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Abstract

We present two generic software projects that are part of the software library CGAL. The first part
describes the design of a geometry kernel for higher-dimensional Euclidean geometry and the inter-
action with application programs. We describe the software structure, the interface concepts, and
their models that are based on coordinate representation, number types, and memory layout. In the
higher-dimensional software kernel the interaction between linear algebra and the geometric objects
and primitives is one important facet. In the actual design our users can replace number types, re-
presentation types, and the traits classes that inflate kernel functionality into our current application
programs: higher-dimensional convex hulls and Delaunay tedrahedralisations.

In the second part we present the realization of planar Nef polyhedra. The concept of Nef polyhe-
dra subsumes all kinds of rectilinear polyhedral subdivisions and is therefore of general applicability
within a geometric software library. The software is based on the theory of extended points and
segments that allows us to reuse classical algorithmic solutions like plane sweep to realize binary
operations of Nef polyhedra.

Zusammenfassung

Wir präsentieren zwei Softwareprojekte, die Teil der Softwarebibliothek CGAL sind. Der erste
Teil beschreibt den Entwurf eines Geometriekerns für höherdimensionale euklidische Geometrie
und dessen Interaktion mit Anwendungsprogrammen. Wir beschreiben die Softwarestruktur, die
auf der Herausarbeitung von Schnittstellenkonzepten und ihren Modellen hinsichtlich Koordinaten-
repräsentation, Zahlentypen und Speicherablage beruht. Dabei spielt im Höherdimensionalen die
Interaktion zwischen linearer Algebra und den entsprechenden geometrischen Objekten und primi-
tiven Operationen eine wesentliche Rolle. Unser Entwurf erlaubt das Auswechseln von Zahlentypen,
Repräsentations- und Traitsklassen bei der Berechnung von d-dimensionalen konvexen Hüllen und
Delaunay-Simplexzerlegungen.

Im zweiten Teil stellen wir die Realisierung von planaren Nef-Polyedern vor. Das Konzept der
Nef-Polyeder umfasst alle linear-polyedrisch begrenzten Unterteilungen. Wir beschreiben ein Soft-
waremodul das umfassende Funktionalität zur Verfügung stellt. Als theoretische Grundlage des Ent-
wurfs dient die Theorie erweiterter Punkte und Segmente, die es uns erlaubt, vorhandene Algorithmen
wie z.B. Plane-Sweep zur Realisierung binärer Operationen von Nef-Polyedern zu nutzen.
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in den Situationen, als ich zweifelte und haderte. Es hat sich gelohnt.





Contents

1 Introduction 1

1.1 Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Graphs and Plane Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Programming Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Unified Modeling Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Generic higher-dimensional geometry 19

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Kernel Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 The Kernel Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Generic Programming Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Discussion and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Infimaximal Frames 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Alternative Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Frame Points and Extended Points . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 The Endpoints of Segments, Rays, and Lines . . . . . . . . . . . . . . . . . 47

3.3.3 Predicates on Extended Points . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.4 Extended Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.5 Intersections of Extended Segments . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Polynomials in one variable . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.2 Simple implementation - Standard kernel plus polynomial number type . . . 59

3.4.3 Filtered implementation - Specialized kernel plus filtered inline . . . . . . . 68

i



3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Planar Nef Polyhedra 79

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 The Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 The Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Top Level Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.1 The Polyhedron Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.2 Creating Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5.3 Unary Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5.4 Binary Set Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.5 Binary Comparison Operations . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5.6 Point location and Ray shooting . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5.7 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.8 Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5.9 Hiding extended geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Plane Map Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.7 Subdivision, Selection, and Simplification . . . . . . . . . . . . . . . . . . . . . . . 106

4.7.1 Notions and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.7.2 The class design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.7.3 Overlay calculation of a list of segments . . . . . . . . . . . . . . . . . . . . 109

4.7.4 Overlay calculation of two plane maps . . . . . . . . . . . . . . . . . . . . . 111

4.7.5 Creating face objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.7.6 Selecting marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.7.7 Simplification of attributed plane maps . . . . . . . . . . . . . . . . . . . . 123

4.8 A Generic Segment Sweep Framework . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.8.1 Formalizing the sweep — Invariants . . . . . . . . . . . . . . . . . . . . . . 128

4.8.2 Two generic sweep traits models . . . . . . . . . . . . . . . . . . . . . . . . 131

4.8.3 The LEDA traits model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.8.4 The STL traits model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.9.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.9.2 Further Applications and Future Work . . . . . . . . . . . . . . . . . . . . . 144

ii



Appendix 153

4.1 Manual pages of the higher-dimensional Kernel . . . . . . . . . . . . . . . . . . . . 153

4.1.1 Linear Algebra on RT ( Linear algebraHd ) . . . . . . . . . . . . . . . . . . 153

4.1.2 Points in d-space ( Point d ) . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.1.3 Lines in d-space ( Line d ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.1.4 Affine Transformations ( Aff transformation d ) . . . . . . . . . . . . . . . . 162

4.1.5 Convex Hulls ( Convex hull d ) . . . . . . . . . . . . . . . . . . . . . . . . 167

4.1.6 Delaunay Triangulations ( Delaunay d ) . . . . . . . . . . . . . . . . . . . . 171

4.2 Manual pages of the Nef polyhedron package . . . . . . . . . . . . . . . . . . . . . 175

4.2.1 Nef Polyhedra in the Plane ( Nef polyhedron 2 ) . . . . . . . . . . . . . . . 175

4.2.2 Plane map exploration ( Explorer ) . . . . . . . . . . . . . . . . . . . . . . . 178

4.2.3 Topological plane map exploration ( PMConstDecorator ) . . . . . . . . . . 179

4.2.4 Plane map manipulation ( PMDecorator ) . . . . . . . . . . . . . . . . . . . 182

4.2.5 Extended Kernel Traits ( ExtendedKernelTraits 2 ) . . . . . . . . . . . . . . 187

4.2.6 Polynomials in one variable ( RPolynomial ) . . . . . . . . . . . . . . . . . 190

4.2.1 Output traits for segment overlay ( SegmentOverlayOutput ) . . . . . . . . . 193

4.2.2 Geometry for segment overlay ( SegmentOverlayGeometry 2 ) . . . . . . . . 194

4.2.3 A Generic Plane Sweep Framework ( generic sweep ) . . . . . . . . . . . . 195

4.2.4 Traits concept for the generic sweep ( GenericSweepTraits ) . . . . . . . . . 197

4.3 English Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

4.4 Deutsche Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

iii



iv



Chapter 1

Introduction

This thesis presents research and software engineering in the field of computational geometry.
Computational geometry is the scientific field of computer science that tackles geometric problems
and provides efficient algorithms for their solution. Our aim is to provide algorithms and implemen-
tations thereof that are sound in theory and prove their efficiency in implementations. When imple-
menting software, the last step of packaging and offering it to potential users in the outside world —
whether the computer science community or experts from other sciences — is still a major task. This
work tries to document the whole process: the software design, the theoretical basics, and the software
as part of a software library project.

This thesis describes two software com-

Figure 1.1: A Nef polyhedron.

ponents and their underlying theory. Its re-
sults are mainly located in the domain of soft-
ware engineering but we also present an exten-
sion of classical Euclidean geometry that was
established in the research for the realization
of Nef polyhedra. Our software modules are
strongly anchored in and supported by the un-
derlying theory.

The practical part of this work had an im-
pact on and is based on the two software li-
braries LEDA and CGAL. Both are software
libraries that offer solutions to problems in the
domain of computational geometry. Where
LEDA offers an easy but monolithic approach
to its data structures and algorithms, more am-
bitious techniques are used in CGAL. CGAL
is designed in the spirit of generic program-
ming and in this sense is also a software engineering experiment that tries to exploit C++ template
technology to the extreme. The use of templates allows pattern-based compile-time polymorphism

1



2 Introduction

as opposed to execution-time polymorphism via inheritance and virtual functions. Only template
technology offers code composition at compile-time without runtime penalties.

Higher-dimensional Euclidean Geometry

The first part of the thesis describes a module offering higher-dimensional Euclidean geometry. It
describes the objects and primitives that support the development of geometric algorithms in d-space.
Our contribution is the design of the interface consisting of the objects together with predicates and
constructions. Special care was taken to refine the concepts that allow generic adaptation of the kernel
from the original monolithic design, e.g., the number types and their docking into the kernel function-
ality via a linear algebra module. To enhance usability the representation-based kernel families can at
the same time be used as traits classes in the instantiation of application classes. The traits classes here
encapsulate the geometric primitives that control the logical flow of algorithms. This is one general
design pattern of CGAL starting with version 2.3.

Planar Nef Polyhedra

Our second project concerns the design and implementation of planar Nef polyhedra. The correspond-
ing abstract definition of this polyhedral framework was founded by the Swiss mathematician W. Nef.
Our design uses plane maps for the topological description (finite representation) of planar Nef poly-
hedra. To unify the treatment of the finite and infinite character of the vertices we use extended points
as introduced in the third chapter of this thesis. The strength of this design is its clear separation
of the special geometric demands of Nef polyhedra from the topological structure used to represent
them. We can thereby show that standard affine plane map overlay as presented in the algorithmic
part of the second chapter can be used transparently for the solution of the geometrically unbounded
but symbolically bounded overlay problem that is part of the binary operations of Nef polyhedra.

Infimaximal Frames

We introduce the notion of infimaximal frames as an extension of affine geometry. Although it is a
vital part in the realization of Nef polyhedra it has also further applications. We present the theory
and describe the implementation of three extended kernels as used for the Nef polyhedron software.
We use simple but efficient algebraic techniques that aim for different strengths. Two kernels trade
efficiency for simplicity. In these kernels, a polynomial ring type is used to realize the arithmetic
operations that occur in the implementation of kernel predicates and constructions. Thereby the orig-
inal geometric complexity with respect to the embedding of affine and frame-supported points is
transferred into algebraic complexity that can easily be processed by the polynomial data type. The
strength of this implementation is its verifiable correctness. The third kernel trades simplicity for effi-
ciency. We use standard filtering techniques and unroll the occurring algebraic expressions explicitly
to obtain a runtime optimized kernel.

Generic Programming

Generic programming is programming with concepts and models where models are concrete real-
izations of the abstract concepts. Unfortunately the C++ language constructs and the corresponding
compilers only weakly support the checking of whether models fit concepts during the instantiation
process.
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Rendering generic software modules useful requires a major documentation effort. The reason-
able design of the concepts, the correct implementation of their models, but also their expressive
documentation are unavoidable requirements for good software design. This thesis tries to describe
all facets in a literate programming style. We give the abstract motivation for the design, show the
techniques used to implement the modules and cite excerpts from the documentation in the appendix.
The full documentation can be consulted on the internet at �����������
	��������� . The documentation is an
important part of our work. It has to guide the users of our software to enable them to compose the
right solutions for their problems and especially has to provide recommendations about which models
should be used for which purposes. Without the right documentation, the flexibility is a burden and
not an asset.

What is gained by generictiy? Generic �����������������! �"!#�$&%��!���!'&(&����)&�!*��!+-, .�/
�����������������! �"!#�$&%�0&1�2�1!*&���&��1��43!(��-, .�/
�����������������! �"!#�$&%! �1���5&�!6�(�.��4�!��(��-, .�/
)�7!8��!����9� !"!#&$-:!: 0&1�241�*&�����!1���3�(!�������!��'�(&����)&��*��!+&/<;&�!+����&�>=
)�7!8��!����9� !"!#&$-:!:  �1��&5��!6�(�.!�4���!(!����;���+!�&�&��/� !1��&5&��6�(�.������>=
���&)�24'��?�A@?BC
 �1���5&�!6�(�.��4���D0>@ E�BF=
 �1���5&�!6�(�.��4���>:!: G&1��?��)&(!�H8A@ E�BF=
I .����!�J@�3�)&�>:�:K�����
/�/�8LB�0-,K����3��!+�)-@ 8�BF=
 �1���5&�!6�(�.��4���>:!: 0!�4�!�!(�8�1��?�&)&(&��1��43�)�(���)&��+&'�)�1!+���)A=
9�1!+M@?��)ON�0A, .!�4����(�8�1�����)43!(�P&�!*��?�A@KBF=Q��)SR N�0A, .!�4����(�8�1�����)43!(!���&�>@KBF=UT�T&��)4B
3�)&�>:�:K��1��&)
���OV!��)A=

+&�!)��&+!�
W-=X

Figure 1.2: A simple program.

programming allows code extension and adap-
tation without cut-and-paste programming.
Code can easily be tuned and adapted towards
a user’s needs. Generic composition supports
the reuse of software in a well-defined way.
Moreover, it allows experimental exchange of
models and fast prototyping. We have to admit
that it definitely addresses the more sophisti-
cated user, although we provide introductions
to CGAL’s assets for less advanced users.

The rest of this chapter is an introduction
to the foundations that support the theory and the techniques used in the following chapters. Both
projects are based on affine geometry. We therefore first introduce the notions of affine geometry as
described by analytical geometry. The results are widely published and we compromise on the proofs
to provide just the foundations needed here. The second part of the introduction is about graphs and
their embeddings. We use the notions introduced there in the realization of planar Nef polyhedra.
There are several UML figures to depict code design in this document. For those who do not know the
semantics of UML class diagrams there is a small section introducing them at the end of this chapter.



4 Introduction

1.1 Spaces

We introduce the concepts of affine geometry as presented in the literature
of analytical geometry. The following foundations follow the introduction
of the book of W. Nef [Nef78].

We require our readers to have common knowledge of linear algebra.
A good treatment can be found in the book of H. Anton [Ant98]. We as-
sume knowledge of the concepts linear dependence and linear indepen-
dence, generating systems, bases, linear transformations, and their cor-
respondence to matrices. We start with the relationship between vector
spaces and affine spaces.

A vector space � F � V � is a pair of sets where F is a field and V is avector space � F � V �
non-empty set of vectors. For the set V there exists an addition operations
such that � V ����� is a commutative additive group. Any element λ � F and
any vector ��� V can be combined by a scalar multiplication that returns an
element λ� in V . The scalar multiplication is associative and distributive in
the following way: for any λ � µ � F , �	��
�� V it holds that λ � µ ������ λµ ��� ,
λ ������
���� λ��� λ
 and � λ � µ ����� λ��� µ � and 1����� .

In the following we will only consider the canonical vector space������� n �
������� n � and we write just � n instead of the pair ������� n � above. Its di-
mension ��� ��� n over � is n and if we omit index ranges for a variable i
we will just mean the index range that was specified in the context. Each
vector � is uniquely determined by its coefficients � x1 �! ! ! "� xn � with respect
to a base �$# 1 �! ! ! %�&# n � of V , i.e. �'� ∑i λi # i.

� n becomes a (standard-) Euclidean vector space, if we define the innerEuclidean vector space
product �(�)�$*+� : � ∑i xiyi of two elements �)�$*,��� n and thereby introduce
the concepts of norm and length of vectors -��.- : �0/ �(�)�1�2� . If �(�)�$*+�)� 0
then � and * are called orthogonal.

An affine space � A � V � is a pair � A � V � consisting of a non-empty set Aaffine space
of points and a vector space V where the elements of both sets are related
via the following properties: (i) each pair ��3.�546�7� A2 uniquely determines
a vector �8�:9 ;3<4 . (ii) each point 3=� A and each vector �>� V determine a
unique point 48� A such that �8� 9 ;3+4 . (iii) for any three points 3<�54��$?@� A
it is required that 9 ;3+4�� 9 ;4A?B� 9 ;3C? . The dimension ��� � A of an affine space is
the dimension of its underlying vector space �D� � V .

Informally speaking the above definition relates the affine space A to
the vector space V . This is usually done by fixing a point E within A called
the origin. Then each point 3 of A corresponds to the translation that moves
E into 3 . The tranlation is represented by the vector 9 ;EF3 of V , called the
location vector. Note that the vector space � n can be interpreted as an
affine space by defining 9 ;3<4 : �G4 9 3 .

To separate the linear and affine concepts we write H for the vectorvector H , point 3
and 3 for the affine point object. Whenever affine points meet concepts of
linear algebra, we implicitly convert the points into their location vectors.

Let � 1 �! ! ! %�1� r �'� n . Any element ���I� n that can be written aslinear, affine, and convex
combination
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� : �
r

∑
i � 1

λi � i λi �I� (1.1)

is called a linear combination of � 1 �! ! ! %�1� r. The linear combination is
called affine iff ∑r

i � 1 λi � 1. It is called convex iff it is affine and addi-
tionally λi

�
0 for all i � 1 �! ! ! � r. Note that the affine and convex linear

combinations are concepts of affine spaces. At first glance the linear com-
bination of affine point objects seems irritating. However we can always
rewrite an affine linear combination � � ∑r

i � 1 λi � i, ∑i λi � 1 such that the
standard intuition comes back: � ��� 1 � ∑i λi ��� i 9 � 1 � .

Linear Subspaces

Any non-empty set L ��� n that is itself a vector space1 is called a linear linear subspace
subspace of � n . Its dimension ��� � L is defined as the maximal number of
linearly independent vectors in L. If L1 � L2 are linear subspaces of � n then
L1 � L2 and L1 � L2 are also linear subspaces. From linear algebra we know
that

��� � � L1 � L2 �A� ��� ��� L1 � L2 ������ � L1 � �D� � L2

The sum L1 � L2 is called the direct sum L1 � L2 iff L1 � L2 �	� 0 
 . direct sum �
For any set A �,� n , the intersection of all linear subspaces L � � n

containing A is the smallest linear subspace that contains A.
It is called the linear hull of A: linear hull � � � A

� � � A : ��
A � L

L (1.2)

For any non-empty A � � n , its linear hull � � � A consists exactly of all linear
combinations of the elements of A (if A � /0 then � � � A ������
 ). Especially
��� ��� � � A is equal to the maximal number of linearly independent vectors in
A. We always have 0 � ��� ��� � � A � n. The transformation A ; � � � A is a hull
operator according to the definition below.

An operator ��� is called a hull operator if it fulfills the following con- hull operator
ditions for any S � T � � n :
H1 S ����� S
H2 S � T ����� S ����� T
H3 ������� S ����� S

Affine Subspaces

Any pointset N � � n of the form N ���<� L where � � � n and L is a linear flat, affine subspace
subspace of � n is called a flat (affine subspace) of � n . L is called the linear
subspace of the flat N, and �D� � N : ����� � L is its dimension.

1-, 2-, and n 9 1-dimensional flats are also called lines, planes, and lines, planes, and hyperplanes
hyperplanes. Affine linear combinations are closed in flats. Moreover for

1it is enough to require the set L to be closed under addition and scalar multiplication.
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any flat N of dimension r there exists a set P ����3 1 �! ! ! � 3 r � 1 
 � N of points
such that all affine linear combinations of P span the flat.

If ��� ∑r � 1
i � 1 λi 3�� � ∑i λi � 1 then � is called affinely dependent of P (oth-affine (in)dependence

erwise affinely independent). This definition naturally extends to point sets.
A set A � � n is called affinely dependent of P if all elements of A are
affinely dependent of P.

When the ��3 i � i are affinely independent then the � λi � i are called thebarycentric coordinates
barycentric coordinates of � with respect to the points in P.

The intersection of flats is empty or again a flat. For any non-empty setaffine hull ��� A
A � � n the intersection of all flats N � � n containing A is the smallest flat
that contains A. It is called the affine hull of A:

��� A : � 
A � N

N (1.3)

As any linear subspace L ���7� L is also a flat we deduce that ��� A � � � � A
(the set of flats containing A is larger than the set of linear subspaces).
��� A consists of all affine linear combinations of points in A. Conversely, if
��� �	��� A � r then there exist r � 1 affinely independent points in A that span
��� A. The transformation A ; ��� A is a hull operator. Sometimes the affine
dimension of a tuple of points (the dimension of the affine hull of the tuple)
is also called their affine rank.

Convex sets

A non-empty set K ��� n is called convex, if K contains all convex linearconvex set
combinations of its elements. For any r let � 1 �! ! ! %� � r ��� n , λ1 �! ! ! %� λr �
��
 0 � ∑i λi � 1 we require

k

∑
i � 1

λi � i � K (1.4)

Convex sets are closed under intersection and linear combination, i.e. for
two convex sets K1 � K2 both K1 � K2 and λ1K1 � λ2K2 are again convex. The
dimension of a convex set is the dimension of its affine hull ��� � K � ��� �	��� K.

For any set A ��� n consider the intersection of all convex sets K thatconvex hull � ���� A
contain A. We call this intersection the convex hull of A:

� ���� A : � 
A � K

K (1.5)

� ���� A consists of all convex linear combinations of the elements of A. � ����
is a hull operator.

Cones

The positive hull of a set A � � n is defined as � ��� A : � � � A : ��� λ � : λ �positive hull � ��� A
0 ���'� A 
 . � ��� is a hull operator.

A set K � � n is called cone with apex 0, if K ��� ��� K. For any A � � ncones and apices
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the set K � � ��� A is the smallest cone with apex 0 that contains A. Now let
K �=� n and �'�I� n . Then K is a cone with apex � , if K ���+� � ���F� K 9 � � .
For any A � � n the set K ���.� � ���%� A 9 � � is the smallest cone with apex �
that contains A.

A cone can have many apices. For example any flat N �=� n is a cone
where all ��� N are apices. (For all ��� N it holds that � �>� � � N 9 �6�C��+� � � L ���+� L � N.)

If K is a cone with apex � and with apex � then K � K ����� 9 � � . If K
is a cone with apex � then the set T � K � of all �B��� n such that K ���.� K
is a linear subspace of � n . On the other hand if L is a subspace of � n such
that K � L � K then L � T � K � . T � K � is the set of translations that map K
onto itself. If K is a cone with apex � then �+� T � K � is the set of all apices
of K.

Linear functions, hyperplanes and half-spaces

Any linear function f : � n ; � is of the form f �(�2�7� ���)�1�2�6� b, where linear function f� ��� n and b �'� . If b � 0 then f is a homogeneous linear function (also
called a linear form).

If f is not constant, then F 0 � f � 1 � 0 �2� � � � � n : f ���6� � 0 
 2 is called hyperplane F0

a hyperplane of dimension n 9 1. Any flat N � � n is the intersection of
hyperplanes (take all hyperplanes that contain N). If ��� � N � m then there
are always n 9 m hyperplanes whose intersection is N.

If f : f �(�2�2� ���)�1�2� is a linear form, then F0 is a linear subspace of � n

and consists of all vectors � that are orthogonal to � .
We introduce open and closed half-spaces according to the following half-spaces F � � F �

definitions:

F
�

: � � � �'� n : f ��� �	� 0 

� � ��� F � : � F

��

F0 � � � � F � � � �I�I� n : f ��� �	 0 


All of the previously defined half-spaces are convex sets. One can classify
points with respect to the above half-spaces. A set A � � n is (strictly)
located on one side of F0 if

f � A � ���@�� 0 (1.6)

We just cite the following general results concerning convex sets and
hyperplanes. Let K � � n be convex, F0 a hyperplane, and K � F0 � /0 then
K is located strictly on one side of F 0. If K1 � K2 � � n are non-empty and
convex and K1 � K2 � /0 then there is a non-constant linear function f such
that f � K1 � � 0 and f � K2 � � 0.

Affine Transformations

Let � � � m � n and # � � m an m � n dimensional matrix and an m-
dimensional vector.

2Note that the linear function is a vector space concept but the hyperplane is an affine
concept. We implicitly change from points to vectors here.
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Any function of the form φ : � n ; � m , φ ��� � � � �@� # is called anaffine transformation φ
affine transformation. It is called homogeneous if # � 0 and inhomo-
geneous otherwise. It is called degenerate if � does not have full rank
( � ��� � � 0 in case of square matrices), and non-degenerate otherwise.

If � is a regular matrix then φ is invertible and the inverse φ � 1 is again
an affine transformation. All non-degenerate affine transformations form
a group under composition. A degenerate affine transformation maps the
whole space � n to a proper subspace of � n .

Each affine transformation induces a linear transformation ψ : � n ; � m

on the vector space underlying the affine space: ψ �(�2�2� � � .
If φ is non-degenerate then any set of affinely (in)dependent points is

mapped to a set of affinely (in)dependent points. Even more interesting,
an affine transformation φ commutes with affine linear combinations, i.e.,
φ � ∑i λi � ��� ∑i λiφ ��� � .

This implies that a non-degenerate affine transformation preserves
barycentric coordinates and maps any r-dimensional flat to an r-
dimensional flat. Moreover, φ preserves lines, rays, line segments, and
parallelism. To describe an affine transformation it is sufficient to fix the
images of a maximal affinely independent tuple of points in the domain of
the transformation. For any set A � N it holds that

φ � ��� A ��� ��� φ � A � (1.7)

Let φ : � n ; � m be affine, then we define Lφ � φ � 1 � φ � � �!�C�	� �'� � n :Lφ
φ ���6��� φ � � � 
 . Lφ is a linear subspace of � n . Furtheron, for any � 1 � � 2 � � n

it holds that φ ��� 1 �	� φ ��� 2 ��� � 1 9 � 2 � Lφ. Let K � L � � n � K � L � � n .
Then each �8��� n can be uniquely represented as a sum � ��� �	� where
�	� L and ��� K. Therefore p : � n ; K � p ���6�2�
� is a map.

We call p a projection from � n to K along L. p is linear and thereforeprojection
affine. As p ���6�6��� for all � � K it holds that p2 � p. For any subset A � � n

it holds that

p � A �2�G� A � L � � K (1.8)

Topology

Let X be a non-empty set. A system T of subsets of X is called a topologytopology
on X , if T fulfills the following axioms: (1) X and /0 belong to T . (2) The
union of arbitrary many sets of T is in T . (3) The intersection of finitely
many sets of T is in T .
All sets in T are called open sets, and the pair � X � T � is called a topological
space.

For each ε � � we define the (open) ball Kε �(�2� with center � and radiusball Kε �(�2� , natural topology
ε to be Kε �(�2�	��� * �8� n : -!* 9 �.-�� ε 
 . We then introduce the “natural
topology” by the introduction of neighborhoods. U �>� n is a neighborhood
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of ��� � n , if there is an ε � � � such that Kε �(�2� � U . With this topology � n

becomes a real topological vector space of dimension n. The intersection
of two neighborhoods of � and each superset of a neighborhood of � is
again a neighborhood of � .

Each neighborhood U of � is absorbing, i.e., for each � � � n there neighborhoods are absorbing
exists a λ0 �'� � , such that λ ��� U for � λ � � λ0. Accordingly, let V �=� n

be a neighborhood of � ��� n . Then for each * 0 ��� n there is a λ0 ��� � ,
such that * � λ �2� � � λ � * 0 9 �2�)� V for � λ � � λ0.

A set A � � n is open if A is a neighborhood of each � � A. A is called open, closed set
closed, if � ��� A is open.

Any ball Kε is open. If A � � n is open (closed) then the same holds for
the set A ��� , where � ��� n . Any union of open sets and any intersection
of finitely many open sets is open. Any intersection of closed sets and any
union of finitely many closed sets is closed.

Let A � � n . The union of all open subsets of A is called the interior interior � � � A
(open kernel) of A:

� � � A : � �
S � A � S open

S

A is open if and only if � � � A � A.
Any � ��� � � A is called an interior point of A. � � A is an interior point interior point

of A if and only if A is a neighborhood of � .
Let A � � n . The intersection of all closed supersets of A is called the closure � � ��� A

closure (closed hull) of A:

� � ��� A : � 
S � A � S closed

S

� � ��� A is the smallest closed superset of A. A is closed if and only if A � � � ��� A.
Any ��� � � ��� A is called an adherent point of A. �>� A is an adherent adherent point

point of A if and only if V � A �� /0 for any neighborhood V of � .
� � ��� is a hull operator, whereas � � � is not (H2, H3 are valid, but � � � A � A

instead of H1). We can deduce the following:

� � � � ��� A � � ��� � � ��� A � � � ��� � ��� A � � � �1� � � A
� � � � A � B � � � � � A � � � � B � � � ���F� A 


B � � � � ��� A 

� � ��� B

The exterior of a point set A �=� n is defined as the interior of its com- exterior ��� � A and boundary 	�� A
plement ��� � A : � � � � � ��� A. The boundary is defined to be 	D� A : � � � ��� A �
� � ��� ��� � A. The interior, boundary and closure of a set A � � n are related
via � � ��� A � � � � A 
 	D� A.

Linear functions are continuous on topological vector spaces. For any
continuous map the preimage of an open (closed) set is an open (closed)
set. Therefore any half-space F

� � f � 1 ��� � � is an open set. A hyperplane
F0 � f � 1 � 0 � is closed. Moreover the complement of a half-space � ��� F �

is
closed.

We can transfer the global topology of � n to a subset M � � n by the induced topology
restriction to V �(�2� � M for any neighborhood V of an element �'� � n . Then
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M is a topological subspace of the topological space � n . The topology of
M is called induced by � n on M.

The topological concepts of subspaces are prefixed by the word rela-relative neighborhood, relative
interior, relatively open tive, e.g. V �(�2� � M is called the relative neighborhood of � in M. Accord-

ingly, a subset A � M is called relatively open (closed) in M if A is open
(closed) with respect to the induced topology. Moreover the relative inte-
rior � � � � � � A is the interior of A with respect to the induced topology. We
often use the relative interior in the special case where M � ��� A. To say
that A is relatively open in this sense means with respect to the flat ��� A.

For any flat M and point ��� M a relative neighborhood U ���6� has the
property that ��� U � M. If K �,� n is convex, then � � ��� K and � � � � � � K are
also convex. If K � � n is non-empty and convex then � � � � � � K is also non-
empty. For a convex set K � � n we can show that � � � � � � K ���

� � � � � � � ��� K,
� � ��� K � � � ����� � � � � � K, and ����� � � � � � K � ��� K � ��� � � ��� K.

A set A � � n is called bounded, if there exists a ρ � � � such thatbounded set
- �)- � ρ for any �I� A.

If A is bounded then any B � A, � � � A, � � � � � � A, � � ��� A, � ���� A are also
bounded. The intersection of bounded sets and the union of finitely many
bounded sets are bounded. If A and B are bounded then so is A � B (in
particular A �8� for any ���I� n ). Any finite set A � � n is bounded.

1.2 Graphs and Plane Maps

Our representation of the concept of graphs and plane maps is based on the
notions from the LEDA book [MN99].

A (directed) graph G � � V � E � consists of a set of nodes V and a set ofgraph G
edges E � V � V . We say an edge e ��� v� w � has source v and target w. We
often use a more functional notation v � source � e � . For each node v there
is a list of edges A � v � called its adjacency list that contains all edges with
source � e ��� v.

A map M is a bidirected edge-paired graph. This means for each edgemap M
e ��� v� w � there exists a reversal edge e

� � � w� v � and there exists a bijective
map twin such that twin � e � � e

�
and twin � e � � � e. The pairwise reversal

edges e, e
�

are called twins. Sometimes we consider edge pairs � e � e � � as
undirected edges (uedge) of a corresponding undirected graph.

A drawing I of a graph G into a surface S is an assignment of coordi-drawing I of a graph
nates (on the surface) to the nodes in V and of parametrized curves on S to
the edges e in E such that the curve starts at source � e � and ends at target � e � .

A drawing of a graph on a surface S is called an embedding if the im-embedding of a graph
ages of edges contain no images of nodes in their relative interiors, if the
images of edges belonging to distinct uedges are disjoint except for end-
points, and if the curves assigned to edges belonging to the same uedge are
reversals of each other.

An embedding into the plane is called a planar embedding and a planarplanar map M
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embedding in which every edge is mapped to a straight line segment is
called a straight line embedding. A map M is called planar if it has a
planar embedding.

For each node v of G the adjacency list A � v � has a cyclic order. An order-preserving embedding
embedding is called order-preserving if for every node v the counter-
clockwise ordering of the curves I � e �D� e � A � v � , around I � v � agree with the
cyclic ordering of the edges in A � v � .

The embedding of a node v into the plane is specified by the opera-
tion I � v � � point � v � . Then the straight line embedding of each edge e is
equal to I � e � � segment � e � which is the segment spanned by the points
point � source � e �!� and point � target � e �!� . Embedded nodes are also called
vertices.

The embedding I of G into the plane partitions the plane into open faces and boundary cycle
maximal connected point sets. Each such point set is called a face. A
face is completely described by the uedges and nodes whose embeddings
form the boundary of the face. Since uedges are incident to at most two
faces, we simplify the incidence description if we assign one face f to each
directed edge e (as part of the uedge). We specify that a directed edge is
incident to the face on its left side by f � face � e � , and we say that e is part
of the boundary cycle of f . A boundary cycle is a collection of edges such
that their embedding forms one connected component of the boundary of
f . The cyclic order of the edges in the boundary is defined such that f is
always on the left side of the edges.

The order of A � v � is defined by two maps. Let e �:� v� w � , e
� � � v� w � � . face cycle

If e
�

is the successor of e in A � v � then e
� � cyclic adj succ � e � and e �

cyclic adj pred � e � � . For iteration around the face cycle we define next � e ���
cyclic adj pred � twin � e �!� and previous � e ��� twin � cyclic adj succ � e �!� . By
this symmetric previous 9 next relationship all edges are partitioned into the
face cycles. Two edges e and e

� �
are in the same face cycle if e � next � � e � � � .

All edges e in the same face cycle have the same adjacent face f � face � e � .
One can show that a face cycle is exactly the boundary cycle of the inci-
dent face if the embedding is order preserving ([MN99, Lemma 46]). We
thereby match the combinatorial concept “face cycle” with the topological
concept “boundary cycle”.

Note that the relationship between the order on adjacency lists and the
movement in face cycles was determined by two geometric fixations. The
order-preservation property is based on a counterclockwise ordering of the
embedded edges around v and each oriented edge is incident to the face on
its left side.

As a consequence, when designing a data structure to represent an
order-preserving embedding, one can choose to maintain either the adja-
cency lists or the correct definition of the face cycles by the previous-next
relation. The LEDA graph is centered around the former concept. The
CGAL halfedge data structure, on the other hand, is centered around the
face cycle concept. Both approaches can lead to the same interface, albeit
via quite different implementation techniques.
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A plane map P � � V � E � F � is a map M �0� V � E � with a fixed cyclicplane map P
order on the adjacency lists, an order-preserving embedding, and enriched
by face objects. The embedded map M is called the 1-skeleton of P. Each
face in F refers to a maximal connected subset of the plane bounded by the
embedding of the edges and nodes of the 1-skeleton. The size of a plane
map is the number of nodes, edges and faces.

Although the adjacency lists have a circular structure there is an opera-
tion that provides an entry point into A � v � . For each vertex first out edge � v �
determines the start for an iteration through A � v � . Thereby, the adjacency
list can also be interpreted as a sequence starting with a dedicated edge.

In standard planar Euclidean geometry two nodes can be ordered via
their embedding by the lexicographic comparison of the coordinate entries.
We additionally qualify the structure of the adjacency lists of a node.

An edge e is called forward-oriented if point � source � e �!�	� lexforward-prefix of A � v �
point � target � e �!� . We say that the adjacency list A � v � has a forward-prefix
if only the first part of A � v � 3 consists of forward-oriented edges (possibly
zero). The counterclockwise order-preserving embedding implies that the
slopes of the lines that support the edges in the prefix increase with their
position in the prefix. Similarly, we define backward-oriented edges and
the backward-suffix of A � v � (the slopes of the supporting lines of the edges
of the backward-suffix are also increasing).

In our context plane maps have attribues, each object u � V



E



Fattributed plane maps
carries an information attribute mark � u � .

For two objects a, b that represent subsets of points in the plane we saysubdivision and support
that a supports b if the point set of b is contained in the point set of a.

Let S be a set of segments in the plane where we also allow trivial
segments. We subdivide any segment s into its endpoints and its relative
interior. The arrangement of the segments in S partitions the plane into
disjoint point sets with respect to a support relation. These point sets are:
the endpoints of the segments, the points in the non-degenerate intersection
of the relative interior of two segments, the points in subsegments of the
relative interior of the segments in S (supported by at least one segment),
and the points in the complement of the union of all segments in S.

When we store this structure we are interested not only in the point sets
(points, relatively open segments) but also in their topology. Therefore,
we choose to represent the arrangement using a plane map P � � V � E � F �
as described above. For each endpoint of a segment in S and each point
of intersection of two segments we obtain one vertex in V (identical co-
ordinates imply only one vertex). Between any two vertices we have one
uedge if there is a segment that supports the convex combination of the ver-
tices, and there is no other vertex contained therein. Note that there can be
more than one segment supporting such uedges if some segments overlap.
In between the 1-skeleton constructed from these objects lie faces which
are not supported by any segment from S. Note that the uedges represent
relatively open one-dimensional point sets, and the faces represent open

3A
�
v � interpreted as a sequence starting in first out edge

�
v � .
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two-dimensional sets.
Now we go one step further. Let Pi �:� Vi � Ei � Fi �D� i � 0 � 1 be two plane

map structures. The overlay of two plane maps P0, P1 is the plane map
P representing the subdivision of the plane obtained by interpreting the
skeleton objects of the Pi according to their embedding as trivial and non-
trivial segments, constructing the overlay of these segments and adding the
faces.

1.3 Programming Concepts

Our work interacts with the following three programming libraries and their
concepts. LEDA (Library of Efficient Data Types and Algorithms) is a C ���
library of combinatorial and geometric data types and algorithms [LEDa].
CGAL is the Computational Geometry Algorithms Library that is devel-
oped by the ESPRIT projects CGAL and GALIA. The library is written
in C++ and follows the idea of generic programming [CGA]. STL is the
Standard Template Library. The library is part of the ISO C++ standard
[com98].

The algorithms of the STL together with the concepts of iterator and generic programming, concepts
and modelscontainer form a triad that supports generic programming. The paradigm

builds on data abstraction, but takes it in a different direction from that
of object-oriented programming. In particular generic programming uses
concepts to provide abstract descriptions of the required interface between
algorithms and data types. Any types that realize these requirements serve
as models of the concept.

The template facility in C++ makes programming in this generic way
possible. The template parameters of an algorithm or data structure act as
concepts and, as long as the type used in the template has all of the mem-
bers and methods that the template uses, the template can be instantiated.
This frees polymorphism from inheritance. A typical example of a generic
algorithm from the STL has an interface that uses iterators.

Iterators are a generalization of pointers that allow a programmer to iterators
work with different data structures (containers) in a uniform manner. An
iterator is the glue that allows one to write a single implementation of an
algorithm that will work for data contained in an array, a list or some other
container - even a container that did not yet exist when the algorithm was
implemented. An iterator is a concept, not a programming language con-
struct. It can be seen as a set of requirements. A type is an iterator if it
satisfies those requirements. In this sense, a pointer to an element of an
array is an iterator.

We introduce the following notation that allows us to talk about the
sets, sequences, and tuples referenced by an iterator range. For an itera-
tor range

�
first � last � we define S � tuple

�
first � last � as the ordered tuple

� S � 0 �&� S � 1 �&�! ! ! S � d 9 1 ��� where S
�
i � : ��� ����� i � first (the element obtained by

forwarding the iterator by operator ��� i times and then dereferencing it
to get the value to which it points). Accordingly, set

�
first � last � is the un-
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ordered version of tuple. We write size
�
first � last � : � d. If we index

the tuple as above then we require that ��� � d � f irst ��� last (note that last
points beyond the last element to be accepted).

Circulators are quite similar to iterators but are defined to work oncirculators
circular data structures like a ring list in a uniform manner. Thus the main
difference is the absence of a last element. Please note that circulators
are not part of the STL, but of CGAL. For the complete description of the
requirements please refer to the CGAL Reference Manual, Part 3 [SVY00].

The original concept of traits classes [Mye95] uses template class spe-traits classes
cialization as a technique to associate certain types and functions to a type
model. There, the type model is the template parameter of the traits class.
Specializations of a general traits template class allow one to fix types and
functions for the model.

In the domain of software libraries that require more elaborate con-
cepts, the notion of traits classes has evolved. A traits class can bundle
disjoint concepts into one larger unit. Thereby it focuses the genericity at
one spot which simplifies documentation, maintainance, and usability. In
CGAL most generic algorithms and abstract data types can be adapted by
means of a traits class. Note that a traits class model can fit different con-
cepts and can thereby be usable in more than one algorithmic instantiation.

We often use the smart pointer programming pattern. Smart pointerssmart pointers
realize copy by reference via a pointer and a transparent dynamic memory
allocation scheme maintained via reference counting. We give an exam-
ple4 in Figure 1.3. Assume we want to realize a d-dimensional point type
storing a tuple of d entries of a number type NT.

Handle_for
#ptr: Reference_counted*
+Handle(h:const Handle&)
+operator=(h:const Handle&): Handle&
+~Handle()

Reference_counted

Point_d
NT

Tuple_d
NT

Reference_counted
-count: int
+add_reference(): void
+rm_reference()(): void

* 1

Figure 1.3: Implementing a d-dimensional point with a smart pointer.

In CGAL the types supporting smart pointers are called Handle for
�
T �

and Reference counted. The former is a base class for the handle type re-
alizing the visible interface and the latter is a base class (a model for the
type parameter T of Handle for

�
T � ) realizing the maintainance operations

needed by the handle base class. Realizing a point by a smart pointer pat-
tern is easy now. Just derive the storage container of the tuple Tuple d

�
NT �

from Reference counted and derive the interface type Point d
�
NT � from

4A short introduction to the notions of the UML follows at the end of this concepts
chapter.
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Handle f or
�

Tuple d
�
NT � � . Now any object of type Point d

�
NT � is a

handle to a d-tuple.
We shortly describe the behaviour in case of construction, access, and

destruction. A point is constructed by giving its base class a storage candi-
date. The counter of the reference-counted object is initialized to one.

�������	� 
���������������	����� 
����	� ��!"��#%$'&�(���
���� )���* �+��������� 
����	� �,�%�-��#".	/

Any copy construction or assignment is covered by code from the base
classes. A copy construction basically redirects the smart pointer to the
corresponding reference-counted tuple object and increases the reference
count (by add reference � � ).

�������	� 
��������������������� 
����	� ��!+�0#%$'&�(���
���� )���* �+��������� 
����	� �,�%�1�0#".	/

Any destruction 2 Point d � � of a handle object decreases the reference
count (by rm reference � � ). The reference-counted tuple object is destroyed
as soon as the counter reaches zero.

What are the advantages? In case of many assignment or copy con-
struction operations, these operations boil down to pointer redirection and
counter incrementation. As soon as the storage class is larger than a certain
threshold this pattern pays off. Runtime tests have shown that this thresh-
old is reached at around four words on a SUN machine. Below this size,
memory copy mechanisms are faster than the maintainance overhead. Note
that access to a handled object always suffers from one redirection. For ex-
ample the following operation realizes access from a handle object to the
ith entry of a tuple object.

�	�3��� ��*�(�����*5476��8�����9�	#".�*������	*������	*�:	��������*	;<�8�	#>=?/

Thus there is a trade-off involved. The low-dimensional kernels of CGAL
therefore come in two flavors (handled and non-handled). For larger objects
the smart pointer scheme is recommended. Note that for programming
languages like JAVA reference based copy construction is the default.

A decorator is a programming pattern [GHJV95] that attaches addi- decorator
tional functionality to an object (or several objects). The ability to trans-
parently combine different sets of functionality to one object via different
decorators is the main advantage compared to simple subclassing. Decora-
tors are used in our implementation of Nef polyhedra.

Plane_map
V,E,F

PM_decorator
#m: Plane_map<V,E,F>&
+PM_decorator(M:Plane_map<V,E,F>&)

V,E,F

*

1

PM_overlayer
+PM_overlayer(M:PMDEC::Plane_map<V,E,F>&)

PMDEC, GEO

«concept»
PMDecorator

Figure 1.4: Implementing a decorator on top of a plane map data type.
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We modularized functionality for manipulating plane maps into several
decorator classes. The classes obtain generic type information via traits
classes. We provide a simplified picture in Figure 1.4. The plane map data
type is parameterized by the types for its vertices, edges, and faces. The
top level decorator PM decorator

�
V � E � F � adds functionality and defines

an interface to an object of type Plane map
�
V � E � F � referenced via m. The

reference is initialized on construction, e.g., by the constructor parameter
M. In some cases the user is not able to access m directly to protect the
internal representation of the plane map (read-only access). All decorators
also provide all handle and iterator types for access to the plane map in their
local scope. Decorators extending the functionality further are obtained by
subclassing. For example, PM overlayer

�
PMDEC � GEO � extends the sim-

ple decorator with functionality to calculate the overlay of two plane maps.
The necessary geometric kernel functionality is added by the template pa-
rameter GEO. By subclassing the interface of the base class is transferred
to the subclass.

1.4 Unified Modeling Language

The Unified Modelling Language (UML) is an abstract framework for de-UML
scribing the structure of object-oriented software modules. Though it has at
its core a strong semantics that can even be used for code generation, for us
it is mainly a vehicle to describe software structure and to develop a road
map of the software project. We mainly use class diagrams of the UML
to depict the concepts and models that we use to offer a generic software
module realizing Nef polyhedra in the plane. The following constructs are
part of our figures.

A directed association. The type at the source of the
arrow uses the type at the tip of the arrow.

association

A generalization. The type at the source of the arrow
generalizes (is inherited from) the type at the tip of the
arrow.

generalization

A realization. In the language of concepts and mod-
els, the type at the source of the arrow is a model that
realizes the concept at the tip of the arrow.

realization

A template typename-concept association. The tem-
plate typename at one end of the association must fit
the requirements specified by the concept at the other
end of the association on instantiation.

template typename association

CName
TName A class template template � typename TName �

class CName.
class template

«concept»
CName A concept CName. The concept defines the type and

method requirements of a template parameter.
concept

Class diagrams additionally document attributes and methods. Both are
written in a PASCAL-like notation where identifiers precede their types.
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Protection mechanisms are marked by “ � ” for public access, “ 9 ” for pri-
vate access, and “#” for protected access. For further information on the
UML please resort to the standard literature, e.g., [RJB99].

All referenced research reports that have been published as part of our
research can be obtained from the WWW server of the MPI [mpi].
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Chapter 2

Generic higher-dimensional geometry

In this chapter we describe the design of the dynamic d-dimensionalkernel of CGAL. That kernel
realizes higher-dimensional affine geometry where the dimension is an interface parameter of the ge-
ometric objects1 . Our presentation is complete with respect to software design but not with respect
to functionality. We will not present a complete implementation description of all objects, primitives,
or interface details, but concentrate on the relevant aspects. An earlier and complete implementation
description can be found as a technical report [MMN � 96]. The project was supported by many people
and many design ideas stem from discussion within the CGAL consortium. The application layer is
originally due to M. Müller and J. Ziegler [MZ94], the kernel design is based on the original proposal
presented at the SCG conference [MMN � 97] that was in turn influenced by the LEDA geometric ker-
nel. The final design transformation was developed in coorporation with S. Schirra, H. Brönnimann,
S. Pion, and M. Hoffmann. See also the design paper [HHK � 01a, HHK � 01b].

2.1 Motivation

There have already been several overview papers about the motivation for CGAL and its design. N.
Amenta [Ame97] gives an overview on the state-of-the-art of computational geometry software before
CGAL and provides many references. Computational geometry software was intensively discussed
at the First ACM Workshop on Applied Computational Geometry, cf. [Meh96, Lee96, Ove96]. A.
Fabri et al. [FGK � 96] report about the basic design of the lower dimensional kernel. Precision
and robustness issues of a computational geometry library are discussed in [Sch99]. In the US, an
implementation effort with a goal similar to that of the CGAL-project has been started at the Center for
Geometric Computing, located at Brown University, Duke University, and John Hopkins University.
They state their goal as an effective technology tranfer from Computational Geometry to relevant
applied fields. Their geometry library is called GeomLib [TV97] and is implemented in Java.

There are several collections of computational geometry software modules called gems. Gems
carry the characteristic of being specialized in a small field of computational geometry. They are

1as opposed to a possible template approach via number template arguments.
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often easy to use but due to their diverse origins non-homogeneous in their handling. The striking
fact is that many reimplement geometric functionality to a certain extent that is already available
somewhere. But their nature forces the design to be self-contained and thus application design in the
gem world mostly starts by creating a specialized geometric kernel for the needs of the application.

The development of a generic geometric software library tries to overcome this shortcoming of
the gem approach. Application design should be able to start from a collection of geometric objects
and geometric primitives like predicates and constructions.

One application gem in the field of computational geometry that found wide application is the
quickhull2 package of C. Barber, D. Dobkin, and H. Hudhanpaa [BDH96]. That software is available
on a number of platforms but is also only designed for a special application domain: the package
is robust but overcomes rounding errors by only calculating an approximation of the convex hull of
a set of points that guarantees some consistency conditions. There is no object oriented geometric
interface, and it is mostly blackbox-usage of functionality. The whole geometric framework used in
the blackbox is hidden from the user and therefore the quickhull package is mostly used as one stage
of a pipelined software process.

LEDA [MN99] offers monolithic designed 2-dimensional and 3-dimensional geometric kernels.
Actually, the d-dimensional kernel started as a LEDA extension package (in the spirit of LEDA) and
evolved in parallel to the CGAL project.

The geometric kernels of LEDA are also offered in the Cartesian and homogeneous fashion. How-
ever, LEDA is based on precompiled libraries, and as such there is no generic parameterization of
number types. The advantages are very straightforward: usage is easy and tuning has been done on
top of the monolithic design for the average application domain. The generic approach of CGAL
introduces more freedom to the user as well as to the designer of the kernel. This means also more
work for both: at least some type definitions to instantiate the corresponding kernel for the user and
a clean concept specification plus coping with cutting edge compiler technology for the designer.
However, users of CGAL gain the possibility to tune and test the consequences of different combina-
tions of representation and number types for the corresponding application domain. The possibility
of experimental optimization is the advantage of generic geometry kernels.

2.2 Kernel Design

Higher-dimensional affine geometry is strongly connected to its mathematical treatment (linear al-
gebra and analytical geometry). Therefore a central task is the implementation and integration of a
linear algebra module in a generic way meeting the design goals of CGAL. We will shortly present the
central ideas of our accurate implementation and will describe some features of the concept interface.

The development of this kernel and in parallel the lower dimensional kernels lead to two instan-
tances of the kernel as an abstract concept. In 2- and 3-space the instantiations realize the two flavors
of coordinate representation: Cartesian and Homogeneous. These representation types are strongly
related to the topic of number types. As long as we restrict ourselves to geometric problems that can
be solved within the rational domain we avoid the complications of irrational numbers and the need
for number types that allow the corresponding calculations. Our kernel is mainly designed to solve
problems that are restricted to the rational domain.

Number types that represent fields (or approximations thereof) can be used to store points and
vectors in Cartesian representation and algebraic terms are allowed to contain division operations.
When coordinate inputs are chosen from a grid and the algebraic terms used are closed within the

2we mention this one as representative for the software gems available over the internet.
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rational field, one can also resort to a homogeneous representation of integer components. Our kernel
development is based on multiprecision integer number types and supports homogeneous coordinates.
We just call the kernel including its representation style Homogeneous d. The corresponding Cartesian
counterpart Cartesian d is also available and completes the two-fold design as realized in the lower
dimensional kernels.

The objects of a geometric kernel naturally relate to the notions presented in our introduction 1.1.
We will give an overview of the existing objects, possible extensions and describe the design features
that make our code efficient.

Finally we will describe the integration of two applications into CGAL that use the higher-
dimensional geometry: convex hulls and nearest and furthest site delaunay triangulations. We will
sketch the application idea and mainly report on the interaction between application code and kernel
primitives.

Homogeneous_d
RT,LA

Point_d
R

Vector_d
R

Direction_d
R

Hyperplane_d
R

Segment_d
R

Ray_d
R

Line_d
R

Sphere_d
R

Aff_transformation_d
R

Regular_complex_d
R

Convex_hull_d
R

Delaunay_d
R,Lifted_R

Linear_algebraHd  
+: Matrix
+: Vector

RT

Vector_
RT

Matrix_
RT

Kernel ApplicationLinear Algebra

Figure 2.1: The class types involved in the kernel: Linear algebraHd
�
RT

�
is a model of our linear algebra

concept that fits the LA parameter of Homogeneous d
�
RT � LA

�
. Homogeneous d

�
RT � LA

�
is a model of the

kernel concept R.

Coordinate representation

Cartesian coordinates are based on an orthonormal coordinate system (an orthogonal frame whose
axis obtain their scale based on the standard base � �

0 �! ! ! %� �
d � 1 � where �

i �:� δi � j � j). In a Cartesian
coordinate system the coefficients of a point (or vector) are taken from a field F . Ideally, (and in
theory) we take F � � , but as soon as we write programs we can only approximate � , e.g., the
data type double is a rational (grid based) approximation of real numbers that is also only a bounded
approximation of the rational field. The problem of rounding errors is an intrinsic problem when
using doubles in the absence of reals in geometric algorithms. Even though there are application
areas where using doubles and tolerating failure is acceptable, one of the main objectives of CGAL is
robustness (combined with flexibility). As in higher dimensions the accumulated rounding errors are
even more a source of failure, the development of the kernel was primarily based on the homogeneous
representation of multiprecision rational numbers that lead to accurate geometric implementations.

So let us consider a point 3�� � p0 �! ! ! "� pd � 1 � �8� d . In the standard mathematical treatment the
� pi � i are called the Cartesian coordinates of 3 . They are the coefficients of the geometric vector3 of 3
with respect to the standard base � �

0 �! ! ! � �
d � 1 � . If our point has only coefficients from the field of ra-

tional numbers then we can also resort to the homogeneous representation 38� � h0 �! ! ! %� hd � 1 � hd � such
3the vector that maps the origin of the coordinate system into � .
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that pi � hi
�
hd . Note that the homogeneous representation in general is not unique (we can multiply

the homogeneous representation by a common factor without changing the cartesian coordinates.).
The advantage of homogeneous representation in higher dimensions is multiple. Compared to the
Cartesian representation using d explicit quotients it saves space. Moreover, many expressions that
appear in predicates are simpler due to the common denominator structure and as such their evaluation
is also faster. And finally, the homogeneous representation avoids divisions and exact division might
either be not an operation of the number type or at least a more expensive operation than multipli-
cation. Number types that can be used for the homogeneous components are multiprecision integer
types like leda integer or the CGAL::Gmpz4, but also leda reals (where the division indeed is more
expensive than multiplication).

Concepts and Models

Generic programming is programming up to concepts. The original geometric kernel [MMN � 96]
was a well-modularized but closely integrated programming module. The port to CGAL lead to the
identification of the conceptual interfaces that separate the different modules and made the actual code
modules models of the concepts. Several concepts are part of the higher-dimensional geometry: the
ring type RT, the linear algebra type LA, and the kernel (representation type) R. The kernel concept
can be seen in two views:

global view – the global kernel objects like Point d
�
R � (cf. Figure 2.1) together with the correspond-

ing predicates, constructions, and the kernel objects’ method interface make up an intuitive
easy-to-use kernel interface that is available to write application programs and experiment with
different representation classes or number types.

traits view – the representation class R itself defines the concept of a general traits class that is used
in the application layer of CGAL as a generic interface to kernel functionality. This concept is
mainly defined around function objects and has more the flavor of functional programming.

In either case Homogeneous d
�
RT � LA � fits both concepts as a model. Instantiation of geometric

objects like Point d
�

Homogeneous d
�
RT � LA � � allows a user to use the global kernel view. Us-

ing Homogeneous d
�
RT � LA � as a traits class, e.g., as in Convex hull d

�
Homogeneous d

�
RT � LA � � ,

makes use of the traits concept.
The main advantage of this design is the transparent usage of representation classes. In the first

version of CGAL most applications had their own traits classes and users and maintainers had to
handle them separately. In this final design maintainance is much easier, but also application design
can be based on the ready-to-use kernel traits models.

Linear Algebra

The realization of Homogeneous d is strongly connected to the concept of linear algebra. The con-
cept interface can be found in the Appendix 4.1.1. The default model of LA is bundled in the class
Linear algebraHd

�
RT � .

The core operation of Linear algebraHd
�
RT � is a Gaussian elimination scheme for a non-

homogeneous linear system Ax � b as described by J. Edmonds [Edm67]. For a recent reference
4equals GNU multiprecision integer type wrapped by a C++ class interface
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see the books of A. Schrijver [Sch86, part I] or C. Yap [Yap97, lecture X]. We present a literate pro-
gramming realization of the Gaussian elimination algorithm. Those not interested in the details can
skip this presentation and jump to section 2.3.

Consider a linear system A � x � b. Gaussian elimination operates in two phases. In the first phase
it transforms A by a sequence of row and column operations into an upper diagonal matrix and in the
second phase it solves the resulting upper diagonal system.

Let us have a closer look at the first phase. It operates in subphases, numbered 0 to m 9 1 where
m is the number of rows of A. Before the k-th subphase we have transformed A into a matrix

Ck �
�
D E
0 F � �

where D is a non-singular upper triangular matrix of order k. For k � 0 we have C0 � A. In the k-th
subphase we first determine a nonzero element in F (called the pivot-element) and move it into the left
upper corner of F by interchanging rows and columns if necessary and then subtract suitable multiples
of the top row of F from the other rows of F to zero out all below diagonal entries in F’s first column.
To simplify the presentation we assume that no interchanging of rows and columns is ever necessary.

Lemma 2.2.1: All entries of F can be written as rational numbers with denominator � � � Ak where Ak

is the submatrix formed by the first k rows and columns of A.

Proof. For a matrix M and row indices i1,  ! ! , ik and column indices j1,  ! ! , jl use M j1 � � � � � jl
i1 � � � � � il to denote

the l � l submatrix formed by the elements in the selected rows and columns. Consider any entry f i j

of F . We have

fi j � � ��� �!� Ck � 0 � � � � � k � 1 � j
0 � � � � � k � 1 � i �

� ��� �!� Ck � 0 � � � � � k � 1
0 � � � � � k � 1 �

since the matrix in the numerator has fi j in the right lower corner, zeroes in all other entries of the last
row, and the matrix in the denominator in its other row and columns. The numerator is therefore f i j

times the denominator. Observe next that both determinants do not change if we write C0 instead of
Ck since Ck is obtained from C0 by subtracting multiples of the first k rows from the other rows. Thus,

fi j � � ��� �!� C0 � 0 � � � � � k � 1 � j
0 � � � � � k � 1 � i �

� ��� �!� C0 � 0 � � � � � k � 1
0 � � � � � k � 1 �

The Lemma above suggests to take � ��� Ak as the denominator of all entries of F , to store the
denominator separately, say in a variable denom, and to keep only the numerators in the matrix F .
Thus, we maintain the invariants

� 1 � denom � � � � Ak

� 2 � Fi j � � � � A0 � � � � � k � 1 � j
0 � � � � � k � 1 � i � for i

�
k � j � k

� 3 � fi j � Fi j
�
denom  

The effect of the k-th subphase is to replace f i j by

f
�

i j � fi j 9 fik � fk j
�

fkk

� � fi j � fkk 9 fik � fk j � �
fkk

� �!� Fi j � Fkk 9 Fik � Fk j � � � � � Ak � �
Fkk

for i � k and j
�

k.
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Lemma 2.2.2: Fkk ��� ��� Ak � 1 and the division � Fi jFkk 9 FikFk j � � � � � Ak is without remainder.

Proof. Invariant (2) shows

Fkk ��� ��� � A0 � � � � � k � 1 � k
0 � � � � � k � 1 � k ����� ��� Ak

and Lemma 1 tells us that f
�

i j can be written as a rational number with denominator Fkk. Thus, � Fi jFkk 9
FikFk j � � � ��� Ak must be an integer.

We summarize. We take a matrix C and initialize it with A. Before the k-th subphase we have

� 1 � Cii ��� ��� Ai � 1 for 0 � i � k
� 2 � C0 � � � � � k � 1

0 � � � � � k � 1 is non-singular upper triangular
� 3 � Ci j � 0 for i

�
k and j � k

� 4 � Ci j � � � � A0 � � � � � k � 1 � j
0 � � � � � k � 1 � i for i

�
k � j � k

� 5 � Ci j � � � � A0 � � � � � i � 1 � j
0 � � � � � i � 1 � i for i � k � j � i

In the k-th subphase we set

Ci j �G� Ci jCkk 9 CikCk j � � � ��� Ak

For i � k and j
�

k. The division is without remainder.
So far we ignored pivoting and the right-hand side b. We handle b by adjoining it to A as an

additional column. We handle pivoting by storing all column interchanges (there is no need to keep
track of the row interchanges since we adjoined b to A and hence handle both sides of the equation
in the same way). We store the column interchanges in an array var: What is now column j was
originally column var

�
j � . In other words, column j of C represents variable var

�
j � .

It is useful to keep track of all row operations performed. We do so in a matrix L which we
initialize to an m � m identity matrix and subject to the same row operations as C, i.e., in the k-th
subphase we set

L
�

i j � � Li j � Ckk 9 Cik � Lk j � � � ��� Ak

for i � k and all j. This maintains the invariant

L � � A � b � � P � C

where � A � b � denotes the matrix obtained by adjoining b to A, P is the permutation matrix correspond-
ing to var and C is the matrix we are working in. We initialize C with � A � b � and we intialize P with
the identity matrix.

We still need to fill in two details in our treatment of phase 1: Why do the entries of L stay integral
and how do we discover unsolvability?

Lemma 2.2.3: The entries of L stay integral.

Proof. Let us again ignore pivoting. Then

L �
�

U 0
V W �
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before subphase k where U is a lower diagonal matrix of order k and W is a diagonal matrix. It is
easily proved by induction on k that all diagonal entries of W are equal to � � � Ak, i.e., W �G��� ��� Ak � � I,
and that the diagonal entries of U are � ��� A0, � ��� A1,  ! ! , � ��� Ak � 1. Let

A �
�

Ak  ! ! 
A
�

k  ! ! � �
then U � Ak � D and V � Ak � W � A

�

k � 0. Thus, U � DA � 1
k and V � 9 WA

�

kA � 1
k � 9 ��� � � Ak � �

A
�

kA � 1
k . This implies already the integrality of V since all entries of A � 1

k are rational numbers whose
denominator divides � � � Ak (by Cramers’s rule). For matrix U , we at least know that it is uniquely
defined. It therefore suffices to show that there is an integral matrix U satisfying U � Ak � D. This is
easy to see: We have Di j � � ��� A0 � � � � � i � 1 � j

0 � � � � � i � 1 � i and expansion according to the last column yields

Di j � ∑ � 9 1 � l � j � � � A0 � � � � � i � 1
0 � � � � � l � 1 � l � 1 � � � � � iAl j  

Thus, Ui j �G� 9 1 � l � j � ��� A0 � � � � � i � 1
0 � � � � � l � 1 � l � 1 � � � � � i.

Unsolvability is easy to detect. We discover unsolvability in subphase k when the search for a
nonzero pivot is unsuccessful but the current right hand side has a nonzero entry in row k or below.

We are now ready for the program.

�
implementing Linear algebra �������� � ��(����,�����( �	���	���

� �	���
	 �8� �	(�*���(�������	*�(�&�
	���	����$�$
� ��� ��(�*������	������*<� ���� � ����(��	*�����!���� ������������������*	!
������ �����*	!������	�	!�������(��	* ���	! � � (��	�0���������� �����*��������������*	! 	#
.
���	���3��������(������
�9�	*�� � =�
initialize C and L from A and b ��
phase 1 ��
test whether a solution exists and compute c if there is no solution �
� ) ����������(�� ����# .�

compute solution space �
/
*�������*�� ��������(�� ����=

/

We start with the initialization. The matrix in which we will calculate is C �G� A � b � . L is initialized to
the identity matrix.

�
initialize C and L from A and b �������� � �"!#��$ =&%'% ����
 ���� � ��� ������� �)(	*�����)(��)( ����(��	*��*�

�����9*���+ �,�-�/. *��0+1��
 �2� �����������<�8# =
����� ������,�-�/. ��	����� �1��
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 �<������������� 8 # =
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)���*<���C��D�= ����*���+�� = �C='= #".
)	��*<�E!)�'D�=�!�����	��� =F!)=)= #3 �8�G�"!�#C�)���8� �"!�#>=
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3 �8� � ��	����#C� �54 ��6<=
	 �8� ���	#;� ?0=

/

In phase 1 of Gaussian elimination we know that column j of C represents the var
�
j � th variable. The

array is indexed between 0 and cols 9 1.

�
phase 1 ���

����
 $�$ ��� �����* � ���	� � ��(�*<���������# =
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search for a nonzero element; if found it is in
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We search for a nonzero element.

�
search for a nonzero element; if found it is in

�
i � j ���<�� �	���+� ���1� B���*�����)�������
 � )�(�������=

)���*<��� ��$ = �,��*���+ � = �C='= #".:%'%3������� �)(�*�����)(9*��0+�����$��"����� *���+��": ?��
)	��* �"!��-$ =&!3� ��	��� !	! 3 �8� �"!�#;�)� D�=&!)='=�# =
%)% ������� �)(�*����')( ������0� ���	� $
� �����1�������: ?��
� ) �E!3� �������#".
� ����� B���*��'��)����	��
 �9�	*�� � =
��*���( $ =

/
/

We interchange rows and columns. Any exchange changes the sign of the determinant.

�
interchange rows k and i and columns k and j �"���) �8�� ��$ #,.
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3 . ��+ (�����������0� ��� �E!#�5$�#0=
� ��
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/

Now we are ready to do the pivot-step with the element Ck � k . We do the L’s first since we want to work
with the old values of C. Note that the division by denom is allowed as this factor is contained in the
nominator term.

�
one subphase of phase 1 �"�

)���*<��� ��$:= ?0= ���,*��0+�� = �C='= #
)	��* �"!�� D�=A! � *��0+�� =A!)='= # %'%�(���
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check invariant L � A � P � C �

It is good custom to check the state of a computation. The matrix L multiplied by A permuted as given
by var should be equal to the current C. The permutation var moves column var

�
j � of A to column j

of C.

�
check invariant L � A � P � C �E�
� ��)	
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We are done with Gaussian elimination. At this point C has a rank � rank upper triangular matrix in
its left upper corner and the remaining rows of C are zero. The system is solvable if the current right
hand side has no nonzero entry in row rank and below. Assume otherwise, say C � i � cols � ! � 0. Then
the i-th row of L proves the unsolvability of the system.
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�
test whether a solution exists and compute c if there is no solution ���
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We compute the solution space. It is determined by a solution x of the non-homogeneous system plus
cols 9 rank linearly independent solutions to the homogeneous system.

Recall that C has a rank � rank upper triangular matrix in its upper left corner. We view the
variables corresponding to the first rank columns as dependent and the others as independent. The
vector var connects columns with variables: column j represents variable var

�
j � .

The components of x are rational numbers with common denominator denom (by Cramer’s rule
and since denom is (up to sign) equal to the determinant of the submatrix formed by the dependent
variables). We set the components corresponding to the independent variables to zero and compute the
components corresponding to the dependent variables by back substitution. During back substitution
we compute xi (again ignoring pivoting) by xi �G� bi 9 ∑ j � i ci � jx j � �

ci � i . Let x
�
i � be the numerator of xi,

then x
�
i � �G� bi � denom 9 ∑ j � i ci � j � x

�
j ��� �

ci � i .
�
compute solution space ���� �����  ����*<���������# =

� � 
�������� =
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The dimension of the kernel is called the defect of the matrix. spanning vectors stores a base of the
kernel. We have a spanning vector for each independent variable. We set the value of the independent
variable to 1 � denom

�
denom and then compute the values of all dependent variables. In the lth

spanning vector, 0 � l � d : � defect we set variable var
�
rank � l � to 1 � denom

�
denom and then the

dependent variables as dictated by the rank � lth column of C. The matrix C has the following form��
� C0 � 0 � � � C0 � r � 1 C0 � r � � � C0 � n � 1

...
. . .

...
...

...
0 � � � Cr � 1 � r � 1 Cr � 1 � r � � � Cr � 1 � n � 1

���
�

For the spanning vector matrix V (r � d) we set vr � l � l � 1 and vr � i � j � 0 for 0 � i � d � 0 � j � d � i �� j.
Then we solve the system backwards for a fixed l and all dependent variables :

vi � l ��� 9 cl � r � l 9 ∑
j � i

ci � jv j � l � �
ci � i

To maintain numerator and denominator separately we have to add a factor D in front of c l � r � l and use
only the numerators of the v j � l .
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The function determines the complete solution space of the linear system M � x � b. If the system
is unsolvable then cT � M � 0 and cT � b �� 0. If the system is solvable then 1

D x is a solution, and the
columns of spanning vectors are a maximal set of linearly independent solutions to the corresponding
homogeneous system. As a precondition we have M  row dimension � �8� b dimension � � .

The presented description of the function linear solver demonstrates the runtime verification un-
derlying our software modules. Either a solution x is calculated which can be easily checked by
substitution into the linear system Mx � b or a vector c is provided which proves the unsolvability of
the system. Of course there is also a selftest incorporated in the code which can be switched on by a
compilation flag and thus the testing can be done permanently.

2.3 The Kernel Objects

As shown in the kernel Figure 2.1 we provide the geometric classes Point d, Vector d, Direction d,
Hyperplane d, Segment d, Ray d, Line d, Sphere d, and Aff transformation d. These are the inter-
face types as opposed to the implementation types that specialize the representation. The specialized
implementation type for the interface type Point d is the type PointHd where the “H” marks the homo-
geneous representation. There are also implementation types VectorHd, DirectionHd, HyperplaneHd,
and Aff transformationHd . We will show how the interface types are mapped to the implementation
types later.

We first give a motivation for our interface design and briefly review the basics of analytical
geometry. We use d to denote the dimension of the ambient space and assume that our space is
equipped with a standard Cartesian coordinate system. The basic object within this space is a point p,
which we identify with its cartesian coordinate vector p � � p0 �! ! ! %� pd � 1 � , where the pi, 0 � i � d, are
rational numbers. The homogeneous point model PointHd

�
RT � LA � stores homogeneous coordinates

� h0 �! ! ! %� hd � where pi � hi
�
hd for all i, 0 � i � d, and the hi’s are of ring type RT. The homogenizing

coordinate hd is always positive.
Points, vectors, and directions are closely related but nevertheless clearly distinct types. In order

to work out the relationship, it is useful to identify a point with an arrow extending from the origin
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(= an arbitrary but fixed point) to the point. In this view a point is an arrow attached to the origin. A
vector is an arrow that is allowed to float freely in space, more precisely, a vector is an equivalence
class of arrows where two arrows are equivalent if one can be moved into the other by a translation
of space. Points and vectors can be combined by some arithmetical operations. For two points p and
q the difference p 9 q is a vector (= the equivalence class of arrows containing the arrow extending
from q to p) and for a point p and a vector v, p � v is a point. Compare this layout to the theory of
affine spaces in Section 1.1.

All operations of linear algebra apply to vectors, i.e., vectors can be stretched and shrunk (by
multiplication with a scalar) and inner and scalar product applies to them. On the other hand, geo-
metric tests like collinearity or orientation only apply to points. Note that we distinguish the vector
type VectorHd in this scenario of geometric objects from the vector type of the linear algebra mod-
ule LA ::Vector, which we use to formulate calculations in our arithmetic linear algebra layer. Apart
from the conceptual separation in different software modules, their role and thereby their functionality
within their respective code module is quite different.

A direction is also an equivalence class of arrows, where two arrows are equivalent if one can
be moved into the other by a translation of space followed by stretching or shrinking. Alternatively,
we may view a direction as a point on the unit sphere. In two-dimensional space directions corre-
spond to angles. As in the case of PointHd we store VectorHd, and DirectionHd, respectively, as a
homogeneous tuple of integers with positive homogenizing component.

The common one-dimensional straight-line objects in d-space like lines, rays and segments (which
we allow to be trivial) are implemented in the classes Line d, Ray d and Segment d and are determined
by a pair of points.

With respect to the user interface we can group together points, vectors, directions, and on the
other hand segments, rays, and lines. For the first group there are common operations to access
Cartesian and homogeneous coordinates. Conversions within the first group can be made by explicit
operations. The second group can be seen as container classes determined by a pair of points. As we
will see later this makes it possible to save on a specialization with respect to coordinate representation
(there are no types LineHd, RayHd, or SegmentHd.).

Oriented hyperplanes in the class HyperplaneHd can be used to model half-spaces and affine hulls
of � d 9 1 � -dimensional point sets. They are internally stored as a � d � 1 � -tuple of RT coefficients.

Finally oriented spheres of type Sphere d are helpfull in proximity calculations like Voronoi dia-
grams or Delaunay triangulations. They are stored as a tuple of d � 1 points (type Point d) and they
are also not specialized via representation.

For all of our basic geometric types we have affine transformations, which can be used by a call
of a common member operation which gets an Aff transformationHd-instance as an argument and
delivers a transformed object.

All object classes mentioned use a smart pointer scheme which is already used in many modules
of LEDA and CGAL (see page 14). We distinguish between a front-end object which is created
by the constructor and a storage object of concrete geometric information which is referenced from
the front-end object. The advantages of this scheme emerge in case of frequent copy construction
and assignment where only references have to be redirected and no geometric information has to
be copied. Whenever an object is copy constructed or assigned only an additional front-end object is
created whose reference is set to the background storage object (whose reference counter is increased).
Destruction of a front-end object decreases the counter. A background object is destroyed whenever
the counter falls to zero.

For large objects this decreases memory consumption and allows us to improve equality checks
by testing the reference addresses before a comparison of geometric coordinate information. Both the
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linear algebra module and the geometric objects are parameterized by a memory allocation scheme.
CGAL uses LEDA’s improved memory management module when both libaries are installed. This
gives us a certain speed-up compared to the standard C++ allocation scheme. All objects of the kernel
are programmed along this smart pointer scheme.

We now take a closer look at the interface properties as defined by the manual pages, by which
we further elaborate on the features of our data types. The Appendix 4.1 shows the corresponding
manual pages.

Points, Vectors and Directions points, vectors, and directions in d-dimensional space are defined by
their coefficients. A corresponding object is not mutable. One cannot change one coefficient
but keep the rest. This provision is necessary to make the smart pointer scheme efficient. The
interface now specifies the ways how the coefficient tuple can be transferred into the objects
and how they can be read from the outside.

The generic way to specify a sequence of objects is an iterator range. Therefore the construction
of a point with respect to an iterator range

�
start � end � referencing a tuple of RT coordinates

is either p � d � start � end � D � or p � d � start � end � where in the first version the range specifies d
numerator values of the coefficients and D is the common denominator. In the second version
the denominator is the last entry of the iterator range that has to contain d � 1 values.

The data access operations allow access to the dimension via p dimension �@� (the am-
bient dimension d). The ith Cartesian and homogeneous coordinate is accessible
via p cartesian � i � and p homogeneous � i � where the first operation returns the quotient
p homogeneous � i � �

p homogeneous � d � of RT values and the second directly the correspond-
ing RT entry. Additionally, there are also read-only iterator ranges for simple output iteration
via the method pairs homogeneous begin �2� �

end �2� and cartesian begin �2� �
end �2� . Operator

overloading allows the intuitive calculation of Point d difference, which results in a Vector d
and the translation of Point d by adding a Vector d.

Vectors have a similar interface to points. Only that the applicable operations are those of linear
algebra. Thus a vector v can be multiplied and divided by scalars of type RT and FT, two vectors
v and w can be added v � w or subtracted v 9 w. One can also apply the standard Euclidean inner
product v � w and determine the squared length v squared length �6� .
Points and Vectors can be converted to each other by an overloaded addition and substraction
involving a global CGAL object called ORIGIN. For a vector v the sum ORIGIN � v determines
a point object of corresponding coordinates. Reversely, p 9 ORIGIN returns the vector that
corresponds to p.

Finally, a vector v can be converted to a direction by a call to v direction ��� and the converse
operation is provided by d  vector � � . Directions offer simple operations reflecting their special
character as vectors where we forget about their length.

Segments, Rays, and Lines To represent the group of straight line objects we appended the manual
page of Line d in the appendix. The basic operations provided on these objects are mainly their
construction from other kernel objects, like l � p � q � constructs the line l through two points p,
q, access to their defining points l  point � i � for i � 0 � 1, and position checks with respect to the
objects, like l  has on � p � or parallel � l1 � l2 � where l1 and l2 are two lines. Only the latter require
calculations with respect to the points that span the line.

Spheres An object S of type Sphere d is an oriented sphere of d-space. A sphere is defined by d � 1
points with rational coordinates (class Point d). We use A to denote the tuple of the defining
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points. A set A of defining points is legal if either the points are affinely independent or if the
points are all equal. Only a legal set of points defines a sphere in the geometric sense and hence
many operations on spheres require the set of defining points to be legal. The orientation of S is
equal to the orientation of the defining points in A. Spheres can be constructed from an iterator
range of points. One can query equality, non-equality, its center and squared radius, and if some
point of type Point d is contained in the bounded interior, in the boundary or unbounded outer
region.

Predicates and Constructions Apart from the method interface of the geometric objects, the main
value of the kernel are its predicates and constructions including intersection calculations.
We sketch some functionality. The main objects are points and vectors and tuples thereof.
We again adopt their generic abstraction and use iterator ranges

�
start � end � as arguments of

the primitives. In the affine space we provide predicates like affinely independent � start � end � ,
contained in simplex � start � end � p � or orientation � start � end � where tuple

�
start � end � is a tuple

of points. The first returns true iff the tuple of points is affinely independent, the second re-
turns true iff p is contained in the simplex spanned by the points in tuple

�
start � end � , and

the latter returns the Orientation5 of tuple
�
start � end � where size

�
start � end � must be d � 1.

For explorations of linear spaces there are also predicates defined on vectors. For exam-
ple, linear rank � start � end � returns the dimension of the linear space spanned by vectors in
set
�
start � end � . A complete list of predicates can be found in the appendix. We will describe

implementation issues below.

Intersections The intersection interface follows the polymorphic design of the lower dimensional
kernel. For each pair of objects o1, o2 of the types Line d, Ray d, Segment d and Hyperplane d
there is an intersection operation intersect � o1 � o2 � that returns a polymorphic object o of type
Object. This object can be typewise identified and assigned depending on the possible results of
the intersection operation by the function bool assign � T � Object � (where T is any type to which
we want to assign). To make the interface clear we present an example. Assume we intersect,
a ray r and a hyperplane h. The result can be a common point p, the ray r, or no intersection.
Then the intersection can be calculated by

� ��!	� �� ��� ��������* ��� �����( �1*�#>=
� ) � ( �	�	���� �1�����	# # .'.). %'%�
�� ��������� (0�����+0� �)(,� � �������
�	����� ��) � ( �	������ �-*�����#"# .'.'.�%'%�
�� ����� ���)(0���' +0� � (9*�(�;9*
�	����� .'.'. %'%+� � ���	����* ������������

the assign operation returns true iff the polymorphic conversion from i to the corresponding
object (first parameter) can be done. Note that this scheme requires the user to know about the
possible outcome of the intersection operation to query the corresponding result type.

If we only want to check for intersections there is also a pairwise operation do intersect � o1 � o2 �
that returns true iff the objects intersect.

Affine Transformations As introduced in the introduction, any transformation of the form � �� � ��# is an affine transformation of a point �I�:� x0 �! ! ! %� xd � 1 � . Due to the fact that our rep-
resentation is in homogeneous coordinates h0 �! ! ! � hd there is a more compact way to represent
such transformations by d � 1-dimensional square matrices. Note that we require the entries
of � and # to be all rational numbers. Let w be the least common multiple of all the denom-
inators of � and # . We can then represent the components of the affine transformation by an

5Orientation is an enumeration type of CGAL with constants POSITIVE, ZERO, NEGATIVE.
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integral matrix � � and an integral # � and the common denominator w such that a
�

i j

�
w � ai j and

b
�

i

�
w � bi. Note that the following � d � 1 �	� � d � 1 � matrix � can be used to transform the

homogeneous representation of � �G� h0 �! ! ! %� hd � by simple matrix multiplication:

� �
� � � # �
� w �

as

� � �
�

∑d � 1
j � 0 a

�

i jh j � b
�

ihd 0 � i � d

whd i � d

We obtain the standard Cartesian transformation by dividing the first row (the components i �
0 �! ! ! "� d 9 1) by the second row. Our affine transformation data type stores the matrix � via a
smart pointer scheme and offers diverse construction mechanism for standard transformations
of type Aff transformation d

�
R � :

t � M � constructs the transformation according to a matrix � , t � start � end � constructs the
componentswise scaling transformation according to the iterator range of d � 1 RT values,
t � d � num � den � constructs a uniform scaling of dimension d with scaling factor num

�
den, t � v �

constructs the translation as defined by a vector v in d-space of type Vector d
�
R � .

There is also a construction scheme to obtain approximate rotations as specified by rational
directions specified in a linear subspace of dimension 2 and determinded by two coordinate
axes. t � d � dir � num � den � i � j � constructs a rotation in the subspace spanned by the coordinate
axes i and j (0 � i � j � d) of d-space and approximating the angle specified by dir. The
approximation is such that the difference between the sines and cosines of the rotation given by
dir and the entries of the rotation matrix are at most num

�
den. The code is based on the rational

rotation method presented by J. Canny and E.K. Ressler [CDR92].

2.4 Applications

The convex hull and the Delaunay triangulation problem are traditionally specified as functions, i.e.,
given a set of points, compute their convex hull or their Delaunay triangulation in some representation.
We specify both problems as data types that support insertions and a large variety of query operations.
In the case of convex hulls we support navigation through the interior and the boundary of the hull
and we support membership and visibility queries. In the case of Delaunay triangulations we support
navigation through the triangulation, we support locate6 and nearest neighbor queries, and we support
range queries with spheres and simplices. For two-dimensional convex hulls and Delaunay triangu-
lations we also support an interface to the LEDA graph and window classes [MNSU99, MN99], as
well as to CGAL polyhedral surfaces. In this way one can, for example, construct two-dimensional
nearest and furthest site Voronoi diagrams and minimum spanning trees, display hulls and Delaunay
triangulations.

The next two sections present parts of the specifications of convex hulls and Delaunay triangula-
tions, respectively.

Convex hulls — An instance C of type Convex hull d
�
R � is the convex hull of a multi-set S of points

in d-dimensional space. We call S the underlying point set and d or dim the dimension of the
6A locate-query finds the simplex of the triangulation containing the query point
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underlying space. We use dcur to denote the affine dimension of S. The data type supports
incremental construction of hulls.

The closure of the hull is maintained as a simplicial complex, i.e., as a collection of simplices
the intersection of any two is a face of both7. In the sequel we reserve the word simplex for the
simplices of dimension dcur. For each simplex there is a handle of type Simplex handle and for
each vertex there is a handle of type Vertex handle. Each simplex has 1 � dcur vertices indexed
from 0 to dcur; for a simplex s and an index i, C  vertex � s � i � returns the i-th vertex of s. For any
simplex s and any index i of s there may or may not be a simplex t opposite to the i-th vertex
of s. The function C  opposite simplex � s � i � returns t if it exists and returns Simplex handle �2�
(the undefined handle) otherwise. If t exists then s and t share dcur vertices, namely all but
the vertex with index i of s and the vertex with index C  index of vertex in opposite simplex � s � i �
of t. Assume that t exists and let j � C  index of vertex in opposite simplex � s � i � . Then s �
C  opposite simplex � t � j � and i � C  index of vertex in opposite simplex � t � j � .
Again we appended the specification of the convex hull data type in the appendix.

Delaunay triangulations — An instance DT of type Delaunay d
�
R � Lifted R � is the nearest and fur-

thest site Delaunay triangulation of a set S of points in some d-dimensional space. We call S
the underlying point set and d or dim the dimension of the underlying space. We use dcur to
denote the affine dimension of S. The data type supports incremental construction of Delaunay
triangulations and various kind of query operations (in particular, nearest and furthest neighbor
queries and range queries with spheres and simplices).

A Delaunay triangulation is a simplicial complex. All simplices in the Delaunay triangulation
have dimension dcur. In the nearest site Delaunay triangulation the circumsphere of any sim-
plex in the triangulation contains no point of S in its interior. In the furthest site Delaunay
triangulation the circumsphere of any simplex contains no point of S in its exterior. If the points
in S are co-circular then any triangulation of S is a nearest as well as a furthest site Delaunay
triangulation of S. If the points in S are not co-circular then no simplex can be a simplex of
both triangulations. Accordingly, we view DT as either one or two collection(s) of simplices.
If the points in S are co-circular there is just one collection: the set of simplices of some trian-
gulation. If the points in S are not co-circular there are two collections. One collection consists
of the simplices of a nearest site Delaunay triangulation and the other collection consists of the
simplices of a furthest site Delaunay triangulation.

For each simplex of maximal dimension there is a handle of type Simplex handle and for each
vertex of the triangulation there is a handle of type Vertex handle. Each simplex has 1 � dcur
vertices indexed from 0 to dcur. For any simplex s and any index i, DT  vertex of � s � i � re-
turns the i-th vertex of s. There may or may not be a simplex t opposite to the vertex of
s with index i. The function DT  opposite simplex � s � i � returns t if it exists and returns nil
otherwise. If t exists then s and t share dcur vertices, namely all but the vertex with in-
dex i of s and the vertex with index DT  index of vertex in opposite simplex � s � i � of t. Assume
that t � DT  opposite simplex � s � i � exists and let j � DT  index of vertex in opposite simplex � s � i � .
Then s � DT  opposite simplex � t � j � and i � DT  index o f vertex in opposite simplex � t � j � . In
general, a vertex belongs to many simplices.

Any simplex of DT belongs either to the nearest or to the furthest site Delaunay triangulation or
both. The test DT  simplex of nearest � Simplex handle s � returns true if s belongs to the nearest

7The empty set if a facet of every simplex.
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site triangulation and the test DT  simplex of furthest � Simplex handle s � returns true if s belongs
to the furthest site triangulation.

Further implementation issues — The implementation of type Convex hull d follows [CMS93] and
Delaunay triangulations are reduced to convex hulls through the well-known lifting map, see
for example [Ede87]. Based on our kernel, a class Regular complex d was implemented that
can represent so-called regular simplicial complexes. A simplicial complex is called regular
if all maximal simplices, i.e., simplices that are not a subsimplex of another simplex of the
complex, have the same dimension. The class Regular complex d provides operations for nav-
igation through the complex and update operations. The class Convex hull d is derived from
Regular complex d and the class Delaunay d is derived from Convex hull d.

The work horse for the query operations on convex hulls and Delaunay triangulations is a
method3 . ������� �0��� � ��; ���	(�* �(<�-�������	� 
-��� ���	
 $	$-� ����� ����(����� ( (���
�������!
������� ����� )�( ��������

�����	! �����(�������� ����(����� (�(���
�����!,) # =

that constructs the list of all x-visible hull facets in visible facets, returns the position of x with
respect to the current hull in location ( 9 1 for inside, 0 for on the the boundary, and � 1 for
outside) and, if x is contained in the boundary of C, returns a facet incident to x in f .

The membership query and the visible facets query for hulls are easily realized by this method
and the nearest neighbor and the range query for Delaunay triangulations use it in an essential
way. The nearest neighbor query for Delaunay triangulations lifts the query point (using the
lifting map), then determines all visible facets of the hull, and then selects the best vertex by
linear search through their vertices8 . The range query with spheres lifts the sphere (using the
lifting map) and then finds all vertices of the hull that lie below the resulting hyperplane9 .

In order to make the results of our applications verifiable, we use program checking [BLR90,
MNS � 96] in our implementation. In particular,

� the class Regular complex d provides a method RC check topology � � that partially checks
whether RC is an abstract simplicial complex10 .

� the class Convex hull d provides a method is valid �"� that verifies convex hulls as described
in [MNS � 96].

The representation of convex hulls and Delaunay triangulations in data types Convec hull d and
Delaunay d is simplex-based, i.e., simplices are the main objects and lower dimensional faces
are only implicitly represented. In lower-dimensional space there are alternative representa-
tions. Two dimensional convex hulls and Delaunay triangulations can be represented by planar
graphs: the vertices and edges are the primary objects and represent simplices (= triangles) im-
plicitly as faces of the planar graph. For convex hulls in 3-space, there is also a function that
extracts the surface of a convex hull and returns a polyhedral surface.

If C has type Convex hull d
�
R � , P has type Polyhedron 3

�
T � , where the point type

Polyhedron 3
�
T � :: Point (introduced by the traits class T ) has to be the same as

8This method is only efficient in low-dimensional space.
9The lifing map turns a sphere into a hyperplane.

10The method checks whether the neighborhood relationship on simplices is symmetric, whether all vertices of a simplex
are distinct, and whether two neighboring simplices share all but one of their vertices. It does not check whether simplices
that share all but one of their vertices are actually neighbors in the complex.
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Convex hull d
�
R � :: Point d then convex hull d to polyhedron 3 � C � P � extracts the surface of C

and stores it in P.

2.5 Generic Programming Techniques

Linear algebra and the number type are conceptually introduced as template parameters of
Homogeneous d. The LA parameter defaults to our default model Linear algebraHd

�
RT � .

����� � ��(����,�����( �	� �	� � ���( �	��	 � �-	 ��� ��(�* (��0�����*�(�&�
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	)� 	)� =
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Note that we provide the arithmetic types as local types of the kernel. RT is called the ring type,
FT is the corresponding field type, and LA the linear algebra type. The above type redirection is
necessary to make RT and LA available as member types of Homogeneous d. From now on we will
save on that pattern and implicitly use RT and LA in the class scope. Sometimes we will just write
Homogeneous d

�
RT � instead of Homogeneous d

�
RT � LA � .

A kernel is a concept and therefore carries types and functionality that it offers to a user or that
can be used by application programs when the representation class is used as a traits class. There are
interface types and internally used types. We want to use global types that are parameterized by the
representation class but that are at the same time contained in the traits class to make them available
for application programs. C++ supports the following scheme by allowing a delayed instantiation.
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Up to this point there is nothing new. But we can just make Point d
�
R � a member of Homogeneous d

and thereby using the latter in two roles: once as a carrier for the base class Point d base and once as
a container of the interface type Point d that is derived from the base class.
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Note that now Point d
�
R � is equal to R :: Point d (where R is a model of the kernel, e.g.,

Homogeneous d
�
RT � ). The above trick is also used for the kernel types Vector d, Direction d, and

Hyperplane d.
There is also a second type of objects in the kernel. Affine objects representing point sets that are

not strongly related to the representation of the coordinates. We coded them in a meta layer such that
the classes work for both the homogeneous and the Cartesian representation classes. The classes are
Segment d, Ray d, Line d, and Sphere d.
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All interface operations that do algebraic calculations (there are only few, like
Segment d

�
R � :: has on � Point d x � ) get their functionality from predicate units that are placed

in the representation class R and are therefore specialized with respect to the representation class R.

Predicates and Constructions

The role of the kernel as a traits class requires carrying predicates and constructions that are needed
by application programs. Function objects are the predicate and construction units. We show how we
implement two predicates and how the interface accesses the implementation.

Our first example is the predicate that determines whether a point p is contained in the affine hull
of a set of points A � set

�
first � last � of an iterator range.
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A point p is contained in the affine hull of a set A of points if p is an affine combination of the points
in A, i.e., if the system ∑λiAi � p has a solution with ∑λi � 1. Set λi � Ai � dβi

�
pd with Ai � d being the

homogenizing coordinate of Ai and pd being the homogenizing coordinate of p. The i-th column of
the system for the βi’s is simply the homogeneous vector of Ai and the right hand side is simply the
homogeneous vector for p.

The above function object is provided in the kernel as a member type. The specialized and repre-
sentation dependent function object type Contained in affine hullHd

�
Self � is mapped to the member

type Contained in affine hull d (one concept requirement of the kernel).
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There are two interfaces to use the function object. The first is the usage of the predicate function ob-
ject directly when Homogeneous d

�
RT � is used as traits class. Note that traits classes dock to applica-

tions not only as types but also as objects that might carry runtime information. Therefore using traits
classes comprehend the forwarding of function objects (that implement predicates and constructions).
In this way the function objects that a traits class forwards to an application can bind runtime informa-
tion that is part of its calculations. (e.g., imagine an orientation predicate in a plane where the plane
is fixed within the traits class). The interface operation to obtain the function object is contained in -
affine hull d object � � 11 in the above case. Note that this operation just uses the default constructor of
the function object, however the object � � -function is there because Homogeneous d

�
RT � is a model

of the traits concept.
For the global kernel view we offer a simple global predicate function that makes sense if a user

does not use the traits mechanism but is just using the kernel from its global abstract interface. A
global function like contained in affine hull can thus rely on the function object type from the kernel
(it works also for different representation types like a Cartesian d kernel model).
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Our second example is the orientation predicate. We cite from the manual specification. The predicate
determines the orientation of the points in the set A � set

�
first � last � where A consists of d � 1 points

in d - space. This is the sign of the determinant
����

1 1 1 1
A
�
0 � A

�
1 �  ! ! A

�
d �

����

where A
�
i � denotes the cartesian coordinate vector of the i-th point in A. One precondition is that

size
�
first � last � ��� d � 1 and A

�
i �  dimension � � ��� d � 0 � i � d. The value type of ForwardIterator

has to be Point d
�
R � .
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11CGAL has the naming convention to write the object name lowercase and append the object
� � postfix.
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The implementation is a straightforward translation of the above by means of the linear algebra carried
in the kernel. The code excerpt shows the vertical interaction between the software layers. The macro
TUPLE DIM CHECK checks that all objects of the iterator range have the same dimension. The
function std ::distance � � determines size

�
f irst � last � depending on the iterator category. We allocate

the square matrix that is filled by the homogeneous point coefficients. As our coefficient vector layout
has the homogenizing coordinate in the last position we add the row correction to account for the row
flipping in different dimensions. Finally the sign of determinant operation is the working unit of the
predicate. Most affine operations on point tuples map to the solution of a corresponding linear system
calculated by our linear algebra layer.

The above function object is again provided in the kernel as a member type. The specialized and
representation dependent function object type OrientationHd

�
Self � is mapped to the member type

Orientation d.
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Again there are the two interfaces to use the function object. The first is the orientation d object ���
method that again makes Homogeneous d

�
RT � LA � a model of the kernel concept. For the global

kernel view we offer again a simple global predicate function. In this case the parameter list does not
contain a type reference to the kernel type. For global functions based solely on iterator ranges we
obtain the kernel via the iterator traits mechanism.
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The iterator traits exhibits the value type of the iterator. From this value type we obtain the kernel and
finally the orientation function object type.
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Application traits classes

As already described in Section 2.2, the canonical way of parameterization of an application is
via a single parameter that corresponds to a model of the kernel (as a traits class). We follow
this scheme in the design of Regular complex d

�
R � and Convex hull d

�
R � . A flexible design of

Delaunay d
�
R � Lifted R � requires the separation of two traits concepts. The first parameter R refers to

the ambient d-space of the Delaunay triangulation, and the second refers to the lifted d � 1-space. Our
default model Homogeneous d

�
RT � fits both parameters and actually the second parameter defaults

to the first, such that Delaunay d
�
R � � Delaunay d

�
R � R � . The decoupling is necessary in cases

where the geometry in dimension d � 1 is implemented by a different kernel than that of the ambient
space. A trivial example is the specialization of the d-dimensional algorithm to 2-dimensional delau-
nay triangulations. There the traits models for dimension 2 and 3 can be based on the available kernels
for the fixed dimension.

The traits requirements of Convex hull d
�
R � and Delaunay d

�
R � Lifted R � are documented at the

end of their manual pages. Note that an application object obtains a kernel object on construction.
This is necessary as a kernel model might carry runtime information into the application. Convex hull
construction follows the following prototype3 ������� � (	� �	� 
��8�8���9
 � ������ �
�	! � ��*�� �	� ���<�8#	# =
The corresponding kernel reference Kernel is stored in the convex hull object and can be accessed by
a call to the kernel � � method.

We give an example how the application class interacts with the kernel as a traits model. The
following operation is taken from the implementation of class Convex hull d

�
R � . It implements the

check if some point x causes a dimension jump of the hull when inserted into the current convex hull
object.� �	���3��� 
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2.6 Discussion and Experiments

The full documentation of the application layer comprises about 100 pages12 . For the application
programs and the linear algebra module the documentation and the implementation are collected in
a noweb-file13 and different tools are used to give different views of the noweb-file: the noweb tool
� �� 	 � �O��� extracts the code, i.e., the view needed by the C++ compiler, and the LEDA tools ��� 	 �

and �	� O� give the manual view and the documentation view, respectively14 .
Both application programs are only reliable if the kernel is exact. For example, the insertion

routine for convex hulls distinguishes cases according to whether the newly inserted point lies in the
12see 
�������������������������������� ���!"�$#�%���&�'�(�)*�,+�-*�,%,.*#�����#�# !�%�/�0�%�-�.*%�1	�2
��3�41
13see 
��������������������5��6�2�7�-�#�7*%"�$%�#�7���
*/8�4%*���,.�-*��.�/��*%�� for an introduction to noweb.
14see the LEDA book [MN99] for an introduction to these tools
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Table 2.1: Convex hull d
�    � varying dimensions, number types, and representations

dimension 2 3 4 5 6 7 8
vertices 34 49 69 91 91 98 100
facets 65 218 1035 4944 16233 63958 231473
double cartesian 0.01 0.03 0.13 0.84 3.44 17.33 79.77
double homogeneous 0 0.02 0.12 0.78 3.37 17.96 85.32
LEDA integer homogeneous 0.03 0.1 0.69 4.98 24.34 138.93 716.78
LEDA real cartesian 0.04 0.12 0.84 5.15 23.6 124.02 -
GNU mpz homogeneous 0.06 0.27 1.79 13.04 63.91 359.93 1992.28

����� ��� �6��� ��� � ��� � �
	�� on inputs created by ����� ��� �6��� ��� � ��� � �� � 	��

affine hull of the points already present or not, and the checking programs does hardly make sense
without exact primitives.

In the early stages of program development the checking feature of the kernel was particulary
useful. For example, the convex hull program needs to compute the hyperplane defined by a set of
points. This can be done by solving a linear system. In the first version of the program we set up the
wrong linear system. It was very useful that the linear system solver gives a proof of unsolvability
and does not just claim unsolvability. This located the error fairly quickly.

We have used classes Convex hull d and Delaunay d on problems up to dimension 10. We have
also compared it to the qhull-program of Barber, Dobkin, and Hudhanpaa [BDH96] and the hull-
program of Clarkson. The first method computes approximate convex hulls and the latter method
computes exact hulls but works only for a limited (albeit large) range of coordinate values. Both
methods are significantly faster than ours. This is mostly due to their use of floating point arith-
metic. However, neither of the algorithms provides the rich functionality that we provide. Note that
Convex hull d provides an online setting whereas quull and hull work in a setting where the input is
fixed.

We first instantiate Convex hull d
�

� with different kernels. The runtime results are shown in Ta-
ble 2.1. We produced a sample of 100 random points in the d-dimensional cube of size 100. Then
we instantiated the convex hull data type with the two kernel representation families with differ-
ent number types. We took the running times for inserting the 100 points into an empty com-
plex. The table shows the number of vertices and facets per dimension and the time to construct
the simplicial complex in seconds. The program ����� ��� �6��� ��� � ��� � � ��� can be found in the CGAL
source tree in ����� ������������� � �  � �� ��� ��� ���L��� � . It was compiled with � � � ����� and run on a SUN
Sparc E10000 with huge core memory. Running �����L��� � � � ��� � �!� � �" � � � � produces an in-
put file �����L��� �6� � ��� � �!� � � ����� that is in qhull input format. Then this input can be used with
�����L��� � � � ��� � �!� � � ���  ����� where choice is numeric flag that allows to choose the corresponding
instantiation of Convex hull d (e.g., �����L��� � � � ��� � �!� � �#	�� chooses all the instantiation possible).
�����L��� � � � ��� � �!� � � � � gives an overview of the corresponding options.

In our small number range the standard double instantiations (homogeneous and Cartesian)
worked well when the consistency tests of the program where switched off. The LEDA number type
real worked also well up to a certain dimension. However its space requirements made it fail starting
from dimension 8. The instantiation of choice is the homogeneous kernel with LEDA integers. The
main bottleneck of Convex hull d is its memory consumption for the large number of simplices built
in higher dimensions. We give a comparison of the runtimes and complexity of Convex hull d and
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Table 2.2: Comparison Convex hull d
�

Cartesian d
�
double � � and qhull

number of points 200 400 600 800 1000
Convex hull d 1.91 3.92 5.78 8.3 8.38
Vertices/Facets 155/9970 279/19951 348/26444 442/34886 438/35588
qhull 0.15 0.3 0.53 0.63 0.63
Vertices/Facets 126/1986 208/3848 250/4665 292/5495 308/5899
�����L��� �6� � ��� � �!� � �
	 and � ���L��� on inputs created by �����L��� �6� � ��� � �!� � �� � �

qhull in Table 2.2. We compare the Cartesian double version of Convex hull d with qhull in dimension
5. The table presents a lower bound of Convex hull d runtime. The runtimes show that the online in-
sertion scheme of Convex hull d is inherently slower than the heuristic input filtering of the quick hull
algorithm when used in a static input scenario. Starting from 600 input points our checker reported
local non-convexities at ridges of the convex hull. However the program did not crash. Note that the
qhull counts only extreme vertices and non-simplicial facets, whereas the Convex hull d statistics are
the boundary vertices and facets of the simplicial complex.

At the beginning of this project we also compared the pure linear algebra module to the standard
math packages Maple [CGG � 91a] and Mathematica [Wol96]. Our implementation is significantly
faster. Please refer to the corresponding technical report [See96]. We also tested alternative ap-
proaches for the homogeneous linear algebra module sketched above. In his master thesis, O. Ashoff
[Ash99] implemented a model of our LA-concept based on a description of M. McClellan [M.T73].
The linear algebra model was faster than ours in high dimensions with large numbers. However,
the instance did not show runtime improvements for the calculation of convex hulls but was actually
slower. For instances up to dimension 10, the homogeneous linear solver seems to be well tuned.

2.7 Conclusions

We implemented and tested the usability of a generic higher-dimensional kernel in CGAL. Its main
features are the exchangeability of number types, representation types and linear algebra and the
built-in checking features. Our applications follow the exact arithmetic paradigm and by using the
corresponding instantiation we can handle all degenerate cases and the computed results are fully
checkable. One interesting extension would be the implemenation of the original quick hull algorithm
on top of our geometric kernel and to compare this to the monolithic design of the original implemen-
tation. The runtime tests in the previous sections show the main advantages of our generic design.
The possible replacement of number types and linear algebra modules is one of its major strengths
compared to a monolithic design.

The price for the generic design of the kernel was certainly a longer development cycle. The
implementation of template code enforces a strict discipline with respect to testing but our develop-
ment was also obstructed by technological problems. One target of CGAL was portability, but many
state-of-the-art compilers are still incomplete in their realization of the C++ language standard. The
usage of cutting-edge technology bears the need for work-arounds or even a voluntary restriction to
available functionality for certain platforms. The result however should convince our readers that the
obtained flexibility is worth the price.



Chapter 3

Infimaximal Frames

3.1 Introduction

Many geometric algorithms that are usually formulated for points and segments generalize nicely to
inputs containing also rays and lines. Do implementations generalize as easily? Let us consider two
concrete examples: plane sweep for segment intersection and map overlay.

In the plane sweep algorithm for segment intersection a vertical line is swept across the plane
from left to right. The intersections between the sweep line and the input segments are kept in a data
structure, the Y-structure. The Y-structure is updated whenever the sweep line encounters a segment
endpoint or an intersection point between two segments. The event points are kept in a priority queue,
the X-structure. The sweep paradigm can clearly also handle rays and lines. Will an implementation
generalize easily, e.g., does LEDA’s implementation [MN99, Section 10.7] generalize? It does not.
For example, the X-structure needs to be initialized with the endpoints of the segments, but what are
the endpoints of lines and segments?

In Section 3.2 we will argue that the answer is not given by projective geometry (neither standard
nor oriented). We will also argue that enclosing the scene in a fixed geometric frame and clipping
rays and lines at the frame is an unsatisfactory solution. It excludes on-line algorithms, it requires
non-trivial changes in the software structure, and it decreases the effectiveness of floating point filters.
In Section 3.3 we propose infimaximal frames as a general technique for handling rays and lines. We
propose to enclose the scene in a frame of infimaximal size and to clip rays and lines at the frame.
Infimaximal frames support on-line algorithms, require no change in software structure, and cooperate
well with floating point filters.

Our second example concerns map overlay. The texts [dBvKOS97, Section 2.3] and [MN99,
Section 10.8] describe algorithms for maps with a single unbounded face, i.e., all faces (except the
unbounded face) are bounded by simple closed polygons. Again the algorithms readily generalize to
subdivisions with more than one unbounded face, e.g., Voronoi diagrams or arrangements of lines.
Will implementations generalize? No, they do not. For example, the standard data structure for
representing maps, namely doubly connected edge lists [PS85, dBvKOS97], assumes that all face

43



44 Infimaximal Frames
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Figure 3.1: The left part shows a scene consisting of two parallel vertical segments and one horizontal
segment. The sweep line encounters the endpoints in the order p1, p2, p3, p4, p5, p6. In the right
part the vertical segments are extended to lines. In projective geometry, parallel lines share endpoints:
Oriented projective geometry identifies p1 with p5 and p2 with p6 and standard projective geometry
identifies all four points p1, p2, p5, p6. In either case, there is no order on the endpoints which would
allow to sweep the scene.

cycles are closed and hence DCELs cannot even represent subdivisions with several unbounded faces
in a direct way. Infimaximal frames offer a simple solution. Enclosing the scene in an infimaximal
frame makes all faces (except the outside of the frame) finite and hence extends the use of DCELs to
subdivisions with several unbounded faces.

This chapter is structured as follows. In Section 3.2 we discuss projective geometry and the
inclusion in concrete geometric frames and argue that these approaches are insufficient. In Section 3.3
we introduce infimaximal frames and discuss their mathematics. In Section 3.4 we describe our
implementation of infimaximal frames. In the three subsections we report on the program modules
that realize geometry based on infimaximal frames. In Section 3.4.1 we work on the implementation
of a polynomial arithmetic. In the following Section 3.4.2 we use the polynomial arithmetic together
with the CGAL lower dimensional geometric kernel to implement a simple version of infimaximal
frames. From this version we derive a filtered version in Section 3.4.3.

The end of Chapter Section 4 discusses our application experience. We use infimaximal frames
in the implementation of Nef polyhedra and we compare the efficiency of our implementation of
infimaximal frames with a realization of concrete geometric frames. We will see that there is no loss
of efficiency and in some situations even a gain.

3.2 Alternative Approaches

We discuss projective geometry and the inclusion of the scene in a concrete geometric frame. We
argue that projective geometry is unable to solve our problem and that the inclusion in a concrete
geometric frame is unsatisfactory.
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Projective Geometry

Projective geometry provides points at infinity and hence, at first sight, seems to solve all our prob-
lems. There are two versions of projective geometry: the standard version [Cox87] and the oriented
version of Stolfi [Sto91]. In the standard version, there is one point at infinity for every family of
parallel lines, and in the oriented version, there are two points at infinity for every family of parallel
lines. Neither version allows to sweep the configuration shown in the right part of Figure 3.1. In
this configuration, a finite segment lies between two vertical parallel lines. Since the finite segment
lies completely to the right of the left vertical line, the left vertical line should be swept before the
finite segment. Similarly, the right vertical line should be swept after the segment. However, parallel
lines share endpoints in projective geometry and hence there is no way to define a sweep order on
the endpoints of lines and segments. We conclude that projective geometry is unable to solve our
problem.

Inclusion in a Concrete Geometric Frame

The following argument is typically used to show that an algorithm designed for segments can also
handle rays and lines:

Enclose the input scene in a large enough frame and clip rays and lines at the frame. Solve
the problem for segments and translate back to rays and segments. The frame must be
large enough such that no interesting geometry is lost. Adding and removing the frame
are simple pre- and postprocessing steps which do not affect the asymptotic running time
of the algorithm.

We next argue that inclusion in a concrete geometric frame is a bad implementation strategy.

� The frame must be large enough so that no interesting geometry is lost and hence the frame size
can only be chosen once the input is completely known. Thus, on-line algorithms are excluded.
Additionally, merging different scenes is non-trivial, if constructed with different frame sizes.
It requires to change representations of points.

� Implementations have to be changed in a non-trivial way. We first need to make a pass over the
data to determine an appropriate frame size. Next we clip rays and lines at the frame and replace
them by segments. Then we run the algorithm for segments. Finally, we need to translate back.

� A large concrete frame size makes floating point filters ineffective. In the exact computation
paradigm of computational geometry [OTU87, KLN91, Yap93, YD95, Sch99], all geometric
predicates are evaluated exactly. Floating point filters are used to make exact computation effi-
cient [FvW96, MN94, BFS98]. Floating point filters are most effective when point coordinates
are small. Clipping rays and lines on a concrete frame introduces points with large coordinates
which make filters less effective. Observe that in an arrangement of lines a single intersection
with large coordinates will force the use of a large frame. Also observe, that lines with k bit
coefficients may intersect in points whose coordinates require 2k bits. Assume that our input
consists of a set of lines. Two lines with equations ax � by � f and cx � dy � g intersect in
point �!� f d 9 gb � � � ad 9 bc �D��� ga 9 f c � � � ad 9 bc �!� (Cramer’s rule).

It may seem that frame size can be changed dynamically. For example, one could define the frame
size as a variable. Whenever a ray or line needs to be clipped, the current value of the variable is taken
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as the frame size, and whenever interesting geometry happens outside the current frame, the value
of the variable is increased. Also, when the frame size is increased, the coordinates of all points on
the frame must be changed in order to maintain consistency and hence, the approach incurs a large
overhead in time if the frame size needs to be adopted frequently. Infimaximal frames avoid this
overhead.

3.3 Our approach

We use a frame of infimaximal size. More precisely, we enclose the scene in a square box with corners
NW � 9 R � R � , NE � R � R � , SE � R � 9 R � , and SW � 9 R � 9 R � . We leave the value of R unspecified and treat R
as an infimaximal number, i.e., a number which is finite but larger than the value of any concrete real
number. Infimaximal numbers are the counterpart of infinitesimal numbers as, for example, used in
symbolic perturbation schemes [EM90].

Before we go into details, we argue that this proposal overcomes the deficiencies of the concrete
frame approach.

� Since the value of R is infimaximal, no interesting geometry lies outside the frame and on-line
problems cause no difficulties. All scenes are constructed with the same infimaximal frame and
hence merging scenes causes no problems.

� Implementations incur only minor changes. We will define new point classes and segment
classes (extended points and extended segments, respectively). Extended points are either stan-
dard points or points on our infimaximal frame and extended segments are spanned by ex-
tended points. Thus extended segments can model standard segments, rays and lines. Many
LEDA [LEDa] and CGAL [CGA] algorithms can operate on the new point and segment classes
without much change, see Section 3.5 for examples.

� Filters stay effective up to larger input bit sizes. Point coordinates are polynomials in R and the
evaluation of geometric predicates amounts to determining the sign of the highest nonzero coef-
ficient. These coefficients are smaller than the corresponding values arising in the computation
with a fixed frame size, see Section 3.4 for details.

3.3.1 Frame Points and Extended Points

We define extended points in terms of their position with respect to the square box.

Definition 1: A frame point or non-standard point is a point on one of the four frame boundaries. A
point on the left frame boundary has coordinates � 9 R � f � R �!� , where f is a function with � f � R � � � R
for all sufficiently large R. Points on the other frame boundaries are defined analogously, i.e., points
on the right boundary have coordinates � R � f � R �!� , points on the lower boundary have coordinates
� f � R �D� 9 R � , and points on the upper boundary have coordinates � f � R �D� R � . A standard point is simply
a point in the affine plane and has coordinates � x � y � with x � y � � . An extended point is either a
standard point or a non-standard point.

Although the definition above makes sense for arbitrary function f , we restrict ourselves to linear
functions in R, as this will suffice to model endpoints of rays and lines.
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3.3.2 The Endpoints of Segments, Rays, and Lines

The endpoints of a segment are standard points, a ray has a standard endpoint and a non-standard
endpoint and a line has two non-standard endpoints.

Consider a non-degenerate line � with line equation ax � by � c � 0 (a2 � b2 �� 0). If b � 0, the
endpoints of the line are � 9 c

�
a ��� R � . If b �� 0, we have y � mx � n, where m � 9 a

�
b and n � 9 c

�
b. If

� m � � 1, the line has endpoints ��� R ��� mR � n � , if � m � � 1, the line has endpoints ��� R
�
m 9 n

�
m ��� R � ,

and if � m � � 1, the line has endpoints � 9 R � 9 mR � n � and � R 9 nm � mR � if sign � n �2� sign � m � , and has
endpoints � 9 R 9 nm � 9 mR � and � R � mR � n � if sign � n � �� sign � m � . The non-standard endpoint of a
ray is determined similarly. We see that the coordinates of the endpoints of a line are simple linear
functions in R, our infimaximal.

The endpoints of more complex geometric objects can be determined similarly, but the coordinate
expressions become more complex. For example, the parabola � y 9 x � 2 � 5x intersects the upper frame
boundary in point � R � 5

�
2 9 / 5R � 25

�
4 � R � and the right frame boundary in point � R � R 9

�
5R � .

We use the coordinate approach described above also in our implementation, i.e., the coordinates
of frame points are linear functions in R (recall that we are only dealing with lines and segments). We
have also explored an alternative implementation strategy, namely to store a frame point as a reference
to the underlying geometric object plus an indicator which selects the appropriate frame point. We
found that this strategy leads to heavy case switching within geometric predicates as a point has four
different representations (a standard point, a ray tip, the left endpoint of a line, and the right endpoint
of a line) and hence a predicate operating on four points, e.g., the side of circle predicate, would have
to cope with up to 24 cases.

The coordinate approach treats all cases uniformly. Moreover, it incurs no significant runtime
penalty as we will see in Section 3.4.

3.3.3 Predicates on Extended Points

The flow of control in geometric algorithms is determined by the evaluation of geometric predicates.
Important predicates are the lexicographic order of points (compare xy), the orientation of a triple of
points (orientation), and the incircle test for a quadruple of points (side of circle). Many1 geometric
predicates can be evaluated by computing the sign of a simple function defined on the coordinates of
the points involved.

For example, the lexicographic order is simply a cascaded comparison of coordinates (sign of their
difference), the orientation of three points is defined by

orientation � p1 � p2 � p3 �)� sign

������

1 1 1
x1 x2 x3

y1 y2 y3

������

and the side of circle predicate is given by

side of circle � p1 � p2 � p3 � p4 � � sign

��������

1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

x2
1 � y2

1 x2
2 � y2

2 x2
3 � y2

3 x2
4 � y2

4

��������

What happens when we apply these predicates to extended points? The value of the predicate will
become the sign of a function in R. If this sign is independent of R for all large values of R, the value

1The author knows of no predicate that is not.
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of the predicate is well defined. For a large class of predicates and extended points this will be the
case.

Lemma 3.3.1: If a geometric predicate is defined as the sign of a polynomial in point coordinates
and the coordinates of extended points are polynomials in R, the value of the predicate when applied
to the extended points is well-defined.

Proof. Assume that the predicate is defined as the sign of a polynomial P. Substituting the point
coordinates into P gives us a polynomial in R. For sufficiently large values of R, the sign of this
polynomial is given by the sign of the highest nonzero coefficient.

We give an example. Consider the orientation of two standard points p1 � � x1 � y1 � , p2 � � x2 � y2 �
and one non-standard point p3 �G� 9 R � mR � n � on the left frame segment. We obtain:

orientation � p1 � p2 � p3 �	� sign � �
m � x2 9 x1 �A� � y2 9 y1 � � R

� �
n � x2 9 x1 �A� � x1y2 9 x2y1 � � �

If the coefficient of R is nonzero, its sign determines the orientation, and if the coefficient of R is zero,
the constant term determines the orientation. The latter is the case if the non-standard point is the
endpoint of a line parallel to the line through p1 and p2.

Lemma 3.3.2: The values of the predicates compare xy, orientation, and side of circle are well de-
fined for endpoints of segments, rays and lines.

Proof. Predicates compare xy, orientation, and side of circle are defined as signs of polynomials in
point coordinates and the coordinates of endpoints of segments, rays, and lines are linear polynomials
in R, our infimaximal.

3.3.4 Extended Segments

We introduce extended segments as a unified view of segments, rays, and lines. Recall that our goal is
to extend programs written for segments to rays and lines. Thus, we need a unified view of segments,
rays, and lines.

A segment is defined by a pair of (standard) points. An extended segment is defined by a pair of
extended points. We have to be a bit more careful. We cannot give meaning to every pair of extended
points, but only to those pairs which correspond to a segment, ray, or line.

Definition 2 (extended segment): A pair of distinct extended points � p1 � p2 � defines an extended
segment (esegment) if one of the following conditions holds:

1. both points are standard points.

2. both points are non-standard and are the endpoints of a common line.

3. one point is standard and one is non-standard and they are the endpoints of a common ray.

4. both points are non-standard points and lie on the same frame box segment.

Extended segments defined by items 1) to 3) are called standard and extended segments defined
by item 4) are called non-standard. Standard esegments correspond to objects of affine geometry,
non-standard segments do not. For every fixed value of R, a non-standard segment corresponds to a
well-defined geometric object.
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3.3.5 Intersections of Extended Segments

An extended segment represent either a standard segment, a ray, a line, or a segment on one of the
frame boundaries. We define the intersection point of two esegments as follows. If for every fixed
sufficiently large value of R, the corresponding geometric objects intersect in a single point, this point
is the point of intersection. Otherwise the intersection is undefined. Observe that if the intersection
lies on the frame for every sufficiently large value of R, the intersection is indeed one of our frame
points and hence this definition makes sense.

We next show that the standard analytical methods for handling intersections of segments apply
to extended segments.

Consider two non-trivial segments s0 �0� p0 � q0 � and s1 �0� p1 � q1 � and their underlying lines � 0

and � 1. The segments intersect in a single point iff2 the endpoints of si do not lie on the same side3

of � 1 � i for i � 1 � 2. Thus, the test whether two segments intersect amounts to four evaluations of the
orientation predicate. We have already argued that the orientation predicate extends and hence the test
whether two segments intersect extends.

Consider next the computation of the intersection point p of s0 and s1. The coordinates of p are
rational functions rx and ry of the coordinates of p0 to q1. Rational expressions Ex and Ey in the
coordinates of p0 to q1 representing functions r0 and r1 are well known and easily obtained. Simply
derive the line equations for � 0 and � 1 and then solve a linear system to obtain Ex and Ey

4:

� i � aix � biy � ci � 0

where

ai � ypi 9 yqi � bi � xqi 9 xpi � ci � xpiyqi 9 xqiypi

Then the point of intersection p is defined by the expressions (Cramer’s rule):

Ex � � b0c1 9 b1c0 � � � a0b1 9 a1b0 �D� Ey �G� a1c0 9 a0c1 � � � a0b1 9 a1b0 �
What is the situation for two extended segments? The intersection point is an extended point

and for every fixed value of R, rx � R � and ry � R � are the coordinates of the intersection point. If the
intersection point is a standard point, rx � y � R � does not depend on R, and if the intersection point is
non-standard5 , one of the functions rx � y � R � is the identity function and the other has absolute value at
most R for sufficiently large R. We may also apply the rational expressions Ex and Ey to the coordinates
of the endpoints of the esegments p0 to q1. We obtain representations for rational functions in R, our
infimaximal. For every fixed value of R, we have rx � y � R �C� Ex � y � R � and hence the rational functions
must simplify to the canonical representation of non-standard points. We have thus shown:

Lemma 3.3.3: Let intersection � p1 � p2 � q1 � q2 � be the partial function that returns the coordinates of
the intersection point of the segments s � p0 � p1 � and s � q0 � q1 � . Then intersection is correct when applied
to extended segments.

2For simplicity, we are ignoring the possibility that the underlying lines are identical and the two segments share an
endpoint. The discussion is easily extended to also handle this situation.

3An oriented line has three sides: left, on, and right.
4Note that the rational expressions are not unique. One can easily expand the quotient by an arbitrary factor.
5Intersect a line or ray with the non-standard esegment that contains an endpoint.
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3.4 Implementation

We implemented extended points in C++ and used them together with CGAL and LEDA. We report
about the use in Section 3.5. Our implementation went through three versions.

In the first version an extended point was represented by a reference to the underlying geometric
object plus an indicator which selects a frame point. Predicates and geometric constructions used case
switching based on the representation. We soon realized that this approach is too cumbersome and
that the complicated control structure of our predicates makes it difficult to ensure correctness.

In this section we report about the versions two and three. Both use the coordinate representation
based on arithmetic in a polynomial ring. We implement a number type RPolynomial modeling �

�
R �

the Euclidean ring of polynomials in a variable R. Our type offers the ring operations � , 9 , � ,
polynomial division and the gcd operation, as described in [Coh93, Knu98], and a sign function. The
sign function returns the sign of the highest nonzero coefficient.

We obtain extended points and segments by combining our number type RPolynomial with the
geometry kernel of CGAL. The geometry kernels of CGAL are parameterized by an arithmetic type.
Objects may either be represented by their Cartesian or their homogeneous coordinates. We use the
homogeneous kernel as it only requires a ring type (the Cartesian kernel requires a number type that
is a field). We instantiate two-dimensional homogeneous points with our number type RPolynomial,
and add some additional construction code for points from standard points and oriented lines. No
work is required for the geometric predicates as predicate evaluation amounts to sign computation of
arithmetic expressions and we define the sign function of our ring type according to Section 3.3.3.

A slight modification is required for the intersection code. The CGAL kernel does not automati-
cally cancel common factors in the representation of points, i.e., it is not guaranteed that the gcd of the
homogeneous coordinates of a point is equal to one6. For our situation this implies that point repre-
sentations could contain redundant polynomial factors and hence non-linear polynomials. Correctness
is not really impaired, but running times become miserable if one proceeds this way. We remedy the
situation by insisting that representations are always in their reduced form, i.e., whenever a point is
constructed the gcd of the homogeneous coordinates is computed and a common factor is canceled.
This ensures that the polynomials in point representations stay linear as argued in Section 3.3.5.

Our second implementation has the strong appeal of very modular programming and thereby its
correctness was very simple to achieve. We have used it heavily as a backup checker for the more
elaborate techniques used in our third version.

In the third version we optimize the representation of points and the evaluation of predicates.
This forces us to write our own classes epoint and esegment and to write code for the evaluation of
predicates. In the representation of points we exploit that the normalizing coordinate is an integer (and
never a polynomial of degree one). In order to optimize the evaluation of predicates, we derive closed
form expressions for the polynomials arising in the predicates and incorporate filter technology.

3.4.1 Polynomials in one variable

We present the implementation of a simple polynomial type RPolynomial in one variable. The in-
terface is specified in the manual page on page 190. Let NT be a either a field number type or an
Euclidean ring number type7. We use NT

�
x � to represent the polynomial ring in one variable. For a

polynomial p � ∑d
i � 0 aixi � NT

�
x � we store its coefficients along its rising exponents coeff

�
i � � ai in

6It cannot do so since the notion of gcd does not make sense for every ring type.
7An Euclidean ring type is a ring that additionally offers division with remainder and as such is a unique factorization

domain.
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a vector of size d � 1. We keep the invariant that ad �� 0 and do not allow modifying access to the
coefficients via the interface. Flexibility in the creation of polynomials is achieved via iterator ranges
which can specify a sequence of coefficients of a polynomial. We offer basic arithmetic operations like
� � 9 � � , as well as destructive self modifying operations ��� � 9 � � � � . When working destructively
we need a cloning scheme to cope with the alias effects of one common representation referenced by
several handles. For number types that are fields or Euclidean rings we also offer polynomial division.
For the field types this can be done directly by so called Euclidean division. For the number types
that are Euclidean rings we provide it via so called pseudo division. Based on that operation we also
provide a gcd-operation on the ring NT

�
x � .

Handle_for
Ref_counted

Ref_counted

RPolynomial
+: size_type
+: iterator
+: const_iterator
#RPolynomial(d:sizetype)
+RPolynomial(ao:NT)
+RPolynomial(a0:NT,a1:NT)
+RPolynomial(a0:NT,a1:NT,a2:NT)
+RPolynomial(start:Iterator,end:Iterator)

NT
RPolynomial_rep

+coeff: std::vector<NT>

NT

* 1

Figure 3.2: Some details of the handle scheme. RPolynomial rep
�
NT

�
is derived from Ref counted and thereby

a model of the template parameter T of Handle for
�
T
�
. It stores the coefficients in an STL vector coeff .

RPolynomial
�
NT

�
is derived from Handle for

�
RPolynomial rep

�
NT

� �
. A Ref counted object carries the

reference variable, Handle for
�
T
�

provides the copy construction and assignment mechanisms.

Implementation

Polynomials are implemented by using a smart-pointer scheme. First we implement the common
representation class storing an NT vector. The whole smart-pointer scheme is shown in Figure 3.2.
For the representation class we keep the invariant that the coefficient vector coeff is always reduced
such that the highest-order entry is nonzero except when the degree is zero. In this case we allow a
zero entry. By doing so the degree of the polynomial is always coeff  size � � 9 1. To keep our invariant
we reduce the coefficient representation after each construction and arithmetic modification, which
basically means we shrink the coefficient vector until the last entry is nonzero or until the polynomial
is constant. In this description we only show the most interesting facets of the implementation. The
whole implementation project is presented in our implementation report. The pop back � � operation
of the STL vector nicely supports the reduce � � method.

�
rep interface � � �������
,*���
����� ��#

.
+)(0����� � ��	��)	)�. ���CB�� �8#�� ? !	! ��	��)	)�. � ( C$��8#C�'�����<�ED�# #9��	��)	) .7� ���1�0� ( �$<�8# = /

In this chunk we present the method interface of RPolynomial
�

� . The array operators offer read-
only access. For manipulation we offer a protected method coeff � int � , that is only for internal use.
Evaluation, sign, and content are simple to realize.
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Arithmetic Ring Operations

Next we come to the implementation of basic arithmetic operations. The negation is trivial. We just
iterate over the coefficient array and invert each sign. Addition p1 � p2 is also easy. Just add all co-
efficients of the two monomials with the same degree. Note however that the polynomials themselves
might have different degree, such that we have to copy all coefficients in the range min � d p1 � dp2 � � 1 up
to max � dp1 � dp2 � into the result. Afterwards we have to reduce the coefficient vector. The subtraction
routine is symmetric. We only have to deal with the different sign of p2.

�
polynomial implementation ��� �

����� � ��(����,�����( �	� �	���
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Multiplication is also straightforward. The degree formula tells us that p1 � p2 has degree
p1 degree � �A� p2 degree � � . We just allocate a polynomial p of corresponding size initialized to zero
and add the products of all monomials p1

�
i � � p2

�
j � for 0 � i � dp1, 0 � j � dp2 slotwise to ai � j.
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Polynomial Division and Reduction

Next we implement polynomial division operations. See also the books of Cohen [Coh93] or Knuth
[Knu98] for a thourough treatment. The result of our division operation p1

�
p2 in NT

�
x � is defined as

the polynomial p3 such that p1 � p2 p3. In case there is no such polynomial the result is undefined.
The implementation of operator

�
depends on the number type plugged into the template. To

provide the division we implement two division operations pseudo div and euclidean div. The first
operation works with ring number types providing a gcd operation, so called unique factorization do-
mains. The second operation works with polynomials over field number types. To separate our number
types we introduce a traits class providing tags to choose one or the other code variant. In the header
file of RPolynomial there are three predefined class types ring or field dont know, ring with gcd, and
field with div. As a prerequisite a user has just to specialize the class template ring or field

�
� to the

number type that she wants to plug into RPolynomial
�

� . For the LEDA integer type this can be done
as follows



54 Infimaximal Frames

����� � ��(����,���
���	*�� ��,*����� ��* ) ���	��
��	����
�( ������� ���* ��.
�	;�� ��
	��)"*����' +0� �)(  �
�$�����
<=
����(�����+����
�( ������� ���*
 �
 �������� �9����
	( �����������*	!9(#� �������� ����
�( ���	��� ���*�!,�0#
.�*�������*�� $�$  �
�� ( �5�0# =?/

/ =

In case of a Euclidean ring the class ring or field
�
RT � has to provide the gcd operation of two RT

operands as a static method 8. Based on this number type flag RPolynomial
�
leda integer � provides

the division operation with the help of pseudo div based on the gcd operation of leda integer. For
users not providing the ring or field

�
� specialization an error message is raised.

The division operator is implemented depending on the number type NT . Our number type traits
ring or field

�
NT � provides a tag type to specialize it via three overloaded methods divop ��� that are

implemented below.

�
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Field Number Types

We first implement standard polynomial division. Starting from polynomials f and g we determine
two polynomials q and r such that f � q � g � r where dr � dg.
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We need an operation which allows us to subtract a polynomial s which is the product of a polynomial
p � ∑d

i � 0 aixi and a monomial m � bxk . The result is mp � ∑d � k
i � 0 bãixi where ãi � 0 for 0 � i � k

8This makes life easier when working with compilers that lack Koenig-lookup.
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and ãi � k � ai for 0 � i � d. We implement this by shifting the coefficients of p by k places while
multiplying them by b and leave the lower k entries of the resulting polynomial zero.

�
offset multiplication ���������
�� �8�	��� ����)	)������C� ����� ������ � ���	������;�� ��� ��(	�	���	� ��! ��� ��������9�	�	!�� � ������$�#
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	� 	*	�	� ��#C= $�= ?�#	#0= %)%�B���*��9�����	*���� �
)	��* ������� �C�)$ = ��� � �#. 
���	*��	� ��# = ='=��	#,�#. ��	��)	)��8�	# ��� ��� 4 ��:�$	6<=
��� ��*�(�����* : ��� ��# =

/

Now we can just specialize divop in its third argument:

�
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Unique factorization domains

Polynomial division avoiding using the notion of an inverse that is present in fields, is not so trivial. We
first introduce the algebraic notions necessary for some theoretic results. We start with the introduction
of divisibility and greatest common divisors. Let f � ∑d f

i � 0 aixi, g � ∑dg

i � 0 bixi be polynomials of degree
d f and dg. We assume the leading coefficient ad f and bdg to be nonzero and thereby degree defining.

Definition 3: A commutative ring R with unit 1 and containing no zero divisors is called an integrity
domain. An integrity domain where every nonzero element is either a unit or has a unique representa-
tion9 as a product of primes is called a unique factorization domain.

The integers � are our default example of a unique factorization domain. One example for a ring
that is no unique factorization domain is �

�
4 � which contains the zero divisor 2.

Definition 4: Let R be an integrity domain. K � Quot � R � , K �)� K 9 � 0 
 . Let a � b � K � .

� 1 � a � R b ”a divides b in R ” : � � c � R : b � ac

� 2 � a 2 R b : � a � R b � b � R a

Let d � K � . d is called gcdK � a � b � : �

� 1 � d � R a � d � R b

� 2 � � c � K � : c � R a � c � R b � � c � R d
9Uniqueness up to permutations and multiplication with units.
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d is determined uniquely except for multiplication with units.

The following lemma assures that we can divide f by g in the integral domain when we accept an
expansion of f by a power of the leading coefficient of g.

Lemma 3.4.1: Let R be a ring and f � g � R
�
x �&� g �� 0. Let b be the leading coefficient of g. Then

there are polynomials q � r � R
�
x � , such that

bs f � qg � r

where either r � 0 or r �� 0 and dr � dg and the integer s � 0 if f � 0 and s � max � 0 � d f 9 dg � 1 
 if
f �� 0. If b is no zero divisor in R then q and r are uniquely defined.

Proof. Existence — In case f � 0 and f �� 0 � d f � dg the pair q � 0 � r � f is a trivial solution. Let
f �� 0, ∆ � f � g � : � d f 9 dg

�
0. We show the existence of q � r by induction on ∆ � f � g � . Let q � r exist

for polynomials f � g � f �� 0 � ∆ � f � g � � ∆0 � ∆0
�

0. Now let f � R
�
x �&� f �� 0 � ∆ � f � g �C� ∆0 and a be the

leading coefficient of f . We look at f
�
: � b f 9 ax∆0 g. Either f

� � 0 or f
� �� 0 but d f � � d f � ∆ � f � � g � �

∆0. By the induction hypothesis there are r
� � q � � R

�
x � such that bs � f � q

�
g � r

�
where either r

� � 0
or r �� 0 and dr � � dg and the non-negative integer s

� � d f 9 dg. Thus bs � � 1 f � � bs � ax∆0 � q
� � g � r

�
.

Because of s
� � 1 � d f 9 dg � 1 the existence of q and r is clear.

Uniqueness — Let b be no zero divisor in R and assume that there is another representation
bs f � q̃g � r̃ where either r̃ � 0 or r̃ �� 0 and dq � d q̃. By subtracting one from the other we obtain
� q 9 q̃ � g � r̃ 9 r. As the b is no zero divisor in R the degree formula tells us that deg � q 9 q̃ � g �
deg � q 9 q̃ � � dg

�
dg. Thus r̃ 9 r �� 0 and deg � r̃ 9 r � � dg. On the other hand r̃ 9 r is the difference of

two polynomials of degree smaller than dg and therefore deg � r̃ 9 r � � dg. From the contradiction we
obtain q 9 q̃ � r̃ 9 r � 0.

See any algebra book like [RSV84] for more details. Knuth [Knu98] calls the algorithm based on the
above lemma pseudo-division. According to this lemma one can determine q and r within the ring
without resorting to the quotient field. We follow the construction in the proof in reverse order to
reduce f down to r. We use minus offsetmult for the reduction from f to f

�
.

�
polynomial statics ��� �

����� � ��(����,�����( �	� �	���
������
��	������;�� �*� ��(��	���	� �<$�$7��������
�����
 �*���
����������	���	��;�� ��� ��(��	����� ��! ) � �����������������;������ ��(������	� ��!;��
��������;������ ��(������	� ��! � ���	���	��;�� ��� ��(��	����� ��! *�� �	�	!���#

.

�8��� )�
'�	) . 
	� 	*��	� �8# ���
'�) . 
�� 	*��	� �8# =
� ) � )	
���	
 #
. � ���	���	��;�� ��� ��(��	����� � �"D #>= * � )<=�� �@?0=3'4 �'	���� � � � �����
�� ������� �������	��;������ ��(	�	����� � ����# ��) �'� � �C'=�*�# = *������	*�� =
/
%)%�� �0+-+���$�����+3)	
 ���-�
 (���
3)����)
�8��� ��
'�	)	
�:0�
 � 
��	����()� ��
'= ? � *�
'�	)	
�=
�-�:��������;������ ��(������	� � � ����B������<�-
�������( #+# =
��� 4 �- 4 �
	6<=&%'% (0�*)( � ��� ��*�
���* �����)	) ��)�
�:� 4 =F+)(0����� � :	:�
�������( # � �0� 4 =A%'%��:� 4�� 
�������(
��������;������ ��(������	� � *�� � ���	������;�� ��� ��(	�	���	� � ��� # � )<=
+)(0����� � �	
3� �:D�#�.
�	� � � *�� ��4 *�
	6<=�%)%
(0�*)( � ���,��*�
���* �����)	)9��)9*�� �



3.4 Implementation 57

�	� � � ��% 4 = %)% ��� � ��*���
+������� ���	��� ���*
�	;,����������� � ���(�� ��������)-�
� . ��	��)	)�� �	
 #>�9� = %'% � ����*�� � ��	��)	)
*�� � . � ���	� � ����)	) �����0���������� �1��� �	
�#>=
��) �-*�� � . ��� � B	��*�� �8#�#7��*��	( $ =
*�
-� *�� �#. 
���	*��	� ��# =
�	
-� *	
 :
�
<=

/
*:�3*�� � =3)4 ��	������ ��� �����
 � ������� �5�	���	��;�� ���>��(	�����	� � ��� # ��))�'� � �C)=�* # =

/

Finally we specialize divop for unique factorization domains.
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����� � ��(����,�����( �	� �	���
�	������;�� ��� ��(��	���	��� 
 �*����� ������������	���	��;�� ��� ��(��	����� ��! � ? � ���� �����	������;�� ��� ��(	�	���	� ��! � � �

*��8����0+0���)(1�� �
 #
. 3)4 ��	���(��	����*	� ����� �  � ��. ��� ��B	��*�� � #	#>=
� ) �1�G? . ��� ��B���*�� ��#	# *�������*��:D =
��������;������ ��(������	� � � �1* ='�	��� =
��������;������ ��(������	� �<$�$ ��������
	�'��
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For the reduction of polynomials we finally implement the greatest common divisor method as in-
troduced by Euclid. For two elements a � b � R Euclids algorithm uses the reduction gcd � a � b � 2 R
gcd � b � a mod b � .
Definition 5: For a polynomial f � ∑d

i � 0 aixi we define its content as cont � f �C� gcd � a0 �! ! ! � ad � and
its primitive part as pp � f �2� f

�
cont � f � .

Again the content of a polynomial is only unique up to multiplication by units of R . Note that
cont � f � is a divisor of all coefficients of f in R and therefore the division is reducing the representa-
tion of f such that cont � pp � f �!�� 1. The following lemma tells us something about the composition
of the gcd of two polynomials from the contents and the primitive parts. A polynomial whose content
is 1 is called primitive.

Lemma 3.4.2 (Gauss): The product of two primitive polynomials f and g over a unique factoriza-
tion domain is again primitive. Moreover let f and g be two general polynomials over a unique
factorization domain R . Then cont � gcd � f � g �!� 2 R gcd � cont � f �D� cont � g �!� and pp � gcd � f � g �!� 2 R
gcd � pp � f �D� pp � g �!� .
Proof. Let f � ∑d f

i � 0 aixi � g � ∑dg

i � 0 bixi be primitive polynomials. We show for any prime p of the
domain that it does not divide all the coefficients of f � g. For both polynomials we chose the smallest
indices j and k for which p does divide � ai � i and � bi � i. We then examine the coefficient of x j � k of
f � g:

a jbk � a j � 1bk � 1 � � � �!� a j � kb0 � a j � 1bk � 1 � � � � � a0bk � j

As p divides only the first term and none of the following terms, p does not divide the sum.
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From the above we can deduce for general polynomials f and g that pp � f g �<2 R pp � f � pp � g � . The
product f g can be decomposed as f g � cont � f � pp � f � cont � g � pp � g � � cont � f � cont � g � pp � g � pp � f � and
f g � cont � f g � pp � f g � . Thereby we can deduce that cont � f g �<2 R cont � f � cont � g � .

Now assume that h 2 R gcd � f � g � and thus f � hF and g � hG for some polynomials F and G from
R
�
x � . By the previous result we get cont � f � 2 R cont � h � cont � F � and cont � g � 2 R cont � h � cont � G � and

thereby cont � gcd � f � g �!� 2 R cont � h � 2 R gcdR � cont � f �D� cont � g �!� . The latter equality follows from the
fact that gcdR � cont � F �D� cont � G �!�<2 R 1 due to the properties of h in the decomposition of f and g. A
similar argument shows that pp � gcd � f � g �!� 2 R gcd � pp � f �D� pp � g �!� .

This result simplifies the problem and allows us to keep the size of the coefficients of the polyno-
mials as small as possible. An elaborate treatment of the topic can be found in [Coh93, Knu98].

By the above lemma we obtain the following strategy. First calculate F � gcdR � cont � f �D� cont � g �!�
by the gcd routine on the ring number type NT. Reduce both polynomials by their content to their
primitive parts f

� � pp � f � and g
� � pp � g � .

Then reduce gcd � f � � g � � 2 R gcd � g � � f �

mod g
� � . However our pseudo-division pseudo div

only allows reductions of the form � D f
� � g � � to � g � � D f

�

mod g
� � where D � bs as described

above. This is ok though as gcd � D f
� � g � � 2 R gcdR � cont � D f

� �D� cont � g � �!� gcd � pp � D f
� �D� pp � g � �!� 2 R

gcdR � D � 1 � gcd � f � � g � � 2 R gcd � f � � g � � . The final result of the Euclidean reduction delivers d
� �

gcd � f � � g � � . We obtain the desired result gcd � f � g �C� F � d
�

.
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 �-) ?��� ) ��	# =
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+)(0����� � ') � . ��� � B	��*�� �8#+#,.
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	����
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*�������*�����������;������ ��(������	� � � � # ��) ? . (0� � �8#0=
/

Finally we provide a gcd calculation routine for a sequence of numbers. This routine requires the
existence of a gcd operation as provided by our number type traits ring or field

�
NT � .
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�
gcd of range ���
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In this presentation we omit the details of input and output operations and all additional technical
requirement necessary to make RPolynomial

�
� a CGAL number type. The type is specialized for the

built-in number types int and double. This is necessary as the method interface for the general template
class has to have methods for NT as well as for int and double to resolve construction ambiguities when
using numeric constants of the built-in types. On the other hand these initialization methods collide
when the general template would be instantiated for these types. Therefore the specialized class types
have an interface avoiding the collisions.

3.4.2 Simple implementation - Standard kernel plus polynomial number type

We implement planar extended points by a homogeneous component representation in a polynomial
ring type which provides standard ring operations like � � 9 � � . The definition of extended points puts
constraints on the kind of polynomials representing the coordinates. We have seen that our extensible
predicates are defined via polynomials in the coordinate polynomials and as such are extensible via
the limit process on polynomials. Going to infinity the value of a polynomial is determined by the
highest-order nonzero coefficient.

Using extensible predicates on an input set of extended points in the execution of an algorithm we
can determine a concrete value R0 which ensures their extendibility for all R

�
R0 (for each evaluation

determine one Ri and take the maximum of all). Plugging R0 into all coordinate polynomials leads
back to standard affine geometry and standard predicates. This gives us the possibility to argue also
about the correctness of our algorithms. If the algorithm is proven to be correct for standard geometry
and it computes a certain output then it will also calculate some extended geometric result when
plugging in extended points and when all geometric predicates are extensible.

Note that in this way we can design algorithms that use ray like structures much simpler by
enclosing finite structures into the box F and pruning the rays by means of the frame in a ray tip. The
calculation with the extended points makes algorithmic decisions trivial if the predicates we use are
extensible in the above sense.

In this section we will describe how extended points are stored: they are composed from
the 2D CGAL kernel point type Homogeneous

�    � :: Point 2 and the polynomial ring number type
RPolynomial

�    � . We also describe how the affine world of standard points and rays interacts with the
unifying concept extended point. This interaction has two directions: the construction of an extended
point from a standard object (point or ray) and the reversal extraction depending on the character of
the extended point. Afterwards, we show how simple it is to implement predicates and the intersection
construction on top of the genericity of CGAL’s standard kernel. We will encounter the problem of
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simplification of polynomials there. And finally, we give some details about visualization issues of
extended objects.

We often use the short term epoint to denote extended points. Each epoint is either a standard
point, one of the corner ray points or lies in the relative interior of one of the frame segments.

Extended Points

The tip of a ray l can be described in two ways. First in form of its underlying oriented line equation
ax � by � c � 0. But also by its point-vector form p � p0 � λd. The former is the standard repre-
sentation of lines. The latter is more suitable to explore the character of the corresponding extended
point.

Starting from the second representation we have two points p0 and p0 � d on the line. Now all
points on the line can also be described by the determinant equation:

������

1 1 1
x0 x0 � dx x
y0 y0 � dy y

������
� 0

and developing this by the last column leads us to 9 dyx � dxy �=� x0dy 9 y0dx ��� 0. Thus the direction
vector is:

d �
�

dx

dy � �
�

b

9 a �
A point on the line specified by the line equation is:

p0 �
�
� 0 � 9 c

�
b � b �� 0

� 9 c
�
a � 0 � a �� 0

Both a and b cannot be zero. In the following assume Line 2 to be a model for the CGAL standard
geometric kernel.

�
line conversion methods ���

����(�� ��;�	�3
)�<�����������	 �8� ��� ��!3��#,.�*������	*�� � . � ��# = /
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Depending on the slope m � dy
�
dx � dx �� 0 � of a line l we can define its vertical distance to the origin.

If dx �� 0 � � m � �� ∞ � then the ordinate intersection do determines that distance do � 9 c
�
b.
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We introduce enumeration specifiers that describe extended points.

�
enumerate extended point character �5�

���	��� ��� ����������;�� �,. � � 3 � �	�	�'��� ? � 	����	�	�'�'�)�	��� � � 3 � �	���'���� � �	� � �	�'�'�)�	�������'�	�'�)�'�'���?� � �	�'�'�)�	���
� � 3 � �	�	�'��� ��� 4 &	���'�'�'�	� � �	� 3 � �	�	�'�9/ =
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Now if we look at a non-standard point p with underlying line equation ax � by � c � 0 the frame
segment which is hit by the ray tip is determined by the slope and in case � m �F� 1 by the distance
do defined above. Look for example at a non-standard point hitting the left frame segment. This is
generally the case if dx � 0 and � m � � 1. The latter is equivalent to the condition � dx � � � dy � . A special
case is � m � � 1. Then, we only hit the left segment if either m � 9 1 � do � 0 or m � 1 � do � 0. The
latter can be checked by sign � dy ����� 9 sign � do � . Note that because � m � � 1 the line indeed intersects
the y-axis. The other cases follow by symmetric reasoning.

�
line conversion methods � � �
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All the operations above are packaged into the class Line to epoint
�
R � , where R is a model of the

CGAL standard 2d geometric kernel. From R we derive the types RT, FT, and Line 2 as used in the
code.

Any non-standard point can be expressed as a pair of two polynomials in a variable R — our in-
fimaximal symbolic number. Let’s look at our example again. Our point p on the left frame segment
supported by the line ax � by � c � 0 can be described by the tuple � 9 R � a �

bR 9 c
�
b � . Accordingly,

a ray tip on the upper frame segment can be described by � 9 b
�
aR 9 c

�
a � R � . Note that the denomi-

nators are nonzero in both cases due to their frame position. Thus we can store epoints in terms of
linear polynomials mR � n. For standard points the polynomials are just constant with m � 0. We
give the representation of all points in homogeneous representation, such that all coefficients can be
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represented by a ring type.

STANDARD p �G� x � y � w �
CORNER p �G��� R ��� R � 1 �
LEFTFRAME p �G� 9 bR � aR 9 c � b �
RIGHTFRAME p � � bR � 9 aR 9 c � b �
BOTTOMFRAME p �G� bR 9 c � 9 aR � a �
TOPFRAME p �G� 9 bR 9 c � aR � a �

(3.1)

The general representation can be taken to be p � � mxR � nx � myR � ny � w � where mx � y � nx � y � w are ob-
jects of a ring number type. We provide the functionality of extended points bundled into an extended
geometry kernel. This kernel carries the types, predicates, and constructions that we need in our algo-
rithms. The kernel concept is specified in the manual page ExtendedKernelTraits 2 of the appendix.

A decorator wraps functionality

We obtain the extended point class by plugging our polynomial arithmetic type into the standard
homogeneous point type from the CGAL kernel. We create a traits class Extended homogeneous

�
RT �

that carries all types and methods that are used in our algorithmic framework.
To ensure the special character of homogeneous points concerning their coordinates and to offer

a comfortable construction of such points we make Extended homogeneous
�
RT � a decorator/factory

data type [GHJV95] for the geometric objects. Construction and conversion routines can be accessed
as methods of the factory.

�
extended homogeneous � �

����� � ��(����,�����( �	���	���	�
���( ��� �)�	������
	��
��0( �*��� ���� �	��� � $?�	�'� � ��3)4 ��	 $	$7&������ ���� �	��� ��� 3'4 ��	 $	$ �	���	��;�� ��� ��(����0�	���	� � .����'��� �� $
�
extended homogeneous kernel interface types ��
extended homogeneous kernel members �

/ =

We introduce the standard affine types into our kernel by prefixing them accordingly. The extended
types carry the typenames without the prefix. Note that this decorator serves as a traits class to be used
in algorithms that are based on our infimaximal frame. It is also the glue between the CGAL standard
kernel and the extended geometric objects.

�
extended homogeneous kernel interface types ���

�	;�� ��
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	(�*�
���$���*�� ����$�$ �	�00� ������� � ����(���
�(�*�
������ 0��������� � =
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�	;�� ��
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We now implement the construction deduced above. For a non-standard point on the upper frame
segment supported by a line l � ax � by � c � 0 the polynomial coefficients are m � 9 b

�
a � n � 9 c

�
a.

Accordingly on the left frame segment m � 9 a
�
b � n � 9 c

�
b.

�
non-standard point construction �5��������	��� �,��� � �����<���������� ����(���
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Type determination

To evaluate the results of an algorithm one also needs an operation that deduces the type from an
epoint p. From the polynomial representation we can easily defer this type by checking the homo-
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geneous components p hx � � and p hy ��� . Of course standard points have zero degree in both x- and
y-components. For any non-standard p on the frame we know that the relative interior of the frame
box segments is specified by the condition that � p hx � � � � � p hy � � � . The sign of the larger component
(larger with respect to its absolute value) determines the box segment. Equality � p hx �6� � � � p hy � � �
specifies the corners of the box.
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Visualization

We finally treat the problem of how to visualize extended objects. Given a set S of extended points
let us determine a concrete frame radius R0 such that all standard points in S are contained inside our
frame but also all non-standard points in S can be drawn on the correct frame box segments. Note that
the latter is not trivially true for arbitrary small values of R0.

Consider a line l with slope m. If � m � �� 1 the line l intersects both angular bisectors of our
coordinate frame. The intersection point of the larger absolute coordinates determines a lower bound
for R0. If � m � � 1 a natural lower bound for R0 is half the length of the ordinate segment on the y-axis
between l and the origin. See Figure 3.3.

For our polynomial representation � mxR � nx � myR � ny � w � we know that for points in the interior
of the frame box segments it holds that �(� mxR � nx � � � � � myR � ny � � . In either case we can set both
polynomials equal and resolve for R if � mx � �� � my � . R � �(� nx 9 ny � � � �(� my 9 mx � � presumed the line is
not parallel to any of the angular bisectors of the coordinate frame. If � mx � � � my � then the constant
parts nx

�
w or ny

�
w determine the abscissa or ordinate distances between the underlying line and the

origin (depending on the frame segment that contains the extended point). At least one of nx
�
w or

ny
�
w is actually zero (by definition of our extended points). In this case the minimum frame radius R0

is half the absolute value of the abscissa or ordinate distance of the line to the origin.
We now code this determination of R0 for an iterator range of extended points. Note that the

common denominator of the homogenous representation is always a constant and positive. Note that
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P2

P1

l

P1

P2

l

A B

Figure 3.3: The point P1 determines a lower bound for the frame radius R0 to display the non-standard points
at the tips of line l. In case (A) we take the absolute value of its coordinates, in case (B) we take half of its
distance to the origin.

we round the integral division operations on the ring type up.
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Extended predicates

Remember why the predicates compare xy, orientation, side of circle are extensible. The first is just
a cascaded comparison of coordinates (sign of their difference), the latter are sign-of-determinant
calculations. The orientation predicate on three points is defined by the homogeneous expression:

orientation � p1 � p2 � p3 �C� sign

������

x1 x2 x3

y1 y2 y3

w1 w2 w3

������

Thus, evaluation of the sign means looking at the sign of the coefficient of R if it is nonzero, or at the
sign of the constant term if it is zero. The corresponding functionality is programmed into the sign
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function of our polynomial ring number type RPolynomial
�
NT � . Thus adding the following methods

to the extended geometry traits class implements the functionality via the kernel base class.
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.,��;�� ��� (*��� � (���� $	$ 3 ��� � (�*�� �	; � ��*� � (�*�� �	;-� ���� � (�*�� ��; � ����!	�  �<�8# =
*�������*�� ���� � (�*�� �	;��1� ? � � ��# =

/
�����3��*���������(�� ����� �������� � ��� ����� ��!9�G? � ��������,��������� ��!,� � � ������ ���������	� ��!,� � #
.,��;�� ��� (*��� � (���� $	$ � *���������(�������� � ��* ��������(��������
�3��*���������(�������� � ����!	� ��<��# =
*�������*�� ��*���������(��������<�1� ? � � � � � � # =

/

Extended constructions

Algorithms in computational geometry can be grouped into three categories: subset selection, com-
putation, and decision [PS85, 1.4]. Algorithms of the first type resort to predicates, algorithms of
the second type construct geometric objects. To cover this necessity software libraries like LEDA or
CGAL offer a set of so called constructions in their geometric kernels. We have already shown that
the intersection construction is extendible to be used with extended segments.

First we want to present three examples how the standard algebraic calculation of intersection
points is blown up by common polynomial factors.

The coefficients of a line l through two points p1 ��� x1 � y1 � , p2 �G� x2 � y2 � are

a � y1 9 y2 � b � x2 9 x1 � c � x1y2 9 x2y1  (3.2)

The intersection point is defined by the common point of the two underlying lines l i � � aix � biy � ci �
0 �D� i � 1 � 2. Their common point is then obtained by solving the linear system which has a solution if
the lines are not parallel. We obtain

pi ��� b1c2 9 b2c1 � a2c1 9 a1c2 � a1b2 9 a2b1 � (3.3)

in homogeneous representation. Apart from the formal argument why these quotients contain common
factors and how they can be simplified to a minimal representation we give three examples.

two non-standard points on one frame segment — Look at the case where the frame segment is
the upper one. Thus pi ��� miR � ni � R �D� i � 1 � 2. According to equation (3.2) we obtain

a � R 9 R � 0

b � � m2 9 m1 � R ��� n2 9 n1 �
c � � m1 9 m2 � R2 ��� n1 9 n2 � R � bR

The common factor is b, the underlying line is l � by � c � 0 � y 9 R � 0. We obtain a simple
parameterized version of a horizontal line supporting the upper frame segment. The three other
cases are symmetric.

two non-standard points spanning a standard line — Look at the case of one point p1 on the lower
frame segment, p2 on the upper frame segment, both on a line l � ax � by � c � 0 where
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we assume orientation from p1 to p2. We get according to Construction (3.1) p1 � � b �
a R 9

c
�
a � 9 R � , p2 ��� 9 b

�
a R 9 c

�
a � R � . According to equation (3.2) we obtain

a
� � 9 2R

b
� � 9 2R b

�
a

c
� � � b �

a 9 b
�
a � R2 9 2R c

�
a � 9 2R c

�
a

The common factor is 9 2R. The underlying line is l
� � a

�
x � b

�
y � c

� � 0 � ax � by � c � 0 as
multiplying by a and dividing by 9 2R does not change the line.

one non-standard point and one standard point spanning a standard ray — We look again at a
line l � ax � by � c � 0 supporting p2 on the upper frame segment and a standard point p1 on
this line. We have p1 � � b �

a y0 9 c
�
a � 9 y0 � , p2 � � 9 b

�
a R 9 c

�
a � R � . According to equation

(3.2) we obtain

a
� � � y0 9 R �

b
� � 9 b

�
a R 9 c

�
a � b

�
a y0 � c

�
a � b

�
a � y0 9 R �

c
� � 9 b

�
a y0R 9 c

�
a R � b

�
a y0R � c

�
a y0 � c

�
a � y0 9 R �

The common factor is � y0 9 R � .
Note that the polynomial factors are very simple. The greatest common divisor operation and the
polynomial division scheme of the RPolynomial data type can be used to do the simplificication.������
 �	�2� ��� � )�;<�-��� ����� ��!,�0#

.����-�'���6. (����8# � ;'���6. (�;��8# � +����6. ('+<�8# =
�	� ����'�������-� . ��� B���*�� �8# ��; $  �
���� �1;�# =
����'�������-��
�����*�'����� � +0# =
� �9�����8��� � ����%�����)����� �1;�%�����'������� +1%��� �'� ���0#>=

/

Now the intersection uses the kernel operation and simplifies the resulting point afterwards.
�������	� � ��������*���� �������� �
�������� ��� 0�����	� ��! ��? � �������� �	��0������� ��! � ��#

.,��;�� ��� (*��� � (���� $	$ �8������* ��� �� � ��������*���� ��,� ���	����* ������ � �0��!	� ����8# =
�	;�� ����(���� � (���� $	$ 3 �������	*����� � �8� � � � ��� ��� ������ �	*����� � ����� � ����!�� ��<�8#>=
��������� �,� =3'4 ��	 $�$ � ��!	����+*�� � �����
� ��������* ���  �<� � ��� � � ��?�# � � ��� � ��� ��#	#>=
��) �  3'4 ��	 $�$1( �	���*�� �1� � *���� ������#"#3'4 ��	 (��	����*	� ����� � �C<�-)�(������#� 8 ��������* ���� �������5$ � � ��������* ���  �������6. 8 # =
���2� ������)�;<�1��# =
*�������*���� =

/

We provide a similar kernel based on a cartesian representation of points. In this case we use
RPolynomial

�
NT � fed with a field type and use standard polynomial division for simplification in the

intersection construction. The latter replaces the gcd operation of the ring type in the homogeneous
case.
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3.4.3 Filtered implementation - Specialized kernel plus filtered inline

In this section we descibe a more advanced extended kernel than Simple extended kernel. This kernel
tries to optimize runtime by use of a filter stage. It does not rely on polynomial arithmetic but on
unrolled polynomial expressions directly programmed for the evaluation of the predicates and con-
structions. We explain the techniques used. We implement specialized kernel types that store the
arbitrary precision coordinates but also intervals of number type double approximating them. Then
we show how our running example, the orientation test, is implemented in its unrolled fashion. We
finally present the intersection operation based on a case-dependent implementation. Our description
covers all ideas needed to implement the whole extended kernel concept.

Kernel types

In contrast to the first approach based on a polynomial arithmetic type RPolynomial plugged into
CGAL homogeneous points, we implement an extended kernel based on specialized types. The com-
ponents are the types listed below plus the predicates and constructions that are required to construct
a model of our ExtendedKernelTraits 2 concept. The types that we implement are

��������;�� ��� ��(��	���	���
� ��� ���������������	� �
�'�	������
���
 � �����	� ���	� �
�'�	������
���
 ��� 0� ����� ����� �
�'�	������
���
 
 � *����������� ���	� �

We shortly elaborate on the usage of the above types and their design. Let RT be a multiprecision
integer number type like LEDA integer. SPolynomial

�
RT � is a container type storing linear polyno-

mials of the form mR � n. SQuotient
�
RT � stores a two tuple consisting of an SPolynomial

�
RT � and

an RT object and represents the corresponding quotient.
Our definition tells us that an extended point p in homogeneous representation has the form

� mxR � nx � myR � ny � w � , where R is our frame defining variable and all other identifiers are num-
bers from RT. p hx � � returns the x-polynomial mxR � nx and p hy � � the y-polynomial myR � ny (of
type SPolynomial

�
RT � ). p hw ��� returns w. These are the homogeneous x- and y- coordinates of p

with common denominator w. For completeness p also provides a Cartesian interface p x � � returning
an SQuotient

�
RT � of the form � mxR � nx � �

w. In analogy p y �6��� � myR � ny � �
w.

All number entries of p can be accessed as multiprecision numbers as well as as double approx-
imations stored in an interval of type CGAL ::Interval nt advanced. Thus a point stores 5 RT entries
and 10 double precision entries. The number type interface consists of the operations p mx � � , p nx � � ,
p my �6� , p ny �6� , p hw �6� , and p mxD �6� , p nxD �6� , p myD �6� , p nyD � � , p hwD �6� for the intervals. The
operation p is standard �6� returns true, iff both mx and my are zero.

The points are programmed along the lines of the LEDA and CGAL geometric kernel design. They
have I/O stream operators, and they can be drawn in a LEDA window, when our frame parameter R is
fixed.

Points are realized by a smart-pointer scheme. There is a backend object type
Extended point rep

�
RT � (the representation) and a frontend handle type Extended point

�
RT � . We

only elaborate on the representation type. Details on smart pointers are offered in the LEDA book
[MN99].
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�
extended points �"�

����� � ��(����,���	;�� ����(���� �	��� ���( �	� �'�	������
���
���� �����	� =
����� � ��(����,���	;�� ����(���� �	��� ���( �	� �'�	������
���
���� �����	����*���� =
����� � ��(����,���	;�� ����(���� �	���
���( ��� �)�	������
	��
���� � ��������*���� $ ���'��� ��;����)�������	������
�.
)�*�������
 ���( �	� �'�	������
���
���� �����	� ������� =
��������;������ ��(������	� � ���#�1;�� = �	��+1� =
��;�� ��
���) ��������*)��(��'���	����(�
)��(������
>�	� =
���
�1�	
 � ��;�
 � ����
 � ��;�
 � +�
<=

�	�'������ $�
construction �/ =

For the filter stage we use interval approximations of type CGAL :: Interval nt advanced. See H.
Brönnimann et.al [BBP98] for more information. An object of this type is an interval of two doubles
representing any number in the interval. An arithmetic operation op of � , 9 , � , �

on two intervals
X and Y calculates an interval X op Y such that � x � X � y � Y : � x op y �.� � X op Y � . This allows us
to determine the correct sign of an interval expression as long as the interval does not contain zero.
The type uses exceptions to tell user code that a sign determination does not lead to a secure result.
That exception can be catched to repair the resulting uncertainty. We will see how this works in our
predicates below. The type Interval nt advanced implements dynamic filtering. Rounding errors are
accumulated during the execution of the program. The type requires its user to take the responsibil-
ity for the rounding mode of the processor. Whenever an arithmetic interval expression is evaluated
the processor should be in its correct rounding mode (switching the processor is an expensive op-
eration, thereby the user’s care does pay-off). The switching is done by class declaration statement
Protect FPU rounding

�
true � P. The construction of object P sets the correct rounding mode, its de-

struction resets the previous mode which ensures correct execution of code parts that rely on different
rounding modes.

The following conversion routine constructs an interval that contains a double approximation cn
from its parameter n (a LEDA integer). Only two cases can occur: n can be approximated accurately
by an interval

�
cn � cn � of zero width if the bit representation of n has less than 53 bits. Otherwise we

add the smallest representable double to make the interval contain n. By the addition the interval is
expanded by exactly the radius of the machine accuracy. For more information on rounding problems
please refer to D. Goldberg [Gol91].�	�9��� ��������*'��(�� �������� ������
�( ���	��� ���*�!+�0#

.9
	���'�����9 �:� 3'4 ��	 $	$ ��� 
����'����� � �0# =
����
�( �8����� ���*"�	�:� � ��� D ��� $ :��0# =
��) � ���6. ���0B	��*�� �8# � �?��� <� �	�0# ��� � # *�������*����	�<����0# =
�������9.
��*������  � �	� � *����	��
 ���� ���	*�� ��� � =
*�������*��
�	�<�� ��#C= 3'4 �'	 $	$ ���	����*'�	(�� � (���� $	$ �*��(��	������� =

/
/

On construction of the representation we construct the double approximation of the multiprecision
entries. Note that we trade space for execution time.
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�
construction ���
�'�	������
���
���� ����������*����<� ��������;�	�	!���� ������ ���	�	! ;�� ����������	��!�+�# $
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/

We do not show the implementation of the class Extended point
�
RT � . It mainly serves as an inter-

face of the representation class and inherits the handle maintainance code from the front end class
CGAL ::Handle for.

Predicates

We show the implementation of the orientation predicate of extended points. All other predicates
follow the same strategy. For three homogeneous points in polynomials we derive the formula for
the orientation determinant and build up a filter cascade. We implement three template functions that
code the unrolled coefficients of the polynomial in R of degree 2. We do not prove the derivation of
the following algebraic expressions, we instead explain how we obtained them. We used the math
package Maple [CGG � 91b] to do the algebra. The following script executed in maple produces the
code expressions below. The lines with the comments have to be executed for the corresponding
indices.

���'��� $5���1��� ����=������;%'% �C� ? � �#� �

���	;�� $5����;�� ����=���;��;%'% �C� ? � �#� �

��� $5� (�*�*�(�;<��4�4 ���G? � ��;G? �5+ ?�6 ��4 ��� � � �	; � � + ��6 � 4 ��� � �7��; � �5+ �
);]]

� ��*�������� $5� ����	������<� 
����<����# �5� # =
� ��	��)	) � $5� ��	��)	) � ��*�������������� ��# = %'% �C��D#�*? � �
� 3 ����	��)�) �	# = %'% �C��D � ? � �

Finally just paste the coefficient code into the template functions. The following operations code
the coefficient of the squared, linear, and constant term of the function in R that is the result of the
determinant evaluation of M.

�
orientation predicate ���

����� � ��(����,���	;�� ����(����+�	��� ��� � ��� �
�����3��*���������(�� �����1����	��)	) � ������ ��� �	�	! �1� ? � ��������9�	��! %�� ���G? ��%#�

��������,�	�	! ��; ? � ��������9�	��! %�� ��;G? ��%#� ������ �,�	�	!�+ ? �
��������,�	�	! �1� � � ��������9�	��! %�� ��� ����%#�
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Now the final orientation predicate consists of three try-catch blocks. Each try block contains
the filtered coefficient evaluation. If the sign evaluation is not defined (the resulting interval contains
zero) then the unsafe comparison exception is thrown. The catch block evaluates the expression with
RT arithmetic. Note again the protection of the rounding mode with the Protect FPU rounding

�
true �

class declaration. The macros INCTOTAL �C� and INCEXCEPTION �C� are used to accumulate the
statistics of the filter stages.

�
orientation predicate � � �
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� ��. �1�'�<�8#G� � ��.7�'�'�<�8# � � ��. ��;'� �8#G� � � .7��;'���8#G� � � . ('+'����# �
� � . �1�'�<�8#G� � � .7�'�'�<�8# � � � . ��;'� �8#G� � � .7��;'���8#G� � � . ('+'����#	# =

/
�(�� �( � ���	����*'��(	�'��������(�
)��(�� ���
<$	$ ��� ��(�)����������� (�*���������# . ��� 3 ��� 3 �	�	��� � �<� ��* ��# =
*�� �,�3��*������	��(��������1����	��)�) � � � ?G. ���<�8# � �G?G.7�'�<� # � � ? . ��; �8# �7� ?G.7�	;��8# � �G? . ()+ � # �

� ��. �1�<�8# � � ��.7�����8# � � ��. ��; �8# �7� � .7�	;��8# � � ��. ()+ � # �
� � . �1�<�8# � � � .7�����8# � � � . ��; �8# �7� � .7�	;��8# � � � . ()+ � #	# =

/
� ) � *�� �� �-D # *������	*��9*�� � =

��*	; . � � 3 � � �'��	 � ��*G?�#>= �	*������ ������	��� ��*�������
 �8������	*�� �	� �	*������ �������� =
*�� �,�3��*������	��(��������1����	��)�) ?�� � ?G. ���'�<� # � �G? . ��� �<�8# � �G? . ��;'� �8#G� �G?G.7��;'���8#G� � ? . ('+'����# �

� ��. �1�'�<�8#G� � ��.7�'�'�<�8# � � ��. ��;'� �8#G� � � .7��;'���8#G� � � . ('+'����# �
� � . �1�'�<�8#G� � � .7�'�'�<�8# � � � . ��;'� �8#G� � � .7��;'���8#G� � � . ('+'����#	# =

/
�(�� �( � ���	����*'��(	�'��������(�
)��(�� ���
<$	$ ��� ��(�)����������� (�*���������# . ��� 3 ��� 3 �	�	��� � �<� ��* ?�# =
*�� �,�3��*������	��(��������1����	��)�) ?�� � ?G. ���<�8# � �G?G.7�'�<� # � � ? . ��; �8# �7� ?G.7�	;��8# � �G? . ()+ � # �

� ��. �1�<�8# � � ��.7�����8# � � ��. ��; �8# �7� � .7�	;��8# � � ��. ()+ � # �
� � . �1�<�8# � � � .7�����8# � � � . ��; �8# �7� � .7�	;��8# � � � . ()+ � #	# =

/
� ) � *�� �� �-D # *������	*��9*�� � =

��*	; . � � 3 � � �'��	 � ��*�D�#>= �	*������ ������	��� ��*�������
 �8������	*�� �	� �	*������ �������� =
*�� �,�3��*������	��(��������1����	��)�)�D � � ?G. ���'�<� # � �G? . ��� �<�8# � �G? . ��;'� �8#G� �G?G.7��;'���8#G� � ? . ('+'����# �

� ��. �1�'�<�8#G� � ��.7�'�'�<�8# � � ��. ��;'� �8#G� � � .7��;'���8#G� � � . ('+'����# �
� � . �1�'�<�8#G� � � .7�'�'�<�8# � � � . ��;'� �8#G� � � .7��;'���8#G� � � . ('+'����#	# =

/
�(�� �( � ���	����*'��(	�'��������(�
)��(�� ���
<$	$ ��� ��(�)����������� (�*���������# . ��� 3 ��� 3 �	�	��� � �<� ��*'D�# =
*�� �,�3��*������	��(��������1����	��)�)�D � � ?G. ���<�8# � �G?G.7�'�<� # � � ? . ��; �8# �7� ?G.7�	;��8# � �G? . ()+ � # �

� ��. �1�<�8# � � ��.7�����8# � � ��. ��; �8# �7� � .7�	;��8# � � ��. ()+ � # �
� � . �1�<�8# � � � .7�����8# � � � . ��; �8# �7� � .7�	;��8# � � � . ()+ � #	# =

/
*�������*��9*�� � =

/

Corresponding implementations are provided for the predicates compare x � � , compare y � � ,
compare xy ��� , and compare pair dist � � . The latter realizes the squared distance comparison of two
pairs of points. The resulting polynomial has again degree 2 but contains more complicated expres-
sions than the orientation predicate above.

Extended segments and intersection

We provide extended segments and some primitives. We mostly concentrate on the intersection pred-
icate of lines supported by non-trivial extended segments. In this implementation we want to avoid
the calculation of the polynomial gcd. Therefore, we extract the possible intersection configurations
in advance and avoid higher degree polynomials resulting from the general algebraic term.

�
extended segments �������� � ��(����,���	;�� ����(���� �	���

���( ��� �)�	������
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�������0�������,.
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���� � ����� �������;��� ? �"��� ��=

�	�'������ $
�)�	������
	��
�������0����������# $7���G?��8# �E��� � �8# .	/
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We extract the line equation ax � by � c � 0 directly from non-standard points if the extended segment
is just a segment. Note that for all lines crossing the interior of our box a � b � c are just constants from
our integer ring type RT. However the frame segments also support lines of the from x � R � 0 and
y � R � 0. Therefore, we allow a linear polynomial for the coefficient c.
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If two points span a standard segment then the three coefficients of the line through the points can be
derived from the following determinant equation (just resolve for the variables in the last row).

������

x1 y1 w1
x2 y2 w2
a b c

������
� 0

.
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�
standard segment �"�

(-� ��� ?G.7��;<�8# � ��� ��. ('+ �8# :-��� ��.7�	;<�8# � ��� ? . ('+<�8#>=
� � ��� ?G. ('+ �8# � ��� ��. ���<�8# :-��� ��. ()+ �8# � ��� ? .7�����8#>=

� �����	��;�� ��� ��(��	����� � �<� � ? . �'���8# �0��� � . ��;<� # : ��� � .7���<�8# � ��� ? . ��;��8#�#>=
*������	*�� =

Two points on the box produce two basic configurations. Either the points are both on one frame
segment. Or they are part of one affine line crossing the box. If they lie on the same frame segment
then their corresponding coordinate polynomials are equal in homogeneous representation and equal
to � R. Note that we keep the algebraic calculation within the polynomials of degree less than 2.
When both points lie on the same frame segment then the minimal representation of the corresponding
coordinate polynomial is � 1R � 0. This leads to line equations of the form 0x � 1y ��� R � 0 when
the y-coordinates are equal and to 1x � 0y ��� R � 0 when the x-coordinates are equal. In case that
the points span a standard affine line we forward the treatment to the mixed case by setting p to one
of the points.

�
two points on the frame box ���� �	���,����� ��� (��,� �<���G? . (��<��# � ��� � . ('+<��# :-��� � . (��<�8# � ��� ? . ('+ �8#�# . ������B���*�� �8#>=
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 �( ���

Finally we have the point p at the tip of a line (somewhere on the frame box). Obviously we can
extract the affine equation of the line from the polynomial representation. We just set the parameter R
to 0 and 1, obtain two points, and calculate the equation. Note that by the special structure of our non-
standard points the 2 � 2 determinants reduce nicely. p hw ��� is a common factor of all coefficients
a � b � c of the line:

a � y1w1 9 y2w1 � b � x2w1 9 x1w2 � c � x1y2 9 x2y1

where

x1 � p nx � �D� y1 � p ny � �D� w1 � p hw �6�D� x2 � p mx �6�A� p nx �6�D� y2 � p my � �"� p ny �6�D� w2 � p hw � �
For a and b it is obvious that p hw � � can be canceled out, and the difference simplified. c can be re-
duced to p nx � � � p my � � 9 p ny � � � p mx � � due to the special choice of our points. Remember that for
non-standard points either their x- or y-coordinate is equal to � R. In the homogeneous representation
this means that either p mx �6�2� � p hw �6� and p nx �6�2� 0, or p my �6�� � p hw �6� and p ny �6�� 0. In
either case one can safely divide by p hw �6� .
�
one point on the frame box �"��	�-�G?��,�6.7�'�<�8# � ;G?>�,�6.7��;��8# = %'%
���'��D

�	�-� �-�,�6. ���<�8#C=��/.7���<�8#G� ; ���9�6. ��;<��#C=��6.7�	;<�8# = %'%
���'� ?
�	��+ �,�6. ('+<�8# =
�	� �� =
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We finally provide the intersection construction of two lines supported by two segments. We use the
linear system that defines the common point of two lines.�

a1 b1
a2 b2 � �

x
y � �

�
9 c1

9 c2 �
Note that the line equations are either standard affine lines or lines supporting box segments. The
expressions for x and y are polynomials in R up to degree 1, for w it is just a constant.
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We introduce an option that allows us to reduce the homogeneous representation of points by dividing
both polynomials by the gcd of their content10 and their common denominator. This leads to a rep-
resentation of minimal bitlength. We found that this reduction pays off a lot. Remember that we use
the kernel in binary operations of Nef polyhedra and their recursive usage of intermediate structures
accumulates long point representations without this reduction.
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reduce point representation by gcd operation �5�
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10Remember: the content of a polynomial is the gcd of all nonzero coefficients.
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The kernel wrapper

All operations are either mapped to the above primitives or similar to the ones in
the default homogeneous kernel. We do not present the layout of the kernel class
Filtered extended homogeneous

�
RT � . It is similar to Extended homogeneous

�
RT � . We only present

the usefulness of Extended homogeneous
�
RT � with respect to checking of our advanced kernel. We

used the naive approach to back-up the results of our filtered code. As the expressions in this code
base are much more complicated, errors were hard to determine. We enriched the filtered kernel by
checking statements that we switched on when runtime examples seemed to produce problems. (Of
course we had to log our random test inputs to allow checking in case of errors). When switched on
by using the compile flag KERNEL CHECK our checking macro is defined to be

�	
���)���� � 3 &�� 3�� ���? �  ��# 3'4 �'	 ( �	����*	�������<�	���?�#7�'� �� ��#	# =

Then the orientation member of Filtered extended homogeneous
�
RT � is just defined as:

�����3��*���������(�� ����� �������� � ��� ����� ��!9�G? � ��������,��������� ��!,� � � ������ ���������	� ��!,� � #
������ �
. 3 &	� 3�� � � .1��*���������(��������<� � ? .-�(����$	*���� ��#G� � ��.-�(���C$�*���� �8# � � � . *( ��C$�*����<�8#�# �3'4 ��	 $	$1��*���������(����������1�G? � � � �7� � #�#
*�������*�� 3'4 ��	 $	$1��*���������(�� �����<� �G? � � � � � � #>= /

where Point 2 is the extended point type in the local scope of Filtered extended homogeneous
�
RT � .

p checkrep ��� returns an extended point of type Extended homogeneous
�
RT � :: Point 2 based on the

RPolynomial
�
RT � number type. And K is a kernel object of type Extended homogeneous

�
RT � in the

local scope.
At last the filtered kernel has a member method print statistics �6� that outputs the total number of

failed filter stages in its base version. If the kernel is used with the compile flag KERNEL ANALYSIS
then each filtered code section is evaluated separately. All sections give the number of failed stages
and the number of total evaluations thereby the efficiency of the filter can be evaluated with respect to
the input used. This ends the description of the filtered extended kernel model.

3.5 Conclusions

In this chapter we have introduced infimaximal frames, a concept that allows to unify the treatment of
planar rectilinear subdivisons. We have implemented three flavors of a extended kernel concept that
can be used in application programms that wrap around the kernel concept.

We describe two applications, the first one being a subtaks of our second. The first application
is the computation of arrangements of segments, rays, and lines. We can apply the generic segment
sweep algorithm as described in Section 4.8 together with epoints and esegments. We have provided a
LEDA extension package [LEDb] based on a kernel similar to Filtered extended kernel except that it
uses static filtering instead of the CGAL interval arithmetic. The package contains geometric objects
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Figure 3.4: The left part shows a half-space pruned in the frame. The right part shows a complicated Nef
polyhedron consisting of diverse faces and low dimensional features (a ray taken from a face and an isolated
vertex). All vertices are embedded via extended points. All points on the square boundary are non-standard
points.

and primitives similar to the affine two-dimensional LEDA kernel and sweep methods that work for
rays, lines and extended segments.

The second application is an implementation of planar Nef polyhedra; in fact, this application
made us think about the problem of making rays and lines look like segments. Figure 3.4 shows two
Nef polyhedra. We view Nef polyhedra as embedded into an infimaximal frame. This makes all faces
(except for the outside of the frame) bounded and allows us to represent planar Nef polyhedra by
selective plane maps. The position of a vertex is given by an epoint and all edges of a Nef polyhedron
correspond to esegments. All faces have circular closed face cycles.

In the following chapter we implement an overlay engine for plane maps that works for both the
bounded affine scenario as well as the unbounded Nef structure. The engine is based on a generic
sweep algorithm; instantiating it with an affine geometry kernel (e.g., LEDA’s or CGAL’s) makes it
work for bounded maps and instantiating it with extended points and segments makes it work for Nef
polyhedra. We postpone runtime experiments of our extended kernel types to the end of Chapter 4.
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Chapter 4

Planar Nef Polyhedra

4.1 Motivation

Nef polyhedra are the most general model for rectilinearly bounded subsets of affine space. Their
definition is surprisingly simple whereas the operations that are supported without leaving the model
are versatile. Nef’s model of polyhedra does not impose topological restrictions on the sets that can be
modeled like manifold or regularized models do. This implies of course that the abstract representation
of the underlying theory has to cope with general topological complexity. The main reason for us to
offer a data type Nef polyhedron is that many other models that are standard concepts in the field are
covered by Nef’s model:

� A convex polytope is defined as the convex hull of a nonempty finite set of points. Convex
polytopes are thus compact closed and manifold sets. [Grü67]

� An elementary polyhedron is defined as the union of a finite number of convex polytopes.
[Grü67]

� A polyhedral set is defined as the intersection of a finite number of closed half-spaces. Such
sets are closed and convex but need not to be compact. [Grü67]

� The set of all points belonging to the simplices of a simplicial complex is normally called a
(rectilinear) polyhedron. [Lef71]

This list shows that a system modeling Nef polyhedra enables a user to calculate in many interesting
domains.

4.2 Previous Work

We cite the main publications from the field and present its development. We will first give an outline,
then we deepen the notions that are interesting with respect to our research. Other notions are solely
linked to the literature.

79
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The theory of Nef polyhedra was first published in W. Nef’s book “Beiträge zur Theorie der
Polyeder mit Anwendungen in der Computergraphik” [Nef78]. The book presents a mathematically
sound theory of a general kind of polyhedra in arbitrary dimension and provides a great intuition about
the generality of the elaborated concepts. The algorithmic part does not specialize in dimension. It
should be clear that by only realizing a fixed low-dimensional data type the corresponding algorithms
and data structures can be streamlined in runtime and space requirements.

In the following considerations we concentrate mainly on the presented data structure and the
realization of a binary set intersection operation which poses the most requirements1 on the underlying
data structures and algorithmic modules.

On the workshop on computational geometry in Würzburg [BN88] a refined elaboration of the
book concepts was given. The paper introduces the later so-called Würzburg structure which is the set
of all low-dimensional2 faces of a polyhedron. Each such face is stored in form of its local pyramid.
Thus, the data structure is essentially a collection of pyramids. Each pyramid is realized by a selective
arrangement of hyperplanes. This representation of pyramids is not lean in low dimensions and can
be improved. Moreover, no incidence relation is coded into the collection. The intersection operation
of two polyhedra is defined on top of this structure and is based on two techniques: recursion in di-
mension and superposition of two local pyramids. Neither space nor runtime bounds are given for the
algorithmic description which apart from that is clearly structured. The paper solves some subprob-
lems by introducing a symbolic parameter to obtain a symbolic hyperplane at infinity. However the
transfer from the affine to the symbolic objects is part of the algorithmic flow and not encapsulated
into a geometric kernel as we proceed in Chapter 3.

H. Bieri’s introduction [Bie95] was a step to market Nef polyhedra to a wider audience. It provides
a summary of the book and introduces all notions in a more tutorial-style picture. It also describes
a small test system realizing binary set and simple topological operations written in PASCAL based
on the so-called extended Würzburg structure. The predicate “extended” stems from the addition of
incidence links to the Würzburg structure3 .

The article [Bie94] describes the realization of simple topological and set operations on top of the
Würzburg structure. It has an introductory part and an algorithmic part. The key operation of interest,
the intersection of two Nef polyhedra, is defined in pseudo code in a dimension recursive manner
(up to dimension three but a possible generalization to higher dimensions is sketched). The main
phase of the operation is based on a spatial sweep approach but the presentation is rather condensed,
mainly mathematical, and lacks runtime and space bounds. In fact, the described procedure up to
dimension two is quadratic and we will improve this bound to the optimal plane sweep bound (of
segment intersection).

A follow up to the previous publication is the article [Bie96] that mainly closes open details of
algorithmic considerations of the previous articles. Its main impact is the introduction of the reduced
Würzburg structure. H. Bieri shows that it suffices to store the pyramids4 of faces that are minimal
elements of the incidence relation (a partial order defined via closure relation). As a consequence
this reduces the space requirements of the pyramid collection but requires additional algorithmic pro-
cessing when collecting all faces. The proposition has a strong impact on the representation of Nef
polyhedra when we consider dimension three or higher. In space the above result implies that the
pyramids of all vertices suffice to completely describe a compact polyhedron.

1The calculation of closure, interior, or complement is much simpler due to the fact that the faces of the input polyhedron
are part of the faces of the output polyhedron in these cases.

2not full-dimensional
3However, the extension is only based on an untyped list.
4Pyramids represent faces.
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The paper [Bie98] embeds Nef polyhedra in the field of solid modeling by offering conversion
routines between previously defined data structures for Nef polyhedra: the reduced Würzburg struc-
ture, selective cellular complexes based on hyperplane arrangements, CSG-trees based on half-spaces,
and binary space partitions. Again there are no time and space bounds.

J.R. Rossignac and M.A. O’Connor [RO90] have introduced Selective Geometric Complexes
(SGC). An SGC consists of a cellular complex (the topological structure) and the corresponding ge-
ometric support spaces. Geometrically SGCs are pretty general. They use real algebraic varieties as
the geometric elements that support cells. Such varieties can be decomposed into finite sets of con-
nected smooth manifolds (so-called extents). An SGC is therefore a collection of mutually disjoint
cells such that (1) each cell is a relatively open subset of an extent, (2) for each cell of the complex its
boundary (a set of cells) is also part of the complex, and (3) each cell has a Boolean selection flag. The
dimension of a cell is determined by the dimension of its underlying extent. The point set modeled by
such a complex is the union of all selected cells.

One important concept is the incidence relation on cells. In SGCs it is defined in terms of a
boundary and a star relation stemming from the corresponding concepts of simplicial complexes.
Moreover due to the possibly curved geometry of extents the notion of neighborhood (orientation) is
introduced to disambiguate degenerate boundary conditions.

The description of SGCs is still abstract and leaves room for refinement concerning the realization
of the necessary data structure concepts5 . The paper presents the central ideas and abstract definition
of SGCs and its notions. It sketches binary operations based on the data type separated into phases.
(We use this approach later in our implementation). On the other hand the paper omits many concrete
considerations of the algorithmic subtasks (boundary evaluations, merging complexes, etc.) including
runtime and space complexity. The problem of unbounded structures is not an issue.

How do SGCs relate to Nef polyhedra? The support spaces of Nef polyhedra are flats. Therefore,
varieties and extents are no separate concepts. Many geometric ambiguities do not occur. The theory
of Nef polyhedra as described by Nef and Bieri varies in the way how the exterior of Nef polyhedra
is modeled. In their later papers the exterior is a non-proper face and thereby the ambient space is
completely partitioned. With SGCs the exterior is no cell. We want to stress the following similarity.
Assume we realize SGCs geometrically restricted to flats. Then, the simplification algorithm as part
of the algorithmic description of the binary operations on SGCs produces cells that are the connected
components of proper Nef faces. (The simplification algorithm is described and used in Section 4.7
of this thesis).

K. Dobrindt, K. Mehlhorn, and M. Yvinec [DMY93] describe an efficient algorithm for the inter-
section of a convex polyhedron and a Nef polyhedron in three-dimensional space. The presentation
uses a local graph data structure modeling the local view that we introduce below. The local graph
data structure is used as a vehicle to project the three dimensional topological neighborhood (the local
pyramid) that defines Nef facets into the surface of a sphere centered at a point of interest. Their idea
greatly simplifies the representation of local pyramids in three dimensions and allows a space effi-
cient representation thereof (linear as opposed to the possible quadratic space of the original proposed
arrangements). The corresponding algorithm was not implemented.

K. Mehlhorn and S. Naeher have introduced the notion of planar generalized polygons and im-
plemented them in LEDA [MN99, Section 10.8]. A generalized polygon is a point set bounded by
possibly several (weakly) simple polygonal chains. This topological restriction implies that general-
ized polygons are the same as regularized compact Nef polyhedra.

5A promised follow-up paper never appeared.
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V. Ferrucci [Fer95] presented two implementation efforts to realize a data type modeling Nef
polyhedra. His first approach is based on selective simplicial complexes and restricts the model to
bounded Nef polyhedra. All simplices are rectilinearly embedded into the affine subspace spanned
by their vertices and represent relatively open convex sets. All simplices (including subsimplices) of
the complex are selectable by a Boolean flag. The point set of such a simplicial complex is the union
of the embeddings of the selected simplices. In this approach Nef faces are only present implicitly
as a union of simplices. The simplicial complex is thus a conforming simplicial subdivision of the
bounded Nef polyhedron. In the second part of the paper Ferrucci proves that binary space partitions
can be used to realize general Nef polyhedra. Both representations do not provide runtime or space
qualification.

Several algorithmic descriptions from the above list either assume general position of their inputs
to avoid degeneracies or even require what is called regular intersection. In some cases, the generally
present robustness problems are tackled by transformations of the underlying coordinate system to
avoid degenerate inputs and minimize robustness problems. The possibility of that approach was
presented in [NS90].

Our approach differs from the previous work in several aspects. We elaborate on the planar case
which is of course easier than the higher-dimensional case but leaves room for optimization via spe-
cialization. We solve the problem of degeneracy and robustness. We use standard data structures of
our field to represent Nef polyhedra. We generalize an optimized plane sweep framework that can
handle all degenerate cases for the binary operations and meet the optimal time and space bounds.
One of our main contributions is the introduction of an extended geometric kernel that encapsulates
the necessary geometric predicates to run the operations of the data type. In Chapter 3 we show the
implementation of the kernel in two flavors, one which is simple to implement and one which is tuned
by filter methods and is both robust and fast.

Quite some effort is put into the user interface of the software. Our data type offers the user
to get her hand on faces by handles and explore the incidence of an object within the geometric
structure. Our data type is based on a space efficient implementation of plane maps. It incorporates
an intuitive exploration interface and allows further attribution of the objects. Our data type could be
considered a flavor of the extended Würzburg structure where we shift the incidence into the center
of our attention. Faces are not represented by their pyramids but the pyramids can be infered from the
incidence relation and the extent of any face can be explored via incident lower-dimensional faces at
a cost linear in its size. It is our conviction that the original Würzburg design is reasonable in higher-
dimensions but means a loss of strength in the planar case. We also add functionality. Exploration
of a geometric complex needs point location and ray shooting operations to link a user’s geometric
question into the geometric complex and its incidence. Finally our approach unifies the handling
of special cases. By the introduction of infimaximal frames (Chapter 3) and their integration into
the geometric complex we enclose the geometric complex into a symbolic box. Exploration and
maintainance of the structures become much easier and more homogeneous as the faces of minimal
dimension are always vertices. The latter has interesting consequences as Bieri has shown that the
local pyramids of minimal faces describe the polyhedron completely.

In this project we realize a data type Nef polyhedron 2. We present a software project clearly sep-
arated into different modules responsible for the different aspects of its realization. We will start with
the theory, derive an abstract representation, map it to an abstract data type and add the algorithmic
components.

In Section 4.3 we present the abstract knowledge about Nef polyhedra and introduce the notions
that we use. Afterwards, in Section 4.4 we present the necessary software components of our design.
We introduce the geometric and topological modules and their interaction. Then, in Section 4.5 we
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present the concrete software design of our main interface data type and describe the interaction of
different modules to implement the geometric methods of that data type. In Section 4.5 we describe
the top-level software design, in Section 4.6 we provide some basics how we integrated the CGAL
HDS as our plane map data type. In Section 4.7 we describe the detailed techniques that implement
overlays of segments and plane maps. Afterwards, in Section 4.8 we present a generic plane sweep
framework used as a working horse in the former implementation. Finally in Section 4.9 we present
runtime results and further applications.

4.3 The Theory

We start with the formal definition of Nef polyhedra.

Definition 6 (Nef Polyhedra [Nef78]): A set P � R n is a Nef polyhedron if P is the result of a recur-
sive application of set intersection and set complement starting from open half-spaces.

This definition supports the claim that they are the most general framework to handle polyhedral
sets. As set union, set difference, and symmetric set difference can be reduced to intersection and
complement all these set operations are closed in the model.

H. Bieri later gave alternative definitions for Nef polyhedra and proved their equivalence.

Fact 1 (Bieri [Bie95]): The original definition is equivalent to any of the following conditions

1. P corresponds to the root of a CSG-tree with closed half-spaces as leaf primitives and intersec-
tion, union and difference as internal nodes.

2. There exist two finite families F � � f1 �! ! ! %� fn 
 and G � � g1 �! ! ! "� gm 
 of relatively open subsets
of R n such that P ��� i fi and � ��� P ��� j g j .

3. There exists a set of hyperplanes H such that P is the union of some cells of the arrangement
A � H � .

(1) gives a link to constructive solid geometry. (2) links Nef polyhedra to cellular complexes and
(3) to hyperplane arrangements. When studying the original theory actually the third equivalence is
the key observation. Many propositions about the point set P can be reduced to an examination of the
minimal building blocks of the polyhedron: the cells of the arrangement built by the hyperplanes that
define the polyhedron.

The elegance of the definition is carried forward to the notion of faces.

Definition 7 (Local pyramids and Faces): Let K � R n � x � R n. We call K a cone with apex 0 if
K � R � K and cone with apex x if K � x � R � � K 9 x � . A cone which is also a polyhedron is called a
pyramid.

Now let P � R n be a polyhedron and x � R n. There is a neighborhood U0 � x � such that the pyramid
Q : � x � R � �!� P � U � x �!� 9 x � is the same for all neighborhoods U � x � � U0 � x � . Q is called the local
pyramid of P in x and denoted Px.

A face s of P is then a maximal non-empty subset of R n such that all of its points have the same
local pyramid Q, i.e., s � � x � R n : Px � Q 
 . In this case Q is also denoted Ps. The dimensions of a
face is the dimension of its affine hull ��� � � s � : ���D� � � ��� s � .

Note that this notion of a face partitions R n into faces of different dimension. Faces as defined
by Nef do not have to be connected. There are only two full-dimensional faces possible whose local
pyramids are the space itself or the empty set. All lower-dimensional faces form the boundary of the
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Figure 4.1: The polyhedron P consists of the colored face, the triangle boundary and the vertical segment
below the triangle. Some local views of P are: (A) the full plane, (B) the empty set, (C) a radial cake of sectors,
(D) a half-space including its boundary.

polyhedron. As usual we call zero-dimensional faces vertices and one-dimensional faces edges. In
the plane we call the full-dimensional faces 2-faces or just faces when the meaning is clear from the
context.

Definition 8 (Incidence): Two faces s and t (in their general sense) are incident if s � � � ��� t.
We will treat incidence as a bidirectional relation. We say that s is downward-incident to t and

conversely that t is upward-incident to s.
We now list some facts about faces. The proofs for these facts can be found in Nef’s book [Nef78].

We append the chapter and theorem numbers separated by a semicolon. All faces of a polyhedron are
polyhedra [6;1.1]. Faces are relatively open sets [6;2]. The linear subspace of all apices of the pyramid
associated with a face is the affine hull of the face [6;2]. x � Px iff x � P [3;7]. Let s be a face of
the polyhedron P and let t be a face of s. Then, t is the union of some faces of P [6;12]. A face
of P is either a subset of P or disjoint from P [6;4]. For two faces s and t of P either s � � � ���F� t � or
s � � � ��� � t �2� /0 [6;9,10].

Remember that Nef edges and Nef 2-faces are not necessarily connected. Note also that some
connected components of edges are not necessarily bounded by a vertex. How do the local pyramids
of any point x in the plane look like? We can represent them by the intersection of a small enough
neighborhood disc centered at x with its pyramid Px. The disc is partitioned into sectors by radial
segments. We assign a mark to the center, to any radial segment, and to the sectors in between the
radial segments such that the corresponding point set is marked if it belongs to the local pyramid of x.
We also call such a disc together with its marks the local view of x (cf. Figure 4.1).

Lemma 4.3.1: The local view of a point x has the following properties:

1. the mark of any radial segment is different from one of the two sectors incident to it.

2. x is contained in a 2-face of P iff the local view is a disc that contains no radial segments and is
marked as the center.

3. x is contained in an edge of P iff the local view contains exactly two radial segments that are
part of a line through the center; the center and the two radial segments are marked equally but
their common mark is different from at least one sector of the disc.
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4. x is a vertex of P iff the mark of the center is different from at least one radial segment or one
sector of the disc and the local view is not that of item 3.

Proof. (1) follows from the fact that radial segments are part of the boundary of an open or closed
half-plane and a point on this boundary has the local view of that half-plane. (2) refers to the two
trivial pyramids: the empty set and the full plane. (3) follows from the fact that edges are part of the
boundary of open and closed half-spaces. (4) if all marks are equal then x would have a totally marked
or non-marked disk neighborhood. But that’s the neighborhood of a 2-face.

To determine the local view of a point x with respect to a polyhedron P is called to qualify x with
respect to P.

4.4 The Data Structure

We want to store Nef polyhedra in an intuitive way and want to use generally known data structures.
Faces should be objects whose extent and topological neighborhood (incidence) can be explored.
We revert the role of pyramids and incidence of the extended Würzburg structure. In our approach
incidence is the key concept, pyramids can be derived from it.

Starting from the last item of Fact 1 we have to model (parts) of an arrangement of lines in the
plane. Moreover we want to model the Nef faces including their incidences. 2-faces of a polyhedron
are in general two dimensional sets of points bounded by chains of segments that do not have to be
simple, can be circularly closed, or open. The latter happens when 2-faces extend to infinity. Then the
chain of segments has rays as its first and last element. A simple line bounding a 2-face can be seen
as two oppositely oriented rays starting in the same point.

Therefore, concerning the geometry of edges we need to model straight line objects like segments,
rays and lines, which are the result of intersection operations of half-spaces. To simplify the treatment
of unbounded structures we use the concept of extended points and infimaximal frames which we have
formally introduce in Chapter 3 and which builds the geometric layer of our design. Consider an axis-
parallel squared box centered at the origin. Any ray is pruned by this box in a so-called non-standard
point (corresponding to the ray-tip). The assignment of ray-tips to box segments becomes topologi-
cally constant when we grow the framing box above a certain size. The frame is called infimaximal
because it is always large enough to enclose all concrete geometric objects like points and segments in
its interior that appear in the execution of our algorithms. Extended points are defined to be standard
points and the non-standard points corresponding to ray-tips. They allow us to represent segments,
rays and lines by a pair of such points and we get rid of the infinite extent of the unbounded struc-
tures. Adding such a frame to bound the plane, all unbounded faces become symbolically bounded
structures, their boundary becomes a cyclic structure.

To realize Nef faces including their incidence relations we need a cellular subdivision of the plane.
We use a plane map data type (bidirected, embedded graphs). The incidence relations between the
objects of a plane map (vertices, edges, and faces) reflect the topology of the local pyramids of the
planar Nef polyhedron. The plane map concept is presented in the introduction of our notions and is
our topological bottom layer. Most newer textbook recommend the use of doubly connected edge lists
(DCEL) or equivalently half edge data structures (HDS) [PS85, dBvKOS97] when they discuss the
implementation of plane maps. There are already standard implementations of plane maps like the
CGAL HDS or embedded bidirected graphs in LEDA (similar design). We use an extended version
of the CGAL HDS structure as the topological bottom layer of our Nef polyhedra. See the paper of
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L. Kettner [Ket99] for an excellent review of different plane map representation and for the descrip-
tion of the adaptability of the CGAL HDS. To be more flexible we insert a decorator interface that
homogeneously defines the functionality offered by the HDS. Geometrically we embed the vertices
by means of extended points. Segments, rays, and lines are uniformly treated by the straight line
embedding of edges incident to such vertices. We additionally add one face cycle of edges whose
embedding corresponds to an infimaximal frame:

Construction 1: Consider a Nef polyhedron P and the connected components of the faces of di-
mension zero to two. Assign plane map objects of corresponding dimension to each component and
match the Nef incidence concept with the plane map incidence concept where possible. All objects
corresponding to unbounded connected components of Nef edges and unbounded components of Nef
2-faces have incomplete incidence structures: edges miss end vertices and faces miss closed face cy-
cles. To cure this, we add an infimaximal frame consisting of four uedges and four corner vertices.
For all plane map edges e that correspond to a Nef edge component extending to infinity along a ray
r we do the following: if r is pruned by one of the corner vertices on the frame structure link e to that
vertex; otherwise e obtains an additional terminating vertex in the relative interior of a uedge e

�
that

is part of the infimaximal frame where r is meets the frame. e
�

is split into two uedges by this vertex
insertion. (For Nef edges that represent lines we do this at both ends). After all such edges are linked
to the frame (respecting the embedding such that the adjacency list are order-preserving), all plane
map faces corresponding to an unbounded component of a Nef face are cyclically bounded and their
incidences structure can be completed. We call all edges and vertices that are part of the frame and the
face outside of the frame that completes the subdivision combinatorially infimaximal frame objects.

To mark set membership, all objects of the plane map are selectable. All objects (vertices, edges,
faces) obtain a marker labeling set inclusion or exclusion. The markers allow us to obtain the local
pyramids associated to the plane map objects. The local view of a vertex is defined by its own marker,
the markers of the edges in its adjacency list and markers of the faces in between these edges repre-
senting the neighborhood disc as explained above. The local view of an edge is defined by its mark
and the two marks of its two incident faces. Finally the mark of a face maps to the trivial local view:
the whole plane or the empty set depending on its selection flag. The selection markers of infimaximal
frame objects have no geometric meaning and therefore those objects are always kept unselected.

As plane maps are implemented by bidirected graphs the incidence relation between edges and
faces is encoded in an oriented fashion. Unoriented edges are implemented as pairs of oppositely
directed halfedges where each such halfedge is incident to exactly one face. See the implementation
description of plane maps in Section 4.6 for more information.

Definition 9 (Data type): A Nef polyhedron P is stored as a selective plane map � V � E � F � according
to Construction 1. The objects of the plane map (vertices, edges, and faces) correspond to the con-
nected components of the Nef faces of corresponding dimension and additionally to the infimaximal
frame objects.

Each vertex v � V is embedded via an extended point point � v � . Each object o � V



E



F is
contained in P iff the selection mark mark � o �A��� true.

The feasibility of this definition can be seen as follows. Interpret P as a set valued function φ
on (open) half-spaces H1 �! ! ! %� Hr that are combined by the operations � and � � � . Let hi be the line
bounding the half-space Hi. Now consider the arrangement build by the lines � hi 
 i enclosed in a large
enough frame. Interpret the arrangement A � h1 �! ! ! %� hr � inside the frame as a collection of relatively
open convex cells of dimension 0 to 2. Consider any cell c. Any point of c is either in φ � H1 �! ! ! %� Hr � or
not. Mark all cells correspondingly. It should be clear that A � h1 �! ! ! %� hr � can be represented by a plane
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map as described above. Now start a simplification process. Consider all edges e (besides the ones on
the frame box). If e and the two faces incident to it have the same mark remove the edge and unify
the faces (if not equal). Afterwards we iterate over all vertices and check if any vertex incident to two
edges that are supported by the same line has the same local view as the points in the relative interior
of the two incident edges. If this is the case, we unify the two edges and remove the vertex. Finally,
we remove all vertices that are isolated and whose selection mark equals the one of the surrounding
face. The final complex is just the data type described. When the simplification iteration terminates
all points on vertices and edges have a local view that makes them low-dimensional faces of the Nef
polyhedron.

The above algorithm is called simplification and is described in more detail when considering
binary operations. There, we also give a runtime bound. Note that the local view properties of the
vertices, edges, and faces of the plane map after the simplification process are a necessary condition
of Definition 9.

Lemma 4.4.1: The representation of Definition 9 is unique.

Proof. Assume that there are two different plane maps M � V � E � F � and M
� � V � � E � � F � � representing the

same Nef polyhedron P. If P is the complete plane or the empty set then the plane maps consist of
just one face inside the frame box and F and F

�
and their selection markers have to be equal. So

assume otherwise. Then neither P nor � � � P are empty. The boundary of P and � ��� P consists of vertices
and edges. Assume that M and M

�
have a vertex at a point x but the local views differ. Then, the

represented point sets of M and M
�
differ and thus P cannot be represented by both. If there is a point

x where M has a vertex v but M
�

has not then obviously the local views are different too. Note that
edges are terminated by vertices, and thus edges that are in M but not in M

�
already imply differences

in the local view of their end vertices. The same holds when the edges are equal but the selection
markers are not. Finally, note that due to the fact that the 1-skeleton of M and M

�
is equal, so are the

faces (they are defined that way). Different selection markers on faces imply different local views in
the vertices that are part of their closure. As a consequence M and M

�
have to be equal.

Selective plane maps are the basic structure used to store Nef polyhedra. Remember that the
edges and faces of a plane map are the connected components of the Nef edges and Nef 2-faces.
For performance reasons we do not maintain the relationship between plane map objects and the
corresponding abstract Nef faces which are defined as collections of the plane map objects with the
same implicitly stored local pyramids. The size of a Nef polyhedron is the size of its underlying plane
map (which is the number of vertices, edges, and faces).

For the binary operations we follow an approach as presented by Rossignac et al. [RO90]. In our
case the approach is based on a generic plane sweep framework. A binary operation is basically split
into three phases: subdivision – selection – simplification. The implementation is presented in the
module PM overlayer. An unary (topological) operation can be subdivided into two phases: selection
– simplification.

We shortly present the abstract algorithmic ideas and the runtimes.

subdivision means for two plane maps Pi � i � 0 � 1 � to create a plane map P with a minimal number
of objects (vertices, edges, faces) such that each object of P is supported by exactly one object
of Pi for i � 0 � 1. The subdivision is realized by a plane sweep of the objects of the 1-skeleta of
Pi followed by face creation and support determination. The time is dominated by the time for
the sweep phase which is O � n log n � where n is the size of the resulting subdivision.
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selection with respect to the binary set operations means selecting the cells of the subdivision ac-
cording to the logic of the underlying Boolean operation. With respect to unary topological set
operations selection happens according to the logic of the topological unary operation. Selec-
tion is in both cases linear in n.

simplification means unification of subsets of cells that have the same local view. This phase has a
quasi linear runtime due to the usage of a union-find data structure. Runtime is O � nα � kn � n �!� 6

for some small constant k.

Theorem 4.4.1: The result of a binary set operation (intersection, union, difference, symmetric dif-
ference) of two Nef polyhedra P0 and P1 can be calculated in time O � n log n � where n is the size of the
overlay of P0 and P1. The result of an unary set operation (complement, boundary, interior, closure,
regularization) can be constructed in time O � nα � kn � n �!� where n is the size of the input structure.

The correctness and time bounds of our binary operations are based on three parts:

� The Sections 4.5.3 and 4.5.4 show the high-level composition of unary and binary set operations
decomposed into phases.

� Section 4.7 provides the algorithmic modules for the subdivision, selection, and simplification
phase. The correctness and resource argumentation is purely based on affine concepts and
therefore our readers can trust their standard geometric intuition when verifying the correctness
of those modules.

� Chapter 3 on the other hand shows that infimaximal frames allow us to use these algorithmic
modules together with our extended objects.

The latter two observations together imply the correctness of the above theorem. The runtime lemmata
of Section 4.7 imply the time bounds.

Now for our additional functionality like point location and ray shooting queries we need more
than just the naked plane map structure described above. Looking at the literature for ray shooting
there is the notion of segment walks which can be done easiest in convex subdivisions of the plane of
bounded complexity [MMS94]. Our goal is to refine the basic plane map by such a structure. Note
that this structure implies again faces, edges, and vertices, but of a much simpler fashion. However we
do not want to lose the original character of the plane map. We might still be interested in the original
face cycles. We store the refinement separate from the plane map. One solution to the segment walk
problem is to use a constrained Delaunay triangulation of the edges and vertices of the HDS, and use
any efficient point location structure for the location of the ray shooting start point.

4.5 Top Level Implementation

The whole implementation scheme is depicted in Figure 4.2. The main classes map to the abstract
layers described above: geometry, plane maps, binary overlay, and point location. In the following
we will mainly concentrate on the realization of the class Nef polyhedron 2 and the overlay modules
PM overlayer and Segment overlay traits. The functionality of PM decorator is described by the con-
cept in the appendix. The realization of the extended kernel is a topic of chapter 3. Point location is
ommited here and can be studied in the full implementation report [See01].

6α
�
kn � n � is the extremly slow growing inverse of the Ackermann function used in the analysis of union-find data struc-

tures.
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Figure 4.2: An UML diagram of the Nef polyhedron module. The main modules are the geometry
Extended homogenous

�
RT

�
, the plane map decorator PM decorator

�
HDS

�
, the two algorithmic modules

PM overlayer
�
PMDEC � GEOM

�
and PM point locator

�
PMDEC � GEOM

�
.
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4.5.1 The Polyhedron Class

Our data type Nef polyhedron 2
�
T � is implemented as a smart pointer data type. Content

such as a plane map object and a pointer to an optional point location object is stored in the
class Nef polyhedron 2 rep

�
T � . The traits template parameter T is specified by the concept

ExtendedKernelTraits 2 as presented on page 187.

Handle_for
Ref_counted

Nef_polyhedron_2
T

Nef_polyhedron_2_rep
T

Ref_counted

1*

Figure 4.3: The smart pointer realization of data type Nef polyhedron 2.

Within the scope of Nef polyhedron 2 rep
�
T � all auxiliary classes are instantiated. The plane

map type is based on the CGAL HDS and uses two traits classes HDS traits and HDS items. The
former carries attributes the latter carries the (fixed) models for vertices, edges, and faces. Compare
the extensions or their standard design in Section 4.6.
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In the class Nef polyhedron 2
�
T � all geometric types are obtained from the geometric traits class

T . T contains affine types that are part of the interface but also the extended types that are used
in the infimaximal framework. The Standard-prefixed types from within T become the interface
types of Nef polyhedron 2

�
T � . The non-prefixed7 types within T become the extended types within

Nef polyhedron 2
�
T � .
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7T is used as a traits class in our generic geometry based modules like PM overlayer
�
T � . Therefore, the extended types

conform to a simpler naming scheme within T .
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We import the type Plane map and all decorator types like Decorator, Overlayer, Locator,
Slocator from the representation type Nef polyhedron 2 rep. Additionally, we import handles and
iterators from Decorator (we do not list those typedef statements).

4.5.2 Creating Polyhedra

We provide the construction methods for basic polyhedra. These are the empty set, the whole plane,
open and closed half-planes, and construction of simple polygonal chains (Jordan Curves) where the
modeled point set can be the bounded or unbounded part for the plane and the set can be open or
closed.

A B C D

E F G H

Figure 4.4: Elementary Nef polyhedra: (A) the empty set, (B) the whole plane, (C/D) a closed/open half-plane,
(E/F) a closed/open bounded polygon, (G/H) the plane with a closed/open polygonal hole.

The construction of simple Nef polyhedra is reduced to the overlay of a list of extended segments,
the creation of the 2-faces, followed by setting the attribute marks that code set inclusion. The first
task is implemented in our overlayer module PM overlayer

�
� ::create � s � e � DA � where S � tuple

�
s � e �

is the set of segments and DA is a data accessor that allows us to link plane map edges to the segments
in S.

Finally, we only have to take care of the correct marks of the plane map objects with respect to
the construction information from our constructor interface. Note that by using the overlayer module
we obtain all output properties of the plane map created from that module.

All Nef polyhedra obtain an infimaximal frame embedded by four extended segments. We encap-
sulate this into the following operation. See the extended geometry module for the definition of this
frame.

�
nef protected members ��� �

�	;�� ��
���) ����
 $	$-� ��� � ���'�	������
	��
������00� ���	� � �
���	� ��� � =
�	;�� ��
���)��	;������ (���� � ���	� ����� $	$ �����������������*	(�����* �
��� � ����*�(�����*<=
������
9) ���	�'�0+0���)(1��)�*�(������	��� ��>� � ����� ��� ��! 	 #,��������
.�	�.7�	����(��0� ( C$�� �'�	������
���
�������C�������<� � � . � ���8#G� � � . � � �8#�#	#>=	�.7�	����(��0� ( C$�� �'�	������
���
�������C�������<� � � . � ���8#G� � � . � �<�8#�#	#>=
	�.7�	����(��0� ( C$�� �'�	������
���
�������C�������<� � � . � ���8#G� � � . � �<�8#�#	#>=
	�.7�	����(��0� ( C$�� �'�	������
���
�������C�������<� � � . � � �8#G� � � . � �<�8#�#	#>=

/



92 Planar Nef Polyhedra

We want to establish a link between a particular extended segment and its corresponding edge in the
plane map. Our overlay module allows us to get a grip on this relation by means of a data accessor
that is passed to the overlay algorithm. The class Link to iterator is a model for that data acces-
sor concept. An object D of this type can store an iterator referencing a segment. Passed to the
PM overlayer

�
� ::create �    � method it stores the corresponding edge after the executed overlay as its

member D e. Link to iterator also initializes all marks of the newly created skeleton objects.
We do not show the creation of the empty set or the full plane. This is just a trivial case of the

following half-plane construction. We come to the construction of a half-plane. A user describes
an open or closed half-plane by an oriented line l. To create a plane map representing it we over-
lay a frame box plus an extended segment splitting the box into two faces along l. The overlayer
module PM overlayer

�
� :: create �    � creates the plane map (including faces) out of the list of ex-

tended segments passed to it where no object is selected (concerning membership). The data accessor
Link to iterator I obtains the edge I  e of pm � � corresponding to 9 9 L end �6� (the iterator pointing to
the extended segment which is the line) during the create phase. We can use that edge to mark its
adjacent face and the edge itself according to the line flag.
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The construction of a simple polygon defined by an iterator range of standard affine points (the value
type of Forward iterator is Point) follows the same idea, however we also accept degenerate polygons.

The iterator range of points can confront us with the following cases: (1) the list is empty, (2)
the list has only one point, (3) the list contains at least two points spanning line segments where the
following cases and problems can occur: (a) the segment(s) has (have) affine dimension 1 (the hull is
a segment). (b) the segments enclose a simple polygon. (c) the segments enclose no simple polygon
(touching or intersecting inside). We cover one point, two points spanning a segment and n points
spanning a simple polygon (which we do not check). The construction of the plane map still succeeds
when P is not simple as the overlayer module just constructs the planar subdivision implied by the
segments in the iterator range. However, the face marks will in general be incorrect.
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We fill L with the segments cyclically spanned by the points in the input iterator range.
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We create the marks via the object stored in the Link to iterator object I. The object is determined
by the last segment s in L. If that segment is trivial then I  v stores the corresponding vertex. If s is
non-trivial then I  e contains the edge supported by the segment. We only have to extract the correct
halfedge of the edge twins. Then, we can mark the face and the boundary accordingly.
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We leave out the simple implementation of copy construction, cloning and basic operations like
clear � � , is empty � � , and is plane �6� .

4.5.3 Unary Operations

For the unary operations on Nef polyhedra we implement several class-modifying methods. They can
be chained together to larger units. We thereby save cloning operations if the representation object
is only referenced by one handle. Note that the first line of any modifying operation has to check if
the representation object is shared by several handles. If the representation object is shared, the plane
map has to be cloned before modification. We first implement the three operations � ��� , � � � , and 	D� .

As our planar Nef polyhedra completely partition the plane, the complement operation is easy
to implement by an inversion (Boolean flip) of the selection markers. Note that this conforms to
the result [Nef78, theorem 6;14] in which Nef showed that the low-dimensional faces of P and � ��� P
(in their common boundary) are the same and the full-dimensional faces that are part of P or � ��� P
obviously exchange their role (if non-empty). The local pyramid in any point x of the plane is inverted
by the Boolean flips according to [Nef78, theorem 3;15] � � ��� P � x � � ��� Px. Due to the special role8 of
the outer face and the edges and vertices that are part of the frame box we keep all objects of the frame
unmarked (operation clear outer face cycle marks). Note that just by flipping we do not spoil the local
views properties as specified in Lemma 4.3.1. Thus, we do not have to simplify here.
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The interior � � � P of a point set P is the set of all points where an open ball of infinitesimal radius
(a neighborhood) is contained in the point set. This is not the case for all low-dimensional faces
of the plane map. Accordingly (see also [Nef78, theorem 3;19]), we have to keep all selected full-
dimensional faces of P and all objects of the 1-skeleton have to be deselected. Afterwards the sim-
plification operation minimizes the structure and makes it again consistent with Definition 9. For
example, marked isolated vertices within non-marked faces and marked edges within such faces are
first unmarked and then deleted in the simplify ��� operation. The simplification operation has to ex-
empt edges of the infimaximal frame. An object Except frame box edges � P � has a function operator
method bool operator � � � Hal f edge handle e � that returns true iff the edge e of the plane map P is part
of the frame box. Thereby within simplify a removal of edges is only executed on edges that partition
the interior of the frame box.

8No affine object can be placed on or outside the infimaximal frame.
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/

The boundary of a point set P is defined to be the intersection � � ��� P � � � ��� � ��� P. This is the set of all
points that have a nonempty neighborhood with � � � P or � ��� P. Any point x on the 1-skeleton of the
plane map has this property due to the properties of its local pyramid Px. The boundary 	D� P is thus
obtained by selecting all low-dimensional objects and then deselecting all 2-faces. Finally we cope
with the frame and simplify the structure.
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Finally, we use the above operations for closure and regularization. The closure of P can be reduced
to the operations interior and complement as � � ��� P � � ��� � � � � ��� P. The regularization of P is defined as
� � ��� � � � P.
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The constructive interface methods are just mapped to the corresponding extract methods.

�
nef interface operations �&� �

����)���� ����;)(���
�*������ �������"���� �����*�������<��# ��������
.,����)���� �	��;)( ��
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*�� �#.1� ���	*�( ��������� � ��������������#>=
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/

All other operations like interior ��� , closure ��� , boundary ��� , and regularization ��� are implemented
accordingly.

4.5.4 Binary Set Operations

We follow Rossignac and O’Connor [RO90] and split the binary operations into three phases subdivi-
sion – selection – simplification. For the implementation see the module PM overlayer

�
� in Section

4.7. The subdivision phase creates the overlay of the two input structures. This overlay has the prop-
erty that each object (vertex, edge, face) has exactly one object from each input structure that supports
it. This proposition is proven in Lemma 4.7.1. After the subdivison each object of the resulting plane
map knows its mark in each of the two input structures and can thereby be qualified with respect to
each input structure. The binary set operation is then reduced to a Boolean predicate on these marks.
The resulting structure can be a planar partition that is not a legal Nef polyhedron due to the fact that
plane map boundary objects can have local views that contradict Lemma 4.3.1. Violations are fixed
in the simplification phase without changing the represented point set. This simplification makes the
plane map representation minimal with respect to the number of its objects and again consistent with
Definition 9.

The above scheme refers to the theory as presented by Nef who showed the following general
lemma.

Lemma 4.5.1: Let P0, P1 be polyhedra. Then every face of P � P0 � P1 is the union of intersections
of faces of P0 and P1.

The proof follows [Nef78, Satz 6;16]. As a consequence the simplification just unions objects
within P to form the connected components of Nef faces.

To implement the binary set operations we use functors9 that carry the underlying Boolean logic.

�
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� ����* ��(�;���*
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�������
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9a short form for function objects.
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/

Join, difference, and symmetric difference follow similar schemes based on OR, DIFF, and XOR. We
do not show the implementation of the operators �%��� � 9 � ˆ � ! which map to the above operations.

4.5.5 Binary Comparison Operations

All set comparison operations are reduced to binary operations followed by an empty-set test. For two
Nef polyhedra P1, P2 it holds

P1 � P2 � symmetric difference � P1 � P2 ��� /0
P1 � P2 � difference � P1 � P2 �2� /0
P1

�
P2 � difference � P1 � P2 �2� /0 � difference � P2 � P1 � �� /0

In our specification � is operator � , and
�

is operator � . The other operations are symmetric.

�
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���)	)���*������� �1�G?�# . ��������������;���# = /

� �	���,������*�(�����* � ���������� ����)���� ����;)(���
�*������ ��������! �G?�#,������ �
.,*�������*�� 
���)	)���*������� �1�G?�# . ��������������;���# !	!�7�G? . 
���)	)���*������� � ��� (0���	# . �������*������;<�8#>= /

4.5.6 Point location and Ray shooting

Let P be the plane map underlying our Nef polyhedron stored in the � this object. The result of a point
location query with an affine point p is the object of P whose embedding contains p. Ray shooting
queries come in two flavors. One variant starts the ray shot in a point p and determines the closest
object of P in direction d that is in the set (determined by the selection mark). The other variant
determines the closest 1-skeleton object in direction d. The point location and ray shooting function-
ality is taken from the two point location classes PM point locator

�
� and PM naive point locator

�
� .

All operations can choose between the two approaches by a mode flag m. The default is location as
implemented by PM point locator

�
� . That class uses a further subdivision of P by a locally mini-

mized weight constrained triangulations (LMWT) to allow so-called segment walks. The LMWT is
calculated on demand, when the first point location or ray shooting operation is called. The naive
point location method is based on a global examination of all objects of P to find the one that contains
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p. The type Object handle is a polymorphic handle that can reference vertices, edges, and faces.
Conversion is done by an assign operation similarly to the polymorphic CGAL type Object.

�
nef interface operations �&� �� �	���3�������(���� � � � ��!�� �����( (���
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/

The chosen point location method depends on m. In the non-naive case the locator object is initialized
by a call to init locator �� . The corresponding locator object is stored in the representation object
for further usage in iterated queries and can be accessed by the locator � � method. The naive locate
operation requires a segment as input that intersects the 1-skeleton of the plane map.
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The ray shooting operation determines the closest object of P that is marked and hit by a ray shot from
the point p in direction d. The search is delegated to the corresponding member of the locator object.
The class INSET is the predicate class that stops the ray shot when a marked object is hit. See the
manual page of the locator classes for its concept.

�
nef interface operations �&� �

���	*�� �� � � � ��� .
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A similar implementation is used for ray shoot to boundary. Note that we only use a different predi-
cate INSKEL.
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To examine the plane map underlying the Nef polyhedron the user can obtain a decorator object that
has read-only access to pm �6� . Thus, modifications can only take place via the interface operations of
Nef polydron 2.
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4.5.7 Visualization

At last we provide a drawing routine for Nef polyhedra in a LEDA window. We want to draw faces,
edges, vertices in this order, where faces are maximally connected point sets bounded by one outer
face cycle and maybe by several inner hole cycles. We draw objects which are in our point set black
and objects which are not in our pointset by a light color. Note that we face the following problem.
Our window represents a rectangular view to our square frame, which is large enough to make the
topology on this boundary constant. Imagine making our frame big enough and then shrinking it
slowly down to zero. For each ray with slope not equal to one and not containing the origin there
is a value R when the ray tip on the frame leaves its correct frame segment. If we want to prevent
topological difficulties when drawing the polyhedron we have to keep our frame radius above the
minimum Rm. Thus visualization determines this Rm and sets the internal evaluation parameter to this
value. Then all points on the frame and segments containing such points have fixed coordinates and
can be drawn. For the concrete technical details of drawing the objects see the class PM visualizor

�
� .
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Drawing of the constrained triangulation is done depending on the static variable show triangulation.
Of course such animation requires the necessary preprocessing with the locator object.
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�
draw the refining constrained triangulation �5�
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4.5.8 Input and Output

Standard input and output is done by the plane map I/O class PM io parser. See Section 4.6 for more
information.

4.5.9 Hiding extended geometry

The plane map explorer provides an interface that masks the properties of our extended kernel by
reintroducing purely affine objects. We want to provide a simple interface for users who are not
interested in the detailed features of extended objects. The methods of the class PM explorer

�
� allow

queries to the category of vertices and edges such as “Is a vertex embedded in the affine space or on the
frame box?” or “Is an edge part of the affine structure or part of the frame box”. Its implementation
trivially maps to the operations of the extended kernel. See its interface in Section 4.2.2 on page 178.

4.6 Plane Map Implementation

We present some implementation details of our plane map decorator that provides an abstract interface
to a plane map. The abstract interface of our plane map data type is sufficiently specified in the
manual page. We sketch how we implement this interface by the CGAL halfedge data structure.
We use the new HDS design as described in the design paper [Ket99]. The paper contains also a
survey of classical plane map implementations and a motivation for the HDS design. The generic
HDS collection allows to choose different flavors of HDS structures. A user can specify if she uses
explicit vertex or face objects and how the iteration facilities are implemented. For the topological
Nef layer we choose the default implementation including vertex and face objects, however the offered
design is limited to one single face cycle bounding a face. Our definition of plane maps requires to
have multiple face cycles and also trivial face cycles in form of isolated vertices. We do not want to
bore the reader with the technical details of the implementation but we describe the extension process
from the functionality of the default HDS design to our plane map data type. Fortunately, the CGAL
HDS allows a user to extend the functionality by extending the objects (vertices, halfedges, faces).
The types are transported into the container type HDS in a so-called items class; in our case called
HDS items. The possibility of this extension is one advantage of the generic design.

Figure 4.5 presents the default layout of the three objects. The interface methods map to member
variables. A vertex v stores an incident edge e such that v halfedge �"� � e and e vertex �A� � v. Dually
symmetrical a face f stores an edge e in its bounding face cycle: f  halfedge � � � e and e face �A� � f .
The additional links of an edge e create the topological structure of the graph. e opposite � � is used to
make the graph bidirected and e next � � and e prev � � are used for the circular ordering of edges in the
face cycle of a face.

The extended structure in Figure 4.6 adds the possibility to assign multiple face cycles as a bound-
ary to a face f to the above structure. We give generic container access by means of two iterator ranges.
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Vertex
+halfedge(): Halfedge_handle

Halfedge
+opposite(): Halfedge_handle
+next(): Halfedge_handle
+prev(): Halfedge_handle
+vertex(): Vertex_handle
+face(): Face_handle

Face
+halfedge(): Halfedge_handle

Figure 4.5: The default HDS design

Vertex
+halfedge(): Halfedge_handle
+face(): Face_handle
+point(): Point&
+mark()(): Mark&
+info(): GenPtr&

Halfedge
+opposite(): Halfedge_handle
+next(): Halfedge_handle
+prev(): Halfedge_handle
+vertex(): Vertex_handle
+face(): Face_handle
+mark(): Mark&
+info(): GenPtr&

Face
+halfedge(): Halfedge_handle
+holes_begin/end(): Halfedge_handle
+isolated_vertices_begin/end(): Vertex_handle
+mark(): Mark&
+info(): GenPtr&

Figure 4.6: The extended HDS design

The range
�

f  holes begin � � , f  holes end � �2� stores halfedges that can be used as entry points into dis-
joint face cycles. Accordingly, the range

�
f  isolated vertices begin �C� , f  isolated vertices end �C���

maintains a set of vertices in the interior of f . Such vertices v also store their containing face by
v face ��G� f . Note that our implementation requires that insertion or deletion operations in the
two sets are constant time operations. We do not show the details. Note that all three objects are
attributed twice in addition to the topological linkage. All objects store a mark and a generic slot of
type GenPtr � void � for further data association. This two extensions are mandatory for the Nef
structure. The mark ��� slots map to set inclusion flags. The info ��� slots allow us to associate tem-
porary information required for the binary overlay of two structures. Finally, vertices carry a point
representing their embedding into the plane.

Decorator classes

PM_const_decorator
HDS

PM_decorator
HDS

PM_io_parser
PMDEC

PM_checker

PMCDEC
GEOM

PM_visualizor

PMCDEC
GEOM
COLORDA

«concept»
PMConstDecorator

«concept»
PMDecorator

HDS = Interface to 
CGAL::HalfedgeDS_Default
(extended by multiple 
 face cycles)

«concept»
ExtendedKernelTraits_2

Figure 4.7: The decorator family defining the interface to the HDS data structure
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We interface the HDS via decorator classes that encapsulate a certain functionality. The classes are
depicted in Figure 4.7. We implemented the two main concepts PMConstDecorator and PMDecorator
on top of the CGAL HDS. The first gives read-only access to the HDS the second provides ma-
nipulation operations. The concepts carry their interface into the additional modules PM checker,
PM io parser, PM visualizor. Whenever geometric kernel operations are needed in the module as
for example in the checker, we add a template parameter carrying geometric kernel methods. The
COLORDA template parameter in the visualizor module PM visualizor allows the adaptation of the
drawing of plane maps. We elaborate on some details of the modules but do not show the whole
implementation.

PM const decorator - the read-only interface

PM const decorator
�

� realizes non-mutable access to plane maps. It provides interface operations on
the objects as presented in our concepts section on page 179. The sole link to geometry is the embed-
ding via a point type. All circular structures are realized via circulators (the variation of iterators as
introduced in CGAL). The only method that carries more involved coding is the integrity check oper-
ation. That operation checks the sanity of the link structure coding the incidence relations of vertices,
edges, and faces and additionally checks the topological planarity of the structure by checking that the
genus of the plane map is zero. The integrity check of the topological decorator does the following:

� all vertices are partitioned into two sets by the is isolated ��� predicate. All isolated vertices v
have face links where v is in the isolated vertices list of v ; face ��� . All non-isolated vertices
are bound to adjacency lists by their halfedge link.

� for all vertices v we check that source � A � v �!�A� � v
� for all edges e we check that twin � twin � e �!�A��� e
� we check that the Euler formula is correctly fulfilled. Let nv be the number of vertices, ne be

number of edges (= number of halfedges divided by 2), n f be the number of faces, n f c be the
number of face cycles, and ncc be the number of connected components of the map. Then at
first we have n f � n f c 9 ncc � 1 and we check that nv 9 ne � n f � 1 � ncc. Note that we have to
cope with isolated vertices. They are counted in our connected component number ncc and in
nv.

See Chapter 8 of the LEDA book for an elaborate treatment of this check.

PM checker - checking geometric properties

Our checker mainly realizes the integrity checks of the basic properties of the plane map like that
of an order-preserving embedding or the forward-prefix property of the adjacency lists. We also
added a checker method that examines if a plane map represents a triangulation of its vertices. The
implemented methods are������
 *( � C$ ��*�
���* ��*�� ����*'������ ����� ��
	
 �8��<������*	��� � �������� ( (���
����,��#,��������<=

������
 *( � C$ )	��*)+ (�*	
 ��*���) ��� �����
 ��������� ������*	����� ������ � ( (���
����,��#,���� ��� =
������
 *( � C$ ��*�
���* ��*�� ����*'������ ����� ��
	
 �8��<�8# ��������<=
������
 *( � C$ ��� �	*���(��������(�������� ��# �������� =

The methods check the basic properties that we require from a plane map. The task to check if our
plane map actually is a triangulation of its vertices follows the ideas as presented in [MNS � 99] and
the LEDA book.
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PM decorator - manipulating the plane map

PM decorator
�

� gives mutable access to a plane map. Apart from standard operations the interface
also provides operations that are very specially designed for the updates needed in our sweep frame-
work or in the simplification phase of our binary operations. Some operations allow changing the
incidence of plane map objects only partially e.g. create an edge that is only linked to a vertex at its
source. With these operations one has to be careful not to spoil the plane map structure. The advantage
is that we do not need superflous allocations of objects that are only needed temporarily.

The implementation of most of the operations is straight-forward. The only operation that should
be mentioned is the clone operation for plane maps. As the generic HDS container does not know the
layout of the objects that it maintains, a copy construction is hard to realize for the general case. In
the rare case where we actually need to copy a plane map, we use the methods:������
 ������ � � ��������+&'� ��!,& # =

����� � ��(����,���	;�� ����(���� 	�� � � �'���
������
 ������ � ��$������������ ���������� &'� ��!,& � ���������	���� � �'�	!
	 #

Both methods basically work in two stages. Let H
�
be the target copy of H . First each object o in H

is cloned into an object o
�

in H
�
whose links still point to objects in H . We store the correspondance

of o to o
�

in a map M � o �� o
�
. Then in the second stage we iterate all objects o

�
in H

�
and replace the

links to the objects in H by the corresponding objects in H
�
via the map. The result is an isomorphic

structure. Note that due to the fact that the prev-next links of the halfedges also code the embedding,
this isomorphy is also topological and not only combinatorial [Die97]. Of course the geometric em-
bedding of the vertices and the attributed marks are just transferred. The second cloning operation
just extracts an topological isomorphic 1-skeleton from a full-fledged plane map. In that operation
we also provide access to the newly created objects by an additional data accessor L. The LINKDA
concept requires the methods:

���	*�� ���	�� � � �'� .������
9������*�(�����*<�8#>������*	��� � ( (���
���� ��� �F����*���� � �������� ( (���
���� ����#,���� ��� =
������
9������*�(�����*<�8#>�-&�(���)���
��� ( (���
�����(�� �'&�(���)���
)�� �������� ( (���
���� ( ��#��������� =

/

where vn, hn are the cloned objects in H
�
and vo, ho are the original objects of H . L can now be used to

get a hand on the cloning process on the object level. The method is used to obtain an isomorphic graph
structure that can be used for further subdivision (e.g. point location in constrained triangulations).
We leave out the details, as its design is mainly determined by the design of the CGAL HDS.

PM io parser - stream input and output

The input and output is mainly triggered by a decorator which has the control over the I/O format and
does some basic parsing when reading input. The class template PM io parser

�
PMDEC � has two

constructors and two corresponding actions on the streams obtained on construction:
�'� ��� ��(�* ����*�������
 $�$ �����	*���(���! �����'� ��(�� � ��(���!,& # =
������
�*��	(�
��8#>=
�'� ��� ��(�* ����*�������
 $�$1� ���	*���(���!"����� ��������"� ��(�� � ��(���!,&�#>=
������
"�	*������<��#"������ � =

The template parameter refers to the concept PMDecorator. A decorator object decorating H is used
to construct the plane map H when reading from the input stream, or to explore the structure when
printing to the output stream. We omit the implementation details.
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We only present the I/O format that is similar to that used in LEDA for general graphs. There is a
header and then three sections storing the objects vertices, halfedges, faces:

� ��(���� ��(�� �
����*	� ���� � �G?
( (���)	��
)�� � � �
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� ?�: ? . �����	��(�����
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.'.'.
� ��: ? .9���	��� ��� ���#� ��*������?� � �	� � ����*	������� )�( �� ����(�*)$ /
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 �� �?) �� ����� � ��� � ����������(�*'$3/
.'.'.
� � : ? .,( (���)���
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there are n1 lines for vertices, n2 lines for halfedges, and n3 lines for faces. All objects are indexed
by non-negative integers. Vertex lines contain a boolean marker isolated followed by the index of an
incident object (a face if isolated is true, otherwise the first halfedge of the adjacency list), the attribute
and the embedding. Halfedge lines store the link structure (again by indices representing the objects):
the opposite (also called twin or reversal) halfedge, the previous and next halfedge of its face cycle,
the incident vertex and the incident face, and the attributed mark. The face lines have no fixed length
as the number of face cycles and isolated vertices is not bounded. Both lists fclist (for face cycles) and
ivlist (for isolated vertices) are white space separated lists of numbers. Their elements are the indices
of one halfedge from the corresponding face cycle or the indices of the isolated vertices in the interior
of the faces respectively. The halfedge is the index of a halfedge of the outer face cycle of the face and
the mark is again the attribute of the face. Note that as our index range starts at 0, we code undefined
references by 9 1.

I/O and cloning processes bear a strong similarity. In both processes one creates isomorphic
representations of pointer structures. In case of output the representation of typed pointers (handles)
is a unique numbering of all objects that can be translated back during an input process.

PM visualizor - drawing plane maps in a window

We offer a decorator drawing a plane map into a CGAL window stream, which is basically a LEDA
window offering stream operations for all affine kernel objects of the CGAL geometry kernels. The
class template PM visualizor

�
PMCDEC � GEOM � COLORDA � requires models of the three template

parameters for instantiation. The first two can be instantiated by PM const decorator
�

� and any ge-
ometry kernel being a model of the concept AffineGeometryTraits 2. The third parameter assigns
colors and sizes to the objects of the plane map depending on their attributes by the following class
concept:
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On construction the visualizor obtains a window stream W , a decorator D, a geometry kernel K, and a
color data accessor C. The plane map referenced by D is drawn in the window W with the properties
as specified by C.

�'� ������� (�� �CB	��*<� 3'4 ��	 $	$ �����	
���+ ����*��	(���!�� � ��������"�'� 3 �	� 3 !
���
�������� 4 � � �	! � � �������� 3 � 	 � �'�'��! 3 # =

The class offers drawing by object or drawing of the full structure by the methods:������
,
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We do not show their implementation here. For the drawing of the faces we use the techniques that
are used by LEDA windows to draw polygons.

4.7 Subdivision, Selection, and Simplification

In this section we present a software module for the overlay of segments and plane maps. We first
give a formal introduction to the notions and difficulties concerning overlay and support. We then
present the overlay calculation of a set of segments. We show how we use a generic sweep module
to produce the 1-skeleton of the output plane map. In a different section we show how to add face
objects to the 1-skeleton to complete the output structure. The second operation concerns the overlay
of two plane maps. We use the same generic sweep module with slightly more elaborate adaptation
to obtain again the 1-skeleton of the overlay. The face production phase will be the same as before. In
case of the second overlay operation our sweep adds a transfer of information assigned to the objects
of the two input plane maps to corresponding objects in the output structure. This allows us to use the
module for binary set operations on plane map structures. Such set operations use a selection phase
on the transferred information items. The selection phase is descibed below in an additional section.
The last section in this document concerns structural simplification of the output plane map. We will
see that there can be substructures in the output plane map that can be simplified without losing any
information when the plane map is interpreted as a point set.

4.7.1 Notions and definitions

If we consider our overlay process as a transformation of input objects to output objects then we can
define the support relation as follows.

Definition 10 (support): Consider an algorithm T that transforms a set of input objects A to a set of
output objects B where each a � A and b � B represents a subset of R2. We say that a supports b if b
is a subset of a with respect to the represented point sets.

We will anchor this notion in the following.
Overlay of a set of segments For a segment s � � p � q � , p � source � s � , q � target � s � and p,

q are called the endpoints of s. Let us consider s as a disjoint union of its endpoints and its relative
interior � � � � � � s. A set of segments S partitions the plane into cells of different dimensions. For each
point r � R 2 it can happen that

(i) r is equal to some endpoint p of some segment s, or

(ii) r is part of the relative interior of some segment s, or
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v1

v2

v3

v4

f

Figure 4.8: The overlay of a set of segments and of two plane maps. The left figure shows a set of dashed
segments. v1 is an isolated vertex, v2 is an endpoint in the interior of another segment, v3 is a vertex supported
by two endpoints, v4 is the intersection of the relative interior of two segments. The edges are drawn with solid
line segments. One bounded face is greyed. The right figure shows the 1-skeleta of two plane maps. Degenerate
situations are identical vertices, vertices in the interior of edges, and overlapping edges.

(iii) r is not part of any segment at all.

Note that (i) and (ii) do not exclude each other. Now consider the geometric structure built by all
segments. The overlay of all segments is the subdivision of all points in R 2 with respect to the three
criteria (i) to (iii) above including their topological neighborhood and the knowledge how parts of the
segments in S support the cells of the subdivision.

We store the overlay of S in a plane map P � � V � E � F � in the standard way. For each point r in
(i) there is a vertex v in V where the endpoint of the segment supports the vertex. If r is additionally
in the relative interior of some other segment according to (ii) then this segment also supports v. For
each point in (ii) that is the unique intersection point of the relative interior of two segments (that do
not overlap) there is a vertex in V and the relative interior of each of the two segments supports that
vertex. Between any two vertices in V there is a uedge e in E if there is a segment s that supports the
straight line embedding of e according to (ii) and there is no further vertex in the relative interior of
e. The latter can happen for several segments that overlap. Any point of (iii) belongs to one of the
maximal connected sets10 of R 2 9 S that form the faces of P and is thus not supported by any segment
at all.

Overlay of two plane maps Let Pi ��� Vi � Ei � Fi �D� i � 0 � 1 be two plane map structures. The over-
lay of two plane maps P0, P1 is the plane map P representing the subdivision of the plane obtained by
interpreting the skeleton objects of Pi according to their embedding as trivial and non-trivial segments,
constructing the overlay of these segments and adding the faces. To make this structure really helpful
we explore the support relation between object of Pi and P.

In general, each point p in the plane is supported by that object of a plane map whose correspond-
ing point set contains p. The support relation between Pi and P comes in two steps. Each 1-skeleton
object of Pi relates to the endpoint or relative interior of a segment that supports a skeleton object in
P. Reversely, each object of P (vertex, edge, or face) is supported by a unique supporting object in
each of the two structures Pi � i � 0 � 1 � . We show that this relation is well-defined.

Lemma 4.7.1: Any object of P has exactly one supporting object in each of the Pi.

10path connected in the strong topological sense.
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Proof. Obviously, each point of the plane is supported by an object of Pi. Therefore, we only have to
argue why no two objects of Pi can support one object of P. For vertices this is trivial. For a uedge
e in P there can be only one uedge or one face of Pi that supports e: assume that the embedding of e
covers points from more than one object of Pi. Then, e either contains a vertex or crosses an edge in
its interior. But then, the corresponding subdivision would have prevented the creation of e in P in the
first place.

For a face f of P there can be only one face f
�

of Pi that supports f : assume otherwise, that f
contains points from different objects of Pi. As f is an open connected point set it has to cover points
of at least one boundary object from the 1-skeleton of Pi. But this object is part of the 1-skeleton of P
and can therefore never be part of f .

In our implementation we determine the support relation in two phases. Any vertex v in V can
be supported by a vertex vi, a uedge ei, or a face fi of Pi. If v is supported by vi or ei we obtain this
information in a plane sweep process. Assume that v is supported by a face f i (then v is supported by a
vertex v1 � i). During the sweep process the determination of a support of f i is hard, as the face objects
are not in reach. We determine fi in a postprocessing phase by a simple iteration over all vertices.
Any edge e in E can be supported by a uedge ei or a face fi of Pi. A possible support by ei is handled
during the sweep process. In case e is part of a face f i (again e is then supported by an edge e1 � i) we
also determine fi in the postprocessing phase.

The support for a face f in F can be determined as follows. Assume that each directed edge e in
E knows the faces fi supporting points in a small neighborhood on its left side (i � 0 � 1). Then, f can
determine its two supporting faces fi via any edge in its boundary cycle. We will enrich the edges of
E by such support information and use it afterwards to transfer attributes from f i to f .

4.7.2 The class design

We start with the design of the class object. Our generic overlay class can be adapted via two interface
concepts. We interface the underlying plane map via a plane map decorator PMDEC, we interface the
underlying geometry via a geometry kernel GEOM. We inherit from PMDEC to obtain its interface
methods.

�
PM overlayer �������� � ��(����,���	;�� ����(����+�'����
�� ���*�(�����*��#� ��;�� ��� (*��� 4 �	�*�����	*	;��	�

���( ���+�)����� ����* ��(�;���* $?�	�'������ �'����
������*�(�����*�� .
��;�� ��
���)��'����
������*�(�����*�� � ( ����=
��;�� ��
���)��'����� ����* ��(�;���* ���'����
�� ���*�(�����*���� 4 ����� ����*	;���� �	����)<=
�������� 4 �	�*�����	*	;���! � =7%'%
��	��� ���	*	;�*���)���*�������

�	�'������ $
��;�� ��
���)��'����
������*�(�����*�� ��� ���*�(�����* =
��;�� ��
���)��	;�� ����(���� �������*�(�����* $	$ ����(�� ��� ��(��+� ��(�� ���*��(�� =
��;�� ��
���) 4 �	�������	*	;�� 4 �	�*�����	*	;<=
��;�� ��
���)��	;�� ����(���� 4 ���������	*�; $	$ ��� ������� � �����8��� =
��;�� ��
���)��	;�� ����(���� 4 ���������	*�; $	$ �	��0��������� � �	� C������� =
��;�� ��
���)��	;�� ����(���� �������*�(�����* $	$ ��(�*'$ ��(�*)$ =
�
handles, iterators, and circulators from Decorator ��
info type to link edges and segments �

�'����������* ��(�;���*<�-����(����'� ��(���! ��� �������� 4 ���������	*�;	!
 � 4 �	�*�����	*	;��8#	# $��( ��� �-� # � � ���#".	/



4.7 Subdivision, Selection, and Simplification 109
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4.7.3 Overlay calculation of a list of segments

We want to calculate the plane map P representing the overlay of a set S of segments, some of which
may be trivial. This task is basically split in two phases:

overlay of segments — the calculation of the 1-skeleton P
� � � V � E � of a plane map via the overlay

of the segments in S plus the calculation of a map halfedge below : V ; E

face creation — the completion of the 1-skeleton P
�
to a full plane map P � � V � E � F � by creating all

faces while using the information of the map halfedge below.

For the overlay process we use the generic segment sweep module as presented in Section 4.8. There
we presented a generic class Segment overlay traits realizing a generic sweep framework. To instan-
tiate it we have to provide three components (input, output, geometry). In this instance the input is
an iterator pair, the geometry is forwarded from the current class scope. Only for the output type
we have to work a little more. We define a class PMO from segs that fits the output concept of
Segment overlay traits and at the same time is a model for the Below info concept required for the
facet creation in Section 4.7.5. (See Figure 4.9.)

«concept»
SegmentOverlayOutput

+: V, E, I, Point_2
+new_vertex(p:Point_2): V
+new_halfedge_pair_at_source(v:V): E  
+link_as_target_and_append(v:V,e:E): void             
+supporting_segment(e:E,it:I): void
+trivial_segment(v:V,it:I): void
+starting_segment(v:V,it:I): void
+passing_segment(v:V,it:I): void
+ending_segment(v:V,it:I): void
+halfedge_below(v:V,e:E): void

«concept»
Below_info

+: V, E
+halfedge_below(v:V): E                               

PMO_from_segs
+PMO_from_segs(G:PMD,D:DA)

PMD, I, DA

O2

O1

O3

Figure 4.9: PMO from segs realizes the Output concept of the generic sweep module and the Below info con-
cept for the facet creation phase. In the figure Vertex handle, Halfedge handle, and Iterator have been replaced
by the short symbols V , E, and I.

On creation an object of type PMO from segs references a plane map via a decorator G and obtains
a data accessor object D of type DA. PMO from segs as a model of SegmentOverlayOutput triggers the
correct update operations on the output plane map during the sweep. See the output concept in Figure
4.9. The method part O1 of SegmentOverlayOutput takes care of the plane map extension by new
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vertices and edges. The part O2 allows to obtain information how the creation of the objects is linked
to the input interators. In the implementation (which we do not show) of PMO from segs we forward
this interface to methods of the data accessor of type DA. Finally, part O3 can be used to collect the
additional information required for the facet creation. An edge e that is immediately below a vertex v
is stored in the vertex object in a temporarily assigned data slot and can be retrieved after the sweep.
PMO from segs as a Below info model can thus afterwards deliver the halfedge halfedge below � v � for
any vertex v of the plane map.

At this point our readers should take the module���� ��*��� �*+ �	����� �	� 0������� � ����* ��(�; �	*�( � � �����)� � )�*���� ���  ��� .).'. � .'.).'�	�

as a black box producing the 1-skeleton of P with the properties required in Section 4.7.5. The
specification of Segment overlay traits guarantees these properties of P because PMO from segs fits
the requirements of the output concept of Segment overlay traits.

Now, the overlay creation is trivial. Just create an output decorator object Out working on
the plane map maintained by PM overlayer and plug it into the segment sweep overlay framework
Segment overlay traits. The used geometry is just forwarded from PM overlayer. The create method
of PM overlayer is parameterized by the iterator type Forward iterator and the data accessor class
Object data accessor.

Note that the halfedge below information collected during the sweep is associated with the ver-
tices of the output map. The corresponding object Out triggers the output creation during the
sweep and provides the halfedge-below information for the face creation in create face objects �)� .
Out  clear temporary vertex info � � just discards the temporarily allocated information slots (internally
assigned to the vertices) on the heap.
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We summarize the calculated overlay properties and anticipate the costs of face creation in Section
4.7.5 and of the plane sweep description. (see Lemma 4.8.3).

Lemma 4.7.2: Assume that S � set
�
start � end � is a set of segments and A is a data accessor with

the required methods (of constant cost). Then, create � start � end � A � constructs in P � � V � E � F � the
overlay plane map of S. Let n be the number of segments in S, nv � �V � , ne � � E � , and n̄e the sum
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of the support multiplicity of each edge over all edges. Then the runtime of the overlay process is
dominated by the plane sweep and is therefore O � nv � n̄e ��� n � nv � log � n � nv �!� .

4.7.4 Overlay calculation of two plane maps

We calculate the overlay P of two plane maps P0 and P1. Both input structures are two correctly
defined plane maps including incidence, geometric embedding, and markers. In the following we use
the index i � 0 � 1 showing a reference to Pi ��� Vi � Ei � Fi � ; non-indexed variables refer to P.

The 1-skeleta of the two maps P0 and P1 subdivide the edges and faces of the complementary
structures into smaller units. This means vertices and edges of Pi can split edges of P1 � i and face
cycles of Pi subdivide faces of P1 � i. The 1-skeleton P

� � � V � E � of P is defined by the overlay of the
embedding of the 1-skeleta of P0 and P1 (Take a trivial segment for each vertex and a segment for each
edge and use the overlay definition of a set of segments above). Additionally, we require that P

�
has

the correct order in each adjacency list such that it is order-preserving regarding the embedding of the
vertices.

Finally, the faces of P refer to the maximal connected open point sets of the planar subdivision
implied by the embedding of P

�
. The construction of the faces F from P

�
is described in Section 4.7.5.

Each object u from the output tuple � V � E � F � has a supporting object ui � i � 0 � 1 in each of the two
input structures. Imagine the two maps to be transparencies, stacked one on top of the other. Then
each point of the plane is covered by an object from each of the input structures. We analyse the
support relation from input to output in order to transfer the attributes from u i to u.

According to our specification each object ui of Pi carries an attribute11 mark � ui � (mark : � Vi



Ei



Fi � ; Mark). We associate this information with the output object u by mark � u � i � (an overloaded

function mark : � V 

E



F � � � 0 � 1 
 ; Mark). This two-tuple of information per object can then be
processed by some combining operation to a single value mark � u � lateron.

We fix the following input properties for our structures Pi. Both plane maps � Vi � Ei � Fi � consist of
vertices, edges, and faces whose topology is accessible by our plane map interface and additionally
each object ui carries an attribute mark � ui � . The plane maps have an order-preserving embedding and
their adjacency lists have a forward prefix. Actually we do not use this property of the input plane
maps at this point but it is a general invariant of our plane map structures that makes some intermediate
actions more efficient. The overlay process consists of three phases: The 1-skeleton P

�
is produced

by segment overlay. Afterwards we create the face objects. Finally, we analyse the support relation
and transfer the marks of the input objects to the output objects.

overlay of segments — We use our generic segment overlay framework to calculate the overlay of
a set of segments S. The set S consists of all segments that are the embedding of edges in E i

and additionally trivial segments representing all isolated vertices in Vi. The output structure
P
� � � V � E � of the sweep phase is just the 1-skeleton of the output plane map P, but of course in-

cluding an order-preserving embedding and a forward-prefix in the adjacency lists. The objects
of the 1-skeleton carry additional structural information:

I1. Each vertex v in V knows a halfedge e � E : e � halfedge below � v � which is determined
by the property that a vertical ray shot from v along the negative y-axis hits e first. Degen-
eracies are broken with a perturbation scheme: during the ray shooting all edges include
their source vertex.

11we use a general attribute set, though with respect to Nef polyhedra Mark : � �
true � false � .
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I2. For each object u � V



E there is a mapping to the supporting 1-skeleton objects of the
input structures. The support information is incomplete with respect to face support.

face creation — The next phase after the sweep has to complete the plane map P. We basically have
to create the face objects and construct their incidence structure. The face creation is done as
presented in Section 4.7.5 and uses only I1.

attribute transfer — The final transfer of marks uses the embedding of the vertex list of P and the
additional information I1 and I2 to define mark � u � i � for all objects u in P.
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Temporary information associated with objects

We have to associate temporary information with the objects of the output plane map. In this section
we abstractly use sets in a pseudo code notation to underline the origin of plane map objects. The
objects from these sets are realized by the corresponding handle types (and therefore their type does
not allow to mark their origin). Undefined objects are detectible via default handles.

At first we interpret the input 1-skeleta geometrically. We collect a set of trivial and non-trivial
segments S. For each edge in Ei we add a non-trivial segment to S and for each isolated vertex of Vi

we add a trivial segment to S. We store the origin of the objects in S via a function

From : S ; � V0 � 1 
 E0 � 1 � � � 0 � 1 

From � s � �

�
� vi � i � if s is a trivial segment refering to an isolated vertex vi from Pi �
� ei � i � if s is a non-trivial segment refering to an edge ei from Pi.

From is implemented as a hash map From whose domain are iterators (with value type segment) and
whose value is a structure Seg info with members v, e, i storing the above pairs.

�
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In the first phase we fill the segment input list with a non-trivial segment underlying each edge and
with a trivial segment for each isolated vertex of the two input structures. Additionally, we store
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hashed links from the iterators to the edges/vertices to store their origin.
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During the sweep phase we collect additional information in temporary information containers asso-
ciated with the objects u � V



E



F of P.

assoc info � u � creates the temporary object on the heap
discard info � u � discards the object and frees the memory

Within these objects we store the following pair of mark attributes (indexed by i):

Mark mark � u � i � for i � 0 � 1 and u � V



E



F

For each vertex v we collect skeleton support information.

Vi supp vertex � V v� inti � the vertex from Vi supporting v if it exists, else undefined.
Ei supp halfedge � V v� inti � the edge from Ei supporting e if it exists, else undefined.

And for each edge e we want to know

Ei supp halfedge � E e � int i � the edge from Ei supporting e if it exists, else undefined.
Mark incident mark � E e � int i � the mark of the face from Pi supporting a small neighborhood left of e.

The information is collected during the sweep phase by a corresponding model of the output concept
used in our generic sweep framework. We omit the realization of the above attribution. Details can
be found in the accompanying research report.

The sweep instantiation

We have to provide the three components (input, output, geometry) necessary to instantiate the traits
model Segment overlay traits for our generic plane sweep framework. The input is an iterator pair,
the geometry is forwarded from the current class scope. Only for the output type we have to work a
little more. We define a class PMO from pm below which allows us to track the support relationship
from input objects (segments handled via iterators) to the output objects (vertices and halfedges) via
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the call-back methods triggered during the sweep. Please refer to the description of Segment overlay -
traits.

The methods of PMO from pm fit the output concept requirements of Segment overlay traits. The
functionality is such that the skeleton is created and the support information is associated with the
newly created objects. PMO from pm is a class template on the global implementation scope as the
usage of local class types (within the scope of PM overlayer) is not allowed by some current C++
compilers.

«concept»
SegmentOverlayOutput

+: V, E, I, Point_2
+new_vertex(p:Point_2): V
+new_halfedge_pair_at_source(v:V): E  
+link_as_target_and_append(v:V,e:E): void             
+supporting_segment(e:E,it:I): void
+trivial_segment(v:V,it:I): void
+starting_segment(v:V,it:I): void
+passing_segment(v:V,it:I): void
+ending_segment(v:V,it:I): void
+halfedge_below(v:V,e:E): void

«concept»
Below_info

+: V, E
+halfedge_below(v:V): E                               

PMO_from_pm
+PMO_from_pm(G:PMD,G0:PMD*,G1:PMD*,from:FROM)

PMD, I, FROM

O2

O1

O3

Figure 4.10: PMO from pm realizes the Output concept of the generic sweep module and the Below info
concept for the facet creation phase. In the figure Vertex handle, Halfedge handle, and Iterator have been
replaced by the short symbols V , E, and I.

We shortly describe how the temporary information associated with the skeleton objects is re-
trieved from the use of PMO from pm (cf. Figure 4.10) as an output model in the generic sweep. The
operations in section O1 create and link new objects in P and additionally use assoc info � � to create
the temporary storage containers. The operations in section O2 accumulate the support information.
As an example, we show how the information for supp halfedge � V � int � is collected:������
��)� � )�*���� ���0���)�'��� � � �'� � � ��$	$7��(��������) ��� C�������<���,��� � � ��#
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At each event of the sweep, a vertex v is created in P and if v lies in the interior of the segment � it
the above operation is called. Thereby, after the sweep all edges from E i that support a vertex v from
V are associated with v. The remaining support is determined similarily. The operation in section
O3 is realized to collect information that allows PMO from pm to serve as a model for the Below info
concept.

Now, creating the overlay is a trivial plugging of types into the generic plane sweep framework, a
creation of the sweep object with input, output and geometry references, and a final execution of the
sweep. Afterwards, the faces are created.
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Transfering the marks

After the sweep and the face creation the input for this phase is a plane map P � � V � E � F � enriched
by additional information attributed to the 1-skeleton objects of P. The output vertices in V are linked
to their supporting skeleton input objects (vertices and edges). The output edges in E are linked to
their supporting input edges. The support knowledge with respect to input faces is still missing. In
the following we analyse this support but do not store it explicitly. Instead we only transfer the marks.
There are several properties of the constructed subdivision P which help us to do this.

� the vertices are constructed in the order of the sweep. By iterating them in their construction
order we can rely on the fact that we iterate according to the lexicographic order of their em-
bedding.

� the halfedges out of a vertex v are ordered around v counterclockwise (with respect to the em-
bedding of their target). We can therefore use a forward iteration to propagate face information
from bottom to top (on forward oriented edges).

� the first face faces begin ��� in the list of all faces is the unbounded face. This holds for P, P0,
and P1.

�
transfering the marks of supporting objects ����

initialize the outer face object �����*	��� ��� � ����*�(�����* ���F������
��-����*	�������� ������
 �8# =
)���* ���:�-����*	������ � �0� ������ �8#>= �� ��������
�=F='=)��#".
�
determine mark of face below v ��
complete marks of vertex v ��
handle all forward oriented edges starting in v �

/ �
transfer the marks to face objects �

The transfer of face support marks is based on the following fact.

Fact 2: Let p be a point of the plane not part of the 1-skeleton of Pi, q be a point within the unbounded
face of Pi, and ρ be any curve from p to q not containing any vertex of Pi. Assume ρ intersects an
edge e of the 1-skeleton of Pi and let e be the first such edge when following ρ from p to q. Then, p
is part of the face incident to e. If ρ does not intersect the 1-skeleton, then p is part of the unbounded
face of Pi.

The above fact is a consequence of the connectedness property of the faces of Pi. We now consider
point p as part of P. For p we consider a special path ρ as depicted in Figure 4.11. We walk down
along a vertical ray (in direction of the negative y-axis). If we cross a bundle of edges incident to a
vertex v the path turns just below the lowest edge and follows the lowest edge in parallel until it is
just below v. We iterate this construction until it ends in a point q in the unbounded face of P. Each
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v1

p

v2

q

e

Figure 4.11: The face support iteration unrolled. We examine a position p within the plane map P and try to
find the support by a face fi in the plane map Pi. We have two vertices v1 and v2 from V with their forward-
oriented edge bundle. The face that supports p with respect to Pi can be determined by following the dotted
path until the outer unbounded face of Pi is reached.

edge e that is crossed by ρ is supported by an edge either from Pi or from P1 � i. In the former case
the first such edge determines the face fi supporting p. If there is no such edge then p is supported
by the unbounded face of Pi. We want to determine face support for many vertices and edges, thus
we do not want to pay such a walk for each query point p. Instead we associate with each edge e
face support knowledge in the two slots mark � e � i � and incident mark � e � i � . The idea is that these slots
store the knowledge obtained from a reversal walk from q to p. Whenever our path ρ crosses an edge
e in P that is supported by an edge ei in Pi, then we associate the mark knowledge plus the mark of
the supporting faces from Pi (of a small neighborhood left and right of e) with e. If the information
is already constructed for all edges below a query point p, we can obtain the support information in
constant time.

We now come to the coding. We want to complete the support marks for a vertex v and the edges
e of the adjacency list of v that are forward oriented12 . Consider to follow ρ reversely with a pen
starting in q. Then m below

�
2 � always stores the marks of the faces of Pi that support the position of

the pen. In the beginning m below
�
i � stores the mark of the face f i below v. Note that we obtain both

marks for i � 0 � 1 either from the outer input faces surrounding the plane maps Pi or from the halfedge
below v. If e below exists then it was already treated as a forward oriented edge of a vertex already
handled in the vertex iteration.

�
initialize the outer face object ���
��( ��'� � ����*�(�����*+) � )�( ���� �0� �  ��� �8# = ( �����  � �8��)�� � )�# =
)���* �8�C�'D�= ��� ��=�='= ��# � (�*'$<� ) ���	#>�9��� 4 � 6 . ��(�*)$<�-��� 4 ��6�. )�( ���� �C� �� �����8#�# =

Note that the iteration over all vertices v has the invariant that either v has no halfedge below, or
if it has a halfedge e below then e below has all marks correctly assigned (mark � e below � i � and
incident mark � e below � i � are set for both i � 0 � 1). Note that each vertex v of P knows the halfedge
below it, thus the face support marks can be initialized in constant time.

12Backward oriented edges have forward oriented twins.
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determine mark of face below v ���
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If the vertex v is not supported by a skeleton object of Pi then it is supported by a face. We obtain the
mark of the face from m below in this case.

�
complete marks of vertex v ���)���* �8�C�'D�= ��� ��=�='= ��#
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We have to complete the mark information for all edges of P. We do the job for all forward oriented
edges in the adjacency list of each vertex v. How does a halfedge e of P obtain mark information
with respect to the two input structures Pi? We just have to determine the supporting objects (edge or
face) from each of both. It is either supported by two overlapping edges e0 � e1 or only supported by
one edge ei and one face f1 � i. Note that a supporting edge ei allows access to its mark and to the two
faces incident to it and its twin. The supporting edge ei of e can be obtained via supp halfedge � e � i � .
If e is not supported by an edge in Pi then the mark of the input face can be obtained from m below

�
i � .

Each supporting input edge ei of e changes m below
�
i � for the next output edge in the bundle iteration.

If e is not supported by an edge in Pi then the supporting face determines the mark of e and the two
incident mark entries. The invariant for all edges e in the iteration below is: if e is not supported by
an edge ei of Pi then m below

�
i � contains the mark of the face supporting e in Pi.

�
handle all forward oriented edges starting in v ���
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The last chunk of this section transfers the support marks to the face object. For all bounded faces
f we just transfer the marks from the bounding face cycle to the face. As all edges e carry the
incident mark � e � i � attribute this completes the structure.

�
transfer the marks to face objects ���
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We can now summarize the calculated overlay properties, we anticipate the costs of face creation as
described in the next section and the analysis of the sweep description in Lemma 4.8.3.

Lemma 4.7.3: Assume that P0 and P1 are plane maps whose embedding is order-preserving and the
adjacency lists have a forward prefix, then subdivide � P0 � P1 � constructs in P � � V � E � F � the overlay
plane map of P0 and P1 and each object u � V



E



F carries the mark information mark � u � i � from
the corresponding supporting object of the input plane map.

Let ni be the size of Pi and n be the size of P. Then the runtime of the overlay process is dominated
by the plane sweep of the skeleton objects of P0 and P1 and is therefore O �!� n0 � n1 � n � log � n0 � n1 �
n �!� .

4.7.5 Creating face objects

Input to this section is the 1-skeleton of a plane map P
� � � V � E � whose embedding is order-preserving

and whose adjacency lists have a forward-prefix. The objective of this section is to create the face
objects that complete P

�
. The correct output structure P � � V � E � F � of this section is a plane map

with the property that there are face objects f in F corresponding to maximal connected point sets
which are a result of the partitioning of the plane by the 1-skeleton P

�
. All faces are defined via their

bounding face cycles. Each face object has one halfedge link into the one unique outer face cycle (if
existing), a list of halfedges each of which represents interior hole face cycles and a list of isolated
vertices that represent trivial face cycles. To assign face cycles to face objects we need to know two
properties of the plane map skeleton:

� for each face cycle we need to know if it is an outer face cycle or a hole face cycle.
� for two face cycles fc1 and fc2 we need to know if we can connect them by a path in the plane

which does not cross any other face cycle.
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We adapt an idea from [dBvKOS97]. The path connectivity making disjoint face cycles bounding
the same face, can be modeled by a vertical visibility graph of the minimal vertices13 of each face
cycle. We create faces and assign face cycles based on this property and transfer P

�
to P thereby.

Let C be a set of face cycles of the plane map skeleton. For each face cycle c let
MinimalHalfedge

�
c � be the halfedge e whose target vertex has minimal coordinates (lexicographi-

cally). Let FaceCycle
�
e � be the face cycle containing e. We examine the following implicitly defined

graph G. Each face cycle of P
�
is a node of G. Let us link two face cycles c1 and c2 by an undirected

edge of G if target � MinimalHalfedge
�
c1 ��� has a vertical view down to an edge of c2 (in P). Note

that face cycles consist of halfedges and thus we have to refer to the correct one of the two paired
halfedges respecting the embedding when looking at face cycles (our faces are left of the directed
halfedges, thus consider the bidirected twins to be separated by an infinitesimal distance, then the
visibility is uniquely defined). Note that the embedding of a face cycle c at its minimal halfedge
gives us the criterion to separate outer face cycles and hole face cycles. Whenever the underlying line
segments of e � MinimalHalfedge

�
c � and next � e � form a left turn c is an outer face cycle. When they

form a right turn the vertex target � e � has a free view down and thus e belongs to a hole.
Note that we do not explicitly model the visibility graph. Instead the recursive behavior of the

operation determine face � � used below imitates a DFS walk on the visibility graph. In the following
method we have the vertical visibility coded via a data accessor D providing for all vertices v � V the
knowledge about the halfedge below v. D halfedge below � v � either provides the halfedge of E that is
hit first by a vertical ray downwards or an uninitialized halfedge if there is none.

right turnc3

c4
c5

c1

c2

left turn

Figure 4.12: Face cycles bounding a face. c1 is the outer face cycle, c2, c3, and c4 are hole cycles, c5 is an
isolated vertex. The minimal vertices of each face cycle are the origins of the dashed vertical arrows down.

The following template type parameter Below info has to fit the concept Below info of the Figures
4.9 and 4.10.

13minimal with respect to the lexicographic order of the point coordinates of their embedding
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We iterate all halfedges and assign a number for each face cycle. After the iteration for a halfedge e
the number of its face cycle is FaceCycle

�
e � and for a face cycle c we know MinimalHalfedge

�
c � .

�
link halfedges to face cycles and determine minimal halfedges �5������ �C��D =

&�(���)	��
)������ ����*�(�����*+� � �	����
���( (���)���
)�� � ������
��8#0=
)���* � �)��( (���)���
)�� � �C� � ���� �8#>= �� � �	����
<=�='=	��#".
� ) � ��( �� 3 ; ���� 4 ��6,��� D # ������������ ��=�%'%9(���*��	(�
�;9(��	���������

&�(���)���
 �����(�*����	��
���)	( �����	��*� ����(�����*;(�)� � ��#G�5( ����
 ��(�)��#0=
&�(���)���
 ����0( (���
���� ���*� �8�-� ��=

3)4 ��	�������*���(���� ��(�)� � ( ����
 # .
��( �� 3 ; ���� 4 (�)��6'� � = %'%9( �	���*�� )�( �� �;�����+�	����� ��*
��) � � . ���� ��(�*�������;<�1� ���8�	�<�-�	(�*)����<��(	)�	#�# � � ���������-��(�*'����<� ��� � ��� #	#�# �-D #
�'�*� ���-��(�)� =

/

� ���0�2��(	��&�(���)	��
)���. ����� (1�0��(��$<� �)�*� �8��# = ='= �>=
/

We now know the number of face cycles i and we have a minimal halfedge e for each face cycle. We
just check the geometric embedding of e and next � e � to characterize the face cycle (outer or hole).
Note that the two edges cannot be collinear due to the minimality of e (the lexicographic minimality
of the embedding of its target vertex). Outer face cycles obtain face objects right away. Hole cycles
whose halfedge below information is undefined are associated with the unique outer face. After this
chunk f outer is the first face object faces begin �� in the list of all face objects, and all outer face
cycles have face objects with temporary mark information slots expanded.
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Now, the only halfedges not linked are those on hole face cycles. We use a recursive scheme to find
the bounding cycle providing the face object and finally iterate over all isolated vertices to link them
accordingly to their containing face object. Note that in this final iteration all halfedges already have
face links. This ensures termination. The recursive operation determine face � e �! ! ! � returns the face
containing the hole cycle of e (see the specification in the next section). As a postcondition of this
chunk we have all edges and isolated vertices linked to face objects, and all face objects know their
bounding face cycles.
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link holes and isolated vertices to face objects ���
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When we call determine face � e �! ! ! � we know that the halfedge e is not yet linked to a face object and
thus, no halfedge in its face cycle is linked. Thus we jump to the minimal halfedge and look down. If
we see nirvana then we have to link the unlimited face f outer. If we see a halfedge we ask for its face.
If it does not have one we recurse. Note that the target vertex of the minimal halfedge actually has a
view downwards as we examine a hole face cycle. The method link as hole does the linkage between
the face object and all edges of the face cycle. Its cost is linear in the size of the face cycle. Note also
that we do the linking bottom up along the recursion stack for all visited hole cycles. Thus, we visit
each hole face cycle only once as afterwards each edge of the face cycle is incident to a face.

Look at our example in Figure 4.12. When determine face is called for an edge e of face cycle
c3, then the procedure first finds an edge of c4. If c4 was not visited yet by an earlier call, then the
method recurses to c4 before it finds the correct face object via the outer face cycle c1.
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/

The explanations of the recursion condition of determine face should convince you that:

Lemma 4.7.4: Assume that P
�
is the 1-skeleton of a plane map whose embedding is order-preserving

and the adjacency lists have a forward prefix. Let additionally all vertices know the halfedge visible
along a vertical ray shot down, then create face objects ��� completes P as a plane map with runtime
linear in the size of the 1-skeleton P’.

4.7.6 Selecting marks

For the selection we just iterate over all objects, read the marks refering to the two input structures,
apply our selection operation, and store the mark back into the object. At this place, we discard the
additional information which was accumulated during the subdivision. The flexibility of the opera-
tion is achieved by a template type parameter Selection. An object predicate of type Selection must
provide a binary function operator returning a new mark object. The runtime of the selection phase is
obviously linear in the size of the plane map P. The method discard info just discards the temporarily
allocated information containers associated to the objects.
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Note that after this phase the plane map output has again the input properties of the overlay calculation
operation from Section 4.7.4.

Lemma 4.7.5: The selection phase has runtime linear in the size of the plane map.
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4.7.7 Simplification of attributed plane maps
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Figure 4.13: The possible configurations for simplification.

In this section we examine the task to simplify a given plane map to reach a minimimal represen-
tation (minimimal number of objects of the plane map structure, while the underlying attributed point
set stays the same). There are three situations where one can imagine to simplify the structure (see
Figure 4.13):

1. A vertex v which is incident to two edges e1, e2 both supported by the same line where all three
objects have the same mark can be unified into one edge without changing the stored point set.
(Figure 4.13,A)

2. A uedge e which has the same mark as the two faces f1 and f2 incident to it does not contribute
any structural information and thus can be removed (Figure 4.13,B).

3. A vertex v where all the edges of its adjacency list and also all incident faces have the same
mark as the vertex also carries no structural information (Figure 4.13,C,D).

Note that the simplification configurations map to the properties of the local views of Nef faces
in Lemma 4.3.1. If we first remove edges of the second case then the vertices of case three have no
incident edges at all and thus can be easily identified as isolated vertices whose surounding face has
the same mark. The first case does only play a role if one of the faces incident to the edge carries a
different mark than the edge.

We can thus easily formulate the simplification routine. However, there are some problems with
the update operations of the plane map structure. How can we maintain the face objects and incidence
links to halfedges and vertices if we are unifying faces by deleting edges? The trivial way does not
work within our time bound. We cannot afford to maintain the face objects in a correct status in each
step of the simplification, as this would mean to repeatedly iterate total face cycles.

Note that we cannot just discard all faces and recreate them using a similar scheme as the one
based on the halfedge below information due to the fact that referenced edges might be deleted in the
simplification process. Thereby, face creation as described in Section 4.7.5 is not possible without
a new sweep. We take a different approach. We use a unification history stored in a partition data
structure instead of the geometrically defined halfedge below information as a criterium for linking
face cycles to face objects.

All face cycles (edges and isolated vertices) reference face objects. When we have to unify two
different faces due to the deletion of an edge separating them, we store this fact by a union operation
in a partition data structure. The face that is finally assigned to all the face cycles of the faces in one
block is the one associated with the canonical item of the block (obtained by the find operation).
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We assign one partition item to each face object and make the item accessible to the face via a hash
map. During the assignment of face cycles to face objects we will only use links from skeleton objects
like vertices and edges to faces. We therefore can discard all face cycle entries in the faces (the links
from face objects to skeleton objects).
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Now we take care of the simplification critereon (2.) of page 123. We only iterate halfedge pairs
(uedges). When the marks of the incident faces agree with the mark of the uedge, we union the items
of the faces if they are different. Special treatment is required for incident vertices if they become
isolated when their last icident uedge is deleted.
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Now we recollect all face cycles and assign them to the face object f that refers to the partition item
obtained by a find operation. In each face cycle we determine the halfedge e min whose target has a
minimal embedding (with respect to the lexicographic order on points). If e min and next � e min � form
a left turn they are part of an outer face cycle, otherwise of a hole face cycle. We associate all edges
in the face cycle with f .
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After the previous simplification we still have to take care of the vertex related simplifications (1.) and
(3.). In case that a vertex has outdegree two, that the two incident edges are embedded collinearly,
and that all three objects have the same mark, we remove the vertex by joining the two uedges into
one. In case that a vertex is isolated and its mark agrees with the incident face we remove the vertex.
Otherwise, we anchor the vertex in the face by adding it to the isolated vertex list. Note that the face
link of each isolated vertex was either already set in the face creation phase, or in the chunk � simplify
via non-separating halfedges � when the last incident edge was deleted.
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Finally we discard all face objects that have been victims of unification but do not represent the unified
face.
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The following analysis of the partition data structure is due to Tarjan [Tar83].

Fact 3: A sequence of m union and find operations starting from n singleton blocks can be done in
time O � mα � m � n �!� with a partition data structure that is based on union by rank and path compression.
In this time bound α is the very slowly growing inverse of a suitably defined Ackermann function.

We can therefore summarize the runtime of the simplification action.

Lemma 4.7.6: Assume that P is a plane map with the properties cited in the introduction of this
section. Then the method simplify � � runs in time O � n α � kn � n �!� where n is the size of P, kn is a bound
for the number of face unifications and find operations, and α is the function mentioned above.

Proof. The number of edges and faces of P is linear in n. The number of union operations is bounded
by the number of faces, and the number of find operations is bounded by three times14 the number of
edges plus the number of faces.

Note that after the simplification the plane map output has again the input properties of the overlay
calculation operation from Section 4.7.4.

4.8 A Generic Segment Sweep Framework

This document describes a generic sweep algorithm of line segments along the lines of the algorithm
which is part of the LEDA library. We basically transferred the segment sweep algorithm as described
in the LEDA book [MN99] into our generic sweep framework generic sweep. We descibe special
adaptations and refer the user to the description in [MN99, chapter 10] for a deeper understanding.

Calculating the overlay of a set of segments is not anymore a theoretical problem. We know its
complexity and there are many existing presentations of it. We could have described this module as a
black box and just stated the input and output properties of it. We decided to add the implementation
description. This presentation stresses the techniques of generic programming and completes the
layered design of Nef polyhedra from the interface class down to the sweep engine. Users who have
the corresponding insights can just skip the whole section.

To use our generic sweep framework we implement a traits model Segment overlay traits which
is plugged into the class generic sweep

�
T � (the bottom layer). For the concept of the parameter T

please refer to class GenericSweepTraits in the appendix on page 197. For the functionality of class
generic sweep see the manual page on page 195. generic sweep � Segment overlay traits ��   �� is a
generic sweep framework for the calculation of the overlay of segments.

14look for the find
� � and same block

� � operations above. The latter uses two find operations.
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«concept»
SegmentOverlayOutput

«concept»
SegmentOverlayGeometry_2

«concept»
GenericSweepTraits

Segment_overlay_traits

IT
PMDEC
GEOM

generic_sweep
T

leda_seg_overlay_traits

IT
PMDEC
GEOM

«concept»
STL Iterator

leda_graph_decorator
IT

leda_geometry

stl_seg_overlay_traits

IT
PMDEC
GEOM

Figure 4.14: The design of the segment overlay module. Segment overlay traits implements the concept
GenericSweepTraits. There are actually two instances leda seg overlay traits and stl seg overlay traits realiz-
ing Segment overlay traits depending on the module configuration. The three template parameters allow an
adaptation depending on input, output, and geometry.

If you browse the original algorithm SWEEP SEGMENTS with respect to code dependencies,
you find that it is hard-wired to several LEDA modules. The wires of the original algorithm are the
geometric kernel which is used, the input interface which is a list of segments, and the output interface
which is a LEDA embedded graph. We decouple the above from concrete data types by introducing
concepts for the three units: input, output, geometry.

The input concept is easy. We use iterators defining an iterator range of segments (corresponding
to the list of segments in the LEDA sweep).

The output concept is a plane map data structure like LEDA plane maps (bidirected, embedded
graphs). For an introduction refer to [MN99, chapter 8]. But of course there are several other standard
data structures in the literature like the Halfedge Data Structures (HDS), and Directed Cyclic Edge
Lists (DCEL). See for example the textbooks [dBvKOS97, PS85] and the CGAL HDS implementation
in the manual [CGA]. Sometimes the output has to be enriched by some additional bookkeeping data
structures (e.g. maps) to associate additional information to the vertices and edges of the graph.

The geometric concept contains the geometry used for the algorithmic decisions of the sweep: ge-
ometric types like points and segments and the primitive operations on them. Our correctness consid-
erations are based on affine planar geometry. However this sweep framework works also instantiated
with other geometry models.

The genericity is achieved by encapsulating the three concepts into three template parameters of
Segment overlay traits

�
� which allows a user to transport his geometry, geometric primitives and his

input and output structure into the segment sweep framework. We will describe the concept of the
geometric types, primitives and the concept of the output graph structure below. We first give an
abstract introduction of the output produced.

The ouput of the algorithm is the result of transformations of an output object triggered by method
calls of the traits class. There are some methods which can be used to manipulate a graph structure
G � � V � E � . If the implementation of those graph manipulation methods follows the semantic descrip-
tion below then the output graph obtains a certain structure. Additionally there is also some kind of
message passing associated with the output structure. This allows a user to refine necessary additional
information from the sweep.
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Assume the output contains a graph structure G �G� V � E � which can represent an embedded plane
map (a bidirected graph where reversal edges are paired and where the nodes are embedded into the
plane by associating point coordinates). We state some properties of the output production:

O1. All end points and intersection points of segments are called events and trigger calls to create
new nodes v � V which obtain the knowledge about their embedding via a point p. The creation
is done in the lexicographic order on points as specified by the user in the geometric traits class.

O2. The sweep explores the skeleton of the planar subdivision induced by the set of input segments
of the iterator range. Thus for each segment s there are method calls which can be used to create
edges in G such that the straight line embedding of their union corresponds to s.

O3. Each halfedge e � E gets to know a list of input segments supporting its straight line embedding.

O4. Each node v � V gets to know a halfedge below (vertical ray-shooting property) where de-
generacies are broken with a left-closed perturbation scheme (all edges include their left source
node during the ray shoot). Additionally each node v � V gets to know the input segments which
start at, end at or contain its embedding point � v � . Finally each node gets to know explicitly if it
is supported by a trivial input segment.

O5. If the edge creation operations follow the semantic description then each node v has an adja-
cency list such that visiting all adjacent nodes while iterating the adjacency list corresponds to
a counterclockwise rotation around v (the straight line drawing of G is counterclockwise order-
preserving). All adjacency lists additionally have the property of a forward-prefix. This means
that forward-oriented edges15 build a prefix in each adjacency list.

«concept»
SegmentOverlayOutput

+: V, E, I, Point_2
+new_vertex(p:Point_2): V
+new_halfedge_pair_at_source(v:V): E  
+link_as_target_and_append(v:V,e:E): void     
+supporting_segment(e:E,it:I): void
+trivial_segment(v:V,it:I): void
+starting_segment(v:V,it:I): void
+passing_segment(v:V,it:I): void
+ending_segment(v:V,it:I): void
+halfedge_below(v:V,e:E): void

O2

O1

O3

«concept»
SegmentOverlayInput

«concept»
SegmentOverlayGeometry_2

+: Point_2, Segment_2
+source(s:Segment_2): Point_2
+target(s:Segment): Point_2
+is_degenerate(s:Segment): bool         
+construct_segment(p1:Point_2,p2:Point_2): Segment_2   
+orientation(s:Segment_2,p:Point_2): int
+compare_xy(p1:Point_2,p2:Point_2): int
+intersection(s1:Segment_2,s2:Segment_2): Point_2

Figure 4.15: The three concepts that allow adaptation of the generic segment sweep. In the output concept the
abbreviations are V for Vertex handle, E for Halfedge handle, and I for Iterator.

The interfaces of the three concepts are depicted in figure 4.15. For the actual semantics please
consult the manual pages for SegmentOverlayOutput on page 193 and SegmentOverlayGeometry 2 on
page 194 in the appendix.

4.8.1 Formalizing the sweep — Invariants

We sweep the plane from left to right by a vertical line SL. Whenever we encounter an event point
we have to take actions to produce the output structure. Both endpoints of each segment and non-
degenerate intersection points of any two non-overlapping segments define our events. To ensure the

15an edge e is called forward-oriented when point
�
source

�
e � ��� lex point

�
target

�
e � � .
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correct actions we resort to a list of invariants on which we can rely just before we encounter an event
and which we ensure by certain actions for the status thereafter.

The sweep is determined by an interaction between two major data structures, an event queue XS
and a sweep status structure YS. The event queue XS controls the stepping of SL across the plane.
We store a point as the key of each event. The order of the events corresponds to the lexicographical
order on all points as defined in the geometry kernel. YS stores segments intersecting the sweep line
SL ordered according to their intersection points from bottom to top. Note that for a segment s in YS
source � s � � lex target � s � according to our lexicographic order on points.

The above description talks about vertical sweep lines and geometry which is left and right of the
sweep line. As soon as there are events with identical x-coordinates and vertical segments we have to
be more accurate. Imagine a sweep line which is slanted by an infinitesimal angle counterclockwise
thus processing the points on the vertical line bottom-up. A more accurate intuition is created by a
sweepline consisting of an infinitesimal small step down, where the vertical ray down is right of the
current sweep position and the vertical ray up is left of the current sweep position and the horizontal
step marks the current position while going from 9 ∞ to � ∞ along the y-axis of the coordinate system.
For an extensive treatment please refer to [MN99, chapter 10].
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s1 s1

s2s2

s2

s5
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s3 s3
p p

Figure 4.16: Sketching the sweepline intuition in the case of degeneracies. The left figure shows the sweepline
before the event at p. The right figure shows the figure just after the event at p.

We treat the degenerate cases of several segments ending, intersecting, and starting in one point
explicitly in our code. We also handle the possibility that several segments overlap. This implies
that just before an event the sweep line may intersect a whole bundle of segments containing the
event. Some extend through it, some end there. And just after the event the bundle of the segments
extending though the event may be enriched by several segments starting at the event. The segments
of both bundles can be ordered according to their points of intersection with the sweep line. In case
of overlapping segments their point of intersection with the sweep line is identical. To break the tie
we take the order on the identity of each input segment16. Note that due to the degeneracy events can
have multiple character.

Invariant 1: The event queue XS is a sorted sequence of items
�

p � x � called events, where p is the
embedding point of the event and x is an associated information link. Starting and ending events refer
to the endpoints of all segments. Intersection events are defined by the points of intersection of two
non-overlapping segments. At any sweep position XS contains all starting and ending events and all
intersection events right of SL that are the result of an intersection of segments that are neighbors in
YS. The order in XS is the lexicographic order on points compare xy ��� introduced by the geometry
concept.

16Internally we handle segments via pointers. Then their identity is just the memory address.
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Invariant 2: The sweep status structure YS is a sorted sequence of items �
s � y � where s is a segment

intersected by the sweep line. The order is defined by the points of intersection of the segments and
the sweep line from bottom to top.

Consider any bundle of segments ending at or extending through an event. We want to save on
geometric calculations. Therefore the information slot of the items in YS is used to identify such
bundles.

Invariant 3: Let
�
s � y � and

�
s’ � y’ � be two successing items in YS. The information y is used as a

flag how the two segments are geometrically related. If s and s’ are overlapping at the current sweep
position then y points to its successor item

�
s’ � y’ � in YS. If s and s’ intersect right of the sweep line

then y points to the corresponding event in XS. Otherwise it is the null handle.
Additionally for all items it we know an edge in the output graph that is supported by the segment

via a map Edge of
�
it � .

Invariant 4: For all intersection events and ending events �
p � x � in XS the information x is a link to

an item
�
s � y � in YS such that the segment s contains p. For ending events the invariant is established

as soon as the segment s enters YS.

This construction allows us to shortcut from an event into the range of interest within YS without
using the standard (logarithmic) search operations of YS.

Lemma 4.8.1: Starting from any intersection or ending event we can identify the bundle of seg-
ments/items in YS ending at or extending through the event in time proportional to the size of the
bundle.

Proof. Consider an event
�

p � x � that is not only starting event. Then x is a link to an item
�
s � y � in

YS such that s contains p due to Invariant 4. Iterating locally up and down starting from x allows
us to identify the range of items in YS whose segments contain p by the marking links according to
Invariant 3.

At last, at each event we ensure partial output correctness that leads to global output correctness
after the last event.

Invariant 5: Assume the output model’s operations are defined according to our specification. Then
the overlay of all segments that are fully left of our sweep line is correctly calculated.

The following hashing idea saves again on geometric calculations and search.

Invariant 6: For each pair of segments � s1 � s2 � in YS and intersecting right of SL which have been
neighbors in YS once (and might have been separated afterwards) there’s a hash table short-cut to the
corresponding intersection event it � IEvent � s1 � s2 � .

Note that the algorithmic correctness of this framework has two aspects. There are global con-
siderations and local considerations. The global considerations concern issues like why the algorithm
terminates and why it does calculate the output we ask for. The local considerations concern the
aspects of the event handling. Namely, why our event handling and the intialization phase of our
framework ensures the invariants stated above. Taking both issues together we obtain the certainty
that our code module actually calculates the overlay correctly.

For the global correctness we will see that all starting and ending events are handled in our code
and inflated into the machinery in the initialization phase. One exception that we have to incorporate
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into our code is the occurance of trivial segments. The final question is if we catch all intersection
events? There’s a trivial observation why we cannot miss any such event.

Lemma 4.8.2: If we ensure that all our invariants hold at all events then we cannot miss any intersec-
tion event.

Proof. Assume we miss an intersection event ev. If we miss several take the lexicographically smallest
one. Then the event just before ev was correctly treated and the two segments that imply ev are
neighbors in YS. But Invariant 1 tells us that ev is in XS which leads to a contradiction.

Note that global termination is not a big issue in sweep frameworks. As soon as all events have
gone we stop the iteration. Note finally that if we locally keep Invariant 5 just after each event then
we also know that our result is correctly calculated. We now will link the above insights to the code.

4.8.2 Two generic sweep traits models

We use our generic plane sweep paradigm to execute the sweep. We offer two models to plug into
the generic sweep framework. For the concept see GenericSweepTraits in the appendix. One based
on LEDA [MN99] and including several runtime optimizations, the other one based purely on STL
data structures [MS96]. This design was necessary to allow using the sweep module when CGAL is
installed without the presence of LEDA.

4.8.3 The LEDA traits model

Our class obtains three template types which have to be models for the corresponding concepts de-
scribed below.

�
leda segment overlay traits class �"������ � ��(����,���	;�� ����(���� � � � �	;�� ��� (�� �+�'�'�	� 3 � �	;�� ��� (���� 4 � � � �

���( ���,����
�(������ ���� ����* ��(�;�����*�( � � � .
�	�'������ $�

leda introducing the types from the traits ��
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�
leda order types for segments and points ��
leda sweep data structures ��
leda helping operations ��
leda operation for keeping the intersection invariant ��
leda initialization of the sweep ��
leda iteration control ��
leda handling the event ��
leda postprocessing of the sweep �
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The following types are introduced by the traits classes. See the the concept descriptions
SegmentOverlayOutput for PMDEC and SegmentOverlayGeometry 2 for GEOM. The iterator con-
cept required is that of an STL input iterator.

�
leda introducing the types from the traits ���

�	;�� ��
���) � � ���	�'�'�	� � � =
�	;�� ��
���) ����
 $	$7� (���* � � ��� � � � ���	����� =
�	;�� ��
���)��'�'��� 3 � ���	�����<=
�	;�� ��
���)��	;������ (���� �'�'�	� 3 $	$ ����*���� ���0(�(���
���� ����*	��� ���0( (���
�����=
�	;�� ��
���)��	;������ (���� �'�'�	� 3 $	$ &�(���)���
)��'�C( (��	
���� &�(���)���
 ����0( (���
�����=
�	;�� ��
���) 4 � � � 4 � � �	�	�)��� =
�	;�� ��
���)��	;������ (���� 4 � � �	���'��� $	$7����������� � ����������� ��=
�	;�� ��
���)��	;������ (���� 4 � � �	���'��� $	$ �	� 0�����	��� � ��� 0�����	��� ��=

We define an internal segment type ISegment based on a pointer to allow two constructions. At first
we want to be able to couple the internal segment to the input object. We achieve this by maintaining
both as a pair two tuple

�
Segment � ITERATOR � in a list. Secondly our internal segment type is just a

pointer to such a pair. We can thus not only compare internal segments geometrically by the pair’s
first component, but also check identity by the pointer address.

�
leda internal segment type �"�
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The predicates below are solely based on a few geometric kernel predicates. The clever observation is
the fact, that the comparison predicate cmp segs at sweepline is only called with one segment contain-
ing the sweep point. We know that assertion from the specification of LEDA sortseqs. Compared to
the LEDA sweep algorithm we add non-geometric sentinel segments to avoid checking of boundary
cases.
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The lexicographic order on points is just transferred from the geometric kernel.
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We use several LEDA data structures. The x-structure XS is an ordered sequence of items based on the
key type Point 2. For the item concept of LEDA refer to the manual [MNSU99] or the LEDA book.
We associate a link into the y-structure for intersection and ending events to save on unnecessary
search operations within YS. When we reach an event at p sweep we can thus shortcut to find an
item in YS which contains a segment (as its key) containing p sweep. The y-structure YS is a sorted
sequence of ISegments. The associated seq item link serves two purposes: (1) it bundles segments in
YS together by pointing to the (lexicographic) next event which they contain. (2) it bundles segments
which overlap. See the LEDA book for a more elaborate description.

During the sweep we associate edges from the constructed output graph to the items in YS. We
use a hash map map

�
seq item � Halfedge handle � Edge of for this purpose. Finally for each event point

there is a possible sequence of input segments starting at the event. To maintain this sequence we use
a priority queue p queue

�
Point 2 � ISegment � SQ.

When two segments s1 � s2 become neighbors in YS we check if they intersect right of the sweep
line. If they do we calculate the intersection point p and insert a corresponding event into XS. Now it
can happen that s1 and s2 get again separated by a new segment before p is reached. We have several
possibilities in this case. We could remove the event at p again to keep the space bound implied by
the Invariant 1. However the size of the output structure anyway comprises the space for keeping the
event in XS. We can even do better with respect to runtime. Instead of recalculating the geometric
intersection information when s1 and s2 become neighbors again we can try to recover the previously
calculated event from the two dimensional hash map2

�
ISegment � ISegment � seq item � IEvent.

The additional members are used as a central place for data storage. event provides a handle on
the current event queue item. p sweep is the position of the current event which is also used from the
segment comparison object SLcmp.
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We define some code short cuts.
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Most events trigger changes in the segment sequence along the sweep line. We have to reflect such
changes in a test for new intersection events right of the sweep line as soon as two segments become
neighbors. The following code ensures the Invariants 2, 3, 4 and uses the hash tuning of Invariant 6.
s1 is the successor of s0 in YS, hence, s0 and s1 intersect right or above of the event iff target � s1 � is
not left of the line supporting s0, and target � s0 � is not right of the line supporting s1. In this case we
intersect the underlying lines.
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Event Handling

We start with the knowledge that our invariants from Section 4.8.1 hold. First we create a new vertex v
in the ouput structure. Then we work in four phases: (1) We handle the ingoing bundle which ends at
v. (2) We communicate all the knowledge about the new vertex (3) We have to deal with the segments
starting at p sweep. (4) We clean up to reestablish missing invariants.

�
leda handling the event ���������
���*�� �� �	����� �����	�<�8#

.

����*	��� ���0( (���
������:� 4 � .7� ��+�������*	��� �<�1�1�	��+�������# =
��� ��� � ����� ��� �-� � ��. ����)�� � ��������# =
�
leda handling ending and passing segments ��
leda completing additional information of the new vertex ��
leda inserting new segments starting at nodes ��
leda enforcing the invariants for YS �/

We first have to locate the bundle going through p sweep. We deviate from the implementation of the
LEDA algorithm SWEEP SEGMENTS in one respect. For each segment in YS we store a bidirected
edge pair extending along the segment. When we reach an event point we connect these edges to
the newly created node. Note that this change is necessary if you use halfedge data structures for
the output. The original approach used temporarily incomplete edge pairs (only forward directed
halfedges) and coupled and embedded them in a postprocessing phase. But space minimally main-
tained halfedges like those of the CGAL HDS can only exist in pairs.

If there is a non-nil item sit � XS inf � event � associated with event, key � sit � is either an ending
or passing segment. We use sit as an entry point to compute the bundle of segments ending at or
passing through p sweep. In particular, we compute the first (sit first) and the successor (sit succ � ) and
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predecessor (sit pred) items.

�
leda handling ending and passing segments ������ ��� � ����� ��� ����� ��	 �"D�# �'��� �����	*���
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� ) ���	� �� �9����� #".:%)%�$���;<����� � #�����(�� ����
 ���' ��*9��( �	�����' ��� 0��������
leda determine upper bundle item sit succ ��
leda hash upper intersection event ��
leda walk ingoing bundle and trigger graph updates ��
leda reverse continuing bundle edges �

/-%'% ��) ����� �� �,�0��� #

As sit ��� nil we do not know if a segment stored in YS does contain p sweep. We have to query
YS with a trivial segment � p sweep � p sweep � to find out. Two results are possible. Either a segment
referenced hereafter by sit constains the event point or we determine the two segments above and
below p sweep in sit pred and sit succ.

�
leda check p sweep in YS �"�

.
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We first walk up as long as the event is contained in the segment referenced via sit.

�
leda determine upper bundle item sit succ ���+'(0����� � � ��. ����)����	� ��# �)� � ��������� �
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We hash the upper event according to Invariant 6.



4.8 A Generic Segment Sweep Framework 137

�
leda hash upper intersection event �"�
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We walk the ingoing bundle down again and trigger the edge closing calls for all items in the bundle
(except overlapping segments). Note that after this code chunk we have: (i) the bundle is empty if
succ � sit pred �A��� sit first ��� sit succ, or (ii) the bundle is not empty if sit first ! � sit succ.

The actions on the bundle are easy to specify. We have to glue one edge per segment to the newly
created node except when two segments overlap. Note that the walk top-down over the bundle implies
the order-preserving embedding of the graph. Note also how we pass the messages about the segments
supporting the event via the corresponding methods of the output object.

�
leda walk ingoing bundle and trigger graph updates �5�� �	���,� ����* ��(����0���� =
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We have to ensure that segments that continue through the event point have a reversed order within YS
when p sweep has been passed. This ensures the correct order of YS with respect to Invariant 2. Some
complication stems from overlapping segments. Their order based on identity may not be changed.
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�
leda reverse continuing bundle edges ���+'(0����� � ��� �� � ��� ����� ��	�#,.
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For the new node v we pass some information to the output structure. We post the halfedge below, we
post all trivial input segments supporting the node. We obtain that information from the hash structure
Isos of filled during the initialization phase.
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leda completing additional information of the new vertex �"�
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We insert all segments starting at p sweep into YS and create the links within YS to mark items with
overlapping segments.
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leda inserting new segments starting at nodes ���
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In contrast to the original LEDA segment intersection algorithm SWEEP SEGMENTS we create
“semi-open” edges starting at the event node and supported by the input segment. The iteration again
ensures the correct order-preserving embedding at the currently handled node v.
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Depending on the outgoing bundle we determine possible intersections between new neighbors; if
sit pred is no longer adjacent to its former successor we change its intersection event to 0. Note that
the following chunk finishes Invariant 1 with the help of the method compute intersection � � .
�
leda enforcing the invariants for YS ���
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Initialization

We realize the propositions of the invariants at the beginning in our sweep initialization phase. We
insert all segment endpoints into XS, insert sentinels into YS, and exploit the fact that insert operations
into the X-structure leave previously inserted points unchanged to achieve that any pair of endpoints
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p and q with p � � q are identical (if the geometric point type supports this). Degenerate segments
are stored in a list associated to their events. The knowledge about their existence is transferred to the
corresponding output object as soon as it is constructed.
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Note the invariants of the sweep loop. The event has to be set before the event action.
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The structure is finished as soon as all events have been treated. As we always created edges in pairs
and respected the adjacency list order we have no completion phase as in [MN99, chapter 10].
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Runtime Analysis

We shortly give a runtime analysis of the above implementation. Assume U � S � to be the embedded
(undirected) graph created by a proper17 instantiation of our sweep framework. Let n be the number of
input segments of the input set S, nv be the number of nodes of U � S � , ne be the number of (undirected)
edges of U � S � . In the presence of overlapping segments let n̄e : � ∑e edge of U � S � se where se is the
number of segments in S supporting edge e of U � S � . Note that during the sweep the whole graph
is constructed and explored. Then obviously all graph related operations like creation, and support
messaging take time O � nv � n̄e � .

The sweep initialization takes time O � n log n � . There are nv events and at each event the sweep
status structures are manipulated a constant number of times. Pass again through the event handling
routine. All segments are inserted into YS and deleted from YS once (during the whole sweep) and
therefore that cost adds up to O � n log � YS � � . The removal from SQ adds up O � n logn � . Finally all
events are inserted and deleted once and this takes O � � XS � log � XS � � . When subsequences of YS are
explored and swapped, this cost can again be dedicated to the exploration of the graph and is therefore
subsumed in the O � nv � n̄e � from above.

We have to bound the size of XS and YS. Natural bounds are � XS � � O � nv � (the number of nodes)
and �Y S ��� O � n � (the number of segments). Therefore accumulating all of the above we obtain O � nv �
n̄e � n logn � nv log � n � nv �!��� O � nv � n̄e �=� n � nv � log � n � nv �!� . Note that n̄e and nv can be quadratic

in n.

Lemma 4.8.3: Assume that n, nv, n̄e are defined as above then the runtime of the sweep algorithm is

O � nv � n̄e ��� n � nv � log � n � nv �!�D 

4.8.4 The STL traits model

We will not show the STL model. It is highly analogously, sometimes simpler, but also a less efficient
due to limitations in the interface of the STL data structures. For the complete implementation see the
report [See01].

4.9 Conclusions

In this chapter we have designed a software module for planar Nefpolyhedra. We have presented the
relevant theory and derived a data type Nef polyhedron 2 with a rich interface that fits the needs of
many users who approach a software library like CGAL for problem solutions in the domain of planar
polyhedral sets. The software module including the interface documentation is part of the CGAL
basic library.

The design is clearly modularized and based on generic traits class techniques that allow flexibility
without loosing efficiency. The presentation is a stepwise conversion from theory to the implemen-
tation facets of the programming project. The shown code parts are expressive and compact. The
relevant algorithmic modules meet the optimal runtime bounds. By interweaving code and correct-
ness considerations in literate programming style we hopefully could convince our readers of the
correctness of our programs.

We have shown that our approach to a dynamic frame offers one solution to the problem of non-
compact structures. Its main advantage is the transparent handling of geometric configurations that

17The output methods have to be constant time operations of the correct semantics.
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#lines op #V #E #F simple filtered rgpn rgp

10 � 67 121 56 0.64 0.065 0.075 0.125
10 � 162 217 61 0.74 0.09 0.08 0.93
10



160 213 60 0.75 0.09 0.07 0.92

20 � 230 437 209 2.31 0.26 0.285 2.3
20 � 622 831 241 2.89 0.36 0.3 19.2
20



577 744 205 2.93 0.36 0.3 19.6

30 � 499 964 467 4.01 0.48 0.575 -1
30 � 1375 1821 514 7 0.92 0.8 -1
30



1410 1894 540 7.55 0.9 0.76 -1

40 � 862 1680 820 8.7 1.05 1.25 -1
40 � 2395 3171 900 12.8 1.67 1.43 -1
40



2509 3370 960 12.9 1.71 1.42 -1

50 � 1326 2600 1275 12.1 1.54 1.83 -1
50 � 3828 5111 1470 21.1 2.88 2.41 -1
50



3809 5073 1455 20.7 2.85 2.35 -1

100 � 5149 10195 5048 49.8 6.76 8.29 -1
100 � 15188 20296 5826 92.6 13.5 13.1 -1
100



15088 20073 5731 92.4 13.6 13.4 -1

150 � 11476 22799 11325 146 21.2 24.2 -1
150 � 34223 45801 13214 217 33.7 39.8 -1
150



33717 44785 12881 217 34.1 40.2 -1

200 � 20302 40401 20100 207 33.8 40 -1
200 � 60043 79905 22909 415 66 101 -1
200



60551 80886 23352 410 67.1 100 -1

Table 4.1: Running times in seconds on a SUN Ultra-Enterprise-10000 with 333 MHz Ultra SPARC proces-
sors.

appear in the standard affine plane but also on the frame when introducing extended points. Avail-
able program code for standard affine problems can be easily used as long as the used geometric
predicates are extensible to extended points and extended segments. The application of our infimaxi-
mal framework separates the geometric issues of the frame addition from the control structure of the
implemented algorithm. On the other side our runtime results in the following section show that in-
fimaximal frames can be used without introducing a relevant runtime overhead compared to standard
affine geometry.

4.9.1 Efficiency

We present runtime results. We performed the following experiments. Starting from n random half-
spaces (the coefficients of the boundary line are random integers in

�
9 n � n � and one of the half-spaces

is chosen at random) we built a Nef polyhedron by symmetric difference operations. We put the
half-spaces at the leaves of a balanced binary tree and formed the symmetric difference of the two
children at each internal node. In the root we obtained a Nef polyhedron P of complexity Θ � n2 � . The
polyhedron is essentially the arrangement defined by the boundary lines; a vertex, edge, face of the
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Figure 4.17: Two polyhedra as a result of the exor combination for n � 10 and n � 20.

arrangement belongs to P iff it is contained in an odd number of the half-spaces18 . We then took
two Nef polyhedra obtained in this way and formed their intersection and union. We performed this
experiment for different values of n ranging from 10 to 200. Table 4.1 shows the results. The line
marked � presents the complexity and times for the recursive synthesis of the Nef polyhedron. The
columns labeled #V, #E, and #F give the actual number of nodes, edges and faces of the resulting
arrangement (deviation from the formulas above are due to degeneracies). The lines labeled � and



present the results of the corresponding binary operation.

We show the running times for four different implementations. The first two columns show the
running times of our second and third implementation of epoints and esegments. The column (marked
as simple) uses CGAL’s homogeneous kernel instantiated with the ring type RPolynomial which in turn
uses LEDA’s multiprecision integer arithmetic. Column filtered shows the running times for version
three which uses filtered predicates as described in Section 3.4. A comparison of the first two columns
shows that our third implementation is much superior to the second.

We also wanted a comparison with the approach based on a concrete frame. LEDA offers a type
rat gen polygon which is closed under regularized boolean operations (a regularized boolean operation
discards isolated lower dimensional features by replacing the true result of a boolean operation by the
closure of the interior of the result) and allows only a single unbounded face. Regularized boolean
operations lead to a simpler topological structure than general boolean operations. We enclosed our
half-spaces into a concrete geometric frame (whose size we inferred from the computation of the Nef
polygon) and then executed the same set of operation. Rat gen polygons also use LEDA’s sweep for
the overlay of two maps. The last column (labeled rpg) shows the running times of rat polygons. A 9 1
indicates that the experiment was not run due to the excessively large running times. The excessively
bad behavior of rat gen polygon surprised us. We traced it to the fact that LEDA does not normalize
point representations automatically. We added a normalization step after each binary operation. The
resulting running times are shown in column rpgn.

A comparison of columns filtered and rpg shows that the filtered implementation is slightly faster
than LEDA’s rat gen polygons for the synthesis step and slightly slower for the union and intersection.
For n � 200 we are faster for all three operations. Our explanation is as follows (we admit that we are
not completely sure whether our explanation is the right one): the use of a concrete geometric frame
forces us to use large coordinate values for the frame points. The coefficients of our polynomials are

18The exact number (assuming non-degeneracy and taking the objects on the frame into account) of vertices, edges, and
faces is n

�
n � 1 � � 2 � 2n � 4, n

�
n � 1 ��� 2n � 4, and n

�
n � 1 � � 2 � 2, respectively.
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smaller (much smaller in the early synthesis steps). For n � 200 the coordinate values in the geometric
frame become so large that the filter in LEDA’s rational geometry kernel start to loose its effectiveness.
The filter in epoints stays effective.

It is also interesting to compare columns simple and rpg. For n � 10, rpg is superior, for n � 20,
the two implementations are about the same, and for larger n, simple wins by a large margin due to
the fact that we reduce the polynomial coordinate representation of simple epoints on construction by
a polynomial division. Remember that the rpg code does not use any reduction.

4.9.2 Further Applications and Future Work

We give some more applications of the results of our work. We have successfully used the generic
segment overlay sweep module of Section 4.8 in two further application scenarios. One is the creation
of a facet structure embedded into a planar subspace in dimension three. Such an application is easy
to realize when the geometric kernel uses projection methods for the algorithmic predicates. Another
application is the overlay of two maps embedded into the surface of a three-dimensional sphere. Let
us call them sphere maps for short. Binary operations of sphere maps can be implemented similar
to those in Section 4.7. This problem is a central task when considering the realization of spatial
Nef polyhedra. To transfer the insights of Section 4.7 one has to provide solutions according to the
following items:

spherical geometry — use a spherical geometry kernel consisting of sphere points, sphere segments
(parts of large circles19), and large circles. To avoid robustness problems, use a kernel similar
to that developed by J. Schwerdt [Sch01], who uses predicates of the LEDA three-dimensional
rational geometry kernel to implement spherical predicates and constructions.

sphere map data type — the main difference in the data type is the absence of unbounded faces.
Boundary cycles cannot be separated into outer ones and holes. On the other hand there are
degenerate edge structures called loops that have no start and end vertices but represent large
circles.

algorithmic idea — we divide the whole sphere along its equator into two identical subproblems.
The spherical input objects are partitioned by the equator. The sweep line is a half-circle fixed
at two oppositely fixed points that are part of the equator. We instantiate our generic segment
overlay sweep with a spherical geometry kernel and an output model maintaining and extending
the output sphere map. We accumulate face cycle link information as in the planar case20 to
allow the creation of face objects and the accumulation of support information per half-sphere.
Finally we stitch the two structures together along the equator and simplify the whole structure
to obtain maximal objects.

Binary operations of spatial Nef polyhedra can be again structured into the phases: subdivision -
selection - simplification. To store Nef polyhedra we can use a spatial cellular subdivision where the
cells are the connected components of Nef faces (a generalization of the plane map for dimension 3.
A first design was presented in the research report [DMY93]. As Bieri has shown, it is sufficient to
determine the local pyramids of all faces of minimal dimension, to describe the whole Nef complex.
A rough outline of binary operations in space could therefore be as follows. Use an infimaximal cube
as an extension of our scheme from chapter 3 for symbolic compactification of space. Then vertices

19The intersections of planes through the center with the surface of the sphere.
20c.f. halfedge below concept in Section 4.7.
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are again the minimal faces and their local view does sufficiently describe the whole topological
structure. Use again a scheme as advocated by SGCs for binary operations. The vertex candidates of
the result of any binary operation are the vertices of the input structures plus the vertices in the non-
degenerate intersection of edge-edge pairs and edge-facet pairs. Use a suitable qualification method
(point location) to obtain the local view of the vertices of the output structure with respect to the two
input structures. Store the local views as sphere maps. Use the spherical overlayer in the calculation of
the local views of the vertices in binary operations. Finally use a synthesis phase for the construction
of a spatial structure that is a cellular subdivision of space. A simplification of the cell complex
generalizing the methods of Section 4.7 produces again a minimal representation that maintains the
connected components of Nef faces.
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[MMN � 97] K. Mehlhorn, M. Müller, S. Näher, S. Schirra, M. Seeland C. Uhrig, and J. Ziegler.
A computational basis for higher-dimensional computational geometry and applica-
tions. In Proceedings of the 13th International Annual Symposium on Computational
Geometry (SCG-97), pages 254–263, Nice, France, 1997. Association of Computing
Machinery (ACM), ACM Press.

[MMS94] J.S.B. Mitchell, D. Mount, and S. Suri. Query-sensitive ray shooting. In Proceedings
of the 10th Annual Symposium on Computational Geometry, pages 359–368, Stony
Brook, NY, USA, June 1994. ACM Press.
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Appendix

4.1 Manual pages of the higher-dimensional Kernel

4.1.1 Linear Algebra on RT ( Linear algebraHd )

1. Definition

The data type Linear algebraHd
�
RT

�
encapsulates two classes Matrix, Vector and many functions of basic

linear algebra. It is parametrized by a number type RT . An instance of data type Matrix is a matrix of variables
of type RT , the so called ring type. Accordingly, Vector implements vectors of variables of type RT. The
arithmetic type RT is required to behave like integers in the mathematical sense. The manual pages of Vector
and Matrix follow below.

All functions compute the exact result, i.e., there is no rounding error. Most functions of linear algebra are
checkable, i.e., the programs can be asked for a proof that their output is correct. For example, if the linear
system solver declares a linear system Ax � b unsolvable it also returns a vector c such that cT A � 0 and
cT b �� 0. All internal correctness checks can be switched on by the flag

3'4 ��	 	)� � ��	 �	�	� ���
.

2. Types

Linear algebraHd
�
RT

�
::RT the ring type of the components.

Linear algebraHd
�
RT

�
::Vector the vector type.

Linear algebraHd
�
RT

�
::Matrix the matrix type.

Linear algebraHd
�
RT

�
::allocator type

the allocator used for memory management. Linear algebraHd
�
RT

�

is an abbreviation for Linear algebraHd
�
RT � ALLOC �

allocator
�
RT � LA

�9�
. Thus allocator type defaults to the standard

allocator offered by the STL.

3. Operations

Matrix Linear algebraHd
�
RT

�
::transpose(Matrix M)

returns MT (m � n - matrix).

bool Linear algebraHd
�
RT

�
::inverse(Matrix M � Matrix& I � RT& D � Vector& c)

determines whether M has an inverse. It also computes either the inverse as
�
1 � D � � I or

when no inverse exists, a vector c such that cT � M � 0.
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Matrix Linear algebraHd
�
RT

�
::inverse(Matrix M � RT& D)

returns the inverse matrix of M. More precisely, 1 � D times the matrix returned is the
inverse of M.
Precondition: determinant

�
M � ! � 0.

RT Linear algebraHd
�
RT

�
::determinant(Matrix M � Matrix& L � Matrix& U � std ::vector

�
int

�
& q �

Vector& c)
returns the determinant D of M and sufficient information to verify that the value of the
determinant is correct. If the determinant is zero then c is a vector such that cT � M �

0. If the determinant is non-zero then L and U are lower and upper diagonal matrices
respectively and q encodes a permutation matrix Q with Q

�
i � j � � 1 iff i � q

�
j � such

that L � M � Q � U , L
�
0 � 0 � � 1, L

�
i � i � � U

�
i � 1 � i � 1 � for all i, 1

�
i � n, and D �

s � U
�
n � 1 � n � 1 � where s is the determinant of Q. Precondition: M is square.

bool Linear algebraHd
�
RT

�
::verify determinant(Matrix M � RT D � Matrix& L � Matrix& U �

std ::vector
�
int
�

q � Vector& c)
verifies the conditions stated above.

RT Linear algebraHd
�
RT

�
::determinant(Matrix M)

returns the determinant of M. Precondition: M is square.

int Linear algebraHd
�
RT

�
::sign of determinant(Matrix M)

returns the sign of the determinant of M. Precondition: M is square.

bool Linear algebraHd
�
RT

�
::linear solver(Matrix M � Vector b � Vector& x � RT& D �

Matrix& spanning vectors � Vector& c)
determines the complete solution space of the linear system M � x � b. If the system is
unsolvable then cT � M � 0 and cT � b �� 0. If the system is solvable then

�
1 � D � x is a so-

lution, and the columns of spanning vectors are a maximal set of linearly independent so-
lutions to the corresponding homogeneous system. Precondition: M � row dimension

� � �
b� dimension

� � .
bool Linear algebraHd

�
RT

�
::linear solver(Matrix M � Vector b � Vector& x � RT& D � Vector& c)

determines whether the linear system M � x � b is solvable. If yes, then
�
1 � D � x is a

solution, if not then cT � M � 0 and cT � b �� 0. Precondition: M � row dimension
� � �

b� dimension
� � .

bool Linear algebraHd
�
RT

�
::linear solver(Matrix M � Vector b � Vector& x � RT& D)

as above, but without the witness c Precondition: M � row dimension
� � � b� dimension

� � .
bool Linear algebraHd

�
RT

�
::is solvable(Matrix M � Vector b)

determines whether the system M � x � b is solvable
Precondition: M � row dimension

� � � b� dimension
� � .

bool Linear algebraHd
�
RT

�
::homogeneous linear solver(Matrix M � Vector& x)

determines whether the homogeneous linear system M � x � 0 has a non - trivial solution.
If yes, then x is such a solution.

int Linear algebraHd
�
RT

�
::homogeneous linear solver(Matrix M � Matrix& spanning vecs)

determines the solution space of the homogeneous linear system M � x � 0. It returns the
dimension of the solution space. Moreover the columns of spanning vecs span the solution
space.

int Linear algebraHd
�
RT

�
::independent columns(Matrix M � std ::vector

�
int
�
& columns)

returns the indices of a maximal subset of independent columns of M.

int Linear algebraHd
�
RT

�
::rank(Matrix M)

returns the rank of matrix M
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4. Implementation

The datatype Linear algebraHd
�
RT

�
is a wrapper class for the linear algebra functionality on matrices and

vectors. Operations determinant, inverse, linear solver, and rank take time O
�
n3 � , and all other operations take

time O
�
nm � . These time bounds ignore the cost for multiprecision arithmetic operations.

All functions on integer matrices compute the exact result, i.e., there is no rounding error. The implemenation
follows a proposal of J. Edmonds (J. Edmonds, Systems of distinct representatives and linear algebra, Journal
of Research of the Bureau of National Standards, (B), 71, 241 - 245). Most functions of linear algebra are
checkable , i.e., the programs can be asked for a proof that their output is correct. For example, if the linear
system solver declares a linear system Ax � b unsolvable it also returns a vector c such that cT A � 0 and cT b �� 0.

Vectors with NT Entries ( Vector )

1. Definition

An instance of data type Vector is a vector of variables of number type NT . Together with the type Matrix it
realizes the basic operations of linear algebra.

2. Types

Vector ::NT the ring type of the components.

Vector ::iterator the iterator type for accessing components.

Vector ::const iterator the const iterator type for accessing components.

3. Creation

Vector v; creates an instance v of type Vector.

Vector v(int d); creates an instance v of type Vector. v is initialized to a vector of dimension d.

Vector v(int d � NT x);

creates an instance v of type Vector. v is initialized to a vector of dimension d with entries
x.

template
�
class Forward iterator

�

Vector v(Forward iterator first � Forward iterator last);

creates an instance v of type Vector; v is initialized to the vector with entries set � first � last � .
Requirement: Forward iterator has value type NT .

4. Operations

int v� dimension() returns the dimension of v.

bool v� is zero() returns true iff v is the zero vector.

NT& v � int i � returns i-th component of v.
Precondition: 0

�
i

�
v� dimension

� � � 1.

iterator v� begin() iterator to the first component.

iterator v� end() iterator beyond the last component.

The same operations begin
� � , end

� � exist for const iterator.

Vector v � v1 Addition. Precondition:
v� dimension

� � � � v1� dimension
� � .

Vector v � v1 Subtraction. Precondition:
v� dimension

� � � v1� dimension
� � .
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NT v � v1 Inner Product. Precondition:
v� dimension

� � � v1� dimension
� � .

Vector � v Negation.

Vector& v � � v1 Addition plus assignment. Precondition:
v� dimension

� � � � v1� dimension
� � .

Vector& v � � v1 Subtraction plus assignment. Precondition:
v� dimension

� � � � v1� dimension
� � .

Vector& v � � NT s Scalar multiplication plus assignment.

Vector& v � � NT s Scalar division plus assignment.

Vector NT r � v Componentwise multiplication with number r.

Vector v � NT r Componentwise multiplication with number r.

Matrices with NT Entries ( Matrix )

1. Definition

An instance of data type Matrix is a matrix of variables of number type NT . The types Matrix and Vector
together realize many functions of basic linear algebra.

2. Types

Matrix ::NT the ring type of the components.

Matrix ::iterator bidirectional iterator for accessing components.

Matrix ::row iterator random access iterator for accessing row entries.

Matrix ::column iterator random access iterator for accessing column entries.

There are also constant versions of the above iterators: const iterator, row const iterator, and
column const iterator.

Matrix ::Identity a tag class for identity initialization

Matrix ::Vector the vector type used.

3. Creation

Matrix M; creates an instance M of type Matrix.

Matrix M(int n); creates an instance M of type Matrix of dimension n � n initialized to the
zero matrix.

Matrix M(int m � int n); creates an instance M of type Matrix of dimension m � n initialized to the
zero matrix.

Matrix M(std ::pair
�
int � int

�
p); creates an instance M of type Matrix of dimension p� first � p � second initial-

ized to the zero matrix.

Matrix M(int n � Identity � NT x � NT
�
1 � );

creates an instance M of type Matrix of dimension n � n initialized to the
identity matrix (times x).

Matrix M(int m � int n � NT x); creates an instance M of type Matrix of dimension m � n initialized to the
matrix with x entries.
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template
�
class Forward iterator

�

Matrix M(Forward iterator first � Forward iterator last);

creates an instance M of type Matrix. Let S be the ordered set of n column-
vectors of common dimension m as given by the iterator range � first � last � .
M is initialized to an m � n matrix with the columns as specified by S. Pre-
condition: Forward iterator has a value type V from which we require to
provide a iterator type V ::const iterator, to have V ::value type � � NT .
Note that Vector or std ::vector

�
NT

�
fulfill these requirements.

Matrix M(std ::vector
�

Vector
�

A);

creates an instance M of type Matrix. Let A be an array of n column-vectors
of common dimension m. M is initialized to an m � n matrix with the
columns as specified by A.

4. Operations

int M � row dimension() returns n, the number of rows of M.

int M � column dimension() returns m, the number of columns of M.

std ::pair
�
int � int

�
M � dimension() returns

�
m � n � , the dimension pair of M.

Vector& M � row(int i) returns the i-th row of M (an m - vector).
Precondition: 0

�
i

�
m � 1.

Vector M � column(int i) returns the i-th column of M (an n - vector).
Precondition: 0

�
i

�
n � 1.

NT& M
�
int i � int j � returns Mi � j.

Precondition: 0
�

i
�

m � 1 and 0
�

j
�

n � 1.

void M � swap rows(int i � int j) swaps rows i and j. Precondition: 0
�

i
�

m � 1 and 0
�

j
�

m � 1.

void M � swap columns(int i � int j)

swaps columns i and j. Precondition: 0
�

i
�

n � 1 and 0
�

j
�

n � 1.

row iterator M � row begin(int i) an iterator pointing to the first entry of the ith row. Precondi-
tion: 0

�
i

�
m � 1.

row iterator M � row end(int i) an iterator pointing beyond the last entry of the ith row. Pre-
condition: 0

�
i

�
m � 1.

column iterator M � column begin(int i) an iterator pointing to the first entry of the ith column. Pre-
condition: 0

�
i

�
n � 1.

column iterator M � column end(int i) an iterator pointing beyond the last entry of the ith column.
Precondition: 0

�
i

�
n � 1.

The same operations exist for row const iterator and column const iterator.

bool M � � M1 Test for equality.

bool M ! � M1 Test for inequality.

Arithmetic Operators

Matrix M � M1 Addition. Precondition:
M � row dimension

� � � � M1� row dimension
� � and

M � column dimension
� � � � M1� column dimension

� �
Matrix M � M1 Subtraction. Precondition:

M � row dimension
� � � � M1� row dimension

� � and
M � column dimension

� � � � M1� column dimension
� �
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Matrix � M Negation.

Matrix M � M1 Multiplication. Precondition:
M � column dimension

� � � M1� row dimension
� � .

Vector M � Vector vec

Multiplication with vector. Precondition:
M � column dimension

� � � vec� dimension
� � .

Matrix NT x � M Multiplication of every entry with x.

Matrix M � NT x Multiplication of every entry with x.



4.1 Manual pages of the higher-dimensional Kernel 159

4.1.2 Points in d-space ( Point d )

1. Definition

An instance of data type Point d
�
R
�

is a point of Euclidean space in dimension d. A point p �
�
p0 � � � � � pd � 1 � in

d-dimensional space can be represented by homogeneous coordinates
�
h0 � h1 � � � � � hd � of number type RT such

that pi
� hi � hd, which is of type FT . The homogenizing coordinate hd is positive.

We call pi, 0
�

i � d the i-th Cartesian coordinate and hi, 0
�

i
�

d, the i-th homogeneous coordinate. We call
d the dimension of the point.

2. Types

Point d
�
R
�

::RT the ring type.

Point d
�
R
�

::FT the field type.

Point d
�
R
�

::LA the linear algebra layer.

Point d
�
R
�

::Cartesian const iterator

a read-only iterator for the cartesian coordinates.

Point d
�
R
�

::Homogeneous const iterator

a read-only iterator for the homogeneous coordinates.

3. Creation

Point d
�
R
�

p(int d � 0); introduces a variable p of type Point d
�
R
�

in d-dimensional space.

Point d
�
R
�

p(int d � Origin);

introduces a variable p of type Point d
�
R
�

in d-dimensional space, initialized to
the origin.

template
�
class InputIterator

�

Point d
�
R
�

p(int d � InputIterator first � InputIterator last);

introduces a variable p of type Point d
�
R
�

in dimension d. If size � first � last � � � d
this creates a point with Cartesian coordinates set � first � last � . If size � f irst � last � � �
p � 1 the range specifies the homogeneous coordinates H � set � f irst � last � �� �

h0 �
�

h1 � � � � �
�

hd � where the sign chosen is the sign of hd . Precondition: d is
nonnegative, � first � last � has d or d � 1 elements where the last has to be non-zero,
and the value type of InputIterator is RT.

template
�
class InputIterator

�

Point d
�
R
�

p(int d � InputIterator first � InputIterator last � RT D);

introduces a variable p of type Point d
�
R
�

in dimension d initialized to the
point with homogeneous coordinates as defined by H � set � first � last � and D:� �

H � 0 � �
�

H � 1 � � � � � �
�

H � d � 1 � �
�

D � . The sign chosen is the sign of D. Precondi-
tion: D is non-zero, the iterator range defines a d-tuple of RT, and the value type
of InputIterator is RT.

Point d
�
R
�

p(RT x � RT y � RT w � 1);

introduces a variable p of type Point d
�
R
�

in 2-dimensional space.

Point d
�
R
�

p(RT x � RT y � RT z � RT w);

introduces a variable p of type Point d
�
R
�

in 3-dimensional space.

4. Operations

int p� dimension() returns the dimension of p.
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FT p� cartesian(int i) returns the i-th Cartesian coordinate of p. Precondition: 0
�

i � d.

FT p � int i � returns the i-th Cartesian coordinate of p. Precondition: 0
�

i � d.

RT p� homogeneous(int i)

returns the i-th homogeneous coordinate of p. Precondition:
0

�
i

�
d.

Cartesian const iterator p� cartesian begin() returns an iterator pointing to the zeroth Cartesian coordinate
p0 of p.

Cartesian const iterator p� cartesian end() returns an iterator pointing beyond the last Cartesian coordi-
nate of p.

Homogeneous const iterator p� homogeneous begin()

returns an iterator pointing to the zeroth homogeneous coor-
dinate h0 of p.

Homogeneous const iterator p� homogeneous end()

returns an iterator pointing beyond the last homogeneous co-
ordinate of p.

Point d
�
R
�

p� transform(Aff transformation d
�
R
�

t)

returns t
�
p � .

Arithmetic Operators, Tests and IO

Vector d
�
R
�

p � Origin o returns the vector ��� .

Vector d
�
R
�

p � q returns p � q. Precondition: p� dimension
� � � �

q� dimension
� � .

Point d
�
R
�

p � Vector d
�
R
�

v returns p � v. Precondition: p � dimension
� � � �

v� dimension
� � .

Point d
�
R
�

p � Vector d
�
R
�

v returns p � v. Precondition: p � dimension
� � � �

v� dimension
� � .

Point d
�
R
�
& p � � Vector d

�
R
�

v

adds v to p.
Precondition: p� dimension

� � � � v� dimension
� � .

Point d
�
R
�
& p � � Vector d

�
R
�

v

subtracts v from p.
Precondition: p� dimension

� � � � v� dimension
� � .

bool p � � Origin returns true if p is the origin.

Downward compatibility

We provide operations of the lower dimensional interface x
� � , y

� � , z
� � , hx

� � , hy
� � , hz

� � , hw
� � .

5. Implementation

Points are implemented by arrays of RT items. All operations like creation, initialization, tests, point - vector
arithmetic, input and output on a point p take time O

�
p� dimension

� � � . dimension
� � , coordinate access and

conversions take constant time. The space requirement for points is O
�
p � dimension

� � � .
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4.1.3 Lines in d-space ( Line d )

1. Definition

An instance of data type Line d is an oriented line in d-dimensional Euclidian space.

2. Types

Line d
�
RT

�
::R the representation type.

Line d
�
RT

�
::RT the ring type.

Line d
�
RT

�
::FT the field type.

Line d
�
RT

�
::LA the linear algebra layer.

3. Creation

Line d
�
RT

�
l(int d � 0);

introduces a variable l of type Line d
�
RT

�
and initializes it to some line in d - dimensional

space

Line d
�
RT

�
l(Point d

�
R
�

p � Point d
�
R
�

q);

introduces a line through p and q and oriented from p to q. Precondition: p and q are
distinct and have the same dimension.

Line d
�
RT

�
l(Point d

�
R
�

p � Direction d
�
R
�

dir);

introduces a line through p with direction dir. Precondition: p and dir have the same
dimension, dir is not trivial.

Line d
�
RT

�
l(Segment d

�
R
�

s);

introduces a variable l of type Line d
�
RT

�
and initializes it to the line through s� source

� �
and s� target

� � with direction from s� source
� � to s� target

� � . Precondition: s is not degen-
erate.

Line d
�
RT

�
l(Ray d

�
R
�

r);

introduces a variable l of type Line d
�
RT

�
and initializes it to the line through r � point

�
1 �

and r � point
�
2 � .

4. Operations

int l � dimension() returns the dimension of the underlying space.

Point d
�
R
�

l � point(int i) returns an arbitrary point on l. It holds that point
�
i � � � point

�
j � , iff

i � � j. Furthermore, l is directed from point
�
i � to point

�
j � , for all

i � j.

Line d
�
R
�

l � opposite( ) returns the line
�
point

�
2 � � point

�
1 � � .

Direction d
�
R
�

l � direction() returns the direction of l.

Line d
�
R
�

l � transform(Aff transformation d
�
R
�

t)

returns t
�
l � .

Line d
�
R
�

l � Vector d
�
R
�

v returns l � v, i.e., l translated by vector v.

Point d
�
R
�

l � projection(Point d
�
R
�

p)

returns the point of intersection of l with the hyperplane that is or-
thogonal to l through p.

bool l � has on(Point d
�
R
�

p)

returns true if p lies on l and false otherwise.
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Non-Member Functions

template
�
class R

�

bool weak equality(Line d
�
R
�

l1 � Line d
�
R
�

l2)

Test for equality as unoriented lines.

template
�
class R

�

bool parallel(Line d
�
R
�

l1 � Line d
�
R
�

l2)

returns true if l1 and l2 are parallel as unoriented lines and false
otherwise.

5. Implementation

Lines are implemented by a pair of points as an item type. All operations like creation, initialization, tests,
direction calculation, input and output on a line l take time O

�
l � dimension

� � � . dimension
� � , coordinate and

point access, and identity test take constant time. The operations for intersection calculation also take time
O
�
l � dimension

� � � . The space requirement is O
�
l � dimension

� � � .

4.1.4 Affine Transformations ( Aff transformation d )

1. Definition

An instance of the data type Aff transformation d
�
R
�

is an affine transformation of d-dimensional space. It is
specified by a square matrix M of dimension d � 1. All entries in the last row of M except the diagonal entry
must be zero; the diagonal entry must be non-zero. A point p with homogeneous coordinates

�
p � 0 � � � � � � p � d � �

can be transformed into the point p� transform
�
A � , where A is an affine transformation created from M by the

constructors below.

2. Types

Aff transformation d
�
R
�

::RT

the ring type.

Aff transformation d
�
R
�

::FT

the field type.

Aff transformation d
�
R
�

::LA

the linear algebra layer.

3. Creation

Aff transformation d
�
R
�

t(int d � 0 � bool identity � false);

introduces a transformation in d-dimensional space. If identity is true then the transfor-
mation is the identity transformation.

Aff transformation d
�
R
�

t(typename LA ::Matrix M);

introduces the transformation of d - space specified by matrix M. Precondition: M is a
square matrix of dimension d � 1.

template
�
typename Forward iterator

�

Aff transformation d
�
R
�

t(Forward iterator start � Forward iterator end);

introduces the transformation of d-space specified by a diagonal matrix with entries
set � start � end � on the diagonal (a scaling of the space). Precondition: set � start � end �
is a vector of dimension d � 1.

Aff transformation d
�
R
�

t(Vector d
�
R
�

v);

introduces the translation by vector v.
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Aff transformation d
�
R
�

t(int d � RT num � RT den);

returns a scaling by a scale factor num � den.

Aff transformation d
�
R
�

t(int d � RT sin num � RT cos num � RT den � int e1 � 0 � int e2 � 1);

returns a planar rotation with sine and cosine values sin num � den and cos num � den in the
plane spanned by the base vectors be1 and be2 in d-space. Thus the default use delivers a
planar rotation in the x-y plane. Precondition: sin num2 � cos num2 � den2 and 0

�
e1 �

e2 � d

Aff transformation d
�
R
�

t(int d � Direction d
�
R
�

dir � RT num � RT den � int e1 � 0 � int e2 � 1);

returns a planar rotation within the plane spanned by the base vectors be1 and be2 in d-
space. The rotation parameters are given by the 2-dimensional direction dir, such that the
difference between the sines and cosines of the rotation given by dir and the approximated
rotation are at most num � den each.
Precondition: dir � dimension

� � � � 2, !dir � is degenerate
� � and num � den is positive and

0
�

e1 � e2 � d

4. Operations

int t � dimension() the dimension of the underlying space

typename LA ::Matrix t � matrix( ) returns the transformation matrix

Aff transformation d
�
R
�

t � inverse( ) returns the inverse transformation. Precondition:
t � matrix

� � is invertible.

Aff transformation d
�
R
�

t � s composition of transformations. Note that transfor-
mations are not necessarily commutative. t � s is the
transformation which transforms first by t and then by
s.

5. Implementation

Affine Transformations are implemented by matrices of integers as an item type. All operations like creation,
initialization, input and output on a transformation t take time O

�
t � dimension

� � 2 � . dimension
� � takes constant

time. The operations for inversion and composition have the cubic costs of the used matrix operations. The
space requirement is O

�
t � dimension

� � 2 � .
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Linear and affine predicates

For a iterator range � first � last � we define S � set � first � last � as the ordered tuple
�
S � 0 � � S � 1 � � � � � S � d � 1 � � where

S � i � � � � ��� i � first (the element obtained by i times forwarding the iterator by operator � � and then dereferenc-
ing it to get the value to which it points). We write d � size � first � last � . This extends the syntax of random
access iterators to input iterators. If we index the tuple as above then we require that � ��� d � 1 � first � � last.

In the following we require the Iterators to be globally of value type Point d
�
R
�
. Also if we are handed over an

iterator range � first � last � , then all points in S � set � first � last � have the same dimension dim.

template
�
class ForwardIterator

�

Orientation orientation(ForwardIterator first � ForwardIterator last)

determines the orientation of the points in the set A � set � first � last �
where A consists of d � 1 points in d - space. This is the sign of the
determinant

����
1 1 1 1

A � 0 � A � 1 � � � � A � d �
����

where A � i � denotes the cartesian coordinate vector of the i-th point in
A. Precondition: size � first � last � � � d � 1 and A � i � � dimension

� � � �
d � 0

�
i

�
d. Precondition: value type of ForwardIterator is

Point d
�
R
�
.

template
�
class R � class ForwardIterator

�

Oriented side side of oriented sphere(ForwardIterator first � ForwardIterator last � Point d
�
R
�

x)

determines to which side of the sphere S defined by the points in
A � set � first � last � the point x belongs, where A consists of d � 1
points in d - space. The positive side is determined by the positive
sign of the determinant

����
1 1 1 1 1

lift
�
A � 0 � � lift

�
A � 1 � � � � � lift

�
A � d � � lift

�
x �
����

where for a point p with cartesian coordinates pi we use lift
�
p � to

denote the d � 1-dimensional point with cartesian coordinate vec-
tor
�
p0 � � � � � pd � 1 � ∑0 � i � d p2

i � . If the points in A are positively ori-
ented then the positive side is the inside of the sphere and the neg-
ative side is the outside of the sphere. Precondition: value type of
ForwardIterator is Point d

�
R
�
.

template
�
class R � class ForwardIterator

�

Bounded side side of bounded sphere(ForwardIterator first � ForwardIterator last � Point d
�
R
�

p)

determines whether the point p lies ON BOUNDED SIDE,
ON BOUNDARY, or ON UNBOUNDED SIDE of the sphere defined
by the points in A � set � first � last � where A consists of d � 1
points in d-space. Precondition: value type of ForwardIterator is
Point d

�
R
�

and orientation
�
first � last � �� ZERO.

template
�
class R � class ForwardIterator

�

bool contained in simplex(ForwardIterator first � ForwardIterator last � Point d
�
R
�

p)

determines whether p is contained in the simplex spanned by the
points in A � set � first � last � . A may consists of up to d � 1 points.
Precondition: value type of ForwardIterator is Point d

�
R
�

and the
points in A are affinely independent.
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template
�
class R � class ForwardIterator

�

bool contained in affine hull(ForwardIterator first � ForwardIterator last � Point d
�
R
�

p)

determines whether p is contained in the affine hull of the points in
A � set � first � last � . Precondition: value type of ForwardIterator is
Point d

�
R
�
.

template
�
class ForwardIterator

�

int affine rank(ForwardIterator first � ForwardIterator last)

computes the affine rank of the points in A � set � first � last � . Pre-
condition: value type of ForwardIterator is Point d

�
R
�
.

template
�
class ForwardIterator

�

bool affinely independent(ForwardIterator first � ForwardIterator last)

decides whether the points in A � set � first � last � are affinely inde-
pendent. Precondition: value type of ForwardIterator is Point d

�
R
�
.

template
�
class R

�

Comparison result compare lexicographically(Point d
�
R
�

p1 � Point d
�
R
�

p2)

implements the lexicographic order on the cartesian coordinate tuple
of points.

template
�
class R � class ForwardIterator

�

bool contained in linear hull(ForwardIterator first � ForwardIterator last �
Vector d

�
R
�

x)
determines whether x is contained in the linear hull of the vectors in
A � set � first � last � . Precondition: value type of ForwardIterator is
Vector d

�
R
�
.

template
�
class ForwardIterator

�

int linear rank(ForwardIterator first � ForwardIterator last)

computes the linear rank of the vectors in A � set � first � last � . Pre-
condition: value type of ForwardIterator is Vector d

�
R
�
.

template
�
class ForwardIterator

�

bool linearly independent(ForwardIterator first � ForwardIterator last)

decides whether the vectors in A are linearly independent. Precon-
dition: value type of ForwardIterator is Vector d

�
R
�
.

template
�
class ForwardIterator � class OutputIterator

�

OutputIterator linear base(ForwardIterator first � ForwardIterator last � OutputIterator result)

computes a basis of the linear space spanned by the vectors in
set � first � last � and returns it via an iterator range starting in result.
The returned iterator marks the end of the output. Precondition:
value type of ForwardIterator is Vector d

�
R
�
.

Constructions

template
�
class R

�

Point d
�
R
�

lift to paraboloid(Point d
�
R
�

p)

returns p �
�
x0 � � � � � xd � 1 � lifted to the paraboloid of revolution .

template
�
class R

�

Point d
�
R
�

project along d axis(Point d
�
R
�

p)

returns p projected along the d-axis onto the hyperspace spanned by
the first d � 1 standard base vectors.

template
�
class R

�

Point d
�
R
�

midpoint(Point d
�
R
�

p � Point d
�
R
�

q)

returns the midpoint of p and q.
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template
�
class R

�

typename R ::FT squared distance(Point d
�
R
�

p � Point d
�
R
�

q)

returns the squared distance between p and q.
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4.1.5 Convex Hulls ( Convex hull d )

1. Definition

An instance C of type Convex hull d
�
R
�

is the convex hull of a multi-set S of points in d-dimensional space.
We call S the underlying point set and d or dim the dimension of the underlying space. We use dcur to denote
the affine dimension of S. The data type supports incremental construction of hulls.

The closure of the hull is maintained as a simplicial complex, i.e., as a collection of simplices. The intersection
of any two is a face of both21. In the sequel we reserve the word simplex for the simplices of dimension
dcur. For each simplex there is a handle of type Simplex handlex and for each vertex there is a handle of type
Vertex handle. Each simplex has 1 � dcur vertices indexed from 0 to dcur; for a simplex s and an index i,
C � vertex

�
s � i � returns the i-th vertex of s. For any simplex s and any index i of s there may or may not be a

simplex t opposite to the i-th vertex of s. The function C � opposite simplex
�
s � i � returns t if it exists and returns

Simplex handle
� � (the undefined handle) otherwise. If t exists then s and t share dcur vertices, namely all but

the vertex with index i of s and the vertex with index C � index of vertex in opposite simplex
�
s � i � of t. Assume

that t exists and let j � C � index of vertex in opposite simplex
�
s � i � . Then s � C � opposite simplex

�
t � j � and i �

C � index of vertex in opposite simplex
�
t � j � .

The boundary of the hull is also a simplicial complex. All simplices in this complex have dimension
dcur � 1. For each boundary simplex there is a handle of type Facet handle. Each facet has dcur ver-
tices indexed from 0 to dcur � 1. If dcur � 1 then for each facet f and each index i, 0

�
i � dcur, there

is a facet g opposite to the i-th vertex of f . The function C � opposite facet
�
f � i � returns g. Two neighbor-

ing facets f and g share dcur � 1 vertices, namely all but the vertex with index i of f and the vertex with
index C � index of vertex in opposite facet

�
f � i � of g. Let j � C � index of vertex in opposite facet

�
f � i � . Then

f � C � opposite facet
�
g � j � and i � C � index of vertex in opposite facet

�
g � j � .

2. Types

Convex hull d
�
R
�

::R the representation class.

Convex hull d
�
R
�

::Point d the point type.

Convex hull d
�
R
�

::Hyperplane d the hyperplane type.

Convex hull d
�
R
�

::Simplex handle handle for simplices.

Convex hull d
�
R
�

::Facet handle handle for facets.

Convex hull d
�
R
�

::Vertex handle handle for vertices.

Convex hull d
�
R
�

::Simplex iterator iterator for simplices.

Convex hull d
�
R
�

::Vertex iterator iterator for vertices.

Convex hull d
�
R
�

::Facet iterator iterator for facets.

Convex hull d
�
R
�

::Hull vertex iterator iterator for vertices that are part of the convex hull.

Note that each iterator fits the handle concept, i.e. iterators can be used as handles. Note also that all iterator
and handle types come also in a const flavor, e.g., Vertex const iterator is the constant version of Vertex iterator.
Thus use the const version whenever the the convex hull object is referenced as constant.

Convex hull d
�
R
�

::Point const iterator const iterator for all inserted points.

Convex hull d
�
R
�

::Hull point const iterator const iterator for all points of the hull.

21The empty set if a facet of every simplex.
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3. Creation

Convex hull d
�
R
�

C(int d � R Kernel � R
� � );

creates an instance C of type Convex hull d. The dimension of the underlying space is d
and S is initialized to the empty point set. The traits class R specifies the models of all types
and the implementations of all geometric primitives used by the convex hull class. The
default model is one of the d-dimensional representation classes (e.g., Homogeneous d).

The data type Convex hull d offers neither copy constructor nor assignment operator.

4. Operations

All operations below that take a point x as argument have the common precondition that x is a point of ambient
space.

int C � dimension() returns the dimension of ambient space

int C � current dimension() returns the affine dimension dcur of S.

Point d C � associated point(Vertex handle v)

returns the point associated with vertex v.

Vertex handle C � vertex of simplex(Simplex handle s � int i)

returns the vertex corresponding to the i-th vertex of s.
Precondition: 0

�
i

�
dcur.

Point d C � point of simplex(Simplex handle s � int i)

same as C � associated point
�
C � vertex of simplex

�
s � i � � .

Simplex handle C � opposite simplex(Simplex handle s � int i)

returns the simplex opposite to the i-th vertex of s
(Simplex handle

� � if there is no such simplex). Precondi-
tion: 0

�
i

�
dcur.

int C � index of vertex in opposite simplex(Simplex handle s � int i)

returns the index of the vertex opposite to the i-th vertex of s.
Precondition: 0

�
i

�
dcur and there is a simplex opposite to the

i-th vertex of s.

Simplex handle C � simplex(Vertex handle v) returns a simplex of which v is a node. Note that this simplex is
not unique.

int C � index(Vertex handle v) returns the index of v in simplex
�
v � .

Vertex handle C � vertex of facet(Facet handle f � int i)

returns the vertex corresponding to the i-th vertex of f . Precondi-
tion: 0

�
i � dcur.

Point d C � point of facet(Facet handle f � int i)

same as C � associated point
�
C � vertex of facet

�
f � i � � .

Facet handle C � opposite facet(Facet handle f � int i)

returns the facet opposite to the i-th vertex of f (Facet handle
� � if

there is no such facet). Precondition: 0
�

i � dcur and dcur � 1.

int C � index of vertex in opposite facet(Facet handle f � int i)

returns the index of the vertex opposite to the i-th vertex of f .
Precondition: 0

�
i � dcur and dcur � 1.
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Hyperplane d C � hyperplane supporting(Facet handle f )

returns a hyperplane supporting facet f . The hyperplane is ori-
ented such that the interior of C is on the negative side of it. Pre-
condition: f is a facet of C and dcur � 1.

Vertex handle C � insert(Point d x) adds point x to the underlying set of points. If x is equal to (the
point associated with) a vertex of the current hull this vertex is
returned and its associated point is changed to x. If x lies out-
side the current hull, a new vertex v with associated point x is
added to the hull and returned. In all other cases, i.e., if x lies
in the interior of the hull or on the boundary but not on a vertex,
the current hull is not changed and Vertex handle

� � is returned.
If CGAL CHECK EXPENSIVE is defined then the validity check
is valid

�
true � is executed as a post condition.

template
�
typename Forward iterator

�

void C � insert(Forward iterator first � Forward iterator last)

adds S � set � first � last � to the underlying set of points. If any
point S � i � is equal to (the point associated with) a vertex of the
current hull its associated point is changed to S � i � .

bool C � is dimension jump(Point d x)

returns true if x is not contained in the affine hull of S.
std ::list

�
Facet handle

�
C � facets visible from(Point d x)

returns the list of all facets that are visible from x.
Precondition: x is contained in the affine hull of S.

Bounded side C � bounded side(Point d x) returns ON BOUNDED SIDE (ON BOUNDARY,ON UNBOUNDED SIDE)
if x is contained in the interior (lies on the boundary, is contained
in the exterior) of C. Precondition: x is contained in the affine
hull of S.

void C � clear(int d) reinitializes C to an empty hull in d-dimensional space.

int C � number of vertices( ) returns the number of vertices of C.

int C � number of facets( ) returns the number of facets of C.

int C � number of simplices( ) returns the number of bounded simplices of C.

void C � print statistics( ) gives information about the size of the current hull and the number
of visibility tests performed.

bool C � is valid(bool throw exceptions � false)

checks the validity of the data structure. If throw exceptions � �

thrue then the program throws the following exceptions to inform
about the problem.
�(	���	� ( ( � ���������* ��� +�*����� ��� 
�� ��) (����	� )�(�����

the hy-
perplane supporting a facet has the wrong orientation.�(	���	� ( ( � ��� �(�� ����� ����'��� ��� ��;

a ridge is locally non con-
vex.
�(	���	� ( ( � 
	���'����� �� ����*�( ��

the hull has a winding number
larger than 1.

Lists and Iterators

Vertex iterator C � vertices begin() returns an iterator to start iteration over all vertices of C.

Vertex iterator C � vertices end() the past the end iterator for vertices.
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Simplex iterator C � simplices begin() returns an iterator to start iteration over all simplices of C.

Simplex iterator C � simplices end() the past the end iterator for simplices.

Facet iterator C � facets begin() returns an iterator to start iteration over all facets of C.

Facet iterator C � facets end() the past the end iterator for facets.

Hull vertex iterator C � hull vertices begin() returns an iterator to start iteration over all hull vertex of C.
Remember that the hull is a simplicial complex.

Hull vertex iterator C � hull vertices end() the past the end iterator for hull vertices.

Point const iterator C � points begin() returns the start iterator for all points that have been inserted
to construct C.

Point const iterator C � points end() returns the past the end iterator for all points.

Hull point const iterator C � hull points begin() returns an iterator to start iteration over all inserted points
that are part of the convex hull C. Remember that the hull is
a simplicial complex.

Hull point const iterator C � hull points end() returns the past the end iterator for points of the hull.

template
�
typename Visitor

�

void C � visit all facets(Visitor V )

each facet of C is visited by the visitor object
V . V has to have a function call operator:
void operator

� � � Facet handle � const

std ::list
�
Point d

�
C � all points( ) returns a list of all points in C.

std ::list
�
Vertex handle

�
C � all vertices( ) returns a list of all vertices of C (also interior

ones).

std ::list
�
Simplex handle

�
C � all simplices( ) returns a list of all simplices in C.

std ::list
�
Facet handle

�
C � all facets( ) returns a list of all facets of C.

Iteration Statements

forall ch vertices(v � C) � “the vertices of C are successively assigned to v” �
forall ch simplices(s � C) � “the simplices of C are successively assigned to s” �
forall ch facets( f � C) � “the facets of C are successively assigned to f ” �
5. Implementation

The implementation of type Convex hull d is based on [CMS93] and [BMS94]. The details of the implementa-
tion can be found in the implementation document available at the download site of this package.

The time and space requirements are input dependent. Let C1, C2, C3, � � � be the sequence of hulls constructed
and for a point x let ki be the number of facets of Ci that are visible from x and that are not already facets of Ci � 1.
Then the time for inserting x is O

�
dim∑i ki � and the number of new simplices constructed during the insertion

of x is the number of facets of the hull which were not already facets of the hull before the insertion.

The data type Convex hull d is derived from Regular complex d. The space requirement of regular complexes is
essentially 12

�
dim � 2 � bytes times the number of simplices plus the space for the points. Convex hull d needs

an additional 8 � � 4 � x � dim bytes per simplex where x is the space requirement of the underlying number type
and an additional 12 bytes per point. The total is therefore

�
16 � x � dim � 32 bytes times the number of simplices

plus 28 � x � dim bytes times the number of points.



4.1 Manual pages of the higher-dimensional Kernel 171

4.1.6 Delaunay Triangulations ( Delaunay d )

1. Definition

An instance DT of type Delaunay d
�

R � Lifted R
�

is the nearest and furthest site Delaunay triangulation of a
set S of points in some d-dimensional space. We call S the underlying point set and d or dim the dimension
of the underlying space. We use dcur to denote the affine dimension of S. The data type supports incremental
construction of Delaunay triangulations and various kind of query operations (in particular, nearest and furthest
neighbor queries and range queries with spheres and simplices).

A Delaunay triangulation is a simplicial complex. All simplices in the Delaunay triangulation have dimension
dcur. In the nearest site Delaunay triangulation the circumsphere of any simplex in the triangulation contains
no point of S in its interior. In the furthest site Delaunay triangulation the circumsphere of any simplex contains
no point of S in its exterior. If the points in S are co-circular then any triangulation of S is a nearest as well as a
furthest site Delaunay triangulation of S. If the points in S are not co-circular then no simplex can be a simplex
of both triangulations. Accordingly, we view DT as either one or two collection(s) of simplices. If the points
in S are co-circular there is just one collection: the set of simplices of some triangulation. If the points in S
are not co-circular there are two collections. One collection consists of the simplices of a nearest site Delaunay
triangulation and the other collection consists of the simplices of a furthest site Delaunay triangulation.

For each simplex of maximal dimension there is a handle of type Simplex handle and for each vertex of the
triangulation there is a handle of type Vertex handle. Each simplex has 1 � dcur vertices indexed from 0 to
dcur. For any simplex s and any index i, DT � vertex of

�
s � i � returns the i-th vertex of s. There may or may

not be a simplex t opposite to the vertex of s with index i. The function DT � opposite simplex
�
s � i � returns

t if it exists and returns Simplex handle
� � otherwise. If t exists then s and t share dcur vertices, namely

all but the vertex with index i of s and the vertex with index DT � index of vertex in opposite simplex
�
s � i � of t.

Assume that t � DT � opposite simplex
�
s � i � exists and let j � DT � index of vertex in opposite simplex

�
s � i � . Then

s � DT � opposite simplex
�
t � j � and i � DT � index o f vertex in opposite simplex

�
t � j � . In general, a vertex

belongs to many simplices.

Any simplex of DT belongs either to the nearest or to the furthest site Delaunay triangulation or both. The
test DT � simplex of nearest

�
dt simplex s � returns true if s belongs to the nearest site triangulation and the test

DT � simplex of furthest
�
dt simplex s � returns true if s belongs to the furthest site triangulation.

2. Generalization

Convex hull d
�
Lifted R

� �

Delaunay d
�

R � Lifted R
�

3. Types

Delaunay d
�

R � Lifted R
�

::Simplex handle handles to the simplices of the complex.

Delaunay d
�

R � Lifted R
�

::Vertex handle handles to vertices of the complex.

Delaunay d
�

R � Lifted R
�

::Point d the point type

Delaunay d
�

R � Lifted R
�

::Sphere d the sphere type

Delaunay d
�

R � Lifted R
�

::Delaunay voronoi kind � NEAREST, FURTHEST �
interface flags

To use these types you can typedef them into the global scope after instantiation of the class. We
use Vertex handle instead of Delaunay d

�
R � Lifted R

�
:: Vertex handle from now on. Similarly we use

Simplex handle.

Delaunay d
�

R � Lifted R
�

::Point const iterator the iterator for points.

Delaunay d
�

R � Lifted R
�

::Vertex iterator the iterator for vertices.

Delaunay d
�

R � Lifted R
�

::Simplex iterator the iterator for simplices.
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4. Creation

Delaunay d
�

R � Lifted R
�

DT(int d � R k1 � R
� � � Lifted R k2 � Lifted R

� � );
creates an instance DT of type Delaunay d. The dimension of the underlying space is d
and S is initialized to the empty point set. The traits class R specifies the models of all
types and the implementations of all geometric primitives used by the Delaunay class.
The traits class Lifted R specifies the models of all types and the implementations of all
geometric primitives used by the base class of Delaunay d

�
R � Lifted R

�
. The second

template parameter defaults to the first: Delaunay d
�
R
� � Delaunay d

�
R � Lifted R � R

�
.

Both template arguments have to be models that fit a subset of requirements of the d-dimensional kernel. We
list them at the end of this manual page.

The data type Delaunay d offers neither copy constructor nor assignment operator.

5. Operations

All operations below that take a point x as an argument have the common precondition that x � dimension
� � �

DT � dimension
� � .

int DT � dimension() returns the dimension of ambient space

int DT � current dimension()

returns the affine dimension of the current point set, i.e., � 1 is S is
empty, 0 if S consists of a single point, 1 if all points of S lie on a
common line, etcetera.

bool DT � is simplex of nearest(Simplex handle s)

returns true if s is a simplex of the nearest site triangulation.

bool DT � is simplex of furthest(Simplex handle s)

returns true if s is a simplex of the furthest site triangulation.

Vertex handle DT � vertex of simplex(Simplex handle s � int i)

returns the vertex associated with the i-th node of s. Precondition:
0

�
i

�
dcur.

Point d DT � associated point(Vertex handle v)

returns the point associated with vertex v.

Point d DT � point of simplex(Simplex handle s � int i)

returns the point associated with the i-th vertex of s. Precondition:
0

�
i

�
dcur.

Simplex handle DT � opposite simplex(Simplex handle s � int i)

returns the simplex opposite to the i-th vertex of s (Simplex handle
� �

if there is no such simplex). Precondition: 0
�

i
�

dcur.

int DT � index of vertex in opposite simplex(Simplex handle s � int i)

returns the index of the vertex opposite to the i-th vertex of s. Pre-
condition: 0

�
i

�
dcur.

Simplex handle DT � simplex(Vertex handle v)

returns a simplex of the nearest site triangulation incident to v.

int DT � index(Vertex handle v)

returns the index of v in DT � simplex
�
v � .

bool DT � contains(Simplex handle s � Point d x)

returns true if x is contained in the closure of simplex s.
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bool DT � empty() decides whether DT is empty.

void DT � clear( ) reinitializes DT to the empty Delaunay triangulation.

Vertex handle DT � insert(Point d x) inserts point x into DT and returns the corresponding Vertex handle.
More precisely, if there is already a vertex v in DT positioned at
x (i.e., associated point

�
v � is equal to x) then associated point

�
v �

is changed to x (i.e., associated point
�
v � is made identical to

x) and if there is no such vertex then a new vertex v with
associated point

�
v � � x is added to DT. In either case, v is returned.

Simplex handle DT � locate(Point d x) returns a simplex of the nearest site triangulation containing x in its
closure (returns Simplex handle

� � if x lies outside the convex hull of
S).

Vertex handle DT � lookup(Point d x)

if DT contains a vertex v with associated point
�
v � � x the result is

v otherwise the result is Vertex handle
� � .

Vertex handle DT � nearest neighbor(Point d x)

computes a vertex v of DT that is closest to x, i.e.,
dist
�
x � associated point

�
v � � � min � dist

�
x � associated point

�
u � � �

u �
S � .

std ::list
�
Vertex handle

�
DT � range search(Sphere d C)

returns the list of all vertices contained in the closure of sphere C.

std ::list
�
Vertex handle

�
DT � range search(std ::vector

�
Point d

�
A)

returns the list of all vertices contained in the closure of the simplex
whose corners are given by A. Precondition: A must consist of d � 1
affinely independent points in base space.

std ::list
�
Simplex handle

�
DT � all simplices(Delaunay voronoi kind k � NEAREST)

returns a list of all simplices of either the nearest or the furthest site
Delaunay triangulation of S.

std ::list
�
Vertex handle

�
DT � all vertices(Delaunay voronoi kind k � NEAREST)

returns a list of all vertices of either the nearest or the furthest site
Delaunay triangulation of S.

std ::list
�
Point d

�
DT � all points()

returns S.

Point const iterator DT � points begin()

returns the start iterator for points in DT.

Point const iterator DT � points end()

returns the past the end iterator for points in DT .

Simplex iterator DT � simplices begin(Delaunay voronoi kind k � NEAREST)

returns the start iterator for simplices of DT.

Simplex iterator DT � simplices end()

returns the past the end iterator for simplices of DT.

6. Implementation

The data type is derived from Convex hull d via the lifting map. For a point x in d-dimensional space let
lift
�
x � be its lifting to the unit paraboloid of revolution. There is an intimate relationship between the Delaunay

triangulation of a point set S and the convex hull of lift
�
S � : The nearest site Delaunay triangulation is the
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projection of the lower hull and the furthest site Delaunay triangulation is the upper hull. For implementation
details we refer the reader to the implementation report available from the CGAL server.

The space requirement is the same as for convex hulls. The time requirement for an insert is the time to insert
the lifted point into the convex hull of the lifted points.

7. Example

The abstract data type Delaunay d has a default instantiation by means of the d-dimensional geometric kernel.
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4.2 Manual pages of the Nef polyhedron package

4.2.1 Nef Polyhedra in the Plane ( Nef polyhedron 2 )

1. Definition

An instance of data type Nef polyhedron 2
�
T
�

is a subset of the plane that is the result of forming complements
and intersections starting from a finite set H of halfspaces. Nef polyhedron 2 is closed under all binary set
operations intersection, union, difference, complement and under the topological operations boundary, closure,
and interior.

The template parameter T is specified via an extended kernel concept. T must be a model of the concept
ExtendedKernelTraits 2.

2. Types

Nef polyhedron 2
�
T
�

::Line the oriented lines modeling halfplanes

Nef polyhedron 2
�
T
�

::Point the affine points of the plane.

Nef polyhedron 2
�
T
�

::Direction directions in our plane.

Nef polyhedron 2
�
T
�

::Aff transformation affine transformations of the plane.

Nef polyhedron 2
�
T
�

::Boundary � EXCLUDED, INCLUDED �
construction selection.

Nef polyhedron 2
�
T
�

::Content � EMPTY, COMPLETE �
construction selection

3. Creation

Nef polyhedron 2
�
T
�

N(Content plane � EMPTY);

creates an instance N of type Nef polyhedron 2
�
T
�

and initializes it to the empty set if
plane � � EMPTY and to the whole plane if plane � � COMPLETE.

Nef polyhedron 2
�
T
�

N(Line l � Boundary line � INCLUDED);

creates a Nef polyhedron N containing the halfplane left of l including l if line � �

INCLUDED, excluding l if line � � EXCLUDED.

template
�
class Forward iterator

�

Nef polyhedron 2
�
T
�

N(Forward iterator it � Forward iterator end � Boundary b � INCLUDED);

creates a Nef polyhedron N from the simple polygon P spanned by the list of points in
the iterator range � it � end � and including its boundary if b � INCLUDED and excluding
the boundary otherwise. Forward iterator has to be an iterator with value type Point. This
construction expects that P is simple. The degenerate cases where P contains no point, one
point or spans just one segment (two points) are correctly handled. In all degenerate cases
there’s only one unbounded face adjacent to the degenerate polygon. If b � � INCLUDED
then N is just the boundary. If b � � EXCLUDED then N is the whole plane without the
boundary.

4. Operations

void N � clear(Content plane � EMPTY)

makes N the empty set if plane � � EMPTY and the full plane
if plane � � COMPLETE.

bool N � is empty() returns true if N is empty, false otherwise.

bool N � is plane() returns true if N is the whole plane, false otherwise.
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Constructive Operations

Nef polyhedron 2
�
T
�

N � complement( ) returns the complement of N in the plane.

Nef polyhedron 2
�
T
�

N � interior( ) returns the interior of N.

Nef polyhedron 2
�
T
�

N � closure( ) returns the closure of N.

Nef polyhedron 2
�
T
�

N � boundary() returns the boundary of N.

Nef polyhedron 2
�
T
�

N � regularization() returns the regularized polyhedron (closure of interior).

Nef polyhedron 2
�
T
�

N � intersection(Nef polyhedron 2
�
T
�

N1)

returns N � N1.
Nef polyhedron 2

�
T
�

N � join(Nef polyhedron 2
�
T
�

N1)

returns N � N1.
Nef polyhedron 2

�
T
�

N � difference(Nef polyhedron 2
�
T
�

N1)

returns N � N1.

Nef polyhedron 2
�
T
�

N � symmetric difference(Nef polyhedron 2
�
T
�

N1)

returns the symmectric difference N � T � T � N.

Nef polyhedron 2
�
T
�

N � transform(Aff transformation t)

returns t
�
N � .

Additionally there are operators � � � � � � ˆ � ! which implement the binary operations intersection, union, differ-
ence, symmetric difference, and the unary operation complement respectively. There are also the corresponding
modification operations � � � � � � � � � ˆ � .

There are also comparison operations like
�

�
�

�
�

��� � � � � ! � which implement the relations subset, subset or
equal, superset, superset or equal, equality, inequality, respectively.

Exploration - Point location - Ray shooting

As Nef polyhedra are the result of forming complements and intersections starting from a set H of halfspaces
that are defined by oriented lines in the plane, they can be represented by an attributed plane map M �

�
V � E � F � .

For topological queries within M the following types and operations allow exploration access to this structure.

5. Types

Nef polyhedron 2
�
T
�

::Explorer

a decorator to examine the underlying plane map. See the manual page of Explorer.

Nef polyhedron 2
�
T
�

::Object handle

a generic handle to an object of the underlying plane map. The kind of object
�
vertex �

halfedge � face � can be determined and the object can be assigned to a corresponding han-
dle by the three functions:
bool assign

�
Vertex const handle& h � Object handle �

bool assign
�
Halfedge const handle& h � Object handle �

bool assign
�
Face const handle& h � Object handle �

where each function returns true iff the assignment to h was done.

Nef polyhedron 2
�
T
�

::Location mode � DEFAULT, NAIVE, LMWT �
selection flag for the point location mode.

6. Operations

bool N � contains(Object handle h)

returns true iff the object h is contained in the set represented by N.

bool N � contained in boundary(Object handle h)

returns true iff the object h is contained in the 1-skeleton of N.



4.2 Manual pages of the Nef polyhedron package 177

Object handle N � locate(Point p � Location mode m � DEFAULT)

returns a generic handle h to an object (face, halfedge, vertex) of the underlying
plane map that contains the point p in its relative interior. The point p is contained
in the set represented by N if N � contains

�
h � is true. The location mode flag m

allows one to choose between different point location strategies.

Object handle N � ray shoot(Point p � Direction d � Location mode m � DEFAULT)

returns a handle h with N � contains
�
h � that can be converted to a

Vertex � Halfedge � Face const handle as described above. The object returned is
intersected by the ray starting in p with direction d and has minimal distance to
p. The operation returns the null handle NULL if the ray shoot along d does not
hit any object h of N with N � contains

�
h � . The location mode flag m allows one to

choose between different point location strategies.

Object handle N � ray shoot to boundary(Point p � Direction d � Location mode m � DEFAULT)

returns a handle h that can be converted to a Vertex � Halfedge const handle as de-
scribed above. The object returned is part of the 1-skeleton of N, intersected by
the ray starting in p with direction d and has minimal distance to p. The operation
returns the null handle NULL if the ray shoot along d does not hit any 1-skeleton
object h of N. The location mode flag m allows one to choose between different
point location strategies.

Explorer N � explorer()

returns a decorator object which allows read-only access of the underlying plane
map. See the manual page Explorer for its usage.

Input and Output

A Nef polyhedron N can be visualized in a Window stream W . The output operator is defined in the file
CGAL � IO � Nef polyhedron 2 Window stream� h.

7. Implementation

Nef polyhedra are implemented on top of a halfedge data structure and use linear space in the number of vertices,
edges and facets. Operations like empty take constant time. The operations clear, complement, interior, closure,
boundary, regularization, input and output take linear time. All binary set operations and comparison operations
take time O

�
n logn � where n is the size of the output plus the size of the input.

The point location and ray shooting operations are implemented in two flavors. The NAIVE operations run in
linear query time without any preprocessing, the DEFAULT operations (equals LMWT) run in sub-linear query
time, but preprocessing is triggered with the first operation. Preprocessing takes time O

�
N2 � , the sub-linear

point location time is either logarithmic when LEDA’s persistent dictionaries are present or if not then the point
location time is worst-case linear, but experiments show often sublinear runtimes. Ray shooting equals point
location plus a walk in the constrained triangulation overlayed on the plane map representation. The cost of the
walk is proportional to the number of triangles passed in direction d until an obstacle is met. In a minimum
weight triangulation of the obstacles (the plane map representing the polyhedron) the theory provides a O

���
n �

bound for the number of steps. Our locally minimum weight triangulation approximates the minimum weight
triangulation only heuristically (the calculation of the minimum weight triangulation is conjectured to be NP
hard). Thus we have no runtime guarantee but a strong experimental motivation for its approximation.

8. Example

Nef polyhedra are parameterized by a so-called extended geometric kernel. There are three kernels, one based
on a homogeneous representation of extended points called Extended homogeneous

�
RT

�
where RT is a ring

type providing additionally a gcd operation and one based on a cartesian representation of extended points
called Extended cartesian

�
NT

�
where NT is a field type, and finally Filtered extended homogeneous

�
RT

�
(an

optimized version of the first).
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The member types of Nef polyhedron 2
�

Extended homogeneous
�
NT

�'�
map to corresponding types of the

CGAL geometry kernel (e.g. Nef polyhedron::Line equals CGAL ::Homogeneous
�
leda integer

�
::Line 2 in the

example below).
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After line (*) N3 is the intersection of N1 and N2.

4.2.2 Plane map exploration ( Explorer )

1. Definition

An instance E of the data type Explorer is a decorator to explore the structure of the plane map underlying the
Nef polyhedron. It inherits all topological adjacency exploration operations from PMConstDecorator. Explorer
additionally allows one to explore the geometric embedding.

The position of each vertex is given by a so-called extended point, which is either a standard affine point or
the tip of a ray touching an infinimaximal square frame centered at the origin. A vertex v is called a standard
vertex if its embedding is a standard point and non-standard if its embedding is a non-standard point. By the
straightline embedding of their source and target vertices, edges correspond to either affine segments, rays or
lines or are part of the bounding frame.

2. Generalization

PMConstDecorator
�

Explorer

3. Types

Explorer ::Topological explorer

The base class.
Explorer ::Point the point type of finite vertices.

Explorer ::Ray the ray type of vertices on the frame.

Iterators, handles, and circulators are inherited from Topological explorer.

4. Creation

Explorer is copy constructable and assignable. An object can be obtained via the Nef polyhedron 2 ::explorer
� �

method of Nef polyhedron 2.
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Figure 4.18: Extended geometry: standard vertices are marked by S, non-standard vertices are marked by N.
A: The possible embeddings of edges: an affine segment s1, an affine ray s2, an affine line s3. B: A plane
map embedded by extended geometry: note that the frame is arbitrarily large, the 6 vertices on the frame are at
infinity, the two faces represent a geometrically unbounded area, however they are topologically closed by the
frame edges. No standard point can be placed outside the frame.

5. Operations

bool E � is standard(Vertex const handle v)

returns true iff v’s position is a standard point.

Point E � point(Vertex const handle v)

returns the standard point that is the embedding of v. Precondi-
tion: E � is standard

�
v � .

Ray E � ray(Vertex const handle v)

returns the ray defining the non-standard point on the frame. Pre-
condition: !E � is standard

�
v � .

bool E � is frame edge(Halfedge const handle e)

returns true iff e is part of the infinimaximal frame.

4.2.3 Topological plane map exploration ( PMConstDecorator )

1. Definition

An instance D of the data type PMConstDecorator is a decorator for interfacing the topological structure of a
plane map P (read-only).

A plane map P consists of a triple
�
V � E � F � of vertices, edges, and faces. We collectively call them objects. An

edge e is a pair of vertices
�
v � w � with incidence operations v � source

�
e � , w � target

�
e � . The list of all edges

with source v is called the adjacency list A
�
v � .

Edges are paired into twins. For each edge e �
�
v � w � there’s an edge twin

�
e � � � w � v � and twin

�
twin
�
e � � � �

e22.

An edge e �
�
v � w � knows two adjacent edges en � next

�
e � and ep � previous

�
e � where source

�
en � � w,

previous
�
en � � e and target

�
ep � � v and next

�
ep � � e. By this symmetric previous � next relationship all

edges are partitioned into face cycles. Two edges e and e � are in the same face cycle if e � next
� �

e � � . All edges e

22The existence of the edge pairs makes P a bidirected graph, the twin links make P a map.
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in the same face cycle have the same incident face f � face
�
e � . The cyclic order on the adjacency list of a vertex

v � source
�
e � is given by cyclic adj succ

�
e � � twin

�
previous

�
e � � and cyclic adj pred

�
e � � next

�
twin
�
e � � .

A vertex v is embedded via coordinates point
�
v � . By the embedding of its source and target an edge corresponds

to a segment. P has the property that the embedding is always order-preserving. This means a ray fixed in
point

�
v � of a vertex v and swept around counterclockwise meets the embeddings of target

�
e � (e � A

�
v � ) in the

cyclic order defined by the list order of A.

The embedded face cycles partition the plane into maximal connected subsets of points. Each such set corre-
sponds to a face. A face is bounded by its incident face cycles. For all the edges in the non-trivial face cycles
it holds that the face is left of the edges. There can also be trivial face cycles in form of isolated vertices in the
interior of a face. Each such vertex v knows its surrounding face f � face

�
v � .

We call the embedded map
�
V � E � also the 1-skeleton of P.

Plane maps are attributed. To each object u � V � E � F we attribute a value mark
�
u � of type Mark. Mark fits

the concepts assignable, default-constructible, and equal-comparable.

2. Types

PMConstDecorator ::Plane map The underlying plane map type

PMConstDecorator ::Point The point type of vertices.

PMConstDecorator ::Mark All objects (vertices, edges, faces) are attributed by a Mark object.

PMConstDecorator ::Size type The size type.

Local types are handles, iterators and circulators of the following kind: Vertex const handle,
Vertex const iterator, Halfedge const handle, Halfedge const iterator, Face const handle, Face const iterator.
Additionally the following circulators are defined.

PMConstDecorator ::Halfedge around vertex const circulator

circulating the outgoing halfedges in A
�
v � .

PMConstDecorator ::Halfedge around face const circulator

circulating the halfedges in the face cycle of a face f .

PMConstDecorator ::Hole const iterator iterating all holes of a face f . The type is convertible to
Halfedge const handle.

PMConstDecorator ::Isolated vertex const iterator

iterating all isolated vertices of a face f . The type generalizes
Vertex const handle.

3. Creation

PMConstDecorator D(const Plane map& P);

constructs a plane map decorator exploring P.

4. Operations

Vertex const handle D � source(Halfedge const handle e)

returns the source of e.
Vertex const handle D � target(Halfedge const handle e)

returns the target of e.

Halfedge const handle D� twin(Halfedge const handle e)

returns the twin of e.
bool D� is isolated(Vertex const handle v)

returns true iff A
�
v � � /0.
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Halfedge const handle D� first out edge(Vertex const handle v)

returns one halfedge with source v. It’s the starting
point for the circular iteration over the halfedges with
source v. Precondition: !is isolated

�
v � .

Halfedge const handle D� last out edge(Vertex const handle v)

returns the halfedge with source v that is the last in the
circular iteration before encountering first out edge

�
v �

again. Precondition: !is isolated
�
v � .

Halfedge const handle D� cyclic adj succ(Halfedge const handle e)

returns the edge after e in the cyclic ordered adjacency
list of source

�
e � .

Halfedge const handle D� cyclic adj pred(Halfedge const handle e)

returns the edge before e in the cyclic ordered adja-
cency list of source

�
e � .

Halfedge const handle D� next(Halfedge const handle e)

returns the next edge in the face cycle containing e.

Halfedge const handle D� previous(Halfedge const handle e)

returns the previous edge in the face cycle containing
e.

Face const handle D � face(Halfedge const handle e)

returns the face incident to e.

Face const handle D � face(Vertex const handle v)

returns the face incident to v. Precondition:
is isolated

�
v � .

Halfedge const handle D� halfedge(Face const handle f )

returns a halfedge in the bounding face cycle of f
(Halfedge const handle

� � if there is no bounding face
cycle).

Iteration

Halfedge around vertex const circulator D� out edges(Vertex const handle v)

returns a circulator for the cyclic adjacency list of v.

Halfedge around face const circulator D� face cycle(Face const handle f )

returns a circulator for the outer face cycle of f .

Hole const iterator D� holes begin(Face const handle f )

returns an iterator for all holes in the interior
of f . A Hole iterator can be assigned to a
Halfedge around face const circulator.

Hole const iterator D� holes end(Face const handle f )

returns the past-the-end iterator of f .

Isolated vertex const iterator D � isolated vertices begin(Face const handle f )

returns an iterator for all isolated vertices in the interior of
f .

Isolated vertex const iterator D � isolated vertices end(Face const handle f )

returns the past the end iterator of f .
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Associated Information

The type Mark is the general attribute of an object. The type GenPtr is equal to type void � .

const Point& D� point(Vertex const handle v)

returns the embedding of v.

const Mark& D� mark(Vertex const handle v)

returns the mark of v.
const Mark& D� mark(Halfedge const handle e)

returns the mark of e.
const Mark& D� mark(Face const handle f )

returns the mark of f .

const GenPtr& D� info(Vertex const handle v)

returns a generic information slot.

const GenPtr& D� info(Halfedge const handle e)

returns a generic information slot.

const GenPtr& D� info(Face const handle f )

returns a generic information slot.

Statistics and Integrity

Size type D� number of vertices( ) returns the number of vertices.

Size type D� number of halfedges( ) returns the number of halfedges.

Size type D� number of edges( ) returns the number of halfedge pairs.

Size type D� number of faces( ) returns the number of faces.

Size type D� number of face cycles( ) returns the number of face cycles.

Size type D� number of connected components()

calculates the number of connected components of P.

void D� print statistics(std ::ostream& os � std ::cout)

print the statistics of P: the number of vertices, edges, and faces.

void D� check integrity and topological planarity(bool faces � true)

checks the link structure and the genus of P.

4.2.4 Plane map manipulation ( PMDecorator )

1. Definition

An instance D of the data type PMDecorator is a decorator to examine and modify a plane map. D inherits
from PMConstDecorator but provides additional manipulation operations.

2. Generalization

PMConstDecorator
�

PMDecorator

3. Types

Local types are handles, iterators and circulators of the following kind: Vertex handle, Vertex iterator,
Halfedge handle, Halfedge iterator, Face handle, Face iterator. Additionally the following circulators are de-
fined. The circulators can be constructed from the corresponding halfedge handles or iterators.
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PMDecorator ::Halfedge around vertex circulator

circulating the outgoing halfedges in A
�
v � .

PMDecorator ::Halfedge around face circulator

circulating the halfedges in the face cycle of a face f .

PMDecorator ::Hole iterator

iterating all holes of a face f . The type is convertible to Halfedge handle.

PMDecorator ::Isolated vertex iterator

iterating all isolated vertices of a face f . The type generalizes Vertex handle.

PMDecorator :: � BEFORE, AFTER �
insertion order labels.

4. Creation

PMDecorator D(Plane map& p);

constructs a decorator working on P.

5. Operations

Plane map& D� plane map() returns the plane map decorated.

void D� clear( ) reinitializes P to the empty map.

Vertex handle D� source(Halfedge handle e)

returns the source of e.
Vertex handle D� target(Halfedge handle e)

returns the target of e.

Halfedge handle D� twin(Halfedge handle e)

returns the twin of e.
bool D� is isolated(Vertex handle v)

returns true iff v is linked to the interior of a face. This is equivalent
to the condition that A

�
v � � /0.

bool D� is closed at source(Halfedge handle e)

returns true when prev
�
e � � � twin

�
e � .

Halfedge handle D� first out edge(Vertex handle v)

returns a halfedge with source v. It’s the starting point for the
circular iteration over the halfedges with source v. Precondition:
!is isolated

�
v � .

Halfedge handle D� last out edge(Vertex handle v)

returns a the halfedge with source v that is the last in the circular
iteration before encountering first out edge

�
v � again. Precondition:

!is isolated
�
v � .

Halfedge handle D� cyclic adj succ(Halfedge handle e)

returns the edge after e in the cyclic ordered adjacency list of
source

�
e � .

Halfedge handle D� cyclic adj pred(Halfedge handle e)

returns the edge before e in the cyclic ordered adjacency list of
source

�
e � .

Halfedge handle D� next(Halfedge handle e)

returns the next edge in the face cycle containing e.
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Halfedge handle D� previous(Halfedge handle e)

returns the previous edge in the face cycle containing e.

Face handle D� face(Halfedge handle e)

returns the face incident to e.
Face handle D� face(Vertex handle v)

returns the face incident to v. Precondition: is isolated
�
v � .

Halfedge handle D� halfedge(Face handle f )

returns a halfedge in the bounding face cycle of f
(Halfedge handle

� � if there is no bounding face cycle).

Iteration

Halfedge around vertex circulator D� out edges(Vertex handle v)

returns a circulator for the cyclic adjacency list of v.

Halfedge around face circulator D� face cycle(Face handle f )

returns a circulator for the outer face cycle of f .

Hole iterator D� holes begin(Face handle f )

returns an iterator for all holes in the interior
of f . A Hole iterator can be assigned to a
Halfedge around face circulator.

Hole iterator D� holes end(Face handle f )

returns the past-the-end iterator of f .

Isolated vertex iterator D� isolated vertices begin(Face handle f )

returns an iterator for all isolated vertices in the interior of f .

Isolated vertex iterator D� isolated vertices end(Face handle f )

returns the past the end iterator of f .

Update Operations

Vertex handle D� new vertex(Vertex base vb � Vertex base
� � )

creates a new vertex.
Face handle D� new face(Face base fb � Face base

� � )
creates a new face.

void D� link as outer face cycle(Face handle f � Halfedge handle e)

makes e the entry point of the outer face cycle of f and makes f the
face of all halfedges in the face cycle of e.

void D� link as hole(Face handle f � Halfedge handle e)

makes e the entry point of a hole face cycle of f and makes f the
face of all halfedges in the face cycle of e.

void D� link as isolated vertex(Face handle f � Vertex handle v)

makes v an isolated vertex within f .

void D� clear face cycle entries(Face handle f )

removes all isolated vertices and halfedges that are entrie points into
face cycles from the lists of f .

Halfedge handle D� new halfedge pair(Vertex handle v1 � Vertex handle v2 �
Halfedge base hb � Halfedge base

� � )
creates a new pair of edges

�
e1 � e2 � representing

�
v1 � v2 � by append-

ing the ei to A
�
vi � � i � 1 � 2 � .
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Halfedge handle D� new halfedge pair(Halfedge handle e1 � Halfedge handle e2 �
Halfedge base hb � Halfedge base

� � � int pos1 � AFTER �
int pos2 � AFTER)
creates a new pair of edges

�
h1 � h2 � representing�

source
�
e1 � � source

�
e2 � � by inserting the hi before or after ei

into the cyclic adjacency list of source
�
ei � depending on posi�

i � 1 � 2 � from PMDecorator ::BEFORE � PMDecorator ::AFTER.

Halfedge handle D� new halfedge pair(Halfedge handle e � Vertex handle v �
Halfedge base hb � Halfedge base

� � � int pos � AFTER)

creates a new pair of edges
�
e1 � e2 � representing

�
source

�
e � � v �

by inserting e1 before or after e into the cyclic adjacency list
of source

�
e � depending on pos from PMDecorator :: BEFORE �

PMDecorator ::AFTER and appending e2 to A
�
v � .

Halfedge handle D� new halfedge pair(Vertex handle v � Halfedge handle e �
Halfedge base hb � Halfedge base

� � � int pos � AFTER)
symmetric to the previous one.

void D� delete halfedge pair(Halfedge handle e)

deletes e and its twin and updates the adjacency at its source and its
target.

void D� delete vertex(Vertex handle v)

deletes v and all outgoing edges A
�
v � as well as their twins. Updates

the adjacency at the targets of the edges in A
�
v � .

void D� delete face(Face handle f )

deletes the face f without consideration of topological linkage.

bool D� has outdeg two(Vertex handle v)

return true when v has outdegree two.

void D� merge halfedge pairs at target(Halfedge handle e)

merges the halfedge pairs at v � target
�
e � . e and twin

�
e � are pre-

served, next
�
e � , twin

�
next
�
e � � and v are deleted in the merger. Pre-

condition: v has outdegree two. The adjacency at source
�
e � and

target
�
next
�
e � � is kept consistent.

Incomplete topological update primitives

Halfedge handle D� new halfedge pair at source(Vertex handle v � int pos � AFTER �
Halfedge base hb � Halfedge base

� � )
creates a new pair of edges

�
e1 � e2 � representing

�
v �
� � � by inserting

e1 at the beginning (BEFORE) or end (AFTER) of adjacency list of
v.

void D� delete halfedge pair at source(Halfedge handle e)

deletes e and its twin and updates the adjacency at its source.

void D� link as target and append(Vertex handle v � Halfedge handle e)

makes v the target of e and appends twin
�
e � to A

�
v � .

Halfedge handle D� new halfedge pair without vertices()

inserts an open edge pair, and inits all link slots to their default han-
dles.

void D� delete vertex only(Vertex handle v)

deletes v without consideration of adjacency.
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void D� delete halfedge pair only(Halfedge handle e)

deletes e and its twin without consideration of adjacency.

void D� link as target of(Halfedge handle e � Vertex handle v)

makes target
�
e � � v and sets e as the first in-edge if v was isolated

before.

void D� link as source of(Halfedge handle e � Vertex handle v)

makes source
�
e � � v and sets e as the first out-edge if v was isolated

before.

void D� make first out edge(Halfedge handle e)

makes e the first outgoing halfedge in the cyclic adjacency list of
source

�
e � .

void D� set adjacency at source between(Halfedge handle e � Halfedge handle en)

makes e and en neigbors in the cyclic ordered adjacency list around
v � source

�
e � . Precondition: source

�
e � � � source

�
en � .

void D� set adjacency at source between(Halfedge handle e1 � Halfedge handle e between �
Halfedge handle e2)

inserts e between into the adjacency list around source
�
e1 � between

e1 and e2 and makes source
�
e1 � the source of e between. Precondi-

tion: source
�
e1 � � � source

�
e2 � .

void D� close tip at target(Halfedge handle e � Vertex handle v)

sets v as target of e and closes the tip by setting the corresponding
pointers such that prev

�
twin
�
e � � � � e and next

�
e � � � twin

�
e � .

void D� close tip at source(Halfedge handle e � Vertex handle v)

sets v as source of e and closes the tip by setting the corresponding
pointers such that prev

�
e � � � twin

�
e � and next

�
twin
�
e � � � � e.

void D� remove from adj list at source(Halfedge handle e)

removes a halfedge pair
�
e � twin

�
e � from the adjacency list

of source
�
e � . Afterwards next

�
prev
�
e � � � � next

�
twin
�
e � � and

first out edge
�
source

�
e � � is valid if degree

�
source

�
v � � � 1 before the

operation.

void D� unlink as hole(Halfedge handle e)

removes e’s existence as an face cycle entry point of face
�
e � . Does

not update the face links of the corresponding face cycle halfedges.

void D� unlink as isolated vertex(Vertex handle v)

removes v’s existence as an isolated vertex in face
�
v � . Does not up-

date v’s face link.

void D� link as prev next pair(Halfedge handle e1 � Halfedge handle e2)

makes e1 and e2 adjacent in the face cycle � � � � e1 � e2 � � � � . After-
wards e1 � previous

�
e2 � and e2 � next

�
e1 � .

void D� set face(Halfedge handle e � Face handle f )

makes f the face of e.

void D� set face(Vertex handle v � Face handle f )

makes f the face of v.

void D� set halfedge(Face handle f � Halfedge handle e)

makes e entry edge in the outer face cycle of f .
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void D� set hole(Face handle f � Halfedge handle e)

makes e entry edge in a hole face cycle of f .

void D� set isolated vertex(Face handle f � Vertex handle v)

makes v an isolated vertex of f .

Cloning

void D� clone(Plane map H)

clones H into P. Afterwards P is a copy of H.
Precondition: H � check integrity and topological planarity

� � and P is empty.

template
�
typename LINKDA

�

void D� clone skeleton(Plane map H � LINKDA L)

clones the skeleton of H into P. Afterwards P is a copy of H. The link data accessor
allows to transfer information from the old to the new objects. It needs the function call
operators:
void operator

� � � Vertex handle vn � Vertex const handle vo � const
void operator

� � � Halfedge handle hn � Half edge const handle ho � const
where vn � hn are the cloned objects and vo � ho are the original objects.
Precondition: H � check integrity and topological planarity

� � and P is empty.

Associated Information

Point& D� point(Vertex handle v)

returns the embedding of v.

Mark& D� mark(Vertex handle v)

returns the mark of v.
Mark& D� mark(Halfedge handle e)

returns the mark of e.
Mark& D� mark(Face handle f )

returns the mark of f .

GenPtr& D� info(Vertex handle v)

returns a generic information slot.

GenPtr& D� info(Halfedge handle e)

returns a generic information slot.

GenPtr& D� info(Face handle f )

returns a generic information slot.

4.2.5 Extended Kernel Traits ( ExtendedKernelTraits 2 )

1. Definition

ExtendedKernelTraits 2 is a kernel concept providing extended geometry23. Let K be an instance of the data
type ExtendedKernelTraits 2. The central notion of extended geomtry are extended points. An extended point
represents either a standard affine point of the Cartesian plane or a non-standard point representing the equiva-
lence class of rays where two rays are equivalent if one is contained in the other.

Let R be an infinimaximal number24, F be the square box with corners NW
�

� R � R � , NE
�
R � R � , SE

�
R � � R � , and

SW
�

� R � � R � . Let p be a non-standard point and let r be a ray defining it. If the frame F contains the source

23It is called extended geometry for simplicity, though it is not a real geometry in the classical sense.
24A finite but very large number.
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point of r then let p
�
R � be the intersection of r with the frame F , if F does not contain the source of r then

p
�
R � is undefined. For a standard point let p

�
R � be equal to p if p is contained in the frame F and let p

�
R �

be undefined otherwise. Clearly, for any standard or non-standard point p, p
�
R � is defined for any sufficiently

large R. Let f be any function on standard points, say with k arguments. We call f extensible if for any k points
p1, � � � , pk the function value f

�
p1
�
R � � � � � � pk

�
R � � is constant for all sufficiently large R. We define this value

as f
�
p1 � � � � � pk � . Predicates like lexicographic order of points, orientation, and incircle tests are extensible.

An extended segment is defined by two extended points such that it is either an affine segment, an affine ray, an
affine line, or a segment that is part of the square box. Extended directions extend the affine notion of direction
to extended objects.

This extended geometry concept serves two purposes. It offers functionality for changing between standard
affine and extended geometry. At the same time it provides extensible geometric primitives on the extended
geometric objects.

2. Types

Affine kernel types

ExtendedKernelTraits 2 ::Standard kernel the standard affine kernel.

ExtendedKernelTraits 2 ::Standard RT the standard ring type.

ExtendedKernelTraits 2 ::Standard point 2 standard points.

ExtendedKernelTraits 2 ::Standard segment 2 standard segments.

ExtendedKernelTraits 2 ::Standard line 2 standard oriented lines.

ExtendedKernelTraits 2 ::Standard direction 2 standard directions.

ExtendedKernelTraits 2 ::Standard ray 2 standard rays.

ExtendedKernelTraits 2 ::Standard aff transformation 2 standard affine transformations.

Extended kernel types

ExtendedKernelTraits 2 ::RT the ring type of our extended kernel.

ExtendedKernelTraits 2 ::Point 2 extended points.

ExtendedKernelTraits 2 ::Segment 2 extended segments.

ExtendedKernelTraits 2 ::Direction 2 extended directions.

ExtendedKernelTraits 2 :: Point type � SWCORNER, LEFTFRAME, NWCORNER, BOTTOMFRAME,
STANDARD, TOPFRAME, SECORNER, RIGHTFRAME, NECORNER �

a type descriptor for extended points.

3. Operations

Interfacing the affine kernel types

Point 2 K � construct point(Standard point 2 p)

creates an extended point and initializes it to the standard point p.

Point 2 K � construct point(Standard line 2 l)

creates an extended point and initializes it to the equivalence class
of all the rays underlying the oriented line l.

Point 2 K � construct point(Standard point 2 p1 � Standard point 2 p2)

creates an extended point and initializes it to the equivalence class
of all the rays underlying the oriented line l

�
p1 � p2 � .

Point 2 K � construct point(Standard point 2 p � Standard direction 2 d)

creates an extended point and initializes it to the equivalence class
of all the rays underlying the ray starting in p in direction d.
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Point 2 K � construct opposite point(Standard line 2 l)

creates an extended point and initializes it to the equivalence class
of all the rays underlying the oriented line opposite to l.

Point type K � type(Point 2 p) determines the type of p and returns it.

bool K � is standard(Point 2 p) returns true iff p is a standard point.

Standard point 2 K � standard point(Point 2 p)

returns the standard point represented by p. Precondition:
K � is standard

�
p � .

Standard line 2 K � standard line(Point 2 p) returns the oriented line representing the bundle of rays defining
p. Precondition: !K � is standard

�
p � .

Standard ray 2 K � standard ray(Point 2 p) a ray defining p. Precondition: !K � is standard
�
p � .

Point 2 K � NE() returns the point on the northeast frame corner.

Point 2 K � SE() returns the point on the southeast frame corner.

Point 2 K � NW() returns the point on the northwest frame corner.

Point 2 K � SW() returns the point on the southwest frame corner.

Geometric kernel calls

Point 2 K � source(Segment 2 s) returns the source point of s.

Point 2 K � target(Segment 2 s) returns the target point of s.

Segment 2 K � construct segment(Point 2 p � Point 2 q)

constructs a segment pq.

int K � orientation(Segment 2 s � Point 2 p)

returns the orientation of p with respect to the line through s.

int K � orientation(Point 2 p1 � Point 2 p2 � Point 2 p3)

returns the orientation of p3 with respect to the line through p1p2.

bool K � leftturn(Point 2 p1 � Point 2 p2 � Point 2 p3)

return true iff the p3 is left of the line through p1p2.

bool K � is degenerate(Segment 2 s)

return true iff s is degenerate.

int K � compare xy(Point 2 p1 � Point 2 p2)

returns the lexicographic order of p1 and p2.

int K � compare x(Point 2 p1 � Point 2 p2)

returns the order on the x-coordinates of p1 and p2.

int K � compare y(Point 2 p1 � Point 2 p2)

returns the order on the y-coordinates of p1 and p2.

Point 2 K � intersection(Segment 2 s1 � Segment 2 s2)

returns the point of intersection of the lines supported by s1 and
s2. Precondition: the intersection point exists.

Direction 2 K � construct direction(Point 2 p1 � Point 2 p2)

returns the direction of the vector p2 - p1.

bool K � strictly ordered ccw(Direction 2 d1 � Direction 2 d2 � Direction 2 d3)

returns true iff d2 is in the interior of the counterclockwise angu-
lar sector between d1 and d3.
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bool K � strictly ordered along line(Point 2 p1 � Point 2 p2 � Point 2 p3)

returns true iff p2 is in the relative interior of the segment p1p3.

bool K � contains(Segment 2 s � Point 2 p)

returns true iff s contains p.

bool K � first pair closer than second(Point 2 p1 � Point 2 p2 � Point 2 p3 � Point 2 p4)

returns true iff
�
p1 � p2

�
�

�
p3 � p4

�
.

char � K � output identifier( ) returns a unique identifier for kernel object input/output.

4.2.6 Polynomials in one variable ( RPolynomial )

1. Definition

An instance p of the data type RPolynomial
�
NT

�
represents a polynomial p � a0 � a1x � � � � adxd from the ring

NT � x � . The data type offers standard ring operations and a sign operation which determines the sign for the
limit process x � ∞.

NT � x � becomes a unique factorization domain, if the number type NT is either a field type (1) or a unique
factorization domain (2). In both cases there’s a polynomial division operation defined.

2. Types

RPolynomial
�
NT

�
::NT the component type representing the coefficients.

RPolynomial
�
NT

�
::const iterator a random access iterator for read-only access to the coefficient vector.

3. Creation

RPolynomial
�
NT

�
p;

introduces a variable p of type RPolynomial
�
NT

�
of undefined value.

RPolynomial
�
NT

�
p(NT a0);

introduces a variable p of type RPolynomial
�
NT

�
representing the constant polynomial

a0.

RPolynomial
�
NT

�
p(NT a0 � NT a1);

introduces a variable p of type RPolynomial
�
NT

�
representing the polynomial a0 � a1x.

RPolynomial
�
NT

�
p(NT a0 � NT a1 � NT a2);

introduces a variable p of type RPolynomial
�
NT

�
representing the polynomial a0 � a1x �

a2x2.

template
�
class Forward iterator

�

RPolynomial
�
NT

�
p(Forward iterator first � Forward iterator last);

introduces a variable p of type RPolynomial
�
NT

�
representing the polynomial whose co-

efficients are determined by the iterator range, i.e. let
�
a0
� � first � a1 � � � � first � � � � ad �

� it � , where � � it � � last then p stores the polynomial a1 � a2x � � � � adxd .

4. Operations

int p� degree() the degree of the polynomial.

const NT& p � unsigned int i � the coefficient ai of the polynomial.

const iterator p� begin() a random access iterator pointing to a0.

const iterator p� end() a random access iterator pointing beyond ad .
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NT p� eval at(NT R) evaluates the polynomial at R.

CGAL ::Sign p� sign() returns the sign of the limit process for x � ∞ (the sign of the leading
coefficient).

bool p� is zero() returns true iff p is the zero polynomial.

RPolynomial
�
NT

�
p� abs( ) returns � p if p� sign

� � � � NEGATIVE and p otherwise.

NT p� content( ) returns the content of p (the gcd of its coefficients). Precondition:
Requires NT to provide a gdc operation.

Additionally RPolynomial
�
NT

�
offers standard arithmetic ring opertions like � � � � � � � � � � � � � � . By means

of the sign operation we can also offer comparison predicates as � � � �
�

��� . Where p1 � p2 holds iff sign
�
p1 �

p2 � � 0. This data type is fully compliant to the requirements of CGAL number types.

RPolynomial
�
NT

�
p1 � p2 implements polynomial division of p1 and p2. if p1 � p2 � p3 then p2 is

returned. The result is undefined if p3 does not exist in NT � x � . The correct
division algorithm is chosen according to a traits class ring or field

�
NT

�

provided by the user. If ring or f ield
�
NT

�
:: kind � � ring with gcd then

the division is done by pseudo division based on a gcd operation of NT .
If ring or f ield

�
NT

�
::kind � � f ield with div then the division is done by

euclidean division based on the division operation of the field NT .
Note that NT � int quickly leads to overflow errors when using this opera-
tion.

Non member functions

RPolynomial
�
NT

�
gcd(RPolynomial

�
NT

�
p1 � RPolynomial

�
NT

�
p2)

returns the greatest common divisor of p1 and p2. Note that NT � int
quickly leads to overflow errors when using this operation. Precondition:
Requires NT to be a unique factorization domain, i.e. to provide a gdc op-
eration.

void pseudo div(RPolynomial
�
NT

�
f � RPolynomial

�
NT

�
g � RPolynomial

�
NT

�
& q �

RPolynomial
�
NT

�
& r� NT& D)

implements division with remainder on polynomials of the ring NT � x � : D �

f � g � q � r. Precondition: NT is a unique factorization domain, i.e., there
exists a gcd operation and an integral division operation on NT .

void euclidean div(RPolynomial
�
NT

�
f � RPolynomial

�
NT

�
g � RPolynomial

�
NT

�
& q �

RPolynomial
�
NT

�
& r)

implements division with remainder on polynomials of the ring NT � x � : f �

g � q � r. Precondition: NT is a field, i.e., there exists a division operation
on NT .

5. Implementation

This data type is implemented as an item type via a smart pointer scheme. The coefficients are stored in a vector
of NT entries. The simple arithmetic operations � � � take time O

�
d � T

�
NT � � , multiplication is quadratic in

maximal degree of the arguments times T
�
NT � , where T

�
NT � is the time for a corresponding operation on two

instances of the ring type.

Range template

template
�
class Forward iterator

�

typename std ::iterator traits
�
Forward iterator

�
::value type

gcd of range(Forward iterator its � Forward iterator ite)

calculates the greates common divisor of the set of numbers
� � its � � � � its � � � � � � it � of type NT , where � � it � � ite and NT is the
value type of Forward iterator. Precondition: there exists a pairwise gcd
operation NT gcd

�
NT � NT � and its ! � ite.
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Plane Map Overlay ( PM overlayer )

1. Definition

An instance O of data type PM overlayer
�
PMD � GEO

�
is a decorator object offering plane map overlay calcu-

lation. Overlay is either calculated from two plane maps or from a set of segments. The result is stored in a
plane map P that carries the geometry and the topology of the overlay.

The two template parameters allow to adapt the overlay calculation to different scenarios. The template pa-
rameter PMD has to be a model conforming to our plane map decorator concept PMDecorator. The concept
describes the interface how the topological information stored in P can be extracted. The geometry GEO has to
be a model conforming to the concept OverlayerGEO2.

The overlay of a set of segments S is stored in a plane map P �
�
V � E � F � . Vertices are either the endpoints of

segments (trivial segments are allowed) or the result of a non-degenerate internal intersection of two segments.
Between two vertices there’s an edge if there’s a segment that supports the straight line embedding of e and if
there’s no vertex in the relative interior of the embedding of e.

The faces refer to the maximal connected open point sets of the planar subdivision implied by the embedding
of the vertices and edges. Faces are bounded by possibly several face cycles25 including isolated vertices. The
overlay process in the method create creates the objects, the topology of the result and allows to link the plane
map objects to input segments by means of a data accessor. The method starts from zero- and one-dimensional
geometric objects in S and produces a plane map P where each point of the plane can be assigned to an object
(vertex, edge, or face) of P.

The overlay of two plane maps Pi
�
�
Vi � Ei � Fi � has the additional aspect that we already start from two planar

subdivisions. We use the index i � 0 � 1 defining the reference to Pi, unindexed variables refer to the resulting
plane map P. The 1-skeleta of the two maps subdivide the edges and faces of the complementary structure into
smaller units. This means vertices and edges of Pi can split edges of P1 � i and face cycles of Pi subdivide faces
of P1 � i. The 1-skeleton P � of P is defined by the overlay of the embedding of the 1-skeleta of P0 and P1 (Take a
trivial segment for each vertex and a segment for each edge and use the overlay definition of a set of segments
above). The faces of P refer to the maximal connected open point sets of the planar subdivision implied by the
embedding of P � . Each object from the output tuple

�
V � E � F � has a supporting object ui in each of the two input

structures. Imagine the two maps to be transparencies, which we stack. Then each point of the plane is covered
by an object from each of the input structures. This support relation from the input structures to the output
structure defines an information flow. Each supporting object ui of u

�
i � 0 � 1 � carries an attribute mark

�
ui � .

After the subdivision operation this attribute is associated to the output object u by mark
�
u � i � .

2. Generalization

PMD
�

PM overlayer
�
PMD � GEO

�

3. Types

PM overlayer
�
PMD � GEO

�
::Decorator the plane map decorator PMD.

PM overlayer
�
PMD � GEO

�
::Plane map the plane map type decorated by PMD.

PM overlayer
�
PMD � GEO

�
::Geometry the geometry kernel GEO.

PM overlayer
�
PMD � GEO

�
::Point the point type of the geometric kernel, Precondition:

Point equals Plane map ::Point.

PM overlayer
�
PMD � GEO

�
::Segment the segment type of the geometric kernel.

PM overlayer
�
PMD � GEO

�
::Mark the attribute type of plane map objects.

25For the definition of plane maps and their concepts see the manual page of PMConstDecorator.
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4. Creation

PM overlayer
�
PMD � GEO

�
O(Plane map& P� Geometry g � Geometry

� � );
O is a decorator object manipulating P.

5. Operations

template
�
typename Forward iterator � typename Object data accessor

�

void O� create(Forward iterator start � Forward iterator end � Object data accessor& A)

produces in P the plane map consistent with the overlay of the segments from the iterator range
� start � end � . The data accessor A allows to initialize created vertices and edges with respect to
the segments in the iterator range. A requires the following methods:������
 � ���	� ��*	� ���� ��� 0� �����<�-&�(���)���
 �� ( (���
����,� � ����*)+�(�*�
 � ����*�(�����* � ��#
������
,�	* ������(�� ��� C�������<������*	����� ( (���
����,��� ����*)+ (�*	
 � ����*�(�����* � ��#
������
 ����(�*	�����' ����0��������������*	��� � ( (���
����,��� ����*)+ (�*�
 ������*�(�����* � ��#
������
�� (��	������ ��� C�������<������*	����� ( (���
����,��� ����*)+ (�*	
 � ����*�(�����* � ��#
������
 ����
 ���� ��� 0�������<������*	��� � (�(���
����
��� ����*)+ (�*�
 � ����*�(�����* ����#

where supporting segment is called for each non-trivial segment � it supporting a newly created
edge e, trivial segment is called for each trivial segment � it supporting a newly created vertex
v, and the three last operations are called for each non-trivial segment � it starting at/passing
through/ending at the embedding of a newly created vertex v. Precondition: Forward iterator
has value type Segment.

void O� subdivide(Plane map P0 � Plane map P1)

constructs the overlay of the plane maps P0 and P1 in P, where all objects (vertices, halfedges,
faces) of P are enriched by the marks of the supporting objects of the two input structures: e.g. let
v be a vertex supported by a node v0 in P0 and by a face f1 in P1 and D0, D1 be decorators of type
PM decorator on P0,P1. Then O� mark

�
v � 0 � � D0� mark

�
v0 � and O� mark

�
v � 1 � � D1� mark

�
f1 � .

template
�
typename Selection

�

void O� select(Selection& predicate)

sets the marks of all objects according to the selection predicate predicate. Selection has to be a
function object type with a function operator��(�*'$3������*�(�����*<�8#>����(�*'$ � D ����(�*'$ �#?�#
For each object u of P enriched by the marks of the supporting objects according to the previous
procedure subdivide, after this operation O� mark

�
u � � predicate

�
O� mark

�
u � 0 � � O� mark

�
u � 1 � � .

The additional marks are invalidated afterwards.

template
�
typename Keep edge

�

void O� simplify(Keep edge keep)

simplifies the structure of P according to the marks of its objects. An edge e separating two
faces f1 and f2 and equal marks mark

�
e � � � mark

�
f1 � � � mark

�
f2 � is removed and the faces

are unified. An isolated vertex v in a face f with mark
�
v � � � mark

�
f � is removed. A vertex v

with outdegree two, two collinear out-edges e1,e2 and equal marks mark
�
v � � � mark

�
e1 � � �

mark
�
e2 � is removed and the edges are unified. The data accessor keep requires the function call

operator� �	���,������*�(�����*<�8#>�-&�(���)���
)�� ( (���
����,��#

that allows to avoid the simplification for edge pairs referenced by e.

4.2.1 Output traits for segment overlay ( SegmentOverlayOutput )

1. Definition

This is the plane map decorator concept for the PMDEC template parameter of PM seg overlay traits.
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2. Types

SegmentOverlayOutput::Vertex handle

the vertex handle.
SegmentOverlayOutput::Halfedge handle

the halfedge handle.

SegmentOverlayOutput::Point 2

embedding type. Precondition: Point 2 equals GEOM ::Point 2.

3. Creation

Let G be an object of type SegmentOverlayOutput.

4. Operations

Vertex handle G� new vertex(Point 2 p) creates a new vertex in the output structure and embeds it via the
point p.

void G� link as target and append(Vertex handle v � Halfedge handle e)

makes v the target of e and appends the twin of e (its reversal
edge) to v’s adjacency list.

Halfedge handle G� new halfedge pair at source(Vertex handle v)

returns a newly created edge inserted before the first edge of the
adjacency list of v. It also creates a reversal edge whose target is
v.

Additional sweep information

The iterator type ITERATOR has to be the same type as the first type parameter of Segment overlay traits.

void G� supporting segment(Halfedge handle e � ITERATOR it)

the non-trivial segment � it supports the edge e.

void G� trivial segment(Vertex handle v � ITERATOR it)

the trivial segment � it supports vertex v.

void G� halfedge below(Vertex handle v � Halfedge handle e)

associates the edge e as the edge below v.

void G� starting segment(Vertex handle v � ITERATOR it)

the segment � it starts in v.

void G� passing segment(Vertex handle v � ITERATOR it)

the segment � it passes v (contains it in its relative interior) .

void G� ending segment(Vertex handle v � ITERATOR it)

the segment � it ends in v.

4.2.2 Geometry for segment overlay ( SegmentOverlayGeometry 2 )

1. Definition

SegmentOverlayGeometry 2 is a kernel concept providing affine geometry for the overlay of segment. The
concept specifies geometric types, predicates, and constructions.

2. Types

Local types are Point 2, Segment 2, the ring type RT, and the field type FT . See the CGAL 2d kernel for a
description of RT and FT .
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3. Creation

The kernel must be default and copy constructible. Let K be an object of type SegmentOverlayGeometry 2.

4. Operations

Point 2 K � source(Segment 2 s) returns the source point of s.

Point 2 K � target(Segment 2 s) returns the target point of s.

bool K � is degenerate(Segment 2 s)

return true iff s is degenerate.

int K � compare xy(Point 2 p1 � Point 2 p2)

returns the lexicographic order of p1 and p2.

Segment 2 K � construct segment(Point 2 p � Point 2 q)

constructs a segment pq.

int K � orientation(Segment 2 s � Point 2 p)

returns the orientation of p with respect to the line through s.

Point 2 K � intersection(Segment 2 s1 � Segment 2 s2)

returns the point of intersection of the lines supported by s1 and
s2. The algorithm asserts that this intersection point exists.

4.2.3 A Generic Plane Sweep Framework ( generic sweep )

1. Definition

The data type generic sweep
�
T
�

provides a general framework for algorithms following the plane sweep
paradigm. The plane sweep paradigm can be described as follows. A vertical line sweeps the plane from left
to right and constructs the desired output incrementally left behind the sweep line. The sweep line maintains
knowledge of the scenery of geometric objects and stops at points where changes of this knowledge relevant for
the output occur. These points are called events.

A general plane sweep framework structures the execution of the sweep into phases and provides a storage
place for all data structures necessary to execute the sweep. An object GS of type generic sweep

�
T
�

maintains
an object of type T which generally can be used to store necessary structures. The content is totally dependent
of the sweep specification and thereby varies within the application domain of the framework.

The traits class T has to provide a set of types which define the input/output interface of the sweep: the input
type INPUT, the output type OUTPUT , and a geometry kernel type GEOMETRY.

The natural phases which determine a sweep are

%'% ����� �����'	�� � �	��� � �
���0� ����(�� �CB��'�����	*�� �����*	� �>��# =
�( � C$�� ������(�*���(������ ��# =
%'% � �
�	�	��	 � � �+'(0����� � � �����	����� ������� � �8# #�.
��*�� �� �	����� �����	�<�8# =
�(�� C$�� �8����(�*���(���� � � # =
��*�� ���
��'����������� �	�����0�����	�<��# =

/

%'% 3 � �	��	������ � �
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���� ������������� �	*��������*�� �0�8#>=
�( � C$���) ��� (	� �8# =

Initialization – initializing the data structures, ensuring preconditions, checking invariants

Sweep Loop – iterating over all events, while handling the event stops, ensuring invariants and the soundness
of all data structures and maybe triggering some animation tasks.

Completion – cleaning up some data structures and completing the output.

The above subtasks are specified in the traits concept GenericSweepTraits.

2. Types

generic sweep
�
T
�

::TRAITS the traits class

generic sweep
�
T
�

::INPUT the input interface.

generic sweep
�
T
�

::OUTPUT the output container.

generic sweep
�
T
�

::GEOMETRY the geometry kernel.

3. Creation

generic sweep
�
T
�

PS(INPUT input � OUTPUT& output � GEOMETRY geometry � GEOMETRY
� � );

creates a plane sweep object for a sweep on objects determined by input
and delivers the result of the sweep in output. The traits class T specifies
the models of all types and the implementations of all methods used by
generic sweep

�
T
�
. At this point, it suffices to say that INPUT represents the

input data type and OUTPUT represents the result data type. The geometry
is an object providing object bound, geometry traits access.

generic sweep
�
T
�

PS(OUTPUT& output � GEOMETRY geometry � GEOMETRY
� � );

a simpler call of the above where output carries also the input.

4. Operations

void PS� sweep() execute the plane sweep.

5. Example

A typical sweep based on generic sweep
�
T
�

looks like the following little program:

�	;�� ��
	��) ����
 $�$-� ��������� � � ��� ��$	$-���������� ������*	(�����*9� ����*�(�����* =
�	;�� ��
	��) ����
 $�$7� (�� *�� � ����*�(�����* ��� �	��*�(�����* �"� ����*�(�����*���� (�� *<=
����
 $	$1� ����� ��� � � �	��� � =&%'%9)����	� ���	�	�	�4 �'�	�	&���� � � ������	�� ��� � 4 =&%'%,� ( �3�������	������� ��* �� ����+��	��������*���(��)����*+ ���������	*	(���� ���
�	* ��(����� ��(�������� �8� ����*�(�����*�����(�� * �-� . �������� ��# � � .1����
���#�#G� 4 # =

�	*���(��'�����(�� �����6. �*+ �������8#>=

6. Events

To enable animation of the sweep there are event hooks inserted which allow an observer to attach certain
visualization actions to them. There are four such hooks:

PS� post init hook
�
TRAITS& � triggered just after initialization.

PS� pre event hook
�
TRAITS& � triggered just before the sweep event.

PS� post event hook
�
TRAITS& � triggered just after the sweep event.
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PS� post completion hook
�
TRAITS& � triggered just after the completion phase.

All of these are triggered during the sweep with the instance of the TRAITS class that is stored inside the plane
sweep object. Thus any animation operation attached to a hook can work on that class object which maintains
the sweep status.

4.2.4 Traits concept for the generic sweep ( GenericSweepTraits )

1. Definition

GenericSweepTraits is the concept for the template parameter T of the generic plane sweep class
generic sweep

�
T
�
. It defines the interface that has to be implemented to adapt the generic sweep framework to

a concrete instance.

2. Types

GenericSweepTraits ::INPUT the input interface.

GenericSweepTraits ::OUTPUT the output container.

GenericSweepTraits ::GEOMETRY

the geometry used.

3. Creation

GenericSweepTraits T (INPUT in � OUTPUT& out � GEOMETRY geom);

creates an object T of type GenericSweepTraits, and allows thereby to transport the in-
put/output data into the traits class.

GenericSweepTraits T (OUTPUT& out � GEOMETRY geom);

creates an object T of type GenericSweepTraits, and allows thereby to transport the in-
put/output data into the traits class.

4. Operations

void T � initialize structures( ) codes initialization of structures before the sweep loop.

bool T � event exists( ) codes loop control at the beginning of the sweep loop body.

void T � procede to next event( ) codes loop progress at the end of the sweep loop body.

void T � process event( ) codes the actual event handling (the loop body).

void T � complete structures( ) codes the completion phase after the sweep loop.

void T � check invariants( ) allows checking sweep loop invariants.

void T � check final( ) allows checking of final invariants (after completion).
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4.3 English Summary

This thesis presents research and software engineering in the field of computational geometry. Com-
putational geometry is the scientific field of computer science that tackles geometric problems and
provides efficient algorithms for their solution. Our aim is to provide algorithms and implementations
thereof that are sound in theory and prove their efficiency in implementations. When implementing
software, the last step of packaging and offering it to potential users in the outside world — whether
the computer science community or experts from other sciences — is still a major task. This work
tries to document the whole process: the theoretical basics, the software design, and the software as
part of a software library project.

This thesis describes two software components and their underlying theory. Its results are mainly
located in the domain of software engineering but we also present an extension of classical Euclidean
geometry that was established in the research for the realization of Nef polyhedra. Our software
modules are strongly anchored in and supported by the underlying theory.

The practical part of this work had an impact on and is based on the two software libraries LEDA
and CGAL. Both are software libraries that offer solutions to problems in the domain of computational
geometry. Where LEDA offers an easy but monolithic approach to its data structures and algorithms,
more ambitious techniques are used in CGAL. CGAL is designed in the spirit of generic program-
ming and in this sense is also a software engineering experiment that tries to exploit C++ template
technology to the extreme. The use of templates allows pattern-based compile-time polymorphism
as opposed to execution-time polymorphism via inheritance and virtual functions. Only template
technology offers code composition at compile-time without runtime penalties.

The first part of the thesis describes a module offering higher-dimensional Euclidean geometry.
It describes the objects and primitives that support the development of geometric algorithms in d-
space. Our contribution is the design of the interface consisting of the objects together with predicates
and constructions. Special care was taken to refine the concepts that allow generic adaptation of
the kernel from the original monolithic design, e.g., the number types and their docking into the
kernel functionality via a linear algebra module. To enhance usability the representation-based kernel
families can at the same time be used as traits classes in the instantiation of application classes. The
traits classes here encapsulate the geometric primitives that control the logical flow of algorithms.
This is one general design pattern of CGAL starting with version 2.3.

Our second project concerns the design and implementation of planar Nef polyhedra. The corre-
sponding abstract definition of this polyhedral framework was founded by the Swiss mathematician
W. Nef. Our design uses plane maps for the topological description (finite representation) of planar
Nef polyhedra. To unify the treatment of the finite and infinite character of the vertices we use ex-
tended points as introduced in the third chapter of this thesis. The strength of this design is its clear
separation of the special geometric demands of Nef polyhedra from the topological structure used
to represent them. We can thereby show that standard affine plane map overlay as presented in the
algorithmic part of the second chapter can be used transparently for the solution of the geometrically
unbounded but symbolically bounded overlay problem that is part of the binary operations of Nef
polyhedra.

We introduce the notion of infimaximal frames as an extension of affine geometry. Although it
is a vital part in the realization of Nef polyhedra it has also further applications. We present the
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theory and describe the implementation of three extended kernels as used for the Nef polyhedron
software. We use simple but efficient algebraic techniques that aim for different strengths. Two
kernels trade efficiency for simplicity. In these kernels, a polynomial ring type is used to realize the
arithmetic operations that occur in the implementation of kernel predicates and constructions. Thereby
the original geometric complexity with respect to the embedding of affine and frame-supported points
is transferred into algebraic complexity that can easily be processed by the polynomial data type.
The strength of this implementation is its verifiable correctness. The third kernel trades simplicity
for efficiency. We use standard filtering techniques and unroll the occurring algebraic expressions
explicitly to obtain a runtime optimized kernel.

Generic programming is programming with concepts and models where models are concrete re-
alizations of the abstract concepts. Unfortunately the C++ language constructs and the corresponding
compilers only weakly support the checking of whether models fit concepts during the instantiation
process. Rendering generic software modules useful requires a major documentation effort. The rea-
sonable design of the concepts, the correct implementation of their models, but also their expressive
documentation are unavoidable requirements for good software design. This thesis describes all facets
in a literate programming style. We give the abstract motivation for the design, show the techniques
used to implement the modules and cite excerpts from the documentation in the appendix.

What is gained by genericity? Generic programming allows code extension and adaptation with-
out cut-and-paste programming. Code can easily be tuned and adapted towards a user’s needs. Generic
composition supports the reuse of software in a well-defined way. Moreover, it allows experimental
exchange of models and fast prototyping.

4.4 Deutsche Zusammenfassung

Diese Arbeit beschreibt Forschungsergebnisse und Softwareentwicklung im Gebiet der algorithmis-
chen Geometrie. Die algorithmische Geometrie bildet ein Gebiet innerhalb der Informatik, das sich
hauptsächlich mit der Lösung von geometrischen Problemen durch resourceneffiziente Algorithmen
befasst. Die vollständige Umsetzung dieses Ansatzes erfordert Algorithmen, die theoretisch korrekt
sind, und entsprechende Implementierungen, die auch im praktischen Laufzeitvergleich ihre Effizienz
unter Beweis stellen. Wenn man diese Software einer breiteren Benutzergruppe zur Verfügung stellen
will — aus der Informatik oder sogar anderen Wissenschaftsgebieten, verbleibt nach der Implemen-
tierung noch die Aufgabe, die Software entsprechend aufzubereiten und zu dokumentieren. Der letzte
Schritt ist ein nicht-trivialer Teil der Ingenieuraufgabe. Wir dokumentieren hier den gesamten Prozess:
die theoretischen Grundlagen, das Software-Design und die Software als Teil einer Softwarebiblio-
thek.

In dieser Arbeit werden zwei Softwarekomponenten zusammen mit der zu Grunde liegenden The-
orie dargestellt. Hauptergebnisse sind die ingenieurtechnische Entwicklung der Module aber auch
eine Erweiterung des Punkt und Segmentbegriffs der klassischen euklidischen Geometrie. Diese Er-
weiterung wurde bei der Realisierung von planaren Nef-Polyedern benutzt und ihre Realisierbarkeit
und Effizient damit nachgewiesen. Beide Softwaremodule sind in der entsprechenden Theorie ver-
ankert.
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Der praktische Anteil dieser Arbeit basiert auf den zwei Softwarebibliotheken LEDA und CGAL
und die entsprechenden Module sind auch darin integriert. Beide Softwarebibliotheken bieten
Lösungen zu klassischen Problemen der algorithmische Geometrie, teilweise mit unterschiedlichen
Philosophien. LEDA bietet einen einfacheren Zugang und folgt dabei einem monolithischen Ent-
wurf der Datenstrukturen und Algorithmen. CGAL dagegen basiert auf aufwendigeren Techniken
und realisiert die Idee generischer Programmierung. Der generische Ansatz basiert auf der inten-
siven Nutzung der C++-Template-Technologie. Weil diese sich nach wie vor weiterentwickelt und die
entsprechenden Compiler noch lange nicht den definierten Technologiestandard erreichen, ist CGAL
auch ein Softwareengineering-Experiment. Mit Hilfe der C++-Template-Technologie realisiert man
schnittstellenbasierte generische Programmmodule, die zur Compilezeit zusammengesetzt werden
können (Compilezeit-Polymorphismus). Dieser Ansatz vermeidet die entsprechenden Laufzeitein-
bußen, die im klassischen objektorientierten Polymorphismus auftreten, wo Ableitungshierarchien
und virtuelle Funktionen benutzt werden.

Der erste Teil dieser Arbeit beschreibt einen Geometriekern, der höherdimensionale euklidi-
sche Geometrie zur Verfügung stellt. Es werden die geometrischen Objekte, ihre Interaktion
und die entsprechenden geometrischen Prädikate und Konstruktionen vorgestellt. Die sich da-
raus zusammensetzende Schnittstelle erlaubt die schnellere Realisierung von Algorithmen, denen
höherdimensionale geometrische Problemstellungen zu Grunde liegen. Um eine flexible Benutzung
zu ermöglichen, wurden Konzepte, wie z.B. Zahlentypen und intern verwendeten Algorithmen der
lineare Algebra, herausgearbeitet und die generischen Schnittstellen und die ihnen entsprechenden
Softwaremodelle dokumentiert. Letzteres erlaubt den Austausch der angebotenen Modelle, um in
unterschiedlichen Anwendersituationen die optimale Realisierung der Konzepte zu ermöglichen. Um
die Anwendbarkeit des Geometriekerns zu erhöhen und die Benutzung zu vereinfachen wurden die
realisierten Kernfamilien (basierend auf Koordinatenrepräsentation) so entworfen, dass sie direkt als
Traitsklassen in den entsprechenden Anwendungsprogrammen verwendet werden können. Dies ist
ein allgemeines Softwareentwurfsmuster in CGAL ab Version 2.3.

Unser zweites Projekt befasst sich mit dem Entwurf und der Implementierung eines Datentyps zur
Realisierung planarer Nef-Polyeder. Die zu Grunde liegende Theorie wurde von dem schweizer Math-
ematiker W. Nef verfasst. Unsere Realisierung benutzt planare Karten für die topologischen Beschrei-
bung der Elemente eines planaren Nef-Polyeders und ihrer Inzidenzen. Die geometrische Kompo-
nente unseres Ansatzes liefert die geometrische Einbettung der Elemente und dient dazu, die auftre-
tenden endlichen und unendlichen Strukturen in ihrer Behandlung zu vereinheitlichen. Dazu führen
wir infimaximale Rahmen und damit zusammenhängend erweiterte Punkte und Segmente ein. Die
Stärke unseres Ansatzes liegt einerseits in der klaren Trennung von topologischen und geometrischen
Sachverhalten und andererseits in der möglichen transparenten Behandlung der erweiterten Objekte.
Letztlich können wir zeigen, dass bekannte algorithmische Verfahren der affinen Geometrie auch auf
unseren erweiterten geometrischen Objekten arbeiten. Aufbauend auf einem generischen Modul zur
Überlagerung planarer Karten wird direkte Code-Wiederverwendung möglich. Die geometrisch un-
begrenzte Ausdehnung von Nef-Polyedern wird durch unseren Ansatz symbolisch abgeschlossen und
mit unserem generisches Standarverfahren können wir die binären Mengenoperationen des Datentyps,
wie z.B. Schnitt und Vereinigung, relativ einfach realisieren.
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Im zweiten Kapitel führen wir infimaximale Rahmen als einfache Erweiterung der affinen Ge-
ometrie ein. Die ausgearbeitete Theorie dient zur Realisierung der Nef-Polyeder, hat aber auch andere
Anwendungen. Wir beschreiben drei verschiedene Implementierungen basierend auf Polynomarith-
metik. Die Realisierungen unterscheiden sich hinsichtlich der Einfachheit der Umsetzung und ihrer
Effizienz. Bei den ersten beiden (basierend auf homogener und kartesischer Komponentendarstellung)
steht die programmiertechnische Überschaubarkeit im Mittelpunkt. Mit Hilfe eines Polynomzahlen-
typs, der zusammen mit den 2-dimensionalen CGAL Standardgeometriekernen benutzt wird, real-
isieren wir unsere erweiterten Objekte und die entsprechenden Prädikate. Die Korrektheit unseres
Moduls basiert auf der Korrektheit der CGAL Kerne und unseres Zahlentyps. Letzterer realisiert al-
gebraische Standardtechniken und ist daher einfach zu verifizieren. Die dritte Realisierung wiederum
ist laufzeittechnisch optimiert. Die auftretenden algebraischen Ausdrücke werden explizit mit vielen
Fallunterscheidungen ausprogrammiert und durch arithmetische Filtertechniken werden die Kosten
von Langzahlarithmetikaufrufen möglichst minimiert.

Alle unsere Softwaremodule nutzen den Ansatz generischer Programmierung, d.h. man pro-
grammiert mit Konzepten und Modellen, wobei Modelle hier konkrete Realisierungen der abstrakten
Konzepte sind. Leider existieren weder Sprachkonstrukte in C++, noch stellen die Compiler nen-
nenswerte Hilfsmittel zur Verfügung, um die Übereinstimmung von Konzept und Modell zu testen.
Daher erfordert generisches Programmieren einen entsprechenden Aufwand zur Dokumentation der
verwendeten Schnittstellen. Diese Arbeit versucht den Entwurfsprozess komplett zu dokumentieren:
die abstrakt erarbeiteten Konzepte, die entsprechenden Realisierungen (Modelle) derselben, und
Auszüge aus der Dokumentation im Anhang. In den Implementierungsdarstellungen verwenden wir
“literate programming” zur Dokumentation unserer Programme.

Was sind die Vorzüge des generischen Ansatzes? Im wesentlichen ermöglicht uns dieser die
Erweiterung und Anpassung von Codemodulen, ohne diese zu kopieren und die Kopie dann zu
verändern. Durch die inhärente Effizienz des Template-Mechanismus sind weiterhin Softwaretuning
und Optimierung in einer klar definierten Art möglich. In Experimenten kann durch den Austausch
entsprechender Modelle einfach auf optimierte Instanzen hingearbeitet werden.


