
S tatist ical Parsing for German

Modeling syntactic properties and annotat ion

differences

Amit Dubey

Dissertation zur Erlangung des Grades eines
Doktors der Philosophie der Philosophischen
Fakultaten¨ der Universitat¨ des Saarlandes

Abstract

Statist ical parsing research can be described as being anglo - centric : new models

are first proposed for English parsing, and only then tested in other languages.

Indeed, a standard approach to parsing with new treebanks is to adapt fully

developed English parsing models to the other language. In this dissertation,

however, we claim that many assumptions of English parsing do not generalize to

other languages and treebanks because of linguistic and annotation differences.

For example, we show that lexicalized models originally proposed for English

parsing generalize poorly to German. Even after modifying the models to account

for annotation differences, we find the benefit of lexicalization to be far less than

in English.

With this as a starting point, we take a closer look what effect that linguistic

differences between English and German have on statistical parsing results . We

find that a number of linguistic elements of German play a more crucial role than

lexicalization. For example, adding a relatively simple model of the German case

system to parser accounts for more ambiguity than a complex model including

lexicalization. Further studies show that lexical category ambiguity accounts for a

surprising amount of parsing mistakes, and while a model of morphology we

develop gives mixed results, an error analysis suggets that a correct model of mor-

phology would help with resolving harmful and common verb/adjective ambigu-

ities . In addition, we offer a preliminary model of long-distance dependencies,

showing this model helps greatly in resolving ambiguities caused by German free

word order constructions.

We also find that the choice of evaluation metric can have a profound impact

on parsing performance: it appears that lexicalized models perform better on

dependency-based metrics whereas unlexicalized models perform better on

labelled bracketing metrics. Other seemingly arbitrary choices also affect parsing

results : the choice of search and smoothing algorithm can potentially obscure

helpful linguistic disambiguation cues.

The best performing model we develop sets the state-of-the-art performance

on the NEGRA and TIGER corpora, with labelled bracketing scores of 76 . 2 on

NEGRA and 79 . 5 on TIGER. Furthermore, this parser scores 84. 0 on dependen-

cies on the NEGRA corpus, also the best reported performance on that corpus,

and 86. 2 on the TIGER corpus.

iii

Zusammenfassung

Die bisherige Forschung im Bereich des statistischen Parsing ist weitgehend

anglozentrisch : neue Modelle werden in der Regel zuerst fur¨ das Englische

vorgeschlagen und erst dann fur¨ andere Sprachen getestet . Parser fur¨ neue Baum-

banken werden ublicherweise¨ nicht neu entwickelt , sondern es wird lediglich ein

Parsingmodell fur¨ das Englische auf die neue Sprache angepasst (z. B . Beil et al . ,

1 999 ; Collins et al . , 1 999 ; B ikel und Chiang, 2000) . In dieser Dissertation wird

gezeigt , dass viele der Annahmen, die fur¨ das Parsing des Englischen gemacht

werden, sich nicht ohne Weiteres auf andere Sprachen und Baumbanken uber-¨

tragen lassen. D ie Grund¨ dafur¨ sind Unterschiede in der linguistischen Struktur

und den Annotationschemata der Baumbanken. Insbesondere zeigen wir, dass

lexikalisierte Parsingmodelle, die ursprunglich¨ fur¨ das Englische vorgeschlagen

wurden, sich nicht gut auf das Deutsche ubertragen¨ lassen. Selbst wenn die Mod-

elle abgeandert¨ werden, um Unterschieden in der Annotation Rechnung zu tragen,

sind die Leistungsgewinne durch Lexikalisierung im Deutschen deutlich geringer

als im Englischen.

Dieses Ergebnis dient uns als Ausgangspunkt fur¨ eine weitreichende Unter-

suchung der Rolle, die die linguistischen Unterschiede zwischen den beiden

Sprachen beim statistischen Parsing spielen. Unsere Ergebnisse zeigen, dass die

Berucksichtigung¨ von linguistischen Eigenschaften des Deutschen weit wichtiger

als Lexikalisierung sind. Zum Beispiel stellt sich heraus, dass ein relativ einfaches

Modell des deutschen Kasussystems sich besser zur Bewaltigung¨ von Ambigu-

itaten¨ eignet als ein lexikalisiertes Modell . Weitere Untersuchungen zeigen

außerdem, dass die Ambiguitat¨ der lexikalischen Kategorien im Deutschen fur¨ eine

betrachtliche¨ Anzahl von Parsingfehlern verantwortlich ist . Wir schlagen

daraufhin ein Morphologiemodell vor, das aber nur eine unzureichende

Verbesserung der Parsingleistung vorweisen kann. Eine Fehleranalyse zeigt jedoch,

dass ein ideales Morphologiemodell die Parsingleistung deutlich verbessern wurde¨ ,

da es die haufig¨ auftretende Verb/Adjektiv-Ambiguitat¨ auflosen¨ konnte¨ . Des weit-

eren schlagen wir ein Modell von langen Abhangigkeiten¨ vor und zeigen, dass

dieses Modell die Auflosung¨ von Wortstellungambiguitaten¨ im Deutschen deutlich

verbessert .

iv

Wir konstatieren auch, dass die verwendete Evaluationsmetrik die Parsingleis-

tung wesentlich beeinflusst : Lexikalisierte Modelle erzielen eine deutlich bessere

Leistung, wenn eine Dependenzmetrik angewandt wird. Unlexikalisierte Modelle

dagegen erzielen eine bessere Leistung unter Verwendung einer Konstitutenten-

metrik. Andere Faktoren scheinen daruberhinaus¨ einen Einfluss auf die

Parsingleistung zu haben: je nach verwendetem Suchalgorithmus oder Glattungss-¨

chema kommen potentiell wichtige Disambiguierungsmerkmale nicht zur Geltung,

und die Leistung des Modells fallt¨ ab.

Das beste in dieser Dissertation entwickelte Modell erzielt eine Parsingleis-

tung, die bisher auf dem NEGRA- und TIGER-Korpus unerreicht ist . Das Modell

erzielt eine Konstituenten-F-Metrik von 76 . 2 auf NEGRA und 79 . 5 auf TIGER.

Desweiteren erzielt es eine Dependenz-F-Metrik von 84. 0 fur¨ NEGRA und 86 . 2 fur¨

TIGER.

Gliederung

Im Weiteren fassen wir den Inhalt dieser Dissertation kurz zusammen. Die

wichtigsten Ergebnisse werden in den Kapiteln 3 , 4, 5 und 6 vorgestellt . D iese

Kapitel beschreiben die Entwicklung und Evaluation unserer Parsingmodelle fur¨

das Deutsche. Das Hauptaugenmerk liegt dabei auf den Auswirkungen, die die

Syntax des Deutschen und die Annotation der deutschen Baumbanken auf die

Parsingleistung haben.

Kapitel 2 Dieses Kapitel fuhrt¨ den Hintergrund fur¨ die vorliegende Dissertation

ein. Wir geben eine Ubersicht¨ uber¨ die verwendete Notation und stellen die

Konzepte dar, die dem statistischen Parsing zu Grunde liegen. Wir bieten auch

einen Uberblick¨ uber¨ die Literatur zum statistischen Parsing, wobei das Augen-

merk auf dem Parsing von nicht-anglophonen Sprachen liegt . Das Kapitel schließt

mit einer Diskussion von methodischen Fragestellungen (z . B . Training und Evalu-

ation des Parsers) .

Gliederung v

Kapitel 3 Der experimentelle Teil der Dissertation beginnt in diesem Kapitel

mit einer Darstellung der Ergebnisse, die wir mit einer Reihe von etablierten Pars-

ingmodellen fur¨ das Deutsche erzielt haben. Insbesondere testen wir ein

unlexikalisierte Basismodell und die lexikalisierten Modelle von Collins (1 997) und

Charniak (1 997) . Die beiden lexikalisierten Modelle wurden ursprunglich¨ fur¨ das

Englische entwickelt , jedoch wurde das Collins-Modell in abgewandelter Form fur¨

das Tschechische (Collins et al. , 1 999) und fur¨ das Chinesische eingesetzt . Das

Charniak-Modell wurde bereits von anderen Autoren fur¨ das Deutsche eingesetzt

(Beil et al . , 1 999) . Wir stellen weiterhin Ergebnisse vor, die mit einem unlexikalis-

ierten Parser unter Verwendung von grammatischen Funktionen erzielt wurden

(siehe Abschnitt 2 . 4) . Insgesamt zeigt unsere Untersuchung, dass das unlexikalis-

ierte Basismodell eine bessere Leistung als die beiden lexikalisierten Modelle

erbringt . Eine weitere Leistungssteigerung wird durch die Hinzunahme von gram-

matischen Funktionen erzielt (obwohl die Abdeckung dann deutlich geringer ist) .

Ausgehend von einer Fehleranalyse schlagen wir dann das Konzept der Schwester-

Kopf-Dependenz vor. Ein Parser mit Schwester-Kopf-Dependenzen erzielt eine

bessere Parsingleistung als das Basismodell , wobei jedoch die auf die Lexikalis-

ierung zuruckzufuhrende¨ ¨ Verbesserung relativ gering ist . D iese Verbesserung ist

auch geringer als diejenige, die durch die Verwendung von grammatischen Funk-

tionen erzielt werden kann.

Kapitel 4 Ausgehend von der Feststellung, dass grammatische Funktionen die

Parsingleistung erhohen¨ konnen¨ , beschaftigen¨ wir uns in diesem Kapitel ausfuhr-¨

lich mit der Rolle von grammatischen Funktionen in unlexikalisierten Parsingmod-

ellen. Wir beginnen mit Experimenten zur Integration eines lexikalischen Taggers

in den Parser. D iese Integration hat den Vorteil , das jetzt keine Abdeckungsprob-

leme mehr auftreten. Außerdem profitiert der Parser dann indirekt von den

Konzepten, die sich in der Tagging-Literatur als nutzlich¨ erwiesen haben. Es zeigt

sich Außerdem , dass die Anwendung von automatischen Transformationen auf

grammatische Funktionen zu einer Erhohung¨ der Parsingleistung fuhrt¨ , nahezu

auf das Niveau des Schwester-Kopf-Modells von Kapitel 3 . Daruberhinaus¨ integri-

eren wir ein Glattungsmodell¨ in den Parser, was dessen Leistung uber¨ das Niveau

des Schwester-Kopf-Modells hinaus verbessert . Dieses Ergebnis zeigt , dass gram-

matische Funktionen dem Parser Informationen uber¨ das Kasussystem des

Deutschen zur Verfugung¨ stellen und daher die Parsingleistung verbessern.

vi Zusammenfassung

Kapitel 5 Wie im vorherigen Kapitel gezeigt , verbessert die Verwendung eines

grammatischen Merkmals (grammatische Funktionen) den Parser. Es stellt sich

also die Frage, ob die Hinzufugung¨ weiterer grammatischer Merkmale einen weit-

eren Leistungsgewinn bringt; diese Fragestellung wird im vorliegenden Kapitel

angegangen. Wir beschaftigen¨ uns mit zwei unterschiedlichen Merkmalsmengen.

Ausgehend von den Ergebnissen in Kapitel 4 schlagen wir zuerst eine Merkmals-

menge vor, die der Morphologie von Nominalphrasen Rechnung tragt¨ . D ie zweite

Merkmalsmenge dient der Modellierung von langen Abhangigkeiten¨ . Unsere

Ergebnisse zeigen, dass die morphologischen Merkmale nicht zu einer

Verbesserung der Parsingleistung fuhren¨ , die langen Abhangigkeiten¨ jedoch sehr

wohl.

Kapitel 6 In den Kapiteln 6 , 3 , 4 und 5 verwendeten wir nur eine Evalu-

ationsmetrik und stellten nur eingeschrankt¨ Fehleranalysen an. Desweiteren train-

ierten und testeten wir unsere Modelle nur auf dem NEGRA-Korpus. D ieses

Kapitel generalisiert diese Ergebnisse, indem es den jeweils besten Parser aus den

vorhergehenden Kapiteln in dreierlei Hinsicht evaluiert : Tagging von lexikalischen

Kategorien, Tagging von grammatischen Funktionen und Wort-Wort-Depend-

enzen. Desweiteren testen wir alle Modelle auch auf dem TIGER-Korpus.

S chließlich fuhren¨ wir auch eine detaillierte Fehleranalyse der besten Parsingmod-

elle durch.

Kapitel 7 Dieses Kapitel beschließt die Dissertation mit einer Reihe von

Schlussbemerkungen.

Gliederung vii

Acknowledgements

I owe many people thanks for their help and guidance while writing this disserta-

tion. Foremost on this list are my advisors, Matthew Crocker and Frank Keller.

Their support and comments have been immensely helpful, especially in the all-

important final leg. I am also endeared to Mirella Lapata, who was always ready

with pep-talks and good suggestions.

I am grateful to gave received insights from many different people at various

stages over the past 3-odd years. In particular, I would like to thank John Car-

roll , Peter´ D ienes, Andreas Eisele, Karin Muller¨ , Detlef Prescher as well as the

many students and visitors who attended the EGK meetings.

The group secretaries, Magdalena Mitova and Claudia Verburg, were a great

help with all matters administrative. I would have been completely lost without

C laudia’ s help during the first and last days in Saarbrucken¨ .

I would like to show special gratitude to Malte and Ute Gabsdil , whose friend-

ship since the very start of the program made it possible to ease in to a new life

in a new country. Many kudos also to the whole EGK (IGK?) gang, both in Saar-

brucken¨ and in Edinburgh, as well as the psycholinguists. I would especially like

to thank Kerstin Hadelich, Alissa Melinger and Sabine Schulte im Walde, as well

as pseudo-psychos Christian Braun and Greg Gulrajani for many good times as

well as helping out in the hard ones.

Of course, I would like to thank my family back in Canada, who I was able to

keep in touch with via late-night phone calls (‘ ‘ what time is it over there?”) . This

also goes for friends, Alex, Freida, Jay and Posey: it ’ s always nice to know that

people stil l l ike hearing your voice.

I know I could not possibly finish if I had to list each person by name; surely

there are many more who I would like to mention as well . For all of you, thank

you as well .

F inally, I would like to thank the German Science Foundation (DFG) for

funding this work.

viii

Table of contents

Abstract . i i i

Zusammenfassung . iv

Gliederung . v

Kapitel 2 . v

Kapitel 3 . vi

Kapitel 4 . vi

Kapitel 5 . vii

Kapitel 6 . vii

Kapitel 7 . vii

Acknowledgements . viii

Table of contents . ix

List of tables . xiv

List of figures . xvi

1 Introduction . 1

1 . 1 German Syntax . 2

1 . 1 . 1 Word Order . 3

1 . 1 . 2 Morphology . 4

1 . 1 . 3 The Effect of German Syntax on Parsing 5

1 . 2 Results . 6

1 . 3 Outline of the Thesis . 7

Chapter 2 . 7

Chapter 3 . 7

Chapter 4 . 8

Chapter 5 . 8

ix

Chapter 6 . 8

Chapter 7 . 8

2 Background . 9

2 . 1 Foundations and Notation . 9

2 . 1 . 1 Basic Probability Theory . 9

2 . 1 . 1 . 1 Random Variables . 1 0

2 . 1 . 1 . 2 Joint and Conditional Distributions 1 1

2 . 1 . 1 . 3 Parameterization . 1 1

2 . 1 . 2 Learning Probability Models . 1 2

2 . 1 . 2 . 1 Sparse Data and Smoothing . 1 3

2 . 2 Probabilistic Context-Free Grammars . 1 4

2 . 2 . 1 Lexicalization . 1 6

2 . 3 Related Work . 1 7

2 . 3 . 1 S tatistical Parsing in English . 1 7

2 . 3 . 2 Statistical Parsing in German . 1 8

2 . 3 . 2 . 1 The Tubingen¨ Corpus and Topological fields 2 0

2 . 3 . 3 Statistical Parsing in Other Languages 2 1

2 . 4 Negra and Tiger Annotation . 2 3

2 . 5 Methodology . 2 5

2 . 5 . 1 Data . 2 5

2 . 5 . 2 Evaluation . 2 6

2 . 6 Summary . 2 7

3 Lexicalized Parsing . 2 8

3 . 1 The Models . 2 9

3 . 2 Parsing with Head-Head Parameters . 33

3 . 2 . 1 Method . 33

Data Sets . 33

Grammar Induction . 34

Training and Testing . 34

3 . 2 . 2 Results . 35

3 . 2 . 3 Discussion . 36

3 . 3 Parsing with S ister-Heads . 38

3 . 3 . 1 Method . 40

x Table of contents

3 . 3 . 2 Results . 41

3 . 3 . 3 Discussion . 42

3 . 4 The Effect of Lexicalization . 43

3 . 4. 1 Method . 44

3 . 4. 2 Results . 45

3 . 4. 3 Discussion . 46

3 . 5 The Effect of Flat Annotation . 47

3 . 5 . 1 Method . 47

3 . 5 . 2 Results . 49

3 . 5 . 3 Discussion . 5 0

3 . 6 Verb Final Clauses . 5 0

3 . 6 . 1 Method . 5 1

3 . 6 . 2 Results . 5 3

3 . 6 . 3 Discussion . 5 3

3 . 7 Conclusion . 5 3

4 Grammatical Functions . 5 5

4. 1 Parsing with Grammatical Functions . 5 7

4. 1 . 1 Markovization . 5 7

4. 1 . 2 Lexical Sensitivity . 5 9

4. 1 . 3 Suffix analysis . 60

4. 1 . 4 Method . 61

4. 1 . 5 Results . 61

4. 1 . 6 Discussion . 62

4. 2 Grammatical Function Re-annotation . 65

4. 2 . 1 Method . 68

4. 2 . 2 Results . 68

4. 2 . 3 Discussion . 70

4. 3 Smoothing . 71

4. 3 . 1 Search . 72

Beam search . 73

Multipass parsing . 73

4. 3 . 2 Cached parsing . 73

4. 3 . 3 Models . 75

4. 3 . 3 . 1 Brants ’ Algorithm . 76

Table of contents xi

4. 3 . 3 . 2 Witten-Bell Smoothing . 77

4. 3 . 3 . 3 Modified Kneser-Ney . 77

4. 3 . 3 . 4 Parsing with Markov Grammars 78

4. 3 . 4 Method . 79

4. 3 . 5 Results . 8 0

4. 3 . 6 Discussion . 8 1

4. 4 Verb Final and Topicalization Constructions 84

4. 4. 1 Method . 8 5

4. 4. 2 Results . 8 5

4. 4. 3 Discussion . 8 6

4. 5 Conclusion . 8 7

5 Parsing with Attributes . 8 8

5 . 1 Semi-automatic Morphology Annotation . 8 9

5 . 1 . 1 Building a morphologically tagged corpus 8 9

Data . 90

Evaluation . 9 1

Results . 92

Error Analysis . 92

5 . 1 . 2 Morphology and context . 94

Evaluation . 97

Results and Discussion . 97

5 . 1 . 3 Morphology and grammar rules . 98

5 . 2 Parsing with Morphological Features . 99

5 . 2 . 1 Notation . 1 00

5 . 2 . 2 Parameterization . 1 00

5 . 2 . 3 Method . 1 04

5 . 2 . 4 Results . 1 05

5 . 2 . 5 Discussion . 1 05

5 . 3 Parsing with Attributes . 1 07

5 . 3 . 1 Parameterization . 1 07

5 . 3 . 2 Method . 1 1 2

5 . 3 . 3 Results . 1 1 2

5 . 3 . 4 Discussion . 1 1 3

5 . 4 Gap Features . 1 1 4

xii Table of contents

5 . 4. 1 Method . 1 1 5

5 . 4. 2 Results . 1 1 6

5 . 4. 3 Discussion . 1 1 6

5 . 5 Traces and Verb Final C lauses . 1 1 7

5 . 5 . 1 Results . 1 1 7

5 . 5 . 2 Discussion . 1 1 8

5 . 6 Conclusions . 1 1 9

6 Further Evaluation . 1 20

6 . 1 POS Tagging . 1 2 1

6 . 1 . 1 Results . 1 22

6 . 1 . 2 Discussion . 1 22

6 . 1 . 2 . 1 Lexical and Structural Part-of-Speech Tagging Errors 1 23

6 . 1 . 2 . 2 Parsing Errors not due to Part-of-Speech Tags 1 25

6 . 2 Grammatical Functions . 1 27

6 . 2 . 1 Results . 1 28

6 . 2 . 2 Discussion . 1 29

6 . 3 Dependencies . 1 29

6 . 3 . 1 Results . 1 31

6 . 3 . 2 Discussion . 1 31

6 . 4 Evaluation on TIGER . 1 33

6 . 4. 1 Results . 1 33

6 . 4. 2 Discussion . 1 34

6 . 5 Conclusions . 1 35

7 Conclusions . 1 36

7. 1 Lessons Learned . 1 37

7. 1 . 1 Language Matters . 1 37

7. 1 . 2 Baselines Matter . 1 38

7. 1 . 3 Smoothing Matters . 1 38

7. 1 . 4 Evaluation Matters . 1 39

7. 2 Future Work . 1 39

7. 3 Final Words . 1 40

Appendix A Head-finding Rules . 1 41

Bibliography . 1 43

Table of contents xiii

List of tables

Declension of strong adjectives . 5

Results with TnT tagging . 35

Results with perfect tagging . 36

Average number of daughters of the given categories in the Penn Treebank and NEGRA . . 37

Linguistic features in the sister-head model compared to the models of Carroll and Rooth

(1 998) , Collins (1 997) and Charniak (2000) . 37

S ister-head model with TnT tags . 40

S ister-head model with perfect tags . 41

Change in performance when reverting to head-head statistics for individual categories . . . 43

Results with lexicalization disabled (with perfect tags) . 45

Number of word forms in present tense of ‘ ‘ to sleep” in English and German 45

Number of word forms for example nouns and adjective in English and German 46

Scoring effects on the sister-head model (with perfect tags) 49

Scoring effects on the Collins model (with perfect tags) . 49

Results on sentences with a verb-final clause with the sister-head model 5 2

Results (F-S cores) when GFs are excluded . 62

Results (F-S cores) when GFs are included . 62

The four most common grammatical functions for PPs, by case of the preposit ion 70

Labelled bracketing scores on the test set . 69

Category-by-category listing . 69

Results with smoothing . 79

Results with smoothing and multipass parsing . 80

Replicating the re-annotation experiment with beam search and smoothing 80

Performance of the unsmoothed model on various syntactic constructions 85

Performance of the smoothed model on various syntactic constructions 86

List of the morphological tags . 90

Accuracy of morphological tagging . 93

Constrains to eliminate incorrect morphological tags. 95

Taking context into account: accuracy and brevity of the hypotheses. 97

Parsing with morphological features . 1 06

Parsing with node decomposition . 1 1 2

Parsing with long-distance dependencies . 1 1 6

Performance on various syntactic constructions . 1 1 8

xiv

POS tagging accuracy . 1 21

Results with perfect tagging . 1 21

Lexical POS Tagging Errors (see Section 6 . 1 . 2 . 1) . 1 23

Structural POS tagging errors (see Section 6 . 1 . 2 . 1) . 1 23

Parsing errors with perfect tags . 1 26

POS tagging and labelled bracketing results with grammatical functions 1 28

Labelled bracketing results by type of grammatical function 1 28

Dependency scores . 1 32

Performance of various parsers the TIGER corpus . 1 33

Where are the errors? . 1 38

Head finding rules for standard categories . 1 42

Head finding rules for co-ordinated categories . 1 42

L ist of tables xv

List of figures

A correct parse for Example 2 . 1 with probabilities shown (see text for gloss) 1 4

An incorrect parse for Example 2 . 1 with probabilities shown. 1 4

Degrees of lexicalization . 1 5

There is no PP → P NP rule in NEGRA . 23

There is no S → NP VP rule in NEGRA . 24

There is no SBAR → Comp S rule in NEGRA . 26

Learing curves for all three models . 37

Unique words vs. number of words in NEGRA and the WSJ 45

The co-ordination re-annotation operation . 64

The NP re-annotation operation . 65

Grammatcal Functions and PP Case . 67

Brants ’ Algorithm . 76

xvi

L ist of figures 0

Chapter 1

Introduct ion

This thesis concerns parsing German with statistical models . Parsing is an

important component of natural language understanding. Syntactic analysis is

often the first step involved in turning text in to a computationally meaningful

form. Indeed, parse trees are often the ‘ ‘ deepest” form necessary for some

approaches to question answering (Echihabi and Marcu, 2003) , machine transla-

tion (Yamada and Knight, 2001) , and automatic speech recognition (Roark,

2001) . On a more cognitive level, computational parsers are the basis of several

models of human sentence processing (Jurafsky, 1 996 ; Crocker and Brants , 2000) .

In theory, doing well on these tasks depends upon being able to do well at

parsing. It is tempting to say that statistical models allow one to do well at

parsing. This , at least , appears to be the case with English statistical parsers

(Bod, 2003 ; Charniak, 2000) . There is one problem, though. The literature on

statistical parsing is anglo - centric : it primarily focuses on English. Although the

limited interest in other languages can be partially ascribed to the lack of suitable

data, this is not a complete justification. For example, in the case of German and

Czech the availability of requisite data (known as treebank corpora) has led to

some initial work, but not to extensive evaluation. Indeed, to our knowledge, no

broad-coverage stand-alone statistical parsers for German had been developed or

evaluated at the time this work commenced.

Nevertheless , there is a small but growing literature on parsing other lan-

guages (see Section 2 . 3 . 3 for an extensive discussion) . Much of the work, however,

focuses on adapting highly tuned models originally developed for English to the

new languages. These models make particular assumptions about which linguistic

elements (or features) are useful for statist ical models of syntax. It is well known

that the assumptions of English parsing models not only depend on English, but a

particular English treebank corpus, the Wall Street Journal (WSJ) section of the

Penn Treebank. It is therefore surprising that parsing in new languages has

simply taken the features found to be useful on the WSJ English treebank as a

given starting point, without questioning the underlying corpus- and annotation-

specific assumptions. This is not to say that it is wrong to use complicated

models from the English parsing literature. Rather, we argue that a more meth-

odological approach is necessary.

1

The purpose of this dissertation is to explicitly test many of the assumptions

of WSJ parsing in another language. We pick German because its syntax is dif-

ferent from English in ways which challenge the assumptions made in English

parsing (see Section 1 . 1 below) . Moreover, the syntactic differences between

German and English compelled treebank designers to adopt different annotation

styles in German treebank corpora vis à vis the WSJ corpus (Skut et al. , 1 997) .

Therefore, using German corpora entails coping with changes in annotation as

well as language.

The primary features we test in this new setting are those which have already

found to be useful for English parsing. Other than syntactic categories them-

selves , one of the most common features used in English parsing is lexicalization,

i . e. pro jecting lexical heads on to tree nodes (Magerman, 1 995) . Another set of

features are derived by enriching the nonterminal vocabulary to account for

greater context (Johnson, 1 998) . But perhaps just as interesting are the features

which are commonly not used for parse selection, including grammatical functions

(cf. B laheta and Charniak, 2000) , and information about non-local dependencies

(cf. D ienes, 2004) .

The primary goal is to evaluate the effect of various linguistic features on

parsing performance. These features consist of both those which have been proven

successful in English parsing, as well as those which are available in German tree-

bank corpora. The underlying hypothesis is that the syntactic properties of

German, in particular case and word order, affect the relevance and usefulness of

linguistic features for parse disambiguation. When stated explicitly, this hypo-

thesis is seemingly uncontroversial . Yet this hypothesis is interestign to test pre-

cisely because it has not been stated or tested explicitly in previous work. An

additional goal is to build an accurate broad coverage parser for German.

1 . 1 German Syntax

When questioning the assumptions of statistical parsing for English, it is

important to determine which assumptions might be invalidated in German. Not

all syntactic differences between German and English necessarily have an impact.

For example, a notable aspect of German is the behaviour of particle verbs. A

verb like aufessen (‘ ‘ eat up”) has the particle in front in the infinitival and past

participle, but the particle sits at the end of the verb phrase in (for example) the

present tense, as shown in Example 1 . 1 .

1 . 1 German Syntax 2

Example 1 . 1 .
Er isst immer die Wurst auf
He eats always the sausage up
He always eats up the sausage

However, the particles can also occupy the last position of a VP in English.

For example, if ‘ ‘ the sausage” from the English gloss in Example 1 . 1 were pro-

nominalized, we would get the sentence: ‘ ‘ He always eats it up. ” This is not to say

that the behaviour is equivalent in the two languages. Rather, we argue there are

enough similarit ies to have confidance that a statistical model which learns the

behaviour in English ought to be able to learn the behaviour in German. This is

not necessarily the case with two other aspects of German syntax, more variable

word order and more productive morphology.

While there is a difference between the two languages, both similar enough

that we may discount particle verbs as being an important impact on parsing per-

formance.

There are other aspects of German which we hypothesize are more important.

The two which we hypothesize are most prominent are German’ s more variable

word order and its more productive morphology. English parsers generally assume

dependants are local in nature and that syntatic roles may be derived from posi-

tional information, both of which are challenged by variable word order. Further-

more, English parsers , especially lexicalized parsers , make strong assumptions

about the distribution of words, which in turn depends on the relatively weak

morphology of English. Let us look at each of these in more detail , and then dis-

cuss why they may cause problems for statistical parsers .

1 . 1 . 1 Word Order

In English as in German, word order is strongly influenced by sentence type.

There are four main types of sentence ordering: declarative main clauses , declar-

ative subordinate clauses , questions and commands. Declarative main clauses are

the most common type, and as in English, the word order in such clauses is nor-

mally subject-verb-object (SVO) . Example 4. 1 shows such a sentence and its gloss

in English.

Example 1 . 2 . Heroische Burokraten¨ verhindern die Verletzung der Regeln
Heroic bureaucrats prevent the breach of regulations

3 Introduction

Unlike English, as Example 4. 2 shows, declarative subordinate clauses have a

sub ject-ob ject-verb order (SOV) .

Example 1 . 3.

weil Heroische Burokraten¨ die Verletzung der Regeln verhindern
because heroic bureaucrats the breach of regulations prevent
‘ ‘ because heroic bureaucrats prevent the breach of regulations”

The word order in questions (Verhindern heroische Burokraten¨ die Verletzung

der Regeln? , ‘ ‘ Do heroic bureaucrats prevent the breach of regulations? ”) and

commands (Verhindert die Verletzung der Regeln! , ‘ ‘ P revent the breach of regula-

tions! ”) is largely the same as in English. In English, the sub ject , verb and

ob jects normally reside in a fixed order, although the posit ion of modifiers are

more relaxed (the sentences Heroically, the bureaucrat prevented the breach of

regu lations and The bureaucrat , heroically, prevented the breach of regu lations

and The bureaucrat prevented the breach of regu lations heroically are all gram-

matical and have similar meanings) . While the syntactic context determines the

verb posit ion in German, sub jects, ob jects as well as modifiers have more freedom

in their position in the sentence. The position is often determined by constraints

such as pronominalization, topicalization, information structure, definiteness and

animacy (Uszkoreit , 1 987) .

In fixed word order languages, the function of a constituent in a sentence is

determined by its posit ion or by the use of prepositions. For example, the first

constituent in English is expected to be the grammatical sub ject . This is not

always possible when the position of complements is variable, as in German. In

many instances, the case of a constituent must be used to determine the function.

For example, subjects demand the nominative case, but need not occupy the first

position in a sentence. Case is marked by the use of determiners and word end-

ings, which brings us to the second of the major differences between German and

English: morphology.

1 . 1 . 2 Morphology

In many languages, English included, some syntactic properties are realized in

morphology: up to exceptions, plurals are formed by adding an -s , past tense is

formed by adding -ed, etc . These are present in German, but on the whole, there

are more morphological cues for syntactic phenomena in German than in English.

1 . 1 German Syntax 4

Masculine Feminine Neuter
S ingular Nominative -er -e -es

Genitive -es -er -s
Dative -em -er -em
Accusative -en -e -es

P lural Nominative -e -e -e
Genitive -er -er -er
Dative -en -en -en
Accusative -e -e -e

Table 1 . 1 . Declension of strong adjectives

As noted above, case markings play an important role in disambiguating syn-

tactic functions. Case, together with gender and number, play a much more active

part in noun phrase declension in German than English. As in English, German

pronouns are marked for case (i . e. er ‘ ‘ he” versus ihn ‘ ‘ him”) . However, in

German case also influences the choice of determiner, the endings of adjectives,

and, in some cases , the ending of nouns: compare the nominative der protzige

Club ‘ ‘ the swanky club” with the genitive des protzigen Clubs ‘ ‘ of the swanky

club” . German has three genders : masculine, feminine and neuter. Unlike English,

which only assigns gender to personal pronouns and possessive determiners (e. g.

he/she and his/her) , German assigns gender to all nouns. Gender is not only

marked in pronouns and determiners but also adjective and noun affixes (e. g. the

-chen noun suffix is one possible indication of the neuter gender, as is -in for fem-

inine) . Likewise, number also marked on all lexical components of noun phrases.

The markings for gender, number and case are all ambiguous. For example,

Table 1 . 1 shows the suffixes used to decline so-called strong adjectives (used when

no determiner is present) : there are 24 possible combinations, but only six unique

forms.

Of course, inflectional morphology does not affect noun phrases alone. Verbs

are marked for person and number agreement. As with nouns, there are more

forms than in English. For example, English has only two forms for the present

tense of ‘ ‘ to sleep” : sleep and sleeps; German has four.

1 . 1 . 3 The Effect of German Syntax on Parsing

As we will see later in this dissertation, the differences in word order and morpho-

logical productivity between English and German have a profound impact on

parsing performance. Why is this so? Consider the case of word order first .

5 Introduction

Sentences exhibiting scrambled word order are often analyzed with the use of

long-distance dependencies . Long-distance dependencies pose problems for parsers

which rely on local information. This is especially pertinent to statistical models,

which tend to exclusively use local cues for disambiguation. Long-distance

dependencies are not the only choice available to analyze non-standard word

orderings. Another approach is to use flatter trees . The central idea behind using

flat trees is the parent of a node is less likely to change even though the node does

not occupy its normal position. For this approach work, nodes need to be annot-

ated with their relation to the parent . Such grammatical relations have not been

a major component of treebank-trained parsers . Even the strategy of assuming

flatter tree representation requires some long-distance dependencies: the scram-

bling need not be directly below a single parent. Two key concepts required to

handle word order flexibility, long-distance dependencies and grammatical func-

tions, are not part of standard statistical parsing models. It is therefore unclear

how well these models cope with scrambled word order.

Morphology, too, affects parsing in a number of different ways. First , morpho-

logical inflections act as cues to help disambiguate certain structures. Indeed,

when constituents do not reside in their normal order, morphological information

often necessary to resolve the actual grammatical functions of the constituents.

Morphological productivity also affects the distribution of word forms. This , in

turn, has an effect on how lexicalization works.

1 . 2 Results

Over the course of this dissertation, we develop models which take German word

order and morphology into account, as well as the results of the analysis of fea-

tures used in the statist ical models . We show that these have a strong impact on

parsing performance, and allow us to develop parsing models with the highest res-

ults for German parsing known to us. S everal of the models we develop are purely

investigative, and could not be used to parse free text. Most of the models,

however, are suitable to be used with any application which requires a syntactic

analysis of German. Indeed, some models developed in Chapter 4 are currently

being used for tasks such as machine translation, text-to-text generation, and

research in semantic similarity.

1 . 2 Results 6

There are two common ways to evaluate parsing accuracy: labelled bracketing

(explained in Section 2 . 5 . 2) and dependencies (Section 6 . 3) . The best performing

model from Chapter 4 achieves a labelled bracketing score of 76 . 2 , and a depend-

ency score of 84. 0 when using a 350 , 000 word corpus of German newspaper text.

On a larger 800 , 000 word corpus, the same model achieves a labelled bracket

score of 79 . 5 , and a dependency score of 86 . 2 . Furthermore, the best performing

model of Chapter 3 further achieves a labelled bracketing score 77. 4 and a

dependency score of 86 . 6 . All numbers are on sentences of 40 words or less . These

are the best reported results for broad-coverage German parsing known to us.

1 . 3 Outline of the Thesis

The bulk of the dissertation is comprised of Chapters 3 , 4, 5 and 6, which

describe the development and evaluation of the German statistical parsing

models. The overall focus is to examine the effect of German syntax, and the

effect of the treebank annotations which account for German syntax, on parsing

performance.

Chapter 2 We begin by covering background information in Chapter 2 . This

chapter opens with a review of the notation we use throughout the thesis, before

moving on to a description of the underlying ideas behind probabilistic parsing. It

then turns to a survey of the literature on probabilistic parsing, with a particular

emphasis on parsing in ‘ new’ languages. The chapter ends with a discussion of

methodological issues, including how we train and evaluate our parsers .

Chapter 3 As a starting point for the empirical portion of the dissertation,

Chapter 3 reports results on several well known parsing models , including an

unlexicalized baseline and the lexicalized models of Collins (1 997) and Charniak

(1 997) . While both the lexicalized models were developed for English, a modified

version of the Collins model has been used for parsing languages as diverse as

Czech (Collins et al. , 1 999) and Chinese, and the Charniak model has been previ-

ously used for German (Beil et al . , 1 999) . Results are also reported for an unlexic-

alized parser augmented with grammatical function tags (cf. S ection 2 . 4) . Sur-

prisingly, we find that the unlexicalized baseline parser does better than both lex-

icalized parsers . Although the coverage is quite low, the unlexicalized parser with

grammatical function tags does even better. Following an error analysis, we intro-

duce the concept of sister-head lexical dependencies . A parser using sister-head

dependencies is able to outperform the unlexicalized baseline, although the

improvement due to lexicalization is quite small . Indeed, it is smaller than the

improvement due to the use of grammatical functions.

7 Introduction

Chapter 4 Seeing that using grammatical functions actually leads to quite

accurate parsing, we return to unlexicalized parsing with grammatical functions in

Chapter 4. This chapter begins by investigating the integration of a part-of-

speech tagger into the parser . This integration eliminates coverage issues, and

provides the additional benefit of incorporating advanced and useful concepts

from the part-of-speech tagging literature. We find that applying several auto-

matic transformations to the grammatical functions leads to highly accurate

parses, nearly competit ive with the sister-head model of Chapter 3 . After adding

smoothing to the parsing model, the parser in fact performs better than the

sister-head model. The (transformed) grammatical functions improve accuracy by

giving the parser information about German’ s case system.

Chapter 5 If adding one attribute (grammatical function labels) to the

grammar improves parsing performance, would other linguistically motivated

attributes help? This is the primary question which motivates Chapter 5 . Two

different sets of attributes are proposed in this chapter. Based on the success of

modelling case in Chapter 4, the first set of features concern noun phrase morpho-

logy. The second set is designed to model long-distance dependences . We find

that, for our particular model, the morphological features were not helpful, but

the long-distance dependencies were.

Chapter 6 Chapters 3 , 4 and 5 all use one evaluation measure, and only contain

cursory error analyses . In addition, they only consider models trained and tested

on the NEGRA corpus. These problems are resolved in Chapter 6 , where the best

performing parser from each chapter is evaluated for part-of-speech tagging res-

ults, grammatical function tagging and word-word dependencies. In addition, the

models are all tested on the TIGER corpus. Finally, we provide an in depth error

analysis of our most accurate parsing model.

Chapter 7 Finally, in Chapter 7 we finish with concluding remarks.

1 . 3 Outline of the Thesis 8

Chapter 2

Background

This chapter lays out the major foundations upon which the remainder of the dis-

sertation relies . In Section 2 . 1 , we discuss the basic notation and some funda-

mental concepts of probability theory. While this is a fairly general treatment,

Section 2 . 2 more specifically describes probabilistic context-free grammars, which

lie at the basis of many of the parsing models described in this dissertation.

Section 2 . 3 offers a survey of the literature on probabilistic parsing. We review

work in English, but emphasize research in other languages, in particular in

German. The most commonly used corpus for German is the NEGRA treebank,

which we discuss in Section 2 . 4. We also describe the related TIGER treebank.

Practical aspects of using the NEGRA and TIGER corpora (such as splitting

them into training and test data) along with other methodological issues are cov-

ered in Section 2 . 5 .

2 . 1 Foundations and Notation

2 . 1 . 1 Basic Probability Theory

Probability theory allows us to build models in the face of uncertain knowledge

about the world. 2 . 1 Because of the uncertainty caused by ambiguity in language,

probability theory has found many uses in computational linguistics.

2 . 1 . What follows is a brief overview; a more detailed account of probability can be found in

Renyi (1 970) , Ross (1 997) or S troock (1 993) .

9

The possible outcomes of an uncertain situation are known as e lementary

events . The set of all possible outcomes is the set of all elementary events,

denoted Ω. Sets of elementary events are simply called events . The ‘ opposite’ of

an event E ∈ Ω is called the complement, Ē . Ē is defined by the set complement,

Ω\E . The set of all possible events is the power set of Ω (i . e. ΩΩ) . While it is

possible to only use ΩΩ , it is not always practical or useful to do so. However, if

we wish to consider a subset F ⊆ ΩΩ , then F must satisfy the following condi-

tions:

1 . Ω ∈ F
2 . If E is an element of F , then Ē is also in F

3 . If E1 , E2 , . . . , En are events in F , then
⋃
i= 1

n
Fi ∈ F

The most important part of a probability model is the probability function, P ,

which maps events to probabilities . Such a function is known as a probability

density function, or p. d. f. 2 . 2 P must also obey a number of conditions:

1 . 0 ≤ P(E) ≤ 1 for all E ∈ F
2 . P (Ω) = 1

3 . for any sequence of events E1 , E2 , . . . , which are all mutually exclusive (that

is , Ei ∪ Ej = ∅ for any i, j) , then P (
⋃
i= 1

∞
Ei) =

∑
i= 1

∞
P (Ei)

In the end, Ω , F and P completely describe a probability model. Formally, we

define a probability model as the 3-tuple (Ω , F , P) .

2 . 1 . 1 . 1 Random Variables

While events lie at the axiomatic basis of probability theory, it is often easier to

express some problems in terms of random variab le s . A random variable X is a

function that maps events to another set , usually numbers. For example, an indi-

cator random variable maps events to the set { 0 , 1 } . This random variable takes

the value 0 if the event occurs , 1 otherwise. Notationally, the probability that a

random variable X takes the value x is written as P (X = x) . If the random vari-

able is clear from the context, we may define P (x) = P(X = x) . Two useful func-

tions over a random variable X are the expectation E (X) and the variance

Va r (X) :

E (X) =
∑

x∈ F
X · P (X = x)

Va r (X) = E (X2 − E (X) 2)

2 . 2 . Sometimes also called a probability distribution function, or simply ‘ ‘ distribution”

2 . 1 Foundations and Notation 1 0

2 . 1 . 1 . 2 Joint and Conditional Distributions

Random variables need not exist in isolation. We may calculate the probability of

two or more random variables having certain outcomes. For example, given two

random variables X and Y , we may wish to compute the probability that X takes

the value x and that Y takes the value y . This probability is written P(X = x ,

Y = y) . If the random variables are clear from the context, this may be abbrevi-

ated as P (x , y) . In this thesis , we at times take notational liberties and write this

as P (x y) . The conditional probability P (X = x | Y = y) is defined as:

P (X = x | Y = y) =
P (X = x , Y = y)

P (Y = y)

Informally, the conditional probability of x ‘ given’ y is the probability that X = x

given that we known that Y is indeed equal to y .

2 . 1 . 1 . 3 Parameterization

We have yet to examine how to specify the probability density function P . Over

time, probability theorists have developed a number of different classes of proba-

bility functions. For example, a commonly used class is that of Gaussian distribu-

tions. Gaussians work over the event space of real numbers , R . The probability

that a random variable X drawn from a Gaussian distribution takes a value x ∈ R
is defined as:

P (X = x) =
1

σ 2π
√ e

− (x− µ) 2

2σ 2 (2 . 1)

The two additional numbers σ and µ in equation 2 . 1 are known as the parameters

of the distribution2 . 3 . The Gaussian p. d. f. works over a countably infinite event

space. When using a p. d. f over a finite event space with a distribution which is

difficult to describe, we may use a parameterle ss distribution, which assigns one

parameter to each event:

P (X = x) = θx (2 . 2)

2 . 3 . In this case, the parameters σ and µ happen to be the variance and mean, respectively,

although this does not concern us here.

1 1 Background

A parameterless distribution may also be referred to as a histogram distribution

or an empirical distribution. For brevity’ s sake, we let θ represent a vector con-

taining all the θx ’ s . That is , if all possible values of X are x1 , x2 , � xn then θ =

(θx1
, θx2

, � , θxn) . Because the assignment of probabilities depends upon θ , we may

update Equation 2 . 2 to the following:

P (X = x | θ) = θx

When choosing a probability model, we are faced with two major issues : first ,

which distribution to pick, and second, given the distribution, what the parame-

ters should be. We will address the first issue in Section 2 . 2 by looking at proba-

bilistic context free grammars, a distribution useful for parsing; the second we will

discuss in Section 2 . 1 . 2 .

2 . 1 . 2 Learning Probability Models

Before we can use a distribution in the form of Equation 2 . 2 in a practical setting,

we need to assign numbers to θ . This is known as finding an estimate for θ . Max-

imum like lihood is a common approach to estimation which normally requires

access to some training data D . If D is composed of training samples x0 , x1 , . . .

x t, and we assume these events to be identically and independently distributed

(i . i . d.) , then the estimate of θ , known as θ?, may be set according to the following

formula:

θ? = argmax
θ

P(D | θ)

= argmax
θ

∏

i= 0

t

P (X = x i | θ) (2 . 3)

We may solve Equation 2 . 3 for each θx
? . First , we define a count function #(·) :

(x) =
∑

i= 0

t

δ(x i = x)

2 . 1 Foundations and Notation 1 2

This function counts the number of times x occurs in the training data. Then,

solving for θx
? , we get :

θx
? =

#(x)

t
(2 . 4)

If x is a vector, then Equation 2 . 4 is the estimator for a joint distribution. If the

training data consists of pairs < x0 , y0 > , < x1 , y1 > , � < x t , yt > we may similarly

construct a conditional distribution P (X = x | Y = y , θ) . As above, we set P(X =

x | Y = y , θ) = θx | y, and θx | y is estimated as:

θx | y
? =

#(x , y)

(y)

2 . 1 . 2 . 1 Sparse Data and Smoothing

Maximum likelihood estimation has a downside: an event E which does not occur

in the training data is assigned a probability of zero, and is hence deemed impos-

sible. In reality, E may simply be too infrequent to appear in a small amount of

training data rather than being completely impossible. If so, this would be

symptom of sparse data : the training set is too small to accurately estimate the

parameters .

Using a large training set is not always a cure for sparse data. Despite using a

training set of 336 million words, Brown et al. (1 992) found that 1 4. 7% of word

triples on a held-out set did not occur in the training set . Smoothing is a more

practical solution to sparse data problems. Common approaches to smoothing

interpolate between a very specific (and possibly sparse) distribution and a more

general distribution which can be estimated more accurately. We can even have

multiple levels of generalization, and combine them in a manner such as:

Psmooth(wn | wn− 1 , wn− 2)

= λ 1P (wn | wn− 1 , wn− 2) + λ2P (wn | wn− 1) + λ3P (wn)

When using such interpolated smoothing, the probability distributions P are

often estimated using the standard maximum likelihood approach. The smoothing

parameters (the λ ’ s) require an alternative estimation procedure. Section 4. 3

1 3 Background

START (0 . 0773)

CS (0 . 277)

S (0 . 01 1 2)

NP (0 . 2405)

ART

Die

NN

Friseurin

VVFIN

analysiert

NP (0 . 0226)

PPOSAT

ihre

NN

Existenzkrise

, S (0 . 0004)

NE

Nietzsche

NP (0 . 0226)

PPOSAT

sein

NN

Haarschnitt

Figure 2 . 1 . A correct parse for Example 2 . 1 with probabilities shown (see text for gloss) .

START (0 . 61 5)

S (0 . 01 1 2)

NP (0 . 2405)

ART

Die

NN

Friseurin

VVFIN

analysiert

NP (0 . 0001)

PPOSAT

ihre

NN

Existenzkrise

, NP (0 . 0003)

NE

Nietzsche

NP (0 . 0226)

PPOSAT

sein

NN

Haarschnitt

Figure 2 . 2 . An incorrect parse for Example 2 . 1 with probabilities shown.

explains three prominent approaches to estimating the smoothing parameters,

along with empirical results applied to parsing.

2 . 2 Probabilist ic Context-Free Grammars

A fundamental concept in this thesis is that of probabilistic context-free gram-

mars (Booth and Thompson, 1 974) , or PCFGs. As the name suggests , PCFGs are

a probabilistic version of context-free grammars. We will work with Example 2 . 1

to illustrate the principals behind PCFGs.

2 . 2 Probabilistic Context-Free Grammars 1 4

S

NN V NP

ADJA NN

i. Unlexicalized Tree

S

NN

Firemen

V

have

NP

ADJA

nice

NN

badges

ii . Partially Lexicalized Tree

Shave

NNFiremen

Firemen

Vhave

have

NPbadges

ADJAnice

nice

NNbadges

badges

iii . Fully lexicalized Tree

Figure 2 . 3 . Degrees of lexicalization

Example 2 . 1 .

Die Friseurin analysiert ihre Existenzkrise , Nietzsche seinen Haarschnitt
The hairdresser analyzes her existential crisis , Nietzsche his hair cut

Figure 2 . 1 shows a possible parse of this sentence. Conceptually, the parse is

derived by continuously applying derivation rules . For example, the first rule

applied is START → CS , followed by CS → S , S . In a PCFG, each rule is asso-

ciated with a probability. The probability of a rule LHS → RHS is P (RHS | LHS) .

For example, the probability of the rule START → CS is P (CS | START) =

0. 0773 . In Figure 2 . 1 , the probabilities are shown on the parent, e. g. 0 . 0773 is

written next to the START node.

1 5 Background

Figure 2 . 2 shows a second derivation, again with associated probabilities . In

the first case the clause Nietzche seinen Haarschnitt is considered to be a clausal

co-ordinate sister, in the second, it is a noun phrase modifier of ihre Existen-

zkrise . Although both derivations may be licensed by a simple grammar, only the

clausal co-ordinate interpretation is correct . Without the use probabilities , it is

difficult to pick the first tree over the second. The probabilities of the trees are

calculated by multiplying the local rule probabilities. Therefore, the probability of

the first tree is 1 . 1 78 × 1 0− 1 1 , and 1 . 1 23 × 1 0− 1 2 for the second. As the first tree

has a much higher probability, it is preferred over the second parse.

2 . 2 . 1 Lexicalization

In Figures 2 . 1 and 2 . 2 , nodes associated with part-of-speech (POS) tags do not

have probabilities associated with them. In other words, the probability model

took the POS tags as a ‘ certainty’ , and the input text is essentially ignored. The

view as seen by the probability model is essentially that of tree (i) of Figure 2 . 3 .

It is also possible to include word emission probabilities in to the model, by

adding rules TAG → word , and probabilities P(word | TAG) . In this case, the

probability model ‘ sees ’ something more like tree (ii) of Figure 2 . 3 . When using

such a word emission distribution, it is important to include a special case for

unseen words. A common approach for handling unknown words is to create a

special word which represents all rare and unseen words.

A simple PCFG was able to pick the right parse from the two possibilities for

Example 2 . 1 . PCFGs are not always so successful. Prescher et al. report that

only 30% of all sentences are given the right parse using a simple treebank PCFG.

Fortunately, treebank PCFGs can be augmented with extra information. A

common approach is lexicalization , which pro jects lexical heads on to their parent

nodes. Tree (iii) of Figure 2 . 3 shows a lexicalized tree. Lexicalized models have

severe sparse data problems, and therefore require smoothing (see Section 2 . 1 . 2 . 1)

and making independence assumptions (see Section 3 . 1) .

2 . 2 Probabilistic Context-Free Grammars 1 6

2 . 3 Related Work

2 . 3 . 1 S tatist ical Parsing in English

Lexicalization is an important concept which was introduced fairly early in the

history of probabilistic parsing. The concept of using head-head dependencies to

lexicalize a grammar is due to Jones and Eisner (1 992) . Magerman (1 995) also

uses a lexicalized grammar, deriving the entire grammar from the treebank. Ear-

lier approaches used treebanks for estimating parameters , but used hand-devel-

oped grammars (e. g. as in Black et al. , 1 993) . Collins (1 996) and Eisner (1 996)

describe several models for lexicalized parsing with dependency grammar. Among

Eisner’ s dependency models , the best-performing model is the so-called generative

model , which is quite similar to the sister-head model we develop in Chapter 3 .

The primary difference between the sister-head and the generative dependency

models is that Eisner’ s model is much closer to a true dependency grammar: there

are no node category labels , just POS tags. The sister-head model, on the other

hand, uses both POS tags and syntactic categories. The difference is conceptually

minor (e. g. a noun phrase is simply the pro jection of a noun) , but in practice

quite different.

Eisner notes that the Collins (1 996) and Eisner (1 996) introduce complemen-

tary concepts . Ideas from both are brought together in Collins (1 997) . Charniak

(1 997) proposes a model with an elegant split between ‘ structural ’ PCFG proba-

bilities and complex lexical probabilities. Both the Collins (1 997) and the Char-

niak (1 997) models are described in detail in Section 3 . 1 .

Charniak (2000) extends the model of Charniak (1 997) by introducing a new

estimation procedure, making some additional independence assumptions on rule

probabilities (similar to Collins, 1 997) and adding more contextual information.

The contextual information takes the form of grandparent nodes (see Sec-

tion 4. 1 . 1) . Grandparent nodes were first proven useful by Johnson (1 998) . Klein

and Manning (2003) , noting that the contextual information found in grandparent

nodes did not depend on lexicalization, investigated other non-lexical sources of

information which increase parsing accuracy. The result of their investigation is a

parser able to parse more accurately than many lexicalized models, including

those of Magerman (1 995) , Collins (1 996) and Eisner (1 996) . We will further dis-

cuss accurate unlexicalized models in Chapter 4.

1 7 Background

Most of the models discussed above are either based upon PCFGs, or close

variants thereof. The key idea behind most of these models is to choose what

information is necessary to make local parsing decisions. The data-oriented

parsing (DOP) approach of Bod (1 993) is quite different. DOP-based approaches

look at as much information as possible by considering entire subtrees at a time.

These subtrees can be arbitrarily large. The standard DOP formulation, due to

Bod, is a probability distribution over trees . Others have suggested DOP-inspired

models which use discriminative ranking (Collins and Duffy, 2002) .

While both DOP and PCFG-based models often require modifications of the

Penn Treebank, both lines of research generally adopt grammatical theory under-

lying the Penn Treebank. This is not the case of all research. Some work aims at

disambiguating parses derived from other grammatical theories or formalisms,

such as LGF (e. g. Johnson et al. , 1 999) . While we do discuss the parameteriza-

tions of some these models in Chapter 5 , in this dissertation we primarily focus on

grammatical formalisms which closely follow those of the treebank being used.

2 . 3 . 2 S tatist ical Parsing in German

Before discussing statistical parsing in German, it is worth pointing out a topic

which is not covered: parsing using formal grammars. The objectives of research

in statistical parsing versus that in formal grammar are quite different. Formal

grammar is primarily interested in the formal description of linguistic phenomena,

whereas in statistical parsing, it is common to take the formal description (the

treebank) as given and concentrate on coverage and accuracy. A key issue is fre-

quency: problems interesting in the context of statistical models are those which

occur often, whereas problems interesting in the context of formal grammar are

those which are especially difficult to describe, even if rare. There are times when

the two goals are interwoven: as we shall see in Chapters 4 and 5 , adding the kind

of information present in formal grammars can increase accuracy. However, the

information we use can be seen as pedestrian by the standards of formal

grammar. Moreover, the kind of phenomena interesting to formal grammar

researchers are either beyond the scope of most statistical grammars, or must be

taken as ‘ given’ , having been hard-wired into the annotation. For example, in the

formal grammar literature, some have argued for a highly structured analysis of

verb phrases (Hinrichs and Nakazawa, 1 994) while others have argued for a more

flat analysis (Nerbonne, 1 994) . As we shall see in Section 2 . 4, NEGRA uses flat

annotation for verb phrases , making the argument moot.

Returning to the review of statistical methods, we begin with a review

of ‘ shallow’ methods of syntactic analysis , such as POS tagging (Schmid, 1 995 ;

Brants , 2000) and noun phrase chunking (Scmid and Schulte im Wald, 2000 ; Skut

and Brants, 1 998 ; Brants , 1 999) .

2 . 3 Related Work 1 8

The Brants POS tagging model (dubbed TnT) is simple, elegant, and achieves

near state-of-the-art performance in English, and state-of-the-art performance in

German. It does so by using carefully tuned smoothing and an elaborate suffix

analyzer. We give a more detailed discussion of the TnT smoothing model in Sec-

tion 4. 3 . 3 , and the suffix analyzer in Section 4. 1 . 3 .

S chmid and Schulte im Walde (2000) develop their NP chunking model solely

for German. Therefore, they are able to tune their model for German, using auxil-

iary tools to include information about morphological tagging. Schiehlen (2003)

develops a chunker based on dependency grammar. Unlike other chunkers , it

works for all constituent types rather than just noun phrases . Noting that heads

and dependents tend to be close to one another, Schiehlen’ s chunker finds depen-

dents occurring within a three-word window of a head. Dependencies outside this

window are left for a full parser to find. Brants (1 999b) introduces a novel cas-

caded HMM approach to NP chunking, which achieves prevision and recall of

88 . 3% and 84. 8%. The model can be extended to full parsing Brants(1 999a) , but

results are only reported for an ‘ interactive’ model.

Beil et al . (1 999) develop a statistical parser that does not use a treebank

grammar. Rather, the parser uses a formally specified grammar. While the

grammar performs well enough, it only covers verb-final constructions in German

and cannot parse arbitrary sentences. The parameters of the grammar are esti-

mated using the Inside-Outside algorithm (cf. Prescher, 2001) . The grammar does

have a notion of case, and is able to make use of a morphological tagger to anno-

tate inflectional features. Some inflectional features are collapsed to reduce ambi-

guity, although it is difficult to assess what impact this has as results are not

reported without the reduction. Beil et al . (1 999) do not provide an overall test of

the statistical grammar’ s accuracy, but they do test how well the grammar

recovers noun chunks and certain kinds of verb dependencies . Their measure for

verb dependencies does not take in to account bracketing or word-word dependen-

cies , but rather checks if the category of the dependant is correct . They try a

variety of unlexicalized and lexicalized parameterizations, finding that lexicaliza-

tion only provides a small benefit. The approach of Beil et al . is extended by

Schulte im Walde (2000) and Beil et al . (2002) . Neither Schulte im Walde nor

Beil et al . (2002) test against an annotated held-out test set , instead relying on

qualitative and task-based evaluations.

While there is a growing literature on German syntactic analysis using statis-

tical methods, there is surprisingly little work on broad-coverage treebank-trained

parsing. One of the first attempts was due to Fissaha (2003) . F issaha et al.

report extensive results on the impact of coverage on parsing results , using the

NEGRA language as their test corpus. Fissaha et al. do not consider lexicalized

models: their primary interest is with unlexicalized models .

1 9 Background

Unlexicalized grammars are also the focus of Schiehlen (2004) . Following ideas

introduced by Klein and Manning (2003) for English parsing, S chiehlen applies

automatic transformations to NEGRA which improve parsing accuracy. Among

the modifications Schiehlen attempts are copying grammatical functions per-

taining to case to the POS tags of articles and all nouns. While case is strongly

marked in articles and pronouns, it is only weakly marked in substantive nouns,

with common cues only for the genitive singular and dative plural. Furthermore,

while case is strongly marked in strong adjectives, Schiehlen does not investigate

propogating the tags to strong adjectives .

Dubey and Keller (2003) describe the evaluation well-known lexicalized

parsing algorithms on the NEGRA corpus, finding that the models do not appear

to generalize well . However, this paper does find that a parser using sister-head

dependencies does benefit from lexicalization, although the gain in accuracy is

quite small . Levy and Manning (2004) confirm that lexicalization only provides a

slight benefit, using a very different model from Dubey and Keller (2003) . Levy

and Manning also investigate non-local dependencies. This is a topic we cover in

Chapter 5 , although our results are not directly comparable to Levy and Man-

ning.

2 . 3. 2 . 1 The Tubingen¨ Corpus and Topological fields

In addition to NEGRA and TIGER, there is a third major syntactically anno-

tated corpus of German, the TuBa¨ -D/Z Tubingen¨ Treebank for German. In addi-

tion to Chomskyan syntactic category labels , this treebank also contains annota-

tions for topological field structure (cf. Hohle¨ , 1 986) . Briefly, topological fields

describe restrictions on German word order. Noting that the verb has a fixed

position in a sentence, fields are defined in relation to the verb. In a composed

tense, there are fields for constituents situated before the finite verb and after the

non-finite verb. The so-called Mitte lfe ld (middle field) contains most of a verb’ s

arguments, and lies between the finite and non-finite verbs.

In addition to topological fields , this treebank also annotates syntactic cate-

gories, inflectional features, and edge labels . The approach to constituent annota-

tion is different than in NEGRA. Rather than annotating scrambled word order-

ings with long-distance dependencies, the TuBa¨ -D/Z annotation scheme relies on

edge labels . Long-distance dependants are given an edge label which matches that

of their long-distance parent . This approach does not always work: sometimes the

parent is ambiguous, ‘ ‘ too far away” , or the daughter ought to have more than

one parent. In these cases, a long-distance dependency is explicitly annotated.

2 . 3 Related Work 20

There are also some differences concerning local dependencies. For example,

unlike NEGRA, prepositional phrases in TuBa¨ -D/Z do have an internal noun

phrase (as we shall see in Section 2 . 4, NEGRA uses a fairly flat annotation

scheme) .

While the treebank is not yet complete, there has been some initial work on

parsing TuBa¨ -D/Z . Ule (2003) reports results on topological field parsing, which

fully analyzes topological field boundaries , but does not analyze all syntactic con-

stituents. Ule reports relatively high results : even a PCFG baseline achieves an F -

score of 89 . 6 . Related to Ule (2003) is the topologiacal field parser of Becker and

Frank (2002) . Becker and Frank perform tree transformations to convert the

NEGRA corpus into a topological field treebank. Using a modified PCFG

grammar derived from this treebank, they find they can recover topological field

boundaries with F -scores approaching 93 . The results of Ule (2003) and Becker

and Frank (2002) together show that topological fields can be found with high

accuracy using probabilistic context-free grammars.

It is also possible to do full parsing using TuBa¨ -D/Z annotations. Using a

novel memory-based learning (cf. Daelemans et al. , 1 999) approach on the related

TuBa¨ -D treebank, Kubler¨ (2003) reports an F -score of 87. 2 . The TuBa¨ -D tree-

bank, however, is a corpus of spoken German. Sentences in that treebank are

shorter and therefore have less ambiguity than newspaper text copora such as

TuBa¨ -D/Z or NEGRA.

2 . 3 . 3 S tatist ical Parsing in Other Languages

There is a growing literature on parsing other languages. The literature does

cover a fair number of languages exhibit ing a wide variety of linguistic phe-

nomena. Some of the languages studied, like English and Chinese (Bikel and

Chiang, 2000 ; Levy and Manning, 2003) , have fairly rigid rules determining where

constituents may appear. German has more relaxed rules concerning the order of

constituents compared to English, and Czech (Collins et al . , 1 999) has yet more

relaxed rules than German. Some languages, like English and Chinese, have a

fairly weak inflectional morphology. However, other languages, like French (Arun,

2004) and Korean (Lee, 1 997) have more productive inflectional rules . Morpholog-

ical suffixes often have ambiguous meanings in languages like Czech, German and

French, whereas in Korean, suffixes unambiguously mark syntactic phenomena.

21 Background

The Collins (1 997) model , which we investigate in Chapter 3 , has been tested

in several languages, including Czech (Collins et al . , 1 999) and Chinese (Bikel and

Chiang, 2000) . The result for Chinese is significantly lower than the performance

of the same model for English (see Table 2 . 1) , although the results for French are

comparable (Arun, 2004) . It is difficult to say how well this model truly fares in

Czech as a different evaluation metric is used.

S tatist ical parsers based on formalisms related to tree adjoining grammar have

been applied with some success to Chinese and Korean (Sarkar and Han, 2002) ,

using treebanks with X-bar (Chomsky, 1 981) notation. The primary result is that

tree adjoining grammar appears to generalize well to Chinese and Korean, albeit

requiring a morphological analyzer for the latter. However, it should be noted

that Sarkar and Han (2002) do not attempt to analyze long-distance dependencies

in Korean. Because Korean is a relatively free word order language, if the

grammar does not posit flat structures , then much of the complexity of the

grammar will be placed in long-distance dependencies .

There is also a dependency treebank for Korean (Choi, 2001) , which does use

flatter structures to account for freer word order. Results based on this treebank

(e. g. Chung, 2004) have led to highly specialized models for parsing with depen-

dency grammar. These models generally resemble the dependency grammar of

Collins (1 996) , but several aspects have been tuned to Korean. In particular, spe-

cialized approaches to measuring the distance of a dependent from its head are

used. It is not clear, however, if the success of these specialized distance measures

are due to linguistic differences between Korean and English or to annotation dif-

ferences between dependency-style and X-bar-style treebanks, or both. The flat-

ness of dependency structures may strain the assumption that head-head depen-

dencies are useful for parsing: dependants are much father from their head in

dependency-style grammars.

Overall , research in other languages has tended to focus on testing fairly

involved models , even though simpler models , such as PCFGs, may often be suit-

able. Therefore, it is difficult to asses just how much the extra complexity is

helping. Moreover, while several free word order languages have been studied,

there has been little work in determining just how well models fare with construc-

tions which exhibit non-standard word orderings.

2 . 3 Related Work 22

PP

P

For

NP

PRP$

his

NN

plants

i . Penn Treebank Annotation

PP

APPO

fur¨

PPOSAT

sein

NN

Pflanzen

ii . NEGRA Annotation

Figure 2 . 4. There is no PP → P NP rule in NEGRA

2 . 4 Negra and Tiger Annotation

The NEGRA corpus consists of around 350 , 000 words of German newspaper text

with 20 , 602 sentences . The TIGER corpus is an improper superset of NEGRA,

containing about 800 , 000 words in 40 , 020 sentences. Both corpora are similarly

annotated (with some differences noted below) . The annotation scheme (Skut et

al. , 1 997) is modeled to a certain extent on that of the Penn Treebank (Markus et

al. , 1 993) , with crucial differences . Most importantly, Negra follows the depen-

dency grammar tradition in assuming flat syntac tic representations :

a) There is no PP → P NP rule, i . e. , the preposition and the noun it selects

(and determiners and adjectives, if present) are sisters, dominated by a PP

node, as shown in see Figure 2 . 4. An argument for this representation is

that prepositions behave like case markers in German; a preposition and a

determiner can merge into a single word (e. g. , in dem ‘ in the’ becomes im) .

23 Background

S

NP-SBJ

PRP

He

VP

V

composes

NP

NN

music

PP

P

for

NP

PRP$

his

NN

plants

i . Penn Treebank Annotation

S

PRP-SB

Er

V

komponiert

N

Musik

PP

APPO

fur¨

PPOSAT

sein

NN

Pflanzen

ii . NEGRA Annotation

Figure 2 . 5 . There is no S → NP VP rule in NEGRA

b) There is no S → NP VP rule. Rather, the sub ject , the verb, and its ob jects

are all sisters of each other, dominated by an S node (see Figure 2 . 5) . This

is a way of accounting for the semi-free word order of German (cf. S ection

1 . 1 . 1) : the first NP within an S need not be the sub ject .

c) There is no SBAR → Comp S rule. Main clauses , subordinate clauses , and

relative clauses all share the category S in Negra; as shown in Figure 2 . 6 ,

complementizers and relative pronouns are simply sisters of the verb.

Another idiosyncrasy of Negra is that it assumes special co -ordinate categorie s . A

coordinated sentence has the category CS , a coordinate NP has the category

CNP, etc. While this does not make the annotation more flat, it substantially

increases the number of non-terminal labels . Negra also contains grammatical

function (GF) labels that augment phrasal and lexical categories . Example are

MO (modifier) , HD (head) , SB (sub ject) , and OC (clausal ob ject) .

2 . 4 Negra and Tiger Annotation 24

The TIGER corpus uses GF labels to differentiate PP ob jects (OP) from PP

modifiers . The other major difference between TIGER and NEGRA which con-

cerns us is the choice of label for proper nouns. NEGRA uses the MPN (multi-

word proper noun) whereas TIGER uses PN (proper noun) .

2 . 5 Methodology

2 . 5 . 1 Data

All the experiments in Chapters 3 , 4, 5 and some of the experiments in Chapter 6

use the NEGRA corpus. Some experiments in Chapter 6 are performed on the

TIGER corpus. All the experiments use the treebank format of these corpora.

This format, which is included in the NEGRA and TIGER distributions, is

derived from the native format by replacing crossing branches with traces .

The NEGRA corpus consists of 20 , 602 sentences. The first 1 8 , 602 sentences

constituted the training set . Of the remaining 2 , 000 sentences, the first 1 , 000

served as the test set , and the last 1 000 as the development set . To increase

parsing efficiency, we removed all sentences with more than 40 words from the

test and development sets . This resulted in a test set of 968 sentences and a

development set of 975 sentences . Preliminary results were derived on the devel-

opment set , and the test set remained unseen until all parameters were fixed. The

results reported in this thesis were obtained on the test set , unless stated other-

wise.

The TIGER corpus consists of 40 , 002 sentences. Karin Muller¨ (personal com-

munication) suggests a ‘ standard’ split of TIGER into training, test ing and devel-

opment sets for other researchers to follow. The standard split is created by

placing each sentence into one of 20 buckets . Numbering from one, the i − 1 th sen-

tence is placed in to bucket number i mod 20 . The test set consists of buckets

number 1 to 1 8 , the development set bucket 1 9 , and the test set bucket 20 . We

adhere to this standard for our experiments in Chapter 6 .

25 Background

SBAR

IN

Because

S

NP-SBJ

PRP

he

VP

V

composes

NP

NN

music

PP

P

for

NP

PRP$

his

NN

plants

i . Penn Treebank Annotation

S

T

Weil

PRP-SB

er

N

Musik

PP

APPO

fur¨

PPOSAT

sein

NN

Pflanzen

V

komponiert

ii . NEGRA Annotation

Figure 2 . 6 . There is no SBAR → Comp S rule in NEGRA

2 . 5 . 2 Evaluation

Evaluation is an important part of this dissertation. We use several different eval-

uation metrics. In earlier parts of the thesis , we use the most common metrics:

labelled brackets and crossing brackets (Black et al. , 1 992 ; Magerman, 1 995) . In

Chapter 6 , we also re-evaluate the particularly interesting models using alterna-

tive evaluation measures, including word-word dependencies .

Labeled bracketing scores tend to be reported more often than crossing

bracket scores in the literature. It is possible to measure the precision, recall and

F -score of labelled bracketing, again the F -score or average is the most common

metric to report . We normally report precision, recall and F -score of labelled

brackets, as well as the crossing bracket measures . Where space and brevity

demand it , we follow convention and report only the F -score of labelled brackets .

2 . 5 Methodology 26

When comparing two results , we follow the standard practice in statistical

parsing literature, and do not attempt to perform hypothesis testing. This prac-

tise is not due to an arbitrary choice. It is not straightforward to construct a deci-

sion rule for F -scores: using the naıve¨ approach, an F -score has zero degrees of

freedom. It is possible to use average F -score, i . e. , to calculate the F -score of each

sentence, and average the results together. However, average F -scores are not

Gaussian distributed in our data: there are two peaks, one close to 1 . 0 , and

another peak usually close to 0 . 6 . Therefore, a non-parametric test would be nec-

essary. Unfortunately, another problem arises: averaging the F -scores biases the

results , giving smaller sentences a bigger weighting. There are two other solutions:

we could use expensive sampling-based hypothesis testing, or use nonparametric

tests on precision and recall . However, as our test set is quite large, we expect

variance due to sampling to be relatively small .

2 . 6 Summary

In this chapter, we have discussed issues of notation; reviewed the concept of

probabilistic context-free grammars; discussed relevant related work; given an

overview of the NEGRA and TIGER annotation schemes; and introduced the

methodology we use for experiments in Chapters Chapters 3 , 4, 5 and 6 . Our

review of the related work shows there has been little work on treebank-trained

parsing in German, and indeed in other languages as well . What research has

been done in other languages often tests complex models originally derived from

the English parsing literature in isolation, not testing against simpler baselines

such as unlexicalized PCFGs when it is possible. This makes it difficult to judge

how much is gained by the extra complexity. Moreover, any complex model neces-

sarily contains features from a wide variety of sources , including non-local struc-

tural information as well as lexicalization (Klein and Manning, 2003) . There has

not as yet been any attempt to investigate, part by part , how the components of

more complex models fare in new languages.

27 Background

Chapter 3

Lexicalized Parsing

We begin by experimenting with lexicalized parsing. This is a logical starting

point as the best-performing parsing models for English use some form of lexical-

ized grammar (Charniak, 1 997; Charniak, 2000 ; Collins , 1 997) . Indeed, lexicaliza-

tion has been shown to dramatically increase parsing performance. But does this

result hold true for other languages? Because the effect of lexicalization is so

strong in English, we may initially assume that lexicalization ought to be useful in

German. To test this hypothesis , we compare two lexicalized models with an

unlexicalized baseline.

We show that lexicalized parsers behave quite differently in German than in

English. We argue there are three reasons for this: (i) scoring effects ; (ii) assump-

tions about annotation; and (iii) assumptions about the distribution of words in

English. We introduce a new model which appears to account for the scoring and

annotation effects. The third factor , however, gives rise to our main thesis: that

new techniques are required to make lexicalization work in languages, such as

German, which have a productive morphology.

This chapter is structured as follows. Section 3 . 1 describes two standard lexi-

calized models (Carroll and Rooth, 1 998 ; Collins , 1 997) , as well as an unlexical-

ized baseline model . Section 3. 2 presents a series of experiments that compare the

parsing performance of these three models (and several variants) on NEGRA. The

results show that both lexicalized models fail to outperform the unlexicalized

baseline. This is at odds with what has been reported for English. Learning

curves show that the poor performance of the lexicalized models is not due to lack

of training data.

28

An alternative explanation is explored in Section 3 . 3 . An error analysis for the

Collins (1 997) lexicalized model shows that the head-head dependencies used in

this model fail to cope well with the flat structures in NEGRA. We propose an

alternative model that uses sister-head dependencies instead. This model outper-

forms the two original lexicalized models, as well as the unlexicalized baseline.

S ection 3 . 4 compares the performance of the underlying structural models of

both the head-head and sister-head parsers. We find the deficiency of the head-

head model is not due to lexicalization per se , but rather due to poor assump-

tions of the structural model. Nonetheless , we show that the improvement due to

lexicalized is quite a bit smaller than in English. We argue part of the difference

in the impact of lexicalization in English and German is due to the very different

distribution of words in German.

To better assess the impact of flat structures , in Section 3 . 5 we ‘ unflatten’ the

NEGRA grammar. Although flatness st ill has a negative effect on the sister-head

parser, this section shows the theoretical intuition justifying flatter structures

appears to be grounded by our experimental evidence. Overall , Section 3 . 5 gives

evidence that scoring effects have an impact on overall parsing performance.

In Section 3 . 6 , we make some preliminary explorations of how accurate the

sister-head parser is on a notably difficult construction in German, the verb-final

clause. This section lays the basis upon which we study other German syntactic

constructions in Sections 1 . 1 . 1 . F inally, we offer some concluding remarks in Sec-

tion 3 . 7 .

This is the extension of joint work done with Frank Keller, previously pub-

lished as Dubey and Keller (2003) . The work in this chapter remains the most

exhaustive study of broad-coverage lexicalized probabilistic parsing in German.

3 . 1 The Models

As we saw in Section 2 . 2 , we may induce a probability distribution over a context-

free grammar by assigning each rule LHS → RHS an expansion probability

P (RHS | LHS) . The probabilities for all rules with the same left hand side must

to sum to one, and the probability of a parse tree T is defined as the product of

the probabilities of all rules applied in generating T .

29 Lexicalized Parsing

In a lexicalized grammar, we also generate words on the RHS and use them as

part of the LHS context upon which a RHS is condit ioned. Let us examine the

process in more detail . If P is the LHS of a rule, and if we pick one child to be

the head (call it H) , and if there are m children to the left of the head and n chil-

dren to the right, then we may write the rule LHS → RHS as:

P → Lm � L 1 HR1 � Rn

To keep each child on the RHS visually distinct , we will draw boxes around them:

P → Lm � L 1 H R1 � Rn

In this more verbose format, the probability of an unlexicalized rule is written as:

Pun l e x(LHS | RHS) = P (Lm � L 1 H R1 � Rn | P)

Let C be any daughter. Further, let wC be the head word of daughter C and tC

the tag of the head word of C . If H is the head daughter of the rule and P is the

parent, note that wH is the same as wP . Using this encoding, we may write a

simple lexicalized rule as:

Pl e x(LHS | RHS) = P

(
Lm
wLm

�

L 1

wL1

H R1

wR1

�

Rn

w Rn

∣∣∣∣∣
P
wP

)
(3 . 1)

Alternatively, if we chose to generate the POS tags as the same time as the head

word, we would get :

Pl e x(LHS | RHS) = P

Lm
tLm
w Lm

�

L 1

t L1

wL1

H R1

tR1

w R1

�

Rn

tRn
w Rn

∣∣∣∣∣∣∣

P
tP
wP

 (3 . 2)

The head-lexicalized PCFG model of Carroll and Rooth (1 998) uses Equation 3 . 1

as its basis , while the model proposed by Collins (1 997) begins with Equation 3 . 2

as its basis (we henceforth refer to the models as the C&R mode l and Collins

mode l , respectively) . D irectly estimating the parameters of Equations 3 . 1 and 3 . 2

would lead to severe sparse data problems. Both the C&R and Collins models use

smoothing and novel independence assumptions to overcome sparse data. Both

models use similar approaches to smoothing, so we do not address it here. On the

other hand, the models greatly diverge on their independence assumptions, so it is

worth taking a closer look at these assumptions.

3 . 1 The Models 30

We examine the C&R model first . S tarting with Equation 3 . 1 , the first

assumption is to separate the generation of lexical items from the generation of

rules .

Pl e x(LHS | RHS) = P

(
Lm
wLm

�

L 1

wL 1

H R1

wR1

�

Rn

w Rn

∣∣∣∣∣
P
wP

)

= P

(
Lm

�

L 1 H R1
�

Rn

∣∣∣∣∣
P
wP

)

· P
(

wLm
�

wL1
wR1

�

wRn

∣∣∣∣∣
P
wP

Lm
�

Rn

)

Second, we assume that all the lexical items are generated independently of one

another .

Pl e x(LHS | RHS) = P

(
Lm

�

L 1 H R1
�

Rn

∣∣∣∣∣
P
wP

)

·
[∏

i= 1

m

P

(

wL i

∣∣∣∣∣
P
wP

L i

)]
·
[∏

i= 1

n

P

(

wRi

∣∣∣∣∣

P
wP

Ri

)]

The last line gives us the formulation of the C&R model. Notice that it has a dis-

tinctive feature: an almost complete separation of rule probabilities from lexical

probabilities. Indeed, because the rule probabilities are almost the same as with a

PCFG, the C&R model is a minimal departure from the standard unlexicalized

PCFG, which makes it ideal for a direct comparison. Note that the C&R model is

essentially the same as that of Charniak (1 997) ; we will nevertheless use the

label ‘ Carroll and Rooth model’ as we are using their implementation (see Section

3 . 2 . 1) .

31 Lexicalized Parsing

In contrast to the C&R approach, the Collins model does not compute rule

probabilities directly. Rather, they are generated using a Markov process that

makes a different set of independence assumptions than the C&R model. S tarting

with Equation 3 . 2 , the Collins model first assumes that everything to the left and

right of the head are generated independently of one another.

Pl e x(LHS | RHS) = P

Lm
tLm
w Lm

�

L 1

t L1

wL1

H R1

tR1

w R1

�

Rn

tRn
w Rn

∣∣∣∣∣∣∣

P
tP
wP

= P

H
∣∣∣∣∣∣∣

P
tP
wP

· P

Lm
tLm
w Lm

�

L 1

t L1

wL1

∣∣∣∣∣∣∣

P
tP
wP

H

· P

R1

tR1

w R1

�

Rn

tRn
w Rn

∣∣∣∣∣∣∣

P
tP
wP

H

Then, we make the 0 th order Markov assumption, with the result that each node

on the left and right are generated independently of one another:

= P

H
∣∣∣∣∣∣∣

P
tP
wP

 (3 . 3)

·

∏

i= 0

m

P

L i
tL i
w L i

, d(i)

∣∣∣∣∣∣∣

P
tP
wP

H

·

∏

i= 0

n

P

R i

tRi
w Ri

, d(i)

∣∣∣∣∣∣∣

P
tP
wP

H

Notice that this results in a huge loss of information: the ith node no longer

depends upon the previous i − 1 nodes. While the C&R model makes the same

assumption for lexical affinities, it does not make this assumption for syntactic

categories . To compensate for harmful effects of this assumption, the distance

measure , d(i) , is added to approximate the now-missing nodes. The distance mea-

sure consists of two binary numbers, which are set to ‘ 1 ’ if the answers to the two

following questions are ‘ yes ’ :

i . Is there a verb between H and the ith constituent?

3 . 1 The Models 32

ii . Is there punctuation between H and the ith constituent?

For details on the distance measures, refer to Collins (1 999) . The three models

presented here, along with the new model we suggest in Section 3 . 3 , will serve as

the basis for the experiments in this chapter.

3 . 2 Parsing with Head-Head Parameters

Having introduced the models , in this section we turn our attention to testing

their performance on the NEGRA corpus. The main hypothesis is that the lexi-

calized models will outperform the unlexicalized baseline. Another prediction is

that adding NEGRA-specific information to the models will increase parsing per-

formance. Therefore, we test a variant model that includes grammatical function

(GF) labels , i . e. , the set of categories was augmented by the function tags speci-

fied in NEGRA (see Section 2 . 4) .

Adding grammatical functions is a way of dealing with the word order facts of

German (see Section 1 . 1 . 1) in the face of NEGRA’ s very flat annotation scheme.

For instance, sub ject and ob ject NPs have different word order preferences (sub-

jects tend to be preverbal, while ob jects tend to be postverbal) , a fact that is cap-

tured if sub jects have the label NP-SB , while ob jects are labelled NP-OA

(accusative ob ject) , NP-DA (dative ob ject) , etc. Also the fact that verb order dif-

fers between subordinate and main clauses is captured by the function labels : the

former are labelled S , while the latter are labelled S-OC (object clause) , S -RC

(relative clause) , etc .

3 . 2 . 1 Method

Data Sets All the experiments reported here use the division of the NEGRA

corpus in to training, testing and development sets as described in Section 2 . 5 . 1 .

Early versions of the models were tested on the development set , and the test set

remained unseen until all parameters were fixed. The final results reported in this

chapter were obtained on the test set , unless stated otherwise. Before applying

the models we use here, we first remove all empty nodes. While the parses we dis-

cuss here cannot handle empty nodes or any of phenomena that depend on them,

we will return to this topic in Chapter 5 .

33 Lexicalized Parsing

Grammar Induction For the unlexicalized PCFG model (henceforth base line

mode l) , we used the probabilist ic left-corner parser Lopar (Schmid, 2000) . When

run in unlexicalized mode, Lopar implements the model described in Section

4. 2 . 1 . A grammar and a lexicon for Lopar were read off the NEGRA training set ,

after removing all grammatical function labels.

The C&R model was again realized using Lopar, which in lexicalized mode

implements the model in Section 4. 2 . 2 . Lexicalization requires that each rule in a

grammar has one of the categories on its right hand side annotated as the head.

For the categories S , VP , AP , and AVP, the head is marked in NEGRA. For the

other categories, we used the rule listed in Appendix A to determine the head.

These head-finding rules were developed by hand, as is standard practise for the

Penn Treebank.

As an implementation of the Collins parser was not available to us at the time

this experiment was done, we used a re-implementation of this model. For

training, empty categories were removed from the training data, as the model

cannot handle them. The same head finding strategy was applied as for the C&R

model .

In this experiment , only head-head statistics were used (see Section 3 . 2) . The

original Collins model uses sister-head statistics for non-recursive NPs. This will

be discussed in detail in Section 3 . 3 .

Training and Testing We estimated the model parameters using maximum

likelihood estimation. Both Lopar and the Collins model use various techniques to

smooth the estimates. Lopar uses absolute discounting (Ney et al. , 1 994) whereas

Collins uses a variant of Witten-Bell smoothing (Witten and Bell , 1 991) . We

explore Witten-Bell smoothing, as well as an extension of absolute discounting

(Kneser and Ney, 1 995) as applied to unlexicalized parsing in Section 4. 3 . For the

details of the smoothing in these lexicalized models , though, the reader is referred

to Schmid (2000) and Collins (1 997) . For the C&R model, we used a cutoff of one

for rule frequencies and lexical choice frequencies (the cutoff value was optimized

on the development set) .

We also tested variants of the baseline model and the C&R model that include

grammatical function information, as we hypothesized that this information might

help the model to handle word order variation more adequately, as explained

above.

3 . 2 Parsing with Head-Head Parameters 34

Recall Precision F -score CB 0 CB 6 2 CB Coverage
Baseline 70 . 6 66 . 7 68 . 6 1 . 03 58 . 2 84. 5 94. 4
Baseline+GF 70. 4 65 . 5 67. 9 1 . 07 58 . 0 85 . 0 79 . 2
C&R 68 . 0 60 . 1 63 . 8 1 . 31 52 . 1 79 . 5 94. 4
C&R+GF 67. 7 60 . 3 63 . 8 1 . 31 55 . 7 80. 2 79 . 2
Collins 67. 9 66 . 1 67. 0 0 . 73 65 . 7 89 . 5 95 . 2

Table 3 . 1 . Results with TnT tagging

Lopar and the Collins model differ in their handling of unknown words. In

Lopar, a POS tag distribution for unknown words has to be specified, which is

then used to tag unknown words in the test data. The Collins model treats any

word seen fewer than five times in the training data as unseen and uses an

external POS tagger to tag unknown words. In order to make the models compa-

rable, we used a uniform approach to unknown words. All models were run on

POS-tagged input; this input was created by tagging the test set with a separate

POS tagger, for both known and unknown words. We used TnT (Brants, 2000) ,

trained on the NEGRA training set . The tagging accuracy was 97. 1 2% on the

development set .

In order to obtain an upper bound for the performance of the parsing models,

we also ran the parsers on the test set with the correct tags (as specified in

NEGRA) , again for both known and unknown words. We will refer to this mode

as ‘ perfect tagging’ .

All models were evaluated using standard parseval measures. We report

labelled recall (LR) labelled precision (LP) , F -score, average crossing brackets

(CBs) , zero crossing brackets (0CB) , and two or less crossing brackets (≤ 2CB) .

We also give the coverage (Cov) , i . e. , the percentage of sentences that the parser

was able to parse.

3 . 2 . 2 Results

The results for all three models and their variants are shown in Table 3 . 1 for TnT

tags and Table 3 . 2 for perfect tags. The baseline model achieves an F -score of

68 . 6 with TnT tags. Adding grammatical functions reduces the figure slightly,

and makes coverage drop substantially, by about 1 5% . The C&R model performs

worse than the baseline, with an F -score of 63. 8 (for TnT tags) . Once again,

adding grammatical function reduces performance slightly. The Collins models

also performs worse than the baseline, with an F -score of 67. 0 .

35 Lexicalized Parsing

Precision Recall F -score Avg CB 0CB 6 2 CB Coverage
Baseline 73 . 0 70 . 0 71 . 5 0 . 88 60 . 0 87. 4 95 . 3
Baseline+GF 81 . 1 78 . 4 79 . 7 0 . 46 74. 3 95 . 3 65 . 4
C&R 70. 8 63 . 4 66 . 9 1 . 1 7 55 . 0 82 . 2 95 . 3
C&R+GF 81 . 2 76 . 8 78 . 9 0 . 48 73 . 5 94. 2 65 . 4
Collins 68 . 6 66 . 9 67. 7 0 . 71 65 . 0 89 . 7 96 . 2

Table 3 . 2 . Results with perfect tagging

Performance using perfect tags (an upper bound of model performance) is 2 --

3% higher for the baseline and for the C&R model. The Collins model gains only

about 1 %. Perfect tagging results in a performance increase of over 1 0% for the

models with grammatical functions. This is not surprising, as the perfect tags

(but not the TnT tags) include grammatical function labels. However, we also

observe a dramatic reduction in coverage (to about 65%) .

3 . 2 . 3 Discussion

We added grammatical functions to both the baseline model and the C&R model,

as we predicted that this would allow the model to better capture the word order

facts of German. However, this prediction was not borne out: performance with

grammatical functions (on TnT tags) was slightly worse than without, and cov-

erage dropped substantially. A possible reason for this is sparse data: a grammar

augmented with grammatical functions contains many additional categories,

which means that many more parameters have to be estimated using the same

training set . On the other hand, a performance increase occurs if the perfectly

tagged input contains grammatical function labels . Although this comes at the

price of an unacceptable reduction in coverage, in Chapter 4 we will examine ways

to improve the coverage of a GF-based parser.

The most surprising finding is that the best performance was achieved by the

unlexicalized PCFG baseline model. Both lexicalized models (C&R and Collins)

performed worse than the baseline. This results is at odds with what has been

found for English, where lexicalization is standardly reported to increase perfor-

mance by about 1 0%. The poor performance of the lexicalized models could be

due to a lack of sufficient training data: our NEGRA training set contains approx-

imately 1 8 , 000 sentences, and is therefore significantly smaller than the Penn

Treebank training set (about 40 , 000 sentences) . NEGRA sentences are also

shorter: they contain, on average, 1 5 words compared to 22 in the Penn Treebank.

3 . 2 Parsing with Head-Head Parameters 36

Figure 3 . 1 . Learing curves for all three models

Penn NEGRA
NP 2 . 20 3 . 08
PP 2 . 03 2 . 66
VP 2 . 32 2 . 59
S 2 . 22 4. 22

Table 3 . 3 . Average number of daughters of the given categories in the Penn Treebank and

NEGRA

C&R Collins Charniak S ister-Head

Head sister category X X X
Head sister head word X X X
Head sister head tag X X
Previous sister category X X X
Previous sister head word X
Previous sister head tag X

Table 3 . 4. Linguist ic features in the sister-head model compared to the models of Carroll and

Rooth (1 998) , Collins (1 997) and Charniak (2000)

We computed learning curves for the unmodified variants (without grammat-

ical functions) of all three models on the development set . The result (see Figure

3 . 1) shows that there is no evidence for an effect of sparse data. For both the

baseline and the C&R model, a fairly high F -score is achieved with only 1 0% of

the training data. A slow increase occurs as more training data is added. The

performance of the Collins model is even less affected by training set size. This is

probably due to the fact that it does not use rule probabilities directly, but gener-

ates rules using a Markov chain.

37 Lexicalized Parsing

3 . 3 Parsing with S ister-Heads

As we saw in the last section, lack of training data is not a plausible explanation

for the sub-baseline performance of the lexicalized models . In this section, we

therefore investigate an alternative hypothesis : the lexicalized models do not cope

well with the flat rules of NEGRA. We will focus on the Collins model, as it out-

performed the C&R model in the first experiment.

An error analysis revealed that many of the errors of the Collins model in

Experiment 1 are chunking errors. For example, the PP neb en den Mitteln des

Theaters should be analyzed as follows:

PP

neben den Mitteln des Theaters

(3 . 4)

But instead the parser produces two constituents:

PP

neben den Mitteln

NP

des Theaters

The reason for this problem is that neben is the head of the constituent in (3 . 4) ,

and the Collins model uses a crude distance measure together with head-head

dependencies to decide if additional constituents should be added to the PP . The

distance measure is inadequate for finding PPs with high precision.

The chunking problem is more widespread than PPs. The error analysis shows

that other constituents , including Ss and VPs often have incorrect boundaries.

This problem is compounded by the fact that the rules in NEGRA are substan-

tially flatter than the rules in the Penn Treebank, for which the Collins model was

developed. Table 3 . 3 compares the average number of daughters in both corpora.

The flatness of PPs is easy to reduce. As detailed in Section 2 . 4, PPs lack an

intermediate NP pro jection, which can be inserted straightforwardly using the fol-

lowing algorithm:

f or a tree node that c orres ponds to the rul e PP → C0 . . . Cn

l et i = po s i ti on of the l as t prepos i ti on, o r -1 i f there i s no

prepos i ti on

l et j = po s i ti on of the f i rs t po s tpo s i ti on, o r n i f there i s

pos tpo s i ti on

3 . 3 Parsing with S ister-Heads 38

i f j -i =0 or i f j -i =1 and the i + 1 st c ons ti tuent i s a CNP,

re turn the rule unc hanged

el s e return

PP

C0 � C i NP

C i+ 1 � C j− 1

C j � Cn

In the first experiment of this section, we investigate if parsing performance

improves if we test and train on a version of NEGRA on which the transformation

shown in Figure 3 . 4 has been applied. In a second series of experiments , we inves-

tigated a more general way of dealing with the flatness of NEGRA, based on the

Collins (1 997) model for non-recursive NPs in the Penn Treebank (which are also

flat) . For non-recursive NPs, Collins (1 997) does not use the probability function

in (3 . 2) , which conditions upon the head word of the head daughter. Rather, it

uses the following derivation, which conditions upon the head word of the pre-

vious sisters:

Pl e x(RHS | LHS) = P

Lm
tLm
w Lm

�

L 1

t L1

wL1

H R1

tR1

w R1

�

Rn

tRn
w Rn

∣∣∣∣∣∣∣

P
tP
wP

= P

H
∣∣∣∣∣∣∣

P
tP
wP

 (3 . 5)

·

∏

i= 0

m

P

L i
tL i
w L i

∣∣∣∣∣∣∣

L i− 1

tL i− 1

w l i− 1

P

·

∏

i= 0

n

P

R i

tRi
w Ri

∣∣∣∣∣∣∣

Ri− 1

tRi− 1

wRi − 1

P

Using such sister-head relationships is a way of counteracting the flatness of

the grammar productions; it implicitly adds binary branching to the grammar.

Our proposal is to extend the use of sister-head relationship from non-recursive

NPs (as proposed by Collins) to all categories.

39 Lexicalized Parsing

Precision Recall F -score Avg CB 0CB 6 2 CB Coverage
Unmodified Collins 67. 9 66 . 1 67. 0 0 . 73 65 . 7 89 . 5 95 . 2

Split PP 73. 8 73 . 8 73 . 8 0 . 82 62 . 9 89 . 0 95 . 1
Collapsed PP 66. 5 66 . 1 66 . 3 0 . 89 66 . 6 87. 0 95 . 1

S ister-head NP 67. 8 66 . 0 66 . 9 0 . 75 65 . 9 89 . 0 95 . 1
S ister-head PP 70. 3 68 . 5 69 . 3 0 . 69 66 . 3 90 . 3 94. 8
S ister-head all 71 . 3 70 . 9 71 . 1 0 . 61 69 . 5 91 . 7 95 . 9

Table 3 . 5 . S ister-head model with TnT tags

Table 3 . 4 shows the linguistic features of the resulting model compared to the

models of Carroll and Rooth (1 998) , Collins (1 997) , and Charniak (2000) . The

C&R model effectively includes category information about all previous sisters , as

it uses context-free rules. The Collins (1 997) model does not use context-free

rules , but generates the next category using zeroth order Markov chains (see Sec-

tion 4. 2 . 3) , hence no information about the previous sisters is included. Charniak

(2000) model extends this to higher order Markov chains (first to third order) ,

and therefore includes category information about previous sisters . The current

model differs from all these proposals : it does not use any information about the

head sister, but instead includes the category, head word, and head tag of the

previous sister, effectively treating it as the head.

3 . 3 . 1 Method

We first trained the original Collins model on a modified versions of the training

test from Experiment 1 in which the PPs were split by applying the rule from

Figure 3 . 4.

In a second series of experiments , we tested a range of models that use sister-

head dependencies instead of head-head dependencies for different categories. We

first added sister-head dependencies for NPs (following the proposal of Collins,

1 999) and then for PPs, which are flat in NEGRA, and thus similar in structure

to NPs (see Section 2 . 4) . Then we tested a model in which sister-head relation-

ships are applied to all categories .

In a third series of experiments, we trained models that use sister-head rela-

tionships everywhere except for one category. This makes it possible to determine

which sister-head dependencies are crucial for improving performance of the

model .

3 . 3 Parsing with S ister-Heads 40

Precision Recall F -score Avg CB 0CB 6 2 CB Coverage
Unmodified Collins 68 . 6 66 . 9 67. 8 0 . 71 65 . 0 89 . 7 96 . 2

Split PP 75 . 9 75 . 3 75 . 6 0 . 77 65 . 4 89 . 0 93 . 8
Collapsed PP 68 . 2 67. 3 67. 8 0 . 94 66 . 7 85 . 9 93 . 8

S ister-head NP 71 . 5 70 . 3 70 . 9 0 . 60 68 . 0 93 . 3 94. 6
S ister-head PP 73. 2 72 . 4 72 . 8 0 . 60 68 . 5 93 . 2 94. 5
S ister-head all 73 . 9 74. 2 74. 1 0 . 54 72 . 3 93 . 5 95 . 2

Table 3 . 6 . S ister-head model with perfect tags

3 . 3 . 2 Results

The results of the PP experiment are listed in Table 3 . 5 for TnT tags and Table

3 . 6 for perfect tags. The row ‘ Split PP ’ contains the performance figures obtained

by including split PPs in both the training and in the testing set . This leads to a

substantial increase in F -score (around 7%) for both tagging schemes. Note, how-

ever, that these figures are not directly comparable to the performance of the

unmodified Collins model : it is possible that the additional brackets artificially

inflate the F -score. Presumably, the brackets for split PPs are easy to detect , as

they are always adjacent to a preposition. An honest evaluation should therefore

train on the modified training set (with split PPs) , but collapse the split cate-

gories for testing, i . e. , test on the unmodified test set . The results for this evalua-

tion are listed in rows ‘ Collapsed PP ’ . Now there is no increase in performance

compared to the unmodified Collins model; rather, a slight drop in F -score is

observed.

Tables 3 . 5 and Table 3 . 6 also display the results of the experiments with the

sister-head model, with TnT and perfect tags, respectively. For TnT tags, we

observe that using sister-head dependencies for NPs leads to a small decrease in

performance compared to the unmodified Collins model, resulting in an F -score of

66 . 9 . S ister-head dependencies for PPs, however, increase performance substan-

tially to 69 . 3 . The highest improvement is observed if head-sister dependencies

are used for all categories ; this results in an F -score of 71 . 1 , which corresponds to

an improvement of 4 points over the unmodified Collins model. Performance with

perfect tags is around 2--4 points higher than with TnT tags. For perfect tags,

sister-head dependencies lead to an improvement for NPs, PPs, and all categories .

41 Lexicalized Parsing

The third series of experiments was designed to determine which categories are

crucial for achieving this performance gain. This was done by training models

that use sister-head dependencies for all categories but one. Table 3 . 7 shows the

change in LR and LP that was found for each individual category (again for TnT

tags and perfect tags) . The highest drop in performance (around 3 points) is

observed when the PP category is reverted to head-head dependencies . For S and

for the coordinated categories (CS , CNP, etc .) , a drop in performance of around 1

points each is observed. A slight drop is observed also for VP (around 0. 5 points) .

Only minimal fluctuations in performance are observed when the other categories

are removed (AP , AVP, and NP) : there is a small effect (around 0. 5 points) if

TnT tags are used, and almost no effect for perfect tags.

3 . 3 . 3 Discussion

We showed that splitting PPs to make NEGRA less flat does not improve parsing

performance if testing is carried out on the collapsed categories. However, we

observed that the F -score is artificially inflated if split PPs are used for testing.

This finding goes some way towards explaining why the parsing performance

reported for the Penn Treebank is substantially higher than the results for

NEGRA: the Penn Treebank contains split PPs, which means that there are lot of

brackets that are easy to get right. The resulting performance figures are not

directly comparable to figures obtained on NEGRA, or other corpora with flat

PPs. 3. 1

We also obtained a positive result : we demonstrated that a sister-head model

outperforms the unlexicalized baseline model (unlike the C&R model and the

Collins model in Experiment 1) . F -score was about 4% higher than the baseline if

lexical sister-head dependencies are used for all categories. This holds both for

TnT tags and for perfect tags (compare Tables 3 . 5 and 3 . 6) . We also found that

using lexical sister-head dependencies for all categories leads to a larger improve-

ment than using them only for NPs or PPs (see Table 3 . 7) . This result was con-

firmed by a second series of experiments , where we reverted individual categories

back to head-head dependencies , which triggered a decrease in performance for all

categories , with the exception of NP, AP, and AVP (see Table 3 . 7) .

3 . 1 . This result generalizes to S ’ s , which are also flat in NEGRA (see Section 2 . 4) . We con-

ducted an experiment in which we added an SBAR above the S . No increase in performance was

obtained if the evaluation was carried using collapsed S s.

3 . 3 Parsing with S ister-Heads 42

Perfect Tagging TnT Tagging
∆LR ∆LP ∆LR ∆LP

PP − 3 . 45 − 1 . 60 − 4. 2 1 − 3 . 35
S − 1 . 28 0 . 1 1 − 2 . 23 − 1 . 22
Coord − 1 . 87 − 0 . 39 − 1 . 54 − 0 . 80
VP − 0 . 72 0 . 1 8 − 0 . 58 − 0 . 30
AP − 0 . 57 0 . 1 0 0 . 08 − 0 . 07
AVP − 0 . 32 0 . 44 0 . 1 0 0 . 1 1
NP 0. 06 0 . 78 − 0 . 1 5 0 . 02

Table 3 . 7 . Change in performance when reverting to head-head statistics for individual cate-

gories

On the whole, the results of this experiment are at odds with what is known

about parsing for English. The progression in the probabilistic parsing literature

has been to start with lexical head-head dependencies (Collins , 1 997) and then

add non-lexical sister information (Charniak, 2000) , as illustrated in Table 3 . 4.

Lexical sister-head dependencies have only been found useful in a limited way: in

the original Collins model , they are used for non-recursive NPs.

Our results show, however, that for parsing German, lexical sister-head infor-

mation is more important than lexical head-head information. Only a model that

replaced lexical head-head with lexical sister-head dependencies was able to out-

perform a baseline model that uses no lexicalization. 3. 2 Based on the error anal-

ysis for the first experiment, we claim that the reason for the success of the sister-

head model is the fact that the rules in NEGRA are so flat; using a sister-head

model is a way of binarizing the rules .

3 . 4 The Effect of Lexicalization

If it is indeed the case that flatter structures are causing the performance differ-

ence between the head-head and sister-head parsers , it is reasonable to ask if the

difference is due to lexicalization at all . In both the head-head and sister-head

version of the Collins model, lexicalization is closely tied to the ‘ structural model’ ,

i . e. the unlexicalized rule probabilities . Recall that the Collins model uses 0 th

order Markovization to ‘ forget ’ previous sisters (cf. S ection 3 . 1) . The C&R model

uses a similar trick, but only for lexical probabilities . Rule probabilities are left

unchanged from the PCFG model.

3 . 2 . It is unclear what effect b i - lexical statist ics have on the sister-head model; while shows

bi-lexical statistics are sparse for some grammars, found they play a greater role in binarized

grammars.

43 Lexicalized Parsing

Therefore, the effect of the lexicalization in the C&R model is easy to

explain. Because we test the underlying PCFG separately, and because adding

lexicalization lowers the performance, we can confidently say that it is lexicaliza-

tion that is hurting the C&R model. We cannot make the same claim for the

Collins model, because the underlying structural probabilities are so different

from a PCFG. In this section, then, we test how well the unlexicalized backbones

of the head-head and sister-head parsers perform alone.

3 . 4. 1 Method

We use a similar experimental setup as in previous experiments . G iven that we

have found the difference in performance between TnT tagging and perfect tag-

ging is predictable, we will only consider perfect tagging from this point onward.

Of course, the models need to be modified to support unlexicalized parsing. The

equations for unlexicalized parsing may be derived by removing the word features

from the Collins and sister-head model . For the head-head model, we do this by

changing Equation (3 . 2) :

Pl e x(LHS | RHS) = P

(
Lm
tLm

�

L 1

t L 1

H R1

tR1

�

Rn

tRn

∣∣∣∣∣
P
tP

)

= P

(
H

∣∣∣∣∣
P
tP

)

·
[∏

i= 0

m

P

(
L i
tL i

, d(i)

∣∣∣∣∣
P
tP

H
)]

·
[∏

i= 0

n

P

(
R i

tRi
, d(i)

∣∣∣∣∣
P
tP

H
)]

S imilarly, the new sister-head model becomes:

Ps i s t e r(LHS | RHS) = P

(
H

∣∣∣∣∣
P
tP

)

·
[∏

i= 0

m

P

(
L i
tL i

∣∣∣∣∣
L i− 1

tL i − 1

P
)]

·
[∏

i= 0

n

P

(
Ri

tRi

∣∣∣∣∣
R i− 1

tRi− 1

P
)]

3 . 4 The Effect of Lexicalization 44

Precision Recall F -score Avg CB 0CB 6 2CB Cov
Head-head 68 . 45 67. 32 67. 9 0 . 60 66 . 98 92 . 91 96 . 2 1
S ister-head 72 . 38 69 . 72 71 . 0 0 . 61 65 . 90 93 . 49 97. 05

Table 3 . 8 . Results with lexicalization disabled (with perfect tags)

Figure 3. 2 . Unique words vs. number of words in NEGRA and the WSJ

English German
I sleep ich schlafe
you sleep du schlafst¨
he sleeps er schlaft¨
we sleep wir schlafen
you sleep ihr schlaft
they sleep sie schlafen
Total 2 4

Table 3 . 9 . Number of word forms in present tense of ‘ ‘ to sleep” in English and German

3 . 4. 2 Results

The results of this experiment are shown in Table 3 . 8 . The unlexicalized head-

head parser achieves an F -score of 67. 9 . The score of the sister-head parser is

slightly higher, at 71 . 0 . By way of comparision, recall from Section 3 . 3 . 2 that the

lexicalized version of the head-head and sister-head model acheive F -scores of 67. 0

and 74. 1 , respectively. Coverage of both models was higher than many of the

other models we have studied in this chapter.

45 Lexicalized Parsing

English German
Nominative The children are here Die Kinder sind hier
Dative I talk with the children Ich rede mit den Kindern
Total 1 2

Nominative masculine A young man cheated Conrad Ein junger Mann betrog Konrad
Accusative masculine Conrad cheated a young man Konrad betrog einen jungen Mann
Accusative feminine Conrad cheated a young woman Konrad betrog eine junge Frau
Total 1 3

Table 3 . 1 0. Number of word forms for example nouns and adjective in English and German

3 . 4. 3 Discussion

Curiously, the the unlexicalized head-head model outperformed the lexicalized

version of the same model . In other words, lexicalization has almost no effect on

the performance of the head-head model. Thus, we may reject sparse data as an

explanation of the poor performance of the head-head model.

Once again, we appeal to the average branching factors listed in Table 3 . 3 ,

and to the nature of the head-head model. Because the average branching factor

is close to 2 in the WSJ , non-head dependants are usually adjacent to the head

constituent. In NEGRA, this is typically not the case. With dependency-style

grammars, recent constituents matter more than the head constituent: recency

matters .

Turning our attention to the sister-head model, we find that the unlexicalized

model tested here performs worse than the lexicalized model from Section 3 . 3 . In

other words, lexicalization helps. What is interesting, though, is that lexicaliza-

tion does not help much. The difference between the F -score of the two models is

only 3. 1 . This contrasts to results from English parsers , where lexicalization has

been shown to significantly improve performance (cf. Collins , 1 999) . The result

that lexicalization helps very litt le in NEGRA parsing has been replicated using a

different model by .

We contend that part of the difficulty is due sparse data in the lexicalized

grammar. Further, we argue the greater sparse data problem is caused by the

larger number of word forms in German. Examples of this problem include verb

conjugation (compare the number of unique conjugated forms of schlaffen ‘ to

sleep’ in the present tense in Table 3 . 9) and and noun declension (compare the

number of forms of Kind ‘ child’ and jung ‘ young’ in Table 3 . 1 0) . These specific

examples are corroborated by plotting the type/token ratio of words in the

NEGRA corpus in Figure 3 . 2 .

3 . 4 The Effect of Lexicalization 46

3 . 5 The Effect of Flat Annotation

We have argued that sister-head parsing is more useful than head-head parsing

because of the NEGRA annotation style. It would be insightful to test how well

the parser works with less flat annotations, but on the same data. This would also

provide is with clues to another question: why is the increase in performance due

to lexicalization much greater in WSJ parsing than we have found in NEGRA

parsing?

S trict ly speaking, it would not be possible to do this without manually re-

annotating the corpus. We can, however, approximate a less flat annotation

scheme by semi-automatically modifying the corpus so that the annotations more

closely resemble those of the WSJ . Doing this allows us to test if it really is the

annotation style that causes the difference between the head-head and sister-head

parser.

This re-annotation has another purpose, as well . G iven that we use the same

evaluation metrics that have become common in WSJ parsing, it is natural to

want to compare our results on NEGRA with known results on the WSJ . But are

the numbers really comparable? From our attempt to unflatten PPs in Section

3 . 3 , we have some evidence this is not the case. But how great is the impact of

dependency-like annotation on the evaluation metrics? In this section, we investi-

gate this question, as well as the effect of dependency-style annotation on the two

lexicalization strategies .

3 . 5 . 1 Method

We have already investigated the impact of using some WSJ-style annotation, i . e.

by applying Rule (3 . 4) to unflatten PPs. We propose three additional tree trans-

formations, all affecting S categories . F irst , we introduce a VP category bounding

the finite verb:

S

NP-SB C1 � Cn
�

S

NP-SB VP

C1 � Cn

(3 . 6)

47 Lexicalized Parsing

Although the parser we use in this section does not handle traces, one ought

be inserted when the sub ject does not occupy position i (see Section 4. 4 for more

about topicalization) .

The second transformation is to add an SBAR layer in complementizer

phrases :

S

KOUS C1 � Cn
�

SBAR

KOUS S

C1 � Cn

(3 . 7)

We treat subordinating co-ordinators (KOUS) and relative pronouns (PRELS ,

PRELAT and PWAV) as complementizers. Normally, the presence of a comple-

mentizer is both a sufficient and necessary condit ion for an SBAR, but there is

one exception: co-ordination. For example, consider the sentence:

Wir reden [SBAR weil Ich dumm bin] und [SBAR du verruckt¨ bist]
We talk [because I stupid am] and [you crazy are]

The complementizer is an empty element in the second SBAR. It can only be

detected because it is a co-ordinate sister of the first one.

The third and final change involves pronouns and nouns. NEGRA does not

contain unary productions, so any pronouns and singleton nouns will attach

directly to an S node (or VP node) without the benefit of an intermediary NP

node. We re-introduce these nodes. An example of the last transformation would

be:

S

PPER C0 � Cn
�

S

NP

PPER

C1 � Cn

(3 . 8)

Note, though, that in addition to PPER tags, we also invoke this operation

when any pronoun or stand-alone noun tag are found.

Each of the tree transformations aboves, along with the PP transformation

from Section 3 . 3 are applied one at a time to the sister-head parser in the perfect

tags condition.

3 . 5 The Effect of Flat Annotation 48

Precision Recall F -score Avg CB 0CB 6 2BC Cov
Baseline 73 . 8 74. 4 74. 1 0 . 65 65 . 2 92 . 6 94. 4
Split PP 76. 4 76 . 7 76 . 5 0 . 88 60 . 2 88 . 0 93 . 4
Split VP 72 . 6 71 . 0 71 . 8 0 . 89 63 . 1 87. 1 93 . 0
Split SBAR 74. 0 75 . 0 74. 5 0 . 70 65 . 4 91 . 1 94. 1
Unary NP 76. 0 76 . 4 76 . 2 0 . 64 65 . 6 92 . 7 94. 3
PP+NP+SBAR 77. 7 77. 8 77. 8 0 . 94 60 . 2 86 . 8 93 . 4

Table 3 . 1 1 . Scoring effects on the sister-head model (with perfect tags)

Precision Recall F -score Avg CB 0CB 6 2BC Cov
Baseline 68 . 6 66 . 9 67. 8 0 . 71 65 . 0 89 . 7 96 . 2
PP+NP+SBAR 77. 7 77. 8 77. 7 1 . 03 58 . 5 85 . 1 93 . 4

Table 3 . 1 2 . Scoring effects on the Collins model (with perfect tags)

Based upon the performance of these changes on the development set , we also

apply the combination of three of the four transformations together. We leave out

the VP transformation of Rule (3 . 6) in this case. This entails performing five

experiments : each of the four transformations alone plus one experiment with

three of the transformations together. We perform these five experiments on the

sister-head parser. For the sake of comparison, we also perform the last experi-

ment on the head-head parser.

3 . 5 . 2 Results

The results for the sister-head model summarized in Table 3 . 1 1 . The first line

shows the results of the baseline model, the sister-head parser without any modifi-

cation. ‘ Split PP’ refers to adding an NP node inside a PP , and this change raises

the F -score to 76 . 5 from 74. 1 for the baseline. The ‘ Split VP ’ line shows the

result of adding a VP node dominating finite verbs. This transformation causes a

dramatic fall in performance, to 71 . 8 . The ‘ Split SBAR’ operation provides a

moderate improvement of 0 . 4 over the baseline. The last individual change,

adding ‘ Unary NP’ nodes improved performance to 76 . 2 .

The combination of PP splitting, adding unary NP nodes and SBAR splitting

improved performance of the sister-head parser to 77. 8 . The effect of the com-

bined change on the Collins model is shown in Table 3 . 1 2 . The average number of

crossing brackets in the last condition is 1 . 03 with 58 . 5% of sentences having no

crossing brackets and 85 . 1 % of sentences having no more than two.

49 Lexicalized Parsing

3 . 5 . 3 Discussion

Most of the unflattening operations helped. Moreover, the difference in perfor-

mance of the sister-head and head-head model fell dramatically, from a difference

of 8 points to a difference of about 2 points . This justifies the argument that

much of the difference in performance between the head-head and sister-head

parser in NEGRA are indeed due to assumptions about annotation. In addition,

the higher overall scores appear to justify that scoring effects account for some of

the differences between scores of the parser in NEGRA and the WSJ .

One interesting finding is that adding an explicit VP node dominating the

finite verb did not help improve overall scores. It has been argued that freer-word

order languages have an intrinsically flatter structure, and, in particular , that

there is evidence that VP nodes do not exist in German . We are agnostic to this

theoretical linguistic claim, but it is nonetheless interesting to point out that of

all the unflattening operations we attempt, only this one actually hurt perfor-

mance.

3 . 6 Verb Final C lauses

To this point , we have investigated how parsing is affected by the scoring effects,

properties of the treebank and general properties of words. We have not looked

into how the models cope with special syntactic properties of German. In this sec-

tion, we do exactly that for one common construction found in German -- the

verb final clause.

We briefly encountered this construction, which occurs in subordinate clauses,

in both Section 1 . 1 . 1 as well as the preceding section. But let us examine it in

more detail . In a subordinate or relative clause, the verb moves from its normal

position in the second spot of the S rule to the last position in the rule, after any

ob jects . Modifying the example from above, the main clause Ich bin dumm ‘ ‘ I am

stupid” becomes the subordinate clause weil ich dumm bin ‘ ‘ because I stupid

am” .

Once again, because the sister-head model is the best performing model of

those explored here, we will focus on that model here. In Section 4. 4, we will eval-

uate the performance of various unlexicalized models with GFs on verb final

clauses as well as sentences with sub ject movement.

3 . 6 Verb F inal C lauses 50

This experiment is important because adding language-specific information is

an important part of writing formal grammars, whereas the situation for tree-

banks-derived grammars might be different, if suitably advanced statistical

parsing models can discern the distributions for verb-second and verb-final con-

structions on its own. We proceed with the hypothesis that the sister-head parser

does indeed use such a model , and therefore verb-final clauses are no harder to

parse than verb-second clauses.

3 . 6 . 1 Method

Our approach to evaluation is to split the test corpus into two parts , those sen-

tences that have a verb-final construction and those which do not . We test the

performance of the parser on each part , and use the difference as a metric to

judge the relative ease or difficulty the parser encounters with such constructions.

The intuition behind this split is that if a verb-final clause is harder to parse, the

score of the whole sentence will be lower.

D ividing the evaluation corpus into the two required two parts is straightfor-

ward: verb-final constructions can be detected by the presence of a complemen-

tizer , as we saw in Section 3 . 5 . In the development set , about 23% of sentences

matched this criteria. Thus, one of the two parts is about three times larger than

the other . Sentences with a verb-final clause also tended to be longer, and hence

more complicated than other sentences . Thus, it may not be reasonable to make a

direct comparison between the two parts .

Nevertheless , for the sake of exposition, the first evaluation metric we report is

simply the F -scores of each part . The second metric , however, does attempt to

take the complexity of a sentence into account, by applying a procedure to re-

weight the scores of sentences .

The procedure works by keeping track of three sets of sentences : those sen-

tences that contain a verb-final clause, those that do not, and an overall set that

contains all the sentences from the first two. Let us refer to these cases as vf ,

novf and all . These sets are further subdivided into ‘ buckets ’ based upon the

number of nonterminal nodes in a tree. For example, if a tree has 7 nonterminal

nodes and it contain a verb-final construction, then it will go into bucket 7 of the

vf and all cases .

5 1 Lexicalized Parsing

all vf novf
Average sentence length 7. 5 1 1 . 4 6 . 6
Standard F -score 74. 0 69 . 2 76 . 6
Weighted F -score 74. 0 71 . 1 74. 3

Table 3 . 1 3 . Results on sentences with a verb-final clause with the sister-head model

The metrics we keep with this procedure are the components used to calculate

the F -score: the number of correct nodes (call it C) , the number of nodes in the

gold tree (G) and the number of nodes in the proposed tree (P) . We use subscript

notation to denote the individual sums in each bucket . For instance, the total

number of correct nodes in the verb-final case, in trees which have 7 nonterminal

gold nodes would be represented by C7 , vf.

To calculate the normal F -score, we would sum each of the three components

C , G and P over all the buckets , then apply the usual precision, recall and F -

score formulae. In this case, however, we give each bucket a weight before doing

the summation. We calculate the weight in two steps. First , we normalize the C ,

G and P values for each bucket . This does not change the F -score within a

bucket, but it does make the values comparable across buckets. Second, we ensure

that each bucket contributes as much to the total as the matching bucket in the

gold standard all case.

For example, in bucket 7 of the vf case, the normalization step entails dividing

C7 , vf by
∑

i
G i , vf, and likewise for G7 , vf and P7 , vf. The second step involves multi-

plying the resulting number by:

w7 , vf =
G7 , all∑
i
G i , all

Continuing with the C7 , vf example, the ‘ weighted’ version of this number is :

C7 , vf
′ = C7 , vf · 1

G7 , vf
· G7 , all∑

i
G i , all

Using this weighting has two important properties. F irst , the F -score for the ‘ all ’

case does not change. Second, the F -score for each bucket in the other cases also

remain invariant. The only change is the weighting that each bucket contributes

to the overall sum.

While we have no guarantee that this approach to re-weighting will fully over-

come the problem of different sentence lengths, we nonetheless report it to show

how much this problem might be affecting the results .

3 . 6 Verb F inal C lauses 5 2

3 . 6 . 2 Results

The results are summarized in Table 3 . 1 3 . In the first line, we show the average

length of a sentence in each set for illustrative purposes. Note, however, that the

weighting scheme acts upon the number of nodes and not the number of words in

a sentence. The F -score of sentences that contain at least one verb final construc-

tion is 69 . 2 , compared to 76 . 6 to those sentences which contain no verb final con-

struction, and 74. 0 for all sentences together. Using our weighting scheme, the F -

score in the verb final case rises to 71 . 1 and the score for sentences with no verb

final clause falls to 74. 3 .

3 . 6 . 3 Discussion

The hypothesis that verb-final clauses are no harder to parse than verb-second

clauses does not appear to have been vindicated by the data. Sentences with

verb-final constructions appear to be much harder to parse than those without,

even after re-weighting. It is important to remember, however, that the re-

weighting scheme is provided primarily for illustrative purposes and is not a

definitive method for accounting for the differences between the verb-final and

non-verb-final parts of the test set .

Overall , this suggests that accuracy might be higher if the grammar includes

some way of dealing with verb final clauses. We propose one such technique for

unlexicalized parsing in Section 4. 2 , and evaluate it in detail in Section 4. 4.

3 . 7 Conclusion

We have shown that lexicalized parsing models developed for English generalize

poorly to NEGRA. Furthermore, we introduced a new model for parsing NEGRA

based on sister-head relationships. These relationships emphasize recent sisters

over the head sister, and we have shown sister-head dependencies are better

suited for the flat structures in NEGRA. It also appears that the importance of

recency over headedness is apparent even at the level of unlexicalized rules -- the

sister-head model also outperforms the head-head model with lexicalization

turned off.

53 Lexicalized Parsing

The success of the sister-head model shows that lexicalization can be of ben-

efit to German statistical parsers. It is worth comparing this result to results of

similar models in other languages. As seen above, the sister-head model is a

variant of the Collins models. Recall from Section 2 . 3 that the Collins model has

been tested in several other languages besides English, including Czech (Collins et

al. , 1 999) and Chinese (Bikel and Chiang, 2000) . As we saw from Section 2 . 3 , the

performance attained by the model in these languages is lower than the perfor-

mance in English. However, neither Collins et al. nor Bikel and Chiang compare

the lexicalized model to an unlexicalized baseline model , leaving open the possi-

bility that lexicalization is useful for parsing English text with Penn syntactic

markup, but not for other languages or other annotation styles. In this chapter,

we have explicitly tested this hypothesis , showing that lexicalization does indeed

improve parsing accuracy, but not to the same degree as found in English. We

explain the difference in degree by graphing word type/token ratio for NEGRA

and the WSJ , which suggests that sparse data appears to be a bigger concern for

German corpora than for English ones.

Even with lexicalization, overall results in German are lower than those in

English. We found that some of this difference is due to scoring effects caused by

annotation differences . Transforming the NEGRA treebank to look more like the

Penn Treebank improves performance by about 8% .

3 . 7 Conclusion 54

Chapter 4

Grammatical Functions

In Chapter 3 , we found that the parser which made use of grammatical functions

(GFs) had a higher accuracy and lower coverage than other models. Unfortu-

nately, the coverage was too low for this parser to be truly comparable to the

other models. Nonetheless , the high accuracy of the GF parser does raise a

number of interesting questions. For instance, what would happen if we could

increase the coverage? And, more importantly, given the finding that lexicaliza-

tion does not provide a big boost in performance (Section 3 . 4) , could GFs offer

comparable, or better performance than lexicalization?

Recall that the main ob jective of this thesis is to show that as morphological

information becomes richer, the benefit of lexicalization becomes smaller, and that

this deficiency can be overcome by including more linguistically-inspired features.

Keeping with this overall ob jective, the goal of this chapter is to study the effect

of grammatical functions as one possible feature to replace or augment lexicaliza-

tion.

One could argue that including grammatical functions is a corpus-

specific ‘ trick’ . However, GFs play an important role in many linguistic theories,

such as GPSG and dependency grammar. The use of GFs in dependency

grammar is particularily interesting, as many treebanks (cf. the Prague and

Dutch treebanks) are essentially dependency treebanks. While it is true that the

Penn Treebank does not include nearly as many GFs as NEGRA, the GF labels

in NEGRA are nonetheless relatively theory-neutral. By way of example, the

three most common GF labels in NEGRA are sub ject , accusative ob ject and

modifier.

55

This chapter is organized as follows. In Section 4. 1 , we discuss a number of

parsing models than can, unlike the model in the previous chapter, parse with

grammatical functions and yet still maintain high coverage. Three main strategies

are investigated: (i) giving the parser lexical sensitivity (but without full lexical-

ization) , by integrating a POS tagger into the parser, (ii) using some generaliza-

tion techniques such as Markovization and LP/ID rules to overcome missing rules

and (iii) using a morphological analyzer to overcome tagging errors . We show not

only that it is possible to develop a broad-coverage grammatical function parser,

but also that some techniques that have been developed to parse the WSJ are

annotation- and corpus-dependant. We also find that parsing with GFs is less

accurate than parsing without them, at least with a simple model.

We provide a closer look at why this is so in Section 4. 2 . We detail a number

of semi-automatic reannotations to grammatical functions which improve the

grammar by including linguistic information that is not carried in raw grammat-

ical functions. With this extra information, we develop a new parser with gram-

matical functions that can outperform a baseline parser which removes them.

Moreover, this new parser is also more accurate on our test data than the ‘ ‘ real-

istic” TnT-tagging sister-head model from Chapter 3 . We also present evidence

showing how the use of grammatical functions includes some of the same informa-

tion gained by lexicalization.

Section 4. 3 builds upon the parsers from Section 4. 2 , showing how sparse data

problems can be overcome using smoothing. This is the first attempt we know of

to use smoothing in an unlexicalized grammar. Using smoothing with unlexical-

ized grammar results in some unique problems, some of which we resolve, some of

which has ramifications for other work. Rather than evaluating just one

smoothing technique, we use several . This allows us to conjecture which

approaches to smoothing are useful for unlexicalized parsing, and why.

In Section 4. 4, we perform a detailed study of how well the best GF parsing

models are able to cope with some well-known and difficult constructions in

German. Building upon the work in Section 3 . 6 , we test verb-final constructions

as well as sentences which contain main clause sub ject movement. The evidence

suggests that while the GF parsers do quite well overall , they are still troubled by

these special constructions. Finally, in Section 4. 5 we offer some concluding

remarks.

Grammatical Functions 56

4. 1 Parsing with Grammatical Functions

The GF parser investigated in Section 3 . 2 suffered from low coverage. It was

unable to parse 35% of the sentences in the test set , and therefore it is not com-

parable to parsers which miss few or no sentences. In this section, we investigate

two modifications which increase the coverage of that GF parser: (i) Markoviza-

tion and (ii) integrating a POS tagger into the parser. As the second change

requires that the parser uses words rather than POS tags as inputs , we may say

that the change adds lexical sensitivity to the parser . Both of these modifications

respectively lead itself to one additional change. Markovization can be general-

ized ‘ vertically’ , and the POS tagging may be improved by adding suffix analysis .

4. 1 . 1 Markovization

The Collins and the sister-head models we saw in Chapter 3 both make use of

Markovization to overcome the sparse data problems faced by lexicalized parsing

models. However, Klein and Manning (2003) have shown that Markovization is

also useful for unlexicalized models . It will be instructive to see if this result also

holds in NEGRA. Johnson (1 998) found that annotating a rule with its parent

improves Penn Treebank parsing. Klein and Manning (2003) extend this idea by

noting that, mathematically, the structure of PCFG rules seem arbitrary in that

parents are treated differently than sisters. Thus, they proposed that in addition

to horizontal Markovization (based on sisters) , one may also wish to explore var-

ious kinds vertical Markovization (based on parents) , noting that default context-

free grammar rules already have the 1 st order vertical Markov property.

The best way to explain horizontal and vertical Markovization might be by

way of history-based parsing Black et al. (2003) . For example, consider the fol-

lowing tree:

S

NP

DT

The

JJ

One

NN

Ring

VP

V

controls

NP

PRP

his

JJ

feeble

NN

mind

57 Grammatical Functions

Ignoring lexical probabilities, a history-based parser might assign probabilities to

the tree in the following manner4. 1 :

P (S → NP � | S) (4. 1)

· P (S → � VP | S → NP �)

· P (NP→ DT � | S → NP VP , NP→ �)

· P (NP→ � JJ | S → NP VP , NP→ DT �)

· P (NP→ � NN | S → NP VP , NP→ DT JJ �)

· P (VP→ V � | S → NP VP , NP→ DT JJ NN , VP→ �)

· P (VP→ � NP | S → NP VP , NP→ DT JJ NN , VP→ V �)

· P (NP→ PRP � | S → NP VP , NP→ DT JJ NN , VP→ V NP)

· P (NP→ � JJ | S → NP VP , NP→ DT JJ NN , VP→ V NP , NP→ PRP �)

· P (NP→ � NN | S→ NP VP , NP→ DT JJ NN , VP→ V NP , NP→ PRP JJ �)

This expansion would clearly overfit any kind of training data: every node is con-

ditioned upon everything which occurred before it . To overcome this problem, we

use the familiar technique of making independence assumptions. The most

common such assumption, the one that results in PCFGs, posits that a node only

depends on its parent and all its previous sisters .

Consider for a moment the following term from Equation 4. 1 :

P (NP→ � NN | S → NP VP , NP→ DT JJ NN , VP→ V NP , NP→ PRP JJ �)

Under the standard PCFG assumptions, we condition upon the immediate parent

and all the previous sisters, resulting in the probability:

P (NP→ � NN | NP→ PRP JJ �) (4. 2)

Note this implicitly makes the 1 st order vertical Markov assumption; if instead we

made the 2nd order vertical Markov assumption, we include two previous parents,

resulting in:

P(NP→ � NN | VP→ NP , NP→ PRP JJ �)

4. 1 . The � ’ s are akin to the dot in a dotted rule. That is, they denote that the rule expan-

sion is incomplete.

4. 1 Parsing with Grammatical Functions 5 8

In other words, 2nd order vertical Markovization is equivalent to doing a grand-

parent annotation as introduced by Johnson (1 998) 4. 2 . All these simplified rules

still depend on all previous sisters, akin to making an infinite-order horizontal

Markov assumption. If, on the other hand, we wish to make, say, a 1 st order hori-

zontal Markov assumption from Equation 4. 2 , we would get :

P (NP→ � NN | NP→ JJ �)

The key idea behind Markovization is to ‘ ‘ forget” far away information in flat

rules . There are other, and perhaps linguistically more principled ways of accom-

plishing this. One approach is to use linear precedence/ immediate dominance

(LP/ID) rules Gazdar et al . (1 985) . Just as with Markovization, using LP/ID

rules reduces the number of rules compared to a standard context-free grammar.

LP/ID rules acheive this by ‘ ‘ relaxing” the restrictions of context-free rules. A

context-free grammar rule consists of a parent and an ordered list of children. In

contrast , LP/ID rule consists of a parent and an unordered multiset of children

(the immediate dominance part of the rule) . In addition, a partial ordering can be

specified by listing violatable constrains which specify which children may come

before others (i . e. subject before ob ject) . This is the linear precedence part of the

rule.

There are a number of ways to create a probability distribution of LP/ID

rules . We use a simple approach, similar to that used in Model 2 of Collins

(1 999) . Just like the probability distribution in a (horizontal) Markov grammar,

nodes are added one at a time. However, the information a new node is condi-

tioned upon is slightly different in two respects. F irst , we condition on all nodes.

Contrast this with an nth order Markov grammar, which conditions upon the pre-

vious n nodes. S econd, the order of the previous nodes is ignored. In other words,

we condit ion on the multise t rather than a list of previous children. By condi-

tioning on a multiset , we model the ID part of the rule; by adding children one at

a time, we model the LP part .

4. 1 . 2 Lexical S ensit ivity

The unlexicalized parsers in Chapter 3 took POS tags as input, ignoring the

actual words of the input sentence. Obviously, the lexicalized parsers did not

ignore the words, but they also took a fixed set of POS tags as input. Neither

approach is appropriate for the models we develop here, because the set of POS

tags is considerably more expressive than in Chapter 3 .

4. 2 . Johnson refers to it as ‘ parent annotation’ ; we find the term ‘ grandparent annotation’ a

bit more intuit ive.

5 9 Grammatical Functions

In the NEGRA corpus, POS tags are annotated with GF labels . Because

grammatical functions express syntactic information which may be ambiguous

even in the ± 2 word window used by POS taggers , it is not reasonable to assume

that a POS tagger can accurately guess both the tag and the grammatical func-

tion. For example, a single word NP may contain a grammatical function indi-

cating the case of the NP , but the case may be difficult for a finite-state model to

guess without knowing where the NP occurs in relation to the main verb and its

other arguments .

But this is not the only reason to integrate a POS tagger into the parser. Not

only would it be hard for a tagger to apply such tags accurately, but it may actu-

ally he lp the parser if it were to apply tags directly. This is because allowing the

parser to tag itself affords it a degree of lexical sensitivity (cf. Section 2 . 2 . 1) .

4. 1 . 3 Suffix analysis

Many finite-state POS taggers guess POS tags based on the prefix or suffix of pre-

viously unseen words. The terms ‘ prefix’ and ‘ suffix’ are used rather loosely, and

mainly refer to looking at some letters from the end or start of a word. Even

though this information is simple, it has proven to be useful for guessing the POS

tags of rare or unseen words (Brill , 1 995 ; Ratnaparkhi, 1 996 ; Brants , 2000) . As

our parser will attempt to do POS tagging itself, it is reasonable to expect the

parser’ s POS distribution benefits from the techniques used by finite-state POS

taggers.

We use the suffix analyzer introduced by Brants (2000) . This particular ana-

lyzer has three advantages over others : it uses a simple maximum likelihood dis-

tribution that integrates well with our parser, it was developed with German in

mind, and finally, the POS tagger of Brants (2000) is one of the most accurate,

leading us to suspect the suffix analyzer also works quite well .

Brants ’ suffix model works as follows: for a word w with letters l1 , l2 , � , ln we

compute the probability of a tag t using the last m letters. Recursively, we com-

pute:

P (t | ln− i+ 1 � ln) =
P(t | ln− i+ 1 � ln) + θiP (t | ln− i , � , ln)

1 + θi

Where

θi =
1

s − 1

∑

j= 1

s

[P (tj) − P̄] 2

Bayes’ Law is then used to find the generative probability P (ln−m+ 1 � ln | t) . This

probability is used as an approximation of P (w | t) .

4. 1 Parsing with Grammatical Functions 60

4. 1 . 4 Method

The experiments here use the same data sets as in Chapter 3 . For these experi-

ments , we use an exhaustive CYK parser. With this parser, we execute permuta-

tions of the alternatives listed above. We report the result of 24 of these permuta-

tions, resulting from choosing one possibil ity from each of the following four cate-

gories:

Horizontal assumption. Three possible choices : normal rules (∞ order hori-

zontal Markovization) ; 2 nd order horizontal Markovization; LP/ID rules .

Vertical assumption. Two choices : either 1 st or 2nd order vertical

Markovization. In other words, either conditioning on just the parent like

in a PCFG, or on the parent and the grandparent, as in Johnson (1 998) .

Suffix assumption. Two choices: either an unknown word distribution (as

with the unlexicalized parser in Chapter 3) or with TnT-style suffix anal-

ysis.

GF assumption. Either with or without grammatical functions.

There are a number of experiments we do not report here, for example other pos-

sible values of n for nth order horizontal and vertical Markovization. Preliminary

experiments on the development set , however, have shown that these alternative

settings are all less accurate, and therefore less interesting than what we present

here.

4. 1 . 5 Results

Perhaps the most important result concerns the coverage of the various models.

Overall , coverage of the no-GF models were quite high, with between 0 . 3% and

3. 3% of all parses missed. Coverage of the GF models was slightly lower, with

between 0 . 9% and 2 . 5% of all parses missed. This is quite an improvment over

the GF model of Chater 3 , which missed 35% of all sentences. The increase in

coverage is solely due to the decision to allow the parser to assign its own tags to

the input: horizontal Markovization and LP/ID did not provide a large improve-

ment in coverage compared to standard CFG rules .

The accuracy of the models are shown in Tables 4. 1 and 4. 2 . Table 4. 1 details

the results without grammatical functions and Table 4. 2 shows the results with

grammatical functions. For the sake of simplicity, we only show the F -score of

each parser. However, the crossing bracket measures tend to be correlated with

the F -scores .

61 Grammatical Functions

∞ order Markov 2nd order Markov LP/ID
No suffix, parent 66 . 8 68 . 6 66 . 9
No suffix, grandparent 67. 5 69 . 4 67. 3
Suffix, parent 71 . 0 72 . 5 70 . 7
Suffix, grandparent 64. 0 67. 5 64. 0

Table 4. 1 . Results (F-Scores) when GFs are excluded

∞ order Markov 2nd order Markov LP/ID
No suffix, parent 66 . 3 69. 4 66 . 5
No suffix, grandparent 65 . 2 68 . 7 65 . 8
Suffix, parent 66 . 2 69 . 1 66 . 6
Suffix, grandparent 61 . 2 64. 4 61 . 6

Table 4. 2 . Results (F-S cores) when GFs are included

The tables are laid out similarly. Each column contains the result of a dif-

ferent horizontal rule assumption, and each row contains the result of a different

vertical and suffix assumption. In these experiments, horizontal Markovization is

more accurate than standard CFG rules or LP/ID rules , vertical Markovization

does not appear to be useful when GFs are used, and adding a suffix analysis only

helps without grammatical functions.

4. 1 . 6 Discussion

The two primary goals of the experiments above were to (i) increase the coverage

of, and to (ii) maintain the same accuracy as the perfect POS tag GF parser from

Chapter 3. It appears , however, that we achieved the goal of coverage at the

expense of the goal of accuracy. It may not be surprising that the accuracy fell ,

however. As noted earlier, NEGRA POS tags contain GF labels, so using perfect

POS tags (as in Chapter 3) resolves some parsing ambiguit ies .

While it may not be surprising that the performance of the GF parsers are

lower than the perfect tag GF parser of Chapter 3 , it is surprising that most of

the parsers which include GFs perform worse than their cousins without GFs. For

instance, in the case with suffix analysis , conditioning on the parent, and with the

2nd order Markov properity, the parser with GFs scored 67. 7 , while the parser

without GFs scored 70 . 7 .

This reduction in performance when using GFs may be justified by the theo-

retical importance of GFs. In some respects, a model with GF tags is superior to

a better-performing model without such tags because GFs help in resolving ambi-

guities caused by word-order flexibility. Indeed, the importance of GFs in sen-

tence understanding compel us to evaluate the performance of GF labelling in

Chapter 6 .

4. 1 Parsing with Grammatical Functions 62

But the usefulness of GFs for handling word-order flexibility makes it more

surprising that GFs do not convey any useful parsing information at the level of

syntactic categories . However, a more detailed examination of the precision and

recall of individual categories (cf. the first two columns of Table 4. 5) shows that

the decline in performance when using GFs is not equal across categories . While

there are substantial decreases in the common categories S , NP and PP , the

biggest drop in performance is concentrated in co-ordinated categories . Also, we

can see that GFs do not help the scores of NPs -- another surprising fact as one

would expect that GFs (which encode some case information) would be beneficial

in finding the boundaries of NPs. In Section 4. 2 , we investigate strategies of over-

coming both these problems which, as we shall see, are both related to problems

of communication between a parent and child node.

Grandparent annotation, originally devised as one way of increasing communi-

cation between parent and child nodes, was not helpful. This is at odds to what

has been reported for the Penn Treebank: Johnson (1 998) shows that grandparent

annotation yields labelled bracketing results 5 percentage points higher than

without. However, Johnson’ s analysis of his results probably point to one reason

why his result fails to generalize to NEGRA. He notes that the benefit is concen-

trated in NP’ s and VP’ s. Sub ject NP’ s are more likely to expand to a unary node

than ob ject NP’ s and non-finite VP’ s behave quite differently than the VP of the

finite verb. In both cases , we cannot tell the difference between a sub ject/object

NP or a finite/non-finite VP using the basic Penn Treebank annotation, but we

can make the difference if the grandparent is annotated: the grandparent is usu-

ally an S for a sub ject NP or finite VP and it is usually a VP for an ob ject NP or

non-finite VP .

While it is true that NEGRA usually does not contain a VP nodes, making it

hard to make the equivalent distinction, it is also true that this is not an impor-

tant ambiguity in NEGRA. S ince unary nodes expand directly to the nonter-

minal, in the unary sub ject/non-unary ob ject ambiguity in NP is missing alto-

gether. In the finite/nonfinite case, we need not worry about there being two dif-

ferent kinds VP categories : finite verbs attach directly to the S constituent.

Thus, at least in the two major categories pointed out by Johnson, it appears

as if grandparent node annotation is not necessary in NEGRA. We may expect

the same to be true for other dependency-style treebanks for the finite/nonfinite

distinction. However, this result may not be true for other dependency-style tree-

banks in the sub ject/object case. The decision to eliminate all unary nodes in

NEGRA is strictly an annotation-depdendant choice. However, even if unary

nodes had not been eliminated, grammatical functions may well have carried the

same information as grandparent annotation.

63 Grammatical Functions

i . Original tree
S

Ich begrüße
I greet

CNP-OA

NP-CJ

Braunschweigs
Braunschweigs

Prasident¨
Mayor

Tenzer
Tenzer

und
and

NP-CJ

seine
his

Frau
wife

ii . Modified tree
S

Ich begrüße
I greet

CNP-OA

NP-OA

Braunschweigs
Braunschweigs

Prasident¨
Mayor

Tenzer
Tenzer

und
and

NP-OA

seine
his

Frau
wife

Figure 4. 1 . The co-ordination re-annotation operation

Turning our attention to suffix analysis , we find it helped considerably with

the simpler grammars. But when grandparents or grammatical functions were

added, doing a suffix analysis ended up decreasing performance. This might very

well point to a sparse data problem. The data sparsity, however, might not be

with the suffix analyzer itself, but with the grammar: the suffix analyzer may have

a strong tendency for a certain tag, and although the tag is good, the grammar

simply doesn’ t have a good enough rule to go with it .

With suffix analysis as well , then, we return the problem that grammatical

functions do not seem to work very well , and we need some way to improve their

performance.

4. 1 Parsing with Grammatical Functions 64

i . Original tree
S

NE-SB

Peter
Peter

V-HD

mag
likes

NP-OA

PPOSAT-NK

seinen
his

NN-NK

Vater
father

ii . Modified tree
S

NE-SB

Peter
Peter

V-HD

mag
likes

NP-OA

PPOSAT-OA

seinen
his

NN-NK

Vater
father

Figure 4. 2 . The NP re-annotation operation

4. 2 Grammatical Function Re-annotat ion

The rather disappointing result of Section 4. 1 may actually have to do with a

number of choices of the NEGRA annotation scheme, particularly the choice of

what syntactic phenomena should or should not be included in the annotation. To

understand why this is true, we must analyze what information grammatical func-

tions give to the parser, and how the parser can make the best use of this infor-

mation.

Let us begin this analysis with an example. Consider the OA (accusative

ob ject) and OD (dative ob ject) grammatical functions. Both apply to NPs, but

they differ in the places where they can appear in a rule (accusative ob jects gen-

erally occur before dative ob jects) and in the strings they generate (einen Mann

in the accusative versus einem Mann in the dative) . However, the annotation in

NEGRA only allows us to ‘ see’ differences at the rule level.

65 Grammatical Functions

In this case, the problem is with POS tags. While the OA and OD GF labels

indicate that an NP is either accusative or dative, all POS tags dominated by

NPs simply get an NK (noun kernel) GF, as shown in Tree i of Figure 4. 2 . This

makes the implicit assumption that the rules ‘ ‘ DT-NK → einen” and ‘ ‘ DT-NK →
einem” are equally likely to be seen in an accusative NP as they are in a dative

NP because our grammar only contains rules like ‘ ‘ NP-DA → DT-NK � ”

and ‘ ‘ NP-OA → DT-NK � ’ This problem can be easily solved by copying the

function of the parent to the relevant children, as depicted in Figure 4. 2 , Tree ii .

In addition to determiners , we apply the case marking transformation to all pro-

nouns, including demonstrative, indefinite personal, possessive (shown in Figure

4. 2) as well as relative pronouns. One might argue that NK is indeed the correct

grammatial function of POS tags like DT, and the correct approach to modelling

the difference between einen and einem is to use a separate layer of morphological

tags. This is a compelling argument which, in fact , forms the basis of Chapter 5 .

Articles and pronouns are not the only parts of speech which indicate case. In

NPs, nouns and adjectives may do so as well , but we do not consider that case

here. However, prepositions also determine the case of the NP they take as a

complement. German preposit ions can be split into classes based upon the case

they require: (i) those that take the accusative, such as fur¨ (‘ ‘ for”) or um

(‘ ‘ around”) ; (ii) those taking the dative, such as von (‘ ‘ of”) or mit (‘ ‘ with’) ’ ; (iii)

those taking the genitive, such as innerhalb (‘ ‘ within”) ; (iv) those ambiguous

between the dative and accusative, such as in (‘ ‘ in”) or aus (‘ ‘ from”) ; (v) those

ambiguous between the genitive and a dative, such as wegen (‘ ‘ because of”) or

trotz (‘ ‘ in spite of”) ; (vi) those which do not govern case, such as als (‘ ‘ as/ than”) .

In cases (i) -(i ii) we can easily mark the necessary information in the grammatical

function tags, as shown in Figure 4. 3 (Notice we mark up the same POS tags as

with the NP transformation above) . Cases (iv) and (v) are harder. Our approach

is to introduce new functional tags, AD for ambiguous between accusative and

dative, and DG for ambiguous between dative and genitive. This way, we still

make the necessary distinction without having to introduce new information that

is not annotated in the corpus. Case (vi) is left unchanged, with the preposition

still carrying the -AC tag and the determiners and pronouns in the PP still car-

rying the -NK tag.

4. 2 Grammatical Function Re-annotation 66

i . Original Tree

PP-MO

APPR-AC

mit
with

ART-NK

diesem
this

NE-NK

Thema
topic

ii . Modified Tree

PP-MO

APPR-DA

mit
with

ART-DA

diesem
this

NE-NK

Thema
topic

Figure 4. 3 . Grammatcal Functions and PP Case

We justified the co-ordination re-annotation operation because we noted a

substantial drop in the performance of coordinate categories when adding gram-

matical functions, but it is important to realize that coordinate categories are not

as frequent as their non-coordinated counterparts . A small change in performance

in a common category can have a substantial change in overall results due to fre-

quency weighting. Of the three most common categories , we have already pro-

posed changes for NPs and PPs. But we have not yet explored the most common

category of all -- the S category.

Co-ordinated NPs have a similar problem. All co-ordinate sisters have the CJ

grammatical function (cf. Tree i . of Figure 4. 1) . While technically true, this

obscures more useful information: co-ordinate sisters must have the same case. To

account for this, we simply replace all CJ tags with the tags of their parent, as

shown in tree ii of Figure 4. 1 . This particular change can actually be applied to

all categories , and not just NPs.

The experimental evidence from Section 4. 1 suggests that the parsers using

GF have a particularily difficult time with co-ordinated categories . Indeed, one

large factor contributing to the difference in performance of the GF and no-GF

models was the poor performance of co-ordinated categories .

67 Grammatical Functions

As we saw in Section 3 . 6 , a prominent feature of German syntax is the word

order of subordinate clauses . However, with some exceptions (such as the -RC

function for relative clauses) , this information is not carried in grammatical func-

tions. While the function tags for S s are no doubt important for semantic inter-

pretation, they appear to carry little information that might be useful for

detecting verb-final constructions.

Thus, in these cases , we replace the S label with an SBAR label . This is dif-

ferent from the SBAR reannotation of Section 3 . 5 in that we do not unflatten the

tree; we simply rename the node. To account for co-ordination, we also rename

CS to CSBAR, and rename any S children of CSBAR to SBAR. In Section 3 . 6 ,

we called for a change to the grammar to account for verb-final constructions; this

modification provides exactly such a change.

Because the GFs of the S categories may have little impact on the distribution

of the children of the S , one final change we propose is to remove the grammatical

functions of the S category altogether. For completeness , we also remove the GFs

of CS , SBAR ans CSBAR categories .

4. 2 . 1 Method

For this experiment, our two baselines are the best-performing GF and no-GF

grammars of the previous section: the 2nd order Markov PCFGs without grand-

parent annotation, but with morphological guessing. We test these two models

against new grammars with the modifications il lustrated above. The changes are

tested incrementally, in order of presentation (results on the development set have

shown the changes are, indeed, beneficial) . In particular, we add to the baseline

GF model coordinate copying, article function copying, PP case marking, S func-

tion deleting, and, finally, verb-final S marking.

4. 2 . 2 Results

The overall results are summarized in Table 4. 4, with a category-by-category

listing in Table 4. 5 . The coordination and article copying operations improved the

accuracy of the GF parser, resulting in a final F -score of 71 . 5 for the coordination

copying and 72 . 4 for both together. Not only is the latter score an improvement

of the baseline GF parser, which achieves and F -score of 69 . 1 , but it also matches

the no GF baseline. Moreover, all the crossing bracket measures were better than

the no-GF parser: average CB is lower, at 0 . 70 versus 0 . 84; 66. 2% of sentences

had no crossing brackets versus 62 . 1 % ; and 90 . 9% of sentences had fewer than 2

crossing brackets, versus 88 . 5 .

4. 2 Grammatical Function Re-annotation 68

Annotating the case of PPs resulted in a small additional improvment. While

marking SBARs slightly lowered the F -score for labelled bracketing, it greatly

improved the average crossing bracket scores (it improved both scores on the

development set) . Removing the functional tags on the S categories gave another

substantial boost , up to 73 . 0 in F -S core, along with small gains in the crossing

bracket measures and in coverage. Note that this model also narrowly outper-

forms the sister-head model with TnT tags (although it still has a lower F -Score

than the sister-head model with perfect tags) .

The more detailed results in Table 4. 5 show that coordinate copying is effec-

tive in removing the performance drop when grammatical functions are included.

Much of the benefit from article tag GF copying is , as expected, in NPs, where

there F -score rises from 61 . 0 without copying up to 64. 2 . G iven that NPs are a

high-frequency node, this difference has a substantial effect in the overall scores .

Precision Recall F -S core Avg CB 0 CB 6 2 CB Coverage
No GF Baseline 72 . 0 72 . 9 72 . 5 0 . 72 65 . 2 90 . 7 99 . 8
GF Baseline 66 . 2 72 . 4 69 . 1 0 . 84 62 . 1 88 . 5 98 . 9
+Coordination Function 69 . 2 74. 0 71 . 5 0 . 72 65 . 0 89 . 6 99 . 0
+NP Case Marking 69 . 9 75 . 1 72 . 4 0 . 70 66 . 2 90 . 9 99 . 1
+PP Case Marking 70 . 1 75 . 4 72 . 7 0 . 73 66 . 6 91 . 3 99 . 1
+SBAR Marking 70 . 0 75 . 3 72 . 6 0 . 67 66 . 5 92 . 1 98 . 9
+S Function Removing 70 . 8 75 . 5 73. 1 0 . 67 66 . 4 91 . 9 99 . 1

Table 4. 4. Labelled bracketing scores on the test set

No GF GF Coord NP
AP 46. 6 48 . 8 49 . 8 48 . 4

AVP 21 . 0 29 . 3 31 . 8 32 . 1
MPN 74. 9 79 . 8 79 . 8 79 . 0
NM 79 . 1 89 . 9 89 . 2 89 . 2
NP 64. 9 62 . 9 65 . 0 66 . 5
PP 72 . 2 69 . 8 71 . 6 72 . 7
S 75 . 8 68 . 6 73 . 9 73 . 9

VP 54. 1 52 . 6 53 . 9 55 . 0
CAP 62 . 6 42 . 1 68 . 5 63 . 0
CNP 62 . 1 44. 1 62 . 3 59 . 9
CPP 43. 4 45 . 4 40 . 0 40 . 0
CS 37. 8 30. 1 49 . 1 47. 7

CVP 50. 0 44. 8 52 . 0 49 . 0

Table 4. 5 . Category-by-category list ing

69 Grammatical Functions

Preposition case Four most common GFs
Accusative -MO (2594) , -MNR (1 880) , (none, 71) , -APP (23)
Dative -MO (861 9) , -MNR (41 89) , -PG (977) , -SBP (439)
Ambiguous -MO (7055) , -MNR (2923) , (none, 1 49) , -PD (99)

Table 4. 3 . The four most common grammatical functions for PPs, by case of the preposition

4. 2 . 3 Discussion

While the improvement of each individual change was quite small , the overall

improvement was much more substantial . One could argue the co-ordination

copying function is annotation specific, however, most of the other reannotation

operations are likely applicable to other depdency-style treebanks. We argue this

is so because the operations put additional linguistic information into the

grammar, usually dealing with case. There is one notable exception: the operation

that deletes the grammatical function from S categories.

In some ways, it is problematic that this operation helps. It is not consistent

to include this operation in a parser which claims to use grammatical functions:

as S nodes are the third most common category, and after this operation they

have no GF label at all .

To support the general claim that GFs are useful , it is important to examine

why removing the GFs is a helpful modification. There are two possible reasons

why this might be the case: (i) sparse data, and (ii) the possibil ity that GFs on

the S node are simply not useful for the kind of syntactic disambiguation we are

doing. In Section 4. 3 , we find some evidence that sparse data might be a factor:

some smoothed models with GFs on S nodes do perform better than their coun-

terparts without . But as this is not the case for all of the models, consider for a

moment the possibility that GF labels are simply not useful here.

If this were the case, there would still be an argument for leaving the GF tags

out, even if they might be useful for semantic interpretation: we could simply re-

insert the labels after parsing. Indeed, this is the strategy used by Blaheta and

Charniak (2000) , henceforth B&C . B&C do not use the NEGRA corpus, but

rather they work with the more sparsely annotated ‘ ‘ functional labels” of the

WSJ section of the Penn Treebank. Klein and Manning (2003) have shown that

most of the grammatical functions in WSJ are not, in fact , useful for parsing.

While the data are different than what we use, the results of B&C give credence

to their approach: if the GF information is desired for semantic interpretation but

is not useful for parsing, there may be better ways of getting it rather than

putting it in the parser.

4. 2 Grammatical Function Re-annotation 70

While GFs appear to be useful for PPs and NPs, there are also instances

where the use of GFs might be harmful for these two categories . Consider NPs.

We claim GFs help because they model case, and yet while there only are 4 cases

in German, there are more than 1 0 possible GFs for an NP node. For instance,

the -APP (apposition) tag is used for certain types of NP modifiers , regardless of

their case. Thus, it tells us very little about the distribution of the case markers it

dominates . This is part of a broader issue of syntactic function vs. syntactic dis-

tribution that we discuss in more detail in Chapter 5 .

In contrast with NPs, prepositional phrases have a much weaker correlation

between case of the NP it dominates and the GF of the parent category. The

most common GF is -MO (modifier) , and the second most common is -MNR

(postnominal modifier) , regardless of the case of the NP the preposition controls.

However, a closer look at the GFs of various types of PPs tells a slightly different

story. In Table 4. 3 , we list the three most common PP cases (if the ambiguous

dative/accusative PPs are counted together) . The table illustrates that the -PG

(pseudo genitive) and -SBP (passive sub ject) GFs are strong predictors of PPs

taking a dative NP. We would expect these annotations are correlated with

a ‘ ‘ light” lexicalization of annotating PPs with the head preposition. This is also

true of determiner and pronoun GF copying in NPs. All in all , keeping better

track of GF information is akin to lexicalizing many closed-class words, but

requiring far less data.

4. 3 Smoothing

While the unlexicalized parsers developed thus far are competitive with some of

the lexicalized model we have considered, none is yet able to outperform the

sister-head model from Chapter 4. In some ways, the comparison is not entirely

fair. The sister-head model makes extensive use of smoothing, whereas the unlexi-

calized parser does not.

While smoothing in lexicalized models is justified on the grounds that these

models have too many features to estimate reliably, the same might be said of GF

parses we are investigating. In addition to the extra parameters due to the gram-

matical functions themselves , the sister-head parser only makes a 1 st order

Markov assumption while the unlexicalized GF parsers do best with a 2 nd order

assumption.

71 Grammatical Functions

4. 3 . 1 S earch

Introducing smoothing into a parser necessitates changes to the parsing algo-

rithm. In the worst case, many CFG parsing algorithms are O (n3) . In practise,

parsing is still quite fast because the grammar prunes out impossible parse deriva-

tions. As noted in Chapter 3 , this is not true of smoothed grammars: every pos-

sible rule has some non-zero probability.

How many rules will we have? Using a grammar with the rth order Markov

property (making all rules r nonterminals long) having m nonterminals , there

may be upto mr+ 1 possible rules (mr for the previous sister , and an extra m for

the parent) .

The number of rules impacts the number of edges the parser must visit . If

there are n words in a sentence, then dynamic programming parsers will construct

O (n2) edges per rule. If we pick r = 2 , as above, then for the NEGRA GF

grammar, where m is already over 256 , we could not even fit the edges into a 32 -

bit address space for a sentence with just one word.

C learly, an exhaustive search is not feasible. At least three possible alterna-

tives to exhaustive searches have been suggested: greedy best-first parsing (Char-

niak and Caraballo, 1 998) , the A? algorithm (Klein and Manning, 2002) and

pruning (Goodman, 1 998) . Both best-first parsing and the A? parsing use agenda-

based chart parsers. The basic idea behind both approaches is to dictate the

order that edges are pulled off the agenda. Pruning, on the other hand, can be

used with any parsing algorithm. Indeed, this is the approach used in Chapter 3 .

At various stanges in the parsing algorithm, edges which are deemed unsuitable

are discarded. As we have been using the CYK algorithm, the pruning approach

lends itself well to be used with our implementation.

There is a downside to using pruning (or even best-first parsing) over the A?

algorithm: A? is a sound algorithm, meaning that it is guaranteed to return the

Viterbi parse. The results are the same as exhaustive parsing. Pruning and best-

first parsing cannot guarantee this , and often do return parses with a lower proba-

bility than the Viterbi parse. It turns out, however, that pruning and best-first

parsing are often more accurate than either exhaustive or A? parsing.

Goodman (1 998) discusses several types of pruning, which vary in complexity

and in their success in making parsing faster. We test two approaches to pruning,

beam search and multipass parsing. Both of these suitably trade-off simplicity

with parsing speed.

4. 3 Smoothing 72

Beam search Recall that the sister-head parser did use beam search. Like the

sister-head parser, we use a prior probability together with the probability of a

subtree to generate a figure-of-merit (FOM) for the subtree. There are two ways

to implement a beam search. The first strategy, a variab le -width beam, prunes

any edges whose FOM falls below a certain threshold. The threshold is a multiple

(say,
1

4000
) of the best FOM for that span. This is the same technique used in the

sister-head parser. The second approach, a fixed-width beam, ranks edges

according to their FOM and keeps only the n highest ranked edges per span. In

preliminary tests , we found that a fixed-width beam is superior to a variable

width beam for our grammars. This results differs from that reported by Brants

and Crocker (2000) . The difference may be because Brants and Crocker use a

more compact representation for edges, meaning that what they consider to be

one edge, we would consider to be several different edges. This would have a pro-

found impact on a fixed-width beam.

Multipass parsing The key insight behind multipass parsing is that we can

parse a sentence several times, using information from earlier parses to prune

edges from later parsings. This strategy works because we use a grammar that are

simpler (and hence faster) in the earlier passes . In our case, we use two-pass

parsing with an unsmoothed grammar in the first pass.

4. 3 . 2 Cached parsing

Pruning removes unwanted edges, but the memory requirements of CYK parsing

still depend on the number of rules4. 3 , not the number of edges. Following the def-

initions of Section 4. 3 . 1 above, there are mr+ 1 rules , so the CYK algorithm still

requires O (n2 · mr+ 1) memory, even after implementing pruned searching.

This memory is required for the dynamic programming array (henceforth

DPA) , a three dimensional array indexed by (i) the starting word of an edge, (ii)

the ending word of an edge and (iii) the rule number. The approach used by

many lexicalized parsers (including Collins , 1 999 , and hence the sister-head parser

of Chapter 3) is to use a hashtable to store the DPA. Due to pruning, the

hashtable is normally quite sparse for lexicalized parsers, making parsing quite

efficient.

4. 3 . In a binarized grammar, it actually depends on the number of nonterminals .

73 Grammatical Functions

In preliminary work with the GF parser, we found that the hashtable was not

sparse enough to guarantee parsing efficiency. S toring the DPA in hashtables lead

to parsing times in the hours rather than minutes . However, a closer observation

of the algorithm lead to the insight that the array is accessed in two different

ways in different parts of the algorithm. Recall the recursive part of the CYK

algorithm:

1 : f or s=2 to n

2 : f or i=1 to n − s − 1

3: l et k=i + s

4: f or j= i to k-1

5 : f or A=1 to #nonterms

6 : f or B=1 to #nonterms

7 : f or C=1 to #nonterms

8 : l e t p ← P(A→ B C) · D [i , j , B] · D [j + 1 , k , C]

9 : i f p > D [i , k , A] then

1 0 : D [i , k , A] ← p

1 1 : backtrace [i , k , A] ← (i , j , k , B , C)

On line 8 , the algorithm reads from the array D , and on line 8 , it reads and

writes to the arrays D and backtrace on lines 9 , 1 0 and 1 1 . The accesses to D on

line 8 actually doesn’ t require an array; we are reading elements sequentially.

Thus, these elements can be just as easily stored in a list .

If i and k are fixed, then the accesses to D on lines 9 , 1 0 and 1 1 only need to

be indexed by A . In other words, the array acts as a cache at the level of the loop

where i and k are constant. Thus, instead of a three dimensional array (start

word, end word, and rule number) , we only need a one dimensional array, of size

O (mr+ 1) . Because of pruning, most of the array is empty, pointing to null edges.

Just before i and k change, the algorithm copies the cache on to a list , which will

be accessed on later iterations.

Including these changes, the algorithm now becomes:

1 : f or s=2 to n

2 : f or i=1 to n − s − 1

3: l et k=i + s

4. 3 Smoothing 74

4: f or j= i to k − 1

5 : f or A=1 to #nonterms

6 : i terate through non-zero edges o f the form <B , pB> on [i ,

j]

7 : i terate through non-zero edges o f the f orm <C, pC> on

[j + 1 , k]

8 : l e t p ← P(A→ B C) · pB · pC
9 : i f p > D[A] then

1 0 : D[A] ← p

1 1 : c ompi l e non-zero D[A] ’ s i nto a l i s t wi th el ements <A, D[A] >

In preliminary testing, we found the combination of caching and compiling to lists

made parsing time comparable (but still lower) than using arrays for the DPA.

Unlike using pruned search, caching does not change the results of parsing, so we

do not report the result of experiments including and excluding this approach.

4. 3 . 3 Models

Chen and Goodman (1 998) conducted a fairly thorough examination of smoothing

for language modelling. In particular, they evaluate smoothing algorithms due to

Jelinek and Mercer (1 980) , Witten and Bell (1 991) , Katz (1 987) , and Kneser and

Ney (1 995) , among others . The description of the smoothing techniques here shall

follow the deviation and much of the terminology of Chen and Goodman (1 998) .

The basis of the Jelinek and Mercer (1 980) and the Witten and Bell (1 991)

algorithms is a technique called shrinkage (also known as linear interpolation) . If

the training data is too sparse to properly estimate P (X | Y) , then Y may be

broken into a number of contexts (Y, C) , and the probabilities mixed together:

P (X | Y) =
∑

C

P(C) · P (X | Y, C)

We will use λC to represent P(C) . We shall refer to the λ ’ s as the mixing parame-

ters . We will also write out the context Y, C explicitly. For example:

P (Xi |Xi− 1Xi− 2) ≈ + λ2 · P (Xi |Xi− 1Xi− 2)

+ λ 1 · P(Xi |Xi− 1)

+ λ0 · P(Xi)

75 Grammatical Functions

However, there are a number of possible approaches to estimating the mixing

parameters . Usually, the estimate of each λ depends on the associated X | Y, C .

Many approaches to estimating λ are based upon the idea of separating types

from tokens (or, alternatively, classes from instances or species from individuals) .

In general, the fewer types seen for each Y, C , the less the probability estimate

should be trusted. Thus, the relative contribution of each λ may change as the

Y ’ s change.

On the other hand, Brants (2000) suggests using fixed λ ’ s regardless of the

context, arguing data may be too sparse to even estimate the λ ’ s effectively.

4. 3. 3. 1 Brants’ Algorithm

λ̃ 1 , λ̃2 , λ̃3← 0
f or each tri gram x i , x i− 1 , x i− 2 such that c(x i , x i− 1 , x i− 2) > 0

d3←

c (xi , x i− 1 , x i− 2) − 1

c (xi − 1 , x i − 2) − 1
i f c(x i− 1 , x i − 2) > 1

0 i f c(x i− 1 , x i − 2) = 1

d2←

c (xi , x i− 1) − 1

c (xi − 1) − 1
i f c(x i− 1) > 1

0 i f c(x i− 1) = 1

d1 ← c(x i) − 1

N − 1

i f d3 = max d1 , d2 , d3 then
λ3← λ3 + c(x i , x i− 1 , x i− 2)

e l s e i f d2 = max d1 , d2 , d3 then
λ2← λ2 + c(x i , x i− 1 , x i− 2)

e l s e
λ 1 ← λ 1 + c(x i , x i− 1 , x i− 2)

end
λ 1 ← λ1

λ1 + λ2 + λ3

λ 1 ← λ1

λ1 + λ2 + λ3

λ 1 ← λ1

λ1 + λ2 + λ3

Figure 4. 4. Brants ’ Algorithm

Because it does not need extra data to estimate the mixing parameters, one

advantage of the algorithm introduced in Brants (2000) , henceforth the Brants

algorithm) is that it is able to make more effective use of the training data. As

noted above, this is one of the most accurate POS taggers , outperforming both

Ratnaparkhi (1 996) and Brill (1 995) . Because of the flatness of NEGRA trees,

techniques useful for POS tagging may presumably carry over to parsing.

A novelty of Brants ’ algorithm, shown in Figure 4. 4, is that it does not require

a held-out set of training data to tune the λ parameters . Rather, the λ ’ s are esti-

mated directly from the main training data.

4. 3 Smoothing 76

4. 3. 3. 2 Witten-Bell Smoothing

The probability distribution for Witten-Bell smoothing

PWB(Xi |Xi− 1 � Xi−m) = λmP(Xi |Xi− 1 � Xi−m) + (1 − λm)PWB(Xi |

Xi− 1 � Xi−m− 1)

In turn, we can define PWB(Xi |Xi− 1 � Xi−m− 1) in terms of PWB(Xi |
Xi− 1 � Xi−m− 2) and λm− 1 , until we reach the last recursion, which can be defined

as PWB(Xi |Xi− 1) = P (Xi |Xi− 1) .

The parameters λ are defined as:

λ j =
N1 + (•Xi− 1 � Xi− j)

N1 + (•Xi− 1 � Xi− j) + Cj
∑

c(Xi � Xi− j)

In turn, N1 + (•Xi− 1 � Xi− j) is defined as the number of unique values for Xi that

occur in the context of a particular Xi− 1 � Xi− j . More formally, we may write:

N1 + (•Xi− 1 � Xi− j) = | {Xi : c(Xi � Xi− j) } |

Furthermore, for the algorithm as defined as Witten-Bell , we take Cj = 1 . Collins

(1 999) describes a variant where Cj is a parameter to be tuned; in particular, he

uses Cj = 5 for his lexicalized parsing experiments. This is the particular model

we use here.

4. 3. 3. 3 Modified Kneser-Ney

Kneser and Ney (1 995) introduce an algorithm with the property that the

marginals of the smoothed distribution match the marginals of the empirical dis-

tribution, i . e.

Psmooth(X) = P̂ (X)

Chen and Goodman (1 998) introduce a variant of this , known as modified Kneser-

Ney smoothing. For the sake of completeness, we include Chen and Goodman’ s

formulae for modified Kneser-Ney smoothing. However, re-deriving the equations

is beyond the scope of this dissertation. Like Brants and Witten-Bell smoothing,

modified Kneser-Ney smoothing is defined recursively. However, some extra work

is necessary to ensure that the marginal distributions do indeed match the empir-

ical distribution, making the main definition a bit more complicated than the pre-

vious distributions:

77 Grammatical Functions

PKN(Xi |Xi− 1 , � , Xi−m) =
c(Xi � Xi−m) − D (c(Xi � Xi−m))

c(Xi− 1 � Xi−m)

+ γ(Xi− 1 � Xi−m) · PKN(Xi |Xi− 1 � Xi−m+ 1)

Where D (c) is defined as:

D (c) =

0 if c = 0
D1 if c = 1
D2 if c = 2
D3 if c > 3

And, further, the function γ(X) is defined as:

γ(Xi− 1 � Xi− j) =
D1N1 (Xi− 1 � Xi− j•) + D2N2 (Xi− 1 � Xi− j•) + D2N2 (Xi− 1 � Xi−m+ j•)

c(Xi− 1 � Xi− j)

With, finally, the constants D1 , D2 , D3 and Y set to:

Y =
n1

n1 + 2n2

D1 = 1 − 2Y
n2

n1

D2 = 2 − 3Y
n3

n2

D3 = 3 − 4Y
n4

n3

4. 3. 3. 4 Parsing with Markov Grammars

To this point , we have discussed various smoothing algorithms without detailing

how they are relevant for our purposes . Although all three approaches above are

designed to be used for n grams or HMMs, they can be easily converted for use in

PCFGs. We simple add the parent node into the context. In other words, instead

of

P (Xi |Xi− 1Xi− 2)

We use

P (Xi | PXi− 1Xi− 2)

4. 3 Smoothing 78

Prec Recall F -S core Avg CB 0CB 6 2CB Cov Time
Baseline 68 . 6 73 . 6 73 . 1 0 . 72 64. 4 91 . 2 98 . 0 3 . 3s
Beam, no smoothing 70 . 9 74. 2 72 . 6 0 . 72 63 . 7 91 . 4 97. 0 2 . 6s
Brants 75 . 5 75 . 8 75 . 7 0 . 56 68 . 1 93 . 9 99 . 4 20 . 6s
Kneser-Ney 74. 4 76 . 3 75 . 3 0 . 60 67. 9 93 . 4 95 . 2 1 3 . 8 s
Witten-Bell 75 . 1 75 . 2 75 . 1 0 . 56 69 . 5 93 . 1 98 . 9 1 6 . 5 s

Table 4. 6 . Results with smoothing

Where the Xi ’ s are all children nodes and P is the parent node. This essentially

gives us a 4 gram model. The Witten-Bell and Kneser-Ney are defined for all n

grams, and the Brants algorithm can be trivially extended from the 3-gram case

to the 4-gram case. This formulation is easy to use, but, as we shall see, it is

problematic for some of the smoothing approaches.

Like with the sister-head parser, we have a special stop node to indicate the

end of a constituent. We also treat the first child as a special case, and not sub-

ject to smoothing. While this does appear like an arbitrary choice, it does allow

us to use the same parsing algorithm as the sister-head parser.

4. 3 . 4 Method

Once again, we use the same data set as in previous experiments . The variable

width beam is set to
1

4000
. We ran three set of experiments . The first set tested all

three smoothing algorithms with a single-pass CYK-like parsing algorithm. The

model that served as the baseline was the best performing parser from Section

4. 2 , which included all re-annotations. The second set of experiments used multi-

pass parsing with two passes .

The final set of experiments was designed to more closely study the effect of

each annotation change from Section 4. 2 . It is worth asking if these re-annota-

tions worked because they were intrinsically useful , or if they only helped to solve

a sparse data problem. The underlying hypothesis here is that the smoothing

algorithms will help overcome any sparse data problems, showing where the anno-

tation was or was not useful. We test this hypothesis with each of the smoothing

models. For this set of experiments, we use single-pass parsing.

79 Grammatical Functions

Prec Recall F -S core Avg CB 0CB 6 2CB Cov Time
Baseline 68 . 6 73 . 6 73 . 1 0 . 72 64. 4 91 . 2 98 . 0 3 . 3
Beam, no smoothing 72 . 6 75 . 4 74. 0 0 . 66 63 . 6 92 . 6 88 . 9 2 . 0
Brants 75 . 6 75 . 8 75 . 6 0 . 59 66 . 7 93 . 5 95 . 1 5 . 7
Kneser-Ney 74. 2 76 . 1 75 . 2 0 . 62 65 . 6 93 . 3 91 . 9 4. 9
Witten-Bell 75 . 5 75 . 5 75 . 5 0 . 55 69 . 3 93 . 3 94. 5 8 . 3

Table 4. 7 . Results with smoothing and multipass parsing

No smoothing Brants Kneser-Ney Witten-Bell
None 70 . 3 72 . 3 72 . 6 72 . 3
Co-ordination Copying 72 . 7 75 . 2 75 . 4 74. 5
NP Case Marking 73 . 3 76 . 0 76. 1 75 . 6
PP Case Marking 73 . 2 76 . 1 76. 2 75 . 7
SBAR Marking 73 . 1 76 . 3 76. 0 75 . 3
S Function Removing 72 . 6 75 . 7 75 . 3 75 . 1

Table 4. 8 . Replicating the re-annotation experiment with beam search and smoothing

4. 3 . 5 Results

The results of the first set of experiments , which use a normal single-pass parser,

are presented in Table 4. 6 . The baseline model in this case is the exhaustive

parser. The next line shows the results of using a beam search without adding

smoothing. The next three lines show the effect of the various smoothing algo-

rithms. The Brants algorithm gives the highest result in the first set , with an F -

score of 75 . 7 . In addition to the standard evaluation metrics we have been using,

Table 4. 6 also includes the average time taken to parse a sentence. While using a

beam search made parsing faster, introducing smoothing slows down parsing

times considerably, by as much as 1 0 times for Brants smoothing.

Table 4. 7 shows the results with multipass parsing. Again, the parser with

Brants smoothing did best , with an F -score of 76 . 0 . Multipass parsing was con-

siderably faster than in the single-pass case (Brants smoothing was as much as 4

times faster) . However, coverage went down for all the multipass parsers .

4. 3 Smoothing 80

The results for the third set of experiments are listed in Table 4. 8 , displayed

with cumulative modifications as in Section 4. 2 . Overall , the best performing

parser is again the Brants parser , but without the GF-stripping modification. It

achieves the highest performance yet of an unlexicalized parser, with an F -score

of 76 . 3 .

4. 3 . 6 Discussion

The smoothing models have vindicated the use of grammatical functions. In pre-

vious sections, we saw that grammars with GFs had lower or only marginally

higher performance than grammars without GFs. However, with the addition of

smoothing, the GF parser does dramatically better. Hence, we may conclude that

earlier GF models were suffering from sparse data problems.

The extent of the improvement due to smoothing was dramatic enough that

the scores of the GF parser were higher than any lexicalized parser from Chapter

3 . This does not imply that lexicalization could not improve the performance of

the GF models. Rather, it shows how introducing additionaly linguistically-moti-

vated annotation can be as helpful or, indeed, more helpful than standard knowl-

edge-lean approaches such as lexicalization.

Eschewing lexicalization does have its problems. Because the use of lexical fea-

tures is so prevailent, there has been little research on the use of smoothing with

unlexicalized grammars. To our knowledge, the present work is the only one

which investigates this approach. It turns out that lexicalization has a dramatic

effect on parsing efficiency. Lexicalization together with beam search was suffi-

ciently fast for the parsers of Chapter 3 . As mentioned above, this was not the

case for the GF parsers . Parsing times became reasonable only after the inclusion

of caching. Caching improved parsing performance by a factor of 30 or more,

without any loss in accuracy. Presumably, this approach could also be applied to

lexicalized parsing.

In contrast to caching, the benefits of multipass parsing were not as clear, at

least with the grammars we used. While parsing was about 2 times faster, accu-

racy and coverage were both slightly lower. The choice of grammar used in the

first pass of parsing no doubt has a large impact on the overall performance of

multipass parsing. It would be informative to experiment with other grammars on

the first pass . We leave this to future research, only noting that the unsmoothed

no GF PCFG grammar has higher coverage and is still quite fast to parse exhaus-

tively.

81 Grammatical Functions

Regardless of the problems with multipass parsing, there are a number of

interesting facts to learn about the choice of smoothing algorithm. Perhaps most

striking is the difference in performance across smoothing algorithms. Modifica-

tions to the grammar model which result in large change in performance tend to

be stable across algorithms, but there is quite a bit of variation in smaller incre-

mental changes. For example, copying the GF of co-ordinated categories boosts

F -scores by about 3 points , irrespective of the smoothing algorithm. On the other

hand, marking SBARs or the case of PPs led to relatively small changes in the F -

score (usually 0 . 1 or 0 . 2 points) , but the change was upwards for some smoothing

algorithms, and downwards for others .

The variance across smoothing algorithms is relevant as results in parsing (as

well as other tasks) are often presented with just one choice of smoothing algo-

rithm, and it is difficult to decipher if incremental improvements are due to the

choice of linguistic features , or due to the choice of the particular smoothing algo-

rithm. This is most worrying in work such as Charniak (2000) which even fails to

specify exactly what approach to smoothing was used. The variability of

smoothing is a concept which the language modelling community has come to

appreciate (Chen and Goodman, 1 998 ; Rosenfeld, 1 999) , and it is one that the

parsing community should come to accept, as well .

It is not the case that all the difference between smoothing algorithms were

random. One of the most interesting trends is the performance of the Brants algo-

rithm versus the Kneser-Ney and Witten-Bell approaches. In almost all condi-

tions, the Brants algorithm gives the best performance with Kneser-Ney in

second, and Witten-Bell in third.

In some respects , this is not be surprising: the Brants algorithm was developed

for POS tagging, whereas both Kneser-Ney and Witten-Bell were developed for

language modelling. The event space in unlexicalized parsing bears a closer

resemblance to POS tagging than language modelling. We hypothesize that one

aspect of the Brants algorithm which makes it more suitable to unlexicalized

parsing is that the mixing parameter λ remains constant in all contexts . This is

clearly unsuitable for language modellings : in text , more frequent contexts are less

likely to suffer from sparse data problems. With the much smaller set of labels in

unlexicalized parsing or POS tagging, apparantly pooling the estimates for the

mixing parametres provides better results .

4. 3 Smoothing 82

It should be noted that unlexicalized parsing with GFs differs in some impor-

tant respects from the tag set used by Brants. Most notably, POS tags have a rel-

atively ‘ flat’ distribution, whereas node labels which include GF labels follow a

Zipfian distribution, just like text. Nonethless, the Brants algorithm is apparently

able to cope with a Zipf-distributed tag set .

The modified Kneser-Ney algorithm also performed quite well , s lightly better

than the Witten-Bell appraoch. This parallels results in language modelling

(Chen and Goodman, 1 998) . We pin the difference on the fact that Kneser-Ney is

a more modern algorithm which has managed to take into account successful

characteristics of other approaches to smoothing. It is surprising, though, that

Kneser-Ney did so well despite the fact we broke the main asusmption made by

the algorithm. Recall that Kneser-Ney ensures that the smoothed marginals

match the empirically observed marginals. In our fourgram approach to parame-

terizing the grammar model, we mix the parent node in with the previous sisters.

But the parent node has a differnet marginal distribution than the previous sisters

because the parent is always a nonterminal whereas the previous sisters may be

also be POS tags.

There may also be a problem with the marginals of the previous sisters. In an

n-gram trained on free text, every word in the training data will occupy every

position in the n-gram history. This is not necessarily true of context-free rules.

Rules are short and tend to begin or end with a head word and/or a function

word. Both the problem with the parent and with the previous sister marginals

might be overcome by fixing the marginals for each position in the context. How-

ever, we leave further investigation of this to future research.

Turning our attention to the second set of experiments , it is interesting to see

that the GF-stripping operations did not help with the smoothed grammars. In

Section 4. 2 , we found that it was helpful to remove GFs from S nodes. As this

operation produced mixed results with smoothing, we conclude that the models

from Section 4. 2 which inc luded GFs on S nodes suffered from sparse data, and

removing the GFs resolved this problem.

83 Grammatical Functions

Overall , smoothing is useful for GF parsing. We have the highest result so far

from an unlexicalized parsing, 76 . 2 , which is in fact better than the lexicalized

sister-head parser.

4. 4 Verb Final and Topicalizat ion Construct ions

In Section 3 . 6 we took a detailed look at verb-final constructions with the sister-

head parser. Here, we will replicate this analysis for the smoothed GF parser and

we will also present a similar analysis for another construct found in German and

not in English: topicalization (cf. Section 1 . 1 . 1) . In main clause constructions, the

verb is in the second position of a S rule, and the sub ject is usually in the first

position (see Example 1 . 2) .

Example 4. 1 .

Ich esse Schinken in dem Haus
I eat ham in the house
NP V NP PP

position i i i i i i

However, a modifier can be topicalized and occupy position i . In these cases,

the sub ject moves to position i i i , using the verb an an axis . Other complements

and modifiers come after the sub ject , as in Example 1 . 3 .

Example 4. 2 .

in dem Haus esse ich Schinken
in the house eat I ham
PP V NP NP

position i i i i i i

For formal grammar writers, topicalization (and flexible word order in general)

has been the source of much research, and a number of techniques have been

devised to handle this phenomenon. These techniques include movement , soft

constraints in LP/ID rules and topological fields.

However, the situation for treebank grammars is slightly different . In cases

when the sub ject moves from position i to position i i i are both to be found in the

treebank grammar. Presumably, this ought not to make parsing much harder, as

the grammar can learn both orders from the treebank.

4. 4 Verb F inal and Topicalization Constructions 84

SBAR? all vf novf topic notopic
Avg. # of nodes 7. 5 1 1 . 2 6 . 4 8 . 9 6 . 5
Standard F -Score × 72 . 7 68 . 1 75 . 0 71 . 8 73 . 6

� 72 . 6 67. 8 75 . 0 72 . 2 72 . 9
Weighted F -Score × 72 . 7 68 . 3 73 . 7 72 . 0 72 . 8

� 72 . 6 68 . 7 73 . 7 72 . 4 72 . 1

Table 4. 9 . Performance of the unsmoothed model on various syntactic constructions

4. 4. 1 Method

We proceed in a manner similar to Section 3 . 6 , reporting both standard F -scores,

and a weighted F-score measure that attempts to remove the influence of longer

and more complicated sentences. We test results using four parsers. Two of these

four parsers are the best performing unsmoothed model and the best performing

smoothed model. One of these parsers includes the SBAR (verb-final clause)

marking modification, the other does not. To round out the comparison, we

ensure that models both with and without the SBAR marking modification are

included in both the unsmoothed and smoothed cases .

4. 4. 2 Results

We show the results in Table 4. 9 for the parser without smoothing, and Table

4. 1 0 for the parser with smoothing. The ‘ SBAR? ’ column indicates if the model in

question contains the SBAR re-annotation. Most of the other entries should be

self-explanatory. Once again, though, there are too many results to discuss all of

them in detail , so we will simply point out some of the key findings. Just as in

Section 3 . 6 , we find sentence with ‘ special ’ constructions have lower F -scores.

Adding the SBAR annotation made little difference in the performance non-verb-

final (novf) sentences in both the smoothed and unsmoothed grammars. In the

unsmoothed grammar, this annotation led to mixed results in all conditions

except the novf case, where performance was unchanged. In the smoothed

grammar, on the other hand, it improved the performance in the vf condition.

Oddly enough, the unsmoothed parser did about 1 point better when the sub-

ject was not in position i (topic) than when it was (notopic) , despite the fact

that sentences are longer in the topic case. The smoothed grammar was more

accurate in both the subj and nosubj conditions, but the relative performance

swapped, with the notopic case giving the higher result .

85 Grammatical Functions

SBAR? all vf novf topic notopic
Avg. # of nodes 7. 5 1 1 . 2 6 . 4 8 . 9 6 . 5
Standard F -Score × 76 . 1 72 . 8 77. 9 75 . 1 77. 2

� 76 . 3 73 . 2 77. 8 75 . 6 76 . 9
Weighted F -Score × 76 . 1 74. 6 76 . 8 75 . 9 76 . 4

� 76 . 3 75 . 2 76 . 8 76 . 0 76 . 2

Table 4. 1 0. Performance of the smoothed model on various syntactic constructions

4. 4. 3 Discussion

It appears that verb-final clauses are almost as difficult for the unlexicalized GF

parser as for the sister-head parser. In Section 3 . 6 , we hypothesized that parsers

ought to have some special mechanism for dealing with these constructions. The

SBAR annotations did improve the smoothed grammar’ s performance on verb-

final constructions, but apparently not enough to close the gap with non-verb-

final constructions. However, adding this annotation also made the weighted per-

formance of both parsers in the topic condition comparable to their weighted

performance in the notopic condition (although partly by decreasing the F -score

in topic condition) . It is interesting that, for both parsers , the difference between

topic and notopic is much smaller than the difference between vf and novf .

Part of this might be explained by the smaller difference in average sentence

lengths, but the change is impervious to weighting, which ought to account for

part of the sentence length effect . We conjecture this is because a fronted PP has

less attachment ambiguity than one which occurs in the verb’ s argument field.

Another possibility is that (accorinding to some dependency grammar theories) ,

verb-final clauses involve crossing dependencies , whereas topicalization does not.

Based on our initial experiments in Section 4. 1 , it seemed as if horizontal

Markovization was a general technique, and not specific to the Penn Treebank.

But our experiments here suggest that Markov grammars have some difficulty in

modeling flexible word order constructions. G iven that the parsers have a harder

time with verb-final constructions, a possible solution is to give a better treatment

of long-distance dependencies. This wouldn’ t help with topicalization, however.

There, the problem may be that the Markov histories are not long enough. If we

are considering which node to add to the partial rule S → NP-OA V NP-SB � ,

the probability of addding an accusative ob ject would be too high: the existing

NP-OA is lost in the Markov history, and we could not tell if it was an ob ject or

a modifier which had been fronted.

4. 4 Verb F inal and Topicalization Constructions 86

4. 5 Conclusion

One of the goals of this chapter has been vindicated: a finely tuned grammatical

function parser performs better than the fully lexicalized parsers of Chapter 3 .

Unfortunately, we did not succeed in matching the performance of the GF parser

from Section 3 . 2 . However, the coverage of the GF parsers here was much higher.

Overall , we found that Markovization and smoothing help overcome coverage

problems, and increase performance. Lexical sensitivity also helps with low-cov-

erage problems at the cost of reducing performance, although some of this lss can

be overcome by using a smart suffix analyzer when sparse data is not a problem.

While (horizontal) Markovization worked well in NEGRA, other techniques

which have been shown to be useful for English, including higher-order vertical

Markovization, appear to be specific to the annotation style of the WSJ , and do

not generalize to NEGRA.

The two main results are (i) that Markovization may not be helpful in han-

dling phenomena of flexible word order, such as the sub ject movement we saw in

Section 4. 4 (although difficulties with the evaluation precludes us from making a

claim with any degree of certainty) ; and (ii) that including more knowledge about

things such as noun declension is one of the factors that allow the unlexicalized

parser to be competitive with the lexicalized parser .

This second point brings us back to our main argument: that linguistic fea-

tures play an important role in languages with a rich morphology, and we cannot

depend on lexicalization alone. For good measure, it is interesting to note that

many of the features we annotated dealt with case, and would not even be rele-

vant for an English parser.

87 Grammatical Functions

Chapter 5

Parsing with Attributes

In Chapter 4, we found that paying attention to grammatical functions in

NEGRA leads to more accurate parses. We argued the benefit from GFs is due to

their ability to model syntactic phenomena, including aspects of the German case

system. The success of the GF model elicits an additional question: are there fur-

ther gains to be had by including additional linguistic information which is typic-

alled excluded from a PCFG model? In this chapter, we investigate two such phe-

nomena: morphology and long-distance dependencies (LDDs) . Let us consider

morphology first .

A full model of morphology might require lexicalization in the spirit of the

models discussed in Chapter 3 . However, in Chapter 4 we argued that the

increase in accuracy when including GFs was in part because they encode some

lexical information. In other words, lexical parameterization and ‘ lexical ’ attrib-

utes (like some GFs) both carry some of the same information. S trictly speaking,

however, the two choices are not equivalent . In theory, lexicalization also contains

more abstract information such as selectional preferences . However, it is worth

investigating if there is some benefit to including more lexical features . Based

upon the success of including some basic case information in the models of

Chapter 4, we focus our attention on the morphosyntactic attributes of case,

gender, number and person.

Although this is a small set of attributes, including them in our grammar

model is not a trivial task. There are two major difficulties. First , there is no

suitable training data available. While the NEGRA corpus is annotated with

these attributes on some sentences, most of the corpus contains no such informa-

tion. A second problem is that even the small set of information we wish to add

may introduce sparse data problems, and would hence require a different

approach to parameterizing the grammar.

88

Parsing with LDDs is somewhat easier: as non-local dependencies play an

important role in German syntax, these dependencies tend to be annotated in

treebanks, including NEGRA. However, we show that the simplest PCFG model

which can accounts for LDDs is unable to derive much benefit from them. Only

after some re-annotation is a PCFG model able to profit from including a model

of LDDs.

This chapter is organized as follows. In Section 5 . 1 , we describe the construc-

tion of the morphologically-tagged training data. In Section 5 . 2 , we then test a

model trained upon this data. We then offer a further refinement of this model in

Section 5 . 3 . In Section 5 . 4, we turn our attention developing a parser that can

account for LDDs. In Section 5 . 5 , we provide some further evaluation of the LDD

parser. Finally, we offer some concluding remarks in Section 5 . 6 .

5 . 1 S emi-automatic Morphology Annotat ion

This section describes the construction of the morphologically tagged corpus

which is used in later sections of this chapter. S ection 5 . 1 . 1 describes the basics of

constructing the corpus, and provides an evaluation and error analysis of the

automatic tagging. Based on the results of the evaluation and error analysis , S ec-

tion 5 . 1 . 2 introduces techniques to increase the overall accuracy of the morpholo-

gical tagging and to remove unwanted tags. Finally, S ection 5 . 1 . 3 shows how to

correctly and consistently augment a context-free grammar with morphological

tags. A discussion of the actual parameterization of such a grammar, however, is

left until Section 5 . 3 .

5 . 1 . 1 Building a morphologically tagged corpus

Two auxiliary morphological taggers are used to build the morphologically tagged

corpus. The taggers , Morphy (Lezius et al. , 1 998) and DMM (Lorentz, 1 996) , take

the words of NEGRA corpus as input, labell ing each word with its possible mor-

phological features .

89 Parsing with Attributes

Symbol Description
Case Accusative Akk

Dative Dat
Genitive Gen
Nominative Nom

Gender Feminine Fem
Masculine Masc
Neuter Neut

Number Pl Plural
Sg S ingular

Table 5 . 1 . List of the morphological tags

Data

Because we intend to tag the whole corpus, we do not use the normal split into

training, development and test sets . However, without a proper test set , we have

no way to evaluate the accuracy of the morphological taggers . Fortunately, the

first 6390 sentences in NEGRA do have morphological information, so it is pos-

sible to use these sentences as a morphological test set (distinguished from the

normal test set used to evaluate parsing results) . The sentences which comprise

the morphological test set are also part of the syntactic training set . Later in this

chapter, we will freely use all of the syntactic training set to train a morphologic-

ally-aware grammar model . One might argue against this approach on philosoph-

ical grounds, but recall that we are not developing a model of German morpho-

logy. Rather, the morphological test set is simply a way to measure how well the

existing taggers perform.

The format of the morphological tags in the generated corpus is a simplified

version of what is already used in the morphologically annotated part of NEGRA.

To describe how the format is simplified, we need to clarify some terminology.

What we are calling a morphological tag is the complete morphological descrip-

tion of a word (as far as the NEGRA annotation permits) . We say that each tag

has a number of components. The components we consider are case, gender,

number and person. The particular values we use are fairly straightforward, but

for reference they are listed in Table 5 . 1 . For example, a possible tag for the word

Vater is Masc. Sg. Nom, and the components are Masc, Sg and Nom.

5 . 1 S emi-automatic Morphology Annotation 90

We simplify the NEGRA tagset by ignoring some tag components . These com-

ponents are for inflections such as verb conjugation which the error analysis in

Chapter 4 suggested were less important than the ones we use. All of these extra

components are stripped from the corpus.

The NEGRA format is not directly compatible with those of DMM and

Morphy. Therefore, the output of the taggers must be converted to the NEGRA

format. The conversion is mostly straightforward, but several non-trivial cases are

discussed below in the error analysis section.

To make use of the tagged versions of the corpus, we must re-align words in

the tagged versions with the matching words in the original. For the most part ,

this can be done by simply scanning the output of the taggers sequentially.

However, it is not the case that the nth word in the tagged corpus matches the

nth word in the original corpus. Three idiosyncrasies of the taggers need to be

taken into account. First , DMM outputs two entries for words like Dr. which end

with a period. The second entry must be ignored. A second problem is foreign

characters like é confuse Morphy. All words containing such letters are therefore

ignored. A final problem is that Morphy splits words containing an apostrophe.

This would make sense for analyzing contractions like geht ’ s , but NEGRA already

splits contractions into two words. Because Morphy’ s extra splits are often non-

sensical, we skip all of the entries from these words. The last two idiosyncrasies

sometimes occur together, in words like Bahá’ u ’ llah´ .

Evaluation

We evaluate the output of the taggers against the gold-standard annotated tags in

NEGRA. We use two metrics to measure how often morphological taggers agree

with the annotation: exact matches and partial matches. We say that a tag

matches the gold-standard exactly when each of their components match, and

they have exactly the same components. We say a tag matches partially if all

components present in both tags match, but one or both tags may have extra

components . For example, the preposition-article im is usually tagged in NEGRA

as Dat . Sg. An aggressive tagger may instead suggest Dat. Neut. Sg. The tags

Dat. Sg and Dat. Neut. Sg partialy match because the Dat and Sg components are

the same, and the extra Neut is ignored. The tags do not have an exact match

because of the extra Neut tag.

91 Parsing with Attributes

Both taggers output a number of hypotheses per word. We do not attempt to

disambiguate the hypotheses and pick one as ‘ best ’ . Rather, we consider the mor-

phological tagger to have made an exact match if any hypothesis it suggests has

an exact match with the gold annotation in NEGRA (and likewise for partial

matches) .

Results

The results of the morphological taggers are shown in Table 5 . 2 . The overall res-

ults obtained when combining the output of the two taggers is 95 . 6% on partial

matches and 91 . 8% on exact matches. Many parts of speech are done particularly

well , including verbs, art icles and pronouns. Morphy does well on adjectives , but

the results of DMM cannot be compared because it uses a different theory of

adjective inflection. Morphy did surprisingly poorly on substantives , and both

had difficulties with proper names. Overall , the results are high, but given how

easy the task is, it is surprising the results are not higher. Moreover, the tags for

some parts-of-speech appear to be problematic . It would be insightful to

determine why some categories perform so poorly.

Error Analysis

We investigate these troublesome tags with an error analysis. This is interesting

not only for our own purposes , but automatically tagging the annotated subset of

a large corpus gives some insights into how well the morphological taggers do

on ‘ ‘ real” German. Some of the most frequent causes of errors appear to be:

• Annotation errors. In some cases, the NEGRA annotation is simply incor-

rect . In many other cases, the annotated words have incomplete (but cor-

rect) tags. This lowers exact matches, while partial matches are still high.

This problem is particularly noticeable with prepositions.

• Theoretical mismatches . As noted above, DMM has a different approach to

analyzing adjectives. It labels articles with adjective endings they allow,

but does not analyze adjectives themselves . There are other problems. For

instance, andere (‘ ‘ other”) is always an adjective in Morphy/DMM. In

NEGRA, andere is only tagged as an adjective in noun phrases like die

anderen Programme (‘ ‘ the other programs”) where it modifies a noun.

When andere is the head of a noun phrase (as in Example 5 . 1 below) , it is

tagged as a pronoun:

5 . 1 S emi-automatic Morphology Annotation 92

Morphy DMM Combined
Partial Exact Partial Exact Partial Exact

Substantives 67. 1 66 . 4 92 . 0 90 . 4 94. 8 93 . 7
Names 53. 8 0 . 0 65 . 3 64. 9 71 . 3 64. 9
Verbs 98 . 3 98 . 2 98 . 6 98 . 4 99 . 0 98 . 9
Adjectives 89 . 9 89 . 6 -- -- 89 . 9 89 . 6
Articles & Pronouns 99 . 3 93 . 7 99 . 3 93 . 7 99 . 4 97. 8
Prepositions 73. 0 53 . 2 97. 1 78 . 0 97. 6 86 . 6
Overall 79 . 9 70 . 8 88 . 9 81 . 6 95 . 6 91 . 8

Table 5 . 2 . Accuracy of morphological tagging

Example 5 . 1 .
Fur¨ andere stellen sie Weichen
For others set they switch
‘ ‘ They set the course for others”

• Coverage problems. Both taggers have poor coverage on proper nouns.

They are much better with other open-class words, but Morphy also has

significant difficulty with substantives . It appears as if Morphy has diffi-

culty finding the parts of compound nouns. While DMM appears to be

much better at analyzing compound nouns, for reasons unclear to us, it

has difficulties with others such as Vogelgezwitscher (‘ ‘ bird twitter”) and

Mitsprache (‘ ‘ co-determination”) . Some of the coverage failures can be

classified into a few common classes :

− Hypenated words, and other strange compounding, including

numerical compounding. For instance: 21 jaahrigen¨ (‘ ‘ 2 1 year olds”)

− Borrowed foreign words, such as Jeans, Tattoos, Techno, Groove

and Sunnis

− Abbreviations, such as Dr. , Tel. , u .

− Spelling mistakes, like Wahrnehumng (Wahrehmung , ‘ ‘ perception”) ,

are not very frequent, but stil l affect some words.

• Part-of-speech errors. At times, the morphological tagger may mistake the

POS of a word, giving an incorrect analysis . For example, DMM treats

Kabelfernsehen (‘ ‘ cable television”) and betroffene (‘ ‘ affected”) as verbs.

93 Parsing with Attributes

5 . 1 . 2 Morphology and context

Though we have described how to generate a morphologically-tagged corpus, the

corpus requires further changes before it can be used by the parser . There are

two problems with the corpus as it stands. First , as we saw above, the taggers

have poor coverage with some parts-of-speech, especially nouns. This means that

they will either suggest no tag or an incorrect tag for many nouns. A second

problem is that German morphological suffixes are ambiguous, and can only be

disambiguated when context is taken into account. Unfortunately, all the morpho-

logical taggers ignore context. For example, they will not ensure that sub jects

agree with verbs. Parse trees provide information useful to moderate the extent of

both these problems.

To overcome coverage problems, we can add additional hypotheses when either

DMM or Morphy fail to give any analysis of a noun. Without any contextual

information, we would need to add 24 hypothesis (4 cases × 3 genders × 2 num-

bers) . As noted in Chapter 4, trees are often annotated for case, and using this

information means that only gender and number are undetermined. Thus, we only

need to suggest 6 hypotheses . For nouns inside PPs which are headed by a case-

ambiguous preposit ion, there are 1 2 possible hypotheses (only 2 of 4 cases are

eliminated) . We only suggest additional tags for common nouns. Pronouns

already have high coverage, and coverage is so low for proper nouns that this fall-

back technique would be invoked too often to be useful.

Let us now turn to the problem of superfluous tags. Consider the following

sentence:

Example 5 . 2 .
Der Alltags steht in Zentrum des Films
The everyday life remains in center the film

‘ ‘ Everyday life is the main theme of the movie”

Example 5 . 3 shows the same sentence as tagged by DMM. The sentence is

depicted vertically, with the words on the right. To the left of each word is a list

of morphological features , with the ‘ . . . ’ denoting there are more tags than we have

space to show.

5 . 1 S emi-automatic Morphology Annotation 94

Constraint # Parent Child Rule
1 NP , PP, MPN, AP , CAP Two declinables Exact match
2 PP Preposit ion & declinable Partial match
3 S Verb and subject Partial match
4 CNP Two declinables or NPs Case matches

Table 5 . 3 . Constrains to eliminate incorrect morphological tags .

Example 5 . 3.

Der Nom. Masc. Sg Gen. FemSg Dat. Fem. Sg Gen. Neut. P l . . .
Alltags Nom. Masc. Sg Dat. Masc. Sg Akk. Masc. Sg
steht Sg. 3 P l. 2
im Dat. Sg
Zentrum Nom. Neut. Sg Dat. Neut. Sg Akk. Masc. Sg
des Gen. Masc. Sg Gen. Neut. Sg
Films Gen. Masc. Sg

The amount of ambiguity varies between words, with im having only one pos-

sible tag, whereas Der having more than four. But much of this ambiguity is

spurious. Der Alltags is an NP , and we know the morphological features of Der

ought to match those of Alltags . Because Alltags cannot be genitive or dative

feminine, we conclude these cannot be the correct tags for Der in this instance.

Furthermore, Der Alltags is the sub ject of the sentence, and so steht cannot be

conjugated for the second person plural. Zentrum is clearly not nominative or

accusative; it is a dependant of the dative preposition im .

We formalize these intuitions into an algorithm by defining a set of contraints

stating how extra tags are eliminated. Given a rule P → C0 C1 � Cn , the con-

straints force pairs of adjacent daughters Ci and Ci+ 1 to have a consistant set of

morphological tags. Consistancy is guaranteed by eliminating tags from Ci+ 1 for

which a partial or exact match cannot be found from the list of tags for Ci , and

vice versa. The use of a partial or exact match depends upon P , Ci and Ci+ 1 .

Table 5 . 3 shows the full list of the contraints. The first column shows the values

of P , the second, the values for Ci and Ci+ 1 and the third, the type of match to

be enforced. For any triplet of P , Ci and Ci+ 1 not listed in the table, no con-

straint is applied and hence no tags are eliminated.

95 Parsing with Attributes

Some of the terms used in the table deserve explanation. In PPs and various

types of adjectival and noun phrases, we enforce exact matches when both daugh-

ters are matching dec linab le s . For us, a matching declinable is a noun, name, art-

icle, pronoun, adjective, adjectival phrase or co-ordinated adjectival phrase. We

do not count NP daughters of NPs or PPs as matching declinables , as they are

often modifiers , potentially with a different case (usually genit ive) . Most con-

straints use partial matches and exact matches as described in Section 5 . 1 . 1 . The

only exception is the rule for co-ordinated NPs (CNPs) . Because two co-ordinate

daughters might have a different gender, or even number, we only enforce that the

case must be the same.

The first three constraints are invoked by the sentence from Example 5 . 3 .

Applying these constraints, we get the following set of disambiguated tags:

Example 5 . 4.

Der Nom. Masc. Sg
Alltags Nom. Masc. Sg
steht Sg. 3
im Dat. Sg
Zentrum Dat. Neut. Sg
des Gen. Masc. Sg
Films Gen. Masc. Sg

Der and Alltags only have one tag in common, Nom. Masc. Sg, and this is the

only tag left after applying Constraint #1 on these two words. The tag Pl. 2 is

eliminated from the verb steht when Constraint #3 is run with steht and the

noun phrase Der Alltags . Contraint #2 is invoked with im and Zentrum , elimin-

ating the nominative and accusative readings of Zentrum . Contraint #1 is again

used for des and Films , and the only tag which survives elimination is

Gen. Masc. Sg.

This example may be slightly misleading because all the tags are perfectly dis-

ambiguated, and no word is left without a tag. This is not always so. If the

gender of an unknown nominative plural noun cannot be guessed, the article (die)

provides no clues on how to disambiguate, and the constraints leave more than

one possible tag on the word. Whenever the morphological taggers miss the ‘ cor-

rect ’ tag for a word, the constraints may eliminate all the tags of that word

because no tag in the context matches the incorrect tags. While these two prob-

lems remain, the approach does eliminate many incorrect tags. Now we turn to

evaluating how well tag guessing and the tag elimination constraints both work.

5 . 1 S emi-automatic Morphology Annotation 96

Original Extra Tags Pruned
Partial matches 95 . 6 97. 4 95 . 2
Exact matches 91 . 8 93 . 8 89 . 1
Exact matches with one hypothesis 1 9 . 4 1 5 . 4 54. 8
Hypotheses per word 5 . 7 6 . 2 2 . 6

Table 5 . 4. Taking context into account: accuracy and brevity of the hypotheses .

Evaluation It is possible to use the same approach as in Section 5 . 1 . 1 to eval-

uate the tag guessing and the constraints . Just as in Section 5 . 1 . 1 , we report par-

tial and exact matches . To discern how many contextually incorrect hypotheses

are being pruned by the constraints , we also report the percentage of words with

exactly one hypothesis which was an exact match, and the average number of

hypotheses per word.

Results and Discussion The results are shown in Table 5 . 4 for three condi-

tions: the tagged corpus as it stood in Section 5 . 1 . 1 (Original) , after contextual

cues were used to add extra morphological tags (Extra Tags) , and after pruning

contextually inappropriate tags (Pruned) . Adding extra tags increases the

accuracy, at the cost of adding some extra hypotheses . Pruning, in turn, cuts the

number of hypotheses in half while decreasing the overall accuracy as measured

by partial and exact matches . There were a number of factors contributing to the

fall in accuracy. Most importantly, pruning uses exact matches, which eliminates

some tags which happened to agree with the gold standard by chance. This can

occur because NEGRA at times uses the token * to denote an ambiguous com-

ponent. For example, in the first sentence of NEGRA, aller from aller

Musikbereiche is tagged as * . Gen. P l. Using our notation, we eliminate the * from

the gold standard, and assume the tag is Gen. P l. This happens to be among the

hypotheses suggested by the taggers. However, the gender of Musikbereiche is

known to be masculine, hence the tag is Masc. Gen. P l. Exact matching thus elim-

inates the ‘ correct ’ entry of Gen. P l for aller .

While pruning lowers the accuracy of the tagging, it reduces the number of

hypothesis and increases the number of tags which are perfectly disambiguated.

Without pruning, only
1

6
to

1

5
of all tags were correctly disambiguated, i . e. there

was only one tag, and it was an exact match. With pruning, more than
1

2
of all

tags were correctly disambiguated. Our empirical experience suggests that redu-

cing the number of hypothesis and increasing disambiguated hypotheses are

together more important than the small decrease in accuracy due to pruning.

97 Parsing with Attributes

5 . 1 . 3 Morphology and grammar rules

We are almost in a position where we can use the morphologically-tagged corpus

as training data for a parser. But, to this point , all the morphological tags have

only been associated with words. This is insufficient for parsing. We must

propagate the tags up the tree, so that syntactic categories are associated with

morphological features.

To illustrate why this is so, consider the simple rule S → NP-SB VVFIN NP-

OA. If we take the simple approach (similar to Chapter 4) , and add morpholo-

gical tags to POS tags, we may get a rule such as S → NP-SB VVFIN. Sg. 2 NP-

OA. Now, if we wish to enforce sub ject-verb agreement, we need the verb’ s mor-

phological tag to ‘ communicate’ with the sub ject ’ s . To do this , we must add mor-

phological information onto the recursive category NP-SB. In this case, the rule

becomes S → NP-SB. Sg. 2 VVFIN. Sg. 2 NP-OA. Such communication is neces-

sary for other nodes, as well . Thus, in general, we need to annotate the parse

trees with the morphological information.

To propagate the morphological tags up the parse tree, we use the familiar

technique of picking one child as the head, and pro jecting its attributes onto the

parent. If the tag of a word is unambiguous, we are done: each node in the tree is

annotated with a morphological tag.

When the tags are ambiguous, however, we need to do some extra work. We

need to ensure that sequences of tags are grammatical. Consider the accusative

NP ‘ die Biwakierenden’ (those who use temporary encampments) . Biwakierenden,

a low-frequency noun, is a compound of Biwak and irend. Biwaki itself is a low-

frequency word, making it difficult for the morphology taggers to guess the gender

of Biwakierenden. Thus we get the following possible tag sequences:

Example 5 . 5 .
die Akk. Masc. P l Akk. Fem. Pl Akk. Neut. P l
Biwakierendern Akk. Masc. P l Akk. Fem. Pl Akk. Neut. P l

We want to include rules such as NP . Akk. Masc. P l → ART. Akk. Masc. Pl

NN. Akk. Masc. P l, but eliminate rules such as NP . Akk. Masc. Pl →
ART. Akk. Fem. P l NN. Akk. Masc. P l. We adopt the same approach as Section ? : we

use hand-written rules to prune unwanted rules . In fact , the same rules are re-

used here.

5 . 1 S emi-automatic Morphology Annotation 98

The basic approach is to begin at the head word (Biwakierendern) , and create

a path to the left and right for each possible tag that the head word can take. In

this case, there are three initial paths (one for each choice of gender) . Let us call

the head child the 0 th node. Say the nth node has tn tags, and suppose there are

pn− 1 paths at the node n − 1 . Then, there can be as many as pn− 1 · tn nodes

through the nth node. The pruning rules are then evoked to remove unwanted

paths. In this case, without pruning, there would be 9 paths without pruning: 3

choices for the head node, 3 for the first child to the left . However, pruning res-

ults in only 3 possible paths: the gender of the pronoun must match the gender of

the head word.

One problem with this pruning approach is that in many cases, non-head chil-

dren are not required to have the same morphological tags as the head child.

There is an exponential blow-up in the number of paths when this happens. If

there are on average p hypotheses per word, then there will be pn paths on the

nth node. The problem becomes apparent when processing extremely flat rules

(which have a big n) , as well as rules dominating horribly ambiguous proper

nouns (which have a big p) . A rule with both a big n and p can easily exhaust

the memory on even a relatively modern computer. However this problem is

easily solved if we are using a grammar with Markov rules . Recall that, if we are

at node n then an mth order Markov rule ‘ forgets ’ what happened at node n − m .

Therefore, we can ‘ rejoin’ some paths, resulting in a total of only pm paths. In the

parsers we have been using, m is usually less then 3 .

Thus, at any node, we can get a reasonable set of morphological tags, and

enough of the previous tags for an mth order Markov grammar, provided m is

small enough. Overall , we have training data, and a way for a learning algorithm

to make use of the data. Now we turn to the problem of parameterizing the

model the learning algorithm will train.

5 . 2 Parsing with Morphological Features

Once morphological tags are inserted into a tree as described in Section 5 . 1 . 3 , it is

straightforward to include them in a grammar model. There is one caveat: the

tags are potentially ambiguous, and the probability model needs to cope with

this. In this section, we show how to handle this ambiguity, and present the res-

ults of a parser trained on the morphological data set .

99 Parsing with Attributes

5 . 2 . 1 Notation

Until this point , we have allowed the nonterminal vocabulary of our grammars to

become somewhat complex by coupling extra annotations together with the

nonterminal symbols . In NEGRA, an accusative ob ject NP is given the label NP-

OA. With our morphology annotation, the node label may become more complic-

ated, like NP-OA. Masc. Akk. Sg.

Due to this coupling, the NP , OA and Masc. Akk. Sg have no meaning on their

own. This is not necessarily a good assumption. Consider the OA label. Although

accusative and dative NP’ s decline differently, they share many of the same char-

acteristics (i . e. both are the pro jection of a noun, both can be modified by adject-

ives or clauses in the same way, both have the same rules to determine if a def-

inite or indefinite article is to be used) .

The -OA can be decoupled from the NP by treating it as a feature (or

attribute) of the NP node. To make this distinction explicit in our notation,

instead of writ ing rules as such:

NP-OA. Masc. Akk. Sg → ART-OA. Masc. Akk. Sg NN-NK. Masc. Akk. Sg

We will instead write them as:

NP
gf OA
morph Masc .Akk . Sg

 →

ART
gf OA
morph Masc .Akk . Sg

NN
gf NK
morph Masc .Akk . Sg

 (5 . 1)

This follows notation commonly used in attribute-value grammars (Shieber,

1 986) .

5 . 2 . 2 Parameterizat ion

As in Chapter 4, we assume the use of a Markov grammar. Excluding the GF and

morphological tags for a moment, an ‘ event’ is a partial rule application:

X→ � Yi− 2 Yi− 1 Y � (5 . 2)

Such a partial rule has an unsmoothed probability of:

P (Yi | X→ � Yi− 2 Yi− 1) =
(X→ � Yi− 2 Yi− 1 Yi �)

(X→ � Yi− 2 Yi− 1 �)
(5 . 3)

5 . 2 Parsing with Morphological Features 1 00

Including the tags, a partial rule becomes:

X
gf f (X)
morph m(X)

 → �

Yi− 2

gf f (Yi − 2)
morph m(Yi− 2)

Yi− 1

gf f (Yi− 1)
morph m(Yi− 1)

Yi

gf f (Yi)
morph m(Yi)

� (5 . 4)

Informally, we write the probability of this rule as :

P

Yi

gf f (Yi)
morph m (Yi)

∣∣∣∣∣∣

X
gf f (X)
morph m (X)

 → �

Yi− 2

gf f (Yi− 2)
morph m(Yi− 2)

Yi− 1

gf f (Yi − 1)
morph m(Yi− 1)

 (5 . 5)

Note that Equation 5 . 4 corresponds to the following conditional probability:

P (Yi , f (Yi) , m(Yi) |X, f (X) , m(X) , Yi− 2 , f (Yi− 2) , m(Yi− 2) , Yi− 1 , f (Yi− 1) ,

m(Yi− 1))

Just as we updated Rule 5 . 2 to Rule 5 . 4 to account for features , we must similar

update the probability estimator:

#

X
gf f (X)
morph m (X)

 → �

Yi − 2

gf f (Yi− 2)
morph m (Yi− 2)

Yi− 1

gf f (Yi− 1)
morph m (Yi − 1)

Yi

gf f (Yi)
morph m(Yi)

�

#

X
gf f (X)
morph m(X)

 → �

Yi− 2

gf f (Yi − 2)
morph m(Yi− 2)

Yi− 1

gf f (Yi− 1)
morph m(Yi− 1)

�

(5 . 6)

However, we cannot use this estimator directly in all cases . Because the set of

morphological tags is ambiguous, there may be several values of f (Yi) and m(Yi)

for each rule. It is possible to account for this ambiguity by using an expensive

unsupervised training algorithm such as the EM algorithm (Dempster et al. ,

1 977) . However, we were able to devise a novel approach to estimating the prob-

abilities which is much faster in practice.

To illustrate our approach, consider the following rule, where the ‘ current

node’ (i . e. Yi in the rule schemas above) is a noun:

PP
gf MO
morph Akk

 →

APPR
gf OA
morph Akk

NN
gf NK
morph x

 (5 . 7)

The variable x can take values from the set X = {Masc. Sg. Akk, Fem. Sg. Akk, � } .
Let x i represent the ith element of set X . For the sake for this example, suppose

we wish to estimate the following probability:

P

NN
gf NK
morph x

∣∣∣∣∣∣

PP
gf MO
morph Akk

 →

APPR
gf OA
morph Akk

1 01 Parsing with Attributes

Using the chain rule, we separate the morphological tag x from the rest of the

rule:

P

NN
gf NK
morph x

∣∣∣∣∣∣

PP
gf MO
morph Akk

 →

APPR
gf OA
morph Akk

= P

 morph x

∣∣∣∣∣∣

PP
gf MO
morph Akk

 →

APPR
gf OA
morph Akk

[

NN
gf NK

]

· P

[

NN
gf NK

] ∣∣∣∣∣∣

PP
gf MO
morph Akk

 →

APPR
gf OA
morph Akk

Then we assume the morphological tag is independent of everything else, and is

assigned a probability according to the distribution PX :

PX(x) = P

 morph x

∣∣∣∣∣∣

PP
gf MO
morph Akk

 →

APPR
gf OA
morph Akk

[

NN
gf NK

]

We refer to the overall rule estimate as Pa-rhs (for ambiguous tag on the right

hand side) , and it is defined as:

Pa-rhs

NN
gf NK
morph x

∣∣∣∣∣∣

PP
gf MO
morph Akk

 →

APPR
gf OA
morph Akk

= PX(x) · P

[

NN
gf NK

] ∣∣∣∣∣∣

PP
gf MO
morph Akk

 →

APPR
gf OA
morph Akk

 (5 . 8)

The second probability on the second line of Equation (5 . 8) can be estimated

from the corpus, with one caveat. While the morph attribute on the LHS (Akk)

is unambigous in this example, it is not guaranteed to be unambiguous. For

example, prepositions ambigous between the accusative and dative may take an

Akk or Dat morph attribute. When the morph attribute is ambiguous on the

LHS , we make the following simplifying assumption:

P

[

NN
gf NK

] ∣∣∣∣∣∣

PP
gf MO
morph Akk

 →

APPR
gf OA
morph Akk

= P

([
NN
gf NK

] ∣∣∣∣
[

PP
gf MO

]
→

[
APPR
gf OA

])
(5 . 9)

5 . 2 Parsing with Morphological Features 1 02

In other words, we simply use the underlying rule. Although this removes the

dependance on the morph attribute, the value of the attribute still plays a role

when calculating the tree probability. The Akk and Dat attributes are calculated

at an earlier step, when the parent is being generated.

The first probability in Equation (5 . 8) can be estimated from the corpus,

because part of NEGRA is, in fact , annotated with morphological tags. The

estimate is based on marginal probabilities of morphological attributes :

PX(x) =
P (x)∑

x i∈X P (x i)

Note that, in this particular example:

PX(x) = P(x | Akk)

If ambiguous morph attribute on the RHS of a rule depends on an ambiguous

morph attribute on the LHS of a rule, we will have a different set X and hence a

different probability distribution PX for each choice on the LHS . More concretely,

if the LHS is ambiguous between Akk and Dat, then in the Akk case, X =

{Masc. Sg. Akk, Fem. Sg. Akk, � } .
Putting everything together, we have four possible cases :

1 . There are no ambiguities in the morphological tags. We may use the

standard probability distribution. We refer to this case as unambiguous ,

and to the probability estimate associated with this case Punambiguous .

2 . There is an ambiguity on the RHS . We use PX to ‘ weight’ the probability

estimate, as in Equation (5 . 8) . We call to this case as a-rhs , use the prob-

ability distribution Pa-rhs as defined in Equation (5 . 8) .

3 . There is an ambiguity on the LHS . We call such cases a-lhs (for

ambiguous left hand side) , and the approximation of the probability distri-

bution Pa-rhs . Pa-rhs is derived by applying the simplification from Equa-

tion (5 . 9) to Punambiguous

4. There are ambiguities on both the LHS and RHS . Such cases are referred

to as ambiguous , and the probability distribution Pambiguous is derived

by applying the simplification from Equation (5 . 9) to Pa-rhs .

1 03 Parsing with Attributes

Let LHS → RHS be a rule in the form of Rule (5 . 4) . Then we define P (RHS | LHS)

as :

Pall(RHS | LHS) = P(unambiguous) · Punambiguous (RHS | LHS) (5 . 1 0)

+ P (a-lhs) · Pa-lhs (RHS | LHS)

+ P (a-rhs) · Pa-rhs (RHS | LHS)

+ P (ambiguous) · Pambiguous (RHS | LHS)

We developed a method to pre-compute Pall (RHS | LHS) directly while training,

without even having to explicitly compute the distributions on the right side of

Equation (5 . 1 0) . Pall fully specifies the probability distribution required to train

a parser on the morphologically-tagged corpus. Having defined the probability

distribution, we now turn to evaluating the effect of morphological features on

parsing performance.

5 . 2 . 3 Method

We use the normal divisions of training, development and test sets. All three sets

are tagged automatically, but only the training set contains the hand-annotated

subset . When hand-annotated morphological tags are available, they are chosen

over the automatically tagged ones. The morphological tags are propogated up

the trees as described in Section 5 . 1 . 3 . If the morphological tags are ambiguous,

each data point in the training data is split and weighted as described in Sec-

tion 5 . 2 . 2 . Although the propogation, splitting and weighting worked successfully,

we found the splitting and weighting step to be prohibitively time consuming. To

make this step more efficient, we limited propogation inside a few key nodes --

NP, AP and PP , as well as their co-ordinated versions CNP, CAP and CPP. Not-

ably missing from this set is the proper noun category MPN. We found that mor-

phological taggers simply proposed too many tags for these categories , greatly

slowing down the splitting and weighting step. Moreover, many of these tags

cannot be pruned because of a sparsity of marked pruning cues such as articles.

The problem was worse when MPNs were co-ordinated: we cannot guarantee that

co-ordinate sisters share the same gender or number. Therefore, not only did we

choose not to propgate the morphological tags of proper nouns, but they were

stripped from the training set entirely.

5 . 2 Parsing with Morphological Features 1 04

In terms of evaluation, we continue to use the standard measures we have

been using to this point . As all the hand-annotated morphological tags are in the

training data, we do not evaluate the accuracy of labelling the morphological tags

themselves on the training data. Rather, we test the effect the tags have on

labelled bracketing.

We test four models, two with GFs and two without . The baseline is the

parser from Chapter 4 which includes beam search and Brants smoothing, but no

multipass parsing. The second model adds morphological tags to this parser.

These two parsers make the first pair. The second pair of models includes GFs,

including all the re-annotations proposed in Chapter 4. The first of this pair is

the same as the best performing parser of Chapter 4. Again, the second includes

the morphological tags.

5 . 2 . 4 Results

The results are shown in Table 5 . 5 . The F -score of the morphological parser

without GFs (Baseline+Morph) does not surpass the F -score of the baseline.

However, it does acheive a slightly higher recall . Including GFs in the morph

model was not successful. Comparing the parser with morphological tags and GFs

(Baseline+Morph+GF) to the parser only including GFs (Baseline+GF) , we find

that Baseline+Morph+GF performs worse on every measure.

5 . 2 . 5 D iscussion

The inclusion of morphological tags does not appear successful . Nevertheless, the

small increase in recall does suggest that the morphological tags are pruning away

some linguistically unlikely edges, although this effect is overshadowed by the

effect of grammatical functions. There are a number of possible reasons why

including morphological tags does not help.

First , there is stil l some noise in the training data. As we saw in Section 5 . 1 ,

the morphological tags are only 91 % correct on a word-by-word basis. We did not

test how accurate the tags are when considered on a constituent-by-constituent

basis . Too many mistakes in the training data would make it difficult to label

words and constituents correctly while parsing.

1 05 Parsing with Attributes

Precision Recall F -score Avg CB 0CB 6 2CB
Baseline 74. 4 70 . 8 72 . 6 0 . 66 66. 2 91 . 7
Baseline+Morph 73 . 1 71 . 1 72 . 1 0 . 69 66. 1 91 . 0
Baseline+GF 75 . 9 76 . 6 76 . 3 0 . 54 70. 1 94. 2
Baseline+Morph+GF 73. 6 75 . 1 74. 4 0 . 58 68 . 3 93 . 8

Table 5 . 5 . Parsing with morphological features

Second, the tag set used was a ‘ lowest common denominator’ choice, including

only the attributes available in all of the morphological taggers and in the

NEGRA corpus. Even using this diminished set required intensive translations

between the theoretical and practical differences of the various tag sets . However,

in doing so, some potentially useful tags were left out. In particular, the declen-

sion of adjectives changes based upon the pronoun preceeding them, yet it is not

possible to describe these changes with the current set of attributes .

A third problem may be with the way the probabilities of the grammar model

were estimated. Lacking correct training data, we relied upon an ad-hoc estima-

tion. The first three problems all stem from a lack of suitable training data. Cor-

pora including such data would obviously not have these problems.

A fourth problem is that there may be little room to improve the accuracy of

POS tagging. Recall that some POS tag ambiguities faced by parsers or finite-

state taggers are essentially resolved if better morphological information is

present. A relevant example is adjective/verb ambiguity. While not very common,

it can lead to disasterous errors while parsing. When an adjective is mistaken for

a verb, it is often the case that the falsely tagged adjective has the wrong case,

number or gender, or that the falsely tagged verb has the wrong tense or person.

Indeed, solving this kind of ambiguity (common in co-ordinated structures) is one

of the main justifications for including morphological tags. But if POS tagging is

accurate enough, including morphological tags may not ‘ buy’ much improvement.

We will return to a closer evaluation of POS tagging accuracy in Section 6 . 1 .

A final problem may be that, despite the inclusion of smoothing, the parser

may be facing sparse data problems. While there are not nearly as many states as

in lexicalized parsing, each node is now getting quite complex. In Section 5 . 3 , we

develop an approach for overcoming sparse data by decomposing nodes into their

constituent features, giving some indication if this the source of our difficulties .

5 . 2 Parsing with Morphological Features 1 06

5 . 3 Parsing with Attributes

If the failure of the morphology model is indeed due to sparse data, we may

appeal to two of the standard approaches to overcoming overfitting: smoothing or

making further independence assumptions. It is not immediately obvious how to

introduce more smoothing in to the model. It is possible, though, to assume

greater indepedence between grammatical categories and attributes . Doing so, the

underlying grammar begins to resemble attribute-value grammars (Shieber, 1 986 ;

Johnson, 1 988) . Essentially, we end up describing a probability distribution over

very simple attribute-value structures . Keeping attributes separate (or at least

partially separate) from grammatical categories allows us to develop alternative

estimates of the probability of the rule, by making different assumptions about

how to assign probabilities to attributes such as OA or HD.

5 . 3 . 1 Parameterizat ion

Stolcke (1 994) first discussed the benefits of using maximum entropy models to

assign probaiblity distributions over attribute-value grammars. A more detailed

and forceful argument in favour of a related approach, log linear models, was due

to Abney (1 997) . Maximum entropy and log-linear models are the prevalent

approach to parameterizing attribute-value grammars. However, despite the pop-

ularity of such models , it is by no means true that these are the only approach to

parameterizing attribute-value grammars. It is worth reviewing the argument of

Abney (1 997) to show how there are other possible solutions to the problem

Abney presents .

Consider the following grammar:
[

S
]
→

[
A

1

] [
A

1

]

[
S
]
→

[
B
]

[
A
a

]
→ a

[
A
b

]
→ b

[
B
]
→ a a

[
B
]
→ b b

1 07 Parsing with Attributes

Up to notational changes, it is the same grammar used by Abney. In this

grammar, the variable 1 can take the values a or b . Now, consider the following

tree:

[
S
]

[
A
a

]

a

[
A
a

]

a

To assign a probability to this tree, Abney, following Eisele, suggests the fol-

lowing ‘ incorrect ’ estimate:

P

[
S
]

[
A
a

]

a

[
A
a

]

a

= P

[
S
]

[
A

1

] [
A

1

]

∣∣∣∣∣∣∣∣∣∣∣∣∣

[
S
]

· P

[
A

1

]

a

, 1 = a

∣∣∣∣∣∣∣∣∣∣

[
A

1

]

2

(5 . 1 1)

At this point , the probability assigned to the parse becomes troublesome. Abney

provides example probabilities for the grammar, showing that the probability for

this tree is too low. As Abney writes, ‘ ‘ something has gone very wrong” .

However, our more explicit notation allows us to see the exact reason Abney and

Eisele ran into difficulties: the variable substitution 1 = a occurs twice, each time

a is generated. Because the variable is substituted twice, it may be substituted

with two different values . The example grammar Abney provides, however, allows

only one substitution.

5 . 3 Parsing with Attributes 1 08

Abney proposes maximum entropy models as the solution to this double sub-

stitution problem. Recall that while derivations in context-free grammars are

trees , derivations in attribute-value grammars (in general) are directed acyclic

graphs (DAGs) , which allow directed edges to rejoin. Noting that PCFGs can be

seen as maximum entropy models where rules are features , Abney suggests using

these rejoining subtrees as features, instead. While PCFGs have an efficient max-

imum likelihod estimate, the more complicated maximum entropy models pro-

posed by Abney require a much more intensive training algorithm.

The notation we use suggests another possible solution: ensure the variable is

assigned only once. There are two ways to go about this : one approach is to ‘ ‘ split

the state space” , and instantiate all variables with values (essentially what we

have been doing until this point) . The second is to leave the variables uninstanti-

ated, but only generate the assignment once. Compare the incorrect derivation in

Equation 5 . 1 1 with the following:

P

[
S
]

[
A

1

] [
A

1

]

∣∣∣∣∣∣∣∣∣∣∣∣∣

[
S
]

· P
(

1 = a
)
· P

[
A
a

]

a

,

∣∣∣∣∣∣∣∣∣

[
A
a

]

2

(5 . 1 2)

One way to ensure a variable is only assigned once is to force a variable to appear

only once in a child. This is the approach used by Stolcke (1 994) . In Stolcke’ s

models, the ‘ target ’ of the assignment is always a variable of the parent , and the

assigned values are either inherited from a child below, or they are synthesized at

the current rule. In Rule 5 . 1 , the gf category OA (accusative ob ject) is inherited.

Linguistically, the parent inherits this category the noun, but in our simple

grammar, only the article is marked as being accusative. Therefore, in this partic-

ular example, the parent inherits the gf from the article. To illustrate how the

probabilities are calculated, consider a simplification of Rule 5 . 1 , where the only

attribute is gf . The probability of this rule is :

P

([
NP
gf OA

]
→

[
ART
gf OA

] [
NN
gf NK

] ∣∣∣∣
[

NP
gf OA

])

= P

([
NP

gf 1

]
→

[
ART

gf 2

] [
NN

gf 3

] ∣∣∣∣∣

[
NP

gf 1

])

· P
(

3 = NK

∣∣∣∣∣

[
NP

gf 1

])
· P

(
1 = 2

∣∣∣∣∣

[
NP

gf 1

])

1 09 Parsing with Attributes

The assignment 2 = OA is made when the POS tag ART generates its lexical

element. S tolcke notes this approach does not work if extended to several vari-

ables (what is commonly referred to as having re - entranc ie s) . We essentially run

in to the same problem as noted above. This makes it difficult to properly model

the morph attribute: in a noun phrase, the morph attribute will be the same for

almost all preterminal children. S tolcke suggests two approaches: (preceeding

Abney) random fields and using a ‘ head-driven’ approach. In the head-driven

approach, one child is picked as the head, and the attributes of the other children

are condition upon that of the head child. To better illustrate how probabilities

are calculated using this approach, consider another simplification of Rule 5 . 1

which only includes the morph attributes . The probability would be:

P

([
NP
morph Masc .Akk . Sg

]
→

[
ART
morph Masc .Akk . Sg

]

[
NN
morph Masc .Akk . Sg

])

= P

([
NP

morph 1

]
→

[
ART

morph 2

] [
NN

morph 3

] ∣∣∣∣∣

[
NP

morph 1

])

· P
(

1 = 3

∣∣∣∣∣

[
NP

morph 1

])
(5 . 1 3)

An external constraint (with certain probability) enforces that 2 = 3 . The value

of 3 is set to Masc. Akk. Sg when the noun expands to a word.

A third approach, introduced by Schmid (2002) , is to generate the assignment

at the first moment it is needed. This ties the parameterization to a particular

parsing model . In an incremental left-to-right parser , the assignment is generated

when the left most child is generated. If we wanted to parse the string den Mann

with Rule 5 . 1 (again only with morph attributes) the probability may be estim-

ated as:

P

([
NP
morph Masc .Akk . Sg

]
→

[
ART
morph Masc .Akk . Sg

]

[
NN
morph Masc .Akk . Sg

])

= P

([
NP

morph 1

]
→

[
ART

morph 1

] [
NN

morph 1

] ∣∣∣∣∣

[
NP

morph 1

])

5 . 3 Parsing with Attributes 1 1 0

Then the probability of expanding ART into den would be:

P

([
ART
morph Masc .Akk . Sg

]
→ den , 1 = Masc .Akk . Sg

∣∣∣∣∣

[
ART

morph 1

])

The grammar also requires some probabilistic ‘ clean up’ while training to remove

probability mass from impossible derivations.

Notice that variables perform two different functions. First , variables replace

instantiated values in context-free rules , allowing us to pool parameter estimates.

S econd, variable assignment by declarations of equality also replace instantiated

values . The second use is most transparent in Stolcke’ s approach. There is an

explicit statement in Equation 5 . 1 3 calculating the probability that 1 = 2 . This

replaces potential instantiations. For example, if X1 is the trace attribute of the

parent and X2 is the trace attribute of the child, then P(1 = 2) replaces

P (X1 = Masc .Akk . Sg, X2 = Masc .Akk . Sg) , P(X1 = Fem .Akk . Sg, X2 = Fem .Akk . Sg) ,

etc. While we may worry that rule probabilities may overfit the training data, the

tag set of morphological labels is quite small , making these probabilities relatively

easy to estimate.

This suggests an additional approach to parameterizing attribute-value gram-

mars: we may use variables in context-free rules but instantiate values for variable

assignments. In essence, this means the probability of context-free rules can be

computed as before (just like with Stolcke’ s method) , but we add the additional

step of computing attributes. To account for several children which may have the

same value, we condition upon the attributes generated for previous sisters . Thus,

we may calculate rule probabilities in the following way:

P

Xi

gf G i

morph Mi

∣∣∣∣∣∣

X ′

gf G ′

morph M ′

 → �

Xi− 2

gf G i− 2

morph Mi− 2

Xi− 1

gf G i− 1

morph Mi− 1

= PCFG · PMORPH · PGF

Where PCFG is defined as before:

PCFG = P (Xi |X ′→ � Xi− 2 Xi− 1)

PGF is defined as:

PGF = P (G i |Xi , X
′, M ′, Mi− 1 , Mi− 2)

1 1 1 Parsing with Attributes

Precision Recall F -score Avg CB 0CB 6 2CB
Baseline 74. 4 70 . 8 72 . 6 0 . 66 66 . 2 91 . 7
Baseline+GF 75 . 9 76 . 6 76 . 3 0 . 53 70 . 1 94. 2
Decompose GF 75 . 1 75 . 5 75 . 2 0 . 55 69 . 3 93 . 1
Decompose Morph 71 . 2 71 . 3 71 . 2 0 . 76 63 . 1 90 . 7
Decompose GF+Morph 72 . 2 74. 2 73 . 2 0 . 65 64. 8 92 . 2

Table 5 . 6 . Parsing with node decomposition

And PMORPH is defined similarily to PGF .

This parameterization is not as ambitious as that of Abney or Schmid.

Because the set of features we are using is quite simple, we only need to consider

atomic attributes . Indeed, the attributes we use are quite simple largely due to

one simplifying assumption: unlike formalisms which store entire parses in a single

attribute-value matrix, our attribute-value structures are simply nodes on a parse

tree. Of course, this assumption makes it harder to interpret parses : it is usually

easier to read values from a single-attribute value structure rather than a tree.

Theoretical complaints aside, having chosen a parameterization for attribute-value

decomposition, we may now turn to testing the models .

5 . 3 . 2 Method

We run two sets of experiments . The first set tests the effect of node decomposi-

tion on GFs alone, the second tests the effect on morphological tags, as well .

Four models are tested. These are: a baseline without GF labels at all , a

baseline with GFs, and two models with two differing approaches on how to

decompose GF labels. In all models with GFs, we use the GF transformations of

the best-performing model of Chapter 4. Each model is then tested using both no

smoothing and with Brants smoothing.

5 . 3 . 3 Results

The results are summarized in Table 5 . 6 . None of the models with decomposition

were able to beat the model with undecomposed GFs (Baseline+GF) . In addition,

the model with decomposed attributes and morphological features (Decompose

Morph) did not even beat the baseline without GFs, although once again the

recall was higher. The morpholgical attributes continued to pose some problems

as the model with decomposed GFs and morph features (Decompose GF+Morph)

performed worse than the decomposition model with GFs alone (Decompose GF) .

5 . 3 Parsing with Attributes 1 1 2

The decomposed models did have some successes , however. The Decompose

GF model did acheive a higher F -score than the baseline without GFs (75 . 3

versus 72 . 6) , although it performed slightly worse than the Baseline+GF’ s 76 . 3 .

5 . 3 . 4 Discussion

This disappointing results can be mitigated, possibly, to two factors: the decom-

position model is not appropriate to these attributes or there is either no sparse

data or the decomposition model is not appropriate to solve the sparse data

problem. We can say with some confidence that the decomposition model is not

completely inappropriate: the Decompose GF model did outperform the baseline.

This result suggets that GFs impart the parser with useful information even when

decomposed from nodes. Nonetheless , it is possible to argue the decomposition

model is not appropriate in some other ways.

Decomposing attributes from rules is tantamount to assuming the values of

the attributes to not affect rule probabilities. To illustrate this , consider the

nonterminals NP-SB, NP-OA and NP-DA. By decoupling the features (SB , OA

and DA) from the nonterminal, we assume that (i) any NP can appear in the

same place in the sentence (because rules like S → NP-SB V NP-OA are now just

S → NP V NP) , and (ii) that all NP ’ s expand the same way (because rules like

NP-SB → PPER-SB and NP-OA → ART-OA NN-NK become just NP →
PPER and NP → ART NK) .

This is not always the case. For example, while it may make sense to encode

case as a variable, we loose the ability to model several things. First , nominative

NPs appear in different parts of the sentence as dative or accusative NPs; this

information would be lost by not instantiating the variable. S econd, nominative

NPs are more likely to expand to pronouns. Finally, each may be lexicalized dif-

ferently, especially in the articles and pronouns. Each problem is depicted in the

figure below:

S

NP-SB

PPER-SB

Ich

V

schicke

ADV

schnell

NP-OA

ART-OA

den

NN-NK

Brief

Level 1

Level 2

Level 3

Level 4

1 1 3 Parsing with Attributes

On Levels 1 and 2 , we have information about where the NP-SB and NP-OA con-

stituents may appear. On Levels 2 and 3, we have information about how nomin-

ative and accusative NPs expand: the nominative is more likely to be a pronoun

than the accusative. Finally, on Levels 3 and 4, the POS tags expand to words.

Decomposing GFs from the syntactic categories may well have alleviated sparse

data problems, but this problem appears to be dominated by the effect of GF

labels on the probabilist ic behavious of syntactic categories . We can similarily dis-

count sparse data as a cause of the results of Section 5 . 5 above.

5 . 4 Gap Features

Let us leave morphology aside for a moment, and turn to another aspect of

German syntax. As we have already noted, NEGRA’ s flat annotation was

developed because of German’ s semi-free word order. Unfortunately, some freer

word order constructions cannot be sufficiently analyzed using flat annotations

alone. Consider the following sentence:

Example 5 . 6 .
Wieviele es genau sind , weiß niemand zu sagen
How many they precisely are knows no one to say
‘ ‘ No one can say exactly how many of them there are”

The clause ‘ ‘ Wieviele es genau sind ” has been fronted. If it had been a

dependent of the main verb, it would simply be given an OC (clausal ob ject) GF.

Here, however, it is a long-distance dependent of sagen , which is inside a VP . In

the Penn Treebank version of NEGRA, this is annotated by the empty e lement t1

in the VP, which is co-indexed (by the numeral ‘ 1 ’) with its antecedent S 1 : 5 . 1

S

S 1

PWS

Wieviele

PPER

es

ADJA

genau

VAFIN

sind

, VVFIN

weiß

PIS

niemand

VP

t1 VZ

zu sagen

Other topicalized constructions are also analyzed as LDDs. Among these are par-

tially fronted VPs, where the nonfinite verb of a VP may be fronted, leaving some

or all of its dependants behind. In addition to topicalization, another common

case where NEGRA posits LDDs is extraposition, when a dependent appears after

the VP .

5 . 1 . Normally, the sentential complement would be extraposed after zu sagen . However, this

posit ioning would itself involve a long-distance dependency, hence the posit ion of the trace

before zu sagen .

5 . 4 Gap Features 1 1 4

A proper treatment of LDDs is important: such dependencies occur in 27% of

all sentences in our development section. C learly, these sentences cannot be fully

analyzed without paying attention to LDDs. There are also other benefits to

accounting for LDDs: Dienes and Dubey (2003b) show that an unlexicalized

parser which includes a model for LDDs is better at finding local dependencies

than one which ignores LDDs.

While there are many approaches to handling LDDs (see Dienes, 2004) for a

full discussion) , the models of Dienes and Dubey (2003a) and Dienes and Dubey

(2003b) are particularily interesting: they allow the use of PCFG models , they are

fairly simple, and perform well . The basic approach of Dienes and Dubey, fol-

lowing Gazdar et al. (1 985) , is to thread a path between the empty element (EE)

and the antecedent. Such gap threading works picking a common label for the EE

and antecedent, and marking that label on each constituent dominated by the EE

which is not also dominated by the antecedent . These labels are referred to as

ga p+ attributes . For our experiments , the label is the GF of the antecedent. To

illustrate this, we annotate the tree above with the ga p+ attribute tOC :

S

S -OC

PWS

Wieviele

PPER

es

ADJA

genau

VAFIN

sind

, VVFIN-HD

weiß

PIS

niemand

VP tOC

tOC VZ

zu sagen

5 . 4. 1 Method

We use the same training, development and test sections as before, but all trees

with LDDs are modified to include threading of ga p+ attributes . Empty elements

are treated as additional words. As EEs do not appear in normal text, a realistic

parser ought to insert them before or during parsing. We do not consider this

problem here. Instead, we insert EEs wherever they appear in the gold standard.

This may artificially inflate results in two ways. First , finding the site of ante-

cedents is relatively difficult in English (Dienes, 2004) , and one might expect it to

be harder in German. Second, because the ga p+ features contain the grammatical

function of their antecedent, the parser may know to expect a constituent with

such a GF. Nonetheless , this approach has the advantage that it is simple and is

capable of il lustrating the importance of LDDs.

1 1 5 Parsing with Attributes

Precision Recall F -score Avg CB 0CB 6 2CB
Baseline 75 . 9 76 . 6 76 . 3 0 . 53 70 . 0 94. 2
EE 73. 8 74. 0 73 . 9 0 . 78 65 . 6 90 . 6
EE+Thread 77. 2 77. 7 77. 4 0 . 54 70 . 3 94. 1

Table 5 . 7 . Parsing with long-distance dependencies

We report results in three conditions: the baseline, a parser with traces and a

parser with traces and gap threading. The baseline is the best GF parser from

Chapter 4. The baseline parser is not given empty elements in the input nor does

it include ga p+ features on node labels . The second parser is given empty ele-

ments in the input and includes trace features on the antecedent. The third

parser is an extension of the second which includes gap threading in the form of

ga p+ features .

5 . 4. 2 Results

The results are summarized in Table 5 . 7 . The parser which includes empty ele-

ments (EE) performs worse than the baseline on every metric we measure. Most

notably, F -score falls from 76. 3 to 73 . 9 . In addition, there are more crossing

brackets on average. When gap threading is included, however, the situation is

different. The parser with gap threading (EE+Thread) performs better on

labelled bracketing, with an overall F -score of 77. 4. The crossing bracket meas-

ures are also higher, with an average crossing bracket of 0 . 54.

5 . 4. 3 Discussion

Giving a treatment to LDDs is beneficial even for finding local dependencies , rep-

licating the finding of Dienes and Dubey (2003b) for German. However, this is

only true after re-annotation: threading ga p + categories . The need to perform a

re-annotation to improve results parallels the finding in Chapter 4, with re-annot-

ated GFs.

There are some parts missing from LDD model. F irst , we have no mechanism

for automatically finding the site of EEs. This is left for future research. Second,

we have not measured how well the parser finds LDDs themselves , or on construc-

tions which often depend upon LDDs. To the extent these two can be separated,

we return to the former in Chapter 6 , sufficing to investigate the latter in Sec-

tion 5 . 5 .

5 . 4 Gap Features 1 1 6

5 . 5 Traces and Verb Final C lauses

In Section 3 . 6 and Section 4. 4, we tested the efficacy of the sister-head and GF

parser on verb-final and topicalization constructions. We found the parsers had

difficulty with both types of constructions. Noting that sentences containing these

constructions tended to be longer, and that longer sentences are in general harder

to parse, we then introduced a re-weighting scheme to account for the effects of

sentence length. In both cases, we found that accounting for sentence length did

not change the final results: these constructions are difficult to parse for the

sister-head and GF models .

It is possible there is another confound: the presence of long-distance depend-

encies . On the development set , 5 1 % of sentences with a verb-final clause and

45% of sentences with a topicalization construction also contain some kind of

long-distance dependency. In contrast , only 20% of sentences without verb-final

clauses and 1 4% of sentences without fronting contain a long-distance depend-

ency. As we have now introduced a model which can handle long-distance

dependencies, it is reasonable to suggest that it may remove this confound.

To test this hypothesis, we examine the performance of the gap-threading

parser from Section 5 . 4 against a baseline which does not model LDDs (once

again, the best-performing GF parser from Chapter 4 serves this purpose) . As in

Section 4. 4, we alternately partition the data in two ways: sentences which con-

tain some verb-final clause vs. those which do not, and sentence which contain

some topicalized clause vs. those which do not. With each partition, we report

results using F -scores of labelled bracketing and weighted F -scores , which

attempt to accounts for sentence length effects (see Section 3 . 6 for a further discu-

sion of weighting) .

5 . 5 . 1 Results

The results are in Table 5 . 8 . Including traces and threading leads to improve-

ments in all conditions, measuring with both standard and weighted F -scores.

Using standard F -scores , trace threading lead to a 1 . 4 point improvement in sen-

tences containing a verb-final construction (vf) , and a 1 point improvement in

sentences which did not (novf) . Furthermore, there was a 1 . 1 improvement in

both sentences containing a topicalization construction (topic) as well as those

without (notopic) .

1 1 7 Parsing with Attributes

all vf novf topic notopic
Avg. Sentence length 7. 5 1 1 . 2 6 . 4 8 . 9 6 . 5
S tandard F -score Baseline 76 . 3 73 . 2 77. 8 75 . 6 76 . 9

Thread 77. 5 74. 6 78 . 8 76 . 7 78 . 0
Weighted F -score Baseline 76 . 3 75 . 2 76 . 8 76 . 0 76 . 2

Thread 77. 5 77. 5 76 . 9 77. 4 77. 6

Table 5 . 8 . Performance on various syntactic constructions

When considering weighted F -scores , the relative increase in the vf case was

much higher. The improvement for vf was 2 . 9 points , to a total of 77. 5 . This is

actually higher than the 76 . 9 reported in the novf condition, iself a 0 . 1 point

increase over the baseline. Both the topic and notopic cases saw an improve-

ment of 1 . 4 over the baseline, for final score of 77. 4 and 77. 6 respectively.

5 . 5 . 2 D iscussion

Introducing gap threading made it easier to recover verb-final constructions.

Indeed, the weighted result in sentences with verb-final constructions was a bit

higher than in those sentences without such constructions. It would be comforting

to assume this is because vf sentences are actually easier to parse after

accounting for the effects of sentence length. There are, however, two other pos-

sible causes of this result . F irst , the fact we were using perfect traces may have

given an unrelatistic boost to the trace model. S econd, the weighting scheme may

be overeager, and give too much weighting to smaller sentences. It is possible that

all three may influence the result , although it is difficult to determine to what

extent.

In constrast to the success on verb-final sentences, the improvement in the

topic and notopic conditions were more balanced. The improvement due to

gap threading was the same in both condit ions, meaning that, for our model,

parsing topicalized sentences does not benefit from the inclusion of empty ele-

ments and gap threading. This is true despite that fact that long-distance

dependencies are actually more common in the topic condition than the vf con-

dition. A possible explanation might be the nature of the long-distance dependen-

cies present in each condition. The baseline parser has difficulty with relative

clauses , especially extraposed relative clauses -- it often mistakes relative pro-

nouns for articles, and attempts to attach the verbs elsewhere in the sentence,

leading to many attachment errors. The parser with gap threading does better in

these situations, which helps in the vf condition more than in the topic condi-

tion.

5 . 5 Traces and Verb F inal C lauses 1 1 8

Moreover, long-distance dependencies specifically involving topicalization are

usually not as hard to parse. The most common fronted constituents are modi-

fiers , which do not cause any special difficulties when missing from the Mitte lfe ld .

Troublesome constructions, l ike partial VP fronting, are extremely rare in the

NEGRA corpus.

5 . 6 Conclusions

The fundamental purpose of this chapter was to use a PCFG to model syntactic

properties of German which are often not part of parsing models in English, in

particular morphology and long-distance dependencies. The results were mixed.

While the parsers with morphological attributes had some moderate successes, the

overall effect was a less accurate parser. The outcome of modelling non-local

dependencies, however, was more favorable. When including gap threading, the

parser even did a better job of finding local dependencies .

It is highly probable that a cause of the difference may be the way the data

was generated: the morphological attributes were almost entirely machine-gener-

ated, whereas the non-local depdendencies were almost entirely annotated by

humans. If anything, this may suggest that the opposing results with morpholo-

gical vs . non-local attributes was not because morphology is not useful while

parsing, but because human annotators tend to be more accurate than morpholo-

gical taggers .

1 1 9 Parsing with Attributes

Chapter 6

Further Evaluat ion

Throughout this thesis , we have been evaluating the accuracy of parsing models

with labelled bracketing scores and, to a lesser extent, consistent bracket scores.

These measures alone do not tell us everything we wish to know about the accu-

racy of a parser. For instance, a correct semantic interpretation depends on accu-

rate POS tags and GF labels as much as it depends on accurate parsing. Despite

this, we have not yet measured how accurate any parser is at applying POS tags

or GF labels .

Moreover, it is not clear that labelled bracketing scores are necessarily the

best way to measure the accuracy of trees. Lin (1 995) argues that labelled brack-

eting scores are susceptible to cascading errors , where one incorrect attachment

decision will cause the scoring algorithm to count more than one error. Lin sug-

gests using word-word dependencies as the basis of an alternative evaluation

metric which is not prone to the same problems. Dependency measures count the

percentage of head-dependant relationships the parser correctly finds.

Dependencies are important for others reasons. Hockenmaier (2003) argues

that dependencies are more annotation neutral than labelled bracketing scores.

She finds her binary-branching grammar performs poorly using labelled brack-

eting scores , but nonetheless has comparable performance to Collins (1 997) when

using unlabelled dependencies .

In this chapter, we present further evaluation of the models in previous chap-

ters with the goal of assessing their success at finding correct POS tags (Section

6 . 1) , GF labels (Section 6 . 2) and word-word dependencies (Section 6 . 3) . We con-

centrate the evaluation on baselines and the best-performing models of each

chapter: the unlexicalized baseline, the sister-head parser, an unlexicalized

smoothed baseline, the best smoothed GF parser and the gap-threading parser.

1 20

Baseline 96 . 5
Baseline+GF 96. 4
Smooth 96 . 4
Smooth+GF 96. 7

Table 6 . 1 . POS tagging accuracy

Precision Recall F -score Avg CB 0CB 6 2CB
Smooth+GF 75 . 9 76 . 6 76 . 3 0 . 53 70 . 1 94. 1
Smooth+GF+Perfect Tags 85 . 4 85 . 0 85 . 2 0 . 27 82 . 7 98 . 1

Table 6 . 2 . Results with perfect tagging

6 . 1 POS Tagging

Testing the accuracy of POS tagging is interesting for three reasons. First , cor-

rectly guessing POS tags is an important goal in and of itself. S econd, because

POS tagging has developed into a field of its own right, it is reasonable to ask if

broad-coverage parsers render stand-along POS taggers obsolete. Although stand-

alone taggers are simple to build, and tag both quickly and accurately, if parsing

is accurate and fast enough we may question the importance of tagging as an

independent step. Finally, an incorrect POS tags can have negative ramifications

on further parsing decisions. It is worth investigating how often and to what

degree a wrong POS tag can mislead a parser.

We measure the accuracy of POS tagging by simply comparing how often the

guessed tag matches the gold standard. Because there is one and only one guess

per word, we need not measure precision and recall . Four models are tested: the

unlexicalized baseline, the baseline with grammatical functions, the model with

smoothing but without grammatical functions, and, finally the model with

smoothing and grammatical functions. Note that the unlexicalized baseline is

more than a simple PCFG: it includes Markovization and suffix analysis for

guessing POS tags of unknown words. The POS tagging accuracy of the sister-

head parser is not comparable to the other parsers here, and hence it is not

included in the evaluation. While the sister-head parser does guess the POS tag

of many words, for unknown words, it requires an annotated POS tag from a

corpus.

In addition to evaluating POS tagging alone, we also re-ran the best-per-

forming parser (the smoothed model from Chapter 4) with perfect tags. In other

words, the parser used the correct POS tags from the gold standard trees instead

of guessing the tags itself, just like the parsers in Chapter 3 . Using perfect POS

tags allows us to gauge the impact of POS tagging errors on parsing mistakes .

1 21 Further Evaluation

6 . 1 . 1 Results

Table 6 . 1 shows the accuracy of POS tagging, and Table 6 . 2 has the results of

parsing with perfect tags. Looking at the POS tagging results first , the baseline

model had a score of 96 . 5 . The Baseline+GF and Baseline+Smooth models were

both slightly lower at 96 . 4 each. The Smooth+GF model produced the highest

result of 96 . 7 . Note that both models with GFs ingore the GFs during evaluation.

Giving the Smooth+GF model the correct POS tags improves the labelled

bracketing F -score of the Smooth+GF model from 76. 3 to 85 . 2 . The average

crossing bracket falls to 0 . 27 compared to 0 . 53 , the 0CB figure rises to 82 . 7% of

sentences from 70. 1 % , and the percentage of sentences with less than two crossing

brackets rises to 98 . 1 from 93. 2 .

6 . 1 . 2 D iscussion

The best result in NEGRA POS tagging known to us is 96 . 7 by the TnT tagger

reported by Brants (2000) . The best result here (by the Smooth+GF model) also

gives a score of 96 . 7 with the same amount of training data. S trictly speaking,

though, the result of the Smooth+GF model is not comparable to the results with

TnT because Brants makes use of multifold cross-validation testing and we do

not. After re-trained and re-tested TnT using our split of training and testing

data, the tagger stil l achieves an accuracy of 96 . 7 . Therefore, we may conclude

that the best parsing model here matches the best tagging results in German.

Despite the closeness of the results, the Smooth+GF parser is considerably

more complex than Brants ’ POS tagger in at least three ways: first , it is a parser

rather than a finite-state tagger; second, due to the use of GFs it has many more

possible states , even in POS tags; and third, it makes much more intensive use of

smoothing. The last point is particularly relevant: due to time taken to calculate

smoothed probabilities, the Smooth+GF parser is much slower than other parsers,

let alone a tagger.

The second experiment shows that accurate POS tagging is fundamental to

accurate parsing. Giving the parser the correct POS tags raises labelled brack-

eting scores by nearly 1 0% and makes the average crossing brackets figure fall by

nearly half. To determine how POS tags influence parsing errors , we performed

an error analysis on 1 00 sentences in the development section. All of these sen-

tences contained at least one POS tagging error.

6 . 1 POS Tagging 1 22

Error Type Frequency
Common/proper noun 35
Adjective/adverb 4
Interrogative/relative pronoun 3
Others 20
All errors 62

Table 6 . 3 . Lexical POS Tagging Errors (see Section 6. 1 . 2 . 1)

Error Type Frequency
Adjective/verb 1 4
Improper verb tense 9
Common/proper noun 6
Errors with als (‘ as ’) 5
Preposition/adverb 4
Conjunct mistagging 3
Pronoun/article 3
Other closed-class words 1 5
Other open-class words 1 3
All errors 72

Table 6 . 4. Struc tural POS tagging errors (see Section 6 . 1 . 2 . 1)

6. 1 . 2 . 1 Lexical and S tructural Part-of-Speech Tagging Errors

Tagging errors come in two varieties : in one case, which we will refer to as lexical

errors, the POS tagging mistake does not cause any obvious parsing mistakes. In

the second case, which we call structural errors , a tagging mistake directly causes

a parsing mistake.

About half the sentences we examined only contained lexical errors . We fur-

ther subcategorized lexical errors by the type of POS tags which were confused.

The result of this analysis is shown in Table 6 . 3 . The first column shows the type

of error, and the second shows the frequency of the error in the set of sentences

we examined. The errors are ranked by decreasing frequency. The remaining error

analyses in this section also use the same table layout. Although all these tables

are ranked by decreasing frequency, there may be some variance in the ranking

due to sampling. Because the error analyses are merely illustrative, we do not

perform any significance tests to determine the effect of sample variance on the

rank order. Indeed, errors which differ by only several occurrences will probably

be ranked differently when given a different random set of 1 00 sentences .

1 23 Further Evaluation

Despite the possible problems due to sampling, it is clear from Table 6 . 3 that

the most common lexical error by far is to confuse common nouns and proper

nouns. Unlike English, capitalization does not provide any clues to distinguish

between the two: both proper nouns and common nouns are capitalized. Both

usually head an NP, so mistakes are usually localized.

While less common, other noticeable lexical errors are ambiguities between

predicative adjectives and adverbs (both have the same lexical form) , and

between interrogative and relative pronouns (words like was , ‘ ‘ what/which” may

be used in both situations) . Other lexical errors were too rare to be grouped into

meaningful categories , although many of them involved either adjectives or

adverbs.

Adjectives and adverbs were also at the root of many structural errors . The

most common structural error was to mistake an adjective for a verb or vice

versa. A complete list of the most frequent structural POS tagging errors can be

seen in Table 6 . 4. The second most common mistake after adjective/verb errors

were problems with verb tense, i . e. mistaking a finite verb for an infinitive. Both

errors are essentially problems due to a lack of morphological features . This con-

firms the intuition from Chapter 5 that morphological attributes ought to be

useful for parsing, although it appears that information about verb tense may be

as important or more important than information about case, number and gender.

Although information about verb tense might help, it is also possible that

some ambiguities may be resolved by simply using a larger training set . Most tag-

ging errors are due to unseen words (Brants , 2000) . Some parsing errors , however,

are due to closed-class words which are ambiguous between two or more POS cat-

egories . Als (‘ as ’) may be used as a preposition, as a conjunct or for comparisons.

In general, these can be difficult to tell apart without semantic information. How-

ever, als is only used as a conjunct together with sowohl . Either adding attributes

or a careful lexicalization could distinguish the use as a conjunct with the other

uses. S everal other words are ambiguous between a use as an adverb and a use as

a closed-class word. Bis (‘ until ’) and uber¨ (‘ over/via’) are normally prepositions,

but may act as adverbs, just as aber is normally a conjunct, but may be used as

an adverb. Mistagging these words leads to severe parsing errors : if the parser

believes it must create a preposit ional phrase or several co-ordinated constituents,

it will attempt to do so.

6 . 1 POS Tagging 1 24

Overall , structural POS tagging errors have a profound impact on parsing

accuracy. The average F -score of sentences with a lexical error is 80 . 2 versus 65 . 1

for sentences with a structural POS tagging error. Unlike the analysis of verb-

final constructions of Chapter 3 , it is safe to compare these two numbers: the

average length of sentences with lexical errors is 1 5 . 6 words versus 1 5 . 3 words for

sentences with structural errors. Indeed, if we take the same set of sentences, and

re-parse them with perfect tags, the average F -scores are 88 . 3 for those which

originally had structural errors and 88 . 2 for those which originally had lexical

errors.

Using perfect tags does improve the F -score of sentences which only constitute

lexical errors. This improvement seems paradoxical given the definition of what

constituents a lexical error (recall that lexical errors are POS tagging errors which

do not appear to cause parsing errors) . The apparent paradox can be explained

by a rather technical decision: we do not consider an incorrect GF label to consti-

tute a POS tagging error. In other words, sentences which only contain lexical

POS tagging errors may contain structural GF tagging errors. These errors are

fixed when we re-parsed these sentences with perfect tags.

6. 1 . 2 . 2 Parsing Errors not due to Part-of-Speech Tags

As noted above, giving the parser perfect POS tags does not solve all parsing

errors. Many forms of attachment errors remain. We again performed a detailed

error analysis on 1 00 sentences, using a different set of sentences than those use to

classify POS tagging errors . We show the results in Table 6 . 5 . The first column

shows the attachment type, and the second column shows the frequency of the

error in the set of sentences we examined. The most frequent problem is the

attachment of modifiers such as PPs, subordinate clauses and NP appositions.

Among these constituents , PPs are by far the most common, with subordinate

clauses and other modifiers well behind.

The second most common error is improper attachment of adverbs. While

adverb attachment errors could be grouped with the more general category of

modifier attachment problems, an idiosyncrasy in NEGRA obliges us to treat

adverbs separately. Linguistically, adverbs modify verbs or prepositions. However,

in NEGRA, while some adverbs (such as jetzt ‘ now’) do indeed modify verbs,

others (like auch ‘ also/too’) usually modify nouns. The parser often confuses the

two cases . Better classification of the adverbs or lexicalizing the grammar could

help reduce the impact of this problem.

1 25 Further Evaluation

Error Type Frequency
PP Attachment 21
Adverb Error 1 2
Co-ordination Errors 1 0
VP Too Small 6
Subordinate/Relative C lause Attachment 5
Extra/Missing Unary Node 4
Mistaking Main Verb/Subordinate Clause 3
Chunking Error 3
Others 6
Total 70

Table 6 . 5 . Parsing errors with perfect tags

Not all adverb attachment problems are due to annotation mistakes . If an

adverb precedes a verb-modifying preposition, there is a genuine ambiguity

between the adverb modifying the preposition or the verb. However, this class of

adverb attachment mistakes is not nearly as common as the NP/verb attachment

ambiguities noted above.

Problems with co-ordination are about as frequent as adverb attachment.

There is not one single cause of co-ordination problems. At times, the parser may

co-ordinate the wrong type of constituent, i . e. posit co-ordinated Ss rather than

co-ordinated NPs. Some co-ordination mistakes are due to finding the wrong

number of co-ordinated sisters . Other errors arise because commas are used with

constructions other than co-ordination. For example, the parser may mistakenly

believe that a comma indicates the presence of an extraposed constituent rather

than a co-ordinate sister.

F inding the wrong number of co-ordinate sisters may be related to another

problem: finding the correct boundaries of VPs. Recall that finding VP bound-

aries was also a problem for the lexicalized parsers of Chapter 3 . In all cases

where there was a problem with VP boundaries, the VP was too small . It is diffi-

cult to say why this happens, although Markovization may play a role. When a

VP is too small , the parser is essentially choosing to attach a dependent to the

auxiliary rather than the main verb. For many constituents , the probability of

such an attachment ought to be zero, but it can be higher if the parser ‘ forgets’

about the auxiliary. This may be solved by adding an attribute to denote the

verb type, by using a longer Markov history, or forgoing Markovization alto-

gether.

6 . 1 POS Tagging 1 26

A related problem are cases with composed verbs where a parser ‘ forgets’

there must be a VP, and instead declares that the main verb of the main clause is

actually the head of a subordinate clause. Another common error is either

including an extra unary production, or leaving a unary production out. The final

parsing problem is chunking errors, i . e. the parser found the wrong boundary of a

constituent covering POS tags.

6 . 2 Grammatical Functions

In Chapter 4, we saw that including grammatical functions in a parser dramati-

cally improved parsing accuracy. However, we did not test the accuracy of the GF

labels themselves . That is a large oversight: GF labels can be used to indicate the

sub ject and objects of a verb. Because of semi-free word ordering, we cannot reli-

ably expect the sub ject to be sentence-initial . Hence GFs labels are probably the

easiest way to find the sub ject of a sentence -- a requirement for even the most

basic syntactic analyses. Therefore, it would be insightful to test how accurately

the parser applies these labels.

The simplest was to evaluate GF labels is to to treat the GF label as part of

the node label. Consider the sentence ‘ den Kellner b ezahlt der Mann. ’ The cor-

rect parser of this sentence has an accusative NP spanning ‘ den Kellner ’ and a

nominative (sub ject) NP spanning ‘ der Mann ’ :

S

NP-OA

den Kellner

bezahlt NP-SB

der Mann

A possible incorrect parse might reverse the GF labels:

S

NP-SB

den Kellner

bezahlt NP-OA

der Mann

Using the evaluation measures used in Chapters 3 , 4 and 5 , the GF labels are

always stripped, so both trees are considered to be correct . If the GF labels are

not stripped, the first tree still has a precision and recall of 1 00% , but the 2 nd

only gets one node right out of three, resulting in a precision and recall of only

33% .

1 27 Further Evaluation

Syn F -score GF F -score Syn+GF F -score
POS Brackets POS Brackets POS Brackets

Baseline+GF 96. 4 73 . 1 91 . 3 67. 3 89 . 5 64. 6
Beam+GF 96. 3 72 . 6 91 . 7 64. 8 89 . 8 62 . 6
Smooth+GF 96. 7 76 . 3 91 . 8 67. 8 90 . 0 65 . 7
Smooth+GF+Perfect Tags -- 85 . 2 -- 77. 5 -- 76 . 2

Table 6 . 6 . POS tagging and labelled bracketing results with grammatical functions

GF Type GF Label Baseline+GF Beam+GF Smooth+GF Perfect Tags
Modifier MO 56. 1 55 . 1 58 . 6 67. 2
Subject SB 59 . 3 58 . 1 61 . 8 78 . 4
C lausal Object OC 54. 3 50 . 5 50 . 9 62 . 7
Postnominal Modifier MNR 55 . 1 51 . 7 56 . 4 61 . 5
Accusative Object OA 44. 2 48 . 1 51 . 5 70 . 6
Postnominal Genitive GR 76. 3 76 . 2 78 . 7 86 . 4

Table 6 . 7 . Labelled bracketing results by type of grammatical function

This is an unusually harsh metric . While there are only 29 node labels for syn-

tactic categories, combining GFs with syntactic categories results in 291 labels --

an order of magnitude more. To make the comparisons more fair, we measure two

different cases : brackets labelled with syntactic categories and GFs, and brackets

labelled with GFs alone. In addition, because POS tags are also annotated with

GF labels , we also measure the accuracy of these ‘ lexical’ GF labels as well as lex-

ical GF labels combined with POS tag labels.

6 . 2 . 1 Results

Table 6 . 6 summarizes the overall results . The columns in this table are grouped

into pairs . The first of each pair measures results on POS tags, the second of each

pair measures results on brackets. Each pair uses a different notion of labelling:

either Syn (only the syntactic category must match the gold standard for a label

to be correct) , GF (only grammatical functions must match) or Syn+GF (both

the syntactic category and the grammatical function must match) . The ‘ Syn’

columns simply re-state previous results for the sake of comparison.

The Baseline+GF model achieves a labelled bracketing F -score of 67. 3 when

brackets are labelled by GFs and 64. 6 when brackets are labelled by GFs and syn-

tactic categories . The corresponding figures for the Smooth+GF model are 67. 8 in

the GF condition and 65 . 7 in the Syn+GF condition.

6 . 2 Grammatical Functions 1 28

Table 6 . 7 shows the individual results for the most common GF types. Each

row in the table represents a different function type: modifier (MO) , sub ject (SB) ,

clausal ob ject (OC) , postnominal modifier (MNR) , accusative ob ject (OA) and

postnominal genitive (GR) . The GFs are listed by decreasing frequency, with the

most common (MO) on top.

6 . 2 . 2 D iscussion

S imilar to the behaviour seen with syntactic categories , the Smooth+GF achieves

higher POS tagging and labelled bracketing scores than the Baseline+GF or

Beam+GF models .

Showing the results by GF type offers some insights to how various models

effect GF labelling. The perfect tagging models is particularly useful to diagnose

problems. Just as in Section 6 . 1 , using correct POS tags improves overall results

by about 1 0% . The effect within GF categories is quite different, however. Several

GF categories , such as SB , and GR and OA benefit much more than the others.

This makes sense: these functions are annotated on POS tags, and hence perfect

tagging will find the correct location of constituents having these labels . The cate-

gories MNR and MO essentially mimic attachment decisions. For example, an PP

which modifier an NP gets the MNR label , whereas if it modifies a verb it gets

the MO label. G iven that PP attachment is quite difficult , it is not surprising

that scores for these function types are quite low, even with perfect tags.

6 . 3 Dependencies

Dependencies are quickly becoming a ‘ new standard’ for measuring parser accu-

racy (cf. Carroll et al . , 2002) . In addition to the benefits mentioned above, depen-

dencies also help with some evaluation problems we saw in Section 6 . 2 . In partic-

ular, using dependencies also allows us to measure the accuracy of grammatical

functions independently of node labelling. According to NEGRA annotation, GFs

are actually labels for edges (i . e. dependencies) rather than nodes. Therefore, if

we include GF labels in the dependency evaluation and leave them out of labelled

bracketing evaluation, we can evaluate the accuracy of GF labels without having

to cope with the problems of tying GF labels to node labels , as we did in Sec-

tion 6 . 2 .

1 29 Further Evaluation

To measure dependency accuracy, we must first turn a parse tree into a

dependency tree. We do this in a two step process :

i . Annotate each node with its head word. We find the head word using the

same approach as in Chapter 3 .

ii . For a rule P → C 0 � Cn , let h (Ci) be the head word of the ith child and

let h be the head word of the rule. Then, create a dependency for each

non-head child. The dependency is a two-tuple of head and dependent.

S trict ly speaking, for a child j (with j
�
h) , the dependency is < h (Ch) ,

h (Cj) > .

Note that no dependencies are created for unary rules . Therefore, in a sentence

with n words, there are always n − 1 dependencies , regardless of the structure of

the tree. During testing, we compute the dependency tree for the gold standard

and the parser ’ s guess . A dependency is correct if it appears in both the gold

standard and the parser’ s guess . We measure precision, recall and F -score in the

normal way.

At first , it might appear straightforward how to extend the two-tuple defini-

tion to include labelled dependencies. If f (Ci) (f is for function) is the GF label

of the ith child, then a labelled dependency might be defined as < h (Ch) , h (Cj) ,

f (Cj) > . Unfortunately, such a definition may exclude some GFs from a tree.

Recall that in Step ii . above, we disallowed dependencies between a parent and

its head child. However, such dependency links do have GF labels . In some of

these cases, the GF is simply HD (meaning ‘ head’) , but we do wish to measure if

these labels are correct . Therefore, we revise Step ii . to include head children (in

more formal terms, the restriction that j
�
h is removed) . Overall , this gives us

three cases :

Unlabelled dependencies . With the original formulation of S tep ii . and

treating a dependencies as two-tuples < h (Ch) , h (Cj) > .

Extended Unlabelled dependencies . With the revised formulation of Step

ii . and treating a dependencies as two-tuples < h (Ch) , h (Cj) > . For

brevity’ s sake, we will henceforth refer to these dependencies as ‘ extended

dependencies’

Labelled dependencies . With the revised formulation of S tep ii . and

treating dependencies as three tuples < h (Ch) , h (Cj) , f (Cj) > .

6 . 3 Dependencies 1 30

6 . 3 . 1 Results

Table 6 . 8 details the results . The Baseline model scored 80 . 5 on unlabelled depen-

dencies and 83 . 8 on extended unlabelled dependencies . Adding GFs to the model

increased the unlabelled dependency score to 81 . 5 and the extended unlabelled

dependency score to 84. 1 . The S ister-head model was able to improve upon these

results , managing 81 . 9 on unlabelled and 85 . 4 on extended dependencies. The

Smooth+GF was again higher with 84. 0 on unlabelled and 85 . 5 on extended

dependencies. Quizzically, the Smooth+GF model did not score higher than the

Baseline+GF model on labelled extended dependencies , achieving only 77. 9 versus

79 . 7 . The highest results overall were due to the model with perfect tags, which

achieved 89 . 1 on unlabelled, 90 . 6 on extended and 87. 6 on labelled dependencies.

It is important to remember that the model with perfect tags is not comparable

to the other models . As seen in Section 6 . 1 , perfectly disambiguating POS tags is

extremely useful in disambiguating parsing ambiguity.

6 . 3 . 2 Discussion

In Chapter 4, we saw that the smoothed GF model has a higher labelled brack-

eting score than the sister-head model. Intriguingly, the sister-head model nearly

matches the smoothed GF model on extended unlabelled dependencies . Schiehlen

(2004) also noted that dependency accuracies sometimes behaves differently than

labelled bracketing scores. Goodman’ s maximizing metrics Goodman (1 998) offer

an explanation for the discrepancy between dependency and bracketing scores.

Unlexicalized grammars only know about node labels, hence that is all they can

emphasize; lexicalized grammars also have knowledge of word-word dependencies,

and hence they can put greater emphasis on this these types of features . G ildea

(2001) and Bikel (TODO) note that the bilexical grammar of Collins (1 997) ,

word-word dependencies do not make a large contribution to overall results . How-

ever, in both cases , only results on PARSEVAL were measured. It is unclear if the

minor effect of removing word-word dependencies would also be present in depen-

dency measures .

1 31 Further Evaluation

Unlabelled Extended Labelled
Baseline 80 . 5 83 . 8 --
Baseline+GF 81 . 5 84. 1 79 . 7
S ister-head 81 . 9 85 . 4 --
Smooth+GF 84. 0 85 . 5 77. 9
Smooth+GF+Perfect Tags 89 . 1 90 . 6 87. 6

Table 6 . 8 . Dependency scores

Overall , dependency scores do tend to be higher than bracketing scores , justi-

fying behaviour noted by Lin (1 995) . To illustrate this, consider the following

tree :

S

KOUS

Wenn
If

PTKNEG

nicht
not

,

,

S

VAFIN

ist
is

NP

ART

der
the

NN

Menschheit
humanity

ADV

gewiß
surely

ADV

auch
also

PIS

nichts
nothing

VP

VP

VVPP

verloren
lost

VVPP

gegangen
left

The meaning of the sentence is roughly, ‘ ‘ If not , nothing has been lost to

humanity? ” The Smooth+GF parser does not return the correct parse. Instead, it

suggests the following tree:

S

S

KOUS

Wenn
If

PTKNEG

nicht
not

,

,

VAFIN

ist
is

NP

ART

der
the

NN

Menschheit
humanity

ADV

gewiß
surely

ADV

auch
also

PIS

nichts
nothing

VP

VP

VVPP

verloren
lost

VVPP

gegangen
left

Basically, the clausal ob ject in the correct parse becomes the main clause in the

incorrect parse. This can be considered to be only one error, but 1

3
of the labelled

brackets are wrong. There is only one dependency mistake: wenn is modified by

ist instead of vice versa.

6 . 3 Dependencies 1 32

POS LB Dep ExDep LDep
Baseline 97. 1 75 . 0 83 . 2 86 . 0 --
Baseline+GF 97. 4 76 . 9 85 . 4 87. 5 82 . 8
S ister-head -- 77. 4 86 . 6 90 . 5 --
Smooth+GF 97. 4 78 . 0 85 . 4 86 . 7 79 . 7
Thread 97. 4 79 . 5 86 . 2 87. 7 80 . 7
Smooth+GF+Perfect Tags -- 86 . 0 89 . 2 91 . 2 88 . 0

Table 6 . 9 . Performance of various parsers the TIGER corpus

Dependency measures may also be higher than labelled bracketing measures

due to other reasons. Recall from Section 6 . 1 that some parsing errors were due

to missed or extra unary nodes. While errors with unary nodes affect labelled

bracketing scores , they do not affect standard dependency measures (because

unary dependencies are explicitly ignored) .

There also are rare instances where the labelled bracket scores were higher

than dependency scores . In some instances, the correct head was mislabelled or

missing altogether. P icking the wrong head can lead to cascading errors in depen-

dency scores .

6 . 4 Evaluation on TIGER

The TIGER corpus is designed to supersede NEGRA. It uses a similar annotation

format as NEGRA, so it is likely that parsers developed for NEGRA would also

perform well on TIGER. Moreover, the TIGER corpus is twice the size of

NEGRA. Therefore, one would expect that sparse data would be less of an issue,

and therefore performance ought to increase.

We ran six different parsers on the TIGER corpus: the unlexicalized baseline,

the baseline with GFs, the sister-head parser, the Smooth+GF parser, the

Smooth+GF parser with perfect tags, and the gap-threading model from

Chapter 5 .

6 . 4. 1 Results

The results of the experiments are listed in Table 6 . 9 . The column headings are as

follows. POS refers to POS tagging accuracy, LB refers to labelled bracket F -

score, Dep refers to unlabelled dependency accuracy, ExDep to extended depen-

dency accuracy, and LDep to the accuracy of dependencies labelled by GFs.

1 33 Further Evaluation

The POS tagging results of all models are competitive with each other, and all

are a bit less than 1 % better than the results on NEGRA. Labelled bracketing

scores are between 1 -3% better than on NEGRA. Table 6 . 9 lists the parsers by

increasing labelled bracketing scores on NEGRA. This ranking remains accurate

on TIGER, i . e. the best performing parser on NEGRA is also best on TIGER,

the 2nd best on NEGRA is also the 2nd best on TIGER, etc . However, the boost

due to the larger training set was not the same for all models.

The labelled bracketing scores of the baseline improved by 2 . 5% , from 72 . 5 to

75 . 0 . The Baseline+GF model saw an improvement of 3 . 8% , from 73. 1 to 76 . 9 .

The difference in the sister-head model was almost as high, from 74. 1 to 77. 4, for

a gain of 3 . 3% . The score of the Smooth+GF model went up by 1 . 7% to 78 . 0 .

Adding threading to the Smooth+GF model improved results to 79 . 5 , a 2 . 1 % gain

over the results on NEGRA. Using perfect tags resulted in a labelled bracket

score of 86 . 0%, a 0. 8% improvement over the 85 . 2 seen on NEGRA. As before, we

do not report POS tagging results for the sister-head model because of its mix of

perfect and guessed tags.

In Section 6 . 3 , we noted that, in NEGRA, a ranking based on dependency

accuracy was consistent with the ranking based on labelled bracketing scores. The

same is not true of TIGER. After the Smooth+GF+Perfect Tag model, the

sister-head parser achieves the highest dependency measure, of 86 . 6 , higher than

the 85 . 4 of the Smooth+GF model . S imilar to the finding on the NEGRA corpus,

the Smooth+GF model scores lower on labelled dependencies than the equivalent

model without smoothing. The Smooth+GF model achieves 79 . 7 versus 82 . 8 for

the Baseline+GF. Unlike NEGRA, though, the Smooth+GF model also scored

lower on unlabelled and extended dependencies .

6 . 4. 2 Discussion

Although there appears to be some variance in the dependency results, it is pos-

sible to identify a clear trend in the data. Sparse data is most apparent in models

without smoothing (the Baseline and Baseline+GF models) or with lexicalization

(the sister-head model) , and these models get the biggest boost from the larger

training set . Although the Smooth+GF still achieves the best performance on

labelled bracketing, the extra data allows the sister-head model to do better on

dependencies. This gives more evidence that a simplistic version of Goodman’ s

maximizing metrics are at play here: the sister-head parser has more data to esti-

mate word-word dependencies, and hence gets even more of them right . The

Smooth+GF model is still optimized for labelled bracketing, and hence still excels

on that metric.

6 . 4 Evaluation on TIGER 1 34

The Smooth+GF+Perfect Tags model had the smallest increase in perfor-

mance relative to NEGRA, with less than half the gain of the Smooth+GF model

on labelled brackets. Because the Smooth+GF model had to guess tags whereas

the Perfect Tags model did not, this result suggests that the larger training set

helped more with guessing tags than it did with estimating rule probabilities . In

other words, the Smooth+GF model did not face as much sparse data in the

grammar as it did in the lexicon. Consequently, it may be possible to include

more attributes to the Smooth+GF model to solve some of the attachment errors

discussed in Section 6 . 1 . 2 . 2 .

6 . 5 Conclusions

There are two primary results from this chapter. F irst , in Section 6 . 1 , we learned

that POS tagging can have a profound impact on parsing results. Many POS tag-

ging errors are simply due to sparse data in the POS tag lexicon. Particular prob-

lems are adjective/verb ambiguit ies and verb/verb ambiguities .

S econd, in Sections 6 . 3 and 6. 4, we found that dependency measures behave

differently than labelled bracketing measures. Parsers can be made to maximize

one type of measure over another. Our results suggest that lexicalized parsers do

better on dependencies whereas unlexicalized parsers do better on labelled brack-

eting.

Overall , it is worth pointing out that the Smooth+GF parser not only claims

the highest labelled bracketing scores known to us on the NEGRA and TIGER

corpora, but also the highest unlabelled dependency scores of any parser which is

not given extra information.

1 35 Further Evaluation

Chapter 7

Conclusions

In statistical parsing research, it is more common for the development new models

and discovery of useful linguistic features to occur in English, and only then be

applied to other languages rather than vice versa. Indeed, a standard pattern of

parsing in with new treebanks is to adapt fully developed English parsing models

to the other language. In this dissertation, however, we suggest that linguistic and

annotation differences mean that complex models behave in unpredicatble ways.

For example, in Chapter 3 we show that English lexicalized models cannot out-

perform an unlexicalized baseline in the German NEGRA corpus. A closer inspec-

tion shows the problem is partially due to annotation differences, and partially

due to a lower type/token ratio (i . e. more productive morphology) in German.

With this as a starting point, we take a closer look at the effect of annotation and

linguistic differences in Chapters 4 and 5 . The linguistic differences are the more

crucial of the two as the annotation differences between the Penn Treebank and

NEGRA were primarily designed to better express linguistic differences between

English and German.

A fundamental change is the inclusion of grammatical functions, which we

describe in Chapter 4. To gain the full benefit from grammatical functions, we

introduce several automatic modifications which improve the parser’ s ability to

model the German case system. Seeing that adding one attribute (in the form of

grammatical function tags) is helpful, in Chapter 5 , we investigate several others,

including a more involved model of morphology and an account of long-distance

dependencies. We find that morphological attributes are too noisy to be helpful

with our supervised learning approach; other work using unsupervised learning

benefits more from morphological information (Beil et al . , 1 999) . While using

morphological attributes led to mixed results , there were clear benefits from a

pilot parser which could handle long-distance dependencies.

1 36

The best performing realistic model uses both smoothing and grammatical

functions (henceforth referred to as the Smooth+GF parser) . It sets the state-of-

the-art performance on the NEGRA and TIGER corpora, with labelled brack-

eting scores of 76 . 2 on NEGRA and 79 . 5 on TIGER. Furthermore, the parser

scores 84. 0 on dependencies on the NEGRA corpus, also the best reported perfor-

mance on that corpus, and 86 . 2 on the TIGER corpus. The sister-head lexicalized

parser sets the state-of-the-art dependency score on the TIGER corpus, with a

result of 86 . 6 .

7. 1 Lessons Learned

7. 1 . 1 Language Matters

One of the fundamental purposes of this thesis was to show that it pays to

account for language-specific properties . We benefited from a model of case and

aspects of freer word order . But this is not the end of the story. Based on the

detailed error analyses of Chapter 6 , it is possible to take a closer look at what

kind of mistakes parsers are prone to making. We have summarized the result of

the error analyses in Table 7. 1 , re-grouping errors in to more general categories.

Some mistakes are unsurprising: the attachment of modifiers such as prepositional

phrases is also difficult in other languages. But other errors are due to phenomena

not present in languages such as English, including case mistagging and misinter-

preting verb conjugations (especially verbs with the -en ending, which are

ambiguous between finite and infinite verbs, as wells plural nouns and forms of

declined adjectives) . Not only have language-specific concerns been important in

the models we develop, but because they affect the errors of the models , they

ought to play a role in future research.

There is a danger of overusing the term ‘ language-specific’ . It is important to

remember that German is not the only language with a case system, or a complex

system of verb morphology. Indeed, it is precisely because these are features of

other languages that we can claim that our results will be generalizable to other

languages with similar properties to German.

1 37 Conclusions

Model Error Subtype Percent of Errors F -Score
Baseline performance 76%

Performance without GF/case errors on POS tags 80%
(But POS tagging errors remain)

POS Tagging Errors
Verb or adjective ending ambiguity 41 %
Closed class words 41 %
Other open class words 1 6%

Performance without any POS tagging errors 88%
(But attachment errors remain)

Attachment Errors

PP attachment 30%
Other modifier attachment 9%
Co-ordination 1 5%
Annotation mistakes 1 9%
Other attachment errors 27%

Table 7. 1 . Where are the errors?

7. 1 . 2 Baselines Matter

In Chapter 3 , we initially found that the baseline model performed better than a

complex lexicalized model. We also noted that parsing research in new languages

tend to begin with relatively involved lexicalized models. However, the lesson

learned here, complemented by research in Korean (Chung and Rim, 2004) is that

it is difficult to predict how well complicated models work in new languages. As a

model becomes more complex, it becomes more likely that it ‘ overfits’ to one par-

ticular language. Therefore, it is better to use a simple model as a baseline. We

have suggested unlexicalized PCFGs as a possible ‘ universal’ baseline, as it

appears to work well in both phase structure and dependency-style treebanks.

7. 1 . 3 Smoothing Matters

Smoothing is a useful tool to improve performance. Improperly evaluated, how-

ever, it may lead to ignoring useful features or overemphasizing unimportant ones.

In Section 4. 3 , we found that different smoothing algorithms reacted differently to

the same transformations. Broadly speaking, though, the results across smoothing

algorithms were correlated: if including a new feature produced a large positive

change with one smoothing algorithm, it would do so with another. However,

while small changes in results with one smoothing algorithm caused small changes

in others , the changes were not always in the same direction.

7 . 1 Lessons Learned 1 38

7. 1 . 4 Evaluation Matters

In Section 6 . 3 , we found that the sister-head and GF parser have a somewhat

paradoxical relationship. While the GF parser performs better on labelled brack-

eting, with sufficient training data, the sister-head parser does better on depen-

dency measures . We hypothesized that Goodman’ s maximizing metrics

(Goodman, 1 998) might provide an explanation: the lexicalized parser includes

word-word dependencies in the probability it maximizes , and therefore does better

at an evaluation metric based upon word-word dependencies . Unlexicalized

parsers, on the other hand, include more information about syntactic categories,

and hence does better at labelled bracketing, which places a prime importance on

getting the syntactic categories right .

We further hypothesize this is an important result to add to the on-going

debate about the importance of lexicalization. Gildea (2001) and Bikel (2004b)

found that bi-lexical probabilities add very little to the labelled bracketing scores

of Collins ’ parser. Johnson (1 998) and Klein and Manning (2003) show that

unlexicalized parsers can do very well on LB measures . On the other hand, later

work by Bikel (2004a) shows that bi-lexical probabilities are important in deter-

mining the best parse under the Collins models . Moreover, Hockenmaier (2003)

reports that bi-lexical probabilities give a substantial boost to the performance of

her parser -- using dependency measures as a metric . We leave it to future

research to see if (a) removing bilexical probabilities from the Collins model has a

bigger effect on dependencies and (b) if the unlexicalized Klein and Manning

(2003) grammar outperforms some lexicalized parsers on dependencies , as it does

on labelled brackets .

7. 2 Future Work

Based on the success of including case in the unlexicalized parsing models in

Chapter 4, we developed a grammar which included a more complete treatment of

the morphology of nouns and noun dependants in Chapter 5 . While this did not

prove to be successful, the error analysis in Chapter 6 suggests that a better anal-

ysis of the morphology of verb s might be more useful than an improved model for

nouns. In particular, the Smooth+GF parser had some difficulty with verb tense

ambiguity as well as verb/adjective ambiguity.

1 39 Conclusions

The morphological analysis was somewhat incomplete in that it did not

attempt to make use of stemmed word forms. This might especially have an

impact on lexicalized parsing, as we found in Chapter 6 that sparse data does

have a profound impact on the sister-head parsing model . Moreover, as we found

that the unlexicalized and lexicalized parsing models had different strengths, one

relatively large area for further research is to recombine the two models . The

approach used by Charniak (1 997) , and its extension in Charniak (2000) might be

useful for such a recombination as it allows the unlexicalized and lexicalized com-

ponents to be split . Although we found the parameterization of Charniak (1 997)

to be unsatisfactory for in the NEGRA corpus (Chapter 3) , a sister-head version

of this model might prove successful.

We included a treatment of crossing dependencies in part to aid with the

recovery of sentences exhibiting scrambled constituents . To test the success of

this, we investigated the effect of crossing dependencies on some free word order

constructions like topicalization. However, a more complete evaluation of crossing

dependencies would be both possible and interesting.

7. 3 Final Words

In this thesis , we have developed an accurate broad-coverage parser for German.

We found that case and word order did have a strong influence on parsing results.

Indeed, our models benefitted from including a simple yet effective model of case

as well as a preliminary model of crossing dependencies. These results suggest a

set of features useful for building parsers for languages similar to German, and

they may also inform the design of automatic methods for treebank engineering

(Chiang and Bikel, 2002) . This work also lead to several practical insights . For

example, we found the choice of evaluation measures and smoothing may obscure

or overrate the importance of linguist ic cues . We also found, contrary to custom,

that using a baseline is necessary when developing parsers in new and untested

languages.

7 . 3 F inal Words 1 40

Appendix A

Head-finding Rules

The concept of lexicalization is intrinsically linked to the concept of headedness.

The lexicalized parsing models from Chapter 3 propagate lexical elements up the

tree based upon which element is the syntactic head of the phrase. The -HD

(head) grammatical function denotes that a daughter is the head of a constituent.

However, this grammatical function is only used with a few constituents, such as

the S , VP and AP categories . An alternative approach is necessary for other con-

stituents.

A common technique for finding heads, proposed by Magerman and detailed

by [Collins(1 999)] is to use head-finding rules. Given a parent and a list of chil-

dren, these rules select which daughter among the children is the head. There is a

distinct rule for each parent category. The rules specify a list of syntactic cate-

gories which may serve as the head child for the given parent. The rules also

define whether to search for the head daughter from left-to-right (denoted ‘ Left ’

in the table) or from right-to-left (denoted by ‘ Right’) . The general strategy for

finding the head is to search for the first child in the list in the specified direction.

If it is no match is found, then the first child is picked as the head. This would be

the leftmost child if searching from left-to-right and the rightmost if searching in

the opposite direction.

Table A. 1 summarizes the head-finding rules for the non-co-ordinated cate-

gories. A list of the head-finding rules for co-ordinated categories is found in

Table A. 1 . Wherever possible, the rules are quite similar to the rules developed

by Magerman for English. While Magerman’ s rules are quite widely used, they

have never been truly evaluated. However, because some categories in NEGRA do

carry annotations specifying the head child, it is possible to test how often the

head-finding rules agree with the annotated heads. We found that they agreed

upward of 98% of the time.

1 41

Category Search Direction
AA Right ADJA ADJD PIS
AP Right ADJA ADJD CAP CARD PIAT PIDAT PIS
AVP Right ADV AVP CAVP ADJA ADJD
CH Left Leftmost daughter
DL Right S CS
ISU Right Leftmost daughter
MPN Right NE FM CARD
MTA Right ADJA NE TRUNC
NM Right NN PIAT CARD ORD N?
NP Right NN NE NM MPN NP CNP PRELS PWAT PWS PDS PDAT PIS

PIAT PIDAT PPER PPOSS PPOSAT
PP Left APPR APPRART APPO APZR CA
QL Right Rightmost daughter
S Right VVFIN VMFIN VAFIN VVIMP VAIMP VMPP VVPP VP CVP

S CS VVINF VAIMP NP PP
VP Right VVPP VVINF VAINF VMINF VVIZU VAPP VZ CVZ VP CVP AVP
VZ Right VVINF VAINF VMINF ADJA PPOSAT

Table A. 1 . Head finding rules for standard categories

CAC Left APPR APZR APPO
CAP Left ADJA ADJD CARD
CAVP Left AVP ADV CAVP
CCP Left Leftmost daughetr
CNP Left NP NN NE MPN CNP CARD PRF PIS PPER FM
CPP Left PP CPP
CVP Left VP VZ CVP VVINF VVPP VVIZU
CVZ Left VZ CV
CS Left S CS CO D?
CO Left S VVINF VVPP VP NP PP AP ADJA ADJD PI?

Table A. 2 . Head finding rules for co-ordinated categories

Head-finding Rules 1 42

Bibliography

Steven Abney. S tochastic Attribute-Value Grammars. Computational Linguistics , 230

(4) : 0 5 97--61 8 , 1 997.

Abhishek Arun. S tatist ical Parsing of the French Treebank. Master’ s thesis , University of

Edinburgh, 2004.

Markus Becker and Anette Frank. A Stochastic Topological Parser of German. In Pro -

ceedings of the 1 9th International Conference on Computational Linguistic s , pages 71 --77,

Taipei, 2002 .

Franz Beil , G lenn Carroll , Detlef Prescher, S tefan Riezler, and Mats Rooth. Inside-Out-

side Estimation of a Lexicalized PCFG for German. In Proceedings of the 37th Annual

Meeting of the Assoc iation for Computational Linguistics , University of Maryland, Col-

lege Park, 1 999 .

Franz Beil , Detlef Prescher, Helmut Schmid, and Sabine Schulte im Walde. Evaluation of

the Gramotron Parser for German. In Proceedings of the LREC Workshop Beyond Par-

seval: Towards Improved Evaluation Measures for Parsing Systems , Las Palmas, G ran

Canaria, 2002 .

Daniel M. Bikel. A Distributional Analysis of a Lexicalized Statistical Parsing Model. In

Proceedings of the 2004 Conference on Empirical Methods in Natural Language Pro -

ce ssing , pages 1 84--1 89 , 2004a.

Daniel M. Bikel. Intricacies of Collins ’ Parsing Model. Computational Linguistics , 2004b.

To appear.

Daniel M. Bikel and David Chiang. Two Statistical Parsing Models Applied to the Chi-

nese Treebank. In Proceedings of the 2nd ACL Workshop on Chinese Language Pro -

ce ssing , Hong Kong, 2000 .

Ezra Black, Frederick Jelinek, John D . Lafferty, David M. Magerman, Robert L. Mercer,

and Salim Roukos. Towards history-based grammars: Using richer models for proba-

bilistic parsing. In Meeting of the Assoc iation for Computational Linguistics , pages 31 --

37, 1 993 .

Ezra Black, John D . Lafferty, and Salim Roukos. Development and Evaluation of a

Broad-Coverage Probabilistic Grammar of English-Language Computer Manuals . In Pro -

ceedings of the 30th Meeting of the Asso sication for Computational Linguistics , pages

1 85 --1 92 , Newark, DE, 1 992 .

1 43

Don Blaheta and Eugene Charniak. Assigning function tags to parsed text. In Proceed-

ings of the 1 st Conference of the North American Chapter of the ACL (NAACL), Seattle ,

Washington. , pages 234--240 , 2000.

Rens Bod. An Efficient Implementation of a New DOP Model. In Proceedings of the 1 1 th

Conference of the European Chapter of the Assoc iation for Computational Linguistics ,

pages 1 9--26 , Budapest , 2003.

T. L . Booth and R. A. Thompson. Applying Probability Measures to Abstract Languages.

IEEE Transactions on Computers , C -22 (5) : 0 442--45 0 , 1 974.

Thorsten Brants . Cascaded Markov Models . In Proceedings of the 9th Coference of the

European Chapter of the Assoc iation for Computational Linguistics EACL-99 , pages

1 1 7--1 25 , 1 999 .

Thorsten Brants . TnT: A statist ical part-of-speech tagger . In Proceedings of the 6th Con-

ference on Applied Natural Language Processing , S eattle, 2000 .

Thorsten Brants and Matthew Crocker. Probabilistic parsing and psychological plausi-

bility. In Proceedings of the 1 8th International Conference on Computational Linguistics

CO LING-2000 , Saarbrucken¨ /Luxembourg/Nancy, 2000 .

Eric Bril l . Transformation-Based Error-Driven Learning and Natural Language Pro-

cessing: A Case Study in Part-of-Speech Tagging. Computational Linguistic s , 2 1 0 (4) : 0

5 43--565 , 1 995 .

Peter Brown, Vincent Della Pietra, Peter deSouza, Jennifer Lai, and Robert Mercer.

C lass-Based n-gram Models of Natural Language. Computational Linguistic s , Volume 1 80

(Number 4) : 0 466--479 , December 1 992 .

G lenn Carroll and Mats Rooth. Valence induction with a head-lexicalized PCFG . In Pro -

ceedings of the Conference on Empirical Methods in Natural Language Processing , pages

36--45 , G ranada, 1 998 .

John Carroll , Anette Frank, Dekang Lin, Detlef Prescher, and Hans Uszkoreit , editors .

Las Palmas, Gran Canaria, 2002 .

Eugene Charniak. Tree-bank grammars. Technical Report CS-96-02 , Department of

Computer Science, Brown University, 1 996.

Eugene Charniak. S tatistical parsing with a context-free grammar and word statistics . In

Proceedings on the Fourteenth National Conference on Artificial Inte lligence , Menlo Park,

CA. , 1 997.

Eugene Charniak and Sharon Caraballo. New Figures of Merit for Best-First Proba-

bilistic Chart Parsing. Computational Linguistics , 240 (2) : 0 275 --298 , 1 998 .

B ibliography 1 44

Stanley F . Chen and Joshua Goodman. An empirical study of smoothing techniques for

language modeling. Technical Report TR-1 0-98 , Center for Research in Computing Tech-

nology, Harvard University, 1 998 .

David Chiang and Daniel M. Bikel. Recovering Latent Information in Treebanks. In Pro -

ceedings of the 1 9th International Conference on Computational Linguistic s , pages 1 83--

1 89 , Taipei, 2002 .

K. S . Choi. Kaist language resources . Technical report , Korean Advanced Institute of Sci-

ence and Technology, 2001 .

Noam Chomsky. Lectures on Government and Binding: The Pisa Lec tures . Walter de

Gruyter Inc, Berlin and New York, 1 981 . Reprint . 7th Edition.

Hoo jung Chung. Statistical Korean Dependency Parsing Model based on the Surface Con-

texual Information . PhD thesis , Korea University, January 2004.

Hoo jung Chung and Hae-Chang Rim. Unlexicalized Dependency Parser for Variable

Word Order Languages based on Local Contextual Pattern. In Computational Linguistics

and Inte lligent Text Processing (CICLing-2004) , pages 1 1 2 --1 23, Seoul , Korea, 2004.

Michael Collins . A new statist ical parser based on bigram lexical dependencies . In Pro -

ceedings of the 34th Annual Meeting of the Assoc iation for Computational Linguistics ,

pages 1 84--1 91 , Santa Cruz , CA, 1 996 .

Michael Collins . Head-Driven Statistical Mode ls fo r Natural Language Parsing . PhD

thesis , University of Pennsylvania, 1 999 .

Michael Collins and Nigel Duffy. New Ranking Algorithms for Parsing and Tagging: Ker-

nels over Discrete S tructures , and the Voted Perceptron. In Proceedings of the 40th Con-

ference of the Assoc iation for Computational Linguistics , 2002 .

Matthew Crocker and Thorsten Brants . Wide coverage probabilistic sentence processing.

Journal of Psycho linguistic Research , 290 (6) : 0 647--669 , 2000 .

Walter Daelemans, Antal Van Den Bosch, and Jakub Zavrel. Forgetting exceptions is

harmful in language learning. Machine Learning , 34, 1 999 .

N. M. Dempster , A. P . Laird, and D . B . Rubin. Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Soc ie ty of Britain , 39 : 0 1 85 --

1 97, 1 977.

Peter´ D ienes and Amit Dubey. Antecedent recovery: Experiments with a trace tagger. In

Proceedings of the 2003 Conference on Empirical Methods in Natural Language Pro -

ce ssing , pages 33--40, Sapporo, Japan, 2003a.

1 45 Bibliography

Peter´ D ienes and Amit Dubey. Deep processing by combining shallow approaches. In

Proceedings of the 41 st Annual Meeting of the Assoc iation for Computational Linguistics ,

pages 431 --438 , Sapporo, Japan, 2003b.

Amit Dubey and Frank Keller . Parsing German with S ister-head Dependencies. In Pro -

ceedings of the 41 st Annual Mee ting of the Assoc iation for Computational Linguistics ,

pages 96--1 03, Sapporo, Japan, 2003.

Abdessamd Echihabi and Daniel Marcu. A noisy-channel approach to question

answering. In Proceedings of the 41 st Annual Meeting of the Assoc iation for Computa-

tional Linguistics , S apporo, Japan, 2003.

Jason Eisner . Three new probabilistic models for dependency parsing: an exploration. In

Proceedings of the 1 6th International Conference on Computational Linguistic s , pages

340--345 , Copenhagen, 1 996 .

S isay Fissaha, Daniel O lejnik, Ralf Kornberger, Karin Muller¨ , and Detlef Prescher.

Experiments in German Treebank Parsing. In Proceedings of the 6th International Con-

ference on Text, Speech and Dialogue (TSD-03) , Ceske Budejovice, Czech Republic, 2003.

Anette Frank, Markus Becker, Berthold Crysmann, Bernd Kiefer, and Ulrich Schafer¨ .

Integrated Shallow and Deep Parsing: TopP meets HPSG . In Proceedings of the 41 st

Annual Mee ting of the Assoc iation for Computational Linguistics , pages 1 04--1 1 1 , S ap-

poro, Japan, 2003 .

Gerald Gazdar, Ewan Klein, Geoffrey Pullum, and Ivan Sag. Generalized Phase Struc ture

Grammar . Basil Blackwell, Oxford, England, 1 985 .

Dan Gildea. Corpus Variation and Parser Performance. In Proceedings of the 2001 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP) , pages 1 67--202 ,

Pittsburgh, PA, 2001 .

Joshua Goodman. Parsing inside - out . PhD thesis , Harvard University, 1 998 .

Erhard Hinrichs and Tsuneko Nakazawa. Lineariz ing AUXs in German verbal complexes.

German in Head-driven Phrase Struc ture Grammar , pages 1 1 --37, 1 994. Lecture Notes

No. 46 .

Julia Hockenmaier . Data and Models fo r Statistical Parsing with Comb inato ry Catego rial

Grammar . PhD thesis , Institute for Communicating and Collaborative Systems, S chool

of Informatics , University of Edinburgh, 2003 .

Tilman Hohle¨ . Der Begriff Mittelfeld, Anmerkungen uber¨ die Theorie der topologischen

Felder . In Akten des 7. Internationalen Germanisten-Kongresses, Go ttingen¨ 1 985 ,

volume 4 of Kontroversen, alte und neue , pages 329--340 , 1 986 .

B ibliography 1 46

Frederick Jelinek and Robert L. Mercer . Interpolated estimation of Markov source

parameters from sparse data. In Proceedings of the Workshop on Pattern Recognition in

Practice , Amsterdam, The Netherlands, May 1 980 .

Mark Johnson. Attribute -Value Logic and the Theory of Grammar . CSLI Publications,

1 988 .

Mark Johnson. PCFG models of linguist ic tree representations. Computational Linguis-

tic s , 240 (4) : 0 61 3--632 , 1 998 .

Mark Johnson, S tuart Geman, S tephan Canon, Zhiyi Chi, and Stefan Riezler . Estimators

for S tochastic ‘ ‘ Unification-Based” Grammars. In Proceedings of the 37th Annual Meeting

of the Assoc iation for Computational Linguistics , University of Maryland, College Park,

1 999 .

Mark A. Jones and Jason M. Eisner . A Probabilist ic Parser Applied to Software Testing

Documents . In Proceedings of the National Conference on Artificial Inte lligence (AAAI-

92) , pages 322--328 , San Jose, CA, 1 992 .

S lava M. Katz . Estimation of probabilit ies from sparse data for the language model com-

ponent of a speech recognizer. IEEE Transactions on Acoustic s, Speech and Signal Pro -

ce ssing , ASSP-35 (3) : 0 400--401 , March 1 987.

Dan Klein and Christopher D . Manning. Accurate Unlexicalized Parsing. In Proceedings

of the 41 st Annual Mee ting of the Assoc iation for Computational Linguistics , pages 423--

430 , Sapporo, Japan, 2003 .

Reinhard Kneser and Hermann Ney. Improved back-off for m-gram language modeling.

In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal

Processing , volume 1 , pages 1 81 --1 84, Amsterdam, The Netherlands, May 1 980 .

Sandra Kubler¨ . Parsing without grammar -- using complete trees instead. In Proceedings

o r RANLP 2003 , Borovets , Bulgaria, 2003 .

K. J . Lee. Probab ilistic Parsing of Korean based on Language -Spec ific Properties . PhD

thesis , Korea Advanced Institute of Science and Technology, 1 997.

Roger Levy and Christopher D . Manning. Deep Dependencies from Context-Free Statis-

t ical Parsers : Correcting the Surface Dependency Approximation. In Proceedings of the

42nd Annual Mee ting of the Assoc iation for Computational Linguistics , 2004.

David M. Magerman. S tatist ical Decision-Tree Models for Parsing. In Proceedings of the

33rd Annual Mee ting of the Assoc iation for Computational Linguistic s , pages 276--283,

Cambridge, MA, 1 995 .

Mitchell P . Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz . Building a large

annotated corpus of English: The Penn Treebank. Computational Linguistics , 1 90 (2) : 0

31 3--330 , 1 993.

1 47 Bibliography

John Nerbonne. Partial verb phrases and spurious ambiguities . German in Head-driven

Phrase Struc ture Grammar , pages 1 09--1 5 0 , 1 994. Lecture Notes No. 46 .

Hermann Ney, Ute Essen, and Reinhard Kneser. On structuring probabilist ic dependen-

cies in stochastic language modelling. Computer Speech and Language , 8 : 0 1 --38 , 1 994.

Carl J . Pollard and Ivan Sag. Head-Driven Phrase Struc ture Grammar . University of

Chicago Press , 1 994.

Detlef Prescher. Inside-outside estimation meets dynamic EM. In Proceedings of the 7th

International Workshop on Parsing Techno logie s (IWPT-01) , Beijing, China, 2001 .

Sabine Schulte im Walde. The German Statistical Grammar Model : Development,

Training and Linguist ic Exploitation. Linguist ic Theory and the Foundations of Compu-

tational Linguistics 1 62 , Institut fur¨ Maschinelle Sprachverarbeitung, Universitat¨

S tuttgart , December 2000 .

Anoop Sarkar and Chung hye Han. S tatist ical morphological tagging and parsing of

Korean with an LTAG grammar. In Proceedings of the Sixth Workshop on Tree Adjo ining

Grammars , Venice, May 2002 .

Micheal Schiehlen. Combining Deep and Shallow Approaches in Parsing German. In Pro -

ceedings of the 41 st Annual Mee ting of the Assoc iation for Computational Linguistics ,

2003 .

Micheal Schiehlen. Annotation Strategies for Probabilistic Parsing in German. In Pro -

ceedings of the 20th International Conference on Computational Linguistics , 2004.

Helmut Schmid. Improvement in Part-of-Speech Tagging with an Application to German.

In Proceedings of the ACL SIGDAT-Workshop , March 1 995 .

Helmut Schmid. LoPar: Design and implementation. Technical Report 1 49 , Institute for

Computational Linguistics , University of S tuttgart , 2000 .

Helmut Schmid. A Generative Probability Model for Unification-Based Grammars. In

Proceedings of the 1 9th International Conference on Computational Linguistics

(CO LING-2002) , Taipei, 2002 .

Helmut Schmid and Sabine Schulte im Walde. Robust German Noun Chunking with a

Probabilistic Context-Free Grammar. In Proceedings of the 1 8th International Conference

on Computational Linguistic s , S aarbrucken¨ , Germany, August 2000.

S tuart M. Shieber. An Introduc tion to Unification-Based Approaches to Grammar . CSLI

Publications, 1 986.

Wojciech Skut , Brigitte Krenn, Thorsten Brants , and Hans Uszkoreit . An annotation

scheme for free word order languages. In Proceedings of the 5th Conference on Applied

Natural Language Processing , Washington, DC , 1 997.

B ibliography 1 48

Andreas Stolcke. Bayesian Learning of Pro bab ilistic Language Mode ls . PhD thesis , Uni-

versity of California at Berkeley, 1 994.

Tylman Ule. D irected Treebank Refinement for PCFG Parsing. In Proceedings of the 2nd

Workshop on Treebanks and Linguistic Theories (TLT 2003) , Vaxjo¨ ¨ , Sweden, November

2003 .

Hans Uszkoreit . Word O rder and Constituent Structure in German . CSLI Publications,

S tanford, CA, 1 987.

Ian H. Witten and Timothy C . Bell . The zero-frequency problem: Estimating the proba-

bilities of novel events in adaptive text compression. IEEE Transactions on Information

Theory , 37(4) : 0 1 085 --1 094, July 1 991 .

Kenji Yamada and Kevin Knight . A syntax-based statistical translation model. In Pro -

ceedings of the 39th Annual Meeting of the Assoc iation for Computational Linguistics and

the 1 0th Conference of the European Chapter of the Assoc iation for Computational Lin-

guistics , pages 523--5 30 , Toulouse, 2001 .

[B rown et al . (1 992) Brown, P iet ra, deSouza, Lai , and Mercer] [Booth and Thompson(1 974)] [J ones and Eisner(1 992)]

[Magerman(1 995)] [B lack et al . (1 993) B lack, J el inek, Lafferty, Magerman, Mercer , and Roukos] [Col l ins (1 996)]

[E isner(1 996)] [Col l ins(1 996)] [E isner(1 996)] [Charniak(1 997)] [Charniak(1 997)] [Charniak(1 997)] [J ohnson(1 998)]

[Klein and Manning(2003)] [Magerman(1 995)] [Col l ins(1 996)] [E isner(1 996)] [Hinrichs and Nakazawa(1 994)]

[Nerbonne(1 994)] [S chmid(1 995)] [S chmid and Schulte im Walde(2000)] [S chmid and Schulte im Walde(2000)]

[S chiehlen(2003)] [B rants(1 999)] [B eil et al . (1 999) Beil , Carrol l , P rescher , Riez ler , and Rooth]

[B ei l et al . (2002) Beil , P rescher , S chmid , and Schulte im Walde] [P rescher(2 001)] [S abine S chulte im Walde(2000)]

[F issaha et al . (2 003) F issaha, O lejnik , Kornberger , Mul ler¨ , and Prescher] [S chiehlen(2 004)] [Klein and Manning(2003)]

[Dubey and Keller(2003)] [S chiehlen(2004)] [Dubey and Keller(2003)] [Levy and Manning(2004)]

[Dubey and Keller(2003)] [Hohle¨ (1 986)] [Becker and Frank(2002)]

[Frank et al . (2003) Frank, Becker , C rysmann, Kiefer , and Schafer¨] [B ikel and Chiang(2 000)] [Arun(2004)]

[Daelemans et al . (1 999) Daelemans , Bosch, and Zavrel] [Kubler¨ (2003)] [B ikel and Chiang(2 000)] [Arun(2004)] [Lee(1 997)]

[B ikel and Chiang(2 000)] [Arun(2004)] [S arkar and hye Han(2002)] [Chomsky(1 981)] [Sarkar and hye Han(2002)]

[Choi(2001)] [Chung(2004)] [Col l ins(1 996)] [S kut et al . (1 997) Skut , Krenn, Brants , and Uszkoreit]

[Marcus et al . (1 993) Marcus , S antorini , and Marcinkiewicz] [B lack et al . (1 992) B lack, Lafferty, and Roukos]

[Pol lard and Sag(1 994)] [D empster et al . (1 977) Dempster , Laird , and Rubin] [S hieber(1 986)] [J ohnson(1 988)]

[S tolcke(1 994)] [Abney(1 997)] [Abney(1 997)] [Abney(1 997)] [S tolcke(1 994)] [S chmid(2002)]

[Gazdar et al . (1 985) Gazdar , Klein, Pul lum, and Sag] [Chung and Rim(2004)] [Goodman(1 998)] [G ildea(2001)]

[J ohnson(1 998)] [Klein and Manning(2003)] [Hockenmaier(2003)] [Klein and Manning(2 003)] [Charniak(1 997)]

[Charniak(1 997)] [Chiang and Bikel (2002)] [B rants(2 000)] [S chiehlen(2 004)] [Goodman(1 998)] [G ildea(2001)]

[Col l ins (1 999)] [Klein and Manning(2003)] [J ohnson(1 998)] [Klein and Manning(2003)]

[B lack et al . (1 993) B lack, J el inek, Lafferty, Magerman, Mercer , and Roukos] [J ohnson(1 998)]

[Gazdar et al . (1 985) Gazdar , Klein, Pul lum, and Sag] [Col l ins (1 999)] [B ri l l (1 995)] [B rants(2000)] [B rants (2000)]

[J ohnson(1 998)] [J ohnson(1 998)] [B laheta and Charniak(2000)] [Klein and Manning(2003)]

[Charniak and Carabal lo(1 998)] [Goodman(1 998)] [Goodman(1 998)] [B rants and Crocker(2000)]

[B rants and Crocker(2000)] [Col l ins (1 999)] [Chen and Goodman(1 998)] [J el inek and Mercer(1 980)]

[Witten and Bel l (1 991)] [Katz(1 987)] [Kneser and Ney(1 980)] [Chen and Goodman(1 998)] [J el inek and Mercer(1 980)]

[Witten and Bel l (1 991)] [B rants (2000)] [B rants(2 000)] [B ri l l (1 995)] [Chen and Goodman(1 998)]

[Chen and Goodman(1 998)] [Echihabi and Marcu(2003)] [Yamada and Knight(2001)] [Crocker and Brants (2000)]

[Bod(2 003)] [?] [Col l ins and Duffy(2002)] [Charniak(1 996)]

[J ohnson et al . (1 999) J ohnson, Geman, Canon, Chi , and Riez ler]

[B lack et al . (1 993) B lack, J el inek, Lafferty, Magerman, Mercer , and Roukos] [Magerman(1 995)] [J ohnson(1 998)]

[Lee(1 997)] [Chiang and B ikel (2 002)] [Chiang and Bikel (2002)] [Uszkoreit (1 987)] [Charniak(1 997)]

[B ei l et al . (1 999) Beil , Carrol l , P rescher , Riez ler , and Rooth] [Dubey and Kel ler(2003)] [Charniak(1 997)]

[Carrol l and Rooth(1 998)] [Carrol l and Rooth(1 998)] [Charniak(1 997)] [S chmid(2000)]

[Ney et al . (1 994) Ney, Essen, and Kneser] [Witten and Bel l (1 991)] [Kneser and Ney(1 980)] [S chmid(2000)] [B rants (2000)]

[Carrol l and Rooth(1 998)] [Col l ins (1 999)] [G ildea(2001)] [Col l ins(1 999)] [Levy and Manning(2 004)] [Uszkoreit (1 987)]

[B ikel and Chiang(2 000)] [D ienes and Dubey(2003b)] [D ienes and Dubey(2003b)] [D ienes and Dubey(2 003a)]

[D ienes and Dubey(2003b)] [B ikel(2004b)] [Carrol l et al . (2002) Carrol l , Frank, Lin, P rescher , and Uszkoreit] [Ule(2003)]

[B ikel (2004a)] [B ikel (2004b)]

1 49 Bibliography

