
Learning Chinese Language Structures with

Multiple Views

Weiwei Sun

Saarbrücken Graduate School of Computer Science

Department of Computational Linguistics

University of Saarland

Thesis for obtaining the title of Doctor of Engineering of the Faculties

of Natural Sciences and Technology of Saarland University

Saarbrücken, Germany
April, 2012

mailto:weiwsun@gmail.com
http://gradschool.cs.uni-saarland.de
http://www.coli.uni-saarland.de
http://www.uni-saarland.de

Dean: Prof. Dr. Mark Groves
Department of Mathematics
Saarland University

Colloquium: 2012-04-17
Saarland University

Examination Board

Supervisor and Prof. Dr. Hans-Jürgen Uszkoreit
First Reviewer: Saarland University

German Research Centre for Artificial Intelligence

Second Reviewer: Prof. Dr. Dietrich Klakow
Saarland University

Chairman: Prof. Dr. Jörg Siekmann
Saarland University
German Research Centre for Artificial Intelligence

Academic assessor: Dr. Yi Zhang
Saarland University
German Research Centre for Artificial Intelligence

i

Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbständig

und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die

aus anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter

Angabe der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im

Ausland in gleicher oder ähnlicher Form in einem Verfahren zur Erlangung eines

akademischen Grades vorgelegt.

Name: Weiwei Sun

Date: 2012-4-17

Place: Saarbrücken, Germany

ii

Abstract

Motivated by the inadequacy of single view approaches in many areas in

NLP, we study multi-view Chinese language processing, including word

segmentation, part-of-speech (POS) tagging, syntactic parsing and seman-

tic role labeling (SRL), in this thesis. We consider three situations of mul-

tiple views in statistical NLP: (1) Heterogeneous computational models

have been designed for a given problem; (2) Heterogeneous annotation

data is available to train systems; (3) Supervised and unsupervised ma-

chine learning techniques are applicable.

First, we comparatively analyze successful single view approaches for Chi-

nese lexical, syntactic and semantic processing. Our analysis highlights

the diversity between heterogenous systems built on different views, and

motivates us to improve the state-of-the-art by combining or integrating

heterogeneous approaches. Second, we study the annotation ensemble

problem, i.e. learning from multiple data sets under different annotation

standards. We propose a series of generalized stacking models to effec-

tively utilize heterogeneous labeled data to reduce approximation errors

for word segmentation and parsing. Finally, we are concerned with bridg-

ing the gap between unsupervised and supervised learning paradigms. We

introduce feature induction solutions that harvest useful linguistic knowl-

edge from large-scale unlabeled data and effectively use them as new fea-

tures to enhance discriminative learning based systems.

For word segmentation, we present a comparative study of word-based and

character-based approaches. Inspired by the diversity of the two views, we

design a novel stacked sub-word tagging model for joint word segmentation

and POS tagging, which is robust to integrate different models, even mod-

els trained on heterogeneous annotations. To benefit from unsupervised

word segmentation, we derive expressive string knowledge from unlabeled

data which significantly enhances a strong supervised segmenter.

For POS tagging, we introduce two linguistically motivated improvements:

(1) combining syntax-free sequential tagging and syntax-based chart pars-

ing results to better capture syntagmatic lexical relations and (2) integrat-

ing word clusters acquired from unlabeled data to better capture paradig-

matic lexical relations.

For syntactic parsing, we present a comparative analysis for generative

PCFG-LA constituency parsing and discriminative graph-based depen-

dency parsing. To benefit from the diversity of parsing in different for-

malisms, we implement a previously introduced stacking method and

propose a novel Bagging model to combine complementary strengths of

grammar-free and grammar-based models. In addition to the study on the

syntactic formalism, we also propose a reranking model to explore het-

erogenous treebanks that are labeled under different annotation scheme.

Finally, we continue our efforts on combining strengths of supervised and

unsupervised learning, and evaluate the impact of word clustering on dif-

ferent syntactic processing tasks.

Our work on SRL focus on improving the full parsing method with linguis-

tically rich features and a chunking strategy. Furthermore, we developed

a partial parsing based semantic chunking method, which has comple-

mentary strengths to the full parsing based method. Based on our work,

Zhuang and Zong [2010] successfully improve the state-of-the-art by com-

bining full and partial parsing based SRL systems.

Zusammenfassung

Motiviert durch die Unzulänglichkeit der Ansätze mit dem einzigen An-

sicht in vielen Bereichen in NLP, untersuchen wir Chinesische Sprache Ve-

rarbeitung mit mehrfachen Ansichten, einschließlich Wortsegmentierung,

Part-of-Speech (POS)-Tagging und syntaktische Parsing und die Kennze-

ichnung der semantische Rolle (SRL) in dieser Arbeit. Wir betrachten

drei Situationen von mehreren Ansichten in der statistischen NLP: (1)

Heterogene computergestützte Modelle sind für ein gegebenes Problem

entwurft, (2) Heterogene Annotationsdaten sind verfügbar, um die Sys-

teme zu trainieren, (3) überwachten und unüberwachten Methoden des

maschinellen Lernens sind zur Verfügung gestellt.

Erstens, wir analysieren vergleichsweise erfolgreiche Ansätze mit einzigen

Ansicht für chinesische lexikalische, syntaktische und semantische Verar-

beitung. Unsere Analyse zeigt die Unterschiede zwischen den heteroge-

nen Systemen, die auf verschiedenen Ansichten gebaut werden, und mo-

tiviert uns, die state-of-the-Art durch die Kombination oder Integration

heterogener Ansätze zu verbessern. Zweitens, untersuchen wir die An-

notation Ensemble Problem, d.h. das Lernen aus mehreren Datensätzen

unter verschiedenen Annotation Standards. Wir schlagen eine Reihe allge-

meiner Stapeln Modelle, um eine effektive Nutzung heterogener Daten zu

beschriften, und um Approximationsfehler für Wort Segmentierung und

Analyse zu reduzieren. Schließlich sind wir besorgt mit der Überbrückung

der Kluft zwischen unüberwachten und überwachten Lernens Paradigmen.

Wir führen Induktion Feature-Lösungen, die nützliche Sprachkenntnisse

von großflächigen unmarkierter Daten ernte, und die effektiv nutzen als

neue Features, um die unterscheidenden Lernen basierten Systemen zu

verbessern.

Für die Wortsegmentierung, präsentieren wir eine vergleichende Studie

der Wort-basierte und Charakter-basierten Ansätzen. Inspiriert von der

Vielfalt der beiden Ansichten, entwerfen wir eine neuartige gestapelt Sub-

Wort-Tagging-Modell für gemeinsame Wort-Segmentierung und POS-Tagging,

die robust ist, um verschiedene Modelle zu integrieren, auch Modelle auf

heterogenen Annotationen geschult. Um den unbeaufsichtigten Wortseg-

mentierung zu profitieren, leiten wir ausdrucksstarke Zeichenfolge Wissen

von unmarkierten Daten. Diese Methode hat eine überwachte Methode

erheblich verbessert.

Für POS-Tagging, führen wir zwei linguistisch motiviert Verbesserun-

gen: (1) die Kombination von Syntaxfreie sequentielle Tagging und Syn-

taxbasierten Grafik-Parsing-Ergebnisse, um syntagmatische lexikalische

Beziehungen besser zu erfassen (2) die Integration von Wortclusteren von

nicht markierte Daten, um die paradigmatische lexikalische Beziehungen

besser zu erfassen.

Für syntaktische Parsing präsentieren wir eine vergleichenbare Analyse für

generative PCFG-LA Wahlkreis Parsing und diskriminierende Graphen-

basierte Abhängigkeit Parsing. Um aus der Vielfalt der Parsen in unter-

schiedlichen Formalismen zu profitieren, setzen wir eine zuvor eingeführte

Stacking-Methode und schlagen eine neuartige Schrumpfbeutel-Modell vor,

um die ergänzenden Stärken der Grammatik und Grammatik-free-basierte

Modelle zu kombinieren. Neben dem syntaktischen Formalismus, wir

schlagen auch ein Modell, um heterogene reranking Baumbanken, die

unter verschiedenen Annotationsschema beschriftet sind zu erkunden. Schließlich

setzen wir unsere Bemühungen auf die Bündelung von Stärken des überwachten

und unüberwachten Lernen, und bewerten wir die Auswirkungen der Wort-

Clustering auf verschiedene syntaktische Verarbeitung Aufgaben.

Unsere Arbeit an SRL ist konzentriert auf die Verbesserung der vollen

Parsingsmethode mit linguistischen umfangreichen Funktionen und einer

Chunkingstrategie. Weiterhin entwickelten wir eine semantische Chunk-

ingmethode basiert auf dem partiellen Parsing, die die komplementäre

Stärken gegen die die Methode basiert auf dem vollen Parsing hat. Basiert

auf unserer Arbeit, Zhuang and Zong [2010] hat den aktuelle Stand er-

folgreich verbessert durch die Kombination von voll-und partielle-Parsing

basierte SRL Systeme.

Acknowledgements

First and foremost, I thank my advisor, Prof. Hans Uszkoreit. Prof.

Uszkoreit was personally responsible for bringing me to Saarbrücken, and

offered exceptional academic freedom during my study while at the same

time made sure I was on the right track. His comments on my work have

improved both my results and the readability of the dissertation.

I am also indebted to many collaborators during my PhD study, especially

Yi Zhang, Rui Wang and Jia Xu. They helped me much not only in

research but also in daily life. I thank Regine Bader for proofreading my

ACL-2011 paper. I would like to acknowledge our secretaries, Christina

Deeg, Corinna Johanns and Sandra Loch. They help me a lot to organize

many things.

I thank my parents for their unconditional love and endless support through-

out all these years. I dedicate this thesis to them.

Finally, I would like to thank the graduate school of computer science for

its support during the submission of this dissertation.

Contents

Contents viii

List of Figures xvi

List of Tables xviii

1 Introduction 1

1.1 About Multiple Views in NLP . 3

1.1.1 A General Framework for Data-driven Text Processing 3

1.1.2 Three Categories of Multi-views 4

1.1.3 Advantages of Multi-view Processing 5

1.1.4 View Integration . 6

1.2 The Problems Investigated in This Thesis 7

1.3 Main Contributions . 8

1.4 Outline of the Thesis . 10

I Word Segmentation 11

2 Comparing and Combining Word-based and Character-based Seg-

menters 12

2.1 Background . 12

2.1.1 The Problem . 12

2.1.2 Previous Work . 13

2.2 State-of-the-Art . 13

2.2.1 Word-Based Method: Semi-Markov Tagging 14

2.2.2 Character-Based Method: Markov Tagging 15

2.3 Theoretical Comparison . 16

2.3.1 Internal Structure of Words 16

viii

CONTENTS

2.3.2 Linearity and Nonlinearity . 16

2.3.3 Dynamic Tokens or Static Tokens 17

2.3.4 Word Token or Word Type Features 17

2.4 Empirical Comparision . 17

2.4.1 Baseline Systems . 18

2.4.1.1 Models . 18

2.4.1.2 Learning . 18

2.4.1.3 Features . 19

2.4.2 Setting . 21

2.4.3 Results . 21

2.4.3.1 Baseline Performance 21

2.4.3.2 Word Frequency Factors 22

2.4.3.3 Length Factors . 24

2.4.3.4 Feature Factors . 25

2.5 Combination . 25

2.5.1 Upper Bound of System Combination 26

2.5.2 Segmenter Ensemble via Bagging 26

2.5.3 Evaluation . 28

2.6 Conclusion and Discussion . 29

3 Stacked Sub-word Tagging for Joint Word Segmentation and POS

Tagging 31

3.1 Background . 32

3.1.1 The Problem . 32

3.1.2 Character-Based and Word-Based Methods 32

3.1.3 Stacked Learning . 33

3.1.4 Annotation Ensemble . 34

3.2 A Stacked Sub-word Tagging Model 34

3.2.1 Method . 34

3.2.2 The Coarse-grained Solvers 36

3.2.3 Generating Sub-word Sequences 38

3.2.4 Features . 39

3.2.5 Stacked Learning for Parameter Estimation 40

3.3 Experiments and Analysis . 41

3.3.1 Setting . 41

3.3.2 Performance of the Coarse-grained Solvers 41

ix

CONTENTS

3.3.3 Statistics of Sub-words . 42

3.3.4 Rich Contextual Features Are Helpful 43

3.3.5 Stacked Learning Is Helpful 44

3.3.6 Comparison to the State-of-the-Art 44

3.3.7 Results on the CTB 6.0 . 45

3.4 Reducing Approximation and Estimation Errors with Heterogeneous

Annotations . 47

3.4.1 Two Essential Characteristics of Heterogeneous Annotations . 47

3.4.2 Diversity Analysis . 48

3.4.3 Reducing the Approximation Error via Stacking 50

3.4.3.1 Annotation Ensemble as System Integration 50

3.4.3.2 A Character-based Joint Model 51

3.4.3.3 Feature-based Stacking 51

3.4.3.4 Structure-based Stacking 52

3.4.4 Reducing the Estimation Error via Corpus Conversion 53

3.5 Evaluation of Annotation Ensemble 55

3.5.1 Setting . 55

3.5.2 Results of Stacking . 55

3.5.3 Learning Curves . 56

3.5.4 Results of Annotation Conversion 56

3.5.5 Results of Re-training . 57

3.5.6 Comparison to the State-of-the-Art 57

3.6 Conclusion . 58

4 Harvesting String Knowledge for Word Segmentation 59

4.1 Background . 59

4.1.1 The Problem: Combining Supervised and Unsupervised NLP . 59

4.1.2 The Method: Feature Induction 60

4.2 Three Types of Unlabeled Data . 61

4.3 Feature Design . 62

4.3.1 Baseline Features . 62

4.3.2 Statistics-based Features . 63

4.3.2.1 Mutual Information 63

4.3.2.2 Accessor Variety Features 64

4.3.2.3 Punctuation Features 64

4.3.2.4 Binary or Numeric Features 65

x

CONTENTS

4.3.3 Document-based Features . 66

4.4 Experiments and Analysis . 66

4.4.1 Setting . 66

4.4.2 Main Results . 67

4.4.3 Learning Curves . 69

4.4.4 Feature Analysis . 70

4.5 Related Work . 71

4.6 Discussion: Unsupervised Language Acquisition for Supervised Lan-

guage Processing . 73

II Syntactic Parsing 75

5 Comparing and Integrating Heterogeneous Parsers 76

5.1 Background . 76

5.1.1 The Problem . 76

5.1.2 Previous Work . 78

5.2 State-of-the-Art . 79

5.2.1 A Discriminative Sequential Model for POS Tagging 79

5.2.2 A Generative PCFG-LA Model for Constituency Parsing . . . 80

5.2.3 A Discriminative Graph-based Model for Dependency Parsing 82

5.3 Key Distinctions . 82

5.3.1 Syntax-free and Syntax-based POS Tagging 82

5.3.2 Grammar-free and Grammar-based Dependency Parsing . . . 83

5.4 Experimental Setting . 84

5.5 Comparing and Combining Syntax-free and Syntax-based Tagging Mod-

els . 86

5.5.1 Overall Performance . 86

5.5.1.1 Discriminative Learning is Competitive for POS Tagging 86

5.5.1.2 The Impact of POS Tagging on Parsing 86

5.5.2 Comparison . 87

5.5.2.1 Content Words vs. Function Words 87

5.5.2.2 Open Classes vs. Close Classes 89

5.5.2.3 Local Disambiguation vs. Global Disambiguation . . 90

5.5.3 Combination . 91

5.5.3.1 Tagger Ensemble via Bagging 91

5.5.3.2 Evaluation . 91

xi

CONTENTS

5.5.3.3 Final Results . 92

5.6 Comparing and Combining Grammar-free and Grammar-based Pars-

ing Models . 92

5.6.1 Grammar-based Dependency Parsing 92

5.6.2 Overall Performance . 93

5.6.3 Comparison . 94

5.6.3.1 Relating Parsing Accuracies 94

5.6.3.2 Constraints . 94

5.6.3.3 Endocentric and Exocentric Constructions 95

5.6.3.4 Factorization . 96

5.6.4 Combination . 96

5.6.4.1 Parser Ensemble via Stacking 97

5.6.4.2 Parser Ensemble via Re-parsing 98

5.6.4.3 Parser Ensemble via Bagging 98

5.6.4.4 Evaluation . 99

5.6.4.5 Final Results . 100

5.7 Discussion . 101

6 Parse Reranking with Homogeneous and Heterogeneous Annota-

tions 103

6.1 Motivation . 103

6.2 Comparison of Two Chinese Treebanks 105

6.3 A Hybrid Parsing System . 106

6.3.1 System Architecture . 107

6.3.2 Parse Reranking . 107

6.3.2.1 Parameter Estimation 107

6.3.2.2 Features . 108

6.3.3 Head Classifier . 110

6.4 Experiments . 110

6.4.1 Setting . 110

6.4.2 Upper Bound of Reranking . 111

6.4.3 Reranking Using Homogeneous Annotations 111

6.4.4 Reranking Using Heterogeneous Annotations 112

6.4.5 Head Classification . 112

6.5 Conclusion . 113

xii

CONTENTS

7 Enriching Lexical Representation for Syntactic Parsing 114

7.1 Motivation . 114

7.2 Word Clustering . 115

7.2.1 Brown Clustering . 116

7.2.2 MKCLS Clustering . 116

7.3 Experiments in POS Tagging . 117

7.3.1 Cluster-based Features . 117

7.3.2 Experiments and Analysis . 117

7.3.2.1 Setting . 117

7.3.2.2 Main Results . 117

7.3.2.3 Learning Curves . 120

7.3.2.4 Two-fold Effect . 120

7.3.2.5 Combining with the Berkeley Parser 121

7.3.2.6 Final Results . 122

7.4 Experiments in Text Chunking . 123

7.4.1 Discriminative Text Chunking 123

7.4.2 Features . 124

7.4.2.1 Baseline Features . 124

7.4.2.2 Cluster-based Features 125

7.4.3 Experiments and Analysis . 125

7.4.3.1 Baseline Performance 125

7.4.3.2 Comparing Chunking and PCFG-LA Parsing 126

7.4.3.3 Word Clustering is Helpful 126

7.4.3.4 Final Results . 127

7.5 Experiments in Dependency Parsing 128

7.5.1 Cluster-based Features . 128

7.5.2 Experiments and Analysis . 128

7.5.2.1 Main Results . 128

7.5.2.2 Two-fold Effect . 128

7.5.2.3 Impact on the Prediction of OOV Words 129

7.5.2.4 Final Results . 130

7.6 Conclusion and Discussion . 130

III Semantic Role Labeling 132

8 Full and Partial Parsing Based Semantic Chunking 133

xiii

CONTENTS

8.1 Background . 133

8.1.1 The Problem . 133

8.1.2 The Annotation Data . 134

8.1.3 Successful Methods for English SRL 136

8.1.4 Previous Work on Chinese SRL 136

8.2 Full Parsing Based Semantic Chunking with Rich Syntactic Features . 137

8.2.1 Motivation . 137

8.2.2 Constituent Classification System 138

8.2.3 Constituent Chunking System 138

8.2.4 Features . 140

8.2.4.1 Word Features . 140

8.2.4.2 Syntactic Features 141

8.2.4.3 Additional Features for SRC 143

8.3 Partial Parsing Based Semantic Chunking 144

8.3.1 Motivation . 144

8.3.2 System Architecture . 145

8.3.3 Features . 146

8.4 Experiments and Analysis . 147

8.4.1 Setting . 147

8.4.2 Main Results . 148

8.4.2.1 Rich Syntactic Features Are Helpful 148

8.4.2.2 Semantic Chunking Is Helpful 149

8.4.3 Two-fold Effect of Parsing in SRL 150

8.4.3.1 Impact on Different Sub-tasks 150

8.4.3.2 Why Word Features Are Effective for SRC? 151

8.4.4 Predicate Frequency Factor 152

8.5 Comparative Analysis . 153

8.5.1 Full Parsing is Necessary . 153

8.5.2 A Comparison of the Recall 154

8.5.3 A Comparison of the Precision 156

8.5.4 Impact of Predicate Frequency 156

8.6 Conclusion and Discussion . 157

9 Conclusions 158

9.1 Summary of the Thesis . 158

9.2 Ideas for Future Work . 160

xiv

CONTENTS

References 162

xv

List of Figures

1.1 Outline of generic data-driven NLP framework. 3

2.1 Segmentation recall relative to gold word frequency. 22

2.2 Segmentation precision relative to gold word length in training data. . 23

2.3 Segmentation recall relative to gold word length in training data. . . 24

2.4 F-score of bagging models with different numbers of sampling data

sets. Character-bagging means that the bagging system built on the

single character-based segmenter. Word-bagging is named in the same

way. 27

2.5 Precision/Recall/F-score of different models. 28

3.1 Workflow of the stacked sub-word model. 36

3.2 An example phrase: 以总成绩３５５．３５分居领先地位 (Being in

front with a total score of 355.35 points). 37

3.3 Sub-word tagging based on heterogeneous taggers. 53

4.1 The learning curves (F-score) of different models. 69

4.2 The learning curves (Recall of OOV) of different models. 70

4.3 Scatter plot of feature (L2
pv(c[i:i+1]) score against feature value. 71

4.4 Scatter plot of feature score against feature value for L2
av(c[i:i+1]). . . . 72

5.1 An example sentence with constituency and dependency structures:

The police are thoroughly investigating the cause of the accident. . . . 77

5.2 An example of Chinese POS tagging: Until now, the insurance com-

pany has provided insurance services for the Sanxia Project. 80

5.3 Tagging accuracy of Bagging models with different numbers of sam-

pling data sets. Tagger-Bagging means that the Bagging system built

on the single tagger. Parser-Bagging is named in the same way. . . . 91

xvi

LIST OF FIGURES

5.4 Scatter plots of UAS of the grammar-based model against the grammar-

free model. 94

5.5 Nominal vs. verbal constructions. 96

5.6 Parsing precision relative to dependency length. 97

5.7 Dependency UAS of Bagging models with different numbers of sam-

pling data sets. 100

6.1 Workflow of the System . 106

6.2 An example for interpretation of features: To eat apples that are bought.108

7.1 Tagging accuracy of Bagging models with different numbers of sam-

pling data sets. Semi-Tagger-Bagging means that the Bagging system

built on the tagger with word cluster information. Parser-Bagging is

named in the same way. 122

7.2 An example from of Chinese chunking: Until now, the insurance com-

pany has provided insurance services for the Sanxia Project. 124

7.3 Chunking f-scores for different chunk types. 126

8.1 An example sentence for CTB and CPB: The police are thoroughly

investigating the cause of the accident. 135

8.2 Parsing errors that can be tolerated by full parsing based constituent

chunking. 139

8.3 An example of the definition of semantic chunks: The insurance com-

pany has provided insurance services for the Sanxia Project. 145

8.4 F-scores of different tasks and different systems relative to the predicate

frequency on the training data. 153

8.5 Recall of different systems relative to the length of arguments. 154

8.6 Recall of different systems relative to the distance between arguments

and predicates. 155

xvii

List of Tables

1.1 Properties of different views in NLP. 7

2.1 Baseline performance. 22

2.2 Word length statistics on test sets. 25

2.3 F-score of two segmenters, with (−) and without (+) word token/type

features. 25

2.4 Upper bound for combination. The error reduction (ER) rate is a

comparison between the F-score produced by the oracle combination

system and the character-based system (see Table 2.1). 26

2.5 Segmentation performance presented in previous work and of our com-

bination model. 29

3.1 An example of features used for sub-word tagging. 40

3.2 Training, development and test data on CTB 5.0 41

3.3 Performance of the coarse-grained solvers on the development data. . 42

3.4 Upper bound of the sub-word tagging on the development data. . . . 43

3.5 Performance of the stacked sub-word model (K = 5) with features in

different window sizes. 44

3.6 Performance on the development data. No stacking and different folds

of cross-validation are separately applied. 44

3.7 F-score performance on the test data. 45

3.8 Training, development and test data on CTB 6.0 45

3.9 F-score performance on the CTB 6.0. 46

3.10 Mapping between CTB-style tags and PPD-style tags. 49

3.11 Performance of different stacking models on the development data. . . 55

3.12 F-scores relative to sizes of training data. Sizes (shown in column

#CTB and #PPD) are numbers of sentences in each training corpus. 56

3.13 F-scores with gold PPD-style tagging on the manually converted data. 56

xviii

LIST OF TABLES

3.14 Performance of re-trained models on the development data. 57

3.15 Performance of different systems on the test data. 57

4.1 Segmentation performance with different feature sets on the develop-

ment data. Abbreviations: MI=mutual information; AV=accessor va-

riety; PU=punctuation variety; DOC=document features. The num-

bers in each bracket pair are the lengths of strings. For example,

PU(2,3) means punctuation variety features of character bigrams and

trigrams are added. 68

4.2 Segmentation performance on the test data. 69

5.1 An example of features used for POS tagging. 80

5.2 Training, development and test data on CTB 6.0 (setting 1). 84

5.3 Tagging accuracy on the test data (setting 1). 86

5.4 Parsing accuracy on the development data. 86

5.5 Tagging accuracy of words of different classes on the development data. 88

5.6 Tagging accuracy of the IV and OOV words on the development data. 89

5.7 Tagging recall of OOV words (frequency>10) on the development data. 90

5.8 Tagging accuracy of different models on the test data (CoNLL setting). 92

5.9 Parsing accuracies on the development data. 93

5.10 Different evaluation metrics. 95

5.11 Performance of the stacking model. 99

5.12 Performance of the re-parsing model. 99

5.13 Performance of different Bagging models. m=10, Inference=re-parsing. 100

5.14 Accuracies of different models on the test data. 101

6.1 Upper bound of f-score as a function of number n of n-best parses. . . 111

6.2 Reranking performance with different number of parse candidates on

the sentences that contain no more than 40 words in the development

data. 112

6.3 Reranking performance with different number of parse candidates on

the sentences that contain no more than 40 words in the development

data. 112

6.4 Head classification performance with gold trees on the development data.113

7.1 Tagging accuracies with different feature configurations on the devel-

opment data. 118

xix

LIST OF TABLES

7.2 Detailed tagging accuracies of the baseline model and the “+c500(MKCLS)+1991-

2004” model on the development data. 119

7.3 Tagging accuracy on the development data. Size=#sentences in the

training corpus. 120

7.4 Tagging performance with IV clustering on the development data. . . 121

7.5 The tagging recall of OOV words (frequency>10) on the development

data. 121

7.6 Tagging performance on the test data. 122

7.7 Parsing accuracies on the test data. (CoNLL) 123

7.8 An example of features used for Chunking. 124

7.9 The tagging accuracy on the development data. 125

7.10 Chunking f-scores with different feature configurations on the develop-

ment data. 127

7.11 Bracketing performance on the development data. 127

7.12 Chunking performance on the test data. 127

7.13 Dependency parsing UAS/LAS with different feature configurations on

the development data. 129

7.14 Dependency performance with IV clustering on the development data. 129

7.15 Dependency prediction accuracy relative to word type (OOV or IV). . 130

7.16 Dependency parsing performance on the test data. 130

8.1 Category Clusters . 142

8.2 An example of the features used in our SRL system. 144

8.3 Training, development and test data on CTB 5.0 147

8.4 Performance of the full parsing based classification system on the test

data. 148

8.5 Performance of full parsing based SRL systems on the test data. . . . 150

8.6 Performance of the partial parsing based semantic chunking system on

the test data. 150

8.7 Classification performance on different tasks on the development data. 151

8.8 Top 10 useful features for AI. ‡ means word features. 151

8.9 Top 10 useful features for SRC. 152

8.10 Performance of different semantic chunking systems on the develop-

ment data. 153

8.11 Error rate and the recovery rate relative to the type of arguments. . . 156

9.1 The tasks and their corresponding multi-views investigated in the thesis.159

xx

Chapter 1

Introduction

The application of statistical learning techniques to natural language processing

(NLP) has been remarkably successful over the past two decades. The wide avail-

ability of linguistic corpora has played a critical role in their success, but acquiring

sufficient quantities of usefully labeled training examples is still a major bottleneck

for many supervised NLP algorithms. Two promising methods to address the anno-

tation bottleneck are co-training, a variant of semi-supervised learning, in which two

(or more) learners label most reliable pseudo training examples for each other, and

co-testing, a variant of active learning, in which two (or more) learners find train-

ing examples that are the most informative by disagreement for the human to label.

There are some successful application of both co-training and co-testing for several

NLP tasks, such as syntactic parsing [Hwa et al., 2003; Osborne and Baldridge, 2004;

Sarkar, 2001] and information extraction [Collins and Singer, 1999; Liao and Grish-

man, 2011].

The success of both co-training and co-testing results from multiple sufficiently

independent views, based on which labeled and unlabeled data are explored by mu-

tually training a set of classifiers defined in each view. These two multi-view learning

approaches are inspired by a general principle: The agreement rate of multiple hy-

potheses based on different views lower-bounds the error rate of either hypothesis. By

maximizing the agreement rate, the error rate can be minimized. Broadly speaking,

multi-view learning is not restricted to the semi-supervised and active learning cases,

and has, explicitly or implicitly, been applied in many other very different approaches,

although many authors do not seem to be aware of the multi-view aspect. By utilizing

the consensus maximization principle, multi-view learning can be advantageous when

compared to learning with only a single view especially when the weaknesses of one

view complement the strengths of the other.

1

Previous research efforts on NLP have mainly focused on designing and develop-

ing individual models with single views, and have met with success in a majority of

tasks: word segmentation, POS tagging, syntactic parsing, machine translation, just

to name a few. Normally, there have been a considerable number of methods to resolve

one problem. Take English Penn Treebank guided parsing—one of the biggest break-

throughs in the last two decades—for example. First, different grammar formalisms,

e.g. probabilistic context-free grammars [Charniak, 2000; Collins, 2003; Klein and

Manning, 2003], tree-adjoining grammars [Carreras et al., 2008; Chiang, 2000; Shen

and Joshi, 2005], and dependency grammars [Eisner, 1996; McDonald et al., 2005;

Yamada and Matsumoto, 2003], are explored. Second, in one grammar formalism,

different approaches are proposed and well implemented. For example, based on the

context free grammar, both lexicalized models, such as Collins and Charniak parsers

[Charniak, 2000; Collins, 2003], and unlexicalized models, such as the Berkeley parser

[Petrov et al., 2006; Petrov and Klein, 2007] achieve good results. Finally, even in

the same approach, there are still different strategies to follow. For instance, both

shift-reduce [Sagae and Lavie, 2006a] and cascaded chunking [Tsuruoka et al., 2009]

models are evaluated for incremental parsing.

Single views could be adequate if for every processing task, we could have a few

perfect views that could be precise enough. Unfortunately, we are not even close to

finding such perfect views, if they do exist. On the other hand, NLP systems built on

particular single views normally capture different properties of an original problem,

and therefore differ in predictive powers. Moreover, our motivating examples, i.e.

co-training and co-testing, suggest that multi-view processing is an encouraging solu-

tion since it may combines complementary strengths of different views. In this thesis,

we empirically investigate learning natural language structures with multiple views.

Traditional multi-view learning describes the setting of learning from data where ob-

servations are represented by multiple independent sets of features. Different from

such setting, we extend the idea and study different views with respect to computa-

tional models, linguistic annotations and learning paradigms, which are three typical

situations in NLP. We claim that multiple, distinct, heterogeneous views are needed

to process natural languages in all levels, to efficiently construct linguistic resources,

to enhance existing computational models, as well as to inspire novel ideas.

This thesis focuses on the automatic statistical processing of the Chinese language.

The process of comprehending a Chinese sentence involves structuring a sequence of

characters lexically, syntactically and semantically to arrive at a representation of the

sentence’s meaning. The problems studied in this thesis include word segmentation,

2

POS tagging, constituency as well as dependency parsing, and semantic role labeling.

First, we use existing approaches as a starting point to comparatively analyze cur-

rently successful models for lexical, syntactic and semantic processing. The results of

analysis is further exploited to advance the state-of-the-art by combining or integrat-

ing heterogeneous methods. Second, we study the annotation ensemble problem, i.e.

learning from multiple data sets created according to different annotation standards.

We propose generalized stacking models to effectively utilize heterogeneous labeled

data. Finally, we are concerned with bridging the gap between unsupervised and

supervised learning paradigms. We introduce feature induction solutions that harvest

useful linguistic knowledge from large-scale unlabeled data and effectively use them as

new features to enhance language processing systems based on discriminative learn-

ing.

1.1 About Multiple Views in NLP

1.1.1 A General Framework for Data-driven Text Processing

Figure 1.1: Outline of generic data-driven NLP framework.

Figure 1.1 graphically displays the general framework for most data-driven NLP

systems. First, a system must define a learning algorithm that takes as input the

training data, which is either labeled texts with informative linguistic structures or

unlabeled raw texts, and outputs a model. Sometimes, multiple heterogeneous an-

notated corpora that are labeled according to different standards are available. The

learned model is the main part of a NLP system. When a new sentence x is given

3

to the NLP system, the system uses the parameter specifications in the model to

produce a linguistic structure y.

1.1.2 Three Categories of Multi-views

According to the aforementioned general framework, we distinguish between differ-

ent views for data-driven NLP from three aspects: computational model, linguistic

annotation and learning paradigm. First, given a training data set, different models

can be taken as different views. Second, for one type of task, heterogeneous anno-

tations that yield predictors with different outputs can be taken as different views.

Finally, different learning paradigms, namely unsupervised language acquisition and

supervised language processing, can be taken as different views.

Heterogeneous Computational Models: For a number of NLP tasks, distinct,

heterogeneous models have been proposed for solutions, each of which is based on a

particular view of a problem. Take Chinese word segmentation for example. There are

two dominant approaches for word segmentation. The first one naturally formulates

the problem as finding words contained in a given sentence one-by-one. The second

one transforms the segmentation problem into a character classification problem, of

which the target classes are word boundary labels. The different start points make

the two types of models behave very differently, and especially have different error

distributions.

Heterogeneous Linguistic Annotations: A majority of data-driven NLP sys-

tems rely on large-scale, manually annotated corpora. These corpora with consider-

able information are important to train statistical systems but very expensive to build.

Nowadays, for many tasks, multiple heterogeneous annotated corpora have been built

and publicly available. For Chinese lexical processing, both the PKU’s People’s Daily

data and the Penn Chinese Treebank provide word boundary and POS information.

For parsing, the HIT-IR dependency Treebank and the Tsinghua Treebank are two

alternative corpora of the Penn Treebank. However, the annotation formalisms or

schemes in different projects are usually different, since the underlying linguistic the-

ories vary and have different ways to explain the same language phenomena. Each

linguistic annotation standard with its associated labeled corpus can be taken as a

particular view.

4

Heterogeneous Learning Paradigms: In data-driven NLP, we are interested in

automatically learning something from labeled and unlabeled corpora. Generally

speaking, typical approaches in NLP to the natural language learning problem fall

into two categories. In the first case, we basically build strong systems on labeled

data by applying highly developed supervised training techniques. In the second case,

we acquire linguistic knowledge from raw texts in a primarily unsupervised fashion.

Both achieve encouraging results for some tasks. A good example for the first case

is syntactic parsing, while a good example for the second case is word alignment.

These two learning paradigms can be conventionally taken as two views for learning

language structures.

1.1.3 Advantages of Multi-view Processing

On one hand, each view alone can yield a reasonably good predictor in many cases,

but is inadequate to interpret every linguistic phenomenon. On the other hand, some

linguistic properties that are not captured by one model, can be potentially captured

by other models. As a result, NLP systems can take advantage of complementary

strengths of multiple views. Below we sketch some possible directions.

• Model Selection: Comparative analysis of different views gives better under-

standing of the goodness and badness of different solutions. This can help select

an appropriate solution from a set of candidate models for a particular problem.

• Inspiration for Novel Models: Comparative analysis can (at least partially)

interpret why a particular view works or does not work for a given task. This

can help us design new models by overcoming the shortcomings of each view.

• System Ensemble: We could use multiple systems to obtain better predic-

tive performance than could be obtained from any of the constituent systems.

Multiple views can increase the diversity of base systems which is of the central

role of system ensemble.

• Agreement-based semi-supervised Learning: Agreement-based semi-supervised

learning is a general approach for learning from both labeled and unlabeled

data, where the agreement among multiple learners is exploited for learning.

This general approach can benefit from multiple views to explore unlabeled

data, or benefit from unlabeled data to explore the diversity of multiple views.

5

• Disagreement-based Active Learning: Similar to agreement-based semi-

supervised learning, multiple views can also help detect informative examples

by disagreement for active learning and therefore reduce labeling efforts for

corpus construction.

1.1.4 View Integration

Apart from achieving better understanding of Chinese language processing through

comparative study, we are also (or even more) interested in enhancing individual

systems by combining or integrating different views. There are many conceivable ways

to do so. In this thesis, we present a unified framework for view integration. Each view

alone can yield a predictor that can be taken as a mechanism to produce morphology,

lexical, syntactic or semantic structures for given texts. With different views, we

can construct multiple heterogeneous systems. These systems may produce the same

type of linguistic analysis but with different error distributions, may produce similar

linguistic analysis which holds the same high level linguistic principles but differs

in details, or just produce some non-directly comparable but relevant information.

We leverage post-inference to integrate the outputs from systems designed by single

views. This framework is general and robust, in the sense that we assume almost

nothing about the individual systems and take them as black boxes.

Formally speaking, our idea is to include two “levels” of processing. The first

level includes one or more predictors fm1 , ..., f
m
Km
, fa1 , ..., f

a
Ka
, f l1, ..., f

l
Kl

that are inde-

pendently built on different views. When views are about different computational

models, the associated predictors fm1 , ..., f
m
Km

have the same input space X and the

same output space Y. When views are about different linguistic annotations or learn-

ing paradigms, the associated predictors fa1 , ..., f
a
Ka
, f l1, ..., f

l
Kl

have the same input

space X but different output spaces Ya1, ...,Y
a
Ka
,Yl1, ...,Y

l
Kl

. The second level pro-

cessing consists of an inference function h that takes as input 〈x, fm1 (x), ..., fmKm
(x),

fa1 (x), ..., faKa
(x), f l1(x), ..., f lKl

(x)〉 and outputs a final prediction h(x, fm1 (x), ..., f lKl
(x)).

Learning-free Inference: When the relations between heterogeneous systems can

be explicitly expressed as hard constraints, i.e. the outputs are directly comparable,

we can use a learning-free post-inference to pick up good analysis from the output

pool. By learning-free, we mean no machine learning procedure is involved in the

selection of outputs. The simplest case is the combination of heterogeneous methods,

where the target outputs of different systems are exactly the same. A more complex

example is the combination of a constituency parser and a dependency parser. If we

6

assume that a constituency structure is adequate to be transformed to its associated

dependency structure, we can still use a word-by-word voting method to combine the

results from a dependency parser with the transformed dependency results from a

constituency parser to achieve better dependency analyzing.

Learning-based Inference: When the relations between heterogeneous systems

are hard to be expressed as constraints, i.e. the outputs are not comparable, we can

still use discriminative learning techniques to integrate their outputs. The discrimina-

tive nature of a learning-based post-inference procedure allows it to define arbitrary

features from rich heterogeneous structures, and to automatically identify and explore

informative features for output selection.

Table 1.1 lists some properties of the three categories of heterogeneous views.

When the views are about computational models, the output spaces are the same

one, so the outputs of different systems are directly comparable. In this case, we can

apply both learning-based and learning-free inference to get the final result. When

the views are about linguistic annotations, the output spaces are not directly compa-

rable. In this case, we can apply learning-based inference to get the final result. If

the assistant annotations are adequate to be converted to the target annotation, we

can still employ learning-free inference by first transforming between heterogeneous

annotations. When the views are about different machine learning paradigms, the

output spaces are not comparable. In this case, only learning-based inference is ap-

plicable. When the supervised processing system is itself a discriminative one, we can

directly incorporate the heterogeneous linguistic knowledge into the system as new

features.

View category Output Post-inference
Learning-based Learning-free

Computational model Directly comparable YES YES
Linguistic annotation Not directly comparable YES ?
Learning paradigm Not comparable YES NO

Table 1.1: Properties of different views in NLP.

1.2 The Problems Investigated in This Thesis

In this thesis, we focus on multi-view Chinese language processing, including learning

lexical, syntactic and shallow semantic structures. Before we move on to the main

body of the thesis, we give a brief introduction to the tasks we investigate.

7

Word Segmentation: The Chinese language has a number of characteristics that

make Chinese language processing particularly challenging and intellectually reward-

ing. For example, written Chinese text does not have marked word boundaries like

English and other Western languages. To find the basic language units, word segmen-

tation, of which the goal is to transform a Chinese sentence from a character sequence

to a word sequence, is a necessary initial step for Chinese language processing.

Syntactic Parsing: As one of the core issues of NLP, syntactic parsing is the

process of analyzing a sequence of words to determine its grammatical structure.

Two popular formalisms to express syntactic relations are constituency and depen-

dency representations. A constituency grammar arranges sentences into a hierarchy of

nested phrases which determine the construction of each phrase, while a dependency

grammar formalizes syntactic structure as a directed tree of bilexical dependencies,

which determines relations between head words and their dependents. It is generally

accepted that finding syntactic structures is useful in determining the meaning of a

sentence. Therefore most NLP applications could certainly benefit from high-accuracy

parsing.

Semantic Role Labeling: Semantic role labeling (SRL) is the process of assign-

ing semantic roles to constituents in a sentence according to their relationship to

predicates expressed in the sentence. It consists of the detection of the semantic ar-

guments associated with a target predicate and their classification into their specific

roles. Such sentence-level semantic analysis of text is concerned with the character-

ization of events and is therefore important to understand the essential meaning of

natural language sentences – who did what to whom, for whom or what, how, where,

when and why?

1.3 Main Contributions

We present a series of theoretical and empirical comparative analysis for a number

of state-of-the-art heterogeneous methods to resolve the Chinese language structure

learning problems, including,

• word-based and character-based methods for word segmentation,

• discriminative sequential tagging and generative chart parsing methods for POS

tagging,

8

• generative PCFG-LA models and discriminative graph-based methods for con-

stituency and dependency parsing,

• full and shallow parsing based methods for SRL.

Generally, to get a good hybrid solver, the component learners should be as more

accurate as possible, and as diverse as possible. Our comparative analysis highlights

the diversity between different systems built on different views, and therefore moti-

vates our research on view integration. Amongst many conceivable ways, this thesis

specially focus on the aforementioned post-inference method to combine outputs pro-

duced by heterogeneous systems. We propose several effective models and improve

state-of-the-art accuracy for Chinese language processing, including,

• a Bagging model to combine word-based and character-based word segmentation

methods,

• a stacked sub-word tagging model for joint word segmentation and POS tagging,

which is robust to integrate not only heterogeneous models, but also heteroge-

neous annotation data,

• a Bagging model for POS tagging which combine the complementary strengths

of syntax-free sequential tagging and syntax-based chat parsing,

• a Bagging model for dependency parsing which combine the complementary

strengths of a discriminative, grammar-free parser and a generative, grammar-

based parser,

• a parse reranking model to explore heterogeneous treebanks for constituency

parsing.

The last topic we explore is unsupervised language acquisition for supervised lan-

guage processing. Rather than utilize an extra post-inference, we directly incorporate

linguistic knowledge acquired from unlabeled data into discriminative processors. Our

work includes,

• deriving useful and expressive string knowledge from unlabeled data to enhance

strong supervised word segmenters,

• utilizing word clusters to improve different syntactic processing tasks, including

POS tagging, text chunking and dependency parsing.

9

1.4 Outline of the Thesis

The remainder of this thesis consists of three main parts and is structured as follows.

In the first part, we present our work on word segmentation.

• Chapter 2 provides a comparative study of two dominant model views for word

segmentation.

• Chapter 3 presents a stacked sub-word tagging model for joint word segmen-

tation and POS tagging, which is robust to integrate different models, even

models trained on heterogeneous annotations.

• Chapter 4 describes a semi-supervised method to enhance a supervised word

segmenter via harvesting string knowledge from unlabeled data.

Then, we introduce our work on syntactic parsing in the second part.

• Chapter 5 provides a comparative study for POS tagging and syntactic parsing

in different formalisms.

• Chapter 6 exploits heterogenous treebanks to improve constituency parsing.

• Chapter 7 applies unsupervised lexical acquisition to POS tagging, text chunk-

ing and dependency parsing.

The third part is our work on shallow semantic parsing.

• Chapter 8 introduces full and partial parsing based semantic chunking methods

for SRL and presents a comparative analysis.

Chapter 9 concludes by summarizing the thesis and providing ideas for future

work.

10

Part I

Word Segmentation

11

Chapter 2

Comparing and Combining

Word-based and Character-based

Segmenters

This chapter introduces the Chinese word segmentation problem, which is a funda-

mental task of Chinese language processing. Supervised learning with specifically

defined training data has become a dominant paradigm. Our discussion is under

this setting. We present a theoretical and empirical comparative analysis of the two

dominant categories of approaches in word segmentation: word-based models and

character-based models. From a machine learning view, the two approaches formu-

late segmentation as semi-Markov and Markov tagging respectively. We show that,

in spite of similar performance overall, the two models produce different distributions

of segmentation errors, in a way that can be explained by theoretical properties of

the two models. The analysis is further exploited to improve segmentation accuracy

by integrating a word-based segmenter and a character-based segmenter.

Parts of this chapter are originally published in [Sun, 2010c].

2.1 Background

2.1.1 The Problem

In language, words are relatively independent carriers of meaning that can be codified

in the lexicon and be described syntactically as the smallest substitutable units of a

sentence. Chinese sentences are written in continuous sequences of characters without

space characters as explicit word delimiters. To find the basic language units, word

12

segmentation, of which the goal is to transform a Chinese sentence from a character

sequence to a word sequence, is a necessary intial step for Chinese language processing.

2.1.2 Previous Work

There are two dominant models for Chinese word segmentation. The first one is

what we call “word-based” approach, where the basic predicting units are words

themselves. This kind of segmenters sequentially decides whether the local sequence of

characters make up a word. This word-by-word approach ranges from naive maximum

matching [Chen and Liu, 1992] to complex solution based on semi-Markov conditional

random fields (CRF) [Andrew, 2006]. The second is the “character-based” approach,

where basic processing units are characters which compose words. Segmentation is

formulated as a classification problem to predict whether a character locates at the

beginning of, inside or at the end of a word. This character-by-character method was

first proposed in [Xue, 2003], and a number of machine learning algorithms have been

exploited, including maximum entropy classification [Ng and Low, 2004], structured

perceptron [Jiang et al., 2009], CRFs [Tseng et al., 2005a], and discriminative latent

variable CRFs [Sun et al., 2009b].

State-of-the-art segmenters nearly all leverage discriminative sequential tagging.

It is easy to formulate the two kinds of methods as semi-Markov and Markov tag-

ging problems. This chapter is concerned with the behavior of different segmentation

models in general. We present a detailed analysis that reveals important differences

of the two methods. First, we give a theoretical comparative analysis of the two

models. Then we implement two statistical segmenters and empirically study several

factors that influence the performance of the two types of algorithms. Our analysis

will indicate that the two types of approaches exhibit different behaviors, and each

segmentation model has strengths and weaknesses. We further consider integrat-

ing word-based and character-based models in order to exploit their complementary

strengths and thereby improve segmentation accuracy beyond what is possible by

either model in isolation. We present a Bootstrap Aggregating model to combine

multiple segmentation systems.

2.2 State-of-the-Art

First of all, we distinguish two kinds of “words”: (1) Words in dictionary are word

types; (2) Words in sentences are word tokens. The goal of word segmentation is

13

to identify word tokens in a running text, where a large dictionary (i.e. list of word

types) and annotated corpora may be available. From the view of token, we divide

segmentation models into two main categories: word-based models and character-

based models. There are two key issues of a segmentation model: (1) How to decide

whether a local sequence of characters is a word? (2) How to do disambiguation if

ambiguous segmentation occurs? For each model, we separately discuss the strategies

for word prediction and segmentation disambiguation.

2.2.1 Word-Based Method: Semi-Markov Tagging

It may be the most natural idea for segmentation to find word tokens one by one.

This kind of segmenters read the input sentences from left to right, predict whether

current piece of continuous characters is a word token. After one word is found,

segmenters move on and search for next possible word. There are different strategies

for the word prediction and disambiguation problems. Take for example maximum

matching, which was a popular algorithm at the early stage of research [Chen and

Liu, 1992]. For word prediction, if a sequence of characters appears in a dictionary,

it is taken as a word candidate. For segmentation disambiguation, if more than one

word types are matched, the algorithm chooses the longest one.

In the last several years, machine learning techniques are employed to improve

word-based segmentation, where the above two problems are solved in a uniform

semi-Markov tagging model. Given a sequence of characters c ∈ Cn (n is the number

of characters), denote a segmented sequence of words w ∈ Wm (m is the number

of words, i.e. m varies with w), and a function GEN that enumerates a set of

segmentation candidates GEN(c) for c. In general, a segmenter solves the following

“argmax” problem:

ŵ = arg max
w∈GEN(c)

θ>Φ(c,w) (2.1)

= arg max
w∈GEN(c)

θ>
|w|∑
i=1

φ(c, w[1:i]) (2.2)

where Φ and φ are global and local feature maps and θ is the parameter vector

to learn. The inner product θ>φ(c, w[1:i]) can been seen as the confidence score of

whether wi is a word. The disambiguation takes into account confidence score of each

word, by using the sum of local scores as its criteria. Markov assumption is necessary

for computation, so φ is usually defined on a limited history. Perceptron and semi-

14

Markov CRFs were used to estimate θ in previous work [Andrew, 2006; Zhang and

Clark, 2007].

Our introduction here is according to the properties of segmentation models, not

the research history. Note that the first disambiguation method with machine learning

techniques was introduced under the character-based scheme.

2.2.2 Character-Based Method: Markov Tagging

Most previous data-driven segmentation solutions took an alternative, character-

based view. This approach observes that by classifying characters as different po-

sitions in words, e.g. word-initial, word-middle, word-final, etc., segmentation can be

treated as a Markov sequential tagging problem, assigning labels to the characters

in a sentence indicating whether a character ci is a single character word (S) or the

begin (B), middle (I) or end (E) of a multi-character word. For word prediction,

word tokens are inferred based on the character classes. For example, the target label

representation of the book title “国家的囚犯：赵紫阳总理的秘密日记/Prisoner of

the State: The Secret Journal of Premier Zhao Ziyang” is as follows.

国 家 的 囚 徒 ： 赵 紫 阳 总 理 的 秘 密 日 记

B E S B E S B I E B E S B E B E

The main difficulty of this model is character ambiguity that most Chinese char-

acters can occur in different positions within different words. Linear models are also

popular for character disambiguation (i.e. segmentation disambiguation). Denote a

sequence of character labels y ∈ Yn, a linear model is defined as:

ŷ = arg max
y∈Y|c|

θ>Ψ(c,y) (2.3)

= arg max
y∈Y|c|

θ>
|c|∑
i=1

ψ(c, y[1:i]) (2.4)

Note that local feature map ψ is defined only on the sequence of characters and their

labels. Several discriminative models have been exploited for parameter estimation,

including perceptron, CRFs, and discriminative latent variable CRFs [Jiang et al.,

2009; Sun et al., 2009b; Tseng et al., 2005a].

15

2.3 Theoretical Comparison

Theoretically, the two types of models are different. We compare them under four

aspects.

2.3.1 Internal Structure of Words

Chinese words have internal structures. In most cases, a Chinese character is a

morpheme which is the smallest meaningful unit of the language. Though we cannot

exactly infer the meaning of a word from its character components, the character

structure is still meaningful [Sun et al., 2009a]. Partially characterizing the internal

structures of words, one advantage of character-based models is the ability to induce

new words. E.g., character “者/person” is usually used as a suffix meaning “one kind

of people”. If a segmenter never sees “工作者/worker” in training data, it may still

rightly recognize this word by analyzing the prefix “工作/work” with label BI and

the suffix “者” with label E. This feature may be helpful in CWS for generalizing to

new words. In contrast, current word-based models only utilize the weighted features

as word prediction criteria, and thus word formation information is not well explored.

For more details about Chinese word fomation in NLP, see [Sun et al., 2009a].

2.3.2 Linearity and Nonlinearity

A majority of structured prediction models are linear models in the sense that the

score functions are linear combination of parameters. Both previous solutions for

word-based and character-based systems utilize linear models. However, both prin-

ciply linear models incur nonlinearity to some extent. In general, a sequence clas-

sification itself involves nonlinearity because the features of current token usually

encode previous state information which is a linear combination of features of previ-

ous tokens. The interested readers may consult [Liang et al., 2008] for preliminary

discussion about the nonlinearity in structured models. This kind of nonlinearity ex-

ists in both word-based and character-based models. The word-based solution, such

as word-based perceptron and semi-Markov CRFs, is a linear model. The word pre-

diction acts on features in a linear way. In addition, in most character-based models,

a word should take a S label or start with a B label, end with E label, and only have

I label inside. This inductive way for word prediction actually behaves nonlinearly.

Only strings with label sequence like BI*E or S are predicted as words.

16

2.3.3 Dynamic Tokens or Static Tokens

Since word-based models take the sum of part score of each individual word token,

it increases the upper bound of the whole score to segment more words. As a result,

word-based segmenter tends to segment words into smaller pieces. A difficult case

occurs when a word token w consists of some sub-strings that cound be word tokens.

In such cases a word-based segmenter more easily splits the word into individual

words. For example, in the phrase “四千三百/4300 米/meter (4300 meters)”, the

numeral “四千三百” consists of two individual strings “四千 (4000)” and “三百(300)”

which are numeral word typs. A word-based segmenter could more more easily make

a mistake to segment two word tokens. This phenomenon is very common in named

entities.

2.3.4 Word Token or Word Type Features

In character-based models, features are usually defined by the character informa-

tion in the neighboring n-character window. Despite a large set of valuable features

that could be expressed, it is slightly less natural to encode predicted word token

information. On the contrary, taking words as dynamic tokens, it is very easy to

define word token features in a word-based model. Word-based segmenters hence

have greater representational power. Despite of the lack of word token representation

ability, character-based segmenters can use word type features by looking up a dictio-

nary. For example, if a local sequence of characters following current token matches

a word in a dictionary; these word types can be used as features. If a string matches

a word type, it has a very high probability (ca. 90%) to be a word token. So word

type features are a good approximation of word token features.

2.4 Empirical Comparision

The primary purpose of this study is to characterize the different properties of the two

methods. We present a series of experiments that relate segmentation performance

to a set of properties of input words. We argue that the results can be correlated to

specific theoretical aspects of each model.

17

2.4.1 Baseline Systems

For empirical analysis, we implement segmenters in word-based and character-based

architectures respectively. We introduce them from three aspects: basic models,

parameter estimation and feature selection.

2.4.1.1 Models

For both word-based and character-based segmenters, we use linear models introduced

in the section above. We use first order (Semi-)Markov models for training and test.

In particular, for word-based segmenter, the local feature map φ(c, w[1:i]) is defined

only on c, wi−1 and wi, and thereby Eq. 2.2 is defined as

ŵ = arg max
w∈GEN(c)

θ>
|w|∑
i=1

φ(c, wi−1, wi) (2.5)

This model has a first-order Semi-Markov structure. For decoding, Zhang and Clark

[2007] used a beam search algorithm to get approximate solutions, and Sarawagi and

Cohen [2004] introduced a Viterbi style algorithm for exact inference. We use this

exact inference algorithm in our segmenter at both training and test time.

For our character-based segmenter, the local feature map ψ(c, y[1:i]) is defined on

c, yi−1 and yi, and Eq. 2.4 is defined as

ŷ = arg max
y∈Y|c|

θ>
|c|∑
i=1

ψ(θ, yi−1, yi) (2.6)

In our character-based segmenter, we also use a Viterbi algorithm for decoding.

2.4.1.2 Learning

We adopt Passive-Aggressive (PA) framework [Crammer et al., 2006], a family of

margin based online learning algorithms, for the parameter estimation. It is fast and

easy to implement. Algorithm 3 illustrates the learning procedure. The parameter

vector w is initialized to (0, ..., 0). A PA learner processes all the instances (t is from

1 to n) in each iteration (I). If current hypothesis (w) fails to predict xt, the learner

updates w through calculating the loss lt and the difference between Φ(xt,y
∗
t) and

Φ(xt,yt) (line 5-7). There are three variants in the update step. We here only present

the PA-II rule1, which performs best in our experiments. This update step is based on

1See the original paper for more details.

18

input : Data {(xt,yt), t = 1, 2, ..., n}
Initialize: w← (0, ..., 0)1

for I = 1, 2, ... do2

for t = 1, ..., n do3

Predict: y∗t = arg maxy∈GEN(xt) w>Φ(xt,y)4

Suffer loss: lt = ρ(yt,y
∗
t) + w>Φ(xt,y

∗
t)−w>Φ(xt,yt)5

Set: τt = lt
||Φ(xt,y∗t)−Φ(xt,yt)||2+0.5C6

Update: w← w + τt(Φ(xt,yt)− Φ(xt,y
∗
t))7

end8

end9

Algorithm 1: The PA learning procedure.

analytical solutions to simple constrained optimization problems. For more details,

please refer to the original paper.

The PA algorithm utilizes a paradigm of cost-sensitive learning to resolve struc-

tured prediction. A cost function ρ is necessary to calculate the loss lt (line 5). For

every pair of labels (y∗,y), users should define a cost ρ(y∗,y) associated with pre-

dicting y∗ when the correct label is y. ρ should be defined differently for different

purposes. There are two natural costs for segmentation: (1) sum of the number of

wrong and missed word predictions and (2) sum of the number of wrongly classi-

fied characters. We tried both cost functions for both models. We find that the

first one is suitable for a word-based segmenter and the second one is suitable for

a character-based segmenter. We do not report segmentation performance for the

weeker combination of the problem structure and the cost function in this thesis. C

(in line 6) is the slack variable. In our experiments, the segmentation performance is

not sensitive to C. In the following experiments, we set C = 1.

2.4.1.3 Features

Developing features has been shown crucial to advancing the state-of-the-art statisti-

cal solutions of in a number of NLP tasks. It is also important for word segmentation.

The features used in our segmenters are mainly borrowed from previous research,

which are elaborated on in the following.

Word-based Segmenter

For the convenience of illustration, we denote a candidate word token wi with a

context cj−1[wi−1
cj...ck][wi

ck+1...cl]cl+1.

The character features includes,

19

Boundary character unigram: cj, ck, ck+1, cl and cl+1; Boundary character bigram:

ckck+1 and clcl+1.

Inside character unigram: cs (k + 1 < s < l); Inside character bigram: cscs+1

(k + 1 < s < l).

Length of current word.

Whether ck+1 and ck+1 are identical.

Combination Features: ck+1 and cl,

The word token features includes,

Word Unigram: previous word wi−1 and current word wi; Word Bigram: wi−1wi.

The identity of wi, if it is a Single character word.

Combination Features: wi−1 and length of wi, wi and length of wi−1. ck+1 and

length of wi, cl and length of wi.

Character-based Segmenter

We use the exact same feature templates described in [Sun et al., 2009b]. We

denote a candidate character token ci with a context ...ci−1cici+1.... The features are

divided into two types: character features and word type features. The character-

based features are indicator functions that fire when the bracketing label takes some

value and some predict of the input (at a certain position) corresponding to the label

is satisfied. Note that the word type features are indicator functions that fire when the

local character sequence matches a word unigram or bigram. Dictionaries containing

word unigrams and bigrams was collected from the training data.

We use the predicate templates as follows:

• character unigram: cs (i− 3 < s < i+ 3)

• character bigram: cscs+1 (i− 3 < s < i+ 3)

• Whether cs and cs+1 are identical, for i− 2 < s < i+ 2.

• Whether cs and cs+2 are identical, for i− 4 < s < i+ 2.

The latter two feature templates are designed to detect character or word redupli-

cation, a morphological phenomenon that can influence word segmentation in Chinese.

The word type features are indicator functions that fire when the local character

sequence matches a word unigram or bigram. The dictionary containing word and

bigram information was collected from the training data. They includes,

20

• The identity of the string c[s:i] (i− 6 < s < i), if it matches a word from the list

of unigram words;

• the identity of the string c[i:s] (i < s < i + 6), if it matches a word; multiple

features could be generated.

• The identity of the bigram c[s:i−1]c[i:t] (i− 6 < s, t < i+ 6), if it matches a word

bigram from the list of unigram words.

• The identity of the bigram c[j:i]c[i+1:k] (i− 6 < s, t < i+ 6), if it matches a word

bigram; multiple features could be generated.

2.4.2 Setting

The data sets from the international Chinese word segmentation bakeoffs are popular

of Chinese word segmentation research. In this chapter, we used the data provided by

the second SIGHAN Bakeoff [Emerson, 2005] to test the two segmentation models.

The data contains four corpora from different sources: Academia Sinica Corpus (AS),

City University of Hong Kong (CU), Microsoft Research Asia (MSR), and Peking

University (PKU). Experiments have shown that there is only about 75% agreement

among native speakers regarding the correct word segmentation (Sproat et al., 1996).

There is no fixed standard for Chinese word segmentation. Also, specific NLP tasks

may require different segmentation criteria. For example, “赵紫阳/Person name:

Zhao Zhiyang” should be treated as two words (surname and given name) in the

PKU data, but one word in the MSR data. The four data sets above are annotated

with different standards. To catch general properties, we do experiments on all the

four data sets. For the generation of word token features used in the character-based

model, we extracted a unigram and bigram word list from the training data as the

dictionary. Three metrics were used for evaluation: precision (P), recall (R) and

balanced F-score (F) defined by 2PR/(P+R). For more detailed information on the

corpora and these metrics, refer to [Emerson, 2005].

2.4.3 Results

2.4.3.1 Baseline Performance

Table 2.1 shows the performance of our two segmenters. Numbers of iterations are

respectively set to 15 and 20 for our word-based segmenter and character-based seg-

menter. The word-based segmenter performs slightly worse than the character-based

21

Model P(%) R(%) F
AS Character 94.8 94.7 94.7

Word 93.5 94.8 94.2
CU Character 95.5 94.6 95.0

Word 94.4 94.7 94.6
MSR Character 96.1 96.5 96.3

Word 96.0 96.3 96.1
PKU Character 94.6 94.9 94.8

Word 94.7 94.3 94.5

Table 2.1: Baseline performance.

segmenter. This is different from the experiments reported in [Zhang and Clark,

2007]. We think the main reason is that we use a different learning architecture.

2.4.3.2 Word Frequency Factors

 60

 65

 70

 75

 80

 85

 90

 95

 100

OOV
1 2 3-5

6-10
11-100

101-1000

1001-

R
ec

al
l (

%
)

word occurances in training data

AS data set

character-based
word-based

 70

 75

 80

 85

 90

 95

 100

OOV
1 2 3-5

6-10
11-100

101-1000

1001-

R
ec

al
l (

%
)

word occurances in training data

CU data set

character-based
word-based

 60

 65

 70

 75

 80

 85

 90

 95

 100

OOV
1 2 3-5

6-10
11-100

101-1000

1001-

R
ec

al
l (

%
)

word occurances in training data

MSR data set

character-based
word-based

 60

 65

 70

 75

 80

 85

 90

 95

 100

OOV
1 2 3-5

6-10
11-100

101-1000

1001-

R
ec

al
l (

%
)

word occurances in training data

PKU data set

character-based
word-based

Figure 2.1: Segmentation recall relative to gold word frequency.

Our theoretical analysis also suggests that the character-based method has stronger

word induction ability because it focuses more on word internal structures and thereby

22

 76
 78
 80
 82
 84
 86
 88
 90
 92
 94
 96
 98

 1 2 3 4

P
re

ci
si

on
 (

%
)

word length

AS data set

character-based
word-based

 84

 86

 88

 90

 92

 94

 96

 98

 1 2 3 4

P
re

ci
si

on
 (

%
)

word length

CU data set

character-based
word-based

 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98

 1 2 3 4

P
re

ci
si

on
 (

%
)

word length

MSR data set

character-based
word-based

 78
 80
 82
 84
 86
 88
 90
 92
 94
 96
 98

 1 2 3 4

P
re

ci
si

on
 (

%
)

word length

PKU data set

character-based
word-based

Figure 2.2: Segmentation precision relative to gold word length in training data.

expresses more nonlinearity. To test the word induction ability, we present the re-

call relative to word frequency. If a word appears in a training data many times,

the learner usually works in a “memorizing” way. On the contrary, infrequent words

should be correctly recognized in a somehow “inductive” way. Figure 2.1 shows

the recall change relative to word frequency in each training data. Note that, the

words with frequency 0 are out-of-vocabulary (OOV) words. We can clearly see that

character-based model outperforms word-based model for infrequent word, especially

OOV words, recognition. The “memorizing” ability of the two models is similar; on

the AS and CU data sets, the word-based model performs slightly better. Neither

model is robust enough to reliably segment unfamiliar words. The recall of OOV

words is much lower than in-vocabulary words. This is still very far away from real-

world application where any varieties of Chinese texts must be successfully segmented.

23

 76
 78
 80
 82
 84
 86
 88
 90
 92
 94
 96
 98

 1 2 3 4

R
ec

al
l (

%
)

word length

AS data set

character-based
word-based

 78
 80
 82
 84
 86
 88
 90
 92
 94
 96
 98

 1 2 3 4

R
ec

al
l (

%
)

word length

CU data set

character-based
word-based

 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98

 1 2 3 4

R
ec

al
l (

%
)

word length

MSR data set

character-based
word-based

 84

 86

 88

 90

 92

 94

 96

 98

 1 2 3 4

R
ec

al
l (

%
)

word length

PKU data set

character-based
word-based

Figure 2.3: Segmentation recall relative to gold word length in training data.

2.4.3.3 Length Factors

Table 2.2 shows the statistics of word counts relative to word length on each test data

sets. There are much less words with length more than 4. Analysis on long words may

not be statistical significant, so we only present length factors on small words (length

is less than 5). Figure 2.3 shows the precision/recall of both segmentation models

relative sentence length. We can see that word-based model tends to predict more

single character words, but making more mistakes. Since about 50% word tokens are

single-character words, this is one main source of error for word-segmenter. In other

words, word-based model segment sentences into more frages. This can be explained

by theoretical properties of dynamic token prediction discussed in Sec. 2.3.3. The

basic predicting unit is dynamic rather than static, and the score is the sum of all

local scores of all basic units. The score of a word boundary assignment in a word-

based segmenter is defined like θ>
∑|w|

i=1 φ(c, w[1:i]). The upper bound of this score

varies with the length |w|. If a segmentation result is with more fragments, i.e. |w| is

24

Length AS CU MSR PKU
1 61254 19116 48092 45911
2 52268 18186 49472 49861
3 6990 2682 4652 5132
4 1417 759 2711 2059
5(+) 690 193 1946 656

Table 2.2: Word length statistics on test sets.

larger, the upper bound of its score is higher. As a result, in many cases, a word-based

segmenter prefers shorter words, which may cause errors.

2.4.3.4 Feature Factors

We would like to measure the effect of features empirically. In particular, we do not

use dynamic word token features in our word-based segmenter, and word type features

in our character-based segmenter as comparison with “standard” segmenters. The

difference in performance can be seen as the contribution of word features. There are

obvious drops in both cases. Though it is not a fair comparison, word token features

seem more important, since the numerical decrease in the word-based experiment

is larger. We also show the different performence of a character-based segmenter

with and without lexicon features. Note that word features are actually word token

features, while lexicon features are word type features.

word-based character-based
− + − +

AS 93.1 94.2 94.1 94.7
CU 92.6 94.6 94.2 95.0
MSR 95.7 96.1 95.8 96.3
PKU 93.3 94.5 94.4 94.8

Table 2.3: F-score of two segmenters, with (−) and without (+) word token/type
features.

2.5 Combination

The above analysis indicates that the theoretical differences cause different error

distributions. The error analysis further suggests that there is still space for improve-

ment, just by combining the two existing models. Here, we introduce a classifier

ensemble method for system combination.

25

P(%) R(%) F ER (%)
AS 96.6 96.9 96.7 37.7
CU 97.4 97.1 97.3 46.0
MSR 97.5 97.7 97.6 35.1
PKU 96.8 96.2 96.5 32.7

Table 2.4: Upper bound for combination. The error reduction (ER) rate is a com-
parison between the F-score produced by the oracle combination system and the
character-based system (see Table 2.1).

2.5.1 Upper Bound of System Combination

To get an upper bound of the improvement that can be obtained by combining the

strengths of each model, we have performed an oracle experiment. For every word in

each gold standard segmented text, we check whether it is rightly predicted by either

system. We think the optimal combination system should choose the right prediction

when the two segmenters do not agree with each other. There is a gold segmenter that

generates gold-standard segmentation results. In the oracle experiment, we let the

three segmenters, i.e. baseline segmenters and the gold segmenter, vote. The three

segmenters output three segmentation results, which are further transformed into

IOB2 representation [Ramshaw and Marcus, 1995]. Namely, each character has three

B or I labels. We assign each character an oracle label which is chosen by at least two

segmenters. When the baseline segmenters agree with each other, the gold segmenter

cannot change the segmentation no matter if it is right or wrong. In the situation

that the two baseline segmenters disagree, the vote given by the gold segmenter will

decide the right prediction. This kind of optimal performance is presented in Table

3.4. Compared these results with Table 2.1, we see a significant increase in accuracy

for the four data sets. There is still much room for improvement. The upper bound

of error reduction with system combination is over 30%.

2.5.2 Segmenter Ensemble via Bagging

Bootstrap aggregating (Bagging) is a machine learning ensemble meta-algorithm to

improve classification and regression models in terms of stability and classification

accuracy [Breiman, 1996a]. It also reduces variance and helps to avoid overfitting.

Although it is usually applied to decision tree models, it can be used with any type of

model. Bagging is a special case of the model averaging approach. Given a training

set D of size n, Bagging generates m new training sets Di of size n′ ≤ n, by sampling

examples from D uniformly. By sampling with replacement it is likely that some

26

 93

 93.5

 94

 94.5

 95

 95.5

 1 2 3 4 5 6 7 8 9 10 11 12 13

F
-s

co
re

Number of sampling data sets m

AS data set

baseline (C)
baseline (W)

character-bagging
word-bagging

bagging

 93.5

 94

 94.5

 95

 95.5

 96

 1 2 3 4 5 6 7 8 9 10 11 12 13

F
-s

co
re

Number of sampling data sets m

CU data set

baseline (C)
baseline (W)

character-bagging
word-bagging

bagging

 93.5

 94

 94.5

 95

 95.5

 96

 96.5

 97

 1 2 3 4 5 6 7 8 9 10 11 12 13

F
-s

co
re

Number of sampling data sets m

MSR data set

baseline (C)
baseline (W)

character-bagging
word-bagging

bagging

 93.4
 93.6
 93.8

 94
 94.2
 94.4
 94.6
 94.8

 95
 95.2

 1 2 3 4 5 6 7 8 9 10 11 12 13

F
-s

co
re

Number of sampling data sets m

PKU data set

baseline (C)
baseline (W)

character-bagging
word-bagging

bagging

Figure 2.4: F-score of bagging models with different numbers of sampling data sets.
Character-bagging means that the bagging system built on the single character-based
segmenter. Word-bagging is named in the same way.

examples will be repeated in each Di. If n′ = n, then for large n the set Di expected

to have 63.2% of the unique examples of D, the rest being duplicates. This kind of

sample is known as a bootstrap sample. The m models are fitted using the above m

bootstrap samples and combined by voting (for classification) or averaging the output

(for regression).

Note that Bagging is not useful for improving linear models, since the method

averages several predictors. However, although the learning models of our segmenters

are called linear models, they both involve nonlinearity (See Sec. 2.3.2). In addition,

the two segmenters are in different architecture. The final prediction is not decided

directly by the inner product of the parameters and features. This nonlinearity prop-

erty makes the basic assumption of Bagging algorithm work.

We propose a Bagging model to combine multiple segmentation systems. In the

training phase, given a training set D of size n, our model generates m new training

sets Di of size 63.2%×n by sampling examples from D without replacement. Namely

no example will be repeated in each Di. Each Di is separately used to train a word-

27

 93.5

 94

 94.5

 95

 95.5

 96

 96.5

AS CU MSR PKU

P
re

ci
si

on
 (

%
)

character-based
word-based

bagging

 94

 94.5

 95

 95.5

 96

 96.5

 97

 97.5

AS CU MSR PKU

R
ec

al
l (

%
)

character-based
word-based

bagging

 94

 94.5

 95

 95.5

 96

 96.5

 97

AS CU MSR PKU

F
-s

co
re

character-based
word-based

bagging

Figure 2.5: Precision/Recall/F-score of different models.

based segmenter and a character-based segmenter. Using this strategy, we can get

2m weak segmenters. Note that the sampling strategy is different from the standard

one. Our experiment shows that there is no significant difference between the two

sampling strategies in terms of accuracy. However, the non-placement strategy is

more efficient. In the segmentation phase, the 2m models outputs 2m segmentation

results, which are further transformed into IOB2 representation. In other words, each

character has 2m B or I labels. The final segmentation is the voting result of these

2m labels. Note that since 2m is an even number, there may be equal number of B

and I labels. In this case, our system prefer B to reduce error propagation.

2.5.3 Evaluation

We evaluate our combination model on the same datasets used above. Figure 2.4

shows the influence of m in the bagging algorithm. Because each new data set Di

in bagging algorithm is generated by a random procedure, the performance of all

bagging experiments are not the same. To give a more stable evaluation, we repeat 5

experiments for each m and show the averaged F-score. We can see that the bagging

model taking two segmentation models as basic systems consistently outperform the

baseline systems and the bagging model taking either model in isolation as basic

systems. An interesting phenomenon is that the bagging method can also improve

word-based models. In contrast, there is no significant change in character-based

models.

Figure 2.5 shows the precision, recall, F-score of the two baseline systems and

our final system for which we generate m = 15 new data sets for bagging. We can

see significant improvements on the four datasets in terms of the balanced F-score.

The improvement of precision and recall are not consistent. The improvement of AS

and CU datasets is from the recall improvement; the improvement of PKU datasets

28

is from the precision improvement. We think the different performance is mainly

because the four datasets are annotated by using different standards.

Table 2.5 summarizes the performance of our final system and other systems re-

ported in a majority of previous work. The left most column indicates the reference

of previous systems that represent state-of-the-art results. The comparison of the ac-

curacy between our integrating system and the state-of-the-art segmentation systems

in the literature indicates that our combination system is competitive with the best

systems, obtaining the highest reported F-scores on three data sets.

AS CU MSR PKU
[Zhang et al., 2006] 95.1 95.1 97.1 95.1
[Zhang and Clark, 2007] 94.6 95.1 97.2 94.5
[Andrew, 2006] N/A N/A 97.2 N/A
[Sun et al., 2009b] N/A 94.6 97.3 95.2
This paper 95.2 95.6 96.9 95.2

Table 2.5: Segmentation performance presented in previous work and of our combi-
nation model.

2.6 Conclusion and Discussion

Our theoretical and empirical analysis highlights the fundamental differences between

word-based (semi-Markov tagging) and character-based (Markov tagging) models,

which enlighten us to design new models. The above analysis indicates that the

theoretical differences cause different error distributions. The two approaches are

either based on a particular view of segmentation. The analysis is helpful to design

new solutions for segmentation. Our analysis points out several drawbacks of each

one. It may be helpful for both models to overcome their shortcomings. We may

naturally ask what other methods may prove fruitful. For example, one weakness of

word-based model is its word induction ability which is partially caused by its neglect

of internal structure of words. A word-based model may be improved by solving

this problem. On the other hand, character-based segmenters hope to find a way to

utilize dynamic word token information. For example, Zhang et al. [2006] proposed

a subword-based model, in which the basic predicting unit is larger than a character

yet smaller than a word.

While the two mechanisms overlap in their numerical overall results, they are

not redundant. Each segmentation model has strengths and weaknesses for certain

design problems. We may construct a single system integrating the strengths of

29

each segmenter. In this chapter, we try this direction by using an ensemble learn-

ing technique. The question “How to combine systems in different architectures” is

currently a hot topic in a majority of NLP tasks. System combination strategies

can be roughly divided into two categories: (1) learning-based post-inference and (2)

learning-free post-inference. For example, in dependency parsing, several methods

are proposed to integrate transition-based and graph-based parsers [Surdeanu and

Manning, 2010]. Previous work pays much attention to incorporating features that

use one system as main problem solver and the main solver use features generated

from other systems [Nivre and McDonald, 2008; Torres Martins et al., 2008]. This

kind of combination method involves learning in the training phase: A meta-learner is

trained to provide combination decisions. The other kind of integration architecture

is to directly combine outputs of different systems, such as voting. Note that this

kind of combination method may involve complex inference procedure. For example,

a re-parsing technique was successfully developed to combine the outputs provided

by multiple parsers in [Sagae and Lavie, 2006b]. In their method, dependency struc-

tures given by different parsers are first used to create a weighted graph. Finding

the optimal dependency structure is formulated as a maximum spanning tree (MST)

inference problem over this graph.

The Bagging-based combination method proposed in this chapter is a learning-free

inference method. In the next chapter, we will present a learning-based inference, i.e.

sub-word tagging, to enhance word segmentation through combining three tagging

methods.

30

Chapter 3

Stacked Sub-word Tagging for

Joint Word Segmentation and POS

Tagging

The large combined search space of joint word segmentation and Part-of-Speech

(POS) tagging makes efficient decoding very hard. As a result, effective high order

features representing rich contexts are inconvenient to use. In this chapter, we pro-

pose a novel stacked sub-word tagging model for this task, concerning both efficiency

and effectiveness. Our solution is a two step process. First, multiple heterogeneous

solvers are trained to produce coarse segmentation and POS information. Second, the

outputs of the predictors are merged into sequences of largest non-overlapped strings,

which are further bracketed and labeled with POS tags by a fine-grained sub-word

tagger. The coarse-to-fine search scheme is efficient, while in the sub-word tagging

step rich contextual features can be approximately derived. We also study the anno-

tation ensemble problem and show that sub-word tagging a robust solution, in the

sense that the coarse-grained solvers can be trained on heterogeneous annotations.

Evaluation on the Penn Chinese Treebank and People’s Daily data shows that our

model yields significant improvements over the best system reported in the literature.

This chapter is originally published in [Sun, 2011] and [Sun and Wan, 2012].

31

3.1 Background

3.1.1 The Problem

Word segmentation and part-of-speech (POS) tagging are fundamental steps for more

advanced Chinese language processing tasks, such as parsing and semantic role la-

beling. Joint approaches that resolve the two tasks simultaneously have received

much attention in recent research. Previous work has shown that joint solutions

led to accuracy improvements over pipelined systems by avoiding segmentation error

propagation and exploiting POS information to help segmentation. A challenge for

joint approaches is the large combined search space, which makes efficient decoding

and structured learning of parameters very hard. Moreover, the representation abil-

ity of models is limited since using rich contextual word features makes the search

intractable. To overcome such efficiency and effectiveness limitations, approximate

inference and reranking techniques have been explored in previous work [Jiang et al.,

2008b; Zhang and Clark, 2010].

Given a sequence of characters c = (c1, ..., c#c), the task of word segmenta-

tion and POS tagging is to predict a sequence of word and POS tag pairs y =

(〈w1, p1〉, 〈w#y, p#y〉), where wi is a word, pi is its POS tag, and a “#” symbol de-

notes the number of elements in each variable. In order to avoid error propagation

and make use of POS information for word segmentation, the two tasks should be

resolved jointly. Previous research has shown that the integrated methods outper-

formed pipelined systems [Jiang et al., 2008a; Ng and Low, 2004; Zhang and Clark,

2008a]. A major challenge for such joint systems is the large search space faced by

the decoder. Decoding can be inefficient.

3.1.2 Character-Based and Word-Based Methods

Similar to word segmentation, both word-based (semi-Markov tagging) and character-

based (Markov tagging) methods are popular for joint word segmentation and POS

tagging. Word segmentation can be viewed as a bracketing problem, while joint

segmentation and tagging can be viewed as a labeled bracketing problem.

In the “word-based” approach, the basic predicting units are words themselves.

This kind of solver sequentially decides whether the local sequence of characters makes

up a word as well as its possible POS tag. In particular, a word-based solver reads

the input sentence from left to right, predicts whether the current piece of continuous

characters is a word token and which class it belongs to. Solvers may use previously

32

predicted words and their POS information as clues to find a new word. After one

word is found and classified, solvers move on and search for the next possible word.

This word-by-word method for segmentation was first proposed in [Zhang and Clark,

2007], and was then further used in POS tagging in [Zhang and Clark, 2008a].

In the “character-based” approach, the basic processing units are characters which

compose words, and joint segmentation and tagging is formulated as the classification

of characters into POS tags with boundary information. For example, the label B-NN

indicates that a character is located at the begging of a noun. Using this method, POS

information is allowed to interact with segmentation. This character-by-character

method for segmentation was first proposed in [Xue, 2003], and was then further

used in POS tagging in [Ng and Low, 2004]. One main disadvantage of this model

is the difficulty in incorporating the whole word information. Note that the hybrid

approach described in [Kruengkrai et al., 2009; Nakagawa and Uchimoto, 2007] is also

a character-based approach, since the word information used is word type information.

3.1.3 Stacked Learning

Stacked generalization is a meta-learning algorithm that was first proposed in [Wolpert,

1992] and [Breiman, 1996b]. The idea is to include two “levels” of predictors. The

first level includes one or more predictors g1, ...gK : Rd → R; each receives input

x ∈ Rd and outputs a prediction gk(x). The second level consists of a single function

h : Rd+K → R that takes as input 〈x, g1(x), ..., gK(x)〉 and outputs a final prediction

ŷ = h(x, g1(x), ..., gK(x)).

Training is done as follows. The training data S = {(xt,yt) : t ∈ [1, T]} is

split into L equal-sized disjoint subsets S1, ..., SL. Then functions g1, ...,gL (where

gl = 〈gl1, ..., glK〉) are separately trained on S − Sl, and are used to construct the

augmented data set Ŝ = {(〈xt, ŷ1
t , ..., ŷ

K
t 〉,yt) : ŷkt = glk(xt) and xt ∈ Sl}. Finally,

each gk is trained on the original data set and the second level predictor h is trained

on Ŝ. The intent of the cross-validation scheme is that ykt is similar to the prediction

produced by a predictor which is learned on a sample that does not include xt.

Stacked learning has been applied as a system ensemble method in several NLP

tasks, such as named entity recognition [Wu et al., 2003] and dependency parsing

[Nivre and McDonald, 2008]. This framework is also explored as a solution for learning

non-local features in [Torres Martins et al., 2008]. In the machine learning research,

stacked learning has been applied to structured prediction [Cohen and Carvalho,

2005]. In this work, stacked learning is used to acquire extended training data for

33

sub-word tagging.

3.1.4 Annotation Ensemble

A majority of data-driven NLP systems relies on large-scale, manually annotated

corpora. These corpora are important to train statistical systems but very expensive

to build. Nowadays, for many NLP tasks, multiple heterogeneous annotated corpora

have been built and are publicly available. For example, the Penn Treebank is popular

to train PCFG-based parsers, while the Redwoods Treebank is well known for HPSG

research; the Propbank is favored to build general semantic role labeling systems,

while the FrameNet is attractive for predicate-specific labeling. However, the annota-

tion schemes in different projects are usually different, since the underlying linguistic

theories vary and have different ways to explain the same language phenomena.

The co-existence of heterogeneous annotation data, i.e. labeled data in different

representations, presents a new challenge to the consumers of such resources. While

many state-of-the-art statistical NLP systems are not bound to specific annotation

standards, almost all of them assume homogeneous annotation in the training corpus.

Therefore, such heterogeneous resources cannot be simply put together while train-

ing systems. In this chapter, we address the question about annotation ensemble—

learning from instances that have multiple independent representations—which is a

natural, yet non-standard new problem setting. There has been a feature-engineering

solution for segmentation and POS tagging [Jiang et al., 2009]. Different from their

work, we incorporate heterogeneous taggers into our sub-word tagging model, which

more explicitly explores the relation between heterogenous annotations.

3.2 A Stacked Sub-word Tagging Model

3.2.1 Method

In this chapter, we propose a novel stacked sub-word model for joint word segmen-

tation and POS tagging, concerning both efficiency and effectiveness. Our work is

motivated by several characteristics of this problem. First of all, a majority of words

are easy to identify in the segmentation problem. For example, a simple maximum

matching segmenter can achieve an f-score of about 90. We will show that it is pos-

sible to improve the efficiency and accuracy by using different strategies for different

words. However, previous approaches treat all possible words equally. The basic

strategy in this work is to identify simple and difficult words first and to integrate

34

them into a sub-word level. To identify simple words, we borrow ideas from system

ensemble.

Second, segmenters designed with different views have complementary strength.

We argue that the agreements and disagreements of different solvers can be used

to construct an intermediate sub-word structure for joint segmentation and tagging.

Since the sub-words are large enough in practice, the decoding for POS tagging over

sub-words is efficient.

Finally, the Chinese language is characterized by the lack of morphology that

often provides important clues for POS tagging, and the POS tags contain much

syntactic information, which need context information within a large window for

disambiguation. For example, Huang et al. [2007] showed the effectiveness of utilizing

syntactic information to rerank POS tagging results. As a result, the capability

to represent rich contextual features is crucial to a Chinese POS tagger. In this

work, we use a representation-efficiency tradeoff through stacked learning, a way of

approximating rich non-local features.

Given multiple word segmentations of one sentence, we formally define a sub-

word structure that maximizes the agreement of non-word-break positions. Based

on the sub-word structure, joint segmentation and tagging is addressed as a two

step process: (1) coarse-grained word segmentation and tagging, and (2) fine-grained

sub-word tagging. The workflow is shown in Figure 3.1. In the first phase, one

word-based segmenter (SegW) and one character-based segmenter (SegC) are trained

to produce word boundaries. Additionally, a local character-based joint segmentation

and tagging solver (SegTagL) is used to provide word boundaries as well as inaccurate

POS information. Here, the word local means the labels of nearby characters are

not used as features. In other words, the local character classifier assumes that the

tags of characters are independent of each other. In the second phase, our system

first combines the three segmentation and tagging results to get sub-words which

maximize the agreement about word boundaries. Finally, a fine-grained sub-word

tagger (SubTag) is applied to bracket sub-words into words and also to obtain their

POS tags.

In our model, segmentation and POS tagging interact with each other in two

processes. First, although SegL is locally trained, it resolves the two sub-tasks si-

multaneously. Therefore, in the sub-word generating stage, segmentation and POS

tagging help each other. Second, in the sub-word tagging stage, the bracketing and

the classification of sub-words are jointly resolved as one sequence labeling problem.

Our experiments on the Penn Chinese Treebank will show that the word-based and

35

Raw sentences

Character-based
segmenter SegC

Local character
classifier SegTagL

Word-based
Segmenter SegW

Segmented
sentences

Segmented
sentences

Segmented
sentences

Merging

Sub-word
sequences

Sub-word
tagger SubTag

Figure 3.1: Workflow of the stacked sub-word model.

character-based segmenters and the local tagger on their own produce high quality

word boundaries. As a result, the oracle performance to recover words from a sub-

word sequence is very high. The quality of the final tagger relies on the quality of

the sub-word tagger. If a high performance sub-word tagger can be constructed, the

whole task can be well resolved. The statistics will also empirically show that sub-

words are significantly larger than characters and only slightly smaller than words.

As a result, the search space of the sub-word tagging is significantly shrunken, and

exact Viterbi decoding without approximately pruning can be efficiently processed.

This property makes nearly all popular sequence labeling algorithms applicable.

Zhang et al. [2006] described a sub-word based tagging model to resolve word seg-

mentation. To get the pieces which are larger than characters but smaller than words,

they combine a character-based segmenter and a dictionary matching segmenter. Our

contributions include (1) providing a formal definition of our sub-word structure that

is based on multiple segmentations and (2) proposing a stacking method to acquire

sub-words.

3.2.2 The Coarse-grained Solvers

In the former chapter, we systematically described the implementation of two state-

of-the-art Chinese word segmenters in word-based and character-based architectures,

respectively. In this chapter, we introduce two simple but important refinements: (1)

36

以 总 成 绩 ３ ５ ５ ． ３ ５ 分 居 领 先 地 位
Answer: [P] [JJ] [NN] [CD] [M] [VV] [JJ] [NN]
SegW: [] [] [] [] [] [] [] []
SegC: [] [] [] [] [] [] []
SegTagL: [P] [JJ] [NN] [CD] [NT] [CD] [NT] [VV] [VV] [NN]
Sub-words: [P] [JJ] [NN] [B-CD] [I-CD] [NT] [CD] [NT] [VV] [VV] [NN]

Figure 3.2: An example phrase: 以总成绩３５５．３５分居领先地位 (Being in
front with a total score of 355.35 points).

to shuffle the sample orders in each iteration and (2) to average the parameters in

each iteration as the final parameters.

We use a local classifier to predict the POS tag with positional information for

each character. Each character can be assigned one of two possible boundary tags:

“B” for a character that begins a word and “I” for a character that occurs in the

middle of a word. We denote a candidate character token ci with a fixed window

ci−2ci−1cici+1ci+2. The following features are used:

• character unigrams: ck (i− 2 ≤ k ≤ i+ 2)

• character bigrams: ckck+1 (i− 2 ≤ k ≤ i+ 1)

To resolve the classification problem, we use the linear SVM classifier LIBLINEAR1.

Since the local classifier does not taken into account the labels of the nearby words,

two consecutive labels may be inconsistent.

Idiom In linguistics, idioms are usually presumed to be figures of speech not fully

obeying the principle of compositionality. As a result, it is very hard to recognize

out-of-vocabulary idioms for word segmentation. However, the lexicon of idioms can

be taken as a close set, which helps resolve the problem well. We collect 12992 idioms2

from several online Chinese dictionaries. For both word-based and character-based

segmentation, we first match every string of a given sentence with idioms. Every

sentence is then split into smaller pieces which are separated by idioms. Statistical

segmentation models are later performed on these smaller character sequences.

37

3.2.3 Generating Sub-word Sequences

A majority of words are easy to identify in the segmentation process. We favor the

idea treating different words using different strategies. In this work we try to identify

simple and difficult words first and to integrate them into a sub-word level. Inspired

by previous work, we constructed this sub-word structure by using multiple solvers

designed from different views. If a piece of continuous characters is consistently

segmented by multiple segmenters, it will not be separated in the sub-word tagging

step. The intuition is that strings which are consistently segmented by the different

segmenters tend to be correct predictions. In our experiment on the Penn Chinese

Treebank, the accuracy is 98.59% on the development data which is defined in the

next section. The key point for the intermediate sub-word structures is to maximize

the agreement of the three coarse-grained systems. In other words, the goal is to

make merged sub-words as large as possible but not overlap with any predicted word

produced by the three coarse-grained solvers. In particular, if the position between

two continuous characters is predicted as a word boundary by any segmenter, this

position is taken as a separation position of the sub-word sequence. This strategy

makes sure that it is still possible to re-segment the strings of which the boundaries

are disagreed with by the coarse-grained segmenters in the fine-grained tagging stage.

The formal definition is as follows. Given a sequence of characters c = (c1, ..., c#c),

let c[i : j] denote a string that is made up of characters between ci and cj (including

ci and cj), then a partition of the sentence can be written as c[0 : e1], c[e1 + 1 :

e2], ..., c[em : #c]. Let sk = {c[i : j]} denote the set of all segments of a partition.

Given multiple partitions of a character sequence S = {sk}, there is one and only one

merged partition sS = {c[i : j]} s.t.

1. ∀c[i : j] ∈ sS, ∀sk ∈ S,∃c[s : e] ∈ sk, s ≤ i ≤ j ≤ e.

2. ∀C′ satisfies the above condition, |C′| > |C|.

The first condition makes sure that all segments in the merged partition can be only

embedded in but do not overlap with any segment of any partition from S. The

second condition promises that segments of the merged partition achieve maximum

length.

1 LIBLINEAR is available at http://www.csie.ntu.edu.tw/~cjlin/liblinear/. We also tried
some other popular classifiers and find that a crucial aspect in character classification is the repre-
sentation of tokens with features, rather than the particular choice of classification algorithm.

2This resource is publicly available at http://www.coli.uni-saarland.de/~wsun/idioms.txt.

38

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.coli.uni-saarland.de/~wsun/idioms.txt

Figure 3.2 is an example to illustrate the procedure of our method. The lines SegW,

SegC and SegTagL are the predictions of the three coarse-grained solvers. The open

and square bracket and the close square bracket respectively indicate the beginning

and the end of a word. For the three words at the beginning and the two words at

the end, the three predictors agree with each other. So these five words are kept

as sub-words. For the character sequence “３５５．３５分居”, the predictions are

very different. Because there are no word break predictions among the first three

characters “３５５”, they together are taken as one sub-word. For the other five

characters, either the left position or the right position is segmented as a word break

by at least one predictor, so the merging processor separates them and takes each one

as a single sub-word. The last line shows the merged sub-word sequence with their

inaccurate POS tags. The coarse-grained POS tags with positional information are

derived from the labels provided by SegTagL.

3.2.4 Features

Bracketing sub-words into words is formulated as an IOB-style sequential classification

problem. Each sub-word may be assigned with one POS tag as well as two possible

boundary tags: “B” for the beginning position and “I” for the middle position. A

tagger is trained to classify sub-word by using the features derived from its contexts.

The sub-word level allows our system to utilize features in a large context, which

is very important for POS tagging of the morphologically poor language. Features

are formed making use of sub-word contents, their IOB-style inaccurate POS tags. In

the following description, “C” refers to the content of the sub-word, while “T” refers

to the IOB-style POS tags. For convenience, we denote a sub-word with its context

...si−2si−1sisi+1si+2..., where si is the current token. We denote lC , lT as the sizes of

the window.

• Unigram features: C(sk) (−lC ≤ k ≤ lC), T(sk) (−lT ≤ k ≤ lT)

• Bigram features: C(sk)C(sk+1) (−lC ≤ k ≤ lC − 1), T(sk)T(sk+1) (−lT ≤ k ≤
lT − 1)

• C(si−1)C(si+1) (if lC ≥ 1), T(si−1)T(si+1) (if lT ≥ 1)

• T(si−2)T(si+1) (if lT ≥ 2)

• In order to better handle unknown words, we also extract morphological fea-

tures: character n-gram prefixes and suffixes for n up to 3.

39

C(si−1)=“成绩”; C(si)=“３５５”; C(si+1)=“．”;
T(si−1)=“NN”;T(si)=“B-CD”; T(si+1)=“I-CD”;
C(si−1)C(si)=“成绩 ３５５”; C(si)C(si+1)=“３５５ ．”;
T(si−1)T(si)=“NN B-CD”; T(si)T(si+1)=“B-CD I-CD”;
C(si−1)C(si+1)=“成绩 ．”; T(si−1)T(si+1)=“B-NN I-CD”;
Prefix(1)=“３”; Prefix(2)=“３５”; Prefix(3)=“３５５”
Suffix(1)=“５”; Suffix(2)=“５５”; Suffix(3)=“３５５”

Table 3.1: An example of features used for sub-word tagging.

Take the sub-word “３５５” in Figure 3.2 for example, when lC and lT are both

set to 1, all features used are listed in Table 3.1.

In the following experiments, we will vary window sizes lC and lT to find out the

contribution of context information for the disambiguation. A first order Max-Margin

Markov Networks model is used to resolve the sequence tagging problem. The SVM-

HMM1 implementation is chosen for the experiments in this work. We use the basic

linear model without applying any kernel function.

3.2.5 Stacked Learning for Parameter Estimation

The three coarse-grained solvers SegW, SegC and SegTagL are directly trained on the

original training data. When these three predictors are used to produce the training

data, the performance is perfect. However, this does not hold when these models

are applied to the test data. If we directly apply SegW, SegC and SegTagL to extend

the training data to generate sub-word samples, the extended training data for the

sub-word tagger will be very different from the data in the run time, resulting in poor

performance.

One way to correct the training/test mismatch is to use the stacking method,

where a K-fold cross-validation on the original data is performed to construct the

training data for sub-word tagging. Algorithm 3 illustrates the learning procedure.

First, the training data S = {(ct,yt)} is split into L equal-sized disjoint subsets

S1, ..., SL. For each subset Sl, the complementary set S − Sl is used to train three

coarse solvers SegW
l, SegC

l and SegTagL
l, which process the Sl and provide inaccurate

predictions. Then the inaccurate predictions are merged into sub-word sequences and

Sl is extended to S ′l. Finally, the sub-word tagger is trained on the whole extended

data set S ′.

1Available at http://www.cs.cornell.edu/People/tj/svm_light/svm_hmm.html.

40

http://www.cs.cornell.edu/People/tj/svm_light/svm_hmm.html

input : Data S = {(ct,yt), t = 1, 2, ..., n}
Split S into L partitions {S1, ...SL}1

for l = 1, ..., L do2

Train SegW
l, SegC

l and SegTagL
l using S − Sl.3

Predict Sl using SegW
l, SegC

l and SegTagL
l.4

Merge the predictions to get sub-words training sample S ′l.5

end6

Train the sub-word tagger SubTag using S ′.7

Algorithm 2: The stacked learning procedure for the sub-word tagger.

3.3 Experiments and Analysis

3.3.1 Setting

Previous studies on joint Chinese word segmentation and POS tagging have used the

Penn Chinese Treebank (CTB) in experiments. We follow this setting in this paper.

We use CTB 5.0 as our main corpus and define the training, development and test

sets according to [Jiang et al., 2008a,b; Kruengkrai et al., 2009; Zhang and Clark,

2010]. Table 3.2 shows the statistics of our experimental settings.

Data set CTB files #sent. #words
Training 1-270 18,089 493,939

400-931
1001-1151

Devel. 301-325 350 6821
Test 271-300 348 8008

Table 3.2: Training, development and test data on CTB 5.0

Three metrics are used for evaluation: precision (P), recall (R) and balanced f-

score (F) defined by 2PR/(P+R). Precision is the relative amount of correct words

in the system output. Recall is the relative amount of correct words compared to the

gold standard annotations. For segmentation, a token is considered to be correct if

its boundaries match the boundaries of a word in the gold standard. For the whole

task, both the boundaries and the POS tag have to be correctly identical.

3.3.2 Performance of the Coarse-grained Solvers

Table 3.3 shows the performance on the development data set of the three coarse-

grained solvers. In this paper, we use 20 iterations to train SegW and SegC for all

41

experiments. Even only locally trained, the character classifier SegTagL still signif-

icantly outperforms the two state-of-the-art segmenters SegW and SegC. This good

performance indicates that the POS information is very important for word segmen-

tation. Since we have odd number (3) segmentation system, we can directly combine

these systems by voting. Following the voting method introduced in Chapter 2, we

first transform the outputs the segmenters into IOB2 representation. In other words,

each character has 3 B or I labels. The final segmentation is the voting result of these

2m labels. The last line show segmentation performance of the voting system. On

this data set, we cannot see any improvement by voting.

Devel. Task P R F
SegW Seg 94.55% 94.84% 94.69
SegC Seg 95.10% 94.38% 94.73
SegTagL Seg 95.67% 95.98% 95.83

Seg&Tag 87.54% 91.29% 89.38
Voting Seg 96.06% 95.03% 95.54

Table 3.3: Performance of the coarse-grained solvers on the development data.

3.3.3 Statistics of Sub-words

Since the base predictors to generate coarse information are two word segmenters

and a local character classifier, the coarse decoding is efficient. If the length of sub-

words is too short, i.e. the decoding path for sub-word sequences are too long, the

decoding of the fine-grained stage is still hard. The average length of sub-words on

the development set is 1.64, while the average length of words is 1.69. The number of

all IOB-style POS tags is 59 (when using 5-fold cross-validation to generate stacked

training samples). The number of all POS tags is 35. Empirically, the decoding over

sub-words is 1.69
1.64
× (59

35
)n+1 times as slow as the decoding over words, where n is the

order of the Markov model. When a first order Markov model is used, this number is

2.93. These statistics empirically suggest that the decoding over sub-word sequence

can be efficient.

On the other hand, the sub-word sequences are not perfect in the sense that they

do not promise to recover all words because of the errors made in the first step.

Similarly, we can only show the empirical upper bound of the sub-word tagging. The

oracle performance of the final POS tagging on the development data set is shown in

Table 3.4. The upper bound indicates that the coarse search procedure does not lose

too much.

42

Task P R F
Seg&Tag 99.50% 99.09% 99.29

Table 3.4: Upper bound of the sub-word tagging on the development data.

One main disadvantage of character-based approach is the difficulty to incorporate

word features. Since the sub-words are on average close to words, sub-word features

are good approximations of word features.

3.3.4 Rich Contextual Features Are Helpful

Table 3.5 shows the effect that features within different window size has on the sub-

word tagging task. In this table, the symbol “C” means sub-word content features

while the symbol “T” means IOB-style POS tag features. The number indicates the

length of the window. For example, “C:±1” means that the tagger uses one preceding

sub-word and one succeeding sub-word as features. From this table, we can clearly

see the impact of features derived from neighboring sub-words. There is a significant

increase between “C:±2” and “C:±1” models. This confirms our motivation that

longer history and future features are crucial to the Chinese POS tagging problem. It

is the main advantage of our model that making rich contextual features applicable.

In all previous solutions, only features within a short history can be used due to the

efficiency limitation.

The performance is further slightly improved when the window size is increased

to 3. Using the labeled bracketing f-score, the evaluation shows that the “C:±3

T:±1” model performs the same as the “C:±3 T:±2” model. However, the sub-

word classification accuracy of the “C:±3 T:±1” model is higher, so in the following

experiments and the final results reported on the test data set, we choose this setting.

This table also suggests that the IOB-style POS information of sub-words does not

contribute. We think there are two main reasons: (1) The POS information provided

by the local classifier is inaccurate; (2) The structured learning of the sub-word tagger

can use real predicted sub-word labels during its decoding time, since this learning

algorithm does inference during the training time. It is still an open question whether

more accurate POS information in rich contexts can help this task. If the answer is

YES, how can we efficiently incorporate these features?

43

Devel. P R F
C:0 T:0 92.52% 92.83% 92.67
C:±1 T:0 92.63% 93.27% 92.95
C:±1 T:±1 92.62% 93.05% 92.83
C:±2 T:±0 93.17% 93.86% 93.51
C:±2 T:±1 93.27% 93.64% 93.45
C:±2 T:±2 93.08% 93.61% 93.34
C:±3 T:±0 93.12% 93.86% 93.49
C:±3 T:±1 93.34% 93.96% 93.65
C:±3 T:±2 93.34% 93.96% 93.65

Table 3.5: Performance of the stacked sub-word model (K = 5) with features in
different window sizes.

3.3.5 Stacked Learning Is Helpful

Table 3.6 compares the performance of “C:±3 T:±1” models trained with no stack-

ing as well as different folds of cross-validation. We can see that although it is still

possible to improve the segmentation and POS tagging performance compared to the

local character classifier, the whole task just benefits only a little from the sub-word

tagging procedure if the stacking technique is not applied. The stacking technique can

significantly improve the system performance, both for segmentation and POS tag-

ging. This experiment confirms the theoretical motivation of using stacked learning:

simulating the test-time setting when a sub-word tagger is applied to a new instance.

There is not much difference between the 5-fold and the 10-fold cross-validation.

Devel. Task P R F
No stacking Seg 95.75% 96.48% 96.12

Seg&Tag 91.42% 92.13% 91.77
K = 5 Seg 96.42% 97.04% 96.73

Seg&Tag 93.34% 93.96% 93.65
K = 10 Seg 96.67% 97.11% 96.89

Seg&Tag 93.50% 94.06% 93.78

Table 3.6: Performance on the development data. No stacking and different folds of
cross-validation are separately applied.

3.3.6 Comparison to the State-of-the-Art

Table 3.7 summarizes the performance of our final system on the test data and other

systems reported in a majority of previous work. The final results of our system

are achieved by using 10-fold cross-validation “C:±3 T:±1” models. The left most

44

column indicates the reference of previous systems that represent state-of-the-art

results. The comparison of the accuracy between our stacked sub-word system and

the state-of-the-art systems in the literature indicates that our method is slightly

better than the best systems. Our system obtains the highest f-score performance

on both segmentation and the whole task, resulting in error reductions of 14.1% and

5.5% respectively.

Test Seg Seg&Tag
[Jiang et al., 2008a] 97.85 93.41
[Jiang et al., 2008b] 97.74 93.37
[Kruengkrai et al., 2009] 97.87 93.67
[Zhang and Clark, 2010] 97.78 93.67
Our system 98.17 94.02

Table 3.7: F-score performance on the test data.

3.3.7 Results on the CTB 6.0

We conduct further experiments using the CTB 6.0, which is larger than the previous

experimental data sets. The corpus was collected during different time periods from

different sources with a diversity of topics. In order to obtain a representative split

of data sets, we define the training, development and test sets according to the Chi-

nese sub-task of the CoNLL 2009 shared task1. The core of the CoNLL 2009 shared

task is to predict syntactic and semantic dependencies and their labeling. To eval-

uate Chinese dependency parsing, the organizers extract labeled dependencies from

manually annotated treebanks. Here, we follow this division of the CTB since this

setting considers many data annotation details, and provides more balanced data to

train and evaluate Chinese language processing algorithms. Note that CoNLL 2009

does not utilize all annotated data available. Table 3.8 shows the statistics of this

experimental setting.

Data set #sent. #words #char.
Training 22277 609060 1004266
Devel. 1762 49620 83670
Test 2557 73152 121008

Table 3.8: Training, development and test data on CTB 6.0

The sequence labeling toolkit, SVM-HMM, used in previous experiments is a very

1http://ufal.mff.cuni.cz/conll2009-st/index.html

45

http://ufal.mff.cuni.cz/conll2009-st/index.html

“expensive” algorithm. It is not suitable to be applied to large-scale data set due to

the limit of memory. In the following experiments, we use a CRF learning toolkit,

wapiti1 [Lavergne et al., 2010]. Since more labeled data is available for training,

extending window sizes of unigram and bigram features may further improve the

tagging accuracy. Among several parameter estimation methods provided by wapiti,

our auxiliary experiments indicate that the “rprop-” method works best. We use this

algorithm and let other setting default to train a good sub-word tagger. We re-tune

this parameter and find that window size 3 works best for the local classifier. We

implement a “C:±3 T:±1” model with 10-fold cross-validation for sub-word tagging.

The final results are reported in the Table 3.9.

Devel. Task P R F
SegW Seg 95.11% 95.44% 95.27
SegC Seg 95.53% 95.77% 95.65
SegTagL Seg 94.89% 95.27% 95.08

Seg&Tag 86.15% 89.50% 87.79
Voting Seg 95.92% 96.20% 96.06
SubTag Seg 95.67% 96.18% 95.92

Seg&Tag 90.81% 91.30% 91.06

Test Task P R F
SegW Seg 94.68% 94.57% 94.63
SegC Seg 95.09% 94.95% 95.02
SegTagL Seg 94.36% 94.42% 94.39

Seg&Tag 85.78% 88.74% 87.24
Voting Seg 95.52% 95.38% 95.45
SubTag Seg 95.25% 95.42% 95.34

Seg&Tag 90.29% 90.47% 90.38

Table 3.9: F-score performance on the CTB 6.0.

In the last part of the previous chapter (2.6), We discussed the learning-free and

learning-based post-inference strategies for NLP system combination. Under our def-

inition, our voting method to combine segmentation systems falls into the first cat-

egory, while our stacked sub-word tagging method implements the second strategy.

The fine-grained sub-word tagger can be viewed as a meta-learner to provide the final

decisions of word boundaries based on the coarse-grained predictions.

Surdeanu and Manning [2010] present a systematic comparative study of differ-

ent system combination methods to enhance English dependency parsing. In their

experiments, the simplest voting scheme works quite well, even better than most of

1http://wapiti.limsi.fr/

46

http://wapiti.limsi.fr/

more complex solutions. Although dependency parsing is very different from joint

segmentation and tagging, their experiment at least show that meta-learning does

not necessarily outperform voting. Our experiments on the different versions of the

CTB also confirm this point. Meta-learning works better sometimes, while simple

voting works better other times. There are many other ways to combine different

models. For example, log-linear combination is very effective in statistical machine

translation; dual decomposition can efficiently and effectively search the combinato-

rial optimization of different sub-models. The fundamental assumption that make

sure system combination is possible to improve performances in terms of accuracy

is the diversity. Our comparative analysis presented in the last chapter shows the

diversity of word-based and character-based views. To some extent, this guarantees

that both voting and meta-learning could enhance individual systems.

3.4 Reducing Approximation and Estimation Er-

rors with Heterogeneous Annotations

For Chinese word segmentation and POS tagging, supervised learning has become a

dominant paradigm. Much of the progress is due to the development of both corpora

and machine learning techniques. Although several institutions to date have released

their segmented and POS tagged data, acquiring sufficient quantities of high quality

training examples is still a major bottleneck. The annotation schemes of existing

lexical resources are different, since the underlying linguistic theories vary. Despite

of the existence of multiple resources, such data cannot be simply put together for

training systems, because almost all of statistical NLP systems assume homogeneous

annotation. Therefore, it is not only interesting but also important to study how to

fully utilize heterogeneous resources to improve Chinese lexical processing.

3.4.1 Two Essential Characteristics of Heterogeneous Anno-

tations

There are two main types of errors in statistical NLP: (1) the approximation error that

is due to the intrinsic suboptimality of a model and (2) the estimation error that is

due to having only finite training data. Take Chinese word segmentation for example.

Our previous analysis (Chapter 2) shows that one main intrinsic disadvantage of

character-based model is the difficulty in incorporating the whole word information,

while one main disadvantage of word-based model is the weak ability to express word

47

formation. In both models, the significant decrease of the prediction accuracy of

out-of-vocabulary (OOV) words indicates the impact of the estimation error.

There are two essential characteristics of heterogeneous annotations that can be

utilized to reduce both approximation and estimation errors.

• On one hand, heterogeneous annotations are (similar but) different considering

different annotation schemata. As a result, systems respectively trained on het-

erogeneous annotation data can produce different analysis. Auxiliary features

from heterogeneous analysis can be derived for disambiguation, and therefore

the approximation error can be reduced.

• On the other hand, heterogeneous annotations are (different but) similar in

the sense that the corresponding linguistic analysis is highly correlated. An

auxiliary corpus can be converted with a high precision for model re-training,

and therefore the estimation error can be reduced. Note that different annotated

corpora are usually based on different texts.

3.4.2 Diversity Analysis

In this chapter, we focus on two representative popular corpora for Chinese lexical

processing: (1) the Penn Chinese Treebank (CTB) and (2) the PKU’s People’s Daily

data (PPD). To analyze the diversity between their annotation standards, we pick up

200 sentences from CTB and manually label them according to the PPD standard.

Especially, we employ a PPD-style segmentation and tagging system to automatically

label these 200 sentences. As a linguistic expert who deeply understands the PPD

annotation standard, the author manually checks the automatic analysis and correct

its errors.

These 200 sentences are segmented as 3886 and 3882 words respectively according

to the CTB and PPD standards. The average lengths of word tokens are almost the

same. However, the word boundaries or the definitions of words are different. 3561

word tokens are consistently segmented by both standards. In other words, 91.7%

CTB word tokens share the same word boundaries with 91.6% PPD word tokens.

Among these 3561 words, there are 552 punctuations that are simply consistently

segmented. If punctuations are filtered out to avoid overestimation of consistency,

90.4% CTB words have same boundaries with 90.3% PPD words. The boundaries of

words that are differently segmented are compatible. Among all annotations, just one

cross-bracketing occurs. The statistics indicates that the two heterogenous segmented

48

AD ⇒ d:149; c:11; ad:6; z:4; a:3; v:2; n:1; r:1; m:1; f:1; t:1;
AS ⇒ u:44;
BA ⇒ p:2; d:1;
CC ⇒ c:73; p:5; v:2;
CD ⇒ m:134;
CS ⇒ c:3; d:1;
DEC ⇒ u:83;
DEG ⇒ u:123;
DEV ⇒ u:7;
DT ⇒ r:15; b:1;
ETC ⇒ u:9;
JJ ⇒ a:43; b:13; n:3; vn:3; d:2; j:2; f:2; t:2; z:1;
LB ⇒ p:1;
LC ⇒ f:51; Ng:3; v:1; u:1;
M ⇒ q:101; n:11; v:1;
MSP ⇒ c:2; u:1;
NN ⇒ n:738; vn:135; v:26; j:19; Ng:5; an:5; a:3; r:3; s:3; Ag:2; nt:2; f:2; q:2;

i:1; t:1; nz:1; b:1;
NR ⇒ ns:170; nr:65; j:23; nt:21; nz:7; n:2; s:1;
NT ⇒ t:98;
OD ⇒ m:41;
P ⇒ p:133; v:4; c:2; Vg:1;
PN ⇒ r:53; n:2;
PU ⇒ w:552;
SP ⇒ u:1;
VA ⇒ a:57; i:4; z:2; ad:1; b:1;
VC ⇒ v:32;
VE ⇒ v:13;
VV ⇒ v:382; i:5; a:3; Vg:2; vn:2; n:2; p:2; w:1;

Table 3.10: Mapping between CTB-style tags and PPD-style tags.

corpora are systematically different, and confirms the aforementioned two properties

of heterogeneous annotations.

Table 3.10 is the mapping between CTB-style tags and PPD-style tags. For the

definition and illustration of these tags, please refers to the annotation guidelines1.

The statistics after colons are how many times this POS tag pair appears among

the 3561 words that are consistently segmented. From this table, we can see that

(1) there is no one-to-one mapping between their heterogeneous word classification

but (2) the mapping between heterogeneous tags is not very uncertain. This simple

1Available at http://www.cis.upenn.edu/~chinese/posguide.3rd.ch.pdf and http://www.

icl.pku.edu.cn/icl_groups/corpus/spec.htm.

49

http://www.cis.upenn.edu/~chinese/posguide.3rd.ch.pdf
http://www.icl.pku.edu.cn/icl_groups/corpus/spec.htm
http://www.icl.pku.edu.cn/icl_groups/corpus/spec.htm

analysis indicates that the two POS tagged corpora also hold the two properties of

heterogeneous annotations. The differences between the POS annotation standards

are systematic. The annotations in CTB are treebank-driven, and thus consider more

functional (dynamic) information of basic lexical categories. The annotations in PPD

are lexicon-driven, and thus focus on more static properties of words. Limited to the

document length, we only illustrate the annotation of verbs and nouns for better

understanding of the differences.

• The CTB tag VV indicates common verbs that are mainly labeled as verbs

(v) too according to the PPD standard. However, these words can be also

tagged as nominal categories (a, vn, n). The main reason is that there are a

large number of Chinese adjectives and nouns that can be realized as predicates

without linking verbs.

• The tag NN indicates common nouns in CTB. Some of them are labeled as

verbal categories (vn, v). The main reason is that a majority of Chinese verbs

could be realized as subjects and objects without form changes.

3.4.3 Reducing the Approximation Error via Stacking

3.4.3.1 Annotation Ensemble as System Integration

Each annotation data set alone can yield a predictor that can be taken as a mechanism

to produce structured texts. With different training data, we can construct multiple

heterogeneous systems, each of which independently associates its own structure, i.e.

a word sequence, with the surface string. These systems produce similar linguistic

analysis that holds the same high level linguistic principles but differs in details.

To facilitate the description, we name one of these analysis as target, and others

as complementary analysis. A very natural idea to take advantage of heterogeneous

structures is to design a model which can predict a more accurate target structure

based on the input, the less accurate target structure and relevant complementary

structures.

This idea is very close to stacked learning that is a well developed technique for

model ensemble. Formally speaking, this idea is to include two “levels” of processing.

The first level includes one or more base predictors f1, ..., fK that are independently

built on heterogeneous training data. The second level processing consists of an infer-

ence function h that takes as input 〈x, f1(x), ..., fK(x)〉 and outputs a final prediction

h(x, f1(x), ..., fK(x)). The only difference between model ensemble and annotation

50

ensemble is that the output spaces of model ensemble are the same while the output

spaces of annotation ensemble are different. This framework is general and fexible,

in the sense that it assumes almost nothing about the individual systems and takes

them as black boxes.

In the following we will introduce a novel sub-word tagging model which is built on

coarse-grained taggers that are trained with heterogeneous labeled data. To compare

with Jiang et al. [2009]’s previous work, we also implement a similar feature-based

stacking model. Since not only the features but also the word boundary structures

are utilized for prediction refinement, we call our sub-word tagger a structure-based

stacking model.

3.4.3.2 A Character-based Joint Model

With IOB2 representation [Ramshaw and Marcus, 1995], the problem of joint seg-

mentation and tagging can be regarded as a character classification task. Previous

work shows that the character-based approach is an effective method for Chinese

lexical processing. Both of our feature- and structure-based stacking models employ

base character-based taggers to generate multiple segmentation and tagging results.

Our base tagger use a discriminative sequential classifier to predict the POS tag with

positional information for each character. Each character can be assigned one of two

possible boundary tags: “B” for a character that begins a word and “I” for a character

that occurs in the middle of a word. We denote a candidate character token ci with

a fixed window ci−2ci−1cici+1ci+2. The following features are used for classification:

• Character unigrams: ck (i− l ≤ k ≤ i+ l)

• Character bigrams: ckck+1 (i− l ≤ k < i+ l)

3.4.3.3 Feature-based Stacking

Jiang et al. [2009] introduced a feature-based stacking solution for annotation en-

semble. In their solution, an auxiliary tagger CTagppd is trained on a complementary

corpus, i.e. PPD, to assist the target CTB-style tagging. To refine the character-based

tagger CTagctb, PPD-style character labels are directly incorporated as new features.

The stacking model relies on the ability of discriminative learning method to explore

informative features, which play central role to boost the tagging performance. To

compare their feature-based stacking model and our structure-based model, we im-

plement a similar system CTagppd→ctb. Apart from character uni/bigram features,

51

the PPD-style character labels are used to derive the following features to enhance

our CTB-style tagger:

• Character label unigrams: cppd
k (i− lppd ≤ k ≤ i+ lppd)

• Character label bigrams: cppd
k cppd

k+1 (i− lppd ≤ k < i+ lppd)

In the above descriptions, l and lppd are the window sizes of features, which can

be tuned on development data.

3.4.3.4 Structure-based Stacking

The feature-based stacking is insufficient to fully utilize all information provided by

a heterogeneous system. In this paper, we study structured-based stacking for joint

word segmentation and POS tagging. In our solution, heterogeneous word structures

are used not only to generate features but also to derive a sub-word structure which

can better resolve the whole task. The design of the previous stacked sub-word

tagging model is motivated by the diversity of heterogeneous models, while our current

concern is to explore the diversity of heterogeneous annotations.

The workflow of our structure-based stacking system is shown in Figure 3.3. In the

first phase, one character-based CTB-style tagger (CTagctb) and one character-based

PPD-style tagger (CTagppd) are respectively trained to produce heterogenous word

boundaries. In the second phase, this system first combines the two segmentation

and tagging results to get sub-words which maximize the agreement about word

boundaries. Finally, a fine-grained sub-word tagger (STagctb) is applied to bracket

sub-words into words and also to label their POS tags. Note that we choose character-

based taggers as coarse-grained processors just for simplicity.

To train the sub-word tagger STagctb, features are formed making use of both

CTB-style and PPD-style POS tags provided by the character-based taggers. In the

following description, “C” refers to the content of a sub-word; “Tctb” and “Tppd”

refers to the positional POS tags generated from CTagctb and CTagppd; lC , lctb
T and

lppd
T are the window sizes. For convenience, we denote a sub-word with its context

...si−1sisi+1..., where si is the current token. The following features are applied:

• Unigram features: C(sk) (i − lC ≤ k ≤ +lC), Tctb(sk) (i − lctb
T ≤ k ≤ i + lctb

T),

Tppd(sk) (i− lppd
T ≤ k ≤ i+ lppd

T)

• Bigram features: C(sk)C(sk+1) (i−lC ≤ k < i+lC), Tctb(sk)Tctb(sk+1) (i−lctb
T ≤

k < i+ lctb
T), Tppd(sk)Tppd(sk+1) (i− lppd

T ≤ k < i+ lppd
T)

52

Raw sentences

CTB-style character
tagger CTagctb

PPD-style character
tagger CTagppd

Segmented and
tagged sentences

Segmented and
tagged sentences

Merging

Sub-word
sequences

Sub-word
tagger STagctb

Figure 3.3: Sub-word tagging based on heterogeneous taggers.

• C(si−1)C(si+1) (if lC ≥ 1), Tctb(si−1)Tctb(si+1) (if lctb
T ≥ 1), Tppd(si−1)Tppd(si+1)

(if lppd
T ≥ 1)

• Word formation features: character n-gram prefixes and suffixes for n up to 3.

Cross-validation CTagctb and CTagppd are directly trained on the original train-

ing data, i.e. the CTB and PPD data. Cross-validation technique has been proved

necessary to generate the training data for sub-word tagging, since it deals with

the training/test mismatch problem. To construct training data for the new het-

erogeneous sub-word tagger, a 10-fold cross-validation on the original CTB data is

performed too.

3.4.4 Reducing the Estimation Error via Corpus Conversion

It is possible to acquire high quality labeled data for a specific annotation standard by

exploring existing heterogeneous corpora, since the annotations are normally highly

compatible. Moreover, the exploitation of additional (pseudo) labeled data aims to

reduce the estimation error and enhances a NLP system in a different way from

stacking. We therefore expect the improvements are not much overlapping and the

combination of them can give a further improvement.

53

The stacking models can be viewed as annotation converters: They take as input

complementary structures and produce as output target structures. In other words,

the stacking models actually learn statistical models to transform the lexical repre-

sentations. We can acquire informative extra samples by processing the PPD data

with our stacking models. Though the converted annotations are imperfect, they are

still helpful to reduce the estimation error.

Character-based Conversion The feature-based stacking model CTagppd→ctb maps

the input character sequence c and its PPD-style character label sequence to the cor-

responding CTB-style character label sequence. This model by itself can be taken as

a corpus conversion model to transform a PPD-style analysis to a CTB-style analysis.

By processing the auxiliary corpus Dppd with CTagppd→ctb, we acquire a new labeled

data set D′ctb = D
CTagppd→ctb

ppd→ctb . We can re-train the CTagctb model with both original

and converted data Dctb ∪D′ctb.

Sub-word-based Conversion Similarly, the structure-based stacking model can

be also taken as a corpus conversion model. By processing the auxiliary corpus Dppd

with STagctb, we acquire a new labeled data set D′′ctb = DSTagctb
ppd→ctb. We can re-train

the STagctb model with Dctb ∪ D′′ctb. If we use the gold PPD-style labels of D′′ctb to

extract sub-words, the new model will overfit to the gold PPD-style labels, which

are unavailable at test time. To avoid this training/test mismatch problem, we also

employ a 10-fold cross validation procedure to add noise.

It is not a new topic to convert corpus from one formalism to another. A well

known work is transforming Penn Treebank into resources for various deep linguistic

processing, including LTAG [Xia, 1999], CCG [Hockenmaier and Steedman, 2007], HPSG

[Miyao et al., 2004] and LFG [Cahill et al., 2002]. Such work for corpus conversion

mainly leverages rich sets of hand-crafted rules to convert corpora. The construction

of linguistic rules is usually time-consuming and the rules are not full coverage. Com-

pared to rule-based conversion, our statistical converters are much easier to built and

empirically perform well.

54

3.5 Evaluation of Annotation Ensemble

3.5.1 Setting

Our adaptation experiments are conducted on the PKU’s People’s Daily data1 and

the CTB 5.0 data. These two corpora are segmented and tagged following different

standards. The CTB data is used for target tagging, while The annotation of the

People’s Daily of January in 1998 is used as a heterogeneous resource. This setup

for annotation ensemble follows Jiang et al. [2009]’s experiments to lead to a fair

comparison. The training, development and test data sets are defined as the same as

in Section 3.3.1. To learn sequential classifiers, we the CRF toolkit wapiti.

3.5.2 Results of Stacking

Table 3.11 summarizes the segmentation and tagging performance of the baseline

and different stacking models. The baseline of the character-based joint solver is

competitive, and achieves an f-score of 92.93. By using the character labels from a

heterogeneous solver (which is trained on the PPD data set), the performance of this

character-based system is improved to 93.46. This result confirms the importance

of a heterogeneous structure. Our structure-based stacking solution is effective and

outperforms the feature-based stacking. By better exploiting the heterogeneous word

boundary structures, our sub-word tagging model achieves an f-score of 94.03 (lctb
T

and lpku
T are tuned on the development data and both set to 1).

Devel. P R F
CTagctb 93.28% 92.58% 92.93
CTagppd→ctb 93.89% 93.46% 93.67
STagctb 94.07% 93.99% 94.03

Table 3.11: Performance of different stacking models on the development data.

The contribution of the auxiliary tagger is two-fold. On one hand, the hetero-

geneous solver provides structural information, which is the basis to construct the

sub-word sequence. On the other hand, this tagger provides additional POS infor-

mation, which is helpful for disambiguation. To evaluate these two contributions,

we do another experiment by just using the heterogeneous word boundary structures

without the POS information. The f-score of this type of sub-word tagging is 93.73.

This result indicates that both the word boundary and POS information are helpful.

1 This corpus is publicly available at http://icl.pku.edu.cn/icl_res/.

55

http://icl.pku.edu.cn/icl_res/

3.5.3 Learning Curves

We do additional experiments to evaluate the effect of heterogeneous features as the

amount of PPD data is varied. Table 3.12 summarizes the f-score change. The

feature-based model works well only when a considerable amount of heterogeneous

data is available. When a small set is added, the performance is even lower than

the baseline (92.93). The structure-based stacking model is more robust and obtains

consistent gains regardless of the size of the complementary data.

PPD→ CTB
#CTB #PPD CTag STag
18104 7381 92.21 93.26
18104 14545 93.22 93.82
18104 21745 93.58 93.96
18104 28767 93.55 93.87
18104 35996 93.67 94.03
9052 9052 92.10 92.40

Table 3.12: F-scores relative to sizes of training data. Sizes (shown in column #CTB
and #PPD) are numbers of sentences in each training corpus.

3.5.4 Results of Annotation Conversion

The stacking models can be viewed as data-driven annotation converting models.

However they are not trained on “real” labeled samples. Although the target repre-

sentation (CTB-style analysis in our case) is gold standard, the input representation

(PPD-style analysis in our case) is labeled by a automatic tagger CTagppd. To make

clear whether these stacking models trained with noisy inputs can tolerant perfect

inputs, we evaluate the two stacking models on our manually converted data. The

accuracies presented in Table 3.13 indicate that though the conversion models are

learned by applying noisy data, they can refine target tagging with gold auxiliary

tagging. Another interesting thing is that the gold PPD-style analysis does not help

the sub-word tagging model as much as the character tagging model.

Auto PPD Gold PPD
CTagppd→ctb 93.69 95.19
STagctb 94.14 94.70

Table 3.13: F-scores with gold PPD-style tagging on the manually converted data.

56

3.5.5 Results of Re-training

Table 3.14 shows accuracies of re-trained models. Note that a sub-word tagger is

built on character taggers, so when we re-train a sub-word system, we should con-

sider whether or not re-training base character taggers. The error rates decrease

as automatically converted data is added to the training pool, especially for the

character-based tagger CTagctb. When the base CTB-style tagging is improved, the

final tagging is improved in the end. The re-training does not help the sub-word

tagging much; the improvement is very modest.

CTagctb STagctb P R F
Dctb ∪D′ctb - - 94.46% 94.06% 94.26
Dctb ∪D′ctb Dctb 94.61% 94.43% 94.52

Dctb Dctb ∪D′′ctb 94.05% 94.08% 94.06
Dctb ∪D′ctb Dctb ∪D′′ctb 94.71% 94.53% 94.62

Table 3.14: Performance of re-trained models on the development data.

3.5.6 Comparison to the State-of-the-Art

Table 3.15 summarizes the tagging performance of different systems. The baseline

of the character-based tagger is competitive, and achieve an f-score of 93.41. By

better using the heterogeneous word boundary structures, our sub-word tagging model

achieves an f-score of 94.36. Both character and sub-word tagging model can be

enhanced with automatically converted corpus. With the pseudo labeled data, the

performance goes up to 94.11 and 94.68. These results are also better than the best

published result on the same data set that is reported in [Jiang et al., 2009].

Test P R F

[Jiang et al., 2009] - - - - 94.02
[Wang et al., 2011] - - - - 94.181

Character model 93.31% 93.51% 93.41
+Re-training 93.93% 94.29% 94.11
Sub-word model 94.10% 94.62% 94.36
+Re-training 94.42% 94.93% 94.68

Table 3.15: Performance of different systems on the test data.

1This result is achieved with much unlabeled data, which is different from our setting.

57

3.6 Conclusion

Inspired by the comparative analysis presented in last chapter, we design a novel

stacked sub-word tagging model for joint word segmentation and POS tagging. We

define a sub-word structure which maximizes the agreement of multiple segmenta-

tions provided by heterogeneous segmenters. We show that this sub-word structure

could explore the complementary strengths of different systems designed with dif-

ferent views. Moreover, the POS tagging can be efficiently and effectively resolved

over sub-word sequences. Exploiting diversity among different systems plays a cen-

tral role in the success of our new model. By observing two essential characteristics

of heterogeneous annotation data, we propose to use our new model to explore the

diversity between different labeled corpora. A new sub-word tagging model together

with corpus conversion is implemented and evaluated. Experiments show that our

approach is superior to the existing approaches reported in the literature.

58

Chapter 4

Harvesting String Knowledge for

Word Segmentation

This chapter investigates improving supervised word segmentation accuracy with un-

labeled data. Both large-scale in-domain data and small-scale document text are

considered. We present a unified solution to include features derived from unlabeled

data to a discriminative learning model. For the large-scale data, we derive string

statistics from Gigaword to assist a character-based segmenter. In addition, we in-

troduce the idea about transductive, document-level segmentation, which is designed

to improve the system recall for out-of-vocabulary (OOV) words which appear more

than once inside a document. Novel features result in relative error reductions of

13.8% and 15.4% in terms of F-score and the recall of OOV words respectively. Our

work can be viewed as a good example to leverage feature induction to bridge the

gap between supervised language processing and unsupervised language acquisition.

This chapter is joint work with Jia Xu, originally published in [Sun and Xu, 2011].

4.1 Background

4.1.1 The Problem: Combining Supervised and Unsuper-

vised NLP

Machine learning has become an indispensable tool for NLP researchers. Highly

developed supervised training techniques have led to state-of-the-art performance for

many NLP tasks. Unfortunately, given the limited availability of labeled data, and

the non-trivial cost of human annotation, progress on supervised learning often yields

diminishing returns. Unsupervised learning, on the other hand, is not bound by the

59

same data resource limits. While labeled data is expensive to obtain, unlabeled data

is essentially free in comparison. It exists simply as raw text from sources such as

the Internet. The amount of unlabeled linguistic data available to us is much larger

and growing much faster than the amount of labeled data. However, unsupervised

learning is significantly harder than supervised learning and, although intriguing, has

not been able to produce consistently successful results for most NLP tasks.

It is becoming increasingly important to leverage both types of data resources,

labeled and unlabeled, to achieve the best performance in challenging NLP problems.

Many semi-supervised learning methods, e.g. transductive SVM, graph-based meth-

ods, have been originally developed for binary classification problems. NLP problems

often pose new challenges to these techniques, involving more complex structure that

can violate many of the underlying assumptions. On the other hand, a number of

easy-to-implement methods have been proposed, e.g. self-training and co-training,

but their effectiveness on NLP tasks is not always clear. For example, bootstrapping

methods typically assume a very small amount of labeled data and have not always

shown to improve state-of-the-art performance when a large amount of labeled data

is available, such as POS tagging [Clark et al., 2003].

We believe that it is important to explicitly investigate why and how auxiliary

unlabeled data can truly improve NLP tasks. The following aspects motivate us to

search for a robust semi-supervised solution that can help high-resource tasks.

• Flexibility: We favor the solutions which are easy to apply for problems with

different structures (e.g. word sequences, syntactic trees or forests, N-best lists).

• Linguistic knowledge: We favor the idea exploiting NLP-specific background

knowledge to aid semi-supervised learning.

• Scalability: NLP data-sets are often large, even for non-English tasks. We favor

methods that can be applied to large-scale data (both labeled and unlabeled)

sets.

• Effectiveness: We still expect gains even when high-performance supervised

systems can be built. For example, we hope that semi-supervised learning can

improve a supervised system that is already more than 95% accurate.

4.1.2 The Method: Feature Induction

In this chapter, we focus on a general framework for semi-supervised NLP, i.e. fea-

ture induction. Feature induction is a simple yet effective semi-supervised learning

60

method for NLP. The basic strategy for taking advantage of unlabeled data is to

derive informative features from large-scale unlabeled data and use them in discrimi-

native supervised models. This “feature-engineering” approach has been successfully

applied to named entity recognition (NER) [Lin and Wu, 2009; Miller et al., 2004],

dependency parsing [Koo et al., 2008], query classification [Lin and Wu, 2009]. Miller

et al. [2004] and Koo et al. [2008] demonstrated the effectiveness of using word clus-

ters as features in discriminative learning. Following their ideas, Turian et al. [2010]

compared different word clustering algorithms and evaluated their impacts on both

NER and text chunking. Moreover, Lin and Wu [2009] present a simple and scalable

algorithm for clustering tens of millions of phrases and use the resulting phrase clus-

ters as features to enhance two applications: NER and query classification. Their

experimental results show that phrase-based clusters offer significant improvements

for NLP applications.

One of the advantages of the feature induction approach is that the learning al-

gorithm is decoupled from the process of generating features. In other words, the

construction of unlabeled data features is separated from training. This decoupling

gives us the flexibility of using any algorithm to create different linguistic features

that might be useful. Linguistic knowledge can explicitly motivate us to design good

features based on unlabeled data. Moreover, models trained with features from un-

labeled data are more compact and easier to interpret than more complex learning

techniques, such as transductive SVMs. Feature induction increases the complexity

of an original discriminative model only with new features, which are normally in a

very small set. This property make this method efficient and scalable to most dis-

criminative NLP systems. Finally, when good and task-related linguistic features are

derived, they are reasonably expected to be useful clues for disambiguation.

4.2 Three Types of Unlabeled Data

We distinguish three types of unlabeled data, namely large-scale in-domain data,

out-of-domain data and small-scale document text. Both large-scale in-domain and

out-of-domain data are popular for enhancing NLP tasks. Learning from these two

types of unlabeled data normally involves semi-supervised learning. The difference

between them is that out-of-domain data is usually used for domain adaptation. For

a number of NLP tasks, there are relatively large amounts of labeled training data. In

this situation, supervised learning can provide competitive results, and it is difficult to

improve them any further by using extra unlabeled data. Chinese word segmentation

61

is one of this kind of tasks, since several large-scale manually annotated corpora

are publicly available. In this chapter, we first exploit unlabeled in-domain data to

improve strong supervised models. We leave domain adaptation for our future work.

We introduce the third type of unlabeled data with a transductive learning, document-

level view. Many applications of word segmentation involve processing a whole docu-

ment, such as information retrieval. In this situation, the text of the current document

can provide additional useful information to segment a sentence. Take the word “氨

纶丝/elastane” for example1. As a translated terminology word, it lacks composi-

tionality. Moreover, this word appears rarely in general texts. As a result, if it does

not appear in the training data, it is very hard for statistical models to recognize this

word. Nevertheless, when we deal with an article discussing an elastane company,

this word may appear more than once in this article, and the document information

can help recognize this word. This idea is closely related to transductive learning

in the sense that the segmentation model knows something about the problem it is

going to resolve. We are also concerned with enhancing word segmentation with the

document information.

We present a unified “feature engineering” approach for learning segmentation

models from both labeled and unlabeled data. Our method is a simple two-stage pro-

cess. First, we use unannotated corpus to extract string and document information,

and then we use these information to construct new statistics-based and document-

based feature mapping for a discriminative word segmenter. We are relying on the

ability of discriminative learning method to identify and explore informative features,

which play a central role to boost the segmentation performance. This simple solution

has been shown effective for named entity recognition [Miller et al., 2004] and depen-

dency parsing [Koo et al., 2008]. In their implementations, word clusters derived from

unlabeled data are imported as features to discriminative learning approaches.

4.3 Feature Design

4.3.1 Baseline Features

Key to our approach is to allow informative features derived from unlabeled data to

assist the segmenter. In our experiments, we employed three different feature sets:

a baseline feature set which draws upon “normal” information from training data, a

statistics-based feature set that uses statistical information derived from a large-scale

1This example is from an article indexed as chtb 0041 in the Penn Chinese Treebank corpus.

62

in-domain corpus, and a document-based feature set that uses information encoded

in the surrounding text.

We already introduce a set of good feature templates for purely supervised character-

based segmentation in Chapter 2. For the experiments in this chapter, our baseline

feature set includes them all, as well as one idiom feature:

• Does ci locate at the beginning of, inside or at the end of an idiom? If the

string c[s:i] (s < i) matches an item from the idiom lexicon, the feature template

receives a string value “E”. Similarly, we can define when this feature ought to

be set to “B” or “I”. Note that all idioms are larger than one character, so there

is no “S” feature here.

4.3.2 Statistics-based Features

In order to distill information from unlabeled data, we borrow ideas from some previ-

ous research on unsupervised word segmentation. The statistical information acquired

from a relatively large amount of unlabeled data are designed as features correlated

with the position where a character locates in a word token. These features are based

on three widely used criteria.

4.3.2.1 Mutual Information

Empirical mutual information is widely used in NLP. Informally, mutual information

compares the probability of observing x and y together with the probabilities of

observing x and y independently. If there is a genuine association between x and y,

the I(x, y) = log p(x,y)
p(x)p(y)

should be greater than 0.

Some previous work claimed that the larger the mutual information between two

consecutive strings, the higher the possibility of the two strings being combined to-

gether. We adopt this idea in our character-based segmentation model. The empirical

mutual information between two character bigrams is computed by counting how of-

ten they appear in the large-scale unlabeled corpus. Given a Chinese character string

c[i−2:i+1], the mutual information between substrings c[i−2:i−1] and c[i:i+1] is computed

as:

MI(c[i−2:i−1], c[i:i+1]) = log
p(c[i−2:i+1])

p(c[i−2:i−1])p(c[i:i+1])

For each character ci, we incorporate the MI of the character bigrams into our model.

They include,

• MI(c[i−2:i−1], c[i:i+1]),

63

• MI(c[i−1:i], c[i+1:i+2]).

4.3.2.2 Accessor Variety Features

When a string appears under different linguistic environments, it may carry a mean-

ing. This principle is introduced as the accessor variety criterion for identifying

meaningful Chinese words in [Feng et al., 2004]. This criterion evaluates how inde-

pendently a string is used, and thus how likely it is that the string can be a word.

Given a string s, which consists of l (l ≥ 2) characters, we define the left accessor

variety of Llav(s) as the number of distinct characters that precede s in a corpus. Sim-

ilarly, the right accessor variety Rl
av(s) is defined as the number of distinct characters

that succeed s.

We first extract all strings whose length are between 2 and 4 from the unlabeled

data, and calculate their accessor variety values. For each character ci, we then

incorporate the following information into our model,

• Accessor variety of strings with length 4: L4
av(c[i:i+3]), L

4
av(c[i+1:i+4]), R

4
av(c[i−3:i]),

R4
av(c[i−4:i−1]);

• Accessor variety of strings with length 3: L3
av(c[i:i+2]), L

3
av(c[i+1:i+3]), R

3
av(c[i−2:i]),

R3
av(c[i−3:i−1]);

• Accessor variety of strings with length 2: L2
av(c[i:i+1]), L

2
av(c[i+1:i+2]), R

2
av(c[i−1:i]),

R2
av(c[i−2:i−1]).

4.3.2.3 Punctuation Features

Punctuation marks are symbols that indicate the structure and organization of written

language, as well as intonation and pauses to be observed when reading aloud. Punc-

tuation marks can be taken as perfect word delimiters. The preceding and succeeding

strings of punctuations carry additional wordbreak information, since punctuations

should be segmented as a word. Note that such information is biased because not all

words can appear before or after punctuations. For example, punctuations can not

be followed by particles, such as “了”, “着” and “过” which are indicators of aspects.

Nevertheless, our experiments will show this kind of information is still useful for

word segmentation.

When a string appears many times preceding or succeeding punctuations, there

tends to be wordbreaks succeeding or preceding that string. To utilize the wordbreak

information provided by punctuations, we extract all strings with length l(2 ≤ l ≤ 4)

64

which precede or succeed punctuations in the unlabeled data. We define the left

punctuation variety of Llpv(s) as the number of times a punctuation precedes s in a

corpus. Similarly, the right punctuation variety Rl
pv(s) is defined as the number of

how many times a punctuation succeeds s. These two variables evaluate how likely a

string can be separated at its start or end positions.

We first gather all strings surrounding punctuations in the unlabeled data, and

calculate their punctuation variety values. The length of each string is also restricted

between 2 and 4. For each character ci, we import the following information into our

model,

• Punctuation variety of strings with length 4: L4
pv(c[i:i+3]), R

4
pv(c[i−3:i]);

• Punctuation variety of strings with length 3: L3
pv(c[i:i+2]), R

3
pv(c[i−2:i]);

• Punctuation variety of strings with length 2: L2
pv(c[i:i+1]), R

2
pv(c[i−1:i]).

Punctuations can be viewed as mark-up’s of Chinese text. Our motivation to

use the punctuation information to assist a word segmenter is similar to [Spitkovsky

et al., 2010] in a way to explore “artificial” word (or phrase) break symbols. In their

work, four common HTML tags are successfully used as raw phrase bracketings to

improve unsupervised dependency parsing.

4.3.2.4 Binary or Numeric Features

The derived information introduced above is all expressed as real values. The natural

way to incorporate these statistics into a discriminative learning model is to directly

use them as numeric features. However, our experiments show that this simple choice

does not work well. The reason is that these statistics actually behave non-linearly to

predict character labels. For each type of statistics, one weight alone cannot capture

the relation between its value and the possibility that a string forms a word. Instead,

we represent these statistics as discrete features.

For the mutual information, this is done by rounding down decimal number. The

integer part of each MI value is used as a string feature. For the accessor variety and

punctuation variety information, since their values are integer, we can directly use

them as string features. The accessor variety and punctuation variety could be very

large, so we set thresholds to cut off large values to deal with the data sparse problem.

Specially, if an accessor variety value is greater than 50, it is incorporated as a feature

“> 50”; if the value is greater than 30 but not greater than 50, it is incorporated as a

feature “30− 50”; else the value is individually incorporated as a string feature. For

65

example, if the left accessory variety of a character bigram c[i:i+1] is 29, the binary

feature “L2
av(c[i:i+1])=29” will be set to 1, while other related binary features such as

“L2
av(c[i:i+1]) = 15” or “L2

av(c[i:i+1]) > 50” will be set to 0. Similarly, we can discretize

the punctuation variety features. However, we only set one threshold, 30, for this

value. These thresholds can be tuned by using held-out data.

4.3.3 Document-based Features

It is meaningless to derive statistics of a document and use it for word segmentation,

since most documents are relatively short, and values are statistically unreliable. Our

experiments confirm this idea. Instead, we propose the following binary features which

are based on the string count in the given document that is simply the number of times

a given string appears in that document. For each character ci, our document-based

features include,

• Whether the string count of c[s:i] is equal to that of c[s:i+1] (i − 3 ≤ s ≤ i).

Multiple features are generated for different string length.

• Whether the string count of c[i:e] is equal to that of c[i−1:e] (i ≤ e ≤ i + 3).

Multiple features are generated for different string length.

The intuition is as follows. The string counts of c[s:i] and c[s:i+1] being equal means

that when c[s:i] appears, it appears inside c[s:i+1]. In this case, c[s:i] is not independently

used in this document, and this feature suggests the segmenter not assign a “S” or

“E” label to the character ci. Similarly, the string counts of c[i:e] and c[i−1:e] being

equal means c[i:e] is not independently used in this document, and this feature suggests

segmenter not assign a “S” or “B” label to ci. We do not directly use the string counts

to prevent a bias towards longer documents.

4.4 Experiments and Analysis

4.4.1 Setting

The SIGHAN Bakeoffs provide several large-scale labeled data for the research on

Chinese word segmentation. Although these data sets are labeled on continuous run

texts, they do not contain the document boundary information. CTB is a segmented,

POS tagged, and fully bracketed corpus in the constituency formalism. It is also an

popular data set to evaluate word segmentation methods, such as [Jiang et al., 2009;

66

Sun, 2011]. CTB is a collection of documents which are separately annotated. This

annotation style allows us to calculate the so-called document-based features and to

further evaluate our approach. In this chapter, we use CTB 6.0 as our main corpus

and follow the CoNLL 2009 shared task to define the training, development and test

sets1. In Chapter 3, we showed the statistics of this setting in Table 3.8.

In previous Chapters 3, 5 and 8, the CTB 6.0 data used comes from the CoNLL

2009 shared task or its associated parts. Here, the CTB data is extracted from the

file list provided by the organizer of the shared task. There is a small difference

between the data provided by the shared task and the data extracted from the file

list: The development data extracted from the file list includes one more sentence

(namely 1973 sentences in total). This small difference does not affect much and it

is still reasonable to compare the experimental results in this section to the previous

reported results.

Chinese Gigaword is a comprehensive archive of newswire text data that has been

acquired over several years by the Linguistic Data Consortium (LDC). The large-

scale unlabeled data we use in our experiments comes from the Chinese Gigaword

(LDC2005T14). We choose the Mandarin news text, i.e. Xinhua newswire. This

data covers all news published by Xinhua News Agency (the largest news agency in

China) from 1991 to 2004, which contains over 473 million characters.

F-score is used as the accuracy measure. Define precision p as the percentage

of words in the decoder output that are segmented correctly, and recall r as the

percentage of gold standard output words that are correctly segmented by the decoder.

The (balanced) F-score is 2pr/(p+ r). We also report the recall of OOV words. Note

that, all idioms in our extra idiom lexicon are added into the in-vocabulary word list.

CRFsuite [Okazaki, 2007] is an implementation of Conditional Random Fields

(CRFs) [Lafferty et al., 2001] for labeling sequential data. It is a speed-oriented im-

plementation, which is written in pure C. In our experiments, we use this toolkit

to learn global linear models for segmentation. We use the stochastic gradient de-

scent algorithm to resolve the optimization problem, and set default values for other

learning parameters.

4.4.2 Main Results

Table 4.1 summarizes the segmentation results on the development data with differ-

ent configurations, representing a few choices between baseline, statistics-based and

1We would like to thank Prof. Nianwen Xue for the help with the division of the data.

67

Devel. P R Fβ=1 Roov

Baseline 95.41 95.52 95.46 77.68
+MI 95.50 95.48 95.49 77.98
+AV(2) 95.85 96.04 95.94 79.31
+AV(2,3) 95.95 96.19 96.07 80.61
+AV(2,3,4) 96.14 95.99 96.07 81.83
+PU(2) 95.86 96.07 95.97 79.70
+PU(2,3) 95.98 96.25 96.11 80.42
+PU(2,3,4) 96.00 96.19 96.10 80.53
+MI+AV(2,3,4)+PU(2,3,4) 96.17 96.22 96.19 80.42
+DOC 95.69 95.64 95.66 79.89
+MI+AV(2,3,4)+PU(2,3,4)+DOC 96.21 96.23 96.22 81.75

Table 4.1: Segmentation performance with different feature sets on the devel-
opment data. Abbreviations: MI=mutual information; AV=accessor variety;
PU=punctuation variety; DOC=document features. The numbers in each bracket
pair are the lengths of strings. For example, PU(2,3) means punctuation variety
features of character bigrams and trigrams are added.

document-based feature sets. In this table, the symbol “+” means features of current

configuration contains both the baseline features and new features for semi-supervised

or transductive learning. From this table, we can clearly see the impact of features

derived from the large-scale unlabeled data and the current document. Compari-

son between the performance of the baseline and “+MI” shows that the widely used

mutual information is not helpful. Both good segmentation techniques and valuable

labeled corpora have been developed, and pure supervised systems can provide strong

performance. It is not a trial to design new features to enhance supervised models.

There are significant increases when accessor variety features and punctuation

variety features are separately added. Extending the length of neighboring string

helps a little from 2 to 3. Although the OOV recall increases when the length is

extended from 3 to 4, there is no improvement of the overall balanced F-score. The

line “+MI+AV(2,3,4)+PU(2,3,4)” shows the performance when all statistics-based

features are added. The combination of the “AV” and “PU” features gives further

helps. This system can be seen as a pure semi-supervised system. The line “+DOC”

is the result when document-based features are added. In spite of its simplicity, the

document-based features can help the task. However, when we combine statistics-

based features with document-based features, we cannot get further improvement in

terms of F-score.

Table 5.14 shows the segmentation performance on the test data set. The final

results of our system are achieved with the “+MI+AV(2,3,4)+PU(2,3,4)+DOC” fea-

68

Test P R Fβ=1 Roov

Baseline 95.21 94.90 95.06 75.52
Final 95.86 95.62 95.74 79.28

Table 4.2: Segmentation performance on the test data.

ture configuration. The new features result in relative error reductions of 13.8% and

15.4% in terms of the balanced F-score and the recall of OOV words respectively.

4.4.3 Learning Curves

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 100 200 300 400 500 600 700 800 900 1000

F
-s

co
re

Training data size (thousands of characters)

Baseline features
+Statistics-based features

+Document-based features
All features

Figure 4.1: The learning curves (F-score) of different models.

We performed additional experiments to evaluate the effect of the derived fea-

tures as the amount of labeled training data is varied. Figure 4.1 and 4.2 display

the F-score and the OOV recall of systems with different feature sets when trained

on smaller portions of the labeled data. We can clearly see that the derived fea-

tures obtain consistent gains regardless of the size of the labeled training set. Both

statistics-based features and document-based features can help improve the overall

performance. Especially, they can help to recognize more unknown words, which is

important for many applications. The F-score of semi-supervised models, i.e. models

trained with statistics-based features, does not achieve further improvement when

69

 68

 70

 72

 74

 76

 78

 80

 82

 84

 100 200 300 400 500 600 700 800 900 1000

O
O

V
 R

ec
al

l (
%

)

Training data size (thousands of characters)

Baseline features
+Statistics-based features

+Document-based features
All features

Figure 4.2: The learning curves (Recall of OOV) of different models.

document-based features are added. Nonetheless, the OOV recall obtains slightly

improvements.

It is interesting to consider the amount by which derived features reduce the need

for supervised data, given a desired level of accuracy. The change of the F-score

in Figure 4.1 suggests that derived features reduce the need for supervised data by

roughly a factor of 2. For example, the performance of the model with extra features

trained on 500k characters is slightly higher than the performance of the model with

only baseline features trained on the whole labeled data.

4.4.4 Feature Analysis

We discussed the choice of using binary or numeric features in Section 4.3.2.4. In

our experiment, when the accessor variety and punctuation variety information are

integrated as numeric features, they do not contribute. To show the non-linear way

that these features contribute to the prediction problem, we present the scatter plots

of the score of each feature (i.e. the weight multiply the feature value) against

the value of the feature. Figure 4.3 shows the relation between the score and the

value of the punctuation variety features. For example, the weight of the binary

feature “L2
pu(c[i:i+1]) = 26 combined with the label “B” learned by the final model

70

-15

-10

-5

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30

S
co

re

Feature value

Label ’B’

-20

-15

-10

-5

 0

 5

 10

 15

 20

 5 10 15 20 25 30

S
co

re

Feature value

Label ’I’

-30

-25

-20

-15

-10

-5

 0

 5

 10

 5 10 15 20 25 30

S
co

re

Feature value

Label ’E’

-15

-10

-5

 0

 5

 10

 15

 5 10 15 20 25 30

S
co

re
Feature value

Label ’S’

Figure 4.3: Scatter plot of feature (L2
pv(c[i:i+1]) score against feature value.

is 0.815141, so the score of this combination is 0.815141 × 26 = 21.193666 and a

point (26, 21.193666) is drawn. These plots indicate the punctuation variety features

contribute to the final model in a very complicated way. It is impossible to use one

weight to capture it. The accessor variety features affect the model in the same way,

so we do not give detailed discussions. We only show the same scatter plot of the

L2
av(c[i:i+1]) feature template in Figure 4.4.

4.5 Related Work

Xu et al. [2008] presented a Bayesian semi-supervised approach to derive task-oriented

word segmentation for machine translation (MT). This method learns new word types

and word distributions on unlabeled data by considering segmentation as a hidden

variable in MT. Different from their concern, our focus is general word segmentation.

The “feature-engineering” semi-supervised approach has been successfully applied

to named entity recognition [Miller et al., 2004] and dependency parsing [Koo et al.,

2008]. These two papers demonstrated the effectiveness of using word clusters as

features in discriminative learning. Moreover, Turian et al. [2010] compared different

71

-20

-15

-10

-5

 0

 5

 10

 5 10 15 20 25 30

S
co

re

Feature value

Label ’B’

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

 10

 5 10 15 20 25 30

S
co

re

Feature value

Label ’I’

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

 5 10 15 20 25 30

S
co

re

Feature value

Label ’E’

-5

 0

 5

 10

 15

 20

 5 10 15 20 25 30

S
co

re
Feature value

Label ’S’

Figure 4.4: Scatter plot of feature score against feature value for L2
av(c[i:i+1]).

word clustering algorithms and evaluated their effect on both named entity recognition

and text chunking.

As mentioned earlier, the feature design is inspired by some previous research on

word segmentation. The accessor variety criterion is proposed to extract word types,

i.e. the list of possible words, in [Feng et al., 2004]. Different from their work, our

method resolves the segmentation problem of running texts, in which this criterion is

used to define features correlated with the character position labels. Li and Sun [2009]

observed that punctuations are perfect delimiters which provide useful information

for segmentation. Their method can be viewed as a self-training procedure, in which

extra punctuation information is incorporated to filter out automatically predicted

samples. We use the punctuation information in a different way. In our method,

the counts of the preceding and succeeding strings of punctuations are incorporated

directly as features into a supervised model.

In machine learning, transductive learning is a learning framework that typically

makes use of unlabeled data. The goal of transductive learning is to only infer labels

for the unlabeled data points in the test set rather than to learn a general classification

function that can be applied to any future data sets. This means that the test data

is known as a priori knowledge and can be used to construct better hypotheses.

72

Although the idea to explore the document-level information in our work is similar to

transductive learning, we do not use state-of-the-art transductive learning algorithms

which involve learning when they meet the test data. For real-world applications, our

approach is efficient by avoiding re-training.

4.6 Discussion: Unsupervised Language Acquisi-

tion for Supervised Language Processing

Both supervised language processing and unsupervised language acquisition systems

achieve quite good performance for some applications. There are a lot of good ex-

amples of the first one, which is trained fairly well on labeled data, such as English

Penn Treebank style parsing. There are also some successful unsupervised NLP algo-

rithms, which sometimes achieve equivalent performance to supervised ones. Two of

early good examples are word sense disambiguation [Yarowsky, 1995] and automatic

retrieval of similar words [Lin, 1998].

Feature induction based semi-supervised learning to some extent bridges the gap

between supervised language processing and unsupervised language acquisition. At

its most abstract, language acquisition is simply a mapping from some input to some

linguistic knowledge be used in the generation and interpretation of new utterances.

Discriminative learning allows us to easily use rich linguistic knowledge derived from

unlabeled data with a wide range of unsupervised language acquisition algorithms.

Two types of unsupervised language acquisition are very popular: (1) grammar

induction concerning syntactic structures and (2) lexical acquisition concerning the

word knowledge. Previous study, as well as our work, mainly focus on the latter.

However, we think grammar induction could also provide valuable information for

syntactic processing or higher-level, semantic processing, even considering the quality

of automatically acquired grammars is not very good.

Bilingual (or multilingual) data has been shown useful to improve monolingual

language processing, such as [Das and Petrov, 2011]. Considering unsupervised lan-

guage acquisition, bilingual or multilingual data could also be useful resources. For

example, the word clusters learned from bilingual data are more helpful for machine

translation than the clusters independently learned from each side of language data

[Och, 1999]. It is obvious that this idea can be extended to derive linguistic knowledge

from bilingual or even multilingual data.

Although we show that string knowledge can help Chinese word segmentation.

73

There are still some methodological questions unsolved. Among them we raise two

interesting topics. The first topic is how to do principled feature engineering. In our

case, the baseline feature set are only derived from the surface strings. To extend

these simple feature set is relatively simple. However, for some other complex tasks,

such as semantic role labeling, the baseline feature set are very complex (as we will

show in Chapter 8). In this situation, the non-trivial feature engineering need more

research efforts and especially principled methods. How to design and select good new

features will significantly affects the impact of the additional information. The second

topic is how to motivate application-oriented language acquisition. Most existing

unsupervised language acquisition research focus on general linguistic principles. For

different tasks, different task-specific knowledge is needed. It is natural idea that

careful designs of application-oriented language acquisition will help more.

74

Part II

Syntactic Parsing

75

Chapter 5

Comparing and Integrating

Heterogeneous Parsers

We study heterogeneous syntactic analyzing methods in this chapter. We first present

a comparative analysis of state-of-the-art methods for POS tagging, constituency and

dependency parsing. We show that due to their theoretical properties, heterogeneous

models behave very differently and produce different error distributions and have

complementary predictive powers. The analysis motivates us to investigate ensemble

methods to improve processing accuracy by integrating different types of analyzers.

To enhance POS tagging, we propose a Bagging model to combine the complementary

strengths of syntax-free and syntax-based taggers. To enhance dependency parsing,

we evaluate a previously introduced stacking method and propose a more effective

Bagging model to integrate grammar-free and grammar-based parsers. Experiments

on the Penn Chinese Treebank demonstrate the effectiveness of our methods.

The comparison and combination of syntax-free and syntax-based methods for

POS tagging is originally introduced in [Sun and Uszkoreit, 2012].

5.1 Background

5.1.1 The Problem

In a broad sense, parsing means taking an input sentence and producing some sort of

linguistic analysis for it, including many kinds of structures that might be produced:

morphological, syntactic, semantic, discourse. As one of the core issues of NLP, syn-

tactic parsing is the task to assign grammatical structures to sentences, for instance,

which groups of words go together as phrases and which words are the subject or

76

IP

NP VP

NN ADVP ADVP VP

警方
police

AD AD VV NP

正在
now

详细
thoroughly

调查
investigate

NN NN

事故
accident

原因
cause

(1) The constituency parse.

(2) The dependency parse.

Figure 5.1: An example sentence with constituency and dependency structures: The
police are thoroughly investigating the cause of the accident.

object of a particular predicate.

In grammar, a POS is a linguistic category of words, which is generally defined

by the syntactic or morphological behavior of the word in question. The significance

of POS’s for language processing is the large amount of information they give about

a word and its neighbors. Constituency grammar arranges sentences into a hierarchy

of nested phrases. A phrase structure is normally represented as a constituent tree.

At the lowest level of a constituency tree, each word is treated as a one-word phrase

that is labeled by its POS tag. At higher levels, successively larger phrases are

created by concatenating smaller phrases, culminating in a phrase covering the entire

77

sentence. Dependency grammar formalizes syntactic structure as a directed tree

of bilexical dependencies, which determines relations between head words and their

dependents. Dependency grammar is less complex than lexicalized phrase-structure

grammar, since head-modifier interactions are modeled directly without introducing

the scaffold of phrase-structure grammar.

Figure 5.1 depicts constituency and dependency parses of a simple sentence. In the

constituency tree, each non-terminal node represents a constituent, and its children

represent its intermediate components. For example, the phrase “事故原因/the cause

of the accident” is the composition of “事故/accident” and “原因/cause.” In the

dependency tree, each edge represent a dependency where the upper word is the head

and the lower word is the dependent. For example, the edge between “事故” and “原

因” indicates that “事故” is dependent on and modifies “原因.”

It is generally accepted that finding syntactic structures is useful in determining

the meaning of a sentence. For example, constituency parse trees serve as an impor-

tant intermediate stage of representation for predicate-argument structure analyzing

(as we will show in Chapter 8). Therefore most NLP applications (such as informa-

tion extraction, machine translation, or speech recognition) would almost certainly

benefit from high-accuracy parsing.

5.1.2 Previous Work

Many successful tagging and parsing algorithms designed for English have been ap-

plied to many other languages as well. In some cases, the methods work well without

large modifications, such as German POS tagging. But a number of augmentations

and changes became necessary when dealing with highly inflected or agglutinative

languages, as well as analytic languages, of which Chinese is the focus of this thesis.

Both discriminative and generative models are explored for accurate Chinese POS

tagging [Huang et al., 2009, 2007; Tseng et al., 2005b]. Tseng et al. [2005a] introduced

a maximum entropy based model, which includes morphological features for unknown

word recognition. Huang et al. [2007] and Huang et al. [2009] mainly focused on the

generative HMM models. To enhance a HMM model, Huang et al. [2007] proposed

a re-ranking procedure to include extra morphological and syntactic features, while

Huang et al. [2009] proposed a latent variable inducing model.

There have been several attempts to develop high quality parsers for Chinese in

both constituency and dependency formalisms [Bikel and Chiang, 2000; Huang and

Sagae, 2010; Levy and Manning, 2003; Li et al., 2011; Petrov and Klein, 2007; Zhang

78

and Clark, 2008b], but the state-of-the-art performance on Penn Chinese Treebank

(CTB), achieved by the Berkeley parser and the higher order graph-based depen-

dency parser falls far short when compared to English. Previous work mainly focuses

on how to implement methods which are successful on English, which reach early

success. As pointed out in [Levy and Manning, 2003], there are many linguistic dif-

ferences between Chinese and English, as well as structural differences between their

corresponding treebanks, and some of these make it a harder task to parse Chinese.

Although some language-specific properties are preliminarily discussed, it is still very

unclear what are the main difficulties for the phrase-strucutre analyzing and whether

good algorithms for English processing are suited for the Chinese problems?

5.2 State-of-the-Art

In this section, we give a brief introduction to state-of-the-art syntactic analyzing

methods for Chinese language processing.

5.2.1 A Discriminative Sequential Model for POS Tagging

Many algorithms have been applied to computationally assigning POS labels to En-

glish words, including hand-written rules, HMM tagging and discriminative sequence

labeling. While state-of-the-art tagging systems have achieved accuracies above 97%

on English, Chinese POS tagging has proven to be more challenging [Huang et al.,

2009, 2007; Li et al., 2011; Tseng et al., 2005b]. According to the ACL Wiki1, all the

state-of-the-art English POS taggers are based on discriminative sequence labeling

models, including structure perceptron [Collins, 2002; Shen et al., 2007], maximum

entropy [Toutanova et al., 2003] and SVM [Gimnez and Mrquez, 2004]. A discrim-

inative learner is easy to be extended with arbitrary features and therefore suitable

to recognize more new words. Moreover, a majority of the POS tags are locally de-

pendent on each other, so the Markov assumption can well captures the syntactic

relations among words. Discriminative learning is also an appropriate solution for

Chinese POS tagging, due to its flexibility to include knowledge from multiple lin-

guistic sources. For example, we will show that word clusters which are automatically

induced from unlabeled raw text can enhance Chinese POS tagging in Chapter 7.

In Chapter 3, we studied the joint word segmentation and POS tagging problem

1http://newdesign.aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of_the_

art).

79

http://newdesign.aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of_the_art)
http://newdesign.aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of_the_art)

截止 目前 保险 公司 已 为 三峡 工程 提供 保险 服务
P NT NN NN AD P NR NN VP NN NN

Figure 5.2: An example of Chinese POS tagging: Until now, the insurance company
has provided insurance services for the Sanxia Project.

w−2=“截止”; w−1=“目前”; w=“保险”; w+1=“公司”; w+2=“已”;
w−2 w−1=“截止 目前”; w−1 w=“目前 保险”; w w+1=“保险 公司”;
w+1 w+2=“公司 已”;
Prefix(1)=“３”; Prefix(2)=“３５”; Prefix(3)=“３５５”
Suffix(1)=“５”; Suffix(2)=“５５”; Suffix(3)=“３５５”

Table 5.1: An example of features used for POS tagging.

and developed a fully discriminative method. However, we did not deeply analyze the

problem from a linguistic view. To this end, we isolate the POS tagging problem and

study how to build an accurate POS tagger on perfect word segmentation. In our

experiments, we employ a simple feature set which draws upon information sources

such as word forms and characters that constitute words. To conveniently illustrate,

we denote a word in focus with a fixed window w−2w−1ww+1w+2, where w is the

current token. The baseline features includes:

• Word unigram feature: w−2, w−1, w, w+1, w+2;

• Word bigram feature: w−2 w−1, w−1 w, w w+1, w+1 w+2.

• In order to better handle unknown words, we also extract morphological fea-

tures: character n-gram prefixes and suffixes for n up to 3.

That means 15 features are used to represent a given word token. When different

amount of data is available, the best configuration of feature template varies. Nor-

mally, larger window of context leads to improved accuracy when more labeled data

is available. This setting can be tuned on the development data. In our experiments

on the CTB 6.0, the window size is tuned to be set to 2. Take the word “保险” in

Figure 5.2 for example, all features are listed in Table 5.1.

5.2.2 A Generative PCFG-LA Model for Constituency Pars-

ing

Comparing with many other languages, statistical parsing for Chinese has reached

early success, due to the fact that the language has relatively fixed word order and

80

extremely poor inflectional morphology. Both facts allow the PCFG-based statistical

modeling to perform well for constituency parsing. On the other hand, the much

higher ambiguity between basic word categories like nouns and verbs makes Chinese

parsing interestingly different from the situation of English.

For the constituency parsing, the majority of the state-of-the-art parsers are based

on generative PCFG learning. For example, the well-known and successful parsing

models developed by Collins [Collins, 2003] and Charniak [Charniak, 2000] imple-

ment generative lexicalized statistical models. Based on the N-best lists generated by

these parsers, a discriminative reranker can help further improve the parsing quality

[Charniak and Johnson, 2005; Collins and Koo, 2005; Huang, 2008]. However, pure

discriminative constituency parsing models are limited to the huge search space and

are not yet well developed. Apart from complex lexicalized PCFG parsing, unlexical-

ized parsing with latent variable grammars (PCFG-LA) can also produce comparable

accuracy [Matsuzaki et al., 2005; Petrov et al., 2006; Petrov and Klein, 2007]. Latent

variable grammars for parsing model an observed treebank of coarse parse trees with a

model over more refined, but unobserved, derivation trees. Given sentences as input,

the parse trees represent the desired output of the system, while the derivation trees

represent much more complex syntactic processes. For example, the single Penn Tree-

Bank category NP (noun phrase) may be better modeled by several sub-categories

representing subject NPs, object NPs, and so on. Rather than attempting to man-

ually specify these fine-grained categories, previous work shows that automatically

inducing the sub-categories from data can work quite well.

Although the state-of-the-art lexicalized and unlexicalized parsing models work

very differently, they are both inspired by the same strategy: Refining normal PCFG

grammars. The former model refine statistical grammars with lexical information,

while the latter one with the subcategory information. Compared to lexicalized

parsers, the PCFG-LA parsers leverages on an automatic procedure to learn refined

grammars and are therefore more robust to parse non-English languages that are

not well studied. Take Chinese Penn TreeBank parsing as an example. A PCFG-

LA parser achieves the state-of-the-art performance and defeat many other types of

parsers such as discriminative transition-based models [Zhang and Clark, 2009]. The

Berkeley parser is an open source implementation of the PCFG-LA model [Petrov

et al., 2006; Petrov and Klein, 2007] and is used for experiments in this chapter.

81

5.2.3 A Discriminative Graph-based Model for Dependency

Parsing

Dependency parsing, especially the statistical one, has recently gained a wide interest

in the computational linguistics community. Data-driven approaches automatically

learn to produce dependency graphs for sentences solely from an annotated treebank.

The advantage of such models is that they are easily ported to any language in which

labeled linguistic resources exist. Practically all statistical models that have been

proposed in recent years can be described as either graph-based or transition-based

[McDonald and Nivre, 2007]. For a set of languages, these two models achieve similar

performance overall. In graph-based parsing, we learn a model for scoring possible

dependency directed trees for a given sentence, typically by factoring the trees into

their component edges, and execute parsing by searching for the highest-scoring tree.

In transition-based parsing, we instead learn a model for scoring actions from one

parse state to the next, conditioned on the parsing history, and execute parsing by

incrementally, greedily taking the highest-scoring transition out of every parser state

until we have derived a complete dependency graph. Both parsing models lever-

age discriminative learning to estimate parameters and flexible to include arbitrary

features, and therefore easy to port to different languages.

Both graph-based and transition-based models are adopted to learn Chinese de-

pendency structures [Huang and Sagae, 2010; Li et al., 2011; Zhang and Clark, 2008b].

In addition, as a sub-task of CoNLL 2009 [Hajič et al., 2009], various models are well

evaluated. According Li et al. [2011]’s comparison of published results, graph-based

and transition-based parsers achieve similar accuracies. In this paper, we choose

a state-of-the-art second order graph-based dependency parser, i.e. mate parser1

[Bohnet, 2010], for experiments.

5.3 Key Distinctions

5.3.1 Syntax-free and Syntax-based POS Tagging

Chinese POS tagging often requires more sophisticated language processing tech-

niques that are capable of drawing inferences from more subtle linguistic knowledge.

From a linguistic point of view, meaning arises from the differences between lin-

guistic units, including words, phrases and so on, and these differences are of two

1https://code.google.com/p/mate-tools/

82

https://code.google.com/p/mate-tools/

kinds: paradigmatic (concerning substitution) and syntagmatic (concerning position-

ing). The distinction is a key one in structuralist semiotic analysis. Both paradigmatic

and syntagmatic lexical relations have a great impact on POS tagging, because the

value of a word is determined by the two relations. Our error analysis of a state-of-the-

art Chinese POS tagger shows that the lack of both paradigmatic and syntagmatic

lexical knowledge accounts for a large part of tagging errors. Syntactic analysis, es-

pecially the full and deep one, reflects syntagmatic relations of words and phrases

of sentences. Therefore syntactic parsing has a big contribution to lexical tagging.

In this chapter, we will present a series of empirical studies of the tagging results

of a syntax-free sequential tagger and a syntax-based chart parser, aiming at illumi-

nating more precisely the possible impact of syntactic information on POS tagging.

The analysis is helpful to understand the role of syntagmatic lexical relations in POS

prediction.

5.3.2 Grammar-free and Grammar-based Dependency Pars-

ing

Dependency parsing approaches can be divided into two classes, grammar-free and

grammar-based. Grammar-free approaches, normally known as data-driven, make es-

sential use of machine learning from linguistic annotations in order to parse new sen-

tences. Such approaches, e.g. transition-based [Nivre, 2008], graph-based [McDonald,

2006] and ILP1-based [Martins et al., 2009], have attracted the most attention in re-

cent years. In contrast, grammar-based approaches rely on formal grammars to shape

the search space for possible syntactic analysis. The grammar may be hand-crafted

or learned from linguistic annotations, which means that a grammar-based model

may be data-driven as well. In particular, context-free grammar (CFG) based depen-

dency parsing exploits a mapping between dependency structures and context-free

phrase structure representations and reuses parsing algorithms developed for CFG,

e.g. lexicalized PCFG models [Charniak, 2000; Collins, 2003], to produce dependency

structures.

In previous work, grammar-free, discriminative parsing approaches have been

widely discussed for Chinese dependency parsing. On the other hand, various PCFG-

based constituency parsing methods have been applied to obtain phrase-structures

as well. Since Chinese phrase-structures are adequate to be transformed to depen-

dency structures, a constituency parser with a set of CS to DS conversion rules [Xue,

1Integer linear programming

83

2007] can be taken as a grammar-based dependency parser. Both dependency and

constituency parsing technologies have improved considerably in the past few years

for Chinese processing, but efforts to perform extensive comparisons of grammar-free

and grammar-based views have been limited. In order to pave the way for new and

better methods, a much more detailed empirical analysis is needed to understand

the strengths and weaknesses of heterogeneous approaches. In this chapter, we will

present a comparative analysis of two representative state-of-the-art parsers, in or-

der to illuminate more precisely the properties of grammar-free and grammar-based

parsing.

5.4 Experimental Setting

CTB is a segmented, POS tagged, and fully bracketed corpus in the constituency

formalism. It is an popular data set to evaluate a number of Chinese NLP tasks,

including word segmentation [Jiang et al., 2009; Sun, 2011; Sun and Xu, 2011], POS

tagging [Huang et al., 2009, 2007], constituency parsing [Wang et al., 2006; Zhang

and Clark, 2009], dependency parsing [Huang and Sagae, 2010; Li et al., 2011; Zhang

and Clark, 2008b] and function tag labeling [Sun and Sui, 2009]. In this chapter,

we use CTB 6.0 as the labeled data for the study. The corpus was collected during

different time periods from different sources with a diversity of topics. In order to

obtain a representative split of data sets, we define the training, development and

test sets following two settings. To compare our tagger with the state-of-the-art, we

conduct some experiments using the data setting of [Huang et al., 2009].1 We divide

all CTB files into blocks of 10 files in sorted order, and of each block the first file is

used as development data, the second as test, and the remaining for training. Table

5.2 shows the statistics of this experimental setting.

Data #sent. #words #char.
Training 24416 678811 900033
Devel. 1904 51229 83252
Test 1975 52861 86763

Table 5.2: Training, development and test data on CTB 6.0 (setting 1).

For detailed analysis of different syntactic analyzing methods, we conduct further

experiments following the setting of the CoNLL 2009 shared task. The setting is

provided by one of the organizer of the CTB project, and considers many annotation

1 We would like to thank Zhongqiang Huang to help with the preparation of the data sets.

84

details. This setting is more robust for evaluation different Chinese language process-

ing algorithms. In Chapter 3, we have presented some information of this setting.

Please refer to Section 3.3.7 for more details. The syntactic annotation of the CTB

project also includes information about empty categories. Modern statistical parsers

such as Collins, Charniak and Berkeley parsers ignore this type of linguistic informa-

tion. To train and evaluate a constituency parser, we apply a heuristic procedure on

the treebank data to delete empty categories and its associated redundant ancestors.

Since the CTB is annotated with phrase structures, an extra conversion is necessary

to prepare data sets for dependency parsing. To evaluate dependency parsing, we

directly use the CoNLL data.

In the following experiments, a first order linear-chain CRF model is used to re-

solve the POS tagging problem. We use the CRF learning toolkit wapiti 1 [Lavergne

et al., 2010] to train global linear models. Among several parameter estimation meth-

ods provided by wapiti our experiments show that the “rprop-” method work best.

We use this algorithm and let other setting default. For constituency parsing experi-

ments, we use the Berkeley parser2.

For the evaluation of constituency parsing, we used a graphical tool EvalC3. We

report labeled precision (P), labeled recall (R) and f-score (which is the harmonic

mean of P and R) to measure the phrase recovery accuracy. The balanced f-score

(F) is defined by 2PR/(P+R). For the evaluation of dependency parsing, we use the

evaluation tool4 provided by the CoNLL 2006 shared task. Two evaluation metrics

for dependency parsing are reported: (1) the unlabeled attachment score (UAS),

i.e., the percentage of tokens with correct head word prediction, and (2) the labeled

attachment score (LAS), i.e. the percentage of “scoring” tokens for which the system

has predicted the correct head word as well as its relation type.

1http://wapiti.limsi.fr/
2http://code.google.com/p/berkeleyparser/
3http://staff.science.uva.nl/~fsangati/evalC_25_05_10.zip
4http://ilk.uvt.nl/conll/software/eval.pl

85

http://wapiti.limsi.fr/
http://code.google.com/p/berkeleyparser/
http://staff.science.uva.nl/~fsangati/evalC_25_05_10.zip
http://ilk.uvt.nl/conll/software/eval.pl

5.5 Comparing and Combining Syntax-free and Syntax-

based Tagging Models

5.5.1 Overall Performance

5.5.1.1 Discriminative Learning is Competitive for POS Tagging

Table 5.3 summarizes the per token classification accuracy (Acc.) of our tagger and

state-of-the-art results reported in [Huang et al., 2009]. Huang et al. [2009] introduced

a bigram HMM model with latent variables (Bigram HMM-LA in the table) for Chi-

nese tagging. Compared to earlier work [Huang et al., 2007], this model achieves the

state-of-the-art accuracy. This model can be further enhanced by using unlabeled

data via self-training (Bigram HMM-LA+ST in the table). Despite of simplicity,

our discriminative POS tagging model achieves a state-of-the-art performance, even

better.

System Model Acc.
[Huang et al., 2009] Supervised Trigram HMM 93.99%

Bigram HMM-LA 94.53%
Semi-supervised Bigram HMM-LA+ST 94.78%

Our tagger Supervised Discriminative Tagging 94.69%

Table 5.3: Tagging accuracy on the test data (setting 1).

5.5.1.2 The Impact of POS Tagging on Parsing

Table 5.4 summarizes the word classification accuracies of our discriminative POS

tagger and the Berkeley parser using the CoNLL setting. We can see that Chinese

constituency parsing can reach a reasonably good result, when gold POS informa-

tion is available. However, Chinese POS tagging is currently far from perfect. In

our experiments, when automatic tagging information is used, the overall parsing

performance drops more than 6 absolute points.

Tagging Parsing
Tagger Parser Acc. P R F
Berkeley Parser Berkeley Parser 93.69% 82.44% 80.31% 81.36
CTB Berkeley Parser 99.83% 88.16% 86.85% 87.50
Our tagger Berkeley Parser 94.48% 80.55% 79.60% 80.07↓

Table 5.4: Parsing accuracy on the development data.

86

The overall tagging accuracy of our tagger is 94.48%, which is significantly better

than the Berkeley parser (93.69%), though the full parser can use additional syntactic

information to do disambiguation. Since the overall performance of our tagger is

better, we may guess the parsing accuracy can be simply improved by inputting

the Berkeley parser with our POS tagging results. Unfortunately, this is not true.

The last line in Table 5.4 shows the new parsing result, while the first line is the

performance of the pure Berkeley parser. Comparing the f-scores, we can see a very

clear decline when the POS tags are substituted. This experiment suggests not only

that the full parser is very sensitive to the POS tagging errors but also that the errors

made by the tagger and the parser are very different.

This result is to some extent similar to the experimental results reported in [Li

et al., 2011]. The motivation of that paper is to improve the dependency parsing

via joint prediction of POS tags and bi-lexical dependencies. However, although the

dependency prediction is improved by using a much more complex joint model, the

performance of POS tagging goes down. They concludes that their joint learning

method for tagging and parsing hurts the tagging accuracy, and that the more syn-

tactic features the joint method incorporates, the more the tagging accuracy drops.

Note that, their method is in a discriminative learning architecture, while the Berke-

ley parser is in a generative one. It seems that the reason of the inverse reaction is

caused by the properties of the special language or the annotation strategies rather

than particular machine learning algorithms.

5.5.2 Comparison

The very interesting phenomenon that better POS tagging yields worse PCFG-LA

parsing suggests that the errors made by the tagger and the parser are very different.

To lead to a deep understanding of Chinese POS tagging, we present a detailed

comparative analysis of the tagging results generated by our discriminative sequential

tagger and the Berkeley parser.

5.5.2.1 Content Words vs. Function Words

There are 49620 words in the development data set. 46491 words are correctly tagged

by the first predictor, while 46881 words are correctly tagged by the second predictor.

In these words, 45241 words are correctly tagged by both. 1489 words are hard to

tag, since both predictors are wrong. Table 5.5 gives a detailed comparison regarding

different word types. For each type of word, we report the accuracy of both solvers and

87

#Words Parser Tagger ∆ Upper
♠ AD 3448 94.15 94.71 +0.56 97.47
♥ AS 446 98.54 98.44 −0.10 99.11
♥ BA 78 96.15 92.52 −3.63 98.70
♥ CC 720 93.80 90.58 −3.22 97.30
♠ CD 1619 94.66 97.52 +2.86 97.69

CS 85 91.12 92.12 +1.00 96.51
♥ DEC 1101 85.78 81.22 −4.56 93.71
♥ DEG 1258 88.94 85.96 −2.98 95.33
♥ DER 18 80.95 77.42 −3.53 94.44
♥ DEV 68 84.89 74.78 −10.11 92.54

DT 640 98.28 98.05 −0.23 99.14
ETC 142 99.65 100.00 +0.35 100.00

♠ JJ 1363 81.35 84.65 +3.30 89.81
LB 46 91.30 93.18 +1.88 98.92
LC 767 96.29 97.08 +0.79 98.38
M 1340 95.62 96.94 +1.32 97.68

♥ MSP 113 91.30 90.14 −1.16 97.78
♠ NN 14015 93.56 94.95 +1.39 97.23
♠ NR 3445 89.84 95.07 +5.23 97.03
♠ NT 1049 96.70 97.26 +0.56 98.33
♠ OD 145 81.06 86.36 +5.20 87.45
♥ P 1916 96.26 94.56 −1.70 98.07

PN 653 98.10 98.15 +0.05 99.08
PU 6593 99.96 99.98 +0.02 99.99
SB 77 95.36 96.77 +1.41 98.68
SP 53 61.70 68.89 +7.19 75.56

♠ VA 501 81.27 84.25 +2.98 90.49
♠ VC 501 95.91 97.67 +1.76 98.99
♠ VE 297 97.12 98.48 +1.36 98.99

VV 7121 91.99 91.87 −0.12 95.98

Table 5.5: Tagging accuracy of words of different classes on the development data.

88

compare the difference. We also report the upper bound of the two solvers. Column

“∆” shows the difference of the performance of the parser and the tagger. Symbol

“+” means the tagger is better than the parser, whilst symbol “−” means the tagger

performs worse. The majority of the words that are better labeled by the tagger are

content words, including nouns(NN, NR, NT), numbers (CD, OD), predicates (VA,

VC, VE), adverbs (AD), nominal modifiers (JJ), and so on. In contrast, most of

the words that are better predicted by the parser are function words, including most

particles (DEC, DEG, DER, DEV, AS, MSP), prepositions (P, BA) and coordinating

conjunction (CC).

5.5.2.2 Open Classes vs. Close Classes

POS can be divided into two broad supercategories: closed class types and open

class types. Open classes accept the addition of new morphemes (words), through

such processes as compounding, derivation, inflection, coining, and borrowing. On

the other hand closed classes are those that have relatively fixed membership. For

example, nouns and verbs are open classes because new nouns and verbs are con-

tinually coined or borrowed from other languages, while DEC/DEG are two closed

classes because only the function word “的” is assigned to them. The discriminative

model can conveniently include many features, especially features related to the word

formation, which are important to predict words of open classes.

Table 5.6 summarizes the tagging accuracy relative to IV and OOV words. On

the whole, the Berkeley parser processes IV words slightly better than our tagger, but

processes OOV words significantly worse. The numbers in this table clearly shows the

main weakness of the Berkeley parser is the the predictive power of the OOV words.

IV OOV
Tagger 95.22% 81.59%
Parser 95.38% 64.77%

Table 5.6: Tagging accuracy of the IV and OOV words on the development data.

Table 5.7 shows the recall of OOV words on the development data set. Note

that only the word types appearing more than 10 times on the development set are

reported. From this table, we can also see that new words are hard to be correctly

tagged, especially by using a generative model. The Berkeley parser leverage a gener-

ative learning model, which is hard to include word formation information. Compared

to the Berkeley parser, the shallow tagger performs relatively well on unknown words.

89

For new nouns (NN, NR, NT) and verbs (VV), the different predictive powers are

very clearly demonstrated.

#Words Parser Tagger ∆
AD 21 19.05 33.33 <
CD 249 99.20 97.99 >
JJ 86 1.16 3.49 <
NN 1028 77.82 91.05 <
NR 863 51.91 81.69 <
NT 25 32.00 60.00 <
VA 15 0.00 33.33 <
VV 402 59.70 67.66 <

Table 5.7: Tagging recall of OOV words (frequency>10) on the development data.

5.5.2.3 Local Disambiguation vs. Global Disambiguation

Closed class words are generally function words that tend to occur frequently and

often have structuring uses in grammar. These words have little lexical meaning or

have ambiguous meaning, but instead serve to express grammatical relationships with

other words within a sentence. They signal the structural relationships that words

have to one another and are the glue that holds sentences together. Thus, they serve

as important elements to the structures of sentences. The disambiguation of these

words normally require more syntactic clues, which is very hard and inappropriate

for a sequential tagger to capture. Based on global grammatical inference of the

whole sentence, the full parser is relatively good at dealing with structure related

ambiguities.

We conclude that discriminative sequential tagging model can better capture local

syntactic and morphological information, while the full parser can better capture

global syntactic structural information. The discriminative tagging model are limited

by the Markov assumption and inadequate to correctly label structure related words.

When the tagging and parsing are separated as two individual steps, the tagging errors

of the grammatical words will propagated to the full parser and therefore cause many

structure parsing errors.

90

5.5.3 Combination

5.5.3.1 Tagger Ensemble via Bagging

The diversity analysis presented in last section suggests that we may improve parsing

by simply combining the tagger and the parser. In Chapter 2, we successfully adapt

the general Bagging framework to combine the strengths of word-based and character-

based word segmentation models. Here, we propose a Bagging model to integrate

different POS tagging models. In the training phase, given a training set D of size n,

our model generates m new training sets Di of size 63.2%× n by sampling examples

from D without replacement. Namely no example will be repeated in each Di. Each

Di is separately used to train a tagger and a parser. Using this strategy, we can get

2m weak solvers. In the tagging phase, the 2m models outputs 2m tagging results,

each word is assigned one POS label. The final tagging is the voting result of these

2m labels. There may be equal number of different tags. In this case, our system

prefer the first label they met.

5.5.3.2 Evaluation

 93

 93.5

 94

 94.5

 95

 95.5

 1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y
(%

)

Number of sampling data sets m

Tagger
Parser

Tagger-Bagging
Parser-Bagging

Bagging

Figure 5.3: Tagging accuracy of Bagging models with different numbers of sampling
data sets. Tagger-Bagging means that the Bagging system built on the single tagger.
Parser-Bagging is named in the same way.

We evaluate our combination model on the same data set used above. Figure

5.3 shows the influence of m in the bagging algorithm. Because each new data set

Di in bagging algorithm is generated by a random procedure, the performance of

91

all bagging experiments are not the same. To give a more stable evaluation, we

repeat 5 experiments for each m and show the averaged accuracy. We can see that

the bagging model taking both sequential tagging and chart parsing models as basic

systems outperform the baseline systems and the bagging model taking either model

in isolation as basic systems. An interesting phenomenon is that the bagging method

can also improve the parsing model, but there is a decrease while only combining

taggers.

5.5.3.3 Final Results

Table 5.8 is the final result of the bagging model on the test data set. We can see that

Bagging is effective to combine POS taggers designed with different views, yielding a

relative error reduction of 12.0%.

Test System Accuracy
Baseline Tagger 94.33%

Parser 93.50%
Bagging(m = 15) Tagger+Parser 95.01%

Table 5.8: Tagging accuracy of different models on the test data (CoNLL setting).

5.6 Comparing and Combining Grammar-free and

Grammar-based Parsing Models

5.6.1 Grammar-based Dependency Parsing

Grammar-based approach is based on the finding that projective dependency gram-

mars can be transformed from constituency grammars, such as CFGs. In such ap-

proaches, dependency parsing can be resolved by a two-step process: (1) constituent

parsing and (2) rule-based extraction of dependencies from phrase structures. The

advantage of regarding a dependency grammar as a constituency grammar is that

all the well-studied parsing methods for such grammars can be used for dependency

parsing as well. Two language-specific properties essentially make grammar-based

approaches can be easily applied for Chinese dependency parsing: (1) Chinese is a

projective language; (2) Chinese phrase-structures are adequate to be transformed to

dependency structures.

92

CS to DS Conversion In a dependency representation, bi-lexical dependencies are

explictly expressed and sometimes classified by functional categories that imply the

role the dependent plays with regard to its head. In a constituency representation, the

syntactic category of a constituent generally embodies the distributional properties

of the constituent. In the absence of dependency and constituency structures for a

particular treebank, treebank-guided parser developers normally apply rich linguistic

rules to convert one representation formalism to another to get necessary data to

train parsers. Xue [2007] examines the linguistic adequacy of dependency structure

annotation automatically converted from phrase structure treebanks with rule-based

approaches. A structural approach is introduced for the constituency structure (CS)

to dependency structure (DS) conversion for the Chinese Treebank data, which is the

basis of the CoNLL 2009 shared task data. By applying this conversion procedure on

the outputs of an automatic phrase structure parser, we can build a grammar-based

dependency parser.

5.6.2 Overall Performance

Table 5.9 shows the overall accuracies of the grammar-free and grammar-based parsers.

Roughly speaking, currently state-of-the-art grammar-free parsing achieves slightly

better precision than grammar-based parsing with regard to unlabeled dependency

prediction. However, the performance of labeled dependency prediction decreases

much. We can learn that the CS to DS conversion is not robust to assign func-

tional categories to dependencies and simple linguistic rules are not capable to do

fine-grained classification. Nevertheless, previous work shows that the main difficulty

in dependency parsing is the prediction of dependency structures, and an extra statis-

tical classifier can be employed to label automatically recognized dependencies with

a high accuracy. Since the automatically converted relations of dependencies are not

reliable, we mainly focus on the UAS metric in the following experiments.

Devel. UASdep LASdep Complete
Mate parser 84.24% 80.55% 30.99%
Berkeley parser+conversion 82.86% 67.44% 27.98%

Table 5.9: Parsing accuracies on the development data.

Object functions in the grammar-free and grammar-based parser are different.

The learning of a grammar-free model directly optimizes the LAS, while the grammar-

based model directly maximizes a phrase bracketing score which is highly related with

93

the LAS. With regards to the whole unlabeled dependency trees, the grammar-based

model performs significantly worse than the grammar-free one. We think one way to

improve the grammar-based model for dependency parsing is to change the object

function and let the model directly optimize the corresponding dependency structures.

5.6.3 Comparison

5.6.3.1 Relating Parsing Accuracies

Although the overall predictive powers are similar, the two parsers make different

distributions of errors. To correlate the parsing performances, we present the scatter

plots of the UAS of the grammar-based model against the grammar-free model. In

particular, for every sentence, a point of (x, y) is drawn, if the grammar-free model

achieves a UAS of x and the grammar-based model achieves a UAS of y. Figure

5.4 shows the relation between their performance. They look like a set of randomly

picked points. That means a sentence that can be well analyzed by a grammar-free

parser is not necessarily well analyzed by a grammar-based parser, and vice versa.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

U
A

S
 o

f
B

er
k

el
ey

 p
ar

se
r

UAS of Mate-parser

.

Figure 5.4: Scatter plots of UAS of the grammar-based model against the grammar-
free model.

5.6.3.2 Constraints

A grammar-based model utilizes an explicitly defined formal grammar to shape the

search space for possible syntactic hypotheses. Parameters of a statistical grammar-

based model are related to a grammar rule, and as a result specific language construc-

tions are constrained by each other. For example, parameters are assigned to rewrite

rules for a CFG-based model. Since the grammar-based model leverages rewrite rules

94

to locally constrain several possible dependents for one head word, it does relatively

better for locally connected dependencies. The traditional evaluation metrics, i.e.

UAS and LAS, only consider bi-lexical (first-order) dependencies, which are smallest

pieces of a dependency structure. Here we report the prediction accuracy of sibling

and grandparent dependencies, i.e. second order dependencies, in Table 5.10. Com-

pared to Table 5.9, we can see that the grammar-based model parses relatively better

for slightly larger fragments.

Devel. Fsib Fgrd

Mate parser 69.11 81.38
Berkeley parser+conversion 69.07 81.22

Table 5.10: Different evaluation metrics.

5.6.3.3 Endocentric and Exocentric Constructions

Arguments in exocentric constructions help complete the meaning of a predicate

and are taken to be obligatory and selected by their heads; adjuncts in endocentric

constructions are structurally dispensable part that provide auxiliary information and

taken to be optional and not selected by their heads. An important annotation policy

of the CTB is “one grammatical relation per bracket”, which means each constituent

falls into one of the three primitive grammatical relations: (1) head-complementation,

(2) head-adjunction and (3) coordination. Additionally, the argument is attached at

a level that is “closer” to the head than the adjuncts. Due to the linguistic properties

of different dependents and the annotation strategies, a grammar-based model can

capture more syntactic preference properties of arguments via hard constraints, i.e.

grammar rules, and are therefore more suitable to analyze exocentric constructions.

Figure 5.5 is the error rate of unlabeled dependencies considering different con-

struction. A construction “← X ←” is considered as correctly predicted if and only

if all dependent words and head word of X are completely correctly found. From this

figure, we can clearly see that the grammar-free parser does better for the prediction

of nominal constructions (NN/NR/NT/PN/VA1), which relate more on optional ad-

juncts or modifiers; the grammar-based parser performs better for the prediction of

verbal constructions (VC/VE/VV), which relate more on obligatory arguments. The

evaluation of the nominal and verbal constructions roughly confirms the strength of

grammar-based model to predict head-argument dependencies.

1For the definition and illustration of these tags, please refers to the annotation guidelines
(http://www.cis.upenn.edu/~chinese/posguide.3rd.ch.pdf).

95

http://www.cis.upenn.edu/~chinese/posguide.3rd.ch.pdf

<-NN<- <-NR<- <-NT<- <-PN<- <-VA<- <-VC<- <-VE<- <-VV<-

Ber-err 27.61 19.3 17.25 14.09 39.72 45.51 49.83 41.44

Mate-err 24.82 17.45 12.2 12.1 38.12 49.9 51.18 42.14

0

10

20

30

40

50

60

Er
ro

r
ra

te

Figure 5.5: Nominal vs. verbal constructions.

5.6.3.4 Factorization

The mainstream approach to statistical natural language parsing factors a syntactic

parse into sets of small parts and defines the probability of a parse as accumulation

of scores of associated parts. A graph-based dependency parser factorizes a depen-

dency graph as a set of edges (or two connected edges in a second order model).

A PCFG-based constituent parser factorizes a phrase-structures as production rules.

Roughly speaking, a graph-based model treats long-distance and very local depen-

dencies equally, therefore the prediction accuracy (especially the precision) of long-

distance dependencies does not decrease much, as shown in Figure 5.6. On the con-

trary, the weak, indirect expressive power of long-distance, non-local dependencies

produce serious difficulties for the PCFG-based parser.

5.6.4 Combination

The comparative analysis highlights the fundamental diversity between grammar-free

and grammar-based models and their complementary parsing strengths, which sug-

gests that there is still space for improvement, just by combining the two existing

models. The upper bound of the UAS to combine the two parsers is 91.90%, which

motivates us to address the problem of parser ensemble. Combining the outputs of

several systems has been shown in the past to improve parsing performance signif-

icantly. Several ensemble models have been proposed for the parsing of syntactic

96

1 2 3-6 7-

Ber-P 92.77 81.55 82.23 79.08

Mate-P 93.22 82.94 83.29 83.54

75

80

85

90

95

P
re

ci
so

n

Figure 5.6: Parsing precision relative to dependency length.

constituents and dependencies, including learning-based stacking [Nivre and McDon-

ald, 2008; Torres Martins et al., 2008], learning-free post-inference [Henderson and

Brill, 1999; Sagae and Lavie, 2006b] and learning-based post-inference [Zhang et al.,

2009]. For the former two approaches, Surdeanu and Manning [2010] present a sys-

tematic analysis and comparison. To enhance state-of-the-art Chinese dependency

parsing models, we first implement and evaluate a previously introduced stacking

model as well as a re-parsing model, and then propose a new model to better inte-

grate heterogeneous parsers.

5.6.4.1 Parser Ensemble via Stacking

Stacking is a simple mechanism for solving parser combination in the discriminative

parsing framework. All one needs to do is to extract a set of guided features from the

grammar-based parser and include these features into the grammar-free model. For

dependency parsing, this amounts to including features indicating whether another

parser believed a certain dependency or pair of dependencies actually exist in the tree.

McDonald [2006] introduces such a stacking model for English parsing. Specifically,

his method adds two auxiliary features. The first is a simple binary feature indicating

for each edge (or pair of edges), whether or not the auxiliary parser believes this edge

to be part of the correct tree. The second feature is identical to the first, except that

it is combined with the POS tags of the head and modifier in the edge. In this paper,

we implement exactly the same system for Chinese parsing.

The grammar-based parser can be directly trained on the original training data.

97

If we directly apply this parser to extend the training data to generate samples for a

stacked parser, the new training data will be very different from the data in the run

time, resulting in poor performance. One way to alleviate this training/test mismatch

problem is to use the stacking method, where a K-fold cross-validation on the original

data is performed to construct the training data for the new grammar-free parser.

In the following experiments, we apply a 5-fold cross validation to make the training

data dirty.

5.6.4.2 Parser Ensemble via Re-parsing

Sagae and Lavie [2006b] present a framework for combining the output of several

different accurate parsers to produce results that are superior to each of the individual

parsers. Once we have obtained the two structures respectively from the grammar-free

and grammar-based parsers, we can build a graph where each word in the sentence is

a node. We then create weighted directed edges between the nodes corresponding to

words for which dependencies are obtained from each of the initial structures. Once

this graph is created, the sentence can be re-parsed by a graph-based dependency

parsing algorithm such as our choice, Eisner’s algorithm [Eisner, 1996].

5.6.4.3 Parser Ensemble via Bagging

The dependency parsing problem can be viewed as a word prediction problem, i.e.

finding head of each word. It is convenient to transform dependency parser ensemble

to a word voting problem, and the Bagging method is therefore easy to apply. In the

training phase, given a training set D of size n, our model generates m new training

sets Di of size 61.8% × n by sampling examples from D without replacement. Each

Di is separately used to train the Berkeley parser and the graph-based dependency

parser. Using this strategy, we can get 2m weak parsers. In the parsing phase, the

2m models outputesults (which are automatically converted to dependency parses)

for each given sentence. For every sentence, the final parsing result is a combination

of its corresponding 2m structures. We implement two strategies for the combination.

Word-by-word voting These 2m dependency trees can be combined in a simple

word-by-word voting scheme, where each parser votes for the head of each word in

the given sentences, and the head with most votes is assigned to each word. This

very simple scheme guarantees that final set of dependencies will have as many votes

as possible, but it does not guarantee that the final voted set of dependencies will be

98

a well formed dependency tree.

Re-parsing To guarantee that the resulting dependency tree is well-formed, we

employ the dynamic programming algorithm of [Eisner, 1996] for re-parsing.

5.6.4.4 Evaluation

Table 5.11 shows the parsing performance on the development data of the stacking

model. Compared to the baseline results (see Table 5.9 and 5.10), we can see that

the stacking model is effective to improve the parsing accuracy, with regards to both

first-order and second-order dependencies.

Devel. UASdep Fsib Fgrd

Stacking 85.41% 71.36 82.94

Table 5.11: Performance of the stacking model.

Table 5.12 is the re-parsing performance on the development data. When only two

baseline parsers are applied to provide dependency candidates, the re-parsing method

does not work well. The parsing accuracy slightly decreases, even compared to the

weaker baseline performance. When the above stacking parser is also employed, the

re-parsing method performs a little better than the best of the three. However, the

improvement is too modest.

Devel. UASdep

mate/Berkeley+conversion 83.72%
mate/Berkeley+conversion/stacking 85.60%

Table 5.12: Performance of the re-parsing model.

We evaluate our Bagging model on the same data set. In the following exper-

iments, we use the standard discriminative POS tagger to provide inputs for the

dependency parser. Because each new data set Di in the Bagging algorithm is gen-

erated by a random procedure, the performance of all Bagging experiments are not

the same. To give a more stable evaluation, we repeat 3 experiments for each m and

show the averaged accuracy. Figure 5.7 shows the influence of m in the Bagging al-

gorithm. We can see that the Bagging model taking both discriminative dependency

models and generative constituency models as basic systems outperform the baseline

systems and the Bagging model taking either model in isolation as basic systems. The

Bagging method can also improve individual parsing models, and the grammar-based

model can be enhanced more.

99

1 2 3 4 5 6 7 8 9 10

Ber 81.4681.3583.17 83.5 83.9583.9984.3884.3584.5584.63

Mate 83.1483.0783.9184.1884.2784.26 84.4 84.4784.4284.52

Ber+Mate 84.9285.5185.93 86.1 86.2886.3786.3786.4586.49

81

82

83

84

85

86

87
A

ve
ra

ge
d

 U
A

S

Bagging-voting

1 2 3 4 5 6 7 8 9 10

Ber 81.7181.6683.2983.42 84.2 84.1284.4384.4984.4284.63

Mate 83.0883.33 84 83.8984.23 84.2 84.31 84.4 84.4584.45

Ber+Mate 82.4885.0285.6985.84 86.2 86.3186.3286.4186.4686.51

81

82

83

84

85

86

87

A
ve

ra
ge

d
 U

A
S

Bagging-reparsing

Figure 5.7: Dependency UAS of Bagging models with different numbers of sampling
data sets.

Bagging a single-view parser Figure 5.7 indicates that (1) the Bagging method

can also improve individual single-view parsers, especially for the grammar-based

parser and (2) the Bagging approach to improve either grammar-free or grammar-

based parser obtains equivalent overall accuracy. We analyze the outputs generated by

two single-view Bagging models and present three aforementioned evaluation metrics

in Table 5.13. The ensemble learning enhanced parsing models still have complemen-

tary strengths and the combination of both is therefore beneficial.

Devel. Complete Fsib Fgrd

Berkeley+conversion 30.08% 71.06 82.95
Mate 31.50% 69.55 80.48
Berkeley+conversion/Mate 34.39% 72.67 82.92

Table 5.13: Performance of different Bagging models. m=10, Inference=re-parsing.

5.6.4.5 Final Results

Table 5.14 summarizes the final results of different models on the test data set. We

can see that parser ensemble is very important to advance the state-of-the-art of

Chinese dependency parsing. Hatori et al. [2011] study several enhancement tech-

niques, including joint learning, dynamic programming and deep feature engineering,

for transition-based dependency parsing. Evaluations on an out-of-date version of

CTB show that their system achieves significantly better performance than previ-

ously reported systems. We re-train their system on the CoNLL data, and report its

UAS in the first line.1 The beam width for decoding is set to 32, and the iteration

1We would like to thank Jun Hatori for sharing his implementation.

100

number (29) for model training is tuned on the development data. Though several

second order graph-based parsers have been implemented and evaluated for Chinese

dependency parsing, they do not focus on POS tagging much. In our experiments, the

Mate parser based a much stronger POS tagger easily defeats many other systems,

and obtain a state-of-the-art result.

Test UAS
State-of-the-art [Hatori et al., 2011] 84.27%
Mate parser 84.38%
Berkeley parser+conversion 83.49%
Stacking 85.80%
Bagging(m = 20)(voting) 86.85%
Bagging(m = 20)(re-parsing) 86.79%

Table 5.14: Accuracies of different models on the test data.

System ensemble can significantly enhance state-of-the-art parsers for Chinese.

Compared to the previously introduced stacking model, our Bagging model is more

effective to integrate grammar-free and grammar-based parsers. Based on automatic

POS tagging, our Bagging model achieves a UAS of 86.85%, which obtains relative

error reductions of 16% and 20% respectively compared to the strong baselines. The

remarkable results of parsing ensemble also demonstrate the diversity of constituency

and dependency parsing.

5.7 Discussion

Chinese POS tagging has been proven much more challenging due to many language-

specific properties. From a linguistic point of view, meaning arises from the differences

between linguistic units, including words, phrases and so on, and these differences are

of two kinds: paradigmatic and syntagmatic. Both paradigmatic and syntagmatic

lexical relations have a great impact on POS tagging, because the value of a word is

determined by the two relations. We hold a view of structuralist linguistics and study

the impact of syntagmatic lexical relations on Chinese POS tagging. In particular, we

comparatively analyze syntax-free and syntax-based models and employ a Bagging

model to integrate a sequential tagger and a chart parser to capture syntagmatic

relations that have a great impact on non-local disambiguation. In Chapter 7, we will

harvest word partition information from large-scale raw texts to capture paradigmatic

lexical relations to enhance a tagger.

101

The information encoded in a dependency representation is different from the

information captured in a constituency representation. While the dependency struc-

ture represents head-dependent relations between words, the constituency structure

represents the grouping of words into phrases, classified by structural categories such

as noun phrase and verb phrase. These differences concern what is explicitly en-

coded in the respective representations, and affect grammar-free and grammar-based

dependency parsing models much. Our analysis highlights the fundamental diver-

sity between grammar-free and grammar-based models, which are either based on a

particular view of syntactic processing. On one hand, each view alone can yield a rea-

sonably good predictor, but is inadequate to interpret every linguistic phenomenon.

On the other hand, some linguistic properties that are not captured by one model,

can be potentially captured by other models. Many tasks can take advantages of

complementary strengths of the heterogeneous views. For example, co-training style

semi-supervised learning can take advantage from multiple views to explore unlabeled

data; co-testing style active learning can benefit from multiple views to efficiently

build hand-crafted corpora.

Our evaluation results of two parser ensemble methods confirms the importance

of leveraging both constituency and dependency structures for Chinese syntactic pro-

cessing. It is also worth noting that many syntactic theories make use of hybrid

representations, combining elements of dependency structure with elements of phrase

structure. For example, in a lexicalized tree-adjoining grammar representation, both

substitution and adjunction operations build dependencies between anchor words in

elementary trees, and the derived trees represent hierarchical phrase structures. Such

“deep” and “rich” formalisms seems more attractive for parsing Chinese texts.

102

Chapter 6

Parse Reranking with

Homogeneous and Heterogeneous

Annotations

Discriminative parse reranking has been shown to be an effective technique to improve

the generative parsing models. In this chapter, we present a series of experiments on

parsing the Tsinghua Chinese Treebank (TCT) with PCFG-LA grammars and subse-

quent reranking with a perceptron-based discriminative model. We are also interested

in exploiting heterogeneous treebanks in the discriminative reranking framework. In

addition to the homogeneous annotation on TCT, we incorporate the Penn tree-

bank based parsing result as heterogeneous annotation into the reranking feature

model. The reranking model achieved 1.12% absolute improvement on F-score over

the Berkeley parser on a development set.

This chapter is joint work with Yi Zhang and Rui Wang, originally published in

[Sun et al., 2010].

6.1 Motivation

The data-driven approach to syntactic analysis of natural language has undergone

revolutionary development in the last 15 years, ever since the first few large scale

syntactically annotated corpora, i.e. treebanks, became publicly available in the mid-

90s of the last century. One and a half decades later, treebanks remain to be an

expensive type of language resources and only available for a small number of lan-

guages. While traditional linguistic studies typically focus on either isolated language

103

phenomena or limited interaction among a small group of phenomena, the annotation

scheme in a treebanking project requires full coverage of language use in the source

media, and proper treatment with a uniform annotation format. Such high demand

from the practical application of linguistic theory has given rise to a countless number

of attempts and variations in the formalization frameworks. While the harsh natural

selection set the bar high and many attempts failed to even reach the actual anno-

tation phase, a handful highly competent grammar frameworks have given birth to

several large scale treebanks.

The co-existence of multiple treebanks with heterogeneous annotation presents a

new challenge to the consumers of such resources. The immediately relevant task is

the automated syntactic analysis, or parsing. While many state-of-the-art statisti-

cal parsing systems are not bound to a specific treebank annotation (assuming the

formalism is predetermined independently), almost all of them assume homogeneous

annotation in the training corpus. Therefore, such treebanks can not be simply put

together when training the parser. One approach would be to convert them into a

uniform representation, although such conversion is usually difficult and by its nature

an error-prone process. The differences in annotations constitute different generative

stories: i.e., when the parsing models are viewed as mechanisms to produce struc-

tured sentences, each treebank model will associate its own structure with the surface

string independently. On the other hand, if the discriminative view is adopted, it is

possible to use annotations in different treebanks as indication of goodness of the tree

in the original annotation.

The type of treebank annotations affects the performance of the parsing models.

Taking the Penn Chinese Treebank (PCTB; Xue et al. [2005]) and Tsinghua Chinese

Treebank (TCT; Zhou [2004]) as examples, PCTB is annotated with a much more

detailed set of phrase categories, while TCT uses a more fine-grained POS tagset.

The asymmetry in the annotation information is partially due to the difference of

linguistic treatment. But more importantly, it shows that both treebanks have the

potential of being refined with more detailed classification, on either phrasal or word

categories. One data-driven approach to derive more fine-grained annotation is the

hierarchically split-merge parsing [Petrov et al., 2006; Petrov and Klein, 2007], which

induces subcategories from coarse-grained annotations through an expectation maxi-

mization procedure. In combination with the coarse-to-fine parsing strategy, efficient

inference can be done with a cascade of grammars of different granularity. Such pars-

ing models have reached (close to) state-of-the-art performance for many languages

including Chinese and English.

104

Another effective technique to improve parsing results is discriminative rerank-

ing [Charniak and Johnson, 2005; Collins and Koo, 2005]. While the generative

models compose candidate parse trees, a discriminative reranker reorders the list of

candidates in favor of those trees which maximizes the properties of being a good

analysis. Such extra model refines the original scores assigned by the generative

model by focusing its decisions on the fine details among already “good” candidates.

Due to this nature, the set of features in the reranker focus on those global (and

potentially long distance) properties which are difficult to model with the generative

model. Also, since it is not necessary for the reranker to generate the candidate trees,

one can easily integrate additional external information to help adjust the ranking

of the analysis. In the chapter, we will describe a reranking model we developed for

Chinese parsing. We will also show how the heterogeneous parsing results can be

integrated through the reranker to further improve the performance of the system.

6.2 Comparison of Two Chinese Treebanks

In this chapter, we focus on two popular Chinese treebanks: (1) the Penn Chinese

Treebank (PCTB) and (2) the Tsinghua Chinese Treebank (TCT). They are both

segmented, part-of-speech tagged, and fully bracketed corpora in the constituency

formalism. However, the design of PCTB differs much from TCT. Whereas PCTB

draws primarily on Government-Binding (GB) theory from 1980s, the TCT annota-

tion strongly reflects early descriptive linguistics. We list several important differences

between them as follows.

• The sources of PCTB are mostly newswires, while the dataset of TCT is a

mixture of several genres, including newspaper texts, encyclopedic texts and

novel texts.

• TCT and PCTB have different word segmentation standards.

• TCT is somehow branching-rich annotation, while PCTB annotation is category-

rich. Specifically the topological tree structures are more detailed in TCT, and

there are not many flat structures. However, constituents are not detailed classi-

fied, namely the number of phrasal categories is small. On the contrary, though

flat structures are very common in PCTB, the categorization of phrases is fine-

grained.

• PCTB contains functional information. Function tags appended to constituent

105

labels are used to indicate additional syntactic or semantic information. For

example, the label SBJ is used to mark the surface subject.

• TCT contains head indices, which explicitly indicates the head components of

each constituent.

• Following the GB theory, PCTB assume there are movements, so there are

empty category annotation. Because of different theoretical foundations, there

are different explanations for a series of linguistic phenomena such as the usage

of the function word “的”.

6.3 A Hybrid Parsing System

Berkeley
Parser

...

Parse
Reranker

TCT

Head
Classifier

...

H
H

H

A B C D

C D B A

C

e.g. 显微 解剖学 是 ……

PCTB
Parser

Figure 6.1: Workflow of the System

106

input : Data {(xt, yt), t = 1, 2, ...,m}
Initialize: w← (0, ..., 0)1

for i = 1, 2, ..., I do2

for t =SHUFFLE (1, ...,m) do3

y∗t = arg maxy∈GENbest
n (xt) w>Φ(xt, y)4

if y∗t 6= yt then5

w← w + (Φ(xt, yt)− Φ(xt, y
∗
t))6

end7

end8

wi ← w9

end10

return aw = 1
I

∑I
i=1 wi11

Algorithm 3: The Perceptron learning procedure.

6.3.1 System Architecture

In this section, we will present our approach in detail. The whole system consists

of three main components, the Berkeley Parser, the Parse Reranker, and the Head

Classifier. The workflow is shown in Figure 6.1. Firstly, we use the Berkeley Parser

trained on the TCT to parse the input sentence and obtain a list of possible parses;

then, all the parses1 will be re-ranked by the Parse Reranker; and finally, the Head

Classifer will annotate the head information for each constituent on the best parse

tree. For parse reranking, we can extract features either from TCT-style parses or

together with the PCTB-style parse of the same sentence. For example, we can check

whether the boundary predictions given by the TCT parser are agreed by the PCTB

parser. Since the PCTB parser is trained on a different treebank from TCT, our

reranking model can be seen as a method to use a heterogenous resource.

6.3.2 Parse Reranking

6.3.2.1 Parameter Estimation

We follow Collins and Koo [2005]’s discriminative reranking model to score possible

parse trees of each sentence given by the Berkeley Parser.

Previous research on English shows that structured perceptron [Collins, 2002] is

one of the strongest machine learning algorithms for parse reranking [Collins and

Duffy, 2002; Gao et al., 2007]. In our system, we use the averaged perceptron algo-

1In practice, we only take the top n parses. We have different n values in the experiment settings,
and n is up to 50.

107

rithm to do parameter estimation. Algorithm 3 illustrates the learning procedure.

The parameter vector w is initialized to (0, ..., 0). The learner processes all the in-

stances (t is from 1 to n) in each iteration (i). If current hypothesis (w) fails to

predict xt, the learner update w through calculating the difference between Φ(xt, y
∗
t)

and Φ(xt, yt). At the end of each iteration, the learner save the current model as

w + i, and finally all these models will be added up to get aw.

6.3.2.2 Features

We use an example to show the features we extract in Figure 6.2.

vp

v np

吃
eat

v uJDE n

买
buy

的
function word

苹果
apple

Figure 6.2: An example for interpretation of features: To eat apples that are bought.

• Rules: The context-free rule itself: np→ v + uJDE + np.

• Grandparent rules: Same as the Rules, but also including the nonterminal

above the rule: vp(np→ v + uJDE + np)

• Bigrams: Pairs of nonterminals from the left to right of the the rule. The exam-

ple rule would contribute the bigrams np(STOP, v), np(v, uJDE), np(uJDE, np)

and np(np, STOP).

• Grandparent bigrams: Same as Bigrams, but also including the nonterminal

above the bigrams. For instance, vp(np(STOP, v))

• Lexical bigrams: Same as Bigrams, but with the lexical heads of the two

nonterminals also included. For instance, np(STOP,买).

• Trigrams: All trigrams within the rule. The example rule would contribute

the trigrams np(STOP, STOP, v), np(STOP, v, uJDE), np(v, uJDE, np),

np(uJDE, np, STOP) and np(np, STOP, STOP).

108

• Combination of boundary words and rules: The first word and the rule

(i.e. 买+(np→ v + uJDE + np)), the last word and the rule one word before

and the rule, one word after and the rule, the first word, the last word and the

rule, and the first word’s POS, last word’s POS and the rule.

• Combination of boundary words and phrasal category: Same as combi-

nation of boundary words and rules, but substitute the rule with the category

of current phrases.

• Two level rules: Same as Rules, but also including the entire rule above the

rule: vp→ v + (np→ v + uJDE + np)

• Original rank: The logarithm of the original rank of n-best candidates.

• Affixation features: In order to better handle unknown words, we also extract

morphological features: character n-gram prefixes and suffixes for n up to 3.

For example, for word/tag pair 自然环境/n, we add the following features:

(prefix1,自,n), (prefix2,自然,n), (prefix3,自然环,n), (suffix1,境,n), (suffix2,环

境,n), (suffix3,然环境,n).

Apart from training the reranking model using the same data set (i.e. the TCT),

we can also use another treebank (e.g. the PCTB). Although they have quite different

annotations as well as the data source, it would still be interesting to see whether a

heterogenous resource is helpful with the parse reranking.

• Consistent category: If a phrase is also analyzed as one phrase by the PCTB

parser, both the TCT and PCTB categories are used as two individual features.

The combination of the two categories are also used.

• Inconsistent Category: If a phrase is not analyzed as one phrase by the

PCTB parser, the TCT category is used as a feature.

• Number of consistent and inconsistent phrases: The two number are used

as two individual featuers. We also use the ratio of the number of consistent

phrases and inconsistent phrase (we add 0.1 to each number for smoothing),

the ratio of the number of consistent/inconsistent phrases and the length of the

current sentence.

• POS Tags: For each word, the combination of TCT and PCTB POS tags

(with or without word content) are used.

109

6.3.3 Head Classifier

Following [Song and Kit, 2009], we apply a sequence tagging method to find head

constituents. We suggest readers to refer to the original paper for details of the

method. However, since the feature set is different, we give the description of them

in this paper. To predict whether current phrase is a head phrase of its parent, we

use the same example above (Figure 6.2) for convenience. If we consider np as our

current phrase, the following features are extracted,

• Rules: The generative rule, vp→ v + (np).

• Category of the Current Phrase and its Parent: np, vp, and (np, vp).

• Bigrams and Trigrams: (v, np), (np, STOP), (STOP, v, np), and (np, STOP, STOP).

• Parent Bigrams and Trigrams: vp(v, np), vp(np, STOP), vp(STOP, v, np),

vp(np, STOP, STOP).

• Lexical Unigram: The first word 买, the last word 苹果, and together with

the parent, (vp,买) and (vp,苹果)

6.4 Experiments

6.4.1 Setting

The data set used in the CIPS-ParsEval-2010 evaluation is converted from the Ts-

inghua Chinese Treebank (TCT). There are two subtasks: (1) event description sub-

sentence analysis and (2) complete sentence parsing. On the assumption that the

boundaries and relations between these event description units are determined sepa-

rately, the first task aims to identify the local fine-grained syntactic structures. The

goal of the second task is to evaluate the performance of the automatic parsers on

complete sentences in real texts. The training data set is a mixture of several genres,

including newspaper texts, encyclopedic texts and novel texts.

In order to gain a representative set of training data, we use cross-validation

scheme described in [Collins, 2000]. The data set is a mixture of three genres. We

equally split every genre data into 10 subsets, and collect three subset of different

genres as one fold of the whole data. In this way, we can divide the whole data into

10 balanced subsets. For each fold data, a complement parser is trained using all

other data to produce multiple hypotheses for each sentence. This cross-validation

110

scheme can prevent the initial model from being unrealistically “good” on the training

sentences. We use the first 9 folds as training data and the last fold as development

data for the following experiments. For the final submission of the evaluation task, we

re-train a reranking model using all 10 folds data. All reranking models are trained

with 30 iterations.

For parsing experiments, we use the Berkeley parser1. All parsers are trained

with 5 iterations of split, merge, smooth. To produce PCTB-style analysis, we train

the Berkeley parse with PCTB 5.0 data that contains 18804 sentences and 508764

words. For the evaluation of development experiments, we used the EVALB tool2

for evaluation, and used labeled recall (R), labeled precision (P) and F-score score

(which is the harmonic mean of R and P) to measure accuracy.

For the head classification, we use SVM-HMM3, an implementation of structural

SVMs for sequence tagging. The main setting of learning parameter is C that trades

off margin size and training error. In our experiments, the head classification is not

sensitive to this parameter and we set it to 1 for all experiments reported. For the

kernel function setting, we use the simplest linear kernel.

6.4.2 Upper Bound of Reranking

n 1 2 5 10 20 30 40 50
F-score 79.97 81.62 83.51 84.63 85.59 86.07 86.38 86.60

Table 6.1: Upper bound of f-score as a function of number n of n-best parses.

The upper bound of n-best parse reranking is shown in Table 6.1. From the 1-best

result we see that the base accuracy of the parser is 79.97. 2-best and 10-best show

promising oracle-rate improvements. After that things start to slow down, and we

achieve an oracle rate of 86.60 at 50-best.

6.4.3 Reranking Using Homogeneous Annotations

Table 6.2 summarizes the performance of the basic reranking model. It is evaluated on

short sentences (less than 40 words) from the development data of the task 2. When

40 reranking candidates are used, the model gives a 0.76% absolute improvement over

the basic Berkeley parser.

1http://code.google.com/p/berkeleyparser/
2http://nlp.cs.nyu.edu/evalb/
3http://www.cs.cornell.edu/People/tj/svm_light/svm_hmm.html

111

http://code.google.com/p/berkeleyparser/
http://nlp.cs.nyu.edu/evalb/
http://www.cs.cornell.edu/People/tj/svm_light/svm_hmm.html

POS(%) P(%) R(%) F
Baseline 93.59 85.60 85.36 85.48
n = 2 93.66 85.84 85.54 85.69
n = 5 93.62 86.04 85.73 85.88
n = 10 93.66 86.22 85.85 86.04
n = 20 93.70 86.19 85.87 86.03
n = 30 93.70 86.32 86.00 86.16
n = 40 93.76 86.40 86.09 86.24
n = 50 93.73 86.10 85.81 85.96

Table 6.2: Reranking performance with different number of parse candidates on the
sentences that contain no more than 40 words in the development data.

6.4.4 Reranking Using Heterogeneous Annotations

Table 6.3 summarizes the reranking performance using PCTB data. It is also eval-

uated on short sentences of the task 2. When 30 reranking candidates are used, the

model gives a 1.12% absolute improvement over the Berkeley parser. Comparison of

Table 6.2 and 6.3 shows an improvement by using heterogeneous data.

POS(%) P(%) R(%) F
n = 2 93.70 85.98 85.67 85.82
n = 5 93.75 86.52 86.19 86.35
n = 10 93.77 86.64 86.29 86.47
n = 20 93.79 86.71 86.34 86.53
n = 30 93.80 86.72 86.48 86.60
n = 40 93.80 86.54 86.22 86.38
n = 50 93.89 86.73 86.41 86.57

Table 6.3: Reranking performance with different number of parse candidates on the
sentences that contain no more than 40 words in the development data.

6.4.5 Head Classification

The head classification performance is evaluated using gold-standard syntactic trees.

For each constituent in a gold parse tree, a structured classifier is trained to predict

whether it is a head constituent of its parent. Table 6.4 shows the overall performance

of head classification. We can see that the head classification can achieve a high

performance.

112

P(%) R(%) Fβ=1

98.59% 98.20% 98.39

Table 6.4: Head classification performance with gold trees on the development data.

6.5 Conclusion

In this chapter, we introduced a hybrid system for Chinese parsing. The genera-

tive coarse-to-fine parsing model is integrated with a discriminative parse reranking

model, as well as a head classifier based on sequence labeling. We use the perceptron

algorithm to train the reranking models and the experimental results showed improve-

ments over the baseline. In addition, we exploit a heterogeneous treebank to improve

parsing. In particular, features extracted from heterogeneous structures are incorpo-

rated into the parse reranker. Our method for annotation adaptation can be viewed

as a generalized stacking method which relies on the ability of discriminative learning

to explore informative heterogeneous annotation features. Experimental results show

that the heterogeneous annotations can further enhance reranking models.

113

Chapter 7

Enriching Lexical Representation

for Syntactic Parsing

This chapter investigates improving supervised parsing with unsupervised language

acquisition. In particular, we focus on the problem of lexical representation in POS

tagging, text chunking and dependency parsing, introducing new features that incor-

porate word clusters derived from a large-scale unlabeled corpus. We demonstrate

the importance of rich lexical information in a series of parsing experiments on the

Penn Chinese Treebank and Chinese Gigaword, and we show that the cluster-based

features yield substantial gains in performance across a wide range of conditions.

Parts of this chapter are originally published in [Sun and Uszkoreit, 2012].

7.1 Motivation

Meaning arises from the differences between linguistic units, including words, phrases

and so on, and these differences are of two kinds: syntagmatic (concerning position-

ing) and paradigmatic (concerning substitution). The distinction is a key one in

structuralist semiotic analysis. Whilst syntagmatic relations are possibilities of com-

bination, paradigmatic relations are functional contrasts - they involve differentiation.

Generally speaking, syntagmatic relations refer intratextually to other linguistic units

co-occurring within the text, while paradigmatic relations refer intertextually to lin-

guistic units which are absent from the text.

The syntactic structures of given sentences represent the syntagmatic relations of

words contained in these sentences. In Chapter 5 and 6, we introduced supervised

parsing methods to directly capture the syntagmatic relations among words of a

given sentences. Conventionally, a majority of parsing systems (as we have shown

114

in Chapter 5) leverage words themselves as important features for disambiguation.

There are two main problems for this naive word representation: (1) Word form is

not sufficient to represent a word; (2) Word form suffers from data sparsity.

The value of a word is determined by both its paradigmatic and its syntagmatic

relations. For example, the CTB-style POS tags capture both paradigmatic and

syntagmatic relations among words, since its annotation criterion is the syntactic dis-

tribution of words. In this chapter, we are concerned with capturing paradigmatic

relations among words to enhance syntactic processing. In particular, we are inter-

ested in incorporating rich lexical information into supervised parsers. The common

way to build wide-coverage lexical resources is to perform unsupervised algorithms

to acquire rich word representations, such as word clustering, word similarity calcu-

lating. In this chapter, we leverage unsupervised word clustering to explore useful

paradigmatic relations encoded in large-scale unlabeled data. Similar to our study

for word segmentation presented in Chapter 4, the work introduced in this chapter is

another successful example to leverage feature induction to bridge the gap between

supervised language processing and unsupervised language acquisition.

7.2 Word Clustering

Word clustering is a technique for partitioning sets of words into subsets of syntacti-

cally or semantically similar words. It is a very useful technique to capture paradig-

matic or substitutional similarity among words. For example, word classes are often

used in language modeling to solve the problem of sparse data. Various cluster-

ing techniques have been proposed, some of which, for example, perform automatic

word clustering optimizing a maximum-likelihood criterion with iterative clustering

algorithms. The main problem is that we cannot expect these independently opti-

mized classes to be correspondent with syntactic structures. In the feature induction

framework, this problem is partially resolved by exploring the ability of discriminative

learning to automatically identify the correspondence between the two types of “word

classes”.

Distributional word clustering is based on the assumption that words that appear

in similar contexts tend to have similar meanings. In the literature, contexts have been

defined as subjective and objective relations involving the word, as the documents

containing the word, or as search engine snippets for the word as a query. In this

section, we derive new features for POS tagging by applying two distributional clus-

tering methods, which both take into account surrounding words as contexts. They

115

have been successfully applied to many NLP problems, such as machine translation

[Och, 1999].

7.2.1 Brown Clustering

Our first choice is the bottom-up agglomerative word clustering algorithm of [Brown

et al., 1992] which derives a hierarchical clustering of words from unlabeled data. This

algorithm generates a hard clustering – each word belongs to exactly one cluster. The

input to the algorithm is sequences of words w1, ..., wn. Initially, the algorithm starts

with each word in its own cluster. As long as there are at least two clusters left,

the algorithm merges the two clusters that maximizes the quality of the resulting

clustering. The quality is defined based on a class-based bigram language model as

follows.

P (wi|w1, ...wi−1) ≈ p(C(wi)|C(wi−1))p(wi|C(wi))

where the function C maps a word w to its class C(w). We use a publicly available

package1 [Liang et al., 2005] to train this model.

7.2.2 MKCLS Clustering

We also do experiments by using another popular clustering method based on the

exchange algorithm [Kneser and Ney, 1993]. The objective function is maximizing

the likelihood
∏n

i=1 P (wi|w1, ..., wi−1) of the training data given a partially class-based

bigram model of the form

P (wi|w1, ...wi−1) ≈ p(C(wi)|wi−1)p(wi|C(wi))

We use the publicly available implementation MKCLS2 [Och, 1999] to train this

model.

One downside of both Brown and MKCLS clustering is that it is based solely on

bigram statistics, and does not consider word usage in a wider context. We choose to

work with these two algorithms due to their prior success in other NLP applications

[Koo et al., 2008; Miller et al., 2004]. However, we expect that our approach can

function with other clustering algorithms.

1http://cs.stanford.edu/~pliang/software/brown-cluster-1.2.zip
2http://code.google.com/p/giza-pp/

116

http://cs.stanford.edu/~pliang/software/brown-cluster-1.2.zip
http://code.google.com/p/giza-pp/

7.3 Experiments in POS Tagging

7.3.1 Cluster-based Features

In this part, we consider using unlabeled data to improve our supervised Chinese

POS tagger introduced in Chapter 5. In the spirit of [Miller et al., 2004], our basic

strategy for taking advantage of unlabeled data is to derive information from unla-

beled data and use it in a supervised model. Our approach is detailed as follows:

In a preprocessing step, we use automatically segmented text to cluster words. The

output of this step is then used as features in a discriminative learning model. We

are relying on the ability of discriminative learning method to explore informative

features, which play central role to boost the tagging performance.

Key to the success of our approach is the use of word clusters to assist the POS

tagger. Word clusters are used as substitutes for word forms. Following the denotation

in Chapter 5.2, we denote a word in focus with a fixed window w−1ww+1, where w is

current token. The clustering-based features includes:

• Unigram cluster feature: w−1, w, w+1;

• Bigram cluster feature: w−1 w, w w+1.

That means 5 new features are added.

7.3.2 Experiments and Analysis

7.3.2.1 Setting

We conduct experiments using CTB 6.0 and define the training, development and test

sets according to the Chinese sub-task of the CoNLL 2009 shared task. The large-scale

unlabeled data for the POS tagging experiments comes from the Mandarin news text

of the Chinese Gigaword. Word segmentation is a necessary pre-processing for lexical

acquisition. Here we use our semi-supervised character-based segmenter introduced

in Chapter 4. To obtain word clusters, we use the open source packages mentioned

above. To solve the sequence labeling problem in POS tagging, we use wapiti with

the “rprop-” algorithm.. The setting of wapiti is the same as used in Chapter 5.

7.3.2.2 Main Results

Table 7.1 summarizes the tagging results on the development data with different fea-

ture configurations. In this table, the symbol “+” in the Features column means

117

Features Data Brown MKCLS
Supervised CoNLL 94.48%
+c100 +1991 94.70% 94.72%
+c500 +1991 94.73% 94.76%
+c1000 +1991 94.68% 94.73%
+c100 +1991-1995 94.90% 94.97%
+c500 +1991-1995 94.94% 94.88%
+c1000 +1991-1995 94.89% 94.94%
+c100 +1991-2000 94.82% 94.93%
+c500 +1991-2000 94.92% 94.99%
+c1000 +1991-2000 94.90% 95.00%
+c100 +1991-2004 - - 94.87%
+c500 +1991-2004 - - 95.02%
+c1000 +1991-2004 - - 94.97%

Table 7.1: Tagging accuracies with different feature configurations on the development
data.

features of current configuration contains both the baseline features and new features

for semi-supervised learning; the number is the total number of the clusters; the

symbol “+” in the Data column means which portion of the Gigaword data is used

to cluster words. For example, “+1991-2000” means the Xinhua News Agency from

1991 to 2000 are used for clustering. From this table, we can clearly see the impact

of word clustering features on POS tagging. The new features lead to substantial

improvements over the strong supervised baseline. Moreover, these increases are con-

sistent regardless of the clustering algorithms. Both clustering algorithms contributes

to the overall performance equivalently. A natural strategy for extending current ex-

periments is to include both clustering results together. However, we find no further

improvement. For each clustering algorithm, there are not much differences among

different sizes of the total clustering numbers. When small size of unlabeled data (one

year’s data) is added, the semi-supervised learning only yields minor improvements.

When a comparable amount of unlabeled data (five years’ data) is used, the further

increase of the unlabeled data does not lead to much changes of the performance.

118

Supervised Semi-supervised
#words P R F P R F

AD(↑) 3448 94.94% 94.08% 94.51 95.71% 94.58% 95.14
CC(↑) 720 89.89% 92.64% 91.24 90.52% 94.17% 92.31
CD(↑) 1619 97.01% 98.33% 97.67 97.26% 98.70% 97.98
CS(↑) 85 92.59% 88.24% 90.36 92.68% 89.41% 91.02
DEC(↑) 1101 84.64% 75.57% 79.85 84.00% 77.75% 80.75
DEG(↑) 1258 81.46% 90.46% 85.73 82.64% 89.67% 86.01
DER(↑) 18 91.67% 61.11% 73.33 92.86% 72.22% 81.25
DEV(↑) 68 82.14% 67.65% 74.19 90.74% 72.06% 80.33
DT(↑) 640 97.82% 97.97% 97.89 97.83% 98.44% 98.13
JJ(↑) 1363 88.25% 81.58% 84.79 88.35% 82.32% 85.23
LC(↑) 767 96.16% 97.91% 97.03 96.90% 97.91% 97.41
M(↑) 1340 95.78% 98.13% 96.94 96.34% 98.28% 97.30
MSP(↑) 113 91.30% 92.92% 92.11 91.45% 94.69% 93.04
NN(↑) 14015 94.17% 95.13% 94.65 95.18% 95.42% 95.30
NR(↑) 3445 95.61% 93.00% 94.29 95.48% 95.70% 95.59
NT(↑) 1049 97.88% 96.76% 97.32 97.99% 97.52% 97.75
P(↑) 1916 94.89% 94.10% 94.50 95.51% 94.47% 94.99
PN(↑) 653 98.16% 97.86% 98.01 98.61% 98.01% 98.31
PU(↑) 6593 100.00% 99.95% 99.98 100.00% 99.98% 99.99
VA(↑) 501 85.34% 83.63% 84.48 83.59% 86.43% 84.99
VC(↑) 501 96.81% 97.01% 96.91 97.80% 97.80% 97.80
VV(↑) 7121 91.08% 91.93% 91.50 92.38% 92.84% 92.61

AS(↓) 446 98.00% 99.10% 98.55 98.21% 98.65% 98.43
OD(↓) 145 96.67% 80.00% 87.55 94.35% 80.69% 86.99
SP(↓) 53 77.08% 69.81% 73.27 76.60% 67.92% 72.00
VE(↓) 297 99.32% 98.65% 98.99 98.65% 98.65% 98.65

BA 78 97.40% 96.15% 96.77 97.40% 96.15% 96.77
ETC 142 99.30% 100.00% 99.65 99.30% 100.00% 99.65
LB 46 97.62% 89.13% 93.18 97.62% 89.13% 93.18
SB 77 96.15% 97.40% 96.77 96.15% 97.40% 96.77

Table 7.2: Detailed tagging accuracies of the baseline model and the
“+c500(MKCLS)+1991-2004” model on the development data.

119

From the experiments on the development data, we find that the “+c500(MKCLS)

+1991-2004” semi-supervised model works best. So we use this setting in the following

experiments to show the final impact and also to characterize typical errors. We report

detailed tagging performance of different classes of words with and without word

clustering features in Table 7.2. We can see that for most types of words, including

close classes, the prediction accuracy is improved. The improved performance of the

close classes or function words suggests that the word clustering is useful not only

for dealing with the data sparseness problem, but also for providing good clues for

disambiguation.

7.3.2.3 Learning Curves

We do additional experiments to evaluate the effect of the derived features as the

amount of labeled training data is varied. We also use the “+c500(Mkcls)+1991-

2004” setting for these experiments. Table 7.3 summarizes the accuracies of the

systems when trained on smaller portions of the labeled data. We can see that the

new features obtain consistent gains regardless of the size of the training set. The error

is reduced significantly on all data sets. In other words, the word cluster features can

significantly reduce the amount of labeled data required by the learning algorithm.

The relative reduction is greatest when smaller amounts of the labeled data are used,

and the effect lessens as more labeled data is added.

Size Baseline +Cluster
4.5K 90.10% 91.93%
9K 92.91% 93.94%
13.5K 93.88% 94.60%
18K 94.24% 94.77%

Table 7.3: Tagging accuracy on the development data. Size=#sentences in the train-
ing corpus.

7.3.2.4 Two-fold Effect

Word clustering derives paradigmatic relational information from unlabeled data by

grouping words into different sets. As a result, the contribution of word clustering to

POS tagging is two-fold. On the one hand, word clustering captures and abstracts

context information. This new linguistic knowledge is thus helpful to better correlate

a word in a certain context to its POS tag. On the other hand, the clustering of the

OOV words to some extent fights the sparse data problem by correlating an OOV

120

word with IV words through their classes. To evaluate the two contributions of the

word clustering, we limit entries of the clustering lexicon to only contain IV words,

i.e. words appearing in the training corpus. Using this constrained lexicon, we train

a new “+c500(MKCLS)+1991-2004” model and report its prediction power in Table

7.4. The gap between the baseline and +IV clustering models can be viewed as the

contribution of the first effect, while the gap between the +IV clustering and +All

clustering models can be viewed as the second contribution. This result indicates that

the improved predictive power of our semi-supervised model partially comes from the

new interpretation of a POS tag through a clustering, and partially comes from its

memory of OOV words that appears in the unlabeled data.

Features Acc.
Supervised 94.48%
+IV clustering 94.70%
+All clustering 95.02%

Table 7.4: Tagging performance with IV clustering on the development data.

Table 7.5 shows the recall of OOV words on the development data set. Only the

word types appearing more than 10 times are reported. The recall of all OOV words

are improved, especially of proper nouns (NR) and common verbs (VV). This table is

also helpful to understand the impact of the clustering information on the prediction

of OOV words.

#Words Tagger Semi-Tagger ∆
AD 21 33.33% 42.86% <
CD 249 97.99% 98.39% <
JJ 86 3.49% 26.74% <
NN 1028 91.05% 91.34% <
NR 863 81.69% 88.76% <
NT 25 60.00% 68.00% <
VA 15 33.33% 53.33% <
VV 402 67.66% 72.39% <

Table 7.5: The tagging recall of OOV words (frequency>10) on the development data.

7.3.2.5 Combining with the Berkeley Parser

In Chapter 5, we enhance the baseline tagger with the help of the Berkeley parser.

The motivation of that work is to better capture syntagmatic relations among words

for POS tagging, which is complementary to the focus here, namely to better capture

121

 93

 93.5

 94

 94.5

 95

 95.5

 1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y
(%

)

Number of sampling data sets m

Semi-Tagger
Parser

Semi-Tagger-Bagging
Parser-Bagging

Bagging

Figure 7.1: Tagging accuracy of Bagging models with different numbers of sampling
data sets. Semi-Tagger-Bagging means that the Bagging system built on the tagger
with word cluster information. Parser-Bagging is named in the same way.

paradigmatic relations. We therefore expect further improvement by combining both

enhancements. We still use a bagging model to integrate the discriminative tagger

and the Berkeley parser. The only difference between current experiment and the

experiment in Chapter 5 is that the sub-tagging models are trained with help of

word clustering features. For more details, please refer to Section 5.5.3.1. Table 7.1

is the final result of the bagging model on the development data set. We can see

that Bagging is effective to combine POS taggers designed with different views. And

another important observation is the the improvements that come from two ways,

namely capturing syntagmatic and paradigmatic relations, are not much overlap and

therefore the combination of both gives more improvement.

7.3.2.6 Final Results

Systems Data Cluster Acc.
Baseline CoNLL - - 94.33%
Tagger+Parser Bagging(m = 15) CoNLL - - 94.96%
Semi-Tagger(+c500) +1991-2004 MKCLS 94.85%
Semi-Tagger(+c500)+Parser Bagging(m = 15) +1991-2004 MKCLS 95.34%

Table 7.6: Tagging performance on the test data.

122

Table 7.6 shows the performance of different systems evaluated on the test data.

The final result is very promising. The word clustering features and the bagging model

result in relative error reductions of 17.8% in terms of the classification accuracy. The

significant improvement of the POS tagging also help successive language processing.

Results in Table 7.7 indicate that the parsing accuracy of the Berkeley parser can be

simply improved by inputting the Berkeley parser with the POS Bagging results.

Tagger LP LR F
Berkeley 82.71% 80.57% 81.63
Bagging 82.96% 81.44% 82.19

Table 7.7: Parsing accuracies on the test data. (CoNLL)

7.4 Experiments in Text Chunking

7.4.1 Discriminative Text Chunking

Chunking identifies the non-recursive cores of various types of phrases in text, possibly

as as a precursor to full parsing or information extraction. It consists of dividing a

text into phrases in such a way that syntactically related words become member of

the same phrase. These phrases are non-overlapping which means that one word can

only be a member of one chunk. The definition of syntactic chunks is illustrated

in Figure 7.2. Chunks have been represented as groups of words between square

brackets. For example, “保险公司/the insurance company”, consisting of two nouns,

is a noun phrase.

There has been some research on Chinese text chunking, and a variety of chunk

definitions have been proposed. However, most of these studies did not provide suffi-

cient detail. In our system, we use chunk definition presented in [Chen et al., 2006],

which provided a chunk extraction tool. The tool to extract chunks from CTB was

developed by modifying the English tool used in CoNLL-2000 shared task, Chun-

klink1, and is publicly available2. For more information about the chunk definition,

readers may refer to the original paper.

The state-of-the-art supervised solution for English text chunking leverage on

discriminative sequential labeling techniques, such as CRFs [Sha and Pereira, 2003].

With IOB2 representation [Ramshaw and Marcus, 1995], the problem of chunking

1http://ilk.uvt.nl/team/sabine/chunklink/chunklink_2-2-2000_for_conll.pl
2http://www.nlplab.cn/chenwl/chunking.html

123

http://ilk.uvt.nl/team/sabine/chunklink/chunklink_2-2-2000_for_conll.pl
http://www.nlplab.cn/chenwl/chunking.html

截止 目前 保险 公司 已 为 三峡 工程 提供 保险 服务
[P] [NT] [NN NN] [AD] [P] [NR] [NN] [VP] [NN NN]
PP NP NP ADVP PP NP NP VP NP

Figure 7.2: An example from of Chinese chunking: Until now, the insurance company
has provided insurance services for the Sanxia Project.

w−3=“BOS”; w−2=“截止”; w−1=“目前”; w=“保险”; w+1=“公司”; w+2=“已”;
w+3=“为”; w−3=“BOS”; w−2=“P”; w−1=“NT”; w=“NN”; w+1=“NN”;
w+2=“AD”; w+3=“P”;
w−3 w−2=“BOS 截止”; w−2 w−1=“截止 目前”; w−1 w=“目前 保险”;
w w+1=“保险 公司”; w+1 w+2=“公司 已”; w+2 w+3=“已 为”;
w−3 w−2=“BOS P”; w−2 w−1=“P NT”; w−1 w=“NT NN”;
w w+1=“NN NN”; w+1 w+2=“NN AD”; w+2 w+3=“AD P”;
w−2 w−1 w=“截止 目前 保险”; w−1 w w+1=“目前 保险 公司”;
w w+1 w+2=“保险 公司 已”;
w−2 w−1 w=“P NT NN”; w−1 w w+1=“NT NN NN”; w w+1 w+2=“NN NN AD”;

Table 7.8: An example of features used for Chunking.

can be regarded as a sequence labeling task. Given a sequence of words with their

automatically annotated POS tags, a standard statistical chunker tag each word with

a label indicating whether the word is outside a chunk (O), starts a chunk (B-type),

or continues a chunk (I-type). A number of machine learning algorithms have been

exploited, among which CRFs is a very effective model. In this section, we also adopt

this method to resolve Chinese text chunking.

7.4.2 Features

7.4.2.1 Baseline Features

Similar to our POS tagger, we employ word n-gram features for word disambiguation.

The features includes:

• Word/POS unigram feature: w−3, w−2, w−1, w, w+1, w+2, w+3;

• Word/POS bigram feature: w−3 w−2, w−2 w−1, w−1 w, w w+1, w+1 w+2, w+2 w+3;

• POS trigram feature: w−2 w−1 w, w−1 w w+1, w w+1 w+2;

That means 18 features are used to represent a given token. Take the word “保险”

in Figure 7.2 for example, all features used for chunking are listed in Table 7.8.

124

7.4.2.2 Cluster-based Features

We consider using word clusters to improve chunking with the feature induction

method. Our shallow parser consists of two steps: POS tagging and chunking. The

cluster-based features may contribute in both steps, and we have already shown that

word clustering is very helpful for Chinese POS tagging. Here we focus on the impact

of new features on chunking. The new cluster-based features to assist the chunker

includes:

• Unigram cluster feature: w−1, w, w+1;

• Bigram cluster feature: w−1 w, w w+1.

That means 5 new features are added.

7.4.3 Experiments and Analysis

We use the same data setting as the POS tagging experiments. To solve the sequence

labeling problem in chunking, we also use wapiti with the “rprop-” algorithm.

7.4.3.1 Baseline Performance

Tagging Chunking
Tagger Chunker Acc. P R F
CTB Our chunker 100.00% 92.95% 91.68% 92.31
Our tagger Our chunker 94.48% 85.94% 84.70% 85.31
Berkeley Parser Berkeley Parser 93.69% 85.90% 84.28% 85.09

Table 7.9: The tagging accuracy on the development data.

Table 7.9 summarizes the precision, recall, f-scores of our discriminative chunker

and the Berkeley parser. To get chunking results from the Berkeley parser, we use

the same chunk extraction tool. We can see that Chinese text chunking has reached

an accurate performance, when gold POS information is available. However, the

state-of-the-art of Chinese POS tagging is far from perfect. In our experiment, when

automatic tagger is used, the overall chunking drops more than 7 absolute points.

The overall performance of our chunker is 85.31, which is slightly better than the

Berkeley parser (85.09). Compared to the full generative parsing, the discriminative

sequence labeling technique is relatively competitive for chunking.

125

7.4.3.2 Comparing Chunking and PCFG-LA Parsing

Although the final accuracies of the Berkeley parser and our discriminative chunker

are comparable, the underlying models are quite different and make different types of

errors. Figure 7.3 shows the f-score of the two systems for different chunk types. The

definition of each chunk type is detailed described in [Chen et al., 2006]. In general,

the tagger has slightly better accuracy for nominal structures and related ones, while

the parser does better on other categories, which are mainly verbal structures. This

pattern is consistent with previous POS tagging results insofar as verbs are often

involved in longer distances, while shallow nominal structures with shorter distances.

 70

 75

 80

 85

 90

 95

 100

ADJP ADVP DNP DP DVP LCP NP PP QP VP Overall

F
-s

co
re

Tagger
Parser

Figure 7.3: Chunking f-scores for different chunk types.

7.4.3.3 Word Clustering is Helpful

Our first set of chunking experiments are performed on the basis of a supervised

POS tagger. Our second set of chunking experiments are performed on the basis of

a semi-supervised POS tagger which uses the “+c500(MKCLS)+1991-2004” model.

Table 7.10 summarizes the results. We can see that cluster-based features are very

helpful to enhance the bracketing and labeling problem. Similar to the experiments

of POS tagging, the clustering algorithms do not affect the final performance much.

The contribution of the clustering information to a shallow parser is partially from

the POS tagging stage and partially from the chunking stage.

126

Tagger Features Cluster F
Supervised Supervised - - 85.31
Supervised +c100 Brown+1991-2000 85.66
Supervised +c500 Brown+1991-2000 85.88
Supervised +c1000 Brown+1991-2000 85.69
Supervised +c100 MKCLS+1991-2004 85.84
Supervised +c500 MKCLS+1991-2004 85.87
Supervised +c1000 MKCLS+1991-2004 85.81
+c500(MKCLS)+1991-2004 +c100 Brown+1991-2000 86.47
+c500(MKCLS)+1991-2004 +c500 Brown+1991-2000 86.25
+c500(MKCLS)+1991-2004 +c1000 Brown+1991-2000 86.26
+c500(MKCLS)+1991-2004 +c100 MKCLS+1991-2004 86.32
+c500(MKCLS)+1991-2004 +c500 MKCLS+1991-2004 86.43
+c500(MKCLS)+1991-2004 +c1000 MKCLS+1991-2004 86.29

Table 7.10: Chunking f-scores with different feature configurations on the develop-
ment data.

There are two main jobs of syntactic chunking: grouping words as basic phrases

and classifying their syntactic types. We report the unlabeled bracketing performance

in Table 7.11. In other words, detailed phrase category is not considered. These

results indicate that word clustering is very helpful to find phrase boundaries.

Tagger Chunker P R F
Supervised Supervised 88.09% 86.81% 87.44
Supervised +c100(Brown)+1991-2000 88.36% 87.38% 87.87
+c500(MKCLS)+1991-2004 +c100(Brown)+1991-2000 89.06% 88.03% 88.54

Table 7.11: Bracketing performance on the development data.

7.4.3.4 Final Results

Table 7.12 is the performance of different systems evaluated on the test data. The

final result demonstrates the effectiveness of the application of word clustering. The

cluster-based features results in a relative error reduction of 7.1% in terms of the

labeled f-score.

Tagger Chunker P R F
Supervised Supervised 86.27% 85.22% 85.75
+c500(MKCLS)+1991-2004 +c100(Brown)+1991-2000 87.05% 86.19% 86.62

Table 7.12: Chunking performance on the test data.

127

7.5 Experiments in Dependency Parsing

Previous experiments on the shallow parsing evaluate the impact of the word cluster-

ing on parsing in the constituency formalism. Both the bracketing and the labeling

tasks can benefit from word clusters. Another important type of syntactic structure

is the bilexical dependency structures. In this section we evaluate the impact of the

MKLCS clusters on dependency parsing.

7.5.1 Cluster-based Features

Principled feature engineering is important for the application of word clusters to

dependency parsing. In our experiments, we basically incorporate word clusters as

fine-grained POS tags. We copy every real POS tag involved feature and substitute

the POS tag as word clusters.

7.5.2 Experiments and Analysis

7.5.2.1 Main Results

In order to evaluate the helpfulness of cluster-based features, we conduct dependency

parsing experiments using CoNLL 2009 shared task’s data, i.e. the same data setting

as the parsing experiments in Chapter 5. Similar to the chunking experiments, we do

two sets of experiments on basis of the supervised POS tagger and the semi-supervised

tagger respectively. In this chapter, we use a second order graph-based dependency

parsing model [Che et al., 2009; Li et al., 2011] for experiments.1 This parser obtains

the best parsing result of the CoNLL shared task. Table 7.13 summarizes the exper-

imental results. These results show that word clustering is very helpful to enhance

dependency parsing. The size of the total number of clusters influence the quality of

dependency parsing. With the increase of the total number of clusters, both the UAS

and the LAS increase.

7.5.2.2 Two-fold Effect

Word clustering derives paradigmatic relational information from unlabeled data,

and contribute to dependency parsing by (1) abstracting context information and (2)

fighting data sparseness problem. To analyze the two-fold effect, we limit entries of

the clustering lexicon to only contain IV words. Using this constrained lexicon, we

1We would like to thank Zhenghua Li to provide his implementation and Meishan Zhang to help
with the feature configuration.

128

Tagger Features Cluster UAS LAS
Supervised Supervised - - 82.98% 78.65%
Supervised +c100 MKCLS+1991-2004 83.60% 79.41%
Supervised +c500 MKCLS+1991-2004 84.01% 79.85%
Supervised +c1000 MKCLS+1991-2004 84.16% 79.99%
+c500(MKCLS)+1991-2004 +c100 MKCLS+1991-2004 79.87% 80.01%
+c500(MKCLS)+1991-2004 +c500 MKCLS+1991-2004 84.22% 80.11%
+c500(MKCLS)+1991-2004 +c1000 MKCLS+1991-2004 84.57% 80.46%
+Clustering+Bagging +c1000 MKCLS+1991-2004 84.80% 80.82%

Table 7.13: Dependency parsing UAS/LAS with different feature configurations on
the development data.

train a new “+c1000(MKCLS)+1991-2004” model and report its prediction power in

Table 7.14. Note that, the POS information is provided by the supervised tagger. The

gap between the baseline and +IV clustering models measures the first contribution,

while the gap between the +IV clustering and +All clustering models measures the

second one. This result indicates that the improved accuracy partially comes from

the new interpretation of a word through a clustering, and partially comes from its

memory of OOV words that appears in the unlabeled data.

Tagger Features UAS LAS
Supervised Supervised 82.98% 78.65%
Supervised +IV clustering 83.45% 79.24%
Supervised +All clustering 84.16% 79.99%

Table 7.14: Dependency performance with IV clustering on the development data.

7.5.2.3 Impact on the Prediction of OOV Words

Word clustering fights the sparse data problem by relating low-frequency words with

high-frequency words through their classes. Table 7.15 shows the prediction accuracy

of the different types of dependencies. We report four types of dependencies: (1) both

the dependent and the head are IV words; (2) the dependent is an IV word while the

head is an OOV word; (3) the dependent is an OOV word while the head is an IV

word; (4) both the dependent and the head are OOV words. The semi-supervised

model for evaluation is the best system available. From this table, we can see a clear

gap of predictive power between IV and OOV words. There is a very interesting

phenomenon that, when dependencies with OOV dependents are harder to recognize

than the ones with OOV heads. We compare the improvements of the OOV and IV

129

words and find that the error reduction of the OOV words are higher. This confirms

our motivation to leverage on knowledge exploiting paradigmatic relations among

words to better handle the recognition and disambiguation of the OOV words.

Supervised Semi-supervised
Dependent ← Head P R F P R F

IV ← IV 84.09% 83.81% 83.95 85.42% 85.12% 85.27
IV ← OOV 78.16% 79.65% 78.90 80.18% 81.77% 80.97

OOV ← IV 72.74% 73.46% 73.10 74.94% 75.57% 75.26
OOV ← OOV 69.84% 64.26% 66.94 74.92% 69.81% 72.28

Table 7.15: Dependency prediction accuracy relative to word type (OOV or IV).

7.5.2.4 Final Results

Table 7.16 is the performance of different dependency models evaluated on the test

data. The first line shows the best result reported in the CoNLL 2009 shared task.

The cluster-based features results in relative error reductions of 7.2% and 6.9% in

terms of the UAS and LAS scores over our baseline.

Tagger Parser UAS LAS
CoNLL 09 [Che et al., 2009] - - 75.49%
Supervised Supervised 83.27% 78.64%
+c500(MKCLS)+1991-2004 +c1000(MKCLS)+1991-2004 84.48% 80.11%

Table 7.16: Dependency parsing performance on the test data.

7.6 Conclusion and Discussion

In this chapter, we evaluate the helpfulness of unsupervised word clustering for super-

vised parsing. Our work is motivated by (1) the importance of rich lexical information

for parsing and (2) the performance gap between supervised and unsupervised NLP

methods. Our feature induction based semi-supervised approach achieves substantial

improvements over competitive baseline systems for Chinese parsing. Experimental

results confirm that capturing paradigmatic relations is essential to analyzing syntag-

matic relations.

Despite this success, there are several ways in which our work might be improved.

We demonstrate the helpfulness of word clustering for shallow chunking and depen-

dency parsing. A natural area for future work is applying word clustering to full

130

constituency parsing. The main difficulty to do so is that most of successful con-

stituency parsers are based on generative models, which are hard to incorporate rich

features.

Recall that the popular Brown and MKCLS clustering algorithms are based on a

bigram language model. Intuitively, there is a mismatch between the kind of lexical

information that is captured by the Brown/MKCLS clustering and the kind of lexical

information that is modeled in supervised POS tagging, chunking and dependency

parsing. A natural avenue for further research would be exploiting other type of

lexical knowledge that reflect the syntactic behavior of words.

131

Part III

Semantic Role Labeling

132

Chapter 8

Full and Partial Parsing Based

Semantic Chunking

State-of-the-art Chinese semantic role labeling (SRL) systems leverage full parsing to

find arguments and classify their semantic types. To better utilize syntactic informa-

tion, which is crucial to the success of SRL, we propose a semantic chunking method

together with linguistically rich syntactic features. Our system achieves an F-score

of 93.41, which is significantly better than the best reported performance, 92.0. We

also empirically analyze the effect of full parsing in Chinese SRL. Motivated by devel-

oping a complementary method, we study an alternative lightweight solution which

only makes use of partial syntactic parses. Furthermore, we present a comparative

analysis of the two categories of methods. This analysis could be exploited to improve

SRL accuracy by system ensemble.

The rich syntactic features used in full parsing based SRL system is introduced

in [Sun, 2010a], and the partial parsing based method is introduced in [Sun et al.,

2009a]. To lead to a fair comparison, we repeat experiments with slight modifications

of the original papers.

8.1 Background

8.1.1 The Problem

In the last decade, there has been an increasing interest in semantic role labeling

(SRL) on several languages, which consists of recognizing arguments involved by

predicates in a given sentence and labeling their semantic types. Typical semantic

classes include Agent, Patient, Source, Goal, and so forth, which are core arguments

133

to a predicate, as well as Location, Time, Manner, Cause, and so on, which are

adjuncts. In order to indicate exactly what semantic relations hold among a given

predicate and its associated participants and properties, the role-bearing constituents

must be identified and their correct semantic role labels assigned, as in:

• [警察]Agent[正在]T ime[详细]Manner[调查]Predicate[事故原因]Patient

• [The police]Agent are [thoroughly]Manner [investigating]Predicate [the cause of the

accident]Patient.

In the given example, the predicate in question is “调查/investigate”. All argu-

ments and adjuncts involved by “调查” have been represented as groups of words

between square brackets. A tag next to the close bracket denotes the role of the argu-

ment (or adjunct). For example, the tag Agent indicates the doer, “警察/police,” of

the investigation event, since they initiates and sustains the action; the tag Manner

indicates an adjunct of the target verb, since it notes how the process of an event is

carried out.

Such sentence-level semantic analysis of text is concerned with the characterization

of events and is therefore important to understand the essential meaning of the original

input language sentences – who did what to whom, for whom or what, how, where,

when and why? Different from many other information representation formalisms,

this shallow semantic interpretation is independent of domains and more robust for

many application purposes. SRL abstracts important semantic information away

from syntactic structure and may potentially benefit many deep NLP tasks such as

question answering, textual entailment, and complex information extraction.

8.1.2 The Annotation Data

Since the seminal work of [Gildea and Jurafsky, 2002], statistical and machine learning

approaches have been the predominant research paradigm in SRL, like many other

subfields in NLP. A pre-requisite for statistical and machine learning approaches to

SRL is the availability of a significant amount of semantically interpreted corpora

from which automatic systems can learn. The recent activities in SRL have in large

part been driven by the availability of semantically annotated corpora such as the

FrameNet [Baker et al., 1998], PropBank [Palmer et al., 2005], and Nombank [Meyers

et al., 2004] projects for English; the tectogrammatical layer for Czech; and the Salsa

Project [Burchardt et al., 2006] for German; the Chinese PropBank [Xue and Palmer,

2009] for Chinese.

134

IP

A0 VP

NP AM-TMP AM-MNR VP

NN ADVP ADVP Rel A1

警方
police

AD AD VV NP

正在
now

详细
thoroughly

调查
investigate

NN NN

事故
accident

原因
cause

Figure 8.1: An example sentence for CTB and CPB: The police are thoroughly inves-
tigating the cause of the accident.

The Chinese PropBank (CPB) is a popular semantically annotated corpus for

research on Chinese SRL. It adds a layer of predicate-argument structures to the

Chinese TreeBank. It assigns semantic role labels to syntactic constituents (rather

than to the head words in a dependency structure) in a sentence. Each verb is

annotated with a fixed number of arguments and each argument plays a role with

regard to the verb. The arguments of a predicate are labeled with a contiguous

sequence of integers, in the form of AN (N is a natural number); the adjuncts are

annotated as such with the label AM followed by a secondary tag. For the core

arguments, CPB uses a set of predicate-specific semantic role labels Predicates vary

on the number of core arguments they take, but generally the total number of core

arguments does not exceed six. Secondary tags for the adjuncts provide semantic

information such as location, manner, and time that are not specific to a particular

verb or even a particular class of verbs and they are defined based on a general set

of guidelines. The assignment of semantic roles is illustrated in Figure 8.1, where

the predicate is the verb “调查/investigate”. E.g., the NP “事故原因/the cause of

the accident” is labeled as A1, meaning that it is the Patient, the PP “正在/now” is

labeled as AM-TMP, indicating a temporal component.

With the advent of this supporting resource, Chinese SRL has become a well-

defined task with a substantial body of work and comparative evaluation.

135

8.1.3 Successful Methods for English SRL

The work on SRL has included a broad spectrum of statistical and machine learning

approaches to the task. Most SRL research takes an approach requiring training on

role-annotated data. In this chapter, we only focus on supervised approaches. Given

a sentence and a designated verb, the SRL task consists of identifying the boundaries

of the arguments of the verb predicate and classifying them with semantic roles. The

most common architecture for state-of-the-art SRL systems consists of the following

steps.

• The first step in SRL is full syntactic parsing, which provide rich syntactic

information for semantic processing.

• The second step typically consists of linguistically motivated pruning the set of

argument candidates for a given predicate.

• The third step consists of a local classification of argument candidates. By

“local,” we mean that candidates are usually treated independently of each

other.

• The last step is to apply joint inference in order to combine the predictions

of local scorers to produce a good structure of all labeled arguments for the

predicate.

A variety of research has been proposed to capture different characteristics of SRL.

More recent approaches for English SRL have involved calibrating features [Gildea

and Jurafsky, 2002; Xue and Palmer, 2004], analyzing the complex input – syntax

trees [Liu and Sarkar, 2007; Moschitti, 2004], exploiting the complicated output – the

predicate-argument structure [Punyakanok et al., 2004; Toutanova et al., 2005], sys-

tem combination [Punyakanok et al., 2004; Surdeanu et al., 2007], as well as capturing

paradigmatic relations between predicates [Gordon and Swanson, 2007].

8.1.4 Previous Work on Chinese SRL

Previous work on Chinese SRL mainly focus on how to implement SRL methods

which are successful on English, such as [Ding and Chang, 2008; Sun and Jurafsky,

2004; Xue, 2008; Xue and Palmer, 2005; Zhuang and Zong, 2010]. Full parsing based

SRL methods that are successful on English are adopted to resolve Chinese SRL. Sun

and Jurafsky [2004] did the preliminary work on Chinese SRL without any large se-

mantically annotated corpus of Chinese. They adopt English SRL methods presented

136

in [Gildea and Jurafsky, 2002; Pradhan et al., 2003] and evaluate ten specified verbs

with a small collection of Chinese sentences. This work make the first attempt on

Chinese SRL and produce promising results.

After the CPB was built, [Xue and Palmer, 2005] and [Xue, 2008] produce more

complete and systematic research on Chinese SRL. Their work shows that when gold

parses are available, the performance of Chinese SRL is fairly encouraging, achieving

an f-score of 92.0. When an automatic parser is used, the performance, however, is

highly degraded, only achieving an f-score of 71.9. This indicates the importance of

syntactic parsing for well-performed SRL systems. In [Ding and Chang, 2008], SRC

is divided into two sub-tasks in sequence: Each argument should first be determined

whether it is a core argument or an adjunct, and then be classified into fine-grained

categories. However, delicately designed features are more important and our experi-

ments suggest that by using rich features, a better SRC solver can be directly trained

without using hierarchical architecture.

Dependency is another popular formalism to represent syntactic and semantic

information in NLP. In the CoNLL 2008 shared task, Surdeanu et al. [2008] propose

a unified dependency-based formalism to model both syntactic dependencies and

semantic roles for English. The CoNLL 2009 shared task is an extension of the

CoNLL 2008. It dedicates to the joint parsing of syntactic and semantic dependencies

in multiple languages [Hajič et al., 2009]. As a sub-task of CoNLL 2009, Chinese

semantic dependency parsing method are well evaluated.

8.2 Full Parsing Based Semantic Chunking with

Rich Syntactic Features

8.2.1 Motivation

State-of-the-art Chinese SRL systems leverage rich syntactic information, which is

normally provided by one (or many) parser(s). The contribution of syntactic parsing

to SRL is two-fold. On one hand, SRL systems should group words as argument

candidates, which are also constituents in a given sentence. Parsing can effectively

supply SRL with argument candidates or at least save effort for semantic processing.

On the other hand, given a constituent, SRL systems should identify whether it is an

argument and further predict detailed semantic types if it is an argument. For the

prediction problems, parsing can provide expressive features.

Full parsing provides boundary information of all constituents. As arguments

137

should c-command1 the predicate, a full parser can further prune a majority of use-

less constituents. In summary, parsing can effectively supply SRL with argument

candidates. Unfortunately, it is very hard to correctly produce full parses for Chinese

texts. We will show in the following experiments that the main challenge of Chinese

SRL is to find boundaries of arguments rather than to classify them. Our first con-

cern is to better utilize syntactic boundary information through semantic chunking,

which improve system recall by re-bracketing some constituents into arguments with

semantic clues.

Developing features that capture the right kind of information encoded in the

input parses has been shown crucial to advancing the state-of-the-art. Though there

has been some work on feature design in Chinese SRL, information encoded in the

syntactic trees is not fully exploited and feature engineering requires more research

effort. Our second concern is fine-grained feature engineering for Chinese SRL. We

introduce a set of additional features, some of which are designed to better capture

structural information of sub-trees in a given parse.

8.2.2 Constituent Classification System

To evaluate the impact of syntactic features, we implement a constituent classification

system as a baseline. Following [Xue, 2008], our system divides SRL into three sub-

tasks: 1) pruning with a heuristic rule, 2) argument identification (AI) to recognize

arguments, and 3) semantic role classification (SRC) to predict semantic types. To

efficiently excluded non-arguments, a pruning procedure is executed before AI. Our

pruning strategy is to keep all constituents (except punctuations) that c-command

current predicate in focus as argument candidates. The latter two sub-tasks, AI and

SRC, are formulated as two classification problems. In other words, a binary classifier

is trained to classify each argument candidate as either an argument or not. Finally, a

multi-class classifier is trained to label each argument recognized in the former stage

with a specific semantic role label. The main job of both AI and SRC steps is to

select strong syntactic features from a given parse.

8.2.3 Constituent Chunking System

In a traditional constituent classification system, SRL is performed on the output of a

syntactic parser, and only phrases in the parse tree are taken as possible candidates.

1The concept c-command comes from the X-bar theory. Assuming α and β are two nodes in a
syntax tree: α c-commands β means every parent of α is an ancestor of β.

138

(1) XP

!Pred Ax

XP1 XP2

⇒ (2) XP

!Pred XP1 XP2

(3) XP

XP XP2

!Pred XP1

(4) XP

Ay !Pred

XP1 XP2

⇒ (5) XP

XP1 XP2 !Pred

(6) XP

XP1 XP

XP2 !Pred

Figure 8.2: Parsing errors that can be tolerated by full parsing based constituent
chunking.

If there is no phrase in the parse tree that shares the same text span with an argument

in the manual annotation, the system cannot possibly get a correct prediction. In

other words, the best the system can do is to correctly label all arguments that have

a counterpart node in the parse tree.

We introduce an idea to perform semantic chunking over large phrases provided by

a full parser: To detect unreliable constituents, break them into smaller component

constituents, and re-bracket them using semantic clues. We hope to improve system

recall through combining some constituent nodes. Two issues are raised to re-bracket

unreliable constituents: (1) How to detect the so-called unreliable constituents, and

(2) is it possible to correctly re-bracket them? We simplify the detection of unreliable

constituents and exemplify the possibility by just considering c-commanders.

Our constituent chunking system first collects all c-commanders and puts them in

order. Because c-commanders of a predicate are not overlapped with each other and

compose the whole sentence, we can take this step as a sequentialization procedure.

On basis of sequentialized constituents, we define semantic chunks which do not

overlap nor embed using IOB2 representation and transfer the SRL problem as a

constituent tagging problem. Our definition of semantic chunks is described below.

• Constituent outside an argument receive the tag O.

• For a sequence of constituents forming a semantic role of Ax, the first con-

stituent receives the semantic chunk label B(egin)-Ax,

• and the remaining ones receive the label I(nside)-Ax.

139

We are interested in tolerating two types of parsing errors that are shown in Figure

8.2. Assume tree structures (1 and 4) on the left hand side are the correct syntactic

analysis, while tree structures (2, 3, 5 and 6) on the right hand side are some wrong

analysis. Though a constituent classification system, the arguments Ax and Ay can

not be recovered since there is no node to express them. Though our constituent

chunking system, however, when these errors occur, the arguments can still be found,

if XP1 is assigned a label B-Ax or B-Ay and XP2 is assigned a label I-Ax or I-Ay.

8.2.4 Features

Part of features used in our system are a combination of features described in [Ding

and Chang, 2008; Xue, 2008] as well as the c-command thread features proposed in

[Sun et al., 2008]. We explain new features in details but only give a brief description

of features used in previous work. For more information about the old features,

readers can refer to the relevant papers.

To conveniently illustrate, we denote a candidate constituent ck with a fixed con-

text wi−1/pi−1, [ckwi/pi, ..., wh/ph, ..., wj/pj], wj+1/pj+1, where wh is the head word of

ck and pl is the associated POS tag of the word wl, and denote predicate in focus with

a context wv−2/p
v
−2, w

v
−1/p

v
−1, w

v/pv, wv+1/p
v
+1, w

v
+2/p

v
+2, where wv is the predicate in

focus. We seperate all features into three sets: (1) word features that can extracted

based on word sequence and its associated POS tag sequence, (2) syntactic features

that can be only extracted from a full parsing tree, and (3) additional SRC feature

that are only used in SRC. For example, to extract the head word features of a con-

stituent, we must know the internal syntactic structure of that constituent. As a

result, any feature based on a head word are classified as a syntactic feature, even

when it is just the surface string form of a head word. All word features and syntactic

features are used for the AI classification and semantic chunking, and all features are

used for SRC classification.

8.2.4.1 Word Features

• Word features: wv, wv−1, wv+1, wi, wi−1, wj, wj+1, wi+wj.

• POS features: pv, pv−2, pv−1, pv+1, pv+2, pi, pi−1, pi−2, pj, pj+1, pj+2, , pi+pj.

• Word before “LC”: If the POS of wj is “LC” (localizer), we use wj−1 (lcwj−1) and

pj−1 (lcpj−1) as two new features.

• Length of ck (plen): How many words are there in ck.

140

• Position (posi) of ck relative to the predicate.

• Morphological features: First character (char+1), last character (char−1) and

word length (wlen) of wv, char+1+wlen, char−1+wlen, char+1+posi, char−1+posi.

• Verb class (vclass) of wv. Xue [2008] put forward a rough verb classification

where verb classes are automatically derived from the frame files, which are verb

lexicon for the CPB annotation. This kind of verb class information has been

shown very useful for Chinese SRL. Our system also includes this feature. In our

experiments, we represent a verb in two dimensions: 1) number of arguments,

and 2) number of framesets. For example, a verb may belong to the class

“C1C2,” which means that this verb has two framesets, with the first frameset

having one argument and the second having two arguments.

8.2.4.2 Syntactic Features

In SRL, the objects being modeled are syntax trees which require some mechanism

to convert them into feature vectors. Taking complex syntax trees as inputs, the

classifiers should characterize their structural properties. We put forward a number

of new features to encode the structural information.

• Pseudo subcategorization frame (scf): The CFG rewrite rule expanding the

parent node of wv.

• Parse tree path features: The path feature is defined as the path from a source

constituent node ns through the parse tree to a target constituent node nt,

represented as a string of parse tree node linked by symbols indicating upward

(or downward) movement through the tree. The path feature describes the

syntactic relation between two constituents and has been shown very important

for semantic classification. We define several different path features for Chinese

SRL, and list them as follows.

– Path from ck to wv (path(ck, w
v)),

– We denote the lowest ancestor of ck and wv as a(ck, w
v) and use as two

new features the path from ck to a(ck, w
v) (path(ck, a(ck, w

v))) and the path

from wv to a(ck, w
v) with the word content of wv (path(wv, a(ck, w

v))+wv).

– We denote the root node of current parse tree as root and use as a new

feature the path from ck to the root (path(wv, root)).

141

C1: VCD, VCP, VNV, VP, VPT, VRD, VSB
C2: DNP, DP, FW, NN, NP, PN
C3: ADVP, DVP, MSP C4: LCP, PP
C5: CP, FRAG, IP C6: CLP, QP
C7: ADJP C8: LST C9: PP C10: PRN C11: UPC

C12: Other categories

Table 8.1: Category Clusters

• Clustered parse tree path features: We substitute the node labels of a standard

path feature as their manually created clusters, and define several new fea-

tures. The clusters of CTB categories is list in Table 8.1. Our new features

include the clustered path from ck to wv (cpath(ck, w
v)), the clustered path

from ck to a(ck, w
v) (cpath(ck, a(ck, w

v))), and the clustered path from ck to

root (cpath(ck, root)).

• Phrasal category features: Categories of ck, ck’s parent, lift and right siblings.

(ck, c
p
k, c

l
k, c

r
k)

• Head word features: Head words and their associated POS tag of ck (wh, ph), its

parent (wph, p
p
h), left and right siblings (wlh, p

l
h, w

r
h, p

r
h). We also combine head

words and other features as conjunction features, including wh+posi, wh+w
v,

wh+posi+wv, wh+path(ck, a(ck, w
v)). To extract the syntactic head of a phrase,

we use head rules described in [Sun and Jurafsky, 2004]. This set of head rules

are very popular in Chinese parsing research, such as in [Duan et al., 2007;

Zhang and Clark, 2008b].

• Noun head of prepositional phrases: Many adjunctive roles, such as temporals

and locatives, occur as prepositional phrases in a sentence, and it is often the

case that the head words of those phrases, which are always prepositions, are not

very discriminative Therefore we include as two new features (wnh , pnh) the head

word and its associated POS tag of the first noun phrase inside the prepositional

phrase.

• NT (has NT): If ck is a prepositional phrase, does ck contain a word with POS

“NT” (temporal noun)?

• CFG rewrite rule that expands ck and ck’s parent

142

• Rewrite rule features: The CFG rewrite rule expanding ck and the parent of ck

(rule(ck), rule(par(ck))).

• Lexicalized rewrite rules: Conjunction of rewrite rule and head word of its cor-

responding RHS. These features of ck (lrule(ck)) and its parent (lrule(par(ck)))

are used.

• Head Trace: The sequential container of the head down upon the phrase. This

feature is designed for function tag labeling, which is presented in the earlier

work of the author [Sun and Sui, 2009]. We design two kinds of traces (htr-p,

htr-w): one uses POS of the head word; the other uses the head word word

itself.

• C-commander thread of the head C-commander thread features are designed for

the prediction of maximal projections, which is presented in the earlier work of

the author [Sun et al., 2008]. Hold the same principle, we define two new features

(cct-c, cct-w) as sequential containers of constituents which C-command target

predicate. The difference of the two features is that the cct-c feature uses the

POS information while the cct-w feature uses the word content information of

current predicate.

To better explain our features, we take the last noun phrase “事故原因/the cause

of the accident” in Figure 8.1 for example and list all the features in Table 8.2.

8.2.4.3 Additional Features for SRC

In the SRC stage of our constituent classification system, to gather all argument po-

sition information predicted in AI step, we design a coarse frame feature (cframe),

which is a sequential collection of arguments. So far, we do not know the detailed

semantic type of each argument, so we use XP as each item in the frame. To dis-

tinguish the argument in focus, we use a special symbol to indicate the associated

frame item. For instance, the coarse frame feature for the argument 事故原因 is

XP+XP+XP+V+!XP, where !XP means that it is the argument in focus. We also

respectively combine the coarse frame with the predicate, the predicate and the head

word, the last character of the predicate, and the verb class of the last predicate as

four new features (cframe+wv, cframe+wv+wh, cframe+char−1 and cframe+vclass).

143

Word features
Word features wv=“调 查”; wv−1=“详 细”; wv+1=“事 故”; wi=“事 故”;

wi−1=“调查”; wj=“原因”; wj+1=“EOS”; wi +wj=“事故+原
因”

POS features pv=“VV”; pv−2=“AD”; pv−1=“AD”; pv+1=“NN”; pv+2=“NN”;
pi=“NN”; pi−1=“VV”; pi−2=“AD”; pj=“NN”; pj+1=“EOS”;
pj+2=“EOS”; pi + pj=“NN+NN”

Morphology fea-
tures

char−1=“调”; char+1=“查”; wlen=2; char−1+wlen=“调+2”;
char+1+wlen=“查+2”; char−1+posi=“调+after”;
char+1+posi=“查+after”;

Other features plen=2; posi=“after”; vclass=“C2”;
Syntactic features

Path features path(ck, w
v)=“NP↑VP↓VV”; path(ck, a(ck, w

v))=“NP↑VP”;
path(wv, a(ck, w

v))=“VV↑VP”;
path(ck, root)=“NP↑VP↑IP”; cpath(ck, w

v)=“C2↑C1↓C12”;
cpath(ck, a(ck, w

v))=“C2↑C1”; cpath(ck, root)=“C2↑C1↑C5”;
Head features wh=“原因”; ph=“NN”; wph=“调查”; pph=“VV”; wlh=“调

查”; plh=“VV”; wrh=“NULL”; prh=“NULL”; wh+posi=“原
因+after”, wh+w

v=“原 因+调 查”, wh+posi+wv=“原
因+after+调查”, wh+path(ck, a(ck, w

v))=“NP(原因)↑VP”;
wnh=“NULL”; pnh=“NULL”;

Category features ck=“NP”, cpk=“VV”, clk=“VV”, crk=“NULL”)
CFG rule features rule(ck)=“NP→NN+NN”; rule(par(ck)=“VP→VV+NP”;

lrule(ck)=“NP(原 因)→NN+NN”; rule(par(ck)=“VP(调
查)→VV+NP”;

Other features scf=“VP→VV+NP”; has NT=“No”; htr-p=“NP↓NN”; htr-
w=“NP↓原因”; cct-c=“VV→NP”; cct-w=“VV→调查”;

Table 8.2: An example of the features used in our SRL system.

8.3 Partial Parsing Based Semantic Chunking

8.3.1 Motivation

In English SRL research, there have been some attempts at relaxing the necessity of

using syntactic information derived from full parse trees and a second strategy based

on partial parsing has been proposed and well evaluated by the CoNLL 2004 shared

task. Previous work on English suggests that even much better labeling performance

has been achieved by full parsing based SRL systems, partial parsing based SRL

systems can still enhance their performance [Surdeanu et al., 2007]. Most existing

systems for automatic Chinese SRL make use of a full syntactic parse of the sentence in

order to define argument boundaries and to extract relevant information for training

144

保险 公司 已 为 三峡 工程 提供 保险 服务
POS [NN NN] [AD] [P] [NR] [NN] [VV] [NN NN]
SYN [NP] [ADVP] [PP NP NP] [VP] [NP]
SEM B-A0 B-AM-ADV B-A2 I-A2 I-A2 B-V B-A1

Figure 8.3: An example of the definition of semantic chunks: The insurance company
has provided insurance services for the Sanxia Project.

classifiers to disambiguate between role labels. Though better understanding of SRL

with shallow parsing on English is achieved by CoNLL 2004 shared task [Carreras and

Màrquez, 2004], little is known about how these SRL methods perform on Chinese

and how different they are with the full parsing based ones.

In this chapter, we implement a lightweight semantic chunker based on our dis-

criminative POS tagger and chunker described in Chapter 5. We evaluate this shallow

semantic chunker to show how well it can resolve Chinese SRL. More interestingly, we

empirically show how different it is from a full parsing based system. The diversity is

important not only for understanding the difficulties of Chinese semantic processing

and but also for integrating heterogeneous systems designed with different views.

8.3.2 System Architecture

On the basis of partial parsing, i.e. text chunking, we implement a lightweight systems

which solve SRL as a semantic chunking problem. SRL is a complex task which has

to be decomposed into a number of simpler decisions and tagging schemes in order

to be addressed by learning techniques. Our strategy to perform role labeling over

flat syntactic chunks by defining semantic chunks which do not overlap nor embed

using IOB2 representation [Ramshaw and Marcus, 1995]. A number of words are

analyzed as non-chunks in the text chunking stage but still make up semantic roles.

To recovery all semantic roles, our semantic chunker takes these outside words as

single word chunks and assign the syntactic chunk label O to them.

We define semantic chunk labels based on shallow syntactic chunks in the same

way as used in the full parsing based system. The definition of semantic chunks is

illustrated in Line SEM in Figure 8.3. For example, the noun phrase “保险公司/the

insurance company,” as a whole, is the Patient of the verb “提供/provide,” as a result,

its semantic tag is defined as B-A1.

By predicting the positional semantic role labels over syntactic chunks, the prob-

lem of SRL can be regarded as a sequence labeling task. In our experiments, we

145

first perform POS tagging and chunking using our discriminative taggers introduced

in the last chapter. A semantic chunker then extracts rich shallow features over the

automatically segmented syntactic chunks and use these features as clues to predict

the semantic chunk labels.

8.3.3 Features

Similar to full parsing based methods, key to the success of shallow semantic chunk-

ing is to carefully design good features. To conveniently illustrate, we denote a token

chunk with a fixed context ck−2ck−1ckck+1ck+2, where each chunk ck = wks ...wh/ph...wke

and wh is the head word of ck. We denote the context of current predicate as

cv−2cv−1cvcv+1cv+2, where cv = wv is the predicate in question.

• Chunk type features: ck−2, ck−1, ck, ck+1, ck+2, ck−2ck−1, ck−1ck, ckck+1, ck+1ck+2,

• word features: wk−2s , wk−1s , wks , wk+1s , wk+2s , wk−1swks , wkswk+1s , wk−2e ,

wk−1e , wke , wk+1e , wk+2e , wk−1ewke , wkewk+1e , w
v, wp.

• POS chain: sequential containers of each word’s POS tag. For example, this

feature for “保险服务” is “NN NN.” We include the POS tag chain of ck−1, ck

and ck+1 as three features.

• Length: the number of words in a chunk.

• Position (posi): The position of ck with respect to the predicate. It has three

values as before, after and here.

• posi+wh, posi+ph, posi+wv, posi+wh+w
v, posi+ph+w

v.

• Path: A flat path feature is defined as a chain of base phrases between the token

and the predicate. At both ends, the chain is terminated with the POS tags of

the predicate and the head word of the token. Three path features are included:

path(ck−1, w
v), path(ck, w

v) and path(ck+1, w
v).

• V|De path: A sequential container of POS tags of verbal words and “的”. Three

V|De path features are included: path(ck−1, w
v), path(ck, w

v) and path(ck+1, w
v).

• Distance: we have two notions of distance. The first is the distance of the token

from the predicate as a number of base phrases, and the second is the same

distance as the number of VP chunks.

146

• Verb class: vclass, vclass+posi, vclass+posi+wh, vclass+posi+ph.

• Number of predicates: the number of predicates in the sentence.

• The context of wv: cv−2+cv−1+cv+cv+1+cv+2, pv−1, pv+1.

8.4 Experiments and Analysis

8.4.1 Setting

The CPB annotation is widely used as benchmark data to evaluate Chinese SRL

systems. To facilitate comparison with previous work, we conduct some experiments

on the CPB 1.0 and CTB 5.0, using the data setting of [Ding and Chang, 2008; Sun,

2010b; Xue, 2008; Zhuang and Zong, 2010]. Before the labeling of predicates, a SRL

system should detect target predicates. The previous SRL evaluations, i.e. CoNLL

2004 and 2005 shared tasks, assume that this information is already known to isolate

the role labeling problem. We also follow this setting. Table 8.3 shows the statistics

of our experimental settings.

Data set Task CTB files # of sent.
Training Sem+Synt 81-899 8828

Synt 1001-1151 8420
Devel. Sem+Synt 301-325 561
Test Sem+Synt 1-40, 900-931 995

Table 8.3: Training, development and test data on CTB 5.0

To resolve the classification problem, we use an open source linear classifier LIB-

LINEAR1. Note that a crucial aspect in local scoring of SRL is the representation of

candidates with features, rather than the particular choice of classification algorithm.

To fairly compare the performance of the classification system and the chunking

system, we use the SVM-HMM2 to train a first order sequence labeling model, since

the learning algorithms we chose in LIBLINEAR and implemented in SVM-HMM are

both based on the max-margin criterion. We use the basic linear model of SVM-HMM

without applying any kernel function. However, SVM-HMM is a computationally ex-

pensive toolkit, which makes it not suitable for large-scale training data. We also

1http://www.csie.ntu.edu.tw/~cjlin/liblinear/.
2http://www.cs.cornell.edu/People/tj/svm_light/svm_hmm.html.

147

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.cs.cornell.edu/People/tj/svm_light/svm_hmm.html

report experimental results by using a CRF toolkit, Crfsgd1, which implements a

stochastic gradient descent algorithm for fast and scalable parameter estimation.

8.4.2 Main Results

8.4.2.1 Rich Syntactic Features Are Helpful

Test Task Parser P R F/A
Constituent classification AI CTB(−pruning) 98.53% 97.91% 98.22
system SRC CTB(−pruning) - - - - 94.94%

AI+SRC CTB(−pruning) 93.70% 93.11% 93.41
AI CTB(+pruning) 98.14% 97.83% 97.99
SRC CTB(+pruning) - - - - 94.93%
AI+SRC CTB(+pruning) 93.34% 93.04% 93.19
AI Berkeley 84.82% 76.42% 80.40
SRC Berkeley - - - - 93.35%
AI+SRC Berkeley 80.85% 72.84% 76.64

[Ding and Chang, 2008] SRC CTB - - - - 94.68%
[Xue, 2008] AI+SRC CTB 93.0% 91.0% 92.0
[Zhuang and Zong, 2010] AI+SRC Berkeley 80.75% 70.98% 75.55

Table 8.4: Performance of the full parsing based classification system on the test data.

Table 8.4 summarizes precision, recall and f-score of AI, SRC and the whole task

(AI+SRC) of our full parsing based constituent classification system. The last three

lines show the best published SRL performance respectively reported in [Ding and

Chang, 2008; Xue, 2008; Zhuang and Zong, 2010]. Other lines show the performance of

our system. The syntactic annotation of the CTB project also includes information

about empty categories. Modern statistical parsers such as Collins, Charniak and

Berkeley parsers ignore this type of linguistic information. When the Penn Treebank

data is prepared to train a parser, a heuristic procedure is usually performed to

delete empty categories and its associated redundant ancestors. Because it is unclear

whether or not heuristic pruning is used in [Xue, 2008] and [Ding and Chang, 2008],

we report results of our system on both setting, which is distinguished with −pruning

and +pruning.

These results give a significant improvement over previous systems due to the

new features. When gold parses are available, the system achieves a very accurate

result, over 93, which is significantly better than the best published result of 92.

When imperfect parses are used, which is the realistic situation, the accuracy drops

1http://leon.bottou.org/projects/sgd

148

http://leon.bottou.org/projects/sgd

dramatically, from 93+ down to 76.64. The decline of the precision and recall is not

balanced. If an argument is not bracketed as a phrase by a parser, the classification

system cannot recovery it since the classification system only take constituents as

argument candidates. This strategy harms the recall very much.

The syntactic information affects the recognition of the arguments more than the

semantic classification of these arguments. When gold syntactic information is ac-

cessible, most arguments (about 98%) can be correctly recognized. But when an

automatic parser is applied, only 76.42% arguments are found. The decline of the

performance of the SRC sub-task, from 94.9 to 93.35, is relatively small. That in-

dicates the syntactic information for SRC is not as important as for AI. Ding and

Chang [2008] claim that hierarchical classification is helpful for SRC. However, del-

icately designed features are more important and our experiments suggest that by

using rich features, a better SRC classifier can be directly trained without using the

hierarchical architecture.

8.4.2.2 Semantic Chunking Is Helpful

Table 8.5 summarizes performance of different full parsing based systems. These

results shows the helpfulness of semantic chunking. The overall f-score goes from

76.64 up to 77.77 by using a first order Markov model. In general, both max-margin

and CRF models work well and achieve a similar overall performance. The underlying

learning algorithm of Crfsgd is a fast yet scalable one, which can be easily applied

to deal with large scale problems. This suggests that even when more annotated

data is available, semantic chunking is still feasible. We think agreement-based semi-

supervised learning can take advantage of this point.

Chinese parsing has been shown a very challenging task. Bikel parser1 [Bikel,

2004], which implements the Collins’ model, is a very good system for English pro-

cessing, and achieves earlier success on Chinese processing. However, it does not

lead to good performance for Chinese SRL. In particular, it loses an f-score of over

5 points. Although our chunking system can tolerant some bracketing errors in the

full parsing stage, it is still very much limited to the quality of full parsing because

it only takes into account the c-commanders.

1http://www.cis.upenn.edu/~dbikel/software.html

149

http://www.cis.upenn.edu/~dbikel/software.html

Test Parser P R F
Constituent classification system Berkeley 80.85% 72.84% 76.64
LIBLINEAR(Local) Berkeley 79.97% 74.10% 76.92
SVM-HMM (1-order) Berkeley 81.03% 74.42% 77.59
Crfsgd (1-order) Berkeley 82.10% 73.87% 77.77
Crfsgd (1-order) Bikel 75.26% 70.00% 72.54

Table 8.5: Performance of full parsing based SRL systems on the test data.

Test Tagger+Chunker P R F
Syntactic Chunking Berkeley 86.97% 86.22% 86.59

Ours 87.92% 86.62% 87.27
Semantic Chunking Berkeley 78.43% 67.05% 72.29

Ours 77.78% 65.87% 71.33

Table 8.6: Performance of the partial parsing based semantic chunking system on the
test data.

8.4.3 Two-fold Effect of Parsing in SRL

8.4.3.1 Impact on Different Sub-tasks

The main effect of parsing in SRL is two-fold. First, grouping words into constituents,

parsing helps find argument candidates. Second, parsers provide semantic classifiers

plenty of syntactic information, not to only recognize arguments from all candidate

constituents but also to classify their detailed semantic types. We empirically analyze

each effect in turn based on our constituent classification system.

In AI, full parsing is very important for both grouping words and classification.

Table 8.7 summarizes relevant experimental results on the development data. Line 2

is the AI performance when gold candidate boundaries and word features are used;

Line 3 is the performance with additional syntactic features. Line 4 shows the per-

formance by using automatic parses generated by Berkeley parser. We can see that:

1) word features only cannot train good classifiers to identify arguments; 2) it is very

easy to recognize arguments with good enough syntactic parses; 3) there is a severe

performance decline when automatic parses are used. The third observation is a simi-

lar conclusion in English SRL. However this problem in Chinese is much more serious

due to the state-of-the-art of Chinese parsing.

Information theoretic criteria are popular criteria in variable selection [Guyon

and Elisseeff, 2003]. We use the empirical mutual information between each feature

150

Task Parser Bracket Features P R F/A
AI - - CTB Word 80.39% 85.68% 82.95

CTB CTB Word+Synt 98.36% 97.98% 98.17
Berkeley Berkeley Word+Synt 84.38% 75.59% 79.74

SRC - - CPB Word - - - - 93.87%
CTB CPB Word+Synt - - - - 95.71%
Berkeley CPB Word+Synt - - - - 94.23%

Table 8.7: Classification performance on different tasks on the development data.

template and the target to roughly rank the importance of features:

I(X, Y) =
∑

x∈X,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

Table 8.8 shows the ten most useful features in AI. We can see that the most important

features all based on full parsing information.

Rank Feature Rank Feature
1 cct-w 2 ‡ wh+posi+wv

3 htr-w 4 htr-p
5 path(ck, w

v) 6 ‡ wh+w
v

7 cpath(ck, w
v) 8 cct-c

9 path(ck, w
v) + wv 10 lrule(par(ck))

Table 8.8: Top 10 useful features for AI. ‡ means word features.

The second block in Table 8.7 summarizes the SRC performance with gold argu-

ment boundaries. Line 5 is the accuracy when word features are used; Line 6 is the

accuracy when additional syntactic features are added; The last row is the accuracy

when syntactic features used are extracted from automatic parses. We can see that

different from AI, word features only can train reasonably good semantic classifiers.

The comparison suggests that full parsing is not very important for SRC.

8.4.3.2 Why Word Features Are Effective for SRC?

Table 8.9 shows the ten most useful features in SRC. We can see that two of these

ten features are word features (denoted by †). Namely, word features play a more

important role in SRC than in AI. Though the other eight features are based on full

parsing, four of them (denoted by ‡) use the head word which can be well approx-

imated by word features, according to some language specific properties. The head

rules described in [Sun and Jurafsky, 2004] are very popular in Chinese parsing re-

151

Rank Feature Rank Feature
1 ‡cframe+wv+wh 2 ‡wh+w

v+position
3 ‡wh+w

v 4 cct-w
5 lrule(par(ck)) 6 †wi+wj
7 lrule(ck) 8 ‡wh+Posi
9 †cframe+wv 10 htr-p

Table 8.9: Top 10 useful features for SRC.

search, such as in [Duan et al., 2007; Zhang and Clark, 2008b]. From these head rules,

we can see that head words of most phrases in Chinese are located at the first or the

last position. We implement these rules on Chinese Tree Bank and find that 84.12%
1 nodes realize their heads as either their first or last word. Head position suggests

that boundary words are good approximation of head word features. If head words

have good approximation word features, then it is not strange that the four features

denoted by ‡ can be effectively represented by word features. For example, when

two new approximation features, cframe+wv+wi and cframe+wv+wj, are added, the

word based SRC can achieve an accuracy of 94.10%, which is very close to a full

parsing armed one.

8.4.4 Predicate Frequency Factor

Each of our system, as well as most PropBank-style labeling systems, trains one

model for all predicates. Even when a predicate in question never appears in the

training data, the system can still try to find its arguments, though the accuracy is

much lower. Figure 8.4 plots the changes of f-scores of different tasks relative to the

word frequency. The influence of the word frequency on the training data to different

sub-tasks, AI or SRC, is consistent. When the classifiers do not see any examples

of a particular predicate, the predication is very inaccurate. The good news is that

even when a predicate only appears a few times, say once or twice, the prediction

will be significantly better. This observation is helpful to construct domain-specific

SRL systems. For a new domain, linguists can annotate several instances for domain-

specific predicates, and that will help a lot.

1This statistics excludes all empty categories in CTB.

152

 50

 55

 60

 65

 70

 75

 80

 85

0 1-2 3-5 6-10 11-100 101-1000

F
-s

co
re

Predicate frequency on the training data

Full parsing based system
Partial parsing based system

Figure 8.4: F-scores of different tasks and different systems relative to the predicate
frequency on the training data.

8.5 Comparative Analysis

8.5.1 Full Parsing is Necessary

These results indicate the necessity of rich or deep syntactic analysis for Chinese

SRL. When the semantic chunking is built on a discriminative tagger and chunker,

the final SRL f-score is only 71.33. There is a significant gap between the full and

partial parsing based systems. An interesting phenomenon is that though the overall

quality of chunks provided by the Berkeley parser is lower, they are more useful for

semantic chunking. This observation shows the helpfulness of the implicitly encoded

structural information in the parser-style chunking results.

Table 8.10 is the overall performance of the two systems on the development data

set. When we compare the systems based on state-of-the-art parsing systems, we

can see a significant gap (about 5.34 points) of the balanced f-score. The gap of the

prediction precision is relatively small. The main disadvantage of the partial parsing

based system is its weak ability to group words as argument candidates, since little

syntactic information, which only captures the boundary information of very small

phrases, is used.

Tagger+Parser P R F
Full parsing based Berkeley 81.77% 73.23% 77.27
Partial parsing based Ours 78.09% 66.67% 71.93

Table 8.10: Performance of different semantic chunking systems on the development
data.

Though the partial parsing based system is much weaker, we are still interested

in whether or not the full parsing based system is better all the time. To do this,

153

we present a comparative evaluation of our full and partial parsing based semantic

chunking systems. Especially, we emphasize the complementary strengths of the

partial parsing based system to the full parsing based one. This analysis will help

enhance a strong full parsing based SRL system with the help of a partial parsing

based shallow system.

8.5.2 A Comparison of the Recall

The predictive power of the two systems are different: There are a number of argu-

ments that can be correctly recognized by one but not another. This point makes it

possible to further improve the system recall by combining the full and partial parsing

based systems. Especially, the much weaker system, i.e. the partial parsing based

system, can find a comparable number of arguments are are missed by the stronger

system. Figure 8.5 measures the recall for different systems relative to the length

(in bins of size 5: 1-5, 6-10, etc.) of the arguments, while Figure 8.6 measures the

recall relative to the distance (in bins of size 5: 1-5, 6-10, etc.) between arguments

and predicates. By distance, we mean how many words locates between an argument

and its corresponding predicate. The overall recall of the full parsing based system

is significantly higher, however, there are still a number of arguments that are only

recognized by the partial parsing based system. This part is respected as the blue

parts in both figures.

 0

 20

 40

 60

 80

 100

1-5 6-10 11-15 16-20 21+

%
 o

f t
ot

al

Length of arguments

Recall of different systems
Plot as stacked histogram

Both right
Full right
Partial right
Both wrong

Figure 8.5: Recall of different systems relative to the length of arguments.

154

It is obvious that long sentences or large phrases are more hard to parsed. As a

result, two types of arguments are hard to analyze: (1) large arguments that consists

of large numbers of words, and (2) far arguments that are far away from their corre-

sponding predicates. Figure 8.5 also show the impact of the length of the arguments.

When the length goes up, the recall goes down. It is not surprising that arguments are

more and more difficult to rightly recognize as the increase of their length. But the

performance decline slows up and even stops when the length of arguments is larger

than 20 for both full parsing and partial parsing based systems. In other words,

some of the arguments that are composed of many words are still relatively easy to

be identified. The main reason for this point is that these arguments usually have

clear collocation words locating at argument boundaries. Take the phrase below for

example.

• 包括/including [A1 ……/...等/etc.]

The object of the verb “包括/include” has a definite collocation word “等/etc.”, and

this object is thus easy to be recognized as a A1.

 0

 20

 40

 60

 80

 100

1-5 6-10 11-15 16-20 21+

%
 o

f t
ot

al

Distance between arguments and predicates

Recall of different systems
Plot as stacked histogram

Both right
Full right
Partial right
Both wrong

Figure 8.6: Recall of different systems relative to the distance between arguments
and predicates.

The sequential tagging algorithms assume a linear chain structure to different

language problems. Our partial parsing based system only leverage sequential tagging

to resolve the SRL problem. One inherent problem of this system is the weak ability

155

to deal with the so-called far arguments. On the contrary, the full parser can predict

a syntactic structure with a global view. The gap between the recall of two systems

grows dramatically when the arguments locate far away from the predicates, as shown

in Figure 8.6. This observation is different from the observations of large arguments.

The gap is more stable in that case. Another difference is that the decline does not

stop when the distance is greater than 20.

8.5.3 A Comparison of the Precision

When we focus on the precision of two systems, we are sometimes interested in how

many errors that are made by the first system but not by the second one. That to

some extent means that the errors made by the first system can be recovered with

the help of the second system. Denote the number of all tokens that are wrongly

predicted by the first system as #{E1}, and the number of tokens that are wrongly

predicted as arguments by both systems as #{E1 ∩ E2}. We define recovery rate of

the second system to the first system as #{E1}−#{E1∩E2}
#{E1} . Table 8.11 show the error

rate and the recovery rate relative to different argument types. This result is very

encouraging for system combination, since a large rate of errors can be modified.

Type Num. Error rate Recovery rate
A0 1171 23.74% 68.35%
A1 1612 15.69% 69.17%
A2 172 21.51% 72.97%
A3 11 9.09% 100.00%
A4 7 0.00% 0.00%
AM 1422 13.85% 75.63%

Table 8.11: Error rate and the recovery rate relative to the type of arguments.

8.5.4 Impact of Predicate Frequency

Figure 8.4 plots the changes of f-scores of different chunking systems relative to the

word frequency. First, both systems work very badly when they never see a predicate

or just see them a few times in the training data. As more and more instances of a

particular predicate is available, the role labeling of this predicate is better and better.

The amount of training data of a particular predicate influence the full parsing based

system less. We think one main reason is that syntactic information significantly

abstract the meaning from surface strings, and a semantic processor based on full

156

parsing is thus more robust than the one based on partial parsing. The availability

of labeled data of a particular predicate significantly limits the SRL performance.

We thus think it is an essential topic to better capture the paradigmatic relations of

predicates, e.g. through hierarchical classification of verbs.

8.6 Conclusion and Discussion

In this chapter, we first went deep into the feature engineering problem for Chinese

SRL. We then introduced a new method which took either full parses or partial

parse as inputs, and detected and classified semantic roles in a chunking way. Our

evaluation on the benchmark data showed that the full parsing based new features

and new method lead to a significant improvement over the best published individual

SRL system. Furthermore, we present a series of empirical analysis to achieve better

understanding of Chinese SRL. We hope our analysis is helpful to enhance existing

methods and to design new solutions for Chinese SRL.

Our comparative analysis of full and partial parsing based methods emphasize on

the complementary strengths of the partial parsing based system to the full parsing

based one. Our analysis suggests that Chinese SRL can benefit from the combination

of the full and partial parsing based methods. This direction is explored in [Zhuang

and Zong, 2010], which leverage a integer linear programming based post-inference

to combine the outputs from different systems. If we take different parsers as pre-

processing systems, even the same SRL method can provide different labeling results.

In their experiments, the combination of different full parsing based systems was

helpful, but the further combination with our partial parsing based system was more

remarkable. This also confirms our motivation to develop a purely discriminative

shallow semantic chunker.

157

Chapter 9

Conclusions

This chapter provides some brief concluding remarks and discusses topics for future

research.

9.1 Summary of the Thesis

This thesis is motivated by the inadequacy of single view approaches in many areas

in NLP. We have studied multi-view Chinese language processing, including word

segmentation, POS tagging, syntactic parsing, and semantic role labeling. We con-

sider three situations of multiple views in statistical NLP: (1) Heterogeneous methods

have been designed for a given problem; (2) Heterogeneous annotation data, which

could be either different in annotation schemes or in formalisms, is available to train

single systems; (3) Heterogeneous machine learning paradigms, which could be either

supervised or unsupervised, are applicable. Table 9.1 lists all the problems and het-

erogeneous views we have investigated. Each discussed item is one evidence for the

primary argument, that is, learning language structures could benefit from multiple,

heterogeneous views.

• For word segmentation, we first present a comparative study of two state-of-

the-art segmentation methods. Inspired by the diversity of the character-based

and word-based views, we designed a novel stacked sub-word tagging model for

joint word segmentation and POS tagging, which is robust to integrate different

models, even models trained on heterogeneous annotations.

• For POS tagging, we introduced two improvements: (1) integrating chart pars-

ing results to better capture syntagmatic relations among words and (2) inte-

158

Model Annotation Learning paradigm
Scheme Formalism

Word segmentation
√ √ √

POS tagging
√ √ √

Syntactic parsing
√ √ √

Semantic role labeling
√

Table 9.1: The tasks and their corresponding multi-views investigated in the thesis.

grating word clusters acquired from unlabeled data to better capture paradig-

matic relations among words.

• For syntactic parsing, we focused on different linguistic annotations, includ-

ing both the representation formalism and the annotation scheme. We present

a comparative analysis for generative PCFG-LA constituency parsing and dis-

criminative graph-based dependency parsing. To explore the diversity of parsing

in different formalisms, we introduced a Bagging model to effectively enhance

dependency parsing. We also explored heterogenous treebanks to improve con-

stituency parsing via a reranking model.

• Our work on SRL focused on improving the full parsing method with linguisti-

cally rich features and a chunking strategy. Furthermore, we developed a partial

parsing based semantic chunking method, which has complementary strengths

to the full parsing based method.

• Finally, we introduced a feature induction method to improve supervised a word

segmenter and various syntactic processing systems via harvesting string and

word knowledge from unlabeled data.

Multi-view learning can be advantageous when compared to learning with only a

single view especially when learners built on different views are distinct and diverse

enough. The impact of multi-views mainly stands from the diversity between learners,

while it is less important whether the diversity is caused by using multiple computa-

tional models, by training on heterogeneous data, or by implementing supervised or

unsupervised learning paradigms. Our work has shown that view integration benefits

language processing across a wide range of conditions.

An exciting but non-obvious fact is that even in cases that one learner is much

weaker than another learner, it can still enhance the stronger one if it is relevant

and increases the diversity. According to our experiments, as well as some others, a

slightly weaker word-based segmenter can help a character-based segmenter (Chapter

159

2 and 3), a weaker chart parsing based POS tagger can help a sequential tagger

(Chapter 5), and a significantly weaker partial parsing based SRL system can help a

strong full parsing based system [Zhuang and Zong, 2010].

Finally, supervised and unsupervised learning paradigms usually work in very

different ways and there is no guarantee that outputs of unsupervised learners can

be directly compared to human labeled data. Nevertheless, knowledge acquired in an

unsupervised manner can still help supervised systems, if it is relevant to the task.

In our experiments, the knowledge about how independently a string is used is not

directly related to word boundaries but can enhance a strong supervised segmenter;

word clusters that are only roughly related to the paradigmatic lexical relations can

enhance syntactic parsing in different levels.

9.2 Ideas for Future Work

During the course of research, several ideas emerged that could not have been explored

in this thesis. They could be fruitful to revisit some of these ideas in future work.

• Though we only considered Chinese language processing in this study, the idea

to analyze and combine different views is very general in NLP. One natural idea

for future work would be to apply our multi-view processing methods to other

languages.

• We exemplified the advantages of multi-view learning through system integra-

tion. Many other topics, such as agreement/disagreement-based semi-supervised

learning and active learning, could also benefit from investigation of multiple

views.

• Our focus to integrate heterogeneous views for NLP is very closed to ensemble

learning, in the sense that both employ multiple learners and combine their pre-

dictions. There are a number of other well studied ensemble learning methods,

such as boosting [Schapire, 1990], error-correcting output codes [Dietterich and

Bakiri, 1995] and random subspace method [Ho, 1998]. These algorithms may

also benefit multi-view language structure learning.

• The key point of our post-inference-based paradigm for view integration is to

re-predict (or select) based on less accurate outputs from individual systems.

There are several considerable way to represent the output of a base system. The

160

simplest way is to produce the best or n-best predictions for next level processing.

A more interesting way is to compactly represent possible predictions. For

example, the output of word segmentation and POS tagging can be represented

as a word lattice rather that a sequence, and the output of constituency parsing

can be represented as a forest rather than a tree. We think the inference over

a large search space may lead to further improvements for view integration.

The success of our investigation on learning Chinese language structures supports

the multi-view processing idea. Ultimately, we believe that many other tasks as well

as tasks for other languages can be successfully improved by integrating multi-views.

This dissertation has been an illustration of this claim.

161

References

Galen Andrew. 2006. A hybrid markov/semi-markov conditional random field for

sequence segmentation. In Proceedings of the 2006 Conference on Empirical Meth-

ods in Natural Language Processing, pages 465–472. Association for Computational

Linguistics, Sydney, Australia. 13, 15, 29

Collin F. Baker, Charles J. Fillmore, and John B. Lowe. 1998. The berkeley framenet

project. In Proceedings of the 36th Annual Meeting of the Association for Computa-

tional Linguistics and 17th International Conference on Computational Linguistics,

Volume 1, pages 86–90. Association for Computational Linguistics, Montreal, Que-

bec, Canada. URL http://www.aclweb.org/anthology/P98-1013. 134

Daniel M. Bikel. 2004. A distributional analysis of a lexicalized statistical parsing

model. In Dekang Lin and Dekai Wu, editors, Proceedings of EMNLP 2004, pages

182–189. Association for Computational Linguistics, Barcelona, Spain. 149

Daniel M. Bikel and David Chiang. 2000. Two statistical parsing models applied to

the Chinese treebank. In Proceedings of the second workshop on Chinese language

processing: held in conjunction with the 38th Annual Meeting of the Association

for Computational Linguistics - Volume 12, CLPW ’00, pages 1–6. Association for

Computational Linguistics, Stroudsburg, PA, USA. URL http://dx.doi.org/10.

3115/1117769.1117771. 78

Bernd Bohnet. 2010. Top accuracy and fast dependency parsing is not a contradiction.

In Proceedings of the 23rd International Conference on Computational Linguistics

(Coling 2010), pages 89–97. Coling 2010 Organizing Committee, Beijing, China.

URL http://www.aclweb.org/anthology/C10-1011. 82

Leo Breiman. 1996a. Bagging predictors. Machine Learning, 24(2):123–140. 26

Leo Breiman. 1996b. Stacked regressions. Machine Learning, 24:49–64. URL http:

//portal.acm.org/citation.cfm?id=230972.230977. 33

162

http://www.aclweb.org/anthology/P98-1013
http://dx.doi.org/10.3115/1117769.1117771
http://dx.doi.org/10.3115/1117769.1117771
http://www.aclweb.org/anthology/C10-1011
http://portal.acm.org/citation.cfm?id=230972.230977
http://portal.acm.org/citation.cfm?id=230972.230977

REFERENCES

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and

Jenifer C. Lai. 1992. Class-based n-gram models of natural language. Computa-

tional Linguistics, 18:467–479. URL http://portal.acm.org/citation.cfm?id=

176313.176316. 116

Aljoscha Burchardt, Katrin Erk, Anette Frank, Andrea Kowalski, Sebastian Padó,

and Manfred Pinkal. 2006. The salsa corpus: a german corpus resource for lexical

semantics. In In Proceedings of LREC 2006. 134

Aoife Cahill, Mairead Mccarthy, Josef Van Genabith, and Andy Way. 2002. Auto-

matic annotation of the penn treebank with lfg f-structure information. In Pro-

ceedings of the LREC Workshop on Linguistic Knowledge Acquisition and Repre-

sentation: Bootstrapping Annotated Language Data, Las Palmas, Canary Islands,

pages 8–15. 54

Xavier Carreras, Michael Collins, and Terry Koo. 2008. Tag, dynamic programming,

and the perceptron for efficient, feature-rich parsing. In CoNLL 2008: Proceedings

of the Twelfth Conference on Computational Natural Language Learning, pages 9–

16. Coling 2008 Organizing Committee, Manchester, England. URL http://www.

aclweb.org/anthology/W08-2102. 2

Xavier Carreras and Llúıs Màrquez. 2004. Introduction to the conll-2004 shared task:

Semantic role labeling. In Hwee Tou Ng and Ellen Riloff, editors, HLT-NAACL

2004 Workshop: Eighth Conference on Computational Natural Language Learning

(CoNLL-2004), pages 89–97. Association for Computational Linguistics, Boston,

Massachusetts, USA. 145

Eugene Charniak. 2000. A maximum-entropy-inspired parser. In Proceedings of the

first conference on North American chapter of the Association for Computational

Linguistics. 2, 81, 83

Eugene Charniak and Mark Johnson. 2005. Coarse-to-fine n-best parsing and maxent

discriminative reranking. In Proceedings of the 43rd Annual Meeting of the As-

sociation for Computational Linguistics (ACL’05), pages 173–180. Association for

Computational Linguistics, Ann Arbor, Michigan. 81, 105

Wanxiang Che, Zhenghua Li, Yongqiang Li, Yuhang Guo, Bing Qin, and Ting Liu.

2009. Multilingual dependency-based syntactic and semantic parsing. In Proceed-

ings of the Thirteenth Conference on Computational Natural Language Learning

163

http://portal.acm.org/citation.cfm?id=176313.176316
http://portal.acm.org/citation.cfm?id=176313.176316
http://www.aclweb.org/anthology/W08-2102
http://www.aclweb.org/anthology/W08-2102

REFERENCES

(CoNLL 2009): Shared Task, pages 49–54. Association for Computational Lin-

guistics, Boulder, Colorado. URL http://www.aclweb.org/anthology/W09-1207.

128, 130

Keh-Jiann Chen and Shing-Huan Liu. 1992. Word identification for mandarin Chinese

sentences. In Proceedings of the 14th conference on Computational linguistics, pages

101–107. Association for Computational Linguistics, Morristown, NJ, USA. 13, 14

Wenliang Chen, Yujie Zhang, and Hitoshi Isahara. 2006. An empirical study of

Chinese chunking. In Proceedings of the COLING/ACL 2006 Main Conference

Poster Sessions, pages 97–104. Association for Computational Linguistics, Sydney,

Australia. 123, 126

David Chiang. 2000. Statistical parsing with an automatically-extracted tree ad-

joining grammar. In Proceedings of the 38th Annual Meeting on Association for

Computational Linguistics, ACL ’00, pages 456–463. Association for Computational

Linguistics, Stroudsburg, PA, USA. URL http://dx.doi.org/10.3115/1075218.

1075276. 2

Stephen Clark, James R. Curran, and Miles Osborne. 2003. Bootstrapping pos taggers

using unlabelled data. In Proceedings of the seventh conference on Natural language

learning at HLT-NAACL 2003 - Volume 4, CONLL ’03, pages 49–55. Association

for Computational Linguistics, Stroudsburg, PA, USA. URL http://dx.doi.org/

10.3115/1119176.1119183. 60

William W. Cohen and Vitor R. Carvalho. 2005. Stacked sequential learning. In

Proceedings of the 19th international joint conference on Artificial intelligence,

pages 671–676. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. URL

http://portal.acm.org/citation.cfm?id=1642293.1642401. 33

Michael Collins. 2000. Discriminative reranking for natural language parsing. In

Computational Linguistics, pages 175–182. Morgan Kaufmann. 110

Michael Collins. 2002. Discriminative training methods for hidden markov models:

Theory and experiments with perceptron algorithms. In Proceedings of the 2002

Conference on Empirical Methods in Natural Language Processing, pages 1–8. Asso-

ciation for Computational Linguistics. URL http://www.aclweb.org/anthology/

W02-1001. 79, 107

164

http://www.aclweb.org/anthology/W09-1207
http://dx.doi.org/10.3115/1075218.1075276
http://dx.doi.org/10.3115/1075218.1075276
http://dx.doi.org/10.3115/1119176.1119183
http://dx.doi.org/10.3115/1119176.1119183
http://portal.acm.org/citation.cfm?id=1642293.1642401
http://www.aclweb.org/anthology/W02-1001
http://www.aclweb.org/anthology/W02-1001

REFERENCES

Michael Collins. 2003. Head-driven statistical models for natural language parsing.

Computational Linguistics, 29(4):589–637. 2, 81, 83

Michael Collins and Nigel Duffy. 2002. New ranking algorithms for parsing and

tagging: Kernels over discrete structures, and the voted perceptron. In Proceedings

of 40th Annual Meeting of the Association for Computational Linguistics, pages

263–270. Association for Computational Linguistics, Philadelphia, Pennsylvania,

USA. URL http://www.aclweb.org/anthology/P02-1034. 107

Michael Collins and Terry Koo. 2005. Discriminative reranking for natural lan-

guage parsing. Computational Linguistics, 31:25–70. URL http://dx.doi.org/

10.1162/0891201053630273. 81, 105, 107

Michael Collins and Yoram Singer. 1999. Unsupervised models for named entity

classification. In In Proceedings of the Joint SIGDAT Conference on Empirical

Methods in Natural Language Processing and Very Large Corpora, pages 100–110.

1

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer.

2006. Online passive-aggressive algorithms. JOURNAL OF MACHINE LEARN-

ING RESEARCH, 7:551–585. 18

Dipanjan Das and Slav Petrov. 2011. Unsupervised part-of-speech tagging with bilin-

gual graph-based projections. In Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human Language Technologies, pages

600–609. Association for Computational Linguistics, Portland, Oregon, USA. URL

http://www.aclweb.org/anthology/P11-1061. 73

Thomas G. Dietterich and Ghulum Bakiri. 1995. Solving multiclass learning problems

via error-correcting output codes. J. Artif. Int. Res., 2:263–286. URL http://dl.

acm.org/citation.cfm?id=1622826.1622834. 160

Weiwei Ding and Baobao Chang. 2008. Improving Chinese semantic role classification

with hierarchical feature selection strategy. In Proceedings of the EMNLP 2008,

pages 324–333. Association for Computational Linguistics, Honolulu, Hawaii. 136,

137, 140, 147, 148, 149

Xiangyu Duan, Jun Zhao, and Bo Xu. 2007. Probabilistic models for action-based

Chinese dependency parsing. In ECML ’07: Proceedings of the 18th European con-

165

http://www.aclweb.org/anthology/P02-1034
http://dx.doi.org/10.1162/0891201053630273
http://dx.doi.org/10.1162/0891201053630273
http://www.aclweb.org/anthology/P11-1061
http://dl.acm.org/citation.cfm?id=1622826.1622834
http://dl.acm.org/citation.cfm?id=1622826.1622834

REFERENCES

ference on Machine Learning, pages 559–566. Springer-Verlag, Berlin, Heidelberg.

142, 152

Jason M. Eisner. 1996. Three new probabilistic models for dependency parsing: an

exploration. In Proceedings of the 16th conference on Computational linguistics -

Volume 1, COLING ’96, pages 340–345. Association for Computational Linguistics,

Stroudsburg, PA, USA. URL http://dx.doi.org/10.3115/992628.992688. 2,

98, 99

Thomas Emerson. 2005. The second international Chinese word segmentation bake-

off. In In Proceedings of the Second SIGHAN Workshop on Chinese Language

Processing, pages 123–133. 21

Haodi Feng, Kang Chen, Xiaotie Deng, and Weimin Zheng. 2004. Accessor variety

criteria for Chinese word extraction. Computational Linguistics, 30:75–93. 64, 72

Jianfeng Gao, Galen Andrew, Mark Johnson, and Kristina Toutanova. 2007. A com-

parative study of parameter estimation methods for statistical natural language

processing. In Proceedings of the 45th Annual Meeting of the Association of Com-

putational Linguistics, pages 824–831. Association for Computational Linguistics,

Prague, Czech Republic. URL http://www.aclweb.org/anthology/P07-1104.

107

Daniel Gildea and Daniel Jurafsky. 2002. Automatic labeling of semantic roles.

Computational Linguistics, 28:245–288. URL http://dx.doi.org/10.1162/

089120102760275983. 134, 136, 137

Jesús Giménez and Lluís Màrquez. 2004. Svmtool: A general pos tagger gener-

ator based on support vector machines. In In Proceedings of the 4th International

Conference on Language Resources and Evaluation, pages 43–46. 79

Andrew Gordon and Reid Swanson. 2007. Generalizing semantic role annotations

across syntactically similar verbs. In Proceedings of the 45th Annual Meeting of the

Association of Computational Linguistics, pages 192–199. Association for Compu-

tational Linguistics, Prague, Czech Republic. 136

Isabelle Guyon and André Elisseeff. 2003. An introduction to variable and feature

selection. Journal of Machine Learning Research, 3:1157–1182. 150

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara,

Maria Antònia Mart́ı, Llúıs Màrquez, Adam Meyers, Joakim Nivre, Sebastian Padó,

166

http://dx.doi.org/10.3115/992628.992688
http://www.aclweb.org/anthology/P07-1104
http://dx.doi.org/10.1162/089120102760275983
http://dx.doi.org/10.1162/089120102760275983

REFERENCES

Jan Štěpánek, Pavel Straňák, Mihai Surdeanu, Nianwen Xue, and Yi Zhang. 2009.

The CoNLL-2009 shared task: Syntactic and semantic dependencies in multiple

languages. In Proceedings of the 13th Conference on Computational Natural Lan-

guage Learning (CoNLL-2009), June 4-5. Boulder, Colorado, USA. 82, 137

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. 2011. Incremen-

tal joint pos tagging and dependency parsing in chinese. In Proceedings of 5th

International Joint Conference on Natural Language Processing, pages 1216–1224.

Asian Federation of Natural Language Processing, Chiang Mai, Thailand. URL

http://www.aclweb.org/anthology/I11-1136. 100, 101

John Henderson and Eric Brill. 1999. Exploiting diversity in natural language process-

ing: Combining parsers. In In Proceedings of the Fourth Conference on Empirical

Methods in Natural Language Processing, pages 187–194. 97

Tin Kam Ho. 1998. The random subspace method for constructing decision forests.

IEEE Trans. Pattern Anal. Mach. Intell., 20:832–844. URL http://dl.acm.org/

citation.cfm?id=284980.284986. 160

Julia Hockenmaier and Mark Steedman. 2007. Ccgbank: A corpus of ccg deriva-

tions and dependency structures extracted from the penn treebank. Computational

Linguistics, 33(3):355–396. 54

Liang Huang. 2008. Forest reranking: Discriminative parsing with non-local features.

In Proceedings of ACL-08: HLT, pages 586–594. Association for Computational

Linguistics, Columbus, Ohio. URL http://www.aclweb.org/anthology/P/P08/

P08-1067. 81

Liang Huang and Kenji Sagae. 2010. Dynamic programming for linear-time incre-

mental parsing. In Proceedings of the 48th Annual Meeting of the Association for

Computational Linguistics, pages 1077–1086. Association for Computational Lin-

guistics, Uppsala, Sweden. URL http://www.aclweb.org/anthology/P10-1110.

78, 82, 84

Zhongqiang Huang, Vladimir Eidelman, and Mary Harper. 2009. Improving a sim-

ple bigram hmm part-of-speech tagger by latent annotation and self-training. In

Proceedings of Human Language Technologies: The 2009 Annual Conference of the

North American Chapter of the Association for Computational Linguistics, Com-

panion Volume: Short Papers, pages 213–216. Association for Computational Lin-

167

http://www.aclweb.org/anthology/I11-1136
http://dl.acm.org/citation.cfm?id=284980.284986
http://dl.acm.org/citation.cfm?id=284980.284986
http://www.aclweb.org/anthology/P/P08/P08-1067
http://www.aclweb.org/anthology/P/P08/P08-1067
http://www.aclweb.org/anthology/P10-1110

REFERENCES

guistics, Boulder, Colorado. URL http://www.aclweb.org/anthology/N/N09/

N09-2054. 78, 79, 84, 86

Zhongqiang Huang, Mary Harper, and Wen Wang. 2007. Mandarin part-of-speech

tagging and discriminative reranking. In Proceedings of the 2007 Joint Confer-

ence on Empirical Methods in Natural Language Processing and Computational

Natural Language Learning (EMNLP-CoNLL), pages 1093–1102. Association for

Computational Linguistics, Prague, Czech Republic. URL http://www.aclweb.

org/anthology/D/D07/D07-1117. 35, 78, 79, 84, 86

Rebecca Hwa, Miles Osborne, Anoop Sarkar, and Mark Steedman. 2003. Corrected

co-training for statistical parsers. In In ICML-03 Workshop on the Continuum from

Labeled to Unlabeled Data in Machine Learning and Data Mining, pages 95–102. 1

Wenbin Jiang, Liang Huang, and Qun Liu. 2009. Automatic adaptation of anno-

tation standards: Chinese word segmentation and pos tagging – a case study. In

Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the

4th International Joint Conference on Natural Language Processing of the AFNLP,

pages 522–530. Association for Computational Linguistics, Suntec, Singapore. URL

http://www.aclweb.org/anthology/P/P09/P09-1059. 13, 15, 34, 51, 55, 57, 66,

84

Wenbin Jiang, Liang Huang, Qun Liu, and Yajuan Lü. 2008a. A cascaded linear model

for joint Chinese word segmentation and part-of-speech tagging. In Proceedings of

ACL-08: HLT, pages 897–904. Association for Computational Linguistics, Colum-

bus, Ohio. URL http://www.aclweb.org/anthology/P/P08/P08-1102. 32, 41,

45

Wenbin Jiang, Haitao Mi, and Qun Liu. 2008b. Word lattice reranking for Chinese

word segmentation and part-of-speech tagging. In Proceedings of the 22nd Inter-

national Conference on Computational Linguistics (Coling 2008), pages 385–392.

Coling 2008 Organizing Committee, Manchester, UK. URL http://www.aclweb.

org/anthology/C08-1049. 32, 41, 45

Dan Klein and Christopher D. Manning. 2003. Accurate unlexicalized parsing. In Pro-

ceedings of the 41st Annual Meeting of the Association for Computational Linguis-

tics, pages 423–430. Association for Computational Linguistics, Sapporo, Japan.

2

168

http://www.aclweb.org/anthology/N/N09/N09-2054
http://www.aclweb.org/anthology/N/N09/N09-2054
http://www.aclweb.org/anthology/D/D07/D07-1117
http://www.aclweb.org/anthology/D/D07/D07-1117
http://www.aclweb.org/anthology/P/P09/P09-1059
http://www.aclweb.org/anthology/P/P08/P08-1102
http://www.aclweb.org/anthology/C08-1049
http://www.aclweb.org/anthology/C08-1049

REFERENCES

Reinhard Kneser and Hermann Ney. 1993. Improved clustering techniques for class-

based statistical language modeling. In In Proceedings of the European Conference

on Speech Communication and Technology (Eurospeech). 116

Terry Koo, Xavier Carreras, and Michael Collins. 2008. Simple semi-supervised de-

pendency parsing. In Proceedings of ACL-08: HLT, pages 595–603. Association

for Computational Linguistics, Columbus, Ohio. URL http://www.aclweb.org/

anthology/P/P08/P08-1068. 61, 62, 71, 116

Canasai Kruengkrai, Kiyotaka Uchimoto, Jun’ichi Kazama, Yiou Wang, Kentaro

Torisawa, and Hitoshi Isahara. 2009. An error-driven word-character hybrid model

for joint Chinese word segmentation and pos tagging. In Proceedings of the

Joint Conference of the 47th Annual Meeting of the ACL and the 4th Interna-

tional Joint Conference on Natural Language Processing of the AFNLP, pages

513–521. Association for Computational Linguistics, Suntec, Singapore. URL

http://www.aclweb.org/anthology/P/P09/P09-1058. 33, 41, 45

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Conditional

random fields: Probabilistic models for segmenting and labeling sequence data.

In Proceedings of the Eighteenth International Conference on Machine Learning,

ICML ’01, pages 282–289. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA. URL http://portal.acm.org/citation.cfm?id=645530.655813. 67

Thomas Lavergne, Olivier Cappé, and François Yvon. 2010. Practical very large scale

CRFs. pages 504–513. URL http://www.aclweb.org/anthology/P10-1052. 46,

85

Roger Levy and Christopher Manning. 2003. Is it harder to parse Chinese, or the

Chinese treebank? In Proceedings of the 41st Annual Meeting on Association for

Computational Linguistics - Volume 1, ACL ’03, pages 439–446. Association for

Computational Linguistics, Stroudsburg, PA, USA. URL http://dx.doi.org/

10.3115/1075096.1075152. 78, 79

Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu, Wenliang Chen, and Haizhou Li.

2011. Joint models for Chinese pos tagging and dependency parsing. In Proceedings

of the 2011 Conference on Empirical Methods in Natural Language Processing,

pages 1180–1191. Association for Computational Linguistics, Edinburgh, Scotland,

UK. URL http://www.aclweb.org/anthology/D11-1109. 78, 79, 82, 84, 87, 128

169

http://www.aclweb.org/anthology/P/P08/P08-1068
http://www.aclweb.org/anthology/P/P08/P08-1068
http://www.aclweb.org/anthology/P/P09/P09-1058
http://portal.acm.org/citation.cfm?id=645530.655813
http://www.aclweb.org/anthology/P10-1052
http://dx.doi.org/10.3115/1075096.1075152
http://dx.doi.org/10.3115/1075096.1075152
http://www.aclweb.org/anthology/D11-1109

REFERENCES

Zhongguo Li and Maosong Sun. 2009. Punctuation as implicit annotations for Chinese

word segmentation. Computational Linguistics, 35:505–512. URL http://dx.doi.

org/10.1162/coli.2009.35.4.35403. 72

Percy Liang, Michael Collins, and Percy Liang. 2005. Semi-supervised learning for

natural language. In Master’s thesis, MIT. 116

Percy Liang, Hal Daumé, III, and Dan Klein. 2008. Structure compilation: trad-

ing structure for features. In Proceedings of the 25th international conference on

Machine learning, ICML ’08, pages 592–599. ACM, New York, NY, USA. URL

http://doi.acm.org/10.1145/1390156.1390231. 16

Shasha Liao and Ralph Grishman. 2011. Using prediction from sentential scope

to build a pseudo co-testing learner for event extraction. In Proceedings of 5th

International Joint Conference on Natural Language Processing, pages 714–722.

Asian Federation of Natural Language Processing, Chiang Mai, Thailand. URL

http://www.aclweb.org/anthology/I11-1080. 1

Dekang Lin. 1998. Automatic retrieval and clustering of similar words. In Proceedings

of the 36th Annual Meeting of the Association for Computational Linguistics and

17th International Conference on Computational Linguistics, Volume 2, pages 768–

774. Association for Computational Linguistics, Montreal, Quebec, Canada. URL

http://www.aclweb.org/anthology/P98-2005. 73

Dekang Lin and Xiaoyun Wu. 2009. Phrase clustering for discriminative learning. In

Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the

4th International Joint Conference on Natural Language Processing of the AFNLP,

pages 1030–1038. Association for Computational Linguistics, Suntec, Singapore.

URL http://www.aclweb.org/anthology/P/P09/P09-1116. 61

Yudong Liu and Anoop Sarkar. 2007. Experimental evaluation of LTAG-based fea-

tures for semantic role labeling. In Proceedings of the 2007 Joint Conference on Em-

pirical Methods in Natural Language Processing and Computational Natural Lan-

guage Learning (EMNLP-CoNLL), pages 590–599. Association for Computational

Linguistics, Prague, Czech Republic. URL http://www.aclweb.org/anthology/

D/D07/D07-1062. 136

Andre Martins, Noah Smith, and Eric Xing. 2009. Concise integer linear programming

formulations for dependency parsing. In Proceedings of the Joint Conference of

170

http://dx.doi.org/10.1162/coli.2009.35.4.35403
http://dx.doi.org/10.1162/coli.2009.35.4.35403
http://doi.acm.org/10.1145/1390156.1390231
http://www.aclweb.org/anthology/I11-1080
http://www.aclweb.org/anthology/P98-2005
http://www.aclweb.org/anthology/P/P09/P09-1116
http://www.aclweb.org/anthology/D/D07/D07-1062
http://www.aclweb.org/anthology/D/D07/D07-1062

REFERENCES

the 47th Annual Meeting of the ACL and the 4th International Joint Conference

on Natural Language Processing of the AFNLP, pages 342–350. Association for

Computational Linguistics, Suntec, Singapore. URL http://www.aclweb.org/

anthology/P/P09/P09-1039. 83

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. 2005. Probabilistic cfg with

latent annotations. In Proceedings of the 43rd Annual Meeting on Association for

Computational Linguistics, ACL ’05, pages 75–82. Association for Computational

Linguistics, Stroudsburg, PA, USA. URL http://dx.doi.org/10.3115/1219840.

1219850. 81

Ryan McDonald. 2006. Discriminative learning and spanning tree algorithms for

dependency parsing. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA,

USA. AAI3225503. 83, 97

Ryan McDonald and Joakim Nivre. 2007. Characterizing the errors of data-driven

dependency parsing models. In Proceedings of the 2007 Joint Conference on Empir-

ical Methods in Natural Language Processing and Computational Natural Language

Learning (EMNLP-CoNLL), pages 122–131. Association for Computational Lin-

guistics, Prague, Czech Republic. URL http://www.aclweb.org/anthology/D/

D07/D07-1013. 82

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajic. 2005. Non-

projective dependency parsing using spanning tree algorithms. In Proceedings of

Human Language Technology Conference and Conference on Empirical Methods in

Natural Language Processing, pages 523–530. Association for Computational Lin-

guistics, Vancouver, British Columbia, Canada. 2

Adam Meyers, Ruth Reeves, Catherine Macleod, Rachel Szekely, Veronika Zielinska,

Brian Young, and Ralph Grishman. 2004. The nombank project: An interim re-

port. In In Proceedings of the NAACL/HLT Workshop on Frontiers in Corpus

Annotation. 134

Scott Miller, Jethran Guinness, and Alex Zamanian. 2004. Name tagging with word

clusters and discriminative training. In Daniel Marcu Susan Dumais and Salim

Roukos, editors, HLT-NAACL 2004: Main Proceedings, pages 337–342. Association

for Computational Linguistics, Boston, Massachusetts, USA. 61, 62, 71, 116, 117

171

http://www.aclweb.org/anthology/P/P09/P09-1039
http://www.aclweb.org/anthology/P/P09/P09-1039
http://dx.doi.org/10.3115/1219840.1219850
http://dx.doi.org/10.3115/1219840.1219850
http://www.aclweb.org/anthology/D/D07/D07-1013
http://www.aclweb.org/anthology/D/D07/D07-1013

REFERENCES

Yusuke Miyao, Takashi Ninomiya, and Jun ichi Tsujii. 2004. Corpus-oriented gram-

mar development for acquiring a head-driven phrase structure grammar from the

penn treebank. In IJCNLP, pages 684–693. 54

Alessandro Moschitti. 2004. A study on convolution kernels for shallow statistic

parsing. In Proceedings of the 42nd Meeting of the Association for Computational

Linguistics (ACL’04), Main Volume, pages 335–342. Barcelona, Spain. URL http:

//www.aclweb.org/anthology/P04-1043. 136

Tetsuji Nakagawa and Kiyotaka Uchimoto. 2007. A hybrid approach to word segmen-

tation and pos tagging. In Proceedings of the 45th Annual Meeting of the Associ-

ation for Computational Linguistics Companion Volume Proceedings of the Demo

and Poster Sessions, pages 217–220. Association for Computational Linguistics,

Prague, Czech Republic. URL http://www.aclweb.org/anthology/P07-2055.

33

Hwee Tou Ng and Jin Kiat Low. 2004. Chinese part-of-speech tagging: One-at-a-time

or all-at-once? word-based or character-based? In Dekang Lin and Dekai Wu, edi-

tors, Proceedings of EMNLP 2004, pages 277–284. Association for Computational

Linguistics, Barcelona, Spain. 13, 32, 33

Joakim Nivre. 2008. Algorithms for deterministic incremental dependency pars-

ing. Comput. Linguist., 34:513–553. URL http://dx.doi.org/10.1162/coli.

07-056-R1-07-027. 83

Joakim Nivre and Ryan McDonald. 2008. Integrating graph-based and transition-

based dependency parsers. In Proceedings of ACL-08: HLT, pages 950–958. Associ-

ation for Computational Linguistics, Columbus, Ohio. URL http://www.aclweb.

org/anthology/P/P08/P08-1108. 30, 33, 97

Franz Josef Och. 1999. An efficient method for determining bilingual word classes.

In Proceedings of the ninth conference on European chapter of the Association for

Computational Linguistics, EACL ’99, pages 71–76. Association for Computational

Linguistics, Stroudsburg, PA, USA. URL http://dx.doi.org/10.3115/977035.

977046. 73, 116

Naoaki Okazaki. 2007. CRFsuite: a fast implementation of conditional random fields

(CRFs). URL http://www.chokkan.org/software/crfsuite/. 67

172

http://www.aclweb.org/anthology/P04-1043
http://www.aclweb.org/anthology/P04-1043
http://www.aclweb.org/anthology/P07-2055
http://dx.doi.org/10.1162/coli.07-056-R1-07-027
http://dx.doi.org/10.1162/coli.07-056-R1-07-027
http://www.aclweb.org/anthology/P/P08/P08-1108
http://www.aclweb.org/anthology/P/P08/P08-1108
http://dx.doi.org/10.3115/977035.977046
http://dx.doi.org/10.3115/977035.977046
http://www.chokkan.org/software/crfsuite/

REFERENCES

Miles Osborne and Jason Baldridge. 2004. Ensemble-based active learning for parse

selection. In Daniel Marcu Susan Dumais and Salim Roukos, editors, HLT-NAACL

2004: Main Proceedings, pages 89–96. Association for Computational Linguistics,

Boston, Massachusetts, USA. 1

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The proposition bank: An

annotated corpus of semantic roles. Computational Linguistics, 31:71–106. URL

http://dx.doi.org/10.1162/0891201053630264. 134

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. 2006. Learning accurate,

compact, and interpretable tree annotation. In Proceedings of the 21st International

Conference on Computational Linguistics and 44th Annual Meeting of the Associa-

tion for Computational Linguistics, pages 433–440. Association for Computational

Linguistics, Sydney, Australia. 2, 81, 104

Slav Petrov and Dan Klein. 2007. Improved inference for unlexicalized parsing. In Hu-

man Language Technologies 2007: The Conference of the North American Chapter

of the Association for Computational Linguistics; Proceedings of the Main Confer-

ence, pages 404–411. Association for Computational Linguistics, Rochester, New

York. 2, 78, 81, 104

Sameer Pradhan, Kadri Hacioglu, Wayne Ward, James H. Martin, and Daniel Ju-

rafsky. 2003. Semantic role parsing: Adding semantic structure to unstructured

text. In Proceedings of the Third IEEE International Conference on Data Min-

ing, ICDM ’03, pages 629–. IEEE Computer Society, Washington, DC, USA. URL

http://portal.acm.org/citation.cfm?id=951949.952080. 137

Vasin Punyakanok, Dan Roth, Wen-tau Yih, and Dav Zimak. 2004. Semantic role

labeling via integer linear programming inference. In Proceedings of Coling 2004,

pages 1346–1352. COLING, Geneva, Switzerland. 136

Lance Ramshaw and Mitch Marcus. 1995. Text chunking using transformation-based

learning. In David Yarowsky and Kenneth Church, editors, Proceedings of the Third

Workshop on Very Large Corpora, pages 82–94. Association for Computational

Linguistics, Somerset, New Jersey. 26, 51, 123, 145

Kenji Sagae and Alon Lavie. 2006a. A best-first probabilistic shift-reduce parser. In

Proceedings of the COLING/ACL on Main conference poster sessions, COLING-

ACL ’06, pages 691–698. Association for Computational Linguistics, Stroudsburg,

PA, USA. URL http://dl.acm.org/citation.cfm?id=1273073.1273162. 2

173

http://dx.doi.org/10.1162/0891201053630264
http://portal.acm.org/citation.cfm?id=951949.952080
http://dl.acm.org/citation.cfm?id=1273073.1273162

REFERENCES

Kenji Sagae and Alon Lavie. 2006b. Parser combination by reparsing. In Proceed-

ings of the Human Language Technology Conference of the NAACL, Companion

Volume: Short Papers, NAACL-Short ’06, pages 129–132. Association for Com-

putational Linguistics, Stroudsburg, PA, USA. URL http://portal.acm.org/

citation.cfm?id=1614049.1614082. 30, 97, 98

Sunita Sarawagi and William W. Cohen. 2004. Semi-markov conditional random

fields for information extraction. In In Advances in Neural Information Processing

Systems 17, pages 1185–1192. 18

Anoop Sarkar. 2001. Applying co-training methods to statistical parsing. In Pro-

ceedings of the second meeting of the North American Chapter of the Associa-

tion for Computational Linguistics on Language technologies, NAACL ’01, pages

1–8. Association for Computational Linguistics, Stroudsburg, PA, USA. URL

http://dx.doi.org/10.3115/1073336.1073359. 1

Robert E. Schapire. 1990. The strength of weak learnability. Mach. Learn., 5:197–227.

URL http://dl.acm.org/citation.cfm?id=83637.83645. 160

Fei Sha and Fernando Pereira. 2003. Shallow parsing with conditional random fields.

In Proceedings of the 2003 Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics on Human Language Technology - Volume 1,

NAACL ’03, pages 134–141. Association for Computational Linguistics, Strouds-

burg, PA, USA. URL http://dx.doi.org/10.3115/1073445.1073473. 123

Libin Shen and Aravind Joshi. 2005. Incremental ltag parsing. In Proceedings of

Human Language Technology Conference and Conference on Empirical Methods

in Natural Language Processing, pages 811–818. Association for Computational

Linguistics, Vancouver, British Columbia, Canada. URL http://www.aclweb.

org/anthology/H/H05/H05-1102. 2

Libin Shen, Giorgio Satta, and Aravind Joshi. 2007. Guided learning for bidirectional

sequence classification. In Proceedings of the 45th Annual Meeting of the Associa-

tion of Computational Linguistics, pages 760–767. Association for Computational

Linguistics, Prague, Czech Republic. URL http://www.aclweb.org/anthology/

P07-1096. 79

Yan Song and Chunyu Kit. 2009. Pcfg parsing with crf tagging for head recognition.

In Proceedings of the CIPS-ParsEval-2009. 110

174

http://portal.acm.org/citation.cfm?id=1614049.1614082
http://portal.acm.org/citation.cfm?id=1614049.1614082
http://dx.doi.org/10.3115/1073336.1073359
http://dl.acm.org/citation.cfm?id=83637.83645
http://dx.doi.org/10.3115/1073445.1073473
http://www.aclweb.org/anthology/H/H05/H05-1102
http://www.aclweb.org/anthology/H/H05/H05-1102
http://www.aclweb.org/anthology/P07-1096
http://www.aclweb.org/anthology/P07-1096

REFERENCES

Valentin I. Spitkovsky, Daniel Jurafsky, and Hiyan Alshawi. 2010. Profiting from

mark-up: Hyper-text annotations for guided parsing. In Proceedings of the 48th

Annual Meeting of the Association for Computational Linguistics, pages 1278–1287.

Association for Computational Linguistics, Uppsala, Sweden. URL http://www.

aclweb.org/anthology/P10-1130. 65

Honglin Sun and Daniel Jurafsky. 2004. Shallow semantc parsing of Chinese. In

Daniel Marcu Susan Dumais and Salim Roukos, editors, HLT-NAACL 2004: Main

Proceedings, pages 249–256. Association for Computational Linguistics, Boston,

Massachusetts, USA. 136, 142, 151

Weiwei Sun. 2010a. Improving Chinese semantic role labeling with rich syntactic

features. In Proceedings of the ACL 2010 Conference Short Papers, pages 168–

172. Association for Computational Linguistics, Uppsala, Sweden. URL http:

//www.aclweb.org/anthology/P10-2031. 133

Weiwei Sun. 2010b. Semantics-driven shallow parsing for Chinese semantic role la-

beling. In Proceedings of the ACL 2010 Conference Short Papers, pages 103–

108. Association for Computational Linguistics, Uppsala, Sweden. URL http:

//www.aclweb.org/anthology/P10-2019. 147

Weiwei Sun. 2010c. Word-based and character-based word segmentation models:

Comparison and combination. In Proceedings of the 23rd International Conference

on Computational Linguistics (Coling 2010), pages 1211–1219. Coling 2010 Or-

ganizing Committee, Beijing, China. URL http://www.aclweb.org/anthology/

C10-2139. 12

Weiwei Sun. 2011. A stacked sub-word model for joint Chinese word segmentation and

part-of-speech tagging. In Proceedings of the 49th Annual Meeting of the Associ-

ation for Computational Linguistics: Human Language Technologies, pages 1385–

1394. Association for Computational Linguistics, Portland, Oregon, USA. URL

http://www.aclweb.org/anthology/P11-1139. 31, 67, 84

Weiwei Sun and Zhifang Sui. 2009. Chinese function tag labeling. In Proceedings

of the 23rd Pacific Asia Conference on Language, Information and Computation.

Hong Kong. 84, 143

Weiwei Sun, Zhifang Sui, and Haifeng Wang. 2008. Prediction of maximal projection

for semantic role labeling. In Proceedings of the 22nd International Conference

175

http://www.aclweb.org/anthology/P10-1130
http://www.aclweb.org/anthology/P10-1130
http://www.aclweb.org/anthology/P10-2031
http://www.aclweb.org/anthology/P10-2031
http://www.aclweb.org/anthology/P10-2019
http://www.aclweb.org/anthology/P10-2019
http://www.aclweb.org/anthology/C10-2139
http://www.aclweb.org/anthology/C10-2139
http://www.aclweb.org/anthology/P11-1139

REFERENCES

on Computational Linguistics (Coling 2008), pages 833–840. Coling 2008 Orga-

nizing Committee, Manchester, UK. URL http://www.aclweb.org/anthology/

C08-1105. 140, 143

Weiwei Sun, Zhifang Sui, Meng Wang, and Xin Wang. 2009a. Chinese semantic role

labeling with shallow parsing. In Proceedings of the 2009 Conference on Empirical

Methods in Natural Language Processing, pages 1475–1483. Association for Com-

putational Linguistics, Singapore. URL http://www.aclweb.org/anthology/D/

D09/D09-1153. 16, 133

Weiwei Sun and Hans Uszkoreit. 2012. Capturing paradigmatic and syntagmatic

lexical relations: Towards accurate Chinese part-of-speech tagging. In Proceed-

ings of the 50th Annual Meeting of the Association for Computational Linguistics.

Association for Computational Linguistics. 76, 114

Weiwei Sun and Xiaojun Wan. 2012. Reducing approximation and estimation errors

for Chinese lexical processing with heterogeneous annotations. In Proceedings of the

50th Annual Meeting of the Association for Computational Linguistics. Association

for Computational Linguistics. 31

Weiwei Sun, Rui Wang, and Yi Zhang. 2010. Discriminative parse reranking for Chi-

nese with homogeneous and heterogeneous annotations. In Proceedings of Joint

Conference on Chinese Language Processing (CIPS-SIGHAN). Beijing, China.

URL http://aclweb.org/anthology/W/W10/W10-4144.pdf. 103

Weiwei Sun and Jia Xu. 2011. Enhancing Chinese word segmentation using unlabeled

data. In Proceedings of the 2011 Conference on Empirical Methods in Natural

Language Processing, pages 970–979. Association for Computational Linguistics,

Edinburgh, Scotland, UK. URL http://www.aclweb.org/anthology/D11-1090.

59, 84

Xu Sun, Yaozhong Zhang, Takuya Matsuzaki, Yoshimasa Tsuruoka, and Jun’ichi

Tsujii. 2009b. A discriminative latent variable Chinese segmenter with hybrid

word/character information. In Proceedings of Human Language Technologies:

The 2009 Annual Conference of the North American Chapter of the Association

for Computational Linguistics, pages 56–64. Association for Computational Lin-

guistics, Boulder, Colorado. URL http://www.aclweb.org/anthology/N/N09/

N09-1007. 13, 15, 20, 29

176

http://www.aclweb.org/anthology/C08-1105
http://www.aclweb.org/anthology/C08-1105
http://www.aclweb.org/anthology/D/D09/D09-1153
http://www.aclweb.org/anthology/D/D09/D09-1153
http://aclweb.org/anthology/W/W10/W10-4144.pdf
http://www.aclweb.org/anthology/D11-1090
http://www.aclweb.org/anthology/N/N09/N09-1007
http://www.aclweb.org/anthology/N/N09/N09-1007

REFERENCES

Mihai Surdeanu, Richard Johansson, Adam Meyers, Llúıs Màrquez, and Joakim

Nivre. 2008. The conll-2008 shared task on joint parsing of syntactic and semantic

dependencies. In Proceedings of the Twelfth Conference on Computational Natural

Language Learning, CoNLL ’08, pages 159–177. Association for Computational Lin-

guistics, Stroudsburg, PA, USA. URL http://portal.acm.org/citation.cfm?

id=1596324.1596352. 137

Mihai Surdeanu and Christopher D. Manning. 2010. Ensemble models for dependency

parsing: Cheap and good? In Human Language Technologies: The 2010 Annual

Conference of the North American Chapter of the Association for Computational

Linguistics, pages 649–652. Association for Computational Linguistics, Los Angeles,

California. URL http://www.aclweb.org/anthology/N10-1091. 30, 46, 97

Mihai Surdeanu, Llúıs Màrquez, Xavier Carreras, and Pere R. Comas. 2007. Combi-

nation strategies for semantic role labeling. J. Artif. Int. Res., 29:105–151. URL

http://portal.acm.org/citation.cfm?id=1622606.1622611. 136, 144

André Filipe Torres Martins, Dipanjan Das, Noah A. Smith, and Eric P. Xing. 2008.

Stacking dependency parsers. In Proceedings of the 2008 Conference on Empirical

Methods in Natural Language Processing, pages 157–166. Association for Computa-

tional Linguistics, Honolulu, Hawaii. URL http://www.aclweb.org/anthology/

D08-1017. 30, 33, 97

Kristina Toutanova, Aria Haghighi, and Christopher D. Manning. 2005. Joint learning

improves semantic role labeling. In Proceedings of the 43rd Annual Meeting on

Association for Computational Linguistics, ACL ’05, pages 589–596. Association

for Computational Linguistics, Stroudsburg, PA, USA. URL http://dx.doi.org/

10.3115/1219840.1219913. 136

Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. 2003.

Feature-rich part-of-speech tagging with a cyclic dependency network. In Proceed-

ings of the 2003 Conference of the North American Chapter of the Association for

Computational Linguistics on Human Language Technology - Volume 1, NAACL

’03, pages 173–180. Association for Computational Linguistics, Stroudsburg, PA,

USA. URL http://dx.doi.org/10.3115/1073445.1073478. 79

Huihsin Tseng, Pichuan Chang, Galen Andrew, Daniel Jurafsky, and Christopher

Manning. 2005a. A conditional random field word segmenter. In In Fourth SIGHAN

Workshop on Chinese Language Processing. 13, 15, 78

177

http://portal.acm.org/citation.cfm?id=1596324.1596352
http://portal.acm.org/citation.cfm?id=1596324.1596352
http://www.aclweb.org/anthology/N10-1091
http://portal.acm.org/citation.cfm?id=1622606.1622611
http://www.aclweb.org/anthology/D08-1017
http://www.aclweb.org/anthology/D08-1017
http://dx.doi.org/10.3115/1219840.1219913
http://dx.doi.org/10.3115/1219840.1219913
http://dx.doi.org/10.3115/1073445.1073478

REFERENCES

Huihsin Tseng, Daniel Jurafsky, and Christopher Manning. 2005b. Morphological

features help pos tagging of unknown words across language varieties. In The

Fourth SIGHAN Workshop on Chinese Language Processing. 78, 79

Yoshimasa Tsuruoka, Jun’ichi Tsujii, and Sophia Ananiadou. 2009. Fast full parsing

by linear-chain conditional random fields. In Proceedings of the 12th Conference

of the European Chapter of the ACL (EACL 2009), pages 790–798. Association

for Computational Linguistics, Athens, Greece. URL http://www.aclweb.org/

anthology/E09-1090. 2

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio. 2010. Word representations:

A simple and general method for semi-supervised learning. In Proceedings of the

48th Annual Meeting of the Association for Computational Linguistics, pages 384–

394. Association for Computational Linguistics, Uppsala, Sweden. URL http:

//www.aclweb.org/anthology/P10-1040. 61, 71

Mengqiu Wang, Kenji Sagae, and Teruko Mitamura. 2006. A fast, accurate deter-

ministic parser for Chinese. In Proceedings of the 21st International Conference on

Computational Linguistics and 44th Annual Meeting of the Association for Com-

putational Linguistics, pages 425–432. Association for Computational Linguistics,

Sydney, Australia. URL http://www.aclweb.org/anthology/P06-1054. 84

Yiou Wang, Jun’ichi Kazama, Yoshimasa Tsuruoka, Wenliang Chen, Yujie Zhang,

and Kentaro Torisawa. 2011. Improving chinese word segmentation and pos tagging

with semi-supervised methods using large auto-analyzed data. In Proceedings of

5th International Joint Conference on Natural Language Processing, pages 309–

317. Asian Federation of Natural Language Processing, Chiang Mai, Thailand.

URL http://www.aclweb.org/anthology/I11-1035. 57

David H. Wolpert. 1992. Original contribution: Stacked generalization. Neural Netw.,

5:241–259. URL http://dx.doi.org/10.1016/S0893-6080(05)80023-1. 33

Dekai Wu, Grace Ngai, and Marine Carpuat. 2003. A stacked, voted, stacked model

for named entity recognition. In Walter Daelemans and Miles Osborne, editors, Pro-

ceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL

2003, pages 200–203. URL http://www.aclweb.org/anthology/W03-0433.pdf.

33

178

http://www.aclweb.org/anthology/E09-1090
http://www.aclweb.org/anthology/E09-1090
http://www.aclweb.org/anthology/P10-1040
http://www.aclweb.org/anthology/P10-1040
http://www.aclweb.org/anthology/P06-1054
http://www.aclweb.org/anthology/I11-1035
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://www.aclweb.org/anthology/W03-0433.pdf

REFERENCES

Fei Xia. 1999. Extracting tree adjoining grammars from bracketed corpora. In Pro-

ceedings of Natural Language Processing Pacific Rim Symposium, pages 398–403.

54

Jia Xu, Jianfeng Gao, Kristina Toutanova, and Hermann Ney. 2008. Bayesian semi-

supervised Chinese word segmentation for statistical machine translation. In Pro-

ceedings of the 22nd International Conference on Computational Linguistics (Col-

ing 2008), pages 1017–1024. Coling 2008 Organizing Committee, Manchester, UK.

URL http://www.aclweb.org/anthology/C08-1128. 71

Nianwen Xue. 2003. Chinese word segmentation as character tagging. In International

Journal of Computational Linguistics and Chinese Language Processing. 13, 33

Nianwen Xue. 2007. Tapping the implicit information for the PS to DS conversion

of the Chinese treebank. In Proceedings of the Sixth International Workshop on

Treebanks and Linguistics Theories. 83, 93

Nianwen Xue. 2008. Labeling Chinese predicates with semantic roles. Computa-

tional Linguistics, 34:225–255. URL http://dx.doi.org/10.1162/coli.2008.

34.2.225. 136, 137, 138, 140, 141, 147, 148

Nianwen Xue and Martha Palmer. 2004. Calibrating features for semantic role

labeling. In Dekang Lin and Dekai Wu, editors, Proceedings of EMNLP 2004,

pages 88–94. Association for Computational Linguistics, Barcelona, Spain. URL

http://www.aclweb.org/anthology-new/W/W04/W04-3212. 136

Nianwen Xue and Martha Palmer. 2005. Automatic semantic role labeling for Chi-

nese verbs. In Proceedings of the 19th international joint conference on Artificial

intelligence, pages 1160–1165. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA. URL http://dl.acm.org/citation.cfm?id=1642293.1642479. 136,

137

Nianwen Xue and Martha Palmer. 2009. Adding semantic roles to the Chinese tree-

bank. Nat. Lang. Eng., 15:143–172. URL http://portal.acm.org/citation.

cfm?id=1520233.1520241. 134

Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha Palmer. 2005. The penn Chi-

nese treebank: Phrase structure annotation of a large corpus. Natural Language

Engineering, 11(2):207–238. 104

179

http://www.aclweb.org/anthology/C08-1128
http://dx.doi.org/10.1162/coli.2008.34.2.225
http://dx.doi.org/10.1162/coli.2008.34.2.225
http://www.aclweb.org/anthology-new/W/W04/W04-3212
http://dl.acm.org/citation.cfm?id=1642293.1642479
http://portal.acm.org/citation.cfm?id=1520233.1520241
http://portal.acm.org/citation.cfm?id=1520233.1520241

REFERENCES

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical dependency analysis with

support vector machines. In The 8th International Workshop of Parsing Technolo-

gies (IWPT2003), pages 195–206. 2

David Yarowsky. 1995. Unsupervised word sense disambiguation rivaling supervised

methods. In Proceedings of the 33rd annual meeting on Association for Computa-

tional Linguistics, ACL ’95, pages 189–196. Association for Computational Linguis-

tics, Stroudsburg, PA, USA. URL http://dx.doi.org/10.3115/981658.981684.

73

Hui Zhang, Min Zhang, Chew Lim Tan, and Haizhou Li. 2009. K-best combination of

syntactic parsers. In Proceedings of the 2009 Conference on Empirical Methods in

Natural Language Processing, pages 1552–1560. Association for Computational Lin-

guistics, Singapore. URL http://www.aclweb.org/anthology/D/D09/D09-1161.

97

Ruiqiang Zhang, Genichiro Kikui, and Eiichiro Sumita. 2006. Subword-based tagging

by conditional random fields for Chinese word segmentation. In Proceedings of

the Human Language Technology Conference of the NAACL, Companion Volume:

Short Papers, pages 193–196. Association for Computational Linguistics, New York

City, USA. URL http://www.aclweb.org/anthology/N/N06/N06-2049. 29, 36

Yue Zhang and Stephen Clark. 2007. Chinese segmentation with a word-based per-

ceptron algorithm. In Proceedings of the 45th Annual Meeting of the Associa-

tion of Computational Linguistics, pages 840–847. Association for Computational

Linguistics, Prague, Czech Republic. URL http://www.aclweb.org/anthology/

P07-1106. 15, 18, 22, 29, 33

Yue Zhang and Stephen Clark. 2008a. Joint word segmentation and POS tag-

ging using a single perceptron. In Proceedings of ACL-08: HLT, pages 888–

896. Association for Computational Linguistics, Columbus, Ohio. URL http:

//www.aclweb.org/anthology/P/P08/P08-1101. 32, 33

Yue Zhang and Stephen Clark. 2008b. A tale of two parsers: Investigating and

combining graph-based and transition-based dependency parsing. In Proceedings

of the 2008 Conference on Empirical Methods in Natural Language Processing,

pages 562–571. Association for Computational Linguistics, Honolulu, Hawaii. URL

http://www.aclweb.org/anthology/D08-1059. 78, 82, 84, 142, 152

180

http://dx.doi.org/10.3115/981658.981684
http://www.aclweb.org/anthology/D/D09/D09-1161
http://www.aclweb.org/anthology/N/N06/N06-2049
http://www.aclweb.org/anthology/P07-1106
http://www.aclweb.org/anthology/P07-1106
http://www.aclweb.org/anthology/P/P08/P08-1101
http://www.aclweb.org/anthology/P/P08/P08-1101
http://www.aclweb.org/anthology/D08-1059

REFERENCES

Yue Zhang and Stephen Clark. 2009. Transition-based parsing of the Chinese treebank

using a global discriminative model. In Proceedings of the 11th International Con-

ference on Parsing Technologies (IWPT’09), pages 162–171. Association for Com-

putational Linguistics, Paris, France. URL http://www.aclweb.org/anthology/

W09-3825. 81, 84

Yue Zhang and Stephen Clark. 2010. A fast decoder for joint word segmentation

and POS-tagging using a single discriminative model. In Proceedings of the 2010

Conference on Empirical Methods in Natural Language Processing, pages 843–852.

Association for Computational Linguistics, Cambridge, MA. URL http://www.

aclweb.org/anthology/D10-1082. 32, 41, 45

Qiang Zhou. 2004. Annotation scheme for Chinese treebank (in Chinese). Journal of

Chinese Information Processing, 18(4):1–8. 104

Tao Zhuang and Chengqing Zong. 2010. A minimum error weighting combination

strategy for Chinese semantic role labeling. In Proceedings of the 23rd Interna-

tional Conference on Computational Linguistics (Coling 2010), pages 1362–1370.

Coling 2010 Organizing Committee, Beijing, China. URL http://www.aclweb.

org/anthology/C10-1153. iv, vi, 136, 147, 148, 157, 160

181

http://www.aclweb.org/anthology/W09-3825
http://www.aclweb.org/anthology/W09-3825
http://www.aclweb.org/anthology/D10-1082
http://www.aclweb.org/anthology/D10-1082
http://www.aclweb.org/anthology/C10-1153
http://www.aclweb.org/anthology/C10-1153

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 About Multiple Views in NLP
	1.1.1 A General Framework for Data-driven Text Processing
	1.1.2 Three Categories of Multi-views
	1.1.3 Advantages of Multi-view Processing
	1.1.4 View Integration

	1.2 The Problems Investigated in This Thesis
	1.3 Main Contributions
	1.4 Outline of the Thesis

	I Word Segmentation
	2 Comparing and Combining Word-based and Character-based Segmenters
	2.1 Background
	2.1.1 The Problem
	2.1.2 Previous Work

	2.2 State-of-the-Art
	2.2.1 Word-Based Method: Semi-Markov Tagging
	2.2.2 Character-Based Method: Markov Tagging

	2.3 Theoretical Comparison
	2.3.1 Internal Structure of Words
	2.3.2 Linearity and Nonlinearity
	2.3.3 Dynamic Tokens or Static Tokens
	2.3.4 Word Token or Word Type Features

	2.4 Empirical Comparision
	2.4.1 Baseline Systems
	2.4.1.1 Models
	2.4.1.2 Learning
	2.4.1.3 Features

	2.4.2 Setting
	2.4.3 Results
	2.4.3.1 Baseline Performance
	2.4.3.2 Word Frequency Factors
	2.4.3.3 Length Factors
	2.4.3.4 Feature Factors

	2.5 Combination
	2.5.1 Upper Bound of System Combination
	2.5.2 Segmenter Ensemble via Bagging
	2.5.3 Evaluation

	2.6 Conclusion and Discussion

	3 Stacked Sub-word Tagging for Joint Word Segmentation and POS Tagging
	3.1 Background
	3.1.1 The Problem
	3.1.2 Character-Based and Word-Based Methods
	3.1.3 Stacked Learning
	3.1.4 Annotation Ensemble

	3.2 A Stacked Sub-word Tagging Model
	3.2.1 Method
	3.2.2 The Coarse-grained Solvers
	3.2.3 Generating Sub-word Sequences
	3.2.4 Features
	3.2.5 Stacked Learning for Parameter Estimation

	3.3 Experiments and Analysis
	3.3.1 Setting
	3.3.2 Performance of the Coarse-grained Solvers
	3.3.3 Statistics of Sub-words
	3.3.4 Rich Contextual Features Are Helpful
	3.3.5 Stacked Learning Is Helpful
	3.3.6 Comparison to the State-of-the-Art
	3.3.7 Results on the CTB 6.0

	3.4 Reducing Approximation and Estimation Errors with Heterogeneous Annotations
	3.4.1 Two Essential Characteristics of Heterogeneous Annotations
	3.4.2 Diversity Analysis
	3.4.3 Reducing the Approximation Error via Stacking
	3.4.3.1 Annotation Ensemble as System Integration
	3.4.3.2 A Character-based Joint Model
	3.4.3.3 Feature-based Stacking
	3.4.3.4 Structure-based Stacking

	3.4.4 Reducing the Estimation Error via Corpus Conversion

	3.5 Evaluation of Annotation Ensemble
	3.5.1 Setting
	3.5.2 Results of Stacking
	3.5.3 Learning Curves
	3.5.4 Results of Annotation Conversion
	3.5.5 Results of Re-training
	3.5.6 Comparison to the State-of-the-Art

	3.6 Conclusion

	4 Harvesting String Knowledge for Word Segmentation
	4.1 Background
	4.1.1 The Problem: Combining Supervised and Unsupervised NLP
	4.1.2 The Method: Feature Induction

	4.2 Three Types of Unlabeled Data
	4.3 Feature Design
	4.3.1 Baseline Features
	4.3.2 Statistics-based Features
	4.3.2.1 Mutual Information
	4.3.2.2 Accessor Variety Features
	4.3.2.3 Punctuation Features
	4.3.2.4 Binary or Numeric Features

	4.3.3 Document-based Features

	4.4 Experiments and Analysis
	4.4.1 Setting
	4.4.2 Main Results
	4.4.3 Learning Curves
	4.4.4 Feature Analysis

	4.5 Related Work
	4.6 Discussion: Unsupervised Language Acquisition for Supervised Language Processing

	II Syntactic Parsing
	5 Comparing and Integrating Heterogeneous Parsers
	5.1 Background
	5.1.1 The Problem
	5.1.2 Previous Work

	5.2 State-of-the-Art
	5.2.1 A Discriminative Sequential Model for POS Tagging
	5.2.2 A Generative PCFG-LA Model for Constituency Parsing
	5.2.3 A Discriminative Graph-based Model for Dependency Parsing

	5.3 Key Distinctions
	5.3.1 Syntax-free and Syntax-based POS Tagging
	5.3.2 Grammar-free and Grammar-based Dependency Parsing

	5.4 Experimental Setting
	5.5 Comparing and Combining Syntax-free and Syntax-based Tagging Models
	5.5.1 Overall Performance
	5.5.1.1 Discriminative Learning is Competitive for POS Tagging
	5.5.1.2 The Impact of POS Tagging on Parsing

	5.5.2 Comparison
	5.5.2.1 Content Words vs. Function Words
	5.5.2.2 Open Classes vs. Close Classes
	5.5.2.3 Local Disambiguation vs. Global Disambiguation

	5.5.3 Combination
	5.5.3.1 Tagger Ensemble via Bagging
	5.5.3.2 Evaluation
	5.5.3.3 Final Results

	5.6 Comparing and Combining Grammar-free and Grammar-based Parsing Models
	5.6.1 Grammar-based Dependency Parsing
	5.6.2 Overall Performance
	5.6.3 Comparison
	5.6.3.1 Relating Parsing Accuracies
	5.6.3.2 Constraints
	5.6.3.3 Endocentric and Exocentric Constructions
	5.6.3.4 Factorization

	5.6.4 Combination
	5.6.4.1 Parser Ensemble via Stacking
	5.6.4.2 Parser Ensemble via Re-parsing
	5.6.4.3 Parser Ensemble via Bagging
	5.6.4.4 Evaluation
	5.6.4.5 Final Results

	5.7 Discussion

	6 Parse Reranking with Homogeneous and Heterogeneous Annotations
	6.1 Motivation
	6.2 Comparison of Two Chinese Treebanks
	6.3 A Hybrid Parsing System
	6.3.1 System Architecture
	6.3.2 Parse Reranking
	6.3.2.1 Parameter Estimation
	6.3.2.2 Features

	6.3.3 Head Classifier

	6.4 Experiments
	6.4.1 Setting
	6.4.2 Upper Bound of Reranking
	6.4.3 Reranking Using Homogeneous Annotations
	6.4.4 Reranking Using Heterogeneous Annotations
	6.4.5 Head Classification

	6.5 Conclusion

	7 Enriching Lexical Representation for Syntactic Parsing
	7.1 Motivation
	7.2 Word Clustering
	7.2.1 Brown Clustering
	7.2.2 MKCLS Clustering

	7.3 Experiments in POS Tagging
	7.3.1 Cluster-based Features
	7.3.2 Experiments and Analysis
	7.3.2.1 Setting
	7.3.2.2 Main Results
	7.3.2.3 Learning Curves
	7.3.2.4 Two-fold Effect
	7.3.2.5 Combining with the Berkeley Parser
	7.3.2.6 Final Results

	7.4 Experiments in Text Chunking
	7.4.1 Discriminative Text Chunking
	7.4.2 Features
	7.4.2.1 Baseline Features
	7.4.2.2 Cluster-based Features

	7.4.3 Experiments and Analysis
	7.4.3.1 Baseline Performance
	7.4.3.2 Comparing Chunking and PCFG-LA Parsing
	7.4.3.3 Word Clustering is Helpful
	7.4.3.4 Final Results

	7.5 Experiments in Dependency Parsing
	7.5.1 Cluster-based Features
	7.5.2 Experiments and Analysis
	7.5.2.1 Main Results
	7.5.2.2 Two-fold Effect
	7.5.2.3 Impact on the Prediction of OOV Words
	7.5.2.4 Final Results

	7.6 Conclusion and Discussion

	III Semantic Role Labeling
	8 Full and Partial Parsing Based Semantic Chunking
	8.1 Background
	8.1.1 The Problem
	8.1.2 The Annotation Data
	8.1.3 Successful Methods for English SRL
	8.1.4 Previous Work on Chinese SRL

	8.2 Full Parsing Based Semantic Chunking with Rich Syntactic Features
	8.2.1 Motivation
	8.2.2 Constituent Classification System
	8.2.3 Constituent Chunking System
	8.2.4 Features
	8.2.4.1 Word Features
	8.2.4.2 Syntactic Features
	8.2.4.3 Additional Features for SRC

	8.3 Partial Parsing Based Semantic Chunking
	8.3.1 Motivation
	8.3.2 System Architecture
	8.3.3 Features

	8.4 Experiments and Analysis
	8.4.1 Setting
	8.4.2 Main Results
	8.4.2.1 Rich Syntactic Features Are Helpful
	8.4.2.2 Semantic Chunking Is Helpful

	8.4.3 Two-fold Effect of Parsing in SRL
	8.4.3.1 Impact on Different Sub-tasks
	8.4.3.2 Why Word Features Are Effective for SRC?

	8.4.4 Predicate Frequency Factor

	8.5 Comparative Analysis
	8.5.1 Full Parsing is Necessary
	8.5.2 A Comparison of the Recall
	8.5.3 A Comparison of the Precision
	8.5.4 Impact of Predicate Frequency

	8.6 Conclusion and Discussion

	9 Conclusions
	9.1 Summary of the Thesis
	9.2 Ideas for Future Work

	References

