
Geometric Algorithms for Object Placement and
Planarity in a Terrain

Rahul Ray

Max-Planck Institut für Informatik

Geometric Algorithms for Object Placement and Planarity in a Terrain

Geometric Algorithms for Object Placement and
Planarity in a Terrain

Rahul Ray

Dissertation
zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

Saarbrücken
July 27th, 2004

Max-Planck Institut für Informatik

Tag des Kolloquiums: 27 July 2004
Dekan: Prof. Dr. Philipp Slusallek
Gutachter: Prof. Dr. Kurt Mehlhorn

Prof. Dr. Stefan Schirra

Dedicated to my parents

Acknowledgements

Many people have taught, inspired, encouraged, supported, helped and advised me during the
time in which I worked on this thesis. I wish to express my deepest gratitude to all of them,
without which this thesis would never happen.

First of all, I would like to thank my advisor, Prof. Dr. Kurt Mehlhorn, for providing
me a perfect balance of scientific guidance and scientific freedom. He has always been a great
source of motivation whenever I needed. I would like to thank him for creating a wonderful
research atmosphere in Max-Planck Institut für Informatik, Saarbrücken. I also wish to thank
Dr. Stefan Funke and Dr. Theocharis Malamatos for co-guiding my research work that led
to this thesis. They are great persons to work with and I consider myself privileged to have
collaborated with them in my research. I share some of the most enjoyable moments in MPI
with them which came along during many of our enlighting discussions or exchanges of innu-
merable emails. They also helped me in proof-reading this thesis manuscript and improving
the presentation a lot.

When I go back to my uninteresting days in industry, I shall never forget Prof. Michiel
Smid who gave me an opportunity to think about a PhD option. I am grateful to him for
infinite number of reasons. He introduced me to the planarity problem in terrain and many
other interesting aspects of it while I was in Magdeburg University (Germany). I am thankful
to ever smiling Prof. Ulrich Wendt for his wonderful collaboration from material science
department in our project. I learned a lot from my co-authors, whose ideas and insightful
suggestions were invaluable in discovering many of the algorithms presented in this thesis.
My sincere thanks to them.

I thank Prof. Stefan Schirra for kindly agreeing to review the thesis and to act as an
examiner.

I would like to thank and express my sincere gratitude to Suman Mukherjee, who pur-
suaded me to continue this research at a time I thought to abandon it. My friend Arnab Paul
has always kept on inspiring me even before I started my research. All my friends in Tajmahal,
Chhannachhara have been a constant source of inspiration for me to finish this thesis one day.
My special thanks to them.

My MPII experience would not be the same without my friends, colleagues and office-
mates (categories not mutually exclusive). I thank Naveen Sivadasan, Debapriyo, Hisao,
Venkatesh, Tobias, Ingmar, Christian, Holgar, Kerstin, Petra, Arno, Nicola, Kavitha, Sunil
and many others who are/were my colleagues in various times in MPII for their friendly help
and making my life fun and enjoyable.

I express my gratitude and thanks to Deb, Sudip, Chandrima, Pintu, Raja, Sai, Reddy,
Venkat, Fawad, Tarang, Hareesh and many others in Saarcricket Club for providing wonderful
social interaction which has tunred my stay in Saarbrücken an unforgettable event in my life.

x

Finally, I would like to thank those whom I owe the most. My parents have always en-
couraged me to pursue higher studies even when I was in a kindergarten !! They have greatly
influenced my life with love and guidance and most importantly freedom of my soul which
allowed me to reach where I am now. My then class mate and now wife, Piyali, was a great
emotional support for me, whether it was a time for hard work or for taking it easy. To mark
the submission of this thesis, we were blessed with a baby son, Rishav, on 22nd April.

I gratefully acknowledge the fellowship from International Max-Planck Research School
(IMPRS) , that supported my research at Max-Planck Institut für Informatik, Saarbrücken.

Abstract

We consider the following placement problem: Let C be a compact set in R
2 and let S be a

set of n points in R
2. The objective is to compute a translate of C that contains the maximum

number, κ∗, of points of S. Motivated by the applications in clustering and pattern recognition,
this optimal placement problem has received much attention over the last two decades. It is
known that this problem can be solved in a time that is roughly quadratic in n. We show
for a given ε > 0 how random-sampling and bucketing techniques can be used to develop a
near-linear-time Monte Carlo algorithm that computes a placement of C containing at least
(1 − ε)κ∗ points of S with high probability.

When C is a unit disk, we give an approximation algorithm for the optimal placement
problem by approximating the constraining radius of the disk. Here, our algorithm computes
a placement of the disk of radius (1 + ε) which contains at least κ∗ points, where κ∗ denotes
the maximum number of points covered by any unit disk. The running time of this algorithm
is O(n/ε2).

Then, we turn to the problem of computing the largest connected region in a triangulated
terrain of size n for which the normals of the triangles deviate by at most some small fixed
angle. We devise an exact algorithm by adapting dynamic graph connectivity algorithm to
compute the largest planar region in O(n2 log n(log log n)3) time. We also give a heuristic that
can be used to compute sufficiently large planar regions in a terrain much faster. We discuss an
implementation of this heuristic, and show some experimental results for terrains representing
three-dimensional (topographical) images of fracture surfaces of metals obtained by confocal
laser scanning microscopy, which directly motivated our research into this direction.

Since the output of this heuristic comes with no quality assurance, we present a new ap-
proximation scheme for the same problem which apart from giving a guarantee on the quality
of the produced solution also has been implemented in practice and shows good performance
on real-world data representing fracture surfaces. This approximate deterministic algorithm
computes in O(n/ε2) time the largest approximately connected planar region in the terrain.
We also give a variant of the above algorithm with a better dependence on ε at the cost of an
extra poly-logarithmic factor on n. For a sufficiently large n, both the algorithms consume
optimal O(n) space.

Kurzzusammenfassung

Wir betrachten das folgende Platzierungsproblem: Sei C eine kompakte Menge im R
2 and

S eine Menge von n Punkten im R
2. Das Ziel ist es, ein Verschiebung von C zu berechnen,

welche eine maximale Anzahl κ∗ an Punkten aus S enthält. Aufgrund zahlreichen Anwendun-
gen im Clustering und in der Mustererkennung wurde dieses Problem in den letzten Jahrzehn-
ten oft betrachtet. Es gibt bekannte Algorithmen, die dieses Problem in fast-quadratischer Zeit
lösen. Wir präsentieren einen Monte-Carlo Algorithmus, der für ein gegebenes ε > 0 in fast-
linearer Zeit eine Platzierung von C berechnet, welche mindestens (1 − ε)κ∗ Punkte aus S

mit hoher Wahrscheinlichkeit enthält. Unser Algorithmus basiert auf der Entnahme zufälliger
Stichproben und Bucketingtechniken.

Im Falle, dass C eine Einheitskreisscheibe ist, stellen wir einen Approximationsalgorith-
mus für das Plazierungsproblem vor, wobei wir den Radius der Kreisscheibe relaxieren. So
erhalten wir eine Platzierung einer Kreisscheibe mit Radius (1 + ε) welche mindestens κ∗

Punkte enthält. Hierbei bezeichnet κ∗ die maximale Anzahl von Punkten, die von einer Ein-
heitskreisscheibe überdeckt werden können. Die Laufzeit dieses Algorithmus ist O(n/ε2).

Danach betrachten wir das Problem, die grösste zusammenhängende Region in einem tri-
angulierten Terrain der Grösse n zu berechnen, für welche die Dreiecksnormalen der Re-
gion um nicht mehr als einen vorgegebenen Winkel abweichen. Wir präsentieren einen ex-
akten Algorithmus, der auf einer Datenstruktur zur dynamischen Verwaltung von Zusammen-
hangskomponenten eines Graphen basiert und das Problem in O(n2 log n(log log n)3) Zeit
löst. Wir stellen auch eine heuristische Lösung vor, die schnell relativ grosse planare Regio-
nen berechnet. Diese Heuristik wurde implementiert und experimentell evaluiert. Dazu lagen
uns dreidimensionale topografische Daten von Bruchoberflächen verschiedenster Metallsorten
vor. Diese Anwendung war auch die ursprüngliche Motivation für unsere Forschung.

Da diese Heuristik jedoch keinerlei Qualitätsgarantie für die berechnete Region liefert,
stellen wir schliesslich ein neues Approximationsschema vor, welches sowohl eine garantierte
Güte liefert, als auch praktisch implementiert wurde und auf unseren Testdaten gute Resultate
erzielte. Die Laufzeit dieses Approximationsalgorithmus ist O(n/ε2).

Contents

1. Introduction . 1

1.1 Placement Problem . 2

1.1.1 Problem Definition . 2

1.1.2 Motivation and State of the Art . 2

1.1.3 Main Results . 3

1.2 Planarity in a Terrain . 4

1.2.1 Problem Definition . 4

1.2.2 Motivation . 4

1.2.3 Main Results . 5

1.3 Finding Large Planar Regions in a Terrain with a Guarantee 6

1.3.1 Problem Definition . 6

1.3.2 Main Results . 6

2. Placement Algorithms . 9

2.1 Introduction . 9

2.2 Model of Computation . 10

2.3 Overview of Results . 11

2.4 Preliminaries and Exact Algorithms . 12

2.4.1 Bucketing and Estimating κ∗(C,S). 15

2.4.2 A Bucketing Algorithm . 16

2.5 Monte-Carlo Algorithms . 17

2.5.1 A Random Sampling Approach . 17

2.5.2 Bucketing and Sampling Combined 19

2.5.3 Linear Time Algorithm . 20

2.5.4 Implementing the Semisorting Algorithm 21

2.6 A Deterministic Approximation Algorithm 22

2.6.1 Cuttings . 22

2.6.2 The Approximation Algorithm . 24

2.7 Deterministic Algorithm by Approximating the Radius of the Disk 25

2.7.1 Simple Approximation Algorithm 25

2.7.2 A Variant for Large κ∗ . 26

2.8 Concluding remarks . 26

ii Contents

3. Planarity in a Terrain . 29
3.1 Introduction . 29

3.1.1 Main results . 30
3.1.2 Related work . 31

3.2 Solving Problem 1 . 31
3.3 Improving Running Time . 32
3.4 A Heuristic for Finding Large δ-planar Regions 34
3.5 Implementation and Experimental Results 36
3.6 Concluding Remarks . 39

4. Locating Planar Regions in a Terrain with a Guarantee 41
4.1 Introduction . 41
4.2 Finding a Large Planar Region Approximately 41

4.2.1 Preliminaries . 41
4.2.2 δε-Discretization . 42
4.2.3 The Basic Algorithm . 43
4.2.4 The Refined Algorithm . 44
4.2.5 Scanning Algorithm . 46

4.3 Implementation . 46
4.4 Experimental Evaluation . 48

4.4.1 Efficiency of Speed-Up Heuristics 48
4.4.2 Dependence on n, ε and δ . 51
4.4.3 Some More Examples . 53
4.4.4 Further Remarks . 53

4.5 Conclusions . 55

Summary . 55

Zusammenfassung . 59

Bibliography . 65

Chapter 1

Introduction

In this thesis we present results in two areas which are geometric in nature.
The importance and applications of computational geometry in various fields of science

and engineering are well studied and a growing area of research. Imagine installing a geo-
stationary satellite which can cover a finite amount of area down on earth’s surface. Now an
interesting question is how exactly one would like to place the satellite so that it covers most
of the static land-lines. And this turns out to be one of the fundamental problems in geometry
to compute a placement of a planar object to cover maximum number of points. We have
considered this placement problem and presented several approaches to solve it efficiently in
a randomized, deterministic and approximate deterministic settings.

The second problem we have investigated in our thesis was given to us by the material
scientists from Magdeburg University. They wanted to quantify the fracture surface topogra-
phies given as 3-dimensional images obtained from confocal laser scanning microscope. The
objective was to detect large planar regions in the fractured surface, which can give an insight
of the cause of fracture. Since the strict definition of plane (all the normals of a plane are
parallel to one another) does not fit well into the micro-structure of the fracture surfaces, we
have introduced the notion of ’approximate’ planarity where we allow a small deviation of the
normals of an ’approximately’ planar region.

We elaborate two main results on locating nearly planar regions in a terrain. The first result
focuses mainly on an exact algorithm and a fast grid-based heuristic. The second contribution
solves an approximated version of the same problem with a guarantee on the computed output.

The thesis is organized as follows. In Chapter 2, we discuss the placement problem and

Fig. 1.1: Placing a hexagonal object to cover maximum points.

2 Chapter 1. Introduction

several algorithms to solve it in details. Then we turn to the problem of locating planar regions
in a terrain. In Chapter 3, we give an exact algorithm and an efficient heuristic of the problem.
The heuristic approach performs very well in the real-world data. In Chapter 4, we present an
approximate version of the same problem and show that our algorithms here can compute the
largest planar region in terrain with a guarantee.

Now we give an overview of the two problems we have studied in the thesis and the main
results we have achieved.

1.1 Placement Problem

1.1.1 Problem Definition

Let C be a compact set in R
2 and let S be a set of n points in R

2. We define the optimal-
placement problem to be that of computing a point t ∈ R

2 for which the translate C + t of C

contains the maximum number of points of S. Set

κ∗(C,S) = max
t∈R2

|S ∩ (C + t)|.

Since this optimal-placement problem is believed to be of o(n2) time hard, we have con-
sidered the following two approximate versions of the same.

Approximation on k∗: We call a translate C + t of C an ε-approximate placement if
|S ∩ (C + t)| ≥ (1− ε)κ∗(C,S), and an algorithm that produces an ε-approximate placement
is called an ε-approximation algorithm. We define the ε-optimal-placement problem to be the
one that asks for an ε-approximate placement.

Approximation on the radius of C: Assume C1 is a unit disk. We determine a placement
(x, y) of a disc C1+ε of radius 1 + ε with |C1+ε

(x,y) ∩ S| ≥ κ∗(C,S).

1.1.2 Motivation and State of the Art

A fundamental problem in computational geometry is shape fitting (see [HU87, LSW88]),
which has its applications in pattern recognition, computer vision, machine learning and many
other areas dealing with the best shape which ”fits” a given point set. This problem has re-
ceived much attention over the last two decades for different application specific geometric
shapes of C . In pattern recognition, e.g., we are given a set (e.g., a polygon) and want to match
it to a given set of objects (see Huttenlocher and Ullman [HU87] and Lamdan et al. [LSW88]).
The problem we have studied here can be regarded as that of matching a set C to a set S of
points. We believe this kind of placement problems investigated here in this thesis would find
its place in the standard textbooks of computational geometry in near future.

Chazelle and Lee [CL86] presented an O(n2)-time algorithm for the case in which C is
a circular disk, and Eppstein and Erickson [EE94] proposed an O(n log n)-time algorithm for
rectangles. Efrat et al. [ESZ94] developed an algorithm for convex m-gons with a running
time of O(nκ∗ log n log m+m), where κ∗ = κ∗(C,S), which was subsequently improved by
Barequet et al. [BDP97] to O(n log n + nκ∗ log(mκ∗) + m).

1.1. Placement Problem 3

Time Error probability Schemes

n + γ2n2 ne−γκ∗
Random sampling
Random sampling

n log n e−
√

κ∗ log n with bucketing
(Monte-Carlo Alg)

Two levels of

n ne−
√

κ∗
random sampling

with bucketing
n1+δ 0 Approximating κ∗

n/ε2 0 Approximating radius of C

Tab. 1.1: Worst-case running times (constant factors omitted) and error probabilities of our ε-
approximation algorithms if C is a circular disk; δ and ε are arbitrarily small positive constants
and γ is a nonnegative real number, possibly depending on n.

1.1.3 Main Results

We present two algorithms for the optimal-placement problem and show how bucketing can
be used to expedite the running time, especially if C is fat. In particular, let T (n) be the
running time of an algorithm for the optimal-placement problem on a set of n points, and let
Tg(n) denote the time required to partition n points into the cells of an integer grid. Then
the bucketing algorithm can compute an optimal placement in time O(Tg(n) + nT (κ∗)/κ∗),
where κ∗ = κ∗(C,S). Besides being interesting in its own right, this will be crucial for the
approximation algorithms.

Subsequently, we show that using random sampling and/or bucketing, we can transform
any deterministic algorithm for the optimal-placement problem to a Monte-Carlo algorithm
for the ε-optimal-placement problem. Given a parameter γ ≥ 0, the first algorithm in Sec-
tion 2.5, based on a random-sampling technique, computes an ε-approximate placement in
O(n + T (γn)) time with error probability at most sne−ε2γκ∗

, where s is the maximum num-
ber of distinct intersections of the boundaries of the two translates C + t and C + t ′ of C for
t, t′ ∈ S. The second algorithm combines the random-sampling technique with the bucketing
technique and computes an ε-approximate placement in O(Tg(n)+nQ(m)+nT (αβγκ∗)/κ∗)

time with error probability at most sαβκ∗e−ε2γκ∗
. Q(m) is the time to decide whether p ∈ C .

For circular disks and constant ε, the running time becomes O(n log n) and the error probabil-
ity is at most e−

√
κ∗ log n; see Table 1.1. If C is fat and m = O(1), by combining two levels of

random sampling with the bucketing technique, we can compute an ε-approximate placement
in O(n) time for constant ε with error probability at most ne−

√
κ∗

.
We suggest a deterministic algorithm, based on the cutting algorithm of Chazelle [Cha93],

that computes an ε-approximate placement for sets C that satisfy certain conditions. If C

has O(1) edges, the algorithm runs in O(n1+δ + n/ε) time, for any given constant δ > 0

(where the constant of proportionality depends on δ). If C is a convex m-gon, the running
time becomes O((n1+δ + n/ε) log m).

Finally, we present an algorithm for placing a unit disk in the plane such that the number

4 Chapter 1. Introduction

of points contained is maximized. Our algorithm yields a placement of a disk of radius (1+ ε)

which contains at least κ∗ points, where κ∗ denotes the maximum number of points in any
unit disk. The running time of this algorithm is O(n/ε2). We also sketch a more complicated
variant running in O(n + (n/κ∗) · (1/ε3)) time which is better for κ∗ = ω(1/ε).

Observe that for these last algorithms our notion of approximation differs from the one
used so far in the previous settings which is the same as in [AHR+02] (they approximate
the size of the resulting set) and rather resembles the notion used in [HPM03] where one ap-
proximates the constraining radius. Not only are the running times of our algorithms linear
in n and the dependencies on ε reasonable, but also the constants involved are small enough
to make them relevant in practice. In the Table 1.1 we summarize our results related to the
placement problem. All these results have been published in 10th Annual European Sympo-
sium of Algorithms in 2002 and partly in 20th ACM Symposium on Computational Geometry
in 2004.

1.2 Planarity in a Terrain

1.2.1 Problem Definition

A terrain is a surface in R
3 defined by a function f : R × R → R. If f is piecewise linear and

the surface consists of a collection of triangles, the terrain is called a triangulated irregular
network (TIN). Given a triangulated irregular network T , our goal is to find large, almost
planar regions in T . More formally, we want to find a subset of triangles T of T and a vector
−→r (called the reference normal), such that

1. the adjacency graph of the triangles in T is connected,

2. for each triangle t ∈ T , the angle between −→r and −→nt is at most δ, where −→nt denotes the
normal of triangle t and δ is a given parameter, and

3. T is chosen such that the total weight of T is maximized, where the weight can be for
example the number or the total area of the triangles in T (depending on the application).

Remark: The set of triangles T satisfying (1)-(3) above is called the δ-planar set.

1.2.2 Motivation

The problem considered here arose in a collaboration between the Departments of Computer
Science and Materials Science at the University of Magdeburg. The goal of this project is
to design and implement algorithms that can be used for the quantification of fracture sur-
face topographies, given as three-dimensional images obtained by confocal laser scanning
microscopy (CLSM).

According to material scientists ([WLS+02]), surface topographies contain useful infor-
mation about their generation process and about the influence of crystal structure, microstruc-
ture and external loading conditions on these processes. Furthermore, the topography can

1.2. Planarity in a Terrain 5

Fig. 1.2: A typical fracture surface from Carbon Steel coated with a thin Silver(Au) layer to get a better
reflectability when inspected under CLSM

substantially influence the functionality of structural components. Surfaces generated by frac-
ture, wear, corrosion and machining are examined by confocal laser scanning microscopy. The
quantification of material topographies can support establishing and understanding of corre-
lations between the processing parameters, microstructure , testing conditions and material
properties and gives hints to the interpretation of the mechanical behavior. In practice, quan-
tification of fracture surfaces can give a guideline for the improvement and to the modification
of known materials, as well as to new design criteria of materials. This holds for all kind
of materials such as metals, polymers, ceramics, and composites. Two types of parameters
are generally used in the quantification of topography: global parameters and feature-related
(object-specific) parameters. The latter describe the discrete geometrical objects, for example,
planar regions like facets in brittle fracture surfaces. A typical fracture surface is shown in
Figure 1.2.

The images of the fracture surfaces are given as 512×512 arrays of pixels, where the grey
value stored at each entry is equal to the height of the corresponding terrain point. One goal
in our research is to find large connected regions in this image that are approximately planar.
The normal vectors and areas of these planar regions give useful information about the fracture
surface generating process.

Almost a similar kind of problem in macro-scale has been investigated closely by the
community in Geographic Information Systems as they are inherently based on retrieving in-
formation from the rather simple surface data, for example a TIN or a rasterized image - DEMs
(Digital Elevation Models). DEMs can be obtained by scanning any surface and then storing
the height values of junctions in a uniform 2D-grid of any desired resolution.

1.2.3 Main Results

We show how computational geometry and dynamic graph algorithms can be used to solve the
problem described above in O(n2 log n(log log n)3) time.

A closely related problem (computing the deepest point in an arrangement of hyperplanes)
is shown in [GO95] to be 3SUM hard, implying that it is unlikely that our problem can be
solved in sub-quadratic time. Therefore, we describe a simple grid-based heuristic. We have

6 Chapter 1. Introduction

Fig. 1.3: An approximately planar region shown in red in the terrain of a fracture surface

implemented this heuristic and discuss some details about it. We also present some experi-
mental results on images of fracture surfaces obtained by confocal laser scanning microscopy.
These results show that the heuristic is able to find δ-planar regions whose area is sufficiently
large. This work has been published in Materialwissenschaft und Werkstofftechnik in 2002
([WLS+02]) and Discrete Applied Mathematics in April 2004 ([SRWL04]).

1.3 Finding Large Planar Regions in a Terrain with a Guarantee

1.3.1 Problem Definition

We look at the same problem as described in the previous section. But here we solve an
approximate version of the problem. There are at least two ways to define the notion of an
ε-approximate δ-planar set T . One way would be to require T to be δ-planar and of weight at
least (1 − ε) times the weight of an optimal δ-planar set. Unfortunately solving this type of
approximation seems to be as difficult as solving the problem exactly. We adopt the following
notion of approximation: A subset of triangles T of T is ε-approximate δ-planar if it is δ(1+ε)-
planar and has weight at least as large as an optimal δ-planar set.

1.3.2 Main Results

We present an algorithm which, given some parameters δ and ε produces a connected sub-
terrain and a reference normal such that all triangle normals in the subterrain deviate at most
(1 + ε) · δ from the reference normal, and the weight of the subterrain is at least the weight
of the optimal subterrain with maximum deviation δ. The running time of this algorithm is
O(n/ε2). We sketch also a variant of this algorithm with a better dependence on ε but an
extra poly-logarithmic factor on n. For n sufficiently large, both algorithms use optimal O(n)

space.
The experimental and perhaps main contribution here is our implementation of the pla-

narity detector which runs in reasonable time on real-world test data consisting of terrains
with several hundred thousands triangles. This result has been published in 20th ACM Sympo-

1.3. Finding Large Planar Regions in a Terrain with a Guarantee 7

sium on Computational Geometry (SoCG) in 2004 and a journal version of the same has been
invited for International Journal on Computational Geometry and Applications ([FMR04]).

Chapter 2

Placement Algorithms

2.1 Introduction

Let C be a compact set in R
2 and let S be a set of n points in R

2. We define the optimal-
placement problem to be that of computing a point t ∈ R

2 for which the translate C + t of C

contains the maximum number of points of S. Set

κ∗(C,S) = max
t∈R2

|S ∩ (C + t)|.

Motivated by applications in clustering and pattern recognition (see [HU87, LSW88]), the
optimal-placement problem has received much attention over the last two decades. Chazelle
and Lee [CL86] presented an O(n2)-time algorithm for the case in which C is a circular
disk, and Eppstein and Erickson [EE94] proposed an O(n log n)-time algorithm for rectan-
gles. Efrat et al. [ESZ94] developed an algorithm for convex m-gons with a running time
of O(nκ∗ log n log m + m), where κ∗ = κ∗(C,S), which was subsequently improved by
Barequet et al. [BDP97] to O(n log n + nκ∗ log(mκ∗) + m).

(2)

(5)

(4)

(3)

Fig. 2.1: Four placements of a disc and their respective containment of a point set

All the algorithms above, except the one for rectangles, require at least quadratic time in
the worst case, which raises the question of whether a near-linear approximation algorithm
exists for the optimal-placement problem. In this chapter we answer the question in the affir-
mative by solving the following two approximate versions of the original placement problem.

Approximation on k∗: We call a translate C + t of C an ε-approximate placement if
|S ∩ (C + t)| ≥ (1− ε)κ∗(C,S), and an algorithm that produces an ε-approximate placement

10 Chapter 2. Placement Algorithms

is called an ε-approximation algorithm. We define the ε-optimal-placement problem to be the
one that asks for an ε-approximate placement. Throughout this chapter we will refer to this
approximation scheme except in Section 2.7, where the following approximation is used.

Approximation on the radius of C: Assume C is a unit disk. We determine a placement
(x, y) of a disc C1+ε of radius 1 + ε with |C1+ε

(x,y) ∩ S| ≥ κ∗(C,S), where κ∗ denotes the
maximum number of points covered by any unit disk.

2.2 Model of Computation

We make the following assumptions about C and S:

(A1) The boundary of C , denoted by ∂C , is connected and consists of m edges, each of which
is described by a polynomial of bounded degree. The endpoints of these edges are called
the vertices of C . We will refer to C as a disk.

(A2) For all distinct t, t′ ∈ S, the boundaries of the two translates C+t and C+t′ of C intersect
in at most s points, and the intersections can be computed in I(m) time. By computing
an intersection, we here mean determining the two edges, one of each translate, that are
involved in the intersection. Moreover, for every point p ∈ R

2, we can decide in Q(m)

time whether p ∈ C .

(A3) C is sandwiched between two axes-parallel rectangles whose widths and heights differ
by factors of at most α and β, respectively, for α, β ≥ 1. We call C fat if α and β are
constants. This condition is detailed below in Definition 1.

(A4) The roots of a bounded-degree polynomial can be computed in O(1) time. This implies
that primitive operations on the edges of C , e.g., computing the intersection points be-
tween two edges of two translates C + t and C + t′, with t, t′ ∈ S, can be performed in
O(1) time.

(A5) For any edge e of C with endpoints a and b, and for points x and y on e, we can decide
in O(1) time if x or y is seen first while walking along e from a to b.

Our notion of fatness appears already implicitly in Barequet et al. [BDP97], who show
that, after an appropriate rotation, every convex polygon is (2, 4)-fat, and in Schwarzkopf et
al. [SFRW98], who show that convex polygons are even (2, 2)-fat.

We consider sets C , which we refer to as disk, that satisfy the following fatness condition.

Definition 1. Let α and β be positive integers. We say that C is (α, β)-fat if there are two
axes-parallel rectangles R0 and R1 such that

1. R0 is contained in C , and C is contained in R1,

2. the length of the horizontal side of R1 is at most α times the length of the horizontal
side of R0, and

3. the length of the vertical side of R1 is at most β times the length of the vertical side of
R0.

2.3. Overview of Results 11

C R R
0 1

Fig. 2.2: C is a fat object

Throughout this chapter, we make the following general-position assumption about the
point set S. We assume that for any two distinct points p and q of S, the boundaries of the
translates C + p and C + q are disjoint or intersect in a finite number of points. That is, no
two edges of C + p and C + q overlap. Also, we assume that for any three distinct points p,
q, and r of S, the boundaries of the three translates C + p, C + q, and C + r do not intersect
in a single point. We make these assumptions just to simplify the description. Our algorithms
can easily be extended to handle arbitrary sets of points.

2.3 Overview of Results

In Section 2.4, we present two algorithms for the optimal-placement problem and show how
bucketing can be used to expedite the running time, especially if C is fat. In particular, let T (n)

be the running time of an algorithm for the optimal-placement problem on a set of n points, and
let Tg(n) denote the time required to partition n points into the cells of an integer grid. Then
the bucketing algorithm can compute an optimal placement in time O(Tg(n) + nT (κ∗)/κ∗),
where κ∗ = κ∗(C,S). Besides being interesting in its own right, this will be crucial for the
approximation algorithms.

In Section 2.5, we show that using random sampling and/or bucketing, we can trans-
form any deterministic algorithm for the optimal-placement problem to a Monte-Carlo al-
gorithm for the ε-optimal-placement problem. Given a parameter γ ≥ 0, the first algorithm
in Section 2.5, based on a random-sampling technique, computes an ε-approximate place-
ment in O(n + T (γn)) time with error probability at most sne−ε2γκ∗

. The second algorithm
combines the random-sampling technique with the bucketing technique and computes an ε-
approximate placement in O(Tg(n) + nQ(m) + nT (αβγκ∗)/κ∗) time with error probability
at most sαβκ∗e−ε2γκ∗

. For circular disks and constant ε, the running time becomes O(n log n)

and the error probability is at most e−
√

κ∗ log n; see Table 2.1. If C is fat and m = O(1), by
combining two levels of random sampling with the bucketing technique, we can compute an
ε-approximate placement in O(n) time for constant ε with error probability at most ne−

√
κ∗

.

12 Chapter 2. Placement Algorithms

Time Error probability Reference

n + (γn)2 ne−γκ∗
Section 2.5.1

n log n e−
√

κ∗ log n Section 2.5.2

n ne−
√

κ∗
Section 2.5.2

n1+δ 0 Section 2.6

n/ε2 0 Section 2.7

Tab. 2.1: Worst-case running times (constant factors omitted) and error probabilities of our ε-
approximation algorithms if C is a circular disk; δ and ε are arbitrarily small positive constants
and γ is a nonnegative real number, possibly depending on n.

In Section 2.6, we also present a deterministic algorithm, based on the cutting algorithm
of Chazelle [Cha93], that computes an ε-approximate placement for sets C that satisfy (A1)–
(A5). If C has O(1) edges, the algorithm runs in O(n1+δ + n/ε) time, for any given constant
δ > 0 (where the constant of proportionality depends on δ). If C is a convex m-gon, the
running time is O((n1+δ + n/ε) log m).

Finally, in Section 2.7, we briefly describe an algorithm for placing a unit disk in the plane
such that the number of points contained is maximized. Our algorithm yields a placement of
a disk of radius (1 + ε) which contains at least κ∗ points, where κ∗ denotes the maximum
number of points in any unit disk. The running time of this algorithm is O(n/ε2). We also
sketch a more complicated variant running in O(n + (n/κ∗) · (1/ε3)) time which is better for
κ∗ = ω(1/ε).

Observe that for these last algorithms in Section 2.7 our notion of approximation differs
from the one used so far in this chapter which is the same as in our work [AHR+02] (we
approximated the size of the resulting set) and rather resembles the notion used in [HPM03]
where one approximates the constraining radius/angle. Not only are the running times of our
algorithms linear in n and the dependencies on ε reasonable, but also the constants involved
are small enough to make them relevant in practice.

2.4 Preliminaries and Exact Algorithms

Let C be a disk satisfying assumptions (A1)–(A5) and let S be a set of n points in R
2. For

simplicity, we assume that the origin lies inside C . For a point p ∈ R
2, define Cp = {p − c |

c ∈ C}. Let C = {Cp | p ∈ S}. For a point set R and a point x ∈ R
2, the depth of x

with respect to R, denoted by dR(x), is the number of points p ∈ R for which Cp contains x.
This is the same as |R∩ (C +x)|, so that κ∗(C,S) = maxx∈R2 dS(x). Hence, the problem of
computing an optimal placement reduces to computing a point of maximum depth with respect
to S. This reformulation has been illustrated in Figure 2.3.

Consider the arrangement A(C) defined by the boundaries of the sets Cp, where p ∈ S.
Each vertex in A(C) is either a vertex of Cp, for some point p ∈ S (a type 1 vertex), or an
intersection point of Cp and Cq, for two points p, q ∈ S (a type 2 vertex). If p is in the interior

2.4. Preliminaries and Exact Algorithms 13

Vertices of the
arrangement

Sample points

2

2
2

2

2

2
2

2

2

2 2

4
3

3

3
4

4

4

3

3

3

4

4
3

Fig. 2.3: Reformulation: Computing the heighest depth in an arrangement solves the optimal placement
problem. The numbers in the figure indicates the depth of that point.

of f and q is on the boundary of f , then our assumption that C is closed implies that the depth
of q is greater than or equal to the depth of p. The maximum depth of a point is realized by a
type 2 vertex of A(C) (unless the maximum depth is 1). Using this observation, κ∗(C,S) can
be computed as follows as in Efrat et al. [ESZ94]. We give the algorithm here in order to be
self-contained.

Step 1: For each point p ∈ S, compute the intersections between ∂Cp and all other boundaries
∂Cq, where q ∈ S.

Step 2: Let a be an arbitrary point on the boundary of ∂Cq. Sort all intersections computed
in Step 1 according to the order defined by walking along the boundary of ∂Cq in counter-
clockwise order, starting in point a.

Step 3: Let x1, x2, . . . , x` be the sorted sequence computed in Step 2. For i = 1, . . . , `, we
define ki to be the number of sets ∂Cp, with p ∈ S, that contain xi.

Step 3.1: Compute k1.

Step 3.2: Walk along the sequence x2, . . . , x`, and compute ki for i = 2, . . . , `. Observe that
ki ∈ {ki−1 − 1, ki−1, ki−1 + 1} and that ki − ki−1 depends on whether a set ∂Cp is entered or
left when we walk from xi−1 to xi.

Step 4: Compute an index i, with 1 ≤ i ≤ `, such that ki is maximum. Return ki and the
corresponding point xi.

It is clear that the value ki returned by this algorithm is equal to k∗
q . The time for Step 1

is bounded by O(nI(m)). The number ` of intersection points computed in this step is less
than or equal to sn. Hence, Step 2 takes O(sn log(sn)) time. Step 3.1 takes O(nQ(m))

time. Finally, Steps 3.2 and 4 take O(`) = O(sn) time. Hence, the total running time of the
algorithm is O(n(I(m) + Q(m)) + sn log(sn)).

As mentioned above, running this algorithm for each point q of S computing κ∗(C,S) in
O(n2(I(m) + Q(m)) + sn2 log(sn)) time.

14 Chapter 2. Placement Algorithms

Alternatively, we can do the following:

Step 1: Using the algorithm of Amato et al. [AGR00], compute the arrangement defined by
the edges of the boundaries of the sets ∂Cp, with p ∈ S.

Step 2: For each connected component of the arrangement computed in Step 1, do the follow-
ing.

Step 2.1: Let u be an arbitrary vertex of this component. Compute the number ku of sets ∂Cp,
with p ∈ S, that contain u.

Step 2.2: Starting at u, traverse the vertices of the component, e.g., in depth-first order. In a
generic step, we walk from a vertex v to a neighboring vertex w. At this moment, we know
the number kv of sets ∂Cp, with p ∈ S, that contain v. As in Step 3.2 of the first algorithm,
we use kv to compute the number kw of sets ∂Cp, with p ∈ S, that contain w.

Step 3: Compute a vertex v of the arrangement for which kv is maximum. Return kv and the
corresponding point v.

In this alternative approach, we compute A(C) with the algorithm of Amato et al. [AGR00]
and use a standard graph-traversal algorithm, such as depth-first search, to compute a type 2
vertex of maximum depth (with respect to S). Since A(C) has O(mn + sn2) vertices, this
algorithm takes O(mn log(mn) + nQ(m) + sn2) time. Hence, we obtain the following.

Theorem 1. Let S be a set of n points in the plane and let C be a disk satisfying assumptions
(A1)–(A5). The value of κ∗(C,S) can be computed in

O
(
n2(I(m) + Q(m)) + sn2 log(sn)

)

or
O
(
mn log(mn) + nQ(m) + sn2

)

time.

If m = O(1), then s,Q(m) = O(1), and if C is convex, then s = 2 [KLPS86] and
I(m), Q(m) = O(log m) [PS85]. (For the upper bounds on I(m) and Q(m), an O(m)-time
preprocessing step is needed.) Therefore Theorem 1 implies the following.

Corollary 1. Let S be a set of n points in the plane and let C be a disk satisfying assump-
tions (A1)–(A5). Then κ∗(C,S) can be computed in O(n2) time if C has O(1) edges, and in
O(n2 log(mn) + m) or O(mn log(mn) + n2) time if C is a convex m-gon.

Proof. In the first case, m, s, I(m) and Q(m) are bounded by a constant, and the claim
follows from the first result of Theorem 1. Assume that C is a convex polygon with m

edges. Using Dobkin and Kirkpatrick’s hierarchical representation of C (see [DK83]), we
can decide in O(log m) time whether any given point is contained in C . Hence, we have
Q(m) = O(log m). It takes only O(m) time to construct the hierarchical representation of C .
Kedem et al. [KLPS86] have shown that, under our general-position assumption, the bound-
aries of any two translates of C intersect at most twice. Furthermore, Barequet et al. [BDP97]
have shown that, after an O(m)-time preprocessing, these intersection points can be computed
in O(log m) time. Hence, we have s = 2 and I(m) = O(log m).

2.4. Preliminaries and Exact Algorithms 15

2.4.1 Bucketing and Estimating κ∗(C, S).

For any two positive real numbers r and r ′, we denote by Gr,r′ the two-dimensional grid
through the origin whose cells have horizontal and vertical sides of lengths r and r ′, respec-
tively. Hence, each cell of Gr,r′ is of the form Bij = [ir, (i + 1)r) × [jr′, (j + 1)r′) for some
integers i and j. We call the pair (i, j) the index of Bij .

We need an algorithm that groups the points of S according to the cells of some grid
Gr,r′ , i.e., stores S in a list such that for each grid cell B, all points of S in B occur together
in a contiguous sublist. This operation is similar to a sorting of the elements of S by their
associated grid cells, but does not require the full power of sorting. Let Tg(n) denote the time
needed to perform such a grouping of n points according to some grid and assume that Tg

is nondecreasing and smooth in the sense that Tg(O(n)) = O(Tg(n)) (informally, a smooth
function grows polynomially). The following lemma is straightforward.

Lemma 1. Let S be a set of n points in R
2 and let C be a disk satisfying assumptions (A1)–

(A5). Let a, b > 0 be such that R0 ⊆ C ⊆ R1 for axes-parallel rectangles R0 of width a and
height b and R1 of width αa and height βb. Let M be the maximum number of points of S

contained in any cell of the grid Ga,b. Then M ≤ κ∗(C,S) ≤ (α + 1)(β + 1)M .

Proof. Let B`1`2 be a grid cell that contains M points of S. Let x ∈ R
2 be the point such

that the translated rectangle (R0)x coincides with B`1`2 . Then the set Cx contains (R0)x and,
hence, Cx contains at least M points of S. This proves that k∗ ≥ M .

To prove the second inequality, let x ∈ R
2 be a point such that the set Cx contains k∗

points of S. Consider the translated rectangle (R1)x. The set Cx is contained in (R1)x. It
is easy to see that the number of grid cells that overlap (R1)x is at most (α + 1)(β + 1).
Since all these grid cells together contain at least k∗ points of S, one of them contains at least
k∗/((α + 1)(β + 1)) points of S.

Lemma 1 shows that an approximation M to κ∗ = κ∗(C,S) with M ≤ κ∗ ≤ (α +

1)(β + 1)M can be computed in O(Tg(n)) time. Let us see how the grouping of S can be
implemented. It is clear that once each point p of S has been mapped to the index (i, j) of
the cell containing p of a grid under consideration, S can be grouped with respect to the grid
in O(n log n) time by sorting the pairs (i, j) lexicographically. The mapping of points to grid
indices uses the nonalgebraic floor function. To avoid this, we can replace the grid by the
degraded grid introduced in [DLSS95, LS95], which can be constructed in O(n log n) time
without using the floor function, and for which Lemma 1 also holds. Given any point p ∈ R

2,
the cell of the degraded grid that contains p can be found in O(log n) time, so that the grouping
can be completed in O(n log n) time.

In a more powerful model of computation, after mapping S to grid indices, we can carry
out the grouping by means of hashing. Combining the universal class of Dietzfelbinger et
al. [DHKP97] with a hashing scheme of Bast and Hagerup [BH91], we obtain a Las Vegas
grouping algorithm that finishes in O(n) time with probability at least 1 − 2−nµ

for some
fixed µ > 0.

16 Chapter 2. Placement Algorithms

2.4.2 A Bucketing Algorithm

We can use Lemma 1 and Theorem 1 to obtain a faster algorithm for computing κ∗ = κ∗(C,S)

in some cases. Suppose we have an algorithm A that computes κ∗(C,S) in time T (n).

The idea of the transformed algorithm is as follows. Let x ∈ R
2 be a point such that the

set Cx contains k∗ points of S, and let B0 be the cell of the grid Gαa,βb that contains x. Then
the set Cx is contained in the union of B0 and its eight neighboring cells. Let G be the grid
that arises by translating G3αa,3βb such that when the cell B of G that contains x is divided into
nine nonoverlapping subcells with horizontal and vertical side lengths αa and βb, respectively,
then B0 is the center subcell. Then the set Cx is contained in B. Hence, by running algorithm
A on the set S ∩ B, we find a translate of C that contains k∗ points of S. Observe that S ∩ B

contains at most 9αβM ≤ 9αβk∗ points. Our transformed algorithm will run algorithm A on
each cell B ′ that contains at least M points of S.

The transformed algorithm uses a semisorting algorithm that does the following. Given the
set S and two positive real numbers x and y, the algorithm returns a list L containing the points
of S such that all points that belong to the same cell of the grid Gx,y form a contiguous sublist
of L. We denote the running time of this semisorting algorithm by Ts(n). In Section 2.5.4, we
will describe two different semisorting algorithms.

The transformed algorithm does the following.

Step 1: Compute the value M , defined as the maximum number of points of S that are con-
tained in any cell of the grid Ga,b.

Step 2: For any two integers i and j with 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2, do the following.

Step 2.1: Run the semisorting algorithm on S, based on the grid G := G ij
3αa,3βb, which is

obtained by shifting G3αa,3βb by the vector (iαa, jβb).

Step 2.2: For each cell B of G that contains at least M points of S, run A on the set S ∩ B

and let kB and xB be its output. Hence, the set CxB
contains kB points of S ∩ B.

Step 3: Compute indices i and j and a cell B of G ij
3αa,3βb such that kB is maximum. Return

kB and the corresponding point xB .

Let us analyze the running time. For each of 0 ≤ i, j ≤ 2, the algorithm spends Tg(n)

time to partition S among the grid cells. Since at most n/M cells of G ij contain at least M

points of S and no cell contains more than 9αβM points, the total running time is O(Tg(n) +

nT (αβM)/M) = O(Tg(n) + nT (αβκ∗)/κ∗), where in the last step we used the relation
M ≤ κ∗ and the assumption that T (n)/n is nondecreasing. We thus obtain the following
result.

Theorem 2. Let S be a set of n points in the plane, let C be a disk satisfying assumptions
(A1)–(A5), and let A be an algorithm that computes κ∗ = κ∗(C,S) in time T (n). Then κ∗

can be computed in O(Tg(n) + nT (αβκ∗)/κ∗) time.

Corollary 2. Let C,S, and T (·) be as in Theorem 2. The value of κ∗ = κ∗(C,S) can
be computed in O(Tg(n) + nκ∗) time if C is fat and has O(1) edges, and in O(Tg(n) +

nκ∗ log(mκ∗) + m) or O(Tg(n) + mn log(mκ∗) + nκ∗) time if C is a convex m-gon.

2.5. Monte-Carlo Algorithms 17

2.5 Monte-Carlo Algorithms

In this section we present Monte-Carlo algorithms for the ε-optimal-placement problem. These
algorithms use one of the deterministic algorithms described in Theorem 1 as a subroutine. We
will refer to this algorithm as A and to its running time as T (n). We assume that T (n) and
T (n)/n are nondecreasing and that T is smooth.

2.5.1 A Random Sampling Approach

We first present an algorithm based on the random-sampling technique. We carry out the
probabilistic analysis using a variant of the well-known Chernoff bounds (see, e.g., Hagerup
and Rüb [HR90]).

Let ε and γ be real numbers with 0 < ε < 1 and 0 < γ ≤ 1. The value of ε gives a trade-
off between the approximation ratio and the error probability of the transformed algorithm,
whereas γ gives a trade-off between the running time and the error probability.

The transformed algorithm does the following when given a set S of n points in the plane.

Step 1: Generate a γ-sample S ′ of S, i.e., a random sample obtained by choosing each point
of S with probability γ and independently of the other points.

Step 2: If S ′ = ∅ or |S′| ≥ 2γn, then let y be a point on the boundary of one of the sets Cp,
with p ∈ S. Otherwise, use A to compute a point y ∈ R

2 such that Cy contains the maximum
number of points of S ′.

Step 3: Compute the number ky of points of S contained in Cy. Return ky and the point y.

It is clear that the running time of the transformed algorithm is O(T (γn) + nQ(m)).
Consider the value ky and the point y returned by the algorithm and note that ky and y are

random variables. The error probability of our algorithm is Pr(ky < (1 − ε)k∗). In the rest of
this section, we prove an upper bound on this quantity.

Recall that k∗ is the maximum depth of any point in the arrangement defined by the bound-
aries of the sets Cp, with p ∈ S.

We will use the following variants of the Chernoff bounds. The proof of the first claim can
be found in Hagerup and Rüb [HR90]. The proof of the second claim is given here.

Lemma 2. Let Y be a binomially distributed random variable and let 0 ≤ λ ≤ 1.

1. For every t ≤ E(Y), Pr[Y ≤ (1 − λ)t] ≤ e−λ2t/2.

2. For every t ≥ E(Y), Pr[Y ≥ (1 + λ)t] ≤ e−λ2t/3.

Proof. Let N be a positive integer and let γ be a real number such that T can be interpreted as
the number of heads in a sequence of N coin flips, each one coming up heads with probability
γ.

Let t ≥ E(T). If t > N , then Pr(T ≥ (1 + δ)t) = 0, and the claim clearly holds. So
assume that t ≤ N . Let γ ′ := t/N and let T ′ be binomially distributed with parameters N and
γ′. Then E(T ′) = γ′N = t. A variant of the Chernoff bounds (see Hagerup and Rüb [HR90])
states that

Pr(T ′ ≥ (1 + δ)t) ≤ e−δ2t/3.

18 Chapter 2. Placement Algorithms

We have γ = E(T)/N ≤ t/N = γ ′. The proof of the second claim in Lemma 2 follows from
the fact that

Pr(T ≥ (1 + δ)t) ≤ Pr(T ′ ≥ (1 + δ)t). (2.1)

To prove (2.1), consider two coins. The first one comes up heads with probability γ/γ ′,
whereas the second one comes up heads with probability γ ′. For each i, 1 ≤ i ≤ N , we
do the following experiment: Flip both coins and define two random variables Ui and U ′

i .
The value of Ui is one if both coins come up heads and zero otherwise. The value of U ′

i is
one if the second coin comes up heads and zero otherwise. We have Pr(Ui = 1) = γ and
Pr(U ′

i = 1) = γ′. Since Ui ≤ U ′
i for all i, we have

Pr

(
N∑

i=1

Ui ≥ (1 + δ)t

)
≤ Pr

(
N∑

i=1

U ′
i ≥ (1 + δ)t

)
.

This implies that (2.1) holds, because
∑N

i=1 Ui and
∑N

i=1 U ′
i have the same probability distri-

butions as T and T ′, respectively.

Theorem 3. Let S be a set of n points in the plane and let C be a disk satisfying assumptions
(A1)–(A5). For arbitrary ε, γ > 0, an ε-approximate solution to the optimal-placement prob-
lem can be computed in O(n + T (γn)) time with error probability at most sne−ε2γκ∗

, where
κ∗ = κ∗(C,S).

Proof. Let ε̄ = min{ε, 1/2} and γ̄ = min{288γ, 1}. The algorithm first draws a γ̄-sample
S′ of S, i.e., includes every point of S in S ′ with probability γ̄ and independently of all other
points. If |S ′| > 2γ̄n (the sampling fails), the algorithm returns an arbitrary point. Otherwise
it uses A to return a point y of maximum depth with respect to S ′.

Since γ̄ = O(γ) and T is smooth, it is clear that the algorithm can be executed in O(n +

T (γn)) time. By Lemma 2, the sampling fails with probability at most e−γ̄n/3. If ε ≥ 1 or
γ̄ = 1, the output is obviously correct. Assume that this is not the case and that the sampling
succeeds.

Let us write d for dS and d′ for dS′ and let x ∈ R
2 be a point with d(x) = κ∗. Informally,

our proof proceeds as follows. Let Z = {z ∈ R
2 | d(z) < (1 − ε)κ∗} be the set of “bad”

points. The error probability is equal to Pr[y ∈ Z]. We first show that d′(y) is likely to be
large, where “large” means at least (1− ε̄/2)γ̄κ∗. Subsequently we show that for every z ∈ Z ,
d′(z) is not likely to be large. Combining the two assertions shows that except with small
probability, y 6∈ Z .

The first part is easy: Since E(d′(x)) = γ̄κ∗ and d′(y) ≥ d′(x), Lemma 2 implies that

Pr[d′(y) < (1 − ε̄/2)γ̄κ∗] ≤ e−ε̄2γ̄κ∗/8.

Now fix z ∈ Z . Since 1 − ε̄/2 ≥ (1 + ε̄/2)(1 − ε̄) and E(d′(z)) = γ̄d(z) < (1 − ε)γ̄κ∗ ≤
(1 − ε̄)γ̄κ∗, we have

Pr[d′(z) ≥ (1 − ε̄/2)γ̄κ∗] ≤ Pr[d′(z) ≥ (1 + ε̄/2)(1 − ε̄)γ̄κ∗] ≤ e−ε̄2(1−ε̄)γ̄κ∗/12.

The preceding argument applies to a fixed z ∈ Z . A priori, we have to deal with an infinite

2.5. Monte-Carlo Algorithms 19

number of candidate points z ∈ Z . However, using the fact that the arrangement defined by
the boundaries of the sets Cp, with p ∈ S, has O(sn2) vertices of type 2, it is not difficult to
see that there is a set X with |X| = O(sn2) such that for every z ∈ Z , there is a ẑ ∈ X ∩ Z

with d′(ẑ) = d′(z). Therefore the probability that d′(z) ≥ (1 − ε̄/2)γ̄κ∗ for some z ∈ Z is
O(sn2e−ε̄2(1−ε̄)γ̄κ∗/12). The other failure probabilities identified above are no larger. Now,
ε̄ ≥ ε/2, 1 − ε̄ ≥ 1/2, and γ̄ = 3 · 8 · 12γ. Moreover, we can assume that eε2γκ∗ ≥ sn,
since otherwise the theorem claims nothing. But then sn2e−ε̄2(1−ε̄)γ̄κ∗/12 ≤ sn2e−3ε2γκ∗ ≤
(1/s)e−ε2γκ∗

. Therefore, except if n is bounded by some constant (in which case we can use
a deterministic algorithm), the failure probability is at most sne−ε2γκ∗

.

Combining Theorem 3 with Corollary 1, we obtain the following result.

Corollary 3. Let S be a set of n points in the plane and let C be a disk satisfying assumptions
(A1)–(A5). For arbitrary ε, γ > 0, an ε-approximate placement can be computed with error
probability at most ne−ε2γκ∗

in O(n + (γn)2) time if C has O(1) edges, and in O(n +

(γn)2 log(γmn) + m) or O(n + γmn log(γmn) + (γn)2) time if C is a convex m-gon.

Our random-sampling approach can also be used to solve related problems. As an exam-
ple, consider the problem of computing a point of maximum depth in a set H of n halfplanes.
If we denote this maximum depth by κ∗, then κ∗ ≥ n/2. By computing and traversing the ar-
rangement defined by the bounding lines of the halfplanes, one can compute κ∗ in O(n2) time.
Since a corresponding decision problem is 3SUM-hard (see Gajentaan and Overmars [GO95]),
it is unlikely that it can be solved in subquadratic time. If we apply our random-sampling trans-
formation with γ = c/

√
n for a suitable constant c > 0, we obtain the following result.

Theorem 4. Let H be a set of n halfplanes. For arbitrary constant ε > 0, in O(n) time we
can compute a point in R

2 whose depth in H is at least (1 − ε)κ∗, except with probability at
most e−

√
n.

2.5.2 Bucketing and Sampling Combined

We now present a transformed Monte Carlo algorithm that combines Theorem 3 with the
bucketing algorithm described in Section 2.4.

First compute M , as defined in Lemma 1. Next, for each (i, j) ∈ {0, 1, 2}2 , consider the
grid Gij as in Section 2.4. Fix a parameter γ ≥ 0. For each cell B of G ij with |S ∩ B| ≥ M ,
run the algorithm described in Section 2.5.1 on the set S∩B to obtain a point yB and compute
the value kB = dS∩B(yB). Finally return a point yB for which kB is maximum.

The above algorithm immediately leads to the following results.

Theorem 5. Let S be a set of n points in the plane and let C be a disk satisfying assumptions
(A1)–(A5). For arbitrary ε, γ > 0, an ε-approximate placement of C can be computed in
O(Tg(n)+nQ(m)+nT (αβγκ∗)/κ∗) time by a Monte Carlo algorithm with error probability
at most sαβκ∗e−ε2γκ∗

.

Corollary 4. Let S be a set of n points in the plane and let C be a disk satisfying assumptions
(A1)–(A5). For arbitrary constant ε > 0, an ε-approximate placement of C can be computed
in O(n log n) time with probability of error at most e−

√
κ∗ log n if C is fat and has O(1) edges,

20 Chapter 2. Placement Algorithms

and in O(n log(mn) + m) time with probability of error at most e−
√

κ∗ log(mn)/ log(mκ∗) if C

is a convex m-gon.

Proof. To prove the first claim, let A be the first algorithm of Corollary 1. Then T (n) =

O(n2). Applying Theorem 5 to A, we obtain an ε-approximation algorithm for the optimal-
placement problem with running time O(n log n+γ2nκ∗) and error probability O(κ∗e−ε2γκ∗

).
If we choose γ = (2/ε2)

√
(log n)/M , where M is as in Lemma 1, the running time and the

error probability are as claimed for n larger than some constant.

For the proof of the second claim, we take A to be the second algorithm of Corollary 1.
Then T (n) = O(n2 log(mn)+m). If we apply Theorem 5 to A, we obtain an ε-approximation
algorithm for the optimal-placement problem with running time

O(n log(mn) + nγ2κ∗ log(mγκ∗) + m)

and error probability
O(κ∗e−ε2γκ∗

)

. We choose γ = c
√

log(mn)/(M log(mM)), where M is as in Lemma 1 and c is a suf-
ficiently large constant. Except if γ > 1, in which case we can use the second algorithm of
Corollary 2, this gives the running time and the error probability claimed for n sufficiently
large.

2.5.3 Linear Time Algorithm

Here we show that an additional random-sampling step reduces the running time in Theorem 5
at the expense of a larger error probability.

Let A be any deterministic algorithm that computes κ∗ and let T denote its worst-case
running time. As before, we assume that T (n) and T (n)/n are non-decreasing and that T is
smooth. For any real number 0 < γ ≤ 1, let Aγ be the Monte Carlo approximation algorithm
obtained by applying Theorem 3 to A.

Let S be a set of n points in the plane and let 0 < γ ≤ 1, 0 < γ ′ ≤ 1 and 0 < ε ≤ 1 be
real numbers. Our new algorithm does the following. First, it generates a γ ′-sample S ′ of S.
Then it runs a slightly altered version of the algorithm of Theorem 5 on the set S ′, using the
parameter γ. To be more precise, the algorithm makes the following steps.

Step 1: Generate a γ ′-sample S ′ of S.

Step 2: If S ′ = ∅ or |S′| ≥ 2γ′n, then let y be a point on the boundary of one of the sets Cp,
with p ∈ S. Compute the number ky of points of S contained in Cy. Return ky and y, and
terminate. Otherwise, proceed with Step 3.

Step 3: Compute the value M ′, defined as the maximum number of points of S ′ that are
contained in any cell of the grid Ga,b.

Step 4: For any two integers i and j with 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2, do the following.

Step 4.1: Run the semisorting algorithm on S ′, based on the grid G := Gij
3αa,3βb, which is

obtained by shifting G3αa,3βb by the vector (iαa, jβb).

2.5. Monte-Carlo Algorithms 21

Step 4.2: For each cell B of G that contains at least M ′/(18αβ) points of S ′, run Aγ on the
set S′ ∩ B. Let k′

B and xB be its output. Hence, the set CxB
contains k′

B points of S ′ ∩ B.

Step 5: Compute indices i and j and a cell B of G ij
3αa,3βb such that k′

B is maximum. Compute
the number kB of points of S contained in CxB

. Return kB and xB .

The algorithm described above suggests the following improvements.

Theorem 6. Let S be a set of n points in the plane and let C be a fat disk satisfying as-
sumptions (A1)–(A5) and having O(1) edges. For arbitrary constant ε > 0, an ε-approximate
placement of C can be computed in O(n) time with error probability at most ne−

√
κ∗

.

Proof. The algorithm described above, can be thought of as sampling followed by bucketing
followed by sampling: Essentially the algorithm draws a random γ-sample S ′ of S, where
γ = min{L/log n, 1} for a constant L > 0 to be chosen below. If |S ′| > 2γn, the algorithm
returns an arbitrary point. Otherwise we apply the first algorithm of Corollary 4 to S ′, but with
approximation parameter ε/4, rather than ε, and return the point returned by that algorithm.
The overall running time is clearly O(n).

As in the proof of Theorem 3, we write d for dS and d′ for dS′ . Assume that ε ≤ 1 and
that |S′| ≤ 2γn and let κ′ be the maximum value of d′(x) over all points x in the plane.
By Lemma 2, Pr[κ′ < (1 − ε/4)γκ∗] ≤ e−c1γκ∗

for some constant c1 > 0. Moreover, the
analysis in the proof of Theorem 3 shows the probability that d′(z) ≥ (1 − ε/2)γκ∗ for some
z ∈ R

2 with d(z) < (1 − ε)κ∗ to be O(ne−c2γκ∗
) for some other constant c2 > 0. Finally,

the probability that the algorithm of Corollary 4 returns a point y with d′(y) < (1 − ε/4)κ′

is at most e−
√

κ′ log n. Observe that κ′ ≥ (1 − ε/4)γκ∗ and d′(y) ≥ (1 − ε/4)κ′ imply
d′(y) ≥ (1 − ε/2)γκ∗. Therefore, for some constant c > 0, the answer is correct, except
with probability O(ne−cγκ∗

+ e−c
√

γκ∗ log n). If γ < 1, the probability under consideration
is O(ne−cLκ∗/log n + e−c

√
Lκ∗

). We can assume that κ∗ ≥ (log n)2, since otherwise there is
nothing to prove. But then it is clear that for L chosen sufficiently large and for n larger than
some constant, the error probability is at most ne−

√
κ∗

.

2.5.4 Implementing the Semisorting Algorithm

Let x and y be two positive real numbers. A first implementation of the semisorting algorithm,
based on the grid Gx,y, is as follows. For each point p = (p1, p2) of S, compute the index
(`p

1, `
p
2) of the grid cell that contains p. Note that `p

1 = bp1/xc and `p
2 = bp2/yc. Then sort all

indices (`p
1, `

p
2), with p ∈ S, lexicographically. It is clear that in the sorted sequence, all points

of S that are in the same grid cell form a contiguous subsequence. The running time of this
algorithm is bounded by O(n log n). The algorithm uses the non-algebraic floor function to
compute indices of grid cells. We can replace the grid Gx,y by the degraded grid of [DLSS95,
LS95]. This is basically a collection of O(n) horizontal and vertical lines that partition R

2

into axes-parallel rectangles. The horizontal and vertical sides of any such rectangle have
lengths at least x and y, respectively. Moreover, if the rectangle contains one or more points
of S, then these side lengths are equal to x and y, respectively. In [DLSS95, LS95], it is
shown how such a degraded grid can be computed in O(n log n) time without using the floor
function. Moreover, given any point p ∈ R

2, we can find the cell of the degraded grid that
contains p in O(log n) time. Hence, using this degraded grid instead of the grid Gx,y, we

22 Chapter 2. Placement Algorithms

obtain a semisorting algorithm with a running time of O(n log n) and working in the algebraic
computation-tree model. Note that Lemma 1 also holds for the degraded grid.

In a more powerful computation model, we use the grid Gx,y and implement the semisort-
ing algorithm using hashing. In this extension of the algebraic computation-tree model, each
of the following operations can be performed in unit-time: Computing the floor and logarithm
of any real number, computing 2m for any positive integer m, and indirect addressing.

Consider again the sequence (`p
1, `

p
2), p ∈ S, of indices. Let M1 := maxp∈S |`p

1|, M2 :=

maxp∈S |`p
2|, and M := 2max(M1,M2) + 1. Let I be the set consisting of the integers

`p
1 +`p

2M . We realize the semisorting through a hash function that maps the set I injectively to
a set of non-negative integers that are bounded by O(n). After the hashing has been completed,
the semisorting can be carried out in O(n) time.

One complication for the hashing is that the universe containing the keys to be hashed
is not fixed in advance, but data-dependent. For this reason hashing schemes that embed the
universe in a finite field—such as the celebrated scheme of Fredman et al. [FKS84]—may
be problematic due to the necessity of computing large primes. We avoid this problem by
combining the universal class of Dietzfelbinger et al. [DHKP97] with a hash function of Bast
and Hagerup [BH91]. The entire semisorting runs in at most cn time, for some constant c,
with probability at least 1 − 2−nδ

, where δ is a positive constant.
In the algorithms of Sections 2.5.2 and 2.5.3, we run the semisorting algorithm ten times.

If one of these runs does not terminate within cn time, then we stop the algorithm, take an
arbitrary point y ∈ R

2, compute the number ky of points of S that are contained in Cy, and
return ky and y. In this way, the error probability increases by an additive factor of 10 · 2−nδ

.

2.6 A Deterministic Approximation Algorithm

In this section we present a deterministic algorithm for the ε-optimal-placement problem. For
simplicity, we assume that C is convex and has O(1) edges. The algorithm can be extended to
more general cases. For example, at the cost of an extra O(log m)-factor in the running time,
the algorithm can be extended to arbitrary convex m-gons. Throughout this section, S denotes
a set of n points in the plane, C denotes the set of n translates Cp, with p ∈ S, A(C) denotes
the arrangement defined by the boundaries of the elements of C, and κ∗ denotes κ∗(C,S).

2.6.1 Cuttings

We will refer to a simply connected region with at most four edges (left and right edges being
vertical segments and top and bottom edges being portions of the boundaries of translates
of −C) as a pseudo-trapezoid. For technical reasons, we will also regard vertical segments
and portions of the boundaries of translates of −C as 1-dimensional pseudo-trapezoids. For
a pseudo-trapezoid ∆ and a set F of translates of −C , we will use F∆ ⊆ F to denote the
set of all elements of F whose boundaries intersect ∆. The vertical decomposition A

‖(C)

of A(C) partitions the plane into pseudo-trapezoids. Let F be a subset of C and let ∆ be a
pseudo-trapezoid. We will denote by χ(F,∆) the number of pairs of elements of F whose
boundaries intersect inside ∆. If ∆ is the entire plane, we use the notation χ(F) to denote
χ(F,∆), for brevity. Given a parameter r ≥ 1, a partition Ξ of ∆ into a collection of pairwise

2.6. A Deterministic Approximation Algorithm 23

openly-disjoint pseudo-trapezoids is called a (1/r)-cutting of (F,∆) if |Fτ | ≤ |F|/r for every
pseudo-trapezoid τ ∈ Ξ(F,∆). The conflict list of a pseudo-trapezoid τ in Ξ is the set Fτ .

We state the following technical result in full generality, since it is of independent interest
and may find additional applications. We apply it here only with ∆ being the whole plane.

Theorem 7. Let ∆ be a pseudo-trapezoid, let r ≥ 1, and let δ > 0 be an arbitrarily small con-
stant. A (1/r)-cutting of (C,∆) of size O(r1+δ + χ(C,∆)r2/n2), along with the conflict lists
of its pseudo-trapezoids, can be computed in O(nrδ + χ(C,∆)r/n) time, where the constants
of proportionality depend on δ.

We prove this theorem by adapting Chazelle’s cutting algorithm [Cha93] to our setting.
We call a subset F of C a (1/r)-approximation if, for every pseudo-trapezoid ∆,

∣∣∣∣
|C∆|
|C| − |F∆|

|F|

∣∣∣∣ <
1

r
.

A result by Brönnimann et al. [BCM99] implies that a (1/r)-approximation of C of size
O(r2 log r) can be computed in time nrO(1). Moreover, an argument similar to the one
in [Cha93] implies the following:

Lemma 3. Let F be a (1/r)-approximation of C. For every pseudo-trapezoid ∆,

∣∣∣∣
χ(C,∆)

|C|2 − χ(F,∆)

|F|2
∣∣∣∣ <

1

r
.

Next, we call a subset H of C a (1/r)-net of C if, for any pseudo-trapezoid ∆, |C∆| > |C|/r
implies that H∆ 6= ∅. A (1/r)-net H is called sparse for ∆ if

χ(H,∆)

χ(C,∆)
≤ 4

(|H|
n

)2

.

As in [Cha93], we can prove the following.

Lemma 4. Given a pseudo-trapezoid ∆ and a parameter r ≥ 1, we can compute, in nO(1)

time, a (1/r)-net of C having size O(r log n) and that is sparse for ∆.

Proof of Theorem 7. Using Lemmas 3 and 4, we compute a (1/r)-cutting of (C,∆) as
follows. Let c be a sufficiently large constant whose value will be chosen later. For every
0 ≤ j ≤ dlogc re, we compute a (1/cj)-cutting Ξj of (C,∆). The final cutting is a (1/r)-
cutting of (C,∆). While computing Ξj , we also compute the conflict lists of the pseudo-
trapezoids in Ξj .

Ξ0 is ∆ itself, and C is the conflict list of ∆. We compute Ξj from Ξj−1 as follows. For
each pseudo-trapezoid τ ∈ Ξj−1, if |Cτ | ≤ n/cj , then we do nothing in τ . Otherwise, we first
compute a (1/2c)-approximation Fτ of Cτ of size O(c2 log c) and then a (1/2c)-net Hτ of Fτ

of size O(c log c) that is sparse for τ . Note that Hτ is a (1/c)-net of Cτ . We then compute the
vertical decomposition A

‖(Hτ) of A(Hτ) within τ . A
‖(Hτ) consists of O(|Hτ |+ χ(Hτ , τ))

cells. We replace τ with the pseudo-trapezoids of A
‖(Hτ). Repeating this for all τ ∈ Ξj−1,

we form Ξj from Ξj−1. It is easy to see that Ξj is a (1/cj)-cutting of (C,∆).

24 Chapter 2. Placement Algorithms

By an analysis similar to the one in [Cha93], it can be shown that by choosing the constant
c sufficiently large (but depending on δ), the size of the final cutting is O(r1+δ+χ(C,∆)r2/n2)

and that the running time of the algorithm is O(nrδ + χ(C,∆)r/n). This completes the proof
of Theorem 7.

By a result of Sharir [Sha91], χ(C,∆) = O(nκ∗), so Theorem 7 implies the following.

Corollary 5. Let r ≥ 1 and let δ > 0 be an arbitrarily small constant. A (1/r)-cutting Ξ(C)

of size O(r1+δ +κ∗r2/n), along with the conflict lists, can be computed in O(nrδ +κ∗r) time.

2.6.2 The Approximation Algorithm

Let δ, ε > 0 be real numbers. We now present a deterministic ε-approximation algorithm. We
will need the following lemma.

Lemma 5. Let r ≥ 1 and let Ξ be a (1/r)-cutting of C. Then we can compute a point of depth
(with respect to S) at least κ∗ − n/r in O(|Ξ|n/r) time.

Proof. Let ∆ be a pseudo-trapezoid of Ξ. The maximum depth (with respect to S) of any
point inside ∆ is at most n/r plus the depth (with respect to S) of any vertex of ∆. It thus
suffices to return a vertex of (a pseudo-trapezoid of) Ξ of maximum depth (with respect to S).
We can compute the depths of all vertices of Ξ by following an Eulerian tour on the dual graph
of the planar subdivision induced by Ξ; see, e.g., [AASS93]. As shown in [AASS93], the time
spent in this step is proportional to the total size of all the conflict lists in Ξ. Since the size of
each conflict list is at most n/r, the claim follows.

Our algorithm works in two stages. In the first stage, we estimate the value of κ∗ to within
a factor of 9, and then we use Lemma 5 to compute an ε-approximation of κ∗.

I. Using the bucketing algorithm of Section 2.4, we obtain a coarse estimate k0 of κ∗ that
satisfies k0/9 ≤ κ∗ ≤ k0. (Since we assume that C is convex, we have α = β = 2, as
follows from [SFRW98], which leads to the constant 9 in the estimate above.)

II. We set r = min
{

9n
εk0

, n
}

, compute a (1/r)-cutting Ξ of C, and return a point of max-
imum depth (with respect to S) among the vertices of Ξ. Denote this maximum depth
by k.

By Lemma 5, and assuming that r = 9n
εk0

,

k ≥ κ∗ − n

r
= κ∗ − n

9n/(εk0)
= κ∗ − εk0

9
≥ (1 − ε)κ∗.

If r = n, then k ≥ κ∗ − n/r = κ∗ − 1, which is at least (1 − ε)κ∗, since we may assume that
ε ≥ 1/κ∗.

As shown in Section 2.4, Step I can be implemented in O(n log n) time. Using Theorem 7
and Lemma 5, Step II takes time

O

(
nrδ +

κ∗n

εk0

)
= O

(
n1+δ +

n

ε

)
.

Hence, we conclude the following.

2.7. Deterministic Algorithm by Approximating the Radius of the Disk 25

Theorem 8. Let S be a set of n points in the plane and let C be a convex disk with O(1)

edges. Assume that assumptions (A1)–(A5) are satisfied and let ε > 0 be a real number. An
ε-approximate placement of C can be computed in O(n1+δ +n/ε) time, for any given constant
δ > 0.

2.7 Deterministic Algorithm by Approximating the Radius of the
Disk

We present a different approximation scheme here. Instead of, approximating the number of
points as done so far in this chapter, we approximate the radius of the unit disk C . We give
a simple algorithm which in O(n/ε2) time determines a placement (x, y) of a disc C1+ε of
radius 1 + ε with |C1+ε

(x,y) ∩ S| ≥ κ∗. Here κ∗ denotes the maximal number of points of S

contained in a unit disk.

2.7.1 Simple Approximation Algorithm

The idea of the algorithm is first to get a rough estimate of κ∗ by putting a grid of width two
over the point set and then reexamine the interesting regions. Let k(i,j) = |{p ∈ S : 2i ≤
px < 2(i + 1) and 2j ≤ py < 2(j + 1)}| be the number of points contained in grid cell (i, j)

of the point set. Let k = max(i,j) k(i,j). The algorithm proceeds as follows:

1. Locate each point p ∈ S in a grid of width 2 centered at the origin.

2. Let U = {(i, j) :
∑i+1

g=i−1

∑j+1
h=j−1 k(g,h) ≥ k/4} be the grid cells which have a ‘well-

occupied’ neighborhood.

3. For each cell (i, j) ∈ U ,

(a) Place a grid of width ε over (i, j).

(b) Check each of the O(1/ε2) grid points as center of a potential disc C (1+ε) by
counting the points of the neighborhood that would fall into that disc.

4. Report the best disc encountered during Step 3.

We will first argue about the correctness and show that it computes indeed a disc of radius
(1 + ε) containing at least κ∗ points.

Lemma 6. Assume point (x∗, y∗) is the center of an optimal placement for the unit disc, then
there is a grid point (x′, y′) inspected during the algorithm such that C(x∗,y∗) ⊂ C1+ε

(x′,y′).

Proof. Let us first show that the center of an optimal placement of the unit disc falls inside a
cell u ∈ U . Assume otherwise, then there are less than k/4 points in the neighborhood of this
optimal center that could be possibly covered. But using our grid approximation we can cover
at least k/4 points since any grid cell can be covered by four unit discs and hence one of these
discs must contain at least k/4 points, which is a contradiction.

So we know that (x∗, y∗) falls in a cell u ∈ U . Let (x′, y′) be the grid point inside c which
is closest to (x∗, y∗). This has distance at most ε/

√
2 hence the disc centered at (x′, y′) with

radius 1 + ε contains C(x∗,y∗).

26 Chapter 2. Placement Algorithms

Using the previous lemma we obtain the main result of this section:

Theorem 9. Given a set of points S in the plane and some ε > 0, we can determine in O(n/ε2)

time a placement (x, y) of a disc C1+ε of radius (1 + ε) with |C1+ε
(x,y) ∩ S| ≥ κ∗, where κ∗

denotes the maximal number of points in S contained in a unit disc.

Proof. First observe that we have k/4 ≤ κ∗ ≤ 4k, since any grid cell can be fully covered by
four unit discs and any unit disc intersects at most four grid cells.

Locating and counting all points in their respective grid cells can be done in O(n) expected
time using a standard scheme for perfect hashing, which also allows to perform the second step
within the same time bounds. Observe that |U | = O(n/k), since any cell with at least k/16

points appears in at most 8 neighborhoods. Step 3 requires for each cell in C the inspection of
O(1/ε2) potential centers. Each of these inspections takes O(k) time by brute-force, yielding
a running time of O(n/ε2) for Step 3 which dominates the overall running time.

2.7.2 A Variant for Large κ∗

Our algorithm is clearly optimal in terms of the dependence on n, still in some settings, in
particular for κ∗ = ω(1/ε), one can achieve a better dependence on ε. In the following we
sketch an improvement for this case. The basic idea of the approach is to replace the brute-
force neighborhood exploration for each grid-point by a query to a suitable data structure for
approximate weighted range counting [AM00].

For each cell u = (i, j) ∈ U , we put a grid of width ε not only covering (i, j) but also its
neighbors {(i′, j′) : i−1 ≤ i′ ≤ i+1, j −1 ≤ j ′ ≤ j +1}. For each of the resulting O(1/ε2)

mini-cells we count the number of points contained and associate it with a representative which
is located at the center of each mini-cell and has weight according to the number of points in the
cell. For these representatives we construct a data structure for ε-approximate weighted range
counting in O((1/ε2) log(1/ε2)) time. Now each grid point contained in cell c, instead of using
the O(k) brute-force exploration of its neighborhood like before, queries this data structure
with a (1+3ε) query, which takes O(log(1/ε2)+1/ε) time. The weight returned corresponds
to a set of points that can surely be enclosed in a disc of radius (1+5ε). Furthermore all points
within distance (1 + ε) are guaranteed to be accounted for. So correctness follows from the
same arguments as in the previous algorithm and we obtain the following result which is an
improvement over our previous algorithm for κ∗ = ω(1/ε).

Theorem 10. Given a set of points S in the plane and some ε > 0, we can determine in time
O(n+(n/κ∗)·(1/ε3)) a placement (x, y) of a disc C1+ε of radius (1+ε) with |C1+ε

(x,y)∩S| ≥ κ∗,
where κ∗ denotes the maximal number of points in S contained in a unit disc.

2.8 Concluding remarks

We have given a unified approach to solve the problem of computing a translate of a closed and
bounded set C such that it contains a largest subset of a given set of n points. We started with
two basic algorithms. Then we presented two transformations, based on random sampling and
bucketing, respectively. By combining these transformations with any of the basic algorithms,

2.8. Concluding remarks 27

we obtained different algorithms, either solving the exact optimal placement problem, or the
approximation version of this problem. In the latter case, the algorithm is of the Monte Carlo
type, with a guaranteed upper bound on the error probability. We also presented a deterministic
algorithm for the approximation problem using an adaptation of Chazelle’s cutting algorithm.

We leave open the problem of improving the error probabilities of our Monte Carlo approx-
imation algorithms for small values of k∗. Dickerson and Scharstein [DS98] have considered
the optimal placement problem if, besides translations, it is also allowed to rotate the set C .
For the case when C is a convex polygon with m vertices, they give an algorithm for comput-
ing an optimal placement in O(n2k∗m2 log(mn)) time. In the worst case, this at least cubic
in n. It would be interesting to know if our techniques can be extended to obtain a faster
approximation algorithm.

Chapter 3

Planarity in a Terrain

3.1 Introduction

A terrain is a 2-dimensional surface in 3-dimensional space with a special property: every
vertical line intersects in a point, if it intersects it all. Mathematically, it is a surface in R

3

defined by a function f : R × R → R. If f is piecewise linear and the surface consists of a
collection of triangles, the terrain is called a triangulated irregular network (TIN).

Fig. 3.1: A Triangulated Irregular Network(TIN).

Given a triangulated irregular network T , our goal is to find large, almost planar regions
in T . More formally, we want to find a subset of triangles T of T and a vector −→r (called the
reference normal), such that

1. the adjacency graph of the triangles in T is connected,

2. for each triangle t ∈ T , the angle between −→r and −→nt is at most δ, where −→nt denotes the
normal of triangle t and δ is a given parameter, and

3. T is chosen such that the total weight of T is maximized, where the weight can be for
example the number or the total area of the triangles in T (depending on the application).

30 Chapter 3. Planarity in a Terrain

If the set of triangles T satisfies (1) and (2) above, we say that T is δ-planar with respect
to the reference normal −→r . We now show how this notion can be used to reformulate our
problem.

The unit sphere, i.e., the boundary of the three-dimensional ball centered at the origin
and having radius one, is denoted by S2. The upper hemisphere is defined as S2

+ := S2 ∩
{(x, y, z) ∈ R

3 : z > 0}. We can regard the normal vector of any triangle in a terrain as
a point on S

2
+. The lower hemisphere S

2
− is of no interest to us because, due to the imaging

principle, each vertical line can intersect the surface described by the image in only one point.
Hence, no normal can have a negative z-coordinate.

Let T be a TIN, and let S ⊆ S
2
+ be the set of normal vectors of the triangles in T . Let

G = (S,E) be the undirected graph having vertex set S and in which any two vertices are
connected by an edge if and only if the corresponding triangles in T share an edge. (Actually,
S is a multiset because different triangles in T may have the same normal. Equal normals are
treated as different vertices in G.) Observe that each vertex of G has degree at most three. We
give each vertex p of G a weight wt(p) which is equal to the area of the triangle that gives rise
to p. The weight wt(C) of any subset C of S is defined as wt(C) :=

∑
p∈C wt(p).

For any point x ∈ S
2
+, let Dx denote the spherical disk of radius δ centered at x. That is,

Dx is the set of all points y ∈ S
2 such that the angle between the vectors x and y is less than

or equal to δ. Furthermore, let Gx denote the subgraph of G having S ∩ Dx as its vertex set
and whose edge set is the set of all edges (p, q) ∈ E for which p and q are both contained
in Dx. Finally, we define Wx to be the maximum weight of any connected component of the
graph Gx. Using this terminology, our problem can be formally stated as follows.

Problem 1. Given a graph G as above having n vertices, and a real constant δ > 0,
compute a point x ∈ S

2
+ such that Wx is maximum.

Let (p, q) be any edge of the graph G. If the angle between the vectors p and q is larger
than 2δ, then it is clear that (p, q) can be ignored when solving Problem 1. Therefore, we
may assume without loss of generality that the angle between the endpoints (when regarded as
vectors) of any edge of G is at most 2δ.

3.1.1 Main results

In Section 3.2, we will show how computational geometry and dynamic graph algorithms can
be used to solve Problem 1 in O(n2 log n(log log n)3) time.

It is unlikely that Problem 1 can be solved in subquadratic time. In fact, it seems that even
the problem of computing a point y ∈ S

2
+ such that Wy approximates the optimal solution

cannot be solved in subquadratic time. Therefore, in Section 3.4, we describe a simple grid-
based heuristic. We have implemented this heuristic and discuss some details about it in
Section 3.5. We also present some experimental results on images of fracture surfaces obtained
by confocal laser scanning microscopy. These results show that the heuristic is able to find δ-
planar regions whose area is sufficiently large.

3.2. Solving Problem 1 31

3.1.2 Related work

The problem considered here is related to the terrain simplification problem. In this prob-
lem, we want to approximate a polyhedral terrain by a “smaller” terrain, i.e., one having the
minimum number of vertices. Although this problem has been studied in, for example, the
computer graphics community [SB95], the main reference we are aware of that considers this
problem from a complexity point of view is Agarwal and Suri [AS98]. They give evidence
that the terrain simplification problem is hard by proving that a strongly related problem is NP-
hard. They also give a polynomial-time algorithm for approximating the minimum terrain.

The problem 3SUM is defined as follows: Given three sets A, B, and C , each consisting
of n real numbers, decide whether there are elements a ∈ A, b ∈ B, and c ∈ C such that
a + b = c. This problem can be solved in O(n2) time, and it is widely believed that it cannot
be solved in subquadratic time. A problem P is called 3SUM-hard if 3SUM can be reduced
to P in subquadratic time; see Gajentaan and Overmars [GO95].

If we consider Problem 1 for the case when the graph G is complete and all vertices
have equal weights, then we get the problem of computing a placement of a spherical disk that
contains the largest subset of a given set S of n points on S

2. This problem has been considered
by Chazelle and Lee [CL86] for the case when S is a set of points in the Euclidean plane. They
showed that the problem can be solved in O(n2) time. The related problem of computing the
deepest point in an arrangement of halfplanes is 3SUM-hard, see [GO95]. This indicates that it
is unlikely that the disk placement problem can be solved in subquadratic time. In the previous
chapter and in [AHR+02] & [FMR04] we gave an an alternative O(n2)-time algorithm for
the optimal disk placement problem, as well as randomized approximation algorithms whose
running times are close to linear. Our algorithm in Section 3.2 for solving Problem 1 has been
inspired by the O(n2)-time algorithm developed by us to solve the placement problem.

3.2 Solving Problem 1

In this section, we give an algorithm that solves Problem 1. Consider the graph G = (S,E),
and consider the spherical disks Dp centered at the points p of S. Let A be the arrangement on
S

2 defined by the boundaries of the disks Dp, where p ∈ S. That is, A is the subdivision of S
2

into vertices, edges and faces defined by the overlay of the boundaries of the disks Dp, p ∈ S.
Since p ∈ Dx if and only if x ∈ Dp, we have Wx = Wy for any two points x and y that are
in the interior of the same face f of A. Also, for each vertex z of f , we have Wz ≥ Wx. This
proves the following lemma.

Lemma 7. To solve Problem 1, it suffices to consider points x ∈ S
2
+ that are vertices of the

arrangement A.

Throughout this section, we make the following general-position assumption about the set
S. We assume that the elements of S are pairwise distinct. Moreover, we assume that for
any two distinct points p and q of S, the spherical disks Dp and Dq are either disjoint or have
an intersection of positive area (hence, Dp and Dq do not touch each other). Finally, for any
three distinct points p, q, and r of S the spherical disks Dp, Dq, and Dr do not intersect in a

32 Chapter 3. Planarity in a Terrain

single point. We make this assumption only to simplify the description of our algorithm. This
algorithm can easily be extended to handle arbitrary sets of points.

The discussion above leads to the following preliminary algorithm for solving Problem 1.

Step 1: Compute the arrangement A.

Step 2: Let W := 0. For each vertex x of A, do the following.

• Compute the graph Gx.

• Compute the connected components of Gx, together with their weights. Let Wx be the
maximum weight of any of these connected components.

• Set W := max(W,Wx).

Step 3: Return W .

It is clear that this algorithm correctly solves Problem 1. Let us analyze its running time.
Recall that n denotes the number of elements of the point set S. For any p ∈ S, let deg(p)

denote the degree of p in G. Observe that
∑

p∈S deg(p) is equal to twice the number of edges
of G, and that deg(p) ≤ 3 for any p ∈ S. Therefore, G has at most 3n/2 edges.

Step 1, i.e., computing the arrangement A, takes O(n2) time using, e.g., the algorithm of
Amato et al. [AGR00]. Consider any vertex x of A. The graph Gx can clearly be computed
in time proportional to the number of vertices and edges of G; hence, Gx can be computed in
O(n) time. Given Gx, its connected components and the value Wx can be computed in O(n)

time; see, e.g., the book by Cormen et al. [CLR90]. Hence, for each vertex x of A, O(n) time
is spent in Step 2. Since A has O(n2) vertices, the overall time for Step 2 is O(n3). Hence,
the entire algorithm takes O(n3) time.

3.3 Improving Running Time

We now show how to improve the running time considerably. Note that the bottleneck of the
previous algorithm is Step 2. The idea of the improved algorithm is to traverse the arrangement
A and maintain the connected components of Gx in a data structure. Consider what happens
when we walk along an edge of A from a vertex x to a vertex y. Assume that we know the
connected components of the graph Gx. Our goal is to compute the connected components of
Gy as fast as possible. Observe that walking from x to y means that we move the spherical
disk Dx along an edge of A to the position Dy . During this move, at most one point of S can
enter or leave the spherical disk. (Here we use our general-position assumption.) Since the
graph G has degree three, it follows that the graph Gy can be obtained from Gx by performing
at most a constant number of edge insertions and deletions.

Assume that we have a data structure CC that stores the connected components, together
with their weights, of a given graph, and that supports edge insertions and deletions, and
queries of the form “report the maximum weight of any connected component”. (We will
specify this data structure later. For the moment, we use it as a black box.) For any point
x ∈ S

2
+, we denote by CC x the instance of this data structure for the graph Gx.

Our improved algorithm does the following.

3.3. Improving Running Time 33

Step 1: Compute the arrangement A.

Step 2: Let x be an arbitrary vertex of A.

• Compute the graph Gx.

• Compute the connected components of Gx, together with their weights. Compute Wx

as the maximum weight of any connected component of Gx.

• Set W := Wx.

• Construct the data structure CC x.

Step 3: Starting at x, traverse the vertices of the arrangement A, e.g., in depth-first order. In a
generic step, we walk from a vertex y, along an edge of A, to a neighboring vertex z. At the
moment when we leave y, we have the data structure CC y , storing the connected components
of the graph Gy , together with their weights. The graph Gz can be obtained by inserting and
deleting at most a constant number of edges in the current graph Gy . Hence, we obtain the
data structure CC z by performing these updates in the data structure CC y . Afterwards, we
query CC z to find the value of Wz , and set W := max(W,Wz).

Step 4: Return W .

The correctness of this algorithm is clear. Steps 1 and 4 take O(n2) and O(1) time, re-
spectively. The times for Steps 2 and 3 depend on the data structure CC . Let P (n), U(n),
and Q(n) denote the preprocessing time, update time, and query time of this data structure,
respectively. Then Step 2 takes O(n+P (n)) time. In Step 3, we spend O(U(n)+Q(n)) time
for each edge of A. Since this arrangement has O(n2) edges, it follows that the total running
time of the algorithm is

O
(
P (n) + n2(U(n) + Q(n))

)
.

It remains to specify the data structure CC . In [Tho00], Thorup gives a data struc-
ture for maintaining a spanning forest of a graph under insertions and deletions of edges,
in O(log n(log log n)3) amortized time per update, where n denotes the number of vertices of
the graph. Given any two vertices of this graph, it can be decided in O(log n/ log log log n)

time if they are in the same connected component. (A simpler but theoretically slightly less
efficient data structure was given by Holm et al. [HdLT98].) This data structure can easily be
extended so that it maintains the weights of all connected components within the same time
bound. If we store these weights in a heap, then we can extract the weight of the largest con-
nected component in O(1) time. Moreover, this heap can be updated in O(log n) time per
operation. The data structure can be built by successively inserting all edges into an initially
empty graph. Hence, we have P (n) = O(n log n(log log n)3), U(n) = O(log n(log log n)3),
and Q(n) = O(1). Thus, we have proved the following result.

Theorem 11. Problem 1 can be solved in O(n2 log n(log log n)3) time.

It is not clear if Problem 1 can be solved in subquadratic time; see Section 3.1.2. Instead,
one can ask about the time complexity for approximating the optimal solution. That is, let ε

be a real number such that 0 < ε < 1, and let x ∈ S
2
+ be a point for which Wx is maximum.

34 Chapter 3. Planarity in a Terrain

In the approximation version of Problem 1, we have to compute a point y ∈ S
2
+ such that

Wy ≥ (1 − ε)Wx.

Consider the following example. Let D be a spherical disk of radius δ, and let p and q be
two diametrally opposite points on the boundary of D. Let m be a large integer. For each i,
1 ≤ i ≤ m, let ai := p and bi := q. Consider the edges (ai, bi), 1 ≤ i ≤ m, and (bi, ai+1),
1 ≤ i < m. Note that these edges form a path between a1 and bm that alternates between the
points p and q. Let G be a graph containing the points ai and bi, 1 ≤ i ≤ m, as vertices, and
the above edges. All other vertices of this graph are “far” away from p and q, and have “large”
distances among each other. We assume that all vertices of G have unit-weight. (It is easy to
construct a TIN for which G is the corresponding graph.) For this graph, the center of D gives
the optimal solution to Problem 1. If we move the disk D, then either the point p or the point q

leaves the disk and, hence, each connected subgraph of G that is contained in the disk consists
of one single vertex. This shows that any approximation algorithm for Problem 1 must return
the center of D. Because of this, the approximation version of Problem 1 has the same time
complexity as Problem 1 itself.

3.4 A Heuristic for Finding Large δ-planar Regions

In this section, we give a simple heuristic approach to compute large connected regions in a
TIN that are δ-planar. (Different regions need not be approximately contained in the same
two-dimensional plane.) We cannot prove any non-trivial bounds on the quality of its output,
but experiments have shown that the output is good in practice, and that the heuristic is fast.

Let T be a TIN consisting of n triangles, let δ > 0, let S be the set of normal vectors
of these triangles, and let G = (S,E) be the graph as defined in Section 3.1. Recall that the
weight wt(p) of any element p of S is equal to the area of the triangle whose normal vector is
p. Also, recall that S is actually a multiset. Our goal is to find all δ-planar regions in T having
area at least A, where A is some given positive real number.

We define a grid on the upper hemisphere S
2
+ using lines of longitude and latitude such that

every grid cell is contained in some spherical disk of radius δ. To be more precise, we choose
an appropriate real number ε with ε = Θ(δ) and use X := dπ/εe equally spaced lines of
longitude loi, 0 ≤ i < X , and Y := dπ/(2ε)e equally spaced lines of latitude la j , 0 ≤ j < Y .

For any two indices i and j with 0 ≤ i < X and 0 ≤ j < Y , we call the pair (i, j) the
index of the grid cell bounded by lo i, loi+1, laj , and laj+1. For any point p ∈ S

2
+, we can in

O(1) time compute the index of the grid cell containing p. Note that each grid cell is adjacent
to at most four other cells, except for those that are incident to the north pole.

Our heuristic takes as input the TIN T , the positive real numbers δ and A, and the graph
G = (S,E). It starts by computing a subset of all δ-planar regions in T having area at least
A/4. (Below, it will become clear why we choose A/4 instead of A. In fact, the factor 1/4 can
be replaced by any constant between zero and one.) Then it makes a boundary correction step,
in which each region is enlarged, while remaining δ-planar. To be more precise, the heuristic
makes the following seven steps.

Step 1: Initialize an array C[0..X − 1, 0..Y − 1], and store with each entry an empty list of
points and an empty list of edges.

3.4. A Heuristic for Finding Large δ-planar Regions 35

Step 2: For each point p ∈ S, compute the index (ip, jp) of the grid cell that contains p, and
add p to the point list of C[ip, jp].

Step 3: For each edge (p, q) ∈ E with (ip, jp) = (iq, jq), add (p, q) to the edge list of C[ip, jp].
(Hence, in this step, all edges that are completely contained within one grid cell are extracted.)

Step 4: Initialize an empty list L.

Step 5: For each i and j with 0 ≤ i < X and 0 ≤ j < Y , do the following.

• Let Gij be the graph having the points of C[i, j] as its vertices, and the edges of C[i, j]

as its edges. Compute the connected components of Gij , together with their weights.

• For each connected component of Gij , add it to the list L if it has weight at least A/4.

Consider the list L when Step 5 has been completed. Each element of L corresponds to
a connected subgraph of G having weight at least A/4 and that is contained in one grid cell,
i.e., it corresponds to an δ-planar region in the TIN having area at least A/4. It may happen
that such a region R can be enlarged by adding triangles that are adjacent to R and whose
normals are in a grid cell that is adjacent to the grid cell that gave rise to R. Of course, the
enlarged region should still be δ-planar. Below, we describe a “boundary correction” step that
does exactly this.

Step 6 (Boundary correction step): This step is performed for each connected subgraph of
G that is stored in the list L. Let G′ be any such subgraph.

We first compute the smallest enclosing spherical disk D ′ containing all vertices of G′,
using the linear-time algorithm as presented, e.g., in de Berg et al. [dBvKOS97]. Let c be the
center of D′, and let D be the spherical disk of radius δ centered at c. Note that G′ is contained
in D, because D′ is contained in D.

We now go back to the TIN T and mark the triangles corresponding to the vertices of
G′. Let T be the set of all marked triangles. Note that all normals of triangles in T are
contained in D. Now we consider each unmarked triangle t of T that shares an edge with
at least one marked triangle, and mark t if its normal is contained in D. Let T ′ be the set
of all marked triangles after we have considered all such triangles t. If T = T ′, then we
stop the boundary correction step for this subgraph G′. Otherwise, we repeat this process by
considering unmarked triangles that share an edge with at least one marked triangle.

Step 7: After having completed the boundary correction step for each element in L, we have
a collection of δ-planar regions, each one having area at least A/4. Since these regions may
overlap, we continue as follows. We sort all these enlarged regions according to their areas. If
the largest region has area at least A, then we report it, and mark all its triangles in T . Then
we consider the second largest region. If its area is at least A, and if none of its triangles has
been marked yet, we also report it and mark all its triangles in T . We continue this until we
have reported all regions whose area is at least A and that do not overlap any of the previously
reported regions.

What can we say about the quality of the output? Let R be any δ-planar region in the TIN
T , and let G′ be the corresponding connected subgraph of G. Our algorithm reports the region
R if and only if G′ contains a connected subgraph G′′ of weight at least A/4 that is completely

36 Chapter 3. Planarity in a Terrain

Fig. 3.2: Converting an array of pixels to a TIN.

contained in one of our grid cells. If each edge of G′ crosses a cell boundary, then R will not
be reported. Therefore, in order to improve the chances of finding R, we run the algorithm
several times using shifted copies of the grid.

3.5 Implementation and Experimental Results

We have implemented the heuristic that was discussed in the previous section. The program,
which we call PlaneFinder , takes as input a k × ` array of pixels in tif (tagged image file)
format. The value stored at each entry is the height of the corresponding surface point, i.e., the
z-value of the voxel position.

The application is open to all kind of imaging methods which deliver topographical im-
ages. Besides confocal laser microscopy that we used to obtain our images, examples include
scanning force microscopy [Sch97], white light interference microscopy [HSW00], extended
focus conventional light microscopy [YWM99], and photogrammetry based on stereo pairs
received by scanning electron microscopy [Boy73].

PlaneFinder starts by computing a TIN as illustrated in Figure 3.2. The vertices of the
TIN are (i) the centers of the pixels, where the z-coordinate is given by the height of the pixel,
and (ii) the centers of all 2×2 blocks of pixels, where the z-coordinate is given by the average
height of the four pixels comprising the block. These vertices are joined by edges as indicated
in the right part of Figure 3.2. Note that the total number of triangles, which we denote by
n, is equal to n = 4(k − 1)(` − 1). Given this TIN, PlaneFinder proceeds as described in
Section 3.4.

The program is written in C++ and uses the LEDA library [MN99]. In the current version,
the following operations are supported.

• Show the k largest δ-planar regions (as found by the heuristic), for some values k and δ

provided by the user.

• Show all δ-planar regions having area at least A (again as found by the heuristic), for
some values δ and A provided by the user.

The output is the original tif-image in which all regions that have been detected are colored.
(A pixel in the image is colored if and only if at least one of the triangles overlapping the pixel

3.5. Implementation and Experimental Results 37

Fig. 3.3: On the left, a confocal laser scanning micrography (topographical image) of a steel fracture
surface is displayed. The colors represent the heights of the pixels. The four δ-planar re-
gions computed by PlaneFinder are marked white in the right image. The image size is
100µm×100µm.

belongs to a region.) The program takes care that adjacent regions are drawn in visibly distinct
colors. The program also lists the regions found in increasing order of their area.

We have run PlaneFinder on various images of fracture surfaces obtained by confocal
laser scanning microscopy. As mentioned already, these images are in tif format, and consist
of 512×512 pixels. Hence, the corresponding TINs consist of n = 1, 044, 484 triangles. Most
of the surfaces are very rough and contain only small δ-planar regions. For a typical image
PlaneFinder takes about 35 seconds.

An example is given in Figure 3.3, which shows the original image (on the left) as well as
the output of PlaneFinder (on the right). The program was run with δ equal to five degrees
and A equal to 1500 square units. The right part shows, in white, the four δ-planar regions
found having area at least A = 1500 square units. (Note that area refers to the true area in
space and not the projected area.)

Figure 3.4 shows an example of an image in which we have added four large slanted
triangles. One of these is δ-planar for δ = 5 degrees, whereas the others are δ ′-planar for a
value of δ′ that is slightly larger than five degrees. PlaneFinder was run on this image with
A = 3000 square units. It correctly detected only one of the triangles.

In order to flatten local roughness in the images, we have included the option to apply a
mean-filter in a preprocessing step. When we apply this filter to the image of Figure 3.4, then
PlaneFinder finds all four triangles.

38 Chapter 3. Planarity in a Terrain

Fig. 3.4: On the top, a topographical image and its parallel projection onto the xy-plane are displayed.
One “approximately planar” triangle and three “not so approximately planar” triangles have
been inserted for testing purposes. The δ-planar regions computed by PlaneFinder are
marked white in the bottom image.

3.6. Concluding Remarks 39

3.6 Concluding Remarks

We have considered the problem of computing large regions in a terrain that are connected
and approximately planar. We showed that the problem of computing the largest such region
can be solved in a time that is roughly quadratic in the number of triangles in the terrain, and
argued that it is unlikely to solve the problem faster. We leave open the problem of proving
this rigorously. We also argued that it may even be hard to approximate this largest region.
Proving this claim formally is also left as an open problem.

We defined a connected set of triangles to be “approximately planar” if their normals are
contained in a spherical disk of a fixed small radius. It would be interesting to solve the
problem for other notions of being approximately planar. For example, we could require the
angular diameter of the normals to be at most δ, or the set of triangles to be contained between
two parallel planes having distance δ.

Chapter 4

Locating Planar Regions in a Terrain with a Guarantee

4.1 Introduction

We have observed that the heuristic approach in the previous chapter though performs well
on the real-world data sets, we were unable to prove any non-trivial bounds on the quality of
its output. And also the exact algorithm to compute the largest planar region in terrain was
too expensive to be praticable at all. In order to overcome the shortcoming in the heuristic
approach, here we present an algorithm for an approximated version of the same problem,
which, given some parameters δ and ε produces a connected subterrain and a reference normal
such that all triangle normals in the subterrain deviate at most (1 + ε) · δ from the reference
normal, and the weight of the subterrain is at least the weight of the optimal subterrain with
maximum deviation δ. The running time of this algorithm is O(n/ε2). We sketch also a variant
of this algorithm with a better dependence on ε but an extra polylogarithmic factor on n. For
n sufficiently large, both algorithms use optimal O(n) space.

We also elaborate experimental results obtained by the implementation of the approximate
algorithm which runs in reasonable time on real-world test data consisting of terrains with
several hundred thousands triangles.

4.2 Finding a Large Planar Region Approximately

4.2.1 Preliminaries

Most of the notations and symbols used in this chapter are the same as in the previous one. We
still repeat some of the basic definitions and facts about terrain which we shall be using later
to develop our approxinate algorithms in order to enhance readability of this chapter.

Let T be a triangulated irregular network (TIN). We associate with T an undirected
weighted graph GT (V,E) as follows. Each triangle t in T has an associated weight w(t)

and corresponds to a vertex vt in V . An edge connects two vertices of V if and only if the
corresponding triangles in T are adjacent. Note that GT is the dual graph of T , is planar and
has degree three.

Each vertex vt ∈ V is assigned the weight of its associated triangle w(t) which can be, for
instance, equal to the area of the triangle t (when the objective is to maximize the area of the
detected region) or simply one (if we want to maximize the number of triangles in the region).
The weight w(V ′) of any subset V ′ of V is defined as the sum of the weights of the vertices
in V ′.

42 Chapter 4. Locating Planar Regions in a Terrain with a Guarantee

Let δ > 0 and ε > 0 be two real parameters taking reasonably small values for our
problem, for example, they satisfy δε ≤ 1. Throughout, we denote the normal of a triangle t

by −→nt . We use the notation ∠(v, u) to denote the angle between two vectors −→v and −→u . For a
point u ∈ R

3 we denote by −→u the vector
−→
Ou, where O is the origin.

We present now some basic definitions. We say that a subset of triangles T of T is δ-
planar if (i) the triangles in T are connected and (ii) there is a vector −→r such that for each
t ∈ T , ∠(r, nt) ≤ δ. A subset of triangles T of T is optimal δ-planar if it has the largest
possible weight over all δ-planar subsets of T .

Our Notion of Approximation

There are at least two ways to define the notion of an ε-approximate δ-planar set T . One way
would be to require T to be δ-planar and of weight at least (1 − ε) times the weight of an
optimal δ-planar set. Unfortunately solving this type of approximation seems to be as difficult
as solving the problem exactly, see [SRWL04] for more details. We adopt the following notion
of approximation: A subset of triangles T of T is ε-approximate δ-planar if it is δ(1 + ε)-
planar and has weight at least as large as an optimal δ-planar set.

4.2.2 δε-Discretization

Let S
2 denote the unit sphere, i.e., the boundary of the three-dimensional ball of radius one

centered at the origin. As it will be clear next, we only need consider the upper hemisphere of
S

2 but for simplicity we use the whole sphere S
2.

For each triangle t ∈ T , we can associate a point vt ∈ S
2 that represents the normalized

normal of triangle t. Specifically, −→vt = −→nt/|−→nt |. Our goal is to approximate the space S
2 of

all normals by a finite set of points V ⊆ S
2 such that for any s ∈ S

2, there is a point p ∈ V

nearby.

Definition 2. A set of points V ⊆ S
2 is called a δε-discretization of S

2 if ∀s ∈ S
2 : ∃p ∈

V with ∠(s, p) ≤ δ · ε.

Lemma 8. There exists a δε-discretization of S
2 of size O(1/(δε)2) which can be computed

in the same time.

Proof. The following construction yields a δε-discretization for S
2. Consider a cube L with

side-length 2 centered at the origin. Note that S
2 ⊂ L. Place a 2-dimensional grid of size k×k

with k = d
√

2/(δε)e over each of the six facets of L. This generates k2 equally sized square
grid cells on each face of L, where each cell has side-length at most (δε

√
2), and 6k2 + 2

grid points overall. See Figure 4.1. Let Q be the set consisting of these grid points. Our
δε-discretization V of S

2 is defined as

V =
{ −→q
|−→q | : q ∈ Q

}
,

that is, for each grid-point q we shoot a ray from the origin through q and include the point
where the ray leaves S

2 into our set V. It remains to prove that V is indeed a δε-discretization.

4.2. Finding a Large Planar Region Approximately 43

k

k

Fig. 4.1: Cube with sidelength two containing S2 and with a k × k grid on each of its faces.

Consider any point s on S
2 and the point s̃ where the ray starting at the origin and passing

through s hits the boundary of the cube L. Since k = d
√

2/(δε)e, there is a grid point q ∈ Q

that has distance to s̃ at most d = (
√

2/2) · (δε
√

2) = δε. We want to bound the angle
∠qOs = θ. θ is maximized when ∠Os̃q = ∠Oqs̃. But since tan(θ/2) ≤ d/2, we get
θ = 2(θ/2) ≤ 2(arctan d/2) ≤ d = δε. Also, as k = d

√
2/(δε)e, it follows that V has size

|V| ≤ 12/(δε)2 + 18/(δε) + 18, which completes the proof.

4.2.3 The Basic Algorithm

We describe a first, simple method for our problem that computes an ε-approximate solution
and has running time O(n/(δε)2).

1. Compute a δε-discretization V of S
2.

2. For each p ∈ V,

(a) Compute the set Vp of vertices vt with ∠(p, nt) ≤ (1 + ε) · δ.

(b) Consider the subgraph of GT induced∗ by the set Vp and determine its connected
component Cp with maximum weight.

3. Return the set of triangles T corresponding to the heaviest component Cp found in Step
2 and the respective reference normal −→p .

In the following we prove the correctness and running time of this algorithm.

Lemma 9. Given a triangulated irregular network T , and two real parameters δ > 0 and
ε > 0 we can compute in O(n/(δε)2) time an ε-approximate δ-planar subset of triangles T of
T .

∗ In other words, this graph arises from GT by keeping only those vertices and edges that lie entirely in Vp.

44 Chapter 4. Locating Planar Regions in a Terrain with a Guarantee

Proof. By Lemma 8, computing the δε-discretization takes O(1/(δε)2) time. For each element
p ∈ V we have to determine the subgraph induced by Vp and compute its connected compo-
nents, which can be done in O(n) time. So the total running time of Step 2 is O(n/(δε)2)

which also dominates the overall running time.

For the correctness, observe that δ(1 + ε)-planarity follows immediately from the formu-
lation of the algorithm; we only consider triangles whose normals deviate at most (1 + ε) · δ
from some vector −→r and we only return triangles whose dual vertices in GT form a connected
component.

It remains to show that the weight of our computed set is at least that of an optimal δ-planar
set T ∗. For set T ∗ there exists a vector

−→
r∗ such that for all triangles t ∈ T ∗, ∠(r∗, nt) ≤ δ.

Let p be a point in V for which ∠(p, r∗) = minu∈V ∠(u, r∗). By the definition of V, the angle
∠(p, r∗) must be at most δε. Then, for any triangle t ∈ T ∗ the angle between −→nt and −→p is at
most δ + (δε) = δ(1 + ε). Therefore for all t ∈ T ∗, vt ∈ Vp and hence our algorithm will find
a connected component with at least the same weight.

The running time of the basic algorithm is optimal in terms of n. But one may ask whether
the dependence on ε or δ can be improved. In particular, it would be nice to remove the
dependence on δ. In the following we will refine our algorithm to obtain a running time of
O(n/ε2).

4.2.4 The Refined Algorithm

There are two ideas which help the refined algorithm improve the running time. First we
determine a set of reference normals V

′ of size O(n/ε2) which contains all relevant reference
normals, avoiding the inspection of Ω(1/(δε)2) potential reference normals. Secondly by a
bucketing scheme, we reduce significantly the number of times a triangle has to be considered.
The refined algorithm proceeds as follows:

1. For each triangle t ∈ T with normal nt, let pt be a point in V for which ∠(pt, nt) =

minu∈V ∠(u, nt); store t in the bucket associated with pt.

2. Determine a set V
′ ⊂ V of potential reference normals as V

′ = {p ∈ V : ∃pt with
non-empty bucket and ∠(p, pt) ≤ (1 + 2ε) · δ}

3. For each r ∈ V
′,

(a) Collect the set of triangles Nr contained in buckets of reference normals r ′ ∈ V
′

with ∠(r′, r) ≤ (1 + 2ε) · δ.

(b) Prune Nr keeping only triangles t with ∠(nt, r) ≤ (1+ε) ·δ. Let N ′
r be the pruned

set.

(c) Consider the subgraph of GT induced by the vertices corresponding to triangles in
N ′

r and determine its heaviest component Cr.

4. Output the heaviest component Cr from Step 3.

4.2. Finding a Large Planar Region Approximately 45

Before we prove the running time and the correctness of the algorithm, we state a small
lemma which informally says that in the δε-discretization, the points are distributed somewhat
sparsely.

Lemma 10. Let p be a point in the δε-discretization V constructed as in Lemma 8. Then the
number of points p′ ∈ V with ∠(p, p′) < (1 + 2ε) · δ is O(1/ε2).

Proof. We first claim that for any two gridpoints p1, p2 ∈ V, ∠(p1, p2) ≥ (2/9)(δε). It is easy
to see that the minimal angle is attained between a corner p1 of the cube L and its nearest grid-
point p2. Assume without loss of generality that p1 = (1, 1, 1) and p2 = (1, 1, 1 − (1/k)).
(Recall that k is the size of the grid.) Let ∠p1Op2 = θ and ∠p2p1O = φ. In the triangle
4p1Op2, we have sinφ =

√
2/3, |p1p2| = 1/k and |Op2| =

√
2 + (1 − (1/k))2 . It follows

from the law of sines that sin θ = (|p1p2|/|Op2|) sin φ ≥
√

2/(3k). For δε ≤ 1/
√

2 we get
that θ ≥ sin θ ≥ (2/9)(δε), which proves our claim.

This fact implies that every grid point p projected to −→p /|−→p | on the sphere S
2 has an empty

spherical disk of radius at least (δε)(2/9) that is free of other projected grid points. A spherical
disk of radius (1 + 2ε) · δ therefore can contain only O(1/ε2) grid points by a simple packing
argument.

Observe also that given a triangle normal nt we can determine the grid point pt with
∠(pt, nt) = minu∈V ∠(u, nt) in constant time by first determining which face of the cube L

is hit by the ray −→nt and then locating the position of the intersection point within the grid on
that face. We now state the main theorem of this section.

Theorem 12. Given a triangulated irregular network T , and two real parameters δ > 0 and
ε > 0 we can compute in O(n/ε2) time an ε-approximate δ-planar subset of triangles T of T .

Proof. We first prove correctness. Let rb and Tb denote the reference normal and triangle set,
respectively, as computed by the basic algorithm. We claim rb ∈ V

′. This can be easily seen
as follows: Assume t ∈ Tb. t is stored in the bucket associated with some reference normal r

with ∠(r, nt) ≤ δε). Since ∠(rb, r) ≤ ∠(rb, nt) + ∠(rb, r) ≤ (1 + ε) · δ + εδ = (1 + 2ε) · δ,
it follows that rb ∈ V

′. In addition, using the same argument, when rb is examined in Step 3,
it must be that t ∈ Nr and t ∈ N ′

r. Thus our refined algorithm computes the same solution as
the basic algorithm whose correctness was established before.

Let us now look at the running time. Step 1 of the refined algorithm takes O(n) since
for each t we can determine pt in constant time as well as access the associated bucket using
hashing. Step 2, where we form the set V

′, takes O(n/ε2) since there are at most n non-
empty buckets. For each of the non-empty buckets, we explore O(1/ε2) grid points in the
neighborhood according to Lemma 10. Finally, for the overall running time of Step 3, observe
that again according to Lemma 10, each triangle can be collected by at most O(1/ε2) reference
normals and that the running time of one iteration of Step 3 is O(|Nr|). Therefore Step 3 takes
O(n/ε2) time overall.

Remark. It is clear that we can avoid the pruning Step 3(b) in the algorithm by selecting a
finer discretization initially. This would simplify the algorithm, but it would also increase by
a constant factor the number of potential reference normals to be examined.

46 Chapter 4. Locating Planar Regions in a Terrain with a Guarantee

4.2.5 Scanning Algorithm

We propose another variant of our algorithm which improves the 1/ε2 term but incurs an
additional polylogarithmic factor in n. Similar to the exact algorithm in [SRWL04], we use
a data structure by Thorup [Tho00] which allows the maintenance of connected components
of a graph under insertions and deletions. The update time is O(log n(log log n)3) amortized
and one can also maintain which one is the heaviest component within the same time bound,
see [SRWL04] for more details.

Recall that the basic algorithm of Section 2.3 naively tested all O(1/(εδ)2) potential refer-
ence normals, each at a cost of O(n). We will improve upon that by scanning the grid-points
in a certain order such that the result of inspecting the previous grid point can be used in the in-
spection of the current. The order is defined as follows. Consider all grid-points F l which have
a fixed x-coordinate: Fl = {p ∈ V : px = l}. All grid-points in Fl lie on the boundary of a
square parallel to the yz-plane, so we call Fl a frame. We pick one grid-point of the frame and
compute, using the data structure by Thorup, the decomposition into connected components
of the graph induced by all triangles located in buckets within distance O((1 + O(ε)) · δ). We
then move on to the next grid-point of the frame in clockwise order always inserting/deleting
triangles appearing/disappearing until we have reached the first grid-point again. Observe that
the contents of a bucket are inserted at most twice and deleted at most once during the scan
over the frame. Let Tl be the set of triangles encountered. The running time of processing
frame Fl is clearly O(1/(ε2δ) + |Tl| · log n(log log n)3), since the frame has O(1/(εδ)) grid-
points, we only inspect O(1/(ε2δ)) buckets of grid-points nearby and have O(|Tl|) insertion
and deletion operations on Thorup’s data structure.

It is easy to see that all grid points in V can be covered by (k + 1) + (k − 1) = 2k =

O(1/(εδ)) frames (recall k is the grid-size), e.g. k + 1 frames with fixed x-coordinates and
another k − 1 frames with fixed y-coordinates. The running time of the whole procedure is
therefore O(1/(ε3δ2)+(

∑
l |Tl|)·log n(log log n)3). For

∑ |Tl| we observe that a bucket (and
therefore each triangle in it) is inspected only by O(1/ε) frames using a very similar argument
as our Lemma 10, so

∑
l |Tl| = O(n/ε), yielding the following result which for large values

of n is worse than the running time of the refined method, but for moderate values of n and
sufficiently small ε it may be of interest.

Theorem 13. Given a triangulated irregular network T , and two real parameters δ > 0

and ε > 0 we can compute in O((n/ε) log n(log log n)3) + 1/(δ2ε3)) time an ε-approximate
δ-planar subset of triangles T of T .

4.3 Implementation

We have implemented the refined algorithm of Section 2.4 in C++ using the LEDA library of
efficient data types and algorithms [MN99]. We used several data sets representing fracture
surfaces of metals. Input data were given 512 × 512 raster images with the intensity of each
pixel corresponding to its height value. To obtain the TIN, we triangulated the point set by
creating triangles (i, j), (i + 1, j), (i + 1, j + 1) and (i, j), (i, j + 1), (i + 1, j + 1) for all
possible i and j. See Figure 4.2 for our triangulation scheme.

4.3. Implementation 47

(i+1, j)(i, j)

(i, j+1) (i+1, j+1)

Fig. 4.2: Triangulation scheme for the array of height values

There are some aspects of the algorithm which can be tuned for better performance in
practice, without of course sacrificing the theoretical guarantee of the output.

Tuning for Practical Performance

Looking at the behavior of the original algorithm as stated in Section 4.2 we have come up
with three heuristics which considerably reduced the running time of our algorithm in practice.
We refer to Section 4.4 for actual timings of the improvements.

Prioritizing the Reference Normals

Naturally it seems to make sense first to examine those reference normals for which the weight
of the triangles in buckets nearby is large. So what we did in our implementation is to associate
with each reference normal the weight of all triangles contained in buckets at distance at most
(1 + 2ε) · δ and then process them in decreasing order of weight. We can stop examining
further reference normals as soon as the weight of the best solution found so far exceeds
the associated weight of the next reference normal. The weight information can easily be
collected as follows: In the first phase while computing normals and bucketing the triangles
we also take care of the weight and add it to the respective bucket. Then in the second phase,
when potential reference normals are determined we propagate for each non-empty bucket its
weight over all reference normals at distance at most (1 + 2ε) · δ. The running time guarantee
is only affected by the sorting step for the reference normals according to their weight. This
costs O((n/ε2) · log(n/ε2)) time, which in practice was negligible.

Prepruning of Triangles

In our data set, there is typically quite a number of triangles t for which all three neighboring
triangles have normals more than 2(1 + ε)δ off −→nt . These triangles are isolated and cannot be
part of a larger connected region of the output. Thus we can preprune these triangles in the
first phase when bucketing and simply not consider them in the next steps of the algorithm.
We only have to ensure at the end that the computed region has weight at least as large as
the heaviest single triangle of the terrain. This does not affect the theoretical running time
guarantee.

48 Chapter 4. Locating Planar Regions in a Terrain with a Guarantee

Fast Bucket Pruning of Relevant Triangles

In Step 3(b) where we determine the set of relevant triangles N ′
r of the refined algorithm we

collect all triangles in buckets within distance at most (1 + 2ε) · δ and test each triangle for
normal deviation of at most (1 + ε) · δ. But clearly, all triangles in buckets within distance
δ will fulfill this requirement and therefore can be added without an additional check (which
is relatively expensive as it involves floating-point computation). This does not affect the
theoretical running time guarantee.

4.4 Experimental Evaluation

Our program was compiled using g++ 3.2.3 with -O flag and LEDA 4.4 and timings were
taken on a single processor Pentium 4, 1.8 GHz machine with 256 MB RAM running Debian
Linux kernel version 2.4.20. geomview [ALMP95] was used for visualization of the results.

We benchmarked our implementation on several data sets provided by the Department of
Materials Science at Universität Magdeburg, Germany. Researchers in the Materials Science
are interested in surface topographies of materials since they provide useful information about
the generation process and the internal structure of the material. Surfaces generated by frac-
ture, wear, corrosion and machining are of interest. Among many other criteria, they want to
examine feature-related parameters like facets in brittle fracture surfaces. All the data were
acquired by confocal laser scanning microscopy. The following test sets were used for our
experiments:

T: A surface with three artificially introduced almost planar triangles the largest of which our
algorithm is supposed to detect.

S2-28, S2-30, S2-31, S2-34: Terrains with many terrace-like planar subregions.

K8: A very rough surface which exhibits only few planar subregions.

For each experiment we state the name of the test set (Set in the tables), the dimensions
of the raster image (Dim), the number of triangles in the resulting terrain (n), the allowed
deviation δ (in radians, note that 0.2 radians is about 11.5 degrees), the desired approximation
quality ε, the maximization objective (Obj which is either the total number (C) or area (A) of
the triangles), the running time in seconds (Time), and finally the objective function value of
the solution obtained (Val.).

4.4.1 Efficiency of Speed-Up Heuristics

In this part we show how much our proposed heuristics improve the running-time in prac-
tice. To allow for a more precise evaluation we have profiled the parts of the program which
correspond to the single phases of our algorith. Table header Norm. denotes the time to
compute the normals of all triangles and assigning each triangle to its closest bucket in the
δε-discretization. Table header Cand. is the time to determine all potential reference normals.
Table headers Coll., Prune, and Grow are the accumulated times for collecting, pruning, and
growing connected components on the relevant triangles for a reference normal. We experi-
mented with all possible settings of slow or fast bucket pruning routine (sP/fP, Table header:

4.4. Experimental Evaluation 49

B), with or without prepruning (PP/nPP, Table header: PP), and both area (A) and number of
triangles (C) as objective function (Table header: Obj). The results taken from the test sets T
and S2-28 can be found in Table 4.1. We remark that our algorithm indeed detected the largest
triangular planar region artificially created in test set T.

Pruning Heuristics

As it can be observed, each of the pruning heuristics on its own yields a gain of at least 20% in
running time. Combined the three heuristics reduce the running time by nearly a factor of two.
The fast bucket pruning only affects this phase, whereas prepruning decreases the running time
of all phases since the number of triangles to be looked at as well as the number of reference
normals to be considered is reduced. Only the initial normal computation and bucketing phase
requires more effort, which is though negligible.

Area vs. Count

In general, the running times for area maximization as objective function are higher than for
just counting the number of triangles. This is due to the fact that prioritizing gets less effective
when the maximum area is the objective. Very steep triangles have a very large area and hence
the priorities of the respective reference normals become very high (if there are several of these
steep triangles). So most of the time they have to be examined even though they will not lead
to a large terrain (as they mostly occur isolated). This can only partly be compensated for by
using the prepruning heuristic.

Prioritizing

In the same table the reference normals were always prioritized and we stopped examining as
soon as the best solution found so far exceeded the priority level of the next reference normal.
We have not listed the comparison with the unprioritized version, though the running time in
this case is about that using slow bucket pruning and no prepruning with triangle area weights.
Furthermore we note that the final best solution is typically found with one of the first reference
normals, so most of the running time is spent on checking that no better solution exists.

50
C

hapter
4.

L
ocating

Planar
R

egions
in

a
Terrain

w
ith

a
G

uarantee

Set Dim n δ ε Obj B PP Time Obj
Norm. Cand. Coll. Prune Grow Total Val.

S2-28 512x512 522k 0.2 0.2 C sP nPP 2.7 0.27 15.55 64.07 28.85 112.94 5587
S2-28 512x512 522k 0.2 0.2 C fP nPP 2.74 0.27 15.48 36.79 29.17 85.74 5587
S2-28 512x512 522k 0.2 0.2 C sP PP 3.08 0.27 10.51 49.69 24.47 89.2 5587
S2-28 512x512 522k 0.2 0.2 C fP PP 3.01 0.26 10.77 28.43 24.29 68.09 5587
S2-28 512x512 522k 0.2 0.2 A sP nPP 2.8 0.28 23.65 73.65 34.54 137.31 2793
S2-28 512x512 522k 0.2 0.2 A fP nPP 2.92 0.28 23.72 45.1 35.2 109.18 2793
S2-28 512x512 522k 0.2 0.2 A sP PP 3.07 0.28 15.53 56.73 28.32 105.92 2793
S2-28 512x512 522k 0.2 0.2 A fP PP 3.1 0.27 15.46 33.25 27.84 81.78 2793
T 512x512 522k 0.2 0.2 C sP nPP 2.91 0.3 25.52 76.92 33.54 140.9 10057
T 512x512 522k 0.2 0.2 C fP nPP 2.87 0.29 25.56 44.74 34.02 109.24 10057
T 512x512 522k 0.2 0.2 C sP PP 3.29 0.29 13.26 45.95 21.87 86.02 10057
T 512x512 522k 0.2 0.2 C fP PP 3.15 0.28 13.5 27.17 21.47 66.74 10057
T 512x512 522k 0.2 0.2 A sP nPP 3.06 0.29 32.75 86.01 39.02 163.3 7113
T 512x512 522k 0.2 0.2 A fP nPP 3.06 0.29 33.4 51.91 38.7 129.69 7113
T 512x512 522k 0.2 0.2 A sP PP 3.36 0.29 19.53 57.3 26.74 109.39 7113
T 512x512 522k 0.2 0.2 A fP PP 3.34 0.3 19.43 34.49 27.21 86.85 7113

Tab. 4.1: Evaluation of acceleration heuristics and detailed profiling.

4.4. Experimental Evaluation 51

Set Dim n ε Obj Time Val.

S2-30 64x64 7k 0.2 C 0.96 462
S2-30 90x90 15k 0.2 C 2.62 462
S2-30 128x128 32k 0.2 C 5.7 462
S2-30 181x181 64k 0.2 C 10.24 778
S2-30 256x256 130k 0.2 C 19.55 1209
S2-30 384x384 293k 0.2 C 41.9 2773
S2-30 512x512 522k 0.2 C 78.67 2773

Tab. 4.2: Running time versus n for δ = 0.2.

4.4.2 Dependence on n, ε and δ

In the following we will examine more closely the dependence of the running time on the
parameters n, ε and δ. For the remaining part of the section we run experiments with all
accelerating options turned on, i.e. with prioritized candidate selection, fast bucket pruning, as
well as prepruning. In addition, we aim at maximizing the number of triangles in the almost
planar region.

Dependence on n

To determine the dependence on n we took an i × i crop from the lower left corner of the
S2-30 data set and varied i. See Table 4.2 and Figure 4.3 for the results. As to be expected,
the running time grows linearly in the number of triangles. So we are very confident that our
program can be used also for much larger datasets.

In Figure 4.3 we have denoted by an additional curve the time when the final solution was
detected. Note that this happened within the first ten seconds due to the prioritization scheme.

Dependence on ε

For the test set S2-31 we have varied ε. The results can be found in Table 4.3 and Figure 4.4.
As to be expected the increase in running time with changing ε is the most pronounced. The
increase kicks in for values of ε ≤ 0.4, making our approach not so practicable for ε < 0.05.
For values ε > 0.4 our program for this test set behaves basically independent of ε.

In Figure 4.4, we have denoted by an additional curve the time when the final solution
was found. Note that this happened always within the first 20 seconds due to the prioritization
scheme.

Dependence on δ

Table 4.4 shows the running times on the data set S2-34 for several values of δ. The rather large
variations in the running time are mostly due to the way in which the triangles are bucketed
and the varying efficiency of the prioritizing heuristic. There seems to be no real dependence
between the running time and the choice of δ. Figure 4.5 depicts a top-view of the largest
almost planar regions corresponding to the numbers in Table 4.4.

52 Chapter 4. Locating Planar Regions in a Terrain with a Guarantee

Set n δ ε Obj Time Val.

S2-31 522k 0.3 1.4 C 20.89 58115
S2-31 522k 0.3 1.2 C 17.95 58097
S2-31 522k 0.3 1 C 28.85 57624
S2-31 522k 0.3 0.8 C 19.47 50673
S2-31 522k 0.3 0.6 C 20.73 50673
S2-31 522k 0.3 0.4 C 38.66 7281
S2-31 522k 0.3 0.2 C 88.55 7281
S2-31 522k 0.3 0.1 C 262.8 7281
S2-31 522k 0.3 0.05 C 970.37 7281

Tab. 4.3: Running time versus ε.

Set n δ ε Obj Time Val.

S2-34 522k 1 0.2 C 88.15 332091
S2-34 522k 0.9 0.2 C 73.05 257773
S2-34 522k 0.8 0.2 C 94.48 213976
S2-34 522k 0.7 0.2 C 90.19 188021
S2-34 522k 0.6 0.2 C 61.45 120855
S2-34 522k 0.5 0.2 C 57.83 107414
S2-34 522k 0.4 0.2 C 40.35 79463
S2-34 522k 0.3 0.2 C 96.63 1856
S2-34 522k 0.2 0.2 C 77.1 1856
S2-34 522k 0.1 0.2 C 68.22 1856
S2-34 522k 0.05 0.2 C 78.81 1856

Tab. 4.4: Running time versus δ.

4.4. Experimental Evaluation 53

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500

C
P

U
 S

ec
on

ds

Data Size (K)

total time
detection time

Fig. 4.3: Running time versus n for δ = 0.2, ε = 0.2.

1

10

100

1000

0 0.3 0.6 0.9 1.2 1.5

C
P

U
 S

ec
on

ds

Epsilon

total time
detection time

Fig. 4.4: Running time versus ε for n = 522k, δ = 0.3.

4.4.3 Some More Examples

To compare running times between different test data sets, we have run our algorithm with the
parameters δ = 0.2, ε = 0.2 on six of the data sets. We only considered a 500 × 500 crop
as the set K8 had a completely flat strip on the right part of the image, probably due to some
problem during data acquisition. As we also used the area as maximization objective, the
running times are slightly higher than in the experiments before. Table 4.5 shows the results.

Finally we synthetically generated some test sets by taking a surface with slightly (parabolic)
increasing slope and perturbing unwanted data points. One of the results can be seen in Fig-
ures 4.6 and 4.7.

4.4.4 Further Remarks

The output of this approximate algorithm described in this chapter is more acceptable for the
simple reason that it produces a guaranteed δ(1 + ε) connected subterrain of weight at least as
much as the optimal δ-planar set in comparison with the output of the heuristic (in previous

54 Chapter 4. Locating Planar Regions in a Terrain with a Guarantee

Fig. 4.5: Discovered regions for parameters δ = 1.0, δ = 0.8, δ = 0.4, δ = 0.1 (top to bottom, left to
right) in fracture surface S2-34.

chapter) which comes with no guarantee. However, the heuristic implementation was simple
and fast but it also can very easily miss a large almost planar region.

What might be interesting for practitioners is the fact that in all our cases, the final result of
our algorithm was found within the first 20 seconds of the running time due to the prioritization
heuristic. The remaining running time was spent on checking that there exists no larger planar
region. If one is not required to have a strict guarantee for the quality of the result, one might
simply stop the algorithm, for example, after thirty seconds and use the best solution computed
so far.

Set n δ ε Obj Time Val.

T 498k 0.2 0.2 A 79.24 7113
S2-28 498k 0.2 0.2 A 76.48 2793
S2-30 498k 0.2 0.2 A 85.17 1386
S2-31 498k 0.2 0.2 A 77.16 3640
S2-34 498k 0.2 0.2 A 80.49 928
K8 498k 0.2 0.2 A 106.1 1704

Tab. 4.5: Running times for various test sets.

4.5. Conclusions 55

4.5 Conclusions

We have presented simple approximation algorithms for detecting connected almost planar
regions in a terrain. Running time of our algorithm is linear in n and the dependence on 1/ε

is only quadratic. The algorithm for planarity detection has been implemented and tested on
real-world data from an application domain in Materials Science and performs quite well in
practice.

There are still a number of issues to be looked at particularly on the practical side. For
instance it might be interesting to pose additional conditions on the structure of the connected
almost planar region. At the moment our algorithm sometimes outputs large strip-like regions,
so one may only consider fat planar regions. The regions computed by our algorithm also
very often exhibit holes as can be seen in Figure 1.3, which might be undesirable. Different
measures of ‘near planarity’ are of interest as well. In future work we plan to extend our
implementation to enumerate the large almost planar regions in decreasing order of weight.

Finally our algorithm works for any surface mesh, thus it can also be used to detect flat
regions on any polyhedral surface.

Fig. 4.6: Discovered region shaded in dark for δ = 0.3, ε = 0.2 in an artificial test set.

Fig. 4.7: Close-up of an almost planar region from the same test set as in Figure 4.6.

Summary

We considered the following placement problem. Let C be a compact set in R
2 and let S

be a set of n points in R
2. The objective was to compute a translate of C that contains the

maximum number, κ∗, of points of S. This placement problem has been extensively in-
vestigated in the computational geometry literature for different types of sets C mainly for
its the useful application in clustering and pattern recognition. We have given a unified ap-
proach to solve this placement problem exactly and approximately in chapter 2. We approx-
imated the problem to the following ε-optimal-placement as a translate C + t of C such that
|S ∩ (C + t)| ≥ (1− ε)κ∗(C,S). In Section 2.5, it was shown using random sampling and/or
bucketing, we can transform any deterministic algorithm for the optimal-placement problem
to a Monte-Carlo algorithm for the ε-optimal-placement problem. Given a parameter γ ≥ 0,
the first algorithm in Section 2.5, based on a random-sampling technique, computes an ε-
approximate placement in O(n + T (γn)) time with error probability at most sne−ε2γκ∗

. The
second algorithm combines the random-sampling technique with the bucketing technique and
computes an ε-approximate placement in O(Tg(n) + nQ(m) + nT (αβγκ∗)/κ∗) time with
error probability at most sαβκ∗e−ε2γκ∗

. For circular disks and constant ε, the running time
becomes O(n log n) and the error probability is at most e−

√
κ∗ log n. If C is fat and m = O(1),

by combining two levels of random sampling with the bucketing technique, we have com-
puted an ε-approximate placement in O(n) time for constant ε with error probability at most
ne−

√
κ∗

.

We have also presented a deterministic algorithm, adapted from the cutting algorithm of
Chazelle, that computes an ε-approximate placement in O(n1+δ + n/ε) time for a arbitrary
constant δ > 0 and m = O(1). If C is a convex m-gon, the running time is O((n1+δ +

n/ε) log m).

Finally, in Section 2.7, we briefly described an algorithm for placing a unit disk in the plane
such that the number of points contained is maximized. Our algorithm computed a placement
of a disk of radius (1 + ε) which contains at least κ∗ points, where κ∗ denotes the maximum
number of points in any unit disk. The running time of this algorithm is O(n/ε2). We also
sketch a more complicated variant running in O(n + (n/κ∗) · (1/ε3)) time which is better for
κ∗ = ω(1/ε).

Observe that in our approach of Section 2.7 the notion of approximation differs from the
one used so far in that chapter which is the same as in [AHR+02] (they approximate the size
of the resulting set) and rather resembles the notion used in [HPM03] where one approximates
the constraining radius. Not only are the running times of our algorithms linear in n and the
dependencies on ε reasonable, but also the constants involved are small enough to make them
relevant in practice. The results on the placement problems were published in 10th Annual
European Symposium of Algorithms in 2001 ([AHR+02]) and partly in 20th ACM Symposium

58 Chapter 4. Locating Planar Regions in a Terrain with a Guarantee

on Computational Geometry (SoCG) ([FMR04]) in 2004.

We leave open the problem of improving the error probabilities of our Monte Carlo ap-
proximation algorithms for placement problem for small values of k∗. Both the randomized
O(n log n) and O(n) time algorithms we obtained had very low error probabilites when κ∗ is
at least log n.

Dickerson and Scharstein have considered the optimal placement problem if, besides trans-
lations, it is also allowed to rotate the set C . For the case when C is a convex polygon with m

vertices, they give an algorithm for computing an optimal placement in O(n2k∗m2 log(mn))

time. In the worst case, this at least cubic in n. It would be interesting to know if our tech-
niques can be extended to obtain a faster approximation algorithm allowing translation and
rotation combined.

Prior to this thesis, there has been very little progress in locating approximately planar
regions in terrain by the computational geometers. This thesis sheds a new light on this in-
teresting geometric problem, motivated by the material scientists’ need of analysing fractured
surface topographies. We showed that the question of locating the largest approximately planar
could be solved by considering the dual graph of the terrain triangulation (vertices correspond
to triangles, edges to adjacencies between triangles). We embedded this degree-3 graph on
the unit sphere S

2 by placing each vertex v at the position on S
2 corresponding to the normal

of the triangle represented by v. The vertices were weighted with the areas of the respective
triangles. The largest almost planar region can then be found by determining the maximum
weight connected component of this graph that is contained in a spherical disk of radius δ.

The exact solution to this problem followed from the observation that at least one of the
spherical disks that contains a maximum weight connected component has its center on a
vertex of the arrangement of n spherical disks which is defined by placing a disk of radius δ

around each vertex v. But since just computing this arrangement takes Ω(n2), a sub-quadratic
running time for the overall algorithm cannot be obtained. Our algorithm first computed the
arrangement and then made use of a data structure to dynamically maintain the connected
components of a graph under insertions and deletions of edges, which finally yields a running
time of O(n2 log n(log log n)3), instead of the naive O(n3).

Because of the expensive running time of the above algorithm, we have designed a grid-
based heuristic that computes the same much faster. Also we have implemented this heuris-
tic with some experimental results from the real data sets provided to us by the material
scientists in Magdeburg University. This work has been published in Materialwissenschaft
und Werkstofftechnik in 2002 ([WLS+02]) and Discrete Applied Mathematics in April 2004
([SRWL04]).

Since the output of the heuristic comes with no quality assurance, in Chapter 4, we pre-
sented a new approximation scheme for the problem which apart from giving a guarantee on
the quality of the produced solution has been also implemented in practice and showed good
performance on real-world data representing fracture surfaces. This approximate deterministic
algorithm computes in O(n/ε2) time a connected δ-planar set in which all the triangle normals
can deviate at most (1 + ε) · δ from the reference normal. With the reduced running time, the
speed of the algorithm was competitive against previous heuristic algorithm using reasonably
small values of ε. We also showed a variation of our algorithm which trades parameters of the
running time, heuristics that speed up the program for practical inputs and was demonstrated

4.5. Conclusions 59

by thorough experiment that compares the effect of changing various parameters of the algo-
rithms. We also gave a variant of this algorithm with a better dependence on ε, but an extra
polylogarithmic factor on n. Both the algorithms used O(n) space for sufficiently large n,
which is optimal. This result has been published in 20th ACM Symposium on Computational
Geometry (SoCG) in 2004 and a journal version of the same has been invited for International
Journal on Computational Geometry and Applications ([FMR04]).

We considered the problem of computing large regions in a terrain that are connected and
approximately planar. We showed that the problem of computing the largest such region can
be solved in a time that is roughly quadratic in the number of triangles in the terrain, and
argued that it is unlikely to solve the problem faster. We leave open the problem of proving
this rigorously. We also argued that it may even be hard to approximate this largest region.
Proving this claim formally is also left as an open problem.

There is not yet an exact algorithm for the problem, which can solve it in O(n2) time. It
might be interesting to consider additional conditions on the structure of the connected almost
planar region. At present our algorithm sometimes outputs large strip-like regions, so one
may only consider fat planar regions. The regions computed by our algorithm also very often
exhibit holes, which might be undesirable. One can investigate different measures of ‘near
planarity’ that suits the requirement of the applications or which is out of purely theoretical
interests.

Zusammenfassung

Wir betrachten das folgende Platzierungsproblem: Sei C eine kompakte Menge im R
2 and

S eine Menge von n Punkten im R
2. Das Ziel ist es, ein Verschiebung von C zu berech-

nen, welche eine maximale Anzahl κ∗ an Punkten aus S enthält. Aufgrund zahlreichen An-
wendungen im Clustering und in der Mustererkennung wurde dieses Problem in den letzten
Jahrzehnten in einer Vielzahl von Arbeiten im Gebiet der Algorithmischen Geometrie für ver-
schiedenste Arten von Mengen betrachtet. In Kapitel 2 präsentieren wir einen allgemeinen
Ansatz, um dieses Problem exakt und approximativ zu lösen. Unser Algorithmus berechnet
eine ε-optimale Verschiebung C + t von C sodass |S ∩ (C + t)| ≥ (1 − ε)κ∗(C,S). In Ab-
schnitt 2.5, zeigen wir, wie ein deterministischer Algorithmus für die optimale Platzierung in
einen Monte-Carlo-Algorithmus zur ε-optimalen Platzierung umgewandelt werden kann. Für
einen beliebigen Parameter γ ≥ 0 berechnet der erste Algorithmus in diesem Abschnitt eine
ε-approximative Platzierung in Zeit O(n + T (γn)) mit Fehlerwahrscheinlichkeit sne−ε2γκ∗

.
Der zweite Algorithmus kombiniert zufällige Stichprobenentnahme mit einer Bucketingtech-
nik und berechnet eine ε-approximative Platzierung in O(Tg(n)+nQ(m)+nT (αβγκ∗)/κ∗)

mit Fehlerwahrscheinlichkeit sαβκ∗e−ε2γκ∗
. Für Kreissscheiben und konstantes ε, beläuft

sich die Laufzeit auf O(n log n) und die Fehlerwahrscheinlichkeit auf e−
√

κ∗ log n. Für den
Fall, dass C ’fett’ ist und m = O(1), kann eine ε-approximative Platzierung in Zeit O(n)

bei konstantem ε mit Fehlerwahrscheinlichkeit ne−
√

κ∗
berechnet werden. Wir stellen auch

einen deterministischen Algorithmus basierend auf Chazelles Cuttings vor, welcher eine ε-
approximative Platzierung in Zeit O(n1+δ + n/ε) berechnet, wobei δ > 0 eine beliebige
Konstante ist und und m = O(1). Für den Fall, dass C ein konvexes m-gon ist, beträgt die
Laufzeit O((n1+δ + n/ε) log m).

Schliesslich beschreiben wir in Abschnit 2.7 einen Algorithmus zur Platzierung einer Ein-
heitskreissscheibe in der Ebene, sodass die Anzahl der überdeckten Punkte maximiert wird.
Unser Algorithmus berechnet eine Platzierung einer Kreisscheibe mit Radius (1 + ε) welche
mindestens κ∗ Punkte enthält, wobei κ∗ die maximale Anzahl von Punkten in einer Einheit-
skreisscheibe bezeichnet. Die Laufzeit dieses Algorithmus ist O(n/ε2). Man beachte, dass der
in Abschnitt 2.7 verwendete Approximationsbegriff vom zuvor im Kapitel verwendeten Be-
griff abweicht, welcher bis dahin derselbe wie in [AHR+02] ist (man approximiert die Grösse
der berechneten Menge). Vielmehr benutzen wir den Approximationsbegriff aus [HPM03],
wo der einschränkende Radius approximiert wird. Die Laufzeiten unserer Algorithmen sind
linear in n, die Abhngigkeiten von ε gutmütig und die auftrendenden Konstanten klein genug,
um den Algorithmus praktisch nützlich zu machen. Die Resultate über Platzierungsprobleme
wurden beim 10th Annual European Symposium of Algorithms 2001 ([AHR+02]) und teil-
weise beim 20th ACM Symposium on Computational Geometry (SoCG) ([FMR04]) 2004
veröffentlicht.

62 Chapter 4. Locating Planar Regions in a Terrain with a Guarantee

Eine offenes Problem bleibt es, die auftretenden Fehlerwahrscheinlichkeiten unserer Monte
Carlo Approximationsalgorithmen insbesondere für kleine Werte von k∗ zu verbessern. Dick-
erson und Scharstein haben das Platzierungsproblem betrachtet für den Fall dass ausser Ver-
schiebungen, auch Rotationen der Menge C erlaubt sind. Für konvexe m-gone beschreiben
sie einen Algorithmus der eine optimale Platzierung in Zeit O(n2k∗m2 log(mn)) berechnet.
Im schlimmsten Fall ist dies mindestens kubisch in n. Eine interessante Fragestellung ist es,
ob unsere Techniken auch für den Fall von Verschiebung und Rotation zu schnelleren Algo-
rithmen führen.

Vor dieser Arbeit gab es nur wenige Arbeiten aus dem Gebiet der algorithmischen Ge-
ometrie, die von der Bestimmung von fast-planaren Regionen in Terrains handeln. In un-
seren Resultaten haben wir erste Lösungsansätze für dieses interessante geometrische Problem
vorgestellt, welches durch eine Anwendung in den Materialwissenschaften motiviert wurde,
wobei es um die Analyse der Topographien von Bruchoberflächen geht. Wir zeigen, dass die
grösste fast-planare Region durch genauere Untersuchung des dualen Graphen der Terraintri-
angulierung (Knoten entsprechen Dreiecken, Kanten zwischen adjazenten Dreiecken) ermittelt
werden kann. Wir betten diesen Grad-3 Graphen auf die Einheitskugel S

2 ein, indem wir je-
den Knoten v an der Position auf S

2 platzieren, welche der normalisierten Dreiecksnormalen
des entsprechenden Dreiecks entspricht. Die Knoten werden mit den Flächeninhalten der
entsprechenden Dreiecke gewichtet. Die grösste fast-planare Region kann dann durch Bestim-
mung der Zusammenhangskomponente mit maximalem Gewicht, welche in einer Kugelkreisss-
cheibe von Radius δ liegt, berechnet werden.

Die exakte Lösung für dieses Problem folgt aus der Beobachtung, dass mindestens eine der
Kugelkreissscheiben, welche eine Zusammenhangskomponente maximalen Gewichts enthlt,
ihren Mittelpunkt auf einem Knoten des Arrangements von n Kreissscheiben auf der Kugelobe-
rfläche hat. Hierzu konstruiert man um jeden Knoten v einen Kreis mit Radius δ. Da je-
doch allein die Berechnung dieses Arrangements Ω(n2) Zeit benötigt, ist eine subquadratis-
che Laufzeit des gesamten Algorithmus nicht erreichbar. Unser exakter Algorithmus berech-
net zuerst das Arrangement und berechnet dann mithilfe einer Datenstruktur zur dynamis-
chen Verwaltung von Zusammenhangskomponenten eines Graphen unter Einfügungen und
Löschungen von Kanten in Zeit O(n2 log n(log log n)3) eine optimale Lösung (im Gegensatz
zur naiven O(n3) Laufzeit).

Aufgrund der unpraktikablen Laufzeit des exakten Algorithmus haben wir eine Gitter-
basierte Heuristik entwickelt, welche auch praktisch implementiert wurde. Wir haben diese
Heuristik auf reellen Datensätze experimentell evaluiert, welche uns von den Materialwis-
senschaftlern an der Universität Magdeburg zur Verfügung gestellt wurden. Diese Resultate
wurden in Discrete Applied Mathematics im April 2004 veröffentlicht ([SRWL04]).

Da jedoch die Ausgabe der Heuristik keinerlei Qualitätsgarantie erfüllt, präsentieren wir in
Kapitel 4 ein neuartiges Approximationsschema welches sowohl eine Ausgabequalität garantiert,
als auch praktisch implementiert wurde und auf unseren Testdaten gute Resultate erzielte.
Dieser deterministische Approximationsalgorithms berechnet in O(n/ε2) Zeit eine zusam-
menhängende δ-planare Menge, in welcher alle Dreiecke höchstens um (1+ε).δ von einer Ref-
erenznormalen abweichen. Die Laufzeiten des Algorithmus sind vergleichbar mit vorherigen
heuristischen Algorithmen, die keinerlei Qualitätsgarantie besassen. Dieses Resultat wurde
beim 20th ACM Symposium on Computational Geometry (SoCG) 2004 veröffentlicht und

4.5. Conclusions 63

zur Veröffentlichung im International Journal on Computational Geometry and Applications
([FMR04]) eingeladen. In Zukunft wäre es vor allem von praktischem Interesse, die Struk-
tur der erkannten fast-planaren Regionen stärker einzuschränken. Im Moment geben unsere
Algorithmen in manchen Fällen lange, streifenartige Regionen zurück. Es könnte gewünscht
sein, nur ”fette” fast-planere Regionen zu berücksichtigen. Ebenso werden oft Löcher in den
erkannten Regionen – wie z.B. in Figure 1.3 – toleriert, was je nach Anwendung unerwünscht
sein kann. Weitere, andere Masse für ’Fast-Planarität’ sind auch von Interesse.

Bibliography

[AASS93] P. K. Agarwal, B. Aronov, M. Sharir, and S. Suri. Selecting distances in the
plane. Algorithmica, 9:495–514, 1993.

[AGR00] N. M. Amato, M. T. Goodrich, and E. A. Ramos. Computing the arrangement
of curve segments: Divide-and-conquer algorithms via sampling. In Proc. 11th
ACM-SIAM Sympos. Discrete Algorithms, pages 705–706, 2000.

[AHR+02] P. K. Agarwal, T. Hagerup, R. Ray, M. Sharir, M. Smid, and E. Welzl. Translat-
ing a planar object to maximize point containment. In Proc. 10th Annu. Euro-
pean Sympos. Algorithms, Lecture Notes Comput. Sci. Springer-Verlag, 2002.

[ALMP95] N. Amenta, S. Levy, T. Munzner, and M. Philips. Geomview: A system for
geometric visualization. In Proc. 11th Annu. ACM Sympos. Comput. Geom.,
pages C12–C13, 1995.

[AM00] S. Arya and D. M. Mount. Approximate range searching. Comput. Geom.
Theory Appl., 17(3-4):135–152, 2000.

[AS98] P. K. Agarwal and S. Suri. Surface approximation and geometric partitions.
SIAM J. Comput., 27:1016–1035, 1998.

[BCM99] H. Brönnimann, B. Chazelle, and J. Matoušek. Product range spaces, sensitive
sampling, and derandomization. SIAM J. Comput., 28:1552–1575, 1999.

[BDP97] G. Barequet, M. Dickerson, and P. Pau. Translating a convex polygon to contain
a maximum number of points. Comput. Geom. Theory Appl., 8:167–179, 1997.

[BH91] H. Bast and T. Hagerup. Fast and reliable parallel hashing. In Proc. 3rd Annual
ACM Symposium on Parallel Algorithms and Architectures, pages 50–61, 1991.

[Boy73] A. Boyde. Quantitative photogrammetric analysis and qualitative stereoscopic
analysis of SEM images. J. of Microsc., 98:452–471, 1973.

[Cha93] B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Comput.
Geom., 9:145–158, 1993.

[CL86] B. Chazelle and D. T. Lee. On a circle placement problem. Computing, 36:1–16,
1986.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, Cambridge, MA, 1990.

66 Bibliography

[dBvKOS97] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computa-
tional Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[DHKP97] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable
randomized algorithm for the closest-pair problem. J. Algorithms, 25:19–51,
1997.

[DK83] D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection.
Theoret. Comput. Sci., 27:241–253, 1983.

[DLSS95] A. Datta, H.-P. Lenhof, C. Schwarz, and M. Smid. Static and dynamic algo-
rithms for k-point clustering problems. J. Algorithms, 19:474–503, 1995.

[DS98] M. Dickerson and D. Scharstein. Optimal placement of convex polygons to
maximize point containment. Comput. Geom. Theory Appl., 11:1–16, 1998.

[EE94] D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal
polytopes. Discrete Comput. Geom., 11:321–350, 1994.

[ESZ94] A. Efrat, M. Sharir, and A. Ziv. Computing the smallest k-enclosing circle and
related problems. Comput. Geom. Theory Appl., 4:119–136, 1994.

[FKS84] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1)

worst case access time. J. ACM, 31:534–544, 1984.

[FMR04] S. Funke, T. Malamatos, and R. Ray. Finding planar regions in a terrain - in
practice and with a guarantee. In Proc. 20th ACM Symposium on Computational
Geometry (SoCG), 2004. Also appeared in Proc. 20th European Workshop on
Computational Geometry (EWCG) 2004, Sevilla.

[GO95] A. Gajentaan and M. H. Overmars. On a class of O(n2) problems in computa-
tional geometry. Comput. Geom. Theory Appl., 5:165–185, 1995.

[HdLT98] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and
biconnectivity. In Proc. 30th Annu. ACM Sympos. Theory Comput., pages 79–
89, 1998.

[HPM03] S. Har-Peled and S. Mazumdar. Fast algorithms for computing the smallest
k-enclosing disc. In Proc. 11th Annu. European Sympos. Algorithms, Lecture
Notes Comput. Sci., pages 278–288. Springer-Verlag, 2003.

[HR90] T. Hagerup and C. Rüb. A guided tour of Chernoff bounds. Inform. Process.
Lett., 33:305–308, 1990.

[HSW00] A. Harasaki, J. Schmit, and J. C. Wyant. Improved vertical scanning interfer-
ometry. Appl. Opt., 39:2107–2115, 2000.

[HU87] D. P. Huttenlocher and S. Ullman. Object recognition using alignment. In Proc.
1st Internat. Conf. Comput. Vision, pages 102–111, 1987.

Bibliography 67

[KLPS86] K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions
and collision-free translational motion amidst polygonal obstacles. Discrete
Comput. Geom., 1:59–71, 1986.

[LS95] H. P. Lenhof and M. Smid. Sequential and parallel algorithms for the k closest
pairs problem. Internat. J. Comput. Geom. Appl., 5:273–288, 1995.

[LSW88] Y. Lamdan, J. T. Schwartz, and H. J. Wolfson. Object recognition by affine
invariant matching. In Proc. IEEE Internat. Conf. Comput. Vision Pattern.
Recogn., pages 335–344, 1988.

[MN99] K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geomet-
ric Computing. Cambridge University Press, Cambridge, U.K., 1999.

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York, NY, 1985.

[SB95] N. S. Sapidis and P. J. Besl. Direct construction of polynomial surfaces from
dense range images through region growing. ACM Transactions on Graphics.,
14:171–200, 1995.

[Sch97] U. D. Schwarz. Scanning force microscopy. In S. Amelinckx, D. van Dyck, and
J. van Landuyt van G. van Tendeloo, editors, Handbook of Microscopy, Vol. II,
page 827. VCH Verlagsgesellschaft, Weinheim, 1997.

[SFRW98] O. Schwarzkopf, U. Fuchs, G. Rote, and E. Welzl. Approximation of convex
figures by pairs of rectangles. Comput. Geom. Theory Appl., 10:77–87, 1998.

[Sha91] M. Sharir. On k-sets in arrangements of curves and surfaces. Discrete Comput.
Geom., 6:593–613, 1991.

[SRWL04] M. Smid, R. Ray, U. Wendt, and K. Lange. Computing large planar regions in
terrains, with an application to fracture surface. Discrete Applied Mathematics,
139: Issues 1-3:253–264, 2004.

[Tho00] M. Thorup. Near-optimal fully-dynamic graph connectivity. In Proc. 32th Annu.
ACM Sympos. Theory Comput., pages 343–350, 2000.

[WLS+02] U. Wendt, K. Lange, M. Smid, R. Ray, and K. Tönnies. Surface topography
quantification by integral and feature-related parameters. Materialwissenschaft
und Werkstofftechnik, 33(10):621–627, 2002.

[YWM99] Y. Yamaguchi, M. K. Weldon, and M. D. Morris. Fractal characterization of
SERS-active electrodes using extended focus reflectance microscopy. Appl.
Spectrosc., 53:127–132, 1999.

Curriculum Vitae

Personal Details

Name: Rahul Ray
Date of birth: December 30, 1973
Nationality: Indian
Office address: Max-Planck Institut für Informatik(MPII)

Algorithms and Complexity Group (AG1)
Im Stadtwald
D-66123 Saarbrücken
Germany
Phone: +49 (0)681 9325122
Fax: +49 (0)681 9325199
http://www.mpi-sb.mpg.de/˜ rahul
E-mail: rahul@mpi-sb.mpg.de

Education

B.Sc Physics, Mathematics and Chemistry, Calcutta University, India,
1992–95.

M.E. Computer Science & Automation, Indian Institute of Science, Bangalore, 1995–1999.
Project: Graph Drawing.
Advisors: Dr.Ramesh Hariharan, Dr.Sanjay Jain

Ph.D. Computer Science, Max-Planck Institut für Informatik, Germany, Aug 2001-Present.
Expecting to finish in a couple of months.
Thesis title: Geometric Algorithms for Object Placement and Planarity in a Terrain
Advisors: Prof.Dr.Kurt Mehlhorn

Scholarships & Sponsorship

• Institute Scholarship during Aug, 1995 – July, 1998 at IISc, Bangalore.

• GATE during Aug, 1998 – Jan, 1999 at IISc, Bangalore

• DFG grant April, 2000 – July, 2001 at Magdeburg University, Germany for the post of
research scientist

• IMPRS funding from Aug, 2001 – till date during Ph.D studies at MPII

Research & Industrial Experience

• April, 2000 – July, 2001: Research Scientist at Magdeburg University in Germany.

• June 5, 1999 – March 7, 2000: Systems Engineer at Siemens Information Systems
Limited, Bangalore, India.

• May, 1998 – August, 1998: Summer Trainee at Texas Instrument in Bangalore, India.

Publications

Journal Publications

1. M. Smid, R. Ray, U. Wendt , K. Lange Computing Large Planar Regions in Terrains,
with an Application to Fracture Surface , Discrete Applied Mathematics, Volume 139,
Issues 1-3, 30 April 2004, Pages 253-264

2. U. Wendt , K. Lange , M. Smid , R. Ray , K.-D. Toennies Surface Topography Quan-
tification by Integral and Feature-related Parameters, Materialwissenschaft und Werk-
stofftechnik (Materials Science and Engineering Technology) Volume 33, Issue 10,
2002, Page 621-627

Conference Publications

1. K. Lange, R. Ray, M. Smid, U. Wendt Computing planar regions in terrains , Pro-
ceedings of the 8th International Workshop on Combinatorial Image Analysis (IWCIA),
2001, pp. 139–151. Appears also in Electronic Notes in Theoretical Computer Science,
Volume 46.

2. U. Wendt, K. Lange, M. Smid, R. Ray Surface Topography Quantification using Com-
putational Geometry, Dreilaendertagung fuer Elektronenmikroskopie (Conference on
Modern Microscopical Methods), Innsbruck/Austria, 9-14 Sept. 2001

3. P. K. Agarwal, T. Hagerup , R. Ray , M. Sharir, M. Smid , E. Welzl Translating a
Planar Object to Maximize Point Containment, 10th Annual European Symposium on
Algorithms (ESA), in Rome, Italy, September 2002. Appears also in Lecture Notes in
Computer Science, pp 42-53. (LNCS 2461, Springer)

4. S. Funke, T. Malamatos , R. Ray Finding Planar Regions in Terrain - In Practice and
with a guarantee, Proc. 20th ACM Symposium on Computational Geometry (SoCG)
2004, New York

5. S. Funke, T. Malamatos , R. Ray Finding Planar Regions in Terrain , Proc. 20th
European Workshop on Computational Geometry (EWCG) 2004, Sevilla

