “Be perspicuous.” 

1. “Avoid obscurity of expression.” 

2. “Avoid ambiguity.” 

3. “Be brief (avoid unnecessary prolixity).” 

4. “Be orderly.” 

The hearer is able to make inferences of the kind discussed above based on the 

assumption that the speaker is trying to be cooperative and hence complying with the 

proposed maxims. To draw a distinction between semantic inferences based on the 

utterance’s propositional content and inferences based on the cooperative principle, 

Grice introduced the term conversational implicatures for the latter. To illustrate the 

four maxims and the kinds of inference they trigger, Table 5 gives an example of 

each. 
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Table 5 

Pragmatic inferences explained through Grice’s cooperation maxims 

What is said What is additionally 

communicated 

Maxim at work and explanation 

Nigel has 14 

children. 

Nigel has not more 

than 14 children. 

Maxim of quantity 

If Nigel had more than 14 children, the statement 

would violate the maxim of quantity since not the 

full set of required information is provided 

Does your farm 

contain 400 acres? 

I don’t know that it 

does, and I want to 

know if it does. 

Maxim of quality 

For a question to be sincere, the expectation is that 

one is actually lacking and requiring the 

information one asks for. 

A: Where is Bill? 

B: There’s a yellow 

VW outside Sue’s 

house. 

Bill may be in Sue’s 

house  

Maxim of relevance 

On face value, the reply seems to be irrelevant. The 

hearer assumes cooperativeness and thus searches 

for an inference that makes the reply relevant to the 

question. Since Bill owns a yellow VW, the 

suggested inference is a reasonable interpretation. 

Walk up to the door, 

turn the door’s 

handle clockwise as 

far as it will go, and 

then pull gently 

towards you.   

It is important to 

exactly and carefully 

follow this advice to 

open the door. 

Maxim of manner 

If details were not important, the speaker could just 

say “Open the door.” Otherwise, the speaker would 

violate the sub-maxim to be brief. 

Note: Examples taken from Levinson (1983, pp. 100–108). 

The speaker may also intentionally flout cooperation maxims in order to convey a 

nonliteral meaning. Our ability to understand certain figures of speech, such as irony, 

may be explained based on this hypothesis. For instance, consider the conversation in 

Table 6 (taken from Levinson 1983). 

Table 6 

Example of the use of irony 

A: What if the USSR blockades the Gulf and all the oil? 

B: Oh come now, Britain rules the seas! 

Note: Example taken from Levinson (1983, p. 109). 

Since it is generally known that Britain does not rule the seas, A is invited to come up 

with an alternative interpretation of B’s utterance, one that is compliant with the 

cooperation principle. An obvious interpretation is the use of irony, that is, B may 

actually mean exactly the opposite of what he said (i.e., “Britain does not rule the 
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seas”). So, by making a further inference, A may interpret B’s answer as the 

judgment that there is nothing Britain can do about a possible blockade of the Gulf. B 

can safely use irony because he knows that A assumes that he is following the 

cooperation principle and therefore will be able to make the right non-conventional 

inference. 

1.5.2 Speech act theory 

Speech act theory was originally proposed by Austin (1962) in his book How to Do 

Things with Words, and further developed by Searle (1969). This section draws from 

an overview given by Levinson (1983).  

Speech act theory is based on the observation that utterances are not only 

representations of propositional content, which may be verified in terms of some 

semantic theory, but can also be seen as intentional actions. Austin (1962) started his 

treatment based on a distinction between constatives, that is, utterances that make 

statements about the world, and performatives, that is, utterances used to perform 

certain actions with potential bearing on the state of the world (e.g., “I sentence you 

to ten years of hard labor” or “I declare war on Zanzibar,” Levinson 1983). Since the 

performative aspect cannot be analyzed with the classical approach of truth 

conditions, Austin introduced the notion of felicity conditions, which describe 

conditions a performative must satisfy in order to be successful (or “felicitous”). For 

instance, to deliver a verdict or to declare war, the speaker must have the authority to 

do so. In the course of his argument, Austin (1962) developed the concept further to 

arrive at a radically extended notion of speech acts. Rather than being a property of 

one specific kind of utterance (i.e., performatives), performative aspects may be 

found in essentially any utterance. For instance, making a request, an assertion, or a 

promise are in fact intentional actions (which may or may not employ some 

propositional content). 

To give a more detailed account of the nature of these actions, Austin proposes 

that each utterance goes with three different simultaneously performed acts that exert 

specific forces (Levinson 1983, p. 236): 

 a locutionary act, which involves the “utterance of a sentence with determinate 

sense and reference” 

 an illocutionary act, which involves the “making of a statement, offer, promise, 

etc.” Essentially, the illocutionary act corresponds to the conversational 
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intention of the utterance (i.e., what the speaker wants to achieve). Often, the 

term speech act is used to specifically refer to the illocutionary act. 

 a perlocutionary act, which is about the actual effect the utterance has on the 

audience. The effect might be intended or unintended, and typically depends on 

the specific circumstances. 

Searle (1969, 1976) extended and refined Austin’s theory. Among other things, he 

proposed five basic types of speech acts, which could be used to classify utterances 

(Levinson 1983, p. 240): 

 representatives (or assertives) are speech acts that commit the speaker to the 

truth of the expressed proposition (e.g., asserting, concluding) 

 directives are speech acts that try to get the addressee to do something (e.g., 

requesting, questioning) 

 commissives are speech acts that commit the speaker to some future course of 

action (e.g., promising, threatening, offering) 

 expressives are speech acts that express a psychological state (e.g., thanking, 

apologizing, welcoming, congratulating) 

 declaratives are speech acts with immediate effect. They typically rely on 

specific institutional contexts and procedures. They are essentially the 

performatives described by Austin. (e.g., excommunicating, declaring war, 

christening, firing from employment) 

The concept of speech acts has been adopted in many areas, including argumentation 

theory and computational approaches to modeling and supporting educational 

discussions. Searle’s typology of speech acts is just one approach. Many other 

typologies, both general and specific to certain fields of application, have been 

developed since then.  

1.5.3 Organization of discourse  

This section extends the perspective from single utterances to the organization of 

utterances in discourse. Discourse, as a complex collective activity, requires 

considerable efforts in producing contributions in an orderly and coordinated way. 

This section discusses the concepts of turn-taking, adjacency pairs (both based on 

Levinson 1983), and grounding (Clark and Schaefer 1989), which is a process 

essential for discussants to maintain a common understanding of the current state of 

the discussion. 
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Multiparty discourse requires the transition of the speaker role between the 

different participants. The ease with which humans manage to accomplish this is 

astonishing. Despite the fact that the gap between two consecutive utterances is often 

not more than a few micro-seconds, humans are incredibly successful in avoiding 

overlaps in speaking. The talking of an individual speaker until the next speaker 

starts is referred to as a turn. The process governing the decision when who is to 

speak next is referred to as turn-taking. Sacks et al. (1978) propose that turn-taking is 

based on a local management system comprising a set of rules that manage, on a 

turn-by-turn basis, control over a scarce resource (the speaker role) in an economic 

way (minimizing gap and overlap). The system is based on cues for requesting or 

releasing the floor (i.e., the speaker role). Turns are conceived of as a series of turn-

constructional units, which are identified based on syntactic, prosodic, and 

intonational properties. Turn-constructional units mark places where the speaker may 

change (called transition-relevance places). The next speaker may be selected by the 

current speaker through specific means, such as gaze or a direct address by name. 

Sacks et al. (1974) propose the following rules that govern the transition of speaker 

turns (simplified, taken from Levinson 1983, p. 298, C = current speaker, N = next 

speaker): 

1. “If C selects N in current turn, then C must stop speaking, and N must speak 

next; transition occurring at the first transition-relevance place after N’s 

selection” 

2. “If C does not select N, then any (other) party may self-select, first speaker 

gaining right to the next turn” 

3. “If C has not selected N, and no other party self-selects under option (2), 

then C may (but need not) continue (i.e. claim rights to a further turn-

constructional unit)” 

A typical pattern reflecting an important organization principle in dialogues is the 

occurrence of adjacency pairs (Schegloff and Sacks 1973). An adjacency pair 

consists of two parts (first and second part) that correspond to utterances of different 

speakers that relate to one another (part two is essentially a response to part one). 

Examples for adjacency pairs are question-answer, greeting-greeting, and offer-

acceptance pairs. The two parts may occur next to each other (which was in first 

definitions one of the required properties, therefore adjacency pairs), but may also be 

separated by intermediate utterances. For instance, a question may not be properly 

understood and therefore responded to by a clarification question rather than a direct 

answer. So some sub-dialogue, or insertion sequence, may separate the first and the 
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second part of the adjacency pair. Therefore, the criterion of strict adjacency is 

relaxed to a criterion of conditional relevance, which only prescribes the existence of 

an identifiable second part that is relevant and expectable with respect to the first 

part. Besides the prototypical second part one would expect in the first place based 

on the first part (e.g., an “answer” in response to a “question”), the second part may 

also be of a different category. For instance, discussants may reject to answer a 

question when they are dubious whether the question is meant sincerely. Therefore, a 

distinction is made between preferred and dispreferred responses. Dispreferred 

responses are typically marked in discourse, e.g., a refusal to answer a question may 

be preceded by a delay or filler words (e.g., uhm). 

A concept conducive to the understanding of discourse is common ground, which 

refers to the knowledge shared between participants of a discussion. The kind of 

shared knowledge is not restricted to factual knowledge. For instance, the principle 

of cooperation, discussed in section 1.5.1, can be considered as part of the common 

ground, likewise discourse norms in general and in specific institutional settings 

(e.g., in the courtroom), shared beliefs, and shared assumptions. Based on the 

presupposition that other discussants already possess—or can easily infer—certain 

knowledge, a speaker may be less than fully explicit in his communication. 

Discourse can be understood as a process in which participants continuously try to 

add new items to the common ground. In this way, the common ground accumulates 

over the course of a discussion. For instance, to add a piece of factual knowledge, 

one may explain some fact. To add a belief about a controversial standpoint, one may 

present supporting arguments to establish that belief. The common ground may also 

include knowledge about the current state of the discussion. For instance, when a 

person asks a question, a proposition that this person wants to know something may 

be added as well. If the question is answered, the proposition may be destroyed again 

and replaced by a new proposition that the person now knows the answer to her 

question. 

Clark and Schaefer (1989) propose a process called grounding, which ensures that 

the common ground can accumulate in an orderly way. In the process of grounding, 

discussants try to establish the mutual belief that what is said is also understood, and 

hence part of the common ground. Contributing to discourse therefore involves two 

interwoven processes: 
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1. Content specification: The speaker tries to specify some propositions and 

the listeners try to register that proposition. 

2. Grounding: Speaker and listeners try to achieve the grounding criterion, 

which is: 

 “The contributor and the partners mutually believe that partners have 

understood what the contributor meant to a criterion sufficient for 

current purposes.” 

A contribution to discourse may thus be conceived of as a collective act consisting of 

a speaker presenting an utterance (presentation phase), and a listener giving evidence 

of his understanding of the utterance (acceptance phase). This evidence may take 

different forms, which constitute the strength of evidence. Weak kinds of evidence 

are to just keep attending to the speaker or to continue with a new contribution 

without signaling a lack of understanding. Stronger kinds of evidence include an 

explicit acknowledgment or some form of displaying or demonstrating 

understanding. If a speaker realizes that the listeners’ understanding is not sufficient, 

he will try to repair the problem in understanding. A full understanding is often not 

required, so, for economic reasons, repairs are only initiated when the speaker 

considers the listeners’ understanding as not “sufficient for current purposes.” Clark 

and Schaefer (1989) describe four levels of understanding (listed here from weakest 

to strongest): 

1. not noticing that speaker uttered something 

2. noticing that speaker uttered something 

3. correctly hearing the content of the utterance 

4. understanding the meaning of the utterance 

Repairs are initiated as soon as possible; otherwise problems may start to 

“snowball.” This is in line with the least collaborative effort principle, which says 

that discussants organize their discourse in a way that minimizes the total effort 

involved in a contribution (a snowballing of problems would be considerably more 

expensive in terms of effort than a prompt repair). Table 7 illustrates the process of 

grounding. 
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Table 7 

Example of grounding in communication  

Transcript of conversation Interpretation according to theory of grounding 

A: is it . how much got Norman get off -- Presentation of utterance with initial self-correction 

(immediate self-corrections are the most cost-effective 

way to address problems) 

B: pardon Signaling trouble in understanding (at the level of not 

fully hearing the content of the contribution) 

A: how much does Norman get off Repairing problem in understanding (by re-presenting 

question) 

B: oh, only Friday and Monday Signaling awareness of repair move (“oh”) and 

understanding (implicitly, by giving a reasonable 

answer) 

A: m Accepting response through continuer (“m”) 

B: [continues] … 

Note: Example taken from Clark and Schaefer (1989). 

1.6 Van Eemeren and Grootendorst: The Pragma-dialectical 

Theory 

One of the most significant current theories of argumentation is Van Eemeren and 

Grootendorst’s (2004) pragma-dialectical theory, which is based on an integration of 

the logico-centric, dialectical tradition of studying argumentation with insights from 

linguistic pragmatics. Van Eemeren and Grootendorst argue that neither of these 

approaches alone can sufficiently account for real-world argumentation in its 

entirety. The dialectical view can contribute a normative, abstract model of how 

argumentation should look like from the perspective of rationality. The pragmatic 

view can contribute a descriptive account of how argumentation unfolds under real-

world constraints. In line with this normative-pragmatic view, Van Eemeren and 

Grootendorst propose the following definition of argumentation (p. 1): 

“Argumentation is a verbal, social, and rational activity aimed at 

convincing a reasonable critic of the acceptability of a standpoint by 

putting forward a constellation of propositions justifying or refuting the 

proposition expressed in the standpoint.” 

The dialectical aspect is reflected by defining argumentation as “rational” and 

“aimed at convincing a reasonable critic.” The pragmatic aspect is reflected by 
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defining argumentation as an “activity” that is “social” in nature. Individual 

argumentative reasoning is conceived of as a discussion with an imagined opponent. 

Table 8 

Phases of a critical discussion and corresponding speech acts according to the pragma-dialectical 

theory 

Phase Description Relevant speech 

act types 

Speech act usage 

Confrontation Conflict of opinion emerges Assertives Express a standpoint 

Commissives Acceptance or non-acceptance 

of standpoint 

Upholding non-acceptance of 

standpoint 

Opening Clarification of common 

ground (background 

knowledge, values, 

expectations with respect to 

discussion format and roles) 

Decision whether or not to 

start the discussion (e.g., 

discussion may not be started 

if expectations regarding 

discussion format largely 

diverge) 

Opening stage often stays 

implicit since existence of 

sufficient common ground is 

typically tacitly assumed by 

discussants 

Directives Challenging to defend a 

standpoint 

Commissives Acceptance of the challenge to 

defend a standpoint 

Agreement on premises and 

discussion rules 

Decision to start discussion 

Argumentation Core argumentation activities 

(challenging, arguing, 

counter-arguing, conceding, 

etc.) 

Directives Requesting argumentation 

Assertives Advancing argumentation 

Commissives Acceptance or non-acceptance 

of argumentation 

Concluding Drawing the conclusion Commissives Acceptance or non-acceptance 

of standpoint 

Assertives Upholding or retracting a 

standpoint 

Establishing the result of the 

discussion 

Note: Adapted from Van Eemeren and Grootendorst (2004, p. 68). 



34 1 Background: Argumentation Theory and the Study of Discourse 

 

On a more detailed level, Van Eemeren and Grootendorst (2004) propose an ideal 

model of a critical discussion that unites elements from the dialectical and the 

pragmatic view. The model serves a heuristic function (as a tool to analyze and 

interpret argumentation) and a critical function (as a standard for evaluating the 

quality of argumentation). As a prerequisite for a critical discussion, a conflict of 

opinions is assumed. A protagonist puts forward a thesis and tries to convince a 

critical antagonist of the acceptability of that thesis. In the case of a monologue, the 

antagonist is not real but imagined or anticipated. The critical discussion ends with 

either the antagonist being convinced, or the protagonist withdrawing the thesis. Four 

phases of the critical discussion are distinguished each corresponding to a set of 

dialogue acts appropriate in that phase (see Table 8). The typology of speech acts is 

based on the scheme proposed by Searle (1976) discussed above. In addition, Van 

Eemeren and Grootendorst propose to define one specific, particularly relevant 

subclass of declaratives: usage declaratives. In contrast to the declaratives defined by 

Searle (1976), usage declaratives do not depend on any specific institutional context. 

Their aim is to clarify the meaning of other speech acts (e.g., by explaining or 

defining content elements of previous speech acts). Usage declaratives (e.g., giving 

some explanation) and directives to request usage declaratives (e.g., asking for an 

explanation) can be used in all phases and are not included in Table 8. Based on 

Grice’s cooperative principle discussed above, Van Eemeren and Grootendorst 

(2004) propose criteria for the execution of speech acts (e.g., speech acts must be 

comprehensible). 

Protagonist and antagonist of an ideal critical discussion behave according to 

specific norms. Van Eemeren and Grootendorst (2004) describe 15 discussion rules 

that specify a procedure in accordance with these discussion norms. They argue that 

their rules satisfy two conditions that are central for the reasonableness of the rules. 

First, the rules must be effective in guiding discussants towards the resolution of 

their conflict of opinion (problem validity). The rules should not only commit 

discussants to the making of proper (logical) inferences, but also lead them towards 

accomplishing the specific (pragmatic) tasks of the different stages described in 

Table 8. Second, the rules must take a form such that they are acceptable to 

protagonist and antagonist (conventional validity). If protagonist and antagonist are 

honestly interested in resolving their conflict of opinion in a rational way, they are 

likely to accept a set of rules that is problem-valid. Since the rules are of a rather 

technical nature and thus not very accessible to “real” discussants, Van Eemeren and 

Grootendorst (2004) propose a more straightforward and better understandable “code 

of conduct”: 
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1. “Discussants may not prevent each other from advancing standpoints or 

from calling standpoints into question.” 

2. “Discussants who advance a standpoint may not refuse to defend this 

standpoint when requested to do so.” 

3. “Attacks on standpoints may not bear on a standpoint that has not actually 

put forward by the other party.” 

4. “Standpoints may not be defined by non-argumentation or argumentation 

that is not relevant to the standpoint.” 

5. “Discussants may not falsely attribute unexpressed premises to the other 

party, nor disown responsibility for their own unexpressed premises.” 

6. “Discussants may not falsely present something as an accepted starting 

point or falsely deny that something is an accepted starting point.” 

7. “Reasoning that in an argumentation is presented as formally conclusive 

may not be invalid in a logic sense.” 

8. “Standpoints may not be regarded as conclusively defended by 

argumentation that is not presented as based on formally conclusive 

reasoning if the defense does not take place by means of appropriate 

argument schemes that are applied correctly.” 

(Essentially, a non-deductive argumentation must employ an appropriate 

and correctly applied argumentation scheme.) 

9. “Inconclusive defenses of standpoints may not lead to maintaining these 

standpoints, and conclusive defenses of standpoints may not lead to 

maintaining expressions of doubt concerning these standpoints.” 

10. “Discussants may not use any formulations that are insufficiently clear or 

confusingly ambiguous, and they may not deliberately misinterpret the 

other party’s formulations.” 

1.7 Walton: Argumentation Schemes, Critical Questions, and 

Fallacies 

The critical discussion described by Van Eemeren and Grootendorst (2004) is only 

one possible type of discussion. Walton (2008) describes six main types of dialogue 

in which argumentation plays a role (see Table 9). At the opening stage of a 

discussion, participants agree, implicitly or explicitly, on the type of discourse they 
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will engage in. It is possible that the type of discourse shifts in the course of the 

discussion (e.g., in the worst case, a rational and objective discussion may drift 

towards a personal quarrel). 

Walton’s description of a critical discussion (or persuasion dialogue) largely 

corresponds with Van Eemeren and Grootendorst’s (2004) model. That is, starting 

point is a conflict of opinion, participants behave cooperatively and rationally, 

following specific rules and norms, and the discussion concludes when the issue is 

clarified. Walton makes a distinction between two subtypes: On the one hand, a 

dissent is characterized by an asymmetric situation in which a proponent wants to 

persuade a skeptical opponent from his standpoint. The burden of proof is on the side 

of the proponent, who has to show that his standpoint is acceptable in light of the 

concessions made by the opponent. The opponent has a lesser obligation since he 

only has to express reasonable critique against the standpoint. On the other hand, a 

dispute is characterized by a symmetric situation in which both parties equally have 

the burden of proof with respect to their (opposing) standpoints. 

Table 9 

Walton’s typology of dialogues 

Type of dialogue Initial situation Participant’s goal Goal of dialogue 

Persuasion  

(Critical discussion) 

Conflict of opinion Persuade other party Resolve or clarify 

issue 

Inquiry Need to have a proof Find and verify 

evidence 

Prove (disprove) 

hypothesis 

Negotiation Conflict of interest Get what you most 

want 

Reasonable settlement 

both can live with 

Information-seeking Need to have 

information 

Acquire or give 

information 

Exchange of 

information 

Deliberation Dilemma or practical 

choice 

Co-ordinate goals and 

actions 

Decide best available 

course of action 

Eristic 

(Quarrel) 

Personal conflict Verbally hit out the 

opponent 

Reveal deeper basis of 

conflict 

Note: Adapted from Walton (2008, p. 8) 

In stark contrast to the critical discussion stands the quarrel (or eristic discussion). 

The quarrel constitutes the lowest level of argumentation. Rather than aiming at 

resolving a difference of opinion in a rational and objective way, participants try to 

verbally attack their opponent on a personal level. They do not feel committed to 
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standards of reasonableness and fairness but rather try to win the conflict at any cost. 

Heated emotions often play an important role in quarrels.  

The debate may be seen a mixture between a critical discussion and a quarrel. On 

the one hand, a debate is often regulated through a set of rules that ensure that the 

dialogue takes an orderly form and hinders the excesses characteristic for quarrels. 

On the other hand, the rules are often very permissive, allowing many forms of 

fallacious argumentation. The participants’ sole focus is on winning the debate, often 

at the expensive of standards of sound reasoning. This typically leads to the use of 

rhetoric tricks and appeals to emotion to impressive the audience or disconcert the 

opponent. Nevertheless, debates take an important function in society, for instance, 

in the political arena. 

Other main types of dialogue include the negotiation (balancing out personal 

interests rather than establishing truth), the inquiry (inferring reliable knowledge 

based on a careful scrutiny of known facts rather than concessions made by the 

discussants, e.g. in science), the deliberation (making of well-reasoned practical 

choices between alternative actions), and the information-seeking dialogue 

(exchanging information). 

An important contribution of Walton is his extensive work with respect to 

argumentation schemes and fallacies. Research on these two important aspects can 

be traced back to Aristotle. Argumentation schemes describe general forms of 

inference used to persuade others of one’s standpoint. Most argumentation schemes 

deviate from the traditional, logico-centric ideal of a deductively valid argument. 

Rather, any kind of inference aimed at transporting the acceptability of a set of 

premises to a conclusion may be represented by means of an argumentation scheme, 

including arguments that are defeasible (a detailed explanation follows below). 

Similarly, modern argumentation theory declines the view that any deductively 

invalid argument must be considered as a fallacy. Instead, arguments are judged in 

terms of their appropriateness with respect to the goals of the dialogue. Therefore, 

the decision whether an argumentation scheme is applied in an appropriate or 

fallacious way strongly depends on the specific type of dialogue and context, and 

may require a careful case-by-case analysis.  

The notion of defeasibility is of central importance to current argument-theoretical 

approaches. Once the premises of a deductive argument have been accepted, an 

obligation arises to also accept its conclusion. In contrast, the acceptance of the 

premises of a defeasible argument only leads to a provisional acceptance of its 

conclusion. The logical structure of a defeasible inference leaves room for 
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exceptional cases in which the conclusion does not necessarily follow from its 

premises. So, if new information enters the picture, or serious doubts are raised, the 

conclusion may not be accepted anymore even if its premises have been accepted. 

The defeasible nature of arguments can often be represented through a generalization 

premise that takes the form of a defeasible, or non-strict, generalization (such as a 

defeasible modus ponens, e.g., “Generally, if X then Y.” or “If X then plausibly Y.”). 

Generalization premises correspond to warrants in the Toulmin model and are 

typically not explicitly mentioned in real-world discourse. Often, the acceptability of 

defeasible arguments also hinges on other elements not explicitly addressed in the 

argument. For instance, an argument from expert opinion (e.g., “Expert X said Y.”) 

contains a number of implicit presumptions that may be questioned, for instance: Is 

X really an expert in a field that allows him to give a competent judgment about Y? 

Or: Is X honest about Y? Therefore, such arguments are also called presumptive 

arguments. Presumptions may be encoded as additional premises of the 

argumentation scheme. Walton et al. (2008, pp. 15–21), however, favor to represent 

presumptions in the form of critical questions and to reserve premises for the core 

logic of argumentation schemes. The critical questions can serve as a handy tool for 

analysts or trained discussants to probe whether the argumentation scheme has been 

applied in an appropriate or fallacious way. When used in a discussion, critical 

questions shift the burden of proof back to the presenter of the argument. That is, 

before the argument is accepted as such, the presenter must clarify and substantiate 

the implicit presumptions that were brought to the foreground through critical 

questions. Walton et al. (2008, p. 10) explicitly draw a line between deductive and 

inductive argumentation schemes on the one hand and defeasible ones on the other. 

Valid deductive and strong inductive arguments have a more stringent internal logic 

and are therefore more binding than defeasible arguments. However, due to 

uncertainty and lack of knowledge, people often have to resort to weaker forms of 

inference. 

In summary, argumentation schemes semi-formally describe prototypical forms of 

inference in terms of premises, a conclusion, and critical questions. In particular, 

defeasible argumentation schemes are of central importance for the study of real-

world discourse from an argumentation-theoretical perspective. Argumentation 

schemes may not only be used by analysts to help identify implicit premises and 

evaluate argumentation. They may also be employed in education, to impart the 

skills of proper argumentation, and in artificial intelligence research, as a blueprint to 

build computational models of argumentation. 
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Walton et al. (2008) present a compendium of 65 argumentation schemes based on a 

review of relevant literature, including previous classification approaches. The 

argumentation schemes are grouped according to more general categories. They 

distinguish the three main categories reasoning (see examples in Table 10 and Table 

11), source-based arguments (see examples in Table 12), and applying rules to cases 

(see examples in Table 13). The source of the given examples can be found in the 

footnote
6
. 

Depending on the specific context, argumentation schemes may be applied in an 

inappropriate way. For instance, they may use implicit presumptions that cannot be 

realistically maintained, or they may be based on rhetorical tricks to deceive the 

audience or the opposition party. Table 14 presents some of the major fallacies, 

based on a compilation in Walton (2008, pp. 18–22). The source of the given 

examples can be found in the footnote
7
. 

1.8 Summary 

The fields of argumentation theory, philosophy of language, and pragmatics provide 

the theoretical foundation and background of many psychological and educational 

approaches to argumentation. One can observe a considerable shift from reductionist 

logico-formal treatments of argumentation to modern approaches that encompass 

pragmatic aspects of language use. In contrast to formal languages, natural 

argumentative discourse typically involves many unspoken and implicit elements. 

This generally poses a stiff challenge to the analysis of discourse and renders strictly 

formal-logical approaches as unpromising endeavors. A possible explanation for the 

inexplicitness in language use is that discussants mutually assume a shared pool of 

common knowledge and behave according to maxims of cooperativeness, which 

demand, among other things, to produce language in an economic way (i.e., only 

providing information required for current purposes). If each and every used premise 

were made explicit, language would be hopelessly verbose and extremely arduous, or 

impossible, to follow. While the traditional formal-logical perspective uses a very 

narrow notion of acceptability—formal validity—more modern approaches judge 

                                                        
6
 The examples are originally presented or cited in: [1] – Walton (1996, p. 74), [2] – Walton et al. 

(2008, p. 9), [3] –Walton et al. (2008, p. 10), [4] – Walton et al. (2008, p. 26), [5] – Walton et al. 

(2008, p. 118). 
7
 The examples are originally presented or cited in: [6] – (Walton 2005, p. 97), [7] – Walton (2008, p. 

40), [8] – Walton (2008, p. 84), [9] – Walton (2008, p. 21), [10] – Walton (1999, p. 71), [11] Walton 

(2008, p. 19), [12] – Woods and Walton (1977, p. 584), [13] – Walton (2008, p. 244), [14] – Walton 

(2008, p. 22–23). 



40 1 Background: Argumentation Theory and the Study of Discourse 

 

many inferences that are defeasible and presumptive as acceptable as well. For 

instance, the notion of informal fallacies is nowadays widely adopted, which focuses 

on discussion moves that impair the quality of discourse. Such discussion moves 

may not only be problematic in terms of their relevance, consistency, and logic. 

Often, they also employ rhetorical tricks and attempts of willful deception. 

Argumentation is field-dependent rather than universal. The specific context of 

argumentation is thus of major importance. This chapter discussed six prototypical 

types of discourse, proposed by Walton, which are based on different standards and 

procedures. The decision whether a certain inference is legitimate or an informal 

fallacy must take the specific context into consideration. For instance, an argument 

from expert opinion may be legitimate only in some cases. On the one hand, expert 

opinions are an accepted source of evidence in lawsuits (which may lead to excesses 

such as a “battle of experts”). On the other hand, when opposition against an expert 

opinion is generally turned down without further consideration, this may be viewed 

as the informal fallacy of ad verecundiam, or appeal to modesty. Argumentation 

theory seems to converge at viewing a critical discussion, or persuasion dialogue, as 

a particularly valuable form of discourse. Such dialogues are characterized by an 

orientation towards standards of reasonableness and fairness in the resolution of a 

conflict of opinions. 

Table 10 

Exemplary argumentation schemes in Walton’s category reasoning – deductive and inductive schemes 

Category Example General reasoning pattern (schematic) 

Deductive 

reasoning  

(ex: Reductio 

ad absurdum) 

 

There is no smallest rational number 

greater 0. Let’s assume such a 

number would exist, and name this 

number r. Then r/2 would be a 

rational number greater 0 and smaller 

than r. This contradicts the assertion 

that r is the smallest rational number 

greater 0.   

P1: There is a sequence of deductively 

valid inference steps from proposition p1 to 

proposition p2 (p1  …  p2) 

P2: Proposition p2 is inconsistent with p1. 

C: Therefore, p1 must be false.  

Inductive 

reasoning 

(ex: Argument 

from random 

sample to a 

population) 

Complex argument in scientific paper 

including a description of hypotheses, 

operationalization of variables, 

sampling procedure, experimental 

design, statistical analysis, results, 

conclusions, etc. 

P1: Sample S is representative for 

population P (according to the rules of 

statistical sampling). 

P2: Analysis of S through proper 

application of inferential statistics results 

in assertion A about P at a confidence level 

of C. 

P3: C is considered sufficiently large to 

warrant a statistical generalization. 

C: Therefore, assertion A describes a 

general pattern in population P. 
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Table 11 

Exemplary argumentation schemes in Walton’s category reasoning – presumptive schemes 

Category Example General reasoning 

pattern (schematic) 

Critical questions (selection) 

Causal 

reasoning 

(ex: Argument 

from cause to 

effect; Walton 

et al. 2008, p. 

328) 

“When nations do not 

remain consistent in 

their policies, their 

prestige drops. 

Recognition of 

communist China 

means not remaining 

consistent in our 

policies. Therefore, 

our recognition is 

likely to drop.” [1] 

P1: “Generally, if A 

occurs, then B will 

occur.” 

P2: “In this case, A 

occurs.” 

C: “Therefore, in this 

case, B will occur.” 

 

“How strong is the causal 

generalization?” 

“Is the evidence cited (if there 

is any) strong enough to 

warrant the causal 

generalization?” 

“Are there other causal factors 

that could interfere with the 

production of the effect in the 

given case?” 

Abductive 

reasoning  

(ex: Argument 

from sign; 

Walton et al. 

2008, p. 329) 

“These look like bear 

tracks, so a bear must 

have passed along this 

trail.” [2] 

P1: “B is generally 

indicated as true when 

its sign, A, is true.” 

P2: “A is true in this 

situation.” 

C: “Therefore, B is true 

in this situation.”  

“What is the correlation of the 

sign with the event signified?” 

“Are there other events that 

would more reliably account 

for the sign?” 

Practical 

reasoning 

(ex: Argument 

from waste; 

Walton et al. 

2008, p. 326) 

“A PhD student […] 

has spent more than 

five years trying to 

finish her PhD thesis, 

but there are problems. 

[…] She contemplates 

going to law school, 

where you can get a 

degree in a definite 

period. But then she 

thinks: ‘Well, I have 

put so much work into 

this thing. It would be 

a pity to give up 

now.’” [3] 

P1: “If person P stops 

trying to realize goal G 

now, all P’s efforts to 

realize G will be 

wasted.” 

P2: “If all P’s previous 

attempts to realize G are 

wasted, that would be a 

bad thing.”  

C: “Therefore, P ought 

to continue trying to 

realize G.” 

“Is bringing about G 

possible?” 

“Forgetting past losses that 

cannot be recouped, should 

reassessment of the cost and 

benefits of trying to bring 

about G from this point in time 

to be made?” 
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Table 12 

Exemplary argumentation schemes in Walton’s category source-based arguments (presumptive) 

Category Example General reasoning 

pattern (schematic) 

Critical questions 

(selection) 

Argument 

from position 

to know 

(ex: Argument 

from expert 

opinion; 

Walton et al. 

2008, p. 19, p. 

310) 

“James W. Johnston, 

chairman of R. J. 

Reynolds Tobacco 

Company, testified 

before Congress that 

tobacco is not an 

addictive substance and 

that smoking cigarettes 

does not produce any 

addiction. Therefore, we 

should believe him and 

conclude that smoking 

does not in fact lead to 

any addiction.” [4] 

P1: “Source E is an expert 

in subject domain S 

containing proposition A” 

P2: “E asserts that 

proposition A (in domain 

S) is true.”  

P3: “If source E is an 

expert in subject domain S 

containing proposition A, 

and E asserts that A is true, 

then A may plausibly be 

taken to be true.” 

C: “Therefore, A may 

plausibly be taken to be 

true.” 

“How credible is E as an 

expert source?” 

“Is A consistent with what 

other experts assert?” 

“Is E’s assertion based on 

evidence?” 

Argument 

from popular 

acceptance 

(ex: Argument 

from popular 

opinion; 

Walton et al. 

2008, p. 311)  

Most people believe in 

god, in one form or the 

other. Therefore, god 

exists. 

P1: “If an assertion A is 

generally accepted as true, 

that gives a reason in favor 

of A.” 

P2: “A is generally 

accepted as true.”  

C: “Therefore, there is 

reason in favor of A.” 

“What evidence like a 

poll or an appeal to 

common knowledge 

supports the claim that A 

is generally accepted as 

true?” 

“Even if A is generally 

accepted, are there any 

good reasons for doubting 

that A is true?” 

Table 13 

Exemplary argumentation schemes in Walton’s category applying rules to cases (presumptive) 

Category Example General reasoning 

pattern (schematic) 

Critical questions 

(selection) 

Arguments 

based on 

cases 

(ex: 

Argument 

from analogy; 

Walton et al. 

2008, p. 9, p. 

200, pp. 58–

62) 

“When a murderer is 

found guilty, he is 

punished regardless of 

his reasons for killing. 

Similarly, anyone 

partaking in an abortion 

is guilty of having 

deprived an individual of 

her or his right to life.” 

[4] 

P1: “Generally, case C1 is 

similar to case C2.” 

P2: “The similarity 

between C1 and C2 

observed so far is relevant 

to the further similarity 

that is in question.” 

P3: “Assertion A is true in 

case C1.”  

C: “Therefore, A is 

(plausibly) true in case 

C2.” 

“Are there important 

differences 

(dissimilarities) between 

C1 and C2?” 

“Is there some other case 

C3 that is also similar to 

C1, except that A is false 

in C3?” 
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Verbal 

classification 

arguments 

(ex: 

Argument 

from verbal 

classification; 

Walton et al. 

2008, p. 319) 

“Marcia and Ted are 

arguing on the issue of 

abortion. Ted, who is 

prolife, argues: ‘There 

can be no abortion when 

the fetus becomes a 

person.’ Marcia replies: 

‘That’s hopelessly 

vague! There is no way 

to exactly define when 

the fetus has become a 

person. You don’t leg to 

stand on there!’” [5] 

P1: “A has property f.” 

P2: “For all X, if X has 

property f then X can be 

classified as having 

property g.”  

C: “Therefore, A has 

property g.” 

“What evidence is there 

that A definitely has 

property f, as opposed to 

evidence indicating room 

for doubt about whether 

it should be so 

classified?” 

“Is the verbal 

classification in the 

classification premise 

based merely on an 

assumption about word 

usage that is subject to 

doubt?” 

Table 14 

Major argumentation fallacies 

Fallacy Example Description / Comment 

Fallacy of 

arguing in 

cycles 

“Ella: God exists. 

Brad: How do you know? 

Ella: The Bible says so. 

Brad: How do I know what the Bible says 

is true? 

Ella: Because the Bible is the word of 

God.” [6] 

Justifying a conclusion with a premise 

that follows from the conclusion. The 

argument therefore has no force in 

supporting the conclusion. 

From a formal-logical point of view, 

such arguments are valid. 

Fallacy of 

complex 

question 

“Have you stopped abusing your spouse?” 

[7] 

Using a question that contains a 

presupposition to fool the addressee. No 

matter how the addressee answers, he 

will implicitly accept the presupposition. 

Thus, the addressee may reject the 

question. 

Wrong 

conclusion / 

red herring 

fallacy 

“The prosecuting attorney in a criminal 

trial is supposed to prove that the 

defendant is guilty of murder. However, 

the prosecuting attorney argues at length 

that murder is a horrible crime. He holds 

up the victim’s bloody shirt for the jury to 

see. He expostulates at length on the 

horror of this crime and all crimes of 

murder.” [8] 

Fallacies of irrelevance. The example 

can be interpreted as “wrong 

conclusion” fallacy (argument 

supporting a conclusion different to the 

one in question) or “red herring” fallacy 

(the argument wanders off, does not 

arrive at any particular conclusion at all, 

distracts the audience). 

If the presented argument turned out to 

be relevant to the conclusion in the 

course of the trial, the argument would 

not be classified as fallacy. 
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Fallacy of 

equivocation 

turns 

“All elephants are animals, and Henri is an 

elephant, and Henri is a small elephant; 

therefore Henri is a small animal.” [9] 

Same term is used with different, 

confusing meanings. 

In the example, the first occurrence of 

“small” is meant relative to elephants, 

the second occurrence of “small” is 

meant relative to animals. The confusion 

is that a small elephant is still a 

relatively big animal. 

Appeal to 

emotions 

Real-estate salesman to potential 

customer: “A man of your standing in the 

community cannot afford to live in a 

cheap neighborhood.” [10] 

Disguising a lack of strong and relevant 

evidence by appealing to the emotions 

of the audience (popular sentiments, 

group solidarity, pity, fear). 

The example demonstrates an argument 

that uses flattery and appeal to prejudice 

and snobbery to persuade a potential 

customer. 

Argumentum 

ad hominem 

“The so-called theories of Einstein are 

merely the ravings of a mind polluted with 

liberal, democratic nonsense which is 

utterly unacceptable to German men of 

science.” (Dr. Walter Gross, official 

representative of “Nordic Science” in Nazi 

Germany) [11] 

Personal attacks, off the point, aimed at 

discrediting an opponent. 

Arguments referring to a person are not 

per se a fallacy, in particular, if personal 

conduct and character are in question. 

Post hoc, 

ergo propter 

hoc 

“I took a dose of Sinus Blast and a couple 

of days later my cold cleared right up.” 

[12] 

Wrongly concluding that an event B is 

caused by an event A because event B 

occurred after event A (chronologically). 

Appeal to 

modesty 

“Well, look, you’re not an expert. So 

nothing you can say about the matter is 

anything less than presumptuous.” [13] 

Trying to unfairly and dogmatically 

“silence the opposition” against an 

assertion by pointing to the authority of 

an expert. Opposition is viewed as a lack 

of respect for the opinion of the expert.  

Straw man 

fallacy 

“C: It would be a good idea to ban 

advertising beer and wine on radio and 

television. These ads encourage teenagers 

to drink, often with disastrous 

consequences.” 

“A: You cannot get people to give up 

drinking; they’ve been doing it for 

thousands of years.” [14] 

Misrepresenting an argument of an 

opponent (misquote, exaggerate, etc.) 

and attack the opponent based on the 

misrepresented argument. 

The example illustrates this kind of 

fallacy, assuming that person C does not 

argue in favor of getting people 

generally to give up drinking during the 

dialogue. 
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Chapter 2  

Argumentation Research in Psychology 

and Education 

The research presented in the previous chapter is mostly based on theoretical 

considerations and the detailed analysis of individual examples of argumentative 

discourse. Sometimes, these examples are real but often they are fictional, devised by 

scholars to illustrate the main aspects of their theories or show how their 

systemizations can even account for particularly pathologic or borderline cases. This 

chapter discusses research in psychology and education with a main focus on 

empirical results, most of which are quantitative in nature.  

Section 2.1 addresses two important questions: What skills are foundational for 

argumentation, and to what extent do people possess these skills? To answer these 

questions, results from cognitive psychology regarding people’s formal reasoning 

skills are discussed (e.g., inferences of the modus ponens type). While formal 

reasoning certainly plays a role in constructing valid arguments, it takes much more 

to be competent in argumentation. Quite the contrary, argumentation is typically 

associated with informal reasoning. Rather than performing the one expected correct 

inference step, argumentative reasoning becomes relevant when situations are 

complex and unclear, when multiple alternatives exist, and when information is 

uncertain and incomplete. Corresponding research on informal reasoning and the 

skills of argument will be reviewed. Section 2.2 discusses cognitive models of 

argumentation. Two important questions are addressed: Are argumentation skills 

domain-general or domain-specific? And: What role does domain-specific 

knowledge play with respect to argumentative performance? Section 2.3 discusses 

epistemic beliefs, which are the theories people hold regarding the nature of 

knowledge and knowing. As will be discussed, such theories are assumed to have a 

major influence on people’s attitude towards argumentation and thus, their 

argumentative performance. Section 2.4 reviews results from developmental 

psychology regarding the development of argumentation skills from childhood to 

adult age. An important finding is that education is a crucial factor in the 
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development of argumentation skills. Yet, as discussed in section 2.5, current 

educational practice is not particularly successful in fostering argumentation skills. 

Therefore, educational research has identified argumentation as a field of study of 

high practical relevance. In particular, social learning approaches have attracted 

much interest. Section 2.6 gives a general overview of social learning theories and 

research including a discussion of expert tutoring and cooperative learning. Section 

2.7 discusses argumentation-based learning approaches and corresponding empirical 

results grouped according to three main categories of targeted or achieved learning 

outcomes: learning to argue, arguing to learn, and arguing to improve thinking. 

Section 2.8 summarizes the main insights of this chapter. 

2.1 The Skills of Argument 

This section discusses research on cognitive skills relevant to the production, 

interpretation, and evaluation of arguments. While some relevant results regarding 

formal reasoning skills are discussed, the bulk of this section is devoted to research 

on informal reasoning, which is focused on the forms of argumentation employed to 

address complex real-world problems. Specific argumentation skills and empirical 

results that indicate widespread deficiencies in using these skills are presented. 

Results from cognitive psychology indicate that many people have limited 

abilities in formal deductive reasoning and probabilistic judgment. Table 15 shows 

formal-logical inferences and corresponding fallacies investigated in cognitive 

psychology studies. Marcus and Rips (1979) found that almost all subjects were able 

to correctly make modus ponens inferences. However, only about half of them 

correctly draw modus tollens inferences. Moreover, many subjects committed formal 

fallacies of the types affirming the consequent and denying the antecedent. Byrne 

(1989) found that the context can have a strong effect on the making of correct and 

incorrect inferences. For instance, providing multiple if-then statements with the 

same conclusion helps subjects realize that the if-part only gives a sufficient but not a 

necessary condition. Other studies show problems in making probabilistic 

judgments. For instance, Tversky and Kahneman (1974) used a task in which 

subjects estimated the probability that a person has a certain occupation based on a 

description of that person. In addition, information regarding the base-rate 

frequencies of different occupations was provided. Even if the description was 

completely uninformative, subjects ignored the provided base-rate frequencies in 

their estimates (base-rate fallacy). If no additional descriptions were provided, 

subjects correctly used the given prior probabilities in their estimates. A possible 
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explanation for formal and probabilistic reasoning errors is that in many everyday 

situations, simpler but fallible reasoning strategies are sufficient for current purposes 

and more economic, since they require less thinking time and mental efforts 

(bounded rationality; Gigerenzer et al. 1999; Kahneman 2011; Simon 1955). 

Table 15 

Formal inferences and fallacies used in cognitive psychology studies on formal reasoning 

Inference 

type 

Reasoning 

pattern 

Example 

Modus 

ponens 

(formally 

valid 

inference) 

If P then Q. 

P. 

Therefore, Q. 

“If she has an essay to write then she will study late in the library.” 

 “She has an essay to write.”  

 “Therefore, she will study late in the library.” 

   

Modus 

tollens 

(formally 

valid 

inference) 

If P then Q. 

Not Q. 

Therefore, not P. 

“If she has an essay to write then she will study late in the library.” 

“She will not study late in the library.”  

“Therefore, she does not have an essay to write.” 

   

Affirming 

the 

consequent 

(formal 

fallacy) 

If P then Q. 

Q. 

Therefore, P. 

 “If she has an essay to write then she will study late in the library.” 

 “She will study late in the library.”   

 “Therefore, she has an essay to write.” 

   

Denying 

the 

antecedent 

(formal 

fallacy) 

If P then Q. 

Not P. 

Therefore, not Q. 

 “If she has an essay to write then she will study late in the library.” 

 “She does not have an essay to write.”  

 “Therefore, she will not study late in the library.” 

Note: Examples taken from Byrne (1989). 

While formal reasoning problems can be characterized as “well-structured, familiar, 

and compatible with existing knowledge,” informal reasoning problems are generally 

“open-ended, debatable, complex, or ill-structured” (Means and Voss 1996). They 

typically involve the generation or evaluation of evidence and reasons vis-à-vis one 

or more claims in question. Argumentation is thus central to informal reasoning. A 

pioneering empirical study on informal reasoning is presented by Kuhn (1991). The 

study focused particularly on argumentation skills, which Kuhn considers pivotal to 

human thinking as such. Thinking often takes the form as arguing with oneself, e.g., 

to form beliefs, to make judgments, and to make decisions. The study investigated 

whether common people (i.e., non-experts) are able to rationally justify their beliefs 
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about controversial topics of general interest. While the study investigated individual 

reasoning, the results also provide some insights with respect to collaborative 

argumentation. Following Kuhn, collaborative argumentation employs essentially the 

same set of elementary argumentation skills (plus some additional ones, e.g., 

socially-oriented skills). 

The study consisted of research interviews with individual participants about three 

social problems (e.g., "What causes prisoners to return to crime after they're 

released?"). In the course of the interview, participants were asked a number of 

questions to assess specific argumentation skills. In particular, participants were 

asked to do the following things (in parentheses the specific skill addressed):  

1. present their own causal theories on these issues (theory) 

2. justify their causal theories and give supporting evidence, if possible 

(evidence) 

3. generate possible counter-positions (alternative theories)  

4. devise counterarguments against their own causal theory 

(counterarguments) 

5. rebut possible counterarguments (rebuttals) 

6. evaluate evidence presented by the interviewer (evaluation of evidence) 

With respect to (1), the study showed that people have coherent causal theories about 

questions of general interest, although the complexity of the presented theories 

varied (single-cause and multi-cause theories at different levels of elaboration). With 

respect to (2), three broad categories were distinguished: genuine evidence, pseudo-

evidence, and no evidence. In contrast to genuine evidence, pseudo-evidence only 

illustrates or elaborates on the causal mechanism, that is, how the cause brings about 

the effect. Pseudo-evidence may make a theory clearer, more interesting, or more 

plausible, but does not give any indication of its correctness. Therefore pseudo-

evidence may be considered as no evidence at all but rather as a part of the theory 

itself. The study showed that exactly such pseudo-evidence was the prevalent form 

of evidence used. With respect to (3), the majority of participants were able to 

generate alternative theories. Interestingly, those who were able to do so were also 

more likely to generate genuine evidence. Being aware of the existence of alternative 

theories is an important prerequisite to understanding that one’s own theory might be 

wrong. In the light of multiple opposing theories, the importance of genuine 

evidence, as a criterion to determine which theory is preferable, becomes most 
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apparent. With respect to (4), many participants were not (fully) successful in 

generating counterarguments. While some offered at least an alternative theory when 

prompted for a counterargument (considered by Kuhn as a partial success), others 

failed or declined to produce a counterargument. Anticipating possible 

counterarguments is important to identify weak spots of one’s own theory. 

Apparently, many participants were not able or willing to critically reflect on their 

own position, a skill central to argumentation. With respect to (5), three main sorts of 

rebuttals were distinguished: (a) rebuttals that try to undermine the force of the 

counterargument (showing that the counterargument is of no or only limited use to 

attack the original argument), (b) rebuttals that try to establish that one’s own theory 

(or a slightly adjusted version of it) is nonetheless more correct than alternative 

theories, and (c) rebuttals that simply argue against the alternative theory without 

referring to one’s own theory. The study showed that many participants did not 

successfully generate rebuttals. When rebuttals were successfully generated, they 

were often of the last mentioned type: simple rebuttals. Such rebuttals are solely 

focused on the alternative theory, and thus, can be generated without critically 

reflecting possible deficiencies of one’s own theory. With respect to (6), participants 

were presented with under-determined evidence (in particular: a description of a 

single instance of a phenomenon with only minimal cues regarding possible causes) 

and over-determined evidence (in particular: a description of three studies each 

clearly indicating a different causal explanation). The responses showed that many 

participants did not make a clear distinction between their own theory and the 

presented external evidence. Rather, the presented evidence was perceived and 

interpreted (sometimes misinterpreted) through the lens of their own theory. In the 

case of under-determined evidence, participants often explained the presented 

phenomenon in terms of their own theories. In the case of over-determined evidence, 

participants typically focused on the parts that corresponded with their theory while 

ignoring other parts that may disprove their theory. 

In summary, the results indicate clear deficiencies of many participants with 

respect to important argumentation skills, such as generating genuine evidence, 

anticipating and rebutting possible counterarguments, and critically and objectively 

interpreting external evidence. As noted by Kuhn (1991, p. 282), these results are 

consistent with other investigations of informal reasoning skills that identified a 

myside bias (i.e., focusing on evidence and reasons that support one’s own beliefs 

while ignoring disconfirming information; Perkins et al. 1983) and a make sense 

epistemology (i.e., analyzing situations only to the point that a mental model is found 
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that superficially makes sense without further critical reflection on it; Perkins 1985) 

in people’s reasoning. 

2.2 Cognitive Foundations of Argumentation 

An important question is whether the performance in argumentative tasks is based on 

a general skill (domain-generality hypothesis) or on knowledge in specific domains 

(domain-specificity hypothesis). The results of Kuhn (1991) suggest that both factors 

may play a role. On the one hand, the quality of argumentation varied depending on 

the specific topic. On the other hand, there was also some consistency in the 

participants’ performances across topics. So while domain-specific factors may play 

some role, there also seems to be a general, domain-independent reasoning 

component at work.  

In line with this observation and their own data, Means and Voss (1996) propose a 

two-component model of informal reasoning comprising a general informal 

reasoning component and a knowledge-experiential component. The model can be 

described in relation to the construction-integration model of text comprehension 

developed by Kintsch and Van Dijk (see, for instance, Kintsch 1994). The 

construction-integration model explains the comprehension of texts in terms of two 

interwoven processes: the construction of a propositional cognitive representation of 

given textual inputs and the integration of this representation into a propositional 

network of prior knowledge. Conceptually, two kinds of cognitive structures may be 

distinguished: The textbase represents all the elements and relations contained in the 

given textual input. The situation model integrates the textbase with prior knowledge 

and enhances it with further elaborations inferred from text and prior knowledge. 

The textbase can be associated with a shallow level of understanding (or 

remembering), which is typically sufficient for reproducing the content of the text. 

The situation model can be associated with deep understanding (or learning). The 

level of elaboration of the situation model decides how productively the content of 

the text can be leveraged in novel environments. The informal reasoning component 

proposed by Means and Voss (1996) embodies conventions of reasoning, which are 

reflected in language patterns used by relatively educated people. If the component is 

highly developed, people are able to construct elaborate situation models from given 

textual inputs, that is, situation models that include and enable advanced inferences 

about the given textual input (e.g., comparing different reasons for quality or 

adequateness; anticipating counterarguments). If the component is not sufficiently 

developed, people are only able to construct impoverished situation models. Their 



2 Background: Argumentation Research in Psychology and Education 51 
 

 

inferences therefore go not much beyond what is represented in the textbase itself. 

The effect is cumulative, since new situation models are constructed in the context of 

existing ones (i.e., a richer or poorer knowledge base can be exploited when 

processing new textual input). This is where the knowledge-experiential component 

enters the picture: Constructing a high-quality situation model requires, in addition to 

informal reasoning skills, a sufficient amount and elaboration of relevant prior 

knowledge. The importance of prior knowledge is also highlighted in other research 

(e.g., Sadler and Zeidler 2005; Von Aufschnaiter et al. 2008).  

Domain-general thinking skills may not be immediately applicable to domain-

specific knowledge. Rather, as proposed by Perkins and Salomon (1989), domain-

general skills may have to be contextualized to different knowledge domains for 

effective use. In reference to Toulmin’s (1958) notion of field dependence, they point 

out that the general structures of arguments in different domains resemble one 

another considerably. However, criteria for eligible evidence typically differ between 

domains. For instance, a lawyer may not be good in producing or evaluating 

scientific arguments, and likewise a scientist may have trouble with legal arguments. 

So higher-order knowledge and skills of good argumentation in general may be 

complemented with (or specialized into) more specific knowledge and skills that 

consider the rules and patterns of argumentation in particular domains. On the most-

specific level, then, content knowledge elements of the domain in question may enter 

the equation as the objects on which the more general skills operate. If argumentation 

is conceived of as a means to constructing knowledge, domain-specific 

argumentation skills can be the basis of engaging in what Morrison and Collins 

(1996) refer to as epistemic games, that is, culturally patterned ways of constructing 

knowledge.  They identify epistemic fluency as an important objective of education. 

Students should learn to recognize and engage in a large number of relevant 

epistemic games, each of which typically including some domain-dependent form of 

argumentation. 

Anderson, Reznitskaya and colleagues (Anderson et al. 2001; Reznitskaya et al. 

2009) propose a schema-based account of argumentation skills, which also 

distinguishes different level of specificity of argumentative knowledge. They use the 

term argumentation schema to refer to a knowledge system responsible for 

organizing and retrieving argument-related information, deciding when to engage in 

argumentation, and constructing, anticipating, and evaluating arguments. It includes 

declarative knowledge (knowing about argument components, etc.) and procedural 

knowledge (applying argumentative skills). The argument schema represents 

knowledge in an abstract and generalized way so that argumentation skills can be 
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applied across different situations. The argument schema includes argument 

stratagems, which represent recurring patterns of argumentation. A stratagem 

comprises information about its purpose and function, associated language forms, 

conditions of use, possible kinds of objections, etc. Anderson et al. (2001) use a 

template-based notation to label stratagems. For instance, “What if [SCENARIO]?” 

describes a stratagem that can be used to test some conclusion against a hypothetical 

scenario. The term in brackets is a template that varies depending on the specific 

situation of use. While the deep semantic meaning of the stratagem is stable, 

different language forms may be used to express the stratagem. Anderson et al. 

(2001) interpret the use of varying language forms as an indication that students 

grasp the deep meaning of the stratagem rather than just copying the surface 

structure.  Generally, deep understanding of a stratagem is indicated by appropriate 

and repeated use of different associated language forms across different contexts. 

Anderson et al. (2001) propose that humans develop an argument schema through 

sustained participation in collaborative reasoning. Corresponding instructional 

approaches will be discussed below.   

Overall, four conclusions may be drawn from research on the cognitive 

foundations of argumentation: 

1. Deficiencies in informal reasoning and argumentation skills may have 

detrimental effects on text comprehension and content learning 

[argumentation skills  content learning]. 

2. High quality informal reasoning and argumentation performance requires a 

sufficient level of background knowledge in the domain under discussion 

[argumentation skills + content knowledge  argumentative performance]. 

3. While argumentation skills may be to some extent domain-independent, 

they nevertheless have to be contextualized to be (fully) functional in 

specific domains. 

4. Language seems to play an important role in the development of 

argumentation skills. 
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2.3 Epistemological Beliefs and Thinking Dispositions 

The argumentation skills investigated by Kuhn (1991) may be seen as joint 

contributors to a more general ability, “the ability to contemplate whether what one 

believes is true, in contrast simply to knowing that it is true” (p. 264, emphasis in 

original). Hence, a relevant factor in developing and using argumentation skills may 

be people’s general stance towards the process of knowing. Kuhn investigated the 

relationship between argumentation skills and epistemological theories that people 

hold, that is, their views on the nature of knowledge, beliefs, and evidence. Such 

theories constitute meta-level knowledge that drives belief formation, evaluation, and 

revision. Table 16 shows the four different levels of epistemological understanding. 

Table 16 

Levels of epistemic understanding 

Level Assertions Reality Knowledge Critical thinking 

Realist Assertions are copies of 

an external reality. 

Reality is 

directly 

knowable. 

Knowledge comes 

from an external 

source and is 

certain. 

Critical thinking is 

unnecessary. 

Absolutist Assertions are facts that 

are correct or incorrect 

in their representation of 

reality (possibility of 

false belief). 

Reality is 

directly 

knowable. 

Knowledge comes 

from an external 

source and is 

certain. 

Critical thinking is a 

vehicle for 

comparing 

assertions to reality 

and determining 

their truth or 

falsehood. 

Multiplist Assertions are opinions 

freely chosen by and 

accountable only to their 

owners. 

Reality is not 

directly 

knowable. 

Knowledge is 

generated by 

human minds and 

is uncertain. 

Critical thinking is 

irrelevant. 

Evaluativist Assertions are judgments 

that can be evaluated and 

compared according to 

criteria of argument and 

evidence. 

Reality is not 

directly 

knowable. 

Knowledge is 

generated by 

human minds and 

is uncertain. 

Critical thinking is 

valued as a vehicle 

that promotes sound 

assertions and 

enhances 

understanding. 

Note: Adapted from Kuhn et al. (2000). 

As described in Kuhn et al. (2000), the epistemological theories people hold may be 

seen as the result of a developmental process, in which a balance is sought between 

the two dimensions of knowing: objectivity and subjectivity. Typically until the age 

four, children hold the realist view. At this level, knowledge is seen as an exact copy 

of the external world and therefore certain and unarguable. When children begin to 
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realize that people have different, sometimes wrong beliefs about the world, they are 

about to enter the absolutist level. They still assume that an absolute, objective truth 

exists. So, the reason for different beliefs must be that some people are lacking 

information or simply misunderstand the world. During the transition from the 

absolutist to the multiplist level, people increasingly gain the insight that knowledge 

is the product of the human intellect. Every individual has her own history and made 

her own experiences, so it is not surprising that people interpret the world differently 

and arrive at different legitimate views and opinions. While this perspective marks 

an important advancement from the absolutist level, it also entails an indifferent and 

uncritical attitude towards opinions. Every opinion is essentially equally right, no 

matter how substantial the reasons speaking against it are. Finally, some people may 

reach the highest level of epistemological understanding, the evaluativist view, in 

which standards of objectivity reenter the picture. There are criteria to evaluate and 

compare opposing theories in an objective and reasonable way. While absolute 

certainty is an unattainable goal, it is nonetheless possible to judge whether theories 

are logically consistent, whether some theories are more likely than others in the 

light of given evidence, or whether the empirical basis is simply too weak to give a 

reliable judgment. 

Kuhn (1991) classified the participants according to the last three levels (the first 

level is irrelevant since typically only small children hold that view). People who 

expressed that experts have, or principally can gain, incontestable knowledge about a 

question were classified as absolutists. Persons who denied this possibility and 

furthermore claimed that they personally know better or equally well as experts 

about the topic in question were classified as multiplists. Finally, persons who denied 

absolute expert certainty while conceding that experts can judge the given question 

with greater certainty as they can have been classified as evaluativists. The study 

results indicated that evaluativists, who comprised only a relatively small portion of 

all participants, indeed exhibited superior argumentation skills in comparison to both 

absolutists and multiplists. Similar results have been reported by Mason and Scirica 

(2006). 

Epistemological beliefs may be one factor contributing to a person’s thinking 

disposition. The concept of thinking dispositions (Perkins et al. 1993; Perkins et al. 

2000) is motivated by the observation that a poor performance, particularly in 

informal reasoning tasks, is not necessarily caused by a lack of ability. Rather, 

participants may be principally able to successfully engage in some desired form of 

thinking but do not do so for other reasons. Perkins et al. (2000) present evidence in 

favor of a three-component model of thinking dispositions. First, a person must be 
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able to carry out a certain behavior (ability). Second, a person must recognize 

opportunities to make use of this ability (sensitivity). Third, a person must decide to 

take the opportunity to make use of the ability (inclination). Motivational factors 

play a role with respect to inclination, but also considerations of whether investing 

one’s intelligence into some issue is worth the effort. Perkins et al. (2000) found in a 

study that in more than 86% of all cases, a lack of sensitivity prevented people from 

engaging in forms of thinking they are principally able to carry out. Inclination 

accounted for about 55% of situations in which subjects did not make use of thinking 

abilities they have. People who do not hold an evaluativist view can be expected to 

see less value in critical thinking. In consequence, they may be less sensitive to 

critical thinking opportunities and less inclined to engage in critical thinking 

activities. This may not only affect the observable performance but also hamper 

learning and development since opportunities to practice critical thinking skills are 

missed. Vice versa, holding an evaluativist view may directly contribute to the 

development of critical thinking and argumentation skills, which is in line with the 

results of Kuhn (1991). 

2.4 Development of Argumentation Skills 

As discussed, the epistemological stance of a person develops over time and only 

sometimes reaches the evaluativist level, which is conducive to productive 

argumentation. But what is known about the development of argumentation skills 

themselves?  

Berkowitz and Gibbs (1985) compared the extent of transactive moves used in 

different age groups (ages between 6 and 20 years) during moral conflict discussions. 

Transactive discussion moves are defined as moves that involve the reasoning on the 

reasoning of others. They may be further subdivided into representational transacts, 

which, by and large, only re-present the reasoning of others (e.g., paraphrasing), and 

operational transacts, which significantly transform the reasoning of others (e.g., 

counter-arguing). Particularly operational transacts may be considered as indicators 

for quality discussions and associated with a high skill level in argumentation. The 

study showed that the amount of transactive moves grows as a function of age. In the 

group with the youngest participants (6–8 years), transactive moves were almost 

completely absent. The biggest leap was observed from the age group 12–14 to the 

age group 15–17, which suggests that the period of early to middle adolescence is 

critical in the development of argumentation skills. Another study reported by 

Berkowitz and Gibbs (1985) found that the formal operational stage of Piaget’s 
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theory of cognitive development (1972) is strongly associated with transactive 

discussion. The formal operational stage is characterized by logical and abstract 

forms of thinking, including deductive and hypothetical reasoning, which may be 

seen as prerequisites for proper argumentation. The transition to the formal 

operational stage is supposed to happen between adolescence and adulthood, that is, 

exactly at the time when the biggest increase in transactive talk was observed in the 

first Berkowitz and Gibbs (1985) study reported here. 

Kuhn (1991) locates the main period of argumentation skill development slightly 

earlier on the timeline. The study originally reported in Kuhn (1991) did not yield 

any significant differences between the youngest age group (9
th

 grade, i.e., ages 

ranging between 14 and 15) and older age groups. However, a previous study of 

Kuhn and colleagues (1988), which investigated similar abilities (production of 

evidence and counterarguments, evaluation of evidence) in a similar, yet somewhat 

simpler setting, showed a major improvement occurring just before that age, across 

the preadolescence age and the early adolescence age. From then on, the educational 

level seems to be the main factor. Only the group of young adults who attended 

college for several years displayed further performance improvements. 

Stein and Miller (1993) judge the argumentation skills of children even more 

favorably than Kuhn (1991) and Berkowitz and Gibbs (1985). They found that 

children at the age of seven are already able to display argumentation skills that are 

in many respects similar to the ones of college students (e.g., in terms of relevance, 

coherence, and logic). Children in this age group were already able to identify and 

use basic argument components to justify and evaluate positions. Stein and Miller 

(1993) identified the value system children and adults hold as an important 

differentiating factor. For instance, the dilemma problem used in their study forced a 

decision between two opposing options: “sticking to an agreement” versus “not 

threatening the friendship.” While most adults valued the former option more, the 

majority of children valued the latter option more. This was not only visible in the 

initially chosen position but also in how participants evaluated potential arguments 

of both sides. Stein and Miller (1993) attribute previous results, which purport that 

children’s arguments are personalized and illogical, to problematic materials and 

research methods. In particular, they criticize that the used materials have often been 

developed for adults rather than for children. Children may have not been able to 

display competent argumentation skills because they were simply lacking 

appropriate background knowledge and understanding of the domain under 

discussion. Furthermore, the quality of argumentation invoked may strongly depend 

on situational demands. If no critical and probing questions are being asked, a person 



2 Background: Argumentation Research in Psychology and Education 57 
 

 

may assume that her claims have been accepted and refrain from presenting further 

or better support. Finally, it is important to consider the specific goals and agenda a 

person pursues in an argument. If a person approaches a discussion in a conflicting 

rather than a cooperative way (i.e., trying to win at any costs), the quality of the used 

arguments may suffer. In summary, there is a difference between the arguments a 

person actually produces and the arguments a person is principally able to produce. 

Stein and Miller (1993) see the circumstantial conditions of many previous studies as 

insufficient to allow children to display the real extent of their argumentation skills. 

Felton and Kuhn (2001) compared the discourse strategies of adults and 

adolescents. As a theoretical framework they used Walton’s model of a critical 

discussion (2008; see also section 1.7). In this type of dialogue, discussants try to 

elicit commitments from fellow discussants and build their own argumentation upon 

these commitments. That is, if a discussion partner has committed to some 

statements and one can derive one’s own conclusions from these accepted 

statements, then the discussion partner is also committed to accept these conclusions, 

if obeying the norms of reasonableness. From this observation, two discourse goals 

can be derived: (1) getting the partner to concede to premises that are central to one’s 

own argumentation, and (2) identifying and challenging questionable premises 

(implicit or explicit) in the partner’s argumentation. Different discourse strategies 

may be utilized to realize these goals. The development of argumentive discourse 

skills therefore involves two interrelated processes: (1) developing an understanding 

of the goals involved in argumentative discourse, and (2) developing strategies to 

effectively achieve these discourse goals. In a study, Felton and Kuhn (2001) found 

that adults use more powerful argumentative strategies than adolescents. For 

instance, adults used more counterargument moves. They also pursued effective 

multi-turn strategies more frequently, such as eliciting, in a targeted way, 

commitments from the discussion partner that can be used to attack and undercut the 

partner’s position. Some evidence also indicated that adults have a better 

understanding of discourse goals. Felton and Kuhn (2001) compared the participants’ 

behavior between agreeing and disagreeing dialogues. The initial situation of a 

disagreeing dialogues are opposing positions, while in an agreeing dialogue, the 

discussing partners share the same position. While adolescents displayed similar 

behavioral patterns in both types of dialogues, adults apparently adopted discourse 

goals particularly suitable for the current type of dialogue. In particular, in agreeing 

dialogues, adults did not use a strategy of weakening and undercutting the partner’s 

argumentation, which they exhibited in disagreeing dialogues. 
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In summary, the empirical studies come to different results with respect to the 

main period of argumentation skill development. Stein and Miller (1993) attest that 

children at the age of seven already have argumentation skills that are in many 

respects comparable to the ones of college students. Kuhn et al. (1988) identifies the 

period from preadolescence to the early adolescence as critical in the development of 

argumentation skills. Berkowitz and Gibbs (1985) conclude that major improvements 

occur in early to middle adolescence. The results of Felton and Kuhn (2001) indicate 

a developmental leap between adolescence and adulthood. To reconcile these results, 

it is instructive to look at the specific settings and methods used. The studies 

essentially evaluated different facets of argumentation. The results presented by 

Stein and Miller (1993) show that young children are already able to produce 

relevant, coherent, and logical arguments. Yet, the used dilemma problem required 

argumentation of a rather simple kind, restricted to justificatory reasons for a 

preferred action (“I’m in favor of action X because …”). Kuhn et al. (1988) used 

much more demanding problems involving arguments relating to causal claims, 

which are structurally more complex (“I believe that X causes Y because …”). The 

standards to judge the quality of arguments were based on a scientifically oriented 

model of argumentation and thus much more stringent. Such a model requires a 

proper understanding of the difference between theory and data and the coordination 

between elements at these two levels. Berkowitz and Gibbs (1985) evaluated 

argumentation skills in a discussion setting, which again is more demanding in other 

respects, since discussants must manage multiple tasks at once. In particular, they 

must advance their own argumentation, parry off critiques of others, follow others’ 

argumentation, and offer well-reasoned critiques. Finally, Felton and Kuhn (2001) 

focused on one particularly advanced aspect of argumentative discussions, namely 

the use of strategic behavior, which involves selecting and implementing own 

discourse strategies as well as recognizing strategic moves of others. 

Generally, as noted in Kuhn (1991), it unrealistic to expect that a single point in 

time can be identified at which a previous absent skill comes suddenly into existence. 

Rather, argumentation skills develop gradually, on a continuum from the most 

rudimentary forms to mature and fully functional argumentation skills. At the low 

end, argumentation skills exist mostly in implicit form and only become visible in 

environments that provide a high degree of guidance and support. As development 

proceeds, the amount of external support required to make competent use of 

argumentation skills continually declines. The learner becomes increasingly 

autonomous in her performance. At the high end, the learner can act fully 

autonomously, without external support, and display the skills of argument in an 
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explicit and consistent manner. Appropriate educational approaches may be 

employed to speed up the developmental process and to pave the way to the higher 

levels of the developmental continuum. Natural maturation processes, e.g., triggered 

through informal encounters of argumentative practices in everyday situations, may 

constitute an insufficient condition for reaching these higher levels and additional 

educational support may be required. This is supported by findings suggesting that 

college education makes a difference in terms of argumentation skills of adults 

(Kuhn et al. 1988) (albeit even highly educated people still often struggle with basic 

critical thinking and sound reasoning skills, cf. Kahneman 2011). 

2.5 Rethinking the Role of Argumentation in Education 

As discussed, a number of studies of formal and informal reasoning point out severe 

deficiencies in argumentation-related skills. This raises the question regarding the 

quality of the teaching of argumentation skill in schools and universities. An obvious 

conclusion is that current education systems largely fail in promoting argumentation 

skill development of young people (Kuhn 1991). Education is too narrowly focused 

on imparting domain-specific knowledge and skills with the result that general 

abilities in thinking and informal reasoning improve through the years of formal 

education to a lesser extent as one would expect (Perkins 1985). For instance, 

scientific knowledge is often presented as an accumulation of undisputable facts 

without paying due attention to the social practices of science, which heavily rely on 

argumentation (Driver et al. 2000). Besides neglecting the learning of argumentation 

skills as such, this educational approach runs the danger of nourishing an absolutist 

attitude towards knowledge. Another factor is that the liberal and democratic 

traditions Western societies are based upon—such as the freedom of opinion and the 

appreciation of diversity and individualism—may mislead to the conclusion that all 

opinions are equally right and thus do not require a critical examination. Kuhn 

(1991) sees this “radical, unreasoned relativism” (or extreme relativistic attitude) as 

one of the causes of a current educational crisis. For instance, for some time now, 

there are attempts in the United States to integrate elements of the theory of 

intelligent design in biology classes—a view that rejects major scientific results 

regarding evolution and instead proposes that life, in all its complexity, must be the 

result of an intelligent creator or designer. Although the scientific community sees 

intelligent design as an unscientific, religious viewpoint, prominent conservative 

politicians support the idea to teach intelligent design as part of the science 

curriculum. For instance, despite the lack of appropriate scientific support for 



60 2 Background: Argumentation Research in Psychology and Education 

 

intelligent design, former U. S. President George W. Bush stated in 2005 that “both 

sides [evolutionary theory and intelligent design] ought to be properly taught” 

(Bumiller 2005). 

In face of the discussed problems, educational research has called for educational 

reforms, and in particular, a stronger emphasis on a critical attitude and the skills of 

argumentation, which are the cognitive and social tools to put this critical attitude 

into action (e.g., Driver et al. 2000, Ritchhart and Perkins 2005, Kuhn 2005). An 

important aspect is certainly a cultural change in the classroom, which makes critical 

thinking, argumentation, and discourse integral parts of the curriculum, highly 

valued and regularly practiced. Promoting such a classroom culture is the 

prerequisite for an enculturation of students into the practices of critical thinking and 

argumentation and the formation of a positive attitude towards these activities (cf. 

Brown et al. 1989; Driver et al. 2000; Resnick et al. 2010; Tishman et al. 1993). To 

implement such changes in the classroom, specific instructional methods effective in 

teaching critical thinking, argumentation, and discourse are required. 

A prevalent kind of formal education is still didactical teaching. This approach is 

certainly appealing from an organizational and economic perspective, since it has a 

relatively low demand on teacher manpower and time in comparison to other 

approaches discussed below. Yet, from a pedagogical perspective, the approach has 

important limitations. At the core of didactical teaching are teacher-centered 

activities, most notably, the presentation of learning content by the teacher. With 

respect to argumentation skills, didactic lessons may focus on “teaching people about 

good thinking” (Kuhn 1991, emphasis mine). This may include, for instance, aspects 

such as the general structure and nomenclature of arguments, or characteristics of 

good and bad arguments (Voss and Means 1991). Didactic teaching has been 

criticized for the passive role that learners take as mere recipients of information, 

which often produces knowledge that is isolated, shallow, cursory, and of little 

practical use. For instance, Brown (1992) refers to passive learning and inert 

knowledge as “diseases of schooling.” The approach stands in stark contrast to 

current learning theories (Piaget 1985; Vygotsky 1978), which describe learning as a 

constructive process that involves the interlinking of new and existing knowledge as 

well as significant reorganization and transformation of knowledge structures. Such 

processes are more likely to be triggered when learners actively engage in 

appropriate tasks. In line with this perspective, Kuhn (1991) suggests to employ 

practically-oriented learning activities. Particularly approaches inspired by theories 

of learning in social contexts gained considerable attention over the last couple of 

decades. 
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2.6 Learning in Social Contexts 

Social learning approaches emphasize the importance of social interactions for 

learning. The active participation in social activities is well compatible with the 

constructivist perspective. Moreover, the social context which the activity is 

embedded in provides a valuable source of feedback and guidance. Other possible 

advantages include positive motivational effects social contexts potentially have 

(Chinn and Clark 2013). Learning through social interactions may even be 

considered as the most natural (and thus particularly effective) form of learning, 

since the human brain has an inherent social orientation and is highly sensitive to 

social influences (Mercer 2013). An observation made by scholars from the antiquity 

to modern times, including Piaget and Vygotsky, is the resemblance of social 

arguments and individual deliberations (Anderson et al. 2001). In light of this 

observation, the hypothesis that social contexts and interactions have a major 

influence on the development of argumentative reasoning skills appears particularly 

plausible. Two main social arrangements that have been intensively studied in the 

past are the learning from a more experienced person and learning in groups of peers. 

2.6.1 Scaffolding: Learning from a more experienced person 

In the first arrangement, the social context is given by a more experienced person, 

who might be an adult or a more knowledgeable peer. The close interaction between 

the teacher and the learner is typically characterized as a scaffolding process. As 

described by Pea (2004), the notion of scaffolding was introduced in the 1970s by 

the research team of Jerome Bruner. Originally, it described mother-child 

interactions in informal settings in which the mother supports the child in engaging 

in activities that would otherwise be beyond reach. As the child becomes more 

competent through continued practice, the mother reduces the level of support until 

the child is able to perform the activity independently (fading the scaffold). The 

scaffolding process is essentially geared to the developmental progress of the child. 

Since this kind of scaffolding occurs naturally, without the mother explicitly and 

formally trained in giving and adapting support, it may be called natural scaffolding. 

Nowadays, the understanding of the term scaffolding is widely extended to also 

include instructional approaches that enhance learning processes with structure and 

guidance according to the needs of the learner. Such more formalized (or designed) 

educational approaches to scaffolding may be called instructional scaffolding. As 

pointed out by Tabak (2004), there is some debate which instructional approaches 

may actually be considered as scaffolding. A defining criterion one may employ is 
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that scaffolding always provides support for both, practice and learning. Pea (2004) 

describes different mechanisms of scaffoldings:  

1. The degrees of freedom of a task may be reduced and the set of possible 

actions constrained to avoid undesired and foster desired activities 

(channeling). 

2. The learner’s attention may be directed towards particularly relevant task 

features, again, to promote activities important for successful task 

completion (focusing). 

3. More advanced solutions to the task may be displayed to the learner 

(modeling). 

The notion of scaffolding is related to the Vygotskian concept of the zone of 

proximal development, which comprises all activities a child can only accomplish 

with the assistance of an adult or a more capable peer. According to the socio-

cultural tradition that evolved from Vygotsky’s seminal work, guided participation 

in cultural activities gradually leads into autonomous performance of these activities 

(Rogoff 1990). Activities initially mediated through interpersonal interaction on the 

social plane are internalized, or appropriated, by the child and become available on 

its psychological plane (following Vygotsky’s well-known genetic law of 

development). The process of guidance involves building bridges from the child’s 

present understanding and skills to the requirements of the new task, the selection 

and structuring of the activity, and the gradual transfer of responsibility from the 

caretaker to the child; guidance may be explicit or tacit, challenging or supportive 

(Rogoff 1990, p. 8). 

The promise of scaffolding as an instructional approach is evidenced by the 

process of language acquisition of young children through verbal interaction with 

their caretakers sketched above. Similarly, apprentices accomplish the learning of 

skills in trades and crafts through participation in relevant activities guided by their 

masters (Rogoff 1990, pp. 90–91). Research on such traditional apprenticeships 

inspired influential new educational approaches such as the cognitive apprenticeship 

approach (Collins et al. 1989). Similar to traditional apprenticeship, cognitive 

apprenticeship emphasizes participation in real-world problems under the close 

attention of more experienced persons who provide support and guidance instantly. 

Yet, cognitive apprenticeship focuses on cognitive skills such as reading, writing, 

and mathematical problem solving (whereas traditional apprenticeships are often 

concerned with externally visible physical activities) and aims at generalized 

knowledge that can be used across a variety of situations (whereas such a level of 
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flexibility is in traditional apprenticeships often not required and targeted). At its 

core, cognitive apprenticeship comprises the elements modeling (displaying and 

explaining expert problem solving), coaching (on-task support including scaffolding, 

feedback, and remodeling of selected task aspects), and fading (gradually reducing 

support and transfer responsibility). Sometimes, these elements are referred to as the 

modeling-scaffolding-fading tutoring strategy (Graesser et al. 2001). Other elements, 

probably less common in many traditional apprenticeships, include articulation 

(getting students to explicitly describe aspects of their knowledge, reasoning, and 

problem solving), reflection (getting students to compare their problem solving with 

the one of experts or among each other), and exploration (getting students to identify 

and formulate appropriate questions, problems, and goals themselves).  

The significance of scaffolding gets also obvious from research on expert 

tutoring, which identifies scaffolding as a critical component of successful tutoring. 

Studies of tutorial dialogues show that scaffolding moves comprise a major portion 

of expert tutor moves (e.g., Chi et al. 2008 – 36%; D’Mello et al. 2010 – 47%; note 

that operational definitions of scaffolding may slightly differ). This is remarkable 

since “good” tutoring has been found to be far more effective than classroom 

instruction (Bloom 1984); the two-sigma advantage in effect size of human tutoring 

over classroom instruction is regularly cited as benchmark in research on the 

effectiveness of intelligent tutoring systems (e.g., Corbett et al. 1997). Another result 

of studies of expert tutoring indicates a relatively high proportion of explanation and 

lecture moves [e.g., Chi et al. (2008) – 23%; D’Mello et al. (2010) – 30%]. D’Mello 

et al. (2010) suggest that lecturing may establish the knowledge foundation for more 

advanced tutoring moves such as scaffolding or modeling. Contrary to this, Chi et al. 

(2001) found that when tutors intentionally suppressed explanation and feedback 

moves and used a higher proportion of scaffolding instead, the tutoring was equally 

effective in terms of learning. Interestingly, Chi et al. (2001) worked with novice 

teachers, who generally used a much lower percentage of scaffolding moves (5%) 

and many more explanation moves (53%). This result suggests that the extent of 

scaffolding is a strong indicator of tutoring expertise. Chi et al. (2008) further 

investigated whether tutor moves, student moves, or their interaction is predictive of 

learning outcomes. They found no evidence for the tutor move hypothesis—just by 

looking at the proportion of scaffolding moves, it was not possible to statistically 

explain learning gains. However, evidence was found that the proportion of 

substantive student moves was indeed predictive, and likewise were fruitful tutor-

tutee interactions (e.g., tutor scaffolding followed by a substantive tutee 

contribution). Chi et al. (2008) propose that self-constructions on the part of the tutee 
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and co-constructions between tutor and tutee are keys to learning success, with the 

latter of the two maybe even more effective. Self-constructions in dialogue may be 

considered as the social equivalents to self-explanations in individual learning, which 

are known to be effective for learning (Chi et al. 1989; Chi et al. 1994). Co-

construction sequences are often opened or maintained through scaffolding moves 

(questions, prompts, hints), which implicitly or explicitly request a response from the 

tutee.
8
 

Generally, scaffolding is not restricted to human support but can also be 

implemented in other ways (Tabak 2004). For instance, the work of Scardamalia and 

Bereiter (1983, cited in Pea 2004) provides an example for scaffolding that is based 

on physical note cards. These note cards contain sentence starters aimed at eliciting 

and promoting advanced writing strategies from learners. They may be provided as 

long as the learners are not able to apply advanced writing strategies on their own. 

Instructional scaffolding may also be implemented in computer-based 

environments—an important current research topic discussed in detail in Chapter 3. 

Of course, the way scaffolding is realized, whether humans are involved or not, may 

be an important factor for the achieved success. For instance, our “social brains” may 

be specifically tuned towards human support (Mercer 2013).  

2.6.2 Cooperative learning: Learning in groups of peers 

The second arrangement of social learning is the learning in groups of peers, which 

is typically referred to as cooperative learning.
9
 From the beginning of the 1970s on, 

educational research became increasingly interested in cooperative learning as an 

instructional approach (Slavin 1996). While the majority of empirical results indicate 

that cooperative learning can produce learning outcomes superior to individual 

                                                        
8
 Chi (2009) uses a revised terminology in her active-constructive-interactive conceptual framework. 

For what is referred to in Chi et al. (2008) as a co-construction between a tutor and a tutee, Chi (2009) 

refers to as a guided construction. Co-construction, on the other hand, she now uses for a specific type 

of interaction in a joint dialogue between peers, e.g., when one student completes an idea a fellow 

student has started to produce. 
9
 Some researchers draw a distinction between cooperative learning and collaborative learning 

(Dillenbourg 1999). On the one hand, cooperative learning may be associated with a more coarse-

grained mode of interaction, following a division of work pattern, e.g., analyzing a given task, 

defining sub-problems, assigning sub-problems to different group members, solving sub-problems 

independently, and finally, merging the individual parts to an overall solution.  On the other hand, 

collaborative learning may be associated with more fine-grained pattern of interaction, with students 

not only coordinating but also jointly engaging in the actual problem-solving process. Yet, this 

distinction is not consistently made in the literature and also not of further importance for the work 

presented here. Both terms are used interchangeably in this dissertation with a preference for the term 

used by the originator of the currently discussed piece of cited work. 
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learning arrangements, some studies could not confirm the superiority of cooperative 

learning, raising the question for the specific conditions for successful application 

(Dillenbourg et al. 1996). An influential account to explain effects of different 

cooperative learning arrangements (or their absence) is provided by the social 

interdependence theory (Johnson et al. 1981; Johnson and Johnson 2009). A basic 

tenet of this theory is that learning success can be explained by considering 

interdependencies between group members. Interdependencies may arise from 

different factors, most notably, the goals individual group members pursue, resources 

they can contribute to the task (e.g., knowledge or materials), and rewards that are 

called out for success. Some notable empirical results from longstanding research 

and meta-analysis of cooperative learning are (Johnson and Johnson 2009): 

 Positive goal interdependence means that the attainment of each group 

member’s goals is positively correlated with the goals of other group members 

(e.g., the group has to compose a joint report). Group members may be more 

inclined to help others when they know that their helping is conducive to their 

own goals as well. Empirical results identify goal interdependence as a crucial 

prerequisite for group productivity and learning. 

 Positive resource interdependence means that to achieve their goals group 

members mutually depend on resources that only other group members can 

provide (e.g., each group member has unique knowledge necessary for 

successful task completion). Resource interdependence thus creates a necessity 

to interact with others, and prevents students from working separately. Yet, 

empirical results show that resource interdependence has negative effects when 

goal interdependence has not been established. Then, group members often 

focus on getting resources from others but are less inclined in sharing their own 

resources since their own goals do not benefit (or do even suffer) when other 

group members attain their goals. 

 Positive reward interdependence means that possible rewards are made 

contingent on the performance of other group members (e.g., rewards may be 

determined based on the performance of the group as a whole). A reward may 

be a certificate, other kinds of public recognition, or a good grade. Empirical 

results suggest that reward interdependence can increase the positive effects of 

goal interdependence. 

Slavin (1996) emphasizes the importance of group goals, group rewards, and 

individual accountability. The definition of group goals essentially leads to the 

condition of positive goal interdependence discussed above. Individual 
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accountability means that group success is made contingent on each member’s 

individual learning. Otherwise, more skilled group members may take over and solve 

the problem independently, without much involvement of the weaker ones, which 

may lead to a better task performance but less learning. One approach to setup such a 

goal and incentive structure is, for instance, to give grades based on the total of 

individual knowledge gains. According to Slavin (1996), the combination of group 

goals, individual accountability, and rewards increases students’ motivation to (1) 

learn themselves, (2) encourage other group members to learn, and (3) help other 

group members to learn. This again can be expected to lead to actions and 

interactions conducive to learning, for instance, more intense cognitive elaboration of 

contents, more elaborated explanations, and mutual support.  

Cohen (1994) makes a distinction between true group tasks, which essentially 

require the contribution of all group members to achieve a positive result, and other 

tasks that can principally also be solved in an individual effort (e.g., in collaborative 

seatwork). Another important factor is, according Cohen, whether problems are ill-

structured or not, that is, whether “right” solutions and well-defined problem-solving 

procedures do exist. Typically, if the objective is to promote higher-level skills, ill-

structured problems are used. Based on a comparison of own results and ones 

obtained by Webb (see, for instance, Webb 1989), Cohen concludes that there is a 

crucial difference between true group tasks involving ill-structured problems and the 

kind of tasks that are addressed in collaborative seatwork. True group tasks with ill-

structured problems critically depend on an open and elaborated exchange between 

students, and certainly involve elements of argumentation. There is a reciprocal 

dependency between group members since the task requires everyone to both 

contribute and receive information and help. The overall frequency of task-related 

interactions has been found to be indicative of individual learning gains. The 

interaction patterns in more routine tasks that can also be tackled individually are 

typically of a simpler kind. The interdependence between group members is often 

unidirectional rather than reciprocal, that is, some students depend on other students 

but not vice versa. Cohen cites empirical results showing that learning gains could 

not be predicted from the overall frequency of interactions. Instead, patterns of help 

giving and help receiving seem to be important for learning. In particular, help 

giving in form of detailed, elaborative explanations has been identified as the most 

reliable predictor for learning. Help receiving has been found to be only effective 

under specific conditions: First, the help must match the information need of the 

addressee (e.g., errors and high-level questions of the addressee require better 

elaborated help). Second, the received help must be applied to the problem. Other 
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results suggest that receiving appropriate help is more likely when help requests are 

more specific. Generally, argumentation and critical discussion play a minor part in 

such arrangements. 

There are some interesting parallels to the research on peer tutoring discussed 

before (Chi et al. 2008). First, the interaction between learning partners seems to be 

important. In both cases, the learning of the supported party can be best explained by 

also considering the response of the supported party to the provided help or 

scaffolding. Second, there is a danger that learners help one another only to the 

extent that progress on the current task is made without providing sufficiently 

elaborated explanations to promote conceptual understanding. In both settings, 

unelaborated responses—feedback in the case of tutoring and help in the case of 

cooperative learning—were negatively related to the achievement of the addressee.  

Collaborative seatwork groups are often composed to be heterogeneous with 

respect to student ability. The benefit of the social arrangement then may lie in that 

peer tutoring situations emerge quite naturally. As pointed out by Johnson and 

Johnson (2009), certain tasks may be better approached through individual learning, 

e.g., when the task is “unitary, nondivisible, and simple,” focusing on “the learning 

of specific facts” or “simple skills.” Such tasks may also benefit from a collaborative 

seatwork arrangement in which the interaction is often restricted to sporadic 

question-answer exchanges. If the focus is on argumentation skills and conceptual 

learning, however, richer forms of (e.g. argumentative) interactions, which are most 

likely to occur in true group tasks involving questions that are to some extent ill-

defined, may be far more effective. 

The work of Webb (1989), Cohen (1994), and other scholars marks a general 

change in the research paradigm of cooperative learning (Dillenbourg et al. 1996). 

Early research focused on comparisons between the effects of individual and 

cooperative/collaborative arrangements on learning with the result that collaboration 

was mostly, but not always, the superior approach (the effect paradigm). Researchers 

then became increasingly interested in the specific conditions under which 

collaborative arrangements actually lead to learning or fail (the condition paradigm). 

In this category falls the research on goal and incentive structures discussed above. 

Other conditions of interest were group composition (e.g., heterogeneous or 

homogeneous groups with respect to the general ability level), individual 

prerequisites (e.g., minimum development stage for engaging in productive 

collaboration), and task features and requirements (e.g., higher-level skills or more 

routine skills). Research based on this approach led to partly contradictory and 
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puzzling results. Apparently, effects on learning often emerged from a complex 

interplay of different variables. For instance, Slavin (1996) admits that his 

recommendations with respect to cooperative learning—establishing group goals and 

individual accountability—may be of a lesser importance under certain conditions: 

(1) Members of voluntary groups may be intrinsically motivated since they see a 

direct personal benefit in collaboration, otherwise they would not decide to 

participate. They may show an active engagement in group work to increase their 

chances to be invited again to participate in the future. (2) Controversial tasks 

without a single right answer quite naturally involve overt forms of reasoning 

(explaining and arguing), which may be beneficial for learning in themselves. So 

there is less of a need to provide incentives for students to teach each other. (3) 

Highly structured (or scripted) tasks directly affect the interactions between students. 

Beneficial interaction patterns may then emerge from the given structuring of the 

task rather than from a motivating goal and incentive structure. The observation that 

conditions often only indirectly influence the learning success motivated the 

adoption of a new paradigm, the interaction paradigm. Essentially, the “big” 

question for the relationship between the nature of collaborative arrangements and 

learning effects is split into two more manageable sub-questions. The basic 

assumption is that the true value of collaborative learning lies in the interactions 

between learning partners. Therefore, interaction is introduced as a mediating 

variable between condition (e.g., different student populations or different 

instructional techniques) and resultant learning outcome. The first of the two smaller 

questions asks which interaction patterns are triggered under which conditions. The 

second question asks which interaction patterns are conducive to and which ones 

detrimental to learning. Figure 4 depicts the causal structure typically investigated in 

studies of collaborative learning. The first causal pathway assumes that conditions 

lead to interactions and interactions lead to learning. The second causal pathway 

represents the possibility that some learning may be directly attributed to the 

condition (e.g., if students do not engage in collaboration and solve a given problem 

in large parts independently, potential learning gains cannot be plausibly related to 

their interactions). One group of interactions considered particularly valuable is 

argumentative interactions. Correspondingly, instructional approaches in 

collaborative learning often try to foster specific forms of argumentative exchange.  
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Figure 4: Causal structure typically investigated in collaborative learning research. 

2.6.3 Mechanisms of learning in social arrangements  

The discussion above of the two main social learning arrangements—learning with a 

more knowledgeable person and learning with peers of equal status—leads to a 

number of possible mechanisms of collaborative learning. Mercer (2013) proposes 

three hypotheses of how language-based collaborative activities may lead to 

individual learning: appropriation, co-construction, and transformation. 

 Appropriation: Learners explain or exhibit their knowledge and problem-

solving strategies to other students, who construct their own knowledge 

representations and problem-solving strategies from the perceived input. 

Hence, learning is explained through the individual processing of information 

transmitted between learners. Other group members are sources of information 

one may tap. Each interaction may be considered as unidirectional transfer of 

information, which triggers processes of individual cognitive processing. For 

instance, the knowledge self-constructions of tutees identified by Chi et al. 

(2008), which followed on a tutor’s previous explanations, may be considered 

as the result of an appropriation in the Mercer sense. Anderson et al. (2001) 
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hypothesize that students pick up and appropriate argument stratagems (i.e., 

specific patterns of argumentation and corresponding language forms) they 

observe in discussions with other students. Generally, Mercer’s definition of 

appropriation stands in line with more traditional, cognitive frameworks, which 

explain social learning from a perspective of individual cognitive processing of 

perceptions made in the social surrounding (“social-as-context view”; Suthers 

2006). It differs in this respect from other uses of the term (e.g., Rogoff 1995). 

Two more specific theoretical notions based on the assumption of individual 

cognitive processing, socio-cognitive conflict and cognitive elaboration, will be 

discussed below. 

 Co-construction: Collaborators jointly construct new knowledge or devise new 

strategies that could be used subsequently in individual situations (or new 

collaborative situations). The new knowledge or strategies are genuinely born 

out of reciprocal interactions of collaborating learning partners. Mercer (2013) 

cites some interesting phenomena found in empirical studies supporting the co-

construction hypothesis. For instance, some research showed that social 

sensitivity of group members and evenness of participation can be stronger 

indicators of group success than the group members’ average intelligence. That 

is, group-level processes can make a distinctive contribution, providing 

advantages over purely individual processes. Examples of co-constructed 

knowledge are co-elaborated conceptions of good argumentation (Kuhn and 

Udell 2003), jointly developed discussion ground rules (Wegerif et al. 1999), 

and co-constructed arguments (Kuhn et al. 1997; Resnick et al. 2010). The 

concept of transactive discussion moves, which involve “reasoning on the 

reasoning of others” (Berkowitz and Gibbs 1985), quite naturally matches with 

the notion of co-construction. As pointed out by Mercer (2013), also the more 

knowledgeable part in a scaffolding arrangement may gain from co-

construction activities in that his original conceptions may be sharpened, 

become more explicit and clearer through co-constructed representations of 

knowledge and strategies. Moreover, the awareness of possible own gaps in 

understanding may increase. Overall, the co-construction hypothesis assigns a 

more crucial role to inter-mental processes, which reflect joint cognitive 

efforts. To account for processes of co-construction, one may employ group-

level constructs such as shared knowledge, joint problem space, or collective 

reasoning. Taken to the extreme, the collection of individual minds may be 

considered as a single cognitive system (Salomon 1997; Stahl 2006).  



2 Background: Argumentation Research in Psychology and Education 71 
 

 

 Transformation: Collective and scaffolded reasoning may have transformative 

effects on individual reasoning, that is, rather than acquiring specific 

knowledge and skills, discussants may change their mode of thinking in more 

fundamental ways. This hypothesized mechanism is consistent with Vygotsky’s 

(1978) view on human development, expressed in his genetic law of 

development, which postulates that all higher-level mental functions first 

appear on the social plane, are gradually internalized, and become increasingly 

available on the psychological plane. The idea that multi-perspective forms of 

thinking are internalized versions of experienced group dialogues falls into this 

category (Wegerif et al. 1999). Similarly, the development of self-regulation 

competency, which is an important factor for learning success, may have its 

origins in social interactions (Mercer 2013). For instance, young children self-

regulate activities by talking to themselves. It has been observed that children’s 

self-talk resembles in form and function the speech adults previously used to 

scaffold exactly these activities. A possible explanation is that self-talk 

constitutes one stage in the process of internalizing socially experienced forms 

of regulation. The pattern of self-regulation through speaking aloud ceases at 

later ages; self-regulation is now accomplished through an inner voice. 

As pointed out by Mercer, the three hypotheses are not mutually exclusive, that is, all 

mechanisms might contribute to the learning in social contexts. In fact, a process of 

appropriation may be conceived of to explain how jointly developed knowledge (in 

the case of co-construction) or socially experienced forms of reasoning and 

regulation (in the case of transformation) become part of a learner’s internal 

repertoire. The definition of appropriation proposed by Mercer (2013) assumes that 

information is transmitted between learning partners—typically through the medium 

of language—and then mentally processed by the receivers. Two theoretical 

frameworks that give a more detailed account of how knowledge emerges and 

develops through individual cognitive processing are the cognitive elaboration 

theory and the socio-cognitive conflict theory. These two widely adopted theories are 

particularly relevant with respect to argumentation learning (Nussbaum 2008):  

 Cognitive elaboration: Collaborative learning activities may trigger processes 

of deep cognitive processing and knowledge elaboration. Producing, 

interpreting, and evaluating arguments and explanations require an active 

processing of information at a deep level. For instance, when evaluating 

arguments in terms of plausibility and evidence, the presented assertions must 

be put into relation with existing knowledge structures. When developing 

explanations and arguments, connections between knowledge elements may be 
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strengthened or created; new knowledge elements may be inferred; own 

misunderstandings and knowledge gaps may be detected and repaired; clearer 

and more precise language-based representations may be developed. Empirical 

results in research on helping behavior in cooperative learning groups (e.g., 

Webb 1989) indicates that constructing explanations is often more effective 

than receiving explanations. In line with the cognitive elaboration hypothesis, 

similar cognitive elaboration processes may be assumed as for the self-

explanation effect (Chi et al. 2001). Based on a meta-analysis of tutor learning 

in peer tutoring settings, Roscoe and Chi (2007) conclude that the benefit for 

tutors lies in developing, rather than just delivering, explanations, emphasizing 

the importance of active cognitive engagement.  

 Socio-cognitive conflict: This theory builds upon Piaget’s constructivism and 

his notion of equilibration, which describes the relation between mental state 

and physical environment in terms of two complementary mental processes 

(Piaget 1985). Assimilation means that existing mental structures, or schemata, 

are used to interpret and make sense of sensory input perceived from the 

external world. Accommodation means that mental structures are modified and 

brought into accordance with the perceived sensory inputs. Cognitive 

development is the result of the continuous attempt to resolve conflicts between 

the perceived outside world and mental representations through processes of 

assimilation and accommodation in order to achieve a state of equilibrium. A 

basic assumption of proponents of the socio-cognitive conflict theory is that 

conflicts that come to light in social situations play a particular role in cognitive 

development. Such conflicts create a double impetus for resolution since they 

have an intrapersonal and interpersonal dimension. In a series of experiments, 

predictions of the socio-cognitive conflict theory were confirmed (Doise and 

Mugny 1984). For instance, pairing children with different (or, conflicting) 

cognitive strategies led to more learning than pairing children with identical 

strategies (Mugny and Doise 1978).   
 

A well-established result is that not all conflicts are conducive to learning—

conflicts should be addressed in constructive ways. Research on conflict 

resolution (Deutsch 2005) and classroom group learning (Johnson and Johnson 

2009) emphasizes the superiority of cooperative over competitive approaches to 

conflict resolution, both in terms of processes and outcomes. Conditions of 

social interdependence found to be essential for cooperative learning (e.g., 

positive goal interdependence; see discussion above) can be expected to 

promote exactly these kinds of interactions. In a similar vein, empirical results 
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indicate better learning results when epistemic rather than relational conflict 

resolution strategies are used (Darnon et al. 2007). Epistemic resolution 

strategies focus on the task and aim at identifying the best possible solution 

through reasoned argument. Relational resolution strategies aim at defending 

one’s social status and power, which are at risk when others appear to be more 

competent and knowledgeable. So while epistemic approaches are cooperative 

in nature, relational approaches can be characterized as competitive. Whether 

learners perceive the interaction as relational or epistemic essentially depends 

on the design of the instructional situation (Buchs et al. 2010). 

A unifying conceptual framework from the cognitive elaboration tradition, linking 

learning activities, cognitive processes, and learning outcomes, is provided with the 

active-constructive-interactive framework (Chi 2009; later referred to as 

Differentiated Overt Learning Activities [DOLA; Menekse et al. 2013]). The 

framework explains results from both, social and individual learning research. It 

groups overt learning activities into four broad classes (passive, active, constructive, 

and interactive learning activities) and proposes potential cognitive processes at 

work for each. Active learning activities are those that engage the learner in some 

form or other, for instance, underlining or paraphrasing some passage of text. Such 

activities are assumed to trigger cognitive processes such as activating existing 

knowledge, or assimilating and storing new knowledge. Constructive learning 

activities involve creating ideas not explicitly contained in provided learning 

materials. For instance, self-explaining typically requires filling in information not 

explicitly mentioned. Similarly, creating concept maps often requires identifying 

connections between concepts not explicitly stated. Such activities potentially trigger 

cognitive processes that go beyond the ones postulated for active learning activities. 

Rather than just adding and assimilating new knowledge, more far reaching 

inferences and connections may be made; bugs and gaps in the own understanding 

may be detected; existing knowledge structures may be reorganized or repaired. 

Finally, interactive learning activities are most typically seen in dialogues between 

human actors. In instructional dialogues, tutors typically provide scaffolding to guide 

tutees in producing meaningful responses (guided construction). In peer dialogues, 

students may, for instance, elaborate on or argue against contributions of fellow 

students (sequential-construction or co-construction, depending on the granularity of 

interaction). Interactive learning activities are assumed to essentially trigger the same 

cognitive processes as constructive ones. Yet, additional advantages emerge from the 

more dynamic process these activities are embedded in. In particular, learning 

partners (or tutor and tutee) mutually influence one another by contributing 
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information, arguments, questions, feedback, scaffolding, etc. to the discourse. This 

happens immediately and in a highly adaptive fashion, tailored to the requirements of 

the situation, the course of the discourse, and the participants’ goals. Moreover, as a 

result of sequential construction and co-construction, ideas that students are not able 

to produce alone may be produced in a joint effort, leading to a deeper or novel 

understanding. Chi (2009) formulates the following hypothesis regarding the 

learning effectiveness of the different activity classes: interactive > constructive > 

active > passive (ICAP hypothesis; Menekse et al. [2013]). While Chi (2009) 

discusses existing empirical studies in line with the ICAP hypothesis, Menekse et al. 

(2013) present positive evidence from two studies explicitly designed to test the 

ICAP hypothesis. 

2.7 Argumentative Learning in Social Arrangements 

This section focusses specifically on the role of argumentation in social learning 

arrangements. The first subsection briefly describes, in general terms, how 

argumentation can be employed and fostered in social learning arrangements. The 

following subsections review empirical results of educational studies grouped 

according to the pedagogical aims of the intervention. First, interventions may target 

the learning of argumentation skills themselves. Second, in line with the interaction 

paradigm discussed above, argumentative interactions may be seen as a particularly 

useful way to elaborate and learn subject matter contents at a deep level. Third, 

engagement in argumentative activities may be seen as a way to improve thinking 

skills more generally. Sociocultural theorists see the origin of thinking in 

participation in social exchange and discussion. Accordingly, critical thinking skills 

may be learned through participation in argumentative activities. Even if not 

following the sociocultural school of thinking, it must be acknowledged that 

argumentation is a basic skill important across academic disciplines, professions, and 

everyday life contexts. The learning of patterns of argumentation may thus indeed be 

conducive to thinking and problem-solving in a wide variety of situations within and 

across domains. 

2.7.1 Social learning approaches to argumentation 

Research on traditional scaffolding approaches in form of one-to-one learning 

sessions is relatively scarce. In reference to other work, Kuhn (1991) mentions the 

possibility that scaffolding may be realized in one-to-one tutoring sessions between a 

learner and an instructor who provides prompts and hints to support the learner in 
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producing better arguments. A possible reason why such research is less common is 

certainly that one-to-one tutoring has a high demand on qualified human tutors, 

which makes the approach less attractive from a practical point of view. The 

preferred social arrangement with respect to argumentation learning is therefore the 

learning in groups of peers. Overall, two main approaches can be distinguished.  

First, important concepts and principles of argumentation may be co-elaborated in 

group discussions rather than defined and presented by the teacher. For instance, 

group discussions may revolve around the question of what makes a good reason, 

different types of evidence and their force (Kuhn and Udell 2003), or ground rules 

for productive discussions (Wegerif et al. 1999). The active involvement of students 

is in line with constructivist learning theories and from this perspective preferable 

over a didactic presentation of contents. Moreover, when developing discussion rules 

jointly in the group, students are more likely to accept ownership of and commitment 

to these rules (Wegerif et al. 1999).  

Second, group-based activities can also take the form of engagement in 

argumentative discourse. Certain argumentative behaviors may be best invoked in 

interaction with critical opponents who are actually present rather than just 

anticipated. These critical opponents essentially serve a twofold role. On the one 

hand, they act as evaluators and critics of one’s own position. On the other hand, 

they present claims and arguments one has to evaluate and critique. Thus, the 

presence of critical opponents quite naturally generates manifold opportunities to 

practice argumentation skills in a realistic situation. Another possible learning 

mechanism is that discussants may take the behavior of others as a model for the 

construction of their own discussion moves. Based on this idea, Anderson et al. 

(2001) hypothesize that discussion moves that are functional (e.g., in terms of their 

persuasive force) and at the same time not overly complicated may spread in 

discussions from their originators to other fellow discussants (snowball hypothesis). 

However, research shows that learning in groups does not unconditionally lead to 

positive learning outcomes (Cohen 1994). Learners often lack essential social and 

cognitive skills and strategies to engage in productive collaboration and discussion. 

Some of the approaches mentioned above therefore involve coaches who support 

group discussions (Kuhn and Udell 2003; Wegerif et al. 1999), which can be 

understood as scaffolding at the group level. 

Since the beginning of the 1980s, another approach, called scripted cooperation, 

became increasingly popular to provide structure and guidance to cooperation 

processes (O’Donnell and Dansereau 1992). The notion of a cooperation script is 
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inspired by scripts in the theater, which define the actors’ roles and the nature and 

timing of their activities. In a similar fashion, student roles may be scripted (e.g., a 

critic and a proponent of a position), and likewise specific learning activities, their 

sequencing, and timing (e.g., first: student-1 presents argument, then: student-2 

proposes counterargument, then: student-1 rebuts counterargument, go to step 1 

again and repeat with switched roles). In this way, interactions assumed to be 

beneficial for learning may be invoked in a more controlled and targeted fashion. 

Moreover, the practiced patterns of interaction themselves (e.g., specific 

argumentation moves or sequences) may be internalized and become available on 

future occasions. A particularly promising approach to scripting is the use of 

computer technology, which allows the execution of cooperation scripts in a 

repeatable and automated manner, while at the same time recording traces of student 

and system behavior for later analysis. The overall concept of computer-based 

cooperation scripts, which is of special importance for the presented work, will be 

discussed in greater detail in section 3.3 along with specific scripting approaches. 

2.7.2 Learning to argue 

The research team of Deanna Kuhn conducted a series of studies (Kuhn et al. 1997; 

Kuhn and Udell 2003) to investigate whether argumentation skills can be improved 

through engagement in dialogical argumentation activities (i.e., activities that 

explicitly address claims and arguments of an opposing party). The interventions and 

tests of the studies reported below focused on the controversial topic of capital 

punishment. Relatively weak comparison conditions were used, which either did not 

include any learning activity as replacement for the experimental intervention (Kuhn 

et al. 1997), or which only involved a subset of the activities of the treatment 

condition, resulting in considerably less learning time (Kuhn and Udell 2003). Thus, 

the following findings do not allow conclusions on the question whether the specific 

treatments are superior to alternative ones (e.g., reading of a text book on proper 

argumentation). Rather, these studies show that dialogical argumentation activities 

can principally be used to foster the learning of argumentation skills. 

Kuhn et al. (1997) investigated the effects discussions have on argumentation 

skills. Participants in a treatment condition met five times over a period of five 

weeks—each time with a different partner—to discuss the topic of capital 

punishment. Participants in a control condition only took the pretest and the posttest 

without any additional learning activity in between. Pretest and posttest requested 

from participants their opinion regarding capital punishment and an argument to 

justify this opinion. The analysis showed that the discussions had a positive impact 
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on the quality of reasoning. Particularly frequent types of improvements from pretest 

to posttest were a move from one-sided arguments to two-sided arguments (i.e., 

arguments containing both pro and con aspects regarding one’s own position) and the 

use of comparative arguments (i.e., arguments cast within a framework of multiple 

alternatives). An analysis of the discussion transcripts shed some light on 

mechanisms that may explain these positive effects. All argument elements that were 

newly introduced in the posttest in fact originated from the discussions. Many of 

these elements were not simply transmitted from one partner to the other. Rather, 

these elements were newly developed in response to the partner, or even co-

developed by both partners over multiple turns. Possible changes of opinion between 

pretest and posttest were classified in four categories: articulation (from a neutral or 

near-neutral position to a moderate position), polarization (from a moderate to an 

extreme position), centration (from a more to a less extreme position), and side 

change (change from a pro to a con position or vice versa) The results showed that 

such opinion changes happened far more frequently in the treatment condition, that 

is, the discussions also had an impact on the participants’ opinion formation (even if 

self-reports indicated that participants were themselves not aware of the extent of 

their opinion change). In a second study, participants in the treatment condition 

engaged in a discussion with a partner only once. The results did not yield a 

significant difference to the control condition, highlighting the importance of 

sustained engagement in discussion practice and the potential value of being 

confronted with multiple different views. 

Kuhn and Udell (2003) investigated the effects of a teaching approach that 

explicitly addresses the dialogical dimension of argumentation, i.e., counter-

positions, counterarguments, rebuttals, etc. Teams were composed with four to eight 

students sharing the same opinion regarding the topic of capital punishment (pro or 

con). Control group teams only participated in the first half of an activity sequence 

(seven 90-minute sessions), which focused on the development of an argument for 

one’s own position. The specific activities included: generating reasons, elaborating 

reasons, supporting reasons with evidence, evaluating reasons, and developing 

reasons into an argument. Treatment group teams in addition participated in another 

nine sessions, in which a debate with an opposing team was prepared and conducted. 

The specific activities included: examining and evaluating reasons of the opposite 

side, generating counterarguments against reasons of the opposite side, generating 

rebuttals against possible counterarguments of the opposite side, contemplating 

mixed evidence, and conducting and evaluating two-sided arguments. In both 

conditions, an adult coach provided instructions, explanations and guidance 
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throughout the different activities (social scaffolding). As part of the activities, 

external representations of ideas in form of cards were employed with different 

colors indicating categories such as reason, counterargument, and rebuttal 

(representational scaffolding). To measure changes in discussion behavior, pairs of 

students engaged before and after the intervention in a discussion about capital 

punishment. The results showed that by addressing dialogical aspects in an explicit 

way, the use of challenge moves increased (identifying and challenging weaknesses 

of the counter-position) and the use of exposition moves decreased (i.e., presentation 

and clarification of one’s own perspective). Positive treatment effects were also 

visible in the arguments composed in a pretest and a posttest. Qualitative 

improvements occurred significantly more often in the treatment condition. 

Moreover, treatment students often dropped weaker reasons they used before in the 

pretest and included more powerful new reasons instead, a pattern not present in the 

control condition. That is, participants did learn a broader range of arguments and 

strategically selected the ones they evaluated most effective in supporting their 

position. Even if not explicitly tested, Kuhn and Udell (2003) see the used social and 

representational scaffolds as major contributors to the achieved improvements. 

Reznitskaya et al. (2009) developed a pedagogical approach called collaborative 

reasoning aiming at promoting pedagogically valuable forms of discussion in 

elementary school classrooms. Collaborative reasoning involves a free and open 

exchange between students about a given “big” question, which is a question without 

definitely right or wrong answers. The big questions are motivated by a story 

students read before entering the discussion. The discussions are argumentative in 

nature and managed by the students themselves. Collaborative reasoning is 

contrasted with recitations, a teacher-centered discussion format which is still 

prevalent in classrooms. In recitations, the teacher typically asks a series of questions 

focusing on text understanding and related general knowledge, and nominates 

students who raise their hands to respond to these questions. The flow of the 

discussion is controlled and mediated by the teacher. Due to the nature of the overall 

setup, the discussion does entail no or little argumentation; often, the discussion 

takes the form of a sequence of questions and answers. To establish collaborative 

reasoning in the classroom, teachers attend a one-day workshop and are coached by 

members of the research team based on in-class observations. The facilitation 

strategy to promote collaborative reasoning includes, among other things: prompting 

students to express their positions and reasons, challenging students’ reasoning, 

highlighting effective use of argument stratagems (i.e., language patterns reflecting 

desired forms of reasoning), and modeling reasoning by thinking aloud. Following 
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the idea of scaffolding, teachers gradually transfer responsibilities for discussion 

management to students.  

A number of empirical studies have been conducted to analyze various aspects of 

collaborative reasoning. The studies involved up to ten collaborative reasoning 

sessions. Studies focusing on interactions revealed that, compared to recitations, 

collaborative reasoning discussions: (a) contained significantly more peer 

interactions, (b) focused more on underlying moral and social questions rather than 

specific story contents, and (c) contained more dialogic interaction and reasoned 

judgments. In support of the snowball hypothesis (Anderson et al. 2001, see above), 

it was found that when a child successfully used an argument stratagem, other 

children often used the stratagem in subsequent situations as well. Studies focusing 

on the effect on individual argumentation skills found significant differences and 

large effect sizes in terms of satisfactory arguments, counterarguments, and rebuttals. 

(Individual argumentation skills were measured through analysis of reflective essays 

written after the intervention and addressing a new story and moral dilemma.) 

Studies focusing on the relation between collaborative reasoning interactions and 

individual achievement found that (a) the number of reasons a student produces 

during group discussions predicts the number of reasons he produces in an individual 

essay, and (b) the number of counterarguments discussed in a group predicts the 

number of counterarguments group members consider in their individual essays. 

These results suggest that the active production of reasons and the confrontation with 

opposing arguments fosters the development of reasoned, multi-perspective forms of 

thinking. 

Zohar and Nemet (2002) developed an instructional unit (about twelve lessons) 

that integrates the teaching of argumentation skills and biology content. The learning 

materials consisted of practical activities (based on ten moral dilemmas about human 

genetics) and explicit instructions on biology concepts and argumentation. The 

dilemmas were chosen to provide authentic, interesting, and relevant problems 

suitable to stimulate patterns of scientific argumentation. Practical activities included 

writing assignments and discussions. In a study, students in the treatment condition 

were taught by the instructional unit sketched above while students in a control 

condition where taught by traditional methods (textbook, presentation of contents by 

teacher, standard genetic problems as exercises). Domain and argumentation learning 

was assessed based on a pretest and a posttest. The results showed significant 

advantages for the treatment condition both in terms of biology knowledge and 

argumentation skills. Notably, not only argumentation about the covered genetic 

contents improved but also argumentation about everyday issues. While the 
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improvements in some of the previously discussed studies (Kuhn et al. 1997; Kuhn 

and Udell 2003) may be explained by an increased understanding of domain 

knowledge, the Zohar and Nemet (2002) result thus clearly shows that domain-

general argumentation skills can be learned. Osborne et al. (2004) consider the 

twelve lessons of engagement in argumentation activities in the Zohar and Nemet 

(2002) study as generally too limited to achieve clear improvements. In an own 

study, they tested a nine-month intervention program in which argumentation 

activities were integrated into a science course. Their results were overall positive 

but did not reach a significant level. A second important observation of Zohar and 

Nemet (2002) is that argumentation activities apparently promoted the learning of 

domain knowledge, an aspect addressed in the next section. 

2.7.3 Arguing to learn 

The previous section already hinted at the double role argumentation can play in 

cooperative learning settings. On the one hand, argumentation skills can be an end in 

itself, that is, participation in argumentative activities is used as an instructional 

approach to foster argumentative reasoning skills (learning to argue). On the other 

hand, argumentative activities can be a means to learn specific subject matters 

(arguing to learn). Both pedagogical objectives are not mutually exclusive and 

typically pursued in parallel. Clear evidence for the effectiveness of argumentation 

for the learning of subject matter was found in the Zohar and Nemet (2002) work. 

The studies of Kuhn and colleagues (Kuhn et al. 1997; Kuhn and Udell 2003) 

showed that participation in argumentation-based activities helped students to 

improve their ability to produce arguments of higher quality. Since argumentation 

skills were assessed based on the same issue as was used during the treatment 

(capital punishment), it is at least plausible to assume that benefits stem from both, 

improved argumentation skills and content knowledge. 

Resnick et al. (2010) give an overview of Accountable Talk, an approach to 

establish the norms of reasoned dialogue in the classroom. The goal is to go beyond 

the teaching of authoritative knowledge and procedural skills by targeting “learning 

with understanding.” The verbalization of disciplinary reasoning is an important 

component in this endeavor. Accountable Talk has its origins in research on 

classroom discussions. It builds upon the sociocultural notion that individual abilities 

and dispositions develop from participation in corresponding social practices. 

Accountable Talk has three components. Accountability to the learning community 

addresses the social dimension. It involves aspects such as listening to others, 

building upon the ideas of others, asking questions for clarification, and justifying 
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agreement and disagreement. Accountability to the standards of reasoning addresses 

the logical dimension. It involves the making of sound inferences and the provision 

of reasonable explanations. Finally, accountability to knowledge is about basing 

one’s claims and explanations on facts, published texts, and other kinds of available 

information, and using the appropriate vocabulary and language. Authoritative 

knowledge is still considered important since proper reasoning and discourse depend 

on a well-developed and accurate knowledge base. The role of the teacher is to 

structure and guide classroom discussions. Accountable Talk defines specific moves 

teachers can use to stimulate the desired forms of discussion. For instance, revoicing 

means that the teacher provides alternative formulations of what students said before 

(e.g., “So let me see if I’ve got your idea right. Are you saying …?”). Through 

revoicing a teacher can model how to express important ideas in an expert-like, 

genre-specific language. Other moves include asking students to restate one 

another’s reasoning (e.g., “Can you repeat …?”), to give a reasoned opinion 

regarding something said before (e.g., “Do you agree or disagree and why?”), to 

build on what was said before (e.g., “Would someone like to add on?”), and 

challenges or counterexamples (e.g., “Is this always true?”). To put Accountable 

Talk into practice, teacher training materials are made available (Michaels et al. 

2002), which are now being used in several large urban districts across the United 

States. Empirical evidence suggesting the high potential of Accountable Talk was 

gathered, for instance, in a four-year intervention program to foster talented students 

(“Project Challenge”). In a daily one-hour class, underprivileged children engaged in 

demanding math problems and teacher-led discussions that involved Accountable 

Talk moves. Tests conducted at several stages during and after the intervention 

showed impressive improvements in math-related skills, such as computation, 

mathematical understanding, and problem-solving. While a number of different 

factors may play a role in such broadly conceived, long-term interventions, the 

central role that discourse activities took makes it highly plausible that they made a 

significant contribution to the achieved success. 

Results from a more controlled investigation in the domain of mathematics are 

discussed by Schwarz et al. (2000). They investigated whether, how, and under 

which conditions the dyadic interaction between peers with conceptual 

misunderstandings can lead to the development of a correct conception (the two 

wrong can make a right hypothesis). The investigation included a small-scale study, 

a main study, and case studies. It was conducted with underperforming high school 

students and covered the topic of decimal fractions. Based on pre-test results, 

students were classified according to whether they have a correct understanding or 
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one of three different kinds of misconceptions. The small-scale study used three 

conditions formed based on a systematic pairing of students: (1) pairs of students 

with the same misconception (wrong1-wrong1), (2) pairs of students with different 

misconceptions (wrong1-wrong2), and (3) pairs consisting of one student with a 

correct understanding and another student with a misconception (right-wrong). 

Descriptive statistics suggested that only the interaction in wrong1-wrong2 dyads led 

to improvements. This observation was confirmed in the main study. A comparison 

between right-wrong dyads and wrong1-wrong2 dyads yielded a statistically 

significant difference. The success of the pairing of students with different 

misconceptions may be explained based on the socio-cognitive conflict and the 

argumentative interactions that emerged from diverging solution strategies. Such 

argumentative exchanges may occur in right-wrong dyads to a lesser extent since the 

right student may be confident in his approach and therefore not see much value in 

engaging in an argument with a less competent student.
10

 The case studies yielded 

support for the hypothesis that argumentation is the driving factor. The analysis 

showed that conflicting problem-solving strategies led to argumentative sequences, 

including moves such as arguments, counterarguments, challenges, and concessions. 

Some patterns in the interactions suggest processes of co-construction and 

appropriation being at work (e.g., new insights gradually developed from the 

interaction with the partner; reuse of socially experienced reasoning patterns at later 

occasions). Another interesting finding is that students with certain misconceptions 

benefited more than other students. Apparently, students can only overcome a 

misconception when the content addressed in the argumentative exchange helps 

recognizing and repairing this misconception. The specific task design may have 

provided more opportunities to elaborate certain misconceptions than others. 

Asterhan and Schwarz (2007) discuss two empirical studies, which investigated 

the effect of argumentation on conceptual learning in evolutionary biology with a 

population of undergraduate students. The results of the first study indicate the 

particular importance of argumentation activities for collaborative learning. In one 

condition student dyads were instructed to collaborate on a given task. In a second 

condition, student dyads were instructed to engage in argumentation with the goal to 

reach the best possible solution together. More specifically, the instructions included 

prompts to argue for and against each position, to provide adequate justifications, to 

provide evidence for claims, to identify weaknesses in arguments, and to check the 

                                                        
10 Note that the situation here differs from expert tutoring (Chi et al. 2008) and collaboration under 

the condition of goal interdependence and individual accountability (Slavin 1996), both of which 

involve particular goal and incentive structures. 
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relevance of arguments with respect to their conclusions. In addition, a short excerpt 

of a fictional argumentative exchange was provided as an example. Conceptual 

understanding was measured in a pretest, a posttest, and a delayed posttest (one week 

after the intervention) in which given cases had to be analyzed in terms of Darwinist 

principles. The results were analyzed in two different ways. First, specific Darwinist 

principles were identified and rated (fully correctly applied, partly correctly applied, 

or not mentioned). Second, explanatory schemes of different quality were assigned to 

the answers (from non-answers to explanations that fully satisfy the Darwinist 

perspective). The results showed that both conditions improved from pretest to 

posttest but only the argumentation condition could maintain their gains over a 

longer period of time, as evidenced in the delayed posttest. The interaction 

transcripts were coded for quality of argumentative exchange from no 

argumentation, to one-sided argumentation (only one solution considered with 

justifications and explanations), to dialectical argumentation (considering two 

alternative solutions, or considering pros and cons of one position). The analysis of 

interaction type by condition showed that without specific instructional prompting, 

students are unlikely to engage in argumentation. The analysis of learning gains by 

interaction type showed that it is dialectical argumentation that is critical for 

maintaining conceptual knowledge gains over time. The second study investigated 

the role of argumentation in a non-collaborative context. In particular, the 

interactions within student dyads were restricted to a question-answer format. Study 

participants worked together with a confederate (i.e., a member of the research team 

who pretended to be a real student). In an experimental condition, the two dyad 

members were assigned different roles. The random assignment of roles to students 

was faked for the purposes of the study. The confederate was always the question 

asker and the real student was the question answerer. The confederate asked 

questions to engage the student in argumentative reasoning, e.g., to discuss strengths 

and weaknesses of their own and the (faked) confederate’s solution. In a control 

condition, confederate and real student only read aloud their solutions to the other 

dyad member. The study result showed that the argumentation condition showed 

learning benefits in the posttest and could maintain these benefits in the delayed 

posttest. The control condition did neither show improvements in the posttest nor in 

the delayed posttest. An interesting observation in both studies is that the benefits of 

argumentation activities were mainly found with respect to the general explanatory 

schemes and not so much with respect to the mentioning of isolated principles. This 

observation suggests that argumentation is particularly conducive to deeper levels of 

learning and only to a lesser extent for the remembering of isolated propositions. 
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Asterhan and Schwarz (2009) present a reanalysis of data gathered in the 

Asterhan and Schwarz (2007) study. Based on the observation that the instructions to 

engage in argumentation were not always successful, they reexamined the data of the 

experimental condition of the first study (i.e., students prompted to engage in 

argumentation). In particular, student interactions were analyzed in greater detail and 

related to conceptual learning gains. On a macro-level, two factors have been 

identified to be important that at least one student improves considerably: (1) each 

student can be associated with a different explanatory schema [similar to the 

Schwarz et al. (2000) result] and (2) argumentation is dialectical rather than one-

sided [in line with the Asterhan and Schwarz (2007) analysis]. On the micro-level, 

gaining dyads differed from non-gaining dyads in terms of dialectical moves 

(challenges, rebuttals, concessions, and oppositions) but not in terms of consensual 

moves (supports, agreements, and elaborations). These results are mirrored in an 

analysis of the correlation between individual students’ gains, their own discussion 

moves, and their partners’ discussion moves (in the subsample of wrong-wrong 

students). Again, dialectical moves came out as the key factor to learning, in 

particular for the student who produces dialectical moves. The most important 

individual type of move was the rebuttal, which reflects a complex interaction 

sequence comprised of a claim, a challenge, and the rebuttal itself. A crucial 

observation is that consensual moves, which aim at developing and verifying 

explanations, did not result in major conceptual improvements. This result seems to 

contradict results from research on expert tutoring (e.g., Roscoe and Chi 2007) and 

collaborative learning (e.g., Webb 1989), which highlight the positive impact 

explanatory activities can have on learning success. According to Asterhan and 

Schwarz (2009), evolutionary biology, which is the specific knowledge domain 

investigated in their study, is known for its particularly robust and persistent 

misconceptions. This may require radical conceptual change (i.e., restructuring 

knowledge fundamentally) rather than incremental conceptual change (i.e., adding or 

repairing individual pieces of knowledge). Radical conceptual change again may be 

more likely to follow from dialectical argumentation than from explanatory 

activities. Since the number of consensual moves did not differ between gaining and 

non-gaining dyads, it may actually be the combination of both types of moves—

explanation and critical argument—that is most effective for learning. 
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2.7.4 Arguing to improve thinking 

Some researchers even propose that participation in dialogical activities may be 

essential in the development of thinking skills more generally (Anderson et al. 2001; 

Wegerif et al. 1999). Dialogical accounts of thinking make a distinction between 

dialogical reasoning, which can be understood as a discussion between different 

perspectives and voices in one’s head, and monological reasoning, which is lacking 

the multi-perspective view and thus constitutes a poorer form of reasoning. Neo-

Vygotskian accounts of human development emphasize the role of participation in 

social practices as the driving force in the development of individual abilities, 

following the internalization / appropriation mechanism mentioned above. The 

combination of both theoretical stances suggests that participation in dialogical group 

reasoning is an important factor in the development of individual dialogical 

reasoning skills, which constitute the higher levels of thinking. To be effective in 

fostering dialogical reasoning skills, discussions themselves must embrace a “free 

and open encounter between different perspectives and ideas” (Wegerif et al. 1999). 

To furnish discussions with such an orientation, the teaching of corresponding 

discussion ground rules may be essential. 

Wegerif et al. (1999) developed an intervention program (nine 60-minute 

sessions) to teach ground rules for discussions based on the notion of dialogical 

reasoning. The specific style of discussion fostered through these rules goes under 

the label of exploratory talk, and involves explicit and accountable reasoning 

(sharing relevant information, providing reasons for claims and criticisms), openness 

to challenges, exploration of alternatives, mutual encouragement to speak, and joint 

and consensual decision making. Activities within the intervention program included 

the modeling of desired behavior by the teacher, practicing of these behaviors by the 

students, joint elaboration of concrete discussion ground rules, and coached and 

unsupervised group discussions. In a study, the effect of the intervention program 

was evaluated against a control group who was not coached in exploratory talk. 

Before and after the intervention, students solved nonverbal puzzle problems 

indicative of general reasoning abilities, first in a small group and then individually. 

Group interactions were evaluated based on counting language patterns that are 

associated with exploratory talk (e.g., the use of the words because and the 

contribution lengths as indicators for exploratory talk). The analysis showed that the 

coaching of exploratory talk was effective in promoting the targeted patterns of 

language use and group reasoning. Individual test scores showed that the intervention 

was also effective in terms of individual reasoning improvements. This is remarkable 

since the intervention itself only involved coaching of discussion ground rules and 
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did not relate in any way to the specific task of the performance test. Two alternative 

explanations may be employed. The weaker hypothesis is based on the observation 

that the individual performance task was preceded by the group performance task. 

This hypothesis states that exploratory talk helped students during the group 

performance test to jointly develop more effective reasoning strategies to solve the 

puzzle problem [in line with the mechanisms of appropriation and co-construction 

proposed by Mercer’s (2013); see Table 17, first row]. The stronger hypothesis states 

that the learning of improved dialogical reasoning abilities had an immediate bearing 

on individual problem solving performance [in line with the mechanisms of 

transformation proposed by Mercer’s (2013); see Table 17, second row). In any case, 

the intervention program had positive learning effects on group reasoning and direct 

or indirect bearing on individual problem solving. 

More recently, Wegerif and colleagues within the Argunaut project (which parts 

of this dissertation originated from) expanded their interests from critical to creative 

group reasoning (Wegerif et al. 2010). In continuation of the lines of thinking 

sketched above, the presented research employs a collective rather than an 

individualistic conception of creativity. While critical reasoning can be associated 

with deepening the discussion, which often serves a filter function, e.g., by 

questioning implicit assumptions of claims and arguments, creative reasoning may 

be characterized by a widening of the discussion, manifested in new, emerging 

perspectives. Creativity is interpreted as a dialogical process, which, in “a dance of 

voices and perspectives,” enhances understanding by creating new ways of seeing a 

problem. Wegerif et al. (2010) developed a coding scheme to manually label 

instances of creative reasoning (i.e., new perspectives) in graphical discussions (i.e., 

discussions represented as node-and-link graphs in which nodes represent 

contributions and links represent reply relations between contributions). A novel 

artificial intelligence approach was developed (DOCE; described in detail in 

McLaren et al. 2010) to automate the identification of deepening and widening 

moves. First validation results indicate a reasonable performance of the induced 

classifiers, suggesting that creative discussion moves can be reliably identified. Other 

results, based on qualitative research methods, suggest that new perspectives may be 

promoted through the spatial representation of the discussion in a graph, which gives 

a better overview of present themes and ideas. Moreover, apparently disagreement 

often triggered the emergence of new perspectives. That is, critical reasoning moves 

may be instrumental to creative reasoning, at least if discussants have an open 

attitude towards other perspectives. 
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Table 17 

Causal hypotheses explaining the results of Wegerif et al. (1999), classified according to Mercer 

(2013) 

Hypothesis Causal mechanism 

Appropriation / 

co-construction 

(weaker 

hypothesis) 

Learning of dialogical group reasoning skills  

 improved group interaction  

 improved learning of specific problem-solving skills during group interaction 

 improved individual problem-solving performance 

  

Transformation 

(stronger 

hypothesis) 

Learning of dialogical group reasoning skills  

 improved individual general reasoning abilities (dialogical reasoning) 

 improved individual problem solving performance 

Resnick et al. (2010) describe their vision of a discursive classroom. As discussed 

above, empirical results demonstrate that assigning a central role to discussion 

activities in the classroom promotes the learning of disciplinary knowledge in math 

and science. The more ambitious goal, however, is to achieve improvements on a 

wider scale, or, in the words of Resnick et al. (2010), “growing the mind[s]” of 

children. Humans have the unique capacity to employ language for their reasoning, 

so promoting certain forms of language use may have a direct bearing on reasoning 

skills more generally. Such far reaching changes can only be achieved through a 

socialization process in which the skills and habits of reasoned talk and thinking are 

regularly and broadly practiced. Hence, separate courses on critical thinking and 

logic may have only a limited impact. The better approach is to make discursive 

practice an integral part of school life across disciplines. This approach gives 

children the opportunity to experience and practice reasoning and discourse skills in 

a variety of genres which involve different facets and forms of thinking. Resnick et 

al. (2010) cite evidence demonstrating the impact discursive practice may have 

beyond the learning of specific knowledge and skills. In a study of another research 

team, British students participated in a two-year science education program in which 

discursive activities took a central role. Three years after the conclusion of the 

program, students not only showed significantly improved results in science but also 

in terms of their proficiency in English. The above mentioned Project Challenge, in 

which potentially talented children of low socioeconomic status took part in a four-

year intervention program, also yielded some impressive results of transfer to other 

disciplines. A post-intervention test compared participants of the intervention 

program with other students of the same basic population (i.e., potentially talented 
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students). The results showed significant and large effects of the intervention 

program not only for mathematics but also for general English skills.  

2.8 Summary 

Psychological research identified argumentation as a core component of informal 

reasoning. Informal reasoning comprises forms of reasoning employed when 

problems are ill-defined, open-ended, without one correct solution, and without a 

definite “recipe” for finding the best possible solution. Such problems typically have 

to cope with conflicting interests, values, beliefs, and objectives; they involve 

incomplete and uncertain information. Most real-world problems are of this kind. 

Argumentation is therefore of great practical relevance. 

Generally, argumentative reasoning may be conceived of as the weighing of 

evidence and reasons in a framework of alternatives. Based on this conception, Kuhn 

(1991) identifies the following skills of argument: presenting one’s own position, 

providing reasons and evidence, considering possible counter-positions, anticipating 

counterarguments, evaluating evidence, and rebutting counterarguments. Empirical 

studies of Kuhn (1991) and others disclose that people often exhibit critical 

weaknesses in these skills. People tend to selectively search and consider information 

confirming their own positions and beliefs. Similarly, they are often biased in their 

interpretations and judgments in a way that favors their own position. This 

phenomenon has been referred to as confirmation bias or my-side bias. Furthermore, 

people are often satisfied with the first explanation that makes superficially sense 

without contemplating alternatives or possible weaknesses of the chosen explanation. 

This phenomenon has been referred to as a make sense epistemology.  

But what are the reasons why many people show such deficient forms of 

argumentation? Kuhn (1991) attributes the lack of argumentation skills to people’s 

epistemic beliefs, that is, their theories about the nature of knowledge and knowing. 

Argumentation skills are most likely found in people holding an evaluativist stance, 

who view knowledge claims as products of the human mind that can be evaluated 

based on objective criteria and standards of reasoning. Epistemic beliefs may be seen 

in the context of general thinking dispositions. Thinking dispositions account for the 

fact that people may be generally able to engage in certain intellectual activities but 

decide not to do so. Non-evaluativists may simply not see much value in engaging in 

argumentative reasoning activities. Unavoidably, people who reject engaging in 

argumentative thinking miss opportunities to develop corresponding skills. So, low 
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levels of epistemic belief and argumentation skills may go hand in hand. Empirical 

results provide evidence in line with this hypothesis. Besides argumentation skills 

and thinking dispositions, argumentative performance is assumed to critically depend 

on a sufficiently developed, domain-specific knowledge base. Finally, argumentation 

skills themselves may be subdivided in more general argumentative reasoning 

principles and domain-specific forms of argumentation. That is, engaging in 

argumentation in a particular field also requires knowledge about the specific 

procedures and standards of evaluation applied in that field, for instance, which kinds 

of evidence are seen as eligible. 

Cross-sectional studies in developmental psychology suggest that basic 

argumentation skills are already present in relatively young children and further 

develop around the age of adolescence along different dimensions. While a certain 

level of proficiency may be reached quite naturally, e.g., through social interaction in 

the home environment and with peers, there is evidence suggesting that further 

improvements critically depend on formal education. For instance, Kuhn et al. (1988) 

found that college education—and not age—is the best predictor for argumentation 

performance from a certain age on. Moreover, researchers see a strong connection 

between argumentative reasoning and socially experienced language use. 

Educational institutions may then compensate for the lack of opportunities of 

underprivileged children to engage in conversational practice needed to develop 

higher-order reasoning and argumentation skills. However, argumentation skills still 

receive relatively little attention in schools and universities. Knowledge is often 

presented as a matter of fact rather than as the result of academic discourse and 

controversy. The skills of argument are rarely explicitly addressed outside of 

extracurricular debate clubs. A possible reason is a lack of knowledge, tools, and 

methods how to best teach argumentation and how to integrate new approaches with 

current practice.  

Many argumentation-centered learning approaches are based on the social 

learning paradigm. Some of the reasons why the social learning paradigm became 

increasingly popular are: (1) Learning in social contexts is assumed to be particularly 

promising since the cognitive apparatus of humans has a special sensitivity towards 

social interactions. (2) Learning partners can serve as highly adaptive learning 

resources, models, or knowledge co-constructors. (3) The social context is the most 

realistic environment to practice social competencies, such as collaborative 

argumentation. Two social arrangements intensively discussed in the literature are 

learning from a more experienced person and learning in groups of peers. The 

benefits of the former approach are demonstrated, for instance, through the success 



90 2 Background: Argumentation Research in Psychology and Education 

 

of expert tutoring, which is known as one of the most effective forms of teaching. 

Key factors are the guidance and structuring (or scaffolding) provided by the tutor, 

and the learner’s active uptake and use of the given support. Learning in groups of 

peers is more attractive from an economical perspective since one teacher can 

supervise one or multiple groups of learners at once; experienced learners may even 

regulate their group work without any external support. Moreover, collaboration 

among peers may have its own specific merits since learners can take a more 

responsible and active role in co-regulating their group work and learning. Yet, 

research shows that triggering productive group interactions requires a careful 

arrangement of the instructional setting. Early research tried to establish a direct link 

between aspects of the learning arrangements and learning success. For instance, it 

turned out that the “right” goal and incentive structure is important for successful 

learning in groups. The focus of interest shifted in later research in several respects: 

(1) Learning is typically attributed to the interactions between students rather than 

the individual dealing with task aspects. Therefore, later research increasingly 

focused on the role interactions take as mediators of learning. Moreover, the 

interactions between students open a direct window to observe the mechanisms of 

collaborative learning at work. (2) With the focus on interactions, research interests 

also shifted from cognitive to social processes, such as maintaining a joint 

understanding, negotiating the meaning of concepts, and co-constructing knowledge. 

(3) Not all tasks are equally suitable to trigger the rich sort of interactions mentioned 

above. For instance, some tasks can also be solved individually, through division of 

work, or with a sporadic exchange of information. Researchers therefore became 

increasingly interested in true group tasks involving ill-structured problems. Such 

tasks are particularly promising since their very nature requires that each group 

member gets actively involved. The complexity and openness of these tasks makes it 

necessary to explore, compare, and evaluate alternative options. The interactions 

between students involve a fair share of argumentive reasoning, which is seen as 

pivotal for learning. 

Argumentation-centered learning arrangements contribute to three broad groups 

of learning objectives. First, the development of argumentation competency itself 

may be a learning goal. Studies show that the participation in argumentation 

activities has positive effects on argumentation skills. The activities may include 

group discussions about the question of what constitutes good and bad 

argumentation, or direct participation in argumentative discourse. Inexperienced 

learners require external support and guidance, which was provided in most of the 

discussed approaches through coaches or the teacher. Teachers / coaches may 
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moderate and coordinate the discussion between learners, model desired discussion 

moves, and ensure that discussion norms are obeyed. Following the approach of 

scaffolding, teachers / coaches may gradually reduce their support and transfer 

responsibilities to learners. Substantial improvements of argumentation skills can 

only be realized through sustained engagement in corresponding learning activities 

over longer stretches of time. Second, the learning of subject matter content through 

argumentation may be a learning goal. Two types of interaction play a particularly 

important role. The first type is the joint elaboration of content, including building on 

what other participants said before and providing conceptual explanations. The 

second type comprises critical, dialectical moves, such as challenges, counter-

arguments, and rebuttals. Research by Asterhan and Schwarz (2007, 2009) suggests 

that in particular critical moves have the potential to help learners identify and repair 

deeply rooted and persistent misconceptions. As indicated by several lines of 

research, conflicts are only conducive to learning when they are addressed in a 

nondogmatic and reasoned way with a focus on content rather than on ego. Empirical 

results indicate positive effects of argumentative activities in domains such as 

science and math. Third, engaging in argumentation may have positive effects on 

reasoning and problem solving more generally. This idea has its origins in the 

Vygotskian view that higher-order reasoning skills develop from participation in 

social interactions through a process of internalizing or appropriating reasoning 

patterns experienced in the social context. Thoroughly thinking about an issue can be 

conceived of as an internal argument between inner voices, an observation, which 

makes this view intuitively appealing. Several investigations suggest that sustained 

and guided participation in discursive activities indeed has positive effects on verbal 

and nonverbal skills not specifically addressed during the intervention. 
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Chapter 3  

Computer-Supported Argumentation 

Learning 

Over the last two decades, research has become increasingly interested in the use of 

computers for argumentation learning. For example, the above discussed intervention 

program used by Wegerif et al. (1999) also included computer-based activities. 

Computers can support argumentation-based learning in different ways. For instance, 

as mentioned above, a class of approaches to structuring the interactions of students 

called scripted cooperation (O’Donnell and Dansereau 1992) has become an 

important area of research. The use of computer software for scripting is particularly 

attractive since the structuring of student interactions can be realized or supported 

through specifically designed graphical user interfaces, computer-controlled pacing 

of activities, and system-generated instructions and prompts. Scripted cooperation 

(or collaboration scripts) constitutes one main group of approaches discussed in this 

chapter. Another group of approaches is based on the ability of computer tools to 

support, in a very easy and effective way, the individual or joint creation, 

modification, and scrutiny of structured representations of arguments. Yet another 

group of approaches discussed in this chapter relies on the ability of computer 

programs to automatically adapt their behavior to the learning process, imitating 

aspects of human tutoring or providing completely new and unique forms of 

interaction. 

Section 3.1 discusses different research paradigms of educational technology. 

Two paradigms of particular relevance are computer-supported collaborative 

learning (CSCL) and intelligent tutoring systems (ITS). Argumentative interactions 

have been identified as a key for learning in collaborative arrangements, which 

explains why argumentation emerged as a focal area of study in CSCL. The ITS 

community traditionally focused on analyzing, modeling, and supporting computer-

based learning activities in relatively restricted domains. More recently, ITS 

researchers extended their scope to support collaboration and argumentation, which 

offers interesting new opportunities for enhancing CSCL system with adaptation 

mechanisms.  
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A recurring theme in the previous chapter was the importance of supporting 

students through structure and guidance. Section 3.2 and section 3.3 discuss two 

computer-based approaches to structuring and guiding student interactions, which 

became important topics in CSCL research. In particular, two theories will be 

addressed, which constitute the theoretical framework of the instructional approach 

designed as part of this doctoral thesis. Section 3.2 discusses the theory of 

representational guidance, which has its origins in research on graphical knowledge 

representations. This theory explains how the affordances of different 

representational notations affect the way learners jointly create, manipulate, and 

discuss external knowledge representations. By transforming the interactions 

between students in a specific manner, representational notations are assumed to 

crucially influence the achieved learning success. Section 3.3 discusses the script 

theory of guidance in computer-supported collaborative learning, which has its roots 

in research on collaboration scripts. Its basic assumption is that the way people 

collaborate is guided by their internal scripts, which are mental knowledge structures 

representing information about collaboration. An essential part of this theory is 

devoted to the question of how external scripts, that is, external representations of 

knowledge relevant to collaboration, can be utilized to guide collaborative activities 

and help learners develop more effective internal scripts and domain-specific 

knowledge.  

Section 3.4 and section 3.5 discuss argumentation research originating from the 

fields of artificial intelligence and intelligent tutoring systems. The discussed 

research addresses the question of how argumentation learning systems can be 

enhanced with adaptive support functionality. Section 3.4 focuses on the automated 

analysis of argumentation, which is prerequisite for providing computational models 

that drive the adaptation of a system’s behavior. Section 3.5 focuses on the 

adaptation strategies themselves. That is, once a system has the ability to analyze 

certain aspects of argumentation learning, it also needs some approach to adjust its 

behavior in a way that is conducive to the learning process. Section 3.6 summarizes 

the main insights of this chapter. 

3.1 Educational Technology Approaches 

The use of technology for educational purposes has a long tradition, including 

approaches to integrate film, radio, and television in the classroom (Cuban 1986, 

cited in Koschmann 1996). It was the advent of computer technology that intensified 

research interest considerably and gave rise to specific research paradigms of 
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educational technology. Koschmann (1996) discusses four main paradigms, each 

entailing specific assumptions about learning and teaching, pursuing specific 

instructional and research objectives, and employing specific technological and 

research approaches. In particular, these are: computer-assisted instruction (CAI), 

intelligent tutoring systems (ITS), Logo-as-Latin, and computer-supported 

collaborative learning (CSCL). 

 Computer-assisted instruction (CAI) emerged in the 1960s. Applications in this 

tradition are restricted to presenting teaching materials in a logical sequence to 

learners, according to instructional goals and didactical considerations (e.g., 

some piece of content requires another piece as a prerequisite). Practical 

exercises are realized through programmed drill-and-practice (Stahl et al. 

2006), that is, the computer poses a question, the learner inputs an answer (e.g., 

multiple choice or fill-in-the-blank), and, depending on the correctness of the 

answer, a more challenging question is presented, and so forth. Developers of 

CAI programs are often educational practitioners enabled to create contents 

through courseware authoring programs. Therefore, corresponding CAI 

software has a strong practical orientation and reflects prevailing traditional 

views on instruction and learning. In particular, learning is viewed as the 

(passive) acquisition of knowledge facts and instruction as the transmission of 

those facts. CAI can be associated with a behavioristic perspective, focusing on 

stimulus-response relationships: Presenting teaching materials or feedback (the 

stimulus) leads to improved performance (the response). Internal mental 

processes are typically not considered. Corresponding research is mainly 

interested in instructional efficacy, that is, whether knowledge gains superior to 

some control can be realized through some sort of CAI. 

 Intelligent tutoring systems (ITS) emerged in the 1970s. ITS research has its 

origins in artificial intelligence and cognitive science. Its vision and guiding 

theme is to emulate human tutors by posing challenging, multi-step problems 

and providing feedback and hints based on the learner’s problem-solving 

actions, knowledge level, and misconceptions. ITS research puts particular 

emphasis on the learner’s mental representations of knowledge and problem-

solving (cognitivism). Mental structures and processes are modeled using 

computational student models. For instance, model tracing (Corbett and 

Anderson 1995) is a computational method to model mental operations during 

problem solving. The problem-solving process is often conceived of as the 

traversal through a problem space, which includes an initial state, solutions 

states, and a limited set of operations to traverse between states. The system 
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analyzes each problem-solving step (i.e., each user input) to decide whether the 

step is correct or incorrect, based on a set of rules representing the system’s 

ideal model of problem solving. More sophisticated approaches utilize buggy 

rules to identify misconceptions or mind bugs learners may have. If a step is 

incorrect, the system provides feedback and hints to put the learner on the right 

track again. Model tracing is often used in concert with another technique 

called knowledge tracing (Corbett and Anderson 1995). Knowledge tracing is 

an approach to modeling the probabilities of specific skills (or knowledge 

components) being mastered by a learner, based on the analysis of his problem-

solving steps. The ITS approach has notable advantage over the CAI approach. 

First, the ITS-modeling machinery allows the system to make more informed 

decisions and give support tailored to the specific needs of learners. For 

instance, ITS systems may select problems based on the learner’s mastery 

profile and provide feedback tailored to the learner’s misconceptions. Some 

ITS systems employ domain reasoners to determine, on the fly, whether 

arbitrary inputs are correct or not. This is a critical advantage over CAI 

systems, which are typically far less flexible and restricted to checking for 

predefined answers in a database. Second, ITS systems trace problem-solving 

on a more fine-grained level and provide feedback for individual problem steps 

(VanLehn 2006). VanLehn (2011) presents a meta-analysis comparing different 

kinds of instructions, grouped according to the level of granularity of the 

interaction involved. He comes to the result that interactions at the step level 

(the interaction granularity of most ITS systems) are superior to interactions at 

the answer level (the interaction granularity of most CAI systems) in terms of 

the achieved learning gains. As a possible explanation, VanLehn (2011) 

proposes that the interaction granularity in answer-level systems is too coarse. 

The step from the question to the final answer is simply too big, involves too 

much reasoning, so students often resort to guessing or quitting. Conversely, 

ITS systems provide tailored feedback and hints on intermediary steps, which 

enables learners to accomplish the step themselves while extending or self-

repairing their knowledge bases. However, building ITS systems is a complex 

matter due to the intricacies of student modeling, which requires representing 

and updating computational representations of mental structures and processes 

not immediately accessible to researchers and the system. Therefore, most ITS 

research has focused on relatively narrow, easy-to-formalize, and procedural 

domains such as arithmetic and calculus. While earlier ITS research was 

strongly focused on instructional competence, that is, how good computer 

models can emulate aspects of a real tutor (e.g., diagnosing misconceptions and 
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assessing knowledge), the question of instructional efficacy gained 

considerable importance more recently.  

 Logo-as-Latin describes a class of approaches that emerged in the 1980s, 

inspired by constructivist learning theories. ITS systems may be designed with 

the constructivist ideal in mind too, e.g., the system may prompt learners to 

reflect on their errors or to self-explain a solution step—as noted by VanLehn 

(2011), system-generated scaffolding in ITS systems may help students to do 

most of the reasoning themselves. However, the flow of interactions is still 

largely controlled by the system along predefined pathways. ITSs typically 

classify student actions as right or wrong, based on the body of domain 

knowledge encoded in the system, then try to remediate behaviors not 

conformant with their model, an approach criticized as the “arrogant ‘tutor 

knows best’ style of ITSs” (Self 1990). Approaches under the Logo-as-Latin 

paradigm give learners much more freedom and control over their activities and 

learning. Corresponding instructional technologies (e.g., micro-worlds and 

simulations) take a passive role in providing a playground or environment for 

learners to freely explore concepts of interest, carry out experiments, and test 

out ideas. Many approaches are based on the Logo programming language, 

which enables young children to experiment with programming concepts, such 

as loops and variables. The main goal, however, is not to promote programming 

skills but rather to foster self-regulated learning and problem-solving skills 

more generally. To emphasize these more general objectives of the approach, 

Koschmann (1996) proposes the term Logo-as-Latin in analogy to Latin, whose 

learning was in former times assumed to improve general intellectual abilities. 

Since the main goal is to support general skills, evaluation studies often focus 

on questions of transfer. 

 Computer-Supported Collaborative Learning (CSCL) was established in the 

1990s as an independent field of research. Two developments contributed to the 

emergence of CSCL (Stahl et al. 2006). First, rapid technological advances and 

the widespread adoption of personal computers and the Internet raised the 

question of how these new technologies could be employed to improve 

education and prepare children for the digital age. Second, as discussed, the 

learning sciences recognized the great potential of collaborative learning 

approaches to promote deep content learning and general collaboration and 

thinking skills. In contrast to CAI and ITS research, CSCL sees the interactions 

between peers—not the instructions and support provided by the system—as 

the primary source of learning (Stahl et al. 2006). Yet, the role of technology is 
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typically not reduced to a pure medium of discourse. Rather, a main portion of 

CSCL research investigates ways how technology can facilitate, guide, and 

scaffold high-quality interactions between learners. Two prominent ideas how 

such guidance can be realized—specific knowledge representation formats and 

collaboration scripts—will be discussed next. CSCL essentially expands on the 

theories of learning and instruction adopted by collaborative learning 

researchers, as described in section 2.6. CSCL research puts particular 

emphasis on peer interactions, group-level processes, such as knowledge co-

construction, and true group tasks involving ill-structured problems. Therefore 

it is not surprising that argumentation is one of the “flash themes” in CSCL 

(Stahl 2007). CSCL research employs and partly mixes methodologies from 

different traditions, including experimental, descriptive, and iterative design 

approaches (Stahl et al. 2006). 

It can be observed that, over the years, the different fields extended their scope and 

imported questions, ideas, and methods from one another. For instance, a number of 

more recent ITS approaches do not try to emulate an expert tutor anymore but 

simulate, for instance, learning companions (Goodman et al. 1998) and tutees to be 

taught by a learner (Walker et al. 2011). ITS systems nowadays do not solely focus 

on specific, narrowly focused skills but also try to promote self-regulation and 

metacognition (Azevedo et al. 2010), help-seeking behaviors (Aleven et al. 2006), 

and collaboration (McManus and Aiken 1995). ITS researchers transcended the 

boundaries of formal knowledge domains to target more ill-defined and open ones, 

which are notoriously hard to tackle using traditional ITS methods and approaches 

(Lynch et al. 2009). Researchers of the CSCL community increasingly realize the 

potentials of adaptation technologies—the classical province of ITS research—to 

support collaborative learning processes (Fischer et al. 2013). There is new research 

in the cross-section between ITS and Logo-as-Latin. For instance, the MiGen project 

uses ITS methods to (unobtrusively) support exploratory learning (Noss et al. 2012). 

The Metafora project takes the idea even one step further by researching ways to 

automatically support collaborative exploratory learning, combining ideas and 

techniques from the ITS, Logo-as-Latin, and CSCL traditions (Dragon et al. 2013). 

3.2 Representational Guidance 

Knowledge can be represented in different ways. A classical way of representing 

knowledge is the use of plain text. For instance, an essay may explain a specific 

matter of fact or put forward an argument to justify some opinion. Other 
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representational formats may be employed to make certain information more 

accessible to the reader. For instance, text books often include diagrams and charts to 

illustrate certain aspects of interest visually. Knowledge representations may not 

only be used to present information in a static fashion. Rather, users, or learners, may 

actively create and manipulate knowledge representations. For instance, a vivid field 

of educational research is the use of concept mapping, a method to graphically 

represent the relationship between concepts in a domain of instruction (Novak 1990). 

Computer-based representational tools can support the working and learning with 

knowledge representations by enabling, or facilitating, many relevant tasks, such as 

exploring, creating, modifying, storing, organizing, analyzing, and sharing of 

knowledge representations. 

 
Figure 5: Knowledge representations based on different representational notations: text (left), graph 

(middle), table (right). Adapted from Suthers (2003). 

A considerable body of research has focused on the question whether specific 

representational notations (i.e., systems of graphical or linguistic symbols used to 

convey meaning) can promote productivity, insight, and learning. Figure 5 shows 

three exemplary knowledge representations employing different notations—a text, a 

graph, and a table based notation—which are used to represent essentially the same 

information: 

 Text-based notations (Figure 5, left) represent information by sequentially 

arranging words into meaningful sentences, according to grammatical rules. 

Natural language text is probably the most common notational format for 

representing knowledge in a persistent way.   

 Graph-based notations (Figure 5, middle) represent information by 

decomposing a body of knowledge in isolated knowledge chunks (represented 

by nodes or boxes). Knowledge chunks are classified according to semantic 

categories (represented by graphical shapes [e.g., rectangle, hexagon] and / or 

semantic labels [e.g., hypo or data]). Relations between knowledge chunks are 

represented by links or arcs, which again, are classified according to semantic 
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categories (e.g., a plus sign [+] may signify a consistency relations, a minus 

sign [-] may signify an inconsistency relations).  

 Table-based notations (Figure 5, right) represent information in a two-

dimensional matrix. Again, knowledge is decomposed into isolated knowledge 

chunks, which are classified into one of two semantic categories (in the 

example: hypo and data). Elements of one category constitute the x-axis (e.g., 

hypotheses). Elements of the other category constitute the y-axis (e.g., data). 

Each table cell classifies the relation between the corresponding hypothesis and 

data element according to semantic categories, where applicable (e.g., a plus 

sign [+] may signify a consistency relations, a minus sign [-] may signify an 

inconsistency relations). 

The effects of different representational notations may be explained in terms of the 

constraints and saliences they possess (Suthers 2003). Constraints are limits on what 

can principally be expressed within a representational notation. Essentially, 

constraints delimit the expressive power of a notation. For instance, a text can 

represent many different relations, which are available in the lexicon of the used 

natural language, while the graph and table notations discussed above only 

distinguish between consistency and inconsistency relations. Saliences direct the 

attention to certain aspects of a representation, possibly at the expense of other 

aspects. Thus, saliences can help users capture specific aspects of encoded meaning 

quicker, facilitate the search of information, or invite users to perform specific 

actions, based on perceived affordances (Norman 1988). For instance, compared to 

text, graphs and tables make it easier to identify individual knowledge chunks and 

their interrelations. An empty table cell affords users to think about possible relations 

between corresponding knowledge chunks. Saliences not only depend on the 

notation itself but also on the perceptual architecture of the agent dealing with the 

representation. Essentially, saliences arise from automated, rather than controlled, 

perceptual processes of the agent. 

An important aspect with respect to representational guidance is the specific 

vocabulary used within a representational notation, for instance, the labels of nodes 

(e.g., hypothesis, data) and links (e.g., supports, opposes). Such ontologies define the 

conceptual space in which users operate. While actively engaging with important 

concepts reflected in the ontology of a notation, learners may gradually learn to think 

in terms of these concepts. For instance, in order to classify knowledge chunks as 

data and hypotheses, students have to understand the meaning of and difference 

between these two important notions, a crucial prerequisite for scientific reasoning.  
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In his theory of representational guidance, Suthers (2003) focuses specifically on 

the influence different representational notations may have on collaborative learning 

processes. The basic scenario considered in Suthers’ research is that multiple learners 

jointly construct a shared knowledge representation using a specific representational 

notation. He identifies three roles representations may play specific to collaborative 

settings. First, representations may initiate negotiations of meaning. Since the 

representation is shared between multiple learners, changes must be coordinated and 

agreed. For instance, adding a new data element to a graph may spark a discussion 

about whether the represented information is actually data or may rather be classified 

as a hypothesis. By negotiating the meaning of the two categories data and 

hypothesis, learners may develop a better understanding of the difference between 

both categories. Second, created representations can serve as target of pointing acts. 

That is, learners can more easily refer to ideas previously dealt with by pointing at 

elements within the created representation. The act of pointing can take different 

forms, for instance, physical pointing (in collocated settings), verbal references (e.g., 

each box in a diagram may have a referable sequence number), or the use of specific 

awareness tools (e.g., a cursor icon that can be placed on elements of the 

representation). Thus, processes of communication, negotiation of meaning, and 

knowledge elaboration may be facilitated; the quality of collaboration may increase. 

Finally, shared representations may be considered as group memories of previous 

ideas and agendas for future work (e.g., through the absence of elements in the 

shared representation, e.g., an empty table cell). Again, processes of knowledge co-

elaboration may benefit, since participants are reminded of prior ideas, which could 

be reconsidered in the current context and put into relation with more recent ideas. 

Empirical evidence is provided by Suthers and Hundhausen (2003), who 

compared different representational notations (in particular: text, graph, and table) in 

terms of their influence on collaborative learning processes. Some predictions 

derived from an analysis of the constraints and saliences of the different notations 

could be confirmed. In particular, the more structured and constrained 

representational notations graph and table led to significantly more knowledge co-

elaboration compared to text. They also found that affordances of representational 

notations can lead to problems. For instance, learners in the table condition 

considered many spurious relations between data elements and hypotheses. One 

explanation is a strong prompting effect of empty table cells, which potentially 

tempted learners to also include questionable relations.  

Considered from a system design perspective, the task of the designer is to exploit 

representational biases inherent to specific notations to create a condition of 
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representational guidance (Suthers 2008), which promotes, in a targeted way, social 

and / or cognitive processes conducive to learning. Figure 6 sketches the idea of 

designing for representational guidance. Designers develop specific representational 

notations and make these notations available through some representational tool 

(e.g., through a palette from which users choose available box and link types). 

Learners then use this representational tool, individually or jointly, to read, create, 

and manipulate representational artifacts, that is, specific products of 

representational activities. While doing so, their thinking and acting is guided by the 

representational notation built into the representational tool, based on the saliences 

and constraints of the employed notation. 

   
Figure 6: Representational guidance. Adapted from Suthers (2003). 

3.2.1 Representational argumentation systems 

Probably the most common representational approach to argumentation learning is 

argument diagramming (also called argument mapping). Argument diagrams 

typically employ the graph-based approach discussed above. That is, the structure of 

arguments is represented through node-and-link graphs. Figure 7, upper panel, shows 

an evidence map within the Belvedere system (Suthers et al. 2001). Evidence maps 

focus on one of the most central notions in scientific argument: the distinction 
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between hypotheses and evidence. Propositions are represented as nodes (hypothesis 

and data elements), and relations between propositions are represented as graphical 

links (e.g., a piece of data supports [+] or opposes [-] a hypothesis). In this specific 

instance, the evidence map is used to analyze possible reasons for the ALS-PD 

disease, which occurred at an unusually high rate on the island of Guam. The two 

hypotheses explored in the map are that the disease is caused by aluminum or by a 

genetic disposition.  

 

 
Figure 7: Hypotheses-evidence relations represented within the Belvedere system (Suthers et al. 

2001) as node-and-link graph and table. Data represented in figure from Suthers and Hundhausen 

(2003). 

Evidence maps are just one example of node-and-link notations employed in 

argumentation systems. Different sets of node and link labels may be used to 

represent other categorical systems (or ontologies). Ontologies may be domain-

independent, e.g., an ontology with statement boxes and support and oppose links; a 

widely used relatively generic ontology is the Toulmin (1958) model. Other 

ontologies incorporate domain-specific aspects. For instance, to represent legal 

arguments, models developed by Wigmore (1931; used in Araucaria [Reed et al. 

2007]) and Ashley (1990; used in LARGO [Pinkwart et al. 2009]) have been used. 

Other ontologies again have been designed to represent arguments about planning 

and design problems (Rittel and Webber 1973; used in gIBIS [Conklin and Begeman 

1988]). Ontologies might be large and allow fine-grained distinctions, or might be 

restricted in size and coarse-grained in meaning, making it easier and less error-
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prone to use. For instance, Suthers et al. (2001) considerably simplified the ontology 

of Belvedere after realizing that students had problems using the more expressive 

ontology. In conclusion, the design of an appropriate ontology is highly critical. It 

requires a careful analysis of student prior knowledge and experience, learning goals, 

and the concrete application context in order to find an optimal trade-off between 

expressiveness, learnability, and usability. Because there is no one-size-fits-all 

solution, systems should allow an easy and flexible configuration of ontologies. 

While argument diagramming has a long tradition (e.g., Wigmore 1931), 

computer-based argumentation systems have become increasingly popular since the 

mid-1990s, resulting in systems such as the aforementioned Belvedere (Suthers et al. 

2001), Reason!Able (van Gelder 2002), and Digalo (Schwarz and Glassner 2007). 

Such tools have been used in a variety of ways and in different domains, for instance, 

to analyze existing legal arguments (Pinkwart et al. 2009), to outline arguments in 

preparation for essay writing (Janssen et al. 2010), or to discuss given contentious 

questions (Schwarz and Glassner 2007). 

The main feature of argument graphs is that argument structures are represented 

visually and explicitly. In contrast to less explicit formats, such as prose, graphs 

allow students to immediately see how lines of reasoning evolve, step by step, 

without having to infer argumentative relations (van Gelder 2005). By way of their 

explicitness, graphs can help students see faulty reasoning. While prose and chat are 

linearly arranged, argument graphs allow multilevel hierarchies (or networks), thus 

better match the hierarchical structure of many arguments (van Gelder 2005). 

Cognitive processing can be further facilitated through graphical elements such as 

colors, lines, and shapes (van Gelder 2002). While expressing knowledge in a highly 

structured format unavoidably involves cognitive overhead, e.g., through a 

"premature commitment to structure," it has the potential to trigger processes of 

reflection and deeper understanding (Buckingham Shum et al. 1997). In particular, 

the specific category systems used in argument diagramming tools can focus 

students' attention on important concepts of argumentation and encourage reflection 

about these concepts, e.g., the distinction between hypotheses and data in scientific 

arguments (Suthers and Hundhausen 2003).  

On the downside, node-and-link graphs may become unwieldy, especially in 

synchronous collaborative settings when many contributions are created in rapid 

succession. Sometimes the result is a "spaghetti" image, which is hard to read and 

follow (Loui et al. 1997). In general, the quality and readability of argument 

diagrams depends on how skillfully users organize and spatially arrange information. 
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Graphs arranged according to Gestalt principles, such as symmetry, continuation and 

proximity, have been shown to be more useful learning resources, leading to higher 

learning gains (Dansereau 2005). Finally, while the typical arrangement of graphs 

according to logical and thematic relationships helps students to focus on the 

underlying argument structure, the temporal sequence of contributions is often not 

obvious, making it hard to identify recent contributions. Notably, many of these 

issues can be remediated or softened through system functions, for instance, 

orientation support (e.g., mini-maps, search functions) and awareness support (e.g., 

displaying creation timestamps, highlighting recent contributions). 

Empirical studies show that learning with argument graphs can have positive 

effects on the quality of learning processes (e.g., increased elaboration [Suthers and 

Hundhausen 2003], improved quality of causal reasoning [Easterday et al. 2009]) 

and learning outcomes (e.g., critical thinking and argumentation skills [Harrell 2008; 

Twardy 2004], causal reasoning skills [Easterday et al. 2009]). Positive effects are 

reported in a variety of domains, including philosophy (Harrell 2008; Twardy 2004), 

the Law (Pinkwart et al. 2009), policy deliberation (Easterday et al. 2009), science 

(Suthers and Hundhausen 2003), and history (Janssen et al. 2010). Positive results 

have been achieved both in collaborative settings (Janssen et al. 2010; Suthers and 

Hundhausen 2003) as well as in individual settings (Easterday et al. 2009; Pinkwart 

et al. 2009). 

An alternative form of argument diagramming is to employ a container-based 

notation. Figure 8 shows such a container representation of an argument within the 

SenseMaker system (Bell 1997). Claims are represented as visual frames. Nested 

frames represent supporting arguments. Nested hyperlinks represent supporting 

evidence, which can be accessed by clicking on the hyperlink. The colored dots 

indicate how strong students rate the different pieces of evidence. Students use the 

system for scientific inquiry to investigate alternative hypothesis regarding given 

questions (e.g., "How Far Does Light Go?") based on available online resources. 

Students may use SenseMaker individually or in small groups in front of the same 

computer. 

Other approaches use simple lists of pro and con arguments, or tables (or 

matrices) to represent argumentative relations between propositions. Figure 7, p. 103, 

lower part, shows such a tabular representation in Belvedere (Suthers et al. 2001). 

Each column represents a specific hypothesis. Each row represents a specific piece 

of data. Cells indicate the evidential relation between the respective (hypothesis / 

data) pair, showing whether the data supports or opposes the hypothesis. Table and 
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graph in Figure 7, p. 103, represent exactly the same argument. Tables are generally 

less expressive than graphs. For instance, argumentation sequences with three or 

more elements cannot be directly expressed in a table. Yet, on the positive side, the 

tabular format appears to be particularly useful to systematically (and exhaustively) 

check pairwise relations, e.g., which piece of evidence supports or opposes which 

hypothesis. 

 

 
Figure 8: Argument represented within the SenseMaker system (Bell 1997) in a container format. 

From Scheuer et al. (2010). 

In summary, representational approaches may be used both in individual and in 

collaborative learning contexts, that is, students create and discuss argument 

representations in pairs or small groups. Different notations, such as node-and-link 

graphs, containers, tables, and lists, can be used to represent structural and semantic 

aspects of arguments. The question arises how the different notations impact and 

influence learning processes and learning outcomes. Important insights can be gained 

from Suthers' (2003) theory of representational guidance, which is based on the 

observation that notations differ in terms of salience of knowledge units and 

constraints on expressiveness. For instance, graphs and tables can represent 

evidential relations (as graphical links and table cells, respectively) in a more explicit 

way compared to written text. Therefore, evidential relations are more salient in 

graphs and tables, and consequently, students are more likely to elaborate on such 
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relations when they create and discuss arguments. So to speak, the representation 

draws the attention of students to specific aspects and thus biases their activities and 

discussions in specific ways. The task of the system designer is hence to turn 

representational biases into representational guidance, that is, to create user 

interfaces that purposefully steer collaboration in "fruitful" directions (Suthers 2008). 

3.3 Scripted Collaboration 

High-quality interactions between inexperienced learners typically do not occur 

naturally, without external support. As discussed, early research in cooperative 

learning identified the goal and incentive structure as a possible means to motivate 

group members to interact in supportive ways with one another. Yet, even if people 

are highly motivated, they may still lack essential skills in productively collaborating 

and communicating with one other. Later research experimented with approaches to 

influence the interactions between learners in a more direct and targeted way. Such 

approaches—typically referred to as collaboration scripts—can be conceived of as 

scaffolds that operate on the interaction / process level rather than on the content / 

conceptual level (Kollar et al. 2006). Under the label of scripted cooperation, 

O’Donnell and Dansereau (1992) investigated collaboration scripts in face-to-face 

settings. The advent of networked computer technology then sparked interest in 

exploiting the high potential of computer-based collaboration scripts to structure and 

guide interactions within learning groups (overviews are provided, for instance, in 

Kobbe et al. 2007; Kollar et al. 2006; Weinberger 2011).  

Kollar et al. (2006) provide an overview of face-to-face and computer-based 

collaboration scripts. An example for a face-to-face approach they discuss is the 

MURDER script by O’Donnell, Dansereau, and colleagues (MURDER is an 

acronym denoting a set of activities involved in the script). The script aims at helping 

pairs of learners to better understand a given text through joint activities. Learners go 

through the text passage by passage. First, each learner reads the passage 

individually. Then, one learner takes the role of a “recaller” who has to summarize 

the passage as complete as possible. The other learner takes the role of a “listener” 

who tries to identify and fix misconceptions and omissions. Finally, both partners 

jointly elaborate on the passage, e.g., by making connections to their prior 

knowledge. The roles of recaller and listener are switched for the next passage. An 

example for a computer-based approach is the learning protocol approach by Pfister 

and Mühlpfordt (2002). Groups from three to five learners and a tutor use a 

computer-based communication interface to discuss topics in geology and 



108 3 Background: Computer-Supported Argumentation Learning 

 

philosophy. The communication interface provides several means to structuring the 

dialogue. First, learners must explicitly indicate which previous message (or message 

part) they are referring to by means of graphical arrows. Second, learners must 

choose between three different message types to indicate the intention of their 

messages (question, explanation, or comment). Third, the system provides floor 

control functionality by automatically regulating the sequence of turn-taking 

between discussants (e.g., after a question the system gives the floor to tutor to 

respond).  

Kollar et al. (2006) propose a five-component scheme to describe collaboration 

scripts: 

1. Objective: Collaboration scripts are instructional scaffolds designed with 

specific instructional goals in mind. The MURDER script pursues the goal 

to support learners in (a) improving their text understanding and (b) 

developing strategies for learning from texts, such as generating 

explanations. The learning protocol aims at helping learners improve (a) 

their coordination behavior during the discussion and (b) their conceptual 

knowledge about target concepts in geology and philosophy.  

2. Activities: Collaboration scripts specify specific activities conducive to 

achieving given learning goals. One of the activities in the MURDER script 

is to explain the content of text passages to the learning partner. The 

learning protocol prompts learners to use specific discussion moves 

(questions, explanations, comments) and to coordinate their interactions by 

explicitly indicating which previous message they are replying to. 

3. Sequencing: Collaboration scripts may specify the chronological order of 

activities. The MURDER script essentially defines a three-step sequence 

comprised of reading, summarization, and elaboration. The learning 

protocol sequences the order in which learners contribute to the discussion 

(without requiring a specific sequence of message types). 

4. Roles: Collaboration scripts may assign specific roles to learners. In the 

second step of the MURDER script, one learner is assigned the role of a 

recaller and the partner is assigned the role of a listener. Roles are 

alternated for each new passage. The learning protocol does not make use 

of explicit roles. 

5. Type of representation: Collaboration scripts use different means to present 

instructions to learners or to impose structure on the learners’ interactions. 
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One variation of the MURDER script provided instructions on paper to 

learners. Another variation was that learners were trained in the procedures 

of the script before actually engaging in collaboration. That is, they 

employed internalized mental versions of the script during the learning 

activity. The learning protocol implements script elements in the user 

interface by displaying information and restricting interactions (who is next 

to contribute, labeled message types, graphical arrows to indicate messages 

referred to). 

Dillenbourg (2002) describe different coercion degrees of collaboration scripts, 

ranging from induced scripts (the script implicitly conveys expectations regarding 

desired patterns of interaction), to instructed scripts (expectations are made explicit 

through instructions before collaboration takes places), to trained scripts (students 

are trained in target behaviors before collaboration takes places), prompted scripts 

(students are prompted to follow targeted behaviors during collaboration), and 

follow-me scripts (the learning environment enforces specific forms of interaction, 

e.g., in the learning protocol approach discussed above, only selected students can 

technically enter messages in the chat box to enforce a specific order of participants). 

According to Dillenbourg (2002), the “right” coercion degree poses a design 

dilemma for collaboration scripts. On the one hand, low coercion degrees may be 

ineffective since students may decide to not following the script. On the other hand, 

high coercion degrees may restrict students too much, run counter to the very idea of 

collaborative learning, and decrease students’ motivation.  

Fischer et al. (2013) observe that, while a number of promising empirical results 

regarding collaboration scripts exist, a theoretical basis is missing to systematically 

explain and predict effects across different scripting approaches. To fill this gap, they 

propose a scripting theory of guidance based on the body of available evidence. The 

basic assumption is that collaborative behavior is guided by mental knowledge 

structures, called internal collaboration scripts, which are similar in structure to 

external collaboration scripts. Following a theater metaphor, Fischer et al. (2013) 

describe the following layers of collaboration knowledge (i.e., internal script 

components): 

1. Play is the topmost element and includes the overall goal of a collaborative 

activity (e.g., conducting a critical discussion aimed at jointly finding the 

most reasonable solution). It involves knowledge about typical scenes of the 

play, the sequence of these scenes, and the roles participants assume. 
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2. Scenes describe specific situations that can occur during a play (e.g., a 

critical discussion unfolds into the scenes confrontation, opening, 

argumentation, and conclusion). Scenes themselves may unfold into 

multiple sub-scenes.  

3. Roles are subcomponents of a play and typically extend across several 

scenes (e.g., a critical discussion involves the roles of a proponent and an 

opponent of a given claim each trying to convince the other from one’s own 

position). 

4. Scriptlets describe specific activities within a scene and their meaningful 

sequencing (e.g., making a reasoned argument during an argumentation 

scene may include scriptlets to present a claim, to provide grounds, and to 

cite evidence). The specific scriptlets employed as part of a scene also 

depend on the roles learners assume. 

Collaboration scripts take a twofold role by guiding both the learner’s understanding 

of and acting in collaboration practices [internal script guidance principle]. Learners 

dynamically compose collaboration scripts from play, scene, role, and scriptlet 

components available in their internal repertoires [script configuration principle]. 

The way how the script is ultimately composed depends on the learner’s goals and 

situational constraints and affordances (e.g., representational constraints and 

saliences as discussed above). The dynamic configuration of components allows 

learners to flexibly respond to a variety of situations, including situations they are 

initially unfamiliar with. Learners consolidate their collaboration knowledge and 

develop higher-level components (e.g., a specific play component) through repeated 

application of an effective configuration of lower-level components (e.g., a sequence 

of scene components the play component is comprised of) [script induction 

principle]. If the configuration does not lead to the expected success, learners are 

likely to modify the configuration of the internal script [script reconfiguration 

principle]. The transactive application of knowledge within a scripted or unscripted 

CSCL practice determines the extent to which this practice is conducive to domain 

knowledge learning [transactivity principle]. That is, CSCL practices involving a fair 

amount of transactive moves (i.e., reasoning on the reasoning of others) are expected 

to lead to superior domain knowledge gains.  

External collaboration scripts have the potential to empower learners to engage in 

collaboration practices that would otherwise be beyond reach [external script 

guidance principle]. On the one hand, they may inhibit the application of ineffective 

internal scripts a learner conventionally uses. On the other hand, they may help 
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learners organize known lower-level script components into effective higher-level 

components the learner does not routinely use yet. External scripts may operate at 

different levels to scaffold collaboration. Play scaffolds explicate the overall goals of 

a collaborative practice. Scene scaffolds explicate which scenes are involved in a 

play and in which order. Role scaffolds explicate knowledge about specific roles 

important in a play and assign these roles to learners. Finally, scriptlet scaffolds 

explicate which scriptlets are relevant in a scene and in which order to apply these 

scriptlets. External collaboration scripts are most effective (in terms of both, 

collaboration practices and domain knowledge) when they build upon available 

internal script components at the highest level possible [optimal script level 

principle]. 

The script theory of guidance builds upon well-accepted notions in cognitive 

science [the schema-based theory of dynamic memory proposed by Schank (1999)] 

and education [scaffolding and learning in the zone of proximal development 

(Vygotsky 1978)]. It accounts for a large body of findings in collaboration script 

research. It offers a unified conceptual framework that provides a direct mapping 

between mental structures (internal scripts) and instructional structures (external 

scripts), and formulates principles how the latter influence the former. Yet, the 

proposed theory is just a first step towards a more complete and detailed account of 

scripted collaboration. As discussed by Fischer et al. (2013), important research 

topics are adaptive scripts (to automatically adjust the provided scaffolding to the 

needs of learners, e.g., fading the level of support or targeting increasingly more 

complex activities through support) and adaptable scripts (i.e., learners themselves 

discuss and decide which script components to include or to remove, to support self-

regulation and metacognitive awareness). 

3.3.1 Script-based argumentation learning 

A number of approaches exist to improve the quality of argumentation through 

structured communication interfaces that implement or support specific pedagogical 

communication models. Sometimes, such approaches are referred to as micro scripts 

(Dillenbourg and Hong 2008). In terms of the script theory of guidance (Fischer et al. 

2013; see above), they provide scaffolds operating at the scriptlet level. Some 

approaches try to encourage desired types of messages (e.g., arguments, evidence); 

other approaches provide message templates designed according to standards of good 

argumentation (e.g., messages consisting of a claim and reasons rather than bare 

claims); other approaches again try to promote fruitful interaction patterns (e.g., 

message sequences of the form argument-counterargument-integration). The 
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overarching goal of such approaches typically is that students gradually internalize 

behaviors represented in the script and transfer these behaviors to situations in which 

the script is not available anymore.  

Often, it is assumed that by improving the quality of argumentation, students also 

benefit in terms of increased domain knowledge learning. High-quality 

argumentation is transactive in nature since it involves well-reasoned, critical and 

constructive responses to learning partners. Therefore, according to the transactivity 

principle of the script theory of guidance (Fischer et al. 2013), promoting 

argumentation practices is a promising approach to foster the acquisition of domain 

knowledge. Approaches operating under this premise have been discussed in section 

2.7.3 under the label arguing to learn. The kind of learning involved in such 

approaches is sometimes referred to as argumentative knowledge construction 

(Stegmann et al. 2007, 2012; Weinberger and Fischer 2006; Weinberger et al. 2010). 

 

 
Figure 9: Form-like interface to scaffold the creation of individual messages in a forum discussion. 

From Weinberger et al. (2010). 
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Figure 9 shows an approach used in a series of studies (Stegmann et al. 2007, 2012; 

Weinberger et al. 2010) to scaffold the creation of messages according to a 

simplified version of the Toulmin model of argumentation (Toulmin 1958; see 

section 1.4.1). An argument template is provided with fields to enter a claim, 

grounds to support that claim, and qualifications to specify exceptional conditions 

under which the claim cannot be maintained. Empirical studies indeed confirmed that 

this pre-structuring of messages improves the formal quality of argumentation (i.e., 

fewer bare claims and more supported and qualified claims). 

Maybe the most widespread approach to scripting argumentation is the use of 

sentence openers (or note starters). Sentence openers are predefined phrases students 

choose from to start new messages (Soller 2001). Typically, students complete these 

messages in their own words, but in some cases students also have to choose from a 

limited set of propositions to complete the message (Baker and Lund 1997). A 

number of systems enhance chat and threaded discussion interfaces with sentence 

openers, e.g., Group Leader Tutor (McManus and Aiken 1995), C-CHENE (Baker 

and Lund 1997), BetterBlether (Robertson et al. 1998), AcademicTalk (McAlister et 

al. 2004), InterLoc (Ravenscroft 2007), and the Future Learning Environment 

(FLE3; Oh and Jonassen 2007). Figure 10 shows the sentence opener interface of 

AcademicTalk (McAlister et al. 2004). Here, students select sentence openers from a 

set of menus, each containing a specific category of sentence openers (e.g., inform, 

question, or challenge). Other systems represent sentence openers as buttons in the 

user interface (e.g., Baker and Lund 1997). Weinberger et al. (2005; first study) 

prepared the input field of a discussion board with predefined sentence openers, 

which corresponded to specific roles. For instance, one of the sentence openers 

inserted for the constructive critic role was: My proposal for an adjustment of the 

analysis is … That is, sentence openers were used to prompt students to think about 

and include certain aspects in a message rather than as options for initiating new 

messages. In this respect, the approach is more alike to the approach depicted in 

Figure 9, p. 112, than to the other sentence opener approaches discussed before. 

Depending on the specific type of dialogue that researchers were hoping to foster, 

different sets of sentence openers have been used. InterLoc (Ravenscroft 2007), for 

instance, can support multiple types of dialogue through corresponding sentence 

openers, among others, critical discussions and creative reasoning dialogues. The 

dialogues are modeled as dialogue games and formalized in terms of participant 

roles, dialogue moves, corresponding sentence openers, and rules of interactions (i.e., 

how to best respond to specific dialogue move). 
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Since sentence openers can be mapped to specific communicative intentions, 

computers can achieve some level of dialogue understanding without complex 

natural language processing (Baker and Lund 1997). AcademicTalk (McAlister et al. 

2004) and InterLoc (Ravenscroft 2007) capitalize on this by recommending sentence 

openers appropriate to respond to previous contributions, based on the rules of 

interaction of the underlying dialogue game (see the sentence opener highlighted in 

bold text in Figure 10). The Group Leader Tutor (McManus and Aiken 1995) uses 

sentence openers to support and diagnose specific collaboration skills (e.g., 

leadership, creative conflict) in the context of collaborative problem solving, based 

on a model that associates sentence openers with these collaboration skills (Johnson 

and Johnson 1991). 

 

 
Figure 10: Sentence opener interface of the AcademicTalk system (McAlister et al. 2004). Adapted 

from McAlister (2004). 

While sentence openers have the potential to shape student interactions in favorable 

ways, there are limitations and challenges that also must be considered. On the one 

hand, sentence openers can reduce students' typing load since frequently used text 

fragments can be added with a click of a button (Baker and Lund 1997; Lazonder et 

al. 2003; Soller 2001). On the other hand, sentence openers must be carefully and 

systematically organized in the user interface, possibly grouped according to higher-

level categories, to help students quickly find appropriate sentence openers (Baker 

and Lund 1997; Soller 2001). The set of available sentence openers should be broad 

enough to satisfy students' communicative needs and avoid misuse (Soller 2001). 

Yet, too many options again reduce the salience of individual sentence openers and 
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increase search time. Students may avoid the difficulty of classifying the content of 

their messages by always picking an unspecific sentence opener such as I think  …  

(Lazonder et al. 2003) One way to reduce the use of overly general or inappropriate 

sentence openers is to allow free-text messages in addition to scripted ones (Baker 

and Lund 1997). Yet, this has the potential to undercut the goals of the script as well, 

when students consistently ignore the provided sentence openers and use the 

interface like a standard chat (Lazonder et al. 2003).  

While to date, relatively little research regarding the pedagogical effectiveness of 

sentence opener approaches has been published, the existing evidence clearly 

indicates that sentence openers can bias discussion behaviors to the better. For 

instance, it has been found that sentence openers improve task focus (Baker and 

Lund 1997; McAlister et al. 2004) and reflectiveness (Baker and Lund 1997) in 

discussions. With respect to argumentation, sentence openers have been shown to 

encourage critical engagement with the opinions of others (McAlister et al. 2004; 

Nussbaum et al. 2002) as well as the use of evidence and reasons to support claims 

(McAlister et al. 2004; Oh and Jonassen 2007), two important skills of 

argumentation many people do not make use of (Kuhn 1991; Weinberger and Fischer 

2006). Similar results are reported for other approaches based on form-like user 

interfaces (see Figure 9, p. 112; Stegmann et al. 2007, 2012; Weinberger et al. 2010). 

The results with respect to domain knowledge acquisition are less clear including 

positive results (Weinberger et al. 2005; Weinberger et al. 2010) but also some null 

results (Oh and Jonassen 2007; Stegmann et al. 2007, 2012). That is, process 

improvement did not always lead to domain knowledge gains. 

Often, it is not sufficient to provide students with basic communication and 

collaboration tools even if these tools are well designed (Dillenbourg et al. 1996). 

Based on this insight, researchers and practitioners have tried a number of 

approaches to make argumentation more successful, including the provision of 

relevant background information, tool familiarization, and procedural instructions. 

To make argumentation a more situated activity, some have contextualized the use of 

argumentation tools by designing wider curricula: For instance, SenseMaker (see 

Figure 8, p. 106) is part of the Web-based Inquiry Science Environment (WISE), for 

which a number of curriculum projects have been designed (Linn et al. 2003); 

Suthers et al. (1997) developed activity plans, problems with accompanying Web-

based materials, and assessment instruments that could be used, together with 

Belvedere (see Figure 7, p. 103), to implement scientific inquiry in the classroom. 
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Pedagogical models, or instructional plans, that particularly focus on structuring 

the collaboration process on a macroscopic level are sometimes referred to as macro 

scripts (Dillenbourg and Hong 2008). In terms of the script theory of guidance 

(Fischer et al. 2013), macro scripts provide scaffolds operating at the play, scene, and 

role level. Several macro-scripting approaches have been used to foster 

argumentation. For instance, students possibly collaborate and learn better when they 

first prepare themselves individually before joining a group discussion (Baker 2003; 

Schwarz and Glassner 2007), when they receive different background materials to 

make collaboration necessary for an optimal solution (e.g., Suthers et al. 2008), and 

when they have been assigned different roles to distribute tasks and emphasize the 

particular responsibilities of the individual (e.g., Nussbaum et al. 2007; Schellens et 

al. 2007; Weinberger et al. 2005). 

Some approaches acknowledge the dialectical character of argumentation, that is, 

the origin and motivation for argumentation should be a conflict of opinion that 

provides a reason for argumentation, otherwise argumentation might become aimless 

(Van Eemeren and Grootendorst 2004); learning happens then by resolving this 

socio-cognitive conflict (Doise and Mugny 1984). There are different strategies that 

can create or maximize such conflicts artificially, for instance, by grouping students 

with different a priori opinions (Baker 2003) or assigning roles that represent 

different, opposite opinions in a role play scenario, which can be further amplified by 

preparing students with different background materials according to their roles 

(Muller Mirza et al. 2007). The literature shows that both approaches—capitalizing 

on existing opinion differences and creating artificial ones—can be effective. For 

instance, several studies show that composing student groups in a way that 

maximizes opinion conflicts can have positive effects on the quality of student 

discussions (Clark et al. 2009; Jermann and Dillenbourg 2003). Weinberger et al. 

(2005; study 1) found that assigning the roles of a case analyst and a constructive 

critic to students was beneficial in terms of individual knowledge acquisition. 

Macro scripts may be realized through paper or oral instructions but can also be 

supported through technology. For instance, some computer-based tools support 

instructors in planning and defining macro scripts. Figure 11 shows the planning tool 

of the Metafora platform (Dragon et al. 2013). The overarching goal of the Metafora 

project is to support students in learning to learn together. Students, rather than 

instructors, use the tool to define, monitor, and reflect on their learning plans to 

tackle open-ended inquiry challenges in math and science. Argumentation is one of 

the central activities students engage in, e.g., when discussing conflicting 

interpretations of results obtained in experiments or conflicting approaches to tackle 
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a problem. The visual language provided with the planning tool allows the definition 

of activity stages, processes, resources, attitudes, and roles, represented as cards in a 

shared planning space. Learning tools and resources can be accessed directly from 

the created plan. 

 

 
Figure 11: Planning tool of the Metafora system (Dragon et al. 2013). From Mavrikis et al. (2012). 

An important research challenge is how to operationalize collaboration scripts 

(Tchounikine 2008), that is, to devise script languages to formally describe 

collaboration scripts, and to design script engines to interpret and execute such 

formal description in computer-based learning environments. Another important 

question is how to enhance collaboration scripts with elements of adaptivity (Harrer 

et al. 2008; Tsovaltzi et al. 2010). As discussed, current efforts in pedagogical 

research aim at building a theoretical foundation for scripting approaches (Fischer et 

al. 2013). Rather than focusing on the effects of individual scripts and script 

elements, such a theory aims at describing in more general terms how external scripts 

are transformed into internal scripts (i.e., cognitive structures in the minds of 

learners). An important consideration here is over-scripting (Dillenbourg 2002), that 

is, the external structure may hinder effective collaboration rather than help. For 

instance, this may happen when the external scripts conflicts with an already existing 

internal script or when the external script has already been internalized, in which 

case the external structuring causes unnecessary (extraneous) cognitive load. A 

possible solution is the above mentioned adaptation mechanisms, which allow 

tailoring the nature and amount of structuring to the actual needs of learners. For 
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instance, to avoid extraneous cognitive load, an adaptive script may gradually reduce 

the amount of structuring as learners internalize the script and acquire the 

competency to self-organize their learning (fading the scaffold; cf. Pea 2004). 

3.4 Automated Analysis of Argumentation 

Bell (1997) makes a distinction between argument modeling systems, which support 

the analysis and structural representation of arguments (e.g., using diagrams), and 

discussion-oriented systems, which provide a medium for argumentative exchange 

between discussants (e.g., a sentence opener interface). While discussion-oriented 

systems often aim at a broad set of communication and collaboration skills, such as 

balanced participation, topic focus, and leadership, argument modeling systems focus 

on the logic of arguments and domain-specific argument structures. For instance, 

scientific argumentation requires that hypotheses are interrelated with data in order 

to check the amount of empirical support and opposition. An argument modeling 

system can check whether a sufficient amount of such relations has been considered 

in an argument model (e.g., by counting the number of corresponding links in an 

argument diagram). Given the different analysis focuses and setups, the two system 

classes employ different analysis approaches.  

Analysis approaches in argument modeling systems can typically capitalize on 

well-structured, thus more easily interpretable argument representations created by 

users (e.g., a diagram with labeled nodes and links). The following approaches can 

be distinguished: 

 Syntactic analyses (e.g., Pinkwart et al. 2009; Suthers et al. 2001) check 

whether created argument representations comply with a set of given syntactic 

constraints (e.g., data supports hypotheses and not vice versa). Typically, such 

constraints are defined by domain experts and implemented using logic or rule-

based programs (e.g., Prolog or Jess rules). 

 Problem-specific analyses (e.g., Dragon et al. 2006; Pinkwart et al. 2009; 

Suthers et al. 2001) check whether the created argument representation 

adequately models a given problem case. This is typically achieved by 

comparing student solutions with expert solutions to the same problem. Since 

in many cases, the modeling of arguments is an ill-defined problem with many 

possible solutions, heuristics must be used to identify deviations from the 

expert model. 
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 Simulations of reasoning / decision-making processes (e.g., Gordon et al. 2007; 

Ranney and Schank 1998) determine whether a claim is believable / acceptable 

based on the created argument representation. For instance, in the Ranney and 

Schank (1998) approach, students define the structure of an argument in terms 

of elements (hypotheses, evidence), and relations (e.g., a piece of evidence 

supports a hypothesis, two hypotheses contradict one another). Based on 

additional student-provided parameters (e.g., strength of evidence, weights of 

relations), a connectionist model can compute believability scores for 

hypotheses. The Gordon et al. (2007) approach is based on a logical formalism 

with rules that operationalize specific proof standards. 

 Assessments of content quality (e.g., Pinkwart et al. 2009) determine the quality 

of the textual content of individual argument components. Since a fully 

automated approach is technically hard to realize, Pinkwart et al. (2009) 

utilized collaborative filtering techniques (Goldberg et al. 1992), that is, an 

overall assessment is computed by aggregating ratings of peer learners. 

 Classifications of the current modeling phase (e.g., Pinkwart et al. 2009; 

Suthers et al. 2001) determine whether the student is, for instance, in an 

orientation, modeling, or reflection phase (i.e., problem solving is conceived of 

as a multi-phase process). For instance, certain characteristics of the current 

diagram version may be heuristically interpreted to determine the current phase 

(e.g., a students is probably in an early phase when the diagram contains only 

very few elements). 

Analysis approaches in discussion-oriented systems have to cope with natural 

language text input to a greater extent, which still poses a stiff challenge for a 

computational analysis. Some approaches can benefit from more structured 

communication interfaces, e.g., sentence openers (Soller 2004) and graphical 

discussions (McLaren et al. 2010). The following approaches can be distinguished: 

 Analyses of process characteristics (e.g., Rosé et al. 2008) identify the dialogue 

function of discussion moves and speaker intentions, for instance, 

counterarguments and question-answer interactions in dialogues. 

 Analyses of discussion topics (e.g., Goodman et al. 2005; Kim et al. 2008) 

identify the topics covered in discussions. 

 Analyses of interaction problems (e.g., Goodman et al. 2005; Soller 2004) 

identify, for instance, unanswered questions and failed attempts to share 

knowledge. 
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 Assessments of collaboration quality of longer sequences of time (e.g., 

Goodman et al. 2005) aggregate and summarize students' behaviors over time, 

for instance, the level of group responsiveness and agreement. 

 Classifications of the current discussion phase (e.g., Israel and Aiken 2007) 

determine whether the group is, for instance, in a confrontation, opening, 

argumentation, or conclusion phase (i.e., a discussion is conceived of as a 

process that unfolds into multiple phases). 

Technically, a wide range of techniques is used to develop such analysis approaches, 

including machine learning (Mu et al. 2012; Rosé et al. 2008; Soller 2004), 

information retrieval (e.g., TF-IDF based similarity to topic vectors [Kim et al. 

2008]), and manually defined heuristic rules and models (Israel and Aiken 2007). 

3.5 Adaptive Support of Argumentation 

Automated argument / discussion analysis is not an end in itself; it typically serves 

the purpose of generating adaptive support for students (and other stakeholders, e.g., 

discussion moderators). A computational analysis allows the system to identify 

salient features of the learning process. Mechanisms of adaptation can then tailor 

guidance and support to the specific needs and problems of learners, e.g., textual 

messages that hint at possible errors in an argument diagram, or highlighting of 

specific sentence openers to recommend a particularly useful response type. Another 

example for a possible adaptation is fading the scaffold, that is, reducing the level of 

support based on the progress learner make. Rigorous empirical investigations of 

adaptive support for collaborative or argumentative learning are still rare—some of 

the few results available will be discussed in Part C. The presentation below focuses 

on a categorization of adaptive support approaches and corresponding examples. In 

particular, support approaches will be discussed along three dimensions: mode and 

content, timing, and selection strategies. 

3.5.1 Mode and content 

Adaptive argumentation learning systems take the following approaches to present 

feedback to students or other stakeholders: 

 Textual feedback presented to the student is certainly the most common form of 

support. Belvedere (Suthers et al. 2001) and Rashi (Dragon et al. 2006) use 

textual messages to foster inquiry skills and the learning of principles of 

scientific argumentation (e.g., hypotheses should explain observed data); 
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LARGO (Pinkwart et al. 2009) supports the analysis of a legal transcript by 

presenting short versions of the five most relevant feedback messages to the 

student. Feedback in these systems is based on pre-canned text messages, and 

formulated as suggestions / prompts for self-reflection rather than imperative / 

corrective formulations. The reason is to avoid confusion when a diagnosis is a 

“false alarm” and to foster the development of the students’ skills of self and 

peer critiquing, i.e., the feedback should encourage the student to think for him 

or herself about the diagram and possible weaknesses (Suthers et al. 2001). 

While the just discussed systems provide feedback to support the creation of 

argument diagrams, other systems aim at promoting productive group 

discussions (Goodman et al. 2005; Israel and Aiken 2007). The dialogue 

strategy may also target the elicitation of correct conceptual knowledge rather 

than a proper use of arguments (Kumar et al. 2007). Table 18 shows example 

feedback messages used in some prominent argumentation modeling and 

discussion-oriented system.  

 Highlighting of relevant portions of an argument diagram may help students 

easily identify parts of the solution they need to pay special attention to. 

Typically, highlighting is then provided together with some textual message 

that explains what to do or what is wrong with the highlighted portion of the 

diagram (Pinkwart et al. 2009; Suthers et al. 2001). Figure 12 shows a 

screenshot of Belvedere, in which relevant parts of the diagram are highlighted 

in yellow, accompanied by a textual message. Instead of highlighting parts of 

an argument diagram, systems may also highlight other elements in the user 

interface, for instance, specific sentence openers to indicate recommended reply 

types to previous messages (McAlister et al. 2004; see Figure 10, p. 114, menu 

items in bold text). 

 Meters are sometimes used to display group indicators (e.g., dialogue speed, 

relative amount of statements needing a reply) and student indicators (e.g., 

certainty level, activity level) to support cognitive / process awareness and 

meta-cognition (e.g., Dragon et al. 2006; Goodman et al. 2005). Meters might 

also be used to support teachers and moderators. Figure 13 shows a screenshot 

of the Moderator's Interface developed in the Argunaut project (McLaren et al. 

2010). The interface visualizes awareness information to support moderators of 

graphical educational debates. The panel on the left shows the list of currently 

ongoing debates and students who joined in to the debate (green – active 

debates / users; gray – inactive debates / users). The panel in the middle shows 
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Figure 12: A feedback message in the Belvedere system (Suthers et al. 2001). From Suthers et al. 

(2001). 

 

 

 
Figure 13: Awareness information displayed in Argunaut's Moderator's Interface (McLaren et al. 

2010). 
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Table 18 

Exemplary textual feedback messages in different argumentation systems 

System  Example message purpose Example message content 

Belvedere 

(scientific 

inquiry; 

Suthers et al. 

2001) 

Avoid confirmation bias “You’ve done a nice job of finding data that is 

consistent with this hypothesis. However, in 

science we must consider whether there is any 

evidence against our hypothesis as well as 

evidence for it. Otherwise we risk fooling 

ourselves into believing a false hypothesis. Is there 

any evidence against this hypothesis?”  

Discriminate between 

alternative hypotheses based 

on (especially negative) 

evidence 

“These hypotheses are supported by the same data. 

When this happens, scientists look for more data as 

a ‘tie breaker’ - especially data that is against one 

hypothesis. Can you produce some data that would 

‘rule out’ one of the hypotheses?” 

Rashi 

(scientific 

inquiry; 

Dragon et al. 

2006) 

Build bottom-up arguments 

(i.e., arguments from data to 

hypotheses) 

“Here’s a list of possible arguments. Try to pick 

the one you can support or refute with the data you 

have already: <list of arguments>” 

Repair wrong relationship 

type between propositions 

(student solution different 

from ideal expert model) 

“Are you satisfied with the relationship you have 

established between P1 and P2?” (student can 

select between “Yes, it is correct” and “No, help 

me to fix the relationship”) 

LARGO 

(analysis  

of legal 

argument 

transcripts; 

Pinkwart et al. 

2009) 

Repair modeling weakness: 

Hypothetical elements does 

not relate to Test element 

“In your solution, the hypotheticals H1 and H2 are 

distinguished from each other. Yet, hypothetical 

H2 is not related to any test or the current fact 

situation. Please explain why you did so, either in 

free text or by modifying the diagram.”  

Consider important transcript 

passage that have not been 

considered yet 

“Please look at this part of the transcript (scroll to 

line L) and explain its role within the argument.” 

Group Leader 

Tutor (group 

deliberation; 

Israel and 

Aiken 2007) 

Avoid off-topic contributions “Please try to stay on-topic while working with 

your group” 

Express only one idea per 

messages 

“You are trying to express several ideas in one 

sentence. Please re-enter your statements, one idea 

at a time.” 

EPSILON  / 

Pierce (group 

deliberation; 

Goodman et 

al. 2005) 

Respond to peer messages that 

have not yet been answered 

“Sarah said ‘…’. What do you think about that, 

Jeremy?” 

Elicit help from peers when 

something has not been 

understood 

“Excuse me, Milhouse, but I think you might be 

confused. You should ask for help on this topic.” 

Note: If messages refer to diagram elements those elements are typically highlighted in the diagram. 

Adapted from Scheuer et al. (2012). 
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 one selected debate in detail. The panels on the right visually summarize 

important aspect of the selected debate, in particular, group relations (i.e., who 

communicates with whom how frequently; top panel), user activity (e.g., 

amount of create, modify, and delete actions; middle panel), and shape use (i.e., 

proportion of the different node and link types in the diagram; bottom panel). 

Other functionalities include applying analysis rules that automatically identify 

important aspects in debates through shallow analysis techniques (e.g., 

occurrences of predefined keywords) and artificial intelligence techniques (e.g., 

classification of off-topic contributions). 

3.5.2 Feedback control and timing 

Adaptive argumentation learning systems take the following approaches regarding 

when to present feedback to students: 

 On-demand feedback is provided only upon a student’s request (e.g., Dragon et 

al. 2006; Pinkwart et al. 2009; Suthers et al. 2001). There are several reasons 

why such a strategy may be beneficial: First, the feedback is provided when the 

student really wants it, not interrupting naturally occurring activities (Dragon et 

al. 2006). Second, the student is not flooded with unnecessary messages since 

he or she decides the feedback frequency. Third, the construction of an 

argument diagram is a continuous process, with sometimes no clear end or 

conclusion, hence it makes sense to let the user decide when the process is 

ready to be checked (Pinkwart et al. 2006). Fourth, on-demand feedback allows 

the student to assume more control and the tutoring component less control, 

possibly leading to more student motivation and less student discouragement 

(Suthers et al. 2001). On the downside, some students take minimal or no 

advantage of on-demand feedback, even when they are stuck and obviously 

need assistance (Pinkwart et al. 2009; Suthers et al. 2001). 

 Immediate system feedback is provided right after a mistake or problem is 

identified, without a student explicitly requesting help (Goodman et al. 2005; 

Israel and Aiken 2007; Kumar et al. 2007). Especially when feedback is 

intended to scaffold and improve the current student activity, it may be best 

provided immediately. For instance, when a discussion is drifting off-topic, 

immediate feedback can be used to re-focus students again. Furthermore, as 

mentioned above, many students do not make use of on-demand feedback and 

thus miss learning opportunities. One reason might be that students are not 

aware of their suboptimal behavior / solution. On the downside, if the amount 
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of feedback becomes excessive, it could distract the student. Moreover, 

immediate feedback might be perceived as annoying or disruptive to the 

students' natural flow of interaction. 

 Summative system feedback is provided after a session has finished. Typically, 

the goal is to give students the opportunity to reflect on their activities (Israel 

and Aiken 2007). A positive aspect is that delayed feedback does not interfere 

with on-going students’ activities. However, such feedback is not able to 

scaffold the student activities in the context in which a problem occurs. 

Intelligent tutoring system research yielded mixed results with respect to 

whether immediate or delayed feedback approaches are more effective (Shute 

2008). 

3.5.3 Feedback selection and priority 

It is often required to control the frequency of feedback in order to avoid excessive 

amounts of messages. The system may have to decide which messages are most 

relevant in the current situation. Belvedere (Suthers et al. 2001) and LARGO 

(Pinkwart et al. 2009) provide the most important and short versions of the five most 

important feedback messages, respectively, when students request help. Criteria to be 

considered in the prioritization of messages are: current problem-solving phase, age 

of diagram structures the advice is referring to, type of advice, and requestor of 

advice. 

3.6 Summary 

A variety of new computer-based technologies to support the learning and practical 

use of argumentation emerged during the last few decades. Throughout the literature 

one can find at least three principal approaches that have been taken to build 

argumentation tools and which have partly been explored as part of this dissertation. 

Table 19, p. 128, summarizes and contrasts the differences between these three high-

level approaches. 

 Representational guidance approaches (e.g., Nussbaum et al. 2007; Pinkwart et 

al. 2009; Suthers and Hundhausen 2003) provide external, oftentimes 

modifiable representations of argumentation structures with the aim of 

stimulating and improving individual reasoning, collaboration, and ultimately 

learning. A theoretical underpinning of such approaches is provided with the 

theory of representational guidance (Suthers 2003). The probably most 
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widespread approach is to represent arguments in the form of node-and-link 

graphs.  

 Discussion scripting approaches provide structuring elements for 

argumentation learning processes with the aim of fostering rich and high-

quality interactions. A theoretical underpinning of such approaches is provided 

with the script theory of guidance (Fischer et al. 2013). Discussion scripts may 

operate directly at the level of individual discussion moves, an approach 

sometimes referred to as micro scripting (e.g., McAlister et al. 2004; Schwarz 

and Glassner 2007; Soller 2001; Stegmann et al. 2007). Typically, micro scripts 

are realized through special-purpose communication interfaces that encourage 

(or sometimes force) a desired mode of interaction. One of the main approaches 

is to let students choose between predefined sentence openers when composing 

new text messages. Discussion scripts may also provide more coarse-grained 

structures by defining phases, roles, and activities, an approach typically 

referred to as macro scripting (Dillenbourg and Hong 2008; Lund et al. 2007; 

Schellens et al. 2007). 

 Adaptive support approaches (e.g., Pinkwart et al. 2009; Suthers et al. 2001) 

aim at more dynamic forms of help by providing pedagogical feedback on 

student actions and solutions, hints and recommendations to encourage and 

guide future activities, or automated evaluation services to indicate whether an 

argument is in its current form acceptable or not. Here, techniques from the 

research fields of artificial intelligence and intelligent tutoring systems are 

widely used. Two different tasks are important to provide adaptive support: (a) 

analyzing student actions, interactions, and created artifacts to obtain some 

level of machine understanding of the student, the group, and the process, and 

(b) generating appropriate support based on pedagogically informed support 

strategies. Two main approaches to developing automated analysis mechanisms 

are expert knowledge modeling and machine learning. Rigorous empirical 

research with respect to adaptation strategies [part (b)] is almost absent; a broad 

and solid theoretical underpinning, or theory of adaptation for collaborative and 

argumentative learning, still lacking. One reason is certainly the complexity 

inherent to part (a). 

The research presented in this dissertation considers each of these three approaches 

sketched above. Chapter 4 investigates an approach that combines argument 

diagrams (i.e., a representational guidance approach), and sentence openers (i.e., a 

discussion scripting approach). The basic idea is that students first represent given 
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texts as diagrams and then discuss these diagrams, in a structured way, using a chat 

enhanced with sentence openers. The sentence openers correspond with a role-based 

macro-script, which assigns to each student two roles: proponent of the own position 

and a critic of the partner’s position. For instance, to support the role of a critic, 

sentence openers are chosen to encourage questions, rebuttals, and critical 

statements. A second macro-script component guides students through four phases 

with predefined activities, starting with the creation of the diagrams and proceeding 

with three phases of a critical discussion (essentially, clarifying positions, arguing, 

and concluding). Chapter 5 and Chapter 6 are concerned with approaches to the 

automated analysis and adaptive support of argumentation learning. A conceptual 

and technical framework for generating adaptive support has been developed 

(Chapter 5) and two principal classes of methods to developing automated analysis 

functionality researched (one described in Chapter 5 and the other in Chapter 6). 

After having described the specific research, the final Part C provides a more in-

depth discussion of the three approaches sketched here (i.e., representational 

guidance, collaboration scripting, and adaptive support) also considering the specific 

research results of this dissertation. 
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Table 19 

Three main approaches to support argumentation learning: representational guidance, discussion 

scripting, and adaptive support 

Approach Collaborative 

or individual 

learning?  

Pedagogical rationale Possible roles of 

technology 

Representational 

guidance 

Collaborative 

and individual 

learning 

Stimulating and improving 

individual reasoning and 

collaboration through explicit 

knowledge representations that 

reify concepts important in the 

specific argumentation domain  

Editable knowledge 

representations in the user 

interface (e.g., argument 

diagrams) 

Discussion 

scripting 

Collaborative 

learning 

Micro-scripting: Structuring 

communication at a 

microscopic level to encourage 

or force high-quality 

discussions 

Macro-scripting: Structuring 

the learning process at a 

macroscopic level (i.e., above 

the level of single 

communication moves or 

sequences) through 

pedagogically defined student 

roles, phases and activities 

Micro-scripting: Structured 

communication interface 

(e.g., users choose between 

message categories or 

sentence openers) 

Macro-scripting: System-

controlled access to tools 

and resources based on a 

formal and machine-

readable definition of the 

learning process  (phases, 

activities, and user roles) 

Adaptive support Collaborative 

and individual 

learning 

Adapting the learning 

environment to individual and 

dynamically evolving aspects, 

including characteristics of the 

individual learner, the learning 

group, as well as the current 

state and history of the 

problem-solving / 

collaboration process 

Automated analysis of the 

learner, the group, created 

artifacts, and the learning 

process 

Generation of adaptive 

support based on 

pedagogically informed 

strategies 
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Chapter 4  

Supporting Argumentation Learning 

through Multilevel Scaffolding 

This chapter discusses a novel user interface approach to supporting critical, 

elaborative discussions between students. The present approach brings together two 

separate strands of past research, namely, supporting argumentation learning through 

argument diagrams (background in section 3.2) and supporting argumentation 

learning through collaboration scripts (background in section 3.3). The motivation 

for combining both methods is to capitalize on the strengths of each method; in the 

best of all cases, the combination may even result in positive synergistic effects on 

performance and learning. 

This chapter discusses the rationale for the new approach and formulates a 

corresponding research question (section 4.1), describes the specific elements of the 

approach (section 4.2), and presents a study that provides partial confirmation for the 

underlying research hypotheses (section 4.3 and section 4.4). Section 4.5 summarizes 

and discusses the research presented in this chapter. 

4.1 Research Question 

With an improved understanding of individual scaffolding approaches, research is 

becoming increasingly interested in the question of how to combine different 

approaches in fruitful ways (Schellens and Fischer 2013; Tabak 2004). 

Argumentation diagramming and discussion scripts are two methods successfully 

used in the past to support argumentation learning. Argumentation diagramming has 

been shown to help students construct, reconstruct, and reflect on arguments. 

However, while diagrams can serve as valuable resources—or even guides—during 

conversations (Suthers and Hundhausen 2003), they do not provide explicit and 

immediate support for the discussion itself. Conversely, discussion scripts can 

provide direct support for the discussion, e.g., through sentence openers that 

encourage high quality discussion moves (e.g., Nussbaum et al. 2002). Yet, students 

often struggle to comply with the rules of a script, as evidenced by both the misuse 
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and nonuse of sentence openers (Lazonder et al. 2003; Soller 2001). A possible 

reason is that students lack a sufficient understanding of the relevant space of debate 

(Baker et al. 2007), that is, the viewpoints, values, standards of reasoning, facts, 

claims, and arguments relevant to a discussion domain. Unexperienced discussants 

may be overwhelmed with developing a proper understanding of the space of debate 

while, simultaneously, being tasked with engaging in high-quality forms of 

collaborative argumentation they are not familiar with either. More experienced 

discussants, on the other hand, may be able to develop a proper understanding of the 

space of debate on the fly through participation in collaborative argumentation. 

Essentially, each method provides unique support on one specific level: Argument 

diagrams support students in understanding the content of a space of debate by 

structuring a body of domain knowledge in terms of relevant claims, facts, and 

arguments. Thus, diagrams provide direct support at the content level and may 

therefore be considered primarily as content scaffolds. Discussion scripts, on the 

other hand, support students in engaging in desired modes of student-to-student 

interaction, that is, support on the social level. Therefore, discussion scripts may be 

considered as primarily social scaffolds (Weinberger et al. 2005). 

Both methods share an orientation towards epistemic activities, that is, activities 

aiming at the construction of knowledge and meaning. Argument diagrams may be 

considered as epistemic scaffolds since they explicitly represent “epistemological 

concepts” (Suthers 2003)—concepts that play an instrumental role in the 

construction of knowledge through argumentative reasoning, for instance, the 

concepts claim, fact, argument, for, and against. The reification of epistemological 

concepts may help students better understand these concepts themselves as well as 

the specific content classified and structured in the diagrams according to these 

concepts. Discussion scripts may be considered as epistemic scaffolds, too, since 

they aim at the co-construction of knowledge—a mode of knowledge construction 

that is rooted in social interaction. Discussion script elements like sentence openers 

also reify epistemological concepts, albeit in a somewhat less explicit form (e.g., a 

sentence opener According to a statistic / estimate may be associated with categories 

such as fact or evidence). 

Overall, each method—diagramming and scripting—provides unique support by 

focusing on one specific aspect: content and social interaction, respectively. Yet, 

both methods may also be conceived of as epistemic scaffolds since they explicitly 

support epistemic activities. This shared orientation may function as a powerful 

bridge between both types of scaffolding. For instance, Tabak (2004) identified 
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“cohesion and direct interaction between the elements of a scaffolding system” as 

potential conditions to achieving synergistic scaffolding effects.  

In summary, since the generation of high-quality discussion moves requires both, 

familiarity with the space of debate (i.e., content) and appropriate forms of inter-

personal exchange (i.e., social interaction), students may benefit from being 

supported on both levels. Hence, by combining both of these instructional 

techniques, it may be possible to capitalize on their advantages, while minimizing 

their disadvantages. This chapter will address the following research question: 

(RQ1) Multilevel Scaffolding: "Does a user interface that integrates 

argument diagramming with a discussion script promotes the quality of 

student-to-student interaction and content learning more than each 

individual method?" 

This strand of research also contributes to the question of how to best arrange the 

educational use of multiple representational formats (cf. Ainsworth 1999), in 

particular, representing arguments both in a diagram and in a text chat to support 

learning. Prior research in this direction investigated, for instance, the effects of 

creating diagrams individually before a debate versus collaboratively during a debate 

in a text chat (Munneke et al. 2003), the effects of using diagrams as discussion 

medium as opposed to using them to represent a preceding text chat discussion 

(Lund et al. 2007), and ways to integrate diagrammatic and typewritten discourse 

(Suthers et al. 2008). 

4.2 Approach 

To investigate research question RQ1, a LASAD configuration that combines an 

argument diagramming interface and a sentence opener interface was set up (more on 

LASAD in section 5.1) and embedded within a discussion script to promote critical, 

elaborative discussions based on the roles of a proponent and a constructive critic. 

The theoretical foundation of this peer critique approach is given by the socio-

cognitive conflict theory (Doise and Mugny 1984; see section 2.6.3), which 

postulates that the attempt to resolve social conflicts is a key impetus of cognitive 

development and learning. Being confronted with conflicting opinions triggers 

processes that are conducive to learning, such as explaining, justifying, refining, and 

integrating knowledge (Nussbaum 2008). Similar tactics aimed at inducing and 

emphasizing conflict to promote discussions and learning have been used in domains 
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such as physics (Baker 2003; Clark et al. 2009) and instructional design (Jermann 

and Dillenbourg 2003; Weinberger et al. 2005). 

Table 20 

Sentence openers used as part of the discussion script to support the roles of a proponent and a 

constructive critic 

Proponent Constructive Critic 

A central point is … I would phrase this differently: … 

An argument for this point is … An argument against this point is … 

For instance, … But … 

According to a statistic / estimate … Do you have any / more evidence … 

Do you have questions regarding … Could you explain to me … 

Note: Translated from German. Adapted from Scheuer et al. (2014). 

Table 20 shows the sentence openers used in the discussion interface, which were 

exactly defined to support the roles of a proponent and a constructive critic. The 

specific openers were chosen to cover main move categories commonly considered, 

and deemed important, in the literature (cf. Baker et al. 2007; Soller 2001; 

Weinberger and Fischer 2006). Other considerations included the nature of the 

specific texts to be discussed (e.g., many arguments in the texts employ statistics; 

more on the texts below) and the goal to keep the user interface easy to learn and use 

(therefore: focus on a small set of core moves, use of intuitive formulations). 

Proponent moves included: making claims (A central point is …), supporting one’s 

case with arguments and illustrative examples (An argument for this point is …, For 

instance ...), backing arguments with hard facts and statistics (According to a statistic 

/ estimate …), and asking for possible understanding problems to promote positive 

peer interaction (Do you have questions regarding …). Constructive critic moves 

included: proposing changes with respect to wording and content of peer statements 

(I would phrase this differently: …), making counterarguments (An argument against 

this point is …), raising doubts or objections (But …), and eliciting evidence and 

elaborations (Do you have any / more evidence …, Could you explain to me …). The 

openers were tested in several small-scale trial runs. The decision which specific 

openers to use was ultimately based on the judgments of and discussions between the 

involved researchers. It should be noted that some of the openers were considerably 

less verbose in their German original version, and thus, potentially handier to use, for 
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instance, the German versions of An argument for this point is … (Dafür spricht …) 

and An argument against this point is … (Dagegen spricht …). 

Furthermore, the script utilizes two opposing texts to promote conflict (as 

proposed in Andriessen and Schwarz 2009) and to provide necessary background 

information to enable fruitful discussions (cf. Suthers et al. 2008). Students discuss 

these texts in pairs with the ultimate goal to agree on a well-reasoned and joint 

conclusion. Each student represents the position of one of the two texts playing the 

proponent role while arguing against the position in the other text playing the 

constructive critic role. Each student has direct access only to "his" text while 

learning about the other text through his partner. Hence, to achieve the best possible 

joint conclusion, students depend on the contribution of their learning partners. This 

condition of positive resource interdependence has been found to be beneficial for 

collaborative learning since it promotes cooperation and reduces solitary activities 

and competition (Johnson and Johnson 2009; see also section 2.6.2). On face value, 

the two objectives of promoting conflict and promoting cooperation seem to be at 

odds. Yet, the two objectives can be conciliated in that conflict is the starting point 

and impetus, while the productive cooperative resolution of this conflict is the 

ultimate goal. The script is therefore designed to support epistemic rather than 

relational (or personal) forms of conflict resolution (Darnon et al. 2007), that is, an 

attitude of "being critical of ideas, not people" (Johnson and Johnson 1994) is 

promoted. 

In the role of the proponent, students present, explain, and justify positions and 

arguments of their own text. In the role of the constructive critic, they carefully 

attend to the argumentation of their partners. Equipped with facts and arguments 

learned from their text or derived from own background knowledge and reasoning, 

the critic tries to identify weaknesses, provides counterarguments and objections, and 

requests clarification where needed. No specific instructions are given regarding 

when to take which role, so students can freely decide, based on the current situation, 

whether proponent or constructive critic moves are appropriate. Typically, due to the 

oppositional positions presented in the texts, arguing against the partner’s text 

ultimately results in presenting and defending elements of one’s own text. For 

instance, to attack a claim of the partner, one may present arguments and facts of 

one’s own text. As described below, the discussion process is furthermore 

subdivided into three phases each providing more specific instructions. The role 

script is abandoned in the last phase, in which students advocate their personal 

opinions and try to arrive at a joint conclusion. 
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In summary, the discussion script: 

 aims at engaging student dyads in critical, elaborative discussions, 

 gives each student exclusive access to one of two opposing texts,  

 assigns to students the roles of a proponent of their text and constructive critic 

of their partner's text, 

 supports these roles through corresponding sentence openers in the user 

interface, and 

 defines the overall group goal of agreeing on a joint, well-reasoned conclusion. 

Before students engage in collaborative discussions, they individually analyze their 

text by representing it in an argument diagram. Past research has shown that 

successful collaboration usually involves a combination of individual and 

collaborative activities (e.g., Baker 2003; Jermann and Dillenbourg 2003; Rummel 

and Spada 2005). Individual preparation gives students time to make up their own 

minds about a controversial issue. It allows students to develop their own ideas 

before the ideas of others influence their thinking. Thus, more diverse knowledge 

resources can be activated and contributed to collaborative argumentation 

(Weinberger et al. 2007). With a clear picture on a given topic in mind, gained from 

careful individual deliberation, students are better prepared to engage in fruitful 

interaction with others. 

During the discussion, the argument diagram creates a shared focus on the 

argumentative structuring of the given texts (e.g., contained claims and arguments; 

cf. Suthers 2003). It thus contributes to an orientation towards epistemic rather than 

relational forms of conflict resolution. The argument ontology (i.e., the set of 

available node and link types) has been intentionally designed in a relatively simple 

and informal way, allowing students to quickly grasp how to use the tool. Some prior 

research has shown that complex representational schemes can lead to confusion on 

part of the students and are therefore often more detrimental than beneficial in 

guiding students' thinking and interactions (Suthers et al. 2001). The specific 

ontology includes four box types (main thesis, main argument, helping argument, 

and fact) and two link types (support and opposition). Important statements can be 

identified at a glance since judgments regarding the importance of statements are 

explicitly and visually represented (main arguments versus helping arguments). 

To provide guidance and structure to the overall learning process, argument 

diagramming and scripted discussion activities have been embedded into a 



4 Supporting Argumentation Learning through Multilevel Scaffolding 137 
 

 

collaboration macro script that arranges the different activities in a well-defined 

sequence of activity phases, shown in Table 21. In phase 1, students individually 

read and analyze the given texts and represent the respective lines of argumentation 

in a diagram. In phase 2, students discuss, based on the diagrams, aspects of the 

individual texts with their partner. In phase 3, students discuss relationships between 

the two texts. In phase 4, students agree on a joint position, which can be one of the 

positions in the texts or some compromise between the positions, and compose a 

joint, reasoned conclusion. The script allows some degrees of flexibility, i.e., 

students can use some time in a new phase to conclude the activities of the previous 

phase. Overall, the phases represent a progression from structured, narrowly focused 

activities to more free form, open activities. 

The approach has been termed FACT-2 (Fostering Argumentation through 

Conflicting Text, version 2). A previous version of the approach, FACT-1, which 

shares some of the main principles but is based on simpler technologies (e.g., no 

argument diagrams and sentence openers), is described in Scheuer et al. (2011). 

Figure 14 shows a screenshot of the overall LASAD setup used with FACT-2 

(Figure 14.A), and detailed views on the diagramming tool (Figure 14.B) and the 

sentence opener interface (Figure 14.C). The buttons in the sentence opener interface 

allow students to choose from a predefined proponent and constructive critic moves 

to start the next chat message. The highlighted openings in the actual chat show 

previously used sentence openers. 

Table 21 

Sequence of activities used in the FACT-2 script 

Phase Individual / 

Collaborative 

Description 

1. Analyzing  individual read assigned text  

model argument in a LASAD diagram   

2. Discussing  collaborative model argument in a LASAD diagram (cont’d) 

discuss individual texts 

3. Interrelating  collaborative discuss individual texts (cont’d) 

discuss relations (e.g., conflicts, agreements) between texts 

4. Concluding collaborative agree on a joint position 

write down a justified joint conclusion 

Note: Adapted from Scheuer et al. (2014). 
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Figure 14: LASAD user interface configuration used for study: complete screen (A), detailed view on 

diagramming area (B), and detailed view on sentence opener interface (C). Adapted from Scheuer et 

al. (2014). 
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4.3 Study 

Following from research question RQ1, the following hypothesis is formulated: 

Hypothesis: "A user interface that integrates argument diagramming 

with a discussion script (1) improves the quality of student-to-student 

interaction, and consequently, (2) leads to more student learning, 

compared to each method used individually." 

To investigate this hypothesis, a quasi-experimental study was conducted at Saarland 

University, Germany, on July 8
th

 – 9
th

, 2011, using a pretest-intervention-posttest 

design. The study compared two conditions: 

 The Script+ condition used the full version of the FACT-2 script, that is, the 

activity sequence in Table 21 including argument diagramming activities and 

the discussion script, as described above. 

 The Control condition used an ablated version of the FACT-2 script. More 

specifically, the activity sequence in Table 21 including argument-diagramming 

activities was used as well but no discussion script. That is, students were not 

instructed to take on the roles of a proponent and a constructive critic, and the 

user interface did not include sentence openers but a standard chat tool instead. 

 
Figure 15: Sequence of activities during study. Adapted from Scheuer et al. (2014). 

Note that, due to the limited number of available subjects, the study was set up in a 

way that only one aspect of the stated hypothesis could be statistically evaluated 

namely whether specifically the discussion scripting component makes a difference.  

Forty-four (44) students enrolled in the Humanities and Social Sciences at 

Saarland University participated, yielding 12 Script+ dyads and 10 Control dyads. 

Figure 15 depicts the overall study procedure. The study procedure started with a 

pretest and a training task to familiarize students with the LASAD diagramming 
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system. After a 10-minute break, students worked on the actual task as described in 

Table 21. Before the first collaborative phase (P II), the Script+ condition received 

short additional instructions regarding the peer-critique script (3 minutes). The actual 

task was followed by a 5-minute break before a posttest was administered.  

Table 22 

Coding scheme, its relation to the Rainbow framework (Baker et al. 2007), and example messages 

Code Subsumed Rainbow 

codes 

Example chat messages 

Low 1. Outside activity "Just as a side note, how do you like this method?" 

2. Social Relation "Hello" 

"How are you?" 

"Thank you." 

3. Interaction 

Management 

"are you still writing?" 

"I cannot find box #57" 

"box #106, right hand side" 

4. Task Management  

(topic-unspecific) 

"which main argument should we discuss first?" 

"let’s start summarizing our conclusion" 

"we still need a justification" 

Medium 4. Task Management  

(topic-specific) 
"let’s start with Lomborg’s main thesis" 

"regarding helping argument #44:" 

5. Opinion "what do you think [regarding our last point]" 

"could you give me an example for #15?" 

"whatever, I think Lomborg is right" 

"I agree" 

"then I misunderstood something" 

High 6. Argumentation "emission cuts are not only ethically ineffective but also 

factually unenforceable" 

"Lomborg’s main thesis is well supported by #34 and #22" 

"Brown is right that ethical factors are not considered, #73" 

7. Broaden & Deepen "Brown developed the main ethical idea well, Lomborg 

found a solution for it in #38" 

"well, actually, we should spend money on both issues 

[climate protection and support of poor countries]" 

Note: Examples translated from German. Adapted from Scheuer et al. (2014). 
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To stimulate lively and critical discussions, climate change ethics was used as the 

discussion topic. Climate change is a complex and controversial problem involving 

uncertainty and ethical ramifications. As with many other real-world problems, there 

are multiple well-reasoned perspectives and no formally correct solution. The 

specific thesis to be discussed was Developed countries have to cut their carbon 

emissions drastically. Two argumentative texts with conflicting conclusions were 

used. Based on the recommendation of an expert in climate ethics teaching, two 

writers, one representing the pro drastic emission cuts position (Brown), the other 

the con drastic emission cuts position (Lomborg), were chosen. Two three-page 

summaries were composed based on selected writings of Brown and Lomborg. The 

text arguing against drastic emission cuts was based on Lomborg (2007). Lomborg 

argues for only moderate emission reductions based on a cost-benefit analysis. The 

main argument is that poor countries could be helped more effectively if money is 

spent otherwise (e.g., fighting hunger and diseases). The text arguing for drastic 

emission cuts was mainly based on Brown (2002). Brown argues for substantial 

emission reductions based on ethical obligations first-world countries have towards 

developing countries. The Brown summary was furthermore enriched with a 

discussion of several shortcomings of cost-benefit arguments in the global warming 

discussion taken from other Brown writings in order to better align the two opposing 

texts.  

The following data was collected during the study (more details on the specific 

instruments and analysis approach can be found in Scheuer et al. [2014]): 

 Relevant student characteristics were elicited through multi-choice questions 

(MCQs) in the pretest to determine the homogeneity of conditions. These 

characteristics include: age, gender, course of studies, interest in the topic 

climate change, and attitude towards collaborative learning, computer-based 

chat, visually represented information, and argumentation. 

 Discussion quality was evaluated based on an analysis of chat protocols. The 

protocols were segmented into sentence-level units based on punctuation 

marks. Using the Rainbow framework as a guide (Baker et al. 2007), a coding 

handbook was developed, distinguishing three levels of elaboration (Low, 

Medium, and High). Table 22 shows the coding scheme. The coding manual 

was validated in terms of the inter-rater reliability between two independent 

coders using Cohen's kappa (1960) with a satisfactory result (κ = .76). Based on 

the coding handbook, each protocol segment was assigned one of the 
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elaboration codes. For each chat protocol, the number of codes per category 

was aggregated into an overall score ("code-and-count" approach).  

 Subjective learning gains were elicited through MCQs in the posttest, in 

particular, perceived learning of domain knowledge (climate ethics), 

argumentation theory (knowing about argumentation), and argumentation 

practice (doing argumentation). 

 Objective knowledge of the two texts was measured through MCQs, focusing on 

detailed factual knowledge. 

4.4 Results 

Before reporting the quantitative results, a concrete individual case is discussed to 

give the reader a sense of the learning task and how students tackled it. 

4.4.1 Case analysis 

Table 23 presents an excerpt from a Script+ chat. Text in italic typeface indicates the 

use of sentence openers. In the original user interface, sentence openers are 

highlighted green (for proponent contributions) and red (for critic contributions). 

Student S1 read the Brown text (pro drastic emission cuts) and student S2 the 

Lomborg text (anti drastic emission cuts). The selected case demonstrates one 

extreme—a discussion segment in which sentence openers have been consequently 

used. The excerpt illustrates how the peer-critique script can influence student 

discussions in both positive and negative ways.  

Despite the option of composing free-text messages, the dyad makes consistent 

use of the provided structuring, using a sentence opener in every message without 

exception. Also, they make appropriate use sentence openers, perhaps with the 

exception of turn #3, in which the sentence opener indicates the modification of a 

previous statement while the message body is a straight counterargument against a 

prior statement. In many cases there is evidence of good argumentation behavior. For 

instance, student 1 substantiates his claim in turn #1 through the data provided in 

turn #2. Student 2 justifies his claim in turn #3 through the reason given in turn #5, 

and illustrates this reason through the examples given in turn #7. Students also adopt 

an informed and academic style of arguing by citing numbers and statistics (turn #2 

and #9). Possibly, this behavior was triggered through the explicit representation of 

fact elements in the argument diagram. Overall, in line with the quantitative analysis 
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below, the discussion is very task-focused without any off-topic talk. Many 

arguments from the texts are cited and connected to one another. 

Table 23 

Excerpt from a Script+ condition chat 

# St. Contribution 

1 S1 A central point is that climate change can only be controlled through drastic emission 

cuts 

2 … An argument for this point is that according to an estimate of the IPCC global 

emissions must be cut by 60% to keep the amount of greenhouse gases in the 

atmosphere at a safe level 

3 S2 I’d phrase this differently: Investments into climate protection can cause similar 

harm. 

4 S1 Do you have (any / more) evidence 

5 S2 A central point is that we might forget about other important social projects 

6 S1 A central point is that industrial countries must accept the main responsibility to 

solve the climate change problem and to reduce their use of the atmosphere 

7 S2 For instance there won’t be any money for schools, hospitals, etc. 

8 S1 An argument for this point is that industrial countries are responsible for the main 

share of emissions 

9 … For instance the USA is responsible for 23 percent 

10 … A central point is that cost-benefit analyses are based on ethically dubious arguments 

11 S2 Do you have (any / more) evidence 

12 S1 An argument for this point is that they are biased (e.g., oil industry) 

13 … A central point is that the quantification of costs and benefits of climate protection 

measures is a general problem 

Note: Translated from German. Sentence openers set in italic type. Triple-dots in the second column 

indicate that the current speaker continues his or her turn. Adapted from Scheuer et al. (2014). 

On the downside, the students’ discussion has more breadth than depth, i.e., points 

are mentioned, briefly explained, but not critically elaborated. In turn #3, student 2 

objects to his partner’s conclusion. From then on, both students are solely focused on 

supporting their own position without referring to what their partner has said (except 

for some generic clarification questions, turn #4 and #11). A closer look at the 

selected sentence openers reveals that, apart from turn #3, only proponent moves are 

used, which is in accordance with the observation that critical references to the 

partner’s contributions are missing. Also, the arguments stem from copying from the 

argument analysis with little co-elaboration of new meanings and ideas. On the 

positive side, this clearly shows that the argument diagram has been used as a 

resource for structured discussions. Another observation is that, due to the 

consequent use of sentence openers, this discussion has a somewhat stilted feel, 

pointing at the possible danger that the script suppresses natural interactions 
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(Dillenbourg 2002; Fischer et al. 2013). A possible countermeasure may be to 

replace sentence openers with message labels (e.g., claim, pro-argument, data, 

objection, clarification request) and leave the decision which specific formulations 

to use to the student. This would prevent the repetitive nature of formulations and, at 

the same time, increase freedom and agency of students. In sum, while promoting a 

well-reasoned dialogue, the script was not very successful in engaging students in 

critical interactions with one another. The question whether this tendency is 

representative of the whole sample will be addressed when discussing RQ1 below. 

4.4.2 Homogeneity of conditions and general population characteristics 

The analysis of student characteristics (age, gender, course of studies, relevant 

interests and preferences) showed no significant differences between the Script+ and 

Control conditions. Therefore, possible influences of these characteristics on study 

results are assumed negligible. In general, participants were on average 22.7 years 

old (SD = 3.0) and in their 5
th

 semester (M = 4.9; SD = 3.2). The majority of 

participants were female (64%). 45% of the participants studied humanities (e.g., 

philosophy, languages, history, and cultural sciences). Another 45% were enrolled in 

pre-service teacher education programs. The remaining 10% studied psychology. 

4.4.3 Use of sentence openers 

On average, Script+ students used a sentence opener (SO) in chat messages in one 

out of five messages (20%), that is, SOs were used considerably more as in the 

Lazonder et al. (2003) study. The use of SOs differed notably between dyads (see 

Figure 16, left): five dyads made frequent use (> 25% SO messages), three dyads 

made occasional use (> 10% SO messages), and four dyads made rare use of SOs 

(< 10% SO messages). Note that 25% SO messages is already quite considerable 

since a substantial portion of each dialogue is about greeting, interaction and task 

management, off-topic talk, etc., rather than about subject matters (36% Low 

elaboration moves, see Table 24). Critic SOs (54%) were used slightly more often 

than proponent SOs (46%; see Figure 16, right). There are considerable differences 

in the use of specific SOs: Three SOs were frequently used (> 15% of all SO uses), 

two SOs were occasionally used (> 10% of all SO uses), and five SOs were rarely 

used (< 10% of all SO uses). An analysis of intra-class correlations (ICC) revealed 

that students within the same dyads significantly influenced each other in terms of 

the extent of SO uses (ICC = 0.83; F = 10.6; p < .001). That is, if one student 

decided to use (or not to use) SOs, it was very likely that the other student decided so 

as well. 
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Figure 16: Frequency of sentence opener use. Left chart: Percentage of dyads who used sentence 

openers frequently (i.e., sentence openers used in more than 25% of all messages), occasionally (SOs 

in between 10% and 25% of all messages), and rarely (SOs in less than 10% of all messages). Right 

chart: Proportion of Critic versus Proponent sentence opener uses. 

4.4.4 Discussion quality 

Table 24 shows the results of the chat analysis, both, in terms of the average absolute 

number of codes (see also Figure 17) and the average proportion of codes per chat 

(see also Figure 18). On the one hand, absolute numbers have the disadvantage that 

they do not allow controlling for chat length. That is, participants with a lower 

posting frequency have fewer opportunities for producing chat messages of each 

kind, resulting in lower scores on each dimension. On the other hand, proportional 

values must also be taken with a grain of salt. For instance, when analyzing the 

amount of High codes, proportional values penalize chats with many Low or Medium 

contributions, which are not per se indicative of bad collaborative behavior.  

The results show that Script+ chats were on average shorter, with less Low and 

Medium elaboration messages and more High elaboration messages, both in terms of 

absolute and relative numbers. Maybe the most interesting result is a significant 

difference in terms of High codes in favor of the Script+ condition, a result in 

accordance with the hypothesis. That is, students in the Script+ condition were 

proportionally more engaged in the intended behaviors. In terms of the absolute 

number of High codes, there is a non-significant trend (p = .07) with large effect size 

(d = 0.82) favoring the Script+ condition. The results of the Low category show the 
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opposite pattern. The proportion of Low codes in the control condition was 

significantly higher compared to the Script+ condition. A possible interpretation is 

that Script+ dyads were more task-focused and therefore used less Low messages, 

which do not or only marginally contribute to the discussion goal. This interpretation 

is in line with previous results indicating that discussion scripts help learners keep a 

focus on the learning task (Baker and Lund 1997; Oh and Jonassen 2007). Again, in 

terms of absolute numbers, the difference indicates a strong effect (d = -0.82), yet, 

does not reach a significant level (p = .06). 

Table 24 

Statistical summary of chat analysis (Script+ vs. Control) 

 Script+  Control  Differences 

M SD  M SD  abs t p d 

# Total 83.2 29.8  94.8 36.6  -11.6 0.82 .42 -0.35 
           

# Low 31.1 17.3  50.6 28.6  -19.5 1.96 .06 -0.82 

# Medium 13.0 4.6  18.6 11  -5.6 1.61 .12 -0.66 

# High 38.9 17.9  25.6 14.4  13.3 1.90 .07 0.82 
           

% Low 36 11  54 23  -18 2.36 .03 -0.98 

% Medium 16 5  18 10  -2 0.68 .50 -0.29 

% High 48 11  28 16  20 3.52 .00 1.48 

Note: Adapted from Scheuer et al. (2014). 

 
Figure 17: Average number of discussion segments coded as Low, Medium, and High elaboration 

move. Error bars indicate 95% confidence intervals. 
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Figure 18: Average percentage of discussion segments coded as Low, Medium, and High elaboration 

move. 

4.4.5 Subjective learning 

The research hypothesis is further supported by the post-test analysis, which 

indicates that Script+ students assessed their learning more positively than Control 

students (see Figure 19). In terms of argumentation practice, there was a significant 

difference favoring the Script+ condition (p = .01; d = 0.88). In terms of 

argumentation theory, there was a non-significant trend (p = .07; d = 0.58). In terms 

of domain knowledge, there was no difference (p = .26; d = 0.35). 

 

 
Figure 19: Average student self-assessments of their learning regarding argumentation practice, 

argumentation theory, and climate ethics. Error bars indicate 95% confidence intervals. 
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4.4.6 Objective learning  

On average, students answered slightly more than half of all MCQ questions 

correctly (M = 54; SD = 20). There was no difference in means in terms of Brown 

and Lomborg questions (M = 54, SD = 28 [Brown], SD = 32 [Lomborg]).  

Table 25 

Statistical summary of posttest MCQ analysis (Brown vs. Lomborg) 

 Brown items  Lomborg items  Differences 

M SD  M SD  abs t p d 

Brown students 72 20  38 24  34 5.98 .00 1.55 

Lomborg students 36 24  70 31  -34 5.50 .00 -1.23 

Note: Adapted from Scheuer et al. (2014). 

Table 25 shows a statistical comparison between the Brown and Lomborg item 

scores for students who were assigned the Brown text (first row) and students who 

were assigned the Lomborg text (second row). Not surprisingly, students performed 

significantly better on items that elicited information from "their" text (in both cases: 

p < .001). For MCQs that tested students on the text they modeled in LASAD, they 

scored, on average, 72 points (for Brown students; SD = 20) and 70 points (for 

Lomborg students; SD = 31). For the text they only knew from a partner’s diagram 

and discussion with that partner, students scored, on average, 38 points (Brown 

students on Lomborg questions; SD = 24) and 36 points (Lomborg students on 

Brown questions; SD = 24).  The cross-text scores are well above the chance rate of 

25 points but clearly lower than the score obtained for "their" own text. One reason 

why students did not do better might be that very specific and detailed information 

was elicited in the questions (e.g., whether an approach proposed by Lomborg would 

save more or about the same amount of human lives compared to measures in 

accordance with the Kyoto protocol). Students might remember such information 

from a careful reading of the text, but it is less likely they would have discussed that 

level of detail in their chat discussions. The hypothesis that the discussions 

contributed little to the achieved MCQ scores is further supported by the fact that the 

number of High elaboration moves did not correlate with the average MCQ score per 

dyad (r = .08; t = 0.36; p = .73). Research on knowledge maps (a variation of concept 

maps [Novak 1990]) suggests that the reading of diagrammatic representations has 

positive effects on the memory of main ideas rather than on the memory of 

subordinate ideas (O’Donnell et al. 2002). This could explain why exposure to a 

partner’s diagram did not have a major influence on the MCQ posttest scores for 
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students, since the MCQ test questions were focused more on subordinate facts than 

the main ideas of the texts. 

Table 26 and Figure 20 show a statistical comparison between Script+ and 

Control students with respect to MCQ scores. In total, and on both sub-scales, there 

were no differences between the Script+ and the Control condition. This is in 

accordance with the assumption above: Students’ knowledge of text details is mainly 

based on the modeling task rather than the discussion task, so the treatment, which 

only took effect during the discussions, apparently had marginal, if any, influence on 

this aspect of students’ knowledge gains. 

Table 26 

Statistical summary of posttest MCQ analysis (Script+ vs. Control) 

 Script+  Control  Differences 

M SD  M SD  Abs t p d 

Total 53 22  55 19  -2 0.28 .78 -0.09 

Brown items 53 30  55 27  -2 0.19 .85 -0.06 

Lomborg items 53 32  55 32  -2 0.19 .85 -0.06 

Note: Adapted from Scheuer et al. (2014). 

 
Figure 20: Average posttest score regarding overall knowledge about the texts, the Brown text, and 

the Lomborg text. Error bars indicate 95% confidence intervals. 
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4.5 Discussion and Conclusion 

Table 27 summarizes the results achieved with FACT-2. Overall, there is evidence in 

favor of the researched hypothesis both in the chat protocols and in the participants’ 

assessment of their learning: A discussion script, used in combination with an 

argument diagram, can promote the quality of student discussions. Benefits have 

been found on different dimensions: a significant effect with large effect size 

regarding the proportion of elaborative moves (i.e., arguments, counterarguments, 

and explanations; Table 27, second row), a significant effect regarding students’ 

assessment about whether they learned to argue better (Table 27, third row), and a 

trend regarding students’ assessment whether they learned about argumentation 

(Table 27, third row). A closer look at the Script+ condition (i.e., the full version of 

FACT-2) showed that students indeed utilized the sentence openers to their 

advantage: Two thirds of Script+ dyads made frequent or occasional use of sentence 

openers (Table 27, first row); others may have oriented themselves by reading the 

given sentence openers while using their own formulations. There was a substantially 

increased use of sentence openers compared to the Lazonder et al. (2003) study. A 

possible explanation is that the diagrams prompted and guided students in selecting 

appropriate sentence openers. Anecdotal evidence shows that students reused text 

fragments from their argument analysis and combined them with appropriate 

sentence openers to compose chat messages. Thus, combining argument diagrams 

and sentence openers might indeed have led to benefits that could not have been 

achieved with either method alone. 

No differences were found in terms of detailed knowledge of the given texts 

(Table 27, last row). As expected, students had much better knowledge of the text 

they read and then modeled themselves as compared to the text they learned about 

from their partner’s modeling and subsequent discussion between the partners. Yet, 

the approach of reading and modeling one text, while reviewing an opposing text 

through discussion with a partner, may have been beneficial. Rather than focusing on 

subtle details of one text in isolation, which was tested for in the posttest, the setup of 

this experiment appeared to prompt students to interrelate and critically evaluate 

positions and arguments, which may have led to a broader, multi-perspective 

understanding of the topic at hand and the emergence of new perspectives (Wegerif 

et al. 2010). Previous results show that engagement in dialectical argumentation 

indeed promotes deeper processing and conceptual change (Asterhan and Schwarz 

2009). The presented analysis does not allow for a definitive conclusion on this, 
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which is in general hard to assess due to a wide variety of sometimes surprising and 

unpredictable insights students gain from fruitful learning discussions. 

Table 27 

Summary of results 

Analyzed aspect Result 

Use of sentence 

openers 

two-thirds of all Script+ dyads made frequent or occasional use of sentence 

openers 

critic sentence openers were used slightly more often than "proponent" 

sentence openers (54% vs. 46%) 

Discussion quality significant effect in terms of the proportion of High elaboration  (in favor of 

the Script+ condition)  

(non-significant trend with large effect size when comparing absolute 

numbers of codes rather than proportions) 

Subjective learning significant effect in terms of perceived learning of argumentation practices (in 

favor of the Script+ condition)  

(non-significant) trend in terms of perceived learning of argumentation 

generally (in favor of the Script+ condition) 

no difference in terms of perceived learning about the topic of climate ethics 

Objective learning no difference in terms of detailed knowledge of the given texts 

Note: Adapted from Scheuer et al. (2014). 

There is good reason to believe that the FACT-2 script and the design principles it is 

based upon can also be successfully applied in domains other than climate ethics. As 

long as there are two (or more) opposing positions that can be represented in a 

diagram, FACT-2 can be employed to guide the analysis and discussion of these 

positions. For instance, one could imagine using FACT-2 to incite discussions about 

other socio-ethical dilemmas, which naturally have different reasonable perspectives, 

such as the use of genetically modified food (Munneke et al. 2003), experiments on 

animals (McLaren et al. 2010), or the right to die (Cavalier and Weber 2002). 

Similarly, FACT-2 can be applied for planning and design problems, which often 

require the reconciliation of opposing design concerns. For instance, engineering 

students could investigate the tradeoffs between technical efficiency, financial costs, 

and environmental friendliness in the design of technical systems (Chaudhuri et al. 

2009). Instructional science students could review and discuss the controversy on the 

usefulness of collaboration scripts as an instructional instrument as opposed to more 

free-style forms of collaboration (Dillenbourg 2002). Other possible application 
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areas are manifold, including politics, history, science, medical decision-making, and 

the Law. Depending on the specific domain and pedagogical objectives, certain 

adjustments may be needed, for instance, different categories in the diagram (e.g., 

hypothesis elements in the science domain), different sentence openers (e.g., the 

opener According to a statistic / estimate … may or may not be appropriate for legal 

debates), or different time allocations for the specific phases may be used. 

In conclusion, the presented results are in line with previous research 

underscoring that the quality of collaboration / argumentation practices can be 

improved through appropriate structural support (e.g., McAlister et al. 2004; 

Rummel and Spada 2005; Weinberger et al. 2010). In particular, peer-critique scripts 

(e.g., Andriessen et al. 2003; Clark et al. 2009; Johnson and Johnson 1994; 

Weinberger et al. 2005) may help students to engage in positive collaborative 

behaviors that would otherwise not (or only to a lesser extent) occur.  

The investigated setup differs from previous discussion scripting approaches in 

several respects. In many previous studies, topics within the psychology and 

education curriculum have been addressed (e.g., Schellens et al. 2007; Stegmann et 

al. 2007, 2012; Weinberger et al. 2005; Weinberger et al. 2010). In contrast, climate 

ethics was chosen for the study reported here. Moreover, the used setup is unique by 

employing a combination of argument diagrams and sentence openers. Overall, by 

covering a discussion domain and setup not researched much, or at all, the present 

study broadens the empirical basis of CSCL script theories. 

Closest to the presented work are probably previous designs that combine social 

scaffolding with some structuring at another level. The approach by Rewey et al. 

(1989, 1992) superficially seems to be similar to FACT-2, since it also combines a 

graph-based representation of knowledge with a collaboration script. Yet, a closer 

look reveals a number of notable differences. First, their knowledge maps 

represented domain knowledge (more specifically, medical procedures like taking 

blood pressure), rather than lines of argumentation. Second, their social script only 

consisted of instructions regarding the main activities to engage in and did not 

include sentence openers, which is the main component of the social script employed 

within FACT-2. Hence, social interaction was scripted on a much more coarse level, 

roughly comparable to the four phases of the macro-script of FACT-2. Third, the 

kind of activity promoted by the script was different in that reciprocal summarization 

activities were aimed at, not argumentation. Finally, Rewey et al. (1989, 1992) did 

not investigate the effect on student discussions or other kinds of interactions, but 

rather focused on the acquisition of the domain knowledge represented in the 
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knowledge maps or in alternative formats. Another in some respect similar approach 

is described in Weinberger et al. (2005; first study). The learning task was to 

collaboratively analyze given cases in terms of a specific theoretical framework in 

social psychology concerned with attributions—the subject matter to be learned. 

They used social scaffolding in form of sentence openers, which were part of a role 

script, similar to the sentence openers of FACT-2. As epistemic scaffolds they used 

prompting questions, which were displayed when composing the first message to a 

discussion thread. The prompting questions of the epistemic script aimed at 

providing guidance to the analysis process. For instance, one of the prompts was “Is 

the cause for the attribution stable or variable?” That is, while their social script is in 

some respect similar, their epistemic script is considerable different to the diagrams 

used in FACT-2. 

Four issues arise from the present study as possible avenues for future research. 

First, a main motivation of the used setup was to achieve synergistic scaffolding 

effects between argument diagrams and sentence openers. Anecdotal evidence hinted 

at possible interactions between diagrams and sentence opener use. Yet, because a 

one-factorial design was employed, which only included the peer critique script as an 

independent variable, it was not possible to statistically quantify the effect diagrams 

had—neither a possible main effect, nor a possible interaction effect with the peer 

critique script could be tested for. Therefore, future studies may employ 2×2 design 

to precisely determine what contribution the diagrams made in improving the 

learning process, and whether they interacted with the peer critique script. Such an 

interaction would give a strong and direct indication of the hypothesized synergistic 

effect.  

Second, the present study could not confirm that the peer-critique script had a 

positive impact on the acquisition of domain-specific knowledge and reasoning 

skills. A possible reason is that the posttest knowledge test, which focused on factual 

knowledge questions, was not appropriate to capture the kind of deep conceptual 

learning, which is assumed to be promoted by argumentative activities (Asterhan and 

Schwarz 2009). Future research might address this issue more explicitly, for 

instance, based on an analysis of an essay-writing task conducted before and after the 

intervention (e.g., “Make a statement as discerning and well-reasoned as possible 

concerning the question ‘...’ under inclusion of both, supporting and opposing 

arguments.”). Such an analysis could reveal whether students (1) have changed their 

perspective on the given topic based on evidence and reasoned argument, (2) can 

provide more substantial support for their perspective, (3) are more willing and 

capable to acknowledge arguments and facts favoring positions that oppose their 
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own, (4) are aware of different value systems underlying different perspectives, and 

(5) know about arguments that they did not know before or even ones that were not 

included in the background readings. A similar question could target a new topic in 

order to test whether a general attitudinal change towards other perspectives 

occurred, that is, whether students are more able to see the pros and cons of the 

different positions, independent of their own initial positions, and, based on this, 

conceive an informed opinion, which is potentially synthesized from elements of 

opposing standpoints. This would indicate a step towards an evaluative 

epistemological stance, an attitude that is positively linked to argumentative skill 

development (cf. Kuhn 1991, pp. 172–203).  

Third, another question that calls for further investigation is whether students 

maintain improved argumentation practices when no structural support is available 

(cf. Pea 2004). This could be tested in a post-intervention application phase (similar 

to the experimental setup used by Rummel and Spada [2005]), in which students 

engage in collaborative argumentation using a discussion environment without 

sentence openers. The resulting chat traces could be analyzed using the same coding 

approach that was used to code the intervention chats. In addition, it could be 

checked whether Script+ students make increased use of the sentence openers they 

had available to them during the intervention. 

Fourth, the provided structuring may not only guide students to engage in higher-

quality argumentation. In addition, the resultant structuring of user input can also 

potentially be exploited to facilitate an automated analysis of interactions. This issue 

will be discussed in greater detail in Chapter 9. 
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Chapter 5  

Designing a Configurable 

Argumentation Support Engine 

Similar to the approach discussed in the previous chapter, most prior approaches to 

supporting argumentation are static in nature (e.g., Stegmann et al. 2007; Suthers and 

Hundhausen 2003). That is, the provided structuring does not adapt to the situational 

requirements that emerge during the process. While static approaches can provide 

structure and guidance to help students engage in desired forms of argumentation, 

they are neither able to recognize and remediate when students struggle, nor can they 

adjust to the specific needs of individual students. It would be desirable to imbue 

systems with the ability to automatically analyze the behavior, progress, problems, 

and learning of students, and to tailor support accordingly. Such adaptive support 

may include feedback regarding the current problem solving, e.g., potential errors in 

the current version of a solution, or hints what can be done next if students reach an 

impasse. Another form of adaptation is to dynamically reduce the amount of 

structuring and support as students become more competent. For instance, Wecker 

and Fischer (2011) used a relatively simple approach of fading the scaffold to 

support online collaboration. In their approach, the amount of instructional support 

presented in the user interface was reduced based on the number of contributions 

students already made. Developing and researching computational adaptation 

mechanisms has been the province of the intelligent tutoring systems community for 

several decades now (VanLehn 2006; Woolf 2008). In recent times, research 

interests expanded from well-structured domains, such as algebra problem solving, to 

more ill-defined domains, including argumentation and collaborative learning 

(Magnisalis et al. 2011; Soller et al. 2005). 

Despite considerable advances made in research, the penetration of intelligent and 

adaptive educational technologies in real-world educational contexts is still relatively 

limited. One of the main barriers hindering a wider adoption is the high cost incurred 

in developing and customizing intelligent and adaptive technologies. The research 

field of intelligent tutoring authoring systems addresses this problem, aiming at tools 

that allow building adaptive, interactive, and intelligent educational software in a 
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cost-effective manner (Murray et al. 2003). The work described in this chapter 

contributes to this field of research. 

This chapter presents the CASE engine (Configurable Argumentation Support 

Engine), which allows the flexible definition of automated, adapted support across 

different argumentation domains and learning scenarios. The design of the CASE 

engine has been informed through an extensive analysis and systemization of past 

approaches, discussed in section 3.4 and section 3.5. The CASE engine formalizes 

crucial dimensions of the design space of adaptive argumentation learning support, 

generalizing across approaches successfully used in past systems. 

Section 5.1 introduces the LASAD argumentation framework, which the CASE 

engine is part of. Section 5.2 motivates and formulates the specific research 

questions addressed with the CASE engine. The following sections focus on the 

technical design of the CASE engine, in particular, the overall concept (section 5.3), 

the software architecture (section 5.4), knowledge representations and inference 

mechanisms within the CASE engine (section 5.5), and the specific configuration 

options available (section 5.6). Section 5.7 discusses four showcase applications, 

which demonstrate the breadth of applicability of the CASE approach—the main 

design objective pursued. Section 5.8 presents a graphical user interface to configure 

and manage adaptive support functionalities—the most recent development in 

context of the CASE engine—and reports on an empirical study on the usability of 

the tool. Finally, section 5.9 discusses and summarizes the results of this chapter. 

5.1 Background: The LASAD Project 

The LASAD project was motivated by the observation that argumentation learning 

systems can typically not be easily adapted to new requirements, since they tend to 

be tied to specific argumentation domains, visualizations, or collaboration modes. 

Yet, on a conceptual level, these systems share many features in terms of the user 

interface and underlying functionality. In principle, it should be possible to develop a 

more general framework that can be used as a foundation for building specific 

argumentation systems in a more simplified fashion, based on well-defined 

configuration and extension mechanisms. Within the LASAD project, this was 

precisely the objective and what has been developed. 

At its heart, the LASAD system (Loll et al. 2012) supports individuals or groups 

of learners to create argument diagrams in (shared) workspaces. As a general, cross-

domain framework, LASAD enables users (i.e., developers, teachers, and 
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researchers) to configure workspaces according to their specific requirements. 

Communication and task-related tools can be added to the workspace, such as a text 

chat, a sentence opener interface, and a text display that allows linking of text 

passages to elements of the argument diagram. Boxes and links can be configured 

differently per application; labels, visual appearance, and subcomponents (e.g., text 

fields, radio buttons and dropdown menus) can be altered. LASAD is purely web-

based; a modern web-browser and web access is all that is required to use the system. 

The generality of LASAD has been shown through its use in a wide variety of 

differently targeted argumentation-learning applications and empirical studies. 

Besides original uses of LASAD, for instance, within the LASAD project (Loll and 

Pinkwart 2013; Scheuer et al. 2014), the Metafora project (Dragon et al. 2013), and 

the ArgumentPeer project (Lynch and Ashley 2012), a number of well-known 

existing argumentation systems have been emulated with the LASAD framework, 

including Belvedere (Suthers et al. 2001; see Figure 7, p. 103 [original] and Figure 

21 [emulated]) and LARGO (Pinkwart et al. 2009; see Figure 22 [emulated]). 

 

 
Figure 21: LASAD user interface, configured to emulate the LARGO system (Pinkwart et al. 2009). 

Figure 21 shows a LASAD configuration to emulate the LARGO system for legal 

argumentation (Pinkwart et al. 2009), illustrating some basic features of LASAD. 

The panel on the left contains a legal transcript (a protocol of the argumentative 

exchange between lawyers before the US Supreme Court) that students analyze by 

creating an argument diagram in the panel on the right. Students can create different 

types of boxes (e.g., Hypothetical, Test) and links (e.g., leads to, modified to). 
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Different sub-elements are available for the different box and link types. For 

instance, Hypothetical boxes consist of an unlabeled text field and an Outcome text 

field, while Test boxes allow defining logical rules by filling in text fields for a 

condition (IF text field) and a conclusion (THEN text field). Through a menu 

accessible in the title bar of the box, students can extend the condition by 

dynamically adding new condition clauses (AND text fields). Boxes and links are 

configured to display awareness information, such as the creator and the creation 

time (see the line at bottom of boxes). 

Figure 22 shows a LASAD configuration that emulates the Belvedere system for 

scientific reasoning (Suthers et al. 2001), illustrating the adaptive feedback within 

the LASAD system. The feedback message in the window on top of the LASAD 

workspace prompts students to search for additional data to evaluate a specific 

hypothesis. The message refers to the diagram elements highlighted in red, namely, a 

hypothesis (box number 1) with only one supporting piece of data (box number 3). 

Students can request such hints from LASAD by selecting a Get hint entry from the 

feedback menu (see the menu bar in Figure 21, p. 157). The configuration and 

generation of feedback messages is done within the CASE engine, which has been 

developed as part of this dissertation and will be the focus of this chapter. 

 

 
Figure 22: Detail of LASAD user interface, configured to emulate the Belvedere system (Suthers et 

al. 2001). The screenshot shows a feedback message (window on top) that refers to some portion of 

the diagram (highlighted red). 
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5.1.1 Configuration mechanisms 

Figure 23 shows how the configuration settings of LASAD are organized. There are 

four configuration folders, each containing XML configuration files for one specific 

aspect: ontologies, templates, users, and maps.  

 Users are defined in terms of user name, password, and role. The role 

determines the privileges that users have in the system, for instance, access to a 

debug panel for programmers (Developer role) or to a graphical configuration 

authoring frontend (Teacher and Developer roles).  

 Maps are defined in terms of a descriptive name (shown in the user interface 

when users choose which map to join), optional user restrictions (can be used to 

grant only specific users access to a map), and a template ID, which refers to a 

template description (see below). 

 Templates define working sets in LASAD in terms of basic configuration 

settings (e.g., how many users can join a session at a time), available tools (e.g., 

chat tool or chat tool enhanced with sentence openers), information displays 

(e.g., a panel displaying which users have joined a session), and an ontology 

ID, which refers to an ontology description (see below).  

 Ontologies define the elements of the graphical language available in the 

diagramming space, in particular, the specific box and link types.  

 Elements of an ontology (i.e., available box and link types) are defined in 

terms of a heading displayed in the user interface, some general properties (e.g., 

color, size, or whether the box is resizable), and a list of sub-elements the 

element is composed of (e.g., a text field, radio buttons, a dropdown menu, or 

an awareness information element). Each sub-element type has its own specific 

configuration options not detailed here. 

Table 28 shows the XML snippet used to define the properties of the box type Test 

within the LARGO ontology (simplified for presentation purposes). Instances of this 

Test box are displayed in Figure 21, p. 157 (boxes number 1 and 2). The XML 

snippet defines that the box uses a heading Test (heading="Test"), and has four 

child elements: three text fields (elementtype="text") with the labels IF, AND, and 

THEN, and an awareness sub-element (elementtype="awareness"). While there is 

exactly one if, then, and awareness sub-element, the box includes between 0 and 5 

and sub-elements (minquantity="0" maxquantity="5"). 
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Figure 23: LASAD configuration entities and their relations. 

Table 28 

Excerpt from the LARGO ontology file showing the XML specification of box type Test (simplified) 

<element elementid="test" elementtype="box"> 

   <elementoptions heading="Test" /> 

   <uisettings width="190" height="160" resizable="true" 

      border="standard" background-color="#55C3FF"  

      font-color="#000000" /> 

   <childelements> 

       <element elementid="if" elementtype="text"  

           quantity="1" minquantity="1" maxquantity="1"> 

          <elementoptions label="IF" text="" /> 

       </element> 

       <element elementid="and" elementtype="text"  

           quantity="0" minquantity="0" maxquantity="5"> 

          <elementoptions label="AND" text="" /> 

       </element> 

       <element elementid="then" elementtype="text"  

           quantity="1" minquantity="1" maxquantity="1"> 

          <elementoptions label="THEN" text="" /> 

       </element> 

       <element elementid="awareness" elementtype="awareness" 

          quantity="1" minquantity="1" maxquantity="1"> 

       </element> 

    </childelements> 

</element> 
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To support particularly users without a technical background, who might not be 

familiar with editing XML configuration files, a graphical administration and 

authoring system has been implemented and integrated with LASAD, allowing users 

to easily define and administer configuration settings. The LASAD Authoring Tool 

provides screens to configure ontologies, templates, maps, and user accounts. Figure 

24 shows the graphical user interface to define ontologies. The shown configuration 

is by and large equivalent to the XML snippet in Table 28, that is, it defines a Test 

box composed of three text fields labeled IF, AND, and THEN, and an awareness 

element. 

 

 
Figure 24: Detail of the LASAD Authoring Tool user interface (Loll 2012). The shown screen allows 

users to define the elements of a LASAD ontology. Adapted from Loll (2012). 

5.1.2 Software architecture 

Figure 25 shows the overall LASAD system architecture with its principal 

components, in particular:  

 The LASAD-Server uses a database to maintain the history and state of all 

LASAD sessions and distributes messages between connected LASAD clients 

in order to synchronize their states. For instance, when a user creates a new box 
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in the diagram, the graphical user interfaces of all other connected users must 

be updated as well. Two sorts of LASAD clients exist: End-User-Clients and 

the CASE-Engine.  

 The End-User-Clients provide the graphical user interface used by students 

and teachers. They are JavaScript-based applications, built with the Google 

Web Toolkit (GWT)
11

 and executed in a standard web browser. The End-User-

Clients also include the LASAD authoring tools, which are only accessible to 

privileged users. The authoring tools include the "standard" LASAD Authoring 

Tool discussed in section 5.1 and the LASAD Feedback Authoring Tool, which 

will be discussed later. Since the LASAD-Server cannot directly speak to the 

JavaScript-based client side, an intermediary GWT-Servlet is interposed to 

mediate the communication between LASAD-Server and End-User-Clients.  

 The CASE-Engine provides automated analysis and adaptive support 

functionality to LASAD. From the perspective of the LASAD-Server, the CASE-

Engine is just another client that uses the same infrastructure and interfaces as 

End-User-Clients. Yet, since the CASE-Engine is implemented in Java rather 

than JavaScript, it can directly talk to the LASAD-Server through a Java RMI 

connection without the indirection of the GWT-Servlet.  

 

 

Figure 25: Architecture of the LASAD system. From Scheuer and McLaren (2013). 

                                                        
11  The Google Web Toolkit (https://developers.google.com/web-toolkit) is a Java-based software 

development environment, which provides a Java-to-JavaScript compiler to translate Java code into 

JavaScript code to be executed in web browsers. 
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To illustrate how LASAD operates, let's have a look at a processing iteration, starting 

with a user creating a box in the LASAD user interface. The End-User-Client then 

sends a create box message through the GWT-Servlet to the LASAD-Server. The 

LASAD-Server updates its database and forwards the message to all connected 

clients. End-User-Clients display the new box on the screen. The CASE-Engine 

updates its internal data representation, searches for meaningful patterns, and 

possibly generates feedback messages. These feedback messages are sent through 

LASAD-Server and GWT-Servlet to one or multiple End-User-Clients, depending 

on the specific CASE configuration, to be displayed on the screen. While the CASE-

Engine provides the textual content of feedback messages and control flags, e.g., to 

specify whether diagram elements should be visually highlighted or not, the actual 

realization of the feedback presentation is done by the End-User-Clients. 

5.2 Research Questions 

As discussed above, past argumentation systems have been designed with specific 

domains and learning scenarios in mind, resulting in systems that cannot be easily 

ported to different application settings. Particularly critical is the development of 

adaptive support functionality, which involves considerable investments in time and 

effort. To adaptively support student learning, systems must accomplish at least two 

tasks: (1) identify relevant patterns in student actions, interactions, and artifacts (the 

analysis task), and (2) decide, based on the specific pattern and other relevant 

parameters, if, when, and how to respond (the support task). While the specific 

patterns of interest and support strategies certainly differ between domains and 

application settings, there are also many crosscutting aspects—aspects differently 

targeted applications have in common. For instance, LASAD-based applications 

typically use node-and-link graphs to represent arguments, no matter which specific 

domain is tackled. Furthermore, there are typical approaches to present feedback 

(e.g., highlighting of graphical patterns, canned textual messages) and typical 

feedback provision strategies (e.g., feedback-on-request, immediate feedback), which 

are used across systems. So, wouldn't it be possible to develop a general mechanism, 

or authoring tool, to flexibly define graph-based patterns for arbitrary domains? And 

wouldn't it be possible to develop a configuration mechanism that allows choosing 

between the most common and effective approaches to providing feedback? Of 

course, it is not possible to anticipate all specific requirements future argumentation-

learning systems might have. But it should be possible to design an adaptive support 

system in a way that allows hooking up new modules to extend the existing 
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functionality as needed. In summary, a well-designed software framework may be 

used to implement adaptive support across domains and learning settings. This 

chapter will address two research questions: 

(RQ2) Adaptive Support Architecture: "How can a software 

architecture be developed to optimally provide adaptive support across 

different argumentation domains and learning scenarios?" 

(RQ3) Pattern Definition Mechanism: "How can a pattern search 

component be developed to optimally support the definition of patterns 

across different argumentation domains and learning scenarios?" 

To the best of my knowledge, this is the first approach that has been developed to 

address the authoring of adaptive support for argument diagramming activities in a 

domain-independent manner. Previous approaches always focused on particular 

argumentation domains. For instance, the Rashi authoring tool (Murray et al. 2004) 

supports authors in creating expert solutions for science problems, restricted to a 

model based on hypotheses, data, and their evidential relations. The pattern detection 

mechanism in the LARGO system was formalized in terms of a graph grammar 

(Pinkwart et al. 2008)—a formalism also applicable to domains other than legal 

argumentation, which was the focus of LARGO. Yet, the graph grammar approach 

was never operationalized into a generalized software framework that flexibly 

supports the definition and execution of declarative analysis rules. 

5.3 Concept 

Figure 26 illustrates the basic functioning and important concepts of the CASE 

engine. The figure depicts a LASAD session (each LASAD session essentially 

corresponds with one LASAD diagram) with one connected feedback agent. 

Generally, the CASE engine can maintain an arbitrary number of feedback agents for 

each LASAD session. Each time students create, modify, or delete elements of the 

diagram, such as nodes and links, a notification message is sent to the CASE engine 

to update its internal session model. Feedback agents then search the updated session 

model for relevant patterns. For instance, the agent in Figure 26 (middle) identified 

an instance of a pattern consisting of a Hypothesis element that is supported by 

exactly one Data element. Typically, feedback agents search for many different 

patterns and detect many instances at once. For instance, the LARGO agent can 
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identify more than 40 different patterns and sometimes detects more than 100 pattern 

instances in one diagram (Pinkwart et al. 2006). Each pattern instance essentially 

represents an opportunity to provide hints and feedback, and is associated with a 

corresponding canned feedback message. In addition to a textual message, the 

feedback in Figure 26 (bottom) highlights relevant structures in the diagram. 

Whether and which feedback message to deliver depends on the agent's specific 

feedback strategy. The feedback strategy defines, among other things, whether 

feedback is provided proactively or on request (i.e., the student requests feedback 

from the LASAD feedback menu), and which feedback to choose if multiple options 

are available (remember, many pattern instances might be detected at once). 

The CASE engine comprises an extensive configuration subsystem, which allows 

defining and administering feedback agents. Feedback agents are defined on three 

levels: patterns, feedback messages, and feedback strategies. They can be assigned to 

specific sessions and ontologies. When assigned to a session, a fresh agent instance 

will be instantiated for this particular session. When assigned to an ontology, a fresh 

agent instance will be instantiated for each session that uses this specific ontology. 
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Figure 26: Conceptual view on the functioning of CASE feedback agents. 
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5.4 Software Architecture 

Figure 27 shows the principal components of the CASE engine: 

 The DataService encapsulates all communication with the LASAD server, 

translating back and forth between the message format used by the LASAD 

server and the one used internally in the CASE engine. 

 The SessionManager keeps a record of all sessions that exist on the LASAD-

Server and distributes incoming messages to the relevant Session abstraction. 

 Sessions comprise all information that is associated with a specific LASAD 

diagram, including a SessionConfiguration (invariable aspects such as the 

used ontology), a SessionModel (fluent aspects such as the current state of the 

diagram), and SessionAgents (processing units employed to analyze and 

support session activities). 

 The SessionModel serves as a central data repository for SessionAgents to 

access and exchange session-related information. It maintains and continuously 

updates a representation of the current session state based on the 

JessRuleEngine. It provides an interface to register patterns, which will be 

searched for during operation, and sends out notification messages when 

patterns have been detected. The pattern search is executed by two standard 

components: The JessRuleEngine identifies structures in the diagram (e.g., a 

circular argument). The AggregationService evaluates conditions on the 

number of elements (e.g., more than five nodes of a given type in the diagram). 

Other approaches to identify patterns can be added through new SessionAgent 

implementations as needed. 

 SessionAgents are processing units that perform specific tasks related to the 

analysis of sessions and the generation of feedback. At service startup, 

SessionAgents register their patterns of interest at the SessionModel. During 

operation, SessionAgents receive notification about detected and invalidated 

pattern instances from the SessionModel. The SessionAgent interface 

provides an extension point in the CASE engine to add new analysis and 

feedback capabilities. Already existing agents include a configurable 

FeedbackAgent (see above) and the DeepLoopAgent (integrates AI-based 

classifiers to analyze e-discussions). 
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Figure 27: CASE components and interactions. From Scheuer and McLaren (2013). 

5.5 Knowledge Representation and Inference 

A centerpiece in the CASE architecture is the SessionModel, which employs the 

JessRuleEngine to model the current state of LASAD diagrams and to identify 

salient structures through declarative production rules. This section first gives a short 

overview of production rule systems (section 5.5.1) before describing the particular 

approach used in the CASE engine (section 5.5.2). 

5.5.1 Background: Production rule systems 

Preliminary note: The terms pattern, network, and node used in this subsection are 

technical terms to explain the general functioning of production rule systems. They 

should not be confused with patterns, nodes, and networks with respect to argument 

diagrams. 

Production rule systems essentially consist of a fact base, a rule base, and a rule 

interpreter. The fact base (or working memory) represents the current world state in 

terms of discrete knowledge chunks (or facts). The rule base represents inferential 

knowledge in terms of production rules. A production rule consists of a left-hand 
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side (LHS), which specifies a pattern (i.e., a certain constellation in the fact base), 

and a right-hand side (RHS), which specifies a sequence of actions (e.g., adding, 

modifying, or deleting facts). The rule interpreter matches production rules against 

the current world state in the fact base. When the pattern on the LHS is identified in 

the fact base, the rule is fired, that is, the actions on the RHS will be executed. 

Typically, an analysis run takes multiple cycles. Production rules modify the fact 

base, and the changed fact base triggers the execution of production rules again. This 

data-driven mode of reasoning—repeatedly applying if-then rules (or modus ponens) 

until no condition can be matched anymore—is referred to a forward chaining. 

Forward chaining is particularly useful to keep a world model (i.e., the fact base) up 

to date in a continuously evolving world (i.e., facts are continuously added, removed, 

or modified). It can be contrasted with backward chaining, a goal-driven mode of 

reasoning. For instance, the logic programming language Prolog (Merritt 1989) 

makes use of backward chaining to answer queries by checking whether the 

conditions of a given conclusion (the query) are satisfied in the current world model. 

The Jess rule engine (Java Expert System Shell; Friedman-Hill 2003) is a 

production rule engine that easily integrates with Java applications since it is itself 

implemented in Java. Jess utilizes the Rete algorithm (Forgy 1982) to efficiently 

implement forward chaining. The Rete algorithm compiles a hierarchical network 

from a given rule base. The nodes within the network represent the (logical) tests that 

are used as part of the pattern definition on the LHS of rules. Child nodes in the 

network represent tests that are contingent on the results of their parent nodes. For 

instance, two parent nodes might match an individual fact each, while their common 

child node matches the combination of both individual facts (i.e., fact1 AND fact2). 

Nodes at the bottom of the network represent all tests necessary to identify a 

complete pattern (i.e., the LHS) of a rule. When a new fact is added to the fact base, 

a corresponding token traverses the network, starting at the top. At each node, the 

fact is analyzed in terms of the tests attached to that node. Only if the tests are 

satisfied, the token will be passed through to the child nodes. If a token reaches a 

node at the bottom of the network, a complete pattern has been matched and the rule 

is activated (i.e., the condition for executing the actions on the rule’s RHS are 

fulfilled). The trick in the Rete network is that nodes keep a record of facts—and 

groups of facts—that have successfully passed the test. That is, the network 

remembers previous test results and only re-computes tests that are necessary due to 

a change of the world model (i.e., new facts added, existing facts removed). 

Consequently, the Rete network is particularly efficient if a potentially large world 

model evolves slowly over time since only a small number of tests must be re-
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evaluated. Moreover, the Rete network is optimized in that multiple rules share the 

same nodes in the network if they depend on the same set of tests, that is, the same 

test is only executed once to evaluate multiple rules. The Jess rule engine has been 

shown to be a highly efficient implementation of the Rete algorithm. Used on an 

outdated machine (800 MHz Pentium III, Sun HotSpot JVM) Jess could fire up to 

80,000 rules, match up to 600,000 patterns, and add up to 100,000 facts to the Jess 

knowledge base within one second. 

Production rule systems provide a well-suited technical framework to implement 

expert systems. The basic idea is to emulate human (expert) knowledge and 

reasoning in a software system. For instance, the probably most widespread class of 

intelligent tutoring systems, Cognitive Tutors (Anderson et al. 1995), utilizes a 

production rule system to model how experts (and students) solve problems in LISP 

programming, geometry, and algebra. Similarly, the CASE engine uses the Jess rule 

engine to emulate human coaches who observe students creating argument diagrams, 

and identifies pedagogically relevant constellations in these diagrams, e.g., modeling 

errors to hint at. Typically, each rule identifies exactly one such constellation. In rare 

cases, multiple rules are required to specify particularly complex constellations. An 

example Jess rule will be discussed in section 5.6. 

5.5.2 Pattern search mechanism of the CASE engine 

Figure 28 depicts the specific knowledge representation scheme used in the fact base 

(blue shaded areas), conversion procedures to translate between Java and Jess-based 

object representations (orange arrows), and inference procedures to derive new 

knowledge facts from existing ones (blue arrows). 

An incoming user action will be processed within the JessRuleEngine as 

follows. The SessionModel translates the user action into an action fact and adds it 

to the fact base. Jess action facts represent crucial information about user actions, 

including the action type (e.g., create, modify, or delete), the actor, a timestamp, and 

a description of the manipulated object in terms of its ID and semantic type (e.g., 

hypothesis, data, support, or oppose). Depending on whether the manipulated object 

is a box, a link, or a sub-element (e.g., text field or a dropdown menu), three action 

subtypes with additional information are defined: node-actions, link-actions, 

and subelement-actions. 

Jess action facts are analyzed through a set of Jess rules to reconstruct the 

current diagram state, represented in terms of object facts (i.e., node, link, sub-
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element facts). For instance, if the action fact indicates that a node has been 

deleted, the corresponding node fact will be removed from the fact base. Besides 

state information, object facts hold relevant process information, such as the object 

creator, modifiers, and corresponding timestamp information. 

Jess object facts are analyzed through application-specific Jess rules to identify 

patterns of interest in the current diagram state. Since the chosen knowledge 

representation format of object facts combines structural and process information, 

structural patterns (e.g., a node n1 of type t1 is connected to a node n2 of type t2 

through a link l of type t3) can be further constrained through process-related 

properties (e.g., node n1 and n2 were created by different users; node n1 was created 

before node n2). 

 

 
Figure 28: CASE knowledge representation and inference processes. From Scheuer and McLaren 

(2013). 

 If a pattern has been identified, a corresponding analysis-result fact is added to 

the fact base. Patterns might refer to specific sets of objects (object-binary-

result), specific users (user-binary-result), or the session as a whole (session-

binary-result).  
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Finally, through a two-way conversion procedure between Jess and Java object 

representations, external data processors, such as the AggregationService and 

SessionAgents, read out and write AnalysisResult objects from and to the fact 

base. For instance, the DeepLoopAgent could apply machine-learned classifiers and 

write corresponding AnalysisResult objects to the fact base. The 

AggregationService could read out all AnalysisResult objects of a specific type 

to count how often a certain pattern occurs in a diagram. That is, the analysis 

approach in the CASE engine is not restricted to rule-based pattern matching 

operations, but can easily integrate other analysis formalisms (e.g., machine-learned 

classifiers). 

The described knowledge representation scheme can be, and has already been, 

extended with additional data structures to allow more complex analyses, for 

instance, by representing tallies, paths, cycles, and predefined expert solutions to 

specific problem instances (e.g., an expert analysis of a legal transcript that can be 

compared with the student diagram). 

5.6 Configuration Mechanisms 

Configuration settings of the CASE engine are maintained in the file system. There 

are XML configuration files for the following aspects: 

 Connection parameters specify network address and login credentials to 

connect to the LASAD server. 

 Agent configurations specify the behavior of agents. 

 Deployment settings specify which agent type to deploy to which sessions and 

ontologies. 

At system startup, the CASE engine reads these files, connects to the LASAD server, 

initializes agent instances, and deploys these agent instances to LASAD sessions. 

The CASE engine also provides an interface to change configuration settings online, 

including, adding, modifying, and deleting agent configurations, assigning agents to 

sessions, and starting and stopping support for sessions. A graphical feedback 

configuration and administration front-end makes use of this interface (discussed 

below). 

Figure 29 shows how the configuration settings of feedback agents are organized. 

As mentioned above, feedback agents are just one specific agent type. The CASE 
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engine can be extended with other agent types, which may expose different 

behaviors and support different configuration parameters, via a generic Agent 

programming interface. The behavior of a feedback agent is defined on three levels.  

 Patterns specify pedagogically relevant situations in argument diagrams. 

Depending on the specific type of pattern—currently four different types of 

patterns are supported (see below)—different pattern definition formats are 

employed. Additional pattern restrictions can be defined, for instance, to limit 

the scope to recent or old patterns (min-age and max-age parameters), or 

patterns the user under consideration has contributed to (user-restriction 

parameter). 

 Messages specify how to respond to specific patterns (triggering-pattern 

parameter). A message consists of a short message (short-text parameter), 

which provides feedback in a concise way, a long message (long-text 

parameter), which provides a more detailed explanation, only displayed when 

the user clicks on the short message, and a highlighting flag (highlighting 

parameter), which indicates whether objects that are part of the pattern should 

be visually highlighted in the user interface. The CASE engine implements an 

approach to classify the current diagram according to usage phases (e.g., an 

early, main, and late phase). Priority values can be assigned to messages to 

indicate their relative importance in different usage phases.  

 Strategies specify if, when, and which messages to deliver. Messages might 

be provided on request only, or periodically, in predefined intervals 

(provision-time parameter). Messages might be delivered to an entire group 

or to an individual student (recipient parameter). Certain messages might be 

excluded (filters parameter). For instance, if the same pattern matches 

multiple structures in a diagram, only one feedback message may be 

considered, rather than messages for each pattern instance (One-Instance-

Per-Type filter). Or messages already delivered in the past might be excluded, 

based on the history of previous messages (No-Instance-Twice filter). The list 

of messages can be sorted according to a list of predefined criteria (sort-

criteria parameter), for instance phase-based priorities (phase-priority 

criterion) or pattern age (prefer-recent-structures criterion). Finally, a 

cut-off point for the sorted list of messages must be defined (number-of-

messages parameter). Through its modular design, the CASE engine can be 

easily enhanced with further filter and prioritization criteria. 
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Figure 29: CASE configuration entities and their relations (simplified). 

Table 29 

XML snipped defining a Jess-Pattern in CASE (simplified) 

<pattern id="..." type="jess-rule"> 
   <jess> 

    (defrule R123 
       (logical 

         (node  
            (id ?data_id1) 
            (type "data")) 
         (node  
            (id ?hypo_id) 
            (type "hypothesis")) 
         (link  
            (id ?link_id) 
            (type "for") 
            (source_id ?data_id1) 
            (target_id ?hypo_id)) 
         (not (node  
                (id ?data_id2&~?data_id1) 
                (type "data")) 
              (link  
                (source_id ?data_id2) 
                (target_id ?hypo_id)))) 
        => 

       (assert  
         (object-binary-result 
            (agent-id "belvedere-coach") 

            (type "one-shot-hypo") 
            (object-ids ?hypo_id ?data_id ?link_id)))) 

   </jess> 

</pattern> 

Table 29 shows a pattern definition based on Jess, which corresponds to the pattern 

in Figure 22, p. 158 (i.e., a hypothesis with exactly one supporting data element). 

The pattern element specifies a pattern ID (id) and indicates that the pattern is 

defined in the Jess rule language (type="jess-rule"). In general, the type attribute 
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determines how the body of the pattern element is interpreted. Accordingly, the 

other pattern types listed below specify different values for the type attribute. The 

approach allows CASE to be easily extended to support further pattern types.  

The actual pattern definition is enclosed in another XML element (jess). The pattern 

(LHS of the rule) comprises a node of type data that supports a second node of type 

hypothesis, indicated by a link of type for. A not condition specifies that no other 

data node exists that supports the hypothesis node. When the pattern on the LHS is 

matched, the RHS will be executed. In particular, an object-binary-result fact 

that holds important information regarding the detected pattern (agent-id, pattern-id, 

matched objects) is added to the fact base. 

Overall, the CASE engine supports four different pattern types:  

 Jess-Patterns (see example in Table 29) are specified using the Jess rule 

language. This option offers the full expressive power of the Jess production 

rule system but also requires basic knowledge about Jess syntax and knowledge 

representation and understanding of the functioning of rule-based systems more 

generally. By modifying existing prototypical patterns it should also be possible 

for non-experts to define patterns of limited complexity without much effort. 

 Count-Patterns are defined in XML and specify conditions on the number of 

boxes, links, or other patterns in a session (e.g., users with less than five 

contributions). 

 External-Patterns are analyzed by external components that connect with 

CASE over a well-defined API. The CASE engine acts as a mere consumer of 

these patterns, indifferent to how these patterns are defined or computed, so 

there are also no restrictions in this respect (e.g., machine-learned models can 

be used). 

 XML-Patterns are based on a XML language developed to reduce the 

complexity inherent in the original Jess rules. The goal is to achieve a favorable 

tradeoff between expressiveness and ease of use. XML-Patterns are 

automatically translated into operational Jess code. 

5.7 Showcase Applications  

The generality and breadth of applicability of the CASE engine, the main objective 

and driving force in the design of the system, has been demonstrated with four CASE 
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applications (LARGO, Science-Intro, Metafora, and Argunaut). These applications 

support argumentation-learning activities in different domains (the Law, science, 

group deliberation, and ethical discussion), focus on different argumentation facets 

(analysis of arguments, planning of arguments, and argumentative discourse), and 

use different features of the CASE engine (structural patterns, process-based 

patterns, and integration of external analysis modules). 

In LARGO, students analyze and structurally represent legal argumentation 

processes using argument diagrams. In Science-Intro, students use diagrams as an 

outlining tool to prepare the writing of research reports in the domain of psychology. 

Both applications are primarily designed for single-user activities. Adaptive support 

is provided on request and based on structural patterns defined by domain experts. In 

Metafora, students jointly work in an inquiry environment for mathematics and 

science. They use LASAD diagrams to discuss, in a structured way, findings 

obtained in microworld simulations, with the aim of arriving at a joint, agreed 

solution. In contrast to LARGO and Science-Intro, in which the CASE engine is used 

to detect domain-specific structures in diagrams, the focus is on interaction patterns 

to support students in "learning to learn together." Argunaut also focuses on 

interaction patterns but uses a different analytical approach. Rather than relying on 

expert-defined patterns, machine-learned classifiers are utilized to categorize 

qualitative aspects of e-discussions about controversial ethical dilemmas. 

For each application, a number of patterns in argument diagrams have been 

identified, which can be used as opportunities to support students (or teachers) with 

feedback. Figure 30 shows an example pattern for each application. Table 30, p. 178, 

summarizes the specific configuration settings of the four previously discussed 

CASE applications. 

 The LARGO pattern (upper left) consists of a circular structure of nodes, in 

which each node leads to or is modified to the next node. The semantics of a 

leads-to or modified-to transition often involve a temporal progression, which is 

counteracted by the pattern's circularity. However, if interpreted as logical 

consequence, a circular structure can make sense. This pattern can be used to 

prompt students to rethink their diagram model (temporal or logical relation?) 

to identify possible mistakes.  

 The Science-Intro pattern (lower right) consists of a Hypothesis node with 

fewer supporting than opposing inbound links. In general, it is good if students 

also consider evidence that contradicts a hypothesis rather than only searching 

for confirmatory evidence, a well-documented psychological phenomenon 
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(confirmation bias). However, sometimes students also neglect supporting 

evidence, or might neither pay attention to supporting nor to opposing 

evidence. This pattern identifies such situations in order to prompt students to 

search for positive evidence. Confirmation bias, i.e., neglecting contradictory 

evidence, could be detected analogously. 

 The Metafora pattern (lower left) consists of a Help-Request node, not older 

than 10 minutes, unattended for more than 3 minutes (i.e., 3 minutes passed by 

and no other box has been connected to the help request). It indicates that a 

student requested help regarding a problem encountered in a microworld. Yet, 

the help request went unnoticed, or is deliberately ignored, since three minutes 

have passed without a response. Because the help request is still recent—it has 

been published within the last ten minutes—it might be worthwhile to draw the 

attention of other students to this request in order to elicit help. 

 The Argunaut pattern (upper right) consists of off-topic contributions, 

identified through a machine-learned classifier. A few off-topic contributions 

may be acceptable but if an e-discussion goes astray, with a considerable 

number of contributions not addressing the topic at hand, a human or artificial 

moderator might want to intervene. 

 

       
Figure 30: Example patterns used in four different CASE applications: LARGO, Science-Intro, 

Metafora, and Argunaut. 
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Table 30 

Configuration settings of different CASE applications: LARGO, Science-Intro, Metafora, Argunaut 

Application Patterns Actions Strategy 

LARGO 

(analysis of 

legal 

argument. 

transcripts) 

 Count-Patterns focusing on 

task progress (e.g., no relations 

in diagram but at least 3 nodes; 

no "Test" nodes in diagram) 

 Jess-Patterns focusing on 

domain structures (e.g., a 

"Hypothetical" node isolated 

from "Test" and "Fact" nodes; 

a "Test" node without text in 

the "Condition" text field) 

 Jess-Patterns focusing on 

problem-specific aspects 

represented in an expert model 

(e.g., important text passages 

not yet included in diagram) 

 Text message 

focusing on 

problem-

solving 

support 

 Highlighting 

of diagram 

elements 

 On-Request 

 Delivered to the 

requestor 

 Prioritize based on 

current problem-

solving phase 

 Select top-5 hints 

 Filter out all but one 

message per type 

    

Science-Intro 

(preparation 

for writing 

argumentative 

texts in 

science 

classes)  

 Jess-Patterns focusing on 

domain structures (e.g., 

unconnected node clusters 

["argumentation  islands"]) 

 Text message 

focusing on 

problem-

solving 

support 

 Highlighting 

of diagram 

elements 

 On-Request 

 Delivered to the 

requestor 

 Prioritize based on 

current problem-

solving phase 

 Select top-5 hints 

 Filter out all but one 

message per type 
    

Metafora 

(group 

deliberation 

about science 

and math 

problems) 

 Jess-Patterns focusing on 

process characteristics (e.g., 

unattended help requests) 

 Text message 

focusing on 

collaboration 

support 

 Highlighting 

of diagram 

elements 

unattended help requests: 

 Automated 

 Delivered to the 

entire group 

 No prioritization 

 Select one message 

 Filter out instance 

already pointed to 
    

Argunaut 

(argument. 

about ethical 

controversies) 

 External-Patterns (analyzed by 

machine-learned classifiers) 

focusing on process 

characteristics (e.g., off-topic 

contributions; question-answer 

pairs) 

 Highlighting 

and labeling 

of diagram 

elements to 

support the 

awareness of 

moderators 

regarding 

salient events 

 On-Request 

(classifiers can be 

invoked separately) 

 Delivered to the 

requestor 

 No prioritization 

 Select all messages 

 No filters 

Note: Adapted from Scheuer and McLaren (2013). 
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5.8 Graphical Adaptive Support Authoring Frontend 

The definition of feedback agents using XML and the Jess rule language involves 

considerable time and efforts. Users have to know about the general syntax of XML, 

and perhaps even more critically, they must be able to program Jess rules, a skill that 

most people have to learn first. On top of that, they must know about the specifics of 

the CASE configuration mechanism, that is, the data model used in Jess, and the 

configuration options and their arrangement in the XML files, which essentially 

constitute a language on their own. The whole process is error-prone and requires 

extensive testing to avoid syntactical errors and mistyped reference IDs, and to 

ensure that the feedback agent finally behaves as expected. To ease some of these 

problems, a graphical authoring frontend was designed, which allows configuring 

and administering feedback agents using the graphical user interface of LASAD. The 

Feedback Authoring Tool enables users to manipulate important aspects of CASE 

during runtime without the need to restart the CASE engine, for instance, defining 

new feedback agents, assigning feedback agents to sessions, and starting (or 

stopping) agent support for sessions. It frees users from learning Jess and XML, 

prevents syntactical errors, and provides guidance through the process of configuring 

feedback agents. However, the kind of patterns that can be specified is somewhat 

restricted. For instance, iterative patterns (e.g., node chains and cycles of arbitrary 

length) cannot be defined with the Feedback Authoring Tool. Technically, this would 

not be a problem. However, such more advanced constructs would increase the 

complexity of the tool considerably. 

Figure 31 shows the main administration screen of the Feedback Authoring Tool. 

The panel in the upper left shows all feedback agent types that are available. Agents 

highlighted red are still under construction and cannot be used yet. Different actions 

are available, for instance, to create a new agent, to duplicate an existing agent (e.g., 

to create different but similar agent versions), to change the configuration of an 

agent, or to delete agents. The panels in the middle and lower left allow assigning 

agents to sessions and ontologies (i.e., the agent will be assigned to all sessions with 

this ontology). The panel on the right shows all sessions available on the LASAD-

Server. Users can start support for sessions or stop support for sessions (i.e., all 

agents assigned to the session will be deployed or un-deployed). 
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Figure 31: Feedback agent administration screen of the CASE Feedback Authoring Tool. 

Figure 32 shows the pattern definition screen of the Feedback Authoring Tool 

(similar screens are available to define messages and strategies). The upper panel 

shows the list of patterns that have already been defined for this feedback agent. The 

lower panel shows the definition of one selected pattern. User can use the standard 

graphical language of LASAD to define the structure of patterns. This specific 

instance shows the graphical equivalent to the pattern defined in Jess in Table 29, p. 

174 (i.e., a hypothesis with exactly one supporting data element). Blue colored 

elements indicate existing structures. Here, a data box (Box-2) points to a hypothesis 

box (Box-1) via a link of type for (Directed-Link-3). Red colored elements 

indicate structures that must not exist. In this example, the pattern indicates that there 

is no second data box (No-Box-9) that points to the hypothesis box through an 

arbitrary link (No-Directed-Link-7). The patterns are transferred, together with the 

complete feedback agent configuration, to the CASE backend, and there translated 

into XML (for persistent storage) and Jess code (to search for the specified patterns 

in maps). 
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Figure 32: Pattern definition screen of the CASE Feedback Authoring Tool. 

Figure 33 shows the constraint definition dialogue of the Feedback Authoring Tool. 

This dialogue supports the definition of constraints for boxes and links that are part 

of a pattern, for instance, to specify that a box be of type data. Users can bring up 

this dialogue by clicking on an edit icon in the title bar of boxes and links (only 

displayed when hovering the mouse pointer over a box, therefore not shown in 

Figure 32). The example in Figure 33 specifies that Box-2 must be of type data or 

hypothesis, the strength rating element within Box-2 has been set to a value between 

3 and 5, and Box-2 has been created after Box-1, which is another component of the 

pattern (first-ts > Box-1.first-ts). 
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Figure 33: Constraint definition dialogue of the CASE Feedback Authoring Tool. 

The tool was evaluated in a small-scale study (n = 16) with students and academic 

staff of different disciplinary background (education, psychology, computer science) 

at Saarland University (Valero Haro 2013). The study focused on the questions how 

easy it is (1) to use the tool (usability) and (2) to learn how to use the tool 

(learnability). The hypotheses investigated were (1) that the Authoring Tool is 

generally easy to use, (2) that the definition of patterns is, due to its inherent 

technical complexity, the most complicated aspect of the tool, and (3) that technical 

expertise is an important factor with respect to the ease with which the tool can be 

used and learned.   

We elicited relevant information regarding the participants’ background in a pre-

questionnaire (familiarity with LASAD and other argumentation diagramming 

software, knowledge in programming and artificial intelligence, experience in 

teaching argumentation). Then, participants watched a tutorial video about LASAD 

and the Authoring Tool (25 minutes). Then, participants worked on 12 differently 

targeted tasks with the Authoring Tool (more about that below). The performance 

scores of the participants served as the basis for assessing ease of use and learnability 

in an objective way. Finally, participants filled in a post-questionnaire, in which they 

subjectively assessed the usability and learnability of different aspects of the 

Authoring Tool. In addition, the post-questionnaire gave participants the opportunity 

to provide further feedback and comments in an open format.  
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Two groups of tasks were employed: 

 agent administration tasks (i.e., creating agents, assigning agents to sessions 

and ontologies, starting and stopping support for sessions), and  

 agent configuration tasks (i.e., defining patterns of varying complexity, 

defining feedback messages, defining feedback strategies).  

In the data analysis, each task group was evaluated on three different dimensions: 

"objective task performance" (number of errors), "subjective usability" (5-point 

Likert scale), and "subjective learnability" (5-point Likert scale). 

Figure 34 shows the participants’ average usability and learnability ratings. The 

Feedback Authoring Tool was highly rated, with average scores above 4 (out of 5) 

for each of the four tested aspects (i.e., usability administration, usability 

configuration, learnability administration, learnability configuration). This is also 

reflected in the comments of several participants in the post questionnaire, e.g., that 

"learning to use this tool is quite simple," "the software is [...] easy to use," "[it] is a 

useful tool," or simply, "a great tool." 

Figure 35 shows the results for the objective task performance. The analysis 

revealed that participants did not have problems in accomplishing administrative 

tasks (only one critical error across all participants). Likewise, configuration tasks 

not involving patterns, such as defining messages and strategies, did not pose a 

problem for participants (no errors at all). However, participants struggled a lot with 

the definition of patterns. On average, participants solved only 55% of the given 

pattern-related tasks without critical errors (M = 0.55; SD = 0.17). So, the hypothesis 

that the Authoring Tool is easy to use (hypothesis 1) is at least partially confirmed. 

We already anticipated possible problems with some aspects of the tool in 

hypothesis 2, which predicted that the definition of patterns is the most difficult 

aspects of the tool. The above described results confirm this hypothesis. Defining 

patterns requires abstract thinking and generalizing, since each pattern represents an 

entire class of possible instances rather than an individual instance. Furthermore, it 

requires proficiency in concepts of logic to specify constraints in patterns. For 

instance, a simple constraint in Figure 32, p. 181, is that Box-2 is of type data  

(Box-2.type = "data"). More complex constraints may involve variable bindings 

(e.g., two boxes of an arbitrary but identical type), set concepts (e.g., a box type is 

element of the set {data, hypothesis}), logical connectors (e.g., a box contains no text 

and is of type data), and logical negation (e.g., a box does not exist; a box is not of a 

certain type). According to verbal reports, particularly the last mentioned aspect—
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logical negations—caused confusion. It was difficult for some participants to 

distinguish between a data box that does not exist, and a box that is not of type data. 

One participant explicitly commented in the post questionnaire on possible 

difficulties in defining logical conditions: "logical operators maybe not clear for 

everybody." Another participant identified implicitly the definition of constraints as 

the most critical aspect: "most things are quite intuitive if you have an understanding 

of what constrains/patterns are." 

A reasonable assumption is that participants with a strong background in 

disciplines that involve a fair amount of formal logic will perform better in pattern-

related tasks (hypothesis 3). And indeed, this hypothesis was confirmed at well. 

There was a strong, significant correlation between programming experience 

(elicited in a pre-questionnaire) and task performance (r = .61; p = .01). 

Overall, participants performed quite reasonable, given the limited amount of 

exposure to the tool they had (less than 90 minutes), the stressful situation of a study 

(being observed, providing think-aloud verbal reports during task execution), and the 

complexities inherent to the concept of a pattern discussed above. With more training 

and routine, it is certainly possible to use the Feedback Authoring Tool much more 

effectively and efficiently. Along these lines, one participant commented in the post 

questionnaire: "It is a useful tool that needs time and a bit of patience to familiarize 

with." 

 

 
Figure 34: Average rating for the usability and learnability of the configuration and administration 

functions. Error bars indicate 95% confidence intervals. 
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Figure 35: Average percentage of tasks performed without errors, grouped by task category. Error 

bars indicate 95% confidence intervals. 

5.9 Discussion and Conclusion 

The CASE engine is a highly configurable software component to analyze and 

support educational argument diagramming activities. The CASE architecture has 

been devised with important software design considerations in mind. Maintainability 

and extensibility have been achieved through a modular design and predefined 

extensions points, which enable new functionality to be easily added. In order to 

make the CASE engine highly configurable and thus usable across a wide range of 

scenarios and domains a comprehensive configuration subsystem was created, 

parameterizable through XML and a dedicated API, allowing configuration changes 

at any time. The built-in mechanisms for parameterizing feedback agents enable 

researchers and practitioners to enhance a wide spectrum of applications with 

adaptive support functionality. To illustrate this, four applications are presented, 

demonstrating the diversity of the CASE engine in terms of different argumentation 

domains, student tasks, and types of support. To facilitate the development of 

adaptive support functions, and make the configuration framework more accessible 

for technical novices, the CASE engine has been enhanced with a graphical frontend. 

An evaluation study yielded promising results.  

The CASE engine is the first approach that allows the domain-independent 

authoring of automated adaptive support functions targeted at argument diagrams. 

The CASE engine also differs in other important ways from previous approaches. 

While systems like Belvedere (Suthers et al. 2001), Rashi (Dragon et al. 2006), and 
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LARGO (Pinkwart et al. 2009) focus on patterns rooted in their respective 

knowledge domains, the CASE engine can also detect patterns of collaboration (e.g., 

students who contributed only little to a group diagram; students who did not 

interrelate their contributions to contributions of fellow students). Moreover, the 

CASE engine easily integrates with external analysis modules, and offers a broad set 

of options to define feedback messages and strategies on top of the pattern definition 

framework. Finally, the CASE engine is the first system that provides a graphical 

language to define argumentation pattern in a format that can be automatically 

translated into operational analysis code. In fact, I'm not aware of any graphical 

language to define "operational" patterns in graphs—including areas other than 

argumentation. So the presented approach may transfer well into other areas in which 

intuitive interfaces to search graphical patterns in graph-based data representations 

would provide a value added.  

Harrer et al. (2007) present an approach that is superficially similar. They 

developed a user interface that allows researchers to specify patterns in argument 

diagramming activities. Yet, in contrast to the CASE approach, their approach 

focuses on the sequence of activities (e.g., create box, enter text in box, move box, 

edit text in box, etc.), and not on the diagrams that emerge from these activities. In 

fact, they made the observation that researchers were often particularly interested in 

graphical patterns in diagrams, which cannot be easily defined in their tool, but 

which are well supported in the CASE Feedback Authoring Tool. 

An empirical study underlined the potential of the CASE Feedback Authoring 

Tool—participants rated the system's usability and learnability highly and performed 

reasonably well in practice, given the limited instruction time and virtually no 

training. The study also showed important limitations and potential areas of future 

research. Particularly those participants without a computer science background 

struggled with the specification of logical constraints for patterns. Future research 

may address this potentially critical barrier for users without formal training in logics 

by investigating the suitability of approaches like specification-by-example (Harrer et 

al. 2007; cf. Zloof 1977). In this approach, users provides a single or a small number 

of concrete examples of a pattern and the system tries to automatically infer 

corresponding constraints. Chapter 6 discusses an in some respect related approach, 

supervised machine learning, which generalizes from a large set of examples (rather 

than a small one). Of course, automatically inferring constraints from only a few 

examples is a highly underspecified process and thus must use heuristics that may 

lead to undesired results. For instance, if the user provides one example box of type 

A and a second example box of type B, does this mean that the pattern requires the 
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box to be of type A or B (and nothing else), or does it mean that the box can be of 

any type (that is, the example boxes were only coincidantially of type A and B)? 

Therefore, the process of inferring patterns from examples could be informed 

through an interactive dialogue with the user, that is, the system may ask the user 

questions to tailor the constraints to the specific user requirements and to resolve 

ambiguities. 

While the CASE engine is currently focused on support for argument 

diagramming activities, the provided framework can easily be extended to also 

provide support for chat discussions. Chat events, as well as the infrastructure to 

provide feedback to chat discussions, are already available in the CASE engine. 

What is missing is an appropriate approach to detect patterns in chat messages and 

chat sequences. The current approach to manually define pattern-matching 

production rules appears to be impracticable when it comes to identifying complex 

structures in natural language—the next chapter discusses an approach still feasible 

in such situations. In particular, a machine learning approach to analyze natural 

language texts in argument diagrams is presented. A similar approach may be used to 

build analytical models for patterns in chat conversations as well. 

In summary, the proposed solution provides a proof-of-concept to answer the 

research questions presented at the outset of this chapter, which were seeking for a 

software architecture (RQ-2) and pattern search approach (RQ-3) to enable the 

flexible definition of adaptive support mechanisms across argumentation domains 

and learning scenarios. That the approach has principially accomplished the defined 

goals is shown, by demonstration, based on four showcases. Of course, to gauge its 

true potentials, limitations, and possibilities for improvement, practical application 

on a broader scale would be required. Moreover, the advances and extended 

possibilities in relation to existing approaches have been discussed, clarifying the 

contributions made beyond the current state of the art. Many things are “in principle” 

possible with a sufficiently open technical design, so an important question is 

whether it can be realistically expected that target users (i.e., designers of adaptive 

support in argumentation learning systems) are actually able to realize potential 

benefits. Encouraging evidence that CASE does, in fact, fullfil this important 

requirement has been collected in the presented usability evaluation study.  
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Chapter 6  

Using Machine Learning Techniques to 

Analyze Student Discussions 

As long as patterns can be described in terms of their graphical structure, node and 

link types, and simple constraints on other properties, their manual definition is a 

manageable task. However, not all patterns can be expressed in terms of the explicit 

semantics encoded in the diagrams. For instance, one may want to detect diagram 

elements with content not relevant to the current topic (off-topic contributions), or 

diagram elements with an assigned type not corresponding to the actual type (e.g., a 

box of type data but with text formulating a hypothesis). In these situations, one 

must identify patterns in the natural language text of diagram elements. Human 

experts could manually define lists with positive and negative keyword indicative of, 

for instance, off-topic contributions. This is technically possible within the 

framework described in the previous chapter, but begs the question of how to come 

up with a reasonable list of keywords. Moreover, simple keywords are sometimes not 

sufficient, because the pattern of interest may involve composite terms or 

grammatical structures, which again dramatically increases the complexity of 

manually defining the pattern. The involvement of natural language is only one 

example for situations, in which the manual definition of patterns may become an 

intractable task. In many situations, humans are able to classify objects, persons, or 

events without any problem, but struggle when it comes to describing or explaining 

the rules and criteria these decisions are based upon. In the words of Dahlbom and 

Mathiassen (1993, p. 33, italics mine): 

"We have no idea how we do a lot of the things that we know how to 

do. Among those are the very fast feats of perception, recognition, 

attention, information retrieval, and motor control. We know how to see 

and smell, how to recognize a friend's face, how to concentrate on a 

mark on the wall or search memory for an old experience. [...] These 

are definitely tacit competencies. If there are rules involved, we have no 

idea what they might be." 
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While the top-down (or knowledge-driven) approach meets its limits here, bottom-up 

(or data-driven) approaches may constitute a viable alternative. Machine learning 

techniques can be used to automatically infer patterns from a given set of examples, 

making a manual pattern definition obsolete. For instance, one could provide positive 

and negative off-topic examples (i.e., off-topic and on-topic contributions). A 

machine-learning algorithm could automatically analyze the given examples to learn 

a computational model that can distinguish between off-topic and on-topic 

contributions with reasonably high accuracy. 

This chapter discusses how machine learning techniques have been utilized within 

the Argunaut project to build classifiers that can identify pedagogically important 

aspects in graphical e-discussions, such as off-topic contributions, reasoned claims, 

and question-answer interactions. While this chapter focuses on the machine learning 

approach within the Argunaut project, it should be noted that the induced classifiers 

have been integrated with the CASE engine, discussed in Chapter 5. This integration 

provides a proof-of-concept demonstrating how the CASE engine can be easily 

extended with external analysis modules. Similar to the approach described here, 

new machine learned classifiers, specifically targeted at driving the generation of 

automated feedback, may be developed and integrated with the CASE engine. 

Section 6.1 introduces the Argunaut project, which constitutes the background of 

the line of research discussed in this chapter. Section 6.2 motivates and discusses, in 

greater detail, the specific research question tackled. Section 6.3 gives a general 

introduction to basic machine learning concepts and some major algorithms relevant 

to the presented work. Section 6.4 describes the methodology employed to build and 

validate classifiers. Section 6.5 reports on the empirical results obtained in validation 

experiments, which generally show the promise of the approach. Finally, Section 6.6 

summarizes and discusses the results achieved also addressing important limitations.  

6.1 Background: The Argunaut Project 

The Argunaut project was aimed at building an e-moderation environment (Salmon 

2004), enhanced with moderator-assistance technologies, for students learning 

argumentation. Students discuss and debate contentious topics by jointly creating 

argument diagrams, that is, new messages are "posted" as graphical boxes to a shared 

workspace; "replies" are indicated through graphical links.  

Figure 36 shows an example e-discussion in Argunaut. Node and link types are 

represented through different graphical shapes (e.g., a rectangle, an oval, a diamond) 
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and arrows (e.g., a solid green line, a dashed red line), which can be selected from a 

palette (see Figure 36, palette panel at the top of the screen). Argunaut utilizes an 

informal ontology (Schwarz and Glassner 2007), meaning that node and link types 

are based on typical moves in everyday conversations, and thus, can be understood 

and used without much theoretical background and training (node types: claim, 

argument, question, explanation; link types: support, oppose, link). The discussion is 

typically rooted in a controversial topic, which is given by the teacher in form of an 

initial node in the diagram (see Figure 36, green node with title Experiments on 

animals—your task, indicating the given ethical dilemma: Is it ethical to perform 

experiments on animals?). 

 

 
Figure 36: Example of a graphical discussion in Digalo, one of the tools supported within the 

Argunaut e-moderation environment. From McLaren et al. (2010). 

In a typical classroom setting, one teacher-moderator monitors and supports multiple 

e-discussions (e.g., six groups with three to five students each). This process of 

monitoring and supporting multiple synchronous discussions in parallel is inherently 

difficult. The teacher-moderator must track and maintain a mental model of multiple 

discussion threads at a time. Important events in different discussions may occur in 

rapid succession, sometimes even in parallel. While monitoring or supporting one 
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discussion thread, important events in other discussions might pass unnoticed. The 

Argunaut project investigated how the moderation process could be facilitated by 

means of a computer-based Moderator's Interface (see Figure 13, p. 122), which 

provides awareness indicators and alarms to highlight noteworthy situations, and 

feedback tools to intervene and remediate identified problem.  

From a computational perspective, two different kinds of awareness indicators are 

provided in Argunaut. Shallow indicators are computed in relatively straightforward 

ways, e.g., through keyword search or descriptive statistics of node and link type 

usage. Deep indicators are more complex to compute but also potentially more 

meaningful to teachers. They are based on classifiers built using artificial intelligence 

techniques, in particular, machine learning, case-based reasoning, and natural 

language processing. This chapter focuses on experiments with machine learning 

techniques. 

6.2 Research Question 

To analyze discussion and argumentation activities in a systematic and scientifically 

sound way, researches in the CSCL community have developed different analytic 

frameworks (Clark et al. 2007). Such analytic frameworks typically consist of a 

number of categories, organized within different analysis dimensions, and detailed 

instructions how to assign these categories to discourse segments. The specific set of 

categories, as well as the definition of what exactly constitutes a segment, essentially 

depends on the specific research question to be investigated, the theoretical stance 

the researcher takes, and pragmatic considerations.  

The pedagogical experts within the Argunaut consortium have developed such an 

analytic framework, which combines theoretical considerations (in particular, the 

notion of dialogism; Wegerif 2006) with practical concerns (insights from social 

learning and e-moderation research). In contrast to many other approaches, the 

Argunaut analytic framework focuses specifically on the analysis of graphical e-

discussions. It distinguishes three levels of analysis, which can be associated with 

specific diagram structures:  

 node level: individual contributions, e.g., off-topic contributions and reasoned 

claims 

 paired-node level: one-step interactions (adjacency pairs), e.g., question-answer 

pairs, contribution-counterargument pairs 
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 cluster level: multi-step interactions, e.g., chains of opposition  

Researchers can apply this analytic framework manually, e.g., to characterize 

graphical e-discussions in terms of how often certain behaviors occurred, and based 

on this, come to an overall assessment, an approach frequently used in CSCL 

research. However, the manual coding of e-discussions was in Argunaut only a first 

step towards the ultimate goal of automating the coding process. Once the coding 

process is automated, e-discussions can be analyzed automatically, and condensed to 

a few meaningful indicators, which provide human moderators with an intelligible 

overview of what is going on. So the crucial question is whether it is possible to 

automate the application of the Argunaut analytic framework through machine-

learned classifiers.  

(RQ4) Pattern Induction Mechanism: "Can supervised machine 

learning techniques be successfully used to automatically induce 

computational models that identify important qualitative aspects in 

graphical e-discussions?" 

With the first results published in 2007 (McLaren, Scheuer, et al. 2007), the work 

presented in this chapter directly builds upon pioneering work of Rosé and 

colleagues on automating the analysis of student discussions in CSCL settings 

(Dönmez et al. 2005; Rosé et al. 2008). Obviously, the presented approach differs 

from theirs in that different analytic frameworks have been automated: They used the 

Weinberger and Fischer (2007) framework while the Argunaut approach uses the 

framework sketched above. But there are also a number of other important 

differences. While their approach is based on threaded discussions, the Argunaut 

approach addresses graphical e-discussions, an instructional method nowadays well 

established in the CSCL community. In fact, the Argunaut approach is the first 

approach that addresses graphical e-discussions. Their discussions were manually 

pre-segmented into meaningful units of analysis before machine learning was 

applied. Consequently, the resultant machine-learned classifiers can only be applied 

to pre-segmented data. In contrast, the Argunaut approach capitalizes on the natural 

structuring of a diagram (individual nodes and linked node pairs) and can therefore 

be applied in a fully automated fashion, without any human intervention (or an 

additional technical segmentation component) required. In summary, the work 

presented in this chapter adds to the knowledge of how machine learning can help 

imbuing CSCL systems with diagnostic functions, which may be used to support 
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moderators but could also inform the automated generation of adaptive support 

targeted at students. 

6.3 Background: Machine Learning 

Before the particular approach used in the Argunaut project is described, this section 

gives a short introduction to the basic concepts of machine learning (section 6.3.1) 

and its main algorithms (section 6.3.2).  

6.3.1 Basic concepts of machine learning 

The discipline of machine learning (Mitchell 1997; Witten and Frank 2005) 

investigates how computer algorithms can be used to automatically detect 

meaningful patterns in structured data representations. The description here focuses 

on flat data representations, meaning that data can be represented in a tabular format. 

Each table row represents one specific example (also called instance or data points). 

The typical assumption is that examples are statistically independent from one 

another. Each table column represents one specific attribute (also called feature). 

Each table cell defines the value of a specific attribute for a specific example. 

Overall, the table describes a set of examples in terms of predefined attributes, or, in 

mathematical terms, as attribute vectors. In supervised machine learning scenarios, 

one specific attribute is denoted as the target attribute. Supervised machine learning 

algorithms try to compute a model able to reliably predict the value for the target 

attribute based on regularities and patterns in the other attributes. If the target 

attributes takes categorical (or nominal) values, the problem is referred to as a 

classification problem. The target attribute is then typically referred to as the class 

attribute; its different values are referred to as class labels or simply classes. If the 

target attribute takes numeric values, the problem is referred to as a regression 

problem. 

Table 31 shows an exemplary fictitious data set based on the “weather” data from 

Witten and Frank (2005). This data is used as a running example in the following 

descriptions. The table shows seven examples each representing a particular day 

described in terms of five attributes. Four attributes represent weather conditions on 

that day, in particular, outlook, temperature, humidity and whether it is windy or not. 

The fifth attribute, the target attribute Play, represents the decision whether to play 

some game on that day. The goal is to learn a model that can predict this decision 

based on the weather conditions of a given day. Since Play is a nominal attribute, the 
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weather problem can be characterized as a classification problem. Some machine 

learning algorithms only work with nominal attributes. In such cases, numeric 

attributes may be transformed into nominal attributes through a process called 

binning. For instance, temperatures may be discretized using the bins low, medium, 

and high. 

Table 31 

Exemplary machine learning data set based on the "weather" data 

Example ID Attributes Target Attribute 

SeqNum Outlook Temperature Humidity Windy Play 

(nominal) (nominal) (numeric) (numeric) (nominal) (nominal) 

1 sunny 85 85 false no 

2 sunny 80 90 true no 

3 overcast 83 86 false yes 

4 rainy 70 96 false yes 

5 rainy 68 80 false yes 

6 rainy 65 70 true no 

7 overcast 64 65 true yes 

Note: Adapted from Witten and Frank (2005, p. 12). 

Obviously, the ultimate goal is to build models that reliably predict the value of the 

target attribute for examples for which this value is not known in advance. In 

particular, the model should not incorporate particularities of the given example set 

not representative of the target population, a problem known as over-fitting. 

Therefore, the development of machine-learned models typically involves two 

phases: a training phase, in which a model is learned from a given set of examples, 

and a test phase, in which the model is applied to examples not used in the training 

phase to see whether the model generalizes beyond the training examples. If the 

model is over-fitted to the training set, its performance on an independent test set—

and on the target population more generally—is expected to be limited. So if a set of 

labeled examples is given (that is, examples for which the value of the target 

attribute is known), one can split this set into a training set and an independent test 

set, learn a model from the training set, and check its predictive performance against 

the test set.  

To make more economical use of a typically limited amount of available 

examples, an iterative procedure called cross-validation is often used. In a ten-fold 

cross-validation, the example set is split into ten subsets. In each iteration, nine 

subsets are used to train a model and the remaining subset to test the model. In each 
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iteration, a different subset is used for testing. That is, across all iterations, each 

example is tested exactly once. The performance of the model is estimated by 

averaging across the performance scores of the individual iterations. A special case 

of cross-validation is hold-one-out cross-validation. That is, in every iteration, only 

one example is held out for testing purposes. 

6.3.2 Machine learning algorithms 

Many different supervised machine algorithms are available to induce models from 

data. Some of the most widespread and successful ones are available in standard 

machine learning toolkits, such as RapidMiner (Mierswa et al. 2006) and WEKA 

(Hall et al. 2009): 

1R (Holte 1993): The 1R (one-rule) machine learning algorithm analyzes the training 

set and selects the one attribute that best predicts the target attribute. This extremely 

simple approach has shown to perform surprisingly well in practical applications, 

often only a few percentage points less accurate than far more complex approaches. 

For instance, when applied to the weather data set, 1R may select the Outlook 

attribute as the best predictor for the Play attribute, resulting in the rule depicted in 

Table 32. 

Table 32 

Exemplary 1R model based on the weather data 

IF outlook = "sunny" THEN "no" 

  ELSE IF outlook = "overcast" THEN "yes" 

  ELSE IF outlook = "rainy" THEN "yes" 

Note: Example based on Witten and Frank (2005, p. 85). 

Decision tree learners (e.g., C4.5; Quinlan 1993): For the sake of simplicity the 

following description assumes a classification problem and nominal attributes. There 

are decision tree implementations that can also address regression problems and 

numeric attributes.  

A decision tree is a hierarchical model. To classify an example, the example 

traverses the tree from the root to a leaf node. Each node within the tree represents a 

test on an attribute. Based on the test result, an edge is chosen to traverse to the next 

level of the tree (essentially each edge represents one attribute value). This procedure 

is repeated until a leaf node is reached, which represents the final classification. 



6 Using Machine Learning Techniques to Analyze Student Discussions 197 
 

 

Figure 37 shows an exemplary decision tree based on the weather data. For 

instance, an example with Outlook = sunny and Humidity = high would result in the 

prediction no for the Play attribute. This specific example would take the leftmost 

path through the tree. 

 

Figure 37: Exemplary decision tree model based on the weather data. Adapted from Witten and Frank 

(2005, p. 101). 

Decision tree learners construct a decision tree from a given training set. First, the 

most informative attribute is selected and put at the root of the tree. The most 

informative attribute is the one that splits the training set into subsets as 

homogeneous as possible with respect to the class attribute. An optimal split, which 

is typically not possible, would cleanly separate the examples according to their 

class, that is, each subset would only contain examples with the same class label. 

Depending on the specific algorithm, different criteria may be used to determine the 

most informative attribute. For instance, C4.5 uses gain ratio as criterion, which is a 

normalized version of an information theoretical measure called information gain. 

After the root node has been created, its child nodes are created using the same 

procedure but only considering the training examples that would reach the node 

under consideration when traversing the tree (rather than the complete training set). 

The algorithm is repeated until none of the attributes would lead to a cleaner 

separation. The leaf nodes of the tree are then associated with the class that most 

frequently occurs within the subset of examples that reach the node. Typically, a 

procedure called pruning is used to remove branches in the tree that do not 

considerably improve the performance. In fact, such branches are often the result of 

over-fitting and are likely to reflect idiosyncrasies of the training set. That is, 
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removing these branches is likely to improve the performance on unseen examples of 

the target population. 

Naïve Bayes (McCallum and Nigam 1998): Naïve Bayes is a classification approach 

based on statistical modeling. It classifies examples by choosing the class label that 

is most probable given the values of the other attributes. It is called "naïve" because 

it uses the simplifying assumption that attributes are statistically independent from 

one another (given the class attribute). This assumption allows building a far less 

complex model, since parameters that represent the influence of attribute 

combinations on the class prediction are not included. Although this assumption is 

almost always violated, Naïve Bayes has shown to perform quite well in many 

practical applications. To learn a Naïve Bayes model from a training set, standard 

statistical parameter estimation procedures, such as the maximum likelihood method, 

can be used. 

Table 33 

Exemplary Naïve Bayes model based on the weather data and how it can be derived 

(𝟏) 𝑃(𝑃𝑙𝑎𝑦 | 𝑂𝑢𝑡𝑙𝑜𝑜𝑘, 𝑇𝑒𝑚𝑝, 𝐻𝑢𝑚𝑖𝑑, 𝑊𝑖𝑛𝑑) 

 

        → Apply Bayes' Theorem 

 

(𝟐) =  
𝑃(𝑂𝑢𝑡𝑙𝑜𝑜𝑘, 𝑇𝑒𝑚𝑝, 𝐻𝑢𝑚𝑖𝑑, 𝑊𝑖𝑛𝑑 | 𝑃𝑙𝑎𝑦)  ∗  𝑃(𝑃𝑙𝑎𝑦)

𝑃(𝑂𝑢𝑡𝑙𝑜𝑜𝑘, 𝑇𝑒𝑚𝑝, 𝐻𝑢𝑚𝑖𝑑, 𝑊𝑖𝑛𝑑)
 

 

        → Drop denominator since it is independent from the class attribute (takes the same value for each  

            class) 

 

(𝟑)  ∝  𝑃(𝑂𝑢𝑡𝑙𝑜𝑜𝑘, 𝑇𝑒𝑚𝑝, 𝐻𝑢𝑚𝑖𝑑, 𝑊𝑖𝑛𝑑 | 𝑃𝑙𝑎𝑦)  ∗  𝑃(𝑃𝑙𝑎𝑦) 

 

        → Apply conditional independence assumption 

 

(𝟒) =  𝑃(𝑂𝑢𝑡𝑙𝑜𝑜𝑘 | 𝑃𝑙𝑎𝑦)  ∗  𝑃(𝑇𝑒𝑚𝑝 | 𝑃𝑙𝑎𝑦)  ∗  𝑃(𝐻𝑢𝑚𝑖𝑑 | 𝑃𝑙𝑎𝑦)  ∗  𝑃(𝑊𝑖𝑛𝑑 | 𝑃𝑙𝑎𝑦)  ∗  𝑃(𝑃𝑙𝑎𝑦) 

Table 33 shows an exemplary Naïve Bayes model based on the attributes in the 

weather data set (with numeric attributes transformed into nominal one). The 

presented formula allows assigning to each class label a value proportional to its 

probability, given all other attribute values. The final classification is the class label 

with the highest value (i.e., the most probable class label according to the model). In 

the concrete example, the goal is to find a model that predicts the value of the Play 

attribute given the Outlook, Temperature, Humidity, and Windy attributes, see line 1. 

The application of Bayes' Theorem yields the expression in line 2. The denominator 

does not depend on the target attribute Play and therefore takes the same value for 

each class label. Since it is a constant factor not influencing the ordering of class 

label probabilities, it can be discarded from the formula, yielding the expression in 
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line 3. Finally, the conditional independence assumption is used, yielding the 

expression in line 4, which poses a far more tractable problem in terms of statistical 

parameter estimation. The parameters of the five probability functions can be easily 

estimated based on the frequencies in the training set. 

Support Vector Machines (Boser et al. 1992): For the sake of simplicity the 

following description assumes a binary classification problem (i.e., positive and 

negative examples) and numeric attributes. There are Support Vector Machine 

implementations that can also address multi-class problems, regression problems, 

and nonnumeric attributes.  

Support Vector Machines (SVMs) are based on a vector space model, that is, 

examples are thought of as vectors in a vector space. Each attribute defines one 

dimension of that vector space. A SVM defines a hyperplane to separate positive and 

negative examples in the vector space. To classify an example, it is mapped into the 

vector space. It will be classified as a positive or a negative example depending on 

the side of the hyperplane where it is located.  

Figure 38 shows an exemplary SVM model based on the attributes Humidity and 

Temperature of the weather data set. Of course, SVMs can generally use an arbitrary 

number of attributes. Furthermore, in this specific example, positive and negative 

training examples can be linearly separated based on the attributes Humidity and 

Temperature. 

To learn a SVM model, the separating hyperplane is computed in a way that 

maximizes the minimal distance of positive and negative examples to that 

hyperplane. The rationale is to maximize the margin that separates positive from 

negative examples, and thus to reduce the generalization error. For instance, in 

Figure 38, one can imagine an infinite number of possible separating hyperplanes. 

But the chosen one is optimal with respect to the width of the margin. Therefore, 

SVMs belong to the class of large-margin classifiers. Finding the hyperplane is a 

mathematical optimization problem—more specifically, a quadratic programming 

problem—for which efficient algorithm exist. Since it will not be possible to strictly 

separate positive from negative training examples in most cases, so-called slack 

variables are added to the equation system, which introduce penalty terms for 

training examples that are not compatible with the SVM model (i.e., training 

examples on the "wrong" side of the hyperplane).  

Many classification problems are not linearly separable, that is, the boundary 

between positive and negative examples cannot be approximated well with a linear 
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hyperplane. Therefore, SVMs make use of the Kernel trick, which essentially means 

to transform the original vector space into a higher-dimensional vector space through 

a kernel function. The SVM algorithm then determines a linear hyperplane in the 

higher-dimensional space, which is equivalent to a non-linear separation in the 

original space (e.g., a separation that can be described by a polynomial expression). 

In this respect, SVMs are more flexible compared to approaches such as Naïve 

Bayes, which can only represent linear classification functions, due to the 

assumption that attributes are conditionally independent. SVM induction is one of 

the most sophisticated and widely used supervise machine learning methods 

nowadays. 

 

 

Figure 38: Exemplary Support Vector Machine model. 

Boosting (e.g., AdaBoost; Freund and Schapire 1997): Boosting algorithms belong 

to the class of ensemble methods, that is, machine-learning algorithms that combine 

the predictions of multiple models (e.g., decision trees) to achieve an overall 

performance above the performances of each individual model. For instance, let's 

have a look at an AdaBoost learner that uses internally a decision tree learner to 

construct models. In general, AdaBoost can use any other machine-learning 

algorithm internally. In a first iteration, AdaBoost applies the decision tree learner to 
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the original training set to induce a first model. Typically, models are not perfect and 

classify only a subset of the given training examples correctly. AdaBoost determines 

which training examples are misclassified and increases in the next iteration the 

weights of these examples, and, vice versa, decreases the weights of correctly 

classified examples. That is, the second-round decision tree learner will put more 

emphasis on previously misclassified examples, yielding a decision tree that 

potentially performs better on previously misclassified examples and potentially 

worse on previously correctly classified ones. The AdaBoost algorithm repeats this 

procedure over a predefined number of iterations to compute a new model in each. In 

addition, AdaBoost keeps track of the relative performance of each model and 

assigns a weight accordingly. That is, good models receive higher weights than bad 

models. When applying the overall AdaBoost model, the internal decision tree 

models are applied successively and their votes are combined, based on the assigned 

weights. 

Originally, algorithms like AdaBoost have been used to boost the performance of 

weak learning algorithms (e.g., 1R) into a strong learning algorithm. Whether a 

learning algorithm is strong or weak essentially depends on its ability to adjust to 

characteristics of the training set. A 1R model, for instance, is not very flexible in 

this respect since it bases its decision only on a single attribute. Therefore, 1R is said 

to be a weak learning algorithm. It turned out that boosting methods can also 

improve the performance of other, already powerful learning algorithms, such as 

decision trees. It has been proven that the overall AdaBoost model performs at least 

as well as the best internal model on the training set (training error) if the internal 

models perform at least slightly better than chance. Yet, the more important question 

is whether the iterative optimization of AdaBoost may lead to over-fitting. That is, 

the AdaBoost model may not perform so well on previously unseen examples of the 

target population (generalization error). Freund and Schapire (1999) argue, based on 

theoretical and empirical grounds, that AdaBoost is not particularly susceptible to 

over-fitting. In fact, AdaBoost is in several respects comparable to SVMs. Both 

approaches can be described within the same margin-maximization framework. 

Attribute selection: Besides the actual learning task, additional methods may be 

used in advance to preprocess the data. A common approach is to not provide the full 

set of attributes to the machine-learning algorithm, but to preselect the most 

informative subset of attributes, or, vice versa, filtering out attributes that may not 

contribute a lot. The reason is that many irrelevant or redundant attributes not only 

consume unnecessary computational resources during machine learning, but may 

also add noise, with potentially negative effects on the predictive performance. For 
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instance, Kohavi and John (1997) showed that decision tree induction and Naïve 

Bayes-based modeling benefit from attribute selection in terms of improved 

prediction performance and smaller and therefore more comprehensible models. One 

attribute selection method is to use the correlation between attributes and the target 

attribute to determine potentially good predictors (Ng et al. 1997). 

6.4 Machine Learning Methodology 

The machine learning methodology in the Argunaut project essentially unfolded into 

two main stages. Section 6.4.1 describes how the data to which machine learning 

algorithms were applied was collected and prepared. Section 6.4.2 describes the 

general setup and approach to induce and validate classifiers. 

6.4.1 Data collection 

The goal in the Argunaut project was to build machine-learned classifiers on the 

node-level (i.e., classifiers that assign labels to individual nodes) and on the paired-

node-level (i.e., classifiers that assign labels to pairs of nodes that are connected 

through a link). The classifiers should essentially emulate the behavior of human 

coders who apply the Argunaut analytic framework discussed above. As a first step, 

it was necessary to collect human-coded data, that is, nodes and node pairs labeled 

by human experts according to the Argunaut analytic framework. Supervised 

machine learning algorithms can then be used to associate certain properties of nodes 

and node pairs (e.g., language patterns in the contained text) with the labels assigned 

by human experts (i.e., in machine learning terms, the target categories). 

Human experts analyzed a set of preexisting graphical e-discussions using the 

Argunaut analytic framework. For that purpose, it was necessary to generate coding 

sheets, in particular, Excel spreadsheets that allow human coders to conveniently 

assign labels to nodes and node pairs. Essentially, each table row corresponded to 

one unit of analysis (i.e., a node or a connected node pair). A first set of columns 

represented e-discussion data important for the coding process, e.g., the text 

contained in each node. A second set of columns represented the different coding 

dimensions of the analytic framework, one column per dimension. Human coders 

entered for each unit of analysis and coding dimension their assessment in the 

corresponding cell. For instance, on the node-level coding sheet, one column 

represented the coding dimension off-topic. Human coders entered for each node a 

yes or no into the corresponding cell depending on whether they judged the node to 
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be an off-topic or on-topic contribution. To make this decision, they inspected the 

data in the coding sheet and checked, in addition, the original diagrams in the e-

discussion tool, if necessary. To generate these Excel sheets, a software tool was 

developed to:  

 import e-discussion data (XML log files) into a relational database,  

 reconstruct the final state of the diagrams (the original data represented the 

trace of user actions rather than the final state of the diagram), 

 extract the units of analysis (i.e., nodes and connected node pairs) and associate 

data important for the coding process with each unit of analysis, based on 

requirements defined by the human coders, and 

 generate the Excel coding sheets.  

Since the analytic framework was newly developed for the purposes of Argunaut, it 

was necessary to check the validity of the coding procedure, in particular, its inter-

coder reliability. Inter-coder reliability indicates the level of agreement between 

multiple independent coders. A high level of agreement indicates objectivity 

(independence from the specific coder) and reliability (reproducibility of results), 

two important prerequisites for the validity of the analytic framework and approach. 

Therefore, multiple human coders coded the same subset of data independently to 

check the level of inter-coder agreement. The level of agreement was quantified 

through the Kappa (κ) statistic, in particular Cohen's κ (1960) when two coders did 

the coding, and Fleiss' κ (1971) when three coders did the coding. A κ value of 1.0 

signifies perfect agreement, a κ value of 0 means agreement at chance level, and κ 

below 0 means agreement worse than chance. Krippendorff (1980) proposes to 

consider κ values above .7 as acceptably reliable in content analysis. Following this 

advice, further efforts were concentrated on the coding dimensions with κ values 

near or above .7.  

Ultimately, five (out of seven) node-level dimensions, and four (out of five) 

paired-node-level dimensions surpassed the threshold and were kept for further 

analysis. The coding dimensions and results are reported in Table 34 (node-level) 

and Table 35 (paired-node level). Note that the number of examples varies for (in 

particular) different node-level categories. This is because there were several 

iterations of coding and machine learning in the course of the Argunaut project. In 

later iterations, efforts were concentrated on the most promising categories. 
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Table 34 

Node-level categories and corpus statistics  

Category Explanation / Coding Examples Positive 

instances 

Topic Focus A node that focuses on the 

topic or task.  

“Its not nice of human beings to 

exploit animals for their own needs. 

I think animals also have rights.” 

(Counter-example) “I’m bored.” 

994 / 1188 

84% 

Reasoned 

Claim 

 

An individual node that 

contains critical reasoning or 

argumentation (i.e., claim + 

backing). Student provides an 

explanation or some backing 

(e.g. evidence) to illustrate a 

position/opinion. If you can 

add “because” between two 

parts of the contribution, it is 

probably critical reasoning. 

“I am against experiments on 

animals, because to my opinion it is 

not fair to use them against their 

will while they cannot reject.” 

“Here it's not like with humans, as 

the father disengages from them, 

and he doesn't see them even in the 

afternoon, and he doesn't belong to 

the pack anymore” 

500 / 1188 

42% 

Task 

Management 
Comments about how to 

proceed with and manage the 

given task, such as “add 

titles,” “write more,” “answer 

him,” etc. 

“would you stop sending empty 

messages?!?!?!” 

“don't surf the net” 

“don't forget to add arrows” 

98 / 968 

10% 

Request for 

Clarification 
A request for clarification, 

reason, explanation, 

information, etc. from another 

person. Only applies when a 

contribution is “on topic.” 

“What are you basing this on?” 

“What do you mean by that?” 

81 / 671 

12% 

Intertextuality Explicit evidence of quoting 

or referring to external 

material. Only applies when a 

node is “on topic.” 

“It says in Wikipedia that …” 

“…in our discussions last week in 

class…” 

23 / 671 

3% 

 

Note: Adapted from McLaren et al. (2010). 
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Table 35 

Paired-node-level categories and corpus statistics 

Category Explanation / Coding Example Positive 

instances 

Question-

Answer 
The 1

st
 node is a question 

and the 2
nd

 node is an 

answer to that question by 

a different student. 

Typically (but not 

necessarily) the type of 

link between the nodes 

would be “other.”  

1
st
 node text: “In the wild does the father 

separate from the cubs or does he 

continue to live with them?” 

2
nd

 node, from a different person than the 

1
st
 shape: “They all live in a pack” 

(The link type between nodes is “other.”) 

117 / 775 

15% 

Contribution

-Counter 

Argument 

The 2
nd

 node opposes the 

claim/argument raised in 

the 1
st
 node and provides 

reasons or other type of 

backing for the opposing 

claim. Typically (but not 

necessarily) the type of 

link between the nodes is 

“opposition.” 

1
st
 node text: “Do not separate, the male 

should be a partner in what happens even 

after the birth. The offspring is also his 

and he should take responsibility.” 

2
nd

 node text, from a different person 

than the 1
st
 node: “But in a situation like 

this the mother can get pregnant again 

and so might neglect a group of cubs.” 

(The link type between nodes is 

“opposition”) 

224 / 768 

29% 

Contribution

-Supporting 

Argument 

The 2
nd

 node supports the 

claim/argument raised in 

the previous one, and 

provides reasons or other 

type of backing for that 

claim. 

Typically the type of link 

between the nodes would 

be “support.” 

1
st
 shape text: “We are against. Is it 

better for the male to get the female 

pregnant again so she'd abandon the 

babies?" 

2
nd

 shape text, from a different person 

than the 1
st
 shape: “Separate. We think 

you should separate because you 

shouldn't hurt the mom, who will 

become a ‘pregnancy machine’ and 

move from one pregnancy to the next.” 

(The link type between the nodes is 

“support.”) 

217 / 769 

28% 

Contribution

-Question 
The 2

nd
 node is a question 

related to the 1
st
 node. 

The links vary, based on 

the role of the question. If 

it's a rhetorical question, it 

may be an “opposition” 

link. If it's a genuine 

request for information 

etc., it will likely be 

“other.” 

1
st
 node text: “She’s also tormented 

because she’s already exhausted as a 

result of all the pregnancies and also later 

on there’s the risk that she'll neglect the 

cubs.” 

2
nd

 node text, from a different person 

than the 1
st
 node: “Are you for us or 

against us? Please answer our question.” 

(The link type between the nodes is 

“other.”) 

100 / 776 

13% 

Note: Adapted from McLaren et al. (2010). 
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6.4.2 Experimental framework 

The machine learning toolkit RapidMiner (Mierswa et al. 2006) was used to carry 

out machine learning experiments. RapidMiner provides a graphical user interface to 

define machine-learning workflows composed of a sequence of operators (e.g., to 

read data from a database or a file, to preprocess and transform data, to apply 

machine learning algorithms, to validate classifiers, etc.).  

Since the human coders relied heavily on the natural language text, it was pretty 

obvious that an effective machine-learned model must do so as well. Therefore, it 

was necessary to bring the natural language texts into a form amenable to standard 

machine learning algorithms, more specifically, a representation in terms of attribute-

value pairs. A common approach is a bag of words representation (Sebastiani 2002), 

that is, each word in a data corpus is mapped to one specific attribute. If the word 

appears in a text, the attribute is coded as a "1" and otherwise as a "0." Often, there 

are multiple variations (inflexions) of the same word to express specific grammatical 

categories, e.g., singular (cat) versus plural (cats) form. For the purpose of machine 

learning, only the basic meaning is typically of interest. Therefore, a process called 

stemming can be used to normalize all variations of a word to the same root form, 

e.g., the words cat and cats are presented by the same attribute. First, this reduces the 

overall amount of attributes (see the discussion of attribute selection in section 

6.3.2). Second, without stemming, a machine-learning algorithm would not be able 

to recognize the semantic similarity of different inflexions of the same word, so 

stemming tells the machine learning algorithm to treat different inflexions of a word 

as the same semantic unit. The standard bag of words approach has one important 

limitation, namely, it cannot identify grammatical constructs that are represented in 

the sequence of words in a text. To approximate such sequential structures, one can 

consider pairs of consecutive words (bigrams) in addition to individual words 

(unigrams). On a more general level, the grammatical structure can be represented as 

the sequence of part-of-speech categories in the text. A common approach is to use a 

computational component called part-of-speech tagger, which assigns a part-of-

speech category to each word, and then to approximate sequential dependencies by 

building bigrams based on consecutive part-of-speech categories (part-of-speech 

bigrams or, in short, POS bigrams). To experiment with different approaches to 

language analysis (e.g., turning on / off the generation of bigrams), the natural 

language processing toolkit TagHelper (Rosé et al. 2008) was used, which can 

analyze texts along the lines of what is described above. In particular, TagHelper was 

integrated with the RapidMiner toolkit as a new operator, which can be flexibly 

configured and combined with other machine-learning operators available in 
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RapidMiner (e.g., different preprocessing and learning algorithms). Besides language 

based attributes, the experiments included attributes that represent structural 

properties of the e-discussions (e.g., node type, number of inbound links to a node) 

and temporal properties (i.e., which node of a node pair was created first). 

In earlier experiments (McLaren, Scheuer, et al. 2007; Scheuer and McLaren 

2008), different machine learning algorithms and attribute sets were tested and 

compared. In the experiments reported here, the attribute sets of the best classifiers 

from earlier experiments were used in combination with algorithms that have been 

shown in the past to be effective for text categorization tasks, in particular, SVMs 

(Joachims 1998), Naïve Bayes (McCallum and Nigam 1998), and Boosted Decision 

Trees (Boosted DT) (Schapire and Singer 2000). Section 6.3.2 provides a brief 

introduction to the different methods. In addition, attribute selection was used, more 

specifically, χ²-based attribute selection of the top 100 attributes. Since SVMs 

typically cope well with high dimensional input spaces, SVMs were also tested 

without attribute selection. Finally, SVM with cost balancing activated was tested, 

meaning that the relative weights (or misclassification costs) of the two classes were 

adapted to the class distribution during SVM training. In earlier experiments, this 

option led to an increased performance, presumably because of the skewed class 

distributions in the used data set (that is, positive examples largely outweighed 

negative examples or vice versa). 

Classifier performance was measured using the Kappa (κ) statistic (Cohen 1960). 

In this case, κ measured the chance-corrected agreement between a machine-learned 

classifier and a gold standard (which is the human-assigned class). The κ statistic is 

not vulnerable to unbalanced class distributions and thus is a more appropriate 

criterion than the widely used error and hit rate (Ben-David 2006). The decision as to 

whether a classifier’s performance is acceptable for real-world use depends on 

domain and application. An acceptability threshold of .8, or at least .7 (Krippendorff 

1980; Rosé et al. 2008), is recommended in content analysis. Given that in Argunaut 

results are provided first to human teachers, who are aware of the possibility of 

possible misclassifications by the classifiers and the need to use their own judgment, 

a slightly more generous interpretation sufficient was considered. In particular, an 

acceptability threshold of .61 was adopted, which means, according to Landis and 

Koch (1977), an at least substantial agreement between a machine-learned classifier 

and a gold standard. 

The performance of the classifiers was estimated by cross-validating data from 

one discussion (i.e., the test set) against the data from the remaining discussions 
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(training set). Because data from one discussion was never in both the training and 

test sets simultaneously, statistical dependencies between training and test set were 

avoided, a problem often ignored and causing biased validation results. 

Figure 39 shows a screenshot of an experimental setup used within the 

RapidMiner toolkit to build a classifier for the dimension off-topic. The panel on the 

left ("Operator Tree") displays the processing pipeline of the experiment. The 

process starts with retrieving relevant data from a database. This step is governed by 

the DatabaseExampleSource operator, which runs a predefined SQL query to 

retrieve positive and negative examples described in terms of relevant attributes from 

the database. (The next operator, the ChangeAttributeType operator, is not relevant 

to the discussion here.) 

As mentioned above, the natural language processing toolkit TagHelper was 

integrated within RapidMiner. The corresponding TagHelper operator processes one 

particular attribute that represents the text of e-discussion contributions as an 

unstructured string (text). How TagHelper operates is governed by a number of 

options, displayed in the panel on the right in Figure 39. For instance, in the shown 

configuration, TagHelper uses stemming but no stopword filter, extracts unigrams, 

bigrams and part-of-speech bigrams, and generates attributes that indicate the overall 

text length and whether specific punctuation marks are contained in the text. 

TagHelper only considers words that occur at least ten times in the overall data set. 

Less frequent words are unlikely to be helpful for the classification task or may even 

cause noise. After generating the new attributes according to the just described 

specification, TagHelper discards the text attribute, which is of no use anymore.  

The BatchXValidation operator contains two inner OperationChains, which 

specify nested processes. The first operator specifies the process of building a 

machine-learned classifier from a training set. The second operator specifies the 

process of checking this classifier against a test set. The BatchXValidation operator 

partitions the incoming data set into n data batches, each containing the data of 

precisely one e-discussion. The BatchXValidation operator then iteratively builds 

and evaluates n machine-learned model, using a different e-discussion in each 

iteration as the test set, and the remaining n-1 e-discussions as the training set. In this 

specific instance, the machine-learning training process comprises three steps: (1) 

determining for each attribute a weight factor based on the χ² statistic 

(ChiSquaredWeighting operator), (2) removing all but the 100 best attributes 

(AttributeWeightSelector operator), and (3) applying a machine-learning 

algorithm (W-MultiBoostAB operator). The boosting operator itself uses internally 
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another machine learning algorithm, which is, in this specific case, a decision tree 

learner (W-J48 operator).  The performance is evaluated in each iteration by first 

applying the model to the test set (ModelApplier operator) and then checking which 

test examples are correctly and which ones incorrectly classified 

(ClassificationPerformance operator). The results of each iteration are 

condensed into an overall performance score, in this case, the κ statistic. The 

BatchXValidation operator aggregates the performance scores across all iterations 

into an overall performance estimate. 

 

 
Figure 39: Setup of machine learning experiment in RapidMiner. 

Essentially, similar experimental workflows for different machine-learning 

approaches were defined (i.e., different algorithms, attribute selection turned on and 

off) to determine which approach works best and at which performance level. The 

best classifiers that surpassed the a priori defined performance threshold were 

integrated in an online web service (Deep Loop), which could be invoked by teacher-

moderators through the Moderator's Interface. This web service was also integrated 

with the CASE engine to make machine-learned classifiers accessible in the LASAD 

system. 
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6.5 Machine Learning Experimentation 

This section discusses the results achieved for classifiers on two levels of analysis: 

node-level classifiers (section 6.5.1) and paired-node-level classifiers (section 6.5.2).  

6.5.1 Node-level classifiers 

The experimentation used a data-centric approach by encoding as much information 

as possible in attribute-value form, without considering the specific categories of 

interest, in hopes that the inference mechanism itself would focus on and use the 

most predictive attributes. Nodes were analyzed in terms of structural attributes 

(node and link types, incoming and outgoing links) and textual attributes (textual 

content of nodes extracted by TagHelper). Some attributes were dropped (e.g., 

number of in-links of type opposition) when initial machine learning experiments 

indicated they did not improve the results. The full set of attributes finally used for 

node-level machine learning is shown in Table 36. 

Table 36 

Attributes used in node-level machine learning experiments 

Type of attribute Specific attributes 

Structural Node type 

Number of undirected links  

Number of in-links  

Number of out-links 

Textual (derived 

using TagHelper) 

Unigrams: simple terms (equivalent to keyword search) 

Bigrams: consecutive terms (paired word phrases, such as ‘common 

denominator’) 

POS bigrams: part-of-speech bigrams (shallow syntactical structures, e.g. 

Noun-Verb, Adjective-Noun) 

Punctuation: Obviously, a question mark is a strong indicator of a question. 

Text Length: The overall text length of the contribution. 

Note: Adapted from McLaren et al. (2010). 

Originally, all of the categories shown in Table 34, p. 204, were targeted, but after 

initial machine learning experiments, both annotation efforts and machine learning 

experiments were concentrated on only two categories, Topic Focus and Reasoned 

Claim. The other three categories (i.e., Task Management, Request for Clarification, 

Intertextuality) led to weaker machine learning results in earlier experiments (i.e., κ 

values well under .60) most likely because of imbalanced class distributions and too 
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few examples for one class, two problems well known for their detrimental effects on 

machine learning (Japkowicz and Stephen 2002; Weiss 2004). All but one category, 

Reasoned Claim with a proportion of positive instances of 42%, showed an 

overwhelming majority of one class, with proportions ranging between 84% (the 

positive Topic Focus annotations) and more than 97% (the negative Intertextuality 

annotations). The lack of success in automated learning of some of the discarded 

categories may also be attributed to the “ill-definedness” of those categories; more 

specifically, while humans were able to consistently identify members of the 

categories, the key attributes of the categories may be too difficult for a 

computational approach to identify and/or use. 

 

       
Figure 40: Results obtained in node-level machine learning experiments. From McLaren et al. (2010). 

Figure 40 shows the results at the node level. Performances well above chance were 

achieved with all algorithms. Four of five Reasoned Claim classifiers surpassed the 

acceptance threshold of κ > .61. The best result was achieved using Boosted 

Decision Trees combined with attribute selection (κ = .66; 83.6%). Results for Topic 

Focus were somewhat lower: only the SVM classifier without attribute selection 

yielded acceptable results (κ = .62; 88.9%). 
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6.5.2 Paired-node-level classifiers 

The specific attributes used for the paired-node experimentation are shown in Table 

37. As with the node level, some attributes were dropped after initial machine 

learning experiments demonstrated that they did not improve results (e.g., the 

attribute representing the time elapsed between creation and first modification of the 

two involved shapes). Notice two key differences between this set of attributes and 

those of the node level (Table 36, p. 210). First, there are simply more attributes at 

the paired-node level. This is due to the greater structure involved at this level (i.e., 

the additional node, at least one link between the nodes, and the links associated with 

the additional node), as well as the additional text (i.e., two textual contributions 

instead of just one). Second, the paired-node level introduces the notion of temporal 

sequence. One node must have been created before the other, which is represented in 

the attribute data by the earlier node being designated Node 1, the later node as Node 

2. The temporal sequence often also implies interaction between students; whether 

different students created the two nodes is also captured as an attribute. Note, 

however, that any participant in a discussion can create the link between two nodes, 

meaning therefore that connected nodes do not necessarily imply interaction between 

students. In practice, however, the second student almost always creates the link to 

the first student’s node. 

Table 37 

Attributes used in paired-node-level machine learning experiments 

Type of attribute Specific attributes 

Structural Link type 

Both nodes created by the same user? 

Structural  

+ Temporal Sequence 

Link and node 1 [node 2] from same user? 

Shape type of node 1 [node 2] 

Link direction (undirected, from node 1 to node 2, from node 2 to node 1) 

Textual Combined text length of node 1 and node 2 

Difference in text length between node 1 and node 2 

Textual (TagHelper)  

+ Temporal Sequence 

Same as for the node level, as shown in Table 36 (i.e., unigrams, bigrams, 

POS bigrams, punctuation, text length), except applied both to node 1 and 

node 2 individually. Note that temporal sequence is implicitly introduced, 

since node 1, as well as all of its attributes, was created before node 2, 

and this ordering is then instantiated via the attribute names (e.g., 

node1_Textlength, node2_Textlength, etc.) 

Note: Adapted from McLaren et al. (2010). 
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As can be seen in Table 35, p. 205, all of the paired-node categories showed a 

substantial majority of one class, with proportions consistently larger than 71% 

(negative Contribution-CounterArgument annotations). Unlike the node level, all 

paired-node categories (i.e., Question-Answer, Contribution-CounterArgument, 

Contribution-SupportingArgument, Contribution-FollowedByQuestion) led to very 

promising early machine learning results and, thus, further efforts were concentrated 

on these categories. 

For the paired-node experiments, the same experimental setup was used as for 

node-level classifiers, again experimenting with algorithms that have performed well 

in past text classification tasks. As can be seen in Figure 41, all machine learning 

algorithms (except SVM without attribute selection) yielded (close to) acceptable 

results (i.e., κ > .59). Boosted Decision Trees proved to be the most effective 

machine-learning algorithms for two of the four best paired-node categories 

(Contribution-CounterArgument and Contribution-SupportingArgument) with κ 

values of .71 (88.5%) and .66 (86.7%), respectively. In a third category (Question-

Answer) Boosted Decision Trees and Decision Lists achieved a practically identical 

performance of κ = .78 (94.5% [Boosted Decision Trees] and 94.3% [Decision List]), 

outperforming the other three algorithms. In the fourth category (Contribution-

FollowedByQuestion) SVM with attribute selection performed best, reaching κ = .75 

(94.2%). 

            
Figure 41: Results obtained in paired-node-level machine learning experiments. From McLaren et al. 

(2010). 
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6.6 Discussion and Conclusion 

The results reported in this chapter show that machine learning is a promising 

approach to develop computational components able to automatically analyze 

important aspects of argumentation learning, or collaborative learning more 

generally. The presented approach is the first approach to analyze graphical 

pedagogical discussions using supervised machine learning. Empirical validation 

results indicated that the induced classifiers successfully identify qualitative aspects 

in e-discussions on two different levels—individual and paired contributions—based 

on a combined analysis of structural, temporal, and textual properties, despite the 

difficulty of an in part largely imbalanced class distribution, which is a known 

problem in machine learning research (Japkowicz and Stephen 2002; Weiss 2004).  

The total number of examples used for machine learning was not really small in 

absolute numbers (more than 1000 node-level and 700 pair-level examples), but for 

text categorization tasks, much larger document sets are often used to capture variety 

and resolve the ambiguities in natural language use (Sebastiani 2002). Yet, others 

were successful using similar numbers of examples as was done here for similar 

tasks. For example, Dönmez et al. (2005) used approximately 1250 instances, Ai et 

al. (2010) about 700 instances to induce classifiers for qualitative aspects of 

argumentative educational discussions. So the size of the corpus seems to be 

sufficient although more empirical evidence is needed to arrive at a more definite 

conclusion on that point (e.g., some variability in the number of instances can be 

expected depending on the specific analysis categories, discussion topic, student 

population, and other circumstantial conditions). Moreover, the Argunaut approach 

could capitalize on temporal and structural aspects of graphical e-discussions, which 

provide additional cues for the classification task. Interestingly, the paired-node level 

classifiers were, overall, more accurate than the node level classifiers, potentially 

because the paired-node level provides more structure that machine learning 

algorithms can exploit.  

In contrast to previous approaches (e.g., Rosé et al. 2008), Argunaut classifiers 

can operate in fully automated fashion, capitalizing on the pre-structuring inherent to 

discussion graphs. The approach builds upon state of the art machine learning 

technology, which is nowadays available in general-purpose toolkits, such as the 

here used RapidMiner (Mierswa et al. 2006), which is highly relevant from a 

practical perspective. The Argunaut analytic framework should be understood as just 

one example application. It was devised without taking any machine learning 

specifics into consideration to make the machine learning more feasible. Rather, the 
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approach is strictly oriented towards educational theory and practice. So there is 

good reason to believe that the machine learning approach easily transfers to other 

analytic frameworks targeted at discussion and argumentation activities.  

A notable restriction is that the Argunaut approach is limited to fixed structures, 

in particular, nodes and node pairs. The number of nodes and connected node pairs is 

typically relatively small in an e-discussion. Only in rare cases are there more than 

30 nodes and links (a link essentially defines a node pair). This makes it possible to 

enumerate all nodes and node pairs and apply classifiers in an exhaustive way. Of 

course, this is not possible anymore if one considers arbitrary clusters, such as chains 

of opposition of an arbitrary length (i.e., the cluster level of the Argunaut analytic 

framework). The reason is that the number of possible clusters is exponential in the 

number of nodes. So even in relatively small graphs, it is problematic to analyze all 

possible clusters due to limited computational resources. Moreover, the definition of 

attributes is more challenging on the cluster level, since one cannot rely on a given 

fixed structure (e.g., a first node and a second node of a node pair). Rather, one 

would have to base the attribute definitions on invariant cluster properties, that is, 

properties that can be defined in each cluster independent of the specific node and 

link configuration, such as the concatenated node texts or the majority node type 

within a cluster. Yet, such invariant aggregate attributes cannot represent the internal 

structure of a cluster, e.g., which specific node contains which piece of text. But 

exactly these structures might be the defining characteristics of a given cluster type. 

In summary, the machine learning approach used for nodes and node pairs cannot be 

easily transferred to the cluster level.  

In the context of the Argunaut project, my colleague Jan Mikšátko worked on an 

alternative approach, which uses heuristic search and graph-matching techniques to 

identify clusters similar to one or a small set of given model clusters that represent 

categories of the Argunaut analytic framework (Mikšátko 2007). Yet, this approach 

has its own shortcomings. First, the quality of the generalization is expected to be 

limited compared to machine learning, since only a few examples are considered 

rather than a representative set of examples. Second, the algorithm is designed as an 

information retrieval system that returns a ranked list of the best matches to the given 

model clusters. Currently, there is no way to decide how many of the results (if any) 

are really relevant with respect to the target category. So the algorithm is currently 

configured to always return the top five matches, no matter whether there are 

actually more or less relevant clusters in an e-discussion. 
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An important caveat in the presented approach is that the threshold of acceptance 

(κ = .61) is somewhat arbitrarily set. The only way to decide whether a classifier is 

good enough for practical use is practical use. Unfortunately, the Moderator's 

Interface, including the machine learned classifiers, was not ready for practical 

application before the final phase of the Argunaut project, leaving little opportunity 

to test the classifiers with real moderators in real classrooms. However, first results, 

anecdotal in nature, suggest that the classifiers may, in fact, help moderators to work 

more effectively and efficiently. In a study with one teacher, this teacher needed less 

time finding answers to her questions when the classifiers were available in the 

Moderator's Interface (Asterhan et al. 2008). Of course, to arrive at more definite 

conclusions, practical use on a larger scale in more rigorously controlled setting 

would be required. A different question is whether the performance is good enough 

to inform the automated generation of support for students without an intermediary, 

filtering moderator.  

Another observation is that the classifier performances decreased somewhat from 

the results achieved with earlier classifier versions—classifiers trained with only a 

subset of the final data corpus (McLaren, Scheuer et al. 2007). This is somewhat 

counterintuitive, since one would expect that classifiers improve in performance 

when more training data is available. In fact, the very definition of machine learning, 

as provided by Tom Mitchell (1997, p. 2; italics mine), is along these lines: 

"A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure P, if its performance at 

tasks in T, as measured by P, improves with experience E." 

However, the crucial point is that the "class of tasks T" may have changed by 

extending the set of examples. More specifically, data was collected in different 

countries (U.K., the Netherlands, and Israel), from different student populations 

(high school and University students), who discussed different topics (e.g., 

experiments on animals, or, the effect of ICT on learning experiences). So, by adding 

new data, the nature of the data corpus that the classifiers were trained on, and tested 

against, considerably changed. For instance, to analyze the off-topic category, not 

only topic-independent cues may play a role (e.g., an empty node is trivially off-

topic), but topic-specific terms are presumably important as well. Moreover, the 

discussion culture in different countries and the age of discussants might have a big 

influence on language use. For instance, Schler et al. (2006) found that the age and 

gender of bloggers have significant impact on their writing style and preferred 
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content. That is, a classifier trained with one student population might drop in 

performance when applied to other student populations that use language in a 

different way. In summary, by adding new data of a slightly different nature, the 

classification task potentially became more demanding for the classifiers, since they 

were expected now to analyze more heterogeneous data and patterns.  

The more general lesson is that classifiers are typically not universally applicable, 

but restricted to scenarios that are sufficiently similar to the training scenario. This 

has important consequences with respect to the costs and efforts of building 

intelligent analysis functionality based on machine learning. For some time past, the 

natural language processing community is investigating how existing classifiers can 

be transferred, at low cost, from their original domain to related new domains 

(Daumé III and Marcu 2006). Recently, CSCL research started to address the 

problem of context-dependent classification as well (Mu et al. 2012). 
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Chapter 7  

Summary of Results 

In the preceding chapters, results regarding the overarching research question "How 

to Design Adaptive Argumentation Learning Systems?" were discussed. Each 

chapter contributes to important aspect of argumentation system design, in particular, 

the user interface, architectures for automated analysis and adaptive support, and 

specific approaches to automatically analyze argumentation-learning activities. 

Building upon the current state of the art, more specific research questions for each 

partial aspect have been formulated and researched. Table 38 and Table 39 give an 

overview of the specific research questions, the approaches taken in this dissertation 

to address these research questions, and the results obtained. 

The first research question, addressed in Chapter 4, was concerned with the 

design of the graphical user interface of argumentation-learning systems. In 

particular, the question was whether the quality of student discussions could be 

improved by combining different approaches to structuring student learning 

activities. The two specific structuring elements used were argument diagrams (a 

knowledge representation approach) and sentence openers (a discussion scripting 

approach). The assumption that both approaches synergistically complement one 

another is based on the observation that each provides unique support on one specific 

level, namely the content level (diagrams support learners in better understanding the 

structure of and relations between arguments) and the social level (sentence openers 

support learners in engaging in fruitful argumentative discussions with others). 

Overall, skills on both levels must be combined to discuss a topic in a competent 

manner. Based on results from CSCL research, the FACT-2 collaboration script was 

developed, which defines, in a precise way, a learning process in which students 

analyze and discuss conflicting texts, supported through argument diagrams and a 

discussion script. An empirical study indeed showed that a full version of FACT-2, 

which involved both, diagrams and a discussion script, was superior to an ablated 

version of FACT-2, which only involved the diagrams but no discussion script. So 

the results suggest that students profit when argument-centered discussions are 

supported through a discussion script. Whether both levels of support reinforce one  
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Table 38 

Summary of research questions of the dissertation and obtained results (RQ1 and RQ2) 

Research 

question 

Approach Results 

(RQ1) 

Multilevel 

Scaffolding:  
"Does a user 

interface that 

integrates 

argument 

diagramming 

with a discussion 

script promote 

the quality of 

student-to-

student 

interaction and 

content learning 

more than each 

individual 

method?" 

FACT-2 script: 

 Student pairs analyze and 

discuss opposing texts 

 Analysis supported through 

argument diagrams 

 Discussions supported 

through role script 

(proponent and critic) and 

corresponding sentence 

openers 

 Student activities organized 

into a sequence of four 

activity phases to guide 

students through the process 

FACT-2 empirically tested against ablated 

script version without discussion script (i.e., 

roles and sentence openers): 

 Higher-quality discussions in terms of 

elaboration moves 

 Students assessed their learning of 

argumentation more positively 

Bottom line: Evidence indicating that 

students profit from scaffolding on multiple 

levels; open question regarding synergistic 

effects  

(RQ2) Adaptive 

Support 

Architecture: 
"How can a 

software 

architecture be 

developed to 

optimally provide 

adaptive support 

across different 

argumentation 

domains and 

learning 

scenarios?" 

CASE engine (overall design): 

 Software component that 

connects to argumentation 

learning systems over the 

network to deploy feedback 

agents (loose coupling) 

 Behavior of feedback agents 

highly configurable on three 

levels (patterns, messages, 

strategies) 

 Technical extension points 

to add new functionality 

programmatically 

 Graphical user interface to 

define and administer 

feedback agents online and 

in simplified fashion  

Demonstration of generality through 

application in four different applications with 

different requirements:  

 LARGO: support in analyzing legal 

argumentation protocols 

 Science-Intro: support in mapping out the 

structure of scientific papers 

 Metafora: support in collaboratively 

deliberating about math and science 

problems in a graphical discussion space 

 Argunaut: support in moderating 

graphical e-discussions about 

controversial ethical topics 

Small-scale evaluation study indicates 

promising results with respect to the graphical 

feedback authoring and administration front-

end 

Bottom line: Proof-of-concept of a technical 

design and user interface to easily customize 

adaptive support according to domain- / 

scenario-specific requirements 
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Table 39 

Summary of research questions of the dissertation and obtained results (RQ3 and RQ4) 

Research 

question 

Approach Results 

(RQ3) Pattern 

Definition 

Mechanism: 
"How can a 

pattern search 

component be 

developed to 

optimally support 

the definition of 

patterns across 

different 

argumentation 

domains and 

learning 

scenarios?" 

CASE engine (pattern 

mechanism): 

 Utilizes a rule-based engine to 

model diagrams and search 

for patterns 

 Data model allows the 

definition of domain patterns 

and collaboration patterns 

 Support of different pattern 

languages (Jess and XML) 

 Graphical language to specify 

patterns in a graphical user 

interface 

Demonstration of generality through 

application in four different showcase 

applications with different requirements (see 

RQ2 – Results) 

Small-scale evaluation study indicates 

mixed results with respect to the ease of use 

of the graphical pattern language (most 

difficult aspects of user interface), 

suggesting that especially technical novices 

may need more extensive training, e.g., in 

concepts of logics  

Bottom line: Proof-of-concept of a 

configuration mechanism and graphical 

language to flexibly define patterns, which 

does reduce but not eliminate the 

complexities inherent to the concept of 

patterns 

(RQ4) Pattern 

Induction 

Mechanism: 
"Can supervised 

machine learning 

techniques be 

successfully used 

to automatically 

induce 

computational 

models that 

identify 

important 

qualitative 

aspects in 

graphical e-

discussions?" 

Argunaut machine learning 

approach: 

 Two levels of analysis: nodes 

and node pairs 

 Creating a data corpus by 

hand-coding of graphical e-

discussions according to a 

newly developed analytic 

framework 

 Representing examples in 

terms of linguistic, structural 

and temporal properties 

 Machine-learning 

experimentation with state of 

the art algorithm that have 

been successfully used in the 

past to analyze verbal data 

 Selection and deployment of 

classifiers that surpassed a 

given performance criterion 

Validation results show that approach is 

feasible, even with an only moderately large 

data corpus: 2 node-level and 4 paired-node-

level classifiers surpassed the performance 

threshold (but addition tests are needed to 

check whether threshold is appropriate) 

By design, classifiers can be used fully 

automatically in practical settings, that is, no 

additional human or automated 

segmentation required 

Identification of limitations with respect to 

analyzed structures (restricted to fixed-size 

structures) and classifier generality 

(performance loss when training and 

application contexts differ) 

Bottom line: First approach in CSCL to 

induce classifiers from graphical e-

discussions data to automate the application 

of an analytic framework 
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another (i.e., operate synergistically) is up to future research to explore. Some first 

anecdotal evidence points in this direction. Despite the fact that FACT-2 proved to 

be successful compared to a somewhat simpler approach, there is one major 

drawback that FACT-2 shares with the vast majority of other CSCL scripting 

approaches, namely its static nature. That is, all students undergo exactly the same 

procedure, independent of their individual knowledge and skill level; the overall 

quality of their discussion, collaboration, and problem solving; their progress; and 

specific problems they encounter. Static approaches are not able to respond to 

individual differences, nor do they account for the dynamics of collaboration and 

learning processes. It has been noted that the very idea of providing a scaffold also 

eventually entails fading of the scaffold in order to gradually transfer competencies 

to increasingly independent learners (Pea 2004). Others pointed out that provided 

structures may get in the way of learning and interfere with already existing internal 

(mental) scripts (Dillenbourg 2002; Fischer et al. 2013). All in all, it would be 

desirable to adapt support to the actual needs, or to provide support only on a by-

need basis. The topic of adaptation and automated analysis was addressed with the 

other three research questions. 

A first technical challenge in imbuing argumentation-learning systems with 

automated support is how to design a software architecture for adaptive support 

(research question 2 addressed in Chapter 5). A number of (even if not many) 

adaptive argumentation systems exist and all of these systems must implement some 

technical solution to providing adaptive support. Rather than developing just another 

solution in fulfillment of particular objectives of a particular scenario, the second 

research question was how to design a more general software architecture, or 

software framework, that can be flexibly used to provide support across a whole 

range of argumentation domains and learning scenarios. The approach taken was to 

review what is implemented in existing systems, to design a general software 

framework that is principally flexible enough to mimic the functioning of the given 

systems, and to devise a configuration framework that allows customizing the system 

behavior according to specific requirements. The result of this effort is the CASE 

engine, a highly configurable and extensible software component to provide adaptive 

support for argument diagramming activities. The CASE engine allows defining 

feedback agents in terms of patterns, messages, and strategies, and deploying these 

feedback agents to learning sessions. Four showcase applications demonstrated the 

breadth of the CASE engine, addressing different argumentation domains (the Law, 

science, group deliberation, ethical debates), involving different learning activities 

(argument analysis, argument planning, argumentative discussions), supporting 
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different learning objectives (domain-specific argumentation structures, 

collaboration processes), and employing different approaches to automated analysis 

(expert-defined patterns, machine-learned classifiers). Finally, a graphical user 

interface that allows defining and controlling feedback agents online and in 

simplified fashion was developed. A small-scale evaluation study showed that users 

generally appreciated the CASE Feedback Authoring Tool, found it well designed 

and easy to use. The CASE engine, as the first system of this kind, provides a proof 

of concept for providing adaptive support for argumentation-diagramming activities 

across scenarios and domains. 

Along with the development of the CASE engine, another research question 

related to the previous one was addressed in Chapter 5. In particular, to adaptively 

support argument diagramming, a system must be able to analyze the student-created 

diagrams in order to diagnose possible problems or to generate hints regarding 

possible next steps. In accordance with the objectives of the overall CASE engine, an 

approach was needed to flexibly define patterns in diagrams across different domains 

and scenarios. To continually model the current state of diagrams and to apply 

pattern-identifying analysis rules to spot noteworthy situations, a rule engine—more 

specifically, the Jess engine (Friedman-Hill 2003)—was employed. This mechanism 

to identify patterns was integrated with the overall CASE configuration framework, 

that is, it was now possible to specify declarative pattern definitions in XML files 

and make use of these patterns in feedback agents to generate feedback messages. 

The four showcase applications discussed above also demonstrated the generality of 

the pattern definition approach. To make the pattern definitions accessible to 

technical novices, who are typically not able or willing to program production rules, 

a graphical language was devised and integrated within the graphical user interface 

of the feedback-authoring tool. This graphical language allows users to conveniently 

define the structure of patterns by creating LASAD diagrams; the resultant pattern 

specifications are automatically translated into operational production rules. This 

novel approach—I am not aware of any equivalent approach—was also empirically 

evaluated. It turned out, not surprisingly, that the definition of patterns, even if 

supported through a graphical language, poses a stiff challenge to users, particularly 

when they are not formally trained in logic and programming. Nevertheless, the 

results were overall encouraging, given that study participants did not have much 

opportunity to familiarize themselves with the CASE Feedback Authoring Tool and 

learn how to use it. More research is clearly needed to find ways to further support 

and facilitate this demanding task. 
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Finally, many patterns of interest cannot easily be defined by hand. For instance, 

some patterns are too complex, while for other patterns humans simply do not know 

how to describe them in a formal, computer-understandable way. Rather than taking 

a top-down, knowledge engineering approach, a viable alternative may be to take a 

bottom-up, data-driven approach. In particular, machine learning can be used to 

induce patterns automatically from data. So, the final research question, addressed in 

Chapter 6, was how feasible such an approach is, and, more specifically, whether it is 

possible to automate an existing analytic framework for graphical e-discussions 

through supervised machine learning. Within the Argunaut project, pedagogical 

experts coded e-discussion data using a multi-dimensional analytic framework 

specifically devised for that purpose. The resultant data corpus was used as input to 

machine learning experiments with a range of different attribute sets, machine 

learning algorithms, and parameter settings. The experiments addressed the node 

level and paired-node level. The attribute space was defined in terms of linguistic, 

structural, and temporal properties. The validation results showed the high potentials 

of a machine learning approach to analyze graphical e-discussions. Two node-level 

and four paired-node level classifiers, induced from a moderately sized data corpus, 

yielded satisfactory or better results. So the research question can be answered 

affirmatively. The approach provides a proof of concept and a potential model for 

future approaches to the automation of analytic frameworks for argumentation. Also 

two important limitations pointing to potential areas of future investigation were 

discussed: First, the approach is restricted to predefined, fixed-size structures (nodes 

and node pairs). Second, classifiers may drop in performance when applied in 

contexts different to the training context. 
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Chapter 8  

Computer-Supported Argumentation: 

Theoretical and Practical Aspects 

This chapter puts the results of this dissertation into a larger context. Potential 

benefits and limitations of different design options for the implementation of 

argumentation learning systems are summarized and discussed. Both, theoretical 

considerations and empirical results—obtained from this dissertation and previous 

research—are addressed. The discussion will give consideration to educational 

aspects (i.e., effects on learning processes and outcomes), computer science aspects 

(i.e., techniques for the computational analysis and support of learning processes), 

and practical aspects (e.g., development costs, risks, prerequisites, and application 

scope). Places where additional research is needed are identified. While section 8.1 

focuses on non-adaptive guidance approaches based on discussion scripts and 

representational tools, section 8.2 addresses the issue of supporting argumentation-

based learning activities through automated analysis and adaptation techniques. 

8.1 Representational and Script-based Guidance 

The design of argumentation learning user interfaces has a major impact on whether 

argumentation processes and learning are effectively supported or not. The different 

approaches to argumentation user interfaces can be broadly classified as discussion 

scripting approaches (i.e., structures imposed on the communication between 

students) and knowledge representation approaches (i.e., structures imposed on 

argument representations students create). The learning arrangement developed as 

part of this dissertation (see Chapter 4) combines both of these approaches in a novel 

way. 

This section synthesizes the current state of the art with respect to non-adaptive 

user interfaces; the main points of this discussion are presented in Table 40, p. 229. 

First, insights regarding discussion scripts (as a form of social scaffolding) and 

representational tools (as a form of representational scaffolding) are discussed 

separately (subsection 8.1.1 and subsection 8.1.2, respectively). Then, the issue of 
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combining representational and social scaffolds is addressed (subsection 8.1.3). More 

advanced solutions for supporting argumentation learning involving adaptive and 

intelligent technologies, which may be used to enhance the non-adaptive user 

interfaces addressed in this section, will be discussed in section 8.2. 

8.1.1 Discussion scripting  

A discussion script is a pedagogical approach to support students in leading 

discussions in productive ways. There are different approaches to supporting 

discussions, for instance, procedural instructions, role assignments, prompts, and 

structured communication interfaces, which sentence openers is one possible 

implementation of. These different methods may be combined, for instance, by 

assigning roles and supporting these roles with corresponding sentence openers, 

which is the approach investigated in this dissertation (see Chapter 4).  

This section focuses on structured discussion interfaces. The sentence opener 

approach, which was used in this dissertation, will serve as a leading example. 

Where appropriate, related approaches will be considered as well, e.g., the form-like 

discussion interface used by Stegmann et al. (2007, 2012) and Weinberger et al. 

(2010). Generally, discussion scripts are instances of collaboration scripts. Hence, 

the results discussed in this section may also be seen from the more general 

perspective of collaboration script research. 

Subsection 8.1.1.1 revisits the script theory of guidance (Fischer et al. 2013) as a 

possible theoretical framework to account for effects of discussion scripting. It 

applies the script theory to the approach used in this dissertation (see Chapter 4) to 

exemplify aspects of the script theory in relation to discussion scripts. The following 

subsections review empirical results regarding the effect of structured discussion 

interfaces on the discussion quality (subsection 8.1.1.2), the learning of discussion 

skills (subsection 8.1.1.3), and the learning of subject matter content (subsection 

8.1.1.4). The remaining subsections discuss miscellaneous issues, in particular, how 

group and process awareness may profit from script elements (subsection 8.1.1.5), 

the potential misuse and non-use of script elements (subsection 8.1.1.6), and 

adaptable discussion scripts (subsection 8.1.1.7). Subsection 8.1.1.8 summarizes the 

main points of this section.   
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Table 40 

Analysis of approaches to the user interface design of argumentation learning systems 

Approach Benefits Limitations 

Discussion 

scripting 
(sentence 

openers; 

pre-

structured 

input 

fields) 

educational benefits 

 encourages / enforces use of high 

quality discussion moves 

 makes intention of discussion moves 

explicit, thus, increases group and 

process awareness 

 evidence for improved discussion 

quality (task-focus, critical moves, 

evidence and reasons, elaboration) 

 transfer of practiced discussion 

moves to unsupported situations 

plausible (but no direct evidence) 

implementation benefits 

 relatively low development costs for 

new settings once a general 

technological infrastructure exists 

 applicable to support many different 

scenarios (e.g., discussion types) 

 makes discussion move semantics 

accessible to automated analyses 

educational limitations 

 may be misused by students 

 may be ignored by students 

 may inhibit / conflict with students' 

own approaches to argumentation 

(internal scripts) 

 may cause unnecessary load if students 

already competent in targeted behavior  

 mixed evidence with respect to the 

learning of subject matter content  

 

 

implementation limitations 

 medium costs of iterative testing to 

avoid usability problems (e.g., to 

ensure that sentence openers are well 

understood, provide a sufficient variety 

of choices, and are in line with 

pedagogical objectives) 

Represent. 

guidance 

(argument 

diagrams) 

educational benefits 

 makes argument structure visible 

 ontologies encourage reflection on 

basic concepts of argumentation 

 helps systematically explore the 

space of debate 

 facilitates evaluation of arguments 

 serves as resource and stimulus in 

discussions 

 evidence for improved process 

characteristics (content co-

elaboration, inference making) 

 evidence for gains in reasoning skills 

(arg. analysis, causal inferences, crit. 

think., policy deliberation, legal arg., 

analysis of hist. controversies) 

implementation benefits 

 relatively low development costs for 

specific settings once a general 

technological infrastructure exists 

 applicable to support many different 

domains and scenarios 

 clear semantics accessible to 

potential automated analyses 

educational limitations 

 may be hard to build and understand (if 

ontology is complex) 

 becomes unwieldy when modeling 

large, complex, and highly interrelated 

argumentative content areas 

 students might lose a shared focus, i.e., 

students work independently, build 

their own "argument islands" 

 requires considerable student efforts to 

maintain readability (e.g., systematic 

organization of contents) and modify 

existing structures once a diagram 

reaches a considerable size 

 mixed evidence with respect to the 

learning of subject matter content 

implementation limitations 

 medium costs of iterative testing to 

avoid usability problems (e.g., to 

ensure that ontology is well 

understandable and in line with 

pedagogical objectives) 
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8.1.1.1 Script theory of guidance 

From a theoretical perspective, one may employ the script theory of guidance 

(Fischer et al. 2013) to explain the positive effects discussion scripts, such as 

sentence openers, may have. According to the script theory, learners typically have 

already basic knowledge about collaboration and discussion practices. For instance, 

an assumption of the approach presented here is that learners are already able to 

perform basic discussion moves, such as presenting claims, supporting claims with 

arguments, backing arguments with evidence, and questioning claims and arguments 

of other discussants. In terms of the script theory, knowledge about these basic 

discussion moves is present in form of scriptlets in the learners’ mental 

representations of collaboration knowledge. These mental representations may be 

seen as internal collaboration scripts (Fischer et al. 2013), as opposed to external 

scripts that are used to influence collaboration and discussion behavior from the 

outside. Yet, while the basic constituents of good discussion practice are often 

available to learners, they may be lacking knowledge on a higher level. For instance, 

despite the fact that learners know the basic moves, they may nevertheless not apply 

these moves when engaging in discussions. What may be missing is knowledge 

about which specific moves are important in a particular situation to productively 

engage in a particular type of discussion. The script described in this dissertation (see 

Chapter 4) assigns to each learner two roles each pooling behaviors essential in 

critical discussions: being proponent and being constructive critic. The proponent 

role comprises moves aimed at elaborating on ideas and arguments (e.g., providing 

explanations, arguments, and evidence; connecting different points made before; and 

developing ideas further). The critic role involves moves aimed at questioning and 

critically examining ideas and arguments (e.g., considering alternative positions and 

explanations; identifying logical inconsistencies, the absence or insufficient quality 

of reasons; and taking counterarguments and opposing evidence into account). Thus, 

in terms of the script theory, sentence openers constitute scriptlet scaffolds that tell 

learners which basic moves are important with respect to the two roles. The goal of 

these scriptlet scaffolds is to activate corresponding internal script components; 

corresponding moves can then be performed by the learner independently. An aspect 

not addressed in the script theory is the possibility that basic skills are there but in a 

rather undeveloped form. So by activating internal script components, sentence 

openers also create opportunities to practice and, thus, refine basic discussion skills. 

On another level, the script conveys to learners that the behaviors represented by 

these two roles are important to engage in a critical discussion. That is, the script also 

conveys information regarding higher-level script components, in particular, 
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information about the play critical discussion (a play scaffold) and about the roles 

proponent and critic (a role scaffolds).  

The empirical results obtained suggest that the script was successful in activating 

internal script components that raise the quality of discussion, as indicated by higher 

levels of elaboration (external script guidance principle). The improved discussion 

quality also indicates that the script did provide support at the “right” level, i.e., a 

level that potentially leads to the acquisition of knowledge (optimal external 

scripting level principle). According to the script theory, sustained engagement in 

initially unfamiliar practices—which high-quality critical discussions may have been 

for participants of the presented study—leads to the development of higher-level 

internal script components (internal script induction principle). Therefore, the 

scripted learning activity may have contributed to improved discussion skills. The 

presented results did not provide direct evidence for such improvements, since this 

aspect was not directly tested for. However, improvements of the discussion quality 

during the intervention and positive self-assessments regarding argumentation 

learning suggest that positive effects on discussion skills are at least plausible. 

According to the script theory, CSCL practices that are transactive in nature (i.e., 

involve the reasoning on the reasoning of others) are assumed to lead to improved 

learning of the content elaborated during the CSCL practice (transactivity principle). 

The critical discussions fostered by the script certainly fall into the category of 

transactive CSCL, so it is plausible that learners also profited in terms of knowledge 

gains of discussed contents. While the presented study did not find significant 

differences in terms of detailed factual knowledge, students may have profited in 

terms of a better understanding of the space of debate (Baker et al. 2007), that is, 

knowledge about the relationships between the positions, claims, arguments, values, 

etc. relevant to the controversy of climate change—a kind of knowledge not tested 

for in the study.  

Two potential pitfalls when employing discussion scripts follow from the script 

theory of guidance. First, discussion scripts might be too restrictive and hinder 

students to make use of effective internal script components. For instance, if students 

are forced to choose from a limited set of given sentence openers they may be 

prevented from applying other high-quality discussion moves available in their 

internal repertoire. Even if the use of sentence openers is not mandatory, their mere 

presence in the user interface may already inhibit the activation of internal script 

components and thus reduce chances that certain high-quality discussion moves are 

produced. For instance, students may too strongly focus on complying with the given 

script or feel not authorized to diverge from it. Second, students may already be 
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competent in behaviors targeted by the external script. That is, they may use 

appropriate critic and proponent moves even without sentence openers being 

available. In this case, sentence openers may impair students' performance by 

causing distraction, unnecessary (e.g. cognitive) load, and demotivation, e.g., when 

students feel patronized.  

The favorable outcome of the presented study show that the two potential 

pitfalls—interference with effective internal script and extraneous cognitive load— 

apparently played only a minor role, if any, in the presented arrangement. However, 

the presented intervention was applied for a relatively short amount of time. The two 

potential pitfalls may gain relevance for more long-lasting interventions. In general, 

if an external script is effective, students will, at some point, not be fully depending 

on this script anymore. They will internalize script components and develop own 

effective approaches to discussion. To prevent the two discussed pitfalls, it might be 

helpful to gradually reduce the level of support over time (i.e., fading the scaffold; 

Pea 2004). How this can be realized with sentence openers is an open question. For 

instance, suddenly taking sentence openers away during a discussion would be 

confusing for students and may be misinterpreted as a prompt to not use this kind of 

discussion move anymore. Therefore, such kinds adaptation may be most appropriate 

between sessions rather than within sessions. Alternatively, students may be made 

aware of the reasons for the presence and the fading of structuring elements to avoid 

confusion and wrong interpretations. 

8.1.1.2 Effects on the discussion quality 

Probably the main goal of sentence openers is to indicate to students which kinds of 

discussion moves are particularly appropriate. Thereby, sentence openers encourage 

students to also use these high-quality discussion moves at a higher rate. This 

assertion is strongly supported through the body of empirical evidence, which shows 

improved discussion quality in terms of task focus, critical moves, evidence, reasons, 

and elaboration depth and breadth (Baker and Lund 1997; Nussbaum et al. 2002; 

McAlister et al. 2004; Oh and Jonassen 2007). Also the results reported in this 

dissertation (see Chapter 4) contribute to this body of evidence, showing that 

students make more extensive use of elaboration moves when supported through 

sentence openers (elaboration moves used here as an umbrella term for all the 

characteristics of quality discussions mentioned above). In a similar vein, it has been 

shown that form-like discussion interfaces that explicitly prompt students to specify 

claim, ground, and qualification for each posted message have positive effects on the 

quality of arguments (Stegmann et al. 2007, 2012; Weinberger et al. 2010). All in all, 
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these results demonstrate that structured discussion interfaces, utilizing sentence 

openers or other forms of structuring, can be effective in achieving one of their main 

objectives—to improve the quality of the discussion process. 

8.1.1.3 Effects on the learning of discussion skills 

The ultimate goal of discussion scripts, such as sentence openers, is that not only 

students' performance during the intervention is improved, but also that improved 

behaviors are internalized, maintained, and transferred to situations in which no 

external script is available. Here, the effect of discussion scripts is still unclear due to 

a lack of studies that explicitly tested for transfer effects. A few studies, however 

focused on other scripting approaches, tested whether training effects transfer into 

unsupported practice. For instance, Rummel and Spada (2005) showed that positive 

collaboration behaviors, supported through a collaboration macro script, transfer into 

an unsupported application phase. Dyke et al. (2012) tested whether students who 

were supported during an intervention through adaptive prompts showed improved 

behaviors in a subsequent classroom discussion. Interestingly, while Dyke et al. 

(2012) did not find significant process improvements for supported students during 

the intervention, they identified positive effects on learning gains and on 

participation in the unsupported classroom discussion. Hence, there may also be 

similar transfer effects for sentence openers, which have been shown to considerably 

influence discussion quality already during the intervention. Moreover, while not 

testing for transfer in terms of discussion quality, some studies found that students 

benefited from discussion scripts in terms of knowledge about formal qualities of 

good argument and argumentation sequences (Stegmann et al. 2007, 2012; 

Weinberger et al. 2010). In a similar vein, students' self-reports in the study 

presented here indicated that scripted students assessed their learning success with 

respect to argumentation knowledge and skills more positively compared to 

unscripted students.  

In general, one should be careful in terms of what can be realistically expected in 

terms of measurable transfer. The intervention time in empirical studies is typically 

rather limited, maybe one, maybe a few experimental sessions. So the question is 

how much influence such a short-term intervention can have on complex higher-

order skills, such as argumentation, which typically need years to develop (Osborne 

et al. 2004; Van Gelder 2005). Although one cannot expect that learners become 

high proficient arguers (i.e., ones producing arguments with high persuasive power 

or exhibiting sophisticated strategic argumentation skills), it should at least be 

possible to identify quantitative changes in the supported behaviors if the script is 
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successful (e.g., more grounded and less bare claims without considering the quality 

of individual grounds). Such behavioral changes should not require extensive 

experience and deep understanding of argumentative practice but rather basic 

knowledge regarding which kinds of moves are important and appreciated. 

According to the script theory of guidance, learners may already be able to produce 

these basic moves themselves in more or less elaborated form and only need support 

in activating these existing behavioral components. Moreover, once learners 

recognize the importance of using these basic components to engage in fruitful 

discussions and permanently change their discussion behavior, new learning 

opportunities arise to bring these basic components to greater maturity, enabling 

learner, e.g., to produce arguments of higher logical and rhetorical quality.  

In summary, the issue of transfer to unsupported situations remains an open issue, 

and likewise the issue of more general transfer with respect to other discussion 

situations, domains, or topics. It would be important to explicitly test for transfer 

effects of discussion scripting, and also to investigate the issue on a more 

longitudinal basis. 

8.1.1.4 Effects on subject matter learning 

Another issue that certainly needs more investigation is whether domain knowledge 

learning can be effectively supported. A number of studies did not show significant 

advantages for structured discussion interfaces in terms of domain knowledge 

acquisition (Oh and Jonassen 2007; Stegmann et al. 2007, 2012; dissertation results 

reported in Chapter 4). In contrast, other research shows that structured discussion 

interfaces can have such positive effects (Weinberger et. 2005; Weinberger et al. 

2010). Stegmann et al. (2012) found some indirect evidence for improved acquisition 

of domain knowledge through discussion script. Scripted students engaged more in 

cognitive elaboration processes during the intervention (measured through a think-

aloud protocol) and cognitive elaboration was, in turn, positively correlated with 

domain knowledge acquisition (measured in a post-test).  

Generally, the kind of knowledge one wants to promote and expects to improve 

through high-quality discussions—deep and conceptual understanding in a 

knowledge domain (Asterhan and Schwarz 2009)—is generally difficult to measure 

in a standardized way. In a good discussion, students may come up with novel and 

unique ideas that can hardly be anticipated in a standardized test. Also, different 

student groups may explore different aspects of a given space of debate if the topic is 

formulated sufficiently broad. So the absence of clear results in this respect may be 
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due to problems in measuring effects rather than in achieving effects through 

discussion scripts. Addressing the problem is up to future research, e.g., by 

developing and validating content analysis approaches for open, essay-style answer 

formats.  

An alternative or complementary explanation for the absence of direct positive 

effects is that external scripts put addition load on the students (Fischer et al. 2013). 

While trying to comply with a script, students may have less mental resources 

available to process subject matter content. The effective learning time may be 

reduced and less content be covered since some time must be spend on getting to 

grips with the script. Indeed, some research shows that, while scripting has positive 

effects on argumentative knowledge elaboration, it may reduce the number of task 

aspects covered and impair task performance
12

 (Weinberger et al. 2010). So, while 

improving collaboration and argumentation skills, there is the danger that students 

fall short on improving their content knowledge. Positive in this respect is that, in the 

study reported here (see Chapter 4), scripted students did at least not perform worse 

than unscripted students. Hence, while potentially supporting the learning of domain-

general skills, the script did perceivably not impair the acquisition of domain-specific 

knowledge. The results of Weinberger et al. (2010) show that process advantages 

induced by a script (improved argumentative knowledge elaboration) can even over-

compensate possible process losses (reduced task coverage and task performance), as 

indicated by improved learning gains compared to unscripted students. Moreover, 

even if immediate advantages in terms of content knowledge are not achieved, it can 

be expected that the acquisition of content knowledge will be accelerated in future 

discussions when students can capitalize on their improved collaboration and 

argumentation skills.  

8.1.1.5 Group and process awareness 

Sentence openers may not only clarify the expectations regarding how to conduct 

productive discussions and provide guidance for the process. Rather, they can also be 

employed to make the intentions of past discussion moves explicit in the discussion 

trace, thus, helping students to create and maintain awareness about the discussion 

process (Bodemer and Dehler 2011; Weinberger 2011). In the study reported in this 

dissertation (see Chapter 4), colors have been used to highlight proponent and 

                                                        
12 In the Weinberger et al. (2010) study, task performance and argumentative knowledge elaboration 

were treated as two separate constructs. Task performance refers to the adequate application of 

knowledge to solve a given problem case. Argumentative knowledge elaboration refers to the 

frequency of warranted and qualified claims.  
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constructive critic moves in the chat, so students can get an immediate idea of what 

other discussants want to express. Moreover, they can see, at a glance, to what extent 

each discussant recently used specific move types (e.g., critical moves). Overall, 

awareness of individual discussion styles may improve, since one can see, and 

roughly approximate, the type of moves each participant prefers. Increased 

awareness may provide "tacit guidance" to students (Bodemer and Dehler 2011), 

leading them to self- and co-regulate their behaviors in order to improve the quality 

of the discussion. The high intra-class correlation reported in this dissertation (see 

Chapter 4) may be explained based on an increased group awareness induced by 

sentence opener highlighting. Students may have felt more obliged or motivated to 

use sentence openers when seeing that their partner did so as well. Seemingly, 

awareness of the partner's sentence opener use rate influenced their own use rate. 

However, this mutual attunement cuts in both directions. While some dyads 

converged towards a high-level use rate, other dyads stagnated at a low level of use.  

An important future research question is whether and how systems should also 

provide explicit guidance (e.g., by providing direct, e.g., textual, feedback regarding 

a desired mode of discussion), rather than simply mirroring awareness information 

(Soller et al. 2005). Yet, while more explicit forms of guidance have a lower demand 

on students' self-regulation competencies, they also give students less opportunity to 

practice self-regulation. Moreover, explicit guidance runs danger to be perceived as 

annoying and interruptive by students. In this respect, providing tacit guidance 

through awareness support (e.g., highlighting based on the use of sentence openers) 

may constitute a healthy “middle ground” (Buder and Bodemer 2008) between no 

guidance and explicit guidance: Learners may keep aware of important features of 

their collaboration, including possible problems. Yet, the provided information is 

delivered in an unobtrusive way, without interfering with the process or depriving 

students from regulating their learning themselves.  

As a third option, awareness information may be provided in more explicit, yet 

still unobtrusive form. Soller et al. (2005) make a distinction between mirroring 

systems, and metacognitive tools. Mirroring systems display basic information about 

the collaboration process as is; the highlighting of sentence openers in the approach 

presented may be characterized as a mirroring approach. Metacognitive tools further 

enrich this information about the actual state with information about a target, or 

desired, state. For instance, a visual meter may represent the ratio between critic and 

proponent moves on a scale between consensus-orientation and conflict-orientation. 

Ratios in the middle range may be color-coded as desirable (green), while ratios at 
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the extremes of the scale may be color-coded as unhealthy (red) [for a similar 

approach, see Soller et al. (2005), figure 3, in reference to Jermann (2004)]. 

8.1.1.6 Use and misuse of script elements 

A possible disadvantage of sentence openers is that students might misuse them and 

select sentence openers that do not adequately represent the intentions of messages 

(Soller 2001). In particular, when students are forced to select sentence openers 

while composing new contributions and none of the available options is appropriate 

for their needs, they may feel tempted to just select some sentence openers, no matter 

whether it fits the sentence or not. Conversely, when students can freely choose 

whether or not to use a sentence opener, they may disregard sentence openers with 

the consequence that the discussion script cannot take effect (Lazonder et al. 2003). 

That is, the potential benefits described above cannot be fully realized.  

Yet, even if students do not use sentence openers, they may nevertheless benefit 

from the presence of sentence openers in the user interface. Sentence openers can be 

seen as permanently present reminders of what counts as legitimate and good 

discussion moves. For instance, in the FACT-2 (see Chapter 4), sentence opener 

buttons displayed typical proponent and critic moves in the chat interface, reminding 

students of their roles and associated behaviors. To ensure that students use, or at 

least orient themselves towards the given script elements, it is important to carefully 

design and test sentence opener interfaces. 

In the study presented here, there was virtually no misuse of sentence openers 

and, overall, a reasonable rate of use, indicating that the design of the sentence 

opener interface was appropriate for its purposes. Another result was that student 

dyads largely differed in terms of use rates. While some dyads made heavy use of 

sentence openers, others did not make much or any use of them. Such group-

dependent differences show that the used one-size-fits-all approach may be 

appropriate for most but not all dyads. So the application of adaptation techniques, 

discussed below, may be considered to provide additional support to dyads that do 

not follow the script. 

8.1.1.7 Adaptable discussion scripts 

An alternative to adaptive support in using a script may be to give students the option 

to adjust the level of structuring themselves (i.e., adaptable scripts; cf. Fischer et al. 

2013). For instance, before starting the discussion on the actual topic, students may 

negotiate the rules of their discussion. As part of this negotiation, students may 
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discuss which discussion moves (and corresponding sentence openers) can be 

considered most productive to resolve a given issue. Through such kind of 

discussion, students may gain important insights about argumentation, for instance, 

that it is essential to provide reasons for one’s claims, that evidence is important to 

substantiate arguments, or that critical questions can help identify reasoning bugs and 

may lead to a deeper understanding of subject matter content.  

A similar approach has been used, for instance, by Wegerif et al. (1999). An 

important component of their intervention program was classroom sessions in which 

students discussed and agreed on ground rules for fruitful argumentation. The 

resultant ground rules were then put in big letters on the classroom wall to be 

permanently accessible to students. In computer-mediated discussions, sentence 

openers may take a similar role by materializing the rules students agreed on. That is, 

based on their agreement, students may configure the sentence opener interface 

themselves by choosing the move types they deem most important and the specific 

formulations they prefer. Besides the pedagogical value that such activities may have 

in themselves, students may become more inclined to actually use sentence openers. 

First, they may have gained a better understanding of the purpose and application of 

specific sentence openers. Second, they may be more comfortable using sentence 

openers that correspond with their personal preferences. Third, they may feel 

committed to follow the rules they explicitly agreed on with their partner. An 

interesting question is then whether the negotiation about discussion rules and 

sentence opener itself can be supported and guided in some way, e.g., to ensure that 

representatives of the most critical categories, such as arguing and counter-arguing, 

are ultimately included. 

8.1.1.8 Summary 

The results clearly show that discussion scripts can positively influence the quality of 

discussion processes (Baker and Lund 1997; McAlister et al. 2004; Nussbaum et al. 

2002; Oh and Jonassen 2007; Stegmann et al., 2007, 2012; Weinberger et al. 2010). 

The recently proposed script theory of guidance (Fischer et al. 2013) provides a 

powerful tool to explain and predict positive and negative effects of specific 

collaboration scripts, including discussion scripts. In terms of argumentation 

knowledge and skills, it has been shown that students benefit from discussion scripts. 

For instance, students performed better in post-test tasks in which they had to name 

the typical components of an argument or construct an argument as complete as 

possible (Stegmann et al. 2007, 2012; Weinberger et al. 2010). Yet, while this 

indirect evidence makes it plausible that students will also perform better in future 
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discussions, a direct empirical proof of such transfer effects is still pending. With 

respect to domain knowledge learning, there was no discernible effect in a number of 

studies despite the fact that the quality of collaboration was improved (Stegmann et 

al. 2007, 2012; dissertation results reported in Chapter 4). Other studies (Weinberger 

et al. 2005; Weinberger et al. 2010), however, found positive effects in terms of the 

acquisition of domain-knowledge. More empirical work is needed to clarify under 

which conditions domain knowledge gains can be realized.  

8.1.2 Representational tools 

Representational tools support individuals and groups of students in creating an 

external representation of argumentative structures. In the simplest case, a 

representational tool may be a standard word processor, which allows students to 

compose argumentative texts. During the past decades, educational researchers 

turned their attention to more structured and specialized knowledge representation 

approaches such as argument diagramming, which is the approach used in this 

dissertation (see Chapter 4) and the main focus of this section. 

Subsection 8.1.2.1 revisits the theory of representational guidance (Suthers 2003), 

an important theoretical account explaining the effects representational tools can 

have on reasoning and collaboration. The following subsections focus on 

educationally relevant aspects of the use of argument diagrams as representational 

tools, in particular, the effects on on-task performance (subsection 8.1.2.2), on the 

learning of reasoning skills (subsection 8.1.2.3), and on the learning of subject matter 

content (subsection 8.1.2.4). Subsection 8.1.2.5 discusses risks and limitations to 

consider when employing argument diagrams. Subsection 8.1.2.6 discusses argument 

diagrams in relation to other representational formats. Subsection 8.1.2.7 summarizes 

the main points of this section. 

8.1.2.1 Theory of representational guidance 

Argument-diagramming interfaces provide graphical languages to represent 

arguments in semi-structured formats. Their theoretical underpinning can be 

described in terms of Suthers’ (2003) theory of representational guidance. On the one 

hand, the graphical language imposes representational constraints. It requires from 

students to decompose arguments into a set of discrete knowledge chunks and 

relations, and to classify these knowledge chunks and relations in terms of 

predefined categories. On the other hand, the graphical language makes certain 

aspects of the representation more salient. For instance, unlike in a text, individual 

knowledge chunks and their relations are immediately visible in a diagram. Also, the 
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types of knowledge chunks and relations are explicitly represented in argument 

diagrams. The combination of constraints and saliences leads to specific perceived 

affordances of the user interface (Norman 1988), meaning that the user interface 

suggests and triggers specific mental, physical, and social activities. Suthers and 

Hundhausen (2003) report empirical evidence in support of this assertion, focusing 

on structural properties of representational formats. Students who used highly 

structured representational formats (i.e., graphs and tables) elaborated more on 

knowledge items compared to ones who used a less structured format (i.e., text). 

Schwarz and Glassner (2007) provide support for the effect of ontologies on 

students' behavior and performance. Students who created diagrams based on a given 

ontology of argumentation outperformed others who were not provided with a 

specific ontology (i.e., unlabeled boxes and links). For instance, the ontology 

encouraged students to represent a larger number of claims and arguments. In fact, 

the Schwarz and Glassner (2007) approach can be seen as a hybrid approach between 

argument diagramming and discussion scripting, since students used diagrams as the 

discussion medium rather than as a supplement to a different discussion medium 

such as a chat. Therefore, the provided ontology can be seen as a kind of discussion 

script. 

8.1.2.2 Effects on on-task reasoning and collaboration 

Theoretical grounds and empirical evidence support the assertion that diagrams 

facilitate reasoning, inference, and collaboration during task execution. One of the 

main properties of representational tools like diagrams is to “make thinking visible” 

(Bell 1997). For instance, diagrams can visualize the amount and quality of support 

and opposition of claims, thus, helping students to evaluate argument components 

more easily (Twardy 2004). Empirical results show that students made more valid 

inferences in policy deliberation problems when a diagrammatic representation was 

available (Easterday et al. 2010). In collaborative learning arrangements, diagrams 

can serve as resources, stimuli, and guides for student discussions (Suthers 2003). 

For instance, in the study conducted as part of this dissertation (see Chapter 4), 

students frequently referenced diagram elements (on average, in about 12% of all 

messages) and followed the lines of argumentation represented in the diagram during 

their discussions. Diagrams can help students to systematically explore a space of 

debate by providing a persistent, well-organized group memory (Buckingham Shum 

et al. 1997).  

Another insightful interpretation can be gained from a perspective of situated 

cognition (Brown et al. 1989). Situated cognition scholars typically analyze 
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performance and learning in terms of activity systems comprised of the learner and 

the social and material surrounding. The social and material environment offers 

possibilities to off-loading parts of a task, freeing personal resources that can be 

invested on other, more important or more difficult task aspects. In the specific 

arrangement used in the present study (see Chapter 4), learners can first focus on the 

analysis of the argument in their text and off-load the results to the diagrams. When 

entering the discussion, parts of the basic reasoning have already been done, are 

materialized in the diagram, and therefore do not further block mental resources. 

Consequently, learners can put increased attention to more advanced aspects of 

reasoning, e.g., identifying connections between their text and the unfamiliar text 

prepared by their partner, and to social interactions, e.g., responding to the partner in 

reasonable ways. 

8.1.2.3 Effects on the learning of reasoning skills 

There are a number of studies that indicate that individual argument diagramming is 

an effective pedagogical approach in teaching higher-order reasoning skills, such as 

argumentation, critical thinking, and causal inference. For instance, Pinkwart et al. 

(2009) report on a study, in which particularly low-aptitude law students profited 

from the LARGO argument diagramming system in terms of improved legal 

argumentation skills. Other researchers used argument diagramming as integral part 

of University-level philosophy classes and evaluated the success over an entire 

semester. Twardy (2004) reports that argument diagramming significantly improved 

critical thinking skills compared to a control condition taught with traditional 

methods. Similarly, in two studies by Harrell (2008), argument diagramming 

significantly improved the acquisition of argument analysis skills. As discussed 

before, the results of Easterday et al. (2010) show that ready-made diagrams helped 

students to make better causal inferences. These students outperformed others who 

had only a text version available and ones who created diagrams themselves with a 

computer tool. Yet, when it came to a near transfer task, in which students analyzed 

new problem instances without diagrams or a diagramming tool available, those who 

actively created diagrams during the treatment phase outperformed the other two 

conditions. So while diagrams can organize information in a well-understandable 

way and thus facilitate reasoning tasks, it is apparently the process of actively 

creating diagrams that is most effective in acquiring higher-level reasoning skills for 

application in unsupported situations. 
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8.1.2.4 Effects on subject matter learning 

The situation is less clear for the learning of specific subject matter content that is 

mapped out in diagrams. Dwyer et al. (2013) provide evidence for the effectiveness 

of diagrams and argument diagramming. They present a series of three studies that 

show that (a) students recall more information from an argument diagram compared 

to a text, and (b) students who construct argument diagrams recall more information 

compared to those who write text summaries, which is a standard technique for text 

reading and comprehension. Janssen et al. (2010) show that diagram users 

outperform those who use a list-based format in terms of test scores computed from 

factual and insight multiple-choice questions. However, Suthers and Hundhausen 

(2003) found in a text analysis task no advantage of diagrams over a note-taking tool 

in terms of domain knowledge learning, despite the fact that more knowledge 

elaboration took place in the diagram condition during the intervention. This result 

mirrors the observation made in this dissertation (see Chapter 4) and by others (e.g., 

Stegmann et al. 2007, 2012) with respect to discussion scripts, namely that improved 

characteristics of the collaboration process do not necessarily translate into improved 

domain knowledge learning. Finally, van Drie et al. (2005) found that a control 

condition without a representational tool significantly outperformed diagram users 

on several dimensions in a posttest. Yet, this result is less surprising, given that the 

quality of collaboration was also better for the control condition. 

8.1.2.5 Risks and limitations  

There are a number of potential limitations of argument diagrams to consider as well. 

To construct diagrams in an appropriate manner, students must learn the meaning 

and use of the elements of a given ontology. While this gives students an opportunity 

to learn about important concepts of argumentation, they may be overwhelmed with 

the complexity of the given ontology, leading to an inappropriate use. For instance, 

the initial version of Belvedere was too complex and therefore simplified in 

consecutive versions (Suthers et al. 2001). In the study presented here, the used 

ontology was deliberately kept simple and self-explaining, so only little training was 

required to create diagrams.  

To provide an added value, diagrams must be laid out in a well-organized way, 

preferably according to Gestalt principles such as symmetry, continuation, and 

proximity (Dansereau 2005). Otherwise the diagrams may become hard to read. 

Therefore, students must possess the competency to organize information intelligibly 

using a graphical format. Moreover, ensuring an appropriate diagram layout requires 

time and effort that students cannot spend for the actual learning task.  
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Diagrams also have the problem of a "premature commitment to structure" 

(Buckingham Shum et al. 1997). That is, at the beginning, students typically do not 

have a clear idea of how the final diagram will look like. Therefore, they may make 

decisions regarding the structure of the diagram that are expensive to revise in later 

stages. For instance, a student may recognize only late in the process that an element 

at the left end of the diagram is related to another element at the right end of the 

diagram. The student could create a link that crosses the whole diagram, which 

would impair the readability of the diagram. Or the student could move the two 

elements closer to one another, which may introduce layout problems for elements 

linked to the two elements under consideration. In the worst case, there is no one 

configuration of the diagram that lays out all elements and relations nicely.  

In general, the complexity of diagrams quickly reaches a point at which the 

diagram is hard to read and maintain in an orderly state (Loui et al. 1997; van Drie et 

al. 2005). So node-and-link diagrams have a limited lifetime and are only useful to 

represent a moderate number of elements. 

8.1.2.6 Diagrams in comparison to other representational notations 

Some studies indicate that diagrams have favorable representational properties over 

alternative formats. For instance, Janssen et al. (2010) found that a diagramming tool 

led to higher-quality representations and better post-interventional essays compared 

to a list-based format in the domain of historical reasoning. However, they did not 

find a difference in terms of collaboration quality. Suthers and Hundhausen (2003) 

found that, in contrast to graphical formats, tabular formats potentially cause students 

to consider weak or spurious relations when systematically checking each table cell.  

Other studies again indicate that other representational formats may be superior to 

graphs for certain tasks. For instance, van Drie et al. (2005) found that student 

groups who used a tabular format engaged significantly more in historical reasoning 

and performed more elaboration and knowledge co-construction moves during their 

discussions. Even students in the control condition, who did not create any external 

knowledge representation, outperformed diagrams users. Yet, as noted by the 

authors, the positive results of the control condition may be an artifact of the used 

analysis approach. Students who did not create an external knowledge representation 

simply had more time for their discussions, and consequently, could produce a higher 

number of quality discussion moves. Since in online communication, diagramming 

activities may be carried out in lieu of corresponding discussion moves (cf. Suthers 
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et al. 2003), an analysis should consider both, discussion moves and diagram 

activities.  

The fact that some research pictures diagrams as beneficial for learning while 

other research highlights limitations of the diagramming approach may be explained 

by differences in the structure of knowledge students engaged with. While in some 

cases, knowledge has a complex, networked structure, in other cases, the inherent 

structure of knowledge is of a more limited nature, with only few crosslinks between 

individual knowledge items. So, in some cases, diagrams may provide a value added 

by capturing and clarifying the complex structure of knowledge, in other cases, 

creating diagrams may produce more overhead than added value. Empirical research 

is needed to clarify the connection between properties of representational notations 

and the complexity of knowledge structures to be represented. 

8.1.2.7 Summary 

It is well documented that representational tools can have a major influence on the 

quality of reasoning and collaboration processes and that the specific representational 

format makes a difference. The framework of representational guidance (Suthers 

2003), with its analysis of representational formats in terms of saliences and 

constraints, provides a powerful tool to generate predictions and to inform the design 

of learning arrangements. Yet, the empirical results with respect to different 

representational formats are somewhat inconclusive (e.g., support for graphs in 

Janssen et al. [2010], support for tables in van Drie et al. [2005]). Therefore, more 

research is needed to decide which formats are most appropriate to support specific 

tasks and processes. With respect to higher-order reasoning skills, evidence 

consistently shows that students benefit from argument-diagramming activities 

(Easterday et al. 2010; Harrell 2008; Pinkwart et al. 2009; Twardy 2004). The results 

of Twardy (2004) give indication of transfer learning: Rather than improving 

reasoning skills in one specific training domain, students taught with the argument 

mapping method performed significantly better in a general critical thinking test 

compared to ones taught with traditional methods. Although the Twardy (2004) 

results are impressive, it must be said that the level of experimental control was 

relatively low, calling for more rigorous empirical investigation. Overall, the positive 

results with respect to reasoning skills were obtained in studies focused on individual 

argument diagramming. So the question is in how far the results can be extended to 

collaborative settings. With respect to the learning of the specific knowledge 

represented in the diagrams, the results are mixed ranging from positive effects 
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(Dwyer et al. 2013; Janssen et al. 2010) to no effects (Suthers and Hundhausen 2003) 

to negative effects (van Drie et al. 2005). 

8.1.3 Comparison of both approaches  

Discussion scripting and argument diagramming have a number of characteristics in 

common. On the one hand, they restrict the space of possible user actions compared 

to more generic tools for communication (e.g., computer chat, forums) and 

knowledge representation (e.g., word processors, note-taking tools). On the other 

hand, they make certain information more salient in the user interface compared to 

their generic counterparts, in particular, high-quality discussion moves and argument 

structures and components. They create specific affordances, thus, encouraging 

certain behaviors while suppressing other behaviors. The task of the designer is to 

build user interfaces with the “right” affordances to achieve desired pedagogical 

objectives. This is a very challenging task as evidenced by non-existing and negative 

effects observed in a number of research studies. Clearly, more empirical work is 

needed to disentangle the complex interplay between user interface characteristics 

and other relevant independent variables such as specifics of different knowledge 

domains, student populations, and task characteristics. From a practical point of 

view, the specific configurations used in discussion scripts and knowledge 

representation tools should be iteratively tested and refined before they are used in 

practice. This process can be supported through generalized frameworks like 

LASAD (see Chapter 5), which allow setting up user interface configurations with 

only little development effort and technical know-how required.  

A strength both approaches have in common is that they are relatively broadly 

applicable. For instance, the sentence openers used in the study reported here (see 

Chapter 4) are not specific to the topic of climate ethics and can essentially be used 

to discuss arbitrary other topics. Depending on the specific pedagogical objectives 

and the kind of moves one wants to foster in a discussion, different sets of sentence 

openers may be conceived and implemented to realize specific dialogue games 

(Ravenscroft 2007) or epistemic games (Morrison and Collins 1996). Similarly, 

argument diagrams have been used to graphically represent knowledge in domains as 

diverse as philosophy, the Law, policy deliberation, planning and design, and science 

to enable or support a wide spectrum of tasks including argument analysis, argument 

construction, discussion, and rational decision-making. The key to such a level of 

flexibility is the configurability of sentence openers and argument ontologies, that is, 

the basic elements available to create discussion moves and diagrams.  
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Another strength of both approaches is that they explicate otherwise hard to 

capture intentions and semantics—each sentence opener typically corresponds to a 

specific intention and, similarly, each diagrams element corresponds to a specific 

semantic category. These semantics and intentions thus become easily accessible and 

usable by a computer program and can be automatically analyzed, e.g., to drive 

automated adaptations. If diagrams and sentence openers are used in combination, 

new interesting opportunities arise to analyze social and content-related aspects 

together—a topic addressed in greater depth in Chapter 9. 

One important difference between both approaches is that they focus on different 

aspects of argumentation learning. While discussion scripts operate at the social level 

by shaping how students interact with one another during a discussion, argument 

diagrams provide a scaffold at the content level by providing a tool to organize and 

classify relevant domain content in an intelligible way. Being a good discussant 

requires both, a proper understanding of a space of debate (i.e., the relevant facts, 

claims, and arguments in a knowledge domain) and the competency to engage in 

productive discussions with others. A discussion with participants who do not have 

any background in a given knowledge domain is similarly aimless and doomed to 

fail as a discussion with participants who are not able to productively contribute their 

individual knowledge to advance the shared understanding of the group. This insight 

motivated the Multilevel Scaffolding approach of this dissertation (see Chapter 4), 

which combines argument diagramming and discussion scripts to provide optimal 

scaffolding on both the content and the social level. The empirical results indicate 

that a discussion script can provide an additional advantage to a diagram-only 

condition. While the question whether the diagrams provide a value added to 

sentence openers—or whether both approaches even reinforce one another—cannot 

be definitely answered based on the experimental setup, the study yielded some hints 

that this might indeed be the case. In particular, students used the content of diagram 

elements as an information source in their chat discussions, as evidenced by a 

considerable number of direct verbal references to the diagram (12% of all messages 

contained a direct reference, e.g., by mentioning a specific box number). However, in 

two studies investigating whether statistical interaction effects between social and 

content-oriented scaffolds exist, Weinberger et al. (2005) could not confirm such 

effects.
13

 A potentially critical difference to the approach presented here is that 

Weinberger et al. (2005) utilized content-related prompts rather than argument 

diagrams. In particular, they displayed prompts like "Does a success or a failure 

                                                        
13

 Weinberger et al. (2005) used the term “epistemic scaffold,” emphasizing that their content-related 

scaffolds aim at supporting task-related activities. 
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precede this attribution?" in the input window for new discussion board messages—

an approach quite different to the one presented here.
14

 A potentially important factor 

to create synergistic effects is whether scaffolds are designed to function largely 

independently from one another, or whether they are more closely connected and 

intertwined. For instance, in the Multilevel Scaffolding approach (see Chapter 4), a 

diagram element of type fact may directly prompt students to use a sentence opener 

According to a statistic / estimate (i.e., diagram element and sentence openers are 

based on the same epistemological concept [Suthers 2003]). Such connections are 

potentially essential to achieve synergistic effects since they may help students 

integrate social behavioral components (oriented towards the learning partner) and 

content-focused behavioral components (oriented towards the learning content) into 

higher-quality discussion moves. This hypothesis is in line with the view of Tabak 

(2004), who sees “cohesion and direct interaction between the elements of a 

scaffolding system” as potentially essential factors to achieve synergies. It remains 

an important challenge for future research to systematically investigate the factors 

that decide when synergistic effects can be expected. Synergistic effects would 

provide an even stronger argument for combining different structuring approaches 

than additive and sub-additive effects.  

8.2 Adaptation Approaches 

As discussed in the previous section, discussion scripts and external knowledge 

representations have been successfully used to support argumentation learning 

processes and outcomes. However, modern computer technology, in particular, 

artificial intelligence, has the potential to further improve the effectiveness of 

argumentation learning user interfaces through automated adaptation. A prerequisite 

for automated adaptation is that the software is capable of automatically analyzing 

student behavior to drive the adaptation process. Such analyses require 

computational models that can interpret observable behavior in an actionable way. 

There are two principle approaches, both of which investigated in this dissertation, 

namely to engineer models based on expert knowledge (knowledge-driven 

approaches; dissertation approach in Chapter 5) and to induce models from existing 

data through data analysis techniques (data-driven approaches; dissertation approach 

in Chapter 6). 

                                                        
14

 The learning task used by Weinberger et al. (2005) was to collaboratively analyze given cases in 

terms of a specific theoretical framework in social psychology concerned with attributions. 
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This section addresses the issue of automated analysis and adaptation. Subsection 

8.2.1 discusses general considerations regarding automated adaptation and reviews 

empirical results obtained with specific adaptation approaches. Subsection 8.2.2 

elaborates on approaches to the automated analysis of argumentation learning 

activities. 

8.2.1 Automated adaptation  

Automated adaptation has the potential to compensate for one of the main 

shortcomings of static learning tools, namely their inability to tailor support to the 

specific needs of students. The four show case applications of the CASE engine, 

which were discussed as part of this dissertation (see section 5.7), give a flavor of 

different ways how adaptation technologies can be employed to support learning 

activities. Adaptation may target collaboration (e.g., detected collaboration 

problems) as well as problem solving (e.g., relevant problem-solving steps). 

Adaptation can support collaboration at a fine-grained level (e.g., recommending 

discussion moves appropriate in the current situation) as well as at a coarse-grained 

(e.g., general instructions regarding the current collaboration phase). Adaptation can 

focus on the learning of domain-specific knowledge (e.g., critical topics not yet 

addressed in a discussion) or domain-general skills (e.g., faulty logical reasoning). 

Adaptation may alter the overall structure of the user interface (e.g., the set of 

available sentence openers or box types; an approach more appropriate for between-

session variations due to user interface consistency reasons) or may be implemented 

through temporarily displayed prompts, messages, or highlighting (a form of 

adaptation that integrates quite naturally within individual learning sessions). 

Another variant is to automatically compose appropriate learning groups—a kind of 

adaptation that already takes place before the actual learning activity starts. Possible 

grouping strategies are to put together students with complementary or similar 

knowledge (Hoppe 1995), or different opinions (Jermann and Dillenbourg 2003). 

Subsection 8.2.1.1 discusses three major promises of adaptation technologies, 

namely to tailor support to situation-specific needs, to individual differences, and to 

the learning progress. Subsection 8.2.1.2 addresses the pedagogical risk of 

inappropriate or misguided adaptations of the learning environment, and approaches 

to minimize that risk. Another important issue addressed is the costs of building 

adaptive argumentation learning systems and possible means to lower these costs. 

Subsection 8.2.1.3 turns to the pros and cons of providing content-specific support, 

considering both pedagogical and technical aspects. The following subsections 

address specific adaptation approaches used in different classes of systems and the 
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empirical results obtained with these approaches, in particular, argument 

diagramming systems (subsection 8.2.1.4), educational dialogue systems focused on 

individual learners (subsection 8.2.1.5), and systems supporting educational 

discussions between two or more students (subsection 8.2.1.6). Main points of this 

section are summarized in Table 41. 

Table 41 

Analysis of approaches to automated adaptation in argumentation learning systems 

Approach Benefits Limitations 

Automated 

adaptation  

educational benefits 

 tailoring aspects of the learning 

environment  to individual 

differences, learning progress (i.e., 

fading of the scaffold), and situation-

specific demands 

 improved learning experience (clever 

system able to understand and 

support) 

 promising first results with respect to 

adaptive support  for argument 

diagramming and discussions 

(improvement with respect to the 

process and the learning of reasoning 

skills) 

implementation benefits 

(depends on specific approach) 

educational limitations 

 risk (and incurred costs) of 

inappropriate adaptations (causing 

confusion and frustration, impairing 

learning, deteriorating the credibility 

and acceptance of the system) 

 unexpected structural changes to the 

learning environment may cause user 

interface consistency problems 

 limited availability of empirically 

substantiated design guidelines how 

to adapt (e.g., when does an 

interruption cause more benefit than 

harm) 

 

implementation limitations 

 diagnostic capabilities of the system 

may not be sufficient to implement a 

desired adaptation approach 

 generally high costs of 

conceptualizing, implementing, and 

iterative testing of adaptation 

strategies  

(also depends on specific approach) 

8.2.1.1 Benefits of automated adaptation 

The most widespread form of adaptive support for argumentation learning is to 

provide situation-specific help. Typically, such support is delivered in response to 

specific problems students are not able to regulate on their own.  Recognizing 

troublesome situations requires diagnostic competencies and an active monitoring of 

the problem-solving and collaboration process—skills students often do not possess 

or make use of (Azevedo et al. 2011). One function of adaptive support is therefore 

to make students aware of existing problems. Beyond that, adaptive prompts can 

deliver precisely the information students need to overcome problematic situations. 

To give an example, if the opinion of one discussant is consistently ignored, an 
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adaptive support system could detect this situation and prompt other discussants for a 

reaction. A similar approach was used with the Epsilon system to trigger from 

students responses to unanswered questions (Goodman et al. 2005). The adaptation 

may not be targeted at problems but aim at invoking productive behaviors more 

generally. For instance, Dyke et al. (2013) incorporated the teaching strategy of 

revoicing into a conversational agent to support student discussions. The agent 

observes and analyzes student discussions, trying to associate utterance with 

predefined propositions. Once a key proposition has been identified, the agent posts 

the proposition to the chat (So you are saying ...?). The pedagogical rationale is to 

draw students' attention to key points to trigger further cognitive and social 

elaboration on these key points. Characteristics of the current learning situation are 

also in the focus of many adaptive support approaches for argumentation 

diagramming, for instance, Belvedere (Suthers et al. 2001) and LARGO (Pinkwart et 

al. 2009). 

Another form of adaptive support addresses individual differences. Students differ 

in many respects, for instance, skill level, gender, age, cultural background, learning 

styles and learning preferences. Adaptation mechanisms may tailor support to such 

individual differences. Probably the most relevant individual characteristic is the 

skill level of students. Obviously, novices need more support and guidance than 

advanced students to engage in productive learning activities. So, one possible 

adaptation is to vary the amount and detail of provided help accordingly. High-

performers may be ready to engage in more demanding practices. So a second 

possible adaptation is to lead these students to other, more advanced activities. To 

give a concrete example, a sentence opener interface may require from students to 

make a distinction between data and hypotheses. While this may be the right thing to 

learn for some students, others may have already mastered making this distinction. 

They would be ready to practice more fine-grained distinctions, e.g., the distinction 

between different kinds of data, such as experimental results and everyday 

observations. Hence, a possible adaptation may be to vary the complexity of a 

learning task based on the students' skill level (e.g., by increasing the complexity of 

choices students have to make).  

Besides skill level variations between students, also the skill level of individual 

students is variable, expected to change over time when instructional support is 

effective. For instance, after using sentence openers for some time, students should 

have internalized how a good discussant behaves and should be able to engage in the 

practiced behaviors without sentence openers. Not only that the provided support 

may be without effect then. Rather, the gradual removal of support itself may be 
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important for the learning process. Otherwise, students may keep relying on the 

external support without developing the cognitive structures needed to act as 

independent problem-solvers or discussants. Static support approaches in CSCL have 

been criticized for the absence of exactly such strategies to fading the scaffold (Pea 

2004). Wecker and Fischer (2011) present evidence that fading the scaffold can 

improve learning outcomes significantly. Their relatively simple approach of 

diminishing support based on the number of student actions had a significant effect 

on the acquisition of knowledge with respect to the generation of counterarguments. 

More sophisticated adaptation approaches, driven by a model of students' actual 

competency, can be expected to be more effective. While skill level assessment and 

corresponding adaptations are at the heart of research on traditional intelligent 

tutoring systems, corresponding approaches for argumentation learning systems are 

still rare and at an early stage. Long-term student models that comprise collaboration 

and discussion skills are proposed, for instance, in Goodman et al. (2005) and Israel 

and Aiken (2007). What is up to date missing are rigorous evaluations of the 

accuracy and pedagogical effectiveness of such models. The main obstacle in 

building such models is that argument diagramming and discussion activities are 

more diverse and open in nature than, for instance, solving math problems, making it 

hard to reliably estimate students’ skill levels. The first problematic step is already 

the assessment of the correctness and appropriateness of individual student actions. 

This issue will be addressed below in greater detail. 

One may hold that the provided scaffolding aims at improving the quality of 

discussions without pursuing the ultimate goal to teach discussion skills. That is, the 

scaffold is conceptualized, in the first place, as a productivity enhancer rather than as 

a learning support aid (Pea 2004). More productive discussions may in turn improve 

domain knowledge acquisition, which would be valuable from a pedagogical point of 

view. So, fading the scaffold would not necessarily be required then. Yet, the 

assumption that the scaffolding of discussions leads to an increased learning in the 

discussion domain is not supported through the empirical evidence reported so far. 

While scripts have been consistently shown to improve the discussion quality, the 

impact on domain knowledge learning is less clear, with a number of null results 

reported in the literature (Stegmann et al. 2007, 2012; dissertation results reported in 

Chapter 4). Furthermore, the learning of higher-order argumentation and discussion 

skills appears to be the more desirable goal since these skills can later function as 

enablers for acquiring domain-level knowledge in a wide range of different domains. 

In summary, the potential advantage of adaptation approaches is that content, 

timing, and format of support is not predefined, based on a fixed anticipated learning 
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process, but informed through a diagnosis of relevant aspects of the actual learning 

process, including personal characteristics, skills, and preferences, the learning 

progress made during the activity, and situational demands. Thus, a feedback loop 

between the learning process and the support process is established: Learning 

process and support process mutually influence one another. Adaptation may even be 

a self-reflective process. For instance, Murray et al. (2004b) present an intelligent 

tutoring approach that chooses tutorial actions based on an internal analysis of 

possible effects of the different tutorial options available in a situation. It is up to 

future research to investigate whether similar approaches can also be fruitful to 

support argumentation learning.  

8.2.1.2 Risks and costs of automated adaptation  

A critical risk is that the applied adaptations may be inappropriate. That is, the 

adaptation process may fail in that prompts and changes to the learning environment 

do not adequately address students’ needs in a specific learning situation. This may 

be caused by errors and imprecisions in the computational analysis and modeling of 

student activities. Another reason may be that the adaptation strategy—rather than 

the automated analysis—has some bugs or deficiencies. So, even if the analysis of 

the learning process is correct, an adaptation strategy may trigger inappropriate 

actions in response. An inappropriate adaptation can lead to a number of negative 

consequences: The support of the learning process may be less effective as it could 

be. Even worse, the learning process may suffer from the provided "support." For 

instance, the learning process may be interrupted several times to display irrelevant 

information. Students may get confused when messages point to problems that do 

not exist. Or, in an attempt to fading scaffolds not needed anymore, a system may 

remove not yet internalized and still required helping structures. On the affective 

level, students may feel frustrated and lose motivation due to unnecessary 

interruptions. This, in turn, may negatively affect the learning process and outcomes. 

Finally, the experience of inadequate support may lower the system's overall 

credibility and acceptance. In consequence, students may even ignore reasonable 

hints and feedback generated by the system after such an experience.  

A possible countermeasure against inappropriate adaptations is to confine support 

to actions that can be based on highly reliable information. That is, system 

developers may only incorporate diagnostic modules they deem highly accurate. 

Alternatively, system developers can try to design adaptation approaches in a more 

fault-tolerant way, to be at least not harmful to the learning process. For instance, the 

wording of text messages may use a suggestive rather than an authoritative tone to 
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avoid confusion on the part of the student when the message content does not 

perfectly match the current situation. This approach has been widely used in both 

discussion-based systems (e.g., Dyke et al. 2013; Goodman et al. 2005) and 

argument diagramming systems (e.g., Pinkwart et al. 2009; Suthers et al. 2001). A 

possible practical reason why system developers try to cope with less (but still 

reasonably) precise diagnoses, rather than fine-tuning the analysis procedures to the 

limit, is that further improvements can come at high development costs—costs 

potentially disproportionate to the gains one would achieve in terms of the 

pedagogical effectiveness of the system. Even if the diagnostics are not perfect and 

sometimes fail, they may, by and large, still be good enough to effectively support 

students. Moreover, some degree of uncertainty may be unavoidable since discussion 

and argumentation are ill-defined domains (Lynch et al. 2009). Even human experts 

often disagree in their assessments regarding the correctness and quality of 

arguments. For instance, studies show that also experts sometimes struggle with the 

hypothesis / data distinction (Schank 1995). Similarly, the question whether a given 

proposition can stand on its own as a “known fact” or needs addition support and 

explanation depends on the specific community an arguer engages in. Thus, there is 

often no clear definition of what counts as correct or incorrect, in particular, when it 

comes to argumentation-related tasks. Consequently, the system’s assessment 

necessarily entails some degree of uncertainty.  

In the light of imperfect diagnostics, it might be better to build systems that adopt 

the role of a “fallible collaborator” rather than “feign[ing] omniscience” (Self 1990) 

in order to not compromise the system’s credibility. Self (1990) proposes to 

generally use a style of support that diverges from the classical intelligent tutoring 

approach, which typically focuses on pinpointing and remediating behaviors the 

system recognizes as deficient or buggy. Often, ITS systems employ a closed-world 

assumption, that is, everything outside the system’s model of correct behavior is 

considered incorrect. In consequence, the system considers each deviation from 

preconceived pathways as a bug and responds accordingly. Self’s alternative 

suggestion is that systems should rather focus on guiding learners to elaborate on 

ideas and knowledge themselves. For instance, this may be achieved through 

methods of Socratic questioning or by assigning the system the role of a devil’s 

advocate, who challenges the learners’ beliefs and claims. In collaborative settings, 

the system may draw the attention to points in which learners potentially disagree 

with one another and leave the resolution to the learners themselves. To avoid 

confusion—e.g., when the assumed conflict of opinion does actually not exist—the 

system may overtly indicate its uncertainty (e.g., “If I understood right, you have a 
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different opinion on X. For what reasons do you think your opinion is more correct 

than your partner’s?”), or the system may not disclose at all that it assumes a conflict 

to exist and just try to draw the learners attention to the issue in question (e.g., “Have 

you already discussed X? What are your opinions on this topic?”). The approach to 

identify differences in student solutions to stimulate fruitful interactions has been 

used, for instance, in the COLER system (Constantino-González et al. 2003) and 

Collect-UML (Baghaei et al. 2007). As remarked by Self (1990), there are important 

reasons beyond technical pragmatism for such approaches. First, systems avoid 

taking an absolutist stance, which is underlying many ITS systems (i.e., entailing the 

assumption that absolute knowledge about the world exist). Absolutist 

epistemologies often lead to dogmatism, and thus are counter-productive to 

argumentation (Kuhn 1991). Second, such approaches are well in line with the 

principles of constructivism, which emphasize the value of active knowledge 

construction and co-construction on part of the learners, rather than just doing what a 

system has told to do. Finally, such approaches give more emphasis to students’ self- 

and co-regulation competencies since the system provides a pointer but the problem 

is ultimately addressed by the students themselves. 

In summary, system developers can try to avoid inappropriate adaptations by 

optimizing the diagnostics (i.e., decreasing the likelihood of false alarms) or can 

design adaptation strategies in a more fault-tolerant way (i.e., decreasing the 

pedagogical costs of a false alarm). Optimizing the diagnostics has some natural 

limitations in terms of what is possible (uncertainty inherent to some domains; 

technological limits such as the current state of the art in natural language 

processing) and what is affordable (development costs). Strategies for making 

adaptations more fault-tolerant, such as using suggestive, less definite messages 

rather than authoritative ones, may have a pedagogical value in themselves, e.g., 

from a constructivist perspective. In general, the development of effective adaptive 

approaches is a non-trivial endeavor, which involves significant costs and efforts in 

terms of conceptualizing, designing, implementing, and testing such functionalities. 

To find a good trade-off between the chances and risks of adaptation, but also to 

optimize the overall effectiveness of the system, system designers typically have to 

conduct multiple design-test-redesign cycles following an iterative design approach. 

Tools like the CASE engine (see Chapter 5) can support this iterative design process 

by offering configuration mechanisms that allow testing and comparing different 

adaptation approaches at relatively low costs.  
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8.2.1.3 Pros and cons of content-specific support  

A crucial decision is whether support should consider the specific contents students 

are discussing or dealing with. For instance, a relatively lightweight and generic 

approach may be to design a system that only comments on the collaboration 

process, agnostic of the specific contents under discussion. On the one hand, this 

clearly involves less development efforts since there is no need to build a content-

specific knowledge base and analysis mechanisms to identify knowledge chunks in 

student activities. Moreover, the system is better portable, since it does not depend 

on the existence of a content-specific knowledge base—essentially, a content-aware 

support approach would require knowledge bases for every new subject matter 

domain. On the other hand, content-specific knowledge may be a key for effective 

support. Walker et al. (2011) used adaptive prompts that combined interaction help 

(i.e., generic scaffolds for the collaboration process) with cognitive help (i.e., 

information relevant to the current problem instance). This design decision was 

motivated by the observation that students often ignore messages that provide only 

interaction help without a reference to the actual problem instance, possibly because 

these messages appear less relevant to the students. This is in line with research on 

the effectiveness of different e-moderation styles. Asterhan and Schwarz (2010) 

qualitatively compared the effect of generic, low-content, and content-specific 

moderator moves. They found that generic messages were neither appreciated much 

nor effective in terms of the elicited responses. Asterhan and Schwarz (2010) 

hypothesize that messages appear more salient, and moderators more involved and 

less detached, when a concrete connection to currently discussed contents is made.  

A possible approach to lower the implementation costs of content-specific support 

is to architecturally separate content-specific and content-general parts of a system. 

This approach allows reusing the content-general part across different problems or 

even domains. For instance, the Rashi system (Woolf et al. 2003) decomposes the 

support functionality into content-specific knowledge bases and a generic inference 

mechanism, which provides reasoning capabilities applicable to arbitrary knowledge 

bases. Knowledge bases are defined in terms of relevant propositions and their 

relationships. The generic inference mechanism contrasts student solutions with a 

given knowledge base, identifies pedagogically relevant differences, and generates 

advice accordingly. Similar approaches to generate problem-specific support have 

been used in Belvedere (Suthers et al. 2001) and LARGO (Pinkwart et al. 2009). To 

make such an approach work, the different knowledge bases must use the same 

modeling primitives and semantics to be amenable to a generic inference mechanism. 

The engineering of consistent knowledge bases itself can be a challenging task. 
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Authoring tools can support the process of creating, maintaining, and managing 

content-specific knowledge bases (Murray et al. 2004). Such a content-focused 

authoring tool would be a possible enhancement to the CASE engine, which is 

already able to detect content-specific patterns, but does not yet provide explicit 

authoring support for this aspect. For instance, such functionality may involve 

support for (a) defining knowledge chunks for different problem instances, (b) 

defining inference rules that can be applied to all problem instances that share a 

specific ontology and obey the same domain rules, and (c) general managerial 

functionalities to organize created resources (i.e., knowledge chunks and inference 

rules). Such functionalities would extend the basic concept of LASAD—providing 

support across domains—to the aspect of problem-specific support, and thus, 

constitute a further step beyond the current state of the art. The topic of content 

classification and content-specific support is equally relevant to discussion-oriented 

systems. A number of systems implement approaches to identify discussion topics 

(e.g., Goodman et al. 2005; Kumar et al. 2007). Essentially the same problem is 

addressed in research on tutorial dialogue systems (e.g., Graesser et al. 2001). 

8.2.1.4 Adaptive support for argument diagramming 

On theoretical grounds, for the reasons discussed above, possible merits of 

adaptation in terms of learning support are highly plausible. The crucial question is 

therefore not if adaptation can be beneficial but rather how adaptation technologies 

can be used to achieve positive effects. Unfortunately, research on automated 

adaptation for argumentation learning is up to now meager, with only a few results 

reported in the literature.  

With respect to adaptive support in argument-diagramming environments, the 

dominant approach, used in systems such as Belvedere (Suthers et al. 2001) and 

LARGO (Pinkwart et al. 2009), is to provide feedback only on request. This design 

does not require a computational approach to decide the timing of feedback and thus 

avoids one of the most difficult problems. Finding the right time for feedback is so 

difficult because students typically perform a series of actions on the diagram to 

accomplish a target goal. Since the system does not know the current goal a student 

is after, it is hard for the system to decide when the series of actions is concluded and 

the diagram ready for being checked. The simplest solution to avoid unnecessary and 

potentially harmful interruptions of the learning process is to leave the control over 

the timing of feedback to the students themselves. Yet, the results achieved with this 

approach in studies with Belvedere (Suthers et al. 2001) and LARGO (second study 

in Pinkwart et al. [2009]) are discouraging since students rarely took initiative to 
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request feedback even if they would have benefited from it. Yet, even if the feedback 

provision approach of these systems is suboptimal, empirical results suggest that the 

delivered feedback messages were, in fact, helpful. The first LARGO study showed 

that particularly low aptitude students benefited from using the LARGO system. 

While the study does not allow strong conclusions regarding the effectiveness of 

adaptive support—adaptive support was not isolated as an independent experimental 

factor—a comparison with the second LARGO study is instructive. The first study 

(with positive effects) and the second study (without positive effects) differed 

considerably in terms of how often students invoked the advice function, with advice 

being requested far more frequently in the first study (the one with positive effects). 

One possible explanation is that the advice indeed helped students to better 

understand learning contents they struggled with. This assertion receives further 

support from a significant correlation between advice request frequency and learning 

gains in the second study.  

In conclusion, empirical evidence suggests that adaptive advice in single-user 

argument diagramming systems has positive effects on learning. Future studies 

should isolate adaptation as an independent experimental factor to tease apart the 

effects of the basic environment, advice content (which may be provided statically or 

adaptively), and adaptive advice provision. The approach to provide advice only on 

demand has shown to be problematic. The best designed system advice is worthless 

if students do not take a chance to make use of it. Therefore, future research should 

investigate approaches to provide advice when it is actually needed—even if not 

explicitly requested by the student. Finding the right time to present the right advice 

is a challenging research problem, which involves both the consideration of the 

current solution state (i.e., whether the solution is ready to be checked) and learning 

process (i.e., whether interrupting the student’s current activity causes more harm or 

benefit). Besides timing, another question is how to make students aware of available 

advice. In particular, one can imagine forms of presentation that are more obtrusive 

(e.g., displaying the advice directly in a popup window, which must be “clicked 

away”) and others that are less obtrusive (e.g., a short notification with a link to the 

actual advice, displayed at the periphery of the user interface and possibly 

accompanied by a gentle sound). Important research questions concern the trade-off 

between, on the one hand, awareness and use of advice, and on the other hand, 

distraction from the task caused by the specific way how advice is presented. This 

issue will be addressed in greater detail below when discussing adaptive support for 

collaborative learning activities. 
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8.2.1.5 Adaptive support in educational dialogue systems  

Another approach to support argumentation learning is building computer systems 

able to engage students in educational debates. Yuan et al. (2008) present such an 

approach based on computational dialectics and, more specifically, dialogue games. 

A dialogue game formally specifies dialogues as a turn-based, rule-governed 

exchange between opposing parties. Participants choose from a predefined set of 

eligible dialogue moves. Dialogue rules define legal ways of responding to previous 

moves. Each participant’s commitment stores represent the positions he or she 

publically committed to during the debate (e.g., accepting or rejecting a specific 

statement). Commitment rules define the effects dialogue moves have on the 

participants’ commitment stores. Some dialogue games also employ winning and 

losing rules to define conditions under which participants win or lose a debate. For 

instance, a party A may be considered as the winner of the debate when the opposing 

party B has conceded to a set of statement from which A’s original thesis follows 

with logical necessity.  

Yuan et al. (2008) implemented an educational dialogue game in which individual 

learners argue against a computer-based agent. The user interface comprises a 

structured chat interface and a display of the current state of the learner’s and the 

computer’s commitment store. The chat tool allows learners to compose new 

messages from two sources. First, they choose from a list of predefined dialogue 

move types (in particular: assertion, question, challenge, withdrawal, resolution 

demand). Second, they select a piece of propositional content from a collection of 

predefined choices (e.g., “Capital punishment is acceptable” or “Capital punishment 

stops murderers from killing”). In contrast to the sentence opener approach used in 

this dissertation (see Chapter 4), the different move types have a very specific and 

formally defined meaning, which is encoded in commitment and dialogue rules. For 

instance, assertion moves add a proposition to the move maker’s commitment store 

while withdrawal and challenge moves lead to the removal of the proposition from 

the commitment store; question moves (“Is it the case that P?”) require the addressee 

to take a stance on the requested proposition (“P.” “Not P.” Or: “No commitment 

P.”), etc. The behavior of the computational agent is realized by a number of rules 

that define the dialogue strategy of a “partially honest” agent. This means that, on the 

one hand, the agent does not insist on points that turned out wrong during the 

discussion but, on the other hand—for the sake of the argument—the agent does only 

concede to the learner’s points if not avoidable. To produce contributions with 

meaningful content, the agent employs a knowledge base comprising a set of 

possible propositions and their relations. Propositions may support or contradict one 
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another. Moreover, propositions are classified as hard evidence or (disputable) 

opinions. Developing autonomous computational agents able to maintain a mixed 

initiative conversations with a learner is certainly one of most ambitious ways to 

building adaptive computer-based learning systems and involves a number of 

practical limitations. For instance, one main limitation of the approach by Yuan et al. 

(2008) is the restricted nature of input facilities. To avoid the thorny problem of 

natural language understanding, the range of possible messages is fully 

predetermined by the available move types and propositions.  

As can be learned from tutorial dialogue systems focused on content learning 

rather than argumentation, more free forms of interaction can be achieved based on 

natural language understanding technologies. Two prominent systems, each 

exemplifying one principal approach to the problem, are discussed next: BEETLE II 

(Dzikovska et al. 2014) and AutoTutor (D’Mello and Graesser 2012).  

BEETLE II (Dzikovska et al. 2014) engages students in tutorial dialogues about 

concepts of basic electronics and electricity within a simulation environment for 

electric circuits. It employs symbolic natural language processing techniques to 

interpret and generate textual messages. The symbolic approach involves rule-based 

natural language parsers and reasoning components to construct detailed semantic 

representations of student utterances. BEETLE II first parses an utterance to create a 

domain-general representation, including the pragmatic function of the utterance 

(i.e., used speech acts), its grammatical structure, and word-sense information 

determined based on a lexico-semantic database (such as WordNet; Miller 1995). In 

a second step, BEETLE II employs mapping rules to translate domain-general 

representations into domain-specific ones. A domain reasoner can then operate on 

these domain-specific representations, e.g., to determine the correctness and 

completeness of student responses or to generate answers to student questions. Based 

on the diagnosis of a student answer (e.g., presented answer parts are correct but 

important parts are still missing), the system chooses an appropriate tutorial tactic 

(e.g., give positive feedback, acknowledge the correctly mentioned answer parts, and 

present a “keep going” prompt to encourage the production of still missing parts).  

To evaluate the quality of language understanding within BEETLE II, its 

interpretations were mapped to five classes (student response is correct, incomplete, 

contradictory, etc.) and compared to corresponding judgments of human experts. The 

evaluation yielded an overall accuracy of 66%. Notable differences were found 

depending on the questions students responded to. Responses in which students had 

to explain a given phenomenon yielded clearly lower accuracy scores than those in 
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which they just had to identify some target object or attribute (47% versus 88%, 

respectively).  

Overall, the symbolic approach allows a very detailed level of language 

understanding and the flexible generation of system responses. On the downside, due 

to the high demand on upfront knowledge engineering effort, corresponding systems 

are expensive to build and are restricted to relatively narrow content domains. For 

instance, BEETLE II dialogues revolve around questions of a rather restricted scope, 

such as the conditions under which a bulb in an electric circuit will be on or off. The 

evaluation results highlight the complexity and difficulty involved in deep language 

analysis: Despite the relatively narrow scope of the discussion domain, BEETLE II 

struggles when it comes to interpreting more complex responses involving 

explanations.  

AutoTutor (D’Mello and Graesser 2012) is a tutorial dialogue system used in 

content domains such as Newtonian physics and computer literacy. The dialogue 

starts with the tutor asking a main question (e.g., how a given observation can be 

explained based on the principles of physics), which is followed by an initial 

response by the student. The tutor evaluates the student response, gives short 

feedback accordingly, and initiates an extended dialogue sequence in which tutor and 

student jointly try to improve the initial answer. During this dialogue sequence, the 

tutor successively selects answer components not or not fully included in the student 

answer and tries to elicit these components from the student. The goal is that, to the 

extent possible, students themselves construct a correct and complete answer to the 

main question. This is realized through a series of tutor moves in which the level of 

scaffolding is gradually increased: (1) pump (e.g., “What else?”), (2) hint (e.g., 

“What about X”), (3) prompt (e.g., “X is a type of what?”), and ultimately (4) 

assertion (e.g., “X is of type Y”), if the student is not able to produce the target 

answer component himself despite scaffolding. A typical AutoTutor move comprises 

three parts: (1) short (positive, negative or neutral) feedback with respect to the 

student’s last production, (2) scaffolding of one of the types described above, and (3) 

a cue indicting that the tutor’s turn is over and the student has the floor again. 

Besides eliciting answer components from the student, AutoTutor tries to remedy 

detected misconceptions and to answer student questions.  

In contrast to BEETLE II, AutoTutor mainly relies on statistical natural language 

processing techniques to interpret student responses, in particular, latent semantic 

analysis (LSA; Landauer et al. 1998). LSA is used to compute a similarity score 

between “good” answer components stored in the system’s database and the 
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cumulative student response (i.e., the concatenation of all student turns within the 

current dialogue). If the similarity score exceeds a predefined, empirically 

determined, threshold value, the answer component is assumed to be covered in the 

student response. Similarly, the system can identify “bad” answer components 

indicating misconceptions. The comparison of texts using LSA is based on a 

semantic space, which is computed based on a corpus of documents from the domain 

under consideration. The semantic space is determined based on the co-occurrence of 

words in documents of the given corpus. Basically, the meaning of a document is 

defined by the words it contains and, vice versa, the meaning of a word is defined by 

the contexts (i.e., the documents) it occurs in. For instance, the semantic space used 

in one version of AutoTutor was built from two textbooks on computer literacy. 

Since textbook sections typically focuses on particular content aspects, each section 

can be considered as one document. Technically, the computation of the semantic 

space utilizes singular value decomposition (SVD), a mathematical method to reduce 

the dimensionality of data. For instance, the 10,000 or more different words typically 

contained in a text corpus may be compressed to a few hundred semantic categories 

induced by SVD. As products of a mathematical procedure, these semantic 

categories typically do not have an obvious, human-understandable interpretation 

(therefore “latent” semantic analysis). Some research in context of AutoTutor 

suggests 200 as a reasonable number of dimensions. Once a representation of the 

semantic space is available, the similarity of texts can be determined by mapping 

corresponding word vectors into the semantic space and computing the distance 

between these vectors.  

A critical advantage over simpler approaches based on keyword overlap is LSA’s 

ability to detect semantic similarities even if texts do not share a single word. 

Evaluation results show a moderate agreement between AutoTutor and human 

experts in identifying predefined answer components (correlations between r = .35 

and r = .50; D’Mello and Graesser 2012). The upper-end performance is comparable 

to the agreement between intermediate human experts (r = .49) but clearly lower than 

the agreement achieved by accomplished experts (r = .78; Graesser et al. 2000). In 

comparison to the symbolic language processing approach of BEETLE II, AutoTutor 

does not need a formal semantic description of a target domain, nor does it need 

computational means to infer formal semantic representations from natural language 

input. Rather, a domain-specific background corpus and representative examples of 

good and bad answer components suffice to approximate the content of student 

answers. This makes the approach less expensive and also suitable for more complex 

domains for which domain reasoners are hard or impossible to implement. On the 
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downside, the interpretation result is also less detailed and substantive. A particular 

weakness of LSA is the non-consideration of important aspects such as the 

syntactical structure, word order, and logical expressions, which may drastically alter 

the meaning of an utterance (e.g., negations). 

While the described approaches of BEETLE II and AutoTutor showed effective 

for content learning, it remains an open challenge to develop (single-user) tutoring 

dialogue systems for argumentation learning. To provide a realistic context for 

practicing argumentation skills, a natural scenario is that the computer agent takes 

the role of a debater, similar to the approach of Yuan et al. (2008). The automated 

analysis of free-form natural language arguments is a complex endeavor, requiring a 

relatively detailed understanding of the inner structure and logic of utterances, e.g., 

to identify claims, grounds, and their interrelations. In terms of analytical 

complexity, arguments are more akin to explanations than to factual statements about 

objects and relations. As learned from BEETLE II, the analysis of exactly such 

explanations turned out to be particularly difficult for the system to accomplish. 

Moreover, the analysis of argumentation is even more challenging in some respects. 

Systems like BEETLE II and AutoTutor base their assessments on explicitly stated 

answer components and try to elicit components not mentioned yet. Argument 

components and relations, however, are often not made explicit but inferred by 

discussants based on the pragmatic context of the dialogue. Moreover, to make sense 

of a contribution, it does typically not suffice to focus on the contribution itself. For 

instance, counterarguments do often not repeat the claims they are responding to but 

only implicitly refer to previous contributions (e.g., But …). Thus, an overall 

understanding of the response structure of the dialogue is needed including the 

specific types of rhetorical and argumentative relations that connect different 

contributions.  

Another problem is the scope of the domain addressed. Systems like BEETLE II 

and AutoTutor are designed to support the learning of a predefined set of domain 

concepts. The implemented dialogue strategies to elicit specific answer components 

quite naturally restrict the discussions to content elements modeled in the systems’ 

knowledge bases. The approach is similar to intelligent tutoring systems not 

involving dialog, which typically try getting students back on a right solution path 

again to avoid student inputs the system is unable to understand (Corbett et al. 1997). 

Hence, BEETLE II and AutoTutor allow mixed-initiate dialogues only to a limited 

extent: While also students can take initiative and ask questions, the specific topics 

discussed are always determined by the tutorial agent. For argumentative dialogues it 

may be desirable to allow students to also creatively invent new arguments, possibly 
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drawing from background knowledge not modelled in the system. A tutorial dialogue 

system would not be able to understand and thus respond to such contributions (in an 

informed way).  

Therefore, a possibly more appropriate approach is to set up the discussion 

between two or more students, whose behavior is not as restricted as the one of the 

computational debaters discussed above. Such a scenario may be supplemented with 

a computer agent who provides support and guidance to the discussion. The focus 

then essentially shifts from student-system interactions to student-student 

interactions. The demands on the computational agent are much lower, since the 

agent is not responsible for keeping the dialogue going in the first place, but rather 

acts as an outside observer who only intervenes occasionally. In particular, more 

limited analytical capabilities may be sufficient, both in terms of discussion scope 

(i.e., there might be discussion sequences which the agent does not understand in full 

detail) and accuracy (i.e., the impact of interpretation errors are less harmful since 

learning is primarily the result of student-student interactions). On the other hand, as 

discussed below, such scenarios involve a number of new, widely unexplored 

challenges.   

8.2.1.6 Adaptive support for collaborative educational dialogue 

Only recently, researchers began to investigate the specific demands for adaptive 

support in collaborative environments (Kumar and Rosé 2011; Walker et al. 2011). 

Since only few results are available, one may try to re-implement approaches known 

to be effective to support individual learning (i.e., one-to-one interaction between a 

student and a human / machine tutor). A considerable body of literature exists in this 

area (for an overview, see Shute 2008). However, such approaches do not readily 

translate into collaborative settings (Walker 2011) due to differences in the nature, 

dynamics, and complexity of the process. For instance, interventions by a computer 

agent may interrupt the flow of natural interaction between collaborating students. 

Empirical research shows that students tend to ignore system-generated feedback 

when engaged in collaboration with others (Kumar et al. 2007). Moreover, 

collaborative interactions have additional demands with respect to an automated 

analysis. For instance, a conversational agent who participates in a multi-party 

discussion must disambiguate the intended addressee of student messages (some 

other student? the tutorial agent?), while a single user tutorial dialogue system can 

safely assume that always the tutorial agent is addressed (Kumar and Rosé 2011). 

Another source of information may be research on human feedback strategies, e.g., 

in classroom settings (for an overview, see Hattie and Gan 2011). Yet, while some of 
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these results can provide valuable input, guidance, and inspiration, the “lessons 

learned” do not necessarily transfer into settings in which the computer takes the role 

of the facilitator. Computer programs do not have the same level of authority and 

credibility as compared to human teachers. Their capabilities in understanding and 

interacting with humans are perceivably limited and error-prone. So students may not 

give the same consideration to system-generated feedback and advice. Indeed, Rosé 

and Torrey (2005) observed that students respond differently to questions depending 

on whether they are presented by a human or a computer tutor. In particular, answers 

to questions posed by a computer tutor were far less elaborate than those in response 

to a human. Often, responses to the computer tutor consisted of only a single word 

without further explanation or justification. In fact, the actual responses delivered in 

the human tutor condition were also computer-generated. That is, already the 

expectation regarding the dialogue partner—human or computer—has significant 

impact on the behavior and thus potentially on learning. In summary, while 

neighboring fields, such as research on traditional intelligent tutoring systems and 

human feedback, can be informative to the design of adaptive CSCL systems, there 

is a strong need for more original research that considers the particularities of CSCL 

arrangements. The paragraphs below discuss some of the empirical results available. 

Baghaei et al. (2007) conducted an evaluation study with Collect-UML, a UML 

modeling tool that students use to collaboratively create and discuss UML diagrams. 

They compared a version of Collect-UML that only provides domain-level feedback 

with another version that provides, in addition, feedback regarding the collaboration 

process. Among other things, the collaboration feedback in Collect-UML encourages 

students to explain and justify changes to the group solution and to discuss 

differences between individual solutions created in advance to the collaborative 

phase. The conditions for providing feedback are encoded in a constraint-based 

model of ideal collaboration, which is checked in regular intervals to trigger 

corresponding feedback if constraints are violated. For instance, the system may 

detect that a change was made to the group solution without providing a justification 

in the chat. The collaboration support was successful in stimulating students to 

contribute significantly more individual solution elements to the shared group 

solution. While there was no significant difference in terms of domain knowledge 

gains, students who received collaboration feedback performed significantly better 

with respect to knowledge about effective collaboration. A study reported in Diziol 

et al. (2010) investigated whether adaptive support, comprised of a domain-

knowledge and an interaction support component, is effective in supporting math 

problem solving and learning in a peer-tutoring scenario. In peer tutoring, one 
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student takes the role of a tutor and the other student takes the role of a tutee; the 

roles may be swapped after some time or for new problem instances (reciprocal peer 

tutoring). The support of the computer tutor is based on an analysis of the support the 

peer tutor provides to the peer tutee. If the peer tutor marks a correct tutee answer as 

wrong, or vice versa, an incorrect answer as right, the computer tutor sends a 

message to assist the peer tutor in generating a correct feedback message. While the 

study yielded a null result with respect to domain knowledge learning, qualitative 

evidence suggested improvements of the collaboration process. A follow-up study 

yielded similar results (Walker et al. 2011). Again, the adaptive support did not lead 

to improved domain-knowledge learning, but the quality of peer tutor support was 

better. More specifically, there was a significantly higher rate of conceptual help, as 

opposed to instrumental help (i.e., help that enables the accomplishment of the next 

problem-solving step, yet, without explaining the rationale of that step).  

In contrast to the studies discussed so far, a number of other studies show positive 

effects of adaptive support on domain-knowledge acquisition. In a setting similar to 

the one described above, Walker et al. (2011b) did find a significant advantage 

favoring the adaptive support condition in terms of domain-knowledge learning. To 

confirm that the adaptation itself makes the difference—rather than a change in 

students’ expectation and attitude when they think that the feedback is adaptive—a 

secondary control condition was used in which students were told that actually 

randomly selected hints are based on automated adaptation. While students in the 

real-adaptive condition significantly outperformed the primary control condition, 

students in the told-adaptive condition did not so. Thus, the effect can be attributed 

to the actual adaptation rather than on changes in the students’ expectation and 

attitude. Kumar et al. (2007) employed adaptive conversational agent technology to 

support student chat discussions in context of a mechanical engineering problem. 

Their approach was based on knowledge construction dialogues (KCDs), that is, pre-

authored tutorial dialogues that guide students through directed lines of reasoning. 

Their computational agent listened to student conversations, identified domain-

specific keywords, and engaged students in KCDs when relevant topics have been 

detected. In addition, the agent prompted the less active student in certain intervals to 

discuss not yet covered topics. The results show a positive main effect for the 

adaptive support conditions. Dyke et al. (2013) present a somewhat lighter approach 

compared to KCDs to support student conversations. Rather than trying to engage 

students in a multi-step interaction to elicit directed lines of reasoning, their approach 

tries to mimic somewhat simpler teaching strategies known to be effective from 

classroom-based settings. In particular, they employed the framework of 
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Academically Productive Talk (APT; discussed before under the label of 

Accountable Talk), which has been developed and researched over a period of more 

than 15 years (Resnick et al. 2010), to support discussions between 9
th

 grade biology 

students. They conducted a study in which a conversational agent mimicked two 

teaching behaviors of the APT framework, revoicing (i.e., the agent restates the 

reasoning of students in different words) and feedback (i.e., the agent gives public 

praise to students who use APT moves [e.g., explanations, challenges] and 

encourages responses). Revoicing had significant positive effects on learning gains 

and quality of produced artifacts (explanations student groups came up with during 

their conversations); feedback had no significant impact on learning gains and even a 

significantly negative effect on the quality of the explanations produced during task 

execution. Generally, such a negative result should not be over-interpreted since, as 

discussed before, the approach itself may be appropriate but the underlying 

diagnostics or specific realization may be troublesome. However, in this specific 

instance, previous research has led to similar results, indicating that praise may harm 

the learning success (Shute 2008). As a possible explanation it was proposed that 

praise shifts the attention of learners to their self, distracting from the actual task. 

Not only the task-related content of messages is important but also the way how 

messages are delivered. Walker et al. (2012) reanalyzed the data of the Walker et al. 

(2011b) study and found that the crucial factor for learning was the amount of 

relevant feedback students took notice of, rather than the overall amount of relevant 

feedback provided. Of course, when feedback is selected by the system in an 

informed way, the overall amount of relevant feedback is likely to be higher 

compared to randomly selected feedback. Thus, students also have more 

opportunities to notice relevant feedback. Therefore, system developers should 

design feedback that is both relevant and likely to be noticed. The later point may be 

a critical bottleneck and limiting factor, as observed by Kumar et al. (2007). They 

found that students often ignored contributions of a conversational agent and focused 

on their learning partner instead. This motivated a series of follow-up studies that 

investigated whether prompts that are socially more appealing and involving may 

also be pedagogically more successful. One study investigated the effect of agent 

behaviors exhibiting a sense of humor and interest in the students (Cui et al. 2009; 

Kumar et al. 2007b). The conversational agent asked light-hearted questions to 

introduce new arithmetic problems. The results yielded (weak) evidence in favor of 

the social condition: The working atmosphere was friendlier (e.g., no insults) and the 

learning results consistently better (yet not at a significant level). Kumar et al. (2010) 

compared three conditions that involved different levels of social engagement (task-
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level support was identical across conditions): (1) no social support, (2) computer-

provided socio-emotional support, and (3) human-provided socio-emotional support. 

Social support consisted of showing solidarity (e.g., praise student contributions, 

encouraging participation), showing tension reduction (e.g., expression of feeling-

better after a phase of work pressure), and showing comprehension and agreement 

with students’ contributions. While the results revealed that students assessed the 

social behavior of the human most positively, also the computer-provided social 

support lead to significantly improved knowledge gains compared to the socially 

ignorant control condition. In a collaborative idea generation task, Kumar et al. 

(2011) found that the above described approach of socio-emotional adaptation 

improved students’ perception of the agent (more supportive, less pushy). As a 

second factor, they compared slight grammatical variations of the feedback 

formulations: a heteroglossic style (i.e., the agent implicitly acknowledges the 

existence of alternative perspectives) versus a monoglossic style (i.e., the agent 

speaks matter-of-factly). The heteroglossic style improved the perception of the 

agent (the agent was better liked) and was more effective in terms of stimulating idea 

generation (more ideas produced). The results of Kumar et al. (2007), which 

indicated that agent-led knowledge construction dialogues (KCDs) improve domain 

learning, motivated further studies by Chaudhuri et al. (2008, 2009). Chaudhuri et al. 

(2008) investigated whether the contents that were delivered through KCDs can also 

be presented in a less interactive and therefore less interruptive way. They found that 

the non-interactive support conditions—in particular, pointers to the relevant part of 

a booklet and non-interactive mini-lessons (i.e., the agent just posted relevant booklet 

contents into the chat)—significantly outperformed the KCD condition. In line with 

the Kumar et al. (2007) results, each adaptive support condition, including KCDs, 

was significantly better than a control condition in which identical content was 

provided statically. Chaudhuri et al. (2009) experimented with a combination of 

pointers and KCDs. Rather than starting KCDs immediately, the agent provided a 

pointer hint first and then invited students to start a KCD, which they could accept or 

decline. The results provide evidence that the combination is more effect than either 

of the two approaches alone (pointers only and KCD only). The combined condition 

was the only condition with significant gains, and significantly better than a non-

adaptive control and the KCD-only condition; the difference between the pointer-

only condition and the pointer+KCD condition was not significant. 

In summary, this series of studies shows that adaptive feedback in collaborative 

learning settings can improve the quality of collaboration as well as the acquisition 

of domain-knowledge. A number of different approaches have been employed, 
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ranging from knowledge construction dialogues, a technique imported from single-

user tutorial dialogue systems, to approaches more specifically tailored to the needs 

of collaborative settings, e.g., ones based on the Academically Productive Talk 

framework, which originates from longstanding research on classroom discussion 

facilitation. Research shows that subtle differences in how the feedback is delivered, 

such as slight variations in the feedback formulations, can have significant impact on 

its effectiveness. Moreover, the results suggest that feedback should not only be 

designed with task-related aspects in mind, e.g., to support problem solving and 

collaboration, but should also take socio-emotional aspects into consideration, e.g., 

to create a pleasant and thus possibly more productive working atmosphere. Some 

results indicate that the recently questioned interaction granularity hypothesis—“the 

effectiveness of tutoring systems […] increases as the granularity of the interaction 

of the system decreases” (VanLehn 2011)—is particularly problematic for 

collaborative learning, since interactions triggered by the system may interfere with 

natural interactions between human learners. Similar to argument diagramming, 

collaboration and discussion are typically continuous activities, making the decisions 

if, when, and how to interrupt an important research challenge.  

Overall, research on adaptive support for collaboration is still in an early stage 

and a solid knowledge base for designing adaptive CSCL systems is just emerging. 

To systematically explore the design space for adaptive CSCL systems, researchers 

should conduct parametric evaluations that isolate the effect of specific design 

decision regarding adaptive support, as opposed to evaluating tools in their entirety 

(Walker et al. 2011). From a methodological point of view, the presented studies 

exemplify a number of research design approaches to eliminate possible confounding 

factors. For instance, the same informational content may be delivered across 

conditions to cleanly separate the effects of non-adaptive aspects (“static” message 

content) and adaptive aspects (informed selection of messages) (Chaudhuri et al. 

2008; Walker et al. 2011). Or a (secondary) control condition with randomly selected 

messages can be used to determine whether the specific message selection approach 

is better than random selection (Walker et al. 2011b). Another problem is that 

adaptation strategies depend on diagnostics that must be processed beforehand. Yet, 

diagnostics are often imperfect, introducing another confounding factor when trying 

to evaluate adaptation strategies independently. A possible approach is to resort to a 

Wizard-of-Oz setup. That is, a human may emulate computational decision making, 

harnessing human intelligence and judgment to make decisions in a more precise (in 

the best case, near-perfect) way. Of course, the kind of decision making needed must 

be manageable for humans in real time. If the adaptation strategy turns out to be 
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ineffective, system developers have saved the effort to develop computational 

diagnostic modules that would have been needed to realize the strategy. As discussed 

below, such efforts can amount to considerable work. In general, to facilitate and 

accelerate future research efforts, tools like the here presented CASE engine, with its 

ability to conveniently configure alternative support strategies, can be utilized as 

research platforms. To support the just described Wizard-of-Oz setup, a small 

extension to the CASE engine would be a wizard interface that allows humans to 

feed their judgments into the system and make them available to the adaptation 

machinery. 

8.2.2 Automated analysis 

The automated adaptation within argumentation learning systems is driven by a more 

or less sophisticated analysis of students’ learning activities. There are two principal 

approaches to developing analysis systems, the knowledge-driven approach (i.e., 

handcrafted models of expert knowledge) and the data-driven approach (i.e., models 

computationally induced from data), both of which discussed in this section. 

Subsection 8.2.2.1 sketches the general development processes for adaptive 

support based on the CASE framework (see Chapter 5), indicating where the 

development of automated analysis functions ties into the overall development 

process. Since the design of the CASE framework has been informed through an 

extensive analysis of adaptive argumentation systems, the described process can be 

seen as a blueprint for developing such systems more generally, even without the 

CASE framework. The next two subsections discuss the pros and cons of the 

knowledge-driven approach (subsection 8.2.2.2) and the data-driven approach 

(subsection 8.2.2.3). Against this background, subsection 8.2.2.4 compares the 

knowledge-driven and the data-driven approach, elaborates on possibilities to 

combine both approaches, and discusses the role structured interfaces may play in 

facilitating and enabling automated analyses. Main points of this section are 

summarized in Table 42, p. 271. 

8.2.2.1 Place within the overall development process 

The development of automated analysis functionality is one step within the 

development of an adaptive support approach. The corresponding CASE 

development process typically comprises the following steps: 

1. conceptualization of the general support goals and approach, addressing, 

among other things, the following questions:  
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 What aspects of the learning process should be supported (e.g., problem 

solving, collaboration)? 

 What should be the general nature of the support (e.g., reflective or 

remedial feedback regarding past activities, forward-looking hints to 

overcome impasses)? 

 What is the envisioned overall support process (e.g., are there different 

phases that require different kinds of support)? 

2. definition of concrete pattern instances that represent opportunities to 

provide support 

3. definition of feedback messages to be delivered in response to detected 

patterns 

4. definition of the overarching support strategy (when to provide which 

message) 

The development process requires test-revision cycles at different stages to evaluate 

and improve both technical aspects (functioning of individual modules, interplay of 

different modules) and the pedagogical effectiveness of the entire setup. In step 2, 

the CASE framework allows system developers to add pattern detection functionality 

that may be based either on a knowledge-driven or a data-driven approach.  

8.2.2.2 Knowledge-driven analysis 

Knowledge-driven approaches involve a process typically referred to as knowledge 

engineering. In a first step, relevant patterns must be defined on a conceptual level. 

In a second step, the operational logic to identify these patterns must be specified. As 

discussed before, the CASE engine utilizes production rule technology to implement 

a general framework for pattern search in argument diagrams (see Chapter 5). To 

operationalize pattern search, system developers can either use the CASE Feedback 

Authoring Tool or directly program corresponding production rules into the system. 

While the latter option provides more flexibility and freedom in defining patterns, it 

is also technically more demanding, requiring expertise in expert system 

programming. System developers may be experts in a given domain and thus capable 

of identifying and operationalizing target pattern independently, without external 

input. Alternatively, system developers may focus on the technical aspects and 

consult external experts to elicit the domain and pedagogical knowledge needed to 

operationalize the analysis. 
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Table 42 

Analysis of approaches to automated modeling in argumentation learning systems 

Approach Benefits Limitations 

Knowledge-

driven 

models 

(based on 

knowledge 

engineering 

techniques, 

e.g., expert 

system 

modeling) 

educational benefits 

 (enables automated adaptation with 

its benefits, see Table 41, p. 249, 

educational benefits) 

implementation benefits 

 manageable (and possibly 

preferable) approach for patterns of 

limited complexity 

 incremental and iterative 

development of expert knowledge 

base possible (adding new patterns, 

improving existing patterns) based 

on practical experiences and 

evaluation results 

 human understandable models and 

human-predictable model output  

 current research on the authoring of 

intelligent and adaptive technologies 

(to facilitate development process) 

educational limitations 

 (enables automated adaptation with 

its limitations, see Table 41, p. 249, 

educational limitations) 

implementation limitations 

 knowledge engineering expertise 

required  

 detailed domain and pedagogical 

knowledge required 

 medium to high costs of knowledge 

elicitation and modeling 

 only applicable if required 

diagnostics are amenable to the 

knowledge engineering approach 

(e.g., patterns that are well-defined 

and not overly complex) 

Data-

driven 

models 

(based on 

data 

analysis 

techniques, 

e.g., 

machine 

learning 

model 

induction) 

educational benefits 

 (enables automated adaptation with 

its benefits, see Table 41, p. 249, 

educational benefits) 

implementation benefits 

 applicable to complex, to some 

extent ill-defined patterns 

 iterative, data-driven improvement 

of diagnostics possible (e.g., through 

relevance feedback mechanisms) 

 availability of linguistic technologies 

and resources (part-of-speech parser, 

functional dependencies parsers, 

named-entity recognition, etc.) 

 current research about domain 

adaptivity and transfer of machine 

learned models may help to transfer 

models to related settings with 

reasonable implementation efforts 

and demand for data 

educational limitations 

 (enables automated adaptation with 

its limitations, see Table 41, p. 249, 

educational limitations) 

implementation limitations 

 machine learning engineering 

expertise required  

 sufficient amount of data required, 

which, in addition,  must be labeled, 

depending on the approach 

 high costs of data collection, labeling, 

and machine learning 

experimentation 

 risk of negative validation result and 

wasted development resources if 

models turn out to have only 

insufficient predictive power 

 risk of performance loss when 

training and target scenario are  

different 

 often models not human 

understandable and model output 

hard for humans to predict 

 depending on model complexity, 

model may need considerable 

computational resources 



272 8 Computer-Supported Argumentation: Theoretical and Practical Aspects 

 

The step from the ideation of relevant patterns to the concrete operational definition 

is typically not trivial. First, there might be problems in eliciting the required 

knowledge. Fully and precisely capturing the knowledge of human experts is often 

difficult, in particular, when it comes to tacit knowledge—knowledge that humans 

are not able to articulate or even aware of (Dahlbom and Mathiassen 1993). Second, 

the operationalization itself may be troublesome. Intuitively clear pattern 

descriptions may correspond to complex logical specifications. Thus, the approach is 

only suitable for patterns of low to moderate complexity; otherwise the manual 

specification becomes unmanageable. On the positive side, the knowledge 

engineering approach gives developers complete control over the way how patterns 

are operationalized. The defined patterns are human-understandable and can be 

adjusted based on practical experience, e.g., when the detected pattern instances turn 

out to not quite match the pattern one originally had in mind. In general, the 

knowledge base of patterns can be incrementally developed and iteratively refined 

based on informal testing and evaluation. Authoring tools, such as the CASE 

Feedback Authoring Tool (see section 5.8), can support the development process and 

enable technical novices to actively participate in that process. In summary, 

knowledge-driven approaches are particularly appropriate for application domains 

that are well-understood, with explicit, workable knowledge available, and patterns 

of low to moderate complexity. Correspondingly, knowledge-driven approaches have 

been widely used to support knowledge representation activities based on argument 

diagrams and other formats that provide explicit, machine understandable semantics. 

Examples are Belvedere (Suthers et al. 2001), Rashi (Woolf et al. 2003), and 

LARGO (Pinkwart et al. 2009).  

8.2.2.3 Data-driven analysis 

Data-driven approaches utilize data analysis techniques, such as methods from the 

fields of machine learning and information retrieval, to computationally infer 

analysis parameters or complete analysis models. In context of the Argunaut project 

(see Chapter 6), a supervised machine learning approach was used to induce 

classifiers for important qualitative aspects of e-discussions from annotated data, 

which should serve as an example for data-driven approaches here. The process 

essentially unfolded into two parts: the generation of a data corpus with positive and 

negative examples for target categories (the machine learning input), and the actual 

machine learning engineering process (the machine learning analysis). To generate 

the data corpus, pedagogical experts first defined and operationalized relevant target 

categories. In contrast to the knowledge-driven approach, the operationalization does 

not have to be at a level that is interpretable by a computer program. Rather, it only 
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needs to be sufficiently detailed for humans to analyze data in an objective and 

reliable way. The rationale is that machine learning can later implicitly capture the 

human intelligence that goes into the analysis to build machine-executable models. 

Instructions how to apply categories to data segments have been collected in a 

coding handbook and employed to analyze existing data. The result was a corpus of 

positive and negative examples for each target category. The machine learning 

engineering process consisted of a series of experiments with varying attribute 

combinations (i.e., possible predictor variables that can be computed in relative 

straightforward ways) and machine learning algorithms. Linguistic technologies have 

been used to process natural language text and determine language-based attributes. 

The resultant machine learned models have been cross-validated and selected for 

practical use if the predictive performance has met a predefined criterion. 

In contrast to the knowledge-driven approach, supervised machine learning is also 

applicable when patterns are complex and their manual specification out of reach. 

For instance, machine learning can help to induce complex predictive models based 

on terms, term combinations, and grammatical constellations in natural language 

texts, which would be hard to manually define by human experts. Therefore, a 

number of analysis systems for student discussions are based on machine learning 

(e.g., Rosé et al. 2008; Walker et al. 2011; Argunaut work of this dissertation 

reported in Chapter 6).  

Yet, to apply machine learning, a sufficient amount of data must be available. 

Particularly supervised machine learning approaches are expensive since the data 

corpus must be manually labeled beforehand. As a rule of thumb, the more complex 

a target concept, the more training data is required to induce a machine learning 

model. Several studies suggest that a corpus size of around 1,000 segments (+/- 300) 

is sufficient to achieve (close to) satisfactory classification accuracy values (κ > .6) 

when analyzing qualitative aspects of computer-mediated education discussions (Ai 

et al. 2010; Dönmez et al. 2005; Argunaut experiments reported in Chapter 6). Of 

course, this coding effort multiplies with the number of coding categories. Dönmez 

et al. (2005) provide concrete numbers regarding a multidimensional coding scheme 

(7 dimensions). The coding was done in three waves; overall more than 17,000 text 

segments were coded by about 6 coders per wave. In each wave, coder training took 

about 500 man-hours, the coding itself about 1,200 man-hours (for about 5600 ≈ 

(17,000 / 3) text segments). That is, to produce the 1000 segments suggested above, 

one may calculate 700 man-hours of work (500 man-hours for the training, about 200 

man-hours for the actual coding). On top of that, the machine learning engineering 

process itself requires considerable time and effort in conceptualizing, planning, 
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preparing, and conducting experiments. The development costs must also be seen in 

relation to the scope of applicability of induced classifiers. As suggested by results of 

the Argunaut experiments (see Chapter 6) and other research (Daumé III and Marcu 

2006), the more the application setting differs from the training setting (e.g., student 

population and discussion topic), the more the classifiers may drop in accuracy. So, 

additional efforts and retraining may be required to transfer existing classifiers to 

new application domains. Current research investigates how such efforts can be 

minimized. For instance, Mu et al. (2012) devised a multi-stage classification 

approach. The classifiers do not operate directly on the (context-specific) terms 

contained in the data corpus. Rather, specific terms are pre-classified into more 

general semantic categories, such as person, location, and date. This allows the 

classifiers to operate on a more general level, decoupled from specific word choices 

in the training corpus. Of course, if not available, an additional classifier for tagging 

terms according to higher-level semantic categories must be developed for each 

specific target context. Moreover, some loss of specific semantics is unavoidable, 

which can affect the classification performance both positively (if the removed 

specifics are unnecessary noise) and negatively (if the lost semantics are relevant 

with respect to the target categories). Depending on the specific coding categories 

and data, there might be a need to develop automated data segmentation procedures 

in additional in order to apply the category classifiers to text segments that constitute 

the right unit of analysis. Recent research yielded promising results towards 

automated segmentation in CSCL contexts (Mu et al. 2012).  

Another important consideration is the risk of failing in inducing classifiers with 

sufficient predictive power. There is no guarantee that a machine learning algorithm 

is able to capture the fine nuances of natural language from a limited set of training 

data. While human coders can utilize the world knowledge they accumulated over a 

whole lifetime to make judgments, a machine learning algorithm is, by and large, 

restricted to a very limited set of available data. The quality and representativeness of 

this data is crucial to achieve a positive result. So, the number of training examples 

cited before (around 1,000 examples) may turn out to be insufficient in individual 

cases. Moreover, even if a classifier surpasses an a priori defined performance 

threshold (κ = .6, .7, or whatever), this may still not be good enough to achieve an 

effective adaptation. Depending on the specific application scenario (i.e., how the 

classifications are finally used), the demands on prediction accuracy may vary. In 

particular, the often cited and used threshold of κ > .7 was originally defined as a 

reference point for sufficient agreement between human raters in content analysis 

(Krippendorff 1980) and not to evaluate adaptive computer technology. So, while 
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such criteria give some orientation and guidance, an ultimate decision is only 

possible when testing the integrated adaptive support system in the target scenario. If 

it turns out that classifiers are not accurate enough, developers may already have 

spent considerable time and resources. Another possible “show-stopper” for practical 

use is an excessive runtime of classifiers. Possible countermeasures are to focus on 

machine learning algorithms that produce very efficient classification models (e.g., 

Support Vector Machines) and to reduce model complexity by keeping down the 

number of attributes of the final model (e.g., by ruling out attributes that presumably 

contribute only little). Despite all of the potential problems discussed, some CSCL 

systems demonstrate that machine learned classifiers can be successfully used to 

drive adaptations, highlighting the great potential of the approach (Kumar et al. 

2007; Walker et al. 2011). 

8.2.2.4 Developing automated analysis functions 

Knowledge-driven approaches are particularly appropriate for less complex patterns 

with relatively straightforward semantics in relatively well-understood domains, for 

instance, to analyze structural constellations in argument diagrams. Yet, the approach 

becomes intractable for complex patterns, for instance, when natural language is 

involved. Then, data-driven approaches, such as supervised machine learning, are the 

methods of choice. Inducing machine learned classifiers from data involves 

relatively high development costs and the risk that the predictive performance of 

resultant classifiers is not sufficient for practical application.  

Both approaches may be used side by side. For instance, the Multilevel 

Scaffolding scenario described in Chapter 4 may be enhanced with support based on 

a human-engineered pattern search in the diagrams and machine-learned classifiers 

in the chat discussions. While most machine learned models are complex, hard to 

understand, and thus not accessible to manual refinement, they can be combined with 

knowledge-driven approaches in a staged way. For instance, Ai et al. (2010) 

developed a component that applies heuristic rules to post-process low-confidence 

predictions from the machine learned classifiers, achieving a boost in the predictive 

performance of the overall system. Also the analysis of argument diagrams may 

profit from combining both approaches. Diagram boxes could be classified based on 

the contained text (e.g., as unjustified claims and critical comments), and the rule-

based approach could search for larger patterns in the diagrams utilizing these 

classifications (e.g., an unjustified claim that is not responded to with a critical 

comment). The CASE engine provides the technical infrastructure to implement such 
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scenarios: Rule-based agents and machine-learned agents can share their analysis 

results through a joint knowledge base. 

One of the main challenges in developing automated analysis mechanisms is how 

to come to grips with natural language user input, which is the most common form to 

express arguments and therefore of high practical relevance. As discussed before, 

knowledge-driven approaches are not appropriate to capture semantics of natural 

language texts at a deep level. While data-driven approaches are more promising in 

this respect, they suffer from a number of other difficulties: They require a sufficient 

amount of existing data, are relatively expensive in terms of development costs, do 

not necessarily generalize well beyond the training scenario, and are always at risk to 

not achieve sufficiently reliable models. A possible solution to make the analysis of 

natural language more tractable is to capitalize on structured user input, which can be 

provided through argument diagrams and sentence openers. Such structures do not 

only scaffold student reasoning, problem solving, and collaboration through explicit 

semantics exposed in the user interface. Rather, automated analysis approaches can 

also utilize these explicit semantics to interpret user inputs. Most approaches to 

analyze argument modeling activities ignore natural language texts and solely focus 

on the explicit semantics of the model structure (Pinkwart et al. 2009; Ranney and 

Schank 1998; Suthers et al. 2001). The Argunaut experiments (Chapter 6) 

demonstrate how diagram structures can be used in conjunction with natural text 

input to induce machine learned classifiers from data. Also the analysis of student 

discussions can benefit from explicit structures. In the past, researchers explored the 

potential of sentence openers as an easy way to capture the intentions of discussion 

moves. For instance, McManus and Aiken (1995) used sentence openers to trigger 

transitions of a state automaton that modeled possible states of a discussion (e.g., 

display, confirm, disconfirm, and convergence). Others used sentence openers as 

machine learning attributes to induce predictive models of group interaction 

problems (Goodman et al. 2005; Soller 2004). The next chapter develops these ideas 

further in the context of the Multilevel Scaffolding scenario described in Chapter 4. 
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Chapter 9  

Adaptive Support for the Multilevel 

Scaffolding Scenario 

To bring together the different findings of the dissertation in a concrete way, this 

chapter sketches how the Multilevel Scaffolding scenario described in Chapter 4 

could be supported through adaptive support. In particular, this chapter addresses 

how the structural elements of the user interface—diagram elements and sentence 

openers—could be exploited to implement an automated analysis of chat discussions. 

First insights regarding the feasibility and challenges of the approach will be 

presented based on the results of a pre-study. 

As discussed before, effective feedback should consider both content and process 

aspects of student discussions. To facilitate the analysis on the process level, the 

sentence openers currently used as part of the FACT-2 script could be utilized to tag 

messages according to their communicative intentions. To facilitate the analysis on 

the content level, explicit diagram references could be added to the chat as a second 

structuring element. That is, if a new chat contribution cites or takes position towards 

elements of the diagram, students would explicitly indicate which diagram element 

the chat messages is referring to. Diagram elements again represent passages of the 

texts that students analyze and discuss. Therefore, students could use another 

reference mechanism to indicate which text passages diagram elements are based 

upon. The topic of chat contributions could then be determined by (1) identifying the 

diagram element referenced in the chat contribution, (2) identifying the text passage 

referenced in the diagram element, and (3) identifying the topic of the text passages 

through a predefined model (e.g., each text passages may be annotated with one or 

multiple topic tags). Building upon well-structured and machine interpretable user 

input, the described framework may allow analyzing student discussions in a more 

accurate way on both the process and content dimension. 

These two pieces of information could be used independently to support student 

discussions. Students’ use of sentence openers gives some indication of their 

discussion style, e.g., whether they take a critical stance (indicated by a large amount 



278 9 Adaptive Support for the Multilevel Scaffolding Scenario 

 

of critic sentence openers) or not (indicated by a small amount of critic sentence 

openers). Students who rarely criticize or object to messages of their fellow students 

could be prompted to be more critical. Students’ references to the diagram give some 

indication of the contents that have been covered so far and the extent to which these 

topics have been covered. Based on this information, the system could prompt 

students to cover important topics not yet discussed, to elaborate more on important 

yet under-discussed points, or to speed up their discussion when time is running short 

and many important aspects have not been addressed yet. This might be useful since 

scripted discussions put an additional load on students, which may result in a reduced 

number of task aspects covered (Weinberger et al. 2010). Combining content and 

process aspects may provide an even more powerful framework. For instance, it may 

be possible to determine how critically specific contents have been discussed and 

which connections have been made between the two opposing texts (e.g., some data 

reported in text A has been used to attack some claim made in text B). In theory, the 

information derived from the described framework can be exploited in manifold 

ways to support student discussions. In practical terms, the crucial question is how 

complete and reliable the derived information actually is. To achieve high-quality 

inferences it is essential that students make sufficient and consistent use of 

structuring elements. A feasibility analysis based on the data of the Multilevel 

Scaffolding study investigated possible obstacles to such an approach (Scheuer et al. 

2013).  

As reported above, in one out of five messages a sentence opener was used, and 

two thirds of all dyads made frequent or occasional use of sentence openers 

according to an a priori defined criterion (frequent: more than 25% of all messages 

use a sentence opener, occasional: between 10% and 25% of all messages use a 

sentence opener). While sentence opener misuse almost never occurred, there was 

nevertheless a wide variety of different uses. For instance, the sentence opener Could 

you explain to me … was not only used to elicit explanations in a neutral way, but 

also to raise concerns and objections against previous points. The sentence opener 

For instance … was not only used to illustrate some previous point, but also to list 

one or more exemplary arguments to support a previous point. In line with the 

observation of Israel and Aiken (2007), some messages expressed multiple 

independent ideas at once, another potential problem for an automated analysis. For 

instance, some students present an argument and ask a question within the same 

message. In this case, the sentence opener only identifies the first part of the message 

(the argument) but not the second part (the question). In other cases, students provide 

several independent reasons to support a claim in the same message. A 
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computational model might then assume that only one reason was given. Finally, the 

point of reference of messages is not always clear. For instance, the sentence opener 

A supporting argument is … is sometimes used to present an argument regarding a 

recent claim (which might or might not be presented in the latest message). In other 

cases, the message refers to the general discussion topic. In either case, supporting 

sentence openers are typically used to support one's own position and opposing 

sentence openers to oppose the partner's position, a useful heuristic to interpret 

sentence openers.  

The analysis revealed also that diagram references were used at a reasonable rate. 

Across all dyads about 12% of all messages contained a diagram reference. Again, 

the extent of usage differed considerable between dyads: five dyads made frequent 

use (> 25% diagram referencing messages), five dyads made occasional use (> 10%), 

and twelve dyads made rare use of diagram references (< 10%). That is, almost half 

of all dyads (45%) used diagram references in their contributions at least 

occasionally. A rate of 10%, or even 25%, is quite substantial, since about one third 

of all messages are not about elaborating on the subject matter. Moreover, it is 

certainly not unusual that students exchange multiple messages regarding one and 

the same diagram element. Also, the use of diagram references was not mandatory; 

students were only hinted at the possibility of doing so. There were also a variety of 

ways diagram references were used, which is certainly an artifact of the lack of clear 

instructions, and a potential problem in an automated analysis of diagram references. 

For instance, diagram references were added to messages to cite the diagram element 

as the source of the information used in the message. In other cases, diagram 

references were used to comment on the content of a diagram element. In other cases 

again, students used diagram references as a shortcut or placeholder for the content 

of the referenced element, to save the effort of typing the complete statement into the 

chat. In one instance, a student explicitly complained about this practice, annoyed 

with searching for the referenced contents in the diagram. Finally, students had 

different approaches in where to post diagram references. Some students used 

diagram references in the very message it belongs to, others posted the diagram 

reference in a separate message afterwards, and others first posted the diagram 

reference and then in a second message included the actual content of the referenced 

diagram element. 

In summary, and in contrast to some previous results (e.g., Lazonder et al. 2003), 

most students made reasonable use of sentence openers and diagram references. 

Whether the extent of use provides sufficient information to effectively support 

students is an empirical question still to be investigated. Even if students make 
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frequent use of the provided structures, they may appropriate them in different ways, 

giving rise to multiple possible interpretations, a possible obstacle to generate precise 

feedback. Some level of uncertainty might not be a problem depending on the 

specific objectives one is pursuing. For instance, there is no need to resolve the exact 

point of reference of messages if one abstains from a fine-grained computational 

model. Rather than capturing the amount of support and opposition for specific 

statements, such a model could focus on the number of pros and cons regarding the 

two main positions. Of course, more coarse-grained assessments also limit the 

possibilities for feedback generation. Another approach is to use simple 

computational heuristics to disambiguate well-structured input. For instance, Israel 

and Aiken (2007) used keyword matching in addition to sentence openers to classify 

messages. Another option is to use the information gained through structuring 

interface elements to enhance a machine learning analysis. For instance, machine-

learned classifiers may determine the communicative intention of messages based on 

sentence openers and natural language text, an approach similar to the Argunaut 

approach described in Chapter 6. Recent research investigates machine learning 

approaches to determine the response structure of chats (e.g., Mayfield et al. 2012), 

another possible problem observed in the pre-study. 

The learning environment itself could also be enhanced to guide students towards 

a more effective and uniform usage of structuring elements. In particular the 

following enhancements may be employed: 

 Message categories (e.g., claim, argument, question) could replace sentence 

openers since, if chosen well, they have a clearer meaning and leave less room 

for interpretation. Moreover, they can be used more easily (and might therefore 

be used more frequently), since they do not require students to fit their 

messages syntactically to their selection. On the downside, categories do not 

provide a scaffold at the level of the concrete way of formulating a specific 

type of statement. 

 Discussion threads could disambiguate the point of reference of messages since 

each message then has a clearly defined predecessor. Alternatively, students 

could explicitly indicate to which previous chat message a new message refers 

to. This approach is used, for instance, in the ConcertChat tool (Mühlpfordt and 

Wessner 2005). On the downside, this kind of structuring imposes an additional 

burden on the user, who would have to create these structures. 
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 More explicit instructions could make expectations and recommended forms of 

usage clearer (e.g., appropriate message grain-size; how to use diagram 

references). 

 Incentives could encourage more frequent use of sentence openers and diagram 

references. For instance, the system could highlight referenced diagram 

elements when students hover with the mouse pointer over chat messages, thus, 

save them from a time-consuming search in the diagram, a clear value added. 

As a social incentive, a score based on the number of sentence openers each 

student used could be displayed. On the downside, such social, game-like 

incentives may provoke behaviors such as gaming-the-system (Baker et al. 

2004). That is, students may inappropriately use sentence openers to acquire 

higher scores rather than to engage in a higher-quality discussion. 

 The creation of diagram references could be simplified, e.g., diagram 

references could be added to messages through a drag-and-drop functionality.  

 Explicit feedback could specifically target an appropriate use of structuring 

elements, e.g., prompting messages for students who make only rare use of 

sentence openers. On the downside, as discussed before, there is also a cost to it 

since each intervention on the part of the system potentially interferes with 

natural student-to-student interactions. 

It should not be forgotten that the generation of effective feedback is only one 

concern in the design of adaptive argumentation learning systems and sometimes at 

odds with usability and pedagogical concerns, as indicated by the drawbacks 

mentioned in the list above. That is, improving the accuracy of an automated analysis 

might have undesirable side effects. Therefore, one has to carefully consider the 

tradeoffs involved in the design of argumentation learning user interfaces and scripts.  

In summary, highly structured user interfaces have the potential to guide students 

towards modes of interaction closer to the ideal model of interaction the instructional 

designer had in mind. The constraints and affordances incorporated into the user 

interface give the system designer some level of control over the kind of interactions 

that are possible or expectable—important theories (Fischer et al. 2013; Suthers 

2003) and empirical research regarding the aspect of guidance induced through user 

interfaces have been extensively discussed throughout this dissertation. Moreover, as 

discussed in this chapter, highly structured user interfaces provide better-structured 

user inputs, which can inform the automated analysis of interactions in a more 

precise way. On the negative side, there is the danger that an interface may become 
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too restrictive, which then may lead to mechanical and unnatural forms of 

interactions—a potential betrayal of important ideals of computer-supported 

collaboration (Weinberger 2011), such as promoting rich and authentic forms of 

interactions. Moreover, the same theories that highlight the potential of well-

designed structured interfaces also point at negative consequences that may arise. For 

instance, collaboration scripts may obstruct fruitful forms of interaction 

unanticipated by the designer. As in the case of sentence openers, only a relatively 

small number of moves can be represented to not overload the user interface (Soller 

2001). Knowledge representations may mis-guide students’ attention, as evidenced 

by excessive prompting exerted by a table notion in a study by Suthers and 

Hundhausen (2003). Moreover, knowledge representation activities involve an 

inherent overhead since users must learn how to use corresponding notational 

systems and spend time and effort keeping the representation well-organized and 

readable (Buckingham Shum et al. 1997). The increased control by the designer 

mentioned above may, conversely, lead to user frustration and decreased 

engagement, in particular, when students feel patronized and perceive the structure 

as a burden rather than an aid. All in all, the tradeoffs involved in the design of 

computer-based argumentation learning systems, both, adaptive and non-adaptive, 

highlight the need for sustained research efforts in this area.  
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Chapter 10  

Conclusions 

This dissertation investigated crucial aspects in the design of argumentation learning 

systems. Its first part focused on the question of how user interfaces could be 

designed to promote high-quality actions and inter-actions of learners. Empirical 

results showed that discussion scripts can be employed to significantly raise the 

amount of elaboration that occurs during educational discussions. Besides increasing 

the amount of high-quality moves, scripts generally help learners keep a focus on the 

learning task, as indicated by previous research (Baker and Lund 1997; Oh and 

Jonassen 2007) and a significantly lower proportion of moves at a low elaboration 

level in the here presented study. 

The mechanism at work may be explained based on the script theory of guidance 

(Fischer et al. 2013). Discussion scripts are composed of structuring elements (e.g., 

sentence openers) that help learners activate knowledge about discussion and 

collaboration practices they often already possess—for instance, presenting a claim, 

formulating a counterargument, or backing an argument with evidence. Sustained 

engagement in so scaffolded activities is assumed to help learners develop higher-

level mental organizational structures of knowledge, which are then available in the 

future. In other words, sustained engagement in scripted discussion practice is 

assumed to promote the acquisition of argumentation skills. Through the FACT-2 

script of this dissertation, learners may internalize the concept of a critical 

discussion, which comprises being both a proponent and a critic. According to the 

script theory, they can accomplish this by developing knowledge structures regarding 

the behavior of proponents and critics (role-level script components) based on 

knowledge about the production of specific individual discussion moves they already 

possess (scriptlet-level script components). This process is guided by the sentence 

openers in the user interface, which indicate typical and allowable discussion moves 

for each role. Generally, while providing a helpful scaffold for novice learners, the 

application of scripting at a fine-grained interaction level, such as the sentence 

openers used here, may turn out to be a hindrance, rather than a help, for experienced 

discussants. 
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Important questions for future research include whether improvements achieved 

in scripted discussions actually transfer to unsupported discussions and under which 

conditions (e.g., how many training sessions are needed), whether discussion scripts 

also promote the acquisition of domain knowledge and domain-specific reasoning 

skills (current results are mixed), and under which specific conditions discussion 

scripts support or hinder learning (for instance, as mentioned above, the mastery 

level of learners may be an important factor). From a learning-theoretical 

perspective, a crucial goal must be to better understand, in general terms, how 

collaboration scripts influence a learner’s thinking and acting. The recently proposed 

script theory of guidance (Fischer et al. 2013) provides a promising starting point, 

based on a thorough review of existing scripting results, yet, with a number of 

important questions still open. For instance, Fischer et al. (2013) note that their 

proposed conceptual framework with the four levels play, scene, role, and scriptlet 

may be extended, refined, or revised based on new empirical results. 

Another area for future research is to investigate how different structuring 

elements can be combined to increase the effectiveness of instructional approaches 

(Tabak 2004). The learning environment used in this study is an instance of such a 

combined approach, utilizing both a discussion script and argument diagrams. It is 

well documented in previous research that argument diagramming in itself is an 

effective approach to teach reasoning and thinking skills, and to provide guidance to 

discussions. Yet, an additional discussion script may help learners better capitalize 

on the knowledge and reasoning benefits induced by diagrams. Vice versa, because 

diagrams make information more accessible and facilitate reasoning, they may 

encourage and support learners in using high-quality discussion moves included in a 

script. The research design employed in the reported study does not allow definite 

conclusions on this interesting question, which is up to future research. 

Such research could also shed light on a somewhat underrepresented aspect of the 

script theory of guidance. Currently, the relationship between scripts and knowledge 

representations is somewhat loose—external knowledge representations are 

described as elements of the environment that provide situational constraints and 

affordances that lead learners to select and employ specific components of their 

mental scripts. Still open is the question of how exactly external knowledge 

representations influence the dynamic configuration of mental script components. 

Moreover, the script theory does not address the question of how the combination of 

external knowledge representations and scripts influences the dynamic configuration 

and development of mental scripts. A straightforward method to investigate the first 

question—the effects knowledge representations have on mental scripts—would be 
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to determine whether particular sentence openers are used at an increased rate when 

specific representational notations are employed. This would allow for drawing 

conclusions regarding the mental script components activated through specific 

properties of representational notations. For instance, if a notation includes a data 

element, learners may increasingly use sentence openers for backing up arguments 

with evidence (e.g., According to a statistic …). Such a result would suggest that an 

explicit representation of data in a notational system activates corresponding 

scriptlets in the learner’s internal repertoire of moves. Of course, this methodology 

only works out when effects of the notational system are not obscured by the external 

script, a possibility that leads to the second question—the effects combinations of 

representational notations and external scripts have on mental scripts. To investigate 

this second question, a qualitative analysis of chat protocols would be required. 

Intuitively, one would expect that the use of specific discussion moves increases with 

the amount of corresponding structural support: (openers + diagrams) > (openers 

alone) = (diagrams alone) > (no support). A positive result would underline the 

possible merits of combining different scaffolds. An even more ambitious hypothesis 

would postulate a synergistic interplay of both structuring elements, which should 

result in a statistical interaction effect. 

The second part of this dissertation focused on several aspects regarding adaptive 

support of argumentation learning. The presented CASE engine provides a proof-of-

concept of how the technological infrastructure for adaptive argumentation learning 

systems may be designed. It addresses several important concerns, most notably, the 

ability to flexibly support argumentation across different domains and application 

scenarios. This objective has been achieved through a comprehensive configuration 

framework, designed based on adaptive support approaches used in past 

argumentation learning systems, and an open architecture with predefined extension 

interfaces to plug in new functionality. To demonstrate the flexibility of the 

approach, support mechanisms for several scenarios have been implemented, 

including the analysis of legal transcripts, the planning and preparing of scientific 

essays, group deliberation about science and math problems, and the moderation of 

discussions about controversial topics. While a flexible technological infrastructure 

for adaptive support is important, the perhaps more important question is how to 

exactly employ adaptive support to promote argumentation learning. Until now, this 

important issue has been insufficiently addressed. Rigorous empirical testing of the 

effectiveness of adaptive support in CSCL systems are still the exception rather than 

the rule—some of these exceptions are discussed in this dissertation (e.g., Kumar et 

al. 2007; Walker et al. 2011). Similar to the script theory of guidance and the theory 
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of representational guidance, it would be important to develop a unifying theory of 

adaptive guidance, a theory from which guiding principles for designing adaptive 

CSCL argumentation systems could be derived. It can be expected that such a theory 

diverges in important ways from what is known about adaptation strategies to 

support individual learners, e.g., in traditional intelligent tutoring systems. A unique 

characteristic of CSCL is that the interactions between co-learners—rather than the 

interactions between a learner and a system—take the primary role. This particularity 

of CSCL requires a rethinking of how adaptive support can be delivered, aiming at 

approaches that do not interfere with natural interactions between learners. To build 

such a theory, focused research is needed to isolate the effects of individual 

parameters of adaptive support, e.g., timing, general presentation format, or wording, 

if textual messages are used. Such a theory may provide an important complement to 

the script theory of guidance by covering aspects of adaptive CSCL scripts. For 

instance, an emerging topic—sometimes discussed but still largely unresearched—is 

the automated fading of scaffolds (Pea 2004), an approach to gradually hand over 

competencies from the system to the learners. 

Adaptations should be tailored to the collaboration and argumentation processes 

learners engage in. Therefore, an automated and accurate analysis of key aspects of 

these processes is an important prerequisite for realizing effective adaptation 

strategies. This dissertation investigated two principal approaches to the automated 

analysis of argumentation learning activities. As part of the CASE engine, a 

knowledge-driven approach was realized, which allows defining patterns in 

argument diagrams that represent aspects of problem solving and collaboration (e.g., 

modeling errors and problematic interaction patterns). To facilitate the process of 

defining such patterns, a novel authoring tool was conceptualized and developed. A 

major contribution is a graphical language to specify patterns based on a visual 

language. A first usability evaluation yielded encouraging results. Generally, 

knowledge-driven approaches are particularly suitable when patterns are well-

understood (i.e., detailed expert knowledge is available), not too complex (i.e., 

manual specification is a manageable task), and easily expressible in terms of the 

available input data (e.g., diagrams typically provide semantically rich input data). 

The second approach—data-driven induction of relevant patterns—can be employed 

when a knowledge-driven realization of the analysis is out of reach, e.g., when an 

analysis of natural language is a key to success. This dissertation presented the first 

machine learning approach to automatically inducing classifiers for qualitative 

aspects of graphical discussions (e.g., off-topic contributions and argument-

counterargument interactions), with promising validation results. 
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One main future challenge with respect to the application of data-driven 

approaches, such as machine learning, is ensuring a sufficient accuracy of the 

developed models. Such models typically incorporate regularities detected in training 

data, which are often, but not always, predictive of some phenomenon of interest. 

That is, in some cases, misclassifications will occur, which, in turn, may lead to 

inappropriate adaptations potentially harmful for learning. One option, and potential 

component of a theory of adaptation, is fault-tolerant adaptation, that is, an approach 

to adaptation that is not, or only minimally, harmful even in the case of a fallible 

analysis. A second option is to find ways to improve the accuracy of the analysis 

itself. A promising way to advance is importing and testing ideas and algorithms 

from both, foundational research (e.g., basic machine learning and natural language 

processing research) and related applied fields (e.g., social analytics and user 

modeling). Another option is to enrich the input data to be analyzed with meaningful 

information. Structuring elements of the user interface, such as diagrams, sentence 

openers, and explicit referencing mechanisms, can be exploited to enhance recorded 

user data with semantically-rich information, which can potentially contribute to a 

more accurate analysis. Of course, one has to take care that the structuring does not 

get into the way of natural user interactions and impair learning. A second approach 

to enrich the input data is to use a staged analysis. Before applying a data-driven 

approach, a knowledge-driven approach may be employed to identify 

straightforward, but meaningful, patterns in the input data—an approach particularly 

attractive when a knowledge-driven approach is already in place. Such an approach 

makes expert knowledge accessible to a data-driven analysis that would otherwise 

not be available. The stages can also be switched: First, hard-to-formalize patterns 

may be identified based on a data-driven approach (e.g., machine learning). Then, 

specific constellations of these patterns, relevant for driving the adaptation of a 

system, can be manually defined. In this case, the data-driven analysis can 

potentially reduce the complexity of the input data to a level manageable by a human 

expert. Overall, research on such combinations of knowledge and data-driven 

analysis approaches is still rare and a promising avenue for future research. 
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